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Preface 

This book has a dual purpose, being designed for a University level course on 
measure and integration, and also for use as a reference by those more interested 
in the �nipulation of sums and integrals,than in the proof of the mathematics 
involved. Because it is a textbook there are few references to the origins of the 
subject, which lie in analysis, geometry and probability. The only prerequisite is 
a ftrst course in analysis and what little topology is required has been developed 
within the text . Apart from the central importance of the material in pure 
mathematics, there are many uses in different branches of applied mathematics 
and probability. 

ht this book I have chosen to approach integration via measure , rather than 
the other way round, because in teaching the subject I have found that in this 
way the ideas are easier for the student to grasp an� appear more concrete . 
htdeed, the theory is set ·out in some detail in Chapters 2 and 3 for the case of 
the real line in a manner which generalizes easily . Then, in Chapter 5, the results 
for general measure spaces are obtained, often without any new proof. The 
essential LP results are obtained in Chapter 6; this material can be taken im
mediately after Chapters 2 and 3 if the space involved is assumed to be the real 
line , and the measure Lebesgue measure. 

In keeping with the role of the book as a first text on the subject, the proofs 
are set out in considerable detail. This may make some of the proofs longer than 
they might be; but in fact very few of the proofs present any real difficulty. 
Nevertheless t�e essentials of the subject are a knowledge of the basic results and 
an ability to apply them. So at a first reading proofs may, perhaps, be skipped. 
Mter reading the statements of the results of the theorems and the numerous 
worked examples the reader should be able to try the exercises. Over 300 of 
these are provided and they are an integral part of the book. Fairly detailed solu
tions are provided at the end of the book, to be looked at as a last resort. 

Different combinations of the chapters can be read depending on the student's 
interests and needs. Chapter 1 is introductory and parts of it can be read in detail 
according as the defmitions, etc., are used later. Then Chapters 2 and 3 provide a 
basic course in Le�esgue measure and integration. Then Chapte r 4 gives essential 
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10  Preface 

results on differentiation and functions of bounded variation , all for functions 
on the real line. Chapters 1, 2, 3 ,  5, 6 take the reader as far as general measure 
spaces and the LP results. Alternatively Chapters 1 ,  2, 3 ,  5, 7 introduce the reader 
to convergence in measure and almost uniform convergence. To get to the 
Radon-Nikodym results and related material the reader needs Chapters 1, 2, 3 ,  5, 
6, 8. For a course with the emphasis on differentiation and Lebesgue-Stieltjes 
/integrals one reads Chapters 1, 2, 3 ,  4, 5, 8, 9. Finally , to get to measure and 
integration on product spaces the appropriate route is Chapters 1 ,  2, 3 ,  5, 6, 1 0. 
Some sections can be omitted at a fust reading for example : Section 2.6 on 
Hausdor.ff measures; Section 4.6 on the Lebesgue set; Sections 8.5 and 9.6 on 
Riesz Representation Theorems and Section 9.2 on Hausdorff measures. 

Much of the rna terial in the book has been used in courses on measure theory 
at Royal Holloway College (University of London). This book has developed out 
of its predecessor Introduction to Measure Theory by the same author ( 197 4 ), 
and has now been rewritten in a considerably extended, revised and updated 
form. There are numerous new proofs and a reorganization of structure . The 
important new material now added includes Hausdorff measures in Chapters 2 
and 9 and the Riesz Representation Theorems in Chapters 8 and 9. 

G. de Barra 



Notation 

Notation is listed in th.e order in which it appears in the text. 

0: end of proof. 
iff: if, and only if. . 

3 : there exists. 
I 

v : given any. 
. 

x E A ; x is a member of the set A. 
A � B, (A � B): set A is included in (includes) the set B. 
A C B: set A is a proper subset of the set B. 
[x: P(x)]. the set of those x with property P. 
CA :  the completnent of A. 
(/J :  the empty set. 
U, n: union, inte rsection (of sets). 
A - B. the set of elements of A not in B. 
A � B = (A �B) U (B -A): the symmetric difference of the sets A, B. 
Z: integers (positive or negative). 
N: positive integers. 
0: rationals. 
R: real numbers. 
Gf (A ): the power set of A, i .e. the set of subsets of A. 
A X B: the Cartesian product of the sets, A, B. 
[x]: the equivalence class containing x (Chapter 1), or, in Chapter 2, etc., the 
closed inte rval consisting of the real number x. 

[X, p]. the metric space consisting of the space X with metric p. ' 
A: the closure of the set A . 

.. 

G6 set: one which is a countable intersection of open sets. 
F 0 set: one which is a countable union of closed sets. 
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1 2  Notation 

inf A, sup A: infimum and supremum of the se t A. 
lim sup Xn, lin1 inf Xn: upper and lower limits of the sequence (xn}. 
x(Q-), x(a+ ) : left-hand, right-hand limits of x at a. So x(a+) is the function 

whose value at a is lim x(an ), an �a, an >a. Sirrtilarly f(x+ ),f(x-), etc. 
Xn = o(nP): n-P Xn -+ 0 .  
Xn = O(nP): (n-P Xn J is bounded. 
XA: char�cte ristic function of the set A (= 1 on A,= 0 on CA). 
Card A: the cardinality of A. 
�0: the cardinality of N. 
C(a ) : (in Theorem 9, Chapter 1) the equivalence class containing a. 
P, Pt , P� pta.): Can tor-like se ts. 
/1,1, /1 ,1 (a), etc.: the 'removed intervals'; 
ln,k,Jn,k(a): the 'residual intervals', for the Cantor-like se ts. 
N(x, e): the set [t: It -xl < €] . 
L; the Lebesgue function. 
m * :  Lebesgue outer measure. 
m: Lebesgue measure. 
A + x = (y + x: yEA]. 
1(1): the length of the interval I. 
a-algeb ra (usually $ ): a class closed under countable unions and complements 

and containing the whole space. 
Intervals: of the form [a, b) unless stated otherwise. 
:(tC. the a-algebra of Lebesgue measurable sets. 
a.e .. almost everywhere; i.e. except on a set of zero measure. 
'lJ : a-algebra of Borel sets. 
r = max(/, O),r = -min((, 0). 
ess sup f = inf(a: f � Q a.e.] . ess inf f = sup(a: /�a a.e.] . 

I 

lim A;, lim sup A;, lim inf A;: the limit , upper limit , lowe r limit of the sequence 
ofsets(A;).' · 

r1 (A)= [x: f(x) EA]. 
T* = [x -y: x,y E T] (Chapte r 2). 
d(A,B)= inf (lx -yt: x EA,y EB). 

h : a Hausdorff measure function. 
n;,6 : the 'approximating measure' to Hausdorff measure. 
n;: Hausdorff outer measure when h(t) = tl'. 
w1: modulus of continuity of the function f. 
H(A): Hausdorff measure corresponding to the Hausdorff measure function h .  

f t dx: integral (over the whole line) of /with respect to Lebesgue meflsu re. 
/_ f dx: integral of I over the set E. 
E 

(/), l/1 :  usually simple functions, taking only a finite number of non-negative values. 
R f f dx: Riemann integral of f. 
1/1: absolute value of the real (or in Chapter I 0, complex) function f. 



Notation 

log x. the natural logarithm of x. 
Sn, sn: upper and lower Riemann sums given by the dissection D. 
L(a, b): functions integrable on (a, b). 
fh(x) =f(x +h). 
D+. D

+
: upper and lower right de rivates. 

n-, D_: upper and lower ledt derivates. 

1 3  

P1[a, b] , N1(a, b 1 , T1[a, b] : positive , negative and total variations of f over 
[a, b 1 : 

p (or p1), n (or n1) , t (or t1) the corresponding sums for a partition. 
BV(a, b 1: set of functions of bounded (total) variation on [a, b 1. 
l(1r). length of the polynomial 1r. 
EJ f(x ): the 'jump' off at x. 
f(c, d) = (/( d)-f(c ))/(d - c), where f is a function of a single variable. 
f'(x) = df/dx. 
F: Conventionally , the indefinite integral of f. 
rtl : ring of sets (closed under unions and differences). 
$ (� ) : o-ring generated by 6Jl . 
Jf (rtl ) : hereditary o-ring generated by GR. • 

a-finite measure: one for which the space is a countable union of sets of finite 
, measure . 
IJ*: any outer measure , or the outer measure defmed by /J. 
$ *: class of �-t*-meas�rable sets. 
ji: measure obtained by restricting p.* to �*, also the con1pletion of the measure 

J..L. 
S: o-ring obtained on completing measure JJ on $ . 
[X, $ D: measurable space . 
ffX, $ , IJD: measure space . 
!= limfn: pointwise limit,f(x) = limfn(x), each x . 
f f d1J: integral off with respect to J..L. 

L f dJ.!: integral off ove r the set E. 
E 

L(X, 1J ): class of functions mtegrable with respect to J..L. 
LP(X, J..L) or LP(J..L): the class· of measurable functions with f lfiP dJJ < oo func

tions equal a.e . being identified . 
II{ lip = (f lfiP dJJ)1,p, the LP -norm of f. 
l/1 of: composite function, ( l/1 o f)(x) = l/J(f{x )). 
In � f a.u .: fn � f almost uniformly (uniform convergence with an exceptional 

set of arbitrarily small measure). 
v 1 JJ: measures v, J..L mutually singular, i .e . v(A) = JJ(CA) = 0 for some me�surable 

A. 
v = v+- v-: Jordan decomposition of the signed measure v. 
I vi: total variation of the signed measure v. 
v < /J: v is absolutely continuous with respect to IJ, i.e . IJ(E) = 0 � v(E) = 0. 



14 Notation 

dv/dp,: Radon-Nikodym derivative of v with respect to J..L. 
[l.t]: (Chapter 8) indicates that an identity holds except on a set of zero JJ-measure , 

(or zero IJJ·I-measure for a signed measure JJ. ). 
Ux II: norm of the vector x. 
11{11. =sup (1/(x)l} = supremum norm of f. 
llg: Lebesgue-Stieltjes measure, with g a monotone increasing left-continuous 

function and /ig( [a , b)) = g(b)- g(a ). 
E 6: the p6-measurable sets. 
f f dilg or f f dg: integral off with respect to the Lebesgue-Stieltjes measure 

derived from g. Also f f dg when g E BV[a, b] (Definition 4, Chapter 9). 
J..Lr1 : the measure such that J..Lr1 (E) = JJ.cr1 (E)). 
C(l): the set of functions continuous on the interval I with supremum norm 

II{ II •. 

& : elementary sets , i.e. union of a fmite number of disjoint measurable rectangles. 
�0 :M. monotone classes (Chapter 1 0). 
[X X Y, � X fJ D proauct of measurable spaces. £�: x-section of E = fy: (x ,y) EE). 
E�: y-section of E . [x: (x ,y) E£). 
d: class of sets , depending on context (Chapter l 0) . 

. 

p,"X v: the product measure. (S�(u X v)(A X B)= J..L(A) v(B)). 



CHAPTER I 

Preliminaries 

In the chapter we collect for reference the various math�matical tools needed in 
I 

later chapters. As the reader is presumed to be. familiar with the content of a 
fust course on real analysis, we are concerned nof with setting up the theory 
from stated axioms but with giving defmitions and stating r�sults and theorems 
about sets, sequences and functions which serve to ftx the notati-on and to make 
it clear in what form elementary results will-be used. Pro6fs are provided for the 
less familiar results. ht section 1.7 we describe in some detail the special sets of 
Cantor. These sets and the functions associated with them will be referred to 
frequently in later chapters. 

The standard abbreviations: iff 'if and only ir, 3 'there exists,, Y 'given any', 
:::0> 'implies', will be used as required. The end of a proof is indicated by the 
symbol D. 

1 .1 SET THEORY 

Whenever we use set theoretic operations w� assume that there is a universal set, 
X say, which contains all the sets being dealt with, and which should be clear 
from the context. The empty set is denoted by �;x EA means that the element 
x belongs to the set A. By A s; B we mean that x E A :::0> x E B; A C B is strict 
inclusion, that is, A s; B and there exists x with x E Band x not in A (x �A). 
We denote by [x:P(x)] the set of points or elements x of X with the property 
P. The complement CA of A is the set of points x of X not belonging to A; CA 
obviously depends on the sets X implied by the content -in fact X is usually 
the set of real numbers, except in Chapter 11). We will denote the union of two 
sets by A U B or of a collection of sets by U A«, wher� I denotes some index 

aEI 
set, or by U(Aa:P(a)] -the union of all sets Aa such that a has the property 
P. Similarly for intersections A n B, etc. Then unions and intersections are 
linked by the De Morgan laws: C(UA0) =ncAa, C(f1A0) = UCA01• The differ
ence A - B =A n CB; A fl B = (A -B) U (B-A) is the symmetric difference 
of A and B, some properties of which are listed in Example 1. The Cartesian 
product X X Y is the set of ordered pairs [(x,y): x E X,y E Y]. We will den'-·:t.� 

1 5 



1 6  Preliminaries (Ch. 1 
the real numbers by R, the integers by N, the set of all int�gers by Z = [0, ± 1 ,  + 
2, . . .  ] , the set of rationals by a, and n-dimensional Euc.lidean space by An, so· 
that An is the set of n-tuples (x 1, • • •  , Xn) considered as a vector space with the 
usual inner product. Notations for intervals are [a,b] = [x: a� x � b] , [a,b) = 
[x: a� X < b] etc. f(A ) denotes the set of all subsets of the set A.  

Example 1 :  Show that the following set relations hold: 
(i) El:lF=Fl:lE, 

(ii) (E !:1 F) � G = E � (F !:1 G), 
(iii) (£·�F) !:1 (G �H) = (E �G) !:1 (F �H), 
(iv) E !:1 F =�if , and only if, E = F, 
(v) F�r any sets E, F, G we have E � F!; (E �G) U (G �F), 

n n n 
(vi) U E; !:1 U F; = U (E,l:l F;). 

1=1 1=1 1=1 

Solution: (i) is obvious from the symmetry of the defmition. 
To obtain (ii) use the identity C(E !:1 F) = (CE n CF) U (£ n F), to get 

((£ !:1 F) !:1 G) = (EncFncG)U(CEnFnCG)U(CEncFnG)U(EnFn G). 
By symmetry this must equal the right hand-side. 

(iii) (E �F)� (G �H)= ((F �E) !:1 G) !:1 H by (i) and (ii) 
= (F !:1 (E !:1 G)) � H by (ii) 
= ((E � G)!l.F) !1 H by (i) 
= (E !:1 G) !:1 (F !:1 H) by (ii). 

(iv) is obvious. 
, 

(v) We have E - F!; (E - G) U (G - F) and F - E!; (F - G) U (G -E), so 
taking t�e union gives the result. · 

(vi) This follows from the more obvious inclusion 
n n n 

U E,-U F, =U (E;- F;). 
1=1 1=1 1=1 

I � � 
Example 2 : Let £1 2 £2 � • • •  ;}.En . . . .  Show that U (Et - E;)=Et .- () E;. 

1=1 1=1 

Solution : fhis.is just an application of De Morgan's laws with E 1 as the whole 
space. 

Principle of Finite Induction. Let P(n) be the proposition that the positive integer 
n has the property P. If P(l) holds and the truth of P(n) implies that of P(n+l), 
then P(n) holds for all n E N. It is to this property of positive integers that we 
are appealing in our frequent 'proofs by induction' or in inductive constructions. 

Definition 1 :  An equivalence relation R on a set Eis a subset of EX E with the 
following properties: 



Sec. 1.2] 

(i) (x,x) ER for each x EE, 
(ii) (x,y) ER � (y,x) ER, 

Topological Ideas 

(iii) if (x,y) ER and (v,z) ER then (x,z) ER. 

1 7  

We write x "'y if (x ,y) E R. Then R partitions E into disjoint equivalence classes 
such that x andy are in the same class if, and only if, x "'y. For, writing [x] = 
[z: z "'x], we have x E [x] by (i), so U((x]: x EE] = E. Also by (ii) and (iii), 
for any x, y E E, either [x] = [y] or [x] n [y] = (/J , so the sets (x] are the 
required equivalence classes. 

In Chapter 2 we will need the Axiom of Choice which states that if (Ea: a E A] 
is a non-empty collection of non-empty disjoint subsets of a set X, then there 
exists a set V c X containing just one element from each set Ea. 

1 .2 TOPOLOGICAL IDEAS 

A quite broad class of spaces in which we can consider the ideas of convergence 
and open sets is provided by metric spaces. 
Defmition 2: A non-negative function p on the ordered pairs [(x,y) = x EX, 
y EX] is a metric on X if it satisfies 
(i) p(xJ') = 0 if, and only if, x = y, 
(ii) p(x ,y) = p(v ,x ), 
(iii) p(x,z) � p(x,y) + p(v ,z), for any x,y, z EX. 

The function p then defmes a distance between points of X , and the pair 
[X ,p D forms a metric space . If we relax the condition that the distance between 
distinct points be strictly positive so that (i) reads: p(x,y) = 0 if x = y, we ob
tain a pseudo-metric. We will be especially concerned with the space A and , 
briefly in Chapter 10 , with A

n
. But the idea of convergence in a metric space is 

implied in many of the defmitions of Chapters 6 and 7 .  
A set A in a metric space [X ,p D is open if given x E A there exists € > 0 such 

that [y: p(v ,x) < €] c A. That is: A contains an '€-neighbourhood' of x, denoted 
N(x ,€ ) . So X and 0 are open and it also follows that any union of open sets is 
open and that the intersection of two open sets is again open. The class of open 
sets of X forms a topology on X. We now defme various other ideas which can 
be derived from that of the metric on X . The properties that follow immediately 
are assumed known. In the case of the real line we list various properties which 
will be needed, in Theorem 1 and in the later sections. 

A set A is closed if CA is open . The closure A of a set A is the intersection of 
all the closed sets containing A, and is closed. A point x is a limit point of A if 
given € > 0, there exists y E A,y =#=x, with p(y,x) < €. We say that A is a dense 
set , or A is dense in X if A = X. The set A is nowhere dense if A contains no 
non-empty open set , so that a nowhere dense set in A is one whose closure 
contams no open interval. A is said to be a perfect set if the set [x:x a limit 
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00 

point of A] is A itself. If the set A may be written as A = n G;, where the sets 
t=l 00 

G; are open, A is said to be a G6 -set; if A = U F; where the sets F; are closed , 
t=l 

then A is an F 0-set. Clearly the complement of a G6 -set is an F 0-set . 
In Chapter 10 we will refer to the relative topology on a subset A of An

, 
namely the class of sets G of the form H n A where His an open set in An. This 
class of sets forms a topology on A . 

We will assume the notion of supremum (or least upper bound) of a set A of 
real numbers, denoted usually by sup [x: x E A] or by sup [x: P(x )] , where P is 
the property satisfied by x. In the cases where we use this notation the set in 
question will be non-empty . For a fmite set we will write m�x X; for the supre-t<:r<:n 
mum of the relevant set. Similarly we will write inf(x : x E A] for the infunum 
(or greatest lower bound) or min x; in the finite case . t<:i<;n 

We will need the following important property of the real numbers. 
Theorem l (Heine-Borel Theorem): If A is a closed bounded set in A and A � 
U G a, where the sets G a are open and I is some index set , then there exists a 
aEl 

finite subcollecUon of the sets, say (G;, i = 1, . . . , n] whose union coPtainsA. 

Exercises 

1. (i) Let p be a pseudo-metric of a space E and write x 'V y if p(x ,y) = 0. 
Show that this defmes an equivalence relation on E and describe the equi
valence classes to which it gives rise. 
(ii) In the notation of p .il7, 1let p* be defmed by p*( [x] , [y])=p(x,y); 
show that p • is a metric on the set of equivalence classes. 

2. Show that A is nowhere dense iff cA is dense . 
3 . Show by examples that G c5- and F 0-sets may be open, closed or neither 

open nor closed. 
4. Show that in a metric space each point is a closed G6 -set. 
5. Show by examples that Theorem 1 can break down if either of the conditions 

A closed or A bounded is omitted. 

1.3 SEQUENCES AND LIMI'm 

A numerical sequence {x11} is a function from N to A. We �efine the upper 
limit of {xn } to be lim sup Xn = inf( sup Xm : n EN] . If the re is no ambiguity 

n-+oo m>n 

possible we will write this as lim sup Xn .  Similarly: lim inf Xn = sup [ inf Xm: n E 
m>n 

N is the lower limit of {xn }. If lim sup Xn = lim inf Xn , we write their common 
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value as lim Xn, the Umit of {xn}. From the definitions we get easily lim sup Xn = 
-lim inf (-x n ). 

If we consider a function from A to A we get the analogous defmition: the 
upper Umit of X a at a0 is lim sup = inf( sup X a: h > 0] . Similarly we defme 

a -+ a0 O <la-a0 I <h 

lim inf X a; their common value , if it exists, is lim X a. In the more usual func-
a -+ ao a -+  ao 

tional notation we may write lim sup x(a) and lim inf x(a), where x(a) is a real-
a -+ ao a -+ a o  

valued function. A property of upper and lower limits is given by the following 
example . 

Example 3: Prove that if lim Ya exists, then lim sup (xa + Ya ) = lim sup Xa + 
a -+ ao a -+ ao a�ao 

lim Ya , lim inf (xa + Ya) = lim inf Xa + lim Ya , where all the limits are 
a --+ ao a -+ ao 

supposed fmite . 

Solution: We prove the fust equation . Write 

It = lim sup (xa + Ya ) , l2 = lim sup Xa , l3 = lim Ya· 
a � ao a�ao a -+ ao 

Given € > 0, there exists 6 > 0 such that Xa < 12 + € and Ya < 13 + € when 
0 < b- a0 I< 6 .  So Xa + Ya < 12 + 13 + 2€ in this range, and as € is arbitrary 
/1 � l2 + 13• Conversely : there exists 6 '  > 0 such that X a + y a < 11 + € and 
Ya > l3 - € when 0 < Ia -aol < 6', so in this range Xa = (xa + Ya ) - Ya < 
l1 -13 + 2€ and so 12 E;; It -13 giving the result . 

A similar result holds for sequences {xn ) , lYn } . 
We will be particularly concerned with 'one -sided' upper and lower limits, 

and express these in functional notation : 

lim sup x(t) = inf( sup x(a -u): h > 0], 
t-+a- o<u<h 

lim inf x(t) = sup ( inf x(a -u): h > O] . 
t�a- O <u<h 

If these quantities are equal, we say that lim x(t) exists and we write this 
f�Q-

lirnit as x(a-). Note that x(a-) need not be defmed, although lim sup x(t) and 
t�a-

lim inf x(t) always are . Replacing a - u by a + u in these defmitions we get 
t-+a -

lim sup x(t), lim inf x(t) and, if it exists, x(a+ ). 
t·-+a + t�a+ 

The sequence (xnl is monotone increasing, and we write Xn t, if for each 
n E N, Xn+t � Xn for each n; so if a sequence is both monotone increasing and 
monotone decreasing it is constant. We will assume the result that if (xn } is a 
monotone sequence and is bounded, then it has a limit, and we write Xn t x or 
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Xn -1- x as appropriate; if ( xnJ  is monotone but not bounded, then Xn � oo or 
Xn � -oo as the case may be. 

A sequence (xn) is a Cauchy sequence if for any positive € there exists N such 
that lxn - - x,11 < E for n.m > N. We will assume the result that a sequence con
verges if, and only if, it is a Cauchy sequence . We defme a Cauchy sequence of 
elements of a metric space similarly , requiring that p(xn , Xm) < € for ntn > N. 
Then the space is a complete metric space if every Cauchy sequence converges, 
so that the result assumed above is that A forms a complete metric space with 
p(x,y) = lx -y I. 

We use the o- and a-notations; so that if ( xn ) is a sequence of  real numbers , 
then Xn = o(nP ) means that n-P Xn � 0 as n � oo, and Xn = o(l) means that 
lim Xn = 0. Similarly , Xn = O(nP ) means that (n-P Xn) is bounded; Xn = 0( 1 )  
means that ( xn} is bounded. For functions from A to A: f(x) = o(g(x)) as 
x � a means that given € > 0, there exists 6 > 0 such that Jf(x)l < E�(x)l for 
0 < lx - a I < 6; f(x) = o(g(x )) as x � oo means that given € > 0, there exists 
K > 0 such that lf(x)l < E�(x)l for x > K. Similarly f(x) = O(g(x)) means that· 
there exists M > 0 such that lf(x)l � M�(x)l as x � a  or x � oo as the case may 
be. 

We also need some properties of double sequences {xn,m 1 which are func
tions on N X N, and we recall that lim x11 m = x means that given € > 0 , 

n,m-+oo 
there exists N such that if ntn > N, lxn,m -xI< €. We write lim Xn,m = oo if 

nf1J-+oo 
given M > 0 there exists N such that Xn,m > M for all ntn > N. 

If one index, m orn, is kept fixed, ( xn,m) is an ordinary 'single ' sequence and 
we have d1e usual notation of iterated limits lim lim Xn111 and lim lim Xn,m. 

n-+oo m-+oo m-+oo n-+oo 

Theorem 2: If {xn,m} is increasing with respect ton and tom, then lim Xn,m 
n,m-+oo 

exists and we have 

lim Xn,m = lim lim Xn,n = lim lim Xn111 ( 1 . 1 ) 
nf11-+00 m-+oo n-+oo n-+oo m-+oo 

and if any one is infinite , all three are . 

Proof: Write Ym = lim Xn111; this is clearly defined for each m. Since Xn.m � 
n-+oo 

Xn,m+l for each n, we have Ym � Ym+l. So /1 = lim Ym exists (it rnay = 00). 

Write I ::: sup[Xn1n. n, m EN], where we may have l = oo. Then it is obvious 
, 

that lim Xn,m = I . In the case!< oo we wish to show th2t I= 11. Since xr!r � 
npa--+-oo 

I for each n and m, it is obvious that /1 �I. Also, given € > 0 let N be such that 
lxn,m -II< € for n,m � 1V. AsyN � 11 we have xN,N � 11 and hence I� 11 + €, 
and as € is arbitral), I� /1 , �o! =- /1 • Similarly we may show that the third limit 
u1 ( 1 .1) exists and equals/. The case I= oo is considered similarly . 0 
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In the case of a series L a; we may consider the sequence { sn} of its partial n 
sums ,  Sn = L a;, and in the case of a double series L a;j, the double sequence 

i= I 
m n 

Sn,n = .L L a;,j. So to each property of sequences there corresponds one of 
1= 1 i= I 

series. For instance, to Theorem 2 corresponds the following result . 

Theorem 3: If a;,j � 0 for all i,j EN, then L a;,j exists and 
00 00 00 00 00 
I a· · = I ' a· · = I I a· · 1,1 L 1,1 l,J, 

i,j= I j= I i= I i= 1 j= I 

all three sums being infinite if any one is. 
We will also need the following elementary properties of series. 

00 
Theorem 4:  If L ai is absolutely convergent, that is , I la;l < oo, then the series 
L a; is convergent to a fmite sum. i= 1 

Theorem S: If a; -J, 0, then L( -1 )n an is a convergent series, with sum s, say, and n 
for each n, Is- I (- 1 )i a;l � an+1• 

i= 1 

Exercise 

6. Let 4> be a monotone function defmed on [a,b). Show that 4J(a+) and 4J(b-) 
exist . 

1 .4 FUNCTIONS AND MAPPINGS 

Functions considered will be real-valued (or , briefly, in Chapter 1 0, complex
valued) functions on some space X. ht many cases the space X will be A. If the 
function f is defmed on X and takes its values in Y we Will frequently use the 
notation f: X-+ Y. If g: X-+ Y and f: Y-+ Z, then the composite function 
fog: X-+ Z is defined by (f o g){x) = f(g{x)). 

The domain of f is the set [x: f(x) is defmed] . The range of f is the set 
[y: y = f(x) for some x] . If f: X-+ Y and A c Y we write r1 (A) =  [x: x EX, 

f(x) E A] , and if B c X we write f(B) = [y: Y = f(x), x EB] .  The function / is 
a one-to-one mapping of X onto Y if the domain of f is X, the range of / is Y, 
and f(x 1) = f{x2) only if X 1 = X 2. In this case r1 is a well-defmed function on 
Y. The identity mapping is denoted by 1 so 1 x = x. If a funct: 0n is a one-to-one 
mapping, then on the domain of[, rl 0 f = 1 and on the range of/, f 0 r1 = 1. 

The function f extends the function g or is an extension of g if the domain of 
f contains that of g, and on the domain of g, f = g. Frequently , in applications, 
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we will use this definition for set functions, that is, functions whose domains are 
classes of sets and which take values in A. 

If f!a: a E A] is a set of functions mapping X -+ A, we will write sup fa for 
the function/ defined on X by /(x) =sup f!a(x): a E A ] . The notations sup ft 

· t<t<n 
and max(/ g) have the obvious meanings, and we denote similarly itUuna and 
minima. 
Defmition 3: utfn, n = 1, 2, • . .  , andfbe real-valued functions on the space X. 
Thenfn -+ /uniformly if given e > 0, there exists n0 EN such that 

sup [ lfn(x)-J(x)l: x EX] < e for n > n0• 

Elementary results concerning continuity and differentiation will be used as 
required, as will the definitions and more familiar properties of standard func
tions . A standard result on continuous functions which we will assume known is 
the following. 

Theorem 6: Let ffn J be a sequence of continuous functions, In : X -+ A and let 
In -+/uniformly; then f is a continuous function. 

Statements about sets can be turned into ones about functions using the 
following notation. 

Defmition 4: Let the set A be contained in the space X; then the characteristic 
function of A , written XA, is the function on X defmed by : XA (x) = 1 for 
x EA , x..t{x) = 0 for x E CA. 

n 
A step function on R is one of the form L a1 XJ,, where I1, i = 1 ,  . . .  , n denote 

t=l 
disjoint intervals. An example of such a function which will be used is sgn x 
which is defmed as : sgn x = 1 for x > 0, sgn 0 = 0, sgn x = -1 for x < 0. 

1 .5 CARDINAL NUMBERS AND CARDINALITY 

Two sets A and B are said to be equipotent, and we write A 'V B, if there exists 
a one-to-one mapping with domain A and range B. A standard result of set theory 
(cf. [11), p. 99) is that with every set A we may associate a well-defmed object, 
Card A , such that A 'VB if, and only if, Card A =Card B. We say that Card A > 

Card B if for some A' C A we have B 'V A' but there is no set B' C B such that 
A 'V B'. We assume the result: for any set A, Card A < Card r,p (A). If Card A = a, 
we write Card Gf' (A)= 2a. 

If A is finite, we have Card A = n, the number of elements in A. If A 'V N 
we write Card A = N0 and describe A as an infmite countable set. If A 'V A we 
write Card A =c. It is easy to show that if I is any interval, open, closed, or half
open, and if I contains more than one point, then Card I =  c. Another result is 

00 

that if [A1: i E N] is a collection of countable sets, then Card U A1 = �0 • Also i= t 
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Card Q = N0• In Chapter 2, Exercise 45, we need the following result : Card 
V= f: R -+  R) = 2c; for an explicit proof see [8 ] , p .  50. 

1 .6 FURTHER PROPERTIES OF OPEN SETS 

Theorem 7 (Undelors Theorem): If 'S, = [fa: a E A) is a collection of open 
intervals, then there exists a subcollection, say (/1: i = 1, 2, ... ] , at most 

00 

countable in number, such that U 11 = U I a. 
t=l aEA 

Proof. Each x E I a is contained in an open interval J1 with rational end-points, 
such that It � fa, for each a; since the rationals are countable the collection 

00 

[J1) is at most countable . Also, it is clear that U fa= U 1;. For each i choose 
aEA i=l 

00 00 

an interval/1 of fJ such that/1 � J1• Then U I a = U 11 � U 11, so we get the 
aEA t=l t=l 

identity and the result . 0 
If the subcollection obtained is fmite, we make the obvious changes of 

notation. 

Theorem 8 (Lindelors Theorem in A"): If fJ = (Ga: a E A] is a collection of 
open sets in R" , then there exists a subcollectton of these, say [G1 : i = 1 ,  2, ... ] , 

00 

at most countable in number, such that U G1 = U Ga. 
t=l aEA 

Proof: Since [t: It-xI< r] C Ga for some r > 0, there exists an open 'cube' 
Ta with the sides of length r/Vn such that x E Ta C Go., and a 'rectangle' J1 
with rational coordinates for its vertices and containing x may be chosen within 
Ta. The proof then proceeds as in A. (We have written lx - Yl for the usual 
distance between pointsx,y of An. )  0 

Theorem 9: Each non-empty open set G in R is the union of disjoint open inter
vals, at most countable in number. 

Proof: Following Defmition 1, p. 16, write a 'V b if the closed interval [a,b], or 
[b,a] if b <a, lies in G. This is an equivalence relation, in particular a 'V a since 
[a] is itself a closed interval. G is therefore the union of disjoint equivalence 
classes. !At C(a) be the equivalence class containing a. Then C(a) is clearly an 
interval. Also C(a) is open, for if k E C(a), then (k - €, k + €) � G for suffi
ciently small €. But then (k- €, k + €) � C(a); so G is the union of disjoint 
intervals. These are at most countable in number by Theorem 7. 0 

1.7 CANTOR-LIKE SETS 

We now describe the Cantor-like sets. These, and the functions defmed on them, . 
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are particularly useful for the construction of counter-examples. A special case
the Cantor ternary set or Cantor set - is sufficient for many purposes and will 
be described separately. 

The construction is inductive. From [0,1 ] remove an open interval /1 , 1 with 
centre at 1/2 and of length< 1. This leaves two 'residual intervals', 11 ,1, 11, 2 , 
each of length < 1/2. Suppose that the nth step has been completed, leaving 
closed intervals 1n,1, • • •  , 1n,2n, each of length< 1/2n. We carry out the (n + 1)st 
step by removing from each 1n,k an open interval In+1 ,k with the same centre as 

2n � 

1n,k and of length< 1/2n. 'Let Pn = U 1n,k and let P= () Pn· Any set P 
k= l  n=l 

formed in this way is a Cantor-like set. 
In particular P contains the end-points of each 1 n,k · Since [0,1] - P = 

� 2 n-1 
U U Ink' an open set, Pis closed. Since P contains no interval, indeed n= 1 k= 1 · 

each Pn contains no interval of length� z-n, it follows that Pis nowhere dense . 
The set Pis perfect since if x E P, then for each n, x E1n,kn for some kn . So if 
for any positive € we choose n such that 1/2n < €, then the end-points of 1n,kn 
lie in (x - €, x + e). But these end-points belong toP, sox is a limit point of P. 

A particular case which will be useful is when 1(1 1 1 ) = 1(1 1 2) = � < 1/2, 
' ' 

1(12 , 1 )  = . . .  = 1(1 2,4) = �2
, etc., where 1(1) denotes the length of the interval/. 

So at each stage residual interval is divided in the same proportions as the original 
interval [0,1]. Denote the resulting Cantor-like set, in this case, by P�. Slightly 
more generally, let 1(11 ,1 ) = 1(11 ,2 ) = �1 (< 1/2), 1(12 ,1 ) = . . .  = 1(12 ,4) = �1 �2 
etc., so that at each stage the residual intervals are equal but the proportions are 
allowed to change from stage to stage. Denote the resulting set in this case by Pt, 
where � = (�1, �2, • • •  } • Note that �n+1 < �n/2 for each n. Use is made of Pt 
and Pr in the next chapter. 

We may vary the construction by choosing the removed open intervals 'off
centre' , with centres a ftxed combination 'Y, 1 - 'Y of the end-points of the 
1 n,k, where 0 < 'Y < 1. For a general construction of such perfect sets, including 
those given, see [7] , Chapter 1. 

The Cantor Set P 
From the interval [0,1] first remove (1/3, 2/3), then (1/9, 2/9) and (7/9, 8/9), 
etc. , removing at each stage the open intervals constituting the 'middle thirds' 
of the closed intervals left at the previous stage . 'This gives a special case of the 
previous constructions, with the residual closed intervals at the nth stage, 1 n, 1, ... , 
1n,2n each of length 1/3n, the open intervals In,r also being of length 1/3n. If 

2n � 

as before , we writePn = U 1n,k thenP= () Pn is the Cantor ternary set or k=1 n=1 
more briefly the Cantor set. That P is uncountable follows from Example 4 
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below or can be seen directly as follows. It consists of those points x which can 
be given an expansion to the base 3 in the form x = O.x 1 x2 • • •  with Xn = 0 or 2. 
Suppose that P is countable and let x<1 >, x< 2> , . . .  , be an enumeration of P. If 
x�n) = 0, let Xn = 2;  if x�n) = 2,  let Xn = 0. Then x = 0. x 1x2 • • •  differs from 
each x<n >, but x E P. So no enumeration exists. 

ExamplP 4 :  Every non-empty perfect set E � A is uncountable . 

Solution: Suppose false , so E may be enumerated as a sequence {xn }. Form the 
sequence {Yn} in E inductively as follows. Let y 1 = x 1 , y2 = x2 , and choose 
e1, 0 < e1 < lx 1 - x2 1. Since E is perfect we may choose y3 E E,y3 EN(x2,e1), 
in the notation ofp.  17, y3 =l=x3 , and with a neighbourhoodN(y3 ,e2) C N(x2 ,e1 ). 
We may suppose that 0 < e2 < e1 /2 and that x1 , x2 , x3 are not in N(y3 ,e2 ). 
Now choose y4 EE, y4 EN(y3 ,e2 ), with a neighbourhood N(y4 ,e3 )  C N(y3 ,e2), 
such that 0 < e3 < e2 /2 and that x 1 , • • •  , x4 Et N(y 4 ,e3 ), etc . ,  by induction. 
Then lYnl is a Cauchy sequence in E with limit Yo and Yo E E as any perfect 
set is closed . But for each n, N(yn , En - t ) contains Yo but does not contain Xn · 
So y0 =l=xn for any n, and so no such enumeration of E exists. 

Clearly the result and its proof apply in any complete metric space. 

The Lebesgue fwtction 

For each n,  let Ln be the monotone increasing function on [0,1] which is linear 
and increasing by 1 /2n on each ln,k and constant on the removed intervals 
In,k ' where the notations In ,k , ln,k refer to the construction of the Cantor set 
P. So Ln(O) = 0, Ln(I) = I. It is easy to see, from a diagram, that for n > m, 
I Ln(x) - Lm (x)l< 1 /2m . Write L(x) = lim Ln(x). Then the Lebesgue fwtction 

n-+oo 
L(x) is well defined for x E [0,1] since {Ln(x)) is a Cauchy sequence for each x.  
Also, letting n -+ oo, ILm (x) - L(x)l � 1 /2m , so the convergence is uniform and 
so L is continuous. Clearly L is a monotone increasing function , L(O) = 0, 
L(l) = 1 ,  and L is constant on each removed 'middle third' In k· 

' 

The points of P are given by 

2 2 2 X = - €1 + 2 €2 + · · · + k €k + · · . ,  
3 3 3 

where each ek equals 0 or 1 ,  and expansions of this form of the points of Pare 
00 

unique . Then,  with the same notation, L on P is given by L(x) = I 2
€i , since 

k= l  
00 

by continuity , if x = I � Ek, then 
k= l  3 

L(x) = lim L L --;c ek = lim I � = L �. ( n 
2 ) n oo 

k= 1 3 k= 1 2 k= I 2 
(1 .2) 



26 Prel. . . mnnanes [Ch. 1 

We may similarly construct the Lebesgue function corresponding to the 
Cantor-like set Pt. As before the function, again denoted by L is continuous and 
monotone increasing. The expression for L(x) corresponding to (1.2) is now 
more complicated . 

ExampleS: Consider the special case of Cantor-like sets such that for some ftxed 
a, 0 < a � 1, we have in an obvious notation, l(I<:>k) = a./3n , for k = 1 ,  . . . , 
2"-1 and for each n. Denote the Cantor-like set obtained in this way by p(a), the 
Cantor set P being obtained for a = 1. Show that there is a continuous increasing 
function F on [0,1 ] such that F(P<a>) = P. 
Solution: !At F n be the monotone increasing piecewise-linear function , F n : 
(0,1] -+ [0,1] , mapping the end-points of the J<:!k onto those of ln,k for 
k = 1, . . . , 2" . Then for n > m, Fn and Fm differ only on.J<�,k' k = 1,  . . .  , 2m; 
in fact iFn - Fm I � l(lm,k) = 1/3m

. So for each x, (Fm(x)} converges and 
lim Fm(x) defmes a function Fon [O,l] . Since lFm(x)-F(x) l= lim 1Fn(x) -

m�� n�� 
Fm(x) l � 1/3m, lFm1 converges uniformly to F. So F is continuous and is 
clearly monotone increasing. We have F([0,1]) = [0,1 ] and F(I<:!k) = In,k for 
each nand k, so F(P<a>) = P. We need only show thatF is one-to-one . Suppose 
(x,y) C [0,1]. If either x or y lies in a removed interval it is easy to see that 
F(y) > F(x). So suppose x andy lie in:Jia>; than asP.a> is nowhere dense, there 
is an interval J<:>k � (x,y) for some n.)c. But then F(y) - F(x) � 1/3", so F is 

, ' 
strictly increasing. 

Exercises 

7.  Find the length of the intervals f:!k of Example 5. 
8. Using the notation of the construction of the Lebesgue function, p . 25, show 

that the estimate of ILm -L I may be improved to ILm - L I� 1 /3. 2m. 



CHAPTER 2 

Measure on the Real Line 

We consider a class of sets (measurable sets ) on the real line and the functions 
(measurable functions) arising from them. It is for this large class of functions 
that we will construct a theory of integration in the next chapter. On this class 
of sets, which includes the intervals , we show how to defme Lebesgue measure 
which is a generalization of the idea of length, is suitably additive and is invariant 
under translations of the set. Apart from integration theory the methods are of 
independent interest as tools for studying set& on the real line . Indeed for sets 
which are 'scanty' we further refine the idea of measure in the last section § 2. 6 
and construct Hausdorff measures particularly appropriate for the Cantor-like 
sets constructed in the last chapter. Sections 2.5 and 2.6 will not be used in the 
integration theory of the next chapter . 

2.1 LEBESGUE OUTER MEASURE 

All the sets considerea in this chapter are contained in A, the real line, unless 
stated otherwise . We will be concerned particularly with intervals I of the form 
I = [a,b ), where a and b are finite, and unless otherwise specified, intervals may 
be supposed to be of this type. When a = b, I is the empty set �- We will write 
l(l) for the length of I, namely b -a. 
Defmition 1 :  The Lebesgue outer measure, or more briefly the outer measure, of 
a set is given by m *(A) = inf "':,l(I n ), where the inftmum is taken over all fmite 
or countable collections of intervals [In ] such that A � U In . 

For notational convenience we need only deal with countable coverings of 
A ;  the fmite case is included since we may take In = 0 except for a fmite number 
of integers n . 
Theorem l :  (i) m*(A) � O, 

(ii) m*(�) = 0, 
(iii) m*(A) � m*(B) if A � B, 
(iv) m*([x] ) = 0 for any x E A . 

27 
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Proof: (i), (ii) and (iii) are obvious . Since x E In = [x, x + (1 /n )) for each n,  
and /(In ) = 1 /n,  (iv) follows. 0 

Example 1 :  Show that for any set A ,  m*(A) = m*(A + x) where A + x = 
[y + x :  y E A ]  , that is : outer measure is translation invariant. 

Solution : For each e > 0 there exists a collection [In ] such that A �  Uln and 
m*{A) � L l(/n ) - e. But clearly A + x  � U(ln + x). So, for each e, m*(A +x) � 
L l(In + x) = L l(In) �m*(A) + e. So m*(A +x) �m*(A). But A =  (A + x) - x  
so we have m*(A) � m*(A + x). 

Theorem 2 :  The outer measure of an interval equals its length. 

Proof: Case 1 .  Suppose that I is a closed interval, [a,b] , say. Then, for each 
€ > 0, we have from Theorem 1 and Defmition 1 that 

m*([a,b] ) � m*([a,b + e)) � b - a +  e, 

so m*(l) � b  - a . {2 . 1 )  

To obtain the opposite inequality : for each e > 0, I may be covered by a collec-
00 

tion uf intervals [In ] such that m*(l) � L l(In) - e, where In = [an , bn ) say. 
n = l 

00 

For each n, let /� = (an - E/2
n

, bn ) then U tn ;? I, so by the Heine-Borel 
n= l 

Theorem, po 1 8, a fmite subcollection of the /� , say J1 , • • •  , JN where Jk = 
(ck , dk), covers /. Then , as we may suppose that no Jk is contained in any other, 
we have , supposing that c 1 < c2 < . . .  < eN , 

N N-1 N 
dN - cl = L (dk - ck) - L (dk- ck+t ) < L l(Jk). k= I k= I k= I 

oo oo N 
So we have m*(J) � L l(In ) - e � I I{/�) - 2e � L l(Jk) - 2e 

n = l n = l k= l  

� dN - c1 - 2€ > b  - a - 2e >1(1) - 2e. 

Then {2 . 1 )  and {2.2) give the result . 

(2.2) 

Case 2. Suppose that I =  (a ,b] , and a >  -oo . If a = b, Theorem l{ii) gives the 
result .  If a <  b ,  suppose that 0 < e < b - a and write I' = [a + e, b] . Then 

m�(l) � m*(I') = 1(1) - e. {2 .3) 
But I c I" = [a , b + e), so 

m*(J) �  /(/") = 1(1) + e. {2 .4) 

Since {2.3)  and {2.4) are true for all small €, m*(J) = 1(1). We can consider 
similarly the cases I =  (a,b) and I =  [a,b ). 

Case 3 .  Suppose that I is an infmite interval. Four types of interval occur . 
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Suppose that I = (-oo, a] , the other cases being similar . For any M > 0, there 
exists k such that the fmite interval IM, where IM = [k, k + M), is contained in I. 
So m*(J) > M and hence m*(J) = oo = 1(1). 0 

The next theorem asserts that m* has the property of countable subadditivity . 

Theorem 3 :  For any sequence of sets {£1} , m*(� E1) ..;; ,f1 m*(E1). 

Proof: For each i, and for any € > 0, there exists a sequence of intervals {11,1, 
00 00 00 

j = 1, 2, . . .  } such thatE1 � � I1,i and m*(E1) � .L l(I1,1) - E/21• Then U E1 � 
1= 1 1= I t= I 

00 00 00 

U U I1,i , that is : the sets [I;,j] form a countable class covering U E1• So 
i= I /=I t=l 

m•(CJ E1\ ..;; � 1(11,/) ..;; f m*(£1) + €. 
t= 1 I ,,,= 1 t= 1 

But € is arbitrary and the result follows. 0 

Example 2 :  Show that, for any set A and any € > 0, there is an open set 0 con
taining A and such that m*(O) � m*(A) + €. 

00 00 

Solution : Choose a sequence of intervals In such that A � U In and L l(In ) -n=l n=f 
00 

€/2 � m*(A). If In = [an, bn), let I� = (an - €/2"+1 , bn) so that A �  U I� . 

00 

Hence if 0 = U I� , 0 is an open set and n=l 
00 00 

m*(O) � L l(I�) = L l(In ) + E/2 � m*(A) + €. n=l n= l  

n=l 

Example 3 :  Suppose that in the defmition of outer measure , m*(E) = inf L l(In )  
for sets £ c A ,  we stipulate (i) In open, (ii) In = [an, bn) ,  (iii) In = (an , bn ] ,  
(iv) In closed, or (v) mixtures are allowed, for different n ,  of the various types of 
interval. Show that the same m* is obtained. 

Solution : In case (ii) we ob tain the m* of Defmition 1 ,  p.  27 . Write the corres
ponding m* as tn� in case (i), m� in case (iii); m� in case (iv), m� in case (v). 
Vie �.hov� that each equals m � . Consider m �, the proof in the other cases being 
si�jlzr . Front the defmition, m;;, (E) � m�(E). To prove the conver�e : for each 
� > 0 and eac�r� ii1rerval ln Itt !� be an open interval containing In with l(I� ) = 

CD 

(1 + e) !(/n ). Suppose ihat the sequence {In} is such that £ c U In and m� (E) � n= l 
� � 00 

I l(/!1 ) - e . ·Then m� (E) + e � (l  + e)-1 L 1(1� ). But £ � U I� . a union of 
n � l n = l n= l 
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open intervals, so m�(E) � (1 + e) m:,(E) + e(l + e), for any e > 0, so m�(E) � 
m:, (E), as required . 

Exercises 

1 .  Show that if m*(A) = 0, then m*(A U B) = m *(B) for any set B. 
2. Show that every countable set has measure zero. 
3 .  Let [In ] be a fmite set of intervals covering the rationals in [0,1] . Show that 

� l(In) � 1. 
4. Show that the intervals In of Example 3 may be restricted so as to have 

endpoints in some set dense in A , for example the rationals, and again in 
each case the function m* obtained is unaltered. 

2 .2 MEASURABLE SETS 

Defmition 2 :  The set E is Lebesgue measurable or, more briefly, measurable if 
for each set A we have 

m*(A) = m*(A n E) + m*(A n eE). (2.5) 

As m* is subadditive , to prove E is measurable we need only show, for each A ,  
that 

m*(A) � m *(A n E) + m*(A n CE). 
Example 4 :  Show that if m*(E) = 0 then E is measurable . 

Solution : By Theorem 1 (iii), p. 27, (2.6) is satisfied for each A .  

(2 .6) 

Defmition 3 :  A class of subsets of an arbitrary space X is said to be a a-algebra 
(sigma algebra) or, by some authors, a a-field, if X belongs to the class and the 
class is closed under the formation of countable unions and of complements. 

Defmition 4 :  If in Definition 3 we consider only finite unions we obtain an 
algebra (or a field). 

We will denote by 31( the class of Lebesgue measurable sets. 

Theorem 4: The class 31( is a a-algebra . 

Proof: From Defmition 2, A E :JI( and the symmetry in Defmition 2 between 
E and CE implies that if E E 31( then: CE E :At. So it remains to be shown that if 

00 

{ E1} is a sequence of sets in :M then E = !J Ei E 31(. 
J= I 

Let A be an arbitrary set. By (2.5) (with E replaced by E 1 ) we have 

m*(A) = m*(A n £1 ) + m*(A n CE1 ), 

and by (2.5) again (with E replaced by £2 and A by A n CE 1 ) we have 

m*(A) = m*(A n £1 )  + m*(A n £2 n CE1 ) + m*(A n CE1 n CE2 ). 
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Continuing in this way we obtain, for n ;> 2 ,  

3 1  

n n 
m*(A) = m*(A n E1 ) +  :L m*(A n E1 nnCE1) + m*(A n ()  CE1) 

1= 2 /<1 /= 1 
n n 

= m*(A n E1 ) + I m*(A n E1 n cUE1) + m*(A n c U E1) 
1=2 /<1 /= 1 . n � 

;> m*(A n Et ) + L m*(A n E1 n cUE1) + m*(A n c U E1), 

by Theorem l (iii). 
Therefore 

1=2 /<1 /= 1 

� � 

m*(A) :> m*(A n Et ) + L m*(A n E1 n cUE1) + m*(A n c U E1) 
1= 2 /<1 /= 1 

� � 

;> m*(A n U E1) + m*(A n c U E1) ;> m*(A), 
J= 1 /= 1 . ( 2 .7) 

n 
using Theorem 3 twice, and using the fact that for any n, U (E1 n cUE1) 
n t= 1 /<1 

U E1• Hence we have equality throughout in (2.7) and we have shown that 
1= 1 

� 

U E1 is measurable . 0 
/= 1 

Example S :  Snow that if F E  ':M and m*(F � G) =  0, then G is measurable . 

Solution : By Example 4 we have that F � G is measurable and that its subsets 
F - G and G - F are measurable . So by Theorem 4, F n G = F - (F - G) is 
measurable . So G = (F n G) U (G - F) is measurable . 

Theorem S :  If {E1 } is any sequence of disjoint measurable sets then 

m•(CJ E1) = f m*(E1), 
1= 1 1= 1 

that is, m• is countably additive on disjoint sets of :M .  
� 

( 2 .8) 

Proof: Take A = U E1 in ( 2 .7) which we have seen to be an equality, and note 
1= 1 

that the expression simplifies since the sets E1 are disjoint. 0 
Note that since the sets E1 in ( 2.8) may be replaced by � from a certain stage 

onward, the same result for fmite unions follows as a special case. 
If E is a measurable set we will write m(E) in place of m*(E). Then the set 

function m is defmed on the a-algebra :M of measurable sets. Theorem 5 �tates 
that m is a countably additive set function, and m(E) is called the Lebesgue 
measure of E. 
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Theorem 6 :  Every interval is measurable . 

Proof: We may suppose the interval to be of the form [a ,oo), as Theorem 4 then 
gives the result for the other types of interval. For any set A we wish to show 
that 

m*(A) � m*(A n (--«>, a)) + m*(A n [a , oo)) . (2.9) 

Write A 1 = A  n (--()(), a) and A2 = A  n [a, oo). Then for any € > 0 there exist 
00 00 

intervals In such that A c U In and m*(A) � L l(In ) - €. Write I� = 
n= l  n = l  

In n (--«>, a) and I� = In n (a , oo), so that l(In ) = l(I� ) + l(I�). Then 
00 

A t � U I� , A2 c U I� 
n = l  n= l 

00 00 

So m*(A 1 ) + m*(A2 ) � L l(I�) + L l(I�) 

and (2 .9) follows. 0 

n= J. n= 1 
00 

� L l(In ) � m*(A)  + €, 
n = l 

Theorem 7 :  Let I' A be a class of subsets of a space X. Then there exists a smallest 
a-algebra �� containing I' A .  We say that ('� is the a-algebra generated by I' A .  
Proof: Let [ ('� a l be any collection of a-algebras of subsets of X. Then from 
Definition 3,  p. 30 , n ('� a is a a-algebra . But there exists a a-algebra containing 

Q 
eA , namely the class of all subsets of X. So taking the intersection of the a-algebras 
containing eA we get a a-algebra, necessarily the smallest , containing � .  0 

This theorem holds with 'a-algebra' replaced by 'algebra', the class obtained 
being the generated algebra . The proof is the same . 

Defmition 5 :  We denote by B the a-algebra generated by the class of intervals of 
the form [a ,b); its members are called the Borel sets of A .  

Theorem 8 :  (i) 13 � (!� , that is . every Borel set is measurable . 
{ii) Gf3 is the a-algebra generated by each of the following classes :  

the open intervals , the open sets� the G6 -sets, the F0-sets . 

Proof: (i) follows inunediately from Theorem 4, p. 30, and Theorem 6, p .  3 2 .  
(ii) Let (,}3 1 be the a-algebra generated by the open intervals . Everf open 

interval, since it is the union of a sequence of intervals of the form [a,b ), is a 
Borel set .  So 13 1 � 13 .  But every interval [a,b ), is the intersection of a sequence 
of open intervals and so B c B 1 . So 'B = 13 1 • Since every· open set is the 
union of a sequence of open intervals the second result follovis. Since G5 -sets 
and F0 -sets are formed from open sets using only countable intersections and 
complements the result in these cases follows sirnilariy . [j 
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It will follow from a later result , Theorem 2 1 ,  p. 4 7 , that 13 <:;: 3tt , that is : 
there exist measurable sets which are not Borel sets. 

Example 6 :  For any set A there exists a measurable set E containing A and such 
that m*(A)  = m(E). 

Solution .  In Example 2 ,  p. 29 , let € = l /n and write On for the corresponding open 
00 

set . Then the G6 -set E = () On has the required properties, since for every n , n= 1  
m(E) � m(On) � m*(A) + l /n . 

Defmition 6 :  For any sequence of sets {E; } 
00 00 

lim sup E; = () U E;, lim inf E; = U () E1 • n= 1 t;;t;J:n n= 1 i;;t;J:n 

It is easily seen from the defmition that lim inf E1 � lim sup E;. If they are 
equal , this set is denoted by lim E;. It also follows from the defmition that 
lim sup E; is the set of points belonging to infmitely many of the sets E; and that 
lim inf E; is the set of points belonging to all but fmitely many of the sets E;. It 

00 
is also immediate that if E 1 c E2 � • • •  , then lim E1 = U E; and that if E 1 :::> 

i= 1 
00 

£2 => . . .  , then lim E; = () E;, which is analogous to the result that monotone 
i= I I 

sequences of numbers have limits. 

Theorem 9 :  Let {E; } be a sequence of measurable sets. Then 
(i) if E 1 c E2 � • • •  , we have m(lim E;) = lim m(E;), 
(ii) if E 1 :::> E2 :::> • • •  , and m(E1) < oo for each i, then we have m(lim E;) = 

lim m(E;). 
00 00 

Proof: (i) Write F1 = E 1 , F; = E; - E;- 1 for i > 1. Then U E; = U F; and the 

sets F; are measurable and disjoint . 
i= 1 i= I 

( oo ) oo n 
So m(lim En ) "= m � E; = .� m(F;) = lim L m(F;) 

1= I •= I i= I 

as required .  

= lim m (lJ F� = lim m(En). 
i= 1 r; 

(ii) We have £1 - £1 c £1 -£2 c £1 -£3 c . . .  , so by (i) 

m(lim (E1 - E;)) = lim  (m(E1 -E;)) 
= m(E 1 ) - lim  m(E;). 

00 00 
(2 . 1  0) 

But lim (£1 - E;) = U (£1 -E;) = E1 - () E; = E1 - lim E;. So taking the 
i= 1 i= 1 
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measures of both sides the result follows from (2 . 10) since m(E 1 )  < oo. D 

Example 7 :  (i) Show that every non-empty open set has positive measure . 

[Ch. 2 

(ii) The rationals a are enumerated as q 1 , q2 , • • •  , and the set G 
is defined by 

G = U Qn - 2 , Qn + 2 · 
00 ( 

1 1 ) 
n= I  n n 

Prove that , for any closed set F, m(G Ll F) >  0. 

Solution . (i) follows immediately from Theorem 9 ,  p. 23 , and Theorem 2, p .  28. 
(ii) if m(G - F) >  0 there is nothing to prove . If m(G - F) =  .. o, then since 

G - F is open we must , by (i), have G c F. But G contains a whose closure 
00 

is R, so F = R and m(F) = 00 • But m(G) < 2 L 1 /n2 < oo. So m(F - G) = oo, 
n= l 

and the result follows . 

Example 8 :  Show that there exist uncountable sets of zero measure . 

Solution : We show that the Cantor se t P, p. 24, is measurable and m(P) = 0 .  From 
00 

the construction the sets Pn are measurable for each n,  so P =  () Pn is measur
n = t 

oo - 2n- 1 
able . Also P* = (0 , 1 ] -P = U U In, r' a union of disjoint sets. So 

n= l r= I 

00 

m(P*) = L 
n= l  

giving the result . 

Exercises 

5 . Obtain the interval (c,d) from intervals of the form [a,oo) using the a-algebra 
operations of Definition 3 .  

6 .  Show that Theorem 9(ii) will hold if m(E;) is fmite for some i, and that the 
result will not hold generally in the absence of such a fmiteness condition. 

7.  Show that if {E; }  i s  a sequence of measurable sets, m(� £,) <co and limE; 

exists , then m(lim E;) = lim m(E,;). 
8 .  For k > 0 and A c R le t kA = [x : k-1 x E A ] . Show that (i) m*(kA)  = 

km *(A ), (ri) A is measurable iff kA is measurable . 
9.  For A c R le t -A = [x : -x E A ] . Show that (i) m*(A) = m*(-A), (ii) A 

is measurable iff -A is measurable . 
1 0. Let E c M where M is measurable and m(M) < oo. Show that E is measurable 

iff m(M) = m *(E) + m *(M - E). 
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1 1 .  Let {En } be a sequence of sets such that E 1 c E 2 c . . . .  Show that 
m*(lim En) =  lim m*(En)· 

1 2. Show that if E is a measurable set ,  0 < m(E) < oo and 0 < a  < 1 ,  then there 
exists an open interval U such that m(U n E) > a  l(U). 

1 3 .  The density of a set E at a point x is defmed to be 

1 4. 
1 5 .  

lim 
2
1
� m(E n 16 ) 6 -+0 u 

where 16 is the interval (x - � ,  x + � ), assuming this limit exists. Prove that 
the set [x : x -:#  0, cos 1 /x > 1 /2] has density 1 /3 at x = 0. 
Show that each Cantor-like set P5 has measure zero . 
Show that the Cantor-like set p..a is measurable with measure 1 - a . 

16. Let G be the set of numbers which can be represented in the form 

. . . ' 

where Cn = 0 or 4 for each n .  Show that m(G) = 0. 
1 7 . Show that the set of numbers in [0,1 ] which possess decimal expansions 

not containing the digit 5 has measure zero. 
18 .  Let k be a positive integer and {n; } a finite sequence of positive integers, ail 

less than k. Show that the set of num6ers in [0, 1 ] , in whose expansions to 
base k the sequence { n; } does not occur, has measure zero. 

1 9 . Give an example of a set A c (0, 1 ] such that m *(A) > 0 and m*(A n J) < 
l(J) for all ope�n intervals I c [0, 1 ] . 

20. Show that [0, 1 ] may be written as the u·ruon of a countable number of 
nowhere dense perfect sets and a set of measure zero. 

2 1 . Find an upper bound for the number of sets in the a-algebra generated by 
n sets. 

22.  Let c:J be a a-algebra containing an infmite number of distinct sets. Show 
that CfJ contains an uncountable number of sets . 

23 . Let S be a bounded set. Show that every real number is the mid-point of 
an open interval such that S n I and S n Cl have outer measure !m*(S). 

2.3 REGULARITY 

The next results states tltat the measurable sets are those which can be approxi
mated closely, in terms of m*, by open or closed sets. A non-negative countably 
additive set function satisfying the conditions (ii) to (iii)* below is said to be a 
regular measure . For the terminology G6 , F0 , used in the theorem, see Chapter 1, 
p .  1 8 . 
Theorem 10 :  The following statements regarding the set E are equivalent : 

(i) E is measurable, 
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(ii) v e > 0, 3 0, an open set, 0 :::> E such that m *(O - E) �  e, 
(iii) 3 G, a G6 -set, G :::> E such that m*(G - E) = 0, 
(ii)* v e > 0, 3 F, a closed set, F c E such that m*(E - F) �  e, 

(iii)* 3 F, an F 0-set , F c E such that m*(E - F) = 0. 

[Ch. 2 

Proof: (i) :::0> (ii): suppose first that m(E) < oo. As in Example 2 there is an open 
set 0 :::> E such that m(O) � m(E) + e. So m(O - E) = m(O) - m(E) � e. 

00 

If m(E) = 00, write A = U In , a union of disjoint finite intervals. Then if n= l  
En = E n In , we have m(En) < oo so there is an open set On :::> En such that 

00 

tn(On - En) � e/2
n

. Write 0 = U On , an open set. Then n= l  
00 00 00 

0 - E =  U On - U En c U (On - En) · 

00 

n= l  n= l n= l  

So m(O - E) � L m(On -En) � e. n= l  
(ii) :::0> (iii) : for each n ,  let On be an open set ,  On :::> E, m*(On - E) <  1 /n .  

00 

Then if G = () On , G is a G6 -set, E !; G and m*(G -E) � m*(On -E) <  1 /n n= l  
for each n ,  and the result follows. 

(iii) � (i) : .E = G - (G - E), the set G is measurable and by Example 4, p. 30 , 

G -E is measurable . So E is measurable . 
(i) :::0> (ii)* : CE is measurable and so from above there exists an open set 0 

such that 0 � CE and m(O - CE) � e. But 0 - CE = E - CO, so taking F = CO 
gives the result. 

(ii)* :::0> (iii)* : for each n, let Fn be a closed set ,  Fn c E and m*(E - Fn) < 
00 

l /n . Then if F =  U Fn , F is an F0-set , F !; E, and, for each n,  m*(E - F) �  n= l  
m*(E - Fn) < 1 /n ,  and the result follows. 

(iii)* � (i): sfuce E = F U (E - F), we find E measurable as before . D 

Theorem 1 1 :  If m*(E) < oo then E is measurable if, and only if, v € > 0, 3 dis-
n 

joint finite intervals I 1 ,  • • •  , In such that m*(E Ll U I;) < e. We may stipulate 
i= I 

that the intervals I; be open, closed or half-open. 

Proof: Suppose that E is measurable . Then by the last theorem v € > 0 ,  3 an 
open set 0 containing E with m(O - E) < e .  As m(E) is finite so is m(O). But by 
Theorem 9,  p .  23 . 0 is the union of disjoint open intervals 1;, i = 1, 2, . . . . So 

oo n 
by Theorem S , p . 3 1 . 3 n such that I 1(/;) <e. Write U= U I;. Then £ �  U =  

i=n + 1 i= I 
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(E - U) U (U - E) c (O - U) U (O - E). So m*(E � U) < 2€. 
If we wish the intervals to be , say, half-open, we first obtain open intervals 

I 1 ,  • • •  , In as above and then for each i choose a half-open interval J1 C I1 such 
that m(I; - 1;) < E/n . Then the intervals J1 are disjoint and we have by Example 
1 , p . 1 6 ,  

n n 
fi

n n ) 
m(E Ll � l;) " m(E Ll ;...{ I1) + m\� I; Ll � J1 < 2e, 

so the construction goes through for the intervals J1• 
We prove the converse . By Example 2, p. 29 , v € > 0,  3 0 open, 0 ;2 E such 

that 

m(O) � m*(E) + E. (2.1 1) 
If we can show that m*(O - E) can be made arbitrarily small, then E is measur-

n 
able by the last theorem. Write J = U I1 and U = 0 n J. Then by Example 1 ,  

i= l 

p .  1 6 , and subadditivity 

m*(O t:. E) � m*(O � U) + m*(U � E). (2. 1 2) 

Since U c J we have U - E  � J - E and since E c O we have E - U = E -J. 
So U A E c J. � E  and m*(U � E) <  €. But £ � U U  (U t:. E), so m*(E) < m(U) 
+ €. So by (2. 1 1 ), m(O � U) = m(O - U) = m(O) - m(U) � m*(E) - m(U) + 
€ < 2€. Then, by (2 . 1 2), m*(O - E) = m*(O � E) < 3€, as required . 0 

Exercises 

24. Show that if m*(E) < oo and there exist intervals I1 , • • •  , In such that 
n 

m*(E � U I;) < oo, then each of the intervals I1 is fmite . 
i= l  

25 .  Show that the condition m*(E) < oo is necessary in Theorem 1 1 , even if the 
condition l(I;) < oo is removed. 

26. Show that in Theorem 1 1 , n will in general depend on € and give an example 
where n -+  oo as € -+  0. 

27 . In Theorem 1 1  take for E the Cantor set P and for a given € fmd a corres
ponding n .  

2.4 MEASURABLE FUNCTIONS 

Sets of infinite measure and functions taking the values oo or -oo occur in a 
natural way, in for example Theorem 7 of Chapter 3 , p. 59 . To avoid inconvenient 
restrictions we use the extended real-number system, that is we add oo and -oo 
to the real number system with the conventions that 

a + oo = oo (a real, or a = oo ), 
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a • oo = oo (a > 0), 
a .  • oo = -oo (a < O), oo • oo = oo, 
O • oo = Q 

[01. 2 

and similarly for -oo. We do not defme oo+ (-oo). Of these conventions only the 
important one 0 • oo = 0 is at all special to measure theory, and with them 
functions or measures with infmite values can be handled in a consistent way . 

Defmition 7: Let f be an extended real-valued function defined on a measurable 
set E. Then f is a Lebesgue-measurable function or, more briefly , a measurable 
function if, for each a E A ,  the set [x : f(x) > a] is measurable . 

In practice the domain of defmition off will usuallY- be either A or � - F 
where m(F) = 0. 

Theorem 12: The following statements are equivalent : 
(i) f is a measurable function, 
(ii) v a, [x : f(x) � a] is measurable , 

(iii) V a, [x : f(x) < a] is measurable , 
(iv) v a, [x : f(x) � a] is measurable . 

Proof: Let [be measurable . Then 

00 

1 [x:  f(x) � a] = n [x: f(x) > a - - ]  is measurable ; 
n = I  n 

so (i) :::0> (ii). Let [x : f(x) � a] be measurable. Then [x : f(x) < a] = C [x : f(x) � a] 
is measurable and (ii) :::0> (iii). If (iii) holds, then 

00 

1 [x : f(x) � a] = n [x : f(x) < a + - ]  is measurable ; 
n= l  n 

so (iii) :::0> (iv). Finally , if [x : f(x) � a] is measurable , then its complement 
[x:  f(x) > a] is measurable ; so (iv) :::0> (i) and the theorem is proved. 0 

Example 9 :  Show that if f is mea.surable, then [x : f(x) = a] is measurable for 
each e"'ttended real number a. 
Solution : ft'or fmite a, [x : f(x) = tt] = [x : f(x) � a] n [x : f(x) � a] and so is 
measurable. For a = c : 

00 

[x : f(x) = oo] = n [x : f(x) > n] , 
n = I  

a measurable set. Similarly for a = -oo. 

Example 10: The constant functions are measurable . 

Solution : Depending on the choice of a, the set [x : f(x) > a] ,  where f is con 
stant , is the whole real line or the empty set .  
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Example 1 1  : The characteristic function XA of the set A ,  is measurable iff A iJ. 
measurable . 

Solution : uepending on a, the set [x : XA (x) > a] = A , A or (/J, and the result 
follows. 

Example 12 :  Continuous functions are measurable . 

Solution : If / is continuous, [x : f(x) > a] is open and therefore measurable . 

Theorem 13 :  Let c be any real number and let f and g be real-valued measurable 
functions defmed on the same measurable set E. Then {+ c, cf, f + g,f-g and 
fg are also measurable . 

Proof: For each a, [x : f(x) + c > a] = [x : f(x) > a  - c] , a measurable set. So 
f + c is measurable . If c = 0, cf is measurable as in Example 10  above; otherwise, 
if c > 0, [x : cl(x) > a] = [x : f(x) > c- 1 a] , a measurable set, and similarly for 
c < 0.  So cf is always measurable . To show that f + g is measurable, observe that 
x E A = [x : f(x) + g(x) > a] only if f(x) > a -g(x), that is, only if there exists 
a rational r; such thatl(x) > r; > a -g(x), where {r;, i = 1 ,  2, . . .  } is an enumera
tion of a. But then g(x) > a - r; and so x E [x : f(x) > r1] n [x: g(x) > a - r1] .  

00 

Hence A c B = U ([x :  f(x) > r;] n [x : g(x) > a - r1] ), a measurable set. 
i= I 

Since A clearly contains B we have A = B and so f + g is measurable. Then 
f-g = I+ (-g) is also measurable . 

Finally : lg '= t ((f + g)2 - (f - g)2 ), so it is sufficient to show that f' is 
measurable whenever f is. If a < 0, [x : f2 (x) > �] = A is measurable . If a �  0, 
[x : .f (x) > a] = [x : f(x) > v'a] n [x : f(x) < - v'a] , a measurable set. 0 

Corollary : The results hold for extended real-valued measurable functions except 
that f + g is not defmed whenever f = oo and g = -oo or vice versa , and similarly 

00 

for 1-g. For [x : f(x) + g(x) > a] = U ( [x :  f(x) > r;] n [x : g(x) > a  -r1] )  U 
t= l 

([x :  f(x) = �] - [x : g(x) = -oo] ) U ([x :  g(x) = oo] - [x : f(x) = -oo] ), a 
measurable set .  The case of 1-g is similar. D 

Theorem 14 :  Let {In } be a sequence of measurable functions defmed on the 
same measurable set. Then 

(i) 

(ii) 

(iii) 
(iv) 
(v) 
(vi) 

sup {; is measurable for each n,  
l � i� n 

inf [; is measurable for each n ,  
I �i� n 

sup In is measurable , 
inf In is measurable , 
lim sup fn is measurable, 
lim inf In is measurable . 
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Proof: 

(i) 

(ii) 
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n 
Since [x : sup [;(x) > a] = U [x : [;(x) > a] ,  we have sup [; 

1 � i< n i= I 1 � i�n 

measurable . 
inf fi = - sup (-{;) and so is measurable . 

t < t< n l � i� n  
00 

(iii) [x : sup fn(x) > a] = U [x : fn (x) > a] , so sup fn is measurable . 
n= l  

(iv) inf fn = -sup (-fn) and so is measurable . 
(v) lim sup fn = inf(sup f;), a measurable function by (iii) and (iv). 

i;;.: n 

(vi ) lim inf fn = - lim sup ( -fn ), and so is measurable . 0 

[Ch. 2 

Defmition 8:  In line with Definition 5 ,  we say that the function f is Borel 
measurable or a Borel function if v a, [x : f(x) > a] is a Borel set. 

Theorems 12 ,  1 3 ,  14 and their proofs, apply also to Borel functions when 
'measurable function ' and 'measurable set' are replaced throughout by 'Borel 
measurable function' and 'Borel set' respectively . The next theorem cannot be 
adapted in this way : see Exercise 43 ,  p .  45 .  

Definition 9 :  If a property holds except on a set of measure zero, we say that it 
holds almost everwhere, usually abbreviated to a.e. 

Theorem I S :  Let f be a measurable function and let [=  g a.e. Then g is measur
able . 

Proof: [x : f(x) > a] ll [x : g(x) > a] � [x : f(x) =;tg(x)] and the result follows 
immediately from Example 4, p. 30, and Example 5 ,  p.  3 1 .  D 

Example 13 :  Let {fi} be a sequence of measurable functions converging a.e . to 
f; then fis measurable , �since f = lim sup {;, a .e.,) 

Example 14:  If f is a measurable function, then so are r = max (/, 0) and �. 
r = - min (/, 0). 

Solution : Example 10  and Theorem 14, (i) and (ii), give the result . 

Example IS :  The set of points on which a sequence of measurable functions 
{In } converges, is measurable . 

Solution : The set in question is [x : lim sup fn(x) - lim inf fn(x) = 0] which is 
measurable by Theorem 14, (v) and (vi), and Example 9, p. 3 8 . 

Defmition 10 :  Let f be a measurable function ; then inf(a : f � a a.e . ]  is called 
the essential supremum of{, denoted by ess sup f. 

Example 16 :  Show that f� ess sup /, a.e .  

Solution : -If ess sup f = oo, the result is obvious. Suppose· ess sup f = -oo. Then 
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v n E Z, f <: n a.e . from Defmition 10 .  So f == -oo, a.e . ,  as required . So suppose 
that ess sup f is fmite . Write En = [x : f(x) > 1 /n + ess sup f] and E = [x : .f{x) > 

00 

ess sup fl ,  so E = U En . But from its defmition m(En) = 0, so m(E) = 0. 
n = 1  

Example 17 :  Show that for any measurable functionsfand g 

ess sup (f + g) <: ess sup f + ess sup g, 

and give an example of strict inequality. 

Solution : From the last example 

f + g � ess sup f + ess sup g, a .e . , 

implying the result. For inequality take f = X[- 1 ,o) - X[o,1 ) and g = -{. Then 
the left-hand side is 0 and the right-hand side 2. 

Defmition 1 1 :  Let f be a measurable function; then sup [a: f� a a.e .] is called 
the essential infunum of[, denoted by ess inf f. 

Example 18: Ess sup f= -ess inf (-/). 

Solution : Ess sup ! =  inf[a: f� a a.e .] = inf[a: -!� -a a.e .] 
= - sup [--a: -[� -a a.e .] = - ess inf (-{). 

So results analogous to those holding for ess sup f, for example those of Examples 
16  and 1 7 , hold also for ess inf {, with the obvious alterations. 

Defmition 12 :  If f is a measurable function and ess sup lfl < 00, then/is said to 
be essentially bounded. 

Example 19:  Let f be a measurable function and B a Borel set ; thenr1 (B) is a 
measurable set. 

Solution :  We have r1 (0 At) = U  r<At) and r1 (CA) = Cf1 {A), so the 
1= 1 1= 1 

class of sets whose inverse images under f are measurable forms a a-algebra. But 
this class contains the intervals. So it must contain all Borel sets. 

Exercises 

28 . Let f be defined on [0,1 ] by J(O) = 0, f(x) = x sin 1 /x for x > 0. Find the 
measure of the set [x : .f{x) � O] . 

29. Show that monotone functions are measurable . 
30. Let f = g a.e .  where f is a continuous function. Show that 

ess sup f = ess sup g = sup f. 
3 1 .  Show that for any measurable function{, ess sup f� sup f. 
32 .  Let fand g be measurable functions andg �  0.  Show that 

fg <: (ess sup fB a.e .  



42 Measure on the Real Line (Ch. 2 

33 . Let f be a measurable function not almost everywhere infmite . Show that 
there exists a set of positive measure on which f is bounded. 

34. Let {be a measurable function on [a,b] and let {be differentiable a.e .  Show 
that there is a function, measurable on [a,b] , which equals( a.e .  

35 .  Let f be a continuous function and g a measurable function . Show that the 
composite function fo g is measurable. 

36 . Let x E [0, 1 ]  have the expansion to the base I, x = 0 • x1 x2 • • • Xn • • • for 
some integer I, the non-terminating expansion being used in cases of ambi
guity. Show that fn(x) = Xn is a measurable function of x for each n .  

2.5 BOREL AND LEBESGUE MEASURABILITY 

This section considers the relation between the class 13 of Borel sets, the class 
:JIC of Lebesgue-measurable sets and the class 'GJ> (R)  of all subsets of A .  The 
section may be omitted without loss of logical continuity , but it provides distinc
tions between these classes without which the theory ,  though still valid, would 
be rather artificial . 

From Theorem 8 ,  p.  32 ,  we have that ·13 � :JIC c GJ>( R). Using Theorem 1 6  
we show in Theorem 1 7  that :JI( =#= f (R) and in Theorem 1 8  that 13 =#= :M .  
Since the characteristic function XA is measurable or Borel measurable if, and 
only if, A is measurable or is a Borel set ,  respectively (Example 1 1 , p .  39), we 
have corresponding relations between the two classes of measurable functions 
and the class of all real-valued functions. 

Theorem 16:  Let E be a measurable set .  Then for eachy the .set E + y = [x + y : 
x E E] is measurable and the measures are the same . 

Proof: By Theorem 1 0, p .  36 , v e > 0, 3 an open set 0, 0 :::> E and m(O - E) <:  
e. Then the set 0 + y is open and 0 + y :::> E + y.  But (0 + y) - (E + y) = 
(O - E) + y .  By Example 1 ,  p. 28 , m((O - E) +  y) <: e and the measurability of 
E + y follows, using Theorem 1 0  again. That the measutes are equal follows on 
using Example 1 again. D 

Theorem 17 : There exists a non-measurable set. 

Proof: If x ,  y E [0, 1 ] , let x rv y ify - x  E 01 = a n [- 1 ,  1 ] . Then rv is easily 
seen to be an equivalence relation on [0, 1 ] and so by Chapter 1 ,  p .  1 7 , [0,1 ] = 
UEo: , Eo: disjoint sets such that x andy are in the same Eo: if, and only if, x rv y .  
Since 01 is countable , each Eo: is a countable set. Since [0, 1 ] is uncountable 
there are uncountable many sets Ea . Using the Axiom of Choice , p. 1 7 , we 
consider a set V in [0, 1 ]  containing just one element Xo: from each Ea . Let 
{r;} be an enumeration of 01 , and for each n write Vn = V + r n .  If y E Vn n V m 

there exist X a ,  x13 E V such that y = X a + r n and y = x13 + r m .  But then x13 -
X a E 01 , so x13 = Xo: by defmition of V and we have n = m.  So Vn n V m = (/J 
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00 
for n =l= m . Also [0 , 1] c U Vn c [-1 ,2] , since V x E [0 , 1] , x E Ea for some 

n= l  
a and then x = X  a + r n giving x E Vn ; the second inclusion is obvious. 

If V is measurable , then by the last theorem so is each V n and m(V) = m(V n ). 
Then using the measurability of the sets Vn we have 

00 

1 = m([0,1] ) � L m(Vn) = m(V) + m(V) + . . .  � 3 .  
1 

But this sum can only be 0 or oo. So V is not measurable . 0 

Theorem 1 8 :  Not every measurable set is a Borel set .  

Proof: Write each x E [0, 1] in binary form 

00 

' En x = � -
n= l 2n 

with En = 0 or 1 ,  choosing a non-terminating expansion for each x > 0. Defme 
the function f by 

00 f(x) = L 2�n . 
n= l  3 

Then the values of [, which is known as Cantor's function, lie entirely in the 
Cantor set P, p .  24. Since En is a measurable function of x (Exercise 36), f is 
measurable . Also f is a one-to-one mapping from [0,1] onto its range , since the 

00 

value f(x) defmes the sequence {En } in the expansion L 2E: uniquely , so x is 
n:::::: 1 3 

determined uniquely . 
If B and ;tl were the same , then by Example 1 9, p. 4 l , f-1 (B) would be 

measurable for any measurable set B and any measurable function f. Let {be the 
Cantor function and V a non-measurable set in [0,1] .  Then B = f(V) lies in P 
and so has measure zero. So B is measurable . But since / is one-to-one , [- 1 (B) = 
V which is non-measurable . We conclude that GfJ is strictly contained in :M. D 

We now give two examples showing unexpected implications of measurability. 

Example 20 : Let T be a measurable set of positive measure and let T* = [x -y:  
x E T,y E T] . Show that T* contains an interval (-a ,a) for some a >  0 .  
Solution : By Theorem 10, p.  36 , T contains a closed set C of positive measure . 
Since m(C) = lim m(C n [-n ,n ] ) we may assume that C is a bounded set. By 
Theorem 10 , again , there exists an open set U, U ::) C, such that m(U - C) < 
m(C). Define the distance between two sets A and B to be d(A ,B) =  inf[ lx -y I: 
x E A ,  y E B] . Since l x  - y I is a continuous function of x and y, the distance 
between A and B is positive if A and B are disjoint closed sets one of which is 
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bounded. Let a be the distance between the closed sets e and CU, so that a > 0. 
Let X be any point of (-a,a). We wish to show that e n  (e - x) :#= {,& . For then, 
since e - x =  [y:  y + x E C] ,  we have that v x E (-a,a), 3 z E e such that 
z '  = z + X E e and so X = z '  - z E T*. 

Since lx I <  a we have e - x  C U from the defmition of a. So 

m(e - (e - x)) � m(U - (e - x)) 
= m(U) - m(e - x) 
= m(U) - m(C) (by Theorem 1 6) 
< m(C). 

Hence m(e n (e - x)) >  0 and so we must have e n  (e - x) :#= � , as required. 

Example 21 : Suppose that f is any extended real-valued function which for 
every x and y satisfies 

f(x) + f(y) = f(x + y). (2 . 1 3) 
(i) Show that f is either everywhere fmite or everywhere infmite . 

(ii) Show that if [is measurable and fmite , then f{x) = xf{1 )  for each x. 
Solution : (i) f cannot take both values 00 , -oo for then (2 . 1 3) would be meaning
less for some pair x,y.  Suppose that f(x) = oo for some x. Then f(x + y) = 
oo + f(y) = oo for all y ,  and so f = oo everywhere . Similarly if f(x) = -oo for some 
X .  

(ii) By induction (2 . 1 3) gives f(nx) = nf(x) for each x and each positive 
integer n ,  so f(x/n) = n-1f(x); and hence f(mx/n) = m n- 1 f(x). In particular 
f(r) = rf(1 )  for each r E Q .  Since f is finite there exists a measurable set E such 
that m(E) > 0 and Ill < M, say, on E ( cf. Exercise 34 ). Let z E E*, in the nota
tion of the last example , so that z = x -y where x ,y EE. Then lf{z) l = l.f(x -y) l 
= lf(x) - f(y) l  � 2M. But by the last example E* contains an interval (-a,a) 
with a >  0. So if l x  I <  a/n we have lf{nx) l � 2M, and so lf{x) l  � 2M/n , for each 
n .  Let x be real and let r be a rational such that l r  - x I <  afn. Then, since 
f(r) = rf(1 ), we have 

Jf(x) - xf(1 ) 1  = lf(x) -f(r) + (r - x)f{1 ) 1 
= l.f(x - r) + (r - x) f{1 ) 1  
� 2M + Q 11{1 ) 1 n n 

for each n .  So f(x) = xf{1 ). 
[Note : Equation (2 . 1 3) has in fact non-measurable solutions, cf [6] , p. 96. The 
method given above is based on [9] .] 

Exercises 

37. Show that sup rta : a E A] is not necessarily measurable even if each fa is. 
38.  Give an example of a function such that 1[1 is measurable but f is not. 
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39. Let f be Cantor's function defmed in Theorem 1 8 . Show that the range off 
does not cover the Cantor set P. 

40. Show that a nowhere dense perfect set can contain a non-measurable set. 
41 . Show that a measurable function of a continuous function is not necessarily 

measurable . 
42 . Show that there exist sets of zero measure which are not Borel sets. 
43 . Show that the result of Theorem 1 5  does not hold for Borel measurable 

functions. 
44. Find the cardinality of the class of measurable sets. 
45 . Find the cardinality of the class of measurable functions. 

2.6 HAUSDORFF MEASURES ON THE REAL LINE 

We have found in Example 8,  p.  34,  that there exist sets of zero Lebesgue 
measure which are in some sense large . Using Hausdorff measure , and, especially, 
Hausdorff dimension we may discriminate between these sets of zero Lebesgue 
measure . We replace l(J) in Defmition 1 by its p-th power, l(If , where p > 0, or 
more generally by h(l(J)), where the Hausdorff measure function h is monotone 
increasing on [0, oo), h(x) > 0 for x > 0 and h(O+) = h(O) = 0. For simplicity, 
we set out the main properties of Hausdorff measures for the special case h(x) = 
xP , though the results in the main apply to the general case . We return to the 
measure obtained from more general Hausdorff measure functions in Theorem 
28.  Further results are given in Chapter 9, but otherwise the section is not essen
tial for the following chapters. The methods generalize to higher dimensions and 
give there a defmition of the dimension of an arbitrary set. For a general account 
see [7] or the full account in [ 10] which has a large bibliography. 

We continue to suppose that all sets are contained in the real line. 

Defmition 13 : The 'approximating measure' H;,6 of the set A is given by H�,6 (A) 
= inf � l(Ikf where the infunum is taken over all coverings of A by open 
intervals, [/k ] ,  with 1(/k) � 6 .  

Defmition 14:  The Hausdorff outer measure H; of the set A is given by H3(A) = 
lim Hp* 6 (A). 
o -+o ' 

This limit must exist (though it may be infmite) since H:,6 (A ) can only 
increase as 6 decreases. For a general Hausdorff measure function we have 
inf � h(l(Ik)) in Defmition 1 3 . 

Theorem 19 :  
(i) H;(A) � 0, 
(ii) H3(�) = 0,  
(iii) H3(A) � H;(B) if A c B, 
(iv) H�([x] ) = 0 for any x E A . 
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Proof: (i), (ii) and (iii) are obvious from the defmition. To prove (iv) note that 
[x) c (x - 6 /2, x + 6 /2) for each 6 > 0. So H�,5 ([x] ) � 6P . Let 6 � 0 to get 
H;( [x] ) = 0. 0 

Example 22 : Hausdorff outer measure is invariant under translation , that is 
JI;(A) = H�(A + x). 

Solution : Each covering of A by intervals [In ] of length at most 6 corresponds 
to a cover [In + x] of A + x and �l(InY' = �l(In + xf . Taking the infimum 
over such covers [In] gives Hp,5 (A) = Hp,5 (A + x) and when 6 � 0 the resul t 
follows. 

Example 23 : n;(kA) = k!' n;(A) for any positive k. 

Solution : Each covering of A by intervals (In ] of length at most 6 corresponds 
Uflder the mapping � � kx to a cover of kA by intervals [kin ] of length at most 
kfJ and �l(kinf = k!' �l(Inf.  Taking the infunum over all such covers [In ] 
gives H�,k6 (A) = k!' JI;,5 (A). Letting 6 � 0 gives the result . 

Example 24 : JI;(A) is the same whether we stipulate that the intervals Ik in 
Definition 1 3  are open, closed or half-open. 

Solution : We show that closed intervals give the same outer measure , the other 
case being similar. Write Hf(A) and H�(A) for the corresponding set functions 
obtained from closed intervals, p being kept fixed. Write I' for the closure of the 
open interval I. Then 

H;,cS (A) = inf �l(Ikf , l(Ik) � 6 , A  � U ik 
= inf �l(Iicf 

• 

� inf �l(J kf , l(J k) � 6 ,  A !; U J k '  J k closed intervals, 
� Jff(A). 

So H;(A) � lf"C(A). ht the opposite direction : every closed interval } of length , 
€(€ > 0) is contained in an open interval J'' of length €(1 + 6 ). Then 

Jff(A) = inf �l(Jkf , l(Jk) � 6 , Jk closed ,  A c U Jk 
= (1 + 6 )-p inf �1(1'/cY' 
� (1 + 6 )-P inf �l(Ikf , l(Ik) � 6 + 6 2 , lk open, A c U /k , 
= (1  + 6 )-P n;,cS + cS 2 (A). 

Let 6 � 0 to get fl*C(A)  � H�(A), as required .  

Theorem 20: Let n;(A) < oo and let q > p .  Then �(A) = 0 .  

Proof: Let 8 > 0 and let [/k] be a covering of A by intervals with 1(/k) � 8 for 
each k. Then 

1(I k )q = 1(1 )Q-P � 6 q-p 
1(/kf k � 
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So �,6 (A ) �  L l(Ik)q � 6q-p L l(Jkf .  Taking the infimum of the last term over 
all such coverings we get 

�,6 (A) � 8 q-P H;,6 (A) � 6 q-p H;(A ). 
Letting 6 � 0, the result follows. D 

Corollary : If 0 < Ht(A ) < 00, then �(A) = oo for q < p.  
The result of this theorem would apply to general Hausdorff measure func-

tions provided we have 

h � h d lim h 1 (t) - 0 1 � 2 an 
h ( ) - , 

�0 2 t 
but the functions h cannot be ordered in this way in general .  We now show that 
Hausdorff outer measure has an essential property of outer measures. 

Theorem 21 : For any sequence of sets {E; } we have n;(� E;\ � .f n;(E;). 1= I ) l - 1 

Proof: For each € > 0 there exists a family of intervals [/;,j] , with l(I;,j) � 8 ,  
00 

such that E; c U I;,j for each i, and j= l 
00 H!p 6 (E;) � L l(I; ,·f - � -

, i= 1 
, 

2 
00 00 00 

Then U E; s; U � I;,j, so 
i= I i= I 1 = I 

00 

R;,6(U E;) � ?.: l(I;,if 
i= I 1,/ 

� �n;,6 (Ei) + € 
I 

� L Ht(E;) + €, for all 6 > 0. 
i 

So n;(� E;)� �H;(E;) + € and the result follows . 0 
1= I I 

We now show that Hausdorff measure includes Lebesgue measure as a special 
case . 

Theorem 22 : For any set A ,  llt(A ) = m*(A ). 
Proof: From their definitions we have m *(A ) <d/'f.5 (A ) for all o > 0,  so m*(A) � 
lfT(A ). So we wish to show that llt(A) � m *(A) and clearly we may assume 
m *(A )  < oo . Then for any given e > 0 we have for son1e family o f  intervals [In ] 

00 00 

that A4 c U In and nz *(A )  � L /(In ) - e .  Now if I is any fini te inte rval and 
n = l n = l 
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€ 1 > 0 then 

l(l) �Iff(!) - € , . (2. 14) 
m 

For let 6 > 0 and choose open intervals 1;, i = 1 ,  . . . , m with 1(1;) � 6 ,  I c U 1; 
i= l 

m 
and L 1(1;) < l(J) + € ' . Then JI'f,6 (J) < l(l) + € ' for a11 6 > 0, and, letting 6 � 0 

.- i= I 
(2 . 1 4) follows. Now put I =  In , € 1 = E/2n in (2 . 1 4) to get 

00 00 

m*(A) � L IIT(In) - L e/2n - € 
n= l  1 

00 

� L H'f(In) - 2€ 
n= l  

� llt(A) - 2€, 
by the last theorem, giving the result . 0 

Corollary 1 :  Let I be an interval of positive or infinite length. Then U:(l) = oo 
for 0 < p  < 1 , 11t(J) = l(l) and U:(l) = 0 for p > 1 .  

Proof: Suppose that I is a fmite interval. Then the result follows from Theorem 
20 and its Corollary , and Theorem 2 1 . So suppose that I is an infmite interval 
and p > 1 .  Since I C Uik, Ik finite intervals, we have U:(f) <: � U:(Ik) = 0 . So 
the result is true for p � 1 and Theorem 20 ensures that U:(J) = oo for 0 < p < 
1 .  0 

Corollary 2 :  H;(R) = oo for 0 < p  <: 1 ,  H3(R) = 0 for p > 1 .  

Corollary 3 :  Every non-empty open set G has U:(G) = oo for p < 1 .  
So the result of Example 2,  p. 29 , will not extend to Hausdorff measures. 

Corollary 4: Considering U:(A) as a function of p (p > 0), either U:(A) = 0 for 
all p > 0, or for some Po (0 < Po <: 1 )  we have U:(A) = oo for 0 <p <Po and 
U:(A) = 0 for p >Po · 

Proof: By Corollary 2, U:(A) = 0 for p > 1 .  Now the result follows immediately 
from Theorem 20 and its Corollary. D 

Examples showing the possibilities are given later. Measurability is defmed for 
n; as for m* in Defmition 2, p .  30. 

Theorem 23 : The n;-measurable sets form a a-algebra. 

The proof is as for Theorem 4, for Lebesgue outer measure . 0 

Theorem 24 : H; is countably additive on the a-algebra of n;-measurable sets . 

The proof is completely analogous to that of Theorem 5 ,  p. 3 1 . 0 
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Theorem 25 : Jr; is a metric outer measure ; that is , if A and B are non-empty 
disjoint sets in A with d(A , B) > 0 then Hp(A U B) = H�(A) + H3(B). 
Proof: It is s�fficient to show that the same identity holds for n;,o for all small 
8 .  But the identity is immediate for n;,o provided 6 < d(A , B), for then any 
covering of A U B by intervals of length at most 6 decomposes into two general 
coverings of A and of B. D 

In particular , of course , Lebesgue outer measure is a metric outer measure . 
We now show that the n;-measurable sets include the Borel se ts . 

Theorem 26 : Let I be the interval (-oo, a] . Then I is n;-measurable . 

Proof: We need to show that for any set A 

Ht(A) � Ht(A n J) + Jr;(A - /). (2 . 1 5) 

We may suppose that Ht(A) is fmite ; otherwise (2 . 1 5) is trivial. Let An = 
00 

A n [a + l /n ,oo). Then An C An+1 and U An =A -I. Also lim Ht(An) exists 
n= l n-+ oo  

and is fmite . By Theorem 25 we have 

Ht(A) � Ht(A n J) + Ht(An). 
So if we show that lim Ht(An) = Ht(A -I), the result follows by (2 . 1 5). Write 
Dn = An+ I -An . Then 

So 

.. Od 

A -I = A2n U U Dk k= 2n 
00 00 

= A2n U U D2k U U D2k+-1 
k=n k=n 

00 00 

Wp(A .- J) � Ht(A2n) +  I n;<n2k) +  L Ht(D2k+t ) k=n k=n 
(2 . 16) 

and all these outer measures are fmite . Suppose that both series in (2 . 1 6) con
verge . Then letting n � oo we get Ht(A - I) � lim Ht(A2n)  = lim Ht(An). But 
since An c A - I we must have equality and (2 . 1  �) follows. Suppose that the 

n- 1  
first series, say , diverges. We have A2n ::) U D2k . Also d(D2k , D2k+2 )  > 0 .  So 

k= l 
Theorem 25 gives n- 1  

Jr;(A2n) � L Ht(D2k) � oo 
lc= l 

contradicting the finiteness of Ht(A). Similarly the second series in (2 . 1 6) must 
converge and the result follows . D 

Corollary : All Borel sets are Jr;-measurable . 
For a Borel set A we will use the notations Hp(A) and Hp,o (A). 
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Defmition 1 5 :  The Hausdorff dimension of E is inf[p : n;(E) = 0] . 
By Corollary 4 to Theorem 22 Hausdorff dimension is a well defmed number 

in the interval [0, 1 ] for any set A in the real line . Also, except for the trivial case 
of se ts E with Hp(E) = 0 for all p , we have that Hausdorff dimension equals 
supfp :  n;(E) = oo) . 

Theorem 27 : The Hausdorff dimension of the Cantor-like set Pt is - log 2/log � . 

Proof: We refe r  to the construction of Pt given in p .  24. The fust residual 
intervals J 1 . 1  and J 1 ,2 are translates of multiples of [0, 1 ]  and contain subsets, 
say p(l) and P-2> ,  of Pt . Since , to get p(l) we dissect 11 , 1 in the same way that 
[0 , 1 ] was dissected, we have that p(l) (and p(l)) is a translate of a multiple (by 
�) of Pt . Then, by Theorem 25 ,  Hp(Pt) = Hp(p(1 >) + Hp(p(2>) = 2P Hp(P), using 
Examples 22 and 23 . So either Hp(Pt) = 0 or 00, or 2�P = 1 giving p = -log 2/ 
log � = p0 � say . We will show that 0 < Hp 0 (Pt) < oo and it will follow that Pt 
has Hausdorff dimension -log 2/log �. 

(i) To show HPo (Pt ) < 00 •  Let [/;] be a covering of Pt by open intervals of 
length at most 8 .  The set Pt is mapped as above onto the sets p(J) (j = 1 ,  2) by 
similarity transformations and the same mappings applies to the intervals [/;] 
provide a cover (J;,j] of p(J), for j = 1 ,  2 .  But l(I;fo = 2�Po l(I;fo (by the 
definition of Po ) 

= l(J; , I  fo + l(J;,2f0 • {2 . 1 7) 
Taking the infimum over all such coverings [/;] of Pt , we get Hp0 , o (Pt) � 
Hp0 , t5 (Pt ), as l(J;,j) � � 8 .  Since Hp,o does not decrease as 6 decreases, and 
0 < � < I ,  it follows that Hp0 ,0 is independent of 6 ,  and since we may take as a 
cover an open interval of length just greater than 1 and containing Pt we have 
HPo (Pt) � 1 .  

(ii) To show HPo (Pt)  > 0. The distance between the sets p(l) and p(l) is at 
least 1 - 2� . Let 8 � 1 - 2� . Then as in Theorem 25 , any cover [/;] of P� by 
intervals of length at most 6 may be decomposed into covers [I;,j] , j  = 1 ,  2, of 
the sets p(l) p(l) and ' 

(2. 1 8) 

Suppose the first sum of the right of (2 . 1 8) is the lesser .  Since p(l) is a translate 
of p(l) the same translation applied to the intervals [1;, 1 ] gives a cover [Ii, 1 ] , 
say of p(2) .  Then as for (2 . 1 7) ,  but in reverse , we may map the intervals [/;, 1 ]  
onto intervals [/; ] , say , covering Pt and with � l(Ij) = I( I;, 1 ) for each i. So 
L l(Iifo = L 1(1;, 1 fo + L l(Ii, t 'fo as for (2 . 1 7) 
; i i 

� L l(I;'f0 , by construction . ; (2 . 1 9) 

�o if any one of the in tervals 1; is of length � I - 2� we have L l(I;fo � 
l 



I � \  

Sec. 2 .6] Hausdorff Measures on the Real Line 5 1  

(1 - 2�fo . 
Now since Pt is compact we may suppose , by the Heine Borel Theorem, p .  1 8 ,  

that all the coverings considered are finite , so min 1(/k) > 0.  Since the intervals 
[/i] are multiples (by 1 /�) of a su�set of the intervals [/k ] we have 

min /(/ i) � �- 1 min 1(1 k ) . (2 .20) 

If each interval 1; is of length less than 1 - 2� we apply the same process to the 
cover [/� ]  which was applied to the cover [/;] , and we must obtain after a finite 
number of steps, a cover [f;> ] with max l(f/ ) � 1 - 2� and L l(fl fo � L l(I;)Po 

; ; 
as in (2 . 1 9). So in any case we have L l(I;fo � ( 1  - 2�fo . So Hp0 (Pt) > 0, as 
required. 0 
Corollary : For each a ,  0 � Q � 1 ,  there exists a set Q c A with Hausdorff 
dimension Q. 

Proof: The case Q = 1 is covered by Corollary 1, p .  48 . For 0 < Q < 1 take � =  
exp [-(log 2)/Q ] in the last theorem. For Q = 0 take Q = [x] , for example . D 

The example A =  A shows that Hp(A) may equal oo for 0 < p  <;p 1 , Hp(A) = 0 
for p � p 1  (p 1  = 1 in this case). The example A = P� shows that Hp(A) may 
equal oo for 0 <p < p0 ,  0 < Hp0 (A) < oo and Hp(A)  = 0 for p > Po . The follow
ing example shows that Hp(A) may be oo for p < p 1 , Hp(A) = 0 for p � p1 • 

Example 25 : For each q ,  0 < q � 1 there exists a set A in R such that H P (A ) = oo 
for 0 < p  < q , Hp(A) = 0 for p � q . 

Solution : Let Pn t q where 0 < Pn < q .  Choose An such that Hpn(An )  = 1 (a 
00 

suitable multiple of a set Pt , for an appropriate � ,  will suffice). Let A = U An . n= l  
00 

Since q > Pn we have Hq(An) = 0 by Theorem 20. So Hq(A) � I Hq(An)  = 0 q= l  
giving Hp(A ) = 0 for p � q .  But if Po < q we have Pn >Po for some n and then 
HPn(A) � Hpn(An )  = 1 .  So HPo (A) = oo. 

Example 26 : For each q ,  0 < q � 1 there exists a set A in A such that Hp(A) = 
oo for 0 <p � q , and Hp(A) = 0 for p > q. 

Solution : The case q = 1 has been dealt with above (A = A). For 0 < q < I con-
co 

struct the �et Pt with Hp(Pt) finite and positive . Let A = U (Pt + n), a union of n= O  
disjoint translates of Pt . Then Hq(A)  = oo, and for p > q we have Hp(A ) = 

00 

L Hp(Pt + n) = 0 as required. n=O  
Finally we show that,  with a slight restriction on the measure function h ,  

there will always exist sets whose corresponding Hausdorff measure is positive 
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and finite . First we define the modulus of continuity of a continuous function 
and apply this defmition to the Lebesgue function. 

Defmition 16 :  Let f(x) be a function continuous on the closed bounded interval 
[a ,b ] . Then the function w1 given by wj(t) = sup [ l.f(x) - f{y) l: lx - y l � t ; 
x ,y E [a,b ] ]  is the modulus of continuity of f. 

Clearly wj(t) increases with t, and since f is uniformly continuous on the 
compact set [a,b] we have that wj(t) is bounded and tends to zero as t � 0 
through positive values. 

Let L be the Lebesgue function corresponding to the Cantor-like set Pt of 
Chapter 1 ,  p .  24. Let bi be the length of the residual inte rvals at the jt� stage in 
the construction of P� , so that bi = � 1 �2 • • •  �i · Now L increases by 2-1 on each 
such interval . Also any interval in [0, 1 ] of length bi meets at most two of the�e 
residual intervals, and L is constant on the removed intervals. So wL (bj) � 2 .2-1 • 

Defmition 17 :  The function f(x) is strictly concave on (a,b) if for any x ,y in 
(a,b) we have 

f[tx + (1 - t}Y] > tf(x) + (1 - t)f(v), 0 < t < 1 ; 
. 

that is:  the graph of f lies strictly above the segment joining any two points on 
the graph . 

Note that xP (0 < p < 1 )  is strictly concave on (O,oo) as its second derivative 
is negative , so the Hausdorff measure functions so far considered have been , in 
the main, strictly concave . Many of the results obtained hold for general Haus
dorff measure functions; in particular Theorem 1·9 ,  Example 22, Theorems 2 1 ,  
23 , 24, 25 , 26 . Also Example 24 holds for a concave measure function h.  The 
first part of the proof is the same and the second half follows from the fact that 
h [17(1 + 6)] � (1 + 6 )h(17) for 17, 6 > 0, as can be seen from a diagram. 

Theorem 28: Let h be any strictly concave Hausdorff measure function and H 
the correspon.ding Hausdorff measure . Then there exists a Borel set A ,  contained 
in [0, 1 ] , such that 0 < H(A) < oo. 

Proof: The Hausdorff measure is changed by a factor A if h is, so we tnay suppose 
that h(1 )  = 1 .  Now choose the sequence {bj} such that h(bj) = 2-i, and construct 
the Cantor-like set P� with bi equal to the length of the residual interval at the 
jth stage . This_ is possible since 2h(t) > h(2t) and so bi+ t < !bi for eachj. Then 
wL (bj) � 2 1-1 � 4h(bj+1 ). So for t E [bj+1 , b/] we have wL(t) � wL(bj) � 
4h(bJ+t ) � 4h(t), as h is monotone increasing. Write A for the set Pr constructed 
to correspond in this way to h .  Suppose that A is covered by the family of open 
intervals (u;, v;). As A is compact this family may be supposed fmite . Then as in 
Theorem 2 ,  p. 28 , 

Lh(v; - U;) � 4- 1 L WL(v; - u;) 
� 4-1 L [L(v;) - L(u1)] � 4-1 [L(1 ) - L(O)] = 4- 1 . 
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So H(A) is positive . 
Write H5 (A) for the approximating measu re when the intervals are of length 

at most 8 . Since at the jth stage of the construction A is covered by 2i intervals 
of length bi ,  we have H5 (A) � 2ih(bj) = 1 ,  if 8 > bi. (These intervals are closed 
but the extension of Example 24 shows that the measure H is unaffected.) 
Letting 8 � 0 we ge t H(A) � 1 ,  proving the theorem.  D 

Exercises 

46 . Show that every countable set has Hausdorff dimension zero . 
47. Let h(t) = sin t (0 < t < rr/2). Show that , for any Borel set A ,  H(A ) = m(A). 
48.  Let {An } be Borel sets and le t an be the Hausdorff dimension of A n .  Find 

00 

the Hausdorff dimension of A = U An . n = l  
49. Show that ,  for 0 < 8 < 1 ,  n;,6 (A) is a monotone decreasing function of p .  
50 . Show that , for 0 < q < 1 , we may construct a se t A as in Example 26 , but 

which is compact ) so that Hp(A) = oo (0 < p  � q), Hp(A ) = 0 (p > q). 
5 1 . Find wj(t) for f(x) = cos x ,  on [0, 2rr] . 
52 .  The class of Hausdorff measure functions may be extended by assuming 

only that 
(i) lim inf h{y) > 0 and h(x) > 0 for x > 0,  

y---+x 
(ii) h(O) = h(O+) = 0. 
Show that the Hausdorff measure so defined satisfies the theorems given . 

53 . Show that if we now replace the function h of the last exercise by g where 
g(x) = inf[h(Y): x �  y � 1 ]  and g(x) = h( 1 )  for x > 1 ,  then g is a mono
tone increasing function satisfying (i) and (ii) of the last exercise and giving 
the same Hausdorff measure as h .  



CHAPTER 3 

Integration of Functions of a Real Variable 

In analysis it is often convenient to replace an expression of the form f'Lfn dx 
by 'Lffn dx, or f limfn dx by lim f fn dx, or f lim fa dx by lim f fa dx. In this 

a-+ao a-+ao 

chapter we give a definition of an integral which applies to a large class of 
Lebesgue measurable functions and which allows the intercpange of integral and 
sum or limit in very general circumstances. The results justify the choice of the 
class of measurable functions in the last chapter. Our results on approximation 
to measurable sets by intervals or by open sets lead to results on approximation 
to the integral of a measurable function. In the last section we compare the 
Lebesgue and Riemann integrals . 

3.1  INTEGRATION OF NON-NEGATIVE FUNCTIONS 

We consider first the class of non-negative measurable functions, defme the 
integral of such a function and examine the properties of the integral . For the 
present we will suppose these functions to be defined for all real x. 

A non-negative fmite-valutd function �x), taking only a finite number of 
different values, is called a simple function. If a 1 , a2 , • • •  , an are the distinct 
values taken by '{) and A; = [x : �x) = a;] , then clearly 

n 
<P(x) = L a; XA .(x). 

•- t I ,_ 
(3 . 1 )  

The sets A; are measurable if '{) is a measurable function , by Example 9 ,  p. 38 .  
The convention 0 • oo = 0, introduced in Chapter 2 ,  p.  37 ,  is to be understood in 
the following defmition. 

Defmition l :  Let � be a measurable simple function . 
n 

Then f '{) dx = L a;m(A ;), 
I= I 

where a; , A;, i = 1 ,  . . . , n are as in (3 . 1  ), is called the integral of 'P· 

54 
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Example 1 :  Let the sets A; be defmed as above� Then A; n A1 = (/), i #- j, and 
n 

U A; = A .  
;::: I 

Definition 2 :  For any non-negative measurable function f, the integral of f, 
f f dx, is given by f f dx = sup f '() dx, where the supremum is taken over all 
measurable simple functions '(), '() <:f. 

Definition 3 :  For any measurable set E, and any non-negative measurable fwtc

tion f, 1 f dx = jfXE dx is the integral off over E. 
E 

If the set E in Defmition 3 is an interval, such as [a,b] , then in place of 
� f b f b j f dx we write f dx; if a >  b we use the usual convention: f dx = 
E a a 

a - J f dx. When a distinction is necessary, the integral defmed above will be b 
referred to as the Lebesgue integral; to avoid confusion with the Riemann b 
integral , the latter will be denoted by R J f dx. The relationship of the integrals 

a 
will be considered later in Section 3 .4. 

Example 2: If '() is a measurable simple function, Defmition 1 and Defmition 2 
both give a value for its integral. Show that these values are the same . 

• 

Solution : Write J I{) dx = sup J 1/1 dx, 1/1 any measurable simple function, 
• 

1/1 <;; 1{), that is : write J I{) dx for the value given by Definition 2 ,  and write 

• J I{) dx for that given by Defmition 1 .  From the definition, J I{) dx <;; J I{) dx. 

Also, if l/1 (<: '()) is a measurable simple function with distinct values b1 (j = 1 ,  . , . , 
m J m m n m) and 1/1 = 

;
'[,

1 
b1 Xs1, then 1/1 dx = 1�1 bf'l(Bj) = 

1
'[.

1 1
'[.

1 
bJm(BJ () A,) (cf. 

Example 1 ), where b1 <: a1 if m(B1 n A;) > 0.  So 
m n n J 1/1 dx <;; 1'i 1 1

"i
1 
a,m(BJ () A,) = 

1
E

1 
a1m(A1)� J I{) dx . 

• 

So J I{) dx <;; J I{) dx, which completes the proof. 
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Theorem 1 :  If cp is a measurable simple function , then in the notation of (3 . 1 ) 
n 

(i) r cp � = L a;m(A; n E) for any measurable set E' )E i= l 

(ii) J. .p dx = J .p dx + J .p dx for any disjoint measurable se ts A and B, 
A UB A B 

(iii) Ja.p dx = a  j<P dx if a >  0. 

Proof: (i) is immediate from Defmitions 1 and 3 .  For (ii) : 
n n L <P dx + Ia .p dx = ;I1 a;m(A n A1) + 1L1 a;m(B n A1) 

n 
= L a;m((A U B) n A;) = J cp dx. 

I 1 � UB 
For (iii) : As cp takes the values a;, acp takes the distinct values aa;, so that 

n Ja.p dx = I aa1m(A1) = a  J<P dx . 0 
i=l 

Example 3 :  Show that if f  is a non-negative measurable function, then f = 0 a.e .  
if, and only if, f f dx = 0. 

Solution : If f = 0 a.e .  and cp is a measurable simple function, cp �f, then clearly 
f cp dx = 0, so Defmition 2 gives f f dx = 0 . Conversely, if f f dx = 0 and En = 
[x : f(x) � 1 /n] , then f f dx � f n-1 X.E dx = n-1 m(En). So m(En) = 0. But 

� n 
[x : f(x) > O] = U En , so != O a.e .  

n=l  

Theorem 2:  Let f and g be non-negative measurable functions. 
(i) If f�g, then f f dx � f g dx. 

(ii) If A is a measurable set and f <: g on A , then J f dx <: j g dx. A A 
(iii) If a � 0, then f af dx = a f f dx. 

(iv) If A and B are measurable sets and A 2 B, then J f dx ;;. J. f dx. A B 

Proof: (i) and (ii) are immediate from Defmitions 2 and 3 (p. ·ss) respectively . 
(iii) is obvious if a = 0. If a > 0, cp is a measurable simple function with cp � af 
if, and only if, cp = al/1 , where l/J is simple , .P � f, and then f cp dx = a f l/J dx 
(Theorem- l(iii), above). So f af dx = sup f cp dx = a sup f l/1 dx = a  f f dx. 

(iv) : Note that XAf"> xsf and apply (i) . 0 

The following result will be basic in proving convergence theorems. 
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Theorem 3 (Fatou 's Lemma): Let { fn , n = 1 ,  2, . . .  } be a sequence of non
negative measurable functions . Then 

lim inf f fn dx � f lim inf fn dx. (3 .2) 

Proof: Let f = lim inf fn . Then f is a non-negative measurable function . From 
Defmition 2, p. 5 5 ,  the result follows if, for each measurable simple function '() 
with '{) � !, we have 

f '{) dx � lim inf f fn dx. (3 .3) 

Case 1 .  f '() dx = 00• Then from Defmition 1 ,  p.  54, for some measurable set 
A ,  we have m(A) = oo and '() > a  > O  on A .  Write gk(x) = inf fi(x), and An = 

j�k 
[x : Kk(x) > a, all k � n] , a measurable set. Then An � An+l , each n. But, for 
each x ,  {gk(x) } is monotone increasing and lim Kk(x) = f(x) � <P(x). So A c 

k�oo 
00 

U An . Hence lim m(An) = 00• But, for each n, 
n= l 

j fn dx ;;a. j Kn dx > a m(An). 

So lim inf f fn dx = 00, and (3 .3) holds. 
Case 2. f '() dx < 00• Write B = [x : <P(x) > 0] . Tb.en m(B) < oo. Let M be 

the largest value of '(), and if 0 < € < 1 ,  write Bn = [x : gk(x) > (1 - E)p(x), 
k � n] , where Kk is as defmed above . Then the sets Bn are measurable ,  Bn � 

00 

Bn+t for each n ,  and U Bn � B. So (8 -Bn ) is a decreasing sequence of sets, 
oo n= l 

n (B - Bn) = (/). As m(B) < oo, by Theorem 9 ,  p .  33 , there exists N such that 
n= l 
m(B - Bn) < e  for all n � N. So if n � N, 

j Kn dx ;;;;. J. Kn dx ;;;;. (1 - €) J tp dx 
Bn Bn 

= (1 - €)(/. tp dx - J. cp c1x) (by Theorem 1 ) 
B B-Bn 

;;;;. J tp dx - € J tp dx - eM. 
Since € is arbitrary, lim inf f Kn dx � f cp dx, and since In �Kn ,  (3 .3) follows. D 

Theorem 4 (Lebesgue 's Monotone Convergence Theorem) : Let {fn ,  n = 1 ,  2,  . . . } 
be a sequence of non-negative measurable functions such that {ln(x) } is mono
tone increasing for each x .  Let f = lim In . Then f I dx = lim fIn dx. 
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Proof: Fatou 's Lenuna gives 

f f dx = f lim inf fn dx � lim inf f fn dx . 

[Ch. 3 

(3 .4) 
But f� fn by hypothesis , so by Theorem 2(i), p .  56 ,  f f dx � f In dx , and hence 

f f dx � lim sup fIn dx . (3 .5) 

Rela tions (3 .4) and (3 .5) give the result . D 
. 

Theorem 5 :  Let I be a non-negative measurable function . Then there exists a 

sequence ( ¥?n } of measurable simple functions such that, for each x, ¥?n(x) t f(x). 
Proof: By construction. Write , for each n , Enk = [x : (k - 1 )/2n <f(x) � k/2n ] ,  
k = 1 ,  2 , . .  , n2n , and Fn = [x : f(x) > n ] . Put 

n 2 n k - 1  
'{in = ki I 2n XEnk + nXFn · 

Then the functions ¥?n are measurable simple functions. Also , since the dissection 
of the range of f giving ¥?n+ t is a refinement of that giving ¥?n , it is easily seen 
that ¥?n+t (x) � �n (x) for each x . If f(x) is finite , x E CFn for all large n , and then 

00 

lf(x) - ¥?n (x) l � 2-n . So ¥?n(x) t f(x). If l(x) = 00 ,  then x E n Fn , so ¥?n(x) = n n= l  
for all n ,  and again ¥?n(x) t f(x). D 

Corollary : lim f ¥?n dx = f I dx , where ¥?n and f are as in Theorem 5 .  
This application of Theorem 5 ,  with Theorem 4 ,  gives us a me thod of evaluat

ing f f dx alternative to that of Definition 2 , p.  5 5 .  
Theorem 6 :  Let f and g be non-negative measurable functions . Then 

f l dx + f g dx = J (f + g) dx . (3 .6) 

Proof: Consider (3 .6) for measurable simple functions ¥? and \)1 .  Let the values 
of ¥? be a 1 , • • •  , an taken on sets A 1 , • • •  , An ,  and le t the values of \)1 be b 1 , • • •  , 
bm taken on sets B 1 , • • •  , Bm . Then the simple function ¥? + \)1 has the value 
a; + bi on the measurable set A; n Bi, so from Theorem l(i), p . 56 ,  we obtain 

J (¥? + lJI) dx = J I{J dx +  J 1/l d.x. 
A ·n B · ' A • n B · ' A • n B · ' I .n., I .n., I 

(3 .7) 

But the union of the nm disjoint sets A; n Bi is R ,  so Theorem l (ii) applied to 
both sides of (3 . 7) gives 

f (¥? + l/J) dx = f ¥? dx + f l/J dx . (3 .8) 
Let I and g be any non-negative measurable functions. Let { ¥?n } , { .Pn } be 
sequences of measurable simple functions, ¥?n t I, \)In t g. Then ¥?n + l/Jn t I+ g. 
But, by (3 .8), f (¥?n + .Vn) dx = f ¥?n dx + f .Vn dx . So, letting n tend to infmity, 
Theorem 4 gives the result . D 
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Theorem 7 :  Let {In } be a sequence of non-negative measurable functions. Then 

00 00 J n L/n dx = .,L1 ftn dx. 

n 
Proof: By induction, (3 .6) applies to a sum of n functions. So if Sn = L {;, then 

n oo 

i= l 

f Sn dx = L f {; dx. But Sn t f = L {;, so the result follows from Theorem 

4. 0 
t=l i=l 

Example 4;  Give an example where strict inequality occurs in (3 .2) (Fatou's 
Lemma). 

Solution : Let /2n-1 = X(o,t 1 ,/2n = X(t,2) '  n = 1 ,  2, . . . .  Then lim inf fn(x) = 0, 
for all x, but f fn(x) dx = 1 ,  for all n . 

Such an example is helpful in remembering the 'direction of the inequality' 
in (3 .2). 

Example S :  Show that J oo dxfx = oo. 1 
Solution : x-1 is a continuous function for x > 0, and so is measurable . It is 

positive , so the integral is defmed. Also J oo x- 1 dx > j n x -1 dx . But x -1 > k -1 
1 1 n n n n 

on [k - 1 , k), so J x-1 dx > L J k-1 X(k-1 ,k) dx > L k- 1 � oo  as n � oo. 1 k= 2 1 k= 2 

Example 6:  f(x ), 0 � x � 1 ,  is defmed by : f(x) = 0 for x rational, if x is  irrational , 
f(x) = n, where n is the number of zeros immediately after the decimal point , 
in the representation of x on the decimal scale . Show that f is measurable and 

fmd J 1/dx . 
0 

Solution :  For x E (0,1 ]  let g(x) = n if to-<n+t ) � x < to-n , n = 0, 1 ,  . . .  , and 
g{l ) = 0. Then f � g, f =  g a .e ., so [is measurable and by Example 3 ,  

But 

/ 1 1 fdx = 1 g dx. 
0 0 

! 1 00 ( 1 1 ) 
o 

g dx = n Lo n wn - wn•1 
00 

, 9n 1 = i..J 1 1\11+ 1 = 9 . n= 1 u 
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Exercises 

1 .  Prove (3 .8) directly from Defmition 1 without reference to Theorem 1 .  
(Note that the numbers a; + bi are not necessarily distinct .) 

2 .  Let I, g � 0 be measurable , with I �  g, f g dx < 00• Show that f f dx -
f g dx = f (f-g) dx. 

3 .  Let In � 0 be measurable , lim In = I and In � I for each n . Show that 
f f dx = lim f fn dx. 

4 .  Let ln(x) = min(f(x),n) where 1� 0 is measurable . Show that f In dx t f fdx. 
5 .  Let I �  0, measurable . Construct a sequence l/Jn of measurable simple func

tions, such that l/Jn t f and m [x : l/Jn(x) > 0] < oo for each n . 
6. Show that Fatou's Lemma and Theorem 4 can be obtained from one another 

using only the properties of the integral given in Theorems 1 and 2. 
7. Fatou's Lemma is sometimes written in the form : if {fn } is a sequence 

of non-negative measurable functions, and lim In = f a.e . ,  then f f dx � 
lim inf f In dx. Show that this version is equivalent to that given. 

8. Let { fn } be a sequence of non-negative finite-valued measurable functions, 
In + f. Show that if f fk dx < 00 for some k, then lim fIn dx = f f dx, and 
that f fk dx = oo for all k does not imply f I dx = 00• 

9. Let f(x) = 0 at each point x E P, the Cantor set in [0, 1 ] ,  f(x) = p in each 
complementary interval of length 3-p . Show that f is measurable and that 

f 1
tdx = 3 . 

0 
10 . Let {In } be a sequence of non-negative measurable functions such that 

lim In = f a.e .  and lim fIn dx = f I dx < 00• Show that for each measurable 
set E, lim JE

tn dx = Jetdx. 
1 1 . Show that to every measurable function f there corresponds a Borel-measur

able function g such that f = g a .e . 
1 2. The function / is defmed on (0,1 )  by 

{ 0, 
f(x) = 

[ 1 /x] -t , 

x rational 

x irrational , 

where [x] = integer part ofx .  Show that J 
1
{dx = oo. 

0 

3 .2 THE GENERAtJ INTEGRAL 

The defmition of the integral will now be extended to a wide class of real-valued 
measurable functions , not necessarily non-negative . The strength of the two 
main convergence theoreoms (Theorems 10  and 1 1 ) shows that the definition 
is the appropriate one . 
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Defmition 4: If f(x) is any real function, 

r(x) = max(f(x),O), r(�) = max(-f(x), 0), 

are said to be the positive and negative parts of[, respectively . 

Theorem 8 :  (i)t= r -r;  1{1 =r + r ;r,r � 0. 
(ii)/is measurable if, and only if, r and r are both measurable . 

Proof: (i) is clear from Defmition 4. (ii) follows from (i) and Example 14, p. 40. D 

Defmition 5:  If f is a measurable function and f r dx < oo, f r dx < oo, we say 
that f is integrable, and its integral is given by 

Jtdx = Jr dx - Jr dx. 
Clearly ,  a measurable function f is integrable if, and only if, 111 is, and then 
I tfl dx = I r dx + I r dx. 

Defmition 6 :  If E is a measurable set, f is a measurable function, and XEf is 

integrable , we say that f is integrable over E, and its integral is given by lt dx = 
E 

f fXE dx . The notation fE L(E) is then sometimes used. 

Defmition 7 :  If f is a measurable function such that at least one of f r dx, 
f f- dx is fmi�e,  then f fdx = f r dx - f ,- dx. 

Under Defmition 7 ,  integrals are allowed to take infmite values, so this defmi
tion is an extension of Defmition 2. But f is said to be integrable only if the 
conditions of Definition 5 are satisfied, that is if 1!1 has a fmite integral. 

Theorem 9 :  Let f and g be integrable functions. 

(i) af is integrable , and f af dx = a f f dx .  
(ii) f + g is integrable , and f (f + g) dx = f f dx + f g dx. 
(iii) Iff = 0 a .e . , then f f dx = 0. 
(iv) If f�g a.e . ,  then f f dx � f g dx.  
(v) lfA and B are disjoint measurable sets, then /fdx + / t dx = J fdx. 

A B A U B 

Proof: (i) : Suppose that a � 0. Then (a/)+ = ar, (a/)- = ar .' So f (af)+ dx < oo 
and f (af)- dx < oo. So af is integrable and 

f af dx = f ar dx - J ar dx = a f f dx. 
Suppose that a = - 1 .  Then ( -1)+ = f-,  (-f)- = r. So -{ is integrable and 

I <-n c1x = I r dx - I r ,dx = - I  r dx. 
But for a < 0, af = - Ia If, so 

f af dx = - J  lal f dx = - la l f f dx = a f [dx, 
and (i) follows. 
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(ii) : (f + g)+ <:r + g+, (f + g)- <:r + g-. so f + g is integrable . Also (f +g)+ 
if+ g)- = t + g = r + g+ -r -g-, so 

(3 .9) 
Apply Theorem 6, p. 58 , to both sides of (3 .9) and rearrange the terms to get 
(ii). 

(iii) : r = 0 a.e .  and /- = 0 a.e ., so by Example 3 , p . 56 ,  f r dx = f r dx = 0 . 
(iv): g = f + (g -f), so 

f g dx = f fdx + f (g -f)+ dx - f (g -f)- dx. 
But (g -f)- = 0 a.e ., so the result follows by (ill). 

(v) : XA uB = XA + XB ,  so Defmition 6 and (ii) give the result . 0 

From Theorem 9, if{= g  a .e .  and fand g are integrable , then f fdx = f g dx. 
We can extend our results to the case where f is measurable and f is defined 

except on a set E such that m(E) = 0 and j I ii  dx < oo. Then we defme f 
CE 

arbitrarily on E to get a function g which clearly is necessarily integrable . We 
have f = g a.e . ,  and so define f f dx to be f g dx. This will be relevant in Theorem 
1 1 , p. 64 below, for example,  where integrals of functions which are defmed 
only a.e .  arise naturally . 

Example 7 :  Show that iff and g are measurable , lfl <: lgl a .e . , and g is integrable , 
then f is integrable . 

Solution : Redefming /, if necessary, on a set of measure zero, we may suppose 
that Ill � lgl . Then r <: lgl so that J r dx <: J lg l dx < oo, and similarly for r. 

Example 8:  Show that if f is an integrable function, then I f f dxl � f lfl dx. 
When does equality occur? 

Solution : Ill -!� 0, so f 111 dx � f f dx . Also , Ill + f� 0 so f lfl dx � - f f dx. 
Hence f lfl dx � I f f dx l . Necessary condition for equality : If f f dx � 0, then 
f Ill dx = f f dx, that is f (lfl -f) dx = 0. So by Example 3 ,  p .  56 , lfl = fa .e . . 
If f f dx < 0, then f lfl dx = f (-{) dx, that is f ( lfl + f) dx = 0 , so Ill = -fa .e .  
Hence !� 0 a.e .  or f <: 0 a.e .  is a necessary condition. 

Clearly this is also a sufficient condition . 

Example 9 :  If f is measurable and g integrable and a, f3 are real numbers such 
that a ��<: 13 a .e . ,  then there exists 'Y, a � 'Y <: 13 such that f flgl dx = 'Y f lgl dx. 

Solution . lfgl � (la l  + 113 1) 1gJ a.e . , so , by Example 7 ,  fg is integrable . Also 
a lgl <:fig I <: 131gl a.e ,  so 

a f lgl dx <: f flgl dx � 13 f lgl dx .  
If f lgl dx = 0, then g = 0 a.e .  and the result is trivial . If f lg l dx * 0, take 'Y = 
(J flgl dx ). (J lgl dx )- 1 and the result follows . 
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Example 10 :  Extend Theorem 9 ,  p .  6 1 , to any functions such that the integrals 
involved are defmed in the sense of Definition 7 .  

Solution : We consider , for example , the extension of (ii) : 
If f (f + g) dx,  f f dx and f g dx are defmed ,  then 

f(f + g) dx = f f dx + f g dx, (3 . 1 0) 

whenever the right hand side is defined. To prove this , suppose for example that 
J f dx = 00 = f g dx . Then f r- dx < 00 and f g- dx < 00, so f (f + g)- dx < 00, 
and integrating the identi ty (3 .9) gives oo = oo in (3 . 1 0). The same argument 
works if, say , f f dx = oo and I f  g dx I < 00 • c 
Example 1 1 :  Show that iff is integrable , then I is finite-valued a.e .  

Solution : If l fl = oo on a se t E with m(E) > 0, then f lfl dx > n m(E) for all n ,  

giving a contradiction. 

Example 12 :  If I is measurable , m(E) < oo and A � I� B on E, then A m(E) <: 

� f dx <, B  m(E) . 
., E 

Solution : AXE, BXE are integrable , so Theorem 9(iv) applies. 
We now have the main result of this section. 

Theorem 10  (Lebesgue's Dominated Convergence Theorem): Let {fn } be a 
sequence of measurable functions such that lin l <: g, where g is integrable , and 
le t lim fn = I  a.e . Then f is integrable and 

lim f ln dx = J i dx. (3 . 1 1 )  

Proof: Since , for each n , lin I � g, we have lfl <:g  a.e . ,  so by Example 7 ,In and 
f are integrable. Also , { g +In } is a sequence of non-negative measurable func 
t ions, so by Fatou's Lemma 

lim inf f (g + In) dx � f lim inf (g + In) dx .  
So f g dx + lim inf f In dx � f g dx + f f dx .  But f g dx is fmite so 

lim inf fIn dx � f f dx. 

Again ,  {g -In } is also a sequence of non-negative measurable functions , so 

lim inf f (g -In) dx � f lim inf (g -In) dx. 

(3 . 1 2) 

So f g dx - lim sup f fn dx � f g dx - f f dx. So lim sup f fn dx � f f dx � 
hrn inf fIn dx by (3 . 1 2), and (3 . 1 1 ) follows. 0 
Example 13 :  With the same hypotheses as Theorem 1 0, show that 

lim f lfn -fl dx = 0. 

Solution : lin - fl � 2g, for each n, and Theorem 10 applied to {In - I } gives 
the result .  
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The next result is of considerable value in applications. 

Theorem 1 1 :  Let {fn }  be a sequence of integrable functions such that 
00 

L f Ifn i  dx < oo. 
n= l  

00 
Then the series L fn(x) converges a .e . ,  its sumf(x) is integrable and 

n= I 
00 

J f dx = L fIn dx. n= l  Q 
00 
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(3 . 1 3) 

(3 . 14) 

Proof: Let <P(x) = L lfn i .  Then by Theorem 7 and (3 . 1 3), f '{) dx < 00, so '{) is 
n= l  

fmite-valued a.e. by Example 1 1 . 
00 

It follows that L fn(x) is absolutely convergent a.e . , its sum f(x) is defined 
n= I 

a.e . ,  and 1/1 <: 'P· So /is integrable (see the remarks after Theorem 9, p .  62). 
n 

Write Kn(x) = L [;(x). Then IKn(x) l � <P(x) and lim Kn(x) = f(x) a.e . ,  s� by 
i= l 

Theorem 1 0, lim f Kn dx = f fdx and (3 . 1 4) follows. 0 

Example 14:  In Theorems 10  and 1 1  we may suppose that the hypotheses hold 
only on a measurable set E. Then (3 . 1 1)  and (3 . 14), with interals taken over E, 
follow on replacing throughout fn , f etc . ,  by In XE, fXE, etc. 

Example 15 : Theorem 10  deals with a sequence of functions {/n } . State and 
prove a 'continuous parameter' version of the theorem. 

Solution : Theorem :  for each � E [a , b] , -oo � a <  b < oo, let ft be a measurable 
function , lft(x)l �g(x) whereg is an integrable function , and let lim ft(x) = f(x) 
a. e . ,  where �0 E [a ,b J . Then f is integrable and t-+t o 

lim f ft dx = f f dx. (3 . 1 5) 
t-+to 

Proof: Let { �n) be any sequence in [a, b] , lim �n = �0 • Then the sequence {ftn } 
satisfies the conditions of Theorem 1 0, and we deduce that f is integrable . 
Suppose that (3 . 1 5) does not hold . Then 3 6 > 0 and a sequence {13n } ,  with 
lim 13n = �o , such that for all n , I f f f3n dx - f f dx l > 6 . But ,  applying Theorem 
1 0 to the sequence { [fJn } , we get a contradiction. 

Example 16: (i) If / is integrable , then 

f a .. a 
I tdx = lim lim tdx = lim lim I t dx. 

a-+oo b-+-oo b b-+-oo a-+oo • b 
(3 . 1 6) 
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(ii) If / is integrable on [a, b] and 0 < € < b - a, then 

6 b f f dx  = lim f f dx. 
a e-+0 a+e  

Solution : f �J{ dx = f a X( b, oo)f dx.  But by Example 1 5 ,  
b -oo 

lim f
a 

X(b,oo)fdx =  f a 
f dx. 

b-+-oo -oo - oo 
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A second application of Example 1 5  gives the first equation of (3 . 1 6) and the 
second follows in the same way ; (ii) is proved similarly . 

The following theorem, which will be generalized in Theorem 9 ,  p.  87 , allows 
us to calculate integrals in many cases of importance . 

Theorem 12: If f is continuous on the fmite interval [a, b] , then f is integrable , 

and F(x) = Jx 
f(t) dt (a < x < b) is a differentiable function such that F'{x) = 

a 
f{x). 

Proof: As f is continuous, it is measurable and I fl is bounded. So f is integrable 
on [a, b] . If a < x  < b we have x + h E (a, b) for all small h, and 

f x+h 
F(x + h) - F(x) = f(t) dt. 

X 

But using Example 12  and the continuity off we have 
,. x + h J f(t) dt = hf(�), � = X +  Oh , 0 � 8 � 1 .  
X 

So, supposing h =I= 0, dividing by h and letting h -+ 0, we get the result. 0 

Corollary 1 :  Integrals of elementary continuous functions over fmite intervals 
can be calculated in the usual way using indefmite integrals. 

Corollary 2: From Example 16 it follows that the integral of an integrable 
continuous function over an infmite interval can be obtained if its indefmite 
integral is known. 
Corollary 3: Techniques involving integration by parts and by substitution can 
be employed if all the functions involved are continuous and integrable . lnfmite 
intervals can be dealt with in this case as in Example 16. 

Corollary 4: In the case of piecewise�ontinuous functions, if we split the domain 
appropriately , we can calculate the separate integrals as in Corollary 1 .  

Using Theorem 1 2  and its corollaries we can now give specific examples 
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which show some ways in which Lebesgue's Dominated Convergence The.orem 
(Theorem 10) may be used. 

Example 17 :  Show that if a > 1 ,  f l X sin X -l --- dx = o(n ) as n � oo. o 1 + (nx)a 

Solution : We wish to show that 

. J 1 nx sin x hm 1 + 1 )a dx = 0. 
n-+oo o \nx 

Clearly ,.�.. 1 n::_ (�)a = 0, so we wish to show that Theorem 1 0  applies to the 

sequence 

nx sin x 
In (x) = 1 + (nx t� , n = 1 ,  2, . . . 

We consider h(x) = 1 + (nxt� - nx
312

• So h(O) = 1 ,  h(1) = 1 + na - n. For 
1 < a <  3/2, h has no stationary point in [0, 1 ] , for all large n ;  for a > 3/2 it has 
a stationary point at which its value is easily seen to approach 1 for large n. It 
follows that for large n, h(x) > 0 on [0,1 ] and so 

I nx sin x I E:: 1 
1 + (nx)a � "1-x ' 

· and the result follows. 

Example 18:  Show that 

. ! 00  dx 
lim 0 (1 + x/nY' x 111 = 1 . 

Solution :  For n > 1 ,  x > 0, 

_ n(n - 1) � � (1 + x/nY' - 1 + x + n2 2 + . . .  > 
4 

. 

So if we defme g(x) -= 4/x2 (x � 1 ), g{x) = x-lfl (0 <x  < 1)  we have 
(1 + x/n)-n x-1111 <g(x), (n > 1 ,  x > 0). 

But g is integrable over (O,oo), so 

lim J 
.. 

(1 + x/nr" x-1111 dx = j .. 
e-x dx = 1 .  

0 0 

Example 19: Show that 

f oo 2 -n2x2 
lim n xe 

2 dx = 0, 
n-+oo a 1 + X 
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for a > 0, but not for a = 0. 

Solution :  If a > 0, substitute u = nx to get 

f oo J oo u e
-u2 J oo u e

-u" 

a fn(x) dx = 
na 1 + u2 fn2 du = o X(na,oo) 1 + u2 fn2 du, 

67 

2 
1nd the last integrand is less than u e

-u , an integrable function. But, as a > 0, 2 lim X(na,oo)(1 + u2 /n2 )- 1 u e
-u = 0.  So Theorem 10  gives the result .  

1 --+- 00 

If a = 0, the same substitution gives 

J oo 
fn (x) dx = I oo 

u e
-"2 

(1 + u2 /n2 r1 du --+  J oo 
u e

-"2 du = 1 /2,  
0 0 0 

using Theorem 1 0. 

Example 20: Let f be a non-negative integrable function on [0, 1 ] .  Then there 
exists a measurable function <P{.x) such that 'PI is integrable on [0,1 ] and cp(O+) 
== 00 • 

Solution :  It follows easily from Example 1 5  that lim J a f dx = 0. So V n, 3 Xn 
a-+0 0 

... xn 
(0 < Xn < 1 ), such that } f dx < n-3 , and we may suppose that Xn + 0 as 

0 
oo !Xk- 1 

n � oo. Defme cp(x) = L (k - 1)  X(xk,Xk-t 1 . So cp(O+) = 00• But '()/ dx = 
k= 2 Xk ! Xk-1 J 1 oo 

(k - 1)/ dx < (k- 1)-2 • So 'PI dx <: L 1 /n2 < oo. 

Xk o n= 1 
Exercises 

13 .  Show by a counterexample that (3 .2) need not hold if, instead of In ;> 0, we 
are given/,; integrable . 

14. Let {In } be a sequence of integrable functions such that In t f. Show that 
f f dx = lim  f fn dx. 

1 5 . Let {In } be a sequence of integrable functions and let g be an integrable 
function such that fn ;> g a .e ., each n.  Then lim inf fIn dx ;> f lim inf In dx. 1 

16 .  Show that lim J fn(x) dx = 0, where fn(x) is 
0 

(1.) log(x + n) -x e cos x , 
n 

(iv) 

(vi) 

nx n31lx 
1 + n2x2 ' (v) 1 + n2x2 ' 

nP x' log x 
1 + n2x2 , r > 0, 0 < p < min (2, 1 + r). 

(iii) 
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.. oo 
1 7 .  Find lim } (1 + X )-n sin X dx. 

0 n n 

1 8 .  Find lim � 1 (� : :}n dx. 
19 .  Show that if 13 > 0, then 

lim n 1$ J 1 
x1$ (1 - xf dx 

= (3 J "" e-u� du. 
n-+oo 0 X 0 

[Ch. 3 

20. Show that if fn(x) =(:: �y , then fn(x) > fn+ t  (x) for x > 0 and n = 1 ,  

2,  . . .  Find whether the limit of the integral equals the integral of the limit 
in the following cases, and evaluate the limits involved. 

(i) J oo 
fn(x) e"/2 dx, (ii) J oo 

fn(x) e-xf2 dx. 
0 0 . 

21 . Find lim J n 
(1 + x/nf e-2x dx. 

0 
22. Show that if a >  0, then 

lim J n 
(1 -x/nf xO<-l dx = J "" e-x xO<-t dx. 

n�oo 0 0 
23 . Show that 

for a >  0 but not for a = 0. 
24. Find the range of values of a for which 

f 1 1 
liffi nO<(l -x) xn dx = lim J n0<(1 -x) xn 

dx. 
0 n�oo  n� oo 0 

Find also the range of values of a for which the conditions of Theorem 10 
are satisfied. 

3.3 INTEGRATION OF SERIES 

In the following examples we wish to write f f(x) dx as a series. We expand 
f(x) = � fn(x) and get f f(x) dx = � f fn(x) dx, provided we can justify the 
interchange of � and f. lf the functionsfn(x) are of constant sign for each n and 
x we can appeal to Theorem 7 ,  p .  59. If � fn(X) is an alternating series, Theorem 
10, p .  63 , may apply . If � f lfn(x)l dx can be shown to converge , Theorem 1 1 , 
p .  64 , applies. In many cases more than one method is available . 
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f I x l/3 1 oo 1 
Example 21 : Show that 

0 1 -x log x dx = 9 I: n= l  (3n + 1 )2 
. 

69 

x 113 1 1 oo 
Solution : 1 _ x 

log - = x113 log - L xn (O <x < 1), and Theorem 7, p. 59 , X X n=O  f 1 xll3 
gives 1 -x  

1 00 ! 1 1 
00 

9 log - dx = L xn+ll3 log - dx = L 2 • X n=O 0 X n=O (3n + 4) 0 

Example 22 : Show that j 
0 

00 • oo n -1 SID t dt __ \, X LJ --- , - 1 � x � 1 . et -x n= 1 n2 + 1 

N 
Solution : The integrand = lim L xn sin t e-(n+ l ) t. But for t > 0, 

N-+oo n= O  

I f xn sin t e-(n+l ) t 
n=O 

-t 
1 -xN+t e-(N+t ) t 2t � t e/ 1 -t � t , -x e e - x 

an integrable function , so Theorem 10  applies to the sequence of partial sums 
giving J oo � t dt = Z xn J oo 

e-(n+l ) t sin t dt = B xn 
. 

o e -x n=o o n= O 1 + (n + 1 )2 

! 1 oo (- 1)n Example 23 : Show that sin x log x dx = L -
o n= 1 (2nX2n)! · 

• • • _ oc; (- 1Y' x2n+l _ � 
Solutwn . sm x log x - n "L 0 (2n + 1 ) !  log x - n "L 0 fn(x), say. But 

-

! 1 ! 1 1 
o 

1 /n(x)l dx = (- l )n+l 
o fn(x) dx = (2n + 2)(2n + 2) ! ' 

and an application of Theorem 1 1  gives the result . 

Exercises 

In the following exercises, an identity displayed without comment is to be 
proved . f oo a- 1 (J oo \ ao 25 . Show that if a > 1 , ; dx = xa- t e-x dx . "L 

0 - 1  0 I n= l  

26. � 1(:0_!� J dx = 1T2 /3 . 

1 
n a . 
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f 1 1 oo, n2 + n + 1 
27. {C - 1 )(log x + - ) dx = � ( _ 1 )'G 2 + )2 · 0 x n= l  n . n n 
28. Prove that if /(t) = J oo e-rx si�2tx dx, then for t2 * 1 ,  

O S X 

� 1 I(t) = 4t 
n � o (2n + 1 + t2 )2 - 4!2 . 

Show that � {/(t) - (t2 � 1 )2 } = 3/4. 

J 1 xP log ;'-, 1 29. Show that if p > - 1 ,  
0 1 _ x dx = -

n� l (p + n)2 · . J oo sinh bx 
30. G1ven that 0 < b < a, evaluate 

.nh dx. 
0 s1 ax 1 oo 2 _ oo, (- 1)n 

3 1 . 
0 

sech x dx - .../1r n �0 .../(2n + 1 ) . 
00 00 

32. j �os x dx = L (- l )n-1 n . o e + 1 n= 1 n2 + 1 
r I xP-1 � 1 33 . Show that if p ,  q > 0, then j 1 + q dx = L (- 1)n _p_+_n_

q
. 

'.JII" 0 X n=O J b oo n- 1 oo 1 34. Show that lim L � dx = L 312 • 
b-+ l- o n= l vn n= l  n 

l
oo 2 oo n 1  . cos t , (- 1 )  -

35 .  Show that 1f x � 1 ,  then t dt = L n o 1 + xe n= 1 X 

J
oo oo f 

36. Show that e-x cos .../x dx = L (- 1 )n (2
n !_) ' . 

o n= O n · 

[Ch. 3 

37 .  If m is an integer , m ;;;;. 0, let lm(x) = � ,l-:r ) ' (xf2r+2n . (This is the n=o n .  n m . 
Bessel function of order m.) 
(i) Show that if a is a constant, 2 j oo lm (2ax) xm+t e-x• dx = am e-a' . 

0 

(ii) Show that if a > 1 ,  j oo J0(x) e-ax dx = (1 + a2f112 • 0 1 1 (x log x)2 _ � (- 1)n-1 38 . Show that 
0 1 + x2 dx - 2 

n'[, l (2n + 1 )3 . 
39.  Show that if a >  1 ,  then J .,.. � n2 ::: nx dx = 2a (a2 + 1) 

o n= 1 (a2 - 1 )2 • 
40 . Iff is integrable over (a , b) and I r l < 1 ,  
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r b { } 
00 f b  1 - r  cos x , 

f(x) 1 2 + 2 dx = L ,.n f(x) cos nx dx . .. a - r cos X r n= o a 

3 .4 RIEMANN AND LEBESGUE INTEGRALS 

7 1  

We consider the Riemann integral of a bounded function f over a fmite interval 
[a, b] . Let a =  �0 < � 1 < . . . < �n = b be a partition , D, of [a , b] . Write 

n 

Sn = L M;(�; - �1-1 ), 
i= I 

where M1 = sup f in [�1_ 1 , �1] , i = 1 ,  . . .  , n .  Similarly on replacing M1 by m1 
n 

equal to inf f over the corresponding interval , we obtain sn = B m1(�1 - �t-t ). 

I= I 
Then f is said to be Riemann integrable over [a, b] if given € > 0, there exists D 
such that S D - s D < €.  In this case we have inf S D = sup s D ,  where the inflffium 
and supremum are taken over all partitions D of [a , b] , and we write the common 

value as R J b f dx. 
a 

Theorem 13 :  If f is Riemann integrable and bounded over the fmite interval 
J b b 

[a , b) , then /is integrable and R fdx = j f dx . 
a a 

Proof: Let {Dn l be a sequence of partitions such that, for each n ,  Sn - sn < n n 
1 /n . It is easily seen that . 

• b J b Snn = } Un dx and snn = In dx ,  
a a 

where Un and In are step functions, Un � f � In . Indeed we may , for example , 
defme Un = M; on (�;-1  , �;), and at a partition point let Un be the average of the 
values M1 corresponding to the intervals ending at that point . 

Write U = inf Un and L = sup ln . Now 
n n 

00 

[x : U(x) - L(x) > O] = U [x : U(x) - L(x) > 1 /k] .  
k= l  

But if U - L > 1 /k, then Un - In > 1 /k for each n .  So if m [x :  U(x) - L(x) > 
1 /k] = a , then f (un - In)  dx > a/k, and so a/k < l /n for each n .  So a =  0. Hence 
U - L � 1 /k a.e. for each k, so U = L a.e . 

But Un , In and hence U, L are measurable . Also L <:_f � U, so f is measurable 
and , being bounded , is integrable . Clearly 
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and letting n � oo, we get 

a f b tdx = f b tdx. o 
a a 

Note : the converse does not hold . Consider for example the function f on 
[0 ,1 ] : { 0, 

f(x) = 
1 ,  

x rational 
x irrational . 

Then f is measurable , indeed f = 1 a .e . So J 1 f dx = 1 .  But each Sv = 1 and 
0 

each s D = 0, so f is not Riemann integrable . 
That the function f of this example is not Riemann integrable can be seen 

also from the next theorem, since f is discontinuous at each x in [0,1 ] . The 
theorem shows that the class of Riemann-integrable functions is quite restricted. 
Theorem 14: Let f be a bounded function defmed on the fmite interval [a, b] , 
then/ is Riemann integrable over [a, b] if, and only if, it is continuous a.e . 
Proof: Suppose that f is Riemarm integrable over [a , b] . Using the notation of 
the last theorem, suppose that U(x) = f(x) = L(x), where x is not a partition 
point of any Dn , the Dn being chosen as before . Then f is continuous at x ;  for 
otherwise there would exist € > 0 and a sequence (xk } , lim xk = x ,  such that for 
each k, lf(xk) -f(x)l > € . But then U(x) � L(x) + € .  Now, the set of all partition 
points of the Dn is countable and so has measure zero, and the set [x : U(x) =1= 
L(x)] has measure zero by the proof of the last theorem. So fis continuous a .e . 

Conversely , suppose that f is continuous a .e .  Choose a sequence fDn } of parti- " 
tions of [a , b] such that, for each n ,  Dn+l contains the partition points of Dn 
and such that the length of the largest interval of Dn tends to zero as n � oo. 
Then if Un , ln are the corresponding step functions as in the last theorem, we 
have Un+t � Un and ln+t � ln for each n .  Write U =lim  Un and L = lim  ln . Now 
suppose that f is continuous at x .  Then , given € > 0 , there exists 6 > 0 such that 
sup f- inf f < €,  where the supremum and inflffium are taken over (x - 6 ,  x + 6 ). 
For all n sufficiently large , an interval of Dn containing x will lie in (x - 6, x + 6 ), 
and so un(x) - ln(x) < €.  But € is arbitrary so U(x) = L(x). So U = L a.e . But 
then, by Theorem 10 , p . 63 , 

lim f Un dx = f U dx = f L dx = lim f ln dx, 
and so f is Riemann integrable . D 

Definition 8 :  If, for each a and b ,  f is bounded and Riemann integrable on [a , b} 
and 
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b 
lim f f dx 

a-+-oo a 
b-+OO 
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exists, then f is said to be Rie11Ulnn integrable on (-oo , oo), and the integral is 

written R J .. 
f dx. 

- CIO  

Theorem 1 5 :  Let f be bounded and let f and Ill be Riemann integrable on 
(--oo, oo) . Then/is integrable and 

f .. 
f dx = R f 

.. 
f dx. 

-• -oo 

Proof: From Theorem 1 3 ,  

f 
b 

1 11  dx = R f b 111 dx <. R f .. 
111 dx. 

a a - oo  

for all a and b . So f is integrable . Theorem 13 ,  applied again, gives J b 
f dx = 

a 

R J b 
f dx and Example 16 , p . 64 , gives the result . 0 

a 

The next result may be used to reduce problems involving integrals of measur
able functions to more amenable classes of functions. 
Theorem 16 :  Let {be bounded and measurable on a fmite interval [a , b] and let 
€ > 0. Then there exist 

(i) a step function h such that J b 
If - h I  dx < e, 

a 
(ii) a continuous function g such that g vanishes outside a finite interval and 

(3 . 1 7) 
a 

b 
Proof: (i) As f = r -r, we may assume throughout that{;;.. 0. Now f f dx = 

a 
b 

sup J I{) dx, where I{) <.{, I{) simple and measurable . So we may assume that f is 
a 

a simple measurable function, with/= 0 outside [a, b] . So 

n 
! = L a; XE; 

1= 1 
(3 . 1 8) 

n 
with U E; = (a , b] . Let € 1 = E/nM where M = sup f on [a, b] , and M may 

i= l 
obviously be supposed positive . For each of the measurable sets E; there exist 
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k 
open intervals /1 , • • •  , /k such that , if G = U Ir, then m(Et .d G) < e '. But XG r= l 
is a step function such that f I XE; - XG I dx = m(E1 � G) < e ' . Construct such 
step functions h1 , say , for each E1 appearing in (3 .1 8). Then 

n 

f
b n n 

If- L a,h; l  dx < L a,e ' <: n.Me ' = e. 
a t= l t= l 

But L a1h1 is a step function . 
i= l 
{ii) From (i) there exists a step function h vanishing outside a fmite interval 

(note that this interval need not be identical with [a, b] ), such that 

J b 
If- h i dx < e/2. 

a 
The proof is completed by constructing a continuous fwtction g such that 

n 
f lh - gl dx < e/2 and such that g(x) = 0 whenever h(x) = 0. Let h = L a1 XEt t= l 
where E; is the fmite interval (c1, d1), i = 1 ,  . . . , n .  As in (i), it is sufficient to 
show that each XE, may be approximated in the sense of (3 . 1 7). We may suppose 
that e < 2(d1 - c1) and defme g by: g = 1 on (c1 + e/4 , d1 - e/4), g = 0 on 
C(c1, d1). Extend g by linearity to (c1, c1 + e/4) and (d1 - e/4, d1), as in Fig. 3 . 1 , 
to get a continuous function. Clearly f I XE, -gl dx < e/2, and (ii) follows. 

y 

1 

0 

Figure 3 .1  

C· I 
£ C · + -' 4 

Y•Q (X) 

d·-1. d· I 4 I X 

Corollary : The res1 Its of Theorem 16 hold if f is integrable over [a, b] , using 
Exercise 4 ,  p. 60 , since , as in the proof, we may assume f� 0. 

Example 24 : Let f be a bounded measurable function defmed on the fmite inter
val (a, b). Show that lim J b f(x) sin fix dx = 0. 

{3-t oo a 



Sec. 3 .4] Riemann and Lebesgue Integrals 75 

n 
J
b 

Solution : By Theorem 16, V e > 0, 3 h = L �� X(a,bo ' say, with If- h i dx 
t= l a 

< e. Then 

I J b f sin Px dx ..;; J b I (f- h) sin Px I dx + J b h sin Px dx I a a a 

� b 1 �b; I Now j X(at ,bt) sin (3x dx = 1 /(3 sin y dy � 2/(3 < e/nM for (3 > (30 ,  a �i 

say , where M = max [�;. i = 1 ,  . . .  , n ] . So I ( b / sin Px dx I < 2€, for (3 > f3o . 

Example 25 : Show that if f E  L(a + h ,  b + h) and fh(x) = f(x + h), thenfh E 

J b+ h b 
L(a, b) and f dx = j fh dx. a+h a 
Solution : Clearly ifh)+ = �)h , ifh)- = <r)h , so it is sufficient to prove the 
result for f �  0 .. By the corollary to Theorem 5 ,  p .  58 ,  there exists a sequence of 
measurable simple functions { 'Pn } such that 'Pn � f and f 'Pn dx t f f dx. But 
then ('Pn)h t fh , and so by monotone convergence 

Exercises 

f. b+h J 
b+h b b 

f dx = lim .Pn dx = lim J (.,o,)h dx = J fh dx. a+h a+h a a 

41 . Let S be a measurable set, m(S) < oo. Show that 

lim J 2 � = m(S)/.../3 .  s - s1n nx 
42 . Let f be an integrable function. Show that v e > 0, 3 g continuous, such 

that g = 0 outside a fmite interval and such that f If- gl dx < e. 
43 . I..et fbe an integrable function. Show that lim f lf(x + h) -f(x)l dx = 0. h-+0 
44. (Riemann-Lebesgue Lemma). Let f be integrable , 'P bounded and measur

able and suppose that there exists (3 such that 'P(x + (3) = -'P(x ), v x E R .  
Then lim f f(x) 'P(kx) dx = 0. 

k-+oo 
45 . Show that the function x-1 sin x is Riemann integrable on (-oo, oo) but that 

its Lebesgue integral does not exist. 

Miscellaneous Exercises 

46. Let f be a finite-valued non-negative function such that m [x : f{x) > n] > 0, 
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for each integer n .  Show that there exists an integrable function g such that 
fg is not integrable . 

47 . Let fn(x} denote the distance from x to the nearest number of the form 

k • Hr" where k is an integer, and let.f(x) = � fn(x). Show that j 1 f dx 
= 1 /36. n= 1  0 

48. Let f{x) = 0, x rational, f(x) = 1 /a if x is irrational and a is the frrst non
zero integer in the decimal representation of x.  Show that f is measurable 

1 
and fmd j f dx. 

0 
nx - 1 

49. (i) Let fn(X) = (x log n + l)(l + nx2 log n) . Show that n�oo 
fn(x) = 0 

1 
(0 <x ..;; 1 ), but that lim j fn(x) dx = 1 /2 . 

0 
(ii) Let hn(x) = nxn . Show that lim hn(x) 0 (O � x < 1 ), but that n-+>oo 

SO. l.et Fn (x) = ; J1 + �fl/'"!..x)2 • Show that n� Fn(x) = .f(x), if { is con

tinuous at x. (It may be assumed that the integrals displayed exist .) 
5 1 .  For each t, let .f(x, t) be an integrable function of x .  Let of/ot exist for each 

X and satisfy I of/otl � '(J(x ), an integrable function. Show that 
d at 
dt f .f(x,  t) dx = f at  dx. 

52. ut x'-�f(x) be integrable over (0, oo) for 'Y = a, 'Y = (3, where a <  (3. Show 
00 

that for each "f E (a, (J), J x'Y.f(x) dx exists and is a continuous function 
of 'Y· o 

53 . Let f/nl be a sequence of measurable functions such that, for each n , 

Ifn i �g, an integrable function. Show ijlat 
f lim inf fn dx � lim  inf f fn dx � lim sup f fn dx � f lim sup fn dx. 

Give an example where aU the inequalities are strict. 



CHAPTER 4 

Differentiation 

Differentiation and integration are closely connected. It is important to examine 
questions such as whether a Lebesgue integral may be differentiated with respect 
to the upper limit to obtain, in some sense , the integrand. In order to do this we 
first examine differentiation carefully . As one result we fmd in Section 4.4 that 
monotone functions are differentiable a.e . , as are the functions of bounded 
variation which we consider in Section 4.3 .  The importance of these functions in 
connection with measure and integration will be more evident later, in Chapter 9. 

4.1 THE FOUR DERIVATES 

The condition of differentiability at each point is too restrictive for many 
purposes , and in this chapter we obtairi properties of functions under slightly 
weaker conditions . For this purpose it is useful to have quantities related to 
derivatives which are defmed even at points where the function is not differenti
able . 
Defmition 1 :  If f is an extended real-valued function , fmite at x and defmed in 
an open interval containing x,  then the following four quantities, not necessarily 
finite , are called respectively the upper right derivate, the lower right derivate , 
the upper left derivate and the lower left derivate : 

Iff(x) = lim sup f(x + h) -f(x) , Dj"(x) = lim inf f!x + h) -[(x) , 
h-+0 + X h-+0 + h 

D-f( ) _ lim f(x + h) -f(x) x - sup h , 
h-+0-

Df(x) = liminf f(x + h) -[(x)
. 

h-+0- h 

Clearly Iff(x) � DJ(x) and n-f(x) � DJ(x) . The function f is differentiable at 
x if, and only if, the four derivates have a fmite- common value which we then 
write as usual!' (x ) . 

Example 1 :  l..etf(x) = l x l ,  then at x = 0,  D+ = D+ = 1 ,  n- = D_ = - 1 .  

77 



78 Differentiation [Ch. 4 

Example 2: d(-f) = -D
+
(j), n-(-f) = -D_(f) follow from the corresponding 

properties of lim sup and lim inf, p. 1 8 . 

Example 3 :  Evaluate at x = 0 the four derivates of the continuous function 

f(x) = 

where a <  b,  a ' < b ' . 

ax sin2 _!_ + bx cos2 1 x > 0 x x ' 

0 ' x = O 

, · 2 1 , 2 1 
a x srn - + b x cos - , x < 0 X X 

Solution : We have D+f = lim sup (a sin2 h
l + b cos2 h

l ) . But sin 1 /x and cos 1 /x 
h-+0 + • 

take all their values in any interval 1 /(2n + 2)1T < x � 1 /2n1T, and so in intervals 
arbitrarily close to 0. So lYf = sup (a sin2 lJ + b cos2 8) = b.  Similarly D.J = 

8 
inf (a sin 2 8 + b cos2 lJ ) = a, D J = a ' , n-t = b ' . 

8 
Example 4: Let L(x) be Lebesgue 's function as in Chapter 1 ,  p . 25 . Show that 
for x E P, IY L = oo or n-L = oo if x is respectively , a right-hand or a left-hand 
end-point of a deleted interval In, r · Show that if x E P is not an end-point of an 
In ,, then UL = D-L = oo. 

' 

Solution : Ln(x) = 1 - Ln(l - x) for each n ,  so L(x) = 1 - L(l - x) . So 
L(x + h) - L(x) = L(l - x - h) - L(l - x) 

h -h 
and taking suprema as h � 0+ we get 

n+L(x) = n-L(l - x) . 
n .. 

(4. 1 )  

Let x be the right-hand end-point of In, r so x =  � 2.3-k Ek . Take m > n and 
kt k = l 

1 � 2 Xm = x + -;n = x + I.: /C ·  
3 k= m + l  3 

00 

, , l /2k L(xm ) - L(x) u 
So - m + I  

= ( 3

2
)m � oo as m � oo. 

1 13m Xm - X  
So dL(x) = oo. But 1 - x is a left-hand end-point if x is a right-hand end-point 
so (4. 1 ) gives the frrst result . 

00 

If x E P, but is not an end-point , then x = L 2 .3-k Ek where an infmite sequ
k= I 
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n 
ence of Ek's equal 1 .  Let Xn = L 2.3-k Ek, so (xn }  is a sequence of right-hand 

k= l 
end-points, and Xn t x .  Then 

00 
,, €k/2k L(x) - L(xn) u n + l 

00 

x - xn 

Suppose EN is the first non-zero Ek with k � n + 1 .  Then the right-hand side 
1 /2N 3N-J 

� oo � oo as n  � oo. 
2� 1 /3k 2N 

N 
So D-L(x) = oo. But x E P if, and only if, 1 - x EP, so using (4. 1)  again, we get 
n+L(x) = oo. 

Exercises 

1 .  Let f be defmed by : f{x) = x sin (1 /x) for x =#= 0, /(0) = 0. Find the four 
derivates at x = 0. 

2 .  Let / be defmed on [0, 1 ]  by f(x) = 0 if x  E Q, f(x) = 1 , x f. Q. Find the four 
derivates at any x .  

3 .  Show that the derivates of a continuous function are measurable . 
4.  Show that if f'(x) exists then lf(f + g)(x) = f'(x) + dg(x), and similarly for 

the other derivates. 
5. Give an example where lf(f + g) =#= JYf + dg . 
6. In the notation of Example 4 show that for each right-hand end-point of an 

In,,, D+L = oo, and at each left-hand end-point D_L = oo. 

4.2 CONTINUOUS NON-DIFFERENTIABLE FUNCTIONS 

We now give two examples. The first is of a continuous function nowhere 
differentiable and the second of a continuous function non-differentiable on a 
given set of measure zero. We will not use the examples explicitly below, but the 
fact that continuous functions can be nowhere differentiable gives an extra 
significance to the results of Section 4.4 where we fmd conditions under which a 
function is differentiable , at least almost everywhere. 
Example S :  Let {,. (x) denote the distance from the real number x to the nearest 
number of the form m/ 10" where m , n are non-negative integers and x E (0,1 ). 

00 

Show that /= L fn is continuous and is differentiable nowhere on (0,1). n= l  
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Solution : fn has a 'saw-tooth, graph with zeros at k/ 10" , k = 1 ,  2,  . . .  It is con
tinuous and rrax fn = 2-1 

• to-n . So }; fn is uniformly convergent and so f is 
continuous. 

Let x = 0 • x 1 x2 • • • be the decimal expansion of x where we use the ter-
00 

minating expansion in cases of ambiguity' so X = L Xm / 1om . Let k be some 
m = l 

ftxed integer. If xk = 4 or 9 write x '  = x - 1 / lOk. If xk :¢: 4  or 9 write x '  = x + 
1 /10" . Then for n ;> k, {,.(x) = f,.(x '). If n < k, then 

f,.(x) -f,.(x ') = ± (x - x '), 

since the choice of x '  ensures that (x, fk-1 (x)) and (x ',fk-1 (x ')) lie on the same 
monotone segment of the graph offk- 1 and therefore of each {,. for n < k. So 

00 

f(x) -f(x ') = L if,.(x) -t,.(x ')) 
n= l  

= }; + (x -x ') (k - 1 terms) 
= p(x -x '), say. 

For any combination of ± 1 it is easily seen that p is even if k - 1 is even, odd if 
k - 1 is odd. But f(x) -tfr '} = p and on letting k -+ oo we have x -+ x ' , but p 

x - x 
does not tend to a limit. 

Example 6 :  Let E be a set of measure zero . Show that there exists a function 
defmed on A ,  which is continuous and increasing everywhere and for which each 
derivate is infinite at each point of E. 
Solution : Let {U,. }  be a sequence of open sets such that m(U,.) < 1 /2,. and E � 
Un for each n (see Theorem 10 , p.  36). Write [,.(x) = m((-oo, x) n U,.) and 

00 

f(x) = L {,.(x). Then /has the desired properties. Indeed each {,. is continuous 
n= l  

as 1/,.(x) - {,.{v)l � lx - yl . Also max f,.(x) � 1 /2,. , so }; fn is uniformly con
vergent and f is continuous. Each fn is an increasing function, so { is increasing. 
Let x E E and let 6x > 0. Suppose (x,  x + 6x) � U,. for N integers n 1 , • • •  , nN. 

N 
Then f(x + 6x) -f(x) ;> L ifn;(x + 6x) - {,.1(x)) ;> N6x , where N depends on 

00 1- 1 
6x , and since x E n U,. , N � oo as 6x � 0+ . So lff(x) = Dj(x) = oo. Similarly 

n= l  
n-f(x) = DJ(x) = oo. 

Exercise 

7 .  Let E and f be as in Example 6 and let g be a continuous function on [0, 1 ] 
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such that g '(x) > 0 for x l$- E  and D
+g(x) > -oo, D_g(x) > -oo for all x.  Show 

that g(l) + f{l)  � g(O) + f(O). 

4.3 FUNCTIONS OF BOUNDED VARIATION 

We wish now to examine those functions which do not behave too erratically 
over an interval . Our defmition will provide functions differentiable a.e ., as will 
be shown in the next section. We suppose that the function f is defined and 
finite-valued on the finite interval [a, b] . Let a = x 0 < x 1 < . . .  < x k = b be a 
partition of [a, b ] . Write 

k k 
P = L (f(x;) -j(xi-1 ))+, n = L if(x;) - f(xi-1 ))- , 

t= I t= 1 
k 

t = p + n = L l f(x;) -j(x;-1 )I , 
i= l 

where as usual we use the notation A+ = max (A , 0), A- = max (-A , 0). So 
t , p,  n � 0 and f{b) -[(a) = p - n . 

Definition 2:  P = sup p ,  N = sup n ,  T = sup t where the suprema are taken over 
all partitions of [a , b] are respectively the positive, negative, and total variations 
off on [a , b] . If we wish to emphasize the dependence on f we will denote the 
variations by r, etc. ,  and if we wish to indicate the interval, by r,[a, b] ' etc. 
Note that T, P, N are non-negative . 

Defmition 3 :  If T1[a, b] < oo, f is said to be of bounded variation on [a, b] ; we 
denote the class of functions with this property by BV[a, b ] . A function is said 
to belong to B V(-oo, oo) if it belongs to B V[ a, b ] for all fmite a and b, and we 
then put T j(-oo, oo) = sup T1[a , b ] . 

a, b 

Theorem 1 :  Let f E BV[a, b] ; then f(b) - f(a) = P - N and T = P + N, all 
variations being on the fmite interval [a, b] . 

Proof: For any partition , f(b) - f(a) = p - n .  So p = n + f(b) - f(a) <: N + 
[(b) - f(a ). 1 aking the supremum over all partitions gives P <: N + f(b) -!(a). 
Similarly n = p + f(a) -f(b) gives N <: P  + f(a) -f(b ). But then P - N <:j(b) -
[(a) <: P - N, giving the first result . Also T � p + n = 2p -f(b) + f(a) = 2p + 
N - P. Taking the supremum gives T � P + N. But t = n + p < N + P which 
similarly gives T <: N + P and the second result . 0 

Example 7 :  If a <·c < b ,  then Tt[a, b ]  = Tt[a, c) + Tt[c, b] , with corresponding 
results for P and N 

Solution : We prove the result for T; the results for P and N follow similarly . 
Consider any part ition of [a , b] and , in an obvious notation, let t(a, b] be the 
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corresponding sum. Add the point c to the partition. Then t increases to t ' , say, 
and 

t [a, b) � t ' [a, c) + t ' [c, b] � T[a, c] + T[c, b) . 

So we have T[a,  b ) � T[a, c] + T[c, b) . Now take any partition of [a, c) and 
[c , b] giving sums t [a , c) and t [c, b) . These partitions give a partition of [a , b)  
and we see that t [a, c) + t [c, b] � T[a, b] . Taking suprema over all such pairs 
of partitions gives T[a, c] + T[c, b] � T[a, b] , and the result follows . 

As a corollary we have that the variations are increasing functions of the right
hand end-points of the intervals. The next theorem characterizes the functions 
of bounded variation . 

Theorem 2 :  A function f E B V[a,  b ]  if, and only if, f is the difference of two 
fmite-valued monotone increasing functions on [a , b] , where a and b are fmite . 

Proof: Suppose tha� is of bounded variation . Write g(x) = P1[a, x ] + .f{a) and 
h(x) = N1[a , x ] . Tnen g and h are monotone increasing functions by Example 7 ,  
and 0 � P,[a, X]  � r,[a, X]  � r,[a, b] . So g, and similarly h ,  is fmite ; but by 
Theorem 1 , /=  g - h on [a , b] . 

Conversely , let f = g - h where g and h are fmite-valued monotone increasing 
functions, then for any partition a = x0 <x 1 � • • •  < xn = b we have 

� lf(x,) -f(x,_l )I � � (g{x;) -g(xi-1 )) + � (h(x;) - h(x,_l )) 
� g(b) -g(a) + h(b) - h(a) . 

So Tt[a b) < oo as required . 0 

Theorem 3 :  Let f be a fmite-valued monotone increasing function on [a, b] ; 
then f is continuous except on a set of points which is at most countable . 

Proof: For each x E [a, b] write 6/(x) = inf f(x + h) - sup f(x - h), where 
h>O  h>O  

we may suppose that f is constant on [a - 1 ,  a]  and on [b , b + 1 ] , so that 
6f(x) is the 'jump' of the function at x. Clearly 6f � 0 and f is continuous at 
x if, and only if, 6f(x) = 0. Also the set En = [x : 6f(x) > 1 /n] can contain at 
most n(f(b) - I(  a)) points. But the set of points at which f is discontinuous is 

00 

just U En ,  a set which is at most countable . 0 
n= l  

Corollary: If f E B V[a, b] , then/ is continuous except on a set which is at most 
countable . In particular,/ is measurable . 

Notation : We will write l(rr) for the length of the polygon 1r .  
Theorem 4 :  f E BV[a, b] , where a and b are fmite , if, and only if, the graph of 
f is a rectifiable curve . 

Proof: Let a = x0 < x 1 < . . .  < xk = b be a partition of [a , b] and let 1r be the 
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polygon with vertices (x1 ,f(x1)), i = 0, 1 ,  . . .  , k. Then 

lf(xt) -f(xt-1 )I � v'((x1 - x1_1 )2 + (f(x1) -f(x1_1 ))2 ) 
• 

<; x1 -x1_1 + l.f{x1) -f(x1-1 )1 . 
So adding for i = 1 ,  2, . . . , k gives t � l('tr) <; b - a + t. Taking suprema over all 
partitions we get that T1[a , b] is fmite if, and only if, sup l(tr) is fmite , which is 

the result . D 
1r 

Example 8: Let f E BV[a , b] and letf = /1 -/2 where f1 and /2 are monotone 
increasing functions ; show that T11 ;> P1 and T12 � N1, so that the decomposi
tion of Theorem 2 ,  p .  82, into monotone functions g and h ,  was such that 
Tg + Th had the minimum possible value . 

Solution : Consider any partition a = x0 <x 1 < . . . <xn = b. Then 
if1 (x,) -f1 (Xt-1 )) - (f2 (xt) -{2 (Xt-1 )) = 
= f(x,) -f(x,_, ) = (f(x,) -f(x,_, ))+ - (f(x,) -f(x,_, ))-. (4.2) 

But A = A+ - A- = B - C where B, C � 0 implies A+ � B, A- <;  C. Applying 
this to ( 4.2) and adding we get 

k k 
L: ift (x,) -ft (xt-1 )) � L (f(x,) -f(xt-1 ))+ . 

I= 1, I= 1 
Taking suprema over all partitions gives the result for {1 • The result for /2 follows 
similarly. 

· 

Since g is monotone increasing, T8 [a , b] = g(b) - g(a) = P8 [a , b] . So we 
always have T11 � T8 and similarly T1

2 
� Th , giving the last result . 

Example 9 :  BV[a, b] is a vector space over the real numbers. 

Solution : Let [, g E BV[a , b] . For any partition, tt+g � t1 + t8 <; Tt + T8, so 
f + g E BV[a, b] . If c E A ,  fct = lc 1 tf �  l c i T1, so cfE BV[a, b] . 

Exercises 

8 .  Defme f on [0, 1 ]  by f(O) = 0, f(x) = sin (1r/x) for x > 0. Show that f fF. 
BV[O, l ] . 

9 .  Defme g on [0, 1 ]  by g(O) == 0, g(x) = x sin (1r/x) for x > 0. Show that 
g is continuous but that g ft BV[0,1 ]  . 

1 0 . Show that iff ' exists and is bounded on [a, b] , thenfE BV[a,  b] . 
1 1 .  Show that if{E BV[a, b] , then{  is bounded on [a, b] . 
1 2 .  Show that if f, g E B V[a, b] , thenfg E BV[a, b] . 
13 .  Show that if f E  BV[a, b] and x E (a, b), then the limits f{x-) and f{x+) 

exist . 
14 . Define f on [0 , 1 ] by .f{O) = 0, f(x) = xP sin 1/x for x > 0, where p ;> 2. 

Show thatfE BV[O,l ] . 
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4.4 LEBESGUE'S DIFFERENTIATION THEOREM 
I 

We show in Theorem 8 that a function of bounded variation is differentiable 
a.e .  First we obtain some preliminary results. 

Theorem S :  Let fJ be a fmite collection of intervals [/ k] . Then there exists a sub
collection G 0 of disjoint intervals of fJ , fJ 0 = [Ik1] say , such that m(U Ik;) � 
1 /3m(U lk). 

Proof: Let I k1 E fJ be an interval of maximal length. Remove from 'M, any 
intervals meeting Ik . The measure of the union of these intervals (including Ik ) 

I I 
is not greater than 31(/k ) , as 1(/k ) is maximal . This leaves a smaller class f} 1 I 1 
from which I k is similarly chosen and the measure of the union of the intervals 2 
meeting I k is not greater than 31(/ k2 ) , etc .  Continue until � is exhausted to 
get interv;Js Ik , /k , . . .  , /k , which are disjoint from the construction . Every 

1 2 n 
interval of fJ meets some I k·' so I 

m(U /k) <. ,f1 
3l(Ik1) = 3m(� lk1). 0 

Theorem 6: If [Ia ] is a collection of open intervals such that m(U I a ) <  oo, then 
there exists a fmite sub-collection /1 , • • •  , In of these intervals such that 

m(�
1 

Ik) ;;;.. !m(U /01). 

Proof: By Lindelors Theorem, p. 23 , we may choose a countable subcollection 
[/k ] of the [Ia ] with the same union. Then 

lim m(U Ik) = m(U la) < oo, k= l  
so n exists with the desired property . 0 

Notation . If c < d and f is any function , write f(c, d) for ({(d) -f(c ))/(d - c). 

Theorem 7 :  (i) Let 1r(x) be linear on [a, b] , 1r(a) � 1r(b). Let q be a polygon, 
with the same end-points as 1T ,  of which n sides, the total length of whose 
projections on the x-axis is d, have a slope less than -� (� > 0). Then l(q) > 
l(1r) + d(V(t + �2 ) - 1 ) . 

(ii) If 1T and q are as in (i) but with 1r(a) � 1r(b) and with n sides of q having 
a slope greate r than � ' then the same conclusion holds . 

Proof: (i) Starting with q, replace adjacent sides ,  where necessary , by moving 
them parallel to themselves until, after a fmite number of steps, there is obtained 
a new polygon q 1 with sides congruent to those of q and whose first n sides have 
slope < -�.  As each replacement leaves the length unchanged , l(q) = l(q 1  ). 
Clearly q 1 (a , a + d) < -� . 
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In Fig. 4. 1 B is the point (a + d, 1r(a )); C is the point (a + d, q 1 (a + d)). 
Now AC = AB sec LBA C > ABv'(l + �2 ). So l(1r) = AD <  AB + BD < AB + 
CD < AB + CD +  AC - ABy'(l + �2 ). But AB = d and CD + AC � l(q 1 ) = l(q). 
So l(1r) < l(q) - d(v'(l + �2 ) - 1 ). 

To obtain (ii) replace 1T by -1r, q by -q and apply (i). D 

n(b) 

n(a} A 

0 a 

Figure 4.1 

8 ,' 
I 

I 
I 

, 

c 

I 

O+d 

D 

b 

Theorem 8 (Lebesgue's Differentiation Theorem) : If fEB V[a, b]  where a and b 
are finite , then we have : (i) fis differentiable a.e . , (ii) the derivative is fmite a.e .  

Proof(cf. [ 1 ]  ) :  (i) It is sufficient to show D+f <:_ DJ a.e . , since -{E BV[a, b] so 
by Example 2 ,  p .  78 ,  D..f � D-f a.e. This gives, a.e . ,  IYf ";;!: D+

f �  D-f� DJ� 
D+f and equality a .e .  follows. So we suppose that D+f> DJ on a set of positive 
measure and obtain a contradiction . For by the Corollary to Theorem 3 ,  p. 82 ,  
f is continuous a.e .  and so as in Exercise 3 the derivates are measurable . Also 
there exists � > 0 and a set F c [a , b] with m(F) > 0 and such that lf[- DJ> 
2� on F. But 
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00 

[x : D+f(x) - D_f(x) > 2�] = U [x ·: df(x) > rn + �' D_f(x) < rn - �] 
n = l 

where (rn } is an enumeration of the rationals ,  so at least one set of this union 
has positive measure . We can therefore find numbers � ,  17 with � > 0, and a set E 
in [a, b ] with m(E) > 0 and on which f is continuous , such that If{ > 11 + �, 
DJ < 11 - � on E. Now f - 17X  E BV[a, b ] and d(f-17x) > D_(f - 17x) if, and 
only if, D+f >  DJ, as in Exercise 4 ,  above . So we may suppose that 11 = 0. 

Let rr be any polygon drawn , as in Theorem 4 ,  p .  82 ,  to app roximate f, and 
let P be ttfe set of points of the corresponding partition of [a , b] . Let x E E - P 
and suppose that rr '(x) < 0. Since D+f(x) > � ' there exists hx > x such that 
f(x , bx ) > � .  Then as f is continuous at x and hence f(x , {j) is a continuous func
tion of x ,  we can find ax < x  such that f(ax , hx) > �, and clearly we may choose 
ax and bx so that 1r is linear on (ax , hx ). Similarly , if 1r '(x) � 0 we use the fact 
that DJ < -� and choose an interval (ax , bx) on which 1r is linear and /(ax , bx) 
< -� . 

Then U (ax ,hx ) -:J E  - P, so by Theorem 6 ,  p .  84, there exists a finite sub-x 
collection of these intervals , say I 1 , • • •  , In , such that 

m (�l Ik) > tm(y <ax , bx� ;;a. tm(E -P) = !m(E). 

By Theo rem 5 ,  p .  84, we may extract a subcollection of disjoint intervals Ik , 1 . . .  , I k from these , such that r 

m(� I�q) ;;a. !m(f.J1 Ik) > im(E). 
We now consider the polygon q determined by the partition consisting of the 
set P and the end .. points of I k , . . .  , I k . Applying Theorem 7 to each interval 1 r 
on which 1r is linear and adding we get 

r 
1(q ) > 1(tr) + L 1(Ik.) (y'(l + �2 ) - 1 )  > 1(tr) + !m(E) (y'(l + �2 ) - 1 ). 

i= I 1 

But � is independent of 1r so, since 1(tr) can always be increased by a constant 
amount ,  sup 1(tr) = oo, taking the supremum over all polygons 1r approximating 
f. Hence by Theorem 4 ,  p.  82 , /f/: BV[a, b] and this contradic tion gives (i). 

(ii) Suppose this result is false . Then, replacing f by -{ if necessary, we may 
suppose that there exists a set E on which f is continuous, E c [a, b] , m(E) > 
0 and D+f = oo on E . Then for any M > 0 choose , as in (i), a collection of intervals 
[(ax , bx )] covering E such that {(ax , bx) > M. Pick the disjoint intervals I k , • . •  , 1 r I kr' as before , such that L 1(I kt) > im(E). Let q be the polygon, approximating k= l  
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f, determined by the end-points of the intervals I kt· The length of q in the inter
val I kt is greater than I( I k1}./(1 + Ml )  since the slope off is greater than M. So 

r 
l(q) > B l(I�q}./(1 + All ) >  tm(E}./(1 + All ). 1= 1 

But M is abritrary and E is independent of M so taking the supremum over all 
approximating polygons 1r we get sup l(tr) = oo, and (ii) follows . D 

Note : Since any infmite interval may be written as the union of a sequence of 
finite intervals , this result extends to any interval. 

Exercises 

1 5 .  Show that the continuous function /of Example 5 ,  p .  79 , is not of bounded 

variation . 
16 .  Construct a monotone function with a discontinuity at each rational in 

[0, 1 ]  . 

4.5 DIFFERENTIATION AND INTEGRATION 

Defmition 4: Let f e L(a' b), then F(x) = I X f{t) dt is the indefinite integral of 
a 

f. So F(a) = 0. If b = oo and a = - oo, F(b) = f f dt. 
We know from Chapter 3 ,  Theorem 12 ,  that if f  is continuous , then F is 

differentiable and F' = f. We wish to improve on this result and consider the 
following questions (in the same notation) : 

(i) For which functionsfE L(a, b) does F' exist or exist a.e .? 
(ii) When is F' = f a.e .? 

Question (i) is answered by the corollary to Theorem 9, question (ii) by 
Theorem 12 .  The more difficult question : for which measurable functions F 
does there exist an integrable function f such that F is the indefmite integral of 
{, is answered in Chapter 9.  

Theorem 9 :  If f E L(a, b), then : (i) F(x) = I x 
f{t) dt is a continuous function 

a 
on [a , b ] , (ii) F E BV[a, b] .  

Proof: (i) let Xo E [a , b) , then if X >  Xo we have f x 
f dt = f b X[x0 ,x ) f dt -+  0 

x0 a 

as x � x0 , by Example 1 5 ,  p .  64 , since f E L(a ,  b). Similarly if x < x0 ; so F is 
continuous at x 0 • Similarly for continuity at b ,  if b is finite . 

(ii) Let a  = x0 < x 1  < . . .  < xk = b be a partition of [a , b ] . Then 
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k k /J Xi l k f Xi f b 1B1 IF(x,) - F(xl-1 )I . ,L 1 X t-J f dt <. 1B 1 X f-l Ill dt = a Ill dt < 00• 

So F E B V[a, b] . D 
/ 

Corollary:  The indefmite integral of an integrable function is differentiable a.e .  

Theorem 10 : If f is a fmite-valued monotone increasing function defmed on the 

f b � 

finite interval [a, b] , then[' is measurable and !' dx <:!(b) -f(a). a 
Proof: By Theorem 8, p. 85 , f exists a.e .  Defme g(x) to be !'(x) when !' 
exists, g = 0 otherwise . For x E (a, b) let Kn(x) = n(f(x + 1 /n) - f(x)) , where 
we may suppose for convenience that f = f(b) on (b , b + 1 ). Then each Kn is 
defmed on (a, b) and is non-negative and measurable . Also, g(x) = lim Kn(x), a.e . , n-+oo 
so clearly g is non-negative and measurable . By Fatou's Lemma 

b <. lim inf j Kn dx a 
<. lim inf(n £ b f(x + (1 /n)) dx - n ja

b 
f(x) dx) 

� f b+ l /n J b ) <: lim inf n f(x) dx - n f(x) dx , a+ 1/n a 
using Example 25 ,  p .  75 , so 

� b 
g dx <. lim inf(f(b) - n £ a+ l /n f dx) <.f(b) -f(a), 

as f(x) � f(a) in (a, a +  1 /n). But [' = g a .e . ,  so the result follows. D 
We cannot hope to get equality in Theorem 10 without further restrictions, 

for let f be any monotone increasing step function such that f(b) > !(a), then b 
0 = J f' dx <f(b) -f(a). 

a 

X 
Theorem 1 1 :  If f E L(a, b) and j f dt = 0 for all x E (a, b) then{= 0 a .e .  in 
(a , b). a 

Proof: Let (� , 17) !;;;;; (a, b) so J 11 f dx = 
J 

11 f dx - J t f dx. So the integral of 
t a a 

f is zero over any open interval and so over any open set 0 c (a, b). Suppose the 
result of the theorem if false . Then we may suppose that there exists a set 
E C (a, b), m(E) > 0, such that {> 0 on E; or else consider -f. Now by Theorem 
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1 o ,  p .  36 ,  we can find a closed set F C E such that m(F) > 0. Let 0 = (a, b) 

F. The clearly j f dx = J b f dx - J f dx = 0. Butf> 0 on F, giving a contra-F a 0 
diction . D 

Theorem 12 :  Let [a, b]  be a fmite interval and let f E L(a, b) with indefmite 
integral F, then F' = f a.e .  in [a, b] . 

Proof: Suppose frrst that f is bounded , lfl <: K, say . Defme f to be zero on 
(b , b + 1 ]  so that F is constant on [b, b + 1 ] , and defme Gn(x) = n(F(x + 1 /n) 

J x + 1/n 
- F(x)). Then Gn(x) = n f dt, so IGn I <:  K. But by the corollary to 

X 
Theorem 9 ,  p .  87 ,  F' exists a.e . Hence lim Gn = F' a.e . and IF' I <:K a.e. So by 
Theorem 1 0 , p .  63 , for each c E (a, b), 

j c F' dx = Iim j c Gn dx = lim (n J r F(x + 1/n) dx - n j c 
F(x) dx) 

a a a a 

( J c+ 1/n J c ) = lim n F dx - n  F dx  , a+ 1/n a 

by Example 25 ,  p .  75 . So 

J c � j c+ 1/n j a+ 1/n ) F' dx = lim n Fdx - n F dx  = F(c) - F(a), 
a c a 

since F is continuous by Theorem 9 .  Hence J c (F' - f)  dx = 0 for each c E 
a 

[a , b] , so F' = f a.e .  by Theorem 1 1 .  
Now consider the general case . Since we may consider r and r separately, 

we may suppose f"> 0. I..etfn(x) = min (f(x), n) and write 

Hn(x) = j x (f-fn) dt. 
4 

Then, for each n ,  Hn is a non-negative monotone increasing function. By the 
corollary to Theorem 9, H� exists a .e .  in [a , b ]  and when defmed, H� "> 0. Since 
fn is bounded 

d J X 
• 

dX fn dt = fn(x) a.e .  1n [a, b] . 
a 

So , a.e . in [a , b] and for each n ,  

t d d J X 
F (x) = dx Hn(x) + dx fn dt "> fn(x). 

So F' "> f a.e .  in [a , b ] . Hence 
a 
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b b J . F' dx ;;,.  J f dx = F(b) - F(a). 
tJ I tJ 

[Ch. 4 

But by Theorem 10, applied to F, J b 
F' dx :so;; F(b) - F(a). So j b 

F' dx = 
a a 

J b 
f dx.  But F' ;;,.  f a.e . and so F' = f a.e .  in [a, b) . 0 

a 

Corollary : Let f be integrable with indefmite integral F, then F' = f a.e. 

Exercises 

17 .  Show that if f is a fmite-valued step function on [a , b] with indefinite 
integral F, then whenever F' exists, F' = f. 

1 8 .  Give an example where F' = f does not hold even when F' exists. 
19 .  Show that Theorem 10  need not hold iff is not monotone increasing. 
20. Find analogues of Theorem 10 for the cases (i) f monotone decreasing on 

[a, b ] , (ii)fEBV[a, b] .  
2 1 . Show that Theorem 9 does not characterize indefmite integrals , that is : 

there exist continuous functions of bounded variation which are not in
defmite integrals. 

22 . Let X be a measurable set of positive finite measure-. Show that 

lim m(X n (x - h, x  + h)) _ 
2h 

- XX  a.e .  

4.6 THE LEBESGUE SET 

In this section we obtain, in Theorem 14, an interesting property of integrable 
functions which although it will not be used in this book is of importance in 
applications (see [3] ). 

Theorem 13 : If f E L(a, b) where (a, b) is a fmite interval, then there exists a set 
E !;  (a, b) such that m( [a, b]  - E) = 0 and 

1 J x+h 
lim -h 1/(t) - � I dt = 1/(x) - � I  

h-+0 X 

for all real � and all x E E. 

Proof: The last theorem gives the result immediately for a single value of �, but 
then considering all values of � would give an uncountable number of exceptional 
sets of measure zero . To avoid the difficulty we suppose that {13n } is any sequence 
dense in A ,  for example : the rationals in some order. For each n ,  Kn is defmed 
by 
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Kn(t) = lf{t) - J3n I , (4.3) 
so that Kn E L(a, b). By Theorem 1 2 ,  there exists En � (a, b) such that m((a, b) 
- En ) = O and 

1 I x +h lim -h Kn(t) dt = gn(x), for x E En .  h�o x 

00 00 

Let £ = () En , then m((a, b) - E) � B m((a , b) - En) = O. For E > O and 
n= I  n= l  

� E A choose n so that 113n - � I <  €/3 . Then for all t E [a , b]  

llf(t) - � 1 - l .f{t) - J3n II � I J3n - � � < €/3 . 

l l I x +h 1 J x+h I 1 J x +h € € So h x lf(t) - � I  dt - h x · 
lf{t) - 13n l  dt <. Ji x 3 dt = 3·  

Hence , from (4.3), we have 

.!. j x +h 1/(t) - � I dt - l.f(x) - � I <. I.!. J x +h 1/(t) - � I  dt -h X h X l j x+h 1 j x+h 
h 1/(t) - J3n I dt + h Kn(t) dt -Kn(x) + I J3n - �� < 

X X 

< � + !. + � = € 3 3 3 
for x E E  and I h i < 6 (E,n). But n depends only on € and �,  so the result follows . D 
Theorem 14 :  Let fE L(a, b) where (a, b) is a fmite interval ; then 

. 1 1 h lim -h lf(x + t) -f(x)l dt = 0 a .e .  in [a, b] . h�o o 
Proof: By Example 25 , p. 75 , this is equivalent to 

1 J x+h 
lim ·h- l.f(t) -f(x)l dt = 0 a.e .  in [a, b] . h�o x 

But the last theorem, with � = f(x), gives the result if x E E where m( [a, b] - E)  
= 0, as required. D 
Defmition S :  If fE L(a, b), the set of points x E [a, b]  such that 

lim hl j h 
lf(x + t) -[(x)l dt = 0 h�o o 

is called the Lebesgue set of f. 

Example 10: �how that the Lebesgue set of a function fE L(a ,  b) contains any 
point at which f is continuous .  
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Solution : Let f be continuous at x .  Then V € > 0, 3 6 > 0 such that lf(x + t) -

J(x)l < e for l t l < 6 .  So for 0 < I  h i < 6 

1 J h 
h .  0 li(x + t) -/(x)l dt < e. 

So the limit as h � 0 exists and equals zero . 



CHAPTER 5 

Abstract Measure Spaces 

In this chapter definitions of measurable as applied to sets and functions are 
provided for abstract spaces and we present in this general setting the main 
results of Chapters 2 and 3 .  We show in Sections 5 . 1 -5 .3 how a measure on a 
ring of sets can be extended to one on a generated a-ring. The work of Chapter 2 
where we went from a measure on finite unions of intervals to Lebesgue measure 
is an example of such an extension. The use of a ring of sets, which generalizes 
the notion of an algebra of sets, is necessary if the work of Chapter 2 is to be 
fitted into the general theory . The theory will be essential later in Chapters 9 
and 10.  The notions of measure and integration on abstract spaces arise also in 
applications, especially in the theory of probability which may be regarded as 
concerned with special results on classes of measurable functions on spaces of 
total measure one . 

5 .1  MEASURES AND OUTER MEASURES 

We consider general spaces and generalize many of the results of Chapter 2. 
Those results, for example Theorem 10, p. 36 of Chapter 2, which depend on 
the idea of open sets are more difficult to extend and will not be examined in 
the general case . 

Defmition l : A class of sets ?l , of some fixed space is called a ring if whenever 
E E 1l and F E  '1l then E U F and E - F belong to 1l . 
Example 1 :  The class of finite unions of intervals of the form [a , b) forms a ring. 

Defmition 2:  A ring is called a a-ring if it is closed under the formation of 
countable unions. 

Example 2 :  Show that every algebra is a ring and every a-algebra a a-ring but 
that the converse is not true . 

Solution : The first part follows from Defmitions 3 and 4, p. 30, as E - F = 
C(CE U F). For the second , consider the a-ring of all subsets of [0, 1 ]  which are 
at most countable . 

93 
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If U A a E (>5 where the A a are the sets of the a-ring S , then S may be 
regarded as a a-algebra on the space UAa . The a-ring considered in Example 2 
shows that this need not occur . 

Theorem 1 :  There exist a smallest ring and a smallest a-ring containing a given 
class of subsets of a space ; we refer to these as the generated ring and the generated 
a-ring respectively . 

Proof: The proof of Theorem 7,  p .  32 ,  with the appropriate replacements for 
'algebra' and 'a-algebra' applies. D 

Notation : We will write rS (� ) for the a-ring S generated by the ring R ;  we 
write fle(� )  for the class consisting of S (R ) together with all subsets of the sets 
of S ( � ). A class of sets with this property , namely that every subset of one of 
its members belongs to the class, is said to be hereditary. 

Clearly 3{ ( � ) is a a-ring and is the smallest hereditary a-ring containing � . 
Indeed Je (1i ) = Je ( S (1i )) = J{ (flf( ?i )), the proof following as in Theorem 7, 
p. 32,  as the intersection of hereditary a-rings is again an hereditary a-ring . 

Defmition 3 :  A set function p. defmed on a ring � is a measure if (i) J..L is non
negative , (ii) JJ(�) = 0, (iii) for any sequence {An } of disjoint sets of Jl such that 

00 U An E � , we have 
n= l  

00 

If � is a a-ring, the condition U An E � is clearly redundant . 
n= l  

Defmition 4: A measure p. on 1i. is complete if whenever E E 1l , F � E and 
p.(E) = 0, then F E  1i . 
Defmition S :  A measure p. on fl. is a-fmite if, for every set E E GJl ,  we have E = 

00 U En for some sequence lEn ) such that En E 1l and p.(En ) < oo for each n . 
n= l  

Example 3 :  Show that Lebesgue measure m defined on :l!C, the class of measur
able sets of A ,  is a-finite and comp1lete . 

Solution: :M is a a-algebra (Theorem 4, p .  30) and so is a ring, on which m is 
defined . Take En = E n (-n ,  n) to get a-fmiteness. Completeness follows from 
Example 4,  p .  30. 

Defmition 6: If 1l is a ring, a set function p.* defmed on the class 9e(1l ) is 
an outer measure if (i) JJ* is non-negative, (ii) if A c B, then p.*(A )  < p.*(B), 
(iii) JJ*((/J) = 0, (iv) for any sequence (An ) of sets of 3e( fl. ), 
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p*(91 
An) ..;; nBl p

*(An), 

that is , JJ* is countably subadditive . 

Example 4:  Lebesgue outer measure m * as defined in Chapter 2 is an outer 
measure in the sense of Definition 6. 

We easily obtain from Definition 3 that a measure is fmitely additive and 
from Definition 6 that an outer measure is fmitely subadditive . 

Example S: Show that if A, B E f and A � B then JJ(A) � JJ(B). 

Solution : B =A U (B - A) and as the measure ll is fmitely additive the result 
follows. 

Exercises 

1 .  Describe the ring generated by the finite open intervals. 
2 .  Let $ be the class of subsets of A such that E E cS if either E or CE is at 

most countable . Show that $ is a o-ring. 
3 .  Let A, B be subsets of a set C, let A , B, CE f and let JJ be a measure on fl . 

Show that if JJ(A) = JJ(C) < oo, then p(A n B) = p.(B). 
4.  Show that if J..1. is a non-negative set function on a ring and is countably addi

tive and is fmite on some set, then J..1. is a measure. 
5 .  Let J..l. be a measure on a ring fl. , then p defmed by p(A ,  B) = JJ(A � B) is a 

pseudo metric on 11. • 

5 .2 EXTENSION OF A MEASURE 

In this section we generalize the procedure by which the outer measure m * and 
the measure m were obtained in Chapter 2 .  

Theorem 2 :  Let lA; ) be a sequence in a ring fl. ,  then there is a sequence (B1 ) of 
N N 

disjoint sets of f such that B1 c A; for each i and U A1 = U B; for each N, so 
i= 1 i= 1 

00 00 

that U A; = U B,. 
i= 1 i= 1 

n -1 
Proof: Define (B, } inductively by B 1 =A 1 , Bn = An - U B; for n > 1 .  Clearly 

i= 1 

B; E 'fl and B1 � A; for each i . Also, as Bn and 0 B1 are disjoint we have Bn n 1_1 
k k 

Bm = (/J for n >m . Finally, we have B1 =A1 and if U B; = U A;, it follows that 
I= 1 i= 1 . 
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Bk+t u(� a,)=( Ak+t -� B;)u � B; 

as required . D 

k k 
= Ak+l U u B; = Ak+l U u A; ;::::: I i= I 

00 

Example 6 :  Show that �(1/. ) = [E: E � U En , En E 11. ]  . n= l  

[Ch. 5 

Solution : It is easily checked that the right-hand side defmes a class of sets 
which is hereditary , contains 11. , and is a a-ring . So it contains �(11. ) . But if 

00 

En E fl. for each n ,  we have U En E $ ( f )  and so each subset belongs to 
n= l  

�(! ). So we get equality . 
The result of Example 6 ensures that the function JJ* appearing in the next 

theorem is well defined . The defmition of JJ* extends that of Lebesgue outer 
me asure m * rather than the quite different method used to defme the Hausdorff 
outer tneasure in Section 2 .6 . 

Theorem 3 :  If J..1. is a measure on a ring f. and if the set function J..1. * is defmed on 
3t'(1l ) by 

p.*(E) = inf [f; p.(En): En E 'fl , n = 1 ,  2 , . . .  , E  c 0 En] , (5 . 1 ) n= 1 n= 1 
then (i) for E E fl. , p.*(E) = JJ(E), (ii) JJ* is an outer measure on 3f( fl. ). 

Proof: (i) If E E fl. , (5 . 1 )  gives p. *(E) � JJ(E). Suppose that E E fl. and E S 
00 

U En where En E f. .  By Theorem 2 we may replace the sequence (E; n E) by 
n= 1 

00 

a sequence (F1} of disjoint sets of 'R , such that F1 � E1 n E and U F1 =E. Then, 1= 1 
by Example 5 ,  JJ(F1) � JJ(E1) for each i. So 

p.(E) = �o�(Q F;)= 1�1 p.(F;) ..;; i[;t p.(E,). 

It follows that JJ(E) � JJ*(E) and so (i) is true . 
To prove (ii): JJ*((/J) = JJ((/J) by (i); the only other property of an outer measure 

which is not immediate , namely countable subadditivity , is shown as for m* in 
Chapte r 2 .  We suppose that (E; ) is a sequence of sets in fJe( fl). From the defmi
tion of JJ* , for each € > 0, we can find for each i a sequence (E;,j ) of sets of 1l 

00 00 

such that E; s;; U E;,j and t= JJ(E;,j) � JJ*(E;) + E/2;. The sets E;,j form a 
J= I J= 1 
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00 

countable class covering U E1, so 
1= 1  

�o�•(q £,)"- ,B. j�l �o�(E,,j) "- ,�: - �-�·<£,) + €. 

But e is arbitrary , so the result follows. 0 
We defme measurability as in Defmition 2,  p .  30. 

97 

Defmition 7 :  Let p.* be an outer measure on 3e( f). Then E E :X(fl ) is ll*
measurable if for each A E 3e( 11. )  

p*(A)  = p*(A r\ E) + p.*(A n CE). (5.2) 

Theorem 4: Let p.* be an outer measure on f!_{( Cfl.)  and let � • denote the class 
of p.*-measurable sets. Then $ • is a o-ring and p.* restricted to � • is a complete 
measure . 

Proof: That $ • is closed under countable unions follows precisely as iD. Theorem 
4,  p. 30. It remains to be shown that if E, F E cS* then E - F E  �· . Let A E 
�( 1/.)  and write A as the union of the four disjoint sets A 1 = A  - (E U F), 
A 2  = A  n E n  F, A3  = A n (F - E), A4 = A n (E - F). Since F is measurable , 
(5 .2) gives 

(5.3) 
. 

Replacing A in (5 .2) by A 1 U A4 and using the fact that E is measurable gives 

p.*(A 1 U A4 ) = p.*(A t ) + p.*(A4 ). (5.4) 

Replacing A in (5 .2) by A 1 U A2 U A 3  and using the fact that F is measurable 
gives 

p.*(A t U A2 U A 3 ) = p*(A 1 ) + p.*(A2 U A3 ). 
Then (5 .3), (5 .4) and (5 .5) give 

p. *(A) = p. *(A 4 )  + p. *(A 1 U A 2 U A 3 ), 
which is the condition for E  - F to be measurable . 

(5 .5) 

Suppose that (E1} is a sequence of disjoint sets in $ * .  Then exactly as in 
00 00 

Theorem 5 , p .  3 1 ,  we have p.*(U £1)= B p*(E1). So p* is a measure on the 
i= 1 I= 1 

J-ring $ * 
Also every set E E 3{,( 1/.)  such that p.*(E) = 0 is p*-measurable , for if A E 

Jf(1l ), 
p.*(A) � p.*(A n E) + p*(A n CE) 

� p.'"(E) + p.*(A)  = p*(A) . 
So equality holds and E is p.*-measurable . In particular if E E $ • and p.*(E) = 0 
and F S E then it follows that F E  � • ,  so p* is a complete measure on � •. 0 
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Theorem 4 has been proved for an arbitrary outer measure JJ* on f}{( <fl.). If 
JJ* has been obtained from a measure 11 on <fl. as in Theorem 3 ,  p .  96, we will 
denote the measure obtained by restricting p. * to $ *, by fl. Theorem 3{i) shows 
that jl is an extension of JJ. 

Theorem 5 :  Let JJ* be the outer me asure on 9e(W)  defined by J..1. on 1l , then $ * 
contains $ ( 1l ), the a-ring generated by fl. . 

Proof: Since $ • is a a-ring it is sufficient to show that 1l c $ * .  If  E E 1l , 
A E 9e('R )  and € > 0, then by the definition of JJ* in (5 . l )  there exists a sequence 

00 

lEn ) of sets of fl. such that A c U En and 
n= l  

00 00 00 

J..l. *(A ) + € � B JJ(E n ) = B JJ(E n n E) + B JJ(E n n CE) n= l  n= l  n= l  
as ll is a measure . So 

J..1. *(A) + € � J..1. *(A n E) + J..1. *(A n CE). 
But € is arbitrary so 

J..1. *(A)  � J..1. *(A n E) + J..1. *(A n CE). 
The opposite inequality is obvious, so E E $ * ,  giving the result . D 

Example 7 :  Show that if J..1. is a a-fmite measure on 1l , then the extension jl of 
ll to � • is also a-finite . 

Solution : Let E E $ • .  Then by the definition of fl the re is a sequence lEn ) of 
00 

sets of 1l such that p.(£) � B JJ(En ). But each En is , by hypothesis , the union 
n= l  -

of a sequence (En, t ' i = 1 ,  2,  . . . )I of sets of fl. such that JJ(En, ;) < oo for each n 
and i. So 

00 00 

fl(E) � B B JJ(En, ;), n= 1 i= 1 
and so E is the union of a countable collection of sets of finite p.-measure . 

Example 8 :  In Chapter 2 ,  when Lebesgue measure was constructed , fl. was the 
ring of flnite unions of intervals [a , b), $ (fl. )  was the a-algebra of Borel sets, 
$ • the a-algebra of (Lebesgue) measurable sets and $ * was greate r than $ (fl.). 

J..1. on f. was given by JJ(U In)= f /(In ). where I1 , • • • , IN were disjoint in-n= I n= I 
tervals; p. was denoted by m .  

Solution : It is easily seen that J..1. as defined is in fact a measure on fl. (see Chap
ter 9 ,  p .  1 5 5 ,  for details) . That $ * :) cS (! ) follows from Theorem 1 8 , p.  43 . 
The remaining statements follow from the defmitions. 
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Exercise 

6 .  Show that the Hausdorff measures of Section 2 .6 are complete .  

5 .3 UNIQUENESS OF THE EXTENSION 

Using the definition of J1 * given in Theorem 3 ,  p .  9 6 ,  we have extended the 
o r iginal measure p. on 11. to a complete measure j1 on S * ,  a a-ring containing Gfl • 

The same procedu re may be applied to j1 on S * , but , in fact , the same measure 
and a-ring are ob tained , that is : (ji) = fl and ( S *)* = S * . This follows from the 

next theorem. 

Theorem 6 :  The oute r  me asure p.* on �( Cfl. )  defined by p. on 11. as in Theorem 
3 ,  and the corresponding ou ter measure defined by j1 on $ (<fl. )  and fi on S * are 
the same . 

Proof: We first ob serve that  the outer  measure (j* defined by a measure 13 on a 
a-ring GJ satisfies ,  for E E :X( tfl)  

(j*(E) =-.inf[(j(F): E c F E  <jJ ]  . (5 .6) 

This is the case since 

13*(£) = inf[J�1 13(En) :  E S nul �n . En E W l 
and replacing the sets En by disjoint sets Fn E fl ,  such that Fn c En and 

00 00 

U En =  U Fn , we get n= l n= l  

nBl 13(En P � ntl 13(Fn ) = 13(01 Fn )� 13*(£) 
so (5 .6) follows. 

Since �(! )  = JJe( $(<fl. )) = f){( $ *), the outer measures to be considered 
have the same domain of definition .  As p. = Ji on fl. , 

iJ.*(E) = infu= 1 IJ.(£ n ) : E c nul En , En E 'fi l 
� inf[J�

1 
p.(Fn ): E c nul Fn . Fn E $('fi )l . 

= inf[p.(F): E c F E $  (fl. )] by (5 .6) 

� inf[p(F): E c F E $ * ] as S * � $ (Gfl ) 
� p.*(E). 

So equality holds throughout and so by (5 .6) the oute r  measures are equal .  D 

Corollary : Since the outer  measure on 1Je( 6fl )  dete rmines the measurable sets and 
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their measures, the measure and measurable sets obtained by extending , as in 
Theorem 3 ,  J..L on 11. ,  jl on � ( <fl.) and Jl on $ * are the same , namely fl on $ * .  

Without some restrictions on Jl its extension to $ (1/. ) need not be unique, 
but we have : 

Theorem 7 :  If J..L is a a-finite measure on a ring 11. , then it has a unique extension 
to the o-ring S ( <W ). 
Proof: By Theorem 3 ,  p .  96 , j1 on $ (<fl.) is an extension of p.. Suppose that v is 
a measure on � ( 1/. )  such that JJ = v on Gfl ; we wish to show that fl = v on S (1/. ). 

00 
If E E cS ( CW) and e > 0, 3 lEn l , En E <R , E � U En such that il(E) + € � 

00 00 

n= l  

� iJ,(En ). But A = U En may , by Theorem 2,  p .  95 ,  may be writ ten as the 
n= l  n= l  
union of disjoint sets Fn , Fn c En , Fn E fl. ;  so we get 

00 00 

Jl(E) + e � L J..L(Fn ) =  � v(Fn) = v(A) � v(E). 
n= l  n= l  

So Jl(E) � v(E). 
Suppose that E E cS (CW  ), fl(E) < oo and e > 0, then as above the re exists A :::> E 

00 

such that Jl(A)  < Jl(E) + e where A =  U Fn , the se ts Fn being disjoint sets of 
n= l  

<R , so that P,(A)  = v(A ). So 

p.(E) � Jl(A) = v(E) + v(A - E). 
But, by the first part , v(A - E) �  p.(A - E), also since p.(E) < oo we have p.(A - E) 
< e . So Jl(E) � v(E) + e. Hence p.(E) = v(E) if Jl(E) < 00• But by Example 6,  and 

00 
as J..L is a-finite , for each E E $ ( CW )  we have E c U En where , for each n, En E 

n= l  
00 

rtl and J..L(En ) < oo . Then we may write E = U Fn where the Fn are disjoint sets 

00 00 

n= l  

Jl(E) = � J..L(Fn) =  � v(Fn) = v(E). D 
n= l  n= l  

Exercise 

7 .  Give an example of a non-unique extension of a non a-finite measure . 

5 .4 COMPLETION OF A MEASURE 
We show in the next theorem how a measure which is not complete may be 
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extended to one which is by adjoining to the original ring the subsets of the sets 
of measure zero. This could , for instance , be used to construct Lebesgue measure 
given the measure m on the Borel sets. It will also be relevant in the study of 
product measures in Chapter 10  where non-complete measures arise in a natural 
way . 

Theorem 8 :  If J..L is a measure on a a-ring $ , then the class � of sets of the form 
E � N for any sets E, N such that E E $ while N is contained in some set in $ 
of zero measure , is a a-ring, and the set function fl defined by fl(E � N) = J..L(E) 
is a complete measure on �-

Proof: It is convenient to have two different descriptions of the sets of $ so we 
prove the set-theoretic identity 

E � N =  (E -M) U (M n  (E � N)) (5 .7) 

for any sets E,  M, N such that M :::> N. Let x E E � N, then if x E M we have 
x E M n (E � N), while if x E CM we have x E CN so x E E - N and hence 
x E E - M. To get the opposite inclusion in (5 .7), suppose that x belongs to the 
right-hand side . If x E M  n (E � N),_ then x E E � N; if x E E - M, we have 
x E E -N S. E � N. 

Let D E �' D = E � N, as above , with N c M E  $ where JJ(M) = 0. Then, by 
(5 .7) D = F U A where F n A  = � and F E $ and A c M E $ with JJ(M) = 0, 
and since for F, A disjoint we have F U A = F � A the two characterizations of 
the sets of $ are equivalent. Now if D; E $, i = 1 ,  2, . . . , on writing D; = F1 U A; 

00 

we see that U D1 E �. If D1 = E1 � N1 and D2 = E2 � N2 belong to $ we 
i= l 

have, using Example 1 ,  p. 16 ,  

D1 � D2 = (E1 � E2 ) � (N1 � N2 ). 

So D1 d D2 E �' and so D1 -D2 = (D1 U D2 ) � D2 E �- So � is a o-ring. 
Also D1 � D2 = (/J only if E1 � E2 = N1 � N2 . So , if E1 a N1 = E2 � N2 , 

we have J..L(E 1 � E2 ) = 0 and hence J..L(E 1 ) = J..L(E2 ). So jl is unambiguously defmed . 
Also fl is a measure; for clearly p.(�) = 0, and if lD1 } is a sequence of disjoint 
sets of �' D1 = F; U A1, say, in the notation used above , so that F1 n Ai = � for 
all i and j, then 

ji(UD;) = ji(UF, U UA1) = fl(UF1 � UA1) = JJ(UF;) = � J..L(F1) = 

= � p.(F1 U A ;) = � p.(D1). 
So fl is countably additive . 

Finally p. is complete, for let D C D0 E � where P.(D0 )  = 0. So D0 = E0 � 
N0 where N0 c M0 , E0 , M0 E S , JJ(E0 ) = J..L(M0 )  = 0, and so D0 S: M� = E0 U 
M0 E S and JJ(M� ) = 0. Then D = E  � N with E = (/J , N = D  £. E0 U M0 and so 
D E �. 0 
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Example 9 :  Show that the extension Ji of Theorem 8 is unique in the sense that 
if p ' is a complete measure on a a-ring $ '  � $ and J.l ' = p. on $ then p. '  = jl on 

l. 
Solution : Since JJ. '  is complete it is easily seen that $ ' :::> S. For D E S we have 
as above D = F U A ;  F, A disjoint sets with F E  S , A S M E  $ with p.(M) = 0. 
So 

JJ '(D) = JJ '(F) + JJ '(A)  = JJ(F) = Ji(D). 
We call jl on � the completion of J.l on $ 

Theorem 9: The completion of a a-finite measure is a-finite . 
Proof: Let D E �- As in Theorem 8 ,  D = F U A where F E  $ and p.(A)  = 0. So 

00 00 
F = U F; where JJ(F1) < oo, aad hence D = A  U U F; is a countable union of I= 1 i= 1 
sets of fmite jl-measure. D 

Exercise 

8. Let jl on � be the completion of J.l on $ .  Show that , if D E $, there exists 
B E  � such that p.(D Ll B) = 0. 

S.S MEASURE SPACES 

In Chapter 2 we started with the ring of fmite unions of intervals of the form 
[a, b) and obtained the a-ring of measurable sets . In that case the a-ring ob tained 
was a a-algebra. Since a a-algebra is the most frequently occurring case we 
restrict ourselves to these in what follows. Some definitions are somewhat simpler 
for a-algebras, for example that of measurability of functions. For an account 
covering the general case see for example [ 5 ]  . 

Defmition 8 :  A pair [X, $ D where $ is a a-algebra of subsets of a space X, is 
called a measurable space. The sets of $ are called measurable sets . 

Defmition 9 :  A triple [X, $ ,  JJ.] is called a measure space if [X, $ D is a measur
able space and J.l is a measure on $ 

Example 10: [ A, :M, m]  and [ A , 1J ,  m D are measure spaces, where 13 denotes 
the Borel sets, and where in the second example m is restricted to 13 .  

In the latter case m is called Borel measure on the real line . 

Example 1 1 : Let [X, $ D be a measurable space and let Y E $ . Then if � ' = 
[B n Y: B E  � ] we have that [ Y, $ ' D is a measurable space . 

In the remainder of this chapter , unless stated otherwise , we will deal with a 
ftxed measure space [X, $ , J.l D .  Many of the definitions and results of Chapter 2 
apply in general , with only changes of notation. We quote these for reference . 
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Theorem 10 :  Let lE;) be a sequence of measurable sets. We have 

(i) if E1 c E2 � • • •  , then �o�( 01 En)= lim �o�(En). 

(ii) if E 1 � E2 :::> • • •  and J.L(E 1 ) < 00, then J.t( n En\= lim �o�(En)· n= l  J 
Proof: See Theorem 9, p. 33 . D 
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Defmition 10: Let f be an extended real-valued function defmed on X. Thenf is 
said to be measurable if V a, [x : f(x) > a] E � .  

Measurability of functions is usually associated with a measure though, 
strictly , only X and $ are involved . 

00 

Example 12 :  Let [X, S D be a measurable space and let X =  U Xn where, for 
n= l  

each n ,  Xn E $ and Xn n Xm = (/J for n-,:1= m . Write � n = [B n xn : B E � ] .  
Show that f is measurable with respect to [X, $ D only if, for each n ,  its restric
tion fn to Xn is measurable with respect to [Xn , $ n ] ,  and conversely if, for 
each n ,  the functions fn are measurable with respect to [X n , � n ] and f is defmed
by f(x) = fn(x) when x E Xn , then f is measurable with respect to [X, $ ] .  

Solution : For each a ,  [x : fn(x) > a] = [x : f(x) > a] n Xn sofn is measurable 
with respect to the measurable space [Xn , $ n D .  The converse follows from:  

00 

[x : f(x) > a] = U [x : fn{x) > a] . 
n= I  

Theorem 1 1 :  The measurability off is equivalent to 
(i) V a,  [f(x) � a] E $ , 
(ii) v a, [x : f(x) < a] E $ , 
(iii) v a, [x : f(x) � a ] E $ . 

Proof: See Theorem 1 2, p. 38. D 

Example 13 :  (i) If f is measurable , then [x : f(x) = a] is measurable for each ex
tended real number a; (ii) the constant functions are measurable ; (iii) the charac
teristic function XA is measurable if, and only if, A E $ ;  (iv) a continuous 
function of a measurable function is measurable (cf. Exercise 35 ,  p. 42). 

Theorem 12 :  If c is a real number and f, g measurable functions, then f + c, cf, 
f + g, g -f and fg are also measurable . 

Proof: See Theorem 1 3 ,  p .  39 . D 

Theorem 13 :  If {1 is measurable, i = 1 ,  2 ,  . . .  , then sup fi, inf {;, sup fn , 

inf fn , lim sup fn and lim inf fn are also measurable . 
1 ���n 1 �i�n 
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Proof: See Theorem 14 ,  p .  39 . D 

Definition l l :  If a property holds except on a measurable set E such that p.(E) ::::: 
0, we say that it holds almost everywhere with respect to p., written a.e .  (p. ). 

Reference to p. may be omitted if it is obvious which measure is being considered .  

Example 14 :  The limit of a pointwise conyergent sequence of measurable 
functions is measurable . 

Example lS:  Let f = g a.e .(J.t), where p. is a complete measure . Show that iff is 
measurable , so is g. 
Solution : Write E = [x : g(x) > a] ,  £1 = [x : f(x) > a] ,  E2 = [x : f(x) =#=g(x)] .  
Then E1 and E2 are measurable and , as J..L is complete , so is E n  E2 • So E = 
(E 1 - E2 ) U (E n E2 ) is measurable . 

We define ess sup [, ess inf [, and essentially bounded as in Defmitions 1 0, 
p .  40, 1 1 , p .  4 1 ,  and 1 2 , p. 4 1 , and the properties shown there hold in general . 

Exercises 

9 .  Let (an } be a sequence of non-negative numbers and for A c N let J..L(A) = 

_B an . Show that [N ,  Gf (N), JJD  is a measure space . Show also that the 
nEA 
measure J..L is complete , and if an < oo, for each n ,  it is a-fmite . 

10 . Let [Xn , � n D be a sequence of measurable spaces, where the Xn are disjoint 
subsets of a space X. Show that [ Y, $ D is a measure space where Y = 

U Xn and cS = [ U En : En E cSn for each n] . n= l  n= l  
1 1 .  If E C A is a measurable set  of measure zero which is not a Borel set ( cf. 

Exercise 42 , p .  45), is XE = 0 a .e .  with respect to Borel measure? 
1 2 . Show that if 1J. is not comple te , then f measurable and f = g a.e .  do not 

imply g measurable . 

For the following exercises we recall Defmition 6,  p .  33 . 
1 3 .  Let lEnJ be a sequence of subsets of X and let F c X; show that 

(i) F - lim inf En = lim sup (F - En), 
(ii) F - lim sup En = lim inf (F - En). 

14 .  Show that if x* and x. are respectively the characteristic functions of 
lim sup En and lim inf En , then x * = lim sup XEn and x. = lim inf XEn . 

1 5 .  Let En E cS ,  n = 1 ,  . . .  Show that 

(i) JJ(lim inf En ) �  lim inf JJ(En), .. 
(ii) if JJ(X) < 00 we have lim sup J..L(En) � JJ(lim sup En ), and that the 

condition J..L(X) < oo is necessary . 
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5 .6 INTEGRATION WITH RESPECT TO A MEASURE 

lOS 

We now consider the generalization of the defmitions and results of Chapter 3 . 
Much of the work of Sections 3 . 1  and 3 .2 holds for a general measure space . 
Where proofs need only a variation of the notation we refer to the version given 
for the real line . 

Defmition 12 :  A measurable simple fwtction 4> is one taking a fmite number of 
non-negative values, each on a measurable set ;  so if a1 , • • •  , an are the distinct 

n 
values of 4>, we have f/J = L a1 x..t1 where A1 = [x : 4>(x) = a1] . Then the integral 

i= l 
of 4> with respect to J..L is given by 

n J 4> dJ..L = L a1 J..L(A;). 1= 1  

Defmition 13 :  Let f be measurable , f : X � [0, oo] . Then the integral off is 
f f dJ..L = sup [f 4> dJ..L : 4> <:{, 4> a measurable simple function] . 

Defmition 14 :  Let E E $ ,  and let f be a measurable function f :  E � [0, oo] ; 

then the integral off over E is JE f dll = J f XE dll. 

The remarks of Example 2 ,  p .  5 5 ,  are valid for Definitions 12  and 1 3 .  The 
analogues of Theorem 1 ,  p.  56 , and Theorem 2, p. 56, are true apart from the 
obvious changes in notation . 

Theorem 14 (Fatou's Lemma): Let ffn ) be a sequence of measurable functions, 
fn : X �  [0, oo] . Then lim inf f fn dp <: f lim inf fn <ij.t. 

Proof: See Theorem 3 ,  p. 57. D 
Theorem I S  (Lebesgue 's Monotone Convergence Theorem): Let Vnl be a 
sequence of measurable functions fn : X � [0, oo] , such that fn{x)t for each x, 
and let f = lim fn . Then f f dx = lim f fn dJ..L. 
Proof. See Theorem 4, p. 57.  D 

Theorem 16 :  Let f be a measurable function, f :  X �  [0, oo] . Then there exists 
a sequence l4>n ) of measurable simple functions such that , for each x , 4>n(x) t 
f(x). 

Proof: See Theorem 5 ,  p. 58. 0 

Theorem 17:  Let lfn } be a sequence of measurable functions, In : X �  [0, oo] ; 
then 
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Proof: See Theorem 6, p. 58 ,  and Theorem 7 ,  p. 59 .  0 

We now have a new result which shows how integrals can be used to construct 
new measures with a special continuity property. 

Theorem 18:  Let [X, $ ,  J..L D be a measure space and f a  non-negative measurable 

function. Then f/J{E) = J 
E 

I dp is a measure on the measurable space [X, .S D .  If, 

in addition, f f <ij.t < oo then V e > 0,  3 6 > 0 such that , if A E $ and J..L(A) < 6 ,  
then ;(A) < e. 

Proof: The function 4> is countably additive since, if (Enl is a sequence of dis
joint sets of tS , 

�pl En)= f Xu En I dp = 
n'Bl J XEn I dp 

by Theorem 17 .  The other properties being obvious, 4> is a measure on [X, cS D .  
Write In = min (f, n ). Then In is measurable , fn t f and lim fIn dJ..L = f f dJ..L by 
Theorem 15 ,  p. 105 .  So if f f dp < oo, then v € > 0, 3 N such that 

f fdp < J IN dp + €/2. 

If A E .S and p(A) < e/2N we have } IN dp < e/2 . So take 6 = e/2N to get 
A 

J I dp = r (f -ltv) dp + J IN dp 
A JA A 

� Jif-IN) dp + e/2 < e. 0 

The positive and negative parts off, r and r respectively , have been defmed in 
Definition 4, p. 6 1 .  We recall the properties listed in Theorem 8, p. 6 1 .  

Defmition 1 S :  Iff is measurable and both f r <ij.t and f f- dp are fmite , then f is 
said to be integrable, and the integral off is f r <ij.t - f r <ij.t. 

So f is integrable if, and only if, Ill is . The notation f E L(X, J..L) is used to 
indicate that f belongs to the class of functions integrable with respect to p. The 

notation J 
E 

I dp means J I XE dp, where I E L(X, p) and E E .S .  If fXE is in· 

tegrable we write f E L(E , J..L) or just f E L(E). 

Defmition 16 : As in Definition 7, p. 6 1 ,  we define f f dJ..L = f f CliJ - f r dJ..L 
provided at least one of the integrals on the right-hand side is fmite . 

Theorem 19 : Let f and g be integrable functions and let a and b be constants. 
Then af + bg is integrable and f (af + bg) <ij.t = a  f f dJ..L + b f g <ij.t. Iff = g a.e . , 
then f f dJ..L = f g <ijl. 
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Proof: See Theorem 9,  p .  6 1 .  D 
The results of this theorem extend to functions where the integrals are defined 

as in Definition 1 6 ;  the argument is that of Example 1 0 , p .  63 . 

Theorem 20 : Let f be integrable , then I f f dJ.L I � f lfi dJ,L with equality if, and 
only if, { �  0 a .e . or f� 0 a .e .  

Proof See Example 8 ,  p .  6 2 .  D 
The remarks after Theorem 9 ,  p .  62 ,  regarding functions defined a.e. still, 

of course , apply . 

Theorem 21 (Lebesgue '!; Dominated Convergence Theorem) : Let (/n l be a 
sequence of measurable functions such that lin I � g where g is an integrable 
function , and lim fn = f a .e .  Then f is integrable , lim f fn dJ.L = f f dJ,L , and 
lin1 f l fn - [, dJ.L = 0. 

Proof: See Theorem 10 ,  p .  63 , and Example 1 3 ,  p. 63 . D 
A continuous parame ter ve rsion of this theorem is obtained in Example 1 5 ,  

p .  64 .  

Theorem 22: Le t (/nl be a sequence of integrable functions such that 

n= l  
00 00 

Then � fn converges a.e . ,  its sum,{, is integrable , and f f dJ,L = � f {;. dJ,L. 
n= l  n= l  

Proof: See Theorem 1 1 , p .  64. D 

Exercises , 

1 6 .  Let E 1 , • • •  , E k be measurable sets and let F1 (j = 1 ,  . . .  , k) be the sets of 
points belonging to precisely j of the E; . Show that 

k k 
� J.L(E;) = � iJ.L(Fj). 

i= 1 j= 1 

1 7 . Let g be a measurable function such that g � h E L(X, J.L). Then f g dJ,L exists 
in the sense of Defmition 16 ,  p.  106. 

1 8 . If f E L(X, J.L) and g is a measurable function such that lgl � klfl a.e . ,  where 
k is a constant , then g E L(X, J.L). 

19 .  Let E and F be measurable sets, f E L(E) and J.L(E � F) = 0 then f E L(F) 

and J
E

f d�o� = J
F

fd�o�. 

20. (Tchebychev's inequality). Let f be a measurable function and let A = 

[x : f(x) ;;;;.:. 0] . Then for c > 0, �o� [x :  f(x) > c] ..;; c-1 L f d�o�. 
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2 1 . If IE L(X, J..L), then the set [x : .f{x) :#= 0] has a-finite measure . 
22 . Let In E L(X, J..L), n = 1 , 2 ,  . . .  and let g = lim sup In , h = lim inf In . Then 

the sets G = [x : g(x) :;t 0] and H = [x : h�) =I= 0] have a-finite measure . 
23 . Let [X, cS ,  JJ] be a measure space with cS = t (X) and JJ( [x ] ) = 1 for each 

x E X. Show that I E  L(X, J..L) iff I =  0 except on a sequence {x;) , f I dJ..L = 
00 

L .f{x;), this sequence is absolutely convergent and the value of the integral 
i= I 
is independent of the ordering of the sequence (x; ) . 

24 . Let ifn ) be a sequence of non-negative measurable functions, let lim In = I  
and In � I  for each n .  Show that f f dJ..L = lim f In dJ..L . 

25 . Let lin ) be a sequence of measurable functions and let lim In = I a .e .  Let 
lgn ) be a sequence of integrable functions such that lfn I � Kn and g = 
lim Kn a.e .  is integrable . Show that if f g dJ..L = lim f Kn dJ..L , then we have I 
integrable and f I dJ..L = lim f In dJ..L . 

26 . Use Fatou's Lemma, p .  1 05 ,  to obtain another proof of the result of Exer-
cise 1 5(i), namely that JJ(lim inf En) � lim inf J..L(En ). 

27.  Let En , n = 1 ,  2 ,  . . .  , be measurable sets such that � J..L(En) < oo. Show that 
x belongs to only finitely many En , for ahnost all x EX. 

28 . Let I be integrable and let En = [x : .f{x) � n)\) , where A >  0, for n = 1 ,  2 ,  . . .  

Show that (i) lim J f d�o� = 0 ;  and (ii) �o�(En) = o(n-1 ). n-+ oo  En 
29 . Let I be a function integrable with respect to Lebesgue measure , 1: R � 

[0 , oo] .  Write Fn = [x : .f{x/n) � n ] . Show that for each x outside a set of 
measure zero there exists a strictly increasing sequence {n1) such that 

00 
x e c U Fnt• 

I= I 
30. Use Theorem 18  to give an alternative proof of the result of Chapter 4, p. 

88 : if f is measurable on la,b] and J Y  f dx = O for a "y " b, thenf= O 
a 

a .e . in (a , b). 
3 1 .  Let I be measurable and let J..L(X) < oo; then f is integrable iff the series 

00 

L J..L [x : I II � n ] converge,s. Give the corresponding statement if JJ(X) = oo n= l  
or if the summation is from n = 0. 

32 . Let �-t(X) be finite and I a measurable function. Show that if lim f f" cijL 
exists and is fmite , then it equals J..L [x : .f{x) = 1 ]  . 

33 . Let E be a me� surable set and let IE L(E), I> 0 .  Show that 

lim J
E 

f"' d�o� = �o�(E). 



CHAPTER 6 

Knequalities and the Lp Spaces 

In this chapter we change our point of view and regard suitable classes of in 
tegrable functions as spaces in their own right . It is this spproach which distin· 
guishes analysis in this century from that in the last . The inequalities developed 
in Sections 6.3 ,  6.4 are important in examining the properties of these spaces 
and are also useful as computational tools; both aspects are kept in mind in what 
follows. The results have applications, for instance to the theory of Fourier 
series and to the representations of linear functionals on spaces of functions. 
The application to the Fourier transform will be examined in Section 1 0.4, and 
linear functionals are considered in Chapters 8 and 9 .  

6.1 THE LP SPACES 

DefiDition 1 :  If (X, � ,  �-t] is a measure space and p > 0, we defme LP(X, p.), or 
more briefly LP(p.), to be the class of measurable functions V: f lf1 P  d�-t < oo) ,  
with the convention that any two functions equal ahnost everywhere specify 
the same element of L'(p.). On the real line, if X = (a, b) and 1-1 is Lebesgue 
meuure we will write LP(a, b) for the corresponding space. 

Stricdy, the elements of the space LP (p.) are not functions but classes of func
tions such that in each class any two functions are equal ahnost everywhere. For 
example, the zero element of LP (p.) is V: f = 0 a.e .] . Since an)f two functions 
equal almost everywhere have the same integrals over each set of S , the distinc
tion1s not important for many purposes. We will write fE LP(p.) as an abbrevia
tion for: / is  measurable and J ill'  d,.t < oo. To ask, however, for the value of an 
element of L'(p.) at a particular point is, in general, meaningless. If p = 1 ,  we 
obtain the integrable functions which we denoted by L(X, p.) in the last chapter. 
We wiD use the alternative notation L1 {p) if we wish to emphasize that the 
above convention applies. 

�tlon l: I.At/E L'(p.), then the L' -norm off, denoted by II!U, , is given by 
(/111 11  di')LP .  

1 09  
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Clearly for f and g measurable and f = g a.e .  we have II flip = llg llp , so the 
norm can be considered as that of an element of LP (Jl). Also II flip = 0 if, and 
only if, f is the zero element of LP(p.), and l lafll = la l • 11[11 if a is a constant. The 
use of the term norm in Definition 2 is justified below in Theorem 8 ,  p. 1 1 5 , 
where the LP -norm (p � 1 )  is shown to have the other properties of a norm in 
the linear spar.e sense . 

Theorem 1 :  Let f, g E LP (p.) and let a, b be constants ; then af + bg E LP (}1 ). 
Proof: Clearly, if f E LP (p.), then af E LP (p.) for each constant a. Also if [, g E 
LP(p.), we have f + g E LP(p.) since 

If+  gl P <: 2P max (lfl P , lg iP ) � 2P (lflP + lg iP), 
giving the result . D 

If F is the element of LP(p.) containing the function f and G that containing 
g, then we define aF + bG as the element containing af + bg; this is easily seen 
to be independent of the particular f E F and g E G.  Hence Theorem 1 shows 
that LP(p.) is a vector space . We may use , accordingly , the same notation for 
elements of LP(p.) and for the functions of which they are made up . 

Defmition 3:  If [X, cS ,  J.t] is a measure space , we define L·(x, J.L), or just L-(Jl), 
to be the class of measurable functions ff: ess sup I fl < oo] , with the same 
convention as in Definition 1 .  Corresponding to Defmition 2 we have the L ·
norm: llfiL = ess sup lfl .  

Example 1 :  Show that L ·(x, J.L) is a vector space over the real numbers. 

Solution : Ess sup l af + bgl <: I a I ess sup lfl + I b l  ess sup lgl . 

Example 2 :  Show that if J.t(X) < oo and 0 <p < q � oo, then L q(p.) � LP(p.). 

Solution : (i) For q < 00, let f E L q (p.); then since lflP <: 1 + lfl q , an integrable 
function, we have f E LP (}J. ). 

(ii) q = oo: lflP <: ( ess sup lfl )P a.e . ,  and so is integrable . 

Exercises 

1 .  Show that iff, g E L 1 (p.), then lf2 + g2 1 11l E L 1 {p.). 
2 .  Show that if p > 0 and 0 < a < oo, then 

(i) x-1/p E Lrro (0, a) if 0 < o <p but not if o = 0 .  

(ii) x-11P (log 1 /x )-24' E LP+0 (0, a) if o = 0 but not if o > 0. 

3 . Show that if 0 < a < oo and 0 < p  < oo, then log x- 1 E LP(o, a). 
4. Show that if 0 < a < oo, then e1tx fl. LP(o, a) for any p (0 < p <: oo). 
5 .  Show that x-1/l (1  + l log x l )-1 E LP(o, oo) ifp = 2, but not otherwise . 
6 .  Let f: X � [0, oo ), f a  measurable , essentially bounded function. Show that 

if 0 < J.L(X) < 00 and In = (J fn dJ,L)1m , then lim In = ess sup f. 
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6.2 CONVEX FUNCTIONS 

In this section we examine a special class of functions with a view to applications 
in the following sections. We will use the convention that capital letters indicate 
points on the graph of a function, so that if l/1 is defmed on (a, b) and t E (a, b) 
then T is the point (t, l/J(t)) . 
Defmition 4: A function l/1 defmed on an open interval (a , b) is convex if for any 
non-negative numbers A, J..L such that A + J..L = 1 ,  and x ,  y such that a < x <y < b,  
we have 

l/I(Nc + J..LY) � Al/J(x) + J..Ll/J(y). 
The end-points a, b can take the values -oo, oo respectively . Geometrically , the 
definition says that the segment joining the points X and Y is never below the 
graph of l/1 .  If, for all positive numbers A, J..L such that A + J..L = 1 we have 

l/I(Nc + J..LY) < Al/J(x) + J..Ll/J(y), 
l/J is said to be strictly convex. 

We recall from Chapte r 4 ,  the notation f(a, b) for the ratio (f(b) - f(a))/ 
(b - a). 

Theorem 2 :  Let l/1 be convex on (a, b) and a <  s < t < u < b, then l/l(s, t) � 
l/J(s ,  u) � l/l(t ,  u). If l/1 is strictly convex, equality will not occur. 

Proof: Consider the first inequality . By Defmition 4 

l/J(t) � ( t - s)w(u) + ( u - t)l/l(s). u - s u - s  (6 . 1 )  

So (u - s) l/J(t) � (t - s) l/l(u) + (u - t) l/J(s), or 

(u - s)(l/l(t) - l/l(s)) � (t - s)(l/l(u) - l/l(s)) (6 .2) 
as required . If l/1 is strictly convex , equality cannot occur in (6 . 1 )  and so not in 
( 6.2). Similarly for the second inequality of the theorem. 0 

Theorem 3 :  A differentiable function l/1 is convex on (a, b) if, and only if, l/1 '  is a 
monotone increasing function. If l/1" exists on (a, b), then l/J is convex if, and 
only if, l/1" � 0 on (a , b), and strictly convex if l/1" > 0 on (a, b). 

Proof: Suppose that l/J is differentiable and convex and let a < s < t < u < v < b. 
Then Theorem 2 ,  applied first to s ,  t, u and then to t, u ,  v gives l/l(s,  t) � l/l(u ,  v). 
Let t � s and u � v .  Then, by Theorem 2 ,  l/J(s,  t) decreases to l/J '(s) and l/l(u ,  v) 
increases to l/l '(v). So l/l '(v) � l/J '(s) for all s < v ,  and so l/1'  is monotone increasing 
and if l/J" exists, it is never negative . 

Conversely , if l/1" � 0, then l/1 is convex, for otherwise there would exist 
s ,  t, u with a < s < t < u < b and such that T lies above SU. Then slope ST> 
slope TU; but slope ST = l/J'(a.) for some a E (s , t) and slope TU = l/J'(ft) for 
some (j E (t , u ) , contradicting l/J" > 0. The same argument shows that l/J convex 
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and differentiable implies that l/J '  is monotone increasing. If l/1" > 0, l/1 is strictly 
convex, for otherwise there would exist collinear points S, T, U on its graph and 
we would have l/J'(a) = l/1'(13) for appropriate a and 13 with a < (3. But then 
VI" = 0 at some point between a and (3, giving a contradiction. 0 

Example 3 :  (i) � is strictly convex on A,  (ii) xa is convex on (0, 00) for a �  1 , 
(iii) -xa is strictly convex on (0, oo) for 0 < a < 1 , (iv) x log x is strictly convex 
on (0,1) .  

Example 4: That l/J" may be zero for a strictly convex function l/1 can be seen 
from x4 at x = 0. 

Theorem 4: Let l/1 be defined on (a, b). Then l/J is convex on (a, b) if, and only 
if, for each x and y such that a < x  <y < b,  the graph of l/J on (a, x) and {v, b) 
does not lie below the line through X and Y. 

Proof: Suppose that l/1 is convex and let t E (y, b). Then by Theorem 2 slope 
XT � slope XY. So T lies above the line through X and Y. Similarly for s E (a, x). 

Suppose, conversely, that the condition holds but that l/J is not convex. Then 
there exist x, y , z with a < x < y < z < b and such that Y lies above XZ and 
hence X lies below the line through Y and Z. But this contradicts the condition 
of the theorem. 0 

Theorem S :  Every function convex on an open interval is continuous. 

Proof: Let l/1 be convex on (a, b) and let x0 E (a, b); we wish to show that l/J is 
continuous at x0 • Choose s ,  t, u such that a <  s < x0 < t < u < b. Let y = {1 (x) 
be the equation of the line through S and X0 , and y = f2 (x) that of the line 
through X0 and U. By Theorem 4, Vl(t) � {1 (t), anct as VI is convex l/l(t) <:{2 (t). 
Letting t tend to x 0 , we get that Vl(x 0 +) exists and 

Vl(xo ) = !1 <xo +) = f2 (Xo +) = l/J{xo +). 
A similar argument shows that l/J(x0) = l/J(x0 -), and so l/J is continuous. 0 

If, in Defmition 4, we had not specified an open interval, Theorem 5 would 
not hold, for consider VI defmed by : VI = 0 on [0,1 ), l/1(1) = 1 .  

Example S :  A function is sometimes said to be convex on (a, b) if, for x, y E 
(a, b) 

t( x ; l ):s;;; ! f(x) + ! f(y). 

We will call such functions mid-point convex. Show that the class of functions 
continuous and convex in the mid-point sense is just the class of convex functions 
in the sense of Defmition 4.  

Solution : Since every convex function is mid-point convex and continuous, we 
need only prove the converse . Let f be continuous and mid-point convex and 
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suppose that f is not convex. Then there exists x ,  y , z such that a < x <y < z < b 
and such that Y lies above XZ. Define k and 1'n by k = inf[t : S lies above XZ for 
t < s � y ] , m = sup [t : S lies above XZ for y � s < t] .  By the continuity of [we 
have k < y < m ,  also that K and M lie on X..z and that S lies above KM for all 
s E (k, m). So if r = !(k + m), R lies abo ve K.M; but f is mid-point convex , 
giving a contradiction. 

That there exist functions mid-point conv�x but not continuous is shown in, 
for example , [6] .  

6.3 JENSEN'S INEQUALITY 

Theorem 6 (Jensen 's Inequality) : Let [X, <B ,  �] be a measure space with J.t(X) = 
1 . If l/J is convex on (a, b) where -oo < a  < b <( oo, and f is a measurable function 
such that a < f(x) < b ,  for all x ,  then 

l/J(j f dJ,L) � f l/Jof dp. . (6 .3) 

Proof: It is clear that f is integrable ; put t =  f f dJ,L. So a < t < b since J.L(X) = 1 .  
Let 13 = sup [ljl(x , t): x E (a,  t)] . Then , clearly , if s E (a, t) we have (j(t - s) �  
l/J(t) - l/J(s). But by Theorem 2 ,  p .  1 1 1 ,  for u � (t , b) we have 13 � (l/J(u) - ljl(t))/ 
(u - t); so 13(t - u) � ljl(t) - ljl(u) for u E [t , b). So for 'Y E (a,  b) 

ljl( 'Y) � ljl(t) + 13('Y - t). (6 .4) 

Put 'Y = f(x) to get , for each x ,  

( ljl 0 f)(x) � l/J(t) + (3(/(x) - t)). (6 .5) 

Now f is measurable anti l/1 is continuous, so l/J o f  is-measurable (Exercise 3 5 ,  
p. 42). But the right-hand side of (6 .5) is integrable , so (cf. Exercise 1 7 , p .  107) 
f ljl o f  dJ,L exists .  So integrate both sides of (6 .5), and note the value of t to get 
the inequality (6 .3) . D 
Example 6 :  Let l/J be strictly convex; then equality occurs in (6 .3) if, and only 
if, f = f f dJ,L a.e . 

Solution : If f =  f f dp. a .e., then equality obViously occurs, so consider the con
verse . If ljl is strictly convex, equality occurs in (6 .4) only if 'Y = t. For let 
'Y E (a, t) and, taking 13 as before , let v E ('Y, t); then l/J('Y, t) < l/J(v, t) � {3, and if 
'Y E (t, b), let u E (t, 'Y), so (3 � l/l(t, u) < l/J(t, �). So for equality, t must equal 'Y· 
Now equality occurs in (6.3) only if in (6 .5) equality occurs ahnost everywhere, 
that is , only if f(x) = t = f f <ij.t a.e .  

Example 7:  Let X =  [x 1 , • • •  , xn 1 , � = <f(X), p.((x1] ) = a1 � 0 ;  then Jensen's 
inequality reads: 

t/J(� Ott X I)� I'Ll 0:1 t/J (xI), 
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n 
where )_;1 a1 = 1 and 1/1 is any convex function. We may describe this as the 

, discrete case of Jensen's inequality. 

Example 8:  Let g: X -+  (0, oo) and let log g be integrable with respect to Jl, where 
J.L(X) = 1 .  Show that 

exp(J logg dJJ) � f g dp.. (6 .6) 

Solution : Since log g is measurable and � is a_ continuous function ofx we have 
g measurable . We may suppose that g is integrable , otherwise there is nothing to 
prove . Note that the result of Theorem 6 holds iff and VI of  are integrable , even 
if a and b are infmite . For, in the proof, t and (3 are fmite and the argument goes 
through as before . Then (6 .6) follows on putting V!(x) = � and /= log g. 
Example 9: Let a >  0, b > 0, 1 /p + l /q = 1 where p > 1 and q > 1 .  Show that 

a11P btlfl � !! + ! 
p q 

with equality if, and only if, a = b . 
..-- I 

Solution: � is strictly convex by Theorem 3 ,  p .  I l l , so exp( 1/p log a + 1 /q log b) 
� a/p + b/q, with equality if, and only if, log a =  log b, that •s, a =  b, giving the 
result . 

Exerdlel 
7 .  If w is strictly convex, then in the discrete cue of Je01en'a inequality 

(Ex�ple 7), equality occurs iff all numbers x1, for which cr, :1= 0, are equal. 
8.  (Arithmetic-Geometric Mean Inequality). If 111 > 0, I= 1 ,  . . .  , 11, then 

( Ii _,\lift < ! � ,,, 
1= 1 � , btt 

with equality iff all the 111 are equal. 

9. If or, > O, y1 > 0, foc l =  1 ,  . . . , n and � or, =  ! , then . F-1  
II II 

n Y1tlf < E Gt YI· 1= 1  1= 1 
with equality iff aU the Y1 ue equal. 

10. Supp<'te that 1/1 is a function on R such that 1/1 o /is intepable on [(), 1 ]  and 

11({ true)< �� 1/J o f dx  

for every bounded measurable function/. Show· that � il convex. 
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6.4 THE INEQUALITIES OF HOLDER AND MINKOWSKI 

Theorem 7 (Holder's Inequality) : Let 1 < p  < oo, 1 < q < oo, 1 /p + 1 /q = 1 and 
let fE LP(p.), g E L  q(p.). Then fg E L 1 (p.) and 

f lfg l dJ,t � f lfi P dJ,t)14' • (} lg l q dJ,t)1,q • (6 .7) 
Proof: By Example 9, if a >  0, b > 0, 

(6.8) 

Now, if llfllp = 0 or llg llq = 0 then fg = 0 a.e .  and (6 .7) is trivial. If ll{llp > 0 and 
llg llq > 0 write 

- 1/l
p 

- lgl q 
a - ( llfllpf ' b - ( llg llq )q 

in (6.8), to get 

lfg l 1 IJlP 
U{ llp Ug llq .;;;;; p ( U{IIp f 

The right-hand side is integrable , so fg E L 1 ().1.). Integrate both sides to get 
llfg ll 1 � ll{llp llg llq , which is (6 .7). 0 

(6.9) 

We will refer to the numbers p and q related as in Theorem 7 as conjugate 
indices. The most important special case of Theorem 7 occurs when p = q = 2,  
and is called the Schwarz or Cauchy-Schwarz inequality . 

Example 10:  Let f and g be non-negative measurable functions . Show that 
equality occurs in Holder's inequality if, and only if, 

s fP + t gq = 0 a.e. (6 . 1 0) 
for some constants s and t not both zero . 

Solution : Suppose that equality occurs in (6 .7) . Then if ll{ll p > 0, llg ll q > 0 we 
must have equality in (6 .9) a.e .  But in (6 .8) equality implies that a = b so that 
fP = agq a.e .  where a >  0 ,  giving (6. 1 0). If, say, ll[llp = 0 then f =  0 a.e . and 
(6 . 10) holds. Conversely if (6. 1 0) ho.lds we may substitute into (6.7) to eliminate 
for g, and we obtain equality . 

Theorem 8 (Minkowski's Inequality) : Let p � 1 and let {, g E LP (jJ ) ; then 

(} lf + giP dJ,t)14' � f  lfiP dJ,t)14' + (} lgiP dJ,t)14' .  (6 . 1 1 )  

Proof: The case p = 1 is trivial. So suppose that p > 1 and that p and q are con
jugate indices . Then 

( II!+ g llp)P = f If +  giP d� 
� f I ll . If +  g iP-l dJ,t + f IKI • If + g ,P-1 dJ,t 
� 11/ll n II({ +  x)P-l lin + llx ll n II (( +  x)P-1 li n (6 . 1 2) 
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by Holder's inequality .  But (p - 1)q = p ,  so the right-hand side of (6 . 1 2) equals 
( ll[ll p + llg llp )( llf + g llp f1q .  So II{ + g llp  � ll[ll p + llg ll p as required . D 

· 

Example 1 1 :  Show that equality occurs in Minkowski's inequality for p = 1 if, 
and only if, we have almost everywhere either f(x) • g(x) = 0 or sgn f(x) = 
sgn g(x); for p > 1 if, and only if, sf = tg a.e . ,  where s and t are non-negative 
constants , not both zero . 

Solution : (i) p = 1 :  we have f (lfl + lgl - l f + gl ) dJ,L � 0 with equality if, and 
only if, Ill ·+- IK I = If +  gl a .e . ,  so the condition is necessary and sufficient. 

(ii) p > 1 :  The condition is seen to be sufficient on substitu tion . Conversely , 
for equality to occur in {6 . 1 1 )  we must have equality in {6 . 1 2). Then , outside 
a set of measure zero we have , for some a, b ,  c ,  d 

a lii = b If+ giP-1 and c lgi = dlf + giP- 1 • 
So we always have af = + bg a.e .  and substituting in (6 . 1 1)  shows that the signs 
are the same , giving the result . 

If p and q are conjugate indices and q � 1 ,  then p � 00• This suggests analogues 
of Theorems 7 and 8 for the case p = oo. We recall Definition 3 ,  p.  1 1 0 .  

Theorem 9:  If[ E L 1 (jJ) and g E LOO(J1), then fg E L 1 (Jl) and llfg ll 1 <; llf ll 1 llg iL. 

Proof: Since IK I � ess sup lgl a .e .  we have lfgl � l fl • llg iL a .e .  So fg is integrable 
and on integrating we get the result . D 

Example 12 :  II{ + g lloo � ll{lloo + llg lloo .  

Solution : This follows immediately from Example 1 7, p .  4 1 . 

Example 13 : If we write p(f, g) = llf - g llp , then for p � 1 ,  p is a me tric on 
LP (J1) that is , 

(i) p(a , b) � 0, 
(iii) p(a ,  b) = p(b , a), 

{ii) p(a ,  b) = 0 if, and only if, a =  b ,  
{iv) p(a , b) + p(b ,  c) � p(a, c). 

Solution : (ii) holds by virtue of the convention regarding elements of LP(p.); {iv) 
follows immediately from Minkowski's inequality ; the retnainder are obvious . 

Exercises 

1 1 .  Give discrete analogues of Holder's and Minkowski's inequality , as provided 
in Example 7 for Jensen's inequality . 

1 2 .  Show that the following inequalities are inconsistent for functionsfEL2 (0, 1r) {' (f(x) - sin x)2 dx < A/9 , {' (j(x) - cos x)2 dx " 1 /9 .  
0 0 

1r 
1 3 .  Show that 1 x- 114 sin x dx " 1T3A .  

0 
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14. Show that if/, g E L1 (p.), then (i) y' 1/gl E L1(p), (ii) IJlP lgl' E L1 (p) if 
p, q E (0, 1 ), p + q = 1 .  

1 5 .  Let fn E L2 (a, b), n = 1 ,  2, . . .  , let fE L2 (a, b) and let lim 1/n -.f82 == 0. 
Show that 

Jb Jb 
(i) /2 dx = lim t: dx, 

a a 
t t 

(ii) if a and b are fmite , then I f dx = lim I In dx, a <;  t <; b. 
a a 

(iii) Verify (i) and (ii) for (a, b) = (-11', 11') iffn(X) = f; �- 1y-t sin IX ,  
t= t r 

f(x) = x/2. 
16 .  Let p � 1 and let 11/n -flip � 0. Show that llfn lip � II flip . 
1 7 .  Let f � 0,/E L(x, 1 )  for each x E (0,1 ] . Suppose that tP-t (f(t))P E L(O,l), 

1 

where p > 1 .  Show that F(x) = 1 f dt satisfies F(x) = o(log 1/x)HIP as 
X 

x � o+. 
X 

- - -
--·---

18 .  l.et p  > 1 ,[> 0./E LP(O, oo) and F(x) = 1 / dt. Show that ifp and q are  
0 

conjugate indices, then F(x) == o(x1kl) as x -+ 0 and as x -+ •. 
19 .  Show that if k1 o k2 , • • •  , kn > 1 and ki 1/k1 = 1 ,  then if fi E  L lf{p) for 

each I, 

f l/1 /2 ·· • ./,. 1  dl£ < (J l/1 lt1 cil')llta • • • (J 11. 11;, d,t)!At,.. 
20. Equality occurs in the inequality of the lut exercise iff one of the /, = 0 a.e., 

or for each pair 1,/ there exist non-zero constants c1, c1 such that 

c1 11il kf = CJI/jl lJ· . ( 6.13) 

21 . If a, �' 'Y > 0 and p < 1/(a + � + 7), then 
2 1 dx/� lx - 1 1' lx - 21'>" < oo. 

0 
22. Extend MlDkowsld's inequality to " functions. 
23. Let I be a non-neptive measurable function and eaa sup I• M > 0. Then, If 

-..X) < •, 
' [flt+l de 1: Um Jr ""  M. 

24. 1be limit coDildered in the lut exercise wu that of an lncreaatna aequence. 
25 . Show that If I e LPa (p) and 1 e L'• (p) where p, an� Pt are positive, thaD 

11 EL'(Jl) for a suitable p. 
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26. Find the minimum of 

taken over the set of functions measurable and positive a .e .  in the measurable 
set E of fmite measure. For which functions is the minimum value obtained? 
Show that P1 is not bounded above for a suitable space and set E. 

27 . let f and g be integrable and essentially bounded, and let 0 < p = ess inf f � 
ess sup/= P, 0 < q = ess inf g <: ess sup g � Q . Show that 

(J fg dp)2 (J� + J ;;J � 4 f [2 d�i . f g2 d�I . 

28 . let k + m = km and let f and g be non-negative measurable functions . 
Show that if 0 < k < 1 or k < 0 then 

f fg d�-t ;> (J fk d�-t)llk (J g"' d�-t)lhn . 
29. let 0 <p < 1 and [;> O, g ;>  O,f, g E LP(p.). Show that 

lit + gil P 
:> II flip + llg ll P . 

6.5 COMPLETENESS OF LP(J.t) 

The next two results show that, for p ;> 1 ,  LP (p.) is a complete metric space , 
that is, that considered as a metric space with the metric p of Example 1 3 ,  p .  
1 16 ,  every Cauchy sequence converges, in the sense of the metric , to an element 
of the space . Although this result refers to elements of LP (J.L), the proofs depend 
on the choices of functions representing elements of the space following the con
vention discussed in Defmition 1 , p. 109.  

Theorem 10: If 1 <p < 00 and l/n ) is a sequence in LP(p.) such that llfn -fm lip 
-+ 0 as n, m -+ oo, then there exists a function f and a subsequence {n; ) such that 
lim/111 = fa.e. Also/E LP(p) and lim 11/n -fliP = 0. 

Proof: For each i we can choose N, depen<Ung on i, such that llfn -fm liP < 2-i 
for 11, m ;> N = N(i). Taking n 1 > N(1 ), 112 ;> N(2), . . .  , we may choose by 
induction an increasing subsequence {n1l such that 

1/,.;._1 -In, up < 2-1• (6 .14) 
k -

Putgk = E 11,.,.1 -!1111 and g = E 1!,.,.1 -/,.11 . Minkowski's inequality, with 1= 1  1= 1  
(6. 14), gives lgk lp < 1 .  Apply Fatou's Lemma to the sequence of non-negative 
functions fd) to get . (lglpY' = 1 lim d tip < lim inf f d dp < 1 .  Hence g is 
fmite a.e. and so -

t,.l + E u ,.,.. -t ,.,l 1= 1  
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is absolutely convergent a.e. Defme f to be the sum of this series where It con

verges, otherwise define I arbitrarily. Since'l111 + It (f ..,..1 -I,.,) = 1,.". we have 
f = lim {,.1, a.e. Each function of the sequence fi,.,J is defined only up to a set 
of measure zero as in Defmition 1 , p. 109, so f is only weD defined in the-sa1111 
sense. But this will ensure that f defines a unique element of LP(p.). 

So we now wish to show that / E LP(p) and that the whole sequen�/ff11) 
tends to fin the desired sense. Given e > 0, there exists N such that I.(. -'-/,. 1 < 
€ for n, m > N. So by Fatou's Lemma, for each m > N, 

f If-fm I P <4-t < lim inf f 1/,.1 -fm I P < e" .  (6.15) 
1-+• 

So f - fm and hence f = (f - fm) + fm are in LP(p). Also, from (6.15), 1! 
fm lip < € for m > N, which completes the proof. 0 

We consider separately the case p = oo, in the next theorem. 

Theorem 1 1 :  Let ({,. ) be a sequence in L•(p) such that 1/11 - fm l• � 0 u 
n, m � oo. Then there exists a function /such that lim/,. ==/a.e-.,/EL.(p.) llld' 
lim If,. -fll- = 0. 

Proof: We use the fact that a function is greater than its essential supremum oaly 
on a set of measure zero. Write An,m = [x : 1/,.(x) -/m(x)l > 1/,. -fm 1.] llld 

-

B,. = [x : 1/,.(x)l > 1/,. II.] . Then if E = U An,m U U Bk, we have p.(E) • 0 
n�m k= l 

and on CE, (f,.(x)J is a Cauchy sequence for each x , with limitl(x), say. Deftne 
f arbitrarily on E. , Given € > 0, there exi�ts N such that 11/,. - fm I. < e for 11, m >.N. So, for 
x E CE, 1/,.(x) - fm(x)l <; 1/,. -fm H. < e, and letting n -+  00, IJ(x) -/m(x)l < 
e. So 1!1 <; 1/m I + e a.e. and hence f E L-(p,); indeed by its construction a weD 
defmed element of L-(p,) is obtained as in the case 0 < p < oo in Theorem 10. 
Also H/-f m II. < e and the result is proved. 0 
Exercises 

30. Let p > 0 and I e LP(p,) where f ;>  0, and let /,. == min(f, 11). Show that 
!,. E LP(p) and lim B/-/,. lp = 0. 

3 1 .  Show that if p ;> 1 , the set of bounded measurable functions is dense in 
LP(p) in the sense of the metric of Example 13 ,  p. 1 16. 

32. Let I E  L'(•, b) with " and b fmite and p ;> 1 ,  and let e > 0. Show that 
there exist b 
(i} a step function h such that [ 1/- hl" dx< e, 

tJ 

(ii) a continuous function g such that g vanishes outside a bounded inter-
" 

val and 1 11-glP dx < e. 
, 

. .  
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33 . Show that the sets of measurable simple functions, step functions and of 
continuous functions are each dense in the metric space LP (a, b), p � 1 ,  
where a and b are finite . 

34. Show that the results of the last exercise hold for LP(-oo , oo) for p � 1 .  
3 5 .  Let p and q be conjugate indices and let f E LP (-oo, oo ), g E L q ( -oo, oo ). 

Show that F(t) = f f(x + t) g(x) dx is a continuous function of t. 
36. Let p and q be conjugate indices and let fn -+ fin LP(p.), that is, lim llfn 

{lip = 0, and let gn -+ g in Lq(J.L). Show that fnKn -+ fg in L 1 {p.). 
37.  Let f, In E L2 {p.) for each n ;  then we say that In -+ {weakly if lim f ifn 

fM <ill = 0 for each g E L2 {1.t), and sup llfn 11 2 < 00• Show that 
(i) if In -+fin L 2 , then In -+ f weakly, but not conversely , 

(ii) if fn -+ {weakly , then 11{11 2 � lim inf ll fn 11 2 , 
X 

(iii) if X =  [a, b 1 where a and b are finite , then fn 4 [weakly iff l fn dt 
a 

X I 

4 l f dt for each x E [a, b 1 and sup D!n 11 2 < oo, 
- a  

(iv) if fn -+ {weakly and llfn 11 2 -+ a � 11{11 2 , then fn -+ f in L2 • 
38 .  Let fn -+ f in LP(X, p.) where p.(X) < 00 and p > 1 .  Show that fn -+ f in 

LP
' (X, p.), 1 � p' < p. 

39 . Show that if Ifn i � K a .e ., and if fn -+ f in LP(X, p.) where p.(X) < oo and 
, 

" p � l , then fn -+ f in LP for l � p < oo. 



CHAPTER 7 

Convergence 

We now investigate systematically some forms of convergence of measurable 
functions. We introduce in Section 7 . 1  the notion of convergence in measure . 
This is of particular relevance to the theory of probability where it is often 
referred to as convergence in probability .  Those results which hold in the case 
where J.L(X) < oo are listed separately ; this is the situation encountered in prob
abilty theory . 

7.1  CONVERGENCE IN MEASURE 

We have already met convergence a.e ., convergence in LP -spaces and uniform 
convergence . We defme in this and in the next section other forms of convergence 
and give theorems relating the various fonns of convergence . Then in Section 
7 .3 these results and results from previous chapters are collected in diagrammatic 
form, and in Section 7 .4 we give counterexamples which show which implications 
are not valid. 

We consider throughout a measure space [X, $ ,  J.t] . Any necessary conditions 
such as J.L(X) < oo, will be imposed where necessary . 

Definition 1 :  Let lfn ) be a sequence of measurable functions and f a  measurable 
function. Then fn tends to /in measure if for every positive e, lim J,L [x :  lfn(x) -
/{x)l > e) = 0. 

Theorem 1 :  If a sequence of measurable functions converges in measure, then 
the limit function is unique a.e . 

Proof: Let In � f in measure and fn � g in measure . Since If-gl  � If-fn I + 
lg - fn I , we must have , for any e > 0, [x : lf(x) - g(x)l > 2e] �- [x : l.f{x) 
fn(x) l > e] U [x : lg(x) - fn(x)l > e) ·  But the measure of the set on the right
hand side tends to zero as n -+  oo. So f = g a.e .  D 

Defmition 2 :  A sequence of functions is said to be fundamental with respect to u. 

1 21 
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part¥rular ldnd of convergence if it forms a Cauchy sequence in that sense. Thus 
a aequence (/11) is fun�tal in measure if for any e > 0, lim p[x: 1/,.(x)-. �n�· 
fm(:r)l > e) = 0. 

We now prove a 'completeness' theorem for convergence in measure. 
Tbeorem l: If (/11) is a sequence of measurable functions which is fundamental 
in measure, then there exists a meuurable function f such that In -+fin measure. 
Ploof: For every integer k we can fmd "k such that for 11 ,  m ;> ""' 

1'�: 1/,.(x) -/m(x)l ">�] < � • 

and we may aaume that for each k, "k+l > nk. Let 

E" = �: 1/."(x) -/,..._1 (x)l "> ¥] . 
.. 

Tbell ifx � U E", we have for r >s > m  
•=· 

tt..,.<x> -t ... <x>' < � 11..,<x> -t .. ,_. <x>l < E 112' - 1/7:' . (7 .1 ) t=7'+t I=•+ 1 
- -

So lf.k(x )) is a Cauchy sequence for each x f lim sup E k = n U E k· But, 
m= l k=m 

for all m p(Jim supEk) < p.( 0 E")< E 1/2" = 1 /2m-• . So (/,.") converges k=m k=m 
a.e. t() some measurable function /. Also from (7 . 1) we have that ffnkJ is uni-

• -

formly fundamental in C  U Ek, foreachm. Soln" -+luniformly on C U Ek, k=m k=m 
and hence, (or every positive e, 

p [x : llnk(x) -.f(x)l > e/2] -+ 0 as k -+  00• (7 .2) 
But [x: ll,.(x) -.f(x)l > e] � 

[x:  lln{x) -/nk(x)l > e/2] U [x : l.f(x) -fnk(x)l > e/2] . 
If 11 and "k are sufficiendy large, the measure of the fust set on the right is 
arbitrarily small, as (/11 ) is fundamental in measure. But the second set has been 
lhown to have ubitrarily small measure by (7 .2) and the result foDows. 0 
Corolltzry: Let f,. -+ I  in measure where I and each 1,. are measurable functions. 
Then there exists a subsequence (n1) such that/,.1 -+ I a.e. 
Proof: Clearly {f,.) is fundamental in measure, so from the proof of the theorem 
we can flnd a subseq�nce fl.,l and. a measurable function 1 such that 1,.1 -+ g 
a.e. and in measure. But 1.., -+ / in  measure, so by Theorem 1 ,  p. 12 l ,l=g a.e., 
liWl& the result. 0 
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An analogue of  Fatou's Lemma, p .  105 , holds with convergence a.e. replaced 
by convergence in measure. 

Theorem 3 :  Let (/,. ) be a sequence of non-negative measurable functions and 
let / be a measurable function such that /,. -+ f in measure ; then 

f f dp. <: lim inf f fn dp.. 

Proof: Suppose that f f dp. < oo and that f f <ill ,> lim inf f /,. tt,l. Then there 
exist 6 > 0 and a sequence £n1) such that , for each i, f !,.1 cijL < 1 I till - 6 .  But 
[,.1 -+ f in  measure, so by the corollary to the last theorem we can fmd a sub
sequence (nj) of (n1) such that fn; -+ f a.e . But then by Fatou's Lemma, 

f f dJ,t <: lim  inf f fnj dp. <: f f dll - 8 , 

giving a contradiction.  
Now suppose that f f <ill = oo and that lim inf fIn dp < oo. Then there exist 

K > 0 and a subsequence f/,.1) such that, for each i, 1 /,.1 dll < K. But again we 
fmd a subsequence (nj )  of (n1} such that /,.; -+ f a.e . But then, by Fatou's 
Lemma , lim inf f In; dp. = oo, giving a contradiction. So ,lim inf f In dp = 00, 

giving the result. 0 
We have a corresponding analogue of the :U,besgue aominatea convergence 

theorem, using convergence in measure . 
Theorem 4: Let {f,.J  be a sequence of measurable functions such that If,. I <g, 
an integrable function , and let /,. -+ f in measure, where /is measurable . Then/ 
is integrable, lim fIn <ill = f f <4t and lim f lfn -fl dp == 0. 

Proof: By the corollary to Theorem 2 there exists a subsequence rt ,.,J with limit 
f a .e ., so we have 1/1 <: g and so f E L 1 (p.). Also, for each n ,  g + In ;> 0, and 
g + In -+ g + f in measure follows immediately from the fact that In -+ f in 
measure . Then by Theorem 3 

f g d�-t + f f d�-t <: lim inf 1 (g + /,.) d,.t. 
So f f d�-t <: lim inf f !,. <ijl. 

We have , similarly, g -In ;> 0 and g -In --+g -/in measure. So 
f I <4t - f f d�-t <: lim inf f (g -fn) d,.t. 

Hence f f <ill ;> lim sup f In d�-t ;> lim  inf 1 In dll ;> f f d,.t, giving the fust result. 
Also, it is clear from the defmition of convergence in measure that lin -11 -+ 0 
in measure. But l/,. -fl <: 2g, so the second result follows from the fust . 0 
Defmition 3 :  Convergence in LP(p.) is often described as convergence in the 
mean of order p,  that is: fn -+ f in  the mean of order p (p > 0) if lim D/,. -/lp = 
0. If p = 1 , /,. is said to converge to fin the mean. 

I 

Theorem S: If/,. -+ fin the mean of order p (p > 0), then{,. -+ /in measure . 
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Proof: Suppose not. Then there exist e > 0, 8 > 0 such that ll [x : lin -/1 > e] > 
8 for infmitely many n. But then U/,. - flp > e 811P for infmitely many n,  
giving a contradiction. 0 

Example I :  Let p(X) be fmite. If n(f) = J 1 Y:/l t4t and p(f, g) = n(f-g), then 

p is a metric space of functions measurable and fmite-valued a.e ., provided that 
functions equal a.e .  are identified. Convergence in this metric is equivalent to 
convergence in measure, and the metric space defmed is complete . 

Solution : For all tJ and b we have 

Ia + b t  la l l b l 
1 + I• + bl  < 1 + la 1 + 1 + l b l · 

Put tJ = f - h, b = h -g where /, g, h are measurable functions, and integrate to 
get p(f, g) <; p(f, h) + p(h , g). Clearly p(f, g) = p(g, {) � 0, p(f, {) = 0, and p(f, I) 
= 0 only if! = g a.e .  So p is a metric on the space of a.e .  fmite-valued measurable 
functions, if we regard any two functions equal a.e .  as corresponding to the same 
element of the metric space . ut {,. , f be measurable functions and write Ee = 
[x : 1/,.(x) -.f{x)l > e] . Then for any e, 0 < e < 1 ,  

p(f,. .n ;;;;. ! f. e t4t = ; p.(Ee>· Ee 
So if p(f,. ,  {) -+ 0, p,(Ee) -+  0, that is : In -+ fin measure. Conversely,  let/,. -+ fin 
measure . We have 

p(f,. ,f) <; (J. + i ) 1 Yit.
-�/L dp. .;;;; p.(Ee) +  ep.(X) . . Ee CEe n 

But �ot(Ee) -+  0 as n -+  oo, so p(f,. ,f) < e(l + p,(X)) for all large n ,  and so 
lim p(f,. , {) = 0. 

That the metric space is complete, that is: sequences that are Cauchy with 
respect to p converge , follows from Theorem 2, p .  122, since it can be seen from 
the proof of that theorem that the limit function{ obtained will be fmite-valued 
a.e . 

Exercises 
1 .  Show that if In -+f in measure and In --+g in measure , then In + g,. -+ f + g in 

measure . 
2. Show that if In -+ f in  measure and a is any real number, then a{,. -+ o( in 

measure . 
3 .  Show that if �o�(X) < oo and {,. -+ fin measure, thenfJ -+ {2 in measure . 
4. Show that if p,(X) < oo,f,. -+ fin measure and g,. -+g in measure , thenf,.g,. -+ 

fg in measure. 
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5 .  Show that the condition J.L(X) < oo is necessary for the result of the last 
exercise to hold . 

6.  Show that iffn -+ f in me asure , then Ifn i -+ Ill in measure. 
7 .  Let S be the set of measurable functions on [0, 1 )  and let 

Un = [f: m [x : f(x) > 1 /n ] ·< 1 /n] . 
Then, for each n ,  S is the smallest convex set containing Un .  

8 .  Use Example 1 to make the set of all real sequences into a metric space . 
9 .  For a �  0 let arc tan a E [0 , 1T/2] . Show that if 

n(j) = inf arc tan( a +  J.L [x : lf(x)l > a] ) and p(f, g) = n(f-g), 
a> O 

then p is a metric on the space of a.e .  fmite-valued measurable functions 
where functions equal a.e .  are regarded as identical ; and show that convergence 
with respect to p is equivalent to convergence in measure . 

7 .2 ALMOST UNIFORM CONVERGENCE 

Defmition 4: Let lfn } be a sequence of measurable functions and let f be a 
measurable function ; then we say that fn tends to f almost uniformly, and write 
fn � f a.u . if, for any € > 0 there exists a set E with J.L(E) < € and such that on 
CE, fn -+ f uniformly. 

Theorem 6 :  Uniform convergence a.e .  implies ahnost uniform convergence . 

Proof: The result is obvious from the defmition. D 
That the converse of Theorem 6 does not hold can be seen from the sequence 

{xn } on [0 , 1 ] . Since x" � (1 - €)" on [0, 1 - €] , it converges uniformly there . 
But (x'l ) does not converge uniformly a.e .  since it does not converge uniformly 
in any set cl>ntaining points arbitrarily close to 1 .  

Theorem 7 :  Iffn -+ f a.u ., thenfn -+ fin measure. 

Proof: If fn does not tend to f in  measure , there exist positive numbers € and 6 
such that J,L [x : lfn (x) - f(x)l > €] > 6 for infinitely many n .  But since there 
exists a set E, with J.L(E) < � , such that fn -+ { uniformly on CE, we get a contra
diction. D 

Theorem 8 :  If In -+ f a .u ., then fn -+ f a .e .  

Proof: For each integer m we can fmd a set Em with J.L(Em ) < 1 /m , and on CEm , 
00 

fn �/uniformly . Then if x E U CEm we have x E CEN, say , so lim fn(x) = 
00 00 

m= l 

f(x). But C U CEm = n Em , a set of measure zero . D 
m = l  m= l  
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Theorem 9 :  Let in � i a .e . If  (i) �(X)< oo or (ii) fo r each n ,  Ifn i � g, an inte
grable function , then we have fn � i a .u .  

00 

Proof: Write Ek,n = n [x : lfm (x) - f(x) l  < 1 /k ] . It is su fficient to prove 
m = n 

that, for each k, lim �(C£ k,n ) = 0, for then if € > 0, �(CEk,nk) < E/2k for an 
n-+oo 

00 
appropriate nk . So if E = n Ek,nk we have �(C£) < €, and on E, l im - il < 

k= 1 
1 /k for m � nk . So im � t a .u . 

00 
Clearly , [x : lim f m (x) = f(x)] c U E k,n . for each k, so the complementary 

n = l  
00 

set ,  n CEk,n , has measure zero . So it is suffic ient to prove that J.L(CEk,n )  < oo n= l  
for some n ,  and for each k. Fo r (i) this is obvious , giving the result .  For case (ii) 
we have l im -il � 2g. So 

CE1c,n = 
m
OJ x . lfm (x ) -f(x)l ;.. ! l S [x : g(x) ;.. 2� ] · 

But as g is integrable this is a se t o f  finite n1e asure and the result follows. 0 
Theorem 9,  for the case �(X)< oo ,  is usually known as Egorov's Theorem. . ... 

Example 2 :  Let lfn } be a sequence of n1easu rable functions such that lim fn = f 
uniformly, where i E LP(p) , and �(X) < 00 • Then in � f in the mean of order p 
(p > 0). 

Solution : We have l in I P � 2P ( lil p + 1 ) for all large n, and so fn E LP(p.). But 
for any € > 0 and for all large n , lin - !I < € and so f lin -iiP dJ,L < # J.L(X), 
giving the result .  

We now prove a result resembling that of Exercise 1 5 , p . 1 1 7 ,  the main 
difference being that in that case the functions in were in L 2 • 

Example 3 :  Let g be a bounded function, measurable on [0,1 ] and let lfnl be a 
sequence of functions integrable on [0 , 1 ] . Show that jf 

(i) { � 1 lin I dx} is bounded , 

(ii) V € > 0, 3 11 > 0 such that for each measurable subset H of [0, 1 ] with 
m(H) < 17 ,  we have I £ fn dx l < e for all n ,  

H 

(iii) lim .r fn dx = 0 for each u E [0 , 1 ) , 
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1 
then lim I g fn dx = 0. 

0 
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Solution : By (iii) we have lim J fn = 0 for any interval /. By Theorem 10, p. 
I 

36 , if A is a measurab le set and 11 > 0,  t here exist in tervals I 1 ,  . . .  , IN such that 

m(A � �� lk )< fl . Then,  by (ii) 

I [ fn dx - 1  fn dx l < 2€ 

N 
for all n ,  where E = U /k . But lim J fn dx = 0 ,  so 

k= 1 E 

lim J fn dx = lim f XA fn dx = 0. 
A 

So lim f ¢ fn dx = 0 where cf> is any measurable simple function. As we may 
consider g+ and g- separately , we may suppose that g � 0. Then we can fmd a 
sequence l¢n } of measurable simple functions, cf>n t g on [0,1 ] .  So by Egorov's 
Theorem, V e > 0,  3 H with m(H) < 17 ,  and k such that l cf>k - gl < e on [0, 1 ]  -
H. Now 

But I J (g - cf>k) fn dx 
[ 0,1 ] -H 

choose n so that I � 1 IPk fn dx 

1 
< e 1 I fn i dx ,.;; Me, say , by (i) for all n .  Now 

0 

< € . If g � N on [0, 1 ] , we have 

1 (g - �Pk)fn dx ,;;;; N l lfn I dx ,;;;; 2Ne, 
H H 

by (ii) , giving the result . 

Exercises 

1 0. Let (/n ) be a sequence of measurable functions, fn E L 1 (jJ ) , let g E L oo(j.L ) , 
let lfn I � F E  L 1 (J.L) for each n and le t lim fn = f a.e .  Then fg E L 1 (J.L), 
f fn g dJ.L � f fg dJ,L and fng � fg in the mean. 

1 1 .  Let the sequence of measurable functions ffn } be almost uniformly funda
mental. Then there exists a measurable function f such that fn � f a .u .  
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7.3 CONVERGENCE DIAGRAMS 

In this third and in the next section we set out the relationships between six 
important kinds of convergence of sequences of measurable functions. In place of 
uniform convergence we could have chosen uniform convergence a .e . ,  for which 
the same implications would have held . The kinds of convergence considered are 

1 .  convergence a .e . 
2 .  convergence in the mean 
3 .  uniform convergence 
4 .  convergence in the mean of order p (p > 0) 
5 .  almost uniform convergence 
6 .  convergence in measure . 

We consider the following cases 

(a) no restriction on [X, $ , J.L D , 
{(3) J.L(X) < oo, 
('Y) the sequence fin } is dominated by an integrable function , that is, for some 

g E L1 {p), lin 1 � g  for each n .  

The relations between these kinds of convergence , in the three cases, are given 
in Figs 7 . 1  to 7 .3 in which arrows denote implication. The diagrams are to be 
understood in the following sense : (4) :::0> (6) means that for any given p > 0, 

0< : ALL CASES 1 ae 

2 mean 

Figure 7.1  

4 
mean of order p (p>o) 

6 in measure 

5au 
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p :  � (X) < oo 
1 ae 

2 mean 6 1n measure 

3 uniform 5 au 

mean of order p ( p>o) 
Figure 7.2 

1 ae 

4 
t'Tlt'an of ader p ( p>O) 

Figure 7.3 
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if fn � f in LP(p.) then fn � f in measure ; and conversely, (4) =f; (5) means that 
for a suitable measure space and for some p > 0, there exists a sequence lfn ) 
such that fn �fin LP(p.) but fn -frf a.u .  

In the list of references which follows and gives the location of the proofs we 
refer to the case (4) :::0> (6); the special case (2) � (6) is then implied . Also if we 
refer to the cases A :::0> B and B :::0> C we omit reference to the case A => C. Finally ,  
if a result has been shown for case (a) we need not refer to it in cases (13) and ('Y)· 
Using these devices the following list of results is sufficient to construct the 
diagrams . 

Case (a). (3) :::0> (5): Theorem 6 ,  p .  1 25 ;  
(4) :::0> (6): Theorem 5 ,  p .  1 23 ;  
(5) => ( 1 ) : Theorem 8, p . 1 25 ;  
(5) :::0> (6): Theorem 7 ,  p .  1 25 .  

Case (13). ( 1 )  => (5): Theorem 9 ,  p . 1 26 .  
Case ('}'). ( 1 )  => (5): Theorem 9 ,  p .  126 ;  

(6) => (2) : Theorem 4 ,  p .  1 23 .  

Exercises 

12 .  Let [X, $ D be a measurable space and lJ.Ln } a sequence of measures on caS 
such that given E E $ , J.ln+l (E) � J.Ln(E) for each n .  Write J.L(E) = lim J.Ln(E). 
Show that 
(i) J.L is a measure on $ , 
(ii) iff E L(X, J.L ), then for each n ,  f E L(X, J.Ln) and f f <ill = lim f f dJ.Ln . 

1 3 .  In the previous exercise , let J.Ln+l � J.Ln and lim J.Ln = J.L. Show that L(X, J.Lt ) 2 
00 

L(X, J.L2 ) => • • •  => L(X, J.L), but that in general L(X, J.L) =#= n L(X, J.Ln). n= l  
14. If J.L and v are finite measures on the measurable space [X, � D and J.L � v,  

then J.L - v is a measure on [X, $ D .  
1 5 .  Let (J.Ln } be measures on the measurable space [X, $ D ,  let lln � J.ln+t for 

each n ,  and let J,L1 (X) < 00 • Write lim J.Ln(E) = J.L(E) for each E E $ . Show 
that J.L is a measure on $ .  

16 .  Show that the finiteness condition in the last exercise is necessary if J.L is to 
be a measure . 

1 7 .  Show that under the conditions of Exercise 1 5 , L(X, J.L) :::> • • •  :::> L(X, J.L2 ) 2 
L(X, J,L1 ) and show that if fE L (X, J.Ln ) for each n ,  then lim f f dJ.Ln = f f dJ.L. 

1 8 .  te t [X, $ D be a measurable space and lJ.Ln ) a sequence of fmite measures 
on it such that lim J.Ln = J.L,  uniformly on cS . Show that the set function 1J. is 
a measure . 

1 9 .  Show that under the conditions of Exercise 1 8 ,  iff E L(X, J.Ln) for each n ,  

then fE L(X, J.L) and lim f f dJ.Ln = f f dJ.L. 
[Note : In Exercise 1 8  'uniformly' may be omitted . This is implied by the Vitali
Hahn-Saks Theorem, [ 1 7] , p .  70.] 
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20. Show that for each of the six kinds of convergence considered in this section, 
if a sequence is convergent , it is fundamental . 

7.4 COUNTEREXAMPLES 

In the section we give a set of counterexamples to show that the set of implica
tions given by the diagrams of Section 7 .3 is the most possible . Extra examples 
can be found in exercises which follow. For example , 'convergence a .e .  does not 
in general imply convergence in the mean of order p (p > 0)' means that there 
exists p > 0, a measure space [X, $ , �]  and a sequence of functions ffn l with 
limit f a.e . such that In fF LP(J..L) or fft LP (p.) or , if they do ,  llfn -{ lip does not 
tend to zero . 

As in Section 7 .3 ,  it is not necessary to give a counterexample whenever an 
implication is missing. Thus, if B => C, to show A t B it is sufficient to show 
A t C. Also if A t B in either case (13) or ('Y), then clearly A t B in case (a) .  
Also, if a mode of convergence does not imply (2), that is : convergence in the 
mean , then it cannot imply (4), that is : convergence in the mean of order p, 
any p > 0; and conversely to show, for example , that (4) t (5) it is sufficient 
to observe that (2) t (5 ). · 

The counte rexamples numbered (i) to (viii) which follow, demonstrate the 
following 'non-implications' between the kinds of convergence (1 ) to (6), from 
which the remaining non-implications may be deduced . 

Case (a). ( 1 )  =fr (6) : (iv). 
Case (13). ( 1 )  =fr (2): (v), (2) t ( 1  ) : (vi) , (2) t ( 4) : (vii), (3) =fr (2) :  (i), 

( 4) t (2): (viii) , (5) t (3) : (iii). 
Case ('Y). (2) =fr (1) :  (vi) , (3) t (4) : (ii) , (5) =fr (3) : (iii). 

(i) Let X =  [0, 1 ] , f(O) = 0, f(x) = 1 /x if 0 < x < 1 ,  and let ln(x) = f(x) + 
1 /n , n = 1 ,  2 ,  . . .  Then ln �[ uniformly butlft L 1 (0, 1 ) . 

(ii) Let X =  [0, oo), and let fn(x) = 1 /n2 if 0 � x � n ,  ln(x) = 0 if x > n. 
Then In � ci uniformly, and o � In � g where g = 1 on (0, 1 ] , g(x) = 1 /x2 if 
X > 1 ,  so that g E L(X). But fIn 112 dx = 1 ,  so In f 0 in L 112 (X). 

(iii) Let X =  [0, 1 ] , and let ln(x) = x-112 X[O,l /n ) .  Then m [x : ln(x) =#= 0] = 
1/n � 0 as n � oo, so ln � o  a .u .  Also lln(x)l � x-112 E L(0 , 1 ); but clearly In f O  
uniformly . 

(iv) Let X =  [0� 00), and let fn(x) = 1 - n(x - k) if k � X � n-1 + k,ln(x) = 
0 if n-1 + k � x < k + 1 ,  for k = 0, 1 ,  . . .  Then lim In (x) = 0 except for x = 0, 

n�oo 
1 ,  . . . , but m [x : ln (x) > €] = oo for each positive € and for each n .  So In � 0 a.e .  
but not in measure . 

(v) Let _:\' =  [0 ,1 ] , and let ln(x) = n if 0 � x  � 1 /n ,ln(x) = 0 if 1 /n < x  � 1 .  
Then In � 0 a .e . , but fIn dx = 1 for each n .  S-0 In f 0 in the mean. 

(vi) Let X =  [0,1 ] , and let Cn = [(i - 1)/n ,  i/n ] , i = 1 ,  . . .  , n. Write x'n for 
the characteristic function of £!. .  The sequence {fn } is defmed to be xi , x! , X� , 
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x� , x� , x� , . . .  , so that fn = xk where k(k - 1 )/2 < n � k(k + 1 )/2 ,  and lfn I � 
1 

1 ,  an integrable function. Also J fn dx = 1 /k -+ 0 as n -+ 00, so fn -+ 0 in the 
0 

mean. But for each x E [0, 1 ] , X1c(x) = 1 for each k and some r;  so fn1(x) = 1 for 
an infinite subsequence (n1 } and hence fn(x) +- 0 for any x .  

(vii) Let X =  (0, 1 ] , and let f(x) = x-liP where p > 1 .  Then f E L 1 (0, 1 ) , but 
f � LP(0, 1 ), so the sequence f, f, . . .  converges in the mean but not in the mean 
of order p .  

(viii) Let X =  (0,1 ] ,  and let f(x) = 1 /x .  Then fE LP(0,1 ) for 0 < p  < 1 , but 
f � L 1 (0, 1 ), so the sequence f, f, . . .  converges in the mean of order p,  but not 
in the mean. 

Exercises 

21 . Let fn(x) = 1 /n ,  0 � x  � n ; fn(x) = O, x > n . Show thatfn � o  uniformly, 
but not in the mean . 

22 . Let fn(x) = n-11P ,  p > 0, 0 � x  � n ; fn(x) = 0, x > n .  Show that fn � 0 
uniformly but not in the mean of order p .  

23 . �t fn(x) = n e-nx , 0 � x � 1 ;  then fn � 0 a.u .  on [0, 1 ] , but not in the 
mean . 

24. Let fn(x) = n 11P e-nx , p > 0 ,  0 � x � 1 ;  show that fn � 0 a.u .  on [0, 1 ] , but 
not in the mean of order p . 

25 . Show that if p(X) < 00, then for p > 1 convergence in the mean of order p 
implies convergence in the mean . 

26 . Let fn(x) = x-2 ,  1 � x � n ; fn(x) = O, x > n .  Show that the sequence lfn l 
is dominated by an integrable function, that fn E L 112 (1 , oo) for each n ,  but 
that lfn l does not converge in the mean of order 1 /2 .  

27 . Let fn(x) = n31l x e-n' 
x2 , 0 � x � 1 .  Show thatfn � 0 a.e . , but not in the 

mean of order 2. 
3 2 2 

28 . Let fn(x) = n 1P x'11P e-n x , p > 0,  0 � x � 1 .  Show thatfn � 0 a .e . , but 
not in the mean of order p .  

29 . Let fn(x} = xn , 0 � x  � 1 .  Show that lfn l converges ahnost uniformly, but 
not uniformly.  

30. Show that if p(X) < oo, uniform convergence implies convergence in the 
mean of order p ,  where p is positive , provided that the functions concerned 
lie in LP (p ). 

3 1 .  Show that the condition J.L(X) < oo is necessary in the last exercise . 



CHAPTER S 

Signed Measures and their Derivatives 

We now allow measures to take negative values and then in the Hahn and Jordan 
decompositions show how in the study of such measures we may keep to the 
non-negative measures already discussed . Integrating a non-negative function 
ove r the sets of a a-algebra produces a new measure from the original one and 
in the Radon-Nikodym theorem we show that any new measure continuous in a 
certain way can be formed in this manner. This gives rise to the derivative of one 
me_asure with respect to another and in Section 8 .4 we describe the calculus of 
derivatives which this gives rise to and give further decomposition results. Finally, 
in Section 8 .5 we note that for a fixed g and J..L the mapping/� f fg dJ..L is linear 
and give conditions for such a linear mapping on LP and L 1 to have this form. 

8.1  SIGNED MEASURES AND THE HAHN DECOMPOSITION 

We have seen in Theorem 1 8 ,  p . 1 06, that iff is a non-negative measurable func
tion on the measure spa' e [X, � , J..L] ,  then the set function 4>., defmed on S by 

cp(E) = J f dp, is a measure . Iff is any measurable function whose integral with 
E 

respect to p exists, then v(E) = J f dp is a set function on S which is countably 
E 

additive and which behaves in most respects like a measure . This suggests extend
ing the definition of a measure to allow negative values. This is done in Defmition 
1 .  The Jordan decomposition theorem in the next section shows that the study 
of these 'measures' can be reduced to that of measures in the strict sense . 

Defmition 1 :  A set function v defmed on a measurable space [X, $ D is said to 
be a signed me asure if the values of v are extended real numbers and 

(i) v takes at most one of the values oo, -oo, 

(ii) v(0) = 0, 

(iii) v(� E; )= ;� v(E1) if E1 n Ei = 0 for i * j, where if the left -hand side is 

1 33 
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infmite, the series on the right-hand side has sum oo or  -oo as the case may 
be . 

Clearly, every measure is a signed measure . 

Example 1 :  Show that if 1/J(E) = f f d�t where f f d�t is defmed, then 1/J is a 
E 

signed measure . 

Solution : We have either f r dp < oo or f r dJ.L < oo so (i) of Defmition 1 
follows. (ii) is trivial. Let (E1} be a sequence of disjoint sets of $ and for E E 

� write 1/J+(E) = L r <ij.t, 1/J-(E) = f r <4t, so that by Theorem 18 ,  p .  106 ,  
E E 

4>+ and 4>- are measures. Then 

. 

as we cannot get oo - oo at any stage. 

Definition 2: A is a positive set with respect to the signed measure v on [X, � ]  
if A E $ and v(E) ;> 0 for each measurable subset E of A .  We will omit 'with 
respect to v' if the signed measure is obvious from the context . 

Clearly 0 is a positive set with respect to every signed measure . Also , v(A) ;> 0 
is necessary but not in general sufficient for A to be a positive set with respect to 
"· 

The next example shows a second important way of constructing a new 
measure from a given signed measure . 

Example 2: If A is a positive set with respect to v and if, for E E � , p(E) = 

v(E n A), then p is a measure . 

Defmition 3 :  A is a negative set with respect to v if it is a positive set with respect 
to -v. 

Defmition 4: A is a nuB set with respect to v, or a v-null set, if it is both a 
' ' 

positive and a negative set with respect to v. /:j 
Equivalently, A is a v-null set if A E � and v(E) = 0 for all E E � , E ... � A .  

Example 3 :  If A is a positive set with respect to v, then every measurable subset 
of A is a positive set. The same holds for negative sets and null sets. 

Theorems 1 and 2 ,  which follow, will be used to prove the main result of the 
section , Theorem 3 ,  which asserts, roughly , that X may be divided into two sets 
on one of which v, and on the other -v, acts like a measure . 

Theorem 1 :  A countable union of sets positive with respect to a signed measure 
v is a positive set .  
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Proof: Let lA n }  be a sequence o f  positive sets. Then, as in Theorem 2 ,  p .  95 , we 
00 00 

have U An = U Bn where the sets Bn E � ,  Bn S An and Bn n Bm = f/J if 
n= 1 n= 1  

00 00 -

n =P m. Now let E �  U An · Then £ =  U (E n Bn ), so v(E) = � v(E nBn) 
n= 1 n= 1 n= 1  

00 

� 0, as E n  Bn is a positive set for each n by Example 3 .  So U An is a positive 
n= 1  

set . D 

Corollary : A countable union of negative or of null sets is, respectively, a negative 
or a null set .  

Theorem 2 :  Let v be a signed measure on [X, $ ] . Let E E $ and v(E) > 0 .  
Then there exists A ,  a set positive with respect to  v ,  such that A S E and v(A)  > 

0.  

Proof: If E contains no set of negative v-measure, then E is a positive set and 
A = E gives the result. Otherwise there exists n E N  such that there exists B E � ,  
B � E and v(B) < - 1/n . Let n 1 be the smallest such integer and E 1 a correspond
ing measurable subset of E with v(E 1 ) < - 1/n 1 • Let nk be the smallest positive 

k-1 
integer such that there is a measurable subset E k of E -U E1 with v(E k) < 

1= 1 
- 1/nk . From the construction,  n 1 � n2 � • • •  and we have a corresponding 
sequence {E1 l of disjoint subsets of E. If the process stops, at nm say, and 

m 

C = E - U E1, then C is a positive set ,  and v(C) > 0,  for v(C) = 0 would imply 
i= I 

m 
that v{E) = �1 v(E1) < 0 .  So C is the desired set . If the process does not stop , 

00 

put A =  E - U Ek ; we wish to show that A is a positive set. We have 
k= 1  

v(E) = v(A ) + v(P
1 

Ek) (8 . 1 )  

But v cannot take both the values oo, -oo, v(E) > 0 and ./ Q E k) = B v(E k) < ,.\k= 1 k= 1 
00 

0 , so the second term on the right-hand side of(8 . 1 )  is fmite . So � v(Ek) > -oo; 
k= 1  00 

hence � 1 /nk < oo and, in particular, lim nk = oo, and nk > 1 for k > k0 , 
k= 1  k�oo 

k 
say. So let B E � , B c A and k > k0 • Then B � E - U E1 so 

t= I 
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v(B) � --1-
nk - 1  

[Ch. 8 

(8 .2) 

by the defmition of nk . But (8 .2) hold s for all k > k0 , so letting k � oo we have 
v(B) � 0 and so A is a positive set .  As before , v(A ) = 0 would imply v(E) < 0, so 
v(A) > 0 as required . D 

Thorem 3 :  Let v be a signed measure on [X, $ D . Then there exists a positive 
set A and a negative set B such that A U B = X, A n B = (/J .  The pair A ,  B is 
said to be a Hahn decomposition of X with respect to v. It is unique to the 
extent that if A 1 ,  B 1 and A2 , B2 are Hahn decompositions of X with respect to 
v, then A 1 � A2  is a v-null set .  

Proof: We may suppose that v < oo o n  cS , for otherwise we consider -v, the 
result of the theorem for -v implying the result for v. Let X = sup [v(C): C a 
positive set] , so A � 0 .  Let {A1 } be a sequence of positive se ts such that A = 

00 

lim v(A1). By Theorem 1 ,  p .  1 34, A = U A; is a positive set ,  and from the 
i= 1 

definition of A, A �  v(A).  But A - A; c A and hence is a positive set .  So, for 
each i ,  

v(A) = v(A1) + v(A - A1) � v(A;). 
So v(A ) � lim v(A;) = A and hence v(A ) = A, that is, the value A is achieved on a 
positive set .  Write B = CA .  Then if B contains a set D of positive v-measure , we 
have 0 < v(D) < 00• So by Theorem 2 ,  D contains a positive set E such that 0 < 
v(E) < oo. But then v(A U E) = v(A)  + v(E) > A, contradicting the definition of 
A. So v(D) � 0 and B is a negative set and A ,  B form- a Hahn decomposition . 

For the last part note that A 1 - A2 = A 1 n B2 and hence is a positive and 
negative set and so a null set. Similarly A2 - A  1 is a null set , and so A 1 � A2  is 
null. D 

Exercises 

1 .  Let v(E) = J x e-xs dx. What are the positive , negative and null sets with 
E 

respect to v? Given a Hahn decomposition of A with respect to v.  
2. Show that , if we suppose v(E) < oo in Theorem 2 ,  we obtain 0 < v(A)  < oo . 

3 .  Give an example showing that a Hahn decomposition is not unique . 
4. For any sequence (an } and any set E s; N let v(E) be the sum, if it exists, of the 

corresponding terms of (an } .  Which sequences correspond to signed measures 
on N? Show that if (an l is such a sequence and I an I > 0 for each n ,  the Hahn 
decomposition of N with respect to v is unique .  

5 .  Let v be a signed measure and (En l a sequence of disjoint sets such that 

1 v(� En} < 00• Show that 
n
B

l 
v(En) is absolutely convergent . 
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6. Show that if v is a signed measure, I II(E)I < oo and F � E, then l v(F)I < oo. 

7 .  If 11 is a signed measure and £1 £ E2 � • • •  , then iQ E1) = lim v(£1). \t= l 
8 .  If v is a signed measure, E 1 2 £2 2 . . .  , and lv(Et )I < oo, then 

J()E,) = lim v(£1). �i= I 

8.2 THE JORDAN DECOMPOSITION 

We now use the Hahn decomposition to obtain, in Theorem 4, a decomposition 
of a signed measure into the difference of measures. 

Definition S :  Let v1 , v2 be measures on [X, � ] .  Then Vt and v2 are said to be 
mutually singular if, for some A E $ ,  v2 (A) = lit (CA) = 0, and we then write 
v 1 v2 • 

Example 4 :  Let J..L be a measure and let the measures v 1 , v2 be given by v1 (E) = 
�(A n E), v2 (E) = J..L(B n E), where J..L(A n B) = 0 and E, A ,  B E � . Show that 
v 1 1 v2 • 

Solution : v1 (B) = J..L(A n B) = 0, v2 (CB) = p.(� ) = 0. 

Theorem 4: Let v be a signed measure on [X, � ] . Then there exist measures .,+ 
and v- on [X, $ ] such that v = v+ - ��- and v+ 1 v- .  The measures v+ and v- are 
uniquely defined by v,  and v = 11+ - v- is said to be the Jordan decomposition of 
v. 

Proof: Let A ,  B be a Hahn decomposition of X with respect to 11, and defme v+ 
and v- by 

(8 .3) 
for E E cS .  Then v+ and v- are measures by Example 2,  p. 134, and v+(B) = v-(A) 
= O . So v+ 1 v-. Also, for E E  � 

11(E) = v(E n A) +  v(E n B) = 11+(E) - v-(E). 

So v = v+ - ��-, and the proof will be complete when we show that the decom
position is unique . Let v = v1 - v2 be any decomposition of v into mutually 
singular measures. Then we have X = A U B, where B = CA and v1 (B) = v2 (A) = 
0. Let D � A ,  then v(D) = Vt (D) - v2 (D) = Vt (D) � 0, so A is a positive set 
with respect to v. Similarly B is a negative set .  For each £ E S  we have lit (E) =  
v1 (E n A) = v(E n A)  and v2 (E) =  -v(E n B), so every such decomposition of v 
is obtained from a Hahn decomposition of X, as in (8 .3). So it is enough to show 
that if A , B and A ', B' are two Hahn decompositions then the measures obtained 
as in (8 .3) are the same . We have 

v(A U A ') = 11(A n A ') + v(A � A ') = v(A n A ') 
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by Theorem 3 ,  p. 1 36 .  For each E E � , as A U A '  is a positive set we have 

v(E rl (A rl A ')) � v(E rl A)  � v(E rl (A U A ')) 

and v(E rl (A ri A ')) � v(E ri A ') �  v(E rl (A U A ')). 

[Ch. 8 

But the first and last terms in each of these inequalities are the same so v(E rl A) 
= v(E rl A ') and v+ defmed in (8 .3) is unique. But then v- = v+ - v is also 
unique, proving the theorem. D 

Notice that the Hahn decomposition is of the space and is not unique whereas 
the Jordan decomposition is of the signed measure and is unique . 

We will henceforth use the notation v+ and v- for the measures defined by v as 
in Theorem 4.  

Example S:  Let [X, $ , J.t] be a measure space and le t f f dJ.L exist. Define v by 

v(E) = i f d�o�, for E E � . Find a Hahn decomposition with respect to v and the 
E 

Jordan decomposition of v. 

Solution : From Example 1 ,  p. 134,  v is a signed measure . Let A = [x : f(x) � 0] , 
B = [x : f(x) < 0] . Then A ,  B form a Hahn decomposition, while v+, v- given by 

v•(E) = l r d�o�, v-(E) = f r d�o� form the Jordan decomposition. 
E E 

Defmition 6 :  The total variation of a signed measure v is l vl = v+ + v-, where 
v = v+ - v- is the Jordan decomposition of v. 

Clearly I vi is a measure on [X, � D ,  and for each E E � , I v(E)I � I vi (E). 
00 

Defmition 7: A signed measure v on [X, $ D is a-finite if X =  U xn where Xn E 
n= l  

$ and , for each n ,  l v(Xn )l < 00• 

Example 6: Show that the signed measure v is finite or a-finite respectively if, 
and only if, I vi is, or if, and only if, both v+ and v- are . 

Solution :  Suppose I v(E)I < 00• Then as v+ and v- are not both infmite we have 
v+(E) < oo and v-(E) < oo and hence I vi (E) < oo . Obviously , v is fmite if I vi is. 
The corresponding results on o-fmiteness are an immediate consequence . 

Exercises 

9 .  Show that if v 1 , v2 and J.L are measures and v 1 1 J.t ,  v2 1 J.t ,  then v 1 + v2 1 Jl .  
10. If v(E) "" J. f d�o� where f f d�o� exists, what is I v i (£)? 

E 
1 1 .  Show that v• = !(v + l v l ), v- = !Ov l - v), provided v is fmite-valued . n 
1 2 .  Show that l v(£)1 = sup � l v(E;)I where the sets E; are disjoint and E = 

i= 1 
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n U E; . This result justifies the term 'total variation' in Defmition 6. I= I 
1 3 . Show that the Jordan decomposition is minimal in the sense that if v is a 

signed measure and v = v1 - v2 where v1 and v2 are measures, then I v i  � 
v 1 + v2 with equality only if v1 = v+ , v2 = v- . 

8.3 THE RADON-NIKODYM THEOREM 

We have found in Section 8 . 1 that v(E) = J. f d�I is a signed measure . It is in 
E 

practice very useful to know if a measure is of this form. The essential condition 
is given in Definitions 8 and 9 .  Theorem 5 shows that if the measures or signed 
measures are , in addition, a-finite , v can be written as an integral. 

Defmition 8:  If JJ, v are measures on the measurable space [X, $ ] and v(E) = 0 
whenever JJ(E) = 0, then we say that v is absolutely continuous with respect to 
J..L and we write v < J..L . 

Defmition 9 :  If JJ, v are signed measures on [X, $ ] and v(E) = 0 whenever 
IJJ I (E) = 0, then v is absolutely continuous with respect to J..L, v < J..L . 

Example 7 :  Show that the following conditions on the signed measures J..L and v 
on [X, $ D are equivalent : (i) v < J..L , (ii) I v i  < IJJ I , (iii) v+ < J..L and v- < J..L . 

Solution : From Definition 9 we see that v < J..L if, and only if, v < IJJ I .  So we 
may assume that J..L � 0. As I v i  = v+ + v- , we see that I v i  < J..L implies v+ < J..L and 
rF < J..L , so v < J..L . For the opposite implications, suppose that v = v+ - v- with a 
Hahn decomposition A ,  B. Then if v < J..L and J..L(E) = 0 we have J..L(E n A)  = 0 so 
v+(E) = 0, and similarly v-(E) = 0. So I v i  (E) = 0. 

Example 8: If II is a measure, f f d�I exists and v(E) = J. f d�I, then v -<  II· 
E 

In the opposite direction we have the main theorem of this chapter. 

Theorem S (Radon-Nikodym Theorem) : If [X, � , JJD is a a-fmite measure space 
and v is a a-finite measure on cS such that v < J..L , then there exists a finite-valued 
non-negative measurable function f on X such that for each E E $ , v(E) = 

J f d�I . Also f is unique in the sense that if v(E) = J. g d�I for each E E rS , then 
� -E 

f = g a.e .  (p.). 

Proof: Suppose that the result has been proved for finite measures. Then in the 
00 00 

general case we have X =  U An , J..L(An ) < oo and X = U Bm , v(Bm ) < 00 and 
n= t  m = 1 
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(A,. ) , {Bm ) may be supposed to be sequences of disjoint sets. So setting X = 
00 U (A,. n Bm ) we obtain X as the union of disjoint sets on which both J..L and 

n,m= 1 
00 

v are fmite , say X = U X,. . Let $.,. = [E n X,. : E E $ ] , a a-algebra over X,. , 
n= 1  

and considering J..L and v restricted to � ,. we obtain, since J..L and v are fmite, a 

non-negative function In such that if E E � ;z ,  v(E) = J In dp. So if A E � , 
E 

00 

A = U A,. , say, where A,. E � n , then defming I =  In on X,. gives a measurable 
n= 1  

function on X as in Example 1 2 , p.  103,  and v(A )  = f; J In dp = J I dp. 
n= l  A n A 

So the general case follows. 
So we need to show that for fmite measures such a function I exists. Let ?( 

be the class of non-negative functions measurable with respect to J..L and satisfying 

J. I dp " v(E) for all E E � . Then "K is non-empty as O E "K .  Let a =  sup [f I dp :  
E 

I E  W: ]  and let (/,. } be a sequence in 'lC such that lim f fn dJ..L = a. If B is any 
ftxed measurable set , n a fixed positive integer and Km = max (/1 , • • • , I m ) ,  
then we can prove by induction that B is the union of disjoint measurable sets 
B1, i =  1 ,  . . .  , n , such that g,. = l; on B1, i = 1 ,  . . . , n . For , let n = 2 and let 
Bt = [x : x E B,I1 (x) � l2 (x)] , B2 = B - B1 , then B = B1 U B2 has the desired 
property . Supposing the decomposition possible for n;  let gn+ t = max (/1 , • • •  , 
ln+t ) = max (g,. ,  ft ). So B = F,. U Bn+l where Kn+t =In+ I on Bn+t , Kn+l = Kn 
on F,. and F,. n Bn+l = (/J. But then by the inductive hypothesis we have F,. = 

n 
U B1 and ln+1 (x) = 11(x) for x E B1, i = 1 ,  . . . , n  + 1 .  
1= 1  

Now, since each !1 E W: , 

f Kn dp = 'f'. J It dp " 'L v(B,) = v(B). (8 .4) B �1 Bt 1= 1  
Also we have In t ,  so write 10 = lim g,. . Then (8 .4) and the Lebesgue Monotone 
Convergence Theorem imply that 

J lo dp = lim J Kn dp " v(E), 
E E 

so /0 E GJC .  Hence 

Q '> f fo dp. � f In dp. � fIn dp., 
so a = f lo dp.. Since f fo dp. <; v(X) < oo, there exists a finite-valued measurable 
function/, also non-negative , such that /= /0 a.e . (p.). 



Sec. 8 .3] The Radon·Nikodym Theorem 141 

We will show now that if v0 (E) = v(E) - J. I d�o�, then v0 (E) = 0, for each 
E 

E E � . By the construction of [, v0 is non-negative . If v0 is not identically zero 
on tS ,  let C E  $ and v0 (C) > 0 .  Then for a suitable e, 0 < € < 1 ,  (v0 - EJ..LXC) > 
0. But then by Theorem 2 we can find A such that (v0 - EJ..L)(A )  > 0 where A is 
a positive set with respect to v0 - €1J.. Also J..L(A) > 0, for otherwise, as v < J..L we 
would have v(A) = 0 and hence (v0 - EJ..LXA) = 0 .  So for E E � 

· e�o�(E n A) <: v0 (E n A) = v(E n A) - J. I d�o� . 
En..A. 

Hence if g = f + ex..t , for each E E � we have 

J. g d�o� = J I d�o� + e�o�(E n A) <: J I d�o� + v(E n A) <: v(E) 
E E E-A 

and so g E GJC. But f g dJ..L = f f dJ..L + E�-t(A) > a, contradicting the maximality of 

a: .  So v0 = 0 on .S , that is, J. I d�o� = v(E) . 
E 

So f has the desired properties. Let g also have these properties. Then, for 

E E .S , J. (1-g) <4t = 0 and taking E = [x : f(x) > g(x)] , we get l<:g a.e., and 
E 

similarly f�g a.e .  so fis unique in the sense stated. 0 

Corollary 1 :  Theorem 5 can be extended to the case where v is a a-finite signed 
measure . 

Proof: The Jordan decomposition gives v = v+ - v- and by Examples 6 and 7 ,  

v•(E) = J. It d�o�, v-(E) = J 12 d�o� where 11 and 12 are fmite-valued non-negative 
E E 

measurable functions of which at least one is integrable . So , for E E � ,  v(E) = 

v•(E) - v-(E) = f. I <4t where the integral of I= It -12 is well-defmed .  0 
E 

Corollary 2: Theorem 5 can be further extended to allow J..L to be a signed 

measure, where by f. 1 d�o� we then mean f. r d�o� - f. r d�o�, provided this 
E -':.£ E 

difference is not indeterminate . Any two such functions f and g are equal a.e . 
(IJJ I ). 

Proof: Let A ,  B be a Hahn decomposition with respect to J..L, so that J..L+(E) = 
JJ(E n A), fl(E) = -J..L(E n B). Now v < J..L+ by Example 7 ,  p .  139, and JJ+ is a-finite 
by Example 6,  p. 1 38 ,  so on applying Theorem 5 to ll+ on A we get v(E n A) = 

J It <4t+ for an appropriate function 11 on A ,  and similarly v(E n B) = 
En A 
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J. fz d1J.- for /2 defined on B.  So define f = /1 on A . ! =  -{2 on B. Then by 
Eri B 

Example 1 2 , p .  1 03 ,  f is a measurable function on X, and v(E) = J [1 d1J+ -A ri E 

J (-{2 ) ds.r. As v is a signed measure this will not be of the form oo - oo, 
B riE 

so v(E) = J f dp is well-defined . Any two such functions, from the construction , 
-E 

agree except on a set of zero J .. t- and J .. ( -measure, giving the result . D 

Exercises 

1 4 .  Let 11 and v be measures and J..L � v .  If a proposition P holds a.e .  (v) then P 
holds a.e .  (jJ ). Also, if J..L is a complete measure so is v .  

1 5 . Give an example to show that in Definition 9,  p .  1 39 ,  the condition IJJ I (E) = 
0 is not equivalent to JJ.(E) = 0. 

1 6 .  Give an example of measures J..L and v ,  on the same measurable space , such 
that none of the relations J..L � v, v � J..L , J..L 1 v holds. 

1 7 . Let 0 < x0 < 1 and for any Lebesgue measurable set E S [0, 1 ] define 
v(E) = XE(x0 ) . Show that v is a measure which is not absolutely continuous 
with respect to Lebesgue measure on [0, 1 ] .  

1 8 .  Show that the condition : v a-fmite , is necessary in the Radon-Nikodym 
Theorem. 

19 .  Show that if v(E) = J f dp for each E E S , where f is non-negative and E 
measurable , and f = oo on a set of positive JJ-measure , then v is not a-finite . 

20 . Show that the condition : J..L a-finite , is necessary in the Radon-Nikodym 
Theorem. 

2 1 . Show that if J..L and v are measures such that v < J..L and v 1 J..L, then v is 
identically zero . 

8 .4 SOME APPLICATIONS OF THE RADON-NIKODYM THEOREM 

In this section we consider the 'calculus of derivatives' to which the Radon
Nikodym theorem gives rise and in Theorem 1 1  give one of the many applications 
of that theorem. The next section deals with a different kind of application . Our 
first result concerns absolute continuity and extends Theorem 1 8 , p .  106. 

Theorem 6: Let J1 be a signed measure on [X, $ D and let v be a finite-valued 
signed measure on [X, $ ] such that v < J..L; then given e > 0 there exists 6 > 0 
such that l v i (E) < e whenever IJJ I (E) < 6 .  

Proof: By Example 7 ,  p.  1 39, v < J..L is equivalent to I vi < IJJ I , and by Example 6,  
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p . 138 , I vi is finite-valued if, and only if, v i s ,  so we may suppose that 11 and v are 
measures. If the result is not true , then there exists a positive e and a sequence 
(Enl of sets of S such that JJ.(En ) < 1 /2n , but v(En )  � e. Then consider 

00 00 

lim sup En = n Fk , Fk = U Em . 
k= I m = k  

00 

For each k, JJ.(lim sup En ) � JJ.(F k) � L 1 /2m = 1 /2
k- l . So JJ.(lim sup En) = 0. 

m = k 
But ,  for each k, v(Fk) � e and v is finite , so by Theorem lO{ii), p .  103 ,  

v(lim sup En ) = v(lim Fk) = lim v(Fk) � e, 

contradicting v < /J ,  and the theorem is proved . D 
The converse is hue without any finiteness condition. 

Example 9 :  If JJ., v are signed measures on [X, $ ]  and if V e > 0 , 3 6 > 0 such 
that whenever IJJ.I (E) < 6  we have l v i (E) < e , then v < 11. 

Solution : If I J.t i (E) = 0, then l v i (E) < 1 /n for all n .  
Defmition 10: Let /J and v be a-fmite signed measures on [X, $ ] and suppose 
that v < JJ. Then the Radon-Nikodym derivative-dv/dJJ., of v with respect to JJ., is 

any measurable function f such that v(E) = J f dJ.! for each E E $ , where if J.! is 
E 

a signed measure f f dJJ == f f dJJ+ - f f dJJ- as in Theorem 5 , Corollary 2 , p .  1 4 1 . 
From Theorem 5 ,  p.  1 39 ,  Definition 10  specifies dv/dJJ. only as one of a set of 

functions any two of which are equal a .e .  {J.L); this is not important as dv/dJJ. will , 
in practice, usually appear under the integral sign . In the equations below 
connecting Radon-Nikodym derivatives we will indicate the measure , say Jl, with 
respect to which the functions are equal a.e . by the notation [JJ.] . In the case of 
a signed measure , the functions are equal a .e . ( IJJ. I ). By dv/dl/J =#= dcj>/dA [J.t) we 
mean that either the functions differ on a set of positive 11-measure or they are 
not measurable with respect to the same a-algebra . 

Theorem 7 :  If v1 , v2 are a-finite measures on [X, cS D and v 1  < JJ, v2 < JJ,  then 

d(v 1 + v2 ) = dv1  + dv2 [ ] {8 .5 ) dJJ. dJJ. dJJ. /J • 

Proof: Clearly v 1  + v2 is a a-finite measure and v 1  + v2 < JJ. For E E  $ 

(vi + 112 )(£) = 11 1 (E) + v2 (E) = J �� dJ.! + J d;2 dJ.!. 
E /J E /J 

So the uniqueness of d(v 1 + v2 )/dJ1 gives the result . D 
We prove next that (8 . 5) holds for signed measures, using Hahn decomposi

tions of X so that we can work with measures. 
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Theorem 8 :  If v1 , v2 , v1 + v2 and 1J. are a-finite signed measures on [X, $ D and 
v1 < JJ., 112 < JJ., then (8 .5) holds. 
Proof: v1 + v2 is a signed measure provided v1 (E) + v2 (E) is never oo + (-oo). 

(i) Suppose that /J. is a measure . For i = 1 ,  2 let v1 = vi - v-; with Hahn 
decomposition A1, B1 • Consider the four sets A; n Bi separately . On subsets of 
A 1 n B2 , for example , we have v1 + v2 = v+1 - v2 , so for F C A 1 n B2 , 

(v t + V2 XF) = v� (F) - v-; (F) 

= I (dv� _ dv2 ).r�, = J ( dv1 + dv2 ) d (8 .6) 
F d�ot dJJ. � F dJJ. c4l �' 

since clearly dv/dp. = -d(-v)/dJJ. [JJ.) . But each E E � may be written as the 
union of four such sets F and adding the corresponding equations (8 .6) gives the 
result , as the fact that v1 , v2 and v1 + v2 are signed measures ensures that 
oo + ( -oo) will not arise . 

(ii) Let /J. be a signed measure and let A ,  B be a corresponding Hahn decom
position. Write � ' = [E n A :  E E cS ] and let /J. ' , v� , v; be the restriction of lot, 
v1 , v2 to � ' . Similarly , � " , JJ." , v� , v; in the case of B. Then case (i) applied to 
A and to B gives 

d(v� + v; )/dJJ.' = dv; /dJJ.' + c1v; /dJJ.' [JJ.] 

d(v� + v; )/d(-JJ.") = dv� /d(-JJ.") + dv; /d(-�ot") [JJ.) .  
Write !1 = dvj/dJJ.' on A ,fi  = -dvl /d(-JJ.") on B .  Then for each h"" E 8 ,  

I ft diJ. = J ft d11' - J ft d( -11") = v1(E n A)  + v1(E n B) = v,(E) E EnA EnB 

(8 .7) 

for i =  1 ,  2 and similarly for v1 + v2 • Since (v 1 + v2 )' = v� + v; and (v 1 + v2 )" = 
��� + ��� , we may subtract equations (8 .7) to get the result, as again no indeter
minate expressions can occur . 0 

Example 10: Let iJ be a a-finite measure and v a a-fmite signed measure and let 
v < iJ.; show that d l v l /dJJ. = l dv/dp.l [IJ] . 

Solution : Let v = v+ - v- with a corresponding Hahn decomposition A ,  B. As 
in the last theorem, we have I dv/dJJ.I = \JV+ /dp. [JJ.] on A and I dv/diJI = dv-/dJJ. [p] 
on B. So, by Theorem 7 ,  

I�� = dv+ + dv-
_ 

d lv l r . .  ] dJJ. dJJ. dp. dJJ. IJA • 

Theorem 9 :  Let v be a signed measure and let JJ. ,  X be measures on [X, � D such 
that X, JJ., v are a-fmite , v < /J. and lot <  X ;  then 

-

dv = dv dJJ. [X) dX dJJ. dX . (8 .8) 

Proof: We may write v = v+ - v- and we use the fact that -dv-/dX = d(-v-)/dX 
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[A.] , and similarly for dv-fdJJ.. So by Theorem 8 ,  (8 .8) need be proved for measures 
only . So suppose that v is a measure and take for dv/dJJ. and diJ./dA. the non
negative functions, f and g respectively , provided by the Radon-Nikodym 

Theorem. Then we wish to show that for F E S , v(F) = J fg dA. Let 1/1 be a 
F 

n 
measurable simple function , l/J = � a; XE1 ; then 

i= I 

J 1/1 dp. = t a1 p.(£1 n F) = B a1 J g dA = J 1/Jg d">.. 
F r= I i= I E;n F  F 

Let l l/Jn l be a sequence of measurable simple functions such that l/Jn t f. Then 

v(F) = J f dp. = lim J l/ln dp. = lim J l/ln g dA = J fg dA, 
F F F F 

as l/J nK t fg, giving the result. 0 
Again we may extend the result slightly to cover signed measures. 

Theorem 10 :  Let A, Jl, v be a-finite signed measures on [X, S D such that v � J.l 
and p. < A ; then (8 .8) holds .  • 

Proof: Let Hahn decompositions with respect to A and to 11 be given by A 1 , B 1 • 

and A2 , B2 respectively . Consider the four sets A; n Bj, i ,  j = 1 ,  2 ,  separately . 
For example , on A 1 n B 2 we let <B ' = [E n A 1 n B2 : E E � ] and let A. ' ,  J1 ' be 
the restrictions of A., J1 to � ' .  So A.' and -/J.' are measures. Applying Theorem 9 
we get ,  on A 1 n B2 

dv dv d(-JJ.') 
dA.' = d(-JJ.') dA' [JJ.) . 

As in the proof of Theorem 8 ,  p .  1 44, we see that -dv/d(-JJ.') is the restriction 
of dv/dJJ. to A 1 n B2 and -d(-JJ.')/dA.' that of dJJ./dA. to A 1 n B2 • So on A 1 n B2 
we get 

dv = dv �
[A.) dA. dJJ. dA . 

Adding four such equations gives the result .  0 

Example 1 1 :  Let J1 and v be a-finite measures on  [X, � ] such that v < J1. Show 
that there exists a measurable function g such that if f E L(X, v), then fg E 
L(X, p.) and for each E E � , 

J f dv = J fg dp.. E E 

Solution . Consider the signed measure A defined by A(£) = J f dv , for E E .� . 
E 

As I A I  (X) = f lfl dv < oo, A is a finite signed measure . So dA/ dv = f [v ] . Let g 
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be a non-negative measurable function, g = dv/diJ [IJ] ; then by Theorem 9, 
fg = d"A/dp. [IJ] . So 

I f dv = A(E) = I fg dp.. 
E -E 

Also, fg E L(X, IJ) since using Example 10, p .  144, 

J lfgl diJ =JidA ' � dp. = f d l ).l � diJ = I AI (X) < oo. 

dv diJ dv dp. 
The next results show that even if the Radon-Nikodym Theorem cannot be 

applied to a measure , it may still be applicable to 'a part or the measure . An 
alternative method of proof of the next theorem is indicated in Exercise 28. 

Theorem 1 1  (Lebesgue Decomposition Theorem): Let [X, � , iJI be a o-fmite 
measure space and v a o-fmite measure on tS .  Then v = 110 + Vt where v0 , v1 
are measures on ,S such that v0 1 iJ and lit < iJ. This is the Lebesgue decomposi
tion of the measure v with respect to iJ and it is unique. 

Proof: Clearly the measure A =  iJ + v is o-fmite and iJ < A . So by Theorem 5 ,  
p .  1 39, there exists a non-negative finite-valued measurable function[ such that 

if E E cS ,  then p.(E) = I f dA. Let A = [x : .f(x) > 0] , B = [x : .f(x) = 0] . Then 
E 

A U B = X, A n B = (/J and iJ(B) = f f d"A = 0. 
B . 

Defme measures v0 , Vt by v0 (E) = v(E n B), Vt (E) = v(E n A)  for each 
E E � , so that v = 110 + v1 • Since 110 {A) = 0 we have v0 1 iJ. Also v1 < iJ; for 

if p.(E) = 0 we have J f dA =  0 and so, on E,f = 0 a .e .  (A). Butfis positive on 
E 

E n A so A(E n A) = 0.  From the definition of A we have v < A  so Vt (E) = 
11(E n A) = O. 

To show that the decomposition is unique we suppose that v = v0 + 111 = 
v� + ��� , where v0 1 iJ, v� 1 iJ, lit < iJ, v� < IJ .  So there exist sets A ,  B, A ' , B' 
such that X =  A U B = A ' U B', A n B = A ' n B '  = �, and v0 (B) = iJ(A)  = 
��� (B ') = iJ(A ') = 0 .  Let E E � , then 

E = (E n B n B ') U (E n A ' n B) U (E n A n A ') U (E n A n B '). 
Clearly iJ is zero on the last three sets :in this union and hence Vt and v; are zero 
by absolute continuity. Since �� �  - Vt = v0 - ��� we have 

(v� - lit )(E) = (v; - 111 )(E n  B n B') = (110 - ���)(E n  B n B') = 0, 
as llo (B) = v� (B) = 0 .  So Vt (E) = ��� (E), which implies v0 (E) = v� (E) and the 
uniqueness of the decomposition. 0 

Example 12 :  Let [X, tS ] be a measurable space such that the points [x] of X 
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are measurable se ts, and let v and /J. be o-fmite measures on [X, $ ] . Then 
v = v1 + v2 + v3 where v1 < JJ., v2 + v3 1 JJ., v1 1 vi for i =I= j and v3 ( [x ] )  = 0 
for each x E X. 

Solution : The last theorem gives v = v0 + v1 where v1 < 1J. and v0 1 JJ.. Let D = 
[x : v0 ( [x] ) > 0] and write v2 (E) = v0 (E n D), v3 (E) = v0 (E n CD) for each 
E E cS • Then v2 1 v3 and v2 1 JJ., v3 1 JJ. so v2 1 v1  , v3 1 v1 since v1 < JJ.. Clearly 
v3 ([x] ) = 0 for each x .  

Exercises 

22 . In the special case where 1J. is o-fmite use Theorem 5 ,  p. 139,  to prove 
Theorem 6,  p .  142. 

23 . Let (an } , lbn } be sequences of positive numbers such that in( an = 0, 
inf bn > O. l.et JJ., v be the measures on Cf (N) such that �-t( [n] ) = an , v([n] )  = 
bn . Show that 1J. < v but that the result of Theorem 6 does not hold. 

24 . Let lfkl be a mean fundamental sequence in L(X, J.t); show that V € > 0, 

3 li > 0 such that for all k, J lfk l  dp < € if p(E) < li .  
E 

25 .  Show that if /J. and v are o-fmite signed measures and /J. < v, v < JJ., then 
dv 

= 
(�J.L) -l 

[.u] . dJJ. dv 
26 . Let f(x) = v'{1 - x), x � 1 ,f(x) = O, x  > 1 ,  and le t g{x) = x2 , x  � O, g(x) = 

0, x < 0. Let v(E} = J f dx and p(E) = J g dx so that v and p are measures 
E E 

on 3ft .  Find the Lebesgue decomposition of v with respect to /J. .  
27. Show that the set D occurring in Example 12 is countable . 
28 . Prove Theorem 1 1  directly, without the use of Theorem 5 ,  using, as in 

Theorem 3 ,  a sequence of sets maximizing v to obtain the set B of the proof. 

8.5 BOUNDED LINEAR FUNCTIONALS ON LP 

First we make a formal defmition which was implicit in Chapter 6 .  

Defmition 1 1 :  Let V be a real vector space . Then V is a normed vector space if 
there is a function llx II defined for each x E V such that (i) V x, llx II � 0, (ii) 
llx II = 0 if, and only if, x = 0, (iii) llax ll = Ia I • llx II for any real number a and 
each x E V, (iv) llx + y ll � llx ll + lly ll , Vr, y E V. 
Example 13 : LP(X, JJ.) {1 � p <: 00) is a normed vector space with norm given by 
11{11 p .  
Solution : Only (iv) is not obvious and it is proved by Theorem 8 ,  p . 1 1 5 ,  for 
1 <: p  < oo and by Example 1 2, p .  1 1 6,  for p = oo . 
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Example 14 :  C[O ,  1 ] , consisting of the continuous real-valued functions on [0 , 1 ] 
with norm II [lloc = sup [ I  f(x )I : 0 � x � 1 ]  , is a normed vector space . On this 
space a sequence converges with respect to the norm if it is uniformly convergent 
on [0, 1 ] . 

Defmition 12 :  A function G on the normal linear space V to the real numbers is 
a linear functional if v x ,  y E V and a ,  b E R ,  we have G(ax + by) = a G(x) + 
b G(y). 

Defmition 13 :  A linear functional G on the normed linear space V is bounded 
if 3 K � 0 such that 

I G(x) l  � K  l lx ll , V x E V. (8 .9) 

Then the norm of G ,  denoted by I IG II , is the infimum of the numbers K for 
which (8 .9) holds . So , easily , I G(x)l � I I G II • l lx ll . Then dividing by II G II we see 
that II G II = sup [ I  G(x ) I : llx II � 1 ]  , and it is easy to see that apart from the trivial 
case when dim V = 0 ,  I IG II = sup'[ iG(x) l :  llx II = 1 ] . 

Boundedness and continuity are related as follows . 

Example 1 S :  The following are equivalent for a linear functional G :  (i) G is 
bounded , (ii) G is continuous at 0 ,  (iii) G is cont inuous at each x E V. 

Solution : Let Xn � 0 ;  then I G(xn ) l � I I G II • llxn ll � 0 ,  so (i) implies (ii). Let 
Xn � x ;  then I G(xn ) - G(x) l  = I G(xn - x ) l  � ! I G II • l lxn - x  II � 0, so (ii) implies 
(iii). Clearly (iii) implies (ii). If  (ii) holds but  G is not bounded , then 3 {xn } , 
llxn ll � 1 ,  but I G(xn )l � n .  Then if Yn = n- 1 Xn , so that llyn II � 0, we have 
I G(y n ) I  � 1 ,  contradicting (ii). 

Example 16 :  Define G on LP(p) by G(j) = f fg d� for a fixed g E L q(J.t), p and 
q being conjugate indices with p � 1 and with q = oo in the case where p = 1 .  
Then G is a bounded linear functional and I I G II � llg II q . 

Solution : This follows from Holders inequality , p .  1 1 5 , for 1 < p < oo and from 
Theorem 9 ,  p .  1 1 6 ,  for the case p = 1 .  

It  will follow from the main theorems of this section that II G II = l lg ll q for this 
kind of functional . It is convenient to deal separately with the cases 1 < p < oo 
and p = 1 .  The next theorem shows that L q is , in a sense , the set of bounded 
linear functionals ,  or dual space , of LP . 

Theorem 1 2  (Riesz Representation Theorem for LP , p  > 1 ) : Let G be a bounded 
linear functional on LP(X, �). Then there exists a unique element g of Lq(X, JJ) 
such that 

G(j) := f fg dJ..L for each [ E LP 
where p , q are conjugate indices .  Also 

I I  G I I  = l lg I I  q . 

(8 . 1 0) 

(8 . 1 1 )  
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Proof: Let g and g' have the desired property and let E be any set of fmite 

measure , so that XE E LP . Then l (g -g ') d�-t = JXE (g -g') d,.t = 0. So g = g' 
E 

a.e . , since the set [x : g(x) =#= g'(x)] has a-finite measure . So the uniqueness is 
proved . That IIG II <; llg ll q was noted in Example 16 ,  for any g satisfying (8 . 10). 
If II G il = 0, then G({) = 0 for all [, so g = 0 satisfies (8 . 10) and (8 . 1 1 ) . So suppose 
IIG II > 0. Suppose first that J.L(X) < oo . For each E E $ defme "A(E) = G<X.E); 
we wish to show that "A is a signed measure . Clearly "A(�) = 0. Since XA u s  = 

00 

XA + XB for disjoint sets A ,  B, "A is fmitely additive . Let E =U E1 and let An = 
i= l 

n 
U E1 . We have llx..t - XE lip  = (p.(E - An))1"' � 0 as n -+ oo . Since G is con-
t= t  n 

tinuous by Example 1 5 , we have X(An)  � "A(£), so "A is countably additive. Since 
G takes only fmite values, "A is a signed measure . Also, if J.L(E) = 0, then IIXE lip = 
0 so "'A.(E) = 0, that is, "A < J.L. So by Theorem 5 ,  Corollary 1 ,  p .  14 1 ,  there exists 
g E L  1 (p.) such that for each E E cS 

G<X.E) = f g d�-t = f XE g dl-f. 
E 

We now dispense with the signed measure "A and show that g has the required 
properties. 

By linearity we have G(4>) = f 4> g dJ,L for any measurable simple function q,. 
But each function f E Loo(p.) is the uniform limit a .e .  of a sequence (1P,. } where 
each l/Jn is the difference of measurable simple functions, and so II! - l/J,. IIp � o. 
So, by the continuity of G, 

G(f) = f fg dJ,L for each/E L.(p.). (8 . 1 2) 
We now show that II G II = llg ll q . Let the function a on X be defmed by : 

a = 1 where g > 0, a = - 1  where g <: 0. So a is measurable and ag = lgl . Let 
En = (x : lg(x )I <; nJ and put f = CXXEn lg l 

q-1 
where p, q are conjugate indices. 

Then lflP = lgl q on En ,fE L.(p.) and by (8 . 1 2) 

f lgl q  dll = f fg d�-t = G(j) tt::. UG II • 11/Up = IIG II ( f lg l q  d�-t 
) '"' 

(8 . 1 3) 
� � 

So we get 

(8 . 14) )1/P 
For this is obvious if (

.
f
En 

lgl q d�-t = 0 ;  otherwise divirle (8 . 1 3) across by 

this factor and raise to the power q .  Since XEn t 1 ,  (8 . 14) and Theorem 1 5 ,  
p .  1 05 ,  give llg ll q <: II G II ,  and, in particular, g E Lq(p.). So by Example 16 ,  
llg II q = II G II . 
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So (8 . 10) holds for f E L·(x, p.). But the bounded functions are dense in LP . 
For it is sufficient to show that every non-negative function fE LP is the limit, 
in the mean of order p ,  of a sequence l/n )  of bounded functions. Put fn = 
min({, n). Then 0 � (f - fnf � fP and f - In � 0 a .e .  So by Theorem 2 1 ,  
p. 107, II{ - fn lip � 0. Then by the continuity of G, Gifn) � G(j). Also, by 
Holders inequality, f InK dp. � f fg dp. . So G(j) = f fg dp., proving the result of 
the theorem for fmite measure spaces. 

00 
We now extend the result to the case when X =  U X1, where the X1 are 1= 1  

disjoint measurable sets of I mite p.-measure . Any function ft on X1, measurable 
with respect to the a-algebra of sets E n X1, E E cS , can be extended to f on X 
by putting[ =  0 on ex1• Then G has the restriction G1 on L(X;, p.) where G1(ft) = 

G(f), and we have UG1 11 � IIG H .  By the first part , Gtif1) = Gf.xx/) = f ' {g1 dJJ. 
Xt 

for each f E LP(X, p.), for each i, and for a suitable g1 E Lq(X1, p.). Extend g1 to 
n 

X by putting g1 = 0 on ex, and write g = 1; g1 • By linearity , if Yn =UX1, 1= 1  

G(xy,/) = f f(gl + . . .  + Kn ) dJ}., V /E LP(X, JJ.). 
Yn 

As in the frrst part, since p.(Yn) < 00, we have llg1 + . . .  + Kn llq � IIG II for 
each n . So 

( llg II q )q = f I � g t I q dJJ. = f lim I t. g t I q dJJ. 

� lim inf ftf.:. K; l dJJ. � IG II q 

by Fatou's Lemma, p .  105 ,  giving llg ll q = IIG II by Example 16 ,  as before . Also 
n 

XY ,/ 4 f in the mean of order p so G(xy ,/) 4 G(f). But �
1 
Kt 4 g in the mean of 

n 
order q,  so by Holders inequality Jxr,/ B g1 dp. -+ f fg dp.. 1= 1  

Now consider the general case where p. need not be o-fmite . We show that 
there exists a set X0 E cS which is of o-fmite measure , that is, X0 is the union of 
a sequence of sets of fmite measure , and such that iff =  0 on X0 then G(j) = 0. 
Let lfn } be such that llfn II p = 1 and Gifn) ;> II G II ( 1  - 1/n ). By Exercise 2 1 , 

00 
p .  108, we see that X0 = U [x : fn(x) =I= 0] has o-fmite measure . Let E E � 

n= l  
with E � ex 0 ' then llfn + tx.E H p = (1 + tl' p.(E))11P for t ;> 0.  Also 

Gifn) - G(± txe) � IG(f+ tx.E)I � II G il (1 + tl' p.(E))11P 
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and it follows that 

IG(txE ) I � IIG II [( 1 + tP p.(E))11P - 1 + n- t ] , 
for every n .  Let n � oo and then divide by t(> 0) to get 

IG6cE )I c;;; ftG II (1 + tl' �EW, - 1 . 

Since p > 1 we may apply l'Hopital's rule as t -+ 0 to get G<XE) = 0. So G 
vanishes for simple functions and hence for measurable functions which equal 
zero on X 0 • So by the proof for the o-fmite case we can fmd g E L q (X 0 ) such 
that 

G(xx f) = f fg dp.. 
o X 0 

Defme g to be zero on ex 0 to get the required function g of the theorem. 0 

Theorem 13 (Riesz Representation Theorem for L1 ) : Let [X, $ , p] be a a
finite measure space and let G be a bounded linear functional on L 1 (X, p.). Then 
there exists a unique g E L•(x, p.) such that 

G(j) = f fg dp. for eachfEL1 (p.). (8 . 1 5) 
Also, II G II = llg II • .  

Proof. Suppose first that [X, � ,  p.] is a fmite measure space . As in the last 
theorem we construct �a unique g such that (8 . 1 S) holds for f E  L·(x, p.). We 
wish to show that g E L • . We have 

I L g dpl c;;; UG U  DXE l 1 = II G il p(E), v E e � . (8 . 16) 

Suppose that lg(x)l > IIG II on a set A of positive measure and write En = [x : 
lg(x)l > (1 + 1/n) II G il ] . So A = U £,. . So, for some n ,  p(En) > 0 and lg(x)l > 

(1 + 1 /n) IIG II on En . Then J. g dp ;> IIG II (1 + 1/n) p(En), contradicting 
En 

(8 . 16) as we may suppose IIG II > 0 .  So llg ll. � II G il ,  and hence llg ll. = IIG II by 
Example 16 .  

We extend (8 . 1 5), as in the last theorem, to all functions/ E L1 (p.). Extend ,  
as before , to the o-fmite case ; we now have llg1 + . . .  + Kn II. � II G il for each n ,  
so llg ll. � IIG II as required . For the last part of the o-fmite case in the last 
theorem, Holders inequality is replaced by Theorern 9 ,  p . 1 16 . D 

Exercises 

29 . Prove the result used in Theorem 12 :  if In -+ f in  LP(X, p.), and Kn -+ g in  
L q(X, p.), where p ,  q are conjugate , thenfnKn -+ fg in L1 (X, p.). 

30 . Let V be a normed vector space and let V* be the 'dual space' of bounded 
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linear functionals on V with norm as given in Definition 1 3 ,  p .  148 .  Show 
that V* is a normed vector space. 

3 1 . Let V be a normed vector space. Show that the mapping G � G(f), for 
fixed f E V, is a bounded linear functional , f** say, on V* and II{** II � 
11{11 . 

32 . In the case V = LP (}J.) (p > 1 ), show that the correspondence f � f** of the 
last exercise is linear and norm preserving. 
Note : In this notation , Theorem 1 2  says that (LP )• (1 < p < oo) may be 
identified with L q , and (LP)** with LP For more results of this kind, see ,  
for example ,  [ 1 5 ]  . 

33 . Show that the element g E L q of norm 1 such that f fg <ill = 11{11 , for a 
given fE LP , is unique , where p, q are conjugate indices 1 < p, q < oo. 

34 . L 1 (X, JJ) is a normed linear space , and if J..l. is a-finite the dual space is 
L ·(x, JJ ). 



CHAPTER 9 

Lebesgue-Stieltjes Integration 

It is often natural on the real line to consider integration with respect to an 
increasing function , particularly in probability and classical applied mathematics, 
and integrals are considered from this view point in this chapter . It turns out 
that this is the natural context in which to consider indefmite integrals and 
integration by parts ,  and in Sections 9 .3 and 9 .4 we extend the calculus developed 
in earlier chapters. Section 9 .2 provides results in this direction which comple
ment those of Chapter 2, on Hausdorff measures. In the construction of such 
measures we use Helly's theorem which is of independent interest , especially 
in probability theory . In Section 9 .5 we examine the change of variable in an 
intergal ; the change of variable for Lebesgue integrals is a special case . Finally , in 
Section 9 .6 we provide an analogue for the representation theorems of Chapter 8 
and show that every bounded linear functional on the space of functions con
tinuous on a closed bounded interval arises from a measure . 

9.1 LEBESGUE-STIELTJES MEASURE 

Let g be a finite-valued left-continuous monotone increasing function on A and 
for an interval [a , b)  define �-t( [a , b)) = g(b) -g(a). If a =  b the interval is empty, 
so J1((/J) = 0. Also the values of J.l are non-negative . We wish to show first that ll 
can be extended to be a measure on Gfl , the ring of fmite unions of intervals of 
the form [a , b). Then the results of Chapter 5 provide a unique extension of ll 
to the Borel sets. For the rest of this section 1-1, g and 1l will have the connota
tions just described and , as in Chapter 2 ,  intervals will be of the form [a , b) unless 
stated otherwise ,  and will be finite . We could instead use intervals (a , b] and 
right-continuous functions ; the proofs follow with appropriate modifications .  
That there is a certain lack of symmetry is seen from Exercise 7 below. 

n 
Theorem 1 :  If E;, i = I, . . . , n, are disjoint intervals such that UE; � /, where 

i= I 
n 

I is an interval , then B �-t(E;) � �-t(l). 
i= 1 
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Proof: Let E1 = [a1, b;) for each i, and I =  [a , b). Order the intervals E; so that 
a1 � a2 � • • • <: an . Then 

n n 
L p.(E,) = � (g(b;) -g(a1)) 
i= 1 r= 1 

n n-1 
<; � (g(b1) -g(a;)) + L (g(a;+1 ) -g(b;)) 

i= 1 i= I 
= g(bn ) -g(a1 ) �g(b) -g(a) = p.(J). D 

n 
Theorem 2 :  If [a, b ] cU (a;, b;), where a1 , b1, i = 1 ,  . . .  , n ,  are bounded , then 

1= 1  
n 

g(b) -g(a) <: � (g(b;) -g(a;)). 
z= 1 (9 . 1 )  

Proof: Write U; = (a1 , b;) and select intervals as follows . Let a E U k1 , say . If 
bk <: b ,  let k2 be such that bk E Uk , etc . ,  by induction, the sequence ending 

l l 2 
when bk > b. Renumbering the intervals , we have chosen U1 , • • •  , Um where m 
a;+1 < b; < b;+ 1 , i = 1 ,  . . .  , m - 1 .  So 

g(b) -g(a) <: g(bm ) -g(a1 )  
m- 1 

= g(b 1 ) -g(a 1 ) + � (g(b;+1 ) -g(b;)) 
r= l 

:E;; � (g(_b,) -g(a;)) . 
i= l 

But m <: n and (9 . 1 ) follows . D 

Theorem 3 :  Let {E; l be a sequence of intervals and I an interval. 
00 00 

(i) If I c U E;, then p.(l) <: L p.(E;). 
i= I i= I 

00 00 

(ii) If the E; are disjoint and I =  U E;, then p.(J) = L p.(E;). 
i= I i= I 

Proof: (i) Suppose that I =  [a , b) and E; = [a;, b;), each i. We may suppose that 
b > a and if € > O we may choose c such that 0 < c  < b - a and g(b) -g(b - c) < 
€. Also, for each i, choose �; such that �; < a; and g(a;) -g(�;) < E/21 • Write F = 

00 

[a , b - c] and U; = (�;, b;). So F C U U; and by the Heine-Borel Theorem , p .  
i= 1 

n 
1 8 , F cU U; for some n .  Then by Theorem 2 

i= I 
n 

g(b - c) -g(a) � L (g(b;) -g(�;)) i= I 
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n � 
< B (g(b;) -g(a;) + e/2;) < L (g(b;) -g(a;)) + e. 

r= l i= I 

� 
So g(b) -g(a) - e < L JJ.(E;) + e. But e is arbitrary and the result follows . 

i= 1 
� 

1 5 5 

(ii) From Theorem 1 ,  p.  1 53 ,  we obtain L JJ.(E;) � p.(l). But then (i) gives 
i= l 

the result . D 

Theorem 4 : There exists a unique measure Ji on 11. such that , if I is an interval, 
we have Ji(l) == JJ.(/). 

n 
Proof: Each set E E 11. can be writ ten as E =U E; where the E; are disjoint 

i= 1 
n 

intervals .  Define p.(E) = L JJ.(E;) . This defines Ji uniquely on 1l since if E = 
i= l 

m U Fi is another decomposition of E into disjoint intervals, then E = U (E; n 
J= 1 . ,. 
Fi), the intervals E; n Fi are disjoint and 

n n m 

P.(E) = L JJ.(E;) = L B JJ.(E; n Fi) 
i= 1 i= 1 ]= 1 

= f;. t p(Et n F;) = r; p(F;). 
J= 1 i= 1 J= 1 

'· 

using the additivity of /J. given by Theorem 3(ii) . So 1J. and p. are equal for inter-
vals ;  also jl is clearly finitely additive .  � 

Let (E; l be a sequence of disjoint sets of fl. such that E = U E; E 11. • Then, 
i= I 

for each i, E; is a finite union of disjoint intervals 

d E· = E· · I • I,J ' 
] = 1 

m(r1 
so P.(Et) = �

1 
p(E1,1) . If E is an interval, then Theorem 3(ii) gives 

� �1 � 
il(E) = JJ.(E) = L !-J� JJ.(E;,j) = .L p.(E;) 

i= 1 1= 1 r= I 

m 

(9 .2 ) 

as the intervals E;,j are disjoint .  In general , we can write E = U F k where the F k 
k= l  

are disjoint intervals . Then, as p. is finitely additive 
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oo m oo 

by (9 .2). So ji.(E) = � � ji.(F k n £1) = B ji(E1). So il is countably additive . 
i= I k= I i= 1 

Since ji.((/J) = JJ.(f/J) = 0 ,  jl is a measure. 
Clearly , any measure on Gfl which extends /J. must , from the definition of jl, 

equal jl on each set of W . So the extension is unique . D 

As a result of this theorem we may drop the notation jl and write JJ.(E) for 
any se t E in <fl. . Theorems I to 4 give the unique extension from /J. defined on 
the in te rva1 s to a measure on the ring of finite unions of intervals . In the special 
case g(x) = x , the extended measure 1J. equals the length if the se t is an interval. 
In general , by Theorem 4, p. 97 ,  and Theo rem 5 , p. 98, the measu re 11 on Gfl 
has an extension to a measure on a a-ring $ * which contains the a-ring generated 
by GR_ , that is , $ * contains the Borel se ts . Since g is finite-valued , /J. is a-finite 
and hence, by Example 7 ,  p .  98 ,  its extension is a-finite and by Theorem 7 ,  p .  
1 00 ,  the extension jl of 1J. to the Bo rel sets is unique .  The notation is introduced 
in the following definition . 

Definition l :  The Lebesgue-Stieltjes measure P.g induced by the monotone in
creasing left-continuous function g is the completion of the extension jl of the 
measure 1J. given by Theorem 4, p .  I 5 5 , to the Borel  sets ;  ilg is defined on a a
algebra S g such that Gf3 � $ g · 

In the next example we see how to go from a measure to an associated func
tion . 

Example l :  Let /J. be a finite measure on [ A , Gf3 D and let g(x) = JJ.(-oo, x ) . Then 
JJ.( [a , b)) = g(b) -g(a), g is monotone increasing and left-continuous ; and on Gf3 ,  
1J. = ilg · Then any function g + K where K is constant , is described as a primitive 
of JJ..  The primitive g constructed above is characterized by the fact that g(-oo) = 

lim g(x) = 0 .  
x-+-- oo 

The following example shows that every montane increasing function has 
associated left-continuous and right-continuous monotone increasing functions , 
and will be referred to in Sect ion 9 .4 .  In probability theory the right-continuous 
function given in Example 2(iii) is referred to as the distribution function . In 
that case h(-oo) = 0, h(+oo) = I .  

Example 2 :  Let f be  a finite-valued monotone increasing function defined on 
(a , b). Show that 

(i) g(x) = f(x-) is left -continuous and monotone increasing on (a , b), 
(ii) h(x) = f(x+) is right-continuous and monotone increasing on (a , b), 
(iii) if JJ. is a finite measure on [ R ,  Gf3 ] , g(x) = J.l(-oo, x ), and h(x) = JJ.(-oo, x]  � 

then h(X) = g(x+ ) . 

Solution : Given e- > 0 ,  there exists b 0  > 0 such that if 0 < 6 < 60 , f(x-) -
f(x - 26 ) < € .  But f(x - 26) � f((x - 6 )  -), so g(x) - g(x - 6 )  < €, and g is 
left-con tinuous . It is clearly n1onotone increasing, for if x 1 < x2 , g(x 1 ) � 
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f(x2 -) = g(x2 ). The proof for (ii) is similar. Note that since f is monotone 
increasing, g and h are well defined on (a , b). For (iii), using the finiteness of J..L , 
p.(-oo, x ] = lim p.(-oo, x  + 1 /n) = g(x+). 

n-+oo 

Exercises 

1 .  If g is continuous, P.g( [x] ) = 0 for each x .  
2 .  The set [x : tz6( [x] ) > 0] is at most countable . 
3 .  Let h be a finite-valued right-continuous monotone increasing function on A 

and for any interval (a � b] define p.((a, b] )  = h(b) -h(a). Then p. is a measure 
on the ring 11. ' , say , of finite unions of intervals of the type (a, b] . 

4.  If g(-oo) = 0 then, for each x , g(x) = tz6(-oo, x). 
5 .  The Lebesgue function L ,  p .  25 , corresponding to the Cantor set P, induces a 

Lebesgue-Stieltjes measure v on [0,1 ] such that v( [O,l ] )  = 1 ,  v 1 m , and the 
v3 component in the decomposition of Example 1 2 , p .  146 , is zero . 

6 . Let tlg be the Lebesgue-Stieltjes measure induced by a function g constant on 
A except at a fmite number of points. Then every subset of A is jl6-measurable . 

7 . Let the function fn , n = 1 , 2 ,  . . . , be monotone increasing and le t fn (x) t 
f(x) for each x ,  where f is finite -valued :�Then: (i) f is monotone increasing; 
(ii) lim In (x-) = fl�-); (iii) lim In (x+) = f(x+) is not true in general ; (iv) 
lim fn (x+) = f(x+) if In -+ f uniformly ; (v) if, in addition , each fn is left
continuous , so is f. 

9 .2 APPLICATIONS TO HAUSDORFF MEASURES 

Defmition 2:  The set E supports the measure p. if E is a measurable set and 
J..L(CE) = 0. 

The following result is of interest, especially in probability theory , and will 
be used in Theorem 6 below . 

Theorem 5 :  Let A be a countable set which is dense in A .  Every sequence (gk l 
of primitiyes , such that 0 � Kk < M for all k, has a subsequence {gk. } that 
converges to a primitive g at all points of A .  

1 

Proof: Let A be the sequence {a;} Then it is possible to find a subsequence 
{g�1 ) }  of (gn J such that (g�1) (a 1 ) )  converges. From (g�1) } we extract a further 
subsequence lg�2> }  such that (g�2) (a2 )  l converges . By induction we construct, 
for each n ,  a sequence fg�n) ,  k = 1 ,  2, . . .  l converging at an and contained in 
the previous subsequence . Now consider the 'diagonal ' subsequence g�n) .  Except 
for its first (k - 1) terms it is contained in the k-th subsequence g�k) and so it 
converges at ak · So , for each fixed ak , (g�n) (ll1c)) converges ; write the limit at 
ak as g(ak). Since 0 � Kn � M for each n , we have 0 � g <: M. Defme g(x) = 
sup [g(aj) : ai � x] , extending g to A .  Then g is easily seen to be monotone in
creasing and left-continuous and Kn -+ g on A .  D 
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Corollary l (Helly's Theorem): Every bounded sequence (gn } of primitives has a 
subsequence (gnk l that converges to a primitive g at all points of continuity of g � 

Proof: We choose any countable dense set A as in the theorem. If x is a point of 
continuity of g, and € > 0, there exist a;, ai such that a1 < x < ai and g(aj) 
g(a;) < €. If " (gnkl is the subsequence constructed in the theorem, we have 
Knk(a;) � Knk(x) � Knk(aj). Letting k � 00, the first and last terms in this in
equality have limits g(a;) and g(aj) respectively . So lim sup gnk(x) - lim infgnk(x) 
< € and we deduce that lim gnk(x) exists and equalsg(x). 0 

Corollary 2:  Suppose that the primitives Kn are distribution functions so that 
Kn(oo) = 1 , Kn(-oo) = 0 .  Then g is a distribution function provided that V e ,  
0 < € < 1 ,  3 a >  0 such that IKn (a) -gn(-a)l > 1 - € for all n sufficiently large . 

Theorem 6 :  Let h be a Hausdorff measure function such that h(2t) � 2h(t). Then 
H(E) > 0 if, and only if, E supports a non-zero Borel measure J..L whose primitive 
g is continuous and such that w6(t) = O(h(t)) as t � 0+ . 

Proof: Suppose that such a measure J..L exists. For H(E) to be a positive it is 
necessary and sufficient that H(E n [n , n + 1 ] ) > 0 for some n , so we may 
suppose that E � [0,1 ] . Let ( (u; , v;) }  be a covering of E, and suppose that 
w6(t) � Ah(t) for t � 1 .  Then 

0 < JJ( [0, 1 ] ) � J..L(CE) + L J..L((u;, v;)) = L g(v; - u;) � A L h(v; - u1). 
So H(E) > 0, and we note that the condition h(2t) � 2h(t) has not been used for 
the proof in this direction . 

Conversely , suppose H(E) > 0. Then 3 p such that for coverings of E by open 
intervals (lk ) of length at most p ,  L h(l(Ik)) > !H(E). For all other coverings 
L h(l(Ik)) > h(p) so we always have 

inf L h(l(Ik)) > 0 (9 .3) 
where the infunum is taken over all coverings {/  k ) of E by open intervals. Now 
E = UEn , where En = E n  [n ,  n + 1 ) . So some H(En) > 0 and for that n we will 
find a measure J..Ln as described , supported by [n ,  n + 1 ) , and put J..Ln = 0 outside 
this interval. So without loss of generality we suppose E � [0,1  ). For each 
positive integer n divide [0 , 1 )  into intervals ln,i = fj/2n , (j + 1 )/2

n ), j = 0, . . .  , 
2n - 1 .  Write these intervals as In , for convenience , and their lengths as Bn = 
2-n . Give each interval In which meets E a uniformly distributed measure of 
total value h(Bn ), the other In intervals are given measure zero . This gives a 
measure Vn on [0, 1 ). Then consider the intervals In-t . Any of these which have 
been given a measure at most h(Bn-t ) have their measures unchanged .  On the 
others the measure Vn is multiplied by a factor which decreases the total for each 
interval to h(Bn-1 ). This gives a new measure Vn,t on [0 ,1 ). Similarly , having 
constructed Vn,i we consider the intervals In-I-t and define the measure vn,i+t • 

Since h(2t) � 2h(t) the sequence of measures {vn,i} is clearly decreasing, for 
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each n .  Denote by J..l.n the measure Vn,n . Then for each interval I1, with j � n ,  we 
have 

JJ.n(Ij) � h(6J) 

and in particular 
JJ.n( [0, 1 )) � h(l ). 

(9 .4) 

(9 .5) 
Each point of E belongs to at least one 11 for which J..l.n(I1) = h(61). Choose a set 
of such intervals which cover E and do not overlap . We get JJ.n( [O, l )) = � h(61). 
So by (9 .3) 

JJ.n( [0, 1 )) � b > 0 (9 .6) 

where b is independent of n .  
By Theorem 5 and (9 .5 ), lJJ.n l has a subsequence lJJnk J converging to a 

measure JJ.  It is easy to see that J..1. is supported by E, and we may suppose that 
the set A in Theorem 5 is chosen so that the primitive of J..1. is the limit of the 
primitives of the measures J..l.nk on all the end-points of the Ij . So 

JJ(IJ) � h(61) (9 . 7) 
and JJ( [0 , 1 )) � b > 0. This shows that J..1. is a positive measure . From (9 . 7) we 
can calculate the modulus of continuity of the primitive g of Jl. Any two points 
at distance at most 61 belong either to the same I1 or to two adjacent Ii intervals. 
So w8(6j) � 2h(6j). So if 0 < 6 � 1 and 6 � 61 < 26 we have w6(6 ) � w6(61) � 
2h(61) � 2h(26 ) � 4h(6 ) and the theorem is proved . D 

Corollary: The Hausddrff dimension of a compact set E is the supremum of the 
numbers (3 � 0 such that there exists a non-zero positive measure JJ, supported 
by E, whose primitive g satisfies w6(t) = O(t/3) as t � 0+. 

Proof. For h(t) ;- ta , 0 < a  � 1 ,  we have h(2t) � 2h(t). Now the result follows 
immediately from the theorem and Definition 1 5 ,  p .  50 . D 

Example 3 :  A Hausdorff measure function providing a measure H such that 
0 < H(E) < oo, where E = Pt is given by wL where L is the Lebesgue function 
corresponding to Pt , and wL is its modulus of continuity . 

Solution : L is a monotone increasing continuous function which defines a 
Lebesgue-Stieltjes measure P.L supported by Pt . So H(E) > 0 by the first part of 
Theo�em 6.  To show H(E) is fmite : at the j-th stage of the construction of Pt , let 
the 21 residual intervals each have le':lgth b1 . Then by the remarks aft�r Defmition 
16 ,  p. 52 ,  we have wL (b1) � 2.2-1 • Then Pt has a covering by 2! intervals of 
length b1. These intervals are closed but since wL is continuous, the . Hausdorff 
measu re is unaffected , as in Example 24, p.  46 . So H(E) � lim inf (21wL(b1)) � 
2 .  
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9.3 ABSOLUTELY CONTINUOUS FUNCTIONS 

Defmition 3 :  A function f is absolutely continuous on [a , b ] , -oo � a  < b ' eo 
n 

if, given € > 0, there exists 6 > 0 such that B 1/(x;) - f(y1)1 < e whenever 
i= l 

n 
E lx; - Y; l < 8 for any fmite set of disjoint intervals such that (x; ,  y1) c 
•= 1 
[a , b ]  for each i . 

The usefulness of this defmition is due to the result of Theorem 8 ,  where we 
show the close connection with absolute continuity of measures and with in
definite integrals . Clearly, an absolutely continuous function is continuous . That 
absolute continuity is a stringent condition is shown by the next example . 

Example 4 :  Le t j{x) = .Jx,  0 � x � 1 /2 .  Let f(l ) = 0 and define f to be linear 
on [ 1 /2 ,  1 ] . Let f(x + k) = f(x) for each k E Z and each x .  Show that / is con
tinuous on A but not absolutely continuous. 

Solution : From its defmition , f is continuous on [0, 1 )  and so on R .  Given 6 ,  
n 

0 < 5 < 1 /2 ,  let x1 = i, y1 = i + 5 /i2 Then, for each n ,  �1 IX; - Y; l < 2� but 

B lf(x1) -.fty1) 1 = 'L .J5 /i which tends to infmity with n .  So f is not ab-
i=- 1 t= 1 
solutely continuous. 

Recall Definition 3 ,  p .  81 . 
Theorem 7 :  Let f be absolutely continuous on [a , b] , where a and b are finite ; 
then [E BV[a, b ) . 

Proof: Let € and � be as in Defmition 3 ,  and let a =  x0 < x 1 < . . .  <xN be any 
partition of [a, b ] . Introduce new points a + i(b - a)/n , i = 0, 1 ,  . . .  , n ,  where 
n is such that (b - a)/6 < n < (b - a)/6 + 1 ,  so that the new partition points 
are a distance less than � apart. Let [z1 : i = 0, 1 ,  . . .  ,, M] be the complete 
set of partition points , then 

N M 
B 1/{x,) -f{x;-1 )I <: B lf(z,) -f(zt-1 ) I . 
i= I I= 1 

Collect the subintervals into groups beginning and ending with the added parti
tion points ; then this sum, with the z,'s renumbered , is 

n nk n 
B � l.f{z;, k) -.f{zi-t ,k)l � B E = n E <; (1 + (b - a)/8 )e. 

k= t •= l k= l  
But this bound is independent of the original partition x0 ,  • • •  , x N ,  so f E 
BV[a , b ] . D 
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�:�pie S: Show that if f E L(a, b), its indefmite integral F is absolutely con
� inuous on [a , b] . 

Solution : Let E > 0 be given. For any set of disjoint intervals (x1, y1), i = 1 ,  . . .  , 
n 

n withU (x; , y1) = E , say, we have ' . 1 ·= 
n n f Yt f. ,'L1 IF(v,) - F(x,)l = 

1'L1
1 Jxt f dt l <: 

E 
lfl dt . 

But by Theorem 18 ,  p .  106,  J. 1!1 dt < e provided m(E) < 6 , for some /j > 0, 
E 

giving the result . 

Example 6 :  Let f be absolutely continuous on the fmite interval [a, b] ; so f E 
BV[a, b ] .  Let / =  /1 -/2 be the decomposition of /into non-negative monotone 
increasing functions provided by Theorem 2 ,  p. 82. Show that /1 and /2 are 
absolutely continuous on [a, b] . 

Solution : Let e and 6 be as in Defmition 3 and (x1 , Y;), i = 1 ,  . . .  , n , be a set of 

disjoint subintervals of [a , b) such that 'L lx1 - Yt l < 6 .  We easily have , in the 1= 1  
notation of Defmition 2,  p .  8 1 ,  that 

n 
L r1[x,,y,1 <: e. 
1= 1 

But then t 1{1 (x1) -{1 (v1)1 = 'L Pt[x1, y,] <: e, and shnilarly for {2 • 
t= 1 I= 1 

Example 7: Let f and g be absolutely continuous on the fmite interval [a , b] . 
Show thatfg is absolutely continuous on [a , b ] . 

Solution : Since f and g are continuous, they are bounded ; suppose Ill , lgl <: M 
on [a, b] . Since .f{x lg(x) - .fty �) = (f(x) - .fty)) g(x) + .fty )(«x) - g(v )), 
we have lf(xg(x) -[(y�(y)l <:MI.f{x) -.fty)l + Mlg(x) -:-g{v)l . So the absolute 
continuity of f and g with the E and 6 of Defmition 3 , p .  1 60, implies that of fg 
with 2Me and 6 .  

In the following theorem the absolutely continuous function g is supposed 
defined on A .  If the functior.. given is defmed on a finite in terval [ ac: ,  13] only , we 
may extend it to A by defming it to be constant on (-oo, a] and [13 , 00) . 

Theorem 8 :  Let g be a monotone increasing and absolutely continuous function 
on A .  Then j}( c :S 6 ,  and on31C, ilg < m .  

Proof: Let E be a Borel set such that m(E) = 0. For any 6 > 0 there exists an 
open set 0 ::) E such that m(O) < 6 ,  and if 0 is the union of disjoint open inter-
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00 

vals (an , bn ), n = 1 ,  2, . . .  , we have L (bn - an) < 6 .  Let € > 0 be given and 
n= l  

n. 
choose 6 > 0 such that �1 (g(171) - g(�;)) < e whenever the intervals (�t. 11t), i = 

n n 
1 , . . .  , n , are disjoint and such that L (171 - �1) < 6 .  Then � (g(b;) - g(a;)) < 

i= 1 •= 1 
00 00 

e for each n ,  so that L (g(b;) -g(a;)) � € .  But E cU (a1, b1) so P.6(E) � €. So � 1 � ·  
p8(E) = 0. But if A is any Lebesgue measurable set with m(A) = 0, there exists 
a Borel set E ;;2 A such that m(E) = 0. Since p,6 is complete by Defmition 1 ,  
p . 1 56, A E �8 and flg(A) = O . D 

X 

Corollary 1 :  With the conditions of the theorem, g(x) - g(a) = J g'(t) dt for 
a 

all x E [a , b] , where a and b are any fiXed finite numbers. 
X 

Proof: By Theorem 5 ,  p.  1 39, Jl,( [a, x)) = J f(t) dt where fis a non-negative 
a 

measurable function, and f E L(a, b) as g is fmite . So g(x) -g(a) = Jx f(t) dt. 
. � 

But then g' =/by Theorem 12 ,  p.  89 . D 

Corollary 2:. Again with the conditions of the theorem, dp.8fdm = g' [m] . 

Proof: The set function t/J(E) = L g' dx agrees with /lg on every finite interval 
E 

[a , x ) , by Corollary 1 ,  and so on every Borel set. So if F Ejt(, let E E 13 be such 
that m(F � E) = 0. Then p.6(F Ll E) = 0, so p.8(F) = ilg(E) = q,(E) = 4>(F) as 
required . 0 

Corollary 3 :  Let f be absolutely continuous on the finite interval [a , b ] ; then if 
x E [a, b] , 

X 
f(x) -f(a) = J f'(t) dt . 

a 

Proof: Let f = ft - /2 as in Example 6 ,  so that /1 and /2 are monotone in
creasing and absolutely continuous on [a, b] . Then Corollary 1 ,  applied to 
[1 and /2 s�parately, gives the result . D 

From this last result and from Example 5 ,  p .  1 6 1 ,  we see that on finite inter
vals a function is an indefmite integral if, and only if, it is absolutely continuous, 
thus answering the question raised in Chapter 4 ,  p .  87. 
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Exercises 

8 .  Show that f absolutely continuous on [a , b] does not imply f E BV[a, b] 
if a or b is allowed to be infmite . 

9 .  Show that if f satisfies a Lipschitz condition of order 1 on [a, b] , i.e .  
lf(x) - f(y) l � K lx - y j  for some K and each x and y, then /is absolutely 
continuous. 

1 0 .  Show that if q, is convex on (a, b), then cp is absolutely continuous on each 
closed subinterval [c , d] C (a , b). 

1 1 .  Show that if f is non-negative and absolutely continuous on [a, b] , then so 
is [P for p � 1 .  

I 

1 2 . Show that the absolute continuity of the non-negative function f on the 
fmite interval [a , b] does not imply that fP is absolutely continuous, if 
0 < p < 1 .  

1 3 .  Show that the Lebesgue function L on [0 , 1 ] ,  p.  25 ,  is not absolutely 
continuous. 

14. Let f be a non-negative integrable function on (a, b) with indefmite integral 
F and let K = [x : f(x) =#= 0] . Define g by g(x) = distance (x, K), x E (a,  b). 

b 
Show that J g(x) djip(x) = 0.  

a 

1 5 .  Show that the condition that the intetvals (x1, Y;) be disjoint, may not be 
omitted from Defmition 2. 

1 6 .  If f and g are absolutely continuous functions on A ,  is f o g necessarily 
absolutely continuous? 

9.4 INTEGRATION BY PARTS 

X 
We recall from Defmition 4 of Chapter 4 the notation F(x) = J f dt for the 

a 
indefinite integral F of an integrable function f, and the result of Theorem 12, 
p.  89, that F' = f a. e. 

Theor�m 9 :  Let f, g E L(a,  b), where a and b are finite , and F, G be their indefmite 
integrals ; then Fg and GfE L(a, b) and for each x E (a, b) 

X 
F(x) G(x) - F(a) G(a) = i (fG + Fg) dt. (9 .8) 

a 

Proof: In (a , b), outside a set E of zero measure , we have F' = f and G '  = g. 
Since F and G are bounded on [a , b] , Fg and Gf E L(a, b) and the usual proof 
for the derivative of a product gives (FG) ' = Fg + Gf on [a , b) - E. By Example 
5 ,  p . 1 6 1 , F and G are absolutely continuous , and hence FG is absolutely con
tinuous by Example 7 ,  p .  1 6 1 .  So by Corollary 3 to Theorem 8 ,  p .  1 62 , FG is 
the indefinite integral of its derivative , giving (9 .3). D 
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We now wish to extend Theorem 9 to the case of integrals with respect to a 
Lebesgue-Stieltjes measure ilg · It is convenient to state this extension in terms of 
a left continuous function g E BV[a, b]  , and for this purpose we need the 
following result for which we use the notations of  Defmition 2 , p.  8 1 . 

Theorem 1 0 :  Let g E BV[a, b ] and let g be left-continuous at x ,  a < x < b . 
Then g1 {v) = P8 [a ,y ]  and g2 {v) = N8 [a ,y ]  are left-continuous at x .  

Proof: Since T8 [a, y] = P8 [a , y ]  + N8 [a, y] and all three functions increase 
with y ,  it is sufficient to show that Tg [a, y] is left-continuous at x .  Suppose it 
is not, ther , using Example 7, p .  8 1 , there exists € > 0 such that Tg [y ,x] > e 
for all y E [a , x). So we can find a partition a =  a0 < a1 < . . .  < a,., -1 < x such 
that 

n, -1 
� lg(c,) -g(a;- 1 )I + lg(x) -g(a,. -1 )I > €/2 .  
i= l 1 

But as g is left-continuous at x we can find a,. , say , such that a,. _1 < a,. < 1 1 1 
x and 

n � lg(a,) -g(a;-1 )I > E/2 . 
1= 1 

But T:8 [a,. , x ] > € ,  so we get similarly a,. < a,. +1 < . . .  < a,. < x where 1 1 1 2 
n2 � lg(a,) -g(a;-1 )I >  E/2. 

i=n1 +1 
So we get a sequence [a1} such that for each integer k we get tg > kE/2 for the 
partition a =  a0 < a1 < . . .  < a,.k < x .  But this implies that Tg [a , x ]  = oo, a 
contradiction . D 

Defmition 4 :  Let g be a left-continuous function, g E B V[a , b) and let g  = g1 -
g2 be the decomposition of g into positive and negative variations. Let jl8 denote 
the signed measure jl81 - /ig2 which, by the last theorem, i1S well defined . We will 
say that f is integrable with respect to g if it is integrable with respect to p.81 
and jl82 and we will write its integral as f f dflg = f f d/ig1 - f f djlg2 or , in an 
alternative notation, as f f dg = f f dg 1 - f f dg2 . 

Clearly /lg is defined on a a-algebra which contains the Borel sets. Note that 
if g is, initially , defined only on a finite interval [a, 13] the integral f f d�-t6 may 
still be considered since we may extend g to A by defming it to be constant on 
(-oo, a] and [13, oo) . In the following theorem we consider integrals of f and g 

over an interval [a, b ]  which will normally be a proper subinterval of that in 
which the functions are defmed, so that f(b+) and g(b+) are meaningful ; if the 
functions are given on [a, b]  only, f(b+) and g(b.+) are to be taken as[(b) and 
g(b ) , respectively . The integration-by-parts formula of Theorem 9 is a special 
case of the next result, as is indicated in Example 8 below. 
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Theorem l l :  If f and g are left-continuous functions on the fmite interval [a, b]  
and f, g E BV[a, b ] , then 

J. f(x+) djlg + J g dp.1 = f(b+)g(b+) -f(a) g(a). (9 .9) 
[a,b ]  [a,b ]  

Proof: We may suppose that f and g are non-negative and monotone increasing 
functions, for otherwise we may decompose [_and g with f = [1 - [2 and g = 
g1 - g2 as above , and combining the resulting equations of the form (9.9) obtain 
the result of the theorem. Let lfn } and (gm l be the sequences of measurable 
simple functions tending to f and g, respectively , given by Theorem 5 ,  p. 58 .  

k 
Then fn and Km are of the form L A; X(a· a· J where A; < A;+1 , as f and g are 

I= I 
, , 1+ 1 

monotone increasing and left-continuous. We show that (9 .9) holds for f and g 
replaced by fn and Km , respectively . Since fn and Km are left-continuous mono
tone increasing Borel measurable functions, the integrals are defmed. It is con
venient , as f and g are left-continuous, to suppose them defmed on an interval 
(a - €, b + €] , € > 0 and constant on the intervals (a - €, a] and [b , b + €] . 

.t-1 
Then if Km = L �� X(a111 •  1 1 , we have a0 < a  <; a  1 < . . . < a,_1 < b < a9• Oearly 

t= o 
I+ 

Jlgm ([ai] ) = Km (ai+1 ) -Km (a1) for each i, and Jlg ( [x] ) = 0 if x is not a partition . m 
point . So if h is any finite-valued Borel measurable function, 

J h(x+) dJlgm = f! h(a,+) (gm (ai+d -gm (a,)), 
[a,b} r= I 

and similarly 

i � h dP.tn = w h(aj) ifn(aj+1 ) -fn(aj)) . 
·ta,b ]  J= 1 

Let [c0 , " 1 ,  . . . , cp ]  be the union of the points of the two partitions [a;] 
and [aj] , to which we add a and b .  As we may assume the points distinct, we 
have c0 < a = c 1 < c2 < . . .  < cp_1 = b < cp .  Then 

f �- 1 
J�(x+) dp.gm = L; fn(c;+) (gm (ct+1 ) -Km (c;)) 

[a,b ] r= 1 

P--1 
= E fn(Ct+1 ) (gm (cl+1 ) -Km (c;)) 

r= 1 

prl = -gm (cl )fn(c2 ) - L Km (c;) ifn(ci+1 ) -:-fn(c,)) + Km (cp) fn(Cp). 
i= 2 
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so adding and observing that Km (cp) fn(cp)  = Km (b+) fn(b+) and that C1 = a, 
we get (9 .9) for fn and Km , that is 

J fn(x+) d,agm + J Km dJltn = fn(b+) gm (b+) -fn(a) gm (a). (9 . 10) 
{a,b] [a,b] 

Now, if h is any non-negative monotone increasing Borel measurable function, 
f h djlfn � f h dp.1. For, given €1 > 0, we can find by Theorem 5 ,  p .  58, a step 
function 4>, 0 <: <P <; h such that lh - <PI <  € ' , uniformly on (a - €, b + €). Then 

I f h dJltn - f h dfltl <; f (h - 4>) dJltn + f (h - 4>) dfi.t 
+ I f  4> dp.fn - f 4> dfltl · 

The frrst and second terms on the right-hand side are less than E 'lltn([a, b ] ) + 
E'llf( [a, b] ) < K e ' , say, for n > n0 , and the third clearly tends to zero as n � oo. 

A similar result holds for Jlgm and Jlg · 
Letting n � oo in (9 . 10), using Exercise 7 ,  p . 1 57 ,  and the fact that fn t f 

uniformly on (a - €, b + €] we get therefore 

J .ftx+) dllg + J. Km dJlt = f(b+) gm (b+) -f(a) gm (a). 
· [a,b )  m [a,b] ' 

Then letting m � oo, we get (9 .9). 0 

Corollary : Interchanging the roles of f and g in (9 .9), adding, and noting that 
f(x) = f(x-), g(x) = g(x-), we obtain the more symmetrical form : 

J. !(f(x+) + .ftx-)) d,i18 + J. !(g(x+) + g(x-)) d.Ut [a,b ]  [a,b] 

= f(b+) g(b+) -f(a-) g(a-) . 

This form is particularly appropriate if we define flt, for a monotone increasing 
function {, to be the measure induced by the monotone increasing function f(x-) 
which was shown in Example 2 ,  p . 1 56 ,  to be left-continuous. 

Example 8 :  Deduce the result of Theorem 9 from that of Theorem 1 1 . 

Solution : In (9 .9) write b = x ,  f F F, g = G.  Then as F is continuous, the left
hand side of (9 .9) reads 

f F dJlc + f. G d/lp . 
[a,x ] [a,x ] 

If G and F are monotone increasing, Corollary 2 to Theorem 8 ,  p .  162 ,  gives 
d�Jo /dm = g [m ] , dflp/dm = f [m ] . So , by Example 1 1 , p .  1 45 , since Jlo and 
llF are finite measures and F and G are bounded ,  the result follows. In general, 
G = G1 - G2 , where G 1 and G2 are the primitives 
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fx Jx G1 {x) = g+ dt, G2 (x) = g- dt. 
a a 

Then : = 
d�, - �2 = g  [m) . 

1 67 

Similarly for F, and the obvious extension of Example 1 1 ,  p. 145 .  to signed 
measures gives the result. 

Exercises 

17 . Given that g(x) = e-x' , fmd f .. x dg and f .. x2 dg. 
- oo  - oo  

1 8 .  Use Theorem 1 1  to show that if h E L(O, oo), 

lx (i ' h(u)du
t

t =  Jx (x - u) h(u) du. 0 0 f 0 
19 .  Prove Theorem 9 by using continuous functions to approximate fand g. fd Mil 20. Let h E L(O, d) and write k(x) = t dt. Show that 

X 

(i) k is well defmed on {0, d] , (ii) lim xk(x) = 0, (iii) k E L(O, d), x-+0 + d d 
(iv) J k dx = J h dx. 0 0 

9.5 CHANGE OF VARIABLE 

A change of variable within an integral involves a transformation of one space 
into another and the identification of the corresponding integrals. We give a 
general result in Theorem 12 and obtain in Theorems 14 and 1 5 the special case 
where all the functions are defined on the real line . 

Defmition S :  Let f be a measurable function from the measure space [X, $ ,  J.t] 
to A.  On the class of subsets of A, [£: r1 (E) E cS ]  , defme the measure W1 
by (JJ.r1 )(E) = J.t(/-1 (E)). This class is clearly a a-algebra and we call its membe�s 
the W1 -measurable sets of A .  

Clearly every Borel set is JJ!-1 -measurable by an obvious extension of Example 
19 ,  p. 4 1 .  

Example 9:  If J.L is a complete measure on [X, $ ] and [: X -+  A is measurable , 
then JJf-1 is a complete measure . 

Solution : Let J.Lr1 (E) = 0 and F !; E. Then r1 (F) !; r1 (E) so r1 (F) E cS • 

Theorem 12 . Let f be a measurable function from [X, $ ,  J.LD to A ,  and g a Borel 
measurable function on A ;  then 
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f g dW1 = f g o f dp. 
in the sense that if either exists, so does the other and the two are equal. 

[Ch. 9 

(9. 1 1 ) 

Proof: It is sufficient to consider the case where g is non-negative . If F � R , 
then XF o f =  xr • (F) and is measurable for F E  'iJ ,  so 

f XF dW1 = lf1 XF) = f Xt-1 (F) dp. = f XF o f dp., 
and so (9 . 1 1 ) holds when g is a simple function. In the general case , let _{4Jn } be 
an increasing sequence of Borel measurable simple functions 4>n t g. Then (4>n o /} 
is an increasing sequence of measurable simple functions tending to g o f, which 
is therefore measurable , and the result follows on taking limits with respect 
to n .  D 

Corollary : IfF is a Borel set , then 1 g dW1 = f g o f  dp. 
F Jf-I (F) 

Proof: Replace g in the theorem by g XF .  The result follows since (g XF) of = 
(g o J)(xp o f) = x1- � <F) (g o f). o 
Example 10: Let f be a measurable function on [X, cS , p.] , where p.(X) < oo, 

such that A < f < 'Y, and let e(y) = (j.Jf-1 )(A, y ) . Then e is a left-continuous 
monotone increasing function such that for y 1 < y2 ,  W1 ( [y1 , y2 )) = e(v2 ) 
e(y 1  ) . So the measures W1 and fie agree on the Borel sets and by the last 
Corollary we have for any Borel measurable function g 

J g(v) de{v) = J g o f  dp. . F f- I (F) 
In the p resence of absolute continuity , the result of the last theorem has a 

simpler form. 

Theorem 13 :  Let f be a measurable function on the measure space [X, $ ,  p.] , 
such that W1 is a-finite and p.r1 < m on GfJ . Then there exists a non-negative 
fmite-valued Borel measurable function p such that 

f g of.dp. = f g(x) p(x) dx (9. 1 2) 

whenever the left-hand side exists . In (9 . 1 2), p(x) = dW1 /dm [m] , where 
W 1 and m are considered as measures on <'JJ • 
Proof: Theorem 1 2  gives us that f g o f dp. = f g dW1 and that this latter inte
gral exists . We may suppose, as in Theorem 1 2 , that g � 0. Since W1 and m are 

I 

a-fmite measures on 13 ,  Example 1 1 ,  p. 1 45 ,  gives f g dp.f-1 = f g(x) p(x) dx, 
that is : (9 . 1 2) holds whenever g is integrable with respect to p.r1 •• Since p = 
dW1 /dm as in the proof of Example 1 1 , we may suppose p finite -valued and 

00 

Borel measurable . Also , since W1 is a-finite we may write R = U En where , for 
n = l  

each n ,  En c En+l  and W1 (En) <  00 •  Then if Kn = XE min(g, n), Kn is inte-n 
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grable with respect to ,.q-1 and Kn t g. So (9 . 1 2) holds with g replaced by Kn . 
Letting n � oo gives the result . 0 

Corollary : For any Borel set F, f g o f dJ,L = J. g(x) p(x) dx. J/- 1 (F) F 
We now give a classical result on the real line , in which p(x) of the last theorem 

equals 1 .  

Theorem 14: Let k be a non-negative integrable function on A ,  let g be a Borel 
measurable function integrable over [a , b ] , let K be the indefmite integral of k 
and let � '  11 be such that a = K(�), b = K(rl). Then 

fb 11} 
g(t) dt = g(K(x)) k(x) dx. 

a t 

Proof: We may defme g = 0 on (-oo, a), (b , oo) to get functions g, k, K defmed 

on A ,  with K(x) = {" k dt. Since k is integrable , K is continuous. In Theorem 
- oo  

12  let X =  R ,  $ = cS K ,  J.L = flK ,f  = K, so J.Lr1 = IlK IC1 . Consider any interval 
[c , d] . Let 'Y = inf[u : K(u) = c] and 6 = sup [u : K(u) = d] . So IC1 [c , d] = 
['Y, 6 ]  as K is continuous and monotone increasing. Then flK 1\1 [c , d] = 
K(6) - K('Y) = d - c, so that flK JC1 agrees with m on Borel sets and hence on 
all Lebesgue measurable sets, as ilK IC1 is complete by Example 9,  p. 1 67 .  So 
Theorem 12  gives 

f g(t) dt = 1 g o  K dp.K = 1 g(K(x)) k(x) dx 
by Example 1 1  , p .  1 4  5 , and by Corollary 2 to Theorem 8 ,  p .  1 6  2 .  Hence by 
the Corollary to Theorem 12, 

Jb 1} 
g(t) dt == 1 g(K(x)) k(x) dx. 

a t 
Clearly any � and 11 such that K(�) = a, K(17) = b may be chosen, since for 
example , any two values of � such that K(�) = a  are separated by an interval on 
which k = 0 a.e .  D 

The result of Theorem 14 holds for any integrable function g, but the change 
from Borel to Lebesgue measurable is non-trivial as the next proof shows. 

Theorem 1 5 :  Let k be a non-negative integrable function on A ,  let h E L(a, b) 
and let K, � ' 11 be as in Theorem 14 . Then h(K(x)) k(x) E L(� ,  11) and 

Jb 1} 
h(t) dt == f. h(K(x)) k(x) dx .  (9 . 1 3) 

a t 

Proof: Since h is measurable , we can fmd a Borel measurable function g such b b 
that h = g a.e . , as in Exercise I I, p . 60, and then J g dt = 1 h dt. If we 

a a 
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show that h(K(x)) k(x) = g(K(x)) k(x) a.e ., then the former is measurable and its 
integrability and the result of the theorem follows from Theorem 14.  We need 
consider only points x such that h(K(x )) =I= g(K(x )). Let E = [x : h(x) =I= g(x )] , so 

4 
that m(E) = 0. Write [� , 71] n /\1 (E) =U A1 where : on A 1 ,  K' does not exist ; 1= 1  
on A2 , K' = k = 0; on A3 , K' =I= k; on A4 , K' = k > 0. These sets are disjoint ; 
m(A 1 )  = 0 by Theorem 9 ,  p. 87 , and m(A 3 )  = 0 by Theorem 1 2, p .  89 . On
A2 , h(K(x)) k(x) = g(K(x)) k(x). lf we show that m(A4 ) = 0, the result follows. 
Write A4,n = [x :  K'(x) > 1/n , K(x) E E] . Clearly , it is sufficient to show that 
m(A4,n) = 0 for each ftxed integer n .  Given e > 0, we can fmd an open set 0, 
such that E � 0 and m(O) < e. Since K is continuous, for each x in A4 n there , 
exists hx > 0 such that (K(x), K(x + hx)) !; 0 and K(x + hx ) - K(x) > hx /n .  
Using again the continuity of K we can fmd for each x a point x ', x '  < x < 
x '  + h;x , such that (K(x '), K(x ' + hx)) � 0 and K(x ' + hx) - K(x ') > hx /n . 
The intervals (x' ,x' + hx) cover A4 ,n so by Theorem 5 ,  p. 84, and Theorem 6 ,  
p. 84, we can fmd a fmite disjoint collection [I1j = 1 ,  . . .  , N] of these inter-

vals such that lm(A4;n) EO; m(� /1} But 

m(� //)= t1 
hx1 < nt1 

(K(xj + hx1) -K(xj)) < n m(O) < ne. 

As n and e are independent, m(A4,n) = 0 and the result follows. 0 

Corollary : Since dp,pfdm = F' [m] when F is absolutely continuous, (9 . 1 3) may 
be written 

Jb 
h(t) dt = J'' h(K(x)) dK(x). a t 

With the help of the following example we obtain a version of Theorem 1 5  
when K is monotone decreasing, instead of monotone increasing. 

Example 1 1 :  Show that if f E L(-oo, oo), then g _defined by g(x) = f(-x) is an b -a 
integrable function and J f dx = J g dx for -oo EO; a < b < oo. a -b 
Solution . Since (f(-x))+ = r(-x) and (f(-x))- = r(-x), we may consider non
negative functions only . Clearly t is measurable and if 4>n t f, where t/)n = 
N N �1 A, XE1 is a measurable simple function, then if !Jin = ) � A1 �Et• we have !Jin t 

g. But m(E) = m(-E) (cf. Exercise 9 ,  p. 34) . So f g dx = f fdx and so 
-a 

f f(xh[a,bl (x) dx = f g(xh[a,bl (-x) dx = J g dx. --b 
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Example 12 : From the last example obtain the analogue of Theorem 1 5  for K 
monotone decreasing. 

Solution : We suppose that k � 0, k integrable with indefmite integral K, K(�) = 
a,  K(17) = b and h EL(a, b). Let k1 (x) = -k(-x) with indefmite integral K1 • So 
K 1 {x) = -L + K(-x), where L = f k dx. Then Example 25, p .  75 , gives 

b b-L 1 h(t) dt = j h(t + L) dt . Applying Theorem 15  to hL(t) = h(t + L), a a-L 
K1 and k1 we get fb-L 11 

h(t + L) dt =  J 1 h(K1 (x) + L)k1 (x) dx a-L �� 
where K 1 (� 1 ) = a -L ,  K 1 (171 ) = b - L .  So by the last example , fb !.111 

h(t) dt = - h(K(-x))k(-x) dx 
tJ tl 
-f -t E 

= 
'
h(K(x ))k(x) dx = - 1 h(K(x ))k(x) dx 

-11a '1 

is the desired result . 

Exercises 

21 . Let /be a finite-valued measurable function from the measure space (X, � ,I-t] 
to R and define the monotone increasing functions F and G by : F(x) = 
,q-1 (-oo, x] , G{x) = W1 (-oo, x). Show that F and G have the following 
properties: 

(i) If �-t(X} < 00, then F(-oo) = G(-oo) = 0 and the fmiteness of 1-1 may 
not be omitted in general, 

(ii) F(oo) = G(oo) = IJ(X), 
(iii) F(x-) = G(x ), and if 1-1 is fmite F(x) = G(x+ ), 
(iv) G is left continuous, and F is right-continuous if 1-1 is fmite but not 

necessarily if �-t(X) = oo, 
(v) F is not necessarily left-continuous nor G right-continuous, 
(vi) W1 = ilo on � , and if 1-1 is complete,  W1 = flo on S G .  

22 . Show that if W1 is o�fmite, then 1-1 is o-fmite . 
23 . Show by an example that 1-1 o-fmite does not imply W1 o-fmite even if 

,q-1 < m .  
24. Show that if JJ is o-fmite and f is one-to-one, then W1 is o-fmite ; 
25 . Let f be a measurable function on A ,  and on the measurable set B such that 

m(B) < oo let 0 <:{<:M <oo. Show that 
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M 1 [M dx = M" m(B) - n f. yn-t e(y) dy. 
B 0 

for n = 1 ,  2,  . . .  , where e(v) = mr1 (O,y). 

[Ch. 9 

00 

26. In the last-exercise take B = (O , l ), M  = t and let F(t) = B anf' for l t l < 1 .  

Show that 
1 1 I F(f(x)) dx = F(!) - f F'(y) e(y) dy . 

0 -0 

9.6 RIESZ REPRESENTATION THEOREM FOR C(l) 

n=O  

We recall the notation C(O, l )  of Example 14,  p.  148, for the real vector space of 
continuous functions with the supremum norm 11{ 11_. More generally , for any 
bounded closed set A in A ,  C(A) will denote the class of functions continuous 
on A and with norm 11[ 11. = sup ( l.f{x) l : x E A ] . In particular we are interested 
in the case when A is an interval, and consider linear functionals on the vector 
space C(l) where I will always denote a finite closed interval, in this context . 

Defmition 6 :  A linear functional G on C(l) is a positive linear functional if 
G(f) � 0 for any non-negative functionfE C(I). 

Example 13 :  Show that if f, g E C(f), f� g, and G is a positive linear functional 
on C(l), then G(f) � G(g ). 

Solution : Since { =  (f-g) + g, we have G(f) = G(f - g) + G(g) �  G(g). 
We have defined a bounded linear functional in Definition 1 3 ,  p. 1 48. It is 

clear that if J..L is any measure on the Borel subsets of I then G defmed by G(/) = 

If d�o� is a positive linear functional on C(/). If, in addition, �o�(I) < oo, then G is 
I 

bounded . The main result of this section is that all positive bounded linear func
tionals are of this form. This is then extended to all bounded linear functionals , 
measures being replaced by signed measures. 

The construction in the LP case suggests that the measure of a subinterval J 
of I may be obtained as JJ(J) = G(x, ) . But XJ is not continuous, so in the proof 
of the theorem it is approximate� by a piecewise-linear continuous function. 
Since G is positive and continuous, this allows JJ(J) to be defmed as a limit. 

Theorem 16 (Riesz Representation Theorem for C(l)): Let G be a positive 
bounded linear fur ctional on C(J). Then the re exists a unique measure J..L on GfJ 
such that 

. G(f) = [td�o� 
I 

{9 . 1 4) 
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for eachfE C(J). Also, IIG II = J..L(J). 

Proof: Let I = [a , b ]  and if t E (a , b]  and n is a sufficiently large positive 
integer, define h�n E C(J) by ht,n = 1 on [a , t - 1/n ] , h�n = O on [t , b] , h�n 
linear on [t - 1/n , t] . Then the family of functions [h�n 1 increases with respect 
to t and with respect to n .  Also h�n <: 1 for all t and n .  So G(h�n ) <; G(xr). 
Set g(t) = lim G(h�n), for t E (a, b] , and set g(t) = 0 for t <; a, g(t) = G{xr) 

n-+cto 
for t > b .  Since h�n  increases with t, so does G(ht,n ) by the last example and 
therefore g(t) is a monotone increasing function . 

Also g is left-continuou� .  This is clear if t <: a or t > b .  So let t E (a , b] , let 
e > 0 and let n > max {2 , IIG II /e) be so large that 

G(ht,n ) <: g(t) � G(ht, n) + €. (9 . 1 5) 

Let kn be the function in C(J), kn = 1 on [a , t - 1/n + 1 /n2 ] , kn = 0 on 
[t - 1 /n2 , b]  and kn linear on the intermediate interval. Then the maximum 
difference between h�n and kn can be seen from a diagram to occur at t - 1/n + 
1 /n2 and at t - 1 /n2 when it equals 1 /n .  So llkn - h�n II. = 1/n .  Therefore 
G(h�n) <: G(kn ) + n-1 IIG II < g(t - 1/n2 ) + e. So by (9 . 1 5) we have g(t - 1 /n2 ) <; 
g(t) <;g(t - 1 /n2 ) + 2e, and so g is left-continuous. 

Let J..L = /lg so that JJ( [<t, /3)) = g(ft) - g(a). Then for any measurable set 
E !; C/, J..L(E) = 0 and JJ([a, c)) = g(c) for each c � a. Also IIG II = G(xr); for 
obviously G{xr) <; IIG II and by the definition of UG II there exists a sequence {fn l
in C(l) with llfn II. = 1 and such that lim Gifn) = II G il .  But In <: XI implies 
Gifn) <: G{xr ). So IIG II = G(xr) = g(b+) = J..L(l). 

We now show that {9 . 14) holds for all fE C(J), and we may suppose that f is 
not identically zero. Now f is uniformly continuous on I so , given e > 0, there 
exists 6 > 0 such that x , Y E I and lx -y l  < 6 imply lf(x) -f(y)l < e. Now let 
a = t0 < t 1 < . . . < tm = b be a partition such that max (tk - tk_1 ) < 6 /2 , and 
choose n so large that n-1 < min (tk - tk-l ) and that for k = 1 ,  . . .  , m we have 

G(h ,k ,.) � g(.fk) � G(h,k,n) + m II�U • .  

This is possible by (9 . 1 5). Now consider the functions defmed on I by 
m 

/1 {x) = f(tl ) h t"n(X) + � /(t�cXh'k,n(x) - h'k_1 ,n(x)) k=2 
+ f(.tm) {x,(x) - htm ,n(x)) 

and /2 (x) = k�l f(tkh[t,c_1 ,t,c)(x) + f(tm h[tm l (x). 

So {1 E C(f) and /2 is a step function. Clearly 

sup [ l!2 {x) -f(x)l :  x E /] <: e. 

(9 . 1 6) 

{9 . 1 7) 
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Using (9 . 16) Ior k = 1 ,  . . .  , m we have 
2e 

IG(hfk,n - htt_1 ,n) - (g(tk) -g(tk-l ) I <: m llfll . (9. 18) 

Since G is linear, 
m 

G(/1 ) = f(tl ) G(ht1 ,n)  + E f(tk) G(hfJc,n - h'k-l ,n ) 
k= 2  

+ f(tm )(G(xr) - G(htm ,n)). 

Using g(t0 ) = g(a) = 0, 

f 12 <ill = f(t! ) g(td + � f(tk)(g(tk) -g(tk-l )) 
k= 2  

+ f(tm )(g(b+) -g(b)). 

So using (9 .16), (9 . 1 8) and g(b+) = G(xr) we have I Gift ) - f !2 dJ.LI <: 2e. So, 
by (9.17), 

I f f d.ll - G(/1 )I <: 2e + e JL(l).  (9 .19) 

,, We now show that 11/1 - [II .. < 2e. On [to , t1 - 1/n ]  it is clear mat If-/1 1 
< e. On [t1 - 1 /n ,  t1 ] , f - /1 = (f - f(t2 ) ht2 ,n ) + ht1 ,n (J(t2 ) - f(t1 )). But 
ht ,n = 1 on this interval, so If-{1 I < 2e. Similarly for the succeeding intervals. 
S� I G(f) - G(/1 )I' < 2e IIG II and (9 . 19) gives I f f dJL - G(f)l < 2e + ep.(l) + 
2e II G il = e(2 + 3 IIG II) as p.(l) = II G il . But e is arbitrarY and (9. 14) follows. 

It remains to be shown that p. is unique . Let 1Jo be any other measure with 
the required properties and let llo have primitive g0 with g0 (a) = 0. Then 
g0 (t - 1/n) <: f ht,n dp.0 <: g0 (t). Letting n � oo the middle term has limit g(t), 
and since g0 is left continuous Ko = g on I. 0 

Theorem 17: Every bounded linear functional F on C(l) can be written as 
F = [I* - r where F*, Jr are positive linear functionals. 

Proof: For f '> 0 let .F*(f) = sup [F(g):  O <:g <:fl . Then F*(f) �  0 and IF'"(f)l <: 
IIFII • 11/11... Also, obviously , F*(cf) = cF'"(f) if c > 0. Consider now a pair 
/1 , /2 of non-negative functions in C(l). If 0 <: g1 <: /1 and 0 <: g2 <: /2 then 
0 <gt + g2 </1 + /2 and F'"(/1 + !2 ) � sup F(g1 + g2 )  = sup F(g1 ) + sup F(g2) 
= £1*(/1 ) + F*(/2 ) . Conversely, if 0 <: g  <:{1 + /2 , then 0 <: min (/1 , g) <:{1 and 
0 < g - min (/1 , g) < /2 so that F'"(/1 + /2 ) = sup F(g) <: sup F(min (/1 , g)) + 
sup F(g - min (/1 , g)) <: F'"(/1 ) + F'"(/2 ). Thus F'" is additive on non-negative 
functions. But F* can be extended to a linear functional on C(l) by F'"(/1 -[2 ) 
= .F*(/1 ) - F'"(/2 ), since every function f E C(l) is the difference of non-negative 
functions ft ' /2 E C(f). Then r is bounded since IF'"(t)l <: F'"�) + F'"�) = 
.F*(IJl ) < HFII • 11/11 .. . This extension is unique for if /1 - f2 = g 1 - g 2 , then 
/1 + g2 = /2 + g 1 so applying F'" and rearranging we get F'"(/1 ) - F'"(/2 ) = 
F*(g1 ) - .F*(g2 ). Also the extension is a linear functional, for if a > 0 and f = 
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/1 - !2 , then P"(af) = P"(a!1 ) - P"(af2 ) = a?' (f). If a = - 1  and f = ft -/2 , 
then F*(-f) = P"(/2 ) - P"(/1 )  = -P"(f). Also, in the same notation, F*(f + g) 
= F*(/1 + It - if2 + K2 )) = P"(/1 + It ) -P"(/2 + 12 ). Expand and rearrange 
to get P"(f + g) = P"(f) + P"(g). So J7+ is a positive bounded linear functional. 

Now let Jr(f) = P'(f) - F(f). Then Jr is a bounded linear functional, being 
the difference of bounded linear functionals, and r is positive since for f > 0 
we have , from its defmition, that P"(/) ;> F(f). Since F = J7+ - r the theorem 
is proved . 0 

We now extend Theorem 16  with the aid of Theorem 17 .  

Theorem 18 :  Let G be a bounded linear functional on C(l). Then there exists 

a finite signed measure Jl. on the Borel subsets of I such that G(/) = [ t dp for 
I 

each f E C(l). 

Proof: By Theorem 1 7 , G = c+ - CT where l?, c;- are positive bounded linear 

functions. Then by Theorem 18 , G"(/) = ft dJJ.t . G"(/) = [t � so Jl. = IJt -
p.2 gives the result . 0 I 1 



CHAPTER JO 

Measure and Integration in a Product 
Space 

In order to consider multiple integrals we need to deal with measure and integra
tion on the Cartesian product of spaces. We now examine these in a fairly general 
framework and use the general theory developed in Chapter 5 .  The most impor
tant special case, that of fmite-dimensional Euclidean spaces is examined in 
Section 10.3 , where the usual procedures of integration with respect to polar 
coordinates is fitted into this framework, and their use for Lebesgue integrals is 
justified. ·  In Section 10.4 we examine the Laplace and Fourier transforms and 
show how integration in a product space can be used to obtain their properties. 
Finally, using also the results on L 2 obtained in Chapter 6, we obtain the Parseval 
and Plancherel theorems for the Fourier transform. 

10.1 MEASURABILI1Y IN A PRODUCT SPACE 

In this section we assemble the basic defmitions for product measures and 
measurability with respect to such measures and obtain some properties. 

Defmition 1 : If X and Y are sets, their Cartesian product X X Y is the set of 
ordered pairs [(x,y): x EX,y  E Y] . If  X and Y are spaces, X X Y is the product 
space . 

ht considering measures on a product space· the important sets will be those 
which are Cartesian products of subsets of X and Y, as described in the next 
defmition. 

Defmition 2 :  A set in X X Y is a rectangle if it may be written A X B for A � X, 
B � Y. 

To defme measures on X X Y we ftrst suppose that [X, S D and [ Y, f) D are 
measurable spaces; appropriate rectangles then provide the building bricks for 
the measurable sets in X X Y. 

Defulition 3 :  A measurable rectangle in X X Y is any set which may be written 
as A X B for A E eS , B E  fJ 

Defmition 4 :  The class of elementary sets & consists of those sets which may be 
written as the union of a fmite number of disjoint measurable rectangles. 

1 76 
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If we are given measures on S and fJ it is easy to see how we should defme a 
measure on the measurable rectangles and hence on the sets of & .  That we may 
then use the results of Section 5 .3 is guaranteed by the following theorem. 

Theorem 1 : & is an algebra. 

Proof: Clearly & is closed under fmite disjoint unions . It is closed also under 
n m 

fmite intersections, for let P =U u, E &, Q =U v1 E &, where U1, v, are 
t= 1 i= 1 

measurable rectangles, u, n uk = 0 for i =I= k, v, n v, = 0 for j =I= s .  Then 

P n Q = U u, n vi e &  
1 <t<n 
1 <i<m 

as the intersection of two measurable rectangles is a measurable rectangle . 
If A X B is a measurable rectangle, C(A X B) = (CA X Y) U (A X CB) E & .  

,. n 

So if P =U U1 E & ,  CP =n CU1 E & . Also & is closed under finite unions for 
1= 1 i= 1 

if P E &, Q E &, then P U Q = (P - Q) U Q, a disjoint union, belongs to & . Since 
clearly X X Y E & , & is an algebra. 0 

We may now defme a class of measurable sets of X X Y. 

Defmition S: $ X fJ denotes the a-algebra generated by the class of measurable 
reactangles. Also, [X X Y, $ X fJ D is the product of the measurable spaces 
[X, S D and [ Y, � D .  

-...... 

Example 1 :  $ X fJ = S (&), the a-algebra generated by &.  
A more convenient characterization of S X fJ may be provided in terms of 

monotone classes. We formally defme these in the next defmition and obtain 
from Theorem 3 a characterization of monotone classes which provides the 
essential tool for integration theory in product spaces. 

Defmition 6:  A class 31C0 of subsets of a space is a monotone class if for any 
increasing or decreasing sequence of sets (E,. l of 31(0 , lim E,. E :Mo .  

Theorem 2:  If Y is any class of subsets of X, there exists a smallest monotone 
class, denoted by c5)t0 (y), containing Y .  
Proof: Obviously , Gf (X) is a monotone class. Also, the intersection of monotone 
classes is a monotone class. So the intersection of an the monotone classes which 
contain Y provides the required monotone class :M0 ( y). 0 

' 4 

Theorem 3 :  If � is an algebra, S (eA) = :M6 (v4), that is, the a-algebra generated 
by eA is the smallest monotone class containing cA .  
Proof: For brevity write �0 in place of j}(0 (e.A). �ince every a-algebra is a 
monotone class, S (e.A) 2 31(0 • To prove the opposite inclusion it is sufficient 
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to show that :Jr(0 is an algebra, since each countable union can be written as the 
limit of fmite unions. Let j)( � = [A :  CA Ej)(0 ] ; then it easily seen that j}(� is 
a monotone class and that e.A � j}(� . So :Mo � j}( � ,  that is, 3¥(0 is closed 
under the taking of complements. We wish/ to show that the same is true for 
fmite unions . For each FE  3r( 0 let 

X(F) = [E: E E :Jr(0 , E U F E j)f0 ] . (10 . 1 ) 
Then it is sufficient to show that :Jrl0 = X (F) for each FE  :M 0 ."Now, GJf(F) is 
a monotone class since , for example , if En E X(F), En � En+t , n = 1 ,  2, . . .  , 

we have � En E.»(0 and(� En) U F = lim (En U F) E .»i0 •  So lim En E 

GJC(F). Also, if G E cA ,  X (G) contains cA ,  since :Jrl 0 2 eA ,  so GJC (G) = :Jr(0 • So, 
for any H E  31(0 , H E  GJC(G). But by inspection of { 10 . 1 )  this implies that G E 
X(H). So eA � GJC(Jl) for each H E :Jr(0 and as <iJf(H) is a monotone class, 
:M0 = X(H) as required . 0 

Corollary : S X fjJ = jt(o (&). 

Defmition 7 :  If E � X X Y, we defme the x-section of E to be the set Ex = 
[y: (x ,y) EE] , and the y-section of E to be the set EY = [x : (x, y) EE] . 

Note that Ex � Y and EY � X. The next theorem states that measurable 
' 

sets have measurable sections. However, in Example 4 below, we give an example 
of a set of which each x-section and yooSection is measurable but which is not 
itself measurable . 

Example 2 :  Show that if ( A1 } is a monotone sequence of sets, then lim Af = 
(lim A1)Y and lim (A,)x = (lim At)x ·  � 00 )y 00 � 00 ) y 
Solution : This follows from the fact that U A; = �AY, and nA, = 

I= 1 •= 1 1= 1  
00 

r\A>j, and similarly for x-sections. 1= 1  

I 

Theorem 4: If E E $ X ff ,  then for each x EX and y E Y, Ex E fJ and EY E $ .  

Proof: Let n = [E: E E $ X fJ , Ex E fJ each x E X] . If A E S and B E � ,  
then (A X B)x = B or 0 according as x E A or x E CA .  So n contains the measur
able rectangles. If E E n  then since 

(cmx = [y: (x,y) E CE] = Cfy:  (x , y) EE] = CEx , -
we have CE E n. Also if En E n, n = 1 ,  2, . . .  , we have for each x E X, 

00 00 

(U En)x = U (En)x . 
n= l  n= l  

So n is a a-algebra and hence n = $ X fJ . Similarly , EY E $ for each y E Y. 0 
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We have corresponding statements for functions on X X Y 

1 79 

Defmition 8:  Let f be a function defined on X X Y. Then, given x E X, the 
x-section of / is the function on Y: fx(y) = f(x ,y), and given y E Y, the y-section 
off is the function on X: fY (x) = f(x, y ). 
Theorem 5 :  Let f be an $ X f) -measurable function on X X Y; then for each 
x E X and y E Y, fx is a fl -measurable function and fY is an $ -measurable 
function . 

Proof: Let E = [{x ,y): f(x , y) > a] .  Then for a fixed x E X, Ex = [y: fx(y) > a] 
belongs to fJ for each a, by Theorem 4, that isfx is fJ -measurable . Similarly for 
fY . D 

Exercises 

1 .  The representation of a rectangle in the form A X B need not be unique .  
Find when it is . 

2 .  Let A be a non-measurable set in X. Is A X f/J a measurable rectangle? 
3 .  Show that a rectangle A X .S-is-non-measurable iff either A is non-measurable 

and B =#= f/J, or B is non -measurable and A "* (/J. 
4 . Show that if Y s; X X Y, then (xy )x = xvx and (xy Y' = xvY · 

5 .  Show that if f is $ -measurable and g is fJ -measurable then fg is $ X <fJ 
measurable . 

10.2 THE PRODUCT MEASURE AND FUBINI'S THEOREM 

We obtain in this section, in Theorems 8 and 9 the main results on integration 
with respect to a product measure . They are due to Fubini and Hobson and 
usually known as Fubini's theorem. In order to defme a measure on $ X fJ we 
use the following theorem. 

Theorem 6: Let [X, cS , J.t] and [ Y, <fJ ,  v] be a-finite measure spaces. For V E 
$ X fJ write cp(x) = v(Vx ), l/J(y) = J.L(YY), for each x E X, y  E Y. Then 4> is 
$ -measurable , l/J is <fJ -measurable and 

J 1P dp = J 1/1 Qv. 
X y 

{10 .2) 

Proof: We suppose first that the result holds if J.L and v are finite measures. We 
00 00 

may write X =  U Xn , Y = U Y m ,  decomposing X and Y into disjoint n= l m = l  
sequences of sets of fmite measure , and the result is therefore assumed true for 
each rectangle X n X Y m where we are considering J.L and v restricted to the 
measurable subsets of Xn and Y m respectively .  Let Y E $ X fJ and write 
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Vn,m = V n (Xn X Ym); then for each x ,  Vx = U (Vn,m )x . By hypothesis 
n,m 

00 

v((Vn m )x ) is a measurable function of x on Xn for each m ,  so � v((Vn,m )x) is ' m = l  
measurable on Xn · Hence , by Example 1 2, p .  1 03 ,  

00 

cp(x) = v(Vx ) = � v((Vn,m )x ) 
m n= l  , 

00 

is measurable with respect to S . Similarly , l/J(y)' = � J.L(V� m ) is measurable , m,n= l  
with respect to fJ .  But using Theorem 1 7, p .  105 ,  we have 

= 

n'Bl mB l J Xn 
v((Vn,mlx) d�o� = n'Bl m'B l J Ym ll

(�m) dv, 
by hypoiliesis, and this last term is similarly equal to f l/1 dv. 

So we suppose that J.L and v are finite measures on S and ff respectively , and 
write n for the class of sets VE  S X fJ for which ( 10 .2) holds. Then n contains 
every measurable rectangle A X B, since v((A X B)x) = XA (x) v(B), J.L((A X B)Y) 
= xa{Y) J.L(A ), so ( 10 .2) holds. Then it can be seen that ( 10 .2) holds for any 
elementary set, that is n contains the algebra & .  If V1 c V2 � • • • , where V1 E 

00 

n for each i , and if v =U V;, then VE  n.  For , write cf>;(x) = v((V,)x), l/J,(y) = 
i= l  

J.L(Vf) . These are measurable functions by hypothesis , and by Example 2 ,  
cp1(x) t tl>(x) = v(Vx), l/JtJ') t l/J(y) = J.L(VY). So 4> and l/1 are measurable and 
f 4> dJ.L = lim f cf>t dJ.L = lim f l/Jt dv = f l/1 dv. 

00 

If V1 2 V2 � • • •  , where V1 E n  for each i, and if V =n V1, we obtain 
1= 1  

similarly sequences 4>; -1- cp, l/1; -1- l/J .  Since J.L and v are finite we may use Theorem 
21 , p .  107,  since 4>; � v(Y), a function integrable over X and l/11 � J.L(X) which is 
integrable over Y, to get that (10 .2) holds for 4> and l/J .  So n is monotone class 
contained in $ X fJ and containing & and the result follows by Theorem 3 .  0 

Corollary : With the notation and the o-fmiteness condition of the theorem we 

have J d�o�(x) J Xy(x,y) dv(y) = J dv{y) J Xy(x,y) d�o�(x). X ,Y Y X 
l 

Proof' We have cp(x) = v(Vx) = J Xy(x , y) dv(y), and similarly for 1/J ,  giving 
y 

this more intuitive version of ( 10.2). D 
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Defmition 9 :  Let [X, $ ,  J.t]  and [ Y, fJ , v] be o-fmite measure spaces. Then the 
product measure J.L X v on � X fJ is given by 

(J.t X vXV) = J v(Vx ) dp = J p(Y") dv, 
X y 

for each V E $ X f) , the last equality holding by Theorem 6 .  The alternative 
expression for these integrals given in the last corollary makes it clear that ll X v 
is a measure on $ X fJ .  Cle�rly J.L X v is o-fmite . " 

Example 3 :  Show that if J.L and v are o-fmite measures, then J.L X v as given in 
Definition 9 is the only measure on S X fJ giving to each measurable rectangle 
A X B the measure J.L(A )  v(B). 

n 

Solution : The required measure must have value L J.L(A1) v(B;) on the elementary 
1= 1  

n 
set which decomposes into disjoint measurable rectangles asU (A; X B1). Now 

1= 1 
J.L X v clearly takes the correct value on measurable rectangles and by Theorem 6 ,  
p .  1 79 ,  it is a measure on & so it takes the correct value on the sets of & and 
indeed is clearly a o-fmite measure on the a-algebra & .  But the extension from & 
to $ (&) = $ X fJ is then unique by Theorem 7 ,  p .  100. 

The main results on integration in a product space are given in the next three 
theo-rems ; their content provides methods of calculating integrals with respect 
to product measures. For these results we need , as in Theorem 6 on which they 
depend , the fact that [X, S , J.t] and [ Y, fJ , v] are o-fmite measure spaces. 

Theorem 7: Let f be a non -negative S X fJ -measurable function and let 4>(x) = 

J lx dv, 1/J(y) = J fY dp for each x EX,y  E Y; then </> is $ -measurable , 1/1 is 
y X � 

f/ -measurable and 

f </> dp 
= f I d(J.t X v) = f 1/1 dv. 

X XX Y Y 
( 10.3) 

Proof: The last theorem gives the result in the case where [ is the characteristic 
function of an S X f1 measurable set, and hence for measurable simple functions. 
In the general case , let f/n ) be a sequence of measurable simple functions such 
that fn t f. So, by the last theorem, 4>n(X) = f ifn)x dv is $ -measurable and 

J <f>n dp = J In d(J.t X v) . ( 10.4) 
X XX Y 

As n tends to infmity, ifn)x t fx , so by Theorem 1 5 ,  p .  1 05 ,  4>n t t/) and so l/J is 
measurable . Applying Theorem 1 5  again , to (1 0 .4), we get the frrst identity of 
(10 .3). The second follows similarly . D 
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Corollary: Writing the fust and last terms in (103) as iterated integrals of/, we 
get 

I d�-L(x) J f(x,y) dv(y) = I dv(y) I f(x,y) dst(x). (10.5) 
X Y Y X 

Theorem 8:  Letf be u. ·$ X fJ -measurable function and let cp•(x) = J lflx dv, 
y 

f 

1/J(y) = I x lfl'' dll for each x E X, y E Y; then the conditions cp• E L1 (J.l), 

VI* E L1 (v), /EL1 (p. X v) are equivalent. 

Proof: We apply the last theorem to 1/1 , and (1 0 .3) gives the result . 0 

Theorem 9 (Fubini's Theorem): It f E L1 (p. X v), then fx E L 1 (v) for almost all 
x E X, fY E L 1 (p.) for almost. .. .U. "'y E Y, the functions 4> and VI defmed as in 

. ..., . 

Theorem 7 are in L 1 (}J.) and L1 (v) re'spectively, and (10.3) holds . 

Proof: From the measurable functionsr ,/- we obtain the functions 4>1 , t/)2 as 4> 
was obtained from / in Theorem 7 .  Sincer ,t- E L1 (p. X v), (10.3) implies that 
t/)1 , 4>2 E L1 (}J.). So, for almost all x, both t/)1 (x) and t/)2 (x) are fmite, and for 
such x, since fx = {; - t;, we have fx E L 1 (v) and tP(x) = t/)1 (x) - t/)2 (x ); hence 
"' is integrable . Also the first eS»Jality of (10.3) holds for t/)1 and r and for t/)2 

\ 

and r' so subtracting we get result for t/) and f. The second equality and the 
statements aboutfY and VI are proved similarly. 0 
Cotollary: Theorems 8 and 9 imply that if either of the iterated integrals of Ill 
is fmite, then so is the other and/ satisfies (10.5). 

It is the form of Fubini's theorem given in this Corollary which is most 
useful in applications. We now give some examples which show that the condi
tions in Theorems 6 to 9 may not in general be omitted. 

Example 4:  The condition V E PS X fJ is necessary in Theorem 6.  

Solution : For X and Y take the set of ordinals [a: a <  w1 ] where w1 is the fust 
uncountable ordinal ( [1 1 ] ,  p. 79). For � and fJ take the a-algebra generated by 
the countable subsets. Let ll and v be zero for countable sets and 1 for uncountable 
measurable sets. Let V = [(x,y): x <y] . Then ifx = w1 , the x-section Vx = 0; 
otherwise Vx is uncountable but CV:x is countable and so Vx is measurable . If 
y = w1 , V" = [x : x < w1 ] ,  a measurable set, and for y < w1 , yY is countable 

and so measurable . But f dst J Xv dv = f v(Vx) dll = 1-'lx: x < w1 ] = 1 ,  
X y 

whereas f dv f x v  dll = f #l(Y") dv = 0. So (10.2) does not hold for this V. 
y 

The next example shows how Theorem 6, p. 179, breaks down if p. and v are 
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not both o-fmite. The same example shows that o -fmiteness is essential in 
Theorems 7 ,  8 and 9 .  

Example S: Let X =  Y = [0,1 ] ,  p� = lfJ = 1J .  Take p. = m on the Borel subsets 
of [0, 1 ] , and for v take the counting measure on [0,1 ] , that is, II(E) = Card E. 
Take V = [(x,y): x = y, (x,y) EX X Y] . Then V is $ X :7 -measurable, for if n 
is any positive integer put 11 = [U - 1 )/n ,j  /n ] ,j  = 1 ,  . . .  , n and V,. = (I 1 X I 1 ) l.) 

00 

. . • U (I,. X I,.). So V,. is measurable, and so therefore is V = n V,. . (A diagram 
n= 1  

may assist.) However 

J dv J Xv dp = 0 
y X 

but I dp I xv dv = 1 .  
X y 

Example 6 :  The condition f E L 1 (p. X v) in Theorem 9, is necessary if the order 
of integration is to be interchangeable . 

Solution : Take X, Y, � ,  fJ as in the last example and let p. = v = m ,  restricted 
to [ 0, 1 ]  . Let 0 < a1 < . . .  < a,. < . . . < 1 , lim a,. = 1 .  For each n choose a con� 

tinuous function In such that [t: In (t) * 0] £;; (an , a,..1 ) and also I 1 In dt = 1 .  
0 

00 

Letj(x, y) = � g,.(y)(g,.(x) - 6n+t (x)). For each (x, y) only one term in this 
n= l  

series can be non-zero, so f is well defmed .  Also f is measurable , indeed f is con
tinuous except at (1 ,1 ). But 

I 1 f 1 00 

f(x,y) dx =  � g,.(y)(g,.(x) -g,.+1 (x)) dx = 
0 0 n= 1  (f ctn+1 I an+2 ) = g,.(y) g,. dx - Kn+l dx = 0 

a,. <rn+t 
for each y .  However 

I 1 00 J 1 
f{x,y) dy = � (g,.(x) - g,.+1 (x)) g,. dy =g1 (x), 

0 n= l 0 
• 1 I 1 

so J dx f(x , y) dy = 1 and the iterated integrals are therefore unequal. 
0 0 

However, Fubini's theorem is not contradicted since I is not integrable . For, 
writing I1 = (a1 ,  a,...1 ), we have 

00 00 

f ll(x, y)l dx dy = � J I E  ln(y)(gn(x) -ln+l (x)) l dx dy 
1,/"=- 1 It XIj n = 1 

00 

= � J lgj(v)(gj(x) -g/+1 (x)l dx dy 
1,/= 1 ltXlj 
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-

= L f + f IKJ(v)(gi(x) -Ki+t (x))l dx dy = oo, 

j= 1 IjXlj li+l Xlj 

[Ch. 10 

In some product spaces, for example in the plane , the 'natural' measure to 
consider is not p. X v but its completion, obtained in Theorem 8 ,  p. 10 1 . Results 
equivalent to Theorem 9 can be obtained in this case but details of the state .. 
ments are no longer the same ; for example, the functions 4> and l/1 of Theorem 6 
onwards need not now be measurable but only equal a .e. to measurable func
tions. For details of an approach using complete measures see , for example, 
[ 12] , Chapter 12 .  

Exercises 

6 .  Let ll and v be complete measures. Show that p. X v need not be complete. 
7.  Let f be a measurable function on R ,f> 0. Let the ordinate set of /be 01 = 

[(x , y): 0 <y < .f(x)] .  

(i) Show that 01 is measurable . 
(ii) Show that (m X mXOt) = f fdx.  

(iii) The graph of f is the set G = [(x , y): y = .f(x)] . Show that G is 
measurable . 

(iv) Show that G has measure zero . 

8 .  Let f be continuous on A = [a, b]  X [c , d] and let $ = f] = jt( .  Show that 

J J b J d J d J b 
f dxdy = dx j(x,y) dy = dy f(x , y) dx. 

A a c c a 9. Show that if/E L1 (}J.) and g EL1 (v), then fg EL 1  (}J. X v). 

10. Let f E L(O, a) and g(x) = J a f(t)/ t dt (0 < x ..;; a). Use the results �f this 
X 

section to show that g E L(O, a) and j a g dx = J a f dx ( cf. Exercise 20, 
0 0 

Chapter 9). 
1 1 .  By integrating e-Y sin 2xy with respect to x and y,  show that 

00 J e-Y (sin2 y)/y dy = i log 5 .  
0 

12 .  By integrating e-xy sin 2y with respect to x and y , show that 
00 J e-Y (sin 2y )/y dy = arc tan 2 .  

0 X 

13 . Let f E L(O, 00) and for a > 0 and x > 0 let g<r(x) = J (x - t)<r-l f(t) dt. 
0 

Show that a J 7 g<r(x) dx = l<r+l {v), y  > 0. 
0 
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14. J...et a > O, f;;;.. O, fE L(O, a) and F(x) = I x 
f dt; show that 

0 

I a f(x) log .!. dx = I a F(x) dx + F(a) log .!. 
o X O X a 

whenever either integral is fmite . 
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xy . 
1 5 .  Let f(x

, y) = {x2 +y2 )2 , - 1  <: x <; 1 , - 1  <;y <  1 , defmingj(O,O) = O. 

Show that the iterated integrals off over the square are equal but that f is 
not integrable . 

. x2 -y2 
16.  Show that 1f/(x ,y) = (x2 + y2 )2 , (x ,y) * (0,0), then 

i 1 dx J 1 J(x,y) dy = 114 and J 1 dy J 1 j(x, y) dx = - .!!:.4 . 
0 0 0 0 

Show that this does not contradict Theorem 9, p .  1 82. 
17 .  For each n � 1 let j(x, y) = 22n when 2-n <; x < 2-n+t , 2-n <;y < 2-n+l , let 

j(x, y) = -22n+t when 2-n-l <; x < 2-n , 2-n <;y < 2-n+t , and let{ =  0 on 
the remainder of the square [0, 1 ]  X [0,1 ] not contained in one of these 
rectangles for any n .  Show that 

J l J l J l J l 
' dy f(x ,y) dx = 0, but dx . f(x,y) dy = 1 .  

0 0 0 0 
18 .  Let X =  Y = N, p. = v = counting measure on 1' (N). Letj(x ,y) = 2 - 2-x 

for x = y, j(x, y) = -2 + 2-x for x = y + 1 ,  and let / =  0 otherwise . Show 
that the iterated inte�rals off are not equal. 

10.3 LEBESGUE MEASURE IN EUCLIDEAN SPACE 

In this section we show how, starting with Lebesgue measure on R and forming 
the completion of the product measure , we may defme a measure on the plane 
and, more generally, in An . The resulting measure , like Lebesgue measure on the 
line , is invariant under translation and rotation , so the original set of axes lose 
any special significance . We also show how integrals with respect to this measure 
may be transformed into integrals with respect to polar coordinates, in two or 
three dimensions. 

Defmition 10:  The completion of the product measure m X m is Lebesgue 
measure m2 on R2 • The class of Lebesgue measurable sets, written � 2 consists 
of the s�ts measurable with respect to m2 • 

Examples such as A X fy] where A is a non-measurable set, show that :71( 2 =I= 
:M X :71( so that m2 =#= m X m.  Using induction we may form in Rk the product 
of k copies of Lebesgue measure . 
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Defmition 1 1 :  For k >  1 let m<k) = m<k-t ) X m where m(l ) = m.  Similarly :J¥l (k) 
= �(k-l ) X o/}t; and mk on :Mk is the completion of m(k) on 3t((k) _ 

The next theorem gives a more convenient description of the Lebesgue 
measurable sets . 

Theorem 10: (i) :Jr((k) is generated by the sets A 1 X . . .  X Ak where A; E 3tt for 
each i. 

(ii) :Mk is the result of completing the measure m<k) on 13 X . . .  X Gf3 (k 
terms). 

(iii) mk on 3¥lk is given by its values on the Borel sets of Rk , the fact that 
these are measurable and the fact that it is complete . 

Proof: (i) This is true, by defmition, when k = 2.  Suppose that it is true for 
some k � 2. By definition, j)((k+l) is the a .. algebra generated by sets of the form 
E X F where E E :M(k) ,  F E 3r(. So by hypothesis j}((k+l > contains all the sets 
A 1 X . . .  X Ak+l , A1 E j)(. Now take Ak+l = F, and in this restricted class of 
sets consider countable unions and complements in Rk X F. We generate , by 
the inductive hypothesis, all sets of the form E X F, E E :M,(k) ,  F E  3¥(, so the 
a-algebra generated by the sets A 1 X . . . X A k+t is just �(k+t > , and by induc
tion this holds for all positive integers k. 

(ii) Let $ be the a-algebra obtained by this completion , so $ � :JI(k· Also 
c-S ;2 13 X . . . X � . If A 1 E � , m(A 1 ) = 0, and A 2 , • • • , A k E GJ3 , then all the 
sets C X A2 X . . .  X Ak with C � A 1 belong to $ . So S contains j}(X � X . . .  
X 13 and hence by induction $ 2 :M,(k) . So $ :::> :JI(k as required. 

(iii) As on the line the Borel sets are the a-algebra generated by the open sets, 
by definition . Now 13 X . . .  X 13 is generated by the open sets G = G1 X . . .  
X Gk, G1 open, and so consists of Borel sets. But every open set may be written 
as a countable union of sets G so GfJ X . . .  X GJ3 is just the Borel sets. Now (iii) 
follows from (ii) . D 

Corollary 1 :  The measure mk is given by its values on the half-open 'intervals' 
[x : at � x1 < b1, 1 � i � k] and the fact that it is complete . 

Proof: The details are obvious, but see the solution to Exercise 19  below. 0 

Corollary 2: :M(k+n) = :M(k) X :Jr((n) and m(k+n) = m<k) X m<n> . 

Proof: This follows from the fact that j)((k+n) is generated by the sets A 1 X . . .  
Ak+n ,  At E :At. 0 

Example 7 :  Lebesgue measure in Rk is translation invariant , that is if x E Rk and 
E' E :M k then E + x E :Mk and their measures are the same . 

�olution : The mapping y -+ y + x ,  y E Rk , is continuous and has a continuous 
nverse, so the open sets on translation give again the open sets. Also, a a-algebra 
ranslates to a a-algebra, so the Borel sets on translation give just the Borel sets. 
Uso, the half-open 'intervals' translate to half�open intervals of the same measure , 
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so the Borel sets have their measures invariant. But every set in :Jr(k is the union 
of a Borel set and a subset of a Borel set of measure zero, just as for the real line, 
so on translation :Jr(k is unchanged and so is mk . 
Example 8 :  LetE E :Mk and r > 0. Show that rE E :Jr(k and mk(rE) = � mk(E). 
Solution :  As in the last example , the Borel sets are transformed into the Borel 
se ts by E � rE. If I is any half-open 'interval', its measure is multiplied by r", 
by the corresponding result for the real line (Exercise 8, p .  34). So the Borel 
sets have their measures multiplied by rk . Since the same sets of zero measure 
are obtained , the result follows as for Example 7 .  

Example 9 :  Show that measurability and measure remain invariant under rotation 
in k dimensions. 

Solution : From the re sult of Example 7 we may restrict ourselves to rotations 
about the origin. Let A (r) denote the set obtained from A by the rotation r. 
Under r, open balls become open balls and a a-algebra is mapped to a a-algebra . 
So open sets and Borel sets remain measurable on rotation. We show that measure 
is unchanged for half-open 'intervals'. It follows that Borel sets under rotation 
give Borel sets of the same measure . Also subsets of Borel sets of zero measure 
rotate into sets of the same kind . So it will follow that the class of measurable 
sets remains measurable under rotation and that their measures are unchanged. 

So let I be the 'interval' [x : a; � x; < b1, 1 < i � k] . Then the interior G of 
the unit ball fs a countable disjoint union of intervals similar to I, say G = U /;, 
where 11 = a +  tl, a E Rk , t > 0. Then _Qr> = a<r> + tf!> so mk(r{>) = tk mk(JV>). 
Also mk(/1) = tk mk(l). So mk(I/'>) = K mk(I;), where K = mk(f.'>)fmk(l) 
depends only on I and r. So mk(G<'>) = K mk(G), but c<r> = G so K = 1 and 
the result follows. ( k ) Ill 

lf u  = (u 1 ,  • • •  , uk) E  Rk write lu i = � u1 1= 1 

Defmition 12: The unit sphere in Rk is the set Sk-1 = [u :  l u i  = 1 ] . For the 
purpose of considering open sets and hence Borel sets, Sk-t is assumed to have 
the relative topology as a subset of Rk ( cf. Chapter 1 ,  p. 1 8). 

We defme angular measure on the sphere . -
Defmition 13 : Let A be a Borel set on S k-1 and write A = [x : x = ru , 0 < r < 1 ,  
u E A ] . Then define ak-1 (A) = kmk(A). It is easy to see that A is a Borel st't , 
so ak_1 is well defmed and is a measure on the Borel sets of Sk-t · 

Theorem 1 1 :  Let /be a Borel measurable integrable function on Rk, then 

I fdmk = J ""
rk-1 dr J f(ru) dak-1 (u) . 

0 Sk-l 
( 10.6) 
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Proof: Let 0 < r1 < r2 , let A be an open set, A � Sk-1 , and let E = [ru :  r1 < r � 
r2 , u E A ] . Then ( 10.6) holds for X£ .  For, 

I oo J r '2 ,k-1 dr XE(ru) dok-1 (u) = J rk-1 ok-1 (A) dr = 
0 �-1 � 

= k-1 � - �) ok-l (A). 
But E = r2A - r1A, so mk(E) = (r� - r�.)nk(A) by Example 9 ,  and so 

mk(E) = k-1 (r� - �) ok-1 (A) 

as required. So if E = [ru : r1 < r < r2 , u E G) , for some open set G � Sk-1 , we 
00 

have E = U En , En = [ru : r1 < r � r2 - 1 /n ] ,  where N is such that r2 - l /N 
n =

N 

> r1 • But XE t XE and so the result holds for XE by Theorem 1 5 ,  p. 105 .  Let n n be the class of sets for whose characteristic functions (1 0.6) holds. Then n 
is closed under disjoint co�ntable unions by Theorem 17 ,  p. 1 OS . Also n is 
closed under the formation of differences of bounded sets since we may write 
XA -B = (XA - XJJ)+, all the functions being integrable , and use the fact that 
(10.6) is linear in f. So n is closed under countable unions contained in a ftxed 
bounded set, for example DN = (-N, N) X . . . X (-N, N) - [0] where 0 
denotes the origin. Hence n contains all open sets in DN, for each such set is 
the union of open sets of the same type as E above , and hence by Theorem 8 ,  
p .  23 , is the union of a countable number of such sets. Taking unions and 
differences, we fmd that n contains all Borel sets in DN. So if E is any Borel set 
in Rk - (0] , (10.6) holds for the characteristic function of E n  DN, and letting 
N � oo we fmd E E n  by Theorem 1 5 ,  p .  105 . Hence the result holds for Borel 
measurable simple functions and taking increasing sequences of such functions 
we get (10.6) for r and f-. Since the left-hand side of ( 10.6) may be replaced 
by the integral over Rk - [O] ,  the result follows. 0 

In R2 , if G � S1 is the intersection of an open disc with S1 , then o1 (G) = 8 
where 8 is the angle subtended by G at the origin . Then we may write (10 .6) in 
the form 

00 f 21r 

ffdm2 = J r dr  F(r, O) d8 
0 0 

where F(r, 8) = f(r cos 8 ,  r sin 8). 
Finally we show how the elementary procedure of integrating with respect 

to three dimensional polar coordinates may be fitted into this context. 

Example 10:  If Sf denotes the sphere S2 minus the poles (0 ,0 , 1 )  and (0,0,- 1); 
there is a Ot1e-to-one mapping of Sf onto (0, 1T) X [ 0, 21T) such that (x, y , z) � 
(8 , 4>) where x = cos 4> sin 8 ,  y = sin 4> sin 8 ,  z = cos 8 .  Then if f is a Borel 
measurable function and is integrable , 
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00 f 21r 1r 

f / dm3 = J r2 dr d<fl J sin 8 F(r, 8 ,  </>) d8 
0 0 (\ 

where F(r , 8 ,  4>) = f(r cos 4> sin 8 ,  r sin 4> sin 8 ,  r cos 8). 

Solution : By Theorem 1 1 ,  we need only show that for ftxed r, 

J .f{ru) do2 = J 2" 

d<fl J " 

sin 8 F(r, 8 , </>) d8 
82 0 0 

1 89 

( 1 0.7) 

and indeed the integral on the left need be taken over Sf only . Let A be the 
open set in Sf given by 8 1 < 8 < 8 2 , 4>1 < 4> < 4>2 and take f(ru) = XA (u ). Then 
the right-hand side of (10 .7) is 

J 82 (4>2 - 4>1 ) sin 8 d8 = (4>2 - 4>1 )(cos 8 1 - cos 8 2 ), 81 
while the left-hand side is 3m3(A), in the notation of Defmition 13 ,  which may 
be checked by a laborious integration with respect to x ,  y ,  z to have the same 
value . Each open set in Sf may be written as a countable union of sets such as A ,  
so as in Theorem 1 1  the result holds if f(ru) ;::; XE(ru) for any Borel set E � Sf. 
Hence we obtain the result for an arbitrary Borel measurable function f on 
taking a sequence of Borel measurable simple functions with / as limit . 

\ 

Exercises 

19 . Let [X, $ ]  and [Y, fJ B be measurable spaces such that S is the a-algebra 
generated by &, and f1 is that generated by c:J .  Show that cS X � -is the 
a-algebra generated by [E X F: E E &,  F E g ]  = & X g ,  say . 

20. Show that if f(x) is a Borel measurable function on Rk - [O] and we write 
x = ru ,  u E S k-l , then g(u) = f(ru) is Borel measurable on S k-l . 

2 1 .  Show that every open set in R2
- (O] is the union of sets £ = [ru : r1 < r <  

r2 , u E G, G open, G s; S 1 ] • 

22. Show that J .,. e-x• 
dx = !:J1T. 

0 

10.4 LAPLACE AND FOURIER TRANSFORMS 

It is easy to extend the defmitions and results on integration obtained for real
valued functions to complex-valued functions. If f = {1 + i/2 , f is said to be 
measurable if, and only if, the real functionsf1 and /2 are measurable and almost 
everywhere finite-valued . Then Ill is clearly measurable in the previou� sense . 
We define f to be integrable provided f is measurable and Ill is integrable , and in 
this case /1 and [2 are clearly integrable . Iff is complex we then defme the inte
gral of f to be f f d�-t = f [1 d�-t + i f {2 d�-t . The following familiar result now 
needs a different proof. 



190 Measure and Integration in a Product Space [Ch. 10  

Theorem 1 2 :  If f is a complex-valued function integrable with respect to JJ., then 
I f f dJJ. I � f Ill dJJ.. 

Proof: Let z = f f dJJ. and choose a, Ia I = 1 , such that az = lz l .  Then I f f  dJJ.I = 
a f f dJJ = f af dJJ = f Re(af) dJJ. � f lafl dJJ. = f Ill dJJ., since the linearity of the 
integral holds as for real functions and since f Im(af) dJJ. = 0 by inspection of 
the first term in the string of equalities. D 

Example 1 1 :  Show that I f f  dJJ. I = f Ill dJJ. if, and only if, there exists 0 ,  real and 
constant , such that ei8 f �  0 a.e .  (}J.). 

Solution :  From the proof of Theorem 1 2  we must have f Re(af) dJJ. = f lafl dJJ.. 
So Re(af) = lafl a .e .  (}J.), and Im(af) = 0 a.e .  (}J.). Writing a =  ei8 we see that the 
condition is necessary. It is clearly also sufficient . 

Earlier theorems concerning non-negative functions we do not extend ex
plicitly , but where in earlier proofs we split functions into positive and negative 
parts, we must now split them first into real and imaginary parts and then proceed 
as before , the condition of finiteness almost everywhere being imposed since we 
cannot carry over the conventions regarding the extended real numbers. Lebesgue's 
dominated convergence theorem, p .  1 07, and Fubini's theorem, p .  1 82, in par
ticular, hold for complex functions .  The methods of Chapter 8 then suggest the 
consideration of complex-valued measu res. These raise no difficulties but we will 
not examine them. 

The next result is a preliminary to considering the convolution of two func
tions, which will be important in the applications which follow. The functions 
are real-valued as usual. 

Theorem 1 3 :  Let f and g E L(-oo, oo), thenf(y - x�(x) is an integrable function 
of x for almost ally, and if h(y) is defmed for these y by h(v) = f f(y - x)g(x) dx, 
then h is integrable and llh 11 1 � II[ 11 1 • llg 11 1 • 

Proof: For each y ,  f(y - x) g(x) is a measurable function of x,  so write h*(y) = 
f lf(y - x) g(x)l dx .  If we may apply Theorem 9; (Corollary) to h *  we get 

f h*(y) dy = f dy f lf(y -x) g(x)l dx = f lg(x)l dx f lf(y - x)l dy . 
But f lf(y - x) l dy = f lf(y) l  r,Ly by Example 25 ,  p .  75 .  So f h*(y) dy � llg ll 1 •  
11[ 11 1 and so h *, and hence h, is fmite valued a .e . , h is integrable and llh 11 1 � 
II f ll 1 " llg ll 1 . 

However , to apply Theorem 9 , we need to know that f(y - x) g(x) is measur-
able with respect to m X m. By Exercise 1 1 , p. 60, we may replace f by a Borel 
measurable function equalling it a.e .  and show the desired measurability for the 
altered integrand . As the integrals are the same the subsequent argument is 
unaffected. Write F(x, y) = f(y - x ); then F is a Borel measurable function. 
Indeed if for E c A ,  we write GJJE = [(x, y) : x -y EE] , we have Jr1 (a, oo) = 
1J.r1 (a, oo). As r1 (a, oo) is a Borel set, we need to 'show that if E E 13 ,  1JE is 
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a Borel set in R2 • If E is open, q) E is open, since when x0 -Yo is contained in 
a neighbourhood of radius e in E, (x0 , y0 ) is contained in a neighbourhood of 
radius e/2 in the strip 1JE. Also n = [E: 1JE is a Borel set] is a a-algebra, since 

00 QO GD (UEt) = U GJJE1 and 1J(CE) = C(GJJE). So n contains the Borel sets and 
i= 1 i= 1 

so F(x , y) is a Borel measurable function. But G(x,y) = g(x) is measurable with 
respect to m X m ,  and so F(x, y) G(x , y) = f(y  - x) g(x) is measurable with 
respect to m X m and the theorem is proved. D 

Defmition 14:  If [, g E L(-oo, oo), the convolution f • g of f and g is given by 

(f • g)(v) = f f(y - x) g(x) dx.  
By Theorem 1 3 , {  * g is well defined and is an integrable function. 

Theorem 14 : If {, g, h E L(-oo, oo), then (i) f * g = g * f a.e . , (ii) (f • g) • h = 

f • (g * h) a .e �  
. 

Proof. (i) Let y be such that g(y - x) f(x) is integrable with respect to x ,  and 
substitute t = y - x in f g(y - x) f(x) dx to get, by Example 1 2, p.  1 7 1 , 

f g(y - x)f(x) dx = f g(t)f(y - t) dt = (f • g)(y). 
So f * g = g • f a.e . 

(ii) (/ • (g * h))(y) = f f(y - x)(f g(x - z) h(z) dz) dx. ((/ • g) • h)(y) = 
f h(z)(J f(y - z - t) g(t) dt) dz = f h(z)(f f(y - x) g(x - z) dx) dz using the 
substitution t = x - z and Example 25 ,  p .  75 .  To establish the result we need 
only change the order of integration, so we need to show that Theorem 9, p .  
182 , can be appiied to F(x, z)  = f(y - x) g(x /or- z)  h(z). Replacing f and g by 
Borel measurable functions equal to them allnost everywhere , we obtain as in 
Theorem 13 ,  an integrand measurable with respect to m X m. Also, for almost 
all y ,  F(x, z) is integrable ; for 

f dy f lh(z)f(y - x)g(x - z) l dx dz 
= f lh(z) g(x - z) l  (J lf(y - x) l dy) dx dz � 11{ 11 1 • llg ll 1 • ll h ll 1  

as in Theorem 13 .  So for ·these y we may change the order 9f integration to get 
the result . D 

An important aspect of the convolution of two functions is its relation to the 
Fourier transform (Defmition 1 6, below) and to the Laplace transform, which 
we now defme. 

Defmition 1 5 :  If[E L(O, oo) the function 
00 

(£fX.x) = J e-xt f(t) dt 
0 

is the Laplace transform of f. Clearly it is well defmed on (0, oo ). 
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Theorem I S :  lff,g E L(O, oo) then £(/ • K) = J:,f • £g. 

Proof For such functions, in defmingf •K  we take f and g to be zero on (-oo, 0), 
so that 

(/ • K)(x) = I x 
f(x - t)g(t) dt, 

0 
an integrable function on (0, oo). So for y � 0, writing/ • g = h , 

(.Ch)(y) = J .. dx J x 
e-yx f(x - t)g(t) dt. 

0 0 

From Theorem 1 3 ,  p. 190,  we may interchange the order of integration to get 

(.Ch)(y) = J .. g(tX I .. e-yx f(x - t) dx) dt 
0 t 

= J .. g(tX I .. e-y(x+t) f(x) dx) dt, 
0 0 

by Example 25 , p .  75 .  So 

(.Ch)(y) = J .. e-yx f(x) dx J .. e-yt g(t) dt ,  
0 0 

as required .  0 
One important way in which integrals of complex functions arise naturally is 

in connection with Fourier transforms. In their defmition a factor (21T )-112 is 
sometimes introduced, the object being to remove the factor (211' )-112 appearing 
in Theorem 18 .  

Defmition 16 :  If / E L(-oo, co) the function 
/(x) = f eixt f(t) dt 

is the Fourier transform of f. Clearly it is well defined. 
� � 

Theorem 16 :  If/E L(-oo, oo),/ is a continuous function on R and Ill <: f Ill dx. 
A � 

Proof: Clearly Ill <: f Ill dx. To show that f is continuous consider 
/(x + h) -/(x) = f eixt (e'ht - 1 )/(t) dt. ( 10 .8) 

Since letxt (etht - 1 )  J(t) l <; 2 1/(t)l E L(-oo, 00), we may let h -+  0 in ( 10 .8) to 
obtain the result by Example 1 5 , p. 64. D 

A ,... A 

Theorem 17 :  Letf, g E L(-oo, oo); then{ • K  =f • g. 
Proof: We have 

(f�)(s) = f dt f e191 f(t -x)g(x) dx. (10 .9) 
As in Theorem 1 3 ,  p .  190, lf(t - x) g(x)l is integrable with respect to (x , t), so 
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by Theorem 9, p .  1 82 ,  we may interchange the order of integratioQ in ( 10 .9) to 
get 

(f�g)(s) = f g(x)(j eiat f(t -x) dt) dx = f g(x)(J eis(t+x) f(t) dt) dx , 
by Example 25 , p .  75 . So 

A . . 
(/ * g)(s) = f e'st f(t) dt f e'sx g(x) dx 

as required. 0 

Example 12: Show that if f(x) = e-x212 , then /= (21r)1fl f. 

Solution : j(y) = f e-x2f2 e1YX dx . By Exercise 5 1 , p .  76 , we may differentiate 
under the integral sign. So using Theorem 9 ,  p .  1 63 , and letting the limits go to 
infmity , we have 

_!!_ j(y) = i f xe -x•/2 etyx dx dy 
= i [-e-x2f2 eiYX ]:O _ f e-x2f2 yeiyx dx = -yf(y). 

A A 2/2 A 

So f satisfies the equation du/dy = -yu .  So f(y) = Ce-Y . Then f(O) = C = 
f e-x212 dx = (21T)1fl by Exercise 22,  p .  1 89 .  

The following results are easily obtained by a change of variable . 
A A A 

Example 13 : (i)f(J3y) = (Jj1 f(Jf1 x))A . (ii) If k(x) = f(-x), then k = f. 

Theorem 18 (Parseval 's Theorem): Let f be a complex-valued function defmed 
on A and such that fE L1 n L2 , then /E L2 and 11/ 11 2 = (21r)1fl llf ll 2 . 

Proof: Write h(t) = {21T)-112 e-t'-12 and hn(t) = -nh(nt). Put g = f * k where 
k(x) = f(-x) . Then g E L 1 by Theorem 1 3 ,  p .  190, so using Exampfe 1 2  and 
1 3(i) with/ replaced by h and 13 by n ,  

(g • hn)(x) = f g(x -y) hn (v) dy = (21T)-112 ff g(x -y) h(t/n) eity dt dy . 
If we put s = x -y , this becomes 

(g * hn )(x) = (211' )-lfl f h(t/n) dt f g(s )ett(x-a) ds 
= (21T )-ttl f h(t /n) g(-t )e1tx dt 

... .. 
� .. = (21r)-1a f h(t/n) i{t) e-ttx dt, 

as h is an even function. So 
(g * hn )(O) = (21T)-lfl f h(t/n) g(t) dt. 

( 10 . 1 0) 

( 10 . 1 1 )  
Now g(y) = f f(y - x) f(-x) dx = f f(.v + x) ['"t) dx is a continuous function 
of y, since Exercise 35 , p . 120 ,  extends to complex functions. Also it is bounded ; 
indeed by Holder's inequality using now, as in Example 25 , p .  75 ,  the notation 
fx(y) = f(y + x), 

lg(y )I � llfx 11 2 • 11 [ 11 2 = 11/ 11 � . 
Since f hn dy = 1 we get 



194 Measure and Integration in a Product Space 

(g * hn )(x) -g(x) = f (g(x -y) -g(x)) hn(y) dy 

= f g(x - s/n) -g(x)) h(s) ds. 
Letting n � oo and using the continuity and boundedness of g we get 

lim (g * hn )(O) = g(O) = II[ II � . 

(Ch.lU 

( 10 . 1 2) 
From Example 1 3(ii) we have i = I /1 2  � 0, so letting n � oo in (I 0. 1 1 ) we may 
use Theorem 4, p.  000, and (10 . 1 2) to get 

11{ 11 �  = (21T)- 1 f i(t) dt = (21T)- t 11/11 � 
as required . D 

Theorem 19 (Fourier Inversion Theorem) : Iff E L 1 and fE Lt , then 
f(x) = 1 /21T f /(t)e-ixt dt a .e .  ( 10 . 13) 

Proof: By the same argument which gave ( 10 . 10) we get 

(f • hn )(x) = (21T)-tfl f h(t/n)/(t)e-txt dt . ( 10. 14) 

Now lh(t/n) /(t)e-ixt l  � 1/1 E L 1 , so Theorem 10, p .  63 , gives that as n � oo 
the right-hand side of ( 10 . 14) tends to the right-hand side of (1 0. 1 3). Also 
I if • hn)(x) - f(x)l <: f lf(x - y) - .f{x)l hn(y) dy! Integrate with respect to x 
and use Fubini's theorem to get 

II/ • hn -fli t <: J 11{-y -fli t hn(y) dy. ( 10. 1 5) 

Now v € > 0, 3 6 > 0 such that 11!-y -f li t < € whenever IY I <: 6 ,  as in Exercise 
43 , p .-75 .  So the right-hand side of ( 10. 1 5) equals It + /2 where 

/1 = f llf-y -{Il l hn(y) dy <: € f hn(y) dy = €, lyl<6 
while /2 = J 11/-y -fli t hn(y) dy � 2 llf ll t J hn(y) dy ly l> 6 lyl> c5 
which has limit zero by Theorem 10 , p.  63.  So lim llf * hn - fli t = 0. So by 
Theorem 10 ,  p .  1 1 8 , for some subsequence {n1} 

lim (/ * hn;)(x) = f(x) a.e . 
So ( 10. 14) gives the result. 0 

Corollary : If fE L t and/= 0 a.e . ,  then { =  0 a.e. 

So the Fourier transform of an integrable function determines it a.e . From 
Exercises 3 2, 33 of Chapter 6 we see that L t n L 2 is dense in L 2 and Theorem 
1 8  then shows that T: f � f is a continuous mapping of a d�nse subset of L 2 
into L 2 • It has, therefore , a well defined extension T* with domain L 2 giving the 
Fourier transform on L 2 (�ometimes called the 

·Plancherel transform). It is 
A A 

customary to use the same notation, and write T*f = [ for fE L2 , although [is 
not defined pointwise but only as an element of L 2 • The next theorem collects 
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the important properties of T*. In (ii) we extend Parseval's theorem to L 2 ; (iii) 
constitutes an L 2 -inversion theorem. 

Theorem 20 (Planche rei's Theorem): Let [, g E L  2 , then 

(i) T* maps L2 onto L2 , 
(ii) f Ig dx = 2rr f {g dx . 

(iii) If tPn(t) = J 
n 

f(x) tftx dx and l/ln(x) = 1/2rr J n /(t) e-itx dt, then 
-n -n 

l i. m. 4>n = /, and l. i. m. 1/Jn = {where l. i. m. stands for L2 limit . 

Proof: Write fn = fX(-n,n) · Then fn E L 1 n L 2 and <Pn = ifn)" . Siqce (fn }  is 
convergent in L 2 , Theorem 1 8  gives that ( <Pn } is a fundamental sequence in L 2 , 
with a unique limit , namely T*f = /, proving the first part of (iii). Note that by 
Theorem 10 , p. 1 1 8 ,  if l. i m. Fn and lim Fn both exist, they are equal a.e . ,  so 
this defmition of I and that of Defmition 1 7  give rise to the same element of L 2 , 
for{E L 1 n L2 • 

We wish to construct an inverse to T* so we defme S* on L 2 by 
n 

(S*g)(x) = l i m. l /2rr J g(t) e-ixt dt. 
-n 

Since (S*g)(x) = (2rr)- 1 (T*g)(-x), S*g is well defined. So S* , T* are con
tinuous mappings to L 2 into itself. 

For/E L 1 n L2 , (1 0. 1 4) gives 

(f * hn)(x) = {2rr)-112 f h(t/n)/(t) e-ixt dt 
= (2rr)-1 f hn(t) i{t) e-ixt dt 

/"-... 
= (2rr)-1 f (f * hn) e-•xt dt. 

So f * hn = S*T*(f * hn)· (10 . 16) 
Also, L i. m. f • hn = fif{E L 1 n L2 , for 

1 (/ • hn)(x) -f(x)l � f 1/(x -Y) -/(x)l hn(y) dy . 

So, by Jensen's inequality , p. 1 1 3 ,  using the measure Jl where p(E) = J hn dy, 
E 

1 (/ * hn)(x) -f(x)l 2 � f lf(x -y) -f(x)l 2 hn(y) dy. 
Integrate with respect to x and use Fubini's theorem to get 

II[ * hn -[I! � � f l lf-y -{II � hn(y) dy. 
So, as in Theorem 1 9 , we get the result. 

So by continuity, taking l. i. m. as n � oo in ( 10. 1 6), S*T*f= [ for fE L 1 nL2 , 
that is , (iii) has been proved for /E L 1 n L2 • But L 1 n L2 is dense in L2 and S* , 
T* are continuous, so S*T*f = f for / E  L2 • This gives the second part of (iii) 
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and shows that the range of S* is L2 • But (S*f)(x) = (21T)-1 (T*gX-x) shows 
that the range of T* is the same as that of S* , proving (i). 

The result of Parse val 's theorem ex tends to L 2 since II 4>n 11 2 = (21T )112 II fn 11 2 , so 11 /11 2 = lim ll ct>n 11 2 = (21T)112 lim ll fn 11 2 = (21T)112 11 [ 11 2 • The result (ii) now 
follows , since 

4fg = l f + gl 2 - l[- gl 2 + i l f + igl 2 - i l f - igl 2 ; 
so if the L 2 -norm is mul tiplied by a factor (21T )112 when [, g go to j, g, the inner 
product f fg dx is multiplied by 21T. D 

Exercises 
23 . Let z ,  w be complex numbers such that Re z > 0, Re w > 0, then 

1 r(z) r(w) = r(z + W) f UW-l ( 1  - U)z-1 dU . 
0 

24 . Following Definition 1 6 ,  p .  1 92 , we define the Fourier transform of a finite 
measure J..L on A to be the function ji(x) = f eixt dJ..L(t). Show that if L is the 
Lebesgue function corresponding to the Cantor se t P, p. 26 , then the Fourier 
transform of J..LL is 

00 

ilL(x) = eix/2 TI COS x/3k . 
k= l 

25 . If fE L(-oo, oo) then /(x) � 0 as x � oo or x � -oo. 
A 

26 . Find a function f for which the upper bound given for lf l  in Theorem 16 ,  
p .  1 92 , is attained. 

27 . Let K(x,  t) E L2 (m X m) and write (W:f)(x) = f K(x, t) f(t) dt for f E  
L2 (-oo, oo). Show that [ -+  GJC[ transforms L2 (-oo, oo) linearly into itself. 



Hints and Answers to Exercises 

qJNTS AND ANSWERS TO EXERCISES: CHAPTER 1 

1 .  (i) x 'V y clearly defmes an equivalence relation . The equivalence classes are 
sets of points such that , in each set, any two points are at zero distance 
apart (as measured by p) and points in distinct classes are a positive distance 
apart. 

(ii) p* is well defined. For let z E [x] , w E  [y] ; then we have [z] = [x ] 
and [w] = [y] ,  but p(z , w) � p(z ,x) + p(x ,y) + p(y, w) � p(x ,y). Similarly 
p(x , y) � p(z, w). So p*  is independent of the points chosen in the equi
valence classes. To show that p* is a metric we need only show p*(a , b) � 0 .. 
for a =#=  b .  Let p*(a , b) = 0 where a =  [x ] ,  b = [y] . Then p(x , y) = 0, so 
y E [x ] , i .e .  a = b ,  as required. (The result of this exercise is worth keeping 
in mind in considering the conventions of Section 6 . 1 .) 

2 .  F dense means that v x E CF, every €-neighbourhood of x meets F, so cA 
dense means that v x E A every €-neighbourhood of x meets cA. So A 
contains no neighbourhood of any of its points. So A is nowhere dense . 

3 .  Every interval is easily seen to be both an F0 -set and a G0 -set , so these 
provide examples. 

00 

4. (x ]  = () [y: p(x,  y) < 1 / n] . . If y =#= X , then y E [ z :  p(z , y) < p(x , y)] , an 
n= 1 

open ball containing y but not x ;  so [x ] is closed. 
5 .  Let A = [ 1 /n :  n E N ] and let Gn be the open interval, centre 1 /n ,  of length 

00 

1 /(n + 1 )2 •  Then A C U Gn but, clearly , A is contained in no fmite sub-n= l  
collection ; A is not closed as 0 E A but 0 f$. A .  For boundedness, take A = N 

00 

and let Gn be the open interval, centre n ,  of length 1 .  Then A C U Gn but n= l  
we may not go to a fmite subcollection. 

197 
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6. Take the ca$e of q, monotone increasing and consider t/>(a+ ) . We have 

lim sup q,(x) = inf( sup q,(a + t) : h > 0] 
x�a + O < t<h 

= inf[q,(a + 6):  6 > 0] = p ,  
say, while 

lim inf q,(x) = sup [ inf cp(a + t) : h > 0] = sup p = p. 
x�a + O < t<h 

The other cases are similar. 
7 .  Adding the lengths of the removed intervals I(�� k gives 

1 2n 
11�a) ) = - (1 - a(1 - - )) \! n, k 2n 3n · 

8 .  It is easily seen from a diagram that 

So 

1 1 1 1 
IL  t - L2 1 � 22 - 3 . 2 = 2.6 ' . . .  , 

1 1 1 
I Ln - Ln+t l � 2n+t 3 .2n 2n .6 

, · · · 
00 

. 
I 

1 \"1 1 1 . d ILm - L � - L.J --;n = m-t , as requ1re . 6 n= m  2 6 .2 

HINTS AND ANSWERS TO EXERCISES: CHAPTER 2 

1 .  m*(B) � m*(A U B) � m*(A) + m*(B) = m*(B). 
00 00 2 . If the set is x 1 , x2 , • • •  , then m*(U [x;] ) � B m*([x;] )  = 0. 

i= 1 i= 1 
3 .  From Theorems 2 and 3 it is sufficient to show [0 , 1 ] � Uin . lfx E [0 , 1 ] -

Uin and its nearest left-hand end-point of an interval In is a, where a > x ,  
then [x , a) contaias rationals not covered by any In . (The case x = 1 does 
not arise .) 

4. Let ml (E) be the outer measure of E obtained when the end-points lie in 
the dense se t A .  From Definition 1 ,  ml (£) � m*(E). As in Example 3 ,  for 
each In consider an interval /� with end-points in A such that In c I� but 
l(I�) � ( 1  + €) l(In ) and obtain m*(E) � ml (E). 

5 . We may include n as one of the operations since A n B = C(CA U CB). 
00 

But (c , d) = (C [d, oo)) n U [c + 1 /n ,  oo) . 

n= 1 6. If m(Ej) < 00, we may apply the theorem to Ei, Ei+l , . . .  In the opposite 
direction , let E; = (i , oo) for each i. So lim E; = (/J and m(lim E;) = 0. But 
m(E;) = oo for all i. 
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7 .  Write F; = U Ei and G; = (")Ei. So F; :::> E1 ;2 G1 and lim F1 = lim E1 = 
j�i j�i 

lim G; since lim E; exists. Since m(F1 ) < oo we have from Theorem 9 that 
m(lim F;) = lim m(F;) � lim sup m(E;) ;> lim inf m(E1) � lim m(�) = 
m(lim G;). So we have equality throughout and lim m(E;) exists and equals 
m(lim G;) = m(lim E;). 

00 00 

8 .  (i) V e > 0 ,  3 { /1} such that kA !; U /; and m*(kA ) � B 1(1;) - e .  But then i= 1 I= 1 
00 00 00 

A !; U k-1 1;. So m*(A) <; B l(k-1 I;) = k-1 B 1(1;) <; k-1 (m*(kA) + e). i= 1 i= 1 i= 1 

So km*(A) � m*(kA). Replace A by kA and k by k-1 for the opposite 
inequality . 

(ii) To show that m*(B) = m*(B n kA) + m*(B n C(kA)), for A measur
able, write B = kC and note that C(kA) = k(CA). Then (i) gives kA measur
able and the converse follows similarly. 

9 .  Argue as in the last Exercise , using now l(-1;) = 1(1;) and the result of 
Example 3 .  

10. If E is measurable the identity is obvious. In the opposite direction: by 
Example 6 we have E !; E'  and M - E  !; F' where E' ,  F' are measurable, � 

m*(E) = m(E'), m*(M - E) = m(F'). Replacing E' by E'  n M, F' by 
F' n M we may suppose that E' !; M, F' !; M. Since E' ,  F' are measurable 
and E' U F' = M we have m(E' � F') + m(E'  n F') = m(E'  U F') = m(M). 
Also m(E' - F') + m(E' n F') = m(E'), m(F' - E') + m(F' n E') = m(F'). 
So m(E' � F') + 2n1(E' n F') = m(E') + m(F) = m*(E) + m*(M- E) =  
m(M). The two equations for m(M) give m(E'  n F') = 0 as all the measures 
are fmite. But E'  - E = E' n (M - E) !; E' n F'. So E'  -E is measurable ,  
and so is E. 

1 1 . Since the sequence of sets is monotone lim m*(En) exists (it may be infmite ). 
Since m*(En) <: m*(UE;) we have lim m*(En) <; m*(UE;). In the opposite 
direction, choose, as in Example 6, Fn :::> En ,  Fn measurable , m(Fn) = 
m*(En). Writing Bn = () Fi we have B 1 � B2 !; . . .  , Bn measurable, 

j'>n 
and En !; Bn !; Fn . So m*(En) = m(Bn). Then m*(UE;) <; m*(UB;) = 
lim m(B;) = lim m*(E;). 

12 .  By Example 2, 3 0 open with 0 :::> E, m(O) < a-1 m(E). But 0 = Uln , 
disjoint open intervals. So a �  l(In) < m(E) � � m(E n In). But then we 
must have a l(In) < m(E n In), for some n.  

13 .  Since cos x-1 = cos (-x-1 ) we wish to fmd lim 1 /6 m(E n [0,6 ] ), where 
cS > O  

E = [x : x > 0, cos x-1 > 1 /2] . Then 

E = � ((6n � 1)1r ' (6n � 1)1r) u (! ' 00) 
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00 3 3 
m(E n (0,6 ] ) = 

nl,tk (6n - 1)7r - (6n + 1)7r + O(k-1 )  

1 1 
where k <: 261r - 6 <: k + 1 .  So 

00 

= (6/'lr) ( 36x�- 1 + O(k-1 ) 

= (21rr1 log (�!� �) + O(k-2 ) 

= (6k l 1)7r + O(k-2 ). 

Since 6-1 = 2k1r + 0(1 ), the result follows. 
14. The residual set at the nth stage has measure 2n�n , and since � < 1 /2 the 

result follows. 
1 5 .  Measurability follows as for P in Example 8 .  Also, in the notation of Chapter 

1 ,  p. 26, l(J�>,) = a/3n , so oo 2n-1 oo n-1 
m(U U j(�r) = B 2 

J" a a as required .  
n= 1 r= 1 n= 1 

16 .  G is a Cantor-like set with I 1 ,1 = (1/5 ,  4/5), 12,2 = (2 1 /25 , 24/25), etc . So 

m(G) = 1 - (t + 2 • � + 4-?- + . .  .) = 0. 

17 . To obtain the set in question we remove from [0,1 ] first the interval 
(5/ 10, 6/ 10), then the intervals (5/ 100, 6/ 100), ( 1 5/ 100, 16/ 100), . . . , 
(95/ 100, 96/ 100), and so on, to get a residual set of measure 

1 - (.1
0 + 1�1 

+ ��3 + . .  .) = 0. 

18 .  If one integer h ,  0 <: h � k - 1 is not to appear in the expansion we get a 
set of zero measure as in the last exercise ; indeed the set for which h need 
not occur in the first n places has measure (k - 1 )n /kn giving 0 as limit 
when n � 00• 

Let the fmite sequence be x,, x,...1 , • • •  x,....n and write h = knx, + . . . + 
Xr+n · Let A be the set such that h occurs in the expansion of x to the base 
�+1 ,. and B the set in which the sequence x, , . . .  , x,....n occurs in the 
expansion to the base k. Then A is a (proper) subset of B.  But from the first 
part m(A)  = 1 so m(B) ::.: 1 ,  giving the result . 

19 .  Let a E (0, 1)  and let p(a) be the Cantor-like set of Chapter 1 ,  p. 26 ; so that 
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m(�a)) = 1 - a  (Exercise 1 5). Now l(l) = m(I n Pa) + m(I - Pa), so we 
wish to show m(I - Pa) > 0 for each I. But Pa is closed and nowhere dense 
so I -P a is a non-empty open set and Example 7(i) gives the result . 

20. We take again the sets of type �a) and note that if En = �n-1 ) then for 
00 

n > m, En -:J Em . But m( U En) = lim m(En) = 1 .  Note: it follows that n= 1  
there is a set of zero measure which is of the second category, that is: not a 
union of a sequence of nowhere dense sets ( [ 16 ] , p. 74). 

2 1 . Using n sets A 1 , A 2 , • • •  , An and the a-algebra operations we may write X 
as the union of x disjoint sets such as A 1  n A 2  n CA 3  n . . .  There are 2n 

such sets though some may be empty. Now form unions of these disjoint 
sets . The number of possible distinct unions is 22n 

and comprises all sets of 
the a-algebra. 

22. Let CfJ contain the sequence of distinct sets {E; } , so that E; � Ei =#= 0 for 
i =#= j. From this sequence form a family of disjoint sets [Fa ] as in the last 
solution . This family must contain an infinite sequence of non-empty 
disjoint sets (F; ) ,  for otherwise it could generate only a finite a-algebra by 
the last exercise . Now consider all sets of the form Fn U Fn U . . .  for I 2 
n 1  < n2 < . . .  These are distinct sets of c:J .  But clearly the collection of 
sequences { n 1 , n2 , • • • } has the same cardinality as the set of numbers 
0 • € 1 €2 •• • •  ( €; = 0 or 1 ) , that is, cardinality c. 

23 . If m*(S) = 0 the result is obvious for any interval. Suppose m*(S) > 0 and 
let x be the given number. Since m*(A + x) = m*(A) we may assume x = 0. 
Write j(a) = m*(S n (-a, a)) , g(a) = m*(S n C(-a, a)). Then f(a) < 
!m*(S) for small a. Since (-a, a) is measurable , j(a) + g(a) = m*(S). 
Suppose S · !;  (-b ,  b), so f(b) = m*(S). Since m* is subadditive, for h > 0, 
m*(S n (-a - h , a + h)) - m*(S n (-a, a)) � 2h . So { is continuous and 
so there exists a with j(a) = g(a) = !m*(S). 

n n n 
24. E uU I; = (E � U I;) u U (E n /1). If any I; is infmite, the left-hand 

i= 1 i= 1 i= 1 
side has infmite outer 1neasure. But the right-hand side has finite outer 
measure .  

00 

25 . Let E = U (n,  n + !) and let € < ! . Then clearly, l(I;) < 1 for each i. But 
n= O 

n 
then m(E -U I;) =  oo. 1= 1  

00 

26 . Let E = U (k, k + 1 /2k) ; so E is measurable and m(E) < 00• Then 
k= 1  

n oo 

m*(E �U I;) � B 2-k = 2-n 
i= 1 n +  1 

for the best possible approximation to E by n intervals. So n � oo as € � 0. 
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27. The intervals ln,k ' k = 1 ,  . . .  , 2n cover P, and at the nth stage 
2n 

m(P � U J,.,k) = 2,./3" < € 
k= l  

provided n > (log €)/log 2/3 . This approximation uses N =  2n intervals with 
N >  exp (log 2 log €/log 2/3). 

00 

28 . f;> 0 on the set [1r-1 ] U [0] U U (1 /(2n + 1 )11',  1/(2nTr)), disjoint inter-
n= I 

00 

vals with measure 11'-1 L ((2n)-1 - (2n + 1 )-1 ) = 11'-t ( 1  - log 2). 
n= l  

29. rl (a, 00) is an interval. 
30. By Theorem 1 5 ,  g is measurable. Also f - g = 0 a.e. so ess sup (f- g) = 0 . 

So, by Example 1 7, ess sup f � ess sup g + ess sup (f- g) �  ess sup g, and 
similarly for the converse inequality. Since f is continuous, [x : f(x) > a] is 
open, so if m [x :  f(x) > a] = 0 we have f <: a by Example 7(i) ; that is: 
f <: a a.e . => f � a so ess sup f = inf[ a :  f(x) <: a] = sup f. 

3 1 .  inf[a: {<: a a.e . ]  � inf[a : f� a] . 
32. Use Example 16 .  

00 

33 . Let E,. = [x :  f(x) < n] . Then lim m(E,.) = m( U E,.) > 0. So m(E,.) > 0 
n= l  

for all large n. 
34. Let g(x) = f'(x) where f' exists and define g arbitrarily otherwise . We may 

suppose that f is defmed and constant on [ b ,  b + 1 ]  . Then 

g(x) = lim n(J(x + 1 /n) -f(x)) = lim g,.(x), say a.e. 
But each g,. is measurable, so g is. 

00 

35 . [x :  f(g{X)) > a] = [x: g(x) er1 (a, oo)] . But r1 (o:, oo) = U I,. , where the 
n= t  

00 

I,. are open intervals. So [x : f(g(x)) > a] = U g-1 (I,.), a measurable set. 
n= l  

1-1 f'-1-1 
36. /,.(0) = O, f,.(x) = L L r XI, k ' where Ir,k = (rrn + kz-n+1 , (r + 1)1-n 

r= O  k= O 1 r, 
I + krn+t ] , for x =#= 0, so fn is measurable . 

37 . Let E be a non-measurable set and let fa = XEn [a ] .  Then each fa is measur
able but sup fa = XE is non-measurable . 

38 . Let E be a non-measurable set . Then XE - 1/2 is not measurable, but 
IXE(x) - 1/2 1 = 1 /2 for all x so IXE - 1/2 1  is measurable . 

39 . 2/3 E P and has ternary expansions 0.200 . . .  and 0. 1 22 . . .  neither of 
which is in the range of f. 

40. As in the solution to Exercise 20 we may write [0 , 1 ]  as the union of a set 
of zero measure and of a sequence of Cantor-like sets En . Then if V is the 
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non-measurable set of Theorem 1 7 ,  V = U(En n V) U A where m(A) = 0. 
So for some n ,  En n V is non-measurable . 

4 1 .  As in the last exercise we can fmd a Cantor-like set En and a non-measurable 
set B C En . Let F be the continuous function defmed in Chapter 1 ,  p. 26, 
mapping En into P. Then F(B) = B1 , say, where B 1 s; P and so is measur
able . So XB is measurable and XB is non-measurable . But XB o F = XB ,  1 1 
giving the result . 

42.  Suppose not, then by Example 4 all measurable sets are Borel sets, contra
dicting Theorem 18 .  

43 . As in the last exercise , let E be a set of zero measure which is not a Borel 
set . Then g = XE and f identically zero give a counter-example . 

44. Let f be Cantor's function, defmed in Theorem 1 8 , which maps [0, 1 ]  into 
P and is one-to-one . So c =  Card [0 , 1 ] � Card P. But since P C  [0, 1 ] , 
c � Card P. Every sub set of P is measurable so if a =  Card M we have 2c = 
Card (,P (P) � a. Since a �  Card 6P (A) = 2c we have a =  2c . 
[Note : The proof may be shortened by using the continuum hypothesis: 
every countable set has cardinality � c.  Then [5 ] p. 26, Exercise 9 ,  and the 
fact that the cardinality of the class of intervals is c gives Card GJ3 = c, 
which with the result of this exercise proves a considerably strengthened 
version of Theorem 8 .] . 

45 . Each measurable set has a measurable characteristic function so, by the last 
exercise , Card [measurable functions] � 2c . But 2c is the cardinality of 
the set of all real functions on A .  So Card [measurable functions] = 2c . 

46 . Let p > 0 and A = U [x; ] .  Then by Theorem 1 9(iv) and Theorem 2 1 , Hp(A) 
= 0, giving the result . 
[Note : There exist uncountable sets in A with Hausdorff dimension zero .] 

47 . As h(t) < t we have H(A) � m(A). Also v e > 0, 3 6 > 0 such that t < 
( 1 + e) h(t) for 0 < t < 6 . So H 1 ,«5 (A) � ( 1 + e) H6 (A). So m(A) � ( 1 + e) 
H(A), giving the result . 
[A similar result will hold for any h(t) with h '(0) =#= 0.] 

48 .  We have an � 1 for all n . So let a =  sup an and let p > a. Then Hp(An) = 0 
implie s Hp(A) = 0. Let q < a so q < an for some n .  Then Hq(An)  = oo 

implies Hq (A) = oo . So A has Hausdorff dimension a. 
49. As in Theorem 20, H�,6 (A) � 6 q-p 

�,6 (A) for q > p ,  giving the result . 
50. In the original construction of Pt the removed intervals have total Lebesgue 

measure 1 .  So continue the removal until the measure of the intervals re
moved is at least 1 - 2-n Then translating the residual intervals transforms 
Pt into a set of the same Hausdorff measure but contained in [0,2-n ] . So, 
taking a sequence of disjoint intervals {In }  with l(In ) = 2-n and U/n com
pact , we may construct a set An with Hp(An) = a, 0 < a <  00, An c In , and 
A = U A n has the desired properties as in the example 

5 1 .  From a diagram it can be seen that w1(t) = I eos (Tr/2 + t/2) - cos (Tr/2 -
t/2)1 = 2 sin t/2 for 0 � t � 1r,  w1(t) = 2 for t �  1T. 
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... 

52 .  A routine check shows that these properties we re the only ones required. 
53 .  Only the statement about the measures is not obvious . By its definition 

g <: h so, for each A , H6(A ) <: Hh (A ) . Now let 6 > 0. Choose 6 ' E (0, 6 ] 
such that t E [0, 6 ' ]  implies 0 � h(t) <: g(6 ), which is possible by the con
tinuity of h at 0. Let fl E (0, 6 '] and if h(fl) = K(fl), let '?o = fl .  Suppose that 
h(fl) > g(fl). If h(t) > (1 + 6 ) g(fl) on [fl, 6 ] , then by its defmition g is con
stant on [fl , 6 ]  and so h(6 ') > (1  + 6 ) g(6 ), a contradiction (a diagram may 
assist). So in each case 3 flo E [fl, 6 ]  with h(flo ) < (1  + 6 )  g(fl) . So v e > 0 
and 6 > 0 choose a sum � g(l(I;)) < H6,6 '(A ) + e , A c U/; ,  /(/;) < 6  ' , using 
an obvious notation for the approximating measure . Replace each I; of 
length fl by 1; of length flo where 1; :::> I; , fl and flo , being related as above. 
Then H6,6 '(A) + e > (1 + 6 )- 1 � h�/(1;)) and 1(1;) <: o .  So Hg,o '(A ) + e � 
(1 + 6 )- 1 Hh,o (A). Let 6 � 0, so 6 � 0 and we get H6(A) + e � Hh(A ) ,  
giving the result . 
[More results of this type may be found in [ 4] . ] 

mNTS AND ANSWERS TO EXERCISES: CHAPTER 3 

1 .  f q, dx + f l/J dx = BB(a; + bi) m (A; n Bj). Collect te rms so that the r.h.s. 
i j 

is of the form required in Definition 1 .  
2 .  ! = (f-g) + g. Apply Theorem 6 .  
3 .  Clearly lim sup f fn dx <: f f d.x. But f f dx <: lim inf I fn dx from Fatou's 

Lemma. 
4. Apply Theorem 4 to the sequence {In } .  
5 .  Replace the sequence { 4>n } of Theorem 5 by [ l/Jn }  where l/Jn = 'fJn X(-n,n) ' 

and show that l/1 n t f. 
6.  We have only to show that Fatou 's Lemma may be obtained from Theorem 

4 .  Write gn = inf fk · Then Kn t g = lim inf fn · So f g dx = f lim inffn dx. k ;;.:n 
:Sut f Kn dx <: f fn dx, so taking lim inf, f g dx <: lim inf f fn dx. 

7 .  In one direction the result is immediate . Conversely , to obtain Fatou's 
Lemma as given in the text, use an argument analogous to that of Exercise 6 .  

8 .  Apply Theorem 4 to the sequences {fk - fn , n = k + 1 ,  k + 2 ,  . . .  } . For 
the last part take the sequence {X(n,oo)} . 

9. f is the sum of non-negative step functions and so is non-negative and 
1 00 

measurable . J f dx = B p 2P- t 3-p = 3 .  
0 p= I  

1 0. Write Kn = fn XE and apply Fatou's Lemma to the sequences {fn -gn } and 
{Kn } to get inequalities which give the result . 

1 1 . Since we may approximate r and !- separately, suppose f � 0. Then f is 
the limit of a sequence of measurable simple functions l'Pn ) and by Exercise 
5 we may suppose that 
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N N 
'Pn = B ak XEk , where m( U Ek) < oo . 

k= l k= l  

205 

Since each Ek is measurable we have by Theorem 10, p. 36 , an F0-set 
Fk c Ek with m(Ek - Fk) = 0. So the Borel measurable function Kn = 

1V 
B ak XFk = 'Pn a.e . ,  so Kn = 'Pn for all n except on a set E with m(E) = 0. 

k= I 

Choose a G6 -set E* :::> E with m(E*) = 0 and write Xo for the characteristic 
function of CE* . Then, for each n ,  the Borel measurable function 'Pn Xo = 
Kn Xo , so Xo f = lim 'Pn Xo is Borel measurable . But Xo f = f a.e .  

12 .  Let g be the step function [ 1 /x rl on (0, 1  ). Then f 1 g dx > f 1 
g dx = 

0 1/N+ I 

f 1 /(n + 1 ) . So J 1 g dx = 00• Also g - f = 0 a.e . ,  so by Example 3 
n= l  0 

f (g -f) dx = 0. But f g dx = f (g -f) dx + f f dx, giving the result . 
1 3 . Putfn = -n X[o,1 1 + n X[ l ,2 ] . Then f lim inffn dx is not defmed.  
14 . By Example 1 1  we may suppose that /1 is finite-valued . If Kn = fn -- [1 , 

then Kn t g = f - /1 , so Theorem 4 gives lim f Kn dx = f g dx. Add f {1 dx 
to both sides to get the result . 

1 5 .  Putting f� = max ifn , g) we have f� � g for each n ,  and In = f� a.e .  Also 
lim inf f� = lim inf fn a.e . , since the union of a countable number of sets 
of measure zero has measure zero. So apply Fatou's Lemma to {f� - g_} . 

16 .  In each case lim fn(x) = 0 a.e . We have to ch�ck that Theorem 10 applies; 
n-+oo 

(i) log (x + n) < nx + n (x > 0), so lfn (x)l � (1 + x) e-x , an integrable 
function, (ii) 1 /n(x)l < !  log 1 /x which is integrable , (iii) lfn(x)l � 2- 1 x- 112 , 
(iv) lfn(x)l � 1 /2 , (v) lfn(x)l � x-112 (consider here h(x) = 1 + n2x2 -

nP xe logx n312 x312 and proceed as in Example 1 7) ,  (vi) fn(x) = 1 + n2 x2 x-r+e 
where p < e < min (2 , 1 + r ) . The second factor is in tegrable and the first 
can be shown < 1 as in Example 1 7 .  

1 7 .  Take g(x) as in Example 1 8  to get limit = 0. 
1 8 .  Substitute nx = t .  The integral becomes 

1 J oo 1 + ! d -;; 
0 

X[O,n ] ( 1  + t/n)n 
t .  

Using ( 1  + t /n )n � t3 /2 7 (n � 3) on t > 1 ,  we obtain a don1inating funct ion, 
so limit = 0 by Theorem 10. 

19 .  Substitute nx = uf3 and use 1 - x � e-x (0 � x � 1 ) to get an integrand 
dominated by (je-uf3 . Then Theorem 1 0  gives the result . 

20. Show that d/dt logft(x) < 0. Also lin1 fn (x) = e-x . So in (i) f lim = 2 , n-+oo 
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but fn(x) > 1/2n for all x .  So J .. fn(x) tr12 dx = 00 for all n .  (ii) : Theorem 
0 

1 0  applies asfn <:{1 <: 1 so lim f = f lim = 2/3 . 
2 1 . X[o,n) (1 + (x/n))n e-2x < e-x for all x > 0. So lim f = f lim = 1 .  
22 . (1 - (x/n))n <: e-x . Proceed as in Exercise 21 . 
23 . Rh.s. = 0 for all a. For a >  0 substitute t = xVn to get l.h.s . limit = 0-. For f oo 2 J l/�n 

2 
a ;::: 0, Vn e-nx dx > Vn e-nx dx > e-1 

0 0 

24 . (i) l.h .s . = 0 ;  r.h.s. , on calculation, is 0, 1 ,  oo for a <  2,  a =  2 ,  a >  2 respec
tively. (ii) For 0 < a < 2 show that na(1 - x) xn < aa/((1 :_ x)a-t ) (an 
integrable function), by considering the function na (1 - x )a xn and pro
ceeding as in Example 1 7 . For a <:  0 the integrand is clearly bounded. For 
a ;> 2 the conditions of Theorem 1 0  cannot hold by (i). 

00 

25 . Integrand = E xa-l e-nx . Apply Theorem 7 ;  a change of variable gives 
n= !  

the result. 
00 

26. integrand = (log x )2 E nxn-l ; apply Theorem 7 .  
n= l  

00 n oo n-1 
27 . Integrand = E ; log x + E x 

, . Apply Theorem 7 to each sum. 
n= t n . n= t  n . 

28 . Integrand = e·<t' + t)x (e2" - e-2txX1 - e-2x)-1 
00 

= (e-(t3 -2t+ t)x _ e-<r + 2t+ t)x ) E e-2nx , 
n= O  

to which Theorem 7 applies, giving the first result . Second part : above 
integrand = 2e-(t" + t)x sinh 2tx + 2e-<t" + t)x (e2x - 1 )-1 sinh 2tx. The 
first term integrates to give 4t{t2 - 1 )-2 • Since sinh x <: xex for x ;> 0, the 
second is dominated by 8x(e2x - 1 )-1 for 0 <; t <; 2 .  So Example 1 5  applies 
and gives the result. 

29 . Expand (1 - x)-1 and apply Theorem 7 .  
00 

30. Integrand = 2e-ax sinh bx E e-2anx . Theorem 7 applies and the value of 
n= 0 

00 

the 1ntegral is E ( ; 2 2 • 
n=O 2n + 1  a - b  
00 

3 1 .  Integrand = E 2(- 1 )n e-<2n + t)x2 (x > 0) , with partial sums dominated n= O  2 
by the first term, 2e-x . So Theorem 1 0  applies and gives the result . 

00 ( J e-x2 dx = Vrr/2 is assumed, cf. Exercise 22 , p .  1 89.) 
0 

32,  33 . On expansion an alternating series i� obtained ,  as in Exercise 3 1 , to 
which Theorem 10  applies. 
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34. For 0 < b < 1, X[O,b ) � xn-1 /v'n <; X[o,t ) � xn-1 /v'n .  Rh.s., by Theo-n= I n= t  
00 

rem 7.  has integral � n-3n. . So we may apply Exercise 1 5  to l .h.s. to 
n= l  

obtain the result. 
00 

35 .  Integrand = cos2 t � (- 1 )n-t e-nt x-n (t > 0), and Theorem 10 applies to n= I  
the partial sums to give the result. 

36. Expand cos v'x and apply Theorem 1 1 .  
37 .  Substitute for lm and J0 in (i) and (ii) respectively, and apply Theorem 1 1 .  
38 .  Expand (1 + x2 )-1 and apply Theorem 1 1 . 
39 . Expand r.h.s. in powers of a-1 • Then apply Theorem 1 1  to l .h.s .  to get the 

same series. 
40. Integrand = !f(x)((1 - reix)-1 + (1 - re-ix)-1 ) . Expand and apply Theorem 

1 1 . 
4 1 . For S = (a, b) integrate explicitly and use periodicity to get the result in the 

limit . Since m(S) < oo, V e > 0, 3 disjoint intervals I 1 , • • •  , I k such that if 
k . 

E =U li then m(S � E) <  €. But then IJ I < € for each n ,  and the 
� 1  S4E 

result follows. 
42 . f integrable implies that v e > 0, 3 n such that J 1/1 dx < e/3 . Then 

lx l>n 

by Theorem 1 6  (Corollary) 3 g continuous such that f I f- gl dx < 
• lx l � n 

€/3 , with g = 0 outside a finite interval (possibly extending beyond [-n , n ]  ). 
But in Theorem 16 we may suppose without loss of generality that 

I IKI dx < e/3 , 
lx l � n 

and the resul t follows. 
43 . v € > 0, 3 a continuous function K (by Exercise 42) such that f IK(x) -

.f(x)l dx < € and K = 0 outside [a , b ] , say . Then Kh(x) ( K(x + h)) =  0 
o-utside [a - 1 ,  b + 1 ]  for all h with lh I < 1 ,  and then f lf(x + h) -.f{x) l dx 

b+1 

� I lf(x + h) - Kh(x)l dx + f l.f(x) - K(x)l dx + I  IK(x + h) - K(x)i dx 
a-1 

< 3e for l h  I <  f> ,  say , as K is continuous. 
44 . \\'rite Ik = f f(x) 'P{kx) dx = f f(x + �k- 1 ) {J(kx + {j) dx 

= -J f(x + (3k- 1 ) l{)(kx) dx. 
So 2 1 /k l � f l f(x) - f(x + {jk- 1 ) 1 dx. (ess sup I 'PD and the result follows by 
Exercise 43 . 

45 . Defined to be 1 a t  x = 0 ,  the integrand is continuous. If 
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I (n + l)lr 
an =  x- 1 sin x dx n1f 

00 

then the integral is 2 � an , an alternating series, so the Riemann integral 
n= O  f (n+1)7r 

exists . But if bn = lx- 1 sin xl dx, then bn > 2/nTr, � bn = 00 and 
n1f 

the (Lebesgue) integral does not exist . 
00 

46 . Write En = [x : n <:.f(x) < n + 1 ] . So � m(Ek) > 0 for all n .  So there exists 
k=n 

a subsequence { n, } with m(En,) > 0. Then defme g to equal ,-2 (m(En,))-1 
00 

on En (r = 1 ,  2 ,  . . .  ) and defme g = 0 on c(U En ) . Then g is integrable r r= I r 
00 

but ffg dx >  � n,/r2 = 00, as n, � r. 
� 1  1 

4 7 .  For each n .fn has a 'saw-tooth' graph with zeros at k • w·n and J fn dx = 
0 

4- 1 
• tern . By Theorem 7 the result follows. 

48 . Define g(O) = 0, g(x) = a- 1 if a is the first fmite non-zero integer in the expan-
oo 

sion ofx . So f g dx = f fdx . Then g = n-1 on U [n • 1crk , (n + 1 ) 10-k ) 
k= l 

I 1 9 for n = l , . . .  , 9 , giving g dx = ( � n-1 ) · 9- 1 •  
0 n= l  

49. Elementary integration ; Theorem 10  is not contradicted. 
SO. V e > 0, 3 6 > 0 such that lf(t) - f(x)l < e  for l t -x 1 < 6 : Then Fn(x) 

f(x) may be written as an integral over (x - 6 ,  x + 6 ), on which l.f{t) 
f(x ) I  < e and this integral is easily calculated to be less than e,  and two 
integrals over fmite intervals on which the integrands are monotone decreas-
ing as n increases, and integrable for n = 1 .  So Theorem 10 applies to give 
the result. 

5 1 .  Write Kh (x , t) = h- 1 (f(x, t + h) -f(x , t)). Then lim Kh = of/ot (x,  t). But 
h-+0 

lgh (x , t) l � <P(.x), so Example 1 5  applied to f Kh dx gives the result. 
52 .  Considering separately x � 1 and x > 1 , we get lx'Yj(x) l � (xa + x�)l.f(x) l 

an integrable function , so the integral exists. For continuity use the fact 
that for small h ,  'Y + h E (a, 13) so l (x'Y+

h - x"Y) j(x) l � 2(xa + x�)lf(x)l , 
and apply Example 1 5 .  

5 3 .  Fatou's Lemma applied to {g + In }  and {g - In } gives the first and third 
inequalities respectively , and the second is trivial. Defme the functions In on 
[0 , 1 ] by l1 = X(t/2 ,1 1 , f2 = X(t/4,1 ) ,  [3 = X[0,3/4 ] , 14 = 1 - l1 , Is = l1 , 
{6 = 12 , etc. Then the inequalities read 0 < 1 /2 < 3/4 < 1 .  
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HINTS AND ANSWERS TO EXERCISES: CHAPTER 4 

1 .  D+f= inf sup sin h-1 = 1 .  Similarly DJ = - 1 , D-f = 1 , DJ = - 1 .  
6 O <h <6 

209 

2. If x E a, df = 00, DJ = 0, D-f = 0, DJ = -oo. If x � a, df = O, DJ =  
-oo, fTf =  oo, DJ= 0. 

3. Consider U"f: sup (f(x + h) - f(x))/h is continuous with respect to 8 , 
O <h <6 

so we may take its infunum over 6 = n-1 , i.e. Uf = inf sup m(/(x + m-1 ) 
n m >n 

f{x)) = lim sup n(f(x + n-1 ) - f(x)), a measurable function. Similarly for 
the other derivates. 

4. Since f(x + h) -f(x) = hf'(x) + o(h), 

If(f + g)(x) =f'(x) + inf sup [o(1 ) + (g(x + h) -g(x))/h ] 
6 O <h <6 

=/'(x) + inf [o(1) + sup (g(x + h) -g(x))/h] =!'(x) + dg(x). 
6 O <h <6 

Similarly for the other derivates. 
5 .  Let f{O) = 0, f{x) = X  for X E a, f{x) = -x for X �  a,g{x) = -f(x). Then 

Iff =  1 , /fg =  1 , U(f + g) = O (at x = O). 
6. From (4. 1) it is sufficient to consider right-hand end-points and we may 

suppose in fact that x = 0. Then on [0, 2-1 3-m ] we have Lm+1 � Lm and 
also Lm+2 :> Lm . Similarly Lm+3 ;> Lm+1 ;> Lm on [0, 2-1 3-m-1 ] and a 
comparison of the graphs shows that then Lm43 � Lm on [0, 2-1 3-m ] . 
Similarly for Lm+4 and we deduce that, for n > m, Ln , and hence L > Lm 
on [0, 2- 1 3-m ] . So the graph of L does not lie below a line of slope (3/2)m 
in this interval. But D..L < oo at x = 0 implies that 3 /  < oo, and a sequence 
{xn} , Xn -+ 0+, such that L(Xn) lies below (/ + 1)x, giving a contradiction. 

7.  Suppose that g{1) + !{1 ) - g(O) -f{O) = -p (p > 0). Now if h is any func
tion such that h(1) - h(O) = -p, we have (h(1) - h(1/2)) + (h(1 /2) - h(O)) 
= -p, so at least one bracket <; -p/2 . Call the corresponding end-points 
(x 1 , y 1 ). Bisect (x 1 , y 1 ) to obtain similarly {x2 , y 2 ) such that y 2 - x2 = 
2-2 , h(y2 ) - h(x2 ) <; -p • 2-2 • So by induction we obtain sequences xn t 
and Yn .t, ,  Yn -xn = 2-n and h(yn) - h(xn) <; -p(vn -xn). Take h = g + f 
to get 

f(yn) -f(xn) 
_ 

g(yn) -g(xn) 
� -p 

Yn - xn Yn -xn 
where lim Xn = lim Yn = a, say. If a l$- E, the fust ratio is non-negative as/ 
is increasing, the second has lirnit g '(a) > 0, as n -+  oo, giving a contradiction. 
If a E E the first ratio -+ oo as n -+ oo, and the lower limit of the second is 
> -oo, again giving a contradiction. 

8 .  In each interval [2/2n + 1 ,  2/2n - 1 ] , f is monotone and T1 = 2. So by 
Example 7 ,  T1[0, 1 ]  = oo. 
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9. g is clearly continuous on (0, 1 ]  but g(O+) = g(O), so g is continuous on 
[0, 1 ]  . Consider the partition 

2 2 2 0 < 2n _ 1 < 2n _ 3 < . . . < 3 < 1 of [0, 1 ]  ; 

then tg = 2n
2
- 1 + (2n2- 1 + 2n

2
- 3) + . . .  + (t + t)+ t = 

+ 2 = 2 k'f;:2 2k _ 1 -+ oo as n -+  ""· So Tg (0, 1 ]  = ""· 

10 .  Suppose that 1!' 1  <;M on [a , b] . Then for any x,y E [a , b] , 1/(y) -.f{x) l <; 
M IY -x l ; so for any partition, t <;M(b - a). 

1 1 . By Theorem 1 , p . 8 1 ,/(x) -.f(a) = Pt [a, x] -Nf [a, x). So lftx)l <; lf(a)l + 
T1 [a, b] < oo. 

12 .  By the last exercise, Ill <; M1 < 00, IK I <;M2 < oo. Let a =  Xo < x1  < . . . < 
Xn = b be any partition. We have 

f(x;)g(x1) -/(Xt-1 )g(x1-1 ) = 
= (f(x1) -f(x1-1 )) g(x,) + (g(x,) -g(x,_l )) ftxt- 1 ) . 

So, taking moduli and adding, 

ftg <; M2 t1 + M1 t6 <:M2 Tt + M1 T8, 
giving the result . 

1 3 .  By the decomposition of Theorem 2 , p. 82, it is sufficient to consider 
monotone functions. But then the result is trivial. 

14. Show that !' is bounded and apply Exercise 1 0. 
1 5 .  { is non-differentiable everywhere , so by Theorem 8 ,  p .  85 ,  is not of bounded 

variation . 
16 .  Let { r; } be an enumeration of the rationals in [0,1 ]  and defme f on [0, 1 ]  

by f(x) = B 2-n . Clearly f is monotone increasing and for each ra tiona! 
rn<x 

r1 , f(r;) -f(r1-) = 2-1 > 0. 
1 7 .  ht the intervals on which/ is continuous, F' = { by Theorem 12 ,  p. 65 . 
1 8 .  Let .f{x) = 1 ,  X E 0, f(x) = 0, x Ef. 0. Then F = 0 so F' = f on CO, F' =#= f 

on a. 
19 .  Take f = O on [0, 1 ), !(1 ) = - 1 .  ThenJ 1 [' dx = O butf(l ) -/{0) = - 1 . 

0 
b 

20. (i) Consider -[ to get J !' dx ;;;;.: f(b) -!(a). (ii) Write f = g - h ,  as in the a 
proof of Theorem 2 ,  to get l Ja b 

f' dx " g(b) - g(a) + h(b) - h(a) = 

T1 [a , b] . 
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2 1 .  Consider Lebesgue's function L on [0,1 ] .  Then L E BV[0, 1 ] , L is con

tinuous and L '  = 0 a.e .  But if L(x) = J x l(t) dt then 1 = 0 a.e. by Theorem 
0 

12 ,  p. 89, so L(1) = L(O) . But L(1) = 1 ,  L(O) = 0, contradiction. 
X 

22. Write .F(x) = J Xx dt, so F is fmite and F' = Xx a.e . by Theorem 12 .  --

Also the required limit is easily seen to be that of 1 /2h (F(x + h) - F(x - h)). 

But a.e ., for h > 0, 
F(x + h2-F{x) -+ F'(x) and F{x - hz- F(x) -+ -F'(x) . 

So subtracting gives the result . 

WNTS AND ANSWERS TO EXERCISES: CHAPTER S 

1 .  Let <fl. be the class of all fmite unions of fmite intervals, which may be 
open, closed or half-open and where we note that points are special cases of 
closed intervals. All intervals of each type may be obtained from the open 
intervals by the ring operations. Also 1/. is a ring, so it is the required class. 

2 . This follows directly from Defmitions 1 and 2 ,  p .  93 . 
3 .  JL(A) + JL(B) = JL(A n B) + JL(A U B). But J.L(A) = p.(A U B) = p.(C) < oo, 

giving the result. 
4. If JJ.(E) < 00, then as J.L(E) = JL(E) + p.(�) we have J.L(�) = 0, so JL is a measure . 
5 .  The conditions for a pseudometric are easily checked : (i) p(A , B) � 0, 

(ii) p(A , A) = 0, (iii) p(A , B) = p(B, A), (iv) p(A , C) � p(A , B) + p(B, C), 
the latter holding since A � C !; (A � B) U (B � C). 

6 .  This follows as in the proof of Theorem 4 ,  p. 97, since the defmition of 
measurability is the same . 

7 .  Let Gfl be the ring of fmite unions of intervals (a, b) and defme JL on GJI. by 
IJ(E) = oo if E =I= f/J, JL(f/J) = 0. Let � be any real number and extend the 
measure JL to J.Lt on the ring generated by Gfl and [�] by putting J.Lt( [�] ) = 0, 
IJt(E) = oo if E - (�] =#= f/J, J.Lt(f/J) = 0. Then llt can be extended as in Theorem 
3,  p. 96 , to $_ ( <fl. ) (the Borel sets) to get flt , say, which extends JL on 1l and 
is fmite only on the sets f/J, [�] • Clearly, varying � gives different extensions 
of J.L. 

8 .  We have D = B 4 N where B E  S and p(N) = O. But D � B = B � (B � N) = 
N, giving the result .  

9, 10  Direct verification gives the results. 
1 1 . [x : XE(x) =#= 0] is not Borel measurable , so we cannot say that XE = 0 a.e . 
12 .  Take JL to be Borel measure and let E be a measurable set of measure zero 

which is not a Borel set. Then E C G, a Borel set of measure zero. Let g = 
XE + XG + f so that [x : f(x) =#= g(x)] = G and sof = g  a.e .  (p.). But g is not 
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Borel measurable for then XE = g - f - XG would be Borel measurable ' 

which is false . 
1 3 .  The relations follow directly from Defmition 6,  p .  3� . 
14 .  These follow from the characterizations of lim sup and lim inf given after 

Defmition 6, p .  33 . 
1 5 .  (i) As in Theorem 9, p. 33 , 

00 
�-t(lirn inf En) = �-t( U () Em) = lim �-t( rl Em)/ 

n= 1 m �n m ;;..n 
00 

So v e > 0, 3 N such that �-t{lim inf En) �I-t( () E,.,) + e � �-t(Em) + e for 
m=N 

all m � N. So �-t{lim inf En) <: lim inf �-t(En). 
(ii) �-t(X) - �-t(lirn sup En ) = p.(X - lim sup En ) � p.(lirn inf (X - En)) <: 

p.(X) - lim sup p.(En), using Exercise 1 3 .  To see that the result may fail 
when p.(X) = oo, let En = (n , 00), so lim sup En = (/J, but �-t(En) = oo for all n. 

k k k 
16 .  Fj = [x : E XE,(x) = j] , a measurable set. Also .L P(E;) = JL XE; d�-t. But 

r= 1 1- 1 i= 1 
k E XE; is a measurable simple function taking the v .Uue j on Fj, so its inte-

r= 1 k 
gral equals L i �-t(fj). 

j= 1 
17 .  g � h impliesg- <: h- so f g- <ij.t < 00• 
18 .  f Ill dp. <: k f Ill <4-t. 
19. f XE E L(X, p.). But XE = XF a.e. since [x :  XE(X) =ii: XF(x)] = E � F. So 

fXF E L(X, JJ.) and fXF = fXE a.e . ,  giving the result. 4 

20. Since f XA � 0 the integral is well defmed .  Let C � [x : j(x) > c) . Then 

J I d�-t ;;,: J I <I,.! ;;,:  c �-t(C), as required. 
A C 

2 1 .  Let Gn = (x � f(x) > n-1 ] ,  for each n. Then n-1 P.(Gn) <: f f dp. < oo, so 
00 

p(Gn) < oo. But [x : /(x) * O] = U Gn . 
n= 1 

22. Write Fn = [x : fn(X) =I= 0] . If g(x) =I= 0, then fn(x) "*- 0 for some n , so x E 
00 00 U Fn , a set of a-finite measur� by the last exercise . So G !;;; U Fn gives n= 1  n= l  

the result for G; similarly for H. 
23 . By Exercise 2 1 ,  [x : j(x) =#= 0] has a-finite measure, that is, it can be written 

as the union of a countable number of sets each containing a fmite number 
of points, and so consists of a countable set of points which may be enume
rated x 1 ,  x2 , • • •  But if the sets Ei are disjoint 

f I <ill = 'E. f I <ill UEt E; 
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00 

so j f dp = � f{x;). Also 1/1 is integrable and is non-zero on the same 
X i= l 

00 

sequence , so � l.f{x;) l = f Ill dJ,L < 00, so � f(x;) is absolutely convergent 
i= I 

and so its value is independent of the ordering of the sequence . 
24. If f I dJ,L < 00, Theorem 2 1 ,  p. I 07, gives the result . If f I dJ,L = oo, note that 

f I dJ,L � lim inf f In dJ,L by Fatou's Lemma, p .  105 , so lim f In dJ,L = oo. 
25 . Clearly each In is integrable and as I ll � lg l  a.e . ,l  is integrable. Then Fatou's 

Lemma applied to the sequence lKn -In l gives J I dJ.L � lim sup fIn dJ.L and 
applied to the sequence (Kn + fn } gives f f dJ,L � lim inf f In <ijl, giving the 
result . 

26. Using the result and notation of Exercise 14  we have p(lim inf En) = 
f x. dJ,L = f lim inf XE <4-t � lim  in: f XE dJ,L = lim inf J.L(En) as required. n n 

27 .  f � v ..,.  dJ,L = � f XE dJ,L = � J.L(En ) < oo. So � XE < oo except possibly on �n n n 
a set of zero measure , but this is the set, lim sup En , such that x is in in-
finitely many En . 

28 . Write </(E) = 1 r dp so that I{) is a measure on S (Theorem 1 8 ,  p .  106). 
E 

00 

Also En ::::> En+l for each n ,  C) En has p-measure and therefore '()-measu re 

zero, and <I(E d < 00• So lim </(En) = 0 by Theorem 10, p. 103 .  But 1 f dp 
En 

= f r dp = <{(En), giving (i). We obtain (ii) from nNJ(En) ..;; <{(En). 
En 

29. The set of points x such that for some sequence (n; } , x E UFn.  is just ' 
lim inf Fn . So by Exercise 1 5(i) it is sufficient to show that lim inf m(Fn) = 
0. Now if En = [y :  f(y) � n]  we have Fn = nEn so m(Fn) = nm(En ) by 
Exercise 8 ,  Chapter 2 .  But lim nm(En ) = 0 by the last exercise . 

30. Write </(E) = j f dx. Then I{) vanishes on intervals and also on open sets, 
E 

so '() vanishes on G6 -sets. But if E = [x : f(x) > 0] , E s;; G, a G6 -set ,  such 
that m(G - E) = 0. So 4(J(E) = '()(G) = 0, and so m(E) = 0, i.e . I �  0 a.e .  
Similarly I� 0 a.e .  

3 1 .  Without loss of generality we may suppose 0 �� < 00• Let En = [x : f(x) � n] ,  
Fn = En - En+ I , and Fo = [x : 0 �f(x) < 1 ] . Then for 1 <; k � n ,  J.L(En+l ) 

n 
+ B J.L(F;) = J.L(Ek). So, adding over k, i= k 

n n 
nJ,L(En+l ) + B iJ,L(F;) = B J,L(E;). i= 1 i= 1 
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Let f be inteBfable, then by Exercise 28 and this identity we have 
00 00 

B ill(F,) = B p.(Et)· t= 1 i= 1 
But on F,. ,f">n  and the sets F,. are disjoint, so 

B p.(E,.) = E 1tll(Fn) � J f dp. < 00• 
n = l n= l U Ft 

00 

If L p.(E,.) < oe, we have 
n= 1 

1 tdp. = 1 tdll + B 1 tdp. 
/10 I= 1 Ft 

00 00 

<p.(F0) + B (n + l)(F,.) <p.(X) + B n#J.(F,.). 
n= 1 n= 1 

But from the identity ( •) above 
00 00 

B np.(F,.) <: B p.(E,.), so ffdp. < oo. 
n= 1 n= 1 

00 

Suppose �t(X) = 00• Then if e.g. / =  1 /2,  B p.(E,.) = 0 but f fF. L(X, p.). n = l 
00 

But if/E L(X, p.) we still have B p.(E,.) < 00, as above. Summation from 
n= l 

00 00 

n = 0: B p.(E,. ) = p.(X) + B JJ(E,.) so the 1.h.s. converges iff f is integr-
n= O n = l 

able and p.(X) < oo. 
32 . Write E1 = [x : ftx) = 1 ] , E2 = [x : f(x) > 1 ] , £3 = [x : f(x) = - 1 ] , E4 = 

[x : f(x) < - 1 ] , E5 = [x : lftx)l < 1 ] . Then 
5 

I r c1p. = p.(E. > + B f_ r c�p.. t= 2 Et 
Now 1 f" � has limit oo if p.(£2 ) > 0 since, for some 6 > 0, £2 has a 

E2 
subset F of positive measure on which/> 1 + 6 ;  so p.(£2 ) = 0.  If p.(£3 ) > 0 

and p.(£4) > 0 we have that /_ f" dp. = (- 1Y' p.(E3) oscillates fmitely, E . 
I 

while 1 r dp. = ( - 1  r f_ I fin dp. oscillates inftnitely . So for the limit E4 .. E4 
of the sum to exist, p.(E3 )  = p.(£4) = 0, since by Theorem 2 1 ,  lim 1 f" dp. E, 
= 0. 
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33 . Write E1 = [x: f(x) ;> 1 ]  and E2 = [x : f(x) < 1 ] . Applying Theorem 2 1  to 
the integral over E n  E1 we get the limit = p,(E n £1 ), and Theorem 15  
applied to that over E n  E2 gives J..L(E n E2 ). 

IHNTS AND ANSWERS TO EXERCISES: CHAPTER 6 

1 .  1r + i' 1 112 <; Ill + IK I ,  an integrable function. 
2. (i) is obvious. (ii) For o = 0, integrate over (n-1 , a) to get (log a-1 )-1 -

(log n )-1 with a fmite limit as n -+ oo. For o > 0, that the integral g is infmite 
follows from the fact that if a >  0, xa log x -+ 0 as x -+ 0. 

3 .  (log x-1 f <;x- 112 for all small x. 
4.  Since , for a >  0, ta e llt -+ oo as t -+ 0, we have (e 11xf > x-1 for all small x .  
5 .  (i) For p = 2 integrate explicitly over (0, 1 )  and (l ,oo) to get a fmite integral. 

(ii) If p > 2 ,  L 1 x-P/2 (1 - log xrP dx is seen to be infmite as in Exercise 
0 

2(ii). 
00 

(iii) If p < 2 , f x-P/2 (1 + log xrP dx is again infmite, by comparison 
1 

00 

with J x-1 dx. 
-t 

6 .  Let M = ess sup {, so f <; M a.e .  Hence V e > 0, In E;M(J.L(X))lM <M + e 
for n > n 1 • Write X(€) = [x : f(x) > M - €] .  Since p,(X(e)) > 0, 

f r <ill :> 1 r <ill :> (M - ef ll(X(e)). X(e) 
So In ;> (M - €)(p(X(€)))1m ;> M - 2e for n > n2 , which with the previous 
inequality gives the result. 

7 .  If the x1 are equal, equality is obvious. The converse follows from Example 
6, p .  1 1 3 ,  since 'a .e .' is now equivalent to 'except for those numbers i for 
which a; =  0'. 

8 .  This is a special case of the next result . 
9 .  In Example 7 put x1 = logy1 and .P(x) = � to get 

exp(tt Ott logy,)E;;; tt OlfYt, 

and, by Exercise 7 ,  equality occurs iff the y 1 are equal. 
10. Suppose that 1/1 is not convex. Then there exist numbers a, b,  A, p, such that 

a >  b ,  A +  p. = 1 ,  A >  0, p, > 0 and .P(Nz + p.b) > Al/l(a) + p,¥J(b). Let 1 be 
any number 0 < 1 < A, let m = 1 - 1/A and let n = 1(1/"A - 1 ). Then 1, m ,  n 
are positive and 1 + m + n = 1 .  Defme f on [0, 1 ] by f = a on [0, 1), f = 

1 
Nz + ,.W on [l, l + m),f = b on [l + m , 1 ] . Then [ f dx = Nz + ,.W, but 

0 
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J 1 
.;, ofdx = lljl(a) + mlji(Nz + p.b) + nljl(b) 

0 

= l/I('Nl + p.b) - 1/"A (l/I(Nz + p.b) - "Al/l(a) - p.l/J(b )) 
< "'('Nl + p.b ). 

So � 1 .;, o f  dx < .;, ( � 1 f dx) . a contradiction. 

1 1 .  (i) lf a1 � 0, b1 � 0, i =  1 ,  2 ,  . . .  , n and p >  1 ,  1 /p + 1 /q = 1 ,  then 

B a;b; ..;;(t af'\up (t b;q\uq . 
r= 1 r= 1 J r= I J 

(ii) up ;;;;.. t .(t. Ia; + b; lpr ..;;(t. la; I P}IP +(B. l b, I P}IP .  

(iii) If a1 ;;;;.. 0, b1 ;;;;.. 0, i = 1 ,  . . .  , n , B a;b; ..;;ft a) max b1• The proof 
i= 1 "= 1 'l t  �i< n 

of (i) , for example , is obtained by taking X =  [ 1 ,  . . .  , n ] , a(i) = a1 , p.( [i] ) � 
n 

1 so that B a; = f a  dp., and applying Holder's inequality . 
i= 1 

12 .  They imply ll sin x - cos x ll 2 = ll (f- sin x) - (f- cos x) ll 2 � llf- sin x ll 2 
+ II!- cos x ll 2 < 1 .  But the frrst term is Vtr. 

1 3 .  Apply the Schwarz inequality. 
14. (i) is a special case of (ii). Write lf iP = F, lgl q  = G, a =  1/p, 13 = 1/q ,  then 

F E  L o:(p.), G E LfJ(p,), so by Theorem 7 ,  FG E "L 1 (p.). 
1 5 . (i) Minkowski's inequality gives 1 11{ 11 2 - llfn 11 2 1 � II{-In 11 2 • 

t t b 

(ii) J f dx - 1 fn dx = j X(a,t) (f - fn) dx o;;;; .J(t -a) II{-fn ll 2 , 
a a a 

by Holders inequality . 
00 

(iii) To verify (i), integrate explicitly and use B 1 /n2 = tr2 /6 . To verify n= 1  
(ii), integrate and use the standard Fourier Series for t2 • 

16 .  By Minkowski's inequality l llfn lip - II flip I <;  llfn -{lip -+ 0. 
1 7. By Example 20, p. 67, we can fmd l/J such that l/l(t)tl'-1 fP E L 1 , l/1 � 1 

on [0, 1 ] , 1/1(0+) = oo. Then 

1 1 1 F(x) = £ f dt = J (p l/J 1"' t(p-1 )IP f dt 
X X VJ l!p f -l)/p 

..;; (( .;,-qJP 11 dt}fll (L 1 1P-1 .;, fP d�)\IP , 

by Holder's inequality, p and q being conjugate indices. So 
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F(x) <.M(� 1 Vq"' r-1 d�� 

where M is a constant. But V € > 0, 3 x0 such that y;-QIP < e for x <x0 and 
then 

1
1 1x0 

1
1 

y;-QIP t- 1 dt = + <: E(log 1 /x - log 1 /x0 ) + log 1 /x0 
X X X0 

<: 2€ log 1 /x for small x .  
X X 

1 8 .  At x = 0, HOlder's inequality gives F(x) <.x1tq( 
1 

fP dt)1"' . But 
1 

fP dt 
0 0 

� 0 as x � 0 by Theorem 18 ,  p .  1 06. At x = oo, V € > 0, 3 y such that 

too fP dt < el' ;  so let X >y . Then F(y) - F(x) <. (x -y)1tq(�x fP dt)IP 

<: ex 1tq . So F(x) < 2ex1kl for all large x .  
1 9 . For n = 2 we get Holder's inequality. So suppose that the result holds for 

m-J 
n = m - 1 ,  m > 2 .  Then if a =  ( 1 - k;,1 )-1 we have B akj1 = 1 ,  so 

m-1 i= I 

f 1ft I a . . . If m-1 Ia dJ.t <:IT (f lfi lk; dJ.L)atk;. 
i= I 

But from.Holder's inequality 

f lf1 · · · f m I dJ,L <: (f 1ft I a · · · lfm-1 I a dp)1,Q (( lfm l km dJ,L)11km . 

So the result holds for m , and by induction the result follows. 
20. If any {; = 0 a .e .  or if (6. 1 3) holds, equality is trivial. Conversely, the case 

n = 2 is given in Example 10, p. 1 1 5 .  We suppose that the result is true for 
n - 1 functions and consider the case of n functions, supposing that no{; = 
0 a.e. Then the fact that ( 6. 1 3) holds for n - 1 functions, together with the 
chain of inequalities which gives the result for n functions, gives us (6. 1 3) 
in this case . 

2 1 .  In Exercise 19 ,  take n = 3 , /1 (x) = x-pa , f2 (x) = lx - 1 rPti ,/3(x) = lx -
2rP1' and if 6 = p(a + 13 + 1) < 1 take k1 -= 6 /(pa), k2 = 6 /(p/3), k3 = 
6 /(p1) to get the result . 

n n 
22. Let p � 1 and let{; E LP(p.), i = 1 ,  . . .  , n .  Then II B {; lip <:  B II{; lip follows 

i= 1 i= 1 
immediately, by induction, from the case n = 2 .  

23 . As we may consider f/M, we may suppose that ess sup f = 1 .  Then !"+1 <; 
fn a.e. ,  so the required limit exists and is not greater than 1 .  But f fn dp = 
f fn 

• 1 dJ,L � (f fn+ 1 dJ,L )ntn+ 1 {J.t(X) )lhl+ 1 . So 
Jfn dJ,L � (ffn+ l dJ,L)n 

J,L(X) � (( fn dp.)" 
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Take nth roots, let n � oo and use the result of Exercise 6 ,  p. 1 10, to get the 
result . 

24. Write In = 1 fn dJ,L. Then, for n � 2, /� = (j t<n-t)n. f(n+ 1 )n. <ij.t)2 <: In-t • 

In+1 by Schwarz's inequality. 
25 . Write p; = p1 A, p� = p2 'A where A = 1 /p 1 + 1 /p2 , so that p � and p� are 

conjugate indices. As f E LPt ().1.), we have 1!1 1� E LP� (p.), and similarly 
IKI 11A E LP� ()J.). So Theorem 7,  p. 1 1 5 , gives lfgi 11A E L 1 (p.), and so the 
required index p is (p1 P2 )/(p1 + P2 ) .  

26. By HOlder's inequality PJI2 ;;a. J. 1 d�o� = �o�(E), giving the first part. By 
E 

Example 10, p .  000, equality holds when sV! + t/v'f = 0 a.e . ,  i.e . when f 
is constant a.e .  For the last part, take E = (a, b ) ,f = (x - a )2 to get Pt = oo. 

27 . We have � g ;;a. f ;;a. � g a .e. So�- : 0� --�g)..;; 0 a .e .  Write Fy = {2 + 

yfg(v'(PQ)/..J(pq) + v'(pq)/v'(PQ)) + y2g2 = (/ + yg..J(PQ)/v'(pq)Xf + 
ygv'(pq)/v'(PQ)). So if a = y(Pp)/v(Qq), then F_a <: 0 a.e . ,  but Fa > 0 on 
a set of positive measure .  So f Fy <ij.t is not greater than zero for y = -a, · 

and is positive for y = a. But f Fy dJ,L = f !2 dJ,L + y f fg dp.(v'(PQ)/v'(pq) + 
v'(pq )/v'(PQ)) + y2 f g2 dJ,L and this quadratic in y .must have a real root, 
giving the re suit. 

28 . If 0 < k < 1 we have m < 0, and conversely , so we may suppose that 
0 < k < 1 .  Suppose that f g"' dJ,L < oo, so that g > 0 a.e. So writing p = k-1 , 
the equations f = (uv 'f ,  g = v-P define non-negative measurable functions 
u and v a.e. , and hence f uv dJ,L <: llu llp  ll v ll q  where p and q are conjugate 
indices. So 

f fk dJ,L <: (J fg dJ,L)k u g"' dJ,L)1-� 

giving the result. 
29 . Let p + q = pq ; then by the last exercise we have 

f (f + g'f <4-t = f f(f + g'f-1 dp. + f g(f + gf-l dJ,L 
� (J fP dJ,L )14' (j (/ + g )(p-1 )q dJ,L )1kl 

+ lj gP <l,.L)lif' (j (/ + g)(p-1)q dJ,L)1kl 

which gives the result, as in Theorem 8 ,  p .  1 1 5 .  
30. 0 <:fC <:[P ,  so In E LP (p.). Also 0 <: (f-fn Y' <:_fP , an integrable function , 

so by Theorem 2 1 ,  p. 1 07,  as lim fn = fwe have lim f ifn -ff dp. = 0. 
3 1 .  Given [ELP(p.) and € > O it is required to fmd g E LP()J.), where g is bounded 

and measurable and llf - gllp < €. Minkowski's inequality allows us to con
sider r and r separately. So suppose that f� 0. But then the last exercise 
gives the result . 

32 .  By the last exercise we may suppose that f is bounded and measurable . 
Then the proof of Theorem 16 ,  p .  73 , may be used with appropriate modi
fications. For example� we have by Minkowski's inequality that iff= g + h ,  
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j b 
lg - gt l P  dx < € and j u  l h  - h t lp 

dx < €, then 
a -a b j 1{- (gl + h J )I P dx < 2P e . 

a 

2 19 

33 . We wish to show that if f E LP (a, b), then 3 sequences (f,. } of the desired 
type such that II{,. - !H P = 0. By Minkowski's inequality it is sufficient to 
consider f ;> 0. Then, for simple functions the result follows from Theorem 
5 ,  p. 58 , and Theorem 10, p .  63. For step functions and continuous func· 
tions the result is that of the last exercise . 

34. Let In = f X(-n, n) · Then Theorem 10, p. 63 , gives lim II{-In lip = 0 since 
I f - f,. IP � lfi P . So Minkowski's inequality and the last exercise give the 
result. 

35 .  IF(t + h) - F(t)l <; lj 1 /{x + t + h) - .f{x + t) IP dx)14' . (j lgl q dx)1kl . So 
it is sufficient to show that f 1/{x + t + h) - .f{x + t) IP dx tends to zero 
with h, and hence by Example 25 ,  p .  75 , to show the same for f 1/{x + h) 
- /{x)IP dx. By Exercise 3 1 ,  there is, for any € > 0, a continuous function k 
vanishing outside a bounded set, such that II{ - k ll < €. So if fh (x) = 
f(x + h), kh(x) = k(x + h), we have 

II! - fh II P <; llf- kllp + llfh - kh lip + Ilk - kh lip < 2€ + Ilk - kh lip 
by Example 25 , p .  75 , again. But since k is uniformly continuous and k 
and kh vanish outside a bounded set, Ilk - kh II P < e for all small h, giving 
the result. 

36 . llfnKn - {gil t  < ll /1 - fin Il l + llfln - fnln Il l <; 11/ llp ll1 -In llq + Uf
In lip ll1n llq .  But I U1n llq - ll1 llq I <  U1,. - 1llq by Minkowski's inequality, 
so for all large n,  llg,. Hq < llg Uq + 1 and the result follows. 

37. (i) I f ifn -r. d�ot l < II{,. -{11 2 • ll1 ll 2 -+ 0 as n -+ 00• For a counterexample 
take X =  (-11', 11'),/n(x) = sin nx so that Ufn -fm 11 2 = (211')112 for n :¢:m, and 

11' 

fin} does not converge in L 2 • But if g E L 2 ( -11', 11' ), lim J g(x) sin nx dx = 
. -11' 

0 by, for example, Exercise 44, p. 75. 
(ii) If for any sequence (n1} we have 11{,.1 11 2 <; C, then 11{11 2 < C, for then 
C 11{11 2 ;> I f  f,.1 fd,.t l -+ ( 11{0 2 )

2 • We may suppose that 11{11 2 :¢: 0  and divide 
to get the result. 

b b 
(iii) If In -+ l wealdy, then J X[a,x] In dt -+ 1 X(a,x] l dt. In the oppo-

a a b b 
site direction: if this holds, we get 1 Kfn dx -+ 1 gf dx for any step 

a a 
function g, and so Hgf0 - gfll 1 < € for all large n .  Now if h E L2 (a, b) and 
€ > 0 there exists a step function 1, by Exercise 33, such that 111 - h 11 2 < €, 
so llhf - hf,. 11 1 <; llhf - g/ 11 1  + ll&f - gf,. 11 1 + ll&f,. - hf,. li t .  Let M = 
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sup llfn 11 2 • Then llhf - hfn 11 1 � e 11{ 11 2 + € + M€ for all large n .  So In � f 
weakly . 
(iv) o � ( llfn - !11 )2 = J !2 dJ.L + J r; dJL - 2 J In f dJL � o.2 - 11[11 2 � o. 
So a =  11[11 2 and fn �f in L 2 • 

38.  Let p1 = p/p ' and q 1 be conjugate indices. Then 
, , , 

f l fn -fi P dJ,t � llifn -if 11 p 1 {Jt(X))1,q1 = ( llfn -{ llpf J,t(X)11q 1 � 0 

as required. 
39 . As in Theorem 10, p .  1 1 8 ,  3 a subsequence (n;l such that In; � f a.e .  So 

I ll � K and lin - fl � 2K a .e .  for all n .  Suppose p" > p (otherwise apply , , 
the last exercise). Then ( 11/n -[lip" f � (2Kf -p ( llfn -{llpY' � 0 as n � 
00 . 

mNTS AND ANSWERS TO EXERCISES: CHAPTER 7 

1 .  This follows from [x : lin + Kn - (f + g)l > e] c [x : lfn - fl > €/2 ] U 
[x : IKn -gl > e/2 ] . 

2. If o. = 0, the result is obvious; otherwise 

[x : l o.fn - o.fl > €] = [x : lfn -[1 > e/ lo. l ] , 
the measure of which tends to zero as n � oo. 

3. From the definition of convergence in measure it can be seen that the limit 
function f is fmite valued a.e .  So V e > 0, 3 set G, and K > 0 such that 
J.L(G) < €/2 and Il l < K on CG. Write E'Y = [x : lin - fl > 'Y] , then on 
C(G U E'Y), lfn2 - /2 1 = lfn + fl • lfn -fl < ('Y + 2K}y < € for an appro
priate 'Y > 0. But J.L(E'Y) < €/2 for all large n .  So for large n ,  J.L [x :  lfn2 -[2 1 
> €] < €, giving the result . 

4. Use fnKn = iifn + Kn)2 - iifn -gn)2 , and the last three exercises. 
S .  Take X = (0, oo ), fn = f = x and let Kn be positive constants O.n where 

lim an = 0. Then an , as a function of x ,  tends to zero in measure , but 
m [x : lfnKn -fgl > €] = m [x : anx > €] = oo for all n .  

6. Use lfn -fl � l lfn l - 1/1 1 . 
n 

7 .  A set K is convex if when k; E K ,  i, . . . , n ,  we have B o.;k; E K whenever 
i= I 

n 
a; ;> 0, B a; = 1 .  So S is clearly convex. Write 1; for the interval [(i - 1 )/ 1= 1 
(n + 1), i/(n + 1 )), i = 1 ,  . . .  , n + 1 .  Then for f E S, (n + 1 )  XT;fE Un . 
But then 

n+t 
f=  1 /(n + 1) �1 (n + 1) XJ,f 

lies in any convex set containing Un , giving the result . 
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8 .  In Example 1 ,  p. 124, let X be the set of positive integers, and let J.t( [n ] ) = 00 
an where an > 0 and L an < 00• Then if � = {�n ) and 11 = l11n }  are any 

n= 1 

( ) � an I �n - 11n I two real sequences, define p � ,  11 = L.J 1 + I
'= _ I . n= 1 t:tn 11n 

9. Clearly p(f, g) = p(g, f), p(f, g) � 0, p(f, f) = n(O) = 0. If n(f) = 0 then, as 
tan is continuous at the origin, if € > 0 there exists a < € such that a + J.L [x : 
ll(x)l > a] < €, so J,L [x : l.f{x)l > €] < € ,  i.e . , I = 0 a.e . So if p(f, g) = 0, 
I = g a.e . Finally , for �' 11 � 0 we obtain from the addition formula for tan 
that 

arc tan � + arc tan 11 � arc tan (� + 11 ), 
and it easily follows that n(f + g) �  n(f) + n(g), so that p(f, g) + p(g, h) �  
p(f, h) and p is a metric. Convergence in measure implies convergence with 
respect to p since if nifn - f) > 6 > o, and 0 < € < ; tan 6 ,  we easily obtain 
J.t [x :  l ln (x) - l(x)l > €] > ! tan 6 .  Conversely, let €, 6 > 0 and let J.t [x :  
lln(X) -f(x)l > €] > 6 .  Then for a �  € we have a +  J.t [x : lln(x) -f(x)l > €] 
� €, and for a < € we have a + J.t [x :  lln(x) -l(x)l > a] > 6 .  So Pifn , f) � 
min (arc tan 6 , arc tan € ). 

1 0. For each n we have, a.e . ,  InK � F. ess sup lg l , an integrable function. But 
liming = lg a.e. ,  so by Theorem 2 1 ,  p .  107 ,  InK �  lg in the mean. 

1 1 . For each k, there exists Ek such that on CEk , lfn l is uniformly funda
mental and J.L(Ek ) < k-1 

• We may suppose E 1 :::> E2 2 . . .  Then E = 00 n Ek has measure zero and if X E CE, In(X) � f(x), defming a measurable k= l  
function. Also In � I  uniformly on each set CE k , giving the result . 

1 2 .  (i) ll is well defined on $ , J.L � 0, J,L((/J) = 0 .  Let (B; } be a sequence of dis
joint sets of � ; then 

J.L U B; = lim J.Ln U B; = lim � J.Ln(B;) = .L lim J.Ln(B;) = .L J,L(B;). 
� 00 ) ( 00 ) 00 00 00 

1:::::. 1 J= I r= 1 r= I r= 1 

The interchange of summation and lim is allowable by Theorem 1 5 , p. 105, 
so 1.t is a measure. 
(ii) It is sufficient to prove the result for f � 0. As J.L � J.Ln ,  f I dJ.Ln < 00 

implies IE L(X, J.Ln) for each n .  There exists a sequence of measurable simple 
functions q,k t I, and clearly lim f 4>k dJ.Ln = f 4>k dJ,L. So 

n-+oo 

f f dJ,L = lim f 4>k dp = lim lim f 4>k dJ.Ln 
k-+OO k-+OO n-+oo 

= lim lim f 4>k d�n = lim f I dJ.Ln , 
n-+ oo  k-+oo n-+ oo  
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the interchange of limits being justified, since the double sequence increases 
with respect to both k and n .  

1 3 . P.n+l � P.n easily gives f Ill dp.n � f I ll dp.n+l . To prove the last assertion, 
take X to be a single point and P.n(X) = n . Then every finite function belongs 
to each L(p.n), but only!= 0 E L{p.). 

14 .  Routine verification. 
1 5 .  By the last exercise p. 1 - P.n is a measure , for each n . Applying Exercise 1 2  

to this sequence of measures we get that p.1 - p. is a measure . So the last 
exercise, again, gives that p. = p. 1 - (jJ 1 - p.) is a measure . 

16 .  Take X =  [ 1 , oo) and define Jln (E) = j (nxr1 dx.  Let B; = [i , i + 1 ), E 
00 

i = 1 ,  2 , . . .  Then P.n(B;) -l- 0 as n � 00, so p.(B;) = 0,  B p.(B;) = 0 .  But 
i= 1 

P.n( .'B B;) = oo, each n, so plQ B1) = oo and so p. is not countably additive . 
t= 1 . \,= 1 

1 7 . The first part is obvious. For the second, considering simple functions and 
taking limits, we get f f dp.J - f f dp.n = f f d(p. 1 -P.n), since p. 1 - P.n is a 
measure by Exercise 14 .  Applying Exercise 1 2(ii) to (p. 1 - P.n } we get the 
result . 

1 8 .  Finite additivity and the other properties being obvious, we wish to check 
that p. is countably additive . Let (8; ) be disjoint measurable sets. Then 

IJ(O B;\ - 't p(B;) � l �o�(O B;) - p.n(O B;\ l + Jln( 0 B;) i 1 ) t= 1 i= 1 i= 1 r J i= N + 1 
+ fj lp(B;) - Jln(B;) l . t= I 

We have ,..,(Q B;\ -+ 0 as k -+ 00, so since ls.tn ) converges uniformly , v € > 
t=k I 

0, 3 N1 such that P.n ( 0 B� < €/3 for all n and for N ;;a. N1 • Now i=N+ I I ,, 
choose N2 such that for n ;;I N2 the first and third terms are < €/3 , so that 
the right-hand side < €. 

19 .  We may suppose f � 0, so the�e exists a sequence of measurable simple 
functions 4>m t f. By Egorov's theorem, 4>m � f a.u .  with respect to each P.n 
and with respect to p., so V € > 0, 4>m �[uniformly on CEn where P.n(En) 
< €/2n+l , and we may suppose also when choos�g En that j f dpn < En E/2n . By uniformity , for n, k � n0 , P.k(En) < E/2n , so we may suppose, 
\vhen taking limits with respect to n ,  that P.k(En) < E/2n for all k and n .  

00 

Then ifF = U En , P.k(F) < € for all k, and 4>m t [ uniformly on CF. Now n= 1  
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f f dJ.Ln - f ,m dJln = i (f
- ,m ) dpn + 1 (f- ,m ) dpn < l f dpn + F CF F 

EJ.L(X) < € (1 + J.L(X)) for m �  m0 (e) . We have <Pm bounded a .e . ,  so f <Pm dJ.Ln 0 0 
< M, say, for all n .  But then f f dJ.Ln < M', say, for all n .  This implies that 
f f dJ.L < 00, for otherwise V i, 3 m(i) such that f 4>m dJ.L > i and then 3 n(i) 
such that f 4>m dJ.Ln > i - 1 .  But this gives f f dJ.Ln > i - 1 and a contradic
tion, so f E L1 (p.). Hence f fdJ.L - J 4>m dJ.L < € for all m � m 1 (e) . Let m2 = 
m0 + m1 • Then I f 4>m dJ.Ln - f <Pm dJ.LI < e for n � n0 , as <Pm is finite-2 2 2 
valued a.e. So I ff dJ.L - f f dJ.Ln I < 2e + EJ.L(X), giving the result. 0 

20. For example , let fn �f in the mean of order p, p > 0. Then f lfn -fm I P dJ.L 
� 2P f l fn - fiP dJ.L + 2P f lfm - fiP dJ.L, and letting n , m � 00 gives the 
result . 

21 , 22. Obvious. 
1 

23 . V e >  0, sup fn in [e, 1 ] is ne-
n
e -+ 0  as n -+<><>. But 1 fn dx = 1 - e-

n -f 0 
:.0 

as n � 00• 
24 . Similar to Exercise 23 . 
25 . By Holder's inequality fn , and the limit function f, are in L 1 (p.), and 

llfn -f li t  � llfn -{II p (JL(X))1kl , 
where p, q are conjugate indices. 

26 . fn(x) ..;; x-2 E L 1 (1 , oo) but, if n > m ,  D!n - fm 11 112 = ({n 
x-1 dx)2 -f 0 as 

n, m � 00• 
t I 

27. If t > 0, e-t < 1/t ;  so n312 xe-n x < n-ln. x-1 � 0 as n � oo, for x > 0. But, 
1 

on computation, 1 fi dx -f 0. 
0 

28 . As for Exercise 27 , using e-t < t-k k! where k > 3/2p. 
29 . In < en on [e, 1 ] , 0 < e < 1 .  So fn � f a.u .  where != 0 on [0, 1),ft1)  = 1 .  

But lfn } does not converge uniformly as its pointwise limit , f, is discon
tinuous. 

30. f lin -fi P d�J � J.L(X) ess sup l in -f iP � 0 as n � 00• 
3 1 .  Let X = (1 , 00) , and let fn(x) = x-2/p + n-11p on ( 1 , n), fn(x) = x-2/p on 

[n , oo), f(x) = x-21P on ( 1 , 00). Then f and each fn E LP(1 , oo) and fn � f 
uniformly . But llfn - [ lip = 1 for each n .  

HINTS AND ANSWERS TO EXERCISES: CHAPTER 8 

1 .  A is positive iff m(A n (-oo, 0)) = 0, B is negative iff m(B n (0 , oo)) = 0 �  
C is v-null iff m(C) = 0 ,  and (-oo, 0), [0 , oo) forms a Hahn decomposition. 

2 .  We have v(E) = v(A) + v(. 0 Ek\ from (8 . 1) , and from the proof the 
theorem k- 1  ) 
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0 > v((J Ek) > -oo. 
k= l 

So v(A) = oo would imply v(E) = oo. 

3 .  We may take X =  R ,  $ = :Jil ,  v(E) = j f dx ,  where f(x) = xe-x (lx l  > 1), 
� 

f(x) = 0 (lx l  � 1). Then (-oo, a), [a , oo) is a Hahn decomposition of A with 
respect to v, for any a such that la l � 1 .  

4. Write a� = max (a,. , 0), a;. = max (-a,. , 0). Then condition,. (i) of Defmi-
00 00 

tion 1 ,  p .  133 ,  implies that either B a� < oo or B a;, < 00• That v is then 
n= l n = l 

always well defined and is a signed measure, is obvious, as is the last part . 
5 .  As in the last exercise , and using the finiteness conditions given, we get that 

the sum of the positive terms in (v(E;)} is finite , and that of the negative 
terms is finite, as required . 

6. v(E) = v(F) + v(E - F), and Definition 1 (i), p. 133 ,  implies that neither of 
the terms on the right is infmite. 

00 00 

7 .  U E; = E1 u U (E; - E;-1 ). So 
i= l i= 2 

,. 

= lim (v(E1 ) + B v(E; - E;-1 )) = lim v(E,.), 
i= 2 

and this limit exists, though it may be infinite . 
00 

8 .  From Exercise 6, v(E1 ) - v(E;) = v(E1 - E;) for each i. But E1 =n E; u 
00 U (E 1 - E1), so by Exercise 7,  

i= l 

i= l 

v(£1 ) = v(()E� + lim v(£1 - E;) = v(()E� + v(£1 ) - lim v(E,), 

So, since I v(E 1 )I < oo, we get the result. 
9 .  There exist sets A ,  B such that p(A) = v1 (CA) = J..L(B) = v2 (CB) = 0 . So 

J..L(A u B) = (v1 + v2 XCA n CB) =  0. 

10. From Example 5 ,  p .  1 38, l v i (E) = j ltl d�o�. E 
1 1 . Obvious from Definition 6 ,  p .  1 38. 
12 .  Let A ,  B be a Hahn decomposition with respect to v. Then l vi (E) = lv(E n 

n 
A )I + I v(E n B)l � sup B I v(E;)I as A ,  B are disjoint . But 

i= l 
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sup 'L I v(E,) I <: sup � I vi (£,) = I vi (E), 
i= 1 i= 1 

as I vi is a measure. 

225 

1 3 .  Suppose that v = v+ - v- is the Jordan decomposition with a corresponding 
Hahn decomposition A ,  B. Let E E $ and write E1 = E  n A , E2 = E  n B . 
Then v-(E1 ) = 0 so v2 (E1 )  � v-(E1 ). But v1 - v+ = v2 - v- and hence 
v1 (E 1 )  � v+(E 1 ). Similarly for E 2 , so v+(E) <: v1 (E) and v-(E) <: v2 (E) for 
all E E S , and I vi <: v1 + v2 follows. For equality we need v+(E) + v-(E) = 
v1 (E) + v2 (E) which implies v1 = v+ , v2 = v- since v+ <: v1 , v- <: v2 • 

14. Obvious. 

1 5 .  Let X =  (0, 1 ]  and let 11 be given by �o�(E) = 1 fdx whe're f =  1 on [0, 1 /2) E 
and l = - 1  on [ 1 /2 ,  1 ] . Then IJ.t l = m so IJ.t i (E) = 0 :::0> m(E) = 0 but 
J.L(E) = 0 +m(E) = 0 if E = ( 1 /2 - a, 1 /2 + a), 0 < a <:  1 /2. 

16 .  Take, for example, X = A, $ = .'M , �o�(E) = j e-x1 
dx, v(E) = [O,oo)nE 

j e-xs 
dx. (--, l)n E 

1 7 . v is a measure by direct verification. Since v([x0 ] )  = 1 and m([x0 ] )  = 0 we 
have not got v < m. 

1 8 . Suppose that v(.X) = f f dJ,L where f is non-negative and fmite-valued and J.L 
� 00 00 

is o-fmite. Then X = U Xn , J.t(Xn) < oo and also X = U Ym , Ym = [x : n= 1  m=·t 

f(x) <: m] , so that X =  U (Xn n Y m ). But v(Xn n Y m ) <: mJ,L(Xn) < 00, 
m, n 

so v is o-fmite. So the result of the theorem for v implies that v is o-fmite . 
Note that the next exercise shows that v < J.L and J.L o-fmite do not imply 
that v is a-finite. 

19 .  If X can be written as the union of a sequence of sets of fmite v-measure, so 
can any subset. But if F is the set on which f is infinite, so that J.L(F) > 0,  
then every subset E of F has v-measure 0 or oo according as J.t(E) = 0 or 
J,L(E) > 0 ;  so F provides the required contradiction. 

20. Take X such that Card X =  �0 , and let cS = [E: Card E � �0 , or Card CE <: 
N0 ] • Then [X, $ D is a measurable space. Let J.t(E) = Card E; then 1J is a 
measure and is no1 o-fmite. Let v(E) = 0 if Card E <: �0 , v(E) = 1 if Card E 
> N0 • Then v is a measure, as in any sequence of disjoint sets of $ at most 
one is uncountable ; also v < Jl. Suppose that f exists such that v(E) = 

j f d�o� for each E E $ .  Then £ f d�o� = f(x) but v([x] ) = 0 so f = 0.  E (x ) 
But v(X) = 1 , so no such f exists. 

21 . Follows immediately from Definition 5 ,  p. 137, and Definition 8 ,  p. 139. 
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22 . As in the proof of Theorem 6 we may suppose that J..L and v are measures . 

Then by Theorem 5 ,  for E E cS , II{E) = j f dp where {;;;;.:. 0 and measurable . E 
But then Theorem 1 8 ,  p .  106, gives the result. 

23 . Choose a sequence (n; l such that lim an; = 0. Then JJ( [n; ] ) � 0, but v([n;] ) 
� inf bn > O. 

24 . 3 no such that for n ,  m � n0 , f lfn -fm I < €/2 . The result of Theorem 1 8 , 
p. 106, extends immediately to give, for fiXed n0 , that 3 6 such that if 

p(E) < li ,  then j l !n l dp < e/2 , n = 1 ,  . . .  , no . If n > n0 , j lfn l  dp o;;;; E E 
L l fn0 I dp + t l fn -fn0 I dp < € • 

. 

25 . By decomposing X into four sets as in Theorem 10, p. 145 ,  and adding the 
results, we may suppose J..L and v to be measures. Let f be such that J..L(E) = 

j f dv for each E E S . Since v < p, [x : /{x) = 0] has zero measure with E 
respect to J..L and v, so 1 /f=  (dJ..L/dv)-1 is defmed a.e. But Theorem 9, p. 144, 
gives (dv/dJJ)f = dv/dv = 1 ,  so dv/dJJ = (dJ..L/dv)-1 [JJ] . 

26 . v = "o + v1 where Vo (E) = v((-oo, O] (') E), v1 (E) = v((O, oo) n E). 
00 00 

27. As v0 is o-fmite, D =U D1 where v0(D;) < oo. But D; = U [x : x E D; , � 1  n= l  
v0({x] ) > n-1 ] and each set of this union is finite, so D is countable . 

28 . [2] . By a standard argument the proof may be reduced to the case where v 
is fmite. Let 1J = [E: E E S , J..L(E) = 0] and a = sup [ v(E): E E 1J ]  . Let 
{Enl be a sequence of sets in 1J such that lim v(En) = a. If B = UEn , then 
B E G() and v(B) = a. If E E G() we have a = v(E U B) = v(E - B) + v(l!) so 
v(E - B) = 0. Write v0 (E) = v(E n B), v1 (E) = v(E - B), for each E E cS . 
So v = v0 + v1 , v1 < J..L . But p.(B) = v0(CB) = 0 so v0 1 JJ. Uniqueness then 
follows as before. 

29 . By Minkowski's inequality , I llgn llq - llg ll q I � llgn -gllq , so llgn ll q � llg llq . 
Also ll fnKn - fgll l � ll(fn - f)gn + f(gn - g) ll 1 � llfn - flip llgn ll q + 
11{11 P llgn -gllq . So the right-hand side has limit zero. 

30. Obviously G, F E  V* implies aG + bF E V*. JIG II = 0 iff G = 0, llaG II = 
sup [ laG(x )I : llx II � 1 ]  = Ia I IIG II , IIG + Fll = sup [I (G + F)(x )I : llx II � 1 ]  
� sup [1G(x)l + IF(x)l : llx ll � 1 ]  � IIG U  + HFII . 

3 1 .  t•• (aG + bF) = (aG + bF)(j) = aG(f) + bF(f) = af**(G) + bf**(F). So 
t•• is a linear functional. 11!** 11 = sup [ lf**(G)I : IIG II � 1 ]  = sup [ IG(f)l : 
IIG II � 1 ]  � 11{ 11 . In fact, by the Hahn-Banach theorem [ 1 51 there exists G 
of the norm 1 such that I G(f)l = 11{ 11 , so that II{** II = 11{11 . For a particular 
case see Exercise 32. 

32. f � t•• is linear, for (af + bg)**(G) = G(af + bg) = aG(j) + bG(g) = 
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af**(G) + bg* *(G) for each G in (LP)• . To show that the mapping is norm
preserving (and so one-to-one) we need, for each{, to construct G of norm 1 
with IG(f) l = II{ lip . Iff = 0, any G of norm 1 will do ; otherwise take G(f) = 
f fg dJ,L with g = alfiP-1 /( llf llp)P-1 , where a =  sgn f. Then f fg dJ,L = II flip 
while llg 11q = (j l fiP dJ,L)1kl/( llf llp)P-1 = 1 since p/q = p - 1 .  In general 
the mapping V -+ v•• of a normed space into second dual is norm pre
serving and into . In cases like the above where every linear function on Lq is 
provided by an element of LP , we say that LP is reflexive. 

33 .  This follows from Example 10 ,  p .  1 1 5 .  
34 . Theorem 13 ,  p .  1 5 1 , identifies the dual space . However, L 1 is not in general 

reflexive, as defmed in the solution to Exercise 32.  

HINTS AND ANSWERS TO EXERCISES: CHAPTER 9 

1 .  ji6([x] ) =  lim (g(x + n-1 ) - g(x)) = O. 
n-+oo 

2. Write An = [x : jl8([x] ) ;> n-1 , k � x < k +  1 ] . Then Card An � n(g(k +  1 )  
00 

-g(k)), so An is finite . But U An = [x : jl8( [x] )  > 0,  k � x  < k + 1 ]  giving 
n= l  

the result, since the required set is a countable union of such sets. 
3 .  Theorem 1 ,  p .  1 53 , and Theorem 2 ,  p. 1 54, hold as before . The proof of 

Theorem 3(i) becomes: Let I =  (a, b] , E1 = (a; , b1] ,  i = 1 ,  . . .  , n .  Choose 
c > 0 such that a�< a + c < b and h(a + c) - h{a) < €.  For each i choose (31 
such that (31 > b1 and h(j31) - h(b1) < e/21 • Write F = [a + c ,  b ] and U1 = oo n 
(a1 , (31). As F e U u, we get F eU U1 for some n .  Then Theorem 2 gives 

1= 1 i= l  
n n 

h(b) - h(a + c) .;;;; �
1 

(h(p1) - h(a1)) < �
1 

(h(b;) - h(a1) + e/21). So h(b) -

h(a) - e < t. (h(b1) - h(a;)) + e , giving the result . Theorem 3(ii) and 

Theorem 4, p .  1 55 ,  then hold as for g. 
4. jl6(-oo, x) = lim jl6( [-n , x)) = lim (g(x) -g(-n)) =g(x). n-+oo  n-+oo 
5 .  On each of the removed 'middle thirds' In,k '  L is constant , so v(ln,k) = 0. 

Hence v([0, 1 ] - P) = 0 where P is the Cantor ternary set . As m(P) = 0 we 
have v 1 m. Also 11([0, 1 ] )  = L( 1) - L(O), and by Exercise 1 ,  v([x] ) = 0 
for each x , giving the result . 

6 .  We are given that there exist sequences [x1 } , {"A1} in A ,  with "A1 > 0 for each 
00 

i, such that if 6; = X(x;, oo) then g = ,B
. 

�61• Then ilg( [x1] ) = �- Write 

(x i l , ("A1} for the subsequences obtained when we restrict to [-N, N). 
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Then jl8( [-N, N)) = g(N) -g(-N) = B At < 00• So if A !; [-N, N) -

i= I 00 U [x ; ) , jl8(A) = 0, so A is jl8-measurable. But each [x;]  is a Borel set and 
i= I 

so measurable with respect to jl8 , and the result follows on letting N � 00• 
7 .  (i) is obvious. (ii) : As In , f are monotone increasing, it is sufficient to show 

that lim lim ln(x - 1 /m) = lim lim fn(x - 1 /m) . As the double n-+ oo m-+ oo  m-+oo n-+oo 
sequence involved is monotone increasing in n and m ,  this is immediate . 
(iii) : Let In = X(n- 1 ,oo) ,  so I = X(O,oo) · Then fn(O+) = 0 but .f{O+) = 1 .  
(iv) : V e > 0, 3 N0 such that l fn - fl < e for n �No .  So lln(x + 1 /m) 
f(x + 1 /m)l < e ,  for n � N0 ,  and letting m � oo we get l ln(x+) - f(x+)l � € 
for n � N0 • So lim fn(x+) exists and equals f{x+ ). (v) : From (i) we now 
have f(x-) = lim ln(x-) = lim ln(x) = f(x). 

8 .  Consider f(x) = x.  
n � � 

9 .  B l.f{b;) -f(a;)l � K u I b; - a; l < € whenever B l b; - a; l  < E/K. 
i= 1 i= I i= I 

10. Let c ' , d ' be such that a <  c ' < c ,  d < d ' < b . Then if x ,y  E [c , d] we have , 
as in Theorem 3 ,  p .  1 1 1 ,  <P(c ', c) �  <P(x , y) � <P{d ', d). So 1</>(y) - </>(x)l � 
Mly - x l for some fixed M and all x ,  y E [c , d] , i.e . q, satisfies a Lipschitz 
condition of order 1 ,  and the previous exercise gives the result .  

1 1 . If 11 > � � 0, we have rf - �P = p(17 - �X� + 8(17 - �))P-l where 0 < 8 < 1 .  
As I is continuous, Ill < M, say , on [a, b] . So for x ,  y E [a, b ] , lfP(y) 
fP(x)l � p(2M)P-l lj(y) -f(x)l and the result follows. 

1 2 .  Take [a, b] = [0 , 1 ] and define f(O) = O, f{x) = x2 sin2 1 /x for O < x �  1 .  
Then it is easily seen that 1! ' 1 � 3 ,  so f satisfies a Lipschitz condition of 
order 1 and is absolutely continuous by Exercise 9 .  But [1/J is not absolutely 
continuous as it is not of bounded variation (Exercise 9, p .  83 ). 

13 . L is not an indefinite integral, by the solution to Exercise 2 1 ,  p .  90, and so 
it is not absolutely continuous by Theorem 8 ,  Corollary 1 .  

14. Since g is continuous, it is Borel measurable , so clearly the integral exists. 
By Theorem 8 ,  p. 1 6 1 ,  and Example 1 1 ,  p .  1 45 ,  we have 

fb J b g(x) djlp(x) = g(x) f(x) dx = 0 
a ·a 

as whenever g(x) =#= O ,f(x) = 0 .  
1 5 .  Let f(x) = v'x, 0 � x � 1 and let x; = 0,  y; = 6 /2i2 , i = 1 , 2 ,  . . . ; then 

n n n 

L lx; -Y;l < 6 for each n but B lf(x;) -.f(y;)l = (6/2)1/J B 11 � oo as 
i= 1 i= 1 i= I 

n � 00• So I does not satisfy the more restrictive definition obtained by 
omitting disjointness . But I is absolutely continuous as it is the indefinite 
integral of an integrable function . 
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1 6 .  No. Let g(x) = x ,  x E (-tr , tr ] , g(x + 2tr) = g(x), and let .f(x) = v'lx l .  Take 
x; = 2(i - 1 )1r, Y; = x; + 6/2i2 , i = 1 ,  . . .  , n (0 < 6 < 2tr) . Then the inter-n 
vals (x;, Y;) are disjoin t and � :x; - Y;l < 8 , g(x;) = O, g(y;) = 8 /2i2 •  Then 

r= I 
n 

f o g  is not absolutely continuous since L 1 (/ o gXx;) - (f o g){y;)l = 
i= I n 

(6 /2)1n. L ;- 1 � oo as n � oo. 
i= I 

� b b 
1 7 . J x dg = lim J x dg = lim - J e-x• 

dx = -v'1r, using Theorem 
- a, b-+ oo -a a, b-+ oo -a 

9 ,  p.  1 63 , and a standard integral . Similarly J- x2 dg = -J - e-x• 
d(x2 ) = 

� 

- 2  J e-x• 
x dx = 0 .  

-oo 

- --

. t 
18 .  Write j(t) = 1 h du , and g(t) = t ; then (9 .9) gives 

0 

J X X X X 
fdg = f(x) g(x) - .f(O) g(O) - J th(t) dt = J xh(t) dt - 1 th(t) dt, 

0 0 0 0 

as required . 
1 9 .  For f and g continuous the result is t rue by Theorem 1 2 , p .  65 .  For integr

able functions f and g choose continuous functions fn and Kn to approximate 
f and g in the me�n as in Theorem 1 6 , p .  73 . Their indefinite integrals 
Fn and Gn then approximate F and G uniformly , and letting n � oo gives 
the result. 

20 . (i): For x E (0, d] and t E [x ,d ] , t-1 l h(t) l � x-1 lh(t) l E L(x , d). (ii): v € > 
6 6 

0, 3 li > 0 such that f I h i  dt < €. So for X e (0, ll) ,  J r1 xh(t) dt < €. 
� X 

d d 
Also j t- 1 x l h(t)l dt � 6-1 x J l h l  dt < E for x < x0 , say . So if O < x < 

0 . 0 
d 

min (li , x0 ), lxk(x)l ..;; J r1 x lh(t)i dt < 2€. (iii) and (iv) : We may suppose 
X 

h � 0 and hence k � 0. Let a E (0 , d) and apply Theorem 9 ,  p. 1 63 , to 
(a, d), taking G(t) = t ,  g = 1 ,  F(t) = k(t ), f(t) = -t-1 h(t), x = d. As k(d) = 

d 
0 we get -k(a)a = J (-h + k) dt. Letting a �  0 gives the result .  

a 

2 1 .  (i) : We are considering the limits of the measures of decreasing sequences 
of sets with void intersection . The necessity for finiteness is seen from the 
case f(x) = x,  J..L = m .  (ii) As increasing sequences of sets are involved , no 
fmiteness condition is necessary . (iii) : F(x-) = lim J..Lf-1 (-oo, x - 1 /n ]  = 



230 Hints and Answers to Exercises 

W1 (-oo, x) = G(x). Similarly for F(x) = G(x+). (iv) : The required con
tinuity follows from Example 2 ,  p .  1 56. As a counter-example when J.L(X) = 
oo, take X =  [0, 1 ] ,  S = <f [0, 1 ] , �-t(E) = Card E,f(x) =x .  Then F(O) = 0,  
F(O+) = 00• (v). Let �-t(A) > 0, f = XA ;  then F(1)  = �-t(A), F(1-) = 0 ,  G(1 )  
= 0 ,  G(1  +) = �-t(A ). (vi) : The first part is obvious, the second follows from 
Example 9,  p. 167 .  

00 00 

22 . A = U En where W1 (En) <  oo for each n ,  so X =  U Xn where Xn = n=1  n= 1  
r1 (En) decomposes X as required. 

23 . Take [X, $ ,  �-tD = [ A , j){, m D and defme {by f(x) = x ,  0 E; x  < 1 ,f(x + k) 
= f(x), k = + 1 ,  ±2, . . . Then if m(E) = 0 ,  we have mf-1 (E) = 0 ;  so mf-1 < 
m. Also mr1 (E) = 0 if E !; C [0,1) .  But mf-1 (E) = oo if m(E n [0, 1)) > 0 .  
So, for every measurable set, mr1 is either 0 or oo, and so mr1 is not 
o-fmite. 

00 

24. We have X =  U Xn where p(Xn) <  oo. If En = J;(Xn), En is W1 -measurable 
n= 1  

00 

and W1 (En) =  p(Xn) < 00• But U En = f(X) whose complement in A has n= 1  
zero W1 -measure . 

. 25 . Regardingf as a function from the space B to [O , Mj we may apply Example 
M 

10, p. 168, to get 1 [M dx = 1 yn de{y). But by Theorem 1 1 , p. 165 , B 0 
M 

this latter integral equals [yn e(y)] y=M" - [y
n e(y)] y= o  - 1  e(y) d{yn) 

0 
M 

= Mn m(B) - 1 ne(y)yn-1 dy . 
0 

00 00 1 
26 . Since }) lan tn l < 00 for l t l � 1 /2, we have � 1 lan(f(x))" l  dx < 00• 

n=O  n=O  0 
From the last exercise we have, for each n ,  

1 1� [ r dx = 1/2n - 1 n y n-1 e(y) dy . 
0 1 

So multiplying by an and adding for n = 0,  1 ,  . . . , we get the result by 
Theorem 1 1 , p .  64. 

HINTS AND ANSWERS TO EXERCISES: CHAPTER 10 

1 .  The non-uniqueness can be seen from 0 = X X 0 = 0 X Y. However if the 
rectangle P X Q = R X S is non-empty, then P, Q, R ,  S are non�mpty . If 
y E Q, then for x E P, (x ,  y) EP X Q = R X S, so x ER and y E S, so P _� 
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R ,  Q � S, and as the opposite inclusion follows similarly , the representation 
is unique. 

2 .  Yes , as A X (/J = (/J X 0 (= (/J) satisfies Definition 3, p .  1 76 .  
3 .  If either A or B is empty , A X B = 0 E $ X fJ . If neither A nor B is empty, 

A X B E cS X Jl. iff both A aJtd B are both measurable , by Theorem 4 ,  
p .  1 78 .  

4. (xv)x(y) = xv(x , y) = 1 iff (�, y) E V, iffy E Vx , iff xvx{y) = 1 .  Similarly 
for (xv )Y.  

I 

5 .  The function f*(x,  y) = ftx) js $ X <fJ -measurable , as is g*(x,  y) = g(y). 
So f*g • = fg is me�able. 

6. Take X =  Y -=  R, $ = fJ = :M , iJ. = v = m .  Let A be a non-measurable set 
irrX, B a non-empty set of measure zero in Y. Then A X B s; A X B, a set 
of measure zero. But A X B fF :M X :M , by Theorem 4, p. 1 78. 

7 . (i) Let ( 4>n } be a sequence of measurable simple functions 4>n � f, 4>n t f. 
00 

Then ot/>n is measurable for each n and of = u ot/>n . (ii) f f dx = lim f 4>n dx n= l  
= lim (m X m)(04>n) = (m X mXOt)· (iii) Write Gn = [(x , y): y = f(x), ftx) 00 
� n] . Since G = U Gn , it is sufficient to show that each Gn is measurable . n= l  
Let Xn = [x : (x,  y) E Gn ] .  So Xn = [x : .ftx) <; n]  is measurable . Choose 
sequences of measurable simple functions on Xn , (4>kJ and (lj!k } , 4>k <; 
f, .Vk � f, 4>k t f, .Vk -l- f. Then 04>k and 0"' k are measurable .  But Gn = 

00 00 0 O'h -� OIPk · (iv): By (iii) we can apply Theorem 6,  p. 1 79,  to G. 

Let 4> be as in Theorem 6 ,  then clearly q,(x) = 0 for each x , so (m X mXG) 
= f 4> dx = 0 by Definition 9,  p. 1 8 1 .  

8 .  Immediate consequence of Theorem 9 ,  p. 1 82, as f, being bounded, is 
integrable . 

9 .  By Exercise 5 ,  fg is measurable , so the result follows from Theorem 8 ,  
p.  1 82 .  

10. We wish to show that la dx Ja IJ(t)l /t dt < 00• Interchangihg the order of 
.0 X 

integration, this integral becomes 

1a t a dt 1 IJ(t)l /t dx = 1 l.f(t)l dt < oo. 
0 0 0 

By the Corollary to Theorem 9 ,  g E L(O, a) and the iterated integrals are a 1a equal. Integrating as above (without mo4ulus signs) gives j f dt = g dt. 
0 0 

1 

1 1 .  For y =F 0, 1 e-Y sin 2xy dx = e-Y (ain.2y)fy E L(0, 00). Now l e-Y sin 2xy l 
0 
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<: e-Y ,  integrable over [x : 0 <: x <: 1 ]  X [y : 0 <:y < oo] . So 

1
00 

1 1 1 1 1 00 
dy e-Y sin 2xy dx = dx e-Y sin 2xy dy. 

0 0 0 0 

00 
But 1 e-Y sin 2xy dy = 2x/(1 + 4x2 ). So 

0 

!
00 1 

(e-Y sin2y)fy dy = 1 2x/(1 + 4x2 ) dx = i log 5 .  
-- � 0 1 

1 2. [ l e-xy sin 2y l dx = l sin 2y l (1 - e-Y)/y E L(O, N) for each N > O. So 
0 

N 1 1 N J dy 1 e-xy sin 2y dx = 1 dx [ e-xy sin 2y dy . 
0 0 0 0 

N 
Now 1 e-xy sin 2y dy = 2/(x2 + 4) - x/(x2 + 4) e-xN sin 2N - 2e-xN / 

0 

(x2 + 4) cos 2N. So the second repeated integral = arc tan ! + o (1 ) as N � 
oo, by Theorem 10, p .  63. Hence 

JN 
(sin 2y/y - sin 2ye-Y fy) dy = arc tan ! + o ( l )  as N --+- 00 • 

0 

N 
But lim 1 sin 2y/y dy = rr/2 (by a standard contour integral) . 

0 00 
So 1 e-Y sin 2y/y dy equals rr/2 - arc tan ! = arc tan 2 .  

0 
Y · x 

1 3 .  To obtain j_ dx 1 (x - tYi-1 f(t) dt, consider the iterated integral of 
0 0 

the modulus of this function, in the opposite order, viz. 

Iay 
lf(t)l ( !,  y 

(x - t)'l<-1 dx) dt = �y 
lf(t)l (y-;,_ t}(i dt < oo. 

So the order of integration may be changed and the desired integral equals 

�Y 
f(t)( J, Y 

(x - t)(i-1 dx) dt = a-1 Kti+1 (y). 
a 1 a x a a 14 .  We have 1 x-1 F(x) dx = dx J x-1 f(t) dt = J dt 1 x-1 f(t) dx 

0 0 0 0 - t  
a a 

= 1 (log a - log t) f(t) dt = J f(x) log l /x dx - F(a) log 1 /a ,  where the 
0 0 

charge of order of integration is justified if either of the iterated integrals is 
fmite , the integrands being non-negative . 
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J 1 J 1 1 5 . For y =I= 0, f(x, y) dx = 0,  and for x =I= 0, , f(x , y) dy = 0, so the 
-1 -1 

iterated integrals are both zero. But f integrable on [- 1 , 1 ] X [- 1 ,  1 ]  would 
imply f integrable on [0 , 1 ] X [0, 1 ] which would give, by Theorem 9 ,  1 I 

p. 1 82 , 1 dx 1 f(x , y) dy < 00• However this integral is 
0 0 

� 1 (� - 2(x2\ o) dx = oo. 

1 6 .  Substitute y = tan x to get (for x > 0) 1 1  x2 - y2 1 --�- dy = --
0 (x2 + y2 )2 1 + x2 

and the first int-egral. By symmetry 1 1 1 1  x2 -y2 1 1  1 1  y2 - x2 1T 
o 

dx 
o (x2 + y2 )2 

dy = 
o 

dy 
o {y2 + x2 )2 

dx = 4 , 

so we obtain the second integral . To show that f is not integrable directly , 

integrate r over [0 , 1 ]  X [0,1 ] to get 1 1 dx [" 
( 
�2 -{2

)2 
dy , by 

0 0 X + Y 

Theorem 7 ,  p. 1 8 1 . The same substitution as above reduces this to J 1 1 /2x dx 
0 

= 00 . 
/ 

1 7 . From a diagram it is clear that f j(x , y) dx = 0, (O < y  < 1 )  but f f(x , y) dy 
= 2 if 1 /2 � x < 1 ,  f f(x , y) dy = 0,  0 < x  < 1 /2 .  Theorem 9 is not contra
dicted as f 1 /(x ,  y)l dx dy = 00, by inspection. 

1 8 . For each y we have f f dJ..L = - 2-
y

-
1 , so f dv f f dJ..L .. � - 1 /2 .  But 

f dJ..L f f(x, y) dv = 3/2 .  

However it is easily seen that f r+ d(p X v) = f f- d(p X v) = oo. 
19 .  Clearly S (& X fJ ) c $ X fJ .  Also, given a fixed F E  CJJ , E  X F E  $ (8 X 

�) for E E {?' . As in Theorem 1 0, p. 1 86, we take countable union of these 
sets and take complements in the set X X F to get D X F E  S (E; X rf) for 
any D E � . Keeping D fixed and proceeding similarly we get D X K E 
S (£; X q; ), for any K E fJ .  But this gives S X 7/ c (>� (8 X �) and the 
result . 

20. This follows from the limiting arguments of Theorem 1 1 ,  p. 1 87, starting 
from the fact that g(u) = XE(ru) is Borel measurable for the sets E considered 
there. 

2 1 .  Let B be an open set in R2 - [0] and let a E B. Then 3 6 , 0 < 6 < l a l , such 
that [x : I a - x l < 6 ] � B. We may take for E the set [ru : l a l - 6/2 < r < 
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Ia  I + 6/2 , u E A ]  where A is the open arc in S1 centred at a/la l and sub
tending an angle 2 arc tan (6-J3/(6 + 21aJ )). 

22. In Theorem 7, p. 1 8 1 ,  take .f(x ,y) = e-<x +y2 ) to get 

1 .. e-xs dx 1oo e-Y' dy = 1oo 1oo e-<xs +ys ) dx dy. 
0 0 I) 0 

By Theorem 1 1 , p. 1 87 , this equals 

1
00 

11r/2 1
00 

r dr e-� d8 = 1r/2 e-il' r dr = Tr/4, 
0 0 0 

where we may make the change of variable using Theorem 12 ,  p. 167 , with 
k(x) = 2x (x > 0), K(x) = x2 , g(x) = e-x , a =  0, b = N, and letting N -+ oo. 00 
So 1 e-x' dx = Vfr/2 . 

0 00 
23 . By definition r(z) = 1 e-x �-1 dx;  so for each real y, by Example 25 , 

0 00 00"" 00 
p. 75 , � e-y-x x•-1 dx = 4 e-x(x - y'f-1 dx = t .f(x , y) dx,  say, 

where .f(x, y) = e-x(x - y'f-1 if 0 <y < x, f= 0 otherwise. Then as in the 
proof of Theorem 1 3 ,  p .  190, yw-t .f(x,  y) is measurable in the quadrant 
x > O, y > 0.  Also 

00 00 00 00 
1 dy I lyw-1 .f(x,y)l dx = I l e-Y yw-1 1 dy 1 l e-x xs-t l dx < 00• 

0 0 0 0 

So yw-l fE L 1 (m X m) and hence 
00 00 00 [ dx 1 .f(x, y) yw-1 dy = I yw-1 e-Y r(z) dy = r(z)r(w). 

0 0 0 
t 

loo X 

But .f(x , y)yw-1 dy = e-x 1 yw-1 (x -y'f-1 dy = 
0 0 

1 
e-x �+w-1 I u w-1 (1 - u y-1 du ' 0 

on substituting y = ux and using Theorem 14 ,  p .  169. So integrating with 
respect to x gives the result. 

1 
24. We wish to fmd j eixt d.L(t). Consider the sequence of step functions 

0 

(Mn } on [0, 1 ] such that each function Mn is left-continuous and monotone 
n 

increasing and Mn increases by 2-n at each point 2 � 3-i Ej (ei = 0 or 1 ), 
j= l 

Mn(O) = 2-n , Mn(1)  = 1 .  Then Mn = L on the setU/n k of Chapter 1 ,  
k , 
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p.  24, and IMn - L l  � 2-n . So Mn � L uniformly and so , as in the proof of 
Theorem 1 1 ,  p.  000, we have lim f eixt d.Mn(t) = f eixt dL(t) . But 

f eixt dMn(t) = T" � exp ( ix C;' + . . . + 
2
3
€:)) 

where the sum is taken over all 2n possible n-tuples (e1 , . . .  , En )· So the 
right-hand side equals 

TT - 1 + exp ': = TT cos x
k exp � = 

n 1 ( 2 · ) n · 
k = I 2 3 k = I 3 3 

exp (ix (1 - 3-n )\ IT cos x
k , 

2 ') k= I 3 
and the result follows. 

25 . Consider the real and imaginary parts off and apply the Riemann-Lebesgue 
Lemma (Exercise 44 , p. 75), taking (3 = 1r, ¢(!) = cos t or sin t as appro
priate. 

I 

26 . Take { = X[o I ·  Then /tO) = 1 = 1 1 !1 dt. ' 
0 . 

27. We need to show that W'.{ E L2 (-oo, oo); the linearity is obvious. By Holder's 
inequality, p .  1 1 5 , we have 

(f IK(x,  t) .f{t)l dt)2 � f  IK(x ,  t)l 2 dt f 1 !1 2 dt. 

Integrate both sides with respect to x ,  to obtain W:f E L2 (-oo, oo) as the 
integral of the left-hand side is seen to be fmite . 
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G0 - 1 8, 3 2, 3 6 , 20 5 
Lebe sgue 90, 9 1  
measurable 30,  9 3 ,  9 7  
non-measurab le 4 2 ,  1 79 ,  20 3 
nowhere dense 1 7 , 20 1 
open 1 7  
perfect 1 7 ,  25 

sgn x 22 
signed measure 13  3 
simple function 54 
strictly convex 1 1 1  
su badditive 2 9 ,  9 5 
supremum 1 8  
support of a measure 1 5  7 
symmetric difference 1 5  

Tcheby chev's inequality 107 
topology 1 7  
total variatio n of a function 8 1  

of a measure 1 38 
translation invariance 28 , 46 , 1 86 

uniform convergence 1 25 ,  1 2 8, 1 3 1 ,  1 3 2 ,  
2 29 , 235 

uniformly fundamental 22 1 
union 1 5  
unit sphere 1 8 7  • 

variation (of a function) 
bounded 8 1  
negative 8 1  
positive 8 1  
total 8 1  

variatio n (of a measure) 
total 1 38 

weakly convergent 1 20 
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