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Division of Applied Mathematics
Brown University
182 George St
Providence, RI 02912
USA
rozovsky@dam.brown.edu

Peter W. Glynn
Institute of Computational
and Mathematical Engineering
Stanford University
Via Ortega 475
Stanford, CA 94305-4042
USA
glynn@stanford.edu

ISSN 0172-4568 Stochastic Modelling and Applied Probability
ISBN 978-3-642-23279-4 e-ISBN 978-3-642-23280-0
DOI 10.1007/978-3-642-23280-0
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2011938642

Mathematics Subject Classification (2010): 60-XX, 62Mxx

Originally published in Russian, by Nauka, Moscow 1969.
1st English ed. published 1980 under R.Z. Has’minski in the series Mechanics: Analysis by Sijthoff &
Noordhoff.
© Springer-Verlag Berlin Heidelberg 2012
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9,
1965, in its current version, and permission for use must always be obtained from Springer. Violations
are liable to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not
imply, even in the absence of a specific statement, that such names are exempt from the relevant protective
laws and regulations and therefore free for general use.

Cover design: deblik

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

mailto:rafail@math.wayne.edu
mailto:rozovsky@dam.brown.edu
mailto:glynn@stanford.edu
http://www.springer.com
http://www.springer.com/mycopy


Preface to the Second Edition

After the publication of the first edition of this book, stochastic stability of differen-
tial equations has become a very popular theme of recent research in mathematics
and its applications. It is enough to mention the Lecture Notes in Mathematics, Nos
294, 1186 and 1486, devoted to the stability of stochastic dynamical systems and
Lyapunov Exponents, the books of L. Arnold [3], A. Borovkov [35], S. Meyn and
R. Tweedie [196], among many others.

Nevertheless I think that this book is still useful for those researchers who would
like to learn this subject, to start their research in this area or to study properties of
concrete mechanical systems subjected to random perturbations. In particular, the
method of Lyapunov functions for the analysis of qualitative behavior of stochas-
tic differential equations (SDEs), the exact formulas for the Lyapunov exponent for
linear SDEs, which are presented in this book, provide some very powerful instru-
ments in the study of stability properties for concrete stochastic dynamical systems,
conditions of existence the stationary solutions of SDEs and related problems.

The study of exponential stability of the moments (see Sects. 5.7, 6.3, 6.4 here)
makes natural the consideration of certain properties of the moment Lyapunov expo-
nents. This very important concept was first proposed by S. Molchanov [204], and
was later studied in detail by L. Arnold, E. Oeljeklaus, E. Pardoux [8], P. Baxendale
[19] and many other researchers (see, e.g., [136]).

Another important characteristic for stability (or instability) of the stochastic sys-
tems is the stability index, studied by Arnold, Baxendale and the author. For the
reader’s convenience I decided to include the main results on the moment Lyapunov
exponents and the stability index in the Appendix B to this edition. The Appendix B
was mainly written by G. Milstein, who is an accomplished researcher in this area.
I thank him whole-heartily for his generous help and support.

I have many thanks to the Institute for the Problems Information Transmission,
Russian Academy of Sciences, and to the Wayne State University, Detroit, for their
support during my work on this edition. I also have many thanks to B.A. Amosov
for his essential help in the preparation of this edition.

In conclusion I will enumerate some other changes in this edition.
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vi Preface to the Second Edition

1. Derivation of the often used in the book Feynman–Kac formula is added to
Sect. 3.6.

2. A much improved version of Theorem 4.6 is proven in Chap. 4.
3. The Arcsine Law and its generalization are added in 4.12.
4. Sect. A.4 in the Appendix B to the first edition is shortened.
5. New books and papers, related to the content of this book, added to the bibliog-

raphy.
6. Some footnotes are added and misprints are corrected.

Rafail KhasminskiiMoscow
March 2011



Preface to the First English Edition

I am very pleased to witness the printing of an English edition of this book by
Noordhoff International Publishing. Since the date of the first Russian edition in
1969 there have appeared no less than two specialist texts devoted at least partly
to the problems dealt with in the present book [38, 211]. There have also appeared
a large number of research papers on our subject. Also worth mentioning is the
monograph of Sagirov [243] containing applications of some of the results of this
book to cosmology.

In the hope of bringing the book somewhat more up to date we have written,
jointly with M.B. Nevelson, an Appendix A containing an exposition of recent re-
sults. Also, we have in some places improved the original text of the book and
have made some corrections. Among these changes, the following two are espe-
cially worth mentioning: A new version of Sect. 8.4, generalizing and simplifying
the previous exposition, and a new presentation of Theorem 7.8.

Finally, there have been added about thirty new titles to the list of references. In
connection with this we would like to mention the following. In the first Russian
edition we tried to give as complete as possible a list of references to works con-
cerning the subject. This list was up to date in 1967. Since then the annual output
of publications on stability of stochastic systems has increased so considerably that
the task of supplying this book with a totally up to date and complete bibliography
became very difficult indeed. Therefore we have chosen to limit ourselves to listing
only those titles which pertain directly to the contents of this book. We have also
mentioned some more recent papers which were published in Russian, assuming
that those will be less known to the western reader.

I would like to conclude this preface by expressing my gratitude to M.B. Nevel-
son for his help in the preparation of this new edition of the book.

Rafail KhasminskiiMoscow
September 1979
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Preface to the Russian Edition

This monograph is devoted to the study of the qualitative theory of differential
equations with random right-hand side. More specifically, we shall consider here
problems concerning the behavior of solutions of systems of ordinary differential
equations whose right-hand sides involve stochastic processes. Among these the
following questions will receive most of our attention.

1. When is each solution of the system defined with probability 1 for all t > 0 (i.e.,
the solution does not “escape to infinity” in a finite time)?

2. If the function X(t) ≡ 0 is a solution of the system, under which conditions is
this solution stable in some stochastic sense?

3. Which systems admit only bounded for all t > 0 (again in some stochastic sense)
solutions?

4. If the right-hand side of the system is a stationary (or periodic) stochastic process,
under which additional assumptions does the system have a stationary (periodic)
solution?

5. If the system has a stationary (or periodic) solution, under which circumstances
will every other solution converge to it?

The above problems are also meaningful (and motivated by practical interest) for
deterministic systems of differential equations. In that case, they received detailed
attention in [154, 155, 178, 188, 191, 228], and others.

Problems 3–5 have been thoroughly investigated for linear systems of the type
ẋ =Ax+ ξ(t), where A is a constant or time dependent matrix and ξ(t) a stochastic
process. For that case one can obtain not only qualitative but also quantitative results
(i.e., the moment, correlation and spectral characteristics of the output process x(t))
in terms of the corresponding characteristics of the input process ξ(t). Methods
leading to this end are presented e.g., in [177, 233], etc. In view of this, we shall
concentrate our attention in the present volume primarily on non-linear systems, and
on linear systems whose parameters (the elements of the matrix A) are subjected to
random perturbations.

In his celebrated memoir Lyapunov [188] applied his method of auxiliary func-
tions (Lyapunov functions) to the study of stability. His method proved later to be

ix



x Preface to the Russian Edition

applicable also to many other problems in the qualitative theory of differential equa-
tions. Also in this book we shall utilize an appropriate modification of the method
of Lyapunov functions when discussing the solutions to the above mentioned prob-
lems.

In Chaps. 1 and 2 we shall study problems 1–5 without making any specific
assumptions on the form of the stochastic process on the right side of the spe-
cial equation. We shall be predominantly concerned with systems of the type
ẋ = F(x, t) + σ(x, t)ξ(t) in Euclidean l-space. We shall discuss their solutions,
using the Lyapunov functions of the truncated system ẋ = F(x, t). In this we shall
try to impose as few restrictions as possible on the stochastic process ξ(t); e.g., we
may require only that the expectation of |ξ(t)| be bounded. It seems convenient to
take this approach, first, because sophisticated methods are available for construct-
ing Lyapunov functions for deterministic systems, and second, because the results
so obtained will be applicable also when the properties of the process ξ(t) are not
completely known, as is often the case.

Evidently, to obtain more detailed results, we shall have to restrict the class of
stochastic processes ξ(t) that may appear on the right side of the equation. Thus
in Chaps. 3 through 7 we shall study the solutions of the equation ẋ = F(x, t) +
σ(x, t)ξ(t) where ξ(t) is a white noise, i.e. a Gaussian process such that Eξ(t)= 0,
E[ξ(s)ξ(t)] = δ(t − s). We have chosen this process, because:

1. In many real situations physical noise can be well approximated by white noise.
2. Even under conditions different from white noise, but when the noise acting upon

the system has a finite memory interval τ (i.e., the values of the noise at times t1
and t2 such that |t2 − t1|> τ are virtually independent), it is often possible after
changing the time scale to find an approximating system, perturbed by the white
noise.

3. When solutions of an equation are sought in the form of a process, continuous
in time and without after-effects, the assumption that the noise in the system is
“white” is essential. The investigation is facilitated by the existence of a well
developed theory of processes without after-effects (Markov processes).

Shortly after the publication of Kolmogorov’s paper [144], which laid the founda-
tions for the modern analytical theory of Markov processes, Andronov, Pontryagin
and Vitt [229] pointed out that actual noise in dynamic systems can be replaced by
white noise, thus showing that the theory of Markov processes is a convenient tool
for the study of such systems.

Certain difficulties in the investigation of the equation ẋ = F(x, t)+σ(x, t)ξ(t),
where ξ(t) is white noise are caused by the fact that, strictly speaking, “white”
noise processes do not exist; other difficulties arise because of the many ways of
interpreting the equation itself. These difficulties have been largely overcome by
the efforts of Bernshtein, Gikhman and Itô. In Chap. 3 we shall state without proof
a theorem on the existence and uniqueness of the Markov process determined by
an equation with the white noise. We shall assume a certain interpretation of this
equation. For a detailed proof we refer the reader to [56, 64, 92].

However, we shall consider in Chap. 3 various other issues in great detail, such
as sufficient conditions for a sample path of the process not to “escape to infinity”



Preface to the Russian Edition xi

in a finite time, or to reach a given bounded region with probability 1. It turns out
that such conditions are often conveniently formulated in terms of certain auxiliary
functions analogous to Lyapunov functions. Instead of the Lyapunov operator (the
derivative along the path) one uses the infinitesimal generator of the corresponding
Markov process.

In Chap. 4 we examine conditions under which a solution of a differential equa-
tion where ξ(t) is white noise, converges to a stationary process. We show how
this is related to the ergodic theory of dynamic systems and to the problem of sta-
bilization of the solution of a Cauchy problem for partial differential equations of
parabolic type.

Chapters 5–8 I contain the elements of stability theory of stochastic systems with-
out after-effects. This theory has been created in the last few years for the purpose
of studying the stabilization of controlled motion in systems perturbed by random
noise. Its origins date from the 1960 paper by Kac and Krasovskii [111] which has
stimulated considerable further research. More specifically, in Chap. 5 we general-
ize the theorems of Lyapunov’s second method; Chapter 6 is devoted to a detailed
investigation of linear systems, and in Chap. 7 we prove theorems on stability and
instability in the first approximation. We do this, keeping in view applications to
stochastic approximation and certain other problems.

Chapter 8 is devoted to application of the results of Chaps. 5 to 7 to optimal
stabilization of controlled systems. It was written by the author in collaboration with
M.B. Nevelson. In preparing this chapter we have been influenced by Krasovskii’s
excellent Appendix IV in [191].

As far as we know, there exists only one other monograph on stochastic stability.
It was published in the U.S.A. in 1967 by Kushner [168], and its translation into
Russian is now ready for print. Kushner’s book contains many interesting theorems
and examples. They overlap partly with the results of Sect. 3.7 and Sects. 5.1–5.5 of
this book.

Though our presentation of the material is abstract, the reader who is primarily
interested in applications should bear in mind that many of the results admit a di-
rectly “technical” interpretation. For example, problem 4, stated above, concerning
the question of the existence of a stationary solution, is equivalent to the problem of
determining when stationary operating conditions can prevail within a given, gen-
erally non-linear, automatic control system, whose parameters experience random
perturbations and whose input process is also stochastic. Similarly, the convergence
of each solution to a stationary solution (see Chap. 4) means that each output process
of the system will ultimately “settle down” to stationary conditions.

In order not to deviate from the main purpose of the book, we shall present with-
out proof many facts from analysis and from the general theory of stochastic pro-
cess. However, in all such cases we shall mention either in the text or in a footnote
where the proof can be found. For the reader’s convenience, such references will
usually be not to the original papers but rather to more accessible textbooks and
monographs. On the other hand, in the rather narrow range of the actual subject
matter we have tried to give precise references to the original research. Most of the
references appear in footnotes.
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Part of the book is devoted to the theory of stability of solutions of stochas-
tic equations (Sects. 1.5–1.8, Chaps. 5–8). This appears to be an important subject
which has recently been receiving growing attention. The volume of the relevant
literature is increasing steadily. Unfortunately, in this area various authors have pub-
lished results overlapping significantly with those of others. This is apparently due to
the fact that the field is being studied by mathematicians, physicists, and engineers,
and each of these groups publishes in journals not read by the others. Therefore the
bibliography given at the end of this book lists, besides the books and papers cited
in the text, various other publications on the stability of stochastic systems known
to the author, which appeared prior to 1967. For the reason given above, this list is
far from complete, and the author wishes to apologize to authors whose research he
might have overlooked.

The book is intended for mathematicians and physicists. It may be of particular
interest to those who specialize in mechanics, in particular in the applications of the
theory of stochastic processes to problems in oscillation theory, automatic control
and related fields. Certain sections may appeal to specialists in the theory of stochas-
tic processes and differential equations. The author hopes that the book will also be
of use to specialized engineers interested in the theoretical aspects of the effect of
random noise on the operation of mechanical and radio-engineering systems and in
problems relating to the control of systems perturbed by random noise.

To study the first two chapters it is sufficient to have an acquaintance with the
elements of the theory of differential equations and probability theory, to the extent
generally given in higher technical schools (the requisite material from the theory
of stochastic processes is given in the text without proofs).

The heaviest mathematical demands on the reader are made in Chaps. 3 and 4. To
read them, he will need an acquaintance with the elements of the theory of Markov
processes to the extent given, e.g., in Chap. VIII of [92].

The reader interested only in the stability of stochastic systems might proceed di-
rectly from Chap. 2 to Chaps. 5–7, familiarizing himself with the results of Chaps. 3
and 4 as the need arises.

The origin of this monograph dates back to some fruitful conversations which
the author had with N.N. Krasovskii. In the subsequent research, here described, the
author has used the remarks and advice offered by his teachers A.N. Kolmogorov
and E.B. Dynkin, to whom he is deeply indebted.

This book also owes much to the efforts of its editor, M.B. Nevelson, who
not only took part in writing Chap. 8 and indicated several possible improve-
ments, but also placed some of his yet unpublished examples at the author’s dis-
posal. I am grateful to him for this assistance. I also would like to thank V.N. Tu-
tubalin, V.B. Kolmanovskii and A.S. Holevo for many critical remarks, and to
R.N. Stepanova for her work on the preparation of the manuscript.

Rafail KhasminskiiMoscow
September, 1967
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Basic Notation

IT = {t : 0 ≤ t < T }, set of points t such that 0 ≤ t < T , p. 1
I = I∞, p. 1
UR = {x : |x|<R}, p. 4
R
l Euclidean l-space, p. 2

E = R
l × I , p. 4

L class of functions f (t) absolutely integrable on every finite interval, p. 4
C2 class of functions V (t, x) twice continuously differentiable with respect to

x and once continuously differentiable with respect to t , p. 72
C0

2(U) class of functions V (t, x) twice continuously differentiable with respect to
x ∈U and once continuously differentiable with respect to t ∈ I
everywhere except possibly at the point x = 0, p. 146

C class of functions V (t, x) absolutely continuous in t and satisfying a local
Lipschitz condition, p. 6

C0 class of functions V (t, x) ∈ C satisfying a global Lipschitz condition, p. 6
A σ -algebra of Borel sets in the initial probability space, p. 1
B σ -algebra of Borel sets in Euclidean space, p. 47
VR = inft≥t0, x≥R V (t, x), p. 7
V (δ) = supt≥t0, |x|<δ V (t, x), p. 28
Ac complement to the set A, p. 1
d0V
dt

Lyapunov operator for ODE, p. 6
Uδ(Γ ) δ-neighborhood of the set Γ , p. 149
J identity matrix, p. 97
Ns family of σ -algebras defined on the p. 60
˜Nt family of σ -algebras defined on the p. 68
1A(·) indicator function of the set A, p. 62

xvii



Chapter 1
Boundedness in Probability and Stability
of Stochastic Processes Defined by Differential
Equations

1.1 Brief Review of Prerequisites from Probability Theory

Let Ω = {ω} be a space with a family of subsets A such that, for any finite or count-
able sequence of sets Ai ∈ A, the intersection

⋂

i Ai , union
⋃

i Ai and comple-
ment Ac

i (with respect to Ω) are also in A. Suppose moreover that Ω ∈ A. A family
of subsets possessing these properties is known as a σ -algebra. If a probability mea-
sure P is defined on the σ -algebra A (i.e. P is a non-negative countably additive set
function on A such that P(Ω)= 1), then the triple (Ω,A,P) is called a probability
space and the sets in A are called random events. (For more details, see [56, 64,
185].)

The following standard properties of measures will be used without any further
reference:

1. If A ∈ A, B ∈ A, A⊂ B , then P(A)≤ P(B).
2. For any finite or countable sequence An in A,

P
(

⋃

n

An

)

≤
∑

n

P(An).

3. If An ∈ A and A1 ⊂A2 ⊂ · · · ⊂An ⊂An+1 ⊂ · · · , then

P
(

⋃

n

An

)

= lim
n→∞ P(An).

4. If An ∈ A and A1 ⊃A2 ⊃A3 ⊃ · · · ⊃An ⊃ · · · , then

P
(

⋂

n

An

)

= lim
n→∞ P(An).

Proofs of these properties may be found in any textbook on probability theory, such
as [95, §8]; or [92, Sect. 1.1].

R. Khasminskii, Stochastic Stability of Differential Equations,
Stochastic Modelling and Applied Probability 66,
DOI 10.1007/978-3-642-23280-0_1, © Springer-Verlag Berlin Heidelberg 2012

1

http://dx.doi.org/10.1007/978-3-642-23280-0_1


2 1 Boundedness in Probability and Stability

A random variable is a function ξ(ω) on Ω which is A measurable and almost
everywhere finite.1 In this book we shall consider only random variables which
take on values in Euclidean l-space R

l i.e., such that ξ(ω)= (ξ1(ω), . . . , ξl(ω)) is a
vector in R

l (l = 1,2, . . . ). A vector-valued random variable ξ(ω) may be defined
by its joint distribution function F(x1, . . . , xl), that is, by specifying the probability
of the event {ξ1(ω) < x1; . . . ; ξl(ω) < xl}. Given any vector x ∈ R

l or a k× l matrix
σ = ((σij )) (i = 1, . . . , k; j = 1, . . . , l) we shall denote, as usual,

|x| = (x2
1 + · · · + x2

l )
1/2, ‖σ‖ =

(

k
∑

i=1

l
∑

j=1

σ 2
ij

)1/2

.

Then we have the well-known inequalities |σx| ≤ ‖σ‖|x|, ‖σ1σ2‖ ≤ ‖σ1‖‖σ2‖.
The expectation of a random variable ξ(ω) is defined to be the integral

Eξ =
∫

Ω

ξ(ω)P (dω),

provided the function |ξ(ω)| is integrable.
Let B be a σ -algebra of Borel subsets of a closed interval [s0, s1], B ×A the mini-

mal σ -algebra of subsets of I ×Ω containing all subsets of the type {t ∈Δ, ω ∈A},
where Δ ∈ B, A ∈ A. A function ξ(t,ω) ∈ R

l is called a measurable stochastic pro-
cess (random function) defined on [s0, s1] with values in R

l if it is B ×A-measurable
and ξ(t,ω) is a random variable for each t ∈ [s0, s1]. For fixed ω, we shall call the
function ξ(t,ω) a trajectory or sample function of the stochastic process. In the
sequel we shall consider only separable stochastic processes, i.e., processes whose
behavior for all t ∈ [s0, s1] is determined up to an event of probability zero by its be-
havior on some dense subset Λ ∈ [s0, s1]. To be precise, a process ξ(t,ω) is said to
be separable if, for some countable dense subset Λ ∈ [s0, s1], there exists an event
A of probability 0 such that for each closed subset C ⊂ R

l and each open subset
Δ⊂ [s0, s1] the event

{ξ(tj ,ω) ∈ C; tj ∈Λ∩Δ}
implies the event

A∪ {ξ(t,ω) ∈ C; t ∈Δ}.
A process ξ(t,ω) is stochastically continuous at a point s ∈ [s0, s1] if for each ε > 0

lim
t→s

P{|ξ(t,ω)− ξ(s,ω)|> ε} = 0.

The definitions of right and left stochastic continuity are analogous.
It can be proved (see [56, Chap. II, Theorem 2.6]) that for each process ξ(t,ω)

which is stochastically continuous throughout [s0, s1], except for a countable subset

1Sometimes (see Chap. 3), but only when this is explicitly mentioned, we shall find it convenient
to consider random variables which can take on the values ±∞ with positive probability.
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of [s0, s1], there exists a separable measurable process ξ̃ (t,ω) such that for every
t ∈ [s0, s1]

P{ξ(t,ω)= ξ̃ (t,ω)} = 1 (ξ(t,ω)= ξ̃ (t,ω) almost surely).

If ξ(t,ω) is a measurable stochastic process, then for fixed ω the function ξ(t,ω),
as a function of t , is almost surely Lebesgue-measurable. If, moreover, Eξ(t,ω)=
m(t) exists, then m(t) is Lebesgue-measurable, and the inequality

∫

A

E|ξ(t,ω)|dt <∞

implies that the process ξ(t,ω) is almost surely integrable over A [56, Chap. II,
Theorem 2.7].

On the σ -algebra B ×A there is defined the direct product μ×P of the Lebesgue
measure μ and the probability measure P. If some relation holds for (t,ω) ∈A and
μ× P(Ac)= 0, the relation will be said to hold for almost all t , ω. Let A1, . . . ,An
be Borel sets in R

l , and t1, . . . , tn ∈ [s0, s1]; the probabilities

P(t1, . . . , tn,A1, . . . ,An)= P{ξ(t1,ω) ∈A1, . . . , ξ(tn,ω) ∈An}
are the values of the n-dimensional distributions of the process ξ(t,ω). Kolmogorov
has shown that any compatible family of distributions P(t1, . . . , tn,A1, . . . ,An) is
the family of the finite-dimensional distributions of some stochastic process.

The following theorem of Kolmogorov will play an important role in the sequel.

Theorem 1.1 If α, β , k are positive numbers such that whenever t1, t2 ∈ [s0, s1],
E|ξ(t2,ω)− ξ(t1,ω)|α < k|t1 − t2|1+β

and ξ(t,ω) is separable, then the process ξ(t,ω) has continuous sample functions
almost surely (a.s.).

Let ξ(t,ω) be a stochastic process defined for t ≥ t0. The process is said to satisfy
the law of large numbers if for each ε > 0, δ > 0 there exists a T > 0 such that for
all t > T

P
{∣

∣

∣

∣

1

t

∫ t0+t

t0

ξ(s,ω)ds − 1

t

∫ t0+t

t0

Eξ(s,ω)ds

∣

∣

∣

∣

> δ

}

< ε. (1.1)

A stochastic process ξ(t,ω) satisfies the strong law of large numbers if

P
{

1

t

∫ t0+t

t0

ξ(s,ω)ds − 1

t

∫ t0+t

t0

Eξ(s,ω)ds −→
t→∞ 0

}

= 1. (1.2)

The most important characteristics of a stochastic process are its expectationm(t)=
Eξ(t,ω) and covariance matrix

K(s, t)= cov(ξ(s), ξ(t))= ((E[(ξi(s)−mi(s))(ξj (t)−mj(t))])).
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In particular, all the finite-dimensional distributions of a Gaussian process can be
reconstructed from the function m(t) and K(s, t). A Gaussian process is stationary
if

m(t)= const, K(s, t)=K(t − s). (1.3)

A stochastic process ξ(t,ω) satisfying condition (1.3) is said to be stationary
in the wide sense. The Fourier transform of the matrix K(τ) is called the spectral
density of the process ξ(t,ω). It is clear that the spectral density f (λ) exists and is
bounded if the function ‖K(τ)‖ is absolutely integrable.

1.2 Dissipative Systems of Differential Equations

In this section we prove some theorems from the theory of differential equations
that we shall need later. We begin with a few definitions.

Let IT denote the set 0< t < T , I = I∞, E = R
l × I ; UR the ball |x|< R and

U c
R its complement in R

l . If f (t) is a function defined on I , we write f ∈ L if
f (t) is absolutely integrable over every finite interval. The same notation f ∈ L
will be retained for a stochastic function f (t,ω) which is almost surely absolutely
integrable over every finite interval.

Let F(x, t)= (F1(x, t), . . . ,Fl(x, t)) be a Borel-measurable function defined for
(x, t) ∈ E. Let us assume that for each R > 0 there exist functions MR(t) ∈ L and
BR(t) ∈ L such that

|F(x, t)| ≤MR(t), (1.4)

|F(x2, t)− F(x1, t)| ≤ BR(t)|x2 − x1| (1.5)

for x, xi ∈UR .
We shall say that a function x(t) is a solution of the equation

dx

dt
= F(x, t), (1.6)

satisfying the initial condition

x(t0)= x0 (t0 ≥ 0) (1.7)

on the interval [t0, t1], if for all t ∈ [t0, t1]

x(t)= x0 +
∫ t

t0

F(x(s), s) ds. (1.8)

In cases where solutions are being considered under varying initial conditions,
we shall denote this solution by x(t, x0, t0).

The function x(t) is evidently absolutely continuous, and at all points of conti-
nuity of F(x, t) it also satisfies (1.6).
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Theorem 1.2 If conditions (1.4) and (1.5) are satisfied, then the solution x(t) of
problem (1.6), (1.7) exists and is unique in some neighborhood of t0. Suppose more-
over that for every solution x(t) (if a solution exists) and some function τR which
tends to infinity as R→ ∞, we have the following “a priori estimate”:

inf{t : t ≥ t0; |x(t)|>R} ≥ τR. (1.9)

Then the solution of the problem (1.6), (1.7) exists and is unique for all t ≥ t0 (i.e.,
the solution can be unlimitedly continued for t ≥ t0).

Proof We may assume without loss of generality that the function MR(t) in (1.4)
satisfies the inequality

|MR(t)|> 1. (1.10)

Therefore we can find numbers R and t1 > t0 such that |x0| ≤R/2 and

Φ(t0, t1)=
∫ t1

t0

MR(s) ds exp

{∫ t1

t0

BR(s) ds

}

= R

2
. (1.11)

Applying the method of successive approximations to (1.8) on the interval [t0, t1],

x(n+1)(t)= x0 +
∫ t

t0

F(x(n)(s), s) ds, x0(t)≡ x0,

and using (1.4), (1.5) and (1.11), we get the estimates

|x(1)(t)− x0| ≤
∫ t

t0

MR(s) ds ≤ R

2
,

|x(n+1)(t)− x(n)(t)| ≤
∫ t

t0

BR(s)|x(n)(s)− x(n−1)(s)|ds.

Together with (1.11), these imply the inequality

|x(n+1)(t)− x(n)(t)| ≤
∫ t

t0

MR(s) ds
[∫ t
t0
BR(s) ds]n
n! . (1.12)

It follows from (1.12) that limn→∞ x(n)(t) exists and that it satisfies (1.8). The
proof of uniqueness is similar.

Now consider an arbitrary T > t0 and choose R so that, besides the relations
|x0|<R/2 and (1.11), we also have τR/2 > T . Then by (1.9), it follows that x(t1)≤
R/2 and thus the solutions can be continued to a point t2 such that Φ(t1, t2)=R/2.
Repeating this procedure, we get tn ≥ T for some n, since the functions MR(t) and
LR(t) are integrable over every finite interval. This completes the proof. �

If the function MR(t) is independent of t and its rate of increase in R is at most
linear, i.e.,

|F(x, t)| ≤ c1|x| + c2, (1.13)
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we get the following estimate for the solution of problem (1.6), (1.7), valid for t ≥ t0
and some c3 > 0:

|x(t)| ≤ |x0|c3e
c1(t−t0).

We omit the proof now, since we shall later prove a more general theorem. But if
condition (1.13) fails to hold, the solution will generally “escape to infinity” in a
finite time. (As for example, the solution x = (1 − t)−1 of the problem dx/dt = x2,
x(0)= 1.) Since condition (1.13) fails to cover many cases of practical importance,
we shall need a more general condition implying that the solution can be unlimitedly
continued. We present first some definitions.

The Lyapunov operator associated with (1.6) is the operator d0/dt defined by

d0V (x, t)

dt
= lim
h→+0

1

h
[V (x(t + h,x, t), t + h)− V (x, t)]. (1.14)

It is obvious that if V (x, t) is continuously differentiable with respect to x and t ,
then for almost all t the action of the Lyapunov operator

d0V

dt
= ∂V

∂t
+

l
∑

i=1

∂V

∂xi
Fi(x, t)= ∂V

∂t
+
(

∂

∂x
V,F

)

(1.15)

is simply a differentiation of the function V along the trajectory of the system (1.6).
In his classical work [188], Lyapunov discussed the stability of systems of differ-

ential equations by considering non-negative functions for which d0V/dt satisfies
certain inequalities.

These functions will be called Lyapunov functions here.
In Sects. 1.5, 1.6, 1.8, and also in Chaps. 5 to 7 we shall apply Lyapunov’s ideas

to stability problems for random perturbations.
In this and the next sections we shall use method of Lyapunov functions to find

conditions under which the solution can be continued for all t > 0 and to conditions
of boundedness solution. All Lyapunov functions figuring in the discussion will be
henceforth assumed to be absolutely continuous in t , uniformly in x in the neighbor-
hood of every point. Moreover we shall assume a Lipschitz condition with respect
to x:

|V (x2, t)− V (x1, t)|<B|x2 − x1| (1.16)

in the domain UR × IT , with a Lipschitz constant which generally depends on R
and T . We shall write V ∈ C in this case. If the function V satisfies condition (1.16)
with a constant B not depending on R and T , we shall write V ∈ C0.

If V ∈ C and the function y(t) is absolutely continuous, then it is easily verified
that the function V (y(t), t) is also absolutely continuous. Hence, for almost all t ,

d0V (x, t)

dt
= d

dt
V (x(t), t)

∣

∣

∣

∣

x(t)=x
,

where x(t) is the solution of (1.6). We shall use this fact frequently without further
reference.
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Theorem 1.3 2 Assume that there exists a Lyapunov function V ∈ C defined on the
domain R

l × {t > t0} such that for some c1 > 0

VR = inf
(x,t)∈U c

R×{t>t0}
V (x, t)→ ∞ as R→ ∞, (1.17)

d0V

dt
≤ c1V, (1.18)

and let the function F satisfy conditions (1.4), (1.5).
Then the solution of problem (1.6), (1.7) can be extended for all t ≥ t0.

The proof of this theorem employs the following well-known lemma, which will
be used repeatedly.

Lemma 1.1 Let the function y(t) be absolutely continuous for t ≥ t0 and let the
derivative dy/dt satisfy the inequality

dy

dt
< A(t)y +B(t) (1.19)

for almost all t ≥ t0, where A(t) and B(t) are almost everywhere continuous func-
tions integrable over every finite interval. Then for t > t0

y(t) < y(t0) exp

{∫ t

t0

A(s) ds

}

+
∫ t

t0

exp

{∫ t

s

A(u)du

}

B(s) ds. (1.20)

Proof It follows from (1.19) that for almost all t ≥ t0
d

dt

(

y(t) exp

{

−
∫ t

t0

A(s) ds

})

<B(t) exp

{

−
∫ t

t0

A(s) ds

}

.

Integration of this inequality yields (1.20). �

Proof of Theorem 1.3 It follows from (1.18) that for almost all t we have
dV (x(t), t)/dt ≤ c1V (x(t), t). Hence, by Lemma 1.1, it follows that for t > t0

V (x(t), t)≤ V (x0, t0) exp{c1(t − t0)}.
If τR denotes a solution of the equation

V (x0, t0) exp{c1(τR − t0)} = VR,

then condition (1.9) is obviously satisfied. Thus all assumptions of Theorem 1.2 are
now satisfied. This completes the proof. �

2General conditions for every solution to be unboundedly continuable have been obtained by Oka-
mura and are described in [178]. These results imply Theorem 1.3.
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Let us now consider conditions under which the solutions of (1.6) are bounded
for t > 0. There exist in the literature various definitions of boundedness. We shall
adopt here only one which is most suitable for our purposes, referring the reader for
more details to [285], [178], and [51, 52].

The system (1.6) is said to be dissipative for t > 0 if there exists a positive num-
ber R > 0 such that for each r > 0, beginning from some time T (r, t0) ≥ t0, the
solution x(t, x0, t0) of problem (1.6), (1.7), x0 ∈ Ur , t0 > 0, lies in the domain UR .
(Yoshizawa [285] calls the solutions of such a system equi-ultimately bounded.)

Theorem 1.4 3 A sufficient condition for the system (1.6) to be dissipative is that
there exist a nonnegative Lyapunov function V (x, t) ∈ C on E with the properties

VR = inf
(x,t)∈U c

R×I
V (x, t)→ ∞ as R→ ∞, (1.21)

d0V

dt
<−cV (c= const> 0). (1.22)

Proof It follows from Lemma 1.1 and from (1.22) that for t > t0, x0 ∈Ur ,
V (x(t), t)≤ V (x0, t0)e

−c(t−t0) ≤ e−c(t−t0) sup
|x0|<r

V (x0, t0).

Therefore V (x(t), t) < 1 for t > T (t0, r). This inequality and (1.21) imply the state-
ment of the theorem. �

Remark 1.1 The converse theorem is also valid: Yoshizawa [285] proves that for
each system which is dissipative in the above sense there exists a nonnegative func-
tion V with properties (1.21), (1.22), provided F(x, t) satisfies a Lipschitz condition
in every bounded subset of E.

Remark 1.2 It is easy to show that the conclusion of Theorem 1.4 remains valid
if it is merely assumed that (1.22) holds in a domain U c

R for some R > 0, and in
the domain UR the functions V and d0V/dt are bounded above. To prove this, it is
enough to apply Lemma 1.1 to the inequality

d0V

dt
<−cV + c1,

which is valid under the above assumptions for some positive constant c1 and for
(x, t) ∈E.

In the sequel we shall need a certain frequently used estimate; its proof, analo-
gous to the proof of Lemma 1.1, may be found, e.g., in [23].

3See [285].
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Lemma 1.2 (Gronwall–Bellman Lemma) Let u(t) and v(t) be nonnegative func-
tions and let k be a positive constant such that for t ≥ s

u(t)≤ k +
∫ t

s

u(t1)v(t1) dt1.

Then for t ≥ s

u(t)≤ k exp

{∫ t

s

v(t1) dt1

}

.

1.3 Stochastic Processes as Solutions of Differential Equations

Let ξ(t,ω) (t ≥ 0) be a separable measurable stochastic process with values in R
k ,

and let G(x, t, z) (x ∈ R
l , t ≥ 0, z ∈ R

k) be a Borel-measurable function of (x, t, z)
satisfying the following conditions:

1. There exists a stochastic process B(t,ω) ∈ L such that for all xi ∈ R
l

|G(x2, t, ξ(t,ω))−G(x1, t, ξ(t,ω))| ≤ B(t,ω)|x1 − x2|. (1.23)

2. The process G(0, t, ξ(t,ω)) is in L, i.e., for every T > 0,

P
{∫ T

0
|G(0, t, ξ(t,ω))|dt <∞

}

= 1. (1.24)

We shall show presently that under these assumptions the equation

dx

dt
=G(x, t, ξ(t,ω)) (1.25)

with initial condition

x(t0)= x0(ω) (1.26)

determines a new stochastic process in R
l for t ≥ t0.

Theorem 1.5 If conditions (1.23) and (1.24) are satisfied, then problem (1.25),
(1.26) has a unique solution x(t,ω), determining a stochastic process which is al-
most surely absolutely continuous for all t ≥ t0. For each t ≥ t0, this solution admits
the estimate

|x(t,ω)− x0(ω)| ≤
∫ t

t0

|G(x0(ω), s, ξ(s,ω))|ds exp

{∫ t

t0

B(s,ω)ds

}

. (1.27)

The proof is analogous to that of Theorem 1.2.
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Example 1.1 Consider the linear system

dx

dt
=A(t,ω)x + b(t,ω), x(0)= x0(ω).

If ‖A(t,ω)‖, |b(t,ω)| ∈ L, then it follows from Theorem 1.5 that this system has a
solution which is a continuous stochastic process for all t > 0.

The global Lipschitz condition (1.23) fails to hold in many important appli-
cations. Most frequently the following local Lipschitz condition holds: For each
R > 0, there exists a stochastic process BR(t,ω) ∈ L such that if xi ∈UR , then

|G(x2, t, ξ(t,ω))−G(x1, t, ξ(t,ω))| ≤ BR(t,ω)|x2 − x1|. (1.28)

As we have already noted in Sect. 1.2, condition (1.28) does not prevent the sample
function escaping to infinity in a finite time, even in the deterministic case. However,
we have the following theorem which is a direct corollary of Theorem 1.2.

Theorem 1.6 Let τ(R,ω) be a family of random variables such that τ(R,ω) ↑ ∞
almost surely as R→ ∞. Suppose that these random variables satisfy almost surely
for each solution x(t,ω) of problem (1.25), (1.26) (if a solution exists) the following
inequality:

inf{t : |x(t,ω)| ≥R} ≥ τ(R,ω). (1.29)

Assume moreover that conditions (1.24) and (1.28) are satisfied. Then the solution
of problem (1.25), (1.26) is almost surely unique and it determines an absolutely
continuous stochastic process for all t ≥ t0 (unboundedly continuable for t ≥ t0).

Assume that the function G in (1.25) depends linearly on the third variable, i.e.,

dx

dt
= F(x, t)+ σ(x, t)ξ(t,ω). (1.30)

(Here σ is a k× l matrix, ξ a vector in R
k and k a positive integer.) Then the solution

of (1.30) can be unboundedly continued if there exists a Lyapunov function of the
truncated system

dx

dt
= F(x, t). (1.31)

Let us use d(1)/dt to denote the Lyapunov operator of the system (1.30), retaining
the notation d0/dt for the Lyapunov operator of the system (1.31).

Theorem 1.7 Let ξ(t,ω) ∈ L be a stochastic process, F a vector and σ a matrix
satisfying the local Lipschitz condition (1.16), where F(0, t) ∈ L and

sup
Rl×{t>t0}

‖σ(x, t)‖< c2. (1.32)
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Assume that a Lyapunov function V (x, t) ∈ C0 of the system (1.31) exists with

VR = inf
U c
R×{t>t0}

V (x, t)→ ∞ as R→ ∞, (1.33)

d0V

dt
< c1V. (1.34)

Then the solution of problem (1.30), (1.26) exists and determines an absolutely
continuous stochastic process for all t ≥ t0.

To prove this theorem we need the following lemma.

Lemma 1.3 If V (x, t) ∈ C0, then for almost all t the following relation holds almost
surely:

d(1)V (x, t)

dt
≤ d0V (x, t)

dt
+B‖σ(x, t)‖|ξ(t,ω)|, (1.35)

where B is the constant in the condition (1.16).

Proof It can be easily verified that the difference x(t + h,ω,x, t)− x(t + h,x, t)

between solutions of (1.30) and (1.31) with the initial condition x(t)= x, satisfies
for almost all t , ω the inequality

|x(t + h,ω,x, t)− x(t + h,x, t)| ≤ h‖σ(x, t)‖|ξ(t,ω)| + o(h) (h→ 0).

This inequality, together with (1.16), implies (1.35). �

Proof of Theorem 1.7 We shall show that the assumptions of Theorem 1.6 are sat-
isfied. Since conditions (1.24) and (1.28) are obviously satisfied, it will suffice to
prove (1.29). Let x(t,ω) be a solution of problem (1.30), (1.26). It follows from the
assumptions of the theorem and from Lemma 1.3 that the function V (x(t,ω), t) is
absolutely continuous, and for almost all t , ω

dV (x(t,ω), t)

dt
≤ d0V (x(t,ω), t)

dt
+B‖σ(x(t,ω), t)‖|ξ(t,ω)|

≤ c1V (x(t,ω), t)+Bc2|ξ(t,ω)|.
Combining this with Lemma 1.1 we get that almost surely

V (x(t,ω), t)≤ ec1(t−t0)
[

V (x0(ω), t0)+Bc2

∫ t

t0

|ξ(s,ω)|ds
]

. (1.36)

Let τR(ω) denote a solution of the equation

ec1(τR−t0)
[

V (s0(ω), t0)+Bc2

∫ τR

t0

|ξ(s,ω)|ds
]

= VR. (1.37)
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It now follows from the relation ξ(t,ω) ∈ L and from (1.33) that τR ↑ ∞ almost
surely as R→ ∞. (1.29) follows now from (1.36) and (1.37). Thus all assumptions
of Theorem 1.6 are satisfied. �

Remark 1.3 If the relation |ξ(t,ω)|(1+ε)/ε ∈ L holds for some ε > 0, condition
(1.32) can be slightly weakened and replaced by the condition

‖σ(x, t)‖1+ε ≤ c3V (x, t). (1.38)

To prove this, we need only use Young’s inequality

|ab|< |a|p
p

+ |b|q
q

(

1

p
+ 1

q
= 1, p, q > 0

)

(1.39)

for estimating ‖σ‖|ξ |. In particular, if for each T > 0, there is a constant c such that
the process ξ(t,ω) satisfies the condition

P
{

sup
0≤t≤T

|ξ(t,ω)|< c
}

= 1,

then it is enough to require that inequality (1.38) holds for sufficiently small ε > 0.

Remark 1.4 The conditions of Theorem 1.7 guarantee that the solutions of (1.30) are
unboundedly continuable, uniformly in the following sense: For all initial conditions
x0(ω) which satisfy the relation

P{|x0(ω)|<K} = 1 (1.40)

for some K , one can find a family of random variables τ(R,ω) satisfying condition
(1.29). Since

P
{

max
0≥t≥T

|x(t,ω, x0(ω))|>R
}

≤ P{τR < T },
this implies in particular that for every ε > 0, T > 0 andK > 0 there exists an R > 0
such that

P
{

max
0≥t≥T

|x(t,ω, x0(ω))|>R
}

> ε

for all x0(ω) satisfying condition (1.40).

Example 1.2 In the one-dimensional case with the Lyapunov function V (x, t) =
|x|+ 1 we get the following result. If F ∈ C, σ ∈ C, σ satisfies the condition (1.32),
while ξ(t,ω),F (0, t) ∈ L, then a sufficient condition for the solutions of problem
(1.30), (1.26) to be unboundedly extendable is that F(x, t) signx < c(|x| + 1) for
some c > 0.

Example 1.3 Consider the equation

x′′ + f (x)x′ + g(x)= σ(x, x′)ξ(t,ω). (1.41)
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This equation describes the process “at the output” of many mechanical systems
driven by a stochastic process. In particular, for f (x) = x2 − 1, g(x) = x and
σ(x, x′) = 1, the output process is that of a system described by a Van der Pol
equation. Let the function f (x) be bounded from below and assume that

|σ(x, x′)|< c1,

∣

∣

∣

∣

g(x)

x

∣

∣

∣

∣

< c2.

Then

V (x, y)= (x2 + y2)1/2 ∈ C0

is obviously a Lyapunov function for the system

dx

dt
= y,

dy

dt
= −f (x)y − g(x).

Moreover V satisfies conditions (1.33) and (1.34). Applying Theorem 1.7, we see
that the process in (1.41) exists for all t ≥ t0 provided that ξ(t,ω) ∈ L.

1.4 Boundedness in Probability of Stochastic Processes Defined
by Systems of Differential Equations

A stochastic process ξ(t,ω) (t ≥ 0) is said to be bounded in probability if the ran-
dom variables |ξ(t,ω)| are bounded in probability uniformly in t , i.e.,

sup
t>0

P{|ξ(t,ω)|>R} → 0 as R→ ∞.

We shall say that a random variable x0(ω) is in the class AR0 if

P{|x0(ω)|<R0} = 1. (1.42)

The system (1.25) will be called dissipative if the random variables
|x(t,ω, x0, t0)| are bounded in probability, uniformly in t ≥ t0 whenever x0(ω) ∈AR
for some R > 0.

It is readily seen that this definition agrees with that of a deterministic dissipative
system (see Sect. 1.2).

Theorem 1.8 Let V (x, t) ∈ C0 be a non-negative Lyapunov function, defined on the
domain E which satisfies condition (1.33) and the condition

d0V

dt
≤ −c1V (c1 = const> 0). (1.43)

Let F and σ satisfy a local Lipschitz condition (1.16), and let σ also satisfy condi-
tion (1.32).
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Then the system (1.30) is dissipative for every stochastic process ξ(t,ω) such
that

sup
t>0

E|ξ(t,ω)|<∞. (1.44)

Before proving this theorem, we shall prove a lemma which yields a convenient
for further applications form of Chebyshev’s inequality.

Lemma 1.4 Let V (x, t) be a nonnegative function and η(t,ω) a stochastic process
such that EV (η(t,ω), t) exists.

Then

P{|η(t,ω)|>R} ≤ EV (η(t,ω), t)
infU c

R×{s>t0} V (x, s)
. (1.45)

The proof follows from the following chain of inequalities:

EV (η(t,ω), t)≥
∫

|η(t,ω)|>R
V (η(t,ω), t)P(dω)

≥ inf
U c
R×{s>t0}

V (x, s)P{|η(t,ω)|>R}. �

Proof of Theorem 1.8 Let x(t,ω) be a solution of problem (1.30), (1.26). Then the
function V (x(t,ω), t) is differentiable for almost all t , ω. By Lemma 1.3 and by
(1.43),

dV (x(t,ω), t)

dt
≤ d0V (x(t,ω), t)

dt
+Bc2|ξ(t,ω)|

≤ −c1V (x(t,ω), t)+Bc2|ξ(t,ω)|.
Hence, by Lemma 1.1,

V (x(t,ω), t)≤ V (x0(ω), t0)e
c1(t−t0) +Bc2

∫ t

t0

ec1(s−t)|ξ(s,ω)|ds.

Calculating the expectation of both sides of this inequality and using (1.44), we see
that the function EV (x(t,ω), t) is bounded uniformly for t ≥ t0 and for all x0(ω)

satisfying condition (1.42). Together with (1.45), this implies the theorem. �

Remark 1.5 It is clear from Remark 1.1 that the existence of a function V satisfying
conditions (1.33), (1.43) is not only sufficient but also necessary for the system
(1.30) to be dissipative for each stochastic process ξ(t,ω) satisfying (1.44).

Remark 1.6 If for some ε > 0

sup
t>0

E|ξ(t,ω)|(1+ε)/ε <∞,
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then using (1.39) it is easy to show that one may replace condition (1.32) in the for-
mulation of Theorem 1.8 by condition (1.38). Another modification of this theorem
is obtained by requiring that condition (1.43) only holds in some UR , where R > 0,
and that V and d0V/dt are bounded in the domain UR (see Remark 1.2, and also
[121]).

Remark 1.7 Let the conditions of Theorem 1.8 are valid and moreover there exist
positive constants c3 and c4 such that

V (x, t) > c3|x| − c4, (1.46)

then it follows from Theorem 1.8 that

sup
t>0

E|x(t,ω)|<∞.

The following theorem generalizes this observation.

Theorem 1.9 Let the functions V , F and σ satisfy the assumptions of Theorem 1.8
and assume moreover that V satisfies also (1.46). Suppose further that for some
α > 1

sup
t>0

E|ξ(t,ω)|α <∞. (1.47)

Then every solution x(t,ω) of problem (1.30), (1.26) satisfies the inequality

sup
t>0

E|x(t,ω)|α <∞.

Moreover, there exist constants c and T = T (R0, t0) such that for every initial con-
dition x0(ω) which satisfies the equality (1.42) for some R0, the solution x(t,ω)
satisfies for all t > T (R0, t0) the following inequality:

E|x(t,ω)|α < c.

Proof Consider the Lyapunov function W(x, t) = [V (x, t)]α . The assumptions of
the theorem, Lemma 1.3 and (1.39) imply that

dW(x(t,ω), t)

dt
≤ −c5W(x(t,ω), t)+ c6[V (x(t,ω), t)]α−1|ξ(t,ω)|
≤ −c7W(x(t,ω), t)+ c8|ξ(t,ω)|α

for some c5 > 0, . . . , c8 > 0. Further, as in the proof of Theorem 1.8, we see that

sup
t>0

EW(x(t,ω), t) <∞.

The first part of the theorem follows now from this inequality and the inequality

W(x, t)≥ c9|x|α − c10,

which is a consequence of (1.46). The proof of the second part is analogous. �
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By considering various narrower classes of stochastic processes ξ(t,ω), we can
derive various dissipativity conditions under less stringent restrictions on the Lya-
punov functions. The following theorem is an example.

Theorem 1.10 Let the process ξ(t,ω) be such that for some c1 > 0, c2 > 0, A> 0
and all 0 ≤ s ≤ t

E exp

{

c1

∫ t

s

|ξ(u,ω)|du
}

≤A exp{c2(t − s)}. (1.48)

Assume that there exists a non-negative function V (x, t) ∈ C0 defined on E, satisfy-
ing condition (1.33) and the conditions

sup
t>0

V (0, t) <∞,
d0V

dt
< c,

d0V

dt
<−c2 − ε for |x|>R0 and some ε > 0,

lim
R→∞ sup

xi∈U c
R, t≥0

|V (x2, t)− V (x1, t)|
|x2 − x1| = B1.

Further let F and σ satisfy the condition (1.16) and the condition ‖σ‖ ≤K , where
B1K < c1. Then the system (1.30) is dissipative.

Proof Let V (x, t) be a function satisfying the assumptions of the theorem. Assume
moreover that R >R0 is large enough, so that for |xi |>R we have

|V (x2, t)− V (x1, t)|< c1

K
|x2 − x1|.

Set W(x, t)= exp{V (x, t)}. It follows from the assumptions of the theorem that for
almost all t ≥ t0 and for (t,ω) such that |x(t,ω)|>R we have

dW(x(t,ω), t)

dt
≤W

[

d0V

dt
+ c1|ξ(t,ω)|

]

≤W [−(c2 + ε)+ c1|ξ(t,ω)|].

Since V ∈ C0 and both V and d0V/dt are bounded for |x| > R, this implies that
there exist constants c3, c4, such that the following estimate is valid for almost
all t , ω:

dW(x(t,ω), t)

dt
≤W [−(c2 + ε)+ c1|ξ(t,ω)|] + c3 + c4|ξ(t,ω)|.

Applying Lemma 1.1, we see that almost surely
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W(x(t,ω), t)≤W(x0(ω), t0) exp

{∫ t

t0

(−c2 − ε+ c1|ξ(s,ω)|) ds
}

+
∫ t

t0

exp

{∫ t

s

(−c2 − ε+ c1|ξ(u,ω)|) du
}

(c3 + c4|ξ(s,ω)|) ds

≤ (W(x0(ω), t0)+ c5) exp

{∫ t

t0

(−c2 + c1|ξ(s,ω)|) ds
}

+ c6

∫ t

t0

exp

{∫ t

s

(−c2 − ε+ c1|ξ(u,ω)|) du
}

ds.

Taking the expectation of each of the sides of this inequality and using (1.42) and
(1.48), we easily see that EW(x(t,ω), t) < c7. This together with (1.45) implies the
assertion of Theorem 1.10. �

The following example shows that the assertion of Theorem 1.8 fails to hold if
we replace condition (1.44) in this theorem by the condition

sup E|ξ(t,ω)|α <∞ (α < 1).

Example 1.4 Let x(t,ω) be a solution in R
l of the problem

dx

dt
= −x + ξ(t,ω), x(1)= 0. (1.49)

Define the stochastic process ξ(t,ω) by

ξ(t,ω)=
{

2k/a exp{2k − t + γ (2k − τk)} for t ∈ [τk, τk + 2−k],
0 otherwise.

(1.50)

Here τ1, τ2, . . . are independent random variables such that τk is distributed on
the interval [2k−1,2k − 2−k] with density

pk(s)= λk exp{−γ (2k − s)}, (1.51)

where γ > 0 and λk is determined by the normalization requirement (it is clear that
λk → γ as k→ ∞).

From (1.49)–(1.51) we readily get the estimate

x(2k,ω)=
∫ 2k

1
exp(s − 2k)ξ(s,ω)ds >

∫ 2k

2k−1
exp(s − 2k)ξ(s,ω)ds

=
∫ τk+2k−1

τk

2k/αeγ (2
k−τk) ds ≥ 2k(1/α−1) → ∞ as k→ ∞

which holds almost surely.
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On the other hand, if γ > α/(1 − α), 2k−1 ≤ t ≤ 2k , then

E|ξ(t,ω)|α ≤ λk
∫ t

t−2−k
e−γ (2k−s)2eα(2k−t)+αγ (2k−s) ds

≤ λke−(2k−t)[γ (1+α)−α] <∞.

Thus, if (1.44) does not hold, we cannot assert that the system (1.30) is dissipative,
even when the unperturbed system (1.31) is an asymptotically stable linear system.

The next example will show that condition (1.48) in Theorem 1.10 cannot be
replaced by (1.44), or even by the stronger condition that E|ξ(t,ω)| → 0 as t → ∞.

Example 1.5 Consider in R
1 the problem

dx

dt
= − signx · ln(|x| + 1)+ η(t,ω), x(0)= 0, (1.52)

where η(t,ω) is a stochastic step process satisfying the conditions

η(t,ω)=
{

2(2n+1 − τn) ln(2n+1 − τn) for τn < t < τn + 1 (n= 2,3, . . . ),

0 otherwise.

Let τ2, . . . , τn, . . . be independent random variables, τn being distributed on the
interval [2n,2n+1 − 1] with density

pn(s)= cn

(2n+1 − s) ln(2n+1 − s)
, cn = (ln ln(2n − 2)− ln ln 2)−1.

It is clear that for 2n ≤ t ≤ 2n+1 we have

Eη(t,ω)= E|η(t,ω)| ≤
∫ t

t−1
2pn(s)(2

n+1 − s) ln(2n+1 − s) ds = 2cn

and therefore E|η(t,ω)| → 0 as t → ∞.
Let x̃(t,ω) denote the solution of (1.52) satisfying the initial condition

x̃(τn,ω) = 0. Then, by the uniqueness of the solution of the Cauchy problem for
(1.52) and by the definition of the process η(t), we have the inequality

x(2n+1,ω)≥ x̃(2n+1,ω)=
∫ 2n+1

τn

[η(t,ω)− ln(x̃(t,ω)+ 1)]dt

≥ 2(2n+1 − τn) ln(2n+1 − τn)

− (2n+1 − τn) ln[2(2n+1 − τn) ln(2n+1 − τn)]. (1.53)

By the definition of pn(s),

P{2n+1 − τn > n}> 1

2
.
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Hence, using (1.53), we see that for sufficiently large n

P
{

x(2n+1,ω) >
n

2
lnn

}

>
1

2
.

This means that the system (1.52) is non-dissipative.
It is readily seen that the Lyapunov function V (x)= |x| for this system satisfies

d0V

dt
= − ln(V + 1)→ −∞ as |x| → ∞.

Using the same method, one easily constructs examples of non-dissipative systems
satisfying all assumptions of Theorem 1.8 except (1.43), instead of which we have

d0V

dt
<−Φ(V ), (1.54)

where Φ(V ) is any function such that

∫ ∞

1

dx

xΦ(x)
= ∞. (1.55)

(Examples of this type were constructed by the author in [121].) It is as yet an open
question whether condition (1.43) in Theorem 1.8 may be replaced by condition
(1.54) with a function Φ(V ) such that the integral (1.55) is convergent. We do not
even know the answer to the following more specific question: Do there exist non-
dissipative systems of the type

dx

dt
=
{−|x|α signx + ξ(t,ω) for |x|> 1,

−x + ξ(t,ω) for |x| ≤ 1,

where 0< α < 1 and ξ(t,ω) satisfies condition (1.44)?

We now apply the theorems of this section to one-dimensional systems.

Example 1.6 Consider (1.30) in R
1, and assume that |ξ(t,ω)| < c almost surely.

Assume further that the necessary smoothness conditions hold and that |σ | ≤ k. Set
V (x) = |x|, c1 = k + ε, c2 = c(k + ε). Condition (1.48) is obviously valid if the
constants c1, c2 are chosen in this way. If moreover

d0V

dt
= F(x, t) signx ≤ −ck− ε1 (|x|>R0) (1.56)

for some ε1 > 0 and all sufficiently large |x|, then also all the other assumptions of
Theorem 1.10 hold. Thus we may conclude from this theorem the following corol-
lary.
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Corollary 1.1 A sufficient condition for (1.30) to be dissipative in R
1 is the exis-

tence of positive constants c, k, ε1 such that (1.56) and

P{|ξ(t,ω)| ≤ c} = 1, |σ | ≤ k
hold.

On the other hand, it is clear that if

F(x, t) >−ck
holds for all x > R0, then the equation is non-dissipative for σ = k, ξ(t,ω)≡ c.

Example 1.7 Suppose that for some positive constant c1

F(x, t)

x
<−c1, (1.57)

whenever |x| > R0 and assume that the process ξ(t,ω) satisfies condition (1.44).
Considering the Lyapunov function

V (x, t)=
{|x| −R0, |x|>R0,

0, |x| ≤R0,

we see that all assumptions of Theorem 1.8 are satisfied. Thus, relations (1.57) and
(1.44) are sufficient conditions for the one-dimensional system (1.30) to be dissipa-
tive.

Note that the above Lyapunov function satisfies inequality (1.46). Thus, applying
Theorem 1.9, we get the following result: If condition (1.57) is satisfied and condi-
tion (1.47) holds for some α > 1, then the solution x(t,ω) of problem (1.30), (1.26)
in R

1 has a bounded α-th moment.

Example 1.8 4 Let us again consider the equation

x′′ + f (x)x′ + g(x)= σ(x, x′)ξ(t,ω). (1.58)

Assume that the process |ξ(t,ω)| has a bounded expectation, that |σ | is bounded
and that there exists an x0 > 0 such that

0< c1 <
g(x)

x
< c2, 0< c3 < f (x) < c4 (1.59)

for |x|> x0. Then the process defined by the system (1.58) is dissipative. To prove
this consider the system

x′ = y, y′ = −f (x)y − g(x)+ σ(x, y)ξ(t,ω) (1.60)

4The author’s exposition of this example in [121] contains an error. The following corrected version
is due to Nevelson.
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which is equivalent to (1.58), and set

F(x)=
∫ x

0
f (t) dt, G(x)=

∫ x

0
g(t) dt,

W(x, y)= (F (x)− γ x)y +G(x)+
∫ x

0
f (t)(F (t)− γ t) dt + 1 + y2

2
,

V (x, y)=
{[W(x,y)]α − c for [W(x,y)]α > c,

0 for [W(x,y)]α ≤ c.
Regarding the function W was a quadratic form in y and using (1.59), we easily see
that for a certain γ > 0 we have that W → ∞ as r = (x2 + y2)1/2 → ∞. Next, we
can choose an α > 0 in such a way that V (x, y) ∈ C0. Using the equality

d0W

dt
= −[γy2 + g(F (x)− γ x)]

and (1.59) we see that, for sufficiently small γ > 0 and β > 0, condition (1.43) holds
whenever r > r0. Hence it follows that for a suitable choice of c inequality (1.43) is
valid for V (x, y) everywhere. It now follows from Theorem 1.8 that our process is
dissipative.

For the general system (1.25) one can prove the following result which is analo-
gous to a theorem of Demidovich [51, 52] for the deterministic case.

Theorem 1.11 Let the following conditions hold:

1. E|G(0, t, ξ(t,ω))|< c <∞ (t ≥ t0).
2. There exists a symmetric positive definite matrix D = ((dij )) such that the Jaco-

bian J (x, t, z) = ((∂G(x, t, z)/∂x)), symmetrized by the matrix D, is negative
definite uniformly in x, t and z, i.e., all roots of the symmetric matrixDJ + J ∗D
satisfy the inequality λ(x, z, t) <−λU < 0. Then the system (1.25) is dissipative.

Proof Set V (x)= (Dx,x)1/2. Obviously,

dV (X(t,ω))

dt
= (gradV,G)= (DG(X(t,ω), t, ξ(t,ω)),X(t,ω))

V (X(t,ω))
.

It follows from the assumptions of the theorem and from the fundamental lemma in
[51, 52] that

(DG(x, t, ζ )−DG(0, t, z), x) <−λ0(x, x).

Thus we get the inequality

dV (X(t,ω))

dt
≤ −λ0

(X(t,ω),X(t,ω))

V (X(t,ω))
+ (DG(0, t, ξ(t,ω),X(t,ω)))

V (X(t,ω))
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≤ −c1V + c2G(0, t, ξ(t,ω)).

By Lemma 1.1, this inequality implies the desired conclusion. �

1.5 Stability5

In this section we shall study conditions ensuring the stability of a particular solution
y = y(t,ω) of the equation

dx

dt
=G(x, t, ξ(t,ω)). (1.61)

Following the usual procedure of introducing new variables, equal to the devia-
tions of the corresponding coordinates of the “perturbed” motion from their “un-
perturbed” values, we see that we only need to consider the stability of the solution
x(t)≡ 0 of an equation of type (1.61) in which the functionG satisfies the condition

G(0, t, ξ(t,ω))≡ 0. (1.62)

Even in the deterministic case the concept of stability of the trivial solution
x(t) ≡ 0 can be given various meanings. For example, one distinguishes between
local stability and stability in the large, also between asymptotic and nonasymptotic
stability. The diversity is even greater in the presence of “randomness”. We shall not
list here all the possible definitions, but we shall confine ourselves to those which are
in our view of greatest practical interest. Accordingly, we introduce the following
definitions.

The solution x(t)≡ 0 is said to be

1. (Weakly) stable in probability (for t ≥ t0) if, for every ε > 0 and δ > 0, there
exists an r ≥ 0 such that if t > t0 and |x0|< r , then

P{|x(t,ω, t0, x0)|> ε}< δ. (1.63)

2. (Weakly) asymptotically stable in probability6 if it is stable in probability and,
for each ε > 0, there exists an r = r(ε) such that for t → ∞

P{|x(t,ω, t0, x0)|> ε} → 0, if |x0|< r.
3. p-stable, if for each ε > 0, there exists an r > 0 such that

E|x(t,ω, t0, x0)|p < ε (p > 0),

5Almost sure stability has been considered by Kozin [150] and Caughey and Gray [43] for
less general systems. Mean and mean square stability has been considered by Bertram and
Sarachik [31], Malakhov [189] and others.
6Throughout this chapter we shall consider stability and asymptotic stability in the weak sense
(compare Chap. 5, where stability in the strong sense will be discussed).
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whenever t ≥ t0 and |x0|< r .
4. Asymptotically p-stable if it is p-stable and for sufficiently small values of |x0|

E|x(t,ω, t0, x0)|p → 0 as t → ∞.

5. Stable in probability in the large if it is stable in probability and if furthermore for
every x0, ε > 0 and δ > 0, there exists a T = T (x0, ε, δ) such that (1.63) is valid
for all t > T . A similar definition obtains for asymptotic stability in probability
and p-stability in the large.

6. Exponentially p-stable if there exist constants A> 0 and α > 0 such that

E|x(t,ω, x0, t0)|p ≤A|x0|p exp{−α(t − t0)}.
7. Almost surely stable in any of the above senses if almost all sample functions

i.e. all, except those from some set of probability 0, are stable in the appropriate
sense.

It follows from Chebyshev’s inequality that (asymptotic) p-stability of the trivial
solution for any value of p > 0 implies its (asymptotic) p-stability for every smaller
value of p > 0 and stability in probability. On the other hand, one can easily show
by an example that a solution could be (asymptotically) p-stable for some p and not
(asymptotically) p-stable for p1 >p (see below, Sect. 1.6).

The case most often discussed in the literature is asymptotic p-stability for p = 2.
Henceforth we shall refer to it as mean square stability.

Unless certain restrictive assumptions are made concerning a given system, it
is not likely that non-trivial and effective stability conditions can be found. For
example, in [31] stability conditions are given in terms of a Lyapunov function
V (x, t) ≥ 0 such that EV̇ (x, t) < 0 where V̇ denotes the derivative with respect
to (1.61). However, in order to calculate the expectation EV̇ (x, t) one must solve
the system (1.61) with a suitable initial condition, and this limits the practical use of
the criterion.

Here we shall limit ourselves to stability conditions for systems of the type
(x ∈ R

l)

dx

dt
= F(x, t)+ σ(x, t)ξ(t,ω),

F (0, t)≡ 0, σ (0, t)≡ 0.

⎫

⎬

⎭

(1.64)

Sufficient conditions for stability will be given in terms of the existence of a Lya-
punov function for the truncated system

dx

dt
= F(x, t). (1.65)

We shall assume throughout this section that all Lyapunov functions under con-
sideration are positive definite uniformly in t , i.e.,

inf
t>0, |x|>r V (x, t)= Vr > 0 for r > 0. (1.66)
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We set

B = sup
t>0, xi∈Rl

|V (x2, t)− V (x1, t)|
|x2 − x1| .

Theorem 1.12 Suppose that there exists a Lyapunov function V (x, t) ∈ C0 for the
system (1.65) satisfying condition (1.66) and the conditions

V (0, t)≡ 0,

d0V

dt
≤ −c1V, ‖σ‖ ≤ c2V

(1.67)

(c1, c2 > 0 are constants).
Suppose moreover that the process |ξ(t,ω)| satisfies the law of large numbers

(1.1) and the condition

sup
t>0

E|ξ(t,ω)|< c1

Bc2
. (1.68)

Then the trivial solution of the system (1.64) is asymptotically stable in probability
in the large. If the process |ξ(t,ω)| satisfies the strong law of large numbers (1.2),
while all the other assumptions remain unchanged, then the solution x = 0 is almost
surely asymptotically stable in the large.

Proof By Lemma 1.3, it follows from (1.67) that

dV (x(t,ω), t)

dt
≤ −c1V (x(t,ω), t)+Bc2|ξ(t,ω)|V.

We may assume without loss of generality that t0 = 0. Applying Lemma 1.1, we get
the estimate

V (x(t,ω), t)≤ V (x0,0) exp

{∫ t

0
(Bc2|ξ(s,ω)| − c1) ds

}

≤ V (x0,0) exp

{

Bc2

(

1

t

∫ t

0
|ξ(s,ω)|ds − c1

Bc2

)

t

}

. (1.69)

Now let ε > 0 and δ > 0 be arbitrary. Using (1.68) and the fact that the process
|ξ(t,ω)| satisfies the law of large numbers, we see that there exists a number T > 0
such that for t ≥ T

P
{

1

t

∫ t

0
|ξ(s,ω)|ds > c1

Bc2

}

< ε. (1.70)

We now choose a large enough number M > 1 such that

P
{

Bc2

∫ T

0
|ξ(s,ω)|ds > lnM

}

< ε. (1.71)
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Finally, we choose r small enough so that, for |x0|< r ,
V (x0,0)M < Vδ. (1.72)

It follows now from the inequalities (1.69)–(1.72), considered separately for t < T
and t ≥ T , that for |x0|< r and all t ≥ 0

P{|x(t,ω)|> δ} ≤ P{V (x(t,ω), t) > Vδ} ≤ ε.
Hence, using the relation

P
{

1

t

∫ t

0
|ξ(s,ω)|ds > c1

Bc2

}

→ 0 as t → ∞,

we get the first part of the theorem.
The proof of the second part is analogous. �

Theorem 1.13 Suppose that there exists a Lyapunov function V (x, t) ∈ C0 for the
system (1.65), satisfying condition (1.67) and the inequality

V (x, t) > c|x| (c > 0). (1.73)

Assume that the process ξ(t,ω) is such that for some positive constants k1, k2 and
t > 0

E exp

{

k1

∫ t

0
|ξ(s,ω)|ds

}

≤ exp{k2t}, (1.74)

where the constants ki , ci , B satisfy the inequality

Bk2c2 ≤ k1c1. (1.75)

Then the solution x(t) ≡ 0 of the system (1.64) is p-stable for p ≤ k1/Bc2. If the
strict inequality is valid,

Bk2c2 < k1c1, (1.76)

then the solution is exponentially p-stable for p ≤ k1/Bc2.

Proof The proof is based on the inequality (1.69). Raising both sides of this in-
equality to the power k1/Bc2 and then calculating the expectation of both sides, we
see, using (1.73), that

ck1/Bc2 E|ξ(t,ω)|k1/Bc2 ≤ E[V (x(t,ω), t)]k1/Bc2

≤ [V (x0,0)]k1/Bc2 E exp

{

k1

∫ t

0
|ξ(s,ω)|ds − c1k1

Bc2
t

}

.

This, together with the inequalities (1.74)–(1.76), implies the assertion. �
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Remark 1.8 It is clear from the proof of Theorem 1.12 that we can somewhat
weaken the requirement that the process |ξ(t,ω)| should satisfy the law of large
numbers. However, this condition cannot be completely dropped. This can be seen
from the example

dx

dt
= (−a + ξ)x,

where a > 0 and the random variable ξ can take arbitrarily large positive values.
However small the expectation E|ξ | may be, the solution x(t,ω) = x0 exp{(−a +
ξ)t} of this equation tends to infinity with probability p = P{ξ > a}.

The same example shows that condition (1.74) of Theorem 1.13 cannot be essen-
tially weakened.

Remark 1.9 Theorems 1.12 and 1.13 which furnish conditions for the occurrence
of a stable equilibrium are not local in nature since conditions (1.67) imposed on
the Lyapunov functions must hold everywhere, not only in the neighborhood of the
origin. It is not hard to devise examples of stochastic processes ξ(t,ω) for which all
assumptions of Theorems 1.12 and 1.13 hold locally, but the origin is nevertheless
unstable. This is the case, for example, for the equation

dx

dt
= −x + x3

1 + |x|3 + xξ(t,ω),

where the process ξ(t,ω) vanishes everywhere except on intervals of length
Δk → 0, on which it is equal to 1/Δ2

k . Scattering the intervals Δk at random and
sufficiently sparsely over the t-axis, we can ensure that the law of large numbers
and condition (1.68) will hold. Nevertheless, x(t)→ ∞ almost surely if x0 > 0.

This example shows that the existence of a local Lyapunov function is not suffi-
cient for stability in probability. It is also clear that these systems do not satisfy the
analog of Lyapunov’s theorem on stability in the first approximation. As we shall
see later, the situation changes radically if ξ(t,ω) is assumed to be a white Gaussian
noise process.

1.6 Stability of Randomly Perturbed Deterministic Systems

The following problem has been considered by several authors. Let x ≡ 0 be a stable
solution, in some sense, of the equation (x ∈ R

l)

dx

dt
= F(x, t) (F (0, t)≡ 0). (1.77)

Will the solution of this system remain in a given neighborhood of the origin for all
t ≥ t0 if the right-hand side F(x, t) is perturbed, say, by sufficiently small random
forces? More precisely, along with the system (1.77), we consider the system

dx

dt
= F(x, t)+R(x, t) (1.78)



1.6 Stability of Randomly Perturbed Deterministic Systems 27

and call the solution x(t)≡ 0 of (1.61) stable under continually acting perturbations
if, for each ε > 0, there exists a δ > 0 such that if

|x0|< δ, |R(x, t)|< δ,
then the solution x(t, x0, t0) of the system (1.78) satisfies the inequality
|x(t, x0, t0)| < ε for all t ≥ t0. It is known [191] that a sufficient condition for sta-
bility under continually acting perturbations is that the trivial solution of the system
(1.77) be asymptotically stable uniformly in x0, t0.

Sometimes, however, assumptions of this kind might be too restrictive. This is
the case, for instance, when the right-hand side of the system (1.77) is subjected to
random perturbations which are small only on the average, but sometimes, even if
only rarely, experience quite significant “overshoots” which begin at a random time
and extend over a period which is not necessarily short. It is clear that then restric-
tions on F only in the neighborhood of the point x = 0 will not imply stability of the
trivial solution, since the solution may sometimes extend far beyond the origin. The
only meaningful definition of stability in such a situation is that at any fixed time the
sample function should lie in the neighborhood of the origin with sufficiently high
probability.

We now present the rigorous definition.
Along with (1.77), we consider equation

dx

dt
= F(x, t)+R(x, t,ω), (1.79)

where the function R(x, t,ω) is such that (1.79) satisfies the existence and unique-
ness theorems of Sect. 1.2. We also assume that the stochastic process

η(t,ω)= sup
x

|R(x, t,ω)|

has finite expectation. The solution x ≡ 0 of the system (1.77) will be called stable
for t ≥ t0, under continually acting random perturbations which are small on the
average (briefly: stable under small random perturbations) if the solution of (1.79)
satisfying the initial condition x(t0,ω)= x0 tends to zero in probability uniformly
for t ≥ t0 as

|x0| + sup
t≥t0

Eη(t,ω)→ 0. (1.80)

In other words, the solution x ≡ 0 of the system (1.77) is stable under small
random perturbations if, for each ε > 0 and Δ> 0, there exists a γ > 0 such that,
when

|x0| + sup
t≥t0

Eη(t,ω) < γ,

then the following inequality holds for t ≥ t0:

P{|x(t,ω)|>Δ}< ε.
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Theorem 1.14 Suppose that there exists a Lyapunov function V (x, t) ∈ C0 on E
with the following properties:

1. V (0, t)≡ 0, Vδ > 0 for δ > 0.
2. For each δ > 0, there exists a cδ > 0 such that

d0V

dt
<−cδV (1.81)

holds in the domain {|x|> δ} × {t > t0}.
Then the solution x ≡ 0 of (1.77) is stable under small random perturbations for

t ≥ t0.

Proof It follows from the assumptions of the theorem that in the domain |x|> δ
dV (x(t,ω), t)

dt
≤ d0V

dt
+ cη(t,ω). (1.82)

Set V (δ) = supt>t0, |x|<δ V (x, t). Then V (δ) → 0 as δ → 0. Moreover, the assump-
tions of the theorem imply that d0V/dt < 0 for x �= 0. In view of this inequality and
(1.81), it follows that for all x and almost all ω

dV

dt
≤ −cδV + cη(t,ω)+ cδV

(δ). (1.83)

Applying Lemma 1.1 and then taking the expectation of both sides of the inequality
(see proof of Theorem 1.8), we easily see that

EV (x(t,ω), t)≤ V (x0, t0)e
−cδ(t−t0) + c

cδ
sup
t>t0

Eη(t,ω)+ V (δ). (1.84)

Now let ε > 0 and Δ > 0 be arbitrary. Taking δ, |x0| and Eη(t,ω) sufficiently
small, we easily get the inequality

EV (x(t,ω), t)≤ ε sup
t≥t0, |x|>δ

V (x, t). (1.85)

This inequality and Lemma 1.4 imply the required assertion. �

Remark 1.10 Let the point x = 0 be exponentially stable for the system (1.77),
i.e., assume that the solution x(t, x0, t0) of the system (1.77) with initial condition
x(t0)= x0 admits the estimate |x(t, x0, t0)|<B|x0| exp{−α(t − t0)}, where B,α >
0 are constants independent of x0 and t0. Then (see [156, p. 72]) there exists a
function W(x, t) for the system (1.77) such that

c1|x|2 <W(x, t) < c2|x|2,
d0W

dt
≤ −c3|x|2,

∣

∣

∣

∣

∂W

∂x

∣

∣

∣

∣

< c4|x|,
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provided ‖∂F/∂x‖ is bounded inE. It follows from these estimates that the function
V (x, t) = [W(x, t)]1/2 satisfies all the assumptions of Theorem 1.14. Thus, if the
point x = 0 is exponentially stable for the system (1.77), then it is also stable under
small random perturbations.

Remark 1.11 If the function V (x, t) satisfies the assumptions of Theorem 1.14 and
moreover V (x, t) > c1|x| for some c1 > 0, then it evidently follows from the proof
of Theorem 1.14 that the system (1.77) is stable under small random perturbations
in a stronger sense. Indeed, we have then

sup
t>0

E|x(t,ω)| → 0 as |x0| + sup
t>0

Eη(t,ω)→ 0.

The preceding remark shows that the above type of stability (mean stability) holds
when the unperturbed system is exponentially stable. It is readily shown that in the
latter case we also have mean square stability with respect to random perturbations
which are small in mean square, i.e.,

sup
t>0

E|x(t,ω)|2 → 0 as |x0| + sup
t>0

Eη2(t,ω)→ 0.

The derivation of further, more general criteria for mean square stability presents no
difficulties.

Remark 1.12 It is clear from Example 1.5 that condition (1.81) cannot be replaced
by the condition: d0V/dt <−cδ in the domain |x|> δ. By slightly modifying Ex-
ample 1.5 one readily shows that even a linear asymptotically stable system may be
unstable under perturbations such that only supt>0 E[η(t,ω)]α → 0, if α < 1. Thus,
even the “best-behaved” stable systems may lose their stability if Eη(t,ω) does not
tend to zero (we are not considering here the case of white noise, when Eη(t,ω)
does not exist; for this case, see Chap. 5).

The assumptions of Theorem 1.14 may be slightly weakened by further restrict-
ing the range of admissible random perturbations. It seems that in most applications
it is sufficient to consider random perturbations of the type

R(x, t,ω)= σ(x, t)ξ(t,ω). (1.86)

We shall say that the solution x(t) ≡ 0 of the system (1.77) is stable under small
random perturbations of type (1.86) if, for each ε > 0 and Δ > 0, there exists a
κ > 0 such that, whenever

|x0| + sup
x,t

‖σ(x, t)‖< κ, (1.87)

then the following inequality holds for t > t0:

P{|x(t,ω)|>Δ}< ε.
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(This definition is natural, since the matrix σ(x, t) characterizes the intensity of the
random perturbations at the point (x, t).)

Theorem 1.15 Let V (x, t) ∈ C0 be a Lyapunov function in E satisfying assumption
1 of Theorem 1.14 and assumption 2 with inequality (1.81) replaced by

d0V

dt
<−cδ.

Assume further that the process ξ(t,ω) satisfies the following condition: For each
ε > 0, there exists a γ > 0 such that for t0 ≤ s ≤ t

E exp

{

γ

∫ t

s

|ξ(u,ω)|du
}

≤ eε(t−s). (1.88)

Then the solution x ≡ 0 of (1.77) is stable for t ≥ t0 under random perturbations of
type (1.86).

Proof We set

W(x, t)= exp{V (x, t)} − 1, W(δ) = sup
Uδ×{t>t0}

W(x, t).

Proceeding as in the proof of (1.83) we get the estimate

dW

dt
≤W(−cδ + γ |ξ(t,ω)|)+ γ |ξ(t,ω)| + cδW

(δ), (1.89)

valid for every δ > 0 and γ > 0, provided inequality (1.87) holds for κ ≤ κ0(γ ).
Using Lemma 1.1, we infer from (1.89) that

W(x(t,ω), t)≤W(x0, t0) exp

{∫ t

t0

(−cδ + γ |ξ(s,ω)|) ds
}

+ cδW
(δ)

∫ t

t0

exp

{∫ t

s

(−cδ + γ |ξ(u,ω)|) du
}

ds

+ γ

∫ t

t0

exp

{∫ t

s

(−cδ + γ |ξ(u,ω)|) du
}

|ξ(s,ω)|ds. (1.90)

Let ε be any number such that 0 < ε < 1/2. It follows from (1.88) that we can
choose a number γ0(ε) such that, for γ < γ0(ε),

E exp

{

γ

∫ t

s

|ξ(u,ω)|du
}

≤ exp{εcδ(t − s)}. (1.91)

Hence, using the fact that W(δ) → 0 as δ → 0 (which follows directly from the
assumptions of the theorem) we see that we can choose, first δ(ε), and then κ(ε)
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and γ0(ε), so that inequality (1.91) will hold, and moreover

E
[

W(x0, t0) exp

{∫ t

t0

(−cδ + γ |ξ(u,ω)|) du
}

+ cδW
(δ)

∫ t

t0

exp

{∫ t

s

(−cδ + γ |ξ(u,ω)|) du
}

ds

]

< ε. (1.92)

Next, from the equalities

A= γ

∫ t

t0

exp

{∫ t

s

(−cδ + γ |ξ(u,ω)|) du
}

|ξ(s,ω)|ds

= exp

{∫ t

t0

(−cδ + γ |ξ(u,ω)|) du
}

− 1

+ cδ

∫ t

t0

exp

{∫ t

s

(−cδ + γ |ξ(u,ω)|) du
}

ds

and from (1.91) it follows that

EA≤ exp{−cδ(1 − ε)(t − t0)} − 1 + cδ

∫ t

t0

exp{−cδ(1 − ε)(t − s)}ds

≤ 2ε

1 − ε
≤ 4ε. (1.93)

It follows from (1.90), (1.92) and (1.93) that for all t > t0 we have EW(x(t,ω), t) <
5ε, whenever |x0|+ supt>t0 Eη(t,ω) < κ(ε). Now it suffices to apply Lemma 1.4 in
order to derive the assertion of the theorem. �

Example 1.9 In the one-dimensional case we may use the Lyapunov function
V (x) = x to get the following result. Let F(x, t)/x < −cδ hold in the domain
|x| > δ for some cδ > 0. Then the point x = 0 is stable under small random per-
turbations. But if, instead, we assume that F(x, t) signx < −cδ for |x| > δ, then
the point x = 0 is stable under small random perturbations of type (1.86), provided
ξ(t,ω) satisfies condition (1.88).

1.7 Estimation of a Certain Functional of a Gaussian Process

One sees from Theorem 1.15 that the following estimate plays a major role in the
theory of stability of stochastic systems:

E exp

{

k1

∫ t1

t0

|ξ(s,ω)|ds
}

≤ exp{k2(t1 − t0)}, t1 ≥ t0. (1.94)
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Stability of the system under continually acting random perturbations requires that
for each ε > 0 there exists a γ > 0 such that for t1 > t0

E exp

{

γ

∫ t1

t0

|ξ(s,ω)|ds
}

≤ exp{ε(t1 − t0)}. (1.95)

In this section we shall derive simple conditions for these estimates to hold for
Gaussian processes.

We shall consider a Gaussian stochastic process ξ(t,ω) in R
l , i.e., a process all

of whose finite-dimensional distributions are Gaussian. Assume in addition that this
process is measurable and that its kernel K(s, t) is continuous.7

As usual, we define the trace of a square matrix A= ((aij )) by

trA=
l
∑

i=1

aii .

Theorem 1.16 8 Assume that the Gaussian process ξ(t,ω) with zero expectation
satisfies

trK(s, s)= E|ξ(s,ω)|2 ≤ c1, (1.96)
∫ ∞

0
‖K(s,u)‖du=

∫ ∞

0
‖K(u, s)‖du≤ c2, (1.97)

for some ci > 0 and all s > 0.
Then the following estimate holds:

E exp

{

k1

∫ t1

t0

|ξ(s,ω)|ds
}

< exp

{

k1

(√
c1 + k1c2

2

)

(t1 − t0)

}

. (1.98)

Lemma 1.5 The process ξ(t,ω), t0 ≤ t ≤ t1, can be expanded in a series

ξ(t,ω)=
∞
∑

k=1

√

λkϕk(t)ξk(ω), (1.99)

which is almost surely convergent for every t and satisfies Parseval’s identity

∫ t1

t0

|ξ(t,ω)|2 dt =
∞
∑

k=1

λkξ
2
k . (1.100)

7We denote (see Sect. 1.1)

K(s, t)= ((Kij (s, t)))= cov(ξ(s), ξ(t)).

8Theorem 1.16 generalizes a result of Shur [259].
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Here ϕk(t) and λk are the normalized eigenfunctions and eigenvalues of the integral
equation

∫ t1

t0

K(t, τ )ϕ(τ) dτ = λϕ(t); (1.101)

ξk are independent Gaussian random variables with zero expectation and unit vari-
ance.

Proof The proof follows easily from the expansion of the process ξ(t,ω) in the
series of eigenfunctions of (1.101). The formulas for the Fourier coefficients

√

λkξk(ω)=
∫ t1

t0

ξ(t,ω)ϕk(t) dt,

the orthogonality of the ϕk(t) and the fact that the process is Gaussian imply that the
random variables ξk are independent. Identity (1.100) follows from the complete-
ness of the system of eigenfunctions ϕk(t). (For more details see, e.g., [233], [92,
Chap. 5, Sect. 2].) �

Lemma 1.6 The expectation of the functional

exp

{

α

∫ t1

t0

|ξ(t,ω)|2 dt
}

exists for all t0 < t1 and for sufficiently small positive α. Moreover we have the
representation

E exp

{

α

∫ t1

t0

|ξ(t,ω)|2 dt
}

=
∞
∏

k=1

1√
1 − 2αλk

. (1.102)

If also conditions (1.96), (1.97) hold, then for all t0 < t1

E exp

{

α

∫ t1

t0

|ξ(t,ω)|2 dt
}

≤ exp

{

αc1

1 − 2αc2
(t1 − t0)

}

.

Proof By (1.100), (1.96),

∞
∑

k=1

λk = E
∫ t1

t0

|ξ(u,ω)|2 du≤ c1(t1 − t0). (1.103)

Consequently λmax = max1≤k<∞ λk exists; we may assume without loss of gener-
ality that λmax = λ1.

The identity (1.102) now follows easily from (1.100) and the following relation,
valid for α < 1/(2λ1):

E exp{αλkξ2
k (ω)} = 1√

1 − 2αλk
.
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Let us now prove that λ1 = λmax ≤ c2. In fact, we easily infer from (1.97) that

λ1 =
∫ t1

t0

λ1(ϕ1(s), ϕ1(s)) ds =
∫ t1

t0

∫ t1

t0

(K(s, t)ϕ1(t), ϕ1(s)) ds dt

≤
∫ t1

t0

∫ t1

t0

‖K(s, t)‖|ϕ1(t)||ϕ1(s)|ds dt

≤
∫ t1

t0

∫ t1

t0

‖K(s, t)‖ |ϕ1(t)|2 + |ϕ1(s)|2
2

ds dt ≤ c2. (1.104)

Next, using the elementary inequality 1 + γ < eγ (γ > 0), we get the estimate

∞
∏

k=1

1√
1 − 2αλk

=
∞
∏

k=1

(

1 + 2αλk + 4α2λ2
k

1 − 2αλk

)1/2

≤ exp

{

α

(

1 + 2αλ1

1 − 2αλ1

) ∞
∑

k=1

λk

}

= exp

{

α

1 − 2αλ1

∞
∑

k=1

λk

}

.

Hence, in view of (1.103) and (1.104), we get the second assertion of the lemma. �

Proof of Theorem 1.16 Applying the inequality

a <
α

2
a2 + 1

2α
(α > 0), (1.105)

we get

E exp

{

k1

∫ t1

t0

|ξ(s,ω)|ds
}

≤ exp

{

k1

2α
(t1 − t0)

}

E exp

{

k1α

2

∫ t1

t0

|ξ(s,ω)|2 ds
}

.

Hence, it follows by Lemma 1.6 that for all α < 1/k1c2

E exp

{

k1

∫ t1

t0

|ξ(s,ω)|ds
}

≤ exp

{[

k1

2α
+ k1αc1

2(1 − αk1c2)

]

(t1 − t0)

}

. (1.106)

Setting α = α∗ = 1/(k1c2 + √
c1 ), we get (1.98).9

This completes the proof of Theorem 1.16. �

Corollary 1.2 One can easily eliminate the condition Eξ(t,ω)= 0 in the Theorem,
if one knows that

|Eξ(t,ω)| ≤ c0. (1.107)

9It is clear that when α = α∗ the argument of the exponential function in (1.106) attains its mini-
mum.
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Indeed, it is easy to see that estimates similar to (1.94) and (1.95) hold if condi-
tion Eξ(t,ω)= 0 is replaced by (1.107). More precisely, the following analogue of
Theorem 1.16 is valid.

If ξ(t,ω) is a Gaussian process satisfying conditions (1.96), (1.97) and (1.107),
then the following estimate is valid for all k1 > 0 and −∞< t0 < t1 <∞:

E exp

{

k1

∫ t1

t0

|ξ(s,ω)|ds
}

≤ exp

{

k1

(

c0 + √
c1 + k1c2

2

)

(t1 − t0)

}

. (1.108)

We shall prove one more relation for Gaussian processes which will be needed
for the examples in the next section:

Lemma 1.7 The Gaussian process ξ(t,ω) ∈ R
l satisfies

E exp

{∫ t1

t0

ξ(t,ω)dt

}

= exp

{

1

2

∫ t1

t0

∫ t1

t0

̂K(s, t) ds dt +
∫ t1

t0

Eξ(t,ω)dt
}

,

(1.109)
where ̂K(s, t) is the vector with components K(1,1)(s, t), . . . ,K(�,�)(s, t).

Proof It is easily seen that if η is a Gaussian random variable with zero expectation
and variance σ 2, then E expη exists; in fact

E expη= exp{σ 2/2}. (1.110)

The assertion of the lemma follows immediately from (1.110), if we use the fact that
each component of the vector

∫ t1
t0
ξ(s,ω)ds has a Gaussian distribution. �

Remark 1.13 It follows from Lemma 1.7 that if ξ(t,ω) is a Gaussian process in
R
l with zero expectation whose correlation function is nonnegative, then condition

(1.97) is necessary for Theorem 1.16 to hold. Indeed, if
∫ ∞

0
K(s, t) dt = ∞,

then it is clear from (1.109) that the estimate (1.94) does not hold for any k1 and k2.

Remark 1.14 Assume that the process ξ(t,ω) is stationary. Then condition (1.96) is
automatically satisfied and c1 = E|ξ(t,ω)|2. Condition (1.97) can then be replaced
by the following: The spectral density f (λ) of the process ξ(t,ω) is bounded in the
norm. In fact, we used condition (1.97) only to prove that the greatest eigenvalue of
(1.101) is bounded. But for stationary stochastic processes it is known that maxλk ≤
sup‖f (λ)‖.

Remark 1.15 The estimates (1.94) and (1.95) remain valid when the process ξ(t,ω)
has finite memory (i.e., there is a τ such that the evolution process up to time t and
after time t + τ are independent for all t), and

E exp{u|ξ(t,ω)|}< ϕ(u) <∞.
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It seems likely that also in the general case one could give conditions in terms of the
rate of growth of the function ϕ(u) as u→ ∞ and certain “mixing” conditions for
the process, which imply (1.94) and (1.102). Questions essentially similar to these
arise when one investigates existence conditions for the limit of the configuration
integral in statistical physics.

1.8 Linear Systems10

We now apply the results of this chapter to linear systems of the type

dx

dt
= (A(t)+ η(t,ω))x +B(t,ω). (1.111)

Without loss of generality, we may assume that the elements of the square matrix
η(t,ω) have zero expectation.

We consider first the homogeneous system

dx

dt
= (A(t)+ η(t,ω))x. (1.112)

Assume that the deterministic system

dx

dt
=A(t)x (1.113)

is exponentially stable, i.e., every solution x(t, x0, t0) of the system admits the esti-
mate

|x(t, x0, t0)| ≤ B|x0|e−α(t−t0) (α > 0) (1.114)

for t > t0, where the constants B , α are independent of x0, t0.
By a well-known theorem of Malkin [191, Sect. 75], this implies that there exists

a positive definite quadratic form (C(t)x, x)=W(t, x) such that

d0W

dt
≤ −λ|x|2 (λ > 0). (1.115)

In the sequel we shall frequently use the fact that d0W/dt is a quadratic form, be-
ing the derivative of a quadratic form along the trajectory of the system (1.113).
Moreover

d0W

dt
=
((

CA+A∗C + ∂C

∂t

)

x, x

)

.

10See [43], [125]. One-dimensional linear systems were studied previously in detail in [240], [260]
and others.
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To be able to apply Theorem 1.12 to the system (1.112), we must write it in the form
(1.64). This is easily done if we set σ(x, t) equal to the l × l2 matrix

σ(x, t)=

⎛

⎜

⎜

⎝

x1 x2 . . . xl 0 0 . . . 0 0 . . . 0 0 0 . . . 0
0 0 . . . 0 x1 x2 . . . xl 0 . . . 0 0 0 . . . 0
0 0 . . . 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 0 . . . 0 0 0 . . . 0 0 . . . 0 x1 x2 . . . xl

⎞

⎟

⎟

⎠

,

and write ηik(t,ω)= ξ(i−1)l+k(t,ω), where ξ(t,ω) is a vector in R
l2 . Considering

the Lyapunov function V (x, t)= (W(x, t))1/2 and applying Theorem 1.12, we get
the following result.

Theorem 1.17 Suppose that the solution of the system (1.113) satisfies condition
(1.114). Then there exists a constant c > 0 such that the system (1.112) is asymptot-
ically stable in probability for every (matrix-valued) stochastic process η(t,ω) such
that the process ‖η(t,ω)‖ satisfies the law of large numbers and E‖η(t,ω)‖ < c.
If the process ‖η(t,ω)‖ also satisfies the strong law of large numbers, the other
assumptions remaining unchanged, then the system (1.112) is almost surely asymp-
totically stable in the large.

Theorem 1.12 also enables us to estimate the constant c. Using the same Lya-
punov function and Theorem 1.13, we easily derive sufficient conditions for the
system (1.112) to be p-stable, provided the process ‖η(t,ω)‖ satisfies condition
(1.74). Rather than going into further details let us consider an example.

Example 1.10 Consider the following equation in R
1:

dx

dt
= (a(t)+ ξ(t,ω))x. (1.116)

It has a solution

x(t)= x0 exp

{∫ t

0
(a(s)+ ξ(s,ω)) ds

}

. (1.117)

Using (1.117) and slightly modifying the proof of Theorem 1.12, we get the follow-
ing result.

The solution x(t)≡ 0 of (1.116) is asymptotically stable in probability for a(t)≤
a0 < 0 and unstable for a(t)≥ a0 > 0 for every stochastic process ξ(t,ω) with zero
expectation and satisfying the law of large numbers.

Applying Lemma 1.7 to a stationary Gaussian process ξ(t,ω) with Eξ(t,ω)= 0
and correlation function K(t − s), we get

E|x(t,ω)|p = |x0|p exp

{

p

∫ t

0
a(s) ds + p2

2

∫ t

0

∫ t

0
K(u− s) duds

}

. (1.118)
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Assume that the function K(u) is absolutely integrable and
∫ +∞

−∞
K(u)du= f (0) > 0.

Then it is obvious that
∫ t

0

∫ t

0
K(u− s) duds = f (0)t + o(t) (t → ∞). (1.119)

Let a(t) ≤ a0 < 0. It then follows from (1.118) and (1.119) that the solution
x(t)≡ 0 of (1.116) is asymptotically p-stable for a Gaussian process ξ(t,ω) if

p <−2a0/f (0)= p0

and not p-stable if p > p0 and a(t)= a0 = const.
We now consider the case a(t) = 0. It is clear from (1.117) that the solution

x(t)≡ 0 is unstable in this case if there exists a function α(t) such that α(t)→ ∞
as t → ∞ and the probability

P
{∫ t

0
ξ(s,ω)ds > α(t)

}

does not tend to zero. For example this is so when the central limit theorem is appli-
cable to the integral of the process ξ(t,ω). Fairly broad conditions under which the
central limit theorem is applicable in this situation may be found, e.g., in [241].

In the next theorem we adopt the simplifying assumption that A is a constant
stable matrix, i.e., a matrix with eigenvalues λi such that Reλi < 0.

Lyapunov showed that, given a stable matrix, one can determine a positive defi-
nite matrix C such that the matrix CA+A∗C is negative definite. Let λ denote the
greatest positive number such that

((CA+A∗C)x, x)≤ −λ(Cx,x) (1.120)

for all x ∈ R
l . It is not difficult to estimate the number λ from below in terms

of the eigenvalues of the matrices C and CA + A∗C = D. Let λCmax and λDmax
denote the greatest eigenvalues of the matrices C and D. Then it is evident that
λ >−λDmax/λ

C
max > 0.

Theorem 1.18 Let A be a stable l × l matrix, C a positive definite matrix sat-
isfying condition (1.120), and η(t,ω) = ((ηij (t,ω))), i, j = 1, . . . , l, a Gaussian
process. Suppose that the following conditions hold for the process η̃(t,ω) =
C1/2η(t,ω)C−1/2:

‖Eη̃(t,ω)‖ ≤ c0, E‖η̃(t,ω)− Eη̃(t,ω)‖2 ≤ c1,

∫ +∞

−∞
‖K(u, s)‖du≤ c2

(here K(s, t)= cov(η̃(s,ω), η̃(t,ω)) is an l2 × l2 matrix).
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Then the trivial solution of the system

dx

dt
= (A+ η(t,ω))x (1.121)

is asymptotically p-stable for

p <
λ− 2(c0 + √

c1)

2c2
,

provided λ > 2(c0 + √
c1).

Proof We consider the Lyapunov function V (x)= (Cx, x). Using (1.120) and the
estimate

(Cηx, x)= (C1/2ηC−1/2C1/2x,C1/2x) < ‖C−1/2ηC1/2‖‖C1/2x‖2 = ‖η̃‖(Cx, x),
we get

dV (x(t,ω))

dt
≤ −λV + ((Cη+ η∗C)x, x)≤ V (−λ+ 2‖η̃‖). (1.122)

Therefore

[V (x(t,ω))]p ≤ [V (x0)]p exp

{

−pλt + 2p
∫ t

0
‖η(s,ω)‖ds

}

.

Hence, calculating expectations and applying the estimate (1.108), we find that

E[V (x(t,ω))]p ≤ [V (x0)]p exp{pt(−λ+ 2c0 + 2
√
c1 + 2pc2)}. (1.123)

Inequality (1.123) implies directly the assertion of the theorem. �

Remark 1.16 It is clear from Example 1.10 that in the one-dimensional case con-
dition (1.120) is sufficient for the system to be stable for every value of c1 =
sup E‖η(t,ω)‖2, if c0 = 0. It is easy to find examples showing that in the multi-
dimensional case this is generally not true: noise of sufficiently high intensity may
“overcome” the stability. The only general conclusion from Theorem 1.18 is that
when the coefficients of an exponentially stable linear system are perturbed by Gaus-
sian processes satisfying (1.96), (1.97) and (1.107) with sufficiently small c0 and c1,
the resulting system is asymptotically p-stable.

Remark 1.17 In the one-dimensional case an unstable system driven by Gaussian
noise with zero expectation remains unstable. Again, this property does not carry
over to multi-dimensional systems. In Chap. 6 we shall present examples of unsta-
ble deterministic systems which can be “stabilized” by specially selected Gaussian
noise with zero expectation.

Applying Theorem 1.14, we see that an exponentially stable linear system is sta-
ble under small random perturbations. It follows from Theorem 1.8 that the system



40 1 Boundedness in Probability and Stability

(1.111) with η(t,ω)≡ 0 is dissipative for every vector B(t,ω) with finite expecta-
tion, provided condition (1.114) (or (1.120)) is satisfied. Let us devote some atten-
tion to the case η(t,ω) �≡ 0, again assuming for simplicity’s sake that the process
η(t,ω) is Gaussian and the matrix A constant.

Theorem 1.19 Let A and η(t,ω) satisfy the assumptions of Theorem 1.18 and let
B(t,ω) be a stochastic process with values in R

l , independent of η(t,ω) and with
bounded second moment. Then the system

dx

dt
= (A+ η(t,ω))x +B(t,ω) (1.124)

is dissipative if

2c0 + 2
√
c1 + 2c2 < λ. (1.125)

Proof Setting V (x)= (Cx, x) and using arguments similar to those which yielded
(1.122), we infer by means of (1.105) that

dV (x(t,ω))

dt
≤ (−λ+ 2‖η̃‖)V + 2(Cx,B(t,ω))

≤ (−λ+ 2‖η̃‖ + α)V + ‖C1/2‖2|B(t,ω)|2
α

(where α is any positive number).
Hence, using Lemma 1.1 and the independence of the processes η and B , we can

show by standard arguments that

EV (x(t,ω))

≤ E
{

V (x0(ω)) exp

{∫ t

0
(−λ+ a + 2‖η̃(s,ω)‖) ds

}

+ ‖C1/2‖2

α

∫ t

0
E exp

∫ t

s

(−λ+ α + 2‖η̃(u,ω)‖) du
}

E|B(s,ω)|2 ds.

If x0(ω) satisfies condition (1.42) and the constant α is smaller than λ − 2c0 −
2
√
c1 − 2c2, then, again using the estimate (1.108), we readily see that for some

constant c3 > 0

EV (x(t,ω)) < c3.

Hence it follows that the process x(t,ω) is dissipative and its second moment is
bounded. �

Remark 1.18 The assertion of Theorem 1.19 may also hold for certain depen-
dent processes η(t,ω) and B(t,ω). Indeed, before calculating the expectation in
the proof one can estimate the expression exp{2 ∫ t

s
‖η(u,ω)‖du}|B(s,ω)|2, using

Young’s inequality (1.39). Of course, to continue the proof it is necessary to assume
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that B(t,ω) has bounded moments of order higher than 2. Also, it will be necessary
to replace condition (1.125) by a somewhat more stringent condition. We omit the
details.

We conclude this chapter by considering one more example.

Example 1.11 Let η0, . . . , ηn, . . . be a sequence of mutually independent and iden-
tically distributed l × l random matrices, Eηk = ((0)), and let A be a constant
matrix. Assume that x(0) = x0 and let the evolution of the system on the interval
t ∈ [k, k + 1] be governed by the equation

dx(t,ω)

dt
= (A+ ηk(ω))x(t,ω). (1.126)

Denote xk(ω)= x(k,ω). It is obvious that

xk(ω)= eA+ηk−1eA+ηk−2 · · · eA+η0x0. (1.127)

By virtue of (1.127) the question as to whether the system (1.126) is stable or unsta-
ble reduces to the question as to whether the norm of a product of random matrices
does or does not tend to zero.

But although various authors have investigated the limiting behavior of a product
of random matrices, at this stage it does not appear possible to derive convenient
conditions for the stability of the above system.

Assume that the matrix A is stable, and let C be a positive definite matrix satis-
fying condition (1.120). Applying the method used to prove Theorem 1.18, we get
the results below.

If

E‖C1/2ηkC
−1/2‖< λ

2
, (1.128)

then the stochastic process x(t,ω) determined by the system (1.126) is almost surely
asymptotically stable.

We shall now show that if condition (1.128) is valid, the process x(t,ω) is asymp-
totically p-stable for sufficiently small p, provided

f (α)= E exp{α‖ηk‖}<∞ (1.129)

for sufficiently small α > 0.

Lemma 1.8 Let ξ be a positive random variable such that E exp{α0ξ} exists for
some α0 > 0. Then

E exp{αξ}< exp

{

αEξ + α2

2
(Eξ2 + ϕ(α))

}

(1.130)

holds for sufficiently small α with ϕ(α)=O(α) for α→ 0.
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The proof of this lemma follows from the inequalities

E exp{αξ} =
∞
∑

n=0

αnEξn

n! = 1 + αEξ + α2

2
Eξ2 +

∞
∑

n=3

(

α

α0

)n αn0 Eξn

n!

≤ 1 + αEξ + α2

2
Eξ2 + cα3

α3
0

,

where α < α0, and the inequality 1 + γ < expγ (γ > 0).
Suppose that condition (1.129) is satisfied. Then it is obvious that for sufficiently

small α the matrices η̃k = C1/2ηkC
−1/2 also satisfy this condition. On the other

hand, from (1.122) we infer that the following estimate is valid when k − 1< t < k
(where k is an integer):

(Cx(t,ω), x(t,ω))p ≤ (Cx0, x0)
p exp{−pλ(k− 1)+ 2p(‖η̃1‖ + · · · + ‖η̃k‖)}.

Since the random variables ‖η̃i‖ are independent, it follows from (1.129) and
(1.130) that for sufficiently small p

E(Cx(t,ω), x(t,ω))p ≤ (Cx0, x0)
p exp{−pλ(k− 1)+ 2pkE‖η̃1‖ + kp2c1}.

This inequality and (1.128) imply that if conditions (1.128) and (1.129) are satisfied,
then the process x(t,ω) determined by the system (1.126) is asymptotically p-stable
for sufficiently small p.

Other conditions for the stability of the system (1.126), based on the fact that
the process x0, x1(ω), . . . , xk(ω), . . . is a Markov chain, will be given in Sects. 6.6
and 6.7.



Chapter 2
Stationary and Periodic Solutions of Differential
Equations

2.1 Stationary and Periodic Stochastic Processes. Convergence
of Stochastic Processes

A stochastic process ξ(t) = ξ(t,ω) (−∞ < t < ∞) with values in R
l is said to

be stationary (in the strict sense) if for every finite sequence of numbers t1, . . . , tn
the joint distribution of the random variables ξ(t1 + h), . . . , ξ(tn + h) is indepen-
dent of h. If we replace the arbitrary number h by a multiple of a fixed number θ ,
h= kθ (k = ±1,±2, . . . ), we get the definition of a periodic stochastic process with
period θ , or a θ -periodic stochastic process.1 Stationary and periodic stochastic pro-
cesses constitute a mathematical idealization of physical noise acting on linear and
nonlinear devices functioning in a medium with unvarying or periodically varying
properties.

Let ξ(t) be a stationary stochastic process with finite variance. By the definition
of stationarity,

Eξ(t)=m= const, var ξ(t)= D = const,

K(s, t)= cov(ξ(s), ξ(t))=K(t − s).
(2.1)

As already mentioned in Chap. 1, a process satisfying conditions (2.1) is said to
be stationary in the wide sense. An important characteristic of stationary processes
is their spectral density (see Sect. 1.1).

If ξ(t) is a θ -periodic stochastic process, then Eξ(t)=m(t) and var ξ(t)=D(t)

are evidently periodic with the same period, i.e.

m(t + θ)=m(t), D(t + θ)= D(t). (2.2)

1There is an enormous literature on the properties of stationary stochastic processes. Among others,
we might mention the paper [283] and the books [56], [241], [99]. The properties of periodic
processes to be discussed below may be found, e.g., in a paper [57] and in [254].

R. Khasminskii, Stochastic Stability of Differential Equations,
Stochastic Modelling and Applied Probability 66,
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The matrix-valued function K(s, t) satisfies then the condition

K(s + θ, t + θ)=K(s, t) (2.3)

for all s, t . A process whose moments satisfy (2.2) and (2.3) is said to be periodic
in the wide sense.

It is obvious that a stationary process is periodic with arbitrary period. Con-
versely, a periodic process can be made stationary by a simple transformation (shift
of the argument). Indeed, if τ is a random variable uniformly distributed on the
interval [0, θ ] and independent of the θ -periodic stochastic process ξ(t), then the
process η(t) = ξ(t + τ) is stationary. To prove this it suffices to observe that for
every t1, . . . , tn,A1, . . . ,An the function P{ξ(t1 + h) ∈ A1, . . . , ξ(tn + h) ∈ An} is
θ -periodic with respect to h, and therefore, for every h,

P{η(t1 + h) ∈A1, . . . , η(tn + h) ∈An}

= 1

θ

∫ θ

0
P{ξ(t1 + s + h) ∈A1, . . . , ξ(tn + s + h) ∈An}ds

= 1

θ

∫ θ

0
P{ξ(t1 + s) ∈A1, . . . , ξ(tn + s) ∈An}ds

= P{η(t1) ∈A1, . . . , η(tn) ∈An}.
It is easily verified that by averaging the moments of the process ξ(t) over the period
we obtain the corresponding moments of the process η(t). For example,

Eη(t)= 1

θ

∫ θ

0
Eξ(s) ds,

cov(η(s), η(t))= 1

θ

∫ θ

0
cov(ξ(s + h), ξ(t + h)) dh.

It is evident that a deterministic periodic function can be regarded as a periodic
stochastic process. After a suitable shift of the argument we get a stationary process.

Let f (t, x) be a Borel-measurable function, θ -periodic in t , and ξ(t) a θ -periodic
stochastic process. It is then readily seen that the process f (t, ξ(t)) is also θ -
periodic. For example, if τ is a random variable uniformly distributed on the in-
terval [0,2π], then the process ξ sin(t + τ) is stationary for every random variable
ξ independent of τ , while the process ξ cos t sin(t + τ) is 2π -periodic. The sam-
ple functions of the processes in these examples are periodic. It is easy to construct
also examples of periodic processes which almost surely have no periodic sample
functions (paths).

In this chapter we shall frequently have to deal with sequences of random vari-
ables and with stochastic processes converging in various senses. Therefore let
us first recall various definitions of convergence and some results connected with
them.2

2See [232], [251], [92].
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A sequence of measures {μn} defined in (Rl ,B) is said to be weakly convergent
to a measure μ if

lim
n→∞

∫

Rl

f (x)μn(dx)=
∫

Rl

f (x)μ(dx)

for every continuous and bounded function f (x) on R
l .

A sequence of random variables ξn is weakly convergent to ξ if the sequence of
measures Pn(A)= P{ξn ∈A} converges weakly to the measure P(A)= P{ξ ∈A}.

A sequence of random variables ξn is said to be weakly compact if it contains
a weakly convergent subsequence. A sufficient condition for a sequence ξn to be
weakly compact is that the random variables ξn be uniformly bounded in probabil-
ity, i.e.,

sup
n

P{|ξn|>R} → 0 as R→ ∞.

A sequence ξn is said to converge in probability to ξ if P{|ξn − ξ |> δ} → 0 as
n→ ∞ for each δ > 0.

Given a sequence ξn which converges weakly to ξ0, one can construct a sequence
ξ̃n (n = 0,1,2, . . . ) in another probability space (˜Ω,˜A,˜P) such that ξ̃n → ξ̃0 in
probability and the variables ξn and ξ̃n have the same distribution function for ev-
ery n≥ 0. Skorokhod [251] has generalized these results to stochastic processes as
follows.

Theorem 2.1 Let ξn(t,ω) (n = 1,2, . . . ) be a sequence of stochastic processes in
R
l such that for every t1, . . . , tk the joint distribution of ξn(t1), . . . , ξn(tk) is weakly

convergent to some limit, and the sequence ξn(t) is uniformly stochastically contin-
uous, i.e.,

sup
n, |s1−s2|<h

P{|ξn(s1)− ξn(s2)|> ε} −→
h→0

0. (2.4)

Then one can construct a sequence of stochastic processes ξ̃n(s) (n= 0,1,2, . . . )
in another probability space (˜Ω,˜A,˜P) such that the process ξ̃0(s) is stochastically
continuous, ξ̃n(s)→ ξ̃0(s) in probability for all s and the finite-dimensional distri-
butions of the processes ξn(s) and ξ̃n(s) coincide for n > 0.

Theorem 2.2 A sufficient condition for a sequence of stochastic processes ξn(t)
to contain a subsequence of processes with weakly convergent finite-dimensional
distributions is that the sequence satisfies condition (2.4) and is uniformly bounded
in probability:

sup
t,n

P{|ξn(t)|>R} → 0 as R→ ∞. (2.5)

Let the processes ξn(t), ξ(t) be continuous on the interval [a, b]. Let C[a, b]
denote the space of all continuous functions on [a, b]; all the sample functions of
the processes ξn(t), ξ(t) are almost surely in this class.
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A sequence ξn(t) is said to be weakly convergent to ξ(t) as n→ ∞ if for every
functional f continuous on C[a, b]

Ef (ξn(t)) −→
n→∞ Ef (ξ(t)).

Prokhorov [232] has proved the following theorem.

Theorem 2.3 If the finite-dimensional distributions of the processes ξn(t) are
weakly convergent to some limit and there exist α > 1, k > 0 and a > 0 such that
for all t1, t2 and n

E|ξn(t2)− ξn(t1)|a < k|t2 − t1|α,
then the sequence of processes ξn(t) is weakly convergent to a process ξ(t) whose
finite-dimensional distributions coincide with the above-mentioned limit distribu-
tions.

2.2 Existence Conditions for Stationary and Periodic Solutions3

An important part of the qualitative theory of differential equations is the study of
periodic solutions of systems with periodic right-hand sides.

In a more general setting, this corresponds to the study of existence conditions
and properties of periodic and stationary solutions of differential equations whose
right-hand side is a periodic or stationary process in t for fixed values of the space
variable.

In this section we shall present a general, but not sufficiently effective for appli-
cations, solution of this problem. In the next section we shall use this result to derive
effective sufficient conditions for the existence of stationary and periodic solutions
in terms of auxiliary functions.

Theorem 2.4 Let G(x, z) (x ∈ R
l , z ∈ R

k) be a function and ξ(t) a stationary
stochastically continuous process in R

k , satisfying conditions (1.23), (1.24). Then
there exists a stationary solution of the equation

dx

dt
=G(x, ξ(t)) (2.6)

which is stationarily related to ξ(t) if and only if this equation has at least one
solution y(t,ω) satisfying the condition

3Existence conditions for stationary and periodic solutions of differential equations with random
right-hand side have been investigated under different assumptions and by other methods by
Vorovich [269] and Dorogovtsev [57].
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1

T

∫ T

0
P{|y(t,ω)|>R}dt → 0 as R→ ∞ (2.7)

uniformly in T > T0 (or T <−T0).

Proof Necessity is obvious, since every stationary solution y(t,ω) satisfies con-
dition (2.7). To prove sufficiency, we first make the following observation. Solv-
ing (2.6) with initial condition x(0) = x0(ω) by successive approximations, one
may readily verify that the random variable x(t,ω) is measurable with respect to
the minimal σ -algebra containing all possible events {ξ(s) ∈ A1} (s ∈ [0, t]) and
{x0(ω) ∈ A2}. Here and below, Ai ∈ B, where B is the σ -algebra of Borel sets in
Euclidean space. Therefore, in order to prove the existence of a stationary process
(X(t), ξ(t)) satisfying (2.6) it will suffice to show that there exists a random variable
η(ω) such that for all t > 0, A0,A1, . . . ,Am, s1, . . . , sm,

P{η(ω) ∈A0, ξ(s1) ∈A1, . . . , ξ(sm) ∈Am}
= P{X(t) ∈A0, ξ(s1 + t) ∈A1, . . . , ξ(sm + t) ∈Am}, (2.8)

where X(t) is the solution of (2.6) with initial condition x(0)= η(ω).
Assume for definiteness that condition (2.7) holds with T > 0. Let τk(ω) be a ran-

dom variable, uniformly distributed on [0, k] and independent of ξ(t) and y(0,ω).
We set x(k)0 (ω)= y(τk(ω),ω) and

xk(t,ω)= y(t + τk(ω),ω), ξk(t,ω)= ξ(t + τk(ω),ω).

It is obvious that

P{xk(t) ∈A0, ξk(s1) ∈A1, . . . , ξk(sm) ∈Am}

= 1

k

∫ k

0
P{y(t + s) ∈A0, ξ(s1 + s) ∈A1, . . . , ξ(sm + s) ∈Am}ds. (2.9)

It follows from (2.9) that for every k the distribution of the process ξk(t) is the same
as that of the process ξ(t). It also follows from (2.7) that uniformly in k > 0,

P{|x(k)0 (ω)|>R} = 1

k

∫ k

0
P{|y(t)|>R}dt −→

R→∞ 0. (2.10)

By the stochastic continuity of the process ξ(t) and by (2.10), the family (x(k)0 (ω),

ξ (k)(t,ω)) satisfies conditions (2.4) and (2.5). Applying Theorems 2.1 and 2.2, we
see that in some probability space (˜Ω,˜A,˜P) there is a sequence (x̃(k)0 (ω̃), ξ̃ (k)(t, ω̃))

with the same distribution as (x(k)0 (ω), ξ (k)(t,ω)), such that some subsequence

(x̃
(nk)
0 (ω̃), ξ̃ (nk)(t, ω̃)) converges in probability to (x̃(ω̃), ξ̃ (t, ω̃)). Obviously, the

finite-dimensional distributions of the processes ξ̃ (t, ω̃) and ξ(t,ω) are the same.



48 2 Stationary and Periodic Solutions of Differential Equations

We can now construct on the original probability space random variables x(ω) and
x(nk)(ω) whose joint distribution with ξ(t,ω) is the same as the joint distribution of

x̃(ω̃), x̃
(nk)
0 (ω̃), ξ̃ (t, ω̃).

We shall prove that (2.8) holds for η(ω) = x(ω). Let Xnk (t) (k = 1,2, . . . ) de-
note the solution of (2.6) with initial condition Xnk (0)= x(nk)(ω). Now conditions
(1.23), (1.24) and the Gronwall–Bellman lemma imply the inequality

|Xnk (t)−X(t)|< |x(nk)(ω)− x(ω)| exp

{∫ t

0
B(u,ω)du

}

,

and so Xnk (t)→ X(t) in probability for every t . Let f be a continuous bounded
function. Then, by what we have proved it follows from (2.9) that for each t and
s1, . . . , sm,

Ef (ξ(s1 + t), . . . , ξ(sm + t),X(t))

= lim
k→∞ Ef (ξ(s1 + t), . . . , ξ(sm + t),Xnk (t))

= lim
k→∞ Ef (ξnk (s1 + t), . . . , ξnk (sm + t), xnk (t))

= lim
k→∞

1

nk

∫ nk

0
Ef (ξ(s1 + t + u), . . . , ξ(sm + t + u), y(t + u)) du

= lim
k→∞

1

nk

∫ nk

0
Ef (ξ(s1 + s), . . . , ξ(sm + s), y(s)) ds

= Ef (ξ(s1), . . . , ξ(sm), x(ω)). (2.11)

This implies (2.8), and hence the assertion of the theorem. �

The analogous result for a periodic process ξ(t) is given by the following theo-
rem.

Theorem 2.5 Let G(x, z) (x ∈ R
�, z ∈ R

k) be a given function and ξ(t) a θ -
periodic stochastically continuous process in R

k satisfying conditions (1.23), (1.24).
Then there exists a periodic solution of (2.6) which is periodically related to ξ(t) if
and only if the equation has at least one solution y(t,ω) satisfying the condition

1

|k| + 1

k
∑

n=0

P{|y(nθ)|>R} → 0 as R→ ∞ (2.12)

uniformly in k = 1,2, . . . (or k = −1,−2, . . . ).

Proof The proof is entirely analogous to that of Theorem 2.4. The only difference
is that instead of the processes xk(t) = y(t + τk) one must consider a sequence
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Yk(t)= y(t + χk), where χk is a random variable independent of ξ(t) and y(0,ω)
such that P{χk = nθ} = 1/(k + 1) (n= 0,1, . . . , k). �

As we shall see in the next section, the advantage of condition (2.7) over (2.12) is
that it is easier to verify whether (2.7) holds even if no solutions of (2.6) are known.
Thus, the following lemma may be sometimes useful.

Lemma 2.1 Condition (2.12) of Theorem 2.5 can be replaced by condition (2.7).

Proof The necessity of condition (2.7) is obvious. Let us prove the sufficiency. Let
y(t) = y(t,ω) be a solution of (2.6) satisfying condition (2.7). Then for each τ ,
z(t)= y(t + τ) is a solution of the equation

dz

dt
=G(z, ξ(t + τ)). (2.13)

Now let τ be a random variable uniformly distributed on [0, θ ] and independent
of the process ξ(t). Then, as shown in Sect. 2.1, ξ(t + τ) is a stationary process.
Moreover, the solution z(t) of (2.13) satisfies condition (2.7), since

1

T

∫ T

0
P{|z(t)|>R}dt = 1

θ

∫ θ

0
ds

1

T

∫ T

0
P{|y(t + s)|>R}dt

≤ T + θ

T

1

θ

∫ θ

0
ds

1

T + s

∫ T+s

0
P{|y(u)|>R}du.

Applying Theorem 2.4, we see that (2.13) has a solution Z1(t,ω) which is a
stationary process. It follows from Theorem 1.5 that

sup
0≤t≤θ

|Z1(t)| ≤ |Z1(0)| +
∫ θ

0
|G(Z1(0), ξ(s + τ))|ds exp

{∫ θ

0
B(s + τ,ω)ds

}

.

By conditions (1.23), (1.24) and the stationarity of the process Z1, the probability
of the event

{

sup
s≤t≤s+θ

|Z1(t)|>R
}

is independent of s and

P
{

sup
s≤t≤s+θ

|Z1(t)|>R
}

→ 0 as R→ ∞. (2.14)

It is clear now that the function y1(t,ω) = Z1(t − τ(ω),ω) is a solution of (2.6).
By (2.14), this solution satisfies condition (2.12). Hence, by Theorem 2.5, it follows
that (2.6) has a periodic solution. This completes the proof of the lemma. �

Remark 2.1 The global Lipschitz condition (1.23) is sometimes too restrictive. It
can be seen from the proofs of Theorem 2.4 and Lemma 2.1 that this condition is
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used only to verify (2.14) and the relation

Xnk (t)→X(t) in probability as k→ ∞. (2.15)

These relations hold if the solutions of (2.6) are uniformly unboundedly continuable
in the sense of Remark 1.4 and conditions (1.24), (1.28) are satisfied.

In fact, by conditions (1.24), (1.28) and the Gronwall–Bellman lemma, for every
fixed t0 and all sample functions Xnk (t,ω), X(t,ω) satisfying the conditions

sup
0≤t≤t0

|Xnk (t)| ≤R, sup
0≤t≤t0

|X(t)| ≤R, (2.16)

we get the inequality

|Xnk (t0)−X(t0)| ≤ |x(nk)(ω)− x(ω)| exp

{∫ t0

0
BR(t,ω)dt

}

. (2.17)

Let ε > 0 be arbitrary. Since the solutions of (2.6) are uniformly unboundedly con-
tinuable, the probability of the events (2.16) can be made greater than 1 − ε/2 by
choosing R sufficiently large. Hence and by considering (2.17) for sufficiently large
k we get the inequalities

P{|Xnk (t0)−X(t0)|> ε}

≤ ε

2
+ P
{

|x(nk)(ω)− x(ω)| exp

(∫ t0

0
BR(t,ω)dt

)

>
ε

2

}

≤ ε.

This proves (2.15). The proof of (2.14) is analogous.
This remark, together with Theorem 1.7, implies the following corollaries.

Corollary 2.1 Let the function F(x, t), σ(x, t) and the stochastic process ξ(t) be θ -
periodic and satisfy the assumptions of Theorem 1.7. Assume also that the equation
dx/dt = F(x, t)+ σ(x, t)ξ(t) has a solution satisfying condition (2.7). Then this
equation also has a θ -periodic solution. Similarly, if F and σ are independent of t
and ξ(t) is a stationary process, then the above conditions imply the existence of a
stationary solution.

Corollary 2.2 Conditions (2.7) and (2.12) are valid if the system (2.6) is dissipa-
tive. Therefore, if the system (2.6) is dissipative, ξ(t,ω) is a stationary (periodic)
stochastically continuous process and conditions (1.23), (1.24) are satisfied, then
the system (2.6) has a stationary (periodic) solution.

Example 2.1 Let G(x, t) be a deterministic function which is θ -periodic in t and
such that conditions (1.23), (1.24) are satisfied and the equation (x,G ∈ R

l)

dx

dt
=G(x, t) (2.18)
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has at least one bounded solution. It follows from Theorem 2.5 that for some (gen-
erally random) initial condition the solution of (2.18) is a periodic stochastic pro-
cess. For l ≤ 2 this follows also from a well-known theorem of Massera (see [228,
p. 186]). Of course, this result does not guarantee the existence of a deterministic pe-
riodic solution of (2.18), since a periodic stochastic process need not have periodic
sample functions.

2.3 Special Existence Conditions for Stationary and Periodic
Solutions

For systems of the special form

dx

dt
= F(x, t)+ σ(x, t)ξ(t) (2.19)

one can derive effective conditions which are sufficient for the existence of periodic
and stationary solutions.

Theorem 2.6 Suppose that the vector F(x, t) and the matrix σ(x, t) are θ -periodic
in t and that they satisfy a local Lipschitz condition; let further F(0, t) ∈ L and

sup
x,t

‖σ(x, t)‖<∞. (2.20)

Assume moreover that the truncated system

dx

dt
= F(x, t)

has a Lyapunov function V (x, t) ∈ C0 satisfying the following conditions:

1. V (x, t) is nonnegative, and

inf
t>0
V (x, t)→ ∞ as |x| → ∞.

2. d0V/dt is bounded above, and supt>0 d
0V/dt → −∞ as |x| → ∞.

Then (2.19) has a θ -periodic solution for each θ -periodic stochastically contin-
uous process ξ(t) with finite expectation. If F and σ independent of t and ξ(t) is
a stationary process, then the same conditions imply the existence of a stationary
solution.

Proof Let x(t)= x(t,ω) be a solution of (2.19) satisfying the condition x(t0)= x0.
Using Condition 1 of the theorem, inequality (2.20) and Lemma 1.3, we see that
almost surely, for t > t0 and some constant k > 0,

−V (x0, t0) ≤ V (x(t), t)− V (x0, t0)
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≤
∫ t

t0

d0V (x(s), s)

ds
ds + k

∫ t

t0

|ξ(s)|ds. (2.21)

We set k1 = supE d
0V/dt , −cr = sup|x|>r d0V/dt . It follows from the assumptions

of the theorem that

k1 <∞, cr → ∞ as r → ∞. (2.22)

Replacing for |x(s)| > r the function d0V/ds in (2.21) by the bound −cr and for
|x(s)| ≤ r by the bound k1 and then taking expectations, we get

−V (x0, t0)≤ −cr
∫ t

t0

P{|x(s)|> r}ds + k1(t − t0)+ k

∫ t

t0

E|ξ(s)|ds.

Hence it follows by (2.22) that for some constant k2

∫ t

t0
P{|x(s)|> r}ds

t − t0
<
k2

cr
→ 0 as r → ∞. (2.23)

Condition (2.23) is equivalent to (2.7). Applying Lemma 2.1 and Corollary 2.1, we
get the first assertion of the theorem. The second assertion can be proved in the same
way. �

Remark 2.2 The assertion of the theorem is valid when the assumption that
inft>0 V (x, t)→ ∞ as |x| → ∞ is replaced by the assumption that the solutions
of (2.19) are uniformly unboundedly continuable for t > 0. It is also sufficient to
require that the solutions be unboundedly continuable for t < 0 and that the follow-
ing condition holds: The function d0V/dt is bounded below and d0V/dt → ∞ as
|x| → ∞. (This case reduces to the preceding one if we set s = −t .)

Example 2.2 If the system (2.19) is one-dimensional (x ∈ R
1), then, considering the

Lyapunov function V = |x|, we have d0V/dt = F(x, t) signx. Hence Theorem 2.6
and Remark 2.2 yield the following result.

If F and σ are periodic functions of t such that

F ∈ C0, σ ∈ C0, sup |σ |<∞
and either F(x, t) signx → −∞ or F(x, t) signx → ∞ as |x| → ∞, then (2.19) has
a periodic solution in R

1 for every periodic process ξ(t) with bounded expectation.
An analogous conclusion holds for stationary solutions as well.

For example, if f (t) is a θ -periodic continuous function and ξ(t) a θ -periodic
process, then the equation dx/dt = xf (t) + ξ(t) always has a periodic solution,
provided E|ξ(t)| < ∞ and f (t) does not vanish. On the other hand it is obvious
that if F(x, t) > k >−∞ (or F(x, t) < k <∞), then (2.19) need not have periodic
solutions, since for a suitable choice of σ and ξ the right-hand side of (2.19) will
have fixed sign. A more general result is given by the following
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Lemma 2.2 Let F(x) ∈ C be a function for which none of the conditions

F(x) signx −→|x|→∞ ±∞ (2.24)

is valid. Then there exists a stationary stochastic process ξ(t) with finite expectation
such that the equation

dx

dt
= F(x)+ ξ(t) (2.25)

has no stationary solution.

Proof As already mentioned, the assertion is obvious if the function F(x) is
bounded above or below. If it is neither and conditions (2.24) do not hold, then
there exist an infinite sequence of points αk (k = 1,2, . . . ) and a number c such that
αk → ∞ or αk → −∞ as k → ∞, F(αk) = c and each αk is a stable equilibrium
point of the equation

dx

dt
= F(x)− c. (2.26)

To be more specific, suppose that αk → ∞. Then the following three cases are
possible:

(a) F(x)≥ c for x < x′,
(b) F(x)≤ c for x < x′,
(c) there exists a sequence x′

k → −∞ such that F(x′
k) = c and the x′

k are stable
equilibrium points of (2.26).

Case (a). We may assume without loss of generality that x′ = α1. We claim that
in this case (2.25) has no stationary solutions if ξ(t)= −c+ |η(t)|, where η(t) is a
stationary stochastic process such that for every constant A

P
{

sup
0≤u≤t

∫ u+1

u

|η(s)|ds > A
}

→ 1 as t → ∞. (2.27)

(Condition (2.27) holds for instance if η(t) is a Gaussian stationary Markov process
governed by the generator d2/dx − x d/dx.)

Suppose that there exists a stationary process x(t) satisfying (2.25). Since
F(x) ≥ c for x < α1, the function x(t) is monotone increasing for x(t) < α1, and
therefore

P{x(0,ω) < α1} = 0. (2.28)

We shall prove that P{α1 ≤ x(0,ω) < α2} = 0. To this end, we first observe that, by
construction, the points αk have the following property: once the sample function
x(t0)= αk at some time t0, it “cannot” go to the left of αk for t > t0. Hence in this
case it follows from (2.25) that either X(t + 1) > α2 or

X(t + 1)−X(t)≥
∫ t+1

t

|η(s)|ds + min
x∈[α1,α2]

(F (x)− c).
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Hence follows the relation

{x(0,ω)≥ α1} ∩
{

sup
0≤u≤t−1

∫ u+1

u

|η(s)|ds + min
x∈[α1,α2]

(F (x)− c) > α2 − α1

}

⊂ {x(t,ω)≥ α2}. (2.29)

By (2.27), (2.28) and (2.29),

P{x(0,ω)≥ α2} = lim
t→∞ P{x(t,ω)≥ α2} = 1.

Similarly, we show that P{x(0,ω)≥ ak} = 1 for every k. This contradiction shows
that a stationary solution does not exist. The proof for cases (b) and (c) is similar.
(In case (b) one sets ξ(t)= −c− |η(t)|.) �

Example 2.3 4 Suppose that for |x| > x0 and some positive integers n and k the
coefficients of the equation

x′′ + f (x)x′ + g(x)= σ(x, x′)ξ(t,ω) (2.30)

satisfy the conditions

0< g(x)/x2n+1 < c, 0< f (x)/x2k < c,

and also the conditions

|σ |< c; g(x)F (x)→ ∞ as |x| → ∞
(

F(x)=
∫ x

0
f (t) dt

)

,

F (x) signx > δ > 0 for |x|> x0.

Let ξ(t) be a periodic (stationary) stochastic process with finite expectation. Then
(2.30) has a periodic (stationary) solution. The proof utilizes Theorem 2.6 applied
to the system of equations derived from (2.30), where we set x′ = y, and take the
Lyapunov function

V (x, y)=
[

y2

2
+ (F (x)− p(x))y +G(x)+

∫ x

0
f (t)(F (t)− p(t)) dt + 1

]α

− c1,

with G(x) = ∫ x0 g(t) dt , p(x) = γ arctanx, and the positive constants γ , c1, α so
chosen that

minV (x, y)= 0, V ∈ C0,

d0V/dt → −∞ as x2 + y2 → ∞.

Note that the conditions of this example hold for a Van der Pol equation in which
f (x)= x2 − 1, g(x)= x.

4This example is due to Nevelson.
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2.4 Conditions for Convergence to a Periodic Solution

Hitherto we have dealt only with conditions concerning the existence of a periodic
(stationary) solution of a differential equation whose right-hand side is a periodic
(stationary) process for fixed x. However only those periodic solutions are of practi-
cal interest which are stable, in the sense that if the initial conditions lie in a certain
class, then the solutions ultimately converge to periodic solutions. In most cases it
is sufficient to consider stability for initial conditions which are independent of the
right-hand side of the system.

In some cases a periodic solution of a differential equation turns out to be stable
in the large, i.e., every solution ultimately converges to a periodic solution. It is
clear that if a periodic solution is stable in the large it is unique. These definitions
are rather vague, for it is not clear in what sense one should understand the concepts
“ultimately” and “convergence to a periodic process”. The first of these concepts
can be made rigorous as follows.

Definition 2.1 A periodic (stationary) solution x0(t,ω) of (2.6) is stable in a cer-
tain sense for initial conditions belonging to a class K if for all random variables
x0(t0,ω) ∈ K, a.s. the solution x(t, x0(t0,ω), t0,ω) of (2.6) with initial condition
x(t0)= x0(t0,ω) converges to x0(t,ω) in that same given sense as t0 → −∞.

In accordance with the various types of convergence (see Sect. 2.1), we can con-
sider almost sure stability, stability in probability, weak stability, and so on. In this
section we shall establish some sufficient conditions for almost sure stability.

The following theorem indicates the connection between the asymptotically sta-
ble compact invariant set of a deterministic equation and the periodic (stationary)
solutions of the perturbed system obtained when a small stochastic process is super-
imposed on the deterministic system. To simplify the exposition, we shall confine
ourselves to the case in which the invariant set is an equilibrium point, the system
of equations is autonomous and the random perturbation stationary.

Theorem 2.7 Let y0 be an asymptotically stable singular point of the system

dx

dt
= F(x), (2.31)

where F(x) ∈ C. Let g(x, z) (x ∈ R
l , z ∈ R

k) be a bounded Borel-measurable func-
tion such that ‖∂g(x, z)/∂x‖ is bounded in a neighborhood of the point y0, and
ξ(t,ω) a stochastically continuous stationary stochastic process in R

k . Then for all
sufficiently small |ε| the equation

dx

dt
= F(x)+ εg(x, ξ(t,ω)) (2.32)

has a stationary solution which almost surely satisfies the condition

sup
−∞<t<∞

|x(t,ω)− y0|< δ(ε) (δ(ε)→ 0 as ε→ 0).
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If moreover the point y0 is asymptotically stable for the system (2.31) in the linear
approximation, then a sufficiently small neighborhood of the point y0 contains a
unique stationary solution of (2.32) which is almost surely stable for every initial
condition x0(t0,ω) such that for some δ1(ε)

P{|x0(t0,ω)− y0|< δ1(ε)} = 1. (2.33)

Proof Suppose y0 is asymptotically stable for the system (2.31) and consider a fixed
neighborhood of y0. If |ε| and |x(t0)− y0| are sufficiently small, then no solution of
the system (2.32) can leave this neighborhood for t > t0. This follows directly from
the stability of the solution x(t) ≡ y0 of (2.31) with respect to continually acting
perturbations (see [191]). This together with Theorem 2.4 implies the first part of
the theorem.

Since the linear system

dz

dt
= ∂F

∂x
(y0)z

is asymptotically stable and the matrix ((∂g/∂x)) is bounded in a neighborhood
of y0, there exists a constant δ1(ε) such that for |xi − y0| < δ1(ε), all t > t0 and
certain positive constants c and λ,

|x(2)(t)− x(1)(t)|< ce−λ(t−t0), (2.34)

where x(i)(t) is a solution of (2.32) with initial condition x(i)(t0)= xi , i = 1,2.
Let X(t,ω) be some stationary solution of (2.32) in the δ1(ε)-neighborhood

of the point y0, and Y (t0)(t,ω) a solution of (2.32) satisfying the initial con-
dition Y (t0)(t0,ω) = x0(t0,ω), where x0(t0,ω) satisfies condition (2.33). Setting
x(1) =X(t0,ω), x(2) = x0(t0,ω) in (2.34), we see that

P
{

lim
t0→−∞Y

(t0)(t,ω)=X(t,ω)
}

= 1

as t0 → −∞ which implies the required assertions. �

Note that if we set x(1) = X(t0,ω) in (2.34) and let t0 → −∞, the evolution of
the process X(t,ω) for t ∈ (−∞, s) is determined by that of the process ξ(t,ω) on
the same interval. If moreover g(x, z) is invertible as a function of z, the converse
is also true. Thus the process X(t,ω) has the same regularity and mixing properties
(see [241]) as the process ξ(t,ω).

Theorem 2.8 Let G be a function which is θ -periodic in t (independent of t) and
satisfies the assumptions of Theorem 1.11, and ξ(t,ω) a θ -periodic (stationary)
stochastic process. Then the equation

dx

dt
=G(x, t, ξ(t,ω))

has a unique periodic (stationary) solution which is almost surely stable for any
initial conditions such that P{|x0(t0,ω)|< c} = 1 for some c.
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The reader should have no difficulty in proving this theorem, employing the ar-
guments used in the proofs of Theorems 2.7 and 1.11.

We conclude this chapter with the following comments.

Remark 2.3 1. Theorem 2.4, which is the fundamental theorem of this chapter, ad-
mits various generalizations. For example, it is not hard to prove a corresponding
result for equations with delayed argument (see [142]) and for Itô (stochastic) equa-
tions (see Chap. 3).

In [106] similar methods were used to prove an analogous theorem for Itô equa-
tions with delay.

2. The problem of the existence and stability of stationary (periodic) solutions
is also of interest for partial differential equations. For example, let us consider a
simple model problem in the strip 0< x < 1, −∞< t <∞:

∂u

∂t
= a(x)

∂2u

∂x2
+ b(x)

∂u

∂x
+ c(x)u+ f (x, ξ(t,ω))= Lu+ f (x, ξ(t,ω)),

u(0, t)= u(1, t)= 0.

⎫

⎬

⎭

(2.35)

It is readily shown that if ξ(t) is a continuous stochastic process and Ef (x, ξ(t,ω))
is bounded uniformly in x ∈ [0,1], then problem (2.35) has a stationary solution
in the following sense: There exists a function u(x, t,ω) satisfying the equation
and the boundary conditions of (2.35) for almost all ω, which for each fixed x is a
stationary stochastic process stationarily related to ξ(t,ω).

Let p(x, t, y) denote the Green function of the problem

∂u

∂t
= Lu, u(0, t)= u(1, t)= 0.

Then the above-mentioned stationary solution can be determined from the formula

u(x, t,ω)=
∫ t

−∞
ds

∫ 1

0
p(x, t − s, y)f (y, ξ(s,ω)) dy.

It is easy to show that this stationary solution is stable in the sense that every solu-
tion of problem (2.35) satisfying the initial condition u(x, t0)= ϕ(x, t0) converges
almost surely to u(x, t,ω) as t0 → −∞, for every bounded function ϕ(x, t0).

This model can be readily generalized; for example, instead of homogeneous
boundary conditions one can consider conditions of the form

u(0, t)= ξ1(t,ω), u1(1, t)= ξ2(t,ω),

where ξ1(t,ω), ξ2(t,ω) are stationary and stationarily related stochastic processes.
It is also easy to prove the existence of a stationary solution in case of an un-

bounded domain, provided the coefficient c(x) in the operator L satisfies the condi-
tion c(x)≤ c0 < 0. There is an analogous result for periodic solutions.
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Apparently far more interesting but not so well investigated is the existence prob-
lem for stationary solutions of nonlinear partial differential equations. A few papers
have been devoted to the solutions of the equations of hydrodynamics with stochas-
tic coefficients (see the survey article [114] which includes a detailed bibliography).

3. We have established above certain results concerning the almost sure stability
of stationary and periodic solutions. Although it seems that weak stability is rather
more frequently encountered, no general conditions for weak stability are presently
known. In particular, the following well-known problem seems to be yet unsolved.
Let F(x, t) (x ∈ R

1) be a periodic function such that F(x, t) signx → −∞ as
|x| → ∞. Consider the equation dx/dt = F(x, t) + ξ(t,ω). What restrictions do
we have to impose on the periodic process ξ(t) in order to ensure that every solu-
tion of this equation defined by an initial condition independent of ξ(t) converges
to some periodic solution? It seems probable that this property is shared by quite a
broad class of processes ξ(t). For example, it is known that even in the relatively
“unfavorable” case of a deterministic process ξ(t) the property always holds (see
[228, Theorem 9.2]).

4. The question of stability of stationary and periodic solutions is intimately con-
nected with the investigation of the properties of a stationary (periodic) solution
of (2.19). Suppose that (2.19) has a stationary solution x(t). To simplify matters,
assume that F and σ are independent of t and ξ(t) is a stationary process which is
ergodic, regular, satisfies a mixing condition, etc. Under what restrictions on F , σ
will the process x(t) possess the analogous properties?

In the proof of Theorem 2.7 above we have answered this question only in the
simplest case.



Chapter 3
Markov Processes and Stochastic Differential
Equations

3.1 Definition of Markov Processes1

Consider the following equation in R
l :

dx

dt
= F(x(s), t), (3.1)

where for each t , F(x(s), t) is a functional of the segment of the sample function
x(s) for t − τ(t) ≤ s ≤ t . It is well-known that the specification of x(t0) does not
determine the solution of this equation for t > t0 if τ(t) > 0. Moreover, the solu-
tion depends on the “past” of the sample function. Therefore (3.1) is known as an
equation with after-effect. As opposed to this, an ODE might be called an equation
without after-effect.

Markov processes occupy roughly the same position among stochastic processes
as do ODEs among equations with after-effect.

To clarify the meaning of this statement, we first consider the case of discrete
time. In what follows it will be assumed that the reader is familiar with the con-
cept of conditional expectation; see, e.g., [185]. Let x0, ξ1, ξ2, . . . , ξn, . . . be random
variables in R

l . We define new random variables by the formulae

xn+1 − xn = an+1(xn)+ σn+1(xn)ξn+1 (n= 0,1,2, . . . ). (3.2)

Here the vectors an(x) and the matrices σn(x) are B-measurable functions in R
l .

(Recall that B denotes the σ -algebra of Borel sets in R
l .)

In the general case, when the joint distribution of x0, ξ1, . . . , ξn, . . . is arbitrary,
the conditional distribution of xn+1, given xn, is not the same as the conditional
distribution of xn+1, given x0, x1, . . . , xn, and in this sense the sequence x0, x1, . . .

may be termed a process with after-effect. But if x0, ξ1, . . . , ξn are independent, then
it is easily shown that for each A ∈ B and k > 0,

P{xn+k ∈A | x0, x1, . . . , xn} = P{xn+k ∈A | xn} (a.s.). (3.3)

1A more detailed definition of Markov processes may be found in [63, 64].
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(Here and below “a.s.” and “P-a.s.” will serve as abbreviations for almost surely, i.e.,
the relation in question is valid with probability 1 relative to the measure P.)

Intuitively speaking, (3.3) means that the prediction of the behavior of the se-
quence xn+1, xn+2, . . . when xn is known remains unchanged if the entire “history”
of the process is known for k < n; in other words, the past has no effect on the future
when the present is fixed (the past has no after-effects).

Let Pn(x,A) denote the distribution of the random variable x+an(x)+σn(x)ξn.
Then, for each A ∈ B,

P{xn ∈A | xn−1} = Pn(xn−1,A) (a.s.). (3.4)

It is clear that Pn(x,A) is a Borel-measurable function of x.
A sequence x0, x1, . . . , xn, . . . satisfying condition (3.3) for all A ∈ B is called a

Markov chain.
It can be shown (see [54]) that for every Markov chain there exists a function

Pn(x,A), which is a B-measurable function of x, and which is for every fixed
n, x a measure satisfying condition (3.4). This function is the one-step transition
probability from x to A at time n. This function immediately generalizes to the
transition probability from x at time k to A at time n. This satisfies the relation

P(k, x,n,A)= P{xn ∈A | xk = x} (a.s.). (3.5)

It is clear that Pn(x,A)= P(n,x,n+ 1,A).
It is possible to construct a Markov chain for any a priori given family of transi-

tion probabilities Pn(x,A). This Markov chain satisfies the Chapman–Kolmogorov
equation:

P(k, x,m,A)=
∫

R�

P (k, x,n, dy)P (n, y,m,A) (k < n <m). (3.6)

The sequence (3.2) considered in the example above is a very special case of a
Markov chain. Nevertheless, every Markov chain can be represented as a system
whose evolution at time n+ 1 is entirely determined by n, its state at time n, and
certain random factors which are independent of the entire past history of the sys-
tem.

In the continuous-time case we introduce the following definition which is anal-
ogous to (3.3).

A stochastic process X(t,ω) with values in R
l , defined for t ≥ 0 on a probability

space (Ω,A,P), is called a Markov process if, for all A ∈ B, 0 ≤ s < t ,
P{X(t,ω) ∈A | Ns} = P{X(t,ω) ∈A |X(s,ω)} (a.s.), (3.7)

where Ns is the σ -algebra of events generated by all events of the form

{X(u,ω) ∈A} (u≤ s, A ∈ B).

It can be proved that there exists a function P(s, x, t,A), defined for 0 ≤ s ≤ t ,
x ∈ R

�, A ∈ B, which is B-measurable in x for every fixed s, t , A, and which
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constitutes a measure as a function of the set A, satisfying the condition

P{X(t,ω) ∈A |X(s,ω)} = P {s,X(s,ω), t,A} (a.s.). (3.8)

One can also prove that for all x, except possibly those from a set B such that
P {x(s,ω) ∈ B} = 0, the Chapman–Kolmogorov equation holds:

P {s, x, t,A} =
∫

R�

P (s, x,u, dy)P (u, y, t,A). (3.9)

The function P {s, x, t,A} is called the transition probability function of the
Markov process. It is usually assumed at this point (and we shall indeed assume
this in the sequel) that (3.9) is valid for all x ∈ R

l , and P {s, x, s,Rl \ x} = 0.
Conversely, given a transition probability function P(s, x, t,A), one can con-

struct a Markov process with an arbitrary initial distribution. In particular, for t > s
one can associate with the function P(s, x, t,A) a family X(s,x)(t,ω) of Markov
processes such that the process X(s,x)(t,ω) “exits” from the point x at time s, i.e.,

P{X(s,x)(s,ω)= x} = 1. (3.10)

Later on we shall often deal with families of Markov processes X(s,x)(t,ω) of this
kind and with the measures generated by them (Markov families, in the terminology
of Dynkin [64]).

The transition probability function P(s, x, t,A) is said to be time-homogeneous
(and the corresponding Markov process is called time-homogeneous) if the function
P(s, x, t + s,A) is independent of s. It is called periodic if P(s, x, t + s,A) is
periodic in s.

A time-homogeneous transition probability function is effectively a function of a
single time variable, and we shall therefore use the notation P(s, x, t,A)= P(x, t−
s,A).

With each time-homogeneous transition probability function P(x, t,A) we can
associate two families of operators; the first is defined on functions and the second
on measures:

TtV (x)=
∫

P {x, t, dy}V (y)= EV (X(x)(t,ω)),

Stμ(A)=
∫

μ(dx)P (x, t,A).

As usual, we denote by C(Rl ) (C(E)) the space of continuous function on R
l

(on E). A transition probability function for which the operator Tt maps the space
C(Rl) into itself is known as a Feller transition probability function. If P(x, t,A)
is also stochastically continuous, i.e., P(x, t,Uε(x))→ 1 as t → +0 for each ε > 0
(where Uε(x) is the ε-neighborhood of x), then it is readily seen that Ttf (x) →
f (x) as t → +0 for f (x) ∈ C(Rl ). From (3.9) we get then the relation Tt+s = TtTs
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(s > 0, t > 0), and hence the family Tt is a homogeneous semigroup on C(Rl). Its
C-infinitesimal operator (generator) A is defined by the standard formula (see [64])

AV (x)= lim
t→+0

TtV (x)− V (x)

t
. (3.11)

The domain of definition DA of the operator A is the set of functions for which the
limit in (3.11) exists uniformly for x ∈ R

l .
A stochastically continuous transition probability function is uniquely deter-

mined by its generator (see [64, Chap. II]). Let us show that the case of a non-
homogeneous transition probability function can be reduced to the homogeneous
case by extension of the phase space.

To do this, we consider the σ -algebra B0 of Borel sets on the real axis and we
define the function Q((s, x), t,Γ ) for t ≥ 0, s ≥ 0, x ∈ R

l , Γ = A × Δ (A ∈ B,
Δ ∈ B0) by

Q((s, x), t,Γ )= P(s, x, s + t,A)1Δ(s + t).

(Here and below 1Δ(t) denotes the indicator function of the set Δ, i.e., the function
equal to 1 for t ∈Δ and 0 for t /∈Δ.) The measure Q can be extended by standard
methods (see [97]) to the σ -algebra B × B0 generated by the sets Γ of the above
form. It is readily seen that the resulting function Q is a homogeneous transition
probability function in the phase space E = R

l × I . If P(s, x, t,A) is stochastically
continuous, then Q is also stochastically continuous. Q is the transition probability
function of the process

Y(t,ω)= {X(s,x)(s + t,ω), s + t}

in R
l+1. The generator ˜A of the semigroup ˜Tt defined by Q is obviously given by

˜AV (s, x)= lim
h→+0

∫

P(s, x, s + h,dy)V (s + h,y)− V (s, x)

h

= lim
h→+0

EV (s + h,X(s,x)(s + h,ω))− V (s, x)

h
. (3.12)

P(s, x, t,A) is known as a Feller transition probability function if the operator

˜TtV (s, x)=
∫

P(s, x, s + t, dy)V (s + t, y)

transforms functions V (s, x) ∈ C(E) into continuous functions.
It follows from the above-mentioned result concerning the time-homogeneous

case that the operator ˜A uniquely determines the function P(s, x, t,A).
An important example of a stochastically continuous Markov process with a

Feller transition probability function is the process ξ(t,ω) of Brownian motion
(Wiener process), whose transition probability has a density with respect to the
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Lebesgue measure on the real line and moreover

P(x, t,A)= 1√
2πt

∫

A

exp

{

− (x − y)2

2t

}

dy. (3.13)

It follows from (3.13) that the probability

P{ξ(t + h)− ξ(t) ∈A | ξ(t)= x} = 1√
2πh

∫

A

exp

(

− z2

2h

)

dz

is independent of x. This implies that the increments of the process ξ(t,ω) on non-
overlapping time intervals are independent. In addition, it also follows from (3.13)
that

E(ξ(t + h)− ξ(t))= 0; var(ξ(t + h)− ξ(t))= h. (3.14)

It is also not hard to see that

E(ξ(t + h)− ξ(t))2n = 1√
2πh

∫ +∞

−∞
e−z2/2hz2n dz= (2n− 1)!!hn. (3.15)

It follows from (3.15) and Theorem 1.1, that the process ξ(t) has continuous sample
functions a.s.

For definiteness, we assume that ξ(0)= 0. Given the process ξ(t), one can con-
struct other continuous processes by means of the transformation

x(t)= s(0)+
∫ t

0
b(s) ds + ξ

(∫ t

0
σ 2(s) ds

)

.

The reader should have no difficulty in verifying that each of the resulting pro-
cesses also has independent increments and a Gaussian transition probability func-
tion. Moreover,

E(x(t + h)− x(t))=
∫ t+h

t

b(s) ds;

var(x(t + h)− x(t))=
∫ t+h

t

σ 2(s) ds.

As we shall see from the sequel, the Wiener process can be used to construct a far
more extensive class of Markov processes with continuous sample functions.

It is known (see [252]) that every almost surely continuous process with inde-
pendent increments in R

l is Gaussian.

3.2 Stationary and Periodic Markov Processes

We shall now investigate conditions under which a Markov process X(t,ω) is sta-
tionary. One necessary condition, at any rate (see the definition of Sect. 2.1), is
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that for every A,B ∈ B the probabilities of the events {X(t) ∈ A} and {X(t) ∈
A, X(t + h) ∈ B} are independent of t . Hence, expressing these probabilities in
terms of the transition probability function, we see that the transition probability
function of a stationary process is time-homogeneous, and for every h > 0 the ini-
tial distribution P0(A)= P {X(0) ∈A} satisfies the equation

P0(A)=
∫

P0(dx)P (x,h,A). (3.16)

These two conditions are also sufficient for a Markov process to be stationary. In-
deed, for 0< h1 < · · ·< hn the probability of the event

{x(t) ∈A0;x(t + h1) ∈A1; . . . ;x(t + hn) ∈An}
is2

∫

P0(dx)

∫

A0

P(0, x, t, dx1) . . .

∫

An

P (t + hn−1, xn, t + hn, dxn+1).

It follows from the homogeneity of the transition probability function and from
(3.16) that this probability is independent of t .

In exactly the same way one can show that a Markov process x(t) is θ -periodic
if and only if its transition probability function is θ -periodic and the function
P0(t,A)= P {X(t) ∈A} satisfies the equation

P0(s,A)=
∫

Rl

P0(s, dx)P (s, x, s + θ,A)≡ P0(s + θ,A) (3.17)

for every A ∈ B.
However, it is not true that for every time-homogeneous (periodic) transition

probability function there exists a corresponding stationary (periodic) Markov pro-
cess. For example, there is no stationary process for the Wiener transition probability
function. To prove this, suppose that such a process exists. Then, it follows by (3.13)
and (3.16) that for every set A ∈ B on the real line whose Lebesgue measure m(A)
is finite

P0(A)=
∫

P0(dx)

∫

A

1√
2πt

exp

{

− (x − y)2

2t

}

dy ≤ 1√
2πt

m(A).

Letting t → ∞, we get P0(A)= 0. Hence it follows that P0(R
l )= 0, contradicting

P0(R
l )= 1.

We shall now determine some further conditions that must hold for a homoge-
neous (periodic) transition probability function corresponding to a stationary (peri-
odic) Markov process.

2Henceforth we shall omit the limits of integration when the integration is performed over the
entire space R

l .
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Theorem 3.1 A necessary and sufficient condition for the existence of a stationary
Markov process with the given time-homogeneous stochastically continuous Feller
transition probability function P(x, t,A) is that for some point x ∈ R

l3

lim
R→∞ lim

T→∞
1

T

∫ T

0
P(x, t,U c

R)dt = 0. (3.18)

For the proof we need the following lemma.

Lemma 3.1 A stochastically continuous Feller transition probability function
P(x, t,A) is a B × B0-measurable function of (x, t) for every A ∈ B.

Proof It will suffice to prove the lemma for closed sets A. If A is closed, we can
construct a sequence fn(x) of monotone decreasing continuous functions converg-
ing to the indicator function 1A(x). It is clear that for each t > 0

Ttfn(x)→ P(x, t,A) as n→ ∞.

The function Ttfn(x) is continuous in x and right-continuous in t , as follows from
the Feller property and the stochastic continuity of the transition probability func-
tion. Therefore it is Borel-measurable as a function of x, t . Hence the function
P(x, t,A) is also measurable. �

Proof of Theorem 3.1 (1) Necessity. Let P0(A) be the stationary initial distribution.
Then, integrating (3.16) with respect to t from 0 to T and applying Fubini’s theorem
(see [97]), we get

P0(U
c
R)=

∫

P0(dx)
1

T

∫ T

0
P(x, t,U c

R)dt.

Now suppose that condition (3.18) does not hold. Then

lim
R→∞ lim

T→∞
1

T

∫ T

0
P(x, t,U c

R)dt = q(x) > 0.

Therefore

0 = lim
R→∞P0(U

c
R)≥

∫

P0(dx)q(x) > 0.

This is a contradiction and therefore (3.18) must be satisfied.
(2) Sufficiency. It follows from condition (3.18) that for some x0 there exists a

sequence Tn → ∞ such that

1

Tn

∫ Tn

0
P(x0, t,U

c
R)dt → 0 uniformly in n as R→ ∞. (3.19)

3Recall that U c
R = {|x|>R}.
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Consider the sequence of measures on R
l defined by

Pn(A)= 1

Tn

∫ Tn

0
P(x0, t,A)dt.

By condition (3.19), this sequence is weakly compact (see Sect. 2.1). Let Pnk be a
subsequence converging weakly to some measure P0. We claim now that the mea-
sure P0 satisfies condition (3.16) and consequently defines the initial distribution of
a stationary Markov process.

Let f (x) ∈ C(Rl ). Since Pnk is weakly convergent to P0, and the Feller property
holds for the transition probability, we have

∫

P0(dx)

∫

P(x, t, dy)f (y)

= lim
nk→∞

1

Tnk

∫ Tnk

0
ds

∫

P(x0, s, dx)

∫

P(x, t, dy)f (y)

= lim
nk→∞

1

Tnk

∫ Tnk

0
ds P (x0, s + t, dy)f (y)

= lim
nk→∞

1

Tnk

[∫ Tnk

0
du

∫

P(x0, u, dy)f (y)

+
∫ Tnk+t

Tnk

du

∫

P(x0, u, dy)f (y)−
∫ t

0
du

∫

P(x0, u, dy)f (y)

]

=
∫

P0(dy)f (y).

The resulting relation
∫

P0(dx)Ttf (x)=
∫

P0(dx)f (x)

is equivalent to (3.16), i.e. (3.16) holds. This completes the proof.4 �

Theorem 3.2 A necessary and sufficient condition for the existence of a θ -periodic
Markov process with a given θ -periodic transition probability function P(s, x, t,A)
is that for some x0, s0

lim
R→∞ lim

n→∞
1

n

n
∑

k=1

P(s0, x0, s0 + kξ,U c
R)= 0. (3.20)

4The method of showing the existence of a stationary Markov process employed in the proof
of Theorem 3.1 is well-known. It was first used by Krylov and Bogolyubov [163] to prove the
existence of an invariant measure for a dynamic system. The method is systematically used for
Markov processes, e.g., in [56].
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The proof of this theorem is entirely analogous to that of Theorem 3.1. The only
difference lies in the definition of Pn(A) which is now given by

Pn(A)= 1

kn

kn
∑

i=1

P(s0, x0, s0 + iθ,A),

where kn is an increasing sequence of integers such that the sequence of measures
Pn(A) is weakly compact.

Remark 3.1 Condition (3.20) of Theorem 3.2 can be replaced by the more easily
tested condition

lim
R→∞ lim

T→∞
1

T

∫ T

0
P(s, x, s + u,U c

R)du= 0, (3.21)

provided the transition probability function P(s, x, t,A) satisfies the following not
very restrictive assumption that

α(R)= sup
x∈Uβ(R), 0<s, t<θ

P (s, x, s + t,U c
R)→ 0 as R→ ∞ (3.22)

for some function β(R) which tends to infinity as R→ ∞.
Indeed, for every

u ∈ ((k − 1)θ, kθ)

it is obvious that

P(s, x, s + kθ,U c
R)

=
(∫

Uβ(R)

+
∫

U c
β(R)

)

P(s, x, s + u,dy)P (s + u,y, s + kθ,U c
R)

≤ P(s, x, s + u,U c
β(R))+ sup

u∈((k−1)θ,kθ), y∈Uβ(R)
P (s + u,y, s + kθ,U c

R)

and hence, integrating both sides with respect to u from (k − 1)θ to kθ , we see that

P(s, x, s + kθ,U c
R)≤

1

θ

∫ kθ

(k−1)θ
P (s, x, s + u,U c

β(R)) du+ α(R).

Summation over k from 1 to n in combination with (3.22) shows that (3.21) im-
plies (3.20). A similar argument shows that if (3.22) is satisfied, then (3.20) implies
(3.21).

3.3 Stochastic Differential Equations (SDE)

In Sect. 3.1 we have used the finite-difference equation (3.2) to determine a Markov
chain Xn from a sequence of independent random variables ξn. It is natural to try to
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use the differential analog of (3.16) to construct continuous-time Markov processes.
The formal analog of (3.2) for the one-dimensional case is

dX

dt
= b(t,X)+ σ(t,X)ξ̇ (t). (3.23)

The random process ξ̇ (t), by analogy with the sequence ξn in (3.2), must be a pro-
cess with independent values for different t . Such a process does not exist, but (3.23)
can nonetheless be given a rigorous meaning.

To this end, it is convenient to rewrite the equation in terms of differentials:

dX(t)= b(t,X)dt + σ(t,X)dξ(t). (3.24)

What properties must the process ξ(t) possess? First, it must have independent
increments, as the integral of a “process” ξ̇ (t) with independent values. Second, it
must have continuous sample functions, if we wish the solution X(t) of (3.24) to
be a continuous stochastic process. As mentioned at the end of Sect. 3.1, such a
process is always Gaussian. We may also assume that its mean and variance satisfy
conditions (3.14), since this may always be achieved by modifying the coefficients
b and σ .

Equations of type (3.23) or (3.24) were first considered by Langevin [176] as far
back as 1908, shortly after Einstein and Smoluchowski had published their first pa-
pers on the theory of Brownian motion. More systematic investigations of stochastic
equations began only in the thirties. The simplest and most convenient construction
of the solution of the SDE (3.24) was given by Itô [103, 104]. This construction has
been presented in detail in many books (e.g., [56], [251], [64], [92]). We shall there-
fore present without proof some of Itô’s theorems on the existence and properties of
solutions of (3.24).

The basic tool for the constructions is the stochastic integral. Let ξ(t,ω) be a
Wiener process on the interval [a, b], defined on a probability space (Ω,A,P). Let
˜Nt (t ≥ 0) be a family of σ -algebras of sets in A, related to the Wiener process ξ(t)
as follows:

1. ˜Nt1 ⊂ ˜Nt2 , if t1 < t2;
2. ξ(t) is an ˜Nt -measurable random variable for each t ≥ 0;
3. the increment ξ(t + h)− ξ(t) of the process ξ(t) is independent of every event
A ∈ ˜Nt .

For every bounded step function f (t,ω)= f (t) with jumps at points t1, . . . , tn,
such that f (t) is ˜Nt -measurable for each t ∈ [a, b], the Itô stochastic integral is
defined as the sum

∫ b

a

f (t) dξ(t)=
n−1
∑

i=0

f (ti)[ξ(ti+1)− ξ(ti)].
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Using the independence of ξ(ti+1)−ξ(ti) and f (ti), one easily verifies the following
properties of integrals of step functions:

E
(∫ b

a

f (t) dξ(t)

∣

∣

∣

˜Na

)

= 0 (a.s.), (3.25)

E
([∫ b

a

f (t)dξ(t)

]2∣
∣

∣

˜Na

)

=
∫ b

a

E(f 2(t)|˜Na) dt (a.s.). (3.26)

Next, the integral of an ˜Nt -measurable function f (t) such that f 2(t) is in class L
is defined by means of a passage to the limit (see [92, Chap. 8, Sect. 2]). One then
proves that relations (3.25) and (3.26) are valid for every ˜Nt -measurable function
f (t), provided

∫ b

a

E(f 2(t)|˜Na) dt <∞ (a.s.). (3.27)

It can be proved that the stochastic integral

ζ(t)=
∫ t

a

f (s) dξ(s)=
∫ b

a

1t (s)f (s) dξ(s)

(where 1t (s) is the indicator function of the set {s < t}) can be so defined that
it becomes a separable almost surely continuous stochastic process. This process
satisfies the Kolmogorov’s inequality

P
{

sup
t∈[a,b]

|ζ(t)|> c ∣∣ ˜Na

}

≤ 1

c2

∫ b

a

E{f 2(s)|˜Na}ds. (3.28)

Hitherto we have considered stochastic integrals in R
1. It is not difficult to ex-

tend the construction to the multi-dimensional case. Let σ1(t), . . . , σk(t) be vectors
in R

l whose components σij (t), i = 1, . . . , l, j = 1, . . . , k, are ˜Nt -measurable for
each fixed t . Let ξ1(t), . . . , ξk(t) be mutually independent ˜Nt -measurable Wiener
processes such that the random variables ξi(t + h) − ξi(t) are all independent of
every event in ˜Nt for h > 0. Then stochastic integrals with values in R

l are defined
in the following natural (coordinatewise) manner:

ζr (t)=
∫ t

a

σr (s) dξr (s).

Let b(t) ∈ R
l be ˜Nt -measurable vector stochastic process.

The Itô (stochastic) differential dX(t) of the ˜Nt -measurable process X(t) is de-
fined as

dX(t)= b(t) dt +
k
∑

r=1

σr(t)dξr (t),
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provided b(t) and |σr |2 are in class L, are ˜Nt -measurable for each t , and for all
a < t1 < t2 < b

X(t2)−X(t1)=
∫ t2

t1

b(t) dt +
k
∑

r=1

∫ t2

t1

σr(t) dξr (t). (3.29)

Denote σ ∗(t) matrix conjugated to σ(t), and A(t) = σ(t)σ ∗(t). Itô [104] estab-
lished the following analog of the chain rule for stochastic differentials (Itô’s for-
mula).

Theorem 3.3 If the function u(t, x) (t ∈ [a, b], x ∈ R
l) has continuous partial

derivatives up to second order in x and to first order in t , and the process X(t)
with values in R

l has an Itô differential

dX(t)= b(t) dt +
k
∑

r=1

σr(t) dξr(t),

then the process η(t)= u(t,X(t)) also has an Itô differential, and

dη(t)=
[

∂u(t,X(t))

∂t
+

l
∑

i=1

bi(t)
∂u(t,X(t))

∂xi

+ 1

2

l
∑

i=1

l
∑

j=1

aij (t)
∂2u(t,X(t))

∂xi∂xj

]

dt

+
l
∑

i=1

k
∑

r=1

σri (t)
∂u(t,X(t))

∂xi
dξr(t). (3.30)

It is clear that the only difference between (3.30) and the usual chain rule is the
presence of the term

1

2

l
∑

i=1

l
∑

j=1

aij (t)
∂2u(t,X(t))

∂xi∂xj
dt.

We now return to the SDE (3.24), which will be interpreted as an equation relat-
ing the stochastic differentials of a process X(t,ω) in R

l and the Wiener processes
ξr (t); written by means of integrals this becomes

X(t)=X(t0)+
∫ t

t0

b(s,X(s)) ds +
k
∑

r=1

∫ t

t0

σr(s,X(s)) dξr (s). (3.31)

In the sequel we shall mean by a solution of (3.31) on the interval [t0, T ] a stochastic
process X(t) such that the random variable X(t) is ˜Nt -measurable for each t , the
integrals in (3.31) exist and equality (3.31) holds almost surely for each t ∈ [t0, T ].
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The following theorem concerns the existence, uniqueness and certain other
properties of the solution of (3.31).

Theorem 3.4 Let the vectors b(s, x), σ1(s, x), . . . , σk(s, x) (s ∈ [t0, T ], x ∈ R
l) be

continuous functions of (s, x), such that for some constant B the following condi-
tions hold in the entire domain of definition:

|b(s, x)− b(s, y)| +
k
∑

r=1

|σr(s, x)− σr(s, y)| ≤ B|x − y|,

|b(s, x)| +
k
∑

r=1

|σr(s, x)| ≤ B(1 + |x|).
(3.32)

Then:

1. For every random variable X(t0) independent of the processes ξr (t) − ξr (t0)

there exists a solution X(t) of (3.31) which is an almost surely continuous
stochastic process and is unique up to equivalence.5

2. This solution is a Markov process whose Feller transition probability function
P(s, x, t,A) is defined for t > s by the relation P(s, x, t,A)= P{Xs,x(t) ∈ A},
where Xs,x(t) is a solution of the equation

Xs,x(t)= x +
∫ t

s

b(u,Xs,x(u)) du+
k
∑

r=1

∫ t

s

σr (u,X
s,x(u)) dξr (u). (3.33)

3. The transition probability function P(s, x, t,A) satisfies for h→ 0:

E[Xs,x(s + h)− x] =
∫

(y − x)P (s, x, s + h,dy)= b(s, x)h+O(h3/2),

E[(Xs,xi (s + h)− xi)(X
s,x
j (s + h)− xj )] = aij (s, x)h+O(h3/2),

P(s, x, s + h,U c
ε (x))=O(h3/2),

⎫

⎪

⎪

⎬

⎪

⎪

⎭

(3.34)
where all estimates O( · ) are uniform in s, x in each bounded domain, and
aij (s, x) are elements of a matrix A(s, x)= σ(s, x)σ (s, x)∗.

4. There exists a constant k, depending only on the dimension of the space R
l , on

the constant B of condition (3.32) and on the length T − t0 of the interval, such
that for all s, t ∈ [t0, T ]

E|Xs,x(t)− x|4 ≤ k(t − s)2(1 + |x|4).
5. If the coefficients of (3.31) are independent of s, then the transition probabil-

ity function of the corresponding Markov process is time-homogeneous; and if

5Two solutions X1(t) and X2(t) are said to be equivalent if P{X1(t) = X2(t) for all t ∈
[t0, T ]} = 1.
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the coefficients are θ -periodic in s, then the transition probability function is
θ -periodic.

The proof of this theorem, except for the second part of (5), may be found, e.g.,
in [64], [92]. The proof of the second part of (5) is analogous to that of the first.

Here the matrix A(s, x) is known as the diffusion matrix, and the vector b(s, x)
as the drift vector. Their probabilistic meaning is clear from formulas (3.34).

Let us consider the Markov process Xs,x(t,ω) determined by (3.33). We shall
often have to calculate the expectation of various random variables which are mea-
surable with respect to the evolution of this process (i.e., with respect to the σ -
algebra generated by the events {Xs,x(t) ∈A}, A ∈ B, s < t <∞). Instead of writ-
ing the indices s, x in the symbols for each of these random variables, we shall
sometimes attach them to the symbols E and P. For example, Ps,x{X(t,ω) ∈ A} =
P{Xs,x(t,ω) ∈ A}. If the coefficients of (3.31) are independent of s, we need only
consider the process X0,x(t) which will be denoted by Xx(t). Accordingly, the in-
dex x for random variables involved in the processXx(t)will sometimes be attached
to the symbols E and P, so we shall write Px and Ex then.

Let C2 denote the class of functions on E which are twice continuously differ-
entiable with respect to x1, . . . , xl and continuously differentiable with respect to t .
Let V ∈ C2. Then it follows from Theorems 3.3 and 3.4 that

V (t,X(t))− V (s,X(s))=
∫ t

s

LV (u,X(u)) du+
k
∑

r=1

l
∑

i=1

∫ t

s

σri
∂V

∂xi
dξr(u),

(3.35)
where

LV (s, x)= ∂V (s, x)

∂s
+

l
∑

i=1

bi(s, x)
∂V (s, x)

∂x
+ 1

2

l
∑

i,j=1

aij (s, x)
∂2V (s, x)

∂xi∂xj
.

(3.36)

If moreover the function V and its derivatives are bounded (or increasing no faster
than a linear function of x), then, calculating the expectation in (3.35) and using the
properties of stochastic integrals and Fubini’s theorem, we get

E[V (t,X(t))− V (s,X(s))] =
∫ t

s

ELV (u,X(u)) du. (3.37)

Substituting X(t)=Xs,x(t) into this equality, dividing both sides by t − s and let-
ting t → s + 0, we readily find that

lim
h→+0

1

h
[Es,xV (s + h,X(s + h))− V (s, x)] = LV (s, x). (3.38)

It follows (see (3.11), (3.12)) that ˜AV (s, x)= LV (s, x) for all V ∈ C2 with compact
support, and that for homogeneous processes AV (x)= LV (x).
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The operator L defined by (3.36) will be called the generator of the Markov
process. It is clear from the definition that this is a local concept, i.e., the value of
the operator at a point (s, x) is determined by the values of V in an arbitrarily small
neighborhood of the point (s, x).

The left-hand side of formula (3.38) may be undefined for rapidly growing pro-
cesses (for example, for the Wiener process, when t > 0, the function V = exp(x3)

is not in the domain of the operator Tt ). The probabilistic meaning of the operator
L for any function V ∈ C2 is given by the following lemma:

Lemma 3.2 6 Let X(u) be a process satisfying (3.31) on the time interval [s, T ],
V ∈ C2, τU the random variable equal to the time at which the sample function of the
process X(u) first leaves the bounded neighborhood U , and let τU (t)= min(τU , t).
Suppose moreover that P{X(s) ∈U} = 1. Then

E[V (τU (t),X(τU (t)))− V (s,X(s))] = E
∫ τU (t)

s

LV (u,X(u)) du. (3.39)

Proof It is known (see [64, Chap. II, Sect. 3]) that the process Y(t) = X(τU(t)),
obtained by stopping the process X(t) at the instant it reaches the boundary of the
domain U , has an Itô differential:

dY (t)= 1{τU>t}(ω)b(t, Y (t)) dt +
k
∑

r=1

1{τU>t}(ω)σr(t, Y (t)) dξr (t).

(Since {τU > t} ∈ ˜Nt , the Itô differential in the formula is defined.) Applying The-
orem 3.3 to the process Y(t) and the function V , we get

V (τU (t),X(τU (t)))− V (s,X(s))

=
∫ τU (t)

s

LV du+
k
∑

r=1

l
∑

i=1

∫ τU (t)

s

σri
∂V

∂xi
dξr(u). (3.40)

(Here and below we denote

∫ τU (t)

s

Φ dξ(u)=
∫ t

s

1{τU>t}(ω)Φ dξ(u).)

This and (3.25) immediately imply (3.39). �

Remark 3.2 Note that under the assumptions of the lemma the expectation of the
random variable V (t,X(t)) need not exist and thus formula (3.37) may be false.

6Lemma 3.2 is a special case of a formula of Dynkin [64, Sect. 5.1].
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Remark 3.3 Setting X(s)= x in formula (3.39) and letting t → s + 0, we get

AV = lim
h→+0

Es,xV (τU (s + h),X(τU (s + h)))− V (s, x)

Es,x[τU (s + h)− s] = LV (s, x). (3.41)

The operator on the left of (3.41) may be regarded as an extension of the differential
operator L. It was first introduced in a more general setting by Dynkin in [62].

3.4 Conditions for Regularity of the Solution7

It follows from Theorem 3.4 that if condition (3.32) holds for all t > t0 then the
solution X(t) of (3.31) is defined and continuous for all t > t0. Condition (3.32)
is rather restrictive. For example, it is intuitively clear that the problem dX(t) =
−X3(t) dt + dξ(t), X(0) = x0, has a unique solution for all t > 0 (since the drift
coefficient “directs” the motion to the origin), but conditions (3.32) hold for this
equation only in a compact domain of the x-space. The same applies to Example 3.5
at the end of this section and also to an important class of stochastic equations which
arise in the statistical analysis of partially observable Markov processes (see [256],
[250]). It is therefore of paramount importance to find other, broader conditions for
the existence and uniqueness of the solution of (3.31) for all t > t0. In this section
we shall prove analogs of Theorems 1.3 and 1.7 for Itô stochastic equations.

If conditions (3.32) are valid in every cylinder I × UR , one can construct a se-
quence of functions bn(t, x) and σ (n)r (t, x) such that for |x|< n

σ(n)r (t, x)= σr(t, x); bn(t, x)= b(t, x),

and for each bn, σ (n)r satisfy conditions (3.32) everywhere in E. By Theorem 3.4,
there exists a sequence of Markov processes Xn(t) corresponding to the functions
bn, σ (n)r . To simplify matters, we shall limit the discussion to the case in which the
distribution of X0(t) has compact support in R

l . Then it is intuitively clear (and
it can be proved rigorously; see [55, 64]) that the first exit times of the processes
Xm(t) from the set |x|< n are identical for m≥ n. Let this common value be τn. It
is also clear that the processes themselves coincide up to time τn, i.e.,

P
{

sup
t0≤t≤τn

|Xn(t)−Xm(t)|> 0
}

= 0, m > n.

Let τ denote the (finite or infinite) limit of the monotone increasing sequence τn
as n→ ∞. We call the random variable τ the first exit time of the sample function

7Necessary and sufficient conditions for the regularity of homogeneous Markov processes of the
diffusion type on R

1 were obtained by Feller [71] for the time-homogeneous case. Multidimen-
sional time-homogeneous processes were studied by the author in [117] where it was shown that
the conditions of Theorem 3.5 are also necessary for regularity in the nondegenerate case.
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from every bounded domain, or briefly the explosion time. This definition is natural,
since one easily shows that the values of τ are not changed if we replace the domains
Un = {|x|< n} by any other expanding sequence of bounded domains such that the
distance from the origin to the boundary tends to infinity.

We now define a new stochastic process ˜X(t) by setting ˜X(t)=Xn(t) for t < τn.
It can be shown that this is always a Markov process for t < τ (for the definition of
a Markov process stopped at a random time τ , see [63]).

We shall say that the process X(t) is regular if for any (s, x) ∈E

Ps,x{τ = ∞} = 1. (3.42)

If condition (3.42) is satisfied, the process X(t) is almost surely defined for all
t ≥ s. For a process satisfying the assumption of Theorem 3.4, regularity follows
from continuity. The following theorem gives a more general sufficient condition
for regularity.

Theorem 3.5 Suppose that conditions (3.32) are valid in every cylinder I × UR
and, moreover, that there exists a nonnegative function V ∈ C2 on the domain E
such that for some constant c > 0

LV ≤ cV, (3.43)

VR = inf|x|>RV (t, x)→ ∞ as R→ ∞. (3.44)

Then parts 1, 2 and 5 of Theorem 3.4 hold. Part 3 is valid if the expectations
in (3.34) are replaced by “truncated” expectations (i.e., for example, instead of
E[Xs,x(s + h) − x] one considers E{1(ω)[Xs,x(s + h) − x]}, where 1(ω) is the
indicator function of the set |Xs,x(s + h,ω)− x|< k). Moreover, this process also
satisfies the inequality

EV (t,X(t))≤ EV (t0,X(t0))ec(t−t0), (3.45)

if the expectation on the right exists.

Proof We first prove that under the assumptions (3.43) and (3.44) the process ˜X(t)
constructed at the beginning of the section is regular. From (3.43) it follows that the
function

W(t, x)= V (t, x) exp{−c(t − t0)}
satisfies LW ≤ 0. Hence, by Lemma 3.2, for τn(t)= min(τn, t), we have

E{V (τn(t),X(τn(t))) exp[−c(τn(t)− t0)]} − EV (t0,X(t0))

= E
∫ τn(t)

t0

LW(u,X(u)) du≤ 0.
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This, together with the inequalities τn(t)≤ t , V ≥ 0, implies

EV (τn(t),˜X(τn(t)))≤ ec(t−t0)EV (t0,X(t0)). (3.46)

From (3.46) we derive the estimate

P{τn ≤ t} ≤ ec(t−t0)EV (t0,˜X(t0))
inf|x|≥n, u>t0 V (u,x)

.

Letting n→ ∞ and making use of (3.44), we now get (3.42); thus the process ˜X(t)
is a solution of (3.31) for all t ≥ t0. This solution is unique up to equivalence. Indeed,
it follows from the definition of ˜X(t) and from the uniqueness of the solution of
(3.31) in the domain |x|< n that for every pair of solutions X(t) and Y(t)

P
{

sup
0<t<τn

|X(t)− Y(t)|> 0
}

= 0.

The desired result now follows by letting n→ ∞ and using (3.42).
All other properties of the process just constructed can be proved in a similar

manner. For example, we can prove relation (3.45) by letting n→ ∞ in (3.46) and
using Fatou’s lemma (see [97]). When constructing the process ˜X(t), we assumed
that the distribution of X(t0) has compact support. The case of an arbitrary initial
distribution may now be dealt with in the way described in [92, Sect. 8.3]. �

Remark 3.4 It is intuitively clear that whether a process is regular or not depends
only on the behavior of the coefficients b and σr in a neighborhood of the point at
infinity. It is therefore natural to expect the conclusion of Theorem 3.5 to remain
valid if a function V satisfying conditions (3.43), (3.44) exists merely in the domain
{t > 0} × U c

R for some R > 0. One easily sees from the proof of Theorem 3.5 that
in this case the sample function cannot escape to infinity before it exits from the set
|x|>R. Using the strong Markov property of the process (see Chap. 4), one easily
infers that the process is also regular in the sense of definition (3.42).

Remark 3.5 In many cases (see Chap. 4) it is useful to know when the sample func-
tion of a diffusion process almost surely does not exit from a given open set D in a
finite time. Sufficient conditions for the invariance of the set D in this sense can be
derived from Theorem 3.5 by noting that in the proof of this theorem the assumption
that the sequence Un converges to R

l is not essential. Replacing the sequence Un
by an increasing sequence of open sets Dn whose closures are contained in D, and
such that

⋃

Dn =D, we get the following result.

Corollary 3.1 Suppose that in every cylinder I ×Dn the coefficients b and σr sat-
isfy conditions (3.32) and there exists a function V (t, x), twice continuously dif-
ferentiable in x and continuously differentiable in t in the domain I × D, which
satisfies condition (3.43) and the condition

inf
t>0, x∈D\Dn

V (t, x)→ ∞ as n→ ∞.
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Then the conclusion of Theorem 3.5 holds provided that also P{X(t0) ∈ D} = 1.
Moreover the solution satisfies the relation

P{X(t) ∈D} = 1 for all t ≥ t0.

As the following theorem shows, conditions (3.43), (3.44) are in a certain sense
“the best possible”.

Theorem 3.6 Suppose that conditions (3.32) hold in every cylinder (t > 0)× UR
and that, moreover, there exists in the domain E = (t > 0) × R

l a nonnegative
bounded function V (t, x) ∈ C2 such that for some c > 0

LV ≥ cV . (3.47)

Then for all points s, x such that V (s, x) > 0 the process Xs,x(t) defined by (3.33)
up to the time τ s,x of first exit from every bounded domain, is not regular. More
precisely, for each ε > 0 we have

P
{

τ s,x − s <
1

c
ln

supE V

V (s, x)
+ ε

}

> 0.

Proof Exactly as in the proof of Theorem 3.5, we apply Lemma 3.2 and condition
(3.47) to get the relation

EV (τ s,xn (t),X(τ s,xn (t))) exp{−c(τ s,xn (t)− s)} ≥ V (s, x).
Since V is bounded, this implies that

E exp{−c(τ s,xn (t)− s)} sup
E

V ≥ V (s, x).

Letting n→ ∞ and putting τ s,x(t)= min(τ s,x, t), we get

E exp{−c(τ s,x(t)− s)} sup
E

V ≥ V (s, x). (3.48)

Assume that P{τ s,x > t} = 1 for some t > s. Then (3.48) implies the inequality

exp{−c(t − s)} ≥ V (s, x)/ sup
E

V,

which is in contradiction with t − s > c−1 ln(supE V/V (s, x)). This completes the
proof. �

We append a very brief discussion of the situation arising under the assumptions
of Theorem 3.6 when the process Xs,x(t) has an explosion. In this case (3.33) deter-
mines the process only up to the random time τ s,x . How does the process continue
for t > τ s,x? There exists an infinite set of possible continuations. For example, we
can set Xs,x(τ s,x + 0) = y ∈ R

l (a jump to the point y after explosion), and we
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can stipulate other additional conditions determining the evolution of the process
after τ s,x . There is an extensive literature on the continuation of Markov processes
after the time at which the sample function has hit the boundary. The problem is
closely connected with the description of all possible ways in which this process
can reach the boundary (assuming that it is a Martin boundary). The case of a one-
dimensional time-homogeneous process defined by (3.33) (and a somewhat more
general one) has been thoroughly studied by Feller [73] and Ventsel [266]. For the
multi-dimensional case extremely interesting results have been obtained by Ventsel
[267], Ueno [264, 265] and others.

Example 3.1 Let conditions (3.32) hold everywhere in E. Then the function V =
(|x|2 + 1)n/2 satisfies the assumptions of Theorem 3.5 for every n > 0. Hence the
solution X(t) of (3.31) exists and is almost surely bounded on every finite time
interval (this result follows from Theorem 3.4). Moreover, for some constant cn we
have the estimate

E|X(t)|n < ecn(t−t0)E|X(t0)|n.

Example 3.2 Suppose that condition (3.32) holds in every bounded x-domain and
that for x ∈ R

l

|b|<B(1 + |x| ln |x|), (3.49)

k
∑

r=1

|σr |2 <B(1 + |x|2 ln |x|). (3.50)

Then, using the auxiliary function V = ln(|x|2 + 1) and applying Theorem 3.5,
we conclude that the solution of (3.31) is regular.

It follows from (3.49) that the inner product (b(s, x), x) increases no faster than
|x|2 ln(|x|2 + 1) as x → ∞.

The next example shows that if the rate of increase of (b(s, x), x) is slightly
higher, the process fails to be regular.

Example 3.3 Suppose that condition (3.50) holds and that for some ε > 0

(b(s, x), x) > |x|2[ln(|x|2 + 1)]1+ε.

Then the process X(t) has an explosion for every initial condition. To prove this it
suffices to apply Theorem 3.6 with the auxiliary function

V (x)= exp{−[ln(|x|2 + 1)]ε}.

In this example, the sample function explodes because of large drift (the phe-
nomenon also occurs for σ ≡ 0). It is not hard to find examples in which the lack of
regularity is due to large diffusion.
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Example 3.4 Consider a process X(t) in R
1 defined by (3.31). Then b and σ are

scalar functions and the operator L has the form

L= ∂

∂s
+ b(s, x)

∂

∂x
+ 1

2
σ 2(s, x)

∂2

∂x2
.

Using the same auxiliary function as in Example 3.3, we see that if

σ 2 >B(x2 + 1)[ln(x2 + 1)]1+ε,

then the processX(t) has an explosion for every function b(s, x)which, with respect
to the second variable, increases not faster than linear one. However, when the func-
tion |b(s, x)| increases faster than linear, the process may nonetheless be regular.
For example, when b(s, x)= −x5 and σ = x3, regularity follows from Theorem 3.5
where we should take the auxiliary function (x2 + 1)α .

Example 3.5 The assumptions of Theorem 3.4 fail to hold even for the well known
mechanical system described by the Van der Pol equation driven by white noise of
constant intensity σ 2. This system can be described by the Itô equations:

dx1 = x2 dt; dx2 = [−x1 + ε(1 − x2
1)x2]dt + σ dξ(t).

The auxiliary function

V = 1

2

[

x2 + ε

(

x3
1

3
− x1

)]2

+ x2
1

2
+ σ 2

4ε

satisfies the assumptions of Theorem 3.5 since

LV = x2
∂V

∂x1
+ [ε(1 − x2

1)x2 − x1] ∂V
∂x2

+ σ 2

2

∂2V

∂x2
2

= −ε x
4
1

3
+ εx2

1 + σ 2

2
≤ 2εV .

Thus the process is regular.

3.5 Stationary and Periodic Solutions of Stochastic Differential
Equations

In Sect. 3.2 we gave conditions implying the existence of periodic and stationary
Markov processes, stated in terms of the properties of the transition probability
functions. These conditions are of little use for SDEs, since the transition probability
functions of such processes are usually not expressible in terms of the coefficients
of the equation. Fortunately, however, one can state simple conditions in terms of
Lyapunov functions for the required properties of the transition probability function.
The following theorems are analogous to Theorem 2.6.
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Theorem 3.7 Suppose that the coefficients of (3.31) are independent of t and satisfy
conditions (3.32) in UR for every R > 0, and that there exists a function V (x) ∈ C2

in R
l with the properties

V (x)≥ 0, (3.51)

sup
|x|>R

LV (x)= −AR → −∞ as R→ ∞. (3.52)

Suppose moreover that the process Xx(t) is regular for at least one x ∈ R
l . Then

there exists a solution of (3.31) which is a stationary Markov process.

Theorem 3.8 Suppose that the coefficients of (3.31) are θ -periodic in t and satisfy
conditions (3.32) in every cylinder I × U , and suppose further that there exists a
function V (t, x) ∈ C2 in E which θ -periodic in t , and satisfies condition (3.52) and
the condition

inf|x|>RV (t, x)→ ∞ as R→ ∞. (3.53)

Then there exists a solution of (3.31) which is a θ -periodic Markov process.8

Proof of Theorem 3.7 Let Xx(t) be a regular solution of (3.31) and let V (x) satisfy
conditions (3.51), (3.52). Lemma 3.2 implies that

EV (Xx(τn(t)))− V (x)= E
∫ τn(t)

0
LV (Xx(u)) du.

(As before, we denote τn = inf{t : |Xx(t)|> n}, τn(t)= min(τn, t).) Estimating the
right-hand side of this equality by means of the obvious inequality

LV (Xx(u))≤ −1{|Xx(u)|>R}(ω)AR + sup
x∈Rl

LV (x),

we get

ARE
∫ τn(t)

0
1{|Xx(u)|>R}(ω)du≤ c1t + c2.

Since the processXx(t) is regular, it follows that almost surely τn(t)→ t as n→ ∞.
Letting n→ ∞ and then changing the order of integration in the last inequality, we
obtain

1

t

∫ t

0
P(x,u,U c

R)du <
c3

AR
. (3.54)

8Condition (3.52) of Theorems 3.7 and 3.8 may often be replaced by the weaker condition that
LV ≤ −1 outside some compact set (see Chap. 4).
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It follows from (3.54), (3.52) and Theorem 3.1 that there exists a stationary initial
distribution. The solution of (3.31) with this initial distribution is obviously station-
ary. �

Proof of Theorem 3.8 Arguments similar to those used in proving (3.54) yield the
inequality

1

T

∫ T

0
P(s, x, s + u,U c

R)du <
c3

AR
.

Therefore, to prove the theorem we need only to show that condition (3.22) is satis-
fied and then use the remark following Theorem 3.2.

To prove (3.22), we can again use the method of auxiliary functions. We may
assume without loss of generality that the function V satisfying (3.52) and (3.53)
also satisfies (3.51) (otherwise we may add to it a constant). Further, it follows from
the assumptions of the theorem that L(V (t, x) − kt) ≤ 0 for a sufficiently large
constant k. Using this inequality, the regularity of the process (which follows from
Theorem 3.5), and Lemma 3.2, we easily obtain that

Es,xV (t,X(t))≤ k(t − s)+ V (s, x).

Together with Chebyshev’s inequality, this implies

P(s, x, t,U c
R)≤

k(t − s)+ V (s, x)

inf|x|>R V (t, x)
.

Thus condition (3.22) will hold if β(R) is chosen so that

sup|x|<β(R) V
inf|x|>R V

→ 0 as R→ ∞.

This is possible because (3.53) holds. The proof is complete. �

To demonstrate the range of application of Theorems 3.7 and 3.8, we present a
few examples.

Example 3.6 Consider the auxiliary function

V1(x)=
l
∑

i,j=1

cij xixj = (Cx, x),

where C is a positive definite matrix. We have

LV1(x)= 2(Cx, b(t, x))+ tr(A(t, x)C).

Thus a sufficient condition for the existence of a stationary (periodic) solution of
(3.31) in the case when the coefficients are independent of t (θ -periodic in t) is that
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for some positive definite matrix C

2(Cx, b(t, x))+ tr(A(t, x)C)→ −∞ as |x| → ∞,

and that the coefficients b and σr satisfy conditions (3.32) in every cylinder I ×UR .

Example 3.7 9 Let us investigate conditions for the existence of a stationary process
at the output of a system described by a Lienard equation driven by Gaussian white
noise ξ̇ (t).

The system is described by the equation

x′′ + f (x)x′ + g(x)= σ ξ̇(t), (3.55)

where σ 2 is the intensity of the white noise at the input (assumed constant for sim-
plicity’s sake). Setting y(t) = x′(t), one easily sees that the pair (x(t), y(t)) is a
Markov process satisfying the following system of Itô equations

dx = y dt; dy = [−yf (x)− g(x)]dt + σ dξ(t)

with the generator

L= y
∂

∂x
− [yf (x)+ g(x)] ∂

∂y
+ σ 2

2

∂2

∂y2
+ ∂

∂t
.

As in Example 2.3, we set

F(x)=
∫ x

0
f (u)du; G(x)=

∫ x

0
g(u)du; p(x)= γ arctanx

and consider the function

V1(x, y)= y2

2
+ [F(x)− p(x)]y +G(x)+

∫ x

0
f (u)[F(u)− p(u)]du+ k,

which is analogous to the auxiliary function of the above-mentioned example. It is
easy to check that conditions (3.51)–(3.53) hold for V1(x, y) for a suitable choice
of γ and k, if the conditions

signg(x)= signx for |x|> x0,

g(x)F (x)− δ|g(x)| → ∞ as |x| → ∞, (3.56)

G(x)+ δ
∫ x

0
F(u)

1+u2 du→ ∞ as |x| → ∞
hold for some δ > 0, x0 > 0.

9Due to Nevelson.



3.6 Stochastic Equations and Partial Differential Equations 83

Thus, if conditions (3.56) are satisfied, the system (3.55) has a stationary output.
Conditions (3.56) will obviously hold for the process at the output of a system de-
scribed by the Van der Pol equation with f (x) = ε(x2 − 1), g = x. One can give
similar conditions which imply the existence of a periodic solution in the case when
the driving process contains a periodic component.

Example 3.8 The following fact is well-known in the theory of systems of ODEs:
If x0 is an asymptotically stable equilibrium point of an autonomous system
dx/dt = F(x) and f (t) is θ -periodic, then for sufficiently small ε the system
dx/dt = F(x) + εf (t) has a θ -periodic solution in a neighborhood of the equi-
librium point. The problem of extending this result to systems of differential equa-
tions describing Markov processes was suggested by N.N. Krasovskii. The method
developed in this section can be employed to this end.

Let X(t) be a time-homogeneous stochastic process described by the system
(3.31). We consider another process which differs from (3.31) by the presence of a
“force” f (x, t) which is θ -periodic in t (the dependence on x means that the value
of f may depend on the state of the system):

dY (t)= b(Y (t)) dt +
k
∑

r=1

σr(Y (t)) dξr (t)+ f (t, Y (t)) dt. (3.57)

Assume that the unperturbed system (f (t, y)≡ 0) has a stationary solution, and that
there exists a function V satisfying conditions (3.51)–(3.53). Then the system (3.57)
will have a θ -periodic solution, provided the additional condition (gradV,f ) < c
holds for some constant c. The proof follows directly from the fact that then the
function V satisfies the assumptions of Theorem 3.8 for the process Y(t). It is not
difficult to apply this type of reasoning also when the perturbing force itself is a
periodic stochastic process. We shall not dwell on this here.

3.6 Stochastic Equations and Partial Differential Equations

The method of investigation of Markov processes based on studying the properties
of the solution of some generalized differential equation for the sample functions
of the process was, historically speaking, a later development. An earlier method
originating in the work of Einstein and Smoluchowski, was subsequently perfected
by Kolmogorov, Feller, Dynkin and others. The main idea of the earlier method is to
investigate the properties of the solutions of differential equations whose unknowns
are expectations of various functions of the processes in question. It turns out that in
many cases these expectations are solutions of boundary-value problems for linear
parabolic and elliptic equations. The converse is also true. The solution of the first
boundary-value problem for the general linear elliptic or parabolic equation admits
a probabilistic representation in terms of the expectations of certain functionals of
the process X(t).
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We shall consider this representation in a few special cases. In so doing we shall
confine ourselves to domains in E which are Cartesian products of a certain domain
U ⊂ R

l having a sufficiently smooth boundary and of a closed interval on the real
axis.10

Throughout this section we shall consider classical solutions of equations of the
types Lu= −g(s, x) or Lu+ q(s, x)u= −g(s, x). Here

Lu≡ ∂u

∂s
+

l
∑

i=1

bi(s, x)
∂u

∂x
+ 1

2

l
∑

i,j=1

aij (s, x)
∂2u

∂xi∂xj
.

By a solution we shall mean a function u(s, x) which is twice continuously dif-
ferentiable in x and continuously differentiable in s, and such that Lu = −g
(Lu+ qu= −g) at each point of the given domain.

In case the function u does not depend on s, we shall retain the notation Lu for
the “elliptic” operator

l
∑

i=1

bi(x)
∂u

∂xi
+ 1

2

l
∑

i,j=1

aij (x)
∂2u

∂xi∂xj

(this operator is not necessarily elliptic, since the matrix A may be singular).
We shall start from the probabilistic representation for the solution of the equa-

tion Lu= 0.

Lemma 3.3 Let f (s, x) be a function, bounded and continuous on the closure of the
domain (t0, T )×U , and satisfying the equationLf = 0 on that domain. Assume that
there exists a unique and, if the domain U is unbounded, regular Markov process
X(t) associated with the operator L up to the time τU at which the process reaches
the boundary of U . Then

f (s, x)= Es,xf (τU (T ),X(τU (T ))). (3.58)

Proof The proof for a bounded domain U follows easily from Lemma 3.2. For
n → ∞ we consider an increasing sequence of domains U(n) ↑ U such that for
every n there exists a function fn(s, x) which is equal to f (s, x) for x ∈ U(n) and
has two continuous derivatives with respect to x and one with respect to s for all
x ∈ R

l , s ∈ (t0, T ). Applying Lemma 3.2 to the function fn(s, x) and then letting
n→ ∞, we get (3.58). The proof for an unbounded domain is similar, except that
one considers a sequence of “truncated” domains Un =U ∩{|x|< n} and, using the
regularity of the process, one lets n→ ∞. �

Remark 3.6 The stochastic process X(τU(t)) is almost surely confined either to the
“lateral” surface of the cylinder [t0, T ] × Γ or to its “upper” base {s = T } × U .

10There are numerous papers on the probabilistic representation of solutions of the first boundary-
value problem for elliptic and parabolic equations. See e.g., [64, 119, 164, 223].



3.6 Stochastic Equations and Partial Differential Equations 85

Hence it follows that under the assumptions of Lemma 3.3 there exists at most
one solution of the equation Lu = 0 which takes on given values on the set Γ1 =
[t0, T ]×Γ ∪{s = T }×U . In particular, if U = R

l , we get from (3.58) the following
formula for the solution of the Cauchy problem for a parabolic equation:

f (s, x)= Es,xf (T ,X(T ))=
∫

Rl

f (T , y)P (s, x, T , dy). (3.59)

Remark 3.7 If the domain U is bounded, then the assertion of Lemma 3.3 will
hold, for instance, if we require that the coefficients b, σr satisfy conditions (3.32)
in the domain (t0, t) × U . For an unbounded domain U , it is sufficient to require
that conditions (3.32) hold in every compact set and that there exists a function V
satisfying conditions (3.43), (3.44) (see Theorem 3.5).

Remark 3.8 It is a well known fact in the theory of differential equations that a
sufficient condition for the existence of solutions both to the mixed problem and the
Cauchy problem for a parabolic equation is that, in addition to (3.32), the following
nondegeneracy condition

l
∑

i,j=1

aij (s, x)λiλj > m(s, x)

l
∑

i=1

λ2
i (3.60)

is satisfied (here m(s, x) is a positive continuous function on E). Thus, if (3.60)
holds, there exists a function f taking on given values on Γ1 and such that Lf = 0.
Consequently, formulas (3.58), (3.59) furnish a classical solution of these boundary-
value problems for the equation Lu= 0. If the function f (s, x) defined by (3.58) or
(3.59) is not differentiable, we may regard it as a generalized solution of the equa-
tion Lu = 0. (It is readily shown that it satisfies the equation Au = 0; see (3.41).)
However, it can be shown that condition (3.60) need not hold in order for the func-
tion f (s, x) defined by (3.59) to be differentiable provided that the “initial” function
f (T , x) is sufficiently smooth (see, e.g., [92]). The situation is different for the so-
lution of the mixed problem.

Remark 3.9 Comparing formula (3.59) with the formula

f (s, x)=
∫

f (T , y)p(s, x, T , y) dy,

which expresses the solution of the Cauchy problem for a parabolic equation in
terms of a fundamental solution p(s, x,T , y), one can verify that if the parabolic
equation Lu= 0 has a fundamental solution, then the transition probability function
P(s, x,T ,A) has a density with respect to Lebesgue measure in R

l and this density
is p(s, x,T , y).

Let us now consider a time-homogeneous process X(t).
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Lemma 3.4 Suppose that the coefficients b and σr are independent of t and that
they satisfy conditions (3.32) in every bounded domain. Let U be a bounded domain
in R

l . Let f (x) be twice continuously differentiable with respect to xi in U , contin-
uous on the closure of U , and such that Lf = 0. Assume moreover that for every
point x ∈U

Px{τU <∞} = 1. (3.61)

Then

f (x)= Exf (X(τU ))=
∫

Γ

Px{X(τU) ∈ dy}f (y) (3.62)

holds. Formula (3.62) remains valid for an unbounded domain U if the processX(t)
is regular and the function f (x) is bounded in U .

Proof It will suffice to prove the lemma for a function f (x) ∈ C2; the general
case can then be treated by means of a suitable limiting process, as in the proof
of Lemma 3.3. If f (x) ∈ C2, we infer from Lemma 3.3 that

f (x)= Ex{f (X(τU ))1{τU≤t}(ω)} + Ex{f (X(t))1{τU>t}(ω)}
holds for each t . Letting t → ∞ and using (3.61), we get (3.62). �

Remark 3.10 It follows from Lemma 3.4 that in particular the Dirichlet problem for
the “elliptic” equation

l
∑

i=1

bi(x)
∂u

∂xi
+ 1

2

l
∑

i,j=1

aij (x)
∂2u

∂xi∂xj
= 0

in the domain U has at most one solution if condition (3.61) holds. It is known from
the theory of differential equations that the Dirichlet problem has a solution if the
coefficients satisfy conditions (3.32) and (3.60). If condition (3.60) fails to hold, the
generalized solution (3.62) may turn out to be discontinuous. In the next section
we shall present a sufficient condition for (3.61) to hold; this will be related to the
existence of an auxiliary (Lyapunov) function. Comparing formula (3.62) with the
formula (see [202])

f (x)=
∫

Γ

K(x, y)f (y)σΓ (dy)

(whereK(x,y) is the normal derivative of the Green function), we see that the mea-
sure Px{X(τU) ∈ γ } has density K(x,y) with respect to the “surface area” σΓ (dy)
on Γ , and this density is bounded from above and below uniformly in x on every
compact subset of U .

Let us now discuss the probabilistic representation of the solution of the inhomo-
geneous equation

Lf = −g. (3.63)
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We need only consider zero boundary conditions.

Lemma 3.5 LetU be a bounded domain in R
l . Let g(s, x) be a continuous bounded

function. Let f (s, x) be a function twice continuously differentiable with respect to
xi and continuously differentiable with respect to s in the domain (t0, T )×U , which
is continuous on the closure of this domain, vanishes on the set Γ1 = [t0, T ] × Γ ∪
{s = T } ×U , and satisfies equation (3.63). Assume moreover that in every domain
which is bounded with respect to x, conditions (3.32) are valid. Then

f (s, x)= Es,x
∫ τU (T )

s

g(u,X(u)) du. (3.64)

This representation remains valid for an unbounded domain U if the process X(t)
is regular and the functions f and g are bounded in (t0, T )×U .

The proof, analogous to the proofs of Lemmas 3.3 and 3.4, is left to the reader.

Lemma 3.6 Let the coefficients b and σr be independent of t and suppose they
satisfy conditions (3.32) in every bounded domain. Let g(x) be continuous and
bounded in U ∪ Γ and let f (x) be twice continuously differentiable and bounded
in U , vanishing on Γ , and such that

Lf =
l
∑

i=1

bi(x)
∂f

∂xi
+ 1

2

l
∑

i,j=1

aij (x)
∂2f

∂xi∂xj
= −g.

Assume moreover that for x ∈U

ExτU < c. (3.65)

Then the function f can be written as

f (x)= Ex
∫ τU

0
g(X(t)) dt.

The proof is analogous to that of Lemma 3.4.

Remark 3.11 Condition (3.65) is satisfied, e.g., if U is a bounded domain in which
the nondegeneracy condition (3.60) holds with a function m(s, x) = m(x) which
is positive on the closure of U (see Corollary 3.3 in the next section). For an un-
bounded domain, condition (3.65) does not hold, as a rule. Then Lemma 3.6 is of
little use. In the next section we shall prove a better result for this case.

The following modification of Lemma 3.3 is known as the Feynman–Kac for-
mula.
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Lemma 3.7 Let the conditions of Lemma 3.3 be fulfilled with the replacement the
equation Lf = 0 to the equation

Lf + q(s, x)f = 0; (3.66)

here q(s, x) is the bounded and continuous in (t0, T )×U function. Then

f (s, x)= Es,x
{

f (τU (T ),X(τU (T ))) exp

[∫ τU (T )

s

q(t,X(t)) dt

]}

.

Proof Let X(t) be the solution of SDE with the generator L, and X(s)= x. Let the
process Y(t) be defined by the equation dY (t)= q(t,X(t))Y (t) dt ; Y(s)= y. Then

Y(t)= y exp

{∫ t

s

q(s1,X(s1)) ds1

}

. (3.67)

From the other hand, the pair (X(t), Y (t)) is a Markov diffusion process with the
generator

˜L(s, x, y)= L(s, x)+ q(s, x) y
∂

∂y
. (3.68)

We further have due to (3.66), (3.68)

˜L(f (s, x) · y)= yLf (s, x)+ q(s, x)yf (s, x)= y(Lf + qf )= 0.

So, applying again Dynkin’s formula for the process (X(t), Y (t)) to the function
v(s, x, y)= f (s, x)y and making use of (3.67), we have

yEs,x
{

f (τU (T ),X(τU (T ))) exp

[∫ τU (T )

s

q(s1,X(s1)) ds1

]}

= yf (s, x).

Lemma is proved. �

Proof of the following lemma is completely analogous, and it is left to the reader
again.

Lemma 3.8 Let the conditions of Lemma 3.5 be valid with the replacement of (3.63)
to the equation

Lf + q(s, x)f = −g(s, x).
Then

f (s, x)= Es,x
{

f (τU (T ),X(τU (T ))) exp

(∫ τU (T )

s

q(t,X(t)) dt

)}

.

Remark 3.12 Analogs of Lemmas 3.4 and 3.6 for the time-homogeneous case can
be proved by similar way, if q(x)≤ 0. For the case q(x) > 0 see [130].
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Remark 3.13 Let the coefficients of L and q do not depend on s. Then with help of
the substitution t = T − s we arrive in particular to the following representation of
the Cauchy problem

∂u(t, x)

∂t
= L(x)u(t, x)+ q(x)u(t, x); u(0, x)= ϕ(x);

u(t, x)= Ex
{

ϕ(X(t)) exp

[∫ t

0
q(X(t1)) dt1

]}

. (3.69)

3.7 Conditions for Recurrence and Finiteness of Mean
Recurrence Time

Let U1 be some (bounded or unbounded) domain, and denote its complement U c
1

by U . A process X(t) is said to be recurrent relative to the domain U1 (or U1-
recurrent) if it is regular, and for every s, x ∈U

Ps,x{τU <∞} = 1. (3.70)

Recurrence is an extremely important concept for the investigation of the prop-
erties of sample functions for large time values. A simple condition for recurrence
is given by

Theorem 3.9 A process X(t) is recurrent relative to the domain U1 if it is regular
and there exists in I × U a nonnegative function V (s, x), twice continuously dif-
ferentiable with respect to x and continuously differentiable with respect to s, such
that

LV (s, x)≤ −α(s), (3.71)

where α(s)≥ 0 is a function for which

β(t)=
∫ t

0
α(s) ds → ∞ as t → ∞. (3.72)

Moreover, the expectation of the random variable β(τU ) exists and satisfies the in-
equality

Es,xβ(τU )≤ β(s)+ V (s, x). (3.73)

Proof We define a random variable τ (n)U (t) by τ (n)U (t)= min{τU , t, τn}. (As before,
τn = inf{t : |X(t)| = n}.) By Lemma 3.2,

Es,xV (τ (n)U (t),X(τ
(n)
U (t)))− V (s, x)= Es,x

∫ τ
(n)
U (t)

s

LV (u,X(u)) du
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and therefore, by (3.71),

Es,xβ(τ (n)U (t))≤ β(s)+ V (s, x).

Since τ (n)U (t) → τU (t) almost surely as n → ∞ (since the process is regular), it
follows via Fatou’s lemma that

Es,xβ(τU (t))≤ β(s)+ V (s, x). (3.74)

Hence it follows that

Ps,x{τU ≥ t} ≤ β(s)+ V (s, x)

β(t)
.

Letting t → ∞ and using (3.72), we see that (3.70) holds. The other part of the
theorem follows from (3.74) if we let t → ∞ and again use Fatou’s lemma. �

Corollary 3.2 Suppose that the assumptions of Theorem 3.9 hold, with a function
α(s)= csn−1 (c > 0). Then the random variable τU has an n-th moment, and

Es,xτ nU − sn ≤ n

c
V (s, x).

In particular we see that the recurrence time for the bounded domain U1 has finite
expectation, if inf|x|>R V → ∞ as R → ∞, V ≥ 0, and LV ≤ −c in the domain
I ×U for some positive constant c.

Let the domain U = U c
1 be bounded with respect to one of the coordinates, i.e.,

U ⊂ {x(0)i < xi < x
(1)
i }. Suppose that the diffusion is nonsingular in the same coor-

dinate uniformly in s and that the function bi(s, x) is bounded from above or below,
so that

0< a0 < aii(s, x), bi(s, x) < b0 (or bi(s, x) > b0). (3.75)

Consider the auxiliary function

V (s, x)= eγ s[k − (xi + β)2n],
where the constants γ , k, β and n will be specified later. Obviously,

LV (s, x)= eγ s[γ k− γ (xi + β)2n − 2nbi(s, x)(xi + β)2n−1

− 2n(2n− 1)aii(s, x)(xi + β)2n−2].
Assume for definiteness that bi(s, x) < b0. We now choose β < 0 to be large

enough in absolute value so that xi + β < 1, we determine the number n by the
condition (2n− 1)a0 > b0 supU |xi +β|+ 1, and finally we set k = supU(xi +β)2n,
γ = k−1.

Then there is a positive constant c such that the inequality LV (s, x) < −ceγ s
holds.

We may now draw the following conclusion from Theorem 3.9:
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Corollary 3.3 If U ⊂ {x(0)i < xi < x
(1)
i } and conditions (3.75) hold in U , then the

process X(t) is recurrent relative to U1. Moreover the random variable τU then has
moments of arbitrary order, actually Es,xeγ τU exists for sufficiently small γ .

A similar conclusion is valid if instead of (3.75) we assume that

bi(s, x) > b0 > 0 (or bi(s, x) <−b0 < 0) (3.76)

holds in U . In this case, we must set V (s, x) = eγ s(k − xi). Note that conditions
(3.75) are satisfied if U is bounded, the coefficients of the operator L are bounded
in U , and the matrix A is nonsingular in this domain.

Let us now devote some further attention to time-homogeneous processes, con-
fining the discussion for the sake of simplicity to the case in which the nondegener-
acy condition (3.60) holds in every bounded domain.

Theorem 3.10 Let U1 be a bounded domain whose boundary Γ is regular11 rel-
ative to U = U c

1 and suppose that the coefficients b, σr are independent of t and
satisfy conditions (3.32) in every compact set. Assume further (3.60), and that the
corresponding Markov process X(t) is regular.

Then the processX(t) is recurrent relative U1 if and only if the Dirichlet problem

Lu=
l
∑

i=1

bi(x)
∂u

∂x
+ 1

2

l
∑

i,j=1

aij (x)
∂2u

∂xi∂xj
= 0;

u|Γ = f (s)

(3.77)

has a unique bounded solution in U .

Proof Let τ (n)U = min(τU , τn) denote the time at which the sample function of the
process first exits from the domain U ∩Un (Un = {|x|< n}). It follows from the as-
sumptions of the theorem and from Corollary 3.3 that Px{τ (n)U <∞} = 1. Applying
Lemma 3.4, we see that the function

Px{X(τ (n)U ) ∈ Γ } = un(x)

is the unique solution in U ∩Un of the problem

Lu= 0; u|Γ = 1; u||x|=n = 0.

The sequence un(x), is a monotone sequence of bounded solutions of the equation
Lu = 0. Thus it is obvious that it converges, as n → ∞, to a limit which is also
a solution in U of this equation and satisfies the condition u|Γ = 1. (This follows

11The term “regular” is used here in the sense customary in the theory of elliptic equations (see
e.g. [225]).
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from Harnack’s second theorem for the equation Lu= 0; see [249].) If the Dirichlet
problem in U has a unique bounded solution, then evidently

lim
n→∞un(x)= 1. (3.78)

On the other hand, it is obvious that

{τU <∞} ⊂
∞
⋃

n=1

{X(τ (n)U ) ∈ Γ },

whence it follows in view of (3.78) that

Px{τU <∞} = lim
n→∞ Px{X(τ (n)U ) ∈ Γ } = 1. (3.79)

This proves the sufficiency.
Now assume that the processX(t) is U1-recurrent, and suppose that the Dirichlet

problem in U has two bounded solutions u1 and u2. Then their difference v(x) =
u2(x)−u1(x) satisfies the conditions v|Γ = 0 on Γ , and the condition v(x) < k for
some constant k. It follows from Lemma 3.4 that for every n

v(x)= Exv(X(τ (n)U ))≤ k(1 − Px{X(τ (n)U ) ∈ Γ }).

Letting n→ ∞ and using the fact that Px{τ (n)U ∈ Γ } → Px{τU <∞} by virtue of
the regularity of the process, we get v(x) ≡ 0. This contradiction concludes the
proof. �

Remark 3.14 The regularity of the process X(t) is not needed for the sufficiency
part of the proof.

Theorem 3.11 Under the assumptions of Theorem 3.10, a necessary and sufficient
condition for the existence of the expectation of the random variable τU is that there
exists in U a function V (x), twice continuously differentiable and nonnegative, such
that

LV (x)= −1.

The function u(x)= ExτU is then the smallest positive solution in U of the problem

Lu= −1, u|Γ = 0. (3.80)

Proof We first assume that there exists a function V (x) satisfying the conditions of
the theorem. Then ExτU exists and by Theorem 3.9, we have ExτU ≤ V (x). Since
τnU ↑ τU almost surely as n→ ∞, it follows that Exτ (n)U → ExτU . By Lemma 3.6,

the function un(x)= Exτ (n)U is a solution in U of the problem

Lun(x)= −1; un|Γ = 0. (3.81)
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Hence the function vn(x)= un+1(x)−un(x) is L-harmonic (i.e., satisfies the equa-
tion Lvn = 0) in the domain U ∩ {|x| < n}. It is also clear that vn(x) > 0. The
function u(x) is the sum of the series

u(x)= un0(x)+
∞
∑

k=n0

vk(x). (3.82)

It is known that the sum of a convergent series of positive L-harmonic func-
tions is also an L-harmonic function. Thus (3.82) implies that the function u(x) is
twice continuously differentiable and satisfies the equation Lu = −1. Because of
the assumed regularity properties of the boundary Γ , we have u|Γ = 0. We claim
that u is the smallest positive solution of the problem (3.80). To prove this we con-
sider another positive solutionW(x) of (3.80). Since the function un(x) satisfies the
boundary conditions un|Γ = 0; un||x|=n = 0, it follows from the maximum princi-
ple for elliptic equations (see [225]) that un(x) ≤W(x) in U ∩ {|x|< n} for all n.
Letting n→ ∞, we get u(x)≤W(x), as required.

The necessity part of the proof is even simpler. If u(x0) = Ex0τU < ∞ for at
least one x0 ∈ U , then, using the representation (3.82), we verify that the sequence
un(x0) converges to u(x0). Hence it follows from Harnack’s second theorem for L-
harmonic functions that the series (3.82) converges uniformly on every compact set.
Its limit u(x) also satisfies the equation Lu= −1. Thus there exists a function V (x)
satisfying the required conditions (for example, we can set V (x)= u(x)). �

3.8 Further Conditions for Recurrence and Finiteness of Mean
Recurrence Time12

In this section we derive a few corollaries from the results of Sect. 3.7. We also
consider some examples.

Example 3.9 Considering the auxiliary function V (x) =∑i,j bij xixj = (Bx, x),
we infer from Theorems 3.5 and 3.9 that the process X(t) is recurrent relative to the
domain U if for some function α(s)≥ 0 satisfying condition (3.72) and a nonsingu-
lar positive definite matrix B the condition

(Bx, b(s, x))+ tr(A(s, x)B)≤ −α(s) (3.83)

holds in {t > 0} ×U . It follows from Corollary 3.2 that the process X(t) has finite
mean recurrence time for U1 if condition (3.83) holds with a function α(s)≤ −1.

By imposing on the process an additional, not too stringent restriction, one can
derive a more convenient condition for recurrence. In the following lemma the do-
main U1 ∈ R

l is assumed bounded.

12For the nondegenerate case, results resembling those of this section have been established by
Wonham [277]. His methods were different from ours.
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Lemma 3.9 Suppose that the process X(t) almost surely exits from each bounded
domain in a finite time. Then a sufficient condition for U1-recurrence is that there
exist a nonnegative function V (t, x) in the domain {t > 0} ×U such that

VR = inf
t>0, |x|≥R V (t, x)→ ∞ as R→ ∞,

LV ≤ 0.

Proof Let τU , τR , τU,R denote the time of first exit of the sample function of the
process from the domains U , UR and U ∩UR respectively. Denote min(τU,R, t) by
τU,R(t). For each s ≥ 0, x ∈ U , it follows from the assumptions of the lemma and
from Lemma 3.2 that

Es,xV (τU,R(t),X(τU,R(t)))≤ V (s, x).
Hence, as in the proof of Theorem 3.9, we get

Es,xV (τU,R,X(τU,R))≤ V (s, x).
This inequality and Chebyshev’s inequality imply that

Ps,x{τR < τU } ≤ V (s, x)

VR
→ 0 as R→ ∞.

Since moreover the process is continuous, we have Ps,x{τR = τU } = 0. These rela-
tions yield the assertion of the lemma, since

Ps,x{τU <∞} ≥ Ps,x{τU < τR} → 1 as R→ ∞. �

Remark 3.15 The first assumption of the lemma (recurrence of the process X(t)
relative to the exterior of every bounded domain) holds for instance when either of
the conditions (3.75) or (3.76) is satisfied in every bounded domain.

Lemma 3.10 A sufficient condition for nonrecurrence of the process Xs0,x0(t) de-
fined by the equation

Xs0,x0(t)= x0 +
∫ t

s0

b(u,Xs0,x0(u)) du+
∫ t

s0

k
∑

r=1

σr(u,X
s0,x0(u)) dξr (u), (3.84)

relative to the domain U1 =U c with boundary Γ is that there exists in {t > 0} ×U

a function V (t, x) such that

sup
x∈Γ,t≥s0

V (t, x)≤ 0; LV (t, x)≥ 0; sup
(t>0)×U

V (t, x) < k <∞,

V (s0, x0) > 0.
(3.85)
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Proof It follows easily from LV ≥ 0 and from Lemma 3.2 that

Es0,x0V (τ
(n)
U (t),X(τ

(n)
U (t)))≥ V (s0, x0),

where τ (n)U (t)= min(τn, τU , t). Hence in view of (3.85), we have

kPs0,x0{τU >min(τn, t)} ≥ V (s0, x0). (3.86)

It will now be convenient to distinguish two cases: (a) the process Xs0,x0(t) is
regular in U , so that limn→∞ τn = τ = ∞ almost surely; (b) the process is nonreg-
ular, i.e., τ <∞ with positive probability. In case (a) we let n→ ∞ in (3.86) and
we conclude that Ps0,x0{τU = ∞}> 0. In case (b) the process is nonrecurrent, since
it is nonregular. This proves the lemma. �

Lemmas 3.9 and 3.10 easily yield necessary and sufficient conditions for recur-
rence in the one-dimensional case.

Example 3.10 Let the process X(t) be defined by the equation

dX(t)= b(X(t)) dt + σ(X(t)) dξ(t),

where b and σ are continuously differentiable in R
1 and σ(x) �= 0. The generator

for this process is

L= b(x)
∂

∂x
+ 1

2
σ 2(x)

∂2

∂x2
.

Consider the functions

Q(x)= exp

{

−2
∫ x

0

b(z)

σ 2(z)
dz

}

; W(x)=
∫ x

0
Q(y)dy.

It is easily seen that LW = 0. If moreover W(x) → ±∞ as x → ±∞, then
the function W(x) signx satisfies the assumptions of Lemma 3.9, and therefore the
process X(t) is recurrent relative to every segment containing the origin. But if
the function W(x) is bounded in the domain x > 0 (or x < 0), then the function
W(x)− ε (or −W(x)− ε) satisfies the assumptions of Lemma 3.10.

Thus, the condition
∫ x

0
exp

{

−2
∫ y

0

b(z)

σ 2(z)
dz

}

dy → ±∞ as x → ±∞

is necessary and sufficient for a time-homogeneous one-dimensional process to be
recurrent.

Note also that for the recurrent process X(t) the transformation W(x) generates
the so-called canonic coordinate y =W(x) (see [64]). In this coordinate the process
Y(t)=W(X(t)) has the generator

˜L(y)= 1

2
σ 2(x(y))Q2(x(y))

d2

dy2
.
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So the study of time-homogeneous one-dimensional recurrent diffusion processes
can be reduced to the study diffusion process without drift term.

Lemma 3.11 Let U1 be a bounded domain with boundary Γ . Assume that there
exist in the domain {t > 0} ×U functions V (t, x) and W(t, x) such that

(1) V > 0; W |Γ ≤ 0; LV ≤ 1, LW ≥ 0;
(2) for some increasing system of bounded domains Un ⊃U1 with boundaries Γn,

infΓn V

supΓn W
=An → ∞ as n→ ∞;

(3) the process X(t), defined in the domain U ∩Un up to the time τ (n) at which it
first reaches the boundary of this domain, satisfies the condition

Ps,x{τ (n) <∞} = 1

for all n. Then Es,xτU = ∞ for all points s, x such that W(s, x) > 0.

Proof By assumption, the function V −AnW satisfies in U ∩Un the conditions

L(V −AnW)≤ 1; (V −AnW)|Γn ≥ 0; (V −AnW)|Γ ≥ 0.

This together with Lemma 3.2 and X(τ (n)) ∈ Γ ∪ Γn, implies that

AnW(s, x)− V (s, x)≤ Es,xV (τ (n),X(τ (n)))−AnW(τ
(n),X(τ (n)))

+AnW(s, x)− V (s, x)

≤ Es,x(τ (n) − s).

Since An → ∞ as n→ ∞, we see from the above that

lim
n→∞ Es,xτ (n) = ∞

for all points s, x such that W(s, x) > 0. The assertion of the lemma is now obvious
if we observe that τ (n) < τU almost surely. �

Remark 3.16 It is not hard to find conditions, in terms of auxiliary functions im-
plying the validity of assumption (3) of Lemma 3.11 (see Sect. 3.7). In particular,
this assumption holds if (3.32) and the nondegeneracy condition (3.60) are valid in
every domain bounded with respect to x.

Example 3.11 We conclude from Lemma 3.9 that a process X(t) in R
l satisfying

the nondegeneracy condition (3.60) is recurrent relative to every bounded domain
U1 containing the origin when there exists a positive definite symmetric matrix B
such that,

(Bx, b(t, x))+ tr(A(t, x)B)≤ 2(BA(t, x)Bx,x)

(Bx, x)
(3.87)
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holds in U = U c
1 . The condition for recurrence given by inequality (3.87) is more

general than that given by inequality (3.83), since the right-hand side of (3.87) is al-
ways positive. The sufficiency of condition (3.87) can be proved using the auxiliary
function V (x)= ln(Bx, x)+ k.

We now consider some particular consequences of (3.87). First let B = A = J ,
where J is the l× l identity matrix. Then (3.87) becomes (x, b(t, x))≤ 2− l. Hence,
in particular, if l = 1 or l = 2, then the process X(t) associated with the operator

L= ∂

∂t
+

l
∑

i=1

b(t, x)
∂

∂xi
+ 1

2

l
∑

i=1

∂2

∂x2
i

, (3.88)

is recurrent, provided (x, b(t, x))≤ 0 outside some bounded domain. For example,
the Wiener process on the line and the Wiener process in the plane (b ≡ 0) are
recurrent.

Lemma 3.10 yields various sufficient conditions for recurrence relative to U1

(and hence also relative to every domain contained in U1).

Example 3.12 Consider the auxiliary function

V (x)= 1 − k(Bx,x)−α.

It is readily seen that

LV (x) = 2kα(Bx,x)−α−1
[

(Bx, b(t, x))+ tr(A(t, x)B)

− 2(1 + α)(BA(t, x)Bx,x)

(Bx, x)

]

.

If for some α

(Bx,b(t, x))+ tr(A(t, x)B)≥ 2(1 + α)(BA(t, x)Bx,x)

(Bx, x)
, (3.89)

then for a suitable choice of k and U1 the function V satisfies the assumptions
of Lemma 3.10. Hence we may conclude that the process X(t) is nonrecurrent if
there exist a positive definite symmetric matrix B and a constant α > 0 for which
inequality (3.89) holds outside some bounded domain. Setting B =A= J , we infer
from (3.86) that if

(Bx, b(x))≥ 2 − l + ε

in a neighborhood of the point at infinity, then the process described by the operator
(3.88) is nonrecurrent. In particular, it follows that the Wiener process is nonrecur-
rent in every space of dimension higher than 2.

It is readily seen that the condition that B be positive definite can be considerably
weakened; it suffices to assume that B is positive semi-definite and that at least one
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of its eigenvalues is nonzero. In this case the neighborhood of the point at infinity
must be replaced by a (connected) component of the set (Bx, x) > y > 0.

For example, let B be a matrix all of whose elements except bii are zeros, and
bii = 1. It then follows from (3.89) that the process X(t) is nonrecurrent if for some
i and ε > 0 the condition

xibi(t, x)≥ (1 + ε)aii(t, x)

holds in the domain xi > γ or xi <−γ (where γ is sufficiently large).

Example 3.13 We set V = (B1x, x), W = (B2x, x)
α − k, where B1 and B2 are

positive definite symmetric matrices, 0 < α < 1, and the constant k is sufficiently
large. Obviously,

LV = 2(B1x, b(t, x))+ 2 tr(A(t, x)B1),

LW = 2αV α−1
[

(B2x, b(t, x))+ tr(A(t, x)B2)− 2(1 − α)
(B2A(t, x)B2x, x)

(B2x, x)

]

.

Applying Lemma 3.11, we see that the mean recurrence time in U1 is infinite if there
are positive definite matrices B1, B2 and a number ε > 0 such that in U

(B1x, b(t, x))+ tr(A(t, x)B1) < const,

(B2x, b(t, x))+ tr(A(t, x)B2) > ε
(B2A(t, x)B2x, x)

(B2x, x)
.

We again consider the process associated with the operator (3.88). Setting B1 =
B2 = J , we see that the mean recurrence time in a bounded domain for this process
does not exist, if for some ε > 0 the scalar product (x, b(x)) satisfies

−l + ε < (x, b(x)) < const

for |x| > R. In particular, these inequalities are valid for the Wiener process in R
l

for every l.



Chapter 4
Ergodic Properties of Solutions of Stochastic
Equations

The main results of this chapter are an extended and improved version of Sects. 4.2
and 4.3 of the author’s paper [117]. Under different assumptions, results similar to
those given below in Sects. 4.4 and 4.5 have been derived by Maruyama and Tanaka
[194]. The existence proof given in Sects. 4.6 and 4.7 for the limit of the transition
probability function is similar to that of Theorem 3 in [100]. For the discrete time
case, the existence of the limit of the transition probability function has been proved
under similar assumptions by Nagaev [213].

4.1 Kolmogorov Classification of Markov Chains with
Countably Many States

In the preceding chapters we found some sufficient conditions for the existence of
a stationary Markov process defined by a SDE. The following two questions are
also of great interest: (a) When is the stationary Markov process associated with a
given stochastic equation unique? (b) When can it be said that a Markov process
with arbitrary initial distribution from a given class converges in some sense to a
stationary one?

In this chapter we shall consider these and some related questions in terms of the
properties of the coefficients of the operator L. Using the results of Chap. 3, one can
reformulate the results in terms of Lyapunov functions.

The material in this chapter is organized similarly as in the well-known paper of
Kolmogorov [145] on Markov chains with countably many states Ei and discrete
time. In that paper Kolmogorov divides the classes of communicating essential1

states of the chain into the two types of recurrent and nonrecurrent (or transient)
ones.

A class of states Ei is said to be if the probability Lii of reaching Ei at least
once from Ei is equal to 1. (It can be proved that in a single class either Lii < 1 for

1A state Ei is said to be unessential if the transition probability from Ei to some other state Ej is
positive, but the reverse transition from Ej to Ei is impossible.
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all i or all Lij are equal to 1.) A nonrecurrent class is said to be transient. It is easy
to prove (see below in Sect. 4.2 the analog of this result for continuous time) that the
n-step transition probability p(n)ij from Ei to Ej for a transient class tends to zero as
n→ ∞. Hence it follows that no stationary distribution exists for a transient class
of states.

Kolmogorov also divides recurrent classes into two types. A class of states is
said to be positive recurrent if the mean recurrence time Mii for a state Ei , starting
from Ei , is finite. (It can be proved that in a single class either Mii = ∞ for all i
or all Mij are finite.) Otherwise the class is said to be a null recurrent class. It can

be shown that in a null recurrent class p(n)ij → 0 as n→ ∞. For a positive recurrent
class it can be shown under a certain additional assumption (that the class consists
of a single subclass) that

lim
n→∞p

(n)
ij = πj �= 0.

Thus within a positive recurrent class of states consisting of a single subclass a limit
distribution πj will ultimately be established, irrespective of the initial distribution.
It is easily shown that this limit distribution is stationary.

Kolmogorov has proved that a necessary and sufficient condition for the existence
of a stationary distribution within a given class A is that the expectation of referring
time from i to i Mii <∞ holds for at least one state Ei ∈A.

In this chapter we shall derive sufficient conditions for the existence of a station-
ary distribution and we shall prove theorems on the limit behavior of the transition
probability for continuous Markov processes described by SDEs in terms of func-
tions analogous to Lij and Mij . These results will be derived in terms of functions
analogous to Lij and Mij . The only significant modification is that recurrence for a
single state must be replaced by recurrence for a compact set.

As before, we shall use the symbols Ex and Px to designate the expectation
of a random variable and the probability of an event when these are determined
by the evolution of a time-homogeneous Markov process X0,x(t). In this and the
following chapters we shall make constant use of the strong Markov property, in-
troduced by Dynkin and Yushkevich [65]. In Chap. 3 we considered the random
variable τU equal to the first exit time of the sample path from the domain U ,
τU (t) = min(τU , t), and other variables, all possessing the property that the event
“the random variable assumes a value smaller than s” depends only on the evolution
of the process up to time s, i.e.

{τ ≤ s} ∈ Ns . (4.1)

A random variable τ satisfying condition (4.1) will be called a Markov time or
a random variable independent of the future. Roughly speaking, a Markov process
is said to be strongly Markov if the future is independent of the past not only for a
fixed instant of time but also for any Markov time τ .

A Markov process such that the transition probability function P(s, x, t,A) is
Borel-measurable as a function of (s, x) is said to be strongly Markov if for any
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Markov time τ , Nτ -measurable random variable η ≥ τ , x ∈ R
l and A ∈ B,

P{Xs,x(η) ∈A | Nτ } = P(τ,Xs,x(τ ), η,A) (a.s.). (4.2)

It can be proved that any right-continuous process with Feller transition probabil-
ity function is strongly Markov [65]. Therefore, the solution of an Itô equation (3.31)
is also a strong Markov process. This fact will be repeatedly used in the sequel.

4.2 Recurrence and Transience

In Sects. 3.7 and 3.8 we studied conditions which imply the recurrence solutions of
stochastic equations relative to a domain U , i.e., conditions under which the paths
issuing from any point x ∈ R

l \ U almost surely reach the set U . In this section
we shall show that for time-homogeneous processes with nonsingular diffusion ma-
trix the recurrence property does not depend on the choice of the bounded open
domain U .

Let X(t) be a regular time-homogeneous Markov process in R
l described by the

SDE

dX(t)= b(X)dt +
k
∑

r=1

σr(X)dξr(t). (4.3)

Here and in the next section we shall assume that the diffusion matrix

A(x)= ((aij (x))), aij (x)=
k
∑

r=1

σ ir (x)σ
j
r (x)

of the process X(t) is nonsingular, i.e., the smallest eigenvalue of the matrix A(x)
is bounded away from zero in every bounded domain.

Lemma 4.1 If X(t) is recurrent relative to some bounded open domain U , then it
is recurrent relative to any nonempty open domain in R

l .

Proof It will suffice to prove that the process is recurrent relative to a domain U0
with regular boundary Γ0 such that U0 ∪ Γ0 ⊂ U . We may also assume that the
boundary Γ of U is regular (otherwise we replace U by a suitable domain contain-
ing U ).

Let U1 be a domain with regular boundary Γ1 such that U ∪Γ ⊂U1. Let x ∈U c
0

be arbitrary. We claim the Px{τU c
0
<∞} = 1.

Assuming for definiteness that x ∈ U c
1 , we consider the following random vari-

ables: τ ′
1, the time at which the path of the process first reaches the set Γ , and τ1, the

first time after τ ′
1 at which the path reaches Γ1. We now define two random variables

inductively: τ ′
n, the first time after τn−1 at which the path reaches Γ , and τn, the first

time after τ ′
n at which it reaches Γ1 (Fig. 4.1). By the assumption that the process is
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Fig. 4.1

recurrent relative to U and by Corollary 3.3, it follows that τn <∞ almost surely
for all n= 2,3, . . . .

Set U3 =U1 \U0. By Lemma 3.4, the function

u(x)= Px{X(τU0) ∈ Γ0}
is a solution of the elliptic equation

Lu= 0

in the domain U3 satisfying the boundary conditions

u|Γ0 = 1; u|Γ1 = 0.

By the strong maximum principle for solutions of elliptic equations,

max
x∈Γ Px{X(τU3) ∈ Γ1} = p0 < 1. (4.4)

Using the fact that the random variables τ ′
1, τ1, τ

′
2, τ2, . . . are Markov times and

applying the strong Markov property of the process X(t), and also (4.4), we get

Px{τU c
0
= ∞}

≤ sup
z∈Γ1

Pz
{ ∞
⋂

i=1

(X(τ iU3
) ∈ Γ1)

}

= sup
z∈Γ1

∫

Γ

Pz{X(τ ′
1) ∈ dy}

∫

Γ1

Py{X(τU3) ∈ dz1}Pz1

{ ∞
⋂

i=1

(X(τ iU3
) ∈ Γ1)

}

≤ p0 sup
z∈Γ1

Pz
{ ∞
⋂

i=1

(X(τ iU3
) ∈ Γ1)

}

,

where τ iU3
denotes the first time after τ ′

i at which the path exits from the set U3.
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These inequalities imply that Px{τU c
0

= ∞} = 0, since p0 < 1. This completes
the proof of the lemma. �

In view of this lemma the following definitions are natural. A regular process
X(t) described by (4.3) with nonsingular diffusion matrix is said to be recurrent if
there exists a bounded domain U such that for all x ∈U c,

Px{τU c <∞} = 1.

If there exist a non-empty open domain U and a point x ∈ U c such that
Px{τU <∞}< 1, the process is said to be transient.

It follows from the definition of recurrence and from Lemma 4.1 that the sample
path of a recurrent process is almost surely dense in R

l and it prevails an infinite
time in every fixed neighborhood of any point. The situation is different for transient
processes.

Lemma 4.2 If the process X(t) is transient, then for any compact set K and
any x ∈ R

l the probability of the event “the sample path of the process Xx(t)
never passes through the set K after some random but finite instant of time t0(ω)”
equals 1.

Proof Let K be a compact set in R
l , and let UR ⊃K ball of radius R containingK .

Since the process is transient, the value of the function

u(x)= Px{τU c
R
<∞}

is less than 1 at some point x ∈ U c
R . This function satisfies the equation Lu= 0 (as

the limit of a monotone sequence of L-harmonic functions; see Sect. 3.7). By the
strong maximum principle,

max
|x|=R+1

Px{τU c
R
<∞} = q < 1. (4.5)

Let x ∈ U c
R . We now define the random variables τ ′

1, τ1, τ
′
2, . . . as follows: τ ′

1 =
τUR+1 , τ1 is the first time after τ ′

1 at which the set |x| = R is reached, τ ′
i is the first

time after τ1 at which the set |x| = R + 1 is reached, and so on. For example, let
us estimate the probability Px{τ2 <∞}. Using the strong Markov property of the
process and also (4.5), we get

Px{τ2 <∞} =
∫

|y1|=R+1
Px{X(τ ′

1) ∈ dy1}
∫

|z|=R
Py1{τUR <∞;X(τU c

R
) ∈ dz}

×
∫

|y2|=R+1
Pz{X(τ ′

2) ∈ dy2}Py2{τU c
R
<∞}

≤ q2.

Similarly, one shows that Px{τn <∞} ≤ qn.
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Thus {τn <∞} is a sequence of events whose probabilities decrease in geomet-
ric progression. By the Borel–Cantelli lemma, this implies that almost surely only
finitely many of these events will occur. This proves the lemma. �

Corollary 4.1 Since {X(t) ∈ K} ⊂ {t0(ω) > t}, it follows that a transient process
X(t) satisfies

Px{X(t) ∈K} = P(x, t,K)→ 0 as t → ∞ (4.6)

for every compact set K ⊂ R
l .

Lemma 4.3 If the process X(t) is transient, then the random variable ζK equal to
the total time which the sample path of the process spends in the compact set K
satisfies

Ex |ζK |n < cn <∞ (4.7)

for any n < 0.

Proof It is sufficient to prove this when K is the ball |x| ≤ R. Let q < 1 be the
number defined by (4.5). The random variable τR+1 defined as the time to the first
exit of the path of X(t) from the set {|x|<R + 1} has bounded expectation, due to
Corollary 3.3. By Chebyshev’s inequality, there is a constant t > 0 such that

Px{τR+1 ≥ t}< 1 − q

2
. (4.8)

Since for any x ∈K

Px{ζK ≥ t} ≤ Px{τR+1 ≥ t} + sup
|y|=R+1

Py{τU c
R
<∞}, (4.9)

it follows from (4.5) and (4.8) that

Px{ζK ≥ t} ≤ 1 + q

2
= q1 < 1

for x ∈K . It is clear that (4.9) is valid for all x ∈ R
l . A necessary condition for the

occurrence of the event {ζK ≥ 2t} is obviously that of the event {ζK ≥ t} occurs and
that beginning from the time at which ζK is first equal to t , the path remains in K
for a time not less than t . Hence (the rigorous argument involves the strong Markov
property)

Px{ζK ≥ 2t} ≤ q2
1 , . . . , Px{ζK ≥ nt} ≤ qn1 . (4.10)

Inequalities (4.10) guarantee the existence of bounded moments for all powers
of the random variable ζK , since
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Exζ nK ≤
∞
∑

m=0

Px{ζK >mt}[(m+ 1)t]n

for x ∈K , and hence also for all x ∈ R
l . �

Corollary 4.2 By virtue of the equality

ExζK = Ex
∫ ∞

0
1K(X(t)) dt =

∫ ∞

0
P(x, t,K)dt

it follows from Lemma 4.3 that the function
∫∞

0 P(x, t,K)dt is bounded in R
l for

a transient process X(t).

Remark 4.1 It is readily seen that the proofs of the lemmas in this section essentially
use far weaker properties of the processX(t) than the nonsingularity of the diffusion
matrix. For example, the following generalization of Lemma 4.1 can be proved with
help of small modification of reasonings, used for the proof of this lemma.

Lemma 4.4 The solution X(t) of the stochastic equation (4.3) is recurrent relative
to the domain U2 when it is recurrent relative to U1 and

inf
x∈U1

P(x,T ,U2) > 0 (4.11)

for some T > 0.

It is easy to see that condition (4.11) is satisfied if the domain U1 is bounded and
the transition probability of X(t) has an everywhere positive density.

4.3 Positive and Null Recurrent Processes

Suppose that the conditions formulated at the beginning of Sect. 4.2 are satisfied,
and let the process X(t) be recurrent. As in the case of a process with countably
many states, the asymptotic behavior of the transition probability depends essen-
tially on whether the mean recurrence time for a bounded domain is finite or infinite.

Lemma 4.5 Under the above assumptions, if Ex0τU c is finite for some bounded
open domain U and x0 ∈ U c, then ExτU c

0
is finite for all nonempty open domains

U0 and all x ∈U c
0 .

Proof Let Ex0τU c < ∞ for some bounded open domain U and x0 ∈ U c. It was
shown in the proof of Theorem 3.11 that then ExτU c <∞ for all x ∈U c.

We must prove that ExτU c
0
<∞ for any other non-empty open domain U0. As

in the proof of Lemma 4.1, we need only deal with the case in which U and U0 are
open domains with regular boundaries Γ and Γ0 respectively and U0 ∪ Γ0 ⊂U .
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As in the proof of Lemma 4.1, we construct an auxiliary domain U1 and con-
sider the corresponding times τ ′

1, τ1, . . . , τ
′
n, τn, . . . (see Fig. 4.1). We shall call the

portion of the sample path of the process from τn−l to τn the n-th cycle, and we set
τ0 = 0. The event A: “the path of X(t) reaches the set U0” can first occur either
during the first cycle, or during the second, etc. If it occurs during the n-th cycle,
then obviously,

τU c
0
< τn.

On the other hand, it follows by (4.4) and the strong Markov property that the prob-
ability that A will not occur during the n−1 preceding cycles is majorized by pn−1

0 .
Hence we have the estimate

ExτU c
0
< Exτ1 + p0Exτ2 + · · · + pN−1

0 Exτn + · · · .

Without loss of generality, we may assume that x ∈ Γ1. Obviously,

sup
x∈Γ1

Exτ1 ≤ sup
x∈Γ1

ExτU c + sup
x∈Γ

ExτU1 = B <∞.

Therefore

ExτU c
0
≤ B + 2Bp0 + · · · + nBpn−1

0 + · · ·<∞
as required. �

In accordance with Kolmogorov’s terminology for Markov chains with count-
ably many states, a recurrent process such that the mean recurrence time for some
(hence for each) bounded open set is finite will be called a positive recurrent pro-
cess. 0therwise we have a null recurrent process.

Sufficient conditions for a process to be positive recurrent, null recurrent, or tran-
sient, in terms of the coefficients b and σr , were given above (Sects. 3.7, 3.8).

4.4 Existence of a Stationary Distribution

In Sects. 4.4 through 4.7 we shall study ergodic properties of positive recurrent
Markov processes. First, in Sect. 4.4, we shall establish the existence of a stationary
distribution for such processes. This will enable us to apply the ergodic theorem
for stationary processes and thus, in Sect. 4.5, to establish the strong law of large
numbers for functions of diffusion-type Markov processes.

Next, in Sects. 4.6 and 4.7, we shall prove a theorem which states that, under
certain restrictions, the transition probability of a time-homogeneous process from
a point x to a set A in time t tends to a limit as t → ∞. This limit is independent
of the “point of departure” x. It equals the stationary distribution μ(A). In Sect. 4.8
we discuss certain generalizations of previous results. In Sect. 4.9 we shall prove
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corollaries concerning the behavior of the solutions of parabolic differential equa-
tions for large time values. Sections 4.10 and 4.11 are devoted to a more detailed
consideration of a null recurrent process on the real line.

The main assumptions adopted in Sects. 4.4 through 4.7 may be described as
follows. We shall stipulate that the process X(t) has finite mean recurrence time
for some bounded open domain U , and within this domain all sample paths “mix
sufficiently well” (while outside U the diffusion matrix may be as strongly singular
as desired; for example, the process may be deterministic outside U ).

More precisely, we shall adopt the following

Assumption (B) There exists a bounded open domain U ⊂ R
l with regular bound-

ary Γ , having the following properties:

(B.1) In the domain U and some neighborhood thereof, the smallest eigenvalue of
the diffusion matrix A(x) is bounded away from zero.

(B.2) If x ∈ R
l \U , the mean time τ at which a path issuing from x reaches the set

U is finite, and supx∈K Exτ <∞ for every compact subset K ⊂ R
l .

We consider a domain U1 with sufficiently smooth boundary such that condition
(B.1) holds in U1 and U ∪ Γ ⊂U1.

The construction used above in the proof of Lemma 4.1 is basic for what follows.
This construction divides an arbitrary sample path of the process into “cycles”:

[τ0, τ1); [τ1, τ2); . . . ; [τn, τn+1); . . . .

Here τ0 = 0, and the times τ ′
1, τ1, τ

′
2, τ2, . . . are defined inductively: τ ′

n+1 is the first
time after τn at which the set Γ is reached, and τn+1 is the first time after τ ′

n+1 at
which the path reaches Γ1 (see Fig. 4.1 on p. 102).

The process X(t) is U -recurrent by condition (B.2) and U1-recurrent by condi-
tion (B.1) and Corollary 3.3. Hence, all the random variables τ ′

1 < τ1 < · · ·< τ ′
n <

τn < · · · are almost surely finite.
Suppose that X(0) = x ∈ Γ1, and consider the sequence X(τi) = ˜Xi . It follows

from the strong Markov property ofX(t) that this sequence is a Markov chain on Γ1.
Let ˜P (x, γ ) denote the one-step transition probability of this chain, and set

Exf (˜X1)=
∫

Γ1

˜P (x, dy)f (y).

Let us first establish some properties of the process ˜Xn. We denote by ˜P (n)(x, γ )
the n-step transition probability of this process.

Lemma 4.6 The Markov chain ˜X1, . . . ,˜Xn, . . . has a unique stationary distribution
μ(γ ), which satisfies

|˜P (n)(x, γ )−μ(γ )|< kn (4.12)

uniformly in γ ∈ Γ1 for some constant k < 1.
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Proof By Remark 3.10, for all x the measure Px(X(τU1) ∈ γ ) has a density σΓ1(γ )

on Γ1, relative to surface area, which is bounded away from zero. Hence the obvious
equality

˜P(x, γ )=
∫

Px{X(τ ′
1) ∈ dz}Pz{X(τU1) ∈ γ }

implies that ˜P(x, γ ) has the same property. Now it is well-known (see [56,
Sect. 5.5]) that this condition is sufficient for the existence of a unique stationary
distribution μ̃(γ ) of the Markov chain ˜Xn and for (4.12) to hold. �

Lemma 4.7 Let τ be a Markov time, Exτ <∞ and f (x) a Borel-measurable func-
tion. Then

Ex
∫ τ

0
f (X(t + s)) ds = Ex

∫ τ

0
EX(s)f (X(t)) ds. (4.13)

Proof Since τ is a Markov time, the indicator 1s<τ (s) of the set {s < τ } is ˜Ns -
measurable. Therefore

Ex
∫ τ

0
f (X(t + s)) ds =

∫ ∞

0
ExEx{1{s<τ }(s)f (X(t + s))|˜Ns}ds

= Ex
∫ ∞

0
1{s<τ }(s)Ex{f (X(t + s))| ˜Ns}ds

= Ex
∫ τ

0
Ex{f (X(t + s))| ˜Ns}ds.

This, together with (3.7), (3.8), implies the assertion. �

Theorem 4.1 If (B) holds, then the Markov process X(t) has a stationary distribu-
tion μ(A).

Proof Let A ∈ B. Let τA denote the time spent by the path of X(t) in the set A
during the first cycle. We define a measure ν(A) by

ν(A)=
∫

Γ1

μ̃(dx)ExτA. (4.14)

Then, for any continuous bounded function f (x),
∫

Γ1

f (X)ν(dx)=
∫

Γ1

μ̃(dx)Ex
∫ τ1

0
f (X(t)) dt. (4.15)

Recall that μ̃(γ ) is the stationary distribution of the Markov chain ˜Xn, i.e., for
any bounded Borel-measurable function g(x) on Γ1 we have

∫

Γ1

Exg(˜X1)μ̃(dx)=
∫

Γ1

g(x)μ̃(dx). (4.16)
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From (4.15) and (4.13) we see by performing the substitution t + s = u that
∫

Rl

Exf (X(t))ν(dx)

=
∫

Γ1

μ̃(dx)Ex
∫ τ1

0
EX(s)f (X(t)) ds

=
∫

Γ1

μ̃(dx)Ex
∫ τ1

0
f (X(t + s)) ds

=
∫

Γ1

μ̃(dx)Ex
∫ t+τ1

t

f (X(u)) du

=
∫

Γ1

μ̃(dx)Ex
∫ τ1

0
f (X(u)) du+

∫

Γ1

μ̃(dx)Ex
∫ τ1+t

τ1

f (X(u)) du

−
∫

Γ1

μ(dx)Ex
∫ t

0
f (X(u)) du. (4.17)

It follows from (4.16) that

∫

Γ1

μ̃(dx)Ex
∫ τ1+t

τ1

f (X(u)) du=
∫

Γ1

μ̃(dx)ExE˜X1

∫ t

0
f (X(u)) du

=
∫

Γ1

μ̃(dx)Ex
∫ t

0
f (X(u)) du. (4.18)

By (4.17) and (4.18), we have
∫

Rl

Exf (X(t)) ν(dx)=
∫

Rl

f (x) ν(dx). (4.19)

We now see from (4.19) that the measure given by μ(A)= ν(A)/ν(Rl ) defines
the required stationary distribution. �

Remark 4.2 The measure ν(A) is invariant (i.e. it satisfies condition (4.19)) even if
no assumption is made concerning the finiteness of Exτ1. It is sufficient to require
that the process X(t) is U -recurrent. In this case the measure ν is merely σ -finite
and ν(Rl )= ∞. For details, see [194], [117].

4.5 Strong Law of Large Numbers

Chung’s proof [48] of the law of large numbers for random variables ζn =
∑n
i=1 f (Xi), where Xi is a recurrent Markov chain with countably many states,

employs the following method. Each random variable ζn is split into components.
The k-th component contains the terms

∑

f (Xi) for τk ≤ i < τk+1 (τk is the time
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at which a fixed state of the chain is reached for the k-th time). According to this
approach, ζn may be described as a sum of independent random variables and a
certain (generally small) remainder term. Therefore the law of large numbers for
ζn follows from the corresponding law for sums of independent random variables.
Maruyama and Tanaka [193] adopt a similar approach to prove the law of large
numbers for one-dimensional diffusion processes. This reduction is impossible for
multi-dimensional processes, since a multi-dimensional process does not generally
return to the initial point. However, the law of large numbers can be used for sta-
tionary sequences.

Theorem 4.2 Suppose that condition (B) holds, and let μ be the stationary distri-
bution of the process X(t), constructed in the proof of Theorem 4.1. Let f (x) be a
function integrable with respect to the measure μ. Then

P
{

1

T

∫ T

0
f (Xx(t)) dt −→

T→∞

∫

Rl

f (y)μ(dy)

}

= 1 (4.20)

for all x ∈ R
l .

Proof We first prove (4.20) for the initial distribution

P{X(0) ∈ γ } = μ̃(γ ), γ ∈ Γ1, (4.21)

where μ̃(γ ) is the stationary distribution of the Markov chain ˜Xn existing according
to Lemma 4.1. Under this assumption the sequence of random variables

ηn =
∫ τn+1

τn

f (X(t)) dt

is a random sequence which is stationary in the narrow sense, and it follows from
(4.14) that

Eηn =
∫

Rl

f (x)ν(dx).

We easily see from (4.12) that the sequence ηn is metrically transitive.
Let ν1(T ) denote the number of cycles completed up to time T . It is obvious that

∫ T

0
f (X(t)) dt =

ν1(T )
∑

n=0

ηn +
∫ T

τν1(T )

f (X(t)) dt. (4.22)

We may assume without loss of generality that f (x) > 0. It then follows from (4.22)
that

ν1(T )
∑

n=0

ηn ≤
∫ T

0
f (X(t)) dt ≤

ν1(T )+1
∑

n=0

ηn. (4.23)
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Since the sequence η1, . . . , ηn, . . . is stationary and metrically transitive, the law
of large numbers for such sequences (see [92]) implies the relation

P

{

1

k

k
∑

n=0

ηn −→
k→∞

∫

Rl

f (x) ν(dx)

}

= 1. (4.24)

In particular for f (x)≡ 1 we get from the above that

P
{

τk

k
−→
k→∞

∫

Rl

μ̃(dx)Exτ = ν(Rl )

}

= 1. (4.25)

We claim that almost surely,

τν1(T )

T
→ 1 as T → ∞. (4.26)

Using (4.25) and the fact that ν1(T )→ ∞ as T → ∞, we see that almost surely,

lim
T→∞

τν1(T )+1

τν(T )
= lim
T→∞

τν1(T )+1

ν1(T )+ 1
lim
T→∞

ν1(T )

τν1(T )

= 1.

Hence, using the inequalities τν1(T ) ≤ T ≤ τν1(T )+1 we get (4.26). From (4.23)–
(4.26) we readily infer that

P
{

1

T

∫ T

0
f (X(t)) dt =

∫ T

0 f (X(t)) dt

ν1(T )

ν1(T )

τν1(T )

τν1(T )

T
−→
T→∞

∫

Rl

f (x)μ(dx)

}

= 1.

This proves (4.20) for the initial distribution (4.21). It follows that (4.20) is valid for
almost all points x ∈ Γ1 with respect to the measure μ̃(γ ) (hence also with respect
to the measure σΓ1(γ )).

Let x be any point of R
l . It is clear from the proof of Lemma 4.6 that the measure

Px{X(τ1) ∈ γ } is absolutely continuous with respect to the measure σΓ1(γ ) for any
x ∈ R

l . Hence, using the equalities

Px
{

lim
T→∞

1

T

∫ T

0
f (X(t)) dt = a

}

= Px
{

lim
T→∞

1

T

∫ T

τ1

f (X(t)) dt = a

}

=
∫

y∈Γ1

Px{X(τ1) ∈ dy}Py
{

lim
T→∞

1

T

∫ T

0
f (X(t)) dt = a

}

,

we get the assertion of the theorem for all x ∈ R
l . �

Corollary 4.3 If f (x) is bounded, then

lim
T→∞

1

T

∫ T

0
Exf (X(t)) dt =

∫

Rl

f (x)μ(dx). (4.27)
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In particular if A ∈ B, then

1

T

∫ T

0
P(x, t,A)dt → μ(A) as T → ∞. (4.28)

These relations follow from (4.20) by Lebesgue’s dominated convergence theo-
rem.

Corollary 4.4 If (B) holds, then the stationary distribution of the process X(t) is
unique.

Indeed, let μ1(A) be another stationary distribution. Then

∫

Rl

μ1(dx)P (x, t,A)= μ1(A). (4.29)

Integrating (4.29) with respect to t from 0 to T and using (4.28), we get μ(A)=
μ1(A).

The results (4.27) and (4.28) can be considerably strengthened. To be precise, one
can prove that the transition probability function itself (not merely its Cesàro sense)
tends to μ(A) as t → ∞, provided certain additional assumptions are made. We
present a general outline of one of the proofs of this theorem [54]. A Markov pro-
cessX(t)with stationary initial distribution (the existence of the latter was proved in
Sect. 4.4) generates a dynamical system in the space of sample paths of the process.
This system has a finite invariant measure. Employing the ergodicity property of
this system (which follows from the results of this section), we conclude that there
is no angular variable and that the μ-singular component of the transition probabil-
ity tends to 0 as t → ∞. (It can be shown that condition (B) is sufficient to guarantee
these properties.) Applying the Von Neumann–Koopman mixing theorem (see Hopf
[98, pp. 36–37]), one can prove that the transition probabilities tend to a limit. How-
ever, this method of proof, for all its generality, is probably difficult to extend to
the time-non-homogeneous case. Therefore in Sects. 4.6 and 4.7 we shall employ a
different method which does not depend on the general theory of dynamical systems
and can be generalized to nonhomogeneous processes.

4.6 Some Auxiliary Results

In this section we shall derive some further consequences from condition (B), con-
cerning the properties of the stationary distribution μ and the transition probability
function P(x, t,A) of the process X(t). These properties will be used in our proof
(Sect. 4.7) of the theorem on the limiting behavior of the transition probabilities as
t → ∞.
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Lemma 4.8 If condition (B) holds for U , then the stationary distribution μ(A) of
the process X(t), constructed in Sect. 4.4, possesses the property

inf
x∈U μ(Uδ(x))= β(δ) > 0 for δ > 0. (4.30)

Proof It is clear from the construction of μ(A) in Sect. 4.4 that this measure is
proportional to the mean time spent by the path of the process in the set A during
one cycle, provided the initial distribution on Γ1 coincides with μ̃(γ ). This time is
more or equal to the time τA(Γ1) spent in the set A during a halfcycle (from the
time the set Γ is reached to the time Γ1 is reached).

The function u(x)= ExτUδ(x0)(Γ1) can be expressed as

u(x)= Ex
∫ τU1

0
1Uδ(x0)(X(t)) dt.

Hence, applying Lemma 3.6,2 we see that the function u(x) is a solution in U1 of
the problem

Lu+ 1Uδ(x0)(x)= 0, u|Γ1 = 0.

Since the Green function of this problem is bounded away from zero in every do-
main which, together with its boundary, lies in U1, this implies the inequality

inf
x∈Γ, x0∈U

ExτUδ(x0)(Γ1) > 0.

This inequality, together with the above-mentioned estimate

μ(Uδ(x0))≥ inf
x∈Γ, x0∈U

ExτUδ(x0)(Γ1)

yields the assertion of the lemma. �

Lemma 4.9 If condition (B) holds, then the function P(x, t,A) is a uniformly con-
tinuous function of x for x ∈U , t > t0, A ∈ B (where t0 > 0 is arbitrary).

Proof We have the following identity for events:

{X(t) ∈A} = {X(t) ∈A, τU1 > t} ∪ {X(t) ∈A, τU1 ≤ t}.

Therefore, by the strong Markov property of the process X(t), we get

2In Lemma 3.6, the integrand is assumed to be continuous. However, by “sandwiching” the func-
tion 1Uδ(x0)(x) between two continuous functions and using the properties of solutions of elliptic
equations (recall that L is a nonsingular elliptic operator in U1), one easily shows that Lemma 3.6
is valid also for this function. Analogous remarks apply to the other boundary-value problems
considered in this and the following section.
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P(x, t,A)= Px{X(t) ∈A, τU1 > t}

+
∫

Γ1

∫ t

u=0
Px{τU1 ∈ du, X(τU1) ∈ dz}P(z, t − u,A). (4.31)

By Lemma 3.3, this formula implies that the function u(t, x)= P(x, t,A) satisfies
in the cylinder (t > 0)×U1 the following nondegenerate parabolic equation

Lu(t, x)= −∂u
∂t

+
l
∑

i=1

bi(x)
∂u

∂xi
+ 1

2

l
∑

i,j=1

aij (x)
∂2u

∂xi∂xj
= 0. (4.32)

The boundary conditions for this equation are

u(0, x)= 1A(x); u(t, x)|x∈Γ1 = P(x, t,A)|x∈Γ1 . (4.33)

Let us use now certain known estimates for the solutions of (4.32) with bounded
measurable boundary conditions (4.33) (see [76, Theorem 3]). According to these,
the function u(t, x) has bounded derivatives with respect to x in every cylinder
{t > t0} ×K , where K ⊂U1 is compact and t0 > 0. The proof is complete. �

Lemma 4.10 If condition (B) holds, then for any x ∈ R
l and ε > 0 there exist

numbers R > 0 and t0(x) > 0 such that

P(x, t,U c
R)= Px{|X(t)|>R}< ε (4.34)

for t > t0(x).

Proof Given an arbitrary ε > 0, it follows from Lemma 4.9 that there exists a δ > 0
such that for x0 ∈U ∪ Γ , |x − x0|< δ, A ∈ V, t > t0,

|P(x, t,A)− P(x0, t,A)|< ε

4
. (4.35)

Let β(δ) be the number defined by (4.30). Choose R > 0 large enough so that the
stationary measure of the set U c

R = {|x| ≥R} satisfies

μ(U c
R) <

εβ(δ)

4
. (4.36)

We shall now make use of the equality (see (4.19))

μ(U c
R)=

∫

μ(dx)P (x, t,U c
R). (4.37)

By this equality, we get from (4.35) and (4.36) the estimate

β(δ)ε

4
>μ(U c

R)=
∫

μ(dx)P (x, t,U c
R)
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≥
∫

Uδ(x0)

μ(dx)P (x, t,U c
R)≥

[

P(x0, t,U
c
R)−

ε

4

]

μ(Uδ(x0))

for x0 ∈U . Thus, in view of (4.30) we have the inequality

P(x0, t,U
c
R)≤

ε

2
, (4.38)

valid for x0 ∈ U ∪ Γ , t > t0. Since t0 > 0 is arbitrary, inequality (4.38) is valid for
all t > 0.

Thus the lemma is proved for x0 ∈ U ∪ Γ . Now let x0 ∈ (U ∪ Γ )c. Since the
process X(t) is recurrent relative to the set U , there exists a number t0(x0) > 0 such
that

Px0{τU c > t0(x)}< ε

2
. (4.39)

By arguments similar to those used for showing (4.31), we deduce that

P(x0, t,U
c
R) =

∫

Γ

∫ t

s=0
Px0{τU c ∈ ds,X(τU c) ∈ dy}P(y, t − s,U c

R)

+ Px0{τU c > t, |X(t)|>R}
for t > t0(x). Inequalities (4.38) and (4.39) imply (4.34). The proof is complete. �

Lemma 4.11 If condition (B) holds, then there exists a constant T > 0 such that for
any δ > 0

inf
t>0,x,x0∈U∪Γ Ex

∫ t+T

t

1Uδ(x0)(X(s)) ds > 0 (4.40)

(i.e., the mean time spent by the path, starting from x, in the δ-neighborhood of x0
during the time interval [t, t+T ] is bounded away from zero uniformly in t , x0 ∈U ,
x ∈U ).

Proof Let K be a compact set such that

P(x, t,K) >
1

2
(4.41)

for all x ∈U , t > 0. Such a set K exists by (4.38). Now, since ExτU c is bounded in
every compact set, we can choose a constant T ≥ 0 such that

Px{τU c > T − 1}< 1

2
(4.42)

holds for all x ∈K .
We now consider the function

Ex
∫ τUc (t)

0
1Uδ(x0)(X(s)) ds = v(δ)(t, x).
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By Lemma 3.5, this function is a solution in {t > 0}×U c
1 of the parabolic equation3

Lv(δ)(t, x)+ 1Uδ(x0)(x)= 0,

satisfying the boundary conditions

v(δ)(0, x)= 0; v(δ)(t, x)|x∈Γ1 = 0.

Since the operator L is non-singular in the above domain, it follows from the general
properties of solutions of parabolic equations that

inf
x,x0∈U∪Γ v

(δ)(1, x) > 0. (4.43)

Next, we see that for x ∈U

Ex
∫ t+T

t

1Uδ(x0)(X(s)) ds

≥
∫

y∈K
P (x, t, dy)Ey

∫ T

0
1Uδ(x0)(X(s)) ds

≥
∫

y∈K
P (x, t, dy)

∫

z∈U∪Γ

∫ T−1

u=0
Py{τU c ∈ du,X(τU c) ∈ dz}v(δ)(1, z).

Using (4.41)–(4.43), we infer from the last inequality that (4.40) holds. �

Lemma 4.12 If condition (B) is satisfied, then for any δ > 0 there exists a constant
αδ > 0 such that for all x ∈ R

l , x0 ∈U and t > t0(x)

P (x, t,Uδ(x0)) > αδ.

Proof (1) Since

Ex
∫ t+T

t

1Uδ(x0)(X(s)) ds =
∫ t+T

t

P (x, s,Uδ(x0)) ds,

it follows from Lemma 4.11 that for any x ∈U there exists a sequence s1, s2, . . . , sn,
. . . (sn ∈ [(n− 1)T ,nT ]) such that

P(x, sn,Uδ(x0)) > γδ > 0.

Now let t ∈ [(n− 1)T ,nT ]. Then

P(x, t,Uδ(x0))≥
∫

y∈Uδ/2(x0)

P (x, sn−1, dy)P (y, t − sn−1,Uδ(x0)). (4.44)

3See footnote on p. 113.
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It is clear that 0< t − sn−1 < 2T and

P(y, t − sn−1,Uδ(x0))≥ Py{X(t − sn−1) ∈Uδ(x0), τU1 > t − sn−1}. (4.45)

By Lemma 4.8, the function w(t, y)= Py{X(t) ∈ Uδ(x0), τU1 > t} is a solution in
{t > 0} ×U1 of the equation Lw(t, y)= 0 satisfying the boundary conditions

w(0, y)= 1Uδ(x0)(y), w(t, y)|y∈Γ1 = 0.

From general properties of solutions of parabolic equations we readily conclude that

inf
0≤t≤2T , y∈Uδ/2(x0), x0∈U

w(t, y) > 0.

Using this estimate in combination with (4.44) and (4.45) we deduce that for all
x ∈U , x0 ∈U , t > 0, δ > 0

P(x, t,Uδ(x0))≥ 2αδ > 0.

(2) Now let x ∈ U c. Take t0(x) such that Px{τU c > t0(x)} < 1/2. Then for t >
t0(x)

P (x, t,Uδ(x0))≥
∫

z∈Γ

∫

u=0
Px{τU c ∈ du,X(τU c) ∈ dz}P(x, t − u,Uδ(x0))

≥ 1

2
2αδ = αδ.

This complete the proof of the lemma. �

4.7 Existence of the Limit of the Transition Probability Function

Lemma 4.10 guarantees that the process Xx(t) is bounded in probability for all
x ∈ R

l . As we observed in Sect. 2.1, this implies that the family of distributions
P(x, tn,A) is weakly compact for any sequence tn → ∞. In this section we shall
show that the limit does not depend on which sequence tn → ∞ is chosen. The
proof uses essentially Lemmas 4.9 and 4.12.

Theorem 4.3 If condition (B) holds, then for any continuous bounded function f (x)
and any Borel subset A with boundary Γ such that μ(Γ )= 0, we have

Ttf (x)=
∫

Rl

P (x, t, dy)f (y)→
∫

Rl

f (y)μ(dy), (4.46)

P(x, t,A)→ μ(A) (4.47)

as t → ∞.
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Proof Let f (x) be an arbitrary continuous bounded function in R
l . Then the func-

tion Ttf (x) is also bounded. It is also continuous in x uniformly in t > t0 (t0 > 0)
on any compact subset K of U1 (see proof of Lemma 4.9). Hence there exists a
sequence tn tending to infinity as n→ ∞ such that limn→∞ Ttnf (x)= c(x), where
c(x) is a function continuous on U1, and the convergence is uniform in U .

We set

c− = min
U∪Γ c(x)= c(x1); c+ = max

U∪Γ c(x)= c(x2),

a = inf
x∈Rl

lim
t→∞

Ttf (x); b = sup
x∈Rl

lim
t→∞Ttf (x).

(4.48)

To prove (4.46), it will suffice to show that a = b. For if a = b, then the func-
tion Ttf (x) has a limit independent of x as t → ∞. This limit is then equal to
∫

f (y)μ(dy), by Theorem 4.2 (see Corollary 4.3).
By (4.48), there exist for any ε > 0 a point x0 ∈ R

l and a sequence t ′n → ∞ such
that

Tt ′nf (x0) < a + ε. (4.49)

Also, for any x ∈ R
l

Ttf (x) > a − ε (4.50)

if t is sufficiently large. Moreover, for any compact subset K ⊂ R
l there exists a

t0 > 0 such that inequality (4.50) holds for t > t0 and all x ∈ K . (Indeed, if At0
consists of all points x such that (4.50) is true for t > t0, then the sets At obvi-
ously possess the property that As ⊂At for s < t and the union

⋃

t>0At coincides
with R

l .)
Our next task is to prove that c+ ≤ a. To do this, we shall assume that

c+ > a (4.51)

and we shall derive a contradiction.
Set γ = (c+ − a)/2 and choose a number δ > 0 such that c(x) > c+ − γ for

x ∈ Uδ(x2). Since the sequence Ttnf (x) converges to c(x) uniformly in U , we can
find a number n0 such that for x ∈Uδ(x2) and n > n0, we also have

Ttnf (x) > c+ − γ. (4.52)

Now, using Lemma 4.10, we choose a compact set K1 ⊃U such that

P(x0, t,K
c
1) < ε (4.53)

for all t > t1.
We next take t2 > 0 large enough so that inequality (4.50) holds for all x ∈K1 if

t > t2. Finally, using Lemma 4.12, we choose t3 such that

P(x0, t,Uδ(x2)) > αδ (4.54)

for t > t3.
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We now consider some fixed number tn (n > n0), and then a number t ′k such that
t ′k − tn ≥ max(t1, t2, t3); it follows from (4.49), (4.50) and (4.53) that

a + ε > Tt ′nf (x0)=
∫

Tt ′nf (y)P (x0, t
′
k − tn, dy)

≥
∫

Uδ(x2)

(c+ − γ )P (x0, t
′
k − tn, dy)

+
∫

K1\Uδ(x2)

(a − ε)P (x0, t
′
k − tn, dy)− εmax

Rl
|f (x)|.

Since γ = (c+ − a)/2, this inequality can be rewritten as

a + ε ≥ (a − ε)P (x0, t
′
k − tn,K1)

+ γP (x, t ′k − tn,Uδ(x2))− εmax
Rl

|f (x)|

≥ (a − ε)(1 − ε)+ γP (x0, t
′
k − tn,Uδ(x2))− εmax

Rl
|f (x)|. (4.55)

From (4.54) and (4.55) follows now the estimate

γ <
ε(2 + a + maxRl |f (x)|)

aδ
.

Since ε is arbitrarily small, it follows that γ ≤ 0 and this contradicts our assumption
that c+ > a.

Consequently, c+ ≤ a. Similarly, we show that c− ≥ b. Thus c+ ≤ a ≤ b ≤ c− ≤
c+, and so a = b. As we have mentioned above, this implies (4.46).

The validity of (4.46) means that the measure P(x, t,A) converges weakly to
μ(A) as t → ∞ for every fixed x. It is known (see [232]) that this implies the
second assertion of the theorem. �

4.8 Some Generalizations

In this section we shall show how to generalize the results of Sects. 4.4 through
4.7 to a wider class of Markov processes and to diffusion processes in other phase
spaces. At the end of the section we shall generalize the theorems of Sects. 4.5 and
4.7 to the nonergodic case.

1. We assumed above that the diffusion matrix is nonsingular on the domain U1.
An analysis of the proof shows that in fact a weaker condition is sufficient; for
example, we need only require that there exist a sufficiently smooth positive Green
function for the first boundary-value problem for the parabolic equation Lu= 0 in
(t > 0)×U .

2. Many of the results of Sects. 4.4 through 4.7 can be proved for Markov pro-
cesses in a general Banach space. Neither is there any need to confine the discussion
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to processes with continuous sample paths. Indeed, the decomposition of the path
into cycles, which was the basic construction in the previous sections, carries over
to processes whose paths may have discontinuities of the first kind (jumps). For
details, see [194] and [117].

All the results of Sects. 4.4 through 4.7, without exception, carry over to diffusion
processes on smooth manifolds. In particular, a process with nonsingular diffusion
matrix on a compact smooth manifold is always positive recurrent. This follows
from the fact that the mean exit time of the sample path of a nonsingular diffusion
process from a bounded domain is bounded (see Corollary 3.2).

3. As was already mentioned above, the construction used in Sect. 4.4 to yield
the stationary distribution carries over to U -recurrent processes with infinite mean
recurrence time for U . This measure is invariant in the sense of (4.19). By a slight
modification of the arguments in Sect. 4.5, one can then prove the following gener-
alization of Theorem 4.2.

Theorem 4.4 Suppose that condition (B.1) holds, and let the process X(t) be U -
recurrent. Let ν(A) be the measure defined by (4.14) and let f (x) and g(x) be
functions integrable with respect to this measure such that

∫

g(x)ν(dx) �= 0.
Then for all x ∈ R

l

Px
{

lim
T→∞

∫ T

0 f (X(t)) dt
∫ T

0 g(X(t)) dt
=
∫

f (x)ν(dx)
∫

g(x)ν(dx)

}

= 1. (4.56)

This result, deduced from somewhat different assumptions, may be found in
[194], [117].

Now, if the expected time at which U is reached is infinite, we have

ν(Rl )= ∞, (4.57)

and thus, using a monotone increasing sequence of functions gn(x) such that
gn(x) ↑ 1 as n→ ∞, we get from (4.56) that

Px
{

1

T

∫ T

0
f (X(t)) dt −→

T→∞ 0

}

= 1

for any ν-integrable function f (x). Taking expectations and applying the Lebesgue
theorem, as in (4.27) and (4.28), we conclude that if f (x) is ν-integrable and K is
a compact set,

1

T

∫ T

0
Exf (X(t)) dt → 0,

1

T

∫ T

0
P(x, t,K)dt → 0 (4.58)

as T → ∞.
By methods similar to those used in Sects. 4.6, 4.7, one can show that for a null

recurrent process the assumptions of Theorem 4.4 imply

lim
t→∞ Exf (X(t))= 0, lim

t→∞P(x, t,K)= 0. (4.59)

We shall not go into the proof of these formulas.



4.8 Some Generalizations 121

4. It was proved in Sects. 4.4 through 4.7 that if condition (B) holds, then the
Markov process X(t) has a unique stationary distribution, whose “domain of at-
traction” is the entire space. However, one frequently encounters the situation in
which there exist domains of attraction with different stationary distributions. To
bring such situations into the range of our discussion, we need only modify condi-
tion (B.2).

Let us say that a set D is invariant for the process X(t) if Px{X(t) ∈D} = 1 for
all t > 0, x ∈D.

Suppose that, besides condition (B.1) as formulated in Sect. 4.4, the following
condition (B.2′) is satisfied:

There exists a setD ⊃U , invariant for the processX(t), such thatD =⋃∞
n=1Kn

(Kn are compact subsets) and supKn Exτ <∞ for all n.
Analyzing the previous proofs, we see that under conditions (B.1), (B.2′)

there exists a unique stationary distribution μ for the process X(t), such that
μ(Rl \D)= 0. Moreover, for all x ∈U , the strong law of large numbers (4.20) and
the theorem on the limiting behavior (4.46) and (4.47) of the transition probability
are valid.

Call F a set of inessential states of the process X(t) if

P(x, t,F )→ 0 (4.60)

for all x ∈ R
l , t → ∞.

Now suppose that the entire phase space R
l can be decomposed as the union

of a finite or countable family of invariant sets Di and a set of inessential states
F = R

l \⋃Di . Assume further that each of the sets Di contains a “mixing region”
Ui , i.e., Ui and Di satisfy conditions (B.1), (B.2′).

Each set Di is called an ergodic set of the process X(t). Suppose a specific
stationary distribution μi(A) is established in each ergodic set. Since the sets Di
are mutually disjoint, the measures μi(A) are singular with respect to each other. It
is easily shown that for any positive constants k1, k2, . . . such that

∑

i ki = 1, the
measure

μ(A)=
∑

i

kiμi(A) (4.61)

is also stationary.
The converse is also valid: Any distribution which is stationary for the process

X(t) is expressible in the form (4.61).
In fact, let μ(A) be some stationary distribution. Then

μ(A)=
∫

μ(dx)P (x, t,A). (4.62)

Setting A= F , letting t → ∞ and using (4.60), we conclude that μ(F)= 0. Now
let B ⊂Di . Then

μ(B)=
∑

j

∫

Dj

μ(dx)P (x, t,B)=
∫

Di

μ(dx)P (x, t,B) (4.63)
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by the invariance of the set Di . The invariance of Di and (4.63) imply that the
measure ν defined by ν(A) = μ(A ∩ Di)/μ(Di), is a stationary distribution for
X(t) such that ν(Rl \Di)= 0. Since there is exactly one such measure, we get

μ(A∩Di)= μ(Di)μi(A).

Using this and the condition μ(F)= 0, we finally get

μ(A)=
∑

i

μ(Di)μi(A).

Suppose the point X(0)= x belongs to ergodic set Di . Then, as we already have
seen above, the strong law of large numbers (4.20) and the theorem on the limiting
behavior of the transition probability (4.46), (4.47) are valid, provided we setμ= μi
in these formulas.

We now consider the case X(0) = x ∈ F . First, since the event B = {X(t) ∈ F
for all t > 0} implies the event {X(t) ∈ F }, it follows by (4.60) that Px(B) = 0.
Using this fact and the strong law of large numbers (which is valid in each ergodic
set), we get the equality

P
{

lim
T→∞

∫ T

0 f (X(t)) dt

T
= ξ

}

= 1.

Here ξ is the random variable equal to

fi =
∫

f (x)μi(dx),

when the path X(t) leads from F to the set Di . Let πi(x) denote the probability
that a path issuing from x “settles” in the set Di . Since Px(B) = 0, it follows that
∑

i πi(x)= 1. By the above, we have Px{ξ = fi} = πi(x).
Similar arguments yield the conclusion that

lim
t→∞P(x, t,A)=

∑

i

πi(x)μi(A)

for x ∈ F .

4.9 Stabilization of the Solution of the Cauchy Problem
for a Parabolic Equation

In previous sections we applied properties of solutions of parabolic and elliptic dif-
ferential equations in order to study properties of diffusion processes. Recent years
have seen the publication of numerous papers in which, conversely, probabilistic
methods are employed to study the properties of solutions of second-order parabolic
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and elliptic equations. In this section we shall see that the results proved in Sects. 4.4
through 4.8 yield information about the behavior of the solutions of the Cauchy
problem for a parabolic equation for large time values.

Let X(t) be a time-homogeneous Markov process, regular in R
l , with generator

L= ∂

∂s
+

l
∑

i=1

bi(x)
∂

∂x
+ 1

2

l
∑

i,j=1

aij (x)
∂2

∂xi∂xj

≡ ∂

∂s
+
(

b(x),
∂

∂x

)

+ 1

2

k
∑

r=1

(

σr(x),
∂

∂x

)2

.

As above, we shall assume that the coefficients b(x), σr(x) satisfy a Lipschitz
condition

k
∑

r=1

|σr(x)− σr(y)| + |b(x)− b(y)|<B|x − y|

in every compact subsetK ⊂ R
l , where the Lipschitz constant B may depend onK .

Let us assume now also that the nondegeneracy condition (B.1) holds in every com-
pact set.

It is well known (see [66]) that the above conditions are sufficient for the exis-
tence of a solution of the problem

Lu= 0; u(0, x)= f (x) (4.64)

in the domain (s < 0)× R
l for any bounded continuous function f (x). It follows

from Lemma 3.3 and the remarks following its proof that this solution is unique and
that it can be written as

u(s, x)= Es,xf (X(0)).

The process X(t) is time-homogeneous. Therefore, making the substitution s = −t ,
we see that the function

u(−t, x)= u1(t, x)= Exf (X(t)) (4.65)

is a solution of the following initial-value problem, equivalent to problem (4.64):

∂u1

∂t
=
(

b(x),
∂

∂x

)

u1 + 1

2

k
∑

r=1

(

σr(x),
∂

∂x

)2

u1, u1(0, x)= f (x). (4.66)

Lemma 4.13 If the process X(t) is regular and transient, then for any continuous
initial function f (x) with compact support the solution u1(t, x) of problem (4.66)
tends to zero as t → ∞. Moreover, the function

v(x)=
∫ ∞

0
u1(t, x) dt

is bounded in R
l .
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Proof Let f (x)= 0 for x ∈ R
l \K . Then (4.65) implies

|u1(t, x)| ≤ max
Rl

|f (x)|P(x, t,K). (4.67)

Hence the first assertion of the theorem follows by (4.6). The second assertion fol-
lows from (4.67) and the Corollary 4.2. �

Remark 4.3 It can be shown that the function v(x) satisfies the elliptic equation

∑

i=1

bi(x)
∂v

∂xi
+ 1

2

∑

i,j=1

aij (x)
∂2v

∂xi∂xj
= −f (x) (4.68)

and

v(x)→ 0 as |x| → ∞. (4.69)

Thus the conditions of the theorem are sufficient for the existence of a solution
of problem (4.68), (4.69) in R

l .

Consider the sufficient conditions for transience proved in Chap. 3. Using these
and Lemma 4.13, one can derive sufficient conditions for the solution of problem
(4.66) to tend to zero as t → ∞ and for the existence of a solution of problem
(4.68), (4.69). These conditions will then be given in terms of the coefficients of the
equation.

Lemma 4.14 Let X(t) be a null recurrent process. Then, for any continuous initial
function f (x) with compact support, the solution u1(t, x) of problem (4.65) tends
to zero as t → ∞. If f (x)≥ 0 and f (x) �≡ 0, then

∫ T

0
u1(t, x) dt → ∞ as T → ∞.

Proof The first assertion follows from (4.67) and (4.59), and the second from the
equality

∫ T

0
u1(t, x) dt = Ex

∫ T

0
f (X(t)) dt

and the fact that a recurrent process spends an infinite time in the neighborhood of
any point. �

Stronger results can be obtained if X(t) is a positive recurrent process.

Lemma 4.15 Let X(t) be a positive recurrent process. Then, for any continuous
bounded function f (x), the solution u1(t, x) of problem (4.66) tends to a constant
as t → ∞. This constant is given by

∫

Rl

f (x)μ(dx),

where μ(A) is the stationary initial distribution of the process X(t).
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The proof follows from the representation (4.65) of the solution of problem (4.66)
and from Theorem 4.3.

The following Lemma may be useful for the actual computation of the limit of
u1(t, x) as t → ∞.4

Lemma 4.16 The distribution μ(A) has a density p0(x) with respect to Lebesgue
measure in R

l . This density is the unique bounded solution of the equation

L∗p0 ≡ 1

2

l
∑

i,j=1

∂2

∂xi∂xj
(aij (x)p0)−

l
∑

i=1

∂

∂xi
(bi(x)p0)= 0, (4.70)

satisfying the additional condition
∫

Rl

p0(x) dx = 1. (4.71)

Proof The stationary distribution μ(A) satisfies the condition

μ(A)=
∫

Rl

μ(dx)P (x, t,A). (4.72)

Since the measure P(x, t,A) has a density p(x, t, y) with respect to Lebesgue mea-
sure, which is simply Green’s function5 of (4.66), it follows from (4.72) that the
measure μ(A) also has a density p0(x); i.e.

μ(A)=
∫

A

p0(x) dx. (4.73)

From (4.72) and (4.73) we get the formula

p0(y)=
∫

Rl

p0(x)p(x, t, y) dx. (4.74)

It is well known (see [101]) that the solution v(t, x) of the problem

∂v

∂t
= L∗v; v(0, x)= p0(x),

can be written as

v(t, x)=
∫

Rl

p0(y)p(y, t, x) dy.

This, together with (4.74) shows immediately that the function p0(x) satisfies
(4.70). Before proving uniqueness, we need the following lemma.

4Equation (4.70) for the function p0(x) is known as Fokker–Planck–Kolmogorov equation, see
[144]. Lemmas 4.16 and 4.17 were proved in [100, Sect. 4] under more general assumptions.
5The existence of Green’s function under these assumptions follows, e.g., from results of Eidelman
[66] and Mikhailov [197].
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Lemma 4.17 If X(t) is a positive recurrent process, then the function p(x, t, y)
satisfies the relation

lim
t→∞p(x, t, y)= p0(y). (4.75)

Proof By the Chapman–Kolmogorov equation

p(x, t, y)=
∫

Rl

p(x, t − 1, z)p(z,1, y) dz,

the function p(x, t, y) satisfies

p(x, t, y)= Exp(X(t − 1),1, y).

Hence, by Theorem 4.3, we have

lim
t→∞p(x, t, y)=

∫

Rl

p0(z)p(z,1, y) dz

for every y. This equality and (4.74) imply the desired assertion. �

We can now complete the proof of Lemma 4.16. Let q0(x) be another solution of
problem (4.70), (4.71). Then this is also a solution of the problem

∂v

∂t
= L∗v; v(0, x)= q0(x).

Therefore

q0(x)=
∫

q0(z)p(z, t, x) dz

and if we now let t → ∞ and recall (4.75), we see that q0(x) = p0(x). This com-
pletes the proof of Lemma 4.16. �

Remark 4.4 Recall that sufficient conditions for recurrence and positive recurrence
were established in Chap. 3. Using the results of Sects. 3.2 and 3.3, we can derive
necessary and sufficient conditions for a process X(t) to be transient, recurrent, null
or positive. Such conditions will then be given in terms of the properties of the
operator

L1 =
l
∑

i=1

bi(x)
∂

∂xi
+ 1

2

l
∑

i,j=1

aij (x)
∂2

∂xi∂xj
.

For example, a regular process X(t) is recurrent if and only if there exists a unique
solution of the exterior Dirichlet problem for the equation L1u= 0 in some (hence
every, see Sect. 3.2) domain Dc such that D is bounded. The process is positive
recurrent if and only if the exterior Dirichlet problem for the equation L1u = −1
has a positive solution. These statements follow from Theorems 3.10, 3.11 and the
results of Sects. 3.2 and 3.3.
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Remark 4.5 Many results of this chapter can be generalized to the time non-homo-
geneous case. For example, in [100] and [123] sufficient conditions are estab-
lished in terms of Lyapunov functions for a nonhomogeneous Markov process to
be bounded in probability. It has been shown that, under certain assumptions on the
coefficients, a time non-homogeneous process possesses a certain analog of a sta-
tionary distribution, i.e., a distribution to which all others ultimately converge (see
[100, Theorem 5]). It is not difficult to prove that if the transition probability func-
tion is periodic, this distribution is periodic as a function of time and determines a
periodic Markov process.

4.10 Limit Relations for Null Recurrent Processes

In Sect. 4.5 we studied the behavior of the functional

ζ(T )=
∫ T

0
f (X(t)) dt

as T → ∞, assuming condition (B) to hold. We showed that ζ(T )/T converges
to a constant a.s., and Eζ(T )/T converges to the same constant. If X(t) is a null
recurrent process, the random variable T −1ζ(T ) converges in probability to zero
if f is ν-integrable. This leads one to expect the existence of a non-trivial limit
distribution of ζ(T ) for normalizing factors other than T −1.

The analogous problem for Markov chains with countably many states was stud-
ied by Feller in his well known paper [71]. He proved there that the limit distribution
of the number of hits in each state of the chain depends essentially on the distribu-
tion of the random variable τ equal to the length of one cycle (see Sect. 4.5). Since
in the case at hand we have Eτ = ∞, it is natural to conjecture that τ belongs to the
domain of attraction of a stable law with exponent α < 1. It turns out that in this case
the limit distribution of T −αζ(T ) for a one-dimensional diffusion process coincides
with that established by Feller in [71]. What is new here is that one can establish
conditions for convergence to various laws, and also the values of the normalizing
factors in terms of the coefficients of the generator of the Markov process X(t).

Our exposition will be based on certain known facts. For the reader’s convenience
we summarize these in the following two lemmas.

The reader can find the proofs in Sects. 13.5 and 13.6 of [74].

Lemma 4.18 Let α > 0 and let G(x) be a function, monotone on the half-line
[0,∞), whose Laplace transform

g(s)=
∫ ∞

0
e−sx dG(x)

exists for s > 0. Then either of the relations
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G(x) ∼ cxα

Γ (1 + α)
, x → ∞,

g(s) ∼ cs−α, s → 0,

implies the other. (As usual, Γ (α) denotes the gamma-function.)

Lemma 4.19 Let 0< α < 1, and let ξ1, . . . , ξn, . . . be independent identically dis-
tributed random variables, F(x) = P {ξ1 ≥ x}, and F(0) = 1. Let Gα(x) be the
distribution function of a stable law with exponent α, whose Laplace transform is
exp{−sα}. Then any one of the relations

F(x)∼ cx−α

Γ (1 − α)
, x → ∞, (4.76)

ϕ(s)= Ee−sξi ∼ 1 − csα, s → 0, (4.77)

P

{

ξ1 + · · · + ξn

(nc)1/α
< x

}

→Gα(x), n→ ∞, (4.78)

implies the two others.

Let ν(T ) denote the integer-valued random variable defined by

ξ1 + · · · + ξν(T ) ≤ T , ξ1 + · · · + ξν(T ) + ξν(T )+1 > T.

The following lemma is a very special case of the above-mentioned results.

Lemma 4.20 Let the random variables ξi satisfy the assumptions of Lemma 4.19
and suppose (4.76) holds. Then

P
{

ν(T )

T α
>
x

c

}

→Gα(x
−1/α), Eν(T )∼ T α

cΓ (1 + α)
(4.79)

also as T → ∞.

Proof The definition of ν(T ) implies that

P{ν(T )≥ k} = P{ξ1 + · · · + ξk < T }.
Using (4.78) and setting k = [xT α/c], we get the first assertion of the lemma. Next,
we have

Eν(T )=
∞
∑

k=1

P{ν(T )≥ k} =
∞
∑

k=1

P{ξ1 + · · · + ξk < T }.

Applying Lemma 4.19 again, we see that

A(s)=
∫ ∞

0
e−sT dEν(T )=

∞
∑

k=1

[ϕ(s)]k = ϕ(s)

1 − ϕ(s)
∼ 1

c
s−α (4.80)

as s → 0. The relations (4.79) now follow from (4.80) and Lemma 4.18. �
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We now proceed to investigate the limiting distribution of the functional ζ(T ) for
a time-homogeneous recurrent diffusion process X(T ) on the line.

We may assume without loss of generality that the drift coefficient of this process
vanishes (otherwise we can perform a transformation of coordinates x1 =W(x); see
Example 3.10). Thus the process X(t) is described by the differential operator

∂

∂t
+ 1

2
σ 2(x)

∂2

∂x2
(σ 2(x) > 0). (4.81)

The uniqueness and recurrence of the process X(t) associated with the operator
(4.81) follow from the results of Chap. 3, provided the function σ(x) satisfies a
Lipschitz condition in every compact set and moreover 0 < σ 2(x) < k(x2 + 1),
where k is a constant, for x ∈ R

1. Throughout Sects. 4.10 and 4.11 we shall assume
that these conditions are satisfied.

As in Sect. 4.5, we shall start from the expansion (compare (4.22))

ζ(T )=
ν(T )
∑

n=1

ηn + ρ(T ), ρ(T )=
∫ T

τν(T )

f (X(t)) dt. (4.82)

Here ηk is the increment of the functional ζ(T ) during the k-th cycle. It will be
convenient to define now a cycle as the portion of the path of X(t) beginning at
x = 0 and extending up to the first time of return to zero after the point x = 1 has
been reached. With this definition of cycles consider the random variables τn equal
to the time at which the n-th cycle ends (τ0 = 0). They satisfy

ηn =
∫ τn

τn−1

f (X(t)) dt

and they are independent and identically distributed, if x(0)= 0. The lengths of the
cycles, ξn = τn − τn−1, are also obviously independent and identically distributed.
To study their distribution we shall need the following lemma.

Lemma 4.21 Let τ (0) (τ (1)) be the time needed by the path of the process X(t) to
reach the point x = 0 (x = 1). Then the function

u0(s, x)= Ex exp{−sτ (0)} (u1(s, x)= Ex exp{−sτ (1)})
is the unique bounded solution of the equation

1

2
σ 2(x)

d2u

dx2
− su= 0 (4.83)

in the domain x > 0 (x < 1) satisfying the condition u0(s,0)= 1 (u1(s,1)= 1).

Proof We set τ (0)n = min{τ (0), τ (n)}, where τ (n) is the time at which the path reaches
the point x = n. We also set χn = 1 if X(τ (0)n )= 0 and χn = 0 if X(τ (0)n ) = n. In-
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equalities for the random variables imply corresponding inequalities for their expec-
tations:

vn(s, x)= Ex[exp{−sτ (0)n }χn] ≤ u0(s, x)≤ Ex exp{−sτ (0)n } =wn(s, x).

It follows from the Feynman–Kac formula that the functions vn(s, x) and wn(s, x)
are solutions of (4.83) in the domain 0< x < n, satisfying the boundary conditions
vn(s,0)= 1, vn(s, n)= 0 and wn(s,0)= 1, wn(s,n)= 1. Since the process X(t) is
regular and recurrent, we have

lim
n→∞wn(s, x)= lim

n→∞vn(s, x)= u0(s, x).

On the other hand, it is clear that any solution of (4.83) which is bounded in x > 0
and such that u(s,0) = 1, lies between vn(x) and wn(s, x) for 0 ≤ x ≤ n. This
completes the proof of the lemma. �

Remark 4.6 The length of a single cycle ξn is equal to the sum of two indepen-
dent random variables: the lengths of the half-cycles. Hence the functions u0(s, x),
u1(s, x) and the Laplace transform of the distribution of ξn satisfy the equality

Ee−sξn = E0e
−sτ (1)E1e

−sτ (0) = u1(s,0)u0(s,1). (4.84)

Lemma 4.22 If the integral

f̄ = 2
∫ ∞

−∞
f (x)

σ 2(x)
dx (4.85)

is absolutely convergent, then the expectation of the random variable ηk exists and
is equal to f̄ .

Proof We have

Eηk = E0
∫ τ (1)

0
f (X(t)) dt + E1

∫ τ (0)

0
f (X(t)) dt. (4.86)

The random variable
∫ τ (0)

0 f (X(t)) dt has an expectation if the sequence

E1
∫ τ

(0)
n

0 |f (X(t))|dt has a finite limit as n→ ∞. By Lemma 3.6, the function

un(x)= Ex
∫ τ

(0)
n

0
|f (X(t))|dt

is a solution in the domain 0< x < n of the problem

σ 2(x)

2

d2un

dx2
+ |f (x)| = 0; un(0)= un(n)= 0.
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This implies easily that

Ex
∫ τ (0)

0
|f (X(t))|dt = lim

n→∞un(x)= 2
∫ x

0
dz

∫ ∞

z

|f (y)|
σ 2(y)

dy,

and similarly

Ex
∫ τ (0)

0
f (X(t)) dt = 2

∫ x

0
dz

∫ ∞

z

f (y)

σ 2(y)
dy.

In an analogous way one proves the equality

Ex
∫ τ (1)

0
f (X(t)) dt = 2

∫ 1

x

dz

∫ z

−∞
f (y)

σ 2(y)
dy

valid for x < 1. Together with (4.86), these equalities imply the desired assertion. �

4.11 Limit Relations for Null Recurrent Processes (Continued)6

Theorem 4.5 Suppose that the distribution of the length of a single cycle ξn belongs
to the domain of normal attraction of a stable law with exponent α < 1, i.e.,

P{ξn ≥ T } ∼ cT −α (T → ∞). (4.87)

Assume that the integral (4.85) is absolutely convergent and non-zero.
Then the process X(t) defined by the operator (4.81) satisfies the relations, as

T → ∞

Px
{
∫ T

0 f (X(t)) dt

f̄ T α
<

z

cΓ (1 − σ)

}

→ 1 −Gα(z
−1/α), (4.88)

Ex
∫ T

0
f (X(t)) dt ∼ f̄ T α

cΓ (1 + α)Γ (1 − α)
. (4.89)

Proof (1) Since the process X(t) is recurrent, we may assume without loss of gen-
erality that X(0)= 0. We now observe that the random variables ν(T ) in the expan-
sion (4.82) and the variables ξi satisfy the assumptions of Lemma 4.20. Therefore,
as T → ∞,

P
{

ν(T )

T α
>

x

cΓ (1 − α)

}

∼Gα(x
−1/α), (4.90)

Eν(T )∼ T α

Γ (1 − α)Γ (1 + α)
. (4.91)

6The theorems of this and next sections are proved in [129, 131, 132].
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It follows from the expansion (4.82) that

ζ(T )

T α
= η1 + · · · + ην(T )

ν(T )

ν(T )

T α
+ ρ(T )

T α
. (4.92)

It is clear that ν(T )→ ∞ almost surely as T → ∞. Hence, by the strong law of
large numbers, we get

P
{

η1 + · · · + ην(T )

ν(T )
→ f̄ as T → ∞

}

= 1.

This equality, together with (4.90) and (4.92), imply that (4.88) holds, provided that
ρ(T )T −α → 0 in probability as T → ∞.

(2) If the function f (x) is non-negative (the general case can be reduced to this
by expressing f (x) as the difference of two non-negative functions), then obviously
0 ≤ ρ(T )≤ ην(T )+1. It will therefore suffice to prove that T −αην(T )+1 converges in
mean to zero, i.e., that

lim
T→∞T

−αEην(T )+1 = 0. (4.93)

For any n, the random variables ηn+1, ξn+1 are independent of the history of the
process up to time τn. Hence

Eην(T )+1 = P{τ1 ≥ T }E{η1 | τ1 ≥ T }

+
∞
∑

n=1

∫ T

y=0
P{τn ∈ dy, ξn+1 > T − y}E{ηn+1 | ξn+1 > T − y}

= P{τ1 ≥ T }E{η1 | τ1 ≥ T } +
∫ T

y=0
E(ηn+1χn+1)d

(

∑

n=1

P{τn < y}
)

,

where χn+1 = 1 if ξn+1 ≥ T − y, and χn+1 = 0 if ξn+1 < T − y.
The function ϕ(T − y) = E(ηn+1χn+1) is obviously independent of n, posi-

tive, bounded by Eηi = f̄ , and convergent to zero as T − y → ∞. Moreover,
∑∞
n=1 P{τn < y} = Eν(y) (see Sect. 4.10). Hence, by (4.91), it follows

T −α
∫ T

0
ϕ(T − y)dEν(y)

≤ Eν(T − √
T )

T α
sup
s>

√
T

ϕ(s)+
[

Eν(T )
T α

− Eν(T − √
T )

T α

]

f̄ → 0

as T → ∞. This proves (4.93), and hence also (4.88).
(3) As before, we may assume without loss of generality that f (x) ≥ 0. It then

follows from (4.82) and (4.93) that

lim
T→∞

E0
∫ T

0 f (X(t)) dt

T α
= lim
T→∞

E0(η1 + · · · + nν(T )+1)

T α
.
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We now observe that the event {v(T )+ 1 = n} depends only on the history of the
process X(t) up to time τn. Thus, applying Wald’s identity (see [146]), we see that

E[η1 + · · · + ην(T )+1] = (Eν(T )+ 1)f̄ .

Together with (4.91), the last two equalities imply (4.89) for x = 0. Since the inte-
gral of the function f (X(t)) up to the time at which the point x = 0 is reached has
finite expectation, it follows now that (4.89) is valid for any x. This completes the
proof of the theorem. �

We now present conditions for the relation (4.87) to hold. By (4.84) and Lem-
mas 4.19 and 4.21, a sufficient condition is that the solutions u0(s, x) and u1(s, x)

of (4.83) satisfy

ui(s, x)∼ 1 − ci(x)s
α, i = 0,1,

as s → +0. We are thus led to consider the asymptotic behavior as s → +0 of the
unique bounded for x ≥ 0 solution of the problem

ỹ′′
s − sp(x)ỹs = 0, ỹs(0)= 1. (4.94)

To simplify the notation, we have set here p(x) = 2/σ 2(x). We shall compare the
solution of problem (4.94) with the solution of the “model” problem

y′′
s −Asxβys = 0, ys(0)= 1, (4.95)

with β >−1, A> 0. Determination of the required asymptotic behavior for (4.95)
is trivial. In fact, by the substitution ξ = (As)αx, α = (β + 2)−1 we reduce (4.95)
to the problem (ξ ≥ 0)

d2Zβ

dξ2
− ξβZβ = 0, Zβ(0)= 1. (4.96)

Integrating (4.96), we easily see that if β >−1, the function Zβ(ξ) has a derivative
at zero, which must be bounded because of the boundedness of the function Zβ and
the structure of (4.96). Therefore Zβ(ξ) ∼ 1 − cαξ (ξ → 0). Hence we conclude
that for s → 0

ys(x)= Zβ(A
αsαx)∼ 1 − cαA

αxsα, cα = −Z′
β(0). (4.97)

It is known (see [113, Chap. 3.2]) that the solution of (4.96) can be written as

Zβ(x)= cx1/2Kα(2αx
1/(2α)); (4.98)

hereKα(x) is the Bessel function. We note also that formula (4.98) provides an easy
way of computing constant cα in (4.97):

cα = α2αΓ (1 − α)

Γ (1 + α)
. (4.99)



134 4 Ergodic Properties of Solutions of Stochastic Equations

Theorem 4.6 Assume that for some constants β >−1, p̃+ and p̃− such that p̃+ +
p̃− > 0 the following condition is valid:

lim
T→±∞

1

T

∫ T

0
|x|−βp(x)dx = p̃±. (4.100)

Then for the length of a single cycle ξn we have

P{ξn > T } ∼ α2α(p̃+ + p̃−)
Γ (1 + α)

T −α as T → ∞. (4.101)

Proof It follows from (4.84) and Lemmas 4.19, 4.21 that it is enough to establish
asymptotic properties for s → 0 of the unique bounded solutions of problems

d2u0(s, x)

dx2
− sp(x)u0(s, x)= 0; u0(s,0)= 1, x ≥ 0 (4.102)

and

d2u1(s, x)

dx2
− sp(x)u1(s, x)= 0; u1(s,1)= 1, x ≤ 1. (4.103)

It follows from the definition of ui(s, x) that

0< ui(s, x)≤ 1. (4.104)

Making substitutions x = z/sα and Us,i(z)= ui(s, z/s
α) and using 1 − 2α = αβ

lead to

d2Us,i(z)

dz2
− sαβp

(

z

sα

)

Us,i(z)= 0. (4.105)

Upon using (4.100), (4.104) and (4.105), for a fixed z0 > 0 and h > 0, we have

0<
dUs,i(z0 + h)

dz
− dUs,i(z0)

dz
= sαβ

∫ z0+h

z0

p(xs−α)Us,i(x) dx

≤ sαβ
∫ z0+h

z0

p(xs−α)
|xs−α|β |xs−α|β dx

≤ max(zβ0 , |z0 + h|β)sα
∫ (z0+h)s−α

z0s
−α

p(x)

|x|β dx

≤Kmax(zβ0 , |z0 + h|β)h+ ρs(h, z0), (4.106)

where ρs(h, z0)→ 0 uniformly in h > 0 as s → 0. Note that in the above and here-
after K is a generic positive constant; its values may be different for different ap-
pearances.
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It is also important to study the increment of (d/dz)Us,0 at z0 = 0. In fact,
∣

∣

∣

∣

dUs,0(h)

dz
− dUs,0(0)

dz

∣

∣

∣

∣

≤ sαβ
∫ h

0
p(xs−α) dx =A(s,h).

Let 0 < h ≤ sα . Then A(s,h) ≤ Ksαβh. Choosing γ < 1 satisfying the inequality
γ + β > 0 (recalling that β >−1), we arrive at

A(s,h)≤Ksα(γ+β)h1−γ ≤Kh1−γ .

Next let h > sα , and β < 0. By virtue of (4.100)

A(s,h)= sαβ
(∫ sα

0
p(xs−α) dx +

∫ h

sα
p(xs−α) dx

)

≤Ksαβ+α + sαβ
∫ h

sα

p(xs−α)
|xs−α|β dx ≤ ch1+β.

It is clear that the same inequality also holds for h > sα , β ≥ 0.
It follows from the above arguments that {Us,0(z)} and {(d/dz)Us,0(z)} are uni-

formly (in s) bounded on any compact subset of R
+ = {z ≥ 0}. Using this fact

together with (4.106), we can extract convergent subsequence {Usn,0( · )} and obtain
{(d/dz)Usn,0(·)} such that the subsequence converge uniformly on any compact set
to U0,0(·) and (d/dz)U0,0( · ), respectively. Using the integral mean value theorem,
we obtain

dUsn,0(z0 + h)

dz
− dUsn,0(z0)

dz
= z

β

0

∫ z0+h

z0

(

z

sαn

)−β
p(zs−αn ) dzUsn,0(z0)+ o(h)

as h→ 0. Make a change of variable z/sαn = x leading to

dUsn,0(z0 + h)

dz
− dUsn,0(z0)

dz
= z

β

0 s
α
n

∫ (z0+h)/sαn

z0/s
α
n

x−βp(x)dxUsn,0(z0)+ o(h).

Sending sn → 0 and using (4.100) yield

dU0,0(z0 + h)

dz
− dU0,0(z0)

dz
= z

β

0 p̃+U0,0(z0)h+ o(h).

Letting h→ 0, and noting that z0 is arbitrary, we obtain the following limit differ-
ential equation

d2U0,0(z)

dz2
− zβp̃+U0,0(z)= 0, for z > 0. (4.107)

Equation (4.107) has a unique bounded solution satisfying the initial condition
U0,0(0)= 1. This yields that for any A> 0, the limits

lim
s→0

Us,0(z)=U0,0(z), lim
s→0

dUs,0(z)

dz
= dU0,0(z)

dz
, (4.108)
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uniformly on [0,A] and the solution is precisely the solution of (4.107) with initial
condition U0,0(0)= 1. It follows from (4.95)–(4.97) that

dU0,0(0)

dz
= −cαp̃α+, with cα = α2αΓ (1 − α)

Γ (1 + α)
. (4.109)

By virtue of (4.108) and (4.109), as s → 0,

us,0(1)=Us,0(s
α)= 1 − cαp̃

α+sα + o(sα). (4.110)

Analogously as s → 0,

us,1(0)=Us,1(s
α)= 1 − cαp̃

α−sα + o(sα). (4.111)

Assertion of theorem follows from (4.84), (4.110) and (4.111). �

Theorems 4.5 and 4.6 imply

Corollary 4.5 Let p(x)= 2σ−2(x) satisfy the condition (4.100). Then the assertion

of Theorem 4.5 is valid with c= α2α(p̃α++p̃α−)
Γ (1+α) .

Corollary 4.6 Theorems 4.5, 4.6 and probabilistic representation for solutions of
Cauchy problem for parabolic differential equations imply useful results on asymp-
totic behavior of the solution u(t, x) and v(t, x) of problems

∂u

∂t
= 1

2
a(x)

∂2u

∂x2
, u(0, x)= ϕ(x)

and

∂v

∂t
= 1

2
a(x)

∂2v

∂x2
+ f (x), v(0, x)= ϕ(x)

as t → ∞. See [139] for details.

Remark 4.7 Making use the reduction of the recurrent process with the generator
1
2 σ

2(x) d2

dx2 + b(x) d
dx

to the process with the generator 1
2 σ

2
1 (y)

d2

dy2 (see Exam-
ple 3.10), analogous results can be obtained for the null recurrent process with drift,
see details in [139].

4.12 Arcsine Law and One Generalization

P. Levy in his brilliant paper [182] found the probability distribution for the occupa-
tion time of the set {x : x > 0} by the Brownian motion W(t). He found that for any
T > 0, 0 ≤ x ≤ 1,

P
{

1

T

∫ T

0
1{W(t)>0}(W(t)) dt < x

}

= 2

π
arcsin

√
x. (4.112)
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Later it was proved that this distribution law (arcsine law) is also the limiting distri-
bution for the number of positive sums of independent random variables with zero
mean, see for instance [67].

We start from the proof (4.112) based on the Feynman–Kac formula (Lemma 3.7).

Theorem 4.7 The distribution law of random variable

ζT = 1

T

∫ T

0
1{W(t)>0}(W(t)) dt

does not depend on T and is given by (4.112).

Proof It is well known (see, e.g. [254, Sect. 4.1]) that for standard Wiener pro-
cess W(t) the process W1(t)=

√
TW(t/T ) is also standard Wiener for any T > 0.

Therefore

1

T

∫ T

0
1{W1(t)>0}(W1(t)) dt = 1

T

∫ T

0
1{W1(t)>0}(

√
TW(t/T )) dt

= 1

T

∫ T

0
1{W1(t)>0}(W(t/T )) dt

=
∫ 1

0
1{W(t1)>0}(W(t1)) dt1. (4.113)

Denote

u(t, x, s)= E exp

{

−s
∫ t

0
1{x+W(t1)>0}(x +W(t1)) dt1

}

.

Due to Lemma 3.7 this function is a solution of problem

∂u

∂t
= 1

2

∂2u

∂x2
− s1{x>0}(x)u, u(0, x, s)= 1. (4.114)

It follows from (4.114) that the Laplace transform

v(λ, x, s)=
∫ ∞

0
e−λtu(t, x, s) dt

is a bounded solution of the equation

λv(λ, x, s)− 1 = 1

2

d2v(λ, x, s)

dx2
− 1{x>0}(x)sv(λ, x, s).

The last equation can be written at the equivalent form

1

2

d2v

dx2
− λv = −1, as x < 0,

1

2

d2v

dx2
− (λ+ s)v = −1, as x > 0,

(4.115)
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with gluing conditions

v(λ,+0, s)= v(λ,−0, s); dv

dx
(λ,+0, s)= dv

dx
(λ,−0, s). (4.116)

It is easy to see that the unique bounded solution of problem (4.115), (4.116) has
the explicit form:

v(λ, x, s)=
⎧

⎨

⎩

1
λ

− s

λ
√
λ+s(√λ+√

λ+s) e
√

2λx, as x ≤ 0,
1
λ+s + s

(λ+s)√λ(√λ+√
λ+s) e

−√
2(λ+s)x, as x > 0.

In particular,

v(λ,0, s)=
∫ ∞

0
e−λtu(t,0, s) dt = 1√

λ(λ+ s)
. (4.117)

But u(t,0, s)= E exp{−s ∫ t0 1{x>0}(W(t1)) dt1}, and due to (4.113)

u(t,0, s)= E exp{−stζ } (4.118)

with ζ = ∫ 1
0 1{x>0}(W(t)) dt . It follows from (4.117) and (4.118) that

1√
λ(λ+ sζ )

∫ ∞

0
e−λtEe−stζ = E

∫ ∞

0
e−t (λ+sζ ) dt = E

1

λ+ sζ
.

Denote λ/s = z. Then we have the following expression for the Stieltjes transform
of ζ :

E
1

ζ + z
= 1√

z(z+ 1)
. (4.119)

It follows from (4.119) (see details in [254, Sect. 4.1]) that

P{ζ < x} = 2

π
arcsin

√
x, as 0 ≤ x ≤ 1.

Assertion of theorem follows now from (4.113). �

Theorem 4.8 7 Let X(t) be a diffusion process with the generator a(x)
2

d2

dx2 , and

a(x) ≥ a0 > 0. Denote p(x) = 2a(x)−1 and assume that the following conditions
are fulfilled.

1. For some constants p+, p− such that p+ + p− > 0

lim
X→±∞

1

X

∫ X

0
p(x)dx = p±. (4.120)

7This theorem was proved in [131], see also [174], [271] some results on limiting distribution of
occupation time for the set {x > 0}.
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2. For piecewise continuous and bounded function f (x), x ∈ R
1, there exist con-

stants f+ and f− such that f+ �= f− and

lim
X→±∞

∫ X

0 f (x)p(x)dx
∫ X

0 p(x)dx
= f±. (4.121)

Then the random variable

ηx(T )= ζx(T )− f−
f+ − f−

= T −1
∫ T

0 f (Xx(t)) dt − f−
f+ − f−

has the proper limit distribution as T → ∞. For p+ = p− this limit distribution is
the arcsine law:

lim
T→∞ P{ηx(T ) < z} = 2

π
arcsin

√
z, 0 ≤ z≤ 1.

For p+ �= p− the limit distribution coincides with distribution of a random variable
δ such that for all z > 0, A= √

p+/p−

E
1

z+ δ
=

√
1 + z+A

√
z√

(1 + z)z(
√
z+A

√
1 + z)

. (4.122)

Distribution of δ is uniquely determined by (4.122).

Remark 4.8 It follows from [272] the formula for the distribution law of δ:

P{δ ≤ x} = 2

π
arcsin

√

x

A2 + (1 −A2)x
.

Proof Consider the random variable

ηt,T (x)= 1

T (f+ − f−)

∫ tT

0
[f (Xx(τ))− f−]dτ.

It follows from Lemma 3.7 that the function

us,T (t, x)= E exp{−sηt,T (x)} (4.123)

is a solution of the problem

1

T

∂us,T

∂t
= 1

2
a(x)

∂2us,T

∂x2
− s(f (x)− f−)
T (f+ − f−)

us,T ; us,T (0, x)= 1. (4.124)

Consider the new function

vs,T (t, x)= us,T (t, x
√
T ). (4.125)
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Then it is easy to see from (4.124) that vs,T (t, x) is a solution of the problem

∂vs,T

∂t
= 1

2
a(x

√
T )
∂2vs,T

∂x2
− s(f (x

√
T )− f−)

f+ − f−
vs,T ; vs,T (0, x)= 1.

Similar to the proof of Theorem 4.7 we consider once more the Laplace transform

w
(T )
s,λ (x)=

∫ ∞

0
e−λtvs,T (t, x) dt. (4.126)

Then, from (4.125) and (4.126), we have the ODE for w(T )s,λ (x)

λw
(T )
s,λ (x)− 1 = 1

2
a(x

√
T )
d2w

(T )
s,λ (x)

dx2
− s(f (x

√
T )− f−)

f+ − f−
w
(T )
s,λ (x).

This equation is equivalent to the equation

d2w
(T )
s,λ (x)

dx2
= p(x

√
T )

{[

λ+ s(f (x
√
T )− f−)

f+ − f−

]

w
(T )
s,λ (x)− 1

}

(4.127)

and w(T )s,λ (x) is a bounded for all λ > 0 and positive solution of this equation. It
follows from (4.120), (4.121), (4.127) and boundedness ws,λ that the second-order
derivative of w(T )s,λ (x) is also bounded. Therefore, the families of functions w(T )s,λ (x),

dw
(T )
s,λ (x)/dx are compact families with respect to T in any compact setK (x ∈K).

Choose some sequence Tn → ∞ so that uniformly in K

lim
n→∞w

(Tn)
s,λ (x)=w

(0)
s,λ(x), lim

n→∞
d

dx
w
(Tn)
s,λ (x)=

d

dx
w
(0)
s,λ(x).

Integrating (4.127) in x for T = Tn and again using Assumptions (4.120), (4.121),
we can conclude that for any x1, x2 ∈K

dw
(0)
s,λ(x2)

dx
− dw

(0)
s,λ(x1)

dx

=
∫ x2

x1

{[λ(p+1{x>0}(x)+ p−1{x<0}(x))+ sp+1{x>0}(x)]w(0)s,λ(x)

− p+1{x>0}(x)− p−1{x<0}(x)}dx.

In other words, the function w(0)s,λ(x) is a bounded solution of the problem

d2w
(0)
s,λ(x)

dx2
= p+(λ+ s)w

(0)
s,λ(x)− p+, x > 0,

d2w
(0)
s,λ(x)

dx2
= λp−w(0)s,λ(x)− p−, x < 0,

(4.128)
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with the gluing conditions

w
(0)
s,λ(−0)=w

(0)
s,λ(+0); d

dx
w
(0)
s,λ(+0)= d

dx
w
(0)
s,λ(−0). (4.129)

The solution of this problem is unique and can be written in the explicit form anal-
ogously the solution of problem (4.115), (4.116):

w
(0)
s,λ(x)= c1(λ, s) exp(−√p+(λ+ s)x)+ 1

λ+ s
, x ≥ 0,

w
(0)
s,λ(x)= −c1(λ, s)

√

p+
p−

(

1 + s

λ

)

exp(−√λp−x)+ 1

λ
, x < 0,

c1(λ, s)= s

λ(λ+ s)(1 +√p+(1 + s/λ)/p−)
.

(4.130)

It follows from the uniqueness of solution of the problem (4.128), (4.129) that there
exists limit

lim
T→∞w

(T )
s,λ (x)=w

(0)
s,λ(x). (4.131)

The function vs,T (t, x) is uniformly in T continuous with respect to t . Moreover,
from the probabilistic meaning of vs,T (t, x) (see (4.123), (4.125)) follows the in-
equality

|vs,T (t + h,x)− vs,T (t, x)|<Ch (4.132)

with independent of T constant C. It follows from (4.126), (4.131) and (4.132) that

lim
T→∞vs,T (t, x)= v(0)s (t, x) (4.133)

and

w
(0)
s,λ(x)=

∫ ∞

0
e−λtv(0)s (t, s) dt. (4.134)

It is clear from (4.134) and (4.128) that v(0)s (t, x) is a solution of the problem

∂v
(0)
s

∂t
= 1

p+
∂2v

(0)
s

∂x2
− sv(0)s , x > 0,

∂v
(0)
s

∂t
= 1

p−
∂2v

(0)
s

∂x2
, x < 0,

v(0)s (0, x)= 1, v(0)s (t,+0)= v(0)s (t,−0),

∂

∂x
v(0)s (t,+0)= ∂

∂x
v(0)s (t,−0).

So, applying Feynman–Kac lemma again, we have

v(0)s (t, x)= E exp

{

− s

T

∫ tT

0
1{x>0}(Xx

√
T

0 (τ )) dτ

}

, (4.135)
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where Xx0 (t) is a diffusion process with the generator

(

1

p+
1(x>0)(x)+ 1

p−
1(x<0)(x)

)

d2

dx2

and Xx0 (0)= x. In particular it follows from (4.135) that the distribution law of the
random variable

δ(T )= 1

T

∫ T

0
1(x>0)(X

0
0(t)) dt

does not depend on T and coincides with arcsine law for p+ = p−.
We can conclude from (4.123), (4.125) and (4.133) that the distribution law of

ηx(T ) converges to the distribution law of δ(1). So in order to finish the proof we
need only to check the characterization (4.122) of the distribution law δ = δ(1) for
p+ �= p− and the uniqueness of reconstruction of this distribution by (4.122). We
have from (4.135)

v(0)s (t,0)= E exp

{

−s
∫ t

0
1{x>0}(X0

0(τ )) dτ

}

= E exp{−stδ(1)}.

Therefore,

w
(0)
s,λ(0)=

∫ ∞

0
e−λtv(0)s (t,0) dt =

∫ ∞

0
e−λtE exp{−stδ(1)}dt = E

1

λ+ sδ(1)
.

(4.136)
On the other hand we have from (4.130)

w
(0)
s,λ(0)=

s + λ+ λ
√

p+
p− (1 + s

λ
)

λ(λ+ s)(1 +
√

p+
p− (1 + s

λ
))

=
√

1 + λ
s

+
√

p+
p−

√

λ
s

s

√

(1 + s
λ
) λ
s
(

√

λ
s

+
√

p+
p− (1 + λ

s
))

. (4.137)

Denote A= (p+/p−)1/2, λ/s = z. Then we have from (4.136) and (4.137)

E
1

z+ δ(1)
=

√
1 + z+A

√
z√

(1 + z)z(
√
z+A

√
1 + z)

. (4.138)

The characterization (4.122) is proved. From the Taylor expansion in the neigh-
borhood of z = 1 (for instance), we can find all moments of the random variable
η= (δ(1)+1)−1. Uniqueness of the construction probability distribution by (4.122)
follows from the above argument and boundedness of η. �
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Remark 4.9 With r = z−1, (4.138) can be rewritten in the form

E(1 + rδ(1))−1 = A+ √
1 + r√

1 + r(1 +A
√

1 + r)
.

All moments of δ(1) can be found from the Taylor expansion at r = 0. For instance

Eδ(1)= A

A+ 1
=

√
p+√

p+ + √
p−
,

var δ(1)= A

2(A+ 1)2
=

√
p+p−

2(
√
p+ + √

p− )2
.

(4.139)

It follows from (4.139) that

lim
T→∞T

−1
∫ T

0
P{Xx(t) > 0}dt =

√
p+√

p+ + √
p−

when assumption (4.120) is valid for a Markov process with the generator
1
2 a(x)

d2

dx2 .

We describe now some further results on the generalized arcsine law for the one-
dimensional null recurrent diffusion process in the canonic scale (with the generator
1
2a(x)

d2

dx2 ).
J. Lamperti [174] introduced more general two-parameter class of random vari-

ables Yα,A, 0 ≤ α ≤ 1, A≥ 0 with values in [0,1] and the Stieltjes transform given
by

E
1

z+ Yα,A
= zα−1 +A(1 + z)α−1

zα +A(1 + z)α
, 0< z < 1. (4.140)

He noticed that for 0< α < 1, A > 0 the probability distribution Fα,A of Yα,A has
the density

fα,A(x)= sinαπ

π

Axα−1(1 − x)α−1

A2(1 − x)2α + 2Axα(1 − x)α cosαπ + x2α
1[0,1](x). (4.141)

It was proved in [174] that the distributions Fα,A are all possible limit distribu-
tions for the occupation time of some sets for some stochastic processes with dis-
crete times (even not necessarily Markovian). Necessary and sufficient conditions
for convergence to the distribution Fα,A with given A, α are also given there.

S. Watanabe in [271] proved the necessary and sufficient conditions for conver-
gence of the occupation time τT = ∫ T0 1{x>0}(Xx(t)) dt of the set {x > 0} for the
one-dimensional (generalized) diffusion process in the canonical scale. For non-

generalized process in the canonical scale (the process with generator 1
2 a(x)

d2

dx2 )
Watanabe’s conditions for

τT

T

distr.−→ Yα,A, 0< α < 1,
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can be written in the form
∣

∣

∣

∣

∫ ±x

0
p(y)dy

∣

∣

∣

∣

= |x|β+1K±(|x|) (4.142)

with slowly varying in the Karamata sense functions K±(|x|), satisfying the condi-
tion

lim
x→∞

K+(x)
K−(x)

=A1/α. (4.143)

(Here and below α(2 + β)= 1.)
The sufficient conditions guaranteeing the convergence in distribution of the in-

tegral functional Yα,A for one-dimensional null recurrent diffusion in the canonical
scale were found in [132].

The following generalization of Theorem 4.8 was proven there.

Theorem 4.9 Suppose that the following conditions are valid:

1. limX→±∞ 1
X

∫ X

0 |x|−βp(x)dx = p± for some constants β >−1, p+ + p− > 0.
2. For any ε > 0, sup|x|>ε{|x|−βp(x)}<∞.
3. f (x) is a piecewise continuous bounded function and

lim
X→±∞

∫ X

0 f (x)|x|−βp(x)dx
∫ X

0 |x|−βp(x)dx
= f±,

where the constants f+ and f− satisfy the condition f+ − f− �= 0.

Denote A= (p+/p−)α . Then

lim
T→∞ P

{
∫ T

0 f (Xx(t)) dt − f−
T (f+ − f−)

< x

}

= Fα,A(x).

Proof of this theorem is analogous to the proof of Theorem 4.8, see details in
[132].



Chapter 5
Stability of Stochastic Differential Equations

5.1 Statement of the Problem

In Chap. 1 we studied problems of stability under random perturbations of the pa-
rameters. We noted there that no significant results can be expected unless the ran-
dom perturbations possess sufficiently favorable mixing properties. Fortunately, in
practical applications one may often assume that the “noise” has a “short memory
interval.” The natural limiting case of such noise is of course white noise. Thus it
is very important to study the stability of solutions of Itô equations since this is
equivalent to the study of stability of systems perturbed by white noise.

Any result concerning conditions for the stability of stochastic systems is appar-
ently itself “stable”, in the sense that it carries over to systems perturbed by noise
which is “almost white” in a well-defined sense. Some relevant results were obtained
by the author in [124]. However, as yet, no complete investigation has been made
of conditions under which the stability (instability) of a system of Itô’s equations
implies the stability (instability) of a “similar” system.

Below we present a theory of stability for Itô equations. The main stimulus for
setting up this theory was the extremely suggestive paper of Kac and Krasovskii
[111]. These authors investigate the stability of the solution X(t)= 0 of the equa-
tion dX/dt = f (X, t, Y (t)), where Y(t) is a time-homogeneous Markov chain with
finitely many states. They solve the problem in terms of Lyapunov functions, but in-
stead of the derivative d0V/dt along the sample path they consider, roughly speak-
ing, the expectation LV of this derivative. The paper also contains important results,
amenable to generalization in various directions, concerning the stability of linear
systems and stability in the first approximation.

In my paper [118] I remarked that by suitable interpretation these results yield in-
formation about the stability of the invariant set (in this case, the hyperplane x = 0)
of the multi-dimensional Markov process (X(t), Y (t)). This interpretation will be
given in Sect. 7.6 below.

A brief survey of Chaps. 5–7 follows.

R. Khasminskii, Stochastic Stability of Differential Equations,
Stochastic Modelling and Applied Probability 66,
DOI 10.1007/978-3-642-23280-0_5, © Springer-Verlag Berlin Heidelberg 2012
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Consider the system

dX(t)= b(t,X)dt +
k
∑

r=1

σr(t,X)dξr(t). (5.1)

We shall assume that X(t), b(t, x) and σr(t, x) are vectors in R
l , and ξr (t) are

independent Wiener processes. We assume moreover that the coefficients of (5.1)
satisfy the following Lipschitz condition in every domain which is bounded in x,
i.e.,

k
∑

r=1

|σr(t, x)− σr(t, y)| + |b(t, x)− b(t, y)|<B|x − y|. (5.2)

In some cases the Lipschitz constant B will be assumed to be independent of the
domain, i.e. inequality (5.2) will be assumed to hold throughout E = {t > 0} × R

l .
We shall limit ourselves to conditions for stability of the trivial solution X(t)= 0.
Accordingly, we assume that

b(t,0)≡ 0, σr (t,0)≡ 0. (5.3)

In the present chapter, the solution of stability problems for systems of SDEs
will be given primarily in the same terms as above. That is, we shall use the same
methods, as employed for the qualitative behavior of solutions of such systems in
Chap. 3.

Theorems 5.3, 5.5 and 5.7 proved below are natural generalizations to stochastic
systems of Lyapunov’s second method. One feature of these theorems should be
mentioned. They all require that the Lyapunov function is sufficiently smooth in t
and x in a neighborhood of x = 0, except possibly at the point x = 0 itself. Unlike
for a deterministic system, for a stochastic system there often does not even exist
a Lyapunov function which is smooth at the origin. This will be clear from the
example at the end of Sect. 5.3.

In this connection, we introduce the following definition.
Let U be a domain with closure ˜U in the space E = I × R

l , and set Uε(0) =
{(t, x) : |x| < ε}. We shall say that a function V (t, x) is in class C0

2(U) (V (t, x) ∈
C0

2(U)) if it is twice continuously differentiable with respect to x and continuously
differentiable with respect to t throughout U , except possibly for the set x = 0, and
continuous in the closed set ˜U \Uε(0) for any ε > 0.

As in Chap. 1, we shall consider the stability of the moment of different orders
(p-stability) and stability in probability. However, whereas in Chap. 1 we were able
to derive conditions only for weak stability in probability (see Sect. 1.5), here we
shall consider stability in probability in a stronger sense. To be precise, we shall
present conditions under which not only does |X(t)| tend to zero in probability uni-
formly in t , but also supt>0 |X(t)| tends to zero in probability as |X(0)| → 0. With
this definition, the stability or instability of the equilibrium position is determined
by the behavior of the coefficients of the equation only in a neighborhood of the
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equilibrium position. It is therefore natural to expect that for a broad range of cases
the full system (5.1) will be stable provided the first-approximation system

dX(t)= ∂b(t,0)

∂x
X(t) dt +

k
∑

r=1

∂σr(t,0)

∂x
X(t) dξr(t) (5.4)

is stable.
The question as to when stability of the system (5.4) implies that of (5.1) will be

answered in Chap. 7. We shall prove that if ∂b/∂x and ∂σr/∂x are independent of t ,
then it suffices that (5.4) is asymptotically stable in probability. If the coefficients
depend on time, one must also assume that some uniformity in time condition is
valid.

Of major importance in this connection is the problem of stability of linear
stochastic systems. In the general case, this problem is rather difficult. We shall
solve it in Chap. 6, though not in a very effective way. We shall prove there that
the stability or instability of a linear stochastic system with time-independent coef-
ficients is determined by the sign of the expectation of a certain random variable,
given the stationary distribution of a certain Markov process on the l-dimensional
sphere. It is shown that this expectation is equal to the limt→∞ ln |X(t)|

t
which is

known as Lyapunov exponent for the linear system. For l = 2 the density of this dis-
tribution can be computed by quadratures, so the Lyapunov exponent can be found
in closed form.

The question of instability conditions is even more complicated. The analogs
of the instability theorems of Lyapunov and Chetaev do not hold in for stochastic
systems. Roughly speaking, the reason for this is that the sample paths of stochastic
systems may leave the “instability set” because of purely random forces. This is
made particularly clear by the second example in Sect. 7.3. In this example, the
unstable deterministic system dx1/dt = x1, dx2/dt = −x2 is “impaired” by the
addition of a small drift and a small diffusion

dX1(t)= (X1 + b(X1,X2)) dt + σ(X1,X2) dξ1(t),

dX2(t)= −X2 dt + σ(X1,X2) dξ2(t).

}

(5.5)

In this case, for any small number ε > 0, the functions b and σ may be chosen
so that

|b(x1, x2)| + |σ(x1, x2)|< ε|x|,
and the system (5.5) is asymptotically stable in the large. It is well known that this
phenomenon is impossible if σ ≡ 0.

In Chap. 5 (Theorem 5.6) we shall present a sufficient condition for instability
which at first glance is relevant only for very special cases. However, it will follow
from the discussion in Chaps. 6 and 7 that if the diffusion of the system is nonde-
generate (in a fairly weak sense), then it is often possible to construct a function
satisfying the assumptions of Theorem 5.6.

On this basis, we shall consider in Chap. 7 the problem of instability in the first
approximation. In the same chapter we shall also consider the problem of stability
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under damped random perturbations and some applications to statistics. At the end
of Chap. 7 we shall discuss the possibility of generalizing the results to a wider class
of processes.

After publication of the first Russian edition of this book in 1969 the huge lit-
erature was devoted to the problem of evaluation the Lyapunov exponent for the
linear stochastic systems. The concepts of moment Lyapunov exponents and sta-
bility index were proposed and well studied. Some results at this area are stated in
Appendix B to this edition.

5.2 Some Auxiliary Results

This chapter will make systematic use of properties of martingales and supermartin-
gales. The following definitions of these important classes of stochastic process are
due to Doob.

Let (Ω,A,P) be a probability space, Mt ⊂ A a family of σ -algebras of events
in Ω , defined for each t ≥ 0, such that Ms ⊂ Mt for s < t . Let y(t,ω), t ≥ 0, be
a stochastic process with finite expectation Ey(t,ω), such that y(t,ω)= y(t) is an
Mt -measurable random variable for each t . The family (y(t,ω),Mt ) is called a
supermartingale if for any s < t

E(y(t) | Ms)≤ y(s) (P-a.s.). (5.6)

If we replace the inequality sign in (5.6) by equality, we get the definition of a
martingale.

The following examples of martingales and supermartingales are important for
the sequel.

Example 5.1 The Wiener process ξ(t) is a martingale with respect to the system of
σ -algebras ˜Nt , since

E(ξ(t) | ˜N∫ )= E([ξ(s)+ (ξ(t)− ξ(s))] |˜Ns)= ξ(s) (a.s.).

An analogous argument shows that the more general process

y(t)=
∫ t

0
σ(s) dξ(s)

with ˜Ns -measurable process σ(s)= σ(s,ω) is also a martingale.

Example 5.2 Let V (t, x) be a function twice continuously differentiable with re-
spect to x and continuously differentiable with respect to t in I ×U , where U ⊂ R

l

is a bounded closed domain. Suppose that in this domain
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LV (t, x)= ∂V

∂t
+ 1

2

l
∑

i,j=1

aij (t, x)
∂2V

∂xi∂xj
+

l
∑

i=1

bi(t, x)
∂V

∂xi

≡ ∂V

∂t
+ 1

2

k
∑

r=1

(

σr(t, x),
∂

∂x

)2

V +
(

b(t, x),
∂

∂x

)

V ≤ 0

holds. Set τ(t)= min(τ, t), where τ is the first exit time from U at the sample path
of the process X(t) defined by (5.1). Then the process y(t)= V (τ(t),X(τ(t))) is a
supermartingale with respect to the system ˜Nt . In fact, under the above assumptions
it follows from Lemma 3.2 that

E[V (τ(t),X(τ(t))) | Ns] ≤ V (s,X(s)) (a.s.).

Hence condition (5.6) is satisfied for almost all paths such that τ > s, and con-
sequently X(τ(s)) = y(s) ∈ U . For almost all paths such that τ ≤ s we have
E(y(t) | ˜Ns) = y(s), since then τ(s) = τ(t) = τ . If LV ≤ 0 for all x ∈ R

l , t ≥ 0,
and Es,xV (t,X(t)) exists, an analogous argument shows that the process V (t,X(t))
is also a supermartingale.

These properties generally fail to hold if the condition LV ≤ 0 is not satisfied on
some set (even at one point). In certain cases, however, the supermartingale property
of the process remains valid even when this happens. Let us call the random variable
τΓ = inf{t :X(t) ∈ Γ } the first time at which the set Γ is reached. A closed set Γ is
said to be inaccessible to a process X(t) if P{τΓ <∞} = 0. Since the sample paths
of the process are continuous, a set Γ is inaccessible if and only if

P{τ(Uδ(Γ ))→ ∞ as δ→ 0} = 1.

Here Uδ(Γ ) is the δ-neighborhood of the set Γ .

Lemma 5.1 Let V (t, x) be a function twice continuously differentiable with respect
to x, continuously differentiable with respect to t on the set I×{U \Γ } and bounded
in I × U , where U is a bounded domain in R

l and Γ ⊂ U is a set inaccessible to
the process X(t) defined by (5.1). Assume that LV ≤ 0 on the set I × (U \Γ ). Then
the process V (τU (t),X(τU (t))) is a supermartingale.

Proof Let τ(U, δ) denote the first exit time from the set U \ Uδ(Γ ), τU,δ(t) =
min(τ (U, δ), t). Since Γ is inaccessible, it follows that for all t , we have

τU,δ(t)→ τU (t) (a.s.) (5.7)

as δ→ 0. On the other hand, it is clear from Example 5.2 that

E(V (τU,δ(t),X(τU,δ(t))) |˜Ns)≤ V (τU,δ(s),X(τU,δ(s))) (a.s.).

Letting δ → 0 in this inequality and using (5.7) and the fact that V is bounded, we
get the required assertion. �
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Lemma 5.2 1 Let the coefficients b and σr of (5.1) satisfy condition (5.3). Assume
further that condition (5.2) holds throughout E = I ×R

l . Then for any real β , t ≥ s,
x �= 0,

E|Xs,x(t)|β ≤ |x|β exp{k(t − s)}, (5.8)

where k is a constant depending only on β and the constant B of (5.2).

Proof The function V (x)= |x|β is twice continuously differentiable in the domain
|x| > δ for any δ > 0. Applying Itô’s formula (3.30) in this domain, we get for
Y s,x(t)= |Xs,x(t)|β the formula

Y s,x(τδ(t))

= Y s,x(s)+ β

∫ τδ(t)

s

|Xs,x(u)|β−2

[

(b(u,Xs,x(u)),Xs,x(u)) du

+ 1

2

l
∑

i=1

aii(u,X
s,x(u)) du+

k
∑

r=1

(σr(u,X
s,x(u)),Xs,x(u)) dξr (u)

]

+ 1

2
β(β − 2)

∫ τδ(t)

s

|Xs,x(u)|β−4(A(u,Xs,x(u))Xs,x(u),Xs,x(u)) du,

(5.9)

where τδ denotes the first exit time from the set |x| > δ and τδ(t) = min(τδ, t). It
is obvious that the random variable Y s,x(τδ(t)) has an expectation. (If β ≤ 0, this
follows from the fact that it is bounded, and if β > 0 we may conclude this from
Example 3.1.) Calculating expectations in (5.9) and using (5.2) and (5.3), we easily
obtain that

EY s,x(τδ(t))≤ |x|β + kE
∫ τδ(t)

s

Y s,x(u) du (5.10)

for some k = k(β,B, l). Since τδ(u)= u for u < τδ(t), it follows from (5.10) that

EY s,x(τδ(t))≤ |x|β + kE
∫ τδ(t)

s

Y s,x(τδ(u)) du

≤ |x|β + k

∫ t

s

EY s,x(τδ(u)) du.

Applying the Gronwall–Bellman lemma to this inequality, we get the estimate

E|Xs,x(τδ(t))|β ≤ |x|β exp{k(t − s)}. (5.11)

1See [221].
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Setting β = −1 in (5.11) and using Chebyshev’s inequality, we get

Ps,x{τδ(t) < t}< δ

|x| e
k(t−s).

This implies

Ps,x{τδ < t} → 0 as δ→ 0 (5.12)

for every s < t . Letting δ→ 0 in (5.11) and using (5.12), we get (5.8). �

Remark 5.1 It follows from (5.12) that under the assumptions of the lemma the point
x = 0 is inaccessible to the process Xs,x(t). For this assertion to hold it suffices that
condition (5.2) is satisfied in every cylinder I ×K , where K ⊂ R

� is compact and
that X(t) is regular. This is intuitively obvious (and easily proved rigorously), since
whether the path of a regular process can hit x = 0 depends only on the behavior
of the coefficients of the equation in the neighborhood of that point. For further
reference, we state this result as a lemma.

Lemma 5.3 Suppose that the coefficients of (5.1) satisfy (5.3), condition (5.2) holds
in every domain bounded with respect to x, and the processXs,x0(t) is regular. Then
the point x = 0 is inaccessible to any sample path of the process if x0 �= 0.

Lemmas 5.1 and 5.3 imply

Lemma 5.4 Let V (t, x) be a function in class C0
2((t > 0) × U), bounded in the

domain (t > 0) × U , where U is a neighborhood of the origin, and suppose that
LV (t, x) ≤ 0 in this domain. Then the process V (τU (t),X(τU (t))) is a super-
martingale, so that

EV (τU (t),Xs,x(τU (t)))≤ V (s, x)
for x ∈U .

Remark 5.2 By virtue of (5.12) we have

Ps,x{τδ(t)→ t as δ→ 0} = 1,

and hence, letting δ → 0 in (5.9), we see that Itô’s formula (3.30) is applicable to
the function |x|β on the whole of R

l , despite the fact that if β < 2, this function
does not satisfy the assumption of Theorem 3.3 at zero. This conclusion holds true
for any function V (t, x) ∈ C0

2(E) such that 0 ≤ V (t, x) < k|x|β .

Our subsequent applications of martingale theory to stability problems are based
on the following theorem which we give here without proof.

Theorem 5.1 [56] If (y(t,ω),Mt , t ≥ 0) is a positive supermartingale, then the
limit y∞ = limt→∞ y(t,ω) almost surely exists and is finite. Moreover Ey∞ =
limt→∞ Ey(t,ω).
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In Chap. 6 we shall need also the following

Theorem 5.2 [56] If (y(t,ω),Mt , t ≥ 0) is a continuous a.s. martingale, then for
any k > 0,p ≥ 1

P
{

sup
t0≤t≤T

|y(t,ω)|> k
}

≤ E|y(T ,ω)|p
kp

.

5.3 Stability in Probability

A solution X(t,ω)≡ 0 of (5.1) is said to be stable in probability for t ≥ 0 if for any
s ≥ 0 and ε > 0

lim
x→0

P
{

sup
t>s

|Xs,x(t)|> ε
}

= 0.

This definition is considerably stronger2 than (1.63). It says that the sample path
of the process issuing from a point x at time s will always remain within any pre-
scribed neighborhood of the origin with probability tending to one as x → 0. The
importance of the definition will be clear from Theorem 5.3 below.

Before we state the theorem, we recall that a function V (t, x) is said to be positive
definite (in Lyapunov’s sense) in a neighborhood of the set x = 0 if V (t,0)= 0 and
in this neighborhood V (t, x) >W(x), where W(x) > 0 for x �= 0 and continuous.

Theorem 5.3 is analogous to the well-known theorem of Lyapunov for deter-
ministic systems. For nondegenerate processes, it was first proved by the author in
[118]. Subsequently it has been generalized in various directions.3

Theorem 5.3 Let {t > 0} × U = U1 be a domain containing the line x = 0, and
assume there exists a function V (t, x) ∈ C0

2(U1) which is positive definite in Lya-
punov’s sense and satisfies

LV = ∂V

∂t
+

l
∑

i=1

bi(t, x)
∂V

∂xi
+ 1

2

l
∑

i,j=1

aij (t, x)
∂2V

∂xi∂xj
≤ 0

for x �= 0. Then the trivial solution of (5.1) is stable in probability.

Proof Let r be a number such that the r-neighborhood Ur of the point x = 0 is
contained in U together with its boundary. We set Vr = infx∈U\Ur V (t, x) (Vr > 0
by assumption). By Lemma 5.4, we have

EV (τUr (t),X
s,x(τUr (t)))≤ V (s, x)

2The relation between this definition and definition (1.63) is discussed in Sect. 6.11.
3Gikhman [89, 90] has given another proof, making no use of nondegeneracy, but using only
Lyapunov functions which are smooth at zero. A similar result was obtained by Kushner in [166].
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for |x|< r . Using this and Chebyshev’s inequality, we get

P
{

sup
s≤u≤t

|Xs,x(u)|> r
}

≤ EV (τUr (t),X
s,x(τUr (t)))

Vr
≤ V (s, x)

Vr
.

Letting t → ∞, we finally have

P
{

sup
u≥s

|Xs,x(u)|> r
}

≤ V (s, x)

Vr
.

Since V (s,0) = 0 and the function V (s, x) is continuous, this implies the desired
assertion. �

Remark 5.3 We shall say that the solution X(t)≡ 0 of (5.1) is uniformly stable in
probability for t > 0 if for any ε > 0 the function P{supt>s |Xs,x(t)| ≥ ε} tends to
zero as x → 0, uniformly in s ≥ 0. An examination of the proof of Theorem 5.3
immediately reveals that a sufficient condition for uniform stability in probability is
that the function V (t, x) satisfies the assumptions of Theorem 5.3 and that it has an
infinitesimal upper limit, i.e.,

lim
x→0

sup
t>0

V (t, x)= 0.

A question of major theoretical and practical interest is whether there exists for
every system which is stable in probability, a Lyapunov function satisfying the as-
sumptions of Theorem 5.3. For simplicity’s sake, we shall confine ourselves to the
time-homogeneous case, assuming moreover that the “noise” is nondegenerate ev-
erywhere, except at x = 0.

Theorem 5.4 4 Assume that the coefficients b and σr of (5.1) are independent of
time, and that its solution X(t)≡ 0 is stable in probability. Suppose that in a neigh-
borhood of x = 0 condition (5.2) holds and also the nondegeneracy condition

l
∑

i,j=1

aijλiλj > m(x)

l
∑

i=1

λ2
i , (5.13)

where m(x) is a continuous function such that m(x) > 0 for x �= 0.
Then in a neighborhood of x = 0 there exists a positive definite function V (x),

twice continuously differentiable except perhaps at x = 0, such that LV = 0.

Proof Let Ur = {|x|< r} be a sufficiently small neighborhood of x = 0. Let uδ(x)
denote a solution in the domain Ur \Uδ of the problem

Lu= 0; u||x|=r = 1; u||x|=δ = 0.

4See [118, 169].
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It follows from Lemma 3.4 that

uδ(x)= P{|Xx(τr,δ)| = r},
where τr,δ is the first time at which the sample path reaches the set {|x| = r} ∪
{|x| = δ}.

It is clear that the sequence uδ(x) of L-harmonic functions is monotone increas-
ing as δ → 0. Its limit V (x) is also L-harmonic. Let τ0 denote the first time at
which the path of the process reaches the point 0. Then it follows from the obvious
relations between events that

{

sup
t>0

|Xx(t)| ≥ r
}

⊂
⋃

δ>0

{|Xx(τr,δ)| = r} ∪ {τ0 <∞},
⋃

δ>0

{|Xx(τr,δ)| = r} ⊂
{

sup
t>0

|Xx(t)| ≥ r
}

,

and from Lemma 5.3 we obtain

P
{

sup
t>0

|Xx(t)| ≥ r
}

= lim
δ→0

P{|Xx(τr,δ)| = r} = V (x).

Since the solution X ≡ 0 is stable in probability, it follows from this equality that
V (x)→ 0 as x → 0. Finally, the strong maximum principle implies that the function
uδ(x) and hence also V (x), is positive for |x|> δ1 > δ. Thus the function V (x) is
positive definite in Lyapunov’s sense, and LV = 0. This we wished to prove. �

Remark 5.4 Malkin [190] showed that the analog of Theorem 5.4 for deterministic
systems does not hold. It follows that the nondegeneracy condition (5.13) cannot be
dropped (though it can be weakened).

Remark 5.5 The Lyapunov function constructed in Theorem 5.4 at zero is only con-
tinuous. It is readily shown that in general a Lyapunov function which is smooth at
zero may not exist. This will be clear from the following example.

Let X(t) be a one-dimensional process, described by the equation

dX = bXdt + σXdξ(t), (5.14)

where b and σ are constants. The generator of this process is

L= 1

2
σ 2x2 ∂2

∂x2
+ bx

∂

∂x
.

If b < σ 2/2, the solution X(t)≡ 0 of the system (5.14) is stable, since the function
V (x)= |x|1−2b/σ 2

satisfies the assumptions of Theorem 5.3. If b ≥ 0, this function
is not differentiable at zero. Using the maximum principle for elliptic equations,
one readily shows that any function V1(x) such that V1(0)= 0, V1(ε)≥ δ, satisfies
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V1(x) ≥ δ(|x|/|ε|)1−2b/σ 2
in the domain 0 < x < ε. Hence it is clear that when

b > 0, then there can be no Lyapunov function smooth at the origin and independent
of t . A similar argument shows that there does not even exist a Lyapunov function
smooth at zero which depends on t but has an infinitesimal upper limit.

5.4 Asymptotic Stability in Probability and Instability5

The solution X(t)≡ 0 of (5.1) is said to be asymptotically stable in probability if it
is stable in probability and moreover

lim
x→0

P
{

lim
t→∞X

s,x(t)= 0
}

= 1. (5.15)

In this section we shall frequently assume that the following condition is satis-
fied6:

Condition D Any solution of (5.1), beginning in the domain ε < |x| < r , almost
surely reaches the boundary of this domain in a finite time, for any sufficiently small
r and ε > 0.

It follows from Theorem 3.9 that Condition D is satisfied if there exists in the
domain 0 < |x| < r a function W(t, x) ∈ C0

2({t > 0} × Ur), such that for any ε,
0< ε < r ,

W(t, x)≥ 0, LW(t, x) <−cε < 0, if |x|> ε. (5.16)

In the following theorem, U ⊂ R
l is some neighborhood of the origin.

Theorem 5.5 Suppose that there exists a positive definite function V (t, x) ∈
C0

2({t > 0} × U), which has an infinitesimal upper limit and satisfies LV ≤ 0. Let
Condition D hold. Then the solution X(t) ≡ 0 of (5.1) is asymptotically stable in
probability.

Proof By Lemma 5.4, the stochastic process V (τU (t),Xs,x(τU (t))) is a super-
martingale. By Theorem 5.1, this implies that almost surely:

lim
t→∞V (τU (t),X

s,x(τU (t)))= ξ. (5.17)

5The conditions for asymptotic stability and instability in Theorems 5.5 and 5.6 generalize
corresponding results of Khasminskii [118]. Conditions for stability in the large have been
considered by Nevelson [215], to whom, in particular, Theorem 5.8 is due. Stability in the large of
stochastic systems in a different setting has been investigated by Kac [108].
6An analogous condition for deterministic systems was considered by Krasovskii [155, p. 23] in
connection with the inversion of Lyapunov’s theorems on asymptotic stability and instability.
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Let Bx denote the set of sample paths of Xs,x(t) such that τU = ∞. Since the func-
tion V satisfies the assumptions of Theorem 5.3, the solution X(t)≡ 0 is stable in
probability, and consequently

P(Bx)→ 1 as x → 0. (5.18)

It follows from Condition D that for all paths contained in the set Bx , except for a
set of paths of probability zero, we have inft>0 |Xs,x(t)| = 0, and in view of Lemma
5.3 we have also the stronger relation

lim
t→∞

|Xs,x(t)| = 0.

Since the function V has an infinitesimal upper limit, it follows that also
limt→∞ V (t,Xs,x(t))= 0. But by (5.17) the limit

lim
t→∞V (τU (t),X

s,x(τU (t)))= lim
t→∞V (t,X

s,x(t))

exists for almost all paths in Bx . By the above reasoning this limit is equal to zero.
Since the function V (t, x) is positive definite for paths in BX , this implies that

lim
t→∞|X(t)| = 0.

The assertion of the theorem follows now from this relation and (5.18). �

Corollary 5.1 As it was mentioned above, Condition D may be replaced by the
requirement that there exists a function W(t, x) satisfying the inequalities (5.16).
The function V (t, x) itself satisfies these inequalities if LV is negative definite. We
have thus proved the following generalization of Lyapunov’s theorem on asymptotic
stability of deterministic systems: The solution X(t)≡ 0 of (5.1) is asymptotically
stable in probability if there exists in the domain {t > 0} × U a positive definite
function V (t, x) ∈ C0

2({t > 0} × U), which has an infinitesimal upper limit, such
that the function LV is negative definite in this domain.

Corollary 5.2 Condition D always holds if the matrix A(t, x) satisfies the nonde-
generacy condition (5.13). Indeed, then the function W = k − |x|n satisfies condi-
tions (5.16) for a suitable choice of k and n. This means that, if condition (5.13)
holds, then the existence of a function V (t, x) satisfying the assumptions of The-
orem 5.3 and having an infinitesimal upper limit is also sufficient for asymptotic
stability in probability of the solution X(t)= 0 of (5.1). This fact and Theorem 5.4
yield the following proposition: Assume that the coefficients b and σr are indepen-
dent of t and that the nondegeneracy condition (5.13) is satisfied. Then, if the so-
lution of (5.1) is stable in probability, it is also asymptotically stable in probability.
This proposition can be generalized to time-non-homogeneous systems. The exam-
ple of deterministic systems shows that condition (5.13) cannot be dropped (though
it can be weakened).
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As before, we let Ur denote the subset {|x|< r} of R
l .

Theorem 5.6 Assume that there exists a function V (t, x) ∈ C0
2({t > 0} ×Ur) such

that

LV ≤ 0 as x ∈Ur, x �= 0, (5.19)

lim
x→0

inf
t>0
V (t, x)= ∞. (5.20)

Let Condition D hold. Then the solution X(t)≡ 0 of (5.1) is not stable in probabil-
ity. Moreover, in this case the event

{

sup
t>0

|Xs,x(t)|< r
}

has probability zero for all s > 0, x ∈Ur .

Proof Let τr,ε denote the first time of reaching the set {|x| = r}∪{|x| = ε}, τr,ε(t)=
min(τr,ε, t). By (5.19) and Lemma 3.2

EV (τr,ε(t),Xs,x(τr,ε(t)))≤ V (s, x)
holds in the domain Ur \Uε for any ε < r . Letting t → ∞ and using Condition D,
we conclude that EV (τr,ε,Xs,x(τr,ε)) ≤ V (s, x). Chebyshev’s inequality implies
now the estimate

inf|x|<ε,t>0
V (t, x)P

{

sup
s<t<τε

|Xs,x(t)|< r
}

<V (s, x),

where τ ε is the first time the set |x| = ε is reached. Since by Lemma 5.3, τ ε → ∞
almost surely as ε→ 0, we infer the required assertion from the last inequality and
(5.20), letting ε→ 0. �

Remark 5.6 Arguments similar to those used to deduce the corollary from Theo-
rem 5.5 yield the following sufficient conditions for instability.

(1) The solutionX(t)≡ 0 of (5.1) is unstable if conditions (5.19), (5.20) and (5.13)
hold in the domain {t > 0} ×Ur .

(2) The solution X(t)≡ 0 of (5.1) is unstable if condition (5.20) holds and more-
over supε<|x|<r LV < 0 for any ε > 0.

Definition 5.1 The solution X(t)≡ 0 of (5.1) is said to be (asymptotically) stable
in the large if it is stable in probability and also for all s, x

P
{

lim
t→∞X

s,x(t)= 0
}

= 1.

Theorem 5.7 A sufficient condition for the solution X(t)≡ 0 of (5.1) to be stable
in the large is that it is uniformly stable in probability, and moreover the process
X(t) is recurrent relative to the domain |x|< ε for any ε > 0.
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Proof Since the solution X(t)≡ 0 is uniformly stable in probability, it follows that
for any ε > 0 there exists a δ > 0 such that

sup
s>0, |y|<δ

P
{

sup
t>s

|Xs,y(t)|> ε
}

< ε.

Let τδ denote the first time at which the path of the process reaches the set |x| ≤ δ.
By assumption, τδ < ∞ almost surely. Using the strong Markov property of the
process and choosing δ > 0 such that |x|> δ, we get

P
{

lim
t→∞|Xs,x(t)|> ε

}

=
∫ ∞

u=s

∫

|y|=δ
P{τδ ∈ du,Xs,x(τδ) ∈ dy}P

{

lim
t→∞|Xu,y(t)|> ε

}

=
∫ ∞

u=s

∫

|y|=δ
P{τδ ∈ du,Xs,x(τδ) ∈ dy}P

{

sup
t>u

|Xu,y(t)|> ε
}

≤ ε.
This implies the required assertion. �

From Theorem 5.7 one readily derives various sufficient conditions for stability
in the large in terms of Lyapunov functions. The following theorem generalizes to
stochastic equations a well-known theorem of Barbashin and Krasovskii [18].

Theorem 5.8 A sufficient condition for the solution X(t)≡ 0 of (5.1) to be stable
in the large is that there exists a positive definite function V (t, x) ∈ C0

2(E) with an
infinitesimal upper limit such that the function LV is negative definite and

inf
t>0
V (t, x)→ ∞ as |x| → ∞.

Proof We observe that under these assumptions the solution X(t)≡ 0 is uniformly
stable in probability, by virtue of the Remark 5.3. Moreover, by Lemma 3.9 and The-
orem 3.9, this solution is recurrent relative to the domain |x|< ε for any ε > 0. �

Theorem 5.9 The following conditions are sufficient for the solution X(t) ≡ 0 of
(5.1) to be stable in the large:

(1) the process X(t) is regular;
(2) there exists a nonnegative function V1(t, x) ∈ C0

2(E) such that the function LV1
is negative definite;

(3) there exists a positive definite function V2(t, x) ∈ C0
2(E), having an infinitesimal

upper limit, such that LV2 ≤ 0.

Proof The proof follows from Theorem 5.7 and from the above mentioned theo-
rems of Chaps. 3 and 5. Note that by Theorem 3.3 we can replace condition (1) by
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the following condition (1′): There exists a nonnegative function V3(t, x) ∈ C0
2(E)

such that LV3 < kV3 for some positive constant k and limR→∞ inf|x|>R V3 = ∞.
Similarly, (2) can be replaced by (2′): The nondegeneracy condition (5.13) holds in
UR \Uε for any R and ε < R. (2) may be also replaced by the even weaker condition
that aii(t, x) > aR,ε > 0 for some i. �

5.5 Examples

Example 5.3 Consider the one-dimensional process described by the following Itô
equation in R

l :

dX(t)= b(t,X)dt + σ(t,X)dξ(t). (5.21)

Here the generator is

L= ∂

∂t
+ b(t, x)

∂

∂x
+ 1

2
σ 2(t, x)

∂2

∂x2
. (5.22)

Suppose that the expansions

b(t, x)= b(t)x + o(|x|); σ(t, x)= σ(t)x + o(|x|) (5.23)

hold in a neighborhood of x = 0 where, in accordance with the conditions of
Sect. 5.1, the functions b(t) and σ(t) are bounded and the relations (5.23) hold
uniformly in t > 0.

Assume that
∫ t

0

[

b(s)− σ 2(s)

2
+ ε

]

ds < k (5.24)

holds for some ε > 0, k > 0 and all t > 0. Then for sufficiently small ν > 0 the
auxiliary function

V1(t, x)= |x|ν exp

{

−ν
∫ t

0

(

b(s)− σ 2(s)

2
+ ε

)

ds

}

= |x|νV (t)

satisfies all the assumptions of Theorem 5.3. Indeed, that V1(t, x) is positive definite
follows from (5.24). Moreover, by (5.22) and (5.23),

LV1(t, x)= ν|x|νV (t)[−ε+ νσ 2(t)/2] + o(|x|ν).
Thus, if ν < ε/ supt>0 σ

2(t), then the function LV1(t, x) is negative definite in a
sufficiently small neighborhood of x = 0. Consequently, the solutionX ≡ 0 is stable
in probability if condition (5.24) holds.

Let us now assume that
∫ t

0

[

b(s)− σ 2(s)

2
− ε

]

ds >−k (5.25)
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holds for some ε > 0, k > 0 and all t > 0. Then the auxiliary function

V2(t, x)= − ln |x| +
∫ t

0

[

b(s)− σ 2(s)

2
− ε

]

ds

obviously satisfies condition (5.20). Moreover

LV2(t, x)≤ −ε+ o(1) (x → 0).

Hence, by Remark 5.6, it follows that the trivial solution of (5.21) is unstable if
condition (5.25) holds.

In the cases considered above, the stability (or instability) of the linearized sys-
tem

dX(t)= b(t)X dt + σ(t)X dξ(t)

implies the stability (or instability) of the full system (5.21). In the general case,
however, this is not so. In Chap. 7 we shall consider in greater detail the question of
conditions under which the theorem on stability in the first approximation is valid.

We mention one other peculiar consequence of Example 5.3. Condition (5.24)
is satisfied, in particular, by a system (5.21) in which the function b(s) is positive,
provided the difference b(s) − σ 2(s)/2 is smaller than a negative constant. Thus,
the system dx/dt = b(t, x), which is unstable (even in the linear approximation!)
can be “stabilized” by introducing an additive stochastic term σ(t, x) dξ(t), if the
“intensity” of the noise σ 2(t, x) is sufficiently high. For example, the linear system
with constant coefficients dX = bXdt + σXdξ(t) is stable for b < σ 2/2. Writing
this equation as

Ẋ = (b+ σξ)X, (5.26)

one is tempted to interpret the results as follows: An unstable first-order determinis-
tic system is stabilized if white noise of sufficiently high intensity is superimposed
on its coefficient. This assertion is in conflict with physical intuition. Neither is it
correct, if we define a solution of (5.26) to be the limit of a sequence of solutions
xn(t) of the equations ẋn = (b+ σξn(t))xn, where ξn(t) is a sequence of Gaussian
processes whose autocorrelation functions converge to a Dirac δ-function. It can be
shown (this was established heuristically by Stratonovich [256] and rigorously by
the author [124]) that in this case (and also under much more general conditions) the
above limit procedure leads not to an Itô equation but to the analogous stochastic
equation

dX(t)= bX(t) dt + σX(t)d∗ξ(t),

where the stochastic differential d∗ξ(t) is to be understood in the sense of
Stratonovich [255].
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The solution of the Itô equation (5.1) can be constructed as the limit in mean
square as h→ 0 of solutions of the stochastic difference equations

X(tn + h)−X(tn)= b(tn,X(tn))h+
k
∑

r=1

σr(tn,X(tn))[ξr (tn + h)− ξr (tn)].

On the other hand, the solution of the analogous Stratonovich equation

dX(t)= b(t,X(t)) dt +
k
∑

r=1

σr(t,X(t))d
∗ξr(t) (5.27)

is defined as the limit in mean square as h → 0 of the solutions of the finite-
difference equations

X(tn + h)−X(tn) = b(tn,X(tn))h

+
k
∑

r=1

σr

(

tn,
X(tn)+X(tn + h)

2

)

(ξr (tn + h)− ξr (tn)).

(5.28)

Stratonovich [255] showed that if the functions σr(t, x) are continuously differ-
entiable with respect to x, then the above implicit difference scheme is equivalent,
as h→ 0, to the explicit scheme

X(tn + h)−X(tn)=
[

b(tn,X(tn))+ 1

2

k
∑

r=1

∂σr(tn,X(tn))

∂x
σr(tn,X(tn))

]

h

+
k
∑

r=1

σr(tn,X(tn))[ξr (tn + h)− ξr (tn)]. (5.29)

Consequently, the stochastic equation (5.27) is equivalent to the Itô equation

dX(t)=
[

b(t,X(t))+ 1

2

k
∑

r=1

∂σr

∂x
σr(t,X(t))

]

dt +
k
∑

r=1

σr(t,X(t)) dξr (t). (5.30)

Thus, the generator of the process defined by (5.27) is

L= ∂

∂t
+
(

b(t, x)+ 1

2

k
∑

r=1

∂σr

∂x
σr(t, x),

∂

∂x

)

+ 1

2

k
∑

r=1

(

σr(t, x),
∂

∂x

)2

= ∂

∂t
+
(

b(t, x),
∂

∂x

)

+ 1

2

k
∑

r=1

(

σr(t, x),
∂

∂x

(

σr(t, x),
∂

∂x

))

. (5.31)
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The reason for the equivalence of the difference schemes (5.28) and (5.29) may
be explained briefly as follows. Since the vectors σr(t, x) are continuously differen-
tiable with respect to x, it follows that

σr

(

tn,
X(tn)+X(tn + h)

2

)

= σr(tn,X(tn))+ 1

2

(

∂σr(tn,X(tn))

∂x
+ o(1)

)

(X(tn + h)−X(tn))

as h→ 0. Substituting this relation into (5.28) and using the equality

(

J −
k
∑

r=1

∂σr

∂x
Δξr(t)

)−1

= J +
k
∑

r=1

∂σr

∂x
Δξr(t)+ o(Δξr(t)) as Δξr(t)→ 0

(where J is the identity matrix and Δξr(t)= ξr (t + h)− ξr (t)), we conclude that

X(tn + h)−X(tn)

= b(tn,X(tn))h+
k
∑

r=1

σr(tn,X(tn))Δξr(tn)

+
k
∑

r=1

k
∑

j=1

∂σr

∂x
(tn,X(tn))σj (tn,X(tn))Δξr(tn)Δξj (tn)+ o(h). (5.32)

It can be shown further that the terms corresponding to j �= r in the last sum are in a
certain sense small quantities of higher order than h as h→ 0, owing to the mutual
independence of ξr (t) and ξj (t) for r �= j . Moreover, as h → 0, the expression
(Δξr(tn))

2 in (5.32) can be replaced by its expectation h. It should now be clear
from (5.32) and these relations why (5.28) and (5.29) are equivalent as h→ 0.

It follows from the above considerations that in dealing with physical problems
in which white noise is an idealization of a real process with small time correlation,
it is often natural to regard the equation as a stochastic equation of type (5.27).

In particular, we see from (5.31) that in the one-dimensional case considered
above the operator associated with (5.26), regarded as a Stratonovich equation, is

L= ∂

∂t
+ bx

∂

∂x
+ σ 2

2
x
∂

∂x

(

x
∂

∂x

)

= ∂

∂t
+
(

b+ σ 2

2

)

x
∂

∂x
+ σ 2

2
x2 ∂2

∂x2
.

Combining this with Example 5.1, we get the result that the process X(t) defined
by the equation

dX = bXdt + σXd∗ξ(t)

is stable for b < 0 and unstable for b > 0. This accords with physical intuition.
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Thus, the unstable one-dimensional deterministic system ẋ = bx (b > 0 is a con-
stant) cannot be stabilized by a “physically”7 feasible perturbation of its parameter.
This was noticed by Leibowitz [180], who also conjectured that an analogous re-
sult holds in the multi-dimensional case. However, the example presented below in
Sect. 6.9 shows that this is not so.

Example 5.4 Let the deterministic system

dx

dt
= b(t, x) (5.33)

be exponentially stable in the sense of Remark 1.10, and suppose that the function
b(t, x) has bounded first and second derivatives with respect to the space variables.
Then, slightly modifying the proof of Theorem 11.1 in [155], we easily see that
there exists a function W(t, x) for the system (5.33) such that

ki |x|2 <W(t, x) < k2|x|2,
d0W

dt
= ∂W

∂t
+

l
∑

i=1

bi(t, x)
∂W

∂xi
<−k3|x|2;

∣

∣

∣

∣

∂W

∂x

∣

∣

∣

∣

< k4|x|;
∣

∣

∣

∣

∂2W

∂xi∂xj

∣

∣

∣

∣

< k5.

Using this Lyapunov function to investigate the stability of the “perturbed” system

dX(t)= b(t,X)dt +
k
∑

r=1

σr(t, x) dξr (t)+ F(t,X)dt, (5.34)

we get

LW = d0W

dt
+ 1

2

l
∑

i,j=1

aij (t, x)
∂2W

∂xi∂xj
+

l
∑

i=1

Fi(t, x)
∂W

∂xi

≤ −k3|x|2 + k5‖A(t, x)‖ + k4|x||F(t, x)|.
Hence it follows by Theorem 5.5 that the solution X(t) ≡ 0 of (5.34) is asymp-
totically stable in probability if the system (5.33) is exponentially stable in some
neighborhood of the origin, and in this neighborhood

k
∑

r=1

|σr(t, x)| + |F(t, x)|< ε|x| (5.35)

7We shall continue to use this term in this sense in the sequel, though it is somewhat vague. For
example, if a stochastic process X(t) is a “continuous approximation” to a discrete Markov chain
which is the solution of a finite-difference equation, it is natural to use an Itô equation (see [251]).
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for sufficiently small ε. If the system (5.33) is exponentially stable in the large and
condition (5.35) holds everywhere, it follows from Theorem 5.7 that the system
(5.34) is stable in the large. Therefore in this example sufficiently strong stability
of the deterministic system (5.33) implies stability of the system (5.34), provided
condition (5.35) holds for ε < ε0. It is not difficult to find effective estimates for ε0.
In particular, the above conclusion holds true for “physically feasible” random per-
turbations of the parameters of the system by white noise.

Example 5.5 In our discussion of Example 5.1 we saw that the one-dimensional
system x′ = bx (b < 0) remains stable when its parameter is perturbed by white
noise of arbitrary intensity. This holds true both for perturbations “of Itô’s kind”
and for physically feasible perturbations. We shall now show that if the dimension
of the space is greater than 2, or in the case of physically feasible perturbations,
greater than 1, then sufficiently strong isotropic noise will destroy the stability. To
this end it will suffice to show that if σ is a sufficiently large constant, then for the
systems

dXi(t)= bi(t,X)dt + σ

l
∑

j=1

Xj dξ(i−1)l+j (t) (i = 1, . . . , l),

d˜Xi(t)= bi(t,˜X)dt + σ

l
∑

j=1

˜Xjd
∗ξ(i−1)l+j (t) (i = 1, . . . , l)

(where ξ1(t), . . . , ξ2l (t) are independent Wiener processes), there exists a function
V (x) satisfying the assumptions of Theorem 5.6, provided the functions bi(t, x)
satisfy conditions (5.2), (5.3). It is readily seen that the generators of the processes
X(t) and ˜X(t) are

L= ∂

∂t
+

l
∑

i=1

bi(t, x)
∂

∂xi
+ σ 2

2
|x|2

l
∑

i=1

∂2

∂x2
i

,

˜L= L+ σ 2

2

l
∑

i=1

xi
∂

∂xi
.

Considering the auxiliary function

V (x)= − ln |x|2 = − ln(x2
1 + · · · + x2

l )

and assuming that the constant σ is sufficiently large, we see by (5.2) and (5.3) that

LV = −2(x, b(t, x))

|x|2 − σ 2(l − 2) < 0 for l > 2,

˜LV = −2(x, b(t, x))

|x|2 − σ 2(l − 1) < 0 for l > 1.

Applying Theorem 5.6 and the subsequent Remark 5.6, we get the above assertions.
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We shall now prove that the “Itô perturbations” considered in this example do
not destroy the stability of the asymptotically stable system dxi = bixi dt (bi < 0,
i = 1,2) for any value of σ . In this case,

L= ∂

∂t
+ b1x1

∂

∂x1
+ b2x2

∂

∂x2
+ σ 2

2
|x|2

2
∑

i=1

∂2

∂x2
i

.

Considering the auxiliary function

V (x)= |x|α = (x2
1 + x2

2)
α/2

for sufficiently small positive α, we readily obtain the inequality

LV (x)= α|x|α−2
(

b1x
2
1 + b2x

2
2 + ασ 2

2
|x|2
)

< 0.

Hence, it follows by Theorems 5.5 and 5.7 that the system is asymptotically stable
in the large.

Example 5.6 Consider the system

dX1 =X2 dt + σ(X1,X2) dξ1(t);
dX2 = −X1 dt + σ(X1,X2) dξ2(t).

It is clear that in the absence of random perturbations (σ ≡ 0) the equilibrium posi-
tion of this system is stable, but not asymptotically stable. The generator is

L= x2
∂

∂x1
− x1

∂

∂x2
+ 1

2
σ 2(x)

(

∂2

∂x2
1

+ ∂2

∂x2
2

)

.

It is obvious that the function W(x) = − ln(x2
1 + x2

2) satisfies conditions (5.19),
(5.20). Consequently, the system is unstable if σ(x) �= 0 for x �= 0. This example
shows that a non-asymptotically stable deterministic system may become unstable
when driven by white noise whose intensity tends arbitrarily fast to zero as x → 0.

5.6 Differentiability of Solutions of Stochastic Equations with
Respect to the Initial Conditions

We have already seen (Sect. 5.3) that Lyapunov functions satisfying the assumptions
of the stability theorems can be constructed as expectations of certain functionals of
the relevant processes. However, only in the nondegenerate case can one guaran-
tee, using the theory of partial differential equations, the necessary smoothness of
these expectations. Gikhman [88] and Blagoveshchenskii and Freidlin [33] have
demonstrated an alternative approach: One first proves that the solution Xs,x(t) of
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the stochastic equation is smooth with respect to s, x, and then the smoothness of
the corresponding expectations follows as a corollary. This approach is applicable to
processes with diffusion of arbitrary degree of degeneracy; for this reason it imposes
stringent restrictions on the smoothness of the coefficients b and σr .

In this section we shall present Gikhman’s theorem on the differentiability of
the solutions of stochastic equations with respect to the initial conditions; we shall
then establish certain auxiliary relations which will be used in Sect. 5.7 to prove the
existence of Lyapunov functions for certain stable systems.

Theorem 5.10 Let the coefficients of the equation

dXs,x(t)= b(t,Xs,x) dt + σ(t,Xs,x) dξ(t) (5.36)

in R
l be continuous in t , x and with continuous bounded derivatives of order up

to and including 2 with respect to x1, . . . , xl . Then the solution Xs,x(t) of (5.36) is
twice continuously differentiable in mean square with respect to x.8 The derivatives

∂

∂xi
Xs,x(t),

∂2

∂xi∂xj
Xs,x(t)

are then continuous in x in mean square. They are defined by the system obtained
by formally differentiating (5.36) with respect to x.

We shall not give here all the details of the proof of Theorem 5.10; the interested
reader can find them in [92]. We describe the idea of the proof, making more precise
some of the arguments in [92] which will be needed later.

To avoid cumbersome notation, we limit ourselves to the case in which the di-
mension l of the space R

l is 1. It is easy to see that the stochastic process

Yx,Δx(t)= 1

Δx
[Xs,x+Δx(t)−Xs,x(t)]

is a solution of the equation

Xz,Δx(t)= 1 +
∫ t

s

A(x,Δx,u)Yx,Δx(u)du+
∫ t

s

B(x,Δx,u)Yx,Δx(u)dξ(u),

(5.37)

8If Φ(x1, . . . , xl , t) is a random variable depending on the parameters x1, . . . , xl , t , its partial
derivative in mean square with respect to xi is defined as the random variable ∂Φ

∂xi
(x1, . . . , xl , t)

such that

E
{

1

Δxi
[Φ(x1, . . . , xi +Δxi, . . . , xl , t)−Φ(x1, . . . , xl , t)] − ∂Φ

∂xi
(x1, . . . , xl , t)

}2

→ 0

as Δxi → 0.
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where

A(x,Δx, t)= b(t,Xs,x+Δx(t))− b(t,Xs,x(t))

Xs,x+Δx(t)−Xs,x(t)
,

B(x,Δx, t)= σ(t,Xs,x+Δx(t))− σ(t,Xs,x(t))

Xs,x+Δx(t)−Xs,x(t)
.

By the assumptions of the theorem, the functions |A| and |B| are almost surely
bounded by some constant k.

For any n ≥ 1, we apply Itô’s formula (3.30) to the process Z(x,Δx, t) =
[Yx,Δx(t)]2n and thus get from (5.37) the relation

Z(x,Δx, t)= 1 + n

∫ t

s

Z(x,Δx,u)[2A(x,Δx,u)+ (2n− 1)B2(x,Δx,u)]du

+ 2n
∫ t

s

Z(x,Δx,u)B(x,Δx,u)dξ(u).

As in the proof of Lemma 5.2, we now calculate expectations on both sides of this
equality and apply the Gronwall–Bellman lemma, to get the inequality

E[Yx,Δx(t)]2n ≤ ek(t−s), (5.38)

where the constant k depends only on the lowest upper bounds of σ ′
x and b′

x and
the number n. In particular it follows from (5.38) that Xs,x+Δx(t) → Xs,x(t) in
probability as Δx → 0. Hence the coefficients A and B of (5.37) converge in prob-
ability as Δx → 0 to the functions b′

x(u,X
s,x(u)) and σ ′

x(u,X
s,x(u)), respectively.

Since the functions A, B , b′
x and σ ′

x are also bounded, it follows that all moments
of the differences A− b′

x and B−σ ′
x converge to zero. Hence, as before, we readily

conclude that Yx,Δx(t) converges in mean square as Δx → 0 to a solution of the
equation

ζx(t)= 1 +
∫ t

s

b′
x(u,X

s,x(u))ζx(u) du+
∫ t

s

σ ′
x(u,X

s,x(u))ζx(u) dξ(u). (5.39)

By definition, the process ζx(t) is equal to ∂Xs,x(t)/∂x. It is also easy to see on the
basis of (5.37), (5.38) and (5.39) that for any integer n≥ 1

E[ζx(t)]2n ≤ ek(t−s),
E[Yx,Δx(t)− ζx(t)]2n → 0 as Δx → 0.

}

(5.40)

Similar arguments prove the existence and continuity of the second derivatives.

Lemma 5.5 Let the coefficients of (5.36) be continuous in t , x and satisfy the con-
ditions

σ(t,0)≡ 0, b(t,0)≡ 0. (5.41)
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Suppose also that they have continuous bounded first and second partial derivatives
with respect to x1, . . . , xl . Then for any real β the function u(s, x)= E|Xs,x(t)|β is
twice continuously differentiable with respect to x1, . . . , xl , except perhaps at x = 0.
We also have then

∣

∣

∣

∣

∂u(s, x)

∂x

∣

∣

∣

∣

≤ k1|x|β−1ek2(t−s),
∣

∣

∣

∣

∂2u(s, x)

∂xi∂xj

∣

∣

∣

∣

≤ k1|x|β−2ek2(t−s)

⎫

⎪

⎪

⎬

⎪

⎪

⎭

(5.42)

for some k1 > 0, k2 > 0.

Proof As before, we consider only the case l = 1, leaving it to the reader to extend
the arguments to more dimensions. By formal differentiation, we get

u′
x(s, x)= βE

[

|Xs,x(t)|β−2Xs,x(t)
∂Xs,x(t)

∂x

]

. (5.43)

The existence of the expectation on the right of (5.43) follows from Lemma 5.2,
Theorem 5.10 and the estimate

|Xs,x(t)|β−1
∣

∣

∣

∣

∂Xs,x(t)

∂x

∣

∣

∣

∣

< |Xs,x(t)|2β−2 +
∣

∣

∣

∣

∂Xs,x(t)

∂x

∣

∣

∣

∣

2

.

We first consider the case β = 2. Then
∣

∣

∣

∣

u(s, x +Δx)− u(s, x)

Δx
− 2E

[

Xs,x(t)
∂Xs,x(t)

∂x

]∣

∣

∣

∣

≤
(

E
[

(Xs,x+Δx(t))2 − (Xs,x(t))2

Δx
− 2Xs,x(t)

∂Xs,x(t)

∂x

]2)1/2

=
{

E
{

2Xs,x(t)

(

Yx,Δx(t)− ∂Xs,x(t)

∂x

)

+ [Yx,Δx(t)]2Δx

}2}1/2

≤
{

32

[

E(Xs,x(t))4E
(

Yx,Δx(t)− ∂Xs,x(t)

∂x

)4]1/2

+ 2E[Yx,Δx(t)]4(Δx)2
}1/2

.

Hence, by the estimates (5.38) and (5.40), it follows that the derivative ∂
∂x

E|Xs,x(t)|2
exists, and also that

sup
s<t≤s+T

E
(

Δy

Δx

)2

<K,

E
[

Δy

Δx
− 2Xs,x(t)

∂Xs,x(t)

∂x

]2

→ 0 as Δx → 0,

(5.44)

where T is any positive number and we have set

y = [Xs,x(t)]2; y +Δy = [Xs,x+Δx(t)]2. (5.45)
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Using (5.38), (5.40) and Lemma 5.2, we readily obtain

E(Δy)4 → 0 as Δx → 0. (5.46)

Now let β �= 2. Then, again using the notation (5.45), we get
∣

∣

∣

∣

u(s, x +Δx)− u(s, x)

Δx
− βE

[

|Xs,x(t)|β−2Xs,x(t)
∂Xs,x(t)

∂x

]∣

∣

∣

∣

=
∣

∣

∣

∣

E
{[

(y +Δy)β/2 − yβ/2

Δy
− β

2
yβ/2−1

]

Δy

Δx

+ β

2
yβ/2−1

[

Δy

Δx
− 2Xs,x(t)

∂Xs,x(t)

∂x

]}∣

∣

∣

∣

≤
{

E
[

(y +Δy)β/2 − yβ/2

Δy
− β

2
yβ/2−1

]2

E
(

Δy

Δx

)2}1/2

+ β

2

{

Eyβ−2E
(

Δy

Δx
− 2Xs,x(t)

∂Xs,x(t)

∂x

)2}1/2

. (5.47)

By Lemma 5.2 and (5.44), the second term on the right of (5.47) tends to zero as
Δx → 0. It also follows from (5.44) that the function E(Δy/Δx)2 is bounded. We
claim that the function

D = (y +Δy)β/2 − yβ/2

Δy
− β

2
yβ/2−1

converges to zero in mean square.
Since y > 0, y +Δy > 0, it follows that

|D|< k|Δy|[(y +Δy)β/2−2 + yβ/2−2],
for some k > 09 and hence the relation

ED2 ≤ k2
1(E|Δy|4)1/2{[E(y +Δy)2β−8]1/2 + (Ey2β−8)1/2}

holds. The last estimate, (5.46) and Lemma 5.2, imply that limΔx→0 ED2 = 0.
Hence, by (5.47), we conclude that the first derivative of u(x) with respect to x
exists and is given, by formula (5.43). Using (5.40) and (5.8), we see from (5.43)
that also

|u′
x(s, x)|< |β|E

{

|Xs,x(t)|β−1
∣

∣

∣

∣

∂Xs,x(t)

∂x

∣

∣

∣

∣

}

9This estimate follows from the obvious inequality (u > 0)

|uβ/2 − 1 − (β/2)uβ/2−1(u− 1)|
(u− 1)2

< k(uβ/2−2 + 1),

if we set u= (y +Δy)/y.
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≤ |β|(E|Xs,x(t)|2β−2)1/2
(

E

∣

∣

∣

∣

∂Xs,x(t)

∂x

∣

∣

∣

∣

2)1/2

≤ k1|x|β−1ek2(t−s).

Similarly one proves the existence and continuity of the second derivative u′′
xx and

the estimate (5.42). �

Lemma 5.6 Under the assumptions of Lemma 5.5, the function u(s, x) =
E|Xs,x(t)|β is differentiable with respect to s. Moreover, for x �= 0

Lu= ∂u

∂s
+ 1

2

l
∑

i,j=1

aij (s, x)
∂2u

∂xi∂xj
+

l
∑

i=1

bi(s, x)
∂u

∂xi
= 0.

Proof The proof differs only in details from that of Theorem 5.1, Chap. VIII of [92].
We shall therefore confine the present discussion to those parts of the proof which
are new. As before, we consider only the case l = 1. Expressing the difference u(s+
Δs,Xs,x(s +Δs))− u(s +Δs,x) by means of Itô’s formula and using the identity
Eu(s +Δs,Xs,x(s +Δs))= u(s, x), we get

u(s, x)− u(s +Δs,x) = E
∫ s+Δs

s

[

∂

∂x
u(s +Δs,Xs,x(t))b(t,Xs,x(t))

+ 1

2
σ 2(t,Xs,x(t))

∂2

∂x2
u(s +Δs,Xs,x(t))

]

dt.

(5.48)

Next, using the explicit expressions for u, ∂u/∂x and ∂2u/∂x2 and proceeding as in
the case of (5.42), we derive the estimates

|u(i)x (s +Δs,x)− u(i)x (s, x)| ≤ kΔs|x|β−i (i = 0,1,2).

Applying these estimates and (5.42), we easily deduce the assertion of the lemma
from (5.48) by letting Δs → 0. �

Corollary 5.3 The function

V (s, x)=
∫ s+T

s

E|Xs,x(t)|β dt

is in class C0
2(E), and

LV (s, x)= E|Xs,x(s + T )|β − |x|β.
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Proof We set ut (s, x)= E|Xs,x(t)|β . Differentiating V with respect to s and apply-
ing Lemma 5.6, we get

LV (s, x)= E|Xs,x(s + T )|β − E|Xs,x(s)|β +
∫ s+T

s

Lut (s, x) dt

= E|Xs,x(s + T )|β − |x|β,
as required. �

5.7 Exponential p-Stability and q-Instability10

The solution X(t)≡ 0 of the system

dX(t)= b(t,X)dt +
k
∑

r=1

σr(t,X)dξr(t) (5.49)

in R
l is said to be

(1) p-stable (p > 0) for t ≥ 0, if

sup
|x|≤δ, t≥s

E|Xs,x(t)|p → 0 as δ→ 0 (s ≥ 0);

(2) asymptotically p-stable, if it is p-stable and moreover E|Xs,x(t)|p → 0 as
t → ∞;

(3) exponentially p-stable, if for some positive constants A and α

E|Xs,x(t)|p ≤A|x|p exp{−α(t − s)}. (5.50)

The case most frequently considered in the literature to date is that of p-stability for
p = 1 (stability in the mean) and for p = 2 (stability in mean square).11

The following two theorems give necessary and sufficient conditions for expo-
nential p-stability of stochastic systems in terms of Lyapunov functions. They may
be regarded as generalizations of well-known theorems for deterministic systems
(see [155, Sect. 11]).

Theorem 5.11 The trivial solution of the system (5.49) is exponentially p-stable for
t ≥ 0 if there exists a function V (t, x) of class C0

2(E) such that

10Theorems 5.11 and 5.12 are due to Nevelson and Khasminskii [221] (the second theorem is
proved there under slightly more restrictive conditions).
11After the first edition of this book the study of p-stability became very popular, see Appendix B,
and references therein.



172 5 Stability of Stochastic Differential Equations

k1|x|p ≤ V (t, x)≤ k2|x|p, (5.51)

LV (t, x) ≤ −k3|x|p (5.52)

for certain positive constants k1, k2, k3.

Proof Conditions (5.51) and (5.52) are sufficient for the process X(t) to be regular,
since the function V (t, x) satisfies the assumptions of Theorem 3.5. It follows from
the same theorem that EV (t,Xs,x(t)) exists for all t > s. Expressing the difference
V (t,Xs,x(t))− V (s, x) by means of Itô’s formula (3.35), calculating expectations
and using conditions (5.51) and (5.52), we get

EV (t,Xs,x(t))− V (s, x)=
∫ t

s

ELV (u,Xs,x(u)) du.

Differentiating this equality with respect to t and using (5.51), (5.52), we see that

d

dt
EV (t,Xs,x(t))≤ −k3

k2
EV (t,Xs,x(t)).

This implies the estimate

EV (t,Xs,x(t))≤ V (s, x) exp

{

−k3

k2
(t − s)

}

.

Together with (5.51), this estimate yields (5.50). The proof is complete. �

Theorem 5.12 If the solution X(t) ≡ 0 of the system (5.49) is exponentially p-
stable and the coefficients b and σr have continuous bounded derivatives with re-
spect to x up to second order, then there exists a function V (t, x) ∈ C0

2(E) satisfying
inequalities (5.51), (5.52) and also

∣

∣

∣

∣

∂V

∂xi

∣

∣

∣

∣

< k4|x|p−1,

∣

∣

∣

∣

∂2V

∂xi∂xj

∣

∣

∣

∣

< k4|x|p−2 (5.53)

for some k4 > 0.

Proof We claim that the function

V (t, x)=
∫ t+T

t

E|Xt,x(u)|p du (5.54)

satisfies all the conditions of the theorem for suitable choice of the constant T > 0.
Indeed, by (5.50),

V (t, x)≤
∫ t+T

t

A|x|p exp{−α(u− t)}du= k1|x|p.



5.7 Exponential p-Stability and q-Instability 173

Since the coefficients b and σr have bounded partial derivatives with respect to xi ,
while σr(t,0)= 0, b(t,0)= 0, we have

|aij (t, x)|< k5|x|2, |bi(t, x)|< k5|x|.
Hence it follows that

|L(|x|p)|< k6|x|p. (5.55)

Applying Itô’s formula to the function |x|p and using (5.55), we get

E|Xt,x(t + T )|p − |x|p =
∫ t+T

t

EL(|Xt,x(u)|p) du

≥ −k6

∫ t+T

t

E|Xt,x(u)|p du= −k6V (t, x).

Choosing T so that

E|Xt,x(t + T )|p < 1

2
|x|p, (5.56)

we thus get the inequality V (t, x) > |x|p/(2k6). This proves (5.51). To prove the
required smoothness of V (t, x) and to verify (5.52), we apply the Corollary 5.3 and
(5.56). Finally, using (5.42), we derive the estimate

∣

∣

∣

∣

∂V (t, x)

∂xi

∣

∣

∣

∣

=
∣

∣

∣

∣

∫ t+T

t

∂

∂xi
E|Xt,x(u)|p du

∣

∣

∣

∣

≤
∫ t+T

t

k1|x|p−1 exp{k2(u− t)}du= k4|x|p−1.

Proof of the second part of (5.53) is similar. �

The next lemma is useful in investigations of the stabilization of stochastic sys-
tems (see Chap. 8).

Lemma 5.7 Assume that the coefficients b(t, x) and σr(t, x) satisfy the conditions
of Theorem 5.12, and moreover that

∫ ∞

s

E|Xs,x(t)|p dt <∞. (5.57)

Then

lim
t→∞ E|Xs,x(t)|p = 0. (5.58)

Proof By Remark 5.2, we can apply Itô’s formula (3.30) to the function |x|p . Do-
ing this and using the estimate (5.55), which follows from the assumptions of our
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lemma, we see that

∣

∣E|Xs,x(t + h)|p − E|Xs,x(t)|p∣∣< k
∫ t+h

t

E|Xs,x(u)|p du

holds for some constant k > 0. Thus,
∣

∣

∣

∣

∂

∂t
E|Xs,x(t)|p

∣

∣

∣

∣

≤ kE|Xs,x(t)|p. (5.59)

Inequalities (5.57) and (5.59) obviously imply (5.58). �

We now consider the concept of q-instability.
The trivial solution of the system (5.49) is said to be exponentially q-unstable

(q > 0) if

E|Xs,x(t)|−q < A|x|−q exp{−α(t − s)}
for some positive constants A and α. Similarly, we modify the other definitions
at the beginning of this section; we replace p by −q and a neighborhood of 0 by
a neighborhood of the point at infinity, to get the definitions of q-instability and
asymptotic q-instability.

It is clear that asymptotic q-instability for some q > 0 implies instability in prob-
ability, since, by Chebyshev’s inequality,

P{|Xs,x(t)|<R}<RqE|Xs,x(t)|−q

for any R > 0. In order to avoid the difficulties created by possible irregularity of
the process X(t), we shall assume till the end of this section that the coefficients b
and σr of (5.49) have bounded derivatives with respect to the space variables.

Later, in connection with the problem of instability in the first approximation,
we shall be especially interested in the investigation of exponential q-instability.
The proofs of the following two theorems are almost word-for-word repetitions of
those of Theorems 5.11 and 5.12.

Theorem 5.13 The solution X(t) ≡ 0 of the system (5.49) is exponentially q-
unstable for t ≥ 0 if there exists a function V (t, x) of class C0

2(E) such that

k1|x|−q ≤ V (t, x)≤ k2|x|−q;
LV (t, x) ≤ −k3|x|−q . (5.60)

Theorem 5.14 If the coefficients b and σr have continuous bounded derivatives with
respect to x up to second order, and the solution X(t) ≡ 0 of the system (5.49) is
exponentially q-unstable, then there exists a function V (t, x) satisfying inequalities
(5.60) and the inequalities

∣

∣

∣

∣

∂V

∂xi

∣

∣

∣

∣

≤ k4|x|−q−1;
∣

∣

∣

∣

∂2V

∂xi∂xj

∣

∣

∣

∣

< k4|x|−q−2.
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Remark 5.7 It follows from Theorems 5.12 and 5.8 that the solution X(t) ≡ 0 of
the system (5.49) is asymptotically stable in the large if it is exponentially p-stable
for some p > 0, and the functions b(t, x) and σr(t, x) have continuous bounded
derivatives with respect to x of order up to 2 inclusive.

Remark 5.8 Let the function V (t, x) ∈ C0
2(E) be positive definite and such that

V (t, x) < k|x|p . Suppose moreover that LV (t, x) ≥ 0. Then the system (5.49) is
not asymptotically p-stable. Indeed, we deduce from Lemma 5.4 and Remark 5.2,
by applying Itô’s formula and then taking expectations, that

kE|Xs,x(t)|p > EV (t,Xs,x(t))≥ V (s, x).

5.8 Almost Sure Exponential Stability

Kozin [152] raises the question of finding conditions under which almost all so-
lutions of the system (5.49) are exponentially stable. He proves that a sufficient
condition is that the trivial solution be exponentially stable in mean square. Using a
different method, we shall prove both this and a more general result.

Theorem 5.15 Under the assumptions of Theorem 5.11, there exists a constant
γ > 0 such that, if x ∈ R

l , s ≥ 0, the inequality |Xs,x(t)|<Ks,xe−γ t holds almost
surely for t ≥ s, where the random variable Ks,x is almost surely finite.

Proof Setting

W(t, x)= V (t, x) exp

{

k3t

k2

}

we see by (5.51) and (5.52) that for x �= 0

LW = k3

k2
exp

{

k3t

k2

}

V + exp

{

k3t

k2

}

LV ≤ 0.

Hence the process W(t,Xs,x(t)) is a supermartingale. Since it is positive, it follows
from Theorem 5.1 that for all s, x the processW(t,Xs,x(t)) converges almost surely
to a finite limit as t → ∞. Consequently,

sup
t
W(t,Xs,x(t))=As,x <∞

almost surely. Therefore,

V (t,Xs,x(t))≤As,xe−γ t .
This together with condition (5.51) implies the required assertion. �

In exactly the same way one proves the following
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Theorem 5.16 Under the assumptions of Theorem 5.13, there exists a constant
γ > 0 such that for any x �= 0, s ≥ 0

|Xs,x(t)|>Ks,xeγ t

holds almost surely for t ≥ s, where the random variable Ks,x is almost surely pos-
itive.



Chapter 6
Systems of Linear Stochastic Equations

6.1 One-Dimensional Systems

In this chapter we shall study a linear homogeneous system of equations whose
coefficients are perturbed by Gaussian white noise η̇ji (t). A system of this type can
be written as

dXi

dt
=

l
∑

j=1

(b
j
i (t)+ η̇

j
i (t))Xj (t), i = 1, . . . , l. (6.1)

The white noise processes η̇ji (t) figuring here are generalized Gaussian stochastic
processes with zero mean and covariance matrix

E[η̇ji (s)η̇mn (t)] = kmnij (t)δ(t − s),

where δ(t) is the Dirac δ-function, i, i,m,n = 1, . . . , l. It is well known that the
dependent white noise processes η̇ji (t) may be replaced by linear combinations of
at most l2 independent processes.

We append a nonrigorous justification of the last statement (it can be made rig-
orous within the framework of the theory of generalized stochastic processes of
Gelfand [86] and Itô [105]). Let η̇1(t), . . . , η̇N (t) be Gaussian white noise processes
with covariance matrix with elements kij (t)δ(t − s). Let λ1(t), . . . , λN(t) denote
the eigenvalues and f1(t), . . . , fN(t) the associated normalized eigenvectors of the
matrix ((kij (t))). Since the matrix ((kij (t))) is symmetric, the vectors fi(t) are or-
thogonal. Now let ξ̇1(t), . . . , ˙ξN(t) be independent Gaussian white noise processes
with unit spectral density, so that

E[ξ̇i (s)ξ̇j (t)] = δij δ(t − s).
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Define new (generalized) stochastic processes by

˙̃ηi(t)=
N
∑

k=1

√

λk(t)f
(i)
k (t)ξ̇k(t), i = 1, . . . ,N,

where f (i)k (t) is the i-th component of the vector fk(t). Then, using the relations

N
∑

i=1

f
(i)
k (t)f

(i)
l (t)= δkl,

λk(t)f
(i)
k (t)=

N
∑

j=1

kij (t)f
(j)
k (t),

which follow from the definition of λk(t) and fk(t), we get

E[ ˙̃
iη(s)

˙̃ηj (t)] =
N
∑

k=1

√

λk(s)λk(t)f
(i)
k (s)f

(j)
k (t)E[ξ̇k(s)ξ̇k(t)]

= kij (t)δ(t − s).

Thus, the correlation matrices, and hence also the probability distributions of the
processes η̇1(t), . . . , η̇N (t) and η̃1(t), . . . , η̃N (t) coincide. We may therefore set
((η̇

j
i (t)))=

∑N
r=1 σr(t)ξ̇r (t), N ≤ l2, in (6.1).

We shall treat (6.1) as a system of Itô equations

dX(t)= B(t)X(t) dt +
N
∑

r=1

σr(t)X(t) dξr (t). (6.2)

Here B(t) and σr(t)= ((σ
j
ir (t))) are l × l matrices, l2 ≥N , and

E

[

N
∑

r=1

σ
j
ir (s)ξr (s)

N
∑

r=1

σmnr(t)ξr (t)

]

= kmnij (t)δ(t − s).

In accordance with (5.2), we shall assume that ‖B(t)‖, ‖σr(t)‖ are bounded func-
tions of time on any finite interval.

A linear stochastic equation with stochastic differentials in the sense of Strato-
novich (see Chap. 5) can also be reduced to the form (6.2). To be precise, it follows
from (5.30) that a linear system with Stratonovich differentials d∗ξ(t) is equivalent
to a system involving Itô differentials. Both systems have the same coefficients σr(t)
and the new drift coefficients are related to the old ones by

˜B(t)= B(t)+ 1

2

N
∑

r=1

σ 2
r (t).
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We mention some properties of solutions of the system (6.2), which follow easily
from the properties of stochastic integrals and the uniqueness of the solution.

1. If X(1)(t), . . . ,X(l)(t) are the solutions of the system (6.2), then the function

Y(t)=
l
∑

i=1

kiX
(i)(t), (6.3)

is also a solution of the system (6.2) for any constants k1, . . . , kl .
2. If X(i)(t) are solutions such that the determinant of the matrix (X(i)j (t0)) does

not vanish, then the solution of the system (6.2) with initial condition X(t0) = x0
can be expressed as a sum (6.3) for suitable constants ki (the system of solutions
X(1)(t), . . . ,X(l)(t) is fundamental).

One consequence of these properties is that a linear stochastic system which is
asymptotically stable in probability is asymptotically stable in the large. We leave
the verification to the reader.

It is well known that the solution of a deterministic linear system for l = 1 can be
determined by quadratures. An analogous statement holds for the one-dimensional
stochastic system

dX(t)= b(t)X(t) dt + σ(t)X(t) dξ(t). (6.4)

Indeed, a direct check shows that the function1

X(t)= x0 exp

{∫ t

0

[

b(s)− σ 2(s)

2

]

ds +
∫ t

0
σ(s) dξ(s)

}

, (6.5)

satisfies (6.4) and the initial condition X(0) = x0. (To verify this one calculates
dX(t) using Itô’s formula (3.30), treating X(t) as a function of t and the process
y(t)= ∫ t0 σ(s) dξ(s).)

The representation (6.5) enables us to obtain conditions for the stability of so-
lutions of (6.4) which are an improvement on those derived above (see (5.24) and
(5.25)). First, it follows from (6.5) that the solution X(t)≡ 0 of the system (6.4) is
asymptotically stable if the process

η(t)=
∫ t

0

[

b(s)− 1

2
σ 2(s)

]

ds +
∫ t

0
σ(s) dξ(s) (6.6)

satisfies the condition P{η(t)→ −∞ as t → ∞} = 1.
Similarly, the solution X(t)≡ 0 is stable if limt→∞ η(t) <∞ almost surely, and

unstable if limt→∞ η(t)= ∞ with positive probability.
The process η(t) is clearly Gaussian and has independent increments. The study

of its growth as t → ∞ can be reduced to that of the growth of the Wiener process,
by means of the following simple lemma.

1The representation of solutions of (6.4) in the form (6.5) is well known; see, e.g., [256], [89], [90].



180 6 Systems of Linear Stochastic Equations

Lemma 6.1 Let
∫ t

t0
σ(s) dξ(s) be an Itô stochastic integral with respect to a Wiener

process. Then there exists another Wiener process ξ̃ (t) such that

∫ t

t0

σ(s) dξ(s)= ξ̃

(∫ t

t0

σ 2(s) ds

)

(a.s.) (6.7)

for all t ≥ 0.

Proof Let t̂ (τ ) denote the smallest number such that τ = ∫ t̂ (τ )
t0

σ 2(s) ds. Let us in-

vestigate some properties of the process ξ̃ (τ )= ∫ t̂ (τ )
t0

σ(s) dξ(s). By the properties
of stochastic integrals it is easy to see that this process has independent increments
and is Gaussian and moreover Eξ̃ (τ )= 0, E[ξ̃ (τ )]2 = τ . This means that ξ̃ (τ ) is a
Wiener process. The assertion of the lemma now follows easily, since for any t we
have almost surely:

∫ t

t0

σ(s) dξ(s)=
∫ t̂

t0

σ(s) dξ(s); ξ̃

(∫ t

t0

σ 2(s) ds

)

= ξ̃

(∫ t̂

t0

σ 2(s) ds

)

,

where t̂ is the smallest number such that

∫ t

t0

σ 2(s) ds =
∫ t̂

t0

σ 2(s) ds. �

In the sequel we shall need the following theorem of Khinchin [141].
Law of the iterated logarithm. If ξ(t) is a Wiener process, then almost surely

lim
t→∞

ξ(t)√
2t ln ln t

= 1.

We set

τ(t)=
∫ t

0
σ 2(s) ds, J (t)=

∫ t

0 [b(s)− 1
2σ

2(s)]ds
[2 ∫ t0 σ 2(s) ds ln ln(

∫ t

0 σ
2(s) ds)]1/2

.

Theorem 6.1 If τ(∞) <∞, then the inequality

lim
t→∞

∫ t

0
b(s) ds <∞

is a necessary and sufficient condition for the trivial solution of the system (6.4) to
be stable; and the condition

lim
t→∞

∫ t

0
b(s) ds = −∞

is necessary and sufficient for asymptotic stability.
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On the other hand, if τ(∞)= ∞, then limt→∞ J (t) <−1 is a sufficient condi-
tion for asymptotic stability and limt→∞ J (t) >−1 a sufficient condition for insta-
bility of the trivial solution.

Proof By Lemma 6.1, we can write the process η(t) as

η(t)=
∫ t

t0

[

b(s)− 1

2
σ 2(s)

]

ds + ξ̃

(∫ t

t0

σ 2(s) ds

)

.

Hence, by virtue of the fact that almost surely

sup
0≤τ<τ0

ξ̃ (τ ) <∞,

we at once obtain the first part of the theorem.
Now let τ(∞)= ∞. Then

lim
t→∞

J (t)+ lim
t→∞

ξ̃ (τ (t))

(2τ(t) ln ln τ(t))1/2
≤ lim
t→∞

η(t)

[2τ(t) ln ln τ(t)]1/2

≤ lim
t→∞J (t)+ lim

t→∞
ξ̃ (τ (t))

[2τ(t) ln ln τ(t)]1/2
.

Hence, using the law of the iterated logarithm, we obtain the second part of the
theorem. �

Remark 6.1 It is readily seen from the relation (5.30) between Itô and Stratonovich
stochastic equations, that the assertions of Theorem 6.1 for the case τ(∞) < ∞
remain valid for the Stratonovich variant

dX(t)= b(t)X(t) dt + σ(t)X(t) d∗ξ(t).

The assertions for τ(∞)= ∞ also remain valid if the function J (t) is replaced by

J1(t)=
∫ t

t0
b(s) ds

[2τ(t) ln ln τ(t)]1/2
.

Hence, in particular, it follows that the unstable solution X ≡ 0 of the equation
ẋ = bx cannot be stabilized by physically feasible (see Sect. 5.5) perturbations of
the parameter b. For a constant b this was demonstrated in Sect. 5.5.

Remark 6.2 It follows from Theorem 6.1 and Remark 6.1 that random noise does
not affect the stability properties of the system ẋ = bx if

∫∞
0 σ 2(s) ds <∞.

The representation (6.5) may also be used to derive conditions for p-stability and
q-instability in the one-dimensional case. In fact, for any real α one easily sees from
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(6.5) that

E|X(t)|α = |x0|α exp

{

α

∫ t

t0

[

b(s)− σ 2(s)

2

]

ds + α2

2

∫ t

t0

σ 2(s) ds

}

. (6.8)

For example, let b and σ be constants. Then, as we already have mentioned in
Sect. 5.5, the necessary and sufficient condition for asymptotic stability is b < σ 2/2,
and formula (6.8) can be rewritten as

E|X(t)|α = |x0|α exp

{

α

[(

b− σ 2

2

)

+ α

2
σ 2
]

(t − t0)

}

.

Hence we see that an asymptotically stable one-dimensional linear system with con-
stant coefficients is p-stable for sufficiently small p. Later, in Sect. 6.4 we shall see
that this important property carries over to multi-dimensional systems. The anal-
ogous statement for instability does not hold. For example, if b = σ 2/2 �= 0, the
system is unstable, but it is not q-unstable for any q > 0.

6.2 Equations for Moments2

It is well known that the solution of a linear homogeneous deterministic system
with constant coefficients can be determined from the roots of an auxiliary algebraic
equation. Unfortunately, there is apparently no analogous reduction procedure for
stochastic systems. However, as has been pointed out by many authors (see [180],
[89], [90] and others), the problem of determining the moments of orders 1,2,3, . . .
can be reduced to solving an auxiliary deterministic system of linear differential
equations.

Let us examine the situation more closely. Expressing the system (6.2) in integral
form and calculating the conditional expectation, givenX(t0)= x0, we easily derive
the following equation for the vector m1(t)= EXt0,x0(t):

dm1

dt
= B(t)m1, B(t)= ((b

j
i (t))) (6.9)

with initial condition

m1(t0)= x0.

Systems of equations for the second, third, etc. moments can be obtained by
using Itô’s formula (3.30).

Applying this formula to the function xixj , we get

d(Xi(t)Xj (t)) = Xi(t) dXj (t)+Xj(t) dXi(t)+
k
∑

r=1

(σr(t)X(t))i(σr (t)X(t))j dt

2The results of this section are derived from [180], [89], [90].
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= [Xi(t)(B(t)X(t))j +Xj(t)(B(t)X(t))i ]dt

+
k
∑

r=1

{[Xi(t)(σr (t)X(t))j +Xj(t)(σr (t)X(t))i]dξr(t)

+ (σr(t)X(t))i(σr(t)X(t))j dt}.
Expressing this relation in integral form and taking expectations, we get the system
of differential equations:

dmij

dt
=

l
∑

n=1

{

bni (t)mjn(t)+ bnj (t)min(t)

+
l
∑

s,n=1

k
∑

r=1

σ sir (t)σ
n
jr (t)msn(t)

}

(i, j = 1, . . . , l), (6.10)

with the unknowns

mij (t)= E[Xt0,x0
i (t)X

t0,x0
j (t)].

This system contains n(n+ 1)/2 independent equations, since mij (t)=mji(t).
The same method yields equations for

mi1i2i3(t)= E[Xt0,x0
i1

(t)X
t0,x0
i2

(t)X
t0,x0
i3

(t)]
and so on.

Remark 6.3 Comparing (6.9) and (6.2), we see that if the system (6.2) is stable in
the mean, then the deterministic system obtained by suppressing the “fluctuation”
terms is stable.

Remark 6.4 Since

E|Xt0,x0(t)|2 =m11(t)+ · · · +mll(t),

it follows that the system (6.2) is stable in mean square (asymptotically or exponen-
tially) if and only if the deterministic system (6.10) is stable in the corresponding
sense. If the coefficients bji and σ jir are constants, the system (6.1) is asymptotically
(exponentially) stable in mean square if and only if the roots of the equation

det(λJ − ˜B)= 0 (6.11)

have negative real parts. (Here ˜B is the matrix of the system (6.10), J is the l2 × l2

identity matrix.) Necessary and sufficient conditions for the real parts of the roots
of the algebraic (6.11) to be negative can be found in the form of inequalities for the
elements of the matrix B . However, these conditions (the Routh–Hurwitz criterion)
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are quite cumbersome, since they involve computation of l2 determinants of orders
up to l2. In Sect. 6.10 we shall see that these conditions can be simplified in a special
case of practical importance.

Remark 6.5 The roots of (6.11) are continuous functions of the coefficients bji and

σ
j
ir ; thus, if the system (6.2) with constant coefficients is asymptotically stable in

mean square, the same holds for a system with coefficients deviating slightly from
those of (6.2). A more general result can be proved by the method of Lyapunov
functions (see Chap. 7).

6.3 Exponential p-Stability and q-Instability3

In this section we shall give some improvements and applications of the theorems of
Chap. 5, proving necessary and sufficient conditions for p-stability and q-instability
relative to the linear system

dX(t)= B(t)X(t) dt +
k
∑

r=1

σr(t)X(t) dξr (t). (6.12)

We shall assume throughout that the functions ‖B(t)‖, ‖σr(t)‖ are bounded.

Theorem 6.2 The solution X(t)≡ 0 of the system (6.12) is exponentially p-stable
if and only if there exists a function V (t, x), homogeneous of degree p in x, such
that for some constants ki > 0

k1|x|p ≤ V (t, x)≤ k2|x|p; LV (t, x)≤ −k3|x|p, (6.13)
∣

∣

∣

∣

∂V

∂xi

∣

∣

∣

∣

≤ k4|x|p−1;
∣

∣

∣

∣

∂2V

∂xi∂xj

∣

∣

∣

∣

≤ k4|x|p−2 (i, j = 1, . . . , l).

Proof Sufficiency follows from Theorem 5.11. To prove necessity we proceed as in
the proof of Theorem 5.12, using the function

V (t, x)=
∫ t+T

t

E|Xt,x(u)|p du. (6.14)

Since the coefficients of the system (6.12) have bounded derivatives of arbitrary
order with respect to x, it follows from Theorem 5.12 that this function satisfies
(6.13). We claim that V (t, x) is homogeneous of degree p. In fact, (6.3) implies that

3The main theorems of this section are due to Nevelson and Khasminskii [221].
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the solution Xt,x(u) admits the representation

Xt,x(u)=
l
∑

i=1

xiX
(i)(u), (6.15)

where (x1, . . . , xl) = x and (X(1)(u), . . . ,X(l)(u)) is a fundamental system of so-
lutions of (6.12) satisfying the initial conditions Xij (t) = δij (δij is the Kronecker
symbol). Substituting (6.15) into (6.14), we see that V (t, x) is homogeneous of de-
gree p. �

In applications of Theorem 6.2, one would like to be sure that the p-stability of a
stochastic system can be “detected” with the aid of homogeneous functions from a
relatively small class. For the general case we have unfortunately no results of this
kind. However, for even p the following theorem is valid.

Theorem 6.3 A necessary condition for exponential p-stability of even order (p =
2,4, . . . ) of the system (6.12) is that for every positive definite formW(t, x) of degree
p whose coefficients are continuous bounded functions of time there exist a positive
definite form V (t, x) of the same degree such that

LV = −W.
The same condition, with the phrase “for every . . . ” replaced by “for some . . . ”,

is also sufficient.

The proof is analogous to that of Theorem 6.2; the only difference is that instead
of the function (6.14) one considers the function

V1(t, x)= E
∫ ∞

t

W(u,Xt,x(u)) du.

The infinite upper limit of integration here causes no difficulties, since the required
smoothness of V1(t, x) as a function of x follows from the fact that this function is
a form in x.

If the matrices B and σr in (6.12) are constant, so that we have a linear au-
tonomous system

dX(t)= BX(t) dt +
k
∑

r=1

σrX(t) dξr (t), (6.16)

then the forms V (t, x) andW(t, x) in the statement of Theorem 6.3 may be replaced
by forms V (x) andW(x)with constant coefficients. In this case, Theorem 6.3 yields
the following algorithm for a construction of algebraic criteria for p-stability for
even p. Given some positive definite form W(x) of degree p, we look for a form
V (x) of the same degree such that LV = −W(x). Comparing the coefficients at the



186 6 Systems of Linear Stochastic Equations

monomials xk1
1 · · ·xkll on both sides of this equation (k1 + · · · + kl = p), we get a

system of linear equations for the coefficients of V (x). It follows from Theorem 6.3
that the system is p-stable if and only if the function V (x) turns out to be positive
definite.

This procedure is well known for deterministic systems (see [45]). Its applicabil-
ity to stability in mean square of stochastic systems was first indicated by Kac and
Krasovskii [111].

Theorem 6.4 The solution X(t) ≡ 0 of the system (6.12) is exponentially q-
unstable if and only if there exists a function V (t, x), homogeneous in x of degree
−q , such that for some constants ki > 0 we have

k1|x|−q ≤ V (t, x)≤ k2|x|−q; LV (t, x)≤ −k3|x|−q;
∣

∣

∣

∣

∂V

∂xi

∣

∣

∣

∣

≤ k4|x|−q−1;
∣

∣

∣

∣

∂2V

∂xi∂xj

∣

∣

∣

∣

≤ k4|x|−q−2 (i, j = 1, . . . , l).

The reader should have no difficulty in proving this theorem, using the Theo-
rems 5.13 and 5.14.

A deterministic stationary linear system dx/dt = Bx is q-unstable for any q if
and only if all the roots λi of the characteristic equation det(λJ − B) = 0 have
positive real parts. This is easily checked directly, but we shall view this as one of
the consequences of Theorem 6.4.

It is well known that the existence of a positive definite quadratic form W(x)

such that the form d0W/dt = LW is also positive definite is a necessary and suf-
ficient condition for the numbers Reλi , i = 1, . . . , l, to be positive. Set V (x) =
[W(x)]−q/2. It is readily seen that this function satisfies all the assumptions of The-
orem 6.4, and this implies the above assertion.

The following two examples illustrate applications of the theorems proved in this
section.

Example 6.1 The generator of the one-dimensional system

dX(t)= bX(t) dt + σX(t) dξ(t)

with constants b and σ is equal to

L= bx
∂

∂x
+ 1

2
σ 2x2 ∂2

∂x2
.

Setting V (x)= |x|p , we get

LV = p|x|p−1
[

b+ σ 2

2
(p− 1)

]

.

It follows from Theorem 6.3 that in this case the inequality b + 1
2σ

2(p − 1) < 0
is a necessary and sufficient condition for exponential p-stability. Of course, this
conclusion also follows from the explicit expression (6.5).
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Example 6.2 Recall that the expression

L = ∂

∂t
+
(

Bx,
∂

∂x

)

+ 1

2

(

A(x)
∂

∂x
,
∂

∂x

)

≡ ∂

∂t
+
(

Bx,
∂

∂x

)

+ 1

2

k
∑

r=1

(

σrx,
∂

∂x

)2

defines the generator of the system (6.16). We now consider some sufficient con-
ditions for p-stability of this system, restricting ourselves to Lyapunov functions
which are powers of a positive definite quadratic from (Wx,x) = ∑

Wijxixj .
We introduce the notation: V (x) = (Wx,x)p/2, B∗ is the matrix adjoint to B ,
λDmin = λD1 < λ

D
2 < · · ·< λDl = λDmax are the eigenvalues of a symmetric l× l matrix

D. In addition, we set

m= inf|x|=1
λ
A(x)
min ; M = sup

|x|=1
λA(x)max .

We first observe that for any positive semi-definite symmetric matrices D1 and
D2 we have

λ
D1
min trD2 < tr(D1D2) < λ

D1
max trD2. (6.17)

This inequality is easily proved by reducing D1 to diagonal form.
Next,

LV = p(Wx,x)p/2−1
[

1

2
tr(A(x)W)+ ((WB +B∗W)x,x)

+
(

p

2
− 1

)

tr(A(x)F (x))

]

= p(Wx,x)p/2−1Φ(x) (6.18)

holds, where F(x)= ((fij (x))) is the matrix with the elements

fij (x)= (Wxi)(Wxj )

(Wx,x)
.

It follows from the preceding theorem that a sufficient condition for the linear sys-
tem (6.16) to be exponentially p-stable is that the expressionΦ(x) (in square brack-
ets in (6.18)) is negative for x �= 0. But if Φ(x) ≥ 0, then (see Remark 5.8) the
system is not exponentially p-stable.
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It follows from (6.17) and (6.18) that for p ≥ 2

Φ(x) ≤ 1

2
λA(x)max trW + ((WB +B∗M)x,x)+

(

p

2
− 1

)

λA(x)max
(W 2x, x)

(Wx,x)

≤
[

M

(

1

2
trW +

(

p

2
− 1

)

λWmax

)

+ λWB+B∗W
max

]

(x, x), (6.19)

Φ(x) ≥
[

m

(

1

2
trW +

(

p

2
− 1

)

λWmin

)

+ λWB+B∗W
min

]

(x, x). (6.20)

Hence we see that if for some p ≥ 2 there exists a positive definite matrix W such
that

M

[

1

2
trW +

(

p

2
− 1

)

λWmax

]

+ λWB+B∗W
max < 0, (6.21)

then the system is exponentially p-stable for this p. On the other hand, if

m

[

1

2
trW +

(

p

2
− 1

)

λWmin

]

+ λWB+B∗W
min ≥ 0, (6.22)

then the system is not exponentially p-stable.
Similarly, if for some p ≤ 2 there exists a positive definite matrix W such that

1

2
M trW +m

(

p

2
− 1

)

λWmin + λWB+B∗W
max < 0, (6.23)

then the system (6.12) is exponentially p-stable, while if

1

2
m trW +M

(

p

2
− 1

)

λWmax + λWB+B∗W
min ≥ 0, (6.24)

the system is not exponentially p-stable.
Although the conditions furnished by (6.21) through (6.24) are rather weak, we

shall show now that in a certain special case they yield necessary and sufficient
conditions for exponential p-stability. Let A(x) = δ|x|2J (where J is the identity
matrix). Then M =m= δ.

Now suppose that B + B∗ = −λJ , and set W = J . It then follows from (6.19)–
(6.24) that this system is asymptotically p-stable if and only if 1

2δ(l + p − 2) < λ.
An analogous argument shows that the system is q-unstable if and only if 1

2δ(l −
q − 2) > λ for some positive q .

6.4 Exponential p-Stability and q-Instability (Continued)

It is well known that an asymptotically stable linear deterministic system with con-
stant coefficients is exponentially stable. This statement holds true for a system with
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variable coefficients which is uniformly (in time) asymptotically stable. In this sec-
tion we shall prove analogs of these properties for linear stochastic systems with
constant coefficients. Systems with variable coefficients will be considered in the
next section.

Lemma 6.2 If a linear system with constant coefficients

dX(t)= BX(t) dt +
k
∑

r=1

σrX(t) dξr(t) (6.25)

is stable in probability, then it is p-stable for sufficiently small p.

Proof Since the system (6.25) is stable in probability, there exists α > 0 such that

sup
|x|≤2−α

P
{

sup
t≥0

|Xx(t)|> 1
}

≤ 1

2
.

Further, since the system is linear, we have

Xγx(t)= γXx(t). (6.26)

Therefore, for any k,

sup
|x|≤2kα

P
{

sup
t≥0

|Xx(t)|> 2α(k+1)
}

≤ 1

2
. (6.27)

Let τ denote the first time at which the path of the process reaches the set |x| = 2α .
Using the strong Markov property of the process X(t) and (6.27), we get

sup
|x|≤1

P
{

sup
t≥0

|Xx(t)|> 22α
}

= sup
|x|≤1

∫ ∞

u=0

∫

|y|=2α
P{τ ∈ du,Xx(u) ∈ dy}P

{

sup
t≥0

|Xx(t)|> 22α
}

≤ 1

2
sup
|x|≤1

P{τ <∞} = 1

2
sup
|x|≤1

P
{

sup
t>0

|Xx(t)|> 2α
}

<
1

22
...

sup
|x|≤1

P
{

sup
t≥0

|Xx(t)|> 2kα
}

<
1

2k
.

(6.28)

Now let x ∈ R
l be such that |x| = 1. Then, using (6.28) with p < 1/α, we have

E
[

sup
t>0

|Xx(t)|p
]

≤
∞
∑

k=1

2kαpP
{

2(k−1)α < sup
t>0

|Xx(t)|< 2kα
}
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≤
∞
∑

k=1

2kαp2−(k−1) = 2
∞
∑

k=1

2−k(1−αp) =K(p)

<∞. (6.29)

It follows from (6.29) and (6.26) that

sup
|x|<δ

E
[

sup
t>0

|Xx(t)|p
]

≤ δpK(p),

and this inequality implies the assertion. �

Lemma 6.3 If the system (6.25) is asymptotically stable in probability, then it is
asymptotically p-stable for sufficiently small p.

Proof Let x be such that |x| = 1. Then (6.29) implies that

E
{

sup
t≥0

|Xx(t)|p
}

<K (6.30)

holds for some p > 0.
Moreover, as was mentioned in Sect. 6.1, a linear system is asymptotically stable

in probability if and only if it is asymptotically stable in the large. Therefore, almost
surely

Xx(t)→ 0 as t → ∞. (6.31)

It now follows from (6.30) and (6.31) by Lebesgue’s bounded convergence theorem
[97, Sect. 5.26] that

E|Xx(t)|p → 0 as t → ∞.

This and Lemma 6.2 imply the assertion. �

Lemma 6.4 If the system (6.25) is asymptotically p-stable for some p, then it is
also exponentially p-stable.

Proof 4 We first show that, under the assumptions of the lemma, for every Q< 1
there exists a T > 0 such that

sup
|x|=1

E|Xx(T )|p ≤Q. (6.32)

To do this we use the representation (6.15). It follows from the assumptions that for
each i = 1, . . . , l and sufficiently large T

E|X(i)(T )|< Q

lp+1
.

4The proof of Lemma 6.4 essentially uses the same idea as that of Theorem 6.1 in [111].
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Next, using the inequality

|A1 + · · · +Al |p ≤ lp(|A1|p + · · · + |Al |p)
and (6.15), we see that if |x| = 1, then

E|Xx(T )|p ≤ lp
l
∑

i=1

E|X(i)(T )|p ≤Q.

We now choose T so that (6.32) holds with Q = e−1 and, in view of (6.26), we
rewrite (6.32) as

E|Xx(T )|p ≤ e−1|x|p. (6.33)

Then

E|Xx(2T )|p =
∫

Rl

P (x,T , dy)E|Xy(T )|p

≤ e−1
∫

Rl

P (x,T , dy)|y|p = e−1E|Xx(T )|p
≤ e−2|x|p
...

E|Xx(kT )|p ≤ e−k|x|p.

(6.34)

Let t = nT + t1 (0 ≤ t1 < T ), and let

K = sup
t>0, |x|=1

E|Xx(t)|p.

Here K <∞ by virtue of Lemma 6.2. This and (6.34) imply

E|Xx(p)|p =
∫

Rl

P (x,nT , dy)E|Xy(t1)|p

≤ KE|Xx(nT )|p ≤K|x|pe−n ≤Ke|x|pe−t/T =K1|x|pe−t/T .
This completes the proof. �

Lemma 6.3 and 6.4 immediately imply

Theorem 6.5 If the linear system (6.25) with constant coefficients is asymptotically
stable in probability, then it is exponentially p-stable for all sufficiently small posi-
tive p.

Similar arguments hold for q-instability. Thus one easily proves the following
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Theorem 6.6 If the solutions of the linear system (6.25) with constant coefficients
satisfy the relation

P{|Xx(t)| → ∞ as t → ∞} = 1

for x �= 0, then the system is exponentially q-unstable for all sufficiently small posi-
tive q .

Theorems 6.5 and 6.6 fail to hold for linear systems with variable coefficients.
For example, the deterministic system dx/dt = −x/(t + 1) is asymptotically stable
but not exponentially stable. However, if certain additional assumptions are made,
then one can prove analogs of Lemmas 6.2 and 6.4, hence also of Theorem 6.5. But
first we have to introduce new definitions of stability and instability and then study
the properties of systems satisfying these definitions. This we do in the next section.

6.5 Uniform Stability in the Large

The solution X(t)≡ 0 of the system

dX(t)= b(t,X(t)) dt +
k
∑

r=1

σr(t,X(t)) dξr (t) (6.35)

is said to be stable in the large uniformly in t > 0, if it is uniformly stable in proba-
bility and moreover for any x ∈ R

l , ε > 0,

sup
s>0

P
{

sup
u>s+T

|Xs,x(u)|> ε
}

−→
T→∞ 0. (6.36)

Let us give a few comments on this definition.
1. It follows from (6.36) that the system (6.35) is stable in the large in the sense

of the definition of Sect. 5.4. In fact, the equivalence of the events
{ ∞
⋂

n=1

sup
u>s+n

|Xs,x(u)|> ε
}

=
{

lim
t→∞|Xs,x(t)|> ε

}

and (6.36) imply that

P
{

lim
t→∞|Xs,x(t)|> ε

}

= lim
n→∞ P

{

sup
u>s+n

|Xs,x(u)|> ε
}

= 0.

Since ε is arbitrary, this shows that the system is stable in the large.
2. A sufficient condition for the solution X(t) ≡ 0 of the system (6.35) to be

stable in the large is that it is uniformly stable in probability and, moreover, for any
x ∈ R

l , ε > 0,

sup
s>0

P{|Xs,x(s + T )|> ε} −→
T→∞ 0. (6.37)
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This evidently follows from the inequalities

P
{

sup
u>s+T

|Xs,x(u)|> ε
}

=
(∫

|y|<δ
+
∫

|y|≥δ

)

P(s, x, s + T ,dy)P
{

sup
u>s+T

|Xs+T ,y(u)|> ε
}

≤ sup
s>0, |y|<δ

P
{

sup
u>s

|Xs,y(u)|> ε
}

+ P{|Xs,x(s + T )| ≥ δ},

where the first and second terms on the right can be made arbitrarily small by a
suitable choice of δ and T .

Yet another sufficient condition for uniform asymptotic stability in the large is
given by

Lemma 6.5 A sufficient condition for the solution X(t)≡ 0 of (6.35) to be stable
in the large uniformly in t > 0 is that it be uniformly stable in probability, and that
the family of processes Xs,x(i) associated with different values of the parameters s,
x is for any ε > 0 uniformly recurrent relative to the domain |x| < ε, in the sense
that

sup
s>0

P{τ s,xε − s > T } → 0 as T → ∞, (6.38)

where τ s,xε is the first time the path of the process Xs,x(t) reaches the set |x| = ε.

Proof It is clear that for any ε > 0, δ and T > 0, we have

{

sup
u>s+T

|Xs,x(u)|> ε
}

⊂ {τ s,xδ > s + T } ∪
{

τ
s,x
δ ≤ s + T ; sup

u>τ
s,x
δ

|Xs,x(u)|> ε
}

.

Hence, applying the strong Markov property, we get

P
{

sup
u>s+T

|Xs,x(u)|> ε
}

≤ P{τ s,xδ − s > T }

+
∫ s+T

v=s

∫

|y|=δ
P{τ s,xδ ∈ ds,Xs,x(τ s,xδ ) ∈ dy}P

{

sup
u>v

|Xv,y(u)|> ε
}

≤ P{τ s,xδ − s > T } + sup
v>0, |y|=δ

{

sup
u>v

P|Xv,y(u)|> ε
}

.

For any ε > 0, the second term on the right of this inequality can be made arbitrarily
small by suitable choice of δ, and the first, by a choice of T (see (6.38)). This proves
the lemma. �
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Remark 6.6 For condition (6.38) to hold, it is sufficient that there exists a positive
function V (t, x) in the domain |x|> ε such that

inf|x|>R, t>0
V (t, x)= VR → ∞ as R→ ∞,

sup
ε<|x|<δ, t>0

V (t, x)= V (δ) <∞,

⎫

⎬

⎭

(6.39)

LV <−k (k > 0). (6.40)

In fact, conditions (6.39) and (6.40) imply by Theorem 3.5 that the process X(t)
is regular. Applying Theorem 3.9, we get the inequality

E(τ s,xδ − s) <
V (s, x)

k
≤ V (|x|)

k
.

Hence, using Chebyshev’s inequality, we get (6.38).
This remark and the Remark 5.3 imply

Lemma 6.6 A sufficient condition for the solutionX(t)≡ 0 of (6.35) to be stable in
the large uniformly in t > 0 is that there exists a positive definite function V (t, x) ∈
C0

2(E), with infinitesimal upper limit, such that the function LV is negative definite
and (6.39) holds.

Comparing this lemma with Theorem 5.8, we see that a system is uniformly sta-
ble in the large if there exists a Lyapunov function V satisfying the assumptions of
Theorem 5.8 and such that supt>0 V (t, x) is bounded in any bounded (with respect
to x) domain.

We now state the analogs of Theorem 6.5 and Lemma 6.2 for nonstationary linear
systems.

Theorem 6.7 If the linear system

dX(t)= B(t)X(t) dt +
k
∑

r=1

σr(t)X(t) dξr (t) (6.41)

is stable in the large uniformly in t > 0, then it is exponentially p-stable for suffi-
ciently small positive p.

Lemma 6.7 If the system (6.41) is uniformly stable in probability, then it is p-stable
for sufficiently small p, and there exists an α > 0 such that for all k = 1,2, . . .

sup
s>0, |x|≤1

P
{

sup
t≤s

|Xs,x(t)|> 2kα
}

≤ 1

2k
. (6.42)

The proof of inequality (6.42) is an almost word for word repetition of that of
inequality (6.28), except that properties of uniform stability are used. From (6.42)
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we get the first assertion of the lemma, in the same way as Lemma 6.2 was deduced
from (6.28).

Proof of Theorem 6.7 It will suffice to verify that there exists a T > 0 such that for
all positive p < α

sup
s>0, |x|=1

E|Xs,x(s + T )|p < 1. (6.43)

Indeed, the assertion will then follow from (6.43) in the same way as Lemma 6.3
follows from (6.32).

Now, proceeding as in the case of (6.29), we see that for arbitrary α > 0, n > 0,
p > 0

E|Xs,x(s + T )|p ≤ E
[

sup
t≥s+T

|Xs,x(t)|p
]

≤
+∞
∑

k=−∞
2kαpP

{

2(k−1)α ≤ sup
t≥s+T

|Xs,x(t)|< 2kα
}

< 2−αp + 2nαpP
{

sup
t>s+T

|Xs,x(t)|> 2−α}

+
∞
∑

k=n+1

2kαp
{

sup
t>s

|Xs,x(t)|> 2a(k−1)
}

.

If we now select α as in Lemma 6.7 and use (6.42), we get the inequality

E|Xs,x(s + T )|p ≤ 2−nαp + 2nαpP
{

sup
t>s+T

|Xs,x(t)|> 2−α}+ 2
∞
∑

k=n+1

2k(αp−1).

Now choose p < 1/α, then let n be large enough, so that

2
∞
∑

k=n+1

2k(αp−1) <
1

2
(1 − 2−αp).

Finally take T large enough, so that

2nαp sup
s>0, |x|=1

P
{

sup
t>s+T

|Xs,x(t)|> 2−α}< 1

2
(1 − 2−αp)

(such choice of T is possible by (6.36)). This yields (6.43) and hence the assertion
of the theorem. �

To conclude this section we state the analogous instability theorem (the proof is
similar).
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Theorem 6.8 If the linear system (6.41) is uniformly unstable in the sense that for
any x �= 0, A> 0

sup
s>0

P
{

sup
u>s+T

|Xs,x(u)|<A
}

−→
T→∞ 0,

then the system is exponentially q-unstable for sufficiently small positive q .

6.6 Stability of Products of Independent Matrices

Let An = ((a
(n)
ij )) (i, j = 1, . . . , l; n = 1,2, . . . ) be a sequence of identically dis-

tributed5 l × l matrices and let P(dA) be their common probability distribution. It
is easy to see that the sequence

x0; x1 =A1x0; . . . ; xn =Anxn−1, . . . , (6.44)

where x0 ∈ R
l , is a Markov chain in R

l . In applications (see [112]) one is often inter-
ested to find conditions under which |xn| = |AnAn−1 . . .A1x0| → 0 for all x0 ∈ R

l

(or, what is the same, ‖AnAn−1 . . .A1‖ → 0 in some sense) as n→ ∞. In Chap. 1
(Example 1.11) we showed that in certain cases the stability theory of linear systems
whose coefficients are step functions can be reduced to this problem.

The solution of this problem will provide yet another illustration of how to apply
the methods of this chapter to a discrete model.

1. We first consider the trivial case l = 1.
Then

|xn| = |x0| exp

{

n
∑

i=1

ln |Ai |
}

. (6.45)

If a = E ln |Ai | exists, then it follows from the law of large numbers that |xn| → 0
almost surely when a < 0, and |xn| → ∞ when a > 0. For a = 0 we may have
either stability (e.g., if |An| = 1 almost surely) or instability. However, if the random
variable ln |Ai | has finite non-zero variance, one readily shows that

lim
n→∞|xn| = ∞, but lim

n→∞
|xn| = 0

almost surely.
It is also obvious that E|xn|p → 0 if and only if E|Ai |p < 1. The condition for

(exponential) q-instability is similar.

5That is to say, the joint distributions of the l2 random variables a(n)ij (i, j = 1, . . . , l) are inde-
pendent for different n. The distributions of the elements of the same matrix may of course be
dependent.
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2. Since the matrixAn and the vector xn−1 are independent, it follows from (6.44)
that

Exn = EAnExn−1 = (EA)nx0.

Clearly, Exn → 0 if all the eigenvalues of the constant matrix EA are such that
|λi |< 1.

Similar reasoning gives recursive relations for moments of higher orders. This
was pointed out by Bellman [25], who also observed that in the determination of
the k-th moment, EA is replaced by the expectation of the k-fold direct product of
the matrix A itself. For example, it follows that xn is asymptotically stable in mean
square if and only if the roots of the matrix E[A×A] lie inside the unit disk. (Recall
that

A×A=
⎛

⎜

⎝

a11A . . . a1lA

. . . . . . . . .

al1A . . . allA

⎞

⎟

⎠

is an l2 × l2 matrix.)
3. It is not hard to prove analogs of the theorems in Sect. 6.3 for products of inde-

pendent identically distributed matrices A1, . . . ,An, . . . . We present two theorems
of this type, where p is any non-zero real number.

Theorem 6.9 A sufficient condition for

E‖An . . .A1‖p → 0 as n→ ∞ (6.46)

to hold is that there exists a positive definite function f (x), homogeneous of degree
p, such that the function Ef (Ax)− f (x) is negative definite.

Proof The assumptions imply that there exist positive constants ki (k3 > k1) for
which

Ef (Ax)− f (x)≤ −k1|x|p; k2|x|p < f (x) < k3|x|p. (6.47)

Hence, setting q = 1 − (k1/k3), we get

f (Ax)≤ f (x)
(

1 − k1

k3

)

= qf (x). (6.48)

Let P(x,n,Γ ) denote the transition probability of the Markov chain (6.44).
Then, applying (6.48), we get

Ef (AnAn−1 . . .A1x0)= Ef (Anxn−1)=
∫

P(x0, n− 1, dx)Ef (Ax)

≤ qEf (An−1 . . .A1x0)≤ · · · ≤ qnf (x0),



198 6 Systems of Linear Stochastic Equations

whence, by (6.47) we may conclude that

E|AnAn−1 . . .A1x0|p ≤ k3

k2
qn|x0|p. (6.49)

Thus,

E‖AnAn−1 . . .A1‖p ≤ k3

k2
qn.

This proves the theorem. �

Remark 6.7 Examining the above proof we easily see that if we replace the con-
dition that the function Ef (Ax) − f (x) be negative definite by the inequality
Ef (Ax)− f (x)≥ 0, we can prove the existence of a constant k such that

E‖AnAn−1 . . .A1‖p > k > 0 (n= 1,2, . . . ).

Theorem 6.10 If A1,A2, . . . is a sequence of independent identically distributed
matrices satisfying condition (6.46), then, for any positive definite function g(x)
which is homogeneous of degree p, there exists a positive definite function f (x),
homogeneous of the same degree, such that

Ef (Ax)− f (x)= −g(x). (6.50)

The proof is analogous to that of Theorem 6.2. One first applies (6.46) to establish
(6.49). Then, using (6.49), one readily shows that (6.50) is satisfied by the function

f (x)= g(x)+
∞
∑

i=1

Eg(AiAi−1 . . .A1x)= g(x)+
∞
∑

i=1

Eg(xi)

which is homogeneous of degree p. Setting f (x) = (Fx, x), g(x) = (Gx,x) in
Theorems 6.9 and 6.10, we get

Corollary 6.1 A necessary condition for the process xn defined by (6.44) to be
asymptotically stable in mean square is that, for every positive definite matrix G,
the solution F of the equation (here A∗ is the transposition of A)

E(A∗FA)− F = −G
be a positive definite matrix. The same condition with the phrase “for every . . . ”
replaced by “for some . . . ” is also sufficient.

Corollary 6.2 If the assumptions of Theorem 6.9 hold with p > 0, then almost
surely

‖AnAn−1 . . .A1‖ → 0 as n→ ∞. (6.51)
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On the other hand, if the assumptions hold for p < 0, then almost surely

‖AnAn−1 . . .A1‖ → ∞ as n→ ∞. (6.52)

To prove this, we observe that by the assumptions of the theorem the sequence
f (xn)= f (An . . .A1x0) is a positive supermartingale. By Theorem 5.1 the limit

lim
n→∞f (AnAn−1 . . .A1x0)= ξ (a.s.),

is finite and Eξ ≤ limn→∞ Ef (xn)= 0. Consequently, ξ = 0 almost surely. This at
once yields both assertions (6.51) and (6.52).

Example 6.3 Let G be the group of orthogonal real l × l matrices and let g ∈ G,
h ∈G. It is well known (see [97]) that there exists a unique Borel measure μ (Haar
measure) such that μ(G) = 1 and, for any nonempty open set U and any g ∈ U ,
we have μ(U) > 0, μ(gU) = μ(Ug) = μ(U). The integral with respect to μ is
invariant in the sense that for any h ∈G

∫

G

f (g)μ(dg)=
∫

G

f (gh)μ(dg)=
∫

G

f (hg)μ(dg). (6.53)

We now assume that Ai = B1giB2, where B1 and B2 are fixed nonsingular matrices
and gi ∈G are independent matrices distributed overG in accordance with the Haar
measure. We shall determine sufficient conditions for (6.51) and (6.52) to hold in
this case.

Set f (x)= |B2x|p . Then f (x) is obviously a positive definite and homogeneous
function of degree p satisfying

Ef (Ax)=
∫

G

|B2B1gB2x|pμ(dg).

Let e denote some fixed unit vector in R
l , say e = (1,0, . . . ,0). Then it is obvious

that for any x �= 0 there exists a matrix g0 ∈G such that g0e = B2x/|B2x|. Using
this and (6.53), we get

Ef (Ax)− f (x)= |B2x|p
(∫

G

|B2B1gg0e|pμ(dg)− 1

)

.

Applying Theorem 6.9 and Corollary 6.2, we get the following result.
If for some p > 0

∫

|B2B1ge|pμ(dg)− 1< 0, (6.54)

then

‖AnAn−1 . . .A1‖ = ‖B1gnB2B1gn−1B2 . . .B1g1B2‖ → 0 (a.s.).
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Similarly, a sufficient condition for ‖An . . .A1‖ → ∞ to hold almost surely as
n→ ∞ is that (6.54) holds for some p < 0.

This result may be given in a more convenient form. Using the expansion of ap

in powers of p and the inequalities

0< k1 < |B2B1ge|< k2,

we easily see that condition (6.54) holds for sufficiently small p > 0 if

I =
∫

G

ln |B2B1ge|μ(dg) < 0, (6.55)

and for sufficiently small p < 0 if I > 0. Thus the condition I < 0 guarantees that
the chain (6.44) of this example is stable; the condition I > 0, implies that it is
unstable.6

It is natural to call I = 0 the “critical” case. The matrix product is then either
unstable or nonasymptotically stable (the latter possibility occurs, for instance, if
Bi ∈G).

It is evident that in this example we may replace G by a subgroup of G or by the
group of unitary matrices.

In particular, let us consider the group of rotations of the plane. The element of
this group corresponding to the rotation by an angle ϕi is the matrix

gi =
(

cosϕi − sinϕi

sinϕi cosϕi

)

.

Let ϕi be independent random variables, uniformly distributed on the interval
[0,2π], and let B2B1 = ( λl 0

0 λ2

)

. It follows from the foregoing formulas that the
product

gn

(

λ1 0

0 λ2

)

gn−1

(

λ1 0

0 λ2

)

. . . g1

almost surely converges to 0 if

I = 1

2π

∫ 2π

0
ln(λ2

1 cos2 ϕ + λ2
2 sin2 ϕ)dϕ < 0

and to infinity if I > 0.

In this example we have verified condition (6.55) by letting p→ +0 in (6.54). In
the next section we shall consider another approach where a sufficient stability con-
dition of type (6.55) will be derived by a different method and in greater generality.
Instead of the Haar measure μ(dg) we shall have to consider a different measure,
related in a natural manner to the distribution of the matrices Ai .

6The above example is due to V.N. Tutubalin, who derived condition (6.55) by a different method.
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6.7 Asymptotic Stability of Linear Systems with Constant
Coefficients

1. Let us again consider the Markov chain (6.44). Set λn = xn/|xn|. The equality
xn =Anxn−1 is equivalent to

λn = Anλn−1

|Anλn−1| . (6.56)

It follows from (6.56) that the sequence λ0, λ1, . . . is also a time-homogeneous
Markov chain on the sphere Sl = {|x| = 1} in R

l . It is readily seen that the tran-
sition probability P0(λ,A) of this chain has the Feller property (i.e., the function
∫

P0(λ, dy)f (y) is continuous if f (λ) is continuous). Proceeding as in the proof of
Theorem 3.1, using the compactness of the phase space and the Feller property of
the transition probability function, we easily prove that the chain λ0, λ1, . . . has a
stationary probability distribution. Suppose that the chain is ergodic and let ν(dλ)
be its unique stationary distribution. Set ρn = ln |xn|. Obviously

ρn = ρn−1 + ln |Anλn−1| = ρ0 +
n
∑

i=1

ln |Aiλi−1|. (6.57)

Since the matrices A1,A2, . . . are independent, the pairs Xn = {An,λn−1}
(n= 1,2, . . . ) also form a Markov chain. This chain has the stationary distribution
P(dA)ν(dλ) in the phase space A × Sl , where A is the set of real l × l matrices.
Under fairly broad assumptions about the function f (A,λ), A ∈ A, λ ∈ Sl , we have
the following form of the strong law of large numbers (see [56, Sect. 5.6]): If

∫∫

|f (A,λ)|P(dA)ν(dλ) <∞,

then the limit

lim
n→∞

1

n

n
∑

k=1

f (Ak,λk−1)

exists almost surely for any x0 and is equal to
∫∫

f (A,λ)P(dA)ν(dλ).

Suppose that
∫∫

| ln |Aλ||P(dA)ν(dλ) <∞. (6.58)

Then, applying the strong law of large numbers to (6.57), we see that almost surely

lim
n→∞

ρn

n
= a, where a =

∫∫

ln |Aλ|P(dA)ν(dλ). (6.59)
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Constant α is called a Lyapunov exponent for the random dynamical system
x0, x1, . . . . Due to equality a = limn→∞ ln |xn|

n
this constant characterizes exponen-

tial rate of convergence (for a < 0) or divergence (for a > 0) of xn to 0 as n→ ∞.
Since ρn = ln |AnAn−1 . . .A1x0|, it follows from (6.59) that, almost surely,

‖AnAn−1 . . .A1‖ → 0 as n→ ∞, if a < 0,

‖AnAn−1 . . .A1‖ → ∞ as n→ ∞, if a > 0.

a = 0 is the critical case. As can be seen from the Example 6.3, the chain (6.44)
could then possibly be stable but not asymptotically so. The typical case here is
nevertheless instability.

Let us study this case in more detail. It is well known that under certain additional
conditions the function f (An,λn−1) satisfies the central limit theorem (see [56,
Sect. 5.7]). Assuming that these conditions are satisfied and using (6.57), we get

P
{

ρn − Eρn√
n

< λ

}

→ 1

σ
√

2π

∫ λ

−∞
e−y2/2σ 2

dy. (6.60)

(We are assuming here that σ 2 = limn→∞ 1
n

varρn �= 0.) Since a = 0, we may apply
Lemma 7.2 in [56, Chap. 5] to conclude that for some constant k <∞

|Eρn| =
∣

∣

∣

∣

∣

n
∑

i=1

E ln |Aiλi−1|
∣

∣

∣

∣

∣

≤ k.

Hence it follows by (6.60) that the probability of the event ρn > λ
√
n does not tend

to zero as n→ ∞.
In particular, one sees from (6.60) that the approach presented here may also be

used to obtain further results on products of random matrices (see [116]).

Remark 6.8 The Lyapunov exponent a can be effectively calculated from (6.59)
only when an invariant measure of the chain λ0, λ1, . . . is known. An integral equa-
tion for this measure is easily set up, but its general solution is fraught with difficul-
ties. In some special cases one can easily compute the invariant measure of the chain
λ̃n obtained by “projecting” the chain (6.44) onto the ellipsoid |Bx| = 1 instead of
the sphere |x| = 1. Next one replaces (6.56) and (6.57) by the formulas

λ̃n = xn

|Bxn| ; ρ̃n = ln |Bxn| = ρ̃n−1 + ln |BAnλ̃n−1|.

This method is also readily applicable to the example considered at the end of
Sect. 6.6.7

7The construction described in this subsection resembles that used by Kesten and Furstenberg
in [116]. Sufficient conditions for ergodicity of the Markov chain λn on the sphere |λ| = 1 with
identified antipodal points follow from a theorem of Furstenberg [82]. See also the survey article
[247].
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2. It is natural to ask questions about the behavior of the norms of products of
random matrices when each matrix is close to the unit matrix. Limit theorems for
this case are discussed in the interesting book of Grenander [96]. Grenander shows
that under certain natural assumptions, the limiting distribution of a product of ran-
dom matrices close to the unit matrix coincides with the distribution of a homoge-
neous multiplicative matrix-valued stochastic process. This process is governed by
a system of linear stochastic equations with constant coefficients and a matrix initial
condition. Thus we are again faced with the need to study stability conditions for
linear systems of SDEs

dX(t)= BX(t) dt +
k
∑

r=1

σrX(t) dξr(t) (6.61)

with constant coefficients bji and σ jir .
To derive necessary and sufficient conditions for asymptotical stability of the

system (6.61) we employ the same method as in the case of matrix products.
As before, we set

aij (x)=
k
∑

r=1

l
∑

n,m=1

σnirσ
m
jrxnxm; A(x)= ((aij (x)));

L= ∂

∂t
+
(

Bx,
∂

∂x

)

+ 1

2

(

A(x)
∂

∂x
,
∂

∂x

)

= ∂

∂t
+
(

Bx,
∂

∂x

)

+ 1

2

k
∑

r=1

(

σrx,
∂

∂x

)2

.

It follows from the general properties of the operator L that the matrix A(x) is
positive semidefinite. To simplify matters, we first assume that this matrix is also
non-degenerate in the sense that there is a constant m> 0 such that for any vector
α = (α1, . . . , αl)

(A(x)α,α)=
k
∑

r=1

(σrx,α)
2 ≥m|x|2|α|2. (6.62)

As in (6.56), we introduce new variables:

λ= x

|x| ; ρ = ln |x|.

The process Λ(t)=X(t)/|X(t)| on the sphere Sl = {|x| = 1} is Markovian and
time-homogeneous.8 To verify this, we need only use Itô’s formula (3.30). We find

8It is easy to see that the process obtained from Λ(t) by identifying antipodal points Λ(t) and
−Λ(t) is also Markovian.



204 6 Systems of Linear Stochastic Equations

it from expressions for dΛi(t), from which it is clear that the coefficients of dt
and dξr(t) depend only on Λ1(t), . . . ,Λl(t). Condition (6.62) is sufficient for the
process Λ(t) to be ergodic, since it guarantees that the transition probability has an
everywhere positive density (see Chap. 4). Let ν(dλ) denote the unique normalized
invariant measure of the process on the sphere.

Next, let ρ(t)= ln |X(t)|. Using Itô’s formula, we get

dρ(t) = Lρ(t) dt +
k
∑

r=1

(σrΛ(t),Λ(t)) dξr (t)

=
[

(BΛ(t),Λ(t))+ 1

2
trA(Λ(t))− (A(Λ(t))Λ(t),Λ(t))

]

dt

+
k
∑

r=1

(σrΛ(t),Λ(t)) dξr (t). (6.63)

As expected in view of the analogy with formula (6.57), the increment of the func-
tion ρ(t) is a functional of the process Λ(t) and the Wiener processes ξr (t). We
set

Q(λ)= (Bλ,λ)+ 1

2
trA(λ)− (A(λ)λ,λ), a∗ =

∫

Sl

Q(λ)ν(dλ).

Theorem 6.11 Suppose that condition (6.62) is satisfied and a∗ < 0. Then the so-
lution X(t)≡ 0 of the system (6.61) is almost surely asymptotically stable. On the
other hand, if a∗ > 0, then for x �= 0

P
{

|Xx(t)| −→
t→∞ ∞

}

= 1. (6.64)

To prove this we need

Lemma 6.8 Let σ(t,ω) ∈ ˜Nt be a function such that Eσ 2(t,ω) < k2 (k > 0 is a
constant). Then the stochastic integral

∫ t

0 σ(s,ω)dξ(s,ω) almost surely satisfies
the relation

1

T

∫ T

0
σ(t,ω)dξ(t,ω)→ 0 as T → ∞.

Proof Let An,m denote the event

{

sup
T>2n

1

T

∣

∣

∣

∣

∫ T

0
σ(t,ω)dξ(t)

∣

∣

∣

∣

>
1

m

}

, A(m) =
∞
⋂

n=1

An,m.
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By virtue of the relation between events

B =
{

lim
T→∞

1

T

∣

∣

∣

∣

∫ T

0
σ(t,ω)dξ(t)

∣

∣

∣

∣

> 0

}

=
∞
⋃

m=1

∞
⋃

n=1

An,m;

An,m ⊃An+1,m; A(m+1) ⊃A(m)

we get

P(B)= lim
m→∞ lim

n→∞ P(An,m).

The lemma will be proved if we show that limn→∞ P(An,m) = 0 for any m > 0.
Since the process

∫ t

0 σ(s,ω)dξ(s) is a martingale, it follows from Theorem 5.2 that

P
{

sup
2r≤T≤2r+1

∣

∣

∣

∣

∫ T

0
σ(t,ω)dξ(t)

∣

∣

∣

∣

> ε

}

≤ 1

ε
E

∣

∣

∣

∣

∫ 2r+1

0
σ(t,ω)dξ(t)

∣

∣

∣

∣

≤ 1

ε

[

E
(∫ 2r+1

0
σ(t,ω)dξ(t)

)2]1/2

≤ k2(r+1)/2

ε
.

Setting ε = ε02r , we get the estimate

P
{

sup
2r≤T≤2r+1

1

T

∣

∣

∣

∣

∫ T

0
σ(t,ω)dξ(t)

∣

∣

∣

∣

> ε0

}

<
k
√

2

ε0
2−r/2 .

This estimate implies the inequality

P(An,m)≤
∞
∑

r=n
P
{

sup
2r≤T≤2r+1

1

T

∣

∣

∣

∣

∫ T

0
σ(t,ω)dξ(t)

∣

∣

∣

∣

>
1

m

}

≤ km√
2

∞
∑

r=n
2−r/2 .

Thus P(An,m)→ 0 as n→ ∞. Lemma 6.8 is proved. �

Proof of Theorem 6.11 We can rewrite (6.63) as

ρ(T )− ρ(0)

T
= 1

T

∫ T

0
Q(Λ(t)) dt + 1

T

k
∑

r=1

∫ T

0
(σrΛ(t),Λ(t)) dξr (t). (6.65)

It follows from the strong law of large numbers for the process Λ(t), and from
Lemma 6.8, that almost surely

lim
T→∞

ρ(T )

T
= a∗. (6.66)

This implies both parts of the theorem. �
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Remark 6.9 It follows from (6.66) that almost surely

a∗ = lim
T→∞

ln |Xx(T )|
T

.

So a∗ is the Lyapunov exponent for the process described by the stochastic (6.61).

Theorem 6.12 Suppose that condition (6.62) is satisfied and a∗ = 0. Then the so-
lution X(t)≡ 0 of the system (6.61) is neither asymptotically stable nor asymptoti-
cally unstable in the sense of (6.64).

Proof Suppose that the solution X(t)≡ 0 is asymptotically stable in probability.
Then, by Theorem 6.5, this solution is exponentially p-stable for all sufficiently

small p > 0. Hence, by (6.63) and using Jensen’s inequality

E(exp ξ)≥ exp{Eξ}
(see [56]), we get

|x0|p exp

{

p

∫ T

0
EQ(Λ(s)) ds

}

≤ E|Xx(T )|p < Ae−αT .

These inequalities imply that

lim
T→∞

1

T

∫ T

0
EQ(Λ(s)) ds < 0,

but this contradicts the assumption a∗ = 0. One proves similarly that the solution
X(t)≡ 0 cannot satisfy condition (6.64). �

6.8 Systems with Constant Coefficients (Continued)

In the preceding section we studied conditions implying asymptotical stability of
the system (6.61). We assumed the nondegeneracy condition (6.62). We now con-
sider what modifications must be made in the arguments of Sect. 6.7 if the diffusion
matrix is allowed to degenerate on certain curves, surfaces, or even everywhere.

We first observe that the essential point for all arguments in Sect. 6.7 is not so
much condition (6.62) as one of its consequences, namely the ergodicity of the
Markov process Λ(t) on the sphere |x| = 1.9 Now suppose that ergodicity fails

9It is readily seen that the following weaker than (6.62) condition is sufficient: For all vectors λ
and μ such that |λ| = |μ| = 1, λ �= ±μ,

k
∑

r=1

(σrλ− (σrλ,λ)λ,μ)
2 > 0. (6.67)
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to hold and that the path of the Markov process

Λλ0(t)= Xx(t)

|Xx(t)| (λ0 = x/|x|),

satisfying the initial condition Λλ0(t) = λ0, may belong to different ergodic com-
ponents A of the process for different λ0.

More general, so called Lie algebra condition was proposed in [8], see (B.23)
in Appendix B. Below we will consider properties of Lyapunov exponent and the
moment Lyapunov exponent under condition C (see (B.22) in Appendix B). Let
μA(dλ) denote the stationary initial distribution corresponding to the component A.

Applying the strong law of large numbers for the component A and Lemma 6.8,
we see as in the proof of Theorem 6.11 that

lim
t→∞

ln |Xx(t)|
t

= aA =
∫

Q(λ)μA(dλ)

for μA-almost all values of λ= x/|x|.
Following the proofs of Theorems 6.11 and 6.12, we see that a necessary condi-

tion for the system (6.61) to be asymptotically stable is that

aA < 0 (6.68)

holds for all ergodic components A. A sufficient condition is that for all x ∈ R
l ,

lim
t→∞

ln |Xx(t)|
t

< 0

holds almost surely. The process Λ(t) may have infinitely many ergodic compo-
nents. For instance, the ergodic components of the processΛ(t) for the deterministic
system dx/dt = x, dy/dt = y are all the points of the circle x2 + y2 = 1.

Therefore it might seem at first sight that (6.68) may involve an infinite set of
conditions. However, as we shall show below, the number aA can take on at most l
distinct values. We shall first prove a simple lemma which is usually employed to
investigate the properties of Lyapunov’s characteristic numbers (see [191, Sect. 77]).

Lemma 6.9 Let Xi(t) (i = 1,2) be R
l-valued functions such that

lim
t→∞

1

t
ln |Xi(t)| = ai <∞.

Then

lim
t→∞

1

t
ln |x1X1(t)+ x2X2(t)| ≤ max(a1, a2).

Proof To be specific, suppose that a1 ≤ a2. It follows from the assumptions of the
lemma that

|Xi(t)|< e(al+ε)t
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for any ε > 0 and all t > T (ε). Therefore

|x1X1(t)+ x2X2(t)| ≤ |x1|e(a1+ε)t + |x2|e(a2+ε)t ≤ ke(a2+ε)t .

Hence we have the inequality

lim
t→∞

1

t
ln |x1X1(t)+ x2X2(t)| ≤ a2.

This proves the lemma. �

If the process Λ(t) is not ergodic, the following lemma may be useful in investi-
gating the stability of the system (6.61).

Lemma 6.10 Suppose that there are l linearly independent vectors λ1, . . . , λl in Sl
such that almost surely

lim
t→∞

1

T

∫ T

0
Q(Λλi (t)) dt < 0. (6.69)

Then the system (6.61) is asymptotically stable.

Proof It follows from (6.65), Lemma 6.8 and (6.69) that

lim
t→∞

1

t
ln |Xλi (t)|< 0

almost surely. Hence, by Lemma 6.9, we get

lim
t→∞

1

t
ln |Xx(t)| = lim

t→∞
1

t
ln

∣

∣

∣

∣

∣

l
∑

i=1

kiX
λi (t)

∣

∣

∣

∣

∣

< 0,

where x =∑l
i=1 kiλi . This proves the lemma. �

Corollary 6.3 The process Λ(t) has at most l ergodic components Ai , correspond-
ing to the different values of

a∗
i =

∫

Q(λ)μi(dλ).

(Here μi is the stationary distribution for the component Ai .) Moreover, if a∗
1 <

a∗
2 < · · · < a∗

l , then a∗
l < 0 is a sufficient condition for the system (6.61) to be

asymptotically stable.

Proof Let A1, . . . ,Ak be the ergodic components of the process Λ(t) and assume
that the corresponding a∗

i are monotone increasing: a∗
1 < · · ·< a∗

k . Let λi be vectors
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such that almost surely

lim
T→∞

1

T

∫ T

0
Q(Λλi (t)) dt = a∗

i .

Then the vectors λ1, . . . , λk are linearly independent. In fact, otherwise we have
λi = c1λ1 + · · · + ci−1λi−1 for some i ≤ k. Therefore

Xλi (t)=
i−1
∑

j=1

cjX
λj (t).

Hence, by Lemma 6.9,

a∗
i = lim

t→∞
1

t
ln |Xλi (t)| ≤ max(a∗

1 , . . . , a
∗
i−1)= a∗

i−1.

This is a contradiction, and thus λ1, . . . , λk are linearly independent. This, together
with Lemma 6.10, implies the assertion. �

Another obvious consequence of Lemma 6.10 is

Corollary 6.4 If the process Λ(t) has an ergodic component whose stationary
distribution μA(dλ) is not concentrated on any hyperplane

∑l
i=1 kiλi + k0 = 0,

then a sufficient condition for asymptotic stability of the system (6.61) is that
a∗ = ∫ Q(λ)μA(dλ) < 0.

Let us consider the case l = 2 in more detail. Let λ(ϕ) denote the vector in the
plane with components λ1 = cosϕ; λ2 = sinϕ, λ̂(ϕ) = −dλ(ϕ)/dϕ. As we have
already stated, the stochastic process ϕ(t) on the circle generated by the system
(6.61) is Markovian. One shows easily that

dϕ(t)=Φ(ϕ(t)) dt +Ψ (ϕ(t)) dξ(t), (6.70)

where

Ψ 2(ϕ)=(A(λ(ϕ))λ̂(ϕ), λ̂(ϕ));
Φ(ϕ)= − (Bλ(ϕ), λ̂(ϕ))+ (A(λ(ϕ))λ(ϕ), λ̂(ϕ)),

and ξ̃ (t) is a Wiener process with zero mean such that Eξ2(t)= t .
We first assume that

Ψ 2(ϕ) > 0 (0 ≤ ϕ < 2π). (6.71)

(This is implied, for instance, by inequality (6.62).) Then the process ϕ(t) has a
unique stationary distribution which is absolutely continuous and has density μ(ϕ)
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relative to the uniform distribution on the circle. This density satisfies the Fokker–
Planck–Kolmogorov equation, which in our case is

1

2

d2

dϕ2
(Ψ 2(ϕ)μ)− d

dϕ
(Φ(ϕ)μ)= 0. (6.72)

Equation (6.72) has a unique solution satisfying the normalization condition

∫ 2π

0
μ(ϕ)dϕ = 1 (6.73)

and the periodicity condition

μ(0)= μ(2π). (6.74)

It is easy to see that this solution is given by

μ(ϕ)= k

[

1 + W(2π)− 1
∫ 2π

0 W(s)ds

∫ ϕ

0
W(u)du

]

[W(ϕ)Ψ 2(ϕ)]−1, (6.75)

where

W(ϕ)= exp

{

−2
∫ ϕ

0

Φ(v)dv

Ψ 2(v)

}

,

and the constant k is determined by the normalization (6.73).
Applying Theorems 6.11 and 6.12 to the case l = 2, we obtain that

∫ 2π

0
Q(λ(ϕ))μ(ϕ)dϕ < 0 (6.76)

is a necessary and sufficient condition for asymptotic stability, expressed in terms
of quadratures.

We shall now allow that the function Ψ 2(ϕ) may vanish. Since

Ψ 2(ϕ)=
k
∑

r=1

(σrλ(ϕ), λ̂(ϕ))
2,

it follows that apart from the trivial case of a deterministic system (σr ≡ 0), there
are two possible cases: either

Ψ 2(ϕ)= 0 (6.77)

only for sinϕ = 0 and for cosϕ = 0, or (6.76) is equivalent to a fourth-degree equa-
tion in tanϕ or cotϕ. In both cases (in view of the inequality Ψ 2(ϕ)≥ 0), (6.77) is
satisfied by at most two values of ϕ in the interval 0 ≤ ϕ < π , each of which pairs
off with another value differing from it by π . It follows that the process ϕ(t) has at
most four ergodic components if σkir �≡ 0.
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Let us discuss the possibilities in greater detail.
1. Let ϕ1, ϕ2, ϕ1 +π , ϕ2 +π (0 ≤ ϕ1 < ϕ2 < π ) be the solutions of (6.77). Then

one readily sees that the process ϕ(t) is ergodic for signΦ(ϕ1) = signΦ(ϕ2) and
has two ergodic components if signΦ(ϕ1)= − signΦ(ϕ2).

2. Suppose that (6.77) has two solutions ϕ1 and ϕ1 + π in the interval [0,2π].
Then the process ϕ(t) is always ergodic, provided Φ(ϕ1) �= 0.

3. If Φ(ϕk)= 0, the process ϕ(t) has stationary points at ϕ = ϕk and ϕ = ϕk+π .

Example 6.4 Consider the system

dX1(t)= aX1 dt + σ1X1 dξ1(t),

dX2(t)= bX2 dt + σ2X2 dξ2(t).

}

(6.78)

Then

Ψ 2(ϕ)= (σ 2
1 + σ 2

2 ) cos2 ϕ sin2 ϕ,

Φ(ϕ)= sinϕ cosϕ(σ 2
1 cos2 ϕ − σ 2

2 sin2 ϕ − a + b).

Thus the points ϕk = kπ/2 (k = 0,1,2,3) are stationary points of the process ϕ(t).
All the invariant measures of the process ϕ(t) are concentrated at these points.
Hence it follows that the system (6.78) is stable if and only if both its components
are stable. This conclusion may also be derived directly, since the components of
the process (6.78) are independent.

More substantial examples follow in the next section.

6.9 Two Examples

Example 6.5 A much discussed question in the literature (see [180, 245] and others)
is whether a linear deterministic system can be stabilized with artificially disturbing
its parameters by white noise. The problem is understood by different authors in
different ways, since the stochastic equation obtained by superimposing noise may
be made rigorous in various ways. As mentioned in Chap. 5, a natural approach is
to study the problem for “physically feasible” noise in the sense of Sect. 5.5. We
have already seen that one-dimensional systems cannot be stabilized by physically
feasible noise.

We now consider the system

dX1(t)= b1X1 dt + σ(X1d
∗ξ1(t)+X2d

∗ξ2(t)),

dX2(t)= b2X2 dt + σ(X2d
∗ξ1(t)−X1d

∗ξ2(t)),

}

(6.79)
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in R
2, where the d∗ξi(t) are Stratonovich differentials. The generator of this process

is obviously (see (5.31))

L= ∂

∂t
+
(

b1 + σ 2

2

)

x1
∂

∂x1
+
(

b2 + σ 2

2

)

x2
∂

∂x2
+ σ 2

2
(x2

1 + x2
2)

(

∂2

∂x2
1

+ ∂2

∂x2
2

)

.

Hence, using the formulas of Sect. 6.8, we easily see that

μ(ϕ)= c exp

{

b1 − b2

σ 2
cos2 ϕ

}

; Q(λ(ϕ))= σ 2

2
+ b1 cos2 ϕ + b2 sin2 ϕ.

Applying Theorems 6.11 and 6.12, we see that the condition

a∗ =
∫ π/2

0

(

σ 2

2
+ b1 cos2 ϕ − b2 sin2 ϕ

)

exp

{

b1 − b2

σ 2
cos2 ϕ

}

dϕ < 0 (6.80)

is necessary and sufficient for the system (6.79) to be asymptotically stable.
We may easily give another form to condition (6.80) by using the well-known

integral representation

In(z)= (−1)n

π

∫ π

0
e−z cos θ cosnθ dθ (6.81)

for the Bessel function In(z) of a pure imaginary argument. In fact, if we set κ =
(b1 − b2)/σ

2, formulas (6.80) and (6.81) yield the condition

1 + 2b1

σ 2
< κ

(

1 − I1(κ/2)

I0(κ/2)

)

(6.82)

which is equivalent to (6.80).
The asymptotic representation for the function In(z) as z→ ∞ shows that the

last inequality is valid if, say, b2 < 0 is chosen with sufficiently large absolute value,
and b1/σ

2 < 3/8.
We have thus proved that for suitable choice of b1 > 0 and b2 < 0 the unstable

deterministic system

dx1

dt
= b1x1; dx2

dt
= b2x2 (6.83)

becomes asymptotically stable when its parameters are perturbed by certain physi-
cally feasible white noise processes. This result is valid for any deterministic system
which is reducible to the canonical form (6.83) by a linear transformation. Indeed,
linear transformations do not affect the stability properties of a system.

Remark 6.10 After publication this example in the first edition in 1969 stabilization
by noise became very popular theme in Mathematical and Mechanical research, see,
e.g., [3] and references therein.
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Example 6.6 Consider a linear system with eigenfrequency ω, subject to the ac-
tion of a damping force proportional to velocity with coefficient k. This system is
described by the equation

ẍ + kẋ +ω2x = 0. (6.84)

It is evident that this system is stable for k > 0. However, in many problems it seems
natural to assume that k is merely the mean value of the damping coefficient, while
its true value is a stochastic process with small correlation interval. It is extremely
interesting to study “bifurcation” values of the noise intensity, i.e., values for which
the system first becomes unstable.

A limiting case of this problem is to determine a constant σ0 such that for σ < σ0
the solution x = x′ ≡ 0 of the stochastic equation

ẍ + (k + σ ξ̇)ẋ +ω2x = 0 (6.85)

is asymptotically stable, while for σ > σ0 it is unstable. The process ξ̇ (t) in (6.85) is
white noise of unit intensity. We shall interpret this equation in the sense described
in Sect. 5.5, as a Stratonovich stochastic equation.

Setting x1 = ωx, x2 = ẋ, we get the system

dx1 = ωx2 dt,

dx2 = −(kx2 +ωx1) dt − σx2 d
∗ξ(t)

}

(6.86)

with generator

L= ωx2
∂

∂x1
+
[(

σ 2

2
− k

)

x2 −ωx1

]

∂

∂x2
+ 1

2
σ 2x2

2
∂2

∂x2
2

.

We shall first find a sufficient condition for stability in mean square, using the
algorithm described Sect. 6.3. Our aim is to find conditions under which a quadratic
form

W = A

2
x2

1 +Bx1x2 + C

2
x2

2 ,

which satisfies equation

LW = −x2
1 − x2

2

is positive definite.
Simple computations lead to the equalities

C = 2

k − σ 2
; B = 1

ω
; A= 2

k− σ 2
+ 1

ω2

(

k− σ 2

2

)

.

It is clear that the form W is positive definite if and only if σ 2 < k. Hence we get
a lower bound for the bifurcation value of the noise: σ 2

0 > k.
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To derive an equation for σ 2
0 , we use the results of Sect. 6.8. According to these,

we get that σ = σ0 satisfies, for a processΛ(t)which is ergodic on the circle |x| = 1,
the equation

∫ 2π

0
Q(λ(ϕ))μ(ϕ)dϕ = 0. (6.87)

We easily see from (6.86) and the formulas of Sect. 6.8 that

Ψ 2(ϕ) = σ 2 sin2 ϕ cos2 ϕ,

Φ(ϕ) =
(

σ 2

2
− k

)

sinϕ cosϕ + σ 2 sin3 ϕ cosϕ −ω,

Q(λ(ϕ)) =
(

σ 2

2
− k

)

sin2 ϕ − 1

2
σ 2 sin2 ϕ − σ 2 sin4 ϕ

= sin2 ϕ(σ 2 cos2 ϕ − k).

(6.88)

The function Ψ 2(ϕ) vanishes for ϕk = kπ/2 (k = 0,1,2,3). However, Φ does
not vanish at these points (Φ(ϕk) = −ω). Hence the process Λ(t) described by
(6.70) is ergodic. Let us determine the density μ(ϕ) of its invariant measure. In
this case we cannot use formula (6.75), since (6.72) has singularities at the points
ϕ = ϕk . Nevertheless, the function μ(ϕ) satisfies (6.72) for ϕ �= ϕk . Moreover, it
can be shown that μ is bounded and continuous in the neighborhood of the points
ϕ = ϕk and that it also satisfies condition (6.73). It is readily verified that the unique
solution of (6.72) satisfying these additional conditions is the function

μ(ϕ)=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

c
∫ ϕ

0 W(u)du[W(ϕ)Ψ 2(ϕ)]−1 for 0 ≤ ϕ < π
2 ,

c
∫ ϕ

−π/2W(u)du[W(ϕ)Ψ 2(ϕ)]−1 for − π
2 ≤ ϕ < 0,

μ(ϕ − π) for π2 ≤ ϕ < 3π
2 ,

(6.89)

where

W(ϕ)= (cosϕ)−2(tanϕ)(2k−σ 2)/σ 2
exp

{

−4ω

σ 2
cot 2ϕ

}

,

and the constant c is determined by condition (6.73).
It follows from (6.87), (6.88) and (6.89) that the constant σ 2

0 satisfies the equation

F(σ 2, k,ω) ≡
∫ 0

−π/2
sin2 ϕ(σ 2 cos2 ϕ − k)

W(ϕ)Ψ 2(ϕ)

∫ ϕ

−π/2
W(v)dv dϕ

+
∫ π/2

0

sin2 ϕ(σ 2 cos2 ϕ − k)

W(ϕ)Ψ 2(ϕ)

∫ ϕ

0
W(v)dv dϕ = 0. (6.90)
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From this we easily derive our previous estimate σ 2
0 > k. The parameters k, σ 2

and ω have the same dimensionality. We can therefore replace them by two dimen-
sionless quantities, say

σ̂ 2 = σ 2

k
; ω̂= ω

k
.

When written in these new variables, (6.90) becomes

F (̂σ 2,1, ω̂)≡ ̂F (̂σ 2, ω̂)= 0. (6.91)

This equation is fairly involved. Nevertheless, it enables us to investigate the depen-
dence of the dimensionless critical noise power σ̂ 2

0 on the dimensionless frequency
ω̂ for the limiting cases ω̂→ 0 and ω̂→ ∞.

It is easy to see that σ̂ 2
0 → ∞ as ω̂ → 0; in other words, low-frequency os-

cillations of the system are stable under very strong perturbations of the damping
coefficient.

Let us now investigate in greater detail the other limiting case ω̂ → ∞. The
quantity σ 2

0 may now be determined by Laplace approximation of the integrals. To
this end, we transform the variables in (6.91) by the formulas

− cot 2ϕ = z, − cot 2v = u.

We introduce the notations

R1(z)=
√
z2 + 1 + z

2
√
z2 + 1

, R2(z)=
√
z2 + 1 − z

2
√
z2 + 1

,

R3(z)= R2(z)

R1(z)
, a = 2 − σ̂ 2

2σ̂ 2
.

Then

̂F (̂σ 2, ω̂) = 1

4σ̂ 2

[∫ ∞

−∞
dz(̂σ 2R1(z)− 1)

(z2 + 1)Rα3 (z)

∫ z

−∞
duRα3 (u)e

4ω̂σ̂−1(u−z)

(u2 + 1)R1(u)

+
∫ ∞

−∞
dz(̂σ 2R2(z)− 1)Rα3 (z)

(z2 + 1)

∫ z

−∞
due4ω̂σ̂−2(u−z)

(u2 + 1)Rα3 (u)R2(u)

]

.

Applying the asymptotic formula

∫ z

−∞
ϕ(u)eλ(u−z) dz= 1

λ
ϕ(z)+O

(

1

λ2

)

(λ→ ∞)

[179, pp. 446–450], we see that
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Fig. 6.1

̂F (̂σ 2, ω̂) = 1

16ω̂

∫ ∞

−∞
dz[̂σ 2(

√
z2 + 1 + z)− 2

√
z2 + 1]

(z2 + 1)2(
√
z2 + 1 + z)

+ 1

16ω

∫ ∞

−∞
dz[̂σ 2(

√
z2 + 1 − z)− 2

√
z2 + 1]

(z2 + 1)2(
√
z2 + 1 − z)

+O

(

1

ω̂2

)

= 1

8ω̂

∫ ∞

−∞
dz

(z2 + 1)2
(̂σ 2 − 2(z2 + 1))+O

(

1

ω̂2

)

= π

8ω̂

[

σ̂ 2

2
− 2

]

+O

(

1

ω̂2

)

as ω̂→ ∞. Hence we get the equality

lim
ω̂→∞ σ̂

2
0 (ω̂)= 4.

Therefore the critical noise power for high frequencies is close to 4k (Fig. 6.1).
Analogous arguments apply to the investigation of random parametric excitations

(i.e., random perturbations of the eigenfrequency). If the intensity of the noise is low,
the investigation is a simple matter; one can apply then the method of averaging. On
this subject, see [147], [148], [257], [254], [119] and others.

6.10 n-th Order Equations10

It is well known that the solution y = 0 of the equation

y(n) + b1y
(n−1) + · · · + bny = 0 (6.92)

is stable if and only if the Routh–Hurwitz conditions

10See [220]. Some special cases were considered previously in [42, 234].
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Δ1 = b1 > 0; Δ2 =
∣

∣

∣

∣

∣

b1 b3

1 b2

∣

∣

∣

∣

∣

> 0;

Δ3 =

∣

∣

∣

∣

∣

∣

∣

b1 b3 b5

1 b2 b4

0 b1 b3

∣

∣

∣

∣

∣

∣

∣

> 0; . . . ; Δn =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

b1 b3 b5 . . . 0

1 b2 b4 . . . 0

0 b1 b3 . . . 0

. . . . . . . . . . . . . . .

0 . . . . . . . . . bn

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

> 0

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎭

(6.93)

are satisfied (see [84]).
We shall derive analogous necessary and sufficient conditions for mean square

stability of the system

y(n) + (b1 + η̇1(t))y
(n−1) + · · · + (bn + η̇n(t))y = 0.

Here η̇1(t), . . . , η̇n(t) are Gaussian white noise processes, generally correlated, so
that

Eη̇i (s)η̇j (t)= aij δ(t − s).

Replacing the processes η̇1(t), . . . , η̇n(t) by independent processes as indicated
in Sect. 6.1, and setting

X1(t)= y(t); . . . ; Xn(t)= y(n−1)(t),

we get a system of Itô equations

dX1(t) = X2(t) dt,

dX2(t) = X3(t) dt, . . . , dXn−1(t)=Xn(t) dt,
...

dXn(t) = −
n
∑

i=1

biXn−i+1(t) dt −
n
∑

i,j=1

σijXn−i+1 dξj (t),

(6.94)

where ((σij ))((σji))= ((aij )).
It is easy to see that the generator of the process X(t) is

L= ∂

∂t
+
n−1
∑

i=1

xi+1
∂

∂xi
−

n
∑

i=1

bixn−i+1
∂

∂xn
+ 1

2

n
∑

i,j=1

aij xn−i+1xn−j+1
∂2

∂x2
n

.

Using the methods of Sects. 6.2 and 6.3 we may now determine necessary and
sufficient conditions for the system (6.94) to be stable in mean square. However,
the resulting conditions will involve determinants of order n2. We shall therefore
adopt another approach; this will give us conditions involving the computation of
only n+ 1 determinants, the largest of order n. We shall see that the first n deter-
minants are the same as in (6.93), while the last is obtained from Δn by replacing
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its first row by a vector whose components are computed by a certain rule from the
coefficients aij .

As we saw in Sect. 6.2 (Remark 6.3), a necessary condition for the system (6.94)
to be asymptotically stable in mean square is that the “non-random” system

dx1

dt
= x2, . . . ,

dxn−1

dt
= xn,

dxn

dt
= −

n
∑

i=1

bixn−i+1 (6.95)

is asymptotically stable, i.e., the Routh–Hurwitz conditions (6.93) hold. It is known
that under these assumptions there exists a positive definite quadratic form V (x)

such that

L0V =
n−1
∑

i=1

xi+1
∂V

∂xi
−

n
∑

i=1

bixn−i+1
∂V

∂xn
, (6.96)

i.e. the total derivative along the trajectory of the system (6.95) is equal to a pre-
scribed negative definite form W(x).

We first assume that the quadratic form

a(x)=
n
∑

i,j=1

aij xn−i+1xn−j+1

is positive definite. Then we have

Lemma 6.11 The trivial solution of the system (6.94) is asymptotically stable in
mean square if and only if there exists a positive definite quadratic form

V (x)=
n
∑

i,j=1

dij xixj

such that

L0V = −a(x), dnn < 1. (6.97)

Proof Suppose that there exists a form V (x)=∑dij xixj satisfying the conditions
of the lemma. Then, by (6.96) and (6.97), we have

LV = L0V + a(x)

2

∂2V

∂x2
n

= (dnn − 1)a(x) < 0.

Hence, by Theorem 6.3, it follows that the system (6.94) is asymptotically stable in
mean square.

Conversely, if the system (6.94) is asymptotically stable, it follows from the same
theorem that there exists a positive definite quadratic form

V1(x)=
n
∑

i,j=1

vij xixj ,



6.10 n-th Order Equations 219

such that LV1 = −a(x), i.e.,

L0V1 = LV1 − a(x)

2

∂2V1

∂x2
n

= −(vnn + 1)a(x).

Thus V (x) = V1(x)/(vnn + 1). Consequently dnn = vnn/(vnn + 1) < 1, which
we wished to show. �

Thus in order to obtain the desired conditions we must express the coefficient dnn
of the form V (x) defined by (6.97) in terms of the parameters bi , aij of the system
(6.94).

It follows from Theorem 6.3 that any function V (x) satisfying (6.97) can be
written as

V (x)=
∫ ∞

0
a(Xx(u)) du.

This equality makes it possible to express the coefficients of V (x) including dnn,
in terms of a fundamental system of solutions of (6.95). Next, as shown in [22], we
may express them in terms of the coefficients ai , bij . Indeed, according to [22],

dnn = 1

2Δn

n−1
∑

r=0

q(r)nn Δ1,r+1, (6.98)

whereΔ1,r+1 is the cofactor of the element in the first row and (r+ 1)-th column of
the last Hurwitz determinantΔn, and the numbers q(r)nn are related to the coefficients
aij of the form a(x) by

(−1)n−1
n
∑

i,j=1

an−i+1,n−j+1Dni(λ)Dnj (−λ)=
n−1
∑

r=0

q(r)nn λ
2(n−r−1). (6.99)

Here Dnj (λ) is the cofactor of the element in the n-th row and j -th column of the
determinant

D(λ)=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

−λ 1 0 . . . 0 0

0 −λ 1 . . . 0 0

. . . . . . . . . . . . . . . . . .

0 0 0 . . . −λ 1

−an −an−1 −an−2 . . . −a1 −λ

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

of the system (6.94).
It is easy to see that

Dni(λ)Dnj (−λ)= λi+j−2(−1)j−1.
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Hence, using (6.99), we infer that

n−1
∑

k=0

λ2k
∑

p+q=2(n−k)
apq(−1)q+1 =

n−1
∑

k=0

q(n−k−1)
nn λ2k

and consequently

q(n−k−1)
nn =

∑

p+q=2(n−k)
apq(−1)q+1. (6.100)

It follows from Lemma 6.11, by (6.98) and (6.100), that if a(x) is a positive
definite quadratic form, then the system (6.94) is stable in mean square if and only
if

Δ1 > 0; Δ2 > 0; . . . ; Δn > 0; Δn >Δ/2. (6.101)

Here Δ is the determinant

Δ=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

q
(0)
nn q

(1)
nn . . . q

(n−1)
nn

1 b2 . . . 0

0 b1 . . . 0

. . . . . . . . . . . .

0 0 . . . bn

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

, (6.102)

which differs from the last Hurwitz determinant Δn only in its first row. The num-
bers q(r)nn (r = 0, . . . , n− 1) are related to the elements aij of the correlation matrix
by formulas (6.100).

We shall now show that the assumption a(x) > 0 (x �= 0) is not essential. To do
this we consider along with the system (6.94), another system

dX1 =X2 dt; dX2 =X3 dt; . . . ; dXn−1 =Xn dt,

dXn = −
n
∑

i=1

biXn−i+1 dt −
n
∑

i,j=1

Xn−i+1σij dξj (t)+ ε

n
∑

j=1

Xj dηj (t).
(6.103)

Here η1(t), . . . , ηn(t) are assumed to be Wiener processes, independent of each
other and of the processes ξ1(t), . . . , ξn(t), and ε > 0 is a small parameter.

It is easy to see that the generator associated with the system (6.103) is

Lε = L+ 1

2
ε|x|2 ∂2

∂x2
n

.

Since the quadratic form

aε(x)= a(x)+ ε2|x|2
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is positive definite for any ε > 0, it follows that the system (6.103) is asymptotically
stable in mean square if and only if we have that

Δ1 > 0; Δ2 > 0; . . . ; Δn > 0;

Δn >
Δε

2
= Δ+ ε2Δ1

2
,

Δ1 =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 −1 1 . . . (−1)n−1

1 b2 b1 . . . 0

0 b1 b3 . . . 0

. . . . . . . . . . . . . . .

0 0 0 . . . bn

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

(6.104)

If conditions (6.93) are satisfied, the determinant Δ1 is positive. This follows
from the fact that the coefficient d̃nn of x2

n in a positive definite form ˜V (x) satisfying
the equation L˜V = −|x|2 is

d̃nn = Δ1

2Δn
.

Consequently

Δn >
Δ

2
. (6.105)

We now assume that the system (6.94) is asymptotically stable in mean square.
Then, by Remark 6.5, the system (6.103) is also stable for all sufficiently small
ε > 0, whence (6.104) holds. From (6.104) and (6.105) we get (6.101).

Now suppose that the inequalities (6.101) are satisfied. Then there exists a suffi-
ciently small ε > 0 for which the inequalities (6.104) hold, i.e., the system (6.103)
is asymptotically stable in mean square for this ε. By Theorem 6.3, there exists a
positive definite quadratic form W(x)=∑n

i,j=1wijxixj such that the form LεW is

negative definite. But then the function LW = LεW − ε2|x|2wnn is also negative
definite. Another application of Theorem 3.2 shows that the system (6.94) is stable
in mean square.

We have thus proved

Theorem 6.13 The system (6.94) is asymptotically stable in mean square if and
only if conditions (6.101) are satisfied, where the determinant Δ is given by (6.102)
and the numbers qrnn (r = 0, . . . , n− 1) in the first row of Δ are expressed in terms
of the coefficients aij by formulas (6.100).

It is interesting to observe that the coefficients aij of the correlation matrix figur-
ing in conditions (6.101) are those for which the sum i+ j is even. For example, for
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second- and third-order systems our necessary and sufficient conditions for asymp-
totic stability in mean square are

n= 2 : b1 > 0; b2 > 0; 2b1b2 > a11b2 + a22,

n= 3 : b1 > 0; b3 > 0; b1b2 > b3;
2(b1b2 − b3)b3 > a11b2b3 + a33b1 + b3(a22 − 2a13).

If the white noise processes η̇1, . . . , η̇n superimposed on the coefficients i of
(6.92) are independent, i.e., aij = 0 for i �= j , the determinant Δ assumes the par-
ticularly simple form

Δ=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

a11 −a22 . . . (−1)n−2an−1,n−1 (−1)n−1ann

1 b2 . . . 0 0

0 b1 . . . 0 0

. . . . . . . . . . . . . . .

0 0 . . . 0 bn

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

Conditions (6.100), (6.101) and (6.102) are sufficient for the system (6.94) to be
asymptotically p-stable when p ≤ 2. Let us now determine sufficient conditions for
p-stability when p > 2. We first assume that the quadratic form a(x) is positive
definite.

A necessary condition for asymptotic p-stability when p = 2, hence also when
p > 2, is that there exists a positive definite quadratic form

V (x)=
n
∑

i,j=1

dij xixj ,

satisfying (6.97). We set

W(x)= [V (x)]p/2.
It is readily seen that

LW = p

2
V p/2−2

{

VL0V + a(x)

[

dnnV + (p− 2)

(

n
∑

j=1

dnjxj

)2]}

= p

2
V p/2−2a(x)

[

(dnn − 1)V + (p− 2)

(

n
∑

j=1

dnj xj

)2]

. (6.106)

By the well known inequality for positive definite self-adjoint matrices D (see,
e.g., [85])

(Dx,y)2 ≤ (Dx,x)(Dy,y)
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we get, by taking y = (0, . . . ,0,1), that

(

n
∑

j=1

dnj xj

)2

≤ dnnV (x).

Using this relation, we conclude from (6.106) that

LW ≤ p

2
V p/2−1a(x)[dnn(p− 1)− 1].

If dnn(p − 1) > 1, then it follows by Theorem 6.2 that the system (6.94) is asymp-
totically p-stable.

Thus, a sufficient condition for the system (6.94) to be p-stable (p ≥ 2) is the
occurrence of inequalities

Δ1 > 0; . . . ; Δn > 0; Δn >
p− 1

2
. (6.107)

The first n of these are also necessary.
That the condition Δn > (p − 1)/2 is not necessary can be shown on examples.

It is also readily seen that already conditions (6.107) are sufficient for p-stability
(p ≥ 2); there is then no need to assume that the quadratic form a(x) is nonsingular.

6.11 Stochastic Stability in the Strong and Weak Senses

As before, let X(t) be a solution of the linear system (6.61) with constant coeffi-
cients. We shall show that in a broad range of cases the, suitably normalized, limit-
ing distribution of ρ(t)= ln |X(t)| as t → ∞ is Gaussian. To do this we make use
of the formula

ρ(t)= ρ0 +
∫ t

0
Q(Λλ0(s)) ds +

k
∑

r=1

(σrΛ
λ0(s),Λλ0(s)) dξr (s) (6.108)

proved in Sect. 6.7, and we assume for simplicity that the nondegeneracy condition
(6.62) (or (6.67)) is satisfied. We then have

Theorem 6.14 If condition (6.62) or (6.67) is satisfied and varρ(t) → ∞ as
t → ∞, then

P
{

ρ(t)− a∗t√
varρ(t)

< x

}

−→
t→∞Φ(x)= 1√

2π

∫ x

−∞
e−y2/2 dy.

Here a∗ = ∫
Sl
Q(λ)ν(dλ).
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Proof We have already seen (Sect. 6.7) that if condition (6.62) holds, then the tran-
sition probability of the process Λλ0(t) has a positive density. Hence, by the com-
pactness of the phase space, the process Λλ0(t) satisfies Doeblin’s condition. It is
shown in [56, Chap. V], that for the transition probability function P(λ, t,A) of the
process Λ(t) and any bounded measurable function f (λ) on Sl

|P(λ, t,A)− ν(A)|< ke−αt , (6.109)
∣

∣

∣

∣

E{f (Λ(t)) | Ns} −
∫

Sl

f (λ)ν(dλ)

∣

∣

∣

∣

< k‖f ‖e−α(t−s),
(

‖f ‖ = max
Sl

|f (λ)|
) (6.110)

(where k > 0 and α > 0 are constants). Using (6.108) and (6.109), we easily see that
for certain constants ci > 0

|Eρ(t)− a∗t |< |ρ0| + c1

∫ t

0
e−αs ds < c2. (6.111)

It follows from (6.111) and the assumptions of the theorem that

ρ(t)− Eρ(t)√
varρ(t)

= ρ(t)− a∗t√
varρ(t)

+ o(1) (6.112)

as t → ∞. These relations, together with well known limit theorems for additive
random functions (see [268]), imply the assertion of the theorem. �

Remark 6.11 Later P. Baxendale [19] proved the stronger version of central limit
theorem for ρ(t), see details below, Sect. B.2 (Remark B.3).

In Sect. 1.5 we presented conditions for weak stochastic stability of systems
whose right-hand side is perturbed by stochastic processes of a relatively general
form. In fact, for equations with random right-hand side we studied conditions un-
der which the solution Xs,x0(t) which satisfies the initial condition Xs,x0(s) = x0

fulfills the condition

lim
x0→0

sup
t>s

P{|Xs,x0(t)|> ε} = 0. (6.113)

It is clear that this definition is in general weaker than the definition

lim
x0→0

P
{

sup
t>s

|Xs,x(t)|> ε
}

= 0 (6.114)

we gave in Sect. 5.3. We claim that nevertheless a weakly stochastically stable linear
system with constant coefficients satisfying the assumptions of Theorem 6.14 is
also strongly stable. Indeed, if a∗ < 0, the system is stable in both the strong and
the weak sense. But if a∗ = 0, it follows from Theorem 6.14 that the system is
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unstable in the weak sense, since the probability of the event {|X(t)|< 1} converges
by Theorem 6.14 to 1/2 as t → ∞.

These arguments would seem to justify the conjecture that, in general, strong
and weak stochastic stability are equivalent for autonomous stochastic systems per-
turbed by white noise. However, the following example refutes this conjecture.11

Example 6.7 Let ϕ be the angle-coordinate of a point on the circle. We consider a
process on the circle, governed by the Itô equation

dϕ(t)=
[

−2 sin2 ϕ

2
+ sin3 ϕ

2
cos

ϕ

2

]

dt − 2 sin2 ϕ

2
dξ(t).

This system has a unique equilibrium position ϕ = 0. It is readily seen by means of
Itô’s formula (3.30) that the solution of this system satisfying the initial condition
ϕ(0)= ϕ0 is the function

ϕ(t)= 2 arccot

(

t + ξ(t)+ cot
ϕ0

2

)

. (6.115)

It follows from (6.115) that the point t = 0 is unstable in the sense of (6.114). In-
deed, t + ξ(t)→ ∞ almost surely as t → ∞, and hence any path for which ϕ0 < 0
is sufficiently small in absolute value almost surely describes an almost complete
circle.

On the other hand, we claim that for any ε > 0 there exist sufficiently large num-
bers C(ε) and R(ε) such that for all t ≥ 0

P{|t + ξ(t)−C(ε)|<R(ε)}< ε. (6.116)

Indeed,

P{|t + ξ(t)−C|<R} =Φ

(

C +R − t√
t

)

−Φ

(

C −R − t√
t

)

(6.117)

(where Φ is the normal distribution function with parameters (0,1)). We set, for
example, C = T 3. Then for t ≥ R3/2 the difference 2R/

√
t between the arguments

in (6.117) satisfies the inequality

2R√
t

≤R−1/2 < ε

for sufficiently large R. But if t < R3/2, then

C −R − t√
t

>
R3/2 −R
√

R3/2
→ ∞ as R→ ∞.

11The author’s attention was drawn to the problem of the connection between strong and weak
stochastic stability by N.N. Krasovskii.
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These relations imply (6.116). From (6.115) and (6.116) it follows that the system is
stable in the sense of definition (6.113); indeed, for sufficiently large C(ε) we have
the obvious inequality

P{|t + ξ(t)+C(ε)|< [C(ε)]1/3}< ε.
Thus a system which is weakly stable in the sense of (6.113) may be almost surely
unstable. It would be interesting to construct an analogous example on the plane.



Chapter 7
Some Special Problems in the Theory
of Stability of SDE’s

7.1 Stability in the First Approximation1

Many problems concerning the stability of a nonlinear stochastic system can be
reduced to problems about a linear system, obtained from the original system by
dropping terms of higher than first order in x. This circumstance makes the study of
stability for linear SDE’s especially important.

The first theorem on stability of stochastic systems in the linear approximation
was proved in [111], for the case of ODE with depending on jump Markov processes
coefficients (see Sect. 5.1). They proved that the full system is stable in probability
if the linearized system is exponentially stable in mean square. A similar result was
established in [89, 90] for the diffusion-type processes considered in Chaps. 3–6.
However, this result leaves unanswered the question of whether the linearization
method is applicable to the stability theory of a broad range of systems; there exist
linear systems which are almost surely asymptotically stable but not stable in mean
square (see Sect. 6.3). This leads to the question of whether the full system is always
stable whenever the corresponding linearized system has constant coefficients and
is almost surely asymptotically stable. We intend to show that the answer to this
question is positive.

We first consider the linear system

dX(t)= B(t)X dt +
k
∑

r=1

σr(t)X dξr(t) (7.1)

with constant coefficients, i.e., B , σ1, . . . , σk are constant matrices.

1See [221], [128].
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Theorem 7.1 If the linear system (7.1) with constant coefficients is asymptotically
stable almost surely (or in probability), and the coefficients of the system

dX(t)= b(t,X)dt +
k
∑

r=1

σr(t,X)dξr(t) (7.2)

satisfy an inequality

|b(t, x)−Bx| +
k
∑

r=1

|σr(t, x)− σrx|< γ |x| (7.3)

in a sufficiently small neighborhood of the point x = 0 and with a sufficiently small
constant γ , then the solution X = 0 of the system (7.1) is asymptotically stable in
probability.

Proof By Theorem 6.5, it will suffice to prove that if the system (7.1) is exponen-
tially p-stable for some p > 0 and condition (7.3) is satisfied, then the system (7.2)
is asymptotically stable in probability. We let

L0 = ∂

∂t
+
(

Bx,
∂

∂x

)

+ 1

2

k
∑

r=1

(

σrx,
∂

∂x

)2

,

L= ∂

∂t
+
(

b(t, x),
∂

∂x

)

+ 1

2

k
∑

r=1

(

σr(t, x),
∂

∂x

)2
(7.4)

denote the generators of the systems (7.1) and (7.2), respectively. By Theorem 6.2,
there exists a function V (t, x) such that for some ki > 0

k1|x|p ≤ V (t, x)≤ k2|x|p; L0V (t, x)≤ −k3|x|p,
∣

∣

∣

∣

∂V

∂x

∣

∣

∣

∣

< k4|x|p−1,

∣

∣

∣

∣

∂2V

∂xi∂xj

∣

∣

∣

∣

≤ k4|x|p−2.
(7.5)

By (7.3), (7.4) and (7.5), we have

LV = L0V +
(

b(t, x)−Bx,
∂

∂x

)

V

+ 1

2

k
∑

r=1

(

σr(t, x)− σrx,
∂

∂x

)(

σr(t, x)+ σrx,
∂

∂x

)

V

≤ − k3|x|p + γ k4|x|p + γ k5|x|p (7.6)

in a sufficiently small neighborhood of x = 0.
The constant k5 in this inequality depends only on k4 and on the supremum of

absolute values of the coefficients in (7.1).
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It follows from (7.6) that the function LV is negative definite in a sufficiently
small neighborhood of x = 0, provided γ < k3/(k4 + k5). Moreover, according to
(7.5), V is positive definite and has an infinitesimal upper limit. Applying Corol-
lary 5.1 to the function V , we get the assertion of the theorem. �

If the coefficients of the system (7.1) are time-dependent, we have the analogous

Theorem 7.2 Suppose that the coefficients of the system (7.1) are bounded func-
tions of time, the trivial solution of (7.1) is stable in the large uniformly in t , and
condition (7.3) is satisfied with a sufficiently small constant γ . Then the trivial so-
lution of (7.2) is asymptotically stable in probability.

Proof By Theorem 6.7, it suffices to prove that if the system (7.1) is exponentially
p-stable and condition (7.3) holds, then the assertion of the theorem is valid. This
we did in the proof of Theorem 7.1. �

Remark 7.1 It is clear from the proofs of Theorems 7.1 and 7.2 that the constant γ
in condition (7.3) depends only on k3, k4 and supt>0 ‖σr(t)‖.

Remark 7.2 It follows from Theorems 7.1 and 7.2 that the system (7.2) is asymp-
totically stable in probability if the linearized system

dX(t)= ∂b(t,0)

∂x
X dt +

k
∑

r=1

∂σr(t,0)

∂x
X dξr(t)

is stable in the large uniformly in t , and the derivatives ∂b/∂x and ∂σr/∂x are
bounded and uniformly (in t) continuous in x for x = 0.

7.2 Instability in the First Approximation

We first recall some well known results for the deterministic case (see [188], [191]),
confining ourselves to systems with constant coefficients.

Theorem 7.3 (Lyapunov’s Theorem) Suppose that at least one of the roots of the
characteristic equation of the system

dX

dt
= BX (7.7)

has positive real part. Let the vector ϕ(x) be such that |ϕ(x)|<A|x|2.
Then the solution X ≡ 0 of the equation

dX

dt
= BX+ ϕ(X) (7.8)

is unstable.
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Malkin observed in [191] that Lyapunov’s arguments in fact yield a more general
result:

Theorem 7.4 (Malkin’s Theorem) If at least one of the roots of (7.7) has positive
real part, then the trivial solution of the system (7.8) is unstable if |ϕ(x)| < γ |x|,
where γ is a sufficiently small constant which depends only on the coefficients of
a positive definite quadratic form satisfying the assumptions of Lyapunov’s second
instability theorem.

It will be clear from the sequel that the situation is far more complicated in regard
to stochastic systems. In particular, the examples given in Sect. 7.3 will show that
the analog of Malkin’s theorem fails to hold.

We shall first prove that the analog of Theorems 7.1 and 7.2 for instability is
valid, provided the linearized system is unstable in a sufficiently strong sense. The-
orem 6.4 implies that if the system (7.1) is exponentially q-unstable, then there
exists a function V (t, x) such that

k1|x|−q ≤ V (t, x)≤ k2|x|−q; L0V ≤ −k3|x|−q,
∣

∣

∣

∣

∂V

∂x

∣

∣

∣

∣

≤ k4|x|−q−1;
∣

∣

∣

∣

∂2V

∂xi∂xj

∣

∣

∣

∣

< k4|x|−q−2 (i, j = 1, . . . , l)
(7.9)

for certain constants ki > 0.

Theorem 7.5 Let the coefficients of the linear system (7.1) be bounded functions of
time, and let the trivial solution of this system be exponentially q-unstable for some
q > 0. Moreover, suppose that inequality (7.3) holds with a sufficiently small con-
stant γ , depending only on supt>0 ‖σr(t)‖ and the constants k1, k2, k3, k4 figuring
in (7.9). Then the solution X(t)≡ 0 of the system (7.2) is unstable in probability.

Proof It follows from Theorem 6.4 that under the above assumptions there exists
for the system (7.1) a function satisfying inequalities (7.9). Hence, as in the case of
(7.6), we see that

LV ≤ −k3|x|−q + γ k4|x|−q + γ k5|x|−q,
in a sufficiently small neighborhood of x = 0, where k5 depends on k4 and
supt>0 ‖σr(t)‖. It follows now that for sufficiently small γ , the function V satis-
fies all the assumptions of Theorem 5.6 (see the remark following that theorem).
This completes the proof. �

From this theorem and Theorems 6.6 and 6.8, we get the following result.

Theorem 7.6 If for any x �= 0, A> 0, the solutions of the linear system (7.1) satisfy
the identity

lim
T→∞ sup

s>0
P
{

inf
u>s+T |Xs,x(y)|<A

}

≡ 0, (7.10)
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and the elements of the matrices B , σ1, . . . , σk are bounded, then the solution
X(t) ≡ 0 is unstable in probability for all systems of type (7.2) whose coefficients
satisfy condition (7.3) with sufficiently small γ .

Theorem 7.7 If the system (7.1) has constant coefficients, the assertion of Theo-
rem 7.6 remains valid if assumption (7.10) is replaced by the requirement that for
all x �= 0

P{|Xs,x(t)| → ∞ as t → ∞} = 1. (7.11)

A comparison of the theorems of Lyapunov and Malkin with Theorem 7.7 shows
that for deterministic systems the latter furnishes a very poor result. Whereas ac-
cording to the Lyapunov–Malkin theorems it is sufficient that at least one root of
the characteristic equation of the linear system has a positive real part, Theorem 7.7
is valid for a deterministic linear system only when the real parts of all roots of the
characteristic equation are positive (see Sect. 6.3). Nonetheless, if the system (7.1)
with constant coefficients is nondegenerate in the sense that

k
∑

r=1

(σrx,λ)
2 > 0 (7.12)

for all non-zero vectors x and λ, then Theorem 7.7 implies the

Corollary 7.1 If inequality (7.12) is satisfied, then the assertion of Theorem 7.7
holds if conditions (7.11) are satisfied for at least one value of x.

This corollary is obvious if we observe that, by Theorems 6.11 and 6.12, condi-
tion (7.11) holds for one x if and only if it holds for all x �= 0.

There are two questions arising naturally in connection with the last theorem and
its corollary.

1. Can we replace assumption (7.11) in Theorem 7.7 by the weaker assumption

sup
t>s

|Xs,x(t)| = ∞ a.s.?

2. Can the assertion of Theorem 7.7 be proved under the assumption that (7.11)
holds for at least one x �= 0, but without the nondegeneracy condition (7.12)?

We shall see in Sect. 7.3 that the answers to both these questions are in general
negative.

7.3 Two Examples

Example 7.1 We again consider the one-dimensional system

dX(t)= b(t,X)dt + σ(t,X)dξ(t), (7.13)
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such that the linearized system

dX(t)= b0Xdt + σ0Xdξ(t) (7.14)

has constant coefficients. If b0 < σ 2
0 /2, we can apply Theorem 7.1, and if b0 >

σ 2
0 /2, we can use Theorem 7.7. If b0 = σ 2

0 /2, the linear system is unstable, but not
asymptotically q-unstable for any q > 0 (see Sect. 6.1) and, moreover, we have

P
{

sup
t>s

|Xs,x(t)| = ∞
}

= 1 (7.15)

for x �= 0. It follows also from the results of Sect. 6.1 that if b0 = σ 2
0 /2, then the

system

dX(t)= (b0 − γ )X dt + σ0Xdξ(t)

is asymptotically stable for any γ > 0.
This implies that the answer to the first of the questions posed at the end of

Sect. 7.2 is negative. Thus the analog of Malkin’s theorem is false here. However,
the solution X(t) ≡ 0 of the system (7.13) is nevertheless unstable, if we assume
that the differences b(t, x)− b0x and σ(t, x)− σ0x tend to zero sufficiently rapidly
as x → 0. Indeed, suppose that b0 = σ 2

0 /2 and that for some k > 0, α > 0

|b(t, x)− b0x| + |σ(t, x)− σ0x|< k|x|1+α. (7.16)

Consider the auxiliary function V (x)= ln ln(1/|x|). The reader will easily verify
that in this case V → ∞ as x → 0 and infε<|x|<δ LV < 0 for sufficiently small fixed
δ > 0 and any ε < δ. The instability of (7.13) under the assumptions b0 = σ 2

0 /2 and
(7.16) now follows from Theorem 5.6.

We have thus shown in the one-dimensional case that if the linear system with
constant coefficients satisfies (7.15), and the full system is nearly linear in the sense
of (7.16), then the latter is unstable in probability.

It would be interesting to know whether this remains true in the multi-
dimensional case.

Example 7.2 Let Ψ (z) denote a differentiable function of the real variable z, with
compact support and bounded together with its first derivative. Suppose further that

Ψ (0)= 0; Ψ ′(0)= −3; |Ψ (z)|< 1. (7.17)

Using this function, we construct a Markov process on the plane, which is the
solution of the system of Itô equations

dX1(t)=
[

X1 + εX2Ψ

(

X1

εX2

)]

dt + σX1 dξ1(t),

dX2(t)= −X2 dt + δX1 dξ2(t).

(7.18)
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We first observe that for any ε > 0, δ > 0 the coefficients of (7.18) have bounded
derivatives with respect to x1, x2, and consequently they satisfy the existence con-
ditions (Theorem 3.4). Further, for small ε and δ the coefficients of (7.18) are close
to those of the deterministic system

dx1

dt
= x1; dx2

dt
= −x2 (7.19)

in the sense of (7.3), where the constant γ in (7.3) may be assumed equal to
min(ε, δ). Finally, it is clear that the solutions of the system (7.19), except those
for which x1(0) = 0, have absolute values diverging to infinity as t → ∞. Never-
theless, we can prove that for any ε > 0 and δ > 0 the solution X(t)≡ 0 of (7.18) is
asymptotically stable in the large. This will furnish a negative answer to the second
question at the end of Sect. 7.2.2

We shall use in the proof the fact that all the coefficients of (7.18) are homoge-
neous functions of degree 1 and therefore the projection of the process X(t) on the
circle |x| = 1 is also a Markov process (see Sect. 6.7).3

As in Sect. 6.8, we introduce the new variables

r(t)= 1

2
ln(X2

1(t)+X2
2(t))= ln |X(t)|;

ϕ(t)= arctan
X2(t)

X1(t)

and apply Itô’s formula (3.30). The result is

dϕ(t)= −
[

2 sinϕ cosϕ + ε sin2 ϕ Ψ

(

cotϕ

ε

)]

dt

+ δ(cos2 ϕ dξ2(t)− sinϕ cosϕ dξ1(t)), (7.20)

dr(t)=
[

cos2 ϕ − sin2 ϕ + ε sinϕ cosϕ Ψ

(

cotϕ

ε

)]

dt

+ δ(cos2 ϕ dξ1(t)+ sinϕ cosϕ dξ2(t)). (7.21)

The diffusion coefficient of the Markov process ϕ(t) on the circle 0 ≤ ϕ < 2π van-
ishes only at the points ϕ1 = π/2, ϕ2 = 3π/2. In view of (7.17), this means that
ϕ = π/2 and ϕ = 3π/2 are solutions of (7.20). We claim that these solutions are

2In connection with this Nevelson [217] has proved that an unstable linear system perturbed by
small linear random perturbations is also unstable.
3This observation, made in the first edition in 1969, was later used by many authors for evaluation
of Lyapunov exponent, moment Lyapunov exponent, stability index for SDE with homogeneous
of order 1 coefficients, see e.g., [13], [226], [1], [258].
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stable. To prove this, we investigate the first-approximation equation in the neigh-
borhood of the point ϕ = π/2. By (7.17), this equation is

d(ϕ − π/2)= −(ϕ − π/2) dt + δ(ϕ − π/2) dξ1(t).

Since the first-approximation equation is asymptotically stable, it follows from The-
orem 7.1 that the solution ϕ = π/2 of (7.20) is stable in probability. The stability of
the solution ϕ = 3π/2 is proved in a similar fashion. The diffusion coefficient of the
process ϕ(t) is positive for ϕ �= ϕi . Hence, reasoning as in the proof of Theorem 5.7,
we see that ϕ(t) has a limit as t → ∞ for any initial condition. This limit is either
π/2 or 3π/2.

Thus, by (7.21) and Lemma 6.8, we see that

lim
t→∞

ln |X(t)|
t

= lim
t→∞

1

t

∫ t

0

[

cos2 ϕ(s)− sin2 ϕ(s)

+ ε sinϕ(s) cosϕ(s)Ψ

(

cotϕ(s)

ε

)]

ds = −1.

Thus, P{|X(t)| → 0 as t → ∞} = 1 and the solution of (7.18) is stable in the large,
as required.

To conclude this section, we note that in this example condition (7.16) does not
hold for any α > 0. It is quite probable that the theorem on instability in the first
approximation can be proved on the assumption that (7.11) holds for at least one
value of x and the full system is nearly linear in the sense of (7.16). This would
be a natural generalization of the theorem of Lyapunov quoted at the beginning of
Sect. 7.2.

7.4 Stability Under Damped Random Perturbations

Consider the one-dimensional SDE

dX(t)= −Xdt + σ(t) dξ(t); X(0)= x0. (7.22)

It is easy to see that the solution of this SDE is

X(t)= x0e
−t +

∫ t

0
es−t σ (s) dξ(s).

Hence

E|X(t)− x0e
−t |2 =

∫ t

0
e2(s−t)σ 2(s) ds ≤ e−t

∫ t/2

0
σ 2(s) ds +

∫ t

t/2
σ 2(s) ds.

It follows from this inequality that, althoughX(t)≡ 0 is not a solution of the system
(7.22), it is nonetheless true that any solution of (7.22) tends to zero as t → ∞,
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provided that
∫ ∞

0
σ 2(s) ds <∞.

It is natural to expect a similar situation to obtain in a broader range of cases: Suf-
ficiently rapidly damped persistent random perturbations do not change the stability
of an asymptotically stable system. Let us prove a result going in that direction.

Theorem 7.8 Consider the system

dx

dt
= F(t, x) (7.23)

in R
l . Suppose that there exists for this system a positive definite and admitting an

infinitesimally small upper limit function V (t, x) satisfying

d0V

dt
= ∂V

∂t
+
(

F,
∂V

∂x

)

<−α(t)ϕ(t, x) < 0, (7.24)

inf
t>0
V (t, x)→ ∞ as |x| → ∞, (7.25)

and such that for every 0< ε <R <∞,

inf
ε<|x|<R ϕ(t, x) > 0 for T > Tε,R (7.26)

and
∫ ∞

0
α(t) dt = ∞ (7.27)

hold. Suppose further that the coefficients σr(t, x) of the SDE

dX(t)= F(t,X(t)) dt +
k
∑

r=1

σr(t,X(t)) dξr (t) (7.28)

satisfy for a certain constant K1 and a certain positive and integrable on [0,∞)

function g(t)

k
∑

r=1

l
∑

i,j=1

σ ir σ
j
r

∂2V

∂xi∂xj
=

k
∑

r=1

(

σr(t, x),
∂

∂x

)2

V (t, x)≤ (V (t, x)+K1)g(t).

(7.29)
Then every solution of (7.28) has almost surely limit 0 as t → ∞.

Proof We let the generator L of the process (7.28) act on the function

W(t, x)= (V (t, x)+K1) exp

{∫ ∞

t

g(s) ds

}

.
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Evidently

LW = (LV − gV −K1g) exp

{∫ ∞

t

g(s) ds

}

≤ −α(t)ϕ(t, x) exp

{∫ ∞

t

g(s) ds

}

. (7.30)

(7.25), (7.30) and the integrability of the function g(t) imply that

LW ≤ 0; inf
t≥0
W(t, x)→ ∞ as |x| → ∞.

Therefore (see Sect. 5.2 and Theorem 3.5) W(t,X(t)) is a bounded from below
supermartingale. Theorem 5.1 implies now that almost surely there exists the limit

η= lim
t→∞W(t,X(t))= lim

t→∞V (t,X(t))+K1. (7.31)

Since V (t, x) is positive definite and (7.31) holds, the theorem will be proved
provided we show that η=K1 holds almost surely.

For this purpose let us consider the domain UT (ε,R)= {ε < |x|<R}× (t > T ).
Then (7.30) and the assumptions of the theorem imply that for a suitable choice of
T = Tε,R the inequality LW ≤ −α(t)δε,R holds in the domain UT (ε,R). Thus we
may conclude by Theorem 3.9 that for every point (s, x) ∈ UT (ε,R) the moment
τ(ε,R) at which the path of the process X(t) exits from the domain ε < |x|<R is
almost surely finite. (More exactly, we should apply Theorem 3.9 only in the case
when τ(ε,R)≥ T , considering for t ≥ T the paths which leave the pointX(T ) at the
moment T .) Thus we may now apply Lemma 3.9 whose assumptions are satisfied
for the function W(t, x) in order to conclude that the process X(t) is recurrent in
the domain |x|< ε for every ε > 0 and x ∈ R

l .
It is now easy to establish the equality P{limt→∞ |X(t)| = 0} = 1. Indeed, sup-

pose that with positive probability we have limt→∞ |xs0,x0(t)|> δ for some s0 > 0
and x0 ∈ R

l . Then there exists a number T > 0 such that

P
{

inf
t>T

|Xs,x(t)|> δ
}

>p/2.

The last inequality contradicts the recurrence property of the process XT,x(t) as
related to the domain {|x|< δ} and for all |x|> δ.

Since V (t, x) has an infinitesimally small upper limit, (7.31) implies that

P{η=K1} = 1.

As we have noted above, this suffices to complete the proof of the theorem. �

Remark 7.3 The assumption that there exists a function V satisfying conditions
(7.24), (7.25) and (7.27) is not very restrictive. For a wide class of stable in the large
systems (7.23) it is possible to demonstrate the existence of a function V with the
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above properties (see [155]). Condition (7.29) is satisfied for instance if V grows
not slower than |x|2 as |x| → ∞, it has bounded second derivatives with respect to
the space variables, and moreover

k
∑

r=1

|σr(t, x)|2 < (|x|2 + 1)g(t). (7.32)

Remark 7.4 Theorem 7.8 throws some light upon the effect of damped random
perturbations on a deterministic system which is stable in the large. If the system is
dissipative in the sense of Sect. 1.2, one can prove in an analogous fashion that the
constant R figuring in the definition of dissipativity satisfies the equality

P
{

lim
t→∞|X(t,ω)|<R

}

= 1.

A more delicate analysis shows that in this case for sufficiently “well behaved”
systems (7.23) the solution of (7.28) almost surely converges to one of the solutions
of the deterministic system (7.23) as t → ∞. We shall not go into the details here.

7.5 Application to Stochastic Approximation4

In [237] proposed an iterative procedure for the determination of the roots of the
regression equation; they called this method stochastic approximation. Let us briefly
describe it here.

Let Y(x,ω) be a family of random variables depending on a parameter x such
that EY(x,ω) = R(x). Suppose that the distribution of Y(x,ω) is unknown to an
“observer”, who can only carry out certain “measurements” yn(x,ω) of the variable
for arbitrary values of the parameter. The problem is to determine a value of the
parameter x = x0 for which the function R(x) assumes a prescribed value α.

The procedure proposed by Robbins and Monro to determine x0 is as follows.
Choose a sequence of positive numbers an such that

∞
∑

n=1

an = ∞;
∞
∑

n=1

a2
n <∞. (7.33)

Fixing x1 arbitrarily, define a sequence of numbers x2, . . . , xn, . . . by the recursive
relation

xn+1 = xn − an(yn(xn,ω)− α). (7.34)

Under certain assumptions on the distribution of Y(x,ω), it can be shown that
xn(ω) → x0 almost surely as n → ∞. This result has since been generalized in

4A more detailed discussion of these problems is given in Chaps. IV and V of the author’s joint
book with Nevelson [138].
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various directions. A detailed bibliography of the literature up to 1965 can be found
in [68].

A natural continuous analog of the procedure (7.34) is

dX

dt
= −a(t)[Y(X(t), t,ω)− α], (7.35)

where Y(x, t,ω) is a “stochastic process” with independent values and expectation
R(x). If we assume, as before, that the solution X(t) is a continuous stochastic
process,5 then this equation can be interpreted as the Itô equation

dX(t)= −a(t)[(R(X(t))− α)dt + σ(X(t)) dξ(t)] (7.36)

in R
l .

We shall show that under certain assumptions concerning the functions a(t),
R(x) and σ(x) this process converges almost surely to a root of the equation
R(x)= α.

Theorem 7.9 Given two differentiable functions R(x) and σ(x), suppose that there
exist a twice continuously differentiable function V (x) and a constant k > 0 such
that

V (x)→ ∞ as |x| → ∞;
V (x0)= 0; V (x) > 0 for x �= x0

}

(7.37)

and

(R(x)− α)
dV

dx
> 0 for x �= x0,

σ 2(x)
d2V

dx2
< k(V (x)+ 1).

Then the process (7.36) satisfies the equality

P
{

lim
t→∞X(t)= x0

}

= 1

for all continuous positive functions a(t) such that
∫ ∞

0
a(t) dt = ∞;

∫ ∞

0
a2(t) dt <∞. (7.38)

Proof The proof follows at once from Theorem 7.8, if we set

(R(x)− α)a(t)= −F(t, x − x0). �

5This restriction is not natural, and it can be eliminated by recourse to the stochastic differential
equation of a Markov jump process (see, e.g., [251]). However, jump processes are beyond the
scope of this book.
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Corollary 7.2 The assumptions of the theorem evidently hold for the function
V (x)= (x − x0)2, if R(x) and σ(x) are such that

(x − x0)(R(x)− α) > 0 for x �= x0,

σ 2(x) < k(x2 + 1).

For the discrete-time case analogous sufficient conditions for convergence of
stochastic approximations were given in [94].

Theorem 7.8 also yields convergence conditions for stochastic approximations in
many dimensions. We state the result.

Theorem 7.10 The multi-dimensional stochastic approximation process

dX(t)= −a(t)
[

(R(X(t))− α)dt +
k
∑

r=1

σr(X(t)) dξr (t)

]

(7.39)

converges almost surely to a solution of the equation

R(x)= α, (7.40)

if conditions (7.38) are satisfied and there exists a function V (x) satisfying condition
(7.37) and the conditions

(

R(x)− α,
∂V

∂x

)

> 0 for x �= x0, (7.41)

k
∑

r=1

l
∑

i,j=1

σ ir (x)σ
j
r (x)

∂2V

∂xi∂xj
< k1(V (x)+ 1) (7.42)

for some constant k1.

Remark 7.5 If condition (7.41) is satisfied only in a neighborhood of infinity, it
can be shown that the process (7.39) converges to an invariant set of the system
dx/dt = −R(x)+ α.

7.6 Stochastic Approximations when the Regression Equation
Has Several Roots

Condition (7.41) guarantees the uniqueness of the solution of the equationR(x)= α.
However, it is interesting to study the properties of the Robbins–Monro procedure
when this equation has several roots. We shall show that Lyapunov functions are
also applicable in this case.
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Fig. 7.1

Not striving for maximal generality, we shall limit the discussion in this section to
the case of a point x on the line (−∞< x <∞). We shall assume that the coefficient
σ(x) of (7.36) satisfies

σ 2(x) < k(x2 + 1) (7.43)

for some constant k > 0.

Theorem 7.11 Suppose that the set A = {x : R(x) = α} consists of finitely many
points x(0)1 , . . . , x

(0)
n , the derivative R′(x) is continuous, and condition (7.43) is sat-

isfied. Suppose moreover that

(R(x)− α)x > 0 for |x|> b (7.44)

holds for some number b > 0.
Then for any function a(t) > 0 satisfying the conditions (7.38) the Robbins–

Monro process X(t) defined by (7.36) converges almost surely to a point of the
set A.

Proof We set

R1(x)=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

R(x)− α for |x| ≤ b,
R(b)−α

b
x for x > b,

R(−b)−α
−b x for x <−b,

W(x)=
∫ x

0
R1(y) dy;

V (t, x)= (W(x)+ k1) exp

{

γ

∫ ∞

t

a2(s) ds

}

,

where the constants k1 > 0 and γ > 0 will be determined later. The functions R1(x)

and R(x) are illustrated in Fig. 7.1 and the function W(x) in Fig. 7.2.
Applying to the function V the generator

L= ∂

∂t
− a(t)(R(x)− α)

∂

∂x
+ 1

2
a2(t)σ 2(x)

∂2

∂x2
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Fig. 7.2

of the process X(t), we get

LV = −(W(x)+ k1)γ a
2(t)− a(t)(R(x)− α)R1(x) exp

{

γ

∫ ∞

t

a2(s) ds

}

+ 1

2
a2(t)σ 2(x)R′

1(x) exp

{

γ

∫ ∞

t

a2(s) ds

}

.

By the above construction of the function R1(x), the derivative R′
1(x) is bounded

and the product (R(x)−α)R1(x) is non-negative (see (7.44)). In addition, the func-
tionW(x) increases like a parabola when |x| → ∞. Hence, by (7.43), it follows that
for a suitable choice of k1 and γ we have LV ≤ 0 for t ≥ t0; in fact, we have the
even stronger inequality

LV ≤ −a(t)(R(x)− α)R1(x). (7.45)

Thus the function V (t,X(t)) is a supermartingale for t ≥ t0 (see Sect. 5.2). Hence
the limit

lim
t→∞V (t,X(t))= ξ (7.46)

is almost surely finite. Moreover, it follows from (7.45) and (3.37) that

∫ t

t0

a(s)E[R(X(s)− α)R1(X(s))]ds ≤ EV (t0,X(t0)) (7.47)

for t > t0. The integrand on the left of (7.47) is non-negative, and the function a(s)
is not integrable on [t0,∞]. Thus, there exists a sequence tn → ∞ such that

lim
n→∞ E[(R(X(tn))− α)R1(X(tn))] = 0.

It follows from this equality and from Chebyshev’s inequality that the sequence
R(X(tn))− α converges to zero in probability. Then, as is well known, there exists
a subsequence tnk such that

lim
k→∞R(X(tnk ))= a (a.s.).

Hence, it follows by (7.46) that the random variable ξ in (7.46) almost surely takes
on only values from the finite set W(x(0)1 )+ k1, . . . ,W(x

(0)
n )+ k1. Let A1 be the set

of points x such thatW(x)+k1 takes on one of these values. The assumptions of the
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theorem evidently imply that A1 is a finite set (see Fig. 7.2), in which the elements
of A1 are marked by crosses, and A ⊂ A1. It follows from (7.46) that the process
X(t) converges to the set A1 as t → ∞. Moreover X(t) almost surely converges
to only one element of A1, for otherwise it would follow from the continuity of
X(t) that (7.46) does not hold. Finally let us prove that the probability of the event
B = {X(t)→ x0 as t → ∞} is zero if x0 ∈A1 \A. In fact, B implies the event

lim
t→∞(R(X(t))− α)R1(X(t))= (R(x0)− α)2 > 0.

Hence, by (7.38), we get

B ⊂
{∫ ∞

t0

a(s)(R(X(s))− α)R1(X(s)) ds = ∞
}

.

This, together with (7.47), implies that P(B)= 0. Theorem 7.11 is proved. �

Let A2 denote the set of points x ∈ A at which the function R(x)− α changes
sign, from positive to negative. The next theorem shows that under certain addi-
tional assumptions the points of A2 cannot be limits of the stochastic approximation
process (7.36). For the discrete-time case this was conjectured by Fabian [69, 70].
Similar questions have been considered by Krasulina [162].

Theorem 7.12 Under the assumptions of Theorem 7.11, let x∗ be a point of the set
A2 such that R′(x∗) < 0 and σ 2(x∗) > 0. Assume moreover that the function a(t)
satisfies |a′(t)| < ka2(t) (k > 0 constant). Then x∗ cannot be a limit point of the
stochastic approximation process (7.36).

For the proof we need the following two lemmas.

Lemma 7.1 Let X(t) be a diffusion process with generator L and let D be a
bounded domain. Then X(t) almost surely exits from D in a finite time, if there
exists a function V (t, x) such that in I ×D

LV ≤ 0, (7.48)

inf
x∈DV (t, x)→ ∞ as t → ∞ (7.49)

Proof Let τ denote the first exit time from D of the path of the process and let
τ(t) = min(τ, t). As mentioned in Sect. 5.2, the process V (τ(t),X(τ(t))) is a su-
permartingale. By Theorem 5.1

lim
t→∞V (τ(t),X(τ(t)))= ξ

exists and is finite. The finiteness of ξ and relation (7.49) imply the assertion. �
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Lemma 7.2 The function

W(z)=
∫ z

0
dv

∫ v

0

eu−v√
uv
du (7.50)

is a solution of the equation

zw′′ +
(

z+ 1

2

)

w′ = 1. (7.51)

Moreover, W satisfies

W(z)= ln z+O(1) (z→ ∞), (7.52)

0< zW ′(z) < c for z→ 0. (7.53)

Proof The relation (7.51) is verified directly, while (7.52) and (7.53) are conse-
quences of the estimates

W ′(z)= e−z√
u

∫ z

0

eu√
u
du= 1

z
+ 1

2z2
+O

(

1

z3

)

(z→ ∞),

W ′(z)= 2 +O(z) (z→ 0),

which are proved by integration by parts. �

Proof of Theorem 7.12 (1) Without loss of generality, we may assume that x∗ = 0.
Let us prove that, if ε > 0 is sufficiently small, then the process X(t), beginning
at an arbitrary time t > 0 at any point of the interval (−ε, ε), reaches the ends of
this interval in a finite time. It follows from Theorem 7.11 and the strong Markov
property of the process X(t) that this assertion is equivalent to Theorem 7.12.

Using Lemma 7.1, we can thus reduce the proof of Theorem 7.12 to the construc-
tion of a function V (t, x) in {t > 0} × (−ε, ε) satisfying conditions (7.48), (7.49).
Applying the usual methods of stability theory, we shall first construct a function
V (t, x) satisfying the conditions (7.48), (7.49) for

˜L= ∂

∂t
+ a(t)βx

∂

∂x
+ 1

2
a2(t)σ 2

0
∂2

∂x2
,

where β = −R′(0), σ 2
0 = σ 2(0). It will then be an easy matter to show that after

some modification the function will satisfy these conditions for the “full” operator

L= ∂

∂t
− a(t)(R(x)− α)

∂

∂x
+ 1

2
a2(t)σ 2(x)

∂2

∂x2
. (7.54)

We shall look for the function V (t, x) in the form

V (t, x)=Φ(t)−W(z), z= x2

ϕ(t)
,



244 7 Some Special Problems in the Theory of Stability of SDE’s

where W is the function defined by (7.50) and the functions Φ(t) and ϕ(t) will be
specified below. Simple computations lead to the equality

˜LV (t, x)=Φ ′(t)+ zW(z)

(

ϕ′

ϕ
− 2βa(t)

)

− a2(t)σ 2
0

ϕ(t)
[2zW ′′ +W ′].

Since 2zW ′′ +W ′ = 2 − 2zW ′ by (7.51), it follows now that

˜LV (t, x)=Φ ′(t)− 2a2(t)σ 2
0

ϕ(t)
+ zW ′(z)

[

ϕ′

ϕ
+ 2σ 2

0 a
2(t)

ϕ
− 2βa(t)

]

.

We now define ϕ(t) by

ϕ(t)= 2σ 2 exp

{

2β
∫ t

0
a(s) ds

}∫ ∞

t

a2(s) exp

{

−2β
∫ s

0
a(u)du

}

ds

(the convergence of the integral follows from (7.38)). Thus, we obtain the equality

LV (t, x)=Φ ′(t)− 2a2(t)σ 2
0

ϕ(t)
.

Setting

˜Φ(t)= lnf (t); f (t)=
[∫ ∞

t

a2(s) exp

{

−2β
∫ s

0
a(u)du

}

ds

]−1

,

we see now that for this choice of ϕ(t) and Φ(t) the function V (t, x) satisfies the
condition ˜LV (t, x)= 0. SinceW(z) is an increasing function for z > 0 (see (7.53)),
it follows that V (t, x) ≥ V (t, ε) for |x| ≤ ε and therefore (7.49) will follow if we
can show that V (t, ε)→ ∞ as t → ∞. When t → ∞ it follows from (7.52) that

V (t, ε)= lnf (t)− ln

[

ε2

2σ 2
0

exp

{

−2β
∫ t

0
a(s) ds

}

f (t)

]

+O(1)

≥ β
∫ t

0
a(s) ds +O(1). (7.55)

We have thus verified (7.48) and (7.49) for the function V (x, t) and the operator ˜L.
(2) We now prove that if γ < 2β , then the function

V1(t, x)= V (t, x)− γ

∫ t

0
a(s) ds =Φ(t)−W

(

x2

ϕ(t)

)

− γ

∫ t

0
a(s) ds

will satisfy conditions (7.48) and (7.49) in the domain (t > 0) × (−ε, ε) for the
operator (7.54), provided ε > 0 is sufficiently small.

(7.49) follows for V1(t, x) from (7.55). We now apply the operator L to the func-
tion V1. Since ˜LV = 0, it follows that

LV1 = LV − γ a(t)= (L−˜L)V − γ a(t)
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= −a(t)(R(x)− α −R′(0)x) ∂V
∂x

+ 1

2
a2(t)(σ 2(x)− σ 2

0 )
∂2V

∂x2
− γ a(t)

≤ δ
(

a(t)

∣

∣

∣

∣

x
∂V

∂x

∣

∣

∣

∣

+ a2(t)

∣

∣

∣

∣

∂2V

∂x2

∣

∣

∣

∣

)

− γ a(t) (7.56)

for x ∈ (−ε, ε). The constant δ > 0 in this inequality can be made arbitrarily small
by a suitable choice of ε. It is clear from the form of the function V and from (7.51),
(7.53) that

∣

∣

∣

∣

x
∂V

∂x

∣

∣

∣

∣

= |zW ′(z)|< k1,

∣

∣

∣

∣

∂2V

∂x2

∣

∣

∣

∣

= 4

ϕ(t)
|1 − zW ′(z)|< k1

ϕ(t)

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

(7.57)

for some constant k1. Now, applying de l’Hôpital’s rule and using the inequality
|a′(t)|< ka2(t), we easily see that

a(t)f (t) exp

{

−2β
∫ t

0
a(s) ds

}

= 2σ 2
0 a(t)

ϕ(t)

is bounded. Hence, for a suitable constant k2,

a2(t)

ϕ(t)
< k2a(t). (7.58)

The relations (7.56), (7.57) and (7.58) now imply the required inequality LV1 ≤ 0.
This we wished to show. �

7.7 Some Generalizations

In this section we shall survey a few stability problems not yet discussed in this
book. The discussion will inevitably be quite sketchy. In some cases we shall only
make reference to the literature, not touching upon the problem proper.

7.7.1 Stability and Excessive Functions6

Let X = (X(t),Px) be a time-homogeneous right-continuous strong Markov pro-
cess in a Banach space E. Here Px is the measure generated by the “initial con-
dition” X(0) = x (for more details, see [64]). We denote by ‖x‖ the norm of an
element x, and by B the σ -algebra of measurable sets in E.

6See [37, 122].
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An extremely useful tool for investigating the properties of Markov processes is
provided by the excessive functions (see [64]). An excessive function is a function
V (x) with the properties

0 ≤ TtV (x)=
∫

E

P (x, t, dy)V (y)≤ V (x) (t ≥ 0, x ∈E),

TtV (x)→ V (x) as t ↓ 0.

It is known [64, Sect. 12.2] that an excessive function V satisfies the inequality

ExV (X(ζ ))≤ V (x) (7.59)

for any Markov time ζ . The function V is said to be excessive for the process X in
an open set U if inequality (7.59) is satisfied for all ζ ≤ τU , where τU is the first
exit time of a path of the process from U .

Recall that a nonempty set D ∈ B is said to be invariant for the process X if
P(x, t,D)= 1 for x ∈D, t ≥ 0.

Definition 7.1 An invariant point x0 ∈ E for the process X is said to be stable in
probability for the process X if

inf‖y−x0‖→0
Py
{

sup
t>0

‖X(t)− x0‖> ε
}

= 0.

Lemma 7.3 A sufficient condition for a point x0 to be stable in probability for the
process X is that there exists a function V , which is excessive for the process X in a
neighborhood of x0, and which satisfies V (x0)= 0 and inf‖x−x0‖>ε V (x)= Vε > 0
for ε > 0.

Proof The proof follows from (7.59) and Chebyshev’s inequality, since

VεPx
{

sup
t>0

‖X(t)− x0‖> ε
}

≤ ExV (X(τUε(x0)(t)))≤ V (x). �

It is evident that the above stability condition is too general to be of much in-
terest. In certain special cases, however, one can derive more specific conditions.
For example, the proof of Theorem 5.3 essentially reduces to verifying that a non-
negative function V which is defined in some neighborhood U of the origin is of
class C0

2(U) and satisfies the inequality LV ≤ 0, is excessive in U .
For the right-continuous strong Markov processes, the fact that non-negative

functions for which the weak generator is non-positive, are excessive, can be es-
tablished by means of a well-known theorem of [64, Sect. 5.5.1]. Together with
Lemma 7.3, this enables one to derive stability conditions for such processes (see
[166, 167]). A generalization of Theorem 5.3 to jump processes has been considered
by Gikhman and Dorogovtsev [91]. See also the recent article [140] and references
therein.
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7.7.2 Stability of the Invariant Set

Let ρ(x,U)= infx0∈U ‖x− x0‖ denote the distance of a point x from the set U . An
invariant set U of the process X is said to be stable in probability if

lim
ρ(y,U)→0

Py
{

sup
t>0

ρ(X(t),U) > ε
}

= 0.

The proof of the following lemma is similar to that of Lemma 7.1.

Lemma 7.4 An invariant set D is stable in probability for the process X if there
exists a function V (x), excessive for X in a neighborhood of the set D, such that:

1. V (x)= 0 for x ∈D;
2. infρ(x,D)>ε V (x)= Vε > 0 for ε > 0.

The following theorem is the analog of Theorem 5.3 for stability of the invariant
set. We prove it by using Lemma 7.4 and proceeding as in the proof of Theorem 5.3.

Theorem 7.13 Let X(t) be the process described by the generator

L= ∂

∂t
+
(

b(t, x),
∂

∂x

)

+ 1

2

k
∑

r=1

(

σr(t, x),
∂

∂x

)2

. (7.60)

Assume that there exists a function V (t, x), twice continuously differentiable with
respect to x and continuously differentiable with respect to t , vanishing for x ∈D
and satisfying the conditions

LV ≤ 0; inf
ρ(x,D)>ε; t>0

V (t, x)= Vε > 0 for ε > 0

in a neighborhood of the set D.
Then the invariant set D of the process X is stable in probability.

Remark 7.6 If the setD is inaccessible (see Sect. 5.2) to the process, the smoothness
conditions imposed on V can be weakened. To be precise, the function V need
not be smooth at the points x of the set Γ = {x : ρ(x,D) = 0}. Moreover, using
Lemma 7.4 one can establish analogous stability conditions for the invariant set of
a jump process.

7.7.3 Equations Whose Coefficients Are Markov Processes

Several authors ([111], [81] and others) have considered the properties of systems
described by equations of type

dY

dt
= F(Y, t,X(t)), (7.61)



248 7 Some Special Problems in the Theory of Stability of SDE’s

where Y , F are vectors in R
m andX(t) is a Markov process with values in R

l . If the
process X(t) is governed by the generator (7.60), one can investigate the stability
of the system (7.61) with the use of Theorem 7.13. In fact, it is clear that the pair
(X(t), Y (t)) is also a Markov process, whose generator is defined on sufficiently
smooth functions by

L1V = ∂V

∂t
+
(

F(y, t, x),
∂V

∂y

)

+
(

b(t, x),
∂V

∂x

)

+ 1

2

k
∑

r=1

(

σr(t, x),
∂

∂x

)2

V.

Thus, investigation of the stability of the path Y(t) ≡ 0 for the process (7.61)
(on the assumption that F(0, t, x) ≡ 0) reduces to investigation of the stability of
the m-dimensional hyperplane y = 0 for the (l +m)-dimensional Markov process
(X(t), Y (t)). Hence, using Theorem 7.13, we get

Theorem 7.14 Suppose that for some ε0 > 0 and all t > 0, |y| < ε0, there exists
a function V (t, x, y), continuously differentiable with respect to t, y ∈ R

m, twice
continuously differentiable with respect to x ∈ R

l everywhere except perhaps for
the set {y = 0}, and such that

L1V ≤ 0; V (t, x,0)= 0; inf
t>0, |y|>ε V (t, x, y)= Vε > 0

for 0< ε < ε0.
Then the solution Y ≡ 0 of the system (7.61) is stable in probability, in the sense

that

lim|y|→0
P
{

sup
t>0

|Y(t)|> ε ∣∣X(0)= x; Y(0)= y
}

= 0.

Many of the problems considered hitherto in simpler situations are of interest for
equations of type (7.61). For example, we might study stability in probability of a
linear system

dY

dt
= F(X(t))Y. (7.62)

This problem has an extremely simple solution if X(t) is a time-homogeneous er-
godic process and m= 1. Then

Y(t)= Y(0) exp

{∫ t

0
F(X(s)) ds

}

. (7.63)

Hence, by the strong law of large numbers (Sect. 4.5), it follows at once that if

F =
∫

F(x)μ(dx) < 0

holds, where μ is the stationary distribution of the process X(t), then the process
Y(t) is asymptotically stable. The same arguments show that the system (7.62) is
unstable if F > 0.
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Conditions for p-stability of systems of type (7.62) are quite complicated, even
in the case m= 1. In fact, it follows from (7.63) that

E{|Y(t)|p|X(0)= x; Y(0)= y} = |y|pEx exp

{

p

∫ t

0
F(X(s)) ds

}

.

If X(t) is, say a time-homogeneous diffusion process in R
l with local character-

istics b(x) and σ1(x), . . . , σk(x), then it follows from the Feynman–Kac formula,
that the function

u(t, x)= Ex exp

{

p

∫ t

0
F(X(s)) ds

}

is a solution of the equation

∂u

∂t
=
(

b(x),
∂u

∂x

)

+ 1

2

(

σ(x),
∂

∂x

)2

u+ pF(x)u, (7.64)

which satisfies the initial condition

u(0, x)= 1. (7.65)

Thus the problem of p-stability of the system (7.62) for m= 1 is reduced to inves-
tigation of the limiting behavior of the solution of problem (7.64), (7.65) as t → ∞.

If m > 1, complications arise. Frisch [81] introduces a linear system of partial
differential equations solving this system, one can use quadratures to determine the
moments of a process Y(t) which satisfies (7.62) for arbitrary m.

The case of a time-homogeneous Markov process X(t) with finitely many states
has been studied by Kac and Krasovskii [111]. In particular, their paper presents
algebraic criteria for the stability of systems in the mean square.

7.7.4 Stability Under Persistent Perturbation by White Noise

We have already studied the problem of stability under persistent random perturba-
tions (Sect. 1.6). Our attention was then centered upon random perturbations with
finite expectation. It is to be expected that if we narrow down the class of admis-
sible perturbations, we shall be able to derive broader stability criteria. The author
has considered in [123] the stability of deterministic systems under perturbation by
white noise. We now briefly present some results of that paper.

We consider the equation

dx

dt
= F(t, x) (F (t,0)≡ 0) (7.66)

in R
l .
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We call the solution x = 0 of (7.66) stable under persistent perturbation by white
noise if the solutions X(t) of the Itô equation

dX(t)= F(t,X)dt +
k
∑

r=1

σr(t,X)dξr(t)+ b(t,X)dt (7.67)

have the following property: For any ε > 0, there exists a γ > 0 such that for all
processes X(t) satisfying (7.67), with initial condition |X(0)|< γ and coefficients
σr and b such that

k
∑

r=1

|σr(t, x)| + |b(t, x)|< γ, (7.68)

the inequality

P{|X(t)|> ε}< ε
holds for all t > 0.

Theorem 7.15 [123] The solution x = 0 is stable under persistent perturbation by
white noise if there exists a positive definite function V (t, x) ∈ C2 in the domain
(t > 0)× R

l which has an infinitesimal upper limit and satisfies the conditions:

1. inft>0 V (t, x)→ ∞ as |x| → ∞.
2. For every ε > 0, there exist positive constants α1(ε), α2(ε) and γ (ε) such that for

all σr(t, x) and b(t, x) satisfying condition (7.68) with γ = γ (ε) the inequality

∂V

∂t
+ 1

2

k
∑

r=1

(

σr(t, x),
∂

∂x

)2

V +
(

F(t, x)+ b(t, x),
∂V

∂x

)

≤ −α1(ε)− α2(ε)
|∂V/∂x|2

V
(7.69)

holds in the domain |x|> ε.

One can easily infer from Theorem 7.15 simpler stability conditions for persis-
tent perturbations. For example, in [123] the theorem is applied to investigate the
effect of random perturbation by white noise on the performance of absolutely sta-
ble controlled systems with a single final control element. It is shown that the system
is stable under such perturbations if the response curve of the final control element
has a bounded derivative.

It is also readily inferred from Theorem 7.15 that an exponentially p-stable
stochastic system is stable under persistent perturbation by white noise (see [221]).
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7.7.5 Boundedness in Probability of the Output Process of a
Nonlinear Stochastic System

Suppose that the solution X(t)≡ 0 of the system of Itô equations

dX(t)= b(t,X(t)) dt +
k
∑

r=1

σr(t,X(t)) dξr (t) (7.70)

in R
l is exponentially p-stable for p = 1. Assume that the system (7.70) is “driven”

by a continuous stochastic process ζ(t), whose absolute value has bounded expecta-
tion, and which is independent of the Wiener processes ξ1(t), . . . , ξk(t). The “output
process” Y(t) of the resulting system is described by the equation

dY (t)= b(t, Y (t)) dt +
k
∑

r=1

σr(t, Y (t)) dξr (t)+ ζ(t) dt. (7.71)

It is shown in [221] that the expectation of the process |Y(t)| is bounded uni-
formly in t . It follows that the “output process” Y(t) is bounded in probability.

The case of a system described by a linear n-th order equation driven by white
noise has been considered in detail by Dym [61]. See also [218].



Chapter 8
Stabilization of Controlled Stochastic Systems

8.1 Preliminary Remarks

As mentioned in the preface, the stability theory of SDEs was developed mainly to
meet the needs of stabilization of moving systems subjected to random perturba-
tions. In this chapter we shall consider some problems concerning the stabilization
of controlled stochastic systems. The results achieved to date in this field are rather
sparse, despite the fact that the basic formulations of the problems and the funda-
mental equations have been known for some time ([112], [159–161], [279] etc.). The
only results of any significance are those pertaining to linear systems and employ-
ing quadratic control criteria. We devote to them the exposition which now follows,
based on the material of Chaps. 5 through 7.

In conformity with the assumptions adopted hitherto, we shall consider con-
trolled systems of the type

dX(t)= b(t,X,u)dt +
k
∑

r=1

σr(t,X,u)dξr(t). (8.1)

Here b(t, x,u) and σr(t, x,u) are vector-valued functions, jointly continuous in
all arguments and such that b(t,0,0) = σr(t,0,0) = 0, u is a scalar control
parameter and ξr (t), r = 1, . . . , k, are independent Wiener processes such that
Eξr (t) = 0, Eξ2

r (t) = t . We shall assume that the control u in the system (8.1) is
a function of t and X(t), u = u(t,X(t)). Then the process described by (8.1) is
Markovian.1 A function u = u(t, x) is said to be admissible control if the coeffi-
cients b(t, x,u(t, x)), σr(t, x,u(t, x)) are continuous, have continuous derivatives
with respect to x which are bounded uniformly in t > 0, and moreover u(t,0)= 0.

This chapter was written jointly with M.B. Nevelson.

1In the literature this type of control is known as Markov control, or control employing the feedback
principle.
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The class of admissible controls is denoted by U . Each function (admissible con-
trol) u ∈ U can be associated with a Markov process Xs,xu (t), which is the solution
of (8.1) with initial condition Xs,xu (s)= x.

By analogy with the deterministic case (see [158]), we shall consider the follow-
ing two stabilization problems:

I. Asymptotic (exponential) p-stabilization: To determine an admissible control
u= u0(t, x) such that the system (8.1) with u= u0(t, x) is asymptotically (ex-
ponentially) p-stable (see Sect. 5.7).

II. Optimal stabilization to minimize a given cost: To determine a control
u= u0(t, x) for which the functional

J s,x0(u)=
∫ ∞

s

EK(t,Xs,x0
u (t), u(t,Xs,x0

u (t))) dt

(i.e. the cost) attains a minimum. Here (s, x0) is a fixed initial point, and
K(t, x,u)≥ 0 for t ≥ 0, x ∈ R

l , u ∈ (−∞,∞).

Remark 8.1 Under the assumptions of the theorem proved in the next section, the
function u0(t, x) solving the optimal stabilization problem turns out to be the same
for all initial points (s, x0).

Remark 8.2 Problem II is in general not a stabilization problem. For example, if
K(t, x,u) = 0 for |x| > R, the optimal strategy may be to force the path of the
process Xs,xu (t) out of the R-neighborhood of x = 0. In the sequel, however, we
shall confine ourselves to costs satisfying the condition that for any u ∈ (−∞,∞)

and certain constants p > 0, c > 0,

K(t, x,u) > c|x|p (8.2)

holds. Under this restriction Problems I and II prove to be intimately connected.
In fact, suppose that the control u0(t, x) is a solution of Problem II for a function
K(t, x,u) satisfying condition (8.2). It then follows from Lemma 5.7 that

lim
t→∞ E|Xs,xu0

(t)|p = 0 as t → ∞. (8.3)

Under certain additional assumptions, this implies that the system (8.1) is asymp-
totically and exponentially stable.

8.2 Bellman’s Principle

In this section we wish to prove a theorem which is a modification of Bellman’s prin-
ciple regarding problems of optimal stabilization of stochastic systems (see [155],
[159–161], [279], [75]).

Let V be a function of class C(0)2 (E). Substituting u= u(t, x) in
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Lu = ∂

∂t
+
(

b(t, x,u),
∂

∂x

)

+ 1

2

k
∑

r=1

(

σr(t, x,u),
∂

∂x

)2

,

we get the generator of a certain Markov process Xs,xu (t).

Theorem 8.1 Suppose that there exist functions V0(t, x) ∈ C(0)2 (E), u0(t, x) ∈ U ,
satisfying for all t ≥ 0, x ∈ R

l , u ∈ (−∞,∞) and certain positive constants p, n,
k1, k2 the conditions

V0(t, x)≤ k1|x|p,
∣

∣

∣

∣

∂V

∂xi

∣

∣

∣

∣

≤ k1(|x|n + 1), (8.4)

Lu0V0(t, x)+K(t, x,u0(t, x))≡ 0, (8.5)

LuV0(t, x)+K(t, x,u)≥ 0, (8.6)

K(t, x,u)≥ k2|x|p. (8.7)

Then the function u0(t, x) is a solution of the optimal stabilization problem for the
system (8.1) in the sense of minimizing the cost J s,x0(u) and moreover

J s,x0(u0)= min
u∈U

J s,x0(u)= V0(s, x0). (8.8)

Further, the control u0(t, x) makes the system (8.1) exponentially p-stable.

Proof Let u = u(t, x) be any admissible control. Applying Itô’s formula (3.30) to
the function V (t,Xs,x0(t)) and noting that by the second of the inequalities (8.4)
and Lemma 5.2 all the stochastic integrals appearing in Itô’s formula have zero
expectation, we get

EV0(t,X
s,x0
u (t))− V0(s, x)= E

∫ t

s

LuV0(v,X
s,x0
u (v)) dv. (8.9)

Setting u= u0(t, x) in this equality and applying (8.5), we obtain

E
∫ t

s

K(v,Xs,x0
u0
(v), u0(v,X

s,x0
u0
(v))) dv = V0(s, x)− EV0(t,X

s,x0
u0
(t)). (8.10)

Letting t → ∞, we get J s,x0(u0) <∞. Using this inequality, (8.7) and Remark 8.2,
we see that the process Xs,x0

u0 (t) satisfies (8.3). From (8.3) and (8.4) we get

EV0(t,X
s,x0
u0
(t))≤ k1E|Xs,x0

u0
(t)|p → 0 as t → ∞.

Hence, letting t → ∞ in (8.10), we have

J s,x0(u0)= V0(s, x0).
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Now, if u(t, x) is any admissible control such that J s,x0(u) <∞, then as before, we
readily see that

lim
t→∞ EV0(t,X

s,x0
u (t))= 0.

Using this equality and the relation

EV0(t,X
s,x0
u (t))≥ V0(s, x0)− E

∫ t

s

K(v,Xs,x0
u (v), u(v,Xs,x0(v))) dv,

which follows from (8.9), (8.6), we finally see by letting t → ∞ that

min
u∈U

J s,x0(u)≥ V0(s, x0).

It remains to prove that the system (8.1) is exponentially p-stable when u= u0(t, x).
By Theorem 5.11, it will suffice to prove that

V0(t, x)≥ k3|x|p

for some constant k3 > 0. From (8.7) and (8.8) we get

V0(s, x)= J s,x0(u0)≥ k2

∫ ∞

s

E|Xs,x0
u0
(v)|p dv.

Thus there exists for any x, s ≥ 0 a T = T (s, x) such that

E|Xs,xu0
(T )|p < 1

2
|x|p.

In view of the inequality Lu0(|x|p)≥ −k4|x|p (see (5.55)), the above and Itô’s for-
mula imply that

V0(s, x)≥ k2

∫ ∞

s

E|Xs,xu0
(v)|p dv ≥ −k5

∫ T

s

ELu0(|Xs,xu0
(v)|p) dv

= k5(|x|p − E|Xs,xu0
(T )|p)≥ k5

2
|x|p = k3|x|p.

This completes the proof. �

For subsequent work, it is useful to combine conditions (8.5) and (8.6) into one
equation

min
u∈(−∞,∞)

[LuV0(s, x)+K(s, x,u)] = 0 (8.11)

(Bellman’s equation).

Remark 8.3 Condition (8.7), which imposes a restriction on the function K(t, s, u)
for all u, seems at first sight rather stringent. One might expect that (8.7) could
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be replaced by the weaker condition K(t, x,u0(t, x)) > k2|x|p . However, the fol-
lowing example will show that if condition (8.7) is thus weakened the assertion of
Theorem 8.1 is no longer true.

Consider the optimal stabilization problem for the deterministic system

dx1

dt
= −x1,

dx2

dt
= x2 + u

with K(t, x1, x2, u)= x2
1 + u2. In this case

Lu = −x1
∂

∂x1
+ (x2 + u)

∂

∂x2
.

Conditions (8.4), (8.5) and (8.6) are easily seen to hold for the function

V0 = x2
1

2
+ 2x2

2 , u0 = −2x2.

It is also clear that condition (8.7) holds, say, with u = c1x1 + c2x2, when c2 �= 0.
Nevertheless, the control u0 is not optimal in our sense, since the optimal control is
evidently u= 0.

Remark 8.4 We have proved that the control u0 is optimal for all controls of class U .
One might expect a “higher-quality” control to exist in the class of controls which
allow for the past history of the process X(t) from the initial time s to the present t .
However, it can be proved that u0 is also optimal in this broader class of admissible
controls (see [222]).

Remark 8.5 We may consider simultaneously with the Problem II of optimal stabi-
lization also the problem of minimizing the functional

T s,x0
T (u)=

∫ T

s

EK(t,Xu(t), u(t,Xs,x0
u (t))) dt, (8.12)

where T is a constant larger than s. By repeating almost word for word the consid-
erations in the proof of Theorem 8.1, we may easily show that if there exist func-
tions V T0 (t, x) ∈ C(0)2 (E), u0T (t, x) ∈ U which satisfy for all T ≥ t ≥ s, x ∈ R

l ,
u ∈ (−∞,∞) and certain positive constants p, n1, k1, k2 the conditions (8.4), (8.6)
and (8.7) and the identity

V T0 (T , x)≡ 0, (8.13)

then

min
u∈U

T s,x
T (u)= T s,x

T (u0)= V T0 (s, x).



258 8 Stabilization of Controlled Stochastic Systems

8.3 Linear Systems

Let us apply Theorem 8.1 to the investigation of the system

dX =
[

B(t) dt +
k
∑

r=1

σr(t) dξr(t)

]

X+
[

h(t) dt +
k
∑

r=1

ϕr(t)dξr(t)

]

u, (8.14)

which is linear in x and u. Here B(t) and σr(t) are l × l matrices, h(t) and ϕr(t)
vectors in R

l . The elements of the matrices B(t), σr(t) and the components of the
vectors h(t), ϕr(t) are assumed to be continuous and bounded functions of time.

We consider the optimal stabilization problem for the system (8.14), with the
kernel of the cost defined by

K(t, x,u)= (α(t)x, x)+ λu2. (8.15)

Here α(t) is a bounded symmetric l× l matrix, which is positive definite uniformly
in t ≥ s; λ > 0.

We wish to find an optimal Lyapunov function V0(t, x) satisfying the assump-
tions of Theorem 8.1 and given by a nonnegative quadratic form

V0(t, x)= (C(t)x, x), (8.16)

where C(t) is a symmetric l × l matrix.
Clearly

Lu = ∂

∂t
+
(

B(t)x + h(t)u,
∂

∂x

)

+ 1

2

k
∑

r=1

(

σr(t)x + ϕr(t)u,
∂

∂x

)2

is the generator for the system (8.14). Equation (8.11), relating the optimal Lya-
punov function V0(t, x) and the optimal control u0(t, x), has the form

∂V0

∂t
+
(

B(t)x,
∂

∂x

)

V0 + 1

2

k
∑

r=1

(

σr(t)x,
∂

∂x

)2

V0 + (α(t)x, x)

= −min
u∈U

{

u

[

(

h(t),
∂

∂x

)

V0 +
k
∑

r=1

(

σr(t)x,
∂

∂x

)(

ϕr(t),
∂

∂x

)

V0

]

+ u2

[

1

2

k
∑

r=1

(

ϕr(t),
∂

∂x

)2

V0 + λ

]}

= −u0

[

(

h(t),
∂

∂x

)

V0 +
k
∑

r=1

(

σr(t)x,
∂

∂x

)(

ϕr(t),
∂

∂x

)

V0

]

− u2
0

[

1

2

k
∑

r=1

(

ϕr(t),
∂

∂x

)2

V0 + λ

]

. (8.17)
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The function u0(t, x) in (8.17) obviously has the form

u0(t, x)= − (h(t),
∂
∂x
)V0 +∑k

r=1(σr(t)x,
∂
∂x
)(ϕr(t),

∂
∂x
)V0

2λ+∑k
r=1(ϕr(t),

∂
∂x
)2V0

. (8.18)

Substituting (8.16) into (8.18), we get

u0(t, x)= − (h(t),C(t)x)+
∑k
r=1(C(t)ϕr (t), σr(t)x)

λ+∑k
r=1(C(t)ϕr(t), ϕr (t))

. (8.19)

This implies that when the optimal Lyapunov function is defined by (8.16), the
optimal control is linear in x.

Using (8.17) and (8.19), we get the following equation for V0(t, x);

∂V0

∂t
+
(

B(t)x,
∂

∂x

)

V0 + 1

2

k
∑

r=1

(

σr(t)x,
∂

∂x

)2

V0 + (α(t)x, x)

= [(h(t), ∂
∂x
)V0 +∑k

r=1(σr(t)x,
∂
∂x
)(ϕr(t),

∂
∂x
)V0]2

4[λ+ 1
2

∑k
r=1(ϕr(t),

∂
∂x
)2V0]

.

Since the matrix C(t) is symmetric, this equation is equivalent to

dC

dt
+CB(t)+B∗(t)C +

k
∑

r=1

σ ∗
r (t)Cσr(t)+ α(t)

= (Ch(t)+∑k
r=1 σ

∗
r (t)Cϕr(t))(h

∗(t)C +∑k
r=1 ϕ

∗
r (t)Cσr(t))

λ+∑k
r=1(Cϕr(t), ϕr (t))

. (8.20)

From Theorem 8.1 we now infer

Lemma 8.1 If (8.20) has a solution C(t) which is bounded and positive definite for
all t ≥ s, then the function u0(t, x), defined by (8.19), minimizes the functional

J s,x(u)=
∫ ∞

s

E[(α(t)Xs,xu (t),Xs,xu (t))+ λu2(t,Xs,xu (t))]dt.

In conclusion we note that the above remains valid in the deterministic case
σr(t)≡ 0, ϕr(t)≡ 0. In particular, (8.20) is then simply a matrix Riccati equation:

dC

dt
+CB(t)+B∗(t)C − Ch(t)h∗(t)C

λ
+ α = 0. (8.21)
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8.4 Method of Successive Approximations

In the last section we set up a nonlinear differential equation for the matrix C(t) of
the optimal Lyapunov function V0(t, x) associated with a linear control system

dX = (B(t)X+ h(t)u) dt +
k
∑

r=1

(σr(t)X+ ϕr(t)u) dξr(t) (8.22)

possessing the cost function

K(t, x,u)= (α(t)x, x)+ λu2.

This equation has a fairly complicated form. Even in the deterministic case (σr ≡ 0,
ϕr ≡ 0), when it becomes the well-known Riccati equation, it is not easy to investi-
gate. We would therefore like to have easily checkable conditions for the existence
of a bounded positive definite solution to the above equation, i.e., existence condi-
tions for an optimal linear control. Such conditions can be given in terms of Lya-
punov functions. While deriving them, we shall also describe a convenient method
for practical computation of the optimal control: The method of successive approx-
imations whose basic idea is due to Bellman [24]. This method has been applied to
other problems of optimal control by Wonham [279, 280], Fleming [75] and others.

Theorem 8.2 Suppose that there exists an admissible control which stabilizes the
system (8.22) so that exponential stability in the mean square is obtained. Let further
λ > 0 be arbitrary and let α(t) be a positive definite uniformly with respect to t ≥ 0
symmetric matrix with continuous bounded coefficients. Then there exists a linear
control u0(t, x) ∈ U which is optimal in the sense of the quality criterion T s,x(u).
Moreover

T s,x(u0)= min
u∈U

T s,x(u)= V0(s, x)= (C0(s)x, x), (8.23)

where C0(s) is the unique bounded positive definite solution of (8.20).

Proof Let us consider the minimization problem for the functional (8.12), where
K(t, x,u) is given by (8.15) and T is a constant. Remark 8.5 implies that to solve
this problem it is enough to find functions V T0 (t, x), u

T
0 (t, x) satisfying the condi-

tions (8.4), (8.6), (8.7) and (8.13).
Let u1T (t, x) be an arbitrary control that is admissible and linear in x, for instance

u1T (t, x)≡ 0. We define the function V T1 (s, x) by the formula

V T1 (s, x)=
∫ T

s

EK(v,Xs,xu1T
(v), u1T (v,X

s,x
u1T
(v))) dv.

Lemma 5.6 implies that this function is twice continuously differentiable with
respect to x and once with respect to s. It is evident from the Markov property that

V T1 (s, x)=
∫ s+�

s

EK(v,Xs,xu1T
, u1T (v,X

s,x
u1T
(v))) dv+ EV T1 (s+�,Xs,xu1T

(s+�)).
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This and Itô’s formula imply

Lu1T V
T
1 (s, x)+ (α(s)x, x)+ λu2

1T (s, x)= 0,
V T1 (T , x)≡ 0.

(8.24)

On the other hand the linearity of u1T (t, x) implies that the process Xs,xu1T (t)

is described by a system of linear stochastic equations. Therefore (see Chap. 6)
V T1 (s, x) is a quadratic form in x

V T1 (s, x)= (CT1 (s)x, x).

Let us define now the function u2T (s, x), i.e. the second approximation to the
optimal control, by the equation

min
u∈(−∞,∞)

[LuV T1 (s, x)+ (α(s)x, x)+ λu2] = Lu2T V
T
1 (s, x)+ (α(s)x, x)+ λu2

2T .

(8.25)
Equations (8.24) and (8.25) imply

Lu2T V
T
1 (s, x)+ (α(s)x, x)+ λu2

2T ≤ 0. (8.26)

Moreover we get from (8.25) that

u2T (s, x)= − (h(s),
∂V T1 (s,x)

∂x
)+∑k

r=1(σr(s)x,
∂
∂x
)(ϕr(s),

∂
∂x
)V T1 (s, x)

2λ+∑k
r=1(ϕr(s),

∂
∂x
)2V T1 (s, x)

= − (h(s),C
T
1 (s)x)+

∑k
r=1(σr(s)x,C

T
1 (s)ϕr(s))

λ+∑k
r=1(C

T
1 (s)ϕr(s), ϕr (s))

,

which means that u2T (s, x) is a linear function. Suppose now that the function
V T2 (s, x)= (CT2 (s)x, x) is given by

V T2 (s, x)=
∫ T

s

EK(v,Xs,xu2T
(v), u2T (v,X

s,x
u2T
(v))) dv.

In a similar way as (8.24), we obtain

Lu2T V
T
2 (s, x)+ (α(s)x, x)+ λu2

2T = 0,
V T2 (T , x)= 0.

(8.27)

This and (8.26) imply that the difference UT (s, x)= V T1 (s, x)− V T2 (s, x) satisfies

Lu2T U
T (s, x)≤ 0, UT (T , x)= 0.

These estimates and the equality

EUT (T ,Xs,xu2T
(T ))−UT (s, x)=

∫ T

s

ELu2T U
T (v,Xs,xu2T

(v)) dv,
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which is a consequence of Itô’s formula, imply easily that

−UT (s, x)≤ EUT (T ,Xs,xu2T
(T ))−UT (s, x)≤ 0.

Therefore UT (s, x)≥ 0 and we have shown that

V T1 (s, x)≥ V T2 (s, x). (8.28)

Proceeding further in the same fashion we find the functions u3T (s, x), u4T (s, x),

. . . from the identities

min
u∈(−∞,∞)

[LuV Tn−1(s, x)+ (α(s)x, x)+ λu2]

= LunT V
T
n−1(s, x)+ (α(s)x, x)+ λu2

nT , (8.29)

where

V Tn (s, x)=
∫ T

s

EK(v,Xs,xunT (v), unT (v,X
s,x
unT
(v))) dv.

Evidently the equalities

unT (s, x)= − (h(s),
∂V Tn−1(s,x)

∂x
)+∑k

r=1(σr(s)x,
∂
∂x
)(ϕr(s),

∂
∂x
)V Tn−1(s, x)

2λ+∑k
r=1(ϕr(s),

∂
∂x
)2V Tn−1(s, x)

,

(8.30)

LunT V
T
n (s, x)+ (α(s)x, x)+ λu2

nT (s, x)= 0 (8.31)

hold. Also precisely as above we show that V Tn (s, x) ≥ V Tn+1(s, x) for every n =
1,2, . . . . The function V Tn (s, x)= (CTn (s)x, x) is a non-negative quadratic form. It
is well known that a monotone decreasing sequence of non-negative quadratic forms
converges to a quadratic form. Let in our case this limit be V T0 (s, x)= (CT0 (s)x, x).
This and (8.30) imply the existence of the limit

lim
n→∞unT (s, x)= u0T (s, x)= v1T (s)x1 + · · · + vlT (s)xl . (8.32)

Finally, (8.29), (8.31) and (8.32) imply that the functions V T0 (s, x), u0T (s, x) satisfy

min
u∈(−∞,∞)

[LuV T0 (s, x)+ (α(s)x, x)+ λu2] = Lu0T V
T
0 (s, x)+ (α(s)x, x)+ λu2

0T ,

(8.33)
and moreover V T0 (T , x)= 0, and

u0T (s, x)= − (h(s),
∂V T0 (s,x)

∂x
)+∑k

r=1(σr(s)x,
∂
∂x
)(ϕr(s),

∂
∂x
)V T0 (s, x)

2λ+∑k
r=1(ϕr(s),

∂
∂x
)2V T0 (s, x)

. (8.34)
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This, together with Remark 8.5 implies that

min
u∈U

T s,x
T (u)= T s,x

T (u0T )= (CT0 (s)x, x).

Thus the existence of a control which stabilizes the system (8.22) so that expo-
nential stability in mean square is obtained, implies that

(CT0 (s)x, x)≤ min
u∈U

T s,x(u)≤ k|x|2 (8.35)

holds for a certain positive constant k. We may deduce now from (8.35) and (8.34)
the existence of the limits

lim
T→∞V

T
0 (s, x)= V0(s, x), (8.36)

lim
T→∞u0T (s, x)= u0(s, x), (8.37)

where V0(s, x)= (C0(s)x, x) is a quadratic form and u0(s, x) is an admissible con-
trol.

The expression in (8.33) which is preceded by the min sign is a parabola with
respect to u and (8.36), (8.37) imply that the coefficients of this parabola have limits
as T → ∞, for any fixed s, x. Moreover the coefficient A(s, x, t) at u2 satisfies the
inequality A(s, x,T ) ≥ λ. It follows that the functions V0(s, x), u0(s, x) are also
related to each other by the Bellman equation

min
u∈(−∞,∞)

[LuV0(s, x)+ (α(s)x, x)+ λu2] = Lu0V0(s, x)+ (α(s)x, x)+ λu2
0 = 0.

The assertion which we wished to prove follows now by Theorem 8.1. �

Note in the conclusion that the application of Theorem 8.2 to the stabilization
problem for solutions of n-th order linear ODE with constant coefficients, perturbed
by the Gaussian white noises, is considered by Nevelson [219].



Appendix A
Appendix to the First English Edition

We shall be concerned here with some results about stability of stochastic systems
which were obtained since the time of the Russian edition of this book. We shall give
detailed proofs only for a few of the results. Some theorems will be only stated and
others merely mentioned. This varying degree of detail in our exposition is certainly
not motivated by our feelings concerning the importance of the material. Rather, we
have given throughout the priority to those results which are essentially connected
with the main part of the book.

More information concerning other new interesting results can be found in the
books [211] and [41], in the paper entitled “Stability of stochastic dynamical sys-
tems” and printed in the Lecture Notes in Mathematics, vol. 294 (1972), in the
survey papers [277] and [150] and possibly other recent works.

A.1 Moment Stability and Almost Sure Stability for Linear
Systems of Equations Whose Coefficients are Markov
Processes

1. Consider the equation

Ẏ (t)= F(X(t))Y (t), (A.1)

where Y(t) is an m-dimensional vector, F(x) is an m × m matrix and X(t) is a
random Markov process in R

l with a corresponding generator L0 (see [64]).
Let us describe a general method due to Benderskii [27] of obtaining equa-

tions for the moments of positive integral degree of the process Y(t). It is evident
that (X(t), Y (t)) is a Markov process in R

m+l . Its generator L acts on sufficiently
smooth functions V (x, y), x ∈ R

m, y ∈ R
l by

LV (x, y)= L0V (x, y)+
(

F(x),
∂V (x, y)

∂y

)

.
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We denote by Yx,y(t) the solution of (A.1) satisfying the initial conditions X(0)=
x, Y(0)= y. The expectation of Yx,y(t) will be denoted by u(x, y, t). Under quite
general assumptions the coordinates ui = ui(x, y, t) of the vector u(x, y, t) satisfy
the equation (see [64])

∂ui

∂t
= Lui (A.2)

and the initial conditions ui(x, y,0) = yi . In the particular case when X(t) is a
diffusion process, the above is a consequence of Lemma 3.3.

Moreover (A.1) implies that

Yx,y(t)=A(x, t,ω)y,

where A(x, t,ω) is the fundamental matrix of the system (A.1) corresponding to the
initial condition X(0)= x for the process X(t). Consequently the function

u(x, y, t)= EA(x, t,ω)y = B1(x, t)y (A.3)

depends linearly on y. Substituting (A.3) in (A.2) we obtain the equation

∂B1(x, t)

∂t
= L0B1(x, t)+B1(x, t)F (x), B1(x,0)= J (A.4)

for the matrix B1(x, t). (Here J stands for the m×m identity matrix.) After having
found B1(x, t) from (A.4), we may calculate the first moment of Y(t) from (A.3).

The above method allows us to find moments of arbitrary degree of the process
Y(t). Indeed, we may derive from (A.1) the equation

d(Y (t)× Y(t))

dt
= [F(X(t))× J + J × F(X(t))](Y (t)× Y(t)).

This is an equation of the form (A.1) for the product Y(t)× Y(t). Let B2(x, t) be
the matrix which satisfies

E[Yx,y(t)× Yx,y(t)] = B2(x, t)(y × y).

Then, by the above, this matrix satisfies also

∂B2(x, t)

∂t
= LB2(x, t)+B2(x, t)[F(X(t))× J + J × F(X(t))],

B2(x,0)= J × J.

(A.5)

Also in the same way one can obtain equations for the moments of arbitrary high
degree of the process Y(t). Let us consider the following particular case.

Suppose that X(t) is a diffusion process with generator

L=
(

b(x),
∂

∂x

)

+ 1

2

k
∑

r=1

(

σr(x),
∂

∂x

)2

,

where b(x) and σr(x) are vectors in R
l .
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Then (A.4) and (A.5) are second order partial differential equations for the ma-
trices B1(x, t) and B2(x, t). An analogous method for obtaining in this particular
case equations for the moments was proposed by Frisch [81].

Suppose now that X(t) is a stationary Markov process with finitely many states
x1, . . . , xp . Let us assume that the probability of transition from the i-th state to
the j -th state during a time interval Δt is given for Δt → 0 by Pij (Δt)= aijΔt +
o(Δt), i, j = 1, . . . , p, where aij are some constants. The action of the generator L
of the process X(t) on a function V (x) defined at the points x1, . . . , xp is given by

LV (xj )=
p
∑

k=1, k �=j
ajk[V (xk)− V (xj )].

Hence we get for the matrices B1(xj , t), B2(xj , t) the following system of linear
equations

dB1(xj , t)

dt
=

p
∑

k=1

ajk[B1(xk, t)−B1(xj , t)] +B1(xj , t)F (xj ),

B1(xj ,0)= J,

dB2(xj , t)

dt
=

p
∑

k=1

ajk[B2(xk, t)−B2(xj , t)] +B2(xj , t)[F(xj )× J + J × F(xj )],

B2(xj ,0)= J × J, j = 1, . . . , p.

We see thus that for a time-homogeneous Markov process X(t) with p states the
stability problem for the solution of (A.1) is reduced to the investigation of the
stability of the solution of a system of ODEs. Benderskii [26, 27], McKenna and
Morrison [195] and others have discussed various partial cases of the above. For a
system with discrete time analogous results were obtained by Benderskii in [28].
Darkovskii and Leibovich [50] considered the system (A.1) in the “mixed” case
when the process X(t) undergoes changes of value only at discrete moments of
time.

2. Benderskii and Pastur [29, 30] have also investigated almost sure stability of
the system (A.1). They applied ideas which are contained in Sects. 6.6, 6.7 and 6.8.
Let us give a short presentation of their approach.

Just as in Sect. 6.7, let us introduce new variables defined by

λ= x

|x| , ρ = ln |x|.

Then we obtain from (A.1) for every Markov process X(t)

dλ

dt
= (F (X(t))− (F (X(t))λ,λ)J )λ (A.6)
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(as before J is the identity matrix). This is a system of differential equations for the
process λ(t) on the sphere |λ| = 1 in R

n. Here

dρ

dt
= (F (X(t))λ(t), λ(t)).

This implies the following formula, analogous to (6.65)

ρ(T )− ρ(0)

T
= 1

T

∫ T

0
(F (X(t))λ(t), λ(t)) dt. (A.7)

We conclude that the stability problem, and also the problem of determining the
exact rate of growth of the solution of (A.1) reduce to calculating the limit of the
right side of (A.7) as T → ∞. Let us note here that if X(t) is a stationary process,
then Theorem 2.4 implies that (A.6) possesses a stationary and a stationarily related
to X(t) solution λ0(t).

For certain concrete cases Benderskii and Pastur gave conditions under which
every solution of (A.6) tends to a stationary one and the pairX(t), λ0(t) is an ergodic
stationary process. In this situation there exists a non-random limit

lim
T→∞

ρ(T )− ρ(0)

T
=
∫

(F (x)l, l) dP (x, l),

where P(x, l) is the joint distribution of X(t), λ0(t). It is evident that in this case
we have exponential almost sure stability if and only if the Lyapunov exponent

a∗ =
∫

(F (x)l, l) dP (x, l)

is negative.
The above program has been realized to the fullest in case of second order equa-

tions (see the papers of Benderskii and Pastur [29, 30])

y′′ +X(t)y = 0. (A.8)

If we introduce the notation y(t)= y1, y′(t)= y2 we obtain a system of type (A.1)
with

F(x, t)=
(

0 1
−X(t) 0

)

.

It is convenient in this case, just as in Sect. 6.8 to replace here the vector λ(t) by the
variable ϕ(t)= arctan(y1(t)/y2(t)) defined on the circle. Evidently we have

dϕ(t)

dt
= −(sin2 ϕ(t)+X(t) cos2 ϕ(t)).

Moreover (A.7) implies that

lim
T→∞

ρ(T )− ρ(0)

T
= lim
T→∞

1

2T

∫ T

0
[1 −X(t)] sin(2ϕ(t)) dt,
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provided the last limit exists. In case of a stationary ergodic process X(t) Bender-
skii and Pastur [29] have given quite general conditions under which the above limit
exists. IfX(t) is a Markov process, then the pairX(t), ϕ(t) is also a Markov process
and we can apply the methods of Chap. 6 to calculate its joint stationary distribu-
tion P . In particular, if X(t) is a Markov process which takes on only two values,
then P can be calculated in an open form (see [30]). In conclusion let us remark that
(A.8) is important because it makes its appearance also in physics; the behavior of
the solutions of this equation is closely connected with the behavior of the solutions
of Schroedinger’s equation with a random potential (see [30]).

A.2 Almost Sure Stability of the Paths of One-Dimensional
Diffusion Processes1

We shall be concerned in this section with the one-dimensional stochastic Itô equa-
tion whose coefficients are independent of time. Thus it is rather a particular model
to which we have devoted much consideration in Chap. 5. However, in contrast to
what we did in the Chaps. 5–7, we shall not investigate here the stability of the trivial
solution, but the stability of an arbitrary path of the corresponding Markov process.

The idea of the basic (and somewhat unexpected) result can be described as fol-
lows: If X(t) is a recurrent process in R

1 which satisfies the equation

dX(t)= b(X(t)) dt + σ(X(t)) dξ(t), (A.9)

then, except for the trivial special case when the coefficients b and σ are periodic,
the process X(t) is an almost surely stable in the large solution of (A.9). Thus the
solutions of (A.9) with various initial conditions are getting asymptotically close to
each other as t → ∞, as we might have expected. This is in general not the situation
in case of deterministic systems.

To present all this more precisely, let us make the following assumptions:
1. The functions b(x) and σ(x) satisfy a Lipschitz condition on every compact

set K ⊂ R
1 and moreover σ(x) never vanishes.

2. If we define

Q(x)=
∫ x

0
exp

{

−2
∫ y

0

b(z)

σ 2(z)
dz

}

dy,

then

Q(±∞)= ±∞. (A.10)

Only Assumption 2 seems to be somewhat restrictive. We have shown in Sect. 3.8
(Example 3.10) that Assumption 2 is equivalent to the recurrence property of the
Markov process described by (A.9). We have observed in Sect. 4.2 that a recurrent

1Results of this section were proven in [137].
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process X(t) spends an infinite amount of time in every neighborhood of every
point x. We shall prove now the stronger result that for every x, x0 ∈ R

1, T > 0 and
α > 0

Px
{

⋃

τ>T

{

ω : sup
τ<t<τ+1

|X(t,ω)− x0|< α
}

}

= 1. (A.11)

Let τα denote the instant at which the path of the process X(t) reaches for the
first time the set |x − x0| = α. Then we conclude by Lemma 3.4 that the function
Px{τα > s} = u(s, x) satisfies the equation (s > 0, |x − x0|< α)

∂u

∂s
= b(x)

∂u

∂x
+ 1

2
σ 2(x)

∂2u

∂x2

and the initial and boundary conditions

u(0, x)= 1, u(s, x0 ± α)= 0.

The strong maximum principle for parabolic equations implies that

inf|x−x0|≤α/2
Px{τα > 1} = inf|x−x0|≤α/2

u(1, x)= β > 0.

Just as in the proofs of Lemmas 4.1 and 4.5, let us consider now the cycles (parts
of paths of the process X(t)) contained between the sets Γ = {|x − x0| = α/2} and
Γ1 = {|x− x0| = α} with the time parameter exceeding T (there are infinitely many
such cycles due to the recurrence property of the process). Let Ai denote the event
that the second half of the i-th cycle lasts for a time longer than 1. Then

P
{

⋃

τ>T

{

ω : sup
τ<t<τ+1

|X(t,ω)− x0|< α
}

}

≥ P

{ ∞
⋃

i=1

Ai

}

.

Since

P{Ai |Ac1, . . . ,Aci−1} = P{Ai} ≥ inf|x−x0|≤α/2
Px{τα > 1} = β > 0,

we have

P

{ ∞
⋃

i=1

Ai

}

= 1 − P{Ac1}P{Ac2 |Ac1}P{Ac3 |Ac1,Ac2} · · · = 1

and therefore (A.11) is proved.

Remark A.1 Using the method of the above proof, we can establish a more general
result: Given an arbitrary recurrent diffusion process in R

l with a non-degenerate
diffusion matrix, one can assemble the segments of its paths into a set which is
everywhere dense in C[0, h]. Here C[0, h] denotes the space of R

l-valued contin-
uous functions defined on the interval [0, h] with the metric topology of uniform
convergence.
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Let us consider now the stochastic process

Y(t)=Q(X(t)).

(This is equivalent to considering the process X(t) in the canonical scale, see [64].)
By (A.10), this transformation maps R

1 onto the whole real line R
1. Moreover Itô’s

formula implies

dY (t)= σ1(Y (t)) dξ(t), (A.12)

where

σ1(y)= σ(Q−1(y))q(Q−1(y)), q(y)=Q′(y).

It follows easily from Assumptions 1 and 2 that Y(t) is a regular and recurrent
process. Let us show first that it is regular. The generator of the process (A.12) is
given by

L= 1

2
σ 2

1 (y)
∂2

∂y2
.

It follows from this that the auxiliary function

V (y)= |y|
satisfies for |y|> 1 the conditions (3.43) and (3.44). This and Theorem 3.5 (see also
Remark 3.4) imply the regularity of the process Y(t). Recurrence follows from the
Example 3.10.

Lemma A.1 Let Yi(t), i = 1,2, denote the solutions of (A.12) which satisfy the
initial conditions Yi(0)= yi , y1 < y2. Then there exists a non-negative random vari-
able ζ <∞ such that

lim
t→∞[Y2(t)− Y1(t)] = ζ.

Proof Let us first observe that Y2(t)≥ Y1(t) holds for all t ≥ 0. This intuitively ob-
vious fact follows from the “comparison theorem” of Skorokhod given in Sect. 5.3.
(One can prove this also in another way by observing that the solution of (A.12)
with given initial condition is unique in the case when the initial condition is spec-
ified at a random and not dependent on the future time moment τ , and next select-
ing τ = inf{t : Y1(t) = Y2(t)}. Let Z(t) = Y2(t) − Y1(t).) The above implies that
Z(t) ≥ 0. Let τR denote the moment of the first exit from the circle of radius R
of the two-dimensional Markov process (Y1(t), Y2(t)). Properties of the stochastic
integral imply now that the process

Z(τR ∧ t)= y2 − y1 +
∫ τR∧t

0
[σ1(Y2(s))− σ1(Y1(s))]dξ(s)

is a positive martingale, that is

E(Z(τR ∧ t) | Ns)= Z(τR ∧ s), t > s. (A.13)
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Here Ns denotes the σ -algebra of events generated by the run of the process
ξ(t) along the time interval [0, s]. The regularity of this process implies that
limR→∞ τR = ∞, whence, passing to the limit in (A.13) as R → ∞, and apply-
ing Fatou’s lemma, we get

E(Z(t) | Ns)≤ Z(s). (A.14)

This inequality means that Z(t) is a positive supermartingale. To complete the proof
of the lemma, it suffices to apply Theorem 5.1. �

Corollary A.1 For every initial y ∈ R
1, the solution of (A.12) is stable in the mean

and in probability.

Proof Indeed, (A.14) implies that for all t ≥ 0

E[Y2(t)− Y1(t)] ≤ y2 − y1,

whence

lim
y2−y1→0

sup
t≥0

E[Y2(t)− Y1(t)] = 0.

The inequality for supermartingales implies also

P
{

sup
t>0

[Y2(t)− Y1(t)] ≥ ε
}

→ y2 − y1

ε
→ 0 as y2 − y1 → 0

for every positive ε. �

The following lemma gives stability conditions in the large for any solution
of (A.12).

Lemma A.2 Let Yi(t), i = 1,2, denote the solutions of (A.12) which satisfy the
initial conditions Yi(0)= yi , y1 < y2. Then the following assertions hold true.

1. If the function σ1(y) is not periodic, then ζ = limt→∞[Y2(t)− Y1(t)] = 0.
2. If the function σ1(y) is periodic with period θ and k = (y2 − y1)/θ is an integer

(thus, in particular if σ1(y) does not depend on y), then Y2(t)−Y1(t)= y2 − y1.
3. If the function σ1(y) is not identically constant and is periodic with period θ ,

and k = (y2 − y1)/θ is not an integer, then the distribution of ζ is concentrated
at the two points θ [k] and θ([k] + 1).

Proof Let us show that almost surely

σ1(y + ζ )= σ1(y) (A.15)

for all y ∈ R
1. Suppose that this is not the case. Then the continuity of σ1(y) implies

that

P
{

inf|y−y0−ζ |<δ, |z−y0|<δ
|σ1(y)− σ1(z)|> δ

}

≥ p1 (A.16)
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for some y0 and some positive δ and p1. Lemma A.1 implies that the stochastic
integral

∫ t

0
[σ1(Y2(s))− σ1(Y1(s))]dξ(s)

has a finite limit as t → ∞. Using this and the inequality

P
{∫ ∞

T

[σ1(Y2(s))− σ1(Y1(s))]2ds > δ2
}

≤ 1 − 2P{ξ(δ2) > a} + P
{

sup
T≤t<∞

∫ t

T

[σ1(Y2(s))− σ1(Y1(s))]dξ(s) > a
}

which is valid for every a > 0 (see [93, Corollary 1 to Theorem 1.4.3]), we get that
for every ε > 0, there is a T1(ε) such that

P
{∫ ∞

T

[σ1(Y2(s))− σ1(Y1(t))]2 ds > δ2
}

< ε (A.17)

for all T ≥ T1(ε).
Let us select T2(ε) so that

P
{

sup
t>T2(ε)

|Y2(t)− Y1(t)− ζ |> δ/2
}

< ε (A.18)

holds. (A.11) and (A.18) imply that there exists a random variable τ >max(T1(ε),

T2(ε)) such that

sup
τ<s<τ+1

|Y1(s)− y0|< δ/2, P
{

sup
τ<s<τ+1

|Y2(s)− y0 − ζ |> δ
}

< ε.

We deduce from (A.16), (A.17) and the last two inequalities that

ε > P
{∫ ∞

τ

[σ1(Y2(s))− σ1(Y1(s))]2 ds > δ2
}

≥ P
{∫ τ+1

τ

[σ1(Y2(s))− σ1(Y1(s))]2 ds > δ2
}

≥ p1 − ε.

Since ε is here arbitrary, the last inequality is in contradiction with p1 > 0. Thus
equality (A.15) is proved. �

(A.15) implies immediately the first assertion of the theorem.
Suppose now that the function σ1(y) is periodic, with period θ and k = (y2 −

y1)/θ is an integer. Then the function ˜Y1(t)= Y1(t)+y2 −y1 = Y1(t)+ kθ satisfies
(A.12) and the initial condition ˜Y1(0) = y2. The second assertion of the theorem
follows now from the uniqueness of the solution of (A.12).



274 A Appendix to the First English Edition

Finally, assume that σ1(y) is a not identically constant periodic function with
period θ and k = (y2 − y1)/θ is not an integer. Let us consider the system

dY (t)= σ1(Y (t)) dξ(t),

dZ(t)= (σ1(Y (t)+Z(t))− σ1(Y (t))) dξ(t).
(A.19)

This system has got two solutions: Z1(t) = Y2(t) − Y1(t) and ˜Y1(t) = Y1(t),
˜Y2(t) = Yθ (t), Z2(t) = Yθ (t) − Y0(t), where Yθ (t) and Y0(t) are the solutions of
the first equation in (A.19) defined by the initial conditions Yθ (0) = θ([k] + 1)
and Y0(0) = 0. From the uniqueness of the solutions of this system and from
y2 − y1 = Z1(0) < Z2(0) = θ([k] + 1) follows Z1(t) ≤ Z2(t) for all t . Moreover
the second assertion of the theorem, proved above, implies that Z2(t)≡ θ([k] + 1).
Thus Y2(t)−Y1(t)≤ θ([k]+1). We show in the same way that θ [k] ≤ Y2(t)−Y1(t)

holds for all t . These inequalities and (A.15) imply the third assertion of the theo-
rem. �

Let us return now to the original equation (A.9). We put r(x1, x2) = |Q(x2) −
Q(x1)|. It is evident that r(x1, x2) defines a metric in R

1. Lemmas A.1 and A.2
yield now the following theorem which gives criteria for stability in the large of an
arbitrary solution of (A.9) which describes a recurrent Markov process.

Theorem A.1 Suppose that Assumptions 1 and 2 are satisfied. Let X1(t), X2(t) be
solutions of (A.1) which satisfy the initial conditions X1(0)= x1, X2(0)= x2. Then
there exists a finite limit

lim
t→∞ r(X1(t),X2(t))= ζ.

The identity ζ ≡ 0 holds for every x1, x2 if and only if the function σ1(y) =
σ(Q−1(y))q(Q−1(y)) is not periodic. In the case when σ1(y) is a periodic function
with period θ , and the number k = |Q(x2)−Q(x1)| is not an integer, the distribu-
tion of ζ is concentrated in the two points [k]θ and ([k]+ 1)θ , and if k is an integer,
then r(X1(t),X2(t))≡ |Q(x2)−Q(x1)| for any t ≥ 0. The last equality holds also
in the case when σ1(y) does not depend on y.

Corollary A.2 Let X(t) be a positive recurrent Markov process. Then any two so-
lutions X1(t), X2(t) of (A.9) with initial conditions X1(0)= x1, X2(0)= x2 satisfy

lim
t→∞ r(X1(t),X2(t))= 0.

Indeed, since (A.9) describes a positive recurrent Markov process, we have (see
[64]) that

∫ ∞

−∞
dx

σ 2(x)q(x)
<∞.



A.3 Reduction Principle 275

Thus
∫ ∞

−∞
dy

(σ1(y))2
=
∫ ∞

−∞
dQ(x)

(σ (x)q(x))2
=
∫ ∞

−∞
dx

σ 2(x)q(x)
<∞.

It follows from this that the function σ1(y) is not periodic.
The theorem which now follows says that every solution of Itô’s homogeneous

SDE in R
1 describing a recurrent Markov process is stable in the mean and in prob-

ability with respect to the metric r(x1, x2).

Theorem A.2 Suppose that Assumptions 1 and 2 above are satisfied. Then any
two solutions X1(t), X2(t) of (A.9) with initial conditions X1(0)= x1, X2(0)= x2
satisfy

lim
x2−x1→0

sup
t≥0

r(X1(t),X2(t))= 0 (a.s),

lim
x2−x1→0

P
{

sup
t≥0

r(X1(t),X2(t)) > ε
}

= 0,

for every positive ε.

The theorem is a consequence of Corollary A.1 and of the recurrence property of
the process X(t).

A.3 Reduction Principle

There is known in the stability theory of deterministic systems the so-called re-
duction principle which is basic for the investigation of critical stability situations.
This principle permits us to reduce the investigation of the stability of an (l +m)-
dimensional system X(t), Y(t) to investigating the stability of two systems: the
l-dimensional system of the first approximation of the vector X(t) (the coefficients
of this approximation are assumed independent of y), and the m-dimensional sys-
tem obtained by substituting X = 0 in the equations for Y (see [190], Sect. 91).
Here the reduction principle will be used for the simpler case when both ramified
systems are by linear approximation uniformly stable in the large. Although the re-
sult cannot be directly applied to the investigation of critical cases, it nevertheless
offers a possibility of simplifying stability investigations in some cases of practical
importance.

Thus let there be given an (l +m)-dimensional Markov process X(t), Y(t) de-
scribed by the system of SDEs

dX(t)= b(t,X(t), Y (t)) dt +
k
∑

r=1

σr(t,X(t), Y (t)) dξr (t),

dY (t)= b̃(t,X(t), Y (t)) dt +
k
∑

r=1

σ̃r (t,X(t), Y (t)) dξr (t),

(A.20)
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where the vectors X, b, σr are l-dimensional and Y , b̃, σ̃r are m-dimensional. As
usually, let us assume that the coefficients b, σr , b̃, σ̃r satisfy conditions (5.2) and
(5.3) so that, in particular, the system (A.20) has the trivial solution

X(t)≡ 0, Y (t)≡ 0.

Moreover let us assume that the derivatives with respect to x, y of the coefficients
of the system (A.20) are uniformly continuous with respect to t , and

∂b(t,0,0)

∂y
≡ 0,

∂σr(t,0,0)

∂y
≡ 0.

Thus in the system of equations for the first approximation

dX(t)= ∂b(t,0,0)

∂x
X(t) dt +

k
∑

r=1

∂σr(t,0,0)

∂x
X(t) dξr(t), (A.21)

dY (t)=
(

∂b(t,0,0)

∂x
X(t)+ ∂b(t,0,0)

∂y
Y (t)

)

dt

+
k
∑

r=1

(

∂σr(t,0,0)

∂x
X(t)+ ∂σr(t,0,0)

∂y
Y (t)

)

dξr(t) (A.22)

the component of X(t) is also a Markov process. Theorem 7.2 (and the subsequent
Remark 7.1) imply that if the trivial solution is uniformly stable in the large for
the system of (A.21), (A.22), then it is asymptotically stable in probability for the
system (A.20). The theorem which now follows allows us to say somewhat more.

For a one-dimensional process X(t) the theorem was proved by Pinsky [227]
who used another method.

Theorem A.3 Suppose the above assumptions about the coefficients of the system
(A.20) are valid. Assume further that the trivial solution is uniformly stable in the
large for the system (A.21) and for the system

dY (t)= ∂b̃(t,0,0)

∂y
Y (t) dt +

k
∑

r=1

∂σ̃r (t,0,0)

∂y
Y (t) dξr (t). (A.23)

Then the trivial solution is asymptotically stable in probability for the system (A.20).

Proof The assumptions of the theorem and the Theorems 6.7 and 6.2 imply that
there exist for a sufficiently small p > 0 two homogeneous functions V1(t, x),
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V2(t, y) of homogeneity degree p such that

k1|x|p ≤ V1(t, x)≤ k2|x|p,
∣

∣

∣

∣

∂V1(t, x)

∂xi

∣

∣

∣

∣

≤ k3|x|p−1,

∣

∣

∣

∣

∂2V1(t, x)

∂xi∂xj

∣

∣

∣

∣

≤ k3|x|p−2, i, j = 1, . . . , l,

L1V1(t, x)≤ −|x|p,

⎫

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎭

(A.24)

k1|y|p ≤ V2(t, y)≤ k2|y|p,
∣

∣

∣

∣

∂2V (t, y)

∂yi

∣

∣

∣

∣

≤ k3|y|p−1,

∣

∣

∣

∣

∂2V2(t, y)

∂yi∂yj

∣

∣

∣

∣

≤ k3|y|p−2, i, j = 1, . . . ,m,

L2V2(t, y)≤ −|y|p,

⎫

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎭

(A.25)

where

L1 = ∂

∂t
+
(

∂b(t,0,0)

∂x
x,

∂

∂x

)

+ 1

2

k
∑

r=1

(

∂σr(t,0,0)

∂x
x,

∂

∂x

)2

,

L2 = ∂

∂t
+
(

∂b̃(t,0,0)

∂y
y,

∂

∂y

)

+ 1

2

k
∑

r=1

(

∂σ̃r (t,0,0)

∂y
y,

∂

∂y

)2

are the generators of the systems (A.21) and (A.23) respectively. (Here and below
we adopt the same notation (·,·) for the inner product in R

l as well as in R
m.) The

generator of the system (A.21), (A.22) is

L= ∂

∂t
+
(

∂b(t,0,0)

∂x
x,

∂

∂x

)

+ 1

2

k
∑

r=1

(

∂σr(t,0,0)

∂x
x,

∂

∂x

)2

+
(

∂b̃(t,0,0)

∂x
x + ∂b̃(t,0,0)

∂y
y,

∂

∂y

)

+ 1

2

k
∑

r=1

(

∂σ̃r (t,0,0)

∂x
x + ∂σ̃r (t,0,0)

∂y
y,

∂

∂y

)2

+
k
∑

r=1

(

∂σr(t,0,0)

∂x
x,

∂

∂x

)(

∂σ̃r (t,0,0)

∂x
x + ∂σ̃r (t,0,0)

∂y
y,

∂

∂y

)

.

Let us consider now the auxiliary function

W(t, x, y)= [V 2/p
1 (t, x)+ εV

2/p
2 (t, y)]p/2 +AV1(t, x), (A.26)

where V1, V2 are functions satisfying the condition (A.24), (A.25), and the values
of the constants ε > 0, A > 0 will be specified below. (A.24) and (A.25) evidently
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imply that

k4(|x|p + |y|p)≤W(t, x, y)≤ k5(|x|p + |y|p) (A.27)

holds for certain k4 > 0, k5 > 0 and arbitrary ε > 0, A > 0. Moreover it is evi-
dent that x = 0 is an unattainable invariant set for the process X(t), Y(t). Hence
in the case when X(0) �= 0, we can apply Itô’s formula and consequently also The-
orem 5.11 to any function W which is not differentiable on the hyperplane x = 0.
Considering this and (A.27), we see that it will suffice to prove that outside the set
x = 0 the function W(t, x, y), defined by (A.26) satisfies

LW(t, x, y)≤ −k6(|x|p + |y|p), k6 > 0 (A.28)

for some ε and A.
Indeed, by the remark we made above, (A.27), (A.28) and Theorem 5.11 im-

ply that the system (A.21), (A.22) is exponentially p-stable. The assertion of our
theorem follows now by Theorem 7.2.

Let Wi = V
2/p
i . Then evidently

L1V1(t, x)= p

2
W
p/2−1
1 L1W1 + 1

8
p(p− 2)Wp/2−2

1

k
∑

r=1

(

∂σr(t,0,0)

∂x
x,
∂W1

∂x

)2

.

From this and from (A.13) follows easily

W1L1W1 + p− 2

4

k
∑

r=1

(

∂σr(t,0,0)

∂x
x,

∂

∂x

)2

W1 ≤ −k7|x|4

for some constant k7 > 0. In a similar way we obtain

W2L2W2 + p− 2

4

k
∑

r=1

(

∂σ̃r (t,0,0)

∂y
y,

∂

∂y

)2

W2 ≤ −k8|y|4, k8 > 0.

These inequalities, together with (A.24), (A.25) imply that for some constants
k9, k10 > 0 which do not depend on ε

L[(W1 + εW2)]p/2

= p

2
(W1 + εW2)

p/2−2

{

(W1 + εW2)L1W1

+ p− 2

4

k
∑

r=1

(

∂σr(t,0,0)

∂x
x,

∂

∂x

)2

W1

+ ε(W1 + εW2)L2W2



A.4 Some Further Results 279

+ p− 2

4
ε2

k
∑

r=1

(

∂σ̃r (t,0,0)

∂x
x + ∂σ̃r (t,0,0)

∂y
y,

∂

∂y

)2

W2

+ ε(W1 + εW2)

(

∂b̃(t,0,0)

∂x
x,
∂W2

∂y

)

+ ε(W1 + εW2)

k
∑

r=1

(

∂σ̃r (t,0,0)

∂x
x,

∂

∂y

)2

W2

+ ε(W1 + εW2)

k
∑

r=1

(

∂σ̃r (t,0,0)

∂x
x,

∂

∂y

)(

∂σ̃r (t,0,0)

∂y
y,

∂

∂y

)

W2

+ ε(p− 2)

4

(

∂σ̃r (t,0,0)

∂x
x + ∂σ̃r (t,0,0)

∂y
y,
∂W2

∂y

)(

∂σr(t,0,0)

∂x
x,
∂W1

∂x

)

}

≤ k9(W1 + εW2)
p/2−2[−k10(|x|4 + ε2|y|4)+ ε|x|2|y|2 + ε|y||x|3 + ε|y|3|x|].

(A.29)

Moreover L1V1 ≤ −|x|p by (A.24). From this and from the obvious inequalities

|x|p ≥ |x|pW 2−p/2
1

(W1 + εW2)2−p/2 ≥ k11(W1 + εW2)
p/2−2|x|4

we find that

LV1 ≤ −k11(W1 + εW2)
p/2−2|x|4. (A.30)

The inequalities (A.29) and (A.30) yield an estimate

LW ≤ k9(W1 + εW2)
p/2−2[−Ak12|x|4 − k10ε

2|y|4
+ ε|x|2|y|2 + ε|y||x|3 + ε2|y|3|x|],

with independent of ε and A constants ki .
It is evident that if ε is sufficiently small and A is sufficiently large, then the

expression between square brackets is a negative definite form of degree four (it
is easiest to see this by putting y

√
ε = z). This implies (A.28) and hence also the

assertion of the theorem. �

A.4 Some Further Results

Let us conclude this section by mentioning some further investigations related to the
questions considered in this book.

To begin with, there is a series of works by Friedman [76], Friedman and Pinsky
[78–80] and Pinsky [226]. In these papers there are given stability conditions for
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a point and for an invariant set of a similar sort as we gave here in Chap. 5 and
in Sect. 7.7.2. Moreover, special considerations are devoted to the angle compo-
nent ϕ(t) for processes in the plane. An interesting generalization of the invariance
theorem of La Salle to stochastic systems was given by Kushner [170, 171]. Mo-
rozan [212] clarified the idea of boundedness in various probabilistic meanings for
solutions of stochastic dynamical systems of a more general type than the ones con-
sidered in the present book.

Much attention has been given to the investigation of stability problems for
stochastic systems with delay. Kolmanovskii [143], Kushner [173] and others
proved general theorems of the Lyapunov type. Shaihet [244] considered stability
in the first approximation, and Tsarkov [262] gave stability criteria in mean square
for linear systems.2

2After the first edition of this book the stability problems for SDEs with delay were considered by
X. Mao and other authors, see, e.g., [192] and references therein.



Appendix B
Appendix to the Second Edition. Moment
Lyapunov Exponents and Stability Index3

B.1 Preliminaries

Moment Lyapunov exponents are of great importance for investigating asymptotic
behavior of solutions of SDEs. For p ∈ R and for a linear system with constant
coefficients

dX(t)= BX(t) dt +
k
∑

r=1

σrX(t) dξr(t), (B.1)

the p-th moment Lyapunov exponent of a solution of (B.1) is defined by

g(p;x)= lim
t→∞

1

t
ln E|Xx(t)|p, x �= 0. (B.2)

It will be shown below that given a certain nondegeneracy condition on (B.1)
g(p;x) is independent of x, g(p;x)= g(p) for all p ∈ R, x �= 0 and

g(p)= lim
t→∞

1

t
ln E|Xx(t)|p, x �= 0. (B.3)

For the one-dimensional equation (d = 1)

dX(t)= bX(t) dt +
k
∑

r=1

σrX(t) dξr(t) (B.4)

(b and σr are some constants), it can be easily calculated

g(p)= pb+ 1

2
p(p− 1)

k
∑

r=1

σ 2
r . (B.5)

In what follows, we consider d ≥ 2.

3Written jointly with G.N. Milstein.
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The process

Λλ(t)=Xx(t)/|Xx(t)|, λ= x/|x|, x �= 0,

defined on the unit sphere Sd−1 = {|x| = 1} in R
d with center at the origin (it is

introduced in Sect. 6.7), plays a significant role in development of the concept of
moment Lyapunov exponents.

With help of Itô formula we obtain that the process Λλ(t), |λ| = 1, satisfies the
SDE

dΛ= q(Λ)dt +
k
∑

r=1

hr(Λ)dξr(t), (B.6)

where the vector fields q(λ) and hr(λ), r = 1, . . . , k, on Sd−1 are equal to

q(λ)= Bλ− (Bλ,λ)λ− 1

2

k
∑

r=1

(σrλ,σrλ)λ

−
k
∑

r=1

(σrλ,λ)σrλ+ 3

2

k
∑

r=1

(σrλ,λ)
2λ,

hr(λ)= σrλ− (σrλ,λ)λ, r = 1, . . . , k.

(B.7)

Let us recall the equation for ρ(t)= ln |Xx(t)| (see (6.63)):

dρ(t)=Q(Λ)dt +
k
∑

r=1

(σrΛ,Λ)dξr(t), Λ=Λλ(t), λ= x/|x|, ρ(0)= ln |x|,
(B.8)

where

Q(λ)= (Bλ,λ)+ 1

2

k
∑

r=1

(σrλ,σrλ)−
k
∑

r=1

(σrλ,λ)
2. (B.9)

From (B.8)

|Xx(t)|p = |x|p exp

{

p

∫ t

0
Q(Λ)ds + p

k
∑

r=1

∫ t

0
(σrΛ,Λ)dξr(s)

}

. (B.10)

Hence Z(t) := |Xx(t)|p satisfies the scalar linear equation

dZ =
(

pQ(Λ)+ 1

2
p2

k
∑

r=1

(σrΛ,Λ)
2

)

Zdt + pZ

k
∑

r=1

(σrΛ,Λ)dξr(t),

Z(0)= |x|p. (B.11)
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Let us note that now it is not difficult to get for the two-dimensional system of
the form (B.1) with

B =
(

a0 b0
−b0 a0

)

, σr =
(

ar br
−br ar

)

, r = 1, . . . , k,

that

g(p)= p

(

a0 + 1

2

k
∑

r=1

(b2
r − a2

r )

)

+ 1

2
p2

k
∑

r=1

a2
r .

SDE (B.6) can be considered on the whole space R
d . In such a case Λ(0) = λ

where |λ| is not necessarily equal to 1. We have

d(1 − (Λ,Λ))= −(1 − (Λ,Λ))

[

2(BΛ,Λ)

+
k
∑

r=1

(σrΛ,σrΛ)− 4
k
∑

r=1

(σrΛ,Λ)
2

]

dt

− 2(1 − (Λ,Λ))

k
∑

r=1

(σrΛ,Λ)dξr(t). (B.12)

From here we obtain the confirmation of the fact that the unit sphere Sd−1 =
{λ : (λ,λ) = 1} is an invariant manifold for (B.6). The sets {λ : λ = 0}, {λ : 0 <
(λ,λ) < 1}, and {λ : (λ,λ) > 1} are invariant ones for (B.6) as well.

Sometimes it is more convenient to consider moment Lyapunov exponents for
linear SDEs in the Stratonovich form

dX(t)= σ0X(t) dt +
k
∑

r=1

σrX(t)d
∗ξr (t). (B.13)

Recall that the SDE (B.13) is equivalent to the following SDE in the Itô form (see
(5.30))

dX(t)=
(

σ0 + 1

2

k
∑

r=1

σ 2
r

)

X(t) dt +
k
∑

r=1

σrX(t) dξr(t). (B.14)

The process Λλ(t)=Xx(t)/|Xx(t)|, λ= x/|x|, for X from (B.13) is a diffusion
process on Sd−1 satisfying the Stratonovich system

dΛ= h0(Λ)dt +
k
∑

r=1

hr(Λ)d
∗ξr(t), Λ(0)= λ= x

|x| , (B.15)

where

hr(λ)= σrλ− (σrλ,λ)λ, r = 0,1, . . . , k. (B.16)
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The process |Xx(t)| for X from (B.13) satisfies the equation

d|X| = (σ0Λ,Λ) · |X|dt +
k
∑

r=1

σr(Λ,Λ) · |X|d∗ξr(t),

Λ=Λλ(t), λ= x/|x|, |X(0)| = |x|.
(B.17)

We note that we remain the same notation for the Itô and Stratonovich X, Λ,
ρ, because this does not cause any confusion. Besides, they are the same if we lay
σ0 = B − 1

2

∑k
r=1 σ

2
r .

It can easily be proved that

|Xx(t)| = |x| exp

{

∫ t

0
(σ0Λ,Λ)ds +

k
∑

r=1

∫ t

0
(σrΛ,Λ)d

∗ξr (s)
}

= |x| exp

{

∫ t

0
(σ0Λ,Λ)ds

+
k
∑

r=1

∫ t

0

(

1

2
(σr + σ�

r )(σrΛ,Λ)− (σrΛ,Λ)
2
)

ds

}

× exp

{

k
∑

r=1

∫ t

0
(σrΛ,Λ)dξr(s)

}

, (B.18)

where the last integral is of the Itô form.
The vector fields hr(λ), r = 0,1, . . . , k, are tangent to the sphere Sd−1. They

are the orthogonal projections of the linear vector fields σrx onto Sd−1. The sphere
Sd−1 remains invariant for the Stratonovich equation (B.15). It is clear from the
equation

d(1 − (Λ,Λ))= −2(1 − (Λ,Λ))

[

(σ0Λ,Λ)dt +
k
∑

r=1

(σrΛ,Λ)d
∗ξr (t)

]

.

Let us consider the Itô equation

dΛ= h0(Λ)dt +
k
∑

r=1

hr(Λ)dξr(t), Λ(0)= λ= x

|x| , (B.19)

with the same vector fields hr(λ), r = 0,1, . . . , k, being tangent to the sphere Sd−1.
We have for Λ satisfying (B.19)

d(1 − (Λ,Λ)) = −2(1 − (Λ,Λ))

[

(σ0Λ,Λ)dt +
k
∑

r=1

(σrΛ,Λ)dξr(t)

]
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−
k
∑

r=1

(hr(Λ),hr(Λ))dt.

From here, the sphere Sd−1 is as a rule not invariant for (B.19) though the vector
fields hr(λ), r = 0,1, . . . , k, are tangent to Sd−1. We see that the behavior of solu-
tions to the Stratonovich equation concerning invariance of a surface more closely
corresponds to our intuition.

B.2 Basic Theorems

B.2.1 Nondegeneracy Conditions

The first nondegeneracy condition for (B.1) was introduced in Chap. 6 (see (6.62)).
It is not difficult to show that (6.62) is equivalent to the condition

dimL(σ1x, . . . , σkx)= d, x ∈ R
d , x �= 0, (B.20)

where L denotes the linear hull spanned by the given vector fields. It can be proved
that the weaker nondegeneracy condition (6.67) is equivalent to

dimL(h1(λ), . . . , hk(λ))= d − 1, λ ∈ Sd−1. (B.21)

We shall use the more weak Lie algebra condition (which we shall call condition C),
introduced in [8]:

dimLA(h1(λ), . . . , hk(λ))= d − 1, λ ∈ Sd−1, (B.22)

where LA denotes the Lie algebra generated by the given vector fields.
We recall that the Lie algebra of the vector fields in a domain of R

d is considered
with respect to the commutator:

[α,β]i =
d
∑

j=1

αj
∂βi

∂λj
−

d
∑

j=1

βj
∂αi

∂λj
,

where α(λ) and β(λ) are some vector fields.
It is known (see [60, Sect. 3.24]) that if two fields α(λ) and β(λ) are tangent

to a smooth surface then their commutator is tangent to the surface as well. The
commutator [hr,hq ] of hr(λ)= σrλ− (σrλ,λ)λ and hq(λ)= σqλ− (σqλ,λ)λ has
the coordinates

[hr,hq ]i =
d
∑

j=1

(σrλ− (σrλ,λ)λ)j
∂(σqλ− (σqλ,λ)λ)i

∂λj
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−
d
∑

j=1

(σqλ− (σqλ,λ)λ)j
∂(σrλ− (σrλ,λ)λ)i

∂λj

= ((σqσr − σrσq)λ)i − ((σqσr − σrσq)λ,λ)λi,

i.e., the commutator of two fields from (B.16) which are generated by the matrices
σr and σq is the field determined by the commutator σqσr −σrσq of the matrices. In
other words, the Lie algebra of vector fields in (B.22) is generated by the matrices
from the Lie algebra of matrices LA(σ1, . . . , σk).

Remark B.1 Let us note that the most results concerning moment Lyapunov expo-
nents are true under the condition

dimLA(h0(λ),h1(λ), . . . , hk(λ))= d − 1, λ ∈ Sd−1, (B.23)

which is weaker than the condition C (see [10], [8], [19]). But in order to avoid some
complications we impose (B.22).

B.2.2 Semigroups of Positive Compact Operators and Moment
Lyapunov Exponents

Let us introduce the following semigroup of positive operators Tt (p) on C(Sd−1),
p ∈ R:

Tt (p)f (λ)=Ef (Λλ(t))|Xλ(t)|p, λ ∈ Sd−1, f ∈ C(Sd−1), p ∈ R. (B.24)

The semigroup property flows out the calculation (we omit here the parameter p at
the notation Tt (p)):

Tt+sf (λ)= E{f (Λλ(t + s))|Xλ(t + s)|p}
= E{f (Λt,Λλ(t)(t + s))|Xt,Xλ(t)(t + s)|p}
= E{f (Λt,Λλ(t)(t + s))|Xt,Λλ(t)(t + s)|p}|Xλ(t)|p}
= E{E[f (Λt,Λλ(t)(t + s))|Xt,Λλ(t)(t + s)|p‖Nt ]|Xλ(t)|p}
= E{Tsf (Λλ(t))|Xλ(t)|p} = TtTsf (λ).

It is not difficult to show that this semigroup is strongly continuous. Recall that
a positive operator Q on C(Sd−1) (Tt (p), t > 0, is evidently positive) is called
strongly positive if Qf (λ) > 0, λ ∈ Sd−1, for any nontrivial f ≥ 0.

Theorem B.1 Let the condition (C):

dimLA(h1(λ), . . . , hk(λ))= d − 1, λ ∈ Sd−1, (B.25)
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be fulfilled. Then any operator Tt (p), t > 0, p ∈ R, is strongly positive and compact.
Further, for each p ∈ R and t > 0 the generator L(p) of Tt (p) has a strictly positive
eigenfunction e(λ;p) > 0 corresponding to the principal eigenvalue g(p) which is
real, simple and strictly dominates the real part of any other point of the spectrum
of L(p):

L(p)e(λ;p)= g(p)e(λ;p). (B.26)

The eigenfunction for Tt (p) is the same e(λ;p) with the eigenvalue eg(p)t :

Tt (p)e(λ;p)= eg(p)t e(λ;p). (B.27)

Proof At the beginning let us suppose that the condition

dimLA(σ1x, . . . , σkx)= d, x �= 0, (B.28)

is fulfilled. LA(σ1x, . . . , σkx) consists of the linear vector fields which matrices
belong to LA(σ1, . . . , σk). The vector fields from LA(h1(λ), . . . , hk(λ)) are the
orthogonal projections of the linear vector fields from LA(σ1x, . . . , σkx) onto the
plane which is tangent to Sd−1 at the point λ= x/|x|. From here it is not difficult to
prove that (B.28) implies (B.25), i.e., (B.28) is stronger than (B.25). It follows from
(B.28) due to Hörmander’s theorem (see [238, p. 253]) that the transition probabil-
ity function P(t, x,A) of the Markov process defined by (B.13) possesses a density
p(t, x, y) which is strictly positive and continuous with respect to t > 0, x �= 0,
y �= 0. Let us note in passing that under condition (B.20), which is equivalent to
(6.62) and which is stronger than (B.28), this fact follows from the simplest variant
of the Hörmander theorem, from the Weyl lemma (see [238, p. 254]). We have

Tt (p)f (λ)= E{f (Λλ(t))|Xλ(t)|p} = E
{

f

(

Xλ(t)

|Xλ(t)|
)

|Xλ(t)|p
}

=
∫

p(λ, t, y)f (y/|y|)|y|p dy =: ϕ(λ), λ ∈ Sd−1.

We see from here that Tt (p) is strongly positive. Let us prove compactness of
Tt (p) : C(Sd−1) → C(Sd−1). To this aim we should prove that the image of the
unit ball from C(Sd−1) is uniformly bounded (this is evident) and equicontinuous.
For arbitrary ε > 0, let c > 0 and C > 0 be such that for fixed t > 0 and p ∈ R for
all f ∈ C(Sd−1) with ‖f ‖ ≤ 1 and for all λ ∈ Sd−1

∫

{y:|y|<c}∪{y:|y|>C}
p(λ, t, y)f (y/|y|)|y|pdy ≤ ε

3
.

For p ≥ 0, let δ > 0 be such that

|p(λ′′, t, y)− p(λ′, t, y)| ≤ ε

3Cp
if |λ′′ − λ′| ≤ δ, c ≤ |y| ≤ C.
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Then for any f with ‖f ‖ ≤ 1 we obtain

|ϕ(λ′′)− ϕ(λ′)| ≤ 2ε

3
+
∫

c≤|y|≤C
|p(λ′′, t, y)− p(λ′, t, y)||f (y/|y|)| |y|p dy ≤ ε.

If p < 0 then we choose δ > 0 such that

|p(λ′′, t, y)− p(λ′, t, y)| ≤ εcp

3
if |λ′′ − λ′| ≤ δ, c ≤ |y| ≤ C.

Thus, the equicontinuity is proved, hence in the case (B.28) any operator Tt (p),
t > 0, is strongly positive and compact.

Let us return to the condition (B.25). Consider the vector field αλ, α �= 0. It is
orthogonal to any field hj (λ), j = 1, . . . , k. Therefore (B.25) implies

dimLA(h1(λ), . . . , hk(λ),αλ)= d, α �= 0, λ ∈ Sd−1. (B.29)

Since αx commutates with every σjx, j = 1, . . . , k, we get

dimLA(σ1x, . . . , σkx,αx)= dimL(LA(σ1x, . . . , σkx),αx)= d, x �= 0.

Thus from (B.25) it follows

dimLA(σ1x, . . . , σkx, σk+1x)= d, σk+1 = αJ, x �= 0, (B.30)

where J is identity matrix.
Together with (B.13) consider the system

d˜X(t)= σ0˜X(t) dt +
k+1
∑

r=1

σr˜X(t) d
∗ξr(t). (B.31)

Due to (B.30) every ˜Tt (p), t > 0, is strongly positive and compact. We have
hk+1(λ)= σk+1λ− (σk+1λ,λ)λ= 0. From here ˜Λ=Λ. Therefore (see (B.18))

|˜Xλ(t)|p = |Xλ(t)|p exp

{

p

∫ t

0
(σk+1λ,λ)d

∗ξk+1

}

= |Xλ(t)|p exp{αpξk+1(t)},

˜Tt (p)f (λ) = E{f (˜Λλ(t))|˜Xλ(t)|p} = E{f (Λλ(t))|Xλ(t)|p exp{αpξk+1(t)}}

= Tt (p)f (λ) exp

{

1

2
α2p2t

}

,

i.e.,

Tt (p)f (λ)= exp

{

−1

2
α2p2t

}

˜Tt (p)f (λ),

hence Tt (p) for any t > 0 is strongly positive and compact.
The other claims of theorem follow from the Perron-Frobenius theory for positive

semigroups (see [214], [49]). Theorem is proved. �
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Remark B.2 Under the condition (C) (see (B.25)) the process Λ(t) is ergodic with
the unique invariant measure ν(dλ) and the formula

lim
t→∞

1

t
ln |Xx(t)| = a∗ =

∫

Sd−1
Q(λ)ν(dλ) (B.32)

is true.
This assertion follows from the fact that the condition (B.25) just as the more

strong condition (6.62) ensures positiveness of the transition probability.

Theorem B.2 Let the condition (C) be fulfilled. Then for any x �= 0

lim
t→∞

1

t
ln E|Xx(t)|p = g(p). (B.33)

Proof Let L(p)f (λ) = g(p)f (λ), f (λ) > 0, λ ∈ Sd−1. Hence Tt (p)f = etg(p)f

and there exist positive constants 0 < k < K <∞ such that 0 < k ≤ f (λ) ≤ K <

∞. We have

lim
t→∞

1

t
ln E|Xx(t)|p = lim

t→∞
1

t
ln(E|Xλ(t)|p|x|p)= lim

t→∞
1

t
ln E|Xλ(t)|p,

λ= x

|x| .

Further,

kE|Xλ(t)|p ≤ E{f (Λλ(t))|Xλ(t)|p} ≤KE|Xλ(t)|p.
Therefore

1

K
E{f (Λλ(t))|Xλ(t)|p} ≤ E|Xλ(t)|p ≤ 1

k
E{f (Λλ(t))|Xλ(t)|p}.

Hence

lim
t→∞

1

t
ln E|Xx(t)|p = lim

t→∞
1

t
ln E{f (Λλ(t))|Xx(t)|p}

= lim
t→∞

1

t
lnTt (p)f (λ)= lim

t→∞
1

t
(tg(p)+ lnf (λ))= g(p).

Theorem is proved. �

The mean E|Xx(t)|p is connected with the characteristic function ψ of ξ =
ln |Xx(t)| which can be considered as a function of the complex variable z:

ψ(z)=ψ(z; t, x) := E exp{izξ} = E exp{iz ln |Xx(t)|}.
If z= p is real, we get the classical characteristic function of the random variable

ξ = ln |Xx(t)|:
ψ(p)=ψ(p; t, x)= E exp{ip ln |Xx(t)|} = E|Xx(t)|ip, |x| �= 0. (B.34)
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If z= −ip is purely imaginary, we get

ψ(−ip)=ψ(−ip; t, x)= E exp{p ln |Xx(t)|} = E|Xx(t)|p, |x| �= 0,

i.e., the p-th moment of the random variable |Xx(t)|. Thus the function ψ(z) is an
extension of the function E|Xx(t)|p .

Clearly, ψ(−ip), −∞<p <∞, takes positive values and

|ψ(q + ip)| ≤ψ(ip). (B.35)

Many facts about analytic characteristic functions can be found in [184, 186, 236].
There exists ψ ′(z), i.e., for every t, x �= 0 the function ψ(z) is entire. Ex-

istence of the derivative ψ ′(z) = ψ ′
z(z; t, λ) with respect to z and the equality

ψ ′
z(z; t, λ)= iE(ln |Xλ(t)| exp{iz ln |Xλ(t)|}) can be proved in the standard way by

differentiation under the sign of expectation.
Introduce the strongly continuous semigroup Tt (z) on the Banach space C(Sd−1)

of complex-valued functions f (λ), λ ∈ Sd−1:

Tt (z)f (λ)= E[f (Λλ(t)) exp{z ln |Xλ(t)|}].

Let L(z) be the generator of the semigroup Tt (z). For z= p real, some properties of
Tt (p) were mentioned above. Not all of them are fulfilled for arbitrary complex z.
For example, the property of positivity is violated. At the same time many of them
remain true. In particular, the operator Tt (z) for any z and t > 0 is compact as well.

Clearly,

ψ(z; t, λ)= Tt (iz)1(λ)= E exp{iz ln |Xλ(t)|},
where the function 1(λ) is identically equal to 1.

Let us fix t = 1 and consider the family T1(z) for z belonging to a sufficiently
small neighborhood of the point z = p. This family analytically depends on z (see
[115]). The operator T1(p) has exp(g(p)) as an eigenvalue with the eigenfunction
e(λ;p): T1(p)e(λ;p) = exp(g(p))e(λ;p). From Theorem B.1 we have that the
eigenvalue g(p) of L(p) is simple and g(p) strictly dominates the real part of any
other point of the spectrum of L(p). Since T1(z) and L(z) analytically depend on z,
the spectrum of L(z) for sufficiently small (z− p) contains an isolated eigenvalue,
which is close to g(p). And both the eigenvalue and a corresponding eigenvector
e(λ; z) depend on z analytically (see [115]).

Thus, the following result is obtained.

Theorem B.3 Let the condition (C) (see (B.25)) be fulfilled. Then the function
g : R → R is analytic.

Theorem B.4 Let the condition (C) be fulfilled. Then the function g : R → R is
convex, g(p)/p is increasing, g(0)= 0, and a∗ = g′(0).
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Proof Consider the function g(p; t, x) := 1
t

ln E|Xx(t)|p . Due to the Cauchy–
Schwarz inequality, we have

E|Xx(t)|(p+q)/2 ≤ (E|Xx(t)|p)1/2(E|Xx(t)|q)1/2,
whence

g

(

p+ q

2
; t, x

)

≤ 1

2
g(p; t, x)+ 1

2
g(q; t, x),

i.e., g(p; t, x) is convex. Taking the lim we prove that g(p) is convex.
For p ≥ 1, q ≥ p, the inequality

(E|Xx(t)|p)1/p ≤ (E|Xx(t)|q)1/q, (B.36)

i.e., increase of the function (E|Xx(t)|p)1/p , is well known (it follows from the
Hölder inequality). If 0<p < 1, q ≥ p, let us select r > 0 such that pr > 1. Denote
|Y(t)| = |Xx(t)|1/r . We get

(E|Y(t)|pr )1/pr ≤ (E|Y(t)|qr )1/qr ,
whence (B.36) follows for p > 0, q ≥ p. For p < 0, we have

(E|Xx(t)|p)1/p = 1

(E( 1
|Xx(t)| )−p)−1/p

.

If the positive parameter −p decreases (it is the same as p increases) then the de-
nominator decreases as well, hence the fraction, i.e., (E|Xx(t)|p)1/p is increasing
for p < 0. From this, increase of g(p)/p on (−∞,0) ∪ (0,∞) follows. Because
limp→0 g(p)/p = g′(0) exists the increase holds on (−∞,∞).

Due to Jensen’s inequality, for any −∞<p <∞
p

t
E ln |Xx(t)| ≤ 1

t
ln E|Xx(t)|p.

From (B.8)

Eρ(t)= E ln |Xx(t)| = ln |x| +
∫ t

0
EQ(Λλ(s))ds, λ= x

|x| .

These two relations give for p > 0

g(−p)
−p ≤ lim

t→∞
1

t

∫ t

0
EQ(Λλ(s)) ds = a∗ ≤ g(p)

p
,

whence a∗ = g′(0) follows. �

Together with the characteristic functionψ(z)=ψ(z; t, x)= E exp{iz ln |Xx(t)|}
let us consider the moments mn = mn(t, x) and semi-invariants (cumulants) γn =
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γn(t, x) of ξ = ln |Xx(t)|. The moments can be expressed in terms of the coefficients
of the Taylor-series expansion for ψ(z)=ψ(z; t, x):

ψ(z)=
∞
∑

n=0

ψ(n)(0)

n! zn, mn(t, x)=mn := Eξn = 1

in
ψ(n)(0).

The cumulants are equal to (in taking the logarithm lnψ(z) we choose a branch
such that lnψ(z)= 0 at z= 0):

γn(t, x) := γn = 1

in

dn

dzn
lnψ(z)

∣

∣

∣

∣

z=0

= dn

dpn
lnψ(−ip)

∣

∣

∣

∣

p=0
= dn

dpn
ln E|Xx(t)|p

∣

∣

∣

∣

p=0
.

This notion is well-defined since for every t, x �= 0 there exists a sufficiently
small neighborhood |z|< δ (where δ in general depends on t , x) in which the func-
tion ψ(z)=ψ(z; t, x) does not vanish. We have (since γ0 = 0)

lnψ(z) =
∞
∑

n=1

inγn

n! z
n, |z|< δ, (B.37)

ln E|Xx(t)|p =
∞
∑

n=1

γn(t, x)

n! pn, |p|< δ. (B.38)

The relation for the moments and semi-invariants can be obtained in the fol-
lowing well known way. Put iz = w and ϕ(w) = 1 + ∑∞

n=1(mn/n!)wn. Then
lnϕ(w)=∑∞

n=1(γn/n!)wn. We have ϕ · (lnϕ)′ = ϕ′. This is equivalent to
(

1 +
∞
∑

n=1

mn

n! w
n

)

·
∞
∑

n=1

γn

(n− 1)!w
n−1 =

∞
∑

n=1

mn

(n− 1)!w
n−1. (B.39)

Putting w = 0 in (B.39), we find γ1 = m1. Subsequently differentiating (B.39)
with respect to w and putting w = 0, we obtain γ2 =m2 −m2

1, γ3 =m3 − 3m1m2 +
2m3

1, γ4 =m4 − 4m1m3 − 3m2
2 + 12m2

1m2 − 6m4
1, and so on.

Let us note a remarkable feature of semi-invariants: any semi-invariant of a sum
of independent random variables is equal to the sum of the semi-invariants of these
variables. In contrast, the second and higher moments do not possess this property.

Using Theorem B.3 and (B.38), we get (we recall that g(0)= 0)

∞
∑

n=1

g(n)(0)

n! pn = g(p)= lim
t→∞

1

t
ln E|Xx(t)|p = lim

t→∞

∞
∑

n=1

γn(t, x)/t

n! pn,

whence the following conjecture arises

lim
t→∞

γn(t, x)

t
= g(n)(0), n= 1,2, . . . . (B.40)
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A rigorous proof of (B.40) is given in [201]. For n= 1 the first semi-invariant γ1 is
equal to E ln |X(t, x)| and the connection between the Lyapunov exponent a∗ and
g′(0),

a∗ = lim
t→∞

E ln |Xx(t)|
t

= g′(0), (B.41)

confirms this assertion. The second semi-invariant is equal to γ2(t, x) =
E ln2 |Xx(t)| − (E ln |Xx(t)|)2 = var ln |Xx(t)|. The equality (B.40) for n = 2 can
be proved without any serious difficulties (see [201]). To prove (B.40) in the
general case, some properties of the analytic characteristic function ψ(z; t, x) =
E exp{iz ln |Xx(t)|} are studied. Since ψ(z; t, x) takes, as a rule, zero values if
d > 1, the cumulant generating function lnψ(z; t, x) is not defined everywhere.
At the same time for every t ≥ 0 there exists δt > 0 such that for any x ∈ Rd the
function lnψ(z; t, x) is analytic in Cδt := {z : |z| < δt }. Much more complicated
assertion consists in the fact that there exists such δ > 0 which is independent of
t . Moreover, under the nondegeneracy condition (C) there exists Cδ such that the
function (lnψ(z; t, x))/t is analytic in Cδ and uniformly bounded with respect to
t > 0 and x with |x| = 1. Due to this fact, it is possible to use the classical Vitali
convergence theorem (see [261]) and prove the basic result (B.40). The following
theorem is proved in [201]:

Theorem B.5 Let the condition (C) be fulfilled. Then (B.40) is true. The moment
Lyapunov exponent g(p) can be extended to complex z belonging to a circle Cδ =
{z : |z|< δ} in the sense that for such z

lim
t→∞

1

t
lnψ(z; t, λ)= lim

t→∞
1

t
ln E exp{iz ln |Xλ(t)|} = g(iz) (B.42)

is fulfilled. The limits in (B.40) and (B.42) do not depend on x ∈ Rd .

Remark B.3 Let the condition (C) be fulfilled. Theorem 6.14 claims that

P
{

ln |Xx(t)| − a∗t√
var ln |Xx(t)| < x

}

−→
t→∞Φ(x)= 1√

2π

∫ x

−∞
e−y2/2dy (B.43)

provided that

var ln |Xx(t)| → ∞ as t → ∞. (B.44)

From (B.40), if n= 2, we get

lim
t→∞

var ln |Xx(t)|
t

= lim
t→∞

E ln2 |Xx(t)| − (E ln |Xx(t)|)2
t

= g′′(0). (B.45)

Therefore (B.44) is fulfilled if g′′(0) �= 0 (i.e., g′′(0) > 0). So we have arrived at the
central limit theorem at the form given in [19]:

P
{

ln |Xx(t)| − a∗t
√

g′′(0)t
< x

}

−→
t→∞Φ(x). (B.46)
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It is observed in [19] that g′′(0) = 0 if and only if g(p) = pa∗ for all p ∈ R

which happens if and only if there exists an invertible matrix G such that all the
matrices G(A− λ∗I )G−1, Gσ1G

−1, . . . ,GσkG
−1 are skew-symmetric.

B.2.3 Generator of the Process Λ

A function ϕ(M) on Sd−1 is a function of d − 1 variables. It can be defined by
various ways. Specifically, any function ϕ(M), M ∈ Sd−1, can be considered as a
trace of some function of d variables defined in a neighborhood of Sd−1. Clearly, the
last function of d variables is not defined uniquely. But this nonuniqueness created
no problems because we are interested either in values ϕ(M) for M ∈ Sd−1 or in
derivatives of ϕ along vector fields which are tangent to Sd−1. In particular, we note
that the considered vector fields hi(λ)= σiλ− (σiλ,λ)λ are the trace functions of
the functions σix − (σix, x)x.

We consider the process Λλ(t) governed by the SDE (see (B.6), (B.7))

dΛ= q(Λ)dt +
k
∑

r=1

hr(Λ)dξr(t). (B.47)

The sphere

Sd−1 : λ2
1 + · · · + λ2

d = 1 (B.48)

is invariant for the process Λ.
Let ΛSd−1(t) be the process Λ on the sphere Sd−1 and LSd−1 be the generator of

the process.

Theorem B.6 Let fSd−1 ∈ C2(Sd−1). Let f ∈ C2(R
d) have a compact support and

be an extension of fSd−1 (such a function f is not unique and fSd−1 is the trace
of f ):

fSd−1(P )= f (P ), P ∈ Sd−1. (B.49)

Then

LSd−1fSd−1(P )= Lf (P ), P ∈ Sd−1, (B.50)

where

L= 1

2

d
∑

i,j=1

k
∑

r=1

hrihrj
∂2

∂λi∂λj
+

d
∑

i=1

qi
∂

∂λi
(B.51)

is the generator of the process Λ(t).
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Proof For definiteness, let (B.48) be resolvable with respect to λd in some piece
Sd−1

0 of Sd−1:

λd =
√

1 − λ2
1 − · · · − λ2

d−1 =: ϕ(λ1, . . . , λd−1). (B.52)

We have in Sd−1
0 :

dΛi = qi(Λ1, . . . ,Λd−1, ϕ(Λ1, . . . ,Λd−1)) dt

+
k
∑

r=1

hri(Λ1, . . . ,Λd−1, ϕ(Λ1, . . . ,Λd−1)) dξr (t), i = 1, . . . , d.

(B.53)

Itô’s formula gives

dΛd =
d−1
∑

i=1

∂ϕ

∂λi

(

qi dt +
k
∑

r=1

hridξr(t)

)

+ 1

2

d−1
∑

i,j=1

k
∑

r=1

hrihrj
∂2ϕ

∂λi∂λj
dt, (B.54)

where the arguments are the same as in (B.53). Comparing the last equality from
(B.53) with (B.54), we get

d−1
∑

i=1

∂ϕ

∂λi
(λ1, . . . , λd−1)hri(λ1, . . . , λd−1, ϕ(λ1, . . . , λd−1))

= hrd(λ1, . . . , λd−1, ϕ(λ1, . . . , λd−1)) (B.55)

and (with the same arguments as in (B.55))

d−1
∑

i=1

∂ϕ

∂λi
qi + 1

2

d−1
∑

i,j=1

k
∑

r=1

hrihrj
∂2ϕ

∂λi∂λj
= qd (B.56)

for the points from Sd−1
0 . Due to (B.52), we get

fSd−1(P )= f (λ1, . . . , λd−1, ϕ(λ1, . . . , λd−1))

= fSd−1(λ1, . . . , λd−1), P ∈ Sd−1
0 . (B.57)

We have for P ∈ Sd−1
0 (see the first d − 1 equations from (B.53) and then (B.57),

(B.55), and (B.56))

LSd−1fSd−1(P )= LSd−1fSd−1(λ1, . . . , λd−1)

=
d−1
∑

i=1

qi
∂fSd−1

∂λi
+ 1

2

d−1
∑

i,j=1

k
∑

r=1

hrihrj
∂2fSd−1

∂λi∂λj
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=
d−1
∑

i=1

qi

(

∂f

∂λi
+ ∂f

∂λd

∂ϕ

∂λi

)

+ 1

2

d−1
∑

i,j=1

k
∑

r=1

hrihrj

(

∂2f

∂λi∂λj
+ ∂2f

∂λi∂λd

∂ϕ

∂λj

+ ∂2f

∂λd∂λj

∂ϕ

∂λi
+ ∂2f

∂λ2
d

∂ϕ

∂λj

∂ϕ

∂λi
+ ∂f

∂λd

∂2ϕ

∂λi∂λj

)

=
d
∑

i=1

qi
∂f

∂λi
+ 1

2

d−1
∑

i,j=1

k
∑

r=1

hrihrj
∂2f

∂λi∂λj

+
d−1
∑

j=1

k
∑

r=1

hrj
∂2f

∂λj ∂λd

(

d−1
∑

i=1

hri
∂ϕ

∂λi

)

+ 1

2

∂2f

∂λ2
d

k
∑

r=1

(

d−1
∑

i=1

hri
∂ϕ

∂λi

)(

d−1
∑

j=1

hrj
∂ϕ

∂λj

)

=
d
∑

i=1

qi
∂f

∂λi
+ 1

2

d−1
∑

i,j=1

k
∑

r=1

hrihrj
∂2f

∂λi∂λj

+
d−1
∑

j=1

k
∑

r=1

hrj
∂2f

∂λj ∂λd
hrd + 1

2

∂2f

∂λ2
d

k
∑

r=1

h2
rd

=
d
∑

i=1

qi
∂f

∂λi
+ 1

2

d
∑

i,j=1

k
∑

r=1

hrihrj
∂2f

∂λi∂λj

= Lf (λ1, . . . , λd−1, ϕ(λ1, . . . , λd−1))= Lf (P ).

Theorem is proved. �

B.2.4 Generator of Semigroup Tt(p)f (λ)

Let us derive the formula for generator L(p) of the semigroup Tt (p)f (λ). Let f (λ)
be the trace of function f (x) ∈ C2(R

d\{0}) with a compact support. We have

L(p)f (λ)= lim
t→0

1

t
(Tt (p)f (λ)− f (λ))= lim

t→0

1

t
(E{f (Λλ(t))|Xλ(t)|p} − f (λ))

= lim
t→0

1

t

(

E
{

f

(

Xλ(t)

|Xλ(t)|
)

|Xλ(t)|p
}

− f (λ)

)

= LF(λ), (B.58)
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where L is the generator of the Markov process governed by system (B.1) and

F(x) := f (x/|x|)|x|p. (B.59)

Let us calculate LF(λ). To this aim we apply Itô’s formula to F(Xλ(t)):

dF(Xλ(t))= LF(Xλ(t)) dt +
k
∑

r=1

(

∂F

∂x
(Xλ(t)), σrX

λ(t)

)

dξr(t). (B.60)

Thus, LF(λ) is the drift in (B.60) at the time t = 0. We get

dF(Xλ(t))

= d[f (Λλ(t))|Xλ(t)|p]
= |Xλ(t)|p df (Λλ(t))+ f (Λλ(t)) d|Xλ(t)|p + df (Λλ(t)) · d|Xλ(t)|p

= |Xλ(t)|p
(

d
∑

i=1

∂f

∂xi
(Λ)qi(Λ)dt + 1

2

d
∑

i,j=1

∂2f

∂xi∂xj
(Λ)

k
∑

r=1

hri(Λ)hrj (Λ)dt

)

+ f (Λ)

(

pQ(Λ)+ 1

2
p2

k
∑

r=1

(σrΛ,Λ)
2

)

|X|p dt

+
(

k
∑

r=1

(

∂f

∂x
(Λ),hr(Λ)dξr

)

)

· p
k
∑

r=1

(σrΛ,Λ)|X|p dξr

+
k
∑

r=1

(

∂F

∂x
(Xλ(t)), σrX

λ(t)

)

dξr(t). (B.61)

From here LF(λ)= L(p)f (λ) as the drift at the time t = 0 can be found. As a result
we obtain the following formula for the generator L(p) of the semigroup Tt (p).

Theorem B.7 Let f (λ) ∈ C2(Sd−1). Let f (x) ∈ C2(R
d) have a compact support

and be an extension of f (λ). Then

L(p)f (λ)= LF(λ)=
d
∑

i=1

∂f

∂xi
(λ)qi(λ)+ 1

2

d
∑

i,j=1

∂2f

∂xi∂xj
(λ)

k
∑

r=1

hri(λ)hrj (λ)

+ p

k
∑

r=1

(

d
∑

i=1

∂f

∂xi
(λ)hri(λ)

)

· (σrλ,λ)

+
(

pQ(λ)+ 1

2
p2

k
∑

r=1

(σrλ,λ)
2

)

f (λ). (B.62)
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Remark B.4 One can write (B.60) and (B.61) for dF(Xx(t)), x �= 0. As a result we
get the following formula for LF(x) from (B.59)

LF(x)= |x|pL(p)f (λ), λ= x/|x|, x �= 0. (B.63)

We pay attention that f (x) here is a function which is not necessarily homogeneous
of some degree: it is arbitrary function belonging to C2(R

d \ {0}). Clearly, then
f (λ), λ ∈ Sd−1, is trace of f (x) on Sd−1. But the function F(x)= |x|pf (x/|x|) is
evidently homogeneous of degree p.

For completeness of presentation let us adduce formulae for the generators in the
Stratonovich case.

Proposition B.1 Let f (λ) ∈ C2(Sd−1). Let f (x) ∈ C2(R
d) have a compact sup-

port and be an extension of f (λ). Then the generator L(s) of the Markov process
governed by the Stratonovich SDE (B.15) is given by the formula

L(s)f (λ)=
d
∑

i=1

∂f

∂xi
(λ)q

(s)
i (λ)+ 1

2

d
∑

i,j=1

∂2f

∂xi∂xj
(λ)

k
∑

r=1

hri(λ)hrj (λ) (B.64)

and the generator L(s)(p) of the semigroup T (s)t (p)f (λ) = E{f (Λλ(t))|Xλ(t)|p},
where Λ and X satisfy (B.15) and (B.13), is given by

L(s)(p)f (λ)=
d
∑

i=1

∂f

∂xi
(λ)q

(s)
i (λ)+ 1

2

d
∑

i,j=1

∂2f

∂xi∂xj
(λ)

k
∑

r=1

hri(λ)hrj (λ)

+ p

k
∑

r=1

(

d
∑

i=1

∂f

∂xi
(λ)hri(λ)

)

· (σrλ,λ)

+
(

pQ(s)(λ)+ 1

2
p2

k
∑

r=1

(σrλ,λ)
2

)

f (λ), (B.65)

where the vector q(s)(λ) and scalar Q(s)(λ) are equal to

q(s)(λ)= h0(λ)+ 1

2

k
∑

r=1

(σ 2
r λ− (σ 2

r λ, λ)λ)−
1

2

k
∑

r=1

(σrλ,σrλ)λ

−
k
∑

r=1

(σrλ,λ)σrλ+ 3

2

k
∑

r=1

(σrλ,λ)
2λ, (B.66)

Q(s)(λ)=
((

σ0 + 1

2

k
∑

r=1

σ 2
r

)

λ,λ

)

+ 1

2

k
∑

r=1

(σrλ,σrλ)−
k
∑

r=1

(σrλ,λ)
2. (B.67)
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B.2.5 Various Representations of Semigroup Tt(p)f (λ)

Consider the Itô SDE (see (B.6))

dΛ= q(Λ)dt +
k
∑

r=1

hr(Λ)dξr(t), Λ(0)= λ, (B.68)

and the semigroup Tt (p)f (λ)= E{f (Λλ(t))Z(t)} where Z(t) := |Xλ(t)|p satisfies
the scalar linear stochastic equation

dZ = Z

(

pQ(Λ)+ 1

2
p2

k
∑

r=1

(σrΛ,Λ)
2

)

dt

+Zp

k
∑

r=1

(σrΛ,Λ)dξr(t), Z(0)= 1. (B.69)

The expectation E{f (Λλ(t))Z(t)} has various probabilistic representations. Parallel
with system (B.68)–(B.69) introduce the SDE

d ˜Λ = q(˜Λ)dt −
k
∑

r=1

μr(˜Λ)hr(˜Λ)dt +
k
∑

r=1

hr(˜Λ)dξr(t), ˜Λ(0)= λ, (B.70)

d˜Z = ˜Z
(

pQ(˜Λ)+ 1

2
p2

k
∑

r=1

(σr ˜Λ, ˜Λ)
2

)

dt

+ ˜Z
k
∑

r=1

(p(σr ˜Λ, ˜Λ)+μr(˜Λ))dξr(t), ˜Z(0)= 1, (B.71)

where μr(λ) are arbitrary scalar smooth functions of λ ∈ Sd−1 (they can depend
also on p). One can verify that for the process ˜X governed by the SDE

d˜X(t)= B˜X(t)dt −
k
∑

r=1

μr(˜X/|˜X|)σr˜X(t) dt +
k
∑

r=1

σr˜X(t) dξr(t),

the SDE for ˜Λ= ˜X/|˜X| is given by (B.70). The fact that Sd−1 is invariant for (B.70)
can be understood most easily if (B.70) is written in the Stratonovich form

d ˜Λ= h0(˜Λ)dt −
k
∑

r=1

μr(Λ̃)hr(˜Λ)dt +
k
∑

r=1

hr(˜Λ)d
∗ξr(t), ˜Λ(0)= λ, (B.72)
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where

h0(λ)= σ0λ− (σ0λ,λ)λ= q(λ)− 1

2

k
∑

r=1

∂hr

∂λ
hr, σ0 = B − 1

2

k
∑

r=1

σ 2
r .

The vector fields h0, h1, . . . , hr are tangent to the sphere Sd−1. Hence the drift in
(B.72) is tangent to the sphere as well. This ensures belonging ˜Λλ(t) to Sd−1.

Due to Girsanov’s theorem (see, e.g., [164])

Tt (p)f (λ)= E{f (Λλ(t))Z(t)} = E{f (˜Λλ(t))˜Z(t)}. (B.73)

Due to (B.73), taking in (B.70)–(B.71)

μr(λ)= −p(σrλ,λ), (B.74)

we obtain the next useful Proposition.

Proposition B.2 The semigroup Tt (p) has the following probabilistic representa-
tion

Tt (p)f (λ)= E
{

f (Λλ(t)) exp
∫ t

0

[

pQ(Λλ(t))+ 1

2
p2R(Λλ(t))

]

dt

}

, (B.75)

where R(λ)=∑k
r=1(σrλ,λ)

2 and Λ=Λλ(t) satisfies the SDE

dΛ=
[

q(Λ)+p
k
∑

r=1

(σrΛ,Λ)hr(Λ)

]

dt+
k
∑

r=1

hr(Λ)dξr(t), Λ(0)= λ. (B.76)

It turns that for any smooth function f (λ) the drifts in the expressions for
d[f (Λλ(t))Z(t)] and d[f (˜Λλ(t))˜Z(t)] at the time t = 0 should coincide. In other
words, the generators L and ˜L of the processes (Λ(t),Z(t)) and (˜Λ(t),˜Z(t)) should
coincide. Indeed,

d[f (˜Λλ(t))˜Z(t)]

= ˜Z(t)
d
∑

i=1

∂f

∂xi
(˜Λ)

[

qi(Λ̃(t))−
k
∑

r=1

μr(˜Λ)hri(˜Λ)

]

dt

+ 1

2
˜Z(t)

d
∑

i=1

∂2f

∂xi∂xj
(˜Λ)

k
∑

r=1

hri(˜Λ)hrj (˜Λ)dt + df (˜Λ) · d˜Z(t)

+ ˜Z(t)f (˜Λ)
[

pQ(˜Λ)+ 1

2
p2

k
∑

r=1

(σr ˜Λ, ˜Λ)
2

]

dt

+ ˜Z(t)
[

d
∑

i=1

∂f

∂xi
(˜Λ)

k
∑

r=1

hri(˜Λ)dξr(t)
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+ f (Λ̃)

k
∑

r=1

(p(σr ˜Λ, ˜Λ)+μr(˜Λ))dξr(t)

]

, (B.77)

where ˜Λ= ˜Λλ(t).
Since

df (˜Λλ(t)) ·d˜Z(t)= ˜Z(t)
d
∑

i=1

∂f

∂xi
(˜Λ)

k
∑

r=1

hri(˜Λ)[p(σr ˜Λ, ˜Λ)+μr(˜Λ)]dt, (B.78)

the terms in the drift of (B.77) containing μr are annihilated, hence L and ˜L coin-
cide. Thus, in the formula (B.73), the systems for ˜Λ and ˜Z vary simultaneously in
such a way that the semigroup is not changed.

Due to (B.62), from (B.77) and (B.78), we get

d[f (˜Λλ(t))˜Z(t)] = ˜Z(t)L(p)f (˜Λ)dt + ˜Z(t)
[

d
∑

i=1

∂f

∂xi
(˜Λ)

k
∑

r=1

hri(˜Λ)dξr(t)

+ f (Λ̃)

k
∑

r=1

(p(σr ˜Λ, ˜Λ)+μr(˜Λ))dξr(t)

]

. (B.79)

Proposition B.3 Let f (λ) ∈ C2(Sd−1). Let f (x) ∈ C2(R
d) has a compact support

and be an extension of f (λ). Let L(p)f (λ)= g(p)f (λ), f (λ) > 0, λ ∈ Sd−1. Then
e−g(p)t˜Z(t)f (Λ̃λ(t)) is a positive continuous martingale relative to the filtration
generated by ξr (t), t ≥ 0, r = 1, . . . , k.

Proof Due to the condition of the Proposition and (B.79), direct calculation gives

d[e−g(p)t˜Z(t)f (˜Λλ(t))] = e−g(p)t˜Z(t)
[

d
∑

i=1

∂f

∂xi
(˜Λ)

k
∑

r=1

hri(˜Λ)dξr(t)

+ f (˜Λ)

k
∑

r=1

(p(σr ˜Λ, ˜Λ)+μr(˜Λ))dξr(t)

]

,

whence the result follows. �

Generator (B.62) is the sum of two operators M(p) and N(p), where

M(p)f (λ)=
d
∑

i=1

∂f

∂xi
(λ)

[

qi(λ)+ p

k
∑

r=1

(σrλ,λ)hri(λ)

]

+ 1

2

d
∑

i,j=1

∂2f

∂xi∂xj
(λ)

k
∑

r=1

hri(λ)hrj (λ), (B.80)
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N(p)f (λ)=
[

pQ(λ)+ 1

2
p2

k
∑

r=1

(σrλ,λ)
2

]

f (λ). (B.81)

The operator M(p) is of the form (B.51) (see Theorem B.6). It is the generator
of the Markov process Λ governed by SDE (B.76). Denote by Gt(p) the Markov
semigroup generated by M(p). We have for f ∈ D(L(p)) (see (B.62) for L(p))

dTt (p)f

dt
= (M(p)+N(p))Tt (p)f. (B.82)

Taking into account that N(p) is a bounded operator and using the perturbation
theory of semigroups (see [115, Sect. 9.2]), it is not difficult to obtain

Tt (p)=Gt(p)+
∫ t

0
Gt−s(p)N(p)Ts(p)ds. (B.83)

Just this formula is used in [8] for proving the compactness of Tt (p).
We note that formula (B.83) can be derived using probabilistic approach.
Letting in (B.75) f (λ)= 1(λ), we get

Tt (p)1(λ)= E|Xλ(t)|p = E exp
∫ t

0

[

pQ(Λλ(t))+ 1

2
p2R(Λλ(t))

]

dt. (B.84)

Clearly, there exist the constants Qmin ≤Qmax and 0 ≤ Rmin ≤ Rmax such that for
λ ∈ Sd−1 the inequalities

Qmin ≤Q(λ)≤Qmax, 0 ≤Rmin ≤
k
∑

r=1

(σrλ,λ)
2 ≤Rmax

are valid. From here

pQmin + 1

2
p2Rmin ≤ pQ(λ)+ 1

2
p2

k
∑

r=1

(σrΛ
λ(t),Λλ(t))2

≤ pQmax + 1

2
p2Rmax, p ≥ 0.

Hence
(

pQmin + 1

2
p2Rmin

)

t ≤ lnE|Xλ(t)|p ≤
(

pQmax + 1

2
p2Rmax

)

t, p ≥ 0,

and

pQmin + 1

2
p2Rmin ≤ g(p)≤ pQmax + 1

2
p2Rmax, p ≥ 0. (B.85)
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For p < 0 we have

pQmax + 1

2
p2Rmin ≤ g(p)≤ pQmin + 1

2
p2Rmax, p < 0. (B.86)

From (B.85) and (B.86) we get

Proposition B.4 If Rmin > 0 then the growth rate of g(p) is quadratic with respect
to p, as |p| → ∞.

B.3 Stability Index

Main results of this section are proven in [6], [19]. See also [21] for the analogous
results concerning the products of random transformations.

B.3.1 Stability Index for Linear Stochastic Differential Equations

Clearly, if g(p) > 0 then E|X(t)|p → ∞ as t → ∞ and if g(p) < 0 then
E|X(t)|p → 0 as t → ∞. If g(p) = 0 then there exist two constants 0 < c <

C <∞ such that c ≤ E|X(t)|p ≤ C, t ≥ 0. This easily follows from the fact that
|X(t)|pf (Λ(t)) is a martingale (see Proposition B.3). Let a∗ = g′(0) < 0. In this
case g(p) < 0 for sufficiently small positive p. If g(p)→ ∞ as p→ ∞ (Proposi-
tion B.4 gives a sufficient condition for such a behavior of g(p)) then the equation

g(p)= 0 (B.87)

has a unique root γ ∗ > 0 (recall that g(0) = 0). The uniqueness follows from the
convexity of g. We call γ ∗ the stability index.

Theorem B.8 Assume the condition (C). Let a∗ = g′(0) < 0 and γ ∗ > 0 is the root
of (B.87). Then for some K ≥ 1 and for any δ > 0 under |x|< δ the inequalities

1

K
(|x|/δ)γ ∗ ≤ P

{

sup
t≥0

|Xx(t)|> δ
}

≤K(|x|/δ)γ ∗
(B.88)

are fulfilled.

Proof Let f (λ) be a positive eigenfunction of L(γ ∗). Due to Theorem B.1:
L(γ ∗)f = g(γ ∗)f . Without loss of generality we can set 1 ≤ f (λ) ≤ K for some
K > 0. Since g(γ ∗)= 0, the process f (Λλ(t))|Xx(t)|γ ∗ = f (Λλ(t))|Xλ(t)|γ ∗ |x|γ ∗

,
λ= x/|x|, is a positive continuous martingale. Due to Theorem 5.2 we have for any
T > 0

P
{

sup
0≤t≤T

f (Λλ(t))|Xx(t)|γ ∗
> δγ

∗}
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≤ 1

δγ
∗ E(f (Λλ(T ))|Xx(T )|γ ∗

)

= 1

δγ
∗ f (Λ

λ(0))|Xx(0)|γ ∗ = 1

δγ
∗ f (λ)|x|γ ∗ ≤K(|x|/δ)γ ∗

. (B.89)

From here

P
{

sup
t≥0

f (Λλ(t))|Xx(t)|γ ∗
> δγ

∗}= lim
T→∞ P

{

sup
0≤t≤T

f (Λλ(t))|Xx(t)|γ ∗
> δγ

∗}

≤K(|x|/δ)γ ∗
.

Therefore

P
{

sup
t≥0

|Xx(t)|> δ
}

= P
{

sup
t≥0

|Xx(t)|γ ∗
> δγ

∗}

≤ P
{

sup
t≥0

f (Λλ(t))|Xx(t)|γ ∗
> δγ

∗}≤K(|x|/δ)γ ∗
, (B.90)

hence the right hand inequality of (B.88) is proved.
Along with the martingaleM(t)= f (Λλ(t))|Xx(t)|γ ∗

consider the stopped mar-
tingale M(t ∧ τ) where τ = inf{t : |Xx(t)| = δ}. Note that {supt≥0 |Xx(t)| > δ} =
{τ <∞}. We have for any t > 0

|x|γ ∗ ≤M(0)=EM(t ∧ τ)=E(M(t ∧ τ)1{τ=∞})+E(M(t ∧ τ)1{τ<∞})

≤E(M(t)1{τ=∞})+Kδγ
∗
P{τ <∞}, (B.91)

where 1{ · } is the indicator of the corresponding set { · }. Since a∗ < 0 and γ ∗ > 0,
M(t)→ 0 almost surely as t → ∞ and M(t) is uniformly bounded by Kδγ

∗
on the

set {τ = ∞}. Therefore E(M(t)1{τ=∞})→ 0 as t → ∞ and we get from (B.91)

P
{

sup
t≥0

|Xx(t)|> δ
}

= P{τ <∞} ≥ 1

K
(|x|/δ)γ ∗

, (B.92)

i.e., the left hand inequality of (B.88) is proved as well. �

We note that for the one-dimensional system (B.4) in the case γ ∗ = 1 −
2b/

∑k
r=1 σ

2
r > 0 we have

P
{

sup
t≥0

|Xx(t)|> δ
}

= (|x|/δ)γ ∗
(B.93)

if 0 < |x| < δ. To prove (B.93), one can use Lemma 3.4 taking (ε, δ) as Uε and
taking the following function f ε defined on Γ = {x = ε} ∪ {x = δ} by f ε(ε) = 0,
f ε(δ)= 1. Getting Px{X(τUε )= 1} and letting ε→ 0, we obtain (B.93).

In the case a∗ = g′(0) > 0, |Xx(t)| → ∞ as t → ∞ almost surely, i.e.,
supt≥0 |Xx(t)| = ∞. It is natural to consider inequalities for P{inft≥0 |Xx(t)| < δ}
(with |x|> δ) instead.
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Theorem B.9 Assume the condition (C). Let a∗ = g′(0) > 0 and γ ∗ < 0 is the root
of (B.87). Then for some K ≥ 1 and for any δ > 0 under |x|> δ the inequality

1

K
(|x|/δ)γ ∗ ≤ P

{

inf
t≥0

|Xx(t)|< δ
}

≤K(|x|/δ)γ ∗
(B.94)

is fulfilled.

Proof We note that the sets {inft≥0 |Xx(t)| < δ} and {supt≥0 |Xx(t)|γ ∗
> δγ

∗} are
the same. Now the right hand inequality of (B.94) is proved literally as in the
previous theorem with the exception of the first equality in (B.90): it should be
P{inft≥0 |Xx(t)| > δ} = P{supt≥0 |Xx(t)|γ ∗

> δγ
∗}. Concerning the second part of

the proof, it is sufficient to do the following small alterations. Here M(t) and τ are
the same but {τ < ∞} = {inft≥0 |Xx(t)| < δ} = {supt≥0 |Xx(t)|γ ∗

> δγ
∗}. Taking

into account that now a∗ > 0 and γ ∗ < 0, we get

P
{

inf
t≥0

|Xx(t)|< δ
}

= P
{

sup
t≥0

|Xx(t)|γ ∗
> δγ

∗}= P{τ <∞} ≥ 1

K
(|x|/δ)γ ∗

instead of (B.92), i.e., the left hand inequality of (B.94). �

Analogously to (B.93) in the case γ ∗ = 1 − 2b/
∑k
r=1 σ

2
r < 0 for the one-

dimensional system (B.4) we have

P
{

inf
t≥0

|Xx(t)|< δ
}

= (|x|/δ)γ ∗

if |x|> δ.

Remark B.5 The theory of moment Lyapunov exponents and of the stability index
can be carried over to SDEs with homogeneous coefficients with degree one (see
Example 7.2, Sect. 7.3, and [8], [19], [6]).

B.3.2 Stability Index for Nonlinear SDEs

Consider an autonomous system of SDEs in the sense of Itô

dX = a0(X)dt +
k
∑

r=1

ar(X)dξr(t), (B.95)

where X is an d-dimensional vector, ar(x)= [a1
r , . . . , a

d
r ]�, r = 0,1, . . . , k, are d-

dimensional vector functions which are continuously differentiable in R
d . Let the

origin be a stationary point for the SDE (B.95), i.e., ar(0)= 0, r = 0,1, . . . , k.
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The linearized SDE for (B.95) has the form

dX = BXdt +
k
∑

r=1

σrX dξr(t), (B.96)

where B = {bij } and σr = {σ ijr } are d × d-matrices with the elements bij = ∂ai0
∂xj
(0)

and σ ijr = ∂air
∂xj
(0), i, j = 1, . . . , d , r = 1, . . . , k.

In the deterministic case, the solutionsXx(t) of a nonlinear system and of the cor-
responding linearized system usually have many common features in their asymp-
totic behavior if x is sufficiently small. In the stochastic case, theorems on stability
and instability of SDEs in the linear approximation (see Chap. 7) show that the most
important asymptotic properties of linear SDEs are also robust with respect to per-
turbations of higher order. Nevertheless, the stochastic case is far intricate, and some
asymptotic characteristics for (B.96) do not reflect the behavior of the solutions of
(B.95). For example, such an important characteristic for the system (B.96) as the
moment Lyapunov exponent

g(p)= lim
t→∞

1

t
ln E|Xx(t)|p (B.97)

is usually positive for sufficiently large p > 0 even for stable systems because of
large deviations. At the same time, a situation may occur such that all the trajectories
Xx(t) of the nonlinear system (B.95) are uniformly bounded for |x| ≤ ρ, ρ > 0 is
some number, 0 ≤ t <∞. In such a case the limit in (B.97) is always non-positive
for the SDE (B.95), i.e., it is either zero or even negative. It turns out that stability
index is just a characteristic that precisely relates (B.95) and (B.96) in the sense
of asymptotic behavior of solutions. Let a∗ be a Lyapunov exponent and γ ∗ be
a stability index for the linear system (B.96). For its solutions, we have estimates
for the probabilities P{supt≥0 |Xx(t)| > δ}, |x| < δ (the case a∗ < 0, γ ∗ > 0) and
P{inft≥0 |Xx(t)| < δ}, |x| > δ (the case a∗ > 0, γ ∗ < 0) given by Theorems B.8
and B.9. In applications the first probability is called ruin probability. It represents
the risk that the process Xx(t) exceeds some threshold level before the large-time
limiting behavior has taken effect (let us recall that |Xx(t)| → 0 almost surely as
t → ∞). The second probability for suitable small δ is sometimes called extinction
probability.

In the next theorem, we obtain the same estimates (with the same γ ∗) for the
probabilities with X being a solution of (B.95). It is very natural that the solutions
of (B.95) and (B.96) behave so identically because these equations are close to each
other so long as both the solutions remain in a neighborhood of x = 0.

Theorem B.10 Assume the condition (C) for SDE (B.96). Assume that the coeffi-
cients of SDE (B.95) are close to the coefficients of the linear SDE (B.96): there
exist α > 0 (usually α = 1), C > 0, Δ> 0 such that

|a0(x)−Bx| +
k
∑

r=1

|ar(x)− σrx|<C|x|1+α, for |x| ≤Δ. (B.98)
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Let a∗ and γ ∗ be the Lyapunov exponent and stability index for SDE (B.96). Then
Case a∗ < 0, γ ∗ > 0: There exist a sufficiently small δ > 0 and positive constants

c1, c2 such that for all |x| < δ the solution Xx(t) of the nonlinear SDE (B.95)
satisfies the inequalities

c1(|x|/δ)γ ∗ ≤ P
{

sup
t≥0

|Xx(t)|> δ
}

≤ c2(|x|/δ)γ ∗
. (B.99)

Case a∗ > 0, γ ∗ < 0: There exist positive constants c3, c4 such that for any
0< δ <Δ and all x with δ < |x|<Δ

c3(|x|/δ)γ ∗ ≤ P
{

inf
0≤t≤τ |Xx(t)|< δ

}

≤ c4(|x|/δ)γ ∗
, (B.100)

where Xx(t) is the solution of the nonlinear SDE (B.95) and τ := inf{t : |Xx(t)|>
Δ}.

Proof Denote by L̃ and L the generators of Markov processes corresponding to
(B.95) and (B.96), respectively. Thus,

L̃F (x)=
d
∑

i=1

ai0(x)
∂F

∂xi
(x)+ 1

2

d
∑

i,j=1

k
∑

r=1

air (x)a
j
r (x)

∂2F

∂xi∂xj
(x),

F ∈ C2(Rd \ {0}).
It follows from (B.98) after direct (but rather bulky) calculations that for any func-
tion F of the form F(x)= |x|pf (x/|x|) and for |x| ≤Δ

|(L̃−L)F(x)| ≤ C|x|p+α, (B.101)

where C > 0 is a constant (which may differ from C in (B.98)).
Case a∗ < 0, γ ∗ > 0. Let 0< ε < α. Let L(p) be the generator of the semigroup

Tt (p) connected with linear system (B.96) and fγ ∗(λ), fγ ∗+ε(λ) be strictly positive
eigenfunctions corresponding to the eigenvalues g(γ ∗)= 0 and g(γ ∗ + ε) > 0:

L(γ ∗)fγ ∗(λ) = g(γ ∗)fγ ∗(λ)= 0,

L(γ ∗ + ε)fγ ∗+ε(λ) = g(γ ∗ + ε)fγ ∗+ε(λ).
(B.102)

Introduce the functions

V±(x) := |x|γ ∗
fγ ∗(x/|x|)± |x|γ ∗+εfγ ∗+ε(x/|x|). (B.103)

Clearly, these functions are strictly positive for |x| < δ if δ is sufficiently small.
Moreover, there exist positive constants a1, a2 such that for all |x|< δ

a1|x|γ ∗ ≤ V±(x)≤ a2|x|γ ∗
. (B.104)
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Due to (B.63), we have

LV−(x) = |x|γ ∗
L(γ ∗)fγ ∗(λ)− |x|γ ∗+εL(γ ∗ + ε)fγ ∗+ε(λ)

= −|x|γ ∗+εg(γ ∗ + ε)fγ ∗+ε(x/|x|) < 0. (B.105)

Now due to (B.101),

L̃V−(x) = LV−(x)+ (L̃−L)V−(x)

= −|x|γ ∗+εg(γ ∗ + ε)fγ ∗+ε(x/|x|)+O(|x|γ ∗+α) < 0 for |x|< δ.
(B.106)

Therefore V−(Xx(t ∧ τ)), where Xx(t) is a solution of (B.95) and τ :=
inf{t : |Xx(t)| = δ}, is a supermartingale. Hence

EV−(Xx(t ∧ τ))≤ V−(x)≤ a2|x|γ ∗
. (B.107)

On the other hand,

EV−(Xx(t ∧ τ))≥ a1E|Xx(t ∧ τ)|γ ∗ ≥ a1δ
γ ∗

P
{

sup
t≥0

|Xx(t)|> δ
}

. (B.108)

The inequalities (B.107) and (B.108) imply the right hand inequality of (B.99).
Because

LV+(x) > 0,

the process V+(Xx(t ∧ τ)), where Xx(t) is a solution of the nonlinear SDE (B.95)
and τ := inf{t : |Xx(t)| = δ}, is a submartingale. Hence

EV+(Xx(t ∧ τ))≥ V+(x)≥ a1|x|γ ∗
. (B.109)

Using the approach similar to one used in proving (B.91) and (B.92), we get

P
{

sup
t≥0

|Xx(t)|> δ
}

≥ 1

a2δγ
∗ EV+(Xx(t ∧ τ)). (B.110)

Inequalities (B.109) and (B.110) imply the left hand inequality of (B.99). Thus, the
first case is proved.

The proof of the second case a∗ > 0, γ ∗ < 0 is completely analogous (see also
the proof of Theorem B.9). �

Remark B.6 The previous content is devoted to stability analysis of stationary points
for linear and non-linear autonomous SDEs. In [199, 200], the concepts of Lyapunov
exponents, moment Lyapunov exponents, and stability index are carried over for
invariant manifolds of non-linear stochastic systems.

Remark B.7 The example in [134] shows that the inequality with C|x|1+α in (B.98)
cannot be replaced by the inequality with γ |x| with sufficiently small γ > 0.



B.4 Moment Lyapunov Exponent and Stability Index 309

B.4 Moment Lyapunov Exponent and Stability Index for System
with Small Noise

In this section, asymptotic expansion series for the moment Lyapunov exponent and
stability index are constructed and justified for the two-dimensional linear stochastic
system close to a harmonic oscillator.4 As an example, a one-degree-of-freedom
mechanical system parametrically excited in stiffness and damping is considered
and several terms of the asymptotic expansion are obtained.

B.4.1 Introduction and Statement of Problem

Consider the Itô two-dimensional linear SDE

dX(t)= BX(t) dt +
k
∑

r=1

σrX(t) dξr(t). (B.111)

Here B , σ1, . . . , σk are 2 × 2 real matrices, dimX = 2, and ξr (t) are independent
standard scalar Wiener processes on a probability space (Ω,F ,P). Define (see
Sect. B.1)

g(p;x)= lim
t→∞

1

t
ln E|Xx(t)|p, x �= 0, p ∈ R, (B.112)

and suppose that the following Lie algebra condition holds (see Remark B.1)

dimLA(h0(λ),h1(λ), . . . , hk(λ))= 1, λ ∈ S1, (B.113)

where

h0(λ)= σ0λ− (σ0λ,λ)λ, σ0 := B − 1

2

k
∑

r=1

σ 2
r ,

hr (λ)= σrλ− (σrλ,λ)λ, r = 1, . . . , k.

Then (see Sect. B.2) the limit in (B.112) exists and is independent of x. Let us recall
that this limit g(p) is a convex analytic function of p ∈ R

1, g(p)/p is increasing,
and

a∗ = ġ(0)= lim
t→∞

1

t
ln |Xx(t)|, P-a.s.

is the Lyapunov exponent (a dot denotes differentiation with respect to p). The
function g(p) is the moment Lyapunov exponent.

4This section is based on the results of [136].
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Let L be the generator of the Markov process defined by (B.111). Then (see
Sect. B.2.4)

L(p)f (λ)= |x|−pL(|x|pf (x/|x|))
is a second order differential operator on the unit circle S1 and g(p) is the principal
simple eigenvalue of L(p) (see Theorem B.1),

L(p)e(λ;p)= g(p)e(λ;p), (B.114)

with a strictly positive eigenfunction e(λ;p).
If there is a nonzero solution γ ∗ of the equation g(p)= 0, then it is unique and is

called the stability index (see Sect. B.3). The stability index controls the probability
with which an almost surely (a.s.) stable system exceeds a threshold. It has been
shown in [19] (see Sect. B.3.1) that the probability of exit from the ball |x|< r has
the order |x|γ ∗

for x → 0 for any r > 0 if (B.111) is stable; and the solution x = 0
of (B.111) is exponentially p-stable for p < γ ∗ and exponentially p-unstable for
p > γ ∗. Analogous results are valid for the a.s. unstable systems.

It has been proved in Sect. B.3.2 that the probability of exit for a nonlinear SDE
close in some sense to a homogeneous one also has the order |x|γ ∗

, where γ ∗ is the
stability index of the linearized system. An analogous result has been established
for the a.s. unstable systems.

Although Lyapunov exponent a∗, moment Lyapunov exponent g(p), and the sta-
bility index γ ∗ are very important characteristics for the analysis of linear SDEs, in
the general case it is impossible to find explicit expressions for these characteris-
tics. Therefore, in some papers for stochastic linear systems close to deterministic,
asymptotic expansions for a∗, g(p), and γ ∗ have been proposed.

Asymptotics of the Lyapunov exponent for the second-order linear stochastic
systems has been considered in [17], where using the exact formula for a∗ and the
saddle-point method, the zero- and first-order terms of the expansion for a∗ have
been obtained in general case and a general expansion has been obtained in the case
when the unperturbed system is a simple harmonic oscillator. Also in [17], a general
expansion with evaluation of the n-th remainder term is derived for the conserva-
tive system. In the case of real noises the asymptotics of the Lyapunov exponent
and rotation number have been obtained in [9], [226]. By means of a singular per-
turbation scheme an asymptotic expansion for the Lyapunov exponent and rotation
number has been obtained in [224] for two-dimensional systems with small white
noises.

The problem of asymptotic analysis becomes more complicated for the moment
Lyapunov exponent. It is known that the Lyapunov exponent a∗ = ġ(0) of the two-
dimensional stochastic system can be evaluated in quadratures using invariant mea-
sure of the corresponding process on S1 (see Sect. 6.8). The same is true for g(n)(0)
(the procedure is described in [7, p. 121–122]). So the Taylor series for the moment
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Lyapunov exponent of the two-dimensional linear SDE can be found in quadratures.
However, these formulas are rather complicated to compute. Therefore, a series ex-
pansion of the invariant measure has been used in [53] to get an asymptotic expan-
sion of g̈(0) and obtain asymptotics of g(p) for the case of small noise intensity
and small p. The case of real noise has also been considered in this paper. But an
approximation valid for small p does not allow us to find, for example, the stability
index.

In general, it is difficult to find a uniform asymptotic expansion of gε(p) be-
cause the stationary distribution of the corresponding process on the unit circle may
concentrate in the vicinity of certain points as ε → 0 (see Sect. 6 in [224]). But in
the important case of a weakly perturbed conservative system, the limiting distribu-
tion on the circle is uniform and the asymptotic series expansion of gε(p) can be
obtained.

The main purpose of this section is to prove the existence of asymptotic expan-
sion for gε(p), γ ∗

ε , and to propose a recursive procedure for their determination in
the interesting for applications case of a weakly perturbed conservative system.

Assume that diffusion in the system (B.111) is small and matrix B is a small
perturbation of the matrix with two pure imaginary eigenvalues. So the unperturbed
system represent a simple harmonic oscillator. In this case the original SDE may be
represented in the form

dXε(t)= (B0 + εB1)X
ε(t) dt + √

ε

k
∑

r=1

σrX
ε(t) dξr(t). (B.115)

Without loss of generality we may assume that B0 has the form

B0 =
(

0 1
−1 0

)

.

Note that for the system (B.115) the Lie algebra condition (B.113) is satisfied
for arbitrary matrices σ1, . . . , σk . The operator L(p) and its eigenfunction e(θ;p)
(θ modπ is a local coordinate on the unit circle S1) now depend on ε: L(p) =
Lε(p), e(θ;p)= eε(θ;p), and

Lε(p)= L1 + εL2(p). (B.116)

Here L1 = −d/dθ and L2(p) is the following second-order differential operator:

L2(p)= a(θ)
d2

dθ2
+ b(θ;p) d

dθ
+ c(θ;p), (B.117)
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where

a(θ)= 1

2

k
∑

r=1

(σrλ, λ̂)
2,

b(θ;p)= −(B1λ, λ̂)− (p− 1)
k
∑

r=1

(σrλ,λ)(σrλ, λ̂),

c(θ;p)= p

[

(B1λ,λ)+ 1

2

k
∑

r=1

(σrλ, λ̂)
2 + p− 1

2

k
∑

r=1

(σrλ,λ)
2

]

,

λ=
(

cos θ
sin θ

)

, λ̂= −dλ
dθ

=
(

sin θ
− cos θ

)

(B.118)

(see Sect. 6.8). The eigenvalue problem (B.114) now takes the form

Lε(p)eε(θ;p)= gε(p)eε(θ;p),
eε(0;p)= eε(π;p)= 1, e′ε(0;p)= e′ε(π;p). (B.119)

B.4.2 Method of Asymptotic Expansion

We obtain here an asymptotic expansion of gε(p),

gε = g0 + εg1 + · · · + εngn +O(εn+1), (B.120)

whenever such an expansion holds, and we evaluate the coefficients gm = gm(p).
For this purpose we consider an asymptotic expansion of the eigenfunction eε(θ;p)
as well:

eε(θ;p)= e0(θ;p)+ εe1(θ;p)+ · · · + εnen(θ;p)+ · · · .

Here en(θ;p) is the n-th term of the asymptotic expansion for eε(θ;p). The termal
expressions

eε = e0 + εe1 + · · · + εnen + · · · ,
gε = g0 + εg1 + · · · + εngn + · · ·
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after inserting in (B.119) and equating the coefficients of like power of ε lead to the
equations

L1e0 = g0e0,

L1e1 +L2e0 = g0e1 + g1e0,

L1e2 +L2e1 = g0e2 + g1e1 + g2e0,

...

L1en +L2en−1 = g0en + g1en−1 + · · · + gne0.

(B.121)

Each function em here is a periodic function in θ . Consider the first equation of
(B.121) (hereafter a prime denotes differentiation with respect to θ ):

−e′0 = g0e0, e0(0)= 1.

Function e0 must be positive and periodic in θ . It is possible only if g0 = 0 and
e0 = 1. The second equation in (B.121) has a periodic solution if and only if

∫ π

0
(L2 · 1 − g1) dθ = 0.

So we have

g1 = g1(p)= L2 · 1 = cp(θ)

and

e1 = e1(θ;p)=
∫ θ

0
(L2 · 1 − g1) ds.

Hereafter, we use the notation

( · )= 1

π

∫ π

0
( · ) dθ.

Analogously from the periodicity of e2 = e2(θ;p) we obtain

g2 = g2(p)= L2(p)e1(θ;p)− g1e1(θ;p),

e2(θ;p)=
∫ θ

0
(L2(p)e1(s;p)− g1(p)e1(s;p)− g2(p)) ds,

and finally

gn = L2en−1 − g1en−1 − · · · − gn−1e1,

en =
∫ θ

0
(L2en−1 − g1en−1 − · · · − gne0) ds.

(B.122)

Note that the asymptotic expansion formalism described here is similar to the
one used in [224] for determination of the Lyapunov exponent.
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Theorem B.11 Let matrix B0 in (B.115) have two pure imaginary eigenvalues and
g0, g1, . . . , gn and e0, e1, . . . , en be the functions obtained from the recursive proce-
dure (B.122). Then for any n > 0

gε = g0 + εg1 + · · · + εngn +O(εn+1) (ε→ 0).

Here O(εn+1)/εn+1 is bounded uniformly in p ∈Δ, and Δ is any compact in R.

For proving the theorem we need the following lemma.

Lemma B.1 Let eε(θ;p) be a function satisfying (B.119) and eε(0;p) = 1. Then
for

ε <
M1

1 + p2
, (B.123)

the following estimates hold:

‖e′ε( · ;p)‖<M2
√
ε

√

p2 + |p|, (B.124)

|eε(θ;p)− 1|< πM2
√
ε

√

p2 + |p|. (B.125)

Here M1, M2 are positive constants independent of ε and p and

‖F‖ =
√

1

π

∫ π

0
F 2(θ) dθ.

Proof Taking the inner product of both sides of (B.119) and e′ε , we obtain

−
∫ π

0
e′2
ε dθ + ε

(∫ π

0
ae′εe′′ε dθ +

∫ π

0
be′2
ε dθ +

∫ π

0
ce′εeε dθ

)

= gε

∫ π

0
e′εeε dθ.

This equation can be rewritten (after integration by parts) in the form
∫ π

0

[

1 − ε

(

b− a′

2

)]

e′2
ε dθ = −ε

∫ π

0

c′

2
e2
ε dθ. (B.126)

Define K1(p), K2(p) by

K1(p)= max
0≤θ≤π

∣

∣

∣

∣

b(θ,p)− a′(θ)
2

∣

∣

∣

∣

, K2(p)= max
0≤θ≤π

|c′(θ,p)|. (B.127)

It follows from (B.118) that

K1(p)≤N1(|p| + 1), K2(p)≤N2|p|(|p| + 1), (B.128)

where N1, N2 are some constants independent of ε and p. It is clear from (B.126)
that for 0< ε < 1/(2K1)

‖e′ε‖ ≤√εK2 ‖eε‖. (B.129)
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Using (B.129), we have

|eε(θ;p)− 1| =
∣

∣

∣

∣

∫ θ

0
e′ε(s;p)ds

∣

∣

∣

∣

≤ π‖e′ε‖ ≤ π√εK2‖eε‖. (B.130)

It follows from (B.130) that

‖eε‖ ≤ 1 + 2π
√

εK2 ≤ 2 (B.131)

if ε is small enough and

ε ≤ 1

4π2K2
. (B.132)

From (B.129), (B.131), and (B.132) it follows that

‖e′ε‖ ≤ 2
√

εK2 (B.133)

and

|eε(θ;p)− 1| ≤ 2π
√

εK2 (B.134)

if ε satisfies (B.132) and 0 < ε < 1/(2K1). Now the assertion of lemma follows
from (B.128), (B.133), and (B.134). �

Proof of Theorem B.11 First, note that for the adjoint problem

L∗
ε(p)ψε(θ;p)= gε(p)ψε(θ;p), ψε(0;p)=ψε(π;p)= 1,

(L∗
ε(p)= −L1 + εL∗

2(p)),
(B.135)

the same algorithm of asymptotic expansion can be applied. It results in the formal
series

ψε =ψ0 + εψ1 + · · · + εnψn + · · · .
Functions ψm = ψm(θ;p) can be found analogously to (B.121). In particular,
ψ0(θ;p)= 1. Introduce the notation

e(n)ε = e0 + εe1 + · · · + εnen,

g(n)ε = g0 + εg1 + · · · + εngn,

ψ(n)ε =ψ0 + εψ1 + · · · + εnψn.

Recall that g0 = g0(p) = 0, e0 = e0(θ;p) = 1. It follows from the procedure of
evaluation em, gm, ψm that

Lε(p)e
(n)
ε (θ;p)= g(n)ε (p)e(n)ε (θ;p)+O(εn+1), (B.136)

L∗
ε(p)ψ

(n)
ε (θ;p)= g(n)ε (p)ψ(n)ε (θ;p)+O(εn+1). (B.137)
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Denote F (n)ε (θ;p) = eε(θ;p) − e
(n)
ε (θ;p). Then from (B.136) and (B.119) it

follows that

Lε(p)F
(n)
ε (θ;p)− g(n)ε (p)F (n)ε (θ;p)= (gε(p)− g(n)ε (p))eε(θ;p)+O(εn+1).

(B.138)
Taking the inner product of (B.138) and ψ(n)ε (θ;p) gives

(ψ(n)ε ( · ;p),Lε(p)F (n)ε ( · ;p))− g(n)ε (p)(ψ(n)ε ( · ;p),F (n)ε ( · ;p))
= (gε(p)− g(n)ε (p))(ψ(n)ε ( · ;p), eε( · ;p))+O(εn+1). (B.139)

Using (B.137), the first term on the left side of (B.139) can be written in the form

(ψ(n)ε ( · ;p),Lε(p)F (n)ε ( · ;p)) = (L∗
ε(p)ψ

(n)
ε ( · ;p),F (n)ε ( · ;p))

= g(n)ε (p)(ψ(n)ε ( · ;p),F (n)ε ( · ;p))+O(εn+1).

Now (B.139) yields the estimate

(gε(p)− g(n)ε (p))(ψ(n)ε ( · ;p), eε( · ;p))=O(εn+1) (ε→ 0).

We proved in the lemma that eε(θ;p)→ 1 if ε→ 0 uniformly in θ and p ∈Δ, for
any compact set Δ ∈ R. Therefore

lim
ε→0

(ψ(n)ε ( · ;p), eε( · ;p))= 1

and

gε(p)− g(n)ε (p)=O(εn+1)

uniformly in p ∈Δ. This ends the proof of Theorem B.11. �

B.4.3 Stability Index

Let us show now that the asymptotic expansion for the stability index γ ∗
ε follows

from the asymptotic expansion for the moment Lyapunov exponent gε(p). Stability
index γ ∗

ε is a nonzero root of the equation

gε(γ
∗
ε )= 0. (B.140)

Let us use for γ ∗
ε the similar formal asymptotic expansion,

γ ∗
ε = γ0 + εγ1 + · · · + εnγn + · · · . (B.141)

After inserting (B.141) into the formal equation

g1(γ
∗
ε )+ εg2(γ

∗
ε )+ · · · + εn−1gn(γ

∗
ε )+ · · · = 0 (B.142)
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and equating the coefficients of like power of ε, the following sequence of problems
can be obtained:

g1(γ0)= 0,

ġ1(γ0)γ1 + g2(γ0)= 0,

ġ1(γ0)γ2 + 1

2
g̈1(γ0)γ

2
1 + ġ2(γ0)γ1 + g3(γ0)= 0,

ġ1(γ0)γ3 + 1

6
g̈1(γ0)γ

3
1 + g̈1(γ0)γ1γ2

+ 1

2
g̈2(γ0)γ

2
1 + ġ2(γ0)γ2 + ġ3(γ0)γ1 + g4(γ0)= 0,

...

(B.143)

As before, a dot denotes differentiation with respect to p.
Note that due to the procedure of evaluation of gm, any function gm is a polyno-

mial in p. Consider the case when

d = g̈1(0)=
k
∑

r=1

(σrλ,λ)2 > 0. (B.144)

Then g1 is a quadratic function of p, so it can be represented in the form
g1 = 1

2dp(p− γ0). Therefore ġ1(γ0)= 1
2dgγ0 �= 0 and system (B.143) can be suc-

cessively solved for γ0, γ1, . . . , γn, . . . .
Assume that n terms of the asymptotics of the moment Lyapunov exponent gε(p)

are used:

g(n)ε (p)= εg1(p)+ ε2g2(p)+ · · · + εngn(p). (B.145)

So we can obtain γ0, γ1, . . . , γn−1 by solving the first n equations of (B.143).
Denote by

γ (n−1)
ε = γ0 + εγ1 + · · · + εn−1γn−1.

Let us prove that γ ∗
ε = γ

(n−1)
ε +O(εn). It follows from (B.143), (B.145) that

g(n)ε (γ (n−1)
ε )=O(εn+1) (B.146)

uniformly in p for any compact set in R. Function g1(p) has nonzero root at γ0. So
it follows from Theorem B.11 that |γ ∗

ε |<K , where K does not depend on ε, and

gε(γ
∗
ε )− g(n)ε (γ ∗

ε )=O(εn+1)

or

g(n)ε (γ ∗
ε )=O(εn+1). (B.147)
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From (B.146) and (B.147) we now have

g(n)ε (γ ∗
ε )− g(n)ε (γ (n−1)

ε )=O(εn+1), (B.148)

and according to the mean value theorem, there is a γ̄ ∈ (γ ∗
ε , γ

(n−1)
ε ) such that

g(n)ε (γ ∗
ε )− g(n)ε (γ (n−1)

ε )= ġ(n)ε (γ̄ )(γ ∗
ε − γ (n−1)

ε ). (B.149)

For ġ(n)ε we have expression

ġ(n)ε = ε(ġ1 + εġ2 + · · · + εn−1ġn). (B.150)

So

ġ(n)ε (γ̄ )=O(ε). (B.151)

From (B.148), (B.149), and (B.151) it now follows that

γ ∗
ε − γ (n−1)

ε ∼O(εn).

So we obtain the following theorem.

Theorem B.12 Let the matrix B0 in (B.115) have two pure imaginary eigenvalues
and condition (B.144) be fulfilled. Then the stability index of the system (B.115) has
an asymptotic expansion

γ ∗
ε = γ0 + εγ1 + · · · + εnγn +O(εn+1),

where γ0, γ1, . . . , γn can be found recursively from (B.122), (B.143).

Remark B.8 Consider now the case when the original system (B.115) is not pure
deterministic and d = 0 (so the condition (B.144) does not hold). This is possible if
and only if each matrix σr is of the form: σr = νrB0. In this specific case random
excitations act only along the circle on the phase plane. Stability properties of the
system (B.115) depend crucially on the structure of the matrix B1. Let

B1 =
(

a11 a12
a21 a22

)

.

The coefficients of the operator L2(p) are evaluated as follows (see (B.118)):

a(θ)= ν2

2
, ν2 =

k
∑

r=1

ν2
r ,

b(θ;p)= −1

2
[a12 − a21 + (a11 − a22) sin 2θ − (a12 + a21) cos 2θ ],

c(θ;p)= pc̃(θ),

c̃(θ)= 1

2
[ν2 + a11 + a22 + (a12 + a21) sin 2θ + (a11 − a22) cos 2θ ],

(B.152)
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and equation for r := |Xε(t)| is

dr = εrc̃(θ) dt. (B.153)

We have three possibilities here.
(i) If a11 − a22 = 0 and a12 + a21 = 0, then (B.153) for r becomes deterministic

and g(p)= 1
2ε(ν

2 + a11 + a22)p as in deterministic theory (eε(θ;p)≡ 1).
(ii) If (a11 − a22)

2 + (a12 + a21)
2 �= 0, and ν2 + a11 + a22 �= 0, then

g(p)= 1

2
εp(ν2 + a11 + a22)+ 1

16
ε3ν2p(p+ 2)[(a11 − a22)

2 + (a12 + a21)
2]

+ 1

16
ε4ν2p(p+ 2)(a21 − a12)[(a11 − a22)

2 + (a12 + a21)
2] + · · · .

(B.154)

Asymptotic expansion for the stability index takes the form

γ ∗
ε = γ−2

ε2
+ γ−1

ε
+ γ0 + εγ1 + · · · , (B.155)

where the coefficients γ−2, γ−1, γ0, . . . can be found recursively by substituting for-
mal series (B.155) into the equation g(p)= 0. In particular,

γ−2 = − 8(ν2 + a11 + a22)

ν2[(a11 − a22)2 + (a12 + a21)2] , γ−1 = (a12 − a21)γ−2.

The proof is analogous.
(iii) If (a11 − a22)

2 + (a12 + a21)
2 �= 0, and ν2 + a11 + a22 = 0, then for the

moment Lyapunov exponent g(p) we have expansion (B.154) where the first term
vanishes. It is not difficult to prove that γ ∗

ε = −2 in this case.

B.4.4 Applications

Consider the following stochastic oscillator:

Ÿ + Y = −εα Ẏ +√εβY ∗ ξ̇1(t)+
√
εδ Ẏ ∗ ξ̇2(t) (β2 + δ2 > 0). (B.156)

Now a dot denotes a time derivative, ξ1 and ξ2 are independent standard Wiener pro-
cesses, and we consider this equation in the sense of Stratonovich. Equation (B.156)
is a mathematical model of a one-degree-of-freedom mechanical system paramet-
rically excited in stiffness and damping. The damping coefficient and intensities of
excitations are assumed to be small, and this is indicated by the parameter ε. Note
that the condition (B.144) is fulfilled since β2 + δ2 > 0. Equivalently, (B.156) can
be rewritten in the form

Ÿ + Y = −ε(α − δ/2) Ẏ +√εβ Y ξ̇1(t)+
√
εδ Ẏ ξ̇2(t). (B.157)
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The operator Lε(p) (see (B.114)) has the form (B.116)–(B.118) where coefficients
a(θ), b(θ;p), c(θ;p) can be evaluated as follows:

a(θ)= 1

2
cos2 θ(β cos2 θ + δ sin2 θ),

b(θ;p)= − [(1 − p)(β cos2 θ + δ sin2 θ)+ (α − δ/2)] sin θ cos θ,

c(θ;p)= p[−(α− δ/2)] sin2 θ

+ 1

2
(β cos2 θ + δ sin2 θ)(cos2 θ − sin2 θ)+ p sin2 θ.

Following the procedure of the asymptotic analysis described in Sect. B.4.2, we ob-
tain the following expressions for the moment Lyapunov exponent g(p) and stability
index γ ∗

ε (we write here only three nonzero terms of the expansion):

g(p)= ε[2−4(β + 3δ)p2 + 2−3(β + δ)p− 2−1αp]
+ ε3{2−13[33δ2(β + δ)+ β2(11β − 13δ)]p4

+ 2−11[δ(β + δ)(17δ − 32α)+ β2(11β − 13δ)]p3

+ 2−11[(β + δ)(32α2 − 64αδ − δ2)+ β2(−19β + 5δ)]p2

+ 2−9[(β + δ)(16α2 − δ2)+ β2(−15β + 9δ)]p} +O(ε5),

γ ∗
ε = 2(4α − β − δ)/(β + 3δ)+ ε2(β − δ)(β + 2δ − 2α)(δ + 2α)

× 15β3 + 52β2α + 77β2δ+ 17βδ2 − 8βδα + 3δ3 − 12δ2α

16(β + 3δ)4

+O(ε4).

(B.158)

The following expression for the Lyapunov exponent now follows from (B.158):

a∗ = ε[2−3(β + 3δ)− 2−1α]
+ 2−9ε3[(β + δ)(16α2 − δ2)+ β2(−15β + 9δ)] +O(ε5).

The system is stable if a∗ < 0. In terms of the system parameters α, β , δ it means
that the system is stable if (here we use expansion of the Lyapunov exponent up to
fifth order):

α > 2−2(β + δ)+ 2−7ε2β(−7β2 + 6βδ+ δ2)

− 2−12ε4β(−402β4 + 465β3δ − 71β2δ2 + 3βδ3 + 5δ4)+O(ε6).

All expressions become simpler for some special cases.

Case I Parametrically excited system in the stiffness (δ = 0).
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Stability index:

γ ∗
ε = 8

α

β
− 2 + ε2

(

15

8
αβ − 13

α3

β
+ 11

4
α2
)

+ ε4
(

−735

256
αβ3 − 404

64
α2β2 + 699

32
α3β − 97

8

α5

β
+ 337

32
α4
)

+O(ε6).

Lyapunov exponent:

a∗ = ε

(

1

8
β − 1

2
α

)

+ ε3
(

− 15

512
β3 + 1

32
α2β

)

+ ε5
(

1695

32768
β5 − 15

512
α2β3 + 1

128
α4β

)

+O(ε7).

Stability condition:

α >
1

4
β − 7

128
ε2β3 + 201

2048
ε4β5 +O(ε6).

Note that the first term in this condition coincides with the one obtained in [124].

Case II Parametrically excited system in the damping (β = 0).

Stability index:

γ ∗
ε = 8α

3δ
− 2

3
+ ε2

(

− 1

216
δ2 + 1

72
αδ − α3

27δ
+ 1

36
α2
)

+ ε4
(

55

62208
δ4 − 155

62208
αδ3

− 95

15552
α2δ2 + 55

7776
α3δ− 5α5

1944δ
+ 25α4

7776

)

+O(ε6).

Lyapunov exponent:

a∗ = ε

(

1

8
δ − 1

2
α

)

+ ε3
(

− 1

512
δ3 + 1

32
α2δ

)

+ ε5
(

13

32768
δ5 − 7

1024
α2δ3 + 1

128
α4δ

)

+O(ε7).

Stability condition:

α >
1

4
δ +O(ε6).

Remark B.9 The interesting feature of the system is that gε(p) is the odd function
of ε, so it contains only odd terms in the expansion. Let us show that it happens
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when a(θ) and c(θ;p) are even, and b(θ;p) is an odd function of θ . In fact if we
replace θ by −θ and ε by −ε, then the operator Lε(p) (see (B.116)–(B.118)) will
convert into the operator −Lε(p), which has eigenvalue −gε(p). Operator −Lε(p)
has eigenvalue g−ε(p). Since the transformation of coordinate θ → −θ does not
change the eigenvalue, then g−ε = −gε .

Remark B.10 The results of this section are carried over for conservative systems
with small random and periodic excitations in [102] (see [20] as well). Also in [102],
an outline of general theory for stochastic systems with periodic in t coefficients
is given. In [135], gyroscopic systems with two degrees of freedom under small
random perturbations are investigated by use of the stochastic averaging principle.
Explicit formulas for the averaged Lyapunov and moment Lyapunov exponents are
derived. It turned out that the averaged exponents are the first-order terms of the
expansions for the exponents of the original gyroscopic system.
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Equation (cont.)
Riccati, 260

matrix, 259
Schroedinger’s, with a random potential,

269
Van der Pol, 13, 79, 83

Equivalent solutions, 71
Ergodic set, 121
Excessive functions, 245
Expectation, 2
Explosion, 78

time, 75
Exponentially p-stable solution, 23, 171
Exponentially q-unstable

solution, 174
system, 196

Exterior Dirichlet problem, 126
Extinction probability, 306

F
Fatou’s lemma, 90
Feller transition probability function, 61, 62
Feynman–Kac formula, 87, 130, 137
Fokker–Planck–Kolmogorov equation, 125,

210
Formula

Feynman–Kac, 130
Itô’s, 70

Function
Bessel, 133, 212
characteristic, 289
excessive, 245
joint distribution, 2
Lyapunov, 6
positive definite, 152
slowly varying in the Karamata sense, 144

Fundamental system of solutions, 185

G
Gaussian stochastic process, 32
Generator of

homogeneous semigroup, 62
the Markov process, 73

Green’s function, 113, 125
Gronwall–Bellman lemma, 9, 150

H
Haar measure, 199
Harnack’s second theorem, 92, 93
Hölder inequality, 291
Homogeneous semigroup, 62
Hörmander’s theorem, 287

I
Inaccessible set, 149, 247
Inequality

Cauchy–Schwarz, 291
Chebyshev’s, 94
Hölder, 291
Jensen’s, 206
Young’s, 12

Infinitesimal upper limit, 153
Instability in the first approximation, 229
Invariant set, 121, 246
Itô (stochastic) differential, 69
Itô’s formula, 70

J
Jacobian, 21
Jensen’s inequality, 206
Joint distribution function, 2

L
Laplace

approximation of the integrals, 215
transform, 127

Law of
large numbers, 3, 111

strong, 3, 248
the iterated logarithm, 180

Lemma
Borel–Cantelli, 104
Fatou’s, 90
Gronwall–Bellman, 9

Lienard equation, 82
Linear control, optimal, 260
Linear system, strongly stable, 224
Lipschitz condition, 6, 146

local, 10
Lyapunov

function, 6
optimal, 258

operator, 6
Lyapunov’s theorem, 229

M
Malkin’s theorem, 230
Markov

chain, 60
families, 61
process, 60

generator, 73
periodic, 61
time-homogeneous, 61

property
strong, 76, 107

time, 100
Martingale, 148
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Matrix
covariance, 3
diffusion, 72, 101
Riccati equation, 259
stable, 38

Maximum principle
for elliptic equations, 93
strong, 102, 103, 154

Mean
square stability, 29, 171
stability, 29, 171

Metrically transitive, 110
Moment Lyapunov exponents, 281

N
Nondegeneracy condition, 285
Nonsingular process, 101
Null recurrent

class, 100
process, 106

O
Operator

Lyapunov, 6
strongly positive, 286

Optimal
linear control, 260
Lyapunov function, 258
stabilization cost, 254

P
p-stability, 22
p-stable solution, 171
Parseval’s identity, 32
Periodic

Markov process, 61
stochastic process, 43

Positive
definite function, 152
recurrent process, 106

Principle
Bellman’s, 254
reduction, 275

Probability space, 1
Process

Gaussian stochastic, 32
Markov, 60
nonsingular, 101
null recurrent, 106
periodic in the wide sense, 44
recurrent, 89, 103

one-dimensional, 95
regular, 75
separable, 2

stationary in the wide sense, 43
stochastic, 2
stochastically continuous, 2
strongly Markov, 100
transient, 103
Wiener, 62

Q
q-instability, 174

asymptotic, 174

R
Random

events, 1
variable, 2

independent of the future, 100
Recurrence property, 101
Recurrent

one-dimensional process, 95
process, 89, 103

positive, 106
state, 99

Reduction principle, 275
Regular

boundary, 101
process, 75

Regularity
of the solution, 74
sufficient condition, 75

Riccati equation, 260
Routh–Hurwitz

conditions, 216
criterion, 183

Ruin probability, 306

S
σ -algebra, 1
Schroedinger’s equation with a random

potential, 269
Semi-invariants, 292
Semigroup, homogeneous, 62
Separable process, 2
Sequence

converge in probability, 45
of measures weakly convergent, 45
of random variables weakly

compact, 45
convergent, 45

uniformly stochastically continuous, 45
weakly convergent, 46

Set
ergodic, 121
inaccessible, 149



338 Index

Set (cont.)
invariant, 246
of inessential states, 121

Slowly varying in the Karamata sense
function, 144

Solution
almost surely stable, 23
asymptotically

p-stable, 23, 171
equivalent, 71
exponentially

p-stable, 23, 171
q-unstable, 174

p-stable, 171
stable

in probability, 152
in probability in the large, 23
under continually acting perturbations,

27
under small random perturbations, 27,

29
uniformly stable in probability, 153
weakly

asymptotically stable in probability, 22
stable in probability, 22

Spectral density, 4
Stability

almost sure, 55
exponential, 175

in mean square, 171
in probability, 55, 246
in the first approximation, 227
in the large uniformly in t , 192
in the mean, 171
index, asymptotic expansion, 318
of deterministic systems under

perturbation, 249
of periodic solution, 55
of the invariant set, 247
under damped random perturbations, 234

Stabilization cost
optimal, 254

Stable
in probability, 248

in the large solution, 23
solution, 248

matrix, 38
under continually acting perturbations

solution, 27
under small random perturbations solution,

27, 29
State

recurrent, 99
unessential, 99

Stationary
in the wide sense stochastic process, 4
periodic solutions of stochastic differential

equations, 79
stochastic process, 43

Stieltjes transform, 143
Stochastic

approximation, 237
oscillator, 319
process, 2

bounded in probability, 13
Gaussian, 32
periodic, 43
stationary, 43

Stochastically continuous process, 2
Strong

law of large numbers, 3, 248
Markov property, 76, 107
maximum principle, 102, 103, 154

Strongly
Markov process, 100
positive operator, 286
stable linear system, 224

Successive approximations, 5, 260
Sufficient condition for regularity, 75
Supermartingale, 148
System

dissipative, 8
exponentially q-unstable, 196
uniformly unstable, 196

T
Theorem

central limit, 224
Harnack’s second, 92, 93
Hörmander’s, 287
Lyapunov’s, 229
Malkin’s, 230

Time
Markov, 100

Time-homogeneous
Markov process, 61
transition probability function, 61

Trace of a square matrix, 32
Transient, 100

process, 103
Transition

probability, 60
function, 61

U
Unessential state, 99
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Uniformly
bounded in probability, 45
stable in probability solution, 153
unstable system, 196

V
Van der Pol equation, 13, 79, 83

W
Wald’s identity, 133
Weak

convergence, 46

stability, 55
Weakly

asymptotically stable in probability
solution, 22

compact sequence of random variables, 45
stable in probability solution, 22
stochastically stable system, 224

Wiener process, 62

Y
Young’s inequality, 12
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