# MEASURE,
w7/ INTEGRATION
AND

FUNCTION

SPACES




MEASURE,
INTEGRATION AND
FUNCTION SPACES

Charles Swartz

Department of Mathematical Sciences

New Mexico State University
USA

\\:e World Scientific

Singapore « New Jersey « London « Hong Kong



Published by

World Scientific Publishing Co. Pte. Ltd.

P O Box 128, Farrer Road, Singapore 9128

USA office: Suite 1B, 1060 Main Street, River Edge, NJ 07661
UK office: 73 Lynton Mead, Totteridge, London N20 8DH

MEASURE, INTEGRATION AND FUNCTION SPACES

Copyright © 1994 by World Scientific Publishing Co. Pte. Ltd.

All rights reserved. This book, or parts thereof, may not be reproduced in any form
or by any means, electronic or mechanical, including photocopying, recording or any
information storage and retrieval system now known or to be invented, without
written permission from the Publisher.

For photocopying of material in this volume, please pay a copying fee through
the Copyright Clearance Center, Inc., 27 Congress Street, Salem, MA 01970, USA.

ISBN 981-02-1610-6

Printed in Singapore by JBW Printers & Binders Pte. Ltd.



To The Memory

of

John DePree






PREFACE

These notes are based on courses in measure and integration theory that the
author has taught for a number of years in the mathematics department of New
Mexico State University. Although the presentation may be somewhat different, the
notes contain the basic information on measures and the Lebesgue integral contained
in such standard introductory texts as Royden, Hewitt and Stromberg or Aliprantis
and Burkinshaw; however, we try to emphasize the role played by countable additivity
by including a substantial amount of material on finitely additive set functions which
is not contained in most introductory texts. The material on finitely additive set
functions can easily be skipped if the reader wishes to concentrate on studying the
basic properties of the Lebesgue integral.

We motivate the introduction to measure and integration theory by discussing
Lebesgue’s original description of the Lebesgue integral. Following this historical in-
troduction we present an abstract set-up which is sufficient to discuss measure theory
and following a discussion of outer measures we give a general method which can be
used to construct measures including Lebesgue and Lebesgue-Stieltjes measures. The
important properties of Lebesgue measure are then discussed in detail. We then define
and develop the basic properties of the class of measurable functions. The Lebesgue
integral is defined, and its major properties are derived. Several special topics such
as convergence in measure, the Riesz-Fischer Theorem and the relationship between
the Riemann and Lebesgue integrals are discussed. We then define the product of
measures and use an interesting characterization of the Lebesgue integral due to J.
Mikusinski to prove Fubini’s Theorem on the equality of double and iterated integrals.
The section of the notes devoted to measure and integration closes with a discussion of
the Hahn and Jordan decompositions and the Radon-Nikodym Theorem. A chapter
on the relationship between differentiation and integration follows.

The second part of the notes is devoted to the study of some of the important
spaces of functions encountered in analysis. In order to have a general framework
in which to discuss function spaces, we introduce normed spaces and study enough
of their important properties to facilitate our study. In particular, we discuss what
Dunford and Schwartz refer to as the three basic principles of functional analysis:
the Uniform Boundedness Principle, the Hahn-Banach Theorem and the Open Map-
ping/Closed Graph Theorems. As noted by F. Riesz many of the most important
function spaces carry a natural order structure so we follow the example of Aliprantis
and Burkinshaw and also study the basic properties of ordered normed spaces. Af-
ter the discussion of abstract spaces, we proceed to study the LP spaces, spaces of
finitely and countable additive set functions, the space of continuous functions on a
compact space and abstract Hilbert space along with tlie Fourier transform. For the
convenience of the reader not familiar with them we discuss the topics of functions of
bounded variation, the Baire Category Theorem, the Arzela-Ascoli Theorem and the
Stone-Weierstrass Theorem in appendices

It is assumed that the reader of these notes has had an introductory course in real
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analysis at the level of the texts by Rudin, Principles of Real Analysis, Barlle, The
Elements of Real Analysis, Apostol, Mathematical Analysis or DePree and Swartz,
Introduction to Real Analysis. The term “topological space” is used several times in
the text; however, for students with no background in topology, “topological space”
can be replaced by “metric space” and in the measure/integration section “topological
space” can even be replaced by R™ except for parts of §3.5 and §3.6.

The notes contain more material than T have ever been able to cover in a one year
course. In order to develop the properties of the integral quickly, I cover Chapter
1, 2.1, 2.3 (2.3.1 being optional at this point), 2.4, 2.5 (2.6 being optional), 3.1-3.9
(section 3.10 and 3.11 being optional), return to 2.2.1, 2.2.2 to develop the material
necessary to cover the Radon-Nikodym Theorem in 3.12 and then do 3.13. The other
scctions cover more specialized topics, many dealing with propertics of finitely addi-
tive set functions, which can either be covered or left to the student to read on his/her
own. Chapter 4 covers basic topics in differentiation and integration including the
Fundamental Theorem of Calculus; the material in §2.6 on Lebesgue-Stieltjcs mea-
sures 1s used in this chapter. In Chapter 5, sections 5.3 on the Uniform Boundedness
Principle and 5.5 on the Open Mapping/Closed Graph Theorems can be skipped if
desired along with sections 5.6.2 and 5.6.3. Chapter 6 contains a discussion of clas-
sical function spaces. The results on ordered spaces in §5.7 arc not used in sections
6.1, 6.2 and 6.3 so these sections on L? spaces and their duals can be covered after
§5.6.1. The material in 6.4 and 6.5 relies on some of the results in §5.7. The material
on Ililbert space is also independent of §5.7.

[ would like to thank the many graduate students at New Mexico State University
who took the graduate course In measure and integration while these notes were
evolving. I particularly would like to thank Dan Gagliardi, Jillian Lee, Diane Martinez
and Dcbra Zarret for reading through this final version of the notes and correcting
many of my errors. Special thanks go to Valerie Reed for doing her usual exemplary
job of translating my hand-written notes into manuscript form.
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Chapter 1

Introduction

1.1 Preliminaries

In this introductory section we set down some of the basic notations which will be
used in the sequel. It will be assumed throughout that the reader is familiar with
basic introductory real analysis as set forth in such texts as [Ap], [Ba], [DeS] or [R1].

Set Theory

We denote the positive integers, integers, rationals, reals and complex numbers by
N,Z,Q,R and C, respectively. We denote the set of all non-negative real numbers
by R,y = {t € R: ¢ > 0}. The n-dimensional Euclidean space of all ordered n-tuples
of real [complex] numbers will be denoted by R™ [C®].

We use standard set theoretic notation: Let S be a non-empty set. If £ = {E, :
a € I} is a family of subsets of S, we denote the union and intersection of the family
€ by

UserBo =UE ={z € S:z € E, for some a € I}

and
MaetE,=NE={zeS:z€ E,forallaclI}

If I ={1,...,n}, we write
UierB; = EB,U---UE, =UL_ E;

and
MNiertBi = By 0+ N E, = O, Ex.

Similarly, for 1 = N, we write U;enE; = U2 E; and NienE; = N2, E;. The family
€ is said to be pairwise disjoint if E, N E, = @ whenever a,b € I and a # b. If
A,B C S, the complement of Bin Ais AA\AB={z € A:z € A,z ¢ B}, and we set
A° = S\ A. A permutation of a set S is a 1-1, onto function f : S — §. The power
set of S is denoted by P(S) =25. If A C S, the characteristic function of A is the
real-valued function C, defined by C4(t) =1ift € A and C4(t) =0 for ¢ ¢ A.
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A sequence in S is a function f : N — 55 we write f{(k) = fi and denotc the
sequence by {fi}72, or, simply, {fi}. I {Fi} is a sequence of subscts of S, we say
that {Ey} is increasing [decreasing] if Ey C Eyyy [Ex D FEiii] for each k; we write
ErlTor Ex TUR By [Er | or Ex | N2 Ex]. If {Ex} is a sequence of subsets of S,
the limit superior [limit inferior] of {Ey} is defined by

limk, = N2, U, B [imE, = U2, M2, By;
since the sequence {UZ, £,192, [M32; Ey] is decreasing [increasing],
by | limE, | ;B T lim ]
If hmEy =limEy, we say that {E;} converges and set
lim By = lim By, = limFy.

Note any increasing [decreasing] sequence {Ei} converges to U, Ex [N, ). If C
is any family of subsets of S, C, [C;] denotes the family of all subsets of .S which are
countable nnions [countable intersections| of membersof C.

A non-empty subset £ C R is bounded above [below] if there exists 6 € R such
that t < b [b < t] for every t € F; bis called an upper [lower] bound for E. We say
that E is bounded if it is bounded from above and below. H F is bounded above
[below], an upper [lower] bound, 6, for F is called a least upper bound [greatest lower
bound] or supremum [infimum] if b is an upper [lower] bound for E and if a is any
other upper {lower] bound for £, then 6 < a [a < b]; we write b =sup E [inf F]. The
real numbers possess the important order completeness property: every non-empty
subset of R which is bounded above [below] has a supremum [infimum]; see [A], [Bal,
[DeS] or [R1].

A real-valued seqnence {#;} is increasing [decreasing] if t < tgyy [tx > fpy1] for all
k; we write t; T [tx |]. Bt T or & |, we say that {¢x} is monotone. From the order
completeness property of the real numbers, it follows that if {t;} is an increasing
[decreasing] sequence in R which is bounded above [below], then {#;} converges to
sup{tx : k € N} [inf{#; : k € N}].

H {t;} is a bounded scquence in R, the limit superior [limit inferior] of {1} is
defined by

limty = inf sup ¢ [liméy = sup inf #;]. (1.1)
I21 > 3>1 k23
A bounded real sequence, {t; }, converges if and only if imt;, = lim#, and in this case
hm f/k = Fﬂtk = li_Intk [DGS]

Let a,b € R with a < b. We use standard notation for the intervals generated by

a,b:la,b]={teR:a <t <b},

?

{a,b)={t e R:a <1 < b},
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[a,b) = {t e R:a <t < b},
{a,b)={teR:a <t <b},
[a,00)={teR:t>a},
(a,00)={teR:t>a},
(—oo,a)={teR:t <a}

and
(—oo0,a]l={te R:t<a}.

Intervals of the form (a, b), (~ o0, a), (a,00) and (—o0, 00) = R [[a, b], (— o0, 4], [a, o0),
(—o0, 00)] arc all called open intervals [closed intervals].

If I is an interval in R, a real-valued function f : I — R is increasing [decreasing]
ift,s € I, t < s,implies f(t) < f(s) [f(t) > f(s)]; we write f 7 [f{]on [. fis
said Lo be monotone if f is either increasing or decreasing. Recall that any monotone
function has both right and left hand limits at every point of 1 [DeS].

If fi : S — R, the sequencc {fi} converges pointwise to the function f: 9 —» R
if im fi(t) = f(t) for every t € S; we write fr — f pointwise on S. If for every
¢ > 0 there exists N such that |fx(¢t) — f(t)| < e for every k > N, t € S, then {f.}
converges uniformly to f on S, and we write fyx — f uniformly on S. Basic properties
of pointwise and uniformly convergent sequences of functions are given in [DeS].

If f,g:5 — R, the max and min of f are defined by [V g(t) = max{f(t),9(t)},
S A g(t) =min{f(t),g(i)}. We have thc important formulas for f V g and f A g:

fva=f4+g+f—gl/2 frg=f+g—|f—gl/2 (1.2)
We write f* = fVv0and [~ =(=f)VO0so f=ft— f~, and if |f|(¢) = |f(t)] for
v S IfI=

Exercise 1. Prove (1.2).

Exercise 2. Show A = lim[, if and only if C4 = ECE,(; A = limF, if and only
if C4 = imCpg,; A = lim A, if and only if C4 = limCy4,, where the limit statements
concerning functions are pointwise.
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1.2 The Extended Real Numbers

Particularly in measure and integration theory, it is convenient to extend the real
numbers by adjoining two additional elements, denoted by co and —oo [distinct and
not belonging to R] with the order properties —oo < ¢ < oo for t € R. We denote
R plus the elements oo, —oco by R*. If £ C R is non-empty and not bounded from
above [below], we define sup E = oo [inf £ = —oo]. With this convention, every
non-empty subset of R has a supremum [infimum] in R*. Also, with this convention,
every sequence in R* has a lim and a lim in R* [§1, (1)].

A sequence {{;} in R* has limit co [—oo] or converges to co [—oo] if for every
r € R there exists N such that k& > N implies t; > r [t < r]. We write lim{; = oo
or tx — oo [limtx = —oco or tx — —o0).

We adopt the following conventions for algebraic operations on R*.

oo+t =1+ 00 unless t = —o0;

(—o0) +t =14 (—o0) unless t = oo;
ifa>0,thena-c0 =00-a=o00 and a-(—c0) = (—o0) - a = —oo;
ifa<0,thena-c0 =c0-a=—oocand a-(—00) =(—0)-a = oo.

The motivation for these definitions is the limit theorems from basic analysis. As
usual we do not define co + (—o0) or (—oo) + co.

We also adopt the convention that 0 - co = 0; this definition may appear to be
somewhat unorthodox, but it will be apparent when we study integration theory that
it is very useful.

With these definitions, we have

Theorem 1 If {tx} is an increasing [decreasing] sequence in R*, then {tr} converges
to sup{tx : kK € N} finf{t; : k € N}]. A sequence {t;} in R* converges in R* if and

only if limty = limty and in this case limt; = limt; = limt,. [Here, limt; = igfsuptk
21 k>j

and limty = sup inf ./
>1 k23

The proof is left to Exercise 1; see also Exercise 10.

A similar result is valid for increasing or decreasing real-valued functions defined
on intervals in R. We leave it to the reader to formulate the statements.

For intervals in R*, we adopt the following notation: [—o00, 0] = R*; (—00,00) =
R;ifa € R,

[aaoo]: {tER* iaStSOO},

[a,0) ={tER:a <t < 0},
(a,00)={t € R:a <t <0},
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(a,0]={teR":a <t < oo}

and similarly for [—oo, a], [—00, a), (—o0, a], (—oo, a).
We have the following important structure theorem for open subsets of R.

Theorem 2 Let G C R be open. Then G is a countable union of pairwise disjoint
open intervals in R.

Proof: For each z € G we associate an open interval containing = as follows: let T
be the family of all open intervals which are contained in G and contain z and set
I, =VUI. Ifb=sup{f: («a,f) € I} and a = inf{a : (o, B) € I}, then I, = (a,b) so
I, is an open interval.

The family {I : € G} is pairwise disjoint. For suppose that z € I, N I,. Then
I, U, is an open interval so I; U I, C I; by construction. Hence I, = I, U I, and,
similarly, I, = I, U I, so {I, : z € G} is pairwise disjoint.

The family {I, : ¢ € G} is clearly countable since each I, contains a rational.
Since G = U{I, : ¢ € G} the result follows.

For later use we establish an important result for series in R*.

Definition 3 Let {¢t,} C R” be such that s, = Zn: tr is defined for every n; s, is
k=1
called the n* partial sum of the sequence {ty}. The (formal) series § tr converges
k=1

in R* if and only if the sequence {s,} converges in R*. We write s =lims, = } t
n k=1

and call s the sum of the series.

o0
The series 3" tx is called unconditionally convergent or rearrangement convergent
k=1

if for every permutation o : N — N, the series ’21 to(k) converges. The series ’21 to(k)
is called a rearrangement of § te. It is established in elementary analysis that a
real-valued series is unconditiozrially convergent in R if and only if it is absolutely
convergent [i.e., § |tx| converges in R], and in this case all rearrangements converge
to the same limi::[;ee, for example, [DeS] 4.21].

For series with non-negative terms, we have

Proposition 4 Ift, € R*, t, > 0, then 3 ity is rearrangement convergent and every
k=1

o0
rearrangement converges to . ig.
k=1

o0
Proof: 3 f; converges in R* since the sequence of partial sums {s,} is increasing.
k=1

Set a = f: tg. Let 0 : N — N be a permutation of N. Set b = io: tok)- It suffices
k=1 k=1
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to show b < a or Zn: toky < a for every n. For n € N, set m = max{c(1),...,0(n)}

and note Z Lok < Z tr < a.

We next establlsh a result for double series of non-negative terms which is very
important in measure theory. Let ¢ : N x N — R"; we call t a double sequence

and denote the value ¢(7,5) = t;;. The series f( § ti;) = § § ti, [Z (E tu> =
p 2 2

=1 3=1 i=1j5= j=1 \i=1

E Z t;;] is called an iterated series.
j=1:=1

Theorem 5 Let t;; € R*, t;; > 0. Then

(i) Zth—zzt” and

1=1 7= 3=11=

ii zf c: N —- NxNisl-—1, onto [so {i, s an enumeration of {t;;}], then
(1) J

o0
Proof: (i): Since ¢;; > 0, the series E t;; always converges to a non-negative clement

oG o0
of R* so the iterated series Z Z t;; always converges. Set a = > ¥ ¢, and b =
i=1j= i=13=1

t;;. For each m, n

™18
™8

1

w
Il
-
1l

Hence b € a and by symmetry a < b.
(ii): Set ¢ = ¥ to() and for each i set o(1) = (mi,n). Then
k=1

k oo
Zta()—ztm.n. SZZt min, < @

soc<a.
Fix m, n. There exists N such that if 1 < ¢ < m, 1 < j < n, then there exists
1 <r < N such that o(r) = (z,7). Then
m n N
2t <)t S

=1 3=1 r=1

Hence, ¢ < c.
For series whose terms are not positive, see Exercises 2 and 3.

Exercise 1. Prove Theorem 1.
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Exercise 2. Let t;; =1if e —j =1, {; = -1if ¢ —j = —1 and ¢;; = 0 otherwise.
Compute

ti;

™
.'Mg

-
I
—

Ly
1l
—

and

M8
8

t,'j.

1i=1

[
1l

Find an enumeration {¢;} of {{;;} such that § t; diverges.
=1

Exercise 3. An iterated series Z Z t;; converges absolutely if Z Z [t:;] < oo.

i=1j= i=1 j=1
Show that if Z Z t;; converges absolutely, it converges; moreover, if {¢;} is any
i=13=1
[:

5 ).

=1

P’J8
*P’J8
l\’J8

enumeration of {¢;;}, show Z t; converges to

l

1
—

1

('
1]
—

2
. . x . . . .
Exercise 4. A real-valued series 3" t is subseries convergent in R if for every sub-
k=1

o0 o0
sequence {i,, }, the series )" t,, converges in R. Show 3~ #; is subseries convergent
k=1 k=1

in R if and only if 3° [tx] < oo.
k=1
Exercise 5. If 3 #; converges absolutely in R, show 3 t? converges in R. Can
k=1 k=1
absolute convergence be replaced by convergence? Does the convergence of 3~ 2 (in
k=1
R) imply the convergence of 3 7

k=1

Exercise 6. If Z t? and Z s2 converge in R, show Z trsg converges absolutely in
E=1 k= E=1
R.

Exercise 7. If t; — 0, show {x} has a subsequence {t,,} such that the series 3" t,,

k=1
converges absolutely in R.
Exercise 8. Let o be a permutation of N x N and let 0 < #;; < co. Show 3~ 3 #;; =
=1 7=1
i
i; i=1 o)

Exercise 9. Show that a sequence {t;} C R is bounded if and only if the series

Z t;s; converges for every absolutely convergent series 21 Sj.
=
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Exercise 10. Show H(ak + b)) < limay + limby, lim (ay + bx) > limay + limb, and

lim(—a;) = —limas. If limax = a, then lim(ay + b) = a + limby, lim (a; 4 &) =

a + limby.
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1.3 Lebesgue’s Definition of the Integral

Even shortly after Riemann introduced the integral which now carries his name the
mathematicians of the era realized that the integral had serious shortcomings. In
particular, the integral was only defined for functions which were bounded and de-
fined on bounded intervals; in order to integrate unbounded functions or functions
defined on unbounded intervals required a special definition and led to an integral
often referred to as the Cauchy-Riemann integral. It was also recognized that the
Riemann integral has poor convergence properties; for example, a function which
is the pointwise limit of a uniformly bounded sequence of integrable functions need
not be Riemann integrable (Exer. 1). In his 1902 Ph.D. thesis H. Lebesgue ([L1])
introduced an integral which now bears his name and which overcame most of the
shortcomings of the Riemann integral. Since its inception the Lebesgue integral has
continued to evolve and in its present form it is recognized as the most useful and
powerful theory of integration which is available. In order to explain and motivate
our presentation of the Lebesgue integral we now give a brief sketch of Lebesgue’s
introduction to the Lebesgue integral.

Lebesgue began with what he referred to as the “problem of integration” which can
be paraphrased as follows: Assign to each bounded function f defined on a bounded
interval I = [a, b] a number, called its integral and denoted by fub f()dt = fub f=nr
satisfying the properties

(a) f7 f(&)dt = [ f(t — h)dt

b)) Lf+Ef+ff=0

() RU+9)=Lf+]9

(d) £>0,b>aimplies [; f >0
(e) h1=1

(£) if fu T £, then f! fi — f7 f.

Lebesgue made the assumption that such an integral existed and then proceeded
to deduce what additional properties it would have to possess.

For example, from (c) it follows immediately by taking f = g = 0 that f: 0=0,
and then it follows that f:(—f) = — f* 7. From this property, (c) and (d) imply that
when f > g on [a, ], then [} f > [Jg, and whence | [ f| < [7|f], since [ f < [} |f]
and [J(—f)=— [ f < J21f).

From (c) it follows that if n is a positive integer, then n [° f = [*(nf), and from
the observation above this also holds if n is a negative integer. Also, we have

[r-[tnanfts
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1o b1
=/
n Ja a N
for any non-zero integer. 1t follows that [’ ¢f = ¢ [° f for any rational ¢. 1f r € R,

let ¢ be a rational and choose a rational p, 0 < p < 1, such that |r — ¢|(M + p) is
rational, where M = sup{|f(2)|: a <z < b}. Then

Lo [ s [ir=an<ie—dvarn [

and by letting ¢ approach r, we obtain [*rf = r [P f. That is, if axioms (c) and (d)
hold, then the integral (if it exists) must be homogeneous.

It can also be shown using (a)-(e) that [*1 = b —a (Exer. 2). Note that in
deriving these properties of the integral condition (f) has not been employed.

It follows from these properties that any integral satisfying axioms (a)-(e) must
agree with the Riemann integral for Riemann integrable functions. For consider any
interval I = [a, b] and subdivide I into subintervals {f; : ¢ = 1, ..., n}. If fis a
bounded function on I, let m; = inf{f(z) : 2 € I}, M, = sup{f(z) : = € I;} and let
{(1) be the length of 1. Then

> mil1) / = [ 7= man

ﬁfﬁ[fs]if,

where LbLf and Tif denote the lower and upper Riemann integrals of f, respectively.

Recall, however, that the Riemann integral does not satisfy property (f) (Exer. 1).
Now Lebesgue made a crucial observation using condition (f). Suppose

f :la, b = R is bounded with ¢ < f(2) < L for ¢ < & < b. Consider a partition

m:l=1{y <l <..<{, =1L of the range of f and let

SO

SO

Ei={z: 41 < f(z) <b},i=1, .., n (1.1)

If we set ¢ = Z 6, 1 Cg, ¢ = Z £,Cg,, where Cg denotes the characteristic
function of E, then we have p < f < ¢ S0

/;9022&—1/;013.E/abfé/abll):g:&/abca- (1.2)

The inequality (2) leads to the important observation that in order to define the
integral of the bounded function f it is only necessary to define the integral for certain
characteristic functions. For suppose that fb Cg has been defined for all characteristic
functions arising from (1). The functions ¢ and 1) depend on the partition = and as

max{l; — iy :i=1,..,n} =0, (1.3)
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the functions ¢ and v converge to f uniformly. If a sequence of integrable functions
{f.} converge uniformly to an integrable function f, then fab fn— f:f since

[ = [ 715 [1fa= 712 G- @)supllfa(e)  S@)] a < 7 < b).

Thus, it follows that the integrals of ¢ and % must converge to f° f if (3) holds. Note
that in order to define the integral of the function f it is only necessary to define the
integral of characteristic functions of sets of the form (1) which are generated by the
function f. The integral of f can then be defined as the common limit of the integrals
of the functions ¢ and % as (3) holds. It is often remarked that the key difference
between the Riemann integral and Lebesgue integral is that in the Riemann integral
the domain [a, 8] is partitioned while in the Lebesgue integral the range [¢, L] is
partitioned. Note, however, that the sets {E; : 7 =1, ..., n} from a “partition” of
[a, b] in the sense that the sets are pairwise disjoint and their union is [a, 8] so another
view of the Lebesgue integral is that the domain [a, 5] is “partitioned” by using sets
which are more general than subintervals.

Thus, to define the integral, Lebesgue was led to what might be called the “prob-
lem of measure”:

Assign to each bounded subset F of R a non-negative number, called the measure
of E and denoted by m(E), satisfying:

(i) any two congruent subsets have the same measure [two subsets of R are congruent
if one can be obtained from the other by reflection and translation]

(ii) if E is either a finite or countably infinite union of pairwise disjoint sets {E;},
then
m(E) =¥ m(E;) [this condition is called countable additivity|

(iii) m([0, 1]) = 1.

Since m([a, b]) = b — a for any interval (Exer. 3), we are seeking an extension of
the length function to the class of all bounded subsets of R.

Using the Axiom of Choice, Vitali showed that the problem of measure has no
solution in R.

Example 1 For z, y € [0, 1], say that £ ~ y if and only if z — y is rational. Then
~ is an equivalence relation on [0, 1]. Let P be a subset of [0, 1] which consists of 1
point from each equivalence class of ~; the Axiom of Choice is being used here.

We first claim that if r, s are distinct rationals, then (P +r)N (P +s) = 0. For if
z€(P+r)N(P+s),thenz =p+r=gq+swherep, g€ P. Thenp—qg=s5s—-r#0
so p~ ¢ with p # ¢. This violates the construction of P.

Next we claim that [0, 1] CU{P +r :r € Qo}, where Qo = QN [-1, 1]. For
suppose that z € [0, 1]. Then z is in some equivalence class of ~ so z ~ p for some
p€ P. Then z — pis arational rin [-1, 1]soz € P +r.
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By (i), m(P + r) = m(P) for any r and by (ii), (iii) and Exer. 3,

m([0,1]) =1 < m(U{P+7:7 € Qo}) = zc; m(P) <m([-1,2]) = 3.

Whether m(P) = 0 or m(P) > 0, this equation is clearly impossible.

Remark 2 Note that the full force of (iii) was not used to reach the conclusion above;
it is only necessary to assume that m([0, 1]) > 0.

Since the problem of measure as posed above has no solution, there are two obvious
ways to weaken the statement of the problem so that it is possible that a solution
might exist. First, we might consider relaxing condition (ii) to require only finite
additivity of the measure m. That is, replace (ii) by the weaker condition:

(ii)’ if E is a finite union of pairwise disjoint sets Ey, ..., E,, then m(E) = Zn: m(E;).
=1

This version of the problem of measure is sometimes referred to as the “easy” problem
of measure while the original version of the problem of measure is referred to as the
“difficult” problem of measure ([Na] IIL.7; this terminology is not often used but is
convenient in this discussion). Banach showed that the easy problem of measure in
R has a solution ([B1]); see 5.6.3.

Both problems of measure have obvious generalizations from R to R™ where the
unit interval I = [0, 1] in (iii) is replaced by the unit square I x ... x I, and in (i)
two sets are said to be congruent if one can be obtained from the other by reflections,
translations and rotations. Example 1 can be used to show that the difficult problem
of measure has no solution in R™ (see Exer. 3.9.4). Banach also showed that the
“easy” problem of measure has a solution in R? ([B1]). However, even the “easy”
problem of measure has no solution in R™ for n > 3. Indeed, in R™ with n > 3 we
have the remarkable Banach-Tarski Paradox:

Theorem 3 IfU and V are bounded subsets of R™, n > 3, with non-empty interiors,
then there exist k € N and partitions {E,,---, E¢} and {Fy,---, Fi} of U and V,
respectively, such that E; is congruent to F; forj=1,--- k.

That is, one can take a golf ball, cut it into a finite number of pieces and reassemble
the pieces into a basketballl Theorem 3 clearly precludes the existence of a finitely
additive measure on R™, n > 3, which solves the “easy” problem of measure.

For discussions of the Banach-Tarski Paradox see [St1] or [Fr].

The other obvious weakening of the “difficult” problem of measure is to retain
condition (ii) but to seek a measure which is defined on some proper subfamily of the
family of all bounded subsets of R. This is the approach that we adopt. As we will
see when we study the Lebesgue integral the countable additivity in condition (i1)
leads to very powerful convergence properties for the Lebesgue integral.
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We now consider how we might construct a measure m satisfying conditions (i)-
(iii) on some family of subsets of R. Obviously, what we are seeking is an extension
of the length function, £((a, b)) = b — a, from the class of all bounded intervals which
satisfies conditions (i) and (ii) on some appropriate subfamily of subsets of R. To see
how we might construct such an extension assume that a measure m exists satisfying
condition (ii). If G is an open set which is contained in some bounded interval, then
by (ii) m(G) must be the sum of the lengths of the open subintervals which make
up G (1.2.2). That is, if G is the union of open intervals {I;}, then m(G) = 3 £(1;);

this shows how the length function can be extended to bounded open sets. I Eis
a bounded subset and G is a bounded open set containing F, then m(G) > m(E)
(Exer. 3) so

inf{m(G) : G open and bounded, G 2 E} = m*(E) > m(E); (1.4)

m*(E) is called the outer measure of E and gives an extension of m from the bounded
open sets to the family of all bounded subsets of R. As Example 1 points out,
m* cannot satisfy condition (ii) for all bounded sets so we seek a “nice” subfamnily
of bounded sets on which m* will satisfy (ii). In order to isolate an appropriate
subfamily, Lebesgue also defined the inner measure of a bounded set. Suppose that
E is bounded and contained in the interval I = [a, b]. The inner measure of E,
m.(E), is defined by computing the outer measure of the complement of £ in I and
setting

m.(E) =m(l) — m™(I\E). (1.5)
A set E is called (Lebesgue) measurable if m*(E) = m,(F) and the (Lebesguc)

measure of E, m(E), is defined to be this common value. As we will see in §2.5
Lebesgue measure on the family of Lebesgue measurable sets satisfies conditions (1)-
(i11) and so furnishes a solution to the weakened “difficult” problem of measure.

Tt is desirable to have the measure extended to subsets of R which are not bounded.
The measure of an open set, even if unbounded, can be defined as above and the for-
mula (4) defining the outer measure is still meaningful. However, if Iis an unbounded
interval and £ C [ is such that m*(/\ E) = oo, then the formula (5) defining the inner
measure of E is no longer meaningful. There are means of defining the inner measure
of an arbitrary subset of R ([Roy], [W1i]), but, fortunately, there is a characterizalion
of measurability due to Caratheodory which involves only the outer measure of a set
and this characterization can be used to define the measurability of a set even if the
set 1s unbounded. Namely, we say that a subset £ C R is (Lebesgue) measurable if
and only if

m*(A) = m* (AN E)+ m*(A\E) for any A C R ([Cal). (1.6)

Thus, a set is measurable if no matter how it is divided, the measure of the set is the
sum of the measures of the pieces into which it is divided. As will be seen in §2.3,
this definition can be used to define measurability in a very abstract setting.
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As observed by Lebesgue, in order to define the integral of a function f, it is
only necessary to define the integral of the characteristic function for sets of the form
(1); i.e., it is only necessary to define the measure of such sets. [Functions with the
property that inverse images of the form (1) are measurable are called measurable
functions and are studied in §3.1.] In part 2 of these notes, we begin by developing the
basic properties of measures. We then give an abstract treatment of outer measures
and measurable sets by using the Caratheodory characterization of measurability
given in (6). We show how outer measures can be constructed in general, and then
construct Lebesgue and Lebesgue-Stieltjes measures and derive their most important
properties. The Lebesgue integral is then defined and studied in part 3. In part 4 we
study the relationship between differentiation and integration, and Parts 5 and 6 of
the notes are devoted to the study of function spaces, many of which arise through
integration processes.

For a beautiful exposition on integration theory by H. Lebesgue see [L2], especially
part II. A brief biography of Lebesgue is given by K.O. May in [L2]. Historical
developments of integration theory, including the Lebesgue integral, are given in [Ha]

and [Pe].

Exercise 1. Let {r;} be an enumeration of the rationals in [0, 1] = I. Define f, on
Iby fa(t) =1if t = ry, ..., 7, and f,(t) = 0 otherwise. Show each f, is Riemann
integrable but converges pointwise to a function which is not Riemann integrable.

Exercise 2. Use (a)-(e) to show that /1 =6 — a.

Exercise 3. Show that if (i), (ii)’ and (iii) hold, then m({a}) = 0 for any a and
m(E) 2 m(F) when E D F. Show that if (i)-(iii) hold, m(E) = 0 for any countable
set and m([a, b]) = b — a.



Chapter 2

Measure Theory

2.1 Semi-rings and Algebras of Sets

In our description of Lebesgue measure in §1.3 , we observed that the length function
in R was to be extended to Lebesgue measure defined on some subfamily of subsets
of R. In this section, we describe and develop some of the basic properties of the
types of subfamilies on which measures and other set functions are defined.

Let S be a non-void set and & C P(S), the power set of S.

Definition 1 S is a semi-ring if and only if
(i) bes
(ii) A,B €S implies ANBES

(iii) A, B € S implies A\B = U?_,S;, where S; € S and {S; : j = 1,...,n}

are parrwise disjoint.
If in addition to (i)-(11i), S satisfies:
(iv) Se S,
then S 13 called a semi-algebra.

Definition 2 A C S is called a 0 — set with respect to S if A = UR,S;, ;€ S,
{S;} pairwise disjoint.

Proposition 3 Let S be a semi-ring.

(i) If A€ S and Ay,... ,An € S, then A\ UZ_, A; 18 a finite, pairwise, disjoint
unton of elements of S (and, hence, a o-set with respect to S).

(i1) {A4;:7€ N} C & implies UR | A; is a o-set with respect to S.

(iii) Countable unions and finite intersections of o-sets are o-sets.

15
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Proof: (i): We use induction on n. For n = 1, this is Definition 1(iil). Assume
(i) holds for n. Let Ay, ..., Any1 € S . By the induction hypothesis

B=A\U| A; = UL, B,
where B; € § , {B;} pairwise disjoint. Then
A\ U;i—ll A= B\A,1, = Uf:l(Bi\AvH-l)

and by Definition 1(iii) each B;\A,;1 is a finite, pairwise disjoint union of elements
of § so A\ U] A, is likewise.

(ii): Set A = U2, A;. Define By = Ay and By = Agp\ Uk, Aj for k& > 1.
Then { By} are pairwise disjoint and A = U, By. [This is a standard construction
in measure theory.] Each By is a o-set by (i) so A is a o-set.

(iit) follows from (ii) and Definition 1(ii).
Definition 4 S is a ring (of subsets of S) if S is a semi-ring and
(iii) A, B € S implies A\B € S.
If S is a ring with S € &, then S is called an algebra. Note an algebra is closed

under complementation.

Proposition 5 Let A be an algebra. Then A is closed under finite unions and in-
tersections.

Proof: By DeMorgan’s Laws, AU B = (A°N B¢)°.

Note that A is an algebra if and only if § € A and A is closed under complemen-
tation and finite unions (intersections).
We now give some examples.

Example 6 A = {}, S} is an algebra.
Example 7 A = P(S5), the power set of 5, is an algebra.

Example 8 Write [a, a) = §§ for a € R. Let S consist of all intervals in R of the
form [a, &) with @ < b. Then S is a semi-ring and is not a semi-algebra.

Example 9 Let a < b. Let S consist of all subintervals of the form [c, d) with
a <c¢<d<b. Then § is a semi-algebra.
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Example 10 Let S, be the collection of all subsets A C R™ of the form
A=lay, b)) X ... X[an, b,)

with —oo < a; € b; < 0o. Then S, is a semi-ring of subsets of R". [For n = 1, this
is Example 8. Conditions (i) and (i) of Definition 1 are clear. We establish (iii) by
induction on n. For this note

Ax B\C x D= {(A\C) x BYU{(ANnC) x (B\D)}
and apply this to

{lar, b1) X ... X [@n, bp)} X [@nt1, bup)\{le1, d1) X ... X [en, dn)} X [€ny1, drt1)

and use the induction hypothesis.]

Since the intersection of algebras (rings) is an algebra (ring), given any family
S of subsets of S there is always a smallest algebra (ring) containing S, called the
algebra (ring) generated by S. For semi-algebras (semi-rings), we have

Proposition 11 Let S be a semi-algebra (semi-ring). The algebra (ring) A generated
by 8 consists of all the pairwise disjoint finite unions of elements of S.

The proof is left to Exercise 1.

Definition 12 An algebra 3° of subsets of S is a o-algebra if

{A;:j €N} C Y implies U2, A;€ ).

From DeMorgan’s Laws, we have
Proposition 13 A o-algebra is closed under countable intersections.

Note that 3" is a o-algebra if and only if @ € - and A is closed under comple-
mentation and countable unions {intersections).

Since the intersection of o-algebra is a o-algebra, any family of subsets S of S has
a smallest o-algebra containing S, called the o-algebra generated by S.

We next establish a useful criterion, called the Monotone Class Lemma, for estab-
lishing when an algebra is a o-algebra. This result is not used in the sequel and may
be skipped.

Definition 14 Let M C P(S). M is a monotone class if {A;} C M and if A; T (or
A; ]), then UA; € M(NA; € M).
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Again the intersection of monotone classes is a monotone class so any family of
subsets S of S has a smallest monotone class containing it, called the monotone class
generated by S.

Lemma 15 (Monotone Class Lemma). Let A be an algebra. Then the o-algebra, 3,
generated by A coincides with the monotone class, M, generated by A .

Proof: By Exercise 6, 3~ D M. Hence, by Exercise 7, it suffices to show that M
is an algebra.

If E € M, define Mg to be the collection of all F € M such that F\F, EN F
and F\ E belong to M. Clearly, € Mg and Mg is a monotone class containing A.
Moreover, F' € Mg if and only if £ € Mpg.

If E€ A then AC Mgfor F € A . Hence,if E € Aand F € M, then
E € Mp so that A C Mp for F € M. The minimality of M implies Mg = M
for F € M . Thus, M is closed under intersections and relative complements; but

S € M so M is an algebra.

Corollary 16 If a monotone class M contains an algebra A , then M contains the
o-algebra generated by A.

Exercise 1. Prove Proposition 11.

Exercise 2. Let S be uncountable. Let )~ be all subsets, A, of S with either A or
A° at most countable. Show " is a o-algebra and is the o-algebra generated by the
singleton subsets of S.

Exercise 3. Let A consist of all subsets, A, of S with either A or A° finite. Show A
is an algebra, and if S is infinite, A4 is not a o-algebra.

Exercise 4. Let 3 be a o-algebra of subsets of S and E € }°. Show
Yp={FNE:Fe}}

is a o-algebra of subsets of E.
Exercise 5. Show the families in Examples 8, 9 and 10 are not algebras. Show the

o-algebras generated by S in Examples 8, 9 and 10 contain all of the open and closed
sets.
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Exercise 6. If S C P(S), M is the monotone class generated by S and 3 is the
o-algebra generated by S , show 3~ D M.

Exercise 7. If M is a monotone class and an algebra, show M is a o-algebra.

Exercise 8. Let R consist of all subsets A of [a, b] which are such that C4 is Riemann
integrable. Show R is an algebra which is not a o-algebra.
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2.2 Additive Set Functions

In this section we study the additivity properties of set functions associated with
Lebesgue measure. [A set function is a function defined on some family of subsets
of a set.] That is, if S C P(S) and § € S and g : § — R*, we are concerned with
properties of the form u(AUB) = u(A)+pu(B) when A, B, AUB € § and ANB = 0.
To avoid arithmetic problems (i.e., oo+ (—00)), we always agree that any set function
with values in the extended real numbers, R*, can take on only one of the values oo
or —oo.

Let § C P(S) satisfy § € S and let p: S - R™.
Definition 1 g is finitely additive if
(i) u(®) =0
(i) {A; : i = 1, ..., n} C S pairwise disjoint and iL_nle,» € 8 implies "(.Q A) =
2 n(A).

p 3 countably additive if (i) holds and

M:

1

(i) {A;:i € N} C S pairwise disjoint and U A; € S implies u(U A:) = 5 u(Ay).
=1 =1 i=1

Note that the series in (ii)’ must be absolutely convergent since the left hand side
is independent of the ordering of the {A;}.

A non-negative countably additive set function defined on a o-algebra 3 (semi-
ring) of subsets of $ is called a measure (premeasure) on 3_; a countably additive set
function defined on a o-algebra 3 is called a signed measure on 3°. An ordered triple
(5,3, 1), where p is a measure on the o-algebra Y, is called a measure space.

We first make some elementary observations concerning finitely additive set func-
tions.

Proposition 2 Let § be a semi-ring and p: & — [0, oo].
(i) If p 1s finitely additive and A,B € S with A C B, then p(A) < p(B) [set

functions with this property are called monotone].

(ii) If i is countably additive, then u is finitely additive.

Proof: (i): B\A = O A;, where {4; : 7 = 1,..., n} € S pairwise disjoint.

Therefore, u(B) = u(A) + Z #(A:i) 2 u(A).
(il) is clear since @ € S a.nd u(@) =0.



2.2. ADDITIVE SET FUNCTIONS 21

Proposition 3 Let A be an algebra, p: A — R* finitely additive and A, B € A.
(1) I A D B and u(B) infinite, then g(A) is infinite.

(i) If A D B and u(A) is finite, then u(B) is finite.

(iii) If A 2 B and p(B) is finite, then u(A\B) = p(A) — u(B).

Proof: By finite additivity, we have pg(B) + u(A\B) = p(A) so (i), (ii) and (iii)
are immediate.
We next give some characterizations of countable additivity.

Proposition 4 Let S be a semi-ring and ¢t : S — [0, oo]. Then p is countably
additive if and only if

(i) #(@) =0,
(ii) AeSand {Ai:i=1, ..., n} C 8 pairwise disjoint with DA; C A implies
=1
n
L #(A:) < p(A) and

(iii) A€ Sand {A;:1 € N} C S with AC B A; implies p(A) <
i=1
said to be countably subadditive].

p(A). [ 28

1

[0

i3

Proof: <: (ii) and (iii) clearly imply that p is countably additive.

=: (i) is clear.

(i1): There exist {B; :1 =1, ..., m} C S pairwise disjoint such that A\ U A; =
=1

G B; by Proposition 2.1.3. Then
=1

u(A) = “’“Q A)U (0 B)) = 2 u(A) + i#(Bf) > i}ﬂ(/h)-

k
(ii): We disjointify the {A;} by setting By = A; and Bxy1 = Axa\ U A for
i=1

k> 1. Then {B;} are pairwise disjoint and {J B; = U A;, B; C A;. By Proposition

1=1 1=1

ki
2.1.3 each B; = U C;; where {C;; : j = 1, ..., ki} are pairwise disjoint. By (ii),
3=1

bead

3 W(Cy) < p(As). Now

7
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is a pairwise disjoint union so countable additivity and (ii) imply

0ok oo Ay 00
TOEIHWICLVIES 3 WICHED VIR

Proposition 5 Let Y be a o-algebra and p: Yy, — R* be finitely additive.

(1) p is countably additive if and only if for every increasing sequence {E;} C 3,
#(U E;) = lim p(E;).
=

(i1) If 1 18 countably additive and {E;} C Y i3 a decreasing sequence with
|1:(E;)| < oo for some j, then pu( () E;) = limp(E;).
3=1

(iii) If p s finite (R) valued, then p is countably additive if and only if for every
decreasing sequence {E;} C 5, u( N E;)=lmu(E;).
J=1

Proof: (1): =: Put E; = 0. Since F; 1, E = oLj E; = (E \F;_1) and since p
=1 =1
is countably additive,

o

#(E) =Y u(BAE, —hmZ/t(E \Ej-1) = lim p(E,).

j=1 j=1

<: Let {A,} €% be pairwise disjoint and set £y = U A;. Then E T U A; so

s

hm w(Ey) = hmZﬂ =u(lJ4))

=1 7

)

1

by hypothesis.
(ii): We may as well assume |u(FE1)| < oo. Since £y D ﬂ E, = F and E, D FEj,

k=
w(E) and p(Ey) are finite by Proposition 3. By (i) and Ploposmon 3,

I

u(U(BNE)) = (BN B = w(Ey) = p( () F)

= lim p(£\Ey) = Im(p(£1) - /t(Ek)) = p(£1) — lim p ().
Hence, p(E) = lim p( Ey).
(iil): =follows from (ii).
«: Let {A,} be a pairwise disjoint sequence from 3 and set A = U A;. Then by
1

Proposition 3,

—2nA)=p( 1J 4) =0

3=1 I=k+1
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since g A; 10
For a sequence of subsets, {A;}, from 5, recall limA, = kﬁl ﬁk A; and limA; =
1=
ﬁ oLj Aj;. We say the sequence {A,} converges if imA; = [imA; and define the limit
Z?I{JZ];}, denoted by lim A4;, to be this corololmon;/alue. For example, any increasing
(decreasing) sequence {A;} converges to jEJlAj(le A;).(See §1.1.) From Proposition

5, we have

Corollary 6 Let 3 be a o-algebra and 5 — [0, oo] be countably additive and let
{E;}C .

(i) p(limE;) < limp(E;)

(ii) 1f u( U By) < oo, then p(lmE;) > Tmpu(E;).

5=
(iii) If {E;} converges and u( | ) E;) < oo, then p(lim E;) = lim u(E;).
J=1
Proof: (i): Set Ay = oﬁ E,. So {A} is increasing and Ax 2O Fj. By Propositions
1=k
2 and 5(1),

3

lim p(Ax) = p(J Ar) = p(imEy) > limp(Er).

k

]
—_

(ii) follows from (i) by taking complements and using Proposition 3(iii).

(i) follows from (i) and (ii).

The finiteness condition in Proposition 5(ii) or Corollary 6(ii) cannot be dropped
(Exercise 3).

We now give some examples of measures and premeasures.

Example 7 (Counting Measure). If S is a non-void set, the counting measure on S
is the set function p defined on the power set of S by u(A) is the number of points
in A if A is finite and u(A) = oo if A is infinite. g is a measure on P(S).

Example 8 (Point Mass or Dirac Measure). Fix z € S. Define 6,: P(S) — R by
b:(A) =1ifzx € Aand 6,(A) =0if x ¢ A. &, is called the point mass or Dirac
measure at z; 6, is a measure on P(.5).

We next give the construction of the Lebesgue-Stieltjes premeasure.

Example 9 Let f : R — R be increasing and § the semi-ring of Example 2.1.8.
Define ps : S — R by pys(la, b)) = f(b) — f(a). Then gy is finitely additive on &
[Exer. 10], and we consider what conditions on f are equivalent to the countable
additivity of u;.
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First suppose that p; is countably additive. Let a € R and let {ai} be an arbitrary

sequence with ax T a. Then [a;,a) = ij [ai, @iy1) so
=1

s

1]
—

pslar, @) = f(a) = fla) = p_(—f(a) + f(aina)) = lim f(air1) = f(ar)

so lim f(a;) = f(a). Hence, if pgy is countably additive, f must be left continuous
(. lim 7(2) = (@),

We show conversely that if f is left continuous, then py is countably additive on
S . Let [a, b) = U] [a;, b;) with the union pairwise disjoint.

First, we claim that

o0

2 #slai, b) < £(b) — f(a) = pgla, b) :

=1
For each n, [a, b) D U [ai, b)) and we may assume, by relabeling if necessary, that
a<a; <b <ay<b < . € a, < b, <b. Since f is increasing,
Z(f(b-') — f(a)) < f(bs) = fla1) < f() = f(a).
=1
Since n is arbitrary, 3 (f(b;) — f(a:)) < f(b) — f(a).
i=1
Next, we claim that ugla, b) < § pyrlai, b)) : Let € > 0. For each i there exists
=1

7 > 0 such that 0 < f(a;) — f(a;-— 7) < €/2 and there exists § > 0 such that
0 < f(b)— f(b—6) < e. Then {(a; —m;, b;) : i € N} cover [a, b— 6] so a finite number

cover. By discarding and relabeling, we may assume

Gg—m<a<a;— 1 <h<... <@Gr—7, <b—6<b,.

Then
fb~8)=fla) < X(f(b)~ fai —m)) < E(S(b) ~ flai =)
< EU0) - S@) + £ o/
) = Sta) + £(b =) = £5) < (1 (8) — f(a) +
and

6) - f(a) < i(f(b.-) — fa) +2¢.

Thus, f(b) — f(a) < E(f( ;) — f(a;)) as desired.

The premeasure is called the Lebesgue-Stieltjes measure induced by f. If f is
the identity function, then py is called Lebesgue measure and is denoted by m; note
m([a, b)) = b — a so the Lebesgue measure of a half-closed interval is just its length.
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Example 10 (Lebesgue measure on R"). Let §(= &,) be the semi-ring of Example

n

2.1.10. Define m(= my) on & by m(I) = [I (b — a;), where

=1
I= [(ll, b]) X ... X [(lﬂ, bn)

In R%, m(I)is the area of  and in R3, m(I) is the volume of I. m is called Lebesgue
measure on R™.

m, is countably additive on S, . A geometric proof of this fact along the lines
of the proof in Example 9 is possible, but is surprisingly difficult (see [Si] §6.3, [Z1]
2.5.3). We give a proof of this fact in Appendix II of §3.2 by using the Monotone
Convergence Theorem for the Lebesgue integral.

We give an example of a countably additive set function which takes on both
positive and negative values.

Example 11 Let {a;} C R. Set px = ax if ax > 0, pr = 0if ax < 0 and ¢ = a; if
a; <0 and ¢ = 0 if ax > 0. Consider the following cases:

(I) > px and 3 gx both converge,

(II) one of the series " pi, 3 ¢x converges while the other diverges.

Now define 4 : P(N) — R” by p(A) = ¥ ax. In Case I, 3" ax is subseries
k€A

convergent in R and g is a real-valued, bounded, countably additive set function.
In case II, every subseries of 3" a; converges in R* and g is a countably additive
R*-valued set function.

Examples of finitely additive set functions which are not countably additive are
given in the exercises.

Exercise 1. Let S be a semi-ring and g : § — [0, co] be finitely additive. Show that
if g is countably subadditive, then g is countably additive.

Exercise 2. Let S be a semi-ring (semi-algebra) and p : § — R finitely additive.
Show g has a unique finitely additive extension to the ring (algebra) generated by S
(see Proposition 2.1.11).

Exercise 3. Show the finiteness condition in Proposition 5(ii) and Corollary 6(ii)
cannot be dropped.

Exercise 4. Let S be uncountable and " the o-algebra of sets which are at most
countable or have complements which are at most countable (Exer. 2.1.2). Define g
on Y. by p(E) = 0if E is at most countable and p(FE) = 1 if E* is at most countable.
Show g is countably additive.
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Exercise 5. Let {a;} be non-negative. Define y : P(N) — [0, 0o] by u(E) = ¥ ax.
keE
Show u is countably additive.

Exercise 6. Let S # @ and f : § — [0, 0o]. Define p : P(S) — [0, oo] by
wE) = Z f(z) if E is at most countable and u(£) = oo otherwise. .Show g is

countably addltlve

Exercise 7. Let A be all subsets A of S which are either finite or have finite
complements (see Exer. 2.1.3). Define 4 on A by p(A) is the number of points in A
when A is finite and p(A) is the negative of the number of points in A° when A° is
finite. Show g is finitely additive and if S is infinite, ¢ is not countably additive.

Exercise 8. Let A be the semi-algebra of all subintervals [a, b), a < b, of [0, 1) (scc
Example 2.1.9). Fix ¢t € (0, 1) and define X; : 4 — {0, 1} by

_ [1if[t—6,1)CA for some §>0
Ai(‘A) - {0 otherwise .

Show ), is finitely additive but not countably additive.

Exercise 9. Let A be the algebra in Exercise 7. Let u(A) = 0 if A is finite and
p(A) =1 if A° is finite. If S is countable, show g is not countably additive, while if
S is uncountable, u is countably additive.

Exercise 10. Let f : R — R and S be the semi-ring of Example 2.1.8. Define
74 :S — R by 74[a, b) = f(b) — f(a). Show 7y is finitely additiveon S .

Exercise 11. Repeat Exercise 10 for the semi-algebra of Example 2.1.9.

Exercise 12. Let S = N and A the algebra of Exercise 7. Let {a;} C R and set

w(A) = E ar when A is finite and p(A) = — ) ax when A is infinite. Show u is
keAe

finitely addltlve

Exercise 13. Suppose Y is a o-algebra and g, : 3© — [0, 00] is a measure for each ¢
and p;(E) T p(FE) for each E € 3°. Show u is a measure.

Exercise 14 (Borel-Cantelli). Let u be a measure on the o-algebra 3°. Let {E} C 3
be such that 3> u(Ex) < oo. Show limEj has p-measure 0.
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Exercise 15. Let {t,} C R and set p = ): 6., [Example 8 and Exercise 13]. Show

4 assigns finite measure to bounded mtervals if and only if lim |t,| = co. When is g
finite?

Exercise 16. Show p : P (S) — [0, oo] defined by () = 0 and g (A) = oo otherwise

is a measure.
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2.2.1 Jordan Decomposition

In this section we show that any signed measure is the difference of two (positive)
measures. This result is called the Jordan Decomposition Theorem. We first develop
a similar decomposition for certain finitely additive set functions.

The material in this section is not used until section 3.12 and may be skipped at
this time.

Let A be an algebra of subsets of S and x : A — R* finitely additive. For £ C S,
set ut(E) =sup{u{Ad):Ac A, ACE}>0and p (E)=—inf{p(d): Ac A,
A C E} > 0. u* is called the positive part (upper variation) of p, and p~ is called
the negative part (lower variation) of pu.

Proposition 1 (i) pt > p, —p<p~ on A,

(i1) p*(p™) is increasing and p~ = (—p)t

(iil) If p is finitely additive, then p* and p~ are finitely additive.

(iv) If A is a o-algebra and p is countably additive, then pt and p~ are countably

additive.

Proof: (i) and (ii) are clear.

(i11): Let Ey, E; € A be pairwise disjoint and set £ = Ey UE,. f ACE, A€ A,
then

#(A) = p(AN Ey) + p(AN Ey) < p*(Ey) + p* (E2)
$0
pH(E) < pt(En) + p* (Ey).

If either p*(Ey) or p*(E;) = oo, then for every r > 0 there exists A; C E;, A; € A
such that p(A;) > r for i =1 or 2; A; C E implies u*(E) > 7 so u*(E) = oo and
pt(E) = pt(Er) + pt(E,). I both p*(E)), pt(E;) < oo, let € > 0 and pick A4; € A,
A; C E;, such that u{A;) > p*(Ei;) — €¢/2. Then A;UA; CE and AU A; € Aso

pH(E) 2 p(A1 U Ag) = u(Ar) + u(A2) > p*(Er) + p* (Br) ~

Hence, p*(E) > p*(E1) + p*(Ey).
(iv): Let {E;} € A be pairwise disjoint and E = Ej E;. From (ii) and (iii), for
i=1

each n

S0
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Let A€ Aand AC E. Then

pt(E)

o

Il
—

/t(A)=§:/t(AﬂE-') <

W (E) < 3wt ().

The statements about g~ in (iii) and (iv) follow from (ii).

Lemma 2 Let E € A . If one of the numbers ut(E), p~(E) is finite, then u(E) =
p*(E) — p~(E).

Proof: If u(E) = oo, then p*(E) = oo so p~(E) < oo and pu(E) = pt(E) -
p~(E). Similarly, if 4(E) = —oo, then p7(E) = oo so u(E) = p*(E) — p~(E).
Assume pu (E) is finite. Then u(A) is finite for every A C E, A € A (2.2.3). By
2.2.3,
#*(E) — p(E) sup {u(A)—u(E): ACE, Ac A}
sup{—pn(E\A): ACE, A€ A}
u (E)

and the result follows.

Theorem 3 (Jordan Decomposition) If p : A — R is bounded, then p = put —

u.

Proof: Immediate from Lemma 2.

The boundedness condition in Theorem 3 is important; see Exercise 7 or 8.

We next show that Theorem 3 is applicable to any finite signed measure on a
o-algebra.

Lemma 4 Let A be a o-algebra and p countably additive. If E € A is such that
4+ (E) = oo(u~(E) = co), then u(E) = oo (3(E) = —co).

Proof: By Proposition 2.2.3, we need only find a subset A C E, A € A, satisfying
4#(A) = oo. Suppose ut(E) = co. Set Eg = E. Then there exists A; € A, A C E,,
such that u(A;) > 1. Either pt(A;) or u*(Es\ A1) equals oo so pick one and label it
E;.

For each positive integer n suppose A, € A, A, C E,_1, satisfies u(A,) > n and
either u*(A,) or p*(E,._1\An) = co. Pick one which satisfies this last condition and
label it E,,. There are two cases:

Case I: E, = E,_1\ A, for infinitely many values of n and

Case II: there exists N such that E, = A, for n > N.

In Case I, An, ANy, .- 18 a decreasing sequence from A. If y(An) = oo, we are

through; if not, by Proposition 2.2.5, u( F]o Ag) =1lim p(A,) > lim n = co.
n=N n n
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In Case I, there is a subsequence {A,,} with

s

w(U An) = 3 (An,) 2

nE = oo .

x
1)
—
x~
I
—
x
1)
—

Immediately from Lemma 4, we have an important property of signed measures
defined on o-algebras.

Theorem 5 If A is a o-algebra and p : A — R is countably additive, then p is
bounded.

The countable additivity assumption in Theorem 5 is important; we give an exam-
ple of a real-valued, finitely additive set function on a o-algebra which is unbounded
in Example 3.2.21. The og-algebra assumption is also important; see Exercises 5 and
8. The conclusion of Theorem 5 can also be improved; see [Hah] 3.3.1, p. 17.

Theorem 6 (Jordan Decomposition) Let A be a o-algebra and p a signed mea-
sure. Then p=p* — pu~ and p*, u~ are measures.

Proof: If £ € A, then by Lemma 4 one of p*(E), p~(F) must be finite so
p(E) = pt(E) — p~(E) (Lemma 2). Proposition 1 gives the last statement.

We address the uniqueness of the Jordan Decomposition for signed measures in
§2.2.2.

The total variation or variation of p is defined to be |u| = pt + p~. Note |p| is
an additive set function on A by Proposition 1, and if 4 is a signed measure on a
o-algebra, then |g| is a measure by Proposition 1. We have the following properties
of the variation.

Proposition 7 (i) |p(A)| < |u|(A) for A€ A.

(ii) IfA, Aie Aand A D G A; with {A;} pairwise disjoint, then
=1
> lu(Ad)] < |ul(4).
=

(ifi) |l (4) = sup{lu(B)] + [(A\B)|: BC 4, B € A).

(v) |u] (A) = sup{ 3> (A : {A;} pairwise disjoint from A with () A; = A}.
=1 1

=1

(v) sup{|u(B)|: BC A, B € A} < |u|(A) <2 sup{|u(B)|: BC A, B € A}.



2.2. ADDITIVE SET FUNCTIONS 3

Proof: (i): u(A) < p*(A)and — u(A) < pu~(A).
(i)): Fixn. Set et ={i:1 <i<n, u(A4;) >0}, 07 ={i:1<i<n, puld) <0}
Then
> oa(A) = D lu(A)] < 30 [ul(A)
i€at i€ot i€t
and
= > ulA) = Y0 (A < X |ul(Ay)
i€o~ i€~ i€a—

Z ANl = 30 w(A) — 3 ul(As Zlu\ = |ul( L:J1 i) < lul(A).

1=1 i€ot i€o—

Hence, E [1(A)] < [p](A).

(111) Set s equal to the term on the right hand side of (111) Then |u|(A) > s by
(il). There exist Ay € A, Ay C A such that g(Ax) — pt(A) so |p(Ag)| — pt(A).
If ut(A) = oo, then s = 0o so uT(A) = [p|(A) = s. If uT(A) < oo, then u(A) =
p(Ax) + u(A\Ag) so p(A\Az) — —pu~(A) by Lemma 2. Hence, |u(A\Ag)| — 1 (A)
and

|1(AR)] + [s(ANAR)| = pF(A) + p7 (4) = |ul(4)
so s = |u[(A).

(iv) follows from (i1) and (iii).

(v) follows from (i) and (iii).

From (v), we have the important observation.

Corollary 8 A finitely additive set function p : A — R is bounded if and only if
has finite variation.

Remark 9 The formula in (iv) can be used to define the total variation of a set
function directly without recourse to the Jordan Decomposition. It can also be used
to define the variation of complex-valued set functions.

The reader who has covered the chapters on integration before this chapter should
do Exercise 3.2.26 at this point.

Exercise 1. Suppose g = g, + gy with gy, g, finitely additive. Show u+ < ui + uf,
B Spg Fpgs lul < el + gl

Exercise 2. Suppose g = yy — pp With gy, uy positive and finitely additive. Show
pr >t e >
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Exercise 3. Show that if 4 : 3~ — R is countably additive and )" is a o-algebra,
then || is a finite measure.

Exercise 4. If y is countably additive and A is a o-algebra, show either u* or g~ is
a finite measure.

Exercise 5. Let A be the algebra which consists of all subsets of N which are either
finite or have finite complements. Define p on A by u(A) = ¥ (—1)"/n if A is finite
neA

and p(A) = — g‘%c(——l)"/n if A° is finite and p(@) = u(IN) = 0. Show p is finitely

additive but not bounded; compare with Theorem 5.

Exercise 6. Show |p|(E) = sup{| X%, aiu(A)] : {Ay, ..., An} is a partition of E,
|a;| S 1}

Exercise 7. Let f(t) = 1/t for t # 0 and f(0) = 0. Let 74 be the set function of
Exer. 2.2.10 and assume that 7; has been extended to the algebra 4 generated by S
(Exer. 2.2.2). Show the conclusion of Lemma 2 and Theorem 3 fails for 7.

Exercise 8. Let A be the algebra of subsets of IN which are either finite or have
finite complements. Define ¢ on A by u(A) is the number of points in A when A is
finite and g (A) is the negative of the number of points in A° when A° is finite. Show
w is finitely additive and find p*, g=. Is g = gt — =7
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2.2.2 Hahn Decomposition

In this section we use the Jordan Decomposition derived in §2.2.1 to develop another
decomposition theorem for signed measures called the Hahn Decomposition. This
material is not used until section §3.12 and may be skipped at this time.

Let 3" be a o-algebra of subsets of S and let 4 : - — R" be a signed measure.

Definition 1 A subset P € 5 is u-positive (u-negative) if E € 3, E C P implies
w(E) > 0(p(E) <0). A set which is both p-positive and p-negative is called p-null.

Theorem 2 (Hahn Decomposition) There ezist a p-posttive set P € 3 and a
u-negative set N € " such that S= PUN and PN N = 0.

Proof: We may assume that +oo is the infinite value not assumed by g so u¥(S) <
oo [2.2.1.4]. For each n choose E, € ¥ such that co > p(E,) > p*(S) — 1/2™
For A € 3, A C E:, we have p(AU E,) = p(A) + p(E,) < pt(S) so p(A4) <
pt(S) — p(E,) <1/2" and pt(ES) < 1/2". By the Jordan Decomposition,

1 (En) = ¥ (En) — p(En) < p¥(S) — u(Eq) < 1/2™.
Set P =TimE,, N = P° = limFE:. By Corollary 2.2.6
0 < pt(N) <lim p*(ES) < lim 1/2" =0

so N is p-negative. Now ™ is a measure so for each &

0<u(P) < (U B < Y (B) < 3 1/20 = 1727
n=k n=k n=k
so u~(P) = 0. Hence, P is u-positive.

A pair of sets (P, N) satisfying the conclusion of Theorem 2 is called a Hahn
Decomposition for p. Such decompositions are obviously not unique since if Z € >
is p-null, then (P U Z, N\Z) is also a Hahn Decomposition. However, such decom-
positions are unique up to g-null sets in the following sense.

Proposition 3 Let (P, N;), i = 1, 2, be Hahn Decompositions for u. Then for
every E € 3, u(ENP) = u(ENP), p(ENN) = p(ENN;) and p(PLA P) =
#(NiA Ny) = 0. (Here AN B = (A\B) U (B\A), the symmetric difference.)

Proof: EN(P\P,) C ENP, and EN(P\P2) € ENNy imply p(EN(P\P,)) > 0
and p(E N (P\P2)) < 0so u(EN(P\P;))=0. By symmetry u(E N (P,\P)) = 0.
Thus, p(PiA P,) =0 and

WENP) = p(EN(PUPY) - u(EN(P\P)) = u(EN (P U Fy))
(B0 (PLUPY) - w(E N (P\P)) = u(EN P).

The other equalities are similar.
We can use the Hahn Decomposition to obtain formulas for the positive and
negative variations of .
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Proposition 4 Let (P, N) be a Hahn Decomposition for . Then p*(E) = u(PNE)
and u=(E)= —p(ENN) forevery E€ Y.

Proof: Certainly p*(E) > p(ENP). A€y, AC E, then
p(A) = p(ANP)+ p(ANN) < p(ANP) S p(ENP)

so u*(E) < p(ENP).

The other equality is similar.

Remark 5 The Hahn Decomposition can be established independent of the Jordan
Decomposition and then the formulas in Proposition 4 can be used to establish the
Jordan Decomposition. See, for example, [Roy].

Definition 6 Two measures y and v on Y. are mutually singular or singular, written
i L v, if there exist A, B€ Y. such that ANB=0,5=AUB, u(A) =v(B)=0.

Proposition 7 (Uniqueness of Jordan Decomposition). gt L u~ and of g = Ay — Aq,
where Ay and )y are mutually singular measures on Y, then Ay = p*, Ay = u~.

Proof: That u* 1 p~ follows from Proposition 4 since p*(N) = p~(P) = 0.

Let A, Bey,S=AUB, AN B =0 and A\ (B) = A;:(A) = 0. Then we claim
(A, B) is a Hahn Decomposition for g. First, A is g-positive since if E C 4, E € 3,
then

W(E) = M(E) = M(E) = M(E) 2 0,

and, similarly, B is p-negative.
Let E € Y. By Propositions 3 and 4,

wWENP) = p(ENA)=pt(E)=M(ENA)—M(ENA)=\(ENA)
= M(E)— M(ENB) = \(E)

so ut = A1
Similarly, 4= = As.

Remark 8 In general, there is not a Hahn Decomposition for finitely additive set
functions defined on algebras; see Exercise 2. There are known necessary and sufficient
conditions for a bounded, finitely additive set function defined on an algebra to have
a Hahn Decomposition; see [Cob]. For a simple proof of the Hahn Decomposition
which does not use the Jordan Decomposition, see [Do].

Exercise 1. Show £ € ¥ is g-null if and only if [u|(F) = 0.

Exercise 2. Give an example of a finitely additive set function on an algebra with
no Hahn Decomposition. [Hint: Use Exercise 2.2.12 with a; = (—1)’c /2%
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2.2.3 Drewnowski’s Lemma

In this section we establish a remarkable result of Drewnowski which asserts that a
bounded, finitely additive set function defined on a o-algebra is not “too far” from
being countably additive.

Let Y- be a o-algebra of subsets of § and g : 3> — R bounded and finitely
additive. If {E;} C ¥ is pairwise disjoint, then it follows from Proposition 2.2.1.7
that the series - u(E;) is absolutely convergent. Thus, if g is to fail to be countably
additive, there must be a pairwise disjoint sequence {E;} in J_ such that the series

> u(E;) fails to converge to the “correct value”, u( G E)).
7=1

Lemma 1 (Drewnowski) [Dr]. If{E;} is a pairwise disjoint sequence from 3, then
there ezists a subsequence {E,,} such that p is countably additive on the o-algebra
generated by {E, }.

Proof: Partition N into a pairwise disjoint sequence of infinite sets {K}}%2,. By

the observation above, |g|( U E;) — O0asi — oo. So Jisuch that |p|( U E;) <1/2.
ek} i€k

Let Ny = K} and n, = inf N;. Now partition N1\{n;} into a pairwise disjoint
sequence of infinite sets {K}}%2,. As before 37 such that |u|( U E;) < 1/2%. Let
JjEK?

N, = K? and n; = inf N;. Note n; > n; and N; C N,. Continuing produces

a subsequence n; T oo and a sequence of infinite subsets of N, {N;}, such that

Niy1 € N; and |p|( U E:) < 1/27. Let 3¢ be the o-algebra generated by {E,, }.
ieN;

We claim that g is countably additive on 5. If {Hi} C ¥y and Hi | @, then
|w(Hy)| < |p|(Hi) | 0 so u is countably additive by Proposition 2.2.5 [given 7, 3H;
such that min H; > n; so |u|(H:) < |pl(U En,) < 1/27].

K3

Corollary 2 Let pu; : 3° — R be bounded and finitely additive forc € N. If {E;} is
a pairwise disjoint sequence from 32, then there exists a subsequence {E,,} such that
each y; is countably additive on the o-algebra generated by {E,,}.

Proof: Set u(E) = § L 1l(B)_ for F € 3. Then i is bounded and finitely

£ 2 HkIS)
additive so by Lemma 1 there is a subsequence { £, } such that u is countably additive
on the o-algebra, ¥y, generated by {E, }. If {H;} C ¥ and H; | 0, then

limu(H;)=0

SO0

lim p;(H;) =0
2

for each i, and y; is countably additive on 3" by Proposition 2.2.5.
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2.3 Outer Measures

Recall in Lebesgue’s construction of the integral described in §1.3, Lebesgue con-
structed a set function on P(R) called Lebesgue outer measure which gave an ex-
tension of the length function in R. In this section we give an abstract treatment of
outer measures due to Caratheodory and then apply the abstract theory to Lebesgue
measure in R and R™ in section 2.5.

Let S #0.
Definition 1 p* : P(S) — [0, o] is an outer measure (on S) if

Q) p(@)=0
(ii) A C B implies u*(A) < p*(B) [p* is monotone]

[
(iii) A; € S, j € N, implies y‘(a A < § w*(A;) [p* is countably subadditive].
= s

i=1
Following Caratheodory, we define measurability with respect to p* (see (6) of
§1.3).
Definition 2 E C S is u*-measurable if and only if
(¢)
w(A) = (AN E) + u*(A\E) for any subset A C S.

The set A in (c) is called a test set for the p*-measurability condition. Note in
order to test measurability in (c) it is only necessary to use test sets with p*(A) < oo
since (c) always holds if p*(A) = oo by (iii).

The family of all p*-measurable sets will be denoted by M(u*). We proceed to
study the properties of M(u*) and p* restricted to this family.

Definition 3 A set E C S is p*-null if y*(E) = 0.

The same term was used for signed measures in §2.2.2, but this should cause no
difficulties.
From (ii) and (iii), we have

Proposition 4 A countable union of p*-null sets is p*-null and subsets of p*-null
sets are p*-null.

Proposition 5 Every p*-null set is y*-measurable.
Proof: Let y*(E) =0 and AC S. Then

w'(A) S W (AN E) + ' (A\E) = p*(A\E) < *(A).
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Lemma 6 Let E,, ..., E, be pairwise disjoint and p*-measurable. Then for any
acs, wanl B)=Srw(An B,

Proof: We proceed by induction on n. The result is obvious for n = 1 so assume
that it holds for n. By the y*-measurability of E,;; and the induction hypothesis,

n+1 n+1 n+1
wanUE) = w(an'U BN Bun) + w2 ((40 U BEN\Ewn)
= //‘(Aﬂ En+1)+/l‘(Aﬂ L_’Jl E.)

= p(ANE )+ ; pANE).
Theorem 7 M(y*) is a o-algebra.

Proof: If £ € M(y*), then E° € M(u*) by the symmetry in (c) and clearly
0 € M(p*).

We next claim that if £y, E; € M(p*), then E = Ey U E, € M(p*). Let ACS.
Note £ = Ey U (E; N Ef) so

wA) < p(ANE)+ (AN EY)

<
< p(ANE) +pr([AN BN Ep) + p*([AN ES] N ES)
= p(ANE) + p*(A\E1) = p*(A).

Thus, M(y*) is an algebra.
Let {E;:1€ N} C M(p*) and set E = fj E;. We disjointify the {E;} by setting

Py = Ey, Fryr = Ex\ U E; for k> 1. Then E = U Fy.
For any A C §, we have by the part above and Lemma 6,

W(A) = w(An U F)+wu(A\ U F)
p(AN () F) +ut(A\E)

= L w(ANF)+u(A\E)

v

50

Z (AN Fy) + p*(A\E) 2 p*(AN E) + p*(A\E) > p*(A).
Hence, E is g*-measurable.

Theorem 8 y* restricted to M{(p*) is a measure.
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Proof: Let {E;} C M(u*) be pairwise disjoint and set £ = G E;. By countable
i=1

subadditivity, p*(F) < § p*(E;). By Lemma 6, for each n
=

S0

S ut(E) < u(B)

and p* is countably additive on M(p").

We denote p* restricted to M(p*) by p and call ¢ the measure generated by the
outer measure p~.

Examples of outer measures are given in the exercises.

We show how outer measures can be constructed from premeasures in section 2.4.

Exercise 1. For subsets A C S let u*(A) be the number of points in A if A is finite
and p"(A) = oo if A is infinite. Show g* is an outer measure and describe M(u*).

Exercise 2. For A C S let g*(A) =1if A # 0 and p*(@) = 0. Show p* is an outer
measure and describe M(p*).

Exercise 3. Fix z € S. Define y*(A) =1if z € A and p*(A) =0if z ¢ A. Show p*
is an outer measure and describe M(u*).

Exercise 4. Let S be uncountable. Set p*(A) = 1 if A is uncountable and p*(A) =0
otherwise. Show u* is an outer measure and describe M(p*).

Exercise 5. Let S be a metric space. Set p*(A) = 1 if A is second category and
p~(A) = 0 if A is first category. Show p* is an outer measure and describe M (p*).

Exercise 6. Show that if an outer measure is finitely additive, it is countably additive.

Exercise 7. Show that a subset A is g*-measurable if and only if for every ¢ > 0
there exists a p*-measurable set £ such that £ C A and p*(A\E) <.

Exercise 8. If E is g*measurable, then for every A C S show
p(EUA) +p(ENA) =p(E)+ g (A).

Exercise 9. Let {E;} be a pairwise disjoint sequence of y*-measurable sets. f A C .S
show (AN U E;) = 3 p*(ANE,).
5=1 =1
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2.3.1 Metric Outer Measures

Often, as in the case of Lebesgue measure, an outer measure is defined on a metric
space (or, more generally, a topological space), and it is natural to ask if there are
conditions on the outer measure which guarantee that the open sets are measurable.
We now describe such a condition, which is often easy to check, due to Caratheodory.

Let (S, d) be a metric space. Recall that for A, 5 C S, the distance from A to
B, d(A, B) is defined by d(4, B) = inf{d(a, b) : a € A, b € B}.

Let p* be an outer measure on S. p* is said to be a metric outer measure if
© (AU B) = pu"(A) + p"(B)
when d(A4, B) > 0.

Lemma 1 (Caratheodory) Let pu* be a metric outer measure on S, let G C S be
open and let Ag C G. For eachmn > 1 let A, = {z € Ay : d(z, G°) > 1/n}. Then
lim u*(An) = p*(Ao).

Proof: Since A, T and A, C Ay, we need to show that limp*(A4,) > u*(Ao).

Since GG is open and Ag O U A,, each point of Ag is an interior point of G and so
1

n=
foe]

Ay
=1

n=

must belong to A, for large n. That is, Ag C G A, so Ay =
n=1
Set D,, = An41\An. Then for each n,

Ao = Asn U (U Da) = AznU (L) Do) U (L) Do)

k=2n k=n
so oo oo
1 (Ao) < " (Aan) + 3o 1" (D) + 3 1 (D).
k=n k=n

If both of the last two series converge, then letting n — oo implies
W (Ag) €lim p*(Az,) = lim p*(A,).

Otherwise at least one of the two series diverges so for definiteness assume that it is
the first. Since d(Dak, Daji2) > ﬁ - Elez > 0 and p* is a metric outer measure,

n—1 n-~1
#*(Azn) z #*( U Dzk) = E #‘(Dzk) — 0
k=1 k=1

so lim p*(A,) = oo > p*(Ao).
If S is any metric space (topological space), the o-algebra generated by the open
subsets of S is called the family of Borel sets of S and is denoted by B(S).



40 CHAPTER 2. MEASURE THEORY

Theorem 2 p* is a metric outer measure if and only if every Borel set is p*-
measurable.

Proof: =: It suffices to show that any closed set F is y*-measurable. Let A C S
be any test set. Then A\F is contained in the open set F° so by Lemma 1 there
is a sequence {Ax} of subsets of A\F such that d(Ax, F) > 1/k and limp*(As) =
p*(A\F). Since p* is a metric outer measure,

p(A) 2 (ANF)U A) = " (AN F) + p"(Ar) = p* (AN F) + p*(A\F)

and F is pg*-measurable.
<«: Let d(A, B) > 0. Pick G open such that G > Aand GN B = . Now G is
p*-measurable so

Il

#(AUB) #((AUB)NG) + p*((AU B)\G)

u*(A) + 1 (B).

Exercise 1. Let £ = {1/n : n € N}. Define p* on P(R) be setting p*(A) equal to
the number of points in AN E. Show p* is a metric outer measure on R.

Exercise 2. For § = R which of the outer measures in Exercises 2.3.1-2.3.4 are
metric outer measures?
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2.4 Extensions of Premeasures

In this section we show that any premeasure on a semi-ring generates an outer measure
which then gives an extension of the premeasure to a measure on the o-algebra of
subsets which are measurable with respect to the outer measure. In particular, this
construction can be used to generate Lebesgue- Stieltjes measures on R and Lebesgue
measure on R™. Some parts of the construction are valid for finitely additive set
functions so we begin with this case.

Let S be a semi-ring of subsets of S and g : § — [0, o] be finitely additive.

Definition 1 u*(A) = inf{§ p(A):AC U A, A; € 8§}, ACS. [Here, we use the
=1 i=1

convention inf § = oo.]
Theorem 2 y* is an outer measure on S.

Proof: Clearly g* > 0, p*(#) = 0 and ,u is rnonotone We need to check countable
subadditivity. Let A; C S and set A = U A If E p*(A;) = oo, clearly

pr(A) < iu‘(fl)

So assume § p"(A;) < co. Let € > 0. For each 7 choose {B;; : j € N} C & such that
=1
A C U B and p*(A) +€/2 > 5= w(Bi;). Then Ac U U B so
=1 =1

1=1j=1

oo o]

(Bij) < Z (A) +€e/2) =Y pw(A) +e

i=1 =1

8
Mg

pr(A) <

1
-
.

|
-

Hence, p*(A) < § p*(A:).

=1
Proposition 3 If A € S, then p*(A) < p(A) and if 4 is a premeasure on S, then
W (A4) = u(A).

Proof: The first statement is clear. Suppose u is a premeasure and {A;} C S
and A C U A;. By countable subadditivity (Proposition 2.2.4), u(A) < 3" u(A;) so
i=1

u(A) < ™(A).

Proposition 4 If S is an algebra, then p~ is finitely additive on S.
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Proof: Let A, B S with AN B =0 and set C = AU B. By Theorem 2 we may
assume that p*(C) < co. Let ¢ > 0. There exists {A;} € & such that (J A; 2 ' and

1=1

io: w(A;) < p*(C)+e. Then {A;N A}{AiN B}] covers A [B] so since S is an algebra
i=1

F’]8

A+ (B) € E (AN A) + u(A0 BY)

(AN C) < T (A < () + ¢

Il
~

I
||Mg

Hence, p*(A) + p*(B) < p*(C) and Theorem 2 gives the reverse inequality.
For the outer measure u* we have simpler tests for measurability given by the
following result.

Proposition 5 For E C S, the following are equivalent:

(1) E is p*-measurable.
(i) p*(A) = p*(EN A) + p*(A\E) for A€ S with pu(A) < co.
(111) p*(A) > p (ENA) + p*(A\E) for A € S with u(A) < co.

(iv) p(A) > (ENA)+ p(A\E) for ACS.

Proof: Clearly (i) implies (ii) imphes (ii1).
(i) = (iv): Let AC S. If /L*(A) 00, t11v1a1 so assume p*(A) < co. Let € > 0.

Choose {A;} € S such that A C U A; and Z p(A;) < p(A) +e. Since u*(A;) < o0,
by (iii) p*(A) > p*(AiN E) + p* (A \E). Hence

ANE) + w(AE) < (U A0 E)+ (T ANE)

< gﬂ (A NF)+ Z/t (A\E) = g{”*(AmE) AR
< P (A < i (A) +e.

I
—_

Hence, p*(AN E) + p*(A\E) < u*(A).

(iv) = (2) follows by subadditivity.

The importance of conditions (ii) and (iii) is that we need only test the Caratheodory
measurability condition for sets from the semi-ring S.

We use Proposition 5 to show that the elements of S are g*-measurable when p*
is finitely additive.

Theorem 6 [f u* is finitely additive on S, then every element of S is yu*-measurable.
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Proof: Let £, A€ § . Then there exists {B; : 1 < i <n} C S pairwise disjoint
such that A\E = () B;. Since A = (AN E) U (O B;),
i=1 i=1

W(AOB) + W (A\E) < (AN E) + 3 u*(B) = w*(A)

i=1
and E is g*-measurable by Proposition 5 (ii).

Remark 7 Note that x* is finitely additive on S if either u is a premeasure (Propo-
sition 3) or & is an algebra (Proposition 4) so Theorem 6 is applicable in either case.
In particular, from Proposition 3 we have

Theorem 8 Let y be a premeasure on S . Then every element of S is u*-measurable
and p* restricted to the o-algebra M(u*) of p*-measurable sets is a countably additive
extension of .

If m, is the Lebesgue premeasure on R™ (Example 2.2.10), then the countably
additive extension to the o-algebra of m}-measurable sets is called Lebesgue measure
on R™; we will study Lebesgue measure in §2.5. If f : R — R is increasing and left
continuous and py is the Lebesgue-Stieltjes premeasure of Example 2.2.9, then the
countably additive extension of p; to the class of u}-measurable sets is called the
Lebesgue-Stieltjes measure induced by f.

Remark 9 It is also the case that a bounded, finitely additive set function defined
on an algebra has a bounded, finitely additive extension to the o-algebra generated
by the algebra. See section 5.6.2; see also [Bi], p. 185.

Henceforth, we assume that g is a premeasure on § and denote the countably
additive extension, u*, of i to the class of y*-measurable sets, M(u*), by g.

Recall in section 1.3 we pointed out that Lebesgue defined the inner measure of a
bounded subset E of R to be m.(E) = £(I) — m*(I\E), where | is a bounded interval
containing E. Lebesgue then called a set £ measurable if and only if m*(E) =
m.(E). For finite premeasures, we show that Lebesgue’s definition is equivalent to
Caratheodory’s. '

Theorem 10 If u(S) < oo, then E C S is p*-measurable if and only if p*(E) +
pr(E°) = u(S)-

Proof: =: Clear by taking S to be the test set in the definition of measurability.
<: Let A € S be a test set. Then A is g*-measurable so u*(E) = p*(E N A) +
p*(E\A) and p*(E°) = p*(A\E) + p*(E° N A°). Adding these two equalities gives
u(S) {(ENA)+u(E°nA)} + {u(ENA%) +p*(E°N A%}
w(A) + pu(A%) 2 u(S).

vV
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Hence,
1(S) = u*(A) + 4 (4%) = w"(B 0 A) + (B0 A) + (B 0 A%) + " (B 0 A°).

But
po(A%) S p(ENA%) + p(E° N A7)

and p(S) < oo implies g*(A) > p*(E N A) + p*(A°N E) so E is p*-measurable by
Proposition 5.

We now address the uniqueness of the countably additive extension of the pre-
measure .

Lemma 11 For E C S, p*(E) = inf{ioj w(Ai) + Ai € §, {Ai} pairwise disjoint,
&
EC Cl A}
=1

Proof: Denote the right hand side of the equation above by p/(E). Clearly
p* < y'. Suppose E C Ej A; with A; € § . Disjointify the {A;} by setting B, = A,
1=1

. N
and Bj+1 = Aj+l\ LJJ A;. By Proposition 2.1.3 each B; = U D,’j, where {D,‘j :
=1 =1

k;
1 < j < k;} are pairwise disjoint from § . Then p(A;) > u*(Bi) = L p(Dy;) and
=

EC U U D;; is a disjoint union with

i=1 ;=1

i Z u(Ds;) > W' (E)

Ms

1l
—

so u*(E) 2 4(B).
A premeasure v on a semi-ring S (measure » on a o-algebra ") is finite if v(S) < oo

and o-finite if § = U A;, A; € S(A; € ¥) with v(4;) < co. By the proof of
=1

Proposition 2.1.3 if v is o-finite, we may assume that the {A;} above are pairwise
disjoint. Lebesgue-Stieltjes measure on R and Lebesgue measure on R™ are examples
of o-finite measures. Counting measure on a set S is o-finite if and only if S is at
most countable.

Theorem 12 Let p be a o-finite premeasure. Let T be a semi-ring such that
SCTC M)

and v a premeasure onT . Ifv=pon S , thenv=yp* onT .
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8

Proof: Let v* be the outer measure induced by v. If £ C S and E C |J 4;,

1=1
AGSthenu(E)<Eu(A) E/A(A)sou‘<,u‘
Let A€ T and ¢ (A) < oo0. We claim that u*(A) < v (A) [so p*(A) = v*(A4)].
Let € > 0. Choose {A;} C S pairwise disjoint such that A C U A; and p*(A) +€>
=1

‘ijl #(A:) [Lemma 11]. Set B = i(;jl A, so p*(A) < p*(B) = ig w(A) < p*(A) + e
Then
V(B\A) < #*(B\A) = 4*(B) - 1*(A) < .

Since v* is countably additive on the o-algebra generated by S,
W'(A4) < ' (B) = v'(B) = v'(A) + ' (B\A) < v*(4) + ¢

and p*(A) <v (A)
Suppose S = U , E; € S, {E;} pairwise disjoint with p(E;) < oo. f A € T,
then by the equa.hty above

oo

W(A) = S W (AN Ey) = Y (AN Ey) = w(A).
j=1 =1
In particular, if g is a o-finite premeasure, then g has a unique countably additive
extension to the o-algebra generated by S. The o-finiteness assumption in Theorem
12 is important.

Example 13 Let S = R and let § be the semi-ring of Example 2.1.8. Define u on
S by p(#) =0, pla, b) = 0o if @ < b. Then p*(A) = co if A # @ and M(p*) = P(R).
Note counting measure v on S agrees with m on §. In fact, any tv, t > 0, agrees
with g on § so g has an infinite number of countably additive extensions to M(u*).

Another uniqueness result is given by

Theorem 14 Let (S, 51, 1), (S, Sz, p2) be premeasure spaces. Then py and p,
generate the same outer measure if and only if p5 = p1 on & and pi = pg on Sa.

Proof: =: u} = p; on & and g3 = p; on S, (Proposition 3) so if u} = p3, the
result follows.
<: Let A C S. It suffices to show p3(A) < pui(A) so we may assume p}(A) < oo

Then given € > 0 there exist {B;} C S; such that A C (.j B; and

=1

0 > (4) > Sopn(B) — e = S pa(B) -

so u3(Bi) < oo for each . Therefore, by our standard 6/2" construction there exist

{Air : k € N} C S; such that A C U U Ay and pi(A) > E E p2(Aix) — 2¢. Hence,
i=1k=1

#3(A) > p3(A) — 2¢ and pi(A) > p3(A).
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Remark 15 The equality ¢ = y; on &) is not enough to guarantee that pi = pi.
Let Sy be all [a, b) with integer a, b and set gy[a, b) = b — a. Let S; be all [a, b) with
rational a, 6 and set p3fa, ) = & — a. Then & C &; and py = g, on ;. However,
for I =0, 1/2), p5(1) = 1/2 and pj(I) = 1.

Remark 16 As noted in Remark 9 a bounded, finitely additive set function defined
on an algebra has a bounded, finitely additive extension to the generating o-algebra,
but this extension may fail to be unique ([Hah]).

Approximation:

We now consider how measurable sets can be approximated by elements of the
semi-ring S .

If H is any family of subsets of S, then H,(H;) denotes the family of all finite or
countable unions (intersections) of members of H . We write Hys = (H, )s, ctc.

Theorem 17 Let E C S.

(i) For every € > 0 there exists A € S, such that E C A and p™(E) + € > u(A).

(ii) There exists A € S,5 such that E C A and p*(E) = p(A).

Proof: (i): There exist {A;} C S such that £ C G A;and p*(E)+e > )Oi u(A).
i=1 i=1
Put A= A..
=1

(i1): By (i) for each 7 there exists A; € S, such that E C A; and u*(E) + 1/i >

u(A;). Put A= () Ai so A€ S,5 and E C A. Then
=1
W (E) < w(A) < u(As) < w(B) + 1/i

for each ¢ so u"(E) = p(A).

Theorem 18 Assume p is a o-finite premeasure. A subset E C S is p*-measurable
if and only if E = A\B, where A € S,5 and p*(B) = 0.

Proof: <=: 8,5 C M(p") and B € M(p*).

S:Let S = JFE, E. €8 ,and wE) < . Then E = {J EN E; with
wWENE) < oo.|=éet B; = EN E;. By Theorem 17(i) for each i',:lj there exists
A;j € S, such that B; C Ay and u(B;) + 1/2j > p(A;). Set A; = ﬁl Aj;. Then

EC A; €S, and A\E C U (A;\E) implies
=1

WANE) < S W(AG\E) < 321/25 =1/
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Set 4 = ﬁ Ajso A€ Sys and E C A, A\E C A;\E for each j. Hence, u(A\E) <
=1

=
p(A;\E) < 1/j for each j and p(A\E) =0. If B = A\E, then £ = A\B.

Completeness of measures:

Definition 19 Let v be a measure on the o-algebra 5. v is said to be a complete
ncasure (or complete) or (S, ¥, v) is a complete measure space if all subsets of v
measure (J are in Y.

From Proposition 2.3.5, (S, M(u*), ¢) is always a complete measure space.

Theorem 20 lLet S be a o-algebra. Then there exists a complete measure space
(S, S, u) such that

(i) Sc S,

(1) p=p on S,

(iii) A€ S ifand only if A = AUZ wherc A€ S, Z C N for some N € S with
p(N)=0.

(S, S, w)(or 1) is called the completion of (S, S, ) (or p).
let Z={Z CS:7Z C N forsome N € S with u(N) =0} and

S={FUZ:EcS, Z¢€Z}.

Define i on S by g(E U Z) = p(E). 1t is straightforward to check that Sis a o-
algebra, p is well-defined on & and gives a countably additive extension of y. We
leave the details to the reader.

Theorem 21 Let p be @ o-finite premeasure. Let py be the unique countably additive
exlension of p to Y, the o-algebra generated by S (Theorem 12). Then the completion
of py is identical to p restricted to M(p™). That is, (S, 2, 1) = (S, M(p"), u*).

Example 22 The o-finiteness condition in Theorem 21 is important. Let S = R
and " the o-algebra of subsets of S which are either countable or have countable
complenents. Let p be counting measure restricted to Y. Then (S, ¥, ¢£) is complete

but M(p*) = P(S5).

Exercise 1. Define v : P(N) — [0, 00] by v(E) = ¥ 1/2%if E is finite and v(E) = oo
ick

if £ is infinite. Show » is finitely additive but not countably additive. Compute v*,
M(v*). Show v* # v. Compare with Proposition 3.
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Exercise 2. Let S = [0, 1) and A the algebra generated by the subintervals [a, b).
Give an example of a non-negative finitely additive set function x on A which has two
distinct finitely additive extensions to the o-algebra, B(S), generated by A. [Hint:
Example 13.]

Exercise 3. Show E C S is g*-measurable if and only if EN A is g*-measurable for
every p*-measurable 4 with pg*(A4) < co.

Exercise 4. Give an example of a non-complete measure.

Exercise 5. An outer measure p* on S is called regular if for every A C S there is
a p*-measurable £ O A such that g (E) = pu* (A) [see Theorem 17]. Show that if u*
is regular and A; C S, then p* (limA;) < limp* (A4;).
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2.4.1 Hewitt-Yosida Decomposition

The construction of section 2.4 can be used to obtain a decomposition of a non-
negative finitely additive set function into a countably additive part and another part
which is called purely finitely additive. We give the details. The material in this
section is only used in §2.6.1 and can be skipped at this time.

Let A be an algebra of subsets of S.

Definition 1 A non-negative, finitely additive set function v : A — [0, oo) is purely
finitely additive if and only if whenever p : A -+ [0, 00) is countably additive and
0<pu<vonA, then u =0. A bounded, finitely additive v : A — R is purely
finitely additive if and only if v* and v~ are purely finitely additive.

Theorem 2 (Hewitt-Yosida) If v : A — [0, 0o) is finitely additive, then there
exist a countably additive v, : A — [0, 00) and a purely finitely additive

vi: A— [0, o0)
such that v = v. + vy. Moreover, the decomposition is unique.

Proof: Let v* be the outer measure on S induced by v and let v, be v* restricted
to A. By Remark 2.4.7 and Proposition 2.4.3, v, is countably additive and v, < ».
Set vy = v — v, so vy is non-negative and finitely additive. Suppose p: A — R is
countably additive with 0 < u < vy. Forany A € A4,

0 < p(A) < vp(A) = v(A) —ve(A)

5o v.(A) + p(A) < v(A). By Proposition 2.4.3, ve(A) + p(A) < v (A) so g = 0 and
vy is purely finitely additive.

Suppose v = v, + vy = p, + pg with g non-negative, countably additive and py
non-negative, purely finitely additive. Then for any A € A ,

Ve(A) + V3(A) = nel A) + w3(A)
and v} < vy, p7 < py. Since v and u} are countably additive on A and dominated

by vy and py, respectively, v, = p. and, consequently, vy = uy.

We give examples of purely finitely set funtions and Hewitt-Yosida decompositions
for Lebesgue-Stieltjes “measures” in §2.6.1.

Exercise 1. Let v : A — [0, co) be finitely additive. Show v is purely finitely
additive if and only if for every ¢ > 0 there exist pairwise disjoint {A;} C A such that

S = G A; and § v(ANA;) < eforevery A c A
i=1 =1
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2.5 Lebesgue Measure

In this section we develop some of the basic properties of the most important measure,
Lebesgue measure. Let & be the semi-ring in R™ consisting of the half-closed n-
dimensional rectangles of the form I = [ay, b;) x -+ - X [an, b,) [Example 2.1.10] and let
m(= m,) be the n-dimensional volume of such rectangles, m(I) = (by—a1) ... (by—a,)
[Example 2.2.10]. Since m is a o-finite premeasure on &, m has a unique countably
additive extension to a complete measure, called Lebesgue measure on R™ and still
denoted by m(= m,,), defined on a o-algebra, M(= M,), containing S. The elements
of M are called the Lebesgue measurable subsets of R™. We show below that the o-
algebra M contains the Borel sets, B(R"), of R”. For this it suffices to show that any
open set belongs to M. This follows from the result below which gives the structure
of open sets in R™ analogous to the characterization of open sets in R given in 1.2.2.

Call a half-closed interval in S of the form [a1, a1 + 6) X - -+ X [@n, an +6), 6§ > 0,
a brick with vertex (a1, ---, a,) and side length é.

Lemma 1 Every open set G in R™ is a countable pairwise disjoint union of bricks.

Proof: Let B* be the family of all bricks whose vertices are integral multiples of
2-% with side length 2-*. Note that € R™ lies in exactly one member of B¥, and
if A e B, Be B where j < k, then either AC Bor ANB = 0. If z € G, then
z belongs to an open sphere contained in GG so = belongs to a brick contained in G
belonging to some B*. That is, G is the union of all bricks belonging to LkJBk which

are contained in G. From this collection of bricks choose all of those belonging to B?

and remove those in (J B* which lie in any of the bricks chosen from B'. From the
k32

remaining bricks choose those belonging to B2. Continuing this construction produces
a countable pairwise disjoint family of bricks whose union is G.

Remark 2 Note the bricks in Lemma 1 all have side length 27 for some k € N.

From Lemma 1 it follows that B(R") C M, C P(R"). We show later (Examples
9 and 1.3.1) that each of these containments is proper.

We next consider what is called the regularity of Lebesgue measure. Each half-
closed interval I = [a;, b1) X - - - X [an, by) may be approximated by an open interval
J = (a1, B1) % -+ x (atn, Bn) containing I whose volume is arbitrarily close to the
volume of I so the Lebesgue outer measure of a subset A of R* can also be computed
by

m*(A) =inf{d_m(l;): each I; an open interval with | | I; D A}.
i=1 =1
We use this observation below.

If S is any topological space, a subset E of S is called a Gs set (F, set) if E is the

countable intersection (union) of open (closed) subsets of S.



2.5. LEBESGUE MEASURE 51

Theorem 3 Let A C R™.
(i) For every € > 0 there exists open G D A such that m(G) < m*(A) + .
(ii) There exists a Gs H D A such that m(H) = m*(A).

Proof: (i): By the observation there exist open intervals {I;} such that A C U I;
=1

and -
SNom(I;) < m*(A) + e

J=1

Set G = G . Then G is open, G D A and
j=1

<N m(L;) < m*(A) + e

=1

[

(11): For each j choose G; open such that G; D A and m(G;) < m*(A)+1/j. Put
H = N G;. Then H is a Gs containing A and m(H) < m(G;) < m*(A) + 1/5 for
each ]J'zi:nplies m(H) < m*(A). But m*(A) < m(H) so equality must hold.
From Theorem 3 we can obtain some topological-type characterizations of Lebesgue
measurability.
Corollary 4 Let A C R™. The following are equivalent:
(i) Ae M,.
(i) For every € > 0 there exists open G D A such that m*(G\A) < e.
(iil) For every € > 0 there exists closed F' C A such that m*(A\F) < e.
(iv) There exists a Gs H D A such that m*(H\A) = 0.
(v) There exists an Fo K C A such that m*(A\K) = 0.
(vi) There exists a Borel set B € B(R™) and an m-null set Z such that A= BU Z.

Proof: (1)=(i1): First suppose m*(A) < oo. By Theorem 3 there exists open
G D A with m(G) < m(A) + e. By Proposition 2.2.3, m(G\A) < e.

Now suppose A is measurable. Let E, = {z : ||z|| < k} and set Ay = AN Ej so
Ay is measurable and m(A;) < oo. By the part above, for each k there exists open

Gr O Ay with m(Gi\Az) < ¢/2*. Put G = U Gi. Then G is open and G O A.
k=1

Since G\A C U (Gx\A4y),
k=1

m(G\A) < i m(Gx\Ax) < i /2" = e
k=1 k=1
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(i1)=(iv): For each k there exists open Gy D A with m*(Gi\A) < 1/k. Set
H= ﬁ G%. Then H is a G5 and H D A. Since
k=1

m*(H\A) < m*(Gi\A) < 1/k

for each k, m*(H\A) = 0.

(iv)=(): A = H\(H\A) and H is measurable since it is a Borel set and H\A is
measurable since it is m-null.

(1)=(iii): A measurable implies A° measurable so there exists open G D A°® with
m(G\A®) < e. Then F = G° is closed and F C A with m(A\F)=m(ANG) < ¢

(iii) (v): For each k there exists closed Fy C A such that m*(A\Fi) < 1/k. Put
K= U Fy so K is an F, contained in A with m*(A\K) < m*(A\F) < 1/k for each

ksom (A\K )=0.

(v)=(vi): Put B= K and Z = A\K.

(vi)=>(1): This is clear since both Borel sets and m-null sets are Lebesgue mea-
surable.

It follows from (vi) that Lebesgue measure is the completion of the measure m
restricted to the Borel sets B(R™) [Exercise 1]. We show later that Lebesgue measure
restricted to B(R) is not a complete measure (Example 9).

The properties in (ii) and (iii) for Lebesgue measure are called regularity. We
now give the formal definitions of regularity; some of the basic propertics of regular
measures are given in §2.7.

Let S be a Hausdorff topological space and B(S) the Borel subsets of S. Let 3~
be a o-algebra containing B(S) and g : 3. — [0, o] finitely additive.

Definition 5 E € ¥ is inner regular (with respect to p) if
p(E) =sup{u(K): K C E,K compact};

E € Y is outer regular (with respect to p) if p(E) = inf{u(G): G D> E, G open}. E
is regular (with respect to p) if E is both inner and outer regular.

A Borel measure is a measure defined on the Borel sets which is finite on compact
sets. A Borel measure is regular if every Borel set is outer regular and every open set
is inner regular. Lebesgue measure restricted to the Borel sets is regular (Exer. 10).

Uniqueness of Lebesgue Measure:

We next consider the uniqueness of Lebesgue measure. A measure g on B(R")
is said to be translation invariant if u(B) = u(h + B) for every Borel set B and
h € R™. Lebesgue measure restricted to B(R™) is translation invariant (Exercises
2 and 3). We show that translation invariance along with regularity characterizes
Lebesgue measure.
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Theorem 6 If u is a translation invariant regular measure on B(R"™), then p = cm
for some positive constant c.

Proof: Let I =[0,1] x --- x [0, 1] be the unit “cube” in R™ and set ¢ = p(I). Lis
the pairwise disjoint union of 2™ bricks of side length 2% for any k € N, and since
by translation invariance each of these bricks has the same p-measure,

u(I) = 2* u(B) = em(I) = 2™* em(B)

for any brick B with side length 27% so pu(B) = em(B) for any such brick B. By
Remark 2 u(G) = em(G) for every open set G C R", and the same equality must
hold for any Borel set by regularity of 1 and m.

It is shown in 2.7.7 that every Borel measure on R" is regular so the regularity
assumption in Theorem 6 is redundant.

Lebesgue Measure in R :

We consider Lebesgue measure in R in more detail.

Since any singleton in R (or R™) obviously has Lebesgue measure 0, any countable
subset of R (of R") has Lebesgue measure 0. However, an uncountable set can have
Lebesgue measure 0. We give an example of such a set.

Example 7 (Cantor Set) Let I = [0, 1]. It is convenient to describe the comple-
ment of the Cantor set in I. Let K} be the open interval (1/3, 2/3), the middle
one-third of 1. At the zero®* stage the interval E} is removed from I leaving two
closed subintervals [0, 1/3] and [1/3, 1]. At the first stage the two open middle thirds
E} and E? are removed from these closed intervals leaving four closed subintervals. At
the second stage the four open middle thirds £}, EZ, E3, E} are removed from these
closed subintervals [see the figure below]. The construction is continued; at the k**

stage 2 open intervals E}, i =1, ---, 2%, are removed. The Cantor set K is the subset

oo 2 .

remaining after these open subintervals have been removed, ie., K = I\ U U FEj}.
) k=0i=1

Since each FE} is an open interval, K is obviously a closed set. K obviously contains

the endpoints 1/3, 2/3, 1/9, - - -, and it may appear that these are all the points in

K. However, we will show that K is, in fact, uncountable. First we calculate the
Lebesgue measure of K. Note each Ei has length 1/3**! and since the {F}} are
pairwise disjoint,

oo 2k

m(K)=1-3_3"1/3"" =1-1/33(2/3)* =1 -1/3(1/(1 — 2/3)) = 0.
k=0 i=1 k=0
Ey B} E} Eq E; B} E
| A Y Y} ¢ Y () A W T |
I\ 77\ 7N YA 7N
L2 1 27 8 1 219 20 7 8 25 26
07737 35 52727 3 32721 9 927 27 1
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We next observe some of the topological properties of K. First K is nowlere
dense, i.e., K has no interior points Note the “distance” between any two adjacent

open intervals making up Ay = U U Ei is 1/3N*1. Thus, if K were to contain an
k=0i=1

open interval (a, ), then for 1/3N+! < b — a, the distance between some two open
intervals in Ay would be greater than 1/3V+!,

Next, K is perfect, 7.e., every point of K is a limit point of K. Let z € K and
€ > 0. Choose N such that 1/3¥+! < €. Then S(z, €) = (z — ¢, T + €) must intersect
at least one of the open intervals in Ay so S(z, €) must contain a point of X distinct
from z (namely, one of the endpoints of the open intervals). Thus, z is a limit point
of K. [It actually follows from the fact that K is a perfect subset of R that K is
uncountable ([R1] 2.43), but we will establish this below by a different technique.]

Note that the point =z € I belongs to K if and only if in one of its ternary
expansions, ¢ = .a;a;--- (base 3), the digit 1 does not occur. It follows from this
observation that K is uncountable ([DeS] 1.8), and that R and K have the same
cardinality.

Remark 8 Note that for any «, 0 < a < 1, by altering the size of the open intervals
Ei to (1 ~ @)(1/3**1), we may obtain a nowhere dense, perfect set of measure «
which we refer to as an a-Cantor set. In particular, this shows that a set can have
a positive Lebesgue measure and not contain an interval. These Cantor-like sets of
positive Lebesgue measure can be used to construct sets of the second category which
have Lebesgue measure 0 [see Exercise 7].

In §1.3 we showed the existence of a subset of R which was not Lebesgue mea-
surable [Exercise 2]. The existence of such non-measurable sets in R*, n > 1, is
addressed in Exer. 3.9.4. We now show that there are Lebesgue measurable scts in
R which are not Borel sets.

Example 9 Let 0 < € < 1 and K, an e-Cantor set. Let K be the Cantor set and
{Ei:i=1, -, 25 k=01, - Y({AL: k=1, -, 2%i=0,1, --.})

the open subintervals of [0, 1]\ K([0, 1]\K.). Let f be an increasing function which
maps each A} linearly onto Ei (see the graph below). [0, 1]\ K, is dense in [0, 1]
so we can extend f to [0, 1] by setting f(0) = 0 and f(z) = sup{f(y) : y < =z,
y € [0, 1\K.}. Then f is increasing, and f must be a continuous map of [0, 1] onto
itself since f cannot have any jumps (a jump in f would correspond to K containing
an interval). Now K. must contain a subset P which is not Lebesgue measurable
(Remark 1.3.2), and f carries P onto some subset P’ of K which must be Lebesgue
measurable since K has Lebesgue measure 0. By Exercise 11, P’ cannot be a Borel set.
This also shows that Lebesgue measure restricted to the Borel sets is not a complete
measure.
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|
[
Al Al A 1

Thus, each of the containments B(R) C M(R) C P(R) is proper. (A cardinality
argument can be used to establish that B(R) # M(R); see [Ra] 5.3. However,
M(R) and P(R) have the same cardinality (Exercise 8).) The existence of Lebesgue
measurable sets in RZ(R") which are not Borel sets is considered in Exercise 3.9.9.

Another interesting result pertaining to Lebesgue measure due to H. Steinhaus
asserts that if E is a Lebesgue measurable subset of R™ of positive Lebesgue measure,
then 0 is an interior point of £ — F (see [AB], 15.12 or Exer. 3.11.9).

Remark 10 Lebesgue measure can be extended to a translation invariant measure
on a o-algebra which properly contains M, but such extensions do not seem to be

useful (see [KO]).

Exercise 1. Show (R", M,,, m) is the completion of (R", B(R"), m).

Exercise 2. Show m*(E) = m*(E+h) for any h € R*, E C R". Show F is Lebesgue
measurable if and only if E + % is Lebesgue measurable for every 2 € R™ and in this
case m(E + h) =m(E). [Hint: EN(a+A)=a+(E—a)NA,t+A° = (t+ A)°]

Exercise 3. Show i + B(R") = B(R") for any h € R™.

Exercise 4. Let a > 0. Show m*(aE) = a"m*(E) for E C R™. Show F is Lebesgue
measurable if and only if aE is Lebesgue measurable for every a > 0.

Exercise 5. Show every countable subset of R™ is a Borel set.

Exercise 6. Show F C R"is (Lebesgue) measurable if and only if ENG is measurable
for every (bounded) open G if and only if E N F is measurable for every (bounded)
closed F.
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Exercise 7. Construct a set of category II in R which has Lebesgue measure 0.
Exercise 8. Show M(R) and P(R) have the same cardinality.

Exercise 9. Define a measure g, : M — R* by pn(E) = m(E N [n,00]). Show
pn(E) | p(E) for each £ € M but p is not a measure.

Exercise 10. Show H being closed in Corollary 4 (iii) can be replaced by H being
compact. Show every Lebesgue measurable set is regular.

Exercise 11. If f : R* — R™ is continuous, show the inverse image of a Borel set is
a Borel set. Note R™ and R™ can be replaced by topological spaces.
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2.6 Lebesgue-Stieltjes Measures

In this section we consider the Lebesgue-Stieltjes measures introduced in Example
2.2.9. Let f : R — R be increasing, let S be the semi-algebra of half-closed intervals
[a, b), a < b (Example 2.1.8). Define us on S by

sla, b) = 1(8) — f(a), a < b. (2.1)

Then yy is finitely additive on § (Example 2.2.9) and has a finitely additive exten-
sion to the algebra generated by S (Exer. 2.2.2). If f is left continuous, then y;
is countably additive on & and by Theorem 2.4.8 has a unique countably additive
extension to a complete, countably additive measure defined on a o-algebra, M(u3),
which contains the Borel sets, B = B(R), of R and is finite on compact subsets
of R. The o-algebra M(u}) can be very different from the o-algebra of Lebesgue
measurable sets (Exer. 3). We show conversely that if x is any countable additive
measure defined on the Borel sets of R and which is finite on compact sets, then g is
a Lebesgue-Stieltjes measure (restricted to B).

Let p: B — [0, oo] be a Borel measure. Set

u[0,1) t>0
0 t=0 (2.2)
{ —/L[t,O) <0

)=

f is called the (cumulative) distribution function of p.
The distribution function f of g is increasing since if 0 < ¢t < s, then

f(s) - f(t) = /‘[Ov s) - /‘[07 t) = /‘[t7 5) 2 0

and similarly if t < s < 0 ort < 0 < s. Also, the distribution function is left
continuous. For suppose ¢ | 0. If ¢t > 0, then f(t —tx) — f(¢) = p[t — t&, 0) | O since
u is finite on bounded intervals (2.2.5). Therefore, f is left continuous for ¢ > 0 and,
similarly, f is left continuous for ¢ < 0.

Clearly, the Lebesgue-Stieltjes measure induced by the distribution function f is
exactly p. Since two Lebesgue-Stieltjes measures py and g, are equal if and only
if f— g isa constant (Exer. 4), there is a one-one correspondence between Borel
measures on R and the class of increasing, left-continuous functions on R which are
normalized by requiring that they vanish at the origin.

We consider the analogue for Lebesgue-Stieltjes measures of the regularity results
for Lebesgue measure given in Theorem 2.5.3 and Corollary 2.5.4. For this we require
the following lemma.

Lemma 1 For E C R, p}(E) = inf{3 ps(a;, b): EC U (as, b)}.
=1 =1
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Proof: Denote the quantity on the right hand side of the equality above by v(E).
Suppose E C U (ai, b;) and set (a;, b;) = I;. Each I; is a countable pairwise disjoint
union of half- closed intervals of the form [a, §) so p}(F) < v(E).

Let € > 0. Assume p}(E) < oo. There exist {[a;, b;)} such that E C ig[a;, b;)

and
S sl B) < () + ¢

For each 1 there exists §; > 0 such that f is continuous at a; — §; < b; and
flai — &) = fla;) < ¢/2%.

Then E C {J (a; — &, b;) and
=1

3

v(E) < ¥ oplai— b bi) = Zﬂf[a:_ i, bi)
< i:o:(/‘f[an 0+ pplai — &, ai)) < p(E) + 2¢
(Exer. 6). Hence, v(E) < p}(E).

A similar argument works if y3}(E) = oo.
Employing the arguments as in Theorem 2.5.3 and Corollary 2.5.4, we obtain the
analogues of those results for Lebesgue measure.

Theorem 2 Let £ C R.

(i) For every ¢ > 0 there exists open G D E such that pu;(G) < p3(E) + e.

(ii) There ezists a Gs H D E such that p;(H) = p3(E).
Corollary 3 Let E C R. The following are equivalent:

(i) E is y measurable.

(ii) For every ¢ > 0 there exists open G D E such that p}(G\E) < e.
(iii) For every € > 0 there exists closed F' C E such that p;(E\F) < ¢
(iv) There exists a Gs H D E such that p3(H\E) = 0.

(v) There exists an Fo K C E such that p3(E\K) = 0.

(vi) There exists a Borel set B and a p} null set Z such that E = BU Z.
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Exercise 1. Show (R, M(u3}), ps) is the completion of (R, B(R), py).

Exercise 2. Show the map f — p; which associates an increasing left continu-
ous, normalized function with its Lebesgue-Stieltjes measure is additive and positive
homogeneous.

Exercise 3. Let f(z) equal the greatest integer less than z. Compute M(u7}).
Exercise 4. Show py = p, if and only if f — g =constant.
Exercise 5. Show a Lebesgue-Stieltjes measure restricted to the Borel sets is regular.

Exercise 6. Let f be increasing and left continuous. For a € R show p; ({a}) =
f(a*) — f(a) and f is continuous if and only if uy ({a}) = 0.

Exercise 7. Describe pu; for:

t+1 t>0
@)ﬂ0={

0 t<0

t+1 t>0
w)ﬂ0={

t t<0

0 t<o0
@)ﬂ0={ n=0,1,...

n+t n<t<n+1
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2.6.1 Hewitt-Yosida Decomposition for Lebesgue-Stieltjes
Measures

In this section we consider Lebesgue-Stieltjes measures on the interval [0, 1) as dis-
cussed in §2.6 for measures on R. We give examples of purely finitely set functions and
also give an example of the Hewitt-Yosida decomposition of §2.4.1 for such Lebesgue-
Stieltjes set functions.

Let S =[0, 1) and let S be the semi-algebra of all subsets of S of the form [a, b),
0 <a<b<1 and A the algebra generated by S.

We give a simple example of a purely finitely additive set function on A . Fix
0 <t <1. Define A; : A = R by A\(A) =11 36 > 0 such that [t — §,t) C A and
At(A) = 0 otherwise. Then J); is finitely additive (Exer. 2.2.8). Also, A; is purely
finitely additive; for if 0 < v < A; and v is countably additive on A , then v[t, 1) =0
and if 0 < a <t — 6 for some § > 0, then v[a, t — §) = 0. Thus, if

L =10, /2), I, = [t/2, 3t/4), ...,

then [0, t) = G Iisov[0,t)=>v(l;) =0and v =0.
~ :

i 3
We next claim that the Ay, 0 < t < 1, are the only purely finitely additive set
functions which take on the values 0 and 1.

Theorem 1 Let pp : A — R be bounded, finitely additive and have range {0, 1}.
Then 3t € [0, 1) such that u = b; or p = Ay.

Proof: If 0 = ap < a; < -+ < a, = 1 is a partition of [0, 1), then exactly
one of the subintervals [¢;_1, a;)(j = 1, - - -, n) has g-measure 1 while the remaining
subintervals have y-measure 0. Thus, starting with 0, 1/2, 1, then 0, 1/4, 1/2, 3/4, 1,
etc., we obtain a nested sequence of intervals [a;, b;) with p[a;, b;) = 1, b; — a; = 1/2%.
Let t = lima; = limb;. If b; > t Vi and uft, b;) = 1Vi, then g = &;.. On the other
hand, if [t, b;,) = @ or ult, b;,) = 0 for some g, then

plai, b) = plai, )+ p(t, &) = pla;, t) =1
for all £ > ¢p and p = A;.
Theorem 2 Let p : A — R be bounded, finitely additive. Then 3{t;} C [0, 1),
a; € R with " a;] < 0o and v : A — R countably additive such that p = v+ 3 a;h,,.

Proof: By the Jordan Decomposition (§2.2.1), we may assume g > 0. Let f be
the distribution function of g as in §2.6, f(t) = u[0,1), 0 <t < 1, and f(0) = 0.
Then f is increasing with

lim f(t) = f(17) < 40, 1) < co.

t—-1-—
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Let {¢;} be the countable set for which the inequality f(¢~) < f(t) holds and set
a; = f(t;) = f(¢7). Then

a; = lim plt; — ¢, ¢;) and D a; < p0, 1) < co.

e—0t

Put
v=p=aik,.

Then v is non-negative and finitely additive, and we claim that v is countably additive.
To see this, let g be the distributive function of v, g(t) = v[0, t) for 0 < t < 1 and
g(0) = 0. Then g is left continuous so as in Example 2.2.9, v is countably additive.

Since the measure }” a;v4; in Theorem 1 is purely finitely additive (Exer. 1), the
decomposition of p given in Theorem 2 is exactly the Hewitt-Yosida Decomposition
of Theorem 2.4.1.2.

Exercise 1. Show the measure 3" a;);; of Theorem 2 is purely finitely additive.

Exercise 2. Show there is a 1-1 correspondence between the finitely additive real-
valued set functions p defined on A and the real-valued functions f : [0, 1] = R
which satisfy f(0) = 0. (See Exer. 2.2.10.) Show u is bounded if and only if f is of

bounded variation.
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2.7 Regular Measures

In this section we consider the properties of Lebesgue measure given in Corollary
2.5.4. We give a slightly more general definition of regularity than that given in §2.5.
Let S be a Hausdorff topological space and B(S) the class of Borel sets of S. Let A
be an algebra of subsets of S and p: A — [0, oo] finitely additive.

Definition 1 E € A is inner regular (with respect to p) if
wW(E) =sup{pu(K): K C E,K € A, K compact}
and E outer regular ¢f
p(E) =mf{u(U): UDE, U €A, U open};
E is regular if E is both inner and outer regular.

A Borel measure on S is a measure defined on B(S) which is finite on compact
sets; a Borel measure is regular if every Borel set is outer regular and every open set
is inner regular.

Proposition 2 Let i be a reqular Borel measure. Then every o-finite Borel set B is
inner regular.

Proof: First assume p(B) < oo. Let € > 0. Pick V open such that V' D B and
w(V) < u(B) + €. Pick W open such that VABC W C V and

p(W) < p(VAB) +e=p(V) —pu(B) +e

Pick K compact such that K C V and u(V) < p(K) + €. Set K' = K\W. Then K’
is compact, K’ C B and

0 < W(B)~p(K") = p(B\K") < p(V\K') = u((V\K)UW) < u(V)—p(K)+(W) < 3e.
If u(B)= oo, let B = U By, By T, u(Bi) < 0o. Let r > 0. Choose N such that
#(BN) > r. Choose K compact such that K C By and p(K) > r. Hence,
w(B) = oo = sup{pu(K) : K compact, K C B}.

A subset E C S is called o-compact if E is the countable union of compact subsets
of S. For example, R" is o-compact. If 4 is a Borel measure, then any o-compact
subset is o-finite. From Proposition 2, we have

Corollary 3 If p is a regular Borel measure which is o-finite, then every Borel set
is regular. If S is o-compact, then every Borel set is regular.
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Proposition 4 Let y be a Borel measure on S. If G is o-compact, then G is inner
regular.

7
Proof: Let G = U K,;, where each K, is compact. If K] = U K;, then K7 is
=1
compact and K TG $0 /1([& ) T p(G).

Lemma 5 let S be such that every open set is o-compact. If p is a finite Borel
measure on S, then for each B € B(S)

(i) w(B) =inf{u(V):V open, V > B} and
(i1) p(B) = sup{p(F): F closed, I' C B}.

Proof: Let 3= be all B € B(S) satisfying (i) and (ii). By hypothesis and Propo-
sition 4 every open sct satisfies (i) and (ii) so if we show that 3° is a g-algebra, then
3 = B(S) and the proof is complete.

Let £ € 3" and ¢ > 0. There exists closed F', open V such that # C £ C V and
p(V)— p(F) = p(V\F) < c. Then F° D E° D V®, F°is open, V° is closed and

p(FANV) = p(V\F) < ¢

so ECey.
Let {Ex} C ¥ and set E = | FEjx. For each k there exists closed Fi, open Vi
k=1

such that Fy C Ex C Vi and p(Vi\Fy) < ¢/25. Set V = U Vi, F = U Fy so V is
k=1 k=1

0 k
open and I C E C V. Moreover, p(VAF) < 3 p(Vi\Fy) < e. Now F] = | F, is
k=1 g=1

closed,

VP =W\ U K= N\E)

k=1 k=1

and VA\F] | VAF' so p(V\F) = limu(V\F}) < e. llence, there exists k such that
w(VAI]) <eand B €Y.

Theorem 6 Let S be such thatl every open set is o-compact and u a Borel measure
on S. Then every Borel set is regular; in particular, u is regular.

Proof: Every open set is inner regular by hypothesis and Proposition 4.
If pis ﬁnite every Borel set is outer regular by Lemma 5(i). Assume g is infinite

and let S = U Uy where each Uy is open and p(Uy) < oo. For each k set ux(B) =

w(B N U f01 B € B(S). Hence, each pi is a finite Borel measure on S. Let
DB € B(S) and ¢ > 0. By Lemma 3, for each k there exists open Vi, O B such that
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(Vi) < uk(B) + €/2F so p(Ux NVi\B) < ¢/2%. Put V = U (Ux N'V) so V is open,
k=1
V D> B and -
W(V\B) < 30 (Ui N VA\B) < e

k=1
and B is outer regular. Hence, u is regular.
By Corollary 3, every Borel set is inner regular.

Remark 7 Note R" satisfies the hypothesis of Theorem 6 [take squares with centers
having rational coordinates and rational side lengths] so every Borel measure on R™
is regular.

If p: A— R is a finitely additive, we say that p is reqular if || is reqular. From
Theorem 6, we have

Corollary 8 Let p: B(S) — R be finitely additive. The following are equivalent:
(1) u s regular
(ii) pt and p~ are regular

(iii) If A € B(S) and € > 0, there ezist compact K C A and open V D A such that
|#(B)| < € for every B € B(S) with B C V\K.

Finally, we have an interesting result of Alexanderoff on regular, finitely additive
set functions.

Theorem 9 (Alexanderoff) Let p: A — R be bounded, finitely additive. If every
element of A is both inner and outer regular, then p is countably additive.

Proof: It suffices to show tha.t || is countably additive. Let {A;} € A be pairwise
disjoint and such that A = U A; € A. Let € > 0. There exists compact F' C A,

F € A | such that [p|(A\F) < € For each j there exists open G; € .A G; D Aj such
that |x|(G;\A;) < €/27. Since U G; D F, there exists n such that U G; O F. Then
=1 i=1

f:lwm) > f: B(G;) ¢ > ém«m —e> |ul(F) - > u(A) -

Hence, E |,u|( )> |.“|( )

For ea.ch n,
|1l(A4) 2 1kl(U A5) =3 1l(4))
=1 =1

so

ll(4) > f:lwAJ),
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and it follows that |g| is countably additive.

Exercise 1. Let p be as in Theorem 9. Show g has unique, regular, countably
additive extension to the o-algebra generated by A.

Exercise 2. If the measure g is defined on a o-algebra, show the union of a sequence
of outer regular sets is outer regular and the union an increasing sequence of inner
regular sets is inner regular.

Exercise 3. If 4 is a finite measure on a o-algebra, show the intersection of a sequence
of inner regular sets is inner regular and the intersection a decreasing sequence of outer
regular sets is outer regular.
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2.8 The Nikodym Convergence and Boundedness
Theorems

In this section we establish two remarkable results for signed measures which are
due to Nikodym ([N1], [N2]). Our proofs are based on a theorem concerning infinite
matrices due to Antosik and J. Mikusinski ([AS]) which we now establish. We begin
with a simple lemma.

Lemma 1 Let z;; > 0 and ¢; > 0 for ¢, j € N. Iflim z;; = 0 for each j and
lim z;; = 0 for each 1, then there is a subsequence {m;} of positive integers such that
7
Tm,m, < €; for i # j.

Proof: Put m; = 1. There exists my > m; such that z,,,, < €12 and T, < €21

for m > my. Then there exists mjz > mg such that zmm < €13, Tmgm < €23, Tmm, < €31
and z,,m, < €32 for m > mj. Continue.

Theorem 2 (Antosik-Mikusinski) Let z;, € R fori, j € N. Suppose
(I) lim z;; = «; ezists for each j.

(II) For each subsequence {m;} there is a subsequence {n;} of {m;} such that the

o0
sequence { ) Tin } converges.
=

Then lim z;; = z; uniformly for j € N. Also, lim z;; = 0 uniformly for : €¢ N
1 7
and hrn i = 0.

Proof: If the conclusion fails, there is a § > 0 and a subsequence {k;} such that
sup |zx,; — zj| > 6. For notational convenience, assume k; = ¢. Set 7, = 1 and pick
i

J1 such that |z;; — ;| > é. By (I) there exists i3 > ¢y, with [z;;, — 75| > é and
|zi; — z;| < 6 for s > 75 and 1 < j < j;. Now pick j; such that |z, — z;,| > 6 and
note that j; > j1. Continuing by induction produces two increasing sequences {ix}
and {ji} such that |z, ;, — =i, ;| > é. Set zxe = z4,j, — 4,5, and note

Izkk| > 6. (2.1)

Consider the infinite matrix M = [zx]. By (I) the columns of this matrix converge
to 0. By (II) the rows of the matrix [z;;] converge to 0 so the same holds for the matrix
M. By Lemma 1 there is a subsequence {my} such that |zpm,m,| < 1/2¥* for k # L.
By (II) there is a subsequence {ny} of {m;} such that

li{n;:;zﬂ,ml =0. (2.2)
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Then

IA

|E?Z1 Z"k"l| + < |Zt?il Zﬂknll + Et’;ék |anﬂ1|

|Z7"k7"k |

Ezl Zngng
Z (2.3)

IA

|E?§1 Zngne| + Pyl 1/2k+[ = [2&1 Zngn | + 1/2k~

Now the first term on the right hand side of (3) goes to 0 as k — oo by (2) and
since the second term obviously goes to 0, liin Znun, = 0 contradicting (1).

The uniform convergence of the limit, lim z;; = z;, and the fact that lim z,; =0
T 7

for each 2 implies that the double limit lim z;; exists and is equal to 0 so, in particular,
13

lim z;; = 0 uniformly for : € N and li‘m i =0.

’ We will use this matrix theorem of Antosik and Mikusinski below in the proof of
the Nikodym Convergence Theorem. Note the theorem gives a sufficient condition
for the diagonal of an infinite matrix to converge to 0 so it is sometimes referred to
as a Diagonal Theorem.

We now establish the Nikodym Convergence Theorem. Let ) be a o-algebra
of subsets of S and g; : 3~ — R, i € N, a sequence of (finite) signed measures.
Nikodym’s Convergence Theorem then asserts that the pointwise limit of a sequence
of finite signed measures is a signed measure. For this we first require a definition
and a preliminary lemma.

Definition 3 The sequence of signed measures, {y}, is said to be uniformly count-

ably additive if the series { § w:i(E;)}: converge uniformly for every pairwise disjoint
=1

sequence {E;} C¥.
Lemma 4 The following are equivalent:

(i) {w:} is uniformly countably additive.

(ii) For each decreasing sequence {E;} from ¥ with E; | 0, lim p;(E;) = 0 uniformly
j
for i€ N.

(iii) For each pairwise disjoint sequence {E;} from ¥, lim p;(E;) = 0 uniformly for
i
i€ N.

Proof: The equivalence of (i) and (ii) is exactly like the proof of Proposition
2.2.5. Certainly (i) implies (iii).

Suppose (iii) holds but (ii) fails to hold. Then we may assume (by passing to a
subsequence if necessary) that there exist a § > 0 and a decreasing sequence F; |
with |p;(F;)| > & for every j. There exists &; such that |u,(F,)| < 6/2. Then there
exists k; > k; such that |u (Fi,)| < 6/2. Continuing by induction produces an
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increasing sequence {k;} such that |u, (Fi,, )| < 6/2. If E; = F \F,,,, then {£,}
is a pairwise disjoint sequence from ¥ with

|, (B 2 s, (B} — o, (B ) > 672
which contradicts (iii).

Theorem 5 (Nikodym Convergence Theorem) Suppose lim pu;(E) = () er-
ists for every E € %, then

(1) {u:} is uniformly countably additive and

(ii) u is countably additive (i.e., p is a signed measure).

Proof: (i): Let {E,} be a pairwise disjoint sequence [rom ¥_. Consider the matrix
M = [p;(E,)]. The columns of M converge by hypothesis and if {m,} is any increasing
sequence of positive integers,

oo

h}nZ/‘i(Em) = lilm (U En,)
=1

Jj=1
exists by hypothesis. Hence, M satisfies conditions (I) and (1T} of Thcorem 2, and
lim p:(£;) = 0 converges uniformly for ¢ € N. By Lemna 4, {g} is uniformly
J

countably additive.

(ii): If {F;} is a decreasiug sequence from Y with F, | @, then by (i) and Lenima
4 lim p;(E;) = 0 uniformly for ¢ € N. Hence,

J

lim p(E;) =limhm p(E)) = limlim p(E))=0
J J & 1 7
and p is countably additive by Proposition 2.2.5.

Remark 6 The o-algebra assumption in Theorem 5 is important; the result is false
for countably additive set functions defined on algebras (see Exer. 4 or [Sw3]).

We next turn to the Nikodym Boundedness Theorem. For this we require a
technical lemma.

Lemma 7 Let A be an algebra of subsets of S and v; : A — R bounded and finitely
additive for each i € N. Then {v;(F) : i € N, F € A} is bounded if and only if
{vi(F;) :1 € N} 1s bounded for each pairwise disjoint {F;} C A.

Proof: Suppose sup{|v;(E)| :7 € N, F € A} = co. Note that for each M > 0
there is a partition (£, F') of S and an integer i such that min{|v;(E)|, |vi(F)|} > M.
[This follows since

lvi(E)| > M + sup{|v;(S)| : j € N}
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implies |v;(S\E)| 2 [vi(E)| — |»(S)| > M.] Hence, there exist ¢; and a partition (£,
F)) of S such that min{|v;, (E1)|, |, (F1)|} > 1. Now either

sup{|v;s(ANE))|:1eN, A€ A} =

or

sup{|m(AN F)|:i €N, A€ A} = .

Pick whichever of E; or F) satisfies this condition and label it B, and set 4; =
S\ B,. Now treat B, as S above to obtain a partition (A, By) of B; and an iz > 1;
satisfying |vi,(A2)| > 2 and sup{|vi(AN Bz)| : i € N, A € A} = co. Proceeding by
induction produces a subsequence {i;} and a pairwise disjoint sequence {A;} such
that |g; (A;)| > j. This establishes the sufficiency; the necessity is clear.

Theorem 8 (Nikodym Boundedness Theorem) If {¢i(E) : ¢ € N} is bounded
for each E € T, then {u;(E) : i € N, E € 3_} is bounded, i.c., {u;} is uniformly
bounded on T when {;} is pointwise bounded on 3. .

Proof: Let {E;} be a pairwise disjoint sequence from ) and let ¢; — 0. Then
lim t;p4;(E) = 0 for each £ € 3_. Hence, by the Nikodym Convergence Theorem {¢;4,}
is uniformly countably additive, and lim t;u;(E;}) = 0 by Lemma 4. By Exercise 1,
{ui(E:)} is bounded, and the result follows from Lemma 7.

Remark 9 As in the Nikodym Convergence Theorem, the o-algebra assumption in
Theorem 8 is important; see Exercise 3. The result is also valid for bounded, finitely
additive set functions defined on o-algebras (see Exercise 2).

Despite the examples which show that neither the Nikodym Convergence or Bound-
edness Theorems are valid for algebras, there are versions of both results for set func-
tions defined on domains which are not o-algebras. For references to such results and
a discussion of the history of these two important theorems of measure theory see

[DU].

Exercise 1. Show {s;} C R is bounded if and only if lim s;t; = 0 for every sequence
{t.‘} with limt.- =0.

Exercise 2. Use Drewnowski’s Lemma to show that Theorem 8 is valid for bounded,
finitely additive set functions defined on a o-algebra.

Exercise 3. Let A be the algebra of subsets of N which are either finite or have
finite complements. Define 6, : A — R by é.(£) = 1 if n € E and 0 otherwise.
Define g, : A — R by

() = n(bu(E) - 6:(E))
if E is finite and

pn(E) = —n(8n11(E) — 6a(E))
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otherwise. Show each p, is bounded, countably additive and {g,} is pointwise
bounded on A but is not uniformly bounded on A.

Exercise 4. Let S = [0,1) and A the algebra generated by intervals of the form
[2,6), 0 < a < b < 1. Define g, on A by p, (A) = nm(AN[0,1/n)). Show u, is
countably additive, lim g, (4) = p (A) exists for every A € A and g is not countably
additive.



Chapter 3

Integration

3.1 Measurable Functions

We now begin our study of the Lebesgue integral by introducing the class of func-
tions which will be considered. Recall that in section 1.3 when we were describing
Lebesgue’s definition of the integral a necessary condition for a bounded function
f :[a, 5] — R to be integrable was that the set {t € [a, 8] : @ < f(¢) < 8} had to be
(Lebesgue) measurable for each «, . The functions which satisfy this condition are
called measurable functions; we now introduce and study this class of functions.

Let 3 be a c-algebra of subsets of a set S.

Definition 1 An extended real-valued function f : S — R* is > -measurable, or
simply measurable if 3~ is understood, if {¢ € S: f(¢) < a} € ¥ for every a € R.

Proposition 2 Let f: S — R*. The following are equivalent

() f is measurable,

(ii) {t: f(t) > a} € X for every a € R,
(iii) {t: f(t) > a} € T for every a € R,
(iv) {t: f(t) <a} € ¥ for cvery a € R,

(v) the same as (i), (it), (itt) or (iv) except with “for every a € R” replaced by “for
every a in any dense subset of R”.

Proof: (i)=(ii):{t: f(t) > oo} S\{t: f(t) < a}.
(=it 102 70> a) = U {t: ) = at 1n).
(i)=(iv): {t: f(t) < a} = S\{t f(t) > a}.

(V)= {1 St <a) = U {eeJ0) <a—1/n),

71
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For (v) suppose D C R is dense and {t : f(¢) < d} € 3 for every d € D. Let
a € R. Pick {d,} C D such that d, T @, d, # a. Then

{t: ft)<at={J{1: f(t) <du} e
n=1
so (iv) holds. The other cases are similar.

Other characterizations of measurable functions are given in Exercise 1.
Corollary 3 If f: 5 — R* is measurable, then {¢: f(t) = a} € 3. for every a € R™.

Proof: For a € R,
{t: ft) =a} = ro-j{t:a—l/n<f(t)<a+1/n}.

Eor a = oo, {t: f(t) =00} = ﬁ {t: f(t) > n}, and the case a = —oco is similar.
n=1

Example 4 The converse of Corollary 3 is false. Let P be a subset of (0, 1) which is
not Lebesgue measurable and set ¢ = (0, 1)\ P. Define f: (0, 1) — R by f(¢) = ¢ if
teQand f(t) =—tift € P. Then fis 1-1 so {t: f(¢) = a} is Lebesgue measurable
for every ¢ € R*, but f is not Lebesgue measure.

Concerning the algebraic properties of measurable functions, we have

Proposition 5 Let f1, fz : § — R* be measurable. Assume f, + fo and fif2 are
defined on S. Then
h+ faafi, fifa, AV fo, i A 2

are measurable functions.

Proof: First, fi + f; is measurable. If a € R and fi(¢) + f2(t) < a, then
fi(t) < a — f2(t) and, therefore, there is a rational r such that fi(t) < r < a— fa(t).
Hence,

{t: it) + f2(t) < a} = U {t: Lty <rIn{t: folt) <a—r}.
reQ

That af) is measurable for a € R is easily checked.
To show f; f2 is measurable, first note f? is measurable since

{t: i) >a} = {t: filt) > Vaj U {t: filt) < —Va}
fora > 0and {¢: fI(t) > a} = Sfora< 0. But fifo = [(fi + f2)* — fE— F2]/2.

Since
{t: ivhR)>a={t: flt)>alU{t: f(t)>a}, LV Sa

is measurable and, similarly, f; A fs.
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Definition 6 Let f : S — R*. Define f* = fV0, f~ = (—f)v0. Hence, f = f*+—f-
and |fl=ft+f~.

Corollary 7 f: S — R* is measurable if and only if f+ and f~ are measurable. If
f is measurable, then |f| is measurable.

The converse of the second statement in Corollary 7 is false (Exercise 6).
Concerning sequences of measurable functions, we have

Proposition 8 Let fi : S — R* be measurable for each k € N. Then
f =sup{fi : k € N},g = inf{fi : k € N},limfy, limf;
are measurable.

Proof: For a € R, {t : f(f) > a} = G{t : fe(t) > a} so f is measurable.
k=1

Similarly, ¢ is measurable. The other two statements follow immediately.

Corollary 9 If fi : S — R* is measurable for each k € N and if {fi} converges
pointwise to the function f: S — R*, then f is measurable.

We next consider the measurability of compositions.
Definition 10 A function f : R* — R* is called a Borel function if
{t: f(t) < a} € B(R")
for every a € R, i.e., if f is B(R™)-measurable.

For example, any continuous real-valued function on R" is a Borel function (Exer.
2.5.11). Any Borel function is obviously Lebesgue measurable.

Proposition 11 Let f : S — R be measurable and g : R — R* be a Borel function.
Then g o f is measurable.

Proof: For a € R, (g o f)7!(a, 00) = f~}(g7(a, 00)) so the result follows from
Exercise 1.

It is not, in general, true that the composition of measurable functions is measur-

able.

Example 12 Let K be the Cantor set in [0,1] and let K, be an e-Cantor set with
0 <e< 1l Let f:][0,1] — [0,1] be the continuous function with maps the open
intervals in the complement of K, onto the open intervals in the complement of
K constructed in Example 2.5.9. Let P be a subset of K. which is not Lebesgue
measurable and P’ = f(P). Since K has measure 0, P’ is measurable. Observe that
Cpr o f = Cp is not measurable while Cp/ is measurable and f is even continuous.
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Almost Everywhere:

Definition 13 Let ¢ be a measure on Y. A statement about the points in a subset
E C S is said to hold pu-almost everywhere [u—a.e.] in E if the statement is true for
all of the points of E exzcept possibly for the points in a subset of E of p measure 0. For
ezample, if f : S — R*, to say that f =0 p—a.e. means that p{t: f(t) #0} =0.

Proposition 14 Let u be a complete measure and let f, g : S — R*. If f is 3 -
measurable and f =g p—a.e. in S, then g s }_-measurable.

Proof: Let Z = {t: f(t) # g(t)}. Then u(Z)=0. For ¢ € R,
{tigt)y <a}={t: f)<a}U{teZ :9(t) <al\{t € Z: f(t) > a}
so g 1s )_-measurable.

Corollary 15 Let p be a complete measure and fi, f : S — R* for k € N. If each fi
is )_-measurable and {fi} converges pointwise to f p—a.c., then f is Y -measurable.

Proof: g = limf; is Y-measurable (Proposition 7) and f = ¢ g — a.c. so the
result follows from Proposition 14.

Without the completeness assumption on the measure p, Proposition 14 and
Corollary 15 may fail (Exercise 4).
Finally, we consider an important result on a.e. convergence which is due to

Egoroff. Let f¢, f: S — R be }_-measurable functions.

Definition 16 The sequence {fi} converges p-almost uniformly to f if for every
€ > 0 there ezists E € 3 such that p(S\E) < € and fi — f uniformly on E.

Clearly, if fx — f uniformly on S, then {f;} converges pu-almost uniformly for any
measure g, but the converse does not hold (Exercise 11). If {fi} converges p-almost
uniformly to f, then {fi} converges p—a.e. to f (Exercise 13), but the converse is
false (Example 19). However, if 4 is a finite measure, g—a.e. convergence does imply
p-almost uniform convergence; this is Egoroff’s Theorem which we now prove.

For o > 0, set Ex(o) = {t: |fi(t) — f(t)] = o}.
Proposition 17 (i) {ft} converges p-almost uniformly to f < for every

>0 lim p(|J Em(e))=0.

m>n

(i1) {fx} converges p—a.e. to f & for every o > 0, pu( oﬁ G E.(0))=0.
n=1m=n
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Proof: (i): =: Let € > 0. There exists £ € Y such that 4(S\F) < € and fi — |
uniformly on £. Thus, there exists N such that £ C [ En(o)°so £ D {J En(o).
m=N m=N
Forn> N,

w( ) Bn(0) < u(E%) <.

m=n

<: For every p there exists N, such that u( U En.(1/p)) < ¢/2°. Set
m>N;

2Np

En(1/p).

r-

LCs

-

m

b~

P

Then u(F) < € and fy — f uniformly on £ = F*¢ = ﬁ ﬂ E.(1/p).
p=1m=Np
(i1): Let A= {t: fi(t) — f(t)}. Then

A=A U A E@=AU N E /). 1)

o>0n=1m=n p=1n=1m=n

-
—

Since fi — f p-a.e. if and only if p (A°) = 0, (ii) follows from (1).

Theorem 18 (Egoroff) If u is finite and fy — f u — a.e., then fy — f p-almost
uniformly.

Proof: Set A, = G E.. (o) and note A, |. Since g is finite, limu (A,) =

7 ( ﬁ An) by 2.2.6 so the result follows from Proposition 17.
n=1

Example 19 The finiteness requirement in Egoroff’s Theorem cannot be dropped.
Consider fi = Clk o) in R with Lebesgue measure. {fi} converges pointwise to 0 but
for every k fi(t) =1 for t in a set with infinite Lebesgue measure.

Example 20 The conclusion in Egoroff’s Theorem cannot be improved to read,
“fc — f uniformly on a set E with p(S\E) = 0”. Let S = (0, 1) with Lebesgue
measure and fr = Coa/x- Then {fi} converges pointwise to 0. Suppose £ C S has
m(E) = 1. Then for every k there exists ty € EN (0, 1/k) so fi(ty) = 1 and {fi}
does not converge uniformly to 0 on E.

For an interesting extension of Egoroff’s Theorem, see [Ba2].

Exercise 1. Let f:S — R*. Show f is Y -measurable if and only if f~1(G) € ¥ for
every open G C R and f7!(00) € 32, f7!(—00) € 3 if and only if f~1(B) € 3 for
every Borel set B C R and f~!(o0) €3, f}(—0) € T.

Exercise 2. Let E C S. Show Cg is Y -measurable if and only if E € 3.
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Exercise 3. Let f: S — R* and ¢ > 0. If f is measurable, show |f|® is measurable
(agree |oo|* = 00). Show 1/f is measurable.

Exercise 4. Show that Proposition 14 (Corollary 15) is false if completeness is
dropped. [Let B be a Borel set of measure 0 and Z C B a Lebesgue measurable
subset which is not a Borel set (Example 12). Define ¢ : R — R by g¢(¢t) = 1 if
te R\B,g(t)=2ifte B\Z and ¢(t)=31ift € Z]

Exercise 5. Let f; : S — R* be measurable. Show {t: lim fs(¢) exists} € 3.
Exercise 6. Give an example where |f| is measurable but f is not.
Exercise 7. If f: S — R is measurable, show t — sign f(t) is measurable.

Exercise 8. Show if f : R — R is continuous m—a.e., then f is Lebesgue (Borel)
measurable.

Exercise 9. Show if f : R — R is differentiable on R, then f’ is a Borel function.

Exercise 10. If f : R® — R is Lebesgue measurable and ¢ € R" show that
z — f(z + a) is Lebesgue measurable.

Exercise 11. Given an example where {fx} converges almost uniformly but not
uniformly.

Exercise 12. Let f, g : R — R be continuous and f = ¢ m-a.e. Show f = 4.

Exercise 13. Show that if {fi} converges p-almost uniformly to f, then
fr = f p—a.e. Hint: Use Proposition 17.

Exercise 14. If s is counting measure on S, show { f;} converges u-almost uniformly
to f if and only if f; — f uniformly on S.

Exercise 15. Suppose p is finite and {fi} is a sequence of measurable functions
which converges g—a.e. to the measurable function f. Show there is a sequence,

{E;}, from 3" such that u(S\ G E;) =0 and fx — f uniformly on each E;.
=1
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Exercise 16. Show that the image of a Lebesgue measurable set under a continuous
function needn’t be Lebesgue measurable. What about inverse images?

Exercise 17. Let f: R — R be Lebesgue measurable. Show there exists a set with
positive Lebesgue measure on which f is bounded.

Exercise 18. Show sup {f, : a € A} (inf {f, : @« € A}) needn’t be measurable when
each f, is measurable and A is uncountable (compare Proposition 8).
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3.1.1 Approximation of Measurable Functions

In this section we show that measurable functions can be approximated by “nice”
functions.
Let 3~ be a o-algebra of subsets of 5 and p a measure on 5.

Definition 1 A function f: S — R s Y -simple, or simple f . is understood, if [
is 5 -measurable and the range of [ is finite.

It f:8 — R is simple and Rf = {ay, .., an} with @, # @, for i # j, then
A = fYa) € %, AN A 0ife+# 5, and f = Eu Ca,; this is called the

standard representation of f. Thus, a simple function is |u5t a linear combination of
characteristic functions of measurable sets.
We show that any measurable function can be approximated by simnple functions.

Theorem 2 Let f: .5 — R* be non-negative and measurable. Then there exists a
sequence of non-negative simple functions, {¢.}, such that @,(¢) T f()VE € S. If [
ts bounded, the convergence is uniform on S.

Proof: For ecach n and t € S set

wa(t) = { 7(; —o/ :i (fl(;) 12)/3” < f@) <if2 e=1,---,n2"

Each ¢, is non-negative, Y -simple and ¢, (¢) < f(f) for all t. Also, v,41(t) >
@n(t) since if (. — 1)/2" < f(i) < /2", then (2 — 2)/2"H < f(t) < 2i/2™) so
Prpr(t) 2 (20 =2)/2 = @a(l).

1f ¢t €85 and n > f(t), then

0<f(t)—enlt) <1/2" (3.1)
50 @n(t) T f(¢). The last statement follows from (1).

Corollary 3 Let f: S5 — R* be measurable. Then lhere exists a sequence of sirnple
functions, {@,}, such that {@,} converges lo f pointwise on S with |, ()] < |f(1)]
for all t € S§. Moreover, if f is bounded, the convergence is uniform on S.

Proof: Apply Theorem 2 to f* and f~.

We next consider the approximation of mcasurable functions by continuous func-
tions. Let S be a topological space and }_ a o-algebra of subsets of S which contains
the Borel sets, B(S). We have an important approximation theorem due to Lusin.
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Theorem 4 (Lusin) Let 4 be a measure on 3 such that for every E € 3 and ¢ > 0
there ezists an open U D E such that u(U\E) < e and let f : S — R be I"-measurable.
Given € > 0 there exists H € 3 such that p(H) < € and f|s\y is continuous.

Proof: Pick a countable family of open subsets of R, {V;}, such that any open
set in R is a union of elements of {V;}. For each j, pick an open set U; in S such

that U; D f(V;) and w(U\f(V;)) < ¢/2. Put H = {J (U\S7(V)). Then

Set g = fIS\H~
We first claim that ¢=1(V;) = U; N He. Clearly ¢7'(V;) C U; N H¢. On the other

hand,
U; N [S\(U;\f 7 (V)))]
UinSn U\ (Vi)
U nSn[(U;)°u fH(V))]
SN V) = 71 (V).
Intersecting with H® gives the desired containment and establishes the claim.

We next claim that ¢ is continuous on H°. Let V be open in R. There exists

M C N such that V.= U V;. From above, g7 (V)= U ¢7(V;) = H°n(U U;)
JEM JEM JEM
so g~1(V) is open in H®.

U;NnH*

nunn

I

Remark 5 Note that both Lebesgue and Lebesgue-Stieltjes mcasures satisfy the
assumptions on g (2.5.4 and 2.6.3). If x is also inner regular (2.5.5), then H can be
taken to be a closed set. This proof of Lusin’s Theorem is from [Fe].

By using the Tietze Extension Theorem, we can establish a more convenient form
of Lusin’s Theorem. The Tietze Extension Theorem asserts that a bounded continu-
ous function defined on a closed subset of a normal topological space has a continuous
extension to the whole space which has the same bound as the original function. A
proof for topological spaces can be found in [Si], for metric spaces in [Di], and for R"
in [Ba].

Corollary 6 Let yu and f be as in Theorem 4 and assume further that p is finite, S
is normal and every set in Y. is inner reqular. Then for every € > 0 there exists a
continuous function g : S — R such that p{t : f(t) # g(t)} <e. If f is bounded by
M, g can be chosen to be bounded by M.

Proof: Let H be as in Theorem 4 but with € replaced by ¢/2. Choose K C
II° compact such that p(H\K) < €/2. Then p(S\K) < € and f|x is continuous
and, hence, bounded. By the Tietze Extension Theorem, f|x can be extended to a
continuous function g on S with the same bound as f|x.

Note Corollary 6 is applicable to Lebesgue measurable subsets of R™ with finite
measure.
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Theorem 7 Let the assumptions be as in Corollary 6. Then there exists a sequence
of continuous functions { fr} on S such that fy — f p—a.e. Moreover, if f is bounded
by M, the {fi} can be chosen to be bounded by M.

Proof: By Corollary 6, for each k there exist a compact K such that u(K§) <
1/2* and a continuous function fy on S such that fi|x, = f|k,-

Let Z = imKj = ﬂ G K§ so for every j,

J=1 k=j

1(Z) < u( UK,,) <Zl/2" /291
k=j k=j
and u(Z) =0.
Ifte Ze,t ¢ Uchorsome] sot € Ky for k > j and fi(t) = f(t) for k > ;.
Hence, fi(t )—rf( )or fi— f p—ae.

The last statement follows from Corollary 5.
The proof of Theorem 7 and Corollary 3.1.15 also gives the following result.

Corollary 8 Let y be a complete measure on ). Suppose f : § — R is such that
for every € > 0 there exists a continuous function g : S — R such that

plt: f(t) #9()} <e
Then f is measurable.

Corollaries 6 and 8 give a characterization of measurable functions (for certain
measures) which on R is due to Lusin. In their treatment of measure and integration
Bourbaki take this characterization as the definition of measurability for a function

([BY]).

Exercise 1. Let f : § — R be measurable. Show there exists a sequence, {px},
of countably valued, measurable functions such that ¢; — f uniformly on S with
|#k| < |f|- [Hint: Consider the proof of Theorem 2.

Exercise 2. If {t : f(t) # 0} has o-finite 4 measure, show the sequence {p4} in
Theorem 2 and Corollary 3 can be chosen such that {¢ : @i(t) # 0} has finite p
measure for every k.

Exercise 3. Let f : R —» R* be Lebesgue measurable. Show there exists a Borel
function g : R — R* such that f =g m—a.e.
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3.2 The Lebesgue Integral

In this section we define the Lebesgue integral with respect to an arbitrary measure.
In Lebesgue’s original construction of the integral, he considered a bounded function
f defined on an interval [a, b] and approximated the function from above and below
by simple functions 1 and ¢, defined the integral of the simple functions % and ¢ in a
natural way, and then used these two integrals to approximate the integral of f (§1.3,
equation (2)). We follow basically the same procedure as Lebesgue, except that we will
consider unbounded functions directly so we cannot consider upper approximations
by simple functions. It will be seen that this leads to no difficulties because we will
restrict the functions which we will consider to the class of measurable functions
(Remark 5).

Let 3 be a o-algebra of subsets of S and let u be a measure on 3. If ¢ is a

W
non-negative, Y -simple function and ¢ = Y axCly, is the standard representation of
=1

W
@, we define the integral of v with respect to u to be [spdu = Y= arp(Ax) [here we
k=1

are using the convention that 000 = 0]. If £ € 3, we define the integral of ¢ over
E (with respect to p) to be

/Evd# = /SCEcPd#(: i arp(E 0 Ag)).

k=1

We say that ¢ is p -integrable over E if [ pdu < oo.

Proposition 1 Let ¢ : S — R be non-negative, simple with

(,OZZb,'CB_, B,—ﬂB]-:(Z)

=1
fori#£ 3. Then
/Ssad# =Y bu(B:).

=1

Proof: Let p = Eﬂ: a;C4, be the standard representation of ¢. Then A; = U B;
=1 by=a,

80
m

S w(B) =Y bip(Bs).

/Ssad# =2 au(4;) =3 q;

1=1 =1 b,=a, =1
Remark 2 Note that only the finite additivity of p was used in the proof of Propo-
sition 1; the non-negativity of the simple function was used only to insure that there
were not arithmetic problems of the form oo — co encountered. Thus, if  is a simple
function and 4 is a finitely additive set function on an algebra A which takes on only
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values in R, the integral v(E) = [z pdp is well-defined and v : A — R is finitely
additive. Moreover,

|[odu] < [leldlul < suplle(e)] : t € B} lul (Bytor E € 4,

where |u| is the total variation of p [Proposition 2.2.1.7].
Proposition 3 Let ¢, 3 be non-negative, simple.

(i) Ift 20, then [stodp =t [spdp.

(ii) [s(e +9¥)dp = [sedu + [sdp.

(iii) If ¢ <9, then [spdu < [spdp.

(iv) The set function E — [ pdp is a measure on 3.

Proof: (i) is immediate. For (ii) let

= ZG;CA‘, ’l/) = Z bjCB_,
i=1 1=1
be the standard representations for ¢ and . Set E;; = A; N B, so
= EaiCE._,a ’l/) = Z bjCE.'_,
iJ 4
and by Proposition 1,
oo+ ¥)dn = Slai+ bu(Ey) = [du+ [
7
If ¢ <9, then a; < b; when E;; # 0 so
Jowdn = T ain(By) < S biu(Ey) = [ wdp
£J )

and (i) holds.
For (iv), if {E;} C ¥ is a pairwise disjoint sequence from }_ with union £, then

/god,u—Za,,u(A NE) =S a3 w(ANE) =53 am(Ain E;) / odp.
=1 j=1 j=1i=1

We now define the integral of a non-negative, measurable function.

Definition 4 If f : § — [0,00] is 5 -measurable, we define the integral of f with
respect to u to be

/ fdu = sup{/ wdp o simple, 0 < < f}.
s s
If E €Y, we define the integral of f over E (with respect to u) to be

[ rdn= [ Cofdu.
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Every non-negative measurable function has an integral but it may be infinite.
Note from Proposition 3 (iii), the definition of the integral for simple functions given
in Definition 4 agrees with the previous definition.

Remark 5 Note the integral defined above is analogous to a lower integral in the
Riemann theory of integration. There is no need to go through a “lower integral-
upper integral” procedure because we have restricted our considerations to measurable
functions. Indeed, if f: S — R is bounded and g is a finite, complete measure, then

sup{/;(pdp i < f, simple} = inf{/;zl)dp : f <4, ¢ simple} (3.1)

holds if and only if f is measurable. We indicate a proof of this result in Appendix I
at the end of this section.

From Proposition 3, we have
Proposition 6 Let f, g be non-negative, measurable.
(i) If0< f <y, then [s fdu < [5gdp.
(i) Ift >0, then [gtfdu =1t [o fdu.

One of the most important properties of the Lebesgue integral is the ease with
which it handies limits. We now establish one of the most important results in this
direction, the Monotone Convergence Theorem (MCT).

Theorem 7 (MCT). Let {fc} be a sequence of non-negative, measurable functions
such that fi(t) T for every t € S. If f(t) = him fi(t), then [g fdp = lim fg fidp.

Proof: Since 0 < fi < fry1 < f, from Proposition 6 {fs fedp} is increasing and
lim s fxdp < [ fdp.

For the reverse inequality, fix 0 < a < 1 and let ¢ be an arbitrary simple function
with 0 < ¢ < f. Set Ex = {t : fi(t) > ap(t)}. Since {fi} is increasing, {Fi} is
increasing, and since {f;} converges pointwise to f, U Ey=S5. Then

k=1
[eduz [ fduza [ gdp

S Ey Ey

By Propositions 6, 3(iv) and 2.2.5,
lim/ frdu > alim/ pdp = a/ pdp.

s Ex s

Letting a approach 1 gives
tin [ fedu > [ pdp,
s s

and since ¢ is arbitrary,

lim [ fudu > [ fdp.
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Corollary 8 Let f; be non-negative, measurable. Then

g [ = [ ki:fkdu.

Proof: Let {¢;} ({#;}) be a sequence of non-negative simple functions such that
w; T fi (¥; T f2) [Theorem 3.1.2]. Then (@; + %;) T (f1 + f2) so by the MCT and
Proposition 3(ii),

tim [ (o + i) =tim [ oy +tim [ wydp = [(Fr+ p)du = [ frdu+ [ fadn.

By induction and the MCT,

/Skzzlfkdu = hgn/sk;fkdu = hgn];/sfkdu = kZ_:_l/kadu.

Another important property of the Lebesgue integral is that as a set function it
defines a countably additive measure.

Theorem 9 If f is non-negative and measurable, then the set function E — [g fdu
s @ measure on y..

Proof: Let {¢;} be a sequence of non-negative, simple functions such that ¢, T f
(Theorem 3.1.2). By the MCT,

lim [ pudu = [ fdu

for each F € 3°. The set function £ — [ @rdy is a measure by Proposition 3(iv) so
the result follows from Exercise 2.2.13.

Proposition 10 Let f be non-negative and measurable. Then [ fdu=0 & f=0,
u-a.e. in S.

Proof: <«: The result is clear for simple functions and, therefore, follows imme-
diately from the definition of the integral.

—: Set A, = {t: f(t) > 1/k}. Then A = {t: f(t) >0} = U Ay. Therefore, if
k=1
p#(A) > 0, then p(Ax) > 0 for some k and

[ rdn= [ rdu = pan/i >0

If f:5 — R*is measurable, we say that f has a p-integral over £ € ¥ if one of
the integrals [ ftdu, o f~dp is finite, and if this is the case, the y-integral of f over

FE is then defined to be
- g -
[ fdn= [ ftdu- [ rdu.
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If fz fdp is finite, we say that f is p-integrable over E.
When it is necessary to indicate a variable of integration, we sometimes write the
integral as

[ faun = [ ss)duts).

This is a particularly useful notation when the integrand f depends on a parameter.

When the measure p is Lebesgue measure, we say the function f is Lebesgue
integrable and call [g fdm the Lebesgue integral of f. We sometimces denote the
Lebesgue integral by

[ fdm = [ swyamey = [ sy

and if £ = [a,b] is an interval, we often write

/EfdmZ/:fdm:/abf(t)dt.

If ¢ : S — R is a simple function, then ¢ has a p-integral over F if and ouly if
one of the sets {t € F : ¢(t) > 0}, {t € E : ¢(t) < 0} has finite y-measure; in this
case, if

Lr = Z akCAkv
k=1
then .
/deu =Y ap(ANE)

k=1

s0 ¢ is p-integrable over L if and only if pu(Ax N E) < oo for a; # 0.
One of the iuteresting properties of the Lebesgue integral is that it is an absolute
integral for measurable functions.

Proposition 11 Let f : S — R* be measurable. Then f is p-integrable & |f| is
u-integrable.

In this case, |fs fdu| < [5|fldu.

Proof: The first part is immediate from the inequalities f*, f~ < |f] = f* + f~,
Proposition 6 and Corollary 8.
Since

Joau= [ srdu= [ rdu< [ frap [ frdu= [ 171du

,/Sfdu:/Sf—du—/sﬁdug/Sf‘du+/5f+du:/SIfldu,

the last inequality follows.

and
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Corollary 12 Let f, g : S — R* be measurable with |f| < g p-ae. If g is p-
integrable, then f is u-integrable.

Proof: Since [g|f|dp < [59dpu [Exercise 12], the result follows from Proposition
11.

In particular, if f is p-integrable over E € 3°, then f is u-integrable over F € 3~
when F C E.

The integral is a linear functional over the class of integrable functions.

Theorem 13 If f, g are p-integrable, then af + bg is p-integrable for any a, b€ R
and

/(af+bg)dp =a/ fd,u+b/gdp.

s s s

Proof: Since |af + bg| < |a||f| + || |gl, the first statement follows from Proposi-
tion 11 and Corollaries 8 and 12. It is easily checked that

/Safdy: a/Sfdu.

Leth= f4+g. Thenh=ht—h™ = ft—f-+gt—g soht+f~+g~ = fr+gt+h"
and from Corollary 8

Jortdu+ [rdu+ [godu= [ rrdu+ [gtdu+ [ hdp
which gives

/Sfd#+/sgd#= /S(f+g)d#-

Concerning the “size” or “growth” of an integrable function, we have
Proposition 14 Let f : S — R* be p-integrable. Then
(i) For every a >0, E, = {t: |f(t)| > a} has finite p-measure,

(ii) f is finite p-a.e.
(iii) {t: f(t) # 0} has o-finite p-measure.

Proof: (i): oo > [ |f|du > au(E,).
(1i): If Z = {t:|f(t)| = oo}, then for every a > 0

/Slfld#Z/ZlfldﬂZa#(Z)

so u(Z) = 0.
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(iii) follows from (i) since

{t: 1(t) #0) = k[.j“ A0 > 1/k).

We next establish the other important convergence theorem for the Lebesgue
integral, the Dominated Convergence Theorem (DCT). This result removes the very
restrictive monotonicity requirement in the MCT. For this we use an important result
due to Fatou.

Theorem 15 (Fatou) Let {fi} be non-negative and measurable. Then
/hmfkdu < h_m/ frdp.
s s
Proof: Set hy =inf{f;:j > k}. Then hj Tlimfi so by the MCT
/limfkdp - lim/ hedp Sli_m/ fedp
s s s

since fx > hi.

Concerning the hypothesis and conclusion, see Exercises 14 and 15.

Theorem 16 (DCT) Let fi, f, g be measurable with g p-integrable and such that
|fx| < g p-a.e. If fx = f p-a.e., then {fi} and f are p-integrable with

/fdu = lim/ Sfedp.
s s
Moreover, lim f¢ | fix — f|dp = 0.

Proof: Since |fi| € g p-a.e. and |f| < g p-a.e., these functions are p-integrable.
Now g — fr > 0 p-a.e. so by Fatou’s Theorem

/Sli_m(g—fk)du=/S(g—f)du=/sgdu—/sfdu

Hence,

Jofdn = Tm [ fdu.

Similarly, fx + ¢ > 0 pg-a.e. so

/Sli_m(fk +g)du=/sfdu+/sgduSH_m/S(fk+g)du=H_mLfkdp+/Sgdu
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and

lim [ fudp > [ fdp

Thus, lim g fedp = fg fdp.
Since |fr — f| < 2¢ p-a.e., the last statement follows immediately from the first.
We cannot expect the conclusion of the DCT to hold without some condition on
the {fx}. For example, take fi = kClo,1/5 and Lebesgue measure on [0,1]. On the
other hand, the domination condition in the DCT is sufficient but is not necessary.
For example, take fi(t) = Cl—1/2,441/2)(t)/t. Then fi — 0 and

o0
[ fedm = en((k+ 1/2)/(k = 1/2) > 0
[this computation is justified in the next section where it is shown that the Lebesgue
integral generalizes the Riemann integral], but there is no Lebesgue integrable func-
tion g dominating the sequence {fi} [if ¢ > fi, then g(t) > 1/t for t > 1].
In Theorem 9 we showed that the integral of a non-negative measurable function
defined a measure. Exercise 26 extends this results to the integral of an arbitrary

function having a p-integral. We next consider another important property of the
integral as a set function.

Theorem 17 Let f be u-integrable. Then (lgjr)nofE fdp =0.
w(E)—

Proof: First, suppose f > 0. Set fy = f A k. Then 0 < fi T f so by the MCT,
i du = du.
lin [ fedu = [ fdu

If € > 0 is given, choose k such that fo(f — fi)de < €/2 and 0 < & < €/2k. U
w(E) < 6, then

Jordus [(F=fdu+ [ fedu<e/2+k-ef2h =

If fis p-integrable, then |fg fdu| < [z |f|du so the general result follows from
the first part.

Finally, we have

Proposition 18 Suppose that f has a p-integral over S. If [g fdp = 0 for every
E €Y, then f =0 p-a.e. [so [ is u-integrable with [s fdu = 0 by Ezercise 12].

Proof: If £ = {t: f(t) > 0}, then [ fdu = 0so f = 0 g-a.e. in E by Proposition
10. Similarly, f = 0 p-a.e. in F' = {t: f(t) < 0}.
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Remark 19 We have chosen to basically follow Lebesgue’s original construction of
the integral. We began with a measure and then constructed the integral from the
measure. It is possible to follow the reverse order; this approach to the integral is
due to Daniell. In the Daniell approach one begins with an “elementary integral” I,
a linear functional defined on a vector space of functions, Z, defined on some subset
S, which is positive in the sense that I(f) > 0 whenever f > 0, f € Z, and which
satisfies a mild sequential continuity condition [for example, the Riemann integral on
the class of continuous functions]. The functional I is then extended to a positive
linear functional J defined on a vector space X of functions on S which contains Z.
There is a natural measure associated with the extension J : 3. = {E :Cg € X} isa
o-algebra of subsets of S and p(E) = J(Cg) is a measure on Y. Under appropriate
assumptions, J(f) = [ fdu. For treatments of the Daniell integral, see [Roy] or [Ta].

Appendix I: We give a proof of the statement in Remark 5.
First, suppose that f is measurable and the range of f is contained in [¢, L]. Let
e>0and £ =yo <y1--- < y, = L be a partition of [£, L] with

max{liy1 —€;:i=0,1,...,n—1} <e.

Set,
E={t: 6,1 < f(t)<&},i=1,...,n,

and

d) = Z[iCE.'y p = Zli—lCE.'-

=1 =1

Then ¢ < f < 3 and

. = 9 < 3l ~ b (B < en(S)

=1

so (1) (in Remark 5) holds.
Suppose (1) holds. For each k there exist simple functions ¢; and & such that

vk < f < ¢y and [o(x — pr)dp < 1/k. Set ¢ = sup @k, ¥ = inf¢)y. Then ¢ and ¢
are measurable with ¢ < 3 and

/;(1/’ —@)dp < /;(1/)1; —r)dp < 1/k

for each k so [5(¢ — p)du = 0 and ¢ = ¢ p-a.e. by Proposition 10. Hence ¢y = f = ¢
y-a.e. and f must be measurable.

Appendix II: Countable Additivity of Lebesgue measure on R™.

We show, using the MCT, that Lebesgue measure m, on the semi-ring S, is
countably additive (Example 2.2.10). The proof is by induction on n. For n = 1, this
follows from Example 2.2.9. Assume the result is true for n. Let

B, =A; x [ai, b)) € Suy1
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with B; € 8,41 pairwise disjoint and with union B = A X [a,b) € Sp41, A € S,,. Fix
z € R*. Then
k
Z Cu (I)C[a.‘,b-') T Ca(z)Clapy
=1

as k — oo so by the MCT for the measure m, we obtain

k
2 Ca(z)(bi — @) T Ca(z)(b—a).
=1
We now apply the MCT to the measure m,, which is countably additive by the
induction hypothesis, to obtain

k
> ma(A:)(b — a:) Zm,,H ) T ma(A)(b— a) = mu(B).

=1

Hence, my41 is countably additive.

Note that for the proof above we only required the MCT for simple functions.
This can be obtained by proving Propositions 1 and 3 and then using the method of
proof in Theorem 7 (MCT).

As noted earlier in Example 2.2.10 a geometric proof of this result which does not
use integration theory can be given, but the proof is surprisingly difficult.

Appendix ITI: As promised following Theorem 2.2.1.5 we give an example of a real-
valued, finitely additive set function defined on a o-algebra which is not bounded.
For our construction we first require a lemma which utilizes integration with respect
to a finitely additive set function as described in Remark 2.

Lemma 20 Let A, B be algebras of subsets of S with AC B and let «: A — R be
finitely additive. If B € B\A and b € R, there exists § : B — R, finitely additive,
such that § is an extension of a with 3(B) = b.

Proof: Let S(A) [S(B)] be the vector space of all A-simple [B-simple] functions.
Then o induces a linear functional & : S(4) — R via integration with respect to «,
le., &(f) = [s fdo [Remark 2]. The linear functional & has a linear extension, B, to
S(B) such that A(Cs) = b. Then B(E) = A(Cg), E € B, defines the desired finitely

additive extension of a.

We now present our example ([Gi]).

Example 21 Let {F;}72, be a pairwise disjoint sequence of intervals such that
U Ex = R. Let A; be the algebra generated by {Fg, E1,..., Ex} so
k=0

%CA]CAgC...CM,
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the Lebesgue measurable subsets of R. Set ag = 0 on Ay; let a; be a finitely additive
extension of ag to A; such that o;(E;) = 1 [Lemma 20|, and by induction there
exists a sequence {a;} of finitely additive set functions defined on {A:} such that

ar4) extends ap and ox(Er) = k. Now A = ﬁ Ay is an algebra and a = U o is
=0
finitely additive on A. By Lemma 20, there is a real valued finitely additive extensmn

of a, i, to M, and since u(Ey) =k for every k, i is unbounded.

Exercise 1. If u is counting measure on S, show f : § — R is u-integrable if
and only if A = {t: f(t) # 0} is countable and } |f(t)| < co. In this case, show
teA

Jsfdu=% f(t)
tEA

Exercise 2. Let {f;} be y-integrable and Z Jslfil dp < co. Show the series 3 fi

converges pointwise (absolutely) p-a.e. to a ,u 1ntegrable function f with

fsfdu = g[sfkdﬂ~

Exercise 3. Let fi, f be non-negative, pu-integrable with fy — f u-a.e. Suppose

[ fedu~ [ sdu.

Show [g fidy — [g fdu for every E € 3. [Hint: Apply Fatou’s Theorem to E and
S\E.]

Exercise 4. Let [ be p-integrable. Suppose there exists k£ > 0 such that

| fauiu(e)| < &

for every 0 < p(E) < co. Show |f| < k p-a.e.

Exercise 5. Let u be finite. Assume {f;} are u-integrable and f; — f uniformly on
S. Show f is p-integrable and [ |fx — f|dg — 0. Can finiteness be dropped?

Exercise 6. Let f, g be non-negative, measurable. Assume f is y-integrable and set
v(E) = [g fdu for E € 3. Show g is v-integrable if and only if fg is p-integrable
and in this case [ gdv = [ fg du for E € 3. [Hint: First consider simple functions
9]

Exercise 7. Let f : [a,b] — R be m-integrable. If [ f(¢)t*dm(t) = 0 for
k=0,1,2,..., show f =0 m-a.e.
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Exercise 8. Let f : R — R be m-integrable. For a € R set f,(t) = f(t + a).
Show f, is m-integrable and g fdm = fg fodm. [See Exercise 2.5.2.] What about
Jr flat)dm(t)? [Exercise 2.5.4.]

Exercise 9. (Chebychev Inequality). Let f be u-integrable and ¢ > 0. Show
plt [f@)] = e} < [ |fldu/e.

Exercise 10. Let f be py-integrable. Show
Jim p{t: [f(t) 2 c} =0

lim flde =0.
e {tilf(‘)|26}| | d

Exercise 11. Let {fi}, g be p-integrable with |fi| < g p-a.e. Show

lim =0
e J{t:| S (¢I>}|f| g

uniformly for £ € N.

Exercise 12. Show that if u(E) = 0, then any measurable function f is g-integrable
over E with [p fdu = 0.

Exercise 13. Show the analogues of the MCT and DCT do not hold for the Riemann
integral.

Exercise 14. Show that strict inequality can occur in Fatou’s Theorem. [Consider

Jr = Cio,2) for k odd, fr = C(y,3) for k even.]

Exercise 15. Show the non-negativity assumption cannot be dropped in Fatou’s
Theorem.

Exercise 16 (Bounded Convergence Theorem; BCT). Let u be a finite measure and
fx, f be measurable. Assume IM > 0 such that |fi| < M p-ae. If fy — f p-ae,

show [s fdp = lim [s fudp.

Exercise 17. Let f : S — R* be non-negative and g o-finite. Show that f is
measurable if and only if f A ¢ is u-integrable for every p-integrable g.
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Exercise 18. Let {E;} C 3 be pairwise disjoint and F = Ej E;. Let f be mcasurable
i1
and p-integrable over each E;. Show that f is p-integrable over E if and only if

gémw<w

Show this last condition cannot be replaced by (io: Is fdp! < 00.
=1

Exercise 19. Suppose f : R — R is uniformly continuous on R and m-integrable
over R. Show f vanishes at 0o and is bounded. Can uniform continuity be replaced
by continuity?

Exercise 20. If f is bounded and measurable and g is p-integrable, show fg is
p-integrable.

Exercise 21. Let g be finite and f measurable. If fg is g-integrable for every pu-
integrable g, show there exists M > 0 such that |f| £ M p-a.e. [Such functions are
called p-essentially bounded.]

Exercise 22. Let f be non-negative and measurable and set
Ex={t:k<ft)<k+1}fork=0,1,... .
If f is p-integrable, show io: ku(Ex) < co. Show
k=0

S(k+ D(Er) < oo

k=0

implies that f is p-integrable.
Exercise 23. If f is p-integrable and Fi = {t : |f(¢)| > k}, show lim ku(F}) = 0.

Exercise 24. Show that £ C R™ has Lebesgue measure 0 if and only if there exists
a sequence of m-integrable functions {fi} such that

| fiel dm < o0
> he

and

imwbm

for every z € E.
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Exercise 25. Show the measurability assumption in Proposition 11 and Corollary
12 is important.

Exercise 26. Let f : S — R* have a p-integral (possibly infinite). Show v(E) =
Jg fdp defines a signed measure on }°. Give a Hahn Decomposition for v. Show

()= [ frdp, v (B) = [ fap

and

vI(B) = [ 1f]dp.

Exercise 27. Let fi be non-negative, p-integrable and suppose fi(t) | f(t) fort € S.
Show f =0 p-a.e. if and only if lim fg fady = 0.

Exercise 28. If u is a regular measure and f is non-negative and p-integrable, show
that v = [ fdu is a regular measure.

Exercise 29. Let fi; be non-negative and measurable. If fi — f pointwise and

fe < f, show
[ pedu— [ s

Exercise 30. Let f: [0,1] — R be Lebesgue integrable. Show ¢ — t¥ f(#) is Lebesgue
integrable for each k € N and [ t*f(t)dt — 0.

Exercise 31. Let v be a signed measure on 3~ with v = v+ — v~ its Jordan decom-
position. If f: S — R* is ¥_-measurable, say that f is v-integrable if and only if f is
both v* and v~ integrable and define

/fdu =/fdu+ —/fdu‘.

Show f is v-integrable if and only if f is |v|-integrable and in this case

|/fdu

Show |v|(E) = sup {|fg fdv| : |f| <1}

< [1A1d1.

Exercise 32. Let y be a finite measure and f; non-negative and u-integrable with
fi — 0 p-a.e. Show [y fedp — 0if and only if for every ¢ > 0 there exists § > 0 such
that p(E) < § implies [ frdu < ¢ for all k.
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Exercise 33. Show p is o-finite if and only if 3 a p-integrable function f witl
f{t)>0foralite§.

Exercise 34. If f(t) > 0forallt € E, u(E) > 0 and f is p-integrable over E, show
[ fdu > 0.

Exercise 35. Let f : R* — R* be Lebesgue integrable. If [ fdm = 0 for every
compact (open) K, show f =0 m-a.e.

Exercise 36. Find lim [j (—Hti)‘,,—dt.

Exercise 37. Let {fi} be measurable and fy — f p-a.e. Let gx, g be p-integrable,
gk — g p-a.e. and [ggedp — [ggdp. U |fi| < g p-a.e., show f is p-integrable and
s fedp — Js fdp.

Exercise 38. Let f : [a,b] — R* be Lebesgue integrable and [ fdm = 0 for every
a <z <b. Show f =0 m-a.e.
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3.3 The Riemann and Lebesgue Integrals

Let f : [a,b] = R be bounded. If 7 = {a = z0 < z1 < ... < 7, = b} is a partition
of [a,b], set & = [zi_1, 7], mi = inf{f(t) : t € &}, M; = sup{f(t) : t € &} and
p () = max {z; — z;1}. The upper (lower) sum of f with respect to 7 is

n

U(f,m) = M(zi — zi)

1=1

m;i(z; — z;_1)], and the upper (lower) integral of f is

s

I
—

[(L(f,m) =

—b

/uf =inf{U(f,n) : 7 is a partition of [a, b]}

[J5f = sup{(L(f,7) : = a partition of [a,b]}]. The function f is Riemann integrable

[over [a, b]] if Tﬁf =% f, and the Riemann integral of f is defined to be the common
value; in order to distinguish the Riemann integral from the Lebesgue integral, we
denote the Riemann integral by Rfab f-

We now show that any Riemann integrable function is Lebesgue integrable and
the two integrals agree in this case. Our proof also gives a necessary and sufficient
condition for a function to be Riemann integrable.

Theorem 1 Let f : [a,b] = R be bounded.

(1) If f is Riemann integrable over [a,b], then f is Lebesque integrable over [a, b] and
R =1 fdm.
(11) f is Riemann integrable over [a,b] if and only if f is continuous m-a.e. in [a,b].
Proof: Choose a sequence of partitions, {7;}, such that 7y C 7y C -+, p(me) — 0
and lim L(f, m) = _f_if, LmU(f, ) = Tﬁf [this can be done by choosing {P:} to
k
satisfy the last three conditions and then setting n, = U P;]. If 74 is given by
=1
{e=z0< 71 < ... <z = b}, let m; = inf{f(t): zim; <t < z;}, My = sup{f(t):
z;-1 <t < r,;} and define simple functions £, and u; by £, = i MiClai_y v)y Uk =
i=1
5> MiCls._, 2 on [2,b) and £u(b) = ue(b) = f(b) so [Cxdm = L(f,m), f* updm =
=1

l}(f, 7). Since mg41 D Tk, we have

Hz)<lh(z)<...<fla) < ... Suy(z) Swy(z) fora <z < b (3.1)
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Set £(z) = lim#(z), u(z) = limuk(z) and note u(x) > #(z). By the MCT,

LUMNAMAUMmz/U, annﬁmlnwm=7p. (3.2)

For the proof of (i), assume that f is Riemann integrable. From (2) we obtain
[Ptdm =R [L f = fPudm so fi(u — €)dm = 0 and since u > £, u = £ m-a.e. so from
(1), u = £ = f m-a.e. Hence, f is Lebesgue integrable and [° fdm = R [’ f.

For the proof of (ii), let C = G 7, so C is countable and m(C) = 0. If z ¢ C,

k=1

then f is continuous at z if and only if u(z) — £(z) = lim(uk(z) — £x(z)) = 0.

Hence, if f is continuous m-a.e., then from (1), v = £ = f m-a.e. and from (2)
[otdm =[5f = [Sudm = T.f so [ is Riemann integrable.

If, conversely, f is Riemann integrable, then from (2) [’ udm = [’ £dm so u = £
m-a.e. and f is continuous m-a.c.

This theorem now allows us to compute the Lebesgue integral for a large class
of functions, and we will freely use properties of the Riemann integral to calculate
Lebesgue integrals.

We can use Theorem 1 to establish the analogue of the BCT for the Riemann
integral.

Corollary 2 (Arzela) Let fi, f : [a,b] = R be Riemann integrable with f; — f
pointwise on [a,b]. If there exists M > 0 such that |fi(t)| < M for all k, t € [a,}],
then

lmeﬂ:R[ﬁ

Proof: Theorem 1 and the BCT.

Note that we must assume the Riemann integrability of the limit function f in
Corollary 2 [Exercise 1]. Our proof of Arzela’s Theorem, of course, depends on
measure theory and the Lebesgue integral; for an elementary proof not using such
machinery see [Lew].

Improper Riemann Integrals:

If f:[a,00) — R is Riemann integrable over [a,b] for each b > a, the improper
Riemann integral of f over [a,00) is defined to be

b =
ymR/f=R/ 1

provided the limit exists and is finite. {This integral is also called the Cauchy-Riemann
integral.] 1f R [7°|f| exists, it follows from Theorem 1 and the MCT and DCT that
f is Lebesgue integrable over [a,00) and [;° fdm = R [;° f. However, a function
can be Cauchy-Riemann integrable over [a,c0) and not be Lebesgue integrable. For
example, consider R [;° #22dz. Integrating by parts, gives

/b Sinzdz:cosl _ CO:b'f‘/b cosa:dz
1 1

T z?
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and since |cos z| /z? < 1/z%, R [{° #22dz exists. On the other hand,

/nﬂ'
s

so % is not Lebesgue integrable over [1,00). Similar remarks apply to improper
Riemann integrals for unbounded functions on bounded intervals.

n—

(k+1)r
dr = Z /
k=1 kx

sinzr sinz

d > (k+1)r d
z E(k+l / ]smz]:v_z(k_l_l

z

Defects in the Riemann Integral:

I. The first defect is the lack of good convergence theorems. For example, there
exists a uniformly bounded sequence of Riemann integrable functions which converge
pointwise to a function which is not Riemann integrable (Exercise 1.3.1).

IL. Closely related to the lack of strong convergence theorems is the incomplete-
ness of the space of Riemann integrable functions. Let R[a,b] be the vector space
of Riemann integrable functions on [a, ] and define a semi-metric d on R]a,b] by
d(f,gq) = f: |f — g]- Convergence in this semi-metric is called convergence in mcan
and will be studied for the Lebesgue integral in §3.5. We show that d is not complete;
in §3.5 we show that the analogous space for the Lebesgue integral is complete.

Let H C [0,1] be a 1/2-Cantor set. Let {I;} be the open intervals making up
[0,1]\ H and set

=

Jn: Iln SOH:C-I"'

k=1

Then each ¢, is Riemann integrable and ¢, — Cy< = ¢ pointwise. Since g, — | <
1, by the BCT

b
/ﬂ lon — ¢ldm =0

so {¢n} i1s Cauchy in R]a, b] with respect to d.

We show that {¢.} has no limit in (R[a,b],d). For if ¢, — f € Ra,b] with
respect to d, then f = ¢ m-a.e. For any o € [0,1] and € > 0, (to — €,20 + €)\H
contains an interval so (to — €, %o+ €) must contain points ¢ such that f(¢) = 1. llence,
Ef(t) =1 for every to € [0,1]. But f = ¢ m-a.e. and m(H)=1/2s0 f =0ona
set with positive measure. That is, f is discontinuous on a set with positive measure
and, therefore, is not Riemann integrable.

IIL. Finally, the Fundamental Theorem of Calculus (F7C) in its full generality fails
for the Riemann integral. The desired form of the FTC would be: if f: [a,8] — R is
differentiable everywhere in [a,b], then the derivative f’ is integrable and [’ f' =
f(6)—f(a). To obtain the FTC for the Riemann integral it is necessary to assume that
the derivative f' is Riemann integrable, i.e., the Riemann integral cannot integrate
arbitrary derivatives [the Lebesgue integral also suffers this same defect; Example
4.3.1].

It is easy to give examples of functions with unbounded derivatives [see, for exam-
ple, Example 4.3.1]; however, we give an example of a bounded derivative which is not
Riemann integrable. Let H C [0,1] be a 1/2-Cantor set. Let (a, ) be one of the open
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intervals making up [0, 1]\ H. Define f on (a, b) by setting f(¢) = (t—a)?sin(1/(t—a))
on (a,a) where a < (a + b)/2 is such that f'(a) = 0, letting f be the constant f(a)
on [a, (a + b)/2] and defining f on [(a + b)/2, b] by reflection in the line ¢ = (a + 5)/2.
[A sketch is helpful.] We extend f to [0,1] by setting f(t) = 0 for t € H. Then f’
exists everywhere in [0, 1]\ H and |f'(t)| < 1 for t € H".

We claim that f/(z) = 0 for z € H. Let € > 0 and suppose |z —t] <e. Ift € H,
then (f(¢t) — f(z))/(t —z) =0. If t ¢ H, then ¢ belongs to some open interval (a, b)
making up [0, 1]\ H. Suppose a is the endpoint nearest z. Then

(@) = F(2)/(t = 2)| = 1f(D)/(t = 2)| < |f(O)/(t = a)| S [t —al* /|t —a| <

Hence, f'(z) = 0.
Thus, f’ exists everywhere and is bounded. But, f’ is discontinuous on H and
m(H) =1/2 so f'is not Riemann integrable.

Exercise 1. Show the Riemann integrability of the limit function f cannot be
dropped in Corollary 2.

Exercise 2. Let K C [0,1] be the Cantor set. Is Cx Riemann integrable?
Exercise 3. Let 0 < ¢ < 1 and K, an e-Cantor set. Is Cx, Riemann integrable?

Exercise 4. Show the following functions are Lebesgue measurable and determine
whether they are Lebesgue integrable.

(a) fW)y=1/t,0<t<1,p>0,

(b) f(t) = (=1)*/k fort € [k —1,k) and f(t) = O otherwise,

(c) f(t) = (=1)%/2* for t € [k — 1,k) and f(t) = O otherwise,

(d) f) =1/tfor0 <t <1, ~1//t—1for 1 <t < 2 and f(t) = 0 otherwise,

(e) fW)=1/tP,1 <t < o0, p>0.

Exercise 5. Let A be all subsets of [a, ] such that C4 is Riemann integrable (Exer.
2.1.8). Define p on A by p(A) = f* C4. Show p is countably additive.
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3.4 Integrals Depending on a Parameter

Let (5,3, 1) be a measure space and I # 0. If £ : §x 1T — R*, we write f(-,t) [f(s,)]

for the function f(-,t)(s) = f(s,t) [f(s,-)(t) = f(s,8)]. If f(-,t) is p-integrable for

every t € I, we say that the integral F(¢) = [s f(s,t)du(s) depends on the parameter

t € I. In this section we study properties which the function F inherits from f.
First, we consider continuity.

Theorem 1 Let I be a metric space and f: S x I — R. Assume
(1) f(,t) is p-integrable for everyt € I.
(ii) f(s,-) is continuous at to € I for each s € S.

(1i1) There exzists a p-integrable function g : S — R such that |f(s,t)] < g(s) for all
s€S,tel Then F(t)= [s f(s,t)dp(s) is continvous at to.

Proof: Let {¢t} be a sequence from I converging to to. Then f(s,tx) — f(s,t0)
for every s € S by (i1). By (iii) |f(-,tx)] < g for every k so the DCT implies
F(tx) — F(to) and F' is continuous at tg.

As an example we consider the Gamma function.

Example 2 (Gamma Function) The Gamma function is defined by
[(z) = /OO " le~tdt
0

for x > 0. First, we observe that the integral exists. For 0 <t <1, t* !e™ < ¢*7! and
the function ¢ — t*~! is integrable over [0, 1] for £ > 0 (Exer. 3.3.4) so f; t*"te'dt
is finite. For ¢ > 1, t="le™! = [t**1e7]¢~? and the function { — {**'e~* is bounded
since lim 1*tle™ = 0 s0 [{° 1" e 'dt < oo (Exer. 3.3.4). Hence, f° 1= 'e™'di < 0.

Next, we show that I' is continuous for £ > 0. Let z¢ > 0. If 0 € ¢t € 1 and
To/2 < x, then t* < t*/? and e < 1 for t > 0. Therefore, t*~le™¢ < t(=o/2=1 50 by
Theorem 1, # — [} t*"'e~dt is continuous at . For t > 1 and z0/2 < z < 2z,
there is a B such that #*~'e™* < Bt~? so by Theorem 1

00
x_»/ ¥ le7tdt
1

is continuous at zp. Hence, T is continuous at zo.
Next, we consider differentiability.

Theorem 3 (Leibniz) Let I be an interval in R and f: S x I — R. Assume
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(1) f(-,t) is p-integradle for everyt € I.
(11) 8L(s,t) exists for every s € S, t € 1.

(iii) There ezists a p-integrable function g: S — R such that

&

Frt t)l g(s) forse S, tel.

IfF(t) = fs f(s,t)du(s), then F is differentiable on I with F'(t) = [q %(s, t)du(s).
Proof: Fixt € I and let ty — t, tx € I, tx #t. Then for each s € S,

f(s,t6) = f(s,8) _ 8f g f6t) = F(,1)

lim = 5 ——(s,t) an b1

k th —t

is p-integrable for each k. By the Mean Value Theorem, for each s, k there is a z,x
between t; and t such that

fs,tx) — f(s,8) _ Of

e —1t = i (81 %ak) S0

for every s € S by (iii). Hence, the DCT implies

i [ 20 060 = [ 96, aue) = P

t

As an example of how Theorems 1 and 3 can be used, we evaluate the integral

e dz.

Example 4 (Euler) Since 0 < ¢ < e¢® for z > 1, € is Lebesgue integrable
over [0,00). For t > 0, set f(t) = (J{ e *"dz)? and g(t) = [l e ?E@ N /(22 4 1)dz.
From standard results on Riemann integration, f is differentiable on [0, co) with

t 2
f'(t) = 2e—t2/ e dz.

0

Since

9
— <
‘at <B

fort > 0,0 < £ <1, Theorem 2 implies that g is differentiable on [0, c0) with

(e—n(zz+1)/(zz + 1))‘ — ,_2(t6_t2)e_t2zz

1
gt) = —2te_‘2/ P2 g,

0

Setting u = tz for ¢t > 0 in this last integral gives

¢
g'(t) = —26_t2-/ e ¥ du.
0
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Hence, f'(t) + ¢'(t) = 0 for ¢ > 0 and f(t) + ¢g(t) = cfor ¢ > 0. Now f is continuous
on [0,00) and since 'e“z(zz“)/(z2 + l)l <1/(z*4+1)fort >0,0 <z <1, gis also
continuous on [0, c0) by Theorem 1. Also, by the DCT,

1
lim e_tz(:i“)/(z2 +1)dz = 0.

t—oo Jo

Thus, f + ¢ = c on [0,00) and

£0) +9(0) = [ risede = /4
= m(J(1) + g(1) = (57 e da)?

so [ e dr = \/7/2.

Exercise 1. For £ > 0 show I'(z + 1) = zI'(z). 1f z is a positive integer show

I'(z + 1) = z!. Show I'(1/2) = /7.

Exercise 2. Show F(z) = [* 3% dt is continuous for z € R.

Exercise 3. Show [ z¥e "dz = (2n)/7/(22*n!2). 1lint: For n = 0 this is
Example 4.

Exercise 4. Show [ e™#"dz = /(7 /t)/2 for t > 0.
Exercise 5. Show the function Fi(z) = [° e /(1 + t)dt is differentiable for z > 0.
Exercise 6. Show the Gamma function is differentiable.

Exercise 7. Let F(t) = [;° e~224z for t > 0. Show F(t) = 7 — arctan ¢. Hint:

F'(t) = —1/(1 + t?) so F(t) = ¢ — arctan t. Evaluate ¢ by considering {#(n)}.

Exercise 8. Evaluate F(z) = f; (t*—1)/Intdt for z > 0. Hint: Find F'(z) and note
F(z) > 0asz — 0.
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3.5 Convergence in Mean

In this section we consider the approximation of integrable functions with respect to
a natural semi-metric induced by the integral.

Let (8,3, 1) be a measure space. We denote by L'(u) the space of all functions
f: S — R which are y-integrable. By 3.2.13 L' (1) is a vector space (under the usual
operations of pointwise addition and scalar multiplication). We define a semi-metric
dy on L (p) by di (f.9) = [¢|f — gldu; note dy (f,g) = 0 if and only if f = g p-a.e.
For convenience we set || f||, = fs|f] dy; then &y (f,g) = ||f —gll,- | ; is called
the L'-norm of f; we consider niore general such norms in §6.1. Convergence in this

semi-metric is called p-mean convergence or convergence in p-mean.

We often write fr — f p-mean when || fi — f||, — 0. If I is an interval in R®, we
denote by L1(7) the space of real-valued integrable functions on 7 when / is equipped
with the Lebesgue measure.

We compare mean convergence with other modes of convergence in §3.7.

One of the most important propertics of L'{i) is its completeness with respect to

the metric of mean convergence.
Theorem 1 (Riesz-Fischer) L}(u) is complele.

Proof: Let {fi} be Cauchy in L'(p). Then there exists an increasing sequence
{n} such that || fo, ., — fu, L < 1/2%. Since

Jonir = F

dy < oo,

the series

fnk+1 - fnk

Ll + 2
k=1

converges p-a.e. to a real-valued function which belongs to L'(u) (Exer. 3.2.2).
Therefore, the scries

fot Z<-fnk+l —fnk) = “mfnk =/f
k=1

converges p-a.e. But {f,, } also converges in mean to f since given any ¢ > 0,
fs ’fnk - fn]
fs|foe — fldy < € for large k. This means that f € L'(y) and f,, — f p-mean.
Hence, fi — f p-mean.

dp < € for large k, j, and by Fatou’s Lemma, letting j — oo gives
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The analogue of Theorem 1 for the Riemann integral is false (§3.3), and its failure
i1s perhaps the most important reason for the overwhelming use of the Lebesgue
integral.

We now consider some dense subspaces of L'(x):

Dense Subsets of L'(p):

Theorem 2 The vector space of 3_-simple u-integrable functions, S(3°), is dense in
LY(y) (with respect to d). Moreover, given f € L'(u) there exists a sequence of
simple functions {@s} in L (p) such that py — f pointwise and ||px — f|l, — 0; if
f 20, the {pr} can be chosen such that oy T f.

Proof: If f € L'(u), pick a sequence of 3 -simple functions {¢,} such that
¢, — f pointwise with |p,| < |f] (3.1.1.3). The DCT implies di(pn, f) — 0. The
last statement follows from 3.1.1.2.

For the next result assume that g is a premeasure on a semi-ring S of subsets of
S and that 3~ is the o-algebra of g*-measurable subsets of S (§2.4). Let g denote the
restriction of y* to ..

Theorem 3 The vector space of S-simple y-integrable functions is dense in L'(p).

Proof: From Theorem 2 it suffices to show that for each £ € 3° with p(F) < oo
and each € > 0 there is an S-simple function ¢ such that ||Cg — ¢|, < €. Pick

{A;} C S pairwise disjoint such that {J A; > E and 53 u(A4;) < p(E) +¢/2 (2.4.11).
1 1=1

i=

Set B = fj A; and note pu(B) < oo and § C4, = Cpg. Choose N such that
U =

1=1
N oo
0< [(Co—YCu)du= Y u(a;)<ef2.
s =1 j=N+1

Then
N

Cg — El Ca,
=

IA

Is|Ce — Cpldp + [s

= S uA) - uB) /2 <

N
Cg — El CA, dy
j=

1

We next consider the approximation of integrable functions by continuous func-
tions. A topological space S is locally compact if every point in S has a neighborhood
with compact closure. For example, R" is locally compact. For locally compact
Hausdorff spaces, we have the important lemma of Urysohn.

Lemma 4 (Urysohn) Let S be a locally compact Hausdorff space, K C S compact
and V open with K C V. Then there exists a continuous function f : S — [0,1] such
that f(¢)=1 fort € K and f(t) =0 fort ¢ V.
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See [Si] §28 for the proof in a general topological space. For metric spaces (such
as R™), one can use the function f(¢) = dist(¢, V°)/(dist(¢, K) + dist(¢, V©)).

We need a slight refinement of Urysohn’s Lemma. If f : § — R is a continuous
function, the support of f, denoted by spt(f), is the closure of the set

{teS: f(t) #0}.

The space of continuous functions on S with compact support is denoted by C.(S).

Lemma 5 Let S be locally compact, Hausdorff. If K is compact and V is open with
K C V, then there ezists f € C.(S) such that f: S — [0,1], f(t)=1 fort € K and
f(t)y=0 fort e Ve.

Proof: If S = K, trivial so assume z € S\K. For each y € K there is an open
neighborhood N, C V of y with compact closure and an open neighborhood U, of
such that N, N U, = 0. Then {N, : y € K} is an open cover of K and, therefore,
has a finite subcover, Ny,...,N; with VO U = LJJ N; D K and since N; is compact,
. i=1
U > K is compact. By Lemma 4 there is a continuous function f : § — [0,1] such
that f(t) =1 for t € K and f(t) = 0 for ¢ € U°. Since spt(f) C U, f € C.(5).

Theorem 6 Let S be locally compact Hausdorff and let ¢ be a Borel measure on B(S)
such that every Borel set is inner regular. Then C.(S) is dense in L'(u).

Proof: By Theorem 2 it suffices to show that Cg for B € B(S) and p(B) < o
can be approximated by a function in C.(S). Let € > 0. Since B and B¢ are inner
regular, there exist Ky C B compact with u(B\K;) < ¢/2 and K, C B° compact with
#(B°\K;) < €¢/2. By Lemma 4 there is a function f € C.(S) such that 0 < f(¢) <1
forte S, f(t)=1for t € K; and f(t) =0 for ¢t € K;. Then

V= Coldu= [ 1f = Coldut [ 1f = Coldu < w(B\KL)+ w(B\K:) < e

Note that this theorem is applicable to Lebesgue and Lebesgue-Stieltjes measures
(Exer. 2.5.10 and 2.6.5). See also Proposition 2.7.2.

Exercise 1. Show L' is not, in general, closed under pointwise products. [Hint:
Consider ¢* for 0 < ¢t < 1.]

Exercise 2. Show the polynomials are dense in L![a, b]. Generalize to R™.
Exercise 3. Show L'[a, b] is separable. Generalize to R™.

Exercise 4. Give an example of a non-regular measure for which C,(.S) is not dense
in L'(y). [Hint: Use R with Lebesgue measure and the discrete metric.]
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Exercise 5. What is the completion of Rla, b]?

Exercise 6. Let u be a finite measure on the g-algebra 3°. Define a semi-metric d
on Y by
d(4,B) = u(AAB) = [ |Ca = Caldp.

Show d is a complete semi-metric.



3.6. CONVERGENCE IN MEASURE 107

3.6 Convergence in Measure

We consider another type of convergence with respect to a measure. Let (5,37, u)
be a measure space and fi, f : S — R ) -measurable functions. We say that {f}
converges to f in u-measure, fr — f p-measure, if for every ¢ > 0,

limp{t : |fe(t) = f(H)] 2 0} = 0.

We compare the various modes of convergence in §3.7. We now develop some of
the properties of convergence in g-measure.

Proposition 1 Let fi, f, 9x, 9: S — R be Y -measurable.

(1) If fv — f p-measure and gx — g p-measure, then afy +bgr — af +bg p-measure
fora, beR.

(ii) If fi — 0 p-measure and gy — 0 p-measure, then frge — 0 p-measure.
(iii) If p(S) < oo and fx — f p-measure, then frg — fg p-measure.

(iv) If u(S) < oo, fi — f p-measure and gx — g p-measure, then frgx — fg
J-Tneasure.

(v) If fx — f p-measure and fx — g p-measure, then f = g p-a.e.
Proof: (i): For ¢ > 0,

wft s [ fe(t) +gx(t) — f() —g()| 2 0} < wu{t:|fu(t) - f(t)] > 0/2}
+ u{t:|ge(t) —g(t)| > 0/2}

implies that fi + gx — f + ¢ p-measure. That afy — af p-measure is clear.
(i1) follows from

{t: 1fe(t)gu(t)] 2 0} C {t: |fu(t)] 2 Vo} ULt |g(t)] 2 Vo).
(iii): Since p(S) < oo, li{n pit: |g(t)] > k} =0 (2.2.4). Let € > 0. There exists N
such that p{t: |¢(¢)] > N} < €¢/2. Now
WUt 109t) = SO0 > o) < wlt: F4(0) — SO1 2 0[N} + it g(0)] 2 )

so if ko is chosen such that k > ko implies u{t : |fi(t) — f (t)] > 0/N} < ¢/2, we have
for k > ko that u{t : [fe(t)g(t) — f(t)g(t)| > 0} < e
(iv) follows from (i), (ii), (iii) and the fact that

frge — fa=(fu = gk — 9) + f(gx — g) + 9(f& — ).
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(v): Since
{t: f(1) }_U{t t) —g(t)l 2 1/k},

it suffices to show that u{t: |f(t )—g( )| >0} =0for ¢ > 0. But

{t:1f(t) =g 2 o} C{t: fult) = ()] Z 0/2} U {L: [fi(t) = g(8)] = 0/2}.

Example 2 The finiteness condition in (iii) and (iv) cannot be dropped. Let S =R
and consider Lebesgue measure. Let fi(t) = 1/k and g(t) =t for t € R. Then f — 0
in m-measure but for ¢ > 0, m{t : |fi(t)g(t)] > 0} =

Concerning convergence in measure and convergence a.e., we have an important
result of F. Riesz.

Theorem 3 (F. Riesz) Let f, — f u-measure. Then there is a subscquence {f,, )
such that f,, — f p-a.e.

Proof: For cach k there exists nj such that j > ng implies
st 16 = fO1 2 125} <1728

Set
Bu= {t: 1fu(t) = F0)] > 124},

Ift¢ G Ey, then | £, (¢) — f(t)] < 1/2* for k > j. Thus, if
k=3

L ¢ ﬂ Uhk—llmEk:E',
1=1k=y
then f,, (1) — f(1), i.e., fu, — f pointwise on S\ E.

But
WE) <Y p(Be) <3 1/2F =172
k=3

k=;

for every j so u(E) = 0.

The assertion that there is a subsequence which converges a.e. in Theorem 3
is important - the entire sequence may not converge a.e. as the following cxample
shows.

Example 4 Let S =[0,1] and A} = [(k —1)/2",k/2"] for k=1,...,2" and n € N.

Consider the sequence CA;, CAé, CA§7 ... [see the sketch below].
4 A}
] | | |

0o Al Al A} Al 1
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This sequence converges to 0 in m-measure since m{t : Cyn(t) > o} < m(A}7) = 1/2™.
However, this sequence doesn’t converge to 0 at any point since it is 1 infinitely often
at any point. [See Exercise 4.]

We can formulate a Cauchy-type condition for convergence in g-measure. The
sequence { fi} is said to be Cauchy in p-measure if and only if for every ¢ > 0 and
€ > 0 there exists N such that &k, j > N implies

plt: /() — fi(t) 2 0} <e

We now establish a completeness type result for convergence in y-measure which is
also due to F. Riesz.

Lemma 5 If {fi} is Cauchy in y-measure and has a subsequence { f,,} which con-
verges in p-measure to a measurable function f, then fi — f p-measure.

Proof: Let o, € > 0. There exists N such that k, j > N implies
p{t = 1 fi(t) — ()] 2 o/2} < ¢/2.
Choose nx > N such that
plt 1 fan(t) = f(O)] 2 0/2} <€/2.
Then for j > N,
6@ = FOl =20} < p{t:|f(8) = fau(t)] 2 0/2}
+ op{tofa () = f()] 2 0/2} <€

Theorem 6 (F. Riesz) Let {f;} be Cauchy in p-measure. Then there exists a mea-
surable function f such that fi — f p-measure.

Proof: For each k& there exists ny such that ¢, 7 > n; implies
p{t: 1fi(t) = (0] 2 1/2°) < 1/2*.
We may assume n; < ng4;. Let

B = {t: fanr (1) — fur(8)] 2 1/2¥}

so w(Ey) < 1/25. It Fy = U E;, then p(Fy) < 32 1/% =1/2 ' soif A= () Fy =
j=k 1=k =k
hmEy, then p(A) = 0.
We claim that {f,,} converges pointwise on S\A. If t € S\ A, then t ¢ |J E; for
=k
some k soif ¢, 7 > k with i > j,

i-j—1 i—j—1

fn.(t) - f"](t)' < Z fnJ+z+1(t) - fﬂ,+z(t)| < Z 1/2j+£ < 1/2j_17 (3'1)
£=0

£=0
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and {fn,(t)} converges.

Now set f(t) = lim f,,, () ift € S\A and f(¢t) = 0for ¢t € A. Then f is measurable
since f = CS\AEBfM.

Finally, we claim that f,, — f p-measure. Let o, ¢ > 0. Choose N such that
p(Fy) < 1/2V7! < min(a,¢€). If j > N, then

{t: |fa, () = F®O| 2 0} C {t: £, (0) = F(8)] > 1/2¥"} € Fy

sinceif t ¢ Fy and j > N, passing to the limit in (1) as 7 — oo gives ‘f(t) — f,,}(t)‘ <

1/2V=1, Thus, if j > N, p{t : |1, (t) = £(1)] 2 0} < p(Fn) <.
Lemma 5 now gives the result.

Metric of Convergence in Measure:

We now describe a semi-metric which characterizes convergence in measure for
finite measures. Assume henceforth that g is a finite measure. We first require a
lemma.

a+b a b
Lemma 7 Ifa, b€ R, J—LHIM' < 1J+J|—| + ﬁh

Proof: Note the function h(t) = ¢/(1 +1t) is increasing for ¢ > —1. First, if a and
b have the same signs, we may assume that a, b > 0 so

la + 8] /(1+]a+ b]) = (a+b)/(1+a+b) < a/(1+a)+b/(1+b) = |a| /(1+]a[)+[b] /(1+]8])-

On the other hand, if @ and b have different signs, we may assume that |a| > |b|.
Then |a + b| < |a| implies

la+8[ /(1 +[a+8]) < laf /(1 +a]) < |al /(1 + [a]) +[b] /(1 + [b])-

Definition 8 Let L%(p) be the vector space of all real valued measurable functions on
S. For f, g € L°(p), set

|f— gl
d(f,g)=/sm

[note the integral exists since p is finite and the integrand is bounded].

By Lemma 7, d defines a semi-metric on L%(x) which is translation invariant in
the sense that d(f,g) = d(f + h,g+ ) for any A € L°(y) and is such that d(f,0) = 0
if and only if f =0 p-a.e.

We show that convergence in the semi-metric d is exactly convergence in u-
measure.

Theorem 9 Let fi, f € L°(p).

(i) fe — f in p-measure & d(fi, f) — 0.
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(i1) {f&} is Cauchy in pu-measure & {fi} is Cauchy with respect to d.
Proof: (i): Let € > 0 and set Ek ={t:|fe(t) — f(#)] = €}. Then

d(fi, ) = I ittde+ s, il dn

(3.2)
< u(Ei) + en(S\Ex) < p(Ek) + eu(S).
Thus, if fy — f p-measure, (2) implies that d(f, f} — 0.
Since h(t) =t/(1 +t) is increasing for ¢ > —1,
| fx — f] €
dWhaf)z [ itz Tum) (33)

Thus, if d(fi, f}) — 0, (3) implies that fi — f u-measure.
(ii) follows from the inequalities (2) and (3) with f replaced by f;.

Corollary 10 d is a complete semi-metric on L°(u).

Proof: Theorems 6 and 9.

If T is a bounded interval in R", we denote by L°(I) the space of all Lebesgue
measurable functions on I, and we assume that the semi-metric on L°(]) is the semi-
metric of convergence in Lebesgue measure.

There is a semi-metric which characterizes convergence in measure for infinite
measures, but it is much more complicated than the semi-metric d; see [DS] II1.2 for

a description.

Exercise 1. If y is counting measure on S, show convergence in g-measure is exactly
uniform convergence on S.

Exercise 2. Show that if f — f p-measure and f = g p-a.e., then fi — g p-
measure.

Exercise 3. If fi — f p-measure, show {f;} is Cauchy in pg-measure.
Exercise 4. Find a subsequence in Example 4 which converges m-a.e. to 0.

Exercise 5. Can the condition “x(S) < oo” in Proposition 1 (iii} be replaced by “g
is bounded”?

Exercise 6. Let f : § — R be measurable. Show f is g-integrable if and only if
there exists a sequence of u-integrable simple functions {¢x} such that

(i) wr — f p-measure and

(i) Lm fslpr — sl dp = 0.
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3.7 Comparison of Modes of Convergence

In this section we pause to compare the various modes of convergence which have
been introduced. Let (5,3, u) be a measure space. We have considered the following
types of convergence for sequences of measurable functions defined on 5.

unif: uniform convergence on S.

a. unif: almost uniform convergence with respcct to g (Definition 3.1.16).
a.e.: almost everywhere convergence with respect to g (3.1.13).

mean: convergence in g-mean (§3.5).

meas:  convergence in u-measure (§3.6).

We have the obvious implication that unif = a. unif and from Excrcise 3.1.13 we
have a. unif = a.e. It is also clear that a. unif = meas (Lxer. 1). There is one other
general implication which we now establish.

Proposition 1 If fy — f p-mean, then fi — f p-measure.

Proof: Let 0 > 0 and Er = {t: |f«(t) — f(¢)] > o}. Then

J Ve~ fldu > [ 1= fldp > ou(t) so () - 0.
Ex

We now give examples to show that these are the only possible general implications
which are valid. [Recall from Egoroff’s Theorem a.c. = a. unif for finitc measures.]

2. a.e. # a. unifi Take fx = Cl ) in R with Lebesgue mcasure.

3. a. unif # unif: Take fi(t) = t*, 0 <t < 1, and Lebesgue measure.
4. meas ? a.e.: Example 3.6.4.

5. meas # a. unif: Example 3.6.4.

6. meas % mean: Take fi = kCjg 14 on [0,1] with Lebesgue measure.
7. a.e. 7 mean: Same as 6.

8. mean # a.e.: Example 3.6.4.

9. a.e. 7 meas: Same as 2.

10. a. unif # mean: Same as 6.

11. unif # mean: Take fi = Cjg/k on R with Lebesgue measure.
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12. mean # a. unif: Example 3.6.4.

We can summarize the relationships above by means of the chart:

unif

o ){ -

meas

If 4 is a finite measure, then by Egoroff’s Theorem we have that a.e. = a. unif
(so also a.e. => meas), and by Exercise 3.2.5, we also have unif = mean. In this case,
we have the chart:

unif

/L(S) < 00 mean.\ / . a. unif

meas

It is also possible to consider the case where a sequence of measurable function
{/x} is dominated by a p-integrable function g, i.e., |fi| < g p-a.e. In this case it
follows from the DCT that a.e. = mean and, similarly, meas = mean (Exercise 2).
We refer the reader to Munroe ([Mu] p. 237) for a complete discussion.

Exercise 1. Show that a. unif = meas.

Exercise 2. Show that the DCT is valid if convergence p-a.e. is replaced by conver-
gence in p-measure. [Hint: Theorem 3.6.3.]

Exercise 3. Show L[, b] is separable.
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Exercise 4. Show a Y -measurable function f is p-integrable if and only if 3 a
sequence of p-integrable Y -simple functions {¢,} such that ¢, — f y-measure and
{¢.} is Cauchy in L'(x). Moreover, [g fdu = lim fg . dp.
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3.8 Mikusinski’s Characterization of the Lebesgue
Integral

In this section we give an interesting characterization of the Lebesgue integral due to
J. Mikusinski. The characterization is used later in the proof of Fubini’s Theorem.

Let S be a semi-ring of subsets of S and let u be a premeasure on S. Let y also
denote the countably additive extension of 4 to the o-algebra, M, of u*-measurable
subsets of S (§2.4).

For Mikusinski’s description of the Lebesgue integral, we require two lemmas.
Lemma 1l Let E € M be p-null and ¢ > 0. There exists {Jy} C S such that
f w(Jx) < e and 3 Cy(t) = oo for t € E [so t belongs to infinitely many Ji for
k=1 k=1
te EJ].

Proof: For each ¢, there is a sequence {I;; : j € N} C S covering F such that
f u(I;;) < ¢/2* (Definition 2.4.1). Now arrange the double sequence {I;; : 7,j € N}
=

into a sequence {Ji}. If t € E, t belongs to infinitely many {Ji} so {Cy(¢)} is 1
infinitely often and
2ou(J) =323 uly) <e.
k=1 i=1j=1
We say that a series 3 a; is absolutely convergent to z if the series is absolutely

convergent and Y ax = .
k=1

Lemma 2 If f : § — R* is u-integrable, there is a sequence of S-stmple functions
{ax}such that the series 3 oy is absolutely convergent to f y-a.e. and
3

Z_/g|ak|d# < oo.
k=1

Proof: By Theorem 3.5.3 there exists a sequence of S-simple functions {¢} such
that [|¢x — f|l, = 0. Then ¢y — f p-measure (Proposition 3.7.1) so by Theorem
3.6.3 there is a subsequence, which we continue to denote by {go;,} which converges
p-a.e. to f. We may additionally assume that {[pre1 — k]|, < 1/2 Set o = 0 and

k—cpk—cpklfork>1ThenEak pn — [ p-ae. orEmc f p-a.e. Since

E Js lax| dp < oo, the MCT implies that E |k | converges in R p-a.e. so the series
k=1 k=1

3 oy is absolutely convergent to f p-a.e.

Theorem 3 f: S5 — R is y-integrable & there is a sequence of S-simple functions
{¥x} satisfying
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(1) 32 fs il dp < o0

(2) f(t)= § () for any t for which ki; [ih(t)] < oo.

-

In this case,

/fdﬂ = Z/ Prdyt.
Js s

Proof: <: The MCT implies that 3 [sh] is p-integrable so the series ¥ {oby ]
converges g-a.c. in R. By hypothesis, f(¢t) = Y () for such points. Since |f] <
k=1

Y |k| grace, the DCT implies that [ is p-integrable and [g fdy = io: s rdyp.
k=1
= Let {ax} be as in Lemimna 2 and let £ be a p-null set where i | (1)} < oo
k=1

and f(t) = io: ag(l) for t & Iy, Let «Ji} be as in Lemma I (with respect to F) and
k=1

set By = Cy,. Define a scquence of S-simple functions, {¢x}, by:
oy, B */3’17 ¥y, /”2, */”27 cee ["/’3k—2 = g, thapoy = P, Pag = ‘/’H .
If 1 € E, theseries Y |4 (1)] diverges since gi(/) = 1 infinitely olten. If % lx ()] <
k=1

O
oo, then AZ:1 Br{l) < oo [Lhe series actually only has a [inite number of non-zero terms]

sot ¢ FE and io: vi(l) = i ag(l) = f(1). Moreover,
k=1

=1

)y / [l dp < Z/‘\ak\d,wrzz / Bl dpe < 0o
k:l's k=1 S k:l'5

by Lenimas | and 2.

Note, in particular, that if conditions (1) and (2) are satisfied, the funetion f is
measurable and the series Y 4 converges to [ p-a.e.

One of the important features of Mikusinski’s characterization of the mtegral is
that null sets are not meutioned. We use this to good advantage in our proof of
Fubini’s Theorem given in §3.9.

The characterization of the integral in Theorem 3 was given for the Lebesgue inte-
gral in R by MacNeille ([Mac]) and for the Lebesguc integral in R™ by J. Mikusinski
(IM1]). In R™ the characterization has an cven simpler {orm; the S-simple func-
tions in Theorem 3 can be replaced by scalar multiptes of characteristic functions of
half-closed intervals. In this case the value of the integral only depends on the value
of the measure of such half-closed intervals so a definition of the Lebesgue integral
can be based on the characterization which does not require the {ult development of
properties of Lebesgue measure. Such a development of the integral is carried out in
[M2] and [DM].
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Exercise 1. Assume u is complete. Show that if {¢} is a sequence of u-integrable
functions satisfying (1) and (2), then f is measurable, y-integrable and

[ fdu= g [ bedn
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3.9 Product Measures and Fubini’s Theorem

Let (5,8, ) and (T,7,v) be measure spaces. f A C S, B C T, a set of the form
A x B is called a rectangle in S x T and A and B are called its sides. If A € S,
B €T, Ax Biscalled a measurable rectangle. Let R be the family of all measurable
rectangles in S x T'. Since

(AxB)N(CxD)=(ANC)x (BN D)

and
SxT\Ax B=(A°x BYU (A x B°) U (A° x B°),
R is a semi-algebra of subsets of S x T'.
We define the product of i and v, denoted by px v, on R by setting uxv(Ax ) =
p(A)r(B) [here 0 - co = 0 as usual|.

Theorem 1 p X v is a premeasure on R.

Proof: Let {A; x B;} C R be pairwise disjoint with A x i = U A, x B; € R.
i=1
Then -
Caxp(s,t) = Caxn,(s,1)
=1

for s € S, t € T. Fix s and intcgrate with respect to v to obtain from the MCT that
Ca(s)v(B) =>_ Ca,(s)v(B:)-
=1

Now integrate with respect to p and apply the MCT to obtain

p(Ay(B) =3 p(Av(B)
i=1
as desired.

The premeasure i X v can now be extended to a complete measure on the o-algebra
of (1 x v)*-measurable subscts of S x T' (§2.4). We denote this measure by p X v and
call it the product of u and v [see, however, Example 2 below]. We refer to the clements
of the g-algebra of (4 x v)*-measurable sets as g x v-measurable sets and functions
which are measurable with respect to this o-algebra as being g X v-measurable. Note
that if both 4 and v are finite (o-finite), then g x v is finite (o-finite). Thus, if p and
v are o-finite, u X v is the unique measure on the smallest o-algebra containing R,
denoted by (8 x T'), which satisfies 4 x v(A x B) = u(A)v(B) [Theorem 2.4.12].

If m is Lebesgue measure on R, then m x m is a complete mcasure on a o-algebra
in R? which contains all of the measurable rectangles and, hence, contains all of the
open (Borel) sets in R%. Thus, m x m and m; agree on B(R?) and, hence, must be
identical (Theorem 2.4.21 and Corollary 2.5.4 (vi)).
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Example 2 (Bartle) In general the product measure may not be the only countably
additive extension of g X v to the o-algebra generated by R.

Let u : P(R) - R* be defined by p(A) = oo if A is uncountable and p(A) = 0
otherwise. Let Y be the o-algebra generated by P(R) x P(R). Let Pr (Ps) be the
projection of R x R onto the first (second) coordinate; Ps(s,t) = s (Pr(s,t) = ¢).

Define w on 3_ by n(E) = 0if I/ = G U H, where Ps(() and Pr(H) are count-
able, and n(F) = oo otherwise. Then 7 is a measure on 3 such that 7#(A x B) =
p(A)u(B) = p x p(A x B).

Define p on 3- by p(E) = 0if £ = G U H U K, where Ps(G), Pr(H) and the
projection of K onto the diagonal {(z,z) : « € R} are countable, and p(F) = oo
otherwise. Then p is a measure on )~ such that p(A x B) = p(A)u(B).

If £={(s,y): z+y=0}, then F €3 but p(£) = 0 while 7(F) = oo.

Many other pathologies can occur for product measures; see, for example, [Ga] or
[DG].

We now consider the evaluation of integrals with respect to a product measure. As
is the case with the Riemann integral, the most efficient way to evaluate an integral
with respect to a product measure is as an iterated integral. A resnlt which asserts
the equality of an integral with respect to a product measure and an iterated integral
is often referred to as a Ifubini theorem. For example, if f: 5 x T — R is R-simple
and p x v integrable, it follows from the definition of the product measure that

/S>< fdllxl/_//fsid/z s)dv(t //fstdz/ (t)dp(s),

i.c., Fubini’s Theorcin Lolds for such functions. We now use Mikusinski’s charac-
terization of the Lebesgue integral to extend I'ubini’s Theorem to g x v-integrable
funetions.

Henceforth, we assume that the measures g and v are both complete.

ff:5%xT - R" fors €5 (teT)we denote by f(s,-) (f(-,t)) the function
f(s,-) 7" — R* (f(-,t) : § — R*) defined by f(s,-)(t) = f(s,1) (f(-,¢)(s) = f(s,1)).
We follow the usual procedure in Fubini’s Theorem of agreeing that if a function ¢
() 1s defined p-a.e. in S (v-a.c. in T'), then ¢ (1)) is extended to all of S(1I') by
setting it equal to 0 on the p-null (v-null) set where it is undefined. Thus, if {¢;}
is a sequence of S-measurable functions which converge pointwise g-a.e. in S, we
may assume that there is an §-measurable function ¢ defined on .S such that pg — ¢
p-a.e. [the completeness of u is used here]. This situation is encountered several times
in the proof of Tubini’s Theorem.

Theorem 3 Let f: S xT — R be u x v-integrable. Then

(1) f(s,) is v-integrable for p almost all s € S,

(i) s - f7 f(s,-)dv is p-integrable, and

(i) for fdp x v = fs Jr (s, )dvdp(s) = [s fp f(s,0)dv()dp(s).
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Proof: By Theorem 3.8.3, there is a sequence {1x} of § x T-simple functions
such that 3 fo.7 |¥k|dp x v < 00 and f(s,t) = 35 9k(s,t) for all (s,t) for which
k=1 k=1

the series 3 |k(s, t)| converges and
k=1

fduxuzg:‘l/SXT1l)kdu><V. (3.1)

5xT

By the MCT

g/m [l dp x v = g/s/T [e(s, )| dv(t)dp(s) (3.2)

-/ g /T [ (s, 1) dv(t)du(s) < oo

so there is a p-null set £ such that § Jr 1¥k(s, )| dv(t) < oo for s ¢ E. For s ¢ E,
k=1
the MCT implies that

g/T'Ih(s,t)'du(t) = Aglwk(s,t)'dy(t)

S0 § ¥i(s,t) is absolutely convergent in R for v-almost all ¢ € T. [The v-null set
k=1
may depend on s.] For such s, ¢, f(s,t) = f Ye(s,t); in particular, for s ¢ E,
k=1

f(s,) = ki; ¥i(s,-) v-a.e., and since

S wals, )| < 30 als, .
k=1 k=1

the DCT implies that f(s,-) is v-integrable and f; f(s, )dv = § Jr¥i(s, )dv. Fur-
k=1
ther, for s ¢ E,

S Jountosdv] < 3 [ sl

and the function on the right liand side of this inequality is p-integrable by (2) so the
DCT implies that s — [; f(s,-)dv is p-integrable with

L/ f(s,-)dudu(s)=:°§ [ s, 0dvduts) = [ g x v

by (1).

The main difficulty in applying Fubini’s Theorem is verifying the g x v-integrability
of the function f. A result which is often used for this is a result called Tonelli’s
Theorem.
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Theorem 4 Let y, v be o-finite and f : S x T — R* non-negative and p x v-
measurable. Then

(i) f(s,-) 1s T -measurable for p-almost all s € S
(i1) s = f; f(s,8)dv(t) is S-measurable
(1) foyg fdp x v = [s [y f(s,t)dv(t)dp(s) [the integrals might be oo
[Of course, there is an analogous statement with the variables s and ¢ reversed.]

Proof: Since p and v are o-finite, g x v is o-finite so there exists an increasing
sequence of p X v-measurable sets {E;} such that E; TS x T and g x v(E;) < co. Set
f. = (fA1)CEg,. Then each f; is p x v-integrable. By Theorem 3, fi(s,-) is v-integrable
for p-almost all s € S and since f,(s,-) T f(s,-) on T, f(s,-) is 7-measurable for -
almost all s € S and by the MCT,

/T i, Odu(t) T /T (s, t)du(t) for p-almost all s € S. (3.3)

By Theorem 3, the function s — [ fi(s,¢)dv(t) is S-measurable so by (3)
s — fr f(s,t)dy(t) is S-mcasurable and the MCT applied to (3) implics that

/S/Tfi(s, 1)dv(t)dp(s) 1 /S/Tf(s,t)du(t)dp(s). (3.4)
Since f; 1 fon S x T, the MCT implies
/SXT fidp x v 1] /SxT fdu x v. (3.5)

By Theorem 3,
o Jduxv= [ [ fs,0dv(0)du(s)
so (4) and (5) imply

/Sfdp XV:/S/Tf(s,t)du(t)dp(s).

Tonelli’s Theorem can be used to check the integrability of a measurable function
with respect to a product measure. If 4 and v are o-finite and f : S x T — R is
u x v-measurable, we can apply Tonelli’s Theorem to the function |f| to check its
u X v-integrability. If |f| is g X v-integrable, then Fubini’s Theorem can often be
applied to evaluate the product integral fs. , fdp x v.

As an application of Tonelli’s Theorem we show how the product measure of a
set can be computed as an integral. If £ C S x T and s € S, the s-section of E at
s is defined to be E, = {t € T : (s,t) € E}. Similarly, if t € T, the t-section of E
at ¢ is defined to be E* = {s € S : (s,t) € E}. We have the following elementary
proposition.
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Proposition 5 Let E C S x T and s € S. Then

(i) Cg(s,t) = Cg,(t),
(i) (E£°)s = (£,)%

(iii) (UE.), = U(E.),, where E, ¢ S x T,

a

(iv) (NE.)s = N(E.)s, where E, € S x T
From Proposition 5 and Fubini’s theorem, we have

Theorem 6 Let E C S xT be uxv-measurable and have finite p x v measure. Then

(i) for y-almost all s € S the section E, € T,

(ii) the function s — v(E,) is j-integrable, and
(i) f (B, )d(s) = g x v(B).

Remark 7 If 4 and v arc o-finite, by Proposition 5 and Tonelli's Theorem conditions
(1), (11)' s = v (E,) is S-measurable and (iii) also hold for any £ C § x T which is
it X v-measurable.

Remark 8 In some of the developments of Fubini’s Theorem for product measures,
Theorem 6 is an important intermediate step in that it establishes the result for
integrable simple functions. The general result is then established by approximating
the general integrable function by simple functions. The proof of Theorem 6 from
basic properties of product measures can be somcwhat lengthy (see [Roy] 12.1.15-18).

We now give several examples which illustrate the necessity for the various hy-
potheses in the Fubini and Tonelli Theorems.

Example 9 Let S = T = [0,1], 4 = Lebesgue measure and v counting measure
restricted to the Lebesgue measurable subsets of S. Sct £ = {(z,z) : 0 < z < 1}.
Note that E is u X v-mcasurable. Then

/01 /(,1 Cx(z,y)dm(z)dv(y) =0
while .
/0 /0 Cg(z,y)dviy)dm(z) = 1.

This example illustrates the importance of the g-finiteness condition in Tonelli’s The-
orem [also in Theorem 6 and Remark 7).
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Example 10 Let £(0,0) = 0 and f(z,y) = (2 —y?)/(z2? + ¥*)? for 0 < & < 1,
0 <y <1, otherwise. Since 3% (I—Qb) = [(z,y) for  # 0,

1 1 dd 1 1 d
/()/()[(I’y) .7//1':./U mw:ﬂ'//l.

Similarly,

/(;1 /01 flz,y)dedy = —7 /4.

This example shows that the non-negativity condition in Tonelli’s Theorem is
important.
A similar example is given in Exercise 2.

Example 11 (Sierpinski) [Sir]. This example points out the importance of the
measurability assumption in Tonelli’s Theorem. A result of Sierpinski gives the ex-
istence of a 1-1 map j from [0,1] onto a well ordered set W osuch that j(z) has at
most countably many predceessors in W for each = € [0, 1] (this result depends on
the Continuum Hypothesis). Let @ be the subsct of the unit square which consists
ol all pairs (r,y) such that j(z) precedes j(y) in W. Set f = Cq. For cach 2, (),
contains all but conntably many points of [0, 1] so [y fi [(&,y)dydz = |, and for each
y, (¥ contains at most countably many points of [0,1] so [ [ f(x,y)dzdy = 0.

Note that cach f(r,-) (f(-,y)) is a Borel function but [ is not measurable, t.c., f
is “scparately measurable” but not “jointly measurable”.

Aunother interesting example relative to iterated integrals is given in Exercise 3.

There is another standard method of constructing product measures which we

now outline. We assume that g and v are o-finite. f £ € o(S x T), then for s € §
(t € 1) every section F, € T (E' € S) and the function s — v(/s,) (t — p(EY)) is

S-measurable (7 -mecasurable). The set function A defined on o(S x 7)) by

ME) = /SI/(Es)(l,u(s) (/T/J,(Ez\)dz/(tg

is a o-finite measurc which satisfies A(A x B) = p(A)v(B) when A € S, B € T, and
is defined to be the product of ¢ and v, In general, this measure is not complete.
In particular, if 4 = v = Lebesgue measure on R, then A is not complete and
s0 is nol two-dimensional Lebesgue measure on R? - which is somewhat annoying.
Tubini’s Theorem is then established by approximating integrable functions by simple
functions. Sce, for example, the development in [[Tal].

Fubini’s Theorem fails miscrably for finitely additive set functions; see [HY].

Exercise 1. Let g : S — R (£ : 1' = R) be S-measurable (7 -measurable) and define
f:SxT = Rby [(s,t) = g(s)h(t). Show [ is 0(S x T)-measurable. If g and h are

integrable, show f is integrable and

/ fdp x v = / gd,u/ hdv.
SXT s T
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Exercise 2. Show fj [°(e™®¥ —2¢~%¥)dzdy and [° f3 (e~¥ —2e~2%¥)dydz both exist
but are not equal.

Exercise 3. Let f(0,0) = 0 and f(z,y) = zy/(z? + y*)? otherwise. Show

/_11 /_11 f(z,y)dzdy = /_11 /_11 fz,y)dydz

but f is not (Lebesgue) integrable over [—1,1] x [—1,1]. Hint: Consider [0, 1] x [0, 1].

Exercise 4. Give an example of a set in the plane which is not Lebesgue measurable.
Generalize to R™.

Exercise 5. Show that the conclusion (i) of Theorem 6 cannot be improved to: every
section E, € 7.

Exercise 6. If E € o(S x 7), show every section E, € 7. [Hint: Consider all
E C S x T such that E, € T ]

Exercise 7. Let g, v be o-finite. If E,| F are p x v-measurable and u(E,) = v(F})
for p-almost all s € S, show g x v(E) = p x v(I).

Exercise 8. Show o(B(R) x B(R)) = B(R?). [Hint: Consider the projections from
R? into the coordinates and usc Exer. 2.5.11.]

Exercise 9. Slow B(R?) # M(R?).

Exercise 10. If f: $xT — Ris 0(S x T )-measurable, show f(s,) is T-mecasurable
for every s € S. Docs the same hold for g X v-measurable functions?

Exercise 11. Evaluate f$° e=* dz = I by writing I? as a double integral in the plane
and using polar coordinates.

Exercise 12. Let f : R* — R be Lebesgue integrable. Show

fo fa+yde= [ f@)de

for every y € R™. What is the corresponding formula for . f(az)dz, a € R?
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Exercise 13. For p > 0, ¢ > 0, the Beta Function B(p, q) is defined by
1
B(p,q) = [ &7 '(1 - 2)"\da,
[e]
Show B(p,q) = B(q,p) and I'(p)T'(q) = I'(p + ¢) B(p, 9).

Exercise 14. Evaluate [} [! eV dydz.

125
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3.10 A Geometric Interpretation of the Integral

We show that Fubini’s Theorem can be uscd to show that the integral can be inter-
prcted to be the “area under the curve”. Let (S, S, ¢) be a o-finite, complete measure
space. If f: § — R, the ordinate set of f is Qy = {(z,y):z € 5, —o0 <y < f(z)}.

Proposition 1 f is S-measurable <& Q; is p X m-measurable.

Proof: <=: Fory € R, QY = {z € §: (z,y) € U} = {z: f(z) >y} Q€S
for m-almost all y € R (Remark 3.9.7). Thus, 0} € § for y in some dense subsct
D C R. Therefore, {z: f(z) >r} € Sfor r € D and f is S-measurable by 3.1.1.

=>: Suppose f : S — R is S-measurable. For r € Q let

A ={z €S f(z)> 1),
B, ={yeR:—o00<y<r},

and

E=U{A, x B, : T € Q}.
Then E is p X m-measurable, and we claim that £ = ;. First, suppose that
(z,y) € E. Then (z,y) € A, x B, for somer € Qso —oo <y <r < f(z) and
(z,y) € ;. Hence, E C ;. Next, suppose (z,y) € ;. Then —oo < y < f(z) so
there exists r € Q such that —oo <y <r < f(z) and (z,y) € A, x B, C E. Hence,
Q/ CFE.

Theorem 2 Let f: S — R be non-negative and S-measurable, and let
H={(z,y):2€S,0<y< flz)}
Then H is yu X m-measurable and y x m(H) = [5 fdp.

Proof: H is measurable by Proposition 1 since H = 4\S x (—o00,0). By Remark
3.9.7,
pxm(H)= / (H7)du(z / f(z)du(=
If the basic properties of the product measure are developed before the integral
is defined, the conclusion in Theorem 2 can be used to define the integral for non-
negative measurable functions. This approach to the integral leads to some very quick

proofs of the convergence theorems, particularly the MCT. For a description of this
method of defining the Lebesgue integral see [Z1].

Exercise 1. If f is S-measurable, show the graph of f, G = {(z, f(z)) : z € S}, has
4 X m measure 0.

Exercise 2. Show /Sfdp = /Ow,u({z 1 f(z) > y})dy.
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3.11 Convolution Product

As another application of Fubini’s Theorem we consider the convolution product of
two functions. The convolution product has many important applications in analysis,
from approximation theory to integral transform theory. We give two such applica-
tions in Theorem 11 and Exercise 2.

If f, g:R™ — R, the convolution productof f and g, denoted by f * g, is defined
by

frg(@)= [ e =oly)dy,

provided the integral exists. We use Mikusinski’s characterization of the Lebesgue
integral to show that the convolution product of two Lebesgue integrable functions
exists a.e. and defines a Lebesgue integrable function. Other conditions which guar-
antee the existence of the convolution product are given in the exercises.

Theorem 1 Let f, g € L'(R"). Then

(1) f=*g(x) = fmn f(z —y)g(y)dy exists for m-almost all z € R™,
(ii) f+ge LY(R"),
@) [|f = glly < 171y llgll,-

Proof: We use Fubini’s Theorem to show that the function

H(z,y) = f(z —y)g(y)

is Lebesgue integrable over R*™ and then (i) and (ii) will follow from Fubini’s Theo-
rem

Let {f:} ({9:}) be Lebesgue integrable Borel functions such that

2Ll < oo (3 Mlgill, < o0)
i=1 =1

and

@) =LA (o) = 3 aila)

for any z for which the series is absolutely convergent (Theorem 3.8.3). Set Fi(z,y) =
filz — y), Gi(z,y) = ¢:(y) and note each F}, G; is a Borel function on R*".
Consider the Cauchy product, § EJ: F:G;_;, of the two series 3° F; and 3 G;.

7=11=0

/Rh |F:G;| = /Rﬂ | £:| /Rﬂ lg;l,

Since
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<SS LU ol < oo,

j=11i=0

J
FGi_
o ':Z:;/Riﬂ

this last series being the Cauchy product of the series 3 || fill,, 2 [|gill,. If for some

>

(z,y) € R? the series

K
M-

R(Iv y)Gj—i(Iv y)

Il
=1

1

.
1l
—_

converges absolutely, then both series z F(z,y), z G.(z,y) must converge abso-

lutely ([Kn] Theorem 11, p. 89) and, fherefme must convelge to F(z,y) and G(x,y),
respectively, so

Fi(z,y)G,-i(z,y)

gk
Mh

11

1l
=1

J

must converge to F(z,y)G(z,y) = ,¥) ([Kn]). By Excrcise 3.8.1, I is Lebesgue
integrable over R*", and (i), (ii) fo llow f[orn Fubini’s Thoercm.
For (iii),
Jrn|f * gl Jre Jre |/ (= — y)g(y)| dydz
Jpn Jrn Sz~ y)g(y)| dzdy
Jre l9(¥) dy fpo | f(2)| dx

A

by Tonelli’s Theorem.

Note that the proof of Theorem 1 shows that the function (z,y) — f(z — y) is
Lebesgue measurable (see Exer. 8; [or another prool of the measurability sce [I1S]
21.31).

Several of the algebraic propertics of the convolution product arc given in the
exercises. We now show that the convolution product can be used in cstablishing
approximation results.

Definition 2 A sequence {¢r} C LY(R™) is called an approximatc identity or a
b-sequence if

(1) ¢x(z) >0 for all z € R,

(i) |lgxll; =1 for all k,

(iii) for every neighborhood ofd, U, in R, li{nfuc wr(z)dz = 0.
We give examples of §-sequences.

Example 3 In R, take ¢i(t) = %C[—l/k,l/k]-

Example 4 ¢i(t) = /2, t R

kt?

Example 5 In R, ¢i(t) = cie ™" where ¢, is chosen such that (ii) holds.
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We denote by C2(R™) the vector space of all functions ¢ on R™ with compact
support which have continuous partial derivatives of all orders. It is not apparent
that there are any non-zero functions in C®°(R"), but examples of such functions are
given in the examples below.

Example 6 In R, pick ¢ € C(R), ¢ > 0, [like p(t) = e=/0=%) for |t| < 1 and
p(t) = 0 for [t] > 1]. Set @(t) = cxp(kt), where ¢ is chosen such that (ii) holds.
Note that if ¢ is chosen as above spt(wx) C [—1/k,1/k].

Example 7 In R”, pick ¢; as in Example 5 and set ¢x(x1,...,2,) = @r(z1) - - - pr(zn).

Example 8 In R™, pick ¢, as in Example 6 and define )y as in Example 7. Note
in this case, ¥ € C°(R™) and spt(yx) C {z : |z&] < 1/k}.

Example 9 Define ¢ on R™ by ¢(z) = e~1/0-l=lF) jf [lz]| < 1 and ¢(z) = 0 other-
wise. Set pi(z) = crp(kz) where ¢ is chosen to satisfy (ii). Then ¢ € C°(R™) and
spt(px) C {z : ||zf| < 1/k}.

We next establish an intermediary result which is interesting in its own right.

Theorem 10 Let [ : R® — R* be Lebesque integrable and for h € R™ define [}, :
R™ — R" by fu(z) = f(z +h). Then lim|Ify — f|I; = 0.

Proof: Let ¢ > 0. By Theorem 3.5.6 there exists ¢ € C.(R"™) such that
IIf — ¢lly < e There exists @ > 0 such that p(z) = 0 for ||z|| > a. ¢ is uniformly
continuous so there exists 1 > § > 0 such that |p(z) — ¢(y)| < € when ||z — y| < 8.
Thus, ||| < é implies

S Tola + 1) = (@)l dz <c- 4,
where A = m{z : ||z|| < a+ 1}. Thus, if |[A]| < §,
IF = Flly S w = enlly + llen =@l +lle = fll; <e+e-Ate

Theorem 11 Let {p;} be an approzimate identity in L'(R™). Then for every
fe LR, im||f * ¢x = f]l, = 0.

Proof: Let ¢ > 0. By Theorem 10 there exists § > 0 such that ||&|] < é implies
I/» — fll, < €, where fi(z) = f(z + k). By (iii) there exists N such that k > N
implies fj;)>5 ¥x(z)dz < €. Then

I/ *ex— 1l Jrn rn(f(z = ¥) = [(2))pr(y)dy| dz

< Jrner(y) foe [ f(z —y) — f(z)| dzdy

= [roex() 1f-y — Jll; dy

= fiwncs P 1=y = Sl dy + fiyss ox(@) ([ /=y — Sl dy
<

€ fiwn<s Pe()dy + 21 Fl; fyyyzs ex(W)dy < e+ 2] f1], €.
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Corollary 12 C®(R") is a dense subset of L'(R™) (with respect to ||||;).

Proof: By Theorem 3.5.6 it suffices to show that C°(R") is dense in C,(R™). Let
Y € C.(R™) and K = spt(y). Choose {¢x} C C(R") as in Example 9. If z € R"
and dist(z,K) > 1/k, then px(z —y) =0fory € K so

ox * P(z) = /K er(z — y)P(y)dy

vanishes for such z, i.e., spt(px * ) C {z : dist(z,K) < 1/k}. Hence, @x * ¢ has
compact support and by Exercise 3 ¢, * 9 is infinitely differentiable so ¢, * ¢ €
CZ(R™). By Theorem 11, |j¢x x ¢ — 9|, — 0.

Proposition 13 Let K C R™ be compact and V DO K open. Then there ezists
Y € CP(R™) such that 0 < <1, =1on K and ¢y =0 on V°.

Proof: We may assume that V is bounded. Let § = dist(K, V<) > 0 and let K,
be a “§/3-neigborhood of K”, ie., Ky = {z : dist(z, K) < §/3} [a sketch at this point
is useful]. If k is chosen such that 1/k < §/3, the function 1 = Ck, * ¢k 1s in C°(R™)
if 4 is chosen as in Example 9. Clearly 0 < ¢ < 1. If £ € K, then (Exer. 1)

¥(e) = [ CxWede—y)dy = [ en)Cri (e —v)dy =1

since the integration is over a ball of radius < §/3 and center z. I z ¢ V, then
¥(z) = 0 since the integrand in the convolution product is 0.

Exercise 1. If f, g, h € LY(R"), show fxg=gx* f, f*(g*h) = (f xg)*h, and
F*(g+h)=fxg+ f+h Thus, L'(R") is a commutative algebra with convolution
as product. Show that it does not have an identity.

Exercise 2. If f € L'(R) and f(¢) =0 for t < 0, its Laplace transform is defined by
L{f}(s) = [5° e f(t)dt. Show this integral exists for s > 0. If f, g € L'(R) vanish
for t < 0, show f x g vanishes for t < 0 and L{f x g} = L{f}L{g}.

Exercise 3. If f € C®(R") and g € L'(R"), show f g € L'(R") N C*=(R) and
give a formula for calculating the partial derivatives of f % g.

Exercise 4. Let {ox} be as in Example 9. If f : R™ — R is bounded, continuous,
show f * 4 is uniformly continuous and f * ¢, — f uniformly on compact subsets of
R"™.

Exercise 5. Let f € L}R"). If [gn fodm = 0 for every ¢ € CZ°(R™), show f =0

a.e.
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Exercise 6. Let f € L'(R™") and g : R® — R be bounded, measurable. Show f *g

exists everywhere in R™ and is uniformly continuous.

Exercise 7. Let {¢x} be an approximate identity. If ¢ : R® — R is bounded,
measurable and continuous at z, show ¢y * g(z) — g(z).

Exercise 8. Show that if f : R®* — R is measurable, then the function (z,y) —
f(z — y) is measurable.

Exercise 9. Let £ C R be Lebesgue measurable with m (E) > 0. Show that £ — E
contains an interval. Hint: Assume F C [a,b] and define

f@)= [ Caly)Cr e+ y)dy.

Show f is continuous at 0 and f(0) > 0. Consider {z : f (z) > 0}.

Exercise 10. I f € C.(R") and {p+} is an approximate identity, show {f * ¢k}
converges to f uniformly on R.

Exercise 11. Il f, g € C.(R"), show spt(f *g) C closure(spt (f) + spt(g)) and
fxg€C(R").
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3.12 The Radon-Nikodym Theorem

We now consider one of the most important results in the theory of mcasure and
integration, the Radon-Nikodym Theorem. The Radon-Nikodym Theorem essentially
characterizes the integral as a set function, i.e., as an indefinite integral.

Definition 1 Let u, v be signed measures on the o-algebra 5. Then v is absolutcly
continuous with respect to p, denoted by v < y, if |u|(E) = 0 implies |v| (£) = 0
whenever £ € 3.

Example 2 If p is a measure and f : S — R* has a p-integral and v(£) = [g fdp
for E €Y, then v < p [3.2.10]. We denote the indefinite integral v by v = fdpu.

The Radon-Nikodym Theorem essentially asserts that Example 2 is a canonical
example in the sense that any (o-finite) signed measure v which is absolutely con-
tinuous with respect to a (o-finite) measure p must be an indefinite integral ol some
function with respect to p.

We have an elementary observation which follows directly from the Jordan De-
composition.

Proposition 3 Let u, v be signed measures on y.. The following are equivalent:

(i) v<p

() vT < pand v~ <« p.

Definition 4 Let u, v be signed measures on 3. v is said to be y-continuous if
lim v(E)=0.

[ul(E)—0

By Theorem 3.2.17 indefinite integrals of u-integrable functions are y-continuous.
Concerning absolute continuity and g-continuity, we have

Proposition 5 (i) If v is p-continuous, then v < p.
(i) If v is a finite signed measure, then v < p & v is p-continuous.

Proof: (i) is clear. (ii): < follows from (i). =: Suppose not. Then there exists
¢ > 0 and {E;} C ¥ with |g|(E;) < 1/27 and |v|(E;) > ¢. Set E = imE, =
ﬁ OLOJ E;. Then for each k,

k=1 3=k

el (B) < 3 |l (B5) < 301729 = 124
=k i=k
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so |u|(E) = 0. But, |v| finite implies |v| (E) = li1£n|u| ( G E;) 2 Tim|v| (E:) > eso v
j=k

is not absolutely continuous with respect to y.

The finiteness condition in (ii) cannot be dropped even when g is finite.

Example 6 Define g, v on P(N) by u(E) = 3 1/2%, v(E) = 3> 2¥. Then v < ¢
k€EE kel

but v is not p-continuous.
For the proof of the Radon-Nikodym Theorem we first require a lemma.

Lemma 7 Let u, v be finite measures on Y with v < p and v # 0. Then there ezist
€>0 and A € ¥ such that p(A) > 0 and A 1s a (v ~ ep)-positive set.

Proof: For each k let (Pi, Ni) be a Hahn Decomposition for the signed measure
v — %,u. Set Ag= U Py and By = oﬁ Ny. Since By C Ny for every k,
k=1 k=1

0 < (Bs) < 1 Bo)

so ¥(Bo) = 0. Thus, v(Ao) > 0 and since v < py, p(Ao) > 0. Hence, p(Px) > 0 for
some k. For such a k, set e = 1/k and A = F;.

We are now ready for the proof of the Radon-Nikodym Theorem. We say that a
signed measure v is o-finite if |v| is o-finite.

Theorem 8 (Radon-Nikodym) Let u(v) be a o-finite (signed) measure on Y with
v & p. Then there erists a Y -measurable function f : S — R* such that v(F) =
Jg fdu for all E € 5°; the function [ is unique up to p-a.e.

Proof: By Proposition 3 we may assume that v is actually a measure.
We first assume that both g and v are finite measures. Let

f:{g:S—»R‘:geLl(;z),gZOwith [ 9du < o(E) for al EEZ}
E
and set
A:sup{/gdp:géf}ﬁu(5)<oo‘
s

Choose a sequence {fi} C F such that lim fg fidy = A. We construct an increasing
sequence from {fx} by setting g = fiV...V fi. Then g T and gx € L'(g). Moreover,
gk € F sinceforany E€ 3, f Ey ={t € E: fi(t) = g«(t)} and

Ei={t€E: fint) = ge()N\E;for 1 <i<k—1,
\
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then i i i
Lodu=Y [ gdu=3 [ fidu <3 w(E)=v(E
E =1 E; =1 E, =1

Also XA 2 [ogedp > [g frdp for every k implies lim fg gpdp = A. By the MCT if
f =limgy, then fg fdp = A < 0o so f is finite p-a.e. and we may assume f € L(p).
Since g € F, f € F by the MCT.

We claim that v(E) = [g fdp for E € 3. Let vy be the measure defined by
vo(E) = v(E) — Jg fdu. If v is not zero, then since vy < p, Lemma 7 implies that
there exists € > 0 and A € 3 such that p(A) > 0 and A is (v — ep)-positive, i.e.,

/EecAdﬂzep(EnA) < VO(EOA)=V(E0A)—/ fdptor E€ Y.
En
Thus, if h = f + eCy4, then
hdp = [ fd < <
/E " /Ef ,u+e;t(EﬂA)_/E\Afd,u+u(EﬂA)_V(E)
for every E € 3~ so h € F. But,
Jobdu = [ fdu+eu(a) = 2+ eu(4) > 2

which contradicts the definition of A. Hence, v = fdpu.
Uniqueness of f follows from 3.2.18.

Assume that g and v are o-finite. Then § = U E;, where E; € 3, E; C E;4

i=
and p(E;) < 0o, v(E;) < co. By the first part, for each j there exists a non-negative,
p-integrable function g; such that g; = 0 on Ef and v(E N E;) = [g g;du for I € 3.
From the uniqueness of g;, it follows that ¢; = g;4x p-a.e. in E, for k > 1. Set
f; = max{g1,...,9;} so {f;} is increasing. Then

WENE,) /f,d,u for E€Y.

Set f =lim f;. From Proposition 2.2.5 and the MCT,
v(E) =limv(ENE;) = lim/ fidp = / fdpfor E€ ).
E E

Uniqueness again follows from 3.2.18.

Note that the function f is not generally gy-integrable. In fact, f is p-integrable if
and only if v is finite.

The o-finiteness condition on v can be eliminated [see [Roy] [or a proof]; however,
the o-finiteness condition on g cannot be dropped as the following example shows.

Example 9 Let S = [0,1] and 3 the o-algebra of Lebesgue measurable subsets of
S. If y is counting measure on ¥, then m < p but there exists no function f € L!(p)
such that m = fdu [Proposition 3.2.14]. See also Exer. 11.
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The function f in the conclusion of Theorem 8 is called the Radon-Nikodym deriva-
tive of v with respect to p and is denoted by %' Note the Radon-Nikodym derivative
is only determined up to p-a.e. Some of the basic properties of this “derivative” are
given in the exercises.

The Radon-Nikodym Theorem can be extended to a more general class of mea-
sures than the o-finite measures. One important class of such measures are called
decomposable measures; for a description of these measures see [HS] p. 317. Nec-
essary and sufficient conditions are known for a measure g to admit the conclusion
of the Radon-Nikodym Theorem for any signed measure v; such measures are called
localizable and have been characterized by Segal [see [TT] for a description].

For other methods of proving the Radon-Nikodym Theorem see [Roy] and [R2]
and §3.12.1.

The Radon-Nikodym Theorem fails for finitely additive set functions; see section
3.12.1 and Exer. 3.12.1.2.

Exercise 1. Let yu, vy, v, be signed measures on ). with one v; being finite and u
a measure. If v; < g, show (av; + bvp) <« p. If the measures are o-finite, compute

d(avy +bvy

du

Exercise 2. Let S(7) be a o-algebra. Let a, ¢ (8, v) be o-finite measures on §(7).
If p € av<«pf,show p X v € ax . Compute the Radon-Nikodym derivative of
g x v with respect to a x §.

Exercise 3. Let u, v be o-finite measures on Y with v < pu. If f € L*(v), show
f% € L'u) and [ fdv = [ fidp.

Exercise 4. Let A, g, v be o-finite measures on 3 with v « u <« A. Under

appropriate conditions, show % = 92494 [Chain Rule].
dx = dudx

Exercise 5. Let y, v be finite measures on 3 with 4 <« v, v <« u. Show j—: #0
p-a.e. and %‘f = 1/:7”.

(=]
Exercise 6. Let v, v, ¢ be o-finite measures on )° with v = 3 1. If vp < y for
=1

every k, show v <« p and Z_Z =5 %'
k=1

Exercise 7. Let A be an algebra which generates 3_. Let u, v be finite measures on
2. If v is y-continuous on A, show v << pon 3.
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Exercise 8. Let v, u be signed measures on 3_. Then {1, } is untformly y-continuous if

| l%g? Ouk(E') = 0 uniformly in k. If fx € L'(y) and vy = fidy, show {v;} is uniformly
ul(E)—

p-continuous if there exists g € L'(y) such that |fi| < g p-a.e.

Exercise 9. Let p be a finite measure on 3~ and f; € L*(g). Show {fi} is uniformly
p-integrable if and only if

sup/slfkld# <o

and {fidp} is uniformly p-continuous.

Exercise 10. Let v : 3~ -+ R* be finitely additive and x be a measure on 3°. If v is
u-continuous, show v is countably additive.

Exercise 11. Let S = R and let 3" be the o-algebra consisting of the sets which are
either countable or have countable complements. Define v on - by v (£) = 0 if £ is
countable and v (E) = 1 if E° is countable. Let i be counting measure. Show v is a
measure with v < g but the Radon-Nikodym Theorem fails for v.

Exercise 12. Let g, v be measures on 3. with v fiuite. If f, — f pg-measure, show
S — f v-measure. Can the finiteness condition be dropped?
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3.12.1 The Radon-Nikodym Theorem for Finitely Additive
Set Functions

Bochner has given an extension of the Radon-Nikodym Theorem to finitely additive
set functions defined on an algebra ([Bo]). Bochner’s original proof depended on
the countably additive version and Stone space arguments. Dubins has given an
elementary proof which we present (|D]). Dubins’ proof depends on order properties
of the space of finitely additive set functions and is independent of the countably
additive version of the Radon-Nikodym Theorem.

Let A be an algebra of subsets of S. We let ba(.A) be the space of all real-valued,
bounded, finitely additive set functions defined on the algebra A. ba(A) is a vector
space if weset (p+v)(A) = p(A)+v(A) and (tp)(A) = tp(A) for p, v € ba(A), t € R,
A€ A. We write g > v if and only if u(A) > v(A) for all A € A;if p > 0, we say p
is non-negative. For convenience of notation, we set ||u|| = |¢] (S) for p € ba(A).

If g, v € ba(A), the meanings of v « g and v being p-continuous are as in
Definitions 3.12.1 and 3.12.4. If f: S — R is an A-simple function and p € ba(A) is

non-negative, then the integral of f with respect to g is meaningful and

VA fd/“ <sup{|f(t)]:t € S}u(A)

for all A € A [Remark 3.2.2] and A — [, fdu defines an element of ba (A); we denote
this set function by fdu.

Bochner’s Radon-Nikodym Theorem asserts that if v is g-continuous, then v can
be approximated by an indefinite integral fdu where f is a simple function. We now
prove Bochner’s Theorem.

We require two lemmas. The first is an intercsting result related to the order
defined on ba(A) and asserts that any two elements of ba(.4) have an infimum with
respect to the order defined on ba (A).

Lemma 1 Let g, v € ba(A). Then
pAv(A)=inf{u(E)+ v(A\E): E € A, E C A}

defines an element p A v € ba(A) which is such that g, v > p A v and if a € ba(A)
and a < p, a < v, thena < g Av.

Proof: Let A, Bc A, ANB=0.1{Ec A, EC AUB, then
W(E)+((AUB\E) = u(ENA)+p(ENB) +v(A\E) + v(B\E) > pAv(A) +uAv(B)

$0
LAV(AUB) > p Av(A)+ pAv(B).
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Let € > 0. There exists Fy C A, F; C B, E; € A such that
pAv(A) > p(Er) + v(A\EY) —€/2

and
n A v(B) > p(Es) + v(B\E;) — ¢/2
% pAv(A)+pAv(B) > p(EyUE)+v((A\E) U (B\E;)) —¢
= p(E\UE)+v((AUBN\(EL1U Ey)) —¢
> pAv(AUB)—e.
Hence,

pAv(AUB)=pAv(A)+nAv(B)

and p A v € ba(A).

Taking £ = A shows g Av > u and taking £ = @ show p > v. If @ < x and
a < v, then clearly a < p A v.

For the next lemma we adopt somne unorthodox but useful notation. If f,
v € ba(A) and € > 0, we write p < v + ¢ if p(A) < v(A) +¢ for every A € A; nole
here that p, v are set functions and ¢ is a non-negative real.

Lemma 2 Lete >0, k>0, g, w € ba(A) with p non-negative. If
—kp —e<w< kp+te,
then for every €' > € there exists a two-valued A-simple function f such that
—gp—e’<w—fdp<§,u+£' (3.1)
and an A-simple function f such that
—e <w- fdp <€ (3.2)

Proof: Choose A € A such that w(A) > w(E) — (¢' —¢) for all E € A. Let f
equal k/2 on A and —k/2 on A°. Then

k
w(E N A) _/ fdp < —u(EN A) +e, (3.3)
ENA 2
and since w(EN A°) < €' —¢,
k
w(E N A) — / fdu <& — e+ ~u(E N A°). (3.4)
EnA° 2

The inequality on the right hand side of (1) now follows from (3) and (4). The other
inequality in (1) is similar.

From (1) it follows by induction that for every j and 5 > ¢ there exists a simple
function f such that

k k
—Eu—n<w—fdu<§u+n
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and this gives (2).

We are now ready to state and prove Bochner’s Radon-Nikodym Theorem which
asserts that if v € ba(.A) is p-continuous for some p € ba(.A), then v can be approxi-
mated by an indefinite integral with respect to u of an A-simple function [condition
(iii) in Theorem 3 below].

Theorem 3 (Bochner) Let p, v € ba(A) with p non-negative. The following are
equivalent:

(1) v is p-continuous,

(ii) for every e > 0 there exist w € ba(A) and k > 0 such that —kp < w < kp and
lv - wll <e,

(iii) for every € > 0 there exists an A-simple function such that ||v — fdy|| < e.

Proof: (i)=>(ii): By decomposing v into ¥* — v~ we may assume that v is non-
negative. There exists § > 0 such that v(E£) < ¢ when u(E) < 6. Set k = v(5)/6.
By considering the cases where p(E) < § and p(E) > 6, it is easily checked that

v(E) —ku(E) <eforall E € A (3.5)

From Lemma 1,

v A kp(S)=1nf{v(E®)+ ku(E): E € A}

so
llv —v A kp|l = o(S) —vAku(S)=sup{v(E) - ku(E): E€ A} <¢
by (5). Setting w = v A kp gives (ii).
(ii)=>(iii): Choose w to satisfy (ii) and then choose f as in (2] so ||w — fdpu|| < 2¢’
(Proposition 2.2.1.7(v)). Then

v = fdpll < llv —wll + [lw = fdul| < e+ 2¢'

and (iii) holds.

(ili)=>(i): Given € > 0 choose f as in (iii). Then there exists § > 0 such that
|fr fdp| < € whenever p(E) < é [Remark 3.2.2]. Thus, if u(F) < 6, [v(E)| <
€ + |fg fdu| < 2¢ from Proposition 2.2.1.7.

We now derive the Radon-Nikodym Theorem for countably addilive measures on
o-algebras from Bochner’s result. This result follows easily from the approximation
property in (iii) and the completeness of L!(x) with respect to mean convergence.

Let 3~ be a o-algebra of subsets of S. If  is a measure on §_ and f: S — R* has
a u-integral, we denote the set function F — [ fdu by fdu. Note that we then have

| dull = 1541 (S) = [[1f1dw = 51l

[Exer. 3.2.26].
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Theorem 4 (Radon-Nikodym) Let p be a o-finite measure on y_ and v a o-finite
signed measure on 3 with v <« p. Then there exists a Y -measurable function f :
S — R such that v(E) = [g fdu for dl E € 3 fi.e., v = fduj; f is unique up to

p-a.e.

Proof: By the Jordan decomposition we may assume that v is a measure.

We first assume that both g and v are finite measures. Then v is p-continuous
by Proposition 3.12.5. By Theorem 3 for each k € N there exists a simple function
fx such that ||v — fidp|| < 1/k. Since || fedp — fidp|| = ||fx — fill,, {fx} is a Cauchy
sequence in L'(x) and, therefore, converges to some f € L'(z) by the Ricsz-Fischer
Theorem [3.5.1]. Then

lv = fdull < |lv — fudull + |l £ = 11l

implies that v = fdp.

The extension of the result to the o-finite case is given in the proof of Theorem
3.12.8.

Note that the proof of the Radon-Nikodym Theorem above depends on Bochner’s
version of the theorem for finitely additive set functions and the completeness of L!(y)
with respect to mean convergence when g is a countably additive mecasurc defined on
a o-algebra. This proof of Bochner’s Theorem basically depends on order properties
of the space ba(.A) and can be regarded as elementary.

Exercise 1. Let g, v € ba(A). Show
pVu(A) =sup{u(E) +v(A\E): EC A, E € A}

defines an element of ba(.A) which is the supremum of g and v in the order of ba(.A).

Exercise 2. Let A be the algebra of subsets of N which are either finite or have
finite complements. Define v, u on A by

v(E)=0

p(E) =3 1/2"}

keE
if E is finite and
v(E)=1

;‘(E)=1+Z1/2"}

keE

if F is infinite. Show v <« g but there is no g-integrable f with v = fdg. Given
€ > 0, find a simple function f satisfying (iii).
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3.13 Lebesgue Decomposition

Intuitively, a measure v is absolutely continuous with respect to a measure p if v is
small on sets with small y-measure (Proposition 3.12.5). We now consider a concept
in opposition to absolute continuity, called singularity, which was brieflly considered
in §2.2.2.

Let 3_ be a o-algebra of subsets of S. Recall (2.2.2.6) that two measures p and v
on 3_ are said to be singular if there exist A, B € 3_ such that ANB =0, AUB =5,
#(A) =0 =v(B). il g and v are singular, we write g Lv. Two signed measures g, v
on Y are singular, written again g Ly, if |u| L |v].

If v is a finite signed measure, recall that v+ and v~ are singular [2.2.2.7].

To illustrate that absolute continuity and singularity are opposites, we have

Proposition 1 Let u, v be signed measures on 3. If ulv and v <€ u, then v = 0.

Proof: Since |v| L |y|, thereexist A, B €3, ANB =0, AUB = S with |u|(A) =
0 = |v| (B). But, |v| < |p| implies |v| (A) = 0. Hence, |v|(S) = [v|(A) + |v|(B) = 0.

We are now going to show that given a g, any o-finite signed measure can be de-
composed uniquely into two parts, one of which is absolutely continuous with respect
to g and another which is singular with respect to p. This is called the Lebesgue
Decomposition. For this theorem, we need a preliminary result.

Proposition 2 Let vk, p be measures on 3. If v Ly for every k and v = 3 vy,
k=1
then vy,

Proof: Recall that v is a mcasure [Exer. 2.2.13]. For each & there exist A,
DBy € 3, AN By = 0, A, U B, = S with ,u(Ak) = l/k(Bk) =0. Put A = U Ay,
k=1

o0

B=A= B;. Then
k=t

and

Theorem 3 (Lebesgue Decomposition) Let v be a o-finite signed measure on 3
and g a measure on Y. Then there exist signed measures v, and v, on . such that
V=1V, + v, and v, € u, v, pu. The decomposition is unique.

\
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Proof: First assume that v is a finite measure. Let M = {E € 3_: u(FE) =0}
and set a = sup{v(F): £ € M}. Sincev > 0 and v is finite, 0 < a < oo. Choose

{Ex} C M such that limv(Ex) = a. Set £ = U Ex. Then £ € M and v(E) = a
[clearly ¥(E) < a since F € M, but v(E) > u(Fk) for all k implies v(E) > 4.

We claim that
v(A\E) =0 for all A € M. (3.1)

For otherwise, v(E U A) = v(A\E) + v(E) > a. Since EU A € M, this would
contradict the definition of a.

Define v,(A) = v(A\E), v,(A) = v(ANE) for A € 3. Clearly v = v, + v,. (1)
implies that v, < g. Now u(FE) = 0 since £ € M and v,(S\E) = v((S\E)NE)=0
so plv,.

<
Next assume that v is a o-finite measure. Let S = |J Ex, where £, € 30, {F:}
k=1

pairwise disjoint and v(E)) < co. Set vi(F) = v(ENE) for £ € 3. Then v = io: Vk.
k=1

o0 >
From the first part, set v, = Z (vk). and v, = Z (vk)s- Then v, and v, arc mcasures
£=

from Exer. 2.2.13. Clearly l/u << 1 and v, Ly by Proposmon 2.

If v is a o-finite signed measure, then v = vt — v~. In this casc sct v, =
(vt)a— (v )e and v, = (v*), — (v7), and apply Exercises 1 and 3.12.1.
For the uniqueness, suppose v = v, + v, = v, + v}, where v, &« p and v L.

If F € 3 is such that |v|(F) < oo, then v, — v, = v, — v, is both singular with
respect to p and absolutely continuous with respect to pon Yp = {0} : I €3}
80 Vo —V), = v,—v, = 0on }_p by Proposition 1. Since v is o-finite, vo—v, = v,—v, =0
on y..

The Lebesgue Decomposition is often derived from the Radon-Nikodym Theorem
[[Roy] p. 278]. This usually requires the assumption that both v and yx are o-
finite. Note in the proof above it is only necessary to assume that g is non-negative,
monotone, countably subadditive and vanishes at @, i.e., g is an “outer measure”.
The proof given here is due to Brooks ([Br]).

The o-finiteness condition in the Lebesgue Decomposition cannot be dropped.

Example 4 Let S = [0,1] and v be counting measure restricted to the class of
Lebesgue measurable subsets of S. Then there is no Lebesgue Decomposition for v
with respect to m. For if v = v, + v, as in Theorem 3, there exist measurable A, /3

such that AN B =0, S = AU B and v,(A) = m(B) = 0. Take £ € A. Then
v({e}) =1 = va({z}) + v,({z}) =0
since m({z}) =0 and z € A.

There is a version of the Lebesgue Decomposition Theorem for bounded finitely
additive set functions; see [RR] 6.2.4 for this and further such results.



3.13. LEBESGUE DECOMPOSITION 143

Exercise 1. Let v, vy be o-finite signed measures on Y with one being finite. Let
¢ be a signed measure on Y~ with v; Lg. Show (av; + brg) Ly

Exercise 2. Let E be the even integers. Let v be counting measure and define y on
P(N) by p(A) = ¥ 1/2*. Describe the Lebesgue decomposition of v with respect
k€EANE

to p.

Exercise 3. Let f({) = e'fort <l and f(1) =0fort > 1, g(t) = W for
t>0and g{t) = 0fort < 0. Let v = fdm, g = gdm. Describe the Lebesgue
Decomposition for v with respect to pu.

Exercise 4. Show under appropriate hypotheses that « L p or # L v implies
axfLpxvy.

Exercise 5. If a = a, + a, (8 = B, + 3,) is the Lebesgue Decomposition of o (3)
with respect to g (v), show (a x ), = aa X Ba,
(axﬂ),:as Xﬂ,+a,><ﬁa+aa Xﬂs

gives the Lebesgue Decomposition of a x 3 with respect to g x v.



144 CHAPTER 3. INTEGRATION

3.14 The Vitali-Hahn-Saks Theorem

In this section we prove a theorem closely related to the Nikodym Convergence Theo-
rem, the Vitali-Hahn-Saks Theorem. Our proof of this result depends on the Nikodym
Convergence Theorem, but sometimes the Vitali-Hahn-Saks Theorem is established
first and then the Nikodym Convergence Theorem is derived as a consequence [sec
[DS] for example].

Let 3~ be a o-algebra of subsets of S. Let p be a measure on 3 and {;} a scquence

of signed measures on Y. Then {v,} is uniformly p-continuous if (1Fu)n n(l) =0
u(E)—0

uniformly in :.

Theorem 1 Let v; be a finite signed measure on 'y, and p a measure on 'y, such thal
each v; is p-continuous. If {v;} is uniformly countably additive, then {v;} is uniformly
[t-continuous.

Proof: If the conclusion fails, there exists € > 0 such that for cvery § > 0 there
exist &, £ € 3 with [vk(E)] > € and p(E) < 6. In particular, there exist Yy € 32, ny
such that |v,, (E1)| > € and p(E1) < 1. There cxists §; > 0 such that |v, ()| < ¢/2
whenever u(E) < 6. There exist I3 € 37, ny > ny such that |v,,(F2)] > ¢ and
p(F,) < 61/2. Continuing this construction produces sequences {FEi} C 32, dkqq <
8x/2, ny T such that |v,, (Ey)| > € p(Eryr) < 8c/2 and |vn, (£)] < €/2 whenever
p(E) < 8. Note that

wl U E| <Y wE)<6/2+841/2+ - <8/2+ 6/2° + - =&
j=kt1 k11

so that
< €/2.

Vg (Ekﬂ U Ej)

1=k+1

Now set A, = Ej\ G E,. The {Ax} are pairwise disjoint and
1=k+1

[oni (AR)| = |oni (Ei)| — Ze—¢/2=¢/2

Vn, (Em U ﬁj)

k41

by the observation above. However, by the uniform countable additivity of {v;}, we
have li{n v;(Ax) = 0 uniformly for i € N [Lemma 2.8.4], and we have the desired

contradiction.

Remark 2 Note that only the facts that u is non-negative, increasing and countably
subadditive were used.
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From the Nikodym Convergence Theorem and Theorem 1 we can now obtain the
Vitali-Hahn-Saks Theorem.

Theorem 3 Let v; be a finite signed measure on Y and p a measure on Y such that
each v; is p-continuous. Iflimv;(E) = v(FE) ezists for each E € 3, then

(1) {w} is uniformly p-continuous and
(i) v is p-continuous.

Proof: By the Nikodym Convergence Theorem {;} is uniformly countably addi-
tive so (i) follows from Theorem 1. (ii) is immediate from (i).

Both the Vitali-Hahn-Saks and Nikodym Theorems fail for countably additive
set functions defined on algebras [see Exercises 1 and 2]. There are versions of the
theorems for certain finitely additive set functions [see [DU]].

Exercise 1. Let A be the algebra of subsets of [0,1) generated by intervals of the
form [a,b), 0 < @ < b < 1. Define v on A by vi(A) = 2*m([l — 1/2¥,1) N A) so vy is
countably additive on A. Show that if b < 1, v[a, b) = 0 for large k and vilc,1) =1
for large & so limvx(A) = v(A) exists and v(A) = 1if [1 — §,1) C A for some é§ > 0
and v(A) = 0 otherwise. Show v is purely finitely additive (§2.6.1) so (ii) of Theorem
2.8.5 fails. Show also that (i) of Theorem 2.8.5 and (i), (ii) of Theorem 3 fail.

Exercise 2. Let A be the algebra of subsets of N which are either finite or have finite
complements. Define 1, on A by v, (A) = n if A is finite and n € A, v, (4A) = —n if
A° is finite and n € A and v, (A) = 0 otherwise. Show each v, is bounded, finitely
additive and lim v, (A) exists for each A € A. Let u(A) = E 1/2" when A is finite

and u(A) = 14+ ¥ 1/2™ when A° is finite. Show u is bounded finitely additive,
n€A
vn, & p but (1) fails.






Chapter 4

Differentiation and Integration

4.1 Differentiating Indefinite Integrals

We comnsider the first half of the Fundamental Theorem of Calculus (FTC), the dif-
ferentiation of indefinite integrals. We consider indefinite integrals in R™. Points z
in R"™ are denoted by z = (z1,...,z,) where z; € R. If z € R" and r > 0, the open
cube with center at z and sidelength 2r is denoted by

S,r)={y:|lzi—wl<r,i=1,...,n}.

All statements concerning measurability, integrability and almost everywhere refer to
Lebesgue measure on R™ which is denoted by m.

We begin by establishing a covering theorem which will be used in the proof of
the differentiation results.

Lemma 1 Let C be any collection of open cubes in R® and let U =U{I: 1€ C}. If

k
¢ < m(U), there exist pairwise disjoint S,...,Sx € C such that ) m(S;) > 37 "c.
=1
Proof: By regularity of m, there exists a compact X C U such that m(K) > ¢
so there exist finitely many cubes [1,...,1; € C covering K. Let S| be the {I;}
with the largest sidelength. Let S; be the {/;} with the largest sidelength which is
disjoint from S; and continue this procedure until the {/;} are exhausted. This gives
a pairwise disjoint sequence Sy, ..., S; € C. Let S! be the cube with the same center
as S; but with sidelength three times that of S;. If I; is not one of the Sy,..., Sk,
there exists Sy such that 7; NSy # @ and the sidelength of /; is at most that of S,.

k
Hence, I; C S;. Then K C |J S} so
=1

c<m(K) <) m(S)=3" Z_: m(Se).

=1
A function f : R — R is said to be locally integrable if f is Lebesgue measurable

and is m-integrable over every compact subset of R"™. The class of all locally integrable
functions on R" is denoted by LI (R").

N 147
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Let f € Ll (R™). We consider the problem of differentiating the indefinitc integral

loc

of f, [z fdm. That is, for what = does the limit,
li d S(z,r)),
iy [ fimm(s(z,1)
exist and for what z does the limit equal the integrand, f(z)? Note that for n = 1,

we are asking that

lim [ fdm/2r = f(z);

r—ot r—

we will see that information about the usual derivative,

tim [ gamh = f(2),

can be derived from our general results.

The principal tool used in our proof is the Hardy-Littlewood maximal function.
The Hardy-Littlewood Maximal Theorem gives bounds on the average value of a
function and this result is used in the differentiation theorem.

If fe Ll (R"), z € R" and r > 0, we set
Af(a) = [ fdmm(S(z,r)),

S(z,r
the average value of f over S(z,r), and M f(z) = sup A, |f|(z). Mf is called the
r>0
Hardy- Littlewood mazimal function.
Proposition 2 M [ is measurable. [In fact, M f is lower semi-continuous.]

Proof: We show E = {z: M f(z) < a} is closed for every a > 0. Suppose z; € I
and z; — z. Let Ay be the symmetric difference S(zk,r)AS(z,r) and fix = Ca, f.

Since ﬁ A =8, fr — 0 and |fi| < |f] so by the DCT fgn |feldm — 0. Since

k=1
S(z,r) C AxU S(zg, 1),
AN f (@) < fa, (fldm/m(S(z,7)) + [s(z, - | f1dm/m(S(ze, 7))
< Jr~ [fel dm/m(S(z,7)) + a.
Hence, A, |f|(z) < a and Mf(z) < a;ie,z € E.

Theorem 3 (Maximal Theorem) There exists a constant C > 0, depending only
on n, such that for all f € L' and a > 0, m{z : M f(z) > a} < (C/a) Jg~ |f|dm.

Proof: Let E, = {z : Mf(z) > a}. For each z € E, choosc r, > 0 such thatl
A, |f](z) > a. The cubes {S(z,7;) : z € E,} cover E,; so if ¢ < m(E,), by Lemma
1 there exist zi,...,zx € E, such that the cubes {S; = S(z,,7z,):j =1,...,k} are

k
pairwise disjoint and Y m(S;) > 37 "c. Then
=1
k 3n k 3n
<3 Y m(S) <= / 5 dmg—/ If| dm.
Smis) <S5 [ ams [

Since ¢ < m(£,) is arbitrary, the desired inequality follows.
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Theorem 4 If f € L. _(R"), then lin& A, f(z) = f(z) for m-almost all z € R™.

Proof: It suffices to show A, f(z) — f(z) for almost all z in the cube S(0, N)
for arbitrary N. For z in the cube and r < 1, the values of A, f only depend on the
values of f in S(0, N + 1) so we may assume that f € L!(R"). Let ¢ > 0 and pick
a continuous function with compact support g on R™ such that fg.|f —g/dm < ¢
[3.5.6]. Since g is uniformly continuous, for every z € R™ and § > 0 there exists r > 0
such that |g(y) — g(z)|] < 6§ when y € S(z,r) so

|4 g(<) - g(2)| =

/s(rvr)(g(y) — g(2))dy| /m(S(z,7)) <.
Hence, lim A,9(z) = g(z) and
i 4,1 (2) — £(2)] = T |4:(F — 9)(&) + (Arg(z) — 9(2)) + (9(=) — F(2)|

S M(f - g)(e) + 19 - fl ().
Let E, = {z : E|A,f(z)—f(z)| > a} and F, = {z : |f —g|(z) > a}. Then
E, C FopU{z : M(f —g)(z) > a/2}. But € > [ |f —g|ldm > am(F,) so by the

Maximal Theorem,

m(Eqs) < m(Fapa) + m{z : M(f - g)(z) > a/2} < 2(1—6+ %6_

Hence, m(E,) = 0 for all @ > 0, and the result follows.
We now show that Theorem 4 can be improved by moving the absolute value in
the conclusion,

= lim

r—0

lim

r—0

/S ., Jdm/m(S(@7) = f(z)

fo ) = F@dm/m(S ()| = 0,
inside the integral sign. A point z is called a Lebesgue point of f if

lim o) |f — ()| dm/m(S(z,7)) =0

r—0 5(
and the collection of all Lebesgue points of f is called the Lebesgue set of f.

Theorem 5 If f € L] (R"™), then almost every point of R™ is a Lebesgue point of f.

loc

Proof: By Theorem 4, for every ¢ € Q there exists an m-null set Z, such that

tig [ 170) — dldy/m(S(a,r) = |£(z) ~
forz € Z;. Set Z= {J Zq. Then m(Z) =0 and if z ¢ Z for any € > 0, there exists

7€Q
p € Q with |f(z) — p| < ¢. Since

|f(y) = f(@)] < [f(y) —pl + ¢
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B [ ) = Sl du/m(S(z,m) < 15() = pl + € < 2
limg [ 15 = f@)|dy/m(S(z,r) =0 for z ¢ 2.

Next we show that the limit in Theorem 5 above exists when more general sets
than cubes are considered. These results are particularly useful in R where they yield
differentiation results.

Definition 6 Let z € R*. A family of Borel sets, {F, : r > 0}, shrinks regularly to
z if E, C S(z,r) for every r > 0 and there exists a > 0 (independent of r) such that
m(E,) > am(S(z,r)) [z need not belong to E,].

Example 7 In R, the families {[z—r,z) : 7 > 0}, {[z,z+7) : r > 0} shrink regularly
toz [witha =2]. In R*, if E, = {y: ||z —y| <r}, then {£,} shrinks regularly lo
z.

For an example of a family of rectangles in R? whose interscction is {z} but which
do not shrink regularly to z see Exercise 1.

Theorem 8 Let f € L, (R"). If  is in the Lebesgue set of f and {E, : r > 0}

loc

shrinks regularly to =, then

1

lim ———
2 m(F,)

S 1) = f@)ldy =0

Hence,
1

Jim m(E,)

[ Sy = ().
Er

In particular, this holds for almost all z € R™.

Proof: Let a 'b}as in Definition 6. Then
f) = f@)ldy < s s /) — ()] dy

e I

(1.1)
< mk(w) [f(y) — f(z)|dy — 0

by Theorem 5. The last two statements follow from (1) and Theorem 5.
From Theorem 8 and Example 7 we obtain a version of the FTC in R. Let
f :[a,b] — R be integrable and let F'(z) = f7 fdm be the indefinite integral of f.

Theorem 9 (FTC) F is differentiable at every Lebesque point x of f with F'(z) =
f(z). In particular, this holds a.e. in [a,b].
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Finally, we consider the differentiation of arbitrary regular Borel measures on R
[The regularity assumption is redundant (2.7.6); we make this assumption for the
reader who has skipped §2.7.] Let v be a regular Borel measure on R™. We say
that v is differentiable at z if 11_1}01 v(S(z,r))/m(S(z,r)) exists; the value of this limit
is denoted by Dy(z) and is called the derivative of v at z. If v is an indefinite
integral of a locally integrable function, this agrees with our previous definition of the
derivative.

Lemma 10 If v is a regular Borel measure on R™ and v(A) = 0, then Duv(z) = 0
for almost all z € A.

Proof: For § > 0 let As = {z €A: hmi%((i—rr% > 5}. It suffices to show that
m(As) = 0 for every such §. Let € > 0. By regularity there is an open V' D A such
that ¥(V) < e. For each z € As there is an open cube with center at z, S, C V,
such that v(S;) > m(S;)é. By Lemma 1 if U = {J S, and ¢ < m(U), there exist

TEA;
zy,...,zk € As such that S, ..., S;, are pairwise disjoint with
k k
c<3 Y m(S) < (3%/6) X v(Ss,)
=1 i=1

IA

(3™/6w(V) < (3*/b)e.
Therefore, m(U) < (3"/6)e and since As C U and € > 0 is arbitrary, m(A4s) =
A signed Borel measure v is said to be regular if |v| is regular.

Theorem 11 Let v be a regular signed Borel measure on R™ and v = v, + v, be its
Lebesgue Decomposition with respect to m with f = %:, the Radon-Nikodym derivative
of v, with respect to m. Then v ts differentiable a.e. with Dv = f a.e. Furthermore,
for almost all z, hm v(E.)/m(E;) = f(z) whenever the family {E, : r > 0} shrinks

regularly to z.

Proof: By the Jordan Decomposition we may assume that v is a measure. The
first part of the Theorem follows from Theorem 4 and Lemma 10. The last statement
follows from Theorem 8 and Exercise 2.

Exercise 1. Let E, = [-r,r] x [-7%,7%]. For r < 1, show E, C S(0,r), N,»¢ Lr =
{(0,0)}, but {E, : r > 0} doesn’t shrink regularly to (0,0).

Exercise 2. Let v be a Borel measure on R™ and v(A) = 0. Show that for almost all
¢ € A, imv(E,)/m(E,) = 0 when {E, : r > 0} shrinks regularly to z [Lemma 10].

Exercise 3. Show A, f(z) is continuous in r.

Exercise 4. Let f : [a,b] — R be integrable and F(z) = [ fdm. If f is continuous
at z, show F'(z) = f(z). f
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4.2 Differentiation of Monotone Functions

We use the results of the previous section to establish a result of Lebesgue on the
almost everywhere differentiability of a monotone function. Again all measurability
statements refer to Lebesgue measure.

Let f : R — R be monotone [assume for definiteness that f T]. Then f is not
continuous at z if and only if f(z*) — f(z7) > 0, i.e., if and only if f has a jump
discontinuity at z. If z is a discontinuity of f, we may choosc a rational r, satis{ying
f(z7) <r, < f(z*) and obtain a 1-1 mapping x — r, from the set of discontinuitics
of f into Q. This shows that the sct of points of discontinuity of a monotone function
is countable. Hence, a monotone function has points of continuity in every open
interval.

We first consider the case of left continuous increasing functions. Such functions
induce Lebesgue-Stieltjes measures and Theorem 4.1.11 can be used to prove their
a.c. differentiability.

Theorem 1 Let f: R — R be T and left continuous. Then [ is differentiable a.e.
with f' = Duy a.e.

Proof: Let y; be the Lebesgue-Stieltjes measure induced by f. Then Dy, exists
a.e. [4.1.11]. The families {[z —h,z): A > 0} and {[z,z+ ) : h > 0} shrink regularly
to z [Example 4.1.7] so the limits

. 0 fl@)=flz—h) ,

hl_l.I(T)]*'#f[I_h’I)/hghll.r(I)lT_‘])#I(I)
e fla+ 1)~ f(z)

. . 4+ h) - f(z

Jim gl z 4 k)b = Jim TSI LD (g

exist for almost all z by Theorem 4.1.11. Thus, f'(z) exists for almost all z and
f'=Dupy ae.
We now remove the left continuity assumption from Theorem 1.

Let f: R — R be 1. Define f, : R — R by fu(z) = f(z7) = yl_igl_ S ().

Then f. < f, f« T and f. is left continuous [for each z there exists z; T z such
that f is continuous at zx so f(z7) = lim f(zx) = fu(z) = lim fu(z4)]. Similarly,
fo(zt) = fu(z) = f(z7) — f(z7) so f and f. have the same points of continuity.

Lemma 2 If f. is differentiable at z, then f is differentiable at z with fi(z) = f'(z).

Proof: Let m = fl(z). Note f(z) = f.(z) since f. is continuous at z. Let

"

e > 0. Choose § > 0 such that m — e < (fu(y) — fu(2))/(y — ) < m + ¢ when
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0 <|y—z| <6 Fixy with 0 < |y —z| < § and choose a sequence {y;} such that
yx | y with 0 < |yx — x| < 6 and f continuous at each yx. Then

m—e< (fu(y) — f(2)/(y —z) < (fly) — f(2))/(y — 2)
< (fly*) = f(2)/(y — 2) = im(fu(yx) = fu(2))/(yx — ) Sm + ¢

I(F(y) = f(2))/(y —z) —m| < e

when 0 < |y — z| < §. Hence, f'(z) = m.
Theorem 3 (Lebesgue) If f: R — R is T, then [’ exists a.e.

Proof: Lemma 2 and Theorem 1.

There are proofs of Lebesgue’s Theorem which do not use measure theory. See
[RN] 1.2 for a proof due to F. Riesz.

This result cannot be improved to read that f' exists except for a countable set
of points. Indeed, we have

Proposition 4 If E C [a,b] has measure 0, there is a continuous increasing funétion
f :la,b] — R such that f'(z) = oo for everyz € E.

Proof: For each k € N choose a bounded open set G} > E with m(Gy) < 1/2*.
Set fk(.‘lt) = m(Gx N[a,z]). Then f is continuous, increasing and fr < 1/2* on [a, b].

If f= E f&, then f is continuous, non-negative and increasing. If z € £ and & > 0

is sufﬁc1ently small, the interval [z, + &] lies in G so for such &, fy(z + k) — fi(z) =
m(z,z + h] = h. Thus, (fi(z + k) — f(z))/k = 1 for small A > 0. For every N if
h > 0 1s sufficiently small,

(a4 0) = F@D/h > S (il + ) = fla))f = .
Hence, f'(z) = co

Notation: If [ is an interval in R and f : I — R is differentiable a.e. in I, we denote
by f the function defined on I by f(t) = f'(t) if f'(t) exists and f(¢) = 0 otherwise.

Concerning the integrability of the “derivative” of a monotone function, we have
g g >

Theorem 5 If f : [a,b] — R is increasing, then f is integrable and rf< sy -
/(a). !
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Proof: Extend f to [b,00) by setting f(t) = f(b) for t > b. For each k set
gk(t) = (f(t 4+ 1/k) — f(£))/(1/k) for @ <t < b. Note gx — f a.e. and gx > 0. By
Fatou’s Theorem,

f2f < lim [} grdm = Km(f2 kf(t + 1/k)dt — [° kf(t)dt)

= Tim(k (2117 fdm — k [ fdm) = lm(k fEY* fdm — k (245 fdm)

= Lm(f(b) — k [2*/* fdm) = f(b) — Timk [/ fdm < f(b) — f(a).

Strict inequality in Theorem 5 can hold.

oo 2™
Example 6 Let K be the Cantor set in [0,1] and let [0,1\K = U U {} as in

n=0 k=1
Example 2.5.7. Define f(t) = 22! for t € I} [make a skelch]. Then f is increasing
and continuous on /£ and the range of f is dense in [0,1] so f can be extended to
a continuous function, f, on [0,1] [f(z) = inf{f(t) : ¢t < z,t € K°}]. Obviously,

fl(t)y=0fort € K°so f'=0ae. But, [y f=0< f(1)— f(0) = 1.

The function f constructed above is called the Cantor function.

Remark 7 Increasing functions f with the property that f' = 0 a.e. arc called
singular functions. There are examples of strictly increasing singular functions; sce
[Fre], (RN] p. 44-49, or [HS] p. 278-282. For two entertaining articles on singular
functions see [Cat] and [Za].

We address the question of when equality holds in Theorem 5 of scction 4.4.
We next present an interesting result on the termwise differentiation of a series
due to Fubimi.

Lemma 8 Let fi : [a,b] — R be increasing and assume 3. fi converges poinlwise to
k=1

fo. Then § fi converges a.e.
k=1

Proof: Since fo is also increasing, f} exists a.e. forall £ > 0. Il E = {t: fi(¢)
exists for all k > 0}, then m(E°) = 0 and 0 < fi(t{) < oo fort € E, k > 0. Let

Sp = i fx. Since (fo—s,) Tforn > 1, fi > s on E which implies that lim s/, exists
k=1 n

oo .
on E [since s}, > s;,]. That is, kzl Sk converges a.e.

Theorem 9 (Fubini) Let f; : [2,b] — R be increasing and assume § fr converges
k=1

pointwise to fo. Then fo =3 fk a.e.
k=1
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Proof: The series § fx converges a.e. by Lemma 8. By replacing fx by fi — fi(a)
if necessary, we may I:a:sume that fi > 0. It suffices to show that there exists a
subsequence {s,,} of sx = Zk: f; such that s,, — f a.e. since §, < Sp,41. For each
k there exists nx with 0 < Jf;l(b) — 80, (B) < 1/2* where we may assume nx < ngy-

Since (fo — sa,) T, for each t € [a, ],

0 < folt) = smy(t) < fo(b) — smy (B) < 1/2".
Therefore, the series § (fo — sn,) converges uniformly on [a, b]. Since (fo — sa,) T, it
k=1

follows from Lemma 8 that 3 (fo — $n,) CODVErges a.e. SO $n, — fae.
k=1

Dini Derivates:

In the calculus we learn that a function f : [a,5] —» R which has a non-negative
derivative in [a,b] is increasing [this follows from the Mean Value Theorem]. We
consider a strengthening of this result. The material which follows is used only in
section 4.3 and can be skipped by the reader who does not wish to go through this
section.

Let I = [a,b] and f : I — R. The Dini derivates of f at z € I are defined to be
&* (=) = T (7(1) — SN/~ =),
dy fz) = lim, .+ (f(t) = f(2))/(t — z),
& 1(z) = T ((1) = F(=)/(t ~ =),
d_f(z) = lim, ..-(f(t) — f(2))/(t — ).
The upper (lower) derivative of f at z is defined to be
Df(e) = Fmeea(F(8) — S@)/(t—2)  (Df(@) = lim,_.(F(t) — f(2)/(t — 2)).

[See Exercise 4 for the definitions.]

Thus, f is differentiable at z if and only if all four Dini derivates of f at z are
equal and finite if and only if the upper and lower derivatives are equal and finite. The
derivative is then the common value. Some of the elementary properties of derivates

are given in Exercise 6.

Proposition 10 Let f : I — R be continuous. If ¢ > (f(b) — f(a))/(b— a), then
at uncountably many points = of (a,b) we have d* f(z) < c. [Similarly, if (f(b) —
f(a))/(b—a)>c, df(z) 2 c]

Proof: Set k = ¢(b — a) and consider the function

g(z) = f(z) — f(a) — kiz — a)/(b— a).
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Then g(a) = 0 and

g9(b) = f(b) — f(a) —k <0.
Let s be such that 0 = g(a) > s > g(b). Consider the set E = {t € [a,b] : g(¢) > s}.
Since g is continuous on [a, b], this set is closed, and, therefore, compact. Hence, if
t, = sup E, by continuity of g, ¢(t,) = s, and since g(b} < s,t, < b. Since g(t,+h) < s
for sufficiently small 2 > 0, dtg(¢,) < 0 so

d* f(1) = d¥g(t.) + k/(b—a) S kj(b—a) = c

[Exercise 6]. Different s’s generate different ¢,’s and there are uncountable many
s's between 0 and g(b) so there are uncountably many points ¢ € (a,b) such that

d*f(t)<c
This result i1s a substitute for the Mean Value Theorem for non-differentiable
functions.

Theorem 11 If f is continuous and one Dini derivate is non-negative except perhaps
for a countable number of points in [a,b], then f is increasing.

Proof: Suppose d* f(¢) > 0 except possibly for countably many points ¢ in [a, ]
[d+f(t) > 0 implies this and the case d~ f(¢) > 0 is similar]. If f is not increasing,
there exist r < y such that f(z) > f(y). Use Proposition 10 with

(fly)—f2)/(y—z)<c<0

on [z,y] to obtain that d¥ f(¢) < 0 at uncountably many points in [z,y]. This con-
tradiction establishes the result.
This result obviously covers the usual calculus test for increasing functions.
More information on Dini derivates can be found in [Boa].

Exercise 1. Show that if f: R — R is monotone, f is measurable.

Exercise 2. Let D = {#} be any countable subset of R. Show there exists an
increasing function f whose discontinuities are exactly D. [Hint: Choose ax > 0 such

that Zak<oo Define fi(t) = 0if ¢t < ¢ and fi(t) = ax if £ > #x. Put f = ka

and show f is continuous in D¢ and has jump ay at #;.]

Exercise 3. Show that a continuous, nowhere differentiable function is not monotone
on any non-degenerate interval.

Exercise 4. Let f:[a,b] =1 — R and z € I. The limit superior of f at z, llimf (),
is defined by
%i_mf(t)ziglgsup{f(t):te o< |t—=z| <e}.
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Define limit lnferlor hm f (), and establish the analogues of the statements in Exer-

cises 1.2.1 and 1.2. 10 Deﬁne one-sided such limits.

Exercise 5. Let f(t) = tsin(1/t) if t # 0 and f(0) = 0. Compute the four Dini
derivates of f at 0. Now construct a function all of whose Dini derivates are not equal
at 0.

Exgrase 6. Show df(x) +dg(z) < d(f+g)(z) (df(z)+dg(z) > z(f—i-_g)(x)), where
d (d) is any lower (upper) derivate. Show that if f'(z) exists, then d(f + g)(z) =

f'(z) +dg(2), d(f + g)(2) = f'(z) + dg().

Exercise 7. If f T, show any derivate is > 0.

Exercise 8. I f assumes a local maximum at z, show d* f(z) < 0 and d_f(z) > 0
Exercise 9. If max{Df(z),Df(z)} < oo , show f is continuous at z.

Exercise 10. Show Theorem 5 can be improved to

[ ) -1,

Exercise 11. If f in Theorem 5 is not continuous, show strict inequality holds.
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4.3 Integrating Derivatives

In this section we consider the other half of the Fundamental Theorem of Calculus
(FTC), the integration of derivatives. We begin by showing that the most gencral (and
most desirable!) form of the FTC does not hold for the Lebesgue integral by giving
an example of a derivative which is not Lebesgue integrable. Again all mcasurability
statements refer to Lebesgue measure.

Example 1 Let f(t) = ¢*cos(r/t?) for 0 <t <1 and f(0) = 0. Then f is difleren-
tiable on [0,1] with

F(t) = 2t cos(m /t?) + (27 /t) sin(7 /%)

for 0 < ¢ <1and f(0) =0. For 0 <a < b<1, f is bounded on [a, b] and, therelore,
is (Riemann) integrable with

b
/; fldm = b cos(m /%) — a* cos(m[a?).

If we set b = 1/V2k, ax = \/2/(4k +1), then [* f'dm = 1/(2k). The intcrvals
{[ak, b]} are pairwise disjoint so [y |f'|dm > § fab: |/'|dm > f 1/(2k) = co.
k=1

£=
Hence, f’ is not integrable over [0,1].
We establish the most general form of the FTC for the Lebesguc integral.

Lemma 2 Let f : [a,b] — R. Suppose all Dini derivates are non-negative a.c. in
[a,b] and that no Dini derivate is —oco. Then f is increasing.

Proof: Let E be the set of points where some derivate is negative. 3y 4.2.4 there
exists an increasing function g : [a,b] — R such that ¢’(z) = oo for every z € E. Let
€ >0 and set h = [+ eg. At all points of [a, b]\ E all dcrivates of & arc non-negative
[Exercises 4.2.6 and 4.2.7]. The same holds at points of E since g'(z) = oo for z € £
and the derivates of f at these points are not —oco. Thus, by 4.2.11, 2 T. lence, if

z <y, f(z)+eg(z) < f(y) + eg(y), and letting € — 0 gives f(z) < f(y).

Theorem 3 (Fundamental Theorem of Calculus) Let f : [a,8] — R be differ-
entiable on [a,b]. If f' is Lebesgue integrable over [a,b], then

[ £dm = 1(8) - fta).
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Proof: Define gx(¢) = f'(t) if f/(t) < kand gx(t) = kif f/(¢) > k. Then |gs| < |f/]
and gy — f' pointwise on [a,b]. Set rx(t) = f(t) — [} grdm. We claim that ry T. First,
observe that ry is differentiable a.e. with ri = f' — gx > 0 a.e. [4.1.9]. Since gx <k
on [a,b], [*t* grdm/h < k for z € [a,b], b sufficiently small. Thus,

(rele+ W) = r(@)/h = (4 W) = J@N = [ gedmh > (x4 k)~ F() /b~

so no derivate of ry is —oo. By Lemma 2, r; 1. In particular, rg(b)
f(b)— fla) > [ gedm. By the DCT, lim ! gedm = [ f'dm so f(b)— f(a)

Replacing f by —f gives the reverse inequality.

Of course, the annoying feature of Theorem 3 is the need for the hypothesis that
f' is Lebesgue integrable. [Recall that the Riemann integral suffers this same defect.]
Example 1 shows that this assumption is necessary. It would be desirable to have
a theory of integration for which the FTC holds in full generality, i.c., a theory for
which all derivatives are integrable and the formula in the FTC holds. Two such
theories were developed by Perron and Denjoy [see [Pe] for a description of these
integrals]. Lately, a very simple integral which is but a slight variant of the Riemann

;;()or

2
2 [i fldm.

Ja

integral, called the gauge integral, has been given independently by Kurzweil and
Henstock ([Ku], [He]} for which the FTC holds in full generality [see [DeS] or [Mc]
for a description of the integral].

The statement in Theorem 3 cannot be improved to “f’ exists a.e.”. See the Cantor
function in 4.2.6. However, the statement can be improved to “f’ exists except for a

countable number of points” [see [Co] 6.3.10, [HS], p. 299, [Wa]].
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4.4 Absolutely Continuous Functions

In this section we consider a form of the FTC in which the functions are only dif-
ferentiable a.e. [again all measurability statements refer to Lebesguc measure]. In
particular, for increasing functions we are asking when equality holds for the incqual-
ity in Theorem 4.2.5. Recall that if f : [¢,b8] — R is differentiable a.c., we denote by
f the function f(t) = f/(t) when f'(t) exists and f(¢) = 0 otherwise.

Suppose f : [a,b] — R is increasing and f(z) — f(a) = [Z fdm fora <z < b, i.e.,
equality in Theorem 4.2.5 for all @ < z < b. Since m(lli;r)rLOfE fdm =0 [3.2.17], for

every € > 0 there exists § > 0 such that whenever {{a;, )}, is a pairwise disjoint

sequence of subintervals of [a, b] with Zn: (bi — a;) < 6, then

=1

n

> " fdm‘ :Xn:|f(b.’) — fla))] < e

i=1 V% i=1

Functions which satisfy this condition are called absolutely continuous; we give the
formal definition.

Definition 1 Let f : [a,b] — R. Then f is absolutely continuous if for every ¢ > 0
there exists § > 0 such that whenever {(a;,b;)}L, is a pairwise disjoinl sequence of

open subintervals of [a, b] with Zn:(b, —a;) < b, then
1=1

n

DoIf(b) — fla)| < e

=1

Example 2 The function f : [a,b] — R satisfies a Lipschitz condition il there exists
L > 0 such that |f(z)— f(y)| < L|z —yl| for z, y € [a,b]. Such a function is
obviously absolutely continuous. [The converse is false; see Excrcise 7.] For exainples
of functions which satisfy a Lipschitz condition, see Exercise 1.

Proposition 3 Let [ : [¢,b] — R be absolutely continuous. Then (i) [ is uniformly
continuous and (1) [ is bounded variation.

Proof: (i) is clear. For (ii), let € = 1 and § be as in Definition 1. Partition [a, b] by
P={a=zo<z1<... <z,=0>0}, where z;yy —2; < 6. Then Var(f : [zi,zi11]) £ 1
fori=0,...,n— 1. Hence, Var(f : [a,b]) < n.

We show below that the converses of (1) and (ii) are false [see Examples 5 and 9].

Corollary 4 If f : [a,b] — R is absolutely continuous, then f' ezists a.e. and f s
integrable.
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Proof: By Proposition 3 and Theorem 8 of Appendix Al, f is the difference of
two increasing functions, so the result follows from Theorem 4.2.3.

Example 5 The function f in Example 4.3.1 is uniformly continuous but not abso-
lutely continuous by Corollary 4.

Algebraic properties of absolutely continuous functions are given in Exercises 2-6.

We use Lebesgue-Stieltjes measures to describe the relationship between abso-
lutely continuous set functions and absolutely continuous functions on intervals in
R.

Let f : [a,b] — R be left continuous and have bounded variation. Then f = g—4,
where g and h are left continuous and increasing [Appendix Al]. Extend f (g and
h) to R by setting f(t) = f(b) [g(t) = g(b), h(¢t) = h(b)] for t > b and f(t) = f(a)
[g(t) = g(a), A(t) = h(a)] for t < a. Then g and k are bounded, left continuous
and increasing and, therefore, induce finite Lebesgue-Stieltjes measures g, and ps.
Ilence, gy = py — px is a finite, signed measure; we call g, the Lebesque-Stieltjes
signed measure induced by f. Note psle, 8) = f(B) — f(e) for a < 8.

Theorem 6 u; < m if and only if f is absolutely continuous.

Proof: «: Let A C (a,b) have m-measure 0. Let ¢ > 0 and let § > 0 be as
in Definition 1. There exists a pairwise disjoint sequence of open intervals in (a, b),

{(a:, b;)}, such that G (ai,b:) D A and i(b,- —a;) < 6 [2.5.3]. For each n
i=1 =1

Xi:lf(b f(a' I—Zlyfa,, ‘<6

so by Exer. 2.6.6

i—o:/‘f[anbi) = /lf(@(a,‘,b;)) <e

Hence, ps(A) = 0 and |uys] (A) = 0 by 2.2.1.7.
=: Note yyle, 8) = ps(e, ) for @ < B. Since py is finite, for every € > 0 there
exists 6 > 0 such that m(A) < 6 implies |ps| (A) < € [3.12.5]. Suppose {(a;, b))}, is

a pairwise disjoint sequence from [a, b] with Y (b; — a;) < §. Let
1=1

o={i: f(b;)— f(a;) 20} and 7 = {i: f(b)— f(a;) <0}.
Then

i (Ufes0) | = S 15060~ s(a <

i€o i€o
and

/U(U (a:, b )} D1F(b) = flai)| < e

i€T i€T

so 2::1 | £(b:) — fla:)| < 2e.
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Theorem 7 Let f:[a,b] — R be differentiable a.e. Then f is absolulely continuous
if and only if f is integrable over [a,b] and f(z) — f(a) = [ fdm fora <z <b.

Proof: =: By Theorem 6 x; <« m, and by Theorems 4.1.11 and 4.1.9

_ d:uf o
Dy = am f
a.e. Hence, ps[a,z) = f(z) — f(a) = [* fdm.

<«: 3.2.17.

Remark 8 Theorem 7 is sometimes referred to as the FTC for the Lebesgue integral.
Note that Theorem 7 gives necessary and sufficient conditions for cquality to hold in

Theorem 4.2.5.

Example 9 The Cantor function [4.2.6] is continuous, increasing, and hence bounded
variation, but is not absolutely continuous by Theorem 7.

A function f : [a,b] = R of bounded variation which is such that f = 0 a.c.
is said to be a singular function. The Cantor function supplics an example of a
non-constant singular function.

Theorem 10 Let f € BV]a,b] be left continuous. Then f is singular if and only if
py Lm.

Proof: Let gy = (gs)a + (17)s be the Lebesgue Decomposition of iy with respect
to m. By Theorems 4.1.11 and 4.1.9 f' = Dy, = (—1)— a.c. The resull now follows.

Theorem 11 (Lebesgue Decomposition) Let f € BV[a,b]. Then there cxisl g,
h:la,b] = R such that f = g + h with g absolulely continuous and h singular. The
decomposition is unique up to a constant.

Proof: Set g(z) = 7 fdm and h = f — g. Then g is absolutely continuous by
Theorem 3.2.17 and A is singular by 4.1.9. Uniqueness follows from Excrcisc 8.

Change of Variable
We use the results above to establish a change of variable theorem for the Lebesgue
integral.

Theorem 12 Let ¢ : [a,b] — R be increasing and absolutely continuous and set
a = g(a), B = g(b). Let f: [a,f] = R* be Lebesgue integrable over [a,B]. Then

(fog) g is Lebesgue integrable over [a,b] and

b . g
[ ) dt = [ f@)de. (4.1)
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Proof: First suppose f is the characteristic function of a half closed interval

[v,6) C [a, B]. Let ¢ = inf{t : g(t) = v}, d = sup{t : g(t) = 6}. Then fog = Cl.q) so

[ fam=5-1=g@)~g)= ["ddm=[(fog)ddm

or (1) holds. It follows that (1) holds for S-simple functions, where S is the semi-ring
of all half-closed intervals.
Now suppose f is Lebesgue integrable over [a, §]. By Mikusinski’s Theorem (3.8.3)

there exists a sequence of S-simple functions {fz} such that § T2 fel dm < oo,
k=1

f fi(z) = f(z) for any z for which § |fe(z)| < oo and [P fdm = f 15 frdm.

k=1 k=1 k=1

We show the sequence {(fx 0 g) 9} satisfies the conditions of Exercise 3.8.1 for the
function (f o g) 9. First,

X b . X B
> [Uioglgdm =3 [ 1fildm < o
k=1"¢ k=17¢

by the part above. Suppose

oo

g (t)' < oo

If g (t) = 0, then
3 fila(®) 9 (1) = f(g(t) 9 (1)
k=1

while if g () > 0,
E_: Felg(8) 9 (8) = f(g(1)) 9 (2).

By Exercise 3.8.1 (f o g) 9 is Lebesgue integrable and

/(ng gdm—Z/ (frog) gdm—Z/ frdm = /fdm

There are other useful conditions under which equation (1) holds. For example,
(1) holds if f is bounded and integrable and g is absolutely continuous. See [St2] for
a thorough discussion of the validity of (1). It should be pointed out that (1) does
not hold in general even when f is integrable and g is absolutely continuous {Exer.
13).

For change of variable in Lebesgue integrals in R™, see [Ru2].

Exercise 1. Show that if f : [¢,8] — R has a bounded derivative, then f satisfies a
Lipschitz condition. /
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Exercise 2. Let f, g : [a,b] — R be absolutely continuous. Show |f|, f + ¢, fg are
absolutely continuous. What about 1/f? Thus, if AC[a,b] denotes the space of all
absolutely continuous functions, AC|a, ] is a vector subspace of BV [a, b].

Exercise 3. Show the composition of absolutely continuous functions needn’t be
absolutely continuous.

Exercise 4. If f and g are absolutely continuous and ¢ T, show f o g is absolutely
continuous.

Exercise 5. If f satisfies a Lipschitz condition and ¢ is absolutely continuous, show
f o g is absolutely continuous.

Exercise 6. Is the uniform limit of absolutely continuous functions necessarily ab-
solutely continuous?

Exercise 7. Show f(t) = t'/2, 0 < t < 1, is absolutely continuous but does not
satisfy a Lipschitz condition.

Exercise 8. Let f :[a,b] — R be absolutely continuous. If f' =0 a.e., show f =
constant.

Exercise 9. Let f, g be absolutely continuous on [a, b]. Show

[ sidm o+ [ fgdm = 1(8)g) ~ F(@)g(e)

Exercise 10. If f : [a,b] — R is absolutely continuous, show Var(f : [a,}]) =
3| ] drm.

Exercise 11. Let f : [a,b] — R. Show f is absolutely continuous if and only i
z — Var(f :[a,x]) is absolutely continuous.

Exercise 12. Let f : [a,b] - R. Show that f satisfies a Lipschitz condition as in
Example 2 if and only if f is absolutely continuous and |f'| < L a.e.

Exercise 13. Let f(z) = 1//z for z > 0 and f(0) = 0, g(¢) = t*sin(1/t) for t # 0
and g(0) = 0. Show f is integrable over [¢(0), g(7/2)], ¢ is absolutely continuous but
(1) fails for [a,d] = [0,7/2].



Chapter 5

Introduction to Functional
Analysis

5.1 Normed Linear Spaces

In part 6 of these notes we consider some of the classic spaces of functions, most
of which are associated with either measures or integrable functions. We begin by
establishing an abstract framework, essentially due to S. Banach ([B1]), in which we
can study these function spaces.

Let X be a vector space over the field F of either real or complex numbers. A
topology 7 on X is a vector topology or linear topology if the maps (z,y) — (z + y)
from X x X into X and (f,z) — tz from F x X into X are continuous [with respect
to the product topologies]. If 7 is a vector topology on X, the pair (X, 7) is called a
topological vector space (TVS) or X is called a TVS if the topology is understood. A
(semi)-metric linear space is a TVS whose topology is given by a (semi-) metric. For
an example of a semi-metric linear space, we have

Example 1 Let u be a finite measure on a o-algebra Y~ of subsets of S.

Let L°(u) be the space of all real-valued ¥-measurable functions; if mm is Lebesgue
measure on an interval I, we set L°(I)= L°(m). Then

_ lf -4l
d(f,g)—/5—1+|f_g|dﬂ

defines a semi-metric on L%(y) [3.6.8]. Since convergence in d is exactly convergence
in p-measure [3.6.9], L°(y) is a (complete) semi-metric linear space under d.

Most of the spaces which we consider are normed spaces, we use the semi-metric
linear space in Example 1 and the one in Example 8 to illustrate some of the important
properties of normed spaces.

Definition 2 A norm on X is a function |||| : X — R satisfying

(1) |lzll = 0 for all x € X and ||z|| = 0 if and only if z = 0§

165
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(1) ||tz|| = |t||=|| for allz € X and t € F,

(ii1) ||z + |l < llz|| + Iyl for all , y € X [triangle inequality].
If a function ||| : X — R satisfies (i), (i) and

(i) |zl =0 for all z € X,

then |||| is called a semi-norm on X [note from (ii) that ||0] = 0].

We establish an important inequality associated with the triangle inequality. Let
z,y € X. Then |lo| < |z —yll + [lyll by (iii) so [lz[| = [ly| < [lz — y]|. By symmetry
lyll = ll=ll < lly — | = [l= — y[l by (ii). Hence,

(Av) Nz =yl = M=l = Nyl

If || || is a (semi-) norm on X, the pair (X, ||||) is called a (semi-) normed space
[semi-NLS or NLSJ; if the (semi-) norm is understood, X is called a (semi-) NLS.

If X is a (semi-) NLS, then d(z,y) = ||« — y|| defines a (semi-) metric on X which
is translation invariant in the seuse thal d(z + z,y + z) = d(=z,y) for z, y, z € X.
We always assume that a (semi-) NLS is cquipped with the topology induced by the
(semi-) metric d. We now show that a (semi)-NLS is a TVS.

Proposition 3 Let X be a semi-NLS. Then
(a) the map (t,2) — tz from F x X — X is continuous,
(b) the map (z,y) — 2 4y from X x X — X is continuous,
(c) the map z — ||| from X to R is continuous.
Proof: (a): Let |ty —# — 0 and ||jzx — x|| — 0. Then
ltere — tell < [te =t [zl + [tsl [lox — ]

and (a) follows.
(b) follows from the triangle inequality and (¢) follows from (iv).

A semi-NLS is said to be complete if it is complete under the scini-metric induced
by the semi-norm, i.e., if every Cauchy sequence converges. A complete NLS is called
a Banach space or a B-space. We give an interesting characterization for completeness
in terms of series.

o0
Let 5 x4 be a (formal) scries in a semi-NLS X. The series 3 zj is said to
k=1 k=1
. . - . k . .
converge in X if the sequence of partial sums, s, = 3 z,, converges in X; we write
1=1
ety . . . . . .
xy = lim s; for the sum of the series. The series is said to be absolutely convergent
=1

o =
in X if 3 ||zk]| < oo.
k=1

x
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Theorem 4 A semi-NLS X is complete if and only if every absolutely convergent
sertes in X is convergent.

00 k
Proof: =: Let 3 ||lzx|]| < oo and sx = 3 z;. If £ > j, then by the triangle
k=1 =1

inequality
k
5 =

i=5+1

k
< 2 =l

1=3+1

l[sx = s;ll =

so {sx} is a Cauchy sequence and must converge to some point in X.
<: Let {zx} be a Cauchy sequence in X. Pick a subsequence {z,,} satisfying

o0
”znk“ — 2, || < 1/2%. Since the series kE_:l(anl — z,,) is absolutely convergent, it

converges to an element z € X so

o0

Z(I"k+l - Ink) = h{“(zﬂkﬂ - Iﬂ]) =z

k=1
and the subsequence {z,, } converges to z + z,. Since {z}} is Cauchy, zx — =+ z,,.

We now give several examples of metric linear and normed spaces. Most of the

spaces which we consider are normed spaces, but we give two examples (Examples 1
and 8) of metric linear spaces in order to illustrate some of the important properties
of normed spaces.

Example 5 If § # 0, let B(S) be the space of all bounded, real-valued functions
defined on S. B(S) is a vector space when addition and scalar multiplication of
functions is defined pointwise. B(S) also has a natural norm, called the sup-norm,
defined by || f|| = sup{|f(t)| : t € S} [Exercise 1]. B(S) is a B-space under this norm,
for suppose that {fi} is a Cauchy sequence in B(S). For ¢t € S, |fi(t) — f;(¢)| <
I/« — fill so {/x(¢)} is a Cauchy sequence in R. Let f(t) = lim fx(t). We claim that
f € B(S) and ||fx — f|| — 0. Let € > 0. There exists N such that k, j > N implies
|fx — fill <e Then |fi(t) — f;(t)] < efor k, j > N and t € S. Letting j — oo gives
[fx(t) — f(t)| < efor k> N,t € Sso|fx — fl| L efor k> N. Hence, fx — f € B(S5)
so f € B(S) and fiy — f with respect to the sup-norm.

Example 6 Let S be a compact Hausdorff space and C(.5) the space of all continuous
functions on S. Then C(S) is a linear subspace of B(S). Since convergence in the
sup-norm is exactly uniform convergence on S, C(S) is a closed subspace of B(S)
and is, therefore, complete.

Example 7 Let ¢ be a measure on the o-algebra, Y, of subsets of S. As in §3.5
let L'(u) be the vector space of all real-valued, p-integrable functions. Then || f||, =
Js |f] du defines a semi-norm on L'() which is complete [Riesz-Fischer Theorem].

If §$ = N and g is counting measure on N, we set L'(x) = £'. Thus, £ consists
of all sequences {¢;} such that

oo

I{t5}l, = D211 < oo, |

7=1
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We will consider other spaces of integrable functions in §6.1.
The examples which we give now are sequence spaces; we give further examples
of function spaces and study them in detail in later chapters.

Example 8 Let s be the space of all real-valued (or complex-valued) sequences.
Then s is a vector space under coordinate-wise addition and scalar multiplication.
We define a metric, called the Frechet metric, by

d({ss}, (6)) = by — 6111 +1sy — )2

It is easily checked that d is a translation invariant metric on s [Lemma 3.6.7 gives
the triangle inequality].

We first observe that convergence in the metric d is just coordinatewise con-

vergence. For suppose that zf = {z;‘}ool and z = {z;} are scquences in s. If
j=

d(z*,z) — 0, then lim, z} = z; for each j since

d(z*,z) > |z’F — zj‘ /(1 + |zf — Ij|)2j.

j
Conversely, suppose limz* = z, for each j and let ¢ > 0. There exists N such that
P !

%o: 1/27 < €/2. There exists M such that k > M implies
=N

N-1
k
‘zj - Ij' < €f2.
3=1

Hence, if £ > M, then

N-1

d(z*,z) < > ‘z’;—zj‘ + f}vl/Zj <e.

7=1
It follows from this observation that s is complete under d [Exercise 2].

Example 9 Let £~ be the linear subspace of s which consists of the bounded se-
quences [so £*° = B(N)]. Then

[{tx}Hloo = sup{[te| : & € N}

defines a norm on £ called the sup-norm and £ is a B-space under the sup-norm
(Example 5).

Example 10 c is the subspace of £ which consists of the convergent sequences.
We assume that ¢ is equipped with the sup-norm. We can show that ¢ is a B-
space by showing that it is a closed subspace of the complete space £°. So suppose

z* = {zf}zl is a sequence in ¢ which converges to the point z = {z;} € £*. Let
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hrnz = £} for each k. Since ”z" —z“w > ‘zf — zj| for all j, liinz;? = z; uniformly

for 7 € N. Hence,

limlimx¥ = lim#4, = limlimx¥ = limx;
ko5 ! k ik i

50 T € c.

Example 11 ¢; is the subspace of ¢ consisting of all the sequences which converge
to 0. We assume that cg is equipped with the sup-norm.

As in Example 10, ¢ is a B-space [Exercise 3].

Example 12 Let coo be the subspace of ¢o which consists of all sequences z = {z;}
which are eventually 0, i.e., there exists NV (depending on z) such that z; = 0 for
7 > N. We assume that c¢qg is equipped with the sup-norm. We show that coo is not
complete. Let ¢* be the sequence in cgo which has a 1 in the k** coordinate and 0 in
the other coordinates. If

=2_(1/5)¢

j=1

then {z"} 18 a Cauchy sequence in cgg which does not converge to a point in cog.

coo 18 a very useful space for giving counterexamples to results involving complete-
ness.
We will give further examples of sequence spaces in §6.1.

Example 13 Consider R" (or C"). R" has, of course, the usual Euclidean norm

n
”1”2 = ||(I], v '1zn)”2 = E |I.’|2,
Jf:l

but it also has other natural norms. For example,

lzlly = (21, za)lly = le‘

oI
el = (z1s s @alllo = max{|zi| : 1 <2 < n}.

[We give a further family of norms on R™ in §6.1.]

If |||, and |||, are two norms on a vector space X, |||, and ||||, are equivalent
if there exist a, b > 0 such that a||||, < |||, £ b][|};. We show that all norms on
R™ are equivalent so, in particular, the three norms given above in Example 13 are
equivalent.

Theorem 14 Any two norms on R™ are equivalent.
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Theorem 14 Any two norms on R™ are equivalent.

Proof: By Exercise 5, it suffices to show that any norm, ||||, on R" is equivalent
to the Euclidean norm, ||||,-

Let e; be the vector in R™ which has a 1 in the i** coordinate and 0 in the other
coordinates. If z = (z;,...,r,) € R* then

n n ) 1/2
Izl < 37 |zl lledll < llzll, (Z llesll )
=1 i=1

by the Cauchy-Schwarz inequality.

Next, let S = {z : ||z|]|, = 1} and define f : S — R by f(z) = ||z|. By the
inequality above the identity (R™,|||[;) — (R™,]|||) is continuous and z — ||| is
continuous from (R, ||||) to R [Proposition 3] so f is continuous with respect to ||||,.
Since S is compact with respect to ||||,, f attains its minimum on S, say at zo. Note
that f(zo) = ||zol| =m > 0. If £ € R*, £ # 0, then z/||z], € S s0

S/ l=lly) = ll=ll / llzlly = m.

That is, |lz]| 2 m |-
For an example of two norms which are not equivalent, consider the sup-norm,

llll, on coo and the norm, |z||, = ioj |z;], where £ = {z;} [note this is a finite sum].
=

Ifz' = % Z': e’, then lz']l., = 1/t — 0 while ||.r'||1 =1 [Exercise 6].
J=1

An interesting consequence of Theorem 14 is
Corollary 15 Any finite dimensional subspace of a NLS is closed.

Proof: By Theorem 14 any finite dimensional subspace is complete [Exercise 6].

In R™ it is known that sets are compact if and only if they are closed and boundcd.
We now show that this condition characterizes finite dimensional NLS. For this we
require a lemma of F. Riesz.

Lemma 16 (Riesz) Let X be a NLS and X, a proper, closed subspace of X. Then
for every 0 < 8 < 1, there exists 9 € X such that ||zg|| = 1 and ||z — z¢|| > 0 for
every T € Xp.

Proof: Let z; € X\X, and set d = inf{||z—zi]| : = € Xo}. Since Xp is
closed, d > 0. There exists zo € Xo such that ||z1 — zo| < d/0 since d/0 > d. Set
zs = (21 — z0)/ |21 — 20|l Then ||zs]| =1 and if z € Xo, ||to — z1]|  + zo € X, s0

I To

llz — @4l = ||z - = (Ilz1 = 2oll = + 7o) — 7|

1
+
o=zl Ten—zoll| ~ Ter—zal] |

Z d/ ”1'1 - I()” 2 0.
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Example 17 In general, z, cannot be chosen to be distance 1 from X, although
this is the case if Xj is finite dimensional; see Exercise 17. Consider C[0, 1] equipped
with the sup-norm. Let X be the subspace of C[0,1] consisting of those functions
= satisfying z(0) = 0 and Xo = {z € X : J; z(t)dt = 0}. Suppose there exists
zy € X such that |[z3]] = 1 and ||z — z,]| = 1 for all z € X,. For y € X\ Xo, let
c=Jg 1/ foy. Then 2, —cy € Xps0 1 < ||z1 — (z1 — cy)|| = |¢|||ly|| which implies

1 1
[y <[]
0 0

Now we can make |f01 y| as close to 1 as we please and still have ||y|| = 1 [yx(t) = t'/* as
k — oo will work]. Thus, I < lfol zll. But, since |[z,]| =1 and ,(0) = 0, (fol 11( < 1.

Theorem 18 Let X be a NLS and suppose that the unit ball B = {z € X : ||z|| £ 1}

is compact. Then X is finite dimensional.

Proof: Suppose X is not finite dimensional. Let 0 # z;, € B and set X; =
span{z;}. Then X; C X and X is closed by Corollary 15. By Lemma 17, there
exists £ € B such that ||z3 — z:|| > 1/2. Let X; = span{z,,z2}. Then X, is
a proper, closed subspace of X so by Lemma 17 there exists 3 € B such that
lzs — z2|| = 1/2, ||z3 — z;]| = 1/2. Inductively, there exists a sequence {z;} C B
satisfying ||z; — z;|| > 1/2 for ¢ # j. Hence, B is not sequentially compact.

A subset B of a semi-NLS is bounded if sup{||z|| : £ € B} < oo; this is equivalent
to B being bounded in the semi-metric induced by the norm. From Theorems 14 and
18, we obtain

Corollary 19 Let X be a NLS. Then X is finite dimensional if and only if closed,
bounded subsets of X are compact.

The conclusion of Corollary 19 does not hold in a metric linear space [Exercise
10].

Exercise 1. Show the sup-norm defined in Example 5 is actually a norm and con-
vergence in the sup-norm is exactly uniform convergence on S.

Exercise 2. Show s is complete under the Frechet metric.
Exercise 3. Show ¢y is a B-space under the sup norm.

Exercise 4. Give an explicit example of a series in ¢go which is absolutely convergent
but not convergent.

Exercise 5. Let ||||; ( = 1,2,3) be norms on a vector space X. If ||||, is equivalent
to ||||, and |||, is equivalent to ||||;, show ||||, is equivalent to ||||,. |
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Exercise 6. If ||]|; and [|||, are equivalent norms, show they have the same convergent
(Cauchy) sequences [generate the same topologies].

Exercise 7. Show that a subset B of a semi-NLS is bounded if and only if {z;} C B
and t; — 0 implies fxzy — 0.

Exercise 8. Show {e* : k € N} is a closed, bounded set in £ which is not compact.

Exercise 9. A subset B of a metric linear space (TVS) is bounded if {z;} C B,
ty — 0 implies tyzx — 0 [see Exercise 7]. Show a compact subset is bounded.

Exercise 10. Show that a subset B of s is bounded if and only if B is coordinatewise
bounded. Show that a subset of s is compact if and only if it is closed and bounded.
Hint: Use a diagonalization procedure.

Exercise 11. What is the closure of ¢,, in £>°7

Exercise 12. Show cg, o, ¢, £! are all separable.

Exercise 13. Show £* is not separable. Hint: Consider all sequences of 0’s and 1’s.

Exercise 14. If M is a linear subspace of a NLS X which has non-empty interior,
show M = X.

Exercise 15. If X is an infinite dimensional Banach space, show X has uncountable
algebraic dimension. [Hint: If {z4} C X, consider F; = span{z;,...,zx} and use
the Baire Category Theorem.] Give an example of a NLS with countably infinite
dimension.

Exercise 16. Let {z;} C X, a B-space. Show {z;} is bounded if and only if }"¢;z;
converges for every {t;} € £*.

Exercise 17. Show that if X is finite dimensional in Lemma 16, then # can be taken
to be equal to 1.
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Exercise 18. Let c¢s be the sequence space consisting of all sequences £ = {z;} such

that )~ z; converges. Show cs is a Banach space under the norm
=1
||m||:sup{ n}

Exercise 19. Let X, Y be NLS. Show
1/2
Il = Nl + vl s [1(z,9)ll, = max {llll, 1w} )l = (117 + llv]*)

n

Dot

j=t

define equivalent normson X x Y.

Exercise 20. Let X be all f € C[0,1] such that f* € C[0,1]. Show X is not
complete with respect to the sup-norm but is complete with respect to the norm,

£l =sup{|f ()] : 0 <t <1} +sup{|f'(#)]:0<t<1}
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5.2 Linear Mappings between Normed
Linear Spaces

In this section we consider the continuity of linear mappings between normed spaces.

Let X and Y be semi-NLS and T': X — Y linear.
Proposition 1 The following are equivalent:

(i) T is uniformly continuous,

(ii) T is continuous,

(iii) T s continuous at 0,

(iv) there exists M > 0 such that

(%) Tz|| < M |z| for all z € X.

Proof: Clearly (1) = (it) = (iii). (iii) = (iv): If (*) fails, therc cxist zx € X such
that ||Tzk|| > k?||z«|| for each k. If yx = z4/k ||z«]|, then yx — O while || T'yk|| > & so
(ii) fails.

(iv) = (0): If ¢ >0, put 6 = ¢/(M + 1). If ||z — y|| < 6, then

Tz —Tyll =

Tyl <Mlz -yl <e

The space of all continuous linear operators from X into ¥ is denoted by L(X,Y);
L(X,Y) is a vector space under the operations of pointwise addition and scalar mul-
tiplication. If X =Y, we write L(X)= L(X, X). We define a semi-norm, called the
operator norm, on L(X,Y) by |[T|| = sup{||Tz| : ||lz|| < 1}. Notc that if T satisfies
(*), then ||7|| £ M and ||T'|| is the infimum of all such numbers M satisfying (*). In
particular, we have

T2 < 1T ]| for = € X. (5.1)
Proposition 2 (i) The operator norm is a semi-norm on L(X,Y).
(ii) |IT =0 if and only if ||Tz|| =0 for all z € X.
(ili) IfY is a NLS, then L(X,Y) is a NLS under the operator norm.

(iv) If Z is a semi-NLS, T € L(X,Y), § € L(Y,Z), then ST € L(X,Z) and
ST < ISIHIT.-

Concerning completeness, we have

Theorem 3 IfY is a complete NLS, then L(X,Y) is complete.
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Proof: Suppose {T}} is Cauchy with respect to the operator norm. If z € X,

then

1Tz — Tyz|| < (| T% — T3] ll|| (5.2)
so {Tkxz} is Cauchy in Y. Let Tz = limTyz. Then 7' : X — Y is linear. We show
T € L(X,Y) and Ty — T in the operator norm. Let ¢ > 0. There exists N such that,
k, 7 > N implies ||Tx — T}j|| < €. Let j — oo in (2) so ||Tiz — Tz|| < elz|| for k > N
and z € X. Hence, Ty, — T € L(X,Y) with |[Tx — T|| < efor k> Nso T € L(X,Y)
and Ty — T in operator norm.

We establish the converse of Theorem 3 in 5.6.1.7.

If X is a metric linear space (TVS), a linear map from X into the scalar field
is called a linear functional. The dual of X is the space of all continuous linear
functionals on X and is denoted by X', i.e., X' = L(X, F).

If 2’ is a linear functional on X, we often write z’'(z) = (z',z) for z € X.

If X is a semi-NLS, it follows [rom Theorem 3 that X' is a B-spacc under the
operator norm ||z|| = sup{|{z’,z}| : ||z|| < 1}; this norm is called the dual norm of
X'

If X and Y are semi-NLS, a map U : X — VY is an isometry if |Uz — Uyl =
lz — y|| for z, y € X, i.e., if U preserves distances. If X and Y are NLS, then X and
Y arc linearly isometric if there is a linear isometry from X onto Y; il X and Y are
linearly isometric, it is customary to write X =Y.

In later chapters we describe the duals of many classic function spaces. As an
example, we now describe the dual of the sequence space ¢g. F. Riesz gave descriptions
of many of the duals of classic function spaces so any result which describes the dual
of a specific function space is often referred to as a “Riesz Representation Theorem”.

Example 4 ¢, and ¢' are linearly isometric, ¢ = £'.

Let f € ¢ Set yx = <f, ek> for £ € N and set y = {yx}. We claim that y € £!. If
= (signyx)e,
k=1

then

2" = 3 luel < 12"l < 1171

k=1
soy € £ and ||y, <||f|l. For z = {zx} € co, = = 3. z4e* s0
k=1
0 0
=)z <f,8k> = Tayk
k=1 k=1
and

[(fy=)] < llxllmgj [yxl = ll={loo l191l,

which implies || f|| < [lyll,- Hence, [|/]| = [ly|l;- i



176 CHAPTER 5. INTRODUCTION TO FUNCTIONAL ANALYSIS

Thus, the map U which sends f — y is an isometry from ¢ into £! which is
obviously linear. We show U is onto £'. If y = {yx} € &, (fy,z) = § zryx defines a
k=1

continuous linear functional f, on ¢; and U(f,) = y so U is onto.
We give a similar description of the dual of ¢!.

Example 5 Let f € (£'). Set y, = <f, ek> and y = {yx}. Then y € £ with
Iyl < IIfll since |<f, ek>| <|IfIl. ¥z = {zx} € £, then z = § zie so
k=1

f(z) = i 2uf(e) = 3w

and | /()] < [{ye}ll lzll,- Hence [[f]l < [I[{ys}lloo and [If1] = [1{ye} llco-

Thus, the map U which associates f € (£!)' with y € £~ is an isometry from (£')’
into £ which is obviously linear. Now U is actually onto £*° since if y = {y} € £°°,

{fy,z) = ki—%l yxTx defines a continuous linear functional f, on &' with U(f,) = .

Hence, (Zl)’_z .

A more general version of this result is given in Theorem 6.2.4.

Exercise 1. If X, Y are semi-NLS and T': X — Y is linear, show 7' is continuous if
and only if 7" carries bounded subsets of X into bounded subsets of Y.

Exercise 2. Define R, L : ' — ¢* (or £ — =) by
R{t;} = {0,t1,t;,...}  (right shift),
L{t;} = {t2,t3,.. .} (left shift).

Show R and L are continuous and compute ||R||, | T

Exercise 3. Let X, be a dense linear subspace of the NLS X and let Y be a B-
space. If T : X; — Y is linear, continuous, show that T has a unique linear extension
T e L(X,Y) with ||T|| = HT" In particular, X| = X' [equality here means lincarly

isometric].
Exercise 4. Describe the dual of coo. Hint: Exercise 3 and Example 4.
Exercise 5. Let X be a NLS. Show X and L(F, X) are linearly isometric.

Exercise 6. Let X be a B-space and T' € L(X). Define eT and show T € L(X). If
S, T € L(X) commute, show eT+5 = ¢TeS.
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Exercise 7. Show that ¢y and c are linearly homeomorphic.

Exercise 8. Show that ¢ and ¢! are linearly isometric under the correspondence
which associates with each y = {yx} € £ the linear functional f, € ¢’ defined by

(fy, {2i}) = E YeTik—1
where zg = lim z;.

Exercise 9. Show the linear functional L : ¢ — R defined by L{zs} = limzy is
continuous and compute ||L]|.

Exercise 10. Show that s’ and cgg are algebraically isomorphic under the map which
associates with each y = {yi} € coo the linear functional f, on s defined by

(fy {zx}) = Zym

Exercise 11. Define f : coo — R by f({zx}) = io: zk. Show f is linear but not
k=1

continuous.

Exercise 12. Let {t;} € s. For {s;} € s, set T{s;} = {t:s;}. Find necessary and
sufficient conditions on {¢;} so that T' € L (¢',¢") or T € L (£>,¢>). Compute ||T]|.

Exercise 13. Show that any linear map from R" into a semi-NLS is continuous.

Exercise 14. Describe the dual of R* (including the dual norm) for each of the
norms || I, [ [l |l

lloo-
1

Exercise 15. let k : [0,1]x[0,1] — R be continuous. Show K f (s) = / k(s,t)f (¢)dt
)

defines a continuous linear operator from C|0, 1] into C [0, 1]. Show K carries bounded
subsets of C [0, 1] into relatively compact subsets. (Hint: Arzela-Ascoli.)

Exercise 16. Let a; > 0, ar | 0, a = {a;}. Define a norm by ¢ by |[{ts}|, =
sup {|tkak| : k}. Describe the dual of ¢y under | ||, and describe the dual norm of

Ml
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5.3 The Uniform Boundedness Principle

In this section we establish one of the earliest abstract results in funclional analysis,
the Uniform Boundedness Principle (UBP), and one of its most important conse-
quences, the Banach-Steinhaus Theorem. The Uniform Boundedness Priuciple is
one of the three basic abstract results in functional analysis, along with the Closed
Graph/Open Mapping Theorems and the Hahn-Banach Theorem; these theorcins will
be discussed in later sections.

Let X, Y be semi-NLS.

The proof of the UBP which we give is based on a technique called a “gliding
hump” or “sliding hump” argument.

Theorem 1 (UBP) Let X be complete. If F C L(X,Y) is pointwise bounded on X
[i.e., {Tx:T € F} is bounded for each z € X], then {||T||: T € F} is bounded.

Proof: If the conclusion fails, there is a sequence {T;} C F satislying ||7]| > 2%
for each i. Then for cach ¢ there exists x; € X, ||a;|| < 1, such that ||7iz;]| > 12%. For
convenience of notation, set S; = 27*T; and z; = 2 *z;. Then |z:]] <277, ||Siz|| > 4,
li]m Siz; = 0 for each ¢ and ]i'_m Siz, = 0 for cach j by the pointwise boundedness
assumption. Thus, the rows and cotumns of the matrix M = [S,z,] converge to 0 so
< 277 for i # j [see Lemina 2.8.1

there is a subsequence {n;} such that HSn.Zn,
and its proof]. Then for each 1,

LN E

J#I

< 2—1 j — 2—i
J_

and [|Sn;zn,|| > ni, Le., for each i the sequence {S,,2,,}%2, has a “hump” in the it

coordinate and the sum of the norms of the other e]crnonts in the scquence is much

smaller than the “hump” and as 7 increases the “hump” slides Lo the right since {n,}

1s increasing. We now “gather” or “collect” the poinis {z, } which give rise to the

humps by setting z = E 2q,,; note that this series converges in X since Lhe series is
=

absolutely convergent and X is complete [5.1.4]. We now have

[|Sn.2]| =

>n; — 275

S, Zn,

™

> Szl = EI

J¢-

But, since {7;z} is bounded, {S;z} = {27T;:z} should converge to 0 contradicting the
inequality above.

Without some condition, such as completeness, on the domain space X the UBP
can fail.
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Example 2 Define f; : coo — R by fi({t;}) = #t;. Then f; is a continuous linear
functional on ego with || fi|| = 7, and the sequence {f;} is pointwise bounded on cgo.

There are versions of the UBP which hold without any hypothesis on the domain
space. For a discussion of such results see [AS], [Sw1], or [Sw2].

We derive an important consequence of the UBP concerning the continuity of the
pointwise limit of a sequence of continuous linear operators.

Theorem 3 (Banach-Steinhaus) Let X be complete, Y a NLS and {T;} C L(X,Y).
If imTyz = Tz exists for each z € X, then T : X — Y is linear and continuous.

Proof: T is clearly linear. The sequence {T}} is pointwise bounded on X so by
the UBP sup{||7x||: ¥} = M < oco. Thus,

|Tz]| = lim ||Txz|| < M ||z|| for z € X

soT € L(X,Y)

Again without some assumption on X, this result can fail.

1

Example 4 Define f; : coo = R by fi({t;}) = Y. t;. Each f; is continuous and for
1=1
{t;} € coo,

L)) = 22t = f({t)),
=1
but f is not continuous (Exer. 5.2.11).

We give an application of the Banach-Steinhaus Theorem to sequence spaces [see
also Exercise 3]. A further application to Fourier series is given in Chapter 6.6.

Proposition 5 Suppose the sequence {t;} is such that Y. t;s; converges for every
=

{5;} € co. Then {t;} €81, ice., 5 |t;] < o0.
=1
k
Proof: For each k define f; € ¢j = ¢! [5.2.4] by fi({s;}) = 2 t;5;. Then
=1
ligﬂfk({sj}) f{{s}) Et S;

for {s,;} € co. By Theorem 3, f € (¢)'. By Example 5.2.4 {t,} € £' = (o).

For a discussion of the evolution of the UBP see [Sw1].
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Exercise 1. Let F C L(X,Y). Show {||T'|| : T € F} is bounded if and only if F
is uniformly bounded on bounded subsets of X if and only if F is equicontinuous at
0 if and only if F is equicontinuous on X. [F is equicontinuous at zp € X if for
every € > 0 there exists § > 0 such that ||z — zo|| < é implies ||T'z — T'zo]| < € for all
TeFl]

Exercise 2. In Theorem 3, show ||T|| <lim[|7%|| < oo.

o0
Exercise 3. Suppose the sequence {t;} is such that ) t;s; converges for every
=

{s;} € £'. Show {t;} € £=°.

Exercise 4. Let {7} ¢ L(X,Y) be equicontinuous and let Z be a dense linear
subspace of X. Show that if Y is complete and lim Tz exists for each z € Z, then
limTxz = Tz exists for each z € X and T € L(X,Y).

Exercise 5. Let X, Y, Z be NLS with X a B-space. Let B: X xY — Z be a
separately continuous bilinear map. Show B is jointly continuous [use Exer. 5.1.19].
Hint: Use the UBP to show there is a constant & such that ||B{z,y)|| < b|z|| |y

Exercise 6. Give an example showing completeness cannot be dropped in Exercise

5.

Exercise 7. Use the Baire Category Theorem to prove the UBP. Hint: Consider
F = {z ssup [|[Tnz|| € k}.
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5.4 Quotient Spaces

In this brief section we consider the quotient of a NLS. These results are used later
in dealing with some of the classical spaces of functions.

Let X be a semi-NLS and M a linear subspace of X. If ¢ € X, we denote the
coset z + M in X/M by [z] = z + M. We define a semi-norm on X/M by

lz]ll' = inf{||z + m]| : m € M} (= distance(z, M)). (5.1)
Proposition 1 (i) |||’ is a semi-norm on X/M.
(i) X/M is a NLS <& M is closed.

(ii1) The quotient map ¢ — [z] from X onto X/M is norm reducing [and, therefore,
continuous] and open.

(iv) X/M is complete if X is complete.
(v) If X is complete and M is closed, X/M is a B-space.

Proof: (i): ||[tz]|| = inf{|jtz + m| : m € M} = inf{|t|||z + m/t|| : m € M} =
(] l]ll" for ¢ # 0.
Izl + Wl = inf{ljz +y + ms + ma| : m; € M}

inf{||z + m|| : m1 € M} + mf{jly + mz|| : m; € M}
Nl + Nyl
(ii): [=]) = dist(z, M) = 0if and only if z € M and [z] = 0 if and only if z € M.
(iii): Clearly ||z|| > |/[z]]l. To show the quotient map is open we show that
{z :||z|| < 1} is mapped onto {[z] : ||[z])|' < 1}. Let ||[z]i =1 — 6 < 1. There exists
m € M such that ||z +m| <1 and [z + m] = [z].

(iv): Let }: [zx] be an absolutely convergent series in X/M. For each k choose
k=
my € M such that

A H

Izl = llze + mell — 1/2%.
Then
Z llzx + mill < Z (Nl +1/2%) < 00

k=1
s0 ):(zk + my) is absolutely convergent in X and, therefore, convergent to some

z € X [Theorem 5.1.4]. By (iii},

k
so X/M is complete by Theorem 5.1.4.
(v) follows from (i1} and (iv).
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Proposition 2 Let K(X) = {z € X : ||z|| = 0}. Then K(X) is a closed, linear
subspace of X.

Proof: If z, y € K(X), then ||tz + sy|| < |t]||z]] +|s] |ly]l = 0 so K(X) is a linear
subspace. K(X) is closed by Proposition 5.1.3.

Proposition 3 The quotient map X — X/K(X) is norm preserving [i.e., an isom-
etry/.

Proof: For m € K(X), ||z|| = ||z|| — |m|| < |z —m|| < ||| so [|z]| = J[=]|I"
Corollary 4 X/K(X) is a NLS and if X is complete, X/K(X) is a B-space.

As an example, consider L' (¢) with the L'-norm, | |}, f K = K (L' (y)), then
f € K if and only if f = 0 g-a.e. Thus, the cosets of L' (g) /K consist of equivalence
classes of functions which are equal p-a.c.

Exercise 1. Let X, Y be semi-NLS and T € L{X,Y). Show the induced map
T:X/kerT — Y is continuous and ||T'|| = ”Tu
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5.5 The Closed Graph/Open Mapping Theorems

In this chapter we discuss another of the three basic principles of functional analysis,
the Closed Graph Theorem (CGT) and its companion the Open Mapping Theorem
(OMT). Let X,Y be NLS and 7' : X — Y linear. T is said to be closed if its graph
{(z,Tz):z € X}isclosedin X xY. Thus, T is closed if and only if z; — z in X and
Tzi — y in Y implies that y = T'z. Any continuous linear operator T € L(X,Y) is
obviously closed; however, as the following example shows not every closed operator
is continuous.

Example 1 Let X = {f € C[0,1] : f' exists and is continuous on [0,1]} and assume
that X is equipped with the sup-norm. Let ¥ = ([0,1] and D : X — Y be defined
by Df = f'. Then D is obviously linear, closed [[DeS] 11.7], but is not continuous

[Wﬂwzlwmmmﬁww:ky

Note that the domain space in this example is not complete. Indced, the CGT
asserts that if X and Y are complete, then any closed linear operator 7: X — Y is
continuous.

Theorem 2 (CGT) Let X, Y be Banach spaces and T : X — Y linear. If T is

closed, then T 1s continuous.

Proof: Set Z = {x € X : ||Tz|| < 1}. Since T is linear, X = G kZ so from

k=1
the Baire Category Theorem (A2) some kZ :_k7 contains an interior poinl. Hence,
{y:|ly—z| <r}=S5(z,r) C Z for some z € Z, r > 0. If ||z|| < r, then

1 1 1. 1o -
- e~ €-F--7=7
z 2(.1: + z2) 2(z z) € 5 5
so S(0,r) C Z. Hence,
S(0,ar) C aZ = aZ for every a > 0. (5.1)

We now claim that if ||z|| < r, then ||T2|| < 2. Since 2 € Z, by (1) there
exists z, € Z such that ||z — z1|| < r/2. Since z; — z € (%) Z, by (1), there exists

3 € 37 such that ||z — z, — z,|| < r/2%. Continuing inductively produces a sequence

k
{zi} C Zwith ||z =z~ 2y — ... — 7] <7r/2* and z; € (1/21‘_1) Z. Putsp =3 z;
=

so that z = liinsk = § z; and | Txi| < 1/2%'. Now {T's¢} is Cauchy in Y since
=

k k
||Tsk —TSJ'” < Z ||TI,“ < Z 1/21_1 < 21_J

=541 i=j+1
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for k£ > j. Therefore, there exists y € Y such that T'sy — y. Since T is closed, Tz = y

and - -
Z Tzl < Z
k=1 k=1

If ||z|]| < 1, then by the above ||T(rz/2)|| < 2 or ||Tz| < 4/r. Hence, T is
continuous with ||T|| < 4/r.

If one wants to prove that a lincar map T : X — Y is continuous, one of the usual
procedures is to take a sequence {z;} in X which converges to some z € X and show
that the sequence {T'z;} converges to T'z. The advantage of the CGT is that we may
now assume that the sequence {7z} is convergent, and we are then required to show
that it converges to the proper value, namely, T'z. An example of such an application
of the CGT is given in Example 6.2.9 [sce also Excrcise 3, Excrcise 6.1.18 and the
end of §6.2].

We use the CGT to derive its companion result, the Open Mapping Theorem
(OMT).

[Tz < fj 1261 = 2.
k=1

1Tzl = llyll =

Theorem 3 Let X, Y be Banach spaces and T € L(X,Y). If T is onlo, T is open.

Proof: Let T be the induced map, T : X/kerT — Y [Exercise 5.4.1]. Then
T is 1-1, continuous and onto Y so T~! is closed [Excrcise 1]. By the CGT, T-1
is continuous so T is a homeomorphism. Since the quotient map X — X/kerT is
always open [5.4.1], T is open.

Corollary 4 If X and Y are Banach spaces and T € L{X,Y} is I-1 and outo, then
T is a homeomorphism.

Corollary 5 Let X be a vector space with two complete norms |||, |||, on X. If ||l
is stronger than ||||, [i.e., induces a stronger topology], then ||||, and ||||, are equivalent.

Proof: The identity map (X, ||||,) — (X,]lll,) is continuous so Corollary 4 gives
the result.

The completeness of both norms in Corollary 5 is important, sec Exercise 2.

Remark 6 The CGT is often derived from the OMT; sec [TL] for such a develop-

ment.

Exercise 1. Let T € L(X,Y) be 1-1, onto. Show T~! is closed.

Exercise 2. Show Corollary 5 is false if both norms are not complete. [Hint: Consider

C10,1] with [|ll, and [Ifl = f; 1] (t)dt.]
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Exercise 3. Let X, Y be Banach spaces and 7 : X — Y linear. Suppose A C Y’
separates the points of Y. If 4'T is continuous V y’ € A, show T is continuous.

Exercise 4. Suppose that }||| is a complete norm on C[0,1] such that ||fx — f|| — 0
implies fx(t) — f(t) for every ¢t € [0,1]. Show ||| is equivalent to |||| -
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5.6 The Hahn-Banach Theorem

In §5.6.1 we will study some of the relationships between a NLS and its dual space.
In order to facilitate this study, we need a very important preliminary result called
the Hahn-Banach Theorem. This is one of the three basic principles of {unctional
analysis and has applications to a wide variety of problems. Besides using this result
in 5.6.1 we give additional applications in sections 5.6.2 and 5.6.3. For an interesting
discussion of the history of the Hahn-Banach Theorem see [Ho].

Definition 1 Let X be a vector space. A function p: X — R is a sublinear func-
tional if

(1) plz+y) < p(z)+ply) Y2,y € X,

(ii) p(tz) =tp(z) Vt >0, z € X.
A semi-norm is obviously sublinear bui not conversely.

The Hahn-Banach Theorem guarantces that any linear functional defined on a
subspace of a vector space which is dominated by a sublinear funclional can be ex-
tended to a linear functional defined on the entire vector space and the extension is
still dominated by the sublincar functional.

Theorem 2 (Hahn-Banach; real case) Let X be a real vector space and p : X —
R a sublinear functional. Let M be a linear subspace of X. If f : M — R is o linear
functional such that f(z) < p(z) Yz € M, then 3 a linear functional ' : X — R
such that F(z) = f(z), Vz € M and F(z) < p(z) Vz € X.

Proof: Let £ be the class ol all lincar extensions g of f such that g(z) < p(z)
Vz € D(g), the domain of ¢, with D(g) 2 M. Notc € # ¥ since f € €. Partial order €

by g < h if and only if A is a linear extension of g. If C is a chain in &, then |J g€ &
gel

is clearly an upper bound for C so by Zorn's Lemma £ has a maximal clement F.
The result follows if we can show D(F) = X.

Suppose Jz; € X\D(F). Let M, be the linear subspace spanned by D(I") and
z1. Thus, if y € M;, y has a unique representation in the form y = m + tz;, where

m € D(F),t ¢ R. If z € R, then
Fi(y) = Film+tz1) = F(m) + tz

defines a linear functional on M; which extends F. If we can show that it is possible
to choose z such that Fi(y) < p(y) Vy € My, this will show F| € £ and contradict
the maximality of F.
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In order to have
Fi(y) = Fi(m + tx1) = F(m) + tz < p(y) = p(m + tz,), (5.1)

we must have for ¢ > 0,

1 1
2 < =2Fm)+ o) = =F () 40 (5 +51),
or since m/t € D(F), if z satisfies
z < —F(m)+p(m + z1) Ym € D(F), (5.2)

then (1) holds for t > 0. For ¢t < 0,

2> —2F(m) 4 1plm & tm) = F(=m/t) — p(-m/t — 2,),
or since —m/t € D(F), if z satisfies,
z 2 F(m) — p(m — z:) Ym € D(F), (5.3)
then (1) holds. Thus, = must satisfy
F(mi) — p(my — 11) < 2 < —F(my) + p(m2 + 1) Ymy, mg € D(F),

i.e., we must have

F(mi) — p(m1 — 1) £ —F(m2) 4 p(m2 + 21) Ym1, ma € D(F). (5.4)
But,

F(m) 4+ mg) = F(m) + F(mg) < p(my + m3) < p(my ~ 21) + p(my + 71)

so (4) does hold.

To obtain a complex form of the Hahn-Banach Theorem, we need the following
interesting observation which shows how to write a complex linear functional in terms
of its real part.

Lemma 3 (Bohnenblust-Sobczyk) Let X be a vector space over C. Suppose F =
f 4 tg is a linear functional on X. Then for z € X, F(z) = f(z) —if(iz) and f :
X — R isR-linear. Conversely, if f : X — R is R-linear, then F(z) = f(z)—1f(iz)

defines a C-linear functional on X.

Proof: f and g are clearly R-linear. Now F'(ix) = iF(z) implies f(sz) +19(iz) =
if(z) — g(z) so f(iz) = —g(z) and F(z) = f(z) — i f(iz).

The converse is easily checked.
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Theorem 4 (Hahn-Banach; complex case) Let X be a vector space and p : X —
R a semi-norm. Let M be a linear subspace of X and f : M — F a lincar functional.
If |f(z)] € p(z) Yz € M, then f has a linear estension F : X — F such that

|F(z)] < p(z) Vz € X.

Proof: Suppose F = R. Then f(z) < |f(z)| < p(z) Yz € M so Thcorem 2
implies 3 a linear extension F' : X — R such that F(z) < p(z) Vz € X. Bul then
F(=2) = —F(z) < p(—2) = p(z) 50 |F(2)] < p(z).

Suppose F = C. Then Rf, the real part of f, is an R-linear functional on X
such that |Rf(z)| < |f(z)| < p(z) Yz € M. By the first part, 3 a real lincar
functional f; : X — R which extends Rf and satisfies |fi(z)| < p(z) Vz € X. Sct
F(z) = fi(z) — ifi(iz). Then F is C-linear and extends f by Lemina 3.

for z € X, write F(z) = |F(z)|e*. Then

|F(2)| = e F(z) = F(e™z) = RF(e™"2) = fi(e™"2) < ple™x) = p(a).

Despite its very esoleric appearance we will see in the next three scctions that the
Hahn-Banach Theorem has a surprisingly wide variety of applications.

Exercise 1. Give an example of a sublinear functional which is not a semi-norm.

Exercise 2. Show p({t;}) = im(t; + - - +t.)/n defines a sublincar functional on £=.
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5.6.1 Applications of the Hahn-Banach Theorem in NLS

We use the Hahn-Banach Theorem to derive important properties of the dual spacc of
a NLS. We begin by establishing an important result on extending continuous linear
functionals.

Theorem 1 Let X be a semi-NLS and M a linear subspace. If m' € M’  then
Jz' € X' such that &’ extends m' and ||z = ||m’||.

Proof: Define a semi-norm p on X by p(z) = ||m/||||z||. Then |(m',z}| < p(z)
for £ € M. By Theorem 5.6.4 there exists a linear function z’ on X extending m’
such that |(z,z)| < p(z) = ||m’|| ||z|| for all z € X. Hence, =’ € X’ and ||z'|| < |||
Clearly ||m/|| < |I2]|.

Theorem 1 can be used to establish several important results on the existence of
continuous linear functionals on a semi-NLS.

Theorem 2 Let M be a linear subspace of a NLS X. Suppose zo € X is such that
distance (zo, M) = d > 0. Then there ezists z;, € X' such thal ||zl = 1, z5(M) =0
and (x4, 70) = d > 0.

Proof: Set My = span{M,zo}. Define a linear functional f on My by f(m +
tzo) = td, where m € M, t € F. Then f(M) =0 and f(zo) = d. Also, f € MJ with
Ifll <1sinceift # 0, m € M, then

llm + tzoll = [t]llm/t + zoll 2 [t]d = |f(m + tzo)].
Actually, || f|]| = 1 since there exists {ms} C M with |[ms — zo]| | d so
d=|f(ms — zo)| < Il lIme — =zoll L I Il

and ||f|| = 1. Now extend f to a continuous linear functional ' € X’ with ||z'|| =
Il =1 by Theorem 1.

Remark 3 Note that Theorem 2 is applicable if M is closed and zo ¢ M.
Corollary 4 Let X be a NLS and 0 # z9 € X. Then there exists z;, € X' such thal
llzoll = 1 and {z§, o) = ||zo||- In particular, if z # y, there ezists zj € X' such that
(zp,z) # (20,y), i.e., the dual of X, X', separates the points of X.

Proof: Set M = {0} in Theorem 2.

Corollary 4 insures that the dual of a NLS is rich in continuous linear functionals.
Such phenomena does not hold in general for metric linear spaces.
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Example 5 Consider X = L°[0,1] (Example 5.1.1). Suppose f is a non-zero linear
functional on X. Let ¢ € X be such that (f,y) # 0. Let J, = [0,1/2], J, = (1/2,1]
and set g; = Cy,p. Then ¢ = g1 + g2 so either (f,g1) # 0 or {f, g2) # 0. Choose one
and label it ¢;. Note m{t : ¢ (t) #0} < 1/2.

Continue this bisection procedure to produce a sequence {yp;} C X such that
(Fo5) #0 and m{t: o3(2) £ 0} < 1/%. Put b, = 9,/ (f,0,) 50 (f, ) = 1 for all j
but A; — 0 in m-measure since m{t : h;(t) # 0} < 1/2?. Thus, f is not conlinuous
at 0. Hence, the dual space of X is {0}.

The dual norm of an element z’ in the dual of a NLS X is defined to be the
supremum of the values |(z/, z)| as z varies over the unit ball {z : |[z]| < 1} of X. We
can use Corollary 4 to establish a result dual to this; the norm of an element z € X
can be found by computing the supremum of |(z’, z)| as z’ varies over the unit ball
of X'

Corollary 6 Forz € X, a NLS, ||z|| = sup{|[{z’,z)| : ||«|| < 1}.

Proof: If 2’ € X', ||z|| £ 1, then |{z, )| < ||z||. On the other hand, by Corollary
4 there exists z’ € X’ with ||l2'|| = 1 and {2/, z) = ||z]|.

As another application of Corollary 4 we establish the converse of Theorem 5.2.3.

Theorem 7 Let X, Y be NLS with X # {0}. If L(X,Y) is complete, then Y 1is
complete.

Proof: Let {y;} be Cauchy in Y. Choose zo € X, ||zo|]| = 1. By Corollary 1
there exists zy € X’ such thal ||zj|| = 1 and (zg,zo) = 1. Define T} € L(X,Y) by
Tz = (zf, %) yx. Then

(T = Ti)zll < llzll Hlye — u51l
$0

7% = Tl < llye = w5l
and {7}} is Cauchy in L(X,Y). Suppose Ty — T in L(X,Y). Then

llyx — Txo|| = || Tezo — Tzo|| < || Tk — T|| implies yx — Tzo.

The Canonical Imbedding and Reflexivity:

Let X be a NLS. Let X” be the dual of X’ (with the dual norm) and assume
that X" carries its dual norm from X’. X" is called the second dual or bidual of X.
Each z € X induces an element & € X" defined by (£,z') = (z,z) for 2’ € X'. & is
obviously linear and by Corollary 6,

18]l = sup{|(<’, 2)| : ll'l| < 1} = =]
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so & € X" and ||Z|| = (|=||. Thus, the map Jx : X — X" defined by Jxz = Z is a
linear isometry which imbeds X into its bidual X"”; Jx is called the canonical map or
canonical imbedding of X into its bidual, and if X is understood, we write J = Jx.
A NLS is called reflezive if JxX = X”. Note from Theorem 5.2.3 any reflexive space
must be a B-space. It should also be noted that for a B-space X to be reflexive, X
and X" must be linearly isometric under the canonical imbedding Jx; R.C. James
has given an example of a non-reflexive B-space X which is linearly isometric to its
bidual X".

R™ is obviously reflexive; examples of reflexive B-spaces are given in subsequent
chapters. An example of a non-reflexive B-space is given below (Example 9). An
interesting consequence of Corollary 6 is given by

Corollary 8 Let X be a reflexive B-space. Then every continuous linear functional
z' € X' attains its mazimum on the unit ball of X.

Proof: By Corollary 6 there exists z” € X” such that ||"|| =1 and (z",2") =
[lz’||. But there exists z € X such that Jxz = z" so ||z|| = 1 and (z',z) = | &’

It is an interesting result of James that the converse of Corollary 8 holds [see [1]].
We can use Corollary 8 to give an example of a non-reflexive space.

Example 9 ¢ is not reflexive. Define f : ¢¢ — R by f({{;}) = ioj t;/7!. Then
/3!

f€cyand |f] = ioj 1/;7!. However, there is no {t;} € ¢y with Et = || f||- By
i=1

Corollary 8 ¢y is not reflexive.
As an application of the canonical imbedding, we have

Theorem 10 Every NLS X is a dense subspace of a B-space X (i.e., every NLS has

a completion).

Proof: Set X = JX C X" [where we are identifying X and Jx X under the linear
isometry Jx]|.

As a further application of the canonical imbedding, we use the Uniform Bound-
edness Principle to derive a boundedness condition for NLS.

Theorem 11 A subset B of a NLS X is bounded if and only if £'(B) is bounded for
each ' € X',

Proof: =: This follows from the inequality |z'(z)| < ||z’|| |[z]|-

<«: Let J be the canonical imbedding of X into its bidual. Then {Jb: b € B}
is pointwise bounded on X’, and since X’ is complete, {||JB| = ||b|| : b € B} is
bounded by the UBP (5.3.1).
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Several additional properties of reflexive spaces are given in the exercises.

Separability:
We consider some separability results concerning a NLS and its dual.

Theorem 12 If the dual of a NLS X is separable, then X is separable.

Proof: Let {z}} be dense in X’. For each k choose z; € X such that ||z4]| <1
and |[{z},zx)| > ||z%]| /2. The subspace X, spanned by {z:} is separable (Exercise 8),
and we claim that X; is dense in X. If this is not the case, by Theorem 2, there exists
z' € X', ' # 0, such that (z', X;) = 0. There exists a subsequence {z], } converging

to z'. Then
e = > e - )] = etz > | 2

Letting & — oo gives 0 > ||z'|| /2 so =’ = 0; the desired contradiction.

’ _ ’
Ink x

> |

!
Ink

The converse of Theorem 12 is false; see Exercise 6. However, for reflexive spaces,
we have

Corollary 13 Let X be a reflexive B-space. Then X is separable < X' is separable.

Proof: «<: Theorem 12.
=: Jx X = X" is separable so X' is separable by Theorem 12.

Exercise 1. Show that a B-space X is reflexive if and only if X’ is reflexive.
Exercise 2. Show that a closed linear subspace of a reflexive space is reflexive.

Exercise 3. If X is reflexive and X’ contains a countable set which separates the
points of X, show X' is separable.

Exercise 4. If X is a NLS, show Jx X separates the points of X’.

Exercise 5. If X is reflexive, show X' has no proper closed subspaces which separate
the points of X.

Exercise 6. Show the converse of Theorem 12 is false. [Hint: Exercise 5.1.13.]

Exercise 7. Let X, Y be NLS and T € L(X,Y). Show that 7'y’ = y'T defines a
linear operator T from Y’ into X' which is continuous and |7'|| = ||7”||. 7" is called
the adjoint or transpose of T'.

Exercise 8. Let D be a countable subset of a NLS X. If X is the subspace spanned
by D, show X; and X, are separable.
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5.6.2 Extension of Bounded, Finitely Additive Set Func-
tions

We give an application, due to B.J. Pettis, of the Hahn-Banach Theorem to the
extension of bounded, finitely additive set functions defined on algebras.

Let A be an algebra of subsets of S and 3 the o-algebra generated by A. Let S(A)
[S(3)] be the vector space of all real-valued A-simple [¥"-simple] functions; we assume
that S(A) [S(T)] is equipped with the sup-norm, ||| = sup{|x(t)] : ¢ € S}. Let
#: A — R be a bounded, finitely additive set function. We consider thec possibility
of extending u to 3.

Let f: S(A) — R be the linear functional induced by integration with respect
to u, (f,¢) = [spdu [Remark 3.2.2]. Since [(f,0)| < [lo| |u|(S) [Remark 3.2.2],
f is continuous and ||f]| < |u[(S). By Theorem 5.6.1.1, f has a continuous lincar
extension, F, to () satisfying [{F, )| < ||f]| [|¢]l for ¢ € S(X). Definep: ¥ — R
by 2{E) = (F,Cg) for E € 3. T obviously is an extension of g and is finitely additive.
Since

[ECE) < IIFI = A1l < 1el (5),
I is bounded and gives a bounded, finitely additive extension of g to the o-algebra
3" generated by A.
In contrast to the situation in §2.4 where we considered the extension of premea-
sures, a bounded, finitely additive set function defined on an algebra can have an
infinite number of bounded, finitely additive extensions to the generating c-algebra

[see [HY]].
Exercise 1. Show || f|| = |¢]|{(5).

Exercise 2. Show the existence of a bounded, finitely additive set function defined
on a c-algebra.
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5.6.3 A Translation Invariant, Finitely Additive Set
Function

We show that the Hahn-Banach Theorem can be used to show that the “easy” problem
of measurc discussed in §1.3 has a solution. That is, we show the existence of a non-
negative, translation invariant, finitely additive set function defined on the bounded
subsets of R, We begin by showing the cxistence of a Banach integral and then
use the integral to construct the desired translation invariant, finitely additive set
function on the power set of R.

Let P be the space of all bounded real-valued functions defined on R which have
period 1 equipped with the sup norm, ||||. For /€ P and {,...,{, € R sel

w(f byl = SllP{,ZLf(/ +U4)/n:l e R}

k=1
and
p(fy=inl{u(f:ty, - )1y, . L€ R}

Note p is finite since p(f) < || f]|, < oo
We show that p is sublinear. Clearly, p is positive homeogencous. We show that p
is subadditive. Let € > 0 and f|, f, € P. Pick sy,..., 5, and #,,...,1, such that

u(fiss,. sm) <pUfi)+o ulforh, o ) < plfa) +
Put ryy =s;i+ ¢, fore=1,...,m, j=1,....n Then
u(fi+ fairm2, 0 ) = n”*“l){z{fl F4r,)+ fall )} e }
< aosup {%.fl([+"z])3 }JF,MSUP{ 2L+ ) }
< #]Z::lsup {gl filt 46 +s)/m: z‘} + igl sup {]i] falbt +si+ L)/ n: l}

= u(/1 81, Sm) Ful(fa b, ) < p(f1) + p(f2) + 2
(5.1)
so p(/i + [2) < p(f) + p(/[2)-
By the Hahn-Banach Theorem [5.6.2], there exists a lincar functional £ : P — R
such that F(f) < p(f) for all f € P [deline F on {0} by F(0) = 0 and apply 5.6.2].
Note F'(—f) = —F(f) < p(—f) so

—p(=/) S F(f) <pl[) for [ € P. (5.2)
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Now F' is positive [i.e., F(f) > 0 for f > 0] since f > 0 implies p(f) > 0 and
p(—f) €00 by (2) F(f) 2 —p(—~f) > 0.

Next, we claim that F is translation invariant. Fix h € R. If f € P, set g(t) =
ft+ h) — f(t) for t € R. We need to show that F'(g) = 0. Take t, = (k — 1)h for
k=1,...,n+1. Then

plg) Sulg ity tnn) = ~ i Tsup{f(t+ (n+1)h) — f(t) : £} — 0

< 0. Similarly, p(—g) < 0. From (2), F(g) =0 as desired.
from (2) since p(1) = 1 and p(—1) = —1. And, F is bounded since
p(f

) < If]] and

as n — oo so p(g)
Also, F(1) =1
from (2), F(f) <

F(=f) = =F(f) <p(=F) < I=Fl = IIfll

so |P(f)] < 7]l and | F| < 1.

We now use F, the Banach integral, to induce a finitely additive set function. If
E C[0,1), let kg be the periodic extension of Cg to R and set u(£) = F(kg). Since
F is linear, g is finitely additive on the power set, P[0, 1), u is bounded (by 1) since
[[F|l <1, p is positive since F is positive and F(1) = pf0,1) = 1. Moreover, if A
and B are subsets of [0,1) such that A = B + ¢ for some ¢, then u(A) = u(B) by the
translation invariance of F, i.e., u is translation invariant in this sense.

We extend u to the bounded subsets of R. First, consider any subset A of an
interval of the form [j,7 +1). Then A —j C [0,1) so we may define u(A) to be
u(A — 7). If B C Ris bounded, then B C [—n,n) for some n, and we may write

n—1
B = U Bnljj+1)
j=—n
and define
n—1
p(B) = > uw(Bnlj,j+1)).
j=—n

It is easy to check that this extension of p has values in [0,00), is finitely additive,
translation invariant, and u[0,1) = 1.

Note that the commutativity of the group of translations was used in the com-
putation (1). This is important; Hausdorfl has shown that there is no non-trivial,
non-negative, finitely additive set defined on the subsets of the unit sphere in R?
which is invariant under the (non-abelian) group of rotations on the sphere.

Exercise 1. Show the set function z(£) = (u(E)+p(—E))/2 has all of the properties
of u and is also invariant under reflection. [Hence, & is invariant under the isometries

of R ([Na] ).]

Exercise 2. A Banach limit is a continuous linear functional L on £* satisfying



196 CHAPTER 5. INTRODUCTION TO FUNCTIONAL ANALYSIS

(i) L(z) > 0if 2 > 0 [i.e., if zx > 0 for all k when z = {z+}],
(ii) if rz = (zq, 3, ...), then L(rz) = L(z),
(iii) L((1,1,...))=1.

(a) Show that if L is a Banach limit, limzy < L(z) < limzy for z € ¢=°. Hint: For
€ > 0 choose n such that

infr, <z, <infzrg+e¢
50 T + € — z, > 0. Use (i) and (iii) to show L(z) > inf 2. Then use (ii).

(b) Show Banach limits exist. Hint: Use the functional p(z) = im(z, + - - - + z,)/n
of Exercise 5.6.2 and the functional Lz = limz, for = € c.

Exercise 3. For A C N let |A| be the number of points in A. If L is a Banach limit,
show p(A) = L(JAN {1,...,n}|/n) defines a bounded finitely additive set function
on P (N).

Exercise 4. Let A be an algebra of subsets of S and T : § — S such that T-'A € A
for A € A. Let v be a bounded, finitely additive set function on A. Let L be a Banach
limit and define g on A by p (A) = L(v (T~"A)). Show p is bounded, finitely additive
and T-invariant (i.e., p (A) = p(T7'A) for A € A).
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5.7 Ordered Linear Spaces

As well as having natural norms or metrics, many of the classical spaces of functions
also have natural orders. In this section we consider basic properties of ordered spaces.
A partial order on a set F is a relation, <, satisfying the following properties:

(R) z <z holds for all z € £ (reflexive),
(A) if z <y and y < z, then £ = y (anti-symmetry),
(T) if z < y and y < 2z, then z < 2 (transitive).

We write y > z if and only if z < y.
An ordered vector space is a real vector space X with a partial order, <, which is
compatible with the algebraic operations, i.e.,

(i) fz <yand z€ X, then x4+ z <y + 2,
(i1) if x <y and t > 0, then tz < ty.

An element z of X is said to be positive if z > 0; the set of all positive elements of
X is denoted by X,

Example 1 The space s has the natural order {z,} < {yi} if and only if zx < yi
for all £ € N. The subspaces cgo, o, ¢, £! and £ inherit this natural order from s.

More generally, we have

Example 2 Let S # @ and F(S) the vector space of all real-valued functions defined
on S [the operations of addition and scalar multiplication are defined pointwise]. If
f, g € F(S), we define [ < g if and only if f(t) < ¢(¢) for all t € S. Any vector
subspace of F(5) is an ordered vector space under the order inherited from F(S5).

If X is an ordered vector space and z, y € X, then z and y have a supremum
(infimum), denoted by s Vy (z Ay),ifz <zVy,y<zVy(zAy<z,zAy<y)
andz <w,y<w (w<s,w<y)impliesszVy<w (w<rAy).

A vector lattice or a Riesz space is an ordered vector space X such that every two
elements of X have a supremum and an infimum. We have the following elementary
identities in a Riesz space.

Proposition 3 (i) = Vy = ~[(-2) A (-y)}, 2 Ay = —[(=2)V (=y)],
(ii) sVyt+z=(s+2)V(y+2),sAy+z=(z+2)A(y+2),

(iii) t(z Vy) = (tz) V (ty), t(z A y) = (tz) A (ty) fort > 0.
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Proof: We prove (ii) and leave the remaining statements for Exercise 2.

Seta =zVy+z,b=(z+2)V(y+z). Weshowa < b b < a. First,
a—z=zVyimpliesr<a—zandy<a—zsoz+2z<aandy+z < a Hence,
(t+2)V(y+z)=b<a. Next,b=(z+z)V(y+z)sob>z+zand b>y+zor
r<b—zand y<b—=z Hence,zVy<b—zora=zVy+2<h

Remark 4 From (i) it follows that if X is an ordered vector space such that every
two elements of X has a supremum (infimum), then X is a Riesz space.

If X is a Riesz space and z € X, set ¥ = z V 0, the positive part of z, and set
z” = (—z) Vv 0 = (—z)*, the negative part of z. Then |z| = £V (—z) is called the
absolute value of z. We have the following properties:

Propeosition 5 (i) z =zt -z,
(i) [z =zt + 2z,
(iii) zt Az” =0,
(iv) zvy=(z-y)* +y,
(V) [e+yl < |z + [y],
(vi) [lz] = lyll < & —yl,
(vii) gt —y*| < fz —yl, (e +y)" <27 +y7,
(viii) s Vz—yVz|< |z —yl s Az -y Azl <z -yl
(ix) |z| <y fand only if ~y <z < y.
Proof: (i): By Proposition 3,
T +zr=(-z)V0+z=0Vzr=2zt
(ii): By Proposition 3 and (i),
gl=zVv(-z)=(25)VO—z =2zt —z=22" — (et —z7) =zt +z".
(iii): By Proposition 3 and (i),

gtAz - =(zt —z7)AO0+2 =z A0+~
=—((-z)V(-0)+z~  =—z" +z~ =0.

We leave (iv)-(vi) to Exercise 3.
(vii): Note 2t = (z + [z|)/2 so using (vi),

(= +|2)/2 = (y + ly)/2l = 3 (= = y) + (I=] - Jy])]

[z — y*|

IA

He=yl+illel—lyll <jlz—yl+ 1|z —yl= |z —yl.
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§(|z+y|+ (z+y))
szl + 2+ [yl +v)

zt +yt.

(z+y)*

A

(viii): From Proposition 3,
zVz—yVz=((z—2)VO0+2)—((y—2)VO0+2)=(z—2)t — (y — 2)*.
From (vii),
leVe—yVel=|e—2t - (-2 <lz—2) - (—2)|=|z—yl.
From Proposition 3 and (viii),
lzAz—yAzl=|-(-2)V(=2)+ (=y) V (=2)| < |(-=y) — (-=2)| = [z — y].
(ix) is left to Exercise 3.

Remark 6 From (iv) [(ii)] and Remark 4, it follows that if X is an ordered vector
space such that £ V0 = zt [|z|] exists for £ € X, then X is a Ricsz space.

Example 7 F(S) is a Riesz space with
SV g(t) = max{f(t),g(t)}, f A g(t) = min{f(t),g(t)}

for t € S. In particular, s is a Riesz space. Any vector subspace of F(S) which is
a Riesz space under the inherited order from F(S) is called a function space. For
example, coo, Co, ¢, £', €= are all function spaces. If S is a compact Hausdorff
space, then C(S) is a function space; if C*[0,1] is the vector space of all functions
¢ :[0,1] — R which have k continuous derivatives, then C*[0,1] is an ordered vector
subspace of C[0, 1] but is not a function space for k > 1.

Example 8 Let BV]a, b] be the vector subspace of Fla, b] consisting of the functions
of bounded variation (A.1). BV|a,b] is a function space.

f X, Y are Riesz spaces and T : X — Y is linear, then T is called a lattice
homomorphism if T'(z Vy) = (Tz) v (Ty) for all z, y € X;if T is 1-1, T is called a
lattice isomorphism. For equivalent conditions, see Exercise 4.

A linear map T : X — Y between two ordered vector spaces is said to be positive
if Tz > 0 for every z > 0. A lattice homomorphism between Riesz spaces is positive.

Theorem 9 Let X, Y be Riesz spaces and T : X — Y linear, 1-1, onto. If T and
T~ are both positive, then T is a lattice isomorphism (onto Y ).

Proof: Let z,y € X. Sincez < zVy,y <z Vy and T is positive, Tz < T'(z Vy),
Ty <T(zVy)so (Tz)V (Ty) < T(zVy). By symmetry, since T~ is positive,

zVy = (T7'(Tz)) V(I (Ty)) < T7((Tz) v (Ty)).
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Hence, T'(z Vy) < (Tz) vV (T'y).

We next consider the order analogue of the dual of a NLS. If X is a Riesz space,
a subset B C X is order bounded if there exists y such that |z| < y for all z € B. If
Y is another Riesz space, a linear map T': X — Y is order bounded if T' carries order
bounded sets to order bounded sets and T is positive if T' carries positive elements to
positive elements.

Let X~ be the set of all order bounded (real-valued) linear functionals on X. Then
X is a vector space under pointwise addition and scalar multiplication and is ordered
by the relation, f < ¢ if and only if f(z) < g(z) for all z € X*. X is called the
order dual of X. Tt is easily checked that X is an ordered vector space under this
order and F. Riesz has shown that X  is actually a Riesz space. For this important
result we first establish a lemma.

Lemma 10 (Riesz Decomposition) Let X be a Riesz space. If z,y, z € Xt and
0 <z < z+4y, then there exist 21, y, € X such that0 <z < z,0 <y, <y and
z =11+ .

Proof: Set z;, =z Az, y1=2—z,=2—x Az Hence,0< z, <z, 2, +y, = 2,
0 < y;. Also, from Proposition 3,

0<yy=z~zAz=z4+(-2)V(-2)=(2-2)V0O<yVvO0=y.

Ordered vector spaces which satisfy the conditions in Lemma 10 are said to have
the decomposition property. Thus, a Riesz space has the decomposition property, but
there are ordered vector spaces with the decomposition property which are not Riesz
spaces [see [P] p. 14].

Theorem 11 (F. Riesz) If X is a Riesz space, then X is a Riesz space. Moreover,
ffeX ,zc X, then

(i) f*(z) =sup{f(y):0<y <z},
(ii) f~(z) =sup{-f(y): 0 <y <z},
(iii) |f|(z) = sup{f(y) : ly| < z}.

Proof: From Remark 6, it suffices to show that f* = fV0 exists for ecvery f € X .
Let f € X and for z € X set g(z) = sup{f(y) : 0 <y < z} [(1)]; note that since f
is order bounded, g(z) is finite. Clearly

g(z) >0, g(z) > f(z) and g(tz) = tg(z) for t > 0, z € X *. (5.1)

We claim that g(z+y) = g(z)+g(y) forz,y € XT. If0 < z; < z,0 < y; <y, then
0 < 2ty < ztyso f(e)+ (1) = f(z14y1) < g(z+y) and 9(z) +9(y) < g(z+y).
On the other hand, if 0 < 2 < z+y, by Lemma 10 thereexist 0 < z; < z,0< y; <y
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such that z = 1 + y1. Then f(2) = f(z1 + 1) = f(z1) + f(w1) £ g(x) + g(y) so

9(z +y) < g(z) +9(y)
For arbitrary z € X, ¢ = z* — £~ so we can extend g to X by setting g(z) =

g(z*) —g(z7). Note that if r =u — v withu > 0,v > 0, then 2* +v =2~ 4 u so
9@t +v) = g(=") +9(v) = 9(=7) + 9(u)

or
9(e*) —g(z7) = g(u) —9(v),

and the value of ¢ does not depend upon how z is represented as the difference of
two positive elements of X. From this and (1), it is easy to verify that ¢ is a positive
linear functional on X.

We claim that ¢ = f* (= fVv0). If h € X is positive with f < h, then
fy) < h(y) < h(z) for 0 <y <z so g(z) < h(z). From (1), g = f+.

Formula (i) was established above. The remaining two formulas follow from (i)

and f~ = (=f)" and |f[ = f* + f~.
Corollary 12 If f € X and z € X, then |f(z)| < |f]|(]z])-

Proof: [f|(|z]) =sup{f(y) : ly| < |z|} = (f(2)) V (f(—=)).
Since fV g = (f —g)" + g [Proposition 5], for f, g € X and r € X* we have

(2) (fVg)(z)=sup{f(y) +9(z —y): 0 <y <z} and
(3) (fAg)(z)=inf{f(y)+g(z—y):0<y <z}
We have formulas “dual” to the formulas in Theorem 11.

Theorem 13 Let X be a Riesz space, f € X positive and z € X. Then
(i) f(z*) =sup{g(z):9€ X ,0<g<f},
(ii) f(z7) =sup{—g(z): g€ X ,0<g < f},
(iii) f(lz]) = sup{g(z) : g € X, |g| < f}.
Proof: (i): If 0 < g < f, then g(z) < g(z*¥) < f(z*) so
sup{g(z): g € X ,0 < g < f} < f(*).

Conversely, define p : X — R by p(u) = f(u*). Then p is a sublinear map on X
[Proposition 5] such that p(u) > O for allu € X. Let Y = {tz : t € R} and define h
on'Y by h(tz) = tf(z*). Then h is linear on Y and A(y) < p(y) for all y € Y. By
the Hahn-Banach Theorem, h has a linear extension to X, still denoted by h, such
that h(u) < p(u) for allu € X. If u > 0, then h(u) < p(u) = f(u) and

—h(u) = h(-u) < p(-u) = f((—u)") = £(0) =0

-
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50 0 < h(u) < f(u) for all w € X*. Hence, h € X [Exercise 5,0 < h < f, and
f(e*) = h(z) < sup{g(z) :g € X ,0< g < f}.
Formulas (i1) and (ii1) follow from f(z~) = f((—=)%) and f(|z]) = f(z*)+ f(z7).
We now consider NLS which have an order defined on them. A semi-norm (norm)
on a Riesz space X is a lattice semi-norm (norm) if |z| < |y| implies ||| < |ly|. A

semi-normed (normed) vector lattice is a Riesz space with a lattice semi-norm (norm);
a complete normed vector lattice is called a Banach lattice.

Example 14 B(S), C(S), £, ¢, ¢y are Banach lattices.
Example 15 ¢y is a normed vector lattice which is not a Banach lattice.
Example 16 L'(4) is a complete, semi-normed vector lattice.

For an example of a norm on a Riesz space which is not a lattice norm sce Exercise

Proposition 17 Let X be a semi-normed vector lattice.
@) (Il ==,
@) llzt —y|| < ||z — yl| se z — z¥ is uniformly continuous on X,

i) |||z — [ylll < |lz — y|| so x — || is uniformly continuous on X.

Proof: (i) is easy. By Proposition 5, |zt —y*| < |z —y| and ||z]| — |y|| < |z — ¥|
so (i1), (ii1) follow.

A linear subspace Y of a vector lattice is called a vector sublattice \f tAy, zVy € Y

when z, y € Y. A linear subspace A of a vector lattice X is called an ideal (order
ideal) if |z| < |y| and y € A implies z € A. Since

1
eVy=grty+lz—yl),
every order ideal is a vector sublattice.

Example 18 B(S) is an ideal in F(S). C(S) is a vector sublattice of F(S) but is
not an ideal. Similarly, ¢o and coo are order ideals in £ but ¢ 1s not.

We now compare the order dual and the norm dual of a normed vector lattice.

Theorem 19 Let X be a normed vector lattice. Then X' C X and, moreover, X'
is an order ideal in X .
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Proof: Let B C X be order bounded with |z| <y for all z € B. Then ||z|| < ||y||
for all z € B so B is norm bounded. Hence, every ' € X’ carries order bounded sets
to bounded subsets and ' € X .

Assume z € X, ' € X' with ‘z-‘ < |#/|. We must show =z € X'. Let z € X,

[lz]| < 1. Then for every y € X with |y| < |z|, [|ly|l < |lz|| £ 1 s0
=" (@) < [=7[(el) < 121 (|2]) = sup{='(y) : ly] < |2} < |||
[Corollary 12 and Theorem 11]. Thus, z” € X' with Hf” <=\

Remark 20 It follows from Theorem 19 that if z’ € X', then z' is the difference of
two positive, continuous linear functionals (z')*, (z')~.

The argument above shows that |z'| < |y’ in X’ implies ||z’|| < ||y’||. Hence,
Theorem 21 The norm dual of a normed vector lattice is a Banach lattice.

The containment in Theorem 19 can be proper.
Example 22 Define f : coo — R by f({t;}) = ijtj [finite sum]. Then f is positive
and, hence, order bounded [Exercise 5]. But, fz;) = j so f is not continuous.

However, we do have

Theorem 23 If X is a Banach lattice, X' = X .

Proof: Suppose there exists f € X such that f is not continuous. Then there
exist ry € X such that ||zk]| = 1 and |f(zs)| > &3

Set y, = i |zx| /k%. Then
k=1

n+p
[yntr —uall < D2 1/4

k=n+1

so {yx} is Cauchy in X and, therefore, converges to some y € X. Clearly, 0 < y,, <
Yn+1, and we claim that y, < y. First,

0< (Wn =) < Wntp = ¥)7 < |yntr — vl
implies [|(yn — y)*|| < llynspr — y|| for all n, p so
0 < (v — )| < lim {|yn4p — y[| = 0.

Hence, (y» — y)* = 0. But, y, — y < (y» — y)* = 0 implies 0 < y, < y as claimed.
Then y > yn > |z.| /n? implies

IF1 W) 2 £ (yn) 2 1fl(|zal)/n?* 2 |f(2za)] /0 >

which gives the desired contradiction.
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Theorem 24 The completion of a normed vector lattice X is a Banach lattice.

Proof: Recall the completion of X is Jx X C X" [Theorem 5.6.1.10] so by Exercise
8 it suffices to show that the canonical imbedding Jx = J of X into X" preserves the
lattice operations. For this it suffices to show that (Jz)* = J(z%) for z € X.

Suppose z € X and f € X', f > 0. We write Jz = Z. From Theorems 11, 13 and

19, we have
@* ()

sup{Z(g) 19 € X',0< g < f}
= sup{g(z):9€ X',0<g < f}
= sup{g(z):9€ X ,0<g < f}
= f@@*) =(@*) ().

That is, (Jz)* = J(z%) as desired.

Exercise 1. Show X7 is a convex cone, i.e., is convex and z € X%, ¢t > 0 implies
tr € X*.

Exercise 2. Complete the proof of Proposition 3.
Exercise 3. Prove (iv)-(vi), (ix) of Proposition 5.

Exercise 4. Let X, Y be Riesz spaces and T : X — Y lincar. Show that the
following are equivalent:

() T(zVy) = (Tz) Vv (Ty),

(i) T(z Ay) = (Tz) A (Ty),

(iii) (Tz)A (Ty)=0whenzAy=01in X,
(iv) [Tl = T(1a).

Exercise 5. If T : X — Y is positive, show T is monotone in the sense that z <y
implies Tz < Ty. Show every positive operator is order bounded.

Exercise 6. If X is a semi-normed vector lattice show z — z~ is uniformly contin-
uous.

Exercise 7. Let BVj[a,b] be the linear subspace of BV[a,b] which consists of the
functions which vanish at a. Show BVy[a, ] is a Riesz space under the pointwise order.
Show the variation norm, ||f|| = Var(f : [a,}]) is not a lattice norm on BV;[a,b].
[See Appendix 1 for the notation and definitions.]
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Exercise 8. Show that the closure of a vector sublattice of a normed vector lattice
is a vector sublattice.

Exercise 9. If X is a normed vector lattice, show X7 is closed.

Exercise 10. Let X be a normed vector lattice and {zx} C X satisfy zx < z44;. If
llzx — z|| = 0, show z = sup{w : k}. Hint: (z, — z,)* =0 for m > n.

Exercise 11. Let X be a normed vector lattice. Show z € X is positive if and only
if f(z) > 0 for every positive, continuous linear functional f on X. Hint: Theorem

13.(i).

Exercise 12. Let X be a Banach lattice and z > 0, z € X. Show

llzl| = sup{f(z) : 0 < f € X', || fll = 1}.

Exercise 13. Let X, Y be normed vector lattices and T : X — Y positive. If X is
a Banach lattice, show T is continuous. Hint: Theorem 23.

Exercise 14. Show that any two complete lattice norms on a Riesz space must be
equivalent.

Exercise 15. Let X be an ordered vector space and Z a linear subspace of X such
that whenever z € X there exists z € Z with z > z. Suppose F': Z — R is a positive
linear functional. Show F has a positive linear extension to X. [This is a simple
version of Kantorivich’s Theorem; see [Vu] X.3.1.] [Hint: Set

plz)=mf{F(z): 2 € Z,2 > z}

and use the Hahn-Banach Theorem.]

Exercise 16. Show there exists a bounded, finitely additive extension of Lebesgue
measure on [0,1]. [Hint: Let X = B[0,1],

Z={f:10,1] = R: f is bounded and Lebesgue measurable}

and F:Z — R be F(f) = f} fdm. Use Exercise 15.]






Chapter 6

Function Spaces

6.1 LP-Spaces

Let 4 be a measure on a o-algebra, 3, of subsets of § and let 0 < p < co. The space
LP(u) consists of all real-valued ) -measurable functions, f, defined on S such that
[fIF is p-integrable. If pu is Lebesgue measure on a measurable subset E of R™ we
write L?(u) =L?(E). If f, g € LP(u), then

|f + 9" < 2°(IfI" + 19I")

so LP(p) is a vector space under pointwise addition and scalar multiplication. More-
over, 0 < f¥ < |f|,0 < f~ < |f| implies f*, f~ € L?(y) when f € L?(u) so LP(u) is
also a vector lattice under the pointwise order.

For 1 < p < oo, we set [|f||, = (f5|f|”d,u)1/p [the case 0 < p < 1 is covered in
the exercises]. We show that ||||, is a semi-norm on LP(yu); note that ||||, is a lattice
semi-norm. Only the triangle inequality needs to be checked. We do this with the
aid of two preliminary results.

Lemmal Leta, b>0 and 0 <t < 1. Then a'b'~* <ta+ (1 —t)b.

Proof: Define ¢ : (0,00) — R by ¢(s) = ts — s*. Then ¢'(s) <0for 0 < s <1
and ¢'(s) > 0 for s > 1 so ¢ has a minimum at s = 1. Thus, t —1 < ¢s—s' for s > 0.
Put s = a/b [if b= 0, trivial] and multiply by b to obtain the desired inequality.

Theorem 2 (Hélder’s Inequality) Let 1 < p < oo and q be such that 1/p+1/q =
L. If f € LP(u), g € L9(), then fg € L'(u) and || fgll; < |IfIl, lall,-

Proof: If either [|f|, = 0 or llgll, = 0, the result is trivial so assume that
both are positive. Note that if we set ¢ = 1/p in Lemma 1, the conclusion reads

AB < AP[p+ Bi/q when A, B > 0. Set A=|f(t)|/|If]l,, B=lg(t)|/llgll, for t €

to obtain
[f(e()] _ IFOF N lg()I*
WA, lgll, = A qllglly

207
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so fg € L'(u) and

P q
Ifgll, o WAl Mol 1 1

I£11,Mgll, = pIAL ~ allgll; 2 " q

Remark 3 For p = 2, this inequality is often referred to as the Cauchy-Schwarz
Inequality.

We can now easily obtain the triangle inequality for ||| .

Theorem 4 (Minkowski Inequality) Iff, ¢ € LP(u), 1 <p < oo, then || f + gll, <
11, + Nlgll,-

Proof: For p = 1, the inequality is clear. Assume p > 1. Note

Jslf +glPdu= fs|f +gllf+ g dpu 6.1)
< JsIfIf+gl"dp+ fslgl|f + "™ dp. '

Observe that (p — 1)g = p and apply Hélder’s Inequality to both terms on the right
hand side of (1) to obtain

Is|f + oF dus < (Js 1 dw)'"™ (Ss(1f + g dp)"/* (6.2)
+ (s lgP di)'"™ (Js1f + gl dp)"*.

If fo|f+ g|" du =0, the result is trivial; otherwise, divide (2) by

’ 1/q
( / |f + 4l d#)
s
to obtain the desired inequality.
We now extend the Riesz-Fischer Theorem to p > 1.
Theorem 5 (Riesz-Fischer) For 1 <p < oo, LF(1) is complete under [j|| .

Proof: Let }% fx be an absolutely convergent series in LP(p). Define g,(t) =
k=1

i [fe(t)] for ¢ € S. Then
k=1

gall, < D fell, < D0 Mfell, = M < co.
k=1 k=1

Now ¢, T so if we set g(t) = limg,(¢), then g is }_-measurable and ¢.(¢)? T ¢(t)?,
grn > 0, so by the MCT

/gpdp = lim/ lg|F dp < MP.
s s
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Hence, g is finite g-a.e. and we may assume that ¢ € L?(u). Note that this means
OO

that the series Y- |fx(t)| converges in R for g-almost all t € S.
k=1

Define f by f(¢) = § fx(t) when this series converges in R and f(¢) = 0 otherwise.
k=1

Then f is }_-measurable and f is the p-a.e. limit of 3° fx. Let s, = f: fr. Then
3

=1
[sn| < g < gso|f] <g pae and f € LP(p). Also, |s, — f|” < 27|g|” and s, — f
p-a.e. so by the DCT, ||s, — f”p — 0. By Theorem 5.1.4, LP(u) is complete.

Note that || f||, = 0 if and only if f = 0 p-a.e. so if K, = {f € L?(p) : ||If|l, = 0},
then £P(u)= LP(p)/ K, is a Banach space and two functions are in the same coset of
LP(u) if and only if they are equal p-a.e. (§5.4). Instead of working with the cosets in
LP(p), it is customary to identify two functions if they are equal almost everywhere
and treat the cosets as if they were functions. Under this agreement, we would say
that £P(u) is a Banach lattice.

Comparison of LP-spaces:

In general, there are no inclusion results for LP-spaces. For example, if f(t) = 1/v/t
for 0 <t <1 and f(t) = 0 otherwise, then f € L'(m) but f ¢ L*(m), while if
g(t) =1/t for t > 1 and g(t) = 0 otherwise, then g € L*(m) but g ¢ L'(m). [See also
Exercises 1 and 2.]

For finite measures, we do have

Proposition 6 Let p be a finite measure and 1 <r < s < oco. Then L*(p) C L(p)
and the inclusion map is continuous.

Proof: Let h € L*(u). Set p=s/r, f = |h|” and g = 1 in Hélder’s Inequality to

obtain y
hr < ha 1—1'/.5.
Jouwrdn < (1A uis))

Apply Theorem 5.2.1 to obtain the continuity.
If 4 is counting measure on S, we set fF(S)= LP(u), and if § = N, we write
£7(N) =¢£7. Thus, * consists of all sequences {t;} such that

oo 1/p
¢}, = (Z |tj|p) < o0

[recall Example 5.1.7]. For #P-spaces, in contrast to Proposition 6, we have

Proposition 7 If 1 < r < s < oo, £ C {* and the inclusion map is continuous.
Moreover, the containment is proper.

Proof: Suppose ¢ = {¢;} € £ with ||z||, < 1. Then |¢;| < 1 for all j so |t;]* < |¢t;|
which implies ||z]] < ||z]|].

If £ = {t;} € & with z # 0, then z/||z||, € £ and ||z/||z|,||, = 1 so by the
observation above ||z/ ||| ||, < 1 or ||z]|, £ |lz]],.
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Take t; = (1/j)1/r. Then z = {t;} € £°\C".
For a thorough discussion of the possible inclusion results for L?-spaces see Romero

([R])-

Dense subsets of L? :
We have the analogues of Theorems 2, 3 and 6 of §3.5 for LP-spaccs [Exercise 6].

Theorem 8 The vector space of 3 -simple functions in LP(n) is dense in LP(u).
Moreover, given f € LP(u) there ezists a sequence of simple functions {¢k} in LP(p)
such that gx — f pointwise and |lox — f|l, — 0; if f >0, the {px} can be chosen
such that o, T f.

Assume that g is a premeasure on the semi-ring S of subsets of § and that Y is
the o-algebra of p*-measurable subsets of S (§2.4). Let u denote the restriction of y*

to 3.
Theorem 9 The vector space of S-simple functions in LP(u) is dense in LP(p).

Theorem 10 Let S be a locally compact Hausdorff space and u a regular Borel mea-
sure on B(S). Then C.(S) is dense in L¥(y).

As an application of Theorem 10 we give a generalization of Theorem 3.11.10 to
LP-spaces.

Theorem 11 If f € LP(R"), then ’llirr(l) Il fn—fll,=0.

Proof: Let ¢ > 0. By Theorem 10, there exists ¢ € C.(R") such that ||f — ¢, <
€.  is uniformly continuous and there exists a such that ¢(z) = 0 for ||z|| > @ so
there exists 0 < § < 1 such that |p(z + k) — ¢(z)| < € for ||h]| < 6. Thus, if ||k]| < &,
then

e lela+ ) = (@) dz < &(2(a+ 1) (6:3)

Now if ||h]| < 6,
I fo = Fll, < W o —enll, + llen —@ll, + lle = fll, < 2¢+ llen — I,

so the result follows from (3).

Convergence in L?:
We give a characterization of sequential convergence in L? for 1 < p < oo. Gen-
eralizing Proposition 3.7.1, we have

Proposition 12 If f, — f in LP(u), then fi — f u-measure.

We give some additional necessary conditions that must be satisfied by a sequence
converging in LP.
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Definition 13 Let F be a family of signed measures on .. F is uniformly p-
continuous if (1E1:1)n OI/(E) = 0 uniformly for v € F.
N —

Proposition 14 Let f; € L?(u) and vi(E) = [5|felPdp for E€ Y, k=0,1,.... If
fx = fo in LP(y), then {vx : k > 0} is uniformly p-continuous.

Proof: Let € > 0. 3 N such that k > N implies || fy — fo||, < €. By 3.2.17 there
exists § > 0 such that £ € 3, u(E) < 6 implies vx(E) < e for k = 0,1,...,N. For
k> N and p(F) < 6,

w(B)e < ([L1e= 0P )"+ (1ol )" < s = foll, 4 sl B < et

Definition 15 Let F be a family of signed measures on ). F is equicontinuous from
above at @ if Ex € 3, Ex | 0 implies 1i{n v(Ex) = 0 uniformly for v € F.

Proposition 16 Let fi € LP(p) and v (E) = [g|filPdp for E€ 3, k=0,1,.... If
fi = fo in LP(y), then {vx : k > 0} is equicontinuous from above at .

Proof: Let € > 0. There exists N such that n > N implies ||fn — foll, < €. Let
Er €3, Ex | 0. By 3.2.9 and 2.2.5, there exists K such that v,(Ey) < efor k > K
and n=0,1,...,N—1. Forn >N and k > K,

Y R 1/p R 1/p Y,
(B < ([ 1= ol ) "+ ([ 1ol dn) < ekl
k k

Propositions 12, 14 and 16 give three necessary conditions for a sequence to con-
verge in L?. It is an interesting result of Vitali that these necessary conditions are
also sufficient.

Theorem 17 (Vitali) Let f; € L?(p) and vi(E) = [g|filPdp for E€ Y,
k=0,1,.... Then fr — fo in LP(n) if and only if

(i) fix — fo p-measure,
(ii) {wi : k > 0} is uniformly p-continuous,
(iii) {vg : k > 0} is equicontinuous from above at 0.

Proof: = follows from the above.
<=: Since U {t: fx(t) # 0} is p o-finite [3.2.14], we may as well assume that u is

o-finite. Let S = U E, where E; € 3, Ex T and p(FE;) < co. Set Fy = E§.
Let ¢ > 0. From (m) 3k such that fr. |f;|P du < (e/2)” for j > 0. Hence, for j > 0,

(fo1s-sran)” < ([isra) "+ ([sra) "< @0
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Let Gi; = {t : |fi(t) — f;(t)] = €}. Then

Je \fi=fiPdp = Jgne, lfi = 7 dp + Jeoe, |fi — filP du
(6.5)
< Jewngy 1fi = £i” dp + € p(Ex).
From (i) and (ii) the first term on the right hand side of (5) goes to 0 as ¢, j — oo.
From (4) and (5), it follows that {f;} is a Cauchy sequence in LP-norm. By the Riesz-

Fischer Theorem there exists g € LP(x) such that f; — ¢ in LP(x). By Proposition
12 f; — g in p-measure so fo = ¢ p-a.e. and f; — fo in LP(p).

Dual of L? for p > 1:
We now give a characterization of the dual of LP(y) for 1 < p < oo. In what
follows p is fixed, 1 <p < oo, and 1/p+1/¢=1.

Proposition 18 If f € L(u), then Fy : LP(p) — R, defined by F;(g) = [ fgdu, is
a continuous linear functional on LP(p) with || Fy|| = || f]l,-

Proof: By Holder’s Inequality, [Fy(g)| < [If]l, llgll, so Fy is continuous with

IS < N £l
Set g = |f|" sign f. Then g is measurable and |g]’ = |f|""V7 = |f|" so g € LP(u)

and
Fy(g) = Js 1f1"du = (S |fI* dp)'"* (S 1F1° dp)''*
= |1£ll, s lgl” d)*’® = 11 £1l, llgll, -

Hence, |7]| = 1l
Thus, the map U : L9(p) — LP(p), Uf = Fy, is a linear isometry which is order
preserving. We show that U is onto, i.e., every continuous linear functional on LP(x)
has the form F; for some f € L(x). Hence, we can identify L%(x) and LP(u) as
Banach lattices.
We first establish a useful lemma, sometimes called the Reverse Holder Inequality.

Lemma 19 Let y be o-finite and let f: S — R be measurable. Suppose
M =sup{ [ 17gldu: llgl, < 1} < co.
Then f € L9(u) and ||f], = M.
Proof: Let S = k[.jl Ag with Ax T S and p(Ax) < oo and

E.={t e As: |[f(t)] <k}

Set gx = |f|?™" Cg, sign f. Then g is bounded, measurable and vanishes outside Ax
so gr € LP(p). Moreover, gif = |f|* Cg, so

1/p
|[oedu| < Mlgul, = M ([ 177 Cr.an)
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and
1-1/p=1/q
)

(L1 Cran
s
Since |f|"Cg, 1 |f|*, the MCT implies f € L%(y) with ||f||, < M. The reverse
inequality M < || f||, now follows from Hélder’s Inequality.

See also Exercise 14.

Theorem 20 (Riesz Representation Theorem) If F' € L?(u), then there ezists
f € L(y) such that F(g) = [ fgdp for g € L*(n). Moreover, |F| = ||f||q

Proof: First assume that g is finite. Define v : > — R by v(E) = F(Cg) [note
Cg € LP(u) since p is finite]. Then v(8) = F(0) = 0 and v is finitely additive since
F' is linear. We claim that v is actually countably additive. For if {£;} C 3 are

[oe]
pairwise disjoint and £ = |J E;, then
=1

Ce—~3 Cg| =|C O 5l = > ulE) -0
i=1 » - J , Jj=n+l

so v(E) — f: v(E;) — 0. Since
1=1

v(E) S |IFINICE, = I1FIl n(E)'?,

v is a finite signed measure which is absolutely continuous with respect to p.

By the Radon-Nikodym Theorem, there exists a y-integrable function f such that
v(E) = [ fdu = F(CE) for every E € 3. By linearity, we have F'(¢) = [ foodp for
every Y -simple function ¢. We claim that F(g) = [g fgdu for every g € LP(y). For
this we snay assume g > 0. Let A = {t: f(t) > 0}, B = {t: f(t) < 0}. Choose a
sequence of non-negative, simple functions {¢x} such that ¢ T g and |[px — g||, — 0
[Theorem 8]. Then wrCuf = wxf* 1 gf* and ||prCa — gCa|, — 0 so by the
continuity of F,

— — +
F(piCa) —/Afwcdu —/Sf erdp — F(gCa)
and by the MCT g¢f* € L'(x) and
- + +
[ fondi = [ frondut [ *gdp.
Hence, F(9C4) = [s9f*du. Similarly, F(9Cp) = [s9fdu so F(g) = [s fgdp.

That f € L7(u) and ||F|| = || f||, follows from Lemma 19.
Now let 4 be an arbitrary measure. For £ € 3, let

LP(E)Y = CpLP(p) = {f € LP(u) : f = 0 outside F}.
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Set £ = {E € ¥ : u(E) < oo}. By the part above, for every E € £ there exists
feg € L%(E) [unique up to p-a.e.] such that F(Cgrg) = [g fegdp for ¢ € LP(p).
Moreover,
I &ll, = sup {|F(Crg)| : llgll, < 1} < |IF]l-

Let @ = sup{||f&ll, : E € £} < |F|. f A, B € £ and A C B, then fa4 = fp p-ae.
in S so |fa| < |fp| p-ae. and | fall, < |If8ll,. Hence, there exists an increasing
sequence {E;} C £ such that | fedll, T a Let f(1) = limfg, (t). Since fiy1 = fi
p-a.e. in Eg, lim fg, (1) exists for p-almost all t € S, f = fx p-ae. in Ey and f =0
off £ = U Ek.

k=1

We claim that F' vanishes on LP(E®). For if F is not zero on LP(E®), then since
the simple functions are dense in L?(y), there exists B € £ such that B C E° and F
does not vanish on L?(B). Therefore, fg # 0 p-a.e., and since BN Ex = 0,

* > ||fsur,ll; = If5ll; + I fa.ll;

which implies a? > || fg||; + a? and gives the desired contradiction.

Let ¢ € LP(y). Since f € L(y), fg € L*(p). Since gfg, — ¢f p-a.e. and
l9fE.| < |gf], the DCT implies fs gfg,dp — [sgfdp. Similarly, ||¢Cg, — ¢Cg|l, — 0
so the continuity of F' implies F(¢Cg,) — F(gCg). Hence,

lim F(¢C,) = lim /s 9fg,dp = /s fgdu = F(Crg) = F(Crg + Cgeg) = F(g).
Corollary 21 If1 < p < oo, then LP(u) is reflexive.

We describe the dual of certain L'-spaces in §6.2.

We give two interesting applications of duality. The first is an extension of
Minkowski’s Inequality to integrals. Minkowski’s Inequality asserts that the LP-norm
of a sum is less than or equal to the sum of the LP-norms. We give a generalization
where the sum is replaced by an integral.

Theorem 22 (Minkowski’s Inequality for Integrals). Let (S,S,u), (T,7,v) be o-
finite measure spaces and [ : S x T — R measurable with respect to the oc-algebra of
(# x v)*-measurable seis. Let 1 < p < co and assume that f(-,t) € LP(u) fort € T
and t — || f(-,?)|l, belongs to L'(v). Then f(s,-) € L'(v) for p-almost all s € S, the
function s — [y f(s,:)dv belongs to L?(p) and

Jenans)| < [, 0l,dv0.

Proof: The case p = 1 follows from Fubini’s Theorem. Let 1 < p < oo and
h € L9(y). By Fubini’s Theorem and Hélder’s Inequality,

Js Ur (s, ) du®)} |R()| dpu(s) = fr fs |F(s, )] 1h(5)| du(s)d(t)
< JrUs £ (s, )P du(s) P ||A]l, du(2)
Fe G, RN, du(t).

A
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By Lemma 19, s — [ f(s,t)dv(t) belongs to LP(p) with

| [ rcomo] < [iscol,ao.

Application to Convolution:
Recall the convolution product of two functions f, ¢ : R® — R is defined to be

frg(z) = /Rn flz —y)g(y)dy
[§3.11].

Proposition 23 Let1 < p < oo. If f € LY(R"), g € LP(R™), then f x g € LP(R™)
and || f +gll, < IFll; llgll,-

Proof: Let 1/p+1/q = 1 and h € LYR"). Then, using Exercise 3.11.8 and
Fubini’s Theorem,

Jre Jre [ F(z — y)9(y) h(z)| dydz

Jrn |M(2)| Jrn | F(z — y)9(y)| dydz
Jr~ [B(2)| fr | f(t)9(z — t)| dtdz
Jr £ ()| Jrn |R(2)g(z — 1)| dzdi
Jrn @)1 Nlg—cll, |21l dt

Jrn 7@V lgll, 1171, @t

A1l gl IRl -

(6.6)

FIA

Since A can be taken to be non-zero everywhere [e—||z||7], (6) shows that f=*g is finite
a.e. The inequality in (6) shows that f * g induces a continuous linear {functional on
L?(R™). By Theorem 20, f + g € L* (R") and by (6), ||f * g, < lI£]l, llgll,-

We can combine Theorem 22 and Proposition 23 to obtain an extension of Theo-
rem 3.11.11 to the case where 1 < p < oo.

Theorem 24 Let {px} be an approzimate identity and f € LP(R"), 1 < p < oo.
Then || f *¢x — fll, — 0.

Proof: f ¢, € LP(R™) by Proposition 23. Denote the function t — f(x +t) by
f=- By Minkowski’s Inequality for Integrals,

I+ 0= £l = | fo. (e =) = SNentwras]| < [ 15 = fl, oeday. (67)

The function g(y) = ||f-y — /I, is bounded, continuous [Theorem 11] and ¢(0) = 0
so the right hand side of (7) converges to 0 as £ — oo by Exercise 3.11.7.

Exercise 1. Let S = (0,1/2], 1 < p < co. Show f(t) = ¢t~/?(In(1/t))"%/? is in L?(S)
but not in L7(S) for r > p.
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Exercise 2. Let S = [0,00), 1 < p < co. Show f(t) = t=Y/*(1 +In|t[)~! is in L*(S5)
but not in L?(S) for p # 2.

Exercise 3. If fy — fin LP(u) and gx — g in Li(g)for 1 < p< oo, 1/p+1/q =1,
show that figr — fg in L'(u).

Exercise 4. If f € L"(p) N L°(p), 1 <r < s < oo, show f € LP(p) forr <p<s.

Exercise 5. Let g,, g be measurable functions such that |g,] < M and g, — g y-a.e.
show that if f, — f in LP(u), then f.g. — fg in LP(u).

Exercise 6. Prove Theorems 8-10.

Exercise 7. Show the polynomials are dense in L?[a,d] for 1 < p < co. Generalize
to R™.

Exercise 8. Let 1/p+1/q = 1, f € LP(R), g € LY(R). Show F(t) = [g f(z+t)g(x)dz
is uniformly continuous on R.

Exercise 9. For f € L?(u), 0 <p <1, set |f|, = [s|f["dp. Show d(f,g) =|f —gl,

defines a complete semi-metric on LP(). Show | | is not a semi-norm.

Exercise 10. If fy — fin L?(u) forsome 1 < p < oo, show there exists a subsequence
of {fx} which converges p-a.e. to f.

Exercise 11. Let fx, f, g € LP(p) and fy — f y-measure. If |fi| < g p-a.e., show
fx — f in L?(u) [Dominated Convergence Theorem)].

Exercise 12. Let 1 < p < 00, 1/p+1/q = 1. Suppose {fi} C L?(p) and lim [ frgdu
exists for every g € L%(u). Show there exists f € LP(u) such that lim f¢ frgdp =

fs fadp.

Exercise 13. Let fi, fo € L[a,b] and ||fi — foll, — 0. Set Fx(t) = J: fx. Show
F, — Fy uniformly on [a, b]. Is p = 2 important?

Exercise 14. Let y be o-finite and 1 < p < co. Suppose f is measurable and
fg € L' (u) for every g € L*(p). Show f € LP(u). Show o-finiteness cannot be
dropped. [Hint: Exercise 2.2.16.]
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Exercise 15. If p is finite, show condition (iii) of Theorem 17 can be dropped.

Exercise 16. Let k: S x S — R be in L% (u x u). Show
(1) y(s) = fsk(s,t) z(t) du(t) exists for y-almost all s € § when £ € L? (1) and
(i) y € L* (u) with [ly[l, < [I&]l, lI=]l,-

The map K : z — y is a continuous linear map from L? (1) into itself and is called
an integral operator. The function k is called the kernel of K.

Exercise 17. Show £7(S), 1 < p < oo, is separable if and only if S is countable.

Exercise 18. Let A = [a;;] be an infinite matrix and suppose A maps £ into £* in

the sense that the sequence Az = {E a;;z;p € £ for every z = {z;} € £". Use the
i=1 ;

CGT to show that A is continuous.
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6.2 The Space L>(u)

Let 4 be a measure on a o-algebra )~ of subscts of S. The space L*(y) consists of
all Y -measurable functions [ : § — R such that there exists a p-null sct N with
S bounded on S\N. L*®(u) is a vector space under pointwise addition and scalar
multiplication and is a vector latticc under tlie pointwise order. We define a semi-

norm on L>(y) by
e = inf {sup{| /()] : 1 € S\N} : p(N) = 0} (6.1)

The functions in L%(y1) are called ji-cssentially bounded functions and the semi-norm
in (1) is called the g-essential sup of f. I[ ¥ C R™ is Lebesgue measurable and m is
Lebesgue measure on K, we write L*(I)) = L*(m). The following properties should
be clear.

is a semi-norm on L™(p) and ||f||, = 0 if and only if

[

Proposition 1 (i) ||
f=0p-ae

(60) 1. = inf{M > 02 ufts ()] > M} = 0},
(iii) I |f] < g p-ae., then || [l <llgllo so |l |l s alatticc norm on L™=(u).
As was the case for the other LP-spaces, we agree to identity functions in L°(g)

which are equal pg-a.c. so we regard L™(g) as a NLS. The analoguc of the Riesz-
Fischer Theorem holds for L™ ().

Theorem 2 L™(y) is complcte under || ||,
Proof: Let {fi} be Cauchy in L*°(y). Then there exists a p-null set N such that
[fe(t) = LA < | fw = fill,, for £ ¢ N. (6.2)

Therefore, {fi(#)} is Cauchy for ¢ € S\N; set f(¢) = lim fi(!) for t € S\N and
f(t) =0fort € N. Then f is measurable. Lel € > 0. There exists n such that &,
J = nimphies || fy — f,)l, < ¢ Fixing k¥ > n and letling j — oo in (2) implies that
lfx — fll, <eso feL™u)and fy — [ in L®(p).

Thus, L>(y) is a Banach lattice.

We now show that the dual of L'(x) is L*(g) for o-finite p.

From Exercise |, we have

Proposition 3 Let f € L%(u). Define Iy : L (p) — R by Fylg) = [s fgdp. Then
Fy is a continuous lincar functional on L*(p) with || Fy]] < || f]l..-

For o-finite measures we show that every continuous linear functional on L'(z)
has the form F; for some f € L®(u).
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Theorem 4 (Riesz Representation Theorem) Let p be o-finite. If F € (L'(p)),
there exists f € L°(p) such that F(g) = [ fgdp for g € L' () and ||F|| = || f|l., [f
is unique up lo p-a.e.].

Proof: First assume that g is finite. Then as in the proof of Theorem 6.1.20 there
exists f € L'(p) such that F(g) = [s fgdp for g € L} ().
We claim that f € L®(g) and ||F|| = || f]|.. Let € > 0. Set

A= {t:|F|l + ¢ < f()).

Then
(F1l+eu(A) < [ 1f1du = [ fsign fan

= F(Casign f) < |F|| |Casign fll, = |F]l n(A)-

Hence, §(4) = 0 and / € L*(u) with |fll, < |Fll+ ¢ so |fl. < IFll. By
Proposition 3, || F|| < fll.. 50 || fllee = I|F

Assume that p is o-finite. Let {F:} be an increasing sequence from 3 with
Ex 1 S and p(E)) < co. By the first part, there exists a sequence {fx} C L°°(g) such
that fx vanishes outside Ex, ||fxll. < |FIl, fx = fes1 in Ex and F(g) = [ frgdu
for every g € L'(u) which vanishes outside Er. Let f = lim fx so f = fi in Ej
and ||fll., < [F|l. Therefore, F(Ck,g) = [s f(Cg,g)dp for every g € L'(p). But
Cg,g — g pointwise and |Cg,g| < |g| so by the DCT and the continuity of F,

Flg) =lim F(Cr,9) = lim [ f(Cig)du = | Jgdp.

From Proposition 3, || F|l < |fll.. so IFll = |/l

Thus, when g is o-finite the map U : L>=(x) — (L'(p))’, U(f) = Fy is a linear
isometry from L°°(g) onto (L'(g))’ which is obviously order preserving. As before,
we write L (u) = (L' (u))'.

In contrast to the situation when 1 < p < oo, Theorem 4 is false if the o-finiteness
condition is dropped.

Example 5 Let S = R and let 3~ be the o-algebra which consists of the sets which

are countable or have countable complements. Let g be counting measure on 3.

Then L!(g) consists of the functions g on R which vanish outside a countable set

and satisfy ||g||, = EI:{ |g(t)] < co. Define F : L'(x) — R by F(g) = g:og(t). Then
te

F e (LYp)) and |Fl|=1. If f: S — R were to satisfy
F(g) = /S fgdp =3 g(t) for g € L'(n),
>0
then f = C{p,«). But this function is not y"-measurable. [See, however, Exercise 5].
Remark 6 There is a description of L!(g)’ for arbitrary measures due to J. Schwartz

([Sc]). There are necessary and sufficient conditions known for the measure u to satisfy
L' (n)" = L™ (p); see [TT].
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Recall that for 1 < p < oo, LP(y) is reflexive [6.1.21]. However, L'(y) is not
generally reflexive, even for finite measures.

Example 7 Let S = [0,1] with Lebesgue measure. Then C[0,1] is a closed subspace
of L*°[0,1] (Exercise 2). Define F : C[0,1] -+ R by F(¢) = ¢(0). Then F is a
continuous linear functional on C[0,1] with || F|| = 1. By the Hahn-Banach Theorem,
F can be extended to a continuous linear functional F': L*[0, 1] — R with ||F|| = 1.

Now there exists no f € L'[0,1] such that F(g) = fj fgdm for all g € L*=[0,1].
For, choose continuous g such that |gi(¢)] < 1for 0 <t <1, g,(0) = 1 and gx(t) — 0
for 0 < t < 1. Thus, if such an f exists, by the DCT lim f] fgrdm = 0 while
F(gx) = 1 for each k.

See also Exercise 3 for another proof.

It foltows from Exercises 3 and 5.6.1.1 that L>[0,1] is not reflexive. We describe
the dual of L* in §6.3.

We establish a result which in some sense justifies the notation for L™-spaces.

Proposition 8 Let u be a finite measure. If f € L=(u), then ||f||, = lim || f]],.
p—o0

Proof: If ||f||_, = 0, the result is trivial so assume |[f]|_ > 0 and let 0 < &k <
[ fll.- Set H ={t:|f(t)] > k}. Then u(il) >0 and

() < [ 157 dp < [ 11 du < A2 u(S)

SO

ku(H)'7 < (11, < 11l 1(S)7.
Letting p — oo gives k < plgg II£1l, < |Ifll- Hence, the equality [ollows.

Il f € L™(u), then fg € LP(u) for every g € LP(p). As an application of the
CGT, we establish the converse of this result.

Example 9 Let f : S — R be measurable and suppose fg € L?(u) for every g €
LP(p). Then f € L*=(u). Define a linear map T : LP(p) — LP(u) by Tg = fg. We
claim that 7T is closed. Suppose gi — ¢ and Tgx = fgx — h in LP(y). Then there is
a subsequence {g,, } converging u-a.e. to g so fg,, — fg =Tg p-a.e. [6.1.12, 3.6.3].
Hence, Tg = h and T is closed. By the CGT, T is continuous and we may assume
ITII < 1. Let 6 > 0 and set £ = {t:[f(t)| > ]‘"g|| < |lg|]| for n > 1,

/Igl”duz/lf"'gl”’du 2/ (L+6)™ g dpu,
S S E

and since (1 4+ §)" — oo, fglg|P di = 0 for every g € LP(u) so p(E) = 0. Ilence,
£ € L™(u) with | fl|, <1
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Integrating Vector-Valued Functions

We indicate how the CGT and the duality between L! and L° can be used to
define an integral, called the Gelfand integral, for vector-valued functions. Let X
be a Banach space and g a measure on the o-algebra Y of subsets of a set S. Let
f:8 — X besuch that £’ o f = z'f is u-integrable for every z’ € X’. The mapping
F: X' — L' (u) defined by F(z') = z'f is linear and has a closed graph (Exer. 10).
Hence, F is continuous by the CGT. For E € ¥,

z’—»/Ez'fdpz (Cg, F{z'))

defines a continuous linear functional on X' since [(Cg, F (z'))| < ||F||||z']|. This
continuous linear functional is called the Gelfand integral of f over F and is denoted
by fp fdu. Thus f5 fdu € X" and {fg fdu,o') = [’ fdp. Tt f fd € X (= JxX)
for every E € ¥, then f is said to be Pettis integrable and [ fdu is called the Pettis
integral of F over Y. Of course, if X is reflexive, every Gelfand integrable function
is Pettis integrable, but, in general, this is not the case.

Example 10 Let p be counting measure on N and define f : N — ¢p by f (k) = €*.
Let ' = {t;} € £ = (co)'. Then z'f (k) =ty so z'f is u-integrable and

/ .’I:’fd;t = E t); = (CE,I’>.
E k€E

Hence, [; fdu = Cg and when E is infinite [ fdy = Cg € £2°\¢p so f is not Pettis
integrable.

For more information on the Gelfand and Pettis integrals, see [Du]. There is also a

close analogue of the Lebesgue integral for vector-valued functions, called the Bochner
integral; this integral is also discussed in [Du].

Exercise 1 (Hélder’s Inequality for p = 1). If f € L*®(u), g € L*(p), show fg € L*(p)
and || fgll; < ||/ llo llgll;-

Exercise 2. If ¢ € C[0,1], show sup{|f(t)| : 0 < ¢ < 1} equals the m-essential sup
of . Is this equality valid for an arbitrary measure on [0, 1}?

Exercise 3. Show L'[0,1] is separable and L*[0,1] is not separable. Use Corollary
5.6.1.13 to show that L'[0,1] is not reflexive.

Exercise 4. Repeat Exercise 3 for £! and £*.
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Exercise 5. Let S # 0. Let £!(S) = L'(y), where p is counting measure on
S, and £°(S) = L®(u) [so £°(S) consists of all bounded functions on S]. Show
£1(S) = £=(S).

Exercise 6. Let 1 < p < oo and 1/p+ 1/q = 1. Show that if f € LP(R), ¢ € L(R),
then f * g is defined everywhere, is uniformly continuous, and || f * g||, < [|fll, ll9ll,-

Exercise 7. Let u be o-finite. Show g € L*°(u) satisfies 0 < ¢ < 1 p-a.e. if and only
if 0 < Js fgdu < [g fdu for every f € L'(u) with f > 0.

Exercise 8. u is non-atomic if every E € 3 with u(E) > 0 contains a subset A € 3°
with 0 < p(A) < u(E) [i.e., Lebesgue measure]. If g is finite and non-atomic, show
L*(4) is infinite dimensional. Can the non-atomic assumption be dropped?

Exercise 9. If f € L>(y) N L'(g), show f € LP(u), 1 < p < oo.

Exercise 10. Show the operator F : X’ — L' (i) defined in the last paragraph has
a closed graph.

Exercise 11. Let u be counting measure on N and f : N — ¢y be defined by
f (k) = e*/k. Find the Gelfand integral of f with respect to . Is f Pettis integrable?

Exercise 12. Let f € L™ [a,b]. Show there exists a sequence of continuous functions

b b
{fa} such that || falloo < [|fll., 2nd li:n/ fagdm = / fgdm for every g € L' [a, B].
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6.3 The Space of Finitely Additive Set Functions

In this section we describe the dual of L™ as a space of bounded, finitely additive set
functions.

Let A be an algebra of subsets of a set S. We denote by ba(A) the space of
all bounded, finitely additive set functions on A. If we define addition and scalar
multiplication pointwise on A, ba(A) is a vector space, and if we define v < u to
mean v(A) < p(A) for all A € A, then ba(A) becomes an ordered vector space; it
follows from Lemma 3.12.1.1 that ba(.A) is a vector lattice under the pointwise order.
We define a norm on ba(A) by

vl = 1v1(S), (6.1)
where |v| is the variation of v [§2.2.1; that (1) defines a norm on ba(A) follows from
Exercise 2.2.1.1]. From Proposition 2.2.1.7 (iv) it follows that (1) defines a lattice
norm so ba(A) is a normed lattice. We show that ba(A) is a Banach lattice.

Theorem 1 ba(A) is complete.

Proof: Let {v;} be a Cauchy sequence in ba(A). Let € > 0. Therc exists n such
that k, 7 > n implies

e = vl < e (62)

Then |vk(A) — v;(A)| < efor k, 7 > n and A € A [Proposition 2.2.1.7 (i)] so {vi(A)}

converges, to say v{A). Fixing k£ > n in (2) and letting j — oo gives |vg(A) — v(A4)] <

¢ for A € A. By Proposition 2.2.1.7 (v) |lvx — v|| < e for k > n so v € ba(A) and

Vv — V.

The Dual of L>(u):

Let p be a measure on a o-algebra, ¥, of subsets of S. Let ba(}" : p) be the
subspace of ba(3") which consists of those v € ba(3") which are absolutely continuous
with respect to p in the sense that u(£) = 0 implies |v|(E) = 0. Then ba(}" : g) is
a Banach space under the norm in (1) since ba(}" : p) is a closed subspace of ba(¥)
[Exercise 1].

We show that each v € ba(}" : p) induces a continuous linear functional on L*(u).
We write || f]|,, for the u-essential sup of f and | f||, = sup{|f(¢)| : ¢t € S} for the
sup-norm. If v € a(3") and h : S — R is bounded and 3 -simple, the integral g hdv

is well-defined and 1
[ v < [IRIdlo] < 1R],1v1(S) (63)

[Remark 3.2.2]. f A : S — R is bounded and ) -measurable, there exists a sequence
of 3_-simple functions {px} such that px — h uniformly on S and |px| < |A| (3.1.1.3).
From (3), {5 wsdv} is a Cauchy sequence so we may define fghdv = lim [g oxdv; it
is easily checked that the definition of f; Adv does not depend on the sequence {px}
and (3) still holds [Exercise 2].
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Lemma 2 Let v € ba(3: ¢) and h: S — R a bounded, 3_-measurable function such
that A= {t € S: h(t) # 0} is p-null. Then [ghdv =0.

Proof: |[s hdv| < fs|hld]v] = fy bl dlu] + fsya bl o] < 2], [v] (A) = 0.

If v € ba(y : p) and h € L°°(p), we may define the integral of & with respect to
v as follows: Pick f : § — R bounded and 3"-measurable such that ||f — &l = 0
and k||, = ||f]|, [Exercise 3]. Now set [ hdv = [; fdv; by Lemma 2 this definition
does not depend on the choice of f and, moreover,

i/shdu

Hence, if v € ba(X_ : p), then F,(h) = [4 hdv defines a continuous lincar functional
F, on L*®(g) with ||F.|| < |v|(S) = ||v||. It is actually the case that || F,|| = ||v||. For
suppose € > 0 is given. Choose a partition {E; : 1 < j < n} of S such that

< Nl w1(S)-

2 W(ED > vl — €
=1
[Proposition 2.2.1.7], and for each j let t; = sign¥(E;) and set h = f: t;Cg,. Then
J=1
h € L=(u), [kl <1, and

IRl > |FB)] = | [ hav

dotiv(E;)| = X lv(E)| = vl -«
=1 j=1
so ||F,|| 2 |lv|| and equality holds.

Thus, the map U : ba(¥ : p) — L=(p), U(v) = F,, is a lincar isometry which
obviously prescrves order. We show that U is onto so we have the Riesz Representation
Theorem for L= (u)".

Theorem 3 (Riesz Representation Theorem) L*(u) = ba(y : p) [as Banach
lattices].

Proof: Let F' € L™(yu). For E € 3 set v(E) = F(Cg). Then v is obviously
finitely additive, and since |v(E)| < || F||||CE|l.., v is bounded and absolutely con-
tinuous with respect to g, i.e., v € ba(Y : p).

Since F(p) = [spdv for every 3 -simple function ¢, the argument above shows
that F = F, = U(v).

oo?

The Dual of £~:

If 3 = P(N), we write ba= ba(P(N)). If p is counting measure on P(N), then
£ = L(y) and ba = ba(P(N) : p) so (£°)' and ba are isometrically isomorphic as
Banach lattices.
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Exercise 1. Show ba(}” : ) is a closed subspace of ba(}]).

Exercise 2. Show [g hdv is well-defined for & bounded and measurable and v € ba(Y)
with |[s kdv| < [[Al, |v] (5)-

Exercise 3. (a) Show h € L°(y) if and only if 3 a bounded, }_-measurable function
f such that {t € S: A(t) # f(t)} is p-null. (b) Show that if A € L°(u), then
[I2llee = inf{|| fll, : f as in (a)}

and this inf is attained. [Hint: Show |[f||, > ||t for such f; set Z = {t € § :
[R(®)] < k]l } and show [[ACz]l, = {[Al,-]

Exercise 4. Let B(S,3) be the space of all bounded, Y -measurable functions. Show
B(S,Y) is a Banach space under the sup-norm and its dual is ba(3").

Exercise 5. Show [shd(p + v) = [s hdp + fg hdv when p, v € ba (3°) and
he B(SY).
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6.4 The Space of Countably Additive Set Func-
tions

Let 3= be a o-algebra of subsets of S and let ca (3°) be the space of all finite signed
measures on Y. Since any finite signed measure on a o-algebra is bounded [2.2.1.5],
ca (¥) is a linear subspace of ba (3°) and ||v| = |v|(S) is a norm on ca (3°). We show
ca (T°) is complete under this norm.

Theorem 1 ca(Y) is a Banach space.

Proof: We show that ca(Y) is a closed subspace of ba(3) [§6.3]. Let {ui} C
ca (3°) be such that {xx} converges to i € ba(3°). Then

|1k (E) = w(B)] < {lpe — #ll

for each F € 37 [2.2.1.7] so lim pux(E) = p(E) exists. Let {E;} be pairwise disjoint
from 3” and set £ = U E;. Let € > 0 and choose n such that ||u, — p|] < e. Then
=1

< (B) = punl )]+ [ 3o B2) — m&-»l

i=1

’uw) - 3ou(E)

i Ha(E3)]| -

i=p+1

RO

i=p+1

+ < 2+ (6.1)

The last term on the right hand side of (1) can be made < € for p large so g is
countably additive.

ca (Y) is an ordered vector space under the pointwise order which it inherits from
ba (3°), and we show that it is actually a vector lattice [Banach lattice].

Theorem 2 ca(3]) is a Banach lattice. Moreover, if y, v € ca(Y), then
pAv(A) =inf {u(E) + v(A\E): E € 3, E C A}
and
uV v(A) = sup {u(E) + v(A\E): E€ Y, E C A}
for Aey.
Proof: By Lemma 3.12.1.1, it suffices to show that g A v (u V v) is countably
additive. Let {A;} C 3 be pairwise disjoint and set A = G A, T Ee€ Y, EC A,
=1

then
w(E) + v(A\F) = Z{p(A; NE)+v(A\E)} > Zp A v(A)

i=1 1=1
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SO0

g Av(A) > iy Av(A).

1=1

Let € > 0. For each 1 there exists E; € ) such that E; C A; and
p(E;) + v(ANE) < p A v(A;) + /2

Now {E;} are pairwise disjoint and if E = U E;, then E C A and U (A\E;)) = A\E

=1
SO0

WA (A) < W(E) +v(AVE) = 3 (k(E) + o ANE)) < 3 A v(A) +

Hence, g A v(A) = Eﬂ/\V(A)

The other statement is similar.
There is an interesting order theoretic characterization of singularity for measures.

Proposition 3 Let 4, v € ca(}) be measures. Then g L v if and only if uAv = 0.
Proof: =: Let A, Be 3, ANB=40,5 = AU B with u(A) =v(B) =0. Then
0<pAv(S)=pAv(A)+pAv(B) < p(A)+v(B)=0

sopuAv =20
<: p A v(S) = 0 implies that for each ¢ there exists E; € Y such that p(FE;) +

V(E) < 1/%. Let A, = i[j E;, A= a A, =TimE;, and B = A°. Then

u(4) < p(A) zu )</ =12

implies p(A) = 0. Also )
v(AL) = v (ﬁ E) <u(Ef) < 1/%
for ¢ > n implies v(AZ) =0 so )
) = (0 4) < S <o
n=1 n=1

Hence, ¢ L v.

Exercise 1. Let A € ca(3]) be positive and let ca (3 : A) be the subspace of ca (3)
consisting of the elements which are absolutely continuous with respect to A. Show
ca (3 : A) is isometrically isomorphic to L'(}).

Exercise 2. Show v € ba (}) is purely finitely additive if and only if vLca (30).
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6.5 The Space of Continuous Functions

Let S be a locally compact Hausdorfl space and B = B(S), the Borel sets of S.
Recall that C.(S) is the space of all real-valued continuous functions on S which have
compact support. We equip C,(S5) with the sup-norm, || ||..; C:(S) is not gencrally
complete [see Exercise 3]. Under the pointwise order, Cc(S) is a normed vector lattice.
We begin by considering positive linear functionals on C.(S).

If 41 is a Borel measure on B [so g is finite on compact subsets], then g induces
a positive linear functional, F,, on C.(S) defined by < F,,¢ >= [spdp. If F:
C.(S) — R is a positive linear functional on C.(S) and F = F, for some Borel
measure g, we say that p is a representing measure for F. We first observe that
regular representing measures are unique.

Proposition 1 Let u, v be reqular Borel measures on B such that [sodp = [¢pdv
for every ¢ € C.(S). Then p = v.

Proof: Notation: If V is open and f € C.(S), then f < V means 0 < f < [ and
spt{fy C V. If K is compact and f € C.(S), K < f means 0 < f <1 and f =1 on
K.

By regularity, it suffices to show that p(K) = v(K) for every compact K. Let
€ > 0. Pick V open such that K C V and p(V) < u(K) + ¢. There exists f € C(S)
such that K < f <V [3.5.5]. Since Cx < f < Cv,

v(K) :/ Credv 5/ fdu:/fd;z g/scvdﬂ = u(V) < u(K) +¢
s s s
so v(K) < u(K). By symmetry, v(K) = p(K).
Without the regularity assumption, Proposition 1 can fail; see Exercisc 4.

We now show that every positive linear functional on C.(S) has a (unique) regular
representing rmeasure. For the proof we require a preliminary lemma.

Lemma 2 Let K C S be compact and V;,...,V, open with K C C) V;. Then there

=1
exist continuous functions fi,..., fo € Cc(S) such that

() 0<fi<li=1,...,n,
(ii) spt(fi) C Vi,

(i) 3. fi(t)=1forall t € K.

{f;} is called a partition of unity.
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Proof: Let z € K. Then z € V; for some ¢ and there exists an open neighborhood
U, of z such that U, is compact and z € U, C U, C Vi. Let z,,..., 2, € K be such

that K C () Us, and let H; be the union of those U,, such that U, C V.. By 3.5.5

=1

for each ¢ there exists g; € C.(S) such that H; < ¢; < V;. Put
=g, fi=1-g)g2 -, fu=(1—g1)(1—92) - (1 — gn-1)gn-
Then f; < V; and
it A fa=s1-(1=g)(1—g2) - (1—gn) (6.1)

Since K C U H;, at least one g;(z) = 1 for each z € K so (iii) holds by (1).

=1

To motivate the construction of a representing measure for a positive linear func-
tional, we give the following result.

Proposition 3 If p is a regular Borel measure and V is open, then
u(V) = sup{/sfd;t L f € CUS), f < V).

Proof: Clearly p(V) is greater than the sup above. Let r < u(V). Choose K C V
compact such that u(K) > r. Choose f € C.(S) such that K < f <V [3.5.5]. Then
fs fdp > p(K) > r so the equality follows.

Theorem 4 (Riesz Representation Theorem) Let F be a positive linear func-
tional on C.(S). Then there ezists a unique regular Borel measure p representing F,
te, F=F,.

Proof: For V open, define
,u'(V) = sup{F(f) 1 f€ CC(S)af =< V}

[ef. Proposition 3]. Certainly, 0 < p(V) < oo and p(U) < p(V) if U is open and
U C V. Extend u to all subsets of S by setting p*(A) = inf{u(V) : V open, V D A};
note p*(V) = (V) for all open V.

We claim that p* is an outer measure on S. Clearly 0 < p*(A) < oo for A C S,
p*(@) = 0 and p* is increasing on subsets of S. It remains to show that p* is countably

subadditive. Let {A;} C S and A = (G A If E u*(Ai) = oo, there is nothing to
=1 =1
prove so assume § pu*(A;) < oo. Let € > 0. For each i choose V; open such that
i=1

A; € Viand p(Vi) < p*(A) +€/2. Set V= U Vi. If f < V, then K = spt(f) C U Vi
i=1 =1
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so there exists n such that K C L"J Vi. By Lemma 2 there exist fi,..., fn € Cc(S)
=1

such that f; < Viand 3° f; = 1 on K. Then f < 3° f; so
=1 =1

n oo

F() € SR S u(A) S Tu(V) < T (4) +e

and
n(V) < _}_:lf(A-‘) +e

Hence,
W(A) < 30 (A

Next, we claim that u*(K) < oo for each compact K C S. Choose V opcen, with
compact closure such that K C V. There exists ¢ € C.(S) with V < ¢ [3.5.5]. I
J =<V, then f < g0 F(J) < Flg) and u*(K) < u(V) < F(g) < oo.

We now claim that g* is finitely additive over the family of compact sets. Let K,
K, be compact with K;NK,; = @. Since p* is countably subadditive, it suffices to show
that p* (K1) + p*(K2) < p*(K1 U K3). Since Ky C K5, there exists an open V| with
compact closure such that K, ¢ Vi C V|, C K3. llence, K, C (Vl)c. Set V, = (Vl)c
and note V; NV = B. Choose an open V D K; U Kz with p(V) < p~(K, U K3) + <.
Then K1 C VNV, K, C VNV, Pick fi, f2 € C(S) such that fi < VNV,
L=<VnVy,uVW) < F(fi)+ecand p(VNVy) < F(fa) +e. Note fi+ fo <V
since V; N Va = 0. Then

pr(K) + it (K2) S p(V V) + p(V N V)
<F(A)+F(f2)+2=F(H + fi) + 2
S [I(V) +2€ < [l‘(K] U Kz) + Je

so p* (K1) + p*(K2) < (K1 U Ky).

We now claim that for each open V, (V) = sup{p*(K) : V D K compact} [inner
regularity]. Let r < u(V). Choose f < V with r < F(f). Let K = spt(f). If W is
open, K C W, then f < W so r < F(f) < u(W) which implies u(V) > p*(K) >
F(f) > r from which the desired equality follows.

We next assert that B € M(p*), the class of p*-measurable sets. First note that
g (K)+p(V) = p*(KUV) when K is compact, Visopenand KNV =0 if K, C V
is compact, then by the finite additivity of x* over compact sets and the countable
subadditivity of p*,

#(K) +p"(K) = p* (KU Ky) < g (KUV) < p*(K) + 07 (V)

and the identity follows from the inner regularity of the preceding paragraph].
It suffices to show that if V is open, then V is u*-measurable. Let A C S with
u*(A) < oo be a test set. First assume that A is open. Let K be compact with
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K C ANV. Then the open set W = A\ K satisfies KNW =@ and ANV-CW C A
so by the observation in the paragraph above,

u(K) 4 5 (A\V) < 7 (K) + w(W) = u*(K UW) < u*(A).

The inner regularity of open sets implies that u*(ANV)+ u*(A\V) < p*(A) for every
open A.
Now let A C S be arbitrary. If W D A is open, then by the above

WANY) + 5 (AV) < p(W V) + 2 (W\V) < u(W).
By the definition of p*,
WANY) 4w (AV) < p(4)

and V is g*-measurable.

It follows that u* restricted to B, which we denote by y, is a measure on B. By
the properties established above p is a Borel measure and every open set is inner
regular. Every Borel set is outer regular by the definition of y* so u is a regular Borel
measure.

Finally, we claim that F(f) = fg fdu for f € C.(S). Let f € C.(S), € > 0 and
fix V open with K = spt(f) C V and g(V) < co. Choose ¢ > 0 such that |f(¢)| < ¢
for t € S. Partition the interval [—c,¢] in the range of f by yi = —c + ¢(2¢/n),
t =0,1,...,n, where n is chosen such that 2¢/n < e¢. Hence, y; — yi_1 = 2¢/n < e.
Let A; = {t € K : yic1 < f(t) <y} (: =1,...,n) be the partition of X induced by
the {y;}. Note the open set W; = {t € V : yi_;y — € < f(t) < yi + ¢} contains A;.
By regularity for each ¢ there exists open V; with A; C V; C W; and u(Vi\Ai) < ¢/n.

Then K C 0 V. ¢ V. By Lemma 2 there exists g1,...,gn € C(S) such that g; < V;
i=1

and Xﬂ: g:(t) = 1for t € K. Note that fg; < (yi+ €)g: and f = f: fg:. Thus,
i=1 i=1

F(f) = Js fdu

'é:l F(gfi) -Z::l S, fdu
IZ::I(!/; +€)F(gi) — é(yi — u(A)

n n

< Sl + (V) — X (i — u(A)
= Elw+ (V) - u(4) +2¢ £ u(A)
< P(etee/n+2u(K) = e + e+ 2u(K)]

so F(f) < [s fdu. Replacing f by —f gives the reverse inequality.

Corollary 5 F is continuous if and only if u is finite. In this case, ||F|| < u(S) =
llall-
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Proof: <=: [F(f)| < [s[f1dp < [|fllo 1(S).

= p(S) =sup{F(f): f < S} <||F| since ||f||,, £ 1 when f < S.

We denote by rca(S) the space of all finite, regular signed measures v on B with
the norm ||v|| = |v|(S) [§6.4; recall a signed measure v is tegular if {v| is regular].
Each v € rca(S) induces a linear functional F, on C.(S) via integration,

F(f) :/Sfdu:/sfdﬁ _/Sfdu—
(see Exer. 3.2.31), and since

EAN< [11d1] < ) f o vl

F, is continuous with |[F,|| < ||v||. We say that v is a representing signed measure
for F,. Thus, we have a linear map U : v — F, from rca(S) into C.(S)’. We show
that U is an isometry.

Lemma 6 Let K,,..., K, be pairwise disjoint compact subsets of S and a,,...,a, €
R. Then there ezists f € C.(S) such that

(i) f(t)=ai fort € K;,
(i) [Ifll = max{lai], ..., |as[}.

Proof: There exist pairwise disjoint V;,...,V, such that K; C V; [for n = 2, this
is easy; use induction]. By 3.5.5 there exist f; € C.(S) such that K; < f; < Vi. Set

f= ; ai fi.
Theorem 7 Let v € rea(S). Then ||F,| = ||v]-
Proof: The inequality ||F,|| < ||v|| was observed above.
Let € > 0. There exists a partition {Ay,..., A} of S by elements of B such that
2 (A > vl — €
i=1
[2.2.1.7]. By regularity, choose compact sets K; C A; such that
vl — e < D Iw(K)| < D Ivl (K3,
i=1 i=1
where we may assume v(K;) # 0 for all i. By Lemma 6 choose f € C.(S) such that
f =signv(K;) on K; and || f]|, < 1. Set K = 0 K;. Then
=1

[ sav = Z/K fdv =Y |w(K)| > [Ivl| — ¢

=1
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and
dv| < K .
| rav| < WK < e
Hence,
> = > -
IEN 2 B = [ fdv+ [ fdv > o] -2
so 1B > |lv].

We next show that U is a linear isometry onto C.(S)".
Theorem 8 U : rca(S) — Cc(S) is onto.

Proof: Let F' € C.(S). Then F = Fy — F,, where F; are positive, continuous
linear functionals on C.(S) [Remark 5.7.20]. Let u; be the regular Borel measure
representing F; [Theorem 4]. Since Fj; is continuous, g, is finite so u = gy —ps € rea(S)
is a representing signed measure for F.

Thus, as Banach spaces rca(S) and C.(S) are the same. We show that they are
also equal as Banach lattices, i.e., that U is a lattice isomorphism.

Proposition 9 v € rca(S) is positive [i.e., a measure] if and only if F, is positive.

Proof: =>: Clear. <=: By the first part of the proof of Theorem 4 the representing
measure for F,, satisfies
v(V) =sup{F,(f) : f <V}
for V open. Hence, v(V) > 0 for every open V and v > 0 by regularity.
Thus, both U and U~! are positive linear maps and U is a lattice isomorphism by
Theorem 5.7.9. Summarizing, we have

Theorem 10 (Riesz Representation Theorem) U is an isometric lattice isomor-

phism from rca(S) onto C.(S) [rca(S) = C.(S)'].
Concerning reflexivity, we have

Example 11 C[0,1] is not reflexive since C[0,1] is separable but rca[0,1] is not
separable [if t # s, ||6; — &,]| = 2 where §; is the point mass measure at ¢; Corollary
5.6.1.13).

For the case when S is an interval I = [a,b] in R there is another description of
the dual of C(J) using the Riemann-Stieltjes integral. If g is a function of bounded
variation on I, then F,(f) = J! fdg defines a linear functional on C(I), and since

[Fo (N < 1 fllo Var(g - 1),

F, is continuous with || F,|| € Var(g : ). It can be shown that ||F|| = Var(g : I) so
the map ¥ : g — F, is a linear isometry from BV[a, b] into C(I)’. This isometry is not
one-one, but if BV|[a, b] is replaced by the space of normalized functions of bounded
variation, NBV|a, ], consisting of the right continuous functions which vanish at a,
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then W is a one-one, linear isometry from NBV]a,b] onto C(I)'. For a description of
this version of the Riesz Representation Theorem, see [RN] or [TL].
For a discussion of the history of the Riesz Representation Theorem, see [Gr].

Exercise 1. Let £ € S. Define F : C.(S) — R by F(f) = f(z). Show F is a

continuous, positive linear functional on C,(5). What is its representing measure?

Exercise 2. Let g : [a,b] — R be continuous. Define G : Cla,b] — R by G(f) =
f? fgdm. Show G € Cla,b). What is G’s representing measure?

Exercise 3. Let N have the discrete topology. Show C.(N) = cp. Decfine F on
C:(N) by F(f) = § 7f(3). Show F' is positive, linear and find its representing
=1

measure. Is F' continuous?

Exercise 4. Let Ry be the real line with the discrete topology. Let S = Ry x R
with the product topology.

(a) Show that a subset of S is open if and only if its interscction with every vertical
line is open in R.

(b) Show the topology on § is locally compact.

(¢) Show f € C.(S) if and only if f(-,y) € C.(R) for every y and f(-,y) = 0 for all
but finitely many y.

(d) Define F on C.(S) by: if f € C.(S5), let zy,...,z, be those values z for which
there exists a y with f(z,y) # 0 [part (c)] and set

FO=3 [ swndy =3 [ 1@ vd

IGR -
Show F'is positive and linear.

(e) Define v on B(S) by v(£) = . m{{y : (z,y) € F}). Show v is a measure
zeR
which represents F.

(f) Show v is not regular.

Exercise 5. Let Co,(S) be the space of all continuous functions which vanish at oo
in the sense that for every € > 0 there exists a compact set K such that |f(¢)] < €
for t ¢ K. Show Cw(S) is a Banach space under the sup-norm and describe its dual
space.
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6.6 Hilbert Space

In this chapter we set down the basic properties of Hilbert spaces. Hilbert spaces arc
special cases of Banach spaces and have many important and special properties not
shared by general Banach spaces.

Let X be a vector space over the field F of either real or complex numbers. If
z € C, the complex conjugate of z is denoted by Z and the modulus by |z].

Definition 1 An inner product (scalar product, dot product) on X is a function
i X x X - F, (z,y) > z -y, salisfying

(i) (z4y) - z=2-2+y-2Vz,y, 2€ X,
(ii) Mz-y)=(Az)-yVr,y€ X, A€ F,
(ili) z-y =y z Yz, y € X,

(iv) z-z>0Vze X,

(v) -z =0 if and only if £ = 0.

A vector space X with an inner product defined on it is called an inner product

space.
It follows easily from the axioms that 0-z = z-0 = 0, = - (Ay) = A(z - y) and
z-(y+2)=1c-y+z-2z. Wehave the important inequality.

Theorem 2 (Cauchy-Schwarz Inequality) If X is an inner product space, then
[z -yl <Vzr 2y - yVz,ye X. (6.1)
Proof: If y = 0, the result is trivial so assume y # 0. In this casc, (1) is equivalent

to ‘1: INE y| < /T -z so we may assume y -y = 1. Then

0<(z—(z-y)y) (z—(e-y)y)=z-c+|z-y[’ = (z-y)(y-2) - (TP (=)
=z-ztleyl— (= EH—lz-y =z z—|o-y.
(6.2)

Remark 3 Equality holds in (1) if £ and y are linearly dependent. The converse also
holds for if equality holds in (1) with y # 0, then (2) implies that z — (z - y)y = 0.
Note that axiom (v) was not used in the proof of (1).

Proposition 4 If X is an inner product space, the map ¢ — /T -z = ||z|| defines a
norm on X.
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Proof: Only the triangle inequality needs to be checked. For z, y € X,
e +yl* = (= +y) - (@ +y) < llll” + lyll* + 2l Nyl = (=l + Iyl

by Theorem 2.
If X is an inner product space, we always assume that X is equipped with the
norm induced by the inner product.

Proposition 5 The inner product is a continuous function from X x X — F.
Proof: If zy — « and yx — y, then
7k ye — 2 -yl < loe-ye — 2yl + ey — 2yl < lell lye — yll + lze — 2| [yl

by the Cauchy-Schwarz Inequality.
We have the following important property of the norm in an inner product space.

Proposition 6 (Parallelogram Law) If X is an inner product space, then
llz +y1* + lle = ylI* = 2|z i* +2|[y||* Ve,y € X.
Proof:

|II+y||2+|II2— ylI? =(@+y) @+ +—y)-(z-y)
=2z|"+ 2yl +z-y+y-z—z-y—y- =z

Remark 7 The parallelogram law characterizes inner product spaces among the class
of NLS. That is, if X is a NLS whose norm satisfies the parallelogram law, then the
norm of X is induced by an inner product. If X is real, the inner product is defined
by

tz-y = e +yl’ ~llz—yll*,

while if X is complex, the inner product is defined by
try=llotylP = llo— ol +ille iyl —ille — iy
We leave the (tedious!) verification to the reader.
See Exercise 7 for an example of a norm which is not induced by an inner product.

Definition 8 An inner product space which is complete under the induced norm is
called a Hilbert space.

Example 9 R" or C" is a Hilbert space under the usual inner product
I'y:ZIi-y_h I:(Il»"'7zn)v y:(ylv"'vyn)'
i=1

The norm induced by the inner product is the Euclidean norm.
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Example 10 In the case of complex scalars, £2 is the space of complex-valued se-

o0
quences {z;} such that ¥ |z;|* < oo. £2 under the inner product
=1

T Y= inﬁ) T = {1},‘}, y= {yf}y
=

is a (the original!) Hilbert space.

Example 11 Let (5,5, ) be a measure space. The space of real-valued functions,
L*(p), is a Hilbert space under the inner product f g = fs fgdu since this inner
product induces the usual L?-norm. We also want to define the space L?(u) for
complex-valued functions. For this we need to discuss integrating complex-valued
functions.

Let f: S — C with v and v the real and imaginary parts of f, respectively.
We say that f is measurable (integrable) if and only if both u and v are measurable
(integrable). If f is p-integrable, we define the integral of f with respect to u to be

d:/d / .
Jotdn= [udu+i [ vdu

If Lt () is the space of all C-valued, p-integrable functions, it is easily checked that
L'(y) is a vector space and the integral is a linear functional on L'(g). Since |u] < |f],
[v] < |f] and |f| < |u| + |v|, a measurable function f is integrable if and only if || is
integrable. Moreover, if f is integrable, then

[ rau| < [ 1r14n
llet f[s fdu = |fs fdpl e’ so

|fs fdul = €7 [ fdp = [se™ fdu = [sR(e™ [)du
+ifs I(e"af.)dp = Jg 'R(e""f)du
< Js[R(e™1)|du < J5|f1dp,

wlere Rz (Tz) denotes the real (imaginary) part of z € CJ.

For 1 < p < oo, let Liz(p) be the space of all C-valued measurable functions
f such that |f| € L7(u) and set |[f||, = (fs|f]"du)'/”. Then L% is a complex
Banach space; we usually write simply LP(u) for this space and indicate whether real
or complex scalars are being used.

For p = 2, L*(¢) over the scalar field of complex numbers is a Hilbert space under
the inner product f-g = [5 fgdu.

Example 12 C[a,b] with the inner product f-g = f? f(t)g(t)dt is an inner product
space which is not a Hilbert space.

We establish an important geometric property of Hilbert space.
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Theorem 13 Let K be non-void, closed, conver subset of a Hilbert space H. If
z € H, then there is a unique y € K such that

llz — yl| = min{||z — 2| : z € K} = dist(z, K).
Furthermore, y can be characterized by:
yEKR(x—y) (z—y)<0fordlze K. (6.3)

Proof: Set d = dist(z, K) > 0. If w, z € K, applying the parallelogram law to
(z —2)/2 and (z — w)/2 gives

@< Nwt2)/2—z) = Jlw-z|* /24 |z — 2| /2 ~ ||(w - 2)/2||* (6.4)

since (w + 2)/2 € K.
If |z — z|| = d and ||jw — z|| = d, then (4) implies that w = z so uniqueness holds.
Pick {yx} C K such that ||z — y|| — d. Set w = yi, 2 = y; in (4) to obtain

(e = 9:)/201" < llye = 2l* /24 y; — =l /2 = & — 0.

Thus, {yx} is a Cauchy sequence in H and converges to some y € K with ||z — y|| = d.
If y € K satisfies ||y — z|| = d, then for z € K and 0 < t < 1,

lz—yll <llz =tz = (1 =)yl = ll= —y — t{z = y)l
Iz —yl)* <llz—yl* + 2llz =y ~ tz =) - (2 = y) =tz =) (z — v)

or
2R(z —y) - (z —y) < tllz gl
Letting t — 0 gives (3).
On the other hand if y satisfies (3) and z € K, computing ||z — z||* = ||(z — y) — (z — y)
gives

2

lle = y|* = llz = 2" = 2R(z —y) - (z =) — llz — 9| < 0

ol — yll = d.

Let Px : H — H be the “projection” map which sends z to y in Theorem 13.
If H = R?, inequality (3) means that the vector from z to Pxz makes an obtuse
angle with the vector from z to Pxz. Moreover, this map is uniformly continuous on
H since ||Pxu — Pxvl|| € |lu —v||. [From (3), R(u — Pxu) - (Pxv — Pxu) < 0 and
R(v— Prv)-(Pxu—Pxgv) < 0so adding gives R(u—v—(Pxu—Pxv)) (Pxv—Pru) <0
80

|

|Pxu — Pxo|* < R(u —v) - (Pxv — Pxu) < |Ju — v||||[Pv — Pru

by the Cauchy-Schwarz Inequality.]

If X is an inner product space, then two elements z, y € X are orthogonal, written
zly,ifz-y=0. A subset £ C X is said to be orthogonal iff z Ly Vz,y € E, z # y.
If E C X is orthogonal and ||z}| =1 Vz € E, then E is said to be orthonormal.
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Example 14 In £2 (over either R or C), {e* : k € N} is orthonormal, where €* is
the sequence with a 1 in the k** coordinate and 0 in the other coordinates.

Example 15 In L?[—7, 7] (over C), {e™/v/27 :n =0,+1,...} is orthonormal.

Proposition 16 (Pythagorean Theorem) If z 1y, then |z +y|* = ||z — y|* =
[EIRE [

Proof: (z +y) - (z+y) =z +y|’ =z + Iyl = (= —y) - (= — ).

If X is an inner product space and M C X, weset ML = {z ¢ X : zlyVy € M};
M? is called the orthogonal complement of M. Note that ML is a closed linear
subspace of X. We now use Theorem 13 to show that any closed linear subspace of
a Ililbert space is complemented.

Theorem 17 If M is a closed linear subspace of a Hilbert space II, then IT =
Mo ML

Proof: For z € H let y = Pyxz € M be as in Theorem 13. Then z —y € M*
since by (3) R(z —y) - w < 0 for every w € M.

llence, ¢ = (x — y) +y with z —y € M+ and y € M. Since M N M+ = {0}, we
have I = M & M*.

We can now establish the Riesz Representation Theorem for Iilbert space.

Proposition 18 Let H be a Hilbert space and y € H. If f, : H — F is defined by
(fyx) =z -y, then fy € H' and || f,| = |ly]|.

Proof: f, is clearly linear and since [(f,,z)| = |z - y| < ||z|l|lyll, fy € H with

I1£ll < llyll- Since (fy,5) =y -y = Iyl 15l = llyl.
Thus, the map y — f, is an isometry from H into its dual space II'. We show

that this map is onto.

Theorem 19 (Riesz Representation Theorem) If Il is a Hilbert space and f €
H', then 3 a unique y € H such that f = f,.

Proof: If f =0, put y = 0. Suppose f # 0. Set M = N(f), the kernel of f, so
M is a proper closed subspace of H and ML # {0}. Choose z € ML, z # 0. Then
(f,2)#0. Sety = ((F,2) /ll2]") 2 s0 y € ML, y £ 0, and (f,4) = |{f, 2)*/ ||2]" =
y-y. For z € H, let

si=2—((f,2)/ 17w 2= ((f,2) /o)) w

soz =z +z;and {f,z;) =0s0oz, € M and z, -y =0. Hencezr -y =z, -y =
(f,3) = (fyy2), and f = f,.

The map @ : y — f, is an isometry from H onto H’ which is additive but is only
conjugate homogeneous in the sense that ®(ty) = #®(y). From this it follows that
Hilbert spaces are always reflexive.
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As noted earlier, L? (1) is a Hilbert space so it follows from Theorem 19 that the
dual of L? (1) can be identified with L? () [in the case of real scalars]. This proof
of the Riesz Representation Theorem for L? (4) is independent of the proof given in
Theorem 6.1.20 which depended on the use of the Radon-Nikodym Theorem. Indeed,
an independent proof of the Radon-Nikodym Theorem can be based on Theorem 19;
see [R2], Theorem 6.9.

If X is an inner product space and E = {z, : a € A} is an orthonormal subsel of
X, then Vz € X the scalars Z(a) = z - =4, @ € A, are called the Fourier coefficients
of z with respect to E. We establish several important properties of the Fourier
coeflicients.

Proposition 20 Let X be an inner product space and {z,,...,z,} an orthonormal
set in X. Then for each z € X,

Il

’ (a:— f:(I'I.')Ii) (o =Xk (o z) 1)

1=

el = (e 2)(@m) — S(E )= 2.

i

Z:%:(f cx )T,z x = |z’ — z EREA

-+

(i1): (:c — Z':(a: . a:;)a:;) gij=x-x;— o (z-x)(ziczy) =z, —T- zJ.: 0.

We generalize the inequality in (i) to infinite orthonormal scts.

Proposition 21 Let £ = {z, : a € A} be an orthonormal set in an inner product
space X. For each z € X the set E, ={a € A:z -z, #0} is at most countable.

Proof: For n € N, let

S, = {a €Az a:,1|2 > ||a:||2 /n}

o0
By Proposition 20 S, contains at most n — 1 elements. Since £, = |J S, the result
n=]

follows.

Theorem 22 (Bessel’s Inequality) Let £ = {z, : ¢ € A} be an orthonormal
subset of an inner product space X. For each z € X,

PERENED DI O B (6.5)

2€A a€A
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Proof: If A is finite, this is Proposition 20. If A is infinite, we must assign a
meaning to the series in (5). Let S = {a € A:z-2, #0}. If S = @, we set

Y |z - z,)* =0, and if S is finite, we set
a€A

and (5) follows from Proposition 20. If S is infinite, S is countable by Proposition
21 so the elements {z, : @ € S} can be arranged in a sequence, say yi,y2,.... By
Proposition 20,

- 2
Vi Yl <l
i=1
so the series § |z - i|* is absolutely convergent and its sum is independent of the

ordering of the elements {z. : a € S}. Therefore, we may define

o0
ezl =Y le -yl
i=1

a€A

and

Yz ol < e’
a€A
by Proposition 20.

We will now show that equality holds in Bessel’s Inequality for certain orthonormal
sets in a Hilbert space. An orthonormal subset E of a Hilbert space FF is said to be
complete (or a complete orthonormal set) if £, C H orthonormal and F; D E implies
that £ = F; (i.e., F is a maximal orthonormal set with respect to set inclusion). [See
Exercise 1.] We give several criteria for an orthonormal set to be complete. First, we
require a lemma.

Lemma 23 Let {1y,...,7,} be an orthonormal set in an inner product space X.
() Ifz= Y ckzx, then ¢ = z- x5 = (k) and ||z||* = Xn: exf®.
k=1 k=1

(i) For {c1,...,cn} T F, ||z — ickzk
k=1

(e1,.yen)) atck =z -z, =Z(k), k=1,...,n.

attains its minimum (as a funclion of

Proof: (i): That ¢k = z - ¢ is immediate;

ol =2 == ; D GGz Tj = ,i: lex]® -
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n 2 n n
0<jjz— X crx = (a:— Eckzk)-(z— Eckzk)
k=1 lc=1" Ic=n1
= ||$||2—kz_:lck(z~zk)—kz_:lfk(z 2) + 3 Jeil’
= (loll* = £ o aul”) + £ (a0 — )z 5= ax)

and the expression on the right is clearly minimal at ¢x = z - z.

Theorem 24 Let £ = {z, : a € A} be an orthonormal set in a Hilbert space H. The
following are equivalent:

(i) E is complete,
(ii) zlz, Va € A implies z =0,
(iii) span E is dense in H.

(iv) Ifz € H, &> = ¥ |z - za|® (equality in Bessel’s Inequality),
a€A

(v) 2= 2 (z-z.)z, V2 € H,

a€A

(Vi) ife, ye H,z-y= ¥ (z-2.)(§"T,) (Parseval’s Equality).
a€A

Proof: (1)=(ii): If (i1) is false, d= # 0 such that rlz, Va € A. Set z = z/ |||
so {z} U E is an orthonormal set which properly contains E so (i) docs not lLold.

(i1)=>(ii1): Let M be the closure of span E. ¥ M # H, H = M & M* with
ML #{0}. ffx#0,z € M+, then 1z, Va € A so (ii) fails.

(ii)=>(iv): Let € > 0 and z € H. Jz,,,..., %4, € £ and c1,...,¢, € F such that

< €.

n
- Z CkTay
k=1

By Lemma 23 (ii),
<e. (6.6)

T - E(z ' Iﬂk)rﬂk
k=1
By Lemma 23 (i) and (6),

Z(I : zak)‘rﬂk

k=1

(lzll - ¢)* <

2 n
=Yl 2ol <D fe -zl
k=1

a€A

Bessel’s Inequality gives the reverse inequality.
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(iv)=(v): As in Theorem 22 let S = {z, : z, - ¢ # 0} and arrange the elements
of S into a sequence ¥y, y2,.... Then

le = k(e - wuell” = ll=ll* = Ziica |- il
=Vl ul’ - lzwl= T |o-wf
k=1 k=n+41

by (iv). Hence,

o= 3 v = Tozalea.

a€A

(v)=(vi): By Proposition 5,

Ty=_ 2 (-2 )% To = (- 2a)(F Z0)
a€Abed a€A
(vi)=(1): If (i) fails, 32 € H with ||z|| =1 and 2Lz, Va € A. Then z-z = 1 while
¥ |z - 24|* = 0 so (vi) fails.
a€A
Theorem 25 Let H be a Hilbert space with E and F complete orthonormal subsets.
Then E and F have the same cardinality.

Proof: Since orthonormal sets are linearly independent, we may assume that £
and F are infinite.

Foree E,let F, = {f € F: f-e #0}. By Theorem 24 (ii), ¥ = (J F. and by

Proposition 21 each F, is at most countable. Hence, the cardinality of EF'El?s less than
or equal to the cardinality of E. Symmetry gives the reverse inequality.

The cardinality of a (any) complete orthonormal set is called the orthonormal
dimension of the Hilbert space.

Example 26 {eF : k € N} is a complete orthonormal subset of £2. More generally,
let A be a non-empty set and let e, : A — R be the characteristic function of {a} for
a € A. Then {e, : a € A} is a complete orthonormal set in £2(A) [here £2(A4) is L*(y)
where 4 is the counting measure on A as in §6.1].

Theorem 27 (Riesz-Fischer) If H is a Hilbert space, then H is linearly isometric
to £2(A) for some A # 0.

Proof: Let E = {z, : a € A} be a complete orthonormal subset of H. By
Theorem 24 the map U : H — ¢*(A) defined by Uz = {z -z, : a € A} is a linear
isometry. Since U carries F onto the complete orthonormal set {e, : @ € A} in £2(A)
[Example 26], U is onto £2(A).

Note that the map U also preserves inner products by Theorem 24 so H and #*(A)
are isomorphic as inner product spaces.

Example 28 {¢™/\/2r :n = 0,£1,...} = E is a complete orthonormal subset of
L?[-m,x].
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This follows easily from condition (iii) of Theorem 24. By the Stone-Weierstrass
Theorem, the span of E is dense in C[—w,n] with respect to the sup-norm and
C[—m,7] is dense in L*[—m,n]. Since convergence in the sup-norm implies converge
in the L%-norm, it follows that span E is dense in L*[—m, 7).

If f € L?[—m,n] and
o = c(f) = %/_’1 F(t)e—*dt,

o .
the series 3. cxe* is the classical Fourier series of f [with respect to the complete
k=—oco

orthonormal set {e***/v/27 : k € Z}] and the ¢, are called the Fourier coefficients of
f. If follows from Theorem 24 that this series always converges to f in the L?-norm.
Note that the formula for the Fourier coefficient ¢, is meaningful when f is integrable
over [—m,7]. One of the important problems in Fourier analysis is determining what
integrable functions are such that their Fourier series converge to the function, at
least a.e. duBois-Reymond gave an example of a continuous function whose Fourier
series diverges at a single point. We will now show that the Uniform Boundedness
Principle can be used to show the existence of such a function.
Let f € L'[-7,n]. The n'* partial sum of the Fourier series for f is

n

(N0 = 3 el = o [ 1) 35 s

k=—n k=—n

The function D,(t) = i e'* which appears in the integral above is called the

k=-n
Dirichlet kernel; we now compute a more useful form for D,,. We have (¢t —1)D,(t) =
ei(n+1)t — et go e—it/Z(eit _ I)Dn(t) = ei(n+1/2)t _ e—i(n+l/2)twhich implies

Dy (t) = sin(n + 1/2)t/ sin(t/2).
Thus, 1
sa(N(t) = 5- /_“ F(s)Do(t — 5)ds.

We define a linear functional F,, on C[—w,x] by

Fu() = salDNO) = 5- [ 15)Dals)ds,

i.e., Fu(f) is the n'® partial sum of the Fourier series for f evaluated at 0. Since

1 k4
Fu < Wl 5 [ 1Da() ds,

F, is continuous and || Fy|| < = [T [Dn(s)|ds. We claim that || Fy|| = 2= [7 [ Da(s)] ds.
This equality follows easily from the following lemma.

b — R by G(J) =

Lemma 29 Let g : [¢,b] & R be continuous. Define G : C[ ,
f2 lg(t)ldt.

J2 f(t)g(t)dt. Then G is linear and continuous with ||G|| =
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Proof: Since |G(f)| < [|filw fab lg(¢)|dt, G is linear, continuous and (|G| <
It 19(t)| dt. Fix n € N. Then

n b ng
f |g| f Iglﬁ-}% = f{?%ﬂ+fagl+n|y|
nt G(l+n|9l
=y | |2

IAN A

il <t il

b

so 5 lg(t)ldt < |G-
Next, we compute a lower estimate for [, |Da(s)|ds.
Since sinu < ufor 0 <u <,

ff,r an(tHdt > f&f M du
= %f%)“ sin@nt)u | g

k o Zn41

k1)

2n+1 (‘2n_+}‘
): _+—(k+1)7r ot sin(2n + Luldu

_ Y k+1)7r _ 2 &
= E (k+1)1r |sinv| dv = ;kz_jok'HA

Vv

Thus, {[|F.]| : n € N} is unbounded. It follows from the UBP that there exists
f € C[-w,x) such that {F,(f) : n} is unbounded, i.e., the Fourier series of f at 0
must diverge. Of course, the point 0 was chosen only for convenience, and the same
result holds for any other point of [—=,x] [the function f will depend upon the point
chosen].

Banach and Steinhaus derived a method, called condensation of singularities,
which can be used to construct a continuous function whose Fourier series diverges
at any (arbitrary) countable subset of [—m,7]. We first give their result. The proof
uses the Baire Category Theorem [see A2].

Theorem 30 Let X be a Banach space, Yy a NLS and Ty, € L(X,Y:) for each k € N.
Then B = {z € X : im||Txz|| < oo} either coincides with X or is firsl category in
X.

Proof: Suppose B is second category in X. For each z € B, li{n sup ))%an” =0.
n>1

Let ¢ > 0. Then B C Ej By, where By = {z € X : sup ”%Tnz” < €}. Each By is
k=1 n>1

closed so some By contai_ns a sphere, i.e., there exist 2o € X N Bg, r > 0 such that
||z — zo|| < r implies sup “%Tnz“ < e. Thus, for |z|| < r, if z = ¢ + 2, then
n>1

“——T z < 2¢

1
+ I{ ETnIO

< ||%Tz

and sup ||Tnz|| < 2¢k. Hence, if z € X, sup ||Tnx|| < 2¢k ||z|| /r so X = B.



246 CHAPTER 6. FUNCTION SPACES

Corollary 31 (Condensation of Singularities) For each ¢ € N let {T},}, be a
sequence of operators in L(X,Y;), where X is a Banach space and Y, is a NLS.
Suppose for each p there exists z, € X with @HTMIPH = oo. Then B = {xz :

H(IEHTMI“ = oo Vp € N} is second category in X.

Proof: For each p, B, = {zr € X : @”quzu < oo} is first category in X by
Theorem 30 and the hypothesis. Thus, B = X\ G B, is second category.
p=1

Let {t;} be a sequence of distinct points in [, 7]. Let s,;(f) be the n'* partial
sum of the Fourier series of f € C[—n, 7] evaluated at ¢;. By the construction above,
for each j there exists f; € C[—n, 7] such that @|s,‘j(fj)| = oo. By Corollary 31
there exists f € C|—n, x| such that E{H|5nz(f)| = oo for all j. That is, the Fourier
series of f diverges at each t;.

It can be shown that if the set {t;} is chosen to be dense in [—m, 7], then the
set P = {t € [-x,7] : lim|s,(f)(t)] = oo} is second category in [—7, ] and, hence,
uncountable [see [Y] 11.4].

The classical Fourier series of an integrable function can behave very badly with
respect to pointwise convergence. For example, Kolmogorov gave an example of an
integrable function whose Fourier series diverges a.e. in [—,7]. It was an open
problem for many years whether the Fourier series of an L? function must converge
a.e. This was shown to be the case, only in 1966, by L. Carleson. Iunt later extended
Carleson’s result to L? for 1 < p < oo. For a discussion of the results by Hunt, see
[As].

Whereas the classical Fourier series of integrable functions can display poor con-
vergence behavior, the Cesaro averages of the partial sums of the Fourier series behave
much better. For f € L1 [~7r 7] the Cesaro averages of the Fourier series of f are

defined to be o, (f} = "H Z sk (f), where s, (f) is the n** partial sum of the Fourier

series of f. From the d1scussmn above,

o (N)1) = 217r/—7rn+lszt_s (s) ds.

The function K, (t) = 5 i Dy (t) is called the Fejér kernel. Thus, we have
k=0

1

—/_ZKn(t—s)f(s)ds.

7 (D) = 5

If we assume that all functions in L' [—n, 7] are extended periodically (with period

27) to R and if we replace integration over R by integration over [—7, 7], we may
interpret the formula above as a convolution integral,

on (1) (1) = 5K # £ (1)



6.6. HILBERT SPACE 247

as in §3.11. We will now show that the sequence %K"} satisfies the properties of an
approximate identity as defined in 3.11.2. For this it is convenient to derive another
formula for the Fejér kernel. Substituting (e — 1) D, (t) = e+ — e~ into the
definition of K, gives

(n+1) K, (1) (% — 1) (e7 — 1) = (€7 — 1) T (XD — =)
=9 e((n+1)t _ e—i(n+1)t

so that
1 1—cos(n+1)t

+1 1—cost

Ka () =~ (6.7)

From (7), we obtain
Lemma 32 (i) K, >0,
(i) J7, Ky =2m,

(iii) F01‘0<5S Itlsﬂ', Kﬂ(t)sm

From (i), (i1) and (ii1), it follows that {%KH} satisfies the conditions of an ap-
proximate identity given in 3.11.2. [Note that the Dirichlet kernel fails property (i).]
From the analogue of Theorem 6.1.24, it follows that if f € L? [—=, x|, then {7, (f)}
converges in LP-norm to f. Also, from the analogue of Exercise 3.11.10, it follows
that if f is a continuous function on R of period 2w, the Cesaro averages {~ (f)}
converge to f uniformly on [—m, x]; this result is known as Fejér’s Theorem. 1t - also
the case that if f € L'[—n, x|, then {o, (f)} converges a.e. to f; see [HS] V.13.29.

For a discussion of the historical development of Fourier series by Zygmund, see
[As]. Zygmund’s book ([Zy]) contains a detailed discussion of Fourier series.

Exercise 1. Show that any orthonormal subset of a Hilbert space is contained in a
complete orthonormal set.

Exercise 2. Show a Hilbert space is separable if and only if its orthonormal dimension
is countable,

Exercise 3. If D is a dense subset of an inner product space and z LD, show & =

Exercise 4. If F is a linear subspace of a Hilbert space H, Y is a B-space and
T : E — Y is a continuous linear operator, show T has a continuous linear extension

T:H—-Y.
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Exercise 5 (Gram-Schmidt). Let z;,...,x, be linearly independent. Set y; = z;,

Ve = 2o = 3 (e - v.)5/ s P

=

for £ > 1 and zx = yi/ ||yx|. Show {zx} is orthonormal and span{z;} = span{z:}.

Exercise 6 (Riemann-Lebesgue Lemma). Show that if f € L'[—w, 7], then

— 1 v —tkt
c,_m/_"f(t)e dt — 0

as k| — oo. [Hint: First prove this for characteristic functions of intervals.]

Exercise 7. Show that the sup-norm on C [0,1] does not satisly the parallelogram
law,

Exercise 8. Let M be a closed subspace of a Hilbert space /7.
(i) Show M1t =M.

(ii) Show {1/M is a Hilbert space.

(i) Hzx € II,z = m+m' wherem € M, m’ € M+ as in Theorem 17, show P’z = m
defines a continuous lincar operator on ff such thal P2 = .

Exercise 9. Show a linear isomelry onto an inner product space prescrves inner
products.

Exercise 10. Let M, N be closed subspaces of I} with M 1 N. Show M + N is

closed.

Exercise 11. Show a linear subspace M of a Hilbert space Is dense if and only if
Mt = {0}. Give an example of a proper closed subspace M of an inner product
space such that M+ = {0}.

Exercise 12. let £ = {e,: a € A} be an orthonormal family in a Hilbert space H.

Show the closed linear subspace generated by E is { Y leta: T |t < oo}
acAd acA

Exercise 13. Show Theorem 19 is false for inner product spaces.

Exercise 14 (Hellinger-Toeplitz)Let T : H — H be linear and satisly Tz-y = - Ty
for all =, y. Show T is continuous. Hint: Use UBP or CGT.
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6.6.1 The Fourier Transform

In this section we define and study some of the basic properties of the Fourier trans-
form. Although the Fourier transform is defined for functions on R™, we restrict our
attention to functions on R. In dealing with the Fourier transform, there is always
a factor of 27 involved. We will take care of this by using the normalized measure
u = m/+/2n. We denote by L? the space L?(u), where we are considering complex-
valued functions. All statements about measurability refer to the Lebesgue measure,
and any integral over R is denoted by [ fdu = fg fdp. In this section, we agree that
the convolution of two measurable functions f and ¢ is defined by

frg(z) = /f(x - y)g(y)dply)

[see §3.11].

If f € L', we define the Fourier transform of f, f, by f(t) = J e f(z)du(z).
Note that since e ™% is bounded and is continuous as a function of z, f is defined for
all t € R. We list some of the basic properties of the Fourier transform.

Theorem 1 Let f, g € L'

(i) If k(z) = e** f(z), then R(t) = f(t — a).

(i) If h(z) = f(z — a), then h(t) = e~ f(t).

(iii) If h(z) = T(~z), then h(t) = (J(1))~.

(iv) If h(z) = f(az), a > 0, then h(t) = f(t/a)/a.

(v) (f*x9)" = f§.

(vi) If h(z) = —izf(z) and h € L*, then f is differentiable and (J)'(t) = h(t).

(Vi) If ' € L' and Jim f(z) =0, then (/1) = it (1),

(viii) (Riemann-Lebesgue Lemma) J is continuous, bounded ["f“ < |]f||l] and

lim f(t)=0.
Hm f(t)
(x) [f§=1Tg.
Proof: (i)-(iv) are easily checked. (v) follows from Fubini’s Theorem [recall 3.11.1]

TE L rgr ) = fe S [ - y)e)du(y)du(z)
Jo(y)e™ [ f(z — y)du(x)du(y)
[ o(y)e=¥du(y) f = f(z)du(z) = F(1)5(1).

]

i

1
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(vi) follows from 3.4.3. (vii) follows by integration by parts.
(viii): f is bounded with ‘f(t)i < || fll, for every ¢. Since e™ = —1,

—/f(::: =it/ gy (1) /f (z — 7 /t)e " "“du(z)

SO

27| = | [ (@) = o = mj0)e ()| < | £ = Fap], = 0

as t — oo by 3.11.10. Finally, for ¢, s € R, we have

e+ 9) = F0) < [1f@)] | = 1|dute) = [1£(2)]2sin(s2/2)] ds,

and since lin&sin(sz/?) = 0 for each z, the DCT implies that the last term is small

for s small independent of ¢. Hence, f is uniformly continuous.

(ix) follows from Fubini’s Theorem.

Conditions (vii) shows that the Fourier transform converts diffcrentiation into
multiplication by ¢, and this property makes the Fourier transform useful in the study
of differential equations. Conditions (vi) and (vii) also point out another important
property of the Fourier transform: growth properties of f are reflected in smoothness
properties of f and vice-versa.

From (viii), the Fourier transform is a continuous linear transform from L' into the
space, Co(R), of bounded, continuous functions on R which vanish at co when Co(R)
is equipped with the sup-norm. The Fourier transform is not onto Co(R) [Excrcise 7];
there is not an intrinsic characterization of the functions which are Fourier transforms
of L! functions.

Let S = {f : R — R : fisinfinitely differentiable and for each j, k, sup {|z| ‘f(")(
z € R} < 0o}. § is called the space of rapidly decreasing functions or the Schwartz
space after Laurent Schwartz. By Leibniz’ rule for the differentiation of products, it
is easy to see that an infinitely differentiable function f belongs to S if and only if
(z? f(z))(k) is bounded for each j, k. The function f(z) = e~ furnishes an example
of a function in § [see Example 3 below]; indeed, C®(R) C & so § is dcnse in L!
(3.11.12).

Corollary 2 S*" C S.

Proof: If f € S, for each j, k the function z — 27 f®)(z) is intcgrable and
vanishes at oo so f is infinitely differcntiable by (vi), and by (vii),

A

(P @) () = (0 Fw)”

o ((it)"f(t))(]) is bounded by (viii). Ilence, by the observation above, f € S.
It will follow from the Fourier Inversion Theorem below that S* = S.

Example 3 If f(z) = e=*"/2 then f = f
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From (vi),

(f)l(t) = /~ize‘i’te_’2/2dy(z)

and integration by parts gives (f)l (t) = —t)?(t). Hence, the derivative of the quotient

f(t)/f(t) is 0 so f(t)/f(t) = ¢, a constant. Putting ¢ = 0 gives ¢ = 1 from 3.4.4
[because of the normalization factor 2= in the measure].

We now consider inverting the Fourier transform. For this we define the inverse
Fourier transform of a function f € L' to be f¥(t) = f € f(z)du(z). Since f¥ (z) =
f(—z), the inverse Fourier transform shares most of the properties of the Fourier
transform given in Theorem 1. We do not bother to record these properties.

Let g(z) = e=="1? and ga(z) = e~@*/2, By Example 3 and Theorem 1 (iv),
9a(t) = (1/a)g1/a(2)-

Theorem 4 (Fourier Inversion Theorem) Let f, f € L'. Then (f)v = f a.e.

Proof: By Theorem 1 (ix) and (i),

[f)e=tga()dn(t) = [ (1) (€=ga(t))" du(t)
[ F(03(t — 2)du(?) (6.)
J f®)z917a(t — 2)du(t) = f * 2g17a(2)-

Since lin(l)g.z (z) = 1 and the integrand on the left hand side of (1) is bounded by ‘f

’

the DCT implies that the left hand side of (1) goes to (f)" (z) as a — 0. I k = &,

k€ N, %gl/a is the approximate identity in Example 3.11.5 so the right hand side
of (1) converges in L'-norm to f [3.11.11]. Since any sequence which converges in

L' -norm has a subsequence which converges pointwise a.e. [3.7.1, 3.6.3], (f)v =f
a.e.

Remark 5 Thus, if f, fe L', then f can be made into a continuous function which
\2
vanishes at co by modification on a null set and (f) = f everywhere [Theorem 1

(viii)].

From the computation in Corollary 2, we have
Corollary 6 S*" =S.

Concerning uniqueness for the Fourier transform, we have

Corollary 7 If f € L' and f =0, then f =0 a.c.

We now consider extending the Fourier transform to L?; the resulting extension
is sometimes called the Plancherel transform.

Lemma 8 Let X = {f € I! :fe LY}y, If f e X, then fe X c L? and the Fourier
transform restricted to X preserves inner products on X.
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Proof: By Theorem 4, X = X and if f € X, f is bounded so f and f belong
to L? [Exercise 6.2.9]. If f, g € X, set h = (g)”. Then

i) = ([ e3@)dut@) =@ () =0t
almost everywhere. Hence,
Fog=[fadu= [ fhdu= [Frdu= [F@ au=T3

so the Fourier transform on X preserves inner products.

It follows from Lemma 8 that if f € X, then || f||, = ”f”2 so the Fourier transform
is a linear isometry of X omnto X. Since § C X, X is dense in L? so the Fourier
transform can be extended to a linear isometry from L? onto L? which preserves inner
products. We need to show that this extension agrees with the Fourier transform on
L'nrL?

Let f € L' N L? and let hi(t) = kgi(t) be the approximate identity used in the
Fourier Inversion Theorem above. Then f * hy — fin L' [3.11.11] so (f * he)* — f
uniformly on R [Exercise 1. By Theorem 6.1.24, f*hi — f in L?-norm so fis equal
to the L2-extension of the Fourier transform of f.

We continue to denote the extension of the Fourier transform of a function f € L?
by f. R ~

Let f € L? and set fi = Ci_gqf. Then fi — fin L? so fi — f in L?. Since
fx € L' N0 L2, its Fourier transform is given by

[ e f@)duta) = fett

and the Fourier transform of f is the L*-limit of the sequence {fc}. [A similar
formula holds for the inverse Fourier transform.] Note that f is only determined
up to a.e. since it is an L2-limit whereas the Fourier transform of an L'-function is
unambiguously defined everywhere.

Exercise 1. If f, — fin L', show f; — f uniformly on R.

Exercise 2. If f € L? and fe L', show
f(&) = [ = F()dutt)

for almost all z € R.

Exercise 3. If f, g € L?, show (fﬁ)v = fxg. [Note fg € L' by Hélder’s Inequality
and f * g makes sense by Exercise 6.2.6.]
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Exercise 4. Lel ¢ = Cl_q,q. Show $(t) = 282 |, |2 = 2a, and [ (2222)" dy(y) =

s
2(1.

Exercise 5. If f(z) = 1%, find }, Show (f(z/k))" defines an approximate identity.
Exercise 6. If f € L' and f * f = f[0] a.e., show f =0 a.e.

Exercise 7. Let f € L' be odd. Use the fact that {ff 4024z : |al < Iﬂ]} is bounded

and Fubini’s Theorem to show that {flb F(e)/tdt - b > l} is bounded. Use this to show
that g(t) = 1/¢n|t| for |t| > € and ¢{t) = 0 for |t| < e is not the Fourier transform of
an L! function.
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A1: Functions of Bounded Variations

For the reader who may not be familiar with the basic properties of functions of
bounded variation, we record them in this appendix.

Let f:]a,0] > R. If r ={a=20 <2y < -+ <z, = b} is a partition of [a, b], the
variation of f over w is

var(f : x) Z|f Tiy1) 2|,

and the variation of f over [a,b] is
Var(f : [a,]) = sup var([ : ),
where the supremum is taken over all possible partitions, =, of [a, b]. If
Var(f :[a,b]) < oo

f is said to have bounded wvariation; the class of all such functions is denoted by
BV]a,b]. The variation measures the amount the function oscillates in [a, 8].
As the example below illustrates, even a continuous function can fail to belong to

BVa,b].

Example 1 Let f(¢) = tsin(1/t) for 0 < ¢ <1 and f(0) = 0. Set z,, = 1/(n+1/2)7.
Then f(z,) = 1/(n+ 1/2)x if nis even, and f(z,) = —1/(n+ 1/2)7 if n is odd. If
7, 1s the partition {0 < ., < &y_y < - < zq < 1}, then

iif-—fal|>‘iim+l
so Var(f:[0,1]) =
Proposition 2 If f € BV|a,b], then f is bounded on [a, b].
Proof: Let « € (a,b). Then
() = fla)l + () = f(2)] < Var(f : [a.b])

50

2[f(2)l < [f (@) + [f(B)] + Var(f : [a, 8])

and f is bounded.
We consider properties of Var(f : I) as a function of the interval I. First, as a
consequence of the triangle inequality, we have

Lemma 3 Let f : [a,b] » R. If 7 and =’ are partitions of [a,b] with # C «', then
var(f : 7) <war(f: ).
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Proposition 4 Let f:[a,b] = R and a < c < b. Then
Var(f : [a,b]) = Var(f : [a,d]) + Var(f : [¢,b]).

Proof: Let 7 be a partition of {a,b] and #’ the partition obtained by adding the
point ¢ to 7. Let w1 and 72 be the partitions of [a, ¢] and [c, 8], respectively, induced
by 7’. Then by Lemma 3,

var(f:7) <wvar(f:#") =var(f: 7)) +var(f: 7)) < Var(f :[a,c])+ Var(f : [c,b])
S0
Var(f :[a,b]) < Var(f:[a,c)+ Var(f: [c,b]).
If 7 and w, are partitions of [a,¢] and [c¢, ], respectively, then 7 = 7; U 7wy 1s a
partition of [a, 8] so
var(f : 7) = var(f s my) + var(f  m2) < Var(f : [a, 8).
Hence,
Var(f : [a,d) + Var(f : [e,b]) < Var(f : [a, ).
Next, we consider how the variation, Var(f : I'), depends on the function f.
Proposition 5 Let f, g € BV[a,b]. Then
(i) f+g € BVia,b with Var(f + g [a,}) < Var(f : [a. b))+ Var(g : a4,
(i) fort € R, tf € BV]a,b] with Var(tf : [a,b]) = |t| Var(f : [a,b]).
Proof: (i) follows froni the triangle inequalily and (ii) is clear.

Thus, BV([a,b] is a vector space under the usual pointwise addition and scalar

multiplication of functions.

Let f € BV]a,b]. We define the fotal variation of f by Vi(t) = Var(f : [a,t]) if
a<t<band Vi(a) =0.
Proposition 6 V; and V; — f arc increasing on [a, b].

Proof: V; is increasing by Proposition 4.
Let a<z<y<band g =V; — f. Then

g(y) = Ve(z) + Var(f : [, y]) - f(y)

implies

9(y)—g(x) = V()= fly)+Var(f : [2,y))=Vi(e)+f(2) = Var(f : [y~ (f(y) - f(2)) = 0
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Proposition 7 [f f € BV]a,b] is (right, left) continuous at x, then Vy is (right, left)

continuous at x.

Proof: Let € > 0. Suppose f is right continuous at z < b. There is a partition 7
of [z, 8] such that var(f : ) > Var(f : [z,b]) — ¢. Since f is right continuous at z,
we may add a point z; to & to obtain a partition

={rz <z < < an}
of [z, b] such that |f(z) — f(z1)| < e. Then

n—1
c+var(fn') = e+ [f(zo) + e + 20 [f(wi) — fl@i)] < 2+ Var(f [z, 0])
=1
S0
Var(f:[z,8]) <var(f:7)+e<var(f:a)+e<2e+ Var(f:[z,b]).
Thus, 0 < Vi(z,) — Vi(z) < 2¢, and since V T, lim Ve(y) = Vi(z), i.e., Vs is right
Yy—x
continuons.
The statement about left continuity is simnilar.
Since f = Vy—(V;—f), Propositions 6 and 7 along with Exercise 1 and Proposition
5 give the following characterization of functions of bounded variation.
Theorem 8 Let [ : [a,b] » R. Then f € BV[a,b] if and only if f = g — h, where

g, K T. If [ is (right, left) continuous, then g and h can be chosen to be (right, left)
continuous.

Exercise 1. If f T on [a, 8], show Var(f : [a,b]) = f(b) — f(a).

Exercise 2. Give a necessary and sufficient condition for f to satisly

Var(f : [a,8]) = 0.

Exercise 3. Let f, ¢ € BV[a,b]. Show fg and |f| belong to BV|a,b], and, hence,
fAg, FVvge BVia,b] [formula 1.2 of §1.1]. That is, BV]a, b] is a vector lattice and
also an algebra; in the terminology of Example 5.7.7 BV[a, b] is a function space.

Exercise 4. Let ¢ = (z,y) : [a,b] — R? be continuous. 1f
r={a=ty<li<...<t,=0b}

is a partition of [a, b], set

n—

Lig,m) = 3 (l2(tin) = () + ly(tina) = y (1))

! 1/2
=0

Then L{yp) = sup L(y,7), where the supremum is taken over all partitions 7, is the
arclength of the path p. Show L{p) < oo if and only if both z, y € BV]a, b].
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A2: The Baire Category Theorem

The Baire Category Theorem has been used several times in the text. For the
convenience of the reader unfamiliar with this result, we give a statement and proof
in this appendix. References to further applications of the Baire Category Theorem
are given at the end of the appendix.

Let (S,d) be a metric space. A subset £ C S is nowhere dense if the interior of
T7 is empty. For example, the Cantor set is nowhere dense in [0,1] [Exercise 2]. A
subset B C S is first category in S if £ is a countable union of nowherc dense sets.
For example, Q is first category in R. A subset £ C S is second category in S if E
is not first category in S. Baires” Theorem asserts that every complete metric space
1s second category in itself.

Proposition 1 Let {Fi} be a sequence of closed scts contained in the complete metric

space (S,d) such that Iy O Fryy and dy, = diameter Fy, — 0. Then ﬁ Fr is a
k=1
singleton.

Proof: It suffices to show ﬁ Fy # 0. Pick xg € I Thend(xp,z,) < dgforj >k
k=1

so {z,} is Cauchy and, therefore, convergent to some = € S. Clearly x € N Fy.

k=1
Theorem 2 (Baire Category Theorem) A complete metric space is second cate-
gory in itself.

Proof: Let Ap be nowhere dense in S for every £ € N and set £ = B Ag.

k=1
We show S\ # . Let 2o € S. Since Ay is nowhere dense, there is a closed ball
By of radius less than 1/2 inside the closed ball By = {z : d(z,z¢) < 1} such that
BN A, = 0 (Excrcise 1). Since A, is nowhere dense, there is a closed balt B, of
radius less than 1/2? inside By such that B, N A, = . Continuing this construction
gives a decreasing sequence of closed balls {B,} of radius less than 1/2F such that
By N Ay = 0 for all k. By Proposition 1, () By = {z}. Clearly r € S\ E.
k=1

We give a corollary of the Baire Category Theorem which 1s particularly useful in

applications.

Corollary 3 FLet (5,d) be a complete metric space. If S = Ej Ay, then some Ay
k=1

must have a non-void interior.

Despite its csoteric appearance the Baire Category Theorem has a surprising num-
ber of applications to various areas of analysis. For example, Banach used the theorem
to show the existence of a continuous, nowherc differentiable function. For this and
other interesting examples, see [DeS] and [Boa].
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Exercise 1. Show that F is nowhere dense if and only if every sphere S contains a
sphere S’ such that S'N E = 0.

Exercise 2. Show the Cantor set is nowhere dense in [0, 1].

Exercise 3. Let f;, : R — R be continuous, nonnegative and such that Z Fe(t)
k=

converges for cvery t € R. Show that there is an interval in R where the convergence

15 uniform.

Exercise 4. Show that R? is not a countable union of lines.

Exercise 5. Show that if S is a complete metric space without isolated points, then
S is uncountable.
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A3: The Arzela-Ascoli Theorem

Let S be a compact Hausdorff space and assume C(5) has the sup-norm. We
give a characterization of the compact subscts of C'(S) due to Arzela and Ascoli. Of
course, any compact subsct ol C(S) is closed and bounded, but by Theoremn 5.1.18
the converse cannot hold in general. We first give an addilional necessary condition
that a compact subset of C(S) must satisfy.

Definition 1 A subsel K C C(S) is equiconlinuous al s € S if for cvery ¢ > 0 there
exists a neighborhood V' of s such that |f(s) — f(1)] < ¢ for cveryt € V and f € K.
K is equicontinuous (on S) if K is equicontinuous at every poinl of S.

Proposition 2 [f K C C(S) is compact, then K is equiconlinuous.

Proof: Let ¢ > 0 and s € S. There exist fi...., fi € K such that K C U S(fire)

where S(f,¢) = {g: |lg — fll < ¢}. Pick an open neighborhood V of s buch that
| fils) — z( ) <clorte Vandi=1,....k Supposc { € V and f € K. Choose i
such that f € 5(fi,¢). Then

L£() = f() < L) = SO+ LA = Sl s+ 1fuls) = S ()] < 3¢

so I{ is equiconlinuous.
Thus, any compact subset of C(S) is closed. bounded and equicontinuous. We
consider the converse of this statement.

Lemma 3 Let {fi} be a sequence of real-valued functions defined on a countable sel
F = A{zy : k € N} which is poinlwise bounded on E. Then there is a subsequence
{ge} of {f} such that {gi} converges pointwise on F.

Proof (Diagonalization Procedure): The sequence {fi(21)} is bounded in R and,
therefore, has a convergent subsequence { f; x(z,)}2; [the reason for this slightly un-
orthodox notation will become apparent]. The sequence {f1 x(22)},, is bounded and
has a convergent subscquence { for(x2)} o ,. Note that {fax(z1)} -, also converges.
Proceeding by induction produces a sequence {5} as follows:

St f1,1 f1,2 f1,3
Sa 0 far far fes

Note that (i) Sk41 is a subsequence of S¢ and (ii) { f, «(x:)};., converges for 1 <7 < j.
Now let {gx} be the diagonal sequence {fi x}.

Theorem 4 (Arzela-Ascoli) Let K C C(S). Then K is compact if and only if K
is closed, bounded and equicontinuous.
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Proof: =: Proposition 2.

«: It suffices to show that any sequence {fi} C K has a subsequence which
converges uniformly on S. By equicontinuity, for cach k there exists a finite set
Fr € S and open neighborhoods {V, : t € Fi} such that S = U{V, : t € F;} and
|f(s) — f(t)] <1/k when s € V; and f € K.

Set E = kﬁ Fi. By Lemma 3 there is a subsequence {gx} of {fi} such that {g}

=1

converges pointwise on £. We claim that {gr} is a Cauchy sequence in (’(5). Let
¢ > 0 and choose k such that 1/k < e. There exists N such that |¢:(¢) — ¢,(¢)| < 1/k
for all + € Fp and ¢, 7 > N. If s € S, there exists ¢ € F. such that s € V} so if ¢,
iz N,

lg:(s) = g;(s)| < 1gi(s) — g:(D)] + |9 (1) — g, ()| + 19, () — g, ()] < 3/k < 3c.

lence, {gx} is a Cauchy sequence in C'(S5) and the proof is completc.

If K C C(S) is bounded and equicontinuous, then K is equicontinuous [Excrcise
1] so K is compact by Theorem 4. Hernce, cvery sequence in K has a subsequence
which converges uniformly on 5.

The Arzela-Ascoli Theorem has many applications in differential equations, inte-
gral equations and calculus of variations. Sce, for exaniple, [CL].

Exercise 1. 1T K € C(S8) is equicoutinuous, show K is cquicontinuous.

Exercise 2. Give a specific example of a subset of €0, 1] which is closed, bounded
but not compact.

Exercise 3. Let K C Cla,b] be such that each f € K has a continuous derivative
and K’ = {f': f € K} is bounded in C[a, b]. Show K is equicontinuous.

Exercise 4. Let K C Cla, b] be bounded. Let 1°(¢) = [} f(s)ds. Show {F: f € K}

is equicontinuous.

Exercise 5. Let K C C(S) be equicontinuous and pointwise bounded on S. Show
K is uniformly bounded on S.

Exercise 6. Let {fi} C C(S) be equicontinuous. If {fi} converges pointwise on a
dense subsel of S, show {f.} converges pointwise on 5. Is compactness important?
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A4: The Stone-Weierstrass Theorem

In this appendix we prove Stone’s far reaching generalization of the Weierstrass
Approximation Theorem. Let S be a compact Hausdorfl space and C(.S) the space of
all real-valued continuous functions on S equipped with the sup-norm [complex-valued
continuous functions are considered at the end of this section]. Stone’s Theorem gives
algebraic conditions, modeled on the polynomials on the line, which insure that a
subset of C(S) is dense in C(S5).

A subset A C C(S) is called an algebra if

(i) f, 9 € Aimply f + g and fg belong to A.
(i) f € Aimpliestf € AVteR.

Example 1 C(S) is an algebra. The set of polynomials, P, is an algebra in C[a, b].
The set of even polynomials, £, is an algebra in ("[a, b]; the set of odd polynomials,
O, is not an algebra in Cla,b]. The polynomials with 0 constant term is an algebra
in Cla,b]. I I{ CR"™ is compact, the set of polynomials in n real variables forms an
algebra in C(K).

A subset B C C(S) separates the points of S if and only if for t, s € S, t £ s,
3f € B such that f(t) # f(s).

Example 2 P scparates the points of [, ]; £ does not separate the points of [— 1, 1];
O separates the points of [a, b].

Lemma 3 Let £ be a vector subspace of C(S) that separates the poinis of S and is
such that | € L. Then givent, s € S5, t# s, anda, b € R3f € L such that f(s) =
and f(t) =b.

Proof: There is ¢ € £ such that g(s) # g(¢). Put ¢ = ¢g(s) — g(¢). Then the

function ) bols
o= bot (buls) —ag(0) 1 _

C

and satisfies f(s) = a, f(t) = b.

Definition 4 A subsct L of C(S) is ealled a function space if L is a vector space and
if f, g€ L implies fVgeL and fAg€E L.

Note that if £ is a [unction space, then whenever f € £, f* = fv0, /= = (—f)V0
and |f| also belong to L.

Example 5 Let PL be the collection of all piecewise linear, continuous functions on
[0,1] (i.e., f € PL if and only if f € C[0,1] and 3 a partition zp < z; < ... < T,
of [0, 1] such that f is lincar on cach subinterval [¢;_;,2;].) Then PL is a function
space but is not an algebra.
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Lemma 6 Let £ be a function space in C(S) that contains the constant function 1
and separates the points of S. Then given g € C(S) and to € S and ¢ > 0, If € L
such that f(to) = g(te) and f(t) > g(t) —e Vt € S.

Proof: By Lemma 3, Vi € § 3f, € L such that fi(to) = g(to) and f,(t) = ¢(¢).
Since f; and g are continuous, there is a neighborhood V; of t such that f;(s) > g(s)—¢
Vs e V..

Then {V; : t € 5} is an open cover of S and, therefore, there are t,...,t, € S
such that (J Vi, = S. Let f = fi, V---V fi,. Then f € £ and f(to) = g(1,). Also, if

=1
s € &, then 3k such that s € V;,. Then f(s) > f;,(s) > g(s) — ¢; so f is the desired
function.
We can now give the lattice version of the Stone-Weierstrass theorem.

Theorem 7 Let £ be a function space in C(S) that contains the constant function 1
and separates the points of S. Then L is dense in C(5).

Proof: Let g € ('(5) and € > 0. By Lemma 6, ¥Vt € S 3f, € £ such that
fi(t) = g(t) and fi(s) > g(5) — e Vs € S. By the continuity of f; and ¢, 3 a
ncighborhood U; of ¢ such that fi(s) < g(s) + ¢ Vs € U,. Since S is compact,
3tq,...,t, € Ssuchthat U Uy, =5. Put f=f, A--- A fi,. Then f € L.

=1
Since fy, > g—¢ f > g—¢c s €5, then s € U, for some k, so that
f(s) < fi.(s) < g(s})+ €. Thus

g(s)—e< f(s)<g(s)+e VseSor |f—g|l,<e

In order to state the algebraic version of the Stone-Weierstrass theorem, a lemma
is necded.

Lemma 8 There is a sequence of polynomials {p,} such that p,(t) — /t uniformly
fort €0,1].

Proof: Set py = 0 and puy1(t) = pa(t) + 3(t — pa(t)?) for n > 1. Clearly, each p,
is a polynomial.

We first claim that: 0 < p,(¢) < V#, 0 < ¢t < L. This certainly holds for n = {;
assume that it holds for n < k. pg11(t) > 0 and

VU= P (t) = VE— pi(t) — % [t - Pk(t)z] = [\/{ - Pk[f)] {1- % [\/{ +Pk(t)]} >0.

Thus, the claim is established by induction.

Since p,(t)? < ¢ V¢ € [0,1], it follows that {p.(t)} T Vvt € [0,1]. Put p(t) =
limp,(¢). Since p(t) > 0 and p(t)? = ¢, we have p(t) = VI, that is, pu(t) = V1
V¢ € [0,1]. The convergence is uniform on [0, |] by Dini’s theorem ([DeS] 11.18).

Of course, the conclusion of Lemma 8 follows directly from the Weierstrass approx-
imation theorem. We gave an independent proof in order to show that the Weierstrass
approximation theorem truly is a corollary of the Stone-Weierstrass theorem.
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Theorem 9 (Stone-Weierstrass) Let A be an algebra in C(S) such that A con-
tains the constant function | and separates the points of S. Then A is dense in

C(S).

Proof: By Theorem 7, it suffices to show that A is a function space.

We first claim that f € A implies |f| € A. Let {p,} be the polynomials in Leinma
8, let f € A be such that f # 0, and put a = || f||_, > 0. Then go = pa o (f?/a?) € A
Vn (Exercise 1) and, since p,(t) — v/t uniformly for 0 < ¢ <1, g, — +/f?/a? = |f| /a
in|l .. Hence, |f| = a(|f] Ja) € A.

But fVg= %(f +g+|f—gl),and fAg= %(f +g—|f —g]); thus, A is indeed

a function space.

Corollary 10 (Weierstrass Approzimation Theorem) The polynomials are dense in

Cla,b].
A more general statement is given by Corollary 11.

Corollary 11 Let K C R™ be compact. The polynomials in n-variables are dense in
C(K).

Finally, we should check the necessity of the various hypotheses in Thcorem 9.
The algebra £ in C[—1, 1] does not separate the points of [~1, 1] and is not dense in
C[-1,1], so this condition cannot be dropped. Because the algebra of polynomials in
C]0, 1] that vanish at 0 is not dense in C[0, 1], the condition that the algebra contains
the coustant function 1 cannot be dropped.

As stated above the Stone-Weierstrass Theorem is not valid for complex-valued
continuous functions. For an example, let T' = {e®* : 0 <1 < 27} be the unit circle in
the complex plane and cousider the function f(z) = Z and any complex polynomial

p(z) = kéo cxz®. Write f [p] for f(eit) [p(¢*)]. Then

2 . n 2r
[ Tt = Y e [ et = o
0 k=0 70

S0

o = /02" FeT(et)dt < /Oh(f —-p)f|+ '/thfl <2m|lf - pll.-

Hence, f is distance at least 1 from any polynomial so the polynomials cannot be
dense in the continuous complex-valued valued functions on T'. [Those readers familiar

with complex variables know that the uniform limit of any sequence of polynomials
on {z:|z| < 1} must be analytic.]

For the complex form of the Stonc-Weierstrass Theorem, we need to add an addi-
tional condition, namely, that whenever a function f belongs to the algebra A then
so does its conjugate f. [Note this property is missing in the example above.]

We denote by Ccc (S) the space of all continuous, complex-valued functions on S.
We assume that C¢ (S) is equipped with the sup-norm.
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Theorem 12 (Complex Form of Stonc-Weierstrass). Let A be an algebra in ('¢;( )
such that A contains the constant function 1, separates the points of S and is such

that when f € A, f € A. Then A is dense in Co(8S).

Proof: Let Ar be the set of all real and imaginary parts of functions which
belong to A. Since Rf = (f + [)/2 and Tf = (f — F)/2i, Ag is an algebra in ('(.5)
which contains 1 and separates the points of S. Hence, AR is dense in C'(5). Since
A={f+1ig: [,g € Ar}, A is dense in Cc(S).

For further remarks on the Stone-Weierstrass theorem, see the article by M. Stone.
in Studies tn Modern Analysis, Volume 1 in Mathematical Association of Americn
Studies in Mathematics, edited by R.C. Buck ([Bu]).

Exercise 1. i A is an algebra in C(S), show that A is an algebra.

Exercise 2. Is P a function space in Cla, 6]?

Exercise 3. If £ is a function space in C(5), show that £ is a function space.
Exercise 4. Show that PL (see Example 5) is dense in C[0,1].

Exercise 5. Let A be the vector space in C[0,1] generated by the functions I,

sin't,sin?t,.... [f € Aif and only if f(#) = 3 aisin*t for some a; € R.] Show that
k=0

A is dense in C[0, 1}.

Exercise 6. Show that the algebra generated by the functions {1,¢?} is dense in
C10,1] but is not dense in C[-1,1].

Exercise 7. Let S, T be compact Hausdorff spaces. i [ € C(S5), g € C(T), write
f®g for the function (s,t) — f(s)g{t). Show that the functions of the form ¥ fr ® g
(finite sum) are dense in C(S x T').

Exercise 8. Give an example of a situation where Theorem 7 is applicable but
Theorem 9 is not.

Exercise 9. If fi € BV[a,b] and fi — S uniformly on [a,b], is it necessarily true
that f € BV[a,8]?

Exercise 10. If g € C[0,1] and ¢ > 0, show that Jag, o, ..., ax € R such that

<€, vt e [0,1].

k
g(t) = 3 eye”
=0
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Exercise 11. Show that the polynomials with rational coefficients are dense in

Cla, b].

Exercise 12. Let A be the set of all functions of the form ¥ epe®, n € N, ¢; € R.
k=0
Show that A is dense in Cla, b].

Exercise 13. lLet A be the set of all functions of the form Xn: cpecoskt, n € N,
k=0
¢, € R. Show that A is densc in C[0,7]. Is A dense in C[—x, 7]?
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