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Preface to the Second Edition

The fi eld of operations research encompasses a growing number of tech-
nical areas. The scope of the second edition has been expanded to cover 
several additional topics. These include new chapters on order statistics, 
heuristic search methods, and traffi c fl ow and delay. Some chapters have 
also been updated with new material, and many new references have been 
added. As before, the focus is on presenting handy analytical results and 
formulas that allow quick calculations and provide the understanding of 
system models.

Dennis E. Blumenfeld
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Preface to the First Edition

Operations research uses analyses and techniques from a variety of 
branches of mathematics, statistics, and other scientifi c disciplines. Certain 
analytical results arise repeatedly in applications of operations research to 
industrial and service operations. These results are scattered among many 
different textbooks and journal articles, sometimes in the midst of exten-
sive derivations. The idea for a handbook of operations research results 
came from a need to have frequently used results to be readily available 
in one source of reference.

This handbook is a compilation of analytical results and formulas that 
have been found useful in various applications. The objective is to provide 
students, researchers, and practitioners with convenient access to wide 
range of operations research results in a concise format.

Given the extensive variety of applications of operations research, a 
c ollection of results cannot be exhaustive. The selection of results included 
in this handbook is based on experience in the manufacturing industry. 
Many of the results are basic to system modeling, and are likely to carry 
over to applications in other areas of operations research and manage-
ment science.

This handbook focuses on areas of operations research that yield 
explicit analytical results and formulas. With the widespread availability 
of computer software for simulations and algorithms, many analyses can 
be easily performed numerically without knowledge of explicit formulas. 
However, formulas continue to play a signifi cant role in system model-
ing. While software packages are useful for obtaining numerical results 
for given values of input parameters, formulas allow general conclusions 
to be drawn about system behavior as parameter values vary. Analytical 
results and formulas also help to provide an intuitive understanding 
of the underlying models for system performance. Such understanding 
is important in the implementation of operations research models as it 
allows analysts and decision makers to use models with confi dence.

Dennis E. Blumenfeld

Happy is the man that fi ndeth wisdom, and the man that getteth understanding.

—Proverbs 3:13
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1
Introduction

Operations research can be considered as the science of decision making. 
It encompasses many scientifi c disciplines, such as mathematics, statistics, 
computer science, physics, engineering, economics, and social sciences, 
and has been successful in providing a systematic approach to complex 
decisions in manufacturing, service, military, and fi nancial operations.

One of the reasons for the appeal and success of operations research 
is that it draws on basic mathematical principles and uses them in clever 
and novel ways to solve all kinds of real-world problems. Many of the 
applications make use of handy analytical results and formulas derived 
from system models, and can reveal how system performance varies with 
model parameters.

Often, these analytical results and formulas offer insight that numeri-
cal methods do not provide. Even though numerical solutions can now be 
easily obtained with the greatly increased speed and power of comput-
ers in recent years, there is still a need for analytical results to highlight 
trade-offs between the different parameters in a model, and to make the 
mathematical relationships between the parameters readily apparent.

Analytical results and formulas often require minimal data and allow 
quick “back-of-the-envelope” calculations that are very useful for initial 
analyses. This is important when an approximate estimate is all that is 
needed, or all there is time for, in the many real-world situations where 
decisions must be made quickly. In situations where there is more time, 
and many alternatives are to be evaluated, such initial analyses can pro-
vide focus as to where more detailed numerical analyses are warranted. 
Since formulas are not limited to any particular programming language, 
computer operating system, or user interface, they can be readily used on 
their own for system analyses or be included as components of compre-
hensive decision-making tools.

The objective of this handbook is to provide a concise collection of ana-
lytical results and formulas that arise in operations research applications. 
The material is organized into chapters based on the following topics.

The fi rst few chapters are devoted to results on the stochastic modeling 
aspects of operations research. Chapter 2 covers a range of formulas that 
involve the mean and the variance of random variables. Chapters 3 and 4 
list the main properties of widely used discrete and continuous probabil-
ity distributions. Chapter 5 contains a collection of other  analytical results 
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that frequently arise in probability. Chapters 6 and 7 present formulas that 
arise in stochastic processes and queueing theory.

The next four chapters cover specifi c applications of operations research 
in the areas of stochastic modeling. Chapter 8 presents some results in 
production systems modeling and Chapter 9 covers the basic formulas 
in inventory control. Chapter 10 gives distance formulas that are useful in 
logistics and spatial analyses. Chapter 11 presents basic results in traffi c 
fl ow and delay.

Chapters 12 and 13 cover the standard linear programming formula-
tions and heuristic search methods. These subjects deal with the develop-
ment of algorithms and methodologies in optimization. In keeping with 
the intent of this handbook, which is to focus on analytical results and 
formulas, these two chapters present the mathematical formulations and 
basic concepts, and give references for the solution methods.

The remaining chapters contain basic mathematical results that are 
relevant to operations research. Chapter 14 covers key results in order 
statistics, Chapter 15 lists some common mathematical functions that 
arise in applications, Chapter 16 presents useful results from elementary 
and more advanced calculus, Chapter 17 lists the standard properties of 
matrices, Chapter 18 gives the standard formulas for combinatorial calcu-
lations, Chapter 19 lists some common results for fi nite and infi nite sums, 
and, fi nally, Chapter 20 gives basic interest formulas that are important in 
economic analysis.

To supplement the various results and formulas, references are given for 
derivations and additional details.
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2
Means and Variances

2.1 Mean (Expectation) and Variance of a Random Variable

For a discrete random variable X that takes the values x0, x1, x2, …, the 
mean of X is given by

 

[ ] { }
0

Pri i

i

E X x X x
∞

=

= ⋅ =∑
 

(2.1)

where
E[X] denotes the mean (expected value or expectation) of X
Pr {X = xi} denotes the probability that X takes the value xi (i = 0, 1, 2, …)

If X takes nonnegative integer values only (X = 0, 1, 2, …), then the mean 
of X is given by

 

[ ] { }
0

Pr
n

E X n X n
∞

=

= ⋅ =∑
 

(2.2)

 

{ }
0

Pr
n

X n
∞

=

= >∑
 

(2.3)

For a continuous random variable X (−∞ < X < ∞), the mean of X is 
given by

 

[ ] ( )
∞

−∞

= ∫E X xf x dx

 

(2.4)

 

( ) ( )
0

0

1 F x dx F x dx
∞

−∞

= ⎡ − ⎤ −⎣ ⎦∫ ∫
 

(2.5)
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where
E[X] denotes the mean (expected value) of X
f(x) is the probability density function of X

and

 

( ) { } ( )
−∞

= ≤ = ∫Pr

x

F x X x f t dt

denotes the cumulative distribution function of X.
If X is continuous and takes nonnegative values only (0 ≤ X < ∞), then the 

mean of X is given by

 

[ ] ( )
0

E X xf x dx
∞

= ∫
 

(2.6)

 

( )
0

1 F x dx
∞

= ⎡ − ⎤⎣ ⎦∫
 

(2.7)

Çinlar (1975, pp. 22, 25–26); Lefebvre (2006, pp. 96–97); Mood, Graybill, and 
Boes (1974, pp. 64–65).

For any random variable X, the variance is given by

 
[ ] [ ]( ){ }2Var X E X E X= −

 
(2.8)

 
[ ]( )22E X E X⎡ ⎤= −⎣ ⎦  

(2.9)

where Var[X] denotes the variance of X
and

 

{ }

( )

2

2

2

Pr if  is discrete

if  is continuous

∞

−∞

⎧ ⋅ =
⎪
⎪⎪⎡ ⎤ = ⎨⎣ ⎦
⎪
⎪
⎪⎩

∑

∫

x

x X x X

E X

x f x dx X

 

(2.10)
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The standard deviation of X, St Dev[X], is given by

 
[ ] [ ]St Dev X Var X=

 
(2.11)

Binmore (1983, pp. 268–269); Çinlar (1975, p. 31); Feller (1964, p. 213); 
Lefebvre (2006, pp. 99–100); Mood, Graybill, and Boes (1974, pp. 68, 70); 
Ross (2003, pp. 46–47).

2.2 Covariance and Correlation Coefficient

For any random variables X and Y, the covariance Cov[X, Y] is given by

 
[ ] [ ]( ) [ ]( ){ },Cov X Y E X E X Y E Y= − −

 
(2.12)

 
[ ] [ ] [ ]E XY E X E Y= −

 
(2.13)

and the correlation coeffi cient Corr[X, Y] is given by

 

[ ] [ ]
[ ] [ ]

=
,

,
Cov X Y

Corr X Y
Var X Var Y

 

(2.14)

The correlation coeffi cient is dimensionless and satisfi es the condition 
−1 ≤ Corr[X, Y] ≤ 1.

If X and Y are independent, then the covariance, Cov[X, Y], and correla-
tion coeffi cient, Corr[X, Y], are zero.

Feller (1964, pp. 215, 221); Mood, Graybill, and Boes (1974, pp. 155–156, 161); 
Ross (2003, p. 53).

2.3 Mean and Variance of the Sum of Random Variables

For any random variables X and Y, the mean of the sum X + Y is given by

 
[ ] [ ] [ ]E X Y E X E Y+ = +

 
(2.15)

This result for the mean of a sum holds even if the random variables are 
not independent.
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If the random variables X and Y are independent, then the variance of 
the sum X + Y is given by

 
[ ] [ ] [ ]Var X Y Var X Var Y+ = +

 
(2.16)

If the random variables X and Y are not independent, then the variance of 
the sum X + Y is given by

 
[ ] [ ] [ ] [ ]2 ,Var X Y Var X Var Y Cov X Y+ = + +

 
(2.17)

where Cov[X, Y] is the covariance of X and Y given by Equation 2.12.
For any random variables X and Y, and any constants a and b, the mean 

and the variance of the linear combination aX + bY are given by

 
[ ] [ ]E aX bY aE X bE Y+ = +⎡ ⎤⎣ ⎦  

(2.18)

and

 
[ ] [ ] [ ]2 2 2 ,Var aX bY a Var X b Var Y ab Cov X Y+ = + +⎡ ⎤⎣ ⎦  

(2.19)

respectively.
In the special case a = 1 and b = −1, Equations 2.18 and 2.19 give the mean 

and the variance of the difference between the two random variables. Thus, 
for any random variables X and Y, the mean of the difference X − Y is 
given by

 
[ ] [ ] [ ]E X Y E X E Y− = −

 
(2.20)

and the variance of the difference X − Y is given by

 
[ ] [ ] [ ] [ ]2 ,Var X Y Var X Var Y Cov X Y− = + −

 
(2.21)

If the random variables X and Y are independent, then Cov[X, Y] = 0 and 
the variance of the difference X − Y is given by

 
[ ] [ ] [ ]Var X Y Var X Var Y− = +

 
(2.22)

Equation 2.20 for the mean of the difference X − Y holds even if the ran-
dom variables are not independent. Note that the mean of the difference 
is simply the difference of the means (Equation 2.20), while the variance 
of the difference (for the case of independent random variables) is the sum 
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of the variances (Equation 2.22), i.e., the same variance as for the sum X + Y 
(Equation 2.16).

The results in Equations 2.18 and 2.19 for a linear combination can be 
generalized to n random variables. For any random variables X1, X2, …, 
Xn and any constants a1, a2, …, an, the mean and the variance of the linear 
combination a1X1 + a2X2 + … + anXn are given by

 = =

⎡ ⎤
=⎢ ⎥

⎢ ⎥⎣ ⎦
∑ ∑

1 1

[ ]

n n

i i i i

i i

E a X a E X

 

(2.23)

and

 

[ ]2

1 1

,
n n

i i i i i j i j

i i i j

Var a X a Var X a a Cov X X
= = ≠

⎡ ⎤
= + ⎡ ⎤⎢ ⎥ ⎣ ⎦

⎢ ⎥⎣ ⎦
∑ ∑ ∑∑

 

(2.24)

respectively.

Bolch, Greiner, de Meer, and Trivedi (1998, pp. 23–24); Feller (1964, pp. 208, 
214, 216); Mood, Graybill, and Boes (1974, pp. 178–179); Ross (2003, pp. 49, 
53–54).

2.4  Mean and Variance of the Product of Two 

Random Variables

If X and Y are independent random variables, then the mean and the vari-
ance of the product XY are given by

 
[ ] [ ]E XY E X E Y=⎡ ⎤⎣ ⎦  

(2.25)

and

 
[ ] [ ]( ) [ ] [ ]( ) [ ] [ ] [ ]2 2

Var XY E Y Var X E X Var Y Var X Var Y= + +
 

(2.26)

respectively.
If the random variables X and Y are not independent, then the mean and 

the variance of the product XY are given by

 
[ ] [ ] [ ] [ ],E XY E X E Y Cov X Y= +

 
(2.27)
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and

 

( ) ( ) ( )

( ) ( ){ } ( ) ( ){ }
( )( ){ }

2 2 2

2 2 2

2

[ ]

[ ] [ ] [ ] [ ] 2 [ ] [ ] [ , ] [ , ]

[ ] [ ] 2 [ ] [ ] [ ]

2 [ ] [ ] [ ]

Var XY

E Y Var X E X Var Y E X E Y Cov X Y Cov X Y

E X E X Y E Y E Y E X E X Y E Y

E X E X E X Y E Y

=

+ + −

+ − − + − −

+ − −
 

(2.28)

respectively.

Mood, Graybill, and Boes (1974, p. 180).

2.5  Mean and Variance of the Quotient of Two 

Random Variables

If X and Y are independent random variables, then the approximate 
expressions for the mean and the variance of the quotient X/Y are 
given by

 

[ ]
[ ]

[ ]
[ ]( )21

E X Var YX
E

Y E Y E Y

⎛ ⎞⎛ ⎞⎡ ⎤ ≅ +⎜ ⎟⎜ ⎟⎢ ⎥ ⎜ ⎟⎣ ⎦ ⎝ ⎠ ⎝ ⎠
 

(2.29)

and

 

[ ]
[ ]

[ ]
[ ]( )

[ ]
[ ]( )

2

2 2

E X Var X Var YX
Var

Y E Y E X E Y

⎛ ⎞⎛ ⎞⎡ ⎤ ⎜ ⎟≅ +⎜ ⎟⎢ ⎥ ⎜ ⎟ ⎜ ⎟⎣ ⎦ ⎝ ⎠ ⎝ ⎠  

(2.30)

respectively.
If the random variables X and Y are not independent, then the approxi-

mate expressions for the mean and the variance of the quotient X/Y are 
given by

 

[ ]
[ ]

[ ]
[ ]( ) [ ]( ) [ ]

⎛ ⎞⎛ ⎞⎡ ⎤ ≅ + −⎜ ⎟⎜ ⎟⎢ ⎥ ⎜ ⎟⎣ ⎦ ⎝ ⎠ ⎝ ⎠
2 2

1
1 ,

E X Var YX
E Cov X Y

Y E Y E Y E Y
 

(2.31)
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and

 

[ ]
[ ]

[ ]
[ ]( )

[ ]
[ ]( )

[ ]
[ ] [ ]

2

2 2

2 ,E X Var X Var Y Cov X YX
Var

Y E Y E X E YE X E Y

⎛ ⎞⎛ ⎞⎡ ⎤ ⎜ ⎟≅ + −⎜ ⎟⎢ ⎥ ⎜ ⎟ ⎜ ⎟⎣ ⎦ ⎝ ⎠ ⎝ ⎠  

(2.32)

respectively.
These approximations for a quotient are obtained from the Taylor series 

expansions about the means E[X] and E[Y] up to second-order terms.
Mood, Graybill, and Boes (1974, p. 181).

2.6  Conditional Mean and Variance for Jointly 

Distributed Random Variables

For jointly distributed random variables X and Y,

 
[ ] { }XE Y E E Y X= ⎡ ⎤⎣ ⎦  

(2.33)

 
[ ] { } { }⎡ ⎤ ⎡ ⎤= +⎣ ⎦ ⎣ ⎦X XVar Y E Var Y X Var E Y X

 
(2.34)

where
E[Y] and Var[Y] denote the unconditional mean and the variance of Y
E[Y|X] and Var[Y|X] denote the conditional mean and the variance of Y, 

given a value of X
EX[.] and VarX[.] denote the mean and the variance over the distribution 

of X, respectively

Mood, Graybill, and Boes (1974, pp. 158–159); Ross (1988, pp. 285, 292); 
Wolff (1989, pp. 32, 34).

2.7 Conditional Mean of a Constrained Random Variable

For a continuous random variable X(−∞ < X < ∞) and any constant a, the 
conditional mean of X, given that X is greater than a, is given by

 

( )
{ }

∞

⎡ ⎤> =⎣ ⎦ >
∫
Pr
a

xf x dx
E X X a

X a
 

(2.35)



10 Operations Research Calculations Handbook

 

( )

( )
a

a

xf x dx

f x dx

∞

∞= ∫
∫

 

(2.36)

 

( )
( )1

a
xf x dx

F a

∞

=
−

∫
 

(2.37)

where
f(x) is the probability density function of X

and

 

( ) { } ( )
−∞

= ≤ = ∫Pr

x

F x X x f t dt

denotes the cumulative distribution function of X.
More generally, for any constants a and b where a < b, the conditional 

mean of X, given that X lies between a and b, is given by

 

( )
{ }Pr

b

a
xf x dx

E X a X b
a X b

< < =⎡ ⎤⎣ ⎦ < <
∫

 

(2.38)

 

( )

( )

b

a
b

a

xf x dx

f x dx
= ∫

∫
 

(2.39)

 

( )
( ) ( )

b

a
xf x dx

F b F a
=

−
∫

 

(2.40)

Cassady and Nachlas (2009, p. 69); Stirzaker (1994, p. 243).
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2.8  Mean and Variance of the Sum of a Random 

Number of Random Variables

Let
X1, X2, …, XN be N independent and identically distributed random 

variables,

where
N is a nonnegative integer random variable (independent of X1, X2, …, XN),

and let
E[X] and Var[X] be the mean and the variance of Xi (i = 1, 2, …, N)
E[N] and Var[N] be the mean and the variance of N, respectively

Then the sum

 1 2 NY X X X= + + +�

has a mean E[Y] and a variance Var[Y] given by

 
[ ] [ ] [ ]E Y E N E X=

 
(2.41)

 
[ ] [ ] [ ] [ ]( ) [ ]2

Var Y E N Var X E X Var N= +
 

(2.42)

Benjamin and Cornell (1970, p. 179); Drake (1967, pp. 111–112); Mood, 
Graybill, and Boes (1974, p. 197); Ross (1983, p. 16); Ross (2003, pp. 107, 119); 
Wald (1947, p. 53).

2.9 Mean of a Function of a Random Variable

Let
X be a continuous random variable (−∞ < X < ∞)
g(X) be a function of X
f(x) be the probability density function of X
F(x) be the cumulative distribution function of X

The function g(X) is a random variable with a mean E[g(x)] given by

 

( ) ( ) ( ) ( ) ( )E g X g x f x dx g x dF x
∞ ∞

−∞ −∞

⎡ ⎤ = =⎣ ⎦ ∫ ∫
 

(2.43)
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If X and Y are independent random variables, then for any functions g(.) 
and h(.),

 
( ) ( ) ( ) ( )E g X h Y E g X E h Y⎡ ⎤ = ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦  

(2.44)

Çinlar (1975, pp. 29–30); Lefebvre (2006, pp. 97–98); Mood, Graybill, and 
Boes (1974, p. 160); Ross (2003, pp. 45, 52).

2.10  Approximations for the Mean and Variance of a 

Function of a Random Variable

Let
X be a random variable (−∞ < X < ∞)
g(X) be a function of X
m = E[X] be the mean of X
s2 = Var[X] be the variance of X

The mean and the variance of the function g(X) are given in terms of the 
mean and the variance of X by the following approximations:

 
( ) ( ) ( )21

2
⎡ ⎤ ≅ + ′′⎣ ⎦E g X g gm s m

 
(2.45)

 
( ) ( ) 22⎡ ⎤ ⎡ ⎤≅ ′⎣ ⎦ ⎣ ⎦Var g X gs m

 
(2.46)

where g′(m) and g″(m) denote the fi rst and second derivatives of g(x), 
 respectively, evaluated at x = m, i.e.,

 

( ) ( )
=

=′
x

d
g g x

dx m

m

and

 

( ) ( )
2

2

=

=′′
x

d
g g x

dx
m

m

Benjamin and Cornell (1970, pp. 180–181); Papoulis (1984, p. 113).
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2.11  Mean and Variance of the Maximum of 

Exponentially Distributed Random Variables

Let X1, X2, …, Xn be n independent and identically distributed random 
variables, each having an exponential distribution with a mean 1/l, i.e., a 
probability density function ( ) −= ix

if x e ll  (i = 1, 2, …, n). The mean and the 
variance of the maximum of the n random variables are given by

 
( )1 2

1 1 1 1
max , , , 1

2 3

⎛ ⎞⎡ ⎤ = + + + +⎜ ⎟⎣ ⎦ ⎝ ⎠… �nE X X X
nl  

(2.47)

and

 
( )1 2 2 2 2 2

1 1 1 1
max , , , 1

2 3

⎛ ⎞⎡ ⎤ = + + + +⎜ ⎟⎣ ⎦ ⎝ ⎠… �nVar X X X
nl  

(2.48)

respectively.

Balakrishnan and Sinha (1995, p. 19); Cox and Hinkley (1974, p. 468); 
Nahmias (1989, p. 553).

Note that the minimum of n independent exponentially distributed ran-
dom variables, each with a mean 1/l, has simply an exponential distribu-
tion with a mean 1/(nl) and a variance 1/(nl)2 (see Equation 5.15).

2.12  Mean and Variance of the Maximum of Normally 

Distributed Random Variables

Let 
X1 and X2 be jointly normally distributed random variables, and let
m1 = E[X1] and m2 = E[X2] be the means of X1 and X2, respectively

[ ]2
1 1= Var Xs  and [ ]2

2 2= Var Xs  be the variances of X1 and X2, 
respectively

r = Corr[X1, X2] be the correlation coeffi cient of X1 and X2

Assume s1 ≠ s2 and r ≠ 1, and let the parameters a and b be defi ned as

 
2 2 2

1 2 1 22= + −b s s s s r

and

 

1 2−= m ma
b
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Let the functions f(x) and Φ(x) denote the probability density function 
and the cumulative distribution function, respectively, for the standard 
normal distribution given by

 
( ) 2 21

2

xx e−=f
p

and

 

( ) ( ) 2 21

2

x x

tx t dt e dt−

−∞ −∞

Φ = =∫ ∫f
p

Let Z = max(X1, X2) be the maximum of X1 and X2.
The means of Z and Z2 are given by

 
[ ] 1 2( ) ( ) ( )= Φ + Φ − +E Z m a m a bf a

 
(2.49)

and

 
2 2 2 2 2

1 1 2 2 1 2( ) ( ) ( ) ( ) ( ) ( )⎡ ⎤ = + Φ + + Φ − + +⎣ ⎦E Z m s a m s a m m bf a
 

(2.50)

respectively, and the variance of Z is given by

 
[ ] [ ]( )22Var Z E Z E Z⎡ ⎤= −⎣ ⎦  

(2.51)

Clark (1961, pp. 146–147).
Since f(x) is symmetric about x = 0, the probabilities Φ(a) and Φ(−a) are 

related by

 
( ) ( )1Φ − = − Φa a

and Clark’s results (Equations 2.49 and 2.50) can be written as

 
[ ] { }1 2( ) 1 ( ) ( )= Φ + − Φ +E Z m a m a bf a

 
(2.52)

and

 
{ }2 2 2 2 2

1 1 2 2 1 2( ) ( ) ( ) 1 ( ) ( ) ( )⎡ ⎤ = + Φ + + − Φ + +⎣ ⎦E Z m s a m s a m m b f a
 

(2.53)

Equation 2.52 shows that the mean of the maximum Z is given by a 
probability-weighted average of the means m1 and m2 of the normal 
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variables X1 and X2 separately, plus an adjustment term. Similarly, Equation 
2.53 shows that the mean of Z2 is given by a probability-weighted average 
of the means of 2

1X  and 2
2X  separately, plus an adjustment term.

The above exact formulas for the moments of the maximum of two nor-
mally distributed random variables can be used to obtain approximate 
expressions for the case of more than two normal random variables, as 
follows.

Let X1, X2, and Y be jointly normally distributed random variables, and let
r1 = Corr[X1, Y] be the correlation coeffi cient of X1 and Y
r2 = Corr[X2, Y] be the correlation coeffi cient of X2 and Y

The correlation coeffi cient of Y and Z is given by

 

[ ] ( ) [ ]
1 1 2 2

1 2

( ) ( )
, , max ,

Φ + Φ −⎡ ⎤= =⎣ ⎦Corr Y Z Corr Y X X
Var Z

s r a s r a

 

(2.54)

 

{ }
[ ]

1 1 2 2( ) 1 ( )Φ + − Φ
=

Var Z

s r a s r a

 

(2.55)

The mean and the variance for the maximum of the three normal random 
variables, X1, X2, and Y, are obtained by expressing max(X1, X2, Y) as

 
( ) ( )1 2 1 2max , , max , max ,X X Y Y X X⎡ ⎤= ⎣ ⎦  

(2.56)

and applying the above formulas for the mean and the variance in the 
two-variable case and the correlation of Y and max(X1, X2). The results for 
the three-variable case are approximate since max(X1, X2) is not normally 
distributed. This procedure for approximate results can be extended to 
any fi nite number of normal random variables.

Clark (1961, pp. 147–148).
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3
Discrete Probability Distributions

3.1 Bernoulli Distribution

Let
p be a constant, where 0 < p < 1
X be a random variable that can only take the values 0 or 1
P(x) be the probability that X = x (x = 0, 1)

The random variable, X, has a Bernoulli distribution if P(x) is given by

 

( )
=⎧⎪= ⎨

− =⎪⎩

          for 1

1      for 0

p x
P x

p x
 

(3.1)

Figure 3.1 shows an example of the Bernoulli distribution.
The mean, E[X], and the variance, Var[X], for the Bernoulli distribution 

are given by

 
[ ]E X p=

 
(3.2)

and

 
( )= −[ ] 1Var X p p

 
(3.3)

respectively.

Ayyub and McCuen (1997, p. 91); Hoel, Port, and Stone (1971, pp. 66, 83); 
Mood, Graybill, and Boes (1974, p. 87).

Note that the Bernoulli distribution P(x) (x = 0, 1) is used to characterize a 
random experiment with two possible outcomes. The outcomes are gener-
ally referred to as “success” (x = 1) and “failure” (x = 0), with probabilities p 
and 1 − p, respectively.

Bernoulli trials. Repeated random experiments that are independent 
and have two possible outcomes with constant probabilities are called 
Bernoulli trials.
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3.2 Binomial Distribution

Let
N be a positive integer
p be a constant, where 0 < p < 1
X be a random variable that can take the values 0, 1, 2, …, N
P(x) be the probability that X = x (x = 0, 1, 2, …, N)

The random variable X has a binomial distribution if P(x) is given by

 

( ) ( )1 ( 0, 1, 2, , )
N xx

N
P x p p x N

x

−⎛ ⎞
= − =⎜ ⎟

⎝ ⎠
…

 

(3.4)

The term 
N

x

⎛ ⎞
⎜ ⎟
⎜ ⎟⎝ ⎠

 denotes the number of combinations of x objects selected 

from a total of N objects, and is given by

 
( )

⎛ ⎞
=⎜ ⎟ −⎝ ⎠

!

! !

N N
x N xx

Figure 3.2 shows an example of the binomial distribution.
The mean, E[X], and the variance, Var[X], for the binomial distribution 

are given by

 
[ ]E X Np=

 
(3.5)

0

1

0 1

Probability
P(x)

p

1–p

x

FIGURE 3.1
Example of the Bernoulli distribution.
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and

 
( )[ ] 1Var X Np p= −

 
(3.6)

respectively.

Ayyub and McCuen (1997, p. 92); Feller (1964, pp. 137, 209, 214); Hoel, Port, 
and Stone (1971, pp. 51, 83, 97–98); Mood, Graybill, and Boes (1974, pp. 
88–89).

The binomial distribution P(x) (x = 0, 1, 2, …, N) gives the probability of x 
successes out of N Bernoulli trials, where each trial has a probability p of 
success and a probability (1 − p) of failure.

In the special case N = 1, the binomial distribution reduces to the 
Bernoulli distribution. For the general positive integer N, the sum of N 
Bernoulli random variables (i.e., the sum of random variables that take the 
values 0 or 1 in N Bernoulli trials) has a binomial distribution.

The probabilities, P(x), for each x (x = 0, 1, 2, …, N), given by Equation 
3.4, are the successive terms in the binomial expansion of [(1 − p) + p]N. 
Since [(1 − p) + p]N = 1 for any p and N, the sum of the terms in the expan-
sion is equal to 1 (i.e., ( )= =∑ 0 1N

x P x ), as required for P(x) to be a probability 
distribution.

For any N, the ratio of the variance to the mean for the binomial distri-
bution is

 
( )[ ]
1 1

[ ]

Var X
p

E X
= − <

 

(3.7)

0

0.1

0.2

0.3

0 1 2 3 4 5 6 7 8 9 10
x

N = 10
p = 0.25

Probability
P(x)

FIGURE 3.2
Example of the binomial distribution.
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3.3 Geometric Distribution

Let
p be a constant, where 0 < p < 1
X be a random variable that can take the values 0, 1, 2, …
P(x) be the probability that X = x (x = 0, 1, 2, …)

The random variable X has a geometric distribution if P(x) is given by

 
( ) ( )1 ( 0, 1, 2, )xP x p p x= − = …

 
(3.8)

Figure 3.3 shows an example of the geometric distribution.
The mean, E[X], and the variance, Var[X], for the geometric distribution 

are given by

 

1
[ ]

p
E X

p
−=

 

(3.9)

and

 
2

1
[ ]

p
Var X

p
−=

 

(3.10)

respectively.

DeGroot (1986, pp. 260–261); Hoel, Port, and Stone (1971, pp. 55, 84–85, 96); 
Mood, Graybill, and Boes (1974, pp. 99–100).

0

0.1

0.2

0.3

0.4

0.5

0 1 2 3 4 5 6 7 8 9 10
x

Probability
P(x)

p = 0.4

FIGURE 3.3
Example of the geometric distribution.
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The geometric distribution P(x) (x = 0, 1, 2, …) gives the probability of 
x trials (or failures) occurring before the fi rst success in an unlimited 
sequence of Bernoulli trials, where each trial has a probability p of success 
and a probability (1 − p) of failure.

Note that the geometric random variable X is sometimes defi ned as the 
number of trials needed to achieve the fi rst success (rather than the num-
ber of trials before the fi rst success) in an unlimited sequence of Bernoulli 
trials. Under this defi nition, X can take the values 1, 2, … (but not 0), and 
the distribution for P(x) is given by P(x) = p(1 − p)x − 1 (x = 1, 2, …). The mean 
in this case is E[X] = 1/p, while the variance remains the same as before, 
Var[X] = (1 − p)/p2.

The probabilities P(x) for each x (x = 0, 1, 2, …), given by Equation 3.8, are 
the successive terms in the infi nite geometric series

 
( ) ( ) ( )2 3
1 1 1p p p p p p p+ − + − + − +�

The sum of this series is

 
( )

1
1 1

p
p

=
⎡ ⎤− −⎣ ⎦

i.e.,

 

( )
∞

=

=∑
0

1
x

P x

as required for P(x) to be a probability distribution.
The probability that the geometric random variable X is less than or 

equal to a nonnegative integer k is given by

 
{ } ( ) ( ) +

=

≤ = = − −∑ 1

0

Pr 1 1

k
k

x

X k P x p

The probability that X is greater than k is given by

 
{ } ( ) 1

Pr 1
k

X k p
+> = −

The geometric distribution has the property that, for the nonnegative inte-
gers k and m, the conditional probability that X > k + m, given that X > k, is 
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equal to the unconditional probability that X > m (Hoel, Port, and Stone, 
1971, p. 59), i.e.,

 
{ } { }Pr PrX k m X k X m> + > = >

 
(3.11)

This is the “lack of memory” property (also known as the “memoryless” 
property). The geometric distribution is the discrete counterpart to the 
continuous exponential distribution, which also has the lack of memory 
property.

3.4 Negative Binomial Distribution

Let
r be a constant, where 0 < r < ∞
p be a constant, where 0 < p < 1
X be a random variable that can take the values 0, 1, 2, …
P(x) be the probability that X = x (x = 0, 1, 2, …)

The random variable X has a negative binomial distribution if P(x) is given 
by

 

( ) ( )
1

1 ( 0, 1, 2, )
xr

r x
P x p p x

x

+ −⎛ ⎞
= − =⎜ ⎟

⎝ ⎠
…

 

(3.12)

or, in its alternative form,

 

( ) ( ) ( )1 1 ( 0, 1, 2, )
xx r

r
P x p p x

x

−⎛ ⎞
= − − =⎜ ⎟

⎝ ⎠
…

 

(3.13)

The terms

 

1r x

x

+ −⎛ ⎞
⎜ ⎟
⎜ ⎟⎝ ⎠

and

 

( )1
x

r

x

−⎛ ⎞
⎜ ⎟ −⎜ ⎟⎝ ⎠
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are given by

 

( ) ( ) ( )1 1 1
1

!

x
r x r r r r x

xx x

+ − −⎛ ⎞ ⎛ ⎞ + + −⎜ ⎟ ⎜ ⎟= − =⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

�

 

(3.14)

for x = 1, 2, …, and are equal to 1 for x = 0.
Figure 3.4 shows an example of the negative binomial distribution.
The mean, E[X], and the variance, Var[X], for the negative binomial 

distribution are given by

 

( )1
[ ]

r p
E X

p

−
=

 

(3.15)

and

 

( )
2

1
[ ]

r p
Var X

p

−
=

 

(3.16)

respectively.

DeGroot (1986, pp. 259, 261); Feller (1964, pp. 155, 210, 253); Hoel, Port, 
and Stone (1971, pp. 55–56, 95–96); Mood, Graybill, and Boes (1974, pp. 
99, 102).

The negative binomial distribution, P(x), is defi ned only for nonnega-
tive integer values of x (x = 0, 1, 2, …). The constant, r, may be any positive 
number, not necessarily an integer.

0

0.1

0.2

0.3

0 1 2 3 4 5 6 7 8 9 10
x

Probability
P(x)

r = 2
p = 0.4

FIGURE 3.4
Example of the negative binomial distribution.
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If r is an integer, the negative binomial distribution P(x) gives the prob-
ability of x failures occurring before the rth success in an unlimited 
sequence of Bernoulli trials, where each trial has a probability p of success 
and a probability (1 − p) of failure. The negative binomial distribution with 
r as integer is sometimes called the Pascal distribution.

In the special case r = 1, the negative binomial distribution reduces to 
the geometric distribution. For the general positive integer, r, the sum 
of r independent and identically distributed geometric random vari-
ables has a negative binomial distribution. Thus, if X1, X2, …, Xr are 
r  independent random variables where each has a geometric distribu-
tion ( ) ( )1= − ix

iP x p p  (i = 1, 2, …, r), then the sum X = X1 + X2 + … + Xr has a 
negative binomial distribution, given by

 

( ) ( )
1

1
xr

r x
P x p p

x

+ −⎛ ⎞
⎜ ⎟= −⎜ ⎟⎝ ⎠

The probabilities, P(x), for each x (x = 0, 1, 2, …), given by Equation 3.12 
or Equation 3.13, are equal to pr multiplied by the successive terms in 
the binomial expansion of [1 − (1 − p)]−r. Since pr[1 − (1 − p)]−r = 1 for any 
p and r, the sum ( )∞

= =∑ 0 1,x P x  is required for P(x) to be a probability 
distribution.

For any r, the ratio of the variance to the mean for the negative binomial 
distribution is

 

= >[ ] 1
1

[ ]

Var X
E X p

 
(3.17)

3.5 Poisson Distribution

Let
m be a constant, where 0 < m < ∞
X be a random variable that can take the values 0, 1, 2, …
P(x) be the probability that X = x (x = 0, 1, 2, …)

The random variable X has a Poisson distribution if P(x) is given by

 
( ) ( 0, 1, 2, )

!

−

= = …
xe

P x x
x

mm
 

(3.18)

Figure 3.5 shows an example of the Poisson distribution.
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Note that, for the Poisson distribution, the cumulative distribution func-
tion (i.e., the probability that x ≤ n, for any integer n) can be expressed as

 

( ) ( )
0 0

1,
1

! !
−

= =

γ +
= = −∑ ∑

n n x

x x

n
P x e

x n
m mm

where ( , )⋅ ⋅g  denotes the incomplete gamma function (see Chapter 15).
The mean, E[X], and the variance, Var[X], for the Poisson distribution 

are given by

 
[ ] =E X m

 
(3.19)

and

 
[ ] =Var X m

 
(3.20)

respectively.

DeGroot (1986, pp. 252–253); Feller (1964, pp. 146, 209, 210, 214); Hoel, Port, 
and Stone (1971, pp. 56, 84, 96); Mood, Graybill, and Boes (1974, pp. 93–94).

Successive values of the Poisson distribution P(x) (x = 0, 1, 2, …) can be 
conveniently computed from the relationships.

 

( )

( ) ( )
0

1
1

− ⎫=
⎪
⎬
⎪+ =

+ ⎭

P e

P x
P x

x

m

m

 

(3.21)

Evans, Hastings, and Peacock (2000, p. 157).
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FIGURE 3.5
Example of the Poisson distribution.
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The relationships given in Equation 3.21 help to avoid overfl ow or under-
fl ow problems that can occur in computing P(x) directly from Equation 
3.18 for large values of x.

For any m, the ratio of the variance to the mean for the Poisson distribu-
tion is

 [ ]
[ ]

1
Var X
E X

=
 

(3.22)

The Poisson distribution with parameter m is the limiting form of the 
binomial distribution with parameters N and p, as N becomes large and 
p becomes small in such a way that the product Np remains fi xed and 
equal to m (DeGroot, 1986, pp. 256–257; Hoel, Port, and Stone, 1971, p. 69), 
i.e., for p = m/N,

 

( )lim 1
!

−
−

→∞

⎛ ⎞
− =⎜ ⎟

⎝ ⎠

x
N xx

N

N e
p p

xx

mm

 

(3.23)

In the case where the parameter m in a Poisson distribution is a continuous 
random variable rather than a constant, the combination of the Poisson 
distribution with a gamma distribution for m results in a negative bino-
mial distribution (see Section 5.5).

3.6 Hypergeometric Distribution

Let
N be a positive integer
K be a positive integer, where K ≤ N
n be a positive integer, where n ≤ N
X be a random variable that can take the values 0, 1, 2, …, n
P(x) be the probability that X = x (x = 0, 1, 2, …, n)

The random variable, X, has a hypergeometric distribution if P(x) is 
given by

 

( ) ( 0, 1, 2, , )

K N K

x n x
P x x n

N

n

−⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟

−⎝ ⎠ ⎝ ⎠
= =

⎛ ⎞
⎜ ⎟
⎝ ⎠

…

 

(3.24)
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Terms of the form

 

a

b

⎛ ⎞
⎜ ⎟
⎜ ⎟⎝ ⎠

 denote the numbers of combinations of b objects 

selected from a total of a objects, and are given by

 
( )

!

! !

a a
b a bb

⎛ ⎞
⎜ ⎟ =⎜ ⎟ −⎝ ⎠

Figure 3.6 shows an example of the hypergeometric distribution.
The mean, E[X], and the variance, Var[X], for the hypergeometric 

distribution are given by

 
[ ]

nK
E X

N
=

 
(3.25)

and

 
[ ] 1

1

nK K N n
Var X

N N N
−⎛ ⎞⎛ ⎞⎛ ⎞= −⎜ ⎟⎜ ⎟⎜ ⎟−⎝ ⎠⎝ ⎠⎝ ⎠  

(3.26)

respectively.

DeGroot (1986, pp. 247–250); Freund (1992, pp. 199–202); Hoel, Port, and 
Stone (1971, pp. 52, 90, 98); Mood, Graybill, and Boes (1974, pp. 91–92).
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FIGURE 3.6
Example of the hypergeometric distribution.
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The hypergeometric distribution arises in sampling from a fi nite pop-
ulation. Consider a population of N objects in total, of which K objects 
(K ≤ N) are of a specifi c type (referred to as “successes”), and suppose that 
a random sample of size n is selected without replacement from the N 
objects in the population (n ≤ N). The hypergeometric distribution P(x) 
(x = 0, 1, 2, …, n) gives the probability of x successes out of the n objects in 
the sample.

The number of combinations of x successes from the total of K successes 

and (n − x) objects from the remaining (N − K) objects is 
K N K

x n x

−⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟−⎝ ⎠⎝ ⎠

. The 

number of combinations of any n objects from the total of N objects is 
N

n

⎛ ⎞
⎜ ⎟
⎜ ⎟⎝ ⎠

. The ratio of these numbers gives the probability of x successes in 

the sample of size n, i.e.,

 

K N K N

x n x n

−⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟
⎜ ⎟⎜ ⎟ ⎜ ⎟−⎝ ⎠⎝ ⎠ ⎝ ⎠

as given by Equation 3.24.
If the objects in the sample were selected with replacement, rather than 

without replacement, then the probability of selecting a success would be 
a constant p, given by p = K/N, and the probability of x successes in the 
sample of size n would be given by the binomial distribution with param-
eters n and p, i.e.,

 

( )1
n xx

n
p p

x

−⎛ ⎞
⎜ ⎟ −⎜ ⎟⎝ ⎠

If the population size N is large when compared to the sample size n, then 
there is little difference between sampling with and without replacement, 
and the hypergeometric distribution with parameters n, N, and K, can be 
approximated in this case by the binomial distribution with parameters 
n and p = K/N. In general, the hypergeometric distribution has the same 
mean as the binomial distribution (i.e., np), but a smaller variance. The 
variance for the hypergeometric distribution is

 
( )1

1

N n
np p

N
−⎛ ⎞− ⎜ ⎟−⎝ ⎠
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while the variance for the binomial distribution is np(1 − p). As N becomes 

large, the factor −⎛ ⎞
⎜ ⎟⎝ ⎠− 1

N n
N

 approaches 1, and the variance for the hypergeo-

metric distribution becomes approximately equal to the variance for the 
binomial distribution.

3.7 Multinomial Distribution

Let
N be a positive integer
k be a positive integer
p1, p2, …, pk be constants, where 0 < pi < 1 (i = 1, 2, …, k) and p1 + p2 + … + pk = 1
X1, X2, …, Xk be random variables that can take the values 0, 1, 2, …, N, 

subject to the constraint X1 + X2 + … + Xk = N
P(x1, x2, …, xk) be the joint probability Pr(X1 = x1, X2 = x2, …, Xk = xk)

The random variables X1, X2, …, Xk have a multinomial distribution if 
P(x1, x2, …, xk) is given by

( ) ( )1 2
1 2 1 2

1 2

!
, , , 0, 1, 2, , ; 1, 2, ,

! ! !
kx x x

k ik
k

N
P x x x p p p x N i k

x x x
= = =… … … …

…

  (3.27)

where x1 + x2 + … + xk = N and p1 + p2 + … + pk = 1.

DeGroot (1986, pp. 297–298); Freund (1992, pp. 216–217); Hoel, Port, and 
Stone (1971, pp. 68–69); Mood, Graybill, and Boes (1974, pp. 137–138).

The multinomial distribution is a multivariate generalization of the 
binomial distribution. It arises in repeated independent random experi-
ments, where each experiment has k possible outcomes. Suppose that the 
outcomes are labeled 1, 2, …, k, and occur with probabilities p1, p2, …, pk, 
respectively, where p1 + p2 + … + pk = 1. The multinomial distribution P(x1, 
x2,…, xk) gives the probability that, out of a total of N experiments, x1 are of 
outcome 1, x2 are of outcome 2, …, and xk are of outcome k.

The probabilities P(x1, x2, …, xk) for xi = 0, 1, …, N (i = 1, 2, …, k), given 
by Equation 3.27, are the terms in the expansion of (p1 + p2 + … + pk)

N. Since 
p1 + p2 + … + pk = 1, the sum of the terms in the expansion is equal to 1, i.e.,

 

( )
1 2

1 2

1 2

, , ,

, , , 1

k
k

k

x x x
x x x N

P x x x

+ + + =

=∑
…

�

…

as required for P(x1, x2, …, xk) to be a probability distribution.
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In the special case k = 2, the multinomial distribution reduces to the 
binomial distribution. The multinomial distribution probability Pr(X1 = x1, 
X2 = x2) in this case is given by

 
( ) 1 2

1 2 1 2
1 2

!
,

! !
x xN

P x x p p
x x

=

where x1 + x2 = N and p1 + p2 = 1. Introducing a single random variable x 
and a single parameter p, and writing x1 = x and x2 = N − x, and p1 = p and 
p2 = 1 − p, this probability becomes

 

( ) ( ) ( )!
1 ( 0,1, 2, , )

! !

N xxN
P x p p x N

x N x
−= − =

−
…

which is the standard form for the binomial distribution, as given by 
Equation 3.4.

The marginal distribution of each random variable Xi (i = 1, 2, …, k) in 
the multinomial distribution is a binomial distribution with parameters 
N and pi. The mean and the variance of each Xi is given by

 
[ ]i iE X Np=

 
(3.28)

and

 
( )[ ] 1i i iVar X Np p= −

 
(3.29)

respectively.
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4
Continuous Probability Distributions

4.1 Uniform Distribution

Let
a and b be constants, where b > a
X be a random variable that can take any value in the range [a, b]
f(x) be the probability density function of X (a ≤ x ≤ b)
F(x) be the cumulative distribution function of X (a ≤ x ≤ b), i.e.,

 

( ) { } ( )= ≤ = ≤ ≤∫Pr ( )

x

a

F x X x f t dt a x b

The random variable, X, has a uniform distribution if f(x) is given by

 
( ) 1

( )f x a x b
b a

= ≤ ≤
−  

(4.1)

Figure 4.1 shows the probability density function, f(x), for the uniform 
distribution.

The cumulative distribution function, F(x), for the uniform distribution 
is given by

 
( ) ( )

x a
F x a x b

b a
−= ≤ ≤
−  

(4.2)

The mean, E[X], and the variance, Var[X], for the uniform distribution 
are given by

 
[ ]

2

a b
E X

+=
 

(4.3)

and

 
[ ] ( )2

12

b a
Var X

−
=

 
(4.4)

respectively.
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Allen (1978, pp. 80–81); Freund (1992, p. 223); Hoel, Port, and Stone (1971, 
pp. 118, 173); Mood, Graybill, and Boes (1974, pp. 105–106).

The uniform distribution is also known as the rectangular distribution. 
In the special case a = 0 and b = 1, the probability density function and the 
cumulative distribution function are simply

 
( ) 1 (0 1)f x x= ≤ ≤

 
( ) (0 1)F x x x= ≤ ≤

respectively.

4.2 Exponential Distribution

Let
l be a constant, where l > 0
X be a random variable that can take any value in the range [0, ∞)
f(x) be the probability density function of X (0 ≤ x < ∞)
F(x) be the cumulative distribution function of X (0 ≤ x < ∞), i.e.,

( ) { } ( )= ≤ = ∫
0

Pr

x

F x X x f t dt

The random variable, X, has an exponential distribution if f(x) is given by

 
( ) (0 )−= ≤ < ∞xf x e xll

 
(4.5)

x
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density

function
f (x)

b – a
1

ba0

FIGURE 4.1
Example of the uniform distribution.
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Figure 4.2 shows examples of the probability density function, f(x), for 
the exponential distribution.

The cumulative distribution function, F(x), for the exponential distribu-
tion is given by

 
( ) 1 (0 )−= − ≤ < ∞xF x e xl

 
(4.6)

The mean, E[X], and the variance, Var[X], for the exponential distribu-
tion are given by

 
[ ] 1=E X

l  
(4.7)

and

 
[ ] 2

1=Var X
l

 

(4.8)

respectively.

Allen (1978, pp. 82, 85); DeGroot (1986, pp. 289–290); Freund (1992, pp. 225, 
228); Hoel, Port, and Stone (1971, pp. 126, 174, 177); Mood, Graybill, and 
Boes (1974, p. 112).
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FIGURE 4.2
Examples of the exponential distribution.
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The probability that the exponential random variable X is greater than 
x is given by

 
{ } ( )Pr 1 −> = − = xX x F x e l

The exponential distribution has the property that, for any s ≥ 0 and t ≥ 0, 
the conditional probability that X > s + t, given that X > s, is equal to the 
unconditional probability that X > t, i.e.,

 
{ } { }> + > = >Pr PrX s t X s X t

 
(4.9)

Allen (1978, pp. 82–83); Hoel, Port, and Stone (1971, p. 127); Krishnan (2006, 
p. 81); Mood, Graybill, and Boes (1974, p. 114). This is the “lack of memory” 
property (or “memoryless” property). The geometric distribution (the dis-
crete counterpart to the exponential distribution) has the same property.

The standard deviation, St Dev [X], for the exponential distribution is

 
[ ] [ ] 1= =St Dev X Var X

l  
(4.10)

and the coeffi cient of variation for the exponential distribution is

 

[ ]
1

[ ]

St Dev X
Coeff of Var

E X
= =

 
(4.11)

4.3 Erlang Distribution

Let
l be a constant, where l > 0
k be a positive integer
X be a random variable that can take any value in the range [0, ∞)
f(x) be the probability density function of X (0 ≤ x < ∞)
F(x) be the cumulative distribution function of X (0 < x < ∞), i.e.,

 

( ) { } ( )= ≤ = ∫
0

Pr

x

F x X x f t dt
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The random variable, X, has an Erlang distribution if f(x) is given by

 

( ) ( )
1 (0 )

1 !
− −= ≤ < ∞

−

k
k xf x x e x

k
ll

 

(4.12)

Figure 4.3 shows examples of the probability density function f(x) for 
the Erlang distribution.

The cumulative distribution function, F(x), for the Erlang distribution 
is given by

 

( ) ( )−
−

=

= − ≤ < ∞∑
1

0

1 (0 )
!

k i
x

i

x
F x e x

i
l l

 

(4.13)

Note that Equation 4.13 can be expressed as

 
( ) ( , )

( 1)!
=

−
k x

F x
k

g l

where g (∙,∙) denotes the incomplete gamma function (see Chapter 15).
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FIGURE 4.3
Examples of the Erlang distribution.
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The mean, E[X], and the variance, Var[X], for the Erlang distribution are 
given by

 
[ ]= k

E X
l  

(4.14)

and

 
[ ] 2

= k
Var X

l  
(4.15)

respectively.

Çinlar (1975, pp. 81, 83); Law and Kelton (1991, p. 332); Tijms (1986, p. 395).
The constant, l, is the scale parameter, and the integer, k, is the shape 

parameter. The Erlang distribution with shape parameter, k, is sometimes 
denoted by Erlang-k or Ek.

The Erlang distribution is a special case of the gamma distribution 
(which can have a non-integer shape parameter). The gamma distribution 
is described in Section 4.4.

The standard deviation, St Dev[X], for the Erlang distribution is

 
[ ] [ ]= = k

St Dev X Var X
l  

(4.16)

and the coeffi cient of variation for the Erlang distribution is

 

[ ] 1

[ ]

St Dev X
Coeff of Var

E X k
= =

 
(4.17)

In the special case k = 1, the Erlang distribution reduces to the expo-
nential distribution. For the general positive integer k, the sum of k inde-
pendent and identically distributed exponential random variables has 
an Erlang distribution. Thus, if X1, X2, …, Xk are k independent random 
variables where each has an exponential distribution with a mean 1/l, 
i.e., a probability density function (0 , 1, 2, , )− ≤ < ∞ = …ix

ie x i kll , then the 
sum X = X1 + X2 + … + Xk has an Erlang distribution with a probability 
 density function, f(x), given by

 

( ) ( )
1 (0 )

1 !
− −= ≤ < ∞

−

k
k xf x x e x

k
ll

as in Equation 4.12.
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Likewise, the sum of m independent random variables that have 
Erlang distributions, with different shape parameters k1, k2, … , km and  
common scale parameter l, also has an Erlang distribution. The result-
ing shape parameter, k1 + k2 + … + km, since this case is the same as the 
sum of k1 + k2 + … + km independent and identically distributed exponen-
tial random variables. Thus, if X1, X2, …, Xm are m independent random 
variables where each has an Erlang distribution, with parameters l and 
ki (i = 1, 2, …, m), then the sum S = X1 + X2 + … + Xm has an Erlang distribu-
tion with a probability density function, f(s), given by

 

( ) ( )
1 2

1 2

( )
( 1)

1 2

(0 )
1 !

+ + +
+ + + − −= ≤ < ∞

+ + + −

�
�

�

m
m

k k k
k k k s

m
f s s e s

k k k
ll

The probability density function, f(x), for the Erlang distribution is 
sometimes expressed as

 

( ) ( )
( )

1

1 !

k
k kxk

f x x e
k

− −=
−

qq

with a scale parameter, q, rather than l, where q = l/k. With the distribution 

expressed in terms of these parameters, the mean is given by
 

[ ] 1
E X =

q  
and is thus the same for any value of the shape parameter k. The variance 

in this case is given by [ ] 2

1=Var X
kq

.

4.4 Gamma Distribution

Let
l and a be constants, where l > 0 and a > 0
X be a random variable that can take any value in the range (0, ∞)
f(x) be the probability density function of X (0 < x < ∞)
F(x) be the cumulative distribution function of X (0 < x < ∞), i.e.,

( ) { } ( )= ≤ = ∫
0

Pr

x

F x X x f t dt
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The random variable X has a gamma distribution if f(x) is given by

 

( ) ( )
1 (0 )− −= < < ∞

Γ
xf x x e x

a
a ll

a
 

(4.18)

where Γ(a) is a gamma function, given by

 

( ) 1

0

∞
− −Γ = ∫ tt e dtaa

Figure 4.4 shows examples of the probability density function f(x) for the 
gamma distribution.

The cumulative distribution function F(x) for the gamma distribution 
is given by

 

( ) ( )
1

0

1
(0 )− −= < < ∞

Γ ∫
x

tF x t e dt x
l

a

a
 

(4.19)

where the integral 1
0

− −∫ x tt e dtl a  is an incomplete gamma function g(a, lx) 
(see Chapter 15).
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FIGURE 4.4
Examples of the gamma distribution.
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The mean, E[X], and the variance, Var[X], for the gamma distribution 
are given by

 
[ ]=E X

a
l  

(4.20)

and

 
[ ] 2

=Var X
a
l  

(4.21)

respectively.

DeGroot (1986, pp. 288–289); Freund (1992, pp. 225, 228); Hoel, Port, and 
Stone (1971, pp. 129, 174, 177); Mood, Graybill, and Boes (1974, pp. 112–113); 
Tijms (1986, pp. 394–395).

The constant, l, is the scale parameter, and the constant, a, is the 
shape parameter. The standard deviation, St Dev[X], for the gamma dis-
tribution is

 
[ ] [ ]= =St Dev X Var X

a
l  

(4.22)

and the coeffi cient of variation for the gamma distribution is

 

[ ] 1

[ ]
= =St Dev X

Coeff of Var
E X a  

(4.23)

From Equations 4.20 and 4.21, the parameters l and a can be expressed 
in terms of the mean and the variance, and are given by

 

[ ]
[ ]=

E X
Var X

l
 

(4.24)

and

 

[ ]( )
[ ]

2

=
E X

Var X
a

 

(4.25)

respectively.
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In the special case a = k, where k is an integer, the gamma distribution 
is known as the Erlang distribution, as described in the previous section. 
The cumulative distribution function, F(x), for this special case is given by 
Equation 4.13.

In the special case a = 1, the gamma distribution reduces to the exponen-
tial distribution, which is defi ned in Section 4.2.

In the special case l = 1/2 and a = ν/2, where ν is an integer, the gamma 
distribution is known as the χ2 (chi-squared) distribution with ν degrees 
of freedom. The χ2 distribution arises in statistical inference. It is the dis-
tribution of the sum of the squares of ν independent standard normal 
 random variables.

Allen (1978, pp. 97–98); Mood, Graybill, and Boes, (1974, pp. 241–243).

Thus, if Z1, Z2, …, Zν are ν independent random variables where each has 
a standard normal distribution, i.e., a probability density function f(zi) 
given by

 
( ) 2 21

( , 1, 2, , )
2

iz
i iz e z i−= −∞ < < ∞ = ν…f

p

then the sum 2 2 2
1 2 vX Z Z Z= + + +�  has a χ2 distribution with n degrees of 

freedom, i.e., a probability density function, f(x), given by

 

( ) ( )
( )

( )− −= ≤ < ∞
Γ

2

2 1 21 2
(0 )

2
xf x x e x

n
n

n

From Equations 4.20 and 4.21, the mean and the variance for the χ2 dis-
tribution are given by E [X] = ν and Var [X] = 2ν, respectively.

The sum of m independent random variables that have gamma dis-
tributions, with different shape parameters a1, a2, …, am and a common 
scale parameter l, has a gamma distribution with a shape parameter 
a1 + a2 + … + am and a scale parameter l. Thus, if X1, X2, …, Xm are m 
independent random variables where each has a gamma distribution, 
with parameters l and ai (i = 1, 2, …, m), then the sum S = X1 + X2 + … + Xm 
has a gamma distribution with a probability density function, f(s), 
given by

 
( ) ( )

1 2

1 2

( )
( 1)

1 2

(0 s )
+ + +

+ + + − −= ≤ < ∞
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�
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4.5 Beta Distribution

Let
a and b be constants, where a > 0 and b > 0
X be a random variable that can take any value in the range (0, 1)
f(x) be the probability density function of X (0 < x < 1)
F(x) be the cumulative distribution function of X (0 < x < 1), i.e.,

 

( ) { } ( )= ≤ = ∫
0

Pr

x

F x X x f t dt

The random variable X has a beta distribution if f(x) is given by

 
( ) ( ) ( )1 11

1 (0 1)
,

f x x x x− −= − < <
Β

a b

a b
 

(4.26)

where B(a, b) is a beta function, given by

 

( ) ( )
1

11

0

, 1
−−Β = −∫ t t dtbaa b

The beta function is related to the gamma function by

 

( ) ( ) ( )
( ),

Γ Γ
Β =

Γ +
a b

a b
a b

Figure 4.5 shows examples of the probability density function, f(x), for 
the beta distribution.

The cumulative distribution function, F(x), for the beta distribution is 
given by

 

( ) ( ) ( )− −= − < <
Β ∫ 1 1

0

1
1 (0 1)

,

x

F x t t dt xa b

a b
 

(4.27)

where the integral 11
0 (1 ) −− −∫x t t dtba  is the incomplete beta function (see 

Chapter 15).
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The mean, E[X], and the variance, Var[X], for the beta distribution are 
given by

 
[ ]=

+
E X

a
a b  

(4.28)

and

 

[ ] ( ) ( )2
1

=
+ + +

Var X
ab

a b a b
 

(4.29)

respectively.

DeGroot (1986, pp. 294–296); Freund (1992, pp. 229–231); Mood, Graybill, 
and Boes (1974, pp. 115–116).

If a and b are integers, then the beta function, B(a, b), is given by

 

( ) ( ) ( )
( )

1 ! 1 !
,

1 !

− −
Β =

+ −
a b

a b
a b

and the probability density function, f(x), for the beta distribution 
becomes

 
( ) ( )

( ) ( ) ( ) −−+ −
= −

− −
111 !

1
1 ! 1 !

f x x x baa b
a b

 

(4.30)
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FIGURE 4.5
Examples of the beta distribution.
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In the special case a = 1 and b = 1, the beta distribution reduces to a 
 uniform distribution (see Section 4.1), with a probability density function 
f(x) = 1 (0 ≤ x ≤ 1).

4.6 Normal Distribution

Let
m be any constant
s be a constant, where s > 0
X be a random variable that can take any value in the range (−∞, ∞)
f(x) be the probability density function of X (−∞ < x < ∞)
F(x) be the cumulative distribution function of X (−∞ < x < ∞), i.e.,

 

( ) { } ( )
−∞

= ≤ = ∫Pr

x

F x X x f t dt

The random variable X, has a normal distribution if f(x) is given by

 

( ) ( )2

2

1
exp ( )

22

x
f x x

⎧ ⎫−⎪ ⎪= − −∞ < < ∞⎨ ⎬
⎪ ⎪⎩ ⎭

m
sps

 

(4.31)

Figure 4.6 shows examples of the probability density function, f(x), for 
the normal distribution.

The cumulative distribution function, F(x), for the normal distribution 
is given by

 

( )
( )

2 21
( )

2

x

tF x e dt x

−

−

−∞

= −∞ < < ∞∫
m s

p
 

(4.32)

The mean, E[X], and the variance, Var[X], for the normal distribution 
are given by

 
[ ]=E X m

 
(4.33)

and

 
[ ] 2=Var X s

 
(4.34)

respectively.

DeGroot (1986, pp. 264–266); Freund (1992, pp. 236–238); Mood, Graybill, 
and Boes (1974, pp. 107–109).
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The notation N(m, s2) is generally used to represent a normal distribu-
tion with a mean, m, and a variance, s2. The normal distribution has the 
following properties.

4.6.1 Sum of Normally Distributed Random Variables

If X1 and X2 are independent random variables that have normal distribu-
tions 2

1 1( , )N m s  and 2
2 2( , )N m s , then

The sum • X1 + X2 has a normal distribution 2 2
1 2 1 2( , )+ +N m m s s

The difference • X1 − X2 has a normal distribution 1 2( ,−N m m
2 2
1 2 )+s s

In general, if X1, X2, …, Xn are n independent random variables that 
have normal distributions =2( , ) ( 1, 2, , )i iN i n…m s , and a1, a2, …, an are any 
 constants, then the sum

 1 1 2 2 n na X a X a X+ + +�

has a normal distribution

0.25
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0.75

–3 –2 –1 0 1 2 3
x

Probability
density

function 
f (x)

 μ = 1, σ = 0.5   

 μ = 0, σ = 1 

FIGURE 4.6
Examples of the normal distribution.



Continuous Probability Distributions 45

 
2 2 2 2 2 2

1 1 2 2 1 1 2 2( , )+ + + + + +� �n n n nN a a a a a am m m s s s

DeGroot (1986, p. 270); Mood, Graybill, and Boes (1974, pp. 193–194).

4.6.2 Standard Normal Distribution

In the special case m = 0 and s2 = 1, the normal distribution is called the 
standard normal distribution, with the probability density function denoted 
by f(x) and the cumulative distribution function denoted by Φ(x), where

 
( ) 2 21

( )
2

xx e x−= −∞ < < ∞f
p  

(4.35)

and

 

( ) ( ) 2 21
( )

2

x x

tx t dt e dt x−

−∞ −∞

Φ = = −∞ < < ∞∫ ∫f
p

 

(4.36)

The standard normal distribution is symmetrical about x = 0, and hence

 
( ) ( )− =x xf f

 
(4.37)

and

 
( ) ( )1x xΦ − = − Φ

 
(4.38)

If X has a normal distribution with mean m and variance s2, then 
−X m
s

 has a standard normal distribution.

The cumulative distribution function, F(x), for the normal distribution 
is related to the corresponding function, Φ(x), for the standard normal 
distribution by

 
( ) ( )

−⎛ ⎞= Φ −∞ < < ∞⎜ ⎟⎝ ⎠
x

F x x
m

s  
(4.39)

DeGroot (1986, pp. 267–269); Hoel, Port, and Stone (1971, p. 125); Mood, 
Graybill, and Boes (1974, pp. 108–111).
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4.6.3 Partial Moments for the Normal Distribution

Let
X have a normal distribution with mean m and variance s2

f(x) be the probability density function of X, given by Equation 4.31
c be any constant
The fi rst and second partial moments of X,

 

( )
c

xf x dx
∞

∫
and

 

( )2

c

x f x dx
∞

∫
respectively, are given by

 

( )
2

1
1 exp

22
c

c c
xf x dx

∞ ⎧ ⎫⎧ ⎫− −⎪ ⎪⎛ ⎞ ⎛ ⎞= − Φ + −⎨ ⎬ ⎨ ⎬⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎩ ⎭ ⎪ ⎪⎩ ⎭∫ m s mm
s sp

 

(4.40)

and

 

( ) ( ) ( )∞ ⎧ ⎫+⎧ ⎫− −⎪ ⎪⎛ ⎞ ⎛ ⎞= + − Φ + −⎨ ⎬ ⎨ ⎬⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎩ ⎭ ⎪ ⎪⎩ ⎭∫
2

2 22 1
1 exp

22
c

cc c
x f x dx

s mm mm s
s sp

 
(4.41)

where Φ(x) is the cumulative distribution function for the standard 
normal distribution, given by Equation 4.36.

Hadley and Whitin (1963, pp. 144, 167); Winkler, Roodman, and Britney 
(1972, p. 292).

Note that partial moments arise in the conditional mean and variance of 
a random variable, X, given that X is greater than a constant. For example, 
the conditional mean, E[X|X > c], is given by

 

( )
( )

∞

⎡ ⎤> =⎣ ⎦ −
∫

1
c

xf x dx
E X X c

F c



Continuous Probability Distributions 47

(see Equation 2.37), so that in the case of the normal distribution for X, the 
conditional mean is given by

 

2
1

1 exp
22

1

c c

E X X c
c

⎧ ⎫⎧ ⎫− −⎪ ⎪⎛ ⎞ ⎛ ⎞− Φ + −⎨ ⎬ ⎨ ⎬⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎩ ⎭ ⎪ ⎪⎩ ⎭⎡ ⎤> =⎣ ⎦ −⎛ ⎞− Φ ⎜ ⎟⎝ ⎠

m s mm
s sp

m
s

i.e.,

 

2
1

exp
22

1

c

E X X c
c

⎧ ⎫−⎪ ⎪⎛ ⎞−⎨ ⎬⎜ ⎟⎝ ⎠⎪ ⎪⎩ ⎭⎡ ⎤> = +⎣ ⎦ −⎛ ⎞− Φ ⎜ ⎟⎝ ⎠

s m
sp

m
m

s

4.6.4  Approximations for the Cumulative Normal 
Distribution Function

For x ≥ 0, the cumulative distribution function, Φ(x), for the standard 
normal distribution can be approximated by

 

( ) ( ) ( ) ( )
2 1 2 32

2 3

1
1 (0 )

12 1 1

x a a a
x e x

bx bx bx
−

⎧ ⎫⎪ ⎪Φ ≅ − + + ≤ < ∞⎨ ⎬+ + +⎪ ⎪⎩ ⎭p
 

(4.42)

where
a1 = 0.4361836
a2 = −0.1201676
a3 = 0.9372980
b = 0.33267

The absolute error in this approximation is less than 1 × 10−5.

Abramowitz and Stegun (1968, p. 932); Hastings (1955, p. 167); Johnson, 
Kotz, and Balakrishnan (1994, p. 13).

Note: This approximation can also be used for Φ(x) when x ≤ 0, by evaluat-
ing Φ(−x) and using Φ(x) = 1 − Φ(−x) from Equation 4.38.

The following is an approximation for the inverse of the cumulative dis-
tribution function for the standard normal distribution. Let

 

( ) −

−∞

= Φ = ≤ ≤∫ 2 21
(0 1)

2

x

tp x e dt p
p
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The value of x for a given probability, p, is given by the inverse function 
x = Φ−1(p). For values of p where 0.5 ≤ p < 1, the inverse of the cumulative 
distribution function can be approximated by

 
( )

2
0 1 21

2 3
1 2 3

(0.5 1)
1

c c u c u
x p u p

d u d u d u
− + += Φ ≅ − ≤ <

+ + +  
(4.43)

where

( )2

1
ln

1
u

p

⎡ ⎤
⎢ ⎥=
⎢ ⎥−⎣ ⎦

c0 = 2.515517, c1 = 0.802853, c2 = 0.010328
d1 = 1.432788, d2 = 0.189269, d3 = 0.001308

The absolute error in this approximation is less than 4.5 × 10−4.
Abramowitz and Stegun (1968, p. 933); Hastings (1955, p. 192).

For values of p where 0 < p < 0.5, the inverse function x = Φ−1(p) can fi rst be 
rewritten as x = −Φ−1 (1 − p) from Equation 4.38 and then evaluated using 
the same approximation.

4.7 Lognormal Distribution

Let
m be any constant
s be a constant, where s > 0
X be a random variable that can take any value in the range (0, ∞)
f(x) be the probability density function of X (0 < x < ∞)
F(x) be the cumulative distribution function of X (0 < x < ∞), i.e.,

 

( ) { } ( )= ≤ = ∫
0

Pr

x

F x X x f t dt

The random variable, X, has a lognormal distribution if f(x) is given by

 

( )
⎧ ⎫−⎪ ⎪⎛ ⎞= − < < ∞⎨ ⎬⎜ ⎟⎝ ⎠⎪ ⎪⎩ ⎭

2
1 1 ln( )

exp (0 )
22

x
f x x

x
m

sp s
 

(4.44)

Figure 4.7 shows examples of the probability density function, f(x), for 
the lognormal distribution.
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The cumulative distribution function, F(x), for the lognormal distribu-
tion is given by

 
( ) ln( )

(0 )
−⎛ ⎞= Φ < < ∞⎜ ⎟⎝ ⎠

x
F x x

m
s  

(4.45)

where

 

( ) 2 21

2

x

tx e dt−

−∞

Φ = ∫p

is the cumulative distribution function for the standard normal 
distribution.

The mean, E[X], and the variance, Var[X], for the lognormal distribution 
are given by

 
[ ] 2 2+=E X em s

 
(4.46)

and

 
[ ] ( )2 22 1+= −Var X e em s s

 
(4.47)

respectively.
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FIGURE 4.7
Examples of the lognormal distribution.
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Bolch, Greiner, de Meer, and Trivedi (1998, p. 19); Devore (2008, pp. 
166–167); Johnson, Kotz, and Balakrishnan (1994, pp. 208, 212); Mood, 
Graybill, and Boes (1974, p. 117); Tijms (1986, p. 395).

The lognormal distribution is derived from the normal distribution by 
a logarithmic transformation. If X and Y are random variables related by 
Y = ln(X), and Y has a normal distribution with mean m and variance s2, 
then X has a lognormal distribution with a probability density function 
given by Equation 4.44.

Note that the lognormal random variable, X, is not the log of a normal 
random variable. Rather, it is the normal random variable that is the log 
of X (i.e., X is the exponential of a normal random variable). Thus, if X has 
a lognormal distribution with parameters m and s, as given by Equation 
4.44, then

ln(• X) has a normal distribution with mean m and variance s2

ln( ) −X m
s•  has a standard normal distribution

The standard deviation, St Dev [X], for the lognormal distribution is

 
[ ] [ ] 2 22 1+= = −St Dev X Var X e em s s

 
(4.48)

and the coeffi cient of variation for the lognormal distribution is

 

2[ ]
1

[ ]
= = −St Dev X

Coeff of Var e
E X

s

 
(4.49)

From Equations 4.46 and 4.47, s2 is given by

 

[ ]
[ ]( )

2
2ln 1

⎛ ⎞
= +⎜ ⎟

⎜ ⎟⎝ ⎠

Var X

E X
s

and from Equation 4.46, m is given by

 
[ ]( )= − 21ln

2
E Xm s

Thus, the parameters m and s can be expressed in terms of the mean and 
the variance of the lognormal distribution, and are given by
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[ ]( ) [ ]
[ ]( )2

1
ln ln 1

2

⎛ ⎞
= − +⎜ ⎟
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Var X
E X

E X
m

 

(4.50)

and

 

[ ]
[ ]( )2ln 1

⎛ ⎞
= +⎜ ⎟
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Var X

E X
s

 

(4.51)

respectively.

4.8 Weibull Distribution

Let
l and a be constants, where l > 0 and a > 0
X be a random variable that can take any value in the range (0, ∞)
f(x) be the probability density function of X (0 < x < ∞)
F(x) be the cumulative distribution function of X (0 < x < ∞), i.e.,

 

( ) { } ( )= ≤ = ∫
0

Pr

x

F x X x f t dt

The random variable, X, has a Weibull distribution if f(x) is given by

 
( ) ( ){ }−= − < < ∞1 exp (0 )f x x x xaa aal l

 
(4.52)

Figure 4.8 shows examples of the probability density function, f(x), for 
the Weibull distribution.

The cumulative distribution function, F(x), for the Weibull distribution 
is given by

 
( ) ( ){ }= − − < < ∞1 exp (0 )F x x xal

 
(4.53)

The mean, E[X], and the variance, Var[X], for the Weibull distribution 
are given by

 
[ ] 1 1+⎛ ⎞= Γ ⎜ ⎟⎝ ⎠E X

a
l a  

(4.54)



52 Operations Research Calculations Handbook

and

 

[ ]
2

2

1 2 1⎧ ⎫⎡ ⎤+ +⎪ ⎪⎛ ⎞ ⎛ ⎞= Γ − Γ⎨ ⎬⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦⎪ ⎪⎩ ⎭
Var X

a a
l a a

 

(4.55)

respectively, where Γ(u) is a gamma function, given by

 

( ) 1

0

u tu t e dt
∞

− −Γ = ∫
Bolch, Greiner, de Meer, and Trivedi (1998, p. 19); Devore (2008, pp. 163–
166); Mood, Graybill, and Boes (1974, pp. 117–118).

The Weibull distribution, defi ned for 0 < x < ∞, is a two-parameter distri-
bution that has a closed form expression for the cumulative distribution 
function F(x). The constant, l, is the scale parameter, and the constant, a, 
is the shape parameter. In the special case a = 1, the Weibull distribution 
reduces to the exponential distribution, i.e.,

 ( ) −= xf x e ll

as defi ned in Section 4.2.
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FIGURE 4.8
Examples of the Weibull distribution.
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4.9 Logistic Distribution

Let
a be any constant
b be a constant, where b > 0
X be a random variable that can take any value in the range (−∞, ∞)
f(x) be the probability density function of X (−∞ < x < ∞)
F(x) be the cumulative distribution function of X (−∞ < x < ∞), i.e.,

 

( ) { } ( )
−∞

= ≤ = ∫Pr

x

F x X x f t dt

The random variable, X, has a logistic distribution if f(x) is given by

 

( )
( )

( ){ }
− −

− −
= −∞ < < ∞

+
2 ( )

1

x a b

x a b

e
f x x

b e
 

(4.56)

Figure 4.9 shows examples of the probability density function, f(x), for 
the logistic distribution.
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FIGURE 4.9
Examples of the logistic distribution.
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The cumulative distribution function, F(x), for the logistic distribution 
is given by

 
( ) ( )

1
( )

1
x a bF x x

e− −= −∞ < < ∞
+  

(4.57)

The mean, E[X], and the variance, Var[X], for the logistic distribution 
are given by

 
[ ]E X a=

 
(4.58)

and

 
[ ]=

2 2

3

b
Var X

p
 

(4.59)

respectively.

Evans, Hastings, and Peacock (2000, pp. 124–126); Mood, Graybill, and 
Boes (1974, p. 118).

The logistic distribution, defi ned for −∞ < x < ∞, is a two-parameter dis-
tribution that has a closed form expression for the cumulative distribution 
function F(x). The constant, a, is the location parameter, and the constant, 
b, is the scale parameter.

4.10 Gumbel (Extreme Value) Distribution

Let
a be a constant
b be a constant, where b > 0
X be a random variable that can take any value in the range (−∞, ∞)
f(x) be the probability density function of X (−∞ < x < ∞)
F(x) be the cumulative distribution function of X (−∞ < x < ∞), i.e.,

 

( ) { } ( )
−∞

= ≤ = ∫Pr

x

F x X x f t dt

The random variable, X, has a Gumbel distribution if f(x) is given by

 
( ) ( ) ( ){ }− − − −= −1

expx a b x a bf x e e
b  

(4.60)
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Figure 4.10 shows examples of the probability density function, f(x), for 
the Gumbel distribution.

The cumulative distribution function, F(x), for the Gumbel distribution 
is given by

 
( ) ( ){ }exp

x a bF x e− −= −
 

(4.61)

The mean, E[X], and the variance, Var[X], for the Gumbel distribution 
are given by

 
[ ]= +E X a bg

 
(4.62)

where g is Euler’s constant, of approximate value g ≅ 0.577216 (see 
Equation 19.11), and

 
[ ]

2 2

6

b
Var X = p

 
(4.63)

respectively.

Evans, Hastings, and Peacock (2000, pp. 85–89); Mood, Graybill, and Boes 
(1974, pp. 118, 542).

The Gumbel distribution, defi ned for −∞ < x < ∞, is a two-parameter 
distribution that has a closed-form expression for the cumulative distri-
bution function, F(x) (as well as for the probability density function, f(x)). 
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FIGURE 4.10
Examples of the Gumbel (extreme value) distribution.
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The constant, a, is the location parameter, and the constant, b, is the scale 
parameter. In the special case a = 0 and b = 1, the probability density func-
tion, f(x), becomes

 
( ) { }− −= −expx xf x e e

 
(4.64)

and the cumulative distribution function, F(x), becomes

 
( ) { }exp xF x e−= −

 
(4.65)

The distribution in this special case is known as the standard Gumbel 
distribution.

The log of a Weibull-distributed random variable has a Gumbel distribu-
tion. If Z has a Weibull distribution with a scale parameter, l, and a shape 
parameter, a, then X = −a ln (lZ) has a standard Gumbel distribution.

The Gumbel distribution is also known as the extreme value distribution. 
It is the limiting distribution for the largest (or smallest) value of a large 
number of identically distributed random variables. The Gumbel distri-
bution given in Equations 4.60 and 4.61 is for the case of the largest value. 
For the case of the smallest value, the distribution has the sign reversed in 
the exponent, so that the probability density function, f(x), is given by

 
( ) ( ) ( ){ }1

exp
x a b x a bf x e e

b
− −= −

 
(4.66)

and the cumulative distribution function, F(x), in this case is given by

 
( ) ( ){ }1 exp

x a bF x e −= − −
 

(4.67)

4.11 Pareto Distribution

Let
a and c be constants, where a > 0 and c > 0
X be a random variable that can take any value in the range [a, ∞)
f(x) be the probability density function of X (a ≤ x < ∞)
F(x) be the cumulative distribution function of X (a ≤ x < ∞), i.e.,

 

( ) { } ( )= ≤ = ∫Pr

x

a

F x X x f t dt
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The random variable, X, has a Pareto distribution if f(x) is given by

 
( ) 1

c

c

ca
f x

x +=
 

(4.68)

Figure 4.11 shows examples of the probability density function, f(x), for 
the Pareto distribution.

The cumulative distribution function, F(x), for the Pareto distribution is 
given by

 
( ) 1

ca
F x

x
⎛ ⎞= − ⎜ ⎟⎝ ⎠  

(4.69)

The mean, E[X], and the variance, Var[X], for the Pareto distribution are 
given by

 
[ ] ( 1)

1

ca
E X c

c
= >

−  
(4.70)

and

 

[ ]
( ) ( )

2

2
( 2)

1 2

ca
Var X c

c c
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(4.71)

respectively.
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FIGURE 4.11
Examples of the Pareto distribution.
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Evans, Hastings, and Peacock (2000, pp. 151–152); Mood, Graybill, and 
Boes (1974, p. 118).

The constant, a, is the location parameter, and the constant, c, is the 
shape parameter. For fi nite mean and variance, c must be greater than 2.

4.12 Triangular Distribution

Let
a, b, and c be constants, where a < c < b
X be a random variable that can take any value in the range [a, b]
f(x) be the probability density function of X (a ≤ x ≤ b)
F(x) be the cumulative distribution function of X (a ≤ x ≤ b), i.e.,

 

( ) { } ( )= ≤ = ∫Pr

x

a

F x X x f t dt

The random variable, X, has a triangular distribution if f(x) is given by
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(4.72)

Figure 4.12 shows examples of the probability density function, f(x), for 
the triangular distribution.

The cumulative distribution function, F(x), for the triangular distribu-
tion is given by
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( )
( )( ) ( )

⎧ −
≤ ≤⎪
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2

2

1

x a
a x c
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F x

b x
c x b
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(4.73)

The mean, E[X], and the variance, Var[X], for the triangular distribution 
are given by

 
[ ]

3

a b c
E X

+ +=
 

(4.74)
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and

 
[ ]

2 2 2

18

a b c ab ac bc
Var X

+ + − − −=
 

(4.75)

respectively.

Evans, Hastings, and Peacock (2000, pp. 187–188); Law and Kelton (1991, 
pp. 341–342).

The constants a and b are the location parameters, and the constant c 
is the shape parameter. The mode of the triangular distribution occurs 
at x = c.

In the special case 
2

a b
c

+= , the triangular distribution is symmetrical 

about the mode, with the mean and the variance given by
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2

a b
E X

+=

and

 
[ ] ( )2

24

b a
Var X

−
=

respectively.

0
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f (x)
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4a + bc
5

4b – ac

ba

FIGURE 4.12
Examples of the triangular distribution.
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The sum of two independent and identically distributed uniform 
 random variables has a triangular distribution. If X1 and X2 are indepen-
dent random variables where each has a uniform distribution over the 
range [0, 1], i.e., the probability density function f(xi) = 1 (0 ≤ xi ≤ 1, i = 1, 2), 
then the sum X = X1 + X2 has a triangular distribution over the range [0, 2] 
with a probability density function, f(x), given by

 

( )
( )

( ) ( )

⎧ ≤ ≤
⎪= ⎨
⎪ − < ≤⎩

0 1

2 1 2

x x
f x

x x
 

(4.76)

i.e., with parameters a = 0, b = 2, and c = 1. Similarly, the mean 1 2

2

+X X
 has 

a triangular distribution over the range [0, 1] with a probability density 
function, f(x), given by

 

( )
( )

( ) ( )

⎧ ≤ ≤
⎪= ⎨
⎪ − < ≤⎩

1
2

1
2

4 0

4 1 1

x x
f x

x x
 

(4.77)

i.e., with parameters a = 0, b = 1, and c = ½.

Hoel, Port, and Stone, (1971); Mood, Graybill, and Boes, (1974).

4.13  Hyper-Exponential and Hypo-Exponential 

Distributions

The following two distributions are extensions of the basic exponential 
distribution:

4.13.1 Hyper-Exponential Distribution

Let
l1, l2, …, ln be n constants, where li > 0 (i = 1, 2, …, n)
p1, p2, …, pn be n constants, where 0 < pi < 1 (i = 1, 2, …, n) and 

p1 + p2 + … + pn = 1
X be a random variable that can take any value in the range [0, ∞)
f(x) be the probability density function of X (0 ≤ x < ∞)
F(x) be the cumulative distribution function of X (0 ≤ x < ∞), i.e.,

 

( ) { } ( )= ≤ = ∫
0

Pr

x

F x X x f t dt
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The random variable, X, has a hyper-exponential distribution if f(x) is 
given by

 
( ) 1 2

1 1 2 2 (0 )− − −= + + + ≤ < ∞� nx x x
n nf x p e p e p e xl l ll l l

 
(4.78)

Figure 4.13 shows examples of the probability density function, f(x), for 
the hyper-exponential distribution.

The cumulative distribution function, F(x), for the hyper-exponential 
distribution is given by

 
( ) 1 2

1 2(1 ) (1 ) (1 ) (0 )− − −= − + − + + − ≤ < ∞� nx x x
nF x p e p e p e xl l l

 
(4.79)

The mean, E[X], and the variance, Var[X], for the hyper-exponential dis-
tribution are given by

 
[ ] 1 2

1 2

= + + +� n

n

p p p
E X

l l l  
(4.80)

and
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2

1 2 1 2

2 2 2
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� �n n

n n

p p p p p p
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(4.81)

respectively.
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λ1 = 1, λ2 = 1, p1 = 0.5, p2 = 0.5

0 1 2 3

Probability
density

function
f (x)

x

n = 2

FIGURE 4.13
Examples of the hyper-exponential distribution.
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The standard deviation, St Dev[X], for the hyper-exponential distribu-
tion is

 

[ ] [ ]
2

1 2 1 2

2 2 2
1 2 1 2

2 2 2⎛ ⎞ ⎛ ⎞= = + + + − + + +⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
� �n n

n n

p p p p p p
St Dev X Var X

l l l l l l
 

(4.82)

and the coeffi cient of variation for the hyper-exponential distribution is
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(4.83)

For any values of the different parameters l1, l2, …, ln and p1, p2, …, pn, 
the coeffi cient of variation for the hyper-exponential distribution, given 
by Equation 4.83, is greater than 1. This can be seen by writing the coef-
fi cient of variation as
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(4.84)

and noting that, for = =∑ 1 1n
ii p ,
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or
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Thus, for the hyper-exponential distribution, Coeff of Var > 1. (Note 
that, in the case of the basic exponential distribution, Coeff of Var = 1, as in 
Equation 4.11.)

The hyper-exponential distribution is a weighted sum of exponential 
distributions with different means. This mixture distribution arises 
in situations where a random variable takes on values from different 
exponential distributions, occurring with different probabilities. For 
 example, in a queueing system with n servers in parallel, where cus-
tomer arrivals to each server occur with probabilities p1, p2, …, pn and 
service times at each server are exponentially distributed with means 
1/l1, 1/l2, …, 1/ln, the service times for the system as a whole have a 
hyper-exponential distribution given by Equation 4.78. Or in a manu-
facturing facility that processes n different products occurring with 
probabilities p1, p2, …, pn, where processing times for each product are 
exponentially distributed with means 1/l1, 1/l2, …, 1/ln, the processing 
times for all products combined have a hyper-exponential distribution 
given by Equation 4.78.

Biernacki (2006, pp. 203–204); Bolch, Greiner, de Meer, and Trivedi (1998, 
pp. 12–13); Gross and Harris (1998, pp. 52, 152); Sokhan-Sanj, Gaxiola, 
Mackulak, and Malmgren (1999, p. 776); Trivedi (2002, pp. 133–134, 224–225).

4.13.2 Hypo-Exponential Distribution

Let
l1, l2, …, ln be n constants, where li > 0 (i = 1, 2, …, n)
X1, X2, …, Xn be n independent random variables that have expo-

nential distributions with probability density functions 

0 , 1, 2, ,− ≤ < ∞ = …i ix
i ie x i nll

X be the sum of the random variables X = X1 + X2 + … + Xn

f(x) be the probability density function of X (0 ≤ x < ∞)
F(x) be the cumulative distribution function of X (0 ≤ x < ∞), i.e.,

 

( ) { } ( )= ≤ = ∫
0

Pr

x

F x X x f t dt
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Then the random variable X has a hypo-exponential distribution, given by

 
( ) 1 2

1 1 2 2 (0 )− − −= + + + ≤ < ∞� nx x x
n nf x a e a e a e xl l ll l l

 
(4.85)

where the constants a1, a2, …, an are given by
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( 1, 2, )
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≠
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a i n
l

l l
 

(4.86)

Figure 4.14 shows examples of the probability density function, f(x), for 
the hypo-exponential distribution.

The cumulative distribution function, F(x), for the hypo-exponential 
distribution is given by

 
( ) 1 2

1 2(1 ) (1 ) (1 ) (0 )− − −= − + − + + − ≤ < ∞� nx x x
nF x a e a e a e xl l l

 
(4.87)

The mean, E[X], and the variance, Var[X], for the hypo-exponential dis-
tribution are given by

 
[ ]

1 2

1 1 1= + + +�
n

E X
l l l  

(4.88)
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FIGURE 4.14
Examples of the hypo-exponential distribution.
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and

 
[ ]= + + +�

2 2 2
1 2

1 1 1

n
Var X

l l l  
(4.89)

respectively.

The standard deviation, St Dev[X], for the hypo-exponential distribu-
tion is
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(4.90)

and the coeffi cient of variation for the hypo-exponential distribution is
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(4.91)
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(4.92)

Note that
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since the parameters m1, m2, …, mn are positive. Thus, for the hypo-
 exponential distribution, Coeff of Var < 1. (Note that, in the case of the basic 
 exponential distribution, Coeff of Var = 1, as in Equation 4.11.)

The hypo-exponential distribution arises in sequential processes, 
where the overall performance measure is the sum of independent ran-
dom variables where each has an exponential distribution with a different 
mean. For example, in a manufacturing process that requires a series of 
n separate operations, where the processing times at each operation are 
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independent and exponentially distributed with means 1/l1, 1/l2, …, 1/ln, 
the total processing time has a hypo-exponential distribution, given by 
Equation 4.85.

In the special case n = 2, the constants ai in Equation 4.86 simplify to

 

2 1
1 2

2 1 1 2

and= =
− −

a a
l l

l l l l

and the probability density function, f(x), in Equation 4.85 simplifi es to

 
( ) ( )1 21 2
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−

x xf x e e xl ll l
l l  

(4.93)

In the special case where the parameters li are the same for all i (i = 1, 
2, …, n), i.e., where

l1 = l2 = … = ln = l, the hypo-exponential distribution given by Equation 
4.85 reduces the Erlang distribution, given by

 
( ) ( )

1 (0 )
1 !

− −= ≤ < ∞
−

n
n xf x x e x

n
ll

 

(4.94)

(see Equation 4.12).

Bolch, Greiner, de Meer, and Trivedi (1998, pp. 14–15); Gross and 
Harris (1998, p. 282); Ross (2003, pp. 284–286); Trivedi (2002, pp. 129–130, 
174–175, 223).

4.13.3  Additional Comments on Hyper- and 
Hypo-Exponential Distributions

The hyper-exponential and hypo-exponential distributions both arise 
in processes with n phases (or stages), where each phase has a different 
exponential distribution. In the case of the hyper-exponential distribu-
tion, these n phases are arranged in parallel, while in the case of the hypo-
exponential distribution, these n phases are arranged in series.

Properties of the coeffi cient of variation for these distributions, shown 
earlier, can be summarized as follows:

 

( )
( )
( )

⎧<
⎪

=⎨
⎪>⎩

1 Hypo-exponential distribution

1 Exponential distribution

1 Hyper-exponential distribution

Coeff of Var

Bolch, Greiner, de Meer, and Trivedi (1998, pp. 12–14); Trivedi (2002, pp. 
223, 225, 256).
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In the hyper-exponential distribution, the probabilities p1, p2, …, pn are 
separate parameters, while in the hypo-exponential distribution, the con-
stants a1, a2, …, an are related to the parameters l1, l2, …, ln (Equation 
4.86). As in any distribution defi ned over the range 0 ≤ x < ∞, the probabil-
ity density function f(x) for the hypo-exponential distribution must satisfy 
the integral 

∞ =∫0 ( ) 1f x dx . Hence, from Equation 4.85, the constants ai (i = 1, 
2, …., n) satisfy

 1 2 1na a a+ + + =�

However, unlike the probabilities p1, p2, …, pn in the hyper-exponential 
distribution, the constants a1, a2, …, an in the hypo-exponential distribution 
are not probabilities, as some of them will be negative, given the  different 
values for the parameters l1, l2, …, ln Ross (2003, p. 286).





69

5
Probability Relationships

5.1  Distribution of the Sum of Independent 

Random Variables

If X and Y are independent continuous random variables, then the distri-
bution of the sum Z = X + Y is given by

 

( ) ( )( )h z f x g z x dx
∞

−∞

= −∫
 

(5.1)

where
f(x) is the probability density function of X
g(y) is the probability density function of Y
h(z) is the probability density function of Z

The distribution h(z) is known as the convolution of f(x) and g(y), and is 
sometimes written as h(z) = f(x)*g(y).

Bolch, Greiner, de Meer, and Trivedi (1998, p. 32); Haight (1981, p. 148); 
Hoel, Port, and Stone (1971, p. 146); Hillier and Lieberman (1980, p. 369); 
Ross (2003, p. 58); Wolff (1989, p. 25).

5.2  Distribution of the Maximum and Minimum 

of Random Variables

If X1, X2, …, Xn are n independent and identically distributed random vari-
ables, each with cumulative distribution function F(x), then

Y•  = max(X1, X2, …, Xn) has cumulative distribution function, G(y), 
given by

 
( ) { }( )

n
G y F y=

 
(5.2)
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Z•  = min(X1, X2, …, Xn) has cumulative distribution function, H(z), 
given by

 
( ) { }1 1 ( )

nH z F z= − −
 

(5.3)

The corresponding probability density functions of Y and Z are given by

 
( ) { } 1

( ) ( ) ( )
n

g y G y n F y f y
−= =′

 
(5.4)

and

 
( ) ( ) ( ){ } ( )1

1
n

h z H z n F z f z
−′= = −

 
(5.5)

respectively, where f(x) = F′(x) is the probability density function for each 
of the random variables X1, X2, …, Xn.

DeGroot (1986, p. 160); Hoel, Port, and Stone (1971, p. 161); Mood, Graybill, 
and Boes (1974, pp. 183–184).

The following are examples of these results for the uniform and 
 exponential distributions.

5.2.1 Example for the Uniform Distribution

If the random variables X1, X2, …, Xn are independent and each have a 
 uniform distribution in the range [0, 1], then

 
( ) (0 1)F x x x= ≤ ≤

 
(5.6)

and Y = max(X1, X2, …, Xn) and Z = min(X1, X2, …, Xn) have cumulative 
 distribution functions

 
( ) (0 1)nG y y y= ≤ ≤

 
(5.7)

and

 
( ) ( )1 1 (0 1)

nH z z z= − − ≤ ≤
 

(5.8)

respectively, and have probability density functions

 
( ) 1 (0 1)ng y ny y−= ≤ ≤

 
(5.9)
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and

 
( ) ( ) 1

1 (0 1)
nh z n z z−= − ≤ ≤

 
(5.10)

respectively. The means of Y and Z in this example are [ ]
1

n
E Y

n
=

+
 and 

[ ] 1

1
E Z

n
=

+
, respectively.

5.2.2 Example for the Exponential Distribution

If the random variables X1, X2, …, Xn are independent and each have an 
exponential distribution with a mean 1/l, then

 
( ) 1 (0 )−= − ≤ < ∞xF x e xl

 
(5.11)

and Y = max(X1, X2, …, Xn) and Z = min(X1, X2, …, Xn) have cumulative dis-
tribution functions

 
( ) ( )1 (0 )−= − ≤ < ∞

nyG y e yl

 
(5.12)

and

 
( ) 1 (0 )−= − ≤ < ∞n zH z e zl

 
(5.13)

respectively, and have probability density functions

 
( ) ( ) 1

1 (0 )
−− −= − ≤ < ∞

ny yg y n e e yl ll
 

(5.14)

and

 
( ) (0 )−= ≤ < ∞n zh z n e zll

 
(5.15)

respectively. Note that Z in this example has an exponential distribution 

with a mean [ ] 1=E Z
nl

. The mean of Y in this example is

 

[ ]
1

1 1

=

= ∑
n

i

E Y
il

(see Equation 2.44).
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5.3 Change of Variable in a Probability Distribution

Let
X be a continuous random variable
Y = y(X) be a continuous, strictly increasing (or strictly decreasing) 

 function of X
f(x) be the probability density function of X
g(y) be the probability density function of Y

If the inverse function X = y−1(Y) is a continuous and differentiable func-
tion of Y, then

 

( ) ( ) dx
g y f x

dy
=

 

(5.16)

where 
dx
dy

 denotes the absolute value of the derivative of x with respect 

to y.

DeGroot (1986, p. 153); Freund (1992, p. 266); Haight (1981, p. 146); Hoel, 
Port, and Stone (1971, p. 119); Mood, Graybill, and Boes (1974, p. 200).

In the cases where 
dx
dy

 is positive (x a strictly increasing function of y), 

this result for a change of variable can be written as

 
( ) ( )g y dy f x dx=

 
(5.17)

Note: The result for a change of variable is derived by considering the 
cumulative distribution functions

 

( ) ( )and

yx

f t dt g u du
−∞ −∞
∫ ∫

and corresponds to the result for a change of variable in an integral (see 
Section 16.9).

As in the case of double integrals (see Section 16.10), the above result can 
be extended to two or more variables. For the two-variable case, let

X1 and X2 be continuous jointly distributed random variables
Y1 = y1(X1, X2) and Y2 = y2(X1, X2) be continuous functions that defi ne a 

one-to-one transformation of X1 and X2 to Y1 and Y2

f(x1, x2) be the joint probability density function of X1 and X2

g(y1, y2) be the joint probability density function of Y1 and Y2
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From the functions y1 and y2, let
X1 = j1(Y1, Y2) and X2 = j2(Y1, Y2) be the corresponding functions for X1 

and X2 in terms of Y1 and Y2.
If the functions j1 and j2 are continuous and differentiable, then

 
( ) ( )1 2 1 2, ,g y y f x x J=

 
(5.18)

where J is the Jacobian, given by the determinant of partial derivatives

 

( )
( )

1 1
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(5.19)

i.e.,

 

1 2 1 2

1 2 2 1

x x x x
J

y y y y
∂ ∂ ∂ ∂= −
∂ ∂ ∂ ∂

 

(5.20)

DeGroot (1986, p. 162); Freund (1992, p. 275); Haight (1981, p. 147); Mood, 
Graybill, and Boes (1974, p. 205).

5.4  Conditional Probability Distribution for a 

Constrained Random Variable

Let
X be a continuous random variable (−∞ < X < ∞)
f(x) be the probability density function of X

( ) Pr{ } ( )
xF x X x f t dt−∞= ≤ = ∫  be the cumulative distribution function of X, 

a be any constant
 f(x|x > a) be the conditional probability density function of X, given that 

X is greater than a
F(x|x > a) = Pr(X ≤ x|x > a) be the conditional cumulative distribution func-

tion of X, given that X is greater than a
Then

 
( ) ( )

{ }Pr

f x
f x x a

X a
> =

>
 

(5.21)
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a
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f x dx
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(5.22)
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(5.23)

and

 
( ) ( )

( )
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1

F x
F x x a a x

F a
> = < < ∞

−
 

(5.24)

More generally, for any constants a and b where a < b, let
f(x|a < x < b) be the conditional probability density function of X, given 

that X lies between a and b,
F(x|a < x < b) = Pr(X < x|a < x < b) be the conditional cumulative distribution 

function of X given that X lies between a and b
Then

 
( ) ( )
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f x a x b

a X b
< < =
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(5.25)
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f x dx
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F b F a
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(5.27)

and

 
( ) ( ) ( )

( ) ( )
( )

F x F a
F x a x b a x b

F b F a
−

< < = < <
−

 

(5.28)

Stirzaker (1994, p. 243).
The corresponding results for the conditional means are given in 

Section 2.7.



Probability Relationships 75

5.5 Combination of Poisson and Gamma Distributions

Let X be a discrete random variable with a Poisson distribution with 
parameter m, given by

 
( ); ( 0, 1, 2, )

!

−

= = …
xe

P x x
x

mmm
 

(5.29)

and let the parameter m be a random variable with a gamma distribution, 
given by

 
( ) ( )

1 (0 )− −= < < ∞
Γ

f e
a

a lmlm m m
a

 

(5.30)

where
P(x; m) is the probability that X = x for given m
f(m) is the probability density function of m

1
0( )
∞ − −Γ = ∫ tt e dtaa  is the gamma function

a and l are positive constants

Let
P(x) = Pr{X = x} be the probability that X = x (for all values of m)

The probability P(x) is the probability P(x; m) averaged over the distribu-
tion of m, i.e.,

 

( ) ( ) ( )
0
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Since x is an integer, the gamma functions Γ(a + x) and Γ(a) are related by
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(5.34)
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so that P(x) can be written as
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(5.35)

The probability P(x) is therefore a negative binomial distribution, given in 
standard form by
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(5.36)

where

 1
=

+
p

l
l  

(5.37)

Haight (1981, p. 155); McFadden (1972, pp. 114–116); Mood, Graybill, and 
Boes (1974, p. 123).

Note that the parameters a and l can take any positive values. In par-
ticular, a need not be an integer.

5.6 Bayes’ Formula

For mutually exclusive (i.e., disjoint) and exhaustive events A1, A2, …, An, 
and any other event E, the conditional probabilities are related by
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(5.38)

where
Pr{Aj|E} denotes the conditional probability of event Aj given the 

event E
Pr{E|Aj} denotes the conditional probability of event E given the event Aj 

(j = 1, 2, …, n)

Ayyub and McCuen (1997); Clarke and Disney (1985, pp. 31–32); Devore 
(2008, pp. 72–73); Feller (1964, p. 114); Krishnan (2006, pp. 20, 131); Ross 
(2003, p. 14).
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5.7 Central Limit Theorem

Let
X1, X2, …, Xn be n independent and identically distributed random vari-

ables, each with a mean m and a variance s 2, and let

 1 2n nS X X X= + + +�

Then
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(5.39)

where
Pr{.} denotes probability

and
Φ(x) is the cumulative distribution function for the standard normal 

distribution, given by
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(5.40)

This theorem holds for any distribution of the random variables X1, 
X2, …, Xn.

Allen (1978, p. 104); DeGroot (1986, p. 275); Hoel, Port, and Stone (1971, 
p. 185); Mood, Graybill, and Boes (1974, pp. 195, 233); Ross (2003, pp. 79–80).

The result from the central limit theorem above can be stated in the fol-
lowing ways. For large n,

The sum • Sn = X1 + X2 + … + Xn is approximately normally distrib-
uted with mean nm and variance nσ 2

The sample mean • 1 2 nX X X
X

n
+ + += �

 is approximately nor-

mally distributed with mean m and variance 
2

n
s

−nS n
n

m
s

•  is approximately distributed with a standard normal 

distribution

( )−X nm
s

•  is approximately distributed with a standard normal 

distribution
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5.8 Probability Generating Function (z-Transform)

Let
 N be a discrete random variable taking nonnegative integer values 

(N = 0, 1, 2, …)
pn = Pr{N = n} be the probability that N takes the value n

The probability generating function G(z) of N (also known as the 
z-transform of N) is given by

 
( ) NG z E z⎡ ⎤= ⎣ ⎦  

(5.41)

 0

n
n

n

p z
∞

=

= ∑
 

(5.42)
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The probability generating function characterizes a discrete probability 
distribution {pn} (n = 0, 1, 2, …) by a single function G(z).

A given probability distribution has a unique probability generating 
function. The converse also holds. A given probability generating func-
tion corresponds to a unique probability distribution.

The probability generating function, G(z), generates the individual 
probabilities. The probabilities are obtained from G(z) by evaluating the 
function and its successive derivatives at z = 0, so that p0 = G(0), p1 = G′(0), 
p2 = G″(0)/2!, and in general
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where
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The mean, E[N], and the variance, Var[N], of the random variable, N, are 
obtained from the fi rst two derivatives of G(z), evaluated at z = 1:

 
[ ] ( )1E N G′=

 
(5.45)

and

 
[ ] ( ) ( ) ( ){ }2

1 1 1′ ′= + −Var N G G G"
 

(5.46)

where
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If X and Y are independent discrete random variables with probability 
generating functions GX(z) and GY(z), respectively, then the sum S = X + Y 
has a probability generating function, GS(z), given by

 
( ) ( ) ( )S X YG z G z G z= ⋅

 
(5.47)

In general, the sum of any number of independent random variables has 
a probability generating function given by the product of the probability 
generating functions of the random variables.

Allen (1978, p. 57); Bolch, Greiner, de Meer, and Trivedi (1998, pp. 25–26); 
Haight (1981, pp. 33–34); Krishnan (2006, p. 162); Lefebvre (2006, p. 106); 
Papadopoulos, Heavy, and Browne (1993, pp. 361–362); Stirzaker (1994, 
pp. 179–180, 183).

5.9 Moment Generating Function

Let
X be a random variable
f(x) be the probability density function of X, if X is continuous
px = Pr{X = x} be the probability that X takes the value x, if X is discrete

The moment generating function M(t) of X is given by

 
( ) tXM t E e⎡ ⎤= ⎣ ⎦  

(5.48)
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A given probability distribution has a unique moment generating func-
tion. The converse also holds. A given moment generating function cor-
responds to a unique probability distribution.

The moment generating function, M(t), generates the individual 
moments of X, and can be written as
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(5.50)

The moments are obtained from successive derivatives of M(t), evaluated 
at t = 0:
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and in general
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where
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The variance of X is given by

 
[ ] [ ]( )22Var X E X E X⎡ ⎤= −⎣ ⎦  

(5.54)
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(5.55)

If X and Y are independent random variables and have moment 
 generating functions MX(t) and MY(t), respectively, then the sum Z = X + Y 
has a moment generating function MZ(t) given by

 
( ) ( ) ( )Z X YM t M t M t= ⋅

 
(5.56)

In general, the sum of any number of independent random variables 
has a moment generating function given by the product of the moment 
 generating functions of the random variables.

Allen (1978, pp. 53–54); Hoel, Port, and Stone (1971, pp. 197–199); Krishnan 
(2006, p. 164); Lefebvre (2006, pp. 107–108); Mood, Graybill, and Boes (1974, 
pp. 78–79, 192); Ross (2003, pp. 64, 68).

5.10 Characteristic Function

Let
X be a random variable
f(x) be the probability density function of X, if X is continuous
px = Pr{N = x} be the probability that X takes the value x, if X is discrete

The characteristic function f(t) of the random variable X is given by
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(5.58)

where 1i = − . Like the moment generating function, the characteristic 
function generates the moments of X.
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The characteristic function in Equation 5.58 is a form of the Fourier 
transform, and converges for real values of t (whereas the integral or sum 
defi ning the moment generating function in Equation 5.49 does not nec-
essarily converge). The characteristic function, f(t), also has the property 
that the probability distribution can be obtained from f(t) by an inverse 
transform (Poularikas and Seely, 1985, pp. 163, 290).

As in the case of the moment generating function, a given probability 
distribution has a unique characteristic function, and, conversely, a given 
characteristic function corresponds to a unique probability distribution.

The characteristic function, f(t), can be written as
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(5.59)

and the moments are obtained from successive derivatives of f(t), evalu-
ated at t = 0:
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and in general
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If X and Y are independent random variables and have characteristic func-
tions fX(t) and fY(t), respectively, then the sum Z = X + Y has a characteristic 
function fZ(t) given by

 
( ) ( ) ( )= ⋅Z X Yt t tf f f

 
(5.63)
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In general, the sum of any number of independent random variables has a 
characteristic function given by the product of the characteristic functions 
of the random variables.

The logarithm of the characteristic function is the cumulant generating 
function. A Taylor series expansion of the cumulant generating function, 
K(t), is given by

 
( ) ( ){ }ln=K t tf

 
(5.64)
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The coeffi cients k0, k1, k2, … in this series are known as the cumulants.

Binmore (1983, pp. 358–359); Hoel, Port, and Stone (1971, pp. 200–202); 
Krishnan (2006, pp. 151, 167); Zwillinger (1996, p. 574).

5.11 Laplace Transform

For a continuous random variable, X, defi ned in the range 0 ≤ X < ∞, the 
Laplace transform L(s) of X is given by
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(5.66)

As in the case of the characteristic function, the probability distribution 
can be obtained from the Laplace transform by an inverse transform 
(Papadopoulos, Heavy, and Browne, 1993, pp. 360–361; Poularikas and 
Seely, 1985, pp. 291–292).

As in the cases of both the moment generating function and the char-
acteristic function, a given probability distribution has a unique Laplace 
transform, and, conversely, a given Laplace transform corresponds to a 
unique probability distribution.

Moments are obtained from successive derivatives of L(s), evaluated 
at s = 0:

 
[ ] ( )0E X L′= −

 
(5.67)
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and in general

 
( ) ( ) ( )1 0

n nnE X L⎡ ⎤ = −⎣ ⎦  
(5.69)

If X and Y are independent random variables and have Laplace trans-
forms LX(t) and LY(t), respectively, then the sum Z = X + Y has a Laplace 
transform LZ(t) given by

 
( ) ( ) ( )Z X YL t L t L t= ⋅

 
(5.70)

In general, the sum of any number of independent random variables has 
a Laplace transform given by the product of the Laplace transforms of the 
random variables.

Allen (1978, pp. 59–60); Bolch, Greiner, de Meer, and Trivedi (1998, 
pp. 26–27); Haight (1981, pp. 165–169).



85

6
Stochastic Processes

6.1 Poisson Process and Exponential Distribution

6.1.1 Properties of the Poisson Process

For a Poisson process with rate l arrivals (or events) per unit time:

The time, • X, between successive arrivals is exponentially distrib-
uted, with a cumulative distribution function, F(x), given by

 { }( ) Pr 1 (0 )xF x X x e x−= ≤ = − ≤ < ∞l

 
(6.1)

and a probability density function, f(x), given by

 
( ) ( ) (0 )xf x F x e x−= = ≤ < ∞′ ll

 
(6.2)

and with a mean, 
1

[ ]E X =
l

, and a variance, 
2

1
[ ]Var X =

l
.

The number, • N(t), of arrivals in time, t, is Poisson distributed, with 
a probability distribution given by
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−
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(6.3)

and with a mean, E[N(t)] = lt, and a variance, Var[N(t)] = lt.

Cox and Miller (1965, pp. 6, 147, 150); Ross (2003, pp. 270–271, 289); Wolff 
(1989, pp. 70–71).

6.1.2 “Lack of Memory” Property of the Exponential Distribution

For an exponentially distributed random variable, X, and any constants, 
s ≥ 0 and t ≥ 0,

 
{ } { }> + > = >Pr PrX s t X s X t

 
(6.4)
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 { } { } { }> + = > ⋅ >Pr Pr PrX s t X s X t
 

(6.5)

From Equation 6.4, the conditional probability that X > s + t, given that 
X > s, is equal to the unconditional probability that X > t. This is the “lack 
of memory” or the “memoryless” property of the exponential distribution 
(see also Section 4.2).

Allen (1978, pp. 82–83); Heyman and Sobel (1982, p. 511); Hoel, Port, and Stone 
(1971, p. 127); Mood, Graybill, and Boes (1974, p. 114); Krishnan (2006, p. 80); 
Pal, Jin, and Lim (2006, pp. 157–159) Ross (2003, p. 272); Tijms (1986, p. 9).

6.1.3 Competing Exponentials

If X1, X2, …, Xn are independent and exponentially distributed random vari-
ables, with probability density functions fi(xi) = liexp(−li xi) (i = 1, 2, …, n), 
then the probability that Xi has the smallest value of the n random vari-
ables is given by
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l
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(6.6)

Example: If the above random variables X1, X2, …, Xn are the times-to-next-
failure of different machines 1, 2, …, n, then the probability that the ith 
machine fails fi rst is given by Equation 6.6.

Ross (2003, pp. 279–280); Tijms (1986, p. 20); Trivedi (2002, pp. 252–253).

6.1.4 Superposition of Independent Poisson Processes

If customers of type i arrive according to a Poisson process with rate li, 
then the arrival process of all customer types is Poisson with rate ii∑ l .

Bolch, Greiner, de Meer, and Trivedi (1998, p. 11); Çinlar (1975, p. 87); Cox 
(1962, p. 73); Wolff (1989, p. 75); Trivedi (2002, p. 308).

6.1.5 Splitting of a Poisson Process

If arrivals from a Poisson process with rate l are independently classifi ed 
as type i with probability pi (i = 1, 2, …, n), where 1 1n

ii p= =∑ , then the arrivals 
of each type i are independent Poisson processes with rates li = lpi.

Bolch, Greiner, de Meer, and Trivedi (1998, pp. 11–12); Ross (2003, p. 296); 
Çinlar (1975, p. 89); Trivedi (2002, p. 309); Wolff (1989, pp. 74–75).
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6.1.6 Arrivals from a Poisson Process in a Fixed Interval

Given n Poisson arrivals in some fi xed interval, the times of the n arrivals 
are uniformly distributed in that interval.

Ross (2003, pp. 301–302); Trivedi (2002, p. 311); Wolff (1989, p. 73).

6.2 Renewal Process Results

For a renewal process, the times between successive arrivals (or events) are 
independent and identically distributed with an arbitrary distribution.

6.2.1  Mean and Variance of the Number of Arrivals 
in a Renewal Process

If
N(t) = number of arrivals in time t
X = time between successive arrivals

Then, for large t,
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(6.7)

Note that, in the special case of a Poisson process, X is exponentially 
 distributed, N(t) is Poisson distributed, and the above ratio is equal to 1.

In general, for large t, N(t) is approximately normally distributed with 
mean and variance given by
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(6.9)

Cox (1962, p. 40); Cox and Miller (1965, p. 343); Ross (2003, p. 416).

6.2.2 Distribution of First Interval in a Renewal Process

If
X = time between successive arrivals
X1 = time between an arbitrary origin and fi rst arrival after the origin 

in an equilibrium renewal process, then the probability density function, 
f1(x) of X1, is given by
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where
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The mean and the variance of X1 are given by
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(6.12)

where

[ ] mean of E X X= =m

( )22 variance of E X X⎡ ⎤= − =⎣ ⎦s m

( )3
3 third moment of about the meanE X X⎡ ⎤= − =⎣ ⎦m m

Note that, in the special case of a Poisson process, X and X1 are both 
 exponentially distributed with a mean m.

Cox (1962, pp. 64, 66); Cox and Miller (1965, pp. 347–348); Wagner (1969, 
p. 848).

6.3 Markov Chain Results

The following are limiting (steady-state) results for irreducible, aperiodic 
Markov chains with a fi nite number of states.
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6.3.1 Discrete-Time Markov Chains

For a discrete-time Markov chain with n states, let
Pij be the probability of a transition from state i to state j (i, j = 1, 2, …, n)
pj be the limiting probability for state j (j = 1, 2, …, n)

The limiting state probabilities are given by
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1, 2, ,

n

j i ij

i

P j n
=

= = …∑p p
 

(6.13)

or, in matrix notation,

 
= Pp p

 
(6.14)

where
p = (p1, p2, …, pn) is the row vector of limiting state probabilities
0 ≤ pj ≤ 1 for all j

1 1n
jj= =∑ p

P = {Pij} is the matrix of transition probabilities

Bolch, Greiner, de Meer, and Trivedi (1998, p. 41); Çinlar (1975, pp. 152–153); 
Gross and Harris (1998, p. 35); Kleinrock (1975, p. 31); Kleinrock (1976, p. 7); 
Hillier and Lieberman (1980, p. 381); Ross (2003, p. 201).

6.3.2 Continuous-Time Markov Chains

For a continuous-time Markov chain with n states, let
Qij be the transition rate from state i to state j (i ≠ j)

,  ( 1, 2, , )≠= − = …∑jj iji i jQ Q j n

pj be the limiting probability for state j (j = 1, 2, …, n)

The limiting state probabilities are given by

 ,

0 ( 1, 2, , )j jj i ij

i i j

Q Q j n
≠

= + = …∑p p
 

(6.15)

or, in matrix notation,

 
=0 Qp

 
(6.16)
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where
0 = (0, 0, …, 0)
p = (p1, p2, …, pn) is the row vector of limiting state probabilities
0 ≤ pj ≤ 1 for all j

1 1n
jj= =∑ p

Q = {Qij} is the transition rate matrix (also known as the intensity matrix, 
generator matrix, or infi nitesimal generator matrix)

Bolch, Greiner, de Meer, and Trivedi (1998, p. 53); Gross and Harris (1998, 
p. 35); Hillier and Lieberman (1980, p. 389); Kleinrock (1975, p. 52); Kleinrock 
(1976, p. 8); Ross (2003, p. 369).
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7
Queueing Theory Results

7.1 Notation for Queue Types

The following standard notation is used to characterize systems with a 
single queue in equilibrium, identical parallel servers, unlimited waiting 
room, and with fi rst-come fi rst-served (FCFS) queueing discipline. Each 
system is defi ned by

 A/B/m

where
A denotes the distribution of inter-arrival times
B denotes the distribution of service times
m denotes the number of servers in parallel

Commonly used symbols for both the A and B positions in this notation 
are M, D, and G. The symbol M is used for the exponential distribution 
to denote its Markovian (“memoryless”) property. The symbol D is used 
for deterministic times. The symbol G is used for a general distribution of 
independent and identically distributed random variables. Examples:

M/M/1 queue: Exponential distribution for inter-arrival times, expo-
nential distribution for service times, and one server.

M/D/2 queue: Exponential distribution for inter-arrival times, deter-
ministic service times, and two servers in parallel.

G/G/c queue: General distribution for inter-arrival times, general distri-
bution for service times, and c servers in parallel.

Gross and Harris (1998, pp. 8–9); Kendall (1953, pp. 339–340); Wolff (1989, 
p. 245).

7.2 Definitions of Queueing System Variables

Lq = average queue length (average number of customers in queue)
L = average system length (average number of customers in system, 

including those being served)
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Wq = average waiting time in queue (average time a customer spends in 
queue)

W = average time in system (average time a customer spends in queue 
plus service)

N = number of customers in system (E[N] = L)
T = time customer spends in system (E[T] = W)
m = number of servers
l = arrival rate (number of customers arriving per unit time); 1/l = mean 

inter-arrival time
m = service rate at one server (number of customers served per unit time); 

1/m = mean service time)

m
= lr

m
 = traffi c intensity (r < 1)

2
as  = variance of inter-arrival times
2
ss  = variance of service times
2 2 2
a aC = l s  = squared coeffi cient of variation of inter-arrival times
2 2 2
s sC = m s  = squared coeffi cient of variation of service times

For exponentially distributed service times, =2 1sC , and for deterministic 
service times, =2 0sC  (similarly for inter-arrival times).

7.3  Little’s Law and General Queueing System 

Relationships

 

Little s Law
q qL W

L W

= ⎫⎪ ′⎬
⎪= ⎭

l

l
 

(7.1)

(7.2)

 
qL L= + l

m  
(7.3)

 

1
qW W= +

m  

(7.4)

Allen (1978, p. 354); Gillett (1976, p. 462); Gross and Harris (1988, pp. 11–13); 
Hillier and Lieberman (1980, p. 406); Hopp and Spearman (1996, p. 273); 
Little (1961, p. 383); Medhi (1991, pp. 62–63).

Note: Equations 7.1 through 7.4 hold for all queue types listed in 
Section 7.1.
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7.4 Extension of Little’s Law

For the M/G/1 queue, Little’s Law L = lW given earlier can be extended to 
higher moments. For the kth moment:

 
( )( ) ( )1 2 1 ⎡ ⎤⎡ ⎤− − − + =⎣ ⎦ ⎣ ⎦… k kE N N N N k E Tl

 
(7.5)

where
N = number of customers in system
T = time customer spends in system

Special cases:

 
[ ] [ ]1 :  (i.e., )= = =k E N E T L Wl l

 
(7.6)

 
( ) 2 22 : 1k E N N E T⎡ ⎤⎡ ⎤= − =⎣ ⎦ ⎣ ⎦l

 
(7.7)

Hence

 
[ ] [ ] [ ]2Var N E T Var T= +l l

 
(7.8)

Cox and Smith (1971, pp. 52, 56); Gross and Harris (1988, p. 225).

7.5 Formulas for Average Queue Length, Lq

Queue Type m = 1 General m

M/M/m
2

1 −
r

r
 (7.9)

( )
( ) ( ) ( ) ( )

( )

1

0

2 1

1

! 1
1

! !

 
1

    approx.                              

m

m k
m

k

m

m

m m m

m k

−

=

+

⎧ ⎛ ⎞
⎪ ⎜ ⎟
⎪ ⎜ ⎟
⎪ − ⎜ ⎟⎪ + −⎜ ⎟⎨ ⎝ ⎠
⎪
⎪
⎪
⎪ −⎩

∑
r r

r r r
r

r
r

     (7.12)
 

(7.13)

M/G/m
2 21

1 2

sC⎛ ⎞+
⎜ ⎟− ⎝ ⎠

r
r

 (7.10)
( )2 1 21

1 2

m
sC+ ⎛ ⎞+

⎜ ⎟− ⎝ ⎠
r

r
 (7.14)

G/G/m
2 2 2

1 2

a sC C⎛ ⎞+
⎜ ⎟− ⎝ ⎠

r
r

 (7.11)
( )2 1 2 2

1 2

m
a sC C+ ⎛ ⎞+

⎜ ⎟− ⎝ ⎠
r

r
 (7.15)
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where
m = number of servers

( )arrival rate
traffic intensity 1

total service ratem
= = = <lr

m
r

2 2 2
a aC = l s  = (arrival rate)2 × (variance of inter-arrival times)
2 2 2
s sC = m s  = (service rate of one server)2 × (variance of service times)

References for these results are given in the table in Section 7.7. For the 
case m = 1, Equations 7.9 and 7.10 are exact, and Equation 7.11 is approxi-
mate. For general m, Equation 7.12 is exact, and Equations 7.13 through 7.15 
are approximate. The approximations for M/G/m and G/G/m with general 
m (Equations 7.14 and 7.15) can be improved slightly by replacing the fi rst 
term, ( ) ( )2 1

1
m+ −r r , by the more complicated but exact expression given 

in Equation 7.12.

7.6 Formulas for Average Time in Queue, Wq

Queue 

Type m = 1 General m

M/M/m 1

1

⎛ ⎞
⎜ ⎟μ −⎝ ⎠

r
r

 (7.16)

( )
( ) ( ) ( ) ( )

( )

( )

1

0

2 1 1

1
(7.19)

! 1
1

! !

(7.20)
1

        approx.  

−

=

+ −

⎧ ⎛ ⎞
⎪ ⎜ ⎟
⎪ ⎜ ⎟
⎪ ⎜ ⎟−⎪ ⎜ ⎟+ −⎜ ⎟⎨ ⎝ ⎠⎪
⎪
⎪
⎪ −⎩

∑

m

m k
m

k

m

m

mm m m

m k

m

r
m r r r

r

r
m r

M/G/m
21 1

1 2

sC⎛ ⎞⎛ ⎞ +
⎜ ⎟⎜ ⎟−⎝ ⎠ ⎝ ⎠

r
m r

 (7.17)
( )

( )
2 1 1 21

1 2

m
sC

m

+ − ⎛ ⎞+
⎜ ⎟− ⎝ ⎠

r
m r

 (7.21)

G/G/m
2 21

1 2

a sC C⎛ ⎞⎛ ⎞ +
⎜ ⎟⎜ ⎟−⎝ ⎠ ⎝ ⎠

r
m r

 (7.18)
( )

( )
2 1 1 2 2

1 2

m
a sC C

m

+ − ⎛ ⎞+
⎜ ⎟− ⎝ ⎠

r
m r

 (7.22)

where
m = number of servers

( )arrival rate
traffic intensity 1

total service ratem
= = = <lr

m
r

2 2 2
a aC = l s  = (arrival rate)2 × (variance of inter-arrival times)
2 2 2
s sC = m s  = (service rate of one server)2 × (variance of service times)
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References for these results are given in the table in Section 7.7. For the 
case m = 1, Equations 7.16 and 7.17 are exact, and Equation 7.18 is approxi-
mate. For general m, Equation 7.19 is exact, and Equations 7.20 through 7.22 
are approximate. The approximations for M/G/m and G/G/m with general 
m (Equations 7.21 and 7.22) can be improved slightly by replacing the fi rst 

term, 
( )2 1 1

{ (1 )}
m m+ − −r m r , by the more complicated but exact expression 

in Equation 7.19.

7.7  References for the Formulas for Average 

Queue Length and Time in Queue

(Given in Equations 7.9 through 7.15 and Equations 7.16 through 7.22.)

Queue Type m = 1 General m

M/M/m Allen (1978) For exact Equations 7.12 and 7.19:

Cohen (1985) Allen (1978)

Gillett (1976) Buzacott and Shanthikumar (1993)

Gross and Harris (1998) Gillett (1976)

Hopp and Spearman (1996) Gross and Harris (1998)

Morse (1958) Hall (1991)

Wolff (1989) Hillier and Lieberman (1980)

For approximate Equations 7.13 and 7.20:

Hopp and Spearman (1996)

Sakasegawa (1977)

Whitt (1993)

M/G/m Cox and Smith (1971)

Gross and Harris (1998)

Hall (1991)

Kendall (1951)

Kleinrock (1975)

Sakasegawa (1977) Sakasegawa (1977)

G/G/m Hall (1991) Hall (1991)

Hopp and Spearman (1996) Hopp and Spearman (1996)

Sakasegawa (1977) Sakasegawa (1977)

Tanner (1995) Tanner (1995)

Shanthikumar and Allen (1978)

Buzacott (1980) Kimura (1986)

Whitt (1993)
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7.8  Pollaczek–Khintchine Formula for Average 

Time in Queue, Wq

Equation 7.17 for the average time in queue Wq in an M/G/1 queue is 
sometimes called the Pollaczek–Khintchine formula. It is an exact result, 
based on derivations by Pollaczek (1930, p. 77) and Khintchine (1932, p. 79). 
More recent  references are given in Section 7.7.

7.9  Additional Formulas for Average Time 

in Queue, Wq

The average time in queue Wq in a G/G/1 queue is given by the approxi-
mate result in Equation 7.18. An earlier approximation for Wq in a G/G/1 
queue, derived by Kingman (1961, p. 903, 1965, p. 139) for the case of heavy 
traffi c (traffi c intensity r close to 1), is given by

 

2 21
1 :

1 2
a s

qG G W
⎛ ⎞⎛ ⎞ +≅ ⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠

s sl
r

 

(7.23)

Kingman (1961, p. 903, 1965, p. 139); Kleinrock (1976, p. 31); Larson and 
Odoni (1981, p. 230); Medhi (1991, p. 376); Tanner (1995, p. 158).

In terms of coeffi cients of variation Ca and Cs, Kingman’s result (Equation 
7.23) becomes

 

( )2 2
1

1 2

a s
q

C C
W

⎛ ⎞+⎛ ⎞
≅ ⎜ ⎟⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠

rr
m r

For r close to 1, this expression and Equation 7.18 are in close agreement. 
Numerical comparisons for the performance of these formulas are given 
in Tanner (1995). Note that, when inter-arrival times are exponentially 
distributed (Ca = 1), Equation 7.18 reduces to the exact result for Wq in an 
M/G/1 queue, given by Equation 7.17.

A refi nement to Equation 7.18 for Wq in a G/G/1 queue is given in Krämer 
and Langenbach-Belz (1976, 1978):
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2 2
2 21

1 : ( , , )
1 2

a s
q a s

C C
G G W g C C

⎛ ⎞⎛ ⎞ +≅ ⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠
r r

m r
 

(7.24)

where

 

( )

( ) ( )
( ) ( )

( )( )
( ) ( )

22

2

2 2

2 2

2

2

2 2

12 1
exp 1

3

, ,

1 1
exp 1

4

a
a

a s

a s

a
a

a s

C
C

C C

g C C

C
C

C C

⎧ ⎡ ⎤−−⎪ ⎢ ⎥− <⎪ ⎢ ⎥+
⎣ ⎦⎪⎪= ⎨

⎪
⎡ ⎤− −⎪
⎢ ⎥− ≥⎪ +⎢ ⎥⎪ ⎣ ⎦⎩

r
r

r

r

For analyzing networks of queues, Whitt (1983) uses this refi nement in the 
case 2 1aC < , and the simpler result (Equation 7.18) in the case 2 1aC ≥  (Whitt, 
1983, p. 2802).

7.10  Heavy Traffic Approximation for Distribution 

of Time in Queue

For a G/G/1 queue, let
t be the time spent in the queue
f(t) be the probability density function of t
F(t) be the cumulative distribution function of t

where

 

( ) ( ) { }
0

Pr time in queue

t

F t f x dx t= = ≤∫
Under heavy traffi c conditions (traffi c intensity r = l/m close to 1), the 
 distribution of time spent in a G/G/1 queue can be approximated by an 
exponential distribution, i.e.,

 
( ) 1 qt W

q
f t e

W
−≅

 

(7.25)
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and

 
( ) −≅ −1 qt WF t e

 
(7.26)

where Wq is the average time in queue for a G/G/1 queue.

Kingman (1961, pp. 902–903, 1962, pp. 383–384, 1965, p. 139), Kleinrock (1976, 
p. 31), Larson and Odoni (1981, pp. 229–230), Medhi (1991, pp. 373, 376).

This heavy traffi c approximation can also be applied to a queue with 
multiple servers in parallel (i.e., a G/G/m queue). When traffi c intensity 

mρ = l
m

 is close to 1, the distribution of time spent in a G/G/m queue can 

be approximated by the exponential distribution given by Equations 7.25 
and 7.26, where Wq in this case is the average time in queue for a G/G/m 
queue.

Kingman (1965, p. 153); Kleinrock (1976, p. 47); Larson and Odoni (1981, 
p. 231); Medhi (1991, p. 381); Whitt (1993, p. 122).

Approximations for the average time in queue Wq for G/G/1 and G/G/m 
queues are given in Sections 7.6 and 7.9.

7.11 Queue Departure Process

For a G/G/1 queue, let
n = departure rate (number of customers departing after service per unit 

time); (1/n = mean inter-departure time)
2
ds  = variance of inter-departure times
2 2 2
d dC = n s  = squared coeffi cient of variation of inter-departure times

For traffi c intensity r < 1, the departure rate must equal the arrival 
rate, i.e.,

 
=n l

 
(7.27)

The squared coeffi cient of variation of inter-departure times 2
dC  is given 

approximately by

 
( )2 2 2 2 21d s aC C C≅ + −r r

 
(7.28)

Hopp and Spearman (1996, pp. 268–269); Whitt (1983, p. 2799).
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7.12  Distribution Results for the Number 

of Customers in M/M/1 Queue

Number of Customers in 

Queue

Number of Customers 

in System (Including 

One Being Served)

Mean E[n] 2

1 −
r

r
 (7.29)

1 −
r

r
 (7.33)

Variance Var[n] ( )
( )

2 2

2

1

1

+ −

−

r r r

r
 (7.30) ( )2

1 −
r
r

 (7.34)

Probability distribution 

Pr{# in queue = n}

( )

2

1

1 ( 0)

1 ( 1)n

n

n+

⎧ ⎫− =⎪ ⎪
⎨ ⎬

− ≥⎪ ⎪⎩ ⎭

r

r r
 (7.31)

( )1 n− r r
 

(7.35)

Cumulative distribution 

Pr{# in queue ≤ n}
21 n+− r

 
(7.32) 11 n+− r

 
(7.36)

where

 
( )arrival rate

traffic intensity 1
service rate

= = = <lr
m

r

Allen (1978, pp. 161–162, 365); Cohen (1985, p. 173); Cox and Smith (1961, 
p. 41); Hillier and Lieberman (1980, pp. 418–419); Morse (1958, p. 22); Wolff 
(1989, p. 148).

Note that the distribution of the number of customers in a system, given 
by Equations 7.33 through 7.36, is a geometric distribution with parameter 
1 − r (see Section 3.3).

7.13 Distribution Results for Time in M/M/1 Queue

Time in Queue
Time in System (Time in 

Queue Plus Service Time)

Mean E[t]
( )1 −

r
m r

          (7.37)
( )

1

1 −m r
    (7.41)

Variance Var[t] ( )
( )22

2

1

−

−

r r

m r
            (7.38) ( )22

1

1 −m r    

 (7.42)

(continued)
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Time in Queue
Time in System (Time in 

Queue Plus Service Time)

Probability density 

function f(t) (t ≥ 0) 
( ) ( ) ( ) ( )1

01 1
tu t e− −− + − m rr rm r  (7.39) ( ) ( )1

1
te− −− m rm r
 

(7.43)

Cumulative 

distribution function 

F(t) Pr{time in 

queue ≤ t}

( )1
1

te− −− m rr
        

 (7.40)
( )− −− 1

1
te m r
     (7.44)

where

 
( )arrival rate

traffic intensity 1
service rate

= = = <lr
m

r

u0(t) is the unit impulse function centered at t = 0, given by

 

( )
( )
( )

0

0

0 0

t
u t

t

⎧∞ =⎪= ⎨
≠⎪⎩

and

 

( )0 1u t dt
∞

−∞

=∫
Allen (1978, pp. 163, 365); Cohen (1985, p. 173); Cox and Smith (1961, pp. 
57–58); Hillier and Lieberman (1980, p. 420); Kleinrock (1975, pp. 202–203); 
Papadopoulos, Heavy, and Browne (1993, pp. 363–364).

Note that the distribution of the time in system, given by Equations 7.41 
through 7.44, is an exponential distribution with parameter m(1 − r) (see 
Section 4.2).

7.14 Other Formulas in Queueing Theory

A comprehensive summary of formulas for a variety of different types of 
queueing systems is given in Allen (1978). The formulas include means, 
variances, and probability distributions for queue length, waiting time, 
and other system measures. Summaries of basic queueing theory results 
are also given in Bolch, Greiner, de Meer, and Trivedi (1998) and in 
Papadopoulos, Heavy, and Browne (1993).
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8
Production Systems Modeling

8.1 Definitions and Notation for Workstations

The number of jobs a station can produce per unit time is the speed (or 
service rate) of the station. The production of one job is a cycle. The time to 
produce one job, when there is no station failure, is the cycle time (or service 
time or processing time).

For a station that is subject to failures, the frequency of failures is 
determined by the failure rate, and the time taken on average for repair is 
determined by the repair rate. The ratio of the operating time to total time 
is the station’s availability (or stand-alone availability). The number of jobs 
the station can produce per unit time, taking account of failures, is the 
station’s throughput (or stand-alone throughput).

Station parameters:
S = speed of station (number of jobs per unit time)
c = cycle time of station
l = failure rate (number of failures per unit time)
m = repair rate (number of repairs per unit time)
MCBF = mean number of cycles between failures
MTBF = mean operating time between failures
MTTR = mean time to repair (mean down time)

8.2 Basic Relationships between Workstation Parameters

For a single station:

 

1
Cycle time c

S
=

 
(8.1)

 

MCBF
MTBF c MCBF

S
= × =

 
(8.2)
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1
MTBF =

l  
(8.3)

 

1
MTTR =

m  
(8.4)

 

1
Availability

1

MTBF
MTBF MTTR

= =
+ + l

m  

(8.5)

 
= ×Throughput (Availability )S

 
(8.6)

Buzacott (1968, pp. 176, 180); Choong and Gershwin (1987, p. 152); Cohen 
(1985, pp. 185, 191); Goldman and Slattery (1964, pp. 26, 41); Hopp and 
Spearman (1996, p. 261); Li and Meerkov (2009, pp. 53, 95, 361); Nahmias 
(1989, p. 557).

Note that the MCBF is an average count of the number of jobs produced 
between failures, which is generally much easier to measure in practice 
than the MTBF. From Equation 8.2, the MTBF can be obtained without the 
need to measure time between failures directly.

8.3  Distribution of the Time to Produce a Fixed 

Lot Size at a Workstation

For a single station with random failures and random repair times, let
S be the station speed (jobs per unit time)
l be the failure rate for the station
m be the repair rate for the station
n be the lot size (number of jobs)
Tn be the time to produce n jobs (Tn a random variable, n fi xed)

Assuming
Processing times (cycle times) are constant• 

Operating times between failures are independent and exponen-• 
tially distributed (with a mean 1/l)

Repair times are independent and exponentially distributed (with • 
a mean 1/m)

the mean and the variance of the time, Tn, are given by

 
[ ] 1n

n
E T

S
⎛ ⎞

= +⎜ ⎟⎝ ⎠
l
m

 

(8.7)
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and

 
[ ] 2

2
n

n
Var T

S
= l

m  
(8.8)

respectively.

Kim and Alden (1997, p. 3411).
From Equations 8.7 and 8.8, the mean and the variance of the time, T1, to 

produce one job (n = 1) are

 
[ ]1

1
1E T

S
⎛ ⎞

= +⎜ ⎟⎝ ⎠
l
m

and

 
[ ]1 2

2
Var T

S
= l

m

respectively. In the more general case, where processing time is a ran-
dom variable, with a mean 1/S and a variance s2, the mean of time T1 
remains the same, and the variance of time T1 has an additional term and 
becomes

 
[ ]

2

2
1 2

2
1Var T

S
⎛ ⎞

= + +⎜ ⎟⎝ ⎠
l ls
m m

 

(8.9)

Hopp and Spearman (1996, p. 262).
For constant processing times, the probability density function f(t) of the 

time Tn to produce n jobs is given by

 

( )
( )

( )
( ) ( ) ( )

( )1

0

0

2
− − −

−

⎧ <
⎪⎪= ⎨
⎪ − + ≥
⎪⎩

n S t n S

n S

t n S

f t n S I x e
u t n S e t n S

x

l m
l

lm

 
(8.10)

where

 ( )( )x n S t n S= −lm
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I1(x) is a modifi ed Bessel function of order one (see Section 15.6)
u0(t) is the unit impulse function centered at t = 0, given by

 

( )
( )

( )
0

0

0 0

⎧∞ =⎪= ⎨
≠⎪⎩

t
u t

t

and

 

( )0 1u t dt
∞

−∞

=∫
Kim and Alden (1997, pp. 3407, 3409).

8.4 Throughput of a Serial Production Line with Failures

The average number of jobs per unit time that can fl ow through a produc-
tion line is the line’s throughput (or production rate).

8.4.1 Line without Buffers

For a production line with stations arranged in series, let
N be the number of stations
S be the speed (service rate) of a station (jobs per unit time)
li be the failure rate of station i (i = 1, 2, …, N)
mi be the repair rate of station i (i = 1, 2, …, N)
P be the throughput of the line (jobs per unit time)

Assuming
Stations have the same speed• 

Processing times (cycle times) are constant• 

Station failures are independent• 

Repair times are independent• 

A failure at one station stops the entire line• 

There are no buffers between stations• 

the throughput of the line (average number of jobs per unit time) is given by
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1

1
N

i

i i

S
P

=

=
+ ∑ l

m  

(8.11)

Buzacott (1968, p. 176); Gershwin (1994, p. 66).

8.4.2 Line with Buffers

For a serial production line with buffers of equal size between adjacent 
stations, where all stations are identical (i.e., have the same speed, failure 
rate, and repair rate), let

N be the number of stations
S be the speed (service rate) of a station (jobs per unit time)
l be the failure rate of a station
m be the repair rate of a station
B be the buffer size (number of jobs that can be held in the buffer)
P be the throughput of the line (jobs per unit time)

Assuming
Stations are identical• 

Processing times (cycle times) are constant• 

Station failures are independent• 

Repair times are independent• 

the throughput of the line (average number of jobs per unit time) for a 
two-station line (N = 2) is given by

 
( )( )

=
+ +

+ + λ
1

11 1 2
2

S
P

B S

l ml
m m m

 

(8.12)

and for an N-station line is approximately given by

 

( )
( )( )

1
1

1 1 2
4

S
P

N
N

B S

≅
−

+ +
+ +

l ml
m l m m

 

(8.13)

Alden (2002, pp. 84, 107, 112); Blumenfeld and Li (2005, pp. 298, 300).
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8.5  Throughput of a Two-Station Serial Production 

Line with Variable Processing Times

The following results are for a production line with no failures and with 
processing times at each station that are random variables.

8.5.1 Two Stations without a Buffer

For a production line with two stations arranged in series, let
Si be the speed (service rate) of a station i (i = 1, 2) (jobs per unit time)
P be the throughput of the line (jobs per unit time)

Assuming
Processing times at station • i are independent and exponentially 
distributed (with a mean 1/Si) (i = 1, 2)

Stations are not subject to failures• 

There is no buffer between the two stations• 

the throughput of the line (average number of jobs per unit time) is 
given by

 1 2 1 2

1
1 1 1

P

S S S S

=
+ −

+  

(8.14)

i.e.,

 

( )+
=

+ +
1 2 1 2

2 2
1 1 2 2

S S S S
P

S S S S  
(8.15)

In the special case of identical stations (S1 = S2 = S), the throughput result 
reduces to

 

2

3
P S=

 
(8.16)

Baker (1992, p. 387); Makino (1964, p. 21); Hunt (1956, pp. 678–679).
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8.5.2 Two Stations with a Buffer

A buffer between stations holds jobs that have been processed at one 
station and are waiting to be processed at the next station. For a produc-
tion line with two stations arranged in series, let

Si be the speed (service rate) of a station i (i = 1, 2) (jobs per unit time)
B be the buffer size (number of jobs that can be held in the buffer)
P be the throughput of the line (jobs per unit time)

Assuming
Processing times at station • i are independent and exponentially 
distributed (with a mean 1/Si) (i = 1, 2)

Stations are not subject to failures• 

the throughput of the line (average number of jobs per unit time) is given by

 

2 2
1 2

1 2 3 3
1 2

B B

B B

S S
P S S

S S

+ +

+ +

⎛ ⎞−= ⎜ ⎟−⎝ ⎠  

(8.17)

In the special case of identical stations (S1 = S2 = S), this throughput result 
reduces to

 

2

3

B
P S

B
+⎛ ⎞= ⎜ ⎟+⎝ ⎠  

(8.18)

Hillier and Boling (1966, p. 657); Hunt (1956, p. 680).

8.6  Throughput of an N-Station Serial Production 

Line with Variable Processing Times

The following is an approximate result for throughput of a serial produc-
tion line with identical stations.

For a production line with stations arranged in series, let
N be the number of stations
S be the speed (service rate) of a station (jobs per unit time)
T
_
 = 1/S be the mean processing time of a station

s 2 be the variance of processing times
C = s/T

_
 be the coeffi cient of variation of processing times

P be the throughput of the line (jobs per unit time)
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Assuming
Processing times are independent random variables (with an • 
 arbitrary distribution)

Stations are identical (same mean and variance of processing • 
times)

Stations are not subject to failures• 

There are no buffers between stations• 

the throughput of the line (average number of jobs per unit time) is given 
by Muth’s approximate formula:

 

( )1.67 1
1

1 0.31

S
P

N C
N C

≅
−

+
+ +  

(8.19)

Baker (1992, p. 388); Blumenfeld (1990, p. 1165); Muth (1987, p. 7).
For a line with buffers between the stations, where the buffer sizes are 

equal, an extension to Muth’s approximation is given by

 

( )
( )

1.67 1
1

1 0.31 1.67 2

S
P

N C
N C NB C

≅
−

+
+ + +

 

(8.20)

where B is the buffer size.

Askin and Standridge (1993, p. 87); Blumenfeld (1990, p. 1169).
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9
Inventory Control

9.1 Economic Order Quantity

The economic order quantity (EOQ) is the optimal quantity to order to 
replenish inventory, based on a trade-off between inventory and ordering 
costs. The trade-off analysis assumes the following:

Demand for items from inventory is continuous and at a constant rate.
Orders are placed to replenish inventory at regular intervals.
Ordering cost is fi xed (independent of quantity ordered).
Replenishment is instantaneous.

Let
D = demand (number of items per unit time)
A = ordering cost ($ per order)
c = cost of an item ($ per item)
r = inventory carrying charge (fraction per unit time)
H = cr = holding cost of an item ($ per item per unit time)
Q = order quantity (number of items per order)

Figure 9.1 plots cumulative curves of orders and demand over time. The 
curve for orders increases in steps of size Q each time an order is placed, 
and the demand curve increases linearly with slope D. The vertical dis-
tance between these two curves at any point in time is the inventory level. 
Figure 9.2 plots this inventory level over time, which displays the classic 
saw-tooth pattern. The inventory increases by Q each time an order is 
placed, and decreases at rate D between orders. The average inventory 
level in Figure 9.2 is Q/2, which determines the inventory cost in the EOQ 
model.

Total cost per unit time C(Q) is given by

 

= +

= +

( ) Inventory cost Ordering cost

2

C Q

HQ AD
Q  

(9.1)
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The optimal quantity Q* to order (i.e., the order quantity that minimizes 
total cost) is given by

 
( ) 0

d
C Q

dQ
=

Hence

 

2
*

AD
Q

H
=

 
(9.2)

Time

Cumulative
number
of items

Order
quantity

Q

D

Orders

Demand

Inventory

FIGURE 9.1
Cumulative orders and demand over time in an EOQ model.

Time

Number of items
in inventory

Order
quantity

Q
D

FIGURE 9.2
Inventory level over time in an EOQ model.
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Equation 9.2 for Q* is known as the EOQ formula. Figure 9.3 illustrates the 
trade-off between the inventory and ordering costs.

Arrow, Karlin, and Scarf (1958, p. 6); Cohen (1985, p. 144); Harris (1913, 
p. 136); Hax and Candea (1984, p. 134); Hopp and Spearman (1996, p. 58); 
Nahmias (1989, p. 148); Stevenson (1986, p. 480); Tersine (1985, p. 590); 
Wilson (1934, p. 122); Woolsey and Swanson (1975, p. 39).

9.2 Economic Production Quantity

The economic production quantity (EPQ) is the optimal quantity to pro-
duce to replenish inventory, based on a trade-off between inventory and 
production set-up costs. The trade-off analysis assumes the following:

Demand for items from inventory is continuous and at a constant • 
rate.

Production runs to replenish inventory are made at regular • 
intervals.

During a production run, the production of items is continuous • 
and at a constant rate.

Production set-up cost is fi xed (independent of the quantity • 
produced).

Order quantity Q

Cost Inventory cost HQ/2

Ordering cost AD/Q

Total cost HQ/2 + AD/Q

Q*

FIGURE 9.3
Trade-off between inventory and ordering costs in an EOQ model.
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The EPQ model is similar to that for the EOQ model. The difference is in 
the time to replenish inventory. The EOQ model assumes replenishment 
is instantaneous, while the EPQ model assumes replenishment is gradual, 
due to a fi nite production rate.

Let
D = demand (number of items per unit time)
P = production rate during a production run (number of items per unit 

time)
A = production set-up cost ($ per setup)
c = cost of an item ($ per item)
r = inventory carrying charge (fraction per unit time)
H = cr = holding cost of an item ($ per item per unit time)
Q = production quantity (number of items per production run)

The EPQ model assumes P > D. Figure 9.4 plots cumulative curves of pro-
duction and demand over time. The slope of the production curve during 
a production run is P. The slope of the demand curve is D. The vertical 
distance between these two curves at any point in time is the inventory 
level. Figure 9.5 plots this inventory level over time. Inventory increases at 
rate P−D during a production run, and decreases at rate D between pro-
duction runs. The average inventory level in Figure 9.5 is

 

( )1

2

D P Q−

which determines the inventory cost in the EPQ model.

Time

Cumulative
number
of items

Production
quantity

Q
D

Production

Demand
Inventory

P

FIGURE 9.4
Cumulative production and demand over time in an EPQ model.
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Total cost per unit time C(Q) is given by

 

( )
= +

−
= +

( ) Inventory cost Production set-up cost

1

2

C Q

H D P Q AD
Q  

(9.3)

The optimal quantity Q* to produce (i.e., the production quantity that 
minimizes total cost) is given by

 
( ) 0

d
C Q

dQ
=

and hence

 

=
−

2
*

(1 / )

AD
Q

H D P
 

(9.4)

Equation 9.4 for Q* is known as the EPQ formula.
The trade-off between inventory and production set-up costs is the 

same as for the EOQ model illustrated in Figure 9.3, except for a different 
slope for the linear inventory cost curve.

Note: As P approaches infi nity, replenishment becomes instantaneous, 
and the EPQ formula given by Equation 9.4 reduces to the EOQ formula 
given by Equation 9.2.

Hax and Candea (1984, p. 136); Hopp and Spearman (1996, p. 63); Nahmias 
(1989, p. 154); Stevenson (1986, p. 483); Taft (1918, p. 1411); Tersine (1985, 
p. 593).

Time

Number of items
in inventory

Production
quantity

Q DP – D

FIGURE 9.5
Inventory level over time in an EPQ model.
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9.3 “ Newsboy Problem”: Optimal Inventory to Meet 

Uncertain Demand in a Single Period

The classic newsboy problem (also called more recently the newsvendor prob-
lem) considers the inventory level needed under uncertain demand. The 
problem is to determine the optimal number of items to hold in inventory 
to meet uncertain demand in a single period. The optimum is given by the 
trade-off between cost of

Holding too many items• 

Not meeting demand• 

Let
co = cost per item of items left over after demand is met (overage cost per 

item)
cs = cost per item of unmet demand (shortage cost per item)
x = demand in given period (number of items)
f(x) = probability density function (pdf) of demand
F(x) = 0 ( )

x f u du∫  = cumulative distribution function of demand
Q = quantity held in inventory (number of items)

The optimal cost trade-off depends on the expected numbers of items 
over demand and short of demand.

Expected cost C(Q) is given by

 

( ) ( ) ( ) ( )
∞

= +

= − + −∫ ∫
0

( ) E[number of items over] E[number of items short]o s

Q

o s

Q

C Q c c

c Q x f x dx c x Q f x dx

 

(9.5)

The optimal quantity, Q*, to hold in inventory (i.e., the quantity that 
 minimizes expected cost) is given by

 
( ) 0

d
C Q

dQ
=

Applying Leibnitz’s rule for differentiation under the integral sign (see 
Section 16.8, Equation 16.23), we get
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Hence, setting ( ) 0
d

C Q
dQ

= , the optimal quantity, Q*, is given by

 
( ) =

+
* s

s o

c
F Q

c c  
(9.6)

Equation 9.6 is the solution to the classic newsboy problem or newsvendor 
problem.

The overage and shortage costs, co and cs, can be expressed in terms of 
the following economic parameters. Let

c = cost per item
a = selling price per item
p = lost sales penalty per item
v = salvage value per item

The profi t for each item sold is a − c. Hence, the lost profi t per item for 
unmet demand is a − c. An additional cost of unmet demand is the lost 
sales penalty p, representing loss of some customers in future periods. 
Hence, the shortage cost, cs, is

 cs = a − c + p

For unsold items left over after demand is met, the net cost per item is the 
cost minus the salvage value. Hence, the overage cost co is

 co = c − v

From Equation 9.6, the optimal quantity Q* given by

 
( ) + −=

+ −
*

a p c
F Q

a p v
 

(9.7)
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Hanssmann (1962, p. 47); Hopp and Spearman (1996, p. 75); Nahmias (1989, 
p. 233); Ravindran, Phillips, and Solberg (1987, p. 355).

9.4 Inventory Replenishment Policies

Figures 9.6 through 9.9 illustrate the following basic policies for replenish-
ing inventory in continuous review and periodic review systems:

Continuous Review Systems• 
(s, Q) Policy: Whenever the inventory position (items on hand plus items 
on order) drops to a given level, s, or below, an order is placed for a fi xed 
quantity, Q.

(s, S) Policy: Whenever the inventory position (items on hand plus items 
on order) drops to a given level, s, or below, an order is placed for a suf-
fi cient quantity to bring the inventory position up to a given level, S.

Periodic Review Systems• 
(T, S) Policy: Inventory position (items on hand plus items on order) is 
reviewed at regular instants, spaced at time intervals of length T. At each 
review, an order is placed for a suffi cient quantity to bring the inventory 
position up to a given level, S.

Time

Number
of items

Q

s
Overshoot

Lead time Lead time

Q

Inventory position
Inventory on hand

FIGURE 9.6
Inventory pattern over time in an (s, Q) policy.
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Time

Number
of items

s
Overshoot

Lead time Lead time

Inventory position
Inventory on hand

S

FIGURE 9.7
Inventory pattern over time in an (s, S) policy.

Time

Number
of items

Lead timeLead time

Inventory position
Inventory on hand

S

Review period T Review period T

Lead time

FIGURE 9.8
Inventory pattern over time in a (T, S) policy.
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(T, s, S) Policy: Inventory position (items on hand plus items on order) is 
reviewed at regular instants, spaced at time intervals of length T. At each 
review, if the inventory position is at level s or below, an order is placed for 
a suffi cient quantity to bring the inventory position up to a given level S. 
If the inventory position is above s, no order is placed. This policy is also 
known as a periodic review (s, S) policy.

Elsayed and Boucher (1985, pp. 58–60); Hadley and Whitin (1963, pp. 
236–237); Hax and Candea (1984, p. 220); Johnson and Montgomery (1974, 
pp. 23–25); Silver, Pyke, and Peterson (1998, pp. 237–241).

The quantities Q, s, S, and T in these policies are defi ned as follows:
Q = order quantity
s = reorder point
S = order-up-to level
T = review period (time interval between reviews)

The notation for these quantities varies in the inventory literature. For 
example, some references denote the reorder point by R, while other refer-
ences use R for the order-up-to level, and still others use R for the review 
period. The notation defi ned above is intended to avoid ambiguity, while 
being consistent with the notation frequently used in the literature.

Inventory position is the sum of inventory on hand (i.e., items imme-
diately available to meet demand) and inventory on order (i.e., items 

Time

Number
of items

s

Lead time Lead time

Inventory position
Inventory on hand

S

Review period T Review period T

FIGURE 9.9
Inventory pattern over time in a (T, s, S) policy.
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ordered but not yet arrived due to the lead time). The above policies for 
 replenishment are based on inventory position, rather than simply inven-
tory on hand, to account for cases where the lead time is longer than the 
time between replenishments. If the lead time is always shorter than the 
time between replenishments, then there will never be any items on order 
at the time an order is placed, and in that case the review of inventory can 
be based simply on the inventory on hand (Evans, Anderson, Sweeney, 
and Williams, 1984, p. 381; Johnson and Montgomery, 1974, pp. 24–25).

A note on the continuous review systems: If demand occurs one item 
at a time, then the (s, S) policy is the same as the (s, Q) policy. If, how-
ever, demand can occur in batches, so that the inventory position can drop 
from a level above s to a level below s instantaneously (i.e., an overshoot 
can occur), then the (s, Q) and (s, S) policies are different. A comparison of 
Figures 9.6 and 9.7 illustrates the difference. In the (s, Q) policy, the order 
quantity is fi xed, and the inventory position just after a replenishment 
order is placed is variable from one replenishment cycle to another. In 
the (s, S) policy, the inventory position just after a replenishment order is 
placed is fi xed, and the order quantity is variable (Hax and Candea, 1984, 
pp. 222–223; Silver, Pyke, and Peterson, 1998, p. 238).

The (s, S) policy is a special case of the (T, s, S) policy in which T = 0. The 
(T, s, S) policy can thus be regarded as a periodic version of the (s, S) policy. 
The (T, S) policy represents a special case of the (T, s, S) policy in which 
s = S (Johnson and Montgomery, 1974, p. 24; Silver, Pyke, and Peterson, 
1998, p. 241).

9.5  (s, Q) Policy: Estimates of Reorder Point (s) 

and Order Quantity (Q)

Replenishment policy: Whenever the inventory position (items on hand 
plus items on order) drops to the reorder point s or below, an order is 
placed for a fi xed quantity. Figure 9.6 illustrates the (s, Q) policy.

Assume:

Demand for items is a random variable with fi xed mean and • 
variance.

Demands in separate increments of time are independent.• 

Lead time (i.e., time from when an order for replenishment is • 
placed until the replenishment arrives) is a random variable with 
fi xed mean and variance.

Lead times are independent.• 
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Let
s = reorder point (number of items)
Q = order quantity (number of items)
D = average demand (number of items per unit time)

2
Ds  = variance of demand (items2 per unit time)

L = average lead time (units of time)
2
Ls  = variance of lead time (units of time2)

k = service level factor
A = ordering cost ($ per order)
H = holding cost of an item ($ per item per unit time)

The demand variance, 2
Ds , is defi ned for demand in one time unit. Since 

the demands in each time unit are assumed to be independent, the vari-
ance of demand in a fi xed time of t units is 2

Dts .
The reorder point, s, and order quantity, Q, in the (s, Q) policy are given 

approximately by

 
= + +2 2 2

D Ls DL k L Ds s
 

(9.8)

 

2AD
Q

H
=

 
(9.9)

Lewis (1970, pp. 50, 60); McClain and Thomas (1985, pp. 293, 304); Silver, 
Pyke, and Peterson (1998, pp. 255, 258, 283); Sipper and Bulfi n (1997, pp. 
272, 276–277); Stevenson (1986, pp. 480, 501, 514).

In the special case of fi xed lead times =2 0Ls  and Equation 9.8 for the 
reorder point s reduces to

 = + Ds DL k Ls  (9.10)

The order quantity Q, given by Equation 9.9, is the EOQ, as given in 
Section 9.1.

The reorder point s, given by Equation 9.8, is the inventory level needed 
to cover demand during the lead time. The fi rst term, DL, is the inven-
tory needed on average. The second term, +2 2 2

D Lk L Ds s , is the additional 
inventory needed to avoid stocking-out due to random variability in 
demand and lead time. This additional inventory is the safety stock, i.e.,

 
= +2 2 2Safety Stock D Lk L Ds s

 
(9.11)

The above two terms for s are based on the result that demand during the 

lead time has a mean, DL, and a standard deviation, +2 2 2
D LL Ds s  (Hadley 

and Whitin, 1963, p. 153).
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The service level factor, k, in Equations 9.8 and 9.11 is a dimensionless 
constant that represents the number of standard deviations beyond the 
mean, DL, needed to achieve a given service level (i.e., a given measure 
of performance for meeting demand from inventory). The service level is 
typically measured using one of the following two quantities—a and b:

a = probability of meeting demand from inventory
b = fraction of demand met from inventory (also known as “fi ll rate”).

The probability, a, is the proportion of replenishment cycles in which no 
shortage occurs (regardless of the number of items short, when a short-
age does occur). The fi ll rate b is the proportion of total items demanded 
that are fi lled from inventory (regardless of the number of replenishment 
cycles in which a shortage occurs).

If the demand during the lead time has a general distribution with prob-
ability density function (pdf) denoted by fl(x), then the quantities a and b 
are given by

 

( )
∞

= − ∫1 l

s

f x dxa
 

(9.12)

and

 

( ) ( )
∞

= − −∫1
1 l

s

x s f x dx
Q

b
 

(9.13)

where s is related to the service level factor, k, by Equation 9.8.
If the demand during the lead time is normally distributed, then the 

quantities a and b are related to the service level factor, k, by

 
( )= Φ ka

 
(9.14)

and

 
( ) ( )⎧ ⎫⎡ ⎤= − − − − Φ⎨ ⎬⎣ ⎦⎩ ⎭

21 11 exp 1
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l k k k
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(9.15)

where Φ(k) is the cumulative distribution function of the standard normal 
distribution, i.e.,

 

( ) ( )
−∞

Φ = −∫ 21 1exp
22

k

k x dx
p

 

(9.16)
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and where sl is the standard deviation of demand during the lead 
time, i.e.,

 
= +2 2 2

l D LL Ds s s
 

(9.17)

Fortuin (1980, pp. 939–940); Nahmias (1989, p. 202); Schneider (1981, pp. 
620–621); Sipper and Bulfi n (1997, pp. 275, 607–608).

To ensure a high value of the probability a, the service level factor k is 
typically set in the range of 2–3. From Equation 9.16, when k = 2, a = 97.7%, 
and when k = 3, a = 99.9% (Lewis, 1970, p. 47; Mood, Graybill, and Boes, 
1974, p. 552; Sipper and Bulfi n, 1997, p. 607).

The relationship between the fi ll rate, b, and the service level factor, 
k, is more complex than that for a, since it depends also on the order 
quantity, Q. The EOQ given by Equation 9.9 provides a useful heuristic 
approximation for Q, which allows s to be estimated separately from Q. 
For a given shortage cost per item, s and Q can also be optimized jointly 
(Hadley and Whitin, 1963, p. 167; Nahmias, 1989, p. 204; Sipper and Bulfi n, 
1997, p. 284).

Note: If demand in each time unit is normally distributed, and the lead 
time is constant =2( 0)Ls , then the demand during the lead time is nor-
mally distributed. If, however, demand in each time unit is normally dis-
tributed, and the lead time is variable >2( 0)Ls , then in general the demand 
during the lead time is not normally distributed. In the case of variable 
lead time, therefore, the relationships between the safety level factor, k, 
and the quantities a and b, given by Equations 9.14 and 9.15, may not be 
suffi ciently close approximations.

9.6  (s, S) Policy: Estimates of Reorder Point (s) 

and Order-Up-To Level (S)

Replenishment policy: Whenever the inventory position (items on hand 
plus items on order) drops to the reorder point, s, or below, an order 
is placed for a suffi cient quantity to raise the inventory position to the 
 order-up-to level S. Figure 9.7 illustrates the (s, S) policy.

Assume:

Demand for items is a random variable with fi xed mean and • 
variance.

Demands in separate increments of time are independent.• 
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Lead time (i.e., time from when an order for replenishment is • 
placed until the replenishment arrives) is a random variable with 
a fi xed mean and variance.

Lead times are independent.• 

Let
s = reorder point (number of items)
S = order-up-to level (number of items)
D = average demand (number of items per unit time)

2
Ds  = variance of demand (items2 per unit time)

L = average lead time (units of time)
2
Ls  = variance of lead time (units of time2)

k = service level factor
A = ordering cost ($ per order)
H = holding cost of an item ($ per item per unit time)

The demand variance, 2
Ds , is defi ned for a demand in one time unit. Since 

the demands in each time unit are assumed to be independent, the vari-
ance of demand in a fi xed time of t units is 2

Dts .
The reorder point, s, and order-up-to level, S, in the (s, S) policy are given 

approximately by

 
= + +2 2 2

D Ls DL k L Ds s
 

(9.18)

 
S s Q= +

 
(9.19)

where

 

2AD
Q

H
=

 
(9.20)

Hax and Candea (1984, p. 223); Silver, Pyke, and Peterson (1998, pp. 255, 
331–332).

The reorder point s, given by Equation 9.18, is the inventory level needed 
to cover demand during the lead time. This expression for s is based on 
the result that demand during the lead time has a mean, DL, and a stan-
dard deviation, +2 2 2

D LL Ds s  (Hadley and Whitin, 1963, p. 153).
The service level factor k, given by Equation 9.18, is a dimensionless 

 constant that represents the number of standard deviations demand 
beyond the mean, DL, needed to achieve a given service level (see the 
(s, Q) policy above).
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The order-up-to level S, given by Equation 9.19, is an heuristic estimate 
based simply on the reorder point plus the EOQ, where the EOQ is given 
in Section 9.1.

9.7  (T, S) Policy: Estimates of Review Period (T) 

and Order-Up-To Level (S)

Replenishment policy: Inventory position (items on hand plus items 
on order) is reviewed at regular instants, spaced at time intervals of 
length T. At each review, an order is placed for a suffi cient quantity to 
raise the inventory position to the order-up-to level S. Figure 9.8 illustrates 
the (T, S) policy.

Assume:

Demand for items is a random variable with a fi xed mean and • 
variance.

Demands in separate increments of time are independent.• 

Lead time (i.e., time from when an order for replenishment is • 
placed until the replenishment arrives) is a random variable with 
a fi xed mean and variance.

Lead times are independent.• 

Review period (i.e., time interval between reviews) is a constant.• 

Let
T = review period (units of time)
S = order-up-to level (number of items)
D = average demand (number of items per unit time)

2
Ds  = variance of demand (items2 per unit time)

L = average lead time (units of time)
2
Ls  = variance of lead time (units of time2)

k = service level factor
A = ordering cost ($ per order)
H = holding cost of an item ($ per item per unit time)

The ordering cost, A, in this policy includes the cost, if any, of reviewing 
of the inventory position in each review period. The demand variance, 2

Dσ , 
is defi ned for a demand in one time unit. Since the demands in each time 
unit are assumed to be independent, the variance of demand in a fi xed 
time of t units is 2

Dts .
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The review period, T, and order-up-to level, S, in the (T, S) policy are 
given approximately by

 

2A
T

DH
=

 
(9.21)

 
= + + + +2 2 2( ) ( ) D LS D L T k L T Ds s

 
(9.22)

Hax and Candea (1984, pp. 227–228); Lewis (1970, p. 84); McClain and 
Thomas (1985, p. 309); Silver, Pyke, and Peterson (1998, pp. 276, 279); Sipper 
and Bulfi n (1997, pp. 291–292).

In the special case of fi xed lead times, =2 0Ls  and Equation 9.22 for the 
order-up-to level S reduces to

 
( ) ( )= + + +DS D L T k L Ts

 
(9.23)

The review period T, given by Equation 9.21, is determined from the EOQ, 
given in Section 9.1. For a given EOQ denoted by Q, the optimal time 
between successive replenishments is Q/D. This provides the estimate for 
T. In practice, the review period, T, may be rounded to a whole number of 
days or weeks, or set at some other convenient interval of time.

The order-up-to level S, given by Equation 9.22, is the inventory needed 
to ensure a given service level (i.e., a given probability that demand is met). 
The fi rst term, D(L + T), is the inventory needed to meet demand on average. 
The second term, ( )+ +2 2 2

D Lk L T Ds s , is the additional inventory (i.e., safety 
stock) needed to avoid stocking out due to the random variability in the 
demand and the lead time.

Orders for replenishment in the (T, S) policy are placed every T time 
units, as shown in Figure 9.8. After an order is placed, it takes l time units 
for the replenishment to arrive, where l is a random variable (the lead 
time). Thus, the time from when an order for a replenishment is placed 
until the subsequent replenishment arrives (i.e., the time from ordering 
replenishment, i, to the arrival of replenishment i + 1) is l + T. To avoid a 
shortage, therefore, the inventory in the (T, S) policy must be suffi cient 
to meet the demand during the lead time plus the review period (rather 
than just the lead time, as in the (s, Q) policy). The demand during the lead 
time plus the review period has a mean D(L + T) and a standard deviation 

( )+ +2 2 2
D Lk L T Ds s  (Tijms and Groenevelt, 1984, p. 180).

The service level factor, k, in Equation 9.22 is a dimensionless constant 
that represents the number of standard deviations beyond the mean 
needed to ensure a given service level (see (s, Q) policy above).
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9.8  (T, s, S) Policy: Estimates of Review Period (T), 

Reorder Point (s), and Order-Up-To Level (S)

Replenishment policy: Inventory position (items on hand plus items on 
order) is reviewed at regular instants, spaced at time intervals of length T. 
At each review, if the inventory position is at the reorder point, s, or below, 
an order is placed for a suffi cient quantity to raise the inventory position 
to the order-up-to level S; if the inventory position is above the reorder 
point, s, no order is placed. Figure 9.9 illustrates the (T, s, S) policy. This 
policy is also known as a periodic review (s, S) policy.

Assume:

Demand for items is a random variable with a fi xed mean and • 
variance.

Demands in separate increments of time are independent.• 

Lead time (i.e., time from when an order for replenishment is • 
placed until the replenishment arrives) is a random variable with 
a fi xed mean and variance.

Lead times are independent.• 

Review period (i.e., time interval between reviews) is a constant.• 

Let
T = review period (units of time)
s = reorder point (number of items)
S = order-up-to level (number of items)
D = average demand (number of items per unit time)

2
Ds  = variance of demand (items2 per unit time)

L = average lead time (units of time)
2
Ls  = variance of lead time (units of time2)

k = service level factor
A = ordering cost ($ per order)
H = holding cost of an item ($ per item per unit time)

The ordering cost, A, in this policy includes the cost, if any, of reviewing 
of the inventory position in each review period. The demand variance, 2

Ds , 
is defi ned for a demand in one time unit. Since the demands in each time 
unit are assumed to be independent, the variance of demand in a fi xed 
time of t units is 2

Dts .
Joint optimization of the three parameters (T, s, and S) in this policy 

leads to complicated mathematics (Lewis, 1970; Silver, Pyke, and Peterson, 
1998). Simple heuristic approximations are presented here instead.
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The review period T, reorder point s, and order-up-to level S in the 
(T, s, S) policy are given approximately by

 

2A
T

DH
=

 
(9.24)

 
( ) ( )= + + + +2 2 2

D Ls D L T k L T Ds s
 

(9.25)

 
S s Q= +

 
(9.26)

where

 

2AD
Q

H
=

 
(9.27)

Porteus (1985, p. 138); Tijms and Groenevelt (1984, pp. 180, 183).
In the special case of fi xed lead times, =2 0Ls  and Equation 9.25 for the 

reorder point s reduces to

 
( ) ( )= + + +Ds D L T k L Ts

 
(9.28)

The review period T, given by Equation 9.24, is the same as for the (T, S) 
policy (i.e., it is obtained from T = Q/D). In practice, T may be rounded to 
a whole number of days or weeks, or set at some other convenient inter-
val of time. The quantity Q, given by Equation 9.27, is the EOQ, given in 
Section 9.1.

The reorder point s, given by Equation 9.25, is the inventory level needed 
to cover the demand during the lead time plus the review period. This 
expression for s is based on the result that demand during the lead time 
plus the review period has a mean D(L + T) and a standard deviation 

( )+ +2 2 2
D LL T Ds s .

The order-up-to level S, given by Equation 9.26, is the reorder point plus 
the economic order quantity (EOQ), as in the (s, S) policy for a continuous 
review system.

The service level factor, k, in Equation 9.25 is a dimensionless constant 
that represents the number of standard deviations of lead time demand 
beyond the mean needed to achieve a given service level (see (s, Q) policy 
earlier).
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9.9 Summary of Results for Inventory Policies

(Details given in preceding sections)
(s, Q) Policy:

 
= + +2 2 2

D Ls DL k L Ds s
 

(9.29)

 

2AD
Q

H
=

 
(9.30)

(s, S) Policy:

 
= + +2 2 2

D Ls DL k L Ds s
 

(9.31)

 
= +S s Q

 
(9.32)

 

2AD
Q

H
=

 
(9.33)

(T, S) Policy:

 

2A
T

DH
=

 
(9.34)
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(9.35)

(T, s, S) Policy:

 

2A
T

DH
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(9.36)

 
( ) ( )= + + + +2 2 2

D Ls D L T k L T Ds s
 

(9.37)

 
S s Q= +

 
(9.38)

 

2AD
Q

H
=

 
(9.39)
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9.10 Inventory in a Production/Distribution System

The components of inventory in a production/distribution system for a 
single link between one origin and one destination are illustrated here.

Assume:

Demand for items at the destination is continuous and at a • 
 constant rate.

The origin has a production cycle and makes production runs for • 
the destination at regular intervals.

During a production run, the production of items at the origin for • 
the destination is continuous and at a constant rate.

The origin ships the items directly to the destination at regular • 
intervals.

The production schedule and shipment schedule are independent.• 

Transit time (i.e., time for a shipment to travel from the origin to • 
the destination) is a constant.

Let
P = production rate at origin (number of items per unit time)
D = demand at destination (number of items per unit time)
Q = production lot size (number of items)
V = shipment size (number of items)
T = time interval between shipments (units of time)
U = transit time (units of time)
I1 = inventory at origin due to production cycle schedule (number of items)
I2 = inventory at origin due to shipment cycle schedule (number of items)
I3 = in-transit inventory (number of items)
I4 = inventory at destination due to shipment cycle schedule (number of 

items)

Let

 I
–

1, I
–

2, I
–

3, and I
–

4

denote the averages of I1, I2, I3, and I4 over time, respectively.
Figure 9.10 shows the cumulative production, shipments, and demand 

over time for the single link between one origin and one destination.
The cumulative production curve in Figure 9.10 represents produc-

tion cycling at the origin. During a production run for the destination, 
the production rate is P (where P > D to ensure the demand is met). 
During the remainder of the production cycle, the production rate is zero. 
(The origin may produce items for other destinations during this time.)
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The cumulative shipment departure curve in Figure 9.10 represents 
shipments from the origin. Each step in the curve represents a shipment 
of size V. The cumulative shipment arrival curve represents these ship-
ments when they arrive at the destination, U time units later. The cumula-
tive demand curve represents the demand at the destination, with rate D 
items per unit time.

The average slope of each cumulative curve in Figure 9.10 must be D to 
match the demand. The shipment size and the time between shipments 
are related by

 V DT=  (9.40)

The quantities I1, I2, I3, and I4 are the inventories at each stage in the pro-
duction/distribution system. At any point in time, the vertical distances 
between the cumulative curves in Figure 9.10 represent these inventories.

The average inventories I
–
1, I

–
2, I

–
3, and I

–
4 are given by

 
1 1

2

Q D
I

P
⎛ ⎞= −⎜ ⎟⎝ ⎠  

(9.41)

 
2

2

V
I =

 
(9.42)

Time
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Production
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(rate D)

Shipment departures
at origin

Shipment arrivals
at destination

Transit time U

D

I1

I2

I3

I4

Shipment
size
V

D

Production

P

T

FIGURE 9.10
Cumulative production, shipments, and demand over time.
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 3I DU=  
(9.43)

 
4

2

V
I =

 
(9.44)

Blumenfeld, Burns, Diltz, and Daganzo (1985, pp. 364, 370); Hall (1996, pp. 
391–392).

Equation 9.41 for the average production cycle inventory I
–

1 is the same 
as the expression for the average inventory in the EPQ model given in 
Section 9.2. The total number of items in the inventory at the origin is the 
sum of two separate inventories: production cycle inventory, I1, and ship-
ment cycle inventory, I2, as shown in Figure 9.10.

Equations 9.42 through 9.44 for I
–

2, I
–

3, and I
–

4 give the average components 
of the inventory associated with shipping. This inventory is, on average, 
made up of half a shipment at the origin, half a shipment at the destina-
tion, and DU items in transit. The total inventory associated with shipping 
is V + DU = D(T + U) items.

9.11 Note on Cumulative Plots

The cumulative plots of production, shipments, and demand over time 
shown in Figure 9.10 provide a useful visual tool for representing the 
stages of a production/distribution system. A major benefi t of cumulative 
plots is that they allow inventories at the various stages of the system to 
be conveniently displayed on one chart (Daganzo, 1991). For any point in 
time, the vertical distances between the cumulative curves represent the 
numbers of items in inventory at each stage, as indicated in Figure 9.10. If 
items pass through the system in a FIFO (fi rst in, fi rst out) sequence, the 
horizontal distances between the cumulative curves represent the times 
spent in inventory by an item at each stage.

Figures 9.1 and 9.4 show cumulative plots of orders and demand over 
time for the EOQ and EPQ models. For inventory systems in general, 
cumulative plots can be used to plan schedules for orders, analyze hold-
ing costs, and identify conditions for shortages (Brown, 1977, pp. 271–286; 
Daganzo, 1991, pp. 46–51; Love, 1979, pp. 42–47).

Cumulative plots also have applications in areas closely related to inven-
tory control, such as in queueing theory (Newell, 1982, pp. 3–7; Medhi, 
1991, pp. 62–63) and transportation and traffi c fl ow analysis (Daganzo, 
1997, pp. 25–29; Newell, 1993, pp. 282–283). Cumulative plots have long 
been used in hydraulic engineering for determining reservoir capacity 
(Linsley and Franzini, 1955, pp. 138–139).
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10
Distance Formulas for Logistics Analysis

10.1 Distance Norms

A distance norm is a metric used to determine how close two points are to 
each other. The coordinates that defi ne the locations of points in space can 
be represented by vectors, and a distance norm is expressed as a function 
of the coordinates in the vector space.

The location of a point in N-dimensional space with coordinates v1, 
v2, …, vN is represented by the vector v, where

 

1

2

N

v

v

v

⎛ ⎞
⎜ ⎟
⎜ ⎟

= ⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟⎝ ⎠

v
�

The norm for vector v is denoted by ||v||. A set of norms known as Lp 
norms provide various distance metrics in the vector space. For a given p, 
the Lp norm for vector v is given by

 
( )

1
1

1 2

1

N p
p p p p p

i Np
i

v v v v v
=

⎛ ⎞
= = + + +⎜ ⎟

⎝ ⎠∑ �

 

(10.1)

where |vi| denotes the absolute value of vi (i = 1, 2, …, N).
In a plane (two-dimensional space), the location of a point P with coor-

dinates (x, y) is represented by the two-dimensional vector v, where

 

x

y

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
v



134 Operations Research Calculations Handbook

In this case of two-dimensional space, N = 2 and Equation 10.1 becomes

 
( )

1
p p p

p
v x y= +

 
(10.2)

Let P1 and P2 be two points in a plane with coordinates (x1, y1) and (x2, y2), 
respectively. The Lp norm for a general distance D between points P1 and 
P2 is given by

 
( )

1

1 2 1 2

p p pD x x y y= − + −
 

(10.3)

Common values for p are 1, 2, and ∞. With these values for p in Equation 
10.3, the norms for distance D are the L1, L2, and L∞ norms, respectively, 
which are defi ned as follows:

 
= − + −1 1 2 1 2norm:L D x x y y

 
(10.4)

 
= − + −2 2

2 1 2 1 2 norm: L D x x y y
 

(10.5)

 

( )
( )

∞
→∞

= − + −

= − −

1

1 2 1 2

1 2 1 2

 norm: lim

max ,  

p p p

p
L D x x y y

x x y y
 

(10.6)

Fröberg (1965, pp. 62–63); Kumaresan (2005, pp. 3, 5, 8); Smith (2008); Van 
der Heijden, Duin, de Ridder, and Tax (2004, p. 356).

Figures 10.1 through 10.3 illustrate the L1, L2, and L∞ norms, respectively. 
The rectilinear distance (L1 norm), shown in Figure 10.1, is the rectangular 

x

P1 = (x1, y1)

P2 = (x2, y2)

y

y2y1x2x1D

FIGURE 10.1
L1 norm: rectangular grid (rectilinear) distance.
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grid distance, also known as city block, Manhattan, or taxicab distance. 
The Euclidean distance (L2 norm), shown in Figure 10.2, is the direct or 
straight line distance. The Chebyshev distance (L∞ norm), shown in Figure 
10.3, is a measure of the maximum separation in one direction.

The above distance norms are metrics for distance between two points 
on a plane surface, with the shortest distance given by the L2 norm 
(Euclidean or straight line distance). Different metrics are needed for dis-
tances over a sphere. The shortest distance between two points on the 
surface of a sphere is given by the great circle distance (or orthodromic 
distance). A great circle is any circle around the surface of a sphere that 
divides the sphere into two equal halves. Great circles are the largest cir-
cles that can be drawn on a sphere. The shortest path between two points 
on a sphere is an arc of a great circle, known as a geodesic. Since the earth 
is approximately spherical, a great circle distance is the metric for deter-
mining shortest distances between points on the earth’s surface (Jennings, 
1994, p. 47; Simmons, 1945, p. 299).

The following sections present formulas based on Euclidean distance 
(Sections 10.2 and 10.3), rectilinear distance (Section 10.4), and great circle 
distance (Section 10.5).

x

P1 = (x1, y1)

P2 = (x2, y2)

y

FIGURE 10.2
L2 norm: Euclidean (straight Line) distance.

x

P1 = (x1, y1)

P2 = (x2, y2)

y

,max  y2y1x2x1D

FIGURE 10.3
L∞ norm: Chebyshev distance.
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10.2 “ Traveling Salesman Problem” Tour 

Distance: Shortest Path through 

a Set of Points in a Region

The average tour distance d on the shortest closed 
path connecting n points randomly distrib-
uted within a region of area A (see Figures 10.4 
and 10.5) is given approximately by

 
d K n A≅

 
(10.7)

where K is a constant. Based on simulation exper-
iments, the value for the constant K is generally 
taken as K = 0.75.

Beardwood, Halton, and Hammersley (1959, p. 303); 
Eilon, Watson-Gandy, and Christofi des (1971, p. 169); 
Larson and Odoni (1981, p. 408); Stein (1978, p. 90).

This formula is useful in logistics for devel-
oping delivery strategies, planning transportation service requirements, 
and evaluating “traveling salesman problem” algorithms (Burns, Hall, 
Blumenfeld, and Daganzo, 1985, pp. 474–477; Daganzo, 1991, pp. 122–125; 
Larson and Odoni, 1981, pp. 408–411; Stein, 1978, pp. 89–93). The approxi-
mation holds well for regions of various shapes (Christofi des and Eilon, 
1969, p. 439; Eilon,  Watson-Gandy, and Christofi des, 1971, pp. 170, 174).

The formula is derived for large n, but also provides an approximation 
when n is small (Daganzo, 1984, p. 135). In the extreme case of two random 
points (n = 2), the tour distance d is the distance from one point to the other 
and back (i.e., twice the distance between the two points). If the region 
is a circle of radius R, then A = pR2, and d from Equation 10.7 is given by 

≅ =2 1.88d K R Rp . This estimate for d is close to 1.81R, the theoretical 
result for twice the average distance between two random points in a 
 circle (see Equation 10.10).

10.3  Distribution of Distance between Two 

Random Points in a Circle

Let
x = distance between two random points in a circle of radius R (0 ≤ x ≤ 2R), 

as illustrated in Figure 10.6

Area A

FIGURE 10.4
Points randomly distrib-

uted within a region of 

area A.

Area A

FIGURE 10.5
Shortest closed path 

through points in Figure 

10.4.
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f(x) = probability density function of x
0( ) ( )
xF x f u du= ∫  = cumulative distribution func-

tion of x
2

0( ) ( )
RE x x f x dx= ∫  = average distance

  

{ }
2

22

0

( ) ( )  

=standard deviation of 

R

x f x dx E x

x

σ = −∫

The probability density function f(x) is given by

 

( )−
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2
1
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2
( ) 2cos 1 0 2
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x x x x
f x x R

R R R Rp
 

(10.8)

Garwood (1947, p. 9); Garwood and Tanner (1958, p. 293); Fairthorne (1965, 
p. 396); Kendall and Moran (1963, p. 42); Vaughan (1987, p. 222); Grimmett 
and Stirzaker (2001, p. 136). The probability density function f(x) is plotted 
in Figure 10.7.

The cumulative distribution function F(x) is given by

 
( )−⎛ ⎞ ⎛ ⎞⎛ ⎞= + − − + − ≤ ≤⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠⎝ ⎠ ⎝ ⎠

2 2 2
1

2 2 2

2
( ) 1 1 cos 1 1 0 2

2 2 4

x x x x x
F x x R

R R R R Rp p
 

(10.9)

Borel (1925, Chapter 4, p. 78); Garwood (1947, p. 8).

x

R

FIGURE 10.6
Distance x between two 

random points in a circle of 

radius R.
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FIGURE 10.7
Probability density function f(x) for distance x between two random points in a circle of 

radius R.
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The cumulative distribution function F(x) gives the probability that the 
distance between the two points is less than x. This function is plotted in 
Figure 10.8.

The average distance E(x) is given by

 

= ≅128
( ) ( 0.9054 )

45

R
E x R

p
 

(10.10)

Apsimon (1958, p. 52); Eilon, Watson-Gandy, and Christofi des (1971, p. 154); 
Garwood and Tanner (1958, pp. 292–293); Fairthorne (1965, p. 396); Smeed 
(1971, p. 15); Vaughan (1987, pp. 222, 242).

The standard deviation σ of distance x is given by

 

⎛ ⎞
= − ≅⎜ ⎟⎝ ⎠

2

2 128
( 0.4245 )

45

R
R Rs

p
 

(10.11)

Garwood and Tanner (1958, p. 293).

Note: The above results on average distances for a circle provide useful 
approximations for regions of general shape. Spatial analyses indicate that 
average distances within a region of a given area do not depend strongly 
on the shape of the region (Eilon, Watson-Gandy, and Christofi des, 1971, 
p. 174; Larson and Odoni, 1981, pp. 135–136; Smeed, 1967, p. 23).

0

0.25

0.5

0.75

1

0 0.5R R 1.5R 2R

Probability
F(x)

Distance x

FIGURE 10.8
Cumulative distribution function F(x) for distance x between two random points in a circle 

of radius R.
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10.4  Average Rectangular Grid Distance 

between Two Random Points 

in a Circle

The average distance dgrid on a rectangular 
grid (i.e., average rectilinear distance) between 
two random points in a circle of radius R (see 
Figure 10.9) is given by

 
= 4

grid directd d
p  

(10.12)

where ddirect is the average direct (Euclidean) distance between the two 
points. From the result for ddirect in Equation 10.10, dgrid is given by

 

= ≅
2

512
( 1.1528 )

45
grid

R
d R

p
 

(10.13)

Eilon, Watson-Gandy, and Christofi des (1971, pp. 162–163); Fairthorne 
(1965, p. 403); Vaughan (1987, p. 235).

10.5 Great Circle Distance

Let P1 and P2 be two points on the earth’s surface, with positions (a1, b1) 
and (a2, b2) defi ned by

a1 = latitude of P1

b1 = longitude of P1

a2 = latitude of P2

b2 = longitude of P2

Assuming the earth is a sphere, the great circle distance D between points 
P1 and P2 is given by

 
=D Rq

 
(10.14)

where

 
mean radius of the earth ( 3960 miles or 6370 km)= ≅R

 
(10.15)

R

FIGURE 10.9
Rectangular grid distance 

between two random points 

in a circle of radius R.
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and

 
( ){ }−= + −1

1 2 1 2 1 2cos sin sin cos cos cosq a a a a b b
 

(10.16)

with angle q expressed in radians (1° = p/180 rad).

Jennings (1994, pp. 54, 64); Melzak (1983, pp. 132, 140–141).

Note: East and west longitudes can be distinguished by taking longitudes 
east of the prime meridian as positive, and longitudes west of the prime 
meridian as negative (or vice versa). Likewise, north and south latitudes 
can be distinguished by taking latitudes north of the equator as positive, 
and latitudes south of the equator as negative.

Equation 10.16 is based on the law of cosines for sides for a spherical tri-
angle. Under the assumption that the earth is a sphere, the three points 
P1, P2, and the north pole form a spherical triangle with arc angles (in 
degrees) given by 90 − a1, 90 − a2, and q, and with a vertex angle at the 
north pole given by b1 − b2, as shown in Figure 10.10. The law of cosines for 
sides for this spherical triangle gives

 
( ) ( ) ( ) ( ) ( )= − − + − − −1 2 1 2 1 2cos cos 90 cos 90 sin 90 sin 90 cosq a a a a b b

 
(10.17)

North pole

P2

P1

θ

β1–β2

90–α2

90–α1

Equator

α2

α1

FIGURE 10.10
Spherical triangle formed by points P1, P2, and the north pole (with arc angles 90 − a1, 

90 − a2, and q, and vertex angle b1 − b2 at the north pole).
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Ashton and Marsh (1902, p. 129); Chauvenet (1875, p. 179); Jennings (1994, 
pp. 49, 54); Kells, Kern, and Bland (1942, p. 70); Melzak (1983, p. 132); 
Thurston (1997, p. 75).

Since cos(90 − a1) = sin a1, sin(90 − a1) = cos a1, etc., this law (Equation 
10.17) yields the result given by Equation 10.16.

The formula for the angle q given by Equation 10.16 can also be writ-
ten as

 

−
⎧ ⎫− −⎪ ⎪⎛ ⎞ ⎛ ⎞= +⎨ ⎬⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎪ ⎪⎩ ⎭

1 2 1 21 2 2
1 22sin sin cos cos sin

2 2

a a b bq a a
 

(10.18)

Simmons (1945, pp. 292, 294, 300); Sinnott (1984, p. 159). This version of 
the formula for q is mathematically the same as Equation 10.16, but is in a 
more suitable form for computations when the points P1 and P2 are close 
together. It is based on the haversine formula:

 
( ) ( ) ( ) ( ) ( )= − + −1 2 1 2 1 2hav hav cos cos havq a a a a b b

 
(10.19)

where, for any angle a, hav(a) is the haversine of a and is given by

 
( ) ( ) ⎛ ⎞⎡ ⎤= − = ⎜ ⎟⎣ ⎦ ⎝ ⎠

21 1
hav 1 cos sin

2 2
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(10.20)

Ayres (1954, p. 181); Kells, Kern, and Bland (1942, p. 97); Love and Morris 
(1972, p. 62); Simmons (1945, p. 294).
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11
Traffi c Flow and Delay

11.1 Traffic Flow Parameters

Basic parameters for a traffi c stream of vehicles traveling along a roadway 
are

q: traffi c fl ow (vehicles per unit time)
k: concentration (vehicles per unit distance of roadway)
v: speed (distance per unit time)

Traffi c fl ow, q, is the number of vehicles passing a point per unit time, 
typically measured in vehicles per hour. Concentration (or density), k, is 
the number of vehicles per unit length of roadway, typically measured in 
vehicles per kilometer or vehicles per mile. Speed, v, denotes the instan-
taneous speed of a given vehicle (also known as spot speed), typically 
measured in kilometers per hour or miles per hour.

If the vehicles in a traffi c stream are all traveling at the same speed v, 
where v is a constant, then the three parameters above are related by

 
q kv=

 
(11.1)

Wardrop (1952, p. 328); Haight (1963, p. 70).

11.2 Traffic Speeds

Consider a traffi c stream composed of C independent subsidiary streams, 
where vehicles in the stream i travel at a constant speed vi (i = 1, 2, …, C).

Let
qi be the traffi c fl ow in stream i (vehicles per unit time)
ki be the concentration of traffi c in stream i (vehicles per unit distance)
 Q be the total traffi c fl ow in the C streams combined (vehicles per 

unit time)
 K be the total concentration of traffi c in the C streams combined (vehi-

cles per unit distance)
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Then the total fl ow Q and the total concentration K are given by

 1

C

i

i

Q q
=

= ∑
 

(11.2)

and

 1

C

i

i

K k
=

= ∑
 

(11.3)

respectively. Let

 
( )1, 2, ...,it

i
q

f i C
Q

= =

 
( )1, 2, ...,is

i
k

f i C
Q

= =

Then the quantities 1 2, ,t t t
Cf f f…  are the relative frequencies in time of vehi-

cles with speeds v1, v2, … vC. Similarly, the quantities 1 2, ,s s s
Cf f f…  are the 

relative frequencies in space of vehicles with speeds v1, v2, … vC.
These two sets of relative frequencies defi ne distributions of speeds of 

the vehicles in the traffi c stream:

 1 2{ , , } time-distribution of speedst t t
Cf f f =…

 1 2{ , , } space-distribution of speedss s s
Cf f f =…

with 1 1C t
ii f= =∑  and 1 1C s

ii f= =∑ . Corresponding to these distributions, there 
are two different measures for average speed: time-mean speed and space-
mean speed. Let

v̄t be the time-mean speed
v̄s be the space-mean speed

Then the time-mean speed, v̄t, and the space-mean speed, v̄s, are given by

 1 1

1
C C

s
t i i i i

i i

v f v q v
Q

= =

= =∑ ∑
 

(11.4)
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and

 1 1

1
C C

s
s i i i i

i i

v f v k v
K

= =

= =∑ ∑
 

(11.5)

respectively.
From Equation 11.1, the concentration, ki, of traffi c stream i is

 
( )1, 2, ...,i

i
i

q
k i C

v
= =

 
(11.6)

and Equation 11.5 for the space-mean speed therefore becomes

 1

1 1
C

s i

i

v q Q
K K

=

= =∑
 

(11.7)

Hence, total fl ow, Q, total concentration, K, and space-mean speed, v̄s, are 
related by

 sQ K v=
 (11.8)

Wardrop (1952, p. 330); Hall (1992, pp. 2-9–2-10).
Equation 11.8 is known as the fundamental relationship in traffi c. It 

extends Equation 11.1 to the case of traffi c with vehicles traveling at dif-
ferent speeds.

Note that v̄t ≥ v̄s in all cases, with v̄t > v̄s when there are any differences in 
speed among the vehicles. The two mean speeds are related by

 
= +

2
s

t s
s

v v
v
s

 
(11.9)

where 2
ss  is the variance of the space-distribution of speeds, given by

 = =

= − = −∑ ∑2 2 2

1 1

1
( ) ( )

C C
s

s i i s i i s

i i

f v v k v v
K

s
 

(11.10)

If cs denotes the coeffi cient of variation of the space-distribution of speed, 
i.e.,

 
= s

s
s

c
v
s

 
(11.11)
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then Equation 11.9 can be expressed as

 
( )21t s sv v c= +

 
(11.12)

Wardrop (1952, pp. 330–331, 356); Hall (1992, pp. 2-6–2-7).
Calculations of time-mean and space-mean speeds in practice depend 

on how vehicle speeds are measured. If the speeds of N vehicles are 
observed as the vehicles pass a fi xed point in the roadway over a period 
of time, where the observed speed of vehicle j is vj (j = 1, 2, …, N), then the 
average of the observed speeds is the time-mean speed v̄t, i.e.,

 1

1
N

t j

j

v v
N

=

= ∑
 

(11.13)

Assuming these speeds are constant as the vehicles travel along a stretch 
of roadway of length, L, the travel time tj of vehicle j is tj = L/vj (j = 1, 
2, …, N). The average travel time t̄ of the N vehicles is then given by

 1 1

1 1
N N

j
jj j

L
t t

N N v
= =

= =∑ ∑
 

(11.14)

The space-mean speed, v̄s, of these vehicles is the distance traveled divided 
by the average travel time, i.e.,

 
s

L
v

t
=

 
(11.15)

From Equation 11.14, the space-mean speed, v̄s, becomes

 
1

1
1 1s N

i i

v

N v=

=
∑

 

(11.16)

Thus, the space-mean speed is the harmonic mean of the observed speeds, 
vj, of vehicles passing a point in the roadway over a period of time, while 
the time-mean speed is the arithmetic mean.

If, instead, the speeds vj (j = 1, 2, …, N) are the speeds of N vehicles 
observed on the roadway in a one-time snapshot (i.e., the speeds in space 
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at a given instant of time), then it is the space-mean speed that is the 
 arithmetic mean, i.e.,

 1

1
N

s j

j

v v
N

=

= ∑
 

(11.17)

and the variance, 2
ss , in this case is given by

 = =

⎛ ⎞
= − = −⎜ ⎟

⎜ ⎟⎝ ⎠
∑ ∑2 2 2 2

1 1

1 1
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N N

s j s j s

j j

v v v v
N N
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(11.18)

so that the time-mean speed, v̄t, from Equation 11.9 is given in this 
case by

 

2 2

1 1

1

1 N N

j j
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t N
s j
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=

= =
∑ ∑

∑
 

(11.19)

Wardrop (1952, p. 330).

11.3 Delay to Vehicle Merging with Traffic Stream

Consider a vehicle on a minor road waiting to merge with the traffi c 
stream on a main road. The delay to the merging vehicle is the time it 
must wait until there is a large enough time gap to accept in the main road 
traffi c stream. The analytical results given below are from a basic model of 
merging under the following assumptions:

 1. Traffi c fl ows along the main road according to a Poisson process 
with rate Q vehicles per unit time (i.e., time gaps between succes-
sive vehicles are exponentially distributed, with mean 1/Q).

 2. The main road traffi c has priority.

 3. Lengths of vehicles can be neglected.

 4. Driver of merging vehicle accepts a time gap if it is greater than 
(or equal to) a fi xed time gap, called the driver’s critical gap. Driver 
rejects gaps that are less than the critical gap.
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Let
Q be the traffi c fl ow on the main road (vehicles per unit time)
Tc be the critical gap of the driver of the merging vehicle (units of time)
D be the average delay to the merging vehicle (units of time)

2
Ds  be the variance of delay to the merging vehicle (units of time2)

Given assumption 1, the time gaps, t, between successive vehicles on the 
main road have an exponential distribution with probability density func-
tion, f(t), given by

 ( ) (0 )Qtf t Qe t−= ≤ < ∞

By the lack of memory property of the exponential distribution (Equation 
4.9), the fi rst gap the merging vehicle encounters has the same probability 
density function. The probability of no delay is

 { }Pr no delay cQTe−=
 

(11.20)

For this model, the average delay, D, to a merging vehicle is

 
( )1

1cQT
cD e QT

Q
= − −

 
(11.21)

and the variance of delay, 2
Ds , is

 
( )= − −2 2

2

1
2 1c cQT QT

D ce QT e
Q

s
 

(11.22)

Herman and Weiss (1961, p. 837); Weiss and Maradudin (1962, pp. 80–81, 
92); Haight (1963, pp. 140–141); Blumenfeld and Weiss (1970a, p. 126); 
McNeil and Weiss (1974, p. 119).

11.4 Critical Flow on Minor Road

For the merging delay model given above, the critical fl ow on the minor 
road is the capacity at the merge point (i.e., maximum fl ow of traffi c on 
the minor road to ensure a fi nite queue). Given a queue of vehicles on the 
minor road waiting to merge into the main toad traffi c, the critical fl ow 
depends on the time for a vehicle to move up from second in the queue to 
the head of the queue (move-up time).
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Let
Q be the traffi c fl ow on the main road (vehicles per unit time)
Tc be the critical gap of each driver of a merging vehicle
 Tm be the move-up time (time for a vehicle to move up from second to 

the head of the queue)
qc be the critical fl ow of traffi c on the minor road (vehicles per unit time)

For the model and assumptions as in Section 11.3, the critical fl ow is given 
qc by

 1

c

m

QT

c QT

Qe
q

e

−

−=
−  

(11.23)

Evans, Herman, and Weiss (1964, p. 850); Ashworth (1969, p. 273); 
Blumenfeld and Weiss (1970a, p. 136).

11.5  Delay to Traffic Queue on Minor Road 

Waiting to Merge

For the merging delay model given earlier, the delay to a queue of vehi-
cles on the minor road is the time from when a vehicle arrives to join the 
queue until it merges into the main road traffi c. The model is based on 
the same assumptions as in Sections 11.3 and 11.4, and the following addi-
tional assumptions:

 1. Vehicles arrive at the queue on the minor road according to 
a Poisson process with rate q vehicles per unit time (i.e., times 
between arrivals of vehicles are exponentially distributed, with 
mean 1/q).

 2. Traffi c fl ow on the minor road is less than the critical fl ow (i.e., 
q < qc).

Let
Q be the traffi c fl ow on the main road (vehicles per unit time)
 q be the traffi c fl ow on the minor road (vehicles per unit time) (i.e., 

q = arrival rate to the queue on the minor road)
Tc be the critical gap of each driver of a merging vehicle
 Tm be the move-up time (time for a vehicle to move up from second to 

the head of the queue)
 Dq be the average delay to a vehicle in the queue on the minor road 

(units of time)
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For this model, the average delay, Dq, to a vehicle in the queue on the 
minor road waiting to merge into the main road traffi c is

 

( ) ( )1 1

{ ( 1)}

m c c m

m c m

QT QT QT QT
c m

q QT QT QT

Qe e QT qe e QT
D

Q Qe qe e

− − + − −
=

− −
 

(11.24)

Tanner (1962, p. 160); Blumenfeld and Weiss (1970b, p. 142).

11.6 Delay to Vehicle at Traffic Signal

A traffi c signal controls the fl ow of traffi c on each approach to an intersec-
tion. It cycles through the red, green, and yellow phases for each approach. 
The time for one complete cycle is the cycle time. For a given approach 
to the signal, the maximum departure rate of vehicles during the green 
phase is called the saturation fl ow. The portion of the cycle time during 
which traffi c travels through the signal at the saturation fl ow rate, as long 
as there are vehicles on the approach, is the effective green time. This time is 
effectively the time the signal is green, plus part of the subsequent yellow 
time, minus a short start-up time at the beginning of the green phase.

There are various types of traffi c signals, such as fi xed-time signals, 
vehicle-actuated signals, and signals with adaptive control. For a fi xed-
time signal, the cycle time is fi xed, and the times of the phases on each 
approach are fi xed. For a vehicle-actuated signal, the phase times vary 
according to traffi c fl ows. Signals with adaptive control adjust phase times 
to optimize traffi c fl ows over a network. There are many analyses on the 
different types of traffi c signals (see, e.g., Allsop, 1972; Allsop, Ali, Crosta, 
and Heydecker, 2005; McNeil and Weiss, 1974; Newell, 1982, 1989; Webster 
and Cobbe, 1966).

The following formula gives a basic approximation of average delay for 
the simplest case of a fi xed-time signal.

Let
c = cycle time

and for a given approach, let
g = effective green time
q = traffi c fl ow (vehicles per unit time)
s = saturation fl ow (vehicles per unit time)

l = g
c

 = proportion of the cycle that is effectively green

 x = qc
gs

 = ratio of the average number of arrivals per cycle (qc) to a maxi-

mum number of departures per cycle (gs)



Traffi c Flow and Delay 151

Then the average delay per vehicle, D, on the approach to the signal is 
given by Webster’s approximate formula:

 

( )
( ) ( )

⎧ ⎫−⎪ ⎪= +⎨ ⎬− −⎪ ⎪⎩ ⎭

2 21
0.9

2 1 2 1

c x
D

x q x
l
l

 

(11.25)

Webster (1958, pp. 4–5); Wardrop (1968, p. 532); Homburger (1982, p. 457).
The fi rst term accounts for delay to uniform traffi c (i.e., traffi c arriving 

in a steady fl ow). The second term accounts for extra delay to random-
ness of arrivals, based on average queueing time in an M/D/1 queue (see 
Chapter 7). The factor 0.9 is a correction factor, based on simulations, to 
provide a close approximation for the overall average delay per vehicle.
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12
Linear Programming Formulations

12.1 General Formulation

Let x1, x2, …, xN, be N variables in a linear programming problem. The 
problem is to fi nd the values of the variables x1, x2, …, xN to maximize (or 
minimize) a given linear function of the variables, subject to a given set of 
constraints that are linear in the variables.

The general formulation for a linear programming problem is

 1 1 2 2Maximize N NZ c x c x c x= + + +�
 

(12.1)

subject to the constraints

 

11 1 12 2 1 1

21 1 22 2 2 2

1 1 2 2

N N

N N

M M MN N M

a x a x a x b

a x a x a x b

a x a x a x b

+ + + ≤ ⎫
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⎪+ + + ≤ ⎪
⎬
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⎪

+ + + ≤ ⎪⎭

�

�

�

�
 

(12.2)

and

 1 20, 0, , 0Nx x x≥ ≥ ≥…  (12.3)

where aij, bi, cj (i = 1, 2, …, M; j = 1, 2, …, N) are constants.

Chvátal (1983, p. 6); Gass (1964, p. 9); Hillier and Lieberman (1980, p. 22); 
Ignizio (1982, pp. 81–82); Munakata (1979, p. 251); Ozan (1986, pp. 5–6); 
Vanderbei (1997, p. 7); Wagner (1969, p. 81).

In matrix notation, Equations 12.1 through 12.3 for the general formula-
tion are written as

 
Maximize Z = Tc x

 
(12.4)
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subject to the constraints

 ≤Ax b  (12.5)

and

 ≥x 0  (12.6)

where
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(12.7)
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(12.8)

and where cT denotes the transpose of the vector c.

12.2 Terminology

The following terms are commonly used in linear programming:

Decision variables• : Variables x1, x2, …, xN in Equation 12.1

Objective function• : Function Z given by Equation 12.1

Objective function coeffi cients• : Constants c1, c2, …, cN in Equation 12.1

Constraint coeffi cients• : Constants aij in Equation 12.2

Nonnegativity constraints• : Constraints given by Equation 12.3

Feasible solution• : Set of values of x1, x2, …, xN that satisfy all the 
constraints

Feasible region• : Collection of all feasible solutions

Optimal solution• : Feasible solution that gives an optimal value of the 
objective function (i.e., the maximum value of Z in Equation 12.1).
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12.3 Example of a Feasible Region

The feasible region can be shown graphically in the case of two decision 
variables (N = 2). Figure 12.1 illustrates the feasible region for the following 
example:

 1 2Maximize 2Z x x= +
 

(12.9)

subject to the constraints

 

1 2

1 2

3 5 20

4 15

x x

x x

+ ≤ ⎫⎪
⎬

+ ≤ ⎪⎭  

(12.10)

and

 1 20, 0≥ ≥x x
 

(12.11)

x1

x2

Feasible
region

Direction of 
increasing Z

(x1*, x2*)

4x1 + x2 = 15

3x1 + 5x2 = 20

Z = 2x1 + x2

FIGURE 12.1
Feasible region for a linear programming example.
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The optimal solution Z* (i.e., maximum Z) occurs at the point 1 2
* *( , )x x  in 

Figure 12.1. For this example, the point 1 2

55 35* *( , ) ,
17 17

x x ⎛ ⎞= ⎜ ⎟⎝ ⎠ , giving 
145*
17

Z = .

12.4 Alternative Formulations

Linear programming problems in which

The objective function is to be minimized (rather than maxi-• 
mized), or

The constraints contain equalities (• = rather than ≤), or

The constraints contain inequalities with the sign reversed • 
(≥ rather than ≤),

can be reformulated in terms of the general formulation given by Equations 
12.1 through 12.3 in the following ways.

12.4.1 Minimization vs. Maximization

For cases where the objective function Z is to be minimized, the problem 
can be reformulated by expressing the minimization of Z as the maximi-
zation of −Z. Thus, the problem

 1 1 2 2Minimize N NZ c x c x c x= + + +�

is equivalent to

 
( ) ( ) ( )1 1 2 2Maximize N NZ c x c x c x− = − + − + + −�

Dantzig (1963, p. 61); Hillier and Lieberman (1980, p. 51); Vanderbei (1997, 
p. 53); Wagner (1969, p. 78).

12.4.2 Equality Constraints

For cases where some or all of the constraints contain equalities, the prob-
lem can be reformulated by expressing an equality as two inequalities 
with opposite signs. Thus, the constraint

 1 1 2 2i i iN N ia x a x a x b+ + + =�
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is equivalent to

 

1 1 2 2

1 1 2 2

i i iN N i

i i iN N i

a x a x a x b

a x a x a x b

+ + + ≤ ⎫⎪
⎬

+ + + ≥ ⎪⎭

�

�

Dantzig (1963, p. 88); Daskin (1995, p. 22); Hillier and Lieberman (1980, 
p. 51); Vanderbei (1997, p. 7); Wagner (1969, p. 79).

12.4.3 Reversed Inequality Constraints

For cases where some or all of the constraints contain inequalities with the 
sign reversed (≥ rather than ≤), the ≥ signs can be converted to ≤ signs by 
multiplying both sides of the constraints by −1. Thus, the constraint

 1 1 2 2i i iN N ia x a x a x b+ + + ≥�

is equivalent to

 1 1 2 2i i iN N ia x a x a x b− − − − ≤ −�

Hillier and Lieberman (1980, p. 51); Munakata (1979, p. 251); Wagner 
(1969, p. 78).

12.5 Diet Problem

The diet problem arises in optimizing the choice of foods for a healthy 
diet. The problem is to determine the mix of foods in a diet that mini-
mizes the total cost per day, subject to constraints that ensure minimum 
daily nutritional requirements are met. The diet problem is an example of 
a general linear programming problem, in which the objective function is 
to be minimized and the constraints contain ≥ signs. Let

M = number of nutrients
N = number of types of food
aij = number of units of nutrient i in food j (i = 1, 2, …, M; j = 1, 2, …, N)
bi = number of units of nutrient i required per day (i = 1, 2, …, M)
cj = cost per unit of food j (j = 1, 2, …, N)
xj = number of units of food j in the diet per day (j = 1, 2, …, N)

The objective is to fi nd the values of the N variables x1, x2, …, xN to 
minimize the total cost per day, C.
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The linear programming formulation for the diet problem is

 1 1 2 2Minimize N NC c x c x c x= + + +�
 

(12.12)

subject to the constraints
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(12.13)

and

 1 20, 0, , 0Nx x x≥ ≥ ≥…
 (12.14)

where aij, bi, cj (i = 1, 2, …, M; j = 1, 2, …, N) are constants.

Gass (1964, pp. 9–10); Luenberger (1984, pp. 14–15); Spivey and Thrall (1970, 
pp. 39–40); Vanderbei (1997, pp. 78–79).

12.6 Duality

Each linear programming problem has a related linear programming 
problem called the dual problem. The original linear programming problem 
is called the primal problem. For the primal problem defi ned by Equations 
12.1 through 12.3, the corresponding dual problem is to fi nd the values of 
the M variables y1, y2, …, yM to solve the following:

 1 1 2 2Minimize M MV b y b y b y= + + +�
 

(12.15)

subject to the constraints
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(12.16)
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and

 1 20, 0, , 0My y y≥ ≥ ≥…
 

(12.17)

In matrix notation, the primal and dual problems are formulated as
Primal

 

Maximize

subject to

and

Z ⎫=
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x 0
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Dual
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where
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(12.20)

and
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(12.21)

and where cT denotes the transpose of c, etc.
Note that the dual of a dual is the primal.
Duality Theorem: If the primal problem has an optimal solution, then 

the dual problem also has an optimal solution, and the optimal values of 
their objective functions are equal (i.e., Max(Z) = Min(V)).
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Chvátal (1983, pp. 56, 58); Dantzig (1963, pp. 124–125); Gass (1964, 
pp. 84, 90); Hillier and Lieberman (1980, pp. 93, 102); Ignizio (1982, p. 174); 
Munakata (1979, pp. 384, 386); Vanderbei (1997, pp. 53, 56); Wagner (1969, 
pp. 134–135).

12.7 Special Cases of Linear Programming Problems

12.7.1 Transportation Problem

The transportation problem arises in the distribution of material between 
different locations. The problem is to determine the minimum cost of 
shipping material from a set of sources to a set of destinations, given con-
straints on the supply at each source and the demand at each destination. 
Let

m = number of sources
n = number of destinations
si = number of units of supply at source i (i = 1, 2, …, m)
dj = number of units of demand at destination j (j = 1, 2, …, n)
cij = cost per unit of shipping from source i to destination j
xij = number of units to be shipped from source i to destination j

The shipments from each source to each destination are displayed in the 
following table:
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m m mn m
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x x x s

m x x x s

d d d
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…
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…

…

The decision variables xij in the above table must be chosen so that the row 
totals are equal to the supply quantities si and the column totals are equal 
to the demand quantities dj. This ensures that the total number of units 
shipped from each source matches the supply at that source, and the total 
number of units shipped to each destination matches the demand at that 
destination.

The objective is to fi nd the values of the mn variables xij (i = 1, 2, …, m; 
j = 1, 2, …, n) to minimize the total shipping cost, C.
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The linear programming formulation for the transportation problem is

 1 1

Minimize
m n

ij ij

i j

C c x
= =

= ∑∑
 

(12.22)

subject to the constraints

 

1

1

( 1, 2, , )

( 1, 2, , )

n

ij i

j

m

ij j

i

x s i m

x d j n

=

=

⎫
= = ⎪

⎪⎪
⎬
⎪

= = ⎪
⎪⎭

∑

∑

…

…

 

(12.23)

and

 
0 ( 1, 2, , ; 1, 2, , )ijx i m j n≥ = =… …

 
(12.24)

where si and dj (i = 1, 2, …, m; j = 1, 2, …, n) are constants.

Chvátal (1983, p. 345); Dantzig (1951b, pp. 359–360); Gass (1964, pp. 8, 194); 
Hillier and Lieberman (1980, p. 122); Ignizio (1982, p. 283); Luenberger 
(1984, p. 118); Ozan (1986, p. 208); Spivey and Thrall (1970, p. 32); Vanderbei 
(1997, p. 225); Wagner (1969, p. 168).

The above formulation requires that the total supply is equal to the total 
demand, i.e.,

 1 1

m n

i j

i j

s d
= =

=∑ ∑
 

(12.25)

In the more general case, the total supply may be greater than the total 
demand, i.e.,

 1 1

m n

i j

i j

s d
= =

≥∑ ∑
and the problem can then be reformulated in terms of an equality as in 
Equation 12.25 by adding a fi ctitious destination, with the demand equal 
to the difference between the total supply and the total demand

 1 1

m n

i j

i j

s d
= =

−∑ ∑
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and with zero shipping costs from each source (Hillier and Lieberman, 
1980, pp. 123, 126; Wagner, 1969, p. 168).

The quantities si, dj, and xij may often be restricted to integers. Note that, 
if si and dj are integers, the transportation problem as formulated above 
has an optimal solution in which each xij is an integer, and there is no 
need therefore to specify an integer constraint on xij (Luenberger, 1984, 
p. 126; Spivey and Thrall, 1970, p. 32; Wagner, 1969, pp. 167–168). This result 
is known as the integrality property (Ahuja, Magnanti, and Orlin, 1993, 
p. 318; Chvátal, 1983, p. 327; Vanderbei, 1997, p. 218).

The constraints given by Equation 12.23 are a special case of the general 
constraints given by Equation 12.2. In matrix notation, the constraint coef-
fi cients aij for the general linear programming problem with N variables 
and M constraints are given by the general M × N matrix:

 

11 12 1

21 22 2

1 2

N

N

M M MN

a a a

a a a

a a a

⎛ ⎞
⎜ ⎟
⎜ ⎟= ⎜ ⎟
⎜ ⎟⎜ ⎟⎝ ⎠

A

…

…

� � �

…
 

(12.26)

as shown in Equation 12.7. For the transportation problem with mn vari-
ables and (m + n) constraints, the constraint coeffi cients are given by the 
special (m + n) × mn matrix:

 

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

11 12 1 21 22 2 1 2

                                 Coefficients of :

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

n n m m mnx x x x x x x x x

A

… … … …

�

�

�

�

� � �

 
(12.27)

where all the empty elements in this matrix are zero. The fi rst m rows are 
the coeffi cients for the supply constraints. The remaining n rows are the 
coeffi cients for the demand constraints.
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Thus, the transportation problem is a special case of the general linear 
programming problem, in which the constraint coeffi cients aij are 0 or 1 
in the particular pattern as shown in Equation 12.27. Any linear program-
ming problem that can be formulated with this special structure is called 
a transportation problem, even if it does not involve the physical transpor-
tation of material.

Table 12.1 shows the correspondence between the general linear pro-
gramming formulation and the transportation problem formulation, 
based on the notation used in Equation 12.1 through 12.3 and 12.22 
through 12.24.

12.7.2 Transshipment Problem

In the transportation problem, shipments only occur from sources to 
destinations. The transshipment problem is an extension of the transporta-
tion problem, in which shipments can occur between any two locations 
(i.e., from source to source, destination to destination, and destination 
to source, as well as from source to destination). This extension allows 
sources and destinations to serve as intermediate transfer points (known 
as transshipment points), so that there are alternative routings in the dis-
tribution of material to meet demand.

The transshipment problem can be reformulated as a transportation 
problem, by treating all locations as both potential sources and destina-
tions, and considering movements of material between all pairs of loca-
tions. For the problem of m sources supplying material to meet demand at 
n destinations, the m × n transshipment problem becomes an (m + n) × (m + n) 
transportation problem.

TABLE 12.1

Correspondence between General and Transportation Problem Formulations

General Linear Programming 

Problem (Equations 12.1 

through 12.3)

Transportation Problem 

(Equations 12.22 

through 12.24)

Number of decision 

variables

N mn

Number of constraints M m + n
Constraint conditions Inequalities (≤) Equalities (=)

Decision variables x1, x2, …, xN x11, …, x1n, …, xm1, …, xmn

Objective function 

coeffi cients

c1, c2, …, cN c11, …, c1n, …, cm1, …, cmn

Constraint constants b1, b2, …, bM s1, …, sm, d1, …, dn

Constraint coeffi cients aij (as in Equation 12.26) 0 and 1 (as in Equation 

12.27)
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Hillier and Lieberman (1980, pp. 146–151); Ignizio (1982, pp. 305–312); Ozan 
(1986, pp. 259–262); Wagner (1969, pp. 171–176).

12.7.3 Assignment Problem

The assignment problem is a special case of the transportation problem, with 
specifi c values for the decision variables and the constraint constants. It 
arises in the decision on how to allocate a group of individuals to a group 
of tasks, under the following rules:

Each individual is assigned to one task only.• 

Each task is performed by one individual only.• 

The number of tasks is equal to the number of individuals. The problem 
is to determine the assignment of individuals to tasks to minimize total 
cost (or time), given the costs (or times) of each individual for each task. 
Let

n = number of individuals = number of tasks
cij = cost of assigning individual i to task j

1 if individual is assigned to task

0 otherwise
ij

i j
x

⎧⎪= ⎨
⎪⎩

The assignments of individuals to tasks are displayed in the following 
table:

 

11 12 1

21 22 2

1 2

                                     Task

1 2 Total

1 1

2 1
Individual   

1

Total 1 1 1

n

n

n n nn

n

x x x

x x x

n x x x

n

�

…

…

� � � � �

…

�

The decision variables xij in the above table must be chosen so that each 
row and each column adds up to 1. This ensures that there is exactly one 
task per individual, and exactly one individual per task.

The objective is to fi nd the values of the n2 variables xij (i = 1, 2, …, n; j = 1, 
2, …, n) to minimize the total assignment cost, C.

The linear programming formulation for the assignment problem is

 1 1

Minimize
n n

ij ij

i j

C c x
= =

= ∑∑
 

(12.28)



Linear Programming Formulations 165

subject to the constraints

 

1

1

1 ( 1, 2, , )

1 ( 1, 2, , )

n

ij

j

n

ij

i

x i n

x j n

=

=

⎫
= = ⎪

⎪⎪
⎬
⎪

= = ⎪
⎪⎭

∑

∑

…

…

 

(12.29)

and

 
0 ( 1, 2, , ; 1, 2, , )ijx i n j n≥ = =… …

 
(12.30)

Bradley, Hax, and Magnanti (1977, p. 316); Gass (1964, p. 210); Hillier and 
Lieberman (1980, pp. 151–153); Ignizio (1982, p. 323); Luenberger (1984, 
p. 133); Ozan (1986, p. 271); Spivey and Thrall (1970, pp. 217–218); Vanderbei 
(1997, p. 226); Wagner (1969, p. 177).

The assignment problem given by Equations 12.28 through 12.30 is 
a special case of the transportation problem given by Equations 12.22 
through 12.24 in which

 m = n

 
1 ( 1, 2, , )is i n= = …

 
1 ( 1, 2, , )jd j n= = …

and in which the decision variables xij are constrained to be integers 0 or 1.
Note that the integer constraint on xij need not be specifi ed in the 

assignment problem formulation. The standard constraint xij ≥ 0 is suffi -
cient (even though it allows fractional values for xij), since the assignment 
problem as formulated above has an optimal solution in which each xij is 
0 or 1 (Bradley, Hax, and Magnanti, 1977, p. 316; Luenberger, 1984, p. 134; 
Spivey and Thrall, 1970, p. 218). This result is an example of the integrality 
property (Ahuja, Magnanti, and Orlin, 1993, p. 318; Chvátal, 1983, p. 327; 
Vanderbei, 1997, p. 218).

12.8 Integer Linear Programming Formulations

Integer linear programming problems are linear programming prob-
lems in which some or all of the decision variables are constrained to be 
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integers. For the N variables x1, x2, …, xN, the general formulation for an 
integer linear programming problem is

 1 1 2 2Maximize N NZ c x c x c x= + + +�
 

(12.31)

subject to the constraints

 

11 1 12 2 1 1

21 1 22 2 2 2

1 1 2 2

N N

N N

M M MN N M

a x a x a x b

a x a x a x b

a x a x a x b

+ + + ≤ ⎫
⎪
⎪+ + + ≤ ⎪
⎬
⎪
⎪

+ + + ≤ ⎪⎭

�

�

�

�
 

(12.32)

 1 20, 0, , 0Nx x x≥ ≥ ≥…
 

(12.33)

and

 
integer (for some or all 1, 2, , )jx j N= …

 
(12.34)

where aij, bi, cj (i = 1, 2, …, M; j = 1, 2, …, N) are constants.

Bradley, Hax, and Magnanti (1977, p. 366); Garfi nkel and Nemhauser (1972, 
p. 5); Nemhauser and Wolsey (1988, p. 27).

An example of the general formulation for an integer linear program-
ming problem is the diet problem given in Section 12.5, with the added 
constraint that some or all of the numbers of units of food per day in the 
diet are restricted to integers. Examples of special cases of integer linear 
programming problems are the knapsack problem and the traveling salesman 
problem.

12.8.1 Knapsack Problem

The knapsack problem arises in the selection of items to include in a knap-
sack, given a limit on how much can be carried. For items of different 
values and different weights, the problem is to determine the optimal (i.e., 
most valuable) selection of items, subject to a weight constraint on the 
total number of items. Let

N = number of types of items
cj = value of item type j (j = 1, 2, …, N)
aj = weight of item type j (j = 1, 2, …, N)
b = limit on total weight of items
xj = number of items of type j included in knapsack
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The objective is to fi nd the values of the N variables x1, x2, …, xN to 
maximize the total value Z of items included in knapsack.

The integer linear programming formulation for the knapsack problem is

 1 1 2 2Maximize N NZ c x c x c x= + + +�
 

(12.35)

subject to the constraints

 1 1 2 2 N Na x a x a x b+ + + ≤�  (12.36)

 1 20, 0, , 0Nx x x≥ ≥ ≥…
 

(12.37)

and

 1 2, , , integersNx x x…
 

(12.38)

where aj, b, cj (j = 1, 2, …, N) are constants.
The knapsack problem given by Equations 12.35 through 12.38 is a spe-

cial case of the integer linear programming problem given by Equations 
12.31 through 12.34, in which the set of constraints in Equation 12.32 
reduces to only one constraint (i.e., number of constraints M = 1) with 
aij = aj, and bi = b, as given by Equation 12.36.

If no more than one of any item type may be included in the knap-
sack, then the integer constraint given by Equation 12.38 is replaced by 
the constraint

 

1 if item type is included in the knapsack
( 1, 2, , )

0 otherwise
j

j
x j N

⎧⎪= =⎨
⎪⎩

…

 
(12.39)

and the problem is called a 0-1 knapsack problem.

Bradley, Hax, and Magnanti (1977, p. 368); Garfi nkel and Nemhauser (1972, 
p. 215); Murty (1976, p. 404); Ozan (1986, p. 362).

12.8.2 Traveling Salesman Problem

The classic traveling salesman problem arises in the choice of route to visit a 
set of locations. The problem is to determine the shortest tour connecting 
all locations, when each location is to be visited exactly once. Let

n = number of locations to be visited
cij = travel distance from location i to location j (i, j = 1, 2, …, n)
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1 if tour leads directly from location to location

0 otherwise                               ( 1 2 )
ij

i j
x

i, j   , , , n

⎧⎪= ⎨
=⎪⎩ …

The objective is to fi nd the values of the n2 variables xij (i = 1, 2, …, n; j = 1, 
2, …, n) to minimize the total tour distance, C. Note that cij and C may 
represent travel time or cost, rather than distance.

The integer linear programming formulation for the traveling salesman 
problem is

 1 1

Minimize
n n

ij ij

i j

C c x
= =

= ∑∑
 

(12.40)

subject to the constraints
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1

1 ( 1, 2, , )

1 ( 1, 2, , )
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(12.41)

 
0 ( 1, 2, , ; 1, 2, , )ijx i n j n≥ = =… …

 
(12.42)

 
integers ( 1, 2, , ; 1, 2, , )= =… …ijx i n j n

 
(12.43)

and

 

1ij

i S j S

x
∈ ∉

≥∑∑
 

(12.44)

where S is any nonempty subset of the n locations.

Bradley, Hax, and Magnanti (1977, pp. 371–372); Garfi nkel and Nemhauser 
(1972, p. 356).

To ensure that a tour does not contain any link going from and to the 
same location, the solution must have xii = 0 for all i. This may be achieved 
by setting cii to a very large number for all i.

The fi rst set of constraints in Equation 12.41, i.e., 1 1( 1,= = =∑n
ijj x i

2, , )n… , ensures that the tour leaves each location exactly once. The 
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second set of constraints in Equation 12.41, i.e., 1 1( 1, 2, , )= = =∑ …n
iji x j n , 

ensures that the tour enters each location exactly once.
The set of constraints for subsets S, given by Equation 12.44, ensures 

that the tour connects all n locations. Without such constraints, the prob-
lem formulation would allow for disconnected subtours, which are not 
valid. Figure 12.2 illustrates the cases of a tour and subtours. The require-
ment that subtours be excluded can also be formulated in other ways. An 
alternative formulation for excluding subtours is given by the constraints

 
1 ( 2, 3, , ; 2, 3, , ; )i j iju u nx n i n j n i j− + ≤ − = = ≠… …

 
(12.45)

where ui (i = 2, 3, …, n) are arbitrary real numbers (Gass, 1964, pp. 165–166; 
Murty, 1976, p. 411; Wagner, 1969, pp. 455–456).

Note that, without a set of constraints to exclude subtours, the formula-
tion would be the same as for the assignment problem. Thus, the solution 
to the assignment problem provides a lower bound on the cost C in the 
traveling salesman problem (Garfi nkel and Nemhauser, 1972, p. 356).

12.9 Solution Methods

12.9.1 Simplex Method

The standard technique for solving general linear programming problems 
is the simplex method. It can be used to solve maximization or minimiza-
tion problems with any of the standard constraints. The simplex method 
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FIGURE 12.2
Tour and subtours in traveling salesman problem.
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systematically searches for solutions on the boundary of the feasible 
region, improving on the value of the objective function with each itera-
tion until the optimum is reached.

Chvátal (1983, pp. 13–134); Cohen (1985, pp. 22–25); Cormen, Leiserson, 
Rivest, and Stein, (2001); Dantzig (1951a, pp. 339–347); Dantzig (1963, pp. 
94–111); Gass (1964, pp. 59–80, 96–113); Hillier and Lieberman (1980, pp. 
33–46, 68–91); Karloff (1991, pp. 23–47); Munakata (1979, pp. 323–348); 
Vanderbei (1997, pp. 11–110); Wagner (1969, pp. 96–122).

12.9.2 Interior-Point Methods

A different technique for solving general linear programming problems 
is the class of methods known as interior-point methods. These meth-
ods include Karmarkar’s algorithm and primal-dual interior-point methods. 
Interior-point methods search for solutions in the interior of the feasible 
region, improving on the value of the objective function with each itera-
tion. At the fi nal step, the search procedure jumps to the boundary of the 
feasible region for the optimal solution.

Karloff (1991, pp. 103–130); Karmarkar (1984, pp. 373–395); Mehrotra (1992, 
pp. 575–601); Wright (1997, pp. 4–46).

12.9.3 Network Flow Methods

A technique for solving the above special cases of linear programming 
problems (transportation problem, transshipment problem, assignment 
problem) is the class of methods known as network fl ow methods. These 
methods take advantage of the special structure of such problems, repre-
senting each problem in terms of fl ows on a network of nodes connected 
by arcs.

Ahuja, Magnanti, and Orlin (1993, pp. 294–344); Bradley, Hax, and 
Magnanti (1977, pp. 310–319); Cormen, Leiserson, Rivest, and Stein (2001, 
pp. 643–663); Ignizio (1982, pp. 344–368).

12.9.4 Cutting Planes

A technique for solving integer linear programming problems is the 
method of cutting planes. Cutting planes are additional linear constraints 
that are introduced into the linear programming formulation. By the addi-
tion of appropriate constraints, the cutting planes method systematically 
cuts away part of the feasible region to eliminate non-integer solutions 
without eliminating feasible integer solutions.

Garfi nkel and Nemhauser (1972, pp. 155–207); Nemhauser and Wolsey 
(1988, pp. 367–378); Ozan (1986, pp. 306–323).
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12.9.5 Branch and Bound

Another technique for solving integer linear programming problems is 
the method known as branch and bound. Since the decision variables in 
integer programming problems are discrete, the number of feasible solu-
tions is fi nite. If the number is small, the solutions can be enumerated. In 
general, however, there are too many feasible solutions to allow a com-
plete enumeration. Branch and bound provides a systematic enumeration 
procedure that considers bounds on the objective function for different 
subsets of solutions and eliminates the subsets of nonoptimal solutions.

Bradley, Hax, and Magnanti (1977, pp. 387–395); Garfi nkel and Nemhauser 
(1972, pp. 111–122); Hillier and Lieberman (1980, pp. 716–732); Murty (1976, 
pp. 437–478); Nemhauser and Wolsey (1988, pp. 355–367); Ozan (1986, pp. 
324–351).
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13
Heuristic Search Methods

13.1 Overview of Heuristics

Let x1, x2, …, xN be N decision variables in an optimization problem. In the 
general case, the problem is to search for values of the variables, x1, x2, …, 
xN, to maximize (or minimize) a given general function of the variables, 
subject to a given set of general constraints on the variables. The general 
formulation for the maximization problem is

 
( )1 2Maximize , , , Nf x x x…

 
(13.1)

subject to the M constraints

 

( )
( )

( )

1 1 2 1

2 1 2 2

1 2
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g x x x b
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⎬
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…

…

�

…
 

(13.2)

where
f(.) and gi(.) (i = 1, 2, …, M) are general functions
bi (i = 1, 2, …, M) are constants

Expressing the decision variables in vector notation:

 

1

2

N

x

x

x

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎜ ⎟⎝ ⎠

x
�

 

(13.3)
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the general formulation for the maximization problem is written as

 
Maximize ( )f x

 
(13.4)

subject to the constraints

 
( ) ( 1, 2, , )i ig b i M≤ =x …

 
(13.5)

For the minimization problem, the corresponding general formulation is

 
Minimize ( )f x

 
(13.6)

subject to the constraints

 
( ) ( 1, 2, , )i ig b i M≥ =x …

 
(13.7)

A set of values for x that satisfi es all the constraints in a given problem 
is a feasible solution. The collection of all feasible solutions is the feasible 
search space.

In cases where f(x) and gi(x) take on particular functional forms, the opti-
mization problem can be solved using specifi c techniques or algorithms. 
For example, in the special case where f(x) and gi(x) are linear functions 
of the decision variables, the problem reduces to a linear programming 
problem with standard solution methods (see Chapter 12). Also, for cer-
tain types of functions f(x) and gi(x), the problem can be solved using 
Lagrange multipliers (see Chapter 16). In many cases, however, there is no 
known method for fi nding the optimal solution, and heuristics are often 
employed to obtain an acceptable solution.

Heuristics can be defi ned as methods that seek near-optimal solutions, 
using a reasonable amount of computational effort. They typically involve 
systematic but non-rigorous methods of exploration. Unlike formal math-
ematical optimization methods, heuristics do not guarantee optimal solu-
tions, and may not even guarantee feasible solutions, but can generally 
yield attainable solutions for use in practice.

If the variables x1, x2, …, xN take discrete values, the problem becomes 
a combinatorial optimization problem, with a fi nite number of feasible 
solutions. However, in general the number would be too large to enumer-
ate them all and fi nd the optimal solution. Various heuristics have been 
developed to reduce the number of computations needed in any optimi-
zation problem. Examples of commonly used heuristics are given in the 
following sections.
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Heuristics typically start with a feasible solution and use an iterative 
procedure to search for improved solutions. For the minimization prob-
lem (Equation 13.6) with feasible search space F, an heuristic searches for a 
practical solution close to the optimal solution x* where, for any x ∈ F,

 
( *) ( )f f<x x

Gilli and Winker (2008); Michalewicz and Fogel (2004); Rayward-Smith, 
Osman, Reeves, and Smith (1996); Reeves (1993); Silver (2004); Winkler and 
Gilli (2004).

13.2 Local Search Methods

Local search (or neighborhood search) methods are a class of heuristics in 
which the iterative procedure starts with a feasible solution, and then at 
each iteration fi nds an improvement on the current solution by searching 
the neighborhood of the current solution. This neighborhood is a set of 
feasible solutions where the values of the decision variables are close to 
those of the current solution. Each time a new solution in the neighbor-
hood is an improvement, it is used to update the current solution. The 
iterative procedure ends based on pre-specifi ed stopping criteria, such 
as when no further improvement is found or when the total number of 
 iterations reaches a given limit.

Let
F be the feasible search space
N (x) be the set of solutions in the neighborhood of x, where N (x) ⊂ F

In terms of the minimization problem given by Equation 13.6, the algo-
rithm for a local search heuristic consists of the following steps:

 1. Select a solution xcurrent ∈ F as the initial current solution

 2. Select a new solution xnew ∈ N (xcurrent)

 3. If f(xnew) < f(xcurrent) then set xnew = xcurrent

 4. Repeat steps 2 and 3 until the stopping criteria is met (e.g., limit on 
number of iterations)

Gilli and Winker (2008); Michalewicz and Fogel (2004); Michiels, Aarts, 
and Korst (2007); Rayward-Smith, Osman, Reeves, and Smith (1996); Silver 
(2004); Winkler and Gilli (2004).

Note that a local search heuristic has the drawback that it might yield a 
local optimum rather than the global optimum. The performance of the 
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heuristic depends on the choice of size for a neighborhood N (x). If the 
size of the neighborhood is small, the algorithm needs only to search for 
a few solutions at each iteration, but is likely to become trapped in a local 
optimum. If the size of the neighborhood is large, the number of com-
putations is likely to become prohibitively large. The trade-off between 
neighborhood size and effi ciency of the search is a limitation of the local 
search method.

13.3 Simulated Annealing

Simulated annealing is an iterative heuristic that extends the local search 
method, described above, to allow for a new solution at some iterations 
to be worse than the current solution, rather than an improvement. This 
extension helps to avoid getting trapped in a local optimum. By accept-
ing inferior solutions in some neighborhoods, the heuristic searches more 
widely within the feasible search space, so that it is more likely to escape 
a local optimum and move to the global optimum.

Like the local search method, the simulated annealing heuristic searches 
for a new solution xnew at each iteration in the neighborhood of the current 
solution xcurrent. If the new solution is an improvement, it is accepted as 
the update to the current solution, just as in the local search method. In 
addition, if the new solution is inferior to the current solution, the new 
solution is sometimes accepted, with a given probability that depends on 
the difference between the values of f(x) for the new and current solutions. 
The bigger this difference, the smaller the probability that the new (infe-
rior) solution is accepted as the update to the current solution. The accep-
tance probability is determined by whether a random number u generated 
between 0 and 1 is less than or greater than the function e−Δ/T, where Δ 
is the difference between f(xnew) and f(xcurrent), and T is a specifi ed control 
parameter. When a new solution is inferior, it is still accepted if u satisfi es 
the condition

 
Tu e−Δ<

Figure 13.1 illustrates this acceptance criterion. When incorporated into 
the heuristic, it provides a stochastic approach for seeking solutions away 
from a local optimum.

The simulated annealing heuristic is based on an analogy to the physical 
process of annealing that occurs in thermodynamics, when a heated mate-
rial cools down and changes its structure under a controlled temperature-
lowering schedule. The function e−Δ/T is the equivalent of the Boltzmann 
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factor used in the physical annealing process to express the probability 
of the state of a system in terms of energy and temperature (Kittel and 
Kroemer, 1980; Landsberg, 1978; Sturge, 2003). Simulated annealing is a 
method that simulates this process in order to calculate properties of the 
changing states of a material during annealing (Metropolis, Rosenbluth, 
Rosenbluth, Teller, and Teller, 1953). Analogous to investigating states 
in a physical system, the same method has been applied to calculating 
solutions for optimization problems (Černý, 1985; Kirkpatrick, Gelatt, and 
Vecchi, 1983; Schwarzschild, 1982).

In applying this analogy for the simulated annealing heuristic in opti-
mization, the control parameter T in the function e−Δ/T is referred to as 
the “temperature.” The “temperature” T is initially set at a high value, 
in order to accept inferior solutions frequently, and is then gradually 
lowered as the iterative procedure progresses to allow fewer and fewer 
 inferior solutions.

Let
F be the feasible search space
N (x) be the set of solutions in the neighborhood of x, where N (x) ⊂ F

In terms of the minimization problem given by Equation 13.6, the algo-
rithm for a simulated annealing heuristic consists of the following steps:

 1. Select a solution xcurrent ∈ F as the initial current solution

 2. Set value for the control parameter T

 3. Select a new solution xnew ∈ N (xcurrent)

 4. Compute Δ = f(xnew) − f(xcurrent)

Accept new solution

1

e–Δ/T

Δ/T

0
0

u

Reject new solution

FIGURE 13.1
Acceptance criterion for the simulated annealing heuristic.
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 5. Generate a random number u from the uniform distribution in 
the range [0, 1]

 6. If (Δ < 0), or if (Δ > 0 and u < e−Δ/T), then set xnew = xcurrent

 7. Repeat steps 2 and 6 until the stopping criteria is met (e.g., limit 
reached on number of iterations)

Dowsland (1993); Duque-Antón (1997); Gilli and Winker (2008); Michalewicz 
and Fogel (2004); Monticelli, Romero, and Asada (2008); Rayward-Smith, 
Osman, Reeves, and Smith (1996); Silver (2004); Winkler and Gilli (2004).

13.4 Tabu Search

Tabu search is an iterative heuristic that, like simulated annealing, is 
based on the local search method and includes a strategy to avoid a local 
optimum. Unlike simulated annealing, however, the basic form of tabu 
search uses a deterministic rather than a stochastic approach for avoid-
ing a local optimum. The tabu search heuristic is a search method with 
memory. The memory is structured to record previously visited solutions 
and other solutions that are not wanted. The heuristic uses the memory to 
ensure such solutions are forbidden (tabu) in the search for a new solution. 
This helps to avoid cycling (i.e., visiting the same solution more than once) 
and to broaden the search within the feasible search space.

A tabu list contains the forbidden solutions. This list is updated as the 
heuristic goes through more iterations. Criteria vary in different problems 
for determining which solutions are added to the tabu list and for how 
many iterations they remain on the list.

Let
F be the feasible search space
N (x) be the set of solutions in the neighborhood of x, where N (x) ⊂ F
T  be the tabu list (i.e., the set of forbidden solutions)

In terms of the minimization problem given by Equation 13.6, the algo-
rithm for a tabu search heuristic consists of the following steps:

 1. Select a solution xcurrent ∈ F as the initial current solution

 2. Select a new solution xnew ∈ N (xcurrent)

 3. If f(xnew) < f(xcurrent) then set xnew = xcurrent

 4. Add xnew to the tabu list T

 5. Update memory (e.g., delete older solutions from T )

 6. Repeat steps 2 to 5 until the stopping criteria is met (e.g., limit 
reached on number of iterations)
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Gilli and Winker (2008); Glover (1986); Glover and Laguna (1993); Glover, 
Tallard, and de Werra (1993); Ibidapo-Obe and Asaolu (2006); Michalewicz 
and Fogel (2004); Rayward-Smith, Osman, Reeves, and Smith (1996); Silver 
(2004); Winkler and Gilli (2004).

13.5 Genetic Algorithms

Genetic algorithms are iterative heuristics that use a group (or population) of 
current solutions, rather than one current solution at a time as in simulated 
annealing or tabu search methods, in order to fi nd new improved solutions.

At each iteration, the heuristic for a genetic algorithm evaluates the 
 individual solutions in the current population, and uses the evaluations to 
defi ne probabilities for selecting solutions. For each solution x, the evalua-
tions may be the values of the function f(x) to be optimized, or some other 
related measure. The probabilities determine the likelihood of each solu-
tion being selected, and are used to randomly select pairs of solutions. For 
each pair, the heuristic combines part of one solution with part of the other, 
so that the components from the individual solutions are recombined to 
construct a new solution. Occasionally, some components of solutions at 
random are also altered to widen the exploration of solutions throughout 
the search space. The set of new solutions becomes the new population for 
the next iteration. The algorithm ends according to pre-specifi ed stopping 
criteria, such as when an acceptable solution is found or when the total 
number of iterations reaches a given limit.

The heuristic is based on an analogy to the generation of successive 
populations of organisms, where individuals of each new population 
inherit genetic characteristics of pairs of individuals from the previous 
population. In this analogy for a mathematical optimization problem, 
solutions represent the individuals in a population.

Let
P be a population of solutions
x be a solution in P

A genetic algorithm consists of the following steps:

 1. Generate a population P of solutions as the initial population

 2. Evaluate each solution x in P

 3. Defi ne probabilities p(x) for selecting solutions based on evaluations

 4. Use probabilities p(x) to generate pairs of solutions xa and xb 
from P

 5. Recombine components from each pair xa and xb to form new 
solutions xc
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 6. Alter some components at random with a pre-specifi ed low rate

 7. Use new solutions xc as new population P

 8. Repeat steps 2 to 7 until the stopping criteria is met (e.g., accept-
able solution found or limit reached on number of iterations)

Chu and Beasley (1997); Gilli and Winker (2008); Michalewicz and Fogel 
(2004); Rayward-Smith, Osman, Reeves, and Smith (1996); Silver (2004); 
Winkler and Gilli (2004).

13.6 Other Heuristics

Various other heuristics have been developed to solve optimization prob-
lems (Lee and El-Sharkawi, 2008; Michalewicz and Fogel, 2004; Reeves, 
1993; Silver, 2004). An heuristic known as the ant colony optimization 
uses the analogy of ants searching for food, and mimics their collective 
behavior in establishing the shortest routes between two points (Blum 
and Dorigo, 2004; Dorigo, Maniezzo, and Colorni, 1996; Song, Lu, Lee, and 
Yo, 2008).

An enhancement of local search methods (Section 13.2) is the variable 
neighborhood search heuristic, which allows for a systematic change of 
neighborhoods to avoid a local optimum (Hansen and Mladenovic’, 2001). 
One of the simplest heuristics for solving general optimization problems 
is the greedy algorithm, which sequentially fi nds the best value for each 
of the decision variables (Cormen, Leiserson, Rivest, and Stein, 2001; 
Michalewicz and Fogel, 2004). The greedy algorithm uses a convenient 
but myopic approach that may yield acceptable but suboptimal solutions. 
To improve exploration of the search space, heuristics have been devel-
oped that combine greedy algorithms with randomized search techniques 
(Consoli, Darby-Dowman, Mladenovic’, and Pérez, 2009; Feo and Resende, 
1995).

For some optimization problems, various techniques have been con-
structed that integrate two of more basic heuristic procedures to form 
hybrid heuristics (Clark, 2003; Lee and Lee, 2005; Michalewicz and Fogel, 
2004; Silver, 2004; Winkler and Gilli, 2004).
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14
Order Statistics

14.1 General Distribution Order Statistics

Let X1, X2, …, Xn be n independent and identically distributed random 
variables, each with a probability density function f(x) and a cumulative 
distribution function F(x), i.e.,

 

{ }Pr ( ) ( )

x

iX x F x f t dt
−∞

≤ = = ∫

For given X1, X2, …, Xn, the order statistics X(1), X(2), …, X(n) are random 
variables with their values arranged in ascending order, i.e.,

 (1) (2) ( )nX X X≤ ≤ ≤�

In particular, the random variables X(1) and X(n) are the smallest and larg-
est order statistics, respectively, i.e.,

 ( )(1) 1 2min , , , nX X X X= …

 ( )( ) 1 2max , , ,n nX X X X= …

In general, the random variable X(k) is known as the kth-order statistic.
Let

fk(x) be the probability density function of X(k)

Fk(x) be the cumulative distribution function of X(k)

Then fk(x) is given by

 
{ } { }1!

( ) ( ) 1 ( ) ( )
( 1)!( )!

k n k
k

n
f x F x F x f x

k n k
− −= −

− −  
(14.1)
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and Fk(x) is given by

 

{ }{ } −

=

⎛ ⎞
= −⎜ ⎟
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(14.2)

where

 

!

!( )!

n n
i n ii

⎛ ⎞
=⎜ ⎟ −⎝ ⎠

Balakrishnan and Sinha (1995, p. 18); Bolch, Greiner, de Meer, and Trivedi 
(1998, p. 31); Cox and Hinkley (1974, p. 466); Ross (2003, pp. 60–61).

When k = 1, Equations 14.1 and 14.2 reduce to the probability density 
function and the cumulative distribution function for the minimum of 
the n random variables, min(X1, X2, …, Xn):

 
{ } 1

1( ) 1 ( ) ( )
nf x n F x f x−= −

 
(14.3)

 
{ }1( ) 1 1 ( )

nF x F x= − −
 

(14.4)

(see Equations 5.5 and 5.3).
Similarly, when k = n, Equations 14.1 and 14.2 reduce to the probability 

density function and the cumulative distribution function for the maxi-
mum of the n random variables, max(X1, X2, …, Xn):

 
{ } 1

( ) ( ) ( )
n

nf x n F x f x−=
 

(14.5)

 
{ }( ) ( )

n
nF x F x=

 
(14.6)

(see Equations 5.4 and 5.2).

14.2 Uniform Distribution Order Statistics

For the special case where X(1), X(2), …, X(n) are order statistics of a uniform 
distribution over the range [0,1], i.e.,
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( ) 1 (0 1)f x x= ≤ ≤

 
( ) (0 1)F x x x= ≤ ≤

the probability density function fk(x) for the kth-order statistic X(k) (k = 1, 
2, …, n) is given by

 
( ) ( )1!

1 (0 1)
( 1)!( )!

n kk
k

n
f x x x x

k n k
−−= − ≤ ≤

− −  
(14.7)

David (1970, pp. 8, 11); Ebrahimi, Soofi , and Zahedi (2004, p. 177).
Equation 14.7 is the probability density function for a beta distribution 

(see Equation 4.30). Thus, the kth-order statistic of a uniform distribution 
has a beta distribution.

The mean and the variance of the kth-order statistic, X(k), in this case are 
given by

 
( )[ ]

1
k

k
E X

n
=

+  
(14.8)

and

 
( ) 2

( 1)
[ ]

( 1) ( 2)
k

k n k
Var X

n n
− +=

+ +  
(14.9)

respectively (Ahsanullah and Nevzorov, 2005, pp. 104–105).
When k = 1, Equations 14.8 and 14.9 reduce to the mean and the variance 

of the minimum of n random variables from a uniform distribution:
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1
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1
E X

n
=

+  
(14.10)

and
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( 1) ( 2)

n
Var X

n n
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(14.11)

respectively.
Similarly, when k = n, Equations 14.8 and 14.9 reduce to the mean and 

the variance of the maximum of n random variables from a uniform 
distribution:
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E X

n
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(14.12)
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and

 
( ) 2

[ ]
( 1) ( 2)

n
n

Var X
n n

=
+ +  

(14.13)

respectively.
Note that the variances of the minimum and maximum, given by 

Equations 14.11 and 14.13, respectively, are the same, i.e., Var[X(1)] = Var[X(n)] 
when the order statistics are from a uniform distribution.

14.3 Exponential Distribution Order Statistics

For the special case where X(1), X(2), …, X(n) are order statistics of an expo-
nential distribution with parameter l, i.e.,

 ( ) −= ≤ < ∞(0 )xf x e xll

 ( ) −= − ≤ < ∞1 (0 )xF x e xl

the probability density function fk(x) for the kth-order statistic X(k) (k = 1, 
2, …, n) is given by
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Balakrishnan and Sinha (1995, p. 18).
The mean and the variance of the kth-order statistic X(k) in this case are 

given by
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and
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(14.16)
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respectively Ahsanullah and Nevzorov (2005, p. 112); Balakrishnan and 
Sinha (1995, p. 19); Cox and Hinkley (1974, p. 468).

When k = 1, Equation 14.14 reduces to

 ( ) −= ≤ < ∞1 (0 )n xf x n e xll
 

(14.17)

Thus the minimum of n random variables from an exponential distribu-
tion with parameter l has an exponential distribution with parameter nl. 
The mean and the variance for the case k = 1 (i.e., for the minimum of n 
random variables from an exponential distribution) are given by
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(14.18)

 
=(1) 2

1
[ ]

( )
Var X

nl  

(14.19)

When k = n, Equation 14.14 becomes
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1
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(14.20)

and from Equations 14.15 and 14.16 the mean and the variance for the 
maximum of n random variables from an exponential distribution are 
given by Equations 2.47 and 2.48, i.e.,
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and
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respectively Balakrishnan and Sinha (1995, p. 19); Cox and Hinkley 
(1974, p. 468); Nahmias (1989, p. 553).





187

15
Mathematical Functions

15.1 Gamma Function

The gamma function, denoted by Γ(n), is defi ned by

 

1

0

( ) n tn t e dt
∞

− −Γ =∫
 

(15.1)

For any n > 0:

 
( 1) ( )n n nΓ + = Γ

 
(15.2)

For n a positive integer:

 
( 1) !n nΓ + =

 
(15.3)

Abramowitz and Stegun (1968, pp. 255–256); Binmore (1983, pp. 258–259); 
Landsberg (1978, p. 345); Zwillinger (1996, pp. 494–495).

15.2 Incomplete Gamma Function

The incomplete gamma function, denoted by g (n, x), is defi ned by

 

− −= ∫ 1

0

( , )

x

n tn x t e dtg
 

(15.4)

For any n, limit as x → ∞:

 
∞ = Γ( , ) ( )n ng

 
(15.5)

where Γ(n) is the gamma function, given by Equation 15.1.
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For n a positive integer:
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(15.6)

Abramowitz and Stegun (1968, pp. 260, 262); Gradshteyn and Ryzhik (1965, 
p. 940); Press, Teukolsky, Vetterling, and Flannery (2007, p. 259).

Note that the summation in Equation 15.6 appears in the cumulative 
distribution functions for the Poisson probability distribution (Equation 
3.18) and the Erlang probability distribution (Equations 4.12 and 4.13).

15.3 Beta Function

The beta function, denoted by B(m, n), is defi ned by
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11
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, 1
nmB m n t t dt−−= −∫

 

(15.7)
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(15.8)

where Γ(m) and Γ(n) are gamma functions, given by Equation 15.1.
For m and n positive integers:
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(15.9)

Abramowitz and Stegun (1968, p. 258); Zwillinger (1996, pp. 497–498).

15.4 Incomplete Beta Function

The incomplete beta function, denoted by B(x; m, n), is defi ned by

 

( ) ( ) 11
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x
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(15.10)
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For special case x = 1:

 
( ) ( )1; , ,B m n B m n=

 
(15.11)

where B(m, n) is the beta function, given by Equation 15.7.

Abramowitz and Stegun (1968, p. 258).

15.5 Unit Impulse Function
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and

 

( )0 1u t dt
∞
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(15.13)

The unit impulse function is also known as the Dirac delta function.

Kleinrock (1975, pp. 341–342); Poularikas and Seely (1985, pp. 689–692).

15.6 Modified Bessel Functions

Let
I0(z) = modifi ed Bessel function of order zero
I1(z) = modifi ed Bessel function of order one

These functions can be expressed as

 

( ) ( )
( )
( )

( )
( )

( )
( )

2 3 42 2 21 1 121
4 4 44

0 2 2 2 21
1! 2! 3! 4!

z z zz
I z = + + + + +�

 

(15.14)
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(15.16)

Abramowitz and Stegun (1968, pp. 375–376).

15.7 Stirling’s Formula

Factorial approximation. For n a positive integer:

 

1
2! ~ 2

n nn n e+ −p
 

(15.17)

Abramowitz and Stegun (1968, p. 257); Binmore (1977, p. 156); Feller (1964, 
p. 50); Landsberg (1978, p. 435).
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16
Calculus Results

16.1 Basic Rules for Differentiation

 (a) Differentiation of a Sum of Functions

 
( )d du dv
u v

dx dx dx
+ = +

 
(16.1)

where u = u(x) and v = v(x) are differentiable functions of x.

 (b) Differentiation of a Function and a Constant Multiple

 
( )d du
ku k

dx dx
=

 
(16.2)

where k is a constant, and u = u(x) is a differentiable function of x.

 (c) Differentiation of a Product of Two Functions (Product Rule)

 
( )d du dv
uv v u

dx dx dx
= +

 
(16.3)

where u = u(x) and v = v(x) are differentiable functions of x.

Note: This rule can be extended to the product of three or more 
functions, by successive applications of the rule for two functions. 
Thus, for the differentiation of a product of three functions,

 
( )d du dv dw
uvw vw uw uv

dx dx dx dx
= + +

 
(16.4)

where u = u(x), v = v(x), and w = w(x) are differentiable functions of x.

 (d) Differentiation of a Quotient of Two Functions (Quotient Rule)

 
2

du dv
v ud u dx dx

dx v v

−⎛ ⎞ =⎜ ⎟⎝ ⎠  

(16.5)

where u = u(x) and v = v(x) are differentiable functions of x.
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 (e) Differentiation of a Function of a Function (Chain Rule)
If y is a function of x, and u is a function of y, where both functions 
are differentiable, then

 

dydu du
dx dy dx

=
 

(16.6)

Thus, if u = f(y) and y = g(x), this rule gives

 
( ) ( ) ( )( ) ( )

d
f g x f g x g x

dx
′ ′=

 
(16.7)

where f′ and g′ are the derivatives of f and g, respectively, i.e., 

where ( ) ( )d
f y f y

dy
′ =  and ( ) ( )d

g x g x
dx

′ = .

 (f) Differentiation of an Inverse Function
If y = f(x) is a differentiable function of x with a nonzero derivative 
f′(x), and x = f−1(y) is the inverse function, then

 

( )
1 1dx

dydy f x
dx

= =
′

 

(16.8)

Adams (1999, pp. 110–122); Binmore (1983, pp. 43–44); Granville, 
Smith, and Longley (1957, pp. 28–39); Hardy (1963, pp. 216–220).

16.2 Integration by Parts

 
u dv uv v du= −∫ ∫  

(16.9)

where
u = u(x) and v = v(x) are differentiable functions of x

 

du
du dx

dx
=
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dv
dv dx

dx
=

Note: This result is derived from the product rule for differentiation, given 
by Equation 16.3.

Adams (1999, p. 345); Binmore (1983, p. 242); Hardy (1963, p. 258); Stewart 
(1995, p. 437); Trim (1983, p. 360).

16.3 Fundamental Theorem of Calculus

Let f(x) be a continuous function in the interval a ≤ x ≤ b. The fundamen-
tal theorem of calculus consists of the following two statements con-
cerning f(x):

If F(x) is a function defi ned by the integral ( ) ( )x
aF x f t dt= ∫  for any x in 

the interval, then

 
( ) ( )=d

F x f x
dx  

(16.10)

If G(x) is a function such that its derivative ( ) ( )=d
G x f x

dx
 for any x in 

the interval, then
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b

a

f x dx G b G a

 

(16.11)

Adams (1999, p. 324); Binmore (1983, pp. 230–231); Sokolnikoff (1939, p. 120); 
Stewart (1995, p. 291); Trim (1983, p. 202).

16.4 Taylor Series

The Taylor series for the function f(x) is a series expansion about a given 
point a, given by
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(16.12)
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where
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3
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x a

d
f a f x

dx

Equation 16.12 holds for values of x around the point a for which f(x) has 
derivatives of all orders and the series satisfi es convergence criteria.

Adams (1999, p. 566); Finney and Thomas (1990, p. 623); Gradshteyn and 
Ryzhik (1965, p. 15); Granville, Smith, and Longley (1957, p. 369); Hardy 
(1963, p. 291); Sokolnikoff (1939, p. 296); Stewart (1995, p. 654).

16.5 Maclaurin Series

The Maclaurin series for the function f(x) is a special case of the above 
Taylor series with a = 0:
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where
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Equation 16.13 holds for values of x around the point x = 0 for which f(x) 
has derivatives of all orders and the series satisfi es convergence criteria.

Adams (1999, p. 566); Finney and Thomas (1990, p. 623); Gradshteyn and 
Ryzhik (1965, p. 15); Granville, Smith, and Longley (1957, p. 357); Hardy 
(1963, p. 291); Sokolnikoff (1939, p. 296); Stewart (1995, p. 654).

16.6 L’Hôpital’s Rule

Let f(x) and g(x) be functions that are differentiable in an open inter-

val containing the point a, and have derivatives ( ) ( )d
f x f x

dx
′ =  and 

( ) ( ).d
g x g x

dx
=′

If

 
( ) ( ) 0f a g a= =

 
(16.14)

and

 

( )
( )

lim
x a

f x
L

g x→

′
=

′
 

(16.15)

then

 

( )
( )

lim
x a

f x
L

g x→
=

 

(16.16)

Adams (1999, pp. 290, 292); Brand (1955, p. 119); Finney and Thomas 
(1990, p. 483); Sokolnikoff (1939, p. 54); Stewart (1995, p. 420); Trim (1983, 
pp. 157, 159).

Note: L’Hôpital’s rule holds when the limit L is fi nite, or ∞, or −∞, and 
when a is fi nite, or ∞, or −∞. It also holds if f(x) and g(x) at x = a are ∞ or −∞, 
instead of 0 as given by Equation 16.14, i.e., if

 
( )lim

x a
f x

→
= ± ∞

 
(16.17)
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and

 
( )lim

x a
g x

→
= ± ∞

 
(16.18)

Thus, l’Hôpital’s rule applies when the limit of a ratio has an indeter-

minate form of the type 
0

0
 or 

∞
∞

. The rule states that the limit for these 

indeterminate forms may be found by taking the derivatives of the 
numerator and denominator (separately), and evaluating the limit of 
the resulting ratio. If the ratio of the derivatives approaches a limit, the 
original ratio approaches the same limit.

16.7 Lagrange Multipliers

The method of Lagrange multipliers is a calculus-based optimiza-
tion technique that fi nds the stationary points (maxima, minima, etc.) 
of a function of several variables, when the variables are subject to 
constraints.

To fi nd the stationary points of a function f of n variables given by

 
( )1 2, , , nf f x x x= …

 
(16.19)

subject to the m constraints

 

( )
( )

( )

1 1 2

2 1 2

1 2

, , , 0

, , , 0

, , , 0

n

n

m n

g x x x

g x x x

g x x x

⎫=
⎪
⎪= ⎪
⎬
⎪
⎪
⎪= ⎭

…

…

�

…
 

(16.20)

where the functions f and gi (i = 1, 2, …, m) have certain differentiability 
properties, the method of Lagrange multipliers consists of the following 
steps:

 1. Introduce m new variables, called Lagrange multipliers

 
…1 2, , ,  (one for each constraint equation)ml l l
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 2. Form the function L, called the Lagrangian and defi ned as

 

( ) ( )
( ) ( )

= +

+ + +

… …

… � …

1 2 1 1 1 2

2 2 1 2 1 2

, , , , , ,

, , , , , ,

n n

n m m n

L f x x x g x x x

g x x x g x x x

l

l l
 

(16.21)

 3. Take the partial derivatives of the Lagrangian L with respect to 
each of the variables and solve the equations

 

( )

( )

∂ ⎫= = ⎪∂ ⎪
⎬

∂ ⎪= = ⎪∂ ⎭

…

…

0 1, 2, ,

0 1, 2, ,

i

j

L
i n

x

L
j m

l
 

(16.22)

  for x1, x2, …, xn, l1, l2, …, lm  (n + m equations for n + m unknowns).

Note: Since l1, l2, …, lm appear in L only as multipliers of g1, g2, …, gm, the 

m equations ∂ =
∂

0
j

L
l

 (j = 1, 2, …, m) are just the constraint equations given 

by Equation 16.20.

The solutions obtained for x1, x2, …, xn from step 3 are the values of 
these variables at the stationary points of the function f.

Adams (1999, pp. 792–793); Binmore (1983, pp. 85–86); Sokolnikoff (1939, 
pp. 331–333).

16.8  Differentiation under the Integral Sign 

(Leibnitz’s Rule)

Let

 

( ) ( )
( )

( )

,= ∫
t

t

I t f x t dx

b

a

where
a(t) and b(t) are differentiable functions of t

 f(x, t) and ( ),f x t
t

∂
∂

 are continuous functions in the region of integration
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Then

 

( )
( )

( )

( ) ( ) ( ), ( ), ( ),
∂= + −
∂∫

t

t

d d d
I t f x t dx f t t f t t

dt t dt dt

b

a

b ab a

 

(16.23)

Special cases:

 

( ) ( ), ,

b b

a a

d
f x t dx f x t dx

dt t
∂=
∂∫ ∫

 

(16.24)

 

( ) ( )
t

a

d
f x dx f t

dt
=∫

 

(16.25)

 

( ) ( ),

b

t

d
f x dx f t

dt
= −∫

 

(16.26)

where a and b are constants, and where the integrand f(x) in Equations 
16.25 and 16.26 is a function of x only (and not t).

Adams (1999, p. 805); Binmore (1983, p. 255); Buck (1956, p. 73); Sokolnikoff 
(1939, p. 121); Trim (1983, p. 723).

Note: Equation 16.23 is a useful result in optimization, where the deriva-
tive with respect to a parameter is needed and the objective function may 
be an integral that is diffi cult or impossible to evaluate analytically. Such 
an integral can arise, for example, in the expected value of a variable over 
a probability distribution. An example of the use of Equation 16.23 is in 
the classic newsboy problem (see Section 9.3).

16.9 Change of a Variable in an Integral

Let f(x) be a continuous function of x in the interval a ≤ x ≤ b. Given the 

integral ( )b
a f x dx∫ , let

 
( )=x g u

 
(16.27)
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be a continuous single-valued function with a continuous derivative 

( )= ′dx
g u

du
 in the interval c ≤ t ≤ d, where c and d are given by

 
( )=a g c

 
(16.28)

and

 
( )=b g d

 
(16.29)

respectively. Then

 

( ) ( ) ( )= ′∫ ∫ ( )

b d

a c

f x dx f g u g u du

 

(16.30)

Adams (1999, pp. 332, 352); Binmore (1983, pp. 239–240); Brand (1955, 
p. 270); Sokolnikoff (1939, p. 125); Trim (1983, p. 206).

Note: This transformation can substantially simplify the evaluation of an 
integral. The formula is derived from the chain rule for differentiation.

16.10 Change of Variables in a Double Integral

Given the integral ( ),R f x y dx dy∫∫  over the region R in the xy-plane, let

 
( ),x g u v=

 
(16.31)

and

 
( ),y h u v=

 
(16.32)

be continuously differentiable functions that defi ne a one-to-one trans-
formation of the region R in the xy-plane to the region S in the uv-plane, 
and let

 
( ) ( ), ( , ), ( , )F u v f g u v h u v=

 
(16.33)
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In addition, let J be the Jacobian, given by the determinant

 

( )
( )

,

,

x x
x y u vJ

y yu v
u v

∂ ∂
∂ ∂ ∂= =

∂ ∂∂
∂ ∂  

(16.34)

i.e.,

 

y yx x
J

u v v u
∂ ∂∂ ∂= −

∂ ∂ ∂ ∂  

(16.35)

and let |J| denote the absolute value of J. If the Jacobian J is nonzero, 
then

 

( ) ( ), ,

R S

f x y dx dy F u v J du dv=∫∫ ∫∫
 

(16.36)

Adams (1999, p. 844); Binmore (1983, p. 293); Brand (1955, p. 364); Sokolnikoff 
(1939, p. 151); Stewart (1995, p. 883).

Note: The determinants 
( )
( )

,

,

x y

u v

∂
∂

 and ( )
( )

,

,

u v
x y

∂
∂

 are related by

 

( )
( ) ( )

( )

, 1

,,

,

x y
u vu v
x y

∂
=

∂∂
∂

 

(16.37)

where

 

( )
( )

,

,

u u
x yu v u v u v
v vx y x y y x
x y

∂ ∂
∂ ∂∂ ∂ ∂ ∂ ∂= = −
∂ ∂∂ ∂ ∂ ∂ ∂
∂ ∂

 

(16.38)

Adams (1999, pp. 758, 843); Binmore (1983, p. 293); Brand (1955, p. 176).
Equation 16.37 is useful for deriving J in the cases where it is easier to 

evaluate the partial derivatives of u and v with respect to x and y than the 
partial derivatives of x and y with respect to u and v.
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The change of variables formula given by Equation 16.36 can be 
extended to triple and higher-order multiple integrals. Thus, for a 
triple integral ( ), ,R f x y z dx dy dz∫∫∫  over the region R in xyz-space, the 
formula becomes

 

( ) ( ), , , ,

R S

f x y z dx dy dz F u v w J du dv dw=∫∫∫ ∫∫∫
 

(16.39)

where x = x(u, v, w), y = y(u, v, w), and z = z(u, v, w) are continuously differ-
entiable functions that defi ne a one-to-one transformation of the region R 
in xyz-space to the region S in uvw-space, where the function F(u, v, w) is 
given by

 
( ) ( ), , ( , , ), ( , , ), ( , , )F u v w f x u v w y u v w z u v w=

 
(16.40)

and where the Jacobian J is given by the determinant

 

( )
( )

, ,

, ,

x x x
u v w

x y z y y y
J

u v w u v w
z z z
u v w

∂ ∂ ∂
∂ ∂ ∂

∂ ∂ ∂ ∂= =
∂ ∂ ∂ ∂

∂ ∂ ∂
∂ ∂ ∂  

(16.41)

and is nonzero.

Adams (1999, p. 855); Binmore (1983, p. 293); Brand (1955, p. 383); Sokolnikoff 
(1939, p. 157); Stewart (1995, p. 886).

16.11  Changing the Order of Integration in a 

Double Integral

For a double integral over a triangular region in the xy-plane bounded by 
the x-axis, line y = x, and line x = a (see Figures 16.1 and 16.2),

 

( ) ( )
0 0 0

, ,

a a a x

y x y x y

f x y dx dy f x y dy dx
= = = =

=∫ ∫ ∫ ∫
 

(16.42)
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Extension for the case a → ∞: if f(x, y) ≥ 0 over the region of integration, 
then

 

( ) ( )
0 0 0

, ,

x

y x y x y

f x y dx dy f x y dy dx
∞ ∞ ∞

= = = =

=∫ ∫ ∫ ∫
 

(16.43)

provided the integrals converge.

y

x
a

y = x

x = y x = a

a

0
0

y = 0 to y = a

FIGURE 16.1
Limits of integration for the left-hand side of Equation 16.42 (integration in x-direction fi rst).

x

y

a

y = x

y = x

a

y = 0
0

0

x = 0 to x = a

FIGURE 16.2
Limits of integration for the right-hand side of Equation 16.42 (integration in y-direction fi rst).
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Adams (1999, p. 828); Binmore (1983, pp. 282, 298); Brand (1955, p. 354); 
Finney and Thomas (1990, p. 899); Trim (1983, p. 672).

Note: Changing the order of integration can substantially simplify the 
evaluation of a double integral. The limits of integration depend in gen-
eral on the shape of the region of integration. The above results are given 
for the case of a triangular region, since it occurs commonly in double 
integrals and the limits of integration are easily specifi ed.

16.12  Changing the Order of Summation 

in a Double Sum

If aij ≥ 0 for all i and j (i = 0, 1, 2, ……; j = 0, 1, 2, ……), then

 0 0 0

i

ij ij

j i j i j

a a
∞ ∞ ∞

= = = =

=∑∑ ∑∑
 

(16.44)

provided the sums converge (see Figures 16.3 and 16.4).

Binmore (1983, p. 300); Clarke and Disney (1985, p. 312).

i

j

i=j i=j +1
j

j=i

FIGURE 16.3
First summation range for the left-hand side of Equation 16.44.
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16.13 Numerical Integration

The integral ( )b
a f x dx∫  can be evaluated numerically using several 

different methods. The following rules provide three standard meth-
ods of numerical approximation: midpoint rule, trapezoidal rule, and 
Simpson’s rule.

For each rule, let the interval a ≤ x ≤ b be divided into n equal subinter-
vals. Let h be the width of each subinterval, given by

 

b a
h

n
−=

 
(16.45)

Let x0, x1, x2, …, xn be equally spaced points on the interval, given by

 

( )

0

1

2

1

2

1n

n

x a

x a h

x a h

x a n h

x b

−

= ⎫
⎪

= + ⎪
⎪
⎪= + ⎪
⎬
⎪
⎪

= + − ⎪
⎪
⎪= ⎭

�

 

(16.46)

i

j
j = i

j = i

j = 0

i

j = 1

FIGURE 16.4
First summation range for the right-hand side of Equation 16.44.
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In addition, for the midpoint rule, let m1, m2, …, mn denote the midpoints 
of each subinterval, given by

 

0 1
1

1 2
2

1

2

2

2
n n

n

x x
m

x x
m

x x
m −

+ ⎫= ⎪
⎪
⎪+= ⎪⎪
⎬
⎪
⎪
⎪+ ⎪= ⎪⎭

�

 

(16.47)

Figures 16.5 through 16.7 illustrate the three methods of approximation. 
The midpoint rule is based on step function approximations to the curve 
f(x) on the subintervals, and the area under the curve is thus approxi-
mated by rectangles (Figure 16.5). The trapezoidal rule is based on linear 
approximations, and the area under the curve is thus approximated by 
trapezoids (Figure 16.6). Simpson’s rule is based on quadratic function 
approximations, and the area under the curve is thus approximated by 
the areas under segments of parabolas (Figure 16.7).

The three rules give the following approximate formulas for numerical 

evaluation of the integral ( )b
a f x dx∫ :

x

f (x)

. . . . . . . . . .x1a x2 xn–2 xn–1 bm1 mnm2

h

FIGURE 16.5
Midpoint rule approximation for numerical integration.
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Midpoint rule

 

( ) ( ) ( ) ( )⎡ ⎤≅ + + +⎣ ⎦∫ �1 2

b

n

a

f x dx h f m f m f m

 

(16.48)

x

f (x)

x1a x2 xn–2 xn–1 b. . . . . . . . . .

h

FIGURE 16.6
Trapezoidal rule approximation for numerical integration.

x

f (x)

x1a x2 xn–2 xn–1 b. . . . . . . . . .

h

FIGURE 16.7
Simpson’s rule approximation for numerical integration.
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Trapezoidal rule

 

( ) ( ) ( ) ( ) ( ) ( )1 2 12 2 2
2

b

n

a

h
f x dx f a f x f x f x f b−≅ ⎡ + + + + + ⎤⎣ ⎦∫ �

 

(16.49)

Simpson’s rule

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 2 3 2 14 2 4 2 4
3

(  is an even number for Simpson s rule)

− −⎡ ⎤≅ + + + + + + +⎣ ⎦∫ �
b

n n

a

h
f x dx f a f x f x f x f x f x f b

n ’
  

  (16.50)

For each rule, the error (difference between the numerical approximation 
and the exact value of the integral) can be estimated within given bounds. 
The error bounds are given for the midpoint and trapezoidal rules when 
f(x) has a continuous second derivative f″(x) on the interval a ≤ x ≤ b, and 
for Simpson’s rule when f(x) has a continuous fourth derivative f (4)(x) on 
the interval a ≤ x ≤ b. Estimates of the error bounds for the three rules are 
given by

 

( )3

2
Midpoint rule: Error

24

M b a
n
−

≤
 

(16.51)

 

( )3

2
Trapezoidal rule: Error

12

M b a
n
−

≤
 

(16.52)

 

( )5

4
Simpson s rule: Error

180

−
≤

N b a
n

’
 

(16.53)

where
M = maximum value of |f″(x)| on the interval a ≤ x ≤ b
N = maximum value of |f (4)(x)| on the interval a ≤ x ≤ b
|| denotes absolute value

Adams (1999, pp. 384–392); Finney and Thomas (1990, pp. 337–343); Press, 
Teukolsky, Vetterling, and Flannery (2007, p. 156); Stewart (1995, pp. 478–
484); Trim (1983, pp. 381–385).

The formulas for the three rules are derived for a single interval (double 
interval for Simpson’s rule), and are extended to the case of n subintervals. 
The term extended (or composite) is therefore sometimes used to describe 
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these rules for the case of general n. Thus, Simpson’s rule for general n, as 
given above, is sometimes referred to as the extended Simpson’s rule (or 
composite Simpson’s rule), and similarly for the other rules.

For the midpoint and trapezoidal rules, n may be an odd or even num-
ber. For Simpson’s rule, n must be an even number. The error bounds for 
each rule give estimates of the theoretical errors as a function of n. Note 
that, if n is large, there may also be round-off errors that accumulate in the 
numerical computations.

The formulas for trapezoidal rule and Simpson’s rule are examples of 
a closed formula, since they use values of f(x) in the closed interval [a, b], 
i.e., including the values at the endpoints a and b. The formula for the 
midpoint rule is an example of an open formula, since it only uses values 
of f(x) in the open interval (a, b), i.e., not at the endpoints a and b. An open 
formula is useful in cases where f(x) cannot be readily evaluated at the 
endpoints Press, Teukolsky, Vetterling, and Flannery (2007, p. 157).
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17
Matrices

17.1 Rules for Matrix Calculations

Let
A, B, and C be matrices
l be a scalar
AT be the transpose of A
A−1 be the inverse of A

Then the following identities hold:

 + = +A B B A  (17.1)

 
( ) ( )+ + = + +A B C A B C

 
(17.2)

 
( ) ( )=AB C A BC

 
(17.3)

 
( )+ = +C A B CA CB

 
(17.4)

 
+ = +( )A B A Bl l l

 
(17.5)

 
T T( ) =A A

 
(17.6)

 
T T T( )+ = +A B A B

 
(17.7)

 
T T T( ) =AB B A

 
(17.8)

 
T T T T( ) =ABC C B A

 
(17.9)

 
1 1 1( )− − −=AB B A

 
(17.10)

 
1 1 1 1( )− − − −=ABC C B A

 
(17.11)

 
1 1( )− − =A A

 
(17.12)



210 Operations Research Calculations Handbook

 
T 1 1 T( ) ( )− −=A A

 
(17.13)

Neter, Wasserman, and Kutner (1985, pp. 204–205); Press (1982, pp. 18, 22).

17.2 Inverses of Matrices

17.2.1 Inverse of 2 ¥ 2 Matrix

If 
a b

c d
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

A  then

 

1

d b
D D

c a
D D

−

⎛ ⎞−⎜ ⎟
= ⎜ ⎟

⎜ ⎟−⎜ ⎟⎝ ⎠

A

 

(17.14)

where D = determinant of A, given by

 

a b
D ad bc

c d
= = −

17.2.2 Inverse of 3 ¥ 3 Matrix

If 

a b c

d e f

g h k

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟⎝ ⎠

B  then

 

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

1

ek fh Z bk ch Z bf ce Z

dk fg Z ak cg Z af cd Z

dh eg Z ah bg Z ae bd Z

−

⎛ ⎞− − − −
⎜ ⎟

= − − − − −⎜ ⎟
⎜ ⎟− − − −⎝ ⎠

B

 

(17.15)

where Z = determinant of B, given by

 

( ) ( ) ( )
a b c

Z d e f a ek fh b dk fg c dh eg

g h k

= = − − − + −

Neter, Wasserman, and Kutner (1985, p. 202).
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17.3 Series of Matrices

If An tends to the zero matrix as n tends to infi nity, then (I − A) has an 
inverse, given by

 

( )
∞

−

=

− = + + + + = ∑�1 2 3

0

k

k

I A I A A A A

 

(17.16)

where I is the identity (unity) matrix.

Kemeny and Snell (1976, p. 22).

17.4 Derivatives of Matrices

If A is a matrix with elements that are differentiable functions of the sca-
lar variable x, and has an inverse matrix A−1 for any x, then the derivative 
of the inverse matrix is given by

 

1
1 1d d

dx dx

−
− −= −A A

A A
 

(17.17)

Equation 17.17 is obtained by differentiating the identify AA−1 = I, where I 
is the identity matrix. Fröberg (1965, p. 71).
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18
Combinatorics

Terminology:
Permutations: Selections when order matters.
Combinations: Selections when order does not matter.
Without replacement: Once selected, an object cannot be selected 

again.
With replacement: Object can be selected any number of times.

Let
M

NP  be the number of permutations of N objects selected from a total of 
M objects

M
NC  be the number of combinations of N objects selected from a total of 

M objects

 1. Permutations without replacement:

 ( ) ( )!

!
M

N
M

P N M
M N

= ≤
−

 

(18.1)

 2. Permutations with replacement:

 
M N

NP M=  
(18.2)

 3. Combinations without replacement:

 
( ) ( )!

! !
M
N

M M
C N M

N M NN

⎛ ⎞
= = ≤⎜ ⎟ −⎝ ⎠

 

(18.3)

 4. Combinations with replacement:

 

( )
( )

1 1 !

! 1 !
M
N

M N M N
C

N MN

+ −⎛ ⎞ + −
= =⎜ ⎟ −⎝ ⎠

 

(18.4)
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 5. Circular permutations (permutations of objects forming a circle) 
without replacement:

 
( )= ≤

−
!

( )!
M

N
M

P N M
N M N  

(18.5)

 6. Combinations with replacement that contain at least one of each 
object type:

 

( )
( ) ( ) ( )

1 1 !

! 1 !1

M
N

N N
C N M

N M MM

−⎛ ⎞ −
= = ≥⎜ ⎟ − −−⎝ ⎠

 

(18.6)

 7. Permutations of M objects, consisting of M1 objects of type 1, M2 
objects of type 2, up to k types, where M1 + M2 + … + Mk = M

 
{ } =

�1 2

!

! ! !k
M
M

k

M
P

M M M  
(18.7)

(Equation 18.7 gives multinomial coeffi cients—see Section 3.7.)

Brualdi (1977, pp. 29, 31–32, 34–35, 37–38); Feller (1964, pp. 28, 33, 35–37).
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19
Summations

19.1 Finite Sums

 

( )1
1 2 3

2

n n
n

+
+ + + + =�

 
(19.1)

 

( )( )2 2 2 2 1 2 1
1 2 3

6

n n n
n

+ +
+ + + + =�

 
(19.2)

 
( )

2 2
23 3 3 3 ( 1)

1 2 3 1 2 3
4

n n
n n

++ + + + = + + + + =� �
 

(19.3)

 
( ) 21 3 5 2 1n n+ + + + − =�

 
(19.4)

 

( )1

2 3
1

( 1)
1

n
n

a r
a ar ar ar ar r

r

+−
+ + + + + = ≠

−
�

 
(19.5)

19.2 Infinite Sums

 

2 3 ( 1)
1

a
a ar ar ar r

r
+ + + + = <

−
�

 
(19.6)

 ( )
2 3
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where g  ≅ 0.577216 is Euler’s constant.

Abramowitz and Stegun (1968, pp. 255, 807–808); Gradshteyn and Ryzhik 
(1965, pp. 1, 7); Zwillinger (1996, pp. 15, 21, 23, 80).
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20
Interest Formulas

Let
i = interest rate per period
n = number of interest (payment) periods
P = present sum of money (present worth)
F =  sum of money at the end of n periods from the present date that is 

equivalent to P at interest rate i (F = future worth)
A =  uniform end-of-period payment continuing for n periods that in 

total is equivalent to P at interest rate i (A = annuity)

Then

 
( )1

nF P i= +
 

(20.1)
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(20.2)

Let
Ek = portion of A in period k paid against principal (Ek = equity payment)
Ik = portion of A in period k paid as interest (Ik = interest payment)

Then

 
( ) 1
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(20.3)

 
( ) 1

1
1

1
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i − +
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(20.4)

Grant, Ireson, and Leavenworth (1982, p. 33); White, Agee, and Case (1977, 
pp. 65, 92, 93).
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probability, 24–25
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E

Economic order quantity (EOQ)
cost per unit time, 109
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time, 109–110
optimal quantity, 110
time vs. inventory level, 109–110
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costs, 111
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set-up cost, 111, 113
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function, 35
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probability density function, 

34–35, 37
scale parameter, 36–37
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standard deviation, 36
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Exponential distribution order 

statistics, 184–185

F

Finite sums, 215
First-come fi rst-served (FCFS) 

queueing discipline, 91
Fixed-time signal, 150

G

Gamma distribution, 75–76
Gamma functions, 38, 52, 75, 187
General distribution order statistics, 

181–182
Genetic algorithms, 179–180
Geometric distribution

Bernoulli trials, 21
mean and variance, 20
memoryless property, 22
nonnegative integer, 21
probability, 20–21

G/G/c queue, 91
G/G/1 queue, 97–98
Greedy algorithm, 180
Gumbel (extreme value) distribution

cumulative distribution function, 
54–55

Euler’s constant, 55
location and scale parameter, 56
probability density function, 55
standard Gumbel distribution, 56

H

Heuristic search methods
ant colony optimization, 180
decision variables, 173
defi nition, 174
general formulation, maximization 

problem, 173–174
genetic algorithms, 179–180
greedy algorithm, 180
local search methods, 175–176
minimization problem, 174–175
simulated annealing
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minimization problem, 

algorithm, 177–178
new solution search, iteration, 

176
temperature, 176–177

tabu search, 178–179
Hypergeometric distribution

mean and variance, 27
numbers of combinations, object, 

27–28
parameters, 28
probability, 26

I

Identity (unity) matrix, 211
Incomplete beta function, 188–189
Incomplete gamma function, 187–188
Infi nite sums, 215–216
Integer linear programming

knapsack problem, 166–167
traveling salesman problem

constraints, 168–169
n2 variables, 168
tour and subtours, 169

Integration
numerical

midpoint rule approximation, 
205–206

Simpson’s rule approximation, 
205–208

trapezoidal rule approximation, 
205–207

order change, double integral, 
201–203

parts, 192–193
Interest payment, 217
Interior-point methods, 170
Inventory control

economic order quantity (EOQ)
cost per unit time, 109
cumulative orders and demand 

vs. time, 109–110
optimal quantity, 110
time vs. inventory level, 109–110
trade-off, inventory and 

ordering costs, 111

economic production quantity 
(EPQ)

cost per unit time, 113
cumulative production and 

demand vs. time, 112
time vs. inventory level, 112–113
trade-off, inventory and 

production set-up cost, 111, 
113

newsboy problem, uncertain 
demand

expected cost, 114
optimal quantity, 114–115
overage and shortage costs, 115

(s, Q) policy, 128
cumulative distribution 

function, 121
demand variance, 120
fi ll rate, b, 121–122
inventory pattern vs. time, 116
lead time, 120–121
order quantity, 120
probability, α, 121–122
reorder point, 120
replenishment policy, 119
safety stock, 120
standard deviation, 120–122

(s, S) policy, 128
inventory pattern vs. time, 

116–117
reorder point and order-up-to 

level, 123
replenishment policy, 122
service level factor, 123

(T, S) policy, 128
inventory pattern vs. time, 

116–117, 125
ordering cost and demand 

variance, 124
review period and standard 

deviation, 125
(T, s, S) policy, 128

heuristic approximations, 126
inventory pattern vs. time, 116, 

118, 126
ordering cost and demand 

variance, 126
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production/distribution system
average inventories, 130–131
cumulative production, 

shipments, and demand vs. 
time, 129–130

inventory components, 129
Inventory position, 118–119
Inverse function, 72

K

Knapsack problem, 166–167
kth-order statistic, 181, 183

L

Lagrange multipliers, 196–197
Laplace transform, 83–84
L’Hôpital’s rule, 195–196
Linear combination, 6–7
Linear programming formulations, 2

alternative formulations
equality constraints, 156–157
minimization vs. maximization, 

156
reversed inequality constraints, 

157
assignment problem, 164–165
branch and bound technique, 

171
cutting planes, 170
diet problem, 157–158
duality

dual and primal problem, 
158–159

theorem, 159
feasible region, 155–156
integer linear programming

knapsack problem, 166–167
traveling salesman problem, 

167–169
interior-point methods, 170
Maximize Z, 153
network fl ow methods, 170
simplex method, 169–170
terminology, 154
transportation problem

constraint coeffi cients, 162–163
correspondence, general linear 

programming, 163
defi nition, 160
integrality property, 162
shipments, 160
supply and demand, 160–161

transshipment problem, 163–164
Logistics analysis

average rectangular grid distance, 
139

distance norms
Chebyshev distance, L∞ norm, 

134–135
defi nition, 133
Euclidean (straight line) 

distance, L2 norm, 134–135
geodesic, 135
Lp norm, 133–134
rectangular grid (rectilinear) 

distance, L1 norm, 134
two-dimensional space, 133–134
vector, 133

great circle distance
haversine formula, 141
law of cosines, 140
mean radius, 139
spherical triangle, 140

random points distance, circle
average distance, 138
cumulative distribution 

function, 137–138
probability density function, 137
standard deviation, 138

traveling salesman problem tour 
distance, 136

M

Maclaurin series, 194–195
Markovian property, 91
Mathematical results, 2
Matrices

2 × 2 and 3 × 3 matrix inverse, 210
calculation rules, 209–210
derivatives, 211
identity (unity) matrix, 211

M/D/2 queue, 91
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Means and variances
Bernoulli distribution, 17
constrained random variable, 9–10
covariance and correlation 

coeffi cient, 5
random number, 11
random variable

approximations, 12
cumulative distribution 

function, 4
discrete and continuous, 3
exponential distribution, 13
function, 11–12
joint distribution, 9
normal distribution, 13–15
probability density function, 4
product, 7–8
quotient, 8–9
standard deviation, 5
sum, 5–7

M/M/1 queue, 91
M objects permutations, 214
Modifi ed Bessel functions, 189–190
Multinomial distribution, 29–30
Muth’s approximation, 108

N

Negative binomial distribution, 76
Network fl ow methods, 170
Normal distribution

correlation coeffi cient, 13, 15
cumulative distribution 

function, 14
a and b parameters, 13
probability-weighted average mean, 

14–15
variance, 14

P

Pareto distribution, 56–58
Pascal distribution, 24
Poisson distribution, 75–76

cumulative distribution function, 25
mean and variance, 25
μ parameter, 26
probability, 24–25

Poisson process
arrivals, fi xed interval, 87
independent Poisson process, 

superposition, 86
properties, 85
splitting, 86

Pollaczek-Khintchine formula, 96
Probability density function, 4, 10
Probability generating function, 

78–79
Probability relationships

Bayes’ formula, 76
central limit theorem, 77
characteristic function

cumulant generating function, 83
derivatives, 82
Fourier transform, 81–82
random variable, 81
Taylor series expansion, 83

independent random variables, 69
Laplace transform, 83–84
maximum and minimum 

distribution, random variable
cumulative distribution 

function, 69–70
exponential distribution, 71
probability density functions, 70
uniform distribution, 70–71

moment generating function
successive derivatives, 80
variance, 81

Poisson and gamma distributions, 
75–76

probability distribution
change of variable, 72–73
conditional, constrained random 

variable, 73–74
probability generating function, 

78–79
Production/distribution system

average inventories, 130–131
cumulative production, shipments, 

and demand vs. time, 129–130
inventory components, 129

Production systems modeling
serial production line throughput

line with buffers, 105
line without buffers, 104–105
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N-station, 107–108
two stations with buffer, 107
two stations without buffer, 106

workstations
defi nitions and notation, 101
parameter relationship, 101–102
time distribution, fi xed lot size, 

102–104
Product rule, 191

Q

Queue departure process, 98
Queueing theory

average queue length formulas, 
93–94

average time, 94–95
additional formulas, 96–97
Pollaczek-Khintchine 

formula, 96
heavy traffi c approximation, time 

distribution, 97–98
Little’s law

extension, 93
general system relationship, 92

M/M/1 queue, distribution results
number of customers, 99
time, 99–100

queue departure process, 98
queueing system variables, 91–92
queue types notation, 91
references, formula, 95

Quotient rule, 191

R

Random variables, 181–182
Real-world problems, 1
Rectangular distribution, see Uniform 

distribution
Rectangular grid (rectilinear) 

distance, 134

S

Saturation fl ow, 150
Serial production line throughput

line with buffers, 105
line without buffers, 104–105

N-station, 107–108
two stations with buffer, 107
two stations without buffer, 106

Simplex method, 169–170
Simulated annealing

acceptance criterion, 176–177
minimization problem, algorithm, 

177–178
new solution search, iteration, 

176
temperature, 176–177

Standard normal distribution, 45
Stirling’s formula, 190
Stochastic processes, 1–2

competing exponentials, 86
continuous-time Markov chain, 

89–90
discrete-time Markov chain, 89
“lack of memory” property, 

exponential distribution, 
85–86

Poisson process
arrivals, fi xed interval, 87
independent Poisson process, 

superposition, 86
properties, 85
splitting, 86

renewal process
fi rst interval distribution, 

87–88
mean and variance, number of 

arrivals, 87
Summations

fi nite sums, 215
infi nite sums, 215–216

T

Tabu search, 178–179
Taylor series, 9, 83, 193–194
Traffi c fl ow and delay

minor road
critical fl ow, 148–149
traffi c queue, 149–150

parameters, 143
traffi c speed

average travel time, 146
coeffi cient of variation, 145
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relative frequencies, time and 
space, 144

space-mean speed, 144–146
time-mean speed, 144, 146–147
total fl ow and concentration, 

144–145
variance, space-distribution of 

speeds, 145
vehicle merging, traffi c stream, 

147–148
vehicle, traffi c signal, 150–151

Traffi c intensity, 94, 98
z-Transform, see Probability generating 

function
Transportation problem

constraint coeffi cients, 162–163
correspondence, general linear 

programming, 163
defi nition, 160
integrality property, 162
shipments, 160
supply and demand, 160–161

Transshipment problem, 163–164
Traveling salesman problem tour 

distance, 136

U

Uniform distribution, 31–32
Uniform distribution order statistics

kth-order statistic, 183
mean and variance, 183–184

Unique probability distribution, 80
Unit impulse function, 189

V

Vehicle-actuated signal, 150

W

Weibull distribution, 51–52
Workstations, production systems 

modeling
defi nitions and notation, 101
parameter relationship, 101–102
time distribution, fi xed lot size

mean and variance, 102–103
probability density function, 103
unit impulse function, 104
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