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PREFACE 

These notes are based on courses in measure and integration theory that the 
author has taught for a number of years in the mathematics department of New 
Mexico State Although the presentation may be somewhat different, the 
notes contain the basic information on measures and the Lebesgue integral contained 
in such standard introductory texts as Royden, Hewitt and Stromberg or Aliprantis 
and Burkinshaw; however, we try to emphasize the role played by countable additivity 
by including a substantial amount of material on finitely additive set functions which 
is not contained in most introductory texts. The material on finitely additive set 
functions can easily be skipped if the reader wishes to concentrate on studying the 
basic properties of the Lebesgue integral. 

We motivate the introduction to measure and integration theory by discussing 
Lebesgue's original description of the Lebesgue integral. Following this historical in­
troduction we present an abst,ract set-up which is sufficient to discuss measure theory 
and following a discussion of outer measures we give a general method which can be 
used to construct measures including Lebesgue and Lebesgue-Stieltjes measures. The 
important properties of Lebesgue measure are then discussed in detail. We then define 
and develop the basic properties of the class of measurable functions. The Lebesgue 
integral is defined, and its major properties are derived. Several special topics such 
as convergence in measure, the Riesz-Fischer Theorem and the relationship between 
the Riemann and Lebesgue integrals are discussed. \Ve then define the product of 
measures and use an interesting characterization of the Lebesgue due to J. 
Mikusinski to prove Fubini's Theorem on the equality of double and iterated integrals. 
The section of the notes devoted to measure and integration closes with a discussion of 
the Hahn and Jordan decompositions and the Radon-Nikodym Theorem. A chapter 
on the relationship between differentiation and integration follows. 

The second part of the notes is devoted to the study of some of the important 
spaces of functions encountered in analysis. In order to have a framework 
in which to discuss function spaces, we introduce normed spaces and study enough 
of their important to facilitate our study. In particular, we discuss what 
Dunford and Schwartz refer to as the three basic principles of functional analysis: 
the Uniform Boundedness Principle, the Hahn-Banach Theorem and the Open Map­
ping/Closed Graph Theorems. As noted by F. Riesz many of the most important 
function spaces carry a natural order structure so we follow the example of Aliprantis 
and Burkinshaw and also study the basic properties of ordered normed spaces. Af­
ter the discussion of abstract spaces, we proceed to study the L'P spaces, spaces of 
finitely and countable additive set functions, the space of continuous functions on a 
compact space and abstract Hilbert space along with the Fourier transform. For the 
convenience of the reader not familiar with them we discuss the topics of functions of 
bounded variation, the Baire Category Theorem, the Arzela-Ascoli Theorem and the 
Stone-Weierstrass Theorem in appendices 

It is assumed that the reader of these notes has had an introductory course in real 
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analysis at the level of the texts by Rudin, Principles of Real A nalysis, Bartl", The 
Elements of Real A nalysis, Apostol, Mathematical A nalysis or DePree and Swartz, 
Introduction to Real Analysis. The term "topological space" is used several timcs in 
the tcxt; however, for students with no background in topology, "topological space" 
can be replaced by "metric space" and in the measure/integration section "topological 
space" can even be replaced by Rn except for parts of §3.5 and §3.6. 

The notes contain more material than I have ever been able to cover in a one year 
course. In order to develop the properties of the integral quickly, I cover Chapter 
1, 2.1, 2.3 (2.3.1 being optional at this point), 2.4, 2.5 being optionai), 3.1-3.9 
(section 3.10 and 3.11 being optional), return to 2.2.2 to develop the material 
necessary to cover the Radon-Nikodym Theorem in 3.12 and then do 3.13. The other 
sections cover more specialized topics, many dealing with properties of finitely addi­
tive set functions, which can either be covered or left. to the student to read on his/her 
own. Chapter 4 covers basic topics in differentiation and .integration including the 
Fundamental Theorem of Calculus; the material ill §2.6 011 Lebesgue-Stieltjes mea­
sures is used in this chapter. In Chapter 5, sections 5.3 on the Uniform Boulldedness 
Principle and 5.5 on the Open Mapping/Closed Graph Theorems can be skipped if 
desired along with sections 5.6.2 and 5.6.3. Chapter 6 contains a discussion of clas­
sical function spaces. The results on ordered spaces in §5.7 arc not used in sections 
6.1,6.2 and 6.3 so these sections on LP spaces and their duals can be covered after 
§5.6.1. The material ill 6.'1 and 6.5 relies on some of the results in §5. 7. The maLeria'! 
on lIilbert space is also independent of §5.7. 

I would like t,o thank the many graduate students at New Mexico State University 
who took the graduate course in measure and integration while these notes Wf're 
evolving. I particularly would like to thallk Dan Gagliardi, .lillian Lee, Diane Martinez 
and Debra Zarret for reading through this tina'! version of the notes and correcting 
many of my errors. Special thanks go to Valerie Reed for doing her usual exemplary 
job of translating my hand-written notes into manuscript form. 
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Chapter 1 

Introduction 

1.1 Preliminaries 

In this introductory section we set down some of the basic notations which will be 
used in the sequeL It will be assumed throughout that the reader is familiar with 
basic introductory real analysis as set forth in such texts as [Ap], [Ea], [DeS] or [RI]. 

Set Theory 
We denote the positive integers, integers, rationals, reals and complex numbers by 

N, Z, Q, Rand C, respectively. We denote the set of all non-negative real numbers 
by R+ = {t E R: t 2::: OJ. The n-dimensional Euclidean space of all ordered n-tuples 
of real [complex] numbers will be denoted by R n [Cn]. 

We use standard set theoretic notation: Let S be a non-empty set. If t: {Ea: 
a E I} is a family of subsets of S, we denote the union and intersection of the family 
t: by 

UaElEa Ut: = {x E S: x E Ea for some a E I} 

and 
nnE/Ea = nt: {x E S: x E Ea for all a E I}. 

If I = {I, ... ,n}, we write 

and 
niE/Ei = EI n··· n En = n?=IEi. 

Similarly, for I N, we write UiENEi U~lEi and niENEi n~lEi' The family 
t: is said to be pairwise disjoint if n Eb = 0 whenever a, bEl and a 1= b. If 
A,B C S, the complement of B in A is A\B = {x E A: x E A,x rf:. B}, and we set 
AC = S\A. A permutation of a set S is a 1-1, onto function f : S S. The power 
set of S is denoted by P(S) 25. If A C S, the characteristic function of A is the 
real-valued function CA defined by CA(t) 1 if tEA and CA (t) 0 for t rf:. A. 
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A sequence in S is a function f : N ---> S; we write f(k) = ,h and denote the 
sequence by {ldr'=l or, simply, Uk}· If {Ed is a sequence of subsets of 8, we say 
that {Ed is increasing [decreasing} if Ek C Ek+l [Ek :::> E k+1] for ea..eh k; we write 

i or Ek i Ek [Ek 1 or Ek j. nk~l If {Ed is a sequence of subsets of S, 
the limit of {Ek } is defined by 

Ek 

since the sequen«: [nz::,jEk] is decreasing [increasing], 

If we say that {Ek } converges and set 

Note any [decreasing] sequence {Ed converges to Ek If C 
is any family of subsets of S, [C,;] denotes the family of all subsets of 
countable unions [countabk intersections] of members of C. 

A non-empty subset E R is bounded above [beloll} if th~re exists b E R such 
that t S b [b S i] for every tEE; b is called an upper [lower} bound for E. We say 
that E is bounded if it is bounded from above and below. If E is bounded above 
[below], an upper [lower: bound, Ii, for E is called a least upper bound lower 
bound} or suvremum [infimum} if b is an upper [lower] bound for E and if a is any 
other upper [lower] b01Uld for then b S a [a S b]; we write b ='snp E . The 
real numbers possess the important O1'der completeness property: every non-empty 
subset of R which is bounded above [below] has a snpremum :infimum]; see [Ba], 
fDeS] or [RIl· 

A real-valued seqnence {td is increasing if tk tk+1 [tk 2: tk+l] for all 
k; we write [tk 1). If IA' i or lk L we say that {td is monotone. From the order 
completeness property of the real numbers, it follows that if {td is an increasing 
[decreasing] sequence ill R which is bounded above [below], then {td converges to 
SUp{tk: kEN} [inf{tk : k N}]. 

H is a. bounded sequence in R, the limit superior' inferior} of {t.} is 
defined 

= inf 
J~t 

sup inf tic]. 
J?:l k?:J 

(1.1) 

A bounded real sequence, {td, converges if and only if = limi., and in this case 
limtk= [De~. 

Let a, bE R with a < b. We use standard notation for the intervals generated by 

a,b: bJ={tER:a~t b}, 

(a,b) {tER:a<t<b}, 
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and 

[a, b) {tER:a::;t<b}, 

(a,b] {tER:a t::;b}, 

[a, = {t E R : t ;::: a}, 

(a, CXJ) = {t R: t > a}, 

(-=,a) {tER:t<a} 

a]={tER:t a}. 

Intervals ofthe form (a, b), (-CXJ,a), (a,cD) and =) = R b], (-CXJ, a], 
(-CXJ, CXJ)] are all ca.!led open intenJals [closed intervals)' 

If I is an interval in R, a real valued fnnction f : I R is increasing [decreasing] 
if t,.5 E I, t < s, implies f(t) ::; f(s) [f(t);::: f(s)]; we write f ~ on I. f is 
said Lo be monotone if f is either increasing or decreasing. Recallthat dny monotone 
function has both and left hand limits at every point of I rDeS]. 

If /k : S .. -+ R, the sequence {.fk} converges pointwise to the function f : S, R 
if lim!k(l) f(t) for every t S; we write fk --+ f pointwise on 5'. If for every 
t > 0 there exists N such that Ifk(t) - f(t)1 < E for every k ;::: N, t E S, then {fd 
convagesuniformlyto fan S, and we write fk --+ f uniformly on S. Basic properties 
of pointwise and uniformly convergent sequences of functions are given in [DeS]. 

If f,g : S --+ R, the max and min of f are defined f V g(t) max{f(t),g(t)}, 
1\ = min{f(t),g(l)}. We have t.he important formulas for f V 9 and f 1\ g: 

f V 9 = f + 9 + If - gl /2, f 1\ 9 f + 9 - If gl (1.2 ) 

We write f V 0 and 
t E s, If I r + f-, 

Exercise 1. Prove (1.2). 

Exercise 2. Show A = 

if CA = ; A = lim 

(-f) V 0 so f = r - ,a.nd if If I (t) If(I)1 for 

if and only if 
if and only if 

= limC E.; A IimEk if and only 
limCA., where the limit statements 

concerning functions are pointwise. 
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1.2 The Extended Real Numbers 

Particularly in measure and integration theory, it is convenient to extend the real 
numbers by adjoining two additional elements, denoted by 00 and -CXl [distinct and 
not belonging to R] with the order properties -00 < t < 00 for t E R. We denote 
R plus the elements CXl, -00 by R". If E C R is non-empty and not bounded from 
above [below], we define sup E = 00 [inf E = With this convention, every 
non-empty subset of R has a supremum [infimum] in R*. Also, with this convention, 
every sequence in R* has a and a lim in R* [§l, (1)]. 

A sequence {td in R* has limit 00 [-00] or converges to CXl [-CXl] if for every 
r E R there exists N such that k 2: N implies tk 2: r [tk S r]. We write limtk 00 
or tk --+ 00 [lim tk = -CXl or tk --+ -CXlj. 

We adopt the following conventions for algebraic operations on R*. 

CXl + tt + 00 unless t -00; 

(-00) + t = t + (-CXl) unless t 00' , 

if a> 0, then a· CXl = 00' a CXl and a' (-00) (-00)' a = -CXl; 

if a < 0, then a· 00 00' a -CXl and a· (-CXl) (-00)' a = 00. 

The motivation for these definitions is the limit theorems from basic analysis. As 
usual we do not define CXl + ( -00) or ( -CXl) + 00. 

We also adopt the convention that 0 . 00 = 0; this definition may appear to be 
somewhat unorthodox, but it will be apparent when we study integration theory that 
it is very useful. 

With these definitions, we have 

Theorem 1 If {td is an increasing [decreasing} sequence in R*, then {l.d converges 
to SUp{tk : kEN} {tnf{tk : kEN}}. A sequence {tk} in R* converges in R" if and 
only iflimtk = limh and in this case lim tk = limtk. [Here, limtk inf sup tk 

)21 k?j 

and =supinftk'} 
j>1 k?j 

The proof is left to Exercise 1; see also Exercise 10. 
A similar result is valid for increasing or decreasing real-valued functions defined 

on iIltervals in R. 'vVe leave it to the reader to formulate the statements. 
For intervals in R*, we adopt the following notation: [-CXl, 00] = R*; (-00, (0) = 

R; if a E R, 
[a, 00] = {t E R*:a S t S CXl}, 

[a, CXl) = {t E R : a S t < CXl}, 

(a, (0) = {t E R : a < t < oo}, 
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(a,ool = {t E R*: a < t:::; Do}; 

and similarly for a], [-oo,a), (-oo,al, a). 
We have the following important structure theorem for open subsets of R. 

Theorem 2 Let G c R be open. Then G is a countable union of pairwise disjoint 
open intervals in R. 

Proof: For each x E G we associate an open interval containing x as follows: let I 
be the family of all open intervals which are contained in G and contain x and set 
Ix UI. If b sup{,8: (a,,8) E I} and a inf{a: (a,,8) E I}, then Ix (a,b) so 
Ix is an open interval. 

The family {Ix: x E G} is pairwise disjoint. For suppose that Z E Ix n Iy. Then 
Ix U Iy is an open interval so Ix U Iy C Ix by construction. Hence Ix = Ix U Iy and, 
similarly, Iy Ix U Iy so {Ix: x E G} is pairwise disjoint. 

The family {Ix : x E G} is dearly countable since each Ix contains a rational. 
Since G u{Ix: x E G} the result follows. 

For later use we establish an important result for series in R*. 

Definition 3 Let {t.} C R' be such that Sn tk is defined for ellery ni s" is 

called the nth partial sum of the seque.nce. {td. The (formal) series f tl< converges 
1<=1 

in R· if and only if the sequence {Sn} converges in R·. We write s = li;;nsn tk 

and call s the sum of the series. 

The series tk is called unconditiondly convergent or rearrangement convergent 

if for every permutation (T : N --+ N, the series fer(k) converges. The series 

is called a rearrangement of f t". It is established in elementary analysis that a 
"=1 

real-valued series is unconditionally convergent in R if and only if it is absolutely 

convergent [i.e., f Itkl converges in RJ, and in this case all rearrangements converge 
I<=! 

to the same limit [see, for example, [DeS] 4.21J. 
For series with non-negative terms, we have 

Proposition 4 If tk E R', tl< :::: 0, then tk is rearrangement convergent and every 

00 

rearrangement converges to L t k. 
k=1 

Proof: 

Set a = 

tk converges in R* since the sequence of partial sums {sn} is increasing. 

00 

ik' Let (T : N --+ N be a permutation of N. Set b = L: tu(k)' It suffices 
k=! 
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to show b:::; a or f t,,(k) :::; a for every n. For n N, set m rnax{O"(l), ... ,O"(n)} 
1<=1 

n m 
and note L t,,(I<):::; L tl< :::; a. 

1<=) 1<=) 
We next establish a result, for double series of non-negative terms which is very 

important in measure theory. Let t : N x N -> R'; we call t a double sequence 

and denote the value t(i,j) iij. The series I:( I: tiJ = I: ti] [I: 
i:;;;1 j=1 i=1 j=l 

I: tij J is called an iterated series. 
1=1 

Theorem 5 Let tij E R', t ij 2': O. Then 

co 
(i) L tij and 

i=1 

(ii) if 0" : N -t N x N i.~ 1 ~ 1, onto [.W {ter( id i.l an enumeration of {t ,)}], then 

t"(i) = I: tij [= I: tij]' 
i=) ]=1 

Proof: (i): Since tij 2': 0, the series I: tij always converges to a non~negati ve element 
j=) 

00 OX) 

of R' so the iterated series L L iij always converges. Set a 
i=1 j=l 

OX) = 
LL For each m, n 
j=li=1 

m n m 00 

L tij :::; LLlij:::; a. 
j=1 ;=) j=1 

Hence b :::; a and by symmetry a :::; b. 

(ii): Set c f iff(i) and for each i set O'(i) (m;, ni)~ Then 
1<;1 

so c:::; a. 

k 

Lt"(i) 
i=l 

I< 00 

t min, :::; L i min, :::; a 
]=1 

00 co 

I: L t'J awl b = 
t=] )=1 

Fix m, n. There exists N such that if 1 :::; i :::; m, 1 :::; j :::; n, then there exists 
1:::; r:::; N such that O'(r) (i,j). Then 

m n N 

Lt;j:::; L t,,(r) :::; c. 
]=1 r=) 

Hence, a:::; c. 
For series whose terms are not positive, see Exercises 2 and 3. 

Exercise 1. Prove Theorem 1. 
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Exercise 2. Let tij = 1 if i J 
Compute 

and 

1, tij = -1 if i J 

00 00 

~t L 'J 
j=1 

00 

LLlij. 
j=li=1 

Find an enumeration {t;} of {tij} such that f ti diverges. 
1=1 

7 

-1 and tij o otherwise. 

Exercise 3. An iterated series f 
i=l 

tij converges absolutely if f f Itijl < 00. 
,=1 j=1 

Show that if f f tij converges absolutely, it converges; moreover, if {ti} IS any 
1=1 j:;::::l 

enumeration of {tij}, show 
00 

ti converges to 2: 
1=1 

Exercise 4. A real-valued series tk is subseries convergent in R if for every sub-
00 00 

sequence {tn.}, the series 2: tn. converges in R. Show 2: tk is subseries convergent 
k=1 k=1 

in R if and only if f Ilkl < 00. 
k=! 

Exercise 5. If tk converges absolutely in R, show t~ converges in R. Can 

absolute convergence be replaced by convergence? Does the convergence of f tz (in 
k=l 

R) imply the convergence of f tk? 
k=l 

Exercise 6. If f ti and si converge in R, show 
k=l 

R. 

tkSk converges absolutely in 

Exercise 7. If tk --> 0, show {t,d has a subsequence {tn.} such that the series f tn. 
k=l 

converges absolutely in R. 

Exercise 8. Let (T be a permutation of N x N and let 0 :s t ij :s 00. Show t ij = 

"" = .2: ;::: tu(i,j) . 
• =1 J=l 

Exercise 9. Show that a sequence {tj} C R is bounded if and only if the series 

fij5j converges for every absolutely convergent series f 5j. 
j=1 j=1 
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Exercise 10. Show (ak + bk) ::::; limak + limbk, lim (ak + bk) 2:': limak + limbk and 
lim(-ak) -limak. Iflimak a, then lim(ak+bk) = a+limbk, lim(ak + bk) = 
a + limbk. 
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1.3 Lebesgue's Definition of the Integral 

Even shortly after Riemann introduced the integral which now carries his name the 
mathematicians of the era realized that the integral had serious shortcomings. In 
particular, the integral was only defined for functions which were bounded and de­
fined on bounded intervals; in order to integrate unbounded functions or functions 
defined on unbounded intervals required a special definition and led to an integral 
often referred to as tbe Cauchy· Riemann integraL It was also recognized that the 
Riemann integral has poor convergence properties; for example, a function which 
is the pointwise limit of a uniformly bounded sequence of integrable functions need 
not be lliemann integrable (Exer. 1). In his 1902 Ph.D. thesis H. Lebesgue ([LIl) 
introduced an integral which now bears his name and wh.ich overcame most of the 
shortcomings of the Riemann integral. Since its inception the Lebesgue integral has 
continued to evolve and in its present form it is recognized as the most useful and 
powerful theory of integration which is available. In order to explain and motivate 
our presentation of the Lebesgue integral we now give a brief sketch of Lebesgue's 
int,roduction to the Lebesgue integral. 

Lebesgue began with what he referred to as the "problem of integration" which can 
be paraphrased as follows: Assign to each bounded function f defined on a bounded 
interval I [a, bj a number, called its integral and denoted by f: f(t)dt = f: f h f, 
satisfying the properties 

(a) f: f(t)dt = f:t; f(t h)dt 

(b) f:f+fbcf+fc"'f 0 

(c) f:(I+9) f;f+f:9 

(d) f ~ 0, b ~ a implies f: f ~ 0 

(e) fJ 1 1 

(f) if fk i f, then f: !k ...... f: f· 
Lebesgue made the assumption that such an integral existed and then proceeded 

to deduce what additional properties it would have to possess. 
For example, from (c) it follows immediately by taking f = 9 = 0 that f: 0 0, 

and then it follows that f:( - f) f: f. From this property, (c) and (d) imply that 
when f ~ 9 on [a, bj, then f: f ~ f: g, and whence If: fl ~ f: If I, since f: f ~ f: If I 
and f:(-f) = - f: f ~ f: If I· 

From (c) it follows that ifn is a positive integer, then nf: f f:(nf), and from 
the observation above this also holds if n is a negative integer. Also, we have 

l
b 1 lb 1 n(-f) = n -f 

a nan 
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so 11b Ib 1 f= n a . a n 

for any nOll-zero integer. it follows that f; qf = q.r: f for any rational q. If r E R, 
let q be a rational and choose a rational p, 0 < p 1, such that Ir - ql(iv[ + p) is 
rational, where IV[ = sup{lf(x)1 : a x s: b}. Then 

Il rf 'It fl s: llr - qllfl ::; Ir ql(M + p) l1 

and letting q approach r, we obtain I: rf = r fc~.f. That is, if axioms and (d) 
hold, then the integral (if it exists) must be homogeneous. 

It can also be shown (a)-(e) that f: 1 b a (Exer. 2). Note that in 
deriving these properties of the integral condition has not been employed. 

It follows from these that any integral satisfying axioms 
agree with the Riemann for Riemann integrable functions. For any 
interval I [a, b] and subdivide I into subintervals g : i = 1, ... , 7I}. If f is a 
bounded fUllction on I, let mi inf{f(x):.r Eli}, Af, sup{f(x): .1: E Id and let 
C( I) be the length of L Then 

n Tnif:(Ii) s: t ! f = J, f 
i=J t=i' II I 

n 

Lfs:lfS: f, 

where tJ and l~f denote the lower and upper Riemann integrals of f, '~C'IJ~Lu' 
Recall, however, that the Riemann integral does not property (f) 

Now Lebesgue made a crucial observation using condition (f). Suppose 
f : [a, b] -> R is bounded with C s: f(x) < L for a s: x s: b. Consider a partition 
11' : C Co < el < ... < en L of the range of f and let 

:f:i-lS:f(x)< ,~ 1, ... ,n. (1.1 ) 
n 

1£ we set 'P = I 1/' = L denotes the characteristic 
£=1 

function of E, then we have 'P s: f s: v so 

(1.2) 

The inequality (2) leads to the important observation that in order to define the 
of the bounded function f it is only necessary to define the integral for certain 

characteristic functions. For suppose that I: has been defined for all characteristic 
functions arising from The functions 'P and 1/) depend on the partition 7r and as 

max{fi - {'i-I:' i, ... , n} -> 0, ( 1.3) 
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the functions <.p and tj; converge to f uniformly. If a sequence of integrable functions 
{In} converge uniformly to an integrable function f, then f: fn --> f: f since 

It fn - t fl :s t Ifn - fl :s (b - a) suP{lfn(x) - f(x)1 : a:S x :s b}. 

Thus, it follows that the integrals of <.p and tj; must converge to f: f if (3) holds. Note 
that in order to define the integral of the function f it is only necessary to define the 
integral of characteristic functions of sets of the form (1) which are generated by the 
function f. The integral of f can then be defined as the common limit of the integrals 
of the functions <.p and tj; as (3) holds. It is often remarked that the key difference 
between the Riemann integral and Lebesgue integral is that in the Riemann integral 
the domain [a, b] is partitioned while in the Lebesgue integral the range [e, L] is 
partitioned. Note, however, that the sets {Ei : i = 1, ... , n} from a "partition" of 
[a, b] in the sense that the sets are pairwise disjoint and their union is [a, b] so another 
view of the Lebesgue integral is that the domain [a, b] is "partitioned" by using sets 
which are more general than subintervals. 

Thus, to define the integral, Lebesgue was led to what might be called the "prob­
lem of measure": 

Assign to each bounded subset E of R a non-negative number, called the measure 
of E and denoted by m(E), satisfying: 

(i) any two congruent subsets have the same measure [two subsets of R are congruent 
if one can be obtained from the other by reflection and translation] 

(ii) if E is either a finite or count ably infinite union of pairwise disjoint sets {Ed, 
then 
m(E) = L m(Ei) [this condition is called countable additivity] 

(iii) m([O, 1]) = 1. 

Since m([a, b]) = b - a for any interval (Exer. 3), we are seeking an extension of 
the length function to the class of all bounded subsets of R. 

Using the Axiom of Choice, Vitali showed that the problem of measure has no 
solution in R. 

Example 1 For x, y E [0, 1], say that x ~ y if and only if x - y is rational. Then 
~ is an equivalence relation on [0, 1]. Let P be a subset of [0, 1] which consists of 1 
point from each equivalence class of ~; the Axiom of Choice is being used here. 

We first claim that if r, s are distinct rationals, then (P + r) n (P + s) = 0. For if 
x E (P + r) n (P + s), then x = p + r = q + s where p, q E P. Then p - q = s - r # ° 
so p ~ q with p # q. This violates the construction of P. 

Next we claim that [0, 1] ~ U{P + r : r E Qo}, where Qo = Q n [-1, 1]. For 
suppose that x E [0, 1]. Then x is in some equivalence class of ~ so x ~ p for some 
pEP. Then x - p is a rational r in [-1, 1] so x E P + r. 
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By (i), m(P + r) = m(P) for any r and by (ii), (iii) and Exer. 3, 

m([O, 1]) = 1 ~ m(U{P + r : r E Qo}) = L m(P) ~ m([-l, 2]) = 3. 
TEQo 

Whether m(P) = ° or m(P) > 0, this equation is clearly impossible. 

Remark 2 Note that the full force of (iii) was not used to reach the conclusion above; 
it is only necessary to assume that m([O, 1]) > 0. 

Since the problem of measure as posed above has no solution, there are two obvious 
ways to weaken the statement of the problem so that it is possible that a solution 
might exist. First, we might consider relaxing condition (ii) to require only finite 
additivity of the measure m. That is, replace (ii) by the weaker condition: 

(ii)' if E is a finite union of pairwise disjoint sets EI, ... , En, then m(E) = f: m(E;). 
i=l 

This version of the problem of measure is sometimes referred to as the "easy" problem 
of measure while the original version of the problem of measure is referred to as the 
"difficult" problem of measure ([Na] III. 7; this terminology is not often used but is 
convenient in this discussion). Banach showed that the easy problem of measure in 
R has a solution ([Bl]); see 5.6.3. 

Both problems of measure have obvious generalizations from R to Rn where the 
unit interval I = [0, 1] in (iii) is replaced by the unit square I x ... xI, and in (i) 
two sets are said to be congruent if one can be obtained from the other by reflections, 
translations and rotations. Example 1 can be used to show that the difficult problem 
of measure has no solution in Rn (see Exer. 3.9.4). Banach also showed that the 
"easy" problem of measure has a solution in R2 ([B1]). However, even the "easy" 
problem of measure has no solution in Rn for n 2: 3. Indeed, in Rn with n 2: 3 we 
have the remarkable Banach-Tarski Paradox: 

Theorem 3 If U and V are bounded subsets of Rn, n 2: 3, with non-empty interiors, 
then there exist kEN and partitions {EJ,"" Ed and {Fl ,"', Fk } of U and V, 
respectively, such that E j is congruent to Fj for j = I, "', k. 

That is, one can take a golf ball, cut it into a finite number of pieces and reassemble 
the pieces into a basketball! Theorem 3 clearly precludes the existence of a finitely 
additive measure on Rn, n 2: 3, which solves the "easy" problem of measure. 

For discussions of the Banach-Tarski Paradox see [Stl] or [Fr]. 
The other obvious weakening of the "difficult" problem of measure is to retain 

condition (ii) but to seek a measure which is defined on some proper subfamily of the 
family of all bounded subsets of R. This is the approach that we adopt. As we will 
see when we study the Lebesgue integral the countable additivity in condition (ii) 
leads to very powerful convergence properties for the Lebesgue integral. 
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\Ve now consider how we might construct a measure m satisfying conditions (i)­
(iii) on some family of subsets of R. Obviously, what we are seeking is an extension 
of the length function, f(a, b)) = b - a, from the class of all bounded intervals which 
satisfies conditions (i) and (ii) on some appropriate subfamily of subsets of R. To see 
how we might construct such an extension assume that a measure m exists satisfying 
condition (ii). If G is an open set which is contained in some bounded interval, then 
by (ii) m(G) must be the sum of the lengths of the open subintervals which make 
up G (1.2.2). That if G is the union of open intervals {l;}, then m(G) L;f(Ii); 

• 
this shows how the length function can be extended to bounded open sets. If E is 
a bounded subset and G is a bounded open set containing then m( G) :::.: m( E) 
(Exer. 3) so 

inf{m(G) : G open and bounded, G:2 E} motE) :::.: m(E); (1.4) 

mO( E) is called the outer measure of E and gives an extension of m from the bounded 
open sets to the family of all bounded subsets of R. As Example 1 points out, 
m* cannot satisfy condition (ii) for all bounded sets so we seek a "nice" subfamily 
of bounded sets on which mO will satisfy (ii). In order to isolate an appropriate 
subfamily, Lebesgue also defined the inner measure of a bounded set. Suppose that 
E is bounded and contained in the interval I = [a, b]. The inner measure of E, 
m*(E), is defined by computing the outer measure of the complement of E in I and 
setting 

m*(E) = m(l) - m*{l\E). (1.5) 

A set E is called (Lebesgue) measurable if m*(E) m.(E) and the (Lebesgue) 
measure of E, m(E), is defined to be this common value. As we will see in §2.5 
Lebesgue measure on the family of Lebesgue measurable sets satisfies conditions (i)­
(iii) and so furnishes a solution to the weakened "difficult" problem of measure. 

It is desirable to have the measure extended to subsets of R which are not bounded. 
The measure of an open set, even if unbounded, can be defined as above and the for­
mula (4) defining the outer measure is still meaningful. However, if I is an unbounded 
interval and E I is such that m*(I\E) = 00, then the formula (5) defining the inner 
measure of E is no longer meaningful. There are means of defining the inner measure 
of an arbitrary subset of R ([Roy], [WiD, but, fortunately, there is a characterization 
of measurability due to Caratheodory which involves only the outer measure of a set 
and this characterization can be used to define the measurability of a set even if the 
set is unbounded. Namely, we say that a subset E ~ R is (Lebesgue) measurable if 
and only if 

R ([Ca]). ( 1.6) 

Thus, a set is measurable if no matter how it is divided, the measure of the set is the 
sum of the measures of the pieces into which it is divided. As will be seen in §2.3, 
this definition can be used to define measurability in a very abstract setting. 
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As observed by Lebesgue, in order to define the integral of a function I, it is 
only necessary to define the integral of the characteristic function for sets of the form 
(1); i.e., it is only necessary to define the measure of such sets. [Functions with the 
property that inverse images of the form (1) are measurable are called measurable 
functions and are studied in §3.1.] In part 2 of these notes, we begin by developing the 
basic properties of measures. We then give an abstract treatment of outer measures 
and measurable sets by using the Caratheodory characterization of measurability 
given in (6). We show how outer measures can be constructed in general, and then 
construct Lebesgue and Lebesgue-Stieltjes measures and derive their most important 
properties. The Lebesgue integral is then defined and studied in part 3. In part 4 we 
study the relationship between differentiation and integration, and Parts 5 and 6 of 
the notes are devoted to the study of function spaces, many of which arise through 
integration processes. 

For a beautiful exposition on integration theory by H. Lebesgue see [L2], especially 
part II. A brief biography of Lebesgue is given by K.O. May in [L2]. Historical 
developments of integration theory, including the Lebesgue integral, are given in [Ha] 
and [Pel. 

Exercise 1. Let {rd be an enumeration of the rationals in [0, 1] I. Define In on 
I by In(t) 1 if t ;; r), ... , rn and InCt) 0 otherwise. Show each In is Riemann 
integrable but converges pointwise to a function which is not Riemann integrable. 

Exercise 2. Use (a)-(e) to show that J: 1 = b a. 

Exercise 3. Show that if (i), (ii)' and (iii) hold, then m( {a}) = 0 for any a and 
m(E) ;::: m(F) when E :::> F. Show that if (i)-(iii) hold, m(E) = 0 for any countable 
set and meta, b]) = b - a. 



Chapter 2 

Measure Theory 

2.1 Semi-rings and Algebras of Sets 

In our description of Lebesgue measure in §1.3 , we observed that the length function 
in R was to be extended to Lebesgue measure defined on some subfamily of subsets 
of R. In this section, we describe and develop some of the basic properties of the 
types of subfamilies on which measures and other set functions are defined. 

Let S be a non-void set and S P(S), the power set of S. 

Definition 1 S is a semi-ring if and only if 

(i) 0 S 

(ii) A,B E S implies An BE S 

(iii) A, B E S implie., A \B 
are pa,i1"lJJi3e diSJoint. 

S)) where Sj E Sand {Sj : J 

If in addition to (i)-(iii), S Jati..jies; 

(iv) SES, 

then S i., called a semi-algebra. 

1, ... ,n} 

Definition 2 A. <;; S is called a a - set with respect to S if A = U~ I Sj, Sj S, 
{Sj} pairwise disjoint. 

Proposition 3 Let S be a semi-ring. 

(i) If A E S and AI, ... 1 An E S, then A \ Uj=1 Aj i.1 a finite, 
union of eiement3 of S (and, hence, a (J-set with respect to S). 

(ii) {Ai: 1 EN} <;; S implicJ U~IAi is a (J-set with re •• peci to S. 

(iii) Countable 'unions and finite intersections of a-sets are (J'·.~ets. 

15 

disjoint 
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Proof: We use induction on n. For n = 1, this is Definition Assume 
(i) holds for n. Let AI, ... , An+l E S . By the induction hypothesis 

where Bi E S , {Bd pairwise disjoint. Then 

and by Definition each Bi \An+! is a finite, disjoint union of elements 
of S so 

(ij): Set A 
Then {Bk} are 

is likewise. 

A" Define Bl = Al and Bk+1 

disjoint and A = Bk. is a 
Each Bk is a (l-set by (i) so .4 is a (l-set. 

(iii) follows from (ii) and Definition l(ii). 

Definition 4 S is a ring (of subsets of S) if S IS a "';11"-1"111 and 

(iiiY A, B E S implies A\B E S. 

construction 

If S is a with S E S, then S is called an fl1gebm. Note an algebra is closed 
under complementation. 

Proposition 5 Let A be an algebra. Then A is closed under 
terseciions. 

Proof: By DeMorgan's Laws, AU B = n 

unions and in-

Note that A is an algebra if and only if 0 E A and A is closed under complemen 
tation and finite unions (intersections). 

VVe now some examples. 

Example 6 A {0, SO} is an algebra. 

Example 7 A the power set of S, is an 

Example 8 Write [a, a) = 0 for a E R. Let S ('Qnsist of all intervals in R of the 
form [a, b) with a b. Then S is a semi-ring and is not a semi-algebra. 

Example 9 Let a < b. Let S consist of all subintervals of the form [c. d) with 
a s: c s: d b. Then S is a semi-algebra. 
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Example 10 Let S" be the collection of all subsets A C;;;; R" of the form 

with -00 < ai ~ b, < 00. Then Sn is a semi-ring of subsets of R". [For n I, this 
is Example 8. Conditions (i) and (ii) of Definition 1 are clear. We establish (iii) by 
induction on n. For this note 

A x B\C x D {(A\C) x B} U {(A n C) x (B\D)} 

and apply this to 

and use the induction hypothesis.] 

Since the intersection of algebras (rings) is an algebra (ring), given any family 
S of subsets of S there is always a smallest algebra (ring) containing S, called the 
algebra (ring) generated by S. For semi-algebras (semi-rings), we have 

Proposition 11 Let S be a semi-algebra (semi-ring). The algebra (ring) A generated 
by S consists of all the pairwise disjoint finite unions of elements of S. 

The proof is left to Exercise 1. 

Definition 12 An algebra L: of subsets of S is a 17-algebra if 

{Aj ; j E N} c 2:: implies U~l Aj E 2:: . 
From DeMorgan's Laws, we have 

Proposition 13 A 17-algebra is closed under countable intersections. 

Note that L: is a ".-algebra if and only if 0 E L: and A is closed under comple­
mentation and countable unions (intersections). 

Since the intersection of 17-algebra is a 17-algebra, any family of subsets S of S has 
a smallest ".-algebra containing S, called the 17-algebra generated by S. 

We next establish a useful criterion, called the Monotone Class Lemma, for estab­
lishing when an algebra is a 17-algebra. This result is not used in the sequel and may 
be skipped. 

Definition 14 Let M C;;;; peS). M is a monotone class if {Ai} C;;;; M and if A; i (or 
A; 1), then UAi E M(nA. EM). 



18 CHAPTER 2. MEASURE THEORY 

Again the intersection of monotone classes is a monotone class so any family of 
subsets S of S has a smallest monotone class containing it, called the monotone class 
generated by S. 

Lemma 15 (Monotone Class Lemma). Let A be an algebra. Then the ff-algebra, L, 
generated by A coincides with the monotone class, M, generated by A . 

Proof: By Exercise 6, L J M. Hence, by Exercise 7, it suffices to show that M 
is an algebra. 

If E E M, define ME to be the collection of all F E M such that E\F, En F 
and F\E belong to M. Clearly, 0 E ME and ME is a monotone class containing .A. 
Moreover, FEME if and only if E EMF. 

If E E A, then A ~ ME for E EA. Hence, if E E A and F EM, then 
E E MF so that A ~ MF for F E M. The minimality of M implies MF = M 
for F EM. Thus, M is closed under intersections and relative complements; but 
S E ... \11 so M is an algebra. 

Corollary 16 If a monotone class M contains an algebr'a A , then M contains the 
ff-algebra generated by A. 

Exercise 1. Prove Proposition 11. 

Exercise 2. Let S be uncountable. Let L be all subsets, A, of S with either A or 
AC at most countable. Show L is a ff-algebra and is the ff-algebra generated by the 
singleton subsets of S. 

Exercise 3. Let A consist of all subsets, A, of S with either A or AC finite. Show A 
is an algebra, and if S is infinite, A is not a ff-algebra. 

Exercise 4. Let L be a ff-algebra of subsets of Sand EEL. Show 

is a ff-algebra of subsets of E. 

Exercise 5. Show the families in Examples 8, 9 and 10 are not algebras. Show the 
ff-algebras generated by S in Examples 8, 9 and 10 contain all of the open and closed 
sets. 
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Exercise 6. If S ~ P(S), M is the monotone class generated by Sand L: is the 
(T-algebra generated by S , show L: :J M. 

Exercise 7. If M is a monotone class and an algebra, show M is a (T-algebra. 

Exercise 8. Let n consist of all subsets A of [a, b] which are such that C A is Riemann 
integrable. Show n is an algebra which is not a (T-algebra. 
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2.2 Additive Set Functions 

In this section we study the additivity properties of set functions associated with 
Lebesgue measure. [A set function is a function defined on some family of subsets 
of a set.] That is, if S ~ peS) and 0 E Sand p. ; S ...... R*, we are concerned with 
properties of the form p.(AUB) = p.(A) + It(B) when A, B, AuB E Sand AnB 0. 
To avoid arithmetic problems (i.e., 00+ (-00», we always agree that any set function 
with values in the extended real numbers, R*, can take on only one of the values 00 
or -00. 

Let S ~ peS) satisfy 0 E S and let p. ; S ...... R·. 

Definition 1 P. is finitely additive if 

o (i) /l(0) 

(ii) {Ai 1, ... , n} ~ S pairwise disjoint and U Ai E S implies p.( U A;) 
i=1 i=I 

t P.(Ai). 
i=l 

/l is countably additive if (i) holds and 

(ii)' {Ai: i E N} ~ S pairwijc disjoint and U Ai E S implies /l( U A;) = f: p.(A;). 
i=1 i=l i=1 

Note that the series in (ii)' must be absolutely convergent since the left hand side 
is independent of the ordering of the {Ai}. 

A non-negative countably additive set function defined on a a-algebra L (semi­
ring) of subsets of S is called a measure (premeasure) on Lj a countably additive set 
function defined on a a-algebra L is called a signed measure on An ordered triple 
(S, L, p.), where /l is a measure on the a-algebra L, is called a measure space. 

We first make some elementary observations concerning finitely additive set func­
tions. 

Proposition 2 Let S be a semi-ring and /l : S ...... [0, 00]. 

(i) If fJ, is finitely additive and A,B E S with A ~ B, then fleA) :s; p.(B) {jet 
funciionj with this property are called monotone}. 

(ii) If p. is countably additive, then fl is finitely additive. 

n 
Proof: (i): B\A U Ai, where {Ai: 

1"=1 
1, ... , n} E S pairwise disjoint. 

Therefore, /l(B) = p.(A) + t p.(A;) ~ /leA). 
1=1 

(ii) is clear since 0 E Sand p.(0) O. 
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Proposition 3 Let.A be an algebra, p : .A -+ R· finitely additive and A, BE .A. 

(i) If A :2 Band pCB) infinite, then peA) is infinite. 

(ii) If A :2 Band peA) is finite, then pCB) is finite. 

(iii) If A :2 Band pCB) is finite, then p(A\B) = peA) - pCB). 

21 

Proof: By finite additivity, we have pCB) + p(A\B) =:= It(A) so (i), (ii) and (iii) 
are immediate. 

We next give some characterizations of countable additivity. 

Proposition 4 Let S be a semi-ring and It : S -+ [0, =]. Then p. is countably 
additive if and only if 

(i) p.(0) 0, 

(ii) A E S and {A: i 1, ... , n} <:;:; S pairwise disjoint with UAi <:;:; A implies 
i=l 

n 
L: p.(A) :::; p.(A) and 

1=1 

(iii) A E S and {Ai: i E N} <:;:; S with A <:;:; U Ai implies p.(A) :::; f: peA;). hI zs 
i=] 1=1 

said to be countably subadditi1Jcj. 

Proof: -¢=: (ii) and (iii) clearly imply that p. is count ably additive. 
=;.: (i) is clear. 

(ii): There exist {Bi : i =:= 1, ... , m} <:;:; S pairwise disjoint such that A\ U Ai = 
i=1 o Bi by Proposition 2.1.3. Then 

i=1 
n m n m n 

It(A) = p(CU Ad u (U Bi» L p.(A.) + L /l(Bi ) ~ L P.(Ai). 
1::::::1 n=1 i=1 

k 
(iii): We disjointify the {A} by setting BI Ak+1 \ U A for 

i=l 
00 00 

k ~ 1. Then {Bd are pairwise disjoint and U Bi U A, Bi <:;:; Ai. By Proposition 
i=J i=J 

k, 
2.1.3 each Bi U Cii where {Cij : j = 1, ... , k;} are pairwise disjoint. By (ii), 

j=1 

ki " 
L: It(C,;) :::; P.(Ai). Now 
j=l 

00 00 k, 

A = U Bi n A U U Cij n A 
i=1 i=1 j=1 
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is a pairwise disjoint union so countable additivity and (ii) imply 

00 J.:. k, 00 

p(A) L L )l(Cij n A) S L L )l(G;j) S L )l(Ai) . 
i=1 j=1 ;=1 j=1 

Proposition 5 Let L be a {}"-algebra and)l : L -+ R* be finitely additive. 

(i) )l is countably additive if and only if for every increasing sequence {Ej } ~ L, 
)l( U E j ) = lim)l(Ej ). 

j=1 

(ii) If)l is countably additive and {Ej } L is a decreasing sequence with 

1)l(Ej)1 < oofor some j, then)l( n E j ) = lim)l(Ej ). 
j=l 

(iii) If)l is finite (R) valued, then)l is countably additive if and only if for every 

decreasing sequence {Ej } L, p( n ) = lim)l(Ej ). 
j=1 

Proof: (i): *: Put Eo = 0. Since E j T, E = U £j 
j=l 

is countably additive, 

(X; n 

)leE) = L)l(EJ\EJ-d = limL)l(Ej\Ej-d = lim )l(En). 
j=l }=1 n 

.;=: Let {AJ } ~ L be pairwise disjoint and set 

k 00 

lim )l(Ed = lim L )l(Aj) = )l( U Aj) 
k k j~1 j=1 

by hypothesis. 
<Xl 

(ii): We may as well assume 1)l(Edl < 00. Since EI :2 n E and EI :2 Ek, 
k=l 

fleE) and p(Ek) are finite by Proposition 3. By (i) and Proposition 3, 

fl(El \ n = fl(EJ) )l( n ~\} 
k=1 k=1 

lim IL(EI \K) = lim()l(El) - peEd) fl(E1 ) Iimfl(Ek}. 

Hence, ptE) = \implEd. 
(iii): *follows from (ii). 

00 

.;=: Let {A J} be a pairwise disjoint sequence from L and set A U 
j=1 

Proposition 3, 
k 

Il(A) Lfl(Aj) )l( U AJ ) -+ 0 
j=1 J=k+l 

Then by 
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since U Aj 1 0. 
j=k+1 

For a sequence of {Aj}, from S, recalllimAJ 

00 00 n U Aj . We say the sequence {.4j } converges iflimA j and define the limit 
k=lj=k 

of {Aj}, denoted lim.4 j , to be this common value. For example, any increasing 
co 00 

(decreasing) sequence {Aj} converges to U .4j (n Aj).(See §l.l.) From Proposition 
}=I ;=1 

5, we have 

Corollary 6 Let I: be a a-algebra and fl : I: -+ [0, 001 be countably additive and let 
{E j } I:. 

co 

(ii) If p( U 
j=1 

(iii) If {Ej} converge8 and fie U Ej) < 00, then p(limEj) limfi(Ej ). 
j=1 

Proof: (i): Set Ak = n Er So {Ad is increasing and Ak ;2 By Propositions 
.1=k 

2 and 5(i), 
00 

limp(Akl fl(U Ak) 
k=1 

follows from (i) taking complements and using Proposition 30ii). 
follows from (i) and (ii). 

The finiteness condition in Proposition 5(ii) or Corollary 6(ii) cannot be dropped 
(Exercise :3). 

\Ve now some examples of measures and premeasures. 

Example 7 (Counting Measure). If S is non-void set, the counting measure on S 
is the set function fl defined on the power set of S by p( A) is the number of points 
in A if A is finite and fl(/1) = 00 if A is infinite. fl is a measure on P(S). 

Example 8 (Point J'vIass or Dirac Measure). Fix E S. Define -+ R by 
o",(A) = 1 if ,'/: A and o",(A) 0 if x ~ A. 8.7: is called the point mass or Dirac 
measure at x; Ox is a measure on P(S). 

We next give the construction of the Lebesglle-Stieltjes premeasure. 

Example 9 Let f : R -+ R be increasing and S the semi-ring of 2.1.8. 
Define fl1 : S -+ R by pf([a, b)) I(b) - f(a). Then Pf is finitely additive on S 
[Exer. 10], and we consider what conditions on I are equivalent to the countable 
additivity of Pf' 
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First suppose that J.l 1 is count ably additive. Let a E R and let {ak} be an arbitrary 

sequence with ak i a. Then [at,a) U [a" ai+d so 
i=1 

00 

J.ll[at, a) = f(a) - f(at) = .E( - f(a,) + f(ai+d) = lim f(ai+d - f(at) 
i=1 

so limf(ai) = f(a). Hence, if J.lJ is countably additive, f must be left continuous 
(i.e., lim f(t) = f(a». 

t_a-
We show conversely that if f is left continuous, then J.ll is count ably additive on 

S . Let [a, b) = U [a;, bi ) with the union pairwise disjoint. 
.=J 

First, we claim that 
co 

.E fil[a., bi) S f(b) - f(a) = fil[a, b) : 
;=1 

For each n, [a, b) 2 0 [ai, bi) and we may assume, by relabeling if necessary, that 
1'=1 

a S aJ < b1 S a2 < b2 < ... S an < bn S b. Since f is increasing, 
n 

.E(f(bi ) - f(a.» S f(bn) f(aJ) S f(b) f(a). 
1=1 

co 
Since n is arbitrary, 'L(f(b.) - f(aj» S f(b) - f(a). 

i=1 
co 

Next, we claim that J.lJ[a, b) S 'L fil[a., bi) : Let f. > O. For each i there exists 
i=1 

17. > 0 such that 0 S f( ail - f( aj 17.) < f./2' and there exists 5 > 0 such that 
o S f(b) - f(b 5) < f.. Then {( aj - 17i, b.) : i E N} cover [a, b - t5] so a finite number 
cover. By discarding and relabeling, we may assume 

al - 171 < a < a2 - 172 < bJ < . .. < an 17n < b - t5 < bn • 

Then 

f(b 5)-f(a) < E(f(b.) - f(a. - 17;) S r;(f(bi) - f(ai - 17.» 
i=1 i=1 

S r;(f(bi) f(ai»+r;f./2i 
,=1 i=1 

so 
00 

f(b) - f(a) + f(b - 8) f(b) S .E(f(bi) - f(ai» + t 
1=} 

and 

f(b) f(a) S .E(f(b;) - f(aj» +2(. 

Thus, f(b) - f(a) S r;(f(bi) f(aj» as desired. 
i=1 

The premeasure fi 1 is called the Lebesgue-Stieltjes measure induced by f. If f is 
the identity function, then fil is called Lebesgue measure and is denoted by mj note 
m([a, b» = b - a so the Lebesgue measure of a half-closed interval is just its length. 
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Example 10 (Lebesgue measure on Rn). Let S(= Sn) be the semi-ring of Example 

2.1.10. Define m(= mn) on S by m(I) fI (b, - a.), where 
.=1 

In R 2 , m( I) is the area of I and in R3, m( I) is the volume of I. m is called Lebesgue 
measure on R". 

m" is countably additive on Sn . A geometric proof of this fact along the lines 
of the proof in Example 9 is possible, but is surprisingly difficult (see lSi] §6.3, [Zl] 
2.5.3). We give a proof of this fact in Appendix II of §3.2 by using the Monotone 
Convergence Theorem for the Lebesgue integral. 

We give an example of a countably additive set function which takes on both 
positive and negative values. 

Example 11 Let {ak} C R. Set Pk = ak if ale ?:': 0, Pk 0 if ak < 0 and qk = a" if 
ak :S 0 and qk = 0 if a" > O. Consider the following cases; 

(I) LP" and L qk both converge, 

(II) one of the series LPk, Lqk converges while the other diverges. 

Now define /1 : P(N) --t R- by /1(A) L ak. In Case I, L ak is subseries 
kEA 

convergent in Rand /1 is a real-valued, bounded, count ably additive set function. 
In case II, every subseries of L ak converges in R· and /1 is a countably additive 
R*-valued set function. 

Examples of finitely additive set functions which are not countably additive are 
given in the exercises. 

Exercise 1. Let S be a semi-ring and /1 : S --t [0, 00] be finitely additive. Show that 
if /1 is count ably subadditive, then /1 is count ably additive. 

Exercise 2. Let S be a semi-ring (semi-algebra) and /1 ; S --t R finitely additive. 
Show /1 has a unique finitely additive extension to the ring (algebra) generated by S 
(see Proposition 2.1.11). 

Exercise 3. Show the finiteness condition in Proposition 5(ii) and Corollary 6(ii) 
cannot be dropped. 

Exercise 4. Let S be uncountable and L the u-algebra of sets which are at most 
countable or have complements which are at most countable (Exer. 2.1.2). Define /1 
on L by I1(E) = 0 if E is at most countable and I1(E) 1 if Ee is at most countable. 
Show /1 is count ably additive. 
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Exercise 5. Let {ad be non-negative. Define p, : peN) ---> [0, 00] by p,(E) = E ak. 
kEE 

Show p, is countably additive. 

Exercise 6. Let S i- 0 and f : S ---> [0, 00]. Define p, : peS) ---> [0, 00] by 
p,(E) = E f(x) if E is at most countable and p,(E) 00 otherwise. Show Il is 

xEE 
countably additive. 

Exercise 1. Let A be all subsets A of S which are either finite or have finite 
complements (see Exer. 2.1.3). Define p, on A by p,(A) is the number of points in A 
when A is finite and p,(A) is the negative of the number of points in AC when AC is 
finite. Show p, is finitely additive and if S is infinite, p, is not countably additive. 

Exercise 8. Let A be the semi-algebra of all subintervals [a, b), a ~ b, of [0, 1) (sec 
Example 2.1.9). Fix t E (0, 1) and define At : A ---> {O, I} by 

{
I if [t-5, t)<;A for some 0>0 
o otherwise . 

Show At is finitely additive but not countably additive. 

Exercise 9. Let A be the algebra in Exercise 7. Let p, (A) 0 if A is finite and 
p, (A) 1 if A" is finite. If S is countable, show p, is not countably additive, while if 
S is uncountable, p, is count ably additive. 

Exercise 10. Let f : R ---> R and S be the semi-ring of Example 2.1.8. Define 
Tj : S ---> R by Tj[a, b) = feb) - f(a). Show Tj is finitely additive on S . 

Exercise 11. Repeat Exercise 10 for the semi-algebra of Example 2.1.9. 

Exercise 12. Let S = N and A the algebra of Exercise 7. Let {ad C R and set 
p,(A) = E ak when A is finite and p,(A) = - E ak when A is infinite. Show It is 

kEA kEAC 
finitely additive. 

Exercise 13. Suppose E is a a-algebra and Jli : E ---> [0,00] is a measure for each i 
and Jli (E) i Jl( E) for each E E Show Jl is a measure. 

Exercise 14 (Borel-Cantelli). Let p, be a measure on the a-algebra E. Let {Ed C E 
be such that E Jl(Ek) < 00. ShowlimEk has p,-measure O. 
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Exercise 15. Let {tn} C R and set J1 = f 8tn [Example 8 and Exercise 13]. Show 
m=l 

J1 assigns finite measure to bounded intervals if and only if lim Itnl 00. When is J1 
finite? 

Exercise 16. Show J1 : P (8) -- [0,00] defined by J1 (0) = 0 and J1 (A) = 00 otherwise 
18 a measure. 
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2.2.1 Jordan Decomposition 

In this section we show that any signed measure is the difference of two (positive) 
measures. This result is called the Jordan Decomposition Theorem. vVe first develop 
a similar decomposition for certain finitely additive set functions. 

The material in this section is not used until section 3.12 and may be skipped at 
this time. 

Let A be an algebra of subsets of S and Ii : A --- R· finitely additive. For E ~ 
set p+(E) SUp{Ii(A): A E A , A ~ E} 2: 0 and p-(E) -inf{Ii(A): A E A, 
A ~ E} 2: o. p+ is called the positive part (upper variation) of Ii, and Ii- is called 
the negative part (lower variation) of Ii. 

Proposition 1 (i) p+ 2: Ii, -Ii :5 Ii- on A , 

(iii) If Ii is finitely additive, then Ii+ and Ii- are finitely additive. 

(iv) If A is a O"-algebra and Ii is countably additive, then Ii+ and Ii- are countably 
additive. 

Proof: (i) and (ii) are clear. 
(iii): Let E1, E2 E A be pairwise disjoint and set E El U E2 • If A ~ E, A E A, 

then 

so 
ft+(E) :5 1i+(E1 ) + 1i+(E2 ). 

If either 1i+(Er) or 1i+(E2 ) 00, then for every r > 0 there exists Ai ~ E i , Ai E A 
such that p(A;) > r for i 1 or 2; Ai ~ E implies p+(E) 2: r so 1i+(E) 00 and 
,.+(E) p+(Er) + p+(E2). If both p+(E1 ), p+(E2) < 00, let € > 0 and pick E A, 
Ai Ei , such that p(Ai) 2: p+(Ei) €/2. Then Al U A2 ~ E and At U A2 E A so 

ft+(E) 2: p(At U A2) = P(Al) + P(A2) 2: p+(Et ) + p+(E2) - L 

Hence, 1i+(E) 2: 1i+(E1 ) + 1i+(E2). 

(iv): Let {Ei} ~ A be pairwise disjoint and E U Ei . From (ii) and (iii), for 
1=1 

each n 
n n 

1i+(E) 2: 1i+(U Ei ) = 2>+(E;) 
1:1 i=l 

so 

1i+(E) 2: I>+(Ei ). 
1=1 
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Let A E A and AcE. Then 

1'=1 1'=1 

so 

.=1 
The statements about p.- in (iii) and (iv) follow from (ii). 

Lemma 2 Let E EA. If one of the numbers p.+{E), 1.r{E) is finite, then p.{E) 
p.+{E) - Il-{E). 

29 

Proof: If p.(E) = CXl, then p.+(E) CXl so p.-{E) < CXl and p.(E) p.+(E) -
p.-(E). Similarly, if p.(E) = -CXl, then p.-{E) = CXl so p.{E) = p.+{E) - p.-(E). 

Assume p. (E) is finite. Then p. (A) is finite for every ACE, A E A (2.2.3). By 
2.2.3, 

p.+ (E) - p. (E) sup {p.(A) p.(E): ACE, A E A} 
sup{-p.(E\A):Ac AEA} 
p.- (E) 

and the result follows. 

Theorem 3 (Jordan Decomposition) If p. : A -+ R is bounded, then p. p.+ -
p. 

Proof: Immediate from Lemma 2. 
The boundedness condition in Theorem 3 is important; see Exercise 7 or 8. 
We next show that Theorem 3 is applicable to any finite signed measure on a 

O'·algebra. 

Lemma 4 Let A be a O'.algebra and p. countably additive. If E E A is such that 
p.+(E) = CXl(p.-(E) = CXl), then p.(E) = CXl (p.(E) = -CXl). 

Proof: By Proposition 2.2.3, we need only find a subset A ~ E, A E A, satisfying 
p.(A) = CXl. Suppose p.+(E) = CXl. Set Eo = E. Then there exists Al E A, Al Eo, 
such that P.{AI) > 1. Either p.+(Ad or p.+(Eo\Al) equals CXl so pick one and label it 
EI . 

For each positive integer n suppose An E A, An ~ En-I, satisfies p.(An) > nand 
either p.+{An) or p.+(En - 1 \An) = CXl. Pick one which satisfies this last condition and 
label it En. There are two cases: 

Case I: En = En- 1 \An for infinitely many values of nand 
Case II: there exists N such that En = An for n ~ N. 
In Case II, AN, AN+I , ... is a decreasing sequence from A. If P.(AN) = CXl, we are 

through; if not, by Proposition 2.2.5, p.{ nAn) = lim p.(An) ~ lim n = CXl. 
n:::=N n n 
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In Case I, there is a subsequence {An.} with 

00 00 00 

Il( U An.) = I>(An.) ~ L>k 00. 
k=l k=l k=l 

Immediately from Lemma 4, we have an important property of signed measures 
defined on u-algebras. 

Theorem 5 If A is a u-algebra and Il : A -+ R is countably additive, then Il tS 

bounded. 

The countable additivity assumption in Theorem 5 is important; we give an exam­
ple of a real-valued, finitely additive set function on a u-algebra which is unbounded 
in Example 3.2.21. The u-algebra assumption is also important; see Exercises 5 and 
8. The conclusion of Theorem 5 can also be improved; see [Hah] 3.3.1, p. 17. 

Theorem 6 (Jordan Decomposition) Let A be a u-algebra and Il a signed mea­
sure. Then Il = Il+ Il- and Il+, Il- are measures. 

Proof: If E E A, then by Lemma 4 one of 1l+(E), It-(E) must be finite so 
Il(E) = 1l+(E) -Il-(E) (Lemma 2). Proposition 1 gives the last statement. 

We address the uniqueness of the Jordan Decomposition for signed measures in 
§2.2.2. 

The total variation or variation of Il is defined to be IIlI Il+ + Il-. Note IIlI is 
an additive set function on A by Proposition 1, and if Il is a signed measure on a 
u-algebra, then IIlI is a measure by Proposition 1. We have the following properties 
of the variation. 

Proposition 7 (i) IIl(A)I:5 11l1(A) for A EA. 

(ii) If A, Ai E A and A 2 U A; with {Ai} pairwise disjoint, then 
i=l 

00 

I: IIl(A;)1 :5 11l1(A). 
i=1 

(iii) IIlI (A) = sup{IIl(B)1 + Ilt(A\B)1 : B ~ A, BE A}. 

n 

(iv) IIlI (A) = sup{ IIl(Ai)1 : {Ai} pairwise disjoint from A with U Ai A}. 
i=l 

(v) sup{IIl(B)I: B ~ A, BE A} :5 11l1(A):5 2 sup{IIl(B)I: B ~ A, BE A}. 
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Proof: (i): fJ(A) ::; fi+(A)and - fJ(A) ::; fc(A). 
(ii): Fix n. Set (]"+ {i: 1 ::; i ::; n, fJ(Ai) ::: OJ, (]"- = {i : 1 ::; i ::; n, fJ(Ai) < OJ. 

Then 
L fJ(Ai) !J1(Ai)1 ::; L Ilkl(Ai) 

iEa-+ iE;r+ iEO'"+ 

and 

-L = L IfJ(Aill L !lkl(Ai) 
iEo-- iEa~ iEcr-

so 

n n n 

L IIk(Ai)1 L fJ(Ai) - L ::; L Ilki(Ai) IfJl(U A) ::; IfJl(A). 
i=1 iEa+ i=l 

Hence. 

(iii): s equal to the term on the right hand side of (iii). Then IfJi(il.) ::: s by 
(ii). There exist Ak E A , Ak <;;; A such that fi(Ak) -+ fJ+(A) so Ifi(Akll -+ {l+(A). 
If (A) = 00, then S 00 so fi+(A) Ilkl(A) = s. If J1+(A) < 00, then {irA) = 

+ J1(A\Ad so /l(A\Ak) -+ -{i-rAJ by Lemma 2. Hence,J1(.4\Ak)1 J1-(A) 
and 

so s 1J1I(A). 
(iv) follows from (ii) and (iii). 
(v) follows from (i) and (iii). 
From (v), we have the important observation. 

Corollary 8 A finitely additive set jlLnction Ik : A -+ R is bOlLnded if and only if fJ 
has finite variation. 

Remark 9 The formula in (iv) can be used to define the total variation of a set 
function directly without recourse to the Jordan Decomposition. It can also be used 
to define the variation of complex-valued set functions. 

The reader who has covered the chapters on integration before this chapter should 
do Exercise 3.2.26 at this point. 

Exercise 1. Suppose fJ = {il + 1k2 with fJll fJ2 finitely additive. Show fJ+ ::; + fJI, 
{i- ::; fll +112, IfJl::; Ilkll + IfJ21· 

Exercise 2. Suppose fl. fJI J12 with fll, fi 2 and finitely additive. Show 
fJl 2: J1+, J12 ::: /1-. 
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Exercise 3. Show that if 11 : L: -> R is count ably additive and L: is a cr-algebra, 
then 1111 is a finite measure. 

Exercise 4. If 11 is countably additive and A is a cr-algebra, show either 11+ or J1- is 
a finite measure. 

Exercise 5. Let A be the algebra which consists of all subsets of N which are either 
finite or have finite complements. Define 11 on A by J1(A) L: (-1 tin if A is finite 

nEA 
and J1(A) - L: (-l)nln if N is finite and 11(0) = Il(N) O. Show 11 is finitely 

nEAC 

additive but not bounded; compare with Theorem 5. 

Exercise 6. Show 11l1(E) = sup{1 L:i=l aiJ1(Ai) I : {All ... , An} is a partition of E, 
lail :s: 1}. 

Exercise 7. Let /(t) lit for t i= 0 and /(0) = O. Let Tf be the set function of 
Exer. 2.2.10 and assume that Tf has been extended to the algebra A generated by S 
(Exer. 2.2.2). Show the conclusion of Lemma 2 and Theorem 3 fails for TI. 

Exercise 8. Let A be the algebra of subsets of N which are either finite or have 
finite complements. Define J1 on A by J.l (A) is the number of points in A when A is 
finite and J.l (A) is the negative of the number of points in AC when AC is finite. Show 
J1 is finitely additive and find J.l+' J1-. Is J.l J.l+ - J.l-? 
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2.2.2 Hahn Decomposition 

In this section we use the Jordan Decomposition derived in §2.2.1 to develop another 
decomposition theorem for signed measures called the Hahn Decomposition. This 
material is not used until section §3.12 and may be skipped at this time. 

Let L be a u-algebra of subsets of S and let Jl : L -t R" be a signed measure. 

Definition 1 A subset PEL is Jl-positive (Jl-negative) if E E LJ E <;:; P implies 
Jl(E) :2: O{Jl(E) ::; 0). A set which is both II-positive and Jl-negative is called Jl-null. 

Theorem 2 (Hahn Decomposition) There exist a Jl-positive set PEL and a 
Jl-negative set N E L such that S = PUN and P n N 0. 

Proof: We may assume that +00 is the infinite value not assumed by Jl so Jl+(S) < 
00 [2.2.1.4]. For each n choose E L such that 00 > Jl(En) > Jl+(S) - 1/2fi

• 

For A E A <;:; we have Jl(A U En) Jl(A) + Jl(En) ::; Jl+(S) so Jl(A) ::; 
Jl+(S) Jl(En ) < 1/2" and Jl+(E~) ::; 1/2". By the Jordan Decomposition, 

Jl-(En ) = Jl+(En ) - Jl(En ) ::; Jl+(S) Jl(En ) < 1/2". 

Set P = N = pc limE~. By Corollary 2.2.6 

Os II+(N) S Jl+(E~) slim 1/2n 0 

so N is It-negative. Now Jl- is a measure so for each k 
0() 00 0() 

0::; Jl-(P) ::; Jl-( U En)::; L Jl-(En ) ::; L 1/2" = 1/2,.-1 
n=k 

so Jl-(P) = O. Hence, P is Jl-positive. 
A pair of sets (P, N) satisfying the conclusion of Theorem 2 is called a Hahn 

Decomposition for Jl. Such decompositions are obviously not unique since if Z E L 
is Jl-null, then (P U Z, N\Z) is also a Halm Decomposition. However, such decom­
positions are unique up to Jl-null sets in the following sense. 

Proposition 3 Let (Pi, Ni ), i 1, 2, be Hahn Decompositions for II. Then for 
every EEL, Jl(E n Pd Jl(E n Pz), Jl(E n N1 ) Jl(E n N z) and Jl(P1D. Pz) = 
II(NlD. N z) O. (Here A6.B = (A\B)U(B\A), the symmetric difference.) 

Proof: En (PI \Pz) <;:; EnPl and En (PI \Pz) <;:; EnNz imply Jl(En(P1 \Pz» :2: 0 
and Jl(E n (PI \Pz» ::; 0 so Jl(E n (P1\Pz» = O. By symmetry Jl(E n (Pz\P1» = O. 
Thus, Jl(PID. P2 ) 0 and 

Jl(E n PI) Jl(E n (PI U Pz» Jl(E n (Pz\H» Jl(E n (PI U P2» 
= Jl(E n (PI U Pz» - Jl(E n (PI \Pz» = Jl(E n Pz). 

The other equalities are similar. 
We can use the Hahn Decomposition to obtain formulas for the positive and 

negative variations of Jl. 
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Proposition 4 Let (P, N) be a Hahn Decomposition for Jl. Then Jl+(E) = Jl(pnE) 
and Jl-(E) = -Jl(E n N) for every EEL. 

Proof: Certainly Jl+(E) ~ Jl(E n P). If A E L, A <;;; E, then 

Jl(A) = Jl(A n P) + Jl(A n N) ~ Jl(A n P) ~ Jl(E n P) 

so Jl+(E) ~ Jl(E n P). 

The other equality is similar. 

Remark 5 The Hahn Decomposition can be established independent of the Jordan 
Decomposition and then the formulas in Proposition 4 can be used to establish the 
Jordan Decomposition. See, for example, [Roy]. 

Definition 6 Two measures I' and v on L are mutually singular or singular, written 
I' ..L v, if there exist A, BEL such that An B = 0, S = AU B, Jl(A) = v(B) O. 

Proposition 7 (Uniqueness of Jordan Decomposition). 1'+ ..L 1'- and if I' = Al A2, 
where Al and A2 are mutually singular measures on LI then Al 1'+ I A2 I' 

Proof: That 1'+ ..L 1'- follows from Proposition 4 since Jl+(N) Jl-(P) o. 
Let A, BEL, S AU B, An B 0 and AI(B) A2(A) O. Then we claim 

(A, B) is a Hahn Decomposition for 1'. First, A is Jl-positive since if E <;;; A, EEL, 
then 

and, similarly, B is Jl-negative. 
Let EEL. By Propositions 3 and 4, 

Jl(Enp) Jl(EnA) 1'+ (E) Al(EnA) A2(EnA) AJ(EnA) 
= AJ(E)-Al(EnB)=AJ(E) 

SOJl+=Al' 
SimilarlY,Jl- = A2. 

Remark 8 In general, there is not a Hahn Decomposition for finitely additive set 
functions defined on algebras; see Exercise 2. There are known necessary and sufficient 
conditions for a bounded, finitely additive set function defined on an algebra to have 
a Hahn Decomposition; see [Cob]. For a simple proof of the Hahn Decomposition 
which does not use the Jordan Decomposition, see [Do]. 

Exercise 1. Show EEL is Jl-null if and only if IJlI(E) = O. 

Exercise 2. Give an example of a finitely additive set function on an algebra with 
no Hahn Decomposition. [Hint: Use Exercise 2.2.12 with ak = (_l)k 12k.J 
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2.2.3 Drewnowski's Lemma 

In this section we establish a remarkable result of Drewnowski which asserts that a 
bounded, finitely additive set function defined on a a-algebra is not "too far" from 
being count ably additive. 

Let L be a a-algebra of subsets of S and tJ : L -t R bounded and finitely 
additive. If {Ej } ~ L is pairwise disjoint, then it follows from Proposition 2.2.1.7 
that the series LtJ(Ej ) is absolutely convergent. Thus, if tJ is to fail to be count ably 
additive, there must be a pairwise disjoint sequence {Ej} in L such that the series 

LtJ(Ej ) fails to converge to the "correct value", tJ( U Ej). 
j=J 

Lemma 1 (Drewnowski) [Dr). If {E j } is a pairwise disjoint sequence from LJ then 
ther-e exists a subsequence {En,} such that tJ is countably additive on the a-algebra 
genemted by {En,}. 

Proof: Partition N into a pairwise disjoint sequence of infinite sets {Kj}~l' By 
the observation above, ItJl( U E j ) -t 0 as i -t 00. So 3i such that ItJl( U E j ) < 1/2. 

jEK! jEK~ 

Let N j = Kl and nl = inf NJ • Now partition NJ \{nd into a pairwise disjoint 
sequence of infinite sets {Kj}~J' As before 3i such that ItJl( U Ej ) < 1/22. Let 

jEK: 

N2 Kl and n2 = inf N2. Note n2 > nJ and N2 ~ N j • Continuing produces 
a subsequence nj 1 00 and a sequence of infinite subsets of N, {Nj }, such that 
N j +1 ~ N j and ItJI( U Ed < 1/2j

. Let be the a-algebra generated by {En,}. 
'EN, 

We claim that tJ is count ably additive on Lo. If {Hk} ~ Lo and Hk 1 0, then 
ItJ(Hk)1 $ ItJl(Hk) 1 0 so tJ is count ably additive by Proposition 2.2.5 [given j, 3Hi 

such that min Hi > nj so ItJl(H,) $ ItJl( U Enk ) < 1/2j
). 

k~j 

Corollary 2 Let tJi : L -t R be bounded and finitely additive for- i EN. If {Ej} is 
a pair-wise disjoint sequence from L, then there exists a subsequence {En,} such that 
each tJ, is countably additive on the a-algebm generated by {En,}. 

Proof: Set tJ(E) = i~ f; Itl~~~1) for EEL· Then tJ is bounded and finitely 

additive so by Lemma 1 there is a subsequence {En]} such that tJ is count ably additive 
on the a-algebra, Lo, generated by {En,}. If {Hj } ~ and Hj 10, then 

limtJ(llj) = 0 

so 
lim Jli(Hj) = 0 

J 

for each i, and Jlj is countably additive on LO by Proposition 2.2.5. 
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2.3 Outer Measures 

Recall in Lebesgue's construction of the integral described in §1.3, Lebesgue con­
structed a set function on P(R) called Lebesgue outer measure which gave an ex­
tension of the length function in R. In this section we give an abstract treatment of 
outer measures due to Caratheodory and then apply the abstract theory to Lebesgue 
measure in Rand Rn in section 2.5. 

Let S =1= 0. 

Definition 1 p* : peS) -; [0, 00] is an outer measure (on S) if 

(i) p'(0) = 0 

(ii) A ~ B implies Jl*(A) ~ Jl'(B) [Jl' is monotone} 

(iii) Aj C S, j E N, implies p'( U Aj) ~ 
j=1 

p'(Aj) [Jl' is countably subadditiveJ. 

Following Caratheodory, we define measurability with respect to Jl' (see (6) of 
§1.3). 

Definition 2 E ~ S is p' -measurable if and only if 

(c) 
p'(A) Jl'(A n E) + p*(A\E) for any subset A ~ S. 

The set A in (c) is called a test set for the Jlo -measurability condition. N ot.e in 
order to test measurability in (c) it is only necessary to use test sets with Jl'(A) < 00 
since (c) always holds if p*(A) 00 by (iii). 

The family of all p' -measurable sets will be denoted by M (p'). We proceed to 
study the properties of M (p') and Jl* rest.ricted to this family. 

Definition 3 A set E ~ S is pO-null if Jl*(E) = O. 

The same term was used for signed measures in §2.2.2, but this should cause no 
difficulties. 

From (ii) and (iii), we have 

Proposition 4 A countable union of Jl* -null sets is p* -null and subsets of p" -null 
sets are p" -null. 

Proposition 5 Every Jl' -null set is p* -measurable. 

Proof: Let Jl*(E) = 0 and A ~ S. Then 
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Lemma 6 Let El"", E" be pairwise disjoint and p·-measurable. Then for any 

A c S, p*(A n 0 Ei ) = Ei=l p*(A n E,). 
,=1 

Proof: We proceed by induction on n. The result is obvious for n 1 so assume 
that it holds for n. By the p. -measurability of EnH and the induction hypothesis, 

n+l 
p*(A n U Ei ) 

n+l n+1 
p*([A n U E,l n En+1 ) + p*([A n U EiJ\En+d 

1=1 i=l i=1 

p*(A n En+d + p*(A n 0 E,) 
1=1 

p*(A n EnH ) + p"(A n Ei). 

Theorem 7 M(p*) is au-algebra. 

Proof: If E E M(p*), then EC E M(p*) by the symmetry in (c) and clearly 
o E M(p*). 

We next claim that if El, E2 E M(p"), then E = E1 U E2 E M(p"). Let A ~ S. 
Note E = E1 U (E2 n En so 

p*(A) ~ p*(A n E) + p*(A n EC) 
~ p·(A n E1 ) + p*(IA n Efl n E2 ) + JL*(IA nEll n En 

p*(A n E1) + p"(A\E1 ) JL*(A). 

Thus, M (p*) is an algebra. 

Let {E, : i E N} M(p*) and set E = 0 Ei . We disjointify the {E,} by setting 
,=1 

Fl = El, F"+l =:: EHI \ U Ej for k ~ 1. Then E 0 F". 
j=l "=1 

For any A ~ S, we have by the part above and Lemma 6, 

JL"(A) p*(A n 0 Fj ) + p*(A\ 0 Fj ) 
j=l j=l 

~ p*(A n 0 Fj ) + p*(A\E) 
;=1 

so 
00 

p*(A) ~ :L':JL*(A n Fj ) + p*(A\E) ~ p·(A n E) + p*(A\E) ~ p*(A). 
j=l 

Hence, E is JL*-measurable. 

Theorem 8 p. restricted to M(p*) is a measure. 



38 CHAPTER 2. MEASURE THEORY 

Proof: Let {Ej} <;; M(J.l") be pairwise disjoint and set E = 

subadditivity, J.l*(E) :::; f J.l"(Ej). By Lemma 6, for each n 
j=1 

n n 

LJ.l*(Ej) J.l"(U Ej) :::; J.l"(E) 
;=1 j=1 

so 

00 

LJ.l"(Ej):::; J.l·(E) 
j=1 

and J.l* is countably additive on M(J.l°). 

By countable 

We denote J.l" restricted to M(J.l") by J.l and call p the measure generated by the 
outer measure p •. 

Examples of outer measures are given in the exercises. 
We show how outer measures can be constructed from premeasures in section 2.4. 

Exercise 1. For subsets A <;; S let p" (A) be the number of points in A if A is finite 
and pO (A) 00 if A is infinite. Show p" is an outer measure and describe M(llO). 

Exercise 2. For A S let pO(A) 1 if A i= 0 and J.l"(0) O. Show p" is an outer 
measure and describe MCpO). 

Exercise 3. Fix xES. Define p·(A) = 1 if x E A and pOCA) 0 if x 1- A. Show J.l" 
is an outer measure and describe M(p"). 

Exercise 4. Let S be uncountable. Set pO(A) = 1 if A is uncountable and p"(A) = 0 
otherwise. Show p" is an outer measure and describe M(p"). 

Exercise 5. Let S be a metric space. Set p"(A) 1 if A is second category and 
p"(A) = 0 if A is first category. Show p" is an outer measure and describe M(J.l*). 

Exercise 6. Show that if an outer measure is finitely additive, it is count ably additive. 

Exercise 7. Show that a subset A is J.l*-measurable if and only if for every (' > 0 
there exists a J.l"-measurable set E such that E <;; A and p*(A\E) < £. 

Exercise 8. If E is p*measurable, then for every A C S show 

J.l"(E U A) + p*(E n A) = p"(E) + p"(A). 

Exercise 9. Let {Ej} be a pairwise disjoint sequence of J.l" -measurable sets. If A C S 

show pO(A n U Ej ) f p"(A n Ej ). 
i=1 i=! 
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2.3.1 Metric Outer Measures 

Often, as in the case of Lebesgue measure, an outer measure is defined on a metric 
space (or, more generally, a topological space), and it is natural to ask if there are 
conditions on the outer measure which guarantee that the open sets are measurable. 
\Vc now describe such a condition, which is oftcn easy to check, due to Caratheodory. 

Let (S, d) be a metric space. Recall that for A, B ~ S, the distance from A to 
E, d(A, E) is defined by d(A, B) inf{d(a, b) : a E A, bE B}. 

Let IL' be an outer measure on S. fL' is said to be a metric outer measure if 

fL*(A U E) fL'(A) + fL*(B) 

when d(A, B) > O. 

Lemma 1 (Caratheodory) Let 11' be a metric outer measure on 
open and let 040 ~ G. For each n ;::: 1 let An = {x E 040 : d(x, 
lim 11* (An) fLo (040 ). 

let G ~ S be 
lin}. Then 

Proof: Since An i and An ~ 040 , we need to show that EmfL*(An) ;::: fL*(Ao). 

Since G is open and 040 :> U An, each point of 040 is an interior point of G and so 
n=] 

00 

must belong to An for large n. That 040 ~ U An so .40 = 
n:::.:.::l 

Set An+! \An- Then for each n, 

00 00 

110 = A2n U ( U Dd A2n U ( U D 2k ) U ( U 
k=2n k=n k=n 

so 
00 00 

JL'(Ao) :::; /t* (A 2n ) + L fL'(D2k ) + L It*(D2k+l)' 
k=n k=n 

If both of the last two series converge, then letting n -+ 00 implies 

Otherwise at least one of the two series diverges so for definiteness assume that it is 
the first. Since d(D2k' D 2k+2 ) ;::: > 0 and JL' is a metric outer measure, 

n-l n-l 

fL*(A2nl ;::: 11'( U D2k ) = L fL'(D2k ) -+ 00 

k=l k=l 

so Iimp*(An) = 00 ;::: fL*(Ao). 
If S is any metric space (topological space), the a-algebra generated by the open 

subsets of 5 is called the family of Borel sets of 5 and is denoted by 8(5). 
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Theorem 2 fi· is a metric outer measure if and only if every Borel set is fi'­
measurable. 

Proof: =}: It suffices to show that any closed set F is fi· -measurable. Let A <;;; S 
be any test set. Then A\F is contained in the open set FC so by Lemma 1 there 
is a sequence {Ak} of subsets of A\F such that d(Ak' F) 2: 11k and limfi*(Ak) = 
fi*(A\F). Since fi· is a metric outer measure, 

and F is fi· -measurable. 
¢=: Let d(A, B) > O. Pick G open such that G :J A and G n B = 0. Now G is 

fi·-measurable so 

fi-(A U B) fi*((A U B) n G) + I'·((A U B)\G) 
fi*(A) + I'*(B). 

Exercise 1. Let E = {lin: n EN}. Define fi* on P(R) be setting fi·(A) equal to 
the number of points in An E. Show fi' is a metric oULer measure on R. 

Exercise 2. For S = R which of the outer measures in Exercises 2.3.1-2.3.4 are 
metric outer measures? 
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2.4 Extensions of Premeasures 

In this section we show that any premeasure on a semi-ring generates an outer measure 
which then gives an extension of the premeasure to a measure on the O"-algebra of 
subsets which are measurable with respect to the outer measure. In particular, this 
construction can be used to generate Stieltjes measures on R and Lebesgue 
measure on Rn. Some parts of the construction are valid for finitely additive set 
functions so we begin wit.h this case. 

Let 5 be a semi-ring of subsets of Sand f.! : 5 -+ [0, 00] be finitely additive. 

Definition 1 f.!*(A) 

convention inf 0 = 00.] 

inf{ f f.!(Ai) : A 
i=l 

Theorem 2 f.!* is an outer measure on S. 

Ai, Ai E 5}, A ~ S. [Here, we use the 

Proof: Clearly f.!* ;::: 0, f.!*(0) 0 and f.!* is monotone. We need to check countable 

subadditivity. Let Ai ~ S and set A U Ai. If f.!*(Ai) = 00, clearly 
i=l 

00 

so assume f f.!*(Ai) < 00. Let € > O. 1<ar each i choose {Bij : j E N} ~ 5 such that 
t=] 

Ai ~ U Bij and f.!*(Ai) + (./2 i 
;::: 

j=1 
f.!(Bij). Then A c U U Btj so 

i=1 j=1 

C<) 00 00 

f.!*(A) :::; L L f.!*(Bij) :S L(f.!*(Ai) + 1:./2i ) = Lf.!*(Ai) + f. 
.=1 i=l 1=1 i=1 

Hence, f.!*(A) :S 

Proposition 3 If A E 5 , then f.!*(A) :::; f.!(A) and if f.! is a premeasure on 5, then 
f.!-(A) = f.!(A). 

Proof: The first statement is clear. Suppose f.! is a premeasure and {Ai} ~ 5 

and A ~ U Ai' By countable subadditivity (Proposition 2.2.4), f.!(A) :S f f.!(Ai) so 
1=1 i=l 

f.!(A) :S f.!°(A). 

Proposition 4 If 5 is an algebra, then f.!0 is finitely additive on 5. 
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Proof: Let BE S with An B = 0 ana set C AU R. l1y Theorem 2 we may 

assume that < 00. Let. E > O. There exists <::; S such that Ai ::;> C and 

f fI(A,) < + t. Then {Ai n A} [{ Ai n B}] covers A [B] so since S is an algebra 
i=l 

/1*(A) + /1*(B) S I: (/1(A; n + /1C4, n Bl) 
i=-l 

f /1(A; n S /1(A,) < /1*(C) + t 
£=1 

Hence, fI*(A) + It*(B) S I,*(e) and Theorem 2 the reverse im>quality. 
For the outer measure /1* we have simpler tests for measurability given by the 

following result. 

Proposition 5 For E <::; 5, the following are NI1I.111f1.li'TI 

(i) E is fl' -measurable. 

(ii) /1*(A) fI*(E n A) + p."(A\E) for A E S wilh /t(A) < 00. 

(iii) /1*(A) /1*(E n A) + /1*(A\E) fOl' A S with /1(A) < 00. 

(iv) /1*(A) fI*(E n A) + /1*(A\E) for A 5. 

(iii ). 
00, trivial so assume /1*(.4) < 00. Let (' O. 

Choose {Ad S such that A <::; and /I(A;) < /1*(A)+L Since < 00, 

by fI*(Ai n E) + 

fI*(AnE) + /1*(A\E)Sp* n + /1*(( U Ai)\E) 
i~l 

S f /1*(A; n F) + /l*(Ai\E) = f {/1*(Ai n E) + fI*(A,\E)} 
i=1 i=1 

S f /1*(A;) < p*(A) + t. 
£=1 

n E) + p"(A\E) S It*(A). 
(iv) =* (i) follows by subadditivity. 
The of conditions and (iii) is that we need only test the Caratheodory 

condition for sets from the S. 

We use Proposition 5 to show that the elements of S are p*-measurable when /1' 

is finitely addit.ive. 

Theorem 6 If p* is finitely additive on S ) then every element ofS is p* -measurable. 
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Proof: Let A E S . Then there exists {Bi : 1 SiS n} <:;; S pairwise disjoint 

such that A\E iQI Bi • Since A = (A n E) u CQI Bi ), 

n 

",*(Bi) = ",*(A) 

and E is ",--measurable by Proposition 5 (ii). 

Remark 7 Note that ",* is finitely additive on S if either", is a premeasure (Propo­
sition 3) or S is an algebra (Proposition 4) so Theorem 6 is applicable in either case. 
In particular, from Proposition 3 we have 

Theorem 8 Let '" be a premeasure on S . Then every element of S is ",* -measurable 
and ",- restricted to the r:r-algebra M(",*) of",· -measurable sets is a countably additive 
extension of ",. 

If mn is the Lebesgue premeasure on R" (Example 2.2.10), then the countably 
additive extension to the o--algebra of m~-measurable sets is called Lebesgue measure 
on R n; we will study Lebesgue measure in §2.5. If f : R -+ R is increasing and left 
continuous and "', is the Lebesgue-Stieltjes premeasure of Example 2.2.9, then the 
countably additive extension of "', to the class of ",j-measurable sets is called the 
Lebesgue-Stieltjes measure induced by f. 

Remark 9 It is also the case that a bounded, finitely additive set function defined 
on an algebra has a bounded, finitely additive extension to the o--algebra generated 
by the algebra. See section 5.6.2; s~ also [Bi], p. 185. 

Henceforth, we assume that '" is a premeasure on S and denote the countably 
additive extension, "'., of '" to the class of ",'-measurable sets, M(",*), by",. 

Recall in section 1.3 we pointed out that Lebesgue defined the inner measure of a 
bounded subset E of R to be m*(E) £(1) m-(I\E), where I is a bounded interval 
containing E. Lebesgue then called a set E measurable if and only if m*(E) 
m_(E). For finite premeasures, we show that Lebesgue's definition is equivalent to 
Caratheodory's. 

Theorem 10 If ",(S) < 00, then E C 8 is ",--measurable if and only if ",-(E) + 
",-(EC) ",(S). 

Proof: =l>: Clear by taking 8 to be the test set in the definition of measurability. 
{:=: Let A E S be a test set. Then A is ",'-measurable so ",-(E) = ",-(E n A) + 

",-(E\A) and ",'(EC) = ",'(A\E) + ",-(EC n AC). Adding these two equalities 

",(8) {",-(E n A) + ",-(EC n A)} + {",*(E n AC) + ",*(EC n N)} 
~ ",*(A) + ",*(N) ~ ",(8). 
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Hence, 

But 
fL-(N) <:;; fL-(E n N) + fL"(EC n N) 

and fL(S) < 00 implies fL-(A) ~ fL-(E n A) + fL-(N n E) so E is fLo-measurable by 
Proposition 5. 

We now address the uniqueness of the countably additive extension of the pre­
measure fL. 

Lemma 11 For E C S, fLo (E) = inf { E fL( Ai) : A; E S , {Ad pairwise disjoint, 
1::::::1 

E ~ U Ai} . 
• ",1 

Proof: Denote the right hand side of the equation above by fL'(E). Clearly 

fL- <:;; fL'· Suppose E ~ U Ai with Ai E S . Disjointify the {Ai} by setting Bl Al 
i=l 

and Bj+1 
i 

Ai+! \ U A;. By Proposition 2.1.3 each Bi 
.",1 

k, 
U D ij , where {Dii : 

i",1 
k, 

1 <:;; j <:;; ki } are pairwise disjoint from S . Then fL(Ai) ~ J1.-(B;) = L: fL(D;j) and 
j=1 

00 ki 
E C U U Dij is a disjoint union with 

i=1 }=1 

00 00 k, 

I:J1.(A;) ~ I:I:fL(Dii ) ~ J1.'(E) 
.=1 ;=1 j=1 

so fL-(E) ~ leE). 

A premeasure II on a semi-ring S (measure II on a IT-algebra L:) is finite if v(8) < 00 

and IT-finite if 8 = U Aj , Aj E SeA; E L:) with v(Aj) < 00. By the proof of 
j=1 

Proposition 2.1.3 if v is IT-finite, we may assume that the {A j } above are pairwise 
disjoint. Lebesgue-Stieltjes measure on R and Lebesgue measure on Rn are examples 
of IT-finite measures. Counting measure on a set 8 is IT-finite if and only if 8 is at 
most countable. 

Theorem 12 Let fL be a IT-finite premeasure. Let T be a semi-ring such that 

and v a premeasure on T . If II = fL on S , then II J1.* on T . 
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00 

Proof: Let v' be the outer measure induced by v. If E c 3 and E ~ U Ai, 
i=1 

00 

A, E S, then v'(E) ~ L V(Ai) p(A;) so v' ~ p*. 
i=1 

Let A E T and p'(A) < 00. We claim that p*(A) ~ v*(A) [so p*(A) = v*(A)]. 

Let t > O. Choose {A;} C S pairwise disjoint such that A C U Ai and p*(A) + t ;::: 
,=1 

f p(A,) [Lemma 11]. Set B = U A, so p"(A) ~ p"(B) 
i=l t=1 

p(A,) ~ p"(A) + t. 
Then 

v"(B\A) ~ p*(B\A) = p*(B) p"(A) ~ t. 

Since v" is count ably additive on the a-algebra generated by S, 

p*(A) ~ p"(B) v*(B) v*(A) + v*(B\A) ~ v"(A) + t, 

and p"(A) ~ v*(A). 

Suppose 3 = U Ej , E j E S, {Ej } pairwise disjoint with p(Ej ) < 00. If A E T, 
;=1 

then by the equality above 

00 00 

p*(A) = I: p*(A n Ej) v(A n Ej ) = v(A). 
j=1 

In particular, if p is a a-finite premeasure, then p has a unique count ably additive 
extension to the a-algebra generated by S. The a-finiteness assumption in Theorem 
12 is important. 

Example 13 Let 3 = R and let S be the semi-ring of Example 2.1.8. Define p on 
S by p(0) = 0, p[a, b) = 00 if a < b. Then p*(A) = 00 if A i 0 and M(p*) = peR). 
Note counting measure v on 3 agrees with m on S. In fact, any tv, t > 0, agrees 
with p on S so p has an infinite number of count ably additive extensions to M(p*). 

Another uniqueness result is given by 

Theorem 14 Let (3, SlJ pd, (3, S2, P2) be premeasure spaces. Then PI and P2 
generate the same outer measure if and only if p; pIon Sl and p~ = P2 on S2. 

Proof: =}: "i = P1 on Sl and p; P2 on S2 (Proposition 3) so if pi = p;, the 
result follows. 

{=: Let A ~ 3. It suffices to show pi(A) ~ piCA) so we may assume piCA) < 00. 

Then given t: > 0 there exist {Bi} ~ Sl such that A ~ U Bi and 
i=1 

00 00 

00 > piCA) > I:P1(Bi) t p;(B;) -;c 
i=1 

so p;(Bi ) < 00 for each i. Therefore, by our standard t/2 k construction there exist 
00 00 00 00 

{Aik : kEN} ~ S2 such that A ~ U U Aik and p;(A) > L L P2(Ak)-2L'Hence, 
;=1 k=l ,=1 k=l 

piCA) > p;(A) - 2;c and piCA) ;::: p;(A). 
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Remark 15 The equality JLi JLl on SI is not enough to guarantee that JLi JLl' 
Let Sl be all [a, b) with integer a, b and set JLIla, b) = b - a. Let S2 be all [a, b) with 
rational a, b and set JL2[a, b) = b a. Then SI S2 and JLI = JL2 on SI. However, 
for 1 [0, 1/2), JL;(1) 1/2 and JL'i(1) = 1. 

Remark 16 As noted in Remark 9 a bounded, finitely additive set function defined 
on an algebra has a bounded, finitely additive extension to the generating O"-algebra, 
but this extension may fail to be unique ([Hah]). 

Approximation: 
We now consider how measurable sets can be approximated by elements of the 

semi-ring S . 
If 1{ is any family of subsets of S, then 1{,,(1{s) denotes the family of all finite or 

countable unions (intersections) of members cl1{-. We write 1{us = (1{q )<1, etc. 

Theorem 17 Let E C S. 

(i) For every I': > 0 there exists A E SeT such that E C A and JL*(E) + I': :::: JL(A). 

(ii) There exists A E S"s such that E C A and JL*(E) JL(A). 

Proof: (i): There exist {Ai} C S such that E C U Ai and JL*(E) + I': :::: JL(A;). 
i=l 

Put A = U Ai· 
i=1 

(ii): By (i) for each i there exists Ai E S" such that E C Ai and JL*( E) + I/i :::: 

JL(Ai). Put A = n Ai so A E Sus and E C A. Then 
i=l 

for each i so JL·(E) JL(A). 

Theorem 18 Assume JL is a O"-jinite premeasure. A subset E C S is JL* -measurable 
if and only if E = A\B, where A E S,,6 and JL*(B) = O. 

Proof: <=: Sufi C M(fl*) and B E M(JLO). 

=>: Let S U Ei, Ei E S ,and JL(Ei) < 00. Then E U En with 
i=l .=1 

JL(E; n E) < 00. Set Bi = EnE.. By Theorem 17(i) for each i, j there exists 

Aij E Su such that Bi C Ai) and JL(B,) + 1/2ij > JL(Aij ). Set Aj U A,j' Then 
i=l 

E C Aj E Su and Aj\E C U (Aij\E) implies 
i=1 

.=1 i=1 
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Set 4 and E C A, A\E ~ Aj\E for each j. 

fl(Aj\E) ::; Ijj for each j and fl(A\E) = 0. if B = A\E, then E 

Completeness of measures: 

47 

fl(A\E) ::; 

A\B. 

Definition 19 [,et II be a measure on the a-algebra L:. I} is 8aid to be a complete 
measure or v) is a complete mea.sure spa.ce if all subsets of II 
meaS71r'f: 0 are in L: . 

FroTn 'rn,n"'~1T.I ... n 2.:1..5, 

Theorem 20 Let S be a 
(8, S. It) iiuch that 

(i) S S, 

(ii) fl fl on S; 

measure space. 

Then there exists a measure space 

(iii) A E S if and only if A AU Z where A E S J ZeN for some N S with 

/l(N) = O. 

(8, S, p)(or P,) iH called the completion of (8, S, /1) (or /1.). 
Let Z {Z 8: ZeN for some N E S with fl(N) O} and 

S {EUZ:EES, ZE 

Define jt on S U '" fleE). It is straightforward to check that S is a (1-

fl is well-defined on S and gives a couutably addiLivc extension of /1. We 
leave the det.ails to the reader. 

Theorem 21 Let fl be a a-finite pr'f"mmsure. Let /11 be the "m'I.'IHi/llj!'ll additive 
exl.en.'iion of /1 to Ihe (1-algebm generated by S 
of fll is identical to /1' restricted to ;\,1(/1*). That is, 

Example 22 The a-finiteness condition in Theorem 21 is Let 5 = R 
and L: the of subsets of 5 which are either countable or have countable 
complements. Let /1 be counting nH'asure restricted to Then Ii') is complete 
but M(J;*) P(S'), 

Exercise 1. Define v : peN) -> [0, co] by v( E) = 

if E is infinite. Show II is finitely additive but, not 
j\,1(v*). Show /J* ::J v. Compare with Proposition 3. 

if E is finite and veE) = CJO 

a.dditive. Compute /J', 
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Exercise 2. Let 8 [0, 1) and A the algebra generated by the subintervals [a, b). 
Give an example of a non-negative finitely additive set function p. on A which has two 
distinct finitely additive extensions to the a-algebra, 8(8), generated by A. [Hint: 
Example 13.] 

Exercise 3. Show E C 8 is p.·-measurable if and only if E n A is p.·-measurable for 
every p.·-measurable _4 with p.·(A) < 00. 

Exercise 4. Give an example of a non-complete measure. 

Exercise 5. An outer measure p.* on 8 is called regular if for every A C 8 there is 
a p.'-measurable E:J A such that p.(E) p.' (A) [see Theorem 17]. Show that if p.' 
is regular and Aj C 8, then p.' (limA j ) :s limit· (Aj). 
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2.4.1 Hewitt-Yosida Decomposition 

The construction of section 2.4 can be used to obtain a decomposition of a non­
negative fin.itely additive set function into a countably additive part and another part 
which is called purely finitely additive. We give the details. The material in this 
section is only used in §2.6.1 and can be skipped at this time. 

Let A be an algebra of subsets of S. 

Definition 1 A non-negative, finitely additive set function II : A -> [0, (Xl) is purely 
additive if and only if whenever 11 : A --t [0, is countably additive and 

o < 11 /I on A , then 11 = O. A bounded, finitely additive /I : A -+ R is purely 
finitely additive if and only if 11+ and 11- are purely finitely additive. 

Theorem 2 (Hewitt-Yosida) If /I : A -+ [0, (Xl) is finitely additive, then there 
exist a counlably additive lie: A -> [0, (Xl) and a purely finitely additive 

vf:A-+[O, (Xl) 

tmch that IJ Ve + /If. I'vloreovtr, the decomposition is uniqlte. 

Proof: Let IJO be the outer measure on 5 induced by /I and let Ve be IJO restricted 
to A. By R.emark 2.4.7 and Proposition 2.4.3, /Ie is countably additive and /Ie :S v. 
Set Ilf v ~ Ve so Ilf is non-negative and finitely additive. Suppose 11 : A -> R is 
countably additive with 0 < 11 :S v f. For any A E A , 

o :S Il(A) :S vf(A) = v(A) lJc(A) 

so /le(A) Il(A):S lJ(A). By Proposition 2.4.3, ve(A) + Il(A) lJc(A) so 11 = 0 and 
finitely additive. 

"lI·nn,,,qp lJ 11e VIlle + III with ftc non-negative, countably additive and III 
non-negative, purely finitely additive. Then for any A E A , 

lJe(A) + vj(A) = lle(A) + Ilj(A) 

and vj :S VI, I'j :S 11 l' Since lJj and Ilj are countably additive on A and dominated 
by Vf and Ilh respectively, /Ie = ftc and, consequently, /If Ilf· 

examples of purely finitely set funtions and Hewitt-Yosida decompositions 
"measures" in §2.6.1. 

Exercise 1. Let v : A -> [0, (Xl) be finitely additive. Show lJ is purely finitely 
additive if and if for every c > 0 there exist pairwise disjoint {Ai} A such that 

S U Ai and /I(A n Ai) < E for every A E A. 
i:::l 
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2.5 Lebesgue Measure 

In this section we develop some of the basic properties of the most important measure, 
Lebesgue measure. Let 8 be the semi-ring in Rn consisting of the half-closed n­
dimensional rectangles of the form I = [aj, bJ) x ... x [an, bn) [Example 2.1.10] and let 
m(= mn ) be the n-dimensional volume of such rectangles, m(I) (b j -ad ... (bn -an) 
[Example 2.2.10]. Since m is a a-finite premeasure on 8, m has a unique countably 
additive extension to a complete measure, called Lebesgue measure on Rn and still 
denoted by m n ), defined on a a-algebra, M(= M n ), containing 8. The elements 
of M are called the Lebesgue measurable subsets of Rn. We show below that the a­
algebra M contains the Borel sets, B(Rn), of Rn. For this it suffices to show that, any 
open set belongs to M. This follows from the result below which gives the structure 
of open sets in Rn analogous to the characterization of open sets in R given in 1.2.2. 

Call a half-closed interval in 8 of the form raJ, al + 6) x ... x [an, an + 6), 6 > 0, 
a brick with vertex (a], . -', an) and side length 6. 

Lemma 1 Every open set G in Rn is a countable pairwise disjoint union of bricks. 

Proof: Let Bk be the family of all bricks whose vertices are integral multiples of 
2-k with side length 2- k • Note that x E Rn lies in exactly one member of Bk, and 
if A E Bj, B E Bk wherej < k, then either A C B or AnB = 0. If x E G, then 
x belongs to an open sphere contained in G so x belongs to a brick contained in G 
belonging to some Bk. That is, G is the union of all bricks belonging to UBk which 

k 

are contained in G. From this collection of bricks choose all of those belonging to Bl 
and remove those in U Bk which lie in any of the bricks chosen from Bl. From the 

k>2 
remaining bricks choos~ those belonging to B2. Continuing this construction produces 
a countable pairwise disjoint family of bricks whose union is G. 

Remark 2 Note the bricks in Lemma 1 all have side length 2-k for some kEN. 

From Lemma 1 it follows that B(Rn) <;;: Mn p(Rn). We show later (Examples 
9 and 1.3.1) that each of these containments is proper. 

We next consider what is called the regularity of Lebesgue measure. Each half­
closed interval I [aI, bl ) x ... x [an, bn) may be approximated by an open interval 
J (Uj, /31) X - .. x (Q'n' /3n) containing I whose volume is arbitrarily close to the 
volume of I so the Lebesgue outer measure of a subset A of Rn can also be computed 
by 

m"(A) inf{2:m(Ij): each I j an open interval with U I j :> A}. 
j=1 j=1 

We use this observation below. 
If S is any topological space, a subset E of S is called a (h set (:Fer set) if E is the 

countable intersection (union) of open (closed) subsets of S--:- ---
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Theorem 3 Let A eRn. 

(i) For every t > 0 there exists open G :J A such that m(G) S m*(A) + t. 

(ii) There exists a go H :J A such that m(H) m*(A). 

51 

Proof: (i): By the observation there exist open intervals {Ij} such that A C U I j 
j=l 

and 

j=l 

Set G = U. Then G is open, G:J A and 
j=l 

00 

m(G) S :E m(Ij) S m*(A) + €. 

j=1 

(ii): For each j choose G j open such that Gj :J A and m(Gj ) S m*(A)+ Iii. Put 

JI = n G j • Then H is a go containing A and m(H) S m(Gj ) S m*(A) + I/j for 
j=1 

each j implies m(H) S m*(A). But m*(A) S m(H) so equality must hold. 

From Theorem 3 we can obtain some topological-type characterizations of Lebesgue 
measurability. 

Corollary 4 Let A ~ R n. The following are equivalent: 

(i) A E Mn. 

(ii) For every t > 0 there exists open G :J A such that m*(G\A) < f. 

(iii) For every f > 0 there exists closed F c A such that m*(A\F) < E. 

(iv) There exists a go H :J A such that m*(H\A) O. 

(v) There exists an F" K c A such that m*(A\K) O. 

(vi) There exists a Borel set B E 8(Rn) and an m-null set Z such that A = B U Z. 

Proof: (i):::}(ii): First suppose m*(A) < cx>. By Theorem 3 there exists open 
G :J A with m(G) < m(A) + c. By Proposition 2.2.3, m(G\A) < E. 

Now suppose A is measurable. Let Ek {x: Ilxll S k} and set Ak = An Ek so 
Ak is measurable and m(Ak) < cx>. By the part above, for each k there exists open 

Gk :J Ak with m(Gk\A .. ) < t/2k
• Put G = U G",. Then G is open and G :J A. 

k=l 

CX) <XI 

m(G\A) S :E m(Gk\A .. ) < :E c/2k 
f. 

k=1 k=1 
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(ii)*(iv): ror each k there exists open Gk :J A with m'(G,,\A) < 11k. Set. 

H = n G". Then H is a 95 and H :J A. Since 
"=1 

m'(H\A) :<:; m·(G" \A) < 11k 

for each k, m*(H\A) = O. 
(iv)*(i): A H\(H\A) and H is measurable since it is a Borel set and H\A is 

measurable since it is m-null. 
(i)*(iii): A measurable implies N measurable so there exists open G :J N with 

m(G\AC) < t. Then F = GC is closed and Fe A with m(A\F) = m(il n G) < f. 

(iii)*(v): For each k there exists closed F" C A such that m-(A\F,,) < 11k. Put 

K = U Fk so K is an:F(1 contained in A with m-(A\K) :<:; m'(A\F,,) < 11k for each 
k=! 

k so m*(A\K) = O. 
(v)*(vi): Put B = K and Z = A\K. 
(vi)*(i): This is clear since both Borel sets and m-null sets are Lebesgue mea­

surable. 

It follows from (vi) that Lebesgue measure is the completion of the measure m 
restricted to the Borel sets B(Rn) [Exercise 1]. We show later that Lebesgue measure 
restricted to B(R) is not a complete measure (Example 9). 

The properties in (ii) and (iii) for Lebesgue measure are called regularity. We 
now give the formal definitions of regularity; some of the basic properties of regular 
measures are given in §2.7. 

Let S be a Hausdorff topological space and B(S) the Borel subsets of S. Let L: 
be a O'-algebra containing B(S) and p, : L: -> [0, (Xl] finitely additive. 

Definition 5 EEL: is inner regular (with respect to p,) if 

p,(E) sup{p,(K): K c K compact}; 

EEL: is outer regular (with respect to p,) if p,(E) inf{p,(G): G:J E, G open}. E 
is regular (with respect to p,) if E is both inner and outer regular. 

A Borel measure is a measure defined on the Borel sets which is finite on compact 
sets. A Borel measure is regular if every Borel set is outer regular and every open set 
is inner regular. Lebesgue measure restricted to the Borel sets is regular (Exer. 10). 

Uniqueness of Lebesgue Measure: 
We next consider the uniqueness of Lebesgue measure. A measure p, on B(Rn) 

is said to be translation invariant if p,(B) p,(h + B) for every Borel set Band 
h E Rn. Lebesgue measure restricted to B(Rn) is translation invariant (Exercises 
2 and 3). We show that translation invariance along with regularity characterizes 
Lebesgue measure. 
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Theorem 6 If 11 is a translation invariant regular measure on B(Rn), then 11 = cm 
for some positive constant c. 

Proof: Let 1= [0, 1] x .. x [0, 1] be the unit "cube" in R n and set c 11(1). I is 
the pairwise disjoint union of 2nk bricks of side length 2-k for any kEN, and since 
by translation invariance each of these bricks has the same Il-measure, 

for any brick B with side length 2-k so Il(B) = cm(B) for any such brick B. By 
Remark 2 Jl( G) cm( G) for every open set G eRn, and the same equality must 
hold for any Borel set by regularity of Jl and m. 

It is shown in 2.7.7 that every Borel measure on R n is regular so the regularity 
assumption in Theorem 6 is redundant. 

Lebesgue Measure in R : 
We consider Lebesgue measure in R in more detail. 
Since any singleton in R (or Rn) obviously has Lebesgue measure 0, any countable 

subset of R (of Rn) has Lebesgue measure O. However, an uncountable set can have 
Lebesgue measure O. We an example of such a set. 

Example 7 (Cantor Set) Let I [0, 1]. It is convenient to describe the comple­
ment of the Cantor set in I. Let E6 be the open interval (1/3, 2/3), the middle 
one-third of I. At the zeroth stage the interval E6 is removed from I leaving two 
closed subintervals [0, 1/3] and [1/3, 1]. At the first stage the two open middle thirds 
Ef and EI are removed from these closed intervals leaving four closed subintervals. At 
the second stage the four open middle thirds E~, Ei, Ei, Ei are removed from these 
closed subintervals [see the figure below]. The construction is continued; at the ph 
stage 2k open intervals El, ii, .. " 2k, are removed. The Cantor set K is the subset 

2' 
remaining after these open subintervals have been removed, i.e., K 1\ U El. 

i=1 
Since each E1 is an open interval, K is obviously a closed set. K obviously contains 
the endpoints 1/3, 2/3, 1/9, .. " and it may appear that these are all the points in 
K. However, we will show that K is, in fact, uncountable. First we calculate the 
Lebesgue measure of K. Note each Ei has length 1/3k+l and since the {ED are 
pairwise disjoint, 

00 2" 

m(K) = 1 - I: I: 1/3k+! 

( ) 

k=oi=1 

Ei 
( ) ( 

2 7 8 1 
927273 

1 - 1/3 I:(2/3)k = 1 - 1/3(1/(1 2/3)) O. 
k=O 

E1 
0 

E3 
2 

E2 
! 

) ( ) ( ) ( ) I 
2 19 20 7 ~~~1 327279 
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We next observe some of the topological properties of K. First K is nowhere 
dense, i.e., K has no interior points. Note the "distance" between any two adjacent 

N 2' 
open intervals making up AN U U Et is I/3N +l. Thus, if K were to contain an 

k=oi=l 
open interval (a, b), then for 1/3N +l < b - a, the distance between some two open 
intervals in AN would be greater than I/3N +1. 

Next, K is perfect, i.e., every point of K is a limit point of K. Let x E J{ and 
E > 0. Choose N such that I/3N +l < E. Then Sex, f) (x - f, X + €) must intersect 
at least one of the open intervals in AN so Sex, €) must contain a point of J{ distinct 
from x (namely, one of the endpoints of the open intervals). Thus, x is a limit point 
of K. [It actually follows from the fact that K is a perfect subset of R that K is 
uncountable ([RI] 2.43), but we will establish this below by a different technique.] 

Note that the point x E I belongs to K if and only if in one of its ternary 
expansions, x = .ala2· . (base 3), the digit 1 does not occur. It follows from this 
observation that K is uncountable ([DeS] 1.8), and that Rand K have the same 
cardinality. 

Remark 8 Note that for any a, ° < a < 1, by altering the size of the open intervals 
to (1 a)(I/3k+l), we may obtain a nowhere dense, perfect set of measure a 

which we refer to as an a-Cantor set. In particular, this shows that a set can have 
a positive Lebesgue measure and not contain an interval. These Cantor-like sets of 
positive Lebesgue measure can be used to construct sets of the second category which 
have Lebesgue measure ° [see Exercise 7]. 

In §1.3 we showed the existence of a subset of R which was not Lebesgue mea­
surable [Exercise 2]. The existence of such non-measurable sets in R"', n > 1, is 
addressed in Exer. 3.9.4. We now show that there are Lebesgue measurable scts in 
R which are not Borel sets. 

Example 9 Let ° < E < 1 and 1<, an e-Cantor set. Let K be the Cantor set and 

{Ek:i=l, .. ,2k jk 0,1, ... }({Ai:k 1, ... ,2k ji=0,1, ... }} 

the open subintervals of [0, l]\K([O, I]\K,). Let f be an increasing function which 
maps each A~ linearly onto El (see the graph below). [0, IJ\1<, is dense in [0, IJ 
so we can extend f to [0, 1] by setting f(O) ° and f(x) = sup{f(y) : y < x, 
y E [0, l]\K.}. Then f is increasing, and f must be a continuous map of [0, IJ onto 
itself since f cannot have any jumps (a jump in f would correspond to 1< containing 
an interval). Now ]<. must contain a subset P which is not Lebesgue measurable 
(Remark 1.3.2), and f carries P onto some subset pi of K which must be Lebesgue 
measurable since K has Lebesgue measure 0. By Exercise 11, pi cannot be a Borel set. 
This also shows that Lebesgue measure restricted to the Borel sets is not a complete 
measure. 
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Ei / 

A~ 1 

Thus, each of the containments B(R) c M(R) c 1'(R) is proper. (A cardinality 
argument can be used to establish that B{R) =f M(R)j see [Raj 5.3. However, 
M(R) and 1'{R) have the same cardinality (Exercise 8).) The existence of Lebesgue 
measurable sets in R2(Rn) which are not Borel sets is considered in Exercise 3.9.9. 

Another interesting result pertaining to Lebesgue measure due to H. Steinhaus 
asserts that if E is a Lebesgue measurable subset of Rn of positive Lebesgue measure, 
then 0 is an interior point of E - E (see [AB], 15.12 or Exer. 3.11.9). 

Remark 10 Lebesgue measure can be extended to a translation invariant measure 
on a a-algebra which properly contains M, but such extensions do not seem to be 
useful (see [KO]). 

Exercise 1. Show (R", M", m) is the completion of (R", B(Rn), m). 

Exercise 2. Show m·(E) m·(E+h) for any hER", E c R". Show E is Lebesgue 
measurable if and only if E + h is Lebesgue measurable for every hER" and in this 
case m(E + h) m(E). [Hint: En (a + A) = a + (E - a) n A, t + A" (t + A)c.] 

Exercise 3. Show h + B(Rn) B(Rn) for any h ERn. 

Exercise 4. Let a > O. Show m·(aE) = anm·(E) for E c R". Show E is Lebesgue 
measurable if and only if aE is Lebesgue measurable for every a > O. 

Exercise 5. Show every countable subset of R" is a Borel set. 

Exercise 6. Show E c R" is (Lebesgue) measurable if and only if EnG is measurable 
for every (bounded) open G if and only if En F is measurable for every (bounded) 
closed F. 



56 CHAPTER 2. MEASURE THEORY 

Exercise 7. Construct a set of category II in R which has Lebesgue measure O. 

Exercise 8. Show M(R) and P(R) have the same cardinality. 

Exercise 9. Define a measure lin ; .A1 ---> R* by Iin(E) = m(E n [n,ooJ). Show 
Pn(E) lli(E) for each E E M but P is not a measure. 

Exercise 10. Show H being closed in Corollary 4 (iii) can be replaced by H being 
compact. Show every Lebesgue measurable set is regular. 

Exercise 11. If f ; R n ---> Rm is continuous, show the inverse image of a Borel set is 
a Borel set. Note R'" and Rm can be replaced by topological spaces. 
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2.6 Lebesgue-Stieltjes Measures 

In this section we consider the Lebesgue-Stieltjes measures introduced in Example 
2.2.9. Let f : R -t R be increasing, let S be the semi-algebra of half-closed intervals 
[a, b), a :s b (Example 2.1.8). Define;.tf on S by 

;.tf[a, b) f(b) - f(a), a:S b. (2.1 ) 

Then ;.tf is finitely additive on S (Example 2.2.9) and has a finitely additive exten­
sion to the algebra generated by S (Exer. 2.2.2). If f is left continuous, then ;.tf 
is count ably additive on S and by Theorem 2.4.8 has a unique countably additive 
extension to a complete, count ably additive measure defined on a a-algebra, M(;.tj), 
which contains the Borel sets, B B(R), of R and is finite on compact subsets 
of R. The a-algebra M (;.tj) can be very different from the a-algebra of Lebesgue 
measurable sets (Exer. 3). We show conversely that if ;.t is any countable additive 
measure defined on the Borel sets of R and which is finite on compact sets, then ;.t is 
a Lebesgue-Stieltjes measure (restricted to B). 

Let ;.t : B -t [0, 00] be a Borel measure. Set 

{ 

;.t[0, t) 
f(t) = 0 

-;.t[t, O) 

t>O 
t=O 
t<O 

f is called the (cumulative) distribution function of ;.t. 
The distribution function f of;.t is increasing since if 0 < t < s, then 

f(s) f(t) =;.t[0, s)-;.t[O, t) J.I[t,s)~O 

(2.2) 

and similarly if t < s < 0 or t < 0 < s. Also, the distribution function is left 
continuous. For suppose tk 1 O. Ift > 0, then f(t tk) - f(t) J.I[t t k, 0) 1 0 since 
;.t is fmite on bounded intervals (2.2.5). Therefore, f is left continuous for t > 0 and, 
similarly, f is left continuous for t :s o. 

Clearly, the Lebesgue-Stieltjes measure induced by the distribution function f is 
exactly;.t. Since two Lebesgue-Stieltjes measures J.I f and J.l9 are equal if and only 
if f 9 is a constant (Exer. 4), there is a one-one correspondence between Borel 
measures on R and the class of increasing, left-continuous functions on R which are 
normalized by requiring that they vanish at the origin. 

We consider the analogue for Lebesgue-Stieltjes measures of the regularity results 
for Lebesgue measure given in Theorem 2.5.3 and Corollary 2.5.4. for this we require 
the following lemma. 

Lemma 1 For E c:;:; R, J.lj(E) = inf{ f J.lf(ai, bi) : E c:;:; U (ai, bi)}. 
i=1 i=1 
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Proof: Denote the quantity on the right hand side of the equality above by vee). 

Suppose E ~ U (ai, bi ) and set (ai, b,) 1;. Each Ii is a countable pairwise disjoint 
i=l 

union of half-closed intervals of the form [a, fJ) so pj(E) S; veE). 

Let f. > O. Assume pj(E) < 00. There exist {[ai, bill such that E ~ U [ai, bil 
i=l 

and 
00 

L:>f[ai, bi ) S; pj(E) + t. 
i=l 

For each i there exists Iii > 0 such that f is continuous at ai Iii < bi and 

f(ai - 8;) - f(a,) < f./2'. 

Then E ~ U (ai - 8i , bi ) and 
1=1 

v(E) S; 

(Exer. 6). Hence, v(E) S; pj(E). 

A similar argument works if pj (E) 00. 

Employing the arguments as in Theorem 2.5.3 and Corollary 2.5.4, we obtain the 
analogues of those results for Lebesgue measure. 

Theorem 2 Let E ~ R. 

(i) For every f > 0 there exists open G J E such that {tf(Gl S; pj(E) + c. 

(ii) There exists a (15 H J E such that {tfCH) = Pj(E). 

Corollary 3 Let E c R. The following are equivalent: 

(i) E is pj measurable. 

(ii) For every f > 0 there exists open G J E such that pj( G\E) < f. 

(iii) For every f. > 0 there exists closed FeE such that pj(E\F) < f. 

(iv) There exists a 95 H J E such that pj (H\E) O. 

(v) There exists an :F" K c E such that pj(E\K) O. 

(vi) There exists a Borel set B and a {tj null set Z such that E = B U Z. 
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Exercise 1. Show (R, M(llj), Ili) is the completion of (R, 8(R), Ili)' 

Exercise 2. Show the map I -+ III which associates an increa.sing left continu­
ous, normalized function with its Lebesgue-Stieltjes measure is additive and positive 
homogeneous. 

Exercise 3. Let I(x) equal the greatest integer less than x. Compute M(llj). 

Exercise 4. Show III = Ilg if and only if 1- 9 =constant. 

Exercise 5. Show a. Lebesgue-Stieltjes measure restricted to the Borel sets is regular. 

Exercise 6. Let I be increasing and left continuous. For a E R show III ( {a}) = 
I (a+) - I (a) and I is continuous if and only if Ili ({ a}) = O. 

Exercise 7. Describe It i for: 

C+l t>O 
(a) I(t) 

t:=:;O 

(b) f(.) ~ { t+1 t>O 

t :=:; 0 

{ 
0 t:=:;O 

(c) I(t) n 0,1, ... 
n+t n:=:;t<n+1 
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2.6.1 Hewitt-Yosida Decomposition for Lebesgue-Stieltjes 
Measures 

In this section we consider Lebesgue-Stieltjes measures on the interval [0, 1) as dis­
cussed in §2.6 for measures on R. We give examples of purely finitely set functions and 
also give an example of the Hewitt-Yosida decomposition of §2.4.1 for such Lebesgue­
Stieltjes set functions. 

Let S = [0, 1) and let S be the semi-algebra of all subsets of S of the form [a, b), 
o S a < b S 1 and A the algebra generated by S. 

We give a simple example of a purely finitely additive set function on A. Fix 
o < t S 1. Define.\t : A -+ R by .\t(A) = 1 if 38 > 0 such that [t - 8, t) ~ A and 
.\t(A) = 0 otherwise. Then .\t is finitely additive (Exer. 2.2.8). Also,.\t is purely 
finitely additive; for if 0 S v S .\t and v is countably additive on A , then v[t, 1) = 0 
and if 0 S a < t - 8 for some 8 > 0, then v[a, t - 8) = O. Thus, if 

II = [0, t/2),I2 = [t/2, 3t/4), ... , 

then [0, t) = U I j so v[O, t) = L,v(Ij) = 0 and v = O. 
j=1 j 

We next claim that the '\t, 0 < t S 1, are the only purely finitely additive set 
functions which take on the values 0 and 1. 

Theorem 1 Let Jl : A -+ R be bounded, finitely additive and have range {O, I}. 
Then 3t E [0, 1) such that Jl = 8t or Jl = .\t. 

Proof: If 0 = ao < al < ... < an = 1 is a partition of [0, 1), then exactly 
one of the subintervals [aj_I, aj)(j = 1, ... , n) has Jl-measure 1 while the remaining 
subintervals have Jl-measure O. Thus, starting with 0,1/2,1, then 0, 1/4, 1/2,3/4,1, 
etc., we obtain a nested sequence of intervals [a" b,) with Jl[a" bi ) = 1, b, - a, = 1/2'. 
Let t = lim a, = lim b,. If b, > t Vi and Jl[t, b,) = 1 Vi, then Jl = 8t. On the other 
hand, if [t, b,o) = 0 or Jl[t, b,o) = 0 for some io, then 

Jl[a" b,) = Jl[a" t) + Jl(t, b,) = Jl[a" t) = 1 

for all i 2 io and Jl = .\t. 

Theorem 2 Let Jl : A -+ R be bounded, finitely additive. Then 3{t;} ~ [0, I), 
ai E R with L, la,l < 00 and v : A -+ R countably additive such that Jl = v + L, ai.\t •. 

i i 

Proof: By the Jordan Decomposition (§2.2.1), we may assume Jl 2 O. Let f be 
the distribution function of Jl as in §2.6, f(t) = Jl[O, t), 0 < t < 1, and f(O) = O. 
Then f is increasing with 

lim f(t) = f(I-) S Jl[O, 1) < 00. 
t--+l-
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Let {td be the countable set for which the inequality f(r) < f(t) holds and set 
ai f(ti) - f(ti). Then 

ai = lim JL[ti - to, t i ) and ~ ai ~ JL[O, 1) < 00. 
(-+0+ ~ 

Put 

Then v is non-negative and finitely additive, and we claim that v is countably additive. 
To see this, let 9 be the distributive function of v, g(t) v[O, t) for 0 < t ~ 1 and 
g(O) = O. Then 9 is left continuous so as in Example 2.2.9, v is countably additive. 

Since the measure L:aiVt, in Theorem 1 is purely finitely additive (Exer. 1), the 
decomposition of JL given in Theorem 2 is exactly the Hewitt-Yosida Decomposition 
of Theorem 2.4.1.2. 

Exercise 1. Show the measure L: ai).t, of Theorem 2 is purely finitely additive. 

Exercise 2. Show there is a 1-1 correspondence between the finitely additive real· 
valued set functions JL defined on A and the real-valued functions f : [0, 1] -+ R 
which satisfy f(O) O. (See Exer. 2.2.10.) Show JL is bounded if and only if f is of 
bounded variation. 
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2.1 Regular Measures 

In this section we consider the properties of Lebesgue measure given in Corollary 
2.5.4. We give a slightly more general definition of regularity than that given in §2.5. 
Let S be a Hausdorff topological space and B(S) the class of Borel sets of S. Let A 
be an algebra of subsets of Sand p. : A -+ [0, 00] finitely additive. 

Definition 1 E E A is inner regular (with respect to p.) if 

p.(E) sup{p.(K): K E,K E A,K compact} 

and E outer regular if 

p.(E) = inf{p.(U) : U :J E, U E A, U open}; 

E is regular if E is both inner and outer regular. 

A Borel measure on S is a measure defined on B(S) which is finite on compact 
sets; a Borel measure is regular if every Borel set is outer regular and every open set 
is inner regular. 

Proposition 2 Let p. be a regular Borel measure. Then every a-finite Borel set B is 
inner regular. 

Proof: First assume p.(B) < 00. Let ( > O. Pick V open such that V :J Band 
p.(V) < 1.t(B) + E. Pick W open such that V\B eWe V and 

p.(W) < p.(V\B) + ( = p.(V) - p.(B) + E. 

Pick K compact such that K c V and p.(V) < p.(K) + f. Set K' K\W. Then K' 
is compact, K' c Band 

If p.(B) 00, let B = U B k, Bk 1, P.(Bk) < 00. Let r > O. Choose N such that 
k=l 

P.(BN) > r. Choose K compact such that K c BN and p.(K) > r. Hence, 

p.(B) = 00 = sup{p.(K) : K compact, K C B}. 

A subset E C S is called a-compact if E is the countable union of compact subsets 
of S. For example, Rn is a-compact. If p. is a Borel measure, then any a-compact 
subset is a-finite. From Proposition 2, we have 

Corollary 3 If p. is a regular Borel measure which is a-finite, then every Borel set 
is regular. If S is a-compact, then every Borel set is regular. 
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Proposition 4 Let jt be a Borel measure on s. rr G is a-compact, then G is inner 

J 
Proof: Let G KJ , where each K J is compact. If 1< j U K i , then Kj 1S 

i=l 

compact and K; T G so p(1<;) T 11,(0). 

Lemma 5 J,et 8 be such that fVC1'Y open set is a-compact. !f p is a finite Bo'rd 
meaSU1'e on .'I, then for each B E B(5') 

(i) Il(B) inf{p(V): V open, V ~ B} and 

(ii) Il(B) sup{p(P) : F closed, FeB}. 

Proof: Let L be all B B(S) satisfying (i) and (ii), By hypothesis and Propo 
sition 4 every open set satisfies (i) and (ii) so if we show that L is a a-algebra, then 
L B(8) and the proof is complete. 

Let ELand ( O. There exists closed F, open li such that FeE c V ano 
p(V) (. T'hen FC ~ p;c ~ VC, pc is open, VC is closeo and 

jt(V\F) < t 

so P;c E L. 
Let {Ed L and set E Ek. ror each k there exists closed F", open Vk 

< Set V = U F = U Fie: so V is 
k=1 k=1 

open and F E V. Moreover, jt(V\ 
k 

= U F1 is 
.i=1 

V\P U }~ = n (V\Fn 
k=1 k=1 

L V\F so It(V\F) 
c and E L. 

lim t. lienee, there exists k sHch that 

Theorem 6 Let S be such thal (;VC1'Y open set is a-compact and fI a Borel measure 
on 8. Then every Borel set is regular; in par'ticular, p is regular. 

Proof: open set is inner by hypothesis and Proposition 4. 
If jt is finite, every Borel set is outer regular by Lemma 5(i). Assume p is infinite 

and let 8 lJ., where each Uk is open and p([h) < 00. ror ea.eh k set jtk(B) = 

fI(B n Uk) for B B(8). ~ach I'k is a finite Borel measure on S. Let 
B E B(S) and ~ O. By Lemma 5, for each k there exists open Vk ~ B such that 
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I'k(lIk) < I'k(B) + f/2 k so I'(Uk n Vk \B) < e/2k. Put V = U (Uk n Vk) SO V is open, 
k=1 

V::) Band 

I'(V\B) S 

and B is outer regular. Hence, I' is regular. 
By Corollary 3, every Borel set is inner regular. 

Remark 7 Note R" satisfies the hypothesis of Theorem 6 [take squares with centers 
having rational coordinates and rational side lengths] so every Borel measure on Rn 
is regular. 

If I' : A -+ R is a finitely additive, we say that I' is regular if 11'1 is regular. From 
Theorem 6, we have 

Corollary 8 Let I' : B(S) -+ R be finitely additive. The following are equivalent: 

(i) I' is regular 

(ii) 1'+ and 1'- are regular 

(iii) If A E B(S) and f > 0, there exist compact K C A and open V ::) A such that 
II'(B)I < f for every B E B(S) with Be V\K. 

Finally, we have an interesting result of Alexanderoff on regular, finitely additive 
set functions. 

Theorem 9 (Alexanderoff) Let p. ; A -+ R be bounded, finitely additive. If every 
element of A is both inner and outer regular, then p. is countably additive. 

Proof: It suffices to show that 11'1 is count ably additive. Let {Aj} E A be pairwise 

disjoint and such that A = U Ai EA. Let f > O. There exists compact F C A, 
j=1 

FE A ,such that II'I(A\F) < f. For each j there exists open Gj E A , Gj ::) Aj such 
. 00 n 

that 1p.I(Gj\Aj) < f/2J • Since U Gj ::) F, there exists n such that U Gj ::) F. Then 
;=1 j=1 

" 1p.I(Aj) ~ I: 1p.I(Gj ) f ~ I: 1p.I(Gj ) - f ~ II'I(F) E ~ I'{A) 2£. 
j=1 j=1 

n " 

1p.I(A) ~ 1p.I(U Aj) = I: 1p.I(Aj) 
j=1 j=1 

so 
00 

1p.I(A) ~ I: 1p.I(Aj), 
j=1 
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and it follows that Iftl is countably additive. 

Exercise 1. Let J.L be as in Theorem 9. Show J.L has unique, regular, count ably 
additive extension to the IT-algebra generated by A. 

Exercise 2. If the measure J.L is defined on a IT-algebra, show the union of a sequence 
of outer regular sets is outer regular and the union an increasing sequence of inner 
regular sets is inner regular. 

Exercise 3. If J.L is a finite measure on a IT-algebra, show the intersection of a sequence 
of inner regular sets is inner regular and the intersection a decreasing sequence of outer 
regular sets is outer regular. 
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2.8 The Nikodym Convergence and Boundedness 
Theorems 

In this section we establish two remarkable results for signed measures which are 
due to Nikodym ([Nll, [N2]). Our proofs are based on a theorem concerning infinite 
matrices due to Antosik and J. Mikusinski ([AS]) which we now establish. We begin 
with a simple lemma. 

Lemma 1 Let Xij ;:::: 0 and tii > 0 for i, ) EN. If lipl Xij = 0 for each j and 
I 

lim Xii 0 for each i, then there is a subsequence {mi} of positive integers such that 
1 

Xm,m, < tij for i # ). 

Proof: Put ml = 1. There exists m2 > ml such that Xmjm < £12 and X mm , < £21 

for m ;:::: m2' Then there exists m3 > m2 such that X mjm < t13, Xm,m < E23, X mm , < (31 

and x mm' < (32 for m ;:::: m3. Continue. 

Theorem 2 (Antosik-Mikusinski) Let Xi1 E R fori, j EN. Suppose 

(I) li:n Xij x j exists for each j. 

(II) For each subsequence {m]} there is a subsequence {nj} of {mj} such that the 

sequence { Xin,} converges. 

Then lim Xij Xi uniformly for) E N. Also, lim Xij 0 uniformly for i E N 
I J 

and lim X· O. 
i 11 

Proof: If the conclusion fails, there is a 6 > 0 and a subsequence {ki } such that 
sup IXk,j - Xjl > 6. For notational convenience, assume ki = i. Set il = 1 and pick 

j 

)1 such that Ix',iI x i,l > 6. By (I) there exists i2 > ilJ with IX'li, Xi,], I > Ii and 
IXij xjl < 6 for i ;:::: i2 and 1 :::: i :::: il' Now pick i2 such that Ix"iz Xi, I > 6 and 
note that )2 > )1' Continuing by induction produces two increasing sequences {ik} 

and {ik} slIch that IXi,i. - xi.+d.1 > 6. Set Zkl Xi.i, - x,,+,i, and note 

(2.1 ) 

Consider the infinite matrix M = [zkd. By (I) the columns of this matrix converge 
to O. By (II) the rows of the matrix [Xij] converge to 0 so the same holds for the matrix 
A1. By Lemma 1 there is a subsequence {mk} such that IZm.m,1 < 1/2k+l for k # e. 
By (II) there is a subsequence {nd of {md such that 

00 

lim L z".n, = O. 
k l=1 

(2.2) 
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Then 

(2.3) 

Now the first term on the right hand side of (3) goes to 0 as k --+ 00 by (2) and 
since the second term obviously goes to 0, lim zn.n. 0 contradicting (1). 

k 

The uniform convergence of the limit, lim xii Xi, and the fact that lim Xii = 0 
• J 

for each i implies that the double limit lim xii exists and is equal to 0 so, in particular, 
',J 

lim Xii 0 uniformly for i E N and lim Xii O. 
J • 

We will use this matrix theorem of Antosik and Mikusinski below in the proof of 
the Nikodym Convergence Theorem. Note the theorem gives a sufficient condition 
for the diagonal of an infinite matrix to converge to 0 so it is sometimes referred to 
as a Diagonal Theorem. 

We now establish the Nikodym Convergence Theorem. Let L: be a a-algebra 
of subsets of S and {Ii : L: --+ R, i E N, a sequence of (finite) signed measures. 
Nikodym's Convergence Theorem then asserts that the pointwise limit of a sequence 
of finite signed measures is a signed measure. For this we first require a definition 
and a preliminary lemma. 

Definition 3 The sequence of signed measures, VI.}, is said to be uniformly count­

ably additive if the series {Ii(Ej)}i converge uniformly for every pairwise disjoint 

sequence {Ei} C L: . 

Lemma 4 The following are equivalent: 

(i) {{Id is uniformly countably additive. 

(ii) For each decreasing sequence {Ej} from L: with E j 1 0, lim Pi( E j ) 0 uniformly 
) 

for i E N. 

(iii) For each pairwise disjoint sequence {E j } from L:, li~ Pi(Ej ) 0 uniformly for 
) 

i E N. 

Proof: The equivalence of (i) and (ii) is exactly like the proof of Proposition 
2.2.5. Certainly (i) implies (iii). 

Suppose (iii) holds but (ii) fails to hold. Then we may assume (by passing to a 
subsequence if necessary) that there exist a 0 > 0 and a decreasing sequence Fj 1 0 
with Ipj(Fi)1 > 0 for every j. There exists k\ such that Ipl(Fk,)1 < 0/2. Then there 
exists k2 > kl such that IPkl (Fk,}1 < 0/2. Continuing by induction produces an 
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increasing sequence {k j } such that I/Lk) (Fk;+l)1 < 6/2. If Ej 

is a pairwise disjoint sequence from E with 

which contradicts (iii). 

Theorem 5 (Nikodym Convergence Theorem) 

isis for every E E then 

countably additive and 

(ii) /L is CU'U'fti1l.ut /L is a signed measure), 

Proof: Let, { } be a pairwise disjoint sequence from Consider the matrix 
Af [ll,i (EJ )]. The columns of }v! converge by hypothesis and if {rTl J } is any increasillg 
sequence of 

limI>i(Em ,) = lim /Li(U Em)) 
t )=1 t j=1 

exists by hypothesis. Hence, M satisfies mnditions (I) and (IT) of Theorem 2, and 
lim /L,(E;) 0 converges uniformly for i E N, By Lemma 4, VI,} is uniformly 

) 

countably additive. 
Oil: If {E j } is a decreasing sequence from E with EJ ! 0, then (i) and LenlIIw 

4 lim /li(Ej) 0 uniformly for i E N. Hence, 
J 

lim li( 
J 

= lim lim ILi(E)) = lim lim 
J t t J 

and /L is countably additive by Proposition 2.2.5. 

o 

Remark 6 The assumption in Theorem ,5 is important; the result is false 
for countably additive set functions defined on algebras (see Exer. 4 or [Sw3]). 

We next turn to the Nikodym Roundedness Theorem. For this we require a 
technical lemma. 

Lemma 7 Let A be an algebm of subsets of S and Vi : A -; R bounded and finitely 
additive for eachi N. Then {Vice) : i E N, E E A} is bounded if and only if 
{ViCE,) : i E N} is bounded for each pairwise disjoint {Ed A. 

Proof: Suppose sup{ : i E N, E E A} = 00. Note that for each M > 0 
there is a partition F) of S and an integer i such that min{ IVi(F)I} M. 
[This follows since 

Iv,(E)1 > A1 + sup{IVj(S)1 : j E N} 
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implies IlIi(S\E)1 ~ IlIi(E)1 - 111.(8)1> M.] Hence, there exist i l and a partition (Et, 
F l ) of 8 such that min{III.,(EI)I, I IIi, (Fl)l) > 1. Now either 

sup{III.(A n El)1 : i EN, A E A} == 00 

or 
SUp{llIi(A n FIJI: i E N, A E A} =: 00. 

Pick whichever of El or FI satisfies this condition and label it BI and set AI 
S\Bl • Now treat BI as 8 above to obtain a partition (A2, B2) of BJ and an i2 > i 1 

satisfying IlIi,(A2 )1 > 2 and sup{III.(A n B2 )1 : i E N, A E A} = 00. Proceeding by 
induction produces a subsequence {i j } and a pairwise disjoint sequence {Aj} such 
that Ip.,(Aj)1 > j. This establishes the sufficiency; the necessity is clear. 

Theorem 8 (Nikodym Boundedness Theorem) If {pi(E) : i EN} is bounded 
for each EEL:, then {p.(E) : i E N, EEL:} is bounded, i.e., {Pi} is uniformly 
bounded on L: when {Pi} is pointwise bounded on L:. 

Proof: Let {Ej} be a pairwise disjoint sequence from L: and let ti -+ O. Then 
lim tiPi( E) = 0 for each E E Hence, by the Nikodym Convergence Theorem {tiP,} 
• 

is uniformly count ably additive, and li.!11 t.p.(E.) == 0 by Lemma 4. By Exercise 1, 
• 

{P.(Ei)} is bounded, and the result follows from Lemma 7. 

Remark 9 As in the Nikodym Convergence Theorem, the u-algebra assumption in 
Theorem 8 is important; see Exercise 3. The result is also valid for bounded, finitely 
additive set functions defined on u-algebras (see Exercise 2). 

Despite the examples which show that neither the Nikodym Convergence or Bound­
edness Theorems are valid for algebras, there are versions of both results for set func­
tions defined on domains which are not u-algebras. For references to such results and 
a discussion of the history of these two important theorems of measure theory see 
[DU]. 

Exercise 1. Show {s,} C R is bounded if and only if tim sit. = 0 for every sequence 
{t;} with lim ti O. 

Exercise 2. Use Drewnowski's Lemma to show that Theorem 8 is valid for bounded, 
finitely additive set functions defined on au-algebra. 

Exercise 3. Let A be the algebra of subsets of N which are either finite or have 
finite complements. Define On : A -+ R by onCE) == 1 if nEE and 0 otherwise. 
Define Pn : A -+ R by 

if E is finite and 
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otherwise. Show each Itn is bounded, countably additive and {It,,} is pointwise 
bounded on A but is not uniformly bounded on A. 

Exercise 4. Let S = [0,1) and A the algebra generated by intervals of the form 
[a, b), 0 ::; a ::; b::; 1. Define It,. on A by It" (A) = nm (A n [0, lin)). Show Itn is 
countably additive, limltn (A) = It (A) exists for every A E A and It is not count ably 
additive. 



Chapter 3 

Integration 

3.1 Measurable Functions 

We now begin our study of the Lebesgue integral by introducing the class of func­
tions which will be considered. Recall that in section 1.3 when we were describing 
Lebesgue's definition of the integral a necessary condition for a bounded function 
f : [a, b] -, R to be integrable was that the set {t E [a, b] : a f( t) < ;3} had to be 
(Lebesgue) measurable for each a,;3. The functions which this condition are 
called measurable functions; we now introduce and study this class of functions. 

Let L be a O"-algebra of subsets of a set S. 

Definition 1 An extended real-va/ned fnnction f : S --+ R* is L -measurable, or 
simply measurable if L is understood, if {t E S: f(t) < a} E L for every a E R 

Proposition 2 Let f : S --+ R*. The following arE eqnivalent 

(i) f is rneasnrable, 

(ii) {t: f(t) a} E L for' every a E R, 

(iii) {t: f(t) > a} E L for every a E R, 

(iv) {t: f(t) ::; a} E L for every a E R, 

(v) the same as (i), (ii) J or (iv) except with (~for every a E R" r'eplaced by ']01' 
every a in any dense Sltbset of R". 

Proof: (i)~(ii):{t: f(t):::: a} S\{t: f(t) < a}. 

(ii)~(iii): {t : f(t) > a} U {t : f(t) a + lin}. 
n=1 

{t : f (t) a} = S\ {t : f (t) a}. 

{t: f(t) < a} {t: f(t)::; a lin}. 

71 
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For (v) suppose D c R is dense and {t : f(l) :s: d} E 2: for every d E D. Let 
a E R. Pick {dn,} c D such that dn T a, i= a. Then 

{t: f(l) < a} U {t: f(t) :s: dn} E I: 

so (iv) holds. The other cases are similar. 

Other characterizations of measurable functions are given in Exercise 1. 

Corollary 3 Iff: S --+ R* is measurable, Ihen {t : f(t) a} E 2: for every a E R*. 

Proof: For a E R, 

{t:f(t) a} n{t:a < f(l) < a + lin}. 
n=l 

EDr a = DO, {t: f(t) = DO} {t: f(t) > n}, and the case a = -DO is similar. 

Example 4 The converse of Corollary 3 is false. Let P be a subset of (0, 1) which is 
not Lebesgue measurable and set Q (0, 1)\P. Define f : (0, 1) --+ R by f(t) = t if 
t E Q and f(t) = -t if t E P. Then f is 1-1 so {I : f(t) a} is Lebesgue measurable 
for every a E R*, but f is not Lebesgue measure. 

Concerning the algebraic properties of measurable functions, we have 

Proposition 5 Let /1, 12 : S --+ R* be measurable. Assume fl + 12 and fdz are 
defined on S. Then 

are measurable functions. 

Proof: First, fl + 12 is measurable. If a E Rand fl(t) 12(t) < a, then 
/1(1) < a - 12(1) and, therdore, there is a rational r such that h(t) < r < a - 12(t). 
Hence, 

{t:fl(t)+h(l)<a} U{t: r}n{t:12(t)<a-r}. 
rEQ 

That afl is measurable for a E R is checked. 
To show fd2 is measurable, first note ff is measurable since 

{t: fret) > a} {t· h(t) > U {t : h(t) < -va} 

for a:2: ° and {t: ff(t) > a} S for a < O. But fd2 [UI + h)2 - ff - fil/2. 
Since 

{t : fl V h ( t) > a} = {t : h ( t) > a} U {t : h( t) > a},I1 V ./2 

is measurable and, similarly, h 1\ h. 
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Definition 6 Let f: S -; RO. Define j+ = fVO, f- = (- f)VO. Hence, f = j+- f­
and If I = j+ + f-. 

Corollary 7 f: S -; R* is measurable if and only if f+ and f- are measurable. If 
f is measurable, then If I is measurable. 

The converse of the second statement in Corollary 7 is false (Exercise 6). 
Concerning sequences of measurable functions, we have 

Proposition 8 Let fk : S -; RObe measurable for each kEN. Then 

f = sup{fk : k E N},g = inf{fk: k E N},limfk,limfk 

are measurable. 

Proof: For a E R, {t : f(t) > a} = U {t : fk(t) > a} so f is measurable. 
k=l 

Similarly, 9 is measurable. The other two statements follow immediately. 

Corollary 9 If fk : S -; R* is measurable for each kEN and if {fd converges 
pointwise to the function f : S -; R 0, then f is measurable. 

We next consider the measurability of compositions. 

Definition 10 A function f : Rn -; RO is called a Borel function if 

{t : f(t) < a} E B(Rn) 

for every a E R, i.e., if f is B(Rn)-measurable. 

For example, any continuous real-valued function on Rn is a Borel function (Exer. 
2.5.11). Any Borel function is obviously Lebesgue measurable. 

Proposition 11 Let f : S -; R be measurable and 9 : R -; RO be a Borel function. 
Then 9 0 f is measurable. 

Proof: For a E R, (g 0 f)-I (a, 00) = f-l(g-l(a, 00)) so the result follows from 
Exercise 1. 

It is not, in general, true that the composition of measurable functions is measur­
able. 

Example 12 Let K be the Cantor set in [0,1] and let K< be an E-Cantor set with ° < E < 1. Let f : [0,1] -; [0,1] be the continuous function with maps the open 
intervals in the complement of K< onto the open intervals in the complement of 
K constructed in Example 2.5.9. Let P be a subset of K< which is not Lebesgue 
measurable and pi = f(P). Since K has measure 0, pi is measurable. Observe that 
Cp ' 0 f = Cp is not measurable while Cp ' is measurable and f is even continuous. 
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Almost Everywhere: 

Definition 13 Let p. be a measure on L. A statement about the points in a subset 
E C S is said to hold p.-almost everywhere [p.-a.e.] in E if the statement is true for 
all of the points of E except possibly for the points in a subset of E of p. measure O. For 
example, if f: S -+ R*, to say that f 0 p.-a.e. means that p.{t : f(t) -I O} = O. 

Proposition 14 Let p. be a complete measure and let f, 9 : S -+ R*. If f is L­
measurable and f = 9 p.- a. e. in S, then 9 is L -measurable. 

Proof: Let Z = {t : f(t) -I g(t)}. Then p.(Z) = O. 'For a E R, 

{t: get) < a} = {t: f(t) < a} U {t E Z : get) < a}\{t E Z: f(t) '2' a} 

so 9 is L-measurable. 

Corollary 15 Let p. be a complete measure and ik, f: S -+ R* for kEN. If each fk 
is L-measurable and {fd converges pointwise to f p.-a.e., then f is L-measurable. 

Proof: 9 = limfk is L-measurable (Proposition 7) and f 9 P. a.e. so the 
result follows from Proposition 14. 

Without the completeness assumption on the measure p., Proposition 14 and 
Corollary 15 may fail (Exercise 4). 

Finally, we consider an important result on a.e. convergence which is due to 
Egoroff. Let fk' f : S -+ R be L -measurable functions. 

Definition 16 The sequence {Ik} converges p.-almost uniformly to f if for every 
t > 0 there exists EEL such that p.(S\E) < t and fk -+ f uniformly on E. 

Clearly, if Ik -+ f uniformly on S, then Ud converges p.-almost uniformly for any 
measure p., but the converse does not hold (Exercise ll). If {fk} converges p.-almost 
uniformly to f, then Uk} converges p.-a.e. to f (Exercise 13), but the converse is 
false (Example 19). However, if p. is a finite measure, p.-a.e. convergence does imply 
p.-almost uniform convergence; this is Egoroff's Theorem which we now prove. 

For cr > 0, set Ek(cr) = {t: IIk(t) - f(t)1 '2' cr}. 

Proposition 17 (i) Ud converges p.-almost uniformly to f {::} for every 

(ii) {fA,} converges p.-a.e. to f {::} for every cr > 0, p.( n 
n=) 
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Proof: (i): =>: Let I': > O. There exists EEL such that p,(S\E) < I': and fl< -lo f 

uniformly on E. Thus, there exists N such that E C n Em(O')< so EC:') U Em(O'). 
m=N m=N 

For n;::: N, 
00 

m=n 

{=: For every p there exists Np such that p,( U Em{l/p)) < 1':/21'. Set 
m?NI' 

00 

F = U U Em{1/P)· 
p=lm=Np 

Then p,(F) < I': and fl< -lo f uniformly on E = Fe = 
(ii): Let A = {t: !k(t) -lo f(t)}. Then 

(X) 00 co 00 00 

A = nun Em (0') = nun Em (lIp) . 
u>On=l m=n p::l n=1 m=n 

Since fl< ..... f p,-a.e. if and only if p, (N) = 0, (ii) follows from (1). 

(1) 

Theorem 18 (Egoroff) If p, is finite and fl< -lo f p, a.e., then fl< -lo f p,-almost 
uniformly. 

00 

Proof: Set An = U Em (O') and note An 1. Since p, is finite, limp, (An) 
m=n 

p, (JJI An) by 2.2.6 so the result follows from Proposition 17. 

Example 19 The finiteness requirement in Egoroff's Theorem cannot be dropped. 
Consider fl< = C[1<,oo) in R with Lebesgue measure. {fd converges pointwise to 0 but 
for every k fk( t) = 1 for t in a set with infinite Lebesgue measure. 

Example 20 The conclusion in Egoroff's Theorem cannot be improved to read, 
"fk -lo f uniformly on a set E with p,( S\E) = 0". Let S = (0, 1) with Lebesgue 
measure and !k = C(O,I/kl' Then Uk} converges pointwise to O. Suppose E C S has 
m(E) 1. Then for every k there exists t" E En (0, 11k) so fk(tk) 1 and Uk} 
does not converge uniformly to 0 on E. 

For an interesting extension of Egoroff's Theorem, see [Ba2J. 

Exercise 1. Let f : S -lo R*. Show f is L-measurable if and only if f-I(G) E L for 
every open G C Rand f-l(oo) E L, r1(-00) E L if and only if rl(B) E L for 
every Borel set B C Rand r l (00) E L, f-I( -(0) E L. 

Exercise 2. Let E C S. Show Ce is L-measurable if and only if EEL. 
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Exercise 3. Let f ; S ---> R* and a > O. If f is measurable, show Ifla is measurable 
(agree loola (0). Show 1/ f is measurable. 

Exercise 4. Show that Proposition 14 (Corollary 15) is false if completeness is 
dropped. [Let B be a Borel set of measure 0 and Z C B a Lebesgue measurable 
subset which is not a Borel set (Example 12). Define 9 ; R ---> R by g(t) = 1 if 
t E R\B, g(t) = 2 if t E B\Z and g(t) 3 if t E Z.] 

Exercise 5. Let /k : S ---> R* be measurable. Show {t: lim/J,(t) exists} E L:. 

Exercise 6. Give an example where If I is measurable but f is not. 

Exercise 7. If f : S ---> R is measurable, show t ---> sign f( t) is measurable. 

Exercise 8. Show if f : R ---> R is continuous m-a.e., then f is Lebesgue (Borel) 
measurable. 

Exercise 9. Show if f : R ---> R is differentiable on R, then f' is a Borel function. 

Exercise 10. If f : R" ---> R is Lebesgue measurable and a E R" show that 
x ---> f( x + a) is Lebesgue measurable. 

Exercise 11. Given an example where Ud converges almost uniformly but not 
uniformly. 

Exercise 12. Let f, 9 : R ---> R be continuous and f 9 m-a.e. Show f = g. 

Exercise 13. Show that if Ud converges ;t-almost uniformly to f, then 
fk ---> f ;t-a.e. Hint: Use Proposition 17. 

Exercise 14. If;t is counting measure on S, show {fk} converges ;t-almost uniformly 
to f if and only if fk ---> f uniformly on S. 

Exercise 15. Suppose;t is finite and {fk} is a sequence of measurable functions 
which converges ;t-a.e. to the measurable function f. Show there is a sequence, 

{Ej }, from L: such that ;t( S\ U Ej ) 0 and ft ---> f uniformly on each 
i=l 
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Exercise 16. Show that the image of a Lebesgue measurable set under a continuous 
function needn't be Lebesgue measurable. What about inverse images? 

Exercise 17. Let f : R -> R be Lebesgue measurable. Show there exists a set with 
positive Lebesgue measure on which f is bounded. 

Exercise 18. Show sup {fa : a E A} (inf {fa: a E A}) needn't be measurable when 
each fa is measurable and A is uncountable (compare Proposition 8). 
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3.1.1 Approximation of Measurable Functions 

In this section we show that measurable functions can be approximated by 
functions. 

Let L be a u-algpbra of subsets of S and Ii a measure on L. 

Definition 1 A function f : S' --t R is L -simple, 01' simple~r L is I1nri(T8/ood,if f 
i8 L -measurable and the range of f is }iude. 

If f : 5 --t R simple and Rf {ai, ... , an} with Il, I Il J fori I j, then 

Ai f- 1 E L, Ai n Aj 0 if i I j, and f = 0/'..1,; this is called the 

standard repre8cntat-iou of f. Thus, a simplp [unction is 
characteristic functions of measurable sets. 

a linea.I combination of 

Vile show that any measurable function can be approximaterl simple functions. 

Theorem 2 Let f : S --t R' be non-negative and measllrable. Th( Ii there c.Tis/;; a 

s~qllence of non-negative simple jllnctwns, {yn}, sllch thal 'Pn(l) l I(t)'!t S. ~l I 
is bOllnded, the convergence is ll/l.1jonn on S. 

Proof: For each nand t E S set 

{ 
(i-
n 

if (1 - 1 
if f(t) 2: n 

fit) i/2"' 
1"", n2" 

Each 'Pn is non-negative, Lsimple and fit) for all t. Also, 'Pn+l(t) 2: 
since if (i - 1 ::; f(l) < , then ::; f(t) < 2i/2,,+1 so 

'P,,+I (t) 2: (2i yn(il· 
If t E Sand n > f(t), then 

0::; (3.1 ) 

so l f( t). The last statement folIowR from ( 

Corollary 3 Let f : S R* be mens'Urable. Then there lexists a 8f'qnence of simple 

fundions, {ynL sllch that {y,,} converges lo f on 5' wilh ::; If(l)1 
for all t E S. Aforcove1', if fis bo'Unded, the convergence is on 8. 

Proof: Apply Theorem 2 to f+ and f-. 

\Ne next consider the approximation of measurahle functions by continuous func 
tions. Let S be a topological space and L au-algebra o[ subsets of S which contains 
the Borel sets, B(S). We have an important approximation theorem due to Lusin. 
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Theorem 4 (Lusin) Let JL be a measure on 2: such that for every E E 2: and c > 0 
there exists an open U ::) E such that JL(U\E) < c and let f : S -+ R be 2:-measurable. 
Given c > 0 there exists H E 2: such that JL(H) < c and fls\H is continuous. 

Proof: Pick a countable family of open subsets of R, {Vj}, such that any open 
set in R is a union of elements of {Vj}. For each j, pick an open set Uj in S such 

that Uj ::) f-l(Vj) and JL(Uj\J-I(Vj)) < f/2j . Put H = U (Uj \J-1(Vj)). Then 
j=l 

00 

JL(H) < E c/2j c. 
j=l 

Set 9 = fls\H' 
We first claim that g-l(Vj) = Ui n He. Clearly g-I(Vj) CUi n He. On the other 

hand, 
Uj n He C Uj n [S\(Ui\f-I(Vj))] 

Ui n S n [Uj\f-l(Vj)]e 
Ui n S n [(Uj)" U f-l(Yj)] 
S n f-l(Yj) = rl(Yj). 

Intersecting with He gives the desired containment and establishes the claim. 
We next claim that 9 is continuous on He. Let V be open in R. There exists 

MeN such that V U Yj. From above, g-l(V) = U g-l(Yj) = W n ( U Uj) 
iEM jEM jEM 

so g-l(V) is open in He. 

Remark 5 Note that both Lebesgue and Lebesgue-Stieltjes measures satisfy the 
assumptions on JL (2.5.4 and 2.6.3). If JL is also inner regular (2.5.5), then H can be 
taken to be a closed set. This proof of Lusin's Theorem is from [Fe]. 

By using the Tietze Extension Theorem, we can establish a more convenient form 
of Lusin's Theorem. The Tietze Extension Theorem asserts that a bounded continu­
ous function defined on a closed subset of a normal topological space has a continuous 
extension to the whole space which has the same bound as the original function. A 
proof for topological spaces can be found in lSi], for metric spaces in [Di], and for Rn 
in [Ba]. 

Corollary 6 Let JL and f be as in Theorem 4 and assume further that JL is finite, S 
is normal and every set in 2: is inner regular. Then for every f > 0 there exists a 
continuous functIOn 9 : S -t R such that JL{ t : f( t) f= g( t)} < L If f is bounded by 
/0.1, 9 can be chosen to be bounded by M. 

Proof: Let H be as in Theorem 4 but with c replaced by f./2. Choose J( C 
IIe compact such that JL(He\K) < c/2. Then JL(S\K) < f and flK is continuous 
and, hence, bounded. By the Tietze Extension Theorem, flK can be extended to a 
continuous function 9 on S with the same bound as fiK. 

Note Corollary 6 is applicable to Lebesgue measurable subsets of Rn with finite 
measure. 
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Theorem 7 Let the assumptions be as in Corollary 6. Then there exists a sequence 
01 continuous lunctions {/d on S such that h, -+ I ft-a.e. Moreover, il I is bounded 
by M, the {hJ can be chosen to be bounded by M. 

Proof: By Corollary 6, for each k there exist a compact Kk such that ft(KiJ < 
1/210 and a continuous function h, on S such that h,IK. 11K •. 

Let Z = limKf 

and /l( Z) = O. 

00 

U Kf so for every j, 
k:j 

00 

ft(Z) ~ ft( U KD ~ L 1/210 = 1/2j
-

1 

k=j k=j 

If t E ZC, t ~ U Kf for some j so t E Kk for k 2: j and Ik(t) = I(t) for k 2: j. 
k=j 

Hence, !k(t) -+ I(t) or !k -+ I /l-a.e. 
The last statement follows from Corollary 5. 
The proof of Theorem 7 and Corollary 3.1.15 also gives the following result. 

Corollary 8 Let /l be a complete measure on E. Suppose I : S -+ R is such that 
lor every t > 0 there exists a continuous lunction g : S -+ R such that 

/l{t: I(t) f:.g(t)} < t. 

Then I is measurable. 

Corollaries 6 and 8 give a characterization of measurable functions (for certain 
measures) which on R is due to Lusin. In their treatment of measure and integration 
Bourbaki take this characterization as the definition of measurability for a function 
([Bbl). 

Exercise 1. Let I : S -+ R be measurable. Show there exists a sequence, {'Pd, 
of countably valued, measurable functions such that 'Pk -+ I uniformly on S with 
l'Pkl ~ Ifl· [Hint: Consider the proof of Theorem 2.) 

Exercise 2. If {t : I(t) f:. O} has O"-finite /l measure, show the sequence {'Pk} in 
Theorem 2 and Corollary 3 can be chosen such that {t : 'Pk (t) f:. O} has finite /l 

measure for every k. 

Exercise 3. Let I : R -+ R· be Lebesgue measurable. Show there exists a Borel 
function g : R -+ R· such that I g m-a.e. 
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3.2 The Lebesgue Integral 

In this section we define the Lebesgue integral with respect to an arbitrary measure. 
In Lebesgue's original construction of the integral, he considered a bounded function 
f defined on an interval [a, bJ and approximated the function from above and below 
by simple functions 1/J and tp, defined the integral of the simple functions 1jJ and tp in a 
natural way, and then used these two integrals to approximate the integral of f (§1.3, 
equation (2)). We follow basically the same procedure as Lebesgue, except that we will 
consider unbounded functions directly so we cannot consider upper approximations 
by simple functions. It will be seen that this leads to no difficulties because we will 
restrict the functions which we will consider to the class of measurable functions 
(Remark 5). 

Let L be a O'-algebra of subsets of S and let p. be a measure on L. If tp is a 

non-negative, .-~'LHI"HC function and tp akG A. is the standard representation of 

tp, we define the integral oftp with respect to p. to be Istpdp. = t a/cp.(A/c) [here we 
1e",1 

are using the convention that 0 . 00 0]. If EEL, we define the integral of tp over 
E (with respect to p.) to be 

We say that tp is p. -integrable over E if IE '.pdp. < 00. 

Proposition 1 Let tp : S -+ R be non-negative, simple with 

m 

tp biGB " Bi n B j 0 

for i =f. j. Then 
m 

"L. bip.( B,). 
i=1 

Proof: Let tp ajG A, be the standard representation of tp. Then Aj = U Bi 
b.=a, 

so 
n n m 

P.(Bi) = "L. bip.(B,). 
,=1 

Remark 2 Note that only the finite additivity of p. was used in the proof of Propo­
sition 1; the non-negativity of the function was used only to insure that there 
were not arithmetic problems of the form 00 - 00 encountered. Thus, if tp is a simple 
functio~ and p. is a finitely additive set function on an algebra A which takes on only 
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values in R, the integral v(E) IE 'Pdp. is well-defined and v ; A -t R is finitely 
additive. Moreover, 

lie 'Pdp. I ::; ie I'PI d 1p.1 ::; sup{I'P(t)1 ; tEE} 1p.1 (E)for E E A, 

where 1p.1 is the total variation of p. [Proposition 2.2.1.7]. 

Proposition:; Let 'P, t/J be non-negative, simple. 

(i) If t ~ 0, then Is t'Pdp. = t Is 'Pdp.. 

(ii) Is('P + t/J)dp. Is 'Pdp. + Ist/Jdp.. 

(iii) If'P ::; t/J, then Is 'Pdp. ::; Is t/Jdp.. 

(iv) The set function E -t IE 'Pdp. is a measure on E. 

Proof: (i) is immediate. For (ii) let 
m n 

'P = LaiGA" t/J = L bjGB) 
i=l j=1 

be the standard representations for 'P and t/J. Set Eij = Ai n B j so 

'P L aiGE." t/J L bjCE" 

and by Proposition 1, 

f ('P + t/J )dp = L( ai + bj )p( Eij) = f 'Pdp + f t/Jdp.. 
1s ',j 1s 1s 

If 'P ::; t/J, then ai ::; bj when Eij i- 0 so 

is 'Pdp. 2.:aiP(Eij)::; 2.: bjp.(Eij) = is t/Jdp 
1,1 1,] 

and (iii) holds. 
For (iv), if {Ej} C E is a pairwise disjoint sequence from E with union E, then 

\Ve now define the integral of a non-negative, measurable function. 

Definition 4 If f ; S -t [0, =] is E-measurable, we define the integral of f with 
respect to p. to be 

is fdp. sup{ is 'Pdp. : 'P simple, 0 ::; 'P ::; j}. 

If E E E, we define the integral of f over E (with respect to p.) to be 

ie fdp is GEfdp. 
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Every non-negative measurable function has an integral but it may be infinite. 
Note from Proposition 3 (iii), the definition of the integral for simple functions given 
in Definition 4 agrees with the previous definition. 

Remark 5 Note the integral defined above is analogous to a lower integral in the 
Riemann theory of integration. There is no need to go through a "lower integral­
upper integral" procedure because we have restricted our considerations to measurable 
functions. Indeed, if f : S -+ R is bounded and IL is a finite, complete measure, then 

sup{is tpdIL : tp::::; f, simple} = inf{is 1jJdIL : f ::::; 1jJ, 1jJ simple} (3.1) 

holds if and only if f is measurable. We indicate a proof of this result in Appendix I 
at the end of this section. 

From Proposition 3, we have 

Proposition 6 Let f, g be non-negative, measurable. 

(i) If 0 ::::; f::::; g, then IsfdIL ::::; IsgdIL· 

(ii) 1ft 2': 0, then IstfdIL = tIsfdIL. 

One of the most important properties of the Lebesgue integral is the ease with 
which it handles limits. We now establish one of the most important results in this 
direction, the Monotone Convergence Theorem (MCT). 

Theorem 7 (MGT). Let {fd be a sequence of non-negative, measurable functions 
such that h(t) i for every t E S. If f(t) = limfk(t), then Is fdIL = lim Is fkdIL· 

Proof: Since 0 ::::; h ::::; fk+! ::::; f, from Proposition 6 Us hdIL} is increasing and 
lim Is hdIL ::::; Is fdIL· 

For the reverse inequality, fix 0 < a < 1 and let tp be an arbitrary simple function 
with 0 ::::; tp ::::; f. Set Ek = {t : h (t) 2': atp( t)}. Since Ud is increasing, {Ed is 

increasing, and since {fd converges pointwise to f, U Ek = S. Then 
k=l 

By Propositions 6, 3(iv) and 2.2.5, 

lim f fkdIL 2': a lim f tpdIL = a f tpdIL. is iE. is 
Letting a approach 1 gives 

and since tp is arbitrary, 



84 CHAPTER 3. INTEGRATION 

Corollary 8 Let fk be non-negative, measumble. Then 

Proof: Let {'Pj} ({ 7j;j}) be a sequence of non-negative simple functions such that 
'Pj i fl i /2) [Theorem 3.1.2]. Then + i (II + h) so by the MGT and 
Proposition 3(ii), 

lim is('Pj + 'l/Jj)d{1 lim is 
By induction and the MGT, 

lim [ I: .hd{1 = lim n [s .hd{1 
n iSk=l n J, 

Another important property of the Lebesgue integral is that as a set function it 
defines a countably additive measure. 

Theorem 9 If f is non-negative and measumble, then the set fu.nction E h fdfl 
is a measure on L. 

Proof: Let {'Pk} be a sequence of non-negative, simple functions such that 'Pk i f 
(Theorem 3.1.2). By the MGT, 

for each E E The set function E -+ h 'Pkdfl is a measure by Proposition 3(iv) so 
the result follows from Exercise 2.2.13. 

Proposition 10 Let f be non-negative and measumble. Then Is fdp 0 ¢:} f 0, 
It-a. e. in 5'. 

Proof: ¢=: The r("sult is clear for simple functions and, therefore, follows imme­
diately from the definition of the integral. 

00 

'*: Set Ak {t : f(t) 2: 11k}. Then A {t: f(t) > O} = U Ak. Therefore, if 
k=l 

p( A) > 0, then p( Ak) > 0 for some k and 

[ fdlL 2: 1 fdp 2: p(!h)lk > o. is Ak 

If .f : 8 R* is measurable, we say that .f has a p-integral over EEL if one of 
t he integrals Is f+ dp, Is .r- dp is finite, and if this is the case, the {L- integral of f over 
E is then defined to be 

[ fdfl = [ rdp- [ rdp. iE iE iE 
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If fdJ1- is finite, we say that f is J1--integrable over E. 
'When it is necessary to indicate a variable of integration, we sometimes write the 

integral as 

l/dJ1- = .If(.s)dJ1-(s), 

This is a particularly useful notation when the integrand f depends on a parameter. 
\Vhen the measure J1- is Lebesgue measure, we say the function f is Lebesgue 

integrable and call IE fdm the Lebesgue integral of f. We sometimes denote the 
Lebesgue integral by 

and if E = [a, b] is an interval, we often write 

l/dm = t fdm t f(t)dt. 

If 'P : S --t R is a simple function, then <p has a J1--integral over E if and ouly if 
one of the sets {t E E : 'P(t) > OJ, {t E E : <pet) < O} has finite J1--measure: in this 
case, if 

then 

" 
<Pk = Lak CAk1 

k=l 

k <pdJ1- = ~ akJ1-(Ak n E) 

so 'P is J1--integrable over E if and only if Il( Ak n E) < 00 for ak i O. 
One of the iuteresting properties of the Lebesgue integral is that it is an absolute 

integral for measurable functions. 

Proposition 11 Ltt f : S --t R* be measurable. Then f is Il-inlegrable {=} Ifi is 
J1--integrable. 

In this case, lIs fdJ1-1 S Is If I dJ1-. 

Proof: Tbe first part is immediate from the inequalities f"'", f- s If' f+ + f- , 
Proposition 6 and Corollary 8. 

Since 

and 

the last inequality follows. 
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Corollary 12 Let f, 9 : S -+ R* be measurable with If I ~ 9 Jl-a.e. If 9 is Jl­
integrable, then f is Jl-integrable. 

Proof: Since Is If I dJl ~ Is gdJl [Exercise 12], the result follows from Proposition 
11. 

In particular, if f is Jl-integrable over EEL, then f is Jl-integrable over FE L 
when FeE. 

The integral is a linear functional over the class of integrable functions. 

Theorem 13 If f, 9 are Jl-integrable, then af + bg is p.-integrable for any a, bE R 
and 

Is(af + bg)dp. a Is fdp. + b 1s9dp.. 

Proof: Since laf + bgl ~ lallfl + Ibllgl, the first statement follows from Proposi­
tion 11 and Corollaries 8 and 12. It is easily checked that 

Is afdp. a Isfdp.. 

Leth=f+g·Thenh h+-h- J+ f-+g+ g-soh++ +g-=J++g++h-
and from Corollary 8 

which gives 

Concerning the "size" or "growth" of an integrable function, we have 

Proposition 14 Let f : S -+ R* be p.-integrable. Then 

(i) For every a > 0, Ea = {t : If( t)1 ~ a} has finite p.-measure, 

(ii) f is finite Jl-a. e. 

(iii) {t: f(t) =/: O} has (j-finite p.-measure. 

Proof: (i): 00 > Is If I dp. ~ aJl(Ea ). 

(ii): If Z = {t: If(t)1 = oo}, then for every a > 0 

Is If I dp. ~ k If I dp. ~ ap.(Z) 

so I1(Z) = O. 
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(iii) follows from (i) since 

00 

{t : f(t) =J O} = U {t : If(t)1 ~ Ijk}. 
k=) 

We next establish the other important convergence theorem for the Lebesgue 
integral, the Dominated Convergence Theorem (DCT). This result removes the very 
restrictive monotonicity requirement in the MCT. For this we use an important result 
due to Fatou. 

Theorem 15 (Fatou) Let Uk} be non-negative and measurable. Then 

Proof: Set hk = infUj : j ~ k}. Then hk llimfk so by the MCT 

Concerning the hypothesis and conclusion, see Exercises 14 and 15. 

Theorem 16 (DCT) Let fk' f, 9 be measurable with 9 f.L-integrable and such that 
Ifkl :s 9 f.L- a.e. If fk -+ f f.L- a.e., then Uk} and fare f.L-integrable with 

is fdf.L = lim is ikdf.L. 

Moreover, limJs Ifk - fl df.L = O. 

Proof: Since Ifkl :s 9 f.L-a.e. and If I :s 9 f.L-a.e., these functions are f.L-integrable. 
Now 9 - fk ~ 0 f.L-a.e. so by Fatou's Theorem 

Hence, 

is fdf.L ~ lim is fkdf.L. 

Similarly, fk + 9 ~ 0 f.L-a.e. so 
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and 

Thus, limIsfkdll = Isfdll. 
Since Ifk fl:S; 2g Il-a.e., the last statement follows immediately from the first. 
We cannot expect the conclusion of the DCT to hold without some condition on 

the {fd. For example, take f. kC[O,i/.] and Lebesgue measure on [0,1). On the 
other hand, the domination condition in the DCT is sufficient but is not necessary. 
For example, take f.(t) C[.-i/2,Hl/2](l)/t. Then f. -+ 0 and 

100 

f.dm Cn({k + 1/2)/(k - 1/2)) -+ 0 

[this computation is justified in the next section where it is shown that the Lebesgue 
integral generalizes the Riemann integral], but there is no Lebesgue integrable func­
tion 9 dominating the sequence {Jd [if 9 ~ fl<, then g(t) ~ l/t for t > 1J. 

In Theorem 9 we showed that the integral of a non-negative measurable function 
defined a measure. Exercise 26 extends this results to the integral of an arbitrary 
function having a p-integraL We next consider another important property of the 
integral as a set function. 

Theorem 17 Let f be p-integrable. Then lim IE fdp = O. 
I'(E)~O 

Proof: First, suppose f ~ o. Set f. f 1\ k. Then 0 :s; f. i f so by the MCT, 

If E > 0 is given, choose k such that IsU f.)dp < 1'/2 and 0 < b < £/2k. If 
p(E) < b, then 

If f is p-integrable, then lIE fdlll :s; IE If I dll so the general result follows from 
the first part. 

Finally, we have 

Proposition 18 Suppose that f has a p-integral over S. If Ie f dp = 0 for every 
EEL, then f 0 p-a.e. [so f is p-integrable with Is fdll = 0 by Exercise 12}. 

Proof: If E = {t: f(t) ~ O}, then IE fdp 0 so f = 0 p-a.e. in E by Proposition 
10. Similarly, f 0 p-a.e. in F {t: f(t) < O}. 
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Remark 19 We have chosen to basically follow Lebesgue's original construction of 
the integraL We began with a measure and then constructed the integral from the 
measure. It is possible to follow the reverse order; this approach to the integral is 
due to Daniell. In the Daniell approach one begins with an "elementary integral" /, 
a linear functional defined on a vector space of functions, Z, defined on some subset 
S, which is positive in the sense that /(1) 2': 0 whenever f 2': 0, fEZ, and which 
satisfies a mild sequential continuity condition [for example, the Riemann integral on 
the class of continuous functions]. The functional/is then extended to a positive 
linear functional J defined on a vector space X of functions on S which contains Z. 
There is a natural measure associated with the extension J ; 2..: {E : CE E X} is a 
O"-algebra of subsets of Sand I1(E) J(CE) is a measure on 2..:. Under appropriate 
assumptions, J(J) = Is fdl1. For treatments of the Daniell integral, see [Roy] or [Ta]. 

Appendix I: We give a proof of the statement in Remark 5. 
First, suppose that f is measurable and the range of f is contained in [£, L). Let 

E > 0 and £ = Yo < YI ••• < y" = L be a partition of [£, LJ with 

max{£i+l-£,:i=O,I, ... ,n l}<f. 

Set 
E,={t:£'_l:::;f(t)<£.},i=l, ... ,n, 

and 
n n 

",p = L£,CE" V' L £,-1 CE,. 
i=1 ;=1 

Then V' :::; f :::; ",p and 

n 

V')dl1 :::; L(£i - £'-I)I1(E.) < EI1(S) 
i=l 

so (1) (in Remark 5) holds. 
Suppose (1) holds. For each k there exist simple functions V'k and ",pk such that 

V'k :::; f :::; ",pk and IS(",pk - V'k)dl1 < 11k. Set V' = SUPV'k,,,,p inf",pk. Then V' and ",p 
are measurable with V' :::; ",p and 

k(",p - V')dl1 :::; k(",pk - V'k)dl1 < 11k 

for each k so Is(",p - V' )dl1 0 and ",p = V' l1-a.e. by Proposition 10. Hence",p = f V' 
l1-a.e. and f must be measurable. 

Appendix II: Countable Additivity of Lebesgue measure on R". 
We show, using the MCT, that Lebesgue measure m" on the semi-ring S" IS 

countably additive (Example 2.2.10). The proof is by induction on n. For n = 1, this 
follows from Example 2.2.9. Assume the result is true for n. Let 
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with Bi E 8n +1 pairwise disjoint and with union B A x [a, b) E 8n+1 , A E 8n . Fix 
x E R". Then 

k 

L:CA,(X)C[a.,b,) i CA(X)C[.,b) 
i=l 

as k -+ 00 so by the MeT for the measure m, we obtain 

k 

L: CA. (x)(b; - at) i CA(x)(b a). 
i=l 

We now apply the MeT to the measure m n , which is countably additive by the 
induction hypothesis, to obtain 

k 

L:m,,(A,)(b, 
i=l 

k 

at) = L: mn+1(B.) i m,,(A)(b - a) = mn+l(B). 
1=1 

Hence, m,,+1 is countably additive. 
Note that for the proof above we only required the MeT for simple functions. 

This can be obtained by proving Propositions 1 and 3 and then using the method of 
proof in Theorem 7 (MeT). 

As noted earlier in Example 2.2.10 a geometric proof of this result which does not 
use integration theory can be given, but the proof is surprisingly difficult. 

Appendix III: As promised following Theorem 2.2.1.5 we give an example of a real­
valued, finitely additive set function defined on a u-algebra which is not bounded. 
For our construction we first require a lemma which utilizes integration with respect 
to a finitely additive set function as described in Remark 2. 

Lemma 20 Let A, B be algebras of subsets of S with A c B and let a : A -+ R be 
finitely additive. If B E B\A and b E R, there exists f3 : B -+ R, finitely additive, 
such that f3 is an extension of a with f3(B) = b. 

Proof: Let 8(A) [8(B)J be the vector space of all A-simple [B-simple] functions. 
Then a induces a linear functional a : 8(A) -+ R via integration with respect to a, 
i.e., aU) = fsfda [Remark 2J. The linear functional a has a linear extension, jJ, to 
8(B) such that /3(CB ) b. Then f3(E) = !9(CE ), E E B, defines the desired finitely 
additive extension of a. 

We now present our example ([Gil). 

Example 21 Let {Edk:o be a pairwise disjoint sequence of intervals such that 

Ek = R. Let Ak be the algebra generated by {Eo, E 1 , ••. , Ek} so 

Ao C Al C A2 C ... eM, 
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the Lebesgue measurable subsets of R. Set ao 0 on .40; let al be a finitely additive 
extension of ao t.o At such that. al(Et ) = 1 [Lemma 20], and by induction there 
exists a sequence {ak} of finitely additive set functions defined on {Ad such that 

ak+l extends ak and ak(Ek) = k. Now A U Ak is an algebra and a U ak is 
k=O k=O 

finitely additive on A. By Lemma 20, there is a real-valued finitely additive extension 
of a, p, to M, and since peEk) k for every k, p is unbounded. 

Exercise 1. If p is counting measure on S, show 1 : S -t R is p-integrable if 
and only if A = {t : I(t) of O} is countable and I: II(t)1 < 00. In this case, show 

tEA 

Isidp I:I(t). 
tEA 

00 

Exercise 2. Let {Jd be p-integrable and I: Is IIkl dp < 00. Show the series I:!k 
k=l 

converges pointwise ( absolutely) p-a.e. to a p-integrable function 1 with 

Exercise 3. Let Ik, 1 be non-negative, p-integrable with Ik -t 1 p-a.e. Suppose 

Show IE Ikdp -t IE Idp for every E E 
S\E.] 

[Hint: Apply Fatou's Theorem to E and 

Exercise 4. Let 1 be ,i-integrable. Suppose there exists k > 0 such that 

for every 0 < peE) < 00. Show 111 ::.; k p-a.e. 

Exercise 5. Let p be finite. Assume {Jd are p-integrable and Ik -t 1 uniformly on 
S. Show 1 is p-integrable and Is 11k - 11 dp -t O. Can finiteness be dropped? 

Exercise 6. Let 1, 9 be non-negative, measurable. Assume 1 is p-integrable and set 
veE) IEIdp for E E Show 9 is v-integrable if and only if Ig is p-integrable 
and in this case IE gdv IE 1 9 dp for E E [Hint: First consider simple functions 
g.] 

Exercise 7. Let 1 : [a, b]-t R be m-integrable. If I: I(t)tkdm(t) 0 for 
k 0,1,2, ... , show 1 = 0 m-a.e. 
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Exercise 8. Let f : R -+ R be m-integrable. For a E R set fa(t) = f(t + a). 
Show fa is m-integrable and fR fdm fR fadm. [See Exercise 2.5.2.] What about 
fR f(at)dm(t)? [Exercise 2.5.4.] 

Exercise 9. (Chebychev Inequality). Let f be p-integrable and e > O. Show 
p{t: If(t)1 2: e} :s; fs If I dple. 

Exercise 10. Let f be p-integrable. Show 

limp{t:lf(t)l2:e} 0 
c-+oo 

and 
{ If I dp O. 

l{t:IJ(tJr?:c} 

Exercise 11. Let {Ik}, 9 be p-integrable with Ilkl :s; 9 p,-a.e. Show 

uniformly for kEN. 

Exercise 12. Show that if p,( E) 0, then any measurable function f is /l-integrable 
over E with fE fdp, = 0. 

Exercise 13. Show the analogues of the MCT and DCT do not hold for the Riemann 
integral. 

Exercise 14. Show that strict inequality can occur in Fatou's Theorem. [Consider 
fk = C(O,2) for k odd, fk = C p ,3) for k even.] 

Exercise 15. Show the non-negativity assumption cannot be dropped in Faton's 
Theorem. 

Exercise 16 (Bounded Convergence Theorem; BCT). Let p be a finite measure and 
fk, f be measurable. Assnme 3M > ° such that 11;,1 :s; M /l-a.e. If fk -+ f /l-a.e., 
show fs fdp = limfs fkdp,. 

k 

Exercise 17. Let f : S -+ R* be non-negative and p, (i-finite. Show that f is 
measurable if and only if f II 9 is /l-integrable for every Ii-integrable g. 
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Exercise 18. Let {Eo} C L: be pairwise disjoint and E = U E i . Let f be measurable 
1=1 

and It-integrable over each E i • Show that f is It-integrable over E if and only if 

filfl dp < 00. 
i:::] E, 

Show this last condition cannot be replaced by li~1 fE, fdPI < 00. 

Exercise 19. Suppose f : R R is uniformly continuous on Rand m-integrable 
over R. Show f vanishes at 00 and is bounded. Can uniform continuity be replaced 
by continuity? 

Exercise 20. If f is bounded and measurable and 9 is p-integrable, show fg is 
p-integrable. 

Exercise 21. Let p be finite and f measurable. If fg is p-integrable for every It­
integrable g, show there exists M ?:: 0 such that If I :S M p-a.e. [Such functions are 
called p-essentially bounded.] 

Exercise 22. Let f be non-negative and measurable and set 

Ek {t:k:Sf(t)<k+l}fork=O,l, ... 

If f is p-integrable, show kp(Ek) < 00. Show 

I)k + l)p(Ek) < 00 

k=O 

implies that f is p-integrable. 

Exercise 23. If f is It-integrable and F. = {t: If(t)1 ?:: k}, show limkp(F.) = O. 

Exercise 24. Show that E C Rn has Lebesgue measure 0 if and only if there exists 
a sequence of m-integrable functions U.} such that 

f ~ If.ldm < 00 
'=1 Rn 

and 

IA(x)1 00, 

for every x E E. 



94 CHAPTER 3. INTEGRATION 

Exercise 25. Show the measurability assumption in Proposition 11 and Corollary 
12 is important. 

Exercise 26. Let I : S -> R' have a Jl-integral (possibly infinite). Show v{E) = 
IE IdJl defines a signed measure on E. Give a Hahn Decomposition for v. Show 

i rdJl 

and 
Ivl (E) i III dJl. 

Exercise 27. Let Ik be non-negative, Jl-integrable and suppose !kef) 1 I(t) for t E S. 
Show I 0 Jl-a.e. if and only if HmIs IkdJl = O. 

Exercise 28. If Jl is a regular measure and I is non-negative and Jl-integrable, show 
that v = IldJl is a regular measure. 

Exercise 29. Let Ik be non-negative and measurable. If /k -> I pointwise and 
Ik :s: I, show 

Exercise 30. Let I : [0,1] -> R be Lebesgue integrable. Show t -> t k I(t) is Lebesgue 
integrable for each kEN and Id tk I{t)dt -> O. 

Exercise 31. Let v be a signed measure on E with v = v+ - v- its Jordan decom­
position. 1£ I : S -> R' is E-measurable, say that I is v-integrable if and only if I is 
both v+ and v- integrable and define 

/Idv = /Idv+ - /Idv-. 

Show I is v-integrable if and only if I is lvi-integrable and in this case 

1/ Idvl :s: / I/ldlvl· 

Show Ivl(E) = sup {IIEldvl : 1/1:s: I}. 

Exercise 32. Let Jl be a finite measure and ft, non-negative and Jl-integrable with 
Ik -> 0 Jl-a.e. Show Is IkdJl -> 0 if and only if for every c > 0 there exists 8 > 0 such 
that Jl (E) < 8 implies IE IkdJl < c for all k. 
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Exercise 33. Show p. is a-finite if and only if 3 a p.-integrable function f with 
f (t) > 0 for all t E S. 

Exercise 34. If f (t) > 0 for all tEE, p. (E) > 0 and f is p.-integrable over E, show 
IEfdp. > O. 

Exercise 35. Let f : Rn -> R" be Lebesgue integrable. If IK f dm 0 for every 
compact (open) K, show f = 0 m-a.e. 

Exercise 36. Find limI~ (i!:;.dt. 

Exercise 37. Let Ud be measurable and !k -> f p.-a.e. Let 9k, 9 be p.-integrable, 
gk -> 9 p.-a.e. and Is 9k dP. -> Is 9dP.. If Ifk I S 9k p.-a.e., show f is p.-integrable and 
Is fkdp. -> Is fdp.. 

Exercise 38. Let f : [a, b] -> R" be Lebesgue integrable and I: fdm = 0 for every 
a S x S b. Show f = 0 m-a.e. 
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3.3 The Riemann and Lebesgue Integrals 

Let f : [a, b] -> R be bounded. If 7r {a = Xo < XI < ... < Xn b} is a partition 
of [a,b], set 0; = [Xi-I, mi = inf{J(t) : t E Oil, M; = sup{J(t) : tEo;} and 
J.l (7r) = max {Xi - xi-d. The upper (lower) sum of f with respect to 7r is 

n 

U(j,1r) = L Mi(Xi Xi-I) 
;=1 

n 

[(L(j,1r) E mi(Xi xi-t)L and the upper (lower) integral of f is 
;=1 

-b JJ inf{U(j,7r): 7r is a partition of [a,b]} 

[f~f sup{(L(j,1r): 1r a partition of [a,b]}]. The function f is Riemann integrable 

[~ver [a, b]] if t,1 = f~f, and the Riemann integral of f is defined to be the common 
value; in order to distinguish the Riemann integral from the Lebesgue integral, we 
denote the Riemann integral by R f: f. 

We now show that any Riemann integrable function is Lebesgue integrable and 
the two integrals agree in this case. Our proof also gives a necessary and sufficient 
condition for a function to be Riemann integrable. 

Theorem 1 Let f : [a, b] -> R be bounded. 

(i) Iff is Riemann integrable over [a, b], then f is Lebesgue integrable over [a, b] and 
Rf: f f: fdm. 

(ii) f is Riemann integrable over [a, b] if and only if f is continuous m-a. e. in [a, b]. 

Proof: Choose a sequence of partitions, {IT',,}, such that IT'1 C 1r2 C .. " J.l( 1rk) -t 0 

and limL(f,lT'k) = fbf, limU(f,7rk) 1.f [this can be done by choosing {Pd to 
=-<l 

" satisfy the last three conditions and then setting 1rk U Pj]. If 7rk is given by 
j=l 

{a Xo < XI < ... < Xn = b}, let mi = inf{J(t) : Xi-I::; t ::; Xi}, Mi sup{J(t): 
n 

Xi-l ::; t ::; xt} and define simple functions i k and Uk by i" E miC[:r._l,x.), u" = 
i=1 

f MiC[x,_I,Xi) on [a,b) and i,,(b) u,,(b) = f(b) so f:i"dm L(j,lT'k), f:ukdm = 
£=1 

U(j, IT'k). Since IT'HI :J 7rk, we have 
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Set f(x) = limfk(X), u(x) limuk(X) and note u(x) ::::: l(x). By the MCT, 

b b-';' 1 udm = lim 1 Ukdm = J/. (3.2) 

For the proof of (i), assume that 1 is Riemann integrable. From (2) we obtain 
f: Um R f: 1 f: udm so f: (u - f)dm = 0 and since u ::::: f, u = l m-a.e. so from 
(1), u l = 1 m-a.e. Hence, 1 is Lebesgue integrable and f: ldm Rf: 1. 

For the proof of (ii), let C = U 'Irk so C is countable and m(C) = O. If x if: C, 
'\;=1 

then 1 is continuous at x if and only if u(x) l(x) = lim(uk(x) lk(X» = O. 
Hence, if 1 is continuous m-a.e., then from (1), u l = 1 m-a.e. and from (2) 

f: Um f: udm = 1,.1 so 1 is Riemann integrable. 
If, conversely, 1 is Riemann integrable, then from (2) I: udm = I: Um so u l 

m-a.e. and 1 is continuous m-a.e. 
This theorem now allows us to compute the Lebesgue integral for a large class 

of functions, and we will freely use properties of the Riemann integral to calculate 
Lebesgue integrals. 

We can use Theorem 1 to establish the analogue of the BCT for the Riemann 
integral. 

Corollary 2 (Arzela) Let 1,\;, 1 : [a, b] -> R be Riemann integrable with h, -> 1 
pointwise on [a,bJ. 11 there exists M > 0 such that 11k(t)1 s M lor all k, t E [a,b], 
then 

lim R l fx = R l j. 

Proof: Theorem 1 and the BCT. 
Note that we must assume the Riemann integrability of the limit function 1 in 

Corollary 2 [Exercise 1J. Our proof of Arzela's Theorem, of course, depends on 
measure theory and the Lebesgue integral; for an elementary proof not using such 
machinery see [Lew]. 

Improper Riemann Integrals: 
If 1 : [a, (0) -> R is Riemann integrable over [a, b] for each b > a, the improper 

Riemann integral of lover [a, (0) is defined to be 

lim Rib 1 = R [00 1, 
b-+oo a J« 

provided the limit exists and is finite. [This integral is also called the Cauchy-Riemann 
integral.] If R faoo 111 exists, it follows from Theorem 1 and the MCT and DCT that 
1 is Lebesgue integrable over [a, (0) and faoo ldm R fa= 1. However, a function 
can be Cauchy-Riemann integrable over [a, (0) and not be Lebesgue integrable. For 
example, consider R It' .i~x dx. Integrating by parts, gives 
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and since Icosxl/x2 :::;1/x2 , 'RIt si~xdx exists. On the other hand, 

l """sinx, n~11(k+l)"'lsinxl n~1 1 l(k+I)" ,,~I 2 
- dx = L: - dx > L: Isin x I dx = L: -:-::---:-:--

", X k=1 kJr X -k=l(k+l)7l' kJr k=l(k+l)7l' 

so .i~x is not Lebesgue integrable over [1,00). Similar remarks apply to improper 
Riemann integrals for unbounded functions on bounded intervals. 

Defects in the Riemann Integral: 
I. The first defect is the lack of good convergence theorems. ror example, there 

exists a uniformly bounded sequence of Riemann integrable functions which converge 
pointwise to a function which is not Riemann integrable (Exercise 1.3.1). 

II. Closely related to the lack of strong convergence theorems is the incomplete­
ness of the space of Riemann integrable functions. Let 'R[a, b] be the vector space 
of Riemann integrable functions on [a, bJ and define a semi-metric d on 'R[a, b] by 
d(f, 9) I: If - 91· Convergence in this semi-metric is called convergence in mean 
and will be studied for the Lebesgue integral in §3.5. We show that d is not complete; 
in §3.5 we show that the analogous space for the Lebesgue integral is complete. 

Let H c [0,1] be a 1/2-Cantor set. Let {h} be the open intervals making up 
[0, IJ\H and set 

n 

I n = U h, <pn = CJn • 

k=1 

Then each <pn is Riemann integrable and <Pn -+ CHc <P pointwise. Since l<Pn <pI:::; 
1, by the BCT 

t l<p" - <pI dm 0 

so {<Pn} is Cauchy in 'R[a,b] with respect to d. 
We show that {<Pn} has no limit in ('R[a, b], d). For if <Pn -+ f E 'R[a, b] with 

respect to d, then f = <P m-a.e. For any to E [0,1] and E > 0, (to - E, to + t)\H 
contains an interval so (to - E, to + t) must contain points t such that f(t) = 1. lIence, 
limf(t) = 1 for every to E [0,1]. But f = <P m-a.e. and m(H) 1/2 so f 0 on a 
t-+-to 

set with positive measure. That is, f is discontinuous on a set with positive measure 
and, therefore, is not Riemann integrable. 

III. Finally, the Fundamental Theorem of Calculus (FTC) in its full generality fails 
for the Riemann integral. The desired form of the FTC would be: if f : [a, b]-+ R is 
differentiable everywhere in [a, bJ, then the derivative f' is integrable and I: f' = 
f( b) - f( a). To obtain the FTC for the Riemann integral it is necessary to assume that 
the derivative f' is Riemann integrable, i.e., the Riemann integral cannot integrate 
arbitrary derivatives [the Lebesgue integral also suffers this same defect; Example 
4.3.1]. 

It is easy to give examples of functions with unbounded derivatives [see, for exam­
ple, Example 4.3.1]; however, we give an example of a bounded derivative which is not 
Riemann integrable. Let H c [0,1] be a 1/2-Cantor set. Let (a, b) be one of the open 
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intervals making up [0, 1]\H. Define J on (a, b) by setting J(t) "" (t a)2 sin(I/(t-a)) 
on (a,a) where a < (a + b)/2 is such that /,(a) 0, letting J be the constant J(a) 
on [a, (a + b)/2] and defining J on [(a + b)/2, bJ by reflection in the line t = (a + b)/2. 
[A sketch is helpful.] We extend J to [0,1] by setting J(t) = 0 for t E H. Then /' 
exists everywhere in [O,I]\H and IJ'(t)l:::; 1 for t E He. 

We claim that f'(x) = 0 for x E H. Let € > 0 and suppose Ix - tl < €. If t E H, 
then (J(t) J(x»/(t - x) O. If t f. H, then t belongs to some open interval (a, b) 
making up [O,I]\H. Suppose a is the endpoint nearest x. Then 

1(J(t) - J(x»/(t - x)1 = IJ(t)/(t - x)1 :::; IJ(t)/(t - a)1 :::; It a1 2
/ It - al < f 

Hence, J'(x) O. 
Thus, J' exists everywhere and is bounded. But, /' is discontinuous on Hand 

m(H) = 1/2 so /' is not Riemann integrable. 

Exercise 1. Show the Riemann integrability of the limit function J cannot be 
dropped in Corollary 2. 

Exercise 2. Let K c [0, I] be the Cantor set. Is CK Riemann integrable? 

Exercise 3. Let 0 < f < 1 and K. an f-Cantor set. Is CK, Riemann integrable? 

Exercise 4. Show the following functions are Lebesgue measurable and determine 
whether they are Lebesgue integrable. 

(a) J(t) IjtP, 0 < t:::; 1, p > 0, 

(b) J(t) (_I)k /k for t E [k - 1, k) and J(t) = 0 otherwise, 

(c) J(t) = (_1)k/2k for t E [k -1, k) and J(t) = 0 otherwise, 

(d) J(t) = l/t for 0 < t < 1, -1/~ for 1 < t < 2 and J(t) 0 otherwise, 

(e) J(t) IjtP,l:::; t < 00, p > O. 

Exercise 5. Let A be all subsets of [a, bl such that C A is Riemann integrable (Exer. 
2.1.8). Define p, on A by p,(A) f: CA. Show p, is countably additive. 
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3.4 Integrals Depending on a Parameter 

Let (S, 2::, Ji) be a measure space and I of- 0. If f: SxI ---> R., we write fe,t) [f(s,·)] 
for the function f(·,t)(s) = f(s,t) [f(s,·)(t) = f(s,t)]. If f(·,t) is Ji-integrable for 
every tEl, we say that the integral F( t) = fs f( s, t )dJi( s) depends on the parameter 
tEl. In this section we study properties which the function F inherits from f. 

First, we consider continuity. 

Theorem 1 Let I be a metric space and f : S x I ---> R. Assume 

(i) f(" t) is Ji-integrable for every tEl. 

(ii) f(s,.) is continuous at to E I for each s E S. 

(iii) There exists a Ji-integrable function 9: S ---> R such that If(s, t)1 :s: 9(S) for all 
s E S, tEl. Then F(t) = fsf(s,t)dJi(s) is continuous at to. 

Proof: Let {td be a sequence from I converging to to· Then f( s, td ---> f( s, to) 
for every s E S by (ii). By (iii) If(-' tk)1 :s: 9 for every k so the OCT implies 
F(tk) ---> F(to) and F is continuous at to. 

As an example we consider the Gamma function. 

Example 2 (Gamma Function) The Gamma function is defined by 

for x> O. First, we observe that the integral exists. For 0 < t :s: 1, tx-le- t :s: t x- l and 
the function t ---> tx- l is integrable over [0,1] for x > 0 (Exer. 3.3.4) so fOl tX-le-tdt 
is finite. For t > 1, tx-le-t = [tx+le- t]C 2 and the function t ---> tx+le- t is bounded 
since lim tx+l e-t = 0 so ftO tx- l e-tdt < 00 (Exer. 3.3.4). Hence, fooo t x- l e-tdt < 00. 

t~oo 

Next, we show that r is continuous for x > O. Let xo > O. If 0 :s: t :s: 1 and 
xo/2 < x, then t X :s: t xo /2 and e-t :s: 1 for t ~ O. Therefore, tx-le- t :s: t(xo/2)-l so by 
Theorem 1, x ---> f~ tx- l e-tdt is continuous at Xo. For t > 1 and xo/2 :s: x :s: 2xo, 
there is a B such that tx - l e- t :s: Bt-2 so by Theorem 1 

is continuous at Xo. Hence, r is continuous at Xo. 
Next, we consider differentiability. 

Theorem 3 (Leibniz) Let I be an interval in Rand f : S x 1---> R. Assume 
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(i) f(-, t) is j.t-integrable for every t E I. 

(ii) ¥t(s,t) exists for every s E S, t E I. 

(iii) There exists a j.t-integrable function 9 : S -> R such that 

I~~ (s, t)1 ~ g(s) for s E S, t E I. 
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If F(t) = Is f( s, t)dj.t( s), then F is differentiable on I with F'( t) = Is ¥t(s, t)dj.t(s). 

Proof: Fix t E I and let tk -> t, tk E I, tk # t. Then for each s E S, 

lim f(s, tk) - f(s, t) = af (s, t) and f(', tk) - f(', t) 
k tk - t at tk - t 

is j.t-integrable for each k. By the Mean Value Theorem, for each s, k there is a Zs,k 

between tk and t such that 

f(s,tk) - f(s,t) = af(s Z ) so If(s,t k) - f(S,t)1 < (s) 
tk - t at' .,k tk - t - 9 

for every s E S by (iii). Hence, the DCT implies 

lim f f(s,tk)-f(s,t)dj.t(s) = f ~f(s,t)dj.t(s)=F'(t). 
k 15 tk - t 15 ut 

As an example of how Theorems 1 and 3 can be used, we evaluate the integral 
Iooo e-

x2 dx. 

Example 4 (Euler) Since 0 ~ e-x2 ~ e-X for x 2 1, e-x2 is Lebesgue integrable 
over [0,00). For t 2 0, set f(t) = (J~e-X2dx)2 and get) = I~e-t2(x2+1)/(x2 + l)dx. 
From standard results on Riemann integration, f is differentiable on [0,00) with 

Since 

I:t (e- t2 (x
2
+I) /(x 2 + 1)) 1= /_2(te-t2)e-t2x2/ ~ B 

for t 2 0, 0 ~ x ~ 1, Theorem 2 implies that 9 is differentiable on [0,00) with 

g'(t) = _2te-t2 !al e-t2x2 dx. 

Setting u = tx for t > 0 in this last integral gives 

2 lot 2 g'(t) = -2e-t e-u duo 
o 
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Hence, f'(t) + g'(t) 0 for t > 0 and f(t) + get) = c for t > O. Now f is continuous 
on [0,(0) and since ie-t2(x2+1)/(x2 + 1)1:::; 1/(x2 + 1) for t 2: 0, 0 :::; x :::; 1, 9 is also 

continuous on [0,(0) by Theorem 1. Also, by the DCT, 

11 ") lim e- t (x +1 /(x 2 + l)dx 
t-+oo 0 

O. 

Thus, f + 9 con [0, (0) and 

f(O) + g(O) I~ I~x,dx 7r/4 
lim (f(t) + get)) Uo= e-X 'dx)2 
t ..... = 

Exercise 1. For x > 0 show r( x + 1) xr( x). If x is a positive intcgcr show 
rex + 1) xl. Show 1'(1/2) = fo. 

Exercise 2. Show F( x) It' x~i~:2 dt is continuous for x E R. 

Exercise 3. Show 1000 x2ne-x2 dx = (2n)!fo/(22nnl2). Hint: For n 
Example 4. 

Exercise 4. Show Ioooe-tx'dx = V(7r/t)/2 for t > O. 

o this is 

Exercise 5. Show the function F(x) = 1000 e-xt /(1 + t)dt is differentiable for x> O. 

Exercise 6. Show the Gamma function is differentiable. 

Exercise 7. Let F(t) 10= e-txsi~xdx for t > O. Show F(t) = i-arctan t. Hint: 
FI(t) = -1/(1 + t2 ) so F( t) c - arctan t. Evaluate c by considering {F( n n. 

Exercise 8. Evaluate F(x) = I;(t" -1)fln tdt for x > O. Hint: Find FI(x) and note 
F(x)-+Oasx-+O. 
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3.5 Convergence in Mean 

In this section we consider the approximation of integrable funcLions wiLh respect to 
a natural semi-metric induced by the integral. 

Let p.) be a measure space. \Ve denote by LI t.he space of all functions 

I : S ---> R which are It-integrable. By :.3.2.13 L 1 (p) is a vector space (under the usnal 
operations of pointwise addition and scalar multiplication). We defiue a semi-metric 
d1 on V (fl) by d1 (log) f, II gl dp,; note dl g) = 0 if and only if I g fl-a.e. 
For cOllvenience we set Ilflll = Is Ifl then dl (f,g) = III - gill' II III called 
the Llnorm of I; we consider more general such norms in §6.1. Convergence in this 
semi metric is called p,-m.ean convergence or convf'1:qcnce in p.-mean. 

We often wrik lk -> .f IHlIean wh('n Illk 1111 -+ O. If 1 is an int.erval in R", we 
deuote by [,1 (I) the space o[ real, valued integrable functions on [when I is equipped 
wit II the Lebesgue measme. 

We COlllpare mean convergence with other modes of convergence in §:1.7. 
On(' of Lhe most important properties of V (/1) its completeness with respect to 

the mdric of mean convergence. 

Theorem 1 (Riesz-Fischer) V (,t} is complete. 

Proof: Let {Id be Cauchy in [}(p). Then there exists an increasing sequence 

{nd such that, 111'1<+1 Inklll < 1j'2k. Since 

- Ink I dp 00. 

the series 

converges It'a.e. to a real-valued fundion which belongs to V (p) (Exer. 3.2.2). 
Therefore, the series 

.ft + "IJlnk+l fnk) limfnk 1 
k=l 

converges p-a.e. But } also (,onvt':'rges in mean to I since given any E > 0, 

Is lInk -- I rlfl E [or large k, j, and by Fatou's Lemma, letting j --+ 00 gives 

Is Ifnk ,- 11 dp, ::; E for large k. This mean;.; that I E Ll(/l) and In. -+ 1 p-mean. 
Hence, !k ..... "' .f p,-mean. 
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The analogue of Theorem 1 for the Riemann integral is false (§3.3), and its failure 
is perhaps the most important reason for the overwhelming use of the Lebesgue 
integral. 

We now consider some dense subspaces of L 1(fl): 
Dense Subsets of Ll(fl): 

Theorem 2 The vector space of'L-simple fl-integrable functions, S('L), is dense in 
Ll(fl) (with respect to d1). Moreover, given fELl (fl) there exists a sequence of 
simple functions {'I'd in Ll (fl) such that rpk -+ f pointwise and IIrpk fill -+ 0,. if 
f 2: 0, the {'I'd can be chosen such that rpk if· 

Proof: If f E Ll(fl), pick a sequence of 'L-simple functions {rpn} such that 
rpn -+ f pointwise with 1'1',,1 ::; If I (3.1.1.3). The OCT implies d1 (rpn, f) -+ 0. The 
last statement follows from 3.1.1.2. 

For the next result assume that fl is a premeasure on a semi-ring S of subsets of 
S and that 'L is the a-algebra of fl"-measurable subsets of S (§2.4). Let fl denote the 
restriction of fl" to 'L. 

Theorem 3 The vector space of S -simple fl-integrable functions is dense in Ll (fl). 

Proof: From Theorem 2 it suffices to show that for each E E 'L with fl(E) < 00 

and each I' > ° there is an S-simple function 'I' such that liCE - rpil l < c Pick 

{AJ C S pairwise disjoint such that Aj ::) E and f fl(Aj) < fl(E) + (/2 (2.1.11). 
;'=1 

Set B 

Then 

U Aj and note fl(B) < 00 and f CA = CB . Choose N such that. 
j=1 j=1 ' 

N 

LCA,)dfl= L fl(Aj) <1'/2. 
j=1 

< Is ICE - CBI dfl + Is ICB - j~1 CA, I dfl 

fl(Aj) fl(E) + 1'/2 < c 

We next consider the approximation of integrable functions by continuous func­
tions. A topological space S is locally compact if every point in S has a neighborhood 
with compact closure. For example, Rn is locally compact. For locally compact 
Hausdorff spaces, we have the important lemma of Urysohn. 

Lemma 4 (Urysohn) Let S be a locally compact Hausdorff space, K C S compact 
and V open with K C V. Then there exists a continuous function f : S -+ [0, 1] such 

that f(t) 1 for t E K and f(t) ° for t f/c v. 
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See lSi] §28 for the proof in a general topological space. For metric spaces (such 
as Rn), one can use the function f(t) = dist( t, VC)/( dist(t, K) + dist( t, VC». 

We need a slight refinement of Urysohn's Lemma. If f : S --> R is a continuous 
function, the support of f, denoted by spt(f), is the closure of the set 

{t E S: f(t) i= O}. 

The space of continuous functions on S with compact support is denoted by 

Lemma 5 Let S be locally compact, Hausdorff. If K is compact and V is open with 
K C V, then there exists f E Cc(S) such that f : S --> [0,1], f(t) 1 for t E K and 
f( t) = 0 for t E VC. 

Proof: If S K, trivial so assume x E S\K. For each y E K there is an open 
neighborhood Ny C V of y with compact closure and an open neighborhood Uy of x 
such that Ny n Uy 0. Then {Ny ; y E K} is an open cover of K and, therefore, 

j 
has a finite subcover, NJ, .. . , N j with V ::::> U = U N. ::::> K and since is compact, 

i=] 

V ::::> K is compact. By Lemma 4 there is a continuous function f : S --> [0,1] such 
that f(t) = 1 for t E K and f(t) = 0 for t E uc. Since spt(f) C V, f E Cc(S). 

Theorem 6 Let S be locally compact Hausdorff and let 11 be a Borel measure on 8(S) 
such that every Borel set is inner regular. Then Ce(S) is dense in LI(I1)' 

Proof: By Theorem 2 it suffices to show that CB for B E 8(S) and I1(B) < 00 

can be approximated by a function in Cc(S). Let (' > O. Since B and Be are inner 
regular, there exist KI C B compact with I1(B\Kd < 1')2 and K2 C Be compact with 
I1(Be\K2 ) < f/2. By Lemma 4 there is a function f E Ce(S) such that 0 S; f(t) S 1 
for t E S, f(t) 1 for t E KI and f(t) = 0 for t E K 2 • Then 

is If - CBI dl1 

Note that this theorem is applicable to Lebesgue and Lebesgue-Stieltjes measures 
(Exer. 2.5.10 and 2.6.5). See also Proposition 2.7.2. 

Exercise 1. Show Ll is not, in general, closed under pointwise products. [Hint: 
Consider ta for 0 S; t S; L] 

Exercise 2. Show the polynomials are dense in L1[a,b]. Generalize to Rn. 

Exercise 3. Show VIa, b] is separable. Generalize to Rn. 

Exercise 4. Give an example of a non-regular measure for which Cc(S) is not dense 
in £1(11). [Hint: Use R with Lebesgue measure and the discrete metric.] 
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Exercise 5. What is the completion of R[a, bJ? 

Exercise 6. Let JL be a finite measure on the o--algebra 
on I: by 

Define a semi-metric d 

d(A,B) JL(A.6B) = is ICA - CBld/t. 

Show d is a complete semi-metric. 
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3.6 Convergence in Measure 

\Ve consider another type of convergence with respect to a measure. Let (S, IJ) 
be a measure space and fk' f : S -t R L:-measurable functions. We say that Uk} 
converges to f in IJ-measure, fk -t f IJ-measure, if for every a > 0, 

lim/t{t: Ifk(t) f(t)l2: a} O. 
k 

We compare the various modes of convergence in §3.7. We now develop some of 
the properties of convergence in IJ-measure. 

Proposition 1 Let fk' f, gk, 9 : S -t R be L:-measurable. 

(i) If fk f II-measure and gk -t 9 IJ-measure, then afk + bgk -t af + bg IJ-rneasure 
for a, bE R. 

(ii) If fk 0 IJ-measure and gk -t 0 IJ-rneasure, then fkgk -t 0 IJ-measure. 

(iii) If /t(S) < 00 and fk -t f IJ-rneasure, then fkg -t fg It-measure. 

(iv) If 11(5) < 00, fk -t f IJ-measure and gk -t 9 It-measure, then fkgk fg 
It-measure. 

(v) If fk f IJ-measu.re and fk -t 9 II-measure, then f = 9 IJ-a.e. 

Proof: (i): For a > 0, 

IJ{t: l/k(t) + gk(t) - f(t) - g(t)l2: a} II{t: l/k(t) - f(t)l2: a/2} 
+ Il{t: Igk(t) - g(t)l2: a/2} 

implies that fk + gk -t f + 9 IJ-measure. That afk --t af IJ-measure is clear. 
(ii) follows from 

(iii): Since It(S) < 00, liFIJ{t: Ig(t)l2: k} 0 (2.2.4). Let E> O. There exists N 

such that II{t: Ig(t)l2: N} < E/2. Now 

/l{t: l!k(t)g(t) f(t)g(I)I2: a}:::: It{t: l!k(t) f(t)I2: a/N} + p{t: Ig(t)l2: N} 

so if ko is chosen such that k 2: ko implies IJ{ t : Ifk( t) f (i)1 2: a / N} < £'./2, we have 
for k 2: ko that IJ{t: Ifk(t)g(t) - f(t)g(t)l2: a} < E. 

(iv) follows from (i), (ii), (iii) and the fact that 

/kgk - fg = Uk - f)(gk - g) + f(gk g) + g(/k - f). 
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(v): Since 

{I: f(t) ¥ g(t)} = U {I: If(l) - g(t)1 ~ 11k}, 
k=l 

it suffices to show that fL{t: If(t) - g(I)1 ~.,.} = ° for.,. > 0. But 

{t: If(t) - g(t)1 ~ oj c {t: Ifk(t) - f(t)1 ~ o"/2} u {t: Ifk(t) - g(t)1 ~ u/2}. 

Example 2 The finiteness condition in (iii) and (lv) cannot be dropped. Let. S = R 
and consider Lebesgue measure. Let fk(t) 11k and get) t for IE R. Then!k ---+ 0 
in m-measure but for.,. > 0, m{l: 1!k(t)g(t)1 ~.,.} = 00. 

Concerning convergence in measure and convergence a.e., we have an irnpor1.ant 
result of F. Riesz. 

Theorem 3 (F. Riesz) Let fk f Ii-measure. Then ther'e is (1 .571b.5f:querw: {f "k ) 

such that fn. f fL-(1. e. 

Proof: For each k there exists nk such that j ~ nk implies 

Set 
Ek = {I: Ifn.(t) - f(t)1 ~ 1/2k

}. 

If t rf:. U Ek , then Ifn,(t) - f(t)1 < 1/2k for k ~ j. Thus, if 
k=j 

then fnk(t) ---+ f(t), 
But 

for every j so fL(E) = 0. 

t rf:. n U Ek = limEk E, 
J~I k=) 

fnk -, f pointwise on S\E. 

00 

k=j 

The assertion that there is a subsequence which converges a.e. in Theorem a 
is important -. the entire sequence may not converge a.e. as the followilLg example 
shows. 

Example 4 Let S = [0,1] and A;; = [(k 1)/2n, k/2n] for k = 1, ... ,2" and n E N. 
Consider the sequence CAl, CAl, C A2! ... [see the sketch below]. 

2 2 I 

1 
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This sequence converges to 0 in m-measure since mit : CA.(t) ~ a} :s; m(Ak) 1/2". 
However, t.his sequence doesn't converge t.o 0 at. any point since it is 1 infinit.ely often 
at. any point. [See Exercise 4.] 

We can formulate a Cauchy-type condition for convergence in fl-measure. The 
sequence U'} is said to be Cauchy in fl-measure if and only if for every a > 0 and 
f > 0 there exists N such that k, j ~ N implies 

We now establish a completeness type result for convergence in fl-measure which is 
also due to F. Riesz. 

J~emma 5 If {fk} is Cauchy in fl-measure and has a subsequence {fn.} which con­
verges in fl-measure to a measurable function f, then !k --+ f fl-measure. 

Proof: Let a, f > O. There exists N such that k, j ~ N implies 

fl{t: Ifk(t) - h(t)1 ~ a/2} < E/2. 

Choose nk ~ N such that 

fl{t: Ifn.(t) - f(t)1 ~ a/2} < f/2. 

Then for j ~ N, 

fl{t: Ih(t) f(t)1 ~ a} < fl{t: Ih(t) - fn.(t)1 ~ a/2} 

+ fl{t: Ifn.(t) - f(t)1 ~ a/2} < E. 

Theorem 6 (F. Riesz) Let Ud be Cauchy in Il-measure. Then there exists a mea­
surable function f such that fk --; f Il-measure. 

Proof: For each k there exists nk such that i, j ~ nk implies 

\Ve may assume nk < nk+l' Let 

so fl(Ek) < 1/2k. If Fk 

IimEk, then Il(A) = O. 

1/2 j 1/2k- 1 so if A 

We claim that Un.} converges pointwise on S\A. If t E S\A, then t r/; U for 
J'=k 

some k so if i, j ~ k with i > j, 

(3.1) 
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and {In. (t)} converges. 

Now set f(t) limfn.(t) if t E S\A and f(t) 0 for tEA. Then f is measurable 
since f CS\Alimfn •. 

Finally, we claim that fn. -+ f fL-measure. Let IJ', t > O. Choose N such that 
fL(FN) < Ij2N- 1 < min(lJ', t). If j ;::: N, then 

since if t ;f:. FN and j ;::: N, passing to the limit in (1) as i -+ 00 gives If( t) - fn, (t)1 ~ 
Ij2N- 1

• Thus, if j ;::: N, fL{t: If",(t) - f(t)l;::: u} ~ fL(FN) < t. 
Lemma 5 now gives the result. 

Metric of Convergence in Measure: 
We now describe a semi-metric which characterizes convergence in measure for 

finite measures. Assume henceforth that fL is a finite measure. We first require a 
lemma. 

L 7 I'f b R ~ < J<>L ~ emma J a, E '1+laHI - I+lal + 1+lbl' 

Proof: Note the function h(t) tj(1 + t) is increasing for t > -1. First, if a and 
b have the same signs, we may assume that a, b ;::: 0 so 

la + bl j(l+/a + bl) = (a+b)j(Ha+b) ~ aj(Ha)+bj(Hb) /a/ j(l+lal)+lbl j(Hlbl). 

On the other hand, if a and b have different signs, we may assume that la/ ;::: Ibl. 
Then la + bl ~ la/ implies 

la + bl j(1 + la + bl) ~ lal j(1 + lal) ~ lal j(1 + laD + Ibl j(1 + Ibl)· 

Definition 8 Let LO(fL) be the vector space of all real valued measurable functions on 
S. For f, 9 E LO(fL), set 

( If - gl 
d(J,g) = 1s 1 + If _ g/dfL 

[note the integral exists since fL is finite and the integrand is bounded]. 

By Lemma 7, d defines a semi-metric on LO(fL) which is translation invariant in 
the sense that d(J, g) = d(J + h, 9 + h) for any h E LO(fL) and is such that d(J,O) = 0 
if and only if f = 0 {L-a.e. 

We show that convergence in the semi-metric d is exactly convergence in fL­
measure. 

(i) fk -+ f in fL-measure {;> dCA, J) -+ O. 
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(ii) Uk} i!> Cauchy in p,-mea!>ure ¢:> Uk} is Cauchy with respect to d. 

Proof: (i): Let c> 0 and set Ek {t: I/k(t) l(t)1 2: f}. Then 

(3.2) 
~ p,(Ek) + tp,(S\Ek) ~ p,(Ek) + cp,(S). 

Thus, if fk --t I p-measure, (2) implies that d(Jk, J) --t O. 
Since h(t) t/(l + t) is increasing for t > -1, 

d(f f) > ( Ifk II d > _c_ (E) 
I" - iE. 1 + Ilk II p, - 1 + cP k· (3.3) 

Thus, if d(Jk, J) --t 0, (3) implies that Ik --t f p,-measure. 
(ii) follows from the inequalities (2) and (3) with f replaced by h 

Corollary 10 d is a complete semi-metric on I.,o(p,). 

Proof: Theorems 6 and 9. 

If I is a bounded interval in Rn, we denote by the space of all Lebesgue 
measurable functions on I, and we assume that the semi-metric on LO(!) is the semi­
metric of convergence in Lebesgue measure. 

There is a semi-metric which characterizes convergence in measure for infinite 
measures, but it is much more complicated than the semi-metric dj see [DS] IIL2 for 
a description. 

Exercise 1. 1£ p, is counting measure on S, show convergence in p,-measure is exactly 
uniform convergence on S. 

Exercise 2. Show that if fk --t I p,-measure and I 
measure. 

9 p-a.e., then fk --t 9 J1-

Exercise 3. If!k --t f p,-measure, show Ud is Cauchy in p,-measure. 

Exercise 4. Find a subsequence in Example 4 which converges m-a.e. to O. 

Exercise 5. Can the condition "p,(S) < (Xl" in Proposition 1 (iii) be replaced by "g 
is bounded"? 

Exercise 6. Let I : S --t R be measurable. Show I is p,-integrable if and only if 
there exists a sequence of p,-integrable simple functions {if'd such that 

(i) if'. --t I p-measure and 

(ii) I.imJslif'k if'.il dp, = O . 
• J 
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3.7 Comparison of Modes of Convergence 

In this section we pause to compare the various modes of convergence which have 
been introduced. Let (S, L:;, fl) be a measure space. We have considered the following 
types of convergence for sequences of measurable functions defined on S. 

unif: uniform convergence on S. 
a. unif: almost uniform convergence with respect to fl (Definition 3.1.16). 
a.e.: almost everywhere convergence with respect to fl (3.1.13). 
mean: convergence in fl-mean (§3.5). 
meas: convergence in fl-measure (§3.6). 

We have the obvious implication that unif =? a. unif and from Exercise 3.1.13 we 
have a. unif =? a.e. It is also clear that a. unif =? meas 1). There is one other 
general implication which we now establish. 

Proposition 1 Illk --> I fl-mean, then Ik --> I fl-measure. 

Proof: Let 17 > 0 and Ek {t: I/dt) - l(t)1 ~ 17}. Then 

r Ilk - II dfl ~ r Ilk - II dfl ~ 17fl(Ek) so fl(J~k) -> O. Js JR. 

We now give examples to show that these are the only possible general implications 
which are valid. [Recall from Egoroff's Theorem a.e. =? a. unif for finite measmes.] 

2. a.e. f;- a. unif: Take !k C[k,oo) in R with Lebesgue measure. 

3. a. unif f;- unif: Take Ik(t) tk, 0 'S t 'S 1, and Lebesgue measure. 

4. meas f;- a.e.: Example 3.6.4. 

5. meas f;- a. unif: Example 3.6.4. 

6. meas f;- mean: Take Ik kC[O,l/klon [0,1] with Lebesgue measure. 

7. a.e. f;- mean: Same as 6. 

8. mean f;- a.e.: Example 3.6.4. 

9. a.e. f;- meas: Same as 2. 

10. a. unif f;- mean: Same as 6. 

11. unif mean: Take Ik qo,kl/k on R with Lebesgue measure. 
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12. mean p a. unif: Example 3.6.4. 

We can summarize the relationships above by means of the chart: 

unif 

~.a. unif 

/ 
meas a.e. 

If 11 is a finite measure, then by Egoroff's Theorem we have that a.e. => a. unif 
(so also a.e. => meas), and by Exercise 3.2.5, we also have unif => mean. In this case, 
we have the chart: 

unif 

JL(S) < 00 mean. 

~ 
a. unif 

meas a.e. 

It is also possible to consider the case where a sequence of measurable function 
{fd is dominated by a l1-integrable function g, i.e., Ilkl ::; 9 l1-a.e. In this case it 
follows from the DCT that a.e. mean and, similarly, meas => mean (Exercise 2). 
We refer the reader to Munroe ([Mu] p. 237) for a complete discussion. 

Exercise 1. Show that a. unif => meas. 

Exercise 2. Show that the DCT is valid if convergence l1-a.e. is replaced by conver­
gence in l1-measure. [Hint: Theorem 3.6.3.] 

Exercise 3. Show LO[a, b] is separable. 
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Exercise 4. Show a E-measurable function f is p-integrable if and only if :3 a 
sequence of p-integrable E-simple functions {<Pn} such that <pn -+ f p-measure and 
{<Pn} is Cauchy in LI(p). Moreover, Isfdp = lim Is <Pndp. 
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3.8 Mikusinski's Characterization of the Lebesgue 
Integral 

In this section we give an interesting characterization of the Lebesgue integral due to 
J. Mikusinski. The characterization is used later in the proof of Fubini's Theorem. 

Let S be a semi-ring of subsets of S and let p, be a premeasure on S. Let p, also 
denote the countably additive extension of p, to the .,.-algebra, M, of p,*-measurable 
subsets of S (§2.4). 

For Mikusinski's description of the Lebesgue integral, we require two lemmas. 

Lemma 1 Let E E M be p,-null and € > O. There exists {Jk} C S such that 

p,(Jk ) < € and f CA(t) 00 for tEE [so t belongs to infinitely many Jk for 
k=! 

tEE}. 

Proof: For each i, there is a sequence {Iij : j E N} C S covering E such that 

f p,(I,j) < 13/2' (Definition 2.4.1). Now arrange the double sequence {Iij : i,j EN} 
j=1 

into a sequence {Jd. If tEE, t belongs to infinitely many {Jd so {CJ.(t)} is 1 
infinitely often and 

00 co 00 

LP,(Jk)=LLP,(Iij) <e. 
k=! ;=1 j=1 

We say that a series I: ak is absolutely convergent to x if the series is absolutely 
00 

convergent and I: ak x. 
k=! 

Lemma 2 If f : S -t R* is p,-integrable, there is a sequence of S-simple functions 
{ak} such that the series I: ak is absolutely convergent to f p,-a. e. and 

k 

Proof: By Theorem 3.5.3 there exists a sequence of S-simple functions {'Pd such 
that II'P.I: fll! -t O. Then 'Pk -t f p,-measure (Proposition 3.7.1) so by Theorem 
3.6.3 there is a subsequence, which we continue to denote by {'Pk}, which converges 
p,-a.e. to f. We may additionally assume that II'PHl - 'Pk III < 1/2k. Set 'Po == 0 and 

ak 'P.I: - 'Pk-I for k ?: 1. Then ak = 'Pn -t f p,-a.e. or f ak = f p,-a.e. Since 
.\:=1 

f Is lakl dfl < 00, the MCT implies that 10'.1:1 converges in R p,-a.e. so the series 
.1:=1 
I: ak is absolutely convergent to f fl-a.e. 

Theorem 3 f : S -t R is p,-integrable ¢:> there is a sequence of S-simple functions 
{ 1/Jk} satisfying 
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(2) fit) "IN t) for ony t for whIch t < CXJ. 
k",] 

In theis COSf, 

Proof: ¢=: The MeT impli('o that. L is p.-integrable so the serie~ L: 
converges p-a.e. ill R. By hYPoUlPsis, f(1) = ',bdl) for Sllch Jloints. Since If I 

L JHU'., the DeT implies t.hat ! is fI·-intpgrablc and IS" fdp = f I" l/'kdp. 
k==l 

c}: Let {ad be ill Lemma 2 and let E be a It-null set where f 1(,"(1)1 < X) 

k=l 

and f (t) n..{ l) for t !/: g Let :-h} 1)(' a.s ill Lemma I (wit.h respect. t.o E) and 

set = ('.J.. Define a sequeuc<' oj" S-simple funct.ions, {<i'k}, by: 

I f I J~, 1 he series L I <i'd I) I d iven;es sillce ph( I) infinitely oft.pn. II' 

30, then {h( l) < CXJ [the S('fi('S actually only has a. finit.(, Humber of 1l00HI('J"O terms] 

so t>t E and 

Lemmas I and 2. 
;--';ole, ill particular, I.hat if conditions (1) and (2) are satisfied, the function f io 

measurable and the series L: converges to I ji-a.f'. 
One of the important features of" Mikusinski's charac1.erizittion of t.he iutegral is 

that null seb are not meut.iOlwci. \Ve use t.his to good advantitge in OUf proof of 
Fubini's Theorem in §3.9. 

The characterization of the integral in Theorem 3 was given for the Ldwsgue inte­
gral ill R \la.cNeille ([Mac]) and for the integral ill R" ,1. Mikminski 
([Ml)). Tn Rn the characterization has an even simpler form; the S-sirnple fll11C­
tions ill Theorem 3 can be replaced scalar multiples of characteristic functions of 
half-closed intervals. III this case the value of the integral only depends on the value 
of the measure of such half-closed intervals so a definition of the Lebesgue integral 
can be based on the characterizittion which does not require t,he full development of 
properties of Lebesgue mt'asure. Such a developmt'nt of the integral is carried out in 
[M2J and [DM]. 
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Exercise 1. Assume J.I. is complete. Show that if {the} is a sequence of J.I.-integrable 
functions satisfying (1) and (2), then f is measurable, J.I.-integrable and 
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3.9 Product Measures and Fubini's Theorem 

Let (5,S,,..) and (T,T,v) be measure spaces. If A c 5, BeT, a set of the form 
A x B is called a rectangle in 5 x T and A and B are called its sides. If A E S, 
BET, A x R is called a measurable recta.ngle. Let R be the family of all measurable 
rectangles in 5 X T. Since 

(A x B)n(C x D) = (AnC) x (RnD) 

and 
5 x T\A x B (k x B)U(A x RC)U(N x Be), 

R is a semi~algebra of subsets of S x T. 
We define the prod uet of f1 an d v, denot.ed by Jl x v, on R by seLti ng It X V (A x 1l) 

,..(A)v(B) [here O· 00 = 0 as usuall. 

Theorem 1 ,.. x v is a premeasun; on R. 

00 

Proof: Let {Ai x B,} c R bc pairwisc disjoint with A x /3 = U A, X Fli R. 
t::::::l 

Then 
00 

CAxB(S,l) = LCA,XB,(S,t) 

for s E 5, t E T. Fix s and integrate with respect to v to obtain from the MCT thai. 

CA(s)v(B) L CA,(s)v(Bi ). 

1=1 

Now integrate with respect to II and apply the MCT to obtaill 

00 

It(A)v(B) = L,..(Ai)v(lJ,) 
i=] 

as desired. 
The premeasure Ii v can now be extended to a complete measure Oil the o--algebra 

of (II x v)* -measurable subsets of 5 x T (§2.4). We denote this measure by II x v and 
call it the product of Ji and v [see, however, Example 2 below]. We refer to the clements 
of the o--algebra of (Ji x v)" -measurable sets as Ji x v-measura.ble sets and functions 
which are measurable with respect to this o--algebra as being Ji x v-measurable. Note 
that if both Jt and v are finite (o--finite), then,.. x v is finite (o--finite). Thus, if Ji and 
v are o--finite, Ji x v is the unique mea.9ure on the smallest o--algebra containing R, 
denoted by o-(S x T), which satisfies Ji x v(A x B) = Ji(A)v(B) [Theorem 2.4.121. 

If m is Lebesgue measure on R, then m x m is a complete measure 011 a o--algebra 
in R2 which contains all of the measurable rectangles and, hence, contains all of the 
open (Borel) sets in R2. Thus, m x m and m2 agree on B(R2) and, hence, must be 
identical (Theorem 2.4.21 and Corollary 2.5.4 (vi)). 
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Example 2 (Bartle) In general the product measure may not be the only countably 
additive extension of p x v to the a--algebra generated by R.. 

Let p : peR) --) R* be defined by peA) = 00 if ,4 is uncountable and peA) = 0 
otherwise. Let L be the a--algebra generated by peR) x peR). Let (Ps ) be the 
projection of R x R onto the first (second) coordinate; t) s (PT(s, t) t). 

Define 7f on L by neE) == 0 if E = G u H, where and PT(H) are connt-
able, and 00 otherwise. Then 1< is a measure Oil L such that 7f(A x B) = 

p(A)'l(E) p x IL(A x B). 
Define p on L by peE) 0 if E = G u II u K, where PT(H) and the 

projection of K onto the diagonal {(x, x) : x E R} are and p( E) 00 

otherwise. Then p is a measure on L such that peA x B) p(A)f1(B). 
If E y) : x + y = O}, t.hen EEL but pee) 0 while 7f(E) 00. 

Many other pathologi<'s can occur for product m<'asureSj s<'e, for example, :Ga] or 
[DC] 

Vve now consider the evaluatio'n of integrals with respect to a product measure. As 
is the case with the Riemann integral, the most efficient way to evaluate an integral 
with respect to a product measure is as an iterated integral. A result which a.sserts 
the equality of an integral with respect to a product measure and an iterated integral 
is often referred to as a Fubini theorem. For example, if f : 51 x T .. ) R is R.-simple 
and 11 x il it follows from the definition of the product measure that 

r fdp x il = r [ f(s, t)dll(B)dv(t) = r r f(s, 
isxT 1r./s·" is iT 

I.e., Fubini's Theorem bolds for such functions. \rYe now use Mikusinski's charac­
terization of the integral to ext<'nd Fubini's Theorem to Ii x iI-integrable 
fUIlctions. 

Ifenc(>forth, we assume that the measures p and v aTe both complete. 
If f ' S x T ..... R*, for .'i E S (t E T) we denote by ,) (f(', t)) the function 

f(8,·) : 1' ..... R* (fe t) : S ..... R*) defined by feB, .)(t) t) (f(·,t)(s) = f(s, t)), 
\Ve follow the usual procedure in Fubini's Theorem of agreeing that if a function 'P 

is defined IJ.-a,e, in S (v-a.e, in T), lhen 'P (1,':') is extended to all of SeT) by 
setting it equal to 0 OIl lhe p-null (vnull) set where it is undefined. Thus, if {'Pk} 
is a sequence of S-measurable functions which converge pointwise p-a.e. in S, we 
may assume that there is an S-measurable functioll 'P defined 011 S such that. 'Pk ..... 'P 
11-a.(>. [t.he completeness of IL is used here]. This situation is encount.ered several times 
in the proof of Fubilli's Theorem. 

Theorem 3 Let f : S x T ..... R be p x v-integrable. Then 

(i) f(s, ,) is v-integrable for p almost all s E S, 

(ii) .5 ..... , ) dv is 11 I.THPf11·f1.fH and 

(iii) IsxT fdp x il 1:9 ·)dvdp(B) = fsfTf(B,t)dv(t)dp(s). 
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Proof: By Theorem 3.8.3, there is a sequence {v';d of S x T-simple functions 

such that IsxTIv';kldlL x v < 00 and f(s,t) f v';k(S,t) for all (s,t) for which 
k=1 

the series f lv';k(S,tll converges and 
k=1 

r fdJL x v = f r v';kdJL x v. 
isxT k=lisXT 

(3.1) 

By the MCT 

E isXT IIPkldJL x v k:1 is£ lv';k(S,t)ldv(t)dJL(s) (3.2) 

= r f r lv';k(S,t)ldv(t)dJL(s) < 00 
is k=1 iT 

so there is a JL-null set E such that 

the MCT implies that 

IT lv';k(S,t)ldv(t) < 00 for s 'I E. For s 'I E, 

so f !f'k(S, t) is absolutely convergent in R for v-almost all t E T. [The v-null sel, 
k=1 

may depend on s.] For such s, t, f(.~, t) = f v';k(S, t); in particular, for S 'I E, 
k=! 

f(·~,·J f v';k(S,') v-a.e., and since 
k=! 

the DCT implies that f(s,') is v-integrable and IT f(s, ·)dv = 

ther, for s 'I E, 

l
it r v';k(S, ')dvl:5: co r lv';k(S, ')1 dv 
k=lh h 

and the function on the right hand side of this inequality is Ii-integrable by (2) so the 
DCT implies that S -> IT f( S, . )dv is p-integrable with 

ish f(s, ·)dvdIL(.» f r r v';k(s,t)dv(t)dp(s) = r fdp X v 
k=1 is iT isxT 

by (1). 
The main difficulty in applying Fubini's Theorem is verifying the p x v-integrability 

of the function f. A result which is often used for this is a result called Tonelli's 
Theorem. 
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Theorem 4 Let J1., v be a-finite and f : S x T -> R* non-negative and Jl x v­
measurable. Then 

(i) f(s,') iB T -rneaB1tmble for Il-ulmo.~t all s E S 

(ii) s -> fr f(s, t)dv(t) i$ S-1fL/:U:5'Urable 

(iii) ISxT f dJl x v Is IT f(8, t)dv( t)dJ1.(s) [the integrals might be 

[Of course, there is an analogous statement with the variables 5 and t reversed.] 

Proof: Since Jl and v are a-finite, Jl x v is a-finite so there exists an increasing 
sequence of Jl x v-measurable sets {E;J such that Ei j S x T and Jl x v( Ei) < 00. Set 
f. = (J 1\ i)CE •. Then each fi is Jl x v-integrable. By Theorem 3, 1;( 5, .) is v-integrable 
for Jl-almost all s E S and since f,(8,.) j f(8,·) on T, f(8,') is T-measurable for Jl­
almost all 8 E S and by the MeT, 

fr fi(5, t)dv(t) j fr f(8, t)dv(t) for Jl-almost all 5 E S. (3.3) 

By Theorem 3, the function .~ fr fi(8, t)dv( t) is S-measurable so by (3) 
8 -> IT f(8, t)dv( t) is S-measurable and the MeT applied to (3) implies that 

r r 1;(8, t)dv(l)dJl(s) T r r f(8, t)dv(t)dJl(8). 
~~ ~h· 

(3.4) 

Since fi T f on S x T, the MeT implies 

r fidJl x v T r f dJl x V. 
isxT isxT 

(3.5) 

By Theorem 3, 

80 (4) and (5) imply 

Tonelli's Theorem can be used to check the integrability of a measurable function 
with respect to a product measure. If Jl and v are a-finite and f : S x T R is 
Jl x v-measurable, we can apply Tonelli's Theorem to the function Ifl to check its 
Jl x v-integrability. If If I is Jl x v-integrable, then Fubini's Theorem can oftcn be 
applied to evaluate the product integral IsxT f dJl x v. 

As an application of Tonelli's Theorem we show how the product measure of a 
set can be computed as an integral. If E C S x T and s E S, the s-section of E at 
8 is defined to be E. = {t E T : (8, t) E E}. Similarly, if t E T, the t-section of E 
at t is defined to be Et = {s E S : (5,t) E E}. We have the following elementary 
proposition. 
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Proposition 5 Let E C S x T and S E S. Then 

(i) GE(S, t) = GE.(t), 

(ii) (Ee). (E.)C, 

(iii) (Y E.). U(Eo)., where 
a 

c S x T, 

(iv) m Eo). = n(E.)., where Eo C S X T. 
o • 

From Proposition 5 and Fubini's theorem, we have 

Theorem 6 Let E C S x T be Jl x v-measurable and have finite It x v mCa.'mre. Then 

(i) for Il-almo"t all $ E S the .lcction Es E T, 

(ii) the junction s -+ I/(E,) is /l-intcgmble, and 

(iii) Is v(Es)dll(S) = It x veE). 

Remark 7 If It and v arc O'-finife, by Proposition 5 and Tonelli'8 Theorem conclitiolls 
(i), (ii)' s -+ v (E,) is S-measurabl~ and (iii) also hold for any E C S x T which is 
Jl x v-measurable. 

Remark 8 In some of the deVelopments of Fubini's Theorem for product 11Iea"ures, 
Theorem 6 is an important intermediate step in that it establishes the result for 
integrable functions. The general result is then established by approximat.ing 
the general integrable function by simple funcLions. The proof of Theorem 6 from 
basic properties of product measures can be somewhat lengthy (see [Roy] 12A.Lj·18). 

We now give several examples which illustrate the 
potheses in the Fubini and Tonelli Theorems. 

for the various hy· 

Example 9 Let S = T = [0,1]' Jl = Lebesgue measure and 11 counting measure 
restricted to the Lebesgue mea.sura.ble subsets of S. Set E = {(x, x) : 0 :<:: x :<:: l}. 
Note that E is It x v-measurable. Then 

II GE(x,y)dm(x)dv(y) 0 

while II GE(x,y)dv(y)dm(x) = 1. 

This example illustrates the importance of the O'-finiteness condition in Tonelli's The~ 
orem [also in Theorem 6 and Remark 7]. 
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Example 10 Let /(0,0) ° y) (;y2 _ for ° 
° <1 tl . C" iJ Y _ ,0 terWlse. ,,!nce &;; = J(x,y) for x i- 0, 

1111 . 11 1 /(x,y)dyd:L" = -. --:--d:I: = 7rj-1. 
o 0 0 1 + :r2 

Sirnilarl.Y, 
tt io io f (x, y)duiy -n/4. 

This example shows that the non-negativity condition III Tonelli's Theorem IS 

important. 
A similar examp]<' given in Exercise 2. 

Example 11 (Sierpinski) [Sir]. This example points out the importance of the 
med.surabiliLy aSSllmptiOil in T<llldli's Theorem. A result of Sierpinski tbe ex-
istence of a 11 map j froIll [0,1] onto a well ordered set W such that has at 
most coulltably Illany predecessors iu }V for each :r E [0, 1] H'SUIt depeuds all 

lit(' Continuum Hypothesis). Let q be the subset of the unit square which consists 
or all pajrs CI",]I) such that j(x) preccdf's j(y) in W. Set f = CQ . For each :r, 
contains all hut cOIlI1tably lllany of [D, 1] so Jd Id J(.r, Ii )dyd.T I, aBd for each 
y, qv contains at lllost cOllnta.bly many poinb of [0, I] so Jd Id .f(x, = 0. 

I\ote thai eiJch f(.r,·) (f(.,y)) is it I~o[{'l function but..r is not Illeasurabk, i.e., J 
is "separately llleasurable" but. not "jointly Ilwasurable". 

Another iuterestillg exaIllple rdative to it.erated integrals is in Exercise :J. 
There is a.nother stalldard nwlhod of constructing product Illeasures whirh we 

!lOW ollL]im:. 'vVe assume that // and // arc cr-finite. If c' cr(S x T), then for .s E S 
(/ E 'r) every section Es T (El E S) il.lld t.he functioll S -'> I/(I~;s) (t -'> /1([;;/)) is 
S-llIca:;urable (T-lIlcilsurab]e). The set flilictioll A defilled on cr(S x T) by 

is it iT-finite measure which satisfies A(A x B) 1'(1\)1/(8) when A S, BET. (uHI 
is defiw·d to be the product of I' ilnd //. In genC'ral, this measure is not complete. 
TIl particular, if /1. = /1 Lebesgue n1PaSllre Oil R, then A is not complete and 
'lO is not two-dimensional Lebesgue Hlcasur(' Oil R 2 which is sOIIlcwhat annoying. 
Fubini's ThcO[(,m is llwlI (,stablished by approximating functi()!Js simple 
functions. Sec, for example. the devel0Plllent in [Hal]. 

Fubini's Theorem fails miserably for finitely additive set see [HY1. 

Exercise 1. Let 9 : S R (h : l' -'> R) be S-measurable (T-lIleil.sllrablc) and dcflIle 
f: S x T .-> R by .f(s, t) g(s)h(t). Show J is iT(S x T)-measurable. If 9 and h a.re 
integrable, show f is integrable and 

[ frip x /1 = [ 9<llL [ hdll. 
~xT ~ iT 
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Exercise 2. Show I; It';:'(e~:r;Y-2e~2xY)dxdy and It" I~(e~:r;Y-2e~2xY)dydx both exist 
but are not equal. 

Exercise 3. Let f(O,O) 0 and f(x,y) = xy/(x2 + y2)2 otherwise. Show 

llll f(x,y)dxdy l1l1 f(x,y)dydx 

but f is not (Lebesgue) integrable over [-1, I] x [-1,1]. Hint: Consider [0, IJ x [0,1]. 

Exercise 4. Give an example of a set in the plane which is not Lebesgue measurable. 
Generalize to Rn. 

Exercise 5. Show that the conclusion (i) of Theorem 6 cannot be improved to: every 
section E. E T. 

Exercise 6. If E E u(S x T), show every section E. E T. [flint.: Consider all 
E C S x T such that E. E T] 

Exercise 7. Let It, v be u~finite. If E, F are It x v~measurable and It(E.) = v(F.) 
for It~almost all 8 E S, show It x v(E) It x v(F). 

Exercise 8. Show u(8(R) x 8(R» = 8(R2). [Hint.: Consider the projections from 
R2 into the coordinates and use Exer. 2.5.11.] 

Exercise 10. If f : S x T --+ R is u(S x T)~measurable, show f(8,·) is T~measurable 
for every 8 E S. Docs the same hold for It x v~measurable functions? 

Exercise 11. Evaluate Iooo e- x1 dx = / by writing /2 as a double integral in the plane 
and using polar coordinates. 

Exercise 12. Let f : Rn --+ R be Lebesgue integrable. Show 

r f(x+y)dx 
JRn 

r f(x)dx JRn 
for every y ERn. What is the corresponding formula for IRn f(ax)dx, a E R? 
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Exercise 13. For p > 0, q > 0, the Beta Function B(p, q) is defined by 

B(p, q) = l (1 - x )q-1dx. 

Show B(p,q) B(q,p) and r(p)r(q) = f(p+q)B(p,q). 

Exercise 14. Evaluate f~ J; e
y2 dydx. 

125 



126 CFIAPTER 3. INTEGRATION 

3.10 A Geometric Interpretation of the Integral 

We show that Fubini's Theorem can be used to show that the integral can be inter­
preted to be the "area under the curve". Let, (S, S, 11) be a a-finite, complete measure 
space. If f: S -+ R, the ordinate set of f is rl j = ((x,y): x S, -CX) < y < f(x)}. 

Proposition 1 f is S -measurable ~ rl j is 11 x m-measurable. 

Proof; {=: For y E R, rl~ = {x E S: (x,y) E rl j } = {x : f(x) > y}. rlj E S 
for m-almost all y E R (Remark 3.9.7). Thus, rlj E S for y in some dense subset 
DC R. Therefore, {x: f(x) > r} E S for rED and f is S-measurable by 3.1.L 

and 

=}: Suppose f : S -+ R is S-measurable. For r E Q let 

A, {xES:f(x»r}, 

B, = {y E R: -CX) < y ::; r}, 

E = U{ A, X B, : r E Q}. 

Then E is It x m-measurable, and we claim that E rl j . First, suppose that 
(x,y) E E. Then (x,y) E A, X B, for some r E Q so -CX) < y ::; r < f(x) and 

y) E rl j • Hence, E C rl j . :\'ext, suppose y) E rl j . Then -CX) < y < f(x) so 
there exists r E Q such that -CX) < y ::; r < f(x) and (x,y) E A, x Br C E. Hence, 
rl j CEo 

Theorem 2 Let f : S R be non-negative and S -measurable, and let 

H {(x,y):xES,O::;y<f(x)}. 

Then H is 11 x m-measurable and 11 x m(H) Is fdlt. 

Proof: H is measurable by Proposition 1 since H = Hj\S x 
3.9.7, 

11 x m(H) = ism(IF)dll(x) = isf(x)dll(x). 

0). By Remark 

If the basic properties of the product measure are developed before the int,cgral 
is defined, the com,:lusion in Theorem 2 can be used to define the integral for non­
negative measurable functions. This approach to the integral leads to some very quick 
proofs of the convergence theorems, particularly the MGT. For a description of this 
method of defining the Lebesgue integral see [Zl]. 

Exercise 1. If f is S-measurable, show the graph of f, G {(x, f(x)) : xES}, has 
11 x m measure O. 

Exercise 2. Show is fdll = 1"0 11 ({ x: f(x) > y}) dy. 
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3.11 Convolution Product 

As another application of Fubini's Theorem we consider the convolution product of 
two functions. The convolution product has many important applications in analysis, 
from approximation theory to integral transform theory. We give two such applica­
tions in Theorem 11 and Exercise 2. 

If f, 9 : Rn ---> R, the convolution product of f and g, denoted by f * g, is defined 
by 

f*g(x)= f f(x-y)g(y)dy, JRn 
provided the integral exist.s. We use Mikusinski's characterization of the Lebesgue 
integral to show that the convolution product of two Lebesgue integrable functions 
exists a.e. and defines a Lebesgue integrable function. Other conditions which guar­
antee the existence of the convolution product are given in the exercises. 

Theorem 1 Let f, 9 E LI(Rn). Then 

(i) f * g(x) = JRn f(x - y)g(y)dy exists for m-almost all x ERn, 

(ii) f * 9 E LI(Rn), 

(iii) Ilf * gill :s Ilflll IlglII· 

Proof: We use Fubini's Theorem to show that the function 

H(x,y) = f(x - y)g(y) 

is Lebesgue integrable over R2n and then (i) and (ii) will follow from Fubini's Theo­
rem. 

Let {f;} ({g;}) be Lebesgue integrable Borel functions such that 

Lllf.11 1 < 00 (Lllg.III < 00) 
i=l i~l 

and 

f(x) = Lf.(x) (g(x) = Lgi(X» 
i=l i=l 

for any x for which the series is absolutely convergent (Theorem 3.8.3). Set F.(x,y) = 
f.(x - y), G.(x,y) = g.(y) and note each Fi , G i is a Borel function on R2n. 

00 j 
Consider the Cauchy product, L L. FiGj - i , of the two series L Fi and L G •. 

j=l i=O 

Since 
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~ I~ fIt2n FiGj_, I ::; ~ ~ fItn Ifil fItn Ig)-i I < DO, 

this last series being the Cauchy product of the series L: Ilfdl]l L: Ilgi Ill. ][ [or some 

(x,y) E R2 the series 
00 j 

L L Fi(X, y)Gj_i(x, y) 
j=1 ;=0 

converges absolutely, then both series I: f~(x,y), I: G,(x,y) must converge abso-
t=] 1=1 

lutely ([Kn] Theorem 11, p. 89) and, therefore, must converge to F(x, y) and G(x, y), 
respectively, so 

00 ) 

L L Fi(x, y)G)_i(X, y) 
)=1 i=O 

must converge to F(x,y)G(x,y) = H(x,y) ([Kn]). By Exercise 3.8.1,11 is Lebesgue 
integrable over R2n, and (i), (ii) follow from Fubini's Thoerem. 

For (iii), 
fRn If * gl < fItn fRn If( T - y )g(y) I dydx 

fItn fItn If(x - y)g(y)1 dxdy 
fItn Ig(y)1 dy fItn If(x)1 dx 

by Tonelli's Theorem. 
Note that the proof of Theorem 1 shows that the [unction (x,y) ---> f(x - y) is 

Lebesgue measurable (see Exer. 8; [or another proof o[ the measurability see [I1S] 
21.31 ). 

Several of the algebraic properties of the convolution product are given in the 
exercises. We now show that the convolution product can be used ill establishing 
approximation results. 

Definition 2 A sequence {'Pd c LI(Rn) is called an approximate identity or (J 

8-sequence if 

(i) 'P k ( x) ?:: 0 fa r all x ERn, 

(ii) II'Pklll = 1 for all k, 

(iii) for every neighborhood of 0, U, in Rn, limfu< 'Pk(x)dx = O. 
k 

We give examples of 8-sequences. 

Example 3 In R, take 'Pk(t) = ~C[-l/k,l/kl. 

Example 4 'Pk(t) = ~I+tkt)2' t E R. 

Example 5 In R, 'Pk(t) = Cke-kt2 where Ck is chosen such that (ii) holds. 
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We denote by C~(Rn) the vector space of all functions '-P on Rn with compact 
support which have continuous partial derivatives of all orders. It is not apparent 
that there are any non-zero functions in C~(Rn), but examples of such functions are 
given in the examples below. 

Example 6 In R, pick '-P E C~(R), '-P :::: 0, [like '-P(t) = e- I
!(I-t

2
) for It I < 1 and 

'-P(t) = 0 for It I :::: 1]. Set '-Pk(t) = ck'-P(kt), where Ck is chosen such that (ii) holds. 
Note that if'-P is chosen as above spt('-Pk) C [-11k, 11k]. 

Example 8 In Rn, pick '-Pk as in Example 6 and define ,pk as in Example 7. Note 
in this case, 1/;k E C~(R") and spt(1/;k) C {x: IXkl ~ 11k}. 

Example 9 Define'-P on R" by '-P(x) = e-I/(l-lIxW) if Ilxll < 1 and '-P(x) = 0 other­
wise. Set '-Pk(X) ck'-P(h) where Ck is chosen to satisfy (ii). Then '-Pk E C~(R") and 
spt('-Pk) C {x: Ilxll ~ 11k}. 

We next establish an intermediary result which is interesting in its own right. 

Theorem 10 Let f : Rn --t R* be Lebesgue integrable and for h E Rn define fh : 
Rn --t R* by fh(x) I(x + h). Then lim Ilfh - fill O. 

h-+O 

Proof: Let E > O. By Theorem 3.5.6 there exists '-P E Co(R") such that 
III - '-Pill < f. There exists a > 0 such that '-P(x) 0 for IIxll > a. '-P is uniformly 
continuous so there exists 1 > 8 > 0 such that I'-P(x) '-P(Y) I < c when IIx - yl/ < 8. 
Thus, IIhl! < 8 implies 

f 1'-P(x+h)-'-P(x)ldx<c.A, 
JRn 

where A = m{x : IIxll ~ a + I}. Thus, if Ilhl! < 8, 

II/h - 1111 ~ Ilfh '-Phlll + II'-Ph - '-PIlI + II'-P fill < t + t . A + t. 

Theorem 11 Let {'-Pd be an approximate identity in LI (Rn). Then for every 
IELl(Rn),lirnll/*'-Pk III1 O. 

Proof: Let c > O. By Theorem 10 there exists 8 > 0 such that IIhll ~ 8 implies 
!Ifh - 1111 < €, where Ii.(x) I(x + h). By (iii) there exists N such that k :::: N 
implies ~lxll::>:6 '-Pk( x )dx < (.. Then 

IIf * '-Pk - fill fRn I JRn (f(x - y) - f(x))'-Pk(y)dyldx 
~ fRn '-Pk(y)JRn I/(x - y) - l(x)1 dxdy 

JRn '-Pk(Y) II/-y - fill dy 
Jllyll9 '-Pk(Y) II/-y - fill dy + ~IYII>6 '-Pk(Y) Ilf -y - fill dy 

< d llyll9 '-Pk(y)dy + 211/111 JIlYII~6 '-Pk(y)dy < € + 211fl!1 f. 
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Corollary 12 C~(Rn) is a dense subset 0/ VeRn) (with respect to 11111)' 

Proof: By Theorem 3.5.6 it suffices to show that C~(Rn) is dense in Cc(Rn). Let 
WE Cc(Rn) and K = spt(W). Choose {'Pk} C C~(Rn) as in Example 9. If x E Rn 
and dist(x,K) > 11k, then 'Pk(X Y) 0 for y E K so 

vanishes for such x, i.e., spt('Pk * W) c {x : dist(x,K) ~ 11k}. Hence, 'Pk * W has 
compact support and by Exercise 3 'Pk * W is infinitely differentiable so 'Pk * W E 

C~(Rn). By Theorem 11, II'Pk * W will -t O. 

Proposition 13 Let KeRn be compact and V :) K open. Then there exists 
W E C~(Rn) such that 0 ~ W ~ 1, W 1 on K and W = 0 on ve. 

Proof: We may assume that V is bounded. Let 0 = dist(K, ve) > 0 and let Kl 
be a "o/3-neigborhood of K", i.e., Kl {x: dist(x, K) < o/3} [a sketch at this point 
is useful]. If k is chosen such that 11k < 6/3, the function W = CK] * 'Pk is in C~(Rn) 
if 'Pk is chosen as in Example 9. Clearly 0 ~ W ~ 1. If x E K, then (Exer. 1) 

since the integration is over a ball of radius < 6/3 and center x. If x f/. V, then 
W(x) = 0 since the integrand in the convolution product is O. 

Exercise 1. If /, g, h E LI(Rn), show / * 9 = 9 * f, f * (g * h) (f * .lJ) * h, and 
f * (g + h) = f * 9 + f * h. Thus, VeRn) is a commutative algebra with convolution 
as product. Show that it does not have an identity. 

Exercise 2. If f E LI(R) and f(t) 0 for t < 0, its Laplace tranBform is defined by 
C{f}(s) fooo e-'!f(t)dt. Show this integral exists for s :::: O. If f, 9 E VCR) vanish 
for t < 0, show f * 9 vanishes for t < 0 and C{f * g} = C{f}C{g}. 

Exercise 3. If f E C~(Rn) and 9 E VeRn), show f * 9 E Ll(Rn) n COO(R) and 
give a formula for calculating the partial derivatives of / * g. 

Exercise 4. Let {'Pk} be as in Example 9. If f : Rn -t R is bounded, continuous, 
show f * 'Pk is uniformly continuous and f * 'Pk -t / uniformly on compact subsets of 
Rn. 

Exercise 5. Let f E Ll(Rn). If fRn f'Pdm 0 for every 'P E C~(Rn), show f 0 
a.e. 
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Exercise 6. Let IE V(Rn) and g : Rn -+ R be bounded, measurable. Show 1* g 
exists everywhere in Rn and is uniformly continuous. 

Exercise 7. Let {'Pd be an approximate identity. If g Rn -+ R is bounded, 
measurable and continuous at x, show 'Pk * g(x) -+ g(x). 

Exercise 8. Show that if I : Rn -> R is measurable, then the function (x,y) 
I(x - y) is measurable. 

Exercise 9. Let E C R be Lebesgue measurable with m (E) > O. Show that E - E 
contains an interval. Hint: Assume E C (a, b] and define 

I(x) tCdy)CE(X+y)dy. 

Show I is continuous at 0 and 1(0) > O. Consider {x: I(x) > OJ. 

Exercise 10. If I E CC (Rn) and {'Pd is an approximate identity, show {J * 'Pd 
converges to I uniformly on R. 

Exercise 11. If I, g E Cc (Rn), show spt (f * g) C dosure(spt (f) + spt (g» and 
I*gECc(Rfi). 
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3.12 The Radon-Nikodym Theorem 

\Ve now consider one of the most important results in the theory of measure and 
integration, the Radon-Nikodym Theorem. The Radon-Nikodym Theorem essentially 
characterizes the integral as a set as an indefinite integral. 

Definition 1 Let p, v be signed measures on the u-algebra Then v is absolutely 
continuous with respect to p, denoted by v if IJlI (E) = 0 implies Ivl (E) = 0 
whenever E E 2::. 

Example 2 If p is a measure and f : S R+ has a Jl-integral and v(E) = IF: fdJl 
for E E 2::, then v <t: p [3.2.lOJ. We denote the indefinite integral v by v = fdJl. 

The Radon-Nikodym Theorem asserts that Example 2 is a canonical 
example in the sense that any ((i-finite) signed measure v which is absolutely con­
tinuous with respect to it (u-finite) measure p must be an indefinite integral of some 
funct.ion with respect to p. 

\Ve have an elementary observation which follows directly from t.he Jordan Dc­
composition. 

Proposition 3 Let p, v be signed measures on 

(i) v <t: Jl 

(ii) v+ <t: Jl and v- <t: p. 

Definition 4 Let p, v be signed measures on 
lim v(E) = O. 

I!JI(E)~O 

The following an' eijuivalent: 

v is said to be p-continuous if 

By Theorem 3.2.17 indefinite integrals of Jl-integrable functions are Jl-continuous. 
Concerning absolute continuity and p-continuity, we have 

Proposition 5 (i) If v is p-continuous, then v <t: Jl, 

(ii) If v is a finite signed measure, then v <t: p ¢:} v is Jl-continuous. 

Proof: (i) is clear. (ii): ¢= follows from (i). Suppose not. Then there exists 
( > 0 and {Ej} C 2:: with Ipl (Ej ) < 1/2j and Ivl (Ej ) ~ (. Set E lIinE) = 
= 00 n U Ej. Then for each k, 

k=lj=k 

Ipi (E) ~ I: Ipi (Ej ) ~ 
j=k 
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so IfLl (E) = O. But, Ivl finite implies Ivl (E) = lim Iv I (U Ej ) ? rim Ivl (Ed:;;' { so V 
k i=k 

is not absolutely continuous with respect to fL. 

The finiteness condition in (ii) cannot be dropped even when fL is finite. 

Example 6 Define fL, von P(N) by fL(E) 

but v is not fL-continuous. 

L 2k. Then v <It: Ii 
kEE 

For the proof of the Radon-Nikodym Theorem we first require a lemma. 

Lemma 7 Let fL, v be finite measures on L with v <It: fL and v '" O. Then there exist 
{ > 0 and A E L such that fL(A) > 0 and A is a (v - cfL)-positive set. 

Proof: For each k let (Pk , Nk ) be a Hahn Decomposition for the signed measure 

v - tfL. Set Ao = U Pk and Bo = n N k • Since Bo C Nk for every k, 
k=1 k=1 

so v(Bo) O. Thus, v(Ao) > 0 and since v ~ fL, fL(Ao) > O. Hence, fL(Pk) > 0 for 
some k. For such a k, set C 11k and A Pk . 

We are now ready for the proof of the Radon-Nikodym Theorem. We say that a 
signed measure v is O'-finite if Iv I is O'-finite. 

Theorem B (Radon-Nikodym) Let fL(v) be a O'-finite (signed) measure on L with 
v <It: fL. Then there exists a L-measurable junction f : S -t R* such that v( E) 
IE fdfL for all E E . the function f is unique up to fL-a.e. 

Proof: By Proposition 3 we may assume that v is actually a measure. 
We first assume that both fL and v are finite measures. Let 

and set 

A = SUP{h9dIL : 9 E F} ::; v(S) < 00. 

Choose a sequence {fd C F such that limIs fkdfL A. We construct an increasing 
sequence from {fd by setting gk II V ... V /k. Then gk i and gk E L1(fL). Moreover, 
gk E F since for any EEL if EI {t E E : !t(t) = gk(i)} and 

Ei+J {t E E: fHI(t) = gk(t)}\Ei for 1 ::; i::; k - 1, 



134 CHAPTER 3. INTEGRATION 

then 

Also). 2: Is gkdJ.l 2: Is fkdJ.l for every k implies lim Is gkdJ.l =).. By the MeT if 
f = limgk, then IsfdJ.l =). < 00 so f is finite J.l-a.e. and we may assume f E £1 (J.l). 
Since gk E F, f E F by the MeT. 

We claim that v(E) = IE fdJ.l for E E 2:. Let va be the measure defined by 
vo(E) = v(E) - IE fdJ.l. If va is not zero, then since va « J.l, Lemma 7 implies that 
there exists f > 0 and A E 2: such that J.l(A) > 0 and A is (va - fJ.ll-positive, i.e., 

f fCAdJ.l = fJ.l(EnA):-:; vo(EnA) = v(EnA) - f fdJ.l for E E E. 
lE lEnA 

Thus, if h = f + fCA , then 

f hdJ.l = f fdJ.l + fJ.l(E n A):-:; f fdJ.l + v(E n A) :-:; v(E) 
lE lE lE\A 

for every E E 2: so h E F. But, 

is hdJ.l = is fdJ.l + fJ.l(A) = ). + fJ.l(A) > ). 

which contradicts the definition of ).. Hence, V = fdJ.l. 
Uniqueness of f follows from 3.2.18. 

Assume that J.l and V are O"-finite. Then S = U Ej , where Ej E 2:, Ej C EJ+1 
j=1 

and J.l(Ej ) < 00, v(Ej) < 00. By the first part, for each j there exists a non-negative, 
J.l-integrable function gj such that gj = 0 on EJ and v(E n Ej l = Ie gjdJ.l for E E 2:. 
From the uniqueness of gj, it follows that gj = gj+k J.l-a.e. in EJ for k 2: 1. Set 
Ii = max{gl' ... ,gj} so {Ii} is increasing. Then 

Set f = limfJ. From Proposition 2.2.5 and the MeT, 

v(E) = limv(E n Ej ) = lim hIidJ.l = h fdJ.l for E E E· 

Uniqueness again follows from 3.2.18. 
Note that the function f is not generally J.l-integrable. In fact, f is J.l-integrable if 

and only if V is finite. 
The O"-finiteness condition on v can be eliminated [see [Roy] [or a proof]; however, 

the a-finiteness condition on J.l cannot be dropped as the following example shows. 

Example 9 Let S = [0,1] and 2: the O"-algebra of Lebesgue measurable subsets of 
S. If J.l is counting measure on 2:, then m « J.l but there exists no function fELl (J.l) 
such that m = fdJ.l [Proposition 3.2.14]. See also Exer. 11. 
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The function f in the conclusion of Theorem 8 is called the Radon-Nikodym deriva­
tive of v with respect to J-I and is denoted by ~~. Note the Radon-Nikodym derivative 
is only determined up to J-I-a.e. Some of the basic properties of this "derivative" are 
given in the exercises. 

The Radon-Nikodym Theorem can be extended to a more general class of mea­
sures than the a-finite measures. One important class of such measures are called 
decomposable measures; for a description of these measures see [HS] p. 317. Nec­
essary and sufficient conditions are known for a measure J-I to admit the conclusion 
of the Radon-Nikodym Theorem for any signed measure v; such measures are called 
localizable and have been characterized by Segal [see [TTj for a descriptionj. 

For other methods of proving the Radon-Nikodym Theorem see [Royj and [R2] 
and §3.12.1. 

The Radon-Nikodym Theorem fails for finitely additive set functions; see section 
3.12.1 and Exer. 3.12.1.2. 

Exercise 1. Let J-I, VI, V2 be signed measures on L with one Vi being finite and J-I 
a measure. If Vi q:: J-I, show (avi + bV2) q:: Ii. If the measures are a-finite, compute 
d(uv,+bv,) 

dl' 

Exercise 2. Let 5(7) be a a-algebra. Let a, J-I (p, v) be a-finite measures on 5(7). 
If J-I q:: a, V q:: p, show J-I X v q:: a X p. Compute the Radon-Nikodym derivative of 
Ii X V with respect to a X p. 

Exercise 3. Let Ii, v be a-finite measures on L with v q:: Ii. If f E LI(V), show 
f~ E L1(J-I) and J fdv = J f~dli' 

Exercise 4. Let A, J-I, v be a-finite measures on L with v q:: Ii q:: A. Under 
appropriate conditions, show ~ = ~;jX [Chain Rule]. 

Exercise 5. Let Ii, v be finite measures on L with Ii q:: v, v q:: J-I. Show ~ =I 0 

d !Y:. 1/ dv J-I-a.e. an dv d" • 

Exercise 6. Let v, Vk, J-I be a-finite measures on L with v = f vk. If vk q:: J-I for 
k=1 

every k, show v q:: Ii and ~ f~ 
k=1 d" . 

Exercise 7. Let A be an algebra which generates L. Let Ii, v be finite measures on 
If v is J-I-continuous on A, show v < < J-I on 
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Exercise 8. Let Vk, J1 be signed measures on Then {vd is uniformly J1-continuous if 
lim Vk (E) 0 uniformly in k. If fk E Ll (J1) and Vk fkdJ1, show {Vk} is uniformly 

II'I(EJ-O 
J1-continuous if there exists 9 E Ll (J1) such that Ifk I S 9 J1-a.e. 

Exercise 9. Let J1 be a finite measure on Land !k E L1 (J1). Show {fd is uniformly 
J1integrable if and only if 

sup is Ifkl dJ1 < 00 

and {fkdJ1} is uniformly J1-continuous. 

Exercise 10. Let v : L'~ R' be finitely additive and J1 be a mea.sure on L. If v is 
J1-continuous, show v is countably addit.ive. 

Exercise 11. Let S R and let L be the <i-algebra consisting of the sc1.s which are 
either countable or have countable complements. Define von L by v (E) 0 if E is 
countable and v (E) = 1 if Ee is countable. Let It be counting measure. Show v is a 
measure wit.h 1/ ~ J1 but the Radon·Nikodym Theorem fails for 1/. 

Exercise 12. Let Il, v be measures OIl L wit.h v finite. If!k --; f J1-measure, show 
fk --; f v-measure. Can the finiteness condition be dropped? 
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3.12.1 The Radon-NikodYIll TheoreIll for Finitely Additive 
Set Functions 

Bochner has given an extension of the Radon-Nikodym Theorem to finitely additive 
set functions defined on an algebra ([Boll. Bochner's original proof depended on 
the countably additive version and Stone space arguments. Dubins has given an 
elementary proof which we present ([D]). Dubins' proof depends on order properties 
of the space of finitely additive set functions and is independent of the countably 
additive version of the Radon-Nikodym Theorem. 

Let A be an algebra of subsets of S. We let ba(A) be the space of all real-valued, 
bounded, finitely additive set functions defined on the algebra A. ba(A) is a vector 
space if we set (p+v)(A) = p(A)+v(A) and (tp)(A) ip(A) for p, v E ba(A), t E R, 
A E A. We write p 2:' v if and only if p(A) 2:' v(A) for all A E A; if p 2:' 0, we say p 
is non-negative. For convenience of notation, we set Ilpll Ipi (S) for p E ba(A). 

If p, v E ba(A), the meanings of v 4.( p and v being p-continuous are as in 
Definitions 3.12.1 and 3.12.4. If f : S -+ R is an A-simple function and 11 E ba(A) is 
non-negative, then the integral of f with respect to 11 is meaningful and 

1£ fdPI ::; sup{lf(t)1 : t E S}p(A) 

for all A E A [Remark 3.2.2] and A -+ fA fdp defines an element of ba (Alj we denote 
t.his set function by 

Bochner's Radon-Nikodym Theorem asserts that if v is Il-continuous, then v can 
be approximated by an indefinite integral fdlt where f is a simple function. We now 
prove Bochner's Theorem. 

We require two lemmas. The first is an interesting result related to the order 
defined on ba(A) and asserts that any two elements of ba(A) have an infimum with 
respect to the order defined on ba (A). 

Lemma 1 Let 11, v E ba(A). Then 

P 1\ v(A) = inf{p(E) + v(A\E) : E E A, E ~ A} 

defines an element p 1\ v E ba(A) which is such that P, v 2:' p 1\ v and if a: E ba(A) 
and a: ::; 11, a: ::; v, then a: ::; p 1\ v. 

Proof: Let A, B E A, A n B = 0. If E E A, E C AU B, then 

p(E)+v((AUB)\E) = p(EnA)+p(EnB)+v(A\E)+v(B\E) 2:' pl\v(A)+pl\v(B) 

so 

P 1\ v(A U B) 2:' p 1\ v(A) + p 1\ v(B). , 
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Let 6 > 0. There exists El C A, E2 C B, Ei E A such that 

J.ll\ v(A) > J.l(Ed + v(A\El) - 6/2 

and 

so 
J.ll\ v(A) + J.l/\ v(B) > J.l(E1 U E 2 ) + v((A\Ed U (B\E2» - 6 

J.l(E1 U E 2 ) + v((A U B)\(EI U E2» 6 
J.ll\v(AUB)-6. 

Hence, 
J.ll\v(AUB) J.ll\ v(A) + J.ll\ v(B) 

and J.ll\ v E ba(A). 
Taking E A shows J.ll\ v ::::: J.l and taking E = 0 show J.l ::::: v. If a S It and 

a S v, then clearly a S J.ll\ v. 
For the next lemma we adopt some unorthodox but useful notation. If 11" 

v E ba(A) and 6 ::::: 0, we write J.l S v + 6 if f.l(A) S v(A) + 6 for every A E A; note 
here that J.l, v are set functions and 6 is a non-negative real. 

Lemma 2 Let 6::::: 0, k> 0, J.l, 11) E ba(A) with J.l non-negative. If 

--kf.l f. < 11) < kf.l + f., 

then for every f.' > 6 there exists a two-valued A-simple function f such that 

k , 
-f.l- 6 < w 
2 

and an A-simple function f such that 

- e;' < w - f df.l < 6', 

(3.1 ) 

(:3.2) 

Proof: Choose A E A such that w( A) > 11)( E) - (6' - 6) for all E E A. LeL f 
equal k/2 on A and -k/2 on N. Then 

nA) r fdf.l S ~J.l(En A) +6, 
lEnA 2 

(3.3) 

and since weE n AC) < 1':' 1':, 

weE n A C
) r fdp. < 1':' - I': + -2k 

J.l(E n A"). 
lEnA' 

The inequality on the right hand side of (1) now follows from (3) and (4). The ot.her 
inequality in (1) is similar. 

From (1) it follows by induction that for every j and TT > I': there exists a simple 
function f such that 

k 
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and this gives (2). 
We are now ready to state and prove Bochner's Radon-Nikodym Theorem which 

asserts that if II E ba(A) is {t-continuous for some {t E ba(A), then II can be approxi­
mated by an indefinite integral with respect to {t of an A-simple function [condition 
(iii) in Theorem 3 below]. 

Theorem 3 (Bochner) Let {t, v E ba(A) with It non-negative. The following are 
equivalent: 

(i) II is {t-continuous, 

(ii) for every £ > 0 there exist w E ba(A) and k > 0 such that -k{t :s:: w :s:: k{t and 
IIv -:- wll :s:: £, 

(iii) for every £ > 0 there exists an A-simple function such that 1111 - fd{tll :s:: £. 

Proof: (i)=>(ii): By decomposing II into 11+ - 11- we may assume that II is non-
negative. There exists 6> 0 such that v(E) < £ when {t(E) < 6. Set k II(S)/6. 
By considering the cases where {t(E) < 6 and {t(E) ~ 6, it is easily checked that 

v(E) - k{t(E) < £ for all E E A. (3.5) 

From Lemma 1, 
1I /\ k{t(S) == inf{v(EC) + k{t(E) : E E A} 

so 
1111 11/\ k{tll II(S) - 11/\ k{t(S) == sup{lI(E) k{t(E): E E A} :s:: £ 

by (5). Setting w = II t, k{t gives (ii). 
(ii)=>(iii): Choose w to satisfy (ii) and then choose f as in (2) so Ilw fdp.ll:S:: 2£' 

(Proposition 2.2.1.7(v)). Then 

111I - /d{tli :s:: 111I - wll + IIw - /d,..11 :s:: £ + 2£' 

and (iii) holds. 
(iii)=>(i): Given £ > 0 choose f as in (iii). Then there exists 6 > 0 such that 

lIE /d,..1 < £ whenever {t(E) < 6 [Remark 3.2.2]. Thus, if {t(E) < 6, 11I(E)1 :s:: 
£ + IIEfd,..1 < 2£ from Proposition 2.2.1.7. 

We now derive the Radon-Nikodym Theorem for countably additive measures on 
".-algebras from Bochner's result. This result follows easily from the approximation 
property in (iii) and the completeness of LI ({t) with respect to mean convergence. 

Let L: be a a-algebra of subsets of S. If,.. is a measure on L: and f : S -t R* has 
a ,..-integral, we denote the set function E -t IE fd{t by fd,... Note that we then have 

II/d{tll 1/d,..1 (S) = is If I d,.. = Ilflll 

[Exer. 3.2.26]. 



140 CHAPTER 3. INTEGRATION 

Theorem 4 (Radon-Nikodym) Let p. be a a-finite measure on L: and v a a-finite 
signed measure on L: with v «p.. Then there exists a L:-measurable Junction J : 
S -4 R such that v( E) = J E J dli Jor all EEL: [i. e., v = fdll}; J is unique up to 
p-a. e. 

Proof: By the Jordan decomposition we may assume that v is a measure. 
We first assume that both p. and v are finite measures. Then v is It-Continuous 

by Proposition 3.12.5. By Theorem 3 for each kEN there exists a simple function 
JI; such that Ilv- h:dpil < 1/ k. Since Ilfl;dp hdlill = IIIk - hilI' Ui;} is a Cauchy 
sequence in Ll(p.) and, therefore, converges to some J E LI(p.) by the Riesz-Fischer 
Theorem [3.5.1]. Then 

implies that v = Jdp.. 
The extension of the result to the a-finite case is given in the proof of Theorem 

3.12.8. 
Note that the proof of the Radon-Nikodym Theorem above depends on Bochner's 

version of the theorem for finitely additive set, fuuctions and the completeness of L I (p.) 
with respect to mean convergence when Ii is a cOllntably additive measure defined on 
a a-algebra. This proof of Bochner's Theorem basically depends on order properties 
of the space ba( A) and can be regarded as elementary. 

Exercise 1. Let p, v E ba(A). Show 

Ii V veAl = sup{p(E) + v(A\E) : E c A, E E A} 

defines an element of ba(A) which is the supremum of Ii and v in the order of ba(A). 

Exercise 2. Let A be the algebra of subsets of N which are eit,her finite or have 
finite complements. Define v, Ii on A by 

if E is finite and 

1 + L 1/21<] 
kEE 

if E is infinite. Show v « p. but there is no p-integrable J with v 
c: > 0, find a simple function J satisfying (iii). 

Jdp. Given 
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3.13 Lebesgue Decomposition 

Intuitively, a measure v is absolutely continuous with respect to a measure JL if v is 
small on sets with small JL-measure (Proposition 3.12.S). \Ve now consider a concept 
in opposition to absolute continuity, called singularity, which was briefly considered 
in §2.2.2. 

Let 2: be a a-algebra of subsets of S. Recall (2.2.2.6) that two measures JL and v 
on 2: are said to be singular if there exist A, B E 2: such that An B = 0, AU B S, 
JL(A) = 0 = v(B). If JL and v are singular, we write Two signed measures JL, v 
on 2: arc singular, written again lilv, if IJLlllvl. 

If v is a finite signed measure, recall that v+ and V- are singular [2.2.2. 
To illustrate that absolute continuity and singularity arc opposites, we have 

Proposition 1 Let IL, v be signed measures on 2:. If JLlv and v < JL. then v O. 

Proof: Since Ivl Ipl, there exist A, BEL AnB 0, AuB = S with 1J1,1 (A) = 

() Ivl (B)_ But, Ivl < IJLI implies Ivl (A) = O. Hence, Ivl (S) = Ivl (A) + 1111 (Ii) = O. 

We are now going \'0 show that given a J1" any a-finite signed measure can be de­
composed uniquely into two parts, one of which is absolutely continuous with respect 
to IL and another which is singular with respect to JL. This is called the Lebesgue 
Decomposition. For this theorem, we need a preliminary result. 

Proposition 2 Let Vk. JL be measures an 2:. If Vk lit for every k and 11 

then vlJ1,. 

Proof: Recall that v is a measure [Exer. 2.2.13]. For each k there exist A k , 

Ih E 2:, Ak n Bk 0, Ak U Ih = S with JL(Ad = IIk(Bk) o. Put, A Ak, 

= 
13 = N = n B k . Then 

k=l 

It(A) ~ I: JL(Ak) () 
k=! 

and 
00 

v(B) = I: vk(B) ~ I: vk(Bk) = O. 
k=l k=! 

Theorem 3 (Lebesgue Decomposition) Let v be a a-finite signed measure on 2: 
and JL a measure on 2:. Then there exist signed mea8ures Va and Vs on 2: 81!ch that 
v Va + v. and Va « IL, V.J_/L The decomposition is unique. 
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Proof: First assume that v is a finite measure. Let.lVi {E E 2.: : J1( E) O} 
and set a = sup{ v( E) : E E ./Vi}. Since v 2: 0 and v is finite, 0 ::; a < 00. Choose 

{Ed C M such that limv(Ek) = a. Set E U Ek . Then E E M and vee) = a 
.=1 

[clearly vee) a since E E M, but vee) 2: v(E.) for all k implies vee) 2: aJ. 
We claim that 

v(A\E) 0 for all A E M. (3.1 ) 

For otherwise, veE U A) v(A \E) + v( E) > a. Since E U A E .M, this would 
contradict the definition of a. 

Define v.(A) = v(A\E), v,(A) = v(A n E) for A E 2.:. Clearly v Va + VS' (1) 
implies that Va «i:: J1. Now J1(E) 0 since E EM and v.(S\E) = v((S\E) n E) = 0 
so J1.Lv •. 

Next assume that v is a t7-finite measure. Let S U E., where Ek E 
k=) 

pairwise disjoint and V(Ek) < 00. Set vk(R) v(EnE.) for E E Then v = 

From the first part, set Va f (Vk)a and v, f (Vk) •. Then Va and v., are measures 
.=) k=1 

from Exer. 2.2.13. Clearly Va ~ J1 and v • .LJ1 by Proposition 2. 
If v is a t7-finite signed measure, then v v+ V-. In this case sct Va = 

(v+)a - (v-)a and v. (v+). - (v-)., and apply Exercises 1 and 3.12.1. 
For the uniqueness, suppose v Va + v. = v~ + v~, where v~ ~ J1 and v~.LIl. 

If F E 2.: is such that Ivl (F) < 00, t.hen Va V: = V; - v, is both si1lgular wit.h 
respect to J1 and absolutely continuous with respect to J1 OIl {/<; n F : J~' E 2.:} 
so Va -v~ V; -v. = 0 on by Proposition 1. Since V is t7-finit.c, Va -v~ = V.: -V, co. 0 
on 2.:. 

The Lebesgue Decomposition is often derived from the Radon-Nikodym Theorem 
[[Roy] p. 278J. This usually requires the assumption that both V and It a.re t7-
finite. Note in the proof above it is only necessary to assume that J1 is non-negati vc, 
monotone, countably subadditive and vanishes at 0, i.e., J1 is an "outer measure". 
The proof given here is due to Brooks ([BrD. 

The t7-finiteness condition in the Lebesgue Decomposition cannot be dropped. 

Example 4 Let 5 = [0,1] and V be counting measure restricted to the class of 
Lebesgue measurable subsets of S. Then there is no Lebesgue Decomposit.ion for V 

with respect to m. For if V = Va + v. as in Theorem 3, there exist measurable A, Jl 
such that An B = 0, S AU Band v,(A) m(B) = O. Take x E A. Then 

v({x}) l=va ({x})+v,({x})=O 

since m( {x} ) ° and x E A. 

There is a version of the Lebesgue Decomposition Theorem for bounded finitely 
additive set functions; see [RR] 6.2.4 for this and further such results. 



3.13. LEBESGUE DECOA1POSITION 143 

Exercise 1. Let VI? V2 be £T-finite signed measures on L with one being finite. Let 
/l be a signed measure on L with v,J..p,. Show (avI bV2)J../l. 

Exercise 2. Let E be the even integers. Let v be counting measure and define /l on 
P(N) by p,(A) = 1/2k . Describe the Lebesgue decomposition of v with respect 

to /l. 

Exercise 3. Let f (I.) et for t :s: 1 and f (t) 0 for t > 1, 9 (t) (1:1)2 for 

t ~ 0 and g(t) = 0 for t < O. Let v = fdm, I}' = gdm. Describe the Lebesgue 
Decomposition for v with respect to /l. 

Exercise 4. Show under appropriate hypotheses that a 1.. /l or /3 1.. v implies 
a x /3 .i/l x v. 

Exercise 5. If a = an + a. (/3 = !3. + f3.) is the Lebesgue Decomposition of a (19) 
with respect to /l (v), show (a x In. aa x 

(a x (3). a. x f3. + a. x /3a + aa x f3. 

gives the Lebesgue Decomposition of ax ,8 with respect to /l x v. 
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3.14 The Vitali-Hahn-Saks Theorem 

In this section we prove a theorem closely related to t.he Nikodym Convergence Theo­
rem, the Vit,ali-Hahn-Saks Theorem. Our proof ofthis result depends on the Nikodym 
Convergence Theorem, but sometimes the Vitali-Hahn-Saks Theorem is established 
first and then the Nikodym Convergence Theorem is derived as a consequence [see 
[DS] for example]. 

Let 2::; be a a-algebra of subsets of S. Let /l be a measure on 2::; and {Vi} a sequcnce 
of signed measures on 2::;. Then {v,} is uniformly p.-continuous if lim vl(E) = 0 

I'(R)~O 

uniformly in i. 

Theorem 1 Let Vi be a finite signed mcasur'e on 2::; and It a measure on 2::; such thai 
each Vi is /l-continu01ls. If {VI} is uniformly cOl1ntably additive, then {VI} is unifoT7nly 
p.-continu01ls. 

Proof: If the conclusion fails, there exists t > 0 such that for every 6 > 0 there 
exist k, E E 2::; with IVk(E)1 Land p.(B) < 6. In particular, there exist. HI nl 

such that Ivn ,(EI )I2: t and p.(El) < 1. There exists 61 > 0 such that. Ivn , (E)I < (/'2 
whenever p.(E) < 61 • There exist Ez E nz > 711 such that IV"2(Io'2)1 2: ( and 
p. (E2) < 61 /2. Cont.inuing this construction produces scqucnces {Ek} C 2::;, 6kt I < 
6k/2, nk r such that Ivnk(Ek)1 2: f, p.(Ek+1 ) < IJk/2 and Ivn.(E)1 < <./2 whellcver 
It( E) < 15k- Note that 

p. ( U E1) :::: L p.(Ej ) < Dk/2 + 8kt d2 + ... < 8k/2 + 8k/22 + ... 8k 
J=k+! j=k+1 

so that 

Now set Ak = Ek \ U E)' The {Ad are pairwise disjoint and 
J=k+1 

by the observation above. However, by t.he uniform conntable addit.ivity of {v,}, we 
have lim vi(A k ) 0 uniformly for i E N [Lemma 2.8.4]' and we have the desired 

k 
contradiction. 

Remark 2 Note that only the facts that It is non-negative, increasing and countably 
subadditive were used. 
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From the Nikodym Convergence Theorem and Theorem 1 we can now obtain the 
Vitali-Hahn-Saks Theorem. 

Theorem 3 Let Vi be a finite signed measure on Land Ji a measure on L such that 
each Vi is Ji-continuous. Iflimvi(E) = v(E) exists for each EEL, then . 
(i) {v;} is uniformly Ji-continuous and 

(ii) v is Ji-continuous. 

Proof: By the Nikodym Convergence Theorem {Vi} is uniformly countably addi­
tive so (i) follows from Theorem 1. (ii) is immediate from (i). 

Both the Vitali-Hahn-Saks and Nikodym Theorems fail for countably additive 
set functions defined on algebras [see Exercises 1 and 2]. There are versions of the 
theorems for certain finitely additive set functions [see [DUll. 

Exercise 1. Let A be the algebra of subsets of [0, 1) generated by intervals of the 
form [a, b), 0 ~ a < b ~ 1. Define Vk on A by vk(A) = 2km([1 - 1/2k, 1) n A) so Vk is 
countably additive on A. Show that if b < 1, vk[a, b) = 0 for large k and Vk[C, 1) = 1 
for large k so limvk(A) = v(A) exists and v(A) = 1 if [1 - 8,1) c A for some 8 > 0 
and v(A) = 0 otherwise. Show v is purely finitely additive (§2.6.1) so (ii) of Theorem 
2.8.5 fails. Show also that (i) of Theorem 2.8.5 and (i), (ii) of Theorem 3 fail. 

Exercise 2. Let A be the algebra of subsets of N which are either finite or have finite 
complements. Define Vn on A by Vn (A) = n if A is finite and n E A, Vn (A) = -n if 
N is finite and n E AC and Vn (A) = 0 otherwise. Show each Vn is bounded, finitely 
additive and lim Vn (A) exists for each A E A. Let Ji (A) = L 1/2n when A is finite 

nEA 
and Ji (A) = 1 + L 1/2n when AC is finite. Show Ji is bounded, finitely additive, 

nEA 
Vn « Ji but (i) fails. 





Chapter 4 

Differentiation and Integration 

4.1 Differentiating Indefinite Integrals 

We consider the first half of the Fundamental Theorem of Calculus (FTC), the dif­
ferentiation of indefinite integrals. We consider indefinite integrals in Rn. Points x 
in Rn are denoted by x = (XI, .•. ,xn ) where Xi E R. If X E Rn and r > 0, the open 
cube with center at x and sidelength 2r is denoted by 

8(x,r) {y:IXi-Yil<r,i 1, ... ,n}. 

All statements concerning measurability, integrability and almost everywhere refer to 
Lebesgue measure on Rn which is denoted by m. 

We begin by establishing a covering theorem which will be used in the proof of 
the differentiation results. 

Lemma 1 Let C be any collection of open cubes in Rn and let U = U{ I : I E C}. If 
k 

C < m( U), there exist pairwise disjoint S1, ... ,8k E C such that L m( Sj) > 3-n c. 
)=1 

Proof: By regularity of m, there exists a compact K C U such that m( K) > c 
so there exist finitely many cubes II"", I j E C covering K. Let S1 be the {Ii} 
with the largest sidelength. Let S2 be the {I;} with the largest sidelength which is 
disjoint from SI and continue this procedure until the {Ii} are exhausted. This gives 
a pairwise disjoint sequence 81, ... , Sk E C. Let SI be the cube with the same center 
as 8 i but with sidelength three times that of Si. If Ii is not one of the SI, . .. , 
there exists Sl such that Ii n Sl f. 0 and the sidelength of Ii is at mosi that of Se. 

k 
Hence, Ii C S;. Then f{ C U S; so 

£=1 

k 

C < m(K) S L m(8;) 
£=1 

A function f : Rn -> R is said to be locally integrable if f is Lebesgue measurable 
and is m-integrable over every compact subset of Rn. The class of all locally integrable 
functions on Rn is denoted by LfoARfi). 

'\ 147 
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Let f E Lloc(Rn). We consider the problem of differentiating the indefinite integral 
of f, IE fdm. That is, for what x does the limit, 

lim r fdrn/rn(S(x,r», 
r-O is(x,r) 

exist and for what x does the limit equal the integrand, f(x)? Note that for n = 1, 
we are asking that 

1
x+r 

lim fdm/2r 
T-.O+ x-r 

f(x); 

we will see that information about the usual derivative, 

1
x +h 

lim fdm/h = f(x), 
h-tO x 

can be derived from our general results. 
The principal tool used in our proof is the Hardy-Littlewood maximal funct.ion. 

The Hardy-Littlewood Maximal Theorem gives bounds on the average vallie of a 
function and this result is used in the differentiation theorem. 

If f E Lloc(Rn), x ERn and r > 0, we set 

,1rf(x) r fdm/m(S(x, r)), 
is(x,r) 

the average value of f over S(x,r), and Mf(x) supAr If I (x). Mf is called the 
r>O 

Hardy-Littlewood maximal function. 

Proposition 2 M fis measurable. [In fact, M f is lower semi-continuous.} 

Proof: We show E = {x : M f( x) 'S a} is closed for every a > O. Suppose Xk E E 
and Xk --; x. Let Ak be the symmetric difference S(Xk' r)ll.S(x, r) and fk CAJ. 

Since n Ak 0, fk --t 0 and Ifkl 'S If I so by the OCT JRn Ifkl dm --t O. Since 
k=l 

S(x,r) C Ak u S(Xk' r), 

,1r If I (x) ~ IAk If I dm/m(S(x, r») + IS(""r) If I dm/m(S(xk' r)) 
~ IRn Ifkl dm/m(S(x, r)) + a. 

Hence, AT If I (x) ~ a and Mf(x) ~ aj i.e., x E E. 

Theorem 3 (Maximal Theorem) There exists a constant C > 0, depending only 
on n, such that f01' all fELl and a> 0, mix : Mf(x) > a} 'S (C/a) JRn If I dm. 

Proof: Let E. {x: Af f( x) > a}. For each x E E. choose r x > 0 such thaL 
AT. If I (x) > a. The cubes {S(x, rx) : x E Ea} cover Ea so if c < m(Ea), by Lemma 
1 there exist Xl, ... ,Xk E E. such that the cubes {S) S(x),rx,): j = I, ... ,l:} a,re 

pairwise disjoint and 

Since c < m(E.) is arbitrary, the desired inequality follows. 
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Theorem 4 If f E LloARn), then lim Arf(x) = f(x) for m-almost all x ERn. 
r-O 

Proof: It suffices to show Arf(x) f(x) for almost all x in the cube S(O,N) 
for arbitrary N. For x in the cube and l' < 1, the values of Arf only depend on the 
values of fin S(O,N + 1) so we may assume that f E Ll(Rn). Let c> 0 and pick 
a continuous function with compact support 9 on Rn such that Ian If gl dm < t' 

[3.5.6]. Since 9 is uniformly continuous, for every x E Rn and 5 > 0 there exists l' > 0 
such that Ig(y) - g(x)1 < 5 when y E S(x,1') so 

IArg(x) - g(x)1 = If (g(y) g(x))dyl /m(S(x,1')) < 5. 
lS(x,r) 

Hence, lim Arg(x) = g(x) and 
r_O 

f(x)1 = lim IAr(J - g)(x) + (Arg(x) - g(x)) + (g(x) 
r_O 

f(x))1 

~ AI(J g)(x) + Ig fl (x). 

Let En {x: lim IATf(x) - f(x)1 > a} and Fa {x: If - gl (x) > a}. Then 
r-a 

En C Fa/2 U {x : M(J - g)(x) > a/2}. But ( > IFa If - gl dm 2: am(Fa) so by the 
Maximal Theorem, 

21: 2C 
g)(x) > a/2} ~ - + 

a a 

Hence, m(Ea) 0 for all a > 0, and the result follows. 
We now show that Theorem 4 can be improved by moving the absolute value in 

the conclusion, 

lim If fdm/m(S(x,r)) - f(X)1 = lim 1 f (J - f(x))dm/m(S(x, 1'))1 0, 
T-O lS(x,r) r-O lS(x,r) 

inside the integral sign. A point x is called a Lebesgue point of f if 

lim f If - f(x)ldm/rn(S(x,r)) = 0 
T-als(x,r) 

and the collection of all Lebesgue points of f is called the Lebesgue set of f. 

Theorem 5 If f E Ltoc(R n), then almost every point of Rn is a Lebesgue point of f. 

Proof: By Theorem 4, for every q E Q there exists an rn-null set Zq such that 

for x E Z~. Set Z 

P E Q with If(x) 

lim f If(y) - ql dy/rn(S(x, r)) = If(x) - ql 
r-als(x,T) 

U Zq. Then rn(Z) 
qEQ 

pi < (;.. Since 

o and if x rf- Z for any E > 0, there exists 

If(y) - f(x)1 ~ If(y) pi + e, 
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lim r If(y) f(x)/dy/m(S(x,r»::::lf(x)-pl+t<2E 
T~O is(er,,) 

so 

lim r If(y) - f(x)1 dy/m(S(x,r)) = 0 for x 1c z. 
,~O is(x,,) 

Next we show that the limit in Theorem 5 above exists when more genera.l sets 
than cubes are considered. These results are particularly useful in R where lltey yield 
differentiation results. 

Definition 6 Lei x ERn. A family of Borel sets, {E, : r > OJ, shrinks regularly 10 

x if E, c S( x, r) for every r > 0 and there exists a > 0 (independent of r) such that 
m( E,) :::: am( Se x, r» {x need not belong to ET }. 

Example 7 In R, the families ([x -r, x) . r > OJ, {[x, x+r) : r > O} shrink regularly 
to x [with a = 2]. In Rn, if E, {y: IIx yll < r}, then {ET } shrinks rcguliuly to 
x. 

For an example of a family of rectangles in R2 whose intersectioll is {x} but which 
do not. shrink regularly t.o x see Exercise 1. 

Theorem 8 Let f E LlocCRn). If x is in the Lebesgue set of f and {I~T : r > O} 
shrinks regularly to x I then 

lim (1",) r If(y)-f(x)ldy=O. 
1'_0 m /'.;1' jEr 

Hence, 

lim (IE) r f(y)dy = f(x). 
1'-0 rn· T jBr 

In particular, this holds for almost all x ERn. 

Proof: Let a ~s in Definition 6. Then 

;:;,(k,)JE,lf(y)-f(x)ldy:::: Js(x.T)lf(y)-fex)ldy 
(1.1 ) 

~T----rrJS(X.T) If(y) f(x)1 dy -+ 0 

by Theorem 5. The last two statements follow from (1) and Theorem 5. 
From Theorem 8 and Example 7 we obtain a version of the FTC in R. Let 

f : [a, b]-+ R be integrable and let F(x) = J: fdm be the indefinit.e integra.l of f. 

Theorem 9 (FTC) Fis differentiable at every Lebesgue point x of f with F'(x) = 
fex). In particular, this holds a.e. in [a,b]. 
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Finally, we consider the differentiation of arbitrary regular Borel measures on Rn 
[The regularity assumption is redundant (2.7.6); we make this assumption for the 
reader who has skipped §2. 7. J Let v be a regular Borel measure on R n. We say 
that II is differentiable at x if lim II(S(X, r))fm(S(x, r)) exists; the value of this limit 

r .... O 
is denoted by Dv(x) and is called the derivative of II at x. If v is an indefinite 
integral of a locally integrable function, this agrees with our previous definition of the 
derivative. 

Lemma 10 If II is a regular Borel measure on Rn and v(A) 0, then Dv(x) = 0 
for almost all x E A. 

Proof: For 6 > 0 let As { x E A : ~i.To;,\~\;~)l) > 6}. It suffices to show that 

m(As) = 0 for every such 6. Let f > O. By regularity there is an open V :J A such 
that v(V) < (. For each x E As there is an open cube with center at x, S", C V, 
such that II(S,,) > m(S",)6. By Lemma 1 if U U Sx and c < m(U), there exist 

xEA. 

xl.' .. ,Xk E As such that SXl' ... ,Sx~ are pairwise disjoint with 

k 
C < 3n L.: m(S.,;) 

1=1 

:::: (3n /6)v(V) < (3n j6)c 

Therefore, m(U) :::: (3"/6)f and since As C U and f > 0 is arbitrary, m(As) O. 
A signed Borel measure II is said to be regular if jill is regular. 

Theorem 11 Let v be a regular signed Borel measure on Rn and v Va + Vs be its 
Lebesgue Decomposition with respect to m with f = ~, the Radon-Nikodym derivative 
of Va with respect to m. Then v is differentiable a.e. with Dv = f a.e. Furthermore, 
for almost all x, limll(Er)/m(Er) = f(x) whenever the family {Er : r > O} shrinks 

r-'O 
regularly to x. 

Proof: By the Jordan Decomposition we may assume that v is a measure. The 
first part of the Theorem follows from Theorem 4 and Lemma 10. The last statement 
follows from Theorem 8 and Exercise 2. 

Exercise 1. Let Er = [-r,rJ x [_r2 ,r2
]. For r:::: 1, show Er C S(O,r), nr>oEr = 

{(O,O)}, but {Er: r > O} doesn't shrink regularly to (0,0). 

Exercise 2. Let v be a Borel measure on Rn and v(A) = O. Show that for almost all 
x E A, limv(Er)jm(Er) = 0 when {Er: r > O} shrinks regularly to x [Lemma IOJ. 

r~O 

Exercise 3. Show Arf(x) is continuous in T. 

Exercise 4. Let f : [a, b] -+ R be integrable and F( x) = J: f dm. If f is continuous 
at x, show F'(x) = f(x). 
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4.2 Differentiation of Monotone Functions 

We use the results of the previous section to establish a result of Lebesgue on the 
almost everywhere differentiability of a monotone function. Again all measurability 
statements refer to Lebesgue measure. 

Let f : R ---+ R be monotone [assume for definiteness that f 1]. Then f is not 
continuous at x if and only if f(x+) - f(x-) > 0, i.e., if and only if f has a jump 
discontinuity at x. If x is a discontinuity of f, we may choose a rational T'x satisfying 
f(x-) < rx < f(x+) and obtain a 1-1 mapping x ---+ T';c from the set of discolltinuiLies 
of f into Q. This shows that thc set of points of discontinuity of a monotone function 
is countable. Hence, a monotone function has points of continuity in evcry open 
interval 

We first consider the case of left continuous functions. Such functions 
induce Lebesgue·Sticltjcs measures and Theorem 4.1.11 can be used to prove their 
a.e. differentiability. 

Theorem 1 Let f : R ---+ R be 1 and left continuous. Then f is diJJcr-nttiablc a.c. 
with fl DJlj a.e. 

Proof: Let III be thc LebesgueSticltjes mcasure induced by f· Then Dllj exists 
a.e. [4.1.11]. The families {[x h,x): h > O} and ([x,x+h): h > O} shrink 
to x [Example 4.1. 7] so the limits 

lim Jl![x h, x)/h lim 
h~O+ h~O+ 

and 

exist for almost all x by Theorem 4.1.11. Thus, f'(x) exists for almost all x and 
f' DJlJ a.e. 

We now remove the left continuity assumption from Theorem L 
Let f : R ---+ R be 1- Define f. : R -> R by f.(x) = J(x-) = lim J(y). 

y-x-

Then f. :::; J, f. T and f. is left continuous [for each x there exists Xk T x such 
that f is continuous at Xk so f(x-) = limJ(xd J.(x) limf.(xk)]. Similarly, 
f. (x+) f. (x) = f(x+) f(x-) so f and f. have the sa.me points of continuity. 

Lemma 2 If f. is (iifferent.iable at x! then f is differentiable at x with f; (x) J' (x). 

Proof: Let m = f;(x). Note f(x) = J.(x) since f. is continuous at x. Let 
f. > O. Choose 6 > 0 such that m - ( < (f.(y) f.(x))/(y - x) < m + e when 
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o < IY - xl < 6. Fix Y with 0 < Iy - xl < 6 and choose a sequence {yd such that 
Yk 1 y with 0 < IYk xl < 6 and f continuous at each Yk. Then 

m t < (J.(y) f(x))/(y - x) ~ (J(y) - f(x))/(y - x) 

~ (J(y+) - f(x))/(y - x) lim(J.(Yk) - f.(X»)/(Yk - x) ~ m + t 
so 

1(J(y) f(x))/(y x) - ml ~ t 

when 0 < Iy - xl < 6. Hence, f'(x) = m. 

Theorem 3 (Lebesgue) If f: R -4 R is 1, then f' exists a.c. 

Proof: Lemma 2 and Theorem 1. 
There are proofs of Lebesgue's Theorem which do not use measure theory. See 

[RN] L2 for a proof due to F. Riesz. 
This result cannot be improved to read that f' exists except for a countable set 

of points. Indeed, we have 

Proposition 4 If E C [a, b] has measure 0, there is a continuous increasing fun~tion 
f : [a, b] ~t R such that f'(x) = 00 for every x E E. 

Proof: For each kEN choose a bounded open set Gk => E with m(Gk ) < 1/2k. 
Set fk(X) = m(Gk n [a, x]). Then fk is continuous, increasing and fk ~ 1/2k on [a,b]. 

If f f fk' then f is continuous, non-negative and increasing. If x E E and h > 0 
k=! 

is sufficiently small, the interval [x, x + h]lies in Gk so for snch h, fk(x + h) - fk(X) = 
m(x,x + h] h. Thus, (fk(X + h) f(x»/h 1 for small h > O. For every N if 
h > 0 is sufficiently small, 

N 

(f(x + h) - f(x»/h :2: "L,(fk(X + h) - fk(X»/h = N. 
k=! 

Hence, f'(x) 00. 

Notation: If I is an interval in Rand f : 1--> R is differentiable a.e. in I, we denote 
by j the function defined on I by j(t) f'(t) if f'(t) exists and j(t) = 0 otherwise. 

Concerning the integrability of the "derivative" of a monotone function, we have 

• b • 
Theorem 5 If f ; [a, b] -. R is increasing, then f is integrable and fa f ~ f( b) -
f(a). I 
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Proof: Extend f to [b, (0) by setting f{t) feb) for t 
gk(t) (J(t + l/k) f(t))/(l/k) for a ~t ~ b. Note gk -> 

Fatou's Theorem, 

f: gkdm = limU: kf(t + l/k)dt - f: kf(t)dt) 

l· (k fb+I lk fd k fab fdm) = ll'm(k fbb+l/k f'lm 1m a+Ilk m), JI <. 

b. For each k set 
a.e. and gk ::::: O. By 

k J~"+I/k fdm) 

lim(J(b) - k f:+I lk fdm) = feb) -limk f:+ 1
/

k fdm ~ feb) f(a). 

Strict inequality in Theorem 5 can hold. 

= Example 6 Let K be the Cantor set in [0,1] and let [0,1]\1< = U 1;: as ill 
n-;::;:::O 

Example 2.5.7. Define f(t) for t E 1;: [make a sketch]. Then f is increasing 
and continuous on J{c and the range of f is dense in [0,1] so f can be extended to 
a continuous function, f, on [0,1] [f(x) inf{f(t): t ~ x, t E j{C}]. Obviously, 
f'(t) = 0 for t EKe so f' 0 a.e. But, f~ i 0 < fell f(O) = J. 

The function f constructed above is called the Cantor function. 

Remark 7 Increasing functions f with the property that f' 0 a.e. arc called 
singular fllnctions. There are examples of strictly increasing singular functions; see 
[Fre], [RN] p. 44-49, or [HS] p. 278-282. For two entertaining articles on singular 
functions see [Cat] and [Za]. 

We address the question of when equality holds in Theorem 5 of section 4J1. 

We next present an interesting result on the termwise differentiation of a series 
due to Fubini. 

Lemma 8 Let fk : [a, b] -+ R be increasing and assume 

10. Then f ik converges a.e. 
k=l 

Proof: Since 10 is also increasing, II. exists a.e. for all k ::::: O. ][ E {t : IH t) 
exists for all k ::::: OJ, then m(EC) = 0 and 0 ~ Ik(t) < 00 for tEE, k ::::: O. Let 

Sn = t ik. Since (fo sn) r for n ::::: 1, I~ ::::: s~ on E which implies that lim s;, exist s 
k=l n 

on E [since s~+l ::::: s~l. That is, ik converges a.e. 

Theorem 9 (Fubini) Let!k; [a, b] -> R be increasing and assume 

pointwise to 10. Then io = fI" a.e. 
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Proof: The series jl< converges a.e. by Lemma 8. By replacing fk by fk - fk( a) 

if necessary, we may assume that fl< 2:: O. It suffices to show that there exists a 

subsequence {s".} of 51< Ii such that 8". --t j a.e. since 8n ~ 8n +1. For each 

k there exists nk with 0 ~ fo(b) 5 n .(b) < 1/2k where we may assume nk < nk+I' 
Since (fo s".) r, for each t E [a, b], 

Therefore, the series '~nk) converges uniformly on [a, bl. Since (fo - 5".) r, it 

follows from Lemma 8 that .~".) converges a.e. so 8nk --t j a.e. 

Dini Derivates: 
In the calculus we learn that a function f : [a, b] --t R which has a non-negative 

derivative in [a, bl is [this follows from the Mean Value Theorem]. We 
consider a strengthening of this result. The material which follows is used only in 
section 4.3 and can be skipped by the reader who does not wish to go through this 
section. 

Let I [a, bl and f : I R. The Dini derivates of f at x E I are defined to be 

d+f(x) f(x))/{t x), 

d+f(x) - f(x))/(t x), 

d-f(x) - f(x))/{t - x), 

d_f(x) (f(t) - f(x))/(t - x). 

The upper (lower) derivative of f at x is defined to be 

(I2J(x) limt_x(f(t) f(x))/(t - x)). 

[See Exercise 4 for the definitions.] 
Thus, f is differentiable at x if and only if all four Dini derivates of f at x are 

equal and finite if and only if the upper and lower derivatives are equal and finite. The 
derivative is then the common value. Some of the elementary properties of derivates 
are given in Exercise 6. 

Proposition 10 Let f : I R be continuous. If c > (f(b) - f(a))/(b - a), then 
at uncountably many points x of (a,b) we have d+f(x) ~ c. [SimilaT"iy, if (f(b) -
f(a))/(b - a) > c, d- f(x} 2:: c.] 

Proof: Set k c( b a) and consider the function 

g(x) f(x) f(a) k(x a)/(b a). 
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Then g(a) = 0 and 
g(b)=f(b) f(a) k<O. 

Let s be such that 0 = g(a) > s > g(b). Consider the set E {t E [a,b]: get) 2: s}. 
Since 9 is continuous on [a, b], this set is closed, and, therefore, compact. Hence, if 
t. supE, by continuityofg, g(t.) = s, and sinceg(b) < s, t. < b. Sinceg(ts+h) < s 
for sufficiently small h > 0, d+g(t.) SO so 

d+ J(t.) = d+g(t.) + kJ(b a) S kJ(b a) c 

[Exercise 6]. Different s's generate different t.'s and there are uncountable many 
s's between 0 and g(b) so there are uncountably many points t E (a, b) such that 
d+ J(t) S c. 

This result is a substitute for the :VIean Value Theorem for non-differentiable 
functions. 

Theorem 11 IJ J is continuous and one Dini derivate is non-negative except perhaps 
for a countable number' oj points in [a, b], then J is inc1·easing. 

Proof: Suppose d+ J(t) 2: 0 except possibly for count ably many points t in [a, b] 
[d+J(t) 2: 0 implies this and the case d- J(t) 2: 0 is similar]. If J is not increasing, 
there exist x < y such that J(x) > fey). Use Proposition 10 with 

(f(y) - J(x)J(y x) < c < 0 

on [x, yj to obtain that d+ J(t) < 0 at uncountably many points in [x, yj. This con­
tradiction establishes the result. 

This result obviously covers the usual calculus test for llH.H:;d.Dlll1'. functions. 
More information on Dini derivates can be found in [Boa]. 

Exercise 1. Show that if J : R --> R is monotone, J is measurable. 

Exercise 2. Let D {td be any countable subset of R. Show there exists an 
function J whose discontinuities are exactly D. [Hint: Choose ak > 0 such 

ak < 00. Define !k(t) = 0 if t < tk and !k(t) = ak if t 2: tk. Put J f Jk 
k=! 

J is continuous in DC and has jump ak at tk'] 

Exercise 3. Show that a continuous, nowhere differentiable function is not monotone 
on any non-degenerate interval. 

Exercise 4. Let J; [a, b] I --> R and x E I. The limit superior of J at x, (t), 
is defined by 

limJ(t) = infsup{J(t): t E 1,0 < It - xl < o:}. 
i--x £>0 
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Define limit inferior, lim I (t), and establish the analogues of the statements in Exer-
t_r 

cises 1.2.1 and 1.2.10. Define one-sided such limits. 

Exercise 5. Let I(t) = tsin(l/t) if t -# 0 and 1(0) O. Compute the four Dini 
derivates of I at O. Now construct a function all of whose Dini derivates are not equal 
at O. 

Exercise 6. Show !lJ(x)+dg(x) ::; 4(1 + g)(x) (dl(x) +dg(x) ;::: d(l +g)(x)), where 
4 (d) is any lower (upper) derivate. Show that if f'(x) exists, then d(l + g)(x) = 
f'(x) + dg(x), 4(1 + g)(x) f'(x) + dg(x). 

Exercise T. If I i, show any derivate is ;::: O. 

Exercise 8. If I assumes a local maximum at x, show d+ I(x) ::; 0 and d_/(x) ;::: O. 

Exercise 9. If max{ D I( x), D I(x)} < 00 , show I is continuous at x. 

Exercise 10. Show Theorem 5 can be improved to 

Exercise 11. If I in Theorem 5 is not continuous, show strict inequality holds. 
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4.3 Integrating Derivatives 

In this section we consider the other half of the Fundamental Theorem of Calculus 
(FTC), the integration of derivatives. We begin by showing that the most general (and 
most desirable!) form of the FTC does not hold for the Lebesgue integral by giving 
an example of a derivative which is not Lebesgue integrable. Again all measurability 
statements refer to Lebesgue measure. 

Example 1 Let f( t) t2 cos( 1r /t 2
) for 0 < t :::; 1 and f(O) = O. Then f is differcIl' 

t.iable on [0,1] with 

for 0 < t :::; 1 and 1'(0) = O. For 0 < a < b < 1, I' is bounded on [a, b] and, therefore, 
is (Riemann) integrable with 

If we set bk 1/V2k, ak j27(4k + 1), then I:: f'dm 1/(2k). The intervals 

{[ak,bk]} are pairwise disjoint so Ii Il'ldm ~ I:: 1f'ldm ~ f 1/(2k) 00. 
k=1 

Hence, f' is not integrable over [0,1]. 

We establish the most general form of the FTC for the Lebesgue integral. 

Lemma 2 Let f : [a,b] -> R. Suppose all Dini derivates are non-negative a.c. m 
[a, b] and that no Dini derivale is -00. Then f is inereasing. 

Proof: Let E be the set of points where some derivate is negative. By 4.2,4 there 
exists an increasing function g : [a, b] -> R such that g'(X) 00 for every x E E. Let, 
c > 0 and set h = f + Eg. At all points of [a, bj\E all derivat.es of h arc non-nC'gative 
[Exercises 4.2.6 and 4.2.7J. The same holds al. points of E since gl( x) = = for 1; E }; 

and the derival.es of f at these points are not -00. Thus, by 4.2.11, hi. lIenee, jf 
x < y, f(x) + tg(x) :::; fey) + tg(y), and letting f -> 0 gives f(x) :::; fey)· 

Theorem 3 (Fundamental Theorem of Calculus) Let f : [a, b] -t R be d~ffer-
entiable on [a, b]. If f' is Lebesgue integrable over b], then 

l J'dm = f(b) - f(a). 
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Proof: Definegk(t) f'(t)iff'(t):::: k and gk(t) = kiff'(t) > k. Then 19k1:::: 1f'1 
and 9k -t I' pointwise on [a, b]. Set 'k(t) f(t) J: gkdm.. We claim that 'k T. First, 
observe that 'k is differentiable a.e. with r~ I' - gk ::::: 0 a.e. [4.1.9]. Since gk :::: k 
on [a, b], J:+h 9kdm./ h :::: k for x E [a, b], h sufficiently small. Thus, 

(,,+h 
('k(x+h) rk(x))/h (f(x+h) J(x))/h- Jx gkdm./h::::: (f(x+h)-J(x))/h-k 

so no derivate of 'k is -00. By Lemma 2, rk T. In particular, rk(b) ::::: rk(a) or 
f(b) f(a)::::: J: gkdm.. By the DCT, limJ: gkdm. J: I'dm so f(b)- f(a) ::::: J: I'dm.. 

Replacing f by the reverse inequality. 
Of course, the annoying feature of Theorem 3 is the need for the hypothesis that 

I' is Lebesgue integrable. [Recall that the Riemann integral suffers this same defect.] 
Example 1 shows that this assumption is necessary. It would be desirable to have 
a theory of integration for which the FTC holds in full generality, i.e., a theory for 
which all derivatives are and the formula in the FTC holds. Two such 
theories were developed by Perron and Denjoy [see [Pel for a description of these 
integrals]. Lately, a very integral which is but a slight variant of the Riemann 
integral, called the gauge integral, has been given independently by Kurzweil and 
Henstock ([Ku], [He]) for which the FTC holds in full generality [see [DeS] or [Me] 
for a description of the integral]. 

The statement in Theorem 3 cannot be improved to "I' exists a.e.". See the Cantor 
function in 4.2.6. However, the statement can be improved to "I' exists except for a 
countable number of [Co] 6.3.10, [liS], p. 299, [Wall. 
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4.4 Absolutely Continuous Functions 

In this section we consider a form of the FTC in which the functions are only dif­
ferentiable a.e. [again all measurability statements refer to Lebesgue measure]. In 
particular, for increasing functions we are asking when equality holds for I.be inequal­
ity in Theorem 4.2.5. Recall that if I : [a, b]---> R is different.iable a.e., we denote by 
j the function jet) f'(t) when f'(t) exists and jet) = 0 otherwise. 

Suppose I : [a, b] ---> R is increasing and f( x) - f( a) = f: jdm for a <::: x <::: b, i.e., 
equality in Theorem 4.2.5 for all a <::: x <::: b. Since lim fEjdm = 0 [3.2.17], for 

m(E)-O 

every f > 0 there exists 6 > 0 such that whenever {(ai, bi)} 7=1 is a pairwise disjoint 

sequence of subintervals of [a, b] with f: (bi ail < 6, then 
i=l 

I
n bin ~ 1,' jdm = ~ If(b.) - l(ai)1 < E. 

Functions which satisfy this condition are called absolutely continuous; we give the 
formal definition. 

Definition 1 Let f : [a, b] -, R. Then f is absolutely continuous if for every ( > 0 
there exists 6 > ° such that whenever {(ai, b.)} 7=1 is a pairwise disjoint sequence of 

open subintervals of [a, b] with a;) < 6, then 

If(b;) - f(a,)1 < L 

Example 2 The function f : [a, b] -> R satisfies a Lipschitz condition if there exists 
L> 0 such that If(x) f(y)1 <::: Llx-yl for x, y E [a,b]. Such a function is 
obviously absolutely continuous. [The converse is false; see Exercise 7.] For examples 
of functions which satisfy a Lipschitz condition, see Exercise 1. 

Proposition 3 Lei f : [a, b] ....... R be absolutely continuous. Then (i) f is 
continuous and (ii) f is bounded variation. 

Proof: (i) is clear. For (ii), let c = 1 and 6 be as in Definition 1. Partition [a, b] by 
P = {a Xo < Xl < ... < Xn b}, where Xi+l - Xi < O. Then Var(f : [x;, Xi+l]) <::: 1 
for i 0, ... , n 1. Hence, Var(f : [a, bJ) ::; n. 

We show below that the converses of (i) and (ii) are false [see Examples 5 and 9]. 

Corollary 4 If f : [a, b] ---> R is absolutely continuous, then f' exists a.e. and j is 
integrable. 
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Proof: By Proposition 3 and Theorem 8 of Appendix Al, f is the difference of 
two increasing functions, so the result follows from Theorem 4.2.3. 

Example 5 The function f in Example 4.3.1 is uniformly continuous but not abso~ 
lutely continuous by Corollary 4. 

Algebraic properties of absolutely continuous functions are given in Exercises 2-6. 
\Ve use Lebesgue-Stieltjes measures to describe the relationship between abso~ 

lutely continuous set functions and absolutely continuous functions on intervals in 
R. 

Let f : [a, b] ..... R be left continuous and have bounded variation. Then f = 9 h, 
where 9 and h are left continuous and increasing [Appendix AlJ. Extend f (g and 
h) to R by setting f(t) f(b) [g(t) g(b), h(tl h(b)] for t > band f(t) f(a) 
[get) g(a), h(t) h(al] for t < a. Then 9 and h are bounded, left continuous 
and increasing and, therefore, induce finite Lebesgue-Stieltjes measures lig and lih. 
lIence, lij lig lih is a finite, signed measure; we call lij the Lebesgue-Stieltjes 
signed measur'c induced by f. Note lij[a,p) = f(p) - f(a) for a:::; {J. 

Theorem 6 Ii j « m if and only if f is absolutely continuous. 

Proof: ¢=: Let A C (a, b) have m-measure O. Let E > 0 and let 5 > 0 be as 
in Definition 1. There exists a pairwise disjoint sequence of open intervals in (a, b), 

{(ai, bi)}, such that U (ai, bi ) :> A and feb. ail < 5 [2.5.3]. For each n 
i=l i=l 

n 

If(b;) - f(ai)1 I: 11i/[ai,bi)1 < E 

i=1 

so by Exer. 2.6.6 

I~JlJ[ai,bi)! = IliJ(,9(a;,b;))!:::; E. 

Hence, liJ(A) 0 and IliJI (A) = 0 by 2.2.1.7. 
=>: Note lif[a,{J) liJ(a,{J) for a < (J. Since liJ is finite, for every E > 0 there 

exists 8 > 0 such that meA) < 8 implies IliJI(A) < t [3.12.5J. Suppose {(ai,bi)}7=1 is 

a pairwise disjoint sequence from [a,b] with E(b; ail < 8. Let 
;=1 

(j {i: f(bi) f(a;) ~ O} and r {i: feb;) f(a;) < OJ. 

Then 

I: If(b.) - f(ai)1 < t 
iEu 

and 

so E If(b;) f(ai)1 < 2E. 
i::;l 
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Theorem 7 Let f : [a, b] -; R be differentiable a.e. Then f is absolutely contimwus 
if and only if j is integrable over [a, b] and f(x) - f(a) f: jdm for a'::: 3; '::: b. 

Proof: =}: By Theorem 6 /ll «m, and by Theorems 4.1.11 and 4.1.9 

a.e. Hence, 111 [a, x) = f(x) - f(a) f: jdm. 
{=: 3.2.17. 

Remark 8 Theorem 7 is sometimes referred to as the FTC for the Lebesgue integra.1-
Note that Theorem 7 gives necessary and sufficient conditions for equality to hold in 
Theorem 4.2.5. 

Example 9 The Cantor function [4.2.6] is continuous, increasing, and hence bounded 
variation, but is not absolutely continuous by Theorem 7. 

A function f : [a, b] -; R of bounded variation which is such that f' 0 a.c. 
is said to be a singular function. The Cantur function supplics all cxaillpic ur a 
non-constant singular function. 

Theorem 10 Let f E BV[a, b] be lcft continuous. Then f is sin.gular if and only if 
/ll .L m. 

Proof: Let III = (Ill)a + (111). be the Lebesgue Decomposition of Ilf with rcspect 

to m. By Theorems 4.1.11 and 4.1.9 f' = Dllf a.e. The result now follows. 

Theorem 11 (Lebesgue Decomposition) Let f BV[a, b]. Then ther'c el:isl9, 
h : [a, b] -; R such that f 9 + h with 9 absolutely continuous and h singular. The 
decomposition is unique up to a constant. 

Proof: Set g(x) = f: jdm and h = f - g. Then 9 is absolutely cuntinuuus by 
Theorem 3.2.17 and h is singular by 4.1.9. Uniqueness follows from Exercise 8. 

Change of Variable 
We use the results above to establish a change of variable theorem for the Lebesgue 

integral. 

Theorem 12 Let 9 : [a, b] -; R be increasing and absolutely cont£nuOU8 and set 
a g(a), fJ == g(b). Let f : [a,fJ] -; R* be Lebesgue integrable over [a,j3]. Then 

(f 0 9) 9 is Lebesgue integrable over [a, b] and 

fb . rfl 
Ja f(g(t) 9 (t)dt = J" f(x)dx. ( 4.1) 
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Proof: First suppose f is the characteristic function of a half closed interval 
b,6) C [a,.8]. Let c = inf{t: get) = I}, d = sup{t : get) 6}. Then fog G[c,d) so 

J:fdm =6 I g(d) g(c)=ldgdm l(fog)ildm 

or (1) holds. It follows that (1) holds for S-simple functions, where S is the 
of all half-closed intervals. 

Now suppose f is Lebesgue integrable over [a, .81. By Mikusinski's Theorem (3.8.3) 

there exists a sequence of S-simple functions {J..} such that f It Ifkl dm < 00, 
k=! 

Mx) f(x) for any x for which f Ifk(x)1 < 00 and It fdm = f It fkdm. 
k=! k=! 

We show the sequence {(fk 0 g) il} satisfies the conditions of Exercise 3.8.1 for the 

function (f 0 g) il. First, 

by the part above. Suppose 

00 \Mg(t» il (t)\ < 00. 

k=! 

If il (l) 0, then 

fk(g(t)) il (t) = f(g(t) 9 (tl 

while if 9 (t) > 0, 
00 

L fk(g(t» il (t) = f(g(t» 9 (t). 
k=! 

By Exercise 3.8.1 (f 0 g) 9 is Lebesgue integrable and 

There are other useful conditions under which equation (1) holds. For example, 
(1) holds if f is bounded and integrable and 9 is absolutely continuous. See [St2j for 
a thorough discussion of the validity of (1). It should be pointed out that (1) does 
not hold in general even when f is integrable and 9 is absolutely continuous (Exer. 
13). 

For change of variable in Lebesgue integrals in Rn, see [Ru2J. 

Exercise 1. Show that if f : [a, hJ R has a bounded derivative, then f satisfies a 
Lipschitz condition. 



164 CHAPTER 4. DIFFERENTIATION AND INTEGRATION 

Exercise 2. Let f, 9 : [a, bl R be absolutely continuous. Show If I, f + g, fg are 
absolutely continuous. What about 11 f? Thus, if AC[a, b] denotes the space of all 
absolutely continuous functions, AC[a, b] is a vector subspace of BV[a, b]. 

Exercise 3. Show the composition of absolutely continuous functions needn't be 
absolutely continuous. 

Exercise 4. If f and 9 are absolutely continuous and 9 i, show fog is absolutely 
continuous. 

Exercise 5. If f satisfies a Lipschitz condition and 9 is absolutely continuous, show 
fog is absolutely continuous. 

Exercise 6. Is the uniform limit of absolutely continuous functions necessarily ab~ 
solutely continuous? 

Exercise 7. Show f(t) tl/3, O:S; < 1, is absolutely continuous but does uot 
satisfy a Lipschitz condition. 

Exercise 8. Let f : la, bJ --+ R be absolutely continuous. If f' 0 a.e., show f 
constant. 

Exercise 9. Let f, 9 be absolutely continuous on la, b]. Show 

{b (b . 
Ja JiJdm + Ja fgdm = f(b)g(b) - f(a)g(a). 

Exereise 10. If f [a, b] --+ R is absolutely continuous, show Var(f [a, b]) 

J: Ijldm. 

Exercise 11. Let f : [a, bJ --+ R. Show f is absolutely continuous if and only if 
x --+ Var(f : [a, xl) is absolutely continuous. 

Exercise 12. Let f : [a, b] --+ R. Show that f satisfies a Lipschitz condition as in 
Example 2 if and only if f is absolutely continuous and 1f'1 :s; L a.e. 

Exercise 13. Let f(x) l/vIx for x > 0 and frO) = 0, get) t2sin(Ilt) for t =f 0 
and g(O) O. Show f is integrable over [g(O), g( 11' /2)], 9 is absolutely continuous but 
(1) fails for [a, bl = [0,11' /2J. 



Chapter 5 

Introduction to Functional 
Analysis 

5.1 Normed Linear Spaces 

In part 6 of these notes we consider some of the classic spaces of functions, most 
of which are associated with either measures or integrable functions. We begin by 
establishing an abstract framework, essentially due to S. Banach ([Bl]), in which we 
can study these function spaces. 

Let X be a vector space over the field F of either real or complex numbers. A 
topology T on X is a vector topology or linear topology if the maps (x, y) -+ (x + y) 
from X x X into X and (t, x) -+ tx from F x X into X are continuous [with respect 
to the product topologies]. If T is a vector topology on X, the pair (X, T) is called a 
topological vector space (TVS) or X is called a TVS if the topology is understood. A 
(semi)- metric linear space is a TVS whose topology is given by a (semi-) metric. For 
an example of a semi-metric linear space, we have 

Example 1 Let p.. be a finite measure OIl a u-aIgebra 1: of subsets of S. 

Let LO(p..) be the space of all real-valued 1:-measurable functions; if m is Lebesgue 
measure on an interval I, we set LO(I)= LO(m). Then 

d(J,g) f If gl d 
is 1 + If - gl p.. 

defines a semi-metric on LO(p..) [3.6.8]. Since convergence in d is exactly convergence 
in p..-measure [3.6.9], LO(p..) is a (complete) semi-metric linear space under d. 

Most of the spaces which we consider are normed spaces, we use the semi-metric 
linear space in Example 1 and the one in Example 8 to illustrate some of the important 
properties of normed spaces. 

Definition 2 A norm on X is a function 1111 : X -+ R satisfying 

(i) IIxll ~ 0 for all x E X and Ilxll = 0 if and only if x = 01 
\ 
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(ii) Ilt:[11 = Itlllxli for all x X and t E F. 

(iii) Ilx + yl <::: Ilxll Ilyll for' all y E X [triangle 

If a funclion 1111 : X R 8(UI8Jtl~;" (ii), (iii) and 

(if) I!xll ?: 0 for all EX, 

then 1111 is called a semi-norm on X [noif: from (ii) that 11011 = OJ. 

We establish an important inequality associated with the triangle inequality. Let 
x, y E X. Theil Ilxli yll + Ilyll by (iii) so Ilxli -Ilyll <::: II:/: yll. By symmetry 
lIyll-llxli <::: Ily :rll Ilx yll by (ii). Hence, 

(iv) 11;[ - yll ?: 111·1'1 Ilylll· 

if 1111 is a (semi-) llorlIl Oll X, the pair (X, III) is called a 
[serni- 'I LS or 'I LS]; if the norm is understood, X is called a 

If X is a (semi-) then. y) 113: ...... yll defines a metric 011 X which 
is translation invariant in the sellse that d(x + z,y + z) = y) for .1', y, E X. 
We always assnrrw that a NLS is equipped with the topology indnced the 
(semi-) metric d. We now show that a (semi)- '1LS is a TV::;. 

Proposition 3 Let X be a scmi-NLS. Then 

(a) the map (t,.r) tx fl'Orn F X X X is continuous, 

(b) the map (x, y) --t :1: + y from X x x+ X is continuous, 

(e) the map x -+ Ilxll fr'OTf! X to R is continuous. 

Proof: (aJ: Let Itk fl> 0 and 

and (a) follows. 
(b) follows from thf' 

A semi-'1LS is said to he 
by the semi-norm, i.e., if every 
a Banach space or a B-8pace. vVe 
in terms of series. 

- [II -+ O. Then 

and (c) follows from (iv). 

if it is complete uudf'f t.he semi-metric induced 
sequence converges. A completf' '1LS is called 

an interest.ing characteri7,ation for completeness 

Let f Xk be a (formal) series in a semi-NLS X. The series Xk is said to 
k=! 

k 

('onl'e7~ge in X if the sequence of partial sums, bk = L x J ' converges in we write 
J=1 

x k = lim Sk for t he sum of t he series. The series is said to be absolutely 

in X if f Ilxkll < OC. 
k=J 
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Theorem 4 A semi-NLS X is complete if and only if eve7'y absolutely convergent 
series in X is convergent. 

Proof: =?: Let I: IIxkll < 00 and Sk = t Xi. If k > j, then by the triangle 
k=1 ;=1 

inequality 

so {sd is a Cauchy sequence and must converge to some point in X. 
{=: Let {xd be a Cauchy sequence in X. Pick a subsequence {xn.} satisfying 

Ilxnk+1 Xnk II < 1/2k. Since the series f: (X nk+1 - X n.) is absolutely convergent, it 
k=1 

converges to an element x E X so 

I 

and the subsequence {Ink} converges to x + xn ,. Since {Ik} is Cauchy, Ik --t I + X n !' 

We now give several examples of metric linear and norrned spaces. Most of the 
spaces which we consider are normed spaces, but we give two examples (Examples 1 
and 8) of metric linear spaces in order to illustrate some of the important properties 
of normed spaces. 

Example 5 If S =f. 0, let B(S) be the space of all bounded, real-valued functions 
defined on S. B( S) is a vector space when addition and scalar multiplication of 
functions is defined pointwise. B(S) also has a natural norm, called the sup-norm, 
defined by IIfll = sup{lf(t)1 : t E S} [Exercise 1]. B(S) is a B-space under this norm, 
for suppose that Ud is a Cauchy sequence in B(S). For t E S, Ifk(t) - fAt)1 :s: 
IIIk hll so Uk(t)} is a Cauchy sequence in R. Let f(t) limfk(t). We claim that 
f E B(8) and IIfk - fll --t O. Let E > O. There exists N such that k, j 2:: N implies 
Ilfk fjll < €. Then Ifk(t) fAt)1 < € for k, j 2:: Nand t E S. Letting j --t 00 gives 
l/k(t) f(t)l:s: E for k 2:: N, t E S so Ilfk fll:S: (for k 2:: N. Hence, fk - f E B(S) 
so f B(S) and Ik --t f with respect to the sup-norm. 

Example 6 Let S be a compact Hausdorff space and C(S) the space of all continuous 
functions on S. Then C(S) is a linear subspace of B(S). Since convergence in the 
sup-norm is exactly uniform convergence on S, C(S) is a closed subspace of B(S) 
and is, therefore, complete. 

Example 7 Let Ji be a measure on the O'-algebra, of subsets of S. As in §3.5 
let L1(Ji) be the vector space of all real-valued, Ji-integrable functions. Then IIflll 
Is If I dJi defines a semi-norm OIl P(Ji) which is complete [Riesz-Fischer Theorem]. 

If 8 = Nand Ji is counting measure on N, we set LI (Ji) £.1. Thus, pI consists 
of all sequences {t j} such that 

lI{tJJIII = L Itil < 00. 
j=1 
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We will consider other spaces of integrable functions in §6.1. 
The examples which we give now are sequence spaces; we give further examples 

of function spaces and study them in detail in later chapters. 

Example 8 Let s be the space of all real-valued (or complex-valued) sequences. 
Then s is a vector space under coordinate-wise addition and scalar multiplication. 
We define a metric, called the Frechet metric, by 

d({$j},{tJ)=LI.5j tjl/(1+ ISj tjl)2j. 
j=! 

It is easily checked that d is a translation invariant metric on .5 [Lpmma 3.6.7 gives 
the triangle inequality]. 

We first observe that convergence in the metric d is just coordinatewise con-
vergence. For suppose that x" = {xj}:1 and x {Xj} are sequences in s. If 

d( xk, x) -> 0, then lim" xj x j for each j since 

Conversely, suppose li£llxj = Xj for each j and let f > O. There exists N such that. 

f: 1/2i < (/2. There exists M such that k ::::: M implies 
j=N 

N-I 

L Ixj ~ x;1 < f/2. 
j=1 

Hence, if k ::::: M, then 

N-l 00 

d(x\x)::; L Ix7 - Xii + 1/2j < to. 
j=1 

It follows from this observation that S is complete under d [Exercise 2]. 

Example 9 Let [00 be the linear subspace of s which consists of the bounded se­
quences [so [00 = B(N)]. Then 

defines a norm on [00 called the sup-norm and fOO is a B-space under the sup-norm 
(Example 5). 

Example 10 c is the subspace of [00 which consists of the convergent sequences. 
We assume that c is equipped with the sup-norm. We can show that c is a B­
space by showing that it is a closed subspace of the complete space [eo. So suppose 
xl< = {xj}:1 is a sequence in c which converges to the point x { x j} E [00. Let 
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lirxj = £k for each k. Since Ilxk - xll
oo 
~ Ixj - Xjl for all j, lifIxj = Xj uniformly 

for j EN. Hence, 
I· I· k I· n I· I· k I· 1m Imx

J
· = Im"k = 1m Imx

J
. = ImxJ· k j k j k j 

so x E c. 

Example 11 Co is the subspace of c consisting of all the sequences which converge 
to o. We assume that Co is equipped with the sup-norm. 

As in Example 10, Co is a B-space [Exercise 3]. 

Example 12 Let Coo be the subspace of Co which consists of all sequences x = {Xj} 
which are eventually 0, i.e., there exists N (depending on x) such that x j = 0 for 
j > N. We assume that Coo is equipped with the sup-norm. We show that Coo is not 
complete. Let f.k be the sequence in Coo which has a 1 in the kth coordinate and 0 in 
the other coordinates. If 

k 

xk = L(1/j)e j
, 

j=1 

then {xk} is a Cauchy sequence in Coo which does not converge to a point in Coo. 

Coo is a very useful space for giving counterexamples to results involving complete­
ness. 

We will give further examples of sequence spaces in §6.1. 

Example 13 Consider Rn (or en). Rn has, of course, the usual Euclidean norm 

n 

II x l1 2 = II(xI, ... , xn )1I2 = L lxi, 
i=l 

but it also has other natural norms. For example, 

n 

Ilxlll = II(xI, ... , xn)111 = L IXil 
i=l 

or 

[We give a further family of norms on Rn in §6.1.] 

If 1111I and 11112 are two norms on a vector space X, 1111I and 11112 are equivalent 
if there exist a, b > 0 such that a 11111 ::::: 11112 ::::: b 11111. We show that all norms on 
Rn are equivalent so, in particular, the three norms given above in Example 13 are 
equivalent. 

Theorem 14 Any two norms on Rn are equivalent. 
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Theorem 14 Any two norms on Rn are equivalent. 

Proof: By Exercise 5, it suffices to show that any norm, 1111, on Rn is equivalent 
to the Euclidean norm, Illb. 

Let c, be the vector in Rn which has a 1 in the ith coordinate and 0 in the other 
coordinates. If x = (XI, ... ,xn ) ERn, then 

by the Cauchy-Schwarz inequality. 
Next, let S = {x : IIxll2 I} and define f : S R by f(x) = Ilxll. By the 

inequality above the identity (Rn,11112) -> (Rn, IIID is continuous and x -+ IIxll is 
continuous from (Rn, 1111) to R [Proposition 3] so f is continuous with respect to 11112' 
Since S is compact with respect to 11112' f attains its minimum on S, say at Xo. Note 
that f(xo} = Ilxoll = m > O. If x ERn, x =fi 0, then xl IIxll2 E S so 

That is, Ilxll 2 m Ilx112. 
For an example of two norms which are not equivalent, consider thc sup-norm, 

111100 on Coo and the norm, IIxll! = .f Ixd, where x {x;} [notc this is a finite sum]. 
1::=1 

If xi t t ei , then IIxilloo Iii -+ 0 while Ilxilil 1 [Exercise 6]. 
)=1 

An interesting consequence of Theorem 14 is 

Corollary 15 Any finite dimensional subspace of a NLS is closed. 

Proof: By Theorem 14 any finite dimensional subspace is complete 6]. 
In R n it is known that sets are compact if and only if they are closed and bounded. 

We now show that this condition characterizes finite dimensional NLS. For this we 
require a lemma of F. Riesz. 

Lemma 16 (Riesz) Let X be a NLS and Xo a proper, closed subspace of X. Then 
for every 0 < () < 1, there exists xe E X such that Ilxeli = 1 and IIx xell 2 ° for 
every x E Xo. 

Proof: Let Xl E X\Xo and set d = inf {llx XIII: x E Xo}. Since Xo is 
closed, d > O. There exists Xo E Xo such that IIxI xoll::S dlO since dlO > d. Set 
Xe (XI - xo)1 IIxI xoll· Then IIxeli = 1 and if x E Xc, Ilxo - XIII X + Xo E Xo so 

IIx xoll = Ilx - -:-:---'--;-;- + Xo 11- .,.,--1~ IIClixl - xoll x + xo) xIii IIXI - xoll -
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Example 17 In general, Xe cannot be chosen to be distance 1 from Xo although 
this is the case if Xo is finite dimensional; see Exercise 17. Consider C[O, 1] equipped 
with the sup-norm. Let X be the subspace of C[0,1] consisting of those functions 
x satisfying x(O) = 0 and Xo = {x EX: IJ x(t)dt = O}. Suppose there exists 
XI E X such that IIxIl1 1 and Ilx xIII ~ 1 for all X E Xo. For y E X\Xo, let 
e = IJ xI! Id y. Then XI - ey E Xo so 1 :s Ilxl - (Xl - cy)1I = leillyll which implies 

Now we can make IIJ yl as close to 1 as we please and still have lIyll = 1 [Yk(t) = tllk as 

k -+ 00 will work]. Thus, 1 :s lId XII. But, since IlxIIi = 1 and Xl (0) 0, lId XII < l. 

Theorem 18 Let X be a NLS and suppose that the unit ball B {x EX: Ilxll :s I} 
is compact. Then X is finite dimensional. 

Proof: Suppose X is not finite dimensional. Let 0 # Xl E B and set Xl = 
span{xd. Then Xl C X and XI is closed by Corollary 15. By Lemma 17, there 
exists X2 E B such that IIx2 - XIII ~ 1/2. Let X 2 = span{xl,x2}. Then X 2 is 
a proper, closed subspace of X so by Lemma 17 there exists X3 E B such that 
IIX3 x211 ~ 1/2, IIX3 - XIII ~ 1/2. Inductively, there exists a sequence {xd C B 
satisfying IIxi - Xjll ~ 1/2 for i # j. Hence, B is not sequentially compact. 

A subset B of a semi-NLS is bounded if sup{lIxll : X E B} < 00; this is equivalent 
to B being bounded in the semi-metric induced by the norm. From Theorems 14 and 
18, we obtain 

Corollary 19 Let X be a NLS. Then X is finite dimensional if and only if closed, 
bounded subsets of X are compact. 

The conclusion of Corollary 19 does not hold in a metric linear space [Exercise 
10j. 

Exercise 1. Show the sup-norm defined in Example 5 is actually a norm and con­
vergence in the sup-norm is exactly uniform convergence on S. 

Exercise 2. Show s is complete under the Frechet metric. 

Exercise 3. Show Co is a B-space under the sup norm. 

Exercise 4. Give an explicit example of a series in Coo which is absolutely convergent 
but not convergent. 

Exercise 5. Let IIlli (i = 1,2,3) be norms on a vector space X. If 111/1 is equivalent 
to 11112 and 11112 is equivalent to 11113' show 111/1 is equivalent to 11113· \ 
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Exercise 6. If 11111 and 11112 are equivalent norms, show they have the same convergent 
(Cauchy) sequences [generate the same topologies]. 

Exercise 7. Show that a subset B of a semi-NLS is bounded if and only if {xd c B 
and tk --t 0 implies tkxk --t O. 

Exercise 8. Show {e k : kEN} is a closed, bounded set in C= which is not compact. 

Exercise 9. A subset B of a metric linear space (TVS) is bounded if {xd c B, 
tk --t 0 implies tkxk --t 0 [see Exercise 7]. Show a compact subset is bounded. 

Exercise 10. Show that a subset B of s is bounded if and only if B is coordinatewise 
bounded. Show that a subset of s is compact if and only if it is closed and bounded. 
Hint: Use a diagonalization procedure. 

Exercise 11. What is the closure of coo in C=? 

Exercise 12. Show Coo, Co, c, CI are all separable. 

Exercise 13. Show C= is not separable. Hint: Consider all sequences of O's and 1 'so 

Exercise 14. If M is a linear subspace of a NLS X which has non-empty interior, 
show M = X. 

Exercise 15. If X is an infinite dimensional Banach space, show X has uncountable 
algebraic dimension. [Hint: If {xd c X, consider Fk = span{ XI, •.. ,xd and use 
the Baire Category Theorem.] Give an example of a NLS with countably infinite 
dimension. 

Exercise 16. Let {Xj} C X, a B-space. Show {Xj} is bounded if and only if L,tjXj 
converges for every {t j} E C1 . 

Exercise 17. Show that if Xo is finite dimensional in Lemma 16, then () can be taken 
to be equal to 1. 
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Exercise 18. Let cs be the sequence space consisting of all sequences x = {x il such 

that Xj converges. Show cs is a Banach space under the norm 

Exercise 19. Let X, Y be NLS. Show 

define equivalent norms on X x Y. 

Exercise 20. Let X be all lEe [0, 1 J such that I' E C [0, 1]. Show X is not 
complete with respect to the sup-norm but is complete with respect to the norm, 
11111 = sup {II (tll : 0 :s t :s I} + sup {II' (tll : 0 :s t :s I}. 
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5.2 Linear Mappings between Normed 
Linear Spaces 

In this section we consider the continuity of linear mappings between normed spaces. 
Let X and Y be semi-NLS and T : X -+ Y linear. 

Proposition 1 The following are equivalent: 

(i) T is uniformly continuous, 

(ii) T is continuous, 

(iii) T is continuous at 0, 

(iv) there exists lv! 2: 0 such that 

(*) IITxl1 ~ M Ilxll for all x EX. 

Proof: Clearly (il =;. (ii) =;. (iii). (iii) =;. (iv): If (*) fails, there exist Xk X sllch 
that IITxk11 > k211xkll for each k. If Vk = xk/k Ilxkli, then Yk -+ 0 while I TVkl1 > k so 
(iii) fails. 

(iv) =;. (i): If (> 0, put (j f/(M + 1). If Ilx - yll < (j, then 

IITx Tyll 111'(x- y)11 ~ M Ilx - yll < c 

The space of all continuous linear operators from X into Y is denoted by L(X, Y); 
L(X, Y) is a vector space under the operations of pointwise addition and scalar Illul· 
tiplication. If X =: Y, we write L(X,X). We define a semi-norm, called the 
operator norm, on L(X, Y) by sup{IITxll: IIxll ~ I}. Note that if T satisfies 
(*), then IITII ~ 1'.{ and 111'/1 is the infimum of all such numbers M satisfying C'l [n 
particular, we have 

IITllllxll for x E X 1) 

Proposition 2 (i) The operator norm is a semi-norm on L(X, Y). 

(ii) IITII = 0 if and only if IITxl1 0 for all x EX. 

(iii) If Y is a NLS, then L(X, Y) is a NLS undEr the operator norm. 

(iv) If Z is a semi-NLS, T E L(X, Y), S E L(Y, Z), then ST E L(X, Z) and 

!ISTII ~ IISIII/TII· 

Concerning completeness, we have 

Theorem 3 If Y is a complete NLS, then L(X, Y) is complete. 
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Proof: Suppose {Tk} is Cauchy with respect to the operator norm. If x E 
then 

(5.2) 

so {lkx} is Cauchy in Y. Let Tx lim Tkx. Then T: X -> Y is iinea.r. We show 
T E L( X, Y) and Tk -> T in the operator norm. Let I: > O. There exists N such that 
k, j ::: N implies 1111, lill < (. Let j -> 00 in (2) so IITkx Txll"::: E !Ixll for k ::: N 
and x E X. Hence, II, T E L(X, Y) with IITk - TIl ..::: E for k N so T E L(X, Y) 
and Tk ...... T in operator norm. 

We establish the converse of Theorem 3 in 5.6.1.7. 
If X is a metric linear space (TVS), a linear map from X into the scalar field 

is called a linear fu.nctional. The dual of X is the space of all continuous linear 
functionals on X and is denoted by ,i.e., X' = L(X,F). 

If x' is a linear functional on X, we often write x'(x) (x', x) for x E X. 
If X is a semi-NLS, it follows from Theorem 3 that X' is a B~space under the 

operator norm Ilx'll sup{l(x' , x)1 : Ilxll <;:; I}; this norm is called the dual n()rm or 
X'. 

If X and Yare semi-NLS, a map U: X -> Y is an isometry if IlUx - Uyll = 
Ilx - yll for x, y E X, i.e., if U preserves distances. If X and Yare NLS, t.hen X and 
Yare linw1'ly isometric if there is a linear isomet,ry from X onto Y; if X and Yare 
linearly isometric, it is customary to write X = Y. 

In later chapters we describe the duals of many classic function spaces. As an 
example, we now describe the dual of the sequence space Co. F. Riesz gave dcscript,ions 
of IIlany of the duals of classic function spaces so any result which describes the dual 
of a specific function space is often referred to as a "Riesz Represent.ation Theorem". 

Example 4 c~ and [I are linearly isometric, c~ [I. 

Let f E c~. Set Yk (1, ek) for kEN and set y = {yd. We claim that y E £1, If 

n 

Xn = :L(signYk)ek, 
k=1 

then 
n 

(1, Xn) = :L IYkl <;:; IIfllllXnlloo ..::: IIfll 
k=1 

00 

(J, x) :L Xk (1, ek) = XkYk 
k=1 

and 
00 

1(J,x}I"::: IIxll oo 

which implies Ilfll <;:; IlylI l · Hence, IIfll = Ilyill' 
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Thus, the map U which sends f --> Y is an isometry from c~ into f1 which is 

obviously linear. We show U is onto fl. If Y = {Yd E f1, (fy, x) = I: XkYk defines a 
k=l 

continuous linear functional fy on Co and U(fy) = Y so U is onto. 
We give a similar description of the dual of fl. 

Example 5 Let f E (fl)'. Set Yk = (f, ek) and Y = {yd. Then Y E foo with 

IIYlloo 'S Ilfll since l(f,ek)1 'S Ilfll· If x = {xd E fl, then x = I: Xkek so 
k=1 

k=1 k=1 

and If(x)1 'S II{Ydlloo Ilxll l · Hence Ilfll 'S II{ydIL", and Ilfll = II{Ydlloo' 

Thus, the map U which associates f E (fl)' with Y E foo is an isometry from (fl)' 
into foo which is obviously linear. Now U is actually onto f= since if Y = {yd E f oo

, 

(fy, x) = I: YkXk defines a continuous linear functional fy on fl with U(fy) = y. 
k=1 

Hence, (fl)' = f=. 
A more general version of this result is given in Theorem 6.2.4. 

Exercise 1. If X, Yare semi-NLS and T : X --> Y is linear, show T is continuous if 
and only if T carries bounded subsets of X into bounded subsets of Y. 

Exercise 2. Define R, L : fl --> fl (or f= --> f=) by 

R{tj} = {O, t l , t2, ... } 

L{tJ } = {t2,t3, ... } 

(right shift), 

(left shift). 

Show Rand L are continuous and compute IIRII, IITII. 

Exercise 3. Let XI be a dense linear subspace of the NLS X and let Y be a B­
space. If T : Xl --> Y is linear, continuous, show that T has a unique linear extension 
f' E L(X, Y) with IITII = 11f'11. In particular, X; = X' [equality here means linearly 
isometric]. 

Exercise 4. Describe the dual of Coo. Hint: Exercise 3 and Example 4. 

Exercise 5. Let X be a NLS. Show X and L(F, X) are linearly isometric. 

Exercise 6. Let X be a B-space and T E L(X). Define eT and show eT E L(X). If 
S, T E L(X) commute, show eT +S = eT eS. 
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Exercise 7. Show that Co and c are linearly homeomorphic. 

Exercise 8. Show that c' and fl are linearly isometric under the correspondence 
which associates with each y {y.} E fl the linear functional fy E c' defined by 

00 

(Ill) {x.}) = I: YI:XI:_I 
1:=1 

where Xn = limxk. 

Exercise 9. Show the linear functional L : c ~ R defined by L{ xd 
continuous and compute II LII. 

Exercise 10. Show that Sf and Coo are algebraically isomorphic under the map which 
associates with each Y {y.} E Coo the linear functional fy on s defined by 

Exercise 11. Define f : Coo -> R by f({xd) Xk. Show f is linear but not 

continuous. 

Exercise 12. Let {t,} E s. For {s;} E s, set T{s;} = {tiS;}. Find necessary and 
sufficient conditions on {t;} so that TEL (£1,£1) or T E L((,oo,£oo). Compute IITII. 

Exercise 13. Show that any linear map from Rn into a semi-NLS is continuous. 

Exercise 14. Describe the dual of Rn (including the dual norm) for each of the 

norms II 112' II III' II 1100' 

Exercise 15. let k : [0,1) x[O, 1) -> R be continuous. Show K f (s) l k(s, t)f (t) dt 

defines a continuous linear operator from C[O, 1] into C [0,1]. Show K carries bounded 
subsets of C [0, 1) into relatively compact subsets. (Hint: Arzela-Ascoli.) 

Exercise 16. Let a!; > 0, ak 1 0, a = {a!;}. Define a norm by Co by II{tdlia = 
sup {Itkakl : k}. Describe the dual of Co under II Iia and describe the dual norm of 

II lIa' 
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5.3 The Uniform Boundedness Principle 

In this section we establish one of the earliest abstract results in functional analysis, 
the Uniform Boundedness Principle (UBP), and one of its most important conse­
quences, the Banach-Steinhaus Theorem. The Uniform Boundedness Principle is 
one of the three basic abstract results in functional analysis, along with the Closed 
Graph/Open Mapping Theorems and the Hahn-Banach Theorem; these theorelTls will 
be discussed in later sections. 

Let X, Y be semi-NLS. 
The proof of the UBP which we give is based on a technique called a "gliding 

hump" or "sliding hump" argument. 

Theorem 1 (UBP) Let X be complete. If F c L(X, Y) is pointwise bou.nded on X 
[i.e., {Tx: T E F} is bounded for each x E Xj, then {IITII : T E F} is bounded. 

Proof: If the conclusion fails, there is a sequence Pi} c F satisfyillg 11'1;11 > i'22i 
for each i. Then for each i there exists Xi E X, Ilxill :S 1, such that II'Fixill > i'22'. For 
convenience of notation, set Si = 2-iTi and Zi = 2-ixi. Then Ilzill :S 2-', 118izi ll > i, 
lim SiZj = 0 for each i and lim SiZJ = 0 for each j by the pointwise bOllll(kdlleSS 

J ' 
assumption. Thus, the rows and columns of the matrix M = [S,Zj] converge to 0 so 

there is a subsequence {nil such that IISn,Zn,11 :s: 2-i- j for i f= j [see Lemma 2.8.1 

and its proof]. Then for each i, 

f IISn,Zn, II :s f Ti-j = Ti 
J=l J=l 
iti 

and IISn,zn.11 > ni, i.e., for each i the sequence {Sn.ZnJ~1 has a "hump" in the ith 

coordinate and the sum of the norms of the other elements in the sequence is much 
smaller than the "hump" and as i increases the "hump" slides to the right since {n J } 

is increasing. We now "gather" or "collect" the points {znJ which give rise to the 
(X) 

humps by setting Z = I: Zn ; note that this series converges in X since the series is 
j=l ' 

absolutely convergent and X is complete [5.l.4]. We now have 

IISn.ZII = II~ Sn.zn, 112: IISn.zn.11 - ~ II Sn.zn, 112: ni - Ti. 

iti 

But, since {Tiz} is bounded, {SiZ} = {2-iTiz} should converge to 0 contradicting the 
inequality above. 

Without some condition, such as completeness, on the domain space X the UBP 
can fail. 
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Example 2 Define" : Coo R by Ii( {t j}) = iti . Then fi is a continuous linear 
functional on Coo with 'lfd' = i, and the sequence {fi} is pointwise bounded on C-{lQ. 

There are versions of the UBP which hold without any hypothesis on the domain 
space. For a discussion of such results see [AS], [Sw1], or [Sw2j. 

We derive an important consequence of the UBP concerning the continuity of the 
pointwise limit of a sequence of continuous linear operators. 

Theorem 3 (Banach-Steinhaus) Let X be complete, Y a NLS and {Td C L(X, V). 
if lim Tkx Tx exists for each x EX! then T : X --t Y is linear and continno1LS. 

Proof: T is clearly linear. The sequence {lk} is pointwise bounded on X so by 
the UBP sup{ IITk II : k} M < 00. Thus, 

IITxll lim II TkX II :::: M IIxil for x EX 

so T E L(X, Y) with IITII :::: M, 

Again without some aS8umpt,ion on X, this result can fail. 

Example 4 Define It ; Coo --t R by M {tj}) = 

{tj} E Coo, 

t j . Each" is continuous and for 

fi({lJ}) --t I)i = f({lj}), 
j=1 

but f is not continuous (Exer. 5,2.11). 

We give an application of the Banach-Steinhaus Theorem to sequence spaces 
also Exercise 3]. A further application to Fourier series is given in Chapter 6.6. 

Proposition 5 Suppose the sequence {tj} is such that f tjSi converges for every 
j=l 

Proof: For each k define Jk E c~ = i 1 [5.2.4 J by h( {Sj} ) 

for {sil E Co. By Theorem 3, J E (Co)'. By Example 5.2.4 {tj} E i l (Co)'. 

For a discussion of the evolution of the UBP see [Sw1]. 
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Exercise 1. Let Fe L(X, Y). Show {1IT11 : T E F} is bounded if and only if F 
is uniformly bounded on bounded subsets of X if and only if F is equicontinuous at 
o if and only if F is equicontinuous on X. [F is equicontinuous at Xo E X if for 
every f > 0 there exists 8 > 0 such that Ilx - xoll < 8 implies IITx Txoll < f for all 
TEFl 

Exercise 2. In Theorem 3, show IITII :SlimllTkll < 00. 

Exercise 3. Suppose the sequence {tj} is such that f tjSj converges for every 
j=1 

Exercise 4. Let {T,d C L(X, Y) be equicontinuous and let Z be a dense linear 
subspace of X. Show that if Y is complete and limTkz exists for each z E Z, then 
lim11x Tx exists for each x E X and T E L(X, Y). 

Exercise 5. Let X, Y, Z be NLS with X a B-space. Let B : X x Y --> Z be a 
separately continuous bilinear map. Show B is jointly continuous [use Exer. 5.1.19]. 
Hint: Use the UBP to show there is a constant b such that IIB(x,Y)11 :s bllxilllYIi. 

Exercise 6. Give an example showing completeness cannot be dropped in Exercise 
5. 

Exercise 7. Use the Baire Category Theorem to prove the UBP. Hint: Consider 

Fk {x: s~PIITnxll:S k}. 
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5.4 Quotient Spaces 

In this brief section we consider the quotient of a NLS. These results are used later 
in dealing with some of the classical spaces of functions. 

Let X be a semi-NLS and M a linear subspace of X. If x E X, we denote the 
coset x + Min X/M by [xJ x + M. We define a semi-norm on X/M by 

lI[xlll' inf{lIx + mil: m E M} 

Proposition 1 (i) IIII' is a semi-norm on X/M. 

(ii) X/M is a NLS {:? M is closed. 

distance(x, M)). (5.1 ) 

(iii) The quotient map x -+ [xl from X onto X/M is norm reducing [and, therefore, 
continuous} and open. 

(iv) X/M is complete if X is complete. 

(v) If X is complete and M is closed, X/M is a B-space. 

Proof: (i): II[txlll' = inf{lltx + mil: m E M} 
It I 11 [xl II' for t :f O. 

inf{ltlllx + m/tll : m E llyI} = 

II[xl + [ylll' inf{lIx + y + m) + m211 : mi E M} 
:s inf{llx + mIll: ml EM} + inf{lIy + m211 : m2 E AI} 

!I [xl II' + lI[y]II'· 

(ii): IHx]1I' = dist(x, M) = 0 if and only if x E M and [xl 0 if and only if x E M. 
(iii): Clearly IIxll ? Illxlll'. To show the quotient map is open we show that 

{x: IIxll < I} is mapped onto {[x] : II[xlll' < I}. Let II[xlll' 1 (j < 1. There exists 
m E M such that Ilx + mil < 1 and [x + m] [xl. 

(iv): Let Z [Xk] be an absolutely convergent series in X/M. For each k choose 
k=1 

mk E Al such that 

Then 

f= Ilxk + mkll :s f= (11[xk]II' + 1/21:) < 00 

1:=) k=! 

so Z (Xk + mk) is absolutely convergent in X and, therefore, convergent to some 
k=1 

x E X [Theorem 5.1.1]. By (iii), 
00 00 

[xl = I:[Xk + mkl == I:[Xk] 
1:=1 k=! 

so X/AI is complete by Theorem 5.1.4. 
(v) follows from (ii) and (iv). 
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Proposition 2 Let K(X) {x EX: Ilxll = o}. Then K(X) is a closed, linwr 
sl1bspace of X. 

Proof: If x, y E K(X), then Ilix + sY11 ~ Illllxli + Isillyll = 0 so J«X) is a linear 
subspace. K(X) is closed by Proposition 5.1.3. 

Proposition 3 The ql10tient map X -> XI I«X) is norm preserving {i.e., an isom­
etry}. 

Proof: For mE K(X), Ilxll II·TII 11m II ~ Ilx - mil ~ Ilxll 80 Ilxll IHxlll'· 

Corollary 4 XI K(X) is a NLS and if X is complete, XI K(X) is a B-space. 

As an example, consider V (iJ) with the V-norm, II Ill' If [( I< (V (fl)), then 
f E K if and only if f = 0 Jl-a.e. Thus, the coaets of V (Jl) I I< comist of equivalence 
classes of functions which are equal Jl-a.c. 

Exercise 1. Let X, Y be scmi-NLS and l' E L(X, Y). Show the ind1lced map 

T: XI kerr -> Y is continuous and 111'11 = Ilil 
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5.5 The Closed Graph/Open Mapping Theorems 

In this chapter we discuss another of the three basic principles of functional analysis, 
the Closed Graph Theorem (CGT) and its companion the Open Mapping Theorem 
(OMT). Let X, Y be NLS and T: X -+ Y linear. T is said to be closed if its graph 
{(x, Tx) : x E X} is closed in X X Y. Thus, T is closed if and only if Xk -+ x in X and 
TXk y in Y implies that y Tx. Any continuous linear operator T E L(X, Y) is 
obviously closed; however, as the following example shows not every closed operator 
is continuous. 

Example 1 Let X = {f E C[O, I] ; f' exists and is continuous on [0, I:} and assume 
that X is equipped with the sup-norm. Let Y C[O, 1) and D : X -+ Y be defined 
by Df f'. Then D is obviously linear, closed [[DeS)lL7], but is not continuous 

[lltkll
oo 

1 while II(tk)'lIex> = kJ. 

Note that the domain space in this example is not complete. Indeed, the CGT 
asserts that if X and Yare complete, then any closed linear operator T : X -+ Y is 
continuous. 

Theorem 2 (CGT) Let X I Y be Ba.nach spa.ces and T : X -+ Y linear. 1f T is 
closed, then T is continuous. 

Proof: Set Z {x EX: IITxl1 < I}. Since T is linear, X kZ so from 

the Baire Category Theorem (A2) some =: kZ contains an interior point. Hence, 
{y: Ily - xii < r} = S(x,r) C Z for some x E Z, r > O. If Ilzll < r, then 

1 1 1- 1- -. 
z 2(x+z) 2(x-z)E

2
Z-

2
Z Z 

so S(O, 1') C Z. Hence, 

S(O, ar) C aZ for every a > O. (5.1) 

We now claim that if Ilzll < r, then IITzll 2. Since z E Z, by (1) there 

exists Xl E Z such that liz - XIII < r/2. Since Xl - z E 0) by (1), there exists 

X2 E such that liz Xl - x211 < 1'/22 • Continuing inductively produces a sequence 

{xd C Z with liz - XI - X2 ••• - xkll < r/2k and Xk E (1/2 k
-

1
) z. Put Sk = Xj 

so that z = limsk = f Xi and IITxkl1 :; 1/2k
-

1
• Now {Tsd is Cauchy in Y since 

k j=1 

k 

IITsk - Tsjll:; L IITxill:; 1/2.-1 < 
'=jH 
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for k > j. Therefore, there exists y E Y such that T Sk -> y. Since l' is closed, T z y 
and 

IITz l1 lIyll = liE TXkl1 ::; E IITxkll ::; E 1/2
k

-
l = 2. 

If IIxll ::; 1, then by the above IIT(rx/2)1I ::; 2 or IITxlI .1/r. lIence,"J' is 
continuous with IITII ::; 4/r. 

H one wants to prove that a linear map l' : X -> Y is continuous, one or t.lle usual 
procedures is to take a sequence {xd in X which converges to some x X and show 
that the sequence {Txd converges to Tx. The advantage of the eel' is that we may 
now assume that the sequence {Txd is convergent, and we are then required to show 
that it converges to the proper value, namely, Tx. An example of such an application 
of the CeT is given in Example 6.2.9 also Exercise 3, Exercise 6.1.18 and the 
end of §6.2J. 

We use the CGT to derive its companion rcsult, the OpCII :v1a.pping Theorem 
(OMT). 

Theorem 3 Let X, Y be Banach spaces and T E L(X, yO). 1fT is onto, T is open. 

Proof: Let T be the induced map,r : X/kef T -> Y [Exercise 5.1.]]. Then 
T is 1-1, continuous and onto Y so r- I is closed [E,xercise I]. By the CeT, 
is continuous so T is a homeomorphism. Since the quotient map X -> XI ker T is 
always open [5.4.1], T is open. 

Corollary 4 If X and Yare Banach spaces and T E L(X, Y)is 1-/ and onto, then 
l' is a homeomorphism. 

Corollary 5 Let X be a vector space with two complete norms 11111' 11112 on X. If 11111 
is stronger than 11112 [i.e., induces a stronger topology}, then 11111 and 11112 are equivalent. 

Proof: The identity map (X, 11111) -> (X, 11112) is continuous so Corollary 1 gives 
the resulL 

The completeness of both norms in Corollary 5 is importa.nt, sec Exercise 2. 

Remark 6 The CGT is often derived from t.he OMT; sec [TL] for such a. develop­
ment. 

Exercise L Let T E L(X, Y) be 1-1, onto. Show 1'-1 is closed. 

Exercise 2. Show Corolla.ry 5 is false if both norms are not complete. [Hint: Consider 

G[O,l] with 111100 and 11/11 f: III (t)dt.] 
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Exercise 3. Let X, Y be Banach spaces and T : X Y linear. Suppose AcY' 
separates the points of Y. If y'T is continuous'll y' E A, show T is continuous. 

Exercise 4. Suppose that 1111 is a complete norm on e[0,1] such that IIIk III -t 0 
implies Ik(t) I(l) for every l E [0,1]. Show 1111 is equivalent to 111100' 
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5.6 The Hahn-Banach Theorem 

In §5.6.1 we will study some of the relationships between a NLS and its dual space. 
In order to facilitate this study, we need a very important preliminary result called 
the Hahn-Banach Theorem. This is one of the three basic principles of functional 
analysis and has applications to a wide variety of problems. Besides using this result 
in 5.6.1 we give additional applications in sections 5.6.2 and 5.6.3. For an interesting 
discussion of the history of the Hahn-Banach Theorem see [Ho]. 

Definition 1 Let X be a vector space. A function p : X 
tional if 

(i) p(x + Y) ::; p(x) + p(y) Vx, Y E X, 

(ii) p(tx) tp(x) Vi 2: 0, x E X. 

A semi-norm is obviously sublincar but not conversely. 

R is a sublinear func-

The Hahn-Banach Theorem guarantees that any linear functional defined Oil a 
subspace of a vector space which is dominated by a sublinear functional call be ex­
tended to a linear functional defined on t.he entire vector space and the extension is 
still dominated by the sublinear functional. 

Theorem 2 (Hahn-Banach; real case) Lei X be a real vector space and p : X 
R a sub linear functional. Lei M be a linear subspace of X. If f : 1\1 -t R is a linear 

functional such that f(x) ::; p(x) Vx E M, then :3 a linear functional F : X -t R 
such that F(x) = f(x), Vx E M and F(x) p(x) Vx E X. 

Proof: Let E be the class of all linear extensions 9 of f such that. g(T) ::; p( x) 
Vx E V(g), the domain of g, with V(g) =2 At. Notc E fc 0 since fEE. PdfLial order E 
by 9 < h if and only if h is a linear extension of g. If C is a chain in E, then U gEE 

gEe 

is clearly an upper bound for C so by Zorn's Lemma E has a maximal clement. F. 
The result follows if we can show V( F) X. 

Suppose :3XI E X\V(F). Let Atl be the linear subspace spanned by V(F) and 
Xl. Thus, if Y E Atb Y has a unique representation in the form y rn + tXJ where 
rn E V(F), t E R. If z R, then 

FI(y) = FI(rn + tTl) F(m) + tz 

defines a linear functional on MI which extends F. If we can show that it is possible 
to choose z such that PI(Y) ~ p(y) Vy E ]V!l, this will show PI E E and contradict 
the maximality of F. 
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In order to have 

we must have for t > 0, 

or since mit E V(F), if z satisfies 

z:::; -F(m) + p(m + Xl) Vm E V(F), (5.2) 

then (1) holds for t :::: O. For t < 0, 

1 1 
z :::: -TF(m) + TP(m + txd F( -mit) p( -mit - Xl), 

or since -mit E V(F), if z satisfies, 

z :::: F(m) p(m Xl) Vm E V(F), (5.3) 

then (1) holds. Thus, z must satisfy 

i.e., we must have 

But, 

so (4) does hold. 
To obtain a complex form of the Hahn- Banach Theorem, we need the following 

interesting observation which shows how to write a complex linear functional in terms 
of its real part. 

Lemma 3 (Bohnenblust-Sobczyk) Let X be a vector space over C. Suppose F = 
f + ig is a linear functional on X. Then for x E F(x) f(x) if(ix) and f : 
X -t R is R-linear. Conversely, if f: X -t R is R-linear, then F(x) f(x) if(ix) 
defines a C-linear functional on X. 

Proof; f and 9 are clearly R-linear. Now F(ix) iF(x) implies f(ix) +ig(ix) = 
if(x) - g(x) so f(ix) = -g(x) and F(x) f(x) if(ix). 

The converse is easily checked. 
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Theorem 4 (Hahn-Banach; complex case) Let X be a vector space and p: X -> 

R a semi-norm. Let M be a linear subspace 01 X and I : At -> F a linear lunctional. 
II I/(x)l ~ p(x) Vx E M, then I has a linear extension F : X -t F such that 
IF(x)1 ~ p(x) Vx E X. 

Proof: Suppose F = R. Then I(x) ~ I/(x)1 ~ p(x) Vx E l'vf so Theorem 2 
implies a linear extension F : X -t R such that F(x) p(x) Vx E X But then 
F(-x) -F(x) ~ pC-x) = p(x) so IF(x)1 ~ p(x). 

Suppose F = C. Then RI, the real part of I, is an R-linear functional on X 
such that IRI(x)1 ~ lI(xll ~ p(x) Vx E M. By the first part, :I a real linear 
functional II : X -> R which extends RI and satisfies III (x)1 ~ p(:1') Vx E X. Set. 
F(x) hex) ifl(ix). Then F is C-linear and extends I by Lelllma 3. 

For x write F(x) = IF(x)1 cia. Then 

Despite its very esoteric appearance we will see in the next three sections t.hat the 
Hahn-Banach Theorem has a surprisingly wide variety of applications. 

Exercise 1. Give an example of a sublinear functional which is not a semi-norm. 

Exercise 2. Show p( {tj}) = lim(t l + ... +tn)/n defines a 8ublinear fUllctional on 
n 
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5.6.1 Applications of the Hahn-Banach Theorem in NLS 

We use the Hahn-Banach Theorem to derive important properties of the dual space of 
a NLS. We begin by establishing an important result on extending continuous linear 
functionals. 

Theorem 1 Let X be a semi-NLS and M a linear subspace. 11 m ' E M ' , then 

3x' E X' such that x' extends m' and IIx' ll IIm'll. 

Proof: Define a semi-norm p on X by p(x) Ilm'llllxli. Then l(m',x)1 -:; p(x) 
for x E M. By Theorem 5.6.4 there exists a linear function x' on X extending m' 
such that l(x',x)1 :::; p(x) Ilm'llllxll for all x E X. Hence, x' E X' and Ilx'll :::; ilm'll. 
Clearly Ilm'lI :::; Ilx'll· 

Theorem 1 can be used to establish several important resulLs on the existence of 
cont.inuous linear functionals on a semi-NLS. 

Theorem 2 Let M be a linear subspace 01 a NLS X. Suppose Xo E X is s'uch that 

distance (xo, M) d > O. Then there exists x~ E XI such that II x~ II 1 J x~( M) 0 
and (x~, xo) = d > O. 

Proof: Set Mo = span{M,xo}. Define a linear functional Ion Mo by I(m + 
txo) = td, where mE M, t E F. Then I(M) 0 and I(xo) = d. Also, I E M~ wit.h 
11/11 S; 1 since if t of 0, mE M, then 

11m + txoll It I limit + xoll ::::: It I d I/(m + txo)l· 

Actually, IIIII 1 since there exists {md C lv1 with Ilmk xoll1 d so 

d I/(mk xo)1 :::;lI/lIlImk - xoll111/11 d 

and 11/11 ::::: 1. Now extend I to a continuous linear functional x' E X' with Ilx'll 
11/11 = 1 by Theorem 1. 

Remark 3 Note that Theorem 2 is applicable if M is closed and Xo 1:: 1\-1. 

Corollary 4 Let X be a NLS and 0 of Xo EX. Then there exists xri E X' sllch that 

Ilx~11 = 1 and (x~, xo) Ilxoli. In particular, il x of y, there exists x~ E X' sllch that 
(x~,x) of (x~,y), i.e., the dual 01 X, X', separates the points 01 X. 

Proof: Set lv1 {OJ in Theorem 2. 

Corollary 4 insures that the dual of a NLS is rich in continuous linear functionals. 
Such phenomena does not hold in general for metric linear spaces. 
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Example I) Consider X = LO[O, IJ (Example 5.1.1). Suppose f is a non-zero linear 
functional on X. Let 'f' E X be such that (1,'f') =I O. Let II = [0,1/2], 12 = (1/2, IJ 
and set 9; CJ,'f'. Then 'f' 91 + 92 so either (1,9I) =I 0 or (1,92) =I O. Choose one 
and label it 'f'I. Note m{t : 'f'1(t) =I O} s:: 1/2. 

Continue this bisection procedure to produce a sequence {'f'j} C X such that 
(1, 'f'j) 1= 0 and m{t : 'f'j(t) =I O} s:: 1/2j

• Put hj 'f'j/ (1, 'f'j) so (j, hj ) 1 for all j 
but h j --+ 0 in m-measure since m{t: hj(t) 1= O} s:: 1/2]. Thus, f is not continuous 
at O. Hence, the dual space of X is {OJ. 

The dual norm of an element x' in the dual of a NLS X is defined to be the 
supremum of the values I(x', x)1 as x varies overthe unit ball {x : IIxll s:: 1} of X. We 
can use Corollary 4 to establish a result dual to this; the norm of an clement. x E X 
can be found by computing the supremum of I(x', x} I as x' varies over the unit ball 
of X'. 

Corollary 6 For x E X, a NLS, IIxll sup{l(x/,x)l: IIx'll s:: I}. 

Proof: If x' E X', IIx'll s:: 1, then I(x', x)1 S Ilxll. On the other hand, by Corolliuy 
4 there exists x' E X' with IIx'll 1 and (x',x) Ilxli. 

As another application of Corollary 4 we establish the converse of Theorem 5.2.3. 

Theorem 7 Let X, Y be NLS with X =I {OJ. If L(X, Y) is complete, then Y is 
complete. 

Proof: Let {Yd be Cauchy in Y. Choose Xo E X, Ilxoll = 1. By Corollary ;[ 
there exists x~ E X' such that Ilx~11 = 1 and (x~, xo) = 1. Define Tk E L(X, Y) by 
Tkx = (x~, x) Yk. Then 

so 

IITk - Till s:: IIYk - Yill 

and {Td is Cauchy in L(X, Y). Suppose n --+ T in L(X, V). Then 

The Canonical Imbedding and Reflexivity: 
Let X be a NLS. Let X" be the dual of X' (with the dual norm) and assume 

that X" carries its dual norm from X'. X" is called the second dual or bidual of X. 
Each x E X induces an element x E X" defined by (X,X') (X',X) for x' E X'. x is 
obviously linear and by Corollary 6, 

Ilxll = sup{l(x' , x} I : Ilx'li S I} = IIxll 
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so £ E Xu and 11£11 = Ilxll. Thus, the map Jx ; X -> Xu defined by Jxx = x is a 
linear isometry which imbeds X into its bidual Xu; Jx is called the canonical map or 
canonical imbedding of X into its bidual, and if X is understood, we write J Jx . 
A NLS is called reflexive if JxX = X". Note from Theorem 5.2.3 any reflexive space 
must be a B-space. It should also be noted that for a B-space X to be reflexive, X 
and Xu must be linearly isometric under the canonical imbedding JXi R.C. James 
has given an example of a non-reflexive B-space X which is linearly isometric to its 
bidual X". 

Rn is obviously reflexive; examples of reflexive B-spaces are given in subsequent 
chapters. An example of a non-reflexive B-space is given below (Example 9). An 
interesting consequence of Corollary 6 is given by 

Corollary 8 Let X be a reflexive B-space. Then every continuous linear functional 
x' E X' attains its maximum on the unit ball of x. 

Proof: By Corollary 6 there exists x" E X" such that Ilx"ll 1 and (x", x') 
Ilx'll. But there exists x E X such that Jxx x" so Ilxll 1 and (x', x) = Ilx'll. 

It is an interesting result of James that the converse of Corollary 8 holds [J]]. 
We can use Corollary 8 to give an example of a non-reflexive space. 

Example 9 Co is not reflexive. Define f : Co -> R by f( {tj}) tj/j!. Then 

f E do and llill = f Ifj" However, there is no {tj} E Co with tjli! = Ilfll. By 
j=1 

Corollary 8 Co is not reflexive. 

As an application of the canonical imbedding, we have 

Theorem 10 Every NLS X is a dense subspace of a B-space X (i.e., every NLS has 
a completion). 

Proof: Set X = J X C X" [where we are identifying X and J x X under the linear 
isometry Jx ]. 

As a further application of the canonical imbedding, we use the Uniform Bound­
edness Principle to derive a boundedness condition for NLS. 

Theorem 11 A subset B of a NLS X is bounded if and only if x'(B) is bounded for 
each x' E X'. 

Proof: =>: This follows from the inequality Ix'(x}1 :::: Ilx/llllxll. 
{=; Let J be the canonical imbedding of X into its bidual. Then {Jb : b E B} 

is pointwise bounded on X', and since X' is complete, {IIJBII = Ilbll : b E B} is 
bounded by the UBP (5.3.1). 
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Several additional properties of reflexive spaces are given in the exercises. 

Separability: 
We consider some separability results concerning a NLS and its dual. 

Theorem 12 If the dual of a NLS X is separable, then X is separable. 

Proof: Let {xU be dense in X'. For each k choose Xk E X such that Ilxkll 1 
and l(xLxk)1 :::: IIx~II/2. The subspace Xl spanned by {xd is separable 8), 
and we claim that Xl is dense in X. If this is not the case, by Theorem 2, there exists 
x' E X', x' =I 0, such that (x', XI) O. There exists a subsequence {x~J converging 
to x'. Then 

Letting k -+ 00 gives 0 Ilx/II/2 so x' = OJ the desired contradiction. 

The converse of Theorem 12 is false; see Exercise 6. However, for reflexive spaces, 
we have 

Corollary 13 Let X be a reflexive B-space. Then X is separable ~ X' is sepamble. 

Proof: <¢=: Theorem 12. 
=*: J x X = X" is separable so X' is separable by Theorem 12. 

Exercise 1. Show that a B-space X is reflexive if and only if X' is reflexive. 

Exercise 2. Show that a closed linear subspace of a reflexive space is reflexive. 

Exercise 3. If X is reflexive and X' contains a countable set which separates the 
points of X, show X' is separable. 

Exercise 4. If X is a NLS, show JxX separates the points of X' 

Exercise 5. If X is reflexive, show X' has no proper closed subspaces which separate 
the points of X. 

Exercise 6. Show the converse of Theorem 12 is false. [Hint: Exercise 5.1.13.] 

Exercise 7. Let X, Y be NLS and T E L(X, V). Show that T'y' y'T defines a 
linear operator T' from Y' into X' which is continuous and Wfli IIT'II. T' is called 
the adjoint or transpose of T. 

Exercise 8. Let D be a countable subset of a NLS X. If XI is the snbspace spanned 
by D, show Xl and are separable. 
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5.6.2 Extension of Bounded, Finitely Additive Set Func­
tions 

We give an application, due to B.J. Pettis, of the Hahn-Banach Theorem to the 
extension of bounded, finitely additive set functions defined on algebras. 

Let A be an algebra of subsets of 5 and E the O"-algebra generated by A. Let 5(A) 
[5(E)] be the vector space of all real-valued A-simple [E-simple] functions; we assume 
that 5(A) [5(D] is equipped with the sup-norm, II'PII sup{I'P(t)l: t E Let 
Il : A -+ R be a bounded, finitely additive set function. We consider the possibility 
of extending Il to E. 

Let I : 5(A) -+ R be the linear functional induced by integration with respect 
to Il, (J,'P) = fs'Pdll [Remark 3.2.2]. Since 1(J,<p)1 :::; 1I<p1l11l1(5) [Remark 3.2.2], 
I is continuous and IIIII :::; IIlI (5). By Theorem 5.6.l.1, I has a continuous linear 
extension, F, to 5(E) satisfying I(F,<p)1 :::; 1I/1111'P11 for'P E 5(E). Define J1: E R 
by J1(E) (F, CE ) for E E E. J1 obviously is an extension of Il and is finitely additive. 
Since 

1J1(E) I :::; IIFII = 11/11 :::; IIlI (5), 

J1 is bounded and gives a bounded, finitely additive extension of Il to the O"-algebra 
E generated by A-

In contrast to the situation in §2.4 where we considered the extension of premea­
sures, a bounded, finitely additive set function defined on an algebra can have an 
infinite number of bounded, finitely additive extensions to the generating O"-algebra 
[see [HY]]. 

Exercise l. Show 11/11 = IIlI (5). 

Exercise 2. Show the existence of a bounded, finitely additive set function defined 
on a O"-algebra. 
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5.6.3 A 'franslation Invariant, Finitely Additive Set 
Function 

V\I'e show that the Hahn-Banach Tlwor<'Jl1 can be llsed to ;;JIOW that thc problem 
of measure discussed ill §1.3 has a, solut.ion. That is, we show Ih.> cxistpllcc of a nOll­

t.ranslation invariant, finit.ely additiv(' set fUlIct.ioll defined on the hounded 
subsets of R. W .. begin showing llw existcTlC<' of a Banach int('gral awl t.hen 
use Utc integra'! to construct. th" desir .. d translat.ion invilriallt, finitely a,dditiv(' set 
fund ion OIl the power set of R. 

Let P be the space of all bounded real-valued funct.ions ddined Oil R which have 
lwriod 1 equipped with the sup Ilorm, 11,1. For .r E P and I I, ... ,I" E R set 

u(.f:lh ... ,ln)="sup{ ((I+lk)/n:IER) 
k,cl 

and 
p(.f) = i Jl f{ U (.f : ll' ' .. , I,,) : II,' , .• In E R}. 

Note p is finite since p(.f) <::: Ilfll"" oc. 
\Ve show that p is sublinear. elf'ady, 1) is pmit iv.' homogeneous. We show t.Ilat p 

is snhaddilivf'. Let f 0 and II, I2 E 1'. Pick "1.···,-'''' and 11,.' ,1" ouch that 

V.(fj:,sI •..• Sm) P(.fl)+(, n(h:/I,.,.,tn )< )j-(. 

Put. l'i} = Si + IJ for i = 1, ... ,III, J 1 .... . n. Theil 

< .!.r:,sup fdt+lJ+8,)/m:t} 
n j=l 

l) 
so p(.h + h) P(11) + p(Iz), 

By the Hahn-Banach Theorem there exists 11 linear functional F: P -t R 
such that F(f) p(.f) for all f E P [define FOil {O} by F(O) = 0 and apply 5.6.2]. 
Note F( - f) -FU) .f) so 

p( -.f) <::: F(f) p(.f) for f E P. 
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Now F is positive [Le., F(f) ?: 0 for f ?: 0] since f ?: 0 implies p(f) ?: 0 and 
p( - f) ~ 0 so by (2) F(f) ?: -p( - f) ?: O. 

Next, we claim that F is translation invariant. Fix hER. If f E P, set g(t) 
f(t + h) f(t) for t E R. We need to show that F(g) = O. Take tk = (k - 1)h for 
k = 1, ... , n + 1. Then 

1 
-- sup{J(t + (n + 1)h) - f(t) : t} -+ 0 
n+l 

as n -+ 00 so p(g) ~ O. Similarly, p( -g) ~ O. From (2), F(g) = 0 as desired. 
Also, F(1) = 1 from (2) since p(l) 1 and p( -1) -1. And, F is bounded since 

from (2), F(f) ~ p(f) ~ IIJII and 

F(-f) = -F(f) ~ p(-f) ~ II-fll = IIfll 

so IF(f)1 ~ llill and IIFI! ~ l. 
We now use F, the Banach integral, to induce a finitely additive set function. If 

E C [0, I), let kE be the periodic extension of CE to R and set ,,(E) = F(kE)' Since 
F is linear,,, is finitely additive on the power set, prO, 1), " is bounded (by 1) since 
IIFI! ~ 1, " is positive since F is positive and F(1) = ,,[0,1) = 1. Moreover, if A 
and B are subsets of [0, 1) such that A = B + t for some t, then ,,(A) ,,(B) hy the 
translation invariance of F, i.e., " is translation invariant in this sense. 

We extend" to the bounded subsets of R. First, consider any subset A of an 
interval of the form [j,j + 1). Then A - j C [0,1) so we may define ,,(A) to he 
,,(A - j). If Be R is bounded, then B S [-n, n) for some n, and we may write 

n-l 

B= U Bn[j,j+1) 
i=-1l 

and define 
n-J 

,,(B) L ,,(Bn[j,j+1». 
j=-n 

It is easy to check that this extension of " has values in [0,00), is finitely additive, 
translation invariant, and ,,[0,1) = 1. 

Note that the commutativity of the group of translations was used ill the com­
putation (1). This is important; Hausdorff has shown that there is no nOll-trivial, 
non-negative, fillitely additive set defined on the subsets of the unit sphere in R3 
which is invariant under the (non-abelian) group of rotations on the sphere. 

Exercise 1. Show the set function Ji( E) (,,( E) + ,,( - E) )/2 has all of the properties 
of" and is also invariant under reflection. [Hence, Ji is invariant under the isometries 
of R ([Na] ).J 

Exercise 2. A Banach limit is a continuous linear functional L on Coo satisfying 
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(i) L( x) 2': 0 if x 2': 0 [i.e., if Xk 2': 0 for all k when x {xo}], 

(ii) ifrx = (X2,X3,.")' then L(rx) = L(x), 

(iii) L«l, 1, ... )) l. 

(a) Show that if L is a Banach limit, 
e; > 0 choose n such that 

S L(x) S Iimxk for x E fcc. Hint: For 

inf Xk ::; Xn < inf Xk + e; 

so Xk + e; - Xn 2': O. Use (i) and (iii) to show L (x) 2': inf Xk. Then use (ii). 

(b) Show Banach limits exist. Hint: Use the functional p(x) = 
of Exercise 5.6.2 and the functional Lx = lim Xk for x E c. 

Exercise 3. For A c N let IAI be the number of points in A. If L is a Banach limit, 
show p(A) = L(IAn (l, ... ,n}l/n) defines a bounded finitely additive set function 
on P(N). 

Exercise 4. Let A be an algebra of subsets of Sand T : S S such that 1'-1 A E A 
for A E A. Let v be a bounded, finitely additive set function on A. Let L be a Banach 
limit and define p on A by p (A) L (v (T-n A)). Show p is bounded, finitely additive 
and 1'-invariant (i.e., p(A) p(T-1A) for A E A). 
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5.7 Ordered Linear Spaces 

As well as having natural norms or metrics, many of the classical spaces of functions 
also have natural orders. In this section we consider basic properties of ordered spaces. 

A partial order on a set E is a relation, satisfying the following properties: 

(R) x :5 x holds for all x E E (reflexive), 

(A) if x :5 y and y :5 x, then x y (anti-symmetry), 

(T) if x :5 y and y :5 z, then x :5 z (transitive). 

We write y ~ x if and only if x :5 y. 
An ordered vector space is a real vector space X with a partial order, 

compat,ible with the algebraic operations, i.e., 

(i) if x :5 y and z E X, then x + z :5 y + z, 

(ii) if x :5 y and t ~ 0, then tx :5 ty. 

which is 

An element x of X is said to be positive if x ~ 0; the set of all positive dements of 
X is denoted by X+. 

Example 1 The space s has the natural order {xd :5 {Yk} if and only if Xk ~ Yk 
for all kEN. The subspaces ("-{lO, Co, C, £1 and £= inherit this natural order from s. 

More generally, we have 

Example 2 Let S :I 0 and F( S) the vector space of all real-valued functions defined 
on S [the operations of addition and scalar multiplication are defined pointwise]. If 
J, 9 E F(S), we define J :5 9 if and only if f(1) :5 g(t) for all t E S. Any vector 
subspace of F(S) is an ordered vector space under the order inherited from F(8). 

If X is an ordered vector space and x, y E X, then x and y have a supremum 
(infimum), denoted by x V y (x A y), if x :5 x V y, Y ~ x V y (x A Y ~ x, x A Y ~ y) 
and x ~ w, y ~ w (w ~ x, w ~ y) implies x V y :5 w (w ~ x A y). 

A vector lattice or a Riesz space is an ordered vector space X such that every two 
elements of X have a supremum and an infimum. We have the following elementary 
identities in a Riesz space. 

Proposition 3 (i) x Vy = -[( -x) A (-y)], x A Y = -[( -x) V (-y)], 

(ii) xVy+z=(x+z)V(y+z),xAy+z (x+z)A(y+z), 

(iii) t(x Vy) = (tx) V (ty), t(x A y) = (tx) A (ty) for t ~ O. 
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Proof: We prove (ii) and leave the remaining statements for Exercise 2. 
Set a = x Vy + z, b (x + z) V (y + z). We show a s: b, b s: a. First, 

a - z = x V y implies x s: a z and y :::: a z so x + z s: a and y + z s: a. Hence, 
(x + z) V (y + z) b s: a. Next, b (x + z) V (y + z) so b:::- x + z and b:::- y + z or 
x s: b - z and y s: b z. Hence, x V y :::: b z or a = x V y + z s: b. 

Remark 4 From (i) it follows that if X is an ordered vector space such t,hat every 
two elements of X has a supremum (infimum), then X is a Riesz space. 

If X is a Riesz space and x set x+ x V 0, the positive part of x, and set 
x- = (-x) V 0 (-x)+, the negative part of x. Then Ixl = x V (-x) is called the 
absolute value of x. We have the following properties: 

Proposition 5 (i) x x+ x- J 

(ii) Ixl = x+ + x- J 

(iii) x+ 1\ x- 0, 

(iv) xVy=(x-y)++y, 

(v) Ix + yl :::: Ixl + Iyl, 

(vi) Ilxl-lyll s: Ix yl, 

(vii) Ix+ - y+1 s: Ix yl, (x + y)+ :::: x+ + y+, 

(viii) Ix V z - y V zl s: Ix yl, Ix 1\ z Y 1\ zl :::: Ix - yl, 

(ix) Ixl :::: y if and only if -y x y. 

Proof: (i): By Proposition 3, 

x- + x (-x) V 0 + x 0 V x = x+. 

(ii): By Proposition 3 and (i), 

Ixl xV(-x) (2x)VO x 2x+-x=2x+-(x+-x-)=x++x. 

(iii): By Proposition 3 and (i), 

(x+ x-) 1\ 0 + x- = x 1\ 0 + x-
= V (-0)) + x- = -x- + x- = O. 

We leave (iv)-(vi) to Exercise 3. 
(vii): Note x+ (x + Ixl)/2 so using (vi), 

I(x + IxD/2 (y + lyl)/21 = ~ I(x - y) + (Ixl- lyl)1 
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(x+y)+ t(lx+yl+(x+ y)) 
< 2"(l x l + x + Iyl + y) 

x+ + y+. 

(viii): From Proposition 3, 

xVz YVz=((x-z)VO+z) ((y-z)VO+z)=(x-

From (vii), 

(y z)+. 

Ixvz YVzl=j(x-z)+ (y z)+IS:I(x-z)-(y z)1 Ix YI· 

From Proposition 3 and (viii), 

IxAz YAzl=I-(-x)v(-z)+(-y)v(-z)IS:I(-y) (-x)1 Ix-yl· 

(ix) is left to Exercise 3. 

199 

Remark 6 From (iv) [(ii)] and Remark 4, it follows that if X is an ordered vedor 
space such that x V 0 = x+ [Ix 11 exists [or x EX, then X is a Ricsz space. 

Example 7 F(8) is a Riesz space with 

f V g(t) = max{f(t),g(t)}, f A g(t) = min{f(t),g(t)} 

for I, E 8. In particular, s is a Riesz space. Any vector subspace of F(8) which is 
a Riesz space under the inherited order from F( 8) is calJed a function space. For 
example, Coo, Co, C, [I, [00 are all function spaces. If 8 is a compad Hausdorff 
space, then C(8) is a function space; if Gk[O, 1] is the vedor space of all fundions 
'f'; [0,1] -+ R which have k continuous derivatives, then Gk[O, 1] is an ordered vector 
subspace of G[O, 1] but is not a function space for k ;:: 1. 

Example 8 Let BV[a, b) be the vector subspace of F[a, b] consisting of the functions 
of bounded variation (A.I). BV[a, b) is a function space. 

If X, Yare Riesz spaces and T ; X -+ Y is linear, then T is called a lattice 
homomorphism if T(x V y) = (Tx) V (Ty) for all x, y E X; if Tis 1-1, T is called a 
lattice isomorphism. For equivalent conditions, see Exercise 4. 

A linear map T ; X -+ Y between two ordered vector spaces is said to be positive 
if Tx ;:: 0 for every x ;:: o. A lattice homomorphism between Riesz spaces is positive. 

Theorem 9 Let X, Y be Riesz spaces and T : X -+ Y linear, 1-1, onto. 1fT and 
T-I are both positive, then T is a lattice isomorphism (onto Y). 

Proof: Let x, y E X. Since x x Vy, y s: x Vy and T is positive, Tx s: T(x Vy), 
TV T(x V y) so (Tx) V (TV) s: T(x V V). By symmetry, since T- 1 is positive, 

x V V = (T-J(Tx)) V (T-J(Ty)) s: T-1((Tx) V (Ty)). 
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Hence, T(x Vy) ::;; (Tx) V (Ty). 

We next consider the order analogue of the dual of a NLS. If X is a. Riesz space, 
a subset Be X is order bounded if there exists y such that Ixl ::;; y for all x E B. If 
Y is another Riesz space, a linear map T : X -. Y is order bounded if T carries order 
bounded sets to order bounded sets and T is positive if T carries positive elements to 
positive elements. 

Let X- be the set of all order bounded (real-valued) linear functionals on X. Then 
X- is a vector space under pointwise addition and scalar multiplication and is ordered 
by the relation, f ::;; 9 if and only if f(x) ::;; g(x) for all x E X+. X· is called the 
order dual of X. It is easily checked that X· is an ordered vector space under t.his 
order and F. Riesz has shown that X- is actually a Riesz space. For this importallt 
result we first establish a lemma. 

Lemma 10 (Riesz Decomposition) Let X be a Riesz space. If x, y, z E X+ and 
0::;; z::;; x+y, then there exist Xl, YI E X such that 0 ::;; Xl::;; X, 0::;; YI ::;; y and 
Z=XI+YI' 

Proof: Set Xl = X 1\ Z, YI = Z Xl Z X 1\ z. Hence, 0 ::;; XI ::;; X, Xl + YI Z) 
o ::;; YI' Also) from Proposition 3, 

O::;;YI z-xl\z=z+(-x)V(-z) (z-x)VO::;;yVO y. 

Ordered vector spaces which satisfy the conditions in Lemma 10 are said to have 
the decomposition property. Thus, a Riesz space has the decomposition property, buL 
there are ordered vector spaces with the decomposition property which are not RieBz 
spaces [see [P] p. 14]. 

Theorem 11 (F. Riesz) If X is a Riesz space, then X· is a Riesz space. Moreover, 
if f E X·, X E X+, then 

(i) J+(x) sup{f(y):O::;;y::;;x}, 

(ii) r(x) sup{-f(y):O::;;y::;;x}, 

(iii) If I (x) sup{f(y): Iyl ::;; x}. 

Proof: From Remark 6, it suffices to show that f+ fVO exists for every f E X'. 
Let f E X· and for X E X+ set g(x) sup{f(y): 0::;; y ::;; x} [(i)]; note that since f 
is order bounded, g( x) is finite. Clearly 

g(x) ~ 0, g(x) ~ f(x) and g(tx) tg(x) for t ~ 0, X E X+. (5.1) 

We claim that g(x+y) = g(x)+g(y) for x, y E X+. If 0 ::;; Xl::;; X, 0::;; YI S; y, then 
0::;; XI+YI ::;; x+y so f(xI)+ f(yJ) = f(XI+YI)::;; g(x+y) andg(x) +g(y)::;; g(x+y). 
On the other hand, if 0 ::;; z ::;; x+y, by Lemma 10 there exist 0::;; Xl ::;; X, 0 S; Yl ::;; Y 
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such that z = Xl + YI. Then f(z) = f(XI + YI) = f(XI) + f(YI) :::; g(x) + g(y) so 
g(x + y) :::; g(x) + g(y) 

For arbitrary X E X, X = x+ - x- so we can extend 9 to X by setting g(x) = 

g(x+) - g(x-). Note that if X = u - v with u 20, v 2 0, then x+ + v = x- + u so 

or 

and the value of 9 does not depend upon how x is represented as the difference of 
two positive elements of X. From this and (1), it is easy to verify that 9 is a positive 
linear functional on X. 

We claim that 9 = j+ (= f V 0). If h E X- is positive with f :::; h, then 
f(y) :::; h(y) :::; h(x) for 0 :::; y :::; x so g(x) :::; h(x). From (1), 9 = j+. 

Formula (i) was established above. The remaining two formulas follow from (i) 
and f- = (-1)+ and If I = j+ + r· 
Corollary 12 If f E K and x E X, then If(x)1 :::; If I (Ixl). 

Proof: If I (Ixl) = sup{f(y) : Iyl :::; Ixl} 2 (f(x» V (f(-x». 
Since f V 9 = (f - g)+ + 9 [Proposition 5], for f, 9 E X- and x E X+ we have 

(2) (f V g) (x) = sup{f(y) + g(x - y) : 0 :::; y :::; x} and 

(3) (f 1\ g)(x) = inf{f(y) + g(x - y): 0:::; y :::; x}. 

We have formulas "dual" to the formulas in Theorem 11. 

Theorem 13 Let X be a Riesz space, f E X positive and x EX. Then 

(i) f(x+) = sup{g(x) : 9 E K, 0:::; g:::; f}, 

(ii) f(x-) = sup{-g(x): 9 E X-, 0:::; g:::; f}, 

(iii) f(lxl) = sup{g(x): 9 E K, Igl :::; f}. 

Proof: (i): If 0:::; 9 :::; f, then g(x) :::; g(x+) :::; f(x+) so 

sup{g(x): 9 E X-,O:::; g:::; f}:::; f(x+). 

Conversely, define p : X -> R by p(u) = f(u+). Then p is a sublinear map on X 
[Proposition 5] such that p( u) 2 0 for all u EX. Let Y = {tx : t E R} and define h 
on Y by h(tx) = tf(x+). Then h is linear on Y and h(y) :::; p(y) for all y E Y. By 
the Hahn-Banach Theorem, h has a linear extension to X, still denoted by h, such 
that h(u) :::; p(u) for all u E X. If u 2 0, then h(u) :::; p(u) = f(u) and 

. ' 

-h(u) = h(-u):::; p(-u) = f((-u)+) = f(O) = 0 
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so 0 :S h( u) :S f( u) for all u E X+. Hence, h E X- [Exercise 5], 0 :S h :S f, and 

f(x+) = h(x):S sup{g(x): 9 E X-,O:S g:S n· 
Formulas (ii) and (iii) follow from f(x-) = f(( -x)+) and f (Ixl) = f(x+) + f(x-). 
We now consider NLS which have an order defined on them. A semi-norm (norm) 

on a Riesz space X is a lattice semi-norm (norm) if Ixl :S Iyl implies Ilxll :S IIYII. A 
semi-normed (normed) vector lattice is a Riesz space with a lattice semi-norm (norm); 
a complete normed vector lattice is called a Banach lattice. 

Example 14 B(5), C(5), £=, c, Co are Banach lattices. 

Example 15 Coo is a normed vector lattice which is not a Banach lattice. 

Example 16 V (J!) is a complete, semi-normed vector lattice. 

For an example of a norm on a Riesz space which is not a lattice norIn see Exercise 
7. 

Proposition 17 Let X be a semi-normcd vcctor lattice. 

(i) Illxlll = Ilxll, 

(ii) Ilx+ - y+11 :S Ilx - yll so x -> x+ is uniformly continuous on X, 

(iii) Illxl-lylll :S Ilx - yll so x -> Ixl is uniformly continuous on X. 

Proof: (i) is easy. By Proposition 5, Ix+ - y+1 :S Ix - yl and Ilxl-lyll :S Ix - yl 
so (ii), (iii) follow. 

A linear subspace Y of a vector lattice is called a vector sublattice if x/\y, xVy E Y 
when x, y E Y. A linear subspace A of a vector lattice X is called an ideal (ordcr 

ideaQ if Ixl :S Iyl and yEA implies x E A. Since 

1 
x V y = 2(x + y + Ix - yD, 

every order ideal is a vector sublattice. 

Example 18 B(5) is an ideal in F(5). C(5) is a vector sublattice of F(5) but is 
not an ideal. Similarly, Co and Coo are order ideals in £= but c is not. 

We now compare the order dual and the norm dual of a normed vector lattice. 

Theorem 19 Let X be a normed vector lattice. Then X' c X- and, moreover, X' 
is an order ideal in X- . 
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Proof: Let B c X be order bounded with Ixl ::; y for all x E B. Then Ilxll ::; Ilyll 
for all x E B so B is norm bounded. Hence, every x' E X' carries order bounded sets 
to bounded subsets and x' E X-. 

Assume x E X', x' E X' with lx-I::; Ix'i. We must show x E X'. Let x E X, 

IIxll ::; 1. Then for every y E X with Iyl ::; lxi, Ilyll ::; Ilxll ::; 1 so 

Ix-(x)l::; lx-I (Ixl)::; Ix'i (Ixl) SUp{X'(Y): Iyl::; Ixl}::; Ilx'll 

[Corollary 12 and Theorem 11]. Thus, x- E X' with Ilx-1i ::; Ilx'll. 

Remark 20 It follows from Theorem 19 that if x' E X', then x' is the difference of 
two positive, continuous linear functionals (x')+, (x't. 

The argument above shows that Ix'i ::; Iy'l in X' implies IIx'll ::; Ilylll. Hence, 

Theorem 21 The norm dual of a normed vector lattice is a Banach lattice. 

The containment in Theorem 19 can be proper. 

00 

Example 22 Define f : Coo -+ R by f( {tj}) = L: jtj [finite sum]. Then f is positive 
j=1 

and, hence, order bounded [Exercise 5]. But, f( e j ) = j so f is not continuous. 

However, we do have 

Theorem 23 If X is a Banach lattice, X' = X- . 

Proof: Suppose there exists f E X- such that f is not continuous. Then there 
exist Xk E X such that Ilx,,1I 1 and If(x,,)1 > F 

Set y" = t Ix"l/k2. Then 
"=1 

n+l' 
IIYn+p Ynll::; E 1/k2 

k=n+l 

so {Yk} is Cauchy in X and, therefore, converges to some Y E X. Clearly, 0 ::; Yn ::; 
Yn+h and we claim that Yn ::; y. First, 

o ::; (Yn y)+::; (Yn+l' y)+::; IYn+1' YI 

implies II(Yn - Y)+II ::; IIYn+p - yll for all n, p so 

0::; II(Yn - y)+11 ::; li~IIYn+p - yll = o. 

Hence, (Yn - y)+ O. But, Yn Y::; (Yn y)+ = 0 implies 0 ::; Yn ::; Y as claimed. 
Then Y 2 Yn 2. Ix,,1 /n 2 implies 

Ifl(Y) 21f1(Yn) 2 If I (lxnl)/n2 2If(xn )//n2 > n 

which gives the desired contradiction. 
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Theorem 24 The. completion of a normed vector lattice X is a Banach lattice. 

Proof: Recall the completion of X is C X" [Theorem 5.6.1.10] so by Exercise 
8 it suffices to show that the canonical imbedding Jx J of X into X" preserves the 
lattice operations. For this it suffices to show that (J x)+ = J (x+) for x EX. 

Suppose x E X and f EX', f 2' O. We write Jx = x. From Theorems 11, 13 and 
19, we have 

(x)+(f) = sup{x(g): 9 E X',O::::: g::::: f} 
sup{g(x): 9 E X',O::::: g::::: f} 
sup{g{x): 9 E K,O::::: g::::: f} 
f(x+) (x+rU)· 

That is, (Jx)+ J(x+) as desired. 

Exercise 1. Show X+ is a convex cone, i.e., is convex and x E X+, t 2' 0 implies 
tx E X+. 

Exercise 2. Complete the proof of Proposition 3. 

Exercise 3. Prove (iv)-(vi), (ix) of Proposition .5. 

Exercise 4. Let X, Y be Riesz spaces and T : X -> Y linear. Show that the 
following are equivalent: 

(i) T(x Vy) = (Tx) V (Ty), 

(ii) T(xI\Y) (Tx) 1\ (Ty), 

(iii) (Tx) 1\ (Ty) = 0 when x 1\ y 0 in X, 

(iv) ITxl == T(lxl). 

Exercise 5. If T : X -> Y is positive, show T is monotone in the sense that x ::::: y 
implies Tx ::::: Ty. Show every positive operator is order bounded. 

Exercise 6. If X is a semi-normed vector lattice show x -> x- is uniformly contin­
uous. 

Exercise 7. Let BVo[a, b] be the linear subspace of BV[a, b] which consists of the 
functions which vanish at a. Show BVo[a, b] is a Riesz space under the pointwise order. 
Show the variation norm, Ilfll = Var'(f : [a, b]) is not a lattice norm on BVo[a, b]. 
[See Appendix 1 for the notation and definitions.] 
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Exercise 8. Show that the closure of a vector sublattice of a normed vector lattice 
is a vector sublattice. 

Exercise 9. If X is a normed vector lattice, show X+ is closed. 

Exercise 10. Let X be a normed vector lattice and {xd C X satisfy Xk :S Xk+l' If 
Ilxk - xll--+ 0, show x = SUp{Xk : k}. Hint: (x n - xm)+ = 0 for m > n. 

Exercise 11. Let X be a normed vector lattice. Show x E X is positive if and only 
if I( x) 2': 0 for every positive, continuous linear functional I on X. Hint: Theorem 
13.(ii). 

Exercise 12. Let X be a Banach lattice and x 2': 0, x E X. Show 

Ilxll = sup{f(x) : 0 :S IEX', IIIII = I}. 

Exercise 13. Let X, Y be normed vector lattices and T : X --+ Y positive. If X is 
a Banach lattice, show T is continuous. Hint: Theorem 23. 

Exercise 14. Show that any two complete lattice norms on a Riesz space must be 
equivalent. 

Exercise 15. Let X be an ordered vector space and Z a linear subspace of X such 
that whenever x E X there exists z E Z with z 2': x. Suppose F : Z --+ R is a positive 
linear functional. Show F has a positive linear extension to X. [This is a simple 
version of Kantorivich's Theorem; see [Vu] X.3.l.] [Hint: Set 

p(x) = inf{F(z): z E Z,z 2': x} 

and use the Hahn-Banach Theorem.] 

Exercise 16. Show there exists a bounded, finitely additive extension of Lebesgue 
measure on [0,1]. [Hint: Let X = B[O, 1], 

Z = {f : [0, 1] --+ R : I is bounded and Lebesgue measurable} 

and F: Z --+ R be F(f) = J~ Idm. Use Exercise 15.] 





Cllapter 6 

Ful1.ction Spaces 

6.1 LP-Spaces 

Let Jl be a measure on a a-algebra, L:, of subsets of S and let 0 < p < =. The space 
LP(Jl) consists of all real-valued L:-measurable functions, f, defined on S such that 
If IP is Jl-integrable. If Jl is Lebesgue measure on a measurable subset E of R n we 
write LP(Jl) =LP(E). If f, 9 E LP(Jl), then 

If + glP ::; 2P(lf1 P + IgjP) 

so LP(Jl) is a vector space under pointwise addition and scalar multiplication. More­
over, 0 ::; r ::; If I , 0 ::; f- ::; If I implies r, f- E LP(Jl) when f E LP(Jl) so LP(Jl) is 
also a vector lattice under the pointwise order. 

For 1 ::; p < =, we set II flip = Us IflP dJl)1/p [the case 0 < p < 1 is covered in 
the exercises]. We show that 1IIIp is a semi-norm on LP(Jl)j note that 1IIIp is a lattice 
semi-norm. Only the triangle inequality needs to be checked. We do this with the 
aid of two preliminary results. 

Lemma 1 Let a, b:2: 0 and 0 < t < 1. Then at b1- t 
::; ta + (1 - t)b. 

Proof: Define ip: (0,=) --+ R by ip(s) = ts - st. Then ip'(S) < 0 for 0 < s < 1 
and ip' (s) > 0 for s > 1 so ip has a minimum at s = 1. Thus, t - 1 ::; ts - st for s > O. 
Put s = alb [if b = 0, trivial] and multiply by b to obtain the desired inequality. 

Theorem 2 (Holder's Inequality) Let 1 < P < = and q be such that lip + II q = 
1. If f E LP(Jl), 9 E U(Jl), then fg E L1(Jl) and IIfgl11 ::; Ilfllp Ilgllq· 

Proof: If either Ilfllp = 0 or Ilgllq = 0, the result is trivial so assume that 
both are positive. Note that if we set t = lip in Lemma 1, the conclusion reads 
AB::; Nip + Bqlq when A, B:2: O. Set A = If(t)1 I II flip' B = Ig(t)1 I Ilgllq for t E S 
to obtain 

.;.;:.If~(t..c.::;)g.,.:..(tfc'-)I < _If_(t)_IP + _lg_(t)_lq 
II flip Ilgllq - p Ilfll~ q Ilgll: 

207 
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IIfglll 
IIfllp Ilgllq 

1 1 
+-=1. 

p q 

Remark 3 For p 2, this inequality is often referred to as the Cauchy-Schwarz 
Inequality. 

We can now easily obtain the triangle inequality for 1111p. 

Theorem 4 (Minkowski Inequality) Iff, 9 E LP(p), 1 ::; p < 00, then Ilf + gllp ::; 
IIfllp + Ilgllp· 

Proof: For p 1, the inequality is clear. Assume p > 1. Note 

Is If + glP dp = Is If + gllf + glP-l dp 
::: Is If I I! + glP-1 dp + Is Igllf + glP-1 dp. 

(6.1 ) 

Observe that (p l)q = p and apply Holder's Inequality to both terms on the right 
hand side of (1) to obtain 

Is If + glP dJL ::: Us IflP dJL//
p Us(lf + glP dJL //q 

+ Us IglP dl')l/P Us If + glP dJL)I/q. 

If Is If + glP dJL = 0, the result is trivial; otherwise, divide (2) by 

(is If + glP dJL) I/q 

to obtain the desired inequality. 
We now extend the Riesz-Fischer Theorem to p > 1. 

Theorem 5 (Riesz-Fischer) For 1 ::; p < 00, LP(p) is complete under II lip . 

(6.2) 

Proof: Let !k be an absolutely convergent series in LP(JL). Define gn(t) = 

if.(t)1 for t E S. Then 

n 00 

Ilgnllp Ilfkllp ::; I: IIfkllp M < 00. 

'=1 

Now 9n i so if we set g(t) = limgn(t), then 9 is L:-measurable and gn(t)" i g(t)P, 
9n 2: 0, so by the MCT 
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Hence, 9 is finite fi-a.e. and we may assume that 9 E Lp(fi}. Note that this means 
<Xl 

that the series 2: If,,(t)1 converges in R for fi-almost all t E 5. 
"=1 

Define f by f(t) fk (t) when this series converges in Rand f (t) 0 otherwise. 

Then f is 2:-measurable and f is the fi-a.e. limit of 2:f". Let Sn fIe. Then 

ISnl ::::: gn ::::: 9 so If I ::::: 9 fi-a.e. and f E Lp(fi). Also, ISn - flP ::::: 2P and Sn -. f 
fi-a.e. so by the DCT, lis" flip -> O. By Theorem 5.1.4, Lp(fi) is complete. 

Note that IIfll1' 0 if and only if f = 0 fi-a.e. so if Kp = {J E LP(fi) . Ilfllp OJ, 
then £1'(fi)= L1'(fi)1 Kp is a Banach space and two functions are in the same coset of 
O(fi) if and only if they are equal fi-a.e. (§5.4). Instead of working with the coaets in 
D'(fi), it is customary to identify two functions if they are equal almost everywhere 
and treat the cosets as if they were functions. Under this agreement, we would say 
that O(fi) is a Banach lattice. 

Comparison of LP-spaces: 
In general, there are no inclusion results for LP-spaces. For example, if f(t) 11 Vt 

for 0 < t ::::: 1 and f(t) 0 otherwise, then f E Ll(m) but f t/: L2(m), while if 
g(t) = lit for t 2: 1 and g(t) 0 otherwise, then 9 E L2(m) but 9 t/: Ll(m). [See also 
Exercises 1 and 2.] 

For finite measures, we do have 

Proposition 6 Let fi be a finite measure and 1 ::::: r < S < 00. Then L3(fi) C LT(fi) 
and the inclusion map is continuous. 

Proof: Let h E L8(fi). Set p sir, f = IhlT and 9 1 in Holder's Inequality to 
obtain 

is Ihlr dfi ::::: (is Ihl') Tis (fi(5))1-r/8. 

Apply Theorem 5.2.1 to obtain the continnity. 
If fi is counting measure on 5, we set £1'(5)= L1'(fi), and if 5 

£1'(N) =p. Thus, £1' consists of all sequences {tj} such that 
N, we write 

[recall Example 5.1. 7]. For £1'-spaces, in contrast to Proposition 6, we have 

Proposition 7 If 1 ::::: r < s < 00, I'" C £8 and the inclusion map is continuous. 
Moreover, the containment is proper. 

Proof: Suppose x {tj} E I'" with Ilxlir ::::: 1. Then Itj I ::::: 1 for all j so Itj IS ::::: Itj IT 
which implies IIxll: ::::: Ilxll;. 

If x {tj} E i!: with x '" 0, then x/llxli r E i!: and Ilx/llxllrllr 1 so by the 
observation above IIx/llxllrll. ::::: 1 or IIxll. ::::: IIxlir. 
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Take tj = (1/j)1/T. Then x = {tj} E fls\fl!. 
For a thorough discussion of the possible inclusion results for LP-spaces see Romero 

([RD· 

Dense subsets of LP : 
We have the analogues of Theorems 2, 3 and 6 of §3.5 for LP-spaccs [Exercise 6]. 

Theorem 8 The vector space of L,-simple functions in Y(/1) is dense in Y(/1). 
Moreover, given f E Y(/1) there exists a sequence of simple functions {'Pd in Y(/1) 
such that 'Pk --+ f pointwise and II'Pk - flip --+ 0; if f 2 0, the {'Pd can be chosen 

such that 'Pk r f· 
Assume that /1 is a premeasure on the semi-ring S of subsets of Sand tbat L, is 

the a-algebra of /1* -measurable subsets of 5 (§2.4). Let /1 denote the restriction of /1: 
to L,. 

Theorem 9 The vector space of S -simple functions in Y(/1) is dense in Y(p). 

Theorem 10 Let 5 be a locally compact Hausdorff space and /1 a regular Borel mea­
sure on B(5). Then Cc(5) is dense in L P (/1). 

As an application of Theorem lO we give a generalization of Theorem 3.11.10 to 
LP-spaces. 

Theorem 11 If f E Y(Rn), then lim Ilfh - fll = o. 
h-+O P 

Proof: Let E > O. By Theorem 10, there exists 'P E Cc(Rn) such that Ilf - 'Pllp < 
Eo 'P is uniformly continuous and there exists a such that 'P(x) = 0 for Ilxll 2 a so 
there exists 0 < 8 < 1 such that 1'P(x + h) - 'P(x)1 < E for Ilhll < 8. Thus, if Ilhll < 8, 
then 

(6.3) 

Now if Ilhll < 8, 

Ilfh - flip ~ Ilfh - 'Philp + II'Ph - 'Pllp + II'P - flip < 2E + II'Ph - 'Pllp 

so the result follows from (3). 

Convergence in LP : 
We give a characterization of sequential convergence in LP for 1 ~ p < 00. Gen­

eralizing Proposition 3.7.1, we have 

Proposition 12 If /k --+ f in Y(/1), then /k --+ f /1-measure. 

We give some additional necessary conditions that must be satisfied by a sequence 
converging in LP. 
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Definition 13 Let F be a family of signed measures on L:. F is uniformly p­
continuous if lim veE) = 0 uniformly for v E F. 

I'(E)-O 

Proposition 14 Let fk E Y(p) and vk(E) :::: IE 1/kIP dp for EEL:, k = 0,1, .... If 
/k -+ fo in LP(p), then {VI<; : k ;::: O} is uniformly p-continuous. 

Proof: Let ( > O. 3 N such that k ;::: N implies IIh - follp < t.. By 3.2.17 there 
exists" > 0 such that E E peE) < 6 implies vJ,;(E) < ( for k = 0,1, ... , N. For 
k ;::: Nand peE) < 6, 

vk(E)I/P ~ (i If;, - folP dp) IIp + (i Ifol P dp) IIp ~ IIh - follp + VO(E)I/P < (+ (lIp. 

Definition 15 Let F be a family of signed measures on L:. F is equicontinuous from 
above at 0 if E" E E" ! 0 implies lim v( E/;) = 0 uniformly for v E :F. 

k 

Proposition 16 Let /k E LP(p) and vJ,;(E) = IE 1/kIP dp for EEL:, k = 0,1, .... If 
fk -+ fo in Y(p), then {Vk : k ;::: O} is equicontinuous from above at 0. 

Proof: Let f > O. There exists N such that n ;::: N implies Ilfn - follp < f. Let 
E" E L:, E" ! 0. By 3.2.9 and there exists K such that Vn(Ek) < f for k ;::: 1< 
and n = 0,1, ... , N - 1. For n ;::: Nand k;::: K, 

Vn(E,,)l/p ::; (i. Ifn folP dp) IIp + (i. Ifol P dp) IIp < f + flIp. 

Propositions 12, 14 and 16 give three necessary conditions for a sequence to con­
verge in Y. It is an interesting result of Vitali that these necessary conditions are 
also sufficient. 

Theorem 17 (Vitali) Let 11, E Y(p.) and vk(E) = IE If"IP dp. for EEL 
k = 0,1, .... Then I" -+ fo in Y(p.) if and only il 

(i) /k -+ fo p-measure, 

(ii) {Vk: k ;::: O} is uniformly p.-continuous, 

(iii) {Vk: k ;::: O} is equicontinuous from above at 0. 

Proof: => follows from the above. 
-¢::: Since U {t: !k(t) =f O} is p o--finite [3.2.14J, we may as well assume that p. is 

k=O 
o--finite. Let S U Ek where Ek E L:, E" i and P.(Ek) < (Xl. Set Fk = EA:. 

k=1 
Let f > O. From (iii) 3k such that IF. II; IP dp. < (E/2)p for j ;::: O. Hence, for j ;::: 0, 

(L.lfi I;IP dp. rIP::; (L.lliIP dp. rIP + (L.II;IP dp. rIP < ( (6.4) 
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Let G;j = {t : If;(t) - fj(t)1 ~ t}. Then 

(6.5) 
::::: IEknG;j If; - fjlP dJl + tPJl(Ek). 

From (i) and (ii) the first term on the right hand side of (5) goes to 0 as i, j --+ 00. 

From (4) and (5), it follows that {t;} is a Cauchy sequence in LP-norm. By the Riesz­
Fischer Theorem there exists 9 E LP(Jl) such that f; --+ 9 in LP(Jl). By Proposition 
12 f; --+ 9 in Jl-measure so fo = 9 Jl-a.e. and f; --+ fo in LP(Jl). 

Dual of LP for p > 1 : 
We now give a characterization of the dual of LP(Jl) for 1 < p < 00. In what 

follows p is fixed, 1 < p < 00, and l/p + l/q = 1. 

Proposition 18 If f E Lq(Jl), then F,: LP(Jl) --+ R, defined by F,(g) = IsfgdJl, is 
a continuous linear functional on LP(Jl) with I IF, II = Ilfllq. 

Proof: By Holder's Inequality, 1F,(g) I ::::: Ilfllq Ilgllp so F, is continuous with 

IIF,II ::::: IIfll q· 
Set 9 = Iflq- 1 sign f. Then 9 is measurable and IglP = Ifl(q-l)P = Ifl

q 
so 9 E LP(Jl) 

and 
F,(g) = Is Ifl

q 
dJl = (Is Ifl

q 
dJl)I/q (Is Ifl

q 
dJl)I/P 

= IIfllq (Is IglP dJl)I/P = IIfllq IIgllp· 
Hence, IIF,II = IIfll q· 

Thus, the map U : Lq(Jl) --+ LP(Jl)', Uf = F" is a linear isometry which is order 
preserving. We show that U is onto, i.e., every continuous linear functional on LP(Jl) 
has the form F, for some f E U(Jl). Hence, we can identify U(Jl) and LP(Jl)' as 
Banach lattices. 

We first establish a useful lemma, sometimes called the Reverse Holder Inequality. 

Lemma 19 Let Jl be a-finite and let f : S --+ R be measurable. Suppose 

M = sup {is Ifgl dJl : IIglip ::::: I} < 00. 

Then f E Lq(Jl) and IIfllq = M. 

Proof: Let S = U Ak with Ak 1 Sand Jl(Ak) < 00 and 
k=l 

Ek = {t E Ak : If(t)1 ::::: k}. 

Set gk = Iflq-1 GEk sign f. Then gk is bounded, measurable and vanishes outside Ak 
so gk E LP(Jl). Moreover, gd = Ifl q 

GEk so 
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and 

(is Iflq CE.d!J,) I-l/p=l/q ~ M. 

Since Iflq 
CE• 1 I/lq, the MCT implies I E U(p,) with 1I/11q ~ M. The reverse 

inequality M ~ 1I/IIq now follows from Holder's Inequality. 
See also Exercise 14. 

Theorem 20 (Riesz Representation Theorem) If F E LP(p)', then there exists 
IE Lq(p) such that F(g) Is Igdp for 9 E LP(p). Moreover, IIFII = 1I/11q· 

Proof: First assume that fl is finite. Define v : --+ R by vCE) = F(CE) [note 
CE E LP(fl) since p, is finite]. Then v(0) F(O) = 0 and v is finitely additive since 
F is linear. We claim that v is actually countably additive. For if {Ej } c L: are 

pairwise disjoint and E U E j , then 
j=l 

so vee) - t v(Ej ) --+ O. Since 
j=l 

p 

v is a finite signed measure which is absolutely continuous with respect to fl. 
By the Radon-Nikodym Theorem, there exists a fl-integrable function f such that 

veE) = IE Idp, = Fe CE ) for every E E By linearity, we have F( 'P) = Is l'Pdp for 
every L:-simple function 'P. We claim that F(g) = IsIgd/l for every 9 E LP(p,). For 
this we lJlay assume 9 "2': o. Let A {t : I(t) "2': OJ, B = {t : f(t) < OJ. Choose a 
sequence of non-negative, simple functions {'Pk} such that 'Pk 1 9 and II'Pk - gllp ....... 0 
[Theorem 8]. Then 'PkCAI 'PkJ+ 1 gJ+ and II'PkCA - gCAIl p --> 0 so by the 
continuity of F, 

F('PkCA) L f'Pkdp isJ+'Pkdfl --> F(gCA) 

and by the MCT gJ+ E U(p,) and 

L l'Pkdfl is r 'Pkdfl 1 is r gdp. 

Hence, F(gCA) IsgJ+dp,. Similarly, F(gCB) Isgl-dfl so F(g) = IsIgdp,. 
That IE Lq(fl) and IIFII Ilfllq follows from Lemma 19. 
Now let p, be an arbitrary measure. For E E 2:, let 
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Set £ {E E L : p(E) < oo}. By the part above, for every E E £ there exists 
fE E Lq(E) [unique up to p-a.e.] such that F(CEg) = IsiEgdp for 9 E LP(p). 
Moreover, 

IIfEllq = sup {IF(CEg)1 : IIgllp::; I}::; I!FII· 

Let a = sup{lIfEll q : E E £} ::; I!FII. If A, B E £ and A C B, then fA !B p-a.e. 
in S so !fA 1 ::; IfBlp-a.e. and IIbllq ::; IIfBll q • Hence, there exists an increasing 
sequence {Ek} C £ such that IIfE.ll q i a. Let f (t) = (t). Since fHl !k 
p-a.e. in Ek, limfE. (t) exists for p-almost all t E S, f = fk p-a.e. in Ek and f 0 

off E U Ek. 
k=] 

We claim that F vanishes on LP(EC). For if F is not zero on LP(EC), then since 
the simple functions are dense in LP(p), there exists B E £ such that B C Ee and F 
does not vanish on LP(B). Therefore, fB f. 0 p-a.e., and since B n Ek 0, 

a
q ~ IlfBuE.II: IIfBII: + lliE.lI: 

which implies aq ~ IIfBII: + a9 and gives the desired contradiction. 
Let 9 E LP(p). Since f E L9(/-L), fg E l}(p). Since giE. --t gf /-L-a.e. and 

IgiE.1 ::; Igfl, the DCT implies IsgiE.dp --t Isgfdp. Similarly,lIgCE• gCElip --t 0 
so the continuity of F implies F(gCE.) --t F(gCE). Hence, 

limF(gCE.) lim hgiE.dp hfgd/-L == F(CEg) F(CEg + CEeg) F(g). 

Corollary 21 If 1 < p < 00, then P(p) is reflexive. 

We describe the dual of certain Ll-spaces in §6.2. 
We give two interesting applications of duality. The first is an extension of 

Minkowski's Inequality to integrals. Minkowski's Inequality asserts that the D'-norm 
of a sum is less than or equal to the sum of the LP-norms. We give a generalization 
where the sum is replaced by an integral. 

Theorem 22 (Minkowski's Inequality for Integrals). Let (S,S,/-L), (T, T, v) be u­
finite measure spaces and f : S x T --t R measurable with respect to the u-algebra of 
(p X v)*-measurable sets. Let 1 ::; p < 00 and assume that f(·, t) E LP(/-L) for t E T 
and t --t IIf(', t)lIp belongs to V(II). Then f(05,·) E Ll(lI) for p-almost all s E S, the 
function s --t IT f( s, . )dll belongs to LP(p) and 

Proof: The case p 1 follows from Fubini's Theorem. Let 1 < p < 00 and 
hE L9(p). By Fubini's Theorem and Holder's Inequality, 

Is {IT If( s, t)1 dll(t)} Ih(s) I dp( s) IT Is If(s,t)llh(05)1 dp(s)dll(t) 

< IT Us If(s, tW dp(s)/Ip IIhllq dll(t) 

IT IIf(·, t)lIp IIhllqdll(t). 
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By Lemma 19, s --> JTf(s,t)dv(t) belongs to LP(p) with 

Application to Convolution: 
Recall the convolution product of two functions f, 9 : Rn --> R is defined to be 

[§3.11]. 

f*g(x)= r f(x-y)g(y)dy 
JRn 

Proposition 23 Let 1 < p < CXl. If f E Ll(Rn), 9 E LP(Rn), then f * 9 E LP(Rn) 
and Ilf * gllp :0:::: II fill Ilgllp· 

Proof: Let l/p + l/q = 1 and h E U(Rn). Then, using Exercise 3.11.8 and 
Fubini's Theorem, 

JRn JRn If(x - y)g(y)h(x)1 dydx JRn Ih(x)1 JRn If(x - y)g(y)1 dydx 
JRn Ih(x)1 JRn If(t)g(x - t)1 dtdx 
JRn If(t)IJRn Ih(x)g(x - t)ldxdt 

< JRn If(tJlllg-tllp Ilhllq dt 
JRn If(t)lllgllp Ilhllq dt 
II fill Ilgllp Ilhllq . 

(6.6) 

Since h can be taken to be non-zero everywhere [e-lIxI12j, (6) shows that f * 9 is finite 

a.e. The inequality in (6) shows that f * 9 induces a continuous linear functional on 
U (Rn). By Theorem 20, f * 9 E LP (Rn) and by (6), IIf * gllp :0:::: Ilflll Ilgllp. 

We can combine Theorem 22 and Proposition 23 to obtain an extension of Theo­
rem 3.11.11 to the case where 1 < p < CXl. 

Theorem 24 Let {ipd be an approximate identity and f E LP(Rn), 1 :0:::: P < CXl. 

Then Ilf * ipk - flip --> o. 

Proof: f * ipk E LP(Rn) by Proposition 23. Denote the function t --> f(x + t) by 
fx. By Minkowski's Inequality for Integrals, 

The function g(y) = Ilf-y - flip is bounded, continuous [Theorem 11] and g(O) = 0 
so the right hand side of (7) converges to 0 as k --> CXl by Exercise 3.11. 7. 

Exercise 1. Let S = (0,1/2]' 1 :0:::: P < CXl. Show f(t) = r l
/ P(ln(1/t))-2/p is in LP(S) 

but not in L'(S) for r > p. 
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Exercise 2. Let S [0,00), 1 :5 p < 00. Show f(t) "" t-1
/

2(1 + In Itlt1 is in £2(S) 
but not in LP(S) for p '" 2. 

Exercise 3. If fk fin LP(Il) and gk -+ gin U(Il) for 1 < p < 00, l/p + l/q = 1, 
show that fkgk -+ f 9 in £1 (11)· 

Exercise 4. If f E £'(11) n L"(Il), 1 < r < S < 00, show f E LP(Il) for r :5 p :5 s. 

Exercise 5. Let gn, 9 be measurable functions such that Ignl :5 M and gn -+ 9 Il-a.e. 
show that if fn -+ fin LP(Il), then fngn -+ fg in V(Il). 

Exercise 6. Prove Theorems 8-10. 

Exercise 7. Show the polynomials are dense in VIa, b) for 1 :5 p < 00. Generalize 
to Rn. 

Exercise 8. Let l/p+l/q 1, f E V(R), 9 E Lq(R). Show F(t) fR f(x+t)g(x)dx 
is uniformly continuous on R. 

Exercise 9. J.<or f E V(Il), 0 < p < 1, set Iflp = fs IflP d~l. Show dU,g) If - glp 
defines a complete semi-metric on V(Il). Show I Ip is not a semi-norm. 

Exercise 10. If fk -+ fin LP(Il) for some 1 :5 p < 00, show there exists a subsequence 
of {fA:} which converges Il-a.e. to f. 

Exercise 11. Let fA:, f, 9 E LP(Il) and fk -+ f Il-measure. If Ifkl :5 9 Il-a.e., show 
fA: -+ f in V(Il) [Dominated Convergence Theorem). 

Exercise 12. Let 1 < p < 00, l/p+l/q = 1. Suppose {fJ<} c LP(Il) and limfs /kgdll 
exists for every 9 E Lq(Il)· Show there exists f E V(Il) such that lim Is fkgdll = 

Is fgd~l. 

Exercise 13. Let fk, fo E L2[a, b] and Ilfk - fol1 2 -+ O. Set Fk(t) "" I~ k Show 
Fic -+ Fo uniformly on [a, b). Is p "" 2 important? 

Exercise 14. Let 11 be O"-finite and 1 < p < 00. Suppose f is measurable and 
fg E Ll (11) for every 9 E Lq (11). Show f E V (11). Show O"-finiteness cannot be 
dropped. [Hint: Exercise 2.2.16.J 
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Exercise 15. If p, is finite, show condition (iii) of Theorem 17 can be dropped. 

Exercise 16. Let k : S X S -+ R be in L2 (p, X p,). Show 

(i) y(.s) = Is k (.s, t) x (t) dp, (t) exists for p,-almost all s E S when x E P (p,) and 

(ii) yEP (p,) with IIYl12 .::; IIk11211x112' 
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The map K : x -+ y is a continuous linear map from L2 (p,) into itself and is called 
an integral operator. The function k is called the kernel of K. 

Exercise 17. Show f1' (S), 1 .::; p < 00, is separable if and only if S is countable. 

Exercise 18. Let A [a,j] be an infinite matrix and suppose A maps iT into £! in 

the sense that the sequence Ax = L~l a,j x j }, E £! for every x = {x j} E fT. Use the 

CGT to show that A is continuous. 
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6.2 The Space Loo(l1) 

Let 11 be i1 measure on it CT-algebra L:: of subsets of S. The spa.ce 1/''''(/L) consists of 
all L::-measurable functions f: -t R such that there exists a l1-null set N with 
f bounded on S\IV. is a vector space under pointwise addition and scalar 
multiplication and is a vector lattice under t.be pointwise order. We define a semi­
norm on I:"'(I1) by 

IIIII00 illf II(I)I : I E S\IV} : It(N) = O}. (6.1) 

Thc functions in a.re called It-essenlially bounded Iundions and the semi-norm 
in (I) is ca.lled the 11- essential .'mp o[ f. If F' c R" is Lebesgu(, mcasurable anrl m is 

lIwasure Oil E, we write L The following properties should 
be clear. 

Proposition 1 (i) III ". 
f = 0 /f-a.f. 

(ii) Ilflla:. 0: l1{t: IfU)1 M} '" O}. 

o if and only if 

(iii) II III S; Igl It-a. thm IIJlcv S; so II lie<. is Il {attire norm on LO-C(p). 

As was the ca.se for Uli' ot.her LP-spacco, Wf' a.gree to idcntity f1!llctions in [/''''(/f) 

which are equal /f-a.('. so we regard L "'(/I) as a NLS. The ana.logue of the Riesz­
Fischer Theorelll holds for L CY.' (p). 

Theorem 2 ~s complete allriPl' 

Proof: Let Uk 1 be Cauchy ill 1/>0(//.)' Thell there exists a li.-nul! set lV such that 

Therefore, is Cauchy for t S\1"/; set 
f(t) = 0 [or t N. Then f is lIl('as\II'ablc. Lel ( 

J /:1 < L Fixing k ~ n a.nd 

[or l tt IV. (6.2) 

lim fdl) for t E S\I\' and 
There exists 1'1 such that k, 
j -t 00 in (2) impli(~s that 

II.ik ...... fll.X) S; E so I and .h -t f in L=(jl). 
Thus, LOO(I1) is a. Banach lattice. 
We now show that the dual of Ll (Il) is [or CT-linite Ii. 
From Exercise 1, we have 

Proposition 3 Lei f E L=(ll). Define Ff : V(I!.) -t R by Ff(g) = Is Igdp. Then 
Ff is a continuous linear functional on Ll(p) with IIFfl1 Ilfll oo ' 

For CT-finite measures we show t.hat every continuous linear functiona.l on [,1(,1.) 
has the form Ff for some f L OO(p). 
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Theorem 4 (Riesz Representation Theorem) Let p. be a-finite. 11 FE (V(Ji»', 
there exists I E LOO(Ji) such that F(g) Is Igdp. lor g E LI(Ji) and IIFII 11/11,,,, !I 
is unique up to p.-a.e.J. 

Proof: First assume that p. is finite. Then as in the proof of Theorem 6.1.20 there 
exists I E LI (p.) such that F(g) = Is I gdp. for g E LI (p.). 

We claim that IE Loo(p.) and IIFII = 11/1100' Let f > O. Set 

A = {t: IIFII + I' < I(t)}. 

Then 
(l1F11 + 1')p.(A) :s; L III dp. L I(sign f)dp. 

= F(CA sign f) :s; IIFIIIICA sign IIII = IIFII p.(A). 

Hence, p.(A) 0 and I E LOO(p.) with 11/1100 :s; IIFII + f so 11/11"" :s; IIFII. By 
Proposition 3, IIFII :s; 11/1100 so 11/11"" = IIFII· 

Assume that p. is a-finite. Let {Ek} be an increasing sequence from I: with 
Ek 1 Sand P.(Ek) < 00. By the first part, there exists a sequence {/d c LOO(p.) such 
that Ik vanishes outside Ek, IIlkll oo :s; IIFII, Ik = Ik+l in Ek and F(g) Is Ikgdp. 
for every 9 E Ll(p.) which vanishes outside Let I = limlk so I Ik in Ek 
and 11/1100 S I/ F II. Therefore, F(CE.g) IsI(CE.g)dp. for every 9 E V(p.). But 
CE.g --+ 9 pointwise and ICE.gl :s; Igl so by the DCT and the continuity of F, 

F(g) = limF(CE.g) = lim is I(CE.g)dJi = is IgdJi. 

From Proposition 3, IIFII :s; 11/1100 so IIFII 11/11",,· 
Thus, when p. is a-finite the map U ; Loo(Ji) --+ (V(Ji»', U(f) = Ff is a linear 

isometry from L=(Ji) onto (Ll(p.»)' which is obviously order preserving. As before, 
we write LOO(p.) = (Ll(p.»'. 

In contrast to the situation when 1 < p < 00, Theorem 4 is false if the a-finiteness 
condition is dropped. 

Example 5 Let S = R and let I: be the <1-algebra which consists of the sets which 
are countable or have countable complements. Let p. be counting measure on 
Then Ll(p.) consists of the functions 9 on R which vanish outside a countable set 
and satisfy Ilglll I: Ig(t)1 < 00. Define F : LI(p.) --+ R by F(g) = I: get). Then 

tER 1>0 

FE (Ll(p.»' and IIFII = 1. If I: S --+ R were to satisfy 

F(g) = is Igdp. Lg(t) for 9 E Ll(p.), 
t>o 

then 1= C(o.",,). But this function is not I:-measurable. [See, however, Exercise 5]. 

Remark 6 There is a description of Ll(p.)' for arbitrary measures due to J. Schwartz 
([Sc]). There are necessary and sufficient conditions known for the measure p. to satisfy 
Ll (p.)' = Loo (p.); see [TT]. 
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Recall that for 1 < p < 00, LP(JL) is reflexive [6.1.21]. However, U(JL) is not 
generally reflexive, even for finite measures. 

Example 7 Let S = [0,1] with Lebesgue measure. Then C[O, 1] is a closed subspace 
of L=[O, 1] (Exercise 2). Define F : C[O, 1] ---> R by F(:.p) ',0(0). TheIl F is a 
continuous linear functional on C[O, 1] with IIFII = 1. By the Hahn~Banach Theorem, 
F can be extended to a continuous linear functional F: LOO[a, 1] R with IIFII = 1. 

Now there exists no f E LI[O, 1] such that P(g) Id fgdm for all g 1/'°[0, I]. 
For, choose continuous gk such that Igk(t)1 ::; 1 for 0:::: t ::; 1, gk(O) = 1 and gk(t) ---> 0 
for 0 < t ::; 1. Thus, if such an f exists, by the DCT limId fgkdm = 0 while 
F(gk) = 1 for each k. 

See also Exercise 3 for another proof. 
It follows from Exercises 3 and 5.6.1.1 that LOO[O, 1] is not reflexive. We descrihe 

the dual of L= in §6.3. 
We establish a result which in sOrrle sense justifies tbe notation for 

Proposition 8 Let J1. be a finite measure. If f E L=(J1.), then Ilfll oo = lim Ilfllp . 
p~oo 

Proof: If 11/11= 0, the result is trivial so assume IJiloo > 0 and let () < k < 
Ilflloo ' Set H = {t: I/(t)1 ;:: k}. Then J1.(Ji) > 0 and 

kP JL(H) ::; L IIIP dJ1. ::; [I/IP dJL ::; lifll;:' IL(8) 

so 

Letting p ---> 00 gives k ::; IIfllp ::; 11/1100' Hence, the equality follows. 

If f L=(JL), then Ig E LP(J1.) for every g E LP(JL). As an application of the 
CGT, we establish the converse of this result. 

Example 9 Let f : S ---> R be measurable and suppose Ig E U(tl) for every g 
LP(J1.). Then I E LOO(JL). Define a linear map T : U(JL) ---> U(p) by Tg = fg. We 
claim that T is closed. Suppose gk ---> g and Tgk Igk~' h in U(J1.). Then t.here is 
a subsequence {gn.} converging J1.~a.e. to g so fgn. fg = Tg Il~a.e. [6.1.12,3.6.3]. 
Hence, Tg hand T is closed. By the CGT, T is continuous, ami we may assume 
IITII ::; 1. Let 8> 0 and set E {t: If(t)1 2: 1 + 8}. Since 111'ngll ::; IIgll for n ;:: 1, 

[lglP dJ1. ;:: [WgI P
•dJ1. ;:: 1: (1 + 8tP IglP dJ1, 

and since (1 + 8)np ---> 00, IE Igll' dJ1. = 0 for every g E LP(JL) so p(E) = O. lIenee, 
f E LOO(J1.) with IIfll oo ::; 1. 
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Integrating Vector-Valued Functions 
We indicate how the CGT and the duality between LI and Leo can be used to 

define an integral, called the Gelfand integral, for vector-valued functions. Let X 
be a Banach space and p a measure on the u-algebra r:; of subsets of a set S. Let 
I: 5 --+ X be such that x' 0 I = xiI is p-integrable for every x' E X'. The mapping 
F : X' --+ £I (p) defined by F (x') = xiI is linear and has a closed graph (Exer. 10). 
Hence, F is continuous by the CGT. For E E r:;, 

x' --+ kXlldp = (CE,F(x')) 

defines a continuous linear functional on X' since I(CE,F(x'»)1 ~ 11F1l11x'll. This 
continuous linear functional is called the Gelfand integral of lover E and is denoted 
by IEldp. Thus IEldp E X" and UEld{t,x') = IEx'ldp. If IEldp EX JxX) 
for every E E r:;, then I is said to be Pettis integrable and IE Idp is called the Pettis 
integral of F over r:;. Of course, if X is reflexive, every Gelfand integrable function 
is Pettis integrable, but, in general, this is not the case. 

Example 10 Let It be counting measure on N and define I: N --+ Co{) by I(k) 10
k

• 

Let x' = {tk} E II (eo)'. Then Xl I (k) tk so x'l is p-integrable and 

k x'ld{. L tk = (CE,x'). 
kEE 

Hence, IEldp = CE and when E is infinite IEldp = CE E lOO\eo so I is not Pettis 
integrable. 

For more information on the Gelfand and Pettis integrals, see [Du]. There is also a 
dose analogue of the Lebesgue integral for vector-valued functions, called the Bochner 
integral; this integral is also discussed in [Dul. 

Exercise 1 (Holder's Inequality for p = 1). If IE LCO(p), 9 E LI(p), show Ig E LI(p) 

and Il/gllI ~ 11111"" IIglll' 

Exercise 2. If 'P E C[O, 1], show sup{l/(t)1 : 0 ~ t ~ I} equals the m-essential sup 
of 'P. Is this equality valid for an arbitrary measure on [0,1]7 

Exercise 3. Show £I [0,1] is separable and L"" [0,1] is not separable. Use Corollary 
5.6.1.13 to show that £1[0,1] is not reflexive. 

Exercise 4. Repeat Exercise 3 for II and lOO. 
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Exercise 5. Let S '" 0. Let [I(S) LI(p.), where p. is counting measure on 
S, and [oo(S) Loo(p.) [so [OO(S) consists of all bounded functions on S]. Show 
[I(S), = [oo(S). 

Exercise 6. Let 1 5 p < 00 and lip + llq = 1. Show that if I E £p(R), 9 E Lq(R), 
then 1* 9 is defined everywhere, is uniformly continuous, and II! * giL"" 5 III lip Ilgllq· 

Exercise 7. Let p. be (i-finite. Show 9 E Loo(p.) satisfies 0 5 9 5 1 p.-a.e. if and only 
if 05 Is Igdp. 5 Is Idp. for every I E LI(p.) with I 2 O. 

Exercise 8. p. is non-atomic if every EEL with p.(E) > 0 contains a subset A E L 
with 0 < p.(A) < p.{E) [i.e., Lebesgue measure]. If p. is finite and non-atomic, show 
L""{p.) is infinite dimensionaL Can the non-atomic assumption be dropped? 

Exercise 9. If I E L""'(p.) n J}{p.), show I E £P(p.), 1 < p < 00. 

Exercise 10. Show the operator F: X' -> J} (p.) defined in the last paragraph has 
a closed graph. 

Exercise 11. Let p. be counting measure on N and I : N -> Co be defined by 
I (k) = ek I k. Find the Gelfand integral of I with respect to p.. Is I Pettis integrable? 

Exercise 12. Let I E L= [a, bJ. Show there exists a sequence of continuous functions 

{In} such that IIlnll"", 5 11/11= and limJ.b Ingdm J.b Igdm for every 9 E LI [a, bJ. 
n a • 
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6.3 The Space of Finitely Additive Set Functions 

In this section we describe the dual of LOO as a space of bounded, finitely additive set 
functions. 

Let A be an algebra of subsets of a set S. We denote by ba(A) the space of 
all bounded, finitely additive set functions on A. If we define iddition and scalar 
multiplication pointwise on A, ba(A) is a vector space, and if we define v <:: Jl to 
mean YeA) ::; /-LeA) for all A E A, then ba(A) becomes an ordered vector space; it 
follows from Lemma 3.12.1.1 that ba(A) is a vector lattice under the pointwise order. 
We define a norm on ba(A) by 

Ilvll = Ivl(S), (6.1) 

where Ivl is the variation of v [§2.2.1; that (1) defines a norm on ba(A) follows from 
Exercise 2.2.1.1J. From Proposition 2.2.1.7 (iv) it follows that (1) defines a lattice 
norIn so ba(A) is a normed lattice. We show that ba(A) is a Banach lattice. 

Theorelll 1 ba(A) is complete. 

Proof: Let {vd be a Cauchy sequence in ba(A). Let (> O. There exists n such 
that k, j :::. n implies 

(6.2) 

Then IVk(A) - Vj(A)1 < E for k, j :::. n and A E A [Proposition 2.2.1.7 (i)J so {vk(A)} 
converges, to say v(A). Fixing k :::. n in (2) and letting j -t 00 gives h(A) v(A)1 <:: 
E for A E A. By Proposition 2.2.1.7 (v) IIVk - vii::; (for k :::. n so v E ba(A) and 
Vk -t v. 

The Dual of LOO(/-L): 
Let /-L be a measure on a o--algebra, E, of subsets of S. Let ba(E : 1') be the 

subspace of ba(E) which consists of those v E ba(E) which are absolutely continuous 
with respect to /-L in the sense that fleE) 0 implies Ivl (E) O. Then ba(E : /-L) is 
a Banach space under the norm in (1) since ba(I:: : /-L) is a closed subspace of ba(E) 
[Exercise 1]. 

We show that each v E ba(I::: /-L) induces a continuous linear functional on LOO(p). 
We write IIfILX) for the fl·-essential sup of I and Ilfll" = sup{ I/( t)1 : t E S} for the 
sup-norm. If v E ba(E} and h : S -t R is bounded and I::-simple, the integral Is hdv 
is well-defined and 

(6,3) 

[Remark 3.2.2J. If h : S -t R is bounded and E-measurable, there exists a sequence 
of I::-simple functions {'f'h} such that 'f'k -t h uniformly on Sand I'f'kl ::; Ihl (3.1.1.3). 
From (3), Us 'f'kdv} is a Cauchy sequence so we may define Is hdv lim Is 'f'kdv; it 
is easily checked that the definition of Is hdv does not depend on the sequence {'f'd 
and (3) still holds [Exercise 2]. 
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Lemma 2 Let v E ba(L: Jl) and h : S ~ R a bounded, L-measurable function such 
thatA {tES:h(t)#O} is Jl-null. ThenIshdv O. 

Proof: lIs hdvl $ Is Ihl d Ivl IA Ihl d Ivl + IS\A Ihl d Ivl $ Ilhll" Ivl (A) O. 
If v E ba(L : Jl) and h E LOO(Jl), we may define the integral of h with respect to 

v as follows: Pick f : S R bounded and L-measurable such that IIf - hll oo = 0 
and IIhIL", = IIfll" [Exercise 3]. Now set Is hdv Is fdv; by Lemma 2 this definition 
does not depend on the choice of f and, moreover, 

lis hdvl $ Ilhll oo Ivl (S). 

Hence, if v E ba(L : Jl), I,hen F,,(h) = Is hdv defines a continuous linear functional 
F" on LOO(Jl) with IIFyll $Ivl (S) Ilvll. It is actually the case that I IF" II = Ilvll. For 
suppose f > 0 is given. Choose a partition {Ej : 1 $ j $ n} of S such that 

n 

:L Iv(E)) I > II vii f 
j=1 

[Proposition 2.2.1.7], and for each j let tj = signv(E)) and set h 

hE LOO(Jl), Ilhll"" $ 1, and 

n 

:Llv(Ej )l2:: Ilvll- f 

j=l 

so IlFvll 2:: Ilvll and equality holds. 
Thus, the map U : ba(L : Jl) ~ Loo(Jl)', U(v) = F", is a linear isometry which 

obviously preserves order. We show that U is onto so we have the Riesz Representation 
Theorem for LOO(Jl)'. 

Theorem 3 (Riesz Representation Theorem) U"'(Jl)' = ba(L : Jl) [as Banach 
lattices}. 

Proof: Let F E J/<l(Jl)'. For EEL set v(E) = F(CE ). Then v is obviously 
finitely additive, and since Iv(E)1 $ IIFIIIICEII"", v is bounded and absolutely con­
tinuous with respect to Jl, i.e., v E ba(L : Jl). 

Since F( <p) Is <pdv for every L-simple function <p, the argument above shows 

that F == F" = U(v). 

The Dual of £00: 
If L = peN), we write ba= ba(P(N)). If Jl is counting measure on peN), then 

£00 LOO(Jl) and ba = ba(P(N) : Jl) so (f=y and ba are isometrically isomorphic as 
Bana.ch lattices. 
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Exercise 1. Show ba(2: : p,) is a closed subspace of ba(2:). 

Exercise 2. Show Is hdv is well-defined for h bounded and measurable and v E ba(2:) 
with lIs hdvl ~ IIhll ... Ivl (S). 

Exercise 3. (a) Show h E LOO(p,) if and only if :3 a bounded, 2:-measurable function 
f such that {t E S: h(t) i= f(t)} is p,-null. (b) Show that if hE L=(p,), t,hen 

Ilhll= inf{llfllu: f as in (a)} 

and this inf is attained. [Hint: Show Ilfll" ~ Ilhlloo for such f; set Z = {l E S : 
Ih(t)1 ~ IIhlloo } and show IlhCzll .. = IIhlloo'] 

Exercise 4. Let B( S, 'LJ be the space of all bounded, 2:-measurable functions. Show 
B(S, 2:) is a Banach space under the sup-norm and its dual is ba(2:). 

Exercise 5. Show Is hd(p, + v) Is hdp, + Is hdv when p" v E ba (2:) and 
hE B(S,L,). 
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6.4 The Space of Countably Additive Set Func­
tions 

Let 2:: be a u-algebra of subsets of S and let ca (2::) be the space of all finite signed 
measures on 2::. Since any finite signed measure on a u-algebra is bounded [2.2.1.5], 
ca (2::) is a linear subspace of ba (2::) and IIvll = Ivl (S) is a norm on ca (2::). We show 
ca (2::) is complete under this norm. 

Theorem 1 ca (2::) is a Banach space. 

Proof: We show that ca (2::) is a closed subspace of ba (2::) [§6.3]. Let {Jtd C 
ca (2::) be such that {Jtk} converges to Jt E ba (2::). Then 

for each E E 2:: [2.2.1.7] so limJtk(E) J.L(B) exists. Let {Bj } be pairwise disjoint 

from 2:: and set B U Bj • Let f. > 0 and choose n such that lIJ.Ln - Jtll < L Then 
j=l 

IJt(B) t J.L(Bi) I ~ IJ.L(E) J.Ln(B)1 + It(J.Ln(Ei ) - Jt(E;) I 

+ I. f J.Ln(Bi)1 < 2£ + I. f pn(Bi)l· 
I=p+l I=p+l 

(6.1 ) 

The last term on the right hand side of (1) can be made < £ for p large so Jt is 
count ably additive. 

ca (2::) is an ordered vector space under the pointwise order which it inherits from 
ba (2::), and we show that it is actually a vector lattice [Banach lattice]. 

Theorem 2 ca (2::) is a Banach lattice. Moreover, if p, v E ca (2::), then 

P 1\ veAl = inf {Jt(E) + v(A \B) : E E 2:, E C A} 

and 

P V veAl = sup {Jt(B) + v(A\B) : E E 2:, Be A} 

forA E 2::. 

Proof: By Lemma 3.12.1.1, it suffices to show that p 1\ v (Jt V v) is count ably 

additive. Let {Ai} C 2:: be pairwise disjoint and set A U Ai. If E E 2::, E C A, 
;=1 

then 
00 00 

peE) + v(A\E) = 2: {Jt(Ai n E) + V(Ai\E)} ;::: 2: Jt 1\ V(Ai) 
1=1 .=1 
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so 
00 

Jl A v(A) :::: E Jl A v(A.) . 
• =1 

Let € > O. For each i there exists E. E :L such that E. C Ai and 

Jl(E.) + V(Ai\E;) < Jl A v(A.) + €/2'. 

Now {Ei} are pairwise disjoint and if E = U E" then E C A and U (Ai\Ei) A\E 
,=1 1=1 

so 
00 

Jl A v(A) S; Jl(E) + v(A\E) = E{Jl(E;) + v(A,\Ei)} < EJl A v(A,) + €. 

Hence, Jl A v(A) = E Jl A v(Ai ). 
,=1 

The other statement is similar. 
There is an interesting order theoretic characterization of singularity for measures. 

Proposition 3 Let Jl, v E ca (:L) be measures. Then Jl J.. v if and only if p A v = o. 
Proof: =>: Let A, B E An B 0, S = AU B with Jl(A) = v(B) O. Then 

a S; p A v(S) Jl A YeA) + Jl A v(B) S Jl(A) + v(B) 0 

so Jl A v = O. 
<=: Jl A yeS) = a implies that for each i there exists Ei E :L such that peE,) + 

veEr) < 1/2'. Let An = U Ei, A = n An = limE" and B = AC. Then 
. n=l 

00 00 

Jl(A) S; Jl(An) S; EJl(E,) S; E 1/2i = 1/2n- 1 

implies Jl(A) O. Also 

v(A~) = v eEl Ei) S; veEi') < 1/2i 

for i 2>: n implies v( A~) = a so 

v(B) = v COl A~) S; ~ v(A~) O. 

Hence, Jl J.. v. 

Exercise 1. Let A E ca (:L) be positive and let ca (:L : A) be the subspace of ca (:L) 
consisting of the elements which are absolutely continuous with respect to A. Show 
ca (:L : A) is isometrically isomorphic to Ll(A). 

Exercise 2. Show v E ba (:L) is purely finitely additive if and only if vJ..ca (:L). 
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6.5 The Space of Continuous Functions 

Let S be a locally compact Hausdorff space and B B(S), the Borcl sets of S. 
Recall that Ge(S) is the space of all real-valued continuous functions on S which have 
compact support. We equip Ge(S) with the sup-norm, II . Ge(S) is not. generally 
complete [see Exercise 3J. Under the pointwise order, Ge(S) is a normed vector lattice. 
We begin by considering positive linear functionals on GeCS). 

If p is a Borel measure on B [so It is finite on compact subsets], then p induces 
a positive linear functional, FI" on (S) defined by < FI" <.p >= f" <.pdp. If F : 
GeCS) -> R is a positive linear functional on Ge(S) and F = f:' for some Borel 
measure ft, we say that JI is a representing measure for F. We first observe that 
regular representing measures arc unique. 

Proposition 1 Let ft, v be regular Borel measures on B such that Is <.pdp = Is <.pdv 
for every <.p E Ge(S). Then p v. 

Proof: Notation: If V is open and f E Ge(S), then f -< V means 0 ~ f ~ I and 
spt(f) c V. If K is compact and f E Ge(S), !..L-<J. mean;o~ f ~ 1 and f = 1 on 
K. 

By regularity, it suffices to show that p(K) = v(K) for every compact K. Let 
e > O. Pick V open such that f{ c V and Jl(V) < Jl(J<) + Co There exists f E Ge ( S) 
such that K -< f -< V [3.5.5]. Since GK ~ f ~ Gv, 

p(V) < ,u(K) + I'. 

so v(K) ~ p(K). By symmetry, v(K) J.t(K). 
Without the regularity assumption, Proposition 1 can fail; see Exercise ,1. 
We now show that every positive linear functional on Ge ( S) has a (unique) regular 

representing measure. For the proof we require a preliminary lemma. 

Lemma 2 Let K c S be compact and Vi, ... , Vn open with K C U \Ii. Then there 
1=1 

exist continuous functions fI,'" ,In E Gc(S) such that 

(i) O~li~l,i=l, ... ,n, 

(ii) spt(Ji) c \Ii, 

(iii) t J;(t) = 1 faT all t E K. 
,=1 

{f;} is called a partition of unity. 
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Proof: Let x E K. Then x E V; for some i and there exists an open neighborhood 
Ux of x such that fl. is compact and x E Ux C U xcV;. Let XI, . .• ,Xm E f{ be such 

that KeD Ux ; and let Hi be the union of those Ux } such that UXj c Vi. By 3.5.5 
1=1 

for each i there exists 9. E Cc(S) such that Hi -< 9. -< V;. Put 

Then fi -< V; and 

(6.1 ) 

Since K C {) Hi, at least one 9i(X) = 1 for each x E f{ so (iii) holds by (I) . 
• :=1 

To motivate the construction of a representing measure for a positive linear func­
tional, we give the following result. 

Proposition 3 If J.t is a re9ular Borel measure and V is open, then 

Proof: Clearly JL(V) is greater than the sup above. Let r < /l(V). Choose K C V 
compact such that JL(K) > r. Choose f E Co(S) such that K -< f -< V [3.5.5]. Then 
Is fdJL ;::>: JL{K) > r so the equality follows. 

Theorem 4 (Riesz Representation Theorem) Let F be a positive linear func­
tional on Cc(S). Then there exists a unique regular Borel measure JL representing F, 
i.e., F F".. 

Proof: For V open, define 

JL(V) = sup{F(f) : f E Gc(S), f -< V} 

[ef. Proposition 3). Certainly, 0 S; JL(V) S; 00 and JL{U) S; JL(V) if U is open and 
U C V. Extend JL to all subsets of S by setting JL·(A) = inf{JL(V) : V open, V :) A}i 
note JL·(V) = JL(V) for all open V. 

We claim that JL. is an outer measure on S. Clearly 0 S; JL·(A) S; 00 for A C S, 
JL·(0) = 0 and JL. is increasing on subsets of S. It remains to show that JL. is count ably 

00 00 

subadditive. Let {Ai} C S and A U Ai. If E JL"(A.) = 00, there is nothing to 
i=l ;=1 

prove so assume f JL·(Ai ) < 00. Let (; > O. For each i choose V; open such that 
1=1 

Ai C V; and JL(V;) < JL·(Ai)+€/2i
• Set V U Vi, If f -< V, then K 

i:1 

00 

spt(f) C U Vi 
;=1 



230 CHAPTER 6. FUNCI'JON SPACES 

so there exists n such that K C U Vi. By Lemma 2 there exist fl,' .,in E Gc(S) 
t=l 

such that j, -< Vi and t j, = 1 on K. Then f S t j, so 
i=l i=l 

n n 00 00 

F(J) S LF(J;} S p(Vi) s LJL(Vi) S LIL*(Ai) + ( 
1=1 1=1 t=] 

and 

'L(V) S L 'l*(A.) + {. 
i=1 

Hence, 

,=1 
Next, we claim that JL*(K) < 00 for each compact K C S Choose V open, with 

compact closure such that K C V. There exists 9 E Ge(S) with V -< 9 [3.5.5]. If 
f -< V, then f s 9 so F(J) S F(g) and Il*(K) S p(V) S F(g) < 00. 

We now claim that p* is finitely additive over the family of compact sets. Let K I , 

Kz be compact with KI nK. = 0. Since p* is count ably subadditive, it suffices to show 
that I.L*(KI) + p*(Kz) S Il*(KI UK.). Since KI C K~, there exists an open VI with 

compact closure such that KI C Vi C VI C K 2. IIence,]{2 C (VIr· Set Vi = (VIr 
and note Vi n \.-2 = 0. Choose an open V :J KI U K2 with JL(V) S p'(I<1 U ]{z) + c. 

Then KI C V n Vi, K. C V n \.-2. Pick fl' h E Gc(S) such that fl -< V n VI, 
fz -< V n \.-2, p(V n Vi) < F(ft) + ( and p(V n Vi) < F(h) L Note ft + f2 -< V 
since Vi n Vz = 0. Then 

p*(KI) + JL*(Kz) S JL(V n Vd + II(V n Vz) 
< F(Jd + F(Jz) + 2f = F(ft + fz) + 2( 

S p(V) + 2c < Il*(KI U K 2) + 3( 

so 11'(Kt} + 'l*(K2) S p*(KI U Kz). 
We now claim that for each open V, 'ltV) = sup{p'(K) : V :J ]{ compact} lirHlcr 

regularity]. Let r < p(V). Choose f -< V with r < F(J). Let J{ spt(J). If Hi is 
open, K C Hi, then f -< Hi so r < F(J) S p(Hi) which implies 1.( V) ::::: p*( K) ::::: 
F(J) > r from which the desired equality follows. 

We next assert that B C M (,L*), the class of p* -measurable sets. First note that 
JL*( K) + 'L(V) = JL" (K U V) when K is compact, V is open and J{ n V = 0 [if J{ I C V 
is compact, then by the finite additivity of p* over compact sets and the countable 
subadditivity of JL*, 

and the identity follows from the inner regularity of the preceding paragraph]. 
It suffices to show that if V is open, then V is p"-measurable. Let A C S with 

JL·(A) < 00 be a test set. First assume that A is open. Let K be compact with 
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K C AnV. Then the open set W A\K satisfies Knw 0 and An vc eWe A 
so by the observation in the paragraph above, 

The inner regularity of open sets implies that p:(A n V) + JL·(A \ V) ::; JL-(A) for every 
open A. 

Now let A c 5 be arbitrary. If W ::> A is open, then by the above 

By the definition of JL-, 

and V is JL--measurable. 
It follows that JL- restricted to B, which we denote by JL, is a measure on B. By 

the properties established above JL is a Borel measure and every open set is inner 
regular. Every Borel set is outer regular by the definition of JL- so JL is a regular Borel 
measure. 

Finally, we claim that F(f) = Is fdJL for f E Cc(S). Let f E Cc(S), E > 0 and 
fix V open with K = spt(f) C V and JL(V) < 00. Choose e> 0 such that If(t)1 < e 
for t E S. Partition the interval [-e,e] in the range of f by Yi = -e + i(2e/n), 
i 0,1, ... , n, where n is chosen such that 2e/n < E. Hence, Yi - Yi-l 2e/n < E. 
Let A = {t E K : Yi-l < f(t) ::; Yi} (i = 1, ... , n) be the partition of K induced by 
the {Yi}. Note the open set Wi = {t E V : Y'-l E < f(t) < Y' + c} contains Ai' 
By regularity for each i there exists open V; with Ai c V; C Wi and JL(V;\Ai ) < E/n. 

n 
Then K C U V; c V. By Lemma 2 there exists Yl, ... ,y", E Cc(S) such that Y; -< V; 

.=1 
and Yi(t) = 1 for t E K. Note that fy; ::; (Yi + E)Y; and f t JYi. Thus, 

i=l 

F(f) - Is fdp t F(y!;) - Ik fdp 
i=l I 

< t (Yi + c)F(gi) - t (Yi - f)JL(A,) 
1=-1 i=1 

" " < 2:(Yi + f)p(V;) - 2:(y, f)JL(A,) 
.=1 .=1 

'" n 
2:(Yi + f)(JL(V;) - JL(A,)) + 2E 2: peA;) 
i=l i=1 

~ t(c + E)f/n + 2EJL(K) = c[e+ f + 2p(K)] 
1=1 

so F(f) ::; Is fdp. Replacing f by - f gives the reverse inequality. 

Corollary 5 F is continuous if and only if p is finite. In this case, I!PII ::; peS) 
Ilpll· 
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Proof: "¢=: IF(J)I :s; Is If I dp, :s; IIfll oo p,(S). 
'*: p,(S) sup{F(J): I -< S} :$IIFII since 11/1100 :s; 1 when f -< S. 
We denote by rca(S) the space of all finite, regular signed measures v on B with 

the norm Ilvll Ivl (S) [§6.4j recall a signed measure v is regular if Ivl is regular]. 
Each v E rca(S) induces a linear functional Fv on Ge(S) via integration, 

(see Exer. 3.2.31), and since 

IFv(J) I :s; £Ifl d Ivl :$ Ilfll oo IIvll , 

Fv is continuous with IlFvll :s; Ilvll. We say that v is a r'epresenting signed measur'c 
for Fv' Thus, we have a linear map U : v -+ Fv from rca(S) into Ge(S)'. We show 
that U is an isometry. 

Lemma 6 Let K1, ••. , Kn be pail'wise disjoint compact subsets of Sand ai, ... , an E 
R. Then thcl'e exists f E Gc(S) such that 

(i) f(t) a;jortEK;, 

(ii) IIflloo max{lad,···, lanl}· 

Proof: There exist pairwise disjoint Vi, ... , Vn such that Ki C Vi [for n 2, this 
IS use induction). By 3.5.5 there exist Ii E Ge(S) such that J(i -< fi -< Vi, Set 

I ad.· 

Theorem 7 Let v E rca(S). Then IIFIIII = IIvll. 

Proof: The inequality Ilf'vll :$ IIvll was observed above. 
Let t: > O. There exists a partition {AI," . ,An} of S by elements of B such that 

Iv(A.)1 > IIvll- t: 

[2.2.1. 7). By regularity, choose compact sets K; C Ai such that 

n n 

IIvll t: < L Iv(Kdl :$ L Ivl (K;), 
.=1 i==1 

where we may assume v(K;) 1= 0 for all i. By Lemma 6 choose f E Ge(S) such that 

f = sign V(Ki) on K. and IIfIL", :s; 1. Set K = U K i . Then 
i=l 

t 1 fdv = t Iv(Kdl > Ilvll - ( 
i=1 K, i=1 
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and 

Hence, 

so IlFvll ~ 11 11 11. 
We next show that U is a linear isometry onto C«S)'. 

Theorem 8 U : rca(S) -t Cc(S)' is onto. 

Proof: Let F E Cc(S)'. Then F = }; - F2 , where Fi are positive, continuous 
linear functionals on Ce(S) [Remark 5.7.20]. Let Ili be the regular Borel measure 
representing Fi [Theorem 4]. Since Fi is continuous, Ili is finite so Il III -1l2 E rca(S) 
is a representing signed measure for F. 

Thus, as Banach spaces rca(S) and Ce(S)' are the same. We show that they are 
also equal as Banach lattices, i.e., that U is a lattice isomorphism. 

Proposition 9 II E rca(S) is positive [i.e., a measure] if and only if Fv is positive. 

Proof: =;.: Clear. ..;=: By the first part of the proof of Theorem 4 the representing 
measure for Fv satisfies 

II(V) = sup{Fv(f) : f -< V} 

for V open. Hence, II(V) ~ ° for every open V and II ~ ° by regularity. 
Thus, both U and U-I are positive linear maps and U is a lattice isomorphism by 

Theorem 5.7.9. Summarizing, we have 

Theorem 10 (Riesz Representation Theorem) U is an isometric lattice isomor­
phism from rca(S) onto Ce(S)' [rca(S) = Cc(S)']. 

Concerning reflexivity, we have 

Example 11 0[0,1] is not reflexive since 0[0,1] is separable but rca[O,I] is not 
separable [if t '" s, IIbt - b,lI = 2 where bt is the point mass measure at tj Corollary 
5.6.1.13]. 

For the case when S is an interval I = [a, b] in R there is another description of 
the dual of O(I) using the Riemann-Stieltjes integral. If 9 is a function of bounded 
variation on I, then Fg(f) = J: fdg defines a linear functional on 0(1), and since 

IFg(f}1 ~ Ilfll oo Var(g : 1), 

Fg is continuous with IIFgl1 ~ Var(g : 1). It can be shown that IIFgl1 Var(g : 1) 80 

the map \II : 9 -t Fg is a linear isometry from BV[a, b] into O(I)'. This isometry is not 
one-one, but if BV[a, b] is replaced by the space of normalized functions of bounded 
variation, N BV[a, b], consisting of the right continuous functions which vanish at a, 
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then W is a one-one, linear isometry from NBV[a,b] onto C(!)'. For a description of 
this version of the Riesz Representation Theorem, see [RN] or [TL]. 

For a discussion of the history of the Riesz Representation Theorem, see [Gr]. 

Exercise 1. Let xES. Define F : Ce(S) -> R by F(J) = J(x). Show F is a 
continuous, positive linear functional on Cc(S). What is its representing measure? 

Exercise 2. Let 9 : [a, b] -> R be continuous. Define G : CIa, b] -> R by G(J) = J: J gdm. Show G E CIa, by. What is G's representing measure? 

Exercise 3. Let N have the discrete topology. Show Cc(N) = coo. Define F OIl 

Cc(N) by F(J) f j J(j). Show F is positive, linear and find its representing 
j~l 

measure. Is F continuous? 

Exercise 4. Let Rd be the real line with the discrete topology. Let S 
with the product topology. 

(a) Show that a subset of S is open if and only if its intersection with every vertical 
line is open in R. 

(b) Show the topology on S is locally compact. 

(c) Show J E Cc(S) if and only if J(.,y) E Ce(R) for every y and J(.,y) 0 for all 
but finitely many y. 

(d) Define F on Cc(S) by: if J E Cc(S), let Xl,"" xn be those values X [or which 
there exists a y with J( x, y) i= 0 [part (c)] and set 

F(j) n 1: J(xi,y)dy = LR1: J(x,y)dy. 
xE 

Show F is positive and linear. 

(e) Define 11 on B( S) by II( E) 

which represents F. 

(f) Show 11 is not regular. 

L m({y (x,y) E E}). Show II IS a measure 
xER 

Exercise 5. Let C(X)(S) be the space of all continuous functions which vanish at 00 

in the sense that for every € > 0 there exists a compact set K such that If( t)1 < c 
for t tI- K. Show cootS) is a Banach space under the sup-norm and describe its dual 
space. 
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6.6 Hilbert Space 

In this chapter we set down the basic properties of Hilbert spaces. Hilbert spaces are 
special cases of Banach spaces and have many important and special properties not 
shared by general Banach spaces. 

Let X be a vector space over the field F of either real or complex numbers. If 
z E C, the complex conjugate of z is denoted by z and the modulus by Izl. 

Definition 1 An inner product (scalar product, dot product) on X is a function 

.: X x X --> F, (x,y) --> x· y, satisfying 

(i) (x + y) . z = x· z + y. z Vx, y, z E X, 

(ii) >.(x· y) = (>.x). y Vx, y EX, >. E F, 

(iii) x· y = y. x Vx, Y E X, 

(iv) x· x 2: 0 Vx E X, 

(v) X· x = 0 if and only if x = o. 

A vector space X with an inner product defined on it is called all inner product 

space. 
It follows easily from the axioms that 0 . x = x ·0 = 0, x . (>.y) = :\(x . y) and 

X· (y + z) = x . y + X· z. We have the important inequality. 

Theorem 2 (Cauchy-Schwarz Inequality) If X is an inner product space, then 

(6.1 ) 

Proof: If y = 0, the result is trivial so assume y 1= O. In this case, (1) is equivalent 

to Ix . y / ~I ~ ..;x:x so we may assume y . y = 1. Then 

o ~ (x - (x· y)y). (x - (x· y)y) = X· x + Ix· Yl2 - (x· y)(y. x) - (x· y)(x. y) 

= x . x + Ix· Yl2 - (x . y)(x· y) - Ix· Yl2 = X • x -Ix· YI~ . 
(6.2) 

Remark 3 Equality holds in (1) if x and yare linearly dependent. The converse also 
holds for if equality holds in (1) with y 1= 0, then (2) implies that x - (x· y)y = o. 
Note that axiom (v) was not used in the proof of (1). 

Proposition 4 If X is an inner product space, the map x --> ..;x:x = Ilxll defines a 
norm on X. 
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Proof: Only the triangle inequality needs to be checked. For x, y E X, 

Ilx + yliZ (x + y). (x + y) -:; IIxliZ + IlyllZ + 211 xllllyll (IIxil + IIYII)' 

by Theorem 2. 
If X is an inner product space, we always assume that X is equipped with the 

norm induced by the inner product. 

Proposition 5 The inner product is a continuous function from X x X -+ F. 

Proof: If Xk -+ x and Yk y, then 

by the Cauchy-Schwarz Inequality. 
\Ve have the following important property of the norm in an inner product space. 

Proposition 6 (Parallelogram Law) If X is an inner p1'Oduct space, then 

Proof: 

IIx+yllZ+lix yIl2=(x+y)'(x+y)+(x y)·(x y) 
= 2lixl12 + 211yllZ + x . y + y . x - x . y y . x. 

Remark 7 The parallelogram law characterizes inner product spaces among the class 
of NLS. That is, if X is a l\'LS whose norm satisfies the parallelogram law, then the 
norm of X is induced by an inner product. If X is real, the inner product is defined 
by 

4x . y = lix + yliZ _ IIx yllZ, 

while if X is complex, the inner product is defined by 

We leave the (tedious!) verification to the reader. 

See Exercise 7 for an example of a norm which is not induced by an inner product. 

Definition 8 An inner product space which is complete under the induced no/'m is 
called a Hilbert space. 

Example 9 Rn or en is a Hilbert space under the usual inner product 

x· y = 

The norm induced by the inner product is the Euclidean norm. 
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Example 10 In the case of complex scalars, [2 is the space of complex-valued sc-
ex> 2 

quences {Xi} such that E Ix;! < (x). [2 under the inner product 
i=l 

ex> 

x·y LXiYi, X {Xi}, Y {Yi}, 
1=1 

is a (the original!) Hilbert space. 

Example 11 Let (5, E, p) be a measure space. The space of real-valued functions, 
L2(p), is a Hilbert space under the inner product I· 9 = IsIgdp since this inner 
product induces the usual L2-norm. 'vVe also want to define the space L2(p) for 
complex-valued functions. For this we need to discuss integrating complex-valued 
functions. 

Let I : 5 -+ C with u and v the real and imaginary parts of I, respectively. 
We say that I is measurable (integrable) if and only if both u and v are measurable 
(integrable). If I is p-integrable, we define the integral of I with respect to p to be 

Is I dfl = Is udfl + i Is vdfl· 

If Lb (fl) is the space of all C-valued, fl-integrable functions, it is easily checked that 
LI (fl) is a vector space and the integral is a linearfunctional onU (p). Since lui::; II I, 
Ivl ::; III and III ::; lui + lvi, a measurable function I is integrable if and only jf III is 
integrable. Moreover, if I is integrable, then 

[let Is I dfl = lIs I dp I ei8 so 

lIs Idfll == e- i8 Isldfl == I s e- i8 l dfl == Is R(e- i8 f)dfl 
+i Is I( e-i8 f)dfl Is R( e-i8 f)dfl 

::; Is IR( e- i6 f) I dfl ::; Is III dfl, 

where Rz (Iz) denotes the real (imaginary) part of z E ej. 
For 1 ::; p < (X), let L~(fl) be the space of all C-valued measurable functions 

I such that III E U(p) and set 1I/IIp = (Is IJI1' dp.)I/P. Then L~ is a complex 
Banach space; we usually write simply U(fl) for this space and indicate whether real 
or complex scalars are being used. 

For p 2, L2(p) over the scalar field of complex numbers is a Hilbert space under 
the inner product I . 9 Is Igdfl· 

Example 12 C[a, b] with the inner product I· 9 I: I(t)g(t)dt is an inner product 
space which is not a Hilbert space. 

We establish an important geometric property of Hilbert space. 
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Theorem 13 Let K be non-void, closed, convex subset of a Hilbert space H. If 
x E H, then there is a unique y E K such that 

IIx yll = min{llx zll: z E K} dist(x,K). 

Furthermore, y can be characterized by: 

y E K, R(x - y) . (z - y) :$ 0 for all z E I<. (6.3) 

Proof: Set d dist(x,K) ~ O. If w, z E K, applying the parallelogram law to 
(x - z)/2 and (x - w)/2 gives 

d2 :$1I(w + z)/2 - xll
2 = IIw - xll

2 
/2 + liz - x11

2
/2 -11(w - z)/211

2 (6.4) 

since (w + z)/2 E K. 
If I/z xII = d and Ilw - xii 
Pick {yd ~ K such that Ilx 

d, then (4) implies that w z so uniqueness holds. 
Ykll -t d. Set w = Yk, Z = Yj in (fl) to obtain 

Thus, {Yd is a Cauchy sequence in H and converges to some Y E K with IIx - YII = d. 
If Y E K satisfies Ily - xII d, then for z E K and 0 < t < 1, 

IIx-YII:$llx-tz-(1 t)YII IIx-y-t(z y)11 

so 

or 
2R(x y) . (z - y) :$ t liz _ YI12 . 

Letting t -t 0 gives (3). 
On the other hand if y satisfies (3) and z E K, computing Ilx - zl12 = II (x y) (z _ Y)112 

gives 
IIx - Yl12 -llx - zll2 2R(x y). (z - Y) liz - yl12 :$ 0 

so IIx yll = d. 
Let PK : H -t H be the "projection" map which sends x to y in Theorem 13. 

If H = R·, inequality (3) means that the vector from x to PKx makes an obtuse 
angle with the vector from z to PKx. Moreover, this map is uniformly continuous on 
H since Ilhu PKvll:$ lIu - vII· [from (3), R(u hu) . (hv hU):$ 0 and 
R(v-PKvHPKu-PKV) :$ 0 so adding gives R(U-V-(PKU-PKV))'(PKV-PKU) 'S: 0 
so 

IIPKu PKvll2 'S: R(u v)· (hv - PKU) :$ lIu - vIIIIPKv PKul1 

by the Cauchy-Schwarz Inequality.) 
If X is an inner product space, then two elements x, y E X are orthogonal, written 

xJ..y, if x . y = O. A subset E ~ X is said to be orthogonal if xJ..y y E x i y. 

If E ~ X is orthogonal and IIxll 1 vx E E, then E is said to be orthonormal. 
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Example 14 In £2 (over either R or C), {e k : kEN} is orthonormal, where ek is 
the sequence with a 1 in the kth coordinate and a in the other coordinates. 

Example 15 In L2 [-1r,1rj (over C), {e int j..f2i; n = 0, ... } is orthonormal. 

Proposition 16 (Pythagorean Theorem) If x.iy, then Ilx + Yll2 yW 

IIxll2 + Ily112. 

Proof: (x + y). (x + y) = Ilx + Yl12 = IIxl12 + IlyllZ = (x y). (x V). 
If X is an inner product space and M <;;: X, we set All. {x EX; x.iyVy E Af}; 

11111. is called the orthogonal complement of AI. Note that 1 .. 11. is a closed linear 
subspace of X. \Ve now use Theorem 13 to show that any closed linear subspace of 
a Hilbert space is complemented. 

Theorem 17 If lvlis a closed linear subspace of a Hilbert space II) then II 
M EB Ml.. 

Proof: For x E H let y PMx E M be as in Theorem 13. Then x - y E All. 
since by (3) R(x - y). w ~ a for every w E M. 

Ilence, x (x - y) + y with x - y E Ml. and y E M. Since lvf n All. {a}, we 
have II M EB Ml.. 

We can now establish the Riesz Representation Theorem for Hilbert space. 

Proposition 18 Let H be a Hilbert space and y E H. If fy : II ----> F is defined by 

(ly,x) = X· V, then fy E H' and IIfyll = Ilvll· 

Proof: fy is clearly linear and since l(Jy,x)1 = Ix· yl ~ Ilxllllyll, fy E H' with 
Ilfyll ~ lIyll· Since (fy,y) y. y = Ily112, IIfyll = ilyll· 

Thus, the map V ----> fy is an isometry from H into its dual space II'. We show 
that this map is onto. 

Theorem 19 (Riesz Representation Theorem) If II is a Hilbert space and f 
II') then 3 a 1J.nique y E H such that f fy. 

Proof: If f = 0, put y O. Suppose f # O. Set M = N(f), the kernel of f, so 
M is a proper closed subspace of Hand iU 1. # {a}. Choose z E M 1., Z # O. Then 

(/,z) # o. Set y ((f,z) j IIz112) z so Y E Ml., yolO, and (f,y) = 1(1, z)12 j IIzll2 = 

Y . y. For x E H, let 

so x = Xl + Xz and (f, xI) a so Xl E M and Xl . Y O. Hence x • y = X2 • Y = 
(f,x) = (/y,x), and f fy. 

The map (> ; V ----> fy is an isometry from H onto H' which is additive but is only 
conjugate homogeneous in the sense that (>(ty) f(>(y). From this it follows that 
Hilbert spaces are always reflexive. 
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As noted earlier, L2 (p) is a Hilbert space so it follows from Theorem 19 that. the 
dual of L2 (p) can be identified with L2 (p) [in the case of real scalars]. This proof 
of the Riesz Representation Theorem for L2 (p) is independent of the proof given in 
Theorem 6.1.20 which depended on the use of the Radon-Nikodym Theorem. Indeed, 
an independent proof of the Radon-Nikodym Theorem can be based on Theorem 19; 
see [R2], Theorem 6.9. 

If X is an inner product space and E = {x" : a E A} is an orthonormal subscl of 
X, then Vx E X the scalars x(a) X· x a , a E A, are called the Four'ier coclJ!cienls 
of x with respect to E. We establish several important properties of the Fourier 
coefficients. 

Proposition 20 Let X be an inner product space and {XI, . .. ,xn } an orthonormal 
set in X. Then for each X E X, 

n 2 
(i) I: Ix' Xii 

.=1 

(ii) (X f: (x· Xi)Xi) l.xi Vi. 
1=1 

Proof: (i): 

( X - f:(x. Xi)X,) . (x 
'1::::::1 

IIxl12 I:(x· , 
+ I:I:(x· Xi)(X-;X;)Xi' Xi 

, J 

I:7=1 (x . Xi) Xi) 

I:(x' x,)(X' X,) 

'lIx112 - I: Ix . X;J2 . 

(ii): (x Z:(X' Xi)Xi) . Xj X· Xj - z:(x, Xi)(Xi' Xj) = X· x) X· xJ = O. 

We generalize the inequality in (i) to infinite orthonormal sets. 

Proposition 21 Let E {xa: a E A} be an orthonormal set in an inner product 
space X. For each x E X the set Ex {a E A ; x . Xa of O} is at most c01mtabl£. 

Proof: For n EN, let 

= 
By Proposition 20 S" contains at most n 1 elements. Since EL· = US", the result 

follows. 

Theorem 22 (Bessel's Inequality) Let E 
subset of an inner product space X. For each x 

aEA aEA 

n=l 

{x" ; a E A} be an orthono1'7nai 

Xi 

(6.5) 
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Proof: If A is finite, this is Proposition 20. If A is infinite, we must assign a 
meaning to the series in (5). Let S {a E A : x . Xa. i= OJ. If S = 0, we set 
L Ix, xal 2 0, and if S is finite, we set 

aEA 

nEA aES 

and (5) follows from Proposition 20. If S is infinite, S is countable by Proposition 
21 so the elements {Xa : a E S} can be arranged in a sequence, say YJ,Y2, .... By 
Proposition 20, 

n 

\In L Ix . yd 2 ~ IIxII 2 

i=] 

so the series f Ix . y;J2 is absolutely convergent and its sum is independent of the 
.=] 

ordering of the elements {xn : a E S}. Therefore, we may define 

= 
L Ix· xal 2 = L Ix· Yil

2 

aEA 

and 

L Ix . xal 2 ~ IIxII 2 

aEA 

by Proposition 20. 
We will now show that equality holds in Bessel's Inequality for certain orthonormal 

sets in a Hilbert space. An orthonormal subset E of a Hilbert space}} is said to be 
complete (or a complete orthonormal set) if EJ c;;: H orthonormal and E J ,2 E implies 
that E = El (i.e., E is a maximal orthonormal set with respect to set inclusion). [See 
Exercise 1.] We give several criteria for an orthonormal set to be complete. First, we 
require a lemma. 

Lemma 23 Let {Xl,.' ., X,,} be an orthonormal set in an inner product space X. 

n 

(i) If X L CkXk, then Ck X· Xk = x(k) and IIxI1 2 
= ICkI2. 

k=l 

(ii) For {CI, ..• ,c,,} F, Ilx- EI CkXk11 attains its mmlmum (as a function of 

(Cl," .,c,,») at Ck = X· Xk x(k), k = 1, ... ,no 

Proof: (i): That Ck = x . Xk is immediate; 

IIxII2 
= X • X = L L CkCjXk • Xj 

k 
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(ii ): 

o ~ Ilx - k~l CkXkf 

and the expression on the right is clearly minimal at Ck x • xk. 

Theorem 24 Let E = {x" : a E A} be an orthonormal set in a Hilbert space H. The 
following are equivalent: 

(i) E is complete, 

(ii) xl..x" Va E A implies x = 0, 

(iii) span E is dense in H. 

(iv) If x E H, IIxll2 = L: Ix, x,,1 2 (equality in Bessel's Inequality), 
"EA 

(v) x L: (x· x")x,, VxE H, 
aEA 

(vi) if x, y E H, X· y L: (x . xa)(y . xa) (ParsC1Jal's Equality). 
aEA 

Proof: (i),*(ii): If (ii) is false, 3x # 0 such that xl..xa Va E A. Set z = xl IIxll 
so {z} U E is an orthonormal set which properly contains E so (i) docs not hold. 

(ii),*(iii): Let M be the closure of spanE. If lvJ # H, H = M ED M1. with 
lvJ1. # {OJ. If x # 0, x E lvJ1., then xl..xa Va E A so (ii) fails. 

(iii),*(iv): Let t> 0 and x E H. 3xap ... ) Xan E E and Cl, .•. , Cn E F such that 

By Lemma 23 (ii), 

(6.6) 

By Lemma 23 (i) and (6), 

Bessel's Inequality gives the reverse inequality. 
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(iv)=>(v): As in Theorem 22 let S {xa: Xa' x :# O} and arrange the elements 
of S into a sequence Yt, Y2, . ... Then 

by (iv). Hence, 
00 

x I::CX'Yk)Yk .I:(X'Xa)Xa. 
k=1 aEA 

(v)=>(vi): By Proposition 5, 

x . Y = .I: .I:(x . 
aEAbEA aEA 

(vi)=>(i): If (i) fails, 3z E If with IIzll 1 and z.Lxa Va E A. Then z· z = 1 while 
L Iz· xal2 = 0 so (vi) fails. 

aEA 

Theorem 25 Let H be a Hilbert space with E and F complete orthonormal subsets. 
Then E and F have the same cardinality. 

Proof: Since orthonormal sets are linearly independent, we may assume that E 
and F are infinite. 

For e E E, let F. {J E F: f· e :# OJ. By Theorem 24 (ii), F = U 1". and by 
eEE 

Proposition 21 each F. is at most countable. Hence, the cardinality of F is less than 
or equal to the cardinality of E. Symmetry gives the reverse inequality. 

The cardinality of a (any) complete orthonormal set is called the orthonormal 
dimension of the Hilbert space. 

Example 26 {ek : kEN} is a complete orthonormal subset of [2. More generally, 
let A be a non-empty set and let Ca : A R be the characteristic function of {a} for 
a EA. Then {ca : a E A} is a complete orthonormal set in [2(A) [here [2(A) is L2(p) 
where p is the counting measure on A as in §6.1]. 

Theorem 27 (Riesz-Fischer) If H i .• a Hilbert "pace, then H i .• linearly isometric 
to [2(A) for .'lome A :# o. 

Proof: Let E {xa: a E A} be a complete orthonormal subset of H. By 
Theorem 24 the map U : H -+ f2(A) defined by Ux {x· Xa : a E A} is a linear 
isometry. Since U carries E onto the complete orthonormal set {ca ; a E A} in [2( A) 
[Example 26], U is onto peA). 

Note that the map U also preserves inner products by Theorem 24 so Hand peA) 
are isomorphic as inner product spaces. 

Example 28 {c'ntj.,jii; : n = 0, ±1, ... } E is a complete orthonormal subset of 
£2[-11',11']. 
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This follows easily from condition (iii) of Theorem 24. By the Stone-Weierstrass 
Theorem, the span of E is dense in C[-1I",1I"] with respect to the sup-norm and 
C[-1T,1T] is dense in L2[-1T,1I"]. Since convergence in the sup-norm implies converge 
in the L2-norm, it follows that span E is dense in L2[ -1T, 11"]. 

If f E L2[-1T,1T] and 

the series I: Ckeikt is the classical Fourier series of f [with respect to the complete 
1.=-00 

orthonormal set {eik
! / V"ii : k E Z}] and the Ck are called the Fourier coefficients of 

f. If follows from Theorem 24 that this series always converges t.o f in the L2-norm. 
Note that the formula for the Fourier coefficient Ck is meaningful when f is integrable 
over [-1T, 1T]. One of the important problems in Fourier analysis is determining what 
integrable functions are such that their Fourier series converge to the function, at 
least a.e. duBois-Reymond gave an example of a continuous function whose Fourier 
series diverges at a single point. We will now show that the Uniform Boundedness 
Principle can be used to show the existence of such a function. 

Let f E Li [-1r, 11"]. The nth part.ial sum of the Fourier series for f is 

The function Dn(t) = f: eikt which appears in the integral above is called the 
k=-n 

Dirichlet kernel; we now compute a more useful form for Dn. We have (eit -1)Dn(t) 
ei(n+J)t e-int so e-it/2(eit _ l)Dn(t) = ei(n+J/2)t e-i (n+I/2)twhich implies 

Thus, 

D,,(t) sin(n + 1/2)t/ sin(t/2). 

sn(f)(t) = ~ r f(s)Dn{t - s)ds. 
211" L" 

We define a linear functional }"'n on C[ -1r, 1r] by 

1 1" s,,(I)(O) = - f(s)Dn(s)ds, 
21r -7f 

i.e., F,,(f) is the nth partial sum of the Fourier series for f evaluated at O. Since 

Fniscont,inuousand IlFnll ~ 2~ IDn(s)lds. We claim that IlFnll 
This equality follows easily from the following lemma. 

Lemma 29 Let g : [a, b] -+ R be continuous. Define G : era, bJ -+ R by G(f) J: f(t)g(t)dt. Then G is linear and continuous with IIGII J: Ig(t)1 dt. 
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Proof: Since IGU)I ::; IIfiloo f: Ig(t)1 dt, G is linear, continuous and IIGII ::; f: Ig(t)1 dt. Fix n E N. Then 

1
b I I - 1b I 11+"191 J,b ...-.W....- + rb 2fL. 

a 9 - a 9 1+11191 a 1+,,191 Ja 9 I+nluj 
::; f: ~ + G C;!lg) 
::; b:a + IIGlllll;;luIIL", ::; ~!! + IIGII 

so f: Ig(t)1 dt::; IIGII· 
Next, we compute a lower estimate for f~1f IDn(s)1 ds. 
Since sin u ::; u for 0 ::; u ::; 7r, 

Thus, {llFnl! : n E N} is unbounded. It follows from the UBP that there exists 
f E C[ -7r, 7r] such that {Fn(J) : n} is unbounded, i.e., the Fourier series of f at 0 
must diverge. Of course, the point 0 was chosen only for convenience, and the same 
result holds for any other point of [-7r, 1T] [the function f will depend upon the point 
chosen]. 

Banach and Steinhaus derived a method, called condensation of singularities, 
which can be used to construct a continuous function whose Fourier series diverges 
at any (arbitrary) countable subset of [-1T,1Tj. We first give their result. The proof 
uses the Baire Category Theorem [see A2]. 

Theorem 30 Let X be a Banach space, Yk a NLS and Tk E L(X, Yk) for each kEN. 
Then B = {x EX: lim II Tkx II < oo} either coincides with X or is first catego,'y in 
X. 

Proof: Suppose B is second category in X. For each x E B, lim sup IItTnxl1 = o. 
k n;>1 

Let t > O. Then B C U Bk , where Bi; {x EX: sup IltTnxlis d. Each Bk is 
k=l n>! 

closed so some Bk contains a sphere, i.e., there exist xo- E X n Bk, r > 0 such that 
Ilx xoll::; r implies sup IltTnxlls c. Thus, for /lzil s 1', if x = Xo + z, then 

n;>! 

and sup IITnzllS 2e.k. Hence, if x E X, sup IITnXl1 S 2ek Ilxll/r so X = B. 
n n 
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Corollary 31 (Condensation of Singularities) For each q E N let {Tpq}p be a 
sequence of operators in L(X, Yq), where X is a Banach space and Yq is a NLS. 
Suppose for each p there exists xI' E X with limll1~qxpll CXJ. Then B {x: 

9 

lim II Tpqx II = CXJ Vp E N} is second category in X. 
q 

Proof: For each p, Bp = {x EX: lim IJTpq x II < CXJ} is first category in X by 
q 

Theorem 30 and the hypothesis. Thus, B X\ U Bp is second category. 
p=) 

Let {til be a sequence of distinct points in [-7r, 7rJ. Let Snj(J) be the nth partial 
sum of the Fourier series of f E C[ -7r, 7r] evaluated at. tj. By the construction above, 
for each j there exists Ii E C[-7r,7r] such that. limlsni(Ii)1 = 00. By Corollary 31 

n 

t.here exists f E C[-7r,7r) such that lim ISnj(J)1 00 for all j. That is, the Fourier 
n 

series of f diverges at each tj. 
lt can be shown that if the set {til is chosen to be dense in [-7r,7rj, then the 

set P = {t E [-7r,7r): lim JSn(f)(t)1 oo} is second category in [-7r,if] and, hence, 
uncountable [see [Y)II.4]. 

The classical Fourier series of an integrable function can behave very badly with 
respect to pointwise convergence. For example, Kolmogorov gave an example of an 
integrable function whose Fourier series diverges a.e. in [-if, if]. It was an open 
problem for many years whether the Fourier series of an L2 function must converge 
a.e. This was shown to be the case, only in 1966, by L. Carlcson. Hunt later extended 
Carleson's result to LP for 1 < p < 00. For a discussion of the results by Hunt, see 
[As]. 

Whereas the classical Fourier series of integrable functions can display poor con­
vergence behavior, the Cesaro averages of the partial sums of the Fourier series behave 
much better. For f E L1 [-if, if] the Cesaro averages of the Fourier series of fare 

defined to be 0'" (J) = f Sk (f), where Sn (J) is the nth partial sum of the Fourier 
k=O 

series of f. From the discussion above, 

0'" (f) (t) 1 j" 1 n -~ ~-~ Ddl 
27r -" n + 1 k=O 

s) f (s) ds. 

The function Kn (t) = f Dk (I) is called the Pejer kernel. Thus, we have 
k=O 

1 j1f O'n(l)(t) = Kn(t-s)f(s)ds. 
27r -1f 

If we assume that all functions in Ll [-7r,if] are extended periodically (with period 
2if) to R and if we replace integration over R by integration over [-if, if], we may 
interpret the formula above as a convolution integral, 

1 
O'n(f) (t) = 2if * f (t) 



6.6. HILBERT SPACE 247 

as in §3.11. We will now show that the sequence {2~Kn} satisfies the properties of an 
approximate identity as defined in 3.11.2. For thIs it is convenient to derive another 
formula for the Fejer kernel. Substituting (e it - 1) Dn (t) ei(n+l)t e-int into the 
definition of Kn gives 

(n + 1) Kn (t) (e it 1) (e-it - 1) = (e- it - 1) Lk=O (ei(n+l)t e-int ) 
= 2 ei(n+l)t _ e-i(n+l)t 

so that 

From (7), we obtain 

Lemma 32 (i) Kn :?: 0, 

(ii) J~1f Kn = 27r J 

Kn (t) 
1 

n+1 
cos(n+1)t 
1 cos t 

(iii) For 0 < 5 ~ It I ~ 7r, Kn (t) ~ (n+l)(;-co06)' 

(6.7) 

From (i), (ii) and (iii), it follows that {trKn} satisfies the conditions of an ap­
proximate identity given in 3.11.2. [Note that the Dirichlet kernel fails property (i).] 
From the analogue of Theorem 6.1.24, it follows that if I E £P [-:>r,:>rJ, then {ern (In 
converges in LP-norm to I. Also, from the analogue of Exercise 3.11.10, it follows 
that if I is a continuous function on R of period 27r, the Cesaro averages (I)} 
converge to I uniformly on [-7r, :>r)i this result is known as Fejer's Theorem. 1: ., also 
the case that if I E Ll 7r], then {un (I)} converges a.e. to I; see [HS] V.li:l.29. 

For a discussion of the historical development of Fourier series by Zygrnund, see 
[As). Zygmund's book ([Zy]) contains a detailed discussion of Fourier series. 

Exercise 1. Show that any orthonormal subset of a Hilbert space is conta.ined in a 
complete orthonormal set. 

Exercise 2. Show a Hilbert space is separable if and only if its orthonormal dimension 
is countable. 

Exercise 3. If D is a dense subset of an inner product space and xl.D, show x = o. 

Exercise 4. If E is a linear subspace of a Hilbert space H, Y is a. B-spr.ce and 
T : E -> Y is a continuous linear operator, show T has a continuous linear extension 
T: H -> Y. 



248 CHAPTER 6. FUNCTION SPACES 

Exercise 5 (Gram-Schmidt). Let XI,"" Xn be linearly independent. Set. Yl = Xl, 

k-l 

Yk = Xk - I)Xk' Yi)yJlIIYjI12 
J=1 

for k> 1 and Zk = Yk/IIYkll. Show {z".) is orthonormal and span{xd span{zd. 

Exercise 6 (Riemann-Lebesgue Lemma). Show that if! E L1 [-11"", 1I""J, thell 

Ck:= ~ f" !(l)e-·ktdt --> 0 
V 211"" L~ 

as Ikl --> 00. [Hint: First prove this for characteristic functions of intervals.J 

Exercise 7. Show that the sup-norm on C [0, IJ docs not satisfy the parallelogram 
law. 

Exercise 8. Let M be a closed subspace of a Hilbert space II. 

(i) Show Ml.l. M. 

(ii) Show II I M is a Hilbert space. 

(iii) If x E If, x m + m' where m E IVl, m' E l11.L as in Theorem 17, show I):]" = In 

defines a continuolls linear operator on 11 sllch that p2 fJ. 

Exercise 9. Show a linear isometry onto an inlier product. space preserves inner 
products. 

Exercise 10. Let lvI, 1'1 be closed subspaccs of II with M 1- N. Show At N is 
closed. 

Exercise 11. Show a linear subspace M of a Hilbert spaef' Is dellse if and only if 
M.L {O}. Give an example of a proper closed subspace lVi of all inner product 
space such that M.L {O}. 

Exercise 12. let E {e. : a E A} be an orthonormal family in a Hilbert space ll. 

Show the closed linear subspace generated by E is {I: t.ea : I: Ilal2 < oo}. 
aEA aEA 

Exercise 13. Show TheAJrem 19 is false for inner product spaces. 

Exercise 14 (Hellinger-Toeplitz)Let T : II --> II be linear and satisfy Tx· y = X· Ty 
for all x, y. Show T is continuous. Hint: Use UBP or CGT. 
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6.6.1 The Fourier Transform 

In this section we define and study some of the basic properties of the Fourier trans­
form. Although the Fourier transform is defined for functions on Rn, we restrict our 
attention to functions on R. In dealing with the Fourier transform, there is always 
a factor of 27T involved. We will take care of this by using the normalized measure 
jt m/...;z:i. We denote by IZ the space U(jt), where we are considering complex­
valued functions. All statements about measurability refer to the Lebesgue measure, 
and any integral over R is denoted by f f dp = fR f djt. In this section, we agree that. 
the convolution of two measurable functions f and 9 is defined by 

f * g(x) = J f(x - y)g(y)dp(y) 

[see §3.11]. 
If fELt, we define the Fourier transform of f, j, by ](t) f e-itx f(x)djt(x). 

Note that since e-it", is bounded and is continuous as a function of x, j is defined for 
all t E R. We list some of the basic properties of the Fourier transform. 

Theorem 1 Let f, 9 E Ll 

(i) Ifh(x)=eiaxf(x), thenh(t)=j(t a). 

(ii) If hex) = f(x a), then h(f) = e-iatj(t). 

(iii) Ifh(x) l(-x), then h(tl (i(t»-. 

(iv) If hex) f(ax), a > 0, then h(f) = f(t/a)/a. 

(v) (f * g)" j9. 

(vi) If hex) = -ixf(x) and hE V, then j is differentiable and (1)' (t) h(t). 

(vii) If f' ELI and lim f(x) 0, then (fl)"(t) = itj(t). 
Ixl-oo 

(viii) (Riemann-Lebesgue Lemma) j is continuous, bounded [iinioo ::; Ilflll] and 

lim Jet) = 0. 
Itl-oo 

(ix) f f9 = f jg. 

Proof: (i)-(iv) are easily checked. (v) follows from Fubini's Theorem [recall 3.11.1] 
SInce 

(f * g)"(t) f e-itx f f(x - y)g(y)dp(y)dp(x) 
f g(y)e- itll f e-it(x-y) f(x - y)djt(x)dp(y) 
f g(y)e-itlldjt(y) f e-itx f(x)djt(x) = ](t)g(t). 
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(vi) follows from 3.4.3. (vii) follows by integration by parts. 

(viii): I is bounded with l!(t)1 :S IIIII1 for every t. Since e"i 1, 

!(t) = - J l(x)e-it
(x+1f

j t)dj.t(x) = - J I(x -7r/t)e- i1xdj.t(x) 

so 

as t -+ 00 by 3.11.10. Finally, for t, s E R, we have 

l1(t + s) -1(t)1 :S J I/(x)1 11 d/l(x) = J I/(x)112sin(sx/2)1 dx, 

and since limsin(.sx/2) = 0 for each x, the DCT implies that the last term is small 
8->0 

for s small independent of t. Hence, I is uniformly continuous. 
(ix) follows from Fubini's Theorem. 
Conditions (vii) shows that the Fourier transform converts differentiation into 

multiplication by it, and this property makes the Fourier transform useful in the study 
of differential equations. Conditions (vi) and (vii) also point out another important 
property of the Fourier transform: growth properties of I arc reflected in smoothness 
properties of I and vice-versa. 

From (viii), the Fourier transform is a continuous linear transform from I} iuto the 
space, Co(R) , of bounded, continuous fnnctions on R which vanish at 00 when Co(R) 
is equipped with the sup-norm. The Fourier transform is not onto Co(R) [Exercise 7]; 
there is not an intrinsic characterization of the functions which are Fourier transforms 
of U functions. 

Let S {f : R -+ R : I is infinitely differentiable and for each j, k, sup{lxjll/(k)(x)l. 

J.; E R} < oo}. S is called the space of rapidly deC1'easing lunctions or the Schwar·tz 
space after Laurent Schwartz. By Leibniz' rule for the differentiation of products, it 
is easy to see that an infmitely differentiable function I belongs t.o S if and only if 
(xl/(x))(k) is bounded for each j, k. Thp function I(x) furnishes an example 
of a function in S [see Example 3 below]; indeed, C;:'(R) C S so S is dense in LI 
(3.11.12). 

Corollary 2 SA C S. 

Proof: If I E S, for each j, k the function x -+ xi I{k)(x) is integrable and 
vanishes at 00 so I is infinitely differentiable by (vi), and by (vii), 

so ((it)kl(t)t J 
is bounded by (viii). Hence, by the observation above, IE S. 

It will follow from the Fourier Inversion Theorem below that SA = S. 

Example 3 If I(x) = e-x2j2
, then 1=1. 
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From (vi), 

(1)' (t) == J _ixe-i:;;te-x2 /2dp,(x) 

and integration by parts gives (1)' (t) == -t I( t). Hence, the derivative of the quotient 

!(t)/ f(t) is 0 so I(t)/ f(t) c, a constant. Putting t == 0 gives c 1 from 3.4.4 
[because of the normalization factor -Jr; in the measure]. 

We now consider inverting the Fourier transform. For this we define the inverse 
Fourier transform of a function f E V to be r (t) = f eit:r f (x )dp,( x). Since r (x) == 
!( -x), the inverse Fourier transform shares most of the properties of the Fourier 
transform given in Theorem 1. We do not bother to record these properties. 

Let g(x) == e-r2
/ 2 and ga(x) == e-(xa)2/2. By Example 3 and Theorem 1 (iv), 

g,,(t) == (l/a)gl/a(t). 

Theorem 4 (Fourier Inversion Theorem) Let f, 1 ELI. Then (1) v == f a.e. 

Proof: By Theorem 1 (ix) and (i), 

f !(t)eixtg" (t)dp,(t) f f(t) (ei:rtg" (t»" dp,(t) 
== f f(t)g,,(t - x)dp,(t) (6.1) 
= f f(t)~9I/,,(t x)dp,(t) f * !gl/a(X). 

Since limg" (x) = 1 and the integrand on the left hand side of (1) is bounded by Ill, 
<1-+0 

the DCT implies that the left hand side of (1) goes to (1) v (x) as a --+ O. If k = ~, 
kEN, ~gl/a is the approximate identity in Example 3.11.5 so the right hand side 
of (1) converges in V-norm to f [3.11.11]. Since any sequence which converges in 

L1-norm has a subsequence which converges pointwise a.e. [3.7.1, 3.6.3], (1) v f 
a.e. 

Remark 5 Thus, if f, 1 E Ll, then f can be made into a continuous function which 

vanishes at 00 by modification on a null set and (1) v = f everywhere [Theorem 1 

(viii)]. 

From the computation in Corollary 2, we have 

Corollary 6 S" = S. 

Concerning uniqueness for the Fourier transform, we have 

Corollary 7 If fELl and 1 0, then f 0 a.e. 

We now consider extending the Fourier transform to L2j the resulting extension 
is sometimes called the Plancherel transform. 

Lemma 8 Let X == {J E Ll : 1 ELI}. If f E X, then 1 EX C L2 and the Fourier 
transform restricted to X preserves inner products on X. 
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Proof: By Theorem 4, X" X and if 1 E X, 1 is bounded so 1 and 1 belong 
to L2 [Exercise 6.2.9J. If 1, 9 E X, set h = (ffr. Then 

almost everywhere. Hence, 

so the Fourier transform on X preserves inner products. 
It follows from Lemma 8 that if 1 EX, then 111112 = 111112 so the Fourier transform 

is a linear isometry of X onto X. Since SeX, X is dense in L2 so the Fourier 
transform can be extended to a linear isometry from L2 onto L2 which preserves inner 
products. We need to show that this extension agrees with the Fourier transform on 
LI n P. 

Let 1 E Ll n L2 and let hk(t) = kgk(t) be the approximate identity used in the 
Fourier Inversion Theorem above. Then 1 * hi< -+ 1 in L I [3.11.11] so (J * hk )" -+ 1 
uniformly on R [Exercise 1]. By Theorem 6.1.24, 1 * hi< -+ 1 in L2-norm so 1 is equal 
to the L2-extension of the Fourier transform of 1. 

We continue to denote the extension of the Fourier transform of a function 1 E L2 
by f. 

Let 1 E L2 and set!k Cr-k,k)I. Then Ik 1 in L2 so h -t 1 in P. Since 
Ik E LI n L2, its Fourier transform is given by 

and the Fourier transform of 1 is the L2-limit of the sequence {lk}' [A similar 
formula holds for the inverse Fourier transform.] ;\ote that 1 is only determined 
up to a.e. since it is an L2-limit whereas the Fourier transform of an Ll-function is 
unambiguously defmed everywhere. 

Exercise 1. If II.: -+ 1 in LI, show lk -+ 1 uniformly on R. 

Exercise 2. If 1 E L2 and 1 E LI, show 

for almost all x E R. 

Exercise 3. If 1, 9 E L2, show (lff) v = 1 * g. [;\ote lff E £I by Holder's Inequality 

and 1 * 9 makes sense by Exercise 6.2.6.] 
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Exercise 4. Let 'Pa = CI_a,a]' Show ;f>a(t) = 2si~"t, II'Pall; = 2a, and f (Biny"Y r dJ1(Y) 

~a. 

v 
Exercise 5. If f(x) = e-1rl, find f. Show (f(xlk))V defines an approximate identity. 

Exercise 6. If f E £1 and f * f = f[OJ a.e., show f = 0 a.e. 

Exercise 7. Let f E £1 be odd. Use the fact that {It r : lal < I,BI} is bounded 

and Fubini's Theorem to show that {f; f(t)ltdt : b> I} is bounded. Use this to show 
that g(t) = lien It I for It I :2: e and g(t) = 0 for Iti < e is not the Fourier transform of 
an Ll function. 
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AI: Functions of Bounded Variations 
For the reader who may not be familiar with the basic properties of functions of 

bounded variation, we record them in this appendix. 
Let f : [a, bj -. R. If ir {a Xo < Xl < ... < In = b} is a of fa, b], the 

variation of f over ii is 

n-I 

: iT) L If(.l:iH) - f(xi)I, 
i=O 

and the variation of f over [a, bj is 

Var(J : [a, b]) = sup c'ar(J : )f), 

where t.he supremum is taken over all possible pitftitiolls, ir, of [a, bj. If 

b]) < <Xl, 

f is sajd to have bounded variation; the class of all such functions is denoted by 
llV[a, bl. The variation measures the amount the function oscillates in 

As the example below even a continuous function can fa.il to belollg to 
BY[a,bj. 

Example 1 Let f(t) Isin(1/I) forO < t::; I and frO) = o. Set Xn 1/(n+l/2)ir. 
Thell f(xn) = l/(n + 1/2)ir if n is eveIl, and f(xn) = -l/(n + 1/2)11" if n is odd. If 
11"" is the partition {O <.rn < Xn-l < ... < :rl < I}, then 

,,-1 ') n-I 

f(x,-Ill ~ :: L l/(i + 1) 
Tt t=l 

soVar(J:[O,l]) <Xl. 

Proposition 2 If f E BV[a, bJ, then f is bounded on [a, bl· 

Proof: Let X E b). Then 

f(a:11 + If(b) f(xll::; Var(J: [a,b]) 

so 
2lf(:rJI If(a)1 + If(bJI + Var(j : [a, blJ 

and f is bounded. 
We consider properties of Var(j : l) as a fUIlction of the interval T. as a 

consequence of the triangle we have 

Lemma 3 Let f : [a, bj -. R. If ii and iii are partitions of [a, b] with iT irl, then 
: ii) ::; var(j . iiI). 
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Proposition 4 Let f : [a, b] --> R and a < c < b. Then 

VaTU: [a, b]) = VarU: [a, + b]). 

Proof: Let ii be a partition of [a, b] and iii the partition obtained by adding the 
point c to 71. Let 711 and "2 be the partitioIls of c] and [c. b], respectively, iIlduced 
by 71

1
• Then by Lemma :3, 

varU: 71) ::::: varU : ii') = varU: 7Id + vaTU: 712) ::::: Var'U : [a, cll + VaTU: [c, b]) 

so 
VarU : [a, b]) ::::: VarU . [a. cD + VarU : [c, b]). 

If "I and "2 are partitions of c] aud fe, b], r('spectivcly, then" "] U 7[2 is a. 
partition of [a, b] so 

varU: ,,) = vaTU: 7[1) + bj). 

Val'U: [a, cD + Var(f : [c. 

we consider how the variation, V nrU : /), dep()nds Oil the fundion f. 

Proposition 5 Let f. 9 E BFta, Ii]. Then 

(i) f + 9 E BV[a, b] with l/arU + 9 : [a. It]) ::::: VarU : b]) Var(,q: [a, Ii]), 

(ii) fort R,tfE T3V[a,b] withVar(tf:[a,bJl ItiVar(f: b]). 

Proof: (i) follows frofll the triallgle illequality ilnd (ii) is clear. 
Thus, BV[a, b] is a vector space uuder the usual pointwis(' addition and scalar 

multiplication of functions. 
Let f E BI/[a, Ii]. We define thp tolal l1ar;otion of f by Vf(t) VaI'U: [a. tll if 

a < I band V,(a) = O. 

Proposition 6 Vj (lud V, f arc incnrt.sillg on [a, b]. 

Proof: Vf is increasing by Pl'Oposition .1. 

Let a .1' < y ::::: band g = 1'1 - f· Then 

g(y) = llf(x) + Val'(f: [:r,y]) f{y) 

implies 

"2:0 



A.l. FUNCTIONS OF BOUNDED VAHIA'TIONS 257 

Proposition 7 Iff E BV[a, b] is (right, left) continuous at x, then VI is (right; left) 
continuous at x. 

Proof: Let t> O. Suppose f is continllous at. ;T < b. There is a partition 7r 

of [x, b] such that varU : Var(f : t. Since f is right continuous at ;c, 
we may add a point Xl to 7r to obtain a partition 

of [.T, b] such that - f(xdl f. Then 

(+ var(f : 

so 

F a/'(f : [x, bJ) < 

Thus, 0 S FJCrJ) 

continUOl1s. 

n-l 

+ f(xdl + 

: 7rt) + f < 2t + VaT(f: [Xll b]). 

2(, and since Ff 1, 

The stat.ement about left is similar. 
Since f = Vf-(Vf - f), Propositions 6 and 7 along with Exercise I and Proposition 

5 give the following characterization of functions of bounded variation. 

Theorem 8 Let f : [a, b] -+ R. Then f E HI/[a, b] if and only if f = g - hi where 
g, Ii r. If f is (right, hft) continuous, then 9 and h ran be chosen to be (l'ight, left) 
continuous. 

Exercise 1. If f i on [a,b], show Fm'(,f: [a,b]) feb) - f(a). 

Exercise 2. Give a necessary and sufficient condition for f to satisfy 

VarU' b]) O. 

Exercise 3. Let j, 9 E BF(a, Show fg and If I belong to BF[a,b], and, hence, 
f 1\ g, f V g E EF[a, bl [formula 1.2 of . That HF[a, b] is a vector lattice and 
also an algebra; in the terminology of Example 5.7.7 HF[a, b] is a function space. 

Exercise 4. Let rp y) : b] -, R2 be continuous. If 

7r to 11 ... < (, b} 

is a partition of b], set 

L( rp, 7r) 

Then L(rp) = sup L(rp, 70), where the supremum is taken over all part.itions 70, is the 
arclength of the path rp. Show L(rp) < CX) if a.nd only if both x, y E BV[a, b]. 
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A2: The Baire Category Theorem 
The Baire Category Theorem has been used several times in the text. For the 

convenience of the reader unfamiliar with this result, we give a statement and proof 
in this appendix. References to further applications of the Baire Category Theorem 
are given at the end of the 

Let (8, d) be a metric space. 1\ subset E c S is nowhert dense if the interior of 
F: is empty. For example, t.he Cantor set is nowhere dense in [0,1] [Exercise A 
subset E c S is in S if E is a countable union of nowhere dense sets. 
For example, Q is first in R. A subset E c S is second category in 5 if E 
is not first category in S. l3aires' Theorem asserts that every complete metric space 
is second category in itself. 

Proposition 1 Let {Pi-} be a sequence oj ci08td 8ds coniained in the complete melric 

space (5, d) such that 1'1, and dk = diameter PI, -7 O. Then n Fk z.~ a 
k=1 

singleton. 

Proof: It suffices to show -s: Ih for.i k 

so {J.J is Cauchy and, tiIen>fore, convergent to some J' E S. Clearly;r E n F". 
. k=1 

Theorem 2 (Baire Category Theorem) 11 complete mcinc space is second cate­
gory in itsc(f 

Proof: Let 11k be nowhere dense in S for every kEN and set E U Ak. 
"=1 

We show ~. Let Xo E S. Since Al is nowhere dense, there is a closed ball 
B1 of radius less than I inside the dosed ballBo = {x : d(x, To) I} such that 
Bl n Al = 0 1). Since A2 is llowheff' dense, there is a closed baH B2 of 
radius less than 1 inside Bl such that. B2 n A2 = 0. Continuing this construct.ion 
gives a decreasing sequence of closed balls {Bd of radius less t.han I such that 

Bk n Ak 0 for all k·. Proposit.ion 1, n B" = {x}. Clearly x E 
k=l 

We it corollary of the l3aire Theorem which is particularly useful in 
applications. 

Corollary 3 ',el el) be a metric space. ~f S lh, then some 

mllst have a non-void interior. 

Despit.e its esoteric appearance the Haire Category Theorem has a num-
ber of applications to various areas of a,nalysis. For example, Banach used the t.heorem 
to show the existence of a continuous, nowhere differentiable funct.ion. For this alllI 
other interesting see [DeS] and [Boa,]. 
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Exercise 1. Show that E is nowhere dense if ilnd only if every sphere S contains il 
8' such that 8' n E = 0. 

Exercise 2. Show thf' Cantor set is nowhere df'nse in [0,1]. 

Exercise 3. Let.!k : R ~ R be continuolls, nonnegative and such that f 
k=] 

converges for every t E R. Show that there is an interval in R where the convergence 
is uniform. 

Exercise 4. Show that R2 is not a countable union of lines. 

Exercise 5. Show that if S is a complete metric space without. isolat.ed points, then 
S is 1lIlcountable. 
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A3: The Arzela-AscoIi Theorem 
Let S be a compact Hausdorff space and assume has the sup~llorlU. vVe 

give a characterization of the compact subsets of C(S) due t.o Arzela and A,iCOIi. Of 
course, any compact subset of is closed and bounded, but by Theol'(,1Il .5.1.18 
the converse cannot hold ill general. We firsl give an additional necessary condition 
that a compact subset of must satisfy. 

Definition 1 A s'UiJsci 1{ 15 al s E S if for eve"y ( 0 then 
exists a nci.l/hborhood V of$ ,'judi lhallf(s) - fO)1 e every t E V and f r. .... 
J{ is (on S) zf J{ ('quirontin1J01l8 al (VC1'Y point of S. 

Proposition 2 If]{ C CIS) is compad. thel1 I{ is eqllicolliinuous. 

Proof: Let ( > 0 and s S. 'I'here exist ft .... ,fk E g such that K 

where ,e) = {g : Ilg fll 
IN,,) fi(t)1 < ( for t E V and i 

Pick an open neighborhood V of oS such that 
l, ... ,k. Suppose I E V and f E I\'. Choose i 

such that f E Then 

If(l) - f(s)1 If(t) - h(lll + If,(I) f,(8)1 + 1/,(8) f(s)1 < 3( 

so j( is eqllicolltinuous. 
a.uy compact subset of C( S) is closed. bounded and cquicontiuuons. vVe 

cousider the converse of this statement. 

Lemma 3 Let {fd be a sfquena of real-valued fUTlctions drjincd on n conntable 8ft 

E = {Tk : kEN} which is bounded OTl E. Then there is a subseqlLence 
l!7k} of Uk} such that L'lk} converges pointwise on E. 

Proof (Diagonalization Procedure): 'fhe sequence {fk(Td} is bounded in Rand, 
therefore, has a convergent subsequence {fl,k(Tl)}~l [the reason for this slightly Ull~ 
orthodox notation will become The sequencc } ~=l is bounded and 
has a convergent snbseqlJ('nce . Xote that )} ~l also converges. 
Proceeding by induction produces a sequence {8d as follows: 

8 1 f1,l fl,2 

hI h2 

Note that (i) is a subsequence of and {j~.dTi) 

Now let {gd be the diagonal sequence {h.d. 
con verges for 1 :S i :S j. 

Theorem 4 (Arzela-Ascoli) Let j{ C CIS). Then i{ is compact if and only if K 
is closed, bounded and equiconlinuo'lJ.s. 
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Proof: =;,: Proposition 2. 
ft suffices to show that any sequence {fA·} c K has a subsequence which 

converges uniformly on S. eqllicontinuity, for each k there exists a finite set 
Fi.: C S and open neighborhoods {lit : t E Fk } Sitch t,hat S = 11;: t E Fi.:} and 
If(s) - f(t)1 11k when E \.~ and f K. 

Set E U Fk. By Lemma a ther(' is a subsequence {gk} of {fA-} such that {9k} 
k=1 

converges pointwise on E. \Ve claim that {gk} is a Cauchy sequence in Let 
c> 0 and choose k snch that 11k t. There exists IV such that Igi(t) gAt) I < 11k 
[or all t E Fk and i, j ::: N. If 8 E S, thert> exists t E such that Ii E Y~ so if i, 
J N, 

lIence, {gk} is a Cauchy sequence in and the proof is complete. 
If f{ c C(S) is bounded and equicontinuous, then Ii is ('quimntinnou8 [Exercise 

1) so is compact, by Theorem 1. Hence, every sequence in !,,' has subsequence 
which converges uniformly on S. 

The Arzela-Ascoli Theorem has ma.ny applica.tions in differentia'! equations, inte-
gral and cakulns of variations. See, for example, 

Exercise 1. IrK is equi.;olltinllous, show K is eqllicontinnous. 

Exercise 2. Give a specific example of a subset of e[o, 1] which is closed, hounded 
but not compact. 

Exercise 3. Let J{ C b] be such that each f E l( has a continuolls derivative 
ilnd [(' {I' : f E I<} is bounded in era, bJ. Show J( is equicontinuous. 

Exercise 4. Let J{ c C[a,bj be bounded. Let. F(t) = J: f(8)d5. Show {F: f E [(} 
is equicontinuous. 

Exercise 5. Let J( C be equicontinuous and pointwise bounded on S'. Shaw 
K is uniformly bounded on S. 

Exercise 6. Let {fd C be equicontinuous. If {f,J converges pointwise on a 
dense subset of S, show {fd converges pointwise OIl 8. Is compactness important? 
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A4: The Stone-Weierstrass Theorem 
In this appendix we prove Stone's far reaching generalization of the Weierstrass 

Approximation Theorem. Let S be a compact Hausdorff space and C(S) the space of 
all real-valued continuous functions on S equipped with the sup-norm [complex-valued 
continuous functions are considered at the end of this section]. Stone's Theorem gives 
algebraic conditions, modeled on the polynomials on the line, which insure that a 
subset of C(S) is dense in C(S). 

A subset A <;;; C(S) is called an algebra if 

(i) f, 9 E A imply f + 9 and fg belong to A. 

(ii) f E A implies tf E A Vt E R. 

Example 1 C(S) is an algebra. The set of polynomials, 'P, is an algebra in C[a, b]. 
The set of even polynomials, [;, is an aJgebra in C[a, b]; the set of odd polynomials, 
0, is not an algebra in C[a, b]. The polynomials with ° constant term is an algebra 
in C[a, b]. If [( <;;; Rn is compact, the set of polynomials in n real variables forms an 
algebra in C(J{). 

A subset B <;;; C(S) separates the points of S if and only if for t, s E S, tics, 
3f E B such that f(t) ic f(s). 

Example 2 'P separates the points of [a, b]; [; does not separate the points of [-1,1]; 
o separates the points of [a, b]. 

Lemma 3 Let £ be a vector subspace of C(S) that separates the points of's' and is 
such that 1 E £. Then given t, s E S, tics, and a, bE R 3f E £ su.ch that f(s) = a 

and f(t) = b. 

Proof: There is 9 E £ such that g(05) ic g(t). Put c = g(s) - g(t). Then the 
function 

f = (a - b)g + (bg(s) - aq(t)) . 1 E £ 
c 

and satisfies f(s) = a, f(t) = b. 

Definition 4 A subscl £ of C (S) is railed a function space if £ is a vcrlor' spaCF and 
if f, 9 E £ implies f V 9 E £ and f II 9 E £. 

Note that if £ is a function space, then whenever f E £, j+ = fV 0, f- = (-1) V ° 
and If I also belong to £. 

Example 5 Let 'P £ be the collection of all piecewise linear, continuous functions on 
[0,1] (i.e., f E 'P£ if and only if f E C[0,1] and 3 a partition Xo < XI < ... < Xn 

of [0,1] such that f is linear on each subinterval [Xi_I,X;].) Then 'P£ is a function 
space but is not an algebra. 
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Lemma 6 Lei £ be a function space in thai contains the constant function 1 
a.nd separates the points of S. Then given 9 E C(S) and to E Sand E > 0, 3f £ 
such that f(to) g(to) and f(t) > g(t) e \;It E S. 

Proof: By Lemma 3, \;It S 3ft E £ such that ft(to) = g(to) and ft(t) get). 
Since ft and 9 are continuous, there is a neighborhood lit of t such that ft(8) > g( s)- e 
\;18 E K 

Then : t E S} is an open cover of S and, therefore, there are iI" .. ,tn E S 

such that U lit, S. Let f = ftl V··· V Then f E £ and f(to) = g(t o ). Also, if 
i=1 

Ii E 8., then 3k such that 8 E lith' Then f( s) 2: ft. (s) > g( s) e; so f is the desired 
function. 

We can now give the lattice version of the Stone-vVeierstrass theorem. 

Theorem 7 Let £ be a function space in C( S) that contains the constant function 1 
and licpamtes the points of S. Then £ is dense in C(S). 

Proof: Let 9 E C(S) and > O. By Lemma 6, \;It ESE £ such that 
!t(i) get) and ft(s) > 9(s) - E \;Is E S. By the continuity of ft and g, 3 a 
neighborhood Ut of t such t.hat ft(s) < g(s) + E \;Is E Ut . Since S is compact, 

3t11 ••• , tn E S such that U Ut. = S. Put f ft1 II··· II ft n • Then f E £. 
i=l 

Since It. > 9 0, f > 9 - c. If s S, then s E Utk for some k, so that. 
f(5) 'S ft. < g(5) + E. Thus 

g(s)-e f(8) g(8)+(, \;IsESor IIf-glloo'SE. 

In order to state the algebraic version of the Stone-vVeierstrass theorem, a lemma 
is needed. 

Lemma 8 There is a sequence of polynomials {Pn} such that Pn (t) -> Vi u,nifonnly 
fort E 1]. 

Proof: Set PI = 0 and Pn+1(t) = Pn(t) + ~(t Pn(t)2) for n 1. Clearly, each pn 
is a polynomial. 

We first claim that: 0 'S Pn(t) 'S Vi, 0 t 'S 1. This certainly holds for n = 1; 
assume that it holds for n k. Pk+l(t) 2: 0 and 

Thus, the claim is established by induction. 
Since Pn(t)2 'S t \;It E [0,1]' it follows that {Pn(t)} i \;It E [0,1]. Put pet) = 

limpn(t). Since pet) 2: 0 and p(t)2 t, we have pet) = Vi, that Pn(t) -> Vi 
\;It [0,1]. The convergence is uniform on [0,1] by Dini's theorem ([DeS] 11.18). 

Of course, the conclusion of Lemma 8 follows directly [rom the \Veierstrass approx­
imation theorem. We gave an independent proof in order to show that the vVeierstrass 
approximation theorem truly is a corollary of the Stone\Veierstrass theorem. 
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Theorem 9 (Stone-Weierstrass) Let A be an algebra in C'(5) such that A con­
tains the con8tanl Iunction 1 and separates the points ol S. Then A is dense in 
C(5). 

Proof; Theorem 7, it suffices to show that A is a function space. 
We first claim that I A implies III E Let {Pn} be the polynomials in Lelllma 

8, let I E A be such that I f. 0, and put a > O. Then gn = lin 0 (J2 I a2
) E A 

Vn (Exprcise 1) and, since Pn(t) -, vi uniformly for 0 S t 1, g" --t jPla2 Iflla 
in II Ilco' Hence, If I = a(lflla) EA. 

But f V g = ~(f + g + If - gil, and f II g = !U + g if .11); thus, A is indeed 
a function space. 

Corollary 10 (Weierstra8s Apl)roximation Thwf'cm) The polynomials aTe dense hI 

C[a,bj. 

A more general statement is given by Corollary 11. 

Corollary 11 Let [{ Rn be compact. The polynomials in 1H.'ariables aTe dense in 
C(K). 

Finally, we should check the necessity of the various hypotheses in Theorpm 9. 
The algebra £ in C[ -I, 1] does not separate the points of , 1] and is not dellse in 
C[-I,n so this conditioll cannot be dropped. Because the algebra of polynomials in 
e[O.I] that vanish at 0 is not dense in 1], the condition that the algebra contains 
the constant function 1 cannot be dropped. 

As stated above I,he Stone Weierstrass Theorem is not valid for complex-valued 
continuous functions. Far an example, let T {cit: 0 :::: I S 2,,} be the unit circle in 
the complex plane and cOIIsider the fUIlction f(z) z a.nd allY complex polynomial 

p(z) = f. CkZ
k

. Write f [p] for f(e it
) [p(e't)]. Then 

k=O 

so 

Hence, f is distance at least 1 from any polynomial so the polynomials cannot be 
dense in the continuous complex-valued valued functions on T. [Those readers familiar 
with complex variables know that the uniform limit of any sequence of polyuomials 
OIl : Izi S l} mllst be analytic] 

ror the complex form of the Stone-Weierstrass Theorem, we need to add an addi­
tional condition, namely, that whenever a function f belongs to the algebra A then 
so does its conjugate f. [Note this property is missing in the example above.] 

We denote by Cc (S) the space of all continuous, complex-valued functions on S. 
We assume that Cc (S) is equipped with the sup-norm. 
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Theorem 12 (CompteJ: /«)J'W of Slol!I Wcil'rstrass). Lei A be an algebra ill ('c(.'-> I 
such that A contains the ("()TI"ftmi fu.lldioll 1, separates the points of S and i., S(lI)' 

that when f E A, 1 E A. Thcn A is dense in CdS'). 

Proof: Let AR be the of all real and imaginary parts of functions Wil,i 1, 
belong to A. Since nf = (f -I- ])/2 and If = (f 1)/2i, AR is an algebra ill ('(» 

which contains 1 and sepa,rates the points of S. Hence, AR is dense in Si,l< ,. 
A = {J + ig: J,g EAR}, A is dense in CdS). 

For further remarks on the Stone-Weierstrass theorem, see the article by M. SIOll'·. 

in Studies in Modern Analysis, Volume 1 in Mathematical Association of A 1/11 "'({ 

Studies in lv1alhematics, edited by R.C. Buck ([Bu]). 

Exercise 1. If A is an algebra in show that A is an a1gebra. 

Exercise 2. Is P a function space in C[a, bF 

Exercise 3. If [. is a function space in C{S), show that '£ is a function space. 

Exercise 4. Show that P [. Example 5) is dense in C[O, 1]. 

Exercise 5. Let A be the vector space in U[O,l] generated by the functions 1. 

sin It, sin 2t, .• ,. [f E A if and only if f( t) = Ok sin kt for some 0i E R.] Show that 

A is dense in C[O, 

Exercise 6. Show that the algebra generated by the functions {I, t2
} is dense in 

C[O,l] but is not dense in C[~l, 1]. 

Exercise 7. Let S, T be compact Hausdorff spaces. If f E C(8), g E C(T), write 
f fg) 9 for the function (s, t) ---> f(.s )g( t). Show that the functions of the form L h gk 
(finite sum) are dense in C(S x 7'). 

Exercise 8. Give an example of a situation where Theorem 7 is applicable but 
Theorem 9 is not. 

Exercise 9. If Jk E BV[a, b] and h ---> J uniformly on [a, b], is it necessarily true 
that f E BV[o, bJ? 

Exercise 10. If 9 E e[O, 1] and (. > 0, show that 3ao, al, ... , ak E R such that 

Ig(t) ta]cJtl<(., "It E [0, 
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Exercise 11. Show that the polynomia.ls with ration,tl coefficients are dense III 

e[a,b]. 

Exercise 12. Let A be the set of all functions of the fornl ,n E N. Ck E R. 

Show tha.t A is dense in bj. 

Exercise 13. LE't A be the set of all functions of the form 

Ck E R. Show that A is (blse in qo, Is A dense in C[ -1f 1 
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MCT, 83 
measurable, 71 
measurable rectangle, 116 
measure, 20 
measure space, 20 
metric linear space, 165 
metric outer measure, 39 
Mikusinski, 113 
Minkowski Inequality, 208 
Minkowski's Inequality for Integrals, 211 
monotone, 2-3, 20, 36, 204 
monotone class, 17 
Monotone Class Lemma, 18 
Monotone Convergence Theorem, 83 
mutually singular, 31 

N 
negative part, 28, 198 
Nikodym Roundedness Theorem, 68 
Nikodym Convergence Theorem, 67 
NLS, 166 
non-atomic, 222 
norm, 165 
normed space, 166 
nowhere dense, 259 

o 
OMT, 184 
open intervals, 3 
Open Mapping Theorem, 18·1 
operator norm, 174 
order bounded, 200 
order completeness, 2 
order dual, 200 
order ideal, 202 
ordered vector space, 197 
ordinate set, 124 
orthogonal, 238 
orthogonal complement, 239 

orthonormal, 238 
orthonormal dimension, 2,13 
outer measure, 36 
outer regular, 51, 61 

p 
pairwise disjoint, 1 
Parallelogram Law, 2:~6 
Parseval's Equality, 242 
partial order, 197 
partition of nnity, 228 
permutation, 1 
Pettis, 193 
Pettis integral, 221 
Plancherel transform, 251 
Point Mass, 23 
positive, 197, 199-200 
positive part, 28, 198 
power set, 1 
premeasure, 20 
product, 116 
purely finitely additive, 48 
Pythagorean Theorem, 2:39 
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Radon-Nikodym, 131, 138 
Radon-Nikodym derivative, 1:33 
rapidly decreasing functiolls, 250 
rearrangement convergent, 5 
rectangle, 116 
reflexive, 191,197 
regular, .51, 61, 63 
representing measure, 228 
representing signed measure, 2:32 
Reverse Holder Inequality, 212 
Riemann integrable, 96 
Riemann-Lebesgue Lemma, 249 
Riesz,170 
Riesz Decomposition, 200 
Riesz Representation Theorem, 175, 213, 

219, 224, 229, 23:3, 2:39 
Riesz space, 197 
Riesz-Fischer, 208, 243 
right shift, 176 
ring, 16 
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a-set, 15 
a-algebra, 17 
E-simple, 78 
s-section, 119 
t-section, 119 
8-sequence, 126 
scalar product, 235 
Schwartz space, 250 
second category, 259 
second dual, 190 
semi-algebra, 15 
semi-norm, 166 
semi-normed (normed) vector lattice, 202 
semi-ring, 15 
separates the points, 263 
shrinks regularly, 148 
sides, 116 
Sierpinski, 121 
signed measure, 20 
simple, 78 
singular, 34, 139, 153 
standard representation, 78 
Stone-Weierstrass, 265 
sublinear functional, 186 
subseries convergent, 7 
sum, 96 
sup-norm, 167-168 
supremum, 2, 197 

T 
Tonelli, 119 
topological vector space, 165 
total variation, 30, 256 
transitive, 197 
translation invariant, 51 
transpose, 192 

U 
UBP, 178 
unconditionally convergent, 5 
Uniform Bounded Principle, 178 
uniformly II-continuous, 134, 142 
uniformly II-continuous, 211 
uniformly count ably additive, 66 

union, 1 
upper, 2,96 
upper variation, 28 

V 
variation, 30, 255 
vector lattice, 197 
vector sublattice, 202 
vector topology, 165 
Vitali,211 
Vitali-Hahn-Saks ThcorclI1, II'! 
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