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To Karen

Los ríos no llevan agua,
el sol las fuentes secó . . .

¡Yo sé donde hay una fuente
que no ha de secar el sol!
La fuente que no se agota
es mi propio corazón . . .

—V. Ruiz Aguilera (1862)
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What’s New in the  
Tenth Edition

Over the past few editions, I agonized over the benefit of continuing to include the 
hand computational algorithms that, to my thinking, have been made obsolete by 
 present-day great advances in computing. I no longer have this “anxiety” because I 
sought and received feedback from colleagues regarding this matter. The consensus is 
that these classical algorithms must be preserved because they are an important part 
of OR history. Some responses even included possible scenarios (now included in this 
edition) in which these classical algorithms can be beneficial in practice.

In the spirit of my colleagues collective wisdom, which I now enthusiastically 
 espouse, I added throughout the book some 25 entries titled Aha! moments. These 
 entries, written mostly in an informal style, deal with OR anecdotes/stories (some 
dating back to centuries ago) and OR concepts (theory, applications, computations, 
and teaching methodology). The goal is to provide a historical perspective of the roots 
of OR (and, hopefully, render a “less dry” book read).

Additional changes/additions in the tenth edition include:

•	 Using a brief introduction, inventory modeling is presented within the more 
 encompassing context of supply chains.

•	 New sections are added about computational issues in the simplex method  
(Section 7.2.3) and in inventory (Section 13.5).

•	 This edition adds two new case analyses, resulting in a total of 17 fully developed 
real-life applications. All the cases appear in Chapter 26 on the website and are 
cross-referenced throughout the book using abstracts at the start of their most 
applicable chapters. For convenience, a select number of these cases appear in the 
printed book (I would have liked to move all the cases to their most applicable 
chapters, but I am committed to limiting the number of hard-copy pages to less 
than 900).

•	 By popular demand, all problems now appear at end of their respective chapters 
and are cross-referenced by text section to facilitate making problem assignments.

•	 New problems have been added.
•	 TORA software has been updated.
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Chapter 1

What Is Operations research?

1.1 IntroductIon

The first formal activities of Operations Research (OR) were initiated in England 
 during World War II, when a team of British scientists set out to assess the best utiliza-
tion of war materiel based on scientific principles rather than on ad hoc rules. After the 
war, the ideas advanced in military operations were adapted to improve efficiency and 
productivity in the civilian sector.

This chapter introduces the basic terminology of OR, including mathematical 
 modeling, feasible solutions, optimization, and iterative algorithmic computations. It 
stresses that defining the problem correctly is the most important (and most difficult) 
phase of  practicing OR. The chapter also emphasizes that, while mathematical model-
ing is a cornerstone of OR, unquantifiable factors (such as human behavior) must be 
 accounted for in the final decision. The book presents a variety of applications using 
solved examples and chapter problems. In particular, the book includes end-of-chapter 
fully developed case analyses.

1.2 operatIons research Models

Consider the following tickets purchasing problem. A businessperson has a 5-week 
commitment traveling between Fayetteville (FYV) and Denver (DEN). Weekly 
 departure from Fayetteville occurs on Mondays for return on Wednesdays. A regular 
roundtrip ticket costs $400, but a 20% discount is granted if the roundtrip dates span 
a weekend. A one-way ticket in either direction costs 75% of the regular price. How 
should the tickets be bought for the 5-week period?

 31



32   Chapter 1    What Is Operations Research?

We can look at the situation as a decision-making problem whose solution 
 requires answering three questions:

1. What are the decision alternatives?
2. Under what restrictions is the decision made?
3. What is an appropriate objective criterion for evaluating the alternatives?

Three plausible alternatives come to mind:

1. Buy five regular FYV-DEN-FYV for departure on Monday and return on 
Wednesday of the same week.

2. Buy one FYV-DEN, four DEN-FYV-DEN that span weekends, and one DEN-FYV.
3. Buy one FYV-DEN-FYV to cover Monday of the first week and Wednesday of 

the last week and four DEN-FYV-DEN to cover the remaining legs. All tickets in 
this alternative span at least one weekend.

The restriction on these options is that the businessperson should be able to leave 
FYV on Monday and return on Wednesday of the same week.

An obvious objective criterion for evaluating the proposed alternatives is the price 
of the tickets. The alternative that yields the smallest cost is the best. Specifically, we have:

Alternative 1 cost = 5 * $400 = $2000

Alternative 2 cost = .75 * $400 + 4 * 1.8 * $4002 + .75 * $400 = $1880

Alternative 3 cost = 5 * 1.8 * $4002 = $1600

Alternative 3 is the cheapest.
Though the preceding example illustrates the three main components of an OR 

model—alternatives, objective criterion, and constraints—situations differ in the details 
of how each component is developed, and how the resulting model is solved. To illus-
trate this point, consider the following garden problem: A home owner is in the process 
of starting a backyard vegetable garden. The garden must take on a rectangular shape to 
facilitate row irrigation. To keep critters out, the garden must be fenced. The owner has 
enough material to build a fence of length L = 100 ft. The goal is to fence the largest 
possible rectangular area.

In contrast with the tickets example, where the number of alternatives is finite, the 
number of alternatives in the present example is infinite; that is, the width and height of 
the rectangle can each assume (theoretically) infinity of values between 0 and L. In this 
case, the width and the height are continuous variables.

Because the variables of the problem are continuous, it is impossible to find the 
solution by exhaustive enumeration. However, we can sense the trend toward the best 
value of the garden area by fielding increasing values of width (and hence decreasing 
values of height). For example, for L = 100 ft, the combinations (width, height) = (10, 
40), (20, 30), (25, 25), (30, 20), and (40, 10) respectively yield (area) = (400, 600, 625, 
600, and 400), which demonstrates, but not proves, that the largest area occurs when 
width = height = L>4 = 25 ft. Clearly, this is no way to compute the optimum, par-
ticularly for situations with several decision variables. For this reason, it is important to 
express the problem mathematically in terms of its unknowns, in which case the best 
solution is found by applying appropriate solution methods.
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To demonstrate how the garden problem is expressed mathematically in terms of 
its two unknowns, width and height, define

w = width of the rectangle in feet

h = height of the rectangle in feet

Based on these definitions, the restrictions of the situation can be expressed verbally as

1. Width of rectangle + Height of rectangle = Half the length of the garden fence
2. Width and height cannot be negative

These restrictions are translated algebraically as

1. 21w + h2 = L
2. w Ú 0, h Ú 0

The only remaining component now is the objective of the problem; namely, 
maximization of the area of the rectangle. Let z be the area of the rectangle, then the 
complete model becomes

Maximize z = wh

subject to

21w + h2 = L

w, h Ú 0

Actually, this model can be simplified further by eliminating one of the variables in the 
objective function using the constraint equation; that is,

w = L
2 - h

The result is

z = wh = 1L
2 - h2h = Lh

2 - h2

The maximization of z is achieved by using differential calculus (Chapter 20), which 
yields the best solution as h = L

4 = 25 ft. Back substitution in the constraint equation 
then yields w = L

4 = 25 ft. Thus the solution calls for constructing a square-shaped 
garden.

Based on the preceding two examples, the general OR model can be organized in 
the following general format:

Maximize or minimize Objective Function

subject to

Constraints
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A solution is feasible if it satisfies all the constraints. It is optimal if, in addition to 
being feasible, it yields the best (maximum or minimum) value of the objective func-
tion. In the ticket purchasing problem, the problem considers three feasible alternatives, 
with the third alternative being optimal. In the garden problem, a feasible alternative 
must satisfy the condition w + h = L

2 , with w and h Ú 0, that is, nonnegative variables. 
This definition leads to an infinite number of feasible solutions and, unlike the ticket 
purchasing problem, which uses simple price comparisons, the optimum solution is 
 determined using differential calculus.

Though OR models are designed to optimize a specific objective criterion sub-
ject to a set of constraints, the quality of the resulting solution depends on the degree 
of completeness of the model in representing the real system. Take, for example, the 
ticket purchasing model. If all the dominant alternatives for purchasing the tickets are 
not identified, then the resulting solution is optimum only relative to the alternatives 
represented in the model. To be specific, if for some reason alternative 3 is left out of 
the model, the resulting “optimum” solution would call for purchasing the tickets for 
$1880, which is a suboptimal solution. The conclusion is that “the” optimum solution of 
a model is best only for that model. If the model happens to represent the real system 
reasonably well, then its solution is optimum also for the real situation.

1.3 solvIng the or Model

In practice, OR does not offer a single general technique for solving all mathematical 
models. Instead, the type and complexity of the mathematical model dictate the nature 
of the solution method. For example, in Section 1.2 the solution of the tickets purchas-
ing problem requires simple ranking of alternatives based on the total purchasing price, 
whereas the solution of the garden problem utilizes differential calculus to determine 
the maximum area.

The most prominent OR technique is linear programming. It is designed for 
 models with linear objective and constraint functions. Other techniques include  integer 
 programming (in which the variables assume integer values), dynamic programming (in 
which the original model can be decomposed into smaller more manageable subprob-
lems), network programming (in which the problem can be modeled as a network), and 
nonlinear programming (in which functions of the model are nonlinear). These are only 
a few among many available OR tools.

A peculiarity of most OR techniques is that solutions are not generally obtained 
in (formula-like) closed forms. Instead, they are determined by algorithms. An algorithm 
provides fixed computational rules that are applied repetitively to the problem, with 
each repetition (called iteration) attempting to move the solution closer to the optimum. 
Because the computations in each iteration are typically tedious and voluminous, it is 
imperative in practice to use the computer to carry out these algorithms.

Some mathematical models may be so complex that it becomes impossible to 
solve them by any of the available optimization algorithms. In such cases, it may be 
necessary to abandon the search for the optimal solution and simply seek a good solu-
tion using heuristics or metaheuristics, a collection of intelligent search rules of thumb 
that move the solution point advantageously toward the optimum.
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aha! Moment: ada lovelace, the First-ever algorithm programmer

Though the first conceptual development of an algorithm is attributed to the founder of alge-
bra Muhammad Ibn-Musa Al-Khwarizmi (born c. 780 in Khuwarezm, Uzbekistan, died c. 850 
in Baghdad, Iraq),1 it was British Ada Lovelace (1815–1852) who developed the first computer 
algorithm. And when we speak of computers, we are referring to the mechanical Difference and 
Analytical Engines pioneered and designed by the famed British mathematician Charles Babbage 
(1791–1871).

Lovelace had a keen interest in mathematics. As a teenager, she visited the Babbage home 
and was fascinated by his invention and its potential uses in doing more than just arithmetic 
operations. Collaborating with Babbage, she translated into English an article that provided the 
design details of the Analytical Engine. The article was based on lectures Babbage presented in 
Italy. In the translated article, Lovelace appended her own notes (which turned out to be longer 
than the original article and included some corrections of Babbage’s design ideas). One of her 
notes detailed the first-ever algorithm, that of computing Bernoulli numbers on the yet-to-be-
completed Analytical Engine. She even predicted that the Babbage machine had the potential to 
manipulate symbols (and not just numbers) and to create complex music scores.2

Ada Lovelace died at the young age of 37. In her honor, the computer language Ada, 
developed for the United States Department of Defense, was named after her. The annual 
mid-October Ada Lovelace Day is an international celebration of women in science, technol-
ogy, engineering, mathematics (STEM). And those of us who have visited St. James Square in 
London may recall the blue plaque that read “Ada Countess of Lovelace (1815–1852) Pioneer 
of Computing.”

1.4 QueuIng and sIMulatIon Models

Queuing and simulation deal with the study of waiting lines. They are not optimization 
techniques; rather, they determine measures of performance of waiting lines, such as 
average waiting time in queue, average waiting time for service, and utilization of ser-
vice facilities, among others.

Queuing models utilize probability and stochastic models to analyze waiting lines, 
and simulation estimates the measures of performance by “imitating” the behavior of 
the real system. In a way, simulation may be regarded as the next best thing to observ-
ing a real system. The main difference between queuing and simulation is that queuing 
models are purely mathematical, and hence are subject to specific assumptions that 
limit their scope of application. Simulation, on the other hand, is flexible and can be 
used to analyze practically any queuing situation.

1According to Dictionary.com, the word algorithm originates “from Medieval Latin algorismus, a mangled 
transliteration of Arabic al-Khwarizmi.”
2Lack of funding, among other factors, prevented Babbage from building fully working machines during his 
lifetime. It was only in 1991 that the London Science Museum built a complete Difference Engine No. 2 using 
the same materials and technology available to Babbage, thus vindicating his design ideas. There is currently 
an ongoing long-term effort to construct a fully working Analytical Engine funded entirely by public contri-
butions. It is impressive that modern-day computers are based on the same principal components (memory, 
CPU, input, and output) advanced by Babbage 100 years earlier.
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The use of simulation is not without drawbacks. The process of developing simula-
tion models is costly in both time and resources. Moreover, the execution of simulation 
models, even on the fastest computer, is usually slow.

1.5 art oF ModelIng

The illustrative models developed in Section 1.2 are exact representations of real situ-
ations. This is a rare occurrence in OR, as the majority of applications usually involve 
(varying degrees of) approximations. Figure 1.1 depicts the levels of abstraction that 
characterize the development of an OR model. We abstract the assumed real world from 
the real situation by concentrating on the dominant variables that control the behavior of 
the real system. The model expresses in an amenable manner the mathematical functions 
that represent the behavior of the assumed real world.

To illustrate levels of abstraction in modeling, consider the Tyko Manufacturing 
Company, where a variety of plastic containers are produced. When a production order 
is issued to the production department, necessary raw materials are acquired from the 
company’s stocks or purchased from outside sources. Once a production batch is com-
pleted, the sales department takes charge of distributing the product to retailers.

A viable question in the analysis of Tyko’s situation is the determination of the 
size of a production batch. How can this situation be represented by a model?

Looking at the overall system, a number of variables can bear directly on the 
level of production, including the following (partial) list categorized by department:

1. Production Department: Production capacity expressed in terms of available 
 machine and labor hours, in-process inventory, and quality control standards.

2. Materials Department: Available stock of raw materials, delivery schedules from 
outside sources, and storage limitations.

3. Sales Department: Sales forecast, capacity of distribution facilities, effectiveness 
of the advertising campaign, and effect of competition.

Model

Real World

Assumed Real World

FIguRe 1.1

Levels of abstraction in model development
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Each of these variables affects the level of production at Tyko. Trying to establish 
explicit functional relationships between them and the level of production is a difficult 
task indeed.

A first level of abstraction requires defining the boundaries of the assumed real world. 
With some reflection, we can approximate the real system by two dominant parameters:

1. Production rate.
2. Consumption rate.

The production rate is determined using data such as production capacity, quality con-
trol standards, and availability of raw materials. The consumption rate is determined 
from the sales data. In essence, simplification from the real world to the assumed real 
world is achieved by “lumping” several real-world parameters into a single assumed-
real-world parameter.

It is easier now to abstract a model from the assumed real world. From the 
 production and consumption rates, measures of excess or shortage inventory can be 
established. The abstracted model may then be constructed to balance the conflicting 
costs of excess and shortage inventory—that is, to minimize the total cost of inventory.

1.6 More than Just MatheMatIcs

Because of the mathematical nature of OR models, one tends to think that an OR 
study is always rooted in mathematical analysis. Though mathematical modeling is a 
cornerstone of OR, simpler approaches should be explored first. In some cases, a “com-
monsense” solution may be reached through simple observations. Indeed, since the 
human element invariably affects most decision problems, a study of the psychology 
of people may be key to solving the problem. Six illustrations are presented here to 
demonstrate the validity of this argument.

1. The stakes were high in 2004 when United Parcel Service (UPS) unrolled its 
ORION software (based on the sophisticated Traveling Salesman Algorithm—see 
 Chapter 11) to provide its drivers with tailored daily delivery itineraries. The software 
generally proposed shorter routes than those presently taken by the drivers, with poten-
tial savings of millions of dollars a year. For their part, the drivers resented the notion that 
a machine could “best” them, given their long years of experience on the job. Faced with 
this human dilemma, ORION developers resolved the issue simply placing a visible ban-
ner on the itinerary sheets that read “Beat the Computer.” At the same time, they kept 
ORION-generated routes intact. The drivers took the challenge to heart, with some actu-
ally beating the computer suggested route. ORION was no longer putting them down. 
Instead, they regarded the software as complementing their intuition and experience.3

2. Travelers arriving at the Intercontinental Airport in Houston, Texas, com-
plained about the long wait for their baggage. Authorities increased the number of 

3http://www.fastcompany.com/3004319/brown-down-ups-drivers-vs-ups-algorithm. See also “At UPS, the 
Algorithm Is the Driver,” Wall Street Journal, February 16, 2015.
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baggage handlers in hope of alleviating the problem, but the complaints persisted. In 
the end, the decision was made to simply move arrival gates farther away from baggage 
claim, forcing the passengers to walk longer before reaching the baggage area. The 
complaints disappeared because the extra walking allowed ample time for the luggage 
to be delivered to the carousel.4

3. In a study of the check-in counters at a large British airport, a U.S.– Canadian 
consulting team used queuing theory to investigate and analyze the situation. Part 
of the solution recommended the use of well-placed signs urging passengers within 
20 mins of departure time to advance to the head of the queue and request priority 
service. The solution was not successful because the passengers, being mostly British, 
were “conditioned to very strict queuing behavior.” Hence they were reluctant to move 
ahead of others waiting in the queue.5

4. In a steel mill in India, ingots were first produced from iron ore and then used 
in the manufacture of steel bars and beams. The manager noticed a long delay between 
the ingots production and their transfer to the next manufacturing phase (where end 
products were produced). Ideally, to reduce reheating cost, manufacturing should start 
soon after the ingots leave the furnaces. Initially, the problem could be perceived as a 
line-balancing situation, which could be resolved either by reducing the output of ingots 
or by increasing the capacity of manufacturing. Instead, the OR team used simple charts 
to summarize the output of the furnaces during the three shifts of the day. They discov-
ered that during the third shift starting at 11:00 P.M., most of the ingots were produced 
between 2:00 and 7:00 A.M. Investigation revealed that third-shift operators preferred 
to get long periods of rest at the start of the shift and then make up for lost production 
during morning hours. Clearly, the third-shift operators have hours to spare to meet their 
quota. The problem was solved by “leveling out” both the number of operators and the 
production schedule of ingots throughout the shift.

5. In response to complaints of slow elevator service in a large office building, 
the OR team initially perceived the situation as a waiting-line problem that might 
 require the use of mathematical queuing analysis or simulation. After studying the 
behavior of the people voicing the complaint, the psychologist on the team suggested 
 installing full-length mirrors at the entrance to the elevators. The complaints disap-
peared, as people were kept occupied watching themselves and others while waiting 
for the elevator.

6. A number of departments in a production facility share the use of three trucks 
to transport material. Requests initiated by a department are filled on a first-come-
first-serve basis. Nevertheless, the departments complained of long wait for service, 
and demanded adding a fourth truck to the pool. Ensuing simple tallying of the usage 
of the trucks showed modest daily utilization, obviating a fourth truck. Further inves-
tigations revealed that the trucks were parked in an obscure parking lot out of the 
line of vision for the departments. A requesting supervisor, lacking visual sighting of 
the trucks,  assumed that no trucks were available and hence did not initiate a request.  

4Stone, A., “Why Waiting Is Torture,” The New York Times, August 18, 2012.
5Lee, A., Applied Queuing Theory, St. Martin’s Press, New York, 1966.
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The problem was solved simply by installing two-way radio communication between 
the truck lot and each department.6

Four conclusions can be drawn from these illustrations:

1. The OR team should explore the possibility of using “different” ideas to re-
solve the situation. The (common-sense) solutions proposed for the UPS problem 
 (using Beat the Computer banner to engage drivers), the Houston airport (moving 
 arrival gates away from the baggage claim area), and the elevator problem (installing 
mirrors) are rooted in human psychology rather than in mathematical modeling. This is 
the reason OR teams may generally seek the expertise of individuals trained in social 
science and psychology, a point that was recognized and implemented by the first OR 
team in Britain during World War II.

2. Before jumping to the use of sophisticated mathematical modeling, a bird’s 
eye view of the situation should be adopted to uncover possible nontechnical reasons 
that led to the problem in the first place. In the steel mill situation, this was achieved 
by using only simple charting of the ingots production to discover the imbalance in the 
third-shift operation. A similar simple observation in the case with the transport trucks 
situation also led to a simple solution of the problem.

3. An OR study should not start with a bias toward using a specific mathemati-
cal tool before the use of the tool is justified. For example, because linear programming 
(Chapter 2 and beyond) is a successful technique, there is a tendency to use it as the 
modeling tool of choice. Such an approach may lead to a mathematical model that is far 
removed from the real situation. It is thus imperative to analyze available data, using 
the simplest possible technique, to understand the essence of the problem. Once the 
problem is defined, a decision can be made regarding the most appropriate tool for the 
solution. In the steel mill problem, simple charting of the ingots production was all that 
was needed to clarify the situation.

4. Solutions are rooted in people and not in technology. Any solution that does 
not take human behavior into consideration is apt to fail. Even though the solution 
of the British airport problem may have been mathematically sound, the fact that the 
 consulting team was unaware of the cultural differences between the United States 
and Britain  resulted in an unimplementable  recommendation (Americans and Cana-
dians tend to be less formal). The same viewpoint can, in a way, be expressed in the 
UPS case.

1.7 phases oF an or study

OR studies are rooted in teamwork, where the OR analysts and the client work side by 
side. The OR analysts’ expertise in modeling is complemented by the experience and 
cooperation of the client for whom the study is being carried out.

6G. P. Cosmetatos, “The Value of Queuing Theory—A Case Study,” Interfaces, Vol. 9, No. 3, pp. 47–51, 1979.
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As a decision-making tool, OR is both a science and an art: It is a science by 
virtue of the mathematical techniques it embodies, and an art because the success of 
the phases leading to the solution of the mathematical model depends largely on the 
creativity and experience of the OR team. Willemain (1994) advises that “effective 
[OR] practice requires more than analytical competence: It also requires, among other 
attributes, technical judgment (e.g., when and how to use a given technique) and skills 
in communication and organizational survival.”

It is difficult to prescribe specific courses of action (similar to those dictated by 
the precise theory of most mathematical models) for these intangible factors. We can, 
however, offer general guidelines for the implementation of OR in practice.

The principal phases for implementing OR in practice include the following:

1. Definition of the problem.
2. Construction of the model.
3. Solution of the model.
4. Validation of the model.
5. Implementation of the solution.

Phase 3, dealing with model solution, is the best defined and generally the easiest to 
implement in an OR study, because it deals mostly with well-defined mathematical 
models. Implementation of the remaining phases is more an art than a theory.

problem definition involves delineating the scope of the problem under investi-
gation. This function should be carried out by the entire OR team. The aim is to iden-
tify three principal elements of the decision problem: (1) description of the decision 
alternatives, (2) determination of the objective of the study, and (3) specification of the 
limitations under which the modeled system operates.

Model construction entails an attempt to translate the problem definition into 
mathematical relationships. If the resulting model fits one of the standard mathematical 
models, such as linear programming, we can usually reach a solution by using available 
algorithms. Alternatively, if the mathematical relationships are too complex to allow the 
determination of an analytic solution, the OR team may opt to simplify the model and 
use a heuristic approach, or the team may consider the use of simulation, if appropri-
ate. In some cases, mathematical, simulation, and heuristic models may be combined to 
solve the decision problem, as some of the end-of-chapter case analyses demonstrate.

Model solution is by far the simplest of all OR phases because it entails the use 
of well-defined optimization algorithms. An important aspect of the model solution 
phase is sensitivity analysis. It deals with obtaining additional information about the 
behavior of the optimum solution when the model undergoes some parameter changes. 
Sensitivity analysis is particularly needed when the parameters of the model cannot 
be  estimated accurately. In these cases, it is important to study the behavior of the 
 optimum solution in the neighborhood of the parameters estimates.

Model validity checks whether or not the proposed model does what it purports 
to  do—that is, does it adequately predict the behavior of the system under study? 
Initially, the OR team should be convinced that the model’s output does not include 
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“surprises.” In other words, does the solution make sense? Are the results intuitively 
acceptable? On the formal side, a common method for validating a model is to com-
pare its output with historical output data. The model is valid if, under similar input 
conditions, it reasonably duplicates past performance. Generally, however, there is 
no guarantee that future performance will continue to duplicate past behavior. Also, 
 because the model is usually based on examination of past data, the proposed compari-
son should usually be favorable. If the proposed model represents a new (non-existing) 
system, no historical data would be available. In some situations, simulation may be 
used as an independent tool for validating the output of the mathematical model.

Implementation of the solution of a validated model involves the translation of 
the results into understandable operating instructions to be issued to the people who 
will administer the recommended system. The burden of this task lies primarily with 
the OR team.

1.8 about thIs book

Morris (1967) states “the teaching of models is not equivalent to the teaching of 
modeling.” I have taken note of this important statement during the preparation of 
this edition, making every effort to introduce the art of modeling in OR by including 
realistic models and case studies throughout the book. Because of the importance of 
computations in OR, the book discusses how the theoretical algorithms fit in com-
mercial computer codes (see Section 3.7). It also presents extensive tools for carrying 
out the computational task, ranging from tutorial-oriented TORA to the commercial 
packages Excel, Excel Solver, and AMPL.

OR is both an art and a science—the art of describing and modeling the problem 
and the science of solving the model using (precise) mathematical algorithms. A first 
course in the subject should give the student an appreciation of the importance of both 
areas. This will provide OR users with the kind of confidence that normally would be 
lacking if training is dedicated solely to the art aspect of OR, under the guise that com-
puters can relieve the user of the need to understand why the solution algorithms work.

Modeling and computational capabilities can be enhanced by studying published 
practical cases. To assist you in this regard, fully developed end-of-chapter case analy-
ses are included. The cases cover most of the OR models presented in this book. There 
are also some 50 cases that are based on real-life applications in Appendix E on the 
website that accompanies this book. Additional case studies are available in journals 
and publications. In particular, Interfaces (published by INFORMS) is a rich source of 
diverse OR applications.
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probleMs7

Section Assigned Problems

1.2 1-1 to 1-11

  1-1.  In the tickets example,
(a) Provide an infeasible alternative.

(b) Identify a fourth feasible alternative and determine its cost.
  1-2.  In the garden problem, identify three feasible solutions, and determine which one is better.

  1-3.  Determine the optimal solution of the garden problem. (Hint: Use the constraint to 
express the objective function in terms of one variable, then use differential calculus.)

  *1-4.  Amy, Jim, John, and Kelly are standing on the east bank of a river and wish to cross 
to the west side using a canoe. The canoe can hold at most two people at a time. Amy, 
being the most athletic, can row across the river in 1 minute. Jim, John, and Kelly would 
take 3, 6, and 9 minutes, respectively. If two people are in the canoe, the slower person 
dictates the crossing time. The objective is for all four people to be on the other side of 
the river in the shortest time possible. 
(a) Define the criterion for evaluating the alternatives (remember, the canoe is the only 

mode of transportation, and it cannot be shuttled empty).

*(b) What is the shortest time for moving all four people to the other side of the river?
  1-5.  In a baseball game, Jim is the pitcher and Joe is the batter. Suppose that Jim can throw 

either a fast or a curve ball at random. If Joe correctly predicts a curve ball, he can 
maintain a .400 batting average, else, if Jim throws a curve ball and Joe prepares for a 
fast ball, his batting average is kept down to .200. On the other hand, if Joe correctly 
predicts a fast ball, he gets a .250 batting average, else, his batting average is only .125.
(a) Define the alternatives for this situation.

(b) Define the objective function for the problem and discuss how it differs from the 
familiar optimization (maximization or minimization) of a criterion.

7Appendix B gives the solution to asterisk-prefixed problems. The same convention is used in all end-of-
chapter problems throughout the book. 
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  1-6.  During the construction of a house, six joists of 24 ft each must be trimmed to the correct 
length of 23 ft. The operations for cutting a joist involve the following sequence:

Operation Time (seconds)

1. Place joist on saw horses 15
2. Measure correct length (23 ft)  5
3. Mark cutting line for circular saw  5
4. Trim joist to correct length 20
5. Stack trimmed joist in a designated area 20

Three persons are involved: Two loaders must work simultaneously on operations 1, 2, 
and 5, and one cutter handles operations 3 and 4. There are two pairs of saw horses on 
which untrimmed joists are placed in preparation for cutting, and each pair can hold up 
to three side-by-side joists. Suggest a good schedule for trimming the six joists.

  1-7. An upright symmetrical triangle is divided into four layers: The bottom layer consists 
of four (equally-spaced) dots, designated as A, B, C, and D. The next layer includes dots 
E, F, and G, and the following layer has dots H and I. The top layer has dot J. You want 
to invert the triangle (bottom layer has one dot and top layer has four) by moving the 
dots around as necessary.8

(a) Identify two feasible solutions.

(b) Determine the smallest number of moves needed to invert the triangle.
  1-8.  You have five chains, each consisting of four solid links. You need to make a bracelet by 

connecting all five chains. It costs 2 cents to break a link and 3 cents to re-solder it.
(a) Identify two feasible solutions and evaluate them.

(b) Determine the cheapest cost for making the bracelet.
  1-9.  The squares of a rectangular board of 11 rows and 9 columns are numbered sequentially 

1 through 99 with a hidden monetary reward between 0 and 50 dollars assigned to each 
square. A game using the board requires the player to choose a square by selecting any 
two digits and then subtracting the sum of its two digits from the selected number. The 
player then receives the reward assigned the selected square. What monetary values 
should be assigned to the 99 squares to minimize the player’s reward (regardless of how 
many times the game is repeated)? To make the game interesting, the assignment of $0 to 
all the squares is not an option.

  1-10.  You have 10 identical cartons each holding 10 water bottles. All bottles weigh 10 oz. 
each, except for one defective carton in which each of the 10 bottles weighs on 9 oz. only. 
A scale is available for weighing.
(a) Suggest a method for locating the defective carton.

*(b) What is the smallest number of times the scale is used that guarantees finding the 
defective carton? (Hint: You will need to be creative in deciding what to weigh.)

*1-11.  You are given two identical balls made of a tough alloy. The hardness test fails if a ball 
dropped from a floor of a 120-storey building is dented upon impact. A ball can be 
reused in fresh drops only if it has not been dented in a previous drop. Using only these 
two identical balls, what is the smallest number of ball drops that will determine the high-
est floor from which the ball can be dropped without being damaged?

8Problems 1-7 and 1-8 are adapted from Bruce Goldstein, Cognitive Psychology: Mind, Research, and 
Everyday Experience, Wadsworth Publishing, 2005.
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Chapter 2

Modeling with Linear programming

Real-Life Application—Frontier Airlines Purchases Fuel Economically

The fueling of an aircraft can take place at any of the stopovers along a flight route. 
Fuel price varies among the stopovers, and potential savings can be realized by tankering 
(loading) extra fuel at a cheaper location for use on subsequent flight legs. The disadvan-
tage is that the extra weight of tankered fuel will result in higher burn of gasoline. Linear 
programming (LP) and heuristics are used to determine the optimum amount of tanker-
ing that balances the cost of excess burn against the savings in fuel cost. The study, carried 
out in 1981, resulted in net savings of about $350,000 per year. With the significant rise 
in the cost of fuel, many airlines are using LP-based tankering software to purchase fuel. 
Details of the study are given in Case 1, Chapter 26 on the website.

2.1 Two-VARiAbLE LP ModEL

This section deals with the graphical solution of a two-variable LP.  Though two-variable 
problems hardly exist in practice, the treatment provides concrete foundations for the 
development of the general simplex algorithm presented in Chapter 3.

Example 2.1-1 (The Reddy Mikks Company)

Reddy Mikks produces both interior and exterior paints from two raw materials, M1 and M2. 
The following table provides the basic data of the problem:

Tons of raw material per ton of
Maximum daily  

availability (tons)Exterior paint Interior paint

Raw material, M1 6 4 24
Raw material, M2 1 2  6

Profit per ton ($1000) 5 4

 45
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The daily demand for interior paint cannot exceed that for exterior paint by more than 1 ton. 
Also, the maximum daily demand for interior paint is 2 tons.

Reddy Mikks wants to determine the optimum (best) product mix of interior and exterior 
paints that maximizes the total daily profit.

All OR models, LP included, consist of three basic components:

1. Decision variables that we seek to determine.
2. Objective (goal) that we need to optimize (maximize or minimize).
3. Constraints that the solution must satisfy.

The proper definition of the decision variables is an essential first step in the development of the 
model. Once done, the task of constructing the objective function and the constraints becomes 
more straightforward.

For the Reddy Mikks problem, we need to determine the daily amounts of exterior and 
interior paints to be produced. Thus the variables of the model are defined as:

 x1 = Tons produced daily of exterior paint

 x2 = Tons produced daily of interior paint

The goal of Reddy Mikks is to maximize (i.e., increase as much as possible) the total daily 
profit of both paints. The two components of the total daily profit are expressed in terms of the 
variables x1 and x2 as:

Profit from exterior paint = 5x1 1thousand2 dollars

Profit from interior paint = 4x2 1thousand2 dollars

Letting z represent the total daily profit (in thousands of dollars), the objective (or goal) of 
Reddy Mikks is expressed as

Maximize z = 5x1 + 4x2

Next, we construct the constraints that restrict raw material usage and product demand. The 
raw material restrictions are expressed verbally as

aUsage of a raw material
by both paints

b … aMaximum raw material
availability

b

The daily usage of raw material M1 is 6 tons per ton of exterior paint and 4 tons per ton of inte-
rior paint. Thus,

Usage of raw material M1 by both paints = 6x1 + 4x2 tons/day

In a similar manner,

Usage of raw material M2 by both paints = 1x1 + 2x2 tons/day

The maximum daily availabilities of raw materials M1 and M2 are 24 and 6 tons, respectively. 
Thus, the raw material constraints are:

6x1 + 4x2 … 24 1Raw material M12
x1 + 2x2 … 6 1Raw material M22

The first restriction on product demand stipulates that the daily production of interior paint 
cannot exceed that of exterior paint by more than 1 ton, which translates to:

x2 - x1 … 1 1Market limit2
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The second restriction limits the daily demand of interior paint to 2 tons—that is,

x2 … 2 1Demand limit2
An implicit (or “understood-to-be”) restriction requires (all) the variables, x1 and x2, to 

 assume zero or positive values only. The restrictions, expressed as x1 Ú 0 and x2 Ú 0, are  referred 
to as nonnegativity constraints.

The complete Reddy Mikks model is

Maximize z = 5x1 + 4x2

subject to

 6x1 + 4x2 … 24 (1)

 x1 + 2x2 … 6 (2)

 -x1 + x2 … 1 (3)

 x2 … 2 (4)

 x1, x2 Ú 0 (5)

Any values of x1 and x2 that satisfy all five constraints constitute a feasible solution. 
Otherwise, the solution is infeasible. For example, the solution x1 = 3 tons per day and x2 = 1 
ton per day is feasible because it does not violate any of the five constraints;a result that is 
 confirmed by using substituting 1x1 = 3, x2 = 12 in the left-hand side of each constraint. In 
 constraint (1), we have 6x1 + 4x2 = 16 * 32 + 14 * 12 = 22, which is less than the right-hand 
side of the constraint 1=  242. Constraints 2 to 5 are checked in a similar manner (verify!). On 
the other hand, the solution x1 = 4 and x2 = 1 is infeasible because it does not satisfy at least 
one constraint. For example, in constraint (1), 16 * 42 + 14 * 12 = 28, which is larger than the 
right-hand side 1=  242.

The goal of the problem is to find the optimum, the best feasible solution that maximizes 
the total profit z. First, we need to show that the Reddy Mikks problem has an infinite number of 
feasible solutions, a property that is shared by all nontrivial LPs. Hence the problem cannot be 
solved by enumeration. The graphical method in Section 2.2 and its algebraic generalization in 
Chapter 3 show how the optimum can be determined in a finite number of steps.

remarks. The objective and the constraint function in all LPs must be linear. 
Additionally, all the parameters (coefficients of the objective and constraint functions) 
of the model are known with certainty.

2.2 GRAPhiCAL LP SoLuTion

The graphical solution includes two steps:

1. Determination of the feasible solution space.
2. Determination of the optimum solution from among all the points in the solution 

space.

The presentation uses two examples to show how maximization and minimiza-
tion objective functions are handled.
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2.2.1  Solution of a Maximization Model

Example 2.2-1

This example solves the Reddy Mikks model of Example 2.1-1.

 Step 1.  Determination of the Feasible Solution Space:
First, consider the nonnegativity constraints x1 Ú 0 and x2 Ú 0. In Figure 2.1, the 
horizontal axis x1 and the vertical axis x2 represent the exterior- and interior-paint 
variables, respectively. Thus, the nonnegativity constraints restrict the variables to the 
first quadrant (above the x1-axis and to the right of the x2-axis).

To account for the remaining four constraints, first replace each inequality with 
an equation, and then graph the resulting straight line by locating two distinct points. 
For example, after replacing 6x1 + 4x2 … 24 with the straight line 6x1 + 4x2 = 24, 
two distinct points are determined by setting x1 = 0 to obtain x2 = 24

4 = 6 and then 
by setting x2 = 0 to obtain x1 = 24

6 = 4. Thus the line 6x1 + 4x2 = 24 passes through 
(0, 6) and (4, 0), as shown by line (1) in Figure 2.1.

Next, consider the direction 17  or 6 2 of the inequality. It divides the (x1, x2) plane 
into two half-spaces, one on each side of the graphed line. Only one of these two halves 
satisfies the inequality. To determine the correct side, designate any point not  lying on 
the straight line as a reference point. If the chosen reference point satisfies the inequality, 
then its side is feasible; otherwise, the opposite side becomes the feasible half-space.

The origin (0, 0) is a convenient reference point and should always be used so 
long as it does not lie on the line representing the constraint. This happens to be true 
for all the constraints of this example. Starting with the constraint 6x1 + 4x2 … 24, 
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FiGure 2.1

Feasible space of the Reddy Mikks model
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substitution of 1x1, x22 = 10, 02 automatically yields zero for the left-hand side. 
Since it is less than 24, the half-space containing (0, 0) is feasible for inequality 
(1), as the direction of the arrow in Figure 2.1 shows. A similar application of the 
reference-point procedure to the remaining constraints produces the feasible solution 
space ABCDEF in which all the constraints are satisfied (verify!). All points outside 
the boundary of the area ABCDEF are infeasible.

 Step 2. Determination of the Optimum Solution:
The number of solution points in the feasible space ABCDEF in Figure 2.1 is infinite, 
clearly precluding the use of exhaustive enumeration. A systematic procedure is thus 
needed to determine the optimum solution.

First, the direction in which the profit function z = 5x1 + 4x2 increases  (recall 
that we are maximizing z) is determined by assigning arbitrary increasing values 
to z.  In Figure 2.2, the two lines 5x1 + 4x2 = 10 and 5x1 + 4x2 = 15 corresponding 
to (arbitrary) z = 10 and z = 15 depict the direction in which z increases. Moving 
in that direction, the optimum  solution occurs at C because it is the feasible point 
in the solution space beyond which any further increase will render an infeasible 
solution.

The values of x1 and x2 associated with the optimum point C are determined by 
solving the equations associated with lines (1) and (2):

 6x1 + 4x2 = 24

 x1 + 2x2 = 6

1

2

3

2

1

0 1 2 3 4
x1

x2

DE

F

(Maximize z 5 5x1 1 4x2)

In
cre

asin
g z

z 5
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z 5
 15

z 5
 21

x1 1 2x2 # 6
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x2 5 1.5 tons
z 5 $21,000

A B

C

6x1 1 4x2 # 24

FiGure 2.2

Optimum solution of the Reddy Mikks model
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The solution is x1 = 3 and x2 = 1.5 with z = 15 * 32 + 14 * 1.52 = 21. This calls 
for a daily product mix of 3 tons of exterior paint and 1.5 tons of interior paint. The 
associated daily profit is $21,000.

remarks. In practice, a typical LP may include hundreds or even thousands of variables 
and constraints. Of what good then is the study of a two-variable LP? The answer is that 
the graphical solution provides a key result: The optimum solution of an LP, when it exists, 
is always associated with a corner point of the solution space, thus limiting the search for the 
optimum from an infinite number of feasible points to a finite number of corner points. This 
powerful result is the basis for the development of the general algebraic simplex method 
presented in Chapter 3.1

2.2.2  Solution of a Minimization Model

Example 2.2-2 (diet Problem)

Ozark Farms uses at least 800 lb of special feed daily. The special feed is a mixture of corn and 
soybean meal with the following compositions:

lb per lb of feedstuff

Feedstuff Protein Fiber Cost ($/lb)

Corn .09 .02 .30
Soybean meal .60 .06 .90

The dietary requirements of the special feed are at least 30% protein and at most 5% fiber. 
The goal is to determine the daily minimum-cost feed mix.

The decision variables of the model are:

x1 = lb of corn in the daily mix

x2 = lb of soybean meal in the daily mix

The objective is to minimize the total daily cost (in dollars) of the feed mix—that is,

Minimize z = .3x1 + .9x2

1To reinforce this key result, use TORA to verify that the optimum of the following objective func-
tions of the Reddy Mikks model (Example 2.1-1) will yield the associated corner points as defined in 
Figure 2.2 (click View/Modify Input Data  to modify the objective coefficients and re-solve the problem 
graphically):

(a) z = 5x1 + x2 (optimum: point B in Figure 2.2)

(b) z = 5x1 + 4x2 (optimum: point C)

(c) z = x1 + 3x2 (optimum: point D)

(d) z = x2 (optimum: point D or E, or any point inbetween—see Section 3.5.2)

(e) z = -2x1 + x2 (optimum: point F)

(f) z = -x1 - x2 (optimum: point A)
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The constraints represent the daily amount of the mix and the dietary requirements. Ozark 
Farms needs at least 800 lb of feed a day—that is,

x1 + x2 Ú 800

The amount of protein included in x1 lb of corn and x2 lb of soybean meal is 1.09x1 + .6x22 lb. 
This quantity should equal at least 30% of the total feed mix 1x1 + x22 lb—that is,

.09x1 + .6x2 Ú .31x1 + x22
In a similar manner, the fiber requirement of at most 5% is represented as

.02x1 + .06x2 … .051x1 + x22
The constraints are simplified by moving the terms in x1 and x2 to the left-hand side of each 

inequality, leaving only a constant on the right-hand side. The complete model is

Minimize z = .3x1 + .9x2

subject to

x1 + x2 Ú 800
.21x1 - .30x2 … 0
.03x1 - .01x2 Ú 0

x1, x2 Ú 0

Figure 2.3 provides the graphical solution of the model. The second and third constraints pass 
through the origin. Thus, unlike the Reddy Mikks model of Example 2.2-1, the determination of 
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the feasible half-spaces of these two constraints requires using a reference point other than (0, 0) 
[e.g., (100, 0) or (0, 100)].

Solution:

The model minimizes the value of the objective function by reducing z in the direction shown 
in Figure 2.3. The optimum solution is the intersection of the two lines x1 + x2 = 800 and 
.21x1 - .3x2 = 0, which yields x1 = 470.6 lb and x2 = 329.4 lb. The minimum cost of the feed 
mix is z = .3 * 470.6 + .9 * 329.4 = $437.64 per day.

remarks. One may wonder why the constraint x1 + x2 Ú 800 cannot be replaced with 
x1 + x2 = 800 because it would not be optimum to produce more than the minimum quantity. 
Although the solution of the present model did satisfy the equation, a more complex model may 
impose additional restrictions that would require mixing more than the minimum amount. More 
importantly, the weak inequality 1Ú 2, by definition, implies the equality case, so that the equation 
1= 2 is permitted if optimality requires it. The conclusion is that one should not “preguess” the 
solution by imposing the additional equality restriction.

2.3 CoMPuTER SoLuTion wiTh SoLVER And AMPL

In practice, where typical LP models may involve thousands of variables and constraints, 
the computer is the only viable venue for solving LP problems. This section presents 
two commonly used software systems: Excel Solver and AMPL. Solver is particularly 
appealing to spreadsheet users. AMPL is an algebraic modeling language that, like all 
higher-order programming languages, requires more expertise. Nevertheless, AMPL, 
and similar languages,2 offers great modeling flexibility. Although the presentation in 
this section concentrates on LPs, both AMPL and Solver can handle integer and nonlin-
ear problems, as will be shown in later chapters.

2.3.1  LP Solution with Excel Solver

In Excel Solver, the spreadsheet is the input and output medium for the LP. Figure 2.4 
shows the layout of the data for the Reddy Mikks model (file solverRM1.xls). The top 
of the figure includes four types of information: (1) input data cells (B5:C9 and F6:F9), 
(2) cells representing the variables and the objective function (B13:D13), (3) algebraic 
definitions of the objective function and the left-hand side of the constraints (cells 
D5:D9), and (4) cells that provide (optional) explanatory names or symbols. Solver 
requires the first three types only. The fourth type enhances readability but serves 
no other purpose. The relative positioning of the four types of information on the 

2Other known commercial packages include AIMMS, GAMS, LINGO, MPL, OPL Studio, and 
Xpress-Mosel.
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FiGure 2.4

Defining the Reddy Mikks model with Excel Solver (file solverRM1.xls)

spreadsheet (as suggested in Figure 2.4) is convenient for proper cell cross-referencing 
in Solver, and its use is recommended.

How does Solver link to the spreadsheet data? First, we provide “algebraic” defi-
nitions of the objective function and the left-hand side of the constraints using the 
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input data (cells B5:C9 and F6:F9) and the objective function and variables (cells 
B13:D13). Next, we place the resulting formulas appropriately in cells D5:D9, as the 
following table shows:

Algebraic expression Spreadsheet formula Entered in cell

Objective, z 5x1 + 4x2 =B5*$B$13+C5*$C$13 D5
Constraint 1 6x1 + 4x2 =B6*$B$13+C6*$C$13 D6
Constraint 2  x1 + 2x2 =B7*$B$13+C7*$C$13 D7
Constraint 3 -x1 + x2 =B8*$B$13+C8*$C$13 D8
Constraint 4 0x1 + x2 =B9*$B$13+C9*$C$13 D9

Actually, you only need to enter the formula for cell D5 and then copy it into cells 
D6:D9. To do so correctly, it is necessary to use fixed referencing of the cells represent-
ing x1 and x2 (i.e., $B$13 and $C$13, respectively).

The explicit formulas just described are impractical for large LPs. Instead, the 
formula in cell D5 can be written compactly as

=  SUMPRODUCT1B5:C5,$B$13:$C$132
The new formula can then be copied into cells D6:D9.

All the elements of the LP model are now in place. To execute the model, click 
Solver from the spreadsheet menu bar3 to access Solver parameters dialogue box 
(shown in the middle of Figure 2.4). Next, update the dialogue box as follows:

Set Target Cell: $D$5
Equal To: ⊙ Max
By Changing Cells: $B$13:$C$13

This information tells Solver that the LP variables (cells $B$13 and $C$13) are deter-
mined by maximizing the objective function in cell $D$5.

To set up the constraints, click Add  in the dialogue box to display the add 
Constraint box (bottom of Figure 2.4) and then enter the left-hand side, inequality 
type, and right-hand side of the constraints as4

$D$6:$D$9 6 =  $F$6:$F$9

For the nonnegativity restrictions, click Add  once again and enter

$B$13:$C$13 7 =  0

Another way to enter the nonnegative constraints is to click Options  in the Solver 
parameters box to access Solver Options (see Figure 2.5) and then check n✓ Assume  
Non@Negative  . Also, while in the same box, check n✓ Assume Linear Model .

4In the add Constraint box in Figure 2.4, the two additional options, int and bin, which stand for integer and 
binary, are used with integer programs to restrict variables to integer or binary values (see Chapter 9).

3If Solver does not appear under Data menu (on Excel menu bar), click Excel Office Button S Excel 
Options S Add Ins S Solver Add-in S OK; then close and restart Excel.
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In general, the remaining default settings in Solver Options need not be changed. 
However, the default precision of .000001 may be too “high” for some problems, and 
Solver may incorrectly return the message “Solver could not find a feasible solution”. 
In such cases, less precision (i.e., larger value) needs to be specified. If the message per-
sists, then the problem may be infeasible.

Descriptive Excel range names can be used to enhance readability. A range is 
created by highlighting the desired cells, typing the range name in the top left box of 
the sheet, and then pressing Return. Figure 2.6 (file solverRM2.xls) provides the details 
with a summary of the range names used in the model. The model should be contrasted 
with the file solverRM1.xls to see how ranges are used in the formulas.

To solve the problem, click Solve  on Solver parameters. A new dialogue box, 
Solver results, then gives the status of the solution. If the model setup is correct, the 
optimum value of z will appear in cell D5 and the values of x1 and x2 will go to cells 
B13 and C13,  respectively. For convenience, cell D13 exhibits the optimum value of z by 
entering the formula = D5 in cell D13, thus displaying the entire optimum solution in 
contiguous cells.

If a problem has no feasible solution, Solver will issue the explicit message 
“Solver could not find a feasible solution”. If the optimal objective value is unbounded 
(not finite), Solver will issue the somewhat ambiguous message “The Set Cell values do 
not converge”. In either case, the message indicates that there is something wrong with 
the formulation of the model, as will be discussed in Section 3.5.

The Solver results dialogue box provides the opportunity to request further details 
about the solution, including the sensitivity analysis report. We will discuss these addi-
tional results in Section 3.6.4.

The solution of the Reddy Mikks by Solver is straightforward. Other models may 
require a “bit of ingenuity” before they can be set up. A class of LP models that falls in 
this category deals with network optimization, as will be demonstrated in Chapter 6.

FiGure 2.5

Solver options dialogue box
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2.3.2  LP Solution with AMPL5

This section provides a brief introduction to AMPL. The material in Appendix C on the 
website details AMPL syntax. It will be cross-referenced with the presentation in this 
section and with other AMPL presentations in the book. The two examples presented 
here deal with the basics of AMPL.

reddy Mikks problem—a rudimentary Model. AMPL provides a facility for modeling 
an LP in a rudimentary longhand format. Figure 2.7 gives the self-explanatory code for the 
Reddy Mikks model (file amplRM1.txt). All reserved keywords are in bold. All other names 
are user generated. The objective function and each of the constraints must have distinct 
(user-generated) names followed by a colon. Each statement closes with a semicolon.

The longhand format is problem-specific, in the sense that a new code is needed 
whenever the input data are changed. For practical problems (with complex structure 
and a large number of variables and constraints), the longhand format is at best cum-
bersome. AMPL alleviates this difficulty by devising a code that divides the problem 
into two components: (1) a general algebraic model for a specific class of problems 

FiGure 2.6

Use of range names in Excel Solver (file solverRM2.xls)

5For convenience, the AMPL student version is on the website. Future updates may be downloaded from 
www.ampl.com. AMPL uses line commands and does not operate in Windows environment.
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applicable to any number of variables and constraints, and (2) data for driving the 
algebraic model. The implementation of these two points is addressed in the following 
section using the Reddy Mikks problem.

reddy Mikks problem—an algebraic Model. Figure 2.8 lists the statements of the 
model (file amplRM2.txt). The file must be strictly text (ASCII). The symbol # designates 
the start of explanatory comments. Comments may appear either on a separate line or 
following the semicolon at the end of a statement. The language is case sensitive, and all 
of its keywords, with few exceptions, are in lower case. (Section C.2 provides more details.)

The algebraic model in AMPL views the general LP problem with n variables and 
m constraints in the following generic format (restr is a user-generated name):

Maximize z:  a
n

j = 1
cj xj

subject to restri :a
n

j = 1
aijxj … bi, i = 1, 2, c, m

xj Ú 0, j = 1, 2, c, n

It gives the objective function and constraint i the (user-specified) names z and restri.
The model starts with the param statements that declare m, n, c, b, and aij as 

parameters (or constants) whose specific values are given in the input data section 
of the model. It translates cj1j = 1, 2, c, n2 as c{1..n}, bi1i = 1, 2, c, m2 as 
b{1..m}, and aij1i = 1, 2, c, m, j = 1, 2, c, n2 as a{1..m,1..n}. Next, the 
variables xj 1j = 1, 2, c, n2 together with the nonnegativity restriction are defined 
by the var statement

var x{1..n}>=0;

A variable is considered unrestricted if >=0 is removed from its definition. The nota-
tion in {} represents the set of subscripts over which a param or a var is defined.

The model is developed in terms of the parameters and the variables in the follow-
ing manner. The objective function and constraints carry distinct names  followed by a 

colon (:). The objective statement is a direct translation of maximize z = a
n

j = 1
cj  xj:

maximize z: sum{j in 1..n}c[j]*x[j];

Constraint i is given the (arbitrary) root name restr indexed over the set {1..m}:

restr{i in 1..m}:sum{j in 1..n}a[i,j]*x[j]<=b[i];

maximize z: 5*x1+4*x2;
subject to
c1: 6*x1+4*x2<=24;
c2: x1+2*x2<=6;
c3: -x1+x2<=1;
c4: x2<=2;

solve;
display z,x1,x2;

FiGure 2.7

Rudimentary AMPL model for 
the Reddy Mikks problem (file 
amplRM1.txt)
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The statement is a direct translation of restri a
n

j = 1
aij xj … bi.

The algebraic model may now be used with any set of applicable data that can 
be entered following the statement data;. For the Reddy Mikks model, the data 
tells AMPL that the problem has two variables (param n:=2;) and four constraints 
(param m:=4;). The compound operator := must be used, and the statement must 
start with the keyword param. For the single-subscripted parameters, c and b, each 
element is represented by its index followed by its value and separated by at least one 
blank space. Thus, c1 = 5 and c2 = 4 are entered as

param c:= 1 5 2 4;

The data for param b is entered in a similar manner.

#------------------------------------------algebraic model
param m;
param n;
param c{1..n};
param b{1..m};
param a{1..m,1..n};

var x{1..n}==0;

maximize z: sum{j in 1..n}c[j]*x[j];
subject to restr{i in 1..m}:

sum{j in 1..n}a[i,j]*x[j]<=b[i];
#------------------------------------------specify model data
data;
param n:=2;
param m:=4;
param c:=1 5 2 4;
param b:=1 24  2 6  3 1  4 2;
param a:     1     2 :=

1    6     4
2    1     2
3   -1     1
4    0     1;

#------------------------------------------solve the problem
solve;
display z, x;

FiGure 2.8

AMPL model of the Reddy Mikks problem using hard-coded input data (file amplRM2.txt)
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For the double-subscripted parameter aij, that data set reads as a two-dimensional 
matrix with its rows designating i and its columns designating j. The top line defines the 
subscript j, and the subscript i is entered at the start of each row as

param a:  1  2 :=
  1   6  4
  2   1  2
  3  -1  1
  4   0  1;

The data set must terminate with a semicolon. Note the mandatory location of the 
separator : and the compound operator := after param a.

The model and its data are now ready. The command solve; invokes the solu-
tion algorithm and the command display z, x; provides the solution.

To execute the model, first invoke AMPL (by clicking ampl.exe in the AMPL direc-
tory). At the ampl: prompt, enter the following model command, and then press Return:

model amplRM2.txt;

The output of the system will then appear on the screen as follows:

MINOS 5.5: Optimal solution found.
2 iterations, objective = 21

z = 21
x[*]:=

1 = 3
2 = 1.5

The bottom four lines are the result of executing display z,x;. Actually, AMPL 
has formatting capabilities that enhance the readability of the output results (see 
Section C.5.2).

AMPL allows separating the algebraic model and the data into two indepen-
dent files. This arrangement is more convenient because only the data file needs to be 
changed once the model has been developed. See the end of Section C.2 for details.

AMPL offers a wide range of programming capabilities. For example, the input/ 
output data can be secured from/sent to external files, spreadsheets, and databases, and 
the model can be executed interactively for a wide variety of options. The details are 
given in Appendix C on the website.

2.4 LinEAR PRoGRAMMinG APPLiCATionS

This section presents realistic LP models in which the definition of the variables and 
the construction of the objective function and the constraints are not as straightfor-
ward as in the case of the two-variable model. The areas covered by these applications 
include the following:

1. Investment.
2. Production planning and inventory control.
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3. Workforce planning.
4. Urban development planning.
5. Oil refining and blending.

Each model is detailed, and its optimum solution is interpreted.

2.4.1  investment

Multitudes of investment opportunities are available to today’s investor. Examples of 
investment problems are capital budgeting for projects, bond investment strategy, stock 
portfolio selection, and establishment of bank loan policy. In many of these situations, 
LP can be used to select the optimal mix of opportunities that will maximize return 
while meeting requirements set by the investor and the market.

Example 2.4-1 (bank Loan Model)

Bank One is in the process of devising a loan policy that involves a maximum of $12 million. The 
following table provides the pertinent data about available loans.

Type of loan Interest rate Bad-debt ratio

Personal .140 .10
Car .130 .07
Home .120 .03
Farm .125 .05
Commercial .100 .02

Bad debts are unrecoverable and produce no interest revenue.
Competition with other financial institutions dictates the allocation of at least 40% of the 

funds to farm and commercial loans. To assist the housing industry in the region, home loans 
must equal at least 50% of the personal, car, and home loans. The bank limits the overall ratio of 
bad debts on all loans to at most 4%.

Mathematical Model: The situation deals with determining the amount of loan in each 
category, thus leading to the following definitions of the variables:

 x1 = personal loans 1in millions of dollars2
 x2 = car loans

 x3 = home loans

 x4 = farm loans

 x5 = commercial loans

The objective of the Bank One is to maximize net return, the difference between interest  revenue 
and lost bad debts. Interest revenue is accrued on loans in good standing. For example, when 
10% of personal loans are lost to bad debt, the bank will receive interest on 90% of the loan—that 
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is, it will receive 14% interest on .9x1 of the original loan x1. The same reasoning  applies to the 
 remaining four types of loans. Thus,

 Total interest = .141.9x12 + .131.93x22 + .121.97x32 + .1251.95x42 + .11.98x52
 = .126x1 + .1209x2 + .1164x3 + .11875x4 + .098x5

We also have

Bad debt = .1x1 + .07x2 + .03x3 + .05x4 + .02x5

The objective function combines interest revenue and bad debt as:

 Maximize z = Total interest -  Bad debt

 = 1.126x1 + .1209x2 + .1164x3 + .11875x4 + .098x52
 - 1.1x1 + .07x2 + .03x3 + .05x4 + .02x52
 = .026x1 + .0509x2 + .0864x3 + .06875x4 + .078x5

The problem has five constraints:

1. Total funds should not exceed $12 (million):

x1 + x2 + x3 + x4 + x5 … 12

2. Farm and commercial loans equal at least 40% of all loans:

x4 + x5 Ú .41x1 + x2 + x3 + x4 + x52
or

.4x1 + .4x2 + .4x3 - .6x4 - .6x5 … 0

3. Home loans should equal at least 50% of personal, car, and home loans:

x3 Ú .51x1 + x2 + x32
or

.5x1 + .5x2 - .5x3 … 0

4. Bad debts should not exceed 4% of all loans:

.1x1 + .07x2 + .03x3 + .05x4 + .02x5 … .041x1 + x2 + x3 + x4 + x52
or

.06x1 + .03x2 - .01x3 + .01x4 - .02x5 … 0

5. Nonnegativity:

x1 Ú 0, x2 Ú 0, x3 Ú 0, x4 Ú 0, x5 Ú 0

A subtle assumption in the preceding formulation is that all loans are issued at approxi-
mately the same time. This allows us to ignore differences in the time value of the funds allocated 
to the different loans.
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Solution:

The optimal solution is computed using AMPL (file amplEx2.4-1.txt):

z = .99648, x1 = 0, x2 = 0, x3 = 7.2, x4 = 0, x5 = 4.8

remarks.

1. You may be wondering why we did not define the right-hand side of the second con-
straint as .4 * 12 instead of .41x1 + x2 + x3 + x4 + x52. After all, it appears plausible 
that the bank would want to loan out all $12 million. The answer is that the usage given 
in the formulation does not disallow this possibility. But there are two more reasons why 
you should not use .4 * 12: (1) If other constraints in the model are such that all $12 mil-
lion cannot be used (e.g., the bank may set caps on the different loans), then the choice 
.4 * 12 could lead to an infeasible or incorrect solution. (2) If you want to experiment 
with the effect of changing available funds (say from $12 to $13 million) on the optimum 
solution, there is a real chance that you may forget to change .4 * 12 to .4 * 13, in which 
case the solution will not be correct. A similar reasoning applies to the left-hand side of 
the fourth constraint.

2. The optimal solution calls for allocating all $12 million: $7.2 million to home loans and $4.8 
million to commercial loans. The remaining categories receive none. The return on the 
investment is

Rate of return =
z
12

=
.99648

12
= .08034

This shows that the combined annual rate of return is 8.034%, which is less than the best 
net interest rate 1=  8.64% for home loans2, and one wonders why the model does not take 
full advantage of this opportunity. The answer is that the stipulation that farm and com-
mercial loans must account for at least 40% of all loans (constraint 2) forces the solution 
to allocate $4.8 million to commercial loans at the lower net rate of 7.8%, hence lowering 
the overall interest rate to 1001.0864 * 7.2 + .078 * 4.8

12 2 = 8.034%. In fact, if we remove con-
straint 2, the optimum will allocate all the funds to home loans at the higher 8.64% rate (try 
it using the AMPL model!).

2.4.2  Production Planning and inventory Control

There is a wealth of LP applications in the area of production planning and inventory 
control. This section presents three examples. The first deals with production sched-
uling to meet a single-period demand. The second deals with the use of inventory in 
a multiperiod production system to meet future demand, and the third deals with the 
use of inventory and worker hiring/firing to “smooth” production over a multiperiod 
planning horizon.

Example 2.4-2 (Single-Period Production Model)

In preparation for the winter season, a clothing company is manufacturing parka and goose 
overcoats, insulated pants, and gloves. All products are manufactured in four different depart-
ments: cutting, insulating, sewing, and packaging. The company has received firm orders for its 
products. The contract stipulates a penalty for undelivered items. Devise an optimal production 
plan for the company based on the following data:
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Time per unit (hr)

Department Parka Goose Pants Gloves Capacity (hr)

Cutting .30 .30 .25 .15 1000
Insulating .25 .35 .30 .10 1000
Sewing .45 .50 .40 .22 1000
Packaging .15 .15 .1 .05 1000
Demand 800 750 600 500
Unit profit $30 $40 $20 $10
Unit penalty $15 $20 $10 $8

Mathematical Model: The variables of the problem are as follows:

 x1 = number of parka jackets

 x2 = number of goose jackets

 x3 = number of pairs of pants

 x4 = number of pairs of gloves

The company is penalized for not meeting demand. The objective then is to maximize net profit, 
defined as

Net profit = Total profit - Total penalty

The total profit is 30x1 + 40x2 + 20x3 + 10x4. To compute the total penalty, the demand con-
straints can be written as

x1 + s1 = 800, x2 + s2 = 750, x3 + s3 = 600, x4 + s4 = 500, 

xj Ú 0, sj Ú 0, j = 1, 2, 3, 4

The new variable sj represents the shortage in demand for product j, and the total penalty can be 
computed as 15s1 + 20s2 + 10s3 + 8s4. The complete model thus becomes

Maximize z = 30x1 + 40x2 + 20x3 + 10x4 - 115s1 + 20s2 + 10s3 + 8s42
subject to

.30x1 + .30x2 + .25x3 + .15x4 … 1000

.25x1 + .35x2 + .30x3 + .10x4 … 1000

.45x1 + .50x2 + .40x3 + .22x4 … 1000

.15x1 + .15x2 + .10x3 + .05x4 … 1000

x1 + s1 = 800, x2 + s2 = 750, x3 + s3 = 600, x4 + s4 = 500

xj Ú 0, sj Ú 0, j = 1, 2, 3, 4

Solution:

The optimum solution (obtained using file amplEx2.4-2.txt) is z = $64,625, x1 = 800, x2 = 750,
x3 = 387.5, x4 = 500, s1 = s2 = s4 = 0, s3 = 212.5. The solution satisfies all the demand for 
both types of jackets and the gloves. A shortage of 213 (rounded up from 212.5) pairs of pants 
will result in a penalty cost of 213 * $10 = $2130.
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Example 2.4-3 (Multiple Period Production-inventory Model)

Acme Manufacturing Company has a contract to deliver 100, 250, 190, 140, 220, and 110 home 
windows over the next 6 months. Production cost (labor, material, and utilities) per window 
 varies by period and is estimated to be $50, $45, $55, $48, $52, and $50 over the next 6 months. 
To take advantage of the fluctuations in manufacturing cost, Acme can produce more windows 
than needed in a given month and hold the extra units for delivery in later months. This will 
incur a storage cost at the rate of $8 per window per month, assessed on end-of-month inventory. 
Develop a linear program to determine the optimum production schedule.

Mathematical Model: The variables of the problem include the monthly production amount 
and the end-of-month inventory. For i = 1, 2, c, 6, let

 xi = Number of units produced in month i

 Ii = Inventory units left at the end of month i

The relationship between these variables and the monthly demand over the 6-month horizon is 
represented schematically in Figure 2.9. The system starts empty 1I0 = 02.

The objective is to minimize the total cost of production and end-of-month inventory.

 Total production cost = 50x1 + 45x2 + 55x3 + 48x4 + 52x5 + 50x6

 Total inventory 1storage2  cost = 81I1 + I2 + I3 + I4 + I5 + I62
Thus the objective function is

Minimize z = 50x1 + 45x2 + 55x3 + 48x4 + 52x5 + 50x6 + 81I1 + I2 + I3 + I4 + I5 + I62
The constraints of the problem can be determined directly from the representation in 

Figure 2.9. For each period we have the following balance equation:

Beginning inventory + Production amount - Ending inventory = Demand

This is translated mathematically for the individual months as

x1 - I1 = 100 1Month 12
I1 + x2 - I2 = 250 1Month 22
I2 + x3 - I3 = 190 1Month 32
I3 + x4 - I4 = 140 1Month 42
I4 + x5 - I5 = 220 1Month 52

I5 + x6 = 110 1Month 62
xi, i = 1, 2, c, 6, Ii Ú 0, i = 1, 2, c, 5

x2
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I2

x3

190

I3

x4

140
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x1

100

I1I 5 0

FiGure 2.9

Schematic representation of the production-inventory system
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Example 2.4-4 (Multiperiod Production Smoothing Model)

A company is planning the manufacture of a product for March, April, May, and June of next 
year. The demand quantities are 520, 720, 520, and 620 units, respectively. The company has a 
steady workforce of 10 employees but can meet fluctuating production needs by hiring and fir-
ing temporary workers. The extra costs of hiring and firing a temp in any month are $200 and 
$400, respectively. A permanent worker produces 12 units per month, and a temporary worker, 
lacking equal experience, produces 10 units per month. The company can produce more than 
needed in any month and carry the surplus over to a succeeding month at a holding cost of $50 
per unit per month. Develop an optimal hiring/firing policy over the 4-month planning horizon.

Mathematical Model: This model is similar to that of Example 2.4-3 in the sense that each 
month has its production, demand, and ending inventory. The only exception deals with handling 
a permanent versus temporary workforce.

The permanent workers (10 in all) can be accounted for by subtracting the units they 
produce from the respective monthly demand. The remaining demand is then satisfied through 
the hiring and firing of temps. Thus,

 Remaining demand for March = 520 - 12 * 10 = 400 units

 Remaining demand for April = 720 - 12 * 10 = 600 units

 Remaining demand for May = 520 - 12 * 10 = 400 units

 Remaining demand for June = 620 - 12 * 10 = 500 units

The variables of the model for month i can be defined as

 xi = Net number of temps at the start of month i after any hiring or firing

 Si = Number of temps hired or fired at the start of month i

 Ii = Units of ending inventory for month i

440
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0 0 190 0 0 0 0

FiGure 2.10

Optimum solution of the production-inventory problem

Note that the initial inventory, I0, is zero. Also, in any optimal solution, the ending inventory I6 
will be zero because it is not economical to incur unnecessary additional storage cost.

Solution:

The optimum solution (obtained using file amplEx2.4-3.txt) is summarized in Figure 2.10. It shows 
that each month’s demand is satisfied from the same month’s production, except for month 2, 
where the production quantity 1=  440 units2 covers the demand for both months 2 and 3. The 
total associated cost is z = $49,980.
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By definition, xi and Ii are nonnegative, whereas Si is unrestricted in sign because it equals the 
number of hired or fired workers in month i. This is the first instance in this chapter of using an 
unrestricted variable. As we will see shortly, special substitution is needed to allow the imple-
mentation of hiring and firing in the model.

In this model, the development of the objective function requires constructing the constraints 
first. The number of units produced in month i by xi temps is 10xi. Thus, we have the following 
 inventory constraints:

 10x1 = 400 + I1 1March2
 I1 + 10x2 = 600 + I2 1April2
 I2 + 10x3 = 400 + I3 1May2
 I3 + 10x4 = 500  1June2

x1, x2, x3, x4 Ú 0, I1, I2, I3 Ú 0

For hiring and firing, the temp workforce starts with x1 workers at the beginning of March. At 
the start of April, x1 will be adjusted (up or down) by S2 temps to generate x2. The same idea 
applies to x3 and x4, thus leading to the following constraint equations:

x1 = S1

x2 = x1 + S2

x3 = x2 + S3

x4 = x3 + S4

S1, S2, S3, S4 unrestricted in sign

x1, x2, x3, x4 Ú 0

Next, we develop the objective function. The goal is to minimize the inventory cost plus the 
cost of hiring and firing. As in Example 2.4-3,

Inventory holding cost = 501I1 + I2 + I32
Modeling the cost of hiring and firing is a bit involved. Given the costs of hiring and firing a temp 
are $200 and $400, respectively, we have

aCost of hiring
and firing

b = 200 a Number of hired temps
at the start of each month

b + 400 a Number of fired temps
at the start of each month

b

If the variable Si is positive, hiring takes place in month i. If it is negative, then firing occurs. This 
“qualitative” assessment can be translated mathematically by using the substitution

Si = Si
- - Si

+,  where Si
-, Si

+ Ú 0

The unrestricted variable Si is now the difference between the two nonnegative variables 
Si

-  and Si
+. We can think of Si

- as the number of temps hired and Si
+ as the number fired. For 

example, if Si
- = 5 and Si

+ = 0, then Si = 5 - 0 = + 5, which represents hiring. If Si
- = 0 and 

Si
+ = 7, then Si = 0 - 7 = - 7, which represents firing. In the first case, the corresponding 

cost of hiring is 200Si
- = 200 * 5 = $1000,  and in the second case, the corresponding cost of 

firing is 400Si
+ = 400 * 7 = $2800.

The substitution Si = Si
- - Si

+ is the basis for the development of cost of hiring and firing. 
First we need to address a possible question: What if both Si

- and Si
+ are positive? The answer is 
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that this cannot happen because it implies both hiring and firing in the same month. Interestingly, 
the theory of LP (see Chapter 7) tells us that Si

- and Si
+ cannot be positive simultaneously, a 

mathematical result that confirms intuition. 
We can now write the total cost of hiring and firing as

Cost of hiring = 2001S1
- + S2

- + S3
- + S4

-2
Cost of firing = 4001S1

+ + S2
+ + S3

+ + S4
+2

It may appear necessary to add to z the amount 400x4 representing the cost of end-of- horizon-
firing of x4 temps. From the standpoint of optimization, this factor is accounted for by the 
 presence of S4

+ in the objective function. Hence the optimum will not change, except for inflating 
optimum z by 400x4 (try it!).

The complete model is as follows:

Minimize z = 501I1 + I2 + I32 + 2001S1
- + S2

- + S3
- + S4

-2 + 4001S1
+ + S2

+ + S3
+ + S4

+2
subject to

10x1 = 400 + I1

I1 + 10x2 = 600 + I2

I2 + 10x3 = 400 + I3

I3 + 10x4 = 500

 x1 = S1
- - S1

+

 x2 = x1 + S2
- - S2

+

 x3 = x2 + S3
- - S3

+

 x4 = x3 + S4
- - S4

+

S1
-, S1

+S2
-, S2

+, S3
-, S3

+, S4
-, S4

+ Ú 0

x1, x2, x3, x4 Ú 0

I1, I2, I3 Ú 0

Solution:

The optimum solution (obtained using file amplEx2.4-4.txt) is z = $19, 500, x1 = 50, x2 = 50, 
x2 = 50, x3 = 45, x4 = 45, S1

- = 50, S3
+ = 5,  I1 = 100, I3 = 50. All the remaining variables 

are zero. The solution calls for hiring 50 temps in March 1S1
- = 502 and holding the workforce 

steady till May when five temps are fired 1S3
+ = 52. No further hiring or firing is recommended 

until the end of June, when, presumably, all temps are terminated. This solution requires 100 units 
of inventory to be carried into May and 50 units to be carried into June.

2.4.3  workforce Planning

Real-Life Application—Telephone Sales workforce Planning  
at Qantas Airways

Australian airline Qantas operates its main reservation offices from 7:00 till 22:00 
using six shifts that start at different times of the day. Qantas used LP (with imbedded 
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queuing analysis) to staff its main telephone sales reservation office efficiently while 
providing convenient service to its customers. The study, carried out in the late 1970s, 
resulted in annual savings of over 200,000 Australian dollars per year. The study is 
detailed in Case 15, Chapter 26, on the website.

Fluctuations in a labor force to meet variable demand over time can be achieved 
through the process of hiring and firing, as demonstrated in Example 2.4-4. There are 
situations in which the effect of fluctuations in demand can be “absorbed” by adjusting 
the start and end times of a work shift. For example, instead of following the traditional 
three 8-hr-shift start times at 8:00 a.m., 3:00 p.m., and 11:00 p.m., we can use overlapping 
8-hr shifts in which the start time of each is made in response to increase or decrease 
in demand.

The idea of redefining the start of a shift to accommodate fluctuation in demand 
can be extended to other operating environments as well. Example 2.4-5 deals with the 
determination of the minimum number of buses needed to meet rush-hour and off-
hour transportation needs.

Example 2.4-5 (bus Scheduling Model)

Progress City is studying the feasibility of introducing a mass-transit bus system to reduce in-city 
driving. The study seeks the minimum number of buses that can handle the transportation needs. 
After gathering necessary information, the city engineer noticed that the minimum number of 
buses needed fluctuated with time of the day, and that the required number of buses could be 
 approximated by constant values over successive 4-hr intervals. Figure 2.11 summarizes the engi-
neer’s findings. To carry out the required daily maintenance, each bus can operate only 8 succes-
sive hours a day.

Mathematical Model: The variables of the model are the number of buses needed in each shift, 
and the constraints deal with satisfying demand. The objective is to minimize the number of 
buses in operation.

The stated definition of the variables is somewhat “vague.” We know that each bus will run 
for 8 consecutive hours, but we do not know when a shift should start. If we follow a normal 
three-shift schedule (8:01 a.m. to 4:00 p.m., 4:01 p.m. to 12:00 midnight, and 12:01 a.m. to 8:00 a.m.) 
and assume that x1, x2, and x3 are the number of buses starting in the first, second, and third 
shifts, we can see in Figure 2.11 that x1 Ú 10, x2 Ú 12, and x3 Ú 8. The corresponding minimum 
number of daily buses is x1 + x2 + x3 = 10 + 12 + 8 = 30.

The given solution is acceptable only if the shifts must coincide with the normal three-
shift schedule. However, it may be advantageous to allow the optimization process to choose 
the “best” starting time for a shift. A reasonable way to accomplish this goal is to allow a shift 
to start every 4 hr. The bottom of Figure 2.11 illustrates this idea with overlapping 8-hr shifts 
starting at 12:01 a.m., 4:01 a.m., 8:01 a.m., 12:01 p.m., 4:01 p.m., and 8:01 p.m. Thus, the variables 
are defined as

x1 = number of buses starting at 12:01 a.m.

x2 = number of buses starting at 4:01 a.m.
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x3 = number of buses starting at 8:01 a.m.

x4 = number of buses starting at 12:01 p.m.

x5 = number of buses starting at 4:01 p.m.

x6 = number of buses starting at 8:01 p.m.

We can see from Figure 2.11 that because of the overlapping of the shifts, the number of buses 
for the successive 4-hr periods can be computed as follows:

Time period Number of buses in operation

12:01 a.m. to 4:00 a.m. x1 + x6

4:01 a.m. to 8:00 a.m. x1 + x2

8:01 a.m. to 12:00 noon x2 + x3

12:01 p.m. to 4:00 p.m. x3 + x4

4:01 p.m. to 8:00 p.m. x4 + x5

8:01 a.m. to 12:00 a.m. x5 + x6

The complete model thus becomes

Minimize z = x1 + x2 + x3 + x4 + x5 + x6
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FiGure 2.11

Number of buses as a function of the time of the day
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subject to

x1 + x6 Ú 4 (12:01 a.m.–4:00 a.m.)

x1 + x2 Ú 8 (4:01 a.m.–8:00 a.m.)

x2 + x3 Ú 10 (8:01 a.m.–12:00 noon)

x3 + x4 Ú 7 (12:01 p.m.–4:00 p.m.)

x4 + x5 Ú 12 (4:01 p.m.–8:00 p.m.)

x5 + x6 Ú 4 (8:01 p.m.–12:00 p.m.)

xj Ú 0, j = 1, 2, c, 6

Solution:

The optimal solution (obtained using file amplEx2.4-5.txt, solverEx2.4-5.xls, or toraEx2.4-5.txt)  
calls for scheduling 26 buses (compared with 30 buses when the three traditional shifts are 
used). The schedule calls for x1 = 4 buses to start at 12:01 a.m., x2 = 10 at 4:01 a.m., x4 = 8 at 
12:01 p.m., and x5 = 4 at 4:01 p.m. (Note: File solverEx2.4-5.xls yields the alternative optimum 
x1 = 2, x2 = 6, x3 = 4, x4 = 6, x5 = 6, and x6 = 2, with z = 26.)

2.4.4  urban development Planning6

Urban planning deals with three general areas: (1) building new housing developments, 
(2) upgrading inner-city deteriorating housing and recreational areas, and (3) planning 
public facilities (such as schools and airports). The constraints associated with these 
projects are both economic (land, construction, and financing) and social (schools, 
parks,  and income level). The objectives in urban planning vary. In new housing 
 developments, profit is usually the motive for undertaking the project. In the remaining 
two categories, the goals involve social, political, economic, and cultural considerations. 
Indeed, in a publicized case in 2004, the mayor of a city in Ohio wanted to condemn 
an old area of the city to make way for a luxury housing development. The motive was 
to increase tax collection to help alleviate budget shortages. The example presented in 
this section is fashioned after the Ohio case.

Example 2.4-6 (urban Renewal Model)

The city of Erstville is faced with a severe budget shortage. Seeking a long-term solution, the city 
council votes to improve the tax base by condemning an inner-city housing area and replacing it 
with a modern development.

The project involves two phases: (1) demolishing substandard houses to provide land for the 
new development and (2) building the new development. The following is a summary of the situation.

1. As many as 300 substandard houses can be demolished. Each house occupies a .25-acre lot. 
The cost of demolishing a condemned house is $2000.

2. Lot sizes for new single-, double-, triple-, and quadruple-family homes (units) are .18, .28, 
.4, and .5 acre, respectively. Streets, open space, and utility easements account for 15% of 
available acreage.

6This section is based on Laidlaw (1972).
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3. In the new development, the triple and quadruple units account for at least 25% of the 
total. Single units must be at least 20% of all units, and double units at least 10%.

4. The tax levied per unit for single, double, triple, and quadruple units is $1000, $1900, $2700, 
and $3400, respectively.

5. The construction cost per unit for single-, double-, triple-, and quadruple-family homes is 
$50,000, $70,000, $130,000, and $160,000, respectively.

6. Financing through a local bank is limited to $15 million.

How many units of each type should be constructed to maximize tax collection?

Mathematical Model: Besides determining the number of units of each type of housing to be 
constructed, we also need to decide how many houses must be demolished to make room for the 
new development. Thus, the variables of the problem can be defined as follows:

 x1 = Number of units of single@family homes

 x2 = Number of units of double@family homes

 x3 = Number of units of triple@family homes

 x4 = Number of units of quadruple@family homes

 x5 = Number of condemned homes to be demolished

The objective is to maximize total tax collection from all four types of homes—that is,

Maximize z = 1000x1 + 1900x2 + 2700x3 + 3400x4

The first constraint of the problem deals with land availability.

aAcreage used for new
  homes construction

b … aNet available
acreage

b

From the data of the problem, we have

Acreage needed for new homes = .18x1 + .28x2 + .4x3 + .5x4

To determine the available acreage, each demolished home occupies a .25-acre lot, thus netting 
.25x5 acres. Allowing for 15% open space, streets, and easements, the net acreage available is 
.851.25x52 = .2125x5. The resulting constraint is

.18x1 + .28x2 + .4x3 + .5x4 … .2125x5

or

.18x1 + .28x2 + .4x3 + .5x4 - .2125x5 … 0

The number of demolished homes cannot exceed 300, which translates to

x5 … 300

Next, we add the constraints limiting the number of units of each home type.

 1Number of single units2 Ú 120% of all units2
 1Number of double units2 Ú 110% of all units2

 1Number of triple and quadruple units2 Ú 125% of all units2
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These constraints translate mathematically to

 x1 Ú .21x1 + x2 + x3 + x42
 x2 Ú .11x1 + x2 + x3 + x42

 x3 + x4 Ú .251x1 + x2 + x3 + x42
The only remaining constraint deals with keeping the demolition/construction cost within the 
allowable budget—that is,

1Construction and demolition cost2 … 1Available budget2
Expressing all the costs in thousands of dollars, we get

150x1 + 70x2 + 130x3 + 160x42 + 2x5 … 15000

The complete model thus becomes

Maximize z = 1000x1 + 1900x2 + 2700x3 + 3400x4

subject to

.18x1 + .28x2 + .4x3 + .5x4 - .2125x5 … 0
x5 … 300

- .8x1 + .2x2 + .2x3 + .2x4 … 0
.1x1 - .9x2 + .1x3 + .1x4 … 0

.25x1 + .25x2 - .75x3 - .75x4 … 0
50x1 + 70x2 + 130x3 + 160x4 + 2x5 … 15000

x1, x2, x3, x4, x5 Ú 0

Solution:

The optimum solution (obtained using file amplEX2.4-6.txt or solverEx2.4-6.xls) is

Total tax collection = z = $343, 965
Number of single homes = x1 = 35.83 ≃ 36 units
Number of double homes = x2 = 98.53 ≃ 99 units
Number of triple homes = x3 = 44.79 ≃ 45 units
Number of quadruple homes = x4 = 0 units
Number of homes demolished = x5 = 244.49 ≃ 245 units

remarks. Linear programming does not automatically guarantee an integer solution, and this 
is the reason for rounding the continuous values to the closest integer. The rounded  solution 
calls for constructing 180 1=  36 + 99 + 452 units and demolishing 245 old homes, which 
yields $345,600 in taxes. Keep in mind, however, that, in general, the rounded solution may 
not be feasible. In fact, the current rounded solution violates the budget constraint by $70,000 
(verify!). Interestingly, the true optimum integer solution (using the algorithms in Chapter 9) 
is x1 = 36, x2 = 98, x3 = 45, x4 = 0, and x5 = 245 with z = $343,700. Carefully note that the 
rounded solution yields a better objective value, which appears contradictory. The reason is 
that the rounded solution calls for producing an extra double home, which is feasible only if 
the budget is increased by $70,000.
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2.4.5  blending and Refining

A number of LP applications deal with blending different input materials to manu-
facture products that meet certain specifications while minimizing cost or maximizing 
profit. The input materials could be ores, metal scraps, chemicals, or crude oils, and 
the output products could be metal ingots, paints, or gasoline of various grades. This 
section presents a (simplified) model for oil refining. The process starts with distilling 
crude oil to produce intermediate gasoline stocks, and then blending these stocks to 
produce final gasoline products. The final products must satisfy certain quality speci-
fications (such as octane rating). In addition, distillation capacities and demand limits 
can directly affect the level of production of the different grades of gasoline. One goal 
of the model is to determine the optimal mix of final products that will maximize an 
appropriate profit function. In some cases, the goal may be to minimize a cost function.

Example 2.4-7 (Crude oil Refining and Gasoline blending)

Shale Oil, located on the island of Aruba, has a capacity of 1,500,000 bbl of crude oil per day. The 
final products from the refinery include three types of unleaded gasoline with different  octane 
numbers (ON): regular with ON = 87, premium with ON = 89, and super with ON = 92. 
The refining process encompasses three stages: (1) a distillation tower that produces feedstock 
1ON = 822 at the rate of .2 bbl per bbl of crude oil, (2) a cracker unit that produces gasoline 
stock 1ON = 982 by using a portion of the feedstock produced from the distillation tower at the 
rate of .5 bbl per bbl of feedstock, and (3) a blender unit that blends the gasoline stock from the 
cracker unit and the feedstock from the distillation tower. The company estimates the net profit 
per barrel of the three types of gasoline to be $6.70, $7.20, and $8.10, respectively. The input 
capacity of the cracker unit is 200,000 bbl of feedstock a day. The demand limits for regular, 
premium, and super gasoline are 50,000, 30,000, and 40,000 bbl, respectively, per day. Develop a 
model for determining the optimum production schedule for the refinery.

Mathematical Model: Figure 2.12 summarizes the elements of the model. The variables can be 
defined in terms of two input streams to the blender (feedstock and cracker gasoline) and the 
three final products. Let

xij = bbl/day of input stream i used to blend final product j, i = 1, 2; j = 1, 2, 3

Distillation

5:1

Crude

ON 5 82
Feed-
stock

Cracker

Blender

x21 1 x22 1 x23

x11 1 x12 1 x13 x11 1 x21, ON 5 87

x12 1 x22, ON 5 89

x13 1 x23, ON 5 92

ON 5 82

ON 5 98

2:1

1:1

FiGure 2.12

Product flow in the refinery problem
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Using this definition, we have

Daily production of regular gasoline = x11 + x21 bbl/day

Daily production of premium gasoline = x12 + x22 bbl/day

Daily production of super gasoline = x13 + x23 bbl/day

a Daily output
of blender unit

b = aDaily regular
production

b + aDaily premium
production

b + aDaily super
production

b

 = 1x11 + x212 + 1x12 + x222 + 1x13 + x232 bbl/day

aDaily feedstock
to blender

b = x11 + x12 + x13 bbl/day

aDaily cracker unit
feed to blender

b = x21 + x22 + x23 bbl/day

aDaily feedstock
to cracker

b = 21x21 + x22 + x232 bbl/day

aDaily crude oil used
in the refinery

b = 51x11 + x12 + x132 + 101x21 + x22 + x232 bbl/day

The objective of the model is to maximize the total profit resulting from the sale of all 
three grades of gasoline. From the definitions given earlier, we get

Maximize z = 6.701x11 + x212 + 7.201x12 + x222 + 8.101x13 + x232
The constraints of the problem are developed as follows:

1. Daily crude oil supply does not exceed 1,500,000 bbl/day:

51x11 + x12 + x132 + 101x21 + x22 + x232 … 1,500,000

2. Cracker unit input capacity does not exceed 200,000 bbl/day:

21x21 + x22 + x232 … 200,000

3. Daily demand for regular does not exceed 50,000 bbl:

x11 + x21 … 50,000

4. Daily demand for premium does not exceed 30,000 bbl:

x12 + x22 … 30,000

5. Daily demand for super does not exceed 40,000 bbl:

x13 + x23 … 40,000

6. Octane number (ON) for regular is at least 87:

The octane number of a gasoline product is the weighted average of the octane numbers of 
the input streams used in the blending process and can be computed as
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a Average ON of
regular gasoline

b =  

  
Feedstock ON * feedstock bbl/day + Cracker unit ON * Cracker unit bbl/day

Total bbl/day of regular gasoline

=
82x11 + 98x21

x11 + x21

Thus, octane number constraint for regular gasoline becomes

82x11 + 98x21

x11 + x21
 Ú 87

The constraint is linearized as

82x11 + 98x21 Ú 871x11 + x212
7. Octane number for premium is at least 89:

82x12 + 98x22

x12 + x22
 Ú 89

which is linearized as

82x12 + 98x22 Ú 891x12 + x222
8. Octane number for super is at least 92:

82x13 + 98x23

x13 + x23
 Ú 92

or

82x13 + 98x23 Ú 921x13 + x232
The complete model is thus summarized as

Maximize z = 6.701x11 + x212 + 7.201x12 + x222 + 8.101x13 + x232
subject to

 51x11 + x12 + x132 + 101x21 + x22 + x232 … 1,500,000

 21x21 + x22 + x232 … 200,000

 x11 + x21 … 50,000

 x12 + x22 … 30,000

 x13 + x23 … 40,000

 82x11 + 98x21 Ú 871x11 + x212
 82x12 + 98x22 Ú 891x12 + x222
 82x13 + 98x23 Ú 921x13 + x232

x11, x12, x13, x21, x22, x23 Ú 0

The last three constraints can be simplified to produce a constant right-hand side.
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Solution:

The optimum solution (obtained using file toraEx2.4-7.txt or amplEx2.4-7.txt) is z = 875,000,  
x11 = 34,375, x21 = 15,625, x12 = 16,875, x22 = 13,125, x13 = 15,000, x23 = 25,000. This trans-
lates to

Daily profit = $875,000
Daily amount of regular gasoline = x11 + x21 = 34,375 + 13,125 = 30,000 bbl/day
Daily amount of premium gasoline = x12 + x22 = 16,875 + 13,125 = 30,000 bbl/day
Daily amount of super gasoline = x13 + x23 = 15,000 + 25,000 = 40,000 bbl/day

The solution shows that regular gasoline production is 20,000 bbl/day short of satisfying the 
maximum demand. The demand for the remaining two grades is satisfied.

2.4.6  Additional LP Applications

The preceding sections have demonstrated representative LP applications in five areas. 
Problems 2-77 to 2-87 provide additional areas of application, ranging from agriculture 
to military.

bibLioGRAPhy

Dantzig, G. and M. Thapa, Linear Programming 1: Introduction, Springer, New York, 1997.
Fourer, R., D. Gay, and B. Kernighan, AMPL, A Modeling Language for Mathematical Program-

ming, 2nd ed., Brooks/Cole-Thomson, Pacific Grove, CA, 2003.
Laidlaw, C. Linear Programming for Urban Development Plan Evaluation, Praegers, London, 

1972.
Lewis, T., “Personal Operations Research: Practicing OR on Ourselves,” Interfaces, Vol. 26, No. 5, 

pp. 34–41, 1996.
Shepard, R., D. Hartley, P. Hasman, L. Thorpe, and M. Bathe, Applied Operations Research, 

 Plenum Press, New York, 1988.
Stark, R., and R. Nicholes, Mathematical Programming Foundations for Design: Civil Engineering 

Systems, McGraw-Hill, New York, 1972.

PRobLEMS

Section Assigned Problems Section Assigned Problems
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  2-1.  For the Reddy Mikks model, construct each of the following constraints, and express it 
with a linear left-hand side and a constant right-hand side:

*(a) The daily demand for interior paint exceeds that of exterior paint by at least 1 ton.

(b) The daily usage of raw material M1 in tons is at most 8 and at least 5.

*(c) The demand for exterior paint cannot be less than the demand for interior paint.

(d) The maximum quantity that should be produced of both the interior and the 
 exterior paint is 15 tons.

*(e) The proportion of exterior paint to the total production of both interior and exterior 
paints must not exceed .5.

 2-2.  Determine the best feasible solution among the following (feasible and infeasible) solutions 
of the Reddy Mikks model:
(a) x1 = 1, x2 = 2.

(b) x1 = 3, x2 = 1.

(c) x1 = 3, x2 = 1.5.

(d) x1 = 2, x2 = 1.

(e) x1 = 2, x2 = -1.
 *2-3.  For the feasible solution x1 = 1, x2 = 2 of the Reddy Mikks model, determine the un-

used amounts of raw materials M1 and M2.
 2-4.  Suppose that Reddy Mikks sells its exterior paint to a single wholesaler at a quantity discount. 

The profit per ton is $5000 if the contractor buys no more than 5 tons daily and $4300 other-
wise. Express the objective function mathematically. Is the resulting function linear?

 2-5.  Determine the feasible space for each of the following independent constraints, given 
that x1, x2 Ú 0.

*(a) -3x1 + x2 … 6.

(b) x1 - 2x2 Ú 5.

(c) 2x1 - 3x2 … 12.

(d) x1 - x2 … 0.

*(e) -x1 + x2 Ú 0.
 2-6.  Identify the direction of increase in z in each of the following cases:

*(a) Maximize z = x1 - x2.

(b) Maximize z = -8x1 - 3x2.

(c) Maximize z = -x1 + 3x2.

*(d) Maximize z = -3x1 + x2.
 2-7.  Determine the solution space and the optimum solution of the Reddy Mikks model for 

each of the following independent changes:
(a) The maximum daily demand for interior paint is 1.9 tons and that for exterior paint 

is at most 2.5 tons.

(b) The daily demand for interior paint is at least 2.5 tons.

(c) The daily demand for interior paint is exactly 1 ton higher than that for exterior paint.

(d) The daily availability of raw material M1 is at least 24 tons.

(e) The daily availability of raw material M1 is at least 24 tons, and the daily demand for 
interior paint exceeds that for exterior paint by at least 1 ton.
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 2-8.  A company that operates 10 hrs a day manufactures two products on three sequential 
processes. The following table summarizes the data of the problem:

Minutes per unit

Product Process 1 Process 2 Process 3 Unit profit

1 10  6  8 $20
2  5 20 10 $30

Determine the optimal mix of the two products.
 *2-9.  A company produces two products, A and B. The sales volume for A is at least 80% of 

the total sales of both A and B. However, the company cannot sell more than 110 units of 
A per day. Both products use one raw material, of which the maximum daily availability 
is 300 lb. The usage rates of the raw material are 2 lb per unit of A, and 4 lb per unit of B. 
The profit units for A and B are $40 and $90, respectively. Determine the optimal product 
mix for the company.

2-10.  Alumco manufactures aluminum sheets and aluminum bars. The maximum production 
capacity is estimated at either 800 sheets or 600 bars per day. The maximum daily demand 
is 550 sheets and 560 bars. The profit per ton is $40 per sheet and $35 per bar. Determine 
the optimal daily production mix.

*2-11.  An individual wishes to invest $5000 over the next year in two types of investment: 
Investment A yields 5%, and investment B yields 8%. Market research recommends 
an allocation of at least 25% in A and at most 50% in B. Moreover, investment in A 
should be at least half the investment in B. How should the fund be allocated to the 
two investments?

2-12.  The Continuing Education Division at the Ozark Community College offers a total of 
30 courses each semester. The courses offered are usually of two types: practical and 
 humanistic. To satisfy the demands of the community, at least 10 courses of each type 
must be offered each semester. The division estimates that the revenues of offering prac-
tical and humanistic courses are approximately $1500 and $1000 per course, respectively.
(a) Devise an optimal course offering for the college.

(b) Show that the worth per additional course is $1500, which is the same as the reve-
nue per practical course. What does this result mean in terms of offering  additional 
courses?

2-13.  ChemLabs uses raw materials I and II to produce two domestic cleaning solutions, A and 
B. The daily availabilities of raw materials I and II are 150 and 145 units, respectively. 
One unit of solution A consumes .5 unit of raw material I and .6 unit of raw material II. 
One unit of solution B uses .5 unit of raw material I and .4 unit of raw material II.  The 
profits per unit of solutions A and B are $8 and $10, respectively. The daily demand for 
solution A lies between 30 and 150 units, and that for solution B between 40 and 200 
units. Find the optimal production amounts of A and B.

2-14.  In the Ma-and-Pa grocery store, shelf space is limited and must be used effectively to 
 increase profit. Two cereal items, Grano and Wheatie, compete for a total shelf space of 
60 ft2. A box of Grano occupies .2 ft2 and a box of Wheatie needs .4 ft2. The maximum 
daily demands of Grano and Wheatie are 200 and 120 boxes, respectively. A box of 
Grano nets $1.00 in profit and a box of Wheatie $1.35. Ma-and-Pa thinks that because 
the unit profit of Wheatie is 35% higher than that of Grano, Wheatie should be allocated 
35% more space than Grano, which amounts to allocating about 57% to Wheatie and 
43% to Grano. What do you think?
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2-15.  Jack is an aspiring freshman at Ulern University. He realizes that “all work and no play 
make Jack a dull boy.” Jack wants to apportion his available time of about 10 hrs a day 
 between work and play. He estimates that play is twice as much fun as work. He also 
wants to study at least as much as he plays. However, Jack realizes that if he is going 
to get all his homework assignments done, he cannot play more than 4 hrs a day. How 
should Jack allocate his time to maximize his pleasure from both work and play?

2-16.  Wild West produces two types of cowboy hats. A Type 1 hat requires twice as much labor 
time as a Type 2. If all the available labor time is dedicated to Type 2 alone, the company 
can produce a total of 400 Type 2 hats a day. The respective market limits for Type 1 
and Type 2 are 150 and 200 hats per day, respectively. The profit is $8 per Type 1 hat and 
$5 per Type 2 hat. Determine the number of hats of each type that maximizes profit.

2-17.  Show & Sell can advertise its products on local radio and television (TV). The advertising 
budget is limited to $10,000 a month. Each minute of radio advertising costs $15, and each 
minute of TV commercials $300. Show & Sell likes to advertise on radio at least twice as 
much as on TV. In the meantime, it is not practical to use more than 400 minutes of radio 
advertising a month. From past experience, advertising on TV is estimated to be 25 times 
as effective as on radio. Determine the optimum allocation of the budget to radio and TV 
advertising.

*2-18.  Wyoming Electric Coop owns a steam-turbine power-generating plant. Because Wyoming 
is rich in coal deposits, the plant generates its steam from coal. This, however, may result 
in emission that does not meet the Environmental Protection Agency (EPA) standards. 
EPA regulations limit sulfur dioxide discharge to 2000 parts per million per ton of coal 
burned and smoke discharge from the plant stacks to 20 lb per hour. The Coop receives 
two grades of pulverized coal, C1 and C2, for use in the steam plant. The two grades 
are usually mixed together before burning. For simplicity, it can be assumed that the 
amount of sulfur pollutant discharged (in parts per million) is a weighted average of 
the proportion of each grade used in the mixture. The following data is based on the 
consumption of 1 ton per hr of each of the two coal grades.

Coal grade
Sulfur discharge  
in parts per million

Smoke discharge  
in lb per hour

Steam generated  
in lb per hour

C1 1800 2.1 12,000
C2 2100  .9   9,000

(a) Determine the optimal ratio for mixing the two coal grades.

(b) Determine the effect of relaxing the smoke discharge limit by 1 lb on the amount of 
generated steam per hour.

2-19.  Top Toys is planning a new radio and TV advertising campaign. A radio commercial costs 
$300 and a TV ad costs $2000. A total budget of $20,000 is allocated to the campaign. 
However, to ensure that each medium will have at least one radio commercial and one 
TV ad, the most that can be allocated to either medium cannot exceed 80% of the total 
budget. It is estimated that the first radio commercial will reach 5000 people, with each 
additional commercial reaching only 2000 new ones. For TV, the first ad will reach 4500 
people, and each additional ad an additional 3000. How should the budgeted amount be 
allocated between radio and TV?

2-20.  The Burroughs Garment Company manufactures men’s shirts and women’s blouses for 
Walmark Discount Stores. Walmark will accept all the production supplied by Burroughs. 
The production process includes cutting, sewing, and packaging. Burroughs employs 
25 workers in the cutting department, 35 in the sewing department, and 5 in the  
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packaging department. The factory works one 8-hr shift, 5 days a week. The following 
table gives the time requirements and profits per unit for the two garments.

Minutes per unit

Garment Cutting Sewing Packaging Unit profit ($)

Shirts 20 70 12  8

Blouses 60 60  4 12

Determine the optimal weekly production schedule for Burroughs.
2-21.  A furniture company manufactures desks and chairs. The sawing department cuts the 

 lumber for both products, which is then sent to separate assembly departments.  Assembled 
items are sent to the painting department for finishing. The daily capacity of the  sawing 
 department is 200 chairs or 80 desks. The chair assembly department can  produce 
120 chairs daily, and the desk assembly department 60 desks daily. The paint department 
has a daily capacity of either 150 chairs or 110 desks. Given that the profit per chair is 
$50 and that of a desk is $100, determine the optimal production mix for the company.

*2-22.  An assembly line consisting of three consecutive stations produces two radio models: HiFi-1 
and HiFi-2. The following table provides the assembly times for the three workstations.

Minutes per unit

Workstation HiFi-1 HiFi-2

1 6 4
2 5 5
3 4 6

The daily maintenance for stations 1, 2, and 3 consumes 10%, 14%, and 12%, respectively, 
of the maximum 480 minutes available for each station each day. Determine the optimal 
product mix that will minimize the idle (or unused) times in the three workstations.

2-23.  Determination of the Optimum LP Solution by Enumerating All Feasible Corner Points. 
The remarkable observation gleaned from the graphical LP solution is that the optimum, 
when finite, is always associated with a corner point of the feasible solution space. Show 
how this idea is applied to the Reddy Mikks model by evaluating all of its feasible corner 
points A, B, C, D, E, and F.

2-24.  TORA Experiment. Enter the following LP into TORA, and select the graphic solution 
mode to reveal the LP graphic screen.

Minimize z = 3x1 + 8x2

subject to

 x1 +  x2 Ú 8

 2x1 - 3x2 … 0

 x1 + 2x2 … 30

 3x1 -    x2 Ú 0

 x1    … 10

 x2 Ú 9

 x1, x2 Ú 0
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Next, on a sheet of paper, graph and scale the x1- and x2-axes for the problem (you may 
also click Print Graph on the top of the right window to obtain a ready-to-use scaled 
sheet). Now, graph a constraint manually on the prepared sheet, and then click on the 
left window of the screen to check your answer. Repeat the same for each constraint, 
and then terminate the procedure with a graph of the objective function. The suggested 
process is designed to test and reinforce your understanding of the graphical LP solution 
through immediate feedback from TORA.

2-25.  TORA Experiment. Consider the following LP model:

Maximize z = 5x1 + 4x2

subject to

 6x1 + 4x2 … 24

 6x1 + 3x2 … 22.5

 x1 + x2 … 5

 x1 + 2x2 … 6

 -x1 + x2 … 1

 x2 … 2

 x1, x2 Ú 0

In LP, a constraint is said to be redundant if its removal from the model leaves the 
feasible solution space unchanged. Use the graphical facility of TORA to identify the 
redundant constraints, and then show that their removal (simply by not graphing them) 
does not affect the solution space or the optimal solution.

2-26.  TORA Experiment. In the Reddy Mikks model, use TORA to show that the removal of 
the raw material constraints (constraints 1 and 2) would result in an unbounded solution 
space. What can be said in this case about the optimal solution of the model?

2-27.  TORA Experiment. In the Reddy Mikks model, suppose that the following constraint is 
added to the problem:

x2 Ú 3

Use TORA to show that the resulting model has conflicting constraints that cannot be 
satisfied simultaneously, and hence it has no feasible solution.

2-28.  Identify the direction of decrease in z in each of the following cases:
*(a) Minimize z = 4x1 - 2x2.

(b) Minimize z = -6x1 + 2x2.

(c) Minimize z = -3x1 - 6x2.
2-29.  For the diet model, suppose that the daily availability of corn is limited to 400 lb. Identify 

the new solution space, and determine the new optimum solution.
2-30.  For the diet model, determine the optimum solution given the feed mix does not exceed 

500 lb a day? Does the solution make sense?
2-31.  John must work at least 20 hours a week to supplement his income while attending school. 

He has the opportunity to work in two retail stores. In store 1, he can work between 
4.5 and 12 hours a week, and in store 2, he is allowed between 5.5 and 10 hours. Both 
stores pay the same hourly wage. In deciding how many hours to work in each store, John 
wants to base his decision on work stress. Based on interviews with present employees, 
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John estimates that, on an ascending scale of 1 to 10, the stress factors are 8 and 6 at stores 
1 and 2, respectively. Because stress mounts by the hour, he assumes that the total stress 
for each store at the end of the week is proportional to the number of hours he works in 
the store. How many hours should John work in each store?

*2-32.  OilCo is building a refinery to produce four products: diesel, gasoline, lubricants, and 
jet fuel. The minimum demand (in bbl/day) for each of these products is 14,000, 30,000, 
10,000, and 8000, respectively. Iraq and Dubai are under contract to ship crude to OilCo. 
Because of the production quotas specified by OPEC (Organization of Petroleum 
 Exporting Countries), the new refinery can receive at least 40% of its crude from Iraq 
and the remaining amount from Dubai. OilCo predicts that the demand and crude oil 
quotas will remain steady over the next 10 years.

The specifications of the two crude oils lead to different product mixes. One barrel 
of Iraq crude yields .2 bbl of diesel, .25 bbl of gasoline, .1 bbl of lubricant, and .15 bbl of 
jet fuel. The corresponding yields from Dubai crude are .1, .6, .15, and .1, respectively. 
OilCo needs to determine the minimum capacity of the refinery (in bbl/day).

2-33.  Day Trader wants to invest a sum of money that would generate an annual yield of at 
least $10,000. Two stock groups are available: blue chips and high tech, with average 
 annual yields of 10% and 25%, respectively. Though high-tech stocks provide higher 
yield, they are more risky, and Trader wants to limit the amount invested in these stocks 
to no more than 60% of the total investment. What is the minimum amount Trader 
should invest in each stock group to accomplish the investment goal?

*2-34.  An industrial recycling center uses two scrap aluminum metals, A and B, to produce a 
special alloy. Scrap A contains 6% aluminum, 3% silicon, and 4% carbon. Scrap B has 
3% aluminum, 6% silicon, and 3% carbon. The costs per ton for scraps A and B are $100 
and $80, respectively. The specifications of the special alloy require that (1) the aluminum 
content must be at least 3% and at most 6%, (2) the silicon content must be between 
3% and 5%, and (3) the carbon content must be between 3% and 7%. Determine the 
optimum mix of the scraps that should be used in producing 1000 tons of the alloy.

2-35.  TORA Experiment. Consider the Diet Model, and let the objective function be given as

Minimize z = .8x1 + .8x2

Use TORA to show that the optimum solution is associated with two distinct corner 
points, and that both points yield the same objective value. In this case, the problem is 
said to have alternative optima. Explain the conditions leading to this situation, and show 
that, in effect, the problem has an infinite number of alternative optima. Then provide a 
formula for determining all such solutions.

2-36.  Modify the Reddy Mikks Solver model of Figure 2.4 to account for a third type of paint 
named “marine.” Requirements per ton of raw materials 1 and 2 are .6 and .85 ton, re-
spectively. The daily demand for the new paint lies between .6 ton and 1.9 tons. The profit 
per ton is $3700. 

2-37.  Develop the Excel Solver model for the following problems:
(a) The diet model of Example 2.2-2.

(b) Problem 2-21.

(c) Problem 2-34.
2-38.  In the Reddy Mikks model, suppose that a third type of paint, named “marine,” is produced. 

The requirements per ton of raw materials M1 and M2 are .7 and .95 ton, respectively. The 
daily demand for the new paint lies between .4 ton and 2.1 tons, and the profit per ton is 
$4500. Modify the Excel Solver model solverRM2.xls and the AMPL model amplRM2.txt to 
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account for the new situation and determine the optimum solution. Compare the additional 
effort associated with each modification.

2-39.  Develop AMPL models for the following problems:
(a) The diet problem of Example 2.2-2 and find the optimum solution.

(b) Problem 2-22.

(c) Problem 2-34.
2-40.  Fox Enterprises is considering six projects for possible construction over the next 

four years. Fox can undertake any of the projects partially or completely. A partial 
 undertaking of a project will prorate both the return and cash outlays proportionately. 
The expected (present value) returns and cash outlays for the projects are given in the 
following table.

Cash outlay ($1000)

Project Year 1 Year 2 Year 3 Year 4 Return ($1000)

1 10.5 14.4 2.2 2.4 324.00
2 8.3 12.6 9.5 3.1 358.00
3 10.2 14.2 5.6 4.2 177.50
4 7.2 10.5 7.5 5.0 148.00
5 12.3 10.1 8.3 6.3 182.00
6 9.2  7.8 6.9 5.1 123.50

Available funds ($1000) 60.0 70.0 35.0 20.0

(a) Formulate the problem as a linear program, and determine the optimal project mix 
that maximizes the total return using AMPL, Solver, or TORA. Ignore the time 
value of money.

(b) Suppose that if a portion of project 2 is undertaken, then at least an equal portion 
of project 6 must be undertaken. Modify the formulation of the model, and find the 
new optimal solution.

(c) In the original model, suppose that any funds left at the end of a year are used in 
the next year. Find the new optimal solution, and determine how much each year 
 “borrows” from the preceding year. For simplicity, ignore the time value of money.

(d) Suppose in the original model the yearly funds available for any year can be exceeded, 
if necessary, by borrowing from other financial activities within the company. Ignoring 
the time value of money, reformulate the LP model, and find the optimum solution. 
Would the new solution require borrowing in any year? If so, what is the rate of return 
on borrowed money?

*2-41.  Investor Doe has $10,000 to invest in four projects. The following table gives the cash 
flow for the four investments.

Cash flow ($1000) at the start of

Project Year 1 Year 2 Year 3 Year 4 Year 5

1 -1.00 0.50 0.30 1.80 1.20
2 -1.00 0.60 0.20 1.50 1.30
3 0.00 -1.00 0.80 1.90 0.80
4 -1.00 0.40 0.60 1.80 0.95
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The information in the table can be interpreted as follows: For project 1, $1.00 invested 
at the start of year 1 will yield $.50 at the start of year 2, $.30 at the start of year 3, $1.80 
at the start of year 4, and $1.20 at the start of year 5. The remaining entries can be in-
terpreted similarly. The entry 0.00 indicates that no transaction is taking place. Doe has 
the additional option of investing in a bank account that earns 6.5% annually. All funds 
accumulated at the end of 1 year can be reinvested in the following year. Formulate the 
problem as a linear program to determine the optimal allocation of funds to investment 
opportunities. Solve the model using Solver or AMPL.

2-42.  HiRise Construction can bid on two 1-year projects. The following table provides the 
quarterly cash flow (in millions of dollars) for the two projects.

Cash flow (in millions of $) at

Project January 1 April 1 July 1 October 1 December 31

I -1.0 -3.1 -1.5 1.8 5.0
II -3.0 -2.5   1.5 1.8 2.8

HiRise has cash funds of $1 million at the beginning of each quarter and may borrow 
at most $1 million at a 10% nominal annual interest rate. Any borrowed money must 
be returned at the end of the quarter. Surplus cash can earn quarterly interest at an 
8% nominal annual rate. Net accumulation at the end of one quarter is invested in the 
next quarter.
(a) Assume that HiRise is allowed partial or full participation in the two projects. 

Determine the level of participation that will maximize the net cash accumulated on 
December 31. Solve the model using Solver or AMPL.

(b) Is it possible in any quarter to borrow money and simultaneously end up with surplus 
funds? Explain.

2-43.  In anticipation of the immense college expenses, Joe and Jill started an annual investment 
program on their child’s eighth birthday that will last until the eighteenth birthday. They 
plan to invest the following amounts at the beginning of each year:

Year 1 2 3 4 5 6 7 8 9 10

Amount ($) 2000 2000 2500 2500 3000 3500 3500 4000 4000 5000

To avoid unpleasant surprises, they want to invest the money safely in the following 
 options: insured savings with 7.5% annual yield, 6-year government bonds that yield 
7.9% and have a current market price equal to 98% of face value, and 9-year municipal 
bonds yielding 8.5% and having a current market price of 1.02 of face value. How should 
the money be invested?

*2-44.  A business executive has the option to invest money in two plans: Plan A guarantees that 
each dollar invested will earn $.70 a year later, and plan B guarantees that each dollar 
invested will earn $2 after 2 years. In plan A, investments can be made annually, and 
in plan B, investments are allowed for periods that are multiples of 2 years only. How 
should the executive invest $100,000 to maximize the earnings at the end of 3 years? 
Solve the model using Solver or AMPL.

2-45.  A gambler plays a game that requires dividing bet money among four choices. The game 
has three outcomes. The following table gives the corresponding gain or loss per dollar 
for the different options of the game.
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Return per dollar deposited in choice

Outcome 1 2 3   4

1 -3 4 -7 15
2 5 -3 9   4
3 3 -9 10 -8

The gambler has a total of $1500, which may be played only once. The exact outcome of 
the game is not known a priori. Because of this uncertainty, the gambler’s strategy is to 
maximize the minimum return produced by the three outcomes. How should the gambler 
allocate the $1500 among the four choices? Solve the model using Solver or AMPL. 
(Hint: The gambler’s net return may be positive, zero, or negative.)

2-46.  Lewis (1996). Bills in a household are received monthly (e.g., utilities and home mort-
gage), quarterly (e.g., estimated tax payments), semiannually (e.g., insurance), or annually 
(e.g., subscription renewals and dues). The following table provides the monthly bills for 
next year.

Month Jan. Feb. Mar. Apr. May June July Aug. Sep. Oct. Nov. Dec. Total

$ 800 1200 400 700 600 900 1500 1000 900 1100 1300 1600 12,000

To account for these expenses, the family sets aside $1000 per month, which is the 
 average of the total divided by 12 months. If the money is deposited in a regular savings 
account, it can earn 4% annual interest, provided it stays in the account at least 1 month. 
The bank also offers 3-month and 6-month certificates of deposit that can earn 5.5% 
and 7% annual interest, respectively. Develop a 12-month investment schedule that will 
 maximize the family’s total return for the year. State any assumptions or requirements 
needed to reach a feasible solution. Solve the model using Solver or AMPL.

2-47.  Toolco has contracted with AutoMate to supply their automotive discount stores with 
wrenches and chisels. AutoMate’s weekly demand consists of at least 1570 wrenches and 
1250 chisels. Toolco cannot produce all the requested units with its present one-shift ca-
pacity, and must use overtime and possibly subcontract with other tool shops. The result 
is an increase in the production cost per unit, as shown in the following table. Market 
demand restricts the ratio of chisels to wrenches to at least 2:1.

Tool Production type
Weekly production  

range (units) Unit cost ($)

Wrenches Regular 0–500 2.00
Overtime 501–800 2.80
Subcontracting 8019∞ 3.00

Chisel Regular 0–620 2.10
Overtime 621–900 3.20
Subcontracting 9019∞ 4.20

(a) Formulate the problem as a linear program, and determine the optimum production 
schedule for each tool.

(b) Explain why the validity of the model is dependent on the fact that the unit produc-
tion cost is an increasing function of the production quantity.

(c) Solve the model using AMPL, Solver, or TORA.
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2-48.  Four products are processed sequentially on three machines. The following table gives 
the pertinent data of the problem.

Manufacturing time (hr) per unit

Machine Cost per hr ($) Product 1 Product 2 Product 3 Product 4 Capacity (hr)

1 10  2  3  4  2 500
2  5  3  2  1  2 380
3  4  7  3  2  1 450

Unit selling 
price ($) 75 70 55 45

Formulate the problem as an LP model and find the optimum solution using AMPL, Solver, 
or TORA.

*2-49.  A manufacturer produces three models, I, II, and III, of a certain product using raw 
 materials A and B. The following table gives the data for the problem.

Requirements per unit

Raw material I II III Availability

A   2   3   5 4000
B   4   2   7 6000

Minimum demand 200 200 150
Price per unit ($)  30  20  50

The labor time per unit of model I is twice that of II and three times that of III. The 
entire labor force of the factory can produce the equivalent of 1500 units of model I. 
Market requirements specify the ratios 3:2:5 for the production of the three respective 
models. Formulate the problem as a linear program and find the optimum solution using 
AMPL, Solver, or TORA.

2-50.  The demand for ice cream at All-Flavors Parlor during the three summer months (June, 
July, and August) is estimated at 500, 600, and 400 20-gallon cartons, respectively. Two 
wholesalers, 1 and 2, supply All-Flavors with its ice cream. Although the flavors from the 
two suppliers are different, they are interchangeable. The maximum number of cartons 
either supplier can provide is 400 per month. Also, the price the two suppliers charge 
change monthly according to the following schedule:

Price per carton in month

June July August

Supplier 1 $100 $110 $120
Supplier 2 $115 $108 $125

To take advantage of price fluctuation, All-Flavors can purchase more than is needed 
for a month and store the surplus to satisfy the demand in a later month. The storage 
cost of an ice cream carton is $5 per month. It is realistic in the present situation to 
assume that the storage cost is a function of the average number of cartons on hand 
during the month. Develop a model to determine the optimum schedule for buying 
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ice cream from the two suppliers and find the optimum solution using TORA, Solver, 
or AMPL.

2-51.  The demand for an item over the next four quarters is 280, 400, 450, and 300 units, 
respectively. The price per unit starts at $20 in the first quarter and increases by $1 each 
quarter thereafter. The supplier can provide no more than 400 units in any one quarter. 
Although we can take advantage of lower prices in early quarters, a storage cost of $3.80 
is incurred per unit per quarter. In addition, the number of units that can be held over 
from one quarter to the next must be 80 or less. Develop an LP model to determine the 
optimum schedule for purchasing the item to meet the demand, and find the optimum 
solution using AMPL, Solver, or TORA.

2-52.  A company has contracted to produce two products, A and B, over the months of June, 
July, and August. The total production capacity (expressed in hours) varies monthly. 
The following table provides the basic data of the situation:

June July August

Demand for A (units)  500 5000  750
Demand for B (units) 1000 1200 1200
Capacity (hours) 3000 3500 3000

The production rates in units per hour are .75 and 1 for products A and B, respectively. 
All demand must be met. However, demand for a later month may be filled from the 
production in an earlier one. For any carryover from one month to the next, holding 
costs of $.90 and $.75 per unit per month are charged for products A and B, respectively. 
The unit production costs for the two products are $30 and $28 for A and B, respectively. 
Develop an LP model to determine the optimum production schedule for the two prod-
ucts and find the optimum solution using AMPL, Solver, or TORA.

*2-53.  The manufacturing process of a product consists of two successive operations, I and II. 
The following table provides the pertinent data over the months of June, July, and August:

June July August

Finished product demand (units)  500 450 600
Capacity of operation I (hr)  800 700 550
Capacity of operation II (hr) 1000 850 700

Producing a unit of the product takes .6 hr on operation I plus .8 hr on operation II. 
 Overproduction of either the semifinished product (operation I) or the finished product 
(operation II) in any month is allowed for use in a later month. The respective holding costs 
for operations I and II are $.20 and $.40 per unit per month. The production cost varies by 
 operation and by month. For operation 1, the unit production cost is $10, $12, and $11 for June, 
July, and  August. For operation 2, the corresponding unit production cost is $15, $18, and $16. 
 Develop an LP model to determine the optimal production schedule for the two operations 
over the 3-month horizon and find the optimum solution using AMPL, Solver, or TORA.

2-54.  Two products are manufactured sequentially on two machines. The time available on 
each machine is 8 hours per day and may be increased by up to 4 hours of overtime, if 
necessary, at an additional cost of $110 per hour. The table below gives the production 
rate on the two machines as well as the price per unit of the two products. Develop an 
LP model to determine the optimum production schedule, and the recommended use of 
overtime, if any. Solve the problem using AMPL, Solver, or TORA.
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Production rate (units/hr)

Product 1 Product 2

Machine 1 5 5
Machine 2 8 4
Price per unit ($) 120 128

*2-55.  In the bus scheduling example suppose that buses can run either 8- or 12-hr shifts. If a bus runs 
for 12 hr, the driver must be paid for the extra hours at 150% of the regular hourly pay. Do 
you recommend the use of 12-hr shifts? Solve the new model using AMPL, Solver, or TORA.

2-56.  A hospital employs volunteers to staff the reception desk between 8:00 a.m. and 10:00 p.m. 
Each volunteer works three consecutive hours except for those starting at 8:00 p.m. who 
work for two hours only. The minimum need for volunteers is approximated by a step 
function over 2-hour intervals starting at 8:00 a.m. as 8, 6, 8, 6, 4, 6, and 5. Because most 
volunteers are retired individuals, they are willing to offer their services at any hour of the 
day (8:00 a.m. to 10:00 p.m.). However, because of the large number of charities compet-
ing for their service, the number needed must be kept as low as possible. Determine an 
optimal schedule (using AMPL, Solver, or TORA) for the start time of the volunteers.

2-57.  In Problem 2-56, suppose that no volunteers will start at 2:00 p.m. or 7:00 p.m. to allow 
for lunch and dinner. Develop the LP, and determine the optimal schedule using AMPL, 
Solver, or TORA.

2-58.  In an LTL (less-than-truckload) trucking company, terminal docks include casual work-
ers who are hired temporarily to account for peak loads. At the Omaha, Nebraska dock, 
the minimum demand for casual workers during the seven days of the week (starting on 
Monday) is 12, 20, 14, 10, 15, 18, and 10 workers. Each worker is contracted to work five 
consecutive days. Develop the LP model, and determine an optimal weekly hiring practice 
of casual workers for the company using AMPL, Solver, or TORA.

*2-59.  On most U.S. university campuses, students are contracted by academic departments to 
do errands, such as answering the phone and typing. The need for such service fluctu-
ates during work hours (8:00 a.m. to 5:00 p.m.). In one department, the minimum num-
ber of students needed is 2 between 8:00 a.m. and 10:00 a.m., 4 between 10:01 a.m. and 
11:00 a.m., 3 between 11:01 a.m. and 1:00 p.m., and 2 between 1:01 p.m. and 5:00 p.m. Each 
student is allotted 3 consecutive hours (except for those starting at 3:01, who work for 2 
hours, and those who start at 4:01, who work for 1 hour). Because of their flexible sched-
ule, students can usually report to work at any hour during the work day, except that no 
student wants to start working at lunch time (12:00 noon). Develop the LP model, and 
determine a time schedule specifying the time of the day and the number of students 
reporting to work. Use AMPL, Solver, or TORA to determine the solution.

2-60.  A large department store operates 7 days a week. The manager estimates that the 
 minimum number of salespersons required to provide prompt service is 12 for Monday,  
18 for Tuesday, 20 for Wednesday, 28 for Thursday, 32 for Friday, and 40 for each of  
Saturday and Sunday. Each salesperson works 5 days a week, with the two consecutive 
off-days staggered throughout the week. For example, if 10 salespersons start on Monday, 
2 can take their off-days on Tuesday and Wednesday, 5 on Wednesday and Thursday, and 
3 on Saturday and Sunday. How many salespersons should be contracted, and how should 
their off-days be allocated? Use AMPL, Solver, or TORA to find the solution.

2-61.  A realtor is developing a rental housing and retail area. The housing area consists of ef-
ficiency apartments, duplexes, and single-family homes. Maximum demand by potential 
renters is estimated to be 500 efficiency apartments, 300 duplexes, and 250 single-family 
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homes, but the number of duplexes must equal at least 50% of the number of efficiency 
apartments and single homes. Retail space is proportionate to the number of home units 
at the rates of at least 12 ft2, 18 ft2, and 20 ft2 for efficiency, duplex, and single family units, 
respectively. However, land availability limits retail space to no more than 15,000 ft2. 
The monthly rental income is estimated at $650, $800, and $1500 for efficiency-, duplex-, 
and single-family units, respectively. The retail space rents for $120/ft2. Develop an LP 
model to determine the optimal retail space area and the number of family residences, 
and find the solution using AMPL, Solver, or TORA.

2-62.  The city council of Fayetteville is in the process of approving the construction of a new 
180,000-ft2 convention center. Two sites have been proposed, and both require exercising 
the “eminent domain” law to acquire the property. The following table provides data about 
proposed (contiguous) properties in both sites together with the acquisition cost.

Site 1 Site 2

Property Area (1000 ft2) Cost (1000 $) Area (1000 ft2) Cost (1000 $)

1 20 1,000 80 2,800
2 50 2,100 60 1,900
3 50 2,350 50 2,800
4 30 1,850 70 2,500
5 60 2,950

Partial acquisition of property is allowed. At least 80% of property 4 must be acquired if site 
1 is selected, and at least 60% of property 3 must be acquired if site 2 is selected. Although 
site 1 property is more expensive (on a per ft2 basis), the construction cost is less than at 
site 2, because the infrastructure at site 1 is in a much better shape. Construction cost is $30 
million at site 1 and $32 million at site 2. Which site should be selected, and what properties 
should be acquired? Find the solution using AMPL, Solver, or TORA.

*2-63.  A city will undertake five urban renewal housing projects over the next 5 years. Each 
project has a different starting year and a different duration. The following table provides 
the basic data of the situation:

Year 1 Year 2 Year 3 Year 4 Year 5
Cost  

(million $)
Annual income  

(million $)

Project 1 Start End 5.0 .05
Project 2 Start End 8.0 .07
Project 3 Start End 15.0 .15
Project 4 Start End 1.2 .02
Budget  
 (million $) 3.0 6.0 7.0 7.0 7.0

Projects 1 and 4 must be finished completely within their durations. The remaining two 
projects can be finished partially within budget limitations, if necessary. However, each 
project must be at least 25% completed within its duration. At the end of each year, 
the completed section of a project is immediately occupied by tenants, and a propor-
tional amount of income is realized. For example, if 40% of project 1 is completed in 
year 1 and 60% in year 3, the associated income over the 5-year planning horizon is 
.4 * $50,000 1for year 22 + .4 * $50,000 1for year 32 + 1.4 + .62 * $50,000  
1for year  42 + 1.4 + .62 * $50,000 1for year 52 = 14 * .42 + 12 * .62 * $50,000.  
Develop an LP model to determine the schedule for the projects that will maximize 
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the total income over the 5-year horizon, and find the solution using AMPL, Solver, or 
TORA. For simplicity, disregard the time value of money.

2-64.  The city of Fayetteville is embarking on an urban renewal project that will include lower- 
and middle-income row housing, upper-income luxury apartments, and public housing. 
The project also includes a public elementary school and retail facilities. The size of 
the elementary school (number of classrooms) is proportional to the number of pupils, 
and the retail space is proportional to the number of housing units. The following table 
 provides the pertinent data of the situation:

Lower 
income

Middle 
income

Upper 
income

Public 
housing

School  
room

Retail 
unit

Minimum number of units 100 125 75 300 0
Maximum number of units 200 190 260 600 25
Lot size per unit (acre) .05 .07 .03 .025 .045 .1
Average number of pupils per unit 1.3 1.2 .5 1.4
Retail demand per unit (acre) .023 .034 .046 .023 .034
Annual income per unit ($) 7,000 12,000 20,000 5,000 — 15,000

The new school can occupy a maximum of 2 acres.  Class size is limited to 25 students per 
room. The operating annual cost per schoolroom is $10,000. The project will be  located 
on a 50-acre vacant property owned by the city. Additionally, the project can make use of 
an adjacent property occupied by 200 condemned slum homes. Each  condemned home 
occupies .25 acre. The cost of buying and demolishing a slum unit is $7000. Open space, 
streets, and parking lots consume 15% of total available land.

Develop a linear program to determine the optimum plan for the project, and find 
the solution using AMPL, Solver, or TORA.

2-65.  Realco owns 900 acres of undeveloped land on a scenic lake in the heart of the Ozark 
Mountains. In the past, little or no regulation was imposed upon new developments 
around the lake. The lake shores are now dotted with vacation homes, and septic tanks 
are in extensive use, most of them improperly installed. Over the years, seepage from the 
septic tanks led to severe water pollution. To curb further degradation of the lake, county 
officials have approved stringent ordinances applicable to all future developments: 
(1) Only single-, double-, and triple-family homes can be constructed, with single-family 
homes accounting for at least 50% of the total. (2) To limit the number of septic tanks, 
minimum lot sizes of 2, 3, and 5 acres are required for single-, double-, and triple-family 
homes, respectively. (3) Recreation areas of 1 acre each must be established at the rate 
of one area per 220 families. (4) To preserve the ecology of the lake, underground water 
may not be pumped out for house or garden use. The president of Realco is studying 
the possibility of developing the 800-acre property. The new development will include 
single-, double-, and triple-family homes. It is estimated that 15% of the acreage will be 
allocated to streets and utility easements. Realco estimates the returns from the different 
housing units as follows:

Housing unit Single Double Triple

Net return per unit ($) 12,000 15,000 18,000

The cost of connecting water service to the area is proportionate to the number of 
units constructed. However, the county charges a minimum of $120,000 for the project. 
 Additionally, the expansion of the water system beyond its present capacity is limited to 
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220,000 gallons per day during peak periods. The following data summarize the water 
service connection cost as well as the water consumption, assuming an average size family:

Housing unit Single Double Triple Recreation

Water service connection cost per unit ($) 1000 1200 1400 800
Water consumption per unit (gal/day)   400   600   840 450

Develop an LP model to determine the optimal plan for Realco, and find the solution 
using AMPL, Solver, or TORA.

2-66.  Consider the Realco model of Problem 2-65. Suppose that an additional 100 acres of 
land can be purchased for $450,000, which will increase the total acreage to 900 acres. 
Is this a profitable deal for Realco?

2-67.  Hi-V produces three types of canned juice drinks, A, B, and C, using fresh strawber-
ries, grapes, and apples. The daily supply is limited to 200 tons of strawberries, 90 tons of 
grapes, and 150 tons of apples. The cost per ton of strawberries, grapes, and apples is $210, 
$110, and $100, respectively. Each ton makes 1500 lb of strawberry juice, 1200 lb of grape 
juice, and 1000 lb of apple juice. Drink A is a 1:1 mix of strawberry and apple juice. Drink 
B is 1:1:2 mix of strawberry, grape, and apple juice. Drink C is a 2:3 mix of grape and apple 
juice. All drinks are canned in 16-oz (1 lb) cans. The price per can is $1.15, $1.25, and $1.20 
for drinks A, B, and C. Develop an LP model to determine the optimal production mix of 
the three drinks, and find the solution using AMPL, Solver, or TORA.

*2-68.  A hardware store packages handyman bags of screws, bolts, nuts, and washers. Screws come 
in 100-lb boxes and cost $120 each, bolts come in 100-lb boxes and cost $175 each, nuts 
come in 80-lb boxes and cost $75 each, and washers come in 30-lb boxes and cost $25 each. 
The handyman package weighs at least 1 lb and must include, by weight, at least 10% screws 
and 25% bolts, and at most 15% nuts and 10% washers. To balance the package, the number 
of bolts cannot exceed the number of nuts or the number of washers. A bolt weighs 10 times 
as much as a nut and 50 times as much as a washer. Develop an LP model to determine the 
optimal mix of the package, and find the solution using AMPL, Solver, or TORA.

2-69.  All-Natural Coop makes three breakfast cereals, A, B, and C, from four ingredients: 
rolled oats, raisins, shredded coconuts, and slivered almonds. The daily availabilities of 
the ingredients are 5 tons, 2 tons, 1 ton, and 1 ton, respectively. The corresponding costs 
per ton are $100, $120, $110, and $200, respectively. Cereal A is a 50:5:2 mix of oats, 
raisins, and almond. Cereal B is a 60:2:3 mix of oats, coconut, and almond. Cereal C is a 
60:3:4:2 mix of oats, raisins, coconut, and almond. The cereals are produced in jumbo 5-lb 
sizes. All-Natural sells A, B, and C at $2.00, $2.50, and $3.00 per box, respectively. The 
minimum daily demand for cereals A, B, and C is 500, 600, and 500 boxes, respectively. 
Develop an LP model to determine the optimal production mix of the cereals and the 
associated amounts of ingredients, and find the solution using AMPL, Solver, or TORA.

2-70.  A refinery manufactures two grades of jet fuel, F1 and F2, by blending four types of 
gasoline, A, B, C, and D. Fuel F1 uses gasolines A, B, C, and D in the ratio 1:1:2:4, and 
fuel F2 uses the ratio 2:2:1:3. The supply limits for A, B, C, and D are 1000, 1200, 900, and 
1500 bbl/day, respectively. The costs per bbl for gasolines A, B, C, and D are $120, $90, 
$100, and $150, respectively. Fuels F1 and F2 sell for $200 and $250 per bbl, respectively. 
The minimum demand for F1 and F2 is 200 and 400 bbl/day, respectively. Develop an 
LP model to determine the optimal production mix for F1 and F2, and find the solution 
using AMPL, Solver, or TORA.

*2-71.  An oil company distills two types of crude oil, A and B, to produce regular and 
 premium gasoline and jet fuel. There are limits on the daily availability of crude oil  
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and the minimum demand for the final products. If the production is not sufficient  
to cover demand, the shortage must be made up from outside sources at a penalty. 
 Surplus production will not be sold immediately and will incur storage cost.  
The following table provides the data of the situation:

Fraction yield per bbl

Crude Regular Premium Jet Price/bbl ($) bbl/day

Crude A .20 .1 .25 30 2500
Crude B .25 .3 .10 40 3000
Demand (bbl/day) 500 700 400
Revenue ($/bbl) 50 70 120
Storage cost for surplus  
 production ($/bbl) 2 3 4
Penalty for unfilled  
 demand ($/bbl) 10 15 20

Develop an LP model to determine the optimal product mix for the refinery, and find the 
solution using AMPL, Solver, or TORA.

2-72.  In the refinery situation of Problem 2-71, suppose that the distillation unit actually 
 produces the intermediate products naphtha and light oil. One bbl of crude A produces 
.35 bbl of naphtha and .6 bbl of light oil, and one bbl of crude B produces .45 bbl of 
naphtha and .5 bbl of light oil. Naphtha and light oil are blended to produce the three 
final gasoline products: One bbl of regular gasoline has a blend ratio of 2:1 (naphtha to 
light oil), one bbl of premium gasoline has a blend ratio of 1:1, and one bbl of jet fuel has 
a blend ratio of 1:2. Develop an LP model to determine the optimal production mix, and 
find the solution using AMPL, Solver, or TORA.

2-73.  Hawaii Sugar Company produces brown sugar, processed (white) sugar, powdered sugar, 
and molasses from sugarcane syrup. The company purchases 4000 tons of syrup weekly 
and is contracted to deliver at least 25 tons weekly of each type of sugar. The  production 
process starts by manufacturing brown sugar and molasses from the syrup. A ton of 
syrup produces .3 ton of brown sugar and .1 ton of molasses. White sugar is produced by 
processing brown sugar. It takes 1 ton of brown sugar to produce .8 ton of white sugar. 
Powdered sugar is produced from white sugar through a special grinding process that has 
a 95% conversion efficiency (1 ton of white sugar produces .95 ton of powdered sugar). 
The profits per ton for brown sugar, white sugar, powdered sugar, and molasses are 
$150, $200, $230, and $35, respectively. Formulate the problem as a linear program, and 
 determine the weekly production schedule using AMPL, Solver, or TORA.

2-74.  Shale Oil refinery blends two petroleum stocks, A and B, to produce two high-octane 
gasoline products, I and II. Stocks A and B are produced at the maximum rates of 450 
and 700 bbl/hr, respectively. The corresponding octane numbers are 98 and 89, and the 
vapor pressures are 10 and 8 lb/in2. Gasoline I and gasoline II must have octane num-
bers of at least 91 and 93, respectively. The vapor pressure associated with both products 
should not exceed 12 lb/in2. The profits per bbl of I and II are $7 and $10, respectively. 
Develop an LP model to determine the optimum production rate for I and II and their 
blend ratios from stocks A and B, and find the solution using AMPL, Solver, or TORA. 
(Hint: Vapor pressure, like the octane number, is the weighted average of the vapor 
 pressures of the blended stocks.)

2-75.  A foundry smelts steel, aluminum, and cast iron scraps to produce two types of metal 
ingots, I and II, with specific limits on the aluminum, graphite, and silicon contents.  
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Aluminum and silicon briquettes may be used in the smelting process to meet the desired 
specifications. The following tables set the specifications of the problem:

Contents (%)

Input item Aluminum Graphite Silicon Cost/ton ($) Available (tons/day)

Steel scrap 10 5 4 100 1000
Aluminum scrap 95 1 2 150 500
Cast iron scrap 0 15 8   75 2500
Aluminum briquette 100 0 0 900 Any amount
Silicon briquette 0 0 100 380 Any amount

Ingot I (%) Ingot II (%)

Ingredient Minimum Maximum Minimum Maximum

Aluminum 8.1 10.8 6.2 8.9
Graphite 1.5 3.0 4.1 ∞
Silicon 2.5 ∞ 2.8 4.1

Demand (tons/day) 130 250

Develop an LP model to determine the optimal input mix the foundry should smelt, and 
find the solution using AMPL, Solver, or TORA.

2-76.  Two alloys, A and B, are made from four metals, I, II, III, and IV, according to the follow-
ing specifications:

Alloy Specifications Selling price ($)

A At most 80% of I 200
At most 30% of II
At least 50% of IV

B Between 40% and 60% of II 300
At least 30% of III
At most 70% of IV

The four metals are extracted from three ores according to the following data:

Constituents (%)

Ore
Maximum quantity  

(tons) I II III IV Others Price/ton ($)

1 1000 20 10 30 30 10 30
2 2000 10 20 30 30 10 40
3 3000  5  5 70 20  0 50

Develop an LP model to determine how much of each type of alloy should be produced, 
and find the solution using AMPL, Solver, or TORA. (Hint: Let xkj be tons of ore i 
 allocated to alloy k, and define wk as tons of alloy k produced.)

2-77.  Shelf Space Allocation. A grocery store must decide on the shelf space to be allocated to 
each of five types of breakfast cereals. The maximum daily demand is 110, 80, 150, 85, and 
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100 boxes, respectively. The shelf space in square inches for the respective boxes is 15, 25, 16, 
20, and 22. The total available shelf space is 5000 in2. The profit per unit is $1.10, $1.30, $1.08, 
$1.25, and $1.20, respectively. Determine the optimal space allocation for the five cereals.

2-78.  Voting on Issues. In a particular county in the State of Arkansas, four election issues are on  
the ballot: Build new highways, increase gun control, increase farm subsidies, and increase 
gasoline tax. The county includes 100,000 urban voters, 250,000 suburban voters, and 
50,000 rural voters, all with varying degrees of support for and opposition to, election issues.  
For example, rural voters are opposed to gun control and gas tax and in favor of road build-
ing and farm subsidies. The county is planning a TV advertising campaign with a budget of 
$100,000 at a cost of $1500 per ad. The following table summarizes the impact of a single 
ad in terms of the number of pro and con votes as a function of the different issues:

Expected number of pro 1+ 2 and  
con 1- 2 votes per ad

Issue Urban Suburban Rural

New highways -30,000 +60,000 +30,000
Gun control +80,000 +30,000 -45,000
Smog control +40,000 +10,000 0
Gas tax +90,000 0 -25,000

An issue will be adopted if it garners at least 51% of the votes. Which issues will be 
 approved by voters, and how many ads should be allocated to these issues?

2-79.  Assembly-Line Balancing. A product is assembled from three different parts. The parts 
are manufactured by two departments at different production rates as given in the fol-
lowing table:

Capacity  
(hr/wk)

Production rate (units/hr)

Department Part 1 Part 2 Part 3

1 100 6  8 12

2  90 6 12  4

Determine the maximum number of final assembly units that can be produced weekly. 
(Hint: Assembly units = min {units of part 1, units of part 2, and units of part 3}.  
Maximize z = min {x1, x2} is equivalent to max z subject to z … x1 and z … x2.)

2-80.  Pollution Control. Three types of coal, C1, C2, and C3, are pulverized and mixed together to 
produce 50 tons per hour needed to power a plant for generating electricity. The burning of 
coal emits sulfur oxide (in parts per million) which must meet the EPA specifications of no 
more than 2000 parts per million. The following table summarizes the data of the situation:

C1 C2 C3

Sulfur (parts per million) 2500 1500 1600
Pulverizer capacity (ton/hr) 30 30 30
Cost per ton $30 $35 $33

Determine the optimal mix of the coals.
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*2-81.  Traffic Light Control, Stark and Nicholes (1972). Automobile traffic from three high-
ways, H1, H2, and H3, must stop and wait for a green light before exiting to a toll road. 
The tolls are $4, $5, and $6 for cars exiting from H1, H2, and H3, respectively. The flow 
rates from H1, H2, and H3 are 550, 650, and 450 cars per hour. The traffic light cycle may 
not exceed 2.2 minutes, and the green light on any highway must be at least 22 seconds. 
The yellow light is on for 10 seconds. The toll gate can handle a maximum of 500 cars per 
hour. Assuming that no cars move on yellow, determine the optimal green time interval 
for the three highways that will maximize toll gate revenue per traffic cycle.

2-82.  Fitting a Straight Line into Empirical Data (Regression). In a 10-week typing class for 
 beginners, the average speed per student (in words per minute) as a function of the 
 number of weeks in class is given in the following table.

Week, x 1 2  3  4  5  6  7  8  9 10
Words per minute, y 5 9 15 19 21 24 26 30 31 35

Determine the coefficients a and b in the straight-line relationship, yn = ax + b,  that 
best fit the given data. (Hint: Minimize the sum of the absolute value of the deviations 
between theoretical yn and empirical y. Min ∙ w ∙  is equivalent to min z subject to z Ú w 
and z Ú -w, z Ú 0. Alternatively,  min ∙ w ∙  is equivalent to min 1z+ + z-2 subject to 
w = z+ - z- with z+, z- Ú 0.)

2-83.  Leveling the Terrain for a New Highway, Stark and Nicholes (1972). The Arkansas 
Highway Department is planning a new 10-mile highway on uneven terrain as shown 
by the profile in Figure 2.13. The width of the construction terrain is approximately 
50 yards. To simplify the situation, the terrain profile can be replaced by a step func-
tion as shown in the figure. Using heavy machinery, earth removed from high terrain 
is hauled to fill low areas. There are also two burrow pits, I and II, located at the ends 
of the 10-mile stretch from which additional earth can be hauled, if needed. Pit I has 
a capacity of 20,000 cubic yards and pit II a capacity of 15,000 cubic yards. The costs 
of removing earth from pits I and II are, respectively, $1.50 and $1.90 per cubic yard. 
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FiGure 2.13

Terrain profile for Problem 2-83
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The transportation cost per cubic yard per mile is $.15, and the cost of using heavy 
machinery to load hauling trucks is $.20 per cubic yard. This means that a cubic yard 
from pit I hauled 1 mile will cost a total of 11.5 + .202 + 1 * .15 = $1.85 and a cubic 
yard hauled 1 mile from a hill to a fill area will cost .20 + 1 * .15 = $.35. Develop a 
minimum cost plan for leveling the 10-mile stretch.

2-84.  Military Planning, Shepard and Associates (1988). The Red Army (R) is trying to 
invade the territory defended by the Blue Army (B). Blue has three defense lines and 
200  regular combat units and can draw also on a reserve pool of 200 units. Red plans to 
 attack on two fronts, north and south. Blue has set up three east–west defense lines, I, II, 
and III. The purpose of defense lines 1 and 2 is to delay the Red Army attack by at least 
4 days in each line and to maximize the total duration of the battle. The advance time of 
the Red Army is estimated by the following empirical formula:

Battle duration in days = a + b aBlue units
Red units

b

The constants a and b are a function of the defense line and the north/south front 
as the following table shows:

a b

I II III I II III

North front  .5  .75   .55  8.8 7.9 10.2
South front 1.1 1.3 1.5 10.5 8.1 9.2

The Blue Army reserve units can be used in defense lines II and III only. The allocation 
of units by the Red Army to the three defense lines is given in the following table:

Number of Red Army attack units

Defense line 1 Defense line 2 Defense line 3

North front 30 60 20
South front 30 40 20

How should Blue allocate its resources among the three defense lines and the 
north/south fronts?

2-85.  Water Quality Management, Stark and Nicholes (1972). Four cities discharge wastewater 
into the same stream. City 1 is upstream, followed downstream by city 2, then city 3, and 
then city 4. Measured alongside the stream, the cities are approximately 15 miles apart. 
A measure of the amount of pollutants in wastewater is the BOD (biochemical oxygen 
demand), which is the weight of oxygen required to stabilize the waste constituent in 
water. A higher BOD indicates worse water quality. The EPA sets a maximum allowable 
BOD loading, expressed in lb BOD per gallon. The removal of pollutants from waste-
water takes place in two forms: (1) natural decomposition activity stimulated by the 
oxygen in the air, and (2) treatment plants at the points of discharge before the waste 
reaches the stream. The objective is to determine the most economical efficiency of each 
of the four plants that will reduce BOD to acceptable levels. The maximum possible 
plant efficiency is 99%.

To demonstrate the computations involved in the process, consider the following 
definitions for plant 1:
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 Q1 = Stream flow 1gal/hr2 on the 15@mile reach 192 leading to city 2

 p1 = BOD discharge rate 1in lb/hr2
 x1 = efficiency of plant 1 1 … .992
 b1 = maximum allowable BOD loading in reach 192 1in lb BOD/gal2

To satisfy the BOD loading requirement in reach 1–2, we must have

p111 - x12 … b1Q1

In a similar manner, the BOD loading constraint for reach 2–3 takes the form

11 - r122  a BOD discharge
rate in reach 192

b + a BOD discharge
rate in reach 293

b … b2Q2

or

11 - r122p111 - x12 + p211 - x22 … b2Q2

The coefficient r12 1612 represents the fraction of waste removed in reach 1–2 by decom-
position. For reach 2–3, the constraint is

11 - r232[11 - r122p111 - x12 + p211 - x22] + p311 - x32 … b3Q3

Determine the most economical efficiency for the four plants using the following 
data (the fraction of BOD removed by decomposition is 6% for all four reaches):

Reach 1–2  
1i = 12

Reach 2–3  
1i = 22

Reach 2–3  
1i = 32

Reach 3–4  
1i = 42

Qi (gal/hr) 215,000 220,000 200,000 210,000
pi (lb/hr) 500 3,000 6,000 1,000
bi (lb BOD/gal) .00085 .0009 .0008 .0008
Treatment cost  
 ($/lb BOD removed) .20 .25 .15 .18

2-86.  Loading Structure, Stark and Nichole (1972). The overhead crane in Figure 2.14 with two 
lifting yokes is used to transport mixed concrete to a yard for casting concrete barriers. 

Crane girder

W1 W2

2 ft 6 ft 12 ft 2 ft8 ft

Yoke 1 Yoke 2

FiGure 2.14

Overhead crane with two yokes (Problem 2-86)
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The concrete bucket hangs at midpoint from the yoke. The crane end rails can support a 
maximum of 25 kip each, and the yoke cables have a 20-kip capacity each. Determine the 
maximum load capacity, W1 and W2. (Hint: At equilibrium, the sum of moments about 
any point on the girder or yoke is zero.)

2-87.  Allocation of Aircraft to Routes. Consider the problem of assigning aircraft to four routes 
according to the following data:

Aircraft type
Capacity  

(passengers)
Number of 

aircraft

Number of daily trips on route

1 2 3 4

1 50  5 3 2 2 1
2 30  8 4 3 3 2
3 20 10 5 5 4 2

Daily number  
 of customers 1000 2000 900 1200

The associated costs, including the penalties for losing customers because of space 
unavailability, are:

Operating cost ($) per trip on route

Aircraft type 1 2 3 4

1 1000 1100 1200 1500

2  800 900 1,000 1000

3  600 800 800 900

Penalty ($) per  
 lost customer   40 50 45 70

Determine the optimum allocation of aircraft to routes, and determine the associated 
 number of trips.



Chapter 3

the Simplex Method and  
Sensitivity analysis

Real-Life Application—Optimization of Heart Valve Production

Biological heart valves are bioprostheses manufactured in different sizes from porcine 
hearts for human implantation. On the supply side, porcine hearts cannot be  “produced” 
to specific sizes. On the demand side, the exact size of a manufactured valve cannot 
be determined until the biological component of a pig heart has been processed. As a 
 result, some sizes may be overstocked and others understocked. A linear programming  
model was developed to reduce the overstocked sizes and increase the quantity of 
 understocked sizes. The  resulting savings exceeded $1,476,000 in 1981, the year the 
study was made. Details of the study are presented at the end of the chapter.

3.1 LP mOdeL in equAtiOn FORm

The development of the simplex method computations is facilitated by imposing two 
requirements on the LP model:

1. All the constraints are equations with nonnegative right-hand side.
2. All the variables are nonnegative.1

Converting inequalities into equations with nonnegative right-hand side. To convert 
a (…)-inequality to an equation, a nonnegative slack variable is added to the left-hand 
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1Commercial packages (and TORA) accept inequality constraints, nonnegative right-hand side, and unre-
stricted variables. Preconditioning of the constraints and the variables to conform with the simplex method 
requirements is done internally in the software prior to solving the problem.
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side of the constraint. For example, the M1-constraint of the Reddy Mikks model 
(Example 2.1-1) is converted into an equation as

6x1 + 4x2 + s1 = 24, s1 Ú 0

The nonnegative variable s1 is the slack (or unused amount) of resource M1.
Conversion from 1Ú 2 to 1= 2 is achieved by subtracting a nonnegative  surplus 

variable from the left-hand side of the inequality. For example, in the diet model 
(Example 2.2-2), the surplus variable S11Ú02 converts the 1Ú 2 feed mix constraint to 
the equation

x1 + x2 - S1 = 800, S1 Ú 0

The amount of S1 represents the excess tons of the mix over the required minimum 
1=  800 tons2.

The only remaining requirement is for the right-hand side of the resulting equa-
tion to be nonnegative. The requirement can be satisfied simply by multiplying both 
sides of the equation by -1, if necessary.

Dealing with unrestricted variables. The use of an unrestricted variable in an LP model 
is demonstrated in the multiperiod production smoothing model of Example  2.4-4,  
where the unrestricted variable Si represents the number of workers hired or fired in 
period i. In the same example, the unrestricted variable is replaced by two nonnegative 
variables by using the substitution

Si = Si
- - Si

+, Si
- Ú 0, Si

+ Ú 0

In this case, Si
- represents the number of workers hired and Si

+ the number of workers 
fired. As explained in Example 2.4-4, it is impossible (both intuitively and mathemati-
cally) that Si

- and S+
i  assume positive values simultaneously.

3.2 tRAnsitiOn FROm GRAPHicAL tO ALGebRAic sOLutiOn

The development of the algebraic simplex method is based on ideas conveyed by the 
graphical LP solution in Section 2.2. Figure 3.1 compares the two methods. In the graph-
ical method, the solution space is the intersection of the half-spaces representing the 
 constraints, and in the simplex method, the solution space is represented by m simultane-
ous linear equations and n nonnegative variables. We can see that the graphical solution 
space has an infinite number of solution points, but how can we draw a similar conclusion 
from the algebraic representation of the solution space? The answer is that, in all non-
trivial LPs, the number of equations m is always less than the number of  variables n, thus 
yielding an  infinite number of solutions (provided the equations are  consistent).2 For 
example, the equation x + y = 1 has m = 1 and n = 2 and yields an infinite  number of 
solutions because any point on the straight line x + y = 1 is a solution.

2If the number of (independent) equations m equals the number of variables n (and the equations are con-
sistent), the system has exactly one solution. If m is larger than n, then at least m - n equations must be 
redundant.
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In the algebraic solution space (defined by m * n equations, m 6 n), basic 
 solutions correspond to the corner points in the graphical solution space. They are 
 determined by setting n - m variables equal to zero and solving the m equations for 
the remaining m variables, provided the resulting solution is unique. This means that the 
maximum number of corner points is

Cm
n =

n!
m!1n - m2!

As with corner points, the basic feasible solutions completely define the candidates for 
the optimum solution in the algebraic solutions space.

example 3.2-1

Consider the following LP with two variables:

Maximize z = 2x1 + 3x2

subject to

 2x1 + x2 … 4

 x1 + 2x2 … 5

 x1, x2 Ú 0

Figure 3.2 provides the graphical solution space for the problem.

Graphical Method Algebraic Method

Graph all constraints, including nonnegativity
restrictions

Solution space consists of infinity of feasible
points

Identify feasible corner points of the solution
space

Candidates for the optimum solution are given
by a finite number of corner points

Use the objective function to determine the
optimum corner point from among all the
candidates

Represent the solution space by m equations
in n variables and restrict all variables to
nonnegative values, m < n

The system has infinity of feasible solutions

Determine the feasible basic solutions of the
equations

Candidates for the optimum solution are given
by a finite number of basic feasible solutions

Use the objective function to determine the
optimum basic feasible solution from among
all the candidates

FiGure 3.1

Transition from graphical to algebraic solution
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Algebraically, the solution space of the LP is represented by the following m = 2 equations 
and n = 4 variables:

2x1 + x2 + s1 = 4

x1 + 2x2 + s2 = 5

x1, x2, s1, s2 Ú 0

The basic solutions are determined by setting n - m1=  4 - 2 = 22 variables equal to zero and 
solving for the remaining m1=  22 variables. For example, if we set x1 = 0 and x2 = 0, the equa-
tions provide the unique basic solution

s1 = 4, s2 = 5

This solution corresponds to point A in Figure 3.2 (convince yourself that s1 = 4 and s2 = 5 at 
point A). Another point can be determined by setting s1 = 0 and s2 = 0 and then solving the 
resulting two equations

2x1 + x2 = 4

x1 + 2x2 = 5

The associated basic solution is 1x1 = 1, x2 = 22, or point C in Figure 3.2.
You probably are wondering which n - m variables should be set equal to zero to target 

a specific corner point. Without the benefit of the graphical solution space (which is available 

0

1

1 2 3 4 5

2

3

4

A D

C

E

B

F

x2

x1

s2  5 0

s
1  5

 0

Optimum (x1 5 1, x2 5 2)

FiGure 3.2

LP Solution space of Example 3.2-1
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only for at most three variables), we cannot specify the 1n - m2 zero variables associated with 
a given corner point. But that does not prevent enumerating all the corner points of the solu-
tion space. Simply consider all combinations in which n - m variables equal zero and solve the 
resulting equations. Once done, the optimum solution is the feasible basic solution (corner point) 
with the best objective value.

In the present example, the (maximum) number of corner points is C2
4 = 4!

2!2! = 6. Looking 
at Figure 3.2, we can spot the four corner points A, B, C, and D. So, where are the remaining 
two? In fact, points E and F also are corner points. But, they are infeasible, and, hence, are not 
candidates for the optimum.

To complete the transition from the graphical to the algebraic solution, the zero n - m 
variables are known as nonbasic variables. The remaining m variables are called basic variables, 
and their solution (obtained by solving the m equations) is referred to as basic solution. The 
 following table provides all the basic and nonbasic solutions of the current example.

Nonbasic (zero) 
variables Basic variables Basic solution

Associated 
corner point Feasible?

Objective 
value, z

(x1, x2) (s1, s2) (4, 5) A Yes 0
(x1, s1) (x2, s2) (4, -3) F No —
(x1, s2) (x2, s1) (2.5, 1.5) B Yes 7.5
(x2, s1) (x1, s2) (2, 3) D Yes 4
(x2, s2) (x1, s1) (5, –6) E No —
(s1, s2) (x1, x2) (1, 2) C Yes 8  

(optimum)

remarks. We can see from the preceding illustration that, as the size of the problem increases, 
enumerating all the corner points becomes a prohibitive task. For example, for m = 10 and 
n = 20, it is necessary to solve C10

201=  184,7562 sets of 10 * 10 equations, a staggering task, 
 particularly when we realize that a 110 * 202-LP is a very small size (real-life LPs can  include 
thousands of variables and constraints). The simplex method alleviates this computational 
 burden dramatically by investigating only a subset of all possible basic feasible solutions (corner 
points). This is what the simplex algorithm does.

3.3 tHe simPLex metHOd

Rather than enumerating all the basic solutions (corner points) of the LP problem (as 
we did in Section 3.2), the simplex method investigates only a “select few” of these 
solutions. Section 3.3.1 describes the iterative nature of the method, and Section 3.3.2 
provides the computational details of the simplex algorithm.

3.3.1 iterative nature of the simplex method

Figure 3.3 provides the solution space of the LP of Example 3.2-1. For the sake of 
standardizing the algorithm, the simplex method always starts at the origin where all 
the decision variables, xj, j = 1, 2, c, n, are zero. In Figure 3.3, point A is the origin 
1x1 = x2 = 02 and the associated objective value, z, is zero. The logical question now is 
whether an increase in the values of nonbasic x1 and x2 above their current zero values 
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can improve (increase) the value of z. We can answer this question by investigating the 
objective function:

Maximine z = 2x1 + 3x2

An increase in x1 or x2 (or both) above their current zero values will improve the value 
of z. The design of the simplex method does not allow simultaneous increases in vari-
ables. Instead, it targets the variables one at a time. The variable slated for increase is 
the one with the largest rate of improvement in z. In the present example, the rate of 
improvement in the value of z is 2 for x1 and 3 for x2. We thus elect to increase x2 (the 
variable with the largest rate of improvement among all nonbasic variables). Figure 3.3 
shows that the value of x2 must be increased until corner point B is reached (recall 
from Figure 3.1 that stopping short of corner point B is not an option because a can-
didate for the optimum must be a corner point). At point B, the simplex method, as 
will be explained later, will then increase the value of x1 to reach the improved corner 
point C, which is the optimum.

The path of the simplex algorithm always connects corner points. In the present 
example the path to the optimum is A S B S C. Each corner point along the path is 
associated with an iteration. It is important to note that the simplex method always 
moves alongside the edges of the solution space, which means that the method does 
not cut across the solution space. For example, the simplex algorithm cannot go from 
A to C directly.
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2

3

4

A D

C

E

B

F

x2

x1

s2  5 0

s
1  5

 0

Optimum (x1 5 1, x2 5 2)

FiGure 3.3

Iterative process of the simplex method
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Aha! moment: the birth of Optimization, or How dantzig developed  
the simplex method.3 

Nobel Laureate Russian mathematician Leonid Kantorovich (1912–1986) is regarded as the 
founder of the theory of linear programming. But it was the simplex algorithm developed by 
American mathematician Goerge B. Dantzig (1914–2005) that rendered (large) LPs solvable 
in practice. The success of Dantzig’s algorithm ushered innovative developments in previously 
unexplored areas of optimization.

Dantzig spent his early career during WWII as a mathematical advisor to the  Pentagon 
where “[He] was asked to find a way to more rapidly compute time-staged deployment, train-
ing, and logistical supply program.” His development was influenced by the Input- Output 
Economy Model developed by Nobel Laureate Wassily Leontief (1906–1999).  Leontief’s 
 model utilized a matrix that quantified the one-to-one correspondence between the produc-
tion processes and the items produced by these processes for the purpose of determining the 
effect of changes in one economic sector on other sectors. Dantzig extended this fundamental 
idea to include alternative activities, culminating with his Activity Analysis Model that essen-
tially consisted of linear equations and inequalities that defined the feasible solution space. 
Dantzig’s initial model faced two significant hurdles: (1) It was very large, making computabil-
ity (in the absence of the “digital” computer) an insurmountable issue. (2) The model had no 
objective function because the goal of the model was usually stated in “fuzzy” ad hoc ground 
rules.4 In the end, Dantzig devised the optimized (maximized or minimized) objective function, 
a concept that he asserted was largely unknown prior to 1947 because of what he called model 
“incomputability.” Dantzig considered the concept of using an optimized function to be “revo-
lutionary” and credited it with paving the way for the discovery of his simplex method. The new 
algorithm has stood the test of time and opened the door for the development of today’s rich 
field of mathematical optimization.

Dantzig demonstrates the effectiveness of linear programming by citing the (by  today’s 
standards modest-size) example of finding the best assignment of 70 people (with different 
skills and hence different costs) to 70 jobs (see Section 5.4). Even with fastest current-day com-
puters, the time needed to enumerate all 70!17101002 permutations is prohibitively  staggering. 
By comparison, it takes but a moment to solve the resulting (140  *  4900) linear program 
 because the simplex method evaluates only a fraction of the feasible extreme points of the 
solution space.

3.3.2 computational details of the simplex Algorithm

This section provides the computational details of a simplex iteration. The vehicle of 
explanation is a numerical example.

You will shortly discover that the simplex method computations are repetitious, tedious, 
and voluminous. Nevertheless, it is imperative that you experience these hand com-
putations, if only to appreciate the indispensable role of the computer in solving OR 
problems. And even though in practice you may never solve an LP by hand, the present 
 experience is important because it provides you with an understanding of how and why 
the algorithm works. In that context, I recommend that you maintain a mental image of 

4Dantzig states that when the military commanders were asked about their perception of the goal of his 
Activity Analysis Model, the response was “to win the war building better bombers and battleships.”

3Dantzig, G. B. “Linear Programming,” Operations Research, Vol. 15, No. 1, 2002, pp. 42–47.
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the graphical solution space displayed with Example 3.3-1 to gain insight into the close 
association between the algebraic iteration and the graphical corner point. In particular, 
at the end of each iteration, read the resulting solution point directly from the simplex 
tableau and then locate its corresponding corner point on the graphical solution space. In 
this manner, you will have a better understanding of the essence of the simplex method.

example 3.3-1

Consider the Reddy Mikks model (Example 2.1-1) expressed in equation form:

Maximize z = 5x1 + 4x2 + 0s1 + 0s2 + 0s3 + 0s4

subject to

6x1 + 4x2 + s1 = 24 1Raw material M12
x1 + 2x2 + s2 = 6  1Raw material M22

-x1 + x2 + s3 = 1  1Market limit2
x2 + s4 = 2  1Demand limit2

       x1, x2, s1, s2, s3, s4 Ú 0

The variables s1, s2, s3, and s4 are the slacks associated with the respective constraints.
Next, we write the objective equation as

z - 5x1 - 4x2 = 0

In this manner, the starting simplex tableau can be represented as follows:

Basic z x1 x2 s1 s2 s3 s4 Solution

z 1 -5 -4 0 0 0 0  0 z-row

s1 0 6 4 1 0 0 0 24 s1-row
s2 0 1 2 0 1 0 0  6 s2-row
s3 0 -1 1 0 0 1 0  1 s3-row
s4 0 0 1 0 0 0 1  2 s4-row

The layout of the simplex tableau automatically provides the solution at the starting itera-
tion. The solution starts at the origin [1x1, x22 = 10, 02], thus defining (x1, x2) as the nonbasic 
variables and (s1, s2, s3, s4) as the basic variables. The associated objective z and the basic vari-
ables (s1, s2, s3, s4) are listed in the leftmost Basic-column. Their values, z = 0, s1 = 24, s2 = 6, 
s3 = 1, s4 = 2, appearing in the rightmost Solution-column, are given directly by the right-hand 
sides of the model’s equations (a convenient consequence of starting at the origin). The result 
can be seen by setting the nonbasic variables (x1, x2) equal to zero in all the equations, and also 
by noting the special identity-matrix arrangement of the constraint coefficients of the basic vari-
ables (all diagonal elements are 1, and all off-diagonal elements are 0).

Is the starting solution optimal? The objective function z = 5x1 + 4x2 shows that 
the  solution can be improved by increasing the value of nonbasic x1 or x2 above zero. 
As  argued in Section  3.3.1, x1 is to be increased because it has the most positive objective 
 coefficient. Equivalently, in the simplex tableau where the objective function is written as 
z - 5x1 - 4x2 = 0, the selected variable is the nonbasic variable with the most negative coef-
ficient in the objective equation. This rule defines the so-called simplex optimality condition. 
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In the terminology of the simplex algorithm, x1 is known as the entering variable because it 
enters the basic solution.

If x1 is the entering variable, one of the current basic variables must leave— that is, it  becomes 
nonbasic at zero level (recall that the number of nonbasic variable must always be n - m).  
The mechanics for determining the leaving variable calls for computing the ratios of the right-
hand side of the equations (Solution column) to the corresponding (strictly) positive constraint 
coefficients under the entering variable, x1, as the following table shows.

How do the computed ratios determine the leaving variable and the value of the entering 
variable? Figure 3.4 shows that the computed ratios are actually the intercepts of the constraint 
lines with the (entering variable) x1-axis. We can see that the value of x1 must be increased to the 

Basic
Entering  

x1 Solution Ratio (or intercept)

s1 6 24 x1 = 24
6 = 4 d minimum

s2 1  6 x1 = 6
1 = 6

s3 -1  1 x1 = 1
- 1 = -11negative denominator, ignore2

s4 0  2 x1 = 2
0 = ∞  (zero denominator, ignore)

Conclusion: x1 enters (at level 4) and s1 leaves (at level zero)

1

16x1 1 4x2 1 s1 5 24

Maximize z 5 5x1 1 4x2
subject to:

2x1 1 2x2 1 s2 5   6

32x1 1 x2 1 s3 5   1

4x2 1 s4 5   2

x1, x2 $   0

3

2
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6
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s 3 
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 0
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FiGure 3.4

Graphical interpretation of the simplex method ratios in the Reddy Mikks model
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The Gauss-Jordan computations needed to produce the new basic solution include two types.

1. Pivot row

a. Replace the leaving variable in the Basic column with the entering variable.
b. New pivot row = Current pivot row , Pivot element

2. All other rows, including z

New row = 1Current row2 - 1Pivot column coefficient2 * 1New pivot row2

These computations are applied to the preceding tableau in the following manner:

1. Replace s1 in the Basic column with x1:

New x1@row = Current s1@row , 6

= 1
6 10 6 4 1 0 0 0 242

= 10 1 2
3 

1
6 0 0 0 42

2. New z@row = Current z@row - 1-52 * New x1@row

= 11 -5 -4 0 0 0 0 02 - 1-52 * 10 1 2
3 

1
6 0 0 0 42

= 11 0 -2
3 

5
6 0 0 0 202

Enter 
T

Basic z x1 x2 s1 s2 s3 s4 Solution

z 1  -5 -4 0 0 0 0  0

Leave d s1 0  6   4 1 0 0 0 24 Pivot row
s2 0  1   2 0 1 0 0  6
s3 0   -1   1 0 0 1 0  1
s4 0  0   1 0 0 0 1  2

Pivot 
column

smallest nonnegative intercept with the x1-axis (=  4) to reach corner point B. Any increase beyond 
B is infeasible. At point B, the current basic variable s1 associated with constraint 1 assumes a zero 
value and becomes the leaving variable. The rule associated with the ratio computations is referred 
to as the simplex feasibility condition because it guarantees the feasibility of the new solution.

The new solution point B is determined by “swapping” the entering variable x1 and the leav-
ing variable s1 in the simplex tableau to yield

Nonbasic 1zero2 variables at B: 1s1, x22
Basic variables at B: 1x1, s2, s3, s42

The swapping process is based on the Gauss-Jordan row operations. It identifies the entering 
variable column as the pivot column and the leaving variable row as the pivot row with their 
 intersection being the pivot element. The following tableau is a restatement of the starting 
 tableau with its pivot row and column highlighted.



3.3  The simplex Method   109

3. New s2@row = Current s2@row - 112 * New x1@row

= 10 1 2 0 1 0 0 62 - 112 * 10 1 2
3 

1
6 0 0 0 42

= 10 0 4
3 -1

6 1 0 0 22
4. New s3@row = Current s3@row - 1-12 * New x1@row

= 10 -1 1 0 0 1 0 12 - 1-12 * 10 1 2
3 

1
6 0 0 0 42

= 10 0 5
3 

1
6 0 1 0 52

5. New s4@row = Current s4@row - 102 * New x1@row

= 10 0 1 0 0 0 1 22 - 10210 1 2
3 

1
6 0 0 0 42

= 10 0 1 0 0 0 1 22
The new basic solution is (x1, s2, s3, s4), and the new tableau becomes

T

Basic z x1 x2 s1 s2 s3 s4 Solution

z 1 0 -2
3

5
6 0 0 0 20

x1 0 1 2
3

1
6

0 0 0 4

d s2 0 0 4
3 -1

6 1 0 0 2

s3 0 0 5
3

1
6 0 1 0 5

s4 0 0 1 0 0 0 1 2

Observe that the structure of the new tableau is similar to that of the starting tableau, in the 
sense that the constraint coefficients of the basic variable form an identity matrix. As a result, 
when we set the new nonbasic variables x2 and s1 to zero, the Solution-column automatically 
yields the new basic solution 1x1 = 4, s2 = 2, s3 = 5, s4 = 22.5 This “conditioning” of the tab-
leau is the result of the application of the Gauss-Jordan row operations. The corresponding new 
objective value is z = 20, which is consistent with

 New z = Old z + New x1@value * its objective coefficient

 = 0 + 4 * 5 = 20

Alternatively, z = 14 * x 1@value + 0 * s 2@value + 0 * s 3@value + 0 * s 4@value2 = 14 * 5 +  
0 * 2 + 0 * 5 + 0 * 22 = 20.

In the last tableau, the optimality condition shows that x2 (with the most negative z-row 
coefficient) is the entering variable. The feasibility condition produces the following information:

5Throughout my teaching experience, I have noticed that while students can carry out the tedious simplex 
method computations, in the end some cannot tell what the solution is. To assist in overcoming this potential 
difficulty, stress is made on “reading” the solution of the LP from each tableau.

Basic
Entering  

x2 Solution Ratio

x1
2
3 4 x2 = 4 , 2

3 = 6

s2
4
3 2 x2 = 2 , 4

3 = 1.51minimum2
s3

5
3 5 x2 = 5 , 5

3 = 3

s4 1 2 x2 = 2 , 1 = 2
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Thus, s2 leaves the basic solution, and the new value of x2 is 1.5. The corresponding increase in z is 
2
3 x2 = 2

3 * 1.5 = 1, which yields new z = 20 + 1 = 21, as the tableau below confirms.
Replacing s2 in the Basic column with entering x2, the following Gauss-Jordan row opera-

tions are applied:

1. New pivot x2@row = Current s2@row , 4
3

2. New z@row = Current z@row - 1-2
32 * New x2@row

3. New x1@row = Current x1@row - 12
32 * New x2@row

4. New s3@row = Current s3@row - 15
32 * New x2@row

5. New s4@row = Current s4@row - 112 * New x2@row

The operations above produce the following tableau (verify!):

Basic z x1 x2 s1 s2 s3 s4 Solution

z 1 0 0 3
4

1
2 0 0 21

x1 0 1 0 1
4 -1

2 0 0 3

x2 0 0 1 -1
8

3
4 0 0 3

2

s3 0 0 0 3
8 -5

4 1 0 5
2

s4 0 0 0 1
8 -3

4 0 1 1
2

Based on the optimality condition, none of the z-row coefficients are negative. Hence, the last 
tableau is optimal.

The optimum solution can be read from the simplex tableau in the following manner. The 
optimal values of the variables in the Basic column are given in the right-hand-side Solution 
column and can be interpreted as

Decision variable Optimum value Recommendation

x1 3 Produce 3 tons of exterior paint daily
x2

3
2 Produce 1.5 tons of interior paint daily

z 21 Daily profit is $21,000

The solution also gives the status of the resources. A resource is designated as scarce if its 
associated slack variable is zero—that is, the activities (variables) of the model have used the 
resource completely. Otherwise, if the slack is positive, then the resource is abundant. The follow-
ing table classifies the constraints of the model:

Resource Slack value Status

Raw material, M1 s1 = 0 Scarce

Raw material, M2 s2 = 0 Scarce

Market limit s3 = 5
2 Abundant

Demand limit s4 = 1
2 Abundant
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remarks. The simplex tableau offers a wealth of additional information that include the following:

1. Sensitivity analysis, which deals with determining the conditions that will keep the current 
solution unchanged.

2. Post-optimal analysis, which deals with finding a new optimal solution when the data of the 
model are changed.

Section 3.6 deals with sensitivity analysis. Post-optimal analysis is covered in Chapter 4.

tORA moment

The Gauss-Jordan computations are tedious, voluminous, and, above all, boring. In addition, 
they are the least important, because in practice these computations are carried out by the com-
puter. What is important is that you understand how the simplex method works. TORA’s inter-
active user-guided option (with instant feedback) can be of help because it allows you to specify 
the course of the simplex computations (i.e., determination of the entering and leaving vari-
ables) without the need to carry out the burdensome Gauss-Jordan calculations. To use TORA 
with the Reddy Mikks problem, enter the model and then, from the  SOLVE>MODIFY  menu, 
select Solve 1  Algebraic 1  Iterations 1  All@Slack . (The All-Slack selection in-
dicates that the starting basic solution consists of slack variables only. The remaining 
 options will be presented in Sections 3.4, 4.3, and 7.4.2.) Next, click Go To Output Screen .  
You can generate one or all iterations by clicking Next Iteration or All Iterations . If you opt 
to generate the iterations one at a time, you can interactively specify the entering and leaving 
variables by clicking the headings of their respective column and row. If your selections are 
correct, the column turns green and the row turns red. Else, an error message is posted.

3.3.3 summary of the simplex method

So far, we have dealt with the maximization case. In minimization problems, the  optimality 
condition calls for selecting the entering variable as the nonbasic variable with the most 
positive objective coefficient in the z-row, the exact opposite rule of the  maximization 
case. This follows because max z is equivalent to min 1-z2. As for the feasibility condi-
tion for selecting the leaving variable, the rule remains unchanged.

Optimality condition. The entering variable in a maximization (minimization) problem 
is the nonbasic variable with the most negative (positive) coefficient in the z-row. Ties 
are broken arbitrarily. The optimum is reached at the iteration where all the z-row coef-
ficients are nonnegative (nonpositive).

Feasibility condition. For both the maximization and the minimization problems, the 
leaving variable is the basic variable associated with the smallest nonnegative ratio 
with strictly positive denominator. Ties are broken arbitrarily.

Gauss-Jordan row operations.  

1. Pivot row

a. Replace the leaving variable in the Basic column with the entering variable.
b. New pivot row = Current pivot row , Pivot element

2. All other rows, including z
New row = 1Current row2 - 1Its pivot column coefficient2 * 1New pivot row2.
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3.4 ARtiFiciAL stARtinG sOLutiOn

As demonstrated in Example 3.3-1, LPs in which all the constraints are 1… 2 with non-
negative right-hand sides offer a convenient all-slack starting basic feasible solution. 
Models involving 1= 2 and/or 1Ú 2 constraints do not.

The procedure for starting “ill-behaved” LPs with 1= 2 and 1Ú 2 constraints is 
to use artificial variables that play the role of slacks at the first iteration. The  artificial 
variables are then disposed of at a later iteration. Two closely related methods are 
 introduced here: the M-method and the two-phase method.

3.4.1 M-method6 

The M-method starts with the LP in equation form (Section 3.1). If equation i does 
not have a slack (or a variable that can play the role of a slack), an artificial variable, 
Ri, is added to form a starting solution similar to the all-slack basic solution. However, 
because the artificial variables are not part of the original problem, a modeling “trick” 
is needed to force them to zero value by the time the optimum iteration is reached 
 (assuming the problem has a feasible solution). The desired goal is achieved by assign-
ing a penalty defined as:

Artificial variable objective function coefficient = e -M, in maximization problems
M, in minimization problems

M is a sufficiently large positive value (mathematically, M S ∞2.

example 3.4-1

Minimize z = 4x1 + x2

subject to

3x1 + x2 = 3

4x1 + 3x2 Ú 6

x1 + 2x2 … 4

x1, x2 Ú 0

To convert the constraint to equations, use x3 as a surplus in the second constraint and x4 
as a slack in the third constraint. Thus

Minimize z = 4x1 + x2

6The M-method, one of the oldest LP techniques, is never used in commercial codes because of its inherent 
machine roundoff error problem. Instead, the two-phase method (Section 3.4.2), or a variation thereof, is 
the preferred technique. Nevertheless, the use of the penalty M to force a variable to assume a zero value is 
an important concept in OR modeling.
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subject to

3x1 + x2 = 3

4x1 + 3x2 - x3 = 6

x1 + 2x2 + x4 = 4

x1, x2, x3, x4 Ú 0

The third equation has its slack variable, x4, but the first and second equations do not. Thus, 
we add the artificial variables R1 and R2 in the first two equations and penalize them in the 
 objective function with MR1 + MR2 (because we are minimizing). The resulting LP becomes

Minimize z = 4x1 + x2 + MR1 + MR2

subject to

3x1 + x2 + R1 = 3

4x1 + 3x2 - x3 + R2 = 6

x1 + 2x2 + x4 = 4

x1, x2, x3, x4, R1, R2 Ú 0

The starting basic solution is 1R1, R2, x42 = 13, 6, 42.
From a computational standpoint, solving the problem on the computer requires replacing 

M with a (sufficiently large) numeric value. Yet, in all textbook treatments, including the first 
seven editions of this book, M is manipulated algebraically in the simplex tableau. The result is 
an unnecessary layer of computational difficulty that can be avoided by substituting an appropri-
ate numeric value for M (which is what we would do anyway if we use the computer). We break 
away from the long tradition of manipulating M algebraically and use a numerical substitution 
instead. The intent, of course, is to simplify the presentation without losing substance.

What value of M should we use? The answer depends on the data of the original LP. Recall 
that the penalty M must be sufficiently large relative to the original objective coefficients to force 
the artificial variables to be zero (which happens only if a feasible solution exists). At the same 
time, since computers are the main tool for solving LPs, M should not be unnecessarily too large, 
as this may lead to serious roundoff error. In the present example, the objective coefficients of x1 
and x2 are 4 and 1, respectively, and it appears reasonable to set M = 100.7

Using M = 100, the starting simplex tableau is given as follows (for convenience, from now on 
the z-column will be eliminated from the tableau because it does not change in all the iterations):

7Technically, the M-method need not involve substituting out M numerically. Instead, the ith objective row 
coefficient in a simplex tableau reduces to computing the constants ai and bi in the algebraic expression 
aiM + bi. Comparison of two algebraic expressions will then be based on comparing the constants ai and bi 
only. The reason this procedure is not used in practice is the potentially tremendous computational overhead 
associated with computing and comparing the constants ai and bi.

Basic x1 x2 x3 R1 R2 x4 Solution

z -4 -1 0 -100 -100 0 0

R1 3 1 0 1 0 0 3
R2 4 3 -1 0 1 0 6
x4 1 2 0 0 0 1 4
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Before proceeding with the simplex method computations, the z-row must be made 
 consistent with the rest of the tableau. The right-hand side of the z-row in the tableau currently 
shows z = 0. However, given the nonbasic solution x1 = x2 = x3 = 0, the current basic solu-
tion is R1 = 3, R2 = 6, and x4 = 4 yields z = 11 0 0 * 3 2 + 11 0 0 * 6 2 + 14 * 0 2 = 9 0 0 . 
The inconsistency stems from the fact that R1 and R2 have nonzero coefficients (-100, -100) in 
the z-row (compare with the all-slack starting solution in Example 3.3-1, where the z-row coef-
ficients of the slacks are zero).

To eliminate the inconsistency, we need to substitute out R1 and R2 in the z-row using the 
following row operation:

New z@row = Old z@row + 1100 * R1@row + 100 * R2@row2
(Convince yourself that this operation is the same as substituting out R1 = 3 - 3x1 - x2 and 
R2 = 6 - 4x1 - 3x2 + x3 in the z-row.)

The modified tableau thus becomes (verify!):

Basic x1 x2 x3 R1 R2 x4 Solution

z 696 399 -100 0 0 0 900

R1 3 1 0 1 0 0 3

R2 4 3 -1 0 1 0 6

x4 1 2 0 0 0 1 4

The result is that R1 and R2 are now substituted out (have zero coefficients) in the z-row 
with z = 900 as desired.

The last tableau is ready for the application of the simplex optimality and the feasibility 
conditions, exactly as explained in Section 3.3.2. Because the objective function is minimized, 
the variable x1 having the most positive coefficient in the z-row 1=  6962 enters the solution. The 
minimum ratio of the feasibility condition specifies R1 as the leaving variable (verify!).

Once the entering and the leaving variables have been determined, the new tableau can be 
computed by using the familiar Gauss-Jordan operations.

Basic x1 x2 x3 R1 R2 x4 Solution

z 0 167 -100 -232 0 0 204

x1 1 1
3 0 1

3 0 0 1

R2 0 5
3

-1 -4
3 1 0 2

x4 0 5
3 0 -1

3 0 1 3

The last tableau shows that x2 and R2 are the entering and leaving variables, respectively. 
Continuing with the simplex computations, two more iterations are needed to reach the opti-
mum: x1 = 2

5, x2 = 9
5, z = 17

5  (verify with TORA!).
Note that the artificial variables R1 and R2 leave the basic solution (i.e., become equal to 

zero) promptly in the first and second iterations, a result that is consistent with the concept of 
penalizing them in the objective function.
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remarks. The use of the penalty M will not force an artificial variable to zero in the final 
 simplex iteration if the LP does not have a feasible solution (i.e., the constraints cannot be 
 satisfied simultaneously). In this case, the final simplex iteration will include at least one artificial 
variable with a positive value. Section 3.5.4 explains this situation.

3.4.2 two-Phase method

In the M-method, the use of the penalty, M, can result in computer roundoff error. The 
two-phase method eliminates the use of the constant M altogether. As the name sug-
gests, the method solves the LP in two phases: Phase I attempts to find a starting basic 
feasible solution, and, if one is found, Phase II is invoked to solve the original problem.

summary of the two-Phase method

phase I. Put the problem in equation form, and add the necessary artificial vari-
ables to the constraints (exactly as in the M-method) to secure a start-
ing basic solution. Next, find a basic solution of the resulting equations 
that always minimizes the sum of the artificial variables, regardless of 
whether the LP is maximization or minimization. If the minimum value 
of the sum is positive, the LP problem has no feasible solution. Otherwise,  
proceed to Phase II.

phase II. Use the feasible solution from Phase I as a starting basic feasible  
solution for the original problem.

example 3.4-2

We use the same problem in Example 3.4-1.

Phase I

Minimize r = R1 + R2

subject to

3x1 + x2 + R1 = 3

4x1 + 3x2 - x3 + R2 = 6

x1 + 2x2 + x4 = 4

x1, x2, x3, x4, R1, R2 Ú 0

The associated tableau is

Basic x1 x2 x3 R1 R2 x4 Solution

r 0 0 0 -1 -1 0 0

R1 3 1 0 1 0 0 3

R2 4 3 -1 0 1 0 6

x4 1 2 0 0 0 1 4
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As in the M-method, R1 and R2 are substituted out in the r-row by using the following row 
operations:

New r@row = Old r@row + 11 * R1@row + 1 * R2@row2
The new r-row is used to solve Phase I of the problem, which yields the following optimum tab-
leau (verify with TORA’s  Iterations 1  Two@phase Method ):

Basic x1 x2 x3 R1 R2 x4 Solution

r 0 0 0 -1 -1 0 0

x1 1 0 1
5

3
5 -1

5 0 3
5

x2 0 1 -3
5 -4

5
3
5 0 6

5

x4 0 0 1 1 -1 1 1

Because minimum r = 0, Phase I produces the basic feasible solution x1 = 3
5, x2 = 6

5, and 
x4 = 1. At this point, the artificial variables have completed their mission, and we can eliminate 
their columns altogether from the tableau and move on to Phase II.

Phase II

After deleting the artificial columns, we write the original problem as

Minimize z = 4x1 + x2

subject to

x1 + 1
5 x3 = 3

5

x2 - 3
5 x3 = 6

5

x3 + x4 = 1

x1, x2, x3, x4 Ú 0

Essentially, Phase I has transformed the original constraint equations in a manner that provides 
a starting basic feasible solution for the problem, if one exists. The tableau associated with Phase 
II problem is thus given as

Again, because the basic variables x1 and x2 have nonzero coefficients in the z-row, they 
must be substituted out, using the following operations.

New z@row = Old z@row + 14 * x1@row + 1 * x2@row2

Basic x1 x2 x3 x4 Solution

z -4 -1 0 0 0

x1 1 0 1
5 0 3

5

x2 0 1 -3
5 0 6

5

x4 0 0 1 1 1
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Basic x1 x2 x3 x4 Solution

z 0 0 1
5 0 18

5

x1 1 0 1
5 0 3

5

x2 0 1 -3
5 0 6

5

x4 0 0 1 1 1

The initial tableau of Phase II is thus given as

Because we are minimizing, x3 must enter the solution. Application of the simplex method will 
produce the optimum in one iteration (verify with TORA).

remarks. The removal of the artificial variables and their columns at the end of 
Phase I can take place only when they are all nonbasic (as Example 3.4-2 illustrates). If 
one or more artificial variables are basic (at zero level) at the end of Phase I, then their 
removal requires the following additional steps:

Step 1.   Select a zero artificial variable to leave the basic solution and designate its row 
as the pivot row. The entering variable can be any nonbasic nonartificial vari-
able with a nonzero (positive or negative) coefficient in the pivot row.  Perform 
the associated simplex iteration.

Step 2.   Remove the column of the (just-leaving) artificial variable from the tableau. If 
all the zero artificial variables have been removed, go to Phase II. Otherwise, 
go back to Step 1.

The logic behind step 1 is that the feasibility of the remaining basic variables will 
not be affected when a zero artificial variable is made nonbasic regardless of whether 
the pivot element is positive or negative. Problems 3-47 and 3-48 illustrate this situa-
tion. Problem 3-49 provides an additional detail about Phase I calculations.

3.5 sPeciAL cAses in tHe simPLex metHOd

This section considers four special cases that arise in the use of the simplex method.

1. Degeneracy
2. Alternative optima
3. Unbounded solutions
4. Nonexisting (or infeasible) solutions

The remainder of this section presents a theoretical explanation of these situa-
tions. It also provides an interpretation of what these special results mean in a real-life 
problem.
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3.5.1 degeneracy

In the application of the feasibility condition of the simplex method, a tie for the mini-
mum ratio may occur and can be broken arbitrarily. When this happens, at least one basic 
variable will be zero in the next iteration, and the new solution is said to be  degenerate. 
Degeneracy can cause the simplex iterations to cycle indefinitely, thus never terminat-
ing the algorithm. The condition also reveals the possibility of at least one redundant 
constraint.

The following example explains the practical and theoretical impacts of degeneracy.

example 3.5-1 (degenerate Optimal solution)

Maximize z = 3x1 + 9x2

subject to

x1 + 4x2 … 8

x1 + 2x2 … 4

x1, x2 Ú 0

Using the slack variables x3 and x4, the solution tableaus are

Iteration Basic x1 x2 x3 x4 Solution

0 z -3 -9 0 0 0
x2 enters x3 1 4 1 0 8
x3 leaves x4 1 2 0 1 4

1 z -3
4 0 9

4 0 18

x1 enters x2
1
4 1 1

4 0 2

x4 leaves x4
1
2 0 -1

2 1 0

2 z 0 0 3
2

3
2 18

(optimum) x2 0 1 1
2 -1

2 2
x1 1 0 -1 2 0

In iteration 0, x3 and x4 tie for the leaving variable, leading to degeneracy in iteration 1 
because the basic variable x4 assumes a zero value. The optimum is reached in one additional 
iteration.

remarks.

1. What is the practical implication of degeneracy? Look at the graphical solution in 
 Figure  3.5. Three lines pass through the optimum point 1x1 = 0, x2 = 22. Because this 
is a two- dimensional problem, the point is overdetermined, and one of the  constraints 
is  redundant.  Redundancy means that an associated constraint can be removed   
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without changing the solution space. Thus, in Figure 3.5, x1 + 4x2 … 8 is redundant 
but x1 + 2x2 … 4 is not. The  mere knowledge that some resources are superfluous can 
be important during the implementation phase of the solution. The information may 
also lead to discovering  irregularities in the modeling phase of the solution. Unfor-
tunately, there are no efficient computational techniques for identifying redundant  
constraints.

2. From the theoretical standpoint, degeneracy can lead to cycling. In simplex iterations 
1  and 2, the objective value does not improve (z = 18), and it is thus possible for the 
simplex method to enter a repetitive sequence of iterations, never improving the objective 
value and never satisfying the optimality condition (see Problem 3-54). Cycling may not 
be a common occurrence, but there have been reports of it being encountered in practice.8 
Though algorithms have been developed for eliminating cycling, their use can lead to dras-
tic slowdown in computations and hence they should not be implemented unless there is 
evidence that cycling is actually taking place.9

3. Although an LP model may not start with redundant constraints (in the direct sense shown 
in Figure 3.5), computer roundoff error may actually create degeneracy-like conditions 
during the course of solving a real-life LP. In such cases, the iterations will “stall” at a solu-
tion point, thus mimicking cycling. Commercial codes attempt to alleviate the problem by 
periodically perturbing the values of the basic variables (see Section 3.7 for more details 
about how commercial codes are developed).

3.5.2 Alternative Optima

An LP problem may have an infinite number of alternative optima when the objective 
function is parallel to a nonredundant binding constraint (i.e., a constraint that is satis-
fied as an equation at the optimal solution). The next example demonstrates the practical 
significance of such solutions.

8See T. C. Kotiah and D. I. Steinberg, “Letter to the Editor-On the Possibility of Cycling with the Simplex 
Method,” Operations Research, Vol. 26, No. 2, pp. 374–376, 1978.
9See R. Bland, “New Finite Pivoting Rules for the Simplex Method,” Mathematics of Operations Research, 
Vol. 2, No. 2, pp. 103–107, 1977.

x1

x2

Optimal
degenerate

solution

x1 1 4x2 # 8 (redundant)
x1  1 2x2  # 4

z 5 3x1 1 9x2

FiGure 3.5

LP degeneracy in Example 3.5-1
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example 3.5-2 (infinite number of solutions)

Maximize z = 2x1 + 4x2

subject to

x1 + 2x2 … 5

x1 + x2 … 4

x1, x2 Ú 0

Figure 3.6 demonstrates how alternative optima can arise in the LP model when the objec-
tive function is parallel to a binding constraint. Any point on the line segment BC represents an 
alternative optimum with the same objective value z = 10.

The iterations of the model are given by the following tableaus.

Iteration Basic x1 x2 x3 x4 Solution

0 z -2 -4 0 0 0
x2 enters x3 1 2 1 0 5
x3 leaves x4 1 1 0 1 4

1 (optimum) z 0 0 2 0 10
x1 enters x2 1

2
1 1

2
0 5

2

x4 leaves x4 1
2

0 -1
2

1 3
2

2 z 0 0 2 0 10
(alternative optimum) x2 0 1 1 -1 1

x1 1 0 -1 2 3

Iteration 1 gives the optimum solution x1 = 0, x2 = 5
2, and z = 10 (point B in Figure 3.6). 

The existence of alternative can be detected in the optimal tableau by examining the z-equation 

x1

x2

Optimal basic solutions
B

A D

C

z 5 2x
1  1 4x

2

x
1  1

 x
2  #

 4

x
1  1 2x

2 # 5

FiGure 3.6

LP alternative optima in Example 3.5-2
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coefficients of the nonbasic variables. The zero coefficient of nonbasic x1 indicates that x1 can be 
made basic, altering the values of the basic variables without changing the value of z. Iteration 2 
does just that, using x1 and x4 as the entering and leaving variables, respectively. The new solution 
point occurs at C1x1 = 3, x2 = 1, z = 102. (TORA’s Iterations  option allows determining one 
alternative optimum.)

The simplex method deals with corner point optima only—namely points B and C in the 
present example. Mathematically, we can determine all the points 1x1, x22 on the line segment 
BC as a nonnegative weighted average of points B 1x1 = 0, x2 = 5

22 and C1x1 = 3, x2 = 12— 
that is,

xn1 = a102 + 11 - a2132 = 3 - 3a
xn2 = a15

22 + 11 - a2112 = 1 + 3
2 a

f , 0 … a … 1

remarks. In practice, alternative optima are useful because we can choose from many solutions 
without experiencing deterioration in the objective value. For instance, in the present example, 
the solution at B shows that activity 2 only is at a positive level. At C, both activities are at a posi-
tive level. If the example represents a product-mix situation, it may be advantageous to market 
two products instead of one.

3.5.3 unbounded solution

In some LP models, the solution space is unbounded in at least one variable—meaning 
that variables may be increased indefinitely without violating any of the constraints. 
The associated objective value may also be unbounded in this case.

An unbounded solution space may signal that the model is poorly constructed. 
The most likely irregularity in such models is that some key constraints have not been 
accounted for. Another possibility is that estimates of the constraint coefficients may 
not be accurate.

example 3.5-3 (unbounded Objective Value)

Maximize z = 2x1 + x2

subject to

x1 - x2 … 10

2x1 … 40

x1, x2 Ú 0

Starting Iteration

Basic x1 x2 x3 x4 Solution

z -2 -1 0 0  0

x3 1 -1 1 0 10

x4 2 0 0 1 40
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In the starting tableau, both x1 and x2 have negative z-equation coefficients—meaning that 
an increase in their values will increase the objective value. Although x1 should be the enter-
ing variable (it has the most negative z-coefficient), we note that all the constraint coefficients 
under x2 are …  0—meaning that x2 can be increased indefinitely without violating any of the 
constraints (compare with the graphical interpretation of the minimum ratio in Figure 3.4). The 
result is that z can be increased indefinitely. Figure 3.7 shows the unbounded solution space and 
also that x2 and z can be increased indefinitely.

remarks. Had x1 been selected as the entering variable in the starting iteration (per the opti-
mality condition), a later iteration would eventually have produced an entering variable with the 
same properties as x2. See Problem 3-58.

3.5.4 infeasible solution

LP models with inconsistent constraints have no feasible solution. This situation does 
not occur if all the constraints are of the type …  with nonnegative right-hand sides 
because the slacks provide an obvious feasible solution. For other types of constraints, 
penalized artificial variables are used to start the solution. If at least one artificial vari-
able is positive in the optimum iteration, then the LP has no feasible solution. From the 
practical standpoint, an infeasible space points to the possibility that the model is not 
formulated correctly.

example 3.5-4 (infeasible solution space)

Consider the following LP:

Maximize z = 3x1 + 2x2

x1

x2

Unbounded
solution

space

Unbounded
objective

value

z 5
 2x

1  1
 x

2

x 1 
2

 x 2 
#

 10

2x1 # 40

FiGure 3.7

LP unbounded solution in Example 3.5-3
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subject to

2x1 + x2 … 2

3x1 + 4x2 Ú 12

x1, x2 Ú 0

Using the penalty M = 100 for the artificial variable R, the following tableau provide the 
 simplex iterations of the model.

Iteration Basic x1 x2 x4 x3 R Solution

0 z -303 -402 100 0 0 -1200

x2 enters x3 2 1 0 1 0 2

x3 leaves R 3 4 -1 0 1 12

1 z 501 0 100 402 0 -396

(pseudo-optimum) x2 2 1 0 1 0 2

R -5 0 -1 -4 1 4

Optimum iteration 1 shows that the artificial variable R is positive (=4)—meaning that the 
LP is infeasible. Figure 3.8 depicts the infeasible solution space. By allowing the artificial vari-
able to be positive, the simplex method has in essence reversed the direction of the inequality 
from 3x1 + 4x2 Ú 12 to 3x1 + 4x2 … 12  (can you explain how?). The result is what we may call 
a pseudo-optimal solution.

3.6 sensitiVity AnALysis

In LP, the parameters (input data) of the model can change within certain limits with-
out causing changes in the optimum. This is referred to as sensitivity analysis and will 
be the subject matter of this section. Later, Chapter 4 will study post-optimal analysis, 

x1

x2

Psuedo-optimal
solution

0

z 5
 3x

1  1
 2x

2

3x
1 1 4x

2 $ 12

2x
1 1

 x
2 #

 2

FiGure 3.8

Infeasible solution of Example 3.5-4
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which deals with determining the new optimum solution when targeted input data 
are changed.

The presentation explains the basic ideas of sensitivity analysis using the more 
concrete graphical solution. These ideas are then extended to the general LP problem 
using the simplex tableau results.

3.6.1 Graphical sensitivity Analysis

This section demonstrates the general idea of sensitivity analysis. Two cases will be 
considered:

1. Sensitivity of the optimum solution to changes in the availability of the resources 
(right-hand side of the constraints).

2. Sensitivity of the optimum solution to changes in unit profit or unit cost 
 (coefficients of the objective function).

We will use individual examples to explain the two cases.

example 3.6-1 (changes in the Right-Hand side)

JOBCO manufactures two products on two machines. A unit of product 1 requires 2 hrs on 
machine 1 and 1 hr on machine 2. For product 2, one unit requires 1 hr on machine 1 and 3 hrs 
on machine 2. The revenues per unit of products 1 and 2 are $30 and $20, respectively. The total 
daily processing time available for each machine is 8 hrs.

Letting x1 and x2 represent the daily number of units of products 1 and 2, respectively, the 
LP model is given as

Maximize z = 30x1 + 20x2

subject to

2x1 + x2 … 8  1Machine 12
x1 + 3x2 … 8  1Machine 22

x1, x2 Ú 0

Figure 3.9 illustrates the change in the optimum solution when changes are made in the capacity 
of machine 1. If the daily capacity is increased from 8 to 9 hrs, the new optimum will move to 
point G. The rate of change in optimum z resulting from changing machine 1 capacity from 8 to 
9 hrs can be computed as:§ Rate of revenue change 

resulting from increasing 
machine 1 capacity  by 1 hr

1point C to point G2
¥ =

zG - zC

1Capacity change2 =
142 - 128

9 - 8
= $14>hr

The computed rate provides a direct link between the model input (resources) and its output (total 
revenue). It says that a unit increase (decrease) in machine 1 capacity will increase (decrease) 
revenue by $14.
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The name unit worth of a resource is an apt description of the rate of change of the 
objective function per unit change of a resource. Nevertheless, early LP developments have 
coined the abstract name dual (or shadow) price and this name is now standard in all the LP 
literature and software packages. The presentation in this book conforms to this standard. 
Nevertheless, think “unit worth of resource” whenever you come across standard names “dual 
or shadow price.”

Looking at Figure 3.9, we can see that the dual price of $14/hr remains valid for changes 
 (increases or decreases) in machine 1 capacity that move its constraint parallel to itself to any 
point on the line segment BF. We compute machine 1 capacities at points B and F as follows:

Minimum machine 1 capacity [at B = 10, 2.672] = 2 * 0 + 1 * 2.67 = 2.67 hr

Minimum machine 1 capacity [at F = 18, 02] = 2 * 8 + 1 * 0 = 16 hr

The conclusion is that the dual price of $14.00/hr remains valid only in the range

2.67 hr … Machine 1 capacity … 16 hr

Changes outside this range produce a different dual price (worth per unit).

2

0 1

1

3

4

5

6

7

8

9
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Machine 2 : x1 1 3x2 # 8
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1  1
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2  #
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1  1
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2  #
 8

Optimum : x1 5 3.2, x2 5 1.6, z 5 128

Optimum : x1 5 3.8, x2 5 1.4, z 5 142
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x2

FDA

B

E
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FiGure 3.9

Graphical sensitivity of optimal solution to changes in the availability of resources  
(right-hand side of the constraints)
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Using similar computations, you can verify that the dual price for machine 2 capacity is $2/hr, 
and it remains valid for changes in machine 2 capacity within the line segment DE. Now,

Minimum machine 2 capacity [at D = 14, 02] = 1 * 4 + 3 * 0 = 4 hr

Minimum machine 2 capacity [at E = 10, 82] = 1 * 0 + 3 * 8 = 24 hr

Thus, the dual price of $2/hr for machine 2 remains applicable for the range

4 hr … Machine 2 capacity … 24 hr

The computed limits for machine 1 and 2 are referred to as the feasibility ranges. All software 
packages provide information about the dual prices and their feasibility ranges. Section 3.6.4 
shows how AMPL, Solver, and TORA generate this information.

The dual prices allow making economic decisions about the LP problem, as the following 
questions demonstrate:

Question 1. If JOBCO can increase the capacity of both machines, which machine should 
 receive priority?

From the dual prices for machines 1 and 2, each additional hour of machine 1 increases 
revenue by $14, as opposed to only $2 for machine 2. Thus, priority should be given to machine 1.

Question 2. A suggestion is made to increase the capacities of machines 1 and 2 at the addi-
tional cost of $10/hr for each machine. Is this advisable?

For machine 1, the additional net revenue per hour is 14 - 10 = $4, and for machine 2, the 
net is $2 - $10 = - $8. Hence, only machine 1 should be considered for capacity increase.

Question 3. If the capacity of machine 1 is increased from 8 to 13 hrs, how will this increase 
impact the optimum revenue?

The dual price for machine 1 is $14 and is applicable in the range (2.67, 16) hr. The pro-
posed increase to 13 hrs falls within the feasibility range. Hence, the increase in revenue 
is $14113 - 82 = $70, which means that the total revenue will be increased from $128 to 
$1981= $128 + $702.

Question 4. Suppose that the capacity of machine 1 is increased to 20 hrs, how will this increase 
affect the optimum revenue?

The proposed change is outside the feasibility range (2.67, 16) hr. Thus, we can only make an 
immediate conclusion regarding an increase up to 16 hrs. Beyond that, further calculations are 
needed to find the answer (see Chapter 4). Remember that falling outside the feasibility range 
does not mean that the problem has no solution. It only means that available information is not 
sufficient to make a complete decision.

Question 5. How can we determine the new optimum values of the variables associated with a 
change in a resource?

The optimum values of the variables will change. However, the procedure for determining 
these values requires additional computations, as will be shown in Section 3.6.2.

example 3.6-2 (changes in the Objective coefficients)

Figure 3.10 shows the graphical solution space of the JOBCO problem presented in Example 
3.6-1. The optimum occurs at point C1x1 = 3.2, x2 = 1.6, z = 1282. Changes in  revenue units 
(i.e., objective-function coefficients) will change the slope of z. However, as can be seen from 
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the figure, the optimum solution at point C remains unchanged so long as the objective function 
lies between lines BF and DE.

How can we determine ranges for the coefficients of the objective function that will keep the 
optimum solution unchanged at C? First, we write the objective function in the general format:

Maximinze z = c1x1 + c2x2

Imagine now that line z is pivoted at C and that it can rotate clockwise and counterclockwise. 
The optimum solution will remain at point C so long as z = c1x1 + c2 + x2 lies between the two 
lines x1 + 3x2 = 8 and 2x1 + x2 = 8. This means that the ratio c1

c2 can vary between 13 and 21, which 
yields the following optimality range:10

1
3

…
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c2
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2
1

  or  .333 …
c1

c2
… 2
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FiGure 3.10

Graphical sensitivity of optimal solution to changes in the revenue units (coefficients of the objective function)

10The “ratio” condition works correctly in this situation because the slopes for the two lines passing through 
the optimum point C have the same sign. Other situations are more complex.
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This information can provide immediate answers regarding the optimum solution as the follow-
ing questions demonstrate:

Question 1. Suppose that the unit revenues for products 1 and 2 are changed to $35 and $25, 
respectively. Will the current optimum remain the same?

The new objective function is

Maximinze z = 35x1 + 25x2

The solution at C will remain optimal because c1
c2 = 35

25 = 1.4 remains within the optimality 
range (.333, 2). When the ratio falls outside this range, additional calculations are needed 
to find the new optimum (see Chapter 4). Notice that although the values of the variables 
at the optimum point C remain unchanged, the optimum value of z changes to 35 * 13.22 +  
25 * 11.62 = $152.

Question 2. Suppose that the unit revenue of product 2 is fixed at its current value c2 = $20. 
What is the associated optimality range for the unit revenue for product 1, c1, that will keep the 
optimum unchanged?

Substituting c2 = 20 in the condition 13 … c1
c2 … 2, we get

1
3 * 20 … c1 … 2 * 20  or  6.67 … c1 … 40

We can similarly determine the optimality range for c2 by fixing the value of c1 at $30.00. Thus,

1c2 … 30 * 3 and c2 Ú 30
2 2  or  15 … c2 … 90

As in the case of the right-hand side, all software packages provide the optimality ranges for each 
objective function coefficient. Section 3.6.4 shows how AMPL, Solver, and TORA generate these 
results.

remarks. Although the material in this section has dealt only with two variables, the results 
lay the foundation for the development of sensitivity analysis for the general LP problem in 
 Sections 3.6.2 and 3.6.3.

3.6.2 Algebraic sensitivity Analysis—changes in the Right-Hand side

In Section 3.6.1, we used the graphical solution to determine the dual price (unit worth 
of a resource) and its feasibility ranges. This section extends the analysis to the  general 
LP model. A numeric example (the TOYCO model) will be used to facilitate the 
presentation.

example 3.6-3 (tOycO model)

TOYCO uses three operations to assemble three types of toys—trains, trucks, and cars. The 
daily available times for the three operations are 430, 460, and 420 mins, respectively, and the 
revenues per unit of toy train, truck, and car are $3, $2, and $5, respectively. The assembly 
times per train at the three operations are 1, 3, and 1 mins, respectively. The corresponding 
times per train and per car are (2, 0, 4) and (1, 2, 0) mins (a zero time indicates that the opera-
tion is not used).
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Letting x1, x2, and x3 represent the daily number of units assembled of trains, trucks, and 
cars, respectively, the associated LP model is given as:

Maximinze z = 3x1 + 2x2 + 5x3

subject to

x1 + 2x2 + x3 … 430 1Operation 12
3x1 + 2x3 … 460 1Operation 22
x1 + 4x2 … 420 1Operation 32

x1, x2, x3 Ú 0

Using x4, x5, and x6 as the slack variables for the constraints of operations 1, 2, and 3, respec-
tively, the optimum tableau is

Basic x1 x2 x3 x4 x5 x6 Solution

z 4 0 0 1 2 0 1350

x2 -1
4

1 0 1
2 -1

4
0 100

x3
3
2 0 1 0 1

2 0 230

x6 2 0 0 -2 1 1 20

The solution recommends manufacturing 100 trucks and 230 cars but no trains. The associ-
ated revenue is $1350.

Determination of dual prices and feasibility ranges. We will use the TOYCO model to 
show how this information is obtained from the optimal simplex tableau. Recognizing 
that the dual prices and their feasibility ranges are rooted in making changes in the 
right-hand side of the constraints, suppose that D1, D2, and D3 are the (positive or nega-
tive) changes made in the allotted daily manufacturing time of operations 1, 2, and 3, 
respectively. The original TOYCO model can then be changed to

Maximinze z = 3x1 + 2x2 + 5x3

subject to

x1 + 2x2 + x3 … 430 + D1  1Operation 12
3x1 + 2x3 … 460 + D2  1Operation 22
x1 + 4x2 … 420 + D3  1Operation 32

x1, x2, x3 Ú 0

To express the optimum simplex tableau of the modified problem in terms of the 
changes D1, D2, and D3, we first rewrite the starting tableau using the new right-hand 
sides, 430 + D1, 460 + D2, and 420 + D3.
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The two shaded areas are identical. Hence, if we repeat the same simplex itera-
tions (with the same row operations) as in the original model, the columns in the two 
highlighted area will also be identical in the optimal tableau—that is,

Solution

Basic x1 x2 x3 x4 x5 x6 RHS D1 D2 D3

z -3 -2 -5 0 0 0 0 0 0 0

x4 1 2 1 1 0 0 430 1 0 0
x5 3 0 2 0 1 0 460 0 1 0
x6 1 4 0 0 0 1 420 0 0 1

Solution

Basic x1 x2 x3 x4 x5 x6 RHS D1 D2 D3

z 4 0 0 1 2 0 1350 1 2 0

x2 -1
4 1 0 1

2 -1
4 0 100 1

2 -1
4 0

x3
3
2 0 1 0 1

2 0 230 0 1
2 0

x6 2 0 0 -2 1 1 20 -2 1 1

The new optimum tableau provides the following optimal solution:

 z = 1350 + D1 + 2D2

 x2 = 100 + 1
2 D1 - 1

4 D2

 x3 = 230 + 1
2 D2

 x6 = 20 - 2D1 + D2 + D3

We now use this solution to determine the dual prices and the feasibility ranges.
Dual prices: The value of the objective function can be written as

z = 1350 + 1D1 + 2D2 + 0D3

The equation shows that

1. A unit change in operation 1 capacity 1D1 = {1 min2 changes z by $1.
2. A unit change in operation 2 capacity 1D2 = {1 min2 changes z by $2.
3. A unit change in operation 3 capacity 1D3 = {1 min2 changes z by $0.

This means that, by definition, the corresponding dual prices are 1, 2, and 0 ($/min) for 
operations 1, 2, and 3, respectively.

The coefficients of D1, D2, and D3 in the optimal z-row are exactly those of the 
slack variables x4, x5, and x6. This means that the dual prices equal the coefficients of 
the slack variables in the optimal z-row. There is no ambiguity as to which coefficient 
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applies to which resource because each slack variable is uniquely identified with a 
constraint.

Feasibility range: The current solution remains feasible if all the basic variables remain 
nonnegative—that is,

 x2 = 100 + 1
2 D1 - 1

4 D2 Ú 0

 x3 = 230 + 1
2 D2 Ú 0

 x6 = 20 - 2D1 + D2 + D3 Ú 0

Simultaneous changes D1, D2, and D3 that satisfy these inequalities will keep the solu-
tion feasible. The new optimum solution can be found by substituting out the values of 
D1, D2, and D3.

To illustrate the use of these conditions, suppose that the manufacturing  
time available for operations 1, 2, and 3 are 480, 440, and 400 mins, respectively. Then,  
D1 = 480 - 430 = 50, D2 = 440 - 460 = -20, and D3 = 400 - 420 = -20. Substi-
tuting in the feasibility conditions, we get

x2 = 100 + 1
21502 - 1

41-202 = 130 7 0       1feasible2
x3 = 230 + 1

21-202 = 220 7 0           1feasible2
x6 = 20 - 21502 + 1-202 + 1-102 = -110 6 0 1infeasible2

The calculations show that x6 < 0, hence the current solution does not remain feasible. 
Additional calculations will be needed to find the new solution (see Chapter 4).

Alternatively, if the changes in the resources are such that D1 = -30, D2 = -12,  
and D3 = 10, then

x2 = 100 + 1
21-302 - 1

41-122 = 88 7 0    1feasible2
x3 = 230 + 1

21-122 = 224 7 0        1feasible2
x6 = 20 - 21-302 + 1-122 + 1102 = 78 7 0 1feasible2

The new (optimal) feasible solution is x1 = 88, x3 = 224, and x6 = 68 with z = 3102 +  
21882 + 512242 = $1296. Notice that the optimum objective value can also be com-
puted using the dual prices as z = 1350 + 11-302 + 21-122 + 01102 = $1296.

The given conditions can produce the individual feasibility ranges associated 
with changing the resources one at a time (as defined in Section 3.6.1). For example, 
a change in operation 1 time only means that D2 = D3 = 0. The simultaneous condi-
tions thus reduce to

x2 = 100 + 1
2 D1 Ú 0 1 D1 Ú -200

x3 = 230 7 0
x6 = 20 - 2D1 Ú 0 1 D1 … 10

s 1 -200 … D1 … 10

This means that the dual price for operation 1 is valid in the feasibility range 
-200 … D1 … 10.

We can show in a similar manner that the feasibility ranges for operations 2 and 3 
are -20 … D2 … 400 and -20 … D3 … ∞ . respectively (verify!).
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Resource amount (minutes)

Resource Dual price($) Feasibility range Minimum Current Maximum

Operation 1 1 -200 … D1 … 10 230 430 440
Operation 2 2 -20 … D2 … 400 440 440 860
Operation 3 0 -20 … D3 6   ∞ 400 420 ∞

11Available LP packages usually present this information as standard output. Practically none provide the 
case of simultaneous conditions, presumably because its display is cumbersome for large LPs.

We can now summarize the dual prices and their feasibility ranges for the TOYCO 
model as follows:11

It is important to notice that the dual prices will remain applicable for any simul-
taneous changes that keep the solution feasible, even if the changes violate the individ-
ual ranges. For example, the changes D1 = 30, D2 = -12, and D3 = 100 will keep the 
solution feasible even though D1 = 30 violates the feasibility range -200 … D1 … 10, 
as the following computations show:

x2 = 100 + 1
21302 - 1

41-122 = 118 7 0      1feasible2
x3 = 230 + 1

21-122 = 224 7 0          1feasible2
x6 = 20 - 21302 + 1-122 + 11002 = 48 7 0 1feasible2

This means that the dual prices will remain applicable, and we can compute the new 
optimum objective value from the dual prices as z = 1350 + 11302 + 21-122 +  
011002 = $1356.

3.6.3 Algebraic sensitivity Analysis—Objective Function

In Section 3.6.1, we used graphical sensitivity analysis to determine the conditions that 
will maintain the optimality of the solution of a two-variable LP. In this section, we 
extend these ideas to the general LP problem.

Definition of reduced cost. To facilitate the explanation of the objective func-
tion  sensitivity analysis, first we need to define reduced costs. In the TOYCO model 
(Example 3.6-2), the objective z-equation in the optimal tableau can be written as

z = 1350 - 4x1 - x4 - 2x5

The optimal solution does not produce toy trains (x1 = 0). The reason can be seen from 
the z-equation, where a unit increase in x1 (above its current zero value) decreases z by 
$4—namely, z = 1350 - 4 * 112 - 1 * 102 - 2 * 102 = $1346.
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We can think of the coefficient of x1 in the z-equation (=  4) as a unit cost because 
it causes a reduction in the revenue z. But where does this “cost” come from? We know 
that the revenue per unit of x1 is $3 (per the original model). We also know that the 
production of toy train incurs cost because it consumes resources (operations time). 
Thus, from the standpoint of optimization, the “attractiveness” of x1 depends on the 
cost of consumed resources relative to revenue. This relationship defines the so-called 
reduced cost and is formalized in the LP literature as

aReduced cost
per unit

b = aCost of consumed 
resources per unit

b - 1Revenue per unit2

To appreciate the significance of this definition, in the original TOYCO model 
the revenue per unit for toy trucks ( =  $2) is less than that for toy trains ( =  $3). Yet 
the optimal solution recommends producing toy trucks (x2 = 100 units) and no toy 
trains (x1 = 0). The reason is that the cost of the resources used by one toy truck 
(i.e., operations time) is smaller than its unit price. The opposite applies in the case 
of toy trains.

With the given definition of reduced cost, we can see that an unprofitable variable 
(such as x1) can be made profitable in two ways:

1. By increasing the unit revenue.
2. By decreasing the unit cost of consumed resources.

In most situations, the price per unit is dictated by market conditions and may be 
 difficult to increase at will. On the other hand, reducing the consumption of resources 
is a more viable option because the manufacturer may be able to reduce cost by mak-
ing the production process more efficient.

Determination of the optimality ranges. We now turn our attention to determin-
ing the conditions that will keep a solution optimal. The development is based on the 
 definition of reduced cost.

In the TOYCO model, let d1, d2, and d3 represent the change in unit revenues for 
toy trucks, trains, and cars, respectively. The objective function then becomes

Maximize z = 13 + d12x1 + 12 + d22x2 + 15 + d32x3

We first consider the general situation in which all the objective coefficients are 
changed simultaneously.

With the simultaneous changes, the z-row in the starting tableau appears as:

Basic x1 x2 x3 x4 x5 x6 Solution

z -3 - d1 -2 - d2 -5 - d3 0 0 0 0
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Basic x1 x2 x3 x4 x5 x6 Solution

z 4 - 1
4 d2 + 3

2 d3 - d1 0 0 1 + 1
2 d2 2 - 1

4 d2 + 1
2 d3 0 1350 + 100d2 + 23d3

x2 -1
4 1 0 1

2 -1
4 0 100

x3
3
2 0 1 0 1

2 0 230

x6 -1
4 0 0 -2 1 1 20

When we generate the simplex tableaus with the same sequence of entering 
and leaving variables used in the original model (before the changes dj are made), the 
 optimal iteration will appear as follows (convince yourself that this is indeed the case 
by carrying out the simplex row operations):

The new optimal tableau is the same as in the original optimal tableau, except  
for the reduced costs (z-equation coefficients). This means that changes in the 
 objective-function coefficients can affect the optimality of the problem only. (Com-
pare with Section 3.6.2, where changes in the right-hand side affect feasibility  
only.)

You really do not need to carry out the simplex row operation to compute the 
new reduced costs. An examination of the new z-row shows that the coefficients of 
dj are taken directly from the constraint coefficients of the optimum tableau. A con-
venient way for computing the new reduced cost is to add a new top row and a new 
leftmost column to the optimum tableau, as shown by the shaded areas in the following 
illustration.

d1 d2 d3 0 0 0

Basic x1 x2 x3 x4 x5 x6 Solution

1 z 4 0 0 1 2 0 1350

d2 x2 -1
4

1 0 1
2 -1

4
0 100

d3 x3 3
2

0 1 0 1
2

0 230

0 x6 2 0 0 -2 1 1 20

The entries in the top row are the change dj associated with variable xj. For the leftmost 
column, the top element is 1 in the z-row followed by di basic variable xi. Keep in mind 
that di = 0 for slack variable xi.

To compute the new reduced cost for any variable (or the value of z), multiply 
the elements of its column by the corresponding elements in the leftmost column, 
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add them up, and subtract the top-row element from the sum. For example, for x1, 
we have

 Reduced cost for x1 = [4 * 1 + 1-1
42 * d2 + 3

2 * d3 + 2 * 0] - d1

 = 4 - 1
4 d2 + 3

2 d3 - d1

The current solution remains optimal so long as the new reduced costs (z- 
equation coefficients) remain nonnegative (maximization case). We thus have the 
 following  simultaneous optimality conditions corresponding to nonbasic x1, x4, and x5:

 4 - 1
4 d2 + 3

2 d3 - d1 Ú 0

 1 + 1
2 d2 Ú 0

 2 - 1
4 d2 + 1

2 d3 Ú 0

Remember that the reduced cost for a basic variable is always zero, as the modified 
optimal tableau shows.

To illustrate the use of these conditions, suppose that the objective function 
of TOYCO is changed from z = 3x1 + 2x2 + 5x3 to z = 2x1 + x2 + 6x3. Then, 
d1 = 2 - 3 = - $1, d2 = 1 - 2 = - $1, and d3 = 6 - 5 = $1. Substitution in the 
given conditions yields

4 - 1
4 d2 + 3

2 d3 - d1 = 4 - 1
41-12 + 3

2112 - 1-12 = 6.75 7 0 1satisfied2
1 + 1

2 d2 = 1 + 1
21-12 = .5 7 0               1satisfied2

2 - 1
4 d2 + 1

2 d3 = 2 - 1
41-12 + 1

2112 = 2.75 7 0        1satisfied2
The results show that the proposed changes will keep the current solution (x1 = 0, 
x2 = 100, x3 = 230) optimal (with a new value of z = 1350 + 100d2 + 230d3 =  
1350 + 100 * -1 + 230 * 1 = $1480). If any condition is not satisfied, a new solu-
tion must be determined (see Chapter 4).

The preceding discussion has dealt with the maximization case. The only differ-
ence in the minimization case is that the reduced costs (z-equations coefficients) must 
be … 0 to maintain optimality.

The optimality ranges dealing with changing dj one at a time can be developed 
from the simultaneous optimality conditions.12 For example, suppose that the objective 
coefficient of x2 only is changed to 2 + d2—meaning that d1 = d3 = 0. The simultane-
ous optimality conditions thus reduce to

4 - 1
4 d2 Ú 0 1 d2 … 16 

1 + 1
2 d2 Ú 0 1 d2 Ú -2

2 - 1
4 d2 Ú 0 1 d2 … 8

s 1 -2 … d2 … 8

12The individual ranges are standard outputs in all LP software. Simultaneous conditions usually are not part 
of the output, presumably because they are cumbersome for large problems.
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In a similar manner, you can verify that the individual changes 13 + d12 and 15 + d32 
for x1 and x3 yield the optimality ranges d1 … 4 and d3 Ú -8

3, respectively.
The given individual conditions can be translated to total unit revenue ranges. 

For example, for toy trucks (variable x2), the total unit revenue is 2 + d2, and its opti-
mality range -2 … d2 … 8 translates to

$0 … 1Unit revenue of toy truck2 … $10

It assumes that the unit revenues for toy trains and toy cars remain fixed at $3 and $5, 
respectively.

It is important to notice that the changes d1, d2, and d3 may be within their allow-
able individual ranges without satisfying the simultaneous conditions and vice versa. For 
example, consider z = 6x1 + 8x2 + 3x3. Here d1 = 6 - 3 = $3, d2 = 8 - 2 = $6,  
and d3 = 3 - 5 = - $2, which are all within the permissible individual ranges 
(- ∞ 6 d1 … 4, -2 … d2 … 8, and -8

3 … d3 6 ∞). However, the corresponding simul-
taneous conditions yield

4 - 1
4 d2 + 3

2 d3 - d1 = 4 - 1
4162 + 3

21-22 - 3 = -3.5 6 0   1not satisfied2
1 + 1

2 d2 = 1 + 1
2162 = 4 7 0                 1satisfied2

2 - 1
4 d2 + 1

2 d3 = 2 - 1
4162 + 1

21-22 = - .5 6 0        1not satisfied2

remarks. The feasibility ranges presented in Section 3.6.2 and the optimality ranges 
developed in Section 3.6.3 work fine so long as the sensitivity analysis situation calls 
for changing the parameters of the problem one at a time, a rare occurrence in prac-
tice. The fact of the matter is that this limited usefulness is dictated by how far math-
ematics allows us to go before the results become too unwieldy. So, what should one do 
in practice to carry out meaningful sensitivity analyses that entail making simultaneous 
changes anywhere in the model? The good news is that advances in computing and in 
mathematical programming languages (e.g., AMPL) now make it possible to solve huge 
LPs rather quickly. Thus, a viable option is to solve complete LP scenarios completely, 
and then compare the answers. Of course, a great deal of thought must be given to 
constructing viable scenarios that will allow testing model changes in a systematic and 
logical manner.

3.6.4 sensitivity Analysis with tORA, solver, and AmPL

We now have all the tools to decipher the output provided by LP software, particularly 
with regard to sensitivity analysis. We will use the TOYCO example to demonstrate the 
TORA, Solver, and AMPL output.

TORA’s LP output report provides the sensitivity analysis data automatically as 
shown in Figure 3.11 (file toraTOYCO.txt). The output includes the reduced costs and 
the dual prices as well as their allowable optimality and feasibility ranges.

Figure 3.12 provides the Solver TOYCO model (file solverTOYCO.xls) and its 
 sensitivity analysis report. After you click Solve  in the Solver parameters dialogue box, 
you can request the sensitivity analysis report in the new dialogue box Solver results. 
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You can then click Sensitivity report 1 to view the results. The report is similar to that 
of TORA’s, with three exceptions: (1) the reduced cost carries an opposite sign, (2) it 
uses the name shadow price instead of dual price, and (3) the optimality ranges are 
for the changes dj and Di only, rather than for the original objective coefficients and 
 constraint right-hand sides. The differences are minor, and the interpretation of the re-
sults remains the same.

***Sensitivity Analysis***

Variable CurrObjCoeff MinObjCoeff MaxObjCoeff Reduced Cost

x1: 3.00 -infinity 7.00 4.00

x2: 2.00 0.00 10.00 0.00

x3: 5.00 2.33 infinity 0.00

Constraint Curr RHS Min RHS Max RHS Dual Price

1(<): 430.00 230.00 440.00 1.00

2(<): 460.00 440.00 860.00 2.00

3(<): 420.00 400.00 infinity 0.00

FiGure 3.11

TORA sensitivity analysis for the TOYCO model

FiGure 3.12

Excel Solver sensitivity analysis report for the TOYCO model
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In AMPL, the sensitivity analysis report is readily available. File amplTOYCO.txt 
provides the code necessary to determine the sensitivity analysis output. It requires the 
following additional statements (the report is sent to file a.out):

option solver cplex;
option cplex_options ‘sensitivity’;
solve;
#------------------------------sensitivity analysis
display oper.down,oper.current,oper.up,oper.dual>a.out;
display x.down,x.current,x.up,x.rc>a.out;

The CPLEX option statements are needed to obtain the standard sensitivity  analysis 
report. In the TOYCO model, the indexed variables and constraints use the root 
names x and oper, respectively. Using these names, the suggestive suffixes .down, 
.current, and .up in the display statements automatically generate the formatted 
sensitivity analysis report in Figure 3.13. The suffixes .dual and .rc provide the dual 
price and the reduced cost, respectively.

: oper.down oper.current oper.up oper.dual :=
1 230 430 440 1
2 440 460 860 2
3 400 420 1e+20p 0

: x.down x.current x.up x.rc :=
1 -1e+20 3 7 -4
2 0 2 10 0
3 2.33333     5 1e+20 0

FiGure 3.13

AMPL sensitivity analysis  
report for the TOYCO model

3.7 cOmPutAtiOnAL issues in LineAR PROGRAmminG13 

This chapter has presented the details of the simplex algorithm. Subsequent chapters 
present other algorithms: the dual simplex (Chapter 4), the revised simplex (Chapter 7), 
and the interior point (Chapter 22 on the website). Why the variety? The reason is that 
each algorithm has specific features that can be beneficial in the development of robust 
computer codes.

An LP code is deemed robust if it satisfies two fundamental requirements:

1. Speed.
2. Accuracy.

Both requirements present challenges even on the most advanced computers. The 
 reasons stem from the nature of the algorithmic computations and the limitations of the 
computer. To be sure, the simplex tableau format presented in this chapter is not numeri-
cally stable; meaning that computer roundoff error and digit loss present serious com-
putational problems, particularly when the coefficients of the LP model differ widely 
in magnitude. Despite these challenges, the different LP algorithms have in fact been 
 integrated cleverly to produce highly efficient codes for solving extremely large LPs.

13This section has benefited from R. Bixby, “Solving Real-World Linear Programs: A Decade and More of 
Progress,” Operations Research, Vol. 50, No. 1, pp. 3–15, 2002.
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This section explains the transition from basic textbook presentations to current 
state-of-the-art robust LP codes. It addresses the issues that affect speed and accuracy 
and presents remedies for alleviating the problems. It also presents a comprehensive 
framework regarding the roles of the different LP algorithms (simplex, dual simplex, 
revised simples, and interior point) in the development of numerically stable computer 
codes. The presentation is purposely kept math free to concentrate on the key concepts 
underlying successful LP codes.

1. Simplex entering variable (pivot) rule. A new simplex iteration determines the 
entering and leaving variables by using the optimality and feasibility criteria. Once the 
two variables are determined, pivot-row operations are used to generate the next sim-
plex tableau.

Actually, the optimality criterion presented in Section 3.3.2 is but one of several 
used in the development of LP codes. The following table summarizes the three promi-
nent criteria:

Entering variable rule Description

Classical (Section 3.3.2) The entering variable is the one having the most favorable reduced cost 
among all nonbasic variables.

Most improvement The entering variable is the one yielding the largest total improvement in the 
objective value among all nonbasic variables.

Steepest edge14 The entering variable is the one that yields the most favorable normalized 
reduced cost among all nonbasic variables. The algorithm moves along the 
steepest edge leading from the current to a neighboring extreme point.

14See D. Goldfarb and J. Reid, “A Practicable Steepest Edge Simplex Algorithm,” Mathematical Programming, 
Vol. 12, No. 1, pp. 361–371, 1977.

For the classical rule, the objective row of the simplex tableau readily provides the 
reduced costs of all the nonbasic variables with no additional computations. On the other 
hand, the most improvement rule requires considerable additional computing that first 
determines the value at which a nonbasic variable enters the solution and then the result-
ing total improvement in the objective value. The idea of the steepest edge rule, though in 
the “spirit” of the most improvement rule (in the sense that it indirectly takes into account 
the value of the entering variable), requires much less computational overhead.

The trade-off among the three rules is that the classical rule is the least costly  
computationally but, in all likelihood, requires the highest number of iterations to 
reach the optimum. On the other hand, the most improvement rule is the most costly 
computationally but, most likely, entails the smallest number of simplex iterations. The 
steepest edge rule seems to represent a happy medium in terms of the amount of ad-
ditional computations and the number of simplex iterations. Interestingly, test results 
show that the payoff from the additional computations in the most improvement rule 
seems no better than for the steepest edge rule. For this reason, the most improvement 
rule is rarely implemented in LP codes.

Although the steepest edge rule is the most common default for the selection 
of the entering variable, successful LP codes tend to use hybrid pricing. Initially, the 
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simplex iterations use (a variation of) the classical rule. As the number of iterations 
increases, a switch is made to (a variation of) the steepest edge rule. Extensive compu-
tational experience indicates that this strategy pays off in terms of the total computer 
time needed to solve an LP.

2. primal vs. dual simplex algorithm. This chapter has mainly concentrated on the 
details of what is sometimes referred to in the literature as the primal simplex method. 
In the primal algorithm, the starting basic solution is feasible but nonoptimal.  Successive 
iterations remain feasible as they move toward the optimum. A subsequent algorithm, 
called the dual simplex, was developed for LPs that start infeasible but (better than) 
optimal and move toward feasibility, all the while maintaining optimality. The final 
 iteration occurs when feasibility is restored. The details of the dual algorithm are given 
in Chapter 4 (Section 4.4.1).

Initially, the dual algorithm was used primarily in LP post-optimal analysis  
(Section 4.5) and integer linear programming (Chapter 9), but not as a standalone 
 algorithm for solving the LPs. The main reason is that its rule for selecting the leaving 
variable was weak. This all changed, however, when the idea of the primal steepest edge 
rule was adapted to determine the leaving variable in the dual simplex algorithm.15 
Today, the dual simplex with the steepest-edge adaptation is proven in the majority 
of tests to be twice as fast as the primal simplex, and it is currently the dominant all-
purpose simplex algorithm in the major commercial codes.

3. revised simplex vs. tableau simplex. The simplex computations presented ear-
ly in this chapter (and also in Chapter 4 for the dual simplex) generate the next simplex 
tableau from the immediately preceding one. The following reasons explain why the 
tableau simplex is not used in any commercial LP codes:

(a) Most practical LP models are highly sparse (i.e., contain a high percent-
age of zero coefficients in the starting iteration). Available numerical 
methods can reduce the amount of local computations by economiz-
ing (even eliminating) arithmetic operations involving zero coefficients, 
which in turn can substantially speed up computations. This is a serious 
missed opportunity in tableau computations because successive tableaus 
can quickly populate the tableau with nonzero elements.

(b) The machine roundoff error and digit loss, inherent in all computers, can 
propagate quickly as the number of iterations increases, possibly leading 
to serious loss of accuracy, particularly in large LPs.

(c) Simplex row operations carry out more computations than needed to 
generate the next tableau (recall that all that is needed in an iteration is 
the entering and leaving variables). These extra computations represent 
wasted computer time.

The revised simplex algorithm presented in Section 7.2 improves on these draw-
backs. Though the method uses the exact pivoting rules as in the tableau method, the main 
difference is that it carries out the computations using matrix algebra. More details on this 
point are in Section 7.2.3 following the presentation of the revised simplex algorithm.

15See J. Forrest and D. Goldfarb, “Steepest-Edge Simplex Algorithm for Linear Programming,” Mathematical 
Programming, Vol. 57, No. 3, pp. 341–374, 1992.
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4. Barrier (interior point) algorithm vs. simplex algorithm. The interior point 
algorithm (see Section 22.3 on the website) is totally different from the simplex algo-
rithm in that it cuts across the feasible space and gradually moves (in the limit) to the 
optimum. Computationally, the algorithm is polynomial in problem size. The simplex 
algorithm, on the other hand, is exponential in problem size (hypothetical examples 
have been constructed where the simplex algorithm visits every corner point of the 
solution space before reaching the optimum).

The interior point algorithm was initially introduced in 1984 and, surprisingly, was 
patented by AT&T and sold on a specialized computer (apparently for an exuberant 
fee) without releasing its computational details. Eventually, the scientific community 
“got busy” and discovered that the interior point method had roots in earlier nonlinear 
programming algorithms of the 1960s (see, e.g., the SUMT algorithm in Section 21.2.5). 
The result is the so-called barrier method with several algorithmic variations.

For extremely large problems, the barrier method has proven to be consider-
ably faster than the fastest dual simplex algorithm. The disadvantage is that the barrier 
 algorithm does not produce corner-point solutions, a restriction that limits its applica-
tion in post-optimal analysis (Chapter 4) and also in integer programming (Chapter 9).   
Although methods to convert a barrier optimum interior point to a corner-point solu-
tion have been developed, the associated computational overhead is enormous, limiting 
its use in such applications as integer programming, where the frequent need for locat-
ing corner-point solutions is fundamental to the algorithm. Nevertheless, all commercial 
codes include the barrier algorithm as a tool for solving large LPs.

5. Degeneracy. As explained in Section 3.5.1, degenerate basic solutions can 
 result in cycling, which can cause the simplex iterations to stall indefinitely at a degen-
erate corner point without ever reaching termination. In early versions of the simplex 
algorithm, degeneracy and cycling were not incorporated in most codes because of the 
assumption that their occurrence in practice was rare. As instances of more difficult 
and larger problems (particularly in the area of integer programming) were tested, 
computer roundoff error gave rise to degeneracy/cycling-like behavior that caused the 
computations to “stall” at the same objective value. The problem was circumvented 
by interjecting conditional random perturbation and shifting in the values of the basic 
variables.16

6. Input model conditioning (pre-solving). All commercial LP modeling languag-
es and solvers attempt to condition the input data prior to actually solving it. The goal is 
to “simplify” the model in two key ways:17

(a) Reducing the model size (rows and columns) by identifying and removing 
redundant constraints and by possibly fixing and substituting out variables.

(b) Scaling the coefficients of the model that are widely different in magni-
tude to mitigate the adverse effect of digit loss when manipulating real 
numbers of widely different magnitudes.

17See L. Bearley, L., Mitra, and H. Williams, “Analysis of Mathematical Programming Problems Prior to 
Applying the Simplex Algorith,” Mathematical Programming, Vol. 8, pp. 54–83, 1975.

16See P. Harris, “Pivot Selection Methods of the devex LP Code,” Mathematical Programming, Vol. 5,  
pp. 1–28, 1974.
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Figure 3.14 summarizes the stages of solving an LP problem. The input model can 
be fed via a pre-solver to a solver, such as CPLEX or XPRESS. Alternatively, a con-
venient modeling language, such as AMPL, GAMS, LINDO, MOSEL, or MPL, can be 
used to model the LP algebraically and then internally pre-solve and translate its input 
data to fit the format of the solver. The solver then produces the output results in terms 
of the variables and constraints of the original LP model.

7. advances in computers. It is not surprising that in the last quarter of a century, 
computer speed has increased by more than one-thousand fold. Today, a desktop com-
puter has more power and speed than the supercomputers of yesteryears. These hardware 
advances (together with the algorithmic advances cited earlier) have made it possible to 
solve huge LPs in a matter of seconds as opposed to days (yes, days!) in the past.
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Case Study: Optimization of heart Valves production18

tool: LP

Area of application: Bioprostheses (production planning)

description of the situation:

Biological heart valves are bioprostheses manufactured from porcine hearts for human implanta-
tion. Replacement valves needed by the human population come in different sizes. On the supply 
side, porcine hearts cannot be “produced” to specific sizes. Moreover, the exact size of a manu-
factured valve cannot be determined until the biological component of the pig heart has been 
processed. As a result, some needed sizes may be overstocked and others may be understocked.

Input model Pre-solver Solver Output results

FiGure 3.14

Components of an LP numerical algorithm

18Source: S. S. Hilal and W. Erikson, “Matching Supplies to Save Lives: Linear Programming the Production 
of Heart Valves,” Interfaces, Vol. 11, No. 6, pp. 48–55, 1981.
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Raw hearts are provided by several suppliers in six to eight sizes, usually in different 
proportions depending on how the animals are raised. The distribution of sizes in each ship-
ment is expressed in the form of a histogram. Porcine specialists work with suppliers to ensure 
distribution stability as much as possible. In this manner, the manufacturer can have a reason-
ably reliable estimate of the number of units of each size in each shipment. The selection of the 
mix of suppliers and the size of their shipments is thus crucial in reducing mismatches between 
supply and demand.

LP model:

Let

m = Number of valve sizes

n = Number of suppliers

pij = Proportion of raw valves of size i supplied by vendor j, 0 6 pij 6 1, i = 1, 2, c, m, 
 j = 1, 2, c, n,am

i = 1 pij = 1, j = 1, 2, c, n

ci = Purchasing and processing cost of a raw heart of size i, i = 1, 2, c, m

cQj = Average cost from supplier j

= a
m

i = 1
ci pij, j = 1, 2, . c, n

Di = Average monthly demand for valves of size i

Hj = Maximum monthly supply vendor j can provide, j = 1, 2, c, n

Lj = Minimum monthly supply vendor j is willing to provide, j = 1, 2, c, n

The variables of the problem can be defined as

xj = Monthly supply amount (number of raw hearts) by vendor j, j = 1, 2, c, n

The LP model seeks to determine the amount from each supplier that will minimize the 
total cost of purchasing and processing subject to demand and supply restrictions.

Minimize  z = a
n

j = 1
cQj xj

subject to

a
n

j = 1
pijxj Ú Di, i = 1, 2, c, m

Lj … xj … Hj, j = 1, 2, c, n

To be completely correct, the variables xj must be restricted to integer values. However, 
the parameters pij and Di are mere estimates and, hence, rounding the continuous solution to the 
closest integer may not be a bad approximation in this case.

AmPL implementation:

Although the LP is quite simple as an AMPL application, the nature of the input data 
is somewhat cumbersome. A convenient way to supply the data to this model is through 
a spreadsheet. File excelCase2.xls gives all the tables for the model and AMPL file  
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amplCase2.txt shows how the data involving 8 valve sizes and 12 suppliers are read from  
Excel tables.19

Analysis of the results:

The output of the AMPL model for the data in excelCase2.xls is given in Figure 3.15. In the strict 
sense, the solution results cannot be used for scheduling purposes because the demand Di for 
heart valve i is based on expected value calculations. Thus, the solution xj, j = 1, 2, c, n, will 
result in some months showing surplus and others exhibiting shortage.

How useful then is the model? Actually, the results can be used effectively for planning 
purposes. Specifically, the solution suggests grouping the vendors into three categories:

1. Vendors 1, 2, and 3 must be deleted from the list of suppliers because x1 = x2 = x3 = 0.
2. Vendors 5, 6, 8, and 9 are crucial for satisfying demand because the solution requires these 

vendors to supply all the hearts they can produce.
3. The remaining vendors (4, 7, 10, 11, and 12) exhibit “moderate” importance from the stand-

point of satisfying demand because their maximum production capacity is not fully utilized.

19There is one requirement about reading the data in array format from spreadsheet excelCase2.xls as used 
in file amplCase2.txt. The ODBC handler requires column headings in an Excel read table to be strings, 
which means that a pure numeric heading is not acceptable. To get around this restriction, all column head-
ings are converted to strings using the Excel TEXT function. Thus, the heading 1 can be replaced with the 
formula  = TEXT1COLUMN1A12, “0”). Copying this formula into succeeding columns will automatically 
convert the numeric code into the desired strings.

FiGure 3.15

Output of the valve production model

Cost = $ 42210.82 
solution:

 j L[j] x[j] H[j] reduced cost Av. unit price

 1 0 0.0 500 2.39 14.22
 2 0 0.0 500 0.12 15.88
 3 0 0.0 400 5.22 15.12
 4 0 116.4 500 0.00 14.70
 5 0 300.0 300 -0.49 16.68
 6 0 500.0 500 -2.13 14.89
 7 0 250.5 600 0.00 18.12
 8 0 400.0 400 -6.22 16.61
 9 0 300.0 300 -4.20 17.19
10 0 357.4 500 -0.00 14.47
11 0 112.9 400 0.00 15.62
12 0 293.1 500 0.00 16.31

 i D[i] Surplus[i] Dual value
 1 275 0.0 29.28
 2 310 28.9 0.00
 3 400 0.0 19.18
 4 320 88.1 0.00
 5 400 0.0 24.33
 6 350 0.0 8.55
 7 300 0.0 62.41
 8 130 28.2 0.00



Problems   145

Section Assigned Problems Section Assigned Problems

3.1 3-1 to 3-10 3.5.2 3-55 to 3-57
3.2 3-11 to 3-15 3.5.3 3-58 to 3-60
3.3.1 3-16 to 3-20 3.5.4 3-61 to 3-62
3.3.2 3-21 to 3-33 3.6.1 3-63 to 3-67
3.4.1 3-34 to 3-42 3.6.2 3-68 to 3-80
3.4.2 3-43 to 3-50 3.6.3 3-81 to 3-88
3.5.1 3-51 to 3-54 3.6.4 3-89 to 3-98

 *3-1. In the Reddy Mikks model (Example 2.2-1), consider the feasible solution x1 = 2 tons and 
x2 = 2 tons. Determine the value of the associated slacks for raw materials M1 and M2.

 3-2. In the diet model (Example 2.2-2), determine the surplus amount of feed consisting of 
525 lb of corn and 425 lb of soybean meal.

 3-3. Consider the following inequality

22x1 - 4x2 Ú -7

Show that multiplying both sides of the inequality by -1 and then converting the resulting 
inequality into an equation is the same as converting it first to an equation and then multi-
plying both sides by -1.

The given recommendations are further supported by the values of the reduced costs in 
Figure 3.15. Vendor 9 can raise its average unit prices by as much as $4.00 and still remain viable 
in the optimum solution, whereas vendor 3 will continue to be unattractive even if it reduces the 
average unit cost by as much as $5.00. This result is true despite the fact that the average unit 
prices for excluded vendor 9 are among the lowest 1=  $15.122 and that for “star” vendor 9 are 
among the highest 1=  $17.192. The reason for this apparently unintuitive conclusion is that the 
model is primarily demand driven, in the sense that vendors 5, 6, 8, and 9 provide relatively more 
of the sizes needed than the remaining vendors. The opposite is true for vendors 1, 2, and 3. This 
means that a change in levels of demand could result in a different mix of vendors. This is the 
reason that, under reasonably steady projected demand, the manufacturer works closely with 
its “star” vendors, providing them with nutrition and animal care recommendations that ensure 
their distributions of valve sizes will remain reasonably stable.

Valve size 7 appears to be the most critical among all sizes because it has the highest dual 
price 1=  $62.412, which is more than twice the dual prices of other sizes. This means that size 7 
stock should be monitored closely to keep its surplus inventory at the lowest level possible. On 
the other hand, sizes 2, 4, and 8 exhibit surplus, and efforts must be made to reduce their inventory.

comments on the implementation of the model:

The proposed LP model is “rudimentary,” in the sense that its results produce general plan-
ning guidelines rather than definitive production schedules. Yet, the monetary savings from the 
proposed plan, as reported in the original article, are impressive. The elimination of a number 
of vendors from the pool of suppliers and the identification of “star” vendors have resulted in 
reduction in inventory with significant cost savings. The same plan is responsible for reducing 
chances of shortage that were prevalent before the model results were used. Also, by identifying 
the most favored vendors, it was possible for porcine specialists in the production facility to train 
the workers in the slaughterhouses of these vendors to provide well-isolated and well-trimmed 
hearts. This, in turn, has led to streamlining production at the production facility.

PRObLems
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*3-4. Two different products, P1 and P2, can be manufactured by one or both of two different 
machines, M1 and M2. The unit processing time of either product on either machine is the 
same. The daily capacity of machine M1 is 200 units (of either P1 or P2, or a mix of both), 
and the daily capacity of machine M2 is 250 units. The shop supervisor wants to balance the 
production schedule of the two machines such that the total number of units produced on 
one machine is within 5 units of the number produced on the other. The profit per unit of 
P1 is $10 and that of P2 is $15. Set up the problem as an LP in equation form.

3-5. Show how the following objective function can be presented in equation form:

Minimize z =  max 5|x1 - x2 + 3x3|, | -x1 + 3x2 - x3|6
x1, x2, x3 Ú 0

(Hint: 0 a 0 … b is equivalent to a … b  and  a Ú -b.)
3-6. Show that the m equations

a
n

j = 1
aijxj = bi, i = 1, 2, c, m

are equivalent to the following m + 1 inequalities:

a
n

j = 1
aijxj … bi, i = 1, 2, c, m

a
n

j = 1
aa

m

i = 1
aijbxj Ú a

m

i = 1
bi

3-7. McBurger fast-food restaurant sells quarter-pounders and cheeseburgers. A quarter-
pounder uses a quarter of a pound of meat, and a cheeseburger uses only .2 lb. The 
restaurant starts the day with 250 lb of meat but may order more at an additional cost of 
28 cents per pound to cover the delivery cost. Any surplus meat at the end of the day is 
donated to charity. McBurger’s profits are 22 cents for a quarter-pounder and 18 cents 
for a cheeseburger. McBurger does not expect to sell more than 950 sandwiches per day. 
How many of each type sandwich should McBurger plan for the day? Solve the problem 
using TORA, Solver, or AMPL.

3-8. Two products are manufactured in a machining center. The production times per unit of 
products 1 and 2 are 10 and 12 minutes, respectively. The total regular machine time is 
2400 minutes per day. The daily production is between 150 and 200 units of product 1 and 
no more than 45 units of product 2. Overtime may be used to meet the demand at an ad-
ditional cost of $1 per minute. Assuming that the unit profits for products 1 and 2 are $12 
and $15, respectively, formulate the problem as an LP model, and then solve with TORA, 
Solver, or AMPL to determine the optimum production level for each product as well as 
any overtime needed in the center.

*3-9. JoShop manufactures three products whose unit profits are $2, $5, and $3, respectively. 
The company has budgeted 80 hrs of labor time and 65 hrs of machine time for the 
 production of the three products. The labor requirements per unit of products 1, 2, and 3 
are 2, 1, and 2 hrs, respectively. The corresponding machine-time requirements per unit 
are 1, 1, and 2 hrs. JoShop regards the budgeted labor and machine hours as goals that 
may be exceeded, if necessary, but at the additional cost of $15 per labor hour and $10 
per machine hour.

Formulate the problem as an LP, and determine its optimum solution using TORA, 
Solver, or AMPL.



Problems   147

3-10. In an LP in which there are several unrestricted variables, a transformation of the type 
xj = xj

- - xj
+, xj

-, xj
+ Ú 0 will double the corresponding number of nonnegative  variables. 

We can, instead, replace k unrestricted variables with exactly k + 1 nonnegative variables 
by using the substitution xj = xj

= - w, xj
=, w Ú 0. Use TORA, Solver, or AMPL to show 

that the two methods produce the same solution for the following LP:

Maximize z = -2x1 + 3x2 - 2x3

subject to

4x1 - x2 - 5x3 = 10

2x1 + 3x2 + 2x3 = 12

x1 Ú 0, x2, x3 unrestricted

3-11. Consider the following LP:

Maximize z = 2x1 + 3x2

subject to

x1 + 3x2 … 12

3x1 + 2x2 … 12

x1, x2 Ú 0

(a) Express the problem in equation form.

(b) Determine all the basic solutions of the problem, and classify them as feasible and 
infeasible.

*(c) Use direct substitution in the objective function to determine the optimum basic 
feasible solution.

(d) Verify graphically that the solution obtained in (c) is the optimum LP solution—
hence, conclude that the optimum solution can be determined algebraically by 
considering the basic feasible solutions only.

*(e) Show how the infeasible basic solutions are represented on the graphical solution space.
3-12. Determine the optimum solution for each of the following LPs by enumerating all the 

basic solutions.

(a) Maximize z = 2x1 - 4x2 + 5x3 - 6x4

subject to

x1 + 4x2 - 2x3 + 8x4 … 2

-x1 + 2x2 + 3x3 + 4x4 … 1

x1, x2, x3, x4 Ú 0

(b) Minimize z = x1 + 2x2 - 3x3 - 2x4

subject to

x1 + 2x2 - 3x3 + x4 = 4

x1 + 2x2 + x3 + 2x4 = 4

x1, x2, x3, x4 Ú 0
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*3-13. Show algebraically that all the basic solutions of the following LP are infeasible.

Maximize z = x1 + x2

subject to

x1 + 2x2 … 3

2x1 + x2 Ú 8

x1, x2 Ú 0

3-14. Consider the following LP:

Maximize z = 2x1 + 3x2 + 5x3

subject to

-6x1 + 7x2 - 9x3 Ú 4

x1 + x2 + 4x3 = 10

x1, x3 Ú 0

x2 unrestricted

Conversion to the equation form involves using the substitution x2 = x2
- - x2

+. Show that 
a basic solution cannot include both x2

- and x2
+ simultaneously.

3-15. Consider the following LP:

Maximize z = x1 + 3x2

subject to

x1 + x2 … 2

-x1 + x2 … 4

x1 unrestricted

x2 Ú 0

(a) Determine all the basic feasible solutions of the problem.

(b) Use direct substitution in the objective function to determine the best basic  
solution.

(c) Solve the problem graphically, and verify that the solution obtained in (c) is the 
optimum.

3-16. In Figure 3.3, suppose that the objective function is changed to

Maximize z = 4x1 + 7x2

Identify the path of the simplex method and the basic and nonbasic variables that define 
this path.

3-17. Consider the graphical solution of the Reddy Mikks model given in Figure 2.2. Identify 
the path of the simplex method and the basic and nonbasic variables that define this path.
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*3-18. Consider the three-dimensional LP solution space in Figure 3.16, whose feasible extreme 
points are A, B, . . . , and J.
(a) Which of the following pairs of corner points cannot represent successive simplex 

iterations: (A, B), (H, I ), (E, H ), and (A, I )? Explain why.

(b) Suppose that the simplex iterations start at A and that the optimum occurs at H. 
Indicate whether any of the following paths are not legitimate for the simplex algo-
rithm, and state the reason.
(i)  A S B S G S H.
(ii)  A S D S F S C S A S B S G S H.
(iii)  A S C S I S H.

3-19. For the solution space in Figure 3.16, all the constraints are of the type …  and all the 
 variables x1, x2, and x3 are nonnegative. Suppose that s1, s2, s3, and s4 1Ú  02 are the slacks 
associated with constraints represented by the planes CEIJF, BEIHG, DFJHG, and 
IJH, respectively. Identify the basic and nonbasic variables associated with each feasible 
corner point of the solution space.

3-20. For each of the given objective functions and the solution space in Figure 3.16, select the 
nonbasic variable that leads to the next simplex corner point, and determine the associated 
improvement in z.

*(a) Maximize z = x1 - 2x2 + 3x3

(b) Maximize z = 5x1 + 2x2 + 4x3

(c) Maximize z = -2x1 + 7x2 + 2x3

(d) Maximize z = x1 + x2 + x3

3-21. This problem is designed to reinforce your understanding of the simplex feasibility 
condition. In the first tableau in Example 3.3-1, we used the minimum (nonnegative) 
ratio test to determine the leaving variable. The condition guarantees feasibility (all the 
new values of the basic variables remain nonnegative as stipulated by the definition of 
the LP). To demonstrate this point, force s2, instead of s1, to leave the basic solution, 
and carry out the Gauss-Jordan computations. In the resulting simplex tableau, s1 is 
infeasible 1=  -122.

F
J

B

C

A

A: (0, 0, 0)
B: (1, 0, 0)
C: (0, 1, 0)
D: (0, 0, 1)

I

E

H

G
D

x1

x2

x3 FiGure 3.16

Solution space of Problem 3-18
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3-22. Consider the following set of constraints:

x1 + 2x2 + 2x3 + 4x4 … 40

2x1 - x2 + x3 + 2x4 … 8

4x1 - 2x2 + x3 - x4 … 10

x1, x2, x3, x4 Ú 0

Solve the problem for each of the following objective functions.
(a) Maximize z = 2x1 + x2 - 3x3 + 5x4.

(b) Maximize z = 8x1 + 6x2 + 3x3 - 2x4.

(c) Maximize z = 3x1 - x2 + 3x3 + 4x4.

(d) Minimize z = 5x1 - 4x2 + 6x3 - 8x4.
*3-23. Consider the following system of equations:

x1 + 2x2 - 3x3 + 5x4 + x5 = 8

  5x1 - 2x2 + 6x4 + x6 = 16

2x1 + 3x2 - 2x3 + 3x4 + x7 = 6

-x1 + x3 - 2x4 + x8 = 0

x1, x2, c, x8 Ú 0

Let x5, x6, . . . , and x8 be a given initial basic feasible solution. Suppose that x1 becomes 
basic. Which of the given basic variables must become nonbasic at zero level to guarantee 
that all the variables remain nonnegative, and what is the value of x1 in the new solution? 
Repeat this procedure for x2, x3, and x4.

3-24. Consider the following LP:

Maximize z = x1

subject to

5x1 + x2 = 4

6x1 + x3 = 8

3x1 + x4 = 3

x1, x2, x3, x4 Ú 0

(a) Solve the problem by inspection (do not use the Gauss-Jordan row operations), and 
justify the answer in terms of the basic solutions of the simplex method.

(b) Repeat (a) assuming that the objective function calls for minimizing z = x1.
3-25. Solve the following problem by inspection, and justify the method of solution in terms of 

the basic solutions of the simplex method.

Maximize z = 5x1 - 6x2 + 3x3 - 5x4 + 12x5

subject to

x1 + 3x2 + 5x3 + 6x4 + 3x5 … 30

x1, x2, x3, x4, x5 Ú 0

(Hint: A basic solution consists of one variable only.)
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3-26. The following tableau represents a specific simplex iteration. All variables are nonnegative. 
The tableau is not optimal for either maximization or minimization. Thus, when a nonbasic 
variable enters the solution, it can either increase or decrease z or leave it unchanged, 
depending on the parameters of the entering nonbasic variable.

Basic x1 x2 x3 x4 x5 x6 x7 x8 Solution

z 0 -5 0 4 -1 -10 0 0 620

x8 0 3 0 -2 -3 -1 5 1 12

x3 0 1 1 3 1 0 3 0 6

x1 1 -1 0 0 6 -4 0 0 0

(a) Categorize the variables as basic and nonbasic, and provide the current values of all 
the variables.

*(b) Assuming that the problem is of the maximization type, identify the nonbasic 
 variables that have the potential to improve the value of z. If each such variable 
enters the basic solution, determine the associated leaving variable, if any, and the 
associated change in z. Do not use the Gauss-Jordan row operations.

(c) Repeat part (b) assuming that the problem is of the minimization type.

(d) Which nonbasic variable(s) will not cause a change in the value of z when selected 
to enter the solution?

3-27. Consider the two-dimensional solution space in Figure 3.17.
(a) Suppose that the objective function is given as

Maximize z = 6x1 + 3x2

If the simplex iterations start at point A, identify the path to the optimum point D.

(b) Determine the entering variable, the corresponding ratios of the feasibility condi-
tion, and the change in the value of z, assuming that the starting iteration occurs at 
point A and that the objective function is given as

Maximize z = x1 + 4x2

4

3

2

1

21

0 121 2 3

A B

G

F E
D

C

4 5
x1

x2 FiGure 3.17

Solution Space for Problem 3-27
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(c) Repeat (b), assuming that the objective function is

Maximize z = 8x1 + 2x2

3-28. Consider the following LP:

Maximize z = 16x1 + 15x2

subject to

40x1 + 31x2 … 124

-x1 + x2 … 1

x1 … 3

x1, x2 Ú 0

(a) Solve the problem by the simplex method, where the entering variable is the 
 nonbasic variable with the most negative z-row coefficient.

(b) Resolve the problem by the simplex algorithm, always selecting the entering variable 
as the nonbasic variable with the least negative z-row coefficient.

(c) Compare the number of iterations in (a) and (b). Does the selection of the entering 
variable as the nonbasic variable with the most negative z-row coefficient lead to a 
smaller number of iterations? What conclusion can be made regarding the  optimality 
condition?

(d) Suppose that the sense of optimization is changed to minimization by multiplying z 
by -1. How does this change affect the simplex iterations?

*3-29. In Example 3.3-1, show how the second-best optimal value of z can be determined from 
the optimal tableau.

3-30. Can you extend the procedure in Problem 3-9 to determine the third-best optimal 
value of z?

3-31. The Gutchi Company manufactures purses, shaving bags, and backpacks. The construction 
includes leather and synthetics, leather being the scarce raw material. The production pro-
cess requires two types of skilled labor: sewing and finishing. The following table gives the 
availability of the resources, their usage by the three products, and the profits per unit.

Resource requirements per unit

Resource Purse Bag Backpack Daily availability

Leather (ft2) 2 1 3 42 ft2

Sewing (hr) 2 1 2 40 hr
Finishing (hr) 1 .5 1 45 hr

Selling price ($) 24 22 45

(a) Formulate the problem as a linear program, and find the optimum solution (using 
TORA, Excel Solver, or AMPL).

(b) From the optimum solution, determine the status of each resource.
3-32. TORA experiment. Consider the following LP:

Maximize z = x1 + x2 + 3x3 + 2x4
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subject to

x1 + 2x2 - 3x3 + 5x4 … 4

5x1 - 2x2 + 6x4 … 8

2x1 + 3x2 - 2x3 + 3x4 … 3

-x1 + x3 + 2x4 … 0

x1, x2, x3, x4 Ú 0

(a) Use TORA’s iterations option to determine the optimum tableau.

(b) Select any nonbasic variable to “enter” the basic solution, and click  Next Iteration  
to produce the associated iteration. How does the new objective value compare with 
the optimum in (a)? The idea is to show that the tableau in (a) is optimum because 
none of the nonbasic variables can improve the objective value.

3-33. TORA experiment. In Problem 3-32, use TORA to find the next-best optimal solution.
3-34. Use hand computations to complete the simplex iteration of Example 3.4-1 and obtain 

the optimum solution.
3-35. TORA experiment. Generate the simplex iterations of Example 3.4-1 using TORA’s 

Iterations 1  M@method  module (file toraEx3.4-1.txt). Compare the effect of using 
M = 1, M = 10,  and  M = 1000 on the solution. What conclusion can be drawn from 
this experiment?

3-36. In Example 3.4-1, identify the starting tableau for each of the following (independent) 
cases, and develop the associated z-row after substituting out all the artificial variables:

*(a) The third constraint is x1 + 2x2 Ú 4.

*(b) The second constraint is 4x1 + 3x2 … 6.

(c) The second constraint is 4x1 + 3x2 = 8.

(d) The objective function is to maximize z = 5x1 + 2x2.
3-37. Consider the following set of constraints:

-2x1 + 3x2 = 3  112
4x1 + 5x2 Ú 10 122
x1 + 2x2 … 5  132

6x1 + 7x2 … 3  142
4x1 + 8x2 Ú 5  152

x1, x2 Ú 0

For each of the following problems, develop the z-row after substituting out the artificial 
variables:
(a) Maximize z = 5x1 + 6x2 subject to (1), (3), and (4).

(b) Maximize z = 2x1 - 7x2 subject to (1), (2), (4), and (5).

(c) Minimize z = 3x1 + 6x2 subject to (3), (4), and (5).

(d) Minimize z = 4x1 + 6x2 subject to (1), (2), and (5).

(e) Minimize z = 3x1 + 2x2 subject to (1) and (5).



154   Chapter 3    The Simplex Method and Sensitivity Analysis 

3-38. Consider the following set of constraints:

x1 + x2 + x3 = 7

2x1 - 5x2 + x3 Ú 10

x1, x2, x3 Ú 0

Solve the problem for each of the following objective functions:

(a) Maximize z = 2x1 + 3x2 - 5x3.

(b) Minimize z = 2x1 + 3x2 - 5x3.

(c) Maximize z = x1 + 2x2 + x3.

(d) Minimize z = 4x1 - 8x2 + 3x3.
*3-39. Consider the problem

Maximize z = 2x1 + 4x2 + 4x3 - 3x4

subject to

x1 + x2 + x3 = 4

x1 + 4x2 + x4 = 8

x1, x2, x3, x4 Ú 0

Solve the problem with x3 and x4 as the starting basic variables and without using any 
artificial variables. (Hint: x3 and x4 play the role of slack variables. The main difference is 
that they have nonzero objective coefficients.)

*3-40. Solve the following problem using x3 and x4 as starting basic feasible variables. As in 
Problem 3-39, do not use any artificial variables.

Minimize z = 3x1 + 2x2 + 3x3

subject to

x1 + 4x2 + x3 Ú 14

2x1 + x2 + x4 Ú 20

x1, x2, x3, x4 Ú 0

*3-41. Consider the problem

Maximize z = x1 + 5x2 + 3x3

subject to

x1 + 2x2 + x3 = 6

2x1 - x2 = 8

x1, x2, x3 Ú 0

The variable x3 plays the role of a slack. Thus, no artificial variable is needed in the first 
constraint. In the second constraint, an artificial variable, R, is needed. Solve the problem 
using x3 and R as the starting variables.

3-42. Show that the M-method will conclude that the following problem has no feasible solution.

Maximize z = 2x1 + 5x2
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subject to

3x1 + 2x2 Ú 6

2x1 + x2 … 2

x1, x2 Ú 0

*3-43. In Phase I, if the LP is of the maximization type, explain why we do not maximize the 
sum of the artificial variables in Phase I.

3-44. For each case in Problem 3-37, write the corresponding Phase I objective function.
3-45. Solve Problem 3-38, by the two-phase method.
3-46. Write Phase I for the following problem, and then solve (with TORA for convenience) to 

show that the problem has no feasible solution.

Minimize z = 2x1 + 5x2

subject to

3x1 + 2x2 Ú 12

2x1 + x2 … 4

x1, x2 Ú 0

3-47. Consider the following problem:

Maximize z = 2x1 + 2x2 + 4x3

subject to

2x1 + x2 + x3 … 2

3x1 + 4x2 + 2x3 Ú 8

x1, x2, x3 Ú 0

(a) Show that Phase I will terminate with an artificial basic variable at zero level (you 
may use TORA for convenience).

(b) Remove the zero artificial variable prior to the start of Phase II, then carry out 
Phase II iterations.

3-48. Consider the following problem:

Maximize z = 3x1 + 2x2 + 3x3

subject to

2x1 + x2 + x3 = 4

x1 + 3x2 + x3 = 12

3x1 + 4x2 + 2x3 = 16

x1, x2, x3 Ú 0

(a) Show that Phase I terminates with two zero artificial variables in the basic solution 
(use TORA for convenience).

(b) Show that when the procedure of Problem 3-47(b) is applied at the end of Phase I, 
only one of the two zero artificial variables can be made nonbasic.
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(c) Show that the original constraint associated with the zero artificial variable that can-
not be made nonbasic in (b) must be redundant—hence, its row and its column can 
be removed at the start of Phase II.

*3-49. Consider the following LP:

Maximize z = 3x1 + 2x2 + 3x3

subject to

2x1 + x2 + x3 … 2

3x1 + 4x2 + 2x3 Ú 8

x1, x2, x3 Ú 0

The optimal simplex tableau at the end of Phase I is

Basic x1 x2 x3 x4 x5 R Solution

r -5 0 -2 -1 -4 0 0

x2 2 1 1 0 1 0 2
R -5 0 -2 -1 -4 1 0

Explain why the nonbasic variables x1, x3, x4, and x5 can never assume positive 
values at the end of Phase II. Hence, conclude that their columns can be dropped before 
we start Phase II. In essence, the removal of these variables reduces the constraint equa-
tions of the problem to x2 = 2—meaning that it is not necessary to carry out Phase II in 
this problem.

3-50. Consider the LP model

Minimize z = 2x1 - 4x2 + 3x3

subject to

5x1 - 6x2 + 2x3 Ú 5

-x1 + 3x2 + 5x3 Ú 8

2x1 + 5x2 - 4x3 … 4

x1, x2, x3 Ú 0

Show how the inequalities can be modified to a set of equations that requires the use of 
single artificial variable only (instead of two).

*3-51. Consider the graphical solution space in Figure 3.18. Suppose that the simplex iterations 
start at A and that the optimum solution occurs at D. Further, assume that the objective 
function is defined such that at A, x1 enters the solution first.

(a) Identify (on the graph) the corner points that define the simplex method path to the 
optimum point.

(b) Determine the maximum possible number of simplex iterations needed to reach the 
optimum solution, assuming no cycling.

3-52. Consider the following LP:

Maximize z = 3x1 + 2x2
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subject to

4x1 - x2 … 4

4x1 + 3x2 … 6

4x1 + x2 … 4

x1, x2 Ú 0

(a) Show that the associated simplex iterations are temporarily degenerate (you may 
use TORA for convenience).

(b) Verify the result by solving the problem graphically (TORA’s Graphic module can 
be used here).

3-53. TORA experiment. Consider the LP in Problem 3-52.
(a) Use TORA to generate the simplex iterations. How many iterations are needed to 

reach the optimum?

(b) Interchange constraints (1) and (3) and re-solve the problem with TORA. How 
many iterations are needed to solve the problem?

(c) Explain why the numbers of iterations in (a) and (b) are different.
3-54. TORA Experiment. Consider the following LP (authored by E.M. Beale to demonstrate 

cycling):

Maximize z = 3
4 x1 - 20x2 + 1

2 x3 - 6x4

subject to

1
4 x1 - 8x2 - x3 + 9x4 … 0
1
2 x1 - 12x2 - 1

2 x3 + 3x4 … 0

       x3 … 1

x1, x2, x3, x4 Ú 0

D

C

x1
BA

x2

FiGure 3.18

Solution space of Problem 3-51
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From TORA’s SOLVE>MODIFY  menu, select  Solve 1  Algebraic 1  Iterations 1  
All@slack  . Next, “thumb” through the successive simplex iterations using the command 
Next iteration  (do not use All iterations , because the simplex method will then cycle 
 indefinitely). You will notice that the starting all-slack basic feasible solution at iteration 
0 will reappear identically in iteration 6. This example illustrates the occurrence of cycling 
in the simplex iterations and the possibility that the algorithm may never converge to the 
optimum solution. (It is interesting that cycling will not occur in this example if all the 
coefficients in this LP are converted to integer—try it!)

*3-55. For the following LP, identify three alternative optimal basic solutions, and then write a 
general expression for all the nonbasic alternative optima comprising these three basic 
solutions.

Maximize z = x1 + 2x2 + 3x3

subject to

x1 + 2x2 + 3x3 … 10

x1 + x2 … 5

x1 … 1

x1, x2, x3 Ú 0

Note:  Although the problem has more than three alternative basic solution optima, 
you are only required to identify three of them. You may use TORA for  
convenience.

3-56. Solve the following LP:

Maximize z = 2x1 - x2 + 3x3

subject to

x1 - x2 + 5x3 … 5

2x1 - x2 + 3x3 … 20

x1, x2, x3 Ú 0

From the optimal tableau, show that all the alternative optima are not corner points  
(i.e., nonbasic). Give a two-dimensional graphical demonstration of the type of solution space 
and objective function that will produce this result.  (You may use TORA for convenience.)

3-57. For the following LP, show that the optimal solution is degenerate and that none of the 
alternative solutions are corner points. You may use TORA for convenience.

Maximize z = 3x1 + x2

subject to

x1 + 2x2 … 5

x1 + x2 - x3 … 2

7x1 + 3x2 - 5x3 … 20

x1, x2, x3 Ú 0

3-58. TORA Experiment. Solve Example 3.5-3 using TORA’s Iterations  option and show 
that even though the solution starts with x1 as the entering variable (per the optimality 
condition), the simplex algorithm will point eventually to an unbounded solution.
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*3-59. Consider the LP:

Maximize z = 20x1 + 5x2 + x3

subject to

3x1 + 5x2 - 5x3 … 50

x1 … 10

x1 +  3x2 - 4x3 … 20

x1, x2, x3 Ú 0

(a) By inspecting the constraints, determine the direction (x1, x2, or x3) in which the 
solution space is unbounded.

(b) Without further computations, what can you conclude regarding the optimum 
 objective value?

3-60. In some ill-constructed LP models, the solution space may be unbounded even though 
the problem may have a bounded objective value. Such an occurrence points to possible 
irregularities in the construction of the model. In large problems, it may be difficult to 
detect “unboundedness” by inspection. Devise an analytic procedure for determining 
whether or not a solution space is unbounded.

*3-61. Toolco produces three types of tools, T1, T2, and T3. The tools use two raw materials, M1 
and M2, according to the data in the following table:

Number of units of raw materials per tool

Raw material T1 T2 T3

M1 3 5 6

M2 5 3 4

The available daily quantities of raw materials M1 and M2 are 2000 units and 2400 units, 
respectively. Marketing research shows that the daily demand for all three tools must be 
at least 1000 units. Can the manufacturing department satisfy the demand? If not, what is 
the most Toolco can produce?

3-62. Consider the LP model

Maximize z = 3x1 + 2x1 + 3x3

subject to

2x1 + x2 + x3 … 4

3x1 + 4x2 + 2x3 Ú 16

x1, x2, x3 Ú 0

Use hand computations to show that the optimal solution can include an artificial basic 
variable at zero level. Does the problem have a feasible optimal solution?

3-63. A company produces two products, A and B. The unit revenues are $2 and $3, respec-
tively. Two raw materials, M1 and M2, used in the manufacture of the two products have 
daily availabilities of 8 and 18 units, respectively. One unit of A uses 2 units of M1 and  
2 units of M2, and 1 unit of B uses 3 units of M1 and 6 units of M2.



160   Chapter 3    The Simplex Method and Sensitivity Analysis 

(a) Determine the dual prices of M1 and M2 and their feasibility ranges.

(b) Suppose that 2 additional units of M1 can be acquired at the cost of 25 cents per unit. 
Would you recommend the additional purchase?

(c) What is the most the company should pay per unit of M2?

(d) If M2 availability is increased by 3 units, determine the associated optimum revenue.
*3-64. Wild West produces two types of cowboy hats. A Type 1 hat requires twice as much labor 

time as a Type 2. If all the available labor time is dedicated to Type 2 alone, the company 
can produce a total of 400 Type 2 hats a day. The respective market limits for the two types 
are 150 and 200 hats per day. The revenue is $8 per Type 1 hat and $5 per Type 2 hat.
(a) Use the graphical solution to determine the number of hats of each type that 

 maximizes revenue.

(b) Determine the dual price of the production capacity (in terms of the Type 2 hat) and 
the range for which it is applicable.

(c) If the daily demand limit on the Type 1 hat is decreased to 120, use the dual price to 
determine the corresponding effect on the optimal revenue.

(d) What is the dual price of the market share of the Type 2 hat? By how much can the 
market share be increased while yielding the computed worth per unit?

3-65. Consider Problem 3-63.
(a) Determine the optimality condition for 

cA

cB
 that will keep the optimum unchanged.

(b) Determine the optimality ranges for cA and cB, assuming that the other coefficient is 
kept constant at its present value.

(c) If the unit revenues cA and cB are changed simultaneously to $5 and $4, respectively, 
determine the new optimum solution.

(d) If the changes in (c) are made one at a time, what can be said about the optimum 
solution?

3-66. In the Reddy Mikks model of Example 2.2-1:
(a) Determine the range for the ratio of the unit revenue of exterior paint to the unit 

revenue of interior paint.

(b) If the revenue per ton of exterior paint remains constant at $6000 per ton, determine the 
maximum unit revenue of interior paint that will keep the present optimum  solution  
unchanged.

(c) If for marketing reasons the unit revenue of interior paint must be reduced to $2500, 
will the current optimum production mix change?

*3-67. In Problem 3-64:
(a) Determine the optimality range for the unit revenue ratio of the two types of hats 

that will keep the current optimum unchanged.

(b) Using the information in (a), will the optimal solution change if the revenue per unit 
is the same for both types?

3-68. In the TOYCO model, suppose that the changes D1, D2, and D3 are made simultaneously in 
the three operations.20

(a) If the availabilities of operations 1, 2, and 3 are changed to 440, 490, and 400 minutes, 
respectively, use the simultaneous conditions to show that the current basic  solution 

20In Problems 3-68 to 3-80, you may find it convenient to generate the optimal simplex tableau with TORA.
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remains feasible, and determine the change in the optimal revenue by using the 
optimal dual prices.

(b) If the availabilities of the three operations are changed to 460, 440, and 370 minutes, 
respectively, use the simultaneous conditions to show that the current basic solution 
is infeasible.

*3-69. Consider the TOYCO model.
(a) Suppose that any additional time for operation 1 beyond its current capacity of 

430 mins per day must be done on an overtime basis at $50 an hour. The hourly cost 
includes both labor and the operation of the machine. Is it economically advantageous 
to use overtime with operation 1?

(b) Suppose that the operator of operation 2 has agreed to work 2 hrs of overtime daily 
at $45 an hour. Additionally, the cost of the operation itself is $10 an hour. What is 
the net effect of this activity on the daily revenue?

(c) Is overtime needed for operation 3?

(d) Suppose that the daily availability of operation 1 is increased to 440 mins. Any 
 overtime used beyond the current maximum capacity will cost $40 an hour. 
 Determine the new optimum solution, including the associated net revenue.

(e) Suppose that the availability of operation 2 is decreased by 15 mins a day and that 
the hourly cost of the operation during regular time is $30. Is it advantageous to 
decrease the availability of operation 2?

3-70. A company produces three products, A, B, and C. The sales volume for A is at least 50% 
of the total sales of all three products. However, the company cannot sell more than 80 
units of A per day. The three products use one raw material, of which the maximum daily 
availability is 240 lb. The usage rates of the raw material are 2 lb per unit of A,  
4 lb per unit of B, and 3 lb per unit of C. The unit prices for A, B, and C are $20, $50, and  
$35, respectively.
(a) Determine the optimal product mix for the company.

(b) Determine the dual price of the raw material resource and its allowable range. If 
available raw material is increased by 120 lb, determine the optimal solution and the 
change in total revenue using the dual price.

(c) Use the dual price to determine the effect of changing the maximum demand for 
product A by {10 units.

3-71. A company that operates 10 hrs a day manufactures three products on three processes. 
The following table summarizes the data of the problem:

Minutes per unit

Product Process 1 Process 2 Process 3 Unit price

1 10 6 8 $4.50
2 5 8 10 $5.00
3 6 9 12 $4.00

(a) Determine the optimal product mix.

(b) Use the dual prices to prioritize the three processes for possible expansion.

(c) If additional production hours can be allocated, what would be a fair cost per 
 additional hour for each process?
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3-72. The Continuing Education Division at the Ozark Community College offers a total of 
30 courses each semester. The courses offered are usually of two types: practical, such 
as woodworking, word processing, and car maintenance, and humanistic, such as history, 
 music, and fine arts. To satisfy the demands of the community, at least 10 courses of each 
type must be offered each semester. The division estimates that the revenues of offering 
practical and humanistic courses are approximately $1500 and $1000 per course, respectively.
(a) Devise an optimal course offering for the college.

(b) Show that the dual price of an additional course is $1500, which is the same as 
the revenue per practical course. What does this result mean in terms of offering 
 additional courses?

(c) How many more courses can be offered while guaranteeing that each will contribute 
$1500 to the total revenue?

(d) Determine the change in revenue resulting from increasing the minimum requirement  
of humanistics by one course.

*3-73. Show & Sell can advertise its products on local radio and television (TV), or in newspapers. 
The advertising budget is limited to $10,000 a month. Each minute of advertising on 
 radio costs $15 and each minute on TV costs $300. A newspaper ad costs $50. Show & 
Sell likes to advertise on radio at least twice as much as on TV. In the meantime, the use 
of at least 5 newspaper ads and no more than 400 mins of radio advertising a month is 
recommended. Past experience shows that advertising on TV is 50 times more effective 
than on radio and 10 times more effective than in newspapers.
(a) Determine the optimum allocation of the budget to the three media.

(b) Are the limits set on radio and newspaper advertising justifiable economically?

(c) If the monthly budget is increased by 50%, would this result in a proportionate 
increase in the overall effectiveness of advertising?

3-74. The Burroughs Garment Company manufactures men’s shirts and women’s blouses for 
Walmark Discount Stores. Walmark will accept all the production supplied by Burroughs. 
The production process includes cutting, sewing, and packaging. Burroughs employs 
25 workers in the cutting department, 35 in the sewing department, and 5 in the packaging 
department. The factory works one 8-hr shift, 5 days a week. The following table gives 
the time requirements and prices per unit for the two garments:

Minutes per unit 

Garment Cutting Sewing Packaging Unit price ($)

Shirts 20 70 12  8.00
Blouses 60 60  4 12.00

(a) Determine the optimal weekly production schedule for Burroughs.

(b) Determine the worth of 1 hr of cutting, sewing, and packaging in terms of the total 
revenue.

(c) If overtime can be used in cutting and sewing, what is the maximum hourly rate 
 Burroughs should pay for overtime?

3-75. ChemLabs uses raw materials I and II to produce two domestic cleaning solutions, A 
and B. The daily availabilities of raw materials I and II are 150 and 145 units, respectively. 
One unit of solution A consumes .5 unit of raw material I and .6 unit of raw material II, 
and one unit of solution B uses .5 unit of raw material I and .4 unit of raw material II. 
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The prices per unit of solutions A and B are $8 and $10, respectively. The daily demand 
for solution A lies between 30 and 150 units and that for solution B between 40 and 
200 units.
(a) Find the optimal amounts of A and B that ChemLabs should produce.

(b) Use the dual prices to determine which demand limits on products A and B should 
be relaxed to improve profitability.

(c) If additional units of raw material can be acquired at $20 per unit, is this advisable? 
Explain.

(d) A suggestion is made to increase raw material II by 25% to remove a bottleneck in 
production. Is this advisable? Explain.

3-76. An assembly line consisting of three consecutive workstations produces two radio  
models: DiGi-1 and DiGi-2. The following table provides the assembly times for the three 
workstations.

Minutes per unit

Workstation DiGi-1 DiGi-2

1 6 4
2 5 4
3 4 6

The daily maintenance for workstations 1, 2, and 3 consumes 10%, 14%, and 12%, 
 respectively, of the maximum 480 minutes available for each workstation each day.
(a) The company wishes to determine the optimal product mix that will minimize the 

idle (or unused) times in the three workstations. Determine the optimum utilization 
of the workstations. [Hint: Express the sum of the idle times (slacks) for the three 
operations in terms of the original variables.]

(b) Determine the worth of decreasing the daily maintenance time for each workstation 
by 1.5 percentage point.

(c) It is proposed that the operation time for all three workstations be increased to 600 minutes 
per day at the additional cost of $1.50 per minute. Can this proposal be improved?

3-77. The Gutchi Company manufactures purses, shaving bags, and backpacks. The construction  
of the three products requires leather and synthetics, with leather being the limiting raw 
material. The production process uses two types of skilled labor: sewing and finishing. 
The following table gives the availability of the resources, their usage by the three prod-
ucts, and the prices per unit.

Resource requirements per unit

Resource Purse Bag Backpack Daily availability

Leather (ft2) 2 1 3 42
Sewing (hr) 2 1 2 40
Finishing (hr) 1 .5 1 45

Price ($) 24 22 45

Formulate the problem as a linear program, and find the optimum solution. Next, indicate 
whether the following changes in the resources will keep the current solution feasible. 
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For the cases where feasibility is maintained, determine the new optimum  solution (values 
of the variables and the objective function).
(a) Available leather is increased to 45 ft2.

(b) Available leather is decreased by 1 ft2.

(c) Available sewing hours are changed to 38 hrs.

(d) Available sewing hours are changed to 46 hrs.

(e) Available finishing hours are decreased to 15 hrs.

(f) Available finishing hours are increased to 50 hrs.

(g) Would you recommend hiring an additional sewing worker at $15 an hour?
3-78. HiDec produces two models of electronic gadgets that use resistors, capacitors, and chips. 

The following table summarizes the data of the situation:

Unit resource requirements

Resource Model 1 (units) Model 2 (units) Maximum availability (units)

Resistor 2 3 1200
Capacitor 2 1 1000
Chips 0 4  800

Unit price ($) 3 4

Let x1 and x2 be the amounts produced of Models 1 and 2, respectively. Following are the 
LP model and its associated optimal simplex tableau.

Maximize z = 3x1 + 4x2

subject to

2x1 + 3x2 … 1200  1Resistors2
2x1 + x2 … 1000  1Capacitors2

4x2 … 800    1Chips2
        x1, x2 Ú 0

Basic x1 x2 s1 s2 s3 Solution

z 0 0 5
4

1
4 0 1750

x1 1 0 -1
4

3
4 0 450

s3 0 0 -2 2 1 400
x2 0 1 1

2 -1
2 0 100

*(a) Determine the status of each resource.

*(b) In terms of the optimal revenue, determine the dual prices for the resistors, capacitors, 
and chips.

(c) Determine the feasibility ranges for the dual prices obtained in (b).

(d) If the available number of resistors is increased to 1300 units, find the new optimum 
solution.

*(e) If the available number of chips is reduced to 350 units, will you be able to deter-
mine the new optimum solution directly from the given information? Explain.



Problems   165

(f) If the availability of capacitors is limited by the feasibility range computed in (c), 
determine the corresponding range of the optimal revenue and the corresponding 
ranges for the numbers of units to be produced of Models 1 and 2.

(g) A new contractor is offering to sell HiDec additional resistors at 40 cents each, but 
only if HiDec would purchase at least 500 units. Should HiDec accept the offer?

3-79. The 100% feasibility rule. A simplified rule based on the individual changes D1, D2, . . . ,  
and Dm in the right-hand side of the constraints can be used to test whether or not 
 simultaneous changes will maintain the feasibility of the current solution. Assume that the 
right-hand side bi of constraint i is changed to bi + Di one at a time, and that pi … Di … qi 
is the  corresponding feasibility range obtained by using the procedure in Section 3.6.2. 
By definition, we have pi … 01qi Ú 02 because it represents the maximum allowable 
 decrease  (increase) in bi. Next, define ri to equal 

Di
pi  if Di is negative and 

Di
qi  if Di is positive. 

By  definition, we have 0 … ri … 1. The 100% rule thus says that, given the changes D1, 
D2, . . . , and Dm, a sufficient (but not necessary) condition for the current  solution to 
remain feasible is that r1 + r2 + c + rm … 1. If the condition is not satisfied, then 
the current solution may or may not remain feasible. The rule is not applicable if Di falls 
outside the range 1pi, qi2.

In reality, the 100% rule is too weak to be consistently useful. Even in the cases 
where feasibility can be confirmed, we still need to obtain the new solution using the 
regular simplex feasibility conditions. Besides, the direct calculations associated with 
simultaneous changes given in Section 3.6.2 are straightforward and manageable.

To demonstrate the weakness of the rule, apply it to parts (a) and (b) of Problem 
3-68 based on the TOYCO model of Example 3.6-2. The rule fails to confirm the feasibil-
ity of the solution in (a) and does not apply in (b) because the changes in Di are outside 
the admissible ranges. Problem 3-80 further  demonstrates this point.

3-80. Consider the problem

Maximize z = x1 + x2

subject to

2x1 + x2 … 6

x1 + 2x2 … 6

x1 + x2 Ú 0

(a) Show that the optimal basic solution includes both x1 and x2 and that the feasibility 
ranges for the two constraints, considered one at a time, are -3 … D1 … 6 and 
-3 … D2 … 6.

*(b) Suppose that the two resources are increased simultaneously by ∆ 7 0 each. First, 
show that the basic solution remains feasible for all ∆ 7 0. Next, show that the 
100% rule will confirm feasibility only if the increase is in the range 0 6 ∆ … 3 units. 
Otherwise, the rule fails for 3 6 ∆ … 6 and does not apply for ∆ 7 6.

3-81. In the TOYCO model, determine if the current solution will change in each of the 
 following cases:21

(i)  z = x1 + x2 + 4x3

(ii)  z = 4x1 + 6x2 + x3

(iii) z = 6x1 + 3x2 + 9x3

21In Problems 3-80 to 3-87, you may find it convenient to generate the optimal simplex tableau with TORA.
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*3-82. B&K grocery store sells three types of soft drinks: the brand names A1 Cola, A2 Cola, 
and the cheaper store brand BK Cola. The price per can for A1, A2, and BK are 80, 70, 
and 60 cents, respectively. On the average, the store sells no more than 500 cans of all 
 colas a day. Although A1 is a recognized brand name, customers tend to buy more A2 
and BK because they are cheaper. It is estimated that at least 100 cans of A1 are sold 
daily and that A2 and BK combined outsell A1 by a margin of at least 4:2.
(a) Show that the optimum solution does not call for selling the A3 brand.

(b) By how much should the price per can of A3 be increased to be sold by the store?

(c) To be competitive with other stores, the store decided to lower the price on all three 
types of cola by 5 cents per can. Recompute the reduced costs to determine if this 
promotion will change the current optimum solution.

3-83. Baba Furniture Company employs four carpenters for 10 days to assemble tables and 
chairs. It takes 2 person-hours to assemble a table and half a person-hour to assemble 
a chair. Customers usually buy one table and four to six chairs. The prices are $135 per 
table and $50 per chair. The company operates one 8-hr shift a day.
(a) Determine the 10-day optimal production mix.

(b) If the present unit prices per table and chair are each reduced by 10%, use sensitivity 
analysis to determine if the optimum solution obtained in (a) will change.

(c) If the present unit prices per table and chair are changed to $120 and $25, respectively, 
will the solution in (a) change?

3-84. The Bank of Elkins is allocating a maximum of $200,000 for personal and car loans 
during the next month. The bank charges 14% for personal loans and 12% for car loans. 
Both types of loans are repaid at the end of a 1-year period. Experience shows that about 
3% of personal loans and 2% of car loans are not repaid. The bank usually allocates at 
least twice as much money to car loans as to personal loans.
(a) Determine the optimal allocation of funds between the two loans and the net rate of 

return on all the loans.

(b) If the percentages of personal and car loans are changed to 4% and 3%, respectively, 
use sensitivity analysis to determine if the optimum solution in (a) will change.

*3-85. Electra produces four types of electric motors, each on a separate assembly line. The 
respective capacities of the lines are 500, 500, 800, and 750 motors per day. Type 1 motor 
uses 8 units of a certain electronic component, type 2 motor uses 5 units, type 3 motor 
uses 4 units, and type 4 motor uses 6 units. The supplier of the component can provide 
8000 units a day. The prices per motor for the respective types are $60, $40, $25, and $30.
(a) Determine the optimum daily production mix.

(b) The present production schedule meets Electra’s needs. However, because of competi-
tion, Electra may need to lower the price of type 2 motor. What is the largest reduction 
that can be implemented without changing the present production schedule?

(c) Electra has decided to slash the price of all motor types by 25%. Use sensitivity 
analysis to determine if the optimum solution remains unchanged.

(d) Currently, type 4 motor is not produced. By how much should its price be increased 
to be included in the production schedule?

3-86. Popeye Canning is contracted to receive daily 50,000 lb of ripe tomatoes at 7 cents per 
pound, from which it produces canned tomato juice, tomato sauce, and tomato paste. The 
canned products are packaged in 24-can cases. A can of juice uses 1 lb of fresh tomatoes, 
a can of sauce uses 12 lb, and a can of paste uses 34 lb. The company’s daily share of the 
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market is limited to 1500 cases of juice, 1500 cases of sauce, and 1000 cases of paste. The 
wholesale prices per case of juice and paste are $21, $9, and $12, respectively.
(a) Develop an optimum daily production program for Popeye.

(b) If the price per case for juice and paste remains fixed as given in the problem, use 
sensitivity analysis to determine the unit price range Popeye should charge for a case 
of sauce to keep the optimum product mix unchanged.

3-87. Dean’s Furniture Company assembles regular and deluxe kitchen cabinets from precut 
lumber. The regular cabinets are painted white, and the deluxe are varnished. Both 
painting and varnishing are carried out in one department. The daily capacity of the 
assembly department is 400 regular cabinets and 300 deluxe. Varnishing a deluxe unit 
takes twice as much time as painting a regular one. If the painting/varnishing depart-
ment is dedicated to the deluxe units only, it can complete 360 units daily. The company 
estimates that the revenues per unit for the regular and deluxe cabinets are $100 and 
$140, respectively.
(a) Formulate the problem as a linear program, and find the optimal production sched-

ule per day.

(b) Suppose that competition dictates that the price per unit of each of regular and 
deluxe cabinets be reduced to $90. Use sensitivity analysis to determine whether or 
not the optimum solution in (a) remains unchanged.

3-88. The 100% Optimality Rule. A rule similar to the 100% feasibility rule outlined in 
 Problem 3-79, can also be developed for testing the effect of simultaneously changing 
all cj to cj + dj, j = 1, 2, c, n, on the optimality of the current solution. Suppose that 
uj … dj … vj is the optimality range obtained as a result of changing each cj to cj + dj  
one at a time, using the procedure in Section 3.6.3. In this case, uj … 0 1vj Ú 02,  
because it represents the maximum allowable decrease (increase) in cj that will keep 
the current solution optimal. For the cases where uj … dj … vj, define rj equal to 

dj
vj if dj 

is positive and 
dj
uj if dj is negative. By definition, 0 … rj … 1. The 100% rule says that a 

sufficient (but not necessary) condition for the current solution to remain optimal is that 
r1 + r2 + c + rn … 1. If the condition is not satisfied, the current solution may or may 
not remain optimal. The rule does not apply if dj falls outside the specified ranges.

Demonstrate that the 100% optimality rule is too weak to be consistently reliable 
as a decision-making tool by applying it to the following cases:
(a) Parts (ii) and (iii) of Problem 3-81

(b) Part (b) of Problem 3-87.
3-89. Consider Problem 2-40 (Chapter 2). Use the dual price to decide if it is worthwhile to 

increase the funding for year 4.22

3-90. Consider Problem 2-41 (Chapter 2).
(a) Use the dual prices to determine the overall return on investment.

(b) If you wish to spend $2000 on pleasure at the end of year 1, how would this affect 
the accumulated amount at the start of year 5? 

3-91. Consider Problem 2-42 (Chapter 2).
(a) Give an economic interpretation of the dual prices of the model.

22Before answering the Problems 3-89 to 3-98, you are expected to generate the sensitivity analysis report 
using AMPL, Solver, or TORA.
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(b) Show how the dual price associated with the upper bound on borrowed money at 
the beginning of the third quarter can be derived from the dual prices associated 
with the balance equations representing the in-out cash flow at the five designated 
dates of the year.

3-92. Consider Problem 2-43, (Chapter 2). Use the dual prices to determine the rate of return 
associated with each year.

*3-93. Consider Problem 2-44, (Chapter 2). Use the dual price to determine if it is worthwhile 
for the executive to invest more money in the plans.

3-94. Consider Problem 2-45 (Chapter 2). Use the dual price to decide if it is advisable for the 
gambler to bet an additional $400.

3-95. Consider Problem 2-47, (Chapter 2). Relate the dual prices to the unit production costs of 
the model.

3-96. Consider Problem 2-48, (Chapter 2). Suppose that any additional capacity of machines 
1 and 2 can be acquired only by using overtime. What is the maximum cost per hour the 
company should be willing to incur for either machine? 

*3-97. Consider Problem 2-49, (Chapter 2).
(a) Suppose that the manufacturer can purchase additional units of raw material A at 

$12 per unit. Would it be advisable to do so?

(b) Would you recommend that the manufacturer purchase additional units of raw 
material B at $5 per unit? 

3-98. Consider Problem 2-76 (Chapter 2).
(a) Which of the specification constraints impacts the optimum solution adversely?

(b) Is it economical for the company to purchase ore 1 at $100/ton. Explain in terms of 
dual prices. 



Chapter 4

Duality and post-Optimal analysis

4.1 Definition of the Dual Problem

The dual problem is defined systematically from the primal (or original) LP model. 
The  two problems are closely related, in the sense that the optimal solution of one 
 problem automatically provides the optimal solution to the other. As such, it may be 
 advantageous computationally in some cases to determine the primal solution by solv-
ing the dual. But that computational advantage may be minor when compared with 
what the rich primal–dual theory offers, as we will demonstrate throughout the book.

In all textbooks this author is familiar with, the dual is defined for various forms 
of the primal depending on the sense of optimization (maximization or minimization), 
types of constraints 1… , Ú , or = 2, and sign of the variables (nonnegative or unre-
stricted). Not only are there too many combinations to memorize, but their use may 
require a degree of reconciling with the simplex algorithm results, primarily because 
the primal from which the dual is constructed is not in the standard format used by the 
simplex algorithm (e.g., the primal from which the dual is constructed may have nega-
tive right-hand sides in the constraints).

This book offers a single definition that automatically subsumes all forms of the 
primal. Our definition of the dual problem requires expressing the primal problem in 
the equation form presented in Section 3.1, a format consistent with the simplex start-
ing tableau (all the constraints are equations with nonnegative right-hand sides, and all 
the variables are nonnegative). Hence, any results obtained from the primal optimal 
solution apply unambiguously to the associated dual problem.

The following is a summary of how the dual is constructed from the (equation-
form) primal:

1. A dual variable is assigned to each primal (equation) constraint and a dual con-
straint is assigned to each primal variable.

2. The right-hand sides of the primal constraints provide the coefficients of the dual 
objective function.

 169
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3. The dual constraint corresponding to a primal variable is constructed by transpos-
ing the primal variable column into a row with (i) the primal objective coefficient 
becoming the dual right-hand side and (ii) the remaining constraint coefficients 
comprising the dual left-hand side coefficients.

4. The sense of optimization, direction of inequalities, and the signs of the variables 
in the dual are governed by the rules in Table 4.1 

The following examples demonstrate the use of the rules in Table 4.1. The examples 
also show that our definition incorporates all forms of the primal automatically.

example 4.1-1 

Primal Primal in equation form Dual variables

Maximize z = 5x1 + 12x2 + 4x3  
subject to

Maximize z = 5x1 + 12x2 + 4x3 + 0x4

subject to
x1 + 2x2 + x3 … 10

2x1 - x2 + 3x3 = 8
x1, x2, x3 Ú 0

x1 + 2x2 + x3 + x4 = 10
2x1 - x2 + 3x3 + 0x4 = 8

x1, x2, x3, x4 Ú 0

y1

y2

Dual Problem

Minimize w = 10y1 + 8y2

subject to

y1 + 2y2 Ú 5

2y1 - y2 Ú 12

y1 + 3y2 Ú 4

y1 + 0y2 Ú 0
y1, y2 unrestricted

f 1 1y1 Ú 0, y2 unrestricted2

TAble 4.1 Rules for Constructing the Dual Problem

Primal problem  
objectivea

Dual problem

Objective Constraints typeb Variables sign

Maximization Minimization Ú Unrestricted
Minimization Maximization … Unrestricted

aAll primal constraints are equations with nonnegative right-hand sides, and all the variables are nonnegative.
bA convenient way to remember the constraint type 1Ú  or … 2 in the dual is that if the dual objective is a 
“pointing-down” minimization, then all the constraints are “pointing-up” 1Ú 2-inequalities. The opposite 
applies when the dual objective is maximization.



4.1  Definition of the Dual Problem   171

example 4.1-2 

Primal Primal in equation form Dual variables

Minimize z = 15x1 + 12x2  
subject to

Minimize z = 15x1 + 12x2 + 0x3 + 0x4  
subject to

x1 + 2x2 Ú 3
2x1 - 4x2 … 5

x1, x2 Ú 0

x1 + 2x2 - x3 + 0x4 = 3
2x1 - 4x2 + 0x3 + x4 = 5

x1, x2, x3, x4 Ú 0

y1

y2

Dual Problem

Maximize w = 3y1 + 5y2

subject to

y1 + 2y2 … 15

2y1 - 4y2 … 12

-y1 …  0
y2 …  0

y1, y2 unrestrricted 
¶ 1 1y1 Ú 0, y2 … 02

example 4.1-3 

Primal Primal in equation form Dual variables

Maximize z = 5x1 + 6x2  
subject to

Substitute x1 = x1
- - x1

+. 
Maximize z = 5x1

- - 5x1
+ + 6x2

subject to
x1 + 2x2 = 5 

-x1 + 5x2 Ú 3 
4x1 + 7x2 … 8 

x1 unrestricted, x2 Ú 0

x1
- - x1

+ + 2x2 = 5
-x1

- + x1
+ + 5x2 - x3 = 3

4x1
- - 4x1

+ + 7x2 + x4 = 8
x1

-, x1
+, x2, x3, x4 Ú 0

y1

y2

y3

Dual Problem

Minimize z = 5y1 + 3y2 + 8y3

subject to

y1 - y2 + 4y3 Ú 5
-y1 + y2 - 4y3 Ú -5

f 1  
y1 - y2 + 4y3 Ú 5
y1 - y2 + 4y3 … 5

f 1 y1 - y2 + 4y3 = 5

2y1 + 5y2 + 7y3 Ú 6

-y2 Ú 0
y3 Ú 0

y1, y2, y3 unrestricted
s 1 1y1 unrestricted, y2 … 0, y3 Ú 02

The first and second constraints are replaced by an equation. The general rule is that an unre-
stricted primal variable always corresponds to an equality dual constraint. Conversely, a primal 
equation produces an unrestricted dual variable, as the first primal constraint demonstrates.
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Summary of the rules for constructing the dual. Table 4.2 summarizes the primal–
dual rules as they are usually presented in the literature. It is a good exercise to verify 
that these explicit rules are subsumed by the two rules in Table 4.1.

Note that the column headings in the table do not use the designation primal and 
dual. What matters here is the sense of optimization. If the primal is maximization, then 
the dual is minimization, and vice versa. Note also that no provision is made for includ-
ing artificial variables in the primal because artificial variables would not change the 
definition of the dual (see Problem 4-5).

4.2 Primal–Dual relationshiPs

Changes made in the data of an LP model can affect the optimality and/or the feasibility  
of the current optimum solution. This section introduces a number of primal–dual 
 relationships that can be used to recompute the elements of the optimal simplex tab-
leau. These relationships form the basis for the economic interpretation of the LP model 
and for post-optimality analysis.

The section starts with a brief review of matrices, a convenient tool for carrying 
out the simplex tableau computations. A more detailed review of matrices is given in 
Appendix D on the website.

4.2.1  review of simple matrix operations

The simplex tableau can be generated by three elementary matrix operations: (row  
vector) * 1matrix2, 1matrix2 * 1column vector2, and 1scalar2 * 1matrix2. These op-  
erations are summarized here for convenience. First, we introduce some matrix 
definitions:

1. A matrix, a, of size 1m * n2 is a rectangular array of elements with m rows and 
n columns.

2. A row vector, V, of size m is a 11 * m2 matrix.
3. A column vector, p, of size n is an 1n * 12 matrix.

TAble 4.2 Rules for Constructing the Dual Problem

Maximization problem Minimization problem

Constraints Variables
Ú 3 …  0
… 3 Ú  0
= 3 Unrestricted

Variables Constraints
Ú  0 3 Ú
…  0 3 …

Unrestricted 3 =
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These definitions can be represented mathematically as

V = 1v1, v2, c, vm2, a = ±
a11 a12 g a1n

a21 a22 g a2n

g g g g
am1 am2 g amn

≤ , p = ±
p1

p2

g
pn

≤

1. 1row vector * matrix, Va 2 . The operation is valid only if the size of the row 
vector V and the number of rows of a are equal. For example,

111, 22, 332 °
1 2
3 4
5 6

¢ = 11 * 11 + 3 * 22 + 5 * 33, 2 * 11 + 4 * 22 + 6 * 332

= 1242, 3082
2. 1Matrix * column vector, ap 2 . The operation is valid only if the number of col-

umns of a and the size of column vector p are equal. For example,

a1 3 5
2 4 6

b °
11
22
33

¢ = a1 * 11 + 3 * 22 + 5 * 33
2 * 11 + 4 * 22 + 6 * 33

b = a242
308

b

3. 1Scalar * matrix, Aa 2 . Given the scalar (or constant) quantity a, the multiplica-
tion operation aa results in a matrix of the same size as matrix a. For example, 
given a = 10,

1102 a1 2 3
4 5 6

b = a10 20 30
40 50 60

b

4.2.2  simplex tableau layout

The simplex tableau in Chapter 3 is the basis for the presentation in this chapter.  
Figure 4.1 represents the starting and general simplex tableaus schematically. In the 
starting tableau, the constraint coefficients under the starting variables form an iden-
tity matrix (all main-diagonal elements are 1, and all off-diagonal elements are zero). 
With this arrangement, subsequent iterations of the simplex tableau generated by the 
Gauss–Jordan row operations (see Chapter 3) modify the elements of the identity 
 matrix to produce what is known as the inverse matrix. As we will see in the remainder 
of this chapter, the inverse matrix is key to computing all the elements of the associated 
 simplex tableau.

remarks. The inverse matrix in the general tableau has its roots in the starting tableau 
constraint columns. That means that the inverse at any iteration can be computed (from 
scratch) using the original constraint columns of the LP problem (as will be demon-
strated in the remarks following Example 4.2-1). This is an important relationship that 
has been exploited to control round-off errors in the simplex algorithm computations.
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4.2.3  optimal Dual solution

The primal and dual solutions are closely related, in the sense that the optimal solution 
of either problem directly yields the optimal solution to the other, as is explained subse-
quently. Thus, in an LP model in which the number of variables is considerably smaller 
than the number of constraints, computational savings may be realized by solving the 
dual because the amount of computations associated with determining the inverse matrix 
 primarily increases with the number of constraints. Notice that the rule addresses only the 
amount of computations in each iteration but says nothing about the total number of itera-
tions needed to solve each problem.

This section provides two methods for determining the dual values.

Method 1.

aOptimal value of
dual variable yi

b = °
Optimal primal z@coefficient of starting basic variable xi

+
Original objective coefficient of xi

¢

Method 2.

a Optimal values 
of dual variables

b = °
Row vector of

original objective coefficients
of optimal primal basic variables

¢ * aOptimal primal
inverse

b

Objective z-row

Constraint
columns

Objective z-row

Constraint
columns

(Starting tableau)

Identity matrix

1      0      ...      0

0      1      ...      0

0
...

...
. . .

0      0      ...      1

5

5

5

5

Starting variables

Starting variables

Inverse matrix

(General iteration)

FiguRe 4.1 

Schematic representation of the starting and general simplex tableaus



4.2  Primal–Dual Relationships   175

The elements of the row vector must appear in the same order the basic variables are 
listed in the Basic-column of the simplex tableau.

example 4.2-1 

Consider the following LP:

Maximize z = 5x1 + 12x2 + 4x3

Subject to

x1 + 2x2 + x3 … 10

2x1 - x2 + 3x3 = 8

x1, x2, x3 Ú 0

To prepare the problem for solution by the simplex method, we add a slack x4 in the first con-
straint and an artificial R in the second. The resulting primal and the associated dual problems 
are thus defined as follows:

Primal Dual

Maximize z = 5x1 + 12x2 + 4x3 - MR
subject to

Minimize w = 10y1 + 8y2

subject to
x1 + 2x2 + x3 + x4 = 10

2x1 - x2 + 3x3 + R = 8
x1, x2, x3, x4, R Ú 0

y1 + 2y2 Ú 5
2y1 - y2 Ú 12

y1 + 3y2 Ú 4
y1 Ú 0
     y2 Ú -M 1 1 y2 unrestricted2

Table 4.3 provides the optimal primal tableau.
We now show how the optimal dual values are determined using the two methods described 

at the start of this section.

Method 1. In Table 4.3, the starting primal variables x4 and R uniquely correspond to the 
dual variables y1 and y2, respectively. Thus, we determine the optimum dual solution as  
follows:

Starting primal basic variables x4 R

z-equation coefficients 29
5 -2

5 + M

Original objective coefficient 0 -M

Dual variables y1 y2

Optimal dual values 29
5 + 0 = 29

5 -2
5 + M + 1-M2 = -2

5

Method 2. The optimal inverse matrix, highlighted in Table 4.3 under the starting variables x4 
and R, is

Optimal inverse = °
2
5 -1

5

1
5 2

5

¢
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The order of the optimal primal basic variables in the Basic-column is x2 followed by x1. The 
elements of the original objective coefficients for the two variables must appear in the same 
order—namely,

 1Original objective coefficients2 = 1Coefficient of x2, coefficient of x12
 = 112, 52

The optimal dual values are

 1y1, y22 = a  Original objective
coefficients of x2, x1

b * 1Optimal inverse2

 = 112, 52 °
2
5 -1

5

1
5 2

5

¢

 = 129
5 , -2

52

remarks. We pause here to demonstrate the important relationship between the 
inverse  matrix in a simplex tableau and the associated basic matrix obtained from 
original constraint columns in the starting tableau. For example, in the optimal tab-
leau, the basic variables, taken in order, are (x2, x1). Hence, the associated (optimal) 
basic matrix is obtained from the original problem as

°
Optimal

basic
 matrix

¢ = °
Constraint
column of 

x2

 
Constraint
column of

x1

¢ = a 2 1
-1 2

b

When this basic matrix is inverted (using one of the methods in Appendix D on the 
website), it will yield the inverse in the optimum tableau. We can verify that this is true 
because matrix theory tells us that the product of the basic matrix and its inverse must 
be an identity matrix; namely,

a 2 1
-1 2

b * °
2
5 -1

5

1
5 2

5

¢ = a1 0
0 1

b

The relationship holds true for any simplex iteration. Note importantly that the col-
umns of the basic matrix must coincide with the order of the basic variables in the 
tableau.

TAble 4.3 Optimal Tableau of the Primal of Example 4.2-1 

Basic x1 x2 x3 x4 R Solution

z 0 0 3
5

29
5 -2

5 + M 54 45

x2 0 1 -1
5

2
5 -1

5
12
5

x1 1 0 7
5

1
5

2
5

26
5
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Primal–dual objective values. For any pair of feasible primal and dual solutions,

a Objective value in the
maximization problem

b … aObjective value in the 
minimization problem

b

At the optimum, the relationship holds as a strict equation, meaning that the two ob-
jective values are equal. Note that the relationship does not specify which problem is 
primal and which is dual. Only the sense of optimization (maximization or minimiza-
tion) is important in this case.

The optimum cannot occur with z strictly less than w (i.e., z 6 w) because, no 
matter how close the two values are, there is always room for improvement, which con-
tradicts optimality as Figure 4.2 demonstrates.

example 4.2-2 

In Example 4.2-1,1x1 = 0, x2 = 0, x3 = 8
32 and 1y1 = 6, y2 = 02 are (arbitrary) feasible primal 

and dual solutions. The associated values of the objective functions are

Maximization 1primal2: z = 5x1 + 12x2 + 4x3 = 5102 + 12102 + 418
32 = 10 23

Minimization 1dual2: w = 10y1 + 8y2 = 10162 + 8102 = 60

Since z 6 w, the solutions are not optimal. The optimum value of z1 =  54 452  falls within the 
range 110 23, 602.

4.2.4  simplex tableau Computations

This section shows how any iteration of the simplex tableau can be generated from the 
original data of the problem, the inverse associated with the iteration, and the dual 
problem. Using the layout of the simplex tableau in Figure 4.1, we can divide the com-
putations into two types:

1. Constraint columns (left-hand and right-hand sides).
2. Objective z-row.

Formula 1: Constraint column computations. In any simplex iteration, a left-hand or 
a right-hand side column is computed as follows:

aConstraint column
in iteration i

b = aInverse in
iteration i

b * a Original
constraint column

b

Optimum

Minimize wMaximize z

FiguRe 4.2 

Relationship between maximum z and minimum w
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Formula 2: Objective z-row computations. In any simplex iteration, the objective 
equation coefficient (reduced cost) of xj is computed as follows:

a Primal z@equation
coefficient of variable xj

b = a Left@hand side of
jth dual constraint

b - aRight@hand side of
jth dual constraint

b

example 4.2-3 

We use the LP in Example 4.2-1 to illustrate the application of Formulas 1 and 2. From the optimal 
tableau in Table 4.3, we have

 Optimal inverse = °
2
5 -1

5

1
5

2
5

¢

 a x1@column in
optimal iteration

b = a Inverse in
optimal iteration

b * a original 
x1@column

b

 = °
2
5 -1

5

1
5

2
5

¢ * a1
2
b = a0

1
b

Similar computations generate the optimal columns for x2, x3, x4, R, and the right-hand side (verify!).
Next, we demonstrate how the objective row computations are carried out with Formula 2. 

The optimal values of the dual variables, 1y1, y22 = 129
5 , -2

52, are computed in Example 4.2-1. These 
values are used in Formula 2 to compute all the z-coefficients, as illustrated here for x1 and R.

 z@cofficient of x1 = y1 + 2y2 - 5 = 29
5 + 2 * -2

5 - 5 = 0

 z@cofficient of R = y2 - 1-M2  = -2
5 - 1-M2  = -2

5 + M

Similar computations can be used to determine the z-coefficients of x2, x3, and x4 (verify!).

remarks. The simplex tableau format in Chapter 3 which generates the current 
 tableau from the immediately preceding one is a sure recipe for propagating the round-
off error, greatly distorting the quality of the optimum solution. Fortunately there is a 
way out! You will notice from the discussion in Sections 4.2.2 and 4.2.3 that the inverse 
matrix of an iteration plays the key role in determining all the elements of the associated 
simplex tableau (by using this inverse and the original data of the problem). Indeed, the 
inverse itself can be determined from the original data once the basic solution is known, 
as demonstrated in the remarks following Example 4.2-1. This essentially means that at 
any iteration, all the elements of a tableau (inverse matrix included) can be determined 
from the original data of the model. This is a powerful result that has been used to keep 
computational round-off error in check. And this is precisely the overriding reason for 
the development of the revised simplex method presented in Chapter 7.

4.3 eConomiC interPretation of Duality

The LP problem can be viewed as a resource allocation model that seeks to maximize 
revenue under limited resources. Looking at the problem from this standpoint, the as-
sociated dual problem offers interesting economic interpretations.
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To formalize the discussion, consider the following representation of the general 
primal and dual problems:

Primal Dual

Maximize z = a
n

j = 1
cjxj

subject to

Minimize w = a
m

i = 1
biyi

subject to

a
n

j = 1
aijxj … bi, i = 1, 2, c, m

xj Ú 0, j = 1, 2, c, n

a
m

i = 1
aijyi Ú cj, j = 1, 2, c, n

yi Ú 0, i = 1, 2, c, m

Viewed as a resource allocation model, the primal problem has n economic activities 
and m resources. The coefficient cj in the primal represents the revenue per unit of 
activity j and resource i with availability bi is consumed at the rate aij units per unit of 
activity j.

4.3.1  economic interpretation of Dual Variables

Section 4.2.3 states that for any two primal and dual feasible solutions, the values of the 
objective functions, when finite, must satisfy the following inequality:

z = a
n

j = 1
cjxj … a

m

i = 1
bi yi = w

At the optimum, the two objective values are equal—that is, z = w.
In terms of the resource allocation model, z represents $ revenue, and bi repre-

sents available units of resource i. Thus, dimensionally, z = w implies

$ revenue = a
m

i = 1
bi yi = a

m

i = 1
1units of resource i2 * 1$ per unit of resource i2

This means that the dual variable,yi, represents the worth per unit of resource i (cf. the 
graphical definition of unit worth of a resource in Section 3.6.1)

As stated in Section 3.6.1, the standard name dual (or shadow) price of resource i 
replaces the suggestive name worth per unit used in all LP literature and software pack-
ages, and hence the standard name is adopted in this book as well.

Using the same dimensional analysis, we can interpret the inequality z 6 w (for 
any two feasible primal and dual solution) as

1Revenue2 6 1Worth of resources2

This relationship says that so long as the total revenue from all the activities is less 
than the worth of the resources, the corresponding primal and dual solutions are not 
optimal. Optimality is reached only when the resources have been exploited com-
pletely. This can happen only when the input (worth of the resources) equals the 
output (revenue dollars).
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example 4.3-1 

The Reddy Mikks model (Example 2.1-1) and its dual are given as follows:

Reddy Mikks primal Reddy Mikks dual

Maximize z = 5x1 + 4x2

subject to
Minimize w = 24y1 + 6y2 + y3 + 2y4

subject to
6x1 + 4x2 … 24 1resource1, M12

x1 + 2x2 … 6 1resource 2, M22
-x1 + x2 … 1 1resource 3, market2

x2 … 2 1resource 4, demand2
  x1, x2 Ú 0

6y1 + y2 - y3 Ú 5
4y1 + 2y2 + y3 + y4 Ú 4

y1, y2, y3, y4 Ú 0

Optimum solution: Optimum solution:
x1 = 3, x2 = 1.5, z = 21 y1 = .75, y2 = 0.5, y3 = y4 = 0, w = 21

The Reddy Mikks model deals with the production of two types of paint (interior and exterior) 
using two raw materials M1 and M2 (resources 1 and 2) and subject to market and demand limits 
represented by the third and fourth constraints. The model determines the amounts (in tons/day) 
of exterior and interior paints that maximize the daily revenue (expressed in thousands of dollars).

The optimal dual solution shows that the dual price (worth per unit) of raw material M1 
(resource 1) is y1 = .75 (or $750 per ton) and that of raw material M2 (resource 2) is y2 = .5 (or 
$500 per ton). These results hold true for specific feasibility ranges as was shown in Section 3.6. 
For resources 3 and 4, representing the market and demand limits, the dual prices are both zero, 
which indicates that their associated resources are abundant (i.e., they are not critical in deter-
mining the optimum and, hence, their worth per unit, or dual price, is zero).

4.3.2  economic interpretation of Dual Constraints

The economic meaning of the dual constraints can be achieved by using Formula 2 in 
Section 4.2.4, which states that at any primal iteration,

 Objective coefficient of xj = aLeft@hand side of
dual constraint j

b - aRight@hand side of
dual constraint j

b

 = a
m

i = 1
aijyi - cj

We use dimensional analysis once again to interpret this equation. The revenue per 
unit, cj, of activity j is in dollars per unit. Hence, for consistency, the quantity am

i = 1aijyi 
must also be in dollars per unit. Next, because cj represents revenue, the quantity 

am
i = 1aijyi, with opposite sign, must represent cost. Thus we have

$ cost = a
m

i = 1
aijyi = a

m

i = 1
aUsage of resource i

per unit of activity j
b * aCost per unit 

of resource i
b

The conclusion is that the dual variable yi represents what is known in the LP litera-
ture as the imputed cost per unit of resource i, and we can think of the quantity am

i = 1aijyi 
as the imputed cost of all the resources needed to produce one unit of activity j. As 
stated in Section 3.6, the quantity am

i = 1aijyi - cj 1=  imputed cost of activity j - cj2 
is known by the standard name reduced cost of activity j.The maximization optimality 
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condition of the simplex method says that an increase in the level of an unused (non-
basic) activity j can improve revenue only if its reduced cost is negative. In terms of the 
preceding interpretation, this condition states that

°
Imputed cost of

resources used by
one unit of activity j

¢ 6 aRevenue per unit
of activity j

b

Thus, the maximization optimality condition says that it is economically advantageous 
to increase the level of an activity if its unit revenue exceeds its unit imputed cost.

example 4.3-2 

TOYCO assembles three types of toys—trains, trucks, and cars—using three operations. Available 
assembly times for the three operations are 430, 460, and 420 minutes per day, respectively, and the 
revenues per toy train, truck, and car are $3, $2, and $5, respectively. The assembly times per train 
for the three operations are 1, 3, and 1 minutes, respectively. The corresponding times per truck 
and per car are (2, 0, 4) and (1, 2, 0) minutes (a zero time indicates that the operation is not used).

Letting x1, x2, and x3 represent the daily number of units assembled of trains, trucks, and 
cars, the associated LP model and its dual are given as follows:

TOYCO primal TOYCO dual

Maximize z = 3x1 + 2x2 + 5x3

subject to
Minimize w = 430y1 + 460y2 + 420y3

subject to
x1 + 2x2 + x3 … 430 1Operation 12

3x1 + 2x3 … 460 1Operation 22
x1 + 4x2 … 420 1Operation 32

x1, x2, x3 Ú 0     

y1 + 3y2 + y3 Ú 3
2y1 + 4y3 Ú 2

y1 + 2y2 Ú 5
y1, y2, y3 Ú 0

Optimal solution: Optimal solution:
x1 = 0, x2 = 100, x3 = 230, z = $1350 y1 = 1, y2 = 2, y3 = 0, w = $1350

The optimal primal solution calls for producing no toy trains, 100 toy trucks, and 230 toy cars.
Suppose that TOYCO is interested in producing toy trains (x1) as well. How can this be 

achieved? Looking at the reduced cost for x1, toy trains becomes attractive economically only if its 
unit imputed cost is strictly less than its unit revenue. TOYCO can achieve this by increasing the 
unit price. It can also decrease the imputed cost of the consumed resources 1=  y1 + 3y2 + y32.

A decrease in the unit imputed cost entails reducing the assembly times used by a unit toy 
train on the three operations. Let r1, r2, and r3 represent the reduction ratios on operations 1, 2, 
and 3, respectively. The goal is to determine the values of r1, r2, and r3 such that the new imputed 
cost per toy train is less than its unit revenue—that is,

111 - r12y1 + 311 - r22y2 + 111 - r32y3 6 3

0 … r1 … 1, 0 … r2 … 1, 0 … r3 … 1

For the optimal dual values, y1 = 1, y2 = 2, and y3 = 0, this inequality reduces to

r1 + 6r2 7 4, 0 … r1 … 1, 0 … r2 … 1

Any values of r1 and r2 that satisfy these conditions will make toy trains profitable. Note, how-
ever, that this goal may not be attainable because it requires impractically large reductions in 
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the times of operations 1 and 2. For example, even a 50% reduction 1i.e., r1 = r2 = .52 fails to 
satisfy the given condition. The logical conclusion then is that TOYCO should not produce toy 
trains unless the time reductions are accompanied with increase in unit revenue.

4.4  aDDitional simPlex algorithms

Chapter 3 presents the (primal) simplex algorithm that starts feasible and continues to 
be feasible until the optimum is reached. This section presents two additional algorithms: 
The dual simplex starts infeasible (but better than optimal) and remains infeasible until 
feasibility is restored, and the (author’s) generalized simplex combines the primal and 
dual simplex methods, starting both nonoptimal and infeasible. All three algorithms are 
used with post-optimal analysis in Section 4.5.

4.4.1  Dual simplex algorithm

The dual simplex method starts with a better than optimal and infeasible basic solu-
tion. The optimality and feasibility conditions are designed to preserve the optimality 
of the basic solutions as the solution move toward feasibility.

Dual feasibility condition. The leaving variable, xr, is the basic variable having the 
most negative value (ties are broken arbitrarily). If all the basic variables are nonnega-
tive, the algorithm ends.1

Dual optimality condition. Given that xr is the leaving variable, let cQj be the re-
duced cost of nonbasic variable xj and arj the constraint coefficient in the xr-row and 
xj-column of the tableau. The entering variable is the nonbasic variable with arj 6 0 
that corresponds to

 min   e @ cQj
arj @ , arj 6 0f

Nonbasic xj

(Ties are broken arbitrarily.) If arj Ú 0 for all nonbasic xj, the problem has no feasible 
solution.

To start the LP optimal and infeasible, two requirements must be met:

1. The objective function must satisfy the optimality condition of the regular sim-
plex method (Chapter 3).

2. All the constraints must be of the type 1… 2.

Inequalities of the type 1Ú 2 are converted to 1… 2 by multiplying both sides of the 
inequality by -1. If the LP includes 1= 2 constraints, the equation can be replaced by 
two inequalities. For example, x1 + x2 = 1 is equivalent to x1 + x2 … 1, x1 + x2 Ú 1 

1As explained in Section 3.7, a different feasibility condition, called the steepest edge, has so improved 
the computational efficiency of the dual simplex algorithm that it is now the dominant (simplex-based) 
algorithm for solving LPs in all commercial codes.
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or x1 + x2 … 1, -x1 - x2 … -1. The starting solution is infeasible if at least one of the 
right-hand sides of the inequalities is negative.

example 4.4-1 

Minimize z = 3x1 + 2x2 + x3

subject to

3x1 + x2 + x3 Ú 3

-3x1 + 3x2 + x3 Ú 6

x1 + x2 + x3 … 3

x1, x2, x3 Ú 0

In the present example, the first two inequalities are multiplied by -1 to convert them to 
1… 2 constraints. The starting tableau is thus given as follows:

Basic x1 x2 x3 x4 x5 x6 Solution

z -3 -2 -1 0 0 0 0

x4 -3 -1 -1 1 0 0 -3
x5 3 -3 -1 0 1 0 -6
x6 1 1 1 0 0 1 3

The tableau is optimal because all the reduced costs in the z-row are … 0 1cQ1 = -3,   cQ2 = -2,
 c = -1, c4 = 0, c5 = 0, c6 = 02. It is also infeasible because at least one of the basic variables 
is negative 1x4 = -3, x5 = -6, x6 = 32.

According to the dual feasibility condition, x5 1=  -62 is the leaving variable. The next table 
shows how the dual optimality condition is used to determine the entering variable.

j = 1 j = 2 j = 3

Nonbasic variable x1 x2 x3

z-row 1cQj2 -3 -2 -1
x5-row, a4j 3 -3 -1

Ratio, @  cQj
a5j @ , a5j 6 0 — 2

3 1

The ratios show that x2 is the entering variable.
The next tableau is obtained by using the familiar row operations, which give

Basic x1 x2 x3 x4 x5 x6 Solution

z -5 0 -1
3 0 -2

3 0 4

x4 -4 0 -2
3

1 -1
3

0 -1

x2 -1 1 1
3 0 -1

3 0 2
x6 2 0 2

3 0 1
3 1 1

Ratio 5
4 — 1

2 — 2 —



184   Chapter 4    Duality and Post-Optimal Analysis

The preceding tableau shows that x4 leaves and x3 enters, thus yielding the following tab-
leau, which is both optimal and feasible:

Basic x1 x2 x3 x4 x5 x6 Solution

z -3 0 0 -1
2 -1

2
0 9

2

x3 6 0 1 -3
2

1
2 0 3

2

x2 -3 1 0 1
2 -1

2 0 3
2

x6 -2 0 0 1 0 1 0

Notice how the dual simplex works. In all the iterations, optimality is maintained (all reduced 
costs are … 0) as each new iteration moves the solution toward feasibility. At iteration 3, feasibil-
ity is restored for the first time, and the process ends with the optimal feasible solution given as 
x1 = 0, x2 = 3

2 , x2 = 3
2, and z = 9

2 .

tora moment

TORA provides a tutorial module for the dual simplex method. From the SOLVE>MODIFY 
menu select Solve 1  Algebraic 1  Iterations 1  Dual Simplex . Remember that you need to 
convert 1= 2 constraints to inequalities. You do not need to convert 1Ú 2 constraints because 
TORA will do the conversion internally.

4.4.2  generalized simplex algorithm

The (primal) simplex algorithm in Chapter 3 starts feasible but nonoptimal. The dual 
simplex (Section 4.4.1) starts better than optimal and infeasible. What if an LP model 
starts both nonoptimal and infeasible? Of course we can use artificial variables and arti-
ficial constraints to secure a starting solution. But this really is not necessary because the 
key idea of both the primal and dual simplex methods is that the optimum feasible solu-
tion, when finite, always occurs at a corner point (or a basic solution). This suggests that 
a new simplex algorithm (developed by this author) can be developed based on tandem 
use of the dual simplex and the primal simplex methods. First, use the dual algorithm to 
get rid of infeasibility (without worrying about optimality). Once feasibility is restored, 
the primal simplex can be used to find the optimum. Alternatively, we can first apply the 
primal simplex to secure optimality (without worrying about feasibility) and then use the 
dual simplex to seek feasibility.

example 4.4-2 

Consider the maximization LP model of Problem 4-38(a), repeated here for convenience.

Maximize z = 2x3

subject to

-x1 + 2x2 - 2x3 Ú 8

-x1 + x2 + x3 … 4

2x1 - x2 + 4x3 … 10

x1, x2, x3 Ú 0
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The following tableau format of the problem shows that the starting basic solution (x4, x5, x6) 
is both nonoptimal (because of nonbasic x3) and infeasible (because of basic x4).

Basic x1 x2 x3 x4 x5 x6 Solution

z 0 0 -2 0 0 0 0

x4 1 -2 2 1 0 0 -8
x5 -1 1 1 0 1 0 4
x6 2 -1 4 0 0 1 10

We can solve the problem without the use of any artificial variables or artificial constraints, 
first securing feasibility using the dual simplex and then seeking optimality using the primal  simplex. 
The  dual simplex selects x4 as the leaving variable. The entering variable can be any  nonbasic 
 variable with a negative constraint coefficient in the x4-row (recall that if no negative constraint 
coefficient exists, the problem has no feasible solution). In the present example, x2 has a negative co-
efficient in the x4-row and is selected as the entering variable. The next tableau is thus computed as

Basic x1 x2 x3 x4 x5 x6 Solution

z 0 0 -2 0 0 0 0

x2 -1
2

1 -1 -1
2

0 0 4

x5 -1
2

0 2 1
2

1 0 0

x6 3
2

0 3 -1
2

0 1 14

The new solution is now feasible but nonoptimal, and we can use the primal simplex to de-
termine the optimal solution. In general, had we not restored feasibility in the preceding tableau, 
we would repeat the procedure as necessary until feasibility is satisfied or until there is evidence 
that the problem has no feasible solution.

remarks. The essence of the generalized simplex method in Example 4.4-2 is that the simplex 
algorithm is not rigid. The literature abounds with variations of the simplex method (e.g., the 
primal–dual method, the criss-cross method, and the multiplex method) that give the impression 
that each procedure is fundamentally different, when, in fact, they all seek corner-point (basic) 
solutions, with a slant toward automated computations and, perhaps, computational efficiency.

4.5  Post-oPtimal analysis

In Section 3.6, we dealt with the sensitivity of the optimum solution by determining 
the ranges for the different LP parameters that would keep the optimum basic vari-
ables unchanged. In this section, we deal with making changes in the parameters of the 
model and finding the new optimum solution. Take, for example, a case in the poultry 
industry, where an LP model is commonly used to determine the optimal feed mix per 
broiler (see Example 2.2-2). The weekly consumption per broiler varies from .26 lb 
(120 g) for a 1-week-old bird to 2.1 lb (950 g) for an 8-week-old bird. Additionally, the 
cost of the ingredients in the mix may change periodically. These changes require peri-
odic re-calculation of the optimum solution. Post-optimal analysis determines the new 
solution in an efficient way. The new computations are rooted in the use duality and the 
primal–dual relationships given in Section 4.2.
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The following table lists the cases that can arise in post-optimal analysis and the 
actions needed to obtain the new solution (assuming one exists):

Condition after parameters change Recommended action

Current solution remains optimal and feasible. No further action is necessary.
Current solution becomes infeasible. Use dual simplex to recover feasibility.
Current solution becomes nonoptimal. Use primal simplex to recover optimality.
Current solution becomes both nonoptimal  
 and infeasible.

Use the generalized simplex method to recover  
 optimality and feasibility.

The first three cases are investigated in this section. The fourth case, being a combina-
tion of cases 2 and 3, is treated in Problem 4-47.

The TOYCO model of Example 4.3-2 will be used to explain the different pro-
cedures. Recall that the problem deals with the assembly of three types of toys: trains, 
trucks, and cars. Three operations are involved in the assembly. The model and its dual 
are repeated here for convenience.

TOYCO primal TOYCO dual

Maximize z = 3x1 + 2x2 + 5x3

subject to
Minimize z = 430y1 + 460y2 + 420y3

subject to
x1 + 2x2 + x3 … 430 1Operation 12

3x1 + 2x3 … 460 1Operation 22
x1 + 4x2 … 420 1Operation 32

x1, x2, x3 Ú 0

y1 + 3y2 + y3 Ú 3
2y1 + 4y3 Ú 2

y1 + 2y2 Ú 5
y1, y2, y3 Ú 0

Optimal solution: Optimal solution:
x1 = 0, x2 = 100, x3 = 230, z = $1350 y1 = 1, y2 = 2, y3 = 0, w = $1350

The associated optimum tableau for the primal is given as

Basic x1 x2 x3 x4 x5 x6 Solution

Z 4 0 0 1 2 0 1,350

X2 -1
4

1 0 1
2 -1

4
0 100

X3
3
2 0 1 0 1

2 0 230

X6 2 0 0 -2 1 1 20

4.5.1  Changes affecting feasibility

The feasibility of the current optimum solution is affected only if the right-hand 
side of the constraints is changed, or a new constraint is added to the model. In both 
cases, infeasibility occurs when one or more of the current basic variables become  
negative.
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Changes in the right-hand side. This change requires recomputing the right-hand side 
of the tableau using Formula 1 in Section 4.2.4:

aNew right@hand side of
tableau in iteration i

b = a Inverse in
iteration  i

b * a  New right@hand
side of constraints

b

Recall that the right-hand side of the tableau gives the values of the basic variables.

example 4.5-1 

Situation 1. Suppose that TOYCO is increasing the daily capacity of operations 1, 2, and 3 to 
600, 640, and 590 minutes, respectively. How would this change affect the total revenue?

With these increases, the only change that will take place in the optimum tableau is the right-
hand side of the constraints (and the optimum objective value). Thus, the new basic solution is 
computed as follows: £x2

x3

x6

≥ = £ 1
2 -1

4 0
0 1

2 0
-2 1 1

≥  £600
640
590

≥ = £140
320
 30

≥
Thus, the current basic variables, x2, x3, and x6, remain feasible at the new values 140, 320, and 30 
units, respectively. The associated optimum revenue is $1880.

Situation 2. Although the new solution is appealing from the standpoint of increased revenue, 
TOYCO recognizes that its implementation may take time. Another proposal shifts the slack 
capacity of operation 3 1x6 = 20 minutes2 to the capacity of operation 1. How would this change 
impact the optimum solution?

The capacity mix of the three operations changes to 450, 460, and 400 minutes, respectively. 
The resulting solution is £x2

x3

x6

≥ = £ 1
2 -1

4 0
0 1

2 0
-2 1 1

≥  £450
460
400

≥ = £ 110
230
-40

≥
The resulting solution is infeasible because x6 = -40, which requires applying the dual sim-

plex method to recover feasibility. First, we modify the right-hand side of the tableau as shown by 
the shaded column. Notice that the associated value of z = 3 * 0 + 2 * 110 + 5 * 230 = $1370.

Basic x1 x2 x3 x4 x5 x6 Solution

z 4 0 0 1 2 0 1370

x2 -1
4 1 0 1

2 -1
4 0  110

x3
3
2 0 1 0 1

2 0  230

x6 2 0 0 -2 1 1  -40

Using the dual simplex, x6 leaves and x4 enters, which yields the following optimal feasible tab-
leau (in general, the dual simplex may take more than one iteration to recover feasibility).
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Basic x1 x2 x3 x4 x5 x6 Solution

z 5 0 0 0 5
2

1
2 1350

x2 1
4

1 0 0 0 1
4

100

x3
3
2 0 1 0 1

2 0 230

x4 -1 0 0 1 -1
2 -1

2 20

The optimum solution (in terms of x1, x2, and x3) remains the same as in the original model. 
This means that the proposed shift in capacity allocation is not advantageous because it simply 
shifts the surplus capacity from operation 3 to a surplus capacity in operation 1. The conclusion 
then is that operation 2 is the bottleneck, and it may be advantageous to shift the surplus to 
 operation 2 instead (see Problem 4-42).

addition of a new constraint. The addition of a new constraint can never improve 
the current optimum objective value. If the new constraint is redundant, it will have no 
effect on the current solution. Otherwise, the current solution does not satisfy the new 
constraint, and a new solution is determined by the dual simplex method.

example 4.5-2 

Situation 1. Suppose that TOYCO is changing the design of its toys and that the change will 
require the addition of a fourth assembly operation. The daily capacity of the new operation is 
500 minutes and the times per unit for the three products on this operation are 3, 1, and 1 minutes, 
respectively.

The new constraint for operation 4 is

3x1 + x2 + x3 … 500

This constraint is redundant because it is satisfied by the current optimum solution x1 = 0, 
x2 = 100, and x3 = 230. Hence, the current optimum solution remains unchanged.

Situation 2. Suppose, instead, that TOYCO unit times on the fourth operation are changed to 3, 
3, and 1 minutes, respectively. All the remaining data of the model remain the same.

The new constraint for operation 4 is

3x1 + 3x2 + x3 … 500

This constraint is not satisfied by the current optimum solution; namely, for x1 = 0, x2 = 100, 
and x3 = 230,

x7 = 500 - 13 * 0 + 3 * 100 + 1 * 2302 = -30

This means that the new constraint is not redundant. Off hand, this is not good news be-
cause it indicates that the additional constraint will worsen the optimum objective value 
(remember the intuitive argument that additional constraints can never improve the opti-
mum  objective value). Nonetheless, to obtain the new solution without having to solve the 
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problem completely anew, the constraint is added to the current optimum tableau as follows 
(x7 is a slack variable):

Basic x1 x2 x3 x4 x5 x6 x7 Solution

z 4 0 0 1 2 0 0 1350

x2 -1
4

1 0 1
2 -1

4
0 0 100

x3
3
2 0 1 0 1

2 0 0 230

x6 2 0 0 -2 1 1 0 20

x7 3 3 1 0 0 0 1 500

This means that that x7 = 500 is not consistent with the values of x1, x2 and x3 in the rest of the 
tableau. To effect consistency, the x7-row must be “conditioned” by performing the following 
row operations:

New x7@row = Old x7@row - [3 * 1x2@row2 + 1 * 1x3@row2]

These operations are the same as the ones used in the M-method (Section 3.4.1) to zero out the 
coefficients of the artificial variables in the objective function and are exactly equivalent to using 
the substitutions

 x2 = 100 - 1-1
4 x1 + 1

2 x4 - 1
4 x52

 x3 = 230 - 13
2 x1 + 1

2 x52
The new (consistent) tableau is thus given as

Basic x1 x2 x3 x4 x5 x6 x7 Solution

z 4 0 0 1 2 0 0 1350

x2 -1
4

1 0 1
2 -1

4
0 0 100

x3
3
2 0 1 0 1

2 0 0 230

x6 2 0 0 -2 1 1 0 20

x7
9
4 0 0 -3

2
1
4 0 1 -30

Application of the dual simplex method will produce the new optimum solution x1 = 0,  
x2 = 90, x3 = 230, and z = $1330 (verify!). The solution shows that the addition of the non-
redundant constraint of operation 4 is not recommended because, as expected, it lowers the 
revenues from $1350 to $1330.

4.5.2  Changes affecting optimality

This section considers making changes in the objective coefficients and the addition of 
a new economic activity (variable).

Changes in the objective function coefficients. These changes affect only the opti-
mality of the solution and require recomputing the z-row coefficients (reduced costs) 
according to the following procedure:

1. Compute the dual values using Method 2, Section 4.2.3.
2. Substitute the new dual values in Formula 2, Section 4.2.4, to determine the new 

reduced costs (z-row coefficients).
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If the new z-row satisfies the optimality condition, the solution remains unchanged 
(the optimum objective value may change, however). If it is not, the primal simplex is 
used to recover optimality.

example 4.5-3 

Situation 1. In the TOYCO model, suppose that the company is instituting a revised pricing 
policy to meet the competition. The new unit revenues are $2, $3, and $4 for train, truck, and car 
toys, respectively.

The new objective function is

Maximize z = 2x1 + 3x2 + 4x3

Thus,

1New objective coefficients of basic x2, x3, and x62 = 13, 4, 02
Using Method 2, Section 4.2.3, the new dual variables are computed as

1y1, y2, y32 = 13, 4, 02£ 1
2 -1

4 0
 0 1

2 0
-2 1 1

≥ = 13
2, 54, 02

The z-row coefficients are determined as the difference between the left- and right-hand 
sides of the dual constraints (Formula 2, Section 4.2.4). It is not necessary to recompute the 
objective-row coefficients of the basic variables (x2, x3, and x6) because they are always zero 
regardless of any changes made in the objective coefficients (verify!).

 1Reduced cost of x12 = y1 + 3y2 + y3 - 2 = 3
2 + 315

42 + 0 - 2 = 13
4

 1Reduced cost of x42 = y1 - 0 = 3
2

 1Reduced cost of x52 = y2 - 0 = 5
4

Note that the right-hand side of the first dual constraint is 2, the new coefficient in the modified 
objective function.

The computations show that the current solution, x1 = 0 train, x2 = 100 trucks, and  
x3 = 230 cars, remains optimal. The corresponding new revenue is computed as 2 * 0 + 3 *  
100 + 4 * 230 = $1220. The new pricing policy is not recommended because it lowers revenue.

Situation 2. Suppose now that the TOYCO objective function is changed to

Maximize z = 6x1 + 3x2 + 4x3

Will the optimum solution change?
We have

1y1, y2, y32 = 13, 4, 02£ 1
2 -1

4 0
 0 1

2 0
-2 1 1

≥ = 13
2, 54, 02

 1Reduced cost of x12 = y1 + 3y2 + y3 - 6 = 3
2 + 315

42 + 0 - 6 = -3
4

 1Reduced cost of x42 = y1 - 0 = 3
2

 1Reduced cost of x52 = y2 - 0 = 5
4

The new reduced cost of x1 shows that the current solution is not optimum.



4.5   Post-Optimal Analysis   191

To determine the new solution, the z-row is changed as highlighted in the following tableau:

Basic x1 x2 x3 x4 x5 x6 Solution

z -3
4

0 0 3
2

5
4

0 1220

x2 -1
4

1 0 1
2 -1

4
0 100

x3 3
2

0 1 0 1
2

0 230

x6 2 0 0 -2 1 1 20

The highlighted elements are the new reduced costs and the new objective value. All the re-
maining elements are the same as in the original optimal tableau. The new optimum solution is 
then determined by letting x1 enter and x6 leave, which yields the solution x1 = 10, x2 = 102.5,  
x3 = 215, and z = $1227.50 (verify!). Although the new solution recommends the production of 
all three toys, the optimum revenue is less than that when only two toys are manufactured.

addition of a new activity. A new activity signifies adding a new variable to the model. 
Intuitively, the addition of a new activity is desirable only if it is profitable. This condition 
can be checked by using Formula 2, Section 4.2.4, to compute the reduced cost of the new 
variable. The new activity is not profitable if it satisfies the optimality condition.

example 4.5-4 

TOYCO recognizes that toy trains are not currently in production because they are not profitable. 
The company wants to replace toy trains with a new product, a toy fire engine, to be assembled on 
the existing facilities. TOYCO estimates the revenue per toy fire engine to be $4 and the assembly 
times per unit to be 1 minute on each of operations 1 and 2, and 2 minutes on operation 3.

Let x7 represent the new fire engine product. Given that 1y1, y2, y32 = 11, 2, 02 are the op-
timal dual values, we get

1Reduced cost of x72 = 1y1 + 1y2 + 2y3 - 4 = 1 * 1 + 1 * 2 + 2 * 0 - 4 = -1

The result shows that it is profitable to include x7 in the optimal basic solution. To obtain the 
new optimum, we first compute its column constraint using Formula 1, Section 4.2.4, as

x7@constraint colum = £ 1
2 -1

4 0
0 1

2 0
-2 1 1

≥ £1
1
2
≥ = £ 1

4
1
2

1
≥

Thus, the current simplex tableau must be modified as follows2

Basic x1 x2 x3 x7 x4 x5 x6 Solution

z 4 0 0 -1 1 2 0 1350

x2 -1
4 1 0 1

4
1
2 -1

4 0 100

x3
3
2 0 1 1

2 0 1
2 0 230

x6 2 0 0 1 -2 1 1 20

2As a side observation, variable x1 can be eliminated from the tableau altogether, thus reducing the size of 
the tableau and hence the associated amount of computations.
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The new optimum is determined by letting x7 enter the basic solution, in which case x6 must 
leave. The new solution is x1 = 0, x2 = 0, x3 = 125, x7 = 210, and z = $1465 1verify!2, which 
improves the revenues by $115.

remarks. The heart of the post-optimal computations is the inverse matrix of the opti-
mal tableau; meaning that for the mathematics to work correctly, post-optimal sensitivity 
analysis cannot include changes in the data of the original problem that affect the inverse 
matrix (recall from Sections 4.2.2 and 4.2.3 that the inverse is computed from the basic 
matrix composed of constraint columns of the original problem). So, even though the post-
optimal analysis in this chapter is more encompassing than the presentation in Sections 
3.6.2 and 3.6.3 in that it allows simultaneous changes in both the objective function and the 
constraints, it still has the shortcoming of not allowing changes in the constraint columns 
of basic variables. And herein lies a typical problem where mathematics is not sufficiently 
responsive to practical needs; meaning that, in a practical sense, we cannot use the technical 
excuse that the changes cannot be made “because the associated variable is basic”! Instead, 
the changes have to be tested in a different manner and, as stated in Chapter 3, a viable 
alternative in this case calls for solving the proposed LP scenario totally anew.
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Problems 

Section Assigned Problems Section Assigned Problems

4.1 4-1 to 4-6 4.3.2 4-31 to 4-34
4.2.1 4-7 to 4-7 4.4.1 4-35 to 4-39
4.2.2 4-8 to 4-9 4.4.2 4-40 to 4-41
4.2.3 4-10 to 4-18 4.5.1 4-42 to 4-49
4.2.4 4-19 to 4-27 4.5.2 4-50 to 4-56
4.3.1 4-28 to 4-30

 4-1.  In Example 4.1-1, derive the associated dual problem if the sense of optimization in the 
primal problem is changed to minimization.

*4-2.  In Example 4.1-2, derive the associated dual problem given that the primal problem is 
augmented with a third constraint, 3x1 + x2 = 4.

  4-3.  In Example 4.1-3, show that even if the sense of optimization in the primal is changed 
to minimization, an unrestricted primal variable always corresponds to an equality dual 
constraint.
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 4-4.  Write the dual for each of the following primal problems:
(a) Maximize z = 66x1 - 22x2

subject to

-x1 + x2 … -2

2x1 + 3x2 … 5

x1, x2 Ú 0

(b) Minimize z = 6x1 + 3x2

subject to

6x1 - 3x2 + x3 Ú 25

3x1 + 4x2 + x3 Ú 55

x1, x2, x3 Ú 0

(c) Maximize z = x1 + x2

subject to

2x1 + x2 = 5

3x1 - x2 = 6

x1, x2 unrestricted
   *4-5.  Consider Example 4.1-1. The application of the simplex method to the primal requires 

the use of an artificial variable in the second constraint of the standard primal to secure 
a starting basic solution. Show that the presence of an artificial primal in equation form 
variable does not affect the definition of the dual because it leads to a redundant dual 
constraint.

 4-6.  True or False?
(a) The dual of the dual problem yields the original primal.

(b) If the primal constraint is originally in equation form, the corresponding dual 
 variable is necessarily unrestricted.

(c) If the primal constraint is of the type … , the corresponding dual variable will  
be  nonnegative (nonpositive) if the primal objective is maximization  
(minimization).

(d) If the primal constraint is of the type Ú , the corresponding dual variable will  
be  nonnegative (nonpositive) if the primal objective is minimization (maximization).

(e) An unrestricted primal variable will result in an equality dual constraint.
 4-7.  Consider the following matrices:

a = £1 4
2 5
3 6

≥, p1 = a10
20

b , p2 = £10
20
30

≥
V1 = 111, 222, V2 = 1-2, -4, -62

In each of the following cases, indicate whether the given matrix operation is legitimate, 
and, if so, calculate the result.

*(a) aV1

(b) ap1

*
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(c) ap2

(d) V1a

*(e) V2a

(f) p1p 2
(g) V1p1

 4-8.  Consider the optimal tableau of Example 3.3-1.
*(a) Identify the optimal inverse matrix.

(b) Show that the right-hand side equals the inverse multiplied by the original  
right-hand side vector of the original constraints.

 4-9.  Repeat Problem 4-8 for the last tableau of Example 3.4-2.
4-10.  Find the optimal value of the objective function for the following problem by inspecting 

only its dual. (Do not solve the dual by the simplex method.)

Minimize z = 10x1 + 4x2 + 5x3

subject to

5x1 - 7x2 + 3x3 Ú 20

x1, x2, x3 Ú 0

4-11.  Solve the dual of the following problem, and then find its optimal solution from the 
solution of the dual. Does the solution of the dual offer computational advantages over 
solving the primal directly?

Minimize  z = 50x1 + 60x2 + 30x3

subject to

5x1 + 5x2 + 3x3 Ú 50

x1 + x2 - x3 Ú 20

7x1 + 6x2 - 9x3 Ú 30

5x1 + 5x2 + 5x3 Ú 35

2x1 + 4x2 - 15x3 Ú 10

12x1 + 10x2 Ú 90

x2 - 10x3 Ú 20

x1, x2, x3 Ú 0

*4-12.  Consider the following LP:

Maximize z = 5x1 + 2x2 + 3x3

subject to

x1 + 5x2 + 2x3 = 15

x1 - 5x2 - 6x3 … 20

x1, x2, x3 Ú 0



Given that the artificial variable x4 and the slack variable x5 form the starting basic variables 
and that M was set equal to 100 when solving the problem, the optimal tableau is given as:

Basic x1 x2 x3 x4 x5 Solution

z 0 23 7 105 0 75

x1 1 5 2 1 0  15
x5 0 -10 -8 -1 1   5

Write the associated dual problem, and determine its optimal solution in two ways.
4-13.  Consider the following LP:

Minimize z = 4x1 + x2

subject to

3x1 + x2 = 30

4x1 + 3x2 Ú 60

x1 + 2x2 … 40

x1, x2 Ú 0

The starting solution consists of artificial x4 and x5 for the first and second constraints 
and slack x6 for the third constraint. Using M = 100 for the artificial variables, the 
optimal tableau is given as

Basic x1 x2 x3 x4 x5 x6 Solution

z 0 0 0 -98.6 -100 - .2 34

x1 1 0 0 .4 0 - .2  4
x2 0 1 0 .2 0 .6 18
x3 0 0 1 1 -1 1 10

Write the associated dual problem, and determine its optimal solution in two ways.
4-14.  Consider the following LP:

Maximize z = 2x1 + 4x2 + 4x3 - 3x4

subject to

x1 + x2 + x3 = 4

x1 + 4x2 + x4 = 8

x1, x2, x3, x4 Ú 0

Using x3 and x4 as starting variables, the optimal tableau is given as

Basic x1 x2 x3 x4 Solution

z 2 0 0 3 16

x3 .75 0 1 - .25  2
x2 .25 1 0 .25  2

Write the associated dual problem, and determine its optimal solution in two ways.
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*4-15.  Consider the following LP:

Maximize z = x1 + 5x2 + 3x3

subject to

x1 + 2x2 + x3 = 3

2x1 - x2 = 4

x1, x2, x3 Ú 0

The starting solution consists of x3 in the first constraint and an artificial x4 in the second 
constraint with M = 100. The optimal tableau is given as

Basic x1 x2 x3 x4 Solution

z 0 2 0 99 5

x3 1 2.5 1 - .5 1
x1 0 - .5 0 .5 2

Write the associated dual problem, and determine its optimal solution in two ways.
4-16.  Consider the following set of inequalities:

2x1 + 3x2 … 12

-3x1 + 2x2 … -4

3x1 - 5x2 … 2

x1 unrestricted

x2 Ú 0

A feasible solution can be found by augmenting the trivial objective function, maximize 
z = x1 + x2, and then solving the problem. Another way is to solve the dual, from which 
a solution for the set of inequalities can be found. Apply the two methods.

4-17.  Estimate a range for the optimal objective value for the following LPs:
*(a) Minimize z = 5x1 + 2x2

subject to

x1 - x2 Ú 3

2x1 + 3x2 Ú 5

x1, x2 Ú 0

(b) Maximize z = x1 + 5x2 + 3x3

subject to

x1 + 2x2 + x3 = 30

2x1 - x2 = 40

x1, x2, x3 Ú 0



(c) Maximize z = 2x1 + x2

subject to

x1 - x2 … 2

2x1 … 8

x1, x2 Ú 0

(d) Maximize z = 3x1 + 2x2

subject to

2x1 + x2 … 3

3x1 + 4x2 … 12

x1, x2 Ú 0

4-18.  In Problem 4-17(a), let y1 and y2 be the dual variables. Determine whether the following 
pairs of primal–dual solutions are optimal:

*(a) (x1 = 3, x2 = 1; y1 = 4, y2 = 1)

(b) (x1 = 4, x2 = 1; y1 = 1, y2 = 0)

(c) (x1 = 3, x2 = 0; y1 = 5, y2 = 0)
4-19.  Generate the first simplex iteration of Example 4.2-1 (you may use TORA’s Iterations  

1 M@method  with M = 100 for convenience), then use Formulas 1 and 2 to verify all the 
elements of the resulting tableau.

4-20.  Consider the following LP model:

Maximize z = 4x1 + 14x2

subject to

2x1 + 7x2 + x3 = 21

7x1 + 2x2 + x4 = 21

x1, x2, x3, x4 Ú 0

Check the optimality and feasibility of each of the following basic solutions:

(a) Basic variables =  1x2, x42, Inverse =  a
1
7 0

-2
7 1

b

(b) Basic variables =  1x2, x32, Inverse =  a0 1
2

1 -7
2
b

(c) Basic variables =  1x2, x12, Inverse =  a
7
45 - 2

45

- 2
45 7

45
b

(d) Basic variables =  1x1, x42, Inverse =  a
1
2 0

-7
2 1

b
4-21.  Consider the following LP model:

Maximize z = 3x1 + 2x2 + 5x3

*
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subject to

x1 + 2x2 + x3 + x4 = 30

3x1 + 2x3 + x5 = 60

 x1 + 4x2 + x6 = 20

x2, x2, x3, x4, x5, x6 Ú 0

Check the optimality and feasibility of the following basic solutions:

(a) Basic variables =  1x4, x3, x62, Inverse =  °
1 -1

2 0
0 1

2 0
0   0 1

¢

(b) Basic variables =  1x2, x3, x12, Inverse =  °
 14 -1

8
1
8

 3
2 -1

4 -3
4

-1 1
2

1
2

¢

(c) Basic variables =  1x2, x3, x62, Inverse =  °
1
2 -1

4 0
0 1

2 0
-2 1 1

¢

*4-22.  Consider the following LP model:

Minimize z = 2x1 + x2

subject to

3x1 + x2 - x3 = 3

4x1 + 3x2 - x4 = 6

 x1 + 2x2 + x5 = 3

x1, x2, x3, x4, x5 Ú 0

Compute the entire simplex tableau associated with the following basic solution, and 
check it for optimality and feasibility.

Basic variables = 1x1, x2, x52, Inverse =  °
3
5 -1

5 0
-4

5 3
5 0

1 -1 1
¢

4-23.  Consider the following LP model:

Maximize z = 5x1 + 12x2 + 4x3

subject to

x1 + 2x2 + x3 + x4 = 5

2x1 - x2 + 3x3 = 1

x1, x2, x3, x4 Ú 0



(a) Identify the best solution from among the following basic feasible solutions:

(i) Basic variables = 1x4, x32, Inverse =  °1 -1
3

0 1
3

¢

(ii) Basic variables = 1x2, x12, Inverse =  °
2
5 -1

5

1
5 2

5

¢

(iii) Basic variables = 1x2, x32, Inverse =  °
3
7 -1

7

1
7 2

7

¢

(b) Is the solution obtained in (a) optimum for the LP model?
4-24.  Consider the following LP model:

Maximize z = 5x1 + 2x2 + 3x3

subject to

x1 + 5x2 + 2x3 … b1

x1 - 5x2 - 6x3 … b2

x1, x2, x3 Ú 0

The following optimal tableau corresponds to specific values of b1 and b2:

Basic x1 x2 x3 x4 x5 Solution

z 0 a 7 d e 15

x1 1 b 2 1 0  3
x5 0 c -8 -1 1  1

Determine the following:
(a) The right-hand-side values, b1 and b2.

(b) The optimal dual solution.

(c) The elements a, b, c, d, and e.
*4-25.  The following is the optimal tableau for a maximization LP model with three (…) 

 constraints and all nonnegative variables. The variables x3, x4, and x5 are the slacks associ-
ated with the three constraints. Determine the associated optimal objective value in two 
different ways by using the primal and dual objective functions.

Basic x1 x2 x3 x4 x5 Solution

z 0 0 0 3 2 ?

x3 0 0 1 1 -1 2
x2 0 1 0 1   0 6
x1 1 0 0 -1   1 2
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4-26.  Consider the following LP:

Maximize z = 2x1 + 4x2 + 4x3 - 3x4

subject to

x1 + x2 + x3 = 4

x1 + 4x2 + x4 = 8

x1, x2, x3, x4 Ú 0

Use the dual problem to show that the basic solution (x1, x2) is not optimal.
4-27.  Show that Method 1 in Section 4.2.3 for determining the optimal dual values is actually 

based on the Formula 2 in Section 4.2.4.
4-28.  In Example 4.3-1, compute the change in the optimal revenue in each of the following 

cases (use TORA output to obtain the feasibility ranges):
(a) The constraint for raw material M1 (resource 1) is 6x1 + 4x2 … 20.

(b) The constraint for raw material M2 (resource 2) is x1 + 2x2 … 5.

(c) The market condition represented by resource 4 is x2 … 4.
*4-29.  NWAC Electronics manufactures four types of simple cables for a defense contractor. 

Each cable must go through four sequential operations: splicing, soldering, sleeving, and 
inspection. The following table gives the pertinent data of the situation:

Minutes per unit

Cable Splicing Soldering Sleeving Inspection Unit revenue ($)

SC320 10.5 20.4 3.2 5.0 9.40
SC325 9.3 24.6 2.5 5.0 10.80
SC340 11.6 17.7 3.6 5.0 8.75
SC370 8.2 26.5 5.5 5.0 7.80

Daily capacity (minutes) 4,800.0 9,600.0 4,700.0 4,500.0

The contractor guarantees a minimum production level of 100 units for each of the four 
cables.
(a) Formulate the problem as a linear programming model, and determine the optimum 

production schedule.

(b) Based on the dual prices, do you recommend making increases in the daily capacities  
of any of the four operations? Explain.

(c) Does the minimum production requirements for the four cables represent an advan-
tage or a disadvantage for NWAC Electronics? Provide an explanation based on the 
dual prices.

(d) Can the present unit contribution to revenue as specified by the dual price be  
guaranteed if we increase the capacity of soldering by 10%?

4-30.  BagCo produces leather jackets and handbags. A jacket requires 8 m2 of leather, and 
a handbag only 2 m2. The labor requirements for the two products are 12 and 5 hours, 
 respectively. The current weekly supplies of leather and labor are limited to 600 m2 and 
925 hours, respectively. The company sells the jackets and handbags at $350 and $120, 



respectively. The objective is to determine the production schedule that maximizes the 
net revenue.
(a) Determine the optimum solution.

(b) BagCo is considering an expansion of production. What is the maximum purchase 
price the company should pay for additional leather? For additional labor?

4-31.  In Example 4.3-2, suppose that for toy trains the per-unit time of operation 2 can be 
reduced from 3 minutes to at most 1.3 minutes. By how much must the per-unit time of 
operation 1 be reduced to make toy trains just profitable?

*4-32.  In Example 4.3-2, suppose that TOYCO is studying the possibility of introducing a fourth 
toy: fire trucks. The assembly does not make use of operation 1. Its unit assembly times 
on operations 2 and 3 are 1 and 3 minutes, respectively. The revenue per unit is $4. Would 
you advise TOYCO to introduce the new product?

*4-33.  JoShop uses lathes and drill presses to produce four types of machine parts, PP1, PP2, 
PP3, and PP4. The following table summarizes the pertinent data:

Machining time in minutes per unit of

Machine PP1 PP2 PP3 PP4 Capacity (min)

Lathes 2 5 3 4 5300
Drill presses 3 4 6 4 5300

Unit revenue ($) 3 6 5 4

For the parts that are not produced by the present optimum solution, determine the rate 
of deterioration in the optimum revenue per unit increase of each of these products.

4-34.  Consider the optimal solution of JoShop in Problem 4-33. The company estimates that 
for each part that is not produced (per the optimum solution), an across-the-board 20% 
reduction in machining time can be realized through process improvements. Would these 
improvements make these parts profitable? If not, what is the minimum percentage 
reduction needed to realize profitability?

4-35.  Consider the solution space in Figure 4.3, where it is desired to find the optimum extreme 
point that uses the dual simplex method to minimize z = 2x1 + x2. The optimal solution 
occurs at point F = 10.5, 1.52 on the graph.
(a) Can the dual simplex start at point A?

*(b) If the starting basic (infeasible but better than optimum) solution is given by point 
G with the optimum given by point F, would it be possible for the iterations of the 
dual simplex method to follow the path G S E S F? Explain.

(c) If the starting basic (infeasible) solution starts at point L, identify a possible path of 
the dual simplex method that leads to the optimum feasible point at point F.

4-36.  Generate the dual simplex iterations for the following problems (using TORA for 
 convenience), and trace the path of the algorithm on the graphical solution space.
(a) Minimize z = 2x1 + 3x2

subject to

2x1 + 2x2 … 3

x1 + 2x2 Ú 1

x1, x2 Ú 0
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(b) Minimize z = 5x1 + 6x2

subject to

x1 + x2 Ú 20

4x1 + x2 Ú 40

x1, x2 Ú 0

(c) Minimize z = 4x1 + 2x2

subject to

x1 + x2 = 10

3x1 - x2 Ú 20

x1, x2 Ú 0

(d) Minimize z = 2x1 + 3x2

subject to

2x1 + x2 Ú 30

x1 + x2 = 20

x1, x2 Ú 0

4-37.  Dual Simplex with Artificial Constraints. Consider the following problem:

Maximize z = 2x1 - x2 + x3

F
C

K

D

x1

x2

E

L21

21

1

2

3

4

1 2 3

A B

4 5 6 7

J

I

G

H

FiguRe 4.3 

Solution space for Problem 4-35



subject to

2x1 + 3x2 - 5x3 Ú 4

-x1 + 9x2 - x3 Ú 3

4x1 + 6x2 + 3x3 … 8

x1, x2, x3 Ú 0

The starting basic solution consisting of surplus variables x4 and x5 and slack  variable 
x6 is infeasible because x4 = -4 and x5 = -3. However, the dual simplex is not appli-
cable directly, because x1 and x3 do not satisfy the maximization optimality condition. 
Show that by adding the artificial constraint x1 + x3 … M (where M is sufficiently 
large not to eliminate any feasible points in the original solution space), and then 
using the new constraint as a pivot row, the selection of x1 as the entering variable 
(because it has the most negative objective coefficient) will render an all-optimal 
objective row. Next, carry out the regular dual simplex method on the modified 
problem.

4-38.  Using the artificial constraint procedure introduced in Problem 4-37, solve the following 
problems by the dual simplex method. In each case, indicate whether the resulting solu-
tion is feasible, infeasible, or unbounded.
(a) Maximize z = 2x3

subject to

-x1 + 2x2 - 2x3 Ú 4

-x1 + x2 + x3 … 2

2x1 - x2 + 4x3 … 5

x1, x2, x3 Ú 0

(b) Maximize z = x1 - 3x2

subject to

x1 - x2 … 20

x1 + x2 Ú 40

2x1 - 2x2 Ú 30

x1, x2 Ú 0

*(c) Minimize z = -x1 + x2

subject to

x1 - 4x2 Ú 5

x1 - 3x2 … 1

2x1 - 5x2 Ú 1

x1, x2 Ú 0
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(d) Maximize z = 2x3

subject to

-x1 + 3x2 - 7x3 Ú 50

-x1 + x2 - x3 … 10

3x1 + x2 - 10x3 … 80

x1, x2, x3 Ú 0

4-39.  Solve the following LP in three different ways (use TORA for convenience). Which 
method appears to be the most efficient computationally?

Minimize z = 6x1 + 7x2 + 3x3 + 5x4

subject to

5x1 + 6x2 - 3x3 + 4x4 Ú 12

x2 - 5x3 - 6x4 Ú 10

2x1 + 5x2 + x3 + x4 Ú 8

x1, x2, x3, x4 Ú 0

4-40.  The LP model of Problem 4-38(c) has no feasible solution. Show how this condition is 
detected by the generalized simplex procedure.

4-41.  The LP model of Problem 4-38(d) has no bounded solution. Show how this condition is 
detected by the generalized simplex procedure.

4-42.  In the TOYCO model listed at the start of Section 4.5, would it be more advanta-
geous to assign the 20-minute excess capacity of operation 3 to operation 2 instead 
of operation 1?

4-43.  Suppose that TOYCO wants to change the capacities of the three operations according to 
the following cases:

(a) °
460
500
400

¢ (b) °
500
400
600

¢ (c) °
300
800
200

¢ (d) °
450
700
350

¢

Use post-optimal analysis to determine the optimum solution in each case.
4-44.  Consider the Reddy Mikks model of Example 2.1-1. Its optimal tableau is given  

in Example 3.3-1. If the daily availabilities of raw materials M1 and M2 are increased 
to 35 and 10 tons, respectively, use post-optimal analysis to determine the new  
optimal solution.

*4-45.  The Ozark Farm has 20,000 broilers that are fed for 8 weeks before being marketed. 
The weekly feed per broiler varies according to the following schedule:

Week 1 2 3 4 5 6 7 8

lb/broiler .26 .48 .75 1.00 1.30 1.60 1.90 2.10

For the broiler to reach a desired weight gain in 8 weeks, the feedstuffs must satisfy 
specific nutritional needs. Although a typical list of feedstuffs is large, for simplicity 



we will limit the model to three items only: limestone, corn, and soybean meal. The 
nutritional needs will also be limited to three types: calcium, protein, and fiber. The 
following table summarizes the nutritive content of the selected ingredients together 
with the cost data.

Content (lb) per lb of

Ingredient Calcium Protein Fiber $ per lb

Limestone .380 .00 .00  .12
Corn .001 .09 .02  .45
Soybean meal .002 .50 .08 1.60

The feed mix must contain at least .8% but not more than 1.2% calcium, at least 22% 
protein, and at most 5% crude fiber.

Solve the LP for week 1 and then use post-optimal analysis to develop an optimal 
schedule for the remaining 7 weeks.

4-46.  Show that the 100% feasibility rule in Problem 3-79 (Chapter 3) is based on the 
 condition

aOptimum
 inverse 

b aOriginal right@hand
side vector

b Ú 0

4-47.  Post-Optimal Analysis for Cases Affecting Both Optimality and Feasibility. Suppose 
that you are given the following simultaneous changes in the Reddy Mikks model: 
The revenue per ton of exterior and interior paints are $2000 and $5000, respectively, 
and the maximum daily availabilities of raw materials, M1 and M2, are 35 and 10 tons, 
respectively.
(a) Show that the proposed changes will render the current optimal solution both non-

optimal and infeasible.

(b) Use the generalized simplex algorithm (Section 4.4.2) to determine the new optimal 
feasible solution.

4-48.  In the TOYCO model, suppose the fourth operation has the following specifications: The 
maximum production rate based on 480 minutes a day is 120 units of product 1, 480 units 
of product 2, or 240 units of product 3. Determine the optimal solution, assuming that the 
daily capacity is limited to

*(a) 565 minutes.

(b) 548 minutes.
4-49.  Secondary Constraints. Instead of solving a problem using all of its constraints, we 

can start by identifying the so-called secondary constraints. These are the constraints 
that we suspect are least restrictive in terms of the optimum solution. The model is 
solved using the remaining (primary) constraints. We may then add the secondary  
constraints one at a time. A secondary constraint is discarded if it satisfies the 
 available optimum. The process is repeated until all the secondary constraints are 
accounted for.

Apply the proposed procedure to the following LP:

Maximize z = 5x1 + 6x2 + 3x2
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subject to

5x1 + 5x2 + 3x3 … 50

x1 + x2 - x3 … 20

7x1 + 6x2 - 9x3 … 30

5x1 + 5x2 + 5x3 … 35

12x1 + 6x2 … 90

x2 - 9x3 … 20

x1, x2, x3 Ú 0
4-50.  Investigate the optimality of the TOYCO solution for each of the following objective 

functions. Where necessary, use post-optimal analysis to determine the new optimum. 
(The optimum tableau of TOYCO is given at the start of Section 4.5.)
(a) z = 4x1 + 2x2 + 8x3

(b) z = 3x1 + 6x2 + x3

(c) z = 16x1 + 6x2 + 18x3

4-51.  Investigate the optimality of the Reddy Mikks solution (Example 4.3-1) for each of the 
following objective functions. If necessary, use post-optimal analysis to determine the 
new optimum. (The optimal tableau of the model is given in Example 3.3-1.)

*(a) z = 3x1 + 2x2

(b) z = 8x1 + 10x2

*(c) z = 2x1 + 5x2

4-52.  Show that the 100% optimality rule (Problem 3-88, Chapter 3) is derived from 
1reduced costs2 Ú 0 for maximization problems and 1reduced costs2 … 0 for  
minimization problems.

*4-53.  In the original TOYCO model, toy trains are not part of the optimal product mix. The 
company recognizes that market competition will not allow raising the unit price of the 
toy. Instead, the company wants to concentrate on improving the assembly operation 
itself. This entails reducing the assembly time per unit in each of the three operations by a 
specified percentage, p%. Determine the value of p that will make toy trains just profit-
able. (The optimum tableau of the TOYCO model is given at the start of Section 4.5.)

4-54.  In the TOYCO model, suppose that the company can reduce the unit times on opera-
tions 1, 2, and 3 for toy trains from the current levels of 1, 3, and 1 minutes to .5, 1, and .5 
minutes, respectively. The revenue per unit is changed to $4. Determine the new optimum 
solution.

4-55.  In the TOYCO model, suppose that a new toy (fire engine) requires 3, 2, and 4 minutes, 
respectively, on operations 1, 2, and 3. Determine the optimal solution when the revenue 
per unit is given by

*(a) $5. (b) $10.
4-56.  In the Reddy Mikks model, the company is considering the production of a cheaper 

brand of exterior paint whose input requirements per ton include .75 ton of each of raw 
materials M1 and M2. Market conditions still dictate that the excess of interior paint over 
the production of both types of exterior paint be limited to 1 ton daily. The revenue per 
ton of the new exterior paint is $3500. Determine the new optimal solution. (The model 
is explained in Example 4.5-1, and its optimum tableau is given in Example 3.3-1.)
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Chapter 5

transportation Model and Its Variants

Real-Life Application—Scheduling Appointments at Australian Trade Events

The Australian Tourist Commission (ATC) organizes trade events around the world 
to provide a forum for Australian sellers to meet international buyers of tourism 
 products. During these events, sellers are stationed in booths and are visited by  buyers 
according to scheduled appointments. Because of the limited number of time slots 
available in each event and the fact that the number of buyers and sellers can be quite 
large (one such event held in Melbourne in 1997 attracted 620 sellers and 700 buyers), 
ATC attempts to schedule the seller–buyer appointments in advance of the event in a 
manner that maximizes preferences. The model has resulted in greater satisfaction for 
both the buyers and sellers.

Details of the study are presented at the end of the chapter.

5.1 DEfiniTion of ThE TRAnSpoRTATion MoDEL

The problem is represented by the network in Figure 5.1. There are m sources and 
n destinations, each represented by a node. The arcs represent the routes linking the 
sources and the destinations. Arc (i, j) joining source i to destination j carries two pieces 
of information: the transportation cost per unit, cij, and the amount shipped, xij. The 
amount of supply at source i is ai, and the amount of demand at destination j is bj. The 
objective of the model is to minimize the total transportation cost while satisfying all 
the supply and demand restrictions.

Example 5.1-1 

MG Auto has three plants in Los Angeles, Detroit, and New Orleans and two major distribution 
centers in Denver and Miami. The quarterly capacities of the three plants are 1000, 1500, and 
1200 cars, and the demands at the two distribution centers for the same period are 2300 and 1400 
cars. The mileage chart between the plants and the distribution centers is given in Table 5.1.
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The trucking company in charge of transporting the cars charges 8 cents per mile per car. 
Thus, the transportation costs per car on the different routes, rounded to the closest dollar, are 
computed from Table 5.1 as shown in Table 5.2.

The LP model of the problem is

Minimize z = 80x11 + 215x12 + 100x21 + 108x22 + 102x31 + 68x32

subject to

 x11 + x12 = 1000 (Los Angeles)

 x21 + x22 = 1500 (Detroit)

 + x31 + x32 = 1200 (New Oreleans)

 x11 + x21 + x31 = 2300 (Denver)

 x12 + x22 + x32 = 1400 (Miami)

xij Ú 0, i = 1, 2, 3, j = 1, 2

All the constraints are equations because the total supply 1=  1000 + 1500 + 1200 = 3700 cars2 
equals the total demand 1=  2300 + 1400 = 3700 cars2.

a1

a2

bn

b2

b1

c11 : x11

cmn : xmn
am

1 1

Destinations

Units of
demand

Units of
supply

Sources

2 2

m n

·
·
·

·
·
·

FIgure 5.1 

Representation of the transportation model with nodes and arcs

Table 5.1 Mileage Chart

Denver Miami

Los Angeles 1000 2690
Detroit 1250 1350
New Orleans 1275  850

Table 5.2 Transportation Cost per Car

Denver (1) Miami (2)

Los Angeles (1)  $80 $215
Detroit (2) $100 $108
New Orleans (3) $102  $68
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The special structure of the transportation problem allows a compact representation of the 
problem using the transportation tableau format in Table 5.3. This format is convenient for mod-
eling many situations that do not deal with transporting goods, as demonstrated in Section 5.2.

The optimal solution in Figure 5.2 (obtained by TORA1) ships 1000 cars from Los Angeles 
to Denver 1x11 = 10002, 1300 from Detroit to Denver 1x21 = 13002, 200 from Detroit to 
Miami 1x22 = 2002, and 1200 from New Orleans to Miami 1x32 = 10002. The associated mini-
mum transportation cost is computed as 1000 * $80 + 1300 * $100 + 200 * $108 + 1200 *  
$68 = $313, 200.

Balancing the transportation model. The transportation tableau representation as-
sumes that model is balanced, meaning that the total demand equals to the total supply 
(which happened to be true—coincidentally—in the MG model). If the model is un-
balanced, a dummy source or a dummy destination must be added to restore balance.

Example 5.1-2 

In the MG model, suppose that the Detroit plant capacity is 1300 cars (instead of 1500). The 
total supply 1=  3500 cars2 is less than the total demand 1=  3700 cars2, meaning that part of the 
demand at Denver and Miami will not be satisfied.

Because the demand exceeds the supply, a dummy plant (source) with a capacity of 200 cars 
1=  3700 - 35002 is added to balance the model. The unit transportation cost from the dummy 
plant to the two destinations is zero because the plant does not exist.

Table 5.3 MG Transportation Model

Denver Miami Supply

Los Angeles 80
x11

215
x12 1000

Detroit 100
x21

108
x22 1500

New Orleans 102
x31

68
x32 1200

Demand 2300 1400

1To use TORA, from Main Menu  select  Transportation Model . From the SOLVE>MODIFY menu, select 
Solve 1 Final solution  to obtain a summary of the optimum solution. A detailed description of the itera-
tive solution of the transportation model is given in Section 5.3.3.

1300 

1000 

200 

1200 

1000

1500

1400

2300

1200

Los Angeles

Detroit

New Orleans

1

2

3

Denver

Miami

1

2

FIgure 5.2 

Optimal solution of MG Auto model
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Table 5.4 gives the balanced model together with its optimum solution. The solution shows 
that the dummy plant ships 200 cars to Miami, which means that Miami will be 200 cars short of 
satisfying its demand of 1400 cars.

We can make sure that a specific destination does not experience shortage by assigning a 
very high unit transportation cost from the dummy source to that destination. For example, a 
penalty of $1000 in the dummy-Miami cell will prevent shortage at Miami. Of course, we cannot 
use this “trick” with all the destinations, because shortage must take place somewhere.

The case where the supply exceeds the demand can be demonstrated by assuming that the 
demand at Denver is 1900 cars only. In this case, we need to add a dummy distribution center 
to “receive” the surplus supply. Again, the unit transportation cost to the dummy distribution 
center is zero, unless we require a factory to “ship out” completely. In this case, a high unit trans-
portation cost is assigned from the designated factory to the dummy destination.

Table 5.5 gives the new model and its optimal solution (obtained by TORA). The solution 
shows that the Detroit plant will have a surplus of 400 cars.

Table 5.4 MG Model with Dummy Plant

Denver Miami Supply

Los Angeles
80

1000

215

1000

Detroit
100

1300

108

1300

New Orleans
102 68

1200 1200

Dummy Plant
0 0

200 200

Demand 2300 1400

Table 5.5 MG Model with Dummy Destination

Denver Miami Dummy

Los Angeles
80

1000

215 0

1000

Detroit
100

900

108

200

0

400 1500

New Orleans
102 68

1200

0

1200

Demand 1900 1400 400
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Aha! Moment: A Brief history of the Transportation Model.2

In 1781, French mathematician Gaspard Monge (1746–1818), working with Napoleon Bonaparte’s 
army, published a mathematical model dealing with transporting soil at the least possible cost 
among different construction sites for the purpose of building military forts and roads. Though 
Monge laid a theoretical foundation for solving the transportation problem, no algorithm was 
developed until 1941 when American mathematician Frank L. Hitchcock (1875–1957) published 
his solution of Monge’s problem. In 1939, Russian economist Leonid V. Kantorovich  published 
a booklet titled The Mathematical Method of Production Planning and Organization that in effect 
laid the foundation for today’s linear programming. However, Kantorovich did not become aware 
of Monge’s 1781 paper until 1947 when he immediately recognized the similarities between his 
work and Monge’s. Meanwhile, Dutch American Tjalling C. Koopmans (1910–1985) had been 
studying the transportation problem independently in support of WWII efforts, and it was only 
in the late 1950s that he discovered Kantorovich’s work on linear programming and transpor-
tation. Koopmans was instrumental in reprinting Kantorovich’s booklet in the United States,3 
ushering the dissemination of Kantorovich’s work in the West. By then, American mathematician 
George B. Danzig had already developed his simplex method in 1947 for solving any linear pro-
gramming problem, including the transportation model.

In 1975, Leonid V. Kantorovich and Tjalling C. Koopmans shared the Nobel Prize in 
Economics.

5.2 nonTRADiTionAL TRAnSpoRTATion MoDELS

The application of the transportation model is not limited to transporting goods. This 
section presents two nontraditional applications in the areas of production-inventory 
control and tool sharpening service.

Example 5.2-1 (production-inventory Control)

Boralis manufactures backpacks for serious hikers. The demand for its product during the peak 
period of March to June of each year is 100, 200, 180, and 300 units, respectively. The company 
uses part-time labor to accommodate fluctuations in demand. It is estimated that Boralis can 
produce 50, 180, 280, and 270 units in March through June. A current month’s demand may be 
satisfied in one of three ways.

1. Current month’s production at the cost of $40 per pack.
2. Surplus production in an earlier month at an additional holding cost of $.50 per pack per 

month
3. Surplus production in a later month (back-ordering) at an additional penalty cost of $2.00 

per pack per month.

Boralis wishes to determine the optimal production schedule for the four months.

2A. M. Vershik, Long History of the Monge–Kantorovich Transportation Problem, The Mathematical 
Intelligencer, Springer Science + Business Media New York, 2013, DOI 10.1007/s00283-013-9380-x.
3L. V. Kantorovich, Mathematical methods in the organization and planning of production, Leningrad 
University, 1939. English translation: Management Science, Vol. 6, No. 4, pp. 363–422, 1960.
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The following table summarizes the parallels between the elements of the production-
inventory problem and the transportation model:

Transportation Production inventory

1. Source i 1. Production period i
2. Destination j 2. Demand period j
3. Supply amount at source i 3. Production capacity of period i
4. Demand at destination j 4. Demand for period j
5.  Unit transportation cost from source i to  

destination j
5.  Unit cost 1production + holding + penalty2  

in period i for period j

The resulting transportation model is given in Table 5.6.
The unit “transportation” cost from period i to period j is computed as

cij = c Production cost in i, i = j
Production cost in  i + holding cost from  i  to  j, i 6 j
Production cost in  i + penaty cost from  i  to  j, i 7 j

For example,

 c11 = $40.00

 c24 = $40.00 + 1$.50 + $.502 = $41.00

 c41 = $40.00 + 1$2.00 + $2.00 + $2.002 = $46.00

The optimal solution is summarized in Figure 5.3. The dashed lines indicate back-ordering, the 
dotted lines indicate production for a future period, and the solid lines show production in a 
period for itself. The total cost is $31,455.

2 3 41

50 50

50

100

180

200

280

180

270

300

2 3 41

Supply period

Supply

Demand

Demand period

130 70 180 30 270

FIgure 5.3 

Optimal solution of the  
production-inventory model

Table 5.6 Transportation Model for Example 5.2-1 

1 2 3 4 Capacity

1 $40.00 $40.50 $41.00 $41.50  50
2 $42.00 $40.00 $40.50 $41.00 180
3 $44.00 $42.00 $40.00 $40.50 280
4 $46.00 $44.00 $42.00 $40.00 270

Demand 100 200 180 300
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Example 5.2-2 (Tool Sharpening)

Arkansas Pacific operates a sawmill that produces boards from different types of lumber. 
Depending on the type of wood being milled, the demand for sharp blades varies from day to 
day according to the following 1-week (7-day) data:

Day Mon. Tue. Wed. Thu. Fri. Sat. Sun.

Demand (blades) 24 12 14 20 18 14 22

The mill can satisfy the daily demand in four ways:

1. New blades at the cost of $12 a piece.
2. Overnight sharpening service for $6 a blade.
3. One-day sharpening service for $5 a blade.
4. Two-day sharpening service for $3 a blade.

The situation can be represented as a transportation model with eight sources and seven 
destinations. The destinations represent the 7 days of the week. The sources of the model are 
defined as follows: Source 1 corresponds to buying new blades, which, in the extreme, can cover 
the demand for all 7 days 1=  24 + 12 + 14 + 20 + 18 + 14 + 22 = 1242. Sources 2 to 8 cor-
respond to the 7 days of the week. The amount of supply for each of these sources equals the 
number of used blades at the end of the associated day. For example, source 2 (Monday) will 
have a supply of used blades equal to the demand for Monday. The unit “transportation cost” 
for the model is $12 for new blade, $6 for overnight sharpening, $5 for 1-day sharpening, or $3 
all else. The “disposal” column is a dummy destination for balancing the model. The complete 
model and its solution are given in Table 5.7.

The following table summarizes the optimum solution at a total cost of $818 (file 
toraEx5.2-2.txt).

Number of Sharp Blades (Target day)

Period New Overnight 1-Day Ú2@Day Disposal

Mon. 24 (Mon.) 0 14 (Wed.) 10 (Thu.) 0
Tues. 12 (Tue.) 0 0 12 (Fri.) 0
Wed. 0 10 (Thu.) 4 (Fri.) 0 0
Thu. 0 2 (Fri.) 0 18 (Sun.) 0
Fri. 0 14 (Sat.) 4 (Sun.) 0 0
Sat. 0 0 0 14
Sun. 0 0 0 22

remarks. The model in Table 5.7 assumes one week of operation only. For multiple weeks, the 
model must deal with the rotational nature of the days of the week, in the sense that this week’s 
days can act as sources for next week’s demand. One way to handle this situation is to assume 
that the very first week of operation starts with all new blades for each day. From there on, we 
use a model consisting of exactly seven sources and seven destinations corresponding to the 
days of the week. The new model will be similar to Table 5.7 less source “New” and destination 
 “Disposal.” Also, only main-diagonal cells will be blocked 1unit cost = M2. The remaining cells 
will have a unit cost of $3.00, $5.00, or $6.00. For example, sharpening on Sunday of this week will 
cost $6 for Monday of next week, 5$ for Tuesday, and $3 for all else—meaning, the unit costs for 
Sunday row of the tableau will read $6, $5, $3, $3, $3, $3, and M, respectively.
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Intuitively, and without solving the new transportation model at all, it is obvious that 
the cheapest sharpening service 1Ú  2@day2 can be used to satisfy all the demand starting 
from week 2 on. This intuitive conclusion can be confirmed by solving the new model (file 
toraEx5.2-2a.txt).

5.3 ThE TRAnSpoRTATion ALgoRiThM

Aha! Moment: Looking at the Bright Side of hand Computations:  
The Classical Transportation Model!

The special transportation algorithm that will be presented in this section was developed 
early on when hand computations were the norm and shortcuts were warranted. Today, pow-
erful computer codes can solve transportation models of any size as a regular LP. But there 
is more to the transportation model than the hand computations. First, its historical signifi-
cance in the evolution of OR techniques is important and must be preserved. Second, the 
special transportation tableau format can facilitate modeling a number of situations that do 
not deal directly with transporting goods (see Section 5.2). Third, the algorithmic hand com-
putations boast such (almost intuitive) simplicity that a beginner can get a “feel” of what op-
timization is about (could that have been the reason that some early-on textbooks presented 
the transportation model—also known then as the stepping-stone method—ahead of the 

Table 5.7 Tool-Sharpening Problem Expressed as a Transportation Model

1 2 3 4 5 6 7 8
Mon. Tue. Wed. Thu. Fri. Sat. Sun. Disposal

1-New
$12

24

$12

12

$12 $12 $12 $12 $12 $0

88 124

2-Mon.
M $6 $5

14

$3

10

$3 $3 $3 $0

24

3-Tue.
M M $6 $5 $3

12

$3 $3 $0

12

4-Wed.
M M M $6

10

$5

4

$3 $3 $0

14

5-Thu.
M M M M $6

2

$5 $3

18

$0

20

6-Fri.
M M M M M $6

14

$5

4

$0

18

7-Sat.
M M M M M M $6

0

$0

14 14

8-Sun.
M M M M M M M $0

22 22

24 12 14 20 18 14 22 124
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more computationally demanding simplex method?). Lastly, the transportation  algorithm 
does provide insight into the use of the theoretical primal–dual relationships (introduced 
in Section 4.2) to achieve a practical end  result—that of developing simple rules for hand 
computations. The exercise is  theoretically intriguing.

The basic steps of the transportation algorithm are exactly those of the simplex 
method (Chapter 3). However, instead of using the regular simplex tableau, we take 
advantage of the special structure of the transportation model to carry out the algorith-
mic computations more conveniently.

Step 1. Determine a starting basic feasible solution, and go to step 2.
Step 2. Use the optimality condition of the simplex method to determine the entering 

variable from among all the nonbasic variables. If the optimality condition is 
satisfied, stop. Otherwise, go to step 3.

Step 3. Use the feasibility condition of the simplex method to determine the leaving 
variable from among all the current basic variables, and find the new basic 
 solution. Return to step 2.

The details of the algorithm are explained in Sections 5.3.1 and 5.3.2 using the follow-
ing example.

Example 5.3-1 (SunRay Transport)

SunRay Transport Company ships truckloads of grain from three silos to four mills. The supply 
(in truckloads) and the demand (also in truckloads) together with the unit transportation costs 
per truckload on the different routes are summarized in Table 5.8. The unit transportation costs, 
cij (shown in the northeast corner of each box), are in hundreds of dollars. The model seeks the 
minimum cost shipping schedule between the silos and the mills.

Table 5.8 SunRay Transportation Model

Mill
1 2 3 4 Supply

1

10
 
x11

2
 
x12

20
 
x13

11
 
x14 15

Silo 2

12
 
x21

7
 
x22

9
 
x23

20
 
x24 25

3 4
 
x31

14
 
x32

16
 
x33

18
 
x34 10

Demand 5 15 15 15
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5.3.1 Determination of the Starting Solution

A general transportation model with m sources and n destinations has m + n con-
straint equations, one for each source and each destination. However, because the 
transportation model is always balanced 1sum of the supply = sum of the demand2,  
one of the equations is redundant, reducing the model to m + n - 1 independent 
equations and m + n - 1 basic variables. In Example 5.3-1, the starting solution has 
3 + 4 - 1 = 6 basic variables.

The special structure of the transportation problem allows securing a nonartifi-
cial starting basic solution using one of three methods:4

1. Northwest-corner method
2. Least-cost method
3. Vogel approximation method

The first method is “mechanical” in nature in that its main purpose is to provide a 
starting (basic feasible) solution regardless of the cost. The remaining two are heuris-
tics that seek a better-quality (smaller objective value) starting solution. In general, 
the Vogel heuristic is best and the northwest-corner method is the worst. The trade-off 
is that the northwest-corner method involves the least amount of computations.

Northwest-corner method. The method starts at the northwest-corner cell (route) of 
the tableau (variable x11).

Step 1. Allocate as much as possible to the selected cell, and adjust the associated 
amounts of supply and demand by subtracting the allocated amount.

Step 2. Cross out the row or column with zero supply or demand to indicate that no 
further assignments can be made in that row or column. If both a row and a 
column net to zero simultaneously, cross out one only, and leave a zero supply 
(demand) in the uncrossed-out row (column).

Step 3. If exactly one row or column is left uncrossed out, stop. Otherwise, move to the 
cell to the right if a column has just been crossed out or below if a row has been 
crossed out. Go to step 1.

Example 5.3-2 

The application of the procedure to the model of Example 5.3-1 gives the starting basic solution 
in Table 5.9. The arrows show the order in which the allocated amounts are generated.

The starting basic solution is x11 = 5, x12 = 10, x22 = 5, x23 = 15, x24 = 5, x34 = 10.
The associated cost of the schedule is z = 5 * 10 + 10 * 2 + 5 * 7 + 15 * 9 + 5 * 20 +  

10 * 18 = $520.

Least-cost method. The least-cost method finds a better starting solution by targeting 
the cheapest routes. It assigns as much as possible to the cell with the smallest unit cost 
(ties are broken arbitrarily). Next, the satisfied row or column is crossed out and the 

4All three methods are featured in TORA. See the end of Section 5.3.3.
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amounts of supply and demand are adjusted accordingly. If both a row and a column 
are satisfied simultaneously, only one is crossed out, the same as in the northwest-corner 
method. Next, select the uncrossed-out cell with the smallest unit cost and repeat the 
process until exactly one row or column is left uncrossed out.

Example 5.3-3 

The least-cost method is applied to Example 5.3-1.

1. Cell (1, 2) has the least unit cost in the tableau 1=  $22. The most that can be shipped 
through (1, 2) is x12 = 15 truckloads, which happens to satisfy both row 1 and column 2 
simultaneously. We arbitrarily cross out column 2 and adjust the supply in row 1 to 0.

2. Cell (3, 1) has the smallest uncrossed-out unit cost 1=  $42. Assign x31 = 5, and cross out 
column 1 because it is satisfied, and adjust the demand of row 3 to 10 - 5 = 5 truckloads.

3. Continuing in the same manner, we successively assign 15 truckloads to cell (2, 3), 0 truck-
loads to cell (1, 4), 5 truckloads to cell (3, 4), and 10 truckload to cell (2, 4) (verify!).

The resulting starting solution is summarized in Table 5.10. The arrows show the order 
in which the allocations are made. The starting solution (consisting of six basic variables) 
is x12 = 15, x14 = 0, x23 = 15, x24 = 10, x31 = 5, x34 = 5. The associated objective value is 
z = 15 * 2 + 0 * 11 + 15 * 9 + 10 * 20 + 5 * 4 + 5 * 18 = $475, which happens to be 
better than the northwest-corner solution.

Table 5.9 Northwest-Corner Starting Solution

1 2 3 4 Supply

1

10

5

2

10

20 11

15

2

12 7

 5 

9

15

20

 5 25

3

4 14 16 18

10 10

Demand 5 15 15 15

Table 5.10 Least-Cost Starting Solution

1 2 3 4 Supply

1

10 (start) 2

15

20 11

  0 15

2

12 7 9

15

(end)   20

  10 25

3

4

5

14 16 18

  5 10

Demand 5 15 15 15
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Vogel approximation method (VaM). VAM is an improved version of the least-cost 
method that generally, but not always, produces better starting solutions.

Step 1. For each row (column), determine a penalty measure by subtracting the small-
est unit cost in the row (column) from the next smallest unit cost in the same 
row (column). This penalty is actually a measure of lost opportunity one for-
goes if the smallest unit cost cell is not chosen.

Step 2. Identify the row or column with the largest penalty, breaking ties arbitrarily. 
 Allocate as much as possible to the variable with the least unit cost in the selected 
row or column. Adjust the supply and demand, and cross out the satisfied row or 
column. If a row and a column are satisfied simultaneously, only one of the two is 
crossed out, and the remaining row (column) is assigned zero supply (demand).

Step 3. (a) If exactly one row or column with zero supply or demand remains un-
crossed out, stop.

(b) If one row (column) with positive supply (demand) remains uncrossed 
out, determine the basic variables in the row (column) by the least-cost 
method. Stop.

(c) If all the uncrossed-out rows and columns have (remaining) zero supply 
and demand, determine the zero basic variables by the least-cost method. 
Stop.

(d) Otherwise, go to step 1.

Example 5.3-4 

VAM is applied to Example 5.3-1. Table 5.11 computes the first set of penalties.
Because row 3 has the largest penalty 1=  102 and cell (3, 1) has the smallest unit cost in 

that row, the amount 5 is assigned to x31. Column 1 is now satisfied and must be crossed out. 
Next, new penalties are recomputed as in Table 5.12, showing that row 1 has the highest penalty 
1=  92. Hence, we assign the maximum amount possible to cell (1, 2), which yields x12 = 15 and 
simultaneously satisfies both row 1 and column 2. We arbitrarily cross out column 2 and adjust 
the supply in row 1 to zero.

Table 5.11 Row and Column Penalties in VAM

1 2 3 4 Row penalty

1
10 2 20 11

15
10 - 2 = 8

2
12 7 9 20

25
9 - 7 = 2

3
4

5
14 16 18

10
14 - 4 = 10

5 15 15 15
Column penalty 10 - 4

    = 6
7 - 2
    = 5

16 - 9
     = 7

18 - 11
   = 7
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Continuing in the same manner, row 2 will produce the highest penalty 1=  112, and we 
 assign x23 = 15, which crosses out column 3 and leaves 10 units in row 2. Only column 4 is 
left, and it has a positive supply of 15 units. Applying the least-cost method to that column, we 
 successively assign x14 = 0, x34 = 5, and x24 = 10 (verify!). The associated objective value for 
this  solution is z = 15 * 2 + 0 * 11 + 15 * 9 + 10 * 20 + 5 * 4 + 5 * 18 = $475. This 
 solution happens to have the same objective value as in the least-cost method.

Aha! Moment: By Whatever name, nW Rule Boasts Elegant Simplicity!

There is nothing really sacred about initiating the northwest (NW) rule from the northwest-
corner cell and cascading downward until reaching the southeast corner (SE)  because the 
same solution will ensue if the procedure is initiated from the SE corner, zigzagging upward 
toward the NW cell (recall that all we are doing is solve xij = min {remainders of supply i and 
demand j}, try it!). In fact, initiating the procedure from the northeast corner (NE) and cascad-
ing downward toward the southwest corner (SW), and vice versa, will  produce a valid, though 
different, starting basic feasible solution. This, incidentally, is evident by the fact that least-
cost and Vogel can start from any cell and still produce a basic feasible solution. But regard-
less of the specific cell used to find the starting solution, the NW rule boasts elegant simplicity 
not shared by the least-cost and Vogel methods. And this simplicity could be an advantage in 
some practical situations. “Imagine Facebook trying to use a (literally huge) transportation 
problem to assign customer traffic to servers and that there is no time, cost data, or value 
to solve the transportation problem as an LP. At that scale, using the NW rule to produce a 
feasible solution is likely better than hoping LP come back, in any amount of time, with the 
optimum solution.”5

Table 5.12 First Assignment in VAM 1x31 = 52
1 2 3 4 Row penalty

1
10 2 20 11

15
9

2
12 7 9 20

25
2

3

4

5

14 16 18

10

2

5 15 15 15

Column penalty — 5 7 7

5Michael Trick (Carnegie Mellon University) proposed this neat application to me (his text is copied here 
verbatim) in an email dated March 13, 2015, in partial response to my questioning the practical usefulness 
of the NW corner rule and the transportation algorithm (among other hand-computational classical OR 
techniques).
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5.3.2 iterative Computations of the Transportation Algorithm

After determining the starting solution (using one of the methods in Section 5.3.1), we 
use the following algorithm to determine the optimum solution:

Step 1. Use the simplex optimality condition to determine the entering variable. If the 
optimality condition is satisfied, stop. Otherwise, go to step 2.

Step 2. Determine the leaving variable using the simplex feasibility condition. Change 
the basis, and return to step 1.

The optimality and feasibility conditions do not involve the familiar row opera-
tions used in the simplex method. Instead, the special structure of the transportation 
model allows simpler (hand) computations.

Example 5.3-5 

Solve the transportation model of Example 5.3-1, starting with the northwest-corner solution.
Table 5.13 gives the northwest-corner starting solution as determined in Table 5.9 in 

Example 5.3-2. The determination of the entering variable from among the current nonba-
sic variables (those that are not part of the starting basic solution) is done by computing 
the nonbasic coefficients in the z-row, using the method of multipliers (which, as shown in 
Section 5.3.3, is rooted in LP duality theory).

In the method of multipliers, we associate the multipliers ui and vj with row i and column j 
of the transportation tableau. For each current basic variable xij, these multipliers are shown in 
Section 5.3.3 to satisfy the following equations:

ui + vj = cij, for each basic xij

As Table 5.13 shows, the starting solution has six basic variables, which leads to six equations in 
seven unknowns. To solve these equations, the method of multipliers calls for setting any of the 

Table 5.13 Starting Iteration

1 2 3 4 Supply

1
10

5

2

10

20 11

15

2
12 7

 5

9

15

20

 5 25

3
4 14 16 18

10 10

Demand 5 15 15 15
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multiplier equal to zero. We will arbitrarily set u1 = 0, and then solve for the remaining vari-
ables as shown in the following table:

Basic variable (u, v)-Equation Solution

x11 u1 + v1 = 10 Set u1 = 0 1 v1 = 10
x12 u1 + v2 = 2        u1 = 0 1 v2 = 2
x22 u2 + v2 = 7        v2 = 2 1 u2 = 5
x23 u2 + v3 = 9        u2 = 5 1 v3 = 4
x24 u2 + v4 = 20        u2 = 5 1 v4 = 15
x34 u3 + v4 = 18        v4 = 15 1 u3 = 3

To summarize, we have

 u1 = 0, u2 = 5, u3 = 3

 v1 = 10, v2 = 2, v3 = 4, v4 = 15

Next, we use ui and vj to evaluate the nonbasic variables by computing

ui + vj - cij, for each nonbasic xij

The results of these evaluations are shown in the following table:

Nonbasic variable ui + vj - cij

x13 u1 + v3 - c13 = 0 + 4 - 20 = -16
x14 u1 + v4 - c14 = 0 + 15 - 11 = 4
x21 u2 + v1 - c21 = 5 + 10 - 12 = 3
x31 u3 + v1 - c31 = 3 + 10 - 4 = 9
x32 u3 + v2 - c32 = 3 + 2 - 14 = -9
x33 u3 + v3 - c33 = 3 + 4 - 16 = -9

The preceding information, together with the fact that ui + vj - cij = 0 for basic xij, is actu-
ally equivalent to computing the z-row of the simplex tableau, as the following summary shows:

Basic x11 x12 x13 x14 x21 x22 x23 x24

T
x31 x32 x33 x34

Z 0 0 -16 4 3 0 0 0 9 -9 -9 0

Because the transportation model minimizes cost, the entering variable is the one having 
the most positive coefficient in the z-row—namely, x31 is the entering variable.

All the preceding computations are usually done directly on the transportation tableau 
as shown in Table 5.14, meaning that it is not necessary to write the (u, v)-equations explicitly. 
Instead, we start by setting u1 = 0.6 Then we can compute the v-values of all the columns that 
have basic variables in row 1—namely, v1 and v2. Next, we compute u2 based on the (u, v)- equation 

6The tutorial module of TORA is designed to demonstrate that assigning a zero initial value to any u or v 
produces the same u + v - c for all the nonbasic variables. See the TORA moment following this example.
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of basic x22. Now, given u2, we can compute v3 and v4. Finally, we determine u3 using the basic 
equation of x33. The next step is to evaluate the nonbasic variables by computing ui + vj - cij for 
each  nonbasic xij, as shown in Table 5.14 in the boxed southeast corner of each cell.

Having identified x31 as the entering variable, we need to determine the leaving variable. 
Remember that if x31 enters the solution to become basic, one of the current basic variables must 
leave as nonbasic (at zero level).

The selection of x31 as the entering variable means shipping through this route reduces the 
total shipping cost. What is the most that we can ship through the new route? Observe in Table 5.14 
that if route (3, 1) ships u units (i.e., x31 = u), then the maximum value of u is determined based on 
two conditions:

1. Supply limits and demand requirements remain satisfied.
2. Shipments through all routes remain nonnegative.

These two conditions determine the maximum value of u and the leaving variable in the fol-
lowing manner. First, construct a closed loop that starts and ends at the entering variable cell 
(3, 1). The loop consists of connected horizontal and vertical segments only (no diagonals are 
allowed) whose corner elements (excluding the entering variable cell) must coincide with a 
current basic variable.7 Table 5.15 shows the loop for x31. Exactly one loop exists for a given 
entering variable.

Next, we assign the amount u to the entering variable cell (3, 1). For the supply and demand 
limits to remain satisfied, we must alternate between subtracting and adding the amount u at the 
successive corners of the loop as shown in Table 5.15 (it is immaterial if the loop is traced in a 
clockwise or counterclockwise direction). For u Ú 0, the new values of all the variables remain 
nonnegative if

 x11 = 5 - u Ú 0

 x22 = 5 - u Ú 0

 x34 = 10 - u Ú 0

Table 5.14 Iteration 1 Calculations

v1 = 10 v2 = 2 v3 = 4 v4 = 15 Supply

u1 K 0
10

5
2

10
20

-16

11

4
15

u2 = 5
12

3

7
 5

9
15

20

 5
25

u3 = 3
4

9

14

-9

16

-9

18
10 10

Demand 5 15 15 15

7TORA’s tutorial module allows you to determine the corner cells of the closed loop interactively, with 
 immediate feedback regarding the validity of your selections. See the TORA moment immediately following 
this example.



5.3  The Transportation algorithm   223

The corresponding maximum value of u is 5, which occurs when both x11 and x22 reach zero 
level. Either x11 or x22 leaves the solution. Intuitively, though not crucial, it may be advanta-
geous computationally to break the tie by selecting the variable with the higher unit cost. Hence 
we choose x11 (with c11 = 10 as opposed to c22 = 7) as the leaving variable.

The values of the basic variables at the corners of the closed loop are adjusted to ac-
commodate setting x31 = 5, as Table 5.16 shows. Because each unit shipped through route 
(3, 1) reduces the shipping cost by $9 1=  u3 + v1 - c312, the total cost associated with 
the new schedule is $9 * 5 = $45 less than in the previous schedule. Thus, the new cost is 
$520 - $45 = $475.

Given the new basic solution, we repeat the computation of the multipliers u and v, as 
Table 5.16 shows. The entering variable is x14. The closed loop shows that x14 = 10 and that the 
leaving variable is x24.

The new solution, shown in Table 5.17, costs $4 * 10 = $40 less than the preceding one, 
thus yielding the new cost $475 - $40 = $435. The new values of ui + vj - cij are now negative 
for all nonbasic xij. Thus, the solution in Table 5.17 is optimal.

Table 5.15 Determination of the Closed Loop for x31

v1 = 10 v2 = 2 v3 = 4 v4 = 15 Supply

u1 K 0

10

5 - 𝛉
-

2

10 + 𝛉
+

20

-16

11

4
15

u2 = 5

12

3

7

5 - 𝛉
-

9

15

20

  5 + 𝛉
+

25

u3 = 3

4

𝛉
+                     9

14

-9

16

-9

18

10 - 𝛉
-

10

Demand 5 15 15 15

Table 5.16 Iteration 2 Calculations

v1 = 1 v2 = 2 v3 = 4 v4 = 15 Supply

u1 K 0

10

-9

2

15 -  𝛉
-

20

-16

11

𝛉

+                   4

15

u2 = 5
12

-6

7

0 +  𝛉
+

9

15

20

10 - 𝛉
-

25

u3 = 3
4

5
14

-9

16

-9

18
5 10

Demand 5 15 15 15
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The following table summarizes the optimum solution:

From silo To mill Number of truckloads

1 2  5
1 4 10
2 2 10
2 3 15
3 1  5
3 4  5

Optimal cost = $435

transshipment model. The transportation model assumes direct shipments between 
sources and destinations. This may not be the case in many situations where it may be 
cheaper to transship through intermediate nodes before reaching the final destination. 
A modeling trick based on the use of buffers can be used to convert the transship-
ment model into a regular transportation model. The conversion idea is interesting 
theoretically, but it is rarely implemented in practice because the transshipment model 
(and, indeed, the transportation model itself) is a special case of the highly efficient 
minimum cost capacitated network model presented in Section 22.1 on the website. 
Nevertheless, for the sake of completeness, the transshipment model is presented as an 
appendix at the end of Section 22.1.

ToRA Moment

From Solve>Modify Menu, select Solve 1 Iterations , and choose one of the three methods 
(northwest-corner, least-cost, or Vogel) to start the transportation model iterations. The itera-
tions module offers two useful interactive features:

1. You can set any u or v equal to zero before generating iteration 2 (the default is u1 = 0).   
Although the values of ui and vj change, the evaluation of the nonbasic cells 1=  ui + vj - cij2 
remains the same.

Table 5.17 Iteration 3 Calculations (Optimal)

v1 = -3 v2 = 2 v3 = 4 v4 = 11 Supply

u1 K 0
10

-13

2
5

20

-16

11
10 15

u2 = 5
12

-10

7
10

9
15

20

-4
25

u3 = 7
4

5
14

-5

16

-5

18
5 10

Demand 5 15 15 15
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2. You can test your understanding of the selection of the closed loop by clicking (in any order) 
the corner cells that comprise the path. If your selection is correct, the cell will change color 
(green for entering variable, red for leaving variable, and gray otherwise).

Solver Moment

Figure 5.4 provides the Excel Solver template for Example 5.3-1 (file solverEx5.3-1.xls), together 
with all the formulas and the definition of range names.

In the input section, data include unit cost matrix (cells B4:E6), source names (cells 
A4:A6), destination names (cells B3:E3), supply (cells F4:F6), and demand (cells B7:E7). In the 

FIgure 5.4 

Excel Solver solution of the transportation model of Example 5.3-1 (file solverEx5.3-1.xls)
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output section, cells B11:E13 provide the optimal solution in matrix form. The total cost formula 
is in target cell A10.

AMpL Moment

Files amplEx5.3-1a.txt, amplEx5.3-1b.txt, and amplEx5.3-1c.txt provide three AMPL models for 
Example 5.3-1. Details are explained in Section C.9 on the website.

5.3.3 Simplex Method Explanation of the Method of Multipliers

The relationship between the method of multipliers and the simplex method can be 
 explained based on the primal–dual relationships (Section 4.2 ). From the special structure 
of the LP representing the transportation model (see Example 5.1-1 for an illustration), 
the associated dual problem can be written as

Maximize z = a
m

i = 1
ai ui + a

n

j = 1
bj vj

subject to

ui + vj … cij, all i and j

ui and vj unrestricted

where

ai = Supply amount at source i

bj = Demand amount at destination j

cij = Unit transportation cost from source i to destination j

ui = Dual variable of the constraint associated with source i

vj = Dual variable of the constraint associated with destination j

From Formula 2, Section 4.2.4, the objective-function coefficients (reduced 
costs) of the variable xij equal the difference between the left- and right-hand sides 
of the corresponding dual constraint—that is, ui + vj - cij. However, we know that 
this quantity must equal zero for each basic variable, which produces the following 
result:

ui + vj = cij, for each basic variable xij.

There are m + n - 1 such equations whose solution (after assuming an arbitrary 
value u1 = 0) yields the multipliers ui and vj. Once these multipliers are computed, the 
entering variable is determined from all the nonbasic variables as the one having the 
largest positive ui + vj - cij.

The assignment of an arbitrary value to one of the dual variables (i.e., u1 = 0) 
may appear inconsistent with the way the dual variables are computed using Method 2  
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in Section 4.2.3. Namely, for a given basic solution (and, hence, inverse), the dual values 
must be unique. Problem 5-31 addresses this point.

5.4 ThE ASSignMEnT MoDEL

The classical assignment model deals with matching workers (with varying skills) 
to jobs. Presumably, skill variation affects the cost of completing a job. The goal is 
to determine the minimum cost assignment of workers to jobs. The general assign-
ment model with n workers and n jobs is represented in Table 5.18. The element cij 
represents the cost of assigning worker i to job j1i, j = 1, 2, c, n2. There is no loss 
of generality in assuming that the number of workers and the number of jobs are 
equal, because we can always add fictitious workers or fictitious jobs to satisfy this 
assumption.

The assignment model is a special case of the transportation model where work-
ers represent sources and jobs represent destinations. The supply (demand) amount at 
each source (destination) exactly equals 1. The cost of “transporting” worker i to job 
j is cij. In effect, the assignment model can be solved directly as a regular transporta-
tion model (or as a regular LP). Nevertheless, the fact that all the supply and demand 
amounts equal 1 has led to the development of a simple solution algorithm called the 
hungarian method. Although the new solution method appears totally unrelated to 
the transportation model, the algorithm is actually rooted in the simplex method, just 
as the transportation model is.

5.4.1 The hungarian Method8

We will use two examples to present the mechanics of the new algorithm. The next sec-
tion provides a simplex-based explanation of the procedure.

Table 5.18 Assignment Model

Jobs
1 2 f n

1 c11 c12

f c1n 1
2 c21 c22

f c2n 1
Worker

f f f f f f

N cn1 cn2

f cnn 1

1 1 f 1

8As with the transportation model, the classical Hungarian method, designed primarily for hand computa-
tions, is something of the past and is presented here for historical reasons. Today, the need for such com-
putational shortcuts is not warranted, as the problem can be solved by highly efficient LP computer codes. 
Perhaps the benefit from studying these classical techniques is that they are based on a sophisticated theory 
that reduces the solution steps to simple rules suitable for hand computations.
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Example 5.4-1 

Joe Klyne’s three children, John, Karen, and Terri, want to earn some money for personal expenses. 
Mr. Klyne has chosen three chores for his children: mowing the lawn, painting the garage door, and 
washing the family cars. To avoid anticipated sibling competition, he asks them to submit individual 
(secret) bids for what they feel is fair pay for each of the three chores. Table 5.19 summarizes the 
bids received. The children will abide by their father’s decision regarding the assignment of chores.

The assignment problem will be solved by the Hungarian method.

Step 1. Determine pi, the minimum cost element of row i in the original cost matrix, and sub-
tract it from all the elements of row i, i = 1, 2, 3.

Step 2. For the matrix created in step 1, determine qj, the minimum cost element of column j, 
and subtract it from all the elements of column j, j = 1, 2, 3.

Step 3. From the matrix in step 2, attempt to find a feasible assignment among all the resulting 
zero entries.
3a. If such an assignment can be found, it is optimal.
3b. Else, additional calculations are needed (as will be explained in Example 5.4-2).

Table 5.20 shows the application of the three steps to the current problem.
The cells with underscored zero entries in step 3 provide the (feasible) optimum so-

lution: John gets the paint job, Karen gets to mow the lawn, and Terri gets to wash the fam-
ily cars. The total cost to Mr. Klyne is 9 + 10 + 8 = $27. This amount also will always equal 
1p1 + p2 + p32 + 1q1 + q2 + q32 = 19 + 9 + 82 + 10 + 1 + 02 = $27. (A justification of 
this result is given in the next section.)

Table 5.19 Klyne’s Assignment Problem

Mow Paint Wash

John $15 $10   $9
Karen  $9 $15 $10

Terri $10 $12   $8

Table 5.20 Application of the Hungarian Method to the Assignment Problem of Example 5.4-1 

Step 1: Step 2:

Mow Paint Wash Row min Mow Paint Wash

John 15 10  9 p1 = 9 John 6 1 0
Karen  9 15 10 p2 = 9 1         Karen 0 6 1 1

Terri 10 12  8 p3 = 8 Terri 2 4 0

Column max q1 = 0 q2 = 1 q3 = 0
Step 3:

Mow Paint Wash

John 6 0 0
Karen 0 5 1

Terri 2 3 0 
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As stated in step 3 of the Hungarian method, the zeros created by steps 1 and 2 
may not yield a feasible solution directly. In this case, further steps are needed to find 
the optimal (feasible) assignment. The following example demonstrates this situation.

Example 5.4-2 

Suppose that the situation discussed in Example 5.4-1 is extended to four children and four 
chores. Table 5.21 summarizes the cost elements of the problem.

The application of steps 1 and 2 to the matrix in Table 5.21 (using p1 = 1, p2 = 7, p3 = 4, 
p4 = 5, q1 = 0, q2 = 0, q3 = 3, and q4 = 0) yields the reduced matrix in Table 5.22 (verify!):

The locations of the zero entries do not allow assigning unique chores to all the children. 
For example, if we assign child 1 to chore 1, then column 1 will be eliminated, and child 3 will not 
have a zero entry in the remaining three columns. This obstacle can be accounted for by adding 
the following step to the procedure given in Example 5.4-1:

Step 3b. If no feasible zero-element assignments can be found,
(i) Draw the minimum number of horizontal and vertical lines in the last reduced 

matrix to cover all the zero entries.
(ii) Select the smallest uncovered entry, subtract it from every uncovered entry, and 

then add it to every entry at the intersection of two lines.
(iii) If no feasible assignment can be found among the resulting zero entries, repeat 

step 3a.

The application of step 3b to the last matrix produces the shaded cells in Table 5.23. The 
smallest unshaded entry (shown underscored) equals 1. This entry is added to the intersection 
cells and subtracted from the remaining shaded cells to produce the matrix in Table 5.24, and the 
optimal solution shown by underscored zeros.

Table 5.21 Assignment Model

Chore
1 2 3 4

1 $1 $4 $6 $3

Child 2 $9 $7 $10 $9
3 $4 $5 $11 $7
4 $8 $7 $8 $5

Table 5.22 Reduced Assignment Matrix

Chore
1 2 3 4

1 0 3 2 2

Child 2 2 0 0 2
3 0 1 4 3
4 3 2 0 0
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Table 5.23 Application of Step 3b

Chore
1 2 3 4

1 0 3 2 2

Child
2 2 0 0 2

3 0 1 4 3

4 3 2 0 0

Table 5.24 Optimal Assignment

Chore
1 2 3 4

1 0 2 1 1

Child
2 3 0 0 2

3 0 0 3 2

4 4 2 0 0

AMpL Moment

File amplEx5.4-2.txt provides the AMPL model for the assignment model. The model is similar 
to that of the transportation model.

5.4.2 Simplex Explanation of the hungarian Method

The assignment problem in which n workers are assigned to n jobs can be represented 
as an LP model in the following manner: Let cij be the cost of assigning worker i to job j,  
and define

xij = b1, if worker i is assigned to job j
0, otherwise

Then the LP model is given as

Minimize z = a
n

i = 1
a
n

j = 1
cij xij

subject to

 a
n

j = 1
xij = 1, i = 1, 2, c, n

 a
n

i = 1
xij = 1, j = 1, 2, c, n

 xij =  0 or 1
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The optimal solution of the preceding LP model remains unchanged if a constant 
is added to or subtracted from any row or column of the cost matrix (cij). To prove this 
point, let pi and qj be constants subtracted from row i and column j. Thus, the cost ele-
ment cij is changed to

cij
= = cij - pi - qj

Now

 a
i
a

j
cij
=

  xij = a
i
a

j
1cij - pi - qj2 xij = a

i
a

j
cij xij - a

i
pia a

j
xijb - a

j
qja a

i
xijb

 = a
i
a

j
cij xij - a

i
pi112 - a

j
qj112

 = a
i
a

j
cij xij - constant

Because the new objective function differs from the original by a constant, the op-
timum values of xij are the same in both cases. The development shows that steps 
1 and 2 of the Hungarian method, which call for subtracting pi from row i and then 
subtracting qj from column j, produce an equivalent assignment model. In this re-
gard, if a feasible solution can be found among the zero entries of the cost matrix 
created by steps 1 and 2, then it must be optimum (because the cost in the modified 
matrix cannot be less than zero).

If the created zero entries cannot yield a feasible solution (as Example 5.4-2 dem-
onstrates), then step 2a (dealing with the covering of the zero entries) must be ap-
plied. The validity of this procedure is again rooted in the simplex method of linear 
programming and can be explained by duality theory (Chapter 4) and the complemen-
tary  slackness theorem (Chapter 7). We will not present the details of the proof here 
 because they are somewhat involved.

The reason 1p1 + p2 + c + pn2 + 1q1 + q2 + c + qn2 gives the opti-
mal objective value is that it represents the dual objective function of the assignment 
model. This result can be seen through comparison with the dual objective function of 
the transportation model given in Section 5.3.3. [See Bazaraa and Associates (2009) for 
the details.]
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Case Study: Scheduling appointments at australian tourist Commission  
trade events9

Tools: Assignment model, heuristics

Area of application: Tourism

Description of the situation: 

The Australian Tourist Commission (ATC) organizes trade events around the world to provide 
a forum for Australian sellers to meet international buyers of tourism products that include ac-
commodation, tours, transport, and others. During these events, sellers are stationed in booths 
and are visited by buyers according to prescheduled appointments. Because of the limited time 
slots available in each event and the fact that the number of buyers and sellers can be quite large 
(one such event held in Melbourne in 1997 attracted 620 sellers and 700 buyers), ATC attempts 
to schedule the seller–buyer appointments in advance of the event in a manner that maximizes 
preferences. The idea is to match mutual interests to produce the most effective use of available 
time slots during the event.

Analysis:

The problem is viewed as a three-dimensional assignment model representing the buyers, the 
sellers, and the scheduled time slots. For an event with m buyers, n sellers, and T time slots, 
define

xijt = e1, if buyer i meets with seller j in period t
0, otherwise

cij = A score representing the mutual preferences of buyer i and seller j

The associated assignment model can be expressed as

Maximize  z = a
m

i = 1
a
n

j = 1
cijaa

T

t = 1
xijtb

subject to

a
m

i = 1
xijt … 1, j = 1, 2, c, n, t = 1, 2, c, T

a
n

j = 1
xijt … 1, i = 1, 2, c, m, t = 1, 2, c, T

a
T

t = 1
xijt … 1, i = 1, 2, c, m, j = 1, 2, c, n

xijt = 10, 12 for all i, j, and t

The model expresses the basic restrictions of an assignment model: Each buyer or seller can meet 
at most one person per session, and a specific buyer–seller meeting can take place in at most one 
session. In the objective function, the coefficients cij–representing the buyer–seller preferences 

9A. T. Ernst, R. G. J. Mills, and P. Welgama, “Scheduling Appointments at Trade Events for the Australian 
Tourist Commission,” Interfaces, Vol. 33, No. 3, pp. 12–23, 2003.



for meetings–are not session dependent, the assumption being that buyers and sellers are indif-
ferent to session time.

How are the coefficients cij determined? Following the registration of all buyers and sellers, 
each seller provides ATC with a prioritized list of buyers whom the seller wants to see. A similar 
list is demanded of each buyer with respect to sellers. The list assigns the value 1 to the top choice, 
with larger values implying lower preferences. These lists need not be exhaustive, in the sense 
that sellers and buyers are free to express interest in meeting with some but not all registered 
counterparts. For example, in a list with 100 sellers, a buyer may seek meetings with 10 sellers 
only, in which case the expressed preferences will be 1, 2, …, 10 for the selected sellers.

The raw data gathered from the buyers/sellers list may then be expressed algebraically as

bij = ranking assigned by buyer i to a meeting with seller j

sji = ranking assigned by seller j to a meeting with buyer i

B = maximum number of preferences elected by all buyers

S = maximum number of preferences elected by all sellers 

a = relative weight of buyer preferences 1in calculating scores cij2, 0 6 a 6 1

1 - a = relative weight of seller preferences.

From these definitions, the objective coefficients cij can be calculated as

cij = g 1 + aa
B - bij

B
b + 11 - a2 a

S - sji

S
b , if bij ≠ 0 and sji ≠ 0

1 + aa
B - bij

B
b ,                                          if bij ≠ 0 and sji = 0

1 + 11 - a2 a
S - sji

S
b ,                               if bij = 0 and sji ≠ 0

0,                                                                     if bij = sji = 0

The logic behind these formulas is that a smaller value of bij means a higher value of 1B - bij2 
and, hence, a higher score assigned to a requested meeting between buyer i and seller j. A similar 
interpretation is given to the score S - sji for seller j’s requested meeting with buyer i. Both scores 
are normalized to values between 0 and 1 by dividing them by B and S, respectively, and then are 
weighted by a and 1 - a to reflect the relative importance of the buyer and seller preferences, 
0 6 a 6 1, with values of a less than .5 favoring sellers’ preferences. Note that bij = 0 and sji = 0 
indicate that no meetings are requested between buyer i and seller j. The quantity 1 appears in the 
top three formulas of cij to give it a relatively larger preference than the case where no meetings 
are requested (i.e., bij = sji = 02. The normalization of the raw scores ensures that 0 … cij 6 2.

Reliability of input data:

A crucial issue in the present situation is the reliability of the preference data provided by buyers 
and sellers. A preference collection tool is devised to guarantee that the following restrictions 
are observed:

1. Lists of buyers and sellers are made available only after the registration deadline has passed.
2. Only registered buyers and sellers can participate in the process.
3. Participants’ preferences are kept confidential by ATC. They may not be seen or altered by 

other participants.
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Under these restrictions, an interactive Internet site is created to allow participants to enter 
their preferences conveniently. More importantly, the design of the site ensures valid input data. 
For example, the system prevents a buyer from seeking more than one meeting with the same 
seller, and vice versa.

Solution of the problem:

The given assignment model is straightforward and can be solved by available LP packages. File 
amplCase3a.txt and file amplCase3b.txt provide two AMPL models for this situation. The data 
for the two models are given in a spreadsheet format (file excelCase3.xls). In the first model, 
the spreadsheet is used to calculate the coefficients cij, which are then used as input data. In the 
 second model, the raw preference scores, bij and sji, are the input data and the model itself calcu-
lates the coefficients cij. The advantage of the second is that it allows computing the percentages 
of buyer and seller satisfaction regarding their expressed preferences.

The output of model amplCase3b.txt for the data in file excelCase3.xls (6 buyers, 7 sellers, 
and 6 sessions) is given in Figure 5.5. It provides the assignment of buyers to sellers within each 
session as well as the percent satisfaction for each buyer and seller for a weight factor a = .5. 
The results show high buyer and seller satisfactions (92% and 86%, respectively). If a 6 .5, seller 
satisfaction will increase.

practical considerations:

For the solution of the assignment model to be realistic, it must take into consideration the delays 
between successive appointments. Essentially, a buyer, once through with an appointment, will 
most likely have to move to another cubical for the next appointment. A feasible schedule must 
thus account for the transition time between successive appointments. The following walking 
constraints achieve this result:

xijt + a
k∈Ji

xi,k,t+ 1 = 1, i = 1, c, m, j = 1, c, n, t = 1, c, T

The set Ji represents the sellers buyer i cannot reach in period t + 1 without experiencing undue 
delay. The logic is that if buyer i has an appointment with seller j in period t1xijt = 12, then the 
same buyer may not schedule a next-period 1t + 12 appointment with seller k who cannot be 
reached without delay (i.e., xi,k,t+ 1 = 02. We can reduce the number of such constraints by elimi-
nating period t that occurs at the end of a session block (e.g., coffee breaks, lunch break, and end 
of day).

The additional constraints increase the computational difficulty of the model considerably. 
In fact, the model may not be solvable as an integer linear program considering the computation-
al limitations of present-day IP algorithms. This is the reason a heuristic is needed to determine 
a “good” solution for the problem.

The heuristic used to solve the new restricted model is summarized as follows:
For each period t

1. Set xijt = 0 if the location of buyer i’s last meeting in period t - 1 does not allow reaching 
seller j in period t.

2. Set xijt = 0 if a meeting between i and j has been prescheduled.
3. Solve the resulting two-dimensional assignment model.

Next t
The quality of the heuristic solution can be measured by comparing its objective value (prefer-
ence measure) with that of the original assignment model (with no walking constraints). Reported 



Optimal score =   50.87
Optimal assignments:

Session 1:
Assign buyer 1 to seller 1 
Assign buyer 2 to seller 5 
Assign buyer 3 to seller 4 
Assign buyer 4 to seller 6 
Assign buyer 5 to seller 2 
Assign buyer 6 to seller 7 

Session 2:
Assign buyer 1 to seller 3 
Assign buyer 2 to seller 6 
Assign buyer 3 to seller 5 
Assign buyer 4 to seller 2 
Assign buyer 5 to seller 1 
Assign buyer 6 to seller 4 

Session 3:
Assign buyer 1 to seller 2 
Assign buyer 2 to seller 4 
Assign buyer 3 to seller 6 
Assign buyer 4 to seller 5 
Assign buyer 5 to seller 3 
Assign buyer 6 to seller 1 

Session 4:
Assign buyer 1 to seller 5 
Assign buyer 2 to seller 3 
Assign buyer 3 to seller 1 
Assign buyer 4 to seller 7 
Assign buyer 5 to seller 4 
Assign buyer 6 to seller 2 

Session 5:
Assign buyer 2 to seller 2 
Assign buyer 3 to seller 3 
Assign buyer 4 to seller 4 
Assign buyer 5 to seller 5 
Assign buyer 6 to seller 6 

Session 6:
Assign buyer 1 to seller 4 
Assign buyer 2 to seller 7 
Assign buyer 3 to seller 2 
Assign buyer 4 to seller 1 
Assign buyer 5 to seller 6 
Assign buyer 6 to seller 5 

Buyers satisfaction: Average =  92
Buyer:      1    2    3    4    5    6
Percent:  100   86  100   80   86  100

Sellers satisfaction: Average =  86
Seller:     1    2    3    4    5    6    7
Percent:   83  100   60  100  100  100   60

FIgure 5.5 

AMPL output of the assignment model
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results show that for five separate events the gap between the two solutions was less than 10%, 
indicating that the heuristic provides reliable solutions.

Of course, the devised solution does not guarantee that all preferences will be met because 
of the limit on the available number of time slots. Interestingly, the results recommended by the 
heuristic show that at least 80% of the highest-priority meetings (with preference 1) are selected 
by the solution. This percentage declines almost linearly with the increase in expressed scores 
(higher score indicates lower preference).

pRoBLEMS10

Section Assigned Problems

5.1 5-1 to 5-13
5.2 5-14 to 5-21
5.3.1 5-22
5.3.2 5-23 to 5-29
5.3.3 5-30 to 5-31
5.4.1 5-32 to 5-38

   5-1. True or False?
(a) To balance a transportation model, it is necessary to add a dummy source or a 

dummy destination bur never both.

(b) The amounts shipped to a dummy destination represent surplus at the shipping source.

(c) The amounts shipped from a dummy source represent shortages at the receiving 
destinations.

  5-2. In each of the following cases, determine whether a dummy source or a dummy destination 
must be added to balance the model.
(a) Supply: a1 = 100, a2 = 50, a3 = 40, a4 = 60

Demand: b1 = 100, b2 = 50, b3 = 70, b4 = 90

(b) Supply: a1 = 15, a2 = 44

Demand: b1 = 25, b2 = 15, b3 = 10
  5-3. In Table 5.4 of Example 5.1-2, where a dummy plant is added, what does the solution 

mean when the dummy plant “ships” 150 cars to Denver and 50 cars to Miami?
  *5-4. In Table 5.5 of Example 5.1-2, where a dummy destination is added, suppose that the 

Detroit plant must ship out all its production. How can this restriction be implemented 
in the model?

  5-5. In Example 5.1-2, suppose that for the case where the demand exceeds the supply  
(Table 5.4), a penalty is levied at the rate of $300 and $190 for each undelivered car 
at Denver and Miami, respectively. Additionally, no deliveries are made from the Los 
Angeles plant to the Miami distribution center. Set up the model, and determine the 
optimal shipping schedule for the problem.

  *5-6. Three electric power plants with capacities of 25, 40, and 30 million kWh supply electricity  
to three cities. The maximum demands at the three cities are estimated at 30, 35, and 
25 million kWh. The price per million kWh at the three cities is given in Table 5.25.

10You may use TORA where appropriate to find the optimum solution.  AMPL and Solver models are 
 introduced at the end of Section 5.3.2.



5.4  The assignment Model   237

Table 5.25 Price/Million kWh for Problem 5-6

City
1 2 3

1 $600 $700 $400
Plant 2 $320 $300 $350

3 $500 $480 $450

Problems   237

During the month of August, there is a 20% increase in demand at each of the three cit-
ies, which can be met by purchasing electricity from another network at a premium rate 
of $1000 per million kWh. The network is not linked to city 3, however. The utility com-
pany wishes to determine the most economical plan for the distribution and purchase of 
additional energy.
(a) Formulate the problem as a transportation model.

(b) Determine an optimal distribution plan for the utility company.

(c) Determine the cost of the additional power purchased by each of the three cities.
 5-7. Solve Problem 5-6, assuming that there is a 10% power transmission loss through the 

network.
  5-8. Three refineries with daily capacities of 6, 5, and 8 million gallons, respectively, supply 

three distribution areas with daily demands of 4, 8, and 7 million gallons, respectively. 
Gasoline is transported to the three distribution areas through a network of pipelines. 
The transportation cost is 10 cents per 1000 gallons per pipeline mile. Table 5.26 gives the 
mileage between the refineries and the  distribution areas. Refinery 1 is not connected to 
distribution area 3.
(a) Construct the associated transportation model.

(b) Determine the optimum shipping schedule in the network.
  *5-9. In Problem 5-8, suppose that the capacity of refinery 3 is 6 million gallons only and that 

distribution area 1 must receive all its demand. Additionally, any shortages at areas 2 and 
3 will incur a penalty of 5 cents per gallon.
(a) Formulate the problem as a transportation model.

(b) Determine the optimum shipping schedule.
5-10. In Problem 5-8, suppose that the daily demand at area 3 drops to 4 million gallons. 

Surplus production at refineries 1 and 2 is diverted to other distribution areas by truck. 
The transportation cost per 100 gallons is $1.50 from refinery 1 and $2.20 from refinery 2. 
Refinery 3 can divert its surplus production to other chemical processes within the plant.
(a) Construct the associated transportation model.

(b) Determine the optimum shipping schedule in the network.

Table 5.26 Mileage Chart for Problem 5-8

Distribution area

1 2 3

 Refinery 1 180 180    —
Refinery 2 300 800 900
Refinery 3 220 200 120
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5-11. Three orchards supply crates of oranges to four retailers. The daily demand amounts 
at the four retailers are 150, 150, 400, and 100 crates, respectively. Supplies at the three 
orchards are dictated by available regular labor and are estimated at 150, 200, and 250 
crates daily. However, both orchards 1 and 2 have indicated that they could supply more 
crates, if necessary, by using overtime labor. Orchard 3 does not offer this option. The 
transportation costs per crate from the orchards to the retailers are given in Table 5.27.
(a) Formulate the problem as a transportation model.

(b) Solve the problem.

(c) How many crates should orchards 1 and 2 supply using overtime labor?
5-12. Cars are shipped from three distribution centers to five dealers. The shipping cost is 

based on the mileage between the sources and the destinations and is independent of 
whether the truck makes the trip with partial or full loads. Table 5.28 summarizes the 
mileage between the distribution centers and the dealers together with the monthly 
supply and demand figures given in number of cars. A full truckload includes 18 cars. 
The transportation cost per truck mile is $25.
(a) Formulate the associated transportation model.

(b) Determine the optimal shipping schedule.
5-13. MG Auto, of Example 5.1-1, produces four car models: M1, M2, M3, and M4. The Detroit 

plant produces models M1, M2, and M4. Models M1 and M2 are also produced in New 
Orleans. The Los Angeles plant manufactures models M3 and M4. The capacities of the 
various plants and the demands at the distribution centers are given in Table 5.29.

The mileage chart is the same as given in Example 5.1-1, and the transportation 
rate remains at 8 cents per car mile for all models. Additionally, it is possible to satisfy a 
percentage of the demand for some models from the supply of others according to the 
specifications in Table 5.30.
(a) Formulate the corresponding transportation model.

(b) Determine the optimum shipping schedule. (Hint: Add four new destinations corre-
sponding to the new combinations [M1, M2], [M3, M4], [M1, M3], and [M2, M4]. The 
demands at the new destinations are determined from the given percentages.)

Table 5.28 Mileage Chart and Supply and Demand for Problem 5-12

Dealer

1 2 3 4 5 Supply

Center 1 100 150 200 140  35 400
Center 2  50  70  60  65  80 200
Center 3  40  90 100 150 130 150

Demand 100 200 150 160 140

Table 5.27 Transportation Cost/Crate for Problem 5-11

Retailer

1 2 3 4

Orchard 1 $1 $2 $3 $2
Orchard 2 $2 $4 $1 $2
Orchard 3 $1 $3 $5 $3
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Table 5.29 Capacities and Demands for Problem 5-13

Model

M1 M2 M3 M4 Totals

Plant
Los Angeles — — 700 300 1000
Detroit 500 600 — 400 1500
New Orleans 800 400 — — 1200

Distribution center
Denver 700 500 500 600 2300
Miami 600 500 200 100 1400

Table 5.30 Interchangeable Models for Problem 5-13

Distribution center Percentage of demand Interchangeable models

Denver 10 M1, M2
20 M3, M4

Miami 10 M1, M3
 5 M2, M4

5-14. In Example 5.2-1, suppose that the holding cost per unit is period-dependent and is given 
by 20, 15, and 35 cents for periods 1, 2, and 3, respectively. The penalty cost is $1 per 
period and the production costs remain as given in the example. Determine the optimum 
solution and interpret the results.

*5-15. In Example 5.2-2, suppose that the sharpening service offers 3-day service for $1 a blade 
on Monday and Tuesday (days 1 and 2). Reformulate the problem, and interpret the 
optimum solution.

5-16. In Example 5.2-2, if a blade is not used the day it is sharpened, a holding cost of 50 cents 
per blade per day is incurred. Reformulate the model, and interpret the optimum solution.

5-17. JoShop wants to assign four different categories of machines to five types of tasks. The 
numbers of machines available in the four categories are 25, 30, 20, and 30. The numbers 
of jobs in the five tasks are 30, 10, 20, 25, and 20. Machine category 4 cannot be assigned 
to task type 4.  Table 5.31  provides the unit cost (in dollars) of assigning a machine 
 category to a task type. The objective of the problem is to determine the optimum 
 number of machines in each category to be assigned to each task type. Solve the problem 
and interpret the solution.

Problems   239

Table 5.31 Unit Costs for Problem 5-17

Task type
1 2 3 4 5

1 10  2  3 15  9

Machine category 2  5 10 15  2  4
3 15  5 14  7 15
4 20 15 13 —  8
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*5-18. The demand for a perishable item over the next four months is 400, 300, 420, and 
380 tons, respectively. The supply capacities for the same months are 500, 600, 200, and 
300 tons. The purchase price per ton varies from month to month and is estimated at 
$100, $140, $120, and $150, respectively. Because the item is perishable, a current month’s 
 supply must be consumed within 3 months (starting with current month). The storage 
cost per ton per month is $3. The nature of the item does not allow back-ordering. Solve 
the problem as a transportation model, and determine the optimum delivery schedule 
for the item over the next 4 months.

5-19. The demand for a special small engine over the next five quarters is 200, 150, 300, 250, and 
400 units, respectively. The manufacturer supplying the engine has different production 
capacities estimated at 180, 230, 430, 300, and 300 for the five quarters. Back-ordering is not 
allowed, but the manufacturer may use overtime to fill the immediate demand, if necessary. 
The overtime capacity for each period is half the regular capacity. The production costs 
per unit for the five periods are $100, $96, $116, $102, and $106, respectively. The overtime 
production cost per engine is 50% higher than the regular production cost. If an engine is 
produced now for use in later periods, an additional storage cost of $4 per engine per period 
is incurred. Formulate the problem as a transportation model. Determine the optimum 
number of engines to be produced during regular time and overtime of each period.

5-20. Periodic preventive maintenance is carried out on aircraft engines, where an important 
component must be replaced. The numbers of aircraft scheduled for such maintenance over 
the next six months are estimated at 200, 180, 300, 198, 230, and 290, respectively. All main-
tenance work is done during the first day of the month, where a used component may be 
replaced with a new or an overhauled component. The overhauling of used components 
may be done in a local repair facility, where they will be ready for use at the beginning of 
next month, or they may be sent to a central repair shop, where a delay of 3 months (includ-
ing the month in which maintenance occurs) is expected. The repair cost in the local shop is  
$120 per component. At the central facility, the cost is only $35 per component. An over-
hauled component used in a later month will incur an additional storage cost of $1.50 per unit 
per month. New components may be purchased at $200 each in month 1, with a 5% price 
increase every 2 months. Formulate the problem as a transportation model, and determine 
the optimal schedule for satisfying the demand for the component over the next six months.

5-21. The National Parks Service is receiving four bids for logging at three pine forests in 
 Arkansas. The three locations include 20,000, 30,000, and 10,000 acres. A single bidder 
can bid for at most 50% of the total acreage available. The bids per acre at the three loca-
tions are given in  Table 5.32.  Bidder 2 does not wish to bid on location 1, and bidder 3 
cannot bid on location 2.
(a) In the present situation, we need to maximize the total bidding revenue for the 

Parks Service. Show how the problem can be formulated as a transportation model.

(b) Determine the acreage that should be assigned to each of the four bidders.

Table 5.32 Bids per Acre for Problem 5-21

Location

1 2 3

1 $520 $210 $570

Bidder 2 — $510 $495
3 $650 — $240
4 $180 $430 $710
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5-22. Compare the starting solutions obtained by the northwest-corner, least-cost, and Vogel 
methods for each of the models in Table 5.33.

5-23. Consider the transportation models in Table 5.34.
(a) Use the northwest-corner method to find the starting solution.

(b) Develop the iterations that lead to the optimum solution.

(c) TORA Experiment. Use TORA’s Iterations module to compare the effect of using 
the northwest-corner rule, least-cost method, and Vogel method on the number of 
iterations leading to the optimum solution.

(d) Solver Experiment. Solve the problem by modifying file solverEx5.3-1.xls.

(e) AMPL Experiment. Solve the problem by modifying file amplEx5.3-1b.txt.
5-24. In the transportation problem in Table 5.35, the total demand exceeds the total  supply. 

Suppose that the penalty costs per unit of unsatisfied demand are $2, $5, and $3 for 
 destinations 1, 2, and 3, respectively. Use the least-cost starting solution and compute the 
iterations leading to the optimum solution.

5-25. Solve Problem 5-24, assuming that the demand at destination 1 must be satisfied 
 completely. 
(a) Find the optimal solution.

(b) Solver Experiment. Solve the problem by modifying file solverEx5.3-1.xls.

(c) AMPL Experiment. Solve the problem by modifying file amplEx5.3-1b.txt.
5-26. In the unbalanced transportation problem in Table 5.36, if a unit from a source is not 

shipped out (to any of the destinations), a storage cost is incurred at the rate of $5, $4, 

Table 5.33 Data for Problem 5-22

*(a) (b) (c)

0 2 1 6 1 2 6  7 5 1 8 12
2 1 5 7 0 4 2 12 2 4 0 14
2 4 3 7 3 1 5 11 3 6 7  4

5 5 10 10 10 10 9 10 11

Table 5.34 Transportation Models for Problem 5-23

(i) (ii) (iii)

$0 $2 $1 6 $10 $4 $2 8 — $3 $5  4
$2 $1 $5 9 $2 $3 $4 5 $7 $4 $9  7
$2 $4 $3 5 $1 $2 $0 6 $1 $8 $6 19
5 5 10 7 6 6 5 6 19
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Table 5.35 Data for Problem 5-24

$5 $1 $7 10
$6 $4 $6 80
$3 $2 $5 15

75 20 50
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and $3 per unit for sources 1, 2, and 3, respectively. Additionally, all the supply at source 
2 must be shipped out completely to make room for a new product. Use Vogel’s starting 
solution, and determine all the iterations leading to the optimum  shipping schedule.

*5-27. In a 3 * 3 transportation problem, let xij be the amount shipped from source i to 
destination j, and let cij be the corresponding transportation cost per unit. The amounts 
of supply at sources 1, 2, and 3 are 15, 30, and 85 units, respectively, and the demands 
at destinations 1, 2, and 3 are 20, 30, and 80 units, respectively. Assume that the starting 
northwest-corner solution is optimal and that the associated values of the multipliers 
are given as u1 = -2, u2 = 3, u3 = 5, v1 = 2, v2 = 5, and v3 = 10.
(a) Find the associated optimal cost.

(b) Determine the smallest value of cij for each nonbasic variable that will maintain the 
optimality of the northwest-corner solution.

5-28. The transportation problem in Table 5.37 gives the indicated degenerate basic solution 
(i.e., at least one of the basic variables is zero). Suppose that the multipliers associated 
with this solution are u1 = 1, u2 = -1, v1 = 2, v2 = 2, and v3 = 5 and that the unit cost 
for all (basic and nonbasic) zero xij variables is given by

cij = i + ju, - ∞ 6 u 6 ∞

(a) If the given solution is optimal, determine the associated optimal value of the 
 objective function.

(b) Determine the value of u that will guarantee the optimality of the given solution. 
(Hint: Locate the zero basic variable.)

5-29. Consider the problem

Minimize z = a
m

i = 1
a
n

j = 1
cij xij

subject to

 a
n

j = 1
xij Ú ai, i = 1, 2, c, m

 a
m

i = 1
xij Ú bj, j = 1, 2, c, n

 xij Ú 0, all i and j

Table 5.37 Data for Problem 5-28

10 10

20 20 40

10 20 20

Table 5.36 Data for Problem 5-26

$1 $2 $1 20
$3 $4 $5 40
$2 $3 $3 30

30 20 20
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Table 5.38 Data for Problem 5-29

$1 $1 $2 5
$6 $5 $1 6

2 7 1

It may appear logical to assume that the optimum solution will require the first 
(second) set of inequalities to be replaced with equations if Σai Ú Σbj 1Σai … Σbj2. 
The counterexample in Table 5.38 shows that this assumption is not correct.

Show that the application of the suggested procedure yields the solution 
x11 = 2, x12 = 3, x22 = 4, and x23 = 2, with z = $27, which is worse than the feasible 
solution x11 = 2, x12 = 7, and x23 = 6, with z = $15.

5-30. Write the dual problem for the LP of the transportation problem in Example 5.3-5  
(Table 5.21). Compute the associated optimum dual objective value using the optimal dual 
values given in Table 5.25, and show that it equals the optimal cost given in the example.

5-31. In the transportation model, one of the dual variables assumes an arbitrary value. This 
means that for the same basic solution, the values of the associated dual variables are 
not unique. The result appears to contradict the theory of linear programming, where the 
dual values are determined as the product of the vector of the objective coefficients for 
the basic variables and the associated inverse basic matrix (see Method 2, Section 4.2.3). 
Show that for the transportation model, although the inverse basis is unique, the vector 
of basic objective coefficients need not be so. Specifically, show that if cij is changed to 
cij + k for all i and j, where k is a constant, then the optimal values of xij will remain the 
same. Hence, the use of an arbitrary value for a dual variable is implicitly equivalent to 
assuming that a specific constant k is added to all cij.

5-32. Consider the assignment models in Table 5.39.
(a) Solve by the Hungarian method.

(b) TORA Experiment. Express the problem as an LP, and solve it with TORA.

(c) TORA Experiment. Use TORA to solve the problem as a transportation model.

(d) Solver Experiment. Modify Excel file solverEx5.3-1.xls to solve the problem.

(e) AMPL Experiment. Modify file amplEx5.3b-1.txt to solve the problem.
5-33. JoShop needs to assign four jobs to four workers. The cost of performing a job is a 

function of the skills of the workers. Table 5.40 summarizes the cost of the assignments. 
Worker 1 cannot do job 3, and worker 3 cannot do job 4. Determine the optimal assign-
ment using the Hungarian method.

Table 5.39 Data for Problem 5-32

(i) (ii)

$3 $8 $2 $10 $3 $3 $9 $2 $2 $7
$6 $5 $2  $7 $5 $6 $1 $5 $6 $6
$6 $4 $2  $7 $5 $9 $4 $7 $10 $3
$8 $4 $2  $3 $5 $2 $5 $4 $2 $1
$7 $8 $6  $7 $7 $9 $6 $2 $4 $6

Problems   243
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5-34. In the JoShop model of Problem 5-33, suppose that an additional (fifth) worker becomes 
available for performing the four jobs at the respective costs of $60, $45, $30, and $80. 
Is it economical to replace one of the current four workers with the new one?

5-35. In the model of Problem 5-33, suppose that JoShop has just received a fifth job and that 
the respective costs of performing it by the four current workers are $20, $10, $20, and 
$80. Moreover, job 1 cannot be displaced by the newly arriving job. Should the new job 
take priority over any of the four jobs JoShop already has?

*5-36. A business executive must make the four round-trips listed in Table 5.41 between the 
head office in Dallas and a branch office in Atlanta.

The price of a round-trip ticket from Dallas is $400. A 25% discount is granted if 
the dates of arrival and departure of a ticket span a weekend (Saturday and Sunday). If 
the stay in Atlanta lasts more than 21 days, the discount is increased to 30%. A one-way 
ticket between Dallas and Atlanta (either direction) costs $250. How should the execu-
tive purchase the tickets?

*5-37. Figure 5.6 gives a schematic layout of a machine shop with its existing work centers des-
ignated by squares 1, 2, 3, and 4. Four new work centers, I, II, III, and IV, are to be added 
to the shop at the locations designated by circles a, b, c, and d. The objective is to assign 
the new centers to the proposed locations to minimize the total materials handling traffic 
between the existing centers and the proposed ones. Table 5.42 summarizes the frequency 
of trips between the new centers and the old ones. Materials handling equipment travels 
along the rectangular aisles intersecting at the locations of the centers. For example, the 
one-way travel distance (in meters) between center 1 and location b is 30 + 20 = 50 m.

5-38. In the Industrial Engineering Department at the University of Arkansas, INEG 4904 is 
a capstone design course intended to allow teams of students to apply the knowledge 
and skills learned in the undergraduate curriculum to a practical problem. The members 
of each team select a project manager, identify an appropriate scope for their project, 
write and present a proposal, perform necessary tasks for meeting the project objectives, 
and write and present a final report. The course instructor identifies potential projects 
and provides appropriate information sheets for each, including contact at the sponsor-
ing organization, project summary, and potential skills needed to complete the project. 

Table 5.41 Data for Problem 5-36

Departure date from Dallas Return date to Dallas

Monday, June 3 Friday, June 7
Monday, June 10 Wednesday, June 12
Monday, June 17 Friday, June 21
Tuesday, June 25 Friday, June 28

Table 5.40 Data for Problem 5-33

Job
1 2 3 4

1 $50 $50 — $20

Worker 2 $70 $40 $20 $30
3 $90 $30 $50 —
4 $70 $20 $60 $70
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Each design team is required to submit a report justifying the selection of team mem-
bers and the team manager. The report also provides a ranking for each project in order 
of preference, including justification regarding proper matching of the team’s skills with 
the project objectives. In a specific semester, the following projects were identified: 
Boeing F-15, Boeing F-18, Boeing Simulation, Cargil, Cobb-Vantress, ConAgra, Cooper, 
DaySpring (layout), DaySpring (material handling), J. B. Hunt, Raytheon, Tyson South, 
Tyson East, Walmart, and Yellow Transportation. The projects for Boeing and Raytheon 
require U.S. citizenship of all team members. Of the 11 design teams available for this 
semester, four do not meet this requirement.

Devise a procedure for assigning projects to teams, and justify the arguments you 
use to reach a decision.
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Machine shop layout for Problem 5-37
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Table 5.42 Data for Problem 5-37

New center
I II III IV

1 10 2 4 3

Existing center 2 7 1 9 5
3 0 8 6 2
4 11 4 0 7
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Chapter 6

Network Model

Real-Life Application—Saving Federal Travel Dollars

U.S. federal government offices are located in most cities in the United States, and fed-
eral employees are required to attend development conferences and training courses 
offered around the country. The location of the city hosting conferences/training events 
can impact travel costs. The goal of the study is to determine the optimal location of 
host city for a scheduled conference/training event. For fiscal year 1997, the developed 
model was estimated to have saved at least $400,000. Details of the study are presented 
at the end of the chapter.

6.1 Scope AnD DeFiniTion oF neTwoRk MoDeLS

Many operations research situations can be modeled and solved as networks (nodes 
connected by branches):

1. Design of an offshore natural-gas pipeline network connecting wellheads in the 
Gulf of Mexico to an inshore delivery point with the objective of minimizing the 
cost of constructing the pipeline.

2. Determination of the shortest route between two cities in an existing network of 
roads.

3. Determination of the maximum capacity (in tons per year) of a coal slurry pipe-
line network joining coal mines in Wyoming with power plants in Houston. (Slurry 
pipelines transport coal by pumping water through specially designed pipes.)

4. Determination of the time schedule (start and completion dates) for the activities 
of a construction project.

5. Determination of the minimum-cost flow schedule from oil fields to refineries 
through a pipeline network.

 247
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The solution of these situations is accomplished through a variety of network 
optimization algorithms. This chapter presents four of these algorithms.

1. Minimal spanning tree (situation 1)
2. Shortest-route algorithm (situation 2)
3. Maximal-flow algorithm (situation 3)
4. Critical Path Method (CPM) algorithm (situation 4)

For the fifth situation, the minimum-cost capacitated network algorithm is  presented in 
Section 22.1 on the website.

Network definitions. A network consists of a set of nodes linked by arcs (or branches). 
The notation for describing a network is (N, A), where N is the set of nodes, and A is 
the set of arcs. As an illustration, the network in Figure 6.1 is described as

N = 51, 2, 3, 4, 56
A = 511, 22, 11, 32, 12, 32, 12, 52, 13, 42, 13, 52, 14, 22, 14, 526

Associated with each network is a flow (e.g., oil products flow in a pipeline and 
automobile traffic flow in highways). The maximum flow in a network can be finite or 
infinite, depending on the capacity of its arcs.

An arc is said to be directed or oriented if it allows positive flow in one direction 
only. A directed network has all directed arcs.

A path is a set of arcs joining two distinct nodes, passing through other nodes in 
the network. For example, in Figure 6.1, arcs (1, 2), (2, 3), (3, 4), and (4, 5) form a path 
between nodes 1 and 5. A path forms a cycle or a loop if it connects a node back to 
itself through other nodes. In Figure 6.1, arcs (2, 3), (3, 4), and (4, 2) form a cycle.

A network is said to be connected if every two distinct nodes are linked by at 
least one path. The network in Figure 6.1 demonstrates this type of network. A tree is 
a cycle-free connected network comprised of a subset of all the nodes, and a spanning 
tree links all the nodes of the network. Figure 6.2 provides examples of a tree and a 
spanning tree from the network in Figure 6.1.

1 3 5

2 4
Figure 6.1 

Example of (N, A) Network

1 3 5

2 4

1 3

2

Spanning treeTree

Figure 6.2 

Examples of a tree and a spanning tree
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example 6.1-1 (Bridges of königsberg)

The Prussian city of Königsberg (now Kalingrad in Russia) was founded in 1254 on the banks 
of river Pergel with seven bridges connecting its four sections (labeled A, B, C, and D) as shown 
in Figure 6.3. A question was raised as to whether a round-trip could be constructed to visit all 
four sections of the city, crossing each bridge exactly once. A section could be visited multiple 
times, if necessary.

In the mid-eighteenth century, the famed mathematician Leonhard Euler developed a spe-
cial “path construction” argument to prove that it was impossible to construct such a trip. Later, 
in the early nineteenth century, the same problem was solved by representing the situation as 
a network with nodes representing the sections and (distinct) arcs representing the bridges, as 
shown in Figure 6.4.

B

A
D

C

Figure 6.3 

Bridges of Königsberg

A

B

D

C

Figure 6.4 

Network representation of Königsberg problem
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Aha! Moment: it is Said that a picture is worth a Thousand words!

In OR, this cannot be more true than in a network model. Network representation provides, at a 
glance, all the information about a problem, an outstanding feature indeed. And this all happens 
because of the simplicity and versatility of the ensemble of nodes and arcs in modeling many 
real-life situations. To be sure, the Bridges of Königsberg problem was solved by Leonard Euler 
in the eighteenth century using lengthy logical arguments. In the process, Euler laid the founda-
tion for the network representation of the situation (Figure 6.4) that made the answer almost 
intuitive. Euler’s work was the seed for what is currently known as graph theory, with its present 
immense contribution to solving intricate real-life problems.

The network representation greatly facilitates the development of almost intuitive algorith-
mic rules. This point of view is supported by G. Dantzig, R. Fulkerson, and S. Johnson in their 
1954 seminal paper (see bibliography of Chapter 11) for solving a 49-city traveling salesman 
problem by hand using a network representation imposed on a map of the United States. They 
state, “ . . . This [network representation] speeds up the entire iterative process, makes it easy to 
follow, and sometimes makes it easy to develop new restraints that are not likely to be obtained 
by less visual methods.”

6.2 MiniMAL SpAnning TRee ALgoRiThM

The minimal spanning tree links the nodes of a network using the smallest total length 
of connecting branches. A typical application occurs in the pavement of roads linking 
towns, either directly or passing through other towns. The minimal spanning tree solu-
tion provides the most economical design of the road system.

 Let N = 51, 2, c, n6 be the set of nodes of the network and define

 Ck = Set of nodes that have been permanently connected at iteration k

 Ck = Set of nodes as yet to be connected permanently after iteration k

The following steps describe the minimal spanning tree algorithm:

Step 0. Set C0 = ∅ and C0 = N.
Step 1. Start with any node i in the unconnected set C0 and set C1 = 5i6, rendering 

C1 = N - 5i6. Set k = 2. 

General step k. Select a node, j*, in the unconnected set Ck - 1 that yields the short-
est arc to a node in the connected set Ck - 1. Link j* permanently to Ck - 1 and 
 remove it from Ck - 1 to obtain Ck and Ck, respectively. Stop if Ck is empty; 
else, set k = k + 1 and repeat the step.

example 6.2-1 

Midwest TV Cable Company is providing cable service to five new housing developments. 
Figure 6.5 depicts possible TV connections to the five areas, with cable miles affixed on each arc. 
The goal is to determine the most economical cable network.
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The algorithm starts at node 1 (actually, any other node can be a starting point), which 
gives C1 = 516 and C1 = 52, 3, 4, 5, 66. The iterations of the algorithm are summarized in 
Figure 6.6. The thin arcs provide all the candidate links between C and C. The thick arcs are 
the permanent links of the connected set C, and the dashed arc is the new (permanent) link 
added at each iteration. For example, in iteration 1, branch (1, 2) is the shortest link 1=  1 mile2 
among all the candidate branches from node 1 to nodes 2, 3, 4, and 5 in the unconnected set C1. 
Hence, link (1, 2) is made permanent and j* = 2,  which yields C2 = 51, 26, C2 = 53, 4, 5, 66.

The solution is given by the minimal spanning tree shown in iteration 6 of Figure 6.6. 
The resulting minimum cable miles needed to provide the desired cable service are 1 + 3 +
4 + 3 + 5 = 16 miles.

remarks. In theory, a minimal spanning tree can be formulated and solved as a linear program. 
However, LP is not a practical option because numerous constraints must be added to exclude 
all cycles, resulting in a huge LP, even for small networks.

ToRA Moment

You can use TORA to generate the iterations of the minimal spanning tree. From Main menu,  
select Network models 1  Minimal spanning tree. Next, from SOLVE>MODIFY menu, 
 select Solve problem 1 Go to output screen. In the output screen, select a Starting node, 
then use Next iteration or All iterations to generate the successive iterations. You can restart 
the  iterations by selecting a new Starting Node. File toraEx6.2-1.txt gives TORA’s data for 
 Example 6.2-1.

6.3 ShoRTeST-RouTe pRoBLeM

The shortest-route problem determines the shortest route between a source and des-
tination in a transportation network. Other situations can be represented by the same 
model, as illustrated by the following examples.
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Figure 6.5 

Cable connections for Midwest TV Company
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6.3.1 examples of the Shortest-Route Applications

example 6.3-1 (equipment Replacement)

RentCar is developing a replacement policy for its car fleet over a 4-year planning horizon. At 
the start of each year, a car is either replaced or kept in operation for an extra year. A car must 
be in service from 1 to 3 years. The following table provides the replacement cost as a function 
of the year a car is acquired and the number of years in operation.
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Solution iterations for Midwest TV Company
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Equipment  
acquired at start of year

Replacement cost ($) for given years in operation

1 2 3

1 4000 5400 9800
2 4300 6200 8700
3 4800 7100 —
4 4900 — —

The problem can be formulated as a network in which nodes 1 to 5 represent the start of 
years 1 to 5. Arcs from node 1 (year 1) can reach nodes 2, 3, and 4 because a car must be in op-
eration from 1 to 3 years. The arcs from the other nodes can be interpreted similarly. The length 
of each arc equals the replacement cost. The solution of the problem is equivalent to finding the 
shortest route between nodes 1 and 5.

Figure 6.7 shows the resulting network. Using TORA,1 the shortest route is 1 S 3 S 5. The 
solution says that a car acquired at the start of year 1 (node 1) must be replaced after 2 years at 
the start of year 3 (node 3). The replacement car will then be kept in service until the end of year 4.  
The total cost of this replacement policy is $12,500 1=  $5,400 + $7,1002.

example 6.3-2 (Most Reliable Route)

I. Q. Smart drives daily to work. Having just completed a course in network analysis, Smart is 
able to determine the shortest route to work. Unfortunately, the selected route is heavily pa-
trolled by police, and with all the fines paid for speeding, the shortest route may not be the best 
choice. Smart has thus decided to choose a route that maximizes the probability of not being 
stopped by police.

The network in Figure 6.8 shows the possible routes from home to work, and the associated 
probabilities of not being stopped on each segment. The probability of not being stopped on a 
route is the product of the probabilities of its segments. For example, the probability of not re-
ceiving a fine on the route 1 S 3 S 5 S 7 is .9 * .3 * .25 = .0675. Smart’s objective is to select 
the route that maximizes the probability of not being fined.

1From Main menu, select Network models 1 Shortest route. From SOLVE>MODIFY menu, select 
Solve problem 1 Shortest routes .

4000 4300 4800 4900

9800

5400 7100

6200

8700

1 2 3 4 5

Figure 6.7 

Equipment replacement problem as a shortest-route model
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The problem can be formulated as a shortest-route model by using logarithmic transforma-
tion to convert the product probability into the sum of the logarithms of probabilities—that is, 
p1k = p1 * p2 * c * pk is transformed to  log  p1k =  log p1 +  log p2 + c +  log pk.

The two functions p1k and log p1k are both monotone decreasing in k; thus maximizing p1k 
is equivalent to maximizing log p1k, which in turn is equivalent to minimizing - log  p1k. Thus, 
replacing pj with - log  pj for all j in the network, the problem is converted to the shortest-route 
network in Figure 6.9.

Using TORA, the shortest route in Figure 6.9 passes through nodes 1, 3, 5, and 7 with a 
 corresponding “length” of 1.1707, or log p17 = -1.1707. Thus, the maximum probability of not 
being stopped is p17 = 10-1.1707 = .0675, not a very encouraging news for Smart!

example 6.3-3 (Three-Jug puzzle)

An 8-gallon jug is filled with fluid. Given two empty 5- and 3-gallon jugs, divide the 8 gallons 
of fluid into two equal parts using only the three jugs. What is the smallest number of transfers 
(decantations) needed to achieve this result?

You probably can solve this puzzle by inspection. Nevertheless, the representation of the 
problem as a shortest-route model is interesting.

A node is defined by a triple index representing the amounts of fluid in the 8-, 5-, and 3-gallon  
jugs, respectively. This means that the network starts with node (8, 0, 0) and terminates with the 
desired solution node (4, 4, 0). A new node is generated from the current node by decanting fluid 
from one jug into another.

Figure 6.10 shows different routes that lead from the start node (8, 0, 0) to the end node  
(4, 4, 0). The arc between two successive nodes represents a single transfer, and hence it can be 
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Most-reliable-route network model
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Most-reliable-route representation as a shortest-route model
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assumed to have a length of 1 unit. The problem reduces to determining the shortest route be-
tween node (8, 0, 0) and node (4, 4, 0).

The optimal solution, given by the bottom path in Figure 6.10, requires 7 decantations.

6.3.2 Shortest-Route Algorithms

This section presents two algorithms for solving both cyclic (i.e., containing loops) and 
acyclic networks:

1. Dijkstra’s algorithm for determining the shortest routes between the source node 
and every other node in the network.

2. Floyd’s algorithm for determining the shortest route between any two nodes in 
the network.

Essentially, Floyd’s algorithm subsumes Dijkstra’s.

Dijkstra’s algorithm. Let ui be the shortest distance from source node 1 to node i, and 
define dij 1Ú  02 as the length of arc (i, j). The algorithm defines the label for an imme-
diately succeeding node j as

[uj, i] = [ui + dij, i], dij Ú 0

The label for the starting node is [0, —], indicating that the node has no predecessor.
Node labels in Dijkstra’s algorithm are of two types: temporary and permanent. 

A temporary label at a node is modified if a shorter route to the node can be found. 
Otherwise, the temporary status is changed to permanent.

Step 0. Label the source node (node 1) with the permanent label [0, —]. Set i = 1.

General step i.
(a) Compute the temporary labels [ui + dij, i] for each node j with dij 7 0,  

provided j is not permanently labeled. If node j already has an existing 
temporary label [uj, k] via another node k and if ui + dij 6 uj,  replace [uj, 
k] with [ui + dij, i].

5,0,3

3,5,0 1,4,3

8,0,0

5,3,0

SinkSource

3,2,3 1,5,2
6,2,0 6,0,2

2,3,3 2,5,1 7,0,1

7,1,0

4,1,3

4,4,0

Figure 6.10 

Three-jug puzzle representation as a shortest-route model
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(b) If all the nodes have permanent labels, stop. Otherwise, select the label 
[ur, s] having the shortest distance 1=  ur2 among all the temporary 
labels (break ties arbitrarily). Set i = r and repeat step i.

example 6.3-4 

The network in Figure 6.11 gives the permissible routes and their lengths in miles between city 
1 (node 1) and four other cities (nodes 2 to 5). Determine the shortest routes between city 1 and 
each of the remaining four cities.

Iteration 0.  Assign the permanent label [0, —] to node 1.
Iteration 1.   Nodes 2 and 3 can be reached from (the last permanently labeled) node 1. Thus, 

the list of labeled nodes (temporary and permanent) becomes
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Figure 6.11 

Network Example for Dijkstra’s shortest-route algorithm

Node Label Status

1 [0, —] permanent
2 [0 + 100, 1] = [100, 1] Temporary

3 [0 + 30, 1] = [30, 1] Temporary

For the two temporary labels [100, 1] and [30, 1], node 3 yields the smaller distance 
1u3 = 302. Thus, the status of node 3 is changed to permanent.

Iteration 2.   Nodes 4 and 5 can be reached from node 3, and the list of labeled nodes becomes

Node Label Status

1 [0, —] Permanent
2 [100, 1] Temporary
3 [30, 1] permanent
4 [30 + 10, 3] = [40, 3] Temporary

5 [30 + 60, 3] = [90, 3] Temporary

Temporary label [40, 3] at node 4 is now permanent 1u4 = 402.
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At node 2, the new label [55, 4] replaces the temporary label [100, 1] from iteration 
1 because it provides a shorter route. Also, in iteration 3, node 5 has two alterna-
tive labels with the same distance 1u5 = 902. Temporary label [55, 4] at node 2 is 
now permanent 1u2 = 552.

Iteration 4.   Only permanently labeled node 3 can be reached from node 2. Hence node 3 
cannot be relabeled. The new list of labels remains the same as in iteration 3 
except that the label at node 2 is now permanent. This leaves node 5 as the only 
temporary label. Because node 5 does not lead to other nodes, its label becomes 
permanent, and the process ends.

The computations of the algorithm can be carried out directly on the network, as Figure 6.12 
demonstrates.

The shortest route between nodes 1 and any other node in the network is determined begin-
ning at the desired destination node and backtracking to the starting node using the information 
in the permanent labels. For example, the following sequence determines the shortest route from 
node 1 to node 2:

122 S [55, 4] S 142 S [40, 3] S 132 S [30, 1] S 112
Thus, the desired route is 1 S 3 S 4 S 2 with a total length of 55 miles.

Iteration 3.   Nodes 2 and 5 can be reached from node 4. Thus, the list of labeled nodes is 
updated as

Node Label Status

1 [0, —] Permanent
2 [40 + 15, 4] = [55, 4] Temporary

3 [30, 1] Permanent
4 [40, 3] permanent
5 [90, 3] or

[40 + 50, 4] = [90, 4] Temporary

1

2

[100,1](1)
[55,4](3)

[90,3](2)
[90,4](3)[0,2](1)

[30,1](1)

[40,3](2)
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Figure 6.12 

Dijkstra’s labeling procedure
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ToRA Moment

TORA can be used to generate Dijkstra’s iterations. From SOLVE>MODIFY menu, select 
Solve problem 1 Iterations 1 Dijkstra’s algorithm. File toraEx6.3-4.txt provides TORA’s data 
for Example 6.3-4.

Floyd’s algorithm. Floyd’s algorithm is more general than Dijkstra’s because it deter-
mines the shortest route between any two nodes in the network. The algorithm represents 
an n-node network as a square matrix with n rows and n columns. Entry (i, j) of the matrix 
gives the distance dij from node i to node j, which is finite if i is linked directly to j, and 
infinite otherwise.

The idea of Floyd’s algorithm is straightforward. Given three nodes i, j, and k in 
Figure 6.13 with the connecting distances shown on the three arcs, it is shorter to reach 
j from i passing through k if

dik + dkj 6 dij

In this case, it is optimal to replace the direct route from i S j with the indirect route 
i S k S j. This triple operation exchange is applied to the distance matrix using the 
following steps:

Step 0.  Define the starting distance matrix D0 and node sequence matrix S0 (all 
diagonal elements are blocked). Set k = 1.

i

k

j

dkjdik

dij

Figure 6.13 

Floyd’s triple operation

1 2 … j … n

1 — d12 … dij … d1n

2 d21 — … d2j … d2n

f f f f f f f

D0 = I di1 di2 … dij … din

f f f f f f f

N Dn1 dn2 … dnj … —

1 2 … j … n

1 — 2 … j … n

2 1 — … j … n

S0 = f f f f f f f

i 1 2 … j … n

f f f f f f f

n 1 2 … j … —
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General step k. Define row k and column k as pivot row and pivot column. Apply 
the triple operation to each element dij in Dk - 1, for all i and j. If the condition

dik + dkj 6 dij, 1i ≠ k, j ≠ k, and i ≠ j2

is satisfied, make the following changes:

(a) Create Dk by replacing dij in Dk - 1 with dik + dkj.
(b) Create Sk by replacing sij in Sk - 1 with k. Set k = k + 1. If k = n + 1, stop; 

else repeat step k.

Step k of the algorithm can be explained by representing Dk - 1 as shown in Figure 6.14.  
Here, row k and column k define the current pivot row and column. Row i repre-
sents any of the rows 1, 2, c, and k - 1, and row p represents any of the rows k + 1,  
k + 2, c, and n. Similarly, column j represents any of the columns 1, 2, c, and k - 1,  
and column q represents any of the columns k + 1, k + 2, c, and n. The triple operation 
can be applied as follows: If the sum of the elements on the pivot row and the pivot column 
(shown by squares) is smaller than the associated intersection element (shown by a circle), 
then it is optimal to replace the intersection distance by the sum of the pivot distances.

After n steps, we can determine the shortest route between nodes i and j from the 
matrices Dn and Sn using the following rules:

1. From Dn, dij gives the shortest distance between nodes i and j.
2. From Sn, determine the intermediate node k = sij that yields the route i S k S j. 

If sik = k and skj = j, stop; all the intermediate nodes of the route have been found. 
Otherwise, repeat the procedure between nodes i and k and between nodes k and j.

example 6.3-5 

For the network in Figure 6.15, find the shortest routes between every two nodes. The distances 
(in miles) are given on the arcs. Arc (3, 5) is directional—no traffic is allowed from node 5 to 
node 3. All the other arcs allow two-way traffic.

dij diqdik

Column
j

Column
q

Pivot
column

k

dpj dpqdpk

dkj

Row i

Row p

Pivot row k dkq

Figure 6.14 

Implementation of triple 
operation in matrix form
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Iteration 0.    The matrices D0 and S0 give the initial representation of the network. D0 is 
symmetrical, except that d53 = ∞ because no traffic is allowed from node 5 to 
node 3.

D0 S0
1 2 3 4 5 1 2 3 4 5

1 — 3 10 ∞ ∞ 1 — 2 3 4 5
2  3 — ∞ 5 ∞ 2 1 — 3 4 5
3 10 ∞ — 6 15 3 1 2 — 4 5
4 ∞ 5  6 —  4 4 1 2 3 — 5
5 ∞ ∞ ∞ 4 — 5 1 2 3 4 —

Iteration 1.   Set k = 1. The pivot row and column are shown by the lightly shaded first row 
and first column in the D0-matrix. The darker cells, d23 and d32, are the only 
ones that can be improved by the triple operation. Thus, D1 and S1 are obtained 
from D0 and S0 in the following manner:

1. Replace d23 with d21 + d13 = 3 + 10 = 13 and set s23 = 1.

2. Replace d32 with d31 + d12 = 10 + 3 = 13 and set s32 = 1.

These changes are shown in bold in matrices D1 and S1.

D1 S1
1 2 3 4 5 1 2 3 4 5

1 —  3 10 ∞ ∞ 1 — 2 3 4 5
2  3 — 13 5 ∞ 2 1 — 1 4 5
3 10 13 — 6 15 3 1 1 — 4 5
4 ∞  5  6 —  4 4 1 2 3 — 5
5 ∞ ∞ ∞ 4 — 5 1 2 3 4 —

Iteration 2.   Set k = 2, as shown by the lightly shaded row and column in D1. The triple 
operation is applied to the darker cells in D1 and S1. The resulting changes are 
shown in bold in D2 and S2.

D2 S2

1 2 3 4 5 1 2 3 4 5

1 —  3 10 8 ∞ 1 — 2 3 2 5
2  3 — 13 5 ∞ 2 1 — 1 4 5
3 10 13 — 6 15 3 1 1 — 4 5
4 8 5  6 —  4 4 2 2 3 — 5
5 ∞ ∞ ∞ 4 — 5 1 2 3 4 —

2
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10 15
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3

51

3

Figure 6.15 

Network for Example 6.3-5 
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Iteration 3.   Set k = 3, as shown by the shaded row and column in D2. The new matrices are 
given by D3 and S3.

D3 S3

1 2 3 4 5 1 2 3 4 5
1 — 3 10 8 25 1 — 2 3 2 3
2 3 — 13 5 28 2 1 — 1 4 3
3 10 13 — 6 15 3 1 1 — 4 5
4 8 5 6 —  4 4 2 2 3 — 5
5 ∞ ∞ ∞ 4 — 5 1 2 3 4 —

Iteration 4.   Set k = 4, as shown by the shaded row and column in D3. The new matrices are 
given by D4 and S4.

D4 S4

1 2 3 4 5 1 2 3 4 5
1 — 3 10 8 12 1 — 2 3 2 4
2  3 — 11 5  9 2 1 — 4 4 4
3 10 11 — 6 10 3 1 4 — 4 4
4  8 5  6 —  4 4 2 2 3 — 5
5 12  9 10 4 — 5 4 4 4 4 —

Iteration 5.  Set k = 5, as shown by the shaded row and column in D4. No further improve-
ments are possible in this iteration.

The final matrices D4 and S4 contain all the information needed to determine the shortest route 
between any two nodes in the network. For example, from D4, the shortest distance from node 1 to 
node 5 is d15 = 12 miles. To determine the associated route, recall that a segment (i, j) represents a 
direct link only if sij = j. Otherwise, i and j are linked through at least one other intermediate node. 
Because s15 = 4 ≠ 5, the route is initially given as 1 S 4 S 5. Now, because s14 = 2 ≠ 4, the seg-
ment (1, 4) is not a direct link, and 1 S 4 is replaced with 1 S 2 S 4,  and the route 1 S 4 S 5 
now becomes 1 S 2 S 4 S 5. Next, because s12 = 2, s24 = 4, and s45 = 5, no further “dissecting” 
is needed, and 1 S 2 S 4 S 5 defines the shortest route.

ToRA Moment

As in Dijkstra’s algorithm, TORA can be used to generate Floyd’s iterations. From SOLVE>
MODIFY menu, select Solve problem 1 Iterations 1 Floyd’s algorithm. File toraEx6.3-5.txt 
provides TORA’s data for Example 6.3-5.

6.3.3 Linear programming Formulation of the Shortest-Route problem

This section provides an LP model for the shortest-route problem. The model is gen-
eral in the sense that it can be used to find the shortest route between any two nodes in 
the network. In this regard, it is equivalent to Floyd’s algorithm.

We wish to determine the shortest route between any two nodes s and t in an n-
node network. The LP assumes that one unit of flow enters the network at node s and 
leaves at node t.
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Define

 xij = amount of flow in arc 1i, j2

= e1, if arc 1i, j2 is on the shortest route
0, otherwise

 cij = length of arc 1i, j2
Thus, the objective function of the linear program becomes

Minimize z = a
all defined
arcs 1i, j2

cij xij

The constraints represent the conservation-of-flow equation at each node:

Total input flow = Total output flow

Mathematically, this translates for node j to

aExternal input
into node j

b + a
i

all defined
arcs1i, j2

xij = aExternal output
from node j

b +  a
k

all defined
arcs1j, k2

 xjk

example 6.3-6 

In the network of Example 6.3-4, suppose that we want to determine the shortest route from 
node 1 to node 2—that is, s = 1 and t = 2. Figure 6.16 shows how the unit of flow enters at node 
1 and leaves at node 2.

We can see from the network that the flow-conservation equation yield

Node 1:         1 = x12 + x13

Node 2: x12 + x42 = x23 + 1
Node 3: x13 + x23 = x34 + x35

Node 4:      x34 = x42 + x45

Node 5: x35 + x45 = 0

2

4

11

1

330 60

20

10

15

50

100

5

Figure 6.16 

Insertion of unit flow to determine shortest route between node s = 1 and node t = 2
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The complete LP can be expressed as

x12 x13 x23 x34 x35 x42 x45

Minimize z = 100 30 20 10 60 15 50

Node 1    1    1 =    1
Node 2 -1    1 -1 = -1
Node 3 -1 -1    1    1 =    0
Node 4 -1    1    1 =    0
Node 5 -1 -1 =    0

Notice that column xij has exactly one “1” in row i and one “-1” in row j, a typical property of 
a network LP. Notice also that by examining the network, node 5 and its incoming arcs can be 
deleted altogether; meaning that node 5 constraint and the variables x35 and x45 can be removed 
from the LP. Of course, the given LP is sufficiently “smart” to yield x35 = x45 = 0 in the opti-
mum solution.

The optimal solution (obtained by TORA, file toraEx6.3-6.txt) is

z = 55, x13 = 1, x34 = 1, x42 = 1

This solution gives the shortest route from node 1 to node 2 as 1 S 3 S 4 S 2, and the associ-
ated distance is z = 55 (miles).

remarks. The linear programming formulation is versatile in that the model can be modified to 
locate the shortest route between any two nodes, simply changing the location of “1” and “–1” in 
the right-hand side to correspond to the start and end nodes, respectively. Of course, the network 
in Figure 6.16 is directed, allowing one-directional flow only, and hence may result in infeasibility 
for certain start-end node selections (e.g., start at node 5 and end at node 1). The situation can be 
rectified by adding new variables to represent the new routes.

Solver Moment

Figure 6.17 provides the Excel Solver spreadsheet for finding the shortest route between start 
node N1 and end node N2 of Example 6.3-6 (file solverEx6.3-6.xls). The input data of the model 
is the distance matrix in cells B3:E6. Node N1 has no column because it has no incoming arcs, and 
node N5 has no row because it has no outgoing arcs. An empty cell represents a nonexisting route 
segment (i.e., infinite length arc). (We will see shortly how the blank cell provision is recognized 
in the spreadsheet formulas.) Nodes N1 and N2 are designated as the start and end nodes by en-
tering 1 in F3 and B7, respectively. These designations can be changed as desired. For example, to 
find the shortest route from node N2 to node N4, enter 1 in each of F4 and D7.

As explained in the LP of Example 6.3-6, the constraints of the problem are of the 
general form:

1Net output flow2 - 1Net input flow2 = 0

This definition is adapted to the spreadsheet layout by incorporating the external unit flow 
 directly in Net output flow and Net input flow of the equation—that is,

c aOut@arcs flow from Ni
to all other nodes

b - aExternal in@unit flow
into Ni

b d - c a in@arcs flow into Ni from
all other nodes

b - aExternal out@unit flow
from Ni

b d = 0



264   Chapter 6    Network Model

In the spreadsheet, B3:E6 designate the input distance matrix, B9:E12 designate the solution 
cells, F3:F6 designate the (external) output unit-flow, and B7:E7 designate the (external) input 
unit-flow. Thus,

Node N1 equation: [SUM1B9:E92 - F3] - [0 - 0] = 0

Node N2 equation: [SUM1B10:E102 - F4] - [SUM1B9:B122 - B7] = 0

Node N3 equation: [SUM1B11:E112 - F5] - [SUM1C9:C122 - C7] = 0

Node N4 equation: [SUM1B12:E122 - F6] - [SUM1D9:D122 - D7] = 0

Node N5 equation: [0 - 0] - [SUM1E9:E122 - E7] = 0

The assumption of this spreadsheet is that blank cells in the distance matrix B3:E6 rep-
resent blocked routes. We can use SUMIF, in place of SUM, to automatically account for this 
condition.2 The following two instructions show how the modified formulas are entered in the 
spreadsheet.

1. Enter =SUMIF(B3:E3,”>0”,B9:E9)-F3 in cell F9 and copy it in cells F10:F12.
2. Enter =SUMIF(B3:B6,”>0”,B9:B12)-B7 in cell B14 and copy it in cells C14: E14.

Figure 6.17 

Excel Solver solution of the shortest route between nodes 1 and 2 in Example 6.3-6 (file solverEx6.3-6.xls)

2The idea is that the spreadsheet treats a blank cell as a zero value. If a problem happens to have a zero 
 distance between two nodes, the zero distance can be replaced with a very small positive value.
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The remainder of the spreadsheet formulas are entered as follows:

1. Enter =OFFSET(A$14,0,ROW(A1)) in cell G10 and copy it in cells G11:G13 to trans-
pose the input flow to column G.

2. Enter 0 in each of G9 and F13 to indicate that N1 has no in-arcs or external out-unit flow 
and N5 has no out-arcs or external in-unit flow.

3. Enter =F9-G9 in cell H9 and copy it in cells H10:H13 to compute the net flow.
4. For the objective function, enter in cell G14 =SUMPRODUCT(B3:E6,B9:E12) or, equiva-

lently, =SUMPRODUCT(distance,solution).

The spreadsheet is now ready for the application of Solver as shown in Figure 6.17. Cells 
B9:E12 represent the model solution. If cell 1Ni, Nj2 = 1, then leg (Ni, Nj) is on the shortest 
route. The output in Figure 6.17 yields the solution (N1@N3 = 1, N3@N4 = 1, and N4@N2 = 1). 
The optimal route is 1 S 3 S 4 S 2, with a total distance of 55 miles.3

remarks. In most textbooks, the network is defined by its explicit arcs as (node i, node j, dis-
tance), a cumbersome modeling representation particularly when the number of arcs is large. 
Our model is driven by the compact distance matrix (B3:E6) and its external flows (E3:E6 and 
B7:E7). It may be argued, however, that our model could deal with a much larger number of 
variables. For instance, Example 6.3-6 has 7 arcs and hence 7 variables, as opposed to 4 * 4 = 16 
variables in our formulation. Keep in mind that, by using SUMIF, the flow constraints are exactly 
the same as in other presentations. This means that the additional 9 variables appear only in 
the objective function and with zero coefficients (blank entries in B3:E6). Pre-solvers in com-
mercial software will spot this “oddity” and automatically exclude the additional variables from 
the objective function prior to solving the problem, thus rendering the same model as in other 
presentations.

AMpL Moment

File amplEx6.3-6a.txt provides the AMPL model for solving Example 6.3-6. The model is general 
in the sense that it can be used to find the shortest route between any two nodes in a problem of 
any size. Explanation of the model is given in Section C.9 on the website.

6.4 MAxiMAL FLow MoDeL

Consider a network of pipelines that transports crude oil from oil wells to refineries. 
Intermediate booster and pumping stations are installed at appropriate design distances 
to move the crude in the network. Each pipe segment has a finite discharge rate (or 
capacity) of crude flow. A pipe segment may be uni- or bidirectional, depending on its 
design. Figure 6.18 demonstrates a typical pipeline network. The goal is to determine the 
maximum flow capacity of the network.

3The solution of the model exhibits a curious occurrence: If the constraint netFlow = 0 is replaced 
with outFlow = inflow in the Solver parameters dialogue box, Solver fails to find a feasible solution, even 
after adjusting precision in the Solver Option box. (To reproduce this experience, solution cells B9:E12 
must all be zero or blank.) More curious yet, if the constraints are replaced with inFlow = outFlow, the 
optimum is found. It is not clear why this peculiarity occurs, but the problem may be related to roundoff 
error. Hopefully, newer versions of Solver have accounted for this “oddity” by now.
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The solution of the proposed problem requires adding a single source and a single 
sink using unidirectional infinite capacity arcs, as shown by dashed arcs in Figure 6.18.

For arc (i, j), the notation 1Cij, Cji2 gives the flow capacities in the two directions 
i S j and j S i. To eliminate ambiguity, we place Cij next to node i and Cji next to node 
j, as shown in Figure 6.19.

6.4.1 enumeration of cuts

a cut defines a set of arcs whose removal from the network disrupts flow between the 
source and sink nodes. The cut capacity equals the sum of the capacities of its set of 
arcs. Among all possible cuts in the network, the cut with the smallest capacity is the 
bottleneck that determines the maximum flow in the network.

example 6.4-1 

Consider the network in Figure 6.20. The bidirectional capacities are shown on the respective 
arcs using the convention in Figure 6.19. For example, for arc (3, 4), the flow limit is 10 units 
from 3 to 4 and 5 units from 4 to 3.

Figure 6.20 illustrates three cuts with the following capacities:

Cut Associated arcs Capacity

1 (1, 2), (1, 3), (1, 4) 20 + 30 + 10 = 60
2 (1, 3), (1, 4), (2, 3), (2, 5) 30 + 10 + 40 + 30 = 110
3 (2, 5), (3, 5), (4, 5) 30 + 20 + 20 = 70

The only information from the three cuts is that the maximum flow in the network cannot 
exceed 60 units. To determine the maximum flow, it is necessary to enumerate all the cuts, a dif-
ficult task for the general network. Thus, the need for an efficient algorithm is imperative.

2 5

Wells Boosters

Source Sink

Re�neries

1 4

9

7

3 6 8

Figure 6.18 

Capacitated network connecting wells and refineries through booster stations

i j
Cij Cji Figure 6.19 

Arc Flows Cij from i S j and Cji from j S i
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6.4.2 Maximal Flow Algorithm

The maximal flow algorithm is based on finding breakthrough paths with positive flow 
between the source and sink nodes. Each path commits part or all of the capacities of 
its arcs to the total flow in the network.

Consider arc (i, j) with the bidirectional (design) capacities 1Cij, Cji2 . As por-
tions of these capacities are committed to the flow in the arc, the residuals (or 
unused capacities) of the arc are updated. We use the notation (cij, cji) to represent 
the residuals.

For a node j that receives flow from node i, we attach a label [aj, i], where aj is the 
flow from node i to node j.

Step 1. For all arcs (i, j), set the residual capacity equal to the design capacity—that 
is, 1cij, cji2 = 1Cij, Cji2. Let a1 = ∞ , and label source node 1 with [∞ , -]. Set 
i = 1, and go to step 2.

Step 2. Determine Si, the set of unlabeled nodes j that can be reached directly 
from node i by arcs with positive residuals (i.e., cij 7 0 for all j ∈ Si2. If 
Si ≠ ∅,  go to step 3. Otherwise, a partial path is dead-ended at node i. 
Go to step 4.

Step 3. Determine k ∈ Si such that

cik = max
jeSi

5cij6

Set ak = cik and label node k with [ak, i]. If k = n, the sink node has been 
labeled, and a breakthrough path is found, go to step 5. Otherwise, set i = k, 
and go to step 2.
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Examples of cuts in flow networks
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Step 4. (Backtracking). If i = 1, no breakthrough is possible; go to step 6. Otherwise, 
let r be the node (on the partial path) that was labeled immediately before 
current node i, and remove i from the set of nodes adjacent to r. Set i = r, 
and go to step 2.

Step 5. (Determination of residuals). Let Np = 11, k1, k2, c, n2 define the nodes 
of the pth breakthrough path from source node 1 to sink node n. Then the 
maximum flow along the path is computed as

fp =  min5a1, ak1
, ak2

, c, an6
The residual capacity of each arc along the breakthrough path is decreased by 
fp in the direction of the flow and increased by fp in the reverse direction—
that is, for nodes i and j on the path, the residual flow is changed from the 
current (cij, cji) to
(a) 1cij - fp, cji + fp2 if the flow is from i to j
(b) 1cij + fp, cji - fp2 if the flow is from j to i

Reinstate any nodes that were removed in step 4. Set i = 1, and return to step 2.
Step 6. (Solution).

(a) Given that m breakthrough paths have been determined, the maximal 
flow in the network is

F = f1 + f2 + c+ fm

(b) Using the (initial) design capacities and final residuals of arc (i, j), 
1Cij, Cji2, and 1cij, cji2, respectively, the optimal flow in arc (i, j) is 
determined by computing 1a, b2 = 1Cij - cij, Cji - cji2. If a 7 0,  the 
optimal flow from i to j is a. Otherwise, if b 7 0,  the optimal flow from 
j to i is b. (It is impossible to have both a and b positive.)

The backtracking process of step 4 is invoked when the algorithm dead-ends 
at an intermediate node. The flow adjustment in step 5 can be explained via the 
simple flow network in Figure 6.21. Network (a) gives the first breakthrough path 
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Use of residuals to calculate maximum flow
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N1 = 51, 2, 3, 46 with its maximum flow f1 = 5. Thus, the residuals of each of arcs  
(1, 2), (2, 3), and (3, 4) are changed from (5, 0) to (0, 5), per step 5. Network (b) now 
gives the second breakthrough path N2 = 51, 3, 2, 46 with f2 = 5. After making the 
necessary flow  adjustments, we get network (c), where no further breakthroughs are 
possible. What happened in the transition from (b) to (c) is nothing but a cancellation 
of a previously committed flow in the direction 2 S 3,  in essence allowing the flow to 
on paths 1 S 2 S 4 and 1 S 3 S 4 only 1maximum flow = 5 + 5 = 102. The algo-
rithm “remembers” that a flow from 2 to 3 has been committed previously because of 
the earlier adjustment of the capacity in the reverse direction (per step 5).

example 6.4-2 

Determine the maximal flow in the network of Example 6.4-1 (Figure 6.20). Figure 6.22 provides 
a graphical summary of the iterations of the algorithm. You will find it helpful to compare the 
description of the iterations with the graphical summary.

Iteration 1.  Set the initial residuals (cij, cji) equal to the initial capacities 1Cij, Cji2. 

Step 1. Set a1 = ∞  and label node 1 with [∞ , —]. Set i = 1.
Step 2. S1 = 52, 3, 46 1≠  ∅2.
Step 3.  k = 3, because c13 = max5c12, c13, c146 = max520, 30, 106 = 30. Set a3 = c13 = 30, 

and label node 3 with [30, 1]. Set i = 3, and repeat step 2.
Step 2. S3 = 14, 52.
Step 3.  k = 5 and a5 = c35 = max510, 206 = 20. Label node 5 with [20, 3]. Breakthrough is 

achieved. Go to step 5.
Step 5.  The breakthrough path is determined from the labels starting at node 5 and moving  

backward to node 1—that is, 152 S [20, 3] S 132 S [30, 1] S 112. Thus, N1 = 51, 3, 56  
and f1 = min5a1, a3, a56 = 5∞ , 30, 206 = 20. The residual capacities along path  
N1 are

 1c13, c312 = 130 - 20, 0 + 202 = 110, 202
 1c35, c532 = 120 - 20, 0 + 202 = 10, 202

Iteration 2.

Step 1. Set a1 = ∞ , and label node 1 with [∞ , —]. Set i = 1.
Step 2. S1 = 52, 3, 46.
Step 3. k = 2 and a2 = c12 = max520, 10, 106 = 20. Set i = 2, and repeat step 2.
Step 2. S2 = 53, 56.
Step 3. k = 3 and a3 = c23 = 40. Label node 3 with [40, 2]. Set i = 3, and repeat step 2.
Step 2. S3 = 546 (note that c35 = 0—hence, node 5 cannot be included in S3).
Step 3. k = 4 and a4 = c34 = 10. Label node 4 with [10, 3]. Set i = 4, and repeat step 2.
Step 2.  S4 = 556 (note that nodes 1 and 3 are already labeled—hence, they cannot be included 

in S4).
Step 3.  k = 5 and a5 = c45 = 20. Label node 5 with [20, 4]. Breakthrough has been achieved. 

Go to step 5.
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Step 5.  N2 = 51, 2, 3, 4, 56 and f2 =  min5∞ , 20, 40, 10, 206 = 10. The residuals along the 
path of N2 are

1c12, c212 = 120 - 10, 0 + 102 = 110, 102
1c23, c322 = 140 - 10, 0 + 102 = 130, 102
1c34, c432 = 110 - 10, 5 + 102 = 10, 152
1c45, c542 = 120 - 10, 0 + 102 = 110, 102
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Iterations of the maximum flow algorithm of Example 6.4-2 
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Iteration 3.

Step 1. Set a1 = ∞  and label node 1 with [∞ , —]. Set i = 1.
Step 2. S1 = 52, 3, 46.
Step 3.  k = 2 and a2 = c12 = max510, 10, 106 = 10. (Though ties are broken arbitrarily, 

TORA always selects the tied node with the smallest index. We will use this conven-
tion throughout the example.) Label node 2 with [10, 1]. Set i = 2, and repeat step 2.

Step 2. S2 = 53, 56.
Step 3. k = 3 and a3 = c23 = 30. Label node 3 with [30, 2]. Set i = 3, and repeat step 2.
Step 2.  S3 = ∅ (because c34 = c35 = 0). Go to step 4 to backtrack.
Step 4.  Backtracking. The label [30, 2] at node 3 gives the immediately preceding node r = 2.  

Remove node 3 from further consideration in this iteration by crossing it out. Set 
i = r = 2, and repeat step 2.

Step 2. S2 = 556 (note that node 3 has been removed in the backtracking step).
Step 3.  k = 5 and a5 = c25 = 30. Label node 5 with [30, 2]. Breakthrough has been achieved; 

go to step 5.
Step 5.  N3 = 51, 2, 56  and c5 =  min 5∞ , 10, 306 = 10. The residuals along the path of  

N3 are

1c12, c212 = 110 - 10, 10 + 102 = 10, 202
1c25, c522 = 130 - 10, 0 + 102 = 120, 102

Iteration 4. 

This iteration yields N4 = 51, 3, 2, 56 with f4 = 10 (verify!).

Iteration 5. 

This iteration yields N5 = 51, 4, 56 with f5 = 10 (verify!).

Iteration 6. 

All the arcs out of node 1 have zero residuals. Hence, no further breakthroughs are possible. We 
turn to step 6 to determine the solution.
Step 6.  Maximal flow in the network is F = f1 + f2 + c + f5 = 20 + 10 + 10 + 10 +

10 = 60 units. The flow in the individual arcs is computed by subtracting the last re-
siduals (cij, cji) in iteration 6 from the design capacities 1Cij, Cji2, as the following table 
shows:

Arc 1Cij, Cji2 - 1cij, cji26 Flow amount Direction

(1, 2) 120, 02 - 10, 202 = 120, -202 20 1 S 2
(1, 3) 130, 02 - 10, 302 = 130, -302 30 1 S 3
(1, 4) 110, 02 - 10, 102 = 110, -102 10 1 S 4
(2, 3) 140, 02 - 140, 02 = 10, 02  0 —
(2, 5) 130, 02 - 110, 202 = 120, -202 20 2 S 5
(3, 4) 110, 52 - 10, 152 = 110, -102 10 3 S 4
(3, 5) 120, 02 - 10, 202 = 120, -202 20 3 S 5
(4, 3) 15, 102 - 115, 02 = 1-10, 102  0 —
(4, 5) 120, 02 - 10, 202 = 120, -202 20 4 S 5
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ToRA Moment

You can use TORA to solve the maximal flow model in an automated mode or one iteration at 
a time. From the SOLVE>MODIFY menu, select Solve Problem. After specifying the output 
format, go to the output screen and select either Maximum Flows or Iterations. File toraEx6.4-2.
txt provides TORA’s data for Example 6.4-2.

6.4.3 Linear programming Formulation of Maximal Flow Mode

Define xij as the amount of flow in arc (i, j) with capacity Cij. The objective is to deter-
mine xij for all i and j that maximizes the flow between start node s and terminal node t 
subject to flow restrictions (input flow = output flow) at all but nodes s and t.

example 6.4-3 

In the maximal flow model of Figure 6.22 (Example 6.4-2), s = 1 and t = 5. The following table 
summarizes the associated LP with two different, but equivalent, objective functions depend-
ing on whether we maximize the output from start node 11=  z12 or the input to terminal node 
51=  z22.

x12 x13 x14 x23 x25 x34 x35 x43 x45

Maximize z1 =
Maximize z2 =

 1  1  1
  1   1   1

Node 2  1 -1 -1 = 0
Node 3  1      1 -1 -1   1 = 0
Node 4  1   1 -1 -1 = 0

Capacity 20 30 10 40 30 10 20 5 20

The optimal solution using either objective function is

x12 = 20, x13 = 30, x14 = 10, x25 = 20, x34 = 10, x35 = 20, x45 = 20

The associated maximum flow is z1 = z2 = 60.

Solver Moment

Figure 6.23 gives the Excel Solver model for the maximum flow model of Example 6.4-2 (file 
solverEx6.4-2.xls). The general idea is similar to that of the shortest-route model, detailed fol-
lowing Example 6.3-6. The main differences include: (1) there are no flow equations for the start 
node 1 and end node 5, and (2) the objective is to maximize the total outflow at start node 1 (F9) 
or, equivalently, the total inflow at terminal node 5 (G13). File solverEx6.4-2.xls uses G13 as the 
target cell. Try executing the model with G13 replacing F9.
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AMpL Moment

File amplEx6.4-2.txt provides the AMPL model for the maximal flow problem between any two 
nodes in the network of Example 6.4-2. The model is applicable to any number of nodes. Expla-
nation of the model is detailed in Section C.9 on the website.

6.5 cpM AnD peRT

CPM (Critical Path Method) and PERT (Program Evaluation and Review Technique) 
are network-based methods designed to assist in the planning, scheduling, and con-
trol of projects. A project is defined as a collection of interrelated activities with each 
activity consuming time and resources. The objective of CPM and PERT is to devise 
analytic tools for scheduling the activities. Figure 6.24 summarizes the steps of the tech-
niques. First, we define the activities of the project, their precedence relationships, and 
their time requirements. Next, the precedence relationships among the activities are 
modeled as a network. The third step involves specific computations for developing the 
time schedule. During the actual execution phase, execution of the activities may not 
proceed as planned, in the sense that some of the activities may be expedited or de-
layed. When this happens, the schedule is updated to reflect the realities on the ground. 
This is the reason for including a feedback loop in Figure 6.24.

Figure 6.23 

Excel Solver solution of the maximal flow model of 6.4-2 (file solverEx6.4-2.xls)
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The two techniques, CPM and PERT, were developed independently. They differ 
in that CPM assumes deterministic activity durations and PERT assumes probabilistic 
durations.

6.5.1 network Representation

Each activity is represented by an arc pointing in the direction of progress in the project. 
The nodes of the network establish the precedence relationships among the different 
activities. Three rules are available for constructing the network.

rule 1. Each activity is represented by one, and only one, arc.
rule 2. Each activity must be identified by two distinct end nodes.

Figure 6.25 shows how a dummy activity can be used to provide unique represen-
tation of two concurrent activities, A and B. By definition, a (dashed) dummy activity 
consumes no time or resources. Inserting a dummy activity in one of the four ways 
shown in Figure 6.25 maintains the concurrence of A and B and provides unique end 
nodes for the two activities (to satisfy rule 2).

Network Time schedule

Time

Project
activities

Network
calculation

Figure 6.24 

Phases for project planning with CPM-PERT
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B A

2

1 3
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Use of dummy activity to produce unique representation of concurrent activities



rule 3.  To maintain the correct precedence relationships, the following questions must 
be answered as each activity is added to the network:
(a) What activities immediately precede the current activity?
(b) What activities immediately follow the current activity?
(c) What activities are concurrent with the current activity?

The answers to these questions may require the use of dummy activities to ensure 
correct precedence among the activities. For example, consider the following segment 
of a project:

1. Activity C starts immediately after activities A and B have been completed.
2. Activity E can start after activity B is completed.

Part (a) of Figure 6.26 shows the incorrect representation of the precedence relation-
ship because it requires both A and B to be completed before E can start. In part (b), 
the use of a dummy activity rectifies the situation.

example 6.5-1 

A publisher has a contract with an author to publish a textbook. The author submits a hard copy 
and a computer file of the manuscript. The (simplified) activities associated with the production 
of the textbook are summarized in the following table:

Activity Predecessor(s) Duration (weeks)

A: Manuscript proofreading by editor — 3
B: Sample pages preparation — 2
C: Book cover design — 4
D: Artwork preparation — 3
E:  Author’s approval of edited 

 manuscript and sample pages
A, B 2

F: Book formatting E 4
G: Author’s review of formatted pages F 2
H: Author’s review of artwork D 1
I:   Production of printing plates G, H 2
J:  Book production and binding C, I 4

Figure 6.27 provides the project network. Dummy activity (2, 3) produces unique end nodes 
for concurrent activities A and B. It is convenient to number the nodes in ascending order point-
ing toward the direction of progress in the project.

A

D

C

B E B E

A C

(a) (b)

Figure 6.26 

Use of dummy activity to ensure 
correct precedence relationship
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6.5.2 critical path Method (cpM) computations

The end result in CPM is a time schedule for the project (see Figure 6.24). To achieve 
this goal, special computations are carried out to produce the following information:

1. Total duration needed to complete the project
2. Classification of the activities of the project as critical and noncritical

An activity is critical if its start and finish times are predetermined (fixed). A 
activity is noncritical if it can be scheduled in a time span greater than its duration, per-
mitting flexible start and finish times (within limits). A delay in the start time of a criti-
cal activity definitely causes a delay in the completion of the entire project, whereas a 
delay in a noncritical activity may not affect the completion date of the project.

To carry out the necessary computations, we define an event as a point in time 
at which activities are completed and succeeding ones are started. In terms of the net-
work, an event corresponds to a node. Let

 □j = Earliest occurrence time of event j

 ∆j = Latest occurrence time of event j

 Dij = Duration of activity 1i, j2

All event occurrence times are measured from the start time of the project. The span 
1□i, ∆j2 defines the time period during which activity (i, j), of duration Dij, is sched-
uled. If activity (i, j) is critical, then Dij = ∆j - □i. Otherwise, Dij 6 ∆j - □i for non-
critical activity (i, j).

The critical path calculations involve two passes: The forward pass determines 
the earliest occurrence times of the events, and the backward pass calculates their latest 
occurrence times.

Forward pass (earliest occurrence times, □). The computations start at node 1 and 
advance recursively to node n.

Initial Step. Set □1 = 0 to indicate that the project starts at time 0.

General Step j. Given that nodes p, q, . . . , and v are linked directly to node j by 
 incoming activities (p, j), (q, j), . . . , and (v, j) and that the earliest occurrence 
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times of events (nodes) p, q, . . . , and v have already been computed, then 
the  earliest occurrence time of event j is computed as

□j =  max5□p + Dpj, □q + Dqj , c,□
v

+ D
vj6

The forward pass is complete when □n at node n has been computed. By 
definition, □j is the longest path (duration) to node j.

Backward pass (latest occurrence times, ∆). The backward pass computations start at 
node n and ends at node 1.

Initial Step. Set ∆n = □n to indicate that latest occurrences of the last node equals 
the duration of the project.

General Step j. Given that nodes p, q, . . . , and v are linked directly to node j by 
outgoing activities (j, p), (j, q), . . . , and (j, v) and that the latest occurrence 
times of nodes p, q, . . . , and v have already been computed, the latest oc-
currence time of node j is c.

∆j =  min5∆p - Djp, ∆q - Djq, c, ∆
v

- Djv6

The backward pass ends with ∆1 = 0 at node 1.

Based on the preceding calculations, an activity (i, j) will be critical if it satisfies 
three conditions.

1. ∆i = □i

2. ∆j =  □j

3. ∆j - □i = Dij

The three conditions state that the earliest and latest occurrence times of end nodes i 
and j are equal, and the duration Dij fits “snugly” in the specified time span. An activity 
that does not satisfy all three conditions is noncritical.

By definition, the critical activities of a network constitute the longest path span-
ning the project network from start to finish.

example 6.5-2 

Determine the critical path for the project network in Figure 6.28. All the durations are 
in days.

Forward pass

Node 1. Set □1 = 0
Node 2.    □ 2 = □ 1 + D12 = 0 + 5 = 5
Node 3.    □3 = max5□1 + D13, □ 2 + D236 = max50 + 6, 5 + 36 = 8
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Node 4.  □4 = □ 2 + D24 = 5 + 8 = 13
Node 5.  □5 = max5□3 + D35, □ 4 + D456 =  max58 + 2, 13 + 06 = 13
Node 6.  □6 = max5□ 3 + D36, □ 4 + D46, □ 5 + D566

 =  max58 + 11, 13 + 1, 13 + 126 = 25

The computations show that the project can be completed in 25 days.

Backward pass

Node 6.  Set ∆6 = □ 6 = 25
Node 5.  ∆5 = ∆6 - D56 = 25 - 12 = 13
Node 4.  ∆4 = min5∆6 - D46, ∆5 - D456 = min525 - 1, 13 - 06 = 13
Node 3.   ∆3 = min5∆6 - D36, ∆5 - D356 = min525 - 11, 13 - 26 = 11
Node 2.  ∆2 = min5∆4 - D24, ∆3 - D236 = min513 - 8, 11 - 36 = 5
Node 1.  ∆1 = min5∆3 - D13, ∆2 - D26 = min511 - 6, 5 - 56 = 0

Correct computations will always end with ∆1 = 0. The computations can be made directly 
on the network as shown in Figure 6.28.

As expected, the critical path 1 S 2 S 4 S 5 S 6 spans the network from start (node 1) 
to finish (node 6). The sum of the durations of the critical activities [(1, 2), (2, 4), (4, 5), and 
(5, 6)] equals the duration of the project 1=  25 days2. Observe that activity (4, 6) satisfies the 
first two conditions for a critical activity (∆4 = □4 = 13 and ∆6 = □6 = 25) but not the third 
1∆6 - □4 ≠ D462. Hence, the activity is noncritical.
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6.5.3 construction of the Time Schedule

This section shows how the information obtained from the calculations in Section 6.5.2  
can be used to develop the time schedule. We recognize that for an activity 1i, j2, □ i 
represents the earliest start time, and ∆j represents the latest completion time. Thus, the 
interval 1□i, ∆j2 delineates the (maximum) time span during which activity (i, j) can be 
scheduled without causing a delay in the entire project.

Construction of preliminary Schedule. The method for constructing a preliminary 
schedule is illustrated by an example.

example 6.5-3 

Determine the time schedule for the project of Example 6.5-2 (Figure 6.28).
We can get a preliminary time schedule for the different activities of the project by delineating  

their respective time spans as shown in Figure 6.29.

1. The critical activities (shown by solid lines) are staggered one right after the other to ensure 
that the project is completed within its specified 25-day duration.

2. The noncritical activities (shown by dashed lines) have permissible time spans greater than 
their respective durations, thus allowing slack (or “leeway”) in scheduling them within 
their allotted time intervals.

How do we schedule the noncritical activities within their respective spans? Normally, it is 
preferable to start each noncritical activity as early as possible. In this manner, remaining slack 
periods can be used to compensate for unexpected delays in the activity. It may be necessary, 
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Preliminary schedule for the project of Example 6.5-2 
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however, to delay the start of a noncritical activity past its earliest start time. For example, in 
Figure 6.29, suppose that each of the noncritical activities E and F requires the use of a bulldozer 
and that only one is available. Scheduling both E and F as early as possible requires two bulldoz-
ers between times 8 and 10. We can remove the overlap by starting E at time 8 and pushing the 
start time of F to somewhere between times 10 and 14.

If all the noncritical activities can be scheduled as early as possible, the resulting schedule 
is always feasible. Otherwise, some precedence relationships may be violated if noncritical ac-
tivities are delayed past their earliest time. Take, for example, activities C and E in Figure 6.29. 
In the project network (Figure 6.28), though C must be completed before E, the spans of C 
and E in Figure 6.29 allow scheduling C between times 6 and 9, and E between times 8 and 10, 
which violates the requirement that C precede E. The need for a “red flag” that automatically 
reveals schedule conflict is thus evident. Such information is provided by computing the floats 
for the noncritical activities.

Determination of the floats. Floats are the slack times available within the allotted span 
of the noncritical activity. The most common types are the total float and the free float.

Figure 6.30 gives a convenient summary for computing the total float (TFij) and 
the free float (FFij) for an activity (i, j).

 TFij = ∆j - □ i - Dij

 FFij = □ j - □ i - Dij

By definition, FFij … TFij.

red-Flagging rule. For a noncritical activity (i, j), if FFij 6 TFij,  then its start can be 
delayed by at most FFij, relative to its earliest start time □i,  without causing schedule 
conflict. Any delay larger than FFij (but not more than TFij) must be coupled with an 
equal delay (relative to □j) in the start time of all the activities leaving node j.

The implication of the rule is that, if FFij = TFij, a noncritical activity (i, j) can 
be scheduled anywhere in the interval 1□i, ∆j2 without causing schedule conflict. 
Otherwise, if FFij 6 TFij,  activity (i, j) is red-flagged for the possibility of causing delay 
in the start time of the activities leaving node j.

i j

i j

j

Dij

TFij 5
 n j 2

 h i 2
 Dij

FFij 5 hj 2 hi 2 Dij

Figure 6.30 

Computation of total and free floats



example 6.5-4 

Compute the floats for the noncritical activities of the network in Example 6.5-2, and discuss 
their use in finalizing a schedule for the project.

The following table summarizes the computations of the total and free floats. For manual 
computations, it is more convenient to do the calculations directly on the network using the pro-
cedure in Figure 6.30.

Noncritical activity Duration Total float (TF) Free float (FF)

B (1, 3)  6 11 - 0 - 6 = 5 8 - 0 - 6 = 2
C (2, 3)  3 11 - 5 - 3 = 3 8 - 5 - 3 = 0
E (3, 5)  2 13 - 8 - 2 = 3 13 - 8 - 2 = 3
F (3, 6) 11 25 - 8 - 11 = 6 25 - 8 - 11 = 6
G (4, 6)  1 25 - 13 - 1 = 11 25 - 13 - 1 = 11

The computations red-flag activities B and C because their FF 6 TF. The remaining activi-
ties (E, F, and G) have FF = TF  and hence can be scheduled anywhere between their earliest 
start and latest completion times.

To investigate the significance of red-flagged activities, consider activity B, with TF = 5 days 
and FF = 2 days. This activity can start any time between 0 and 2 (its FF). On the other hand, 
starting B past time 2 up to time 5 (its TF), the start times of the immediately succeeding activi-
ties E and F must be pushed forward relative to their earliest start time 1=  82 by at least an 
equal delay period.

As for red-flagged activity C, its zero FF means that any delay in starting C past its earliest 
start time 1=  52 must be coupled with at least an equal delay in the start time of its successor 
activities E and F.

ToRA Moment

TORA provides useful tutorial tools for CPM calculations and for constructing the time 
 schedule. To use these tools, select Project Planning 1 CPM - Critical Path Method from 
Main Menu. In the output screen, you have the option to select CPM Calculations to produce 
step-by-step computations of the forward pass, backward pass, and the floats or CPM Bar Chart 
to construct and experiment with the time schedule.

File toraEx6.5-2.txt provides TORA’s data for Example 6.5-2. If you elect to generate the 
output using the Next Step option, TORA will guide you through the details of the forward and 
backward pass calculations.

Figure 6.31 provides TORA schedule produced by CPM Bar Chart option for the project 
of Example 6.5-2. The default bar chart automatically schedules all noncritical activities as early 
as possible. You can study the impact of delaying the start time of a noncritical activity by using 
the self-explanatory drop-down lists on the left of the screen. The impact of a delay of a noncriti-
cal activity will be shown directly on the bar chart together with an explanation. For example, if 
you delay the start of activity B by more than 2 time units, the succeeding activities E and F will 
be delayed by an amount equal to the difference between the delay and free float of activity B. 
Specifically, given that the free float for B is 2 time units, if B is delayed by 3 time units, then the 
start of E and F must be delayed by at least 3 - 2 = 1 time unit. This situation is demonstrated 
in Figure 6.31.
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AMpL Moment

File amplEx6.52.txt provides the AMPL model for the CPM. The model is driven by the data 
of Example 6.5-2. This AMPL model is a unique application because it is not an optimization 
 problem. The details of the model are given in Appendix C.9 on the website.

6.5.4 Linear programming Formulation of cpM

The CPM model seeks the longest path between the start and finish nodes of the proj-
ect network. Its formulation as an LP is thus similar to the LP of the shortest-route 
model (Section 6.3.3). The only difference is that the objective function is maximized 
instead of minimized.

Define

 xij = Amount of flow in activity 1i, j2, for all defined i and j

 Dij = Duration of activity 1i, j2, for all defined i and j

Thus, the objective function of the linear program becomes

Maximize z = a
all defined 

activities 1i, j2

Dij xij

Figure 6.31 

TORA bar chart output for Example 6.5-2 (file toraEx6.5-2.txt)



For each node, there is one constraint that represents the conservation of flow:

Total input flow = Total output flow

All the variables, xij, are nonnegative.

example 6.5-5 

The LP formulation of the project of Example 6.5-2 (Figure 6.28) is given hereafter. Note that 
nodes 1 and 6 are the start and finish nodes, respectively.

A B C D E F Dummy G H

x12 x13 x23 x24 x35 x36 x45 x46 x56

Maximize z = 6 6 3 8 2 11 0 1 12

Node 1 -1 -1 = -1
Node 2   1 -1 -1 = 0
Node 3   1   1 -1 -1 = 0
Node 4   1 -1 -1 = 0
Node 5   1   1 -1 = 0
Node 6   1   1   1 = 1

The optimum solution is z = 25, x121A2 = 1, x241D2 = 1, x451Dummy2 = 1, x561H2 = 1,
and all others = 0.  The solution defines the critical path as A S D S Dummy S H,  and the 
project duration is 25 days, but it does not provide the data needed to construct the CPM chart.

6.5.5 peRT networks

PERT differs from CPM in that it assumes probabilistic duration times based on three 
estimates:

1. Optimistic time, a, which occurs when execution goes extremely well.
2. Most likely time, m, which occurs when execution is done under normal conditions.
3. pessimistic time, b, which occurs when execution goes extremely poorly.

The most likely time, m, falls in the range (a, b).
Based on the estimates, the average duration time, D, and variance, v, are ap-

proximated as

D =
a + 4m + b

6

v = ab - a
6

 b
2

CPM calculations given in Sections 6.5.2 and 6.5.3 may be applied directly, with D re-
placing the single estimate D.
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Given the random variable ej representing the earliest occurrence time of node, 
the probability that j will occur by a scheduled time, Sj, can be estimated in the following 
manner: Assume that all the activities in the network are statistically independent, first 
compute the mean, E{ej}, and variance, var{ej}. If there is only one path from the start 
node to node j, then the mean is the sum of expected durations, D, for all the activities 
along this path and the variance is the sum of the variances, v, of the same activities. 
If more than one path leads to node j, then it is necessary to determine the statistical 
distribution of the duration of the longest path, a rather difficult problem because it 
involves determining the distribution of the maximum of at least two random variables.  
A simplifying assumption calls for selecting the path to node j having the longest  average 
duration. If two or more paths have the same mean, the one with the largest variance is 
selected because it reflects the most uncertainty and, hence, leads to more conservative 
estimate of probabilities.

Given the mean and variance of the path to node j, E{ej} and var{ej}, the probabil-
ity that node j occurs by time Sj is approximated by the standard normal distribution, z 
(see Section 14.4.4)—that is,

P5ej … Sj6 = Pc ej - E5ej62var5ej6
 …

Sj - E5ej62var5ej6
 s = P5z … Kj6

Justification for the use of the normal distribution is that ej is the sum of indepen-
dent random variables. According to the central limit theorem (see Section 14.4.4), ej is 
 approximately normally distributed.

example 6.5-6 

Consider the project of Example 6.5-2. To avoid repeating the critical path calculations, the 
values of a, m, and b in the following table are selected to yield Dij = Dij for all i and j in 
Example 6.5-2:

Activity i–j (a, m, b) Activity i–j (a, m, b)

A 1–2 (3, 5, 7) E 3–5 (1, 2, 3)
B 1–3 (4, 6, 8) F 3–6 (9, 11, 13)
C 2–3 (1, 3, 5) G 4–6 (1, 1, 1)
D 2–4 (5, 8, 11) H 5–6 (10, 12, 14)

The mean Dij and variance vij for the different activities are given in the following table. 
Note that a dummy activity with 1a, m, b2 = 10, 0, 02 has zero mean and variance.

Activity i–j Dij vij Activity i–j Dij vij

A 1–2 5 .444 E 3–5  2 .111
B 1–3 6 .444 F 3–6 11 .444
C 2–3 3 .444 G 4–6  1 .000
D 2–4 8 1.000 H 5–6 12 .444
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The next table gives the longest path from node 1 to the different nodes, together with their 
associated mean and standard deviation.

Node Longest path based on mean durations Path mean Path standard deviation

2 1–2  5.00 0.67
3 1–2–3  8.00 0.94
4 1–2–4 13.00 1.20
5 1–2–4–5 13.00 1.20
6 1–2–4–5–6 25.00 1.37

The following table computes the probability that each node is realized by time Sj (specified 
by the analyst):

Node j Longest path Path mean Path standard deviation Sj Kj P5z … Kj6
2 1–2  5.00 0.67  5.00 0 .5000
3 1–2–3  8.00 0.94 11.00 3.19 .9993
4 1–2–4 13.00 1.20 12.00 - .83 .2033
5 1–2–4–5 13.00 1.20 14.00 .83 .7967
6 1–2–4–5–6 25.00 1.37 26.00 .73 .7673

ToRA Moment

TORA provides a module for carrying out PERT calculations. To use this module, select 
Project Planning 1 PERT@Program Evaluation and Review Technique from Main Menu . In  
the output screen, you have the option to select Activity Mean>Var to compute the mean 
and variance for each activity or PERT Calculations  to compute the mean and variance of 
the longest path to each node in the network. File toraEx6.5-6.txt provides TORA’s data for  
Example 6.5-6.
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Case Study: Saving Federal travel Dollars4

Tools: Shortest-route algorithm

Area of application: Business travel

Description of the situation: 

U.S. federal government employees are required to attend development conferences and train-
ing courses. Currently, the selection of the city hosting conferences and training events is done 
without consideration of incurred travel cost. Because federal employees are located in offices 
scattered around the United States, the location of the host city can impact travel cost, depending 
on the number of participants and the locations from which they originate.

The General Services Administration (GSA) issues a yearly schedule of airfares that the 
government contracts with different U.S. air carriers. This schedule provides fares for approxi-
mately 5000 city-pair combinations in the contiguous 48 states. It also issues per-diem rates for 
all major cities and a flat daily rate for cities not included in the list. Participants using personal 
vehicles for travel receive a flat rate per mile. All rates are updated annually to reflect the cost-of-
living increase. The travel cost from a location to the host city is a direct function of the number of 
participants, the cost of travel to the host city, and the per-diem allowed for the host city.

The problem is concerned with the optimal location of host city for an event, given a speci-
fied number of applicants from participating locations around the country.

Analysis

The idea of the solution is simple: The host city must yield the lowest travel cost that includes trans-
portation and per-diem allowance for the host city. The determination of the transportation cost 
requires identifying the locations from which participants depart. It is reasonable to assume that 
for locations within 100 miles from the host city, participants use personal vehicles as the selected 
mode of transportation. Others travel by air. The cost basis for air travelers consists of the sum of 
contracted airfares along the legs of the cheapest route to the host city. To determine such routes, it 
is necessary to identify the locations around the United States from which participants depart. Each 
such location is a possible host city candidate provided it offers adequate airport and conference 
facilities. In the present case, 261 such locations with 4640 contracted airport links are identified.

The determination of the cheapest airfare routes among the selected 261 locations with 4640 
air links is no simple task because a trip may involve multiple legs. Floyd’s algorithm  (Section 
6.3.2) is ideal for determining such routes. The “distance” between two locations is represented 
by the contracted airfare provided by the government. Per the contract, round trip cost is double 
the cost of the one-way trip.

To simplify the analysis, the study does not allow the use of car rentals at destinations. The 
plausible assumption here is that the host hotel is in the vicinity of the airport, usually with free 
shuttle service.

Per-diems cover lodging, meals, and incidental expenses. Participants arrive the day before 
the event starts. However, those arriving from locations within 100 miles arrive the morning of 
the first day of the event. All participants will check out of the hotel on the last day. For the days 
of arrival and departure, government regulations for meals and incidental expenses allow only a 
75% reimbursement of the full per-diem rate.

4J. L. Huisingh, H. M. Yamauchi, and R. Zimmerman, “Saving Federal Travel Dollars,” Interfaces, Vol. 31,  
No. 5, pp. 13–23, 2001.



numerical example

For the sake of this illustration, we will assume a 12-host-city situation. Table 6.1 provides the 
(late 1990s) contracted one-way airfares for admissible links among the cities. A blank entry 
indicates that the associated city pair does not have a direct air link.

Maximum lodging and per-diem allowances for the 12 cities together with their associated 
number of participants for an upcoming event are listed in Table 6.2. The duration of the event is 
4 days. The standard mileage allowance for personal vehicles is $.325 per mile (per the year 2000).

taBle 6.2 Lodging Cost, Per Diem, and Number  
of Participants in the 12-City Example

City
Lodging per  

night ($)
Per-diem  

($)
Number of  
participants

SF 115.00 50.00 15
ORD 115.00 50.00 10
STL 85.00 48.00 8
LAX 120.00 55.00 18
TUL 70.00 35.00 5
DEN 90.00 40.00 9
DC 150.00 60.00 10
ATL 90.00 50.00 12
DAL 90.00 50.00 11
NY 190.00 60.00 12
MIA 120.00 50.00 8
SPI 60.00 35.00 2

taBle 6.1 One-Way Airfare for the 12-City Example

SF ORD STL LAX TUL DEN DC ATL DAL NY MIA SPI

SF $70 $120 $220

ORD $99 $140 $150

STL $99 $95 $110 $78(a)

LAX $70 $130

TUL $95 $105 $100

DEN $120 $140 $110 $130 $105

DC $150 $100 $195 $85

ATL $100 $125

DAL $220 $100 $195

NY $85 $130

MIA $125 $130

SPI $78(a)

(a) Air travel cost = $78. Distance 6 100 miles 1=  86 miles2. Personal car used for travel between STL and SPI.
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The first step in the solution is to determine the cheapest airfare among all city pairs. This 
step is carried out by TORA (input file toraCase4.txt) using Floyd’s shortest-route algorithm 
(Section 6.3.2). The results are summarized in Table 6.3. Blank entries symmetrically equal those 
above the main diagonal. Recall that these values represent the cost of one-way tickets and that 
the cost of round-trip tickets is double that amount. Floyd’s algorithm automatically specifies the 
trip legs associated with each city pair.

The final step in the solution is to determine the total cost of the event for all the partici-
pants, given that the event is held at one of the listed cities. The city providing the smallest total 
cost is then selected as the host city.

To demonstrate the computations, suppose that STL is the candidate host city. The associ-
ated total cost is then computed as:

 Travel cost = 2 * 115 * 230 + 10 * 99 + 18 * 240 + 5 * 95 + 9 * 110 + 10 * 249

 +  12 * 349 + 11 * 195 + 12 * 334 + 8 * 4642 + 2 * 12 * 862 * .325

 = $53, 647.80

 Lodging cost = $85 * [115 + 10 + 18 + 5 + 9 + 10 + 12 + 11 + 12 + 82 * 4 + 2 * 3]

 = $37, 910

 Per@diem cost = $48 * [115 + 10 + 18 + 5 + 9 + 10 + 12 + 11 + 12 + 82
 *  4.5 + 12 + 82 * 3.5]

 = $25, 440

Note that because SPI is located 86 miles 16100 miles2 from STL, its participants drive 
personal vehicles and arrive at STL the morning of the first day of the event. Thus, their per-
diem is based on 3 1�2 days and their lodging is based on 3 nights only. Participants from STL 
receive per diem for 3 1�2 days and no lodging. All other participants arrive at STL a day earlier, 
and their per-diem is based on 4 1�2 days and 4 nights of lodging.

The computations for all host cities can be done conveniently with a spreadsheet (file 
excelCase4.xls—all the formulas are appended as cell comments). The results show that TUL 
offers the lowest total cost ($108,365), followed by DEN ($111,332) and then STL ($115,750).

taBle 6.3 Cheapest Airfare in the 12-City Example

ORD STL LAX TUL DEN DC ATL DAL NY MIA SPI

SF $260 $230 $70 $225 $120 $410 $510 $220 $495 $625 $308
ORD $99 $270 $194 $140 $150 $250 $294 $235 $365 $177
STL $240 $95 $110 $249 $349 $195 $334 $464 $28*

LAX $235 $130 $420 $520 $290 $505 $635 $318
TUL $105 $295 $395 $100 $380 $510 $173
DEN $290 $390 $205 $375 $505 $188
DC $100 $195 $85 $215 $327
ATL $295 $185 $125 $427
DAL $280 $410 $273
NY $130 $412
MIA $542

*Personal vehicle cost based on 86 miles (32.5 cents per mile)
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Section Assigned Problems Section Assigned Problems

6.1 6-1 to 6-6 6.4.3 6-39 to 6-41
6.2 6-7 to 6-12 6.5.1 6-42 to 6-51
6.3.1 6-13 to 6-17 6.5.2 6-52 to 6-57
6.3.2 6-18 to 6-24 6.5.3 6-58 to 6-64
6.3.3 6-25 to 6-27 6.5.4 6-65 to 6-66
6.4.1 6-28 to 6-28 6.5.5 6-67 to 6-67
6.4.2 6-29 to 6-38

 *6-1. For each network in Figure 6.32, determine (a) a path, (b) a cycle, (c) a tree, and (d) a 
spanning tree.

 6-2. Determine the sets N and A for the networks in Figure 6.32.
 6-3. Draw the network defined by

 N = 51, 2, 3, 4, 56
 A = 511, 22, 11, 52, 12, 32, 12, 42, 13, 42, 13, 52, 14, 32, 14, 52, 15, 226

 6-4. In Example 6.1-1,
(a) Specify the smallest number and locations of additional bridges needed to construct 

(i) a round-trip starting from A, and (ii) a trip that starts from A and ends in C. 
 Construct the resulting network, and determine the legs of the trip.

(b) During World War II, two of the bridges were destroyed. With the remaining five 
bridges, it became possible to make a trip from A to C (crossing each bridge exactly 
once). Which two bridges were destroyed (not fair consulting the Internet!)?

 *6-5. Consider eight equal squares arranged in three rows, with two squares in the first row, 
four in the second, and two in the third. The squares of each row are arranged symmetri-
cally about the vertical axis. Fill the squares with distinct numbers in the range 1 to 8 so 
that no two adjacent vertical, horizontal, or diagonal squares hold consecutive numbers. 
Use a network representation to find the solution in a systematic way.

 6-6. Three inmates escorted by three guards must be transported by boat from the mainland 
to a penitentiary island to serve their sentences. The boat cannot transfer more than 

1

3

5

2

4

1

3

(i) (ii)

2

4

Figure 6.32 

Networks for Problems 6-1 and 6-2

Problems   289



290   Chapter 6    Network Model

two persons in either direction. The inmates are certain to overpower the guards if they 
 outnumber them anywhere at any time. Develop a network model that designs the boat 
trips in a manner that ensures a safe transfer of the inmates.

 6-7. Solve Example 6.2-1 starting at node 6 (instead of node 1), and show that the algorithm 
produces the same solution.

 6-8. Determine the minimal spanning tree of the network of Example 6.2-1 under each of the 
following separate conditions:

*(a) Nodes 5 and 6 are linked by a 2-mile cable.

(b) Nodes 2 and 5 cannot be linked.

(c) Nodes 2 and 6 are linked by a 4-mile cable.

(d) The cable between nodes 1 and 2 is 8 miles long.

(e) Nodes 3 and 5 are linked by a 2-mile cable.

(f) Node 2 cannot be linked directly to nodes 3 and 5.
 6-9. In intermodal transportation, loaded truck trailers are shipped between railroad terminals 

on special flatbed carts. Figure 6.33 shows the location of the main railroad terminals in 
the United States and the existing railroad tracks. The objective is to decide which tracks 
should be “revitalized” to handle the intermodal traffic. In particular, the Los  Angeles 
(LA) terminal must be linked directly to Chicago (CH) to accommodate expected heavy 
traffic. Other than that, all the remaining terminals can be linked, directly or indirectly, 
such that the total length (in miles) of the selected tracks is minimized. Determine the 
segments of the railroad tracks that must be included in the revitalization program.

6-10. Figure 6.34 gives the mileage of the feasible links connecting nine offshore natural gas 
wellheads with an inshore delivery point. Because wellhead 1 is the closest to shore, it 
is equipped with sufficient pumping and storage capacity to pump the output of the re-
maining eight wells to the delivery point. Determine the minimum pipeline network that 
links the wellheads to the delivery point.

*6-11. In Figure 6.34 of Problem 6-10, suppose that the wellheads can be divided into two 
groups depending on gas pressure: a high-pressure group that includes wells 2, 3, 4, and 
7, and a low-pressure group that includes wells 5, 6, 8, and 9. Because of pressure dif-
ference, it is not possible to link the wellheads from the two groups. At the same time, 
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both groups must be connected to the delivery point through wellhead 1. Determine the 
minimum pipeline network for this situation.

6-12. Electro produces 15 electronic parts on 10 machines. The company wants to group the 
machines into cells designed to minimize the “dissimilarities” among the parts processed 
in each cell. A measure of “dissimilarity,” dij, among the parts processed on machines i 
and j can be expressed as

dij = 1 -
nij

nij + mij

where nij is the number of parts shared between machines i and j, and mij is the number 
of parts that are used by either machine i or machine j only.

The following table assigns the parts to machines:

Machine Assigned parts

 1 1, 6
 2 2, 3, 7, 8, 9, 12, 13, 15
 3 3, 5, 10, 14
 4 2, 7, 8, 11, 12, 13
 5 3, 5, 10, 11, 14
 6 1, 4, 5, 9, 10
 7 2, 5, 7, 8, 9, 10
 8 3, 4, 15
 9 4, 10
10 3, 8, 10, 14, 15

(a) Express the problem as a network model.

(b) Show that the determination of the cells can be based on the minimal spanning tree 
solution.

(c) For the data given in the preceding table, construct the two- and three-cell solutions.
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*6-13. Reconstruct the equipment replacement model of Example 6.3-1, assuming that a car 
must be kept in service for at least 2 years, with a maximum service life of 4 years. The 
planning horizon is from the start of year 1 to the end of year 5. The following table 
 provides the necessary data.

Replacement cost ($) for given years in operation

Year acquired 2 3 4

1 3800 4100 6900
2 4100 4890 7200
3 4200 5300 7300
4 4800 5800 —
5 5400 — —

6-14. Figure 6.35 provides the communication network between two stations, 1 and 7. The 
probability that a link in the network will operate without failure is shown on each arc. 
Messages are sent from station 1 to station 7, and the objective is to determine the route 
that maximizes the probability of a successful transmission. Formulate the situation as a 
shortest-route model, and determine the optimum solution.

6-15. Production Planning. DirectCo sells an item whose demands over the next 4 months 
are 100, 140, 210, and 180 units, respectively. The company can stock just enough supply 
to meet each month’s demand, or it can overstock to meet the demand for two or more 
consecutive months. In the latter case, a holding cost of $1.20 is charged per overstocked 
unit per month. DirectCo estimates the unit purchase prices for the next 4 months to be 
$15, $12, $10, and $14, respectively. A setup cost of $200 is incurred each time a purchase 
order is placed. The company wants to develop a purchasing plan that will minimize the 
total costs of ordering, purchasing, and holding the item in stock. Formulate the problem 
as a shortest-route model, and use TORA to find the optimum solution.

*6-16. Knapsack Problem. A hiker has a 5-ft3 backpack and needs to decide on the most valuable 
items to take on the hiking trip. There are three items from which to choose. Their volumes 
are 2, 3, and 4 ft3, and the hiker estimates their associated values on a scale from 0 to 100 
as 30, 50, and 70, respectively. Express the problem as longest-route network, and find 
the optimal solution. (Hint: A node in the network may be defined as [i, v], where i is the 
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item number considered for packing, and v is the volume remaining immediately before a 
decision is made on i. To solve with TORA, convert the longest-route to a shortest-route 
problem by using negative arc length.)

6-17. An old-fashioned electric toaster has two spring-loaded base-hinged doors. The two doors 
open outward in opposite directions away from the heating element. A slice of bread is 
toasted one side at a time by pushing open one of the doors with one hand and placing 
the slice with the other hand. After one side is toasted, the slice is turned over to get the 
other side toasted. The goal is to determine the sequence of operations (placing, toasting, 
turning, and removing) needed to toast three slices of bread in the shortest  possible time. 
Formulate the problem as a shortest-route model, using the following elemental times for 
the different operations:

Operation Time (seconds)

Place one slice in either side  3
Toast one side 30
Turn slice already in toaster  1
Remove slice from either side  3

6-18. The network in  Figure 6.36  gives the distances in miles between pairs of cities 1, 2, …, 
and 8. Use Dijkstra’s algorithm to find the shortest route between the following cities:
(a) Cities 1 and 7.

(b) Cities 1 and 6.

*(c) Cities 4 and 8.

(d) Cities 2 and 7.
6-19. Use Dijkstra’s algorithm to find the shortest route between node 1 and every other node 

in the network of Figure 6.37.
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6-20. Use Dijkstra’s algorithm to determine the optimal solution of each of the following 
 problems:
(a) Problem 6-13.

(b) Problem 6-14.

(c) Problem 6-16.
6-21. In Example 6.3-5, use Floyd’s algorithm to determine the shortest routes between each 

of the following pairs of nodes:
*(a) From node 5 to node 1.

(b) From node 3 to node 5.

(c) From node 1 to node 4.

(d) From node 3 to node 2.
6-22. Apply Floyd’s algorithm to the network in Figure 6.38. Arcs (7, 6) and (6, 4) are unidi-

rectional, and all the distances are in miles. Determine the shortest route between the 
following pairs of nodes:
(a) From node 1 to node 7.

(b) From node 7 to node 1.

(c) From node 6 to node 7.
6-23. The Tell-All mobile-phone company services six geographical areas. The satellite distances 

(in miles) among the six areas are given in Figure 6.39. Tell-All needs to determine the 
most efficient message routes that should be established between each two areas in the 
network.

*6-24. Six kids, Joe, Kay, Jim, Bob, Rae, and Kim, play a variation of hide and seek. The hiding 
place of a child is known only to a select few of the other children. A child is then paired  
with another with the objective of finding the partner’s hiding place. This may be  
achieved through a chain of other kids who eventually will lead to discovering where  
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the designated child is hiding. For example, suppose that Joe needs to find Kim and that 
Joe knows where Jim is hiding, who in turn knows where Kim is. Thus, Joe can find Kim by 
first finding Jim, who in turn will lead Joe to Kim. The following list provides the where-
abouts of the children:

Joe knows the hiding places of Bob and Kim.
Kay knows the hiding places of Bob, Jim, and Rae.
Jim and Bob each know the hiding place of Kay only.
Rae knows where Kim is hiding.
Kim knows where Joe and Bob are hiding.

Devise a plan for each child to find every other child using the smallest number of contacts. 
What is the largest number of contacts made by any child?

6-25. In Example 6.3-6, use LP to determine the shortest routes between the following pairs of 
nodes:

*(a) Node 1 to node 5.

(b) Node 2 to node 5.
6-26. Modify solverEx6.3-6.xls to find the shortest route between the following pairs of nodes:

(a) Node 1 to node 5.

(b) Node 1 to node 4.
6-27. Adapt amplEx6.3-6b.txt for Problem 6-14, to find the shortest route between node 1 and 

node 6. The input data must be the raw probabilities. Use AMPL programming facilities 
to print/display the optimum transmission route and its success probability.

*6-28. For the network in Figure 6.20, determine two additional cuts, and find their capacities.
*6-29. In Example 6.4-2,

(a) Determine the surplus capacities for all the arcs.

(b) Determine the amount of flow through nodes 2, 3, and 4.

(c) Can the network flow be increased by increasing the capacities in the directions 
3 S 5 and 4 S 5?

6-30. Determine the maximal flow and the optimum flow in each arc for the network in  
Figure 6.40.
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6-31. Three refineries send a gasoline product to two distribution terminals through a pipeline 
network. Any demand that cannot be satisfied through the network is acquired from 
other sources. The pipeline network is served by three pumping stations, as shown in 
Figure 6.41. The product flows in the network in the direction shown by the arrows. The 
capacity of each pipe segment (shown directly on the arcs) is in million bbl per day. 
Determine the following:
(a) The daily production at each refinery that matches the maximum capacity of the 

network.

(b) The daily demand at each terminal that matches the maximum capacity of the network.

(c) The daily capacity of each pump that matches the maximum capacity of the network.
6-32. Suppose that the maximum daily capacity of pump 6 in the network of Figure 6.41 is 

limited to 50 million bbl per day. Remodel the network to include this restriction. Then 
determine the maximum capacity of the network.

6-33. Chicken feed is transported by trucks from three silos to four farms. Some of the silos 
cannot ship directly to some of the farms. The capacities of the other routes are limited by 
the number of trucks available and the number of trips made daily. The following table 
shows the daily amounts of supply at the silos and demand at the farms (in thousands of 
pounds). The cell entries of the table specify the daily capacities of the associated routes.

Farm
1 2 3 4

1  30  5  0 40 20

Silo 2   0  0  5 90 20

3 100 40 30 40 200

200 10 60 20

(a) Determine the schedule that satisfies the most demand.

(b) Will the proposed schedule satisfy all the demand at the farms?
6-34. In Problem 6-33, suppose that transshipping is allowed between silos 1 and 2 and silos 2 

and 3. Suppose also that transshipping is allowed between farms 1 and 2, 2 and 3, and 3 
and 4. The maximum two-way daily capacity on the proposed transshipping routes is 50 
(thousand) lb. What is the effect of transshipping on the unsatisfied demands at the farms?
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*6-35. A parent has five (teenage) children and five household chores to assign to them.  
Past experience has shown that forcing chores on a child is counterproductive. With this 
in mind, the children are asked to list their preferences among the five chores, as the 
 following table shows:

Child Preferred chore

Rif 1, 3, 4, or 5
Mai 1
Ben 1 or 2
Kim 1, 2, or 5
Ken 2, 5

The parent’s modest goal now is to finish as many chores as possible while abiding 
by the children’s preferences. Determine the maximum number of chores that can be 
completed and the assignment of chores to children.

6-36. Four factories are engaged in the production of four types of toys. The following table 
lists the toys that can be produced by each factory.

Factory Toys productions mix

1 1, 2, 3
2 2, 3
3 1, 3, 4
4 1, 3, 4

All toys require approximately the same per-unit labor and material. The daily 
capacities of the four factories are 250, 180, 300, and 200 toys, respectively. The daily 
demands for the four toys are 200, 150, 350, and 100 units, respectively. Determine the 
factories’ production schedules that will most satisfy the demands for the four toys.

6-37. The academic council at the U of A is seeking representation from among six students 
who are affiliated with four honor societies. The academic council representation includes 
three areas: mathematics, art, and engineering. At most two students in each area can be 
on the council. The following table shows the membership of the six students in the four 
honor societies:

Society Affiliated students

1 1, 2, 3, 4
2 1, 3, 6
3 2, 3, 4, 5
4 1, 2, 4, 6

The students who are skilled in the areas of mathematics, art, and engineering are 
shown in the following table:

Area Skilled students

Mathematics 1, 2, 3, 4
Art 1, 3, 4, 5
Engineering 1, 4, 5, 6
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A student who is skilled in more than one area must be assigned exclusively to one 
area only. Can all four honor societies be represented on the council?

6-38. Maximal/minimal flow in networks with lower bounds. The maximal flow algorithm given 
in this section assumes that all the arcs have zero lower bounds. In some models, the 
lower bounds may be strictly positive, and we may be interested in finding the maximal 
or minimal flow in the network (see case 6-3 in Appendix E). The presence of the lower 
bound poses difficulty because the network may not have a feasible flow at all. The ob-
jective of this exercise is to show that any maximal and minimal flow model with positive 
lower bounds can be solved using two steps.
Step 1. Find an initial feasible solution for the network with positive lower bounds.
Step 2.  Using the feasible solution in step 1, find the maximal or minimal flow in the 

original network.
(a) Show that an arc (i, j) with flow limited by lij … xij … uij can be represented equivalently 

by a sink with demand lij at node i and a source with supply lij at node j with flow limited 
by 0 … xij … uij - lij.

(b) Show that finding a feasible solution for the original network is equivalent to finding  
the maximal flow xij

=  in the network after (1) modifying the bounds on xij to 
0 … xij

= … uij - lij, (2) “lumping” all the resulting sources into one supersource with 
outgoing arc capacities lij, (3) “lumping” all the resulting sinks into one supersink 
with incoming arc capacities lij, and (4) connecting the terminal node t to the source 
node s in the original network by a return infinite-capacity arc. A feasible solution 
exists if the maximal flow in the new network equals the sum of the lower bounds 
in the original network. Apply the procedure to the following network and find a 
feasible flow solution:

Arc (i, j) (lij, uij)

(1, 2) (5, 20)
(1, 3) (0, 15)
(2, 3) (4, 10)
(2, 4) (3, 15)
(3, 4) (0, 20)

(c) Use the feasible solution for the network in (b) together with the maximal flow 
algorithm to determine the minimal flow in the original network. (Hint: First, 
compute the residue network given the initial feasible solution. Next, determine the 
maximum flow from the end node to the start node. This is equivalent to finding the 
maximum flow that should be canceled from the start node to the end node. Now, 
combining the feasible and maximal flow solutions yields the minimal flow in the 
original network.)

(d) Use the feasible solution for the network in (b) together with the maximal flow 
model to determine the maximal flow in the original network. (Hint: As in part (c), 
start with the residue network. Next, apply the breakthrough algorithm to the result-
ing residue network exactly as in the regular maximal flow model.)

6-39. Model each of the following problems as a linear program, then solve using Solver or AMPL.
(a) Problem 6-32.

(b) Problem 6-35.

(c) Problem 6-39.



6-40. Jim lives in Denver, Colorado, and likes to spend his annual vacation in Yellowstone 
National Park in Wyoming. Being a nature lover, Jim tries to drive a different scenic 
route each year. After consulting the appropriate maps, Jim has represented his preferred 
routes between Denver (D) and Yellowstone (Y) by the network in Figure 6.42. Nodes  
1 through 14 represent intermediate cities. Although driving distance is not an issue,  
Jim’s stipulation is that selected routes between D and Y do not include any common  
cities. Determine (using AMPL or Solver) all the distinct routes available to Jim.  
(Hint: Modify the maximal flow LP model to determine the maximum number of unique 
paths between D and Y.)

6-41. Guéret and Associate (2002),Section 12.1. A military telecommunication system 
 connecting 9 sites is given in Figure 6.43. Sites 4 and 7 must continue to communicate 
even if as many as three other sites are destroyed by enemy actions. Does the present 
communication network meet this requirement? Use AMPL and Solver to work out 
the problem.
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6-42. Construct the project network comprised of activities A to M with the following 
 precedence relationships:
(a) A, B, and C, the first activities of the project, can be executed concurrently.

(b) A and B precede D.

(c) B precedes E, F, and H.

(d) F and C precede G and M.

(e) E and H precede I and J.

(f) C, D, F, and J precede K.

(g) K and M precedes L.

(h) I, G, and L are the terminal activities of the project.
6-43. Construct the project network comprised of activities A to P that satisfies the following 

precedence relationships:
(a) A, B, and C, the first activities of the project, can be executed concurrently.

(b) D, E, and F follow A.

(c) I and G follow both B and D.

(d) H follows both C and G.

(e) K and L follow I.

(f) J succeeds both E and H.

(g) M and N succeed F, but cannot start until both E and H are completed.

(h) O succeeds M and I.

(i) P succeeds J, L, and O.

(j) K, N, and P are the terminal activities of the project.
*6-44. The footings of a building can be completed in four consecutive sections. The activities 

for each section include (1) digging, (2) placing steel, and (3) pouring concrete. The 
digging of one section cannot start until that of the preceding section has been com-
pleted. The same restriction applies to pouring concrete. Develop the project network.

6-45. In Problem 6-44, suppose that 10% of the plumbing work can be started simultaneously 
with the digging of the first section but before any concrete is poured. After each section 
of the footings is completed, an additional 5% of the plumbing can be started provided 
that the preceding 5% portion is complete. The remaining plumbing can be completed at 
the end of the project. Construct the project network.

6-46. An opinion survey involves designing and printing questionnaires, hiring and training  
personnel, selecting participants, mailing questionnaires, and analyzing the data. 
 Construct the project network, stating all assumptions.

6-47. The activities in the following table describe the construction of a new house. Construct 
the associated project network.

Activity Predecessor(s) Duration (days)

A: Clear site —  1
B: Bring utilities to site —  2
C: Excavate A  1
D: Pour foundation C  2
E: Outside plumbing B, C  6
F: Frame house D 10



Activity Predecessor(s) Duration (days)

G: Do electric wiring F 3
H: Lay floor G 1
I: Lay roof F 1
J: Inside plumbing E, H 5
K: Shingling I 2
L: Outside sheathing insulation F, J 1
M: Install windows and outside doors F 2
N: Do brick work L, M 4
O: Insulate walls and ceiling G, J 2
P: Cover walls and ceiling O 2
Q: Insulate roof I, P 1
R: Finish interior P 7
S: Finish exterior I, N 7
T: Landscape S 3

6-48. A company is in the process of preparing a budget for launching a new product. The follow-
ing table provides the associated activities and their durations. Construct the project network.

Activity Predecessor(s) Duration (days)

A: Forecast sales volume — 10
B: Study competitive market —  7
C: Design item and facilities A  5
D: Prepare production schedule C  3
E: Estimate cost of production D  2
F: Set sales price B, E  1
G: Prepare budget E, F 14

6-49. The activities involved in a candlelight choir service are listed in the following table. 
Construct the project network.

Activity Predecessor(s) Duration (days)

A: Select music — 2
B: Learn music A 14
C: Make copies and buy books A 14
D: Tryouts B, C 3
E: Rehearsals D 70
F: Rent candelabra D 14
G: Decorate candelabra F 1
H: Set up decorations D 1
I: Order choir robe stoles D 7
J: Check out public address system D 7
K: Select music tracks J 14
L: Set up public address system K 1
M: Final rehearsal E, G, L 1
N: Choir party H, L, M 1
O: Final program I, N 1

6-50. The widening of a road section requires relocating (“reconductoring”) 1700 ft of 13.8-kV  
overhead primary line. The following table summarizes the activities of the project. 
 Construct the associated project network.
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Activity Predecessor(s) Duration (days)

A: Job review — 1
B: Advise customers of temporary outage A 1

2

C: Requisition stores A 1
D: Scout job A 1

2

E: Secure poles and material C, D 3
F: Distribute poles E 31

2

G: Pole location coordination D 1
2

H: Re-stake G 1
2

I: Dig holes H 3
J: Frame and set poles F, I 4
K: Cover old conductors F, I 1
L: Pull new conductors J, K 2
M: Install remaining material L 2
N: Sag conductor L 2
O: Trim trees D 2
P: De-energize and switch lines B, M, N, O 1

10

Q: Energize and switch new line P 1
2

R: Clean up Q 1
S: Remove old conductor Q 1
T: Remove old poles S 2
U: Return material to stores R, T 2

6-51. The following table gives the activities for buying a new car. Construct the project network:

Activity Predecessor(s) Duration (days)

A: Conduct feasibility study — 3
B: Find potential buyer for present car A 14
C: List possible models A 1
D: Research all possible models C 3
E: Conduct interview with mechanic C 1
F: Collect dealer propaganda C 2
G: Compile pertinent data D, E, F 1
H: Choose top three models G 1
I: Test-drive all three choices H 3
J: Gather warranty and financing data H 2
K: Choose one car I, J 2
L: Choose dealer K 2
M: Search for desired color and options L 4
N: Test-drive chosen model once again L 1
O: Purchase new car B, M, N 3

*6-52. Determine the critical path for the project network in Figure 6.44.
6-53. Determine the critical path for the project networks in Figure 6.45.
6-54. Determine the critical path for the project in Problem 6-47.
6-55. Determine the critical path for the project in Problem 6-49.
6-56. Determine the critical path for the project in Problem 6-50.
6-57. Determine the critical path for the project in Problem 6-51.



6-58. Given an activity (i, j) with duration Dij and its earliest start time □i and its latest 
completion time ∆j, determine the earliest completion and the latest start times of (i, j).

6-59. What are the total and free floats of a critical activity? Explain.
*6-60. For each of the following activities, determine the maximum delay in the starting time 

relative to its earliest start time that will allow all the immediately succeeding activities 
to be scheduled anywhere between their earliest and latest completion times.
(a) TF = 20, FF = 20, D = 8

(b) TF = 8, FF = 3, D = -2

(c) TF = 5, FF = 0, D = 3
6-61. In Example 6.5-4, use the floats to answer the following:

(a) If activity B is started at time 1, and activity C is started at time 5, determine the 
earliest start times for E and F.

(b) If activity B is started at time 3, and activity C is started at time 7, determine the 
earliest start times for E and F.

(c) How is the scheduling of other activities impacted if activity B starts at time 6?
*6-62. In the project of Example 6.5-2 (Figure 6.28), assume that the durations of activities B 

and F are changed from 6 and 11 days to 20 and 25 days, respectively.
(a) Determine the critical path.

(b) Determine the total and free floats for the network, and identify the red-flagged 
activities.
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(c) If activity A is started at time 5, determine the earliest possible start times for 
 activities C, D, E, and G.

(d) If activities F, G, and H require the same equipment, determine the minimum number 
of units needed of this equipment.

6-63. Compute the floats and identify the red-flagged activities for the projects (a) and (b) in 
Figure 6.30, then develop the time schedules under the following conditions:

Project (a)
(i) Activity (1, 5) cannot start any earlier than time 14.

(ii) Activities (5, 6) and (5, 7) use the same equipment, of which only one unit is available.
(iii) All other activities start as early as possible.

Project (b)
(i) Activity (1, 3) must be scheduled at its earliest start time while accounting for the 

requirement that (1, 2), (1, 3), and (1, 6) use a special piece of equipment, of which 
only 1 unit is available.

(ii) All other activities start as early as possible.
6-64. (Job shop scheduling) Three jobs, J1, J2, and J3, are processed on 3 machines, M1, M2, and 

M3, according to the following sequences (processing times are shown in parentheses):
J1: M3132 - M1142 - M2162
J2: M2112 - M3152 - M1192
J3: M3122 - M2182 - M1172

The order in which the jobs are processed on the different machines is predetermined as:
M1: J1 - J2 - J3
M2: J2 - J3 - J1
M3: J3 - J1 - J2

(a) Represent the problem as a CPM network for which the critical path determines the 
make span of all three jobs.

(b) Use the critical path calculations to develop the scheduling of the jobs (Gantt chart), 
assuming that each operation is scheduled at its earliest start time.

6-65. Use LP to determine the critical path for the project network in Figure 6.44.
6-66. Use LP to determine the critical path for the project networks in Figure 6.45.
6-67. Consider Problem 6-53. The estimates (a, m, b) are listed in the following table:

Project (a) Project (b)

Activity (a, m, b) Activity (a, m, b) Activity (a, m, b) Activity (a, m, b)

1-2 (5, 6, 8) 3-6 (3, 4, 5) 1-2 (1, 3, 4) 3-7 (12, 13, 14)
1-4 (1, 3, 4) 4-6 (4, 8, 10) 1-3 (5, 7, 8) 4-5 (10, 12, 15)
1-5 (2, 4, 5) 4-7 (5, 6, 8) 1-4 (6, 7, 9) 4-7 (8, 10, 12)
2-3 (4, 5, 6) 5-6 (9, 10, 15) 1-6 (1, 2, 3) 5-6 (7, 8, 11)
2-5 (7, 8, 10) 5-7 (4, 6, 8) 2-3 (3, 4, 5) 5-7 (2, 4, 8)
2-6 (8, 9, 13) 6-7 (3, 4, 5) 2-5 (7, 8, 9) 6-7 (5, 6, 7)
3-4 (5, 9, 19) 3-4 (10, 15, 20)

Determine the probabilities that the different nodes of the project are realized 
without delay.
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Chapter 7

advanced Linear programming

Real-Life Application—Optimal Ship Routing and Personnel Assignment  
for Naval Recruitment in Thailand

Thailand Navy recruits are drafted four times a year. A draftee reports to 1 of 34 
local centers and is then transported by bus to one of four navy branch bases. From 
there, recruits are transported to the main naval base by ship. The docking facilities 
at the branch bases may restrict the type of ship that can visit each base. Branch 
bases have limited capacities but, as a whole, the four bases have sufficient capacity 
to accommodate all the draftees. During the summer of 1983, a total of 2929 draftees 
were transported from the drafting centers to the four branch bases and eventu-
ally to the main base. The problem deals with determining the optimal schedule for 
transporting the draftees, first from the drafting centers to the branch bases and 
then from the branch bases to the main base. The study uses a combination of linear 
and integer programming. Details of the study are presented in Case 5, Chapter 26 
on the website.

7.1 SimPLex meThOd FuNdAmeNTALS

In linear programming, the feasible solution space forms a convex set if the line 
 segment joining any two distinct feasible points also falls in the set. An extreme point 
of the convex set is a feasible point that cannot lie on a line segment joining any two 
distinct feasible points in the set. Actually, extreme points are the same as corner points, 
as used in Chapters 2, 3, and 4.

Figure 7.1 illustrates two sets. Set (a) is convex (with six extreme points), and set 
(b) is not.

The graphical LP solution given in Section 2.3 demonstrates that the optimum so-
lution is always associated with a feasible extreme (corner) point of the solution space. 
This result makes sense intuitively, because every feasible point in the LP solution 
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space can be determined as a function of its feasible extreme points. For example, in 
convex set (a) of Figure 7.1, a convex combination of the extreme points, X1, X2, X3, X4, 
X5, and X6, identifies any feasible point X as

X = a1X1 + a2X2 + a3X3 + a4X4 + a5X5 + a6X6

a1 + a2 + a3 + a4 + a5 + a6 = 1

ai Ú  0, i = 1, 2, c, 6

This observation shows that a finite number of extreme points completely define the 
infinite number of points in the solution space. This result is the crux of the simplex 
method.

example 7.1-1 

Show that the following set is convex:

C = 51x1, x22 � x1 … 2, x2 … 3, x1 Ú 0, x2 Ú 06
Let X1 = 5x1

= , x2
=6 and X2 = 5x 1

== , x 2
==6 be any two distinct points in C. If C is convex, then 

X = 1x 1 , x 2 2 = a1 X1 + a2 X2, a1 + a2 = 1, a1, a2 Ú 0, must also be in C. To show that this 
is true, we need to show that all the constraints of C are satisfied by the line segment X—that is,

x1 = a1x′1 + a2x″1 … a1122 + a2122 = 2
x2 = a1x′2 + a2x″2 … a1132 + a2132 = 3

f 1 x1 … 2, x2 … 3

Additionally, the nonnegativity conditions are satisfied because a1 and a2 are nonnegative.

7.1.1 From extreme Points to Basic Solutions

It is convenient to express the general LP problem in equation form (see Section 3.1)  
using matrix notation.1 Define X as an n-vector representing the variables, a as an 
1m * n2@matrix representing the constraint coefficients, b as a column vector repre-
senting the right-hand side, and C as an n-vector representing the objective-function 
coefficients. The LP is then written as

Maximize or minimize z = CX

1A review of matrix algebra is given in Appendix D on the website.

Figure 7.1

Examples of a convex and a nonconvex set

X9
X9 X0X0

(a) (b)
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subject to

  aX = b

 X Ú 0

Using the format of Chapter 3, the rightmost m elements of X represent the start-
ing basic variables. Hence, the rightmost m columns of a always form an identity 
matrix I.

A basic solution of aX = b is determined by setting n - m variables equal 
to zero, and then solving the resulting m equations in the remaining m unknowns, 
 provided that the resulting solution is unique. Given this definition, the theory of lin-
ear programming establishes the following result between the geometric definition of 
 extreme points and the algebraic definition of basic solutions:

Extreme points of 5X � aX = b6 3  Basic solutions of aX = b

The relationship means that the extreme points of the LP solution space are defined 
by the basic solutions of aX = b, and vice versa. Thus, the basic solutions of aX = b 
provide all the information needed to determine the optimum solution of the LP prob-
lem. Furthermore, the nonnegativity restriction, X Ú 0, limits the search for the opti-
mum to the feasible basic solutions only.

To formalize the definition of a basic solution, the system aX = b is written in 
vector form as

a
n

j = 1
pj xj = b

The vector pj is the jth column of a. A subset of m vectors forms a basis, B, if, and 
only if, the selected m vectors are linearly independent. In this case, the matrix B is 
 nonsingular. Defining XB as an m-vector of the basic variables, then

BXB = b

Using the inverse B-1, the associated basic solution is

XB = B -1b

If B -1b Ú  0, then XB is feasible. The remaining n - m variables are nonbasic at zero 
level.

The previous result shows that in a system of m equations and n unknowns, the 
maximum number of (feasible and infeasible) basic solutions is 1m

n 2 = n!
m!1n - m2!.

example 7.1-2 

Determine all the basic feasible and infeasible solutions of the following system of equations:

a1 3 -1
2 -2 -2

b £x1

x2

x3

≥ = a4
2
b
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The following table summarizes the results. The inverse of B is determined by one of the 
methods in Section D.2.7 on the website.

B BXB = b Solution Type

(p1, p2) a1 3
2 -2

b ax1

x2
b = a4

2
b ax1

x2
b = a

1
4 3

8

1
4 -1

8

b a4
2
b = a

7
4
3
4
b

Feasible

(p1, p3) (Not a basis because p1 and p3 are dependent)
(p2, p3) a 3 -1

-2 -2
b ax2

x3
b = a4

2
b ax2

x3
b = a

1
4 -1

8

-1
4 -3

8
b a4

2
b = a

3
4

-7
4
b

Infeasible

We can also investigate the problem by expressing it in vector form as follows:

a1
2
bx1 + a 3

-2
bx2 + a -1

-2
bx3 = a4

2
b

The two-dimensional vectors p1, p2, p3, and b can be represented generically as (a1, a2)T. Figure 7.2 
graphs these vectors on the (a1, a2)-plane. For example, for b = 14, 22T, a1 = 4, and a2 = 2.

Because we are dealing with two equations (m = 2), a basis includes exactly two vectors, 
 selected from among p1, p2, and p3. From Figure 7.2, the matrices (p1, p2) and (p2, p3) form 
bases because their associated vectors are independent. On the other hand, the vectors of the 
matrix (p1, p3) are dependent, and hence the matrix is not a basis.

Algebraically, a (square) matrix forms a basis if its determinant is not zero (see Section D.2.5  
on the website). The following computations show that the combinations (p1, p2) and (p2, p3) 
are bases, and the combination (p1, p3) is not.

 det 1p1, p22 = det a1 3
2 -2

b = 11 * -22 - 13 * 22 = -8 ≠ 0

 det 1p2, p32 = det a 3 -1
-2 -2

b = 13 * -22 - 1-1 * -22 = -8 ≠ 0

 det 1p1, p32 = det a1 -1
2 -2

b = 11 * -22 - 1-1 * 22 = 0

3

a2

P2

P1

P3

b

a1

2

1

21 1 2 3 4

22

21

Figure 7.2 

Vector representation of LP solution space



7.1  Simplex Method Fundamentals   309

7.1.2 Generalized Simplex Tableau in matrix Form

This section develops the general simplex tableau in matrix form. This representation is 
the basis for subsequent developments in the chapter.

Consider the LP in equation form:

Maximize z = CX, subject to aX = b, X Ú  0

Equivalently, the problem can be written as

a1 -C
0 a

b a z
X
b = a0

b
b

Suppose that B is a feasible basis of the system aX = b, X Ú 0, and let XB be the 
corresponding vector of basic variables and CB its associated objective vector. Given 
all the nonbasic variables are zero, the solution is then computed as

a z
XB

b = a1 -CB

0 B
b

-1

a0
b
b = a1 CBB-1

0 B-1 b a0
b
b = aCBB-1b

B-1b
b

(Inversion of partitioned matrices is given in Section D.2.7. on the website.)
The complete simplex tableau in matrix form can be derived from the original 

equations as

a1 CBB-1

0 B-1 b a1 -C
0 a

b a z
X
b = a1 CBB-1

0 B-1 b a0
b
b

Matrix manipulations then yield the following equations:

a1 CBB-1a - C
0 B-1a

b a z
X
b = aCBB-1b

B-1b
b

Given the jth vector pj of a, the simplex tableau column associated with variable xj can 
be written as

Basic xj Solution

z CBB -1pj  - cj CBB -1b

XB B-1pj B-1b

In fact, the tableau above is the same one used in Chapter 3 (see Problem 7-13). It also 
includes all the primal–dual relationships developed in Section 4.2.4.

remarks. Look at the matrix form of the simplex tableau just given. You will notice 
that the inverse, B-1, is the only element that changes from one iteration to the next—
in the sense that all the other elements can be plucked directly from the original data. 
That means that the entire tableau can be generated from the original data once the 
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associated inverse B-1 is known. But the matrix-format tableau reveals a deeper root 
for determining B-1, namely,£Basic solution 

XB

at iteration i
≥ S £ Original

constraint columns
of XB

≥ S aBasis B for
iteration i

b S aInverse B-1 for
iteration i

b

That means that, once XB is known, all the elements of the tableau can be determined 
directly from the original data of the model. Unlike the tableau method in Chapter 3 
that propagates roundoff error when the next tableau is generated from the immedi-
ately preceding one, roundoff error in an iteration can be kept in check by computing 
B-1 from the original constraint columns. This result is one of the main reasons for the 
 development of the revised simplex method in Section 7.2. Nonetheless, the golden rule in  
matrix algebra is to avoid inverting a matrix when possible because calculating B-1 anew 
from original data is very costly computationally. As will be explained in Section 7.2.3, 
it is essential to strike a balance between accuracy and computational speed by modulat-
ing the frequency of computing the inverse during the course of the simplex iterations

example 7.1-3 

Consider the following LP:

Maximize z = x1 + 4x2 + 7x3 + 5x4

subject to

2x1 + x2 + 2x3 + 4x4 = 10

3x1 - x2 - 2x3 + 6x4 =  5

x1, x2, x3, x4 Ú 0

Generate the simplex tableau associated with the basis B = 1p1, p22.
Given B = 1p1, p22, then XB = 1x1, x22T and CB = 11, 42. Thus,

B-1 = a2 1
3 -1

b
-1

= ¢1
5

1
5

3
5 -2

5

≤
We then get

XB = ax1

x2
b = B-1b = ¢1

5
1
5

3
5 -2

5

≤ a10
5
b = a3

4
b

To compute the constraint columns in the body of the tableau, we have

B-1(p1, p2, p3, p4) = a
1
5

1
5

3
5 -2

5
b a2 1 2 4

3 -1 -2 6
b = a1 0 0 2

0 1 2 0
b

Next, we compute the objective row as

CB1B-11p1, p2, p2, p422 - C = 11, 42 a1 0 0 2
0 1 2 0

b - 11, 4, 7, 52 = 10, 0, 1, -32
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Finally, we compute the value of the objective function as

z = CBB-1b = CBXB = 11, 42 a3
4
b = 19

Thus, the entire tableau can be summarized as follows.

Basic x1 x2 x3 x4 Solution

z 0 0 1 -3 19

x1 1 0 0 2 3

x2 0 1 2 0 4

7.2 ReviSed SimPLex meThOd

Section 7.1.1 shows that the optimum solution of a linear program is always associ-
ated with a basic (feasible) solution. The simplex method search moves from a fea-
sible basis, B, to a better (actually, no-worse) basis, Bnext, until the optimum basis is 
reached.

The iterative steps of the revised simplex method are exactly the same as in the 
tableau simplex method presented in Chapter 3. The main difference is that the com-
putations in the revised method are based on matrix manipulations rather than on row 
operations. As such, the entire simplex tableau can be computed from the original data 
and the current inverse (see Section 7.1.2), thus improving the accuracy of  computing 
B-1 and ameliorating the machine roundoff error problem. In the tableau simplex 
method of Chapter 3, generating a new tableau from the immediately preceding one 
propagates roundoff error rather rapidly.

7.2.1 development of the Optimality and Feasibility Conditions

The general LP problem can be written as

Maximize or minimize  z = a
n

j = 1
cj xj   subject to  a

n

j = 1
pj xj = b,  xj Ú 0,  j = 1,  2, c, n

Given the basic vector XB, its basis B, and its objective vector CB, the general simplex 
tableau developed in Section 7.1.2 shows that any simplex iteration can be represented 
by the following equations:

z + a
n

j = 1
1zj - cj2xj = CBB -1b

1XB2i + a
n

j = 1
1B-1pj2i xj = 1B-1b2i

The reduced cost of xj, as defined in Section 4.3.2, is computed as

zj - c
j

= CBB-1pj - cj

The notation (V)i represents element i of the vector V.
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Optimality Condition. The z-equation shows that, in the case of maximization, an in-
crease in nonbasic xj above its current zero value can improve the value of z (relative 
to its current value, CBB-1b) only if zj - cj 6 0. For minimization, the condition is 
zj - cj 7 0. Thus, the entering vector is selected as the nonbasic vector with the most 
negative (most positive) zj - cj in case of maximization (minimization).

Feasibility Condition. Given the entering vector pj as determined by the optimality 
condition, the constraint equations reduce to

1XB2i = 1B-1 b2i - 1B-1 pj2i  xj

(Recall that the remaining n - 1 nonbasic variables are zero.) The idea is to  
(attempt to) increase xj above zero level, replacing one of the current basic variables. 
The extent to which xj is increased is dictated by the requirement that all (XB)i remain 
nonnegative—namely,

1XB2i = 1B-1 b2i - 1B-1 pj2i  xj Ú 0

If 1B -1pj2i 7 0 for at least one i, the nonnegativity condition, 1XB2i Ú 0 for all i, 
sets the limit on the maximum increase in the value of the entering variable xj—namely,

xj =
i

mine 1B-1 b2i

1B-1pj2i
 ` 1B-1pj2i 7  0 f

Suppose that (XB)k is the basic variable that corresponds to the minimum ratio. It then 
follows that pk must be the leaving vector, and its associated (basic) variable must be-
come nonbasic (at zero level) in the next simplex iteration.

7.2.2 Revised Simplex Algorithm

Step 0.  Construct a starting basic feasible solution, and let B and CB be its  associated 
basis and objective coefficients vector, respectively.

Step 1.  Compute the inverse B -1 of the basis B by using an appropriate inversion 
method.2

Step 2. For each nonbasic vector pj, compute

zj - cj = CB B -1pj - cj

2In most LP presentations, including the first six editions of this book, the product form method for inverting 
a basis (see Section D.2.7 on the website) is integrated in the revised simplex algorithm because the product 
form lends itself readily to the revised simplex computations—namely, successive bases differ in exactly one 
column. This detail has been removed from this presentation because it makes the algorithm appear more 
complex than it really is. Moreover, the product form is rarely used in the development of commercial LP 
codes. Instead (variants of) the more efficient LU decomposition method is used. We will elaborate on the 
use of the product form and LU decomposition later in Section 7.2.3; specifically, see the Aha! Moment at 
the end of Section 7.2.3. (Incidentally, TORA matrix inversion is based on LU decomposition.)
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If zj - cj Ú 0 in maximization (…  0 in minimization) for all nonbasic vectors, 
stop; the optimal solution is XB = B-1b, z = CBXB.

Else, determine the entering vector pj having the most negative (positive) 
 zj - cj in case of maximization (minimization) among all nonbasic vectors.

Step 3.   Compute B-1pj. If all the elements of B-1pj are negative or zero, stop; the 
 solution is unbounded. Else, use the ratio test to determine the leaving vector pi.

Step 4.  Form the next basis by replacing the leaving vector pi with the entering 
 vector pj in the current basis B. Go to step 1 to start a new iteration.

example 7.2-1 

The Reddy Mikks model (Section 2.1) is solved by the revised simplex algorithm. The same 
model was solved by the tableau method in Section 3.3.2. A comparison shows that the two 
methods are one and the same.

The equation form of the Reddy Mikks model can be expressed in matrix form as

maximize z = 15, 4, 0, 0, 0, 021x1, x2, x3, x4, x5, x62T

subject to §    6 4 1 0 0 0
   1 2 0 1 0 0
-1 1 0 0 1 0
   0 1 0 0 0 1

¥¶x1

x2

x3

x4

x5

x6

∂ = §24
6
1
2

¥
x1, x2, c, x6 Ú 0

The notation C = 1c1, c2, c, c62 represents the objective-function coefficients, and (p1, p2, . . . , 
and p6) represent the columns vectors of the constraint equations. The right-hand side of the con-
straints is the vector b.

In the following computations, we will give the algebraic formula for each step and its final 
numeric answer, without detailing the calculations. You will find it instructive to fill in the gaps 
in each step.

Iteration 0

 XB0
= 1x3, x4, x5, x62, CB0

= 10, 0, 0, 02
 B0 = 1p3, p4, p5, p62 = I, B0

-1 = I

Thus,

XB0
= B0

-1b = 124, 6, 1, 22T, z = CB0
XB0

= 0

Optimality computations:

CB0
B0

-1 = 10, 0, 0, 02
5zj - cj6j = 1, 2 = CB0

B0
-11p1, p22 - 1c1, c22 = 1-5, -42

Thus, p1 is the entering vector.
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Feasibility computations:

XB0
= 1x3, x4, x5, x62T = 124, 6, 1, 22T

B0
-1p1 = 16, 1, -1, 02T

Hence,

x1 = mine 24
6

, 
6
1

, - , - f = min54, 6, - , -6 = 4,

and p3 becomes the leaving vector.
The results given above can be summarized in the familiar simplex tableau format, essen-

tially demonstrating that the two methods are the same.

Basic x1 x2 x3 x4 x5 x6 Solution

z -5 -4 0 0 0 0 0

x3 6 24
x4 1  6
x5 -1  1
x6 0  2

Iteration 1

 XB1
= 1x1, x4, x5, x62, CB1

= 15, 0, 0, 02
 B1 = 1p1, p4, p5, p62

 = § 6 0 0 0
1 1 0 0

-1 0 1 0
0 0 0 1

¥
By using an appropriate inversion method (see Section D.2.7 on the website), then

B1
-1 = § 1

6 0 0 0

-1
6 1 0 0
1
6 0 1 0

0 0 0 1

¥
Thus,

XB1
= B1

-1b = 14, 2, 5, 22T, z = CB1
XB1

= 20

Optimality computations:

CB1
B1

-1 = 15
6, 0, 0, 02

5zj - cj6j = 2, 3 = CB1
B1

-11p2, p32 - 1c2, c32 = 1-2
3, 562

Thus, p2 is the entering vector.

Feasibility computations:

XB1
= 1x1, x4, x5, x62T = 14, 2, 5, 22T

B1
-1p2 = 12

3, 43, 53, 12T
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Hence,

x2 =  minc 4
2
3

, 
2
4
3

 , 
5
5
3

 , 
2
1
s =  min56, 32, 3, 26 = 3

2

The vector p4 leaves the basis. (You will find it helpful to summarize these results in the simplex 
tableau format as we did in iteration 0.)

Iteration 2

 XB2
= 1x1, x2, x5, x62T, CB2

= 15, 4, 0, 02
 B2 = 1p1, p2, p5, p62

 = § 6 4 0 0
1 2 0 0

-1 1 1 0
0 1 0 1

¥
Hence,

B2
-1 = • 1

4 -1
2 0 0

-1
8

3
4 0 0

3
8 -5

4 1 0
1
8 -3

4 0 1

µ
Thus,

XB2
= B2

-1b = 13, 32, 52, 122T, z = CB2
XB2

= 21

Optimality computations:

 CB2
B2

-1 = 13
4, 12, 0, 02

 5zj - cj6j = 3, 4 = CB2
B2

-11p3, p42 - 1c3, c42 = 13
4, 122

Thus, XB2
 is optimal, and the computations end.

Summary of optimal solution:

x1 = 3, x2 = 1.5, z = 21

7.2.3 Computational issues in the Revised Simplex method

There are two overriding issues regarding the revised simplex algorithm: (1) compu-
tational accuracy (also known as numerical stability), and (2) computational speed. 
Computing the inverse B-1 from the original data will increase computational accuracy  
but it will slow down the execution of the revised simplex algorithm. In fact, the golden 
rule in numerical analysis is never to invert a matrix unless absolutely necessary. 
Available LP solvers follow this rule.
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The revised simplex method utilizes two distinct methods for dealing with the 
inverse B-1:

1. The product form
2. The LU decomposition3

The product form is detailed in Section D.2.7 in Appendix D on the website.
The idea of product form is to construct an elementary matrix, e, using current 

inverse, B-1, and the constraint column, pj, of the entering vector, j. The new inverse is 
then computed as

Bnext
-1 = eBcurrent

-1

Since the initial basis, B0, is always an identity matrix, the inverse basis at iteration k 
effectively can be computed as

Bk
-1 = e1e2 cek

The LU decomposition calls for decomposing the basis, B, into lower and upper 
triangular matrices, L and U, respectively, such that,

B =  LU

Hence

B-1 = U-1L-1

The matrix L has all-zero above-diagonal elements and the matrix U has all-zero 
 below-diagonal elements. Matrix U is determined by applying appropriate row opera-
tions to basis B, and the same process automatically yields the below-diagonal elements 
of L. As in the product form method, Bnext

-1  is determined by modifying Lcurrent
-1  and 

Ucurrent
-1  appropriately using information from the current entering vector pj.

To avoid inverting B anew in each iteration (which is very costly computation-
ally), the strategy in both methods is to keep on generating Bnext

-1  from the immediately  
preceding inverse so long as computational accuracy is not impaired to the point of 
distorting the original model. When this happens, Bcurrent

-1  loses its accuracy, and it 
is time to replace it with a more accurate one by constructing Bnext associated with 
XB1next2 from the original column vectors pj. The newly constructed basis Bnext is then 
inverted and its inverse is used as a “refreshed” start in successive simplex iterations 
until it again loses its accuracy. And so continues the process until the simplex method 
terminates.4

How is Bcurrent
-1  judged to be no longer accurate during the course of the simplex 

iterations (thus signaling the need to start a new cycle with a refreshed new inverse)? 

3See J. Bunch and J. Hopcroft, “Triangular Factorization and Inversion by Fast Matrix Multiplication,” 
Mathematics of Computation, Vol. 28, pp. 231–236, 1974.
4See E. Hellerman and D. Rarick, “Reinversion with the Preassigned Pivot Procedure,” Mathematical 
Programming, Vol. 1, pp. 195–216, 1971.
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Roundoff error manifests itself adversely in elements of the simplex tableau that are 
known to be zero; namely, in any iteration, LP theory dictates:

1. The objective coefficients for all basic variables XB must be zero, that is, 
7zj - cj 7XB

= 0. (Incidentally, 7zj - cj 7XB
= 0 represents the dual constraints as-

sociated with the basic variables.)
2. The difference between the left- and right-hand sides of (primal) LP constraints 

must be zero, that is, 7aX - b 7 = 0.

If these values exceed a specified threshold e,  the roundoff error poses problems and 
the inverse must be refreshed.

The common thread between the product form and the LU decomposition 
methods is the cyclical need to refresh the inverse basis. It turned out, from reported 
computational experiences, that the LU method boasts approximately four times the 
cycle length between reinversions as the product form. For this reason, practically all 
current-day LP solvers use (a variant of) the LU method.

Aha! moment: early-On implementations of the Simplex Algorithm,  
or how the use of the Product Form of the inverse Came About5 

The first reported nontrivial application of Dantzig’s simplex method was a 21-constraint by 
74-variable instance of the diet problem (see Example 2.2-2), and it took only about 120 person-
days to calculate the optimal solution. But that was the era when hand computations were the 
norm. Then in the early 1950s, conglomerations of wired panels, punched cards, “spaghetti” wires, 
and vacuum tubes ushered the birth of computers. But with computers in such a “primitive” 
state, the execution of the simplex algorithm was extremely slow particularly because each itera-
tion required an explicit calculation of the basis inverse (very costly computationally, even with 
present-day computers). Discouraged by the results, Dantzig thought that the computational fu-
ture of his simplex algorithm was doomed. Then his colleague W. Orchard-Hay suggested that 
he use the product form method (instead of Gauss–Jordan row operations) to generate the suc-
cessive inverses. The use of the product form led to a more successful implementation of the 
simplex algorithm (it took only about 8 hrs to solve the 26-constraint by 74-variable instance of 
the diet problem—nothing to cheer about, but it was, to say the least, an in-leaps-and-bounds 
improvement over the hand solution of the same instance in 120 person-days!). And for over two 
decades, the product form remained the driving engine for computing the inverse in the simplex 
algorithm, until it was supplanted by the more efficient LU decomposition method.

7.3 BOuNded-vARiABLeS ALGORiThm

In LP models, variables may have explicit upper and lower bounds. For example, in 
 production facilities, lower and upper bounds can represent the minimum and maxi-
mum demands for certain products. Bounded variables also arise prominently in solving 
integer programs by the branch-and-bound algorithm (see Section 9.3.1).

5Robert E. Bixby, “A Brief History of Linear and Mixed-Integer Programming Computation,” Documenta 
Mathematica, Extra Vol. ISMP, pp. 107–121, 2012.
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The bounded algorithm is efficient computationally because it accounts implicitly 
for the bounds. We consider the lower bounds first because their treatment is simple. 
Given X Ú L, substitute X = L + X=, X= Ú 0 throughout, and solve the problem in 
terms of X= (whose lower bound now equals zero). The original X is then determined 
by back-substitution, X = X= + L Ú 0.

Next, consider the upper-bounding constraints, X … U. The idea of direct substitu-
tion (i.e., X = U - X″, X″ Ú 0) is not correct because back-substitution, X = U - X″,  
does not ensure that X will remain nonnegative. A different procedure is thus needed.

Define the upper-bounded LP model as

Maximize z = 5CX � 1a,  I2X = b, 0 … X … U6
The bounded algorithm uses only the main constraints 1a, I2X = b, X Ú 0. It accounts 
for the upper bounds, X … U, implicitly by modifying the feasibility condition.

Let XB = B-1b be a current basic feasible solution of 1a, I2X = b, X Ú  0, and 
assume that pj is the entering vector (as determined by the regular optimality condi-
tion). Then, given that all the nonbasic variables are zero, the constraint equation of the 
ith basic variable is

1XB2i = 1B-1b2i - 1B-1pj2i  xj

When the entering variable xj increases above zero level, 1XB2i will increase or  decrease 
depending on whether 1B-1pj2i is negative or positive, respectively. Thus, in determin-
ing the value of the entering vector pj , three conditions must be satisfied:

1. The basic variable remains nonnegative—that is, 1XB2i Ú 0.
2. The basic variable (XB)i does not exceed its upper bound—that is, 1XB2i … 1UB2i,  

where UB comprises the elements of U corresponding to XB.
3. The entering variable xj cannot assume a value larger than its upper bound—that 

is, xj … uj, where uj is the jth element of U.

 The first condition 1XB2i Ú 0 is the same as in the regular simplex method. It yields

xj … u1 = min
i

e 1B-1b2i

1B-1pj2i
 ` 1B-1pj2i 7 0 f

The second condition 1XB2i … 1UB2i specifies that

1B-1b2i - 1B-1pj2i  xj … 1UB2i

It is satisfied if

xj … u2 =  min
i

e 1B-1b2i - 1UB2i

1B-1pj2i
 ` 1B-1pj2i 6 0 f

Combining the three restrictions, xj enters the solution at the level that satisfies all 
three conditions—that is,

xj = min5u1, u2, uj6
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The change of basis for the next iteration depends on whether xj enters the solu-
tion at level u1, u2, or uj. Assuming that (XB)r is the leaving variable, then we have the 
following rules:

1. xj = u1: 1XB2r leaves the basic solution (becomes nonbasic) at level zero. The 
new iteration is generated using the regular simplex method with xj and (XB)r as 
the entering and the leaving variables, respectively.

2. xj = u2: 1XB2r becomes nonbasic at its upper bound. The new iteration is gener-
ated as in the case of xj = u1,  with one modification that accounts for the fact 
that (XB)r will be nonbasic at upper bound. Because the values of u1 and u2 re-
quire all nonbasic variables to be at zero level (convince yourself that this is the 
case!), the new nonbasic (XB)r at upper bound is converted to a nonbasic variable 
at zero level. This is achieved by using the substitution 1XB2r = 1UB2r - 1XB

= 2r,  
where 1XB

= 2r Ú 0. It is immaterial whether the substitution is made before or 
after the new basis is computed.

3. xj = uj: The basic vector XB remains unchanged because xj = uj stops short 
of forcing any of the current basic variables to reach its lower 1=  02 or upper 
bound. This means that xj will remain nonbasic but at upper bound. The only 
change needed in the tableau is to use the substitution xj = uj - xj

= to ensure that 
all nonbasic variables are at zero level.

A tie among u1, u2, and uj may be broken arbitrarily. However, it is preferable, where 
possible, to implement the rule for xj = uj because it entails less computation.

The substitution xj = uj - xj
= will change the original cj, pj, and b to cj

= = -cj,
pj
= = -pj, and b to b= = b - ujpj. This means that if the revised simplex method is 

used, all the computations (e.g., B-1, XB, and zj - cj) should be based on the changed 
values of C, a, and b at each iteration (see Problem 7-36, for further details).

example 7.3-1 

Solve the following LP model by the upper-bounding algorithm.6

Maximize z = 3x1 + 5y + 2x3

subject to

x1 + y + 2x3 … 14

2x1 + 4y + 3x3 … 43

0 … x1 … 4, 7 … y … 10, 0 … x3 … 3

The lower bound on y is accounted for using the substitution y = x2 + 7, where 
0 … x2 … 10 - 7 = 3.

6You can use TORA’s Linear Programming 1  Solve problem 1  Algebraic 1  Iterations 1  Bounded 
 simplex to produce the associated simplex iterations (file toraEx7.3-1.txt).
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To avoid being “sidetracked” by the computational details, we will not use the revised 
simplex method to carry out the computations. Instead, we will use the compact tableau form. 
Problems 7-36, 7-37, and 7-38, address the revised version of the algorithm.

Iteration 0

Basic x1 x2 x3 x4 x5 Solution

z -3 -5 -2 0 0 35

x4 1 1 2 1 0  7
x5 2 4 3 0 1 15

We have B = B-1 = I  and  XB = 1x4, x52T = B-1b = 17, 152T. Given that x2 is the enter-
ing variable (z2 - c2 = -5), we get B-1p2 = 11, 42T, which yields

 u1 = mine 7
1

, 
15
4

 f = 3.75, corresponding to x5

 u2 = ∞ 1because all the elements of  B-1p2 7 02
Next, given the upper bound on the entering variable, x2 …  3, it follows that

x2 =  min53.75, ∞ , 36 = 3

Because x2 = u2, XB remains unchanged, and x2 becomes nonbasic at its upper bound. The 
 substitution x2 = 3 - x2

=  yields the following new tableau:

Basic x1 x2
= x3 x4 x5 Solution

z -3 5 -2 0 0 50

x4 1 -1 2 1 0  4
x5 2 -4 3 0 1  3

The substitution changes the original right-hand side vector from b = 17, 152T to b= = 14, 32T. 
Thus, b= replaces b in future iterations.

Iteration 1
The entering variable is x1. The basic vector XB and B -11= I2 are the same as in iteration 0.  
Next, given B-1p1 = 11, 22T,

 u1 = mine 4
1

, 
3
2

 f = 1.5, corresponding to basic x5

 u2 = ∞ 1because B-1p1 7 02
Thus,

x1 = min51.5, ∞ , 46 = 1.5 
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Because x1 = u1,  the entering variable x1 becomes basic, and the leaving variable x5 becomes 
nonbasic at zero level, which yields

Basic x1 x2
= x3 x4 x5 Solution

z 0 -1 5
2 0 3

2
109

2

x4 0 1 1
2 1 -1

2
5
2

x1 1 -2 3
2

0 1
2

3
2

Iteration 2
The new inverse is

B-1 = a1 -1
2

0 1
2
b

Now, XB = 1x4, x12T = B-1b= =  15
2, 322T, where b= = 14, 32T as computed at the end of itera-

tion 0. We select x2
=  as the entering variable, and, noting that p2

= = -p2, we get

B-1p2
= = 11, -22T

Thus,

 u1 = mine
5
2

1
 , - f = 2.5, corresponding to basic x4

 u2 = mine- , 
3
2 - 4

-2
 f = 1.25, corresponding to basic x1

We then have

x2
= = min52.5, 1.25, 36 = 1.25 

Because x2
= = u1, x1 becomes nonbasic at upper bound resulting in the substitution 

 x1 = 4 - x=
1. The new tableau is

Basic x1
= x2

= x3 x4 x5 Solution

z 0 -1 5
2 0 3

2
109

2

x4 0 1 1
2 1 -1

2
5
2

x1
= -1 -2 3

2 0 1
2 -5

2

Next, the entering variable x2
=  becomes basic and the leaving variable x1

=  becomes nonbasic, 
which yields

Basic x1
= x2

= x3 x4 x5 Solution

z 1
2 0 7

4 0 5
4

223
4

x4 -1
2 0 5

4 1 -1
4

5
4

x2
= 1

2 1 -3
4 0 -1

4
5
4
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The last tableau is feasible and optimal. Note that the last two steps could have been 
 reversed—meaning that we could first make x2

=  basic and then apply the substitution x1 = 4 - x1
=  

(try it!). The sequence presented here involves less computation, however.
The optimal values of x1, x2, and x3 are obtained by back-substitution as x1 = u1 - x1

=  =  
4 - 0 = 4, x2 = u2 - x2

= = 3 - 5
4 = 7

4, and x3 = 0. Finally, we get y = l2 + x2 = 7 + 7
4 = 35

4 . 
The associated optimal value of the objective function is 223

4 .

7.4 duALiTy

This section presents a rigorous treatment of duality. The presentation also lays the 
foundation for the development of parametric programming.

7.4.1 matrix definition of the dual Problem

Suppose that the primal problem in equation form with m constraints and n variables 
is defined as

Maximize z = CX

subject to

 aX = b

 X Ú 0

Let the vector Y = 1y1, y2, c, ym2 define the dual variables. The rules in Section 4.1 
(Chapter 4) define the dual problem as:

Minimize w = Yb

subject to

Ya Ú C

Y unrestricted

Some of the constraints in Ya Ú C may override unrestricted Y, as explained in the 
examples of Section 4.1, Chapter 4.

7.4.2 Optimal dual Solution

This section establishes relationships between the primal and dual problems and shows 
how the optimal dual solution can be determined from the optimal primal solution. Let 
B be the current optimal primal basis, and define CB as the objective-function coeffi-
cients associated with the optimal vector XB.

theorem 7.4-1 (Weak duality theory). For any pair of feasible primal and dual 
solutions, (X, Y), the value of the objective function in the minimization problem sets an 
upper bound on the value of the objective function in the maximization problem. For the 
optimal pair (X*, Y*), the two objective values are equal.
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Proof. The feasible pair (X, Y) satisfies all the restrictions of the two problems. 
 Premultiplying both sides of the constraints of the maximization problem with 
 (unrestricted) Y, we get

 YaX =  Yb =  w (1)

Also, for the minimization problem, postmultiplying both sides of each of the first two 
sets of constraints by X1Ú  02, we get

 YaX Ú  CX =  z (2)

Thus, from (1) and (2), z … w for any feasible pair (X, Y).
Note that the feasibility requirement of X and Y is implied by aX = b in (1), and 

X Ú 0 and Ya Ú C in (2). Also, labeling the problems as primal or dual is immaterial. 
What is important is the sense of optimization in each problem—meaning that, for any 
pair of feasible solutions, the objective value in the maximization problem does not 
exceed the objective value in the minimization problem.

The implication of the theorem is that, given z … w for any pair of feasible solu-
tions, the maximum of z and the minimum of w are achieved when the two objective 
values are equal. A consequence of this result is that the “goodness” of any feasible 
primal and dual solutions relative to the optimum can be checked by comparing the 
difference (w - z) to z + w

2 . The smaller the ratio 
21w - z2

z + w
, the closer the two solutions 

are to being optimal. The given rule of thumb does not suggest that the optimal objec-
tive value is z + w

2 .

Unboundedness and infeasibility. If the objective value of one of the two problems is 
unbounded, then the other problem must be infeasible. For if it is not, then both prob-
lems have feasible solutions, and the relationship z … w must hold—an  impossible 
 result because unbounded objective value means z = + ∞  or w = - ∞ .

If one problem is infeasible, then the other problem can be infeasible also, as the 
following example demonstrates (verify graphically!):

Primal. Maximize z = 5x1 + x2 � x1 - x2 … -1, -x1 + x2 … -1, x1, x2 Ú 06
Dual. Minimize w = 5-y1 - y2 � y1 - y2 Ú 1, -y1 + y2 Ú 1, y1, y2 Ú 06

theorem 7.4-2 Given the optimal primal basis B and its associated objective coefficient 
vector CB, the optimal solution of the dual problem is

Y = CBB-1

Proof. The proof rests on showing that Y = CBB-1 is a feasible dual solution and 
that, per Theorem 7.4-1, z = w.

The feasibility of Y = CBB-1 is guaranteed by the optimality of the primal, 
zj - cj Ú 0 for all j—that is,

CBB-1a - C Ú 0 
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(See Section 7.2.1.) Thus, Ya - C Ú 0,  which shows that Y = CBB-1 satisfies the 
dual constraints Ya Ú C.

Next, we show that w = z by noting that

 w = Yb = CBB-1b (1)

Similarly, given the primal solution XB = B-1b, we get

 z = CBXB = CBB-1b (2)

The dual variables Y = CBB-1 are referred to by the standard names dual or 
 shadow prices (see Section 4.3.1).

Motivation for the dual simplex algorithm. Given that pj is the jth column of a, we 
note from Theorem 7.4-2 that zj - cj = CBB-1pj - cj = Ypj - cj represents the differ-
ence between the left- and right-hand sides of the dual constraints. The maximization 
primal problem starts with zj - cj 6 0 for at least one j, which means that the corre-
sponding dual constraint, Ypj Ú cj, is not satisfied. When the primal optimal is reached, 
we get zj - cj Ú 0, for all j, rendering the dual solution Y = CBB-1 feasible. Thus, as 
the primal problem seeks optimality, the dual problem seeks feasibility. This point is the 
basis for the development of the dual simplex method (Section 4.4.1), in which the itera-
tions start (better than) optimal and infeasible and remain so until feasibility is attained 
at the last iteration. This is in contrast with the (primal) simplex method (Chapter 3),  
which remains worse than optimal but feasible until the optimal iteration is reached.

example 7.4-1 

The optimal basis for the following LP is B = 1p1, p42. Write the dual, and find its optimum 
solution using the optimal primal basis.

Maximize z = 3x1 + 5x2

subject to

x1 + 2x2 + x3 = 5

-x1 + 3x2 + x4 = 2

x1, x2, x3, x4 Ú 0

The dual problem is

Minimize w = 5y1 + 2y2

subject to

y1 - y2 Ú 3

2y1 + 3y2 Ú 5

y1, y2 Ú 0

We have XB = 1x1, x42T and CB = 13, 02. The optimal basis and its inverse are

B = a 1 0
-1 1

b , B-1 = a1 0
1 1

b
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The associated primal and dual values are

1x1, x42T = B-1b = 15, 72T

1y1, y22 = CBB-1 = 13, 02
Both solutions are feasible, and z = w = 15 (verify!). Thus, the two solutions are optimal.

7.5 PARAmeTRiC LiNeAR PROGRAmmiNG

Parametric linear programming is an extension of the post-optimal analysis presented 
in Section 4.5. It investigates the effect of predetermined continuous variations in 
the objective-function coefficients and the right-hand side of the constraints on the 
 optimum solution.

Let X = 1x1, x2, c, xn2 and define the LP as

Maximize z = eCX 0  a
n

j = 1
pj xj = b, X Ú 0 f

In parametric analysis, the objective function and right-hand side vectors, C and b, are 
replaced with the parameterized functions C(t) and b(t), where t is the parameter of 
variation. Mathematically, t can assume any positive or negative value. In this presen-
tation, we will assume that t Ú 0.

The general idea of parametric analysis is to start with the optimal solution at 
t = 0. Then, using the optimality and feasibility conditions of the simplex method, 
we determine the range 0 … t … t1 for which the solution at t = 0 remains optimal 
and feasible. In this case, t1 is referred to as a critical value. The process continues 
by determining successive critical values and their corresponding optimal feasible 
solutions. Termination of post-optimal analysis occurs when, regardless of t, the 
last solution remains unchanged or there is indication that no feasible solution 
exists.

7.5.1 Parametric Changes in C

Let XBi
, Bi, CBi

1t2 be the elements that define the optimal solution associated with 
critical ti (the computations start at t0 = 0 with B0 as its optimal basis). Next, the criti-
cal value ti+ 1 and its optimal basis, if one exists, are determined. Because changes in 
C can affect only the optimality of the problem, the current solution XBi

= Bi
-1b will 

remain optimal for some t Ú ti so long as the reduced cost, zj1t2 - cj1t2, satisfies the 
following optimality condition:

zj1t2 - cj1t2 = CBi
1t2Bi

-1pj - cj1t2 Ú 0, for all j

The value of ti+ 1 equals the largest t 7 ti that satisfies all the optimality conditions.
Note that nothing in the inequalities requires C(t) to be linear in t. Any function 

C(t), linear or nonlinear, is acceptable. However, with nonlinearity the numerical ma-
nipulation of the resulting inequalities can be cumbersome. (See Problem 7-53, for an 
illustration of the nonlinear case.)
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example 7.5-1 

Maximize z = 13 - 6t2x1 + 12 - 2t2x2 + 15 + 5t2x3

subject to

 x1 + 2x2 + x3 … 40

 3x1 + 2x3 … 60

 x1 + 4x2 … 30

x1, x2, x3 Ú 0

We have

C1t2 = 13 - 6t, 2 - 2t, 5 + 5t2, t Ú 0

The variables x4, x5, and x6 will be used as the slack variables associated with the three constraints.

Optimal Solution at t = t0 = 0

Basic x1 x2 x3 x4 x5 x6 Solution

z 4 0 0 1 2 0 160

x2 -1
4

1 0 1
2 -1

4
0 5

x3 3
2

0 1 0 1
2

0 30

x6 2 0 0 -2 1 1 10

XB0 = 1x2, x3  x62T = 15, 30, 102T

 CB0
1t2 = 12 - 2t, 5 + 5t, 02

 B0
-1 = £ 1

2 -1
4 0

0 1
2 0

-2 1 1
≥

The optimality conditions for the current nonbasic vectors, p1, p4, and p5, are

5CB0
1t2B0

-1pj - cj1t26j = 1, 4, 5 = 14 + 14t, 1 - t, 2 + 3t2 Ú 0

Thus, XB0
 remains optimal for t … t1, where t1 is determined from the optimality conditions as

4 + 14t Ú 0
1 - t Ú 0

2 + 3t Ú 0
s 1 0 … t … 1 1 t1 = 1

The reduced cost z41t2 - c41t2 = 1 - t equals zero at t = 1 and becomes negative for t 7 1.  
Thus, p4 must enter the basis for t 7 1. In this case, p2 must leave the basis (see the optimal 
tableau at t = 0). The new basic solution XB1

 is the alternative solution obtained at t = 1 by 
letting p4 enter the basis—that is, XB1

= 1x4, x3, x62T and B1 = 1p4, p3, p62.
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alternative Optimal Basis at t = t1 = 1

B1 = £1 1 0
0 2 0
0 0 1

≥, B1
-1 = £1 -1

2 0
0 1

2 0
0 0 1

≥
Thus,

XB1
= 1x4, x3, x62T = B1

-1b = 110, 30, 302T

CB1
1t2 = 10, 5 + 5t, 02

The associated nonbasic vectors are p1, p2, and p5, and we have

5CB1
1t2B1

-1pj - cj1t26 j = 1, 2, 5 = 19 + 27t
2 , -2 + 2t, 5 + 5t

2 2 Ú 0

According to these conditions, the basic solution XB1
 remains optimal for all t Ú 1. Observe 

that the optimality condition, -2 + 2t Ú 0, automatically “remembers” that XB1
 is optimal for a 

range of t that starts from the last critical value t1 = 1. This will always be the case in parametric 
programming computations.

The optimal solution for the entire range of t is summarized in the following table (the 
value of z is computed by direct substitution):

t x1 x2 x3 z

0 … t … 1 0 5 30 160 + 140t
t Ú 1 0 0 30 150 + 150t

7.5.2 Parametric Changes in b

The parameterized right-hand side b(t) can affect the feasibility of the problem only. 
The critical values of t are thus determined from the condition

XB1t2 = B-1b1t2 Ú 0

example 7.5-2 

Maximize z = 3x1 + 2x2 + 5x3

subject to

 x1 + 2x2 +  x3 … 40 - t

 3x1 + 2x3 … 60 + 2t

 x1 + 4x2 … 30 - 7t

x1, x2, x3 Ú 0

Assume that t Ú 0.
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At t = t0 = 0, the problem is identical to that of Example 7.5-1. We thus have

XB0
= 1x2, x3, x62T = 15, 30, 102T

B0
-1 = £ 1

2 -1
4 0

0 1
2 0

-2 1 1
≥

To determine the first critical value t1, we apply the feasibility conditions XB0
1t2 =  

B0
-1b1t2 Ú 0, which yields£x2

x3

x6

≥ = £ 5 - t
30 + t
10 - 3t

≥ Ú £0
0
0
≥ 1 0 … t … 10

3 1 t1 = 10
3

The basis B0 remains feasible for the range 0 … t … 10
3 . However, the values of the basic vari-

ables x2, x3, and x6 change with t.
The value of the basic variable x6 1=  10 - 3t2  equals zero at t = t1 = 10

3 , and will  become 
negative for t 7 10

3 . Thus, at t = 10
3 ,  we can determine the alternative basis B1 by applying 

the revised dual simplex method (see Problem 7-31, for details). The leaving variable is x6.

alternative Basis at t = t1 = 10
3  

Given that x6 is the leaving variable, we determine the entering variable as follows:

XB0
= 1x2, x3, x62T, CB0

= 12, 5, 02
Thus,

5zj - cj6j = 1, 4, 5 = 5CB0
B0

-1pj - cj6j = 1, 4, 5 = 14, 1, 22
Next, for nonbasic xj, j = 1, 4, 5, we compute

 1Row of B0
-1 associated with x621p1, p4, p52 = 1Third row of B0

-12  1p1, p4, p52
 = 1-2, 1, 12  1p1, p4, p52
 = 12, -2, 12

The entering variable is thus associated with

u = mine - , ` 1
-2

 ` , - f = 1
2

Thus, p4 is the entering vector. The alternative basic solution and its B1 and B1
-1 are

 XB1
= 1x2, x3, x42T

 B1 = 1p2, p3, p42 = £2 1 1
0 2 0
4 0 0

≥, B1
-1 = £0 0 1

4

0 1
2 0

1 -1
2 -1

2

≥
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The next critical value t2 is determined from the feasibility conditions, XB1
1t2 =  B1

-1 b1t2 Ú 0,  
which yield £x2

x3

x4

≥ = £ 30 - 7t
4

30 + t
- 10 + 3t

2

≥£0
0
0
≥ 1  10

3 … t … 30
7 1 t2 = 30

7

At t = t2 = 30
7 , an alternative basis can be obtained by the revised dual simplex method. The 

leaving variable is x2, because it corresponds to the condition yielding the critical value t2.

alternative Basis at t = t2 = 30
7  

Given that x2 is the leaving variable, we determine the entering variable as follows:

XB1
= 1x2, x3, x42T, CB1

= 12, 5, 02
Thus,

5zj - cj6j = 1, 5, 6 = 5CB1
B1

-1pj - cj6j = 1, 5, 6 = 15, 52 , 122
Next, for nonbasic xj, j = 1, 5, and 6, we compute

 1Row of B1
-1associated with x221p1, p5, p62 = 1First row of B1

-121p1, p5, p62
 = 10, 0, 1421p1, p5, p62
 = 11

4, 0, 142
Because all the denominator elements, 11

4, 0, 142, are Ú  0, the problem has no feasible solution 
for t 7 30

7 , and the parametric analysis ends at t = t2 = 30
7 .

The optimal solution is summarized as

t x1 x2 x3 z

0 … t … 10
3 0 5 - t 30 + t 160 + 3t

10
3  … t … 30

7 0 30 - 7t
4 30 + t 165 + 3

2t

t 7 30
7

(No feasible solution exists)

7.6 mORe LiNeAR PROGRAmmiNG TOPiCS

The following list provides additional LP topics (normally covered in specialized OR 
courses) that can be found in Chapter 22 on the website. The reason these topics are not 
included in the text is to maintain the number of printed pages at a reasonable level.

1. Minimum-cost capacitated flow problem, including LP formulation, and capaci-
tated network simplex algorithm model.

2. Dantzig–Wolfe decomposition algorithm.
3. Karmarkar interior-point algorithm.
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PROBLemS 

Section Assigned Problems Section Assigned Problems

7.1.1 7-1 to 7-4 7.3 7-32 to 7-39
7.1.1 7-5 to 7-8 7.4.1 7-40 to 7-41
7.1.2 7-9 to 7-13 7.4.2 7-42 to 7-48
7.2.1 7-14 to 7-26 7.5.1 7-49 to 7-53
7.2.2 7-27 to 7-31 7.5.2 7-54 to 7-57

   7-1. Show that the set Q = 5x1, x2 � x1 + x2 … 3, x1 Ú 0, x2 Ú 06 is convex. Is the nonnega-
tivity condition essential for the proof?

*7-2. Show that the set Q = 5x1, x2 � x1 Ú 1 or x2 Ú 26 is not convex.
 7-3. Determine graphically the extreme points of the following convex set:

Q = 5x1, x2 � x1 + x2 … 3, x1 Ú 0, x2 Ú 06
Show that the entire feasible solution space can be determined as a convex combina-
tion of its extreme points. Hence, conclude that any convex (bounded) solution space is 
totally defined once its extreme points are known.

 7-4. In the solution space in Figure 7.3 (drawn to scale), express the interior point (3, 1) as 
a convex combination of the extreme points A, B, C, and D by determining the weights 
associated with the extreme points.

1

5

4

3

2

1

0

6

2

A

D

C

B
x1

x2

3

(3, 1)

4 5 6

Figure 7.3 

Solution space for Problem 7-4



 7-5. In the following sets of equations, (a) and (b) have unique (basic) solutions, (c) has 
an infinite number of solutions, and (d) has no solution. Show how these results can 
be  verified using graphical vector representation. From this exercise, state the general 
 conditions for vector dependence/independence that
(a) x1 + 3x2 = 2

3x1 + x2 = 3
(b) 2x1 + 3x2 = 1

2x1 - x2 = 2

(c) 2x1 + 6x2 = 4
x1 + 3x2 = 2

(d)  2x1 - 4x2 = 2
-x1 + 2x2 = 1

 7-6. Use vectors to determine graphically the type of solution for each of the sets of  equations 
below: unique solution, an infinite number of solutions, or no solution. For the cases 
of unique solutions, indicate from the vector representation (and without solving the 
 equations algebraically) whether the values of x1 and x2 are positive, zero, or negative.

(a) a5    4
1 -3

b ax1

x2
b = a2

2
b (b) a2 -2

1    3
b ax1

x2
b = a1

3
b

(c) a2 4
1 3

b ax1

x2
b = a -4

-2
b (d) a2 4

1  2
b ax1

x2
b = a6

3
b

(e) a -2    4
  1 -2

b ax1

x2
b = a4

2
b (f) a1 -2

0 0
b ax1

x2
b = a1

1
b

 7-7. Consider the following system of equations:£1
2
3
≥  x1 + £0

2
1
≥  x2 + £1

4
2
≥  x3 + £2

0
0
≥  x4 = £3

4
2
≥

Determine if any of the following combinations forms a basis:
(a) (p1, p2, p3)

(b) (p1, p3, p4)

(c) (p2, p3, p4)

(d) (p1, p2, p3, p4)
 7-8. True or False?

(a) The system BX = b has a unique solution if B is singular.

(b) The system BX = b has no solution if B is singular and b is independent of B.

(c) The system BX = b has an infinity of solutions if B is singular and b is dependent.
*7-9. In Example 7.1-3, consider B = 1p3, p42. Show that the corresponding basic solution is 

feasible, and then generate the corresponding simplex tableau.
7-10. Consider the following LP:

Maximize  z = 5x1 + 12x2 + 4x3

subject to

x1 + 2x2 + x3 + x4 = 10
2x1 - 2x2 - x3 = 2  

x1, x2, x3, x4 Ú 0

Check if each of the following matrices forms a (feasible or infeasible) basis: (p1, p3),  
(p1, p4), (p2, p3), (p3, p4).

*

*

*

*

*
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7-11. In the following LP, compute the entire simplex tableau associated with XB = 1x1, x2, x52T.

Minimize z = 2x1 + x2

subject to

3x1 + x2 - x3 = 2
4x1 + 3x2 - x4 = 4
x1 + 2x2 + x5 = 2

x1, x2, x3, x4, x5 Ú 0

*7-12. The following is an optimal LP tableau:

Basic x1 x2 x3 x4 x5 Solution

z 0 0 0 3 2 ?

x3 0 0 1 1 -1 2
x2 0 1 0 1 0 6
x1 1 0 0 -1 1 2

The variables x3, x4, and x5 are slacks in the original problem. Use matrix manipulations 
to reconstruct the original LP, and then compute the optimum objective value.

7-13. In the matrix simplex tableau, suppose that X =  1XI, XII2T, where XII corresponds to a 
typical starting basic solution (consisting of slack and/or artificial variables) with B = I,  
and let C = 1CI, CII2 and a = 1D, I2 be the corresponding partitions of C and a, 
 respectively. Show that the matrix simplex tableau reduces to the same form used in  
Chapter 3—namely,

Basic XI XII Solution

z CBB -1D - CI CBB -1 -  CII CBB -1b

XB B -1D B -1 B -1b

7-14. Consider the following LP:

Maximize  z = c1 x1 + c2 x2 + c3 x3 + c4 x4

subject to

p1 x1 + p2 x2 + p3 x3 + p4 x4 = b

x1, x2, x3, x4 Ú 0

The vectors p1, p2, p3, and p4 are shown in Figure 7.4. Assume that the basis B of the 
 current iteration is comprised of p1 and p2.
(a) If the vector p1 enters the basis, which of the current two basic vectors must leave in 

order for the resulting basic solution to be feasible?

(b) Can the vector p4 be part of a feasible basis?

*



*7-15. Prove that, in any simplex iteration, zj - cj = 0 for all the associated basic variables.
7-16. Prove that if zj - cj 7 0  16  02 for all the nonbasic variables xj of a maximization 

(minimization) LP problem, then the optimum is unique. Else, if zj - cj equals zero for a 
nonbasic xj, then the problem has an alternative optimum solution.

7-17. In an all-slack starting basic solution, show using the matrix form of the tableau that 
the mechanical procedure used in Section 3.3 in which the objective equation is set as 

z - a
n

j = 1
cj  xj = 0 automatically computes the proper zj - cj for all the variables in the 

starting tableau. 
7-18. Using the matrix form of the simplex tableau, show that in an all-artificial starting basic 

solution, the procedure in Section 3.4.1 that substitutes out the artificial variables in the 
objective function (using the constraint equations) actually computes the zj - cj for all 
the variables in the starting tableau. 

7-19. Consider an LP in which the variable xk is unrestricted in sign. Prove that by substituting 
xk = xk

- - xk
+, where xk

-  and  xk
+ are nonnegative, it is impossible that the two variables 

replace one another in an alternative optimum solution.
7-20. Consider the implementation of the feasibility condition of the simplex method. Specify 

the mathematical conditions for encountering a degenerate solution (at least one basic 
variable = 0) for the first time, for continuing to obtain a degenerate solution in the next 
iteration, and for removing degeneracy in the next iteration.

*7-21. Consider the general LP in equation form with m equations and n unknowns. Determine 
the maximum number of adjacent extreme points that can be reached from a nondegen-
erate extreme point (all basic variable are 7 0) of the solution space.

7-22. In applying the feasibility condition of the simplex method, suppose that xk = 0 is a basic 
variable and that xj is the entering variable with 1B -1pj2k ≠ 0. Prove that the resulting 
basic solution remains feasible even if 1B -1pj2k is negative.

*7-23. What are the relationships between extreme points and basic solutions under degeneracy 
and nondegeneracy? What is the maximum number of iterations that can be performed 
at a given extreme point assuming no cycling?
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Vector representation of Problem 7-14
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P4

P3

b



334   Chapter 7    Advanced Linear Programming

*7-24. Consider the LP, maximize z = CX subject to aX … b, X Ú 0, where b Ú 0. Suppose 
that the entering vector pj is such that at least one element of B -1pj is positive.
(a) If pj is replaced with apj,  where a is a positive scalar, and provided xj remains the enter-

ing variable, find the relationship between the values of xj corresponding to pj and apj.

(b) Answer Part (a) if, additionally, b is replaced with bb,  where b is a positive scalar.
7-25. Consider the LP

Maximize z = CX subject to aX …  b, X Ú  0, where b Ú  0

After obtaining the optimum solution, it is suggested that a nonbasic variable xj can be 
made basic (profitable) by reducing the resource requirements per unit of xj to 1

a of their 
original values, a 7 1. Since the requirements per unit are reduced, it is expected that the 
profit per unit of xj will also be reduced to 1

a of its original value. Will these changes make 
xj a profitable variable? Explain mathematically.

7-26. Consider the LP

Maximize z = CX subject to 1a, I2 X = b, X Ú  0

Define XB as the current basic vector with B as its associated basis and CB as its vector of 
objective coefficients. Show that if CB is replaced with the new coefficients DB, the values of 
zj - cj for the basic vector XB will remain equal to zero. What is the significance of this result?

7-27. In Example 7.2-1, summarize the data of iteration 1 in the tableau format of Section 3.3. 
7-28. Solve the following LPs by the revised simplex method:

(a) Maximize z = 6x1 - 2x2 + 3x3

subject to

2x1 - x2 + 2x3 … 2
 x1 + 4x3 … 4

 x1, x2, x3 Ú 0

(b) Maximize z = 2x1 + x2 + 2x3

subject to

4x1 + 3x2 +  8x3 … 12
4x1 +  x2 + 12x3 …  8
4x1 - x2 +  3x3 …  8

 x1, x2, x3 Ú 0

(c) Minimize z = 2x1 + x2

subject to
3x1 + x2 = 3
4x1 + 3x2 Ú 6
 x1 + 2x2 … 3
 x1, x2 Ú 0

(d) Minimize z = 5x1 - 4x2 + 6x3 + 8x4

subject to

 x1 + 7x2 + 3x3 + 7x4 … 46
3x1 - x2 + x3 + 2x4 … 20
2x1 + 3x2 - x3 + x4 Ú 18

 x1, x2, x3, x4 Ú 0

*



7-29. Solve the following LP by the revised simplex method given the starting basic feasible  
vector XB0

= 1x2, x4, x52T.

Minimize z = 7x2 + 11x3 - 10x4 + 26x6

subject to

x2 - x3 + x5 + x6 = 3
x2 - x3 + x4 + 3x6 = 4

x1 + x2 - 3x3 + x4 + x5  =  6
x1, x2, x3, x4, x5, x6 Ú 0

7-30. Solve the following using the two-phase revised simplex method:
(a) Problem 7-28(c).

(b) Problem 7-28(d).

(c) Problem 7-29 (ignore the given starting XB0
).

7-31. Revised Dual Simplex Method. The steps of the revised dual simplex method (using 
 matrix manipulations) can be summarized as follows:

Step 0.  Let B0 = I be the starting basis for which at least one of the elements of XB0
 is 

negative (infeasible).

Step 1.  Compute XB = B-1b, the current values of the basic variables. Select the 
leaving variable xr as the one having the most negative value. If all the  
elements of XB are nonnegative, stop; the current solution is feasible  
(and optimal).

Step 2. (a) Compute zj - cj = CBB-1pj - cj for all the nonbasic variables xj.
(b)  For all the nonbasic variables xj, compute the constraint coefficients 

1B-1pj2r associated with the row of the leaving variable xr.
(c) The entering variable is associated with

u = min
i

 e `
zj - cj

1B-1pj2r
` , 1B-1pj2r 6  0 f

If all 1B-1Pj2r Ú 0, no feasible solution exists.
Step 3.  Obtain the new basis by interchanging the entering and leaving vectors (pj and pr). 

Compute the new inverse and go to step 1.
Apply the method to the following problem:

Minimize z = 3x1 + 2x2

subject to

3x1 + x2 Ú 3
4x1 + 3x2 Ú 6
 x1 + 2x2 … 3

 x1, x2 Ú 0

7-32. Consider the following linear program:

Maximize z = 2x1 + x2

subject to

x1 + x2 … 3

0 … x1 … 2, 0 … x2 … 2
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(a) Solve the problem graphically, and trace the sequence of extreme points leading to 
the optimal solution. (You may use TORA.)

(b) Solve the problem by the upper-bounding algorithm and show that the method pro-
duces the same sequence of extreme points as in the graphical optimal solution (you 
may use TORA to generate the iterations).

(c) How does the upper-bounding algorithm recognize the extreme points?
*7-33. Solve the following problem by the bounded algorithm:

Maximize z = 6x1 + 2x2 + 8x3 + 4x4 + 2x5 + 10x6

subject to

8x1 + x2 + 8x3 + 2x4 + 2x5 + 4x6 … 13

0 … xj … 1, j = 1, 2, c, 6

7-34. Solve the following problems by the bounded algorithm:
(a) Minimize z = 6x1 - 2x2 - 3x3

subject to

2x1 + 4x2 + 2x3 … 8

x1 - 2x2 + 3x3 … 7

0 … x1 … 2, 0 … x2 … 2,  0 … x3 … 1

(b) Maximize z = 3x1 + 5x2 + 2x3

subject to

x1 + 2x2 + 2x3 … 10

2x1 + 4x2 + 3x3 … 15

0 … x1 … 4, 0 … x2 … 3,  0 … x3 … 3

7-35. In the following problems, some of the variables have positive lower bounds. Use the 
bounded algorithm to solve these problems.
(a) Maximize z = 3x1 + 2x2 - 2x3

subject to

2x1 + x2 + x3 … 8

x1 + 2x2 - x3 Ú 3

1 … x1 … 3, 0 … x2 … 3,  2 … x3

(b) Maximize z = x1 + 2x2

subject to
 -x1 + 2x2 Ú 0

 3x1 + 2x2 … 10

 -x1 +  x2 … 1

1 … x1 … 3, 0 … x2 … 1



(c) Maximize z = 4x1 + 2x2 + 6x3

subject to

4x1 - x2 … 9
-x1 + x2 + 2x3 … 8

-3x1 + x2 + 4x3 … 12
1 … x1 … 3, 0 … x2 … 5, 0 … x3 … 2

7-36. Consider the matrix definition of the bounded-variables problem. Suppose that the 
 vector X is partitioned into (Xz, Xu), where Xu represents the basic and nonbasic 
 variables that will be substituted at upper bound during the course of the algorithm.  
The problem may thus be written as

a1 -Cz -Cu

0    Dz    Du
b  £ z

Xz

Xu

≥ = a0
b
b

Using Xu = Uu - X′u where Uu is a subset of U representing the upper bounds for Xu, 
let B (and XB) be the basis of the current simplex iteration after Xu has been substituted 
out. Show that the associated general simplex tableau is given as

Basic Xz
T X′u

T Solution

z CBB-1Dz - Cz -CBB-1Du + Cu CuB- 1B-11b - DuUu2 + CuUu

XB B-1Dz -B-1Du B-11b - DuUu2

7-37. In Example 7.3-1, do the following:
(a) In Iteration 1, verify that XB = 1x4, x12T = 15

2, 322T by using matrix manipulation.

(b) In Iteration 2, show how B-1 can be computed from the original data of the problem. 
Then verify the given values of basic x4 and x=

2 using matrix manipulation.
7-38. Solve part (a) of Problem 7-34 using the revised simplex (matrix) version for upper- 

bounded variables.
7-39. Bounded Dual Simplex Algorithm. The dual simplex algorithm (Section 4.4.1) can be 

modified to accommodate the bounded variables as follows. Given the upper-bound 
constraint xj … uj for all j (if uj is infinite, replace it with a sufficiently large upper-bound 
M), the LP problem is converted to a dual feasible (i.e., primal optimal) form by using 
the substitution xj = uj - x=

j, where necessary.

Step 1.  If any of the current basic variables 1XB2i exceeds its upper bound, use the 
substitution 1XB2i = 1UB2i - 1XB2i

=. Go to step 2.

Step 2.  If all the basic variables are feasible, stop. Otherwise, select the leaving variable 
xr as the basic variable having the most negative value. Go to step 3.

Step 3.  Select the entering variable using the optimality condition of the regular dual 
simplex method (Section 4.4.1). Go to step 4.

Step 4.  Perform a change of basis. Go to step 1.
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Apply the given algorithm to the following problems:
(a) Minimize z = -3x1 - 2x2 + 2x3

subject to

 2x1 + x2 + x3 … 8

 -x1 + 2x2 + x3 Ú 13

0 … x1 … 2, 0 … x2 … 3, 0 … x3 … 1

(b) Maximize z = x1 + 5x2 - 2x3

subject to

 4x1 + 2x2 + 2x3 … 26

 x1 + 3x2 + 4x3 Ú 17

0 … x1 … 2, 0 … x2 … 3,  x3 Ú 0

7-40. Prove that the dual of the dual is the primal.
*7-41. Define the dual problem given the primal is min z = 5CX �  aX Ú b, X Ú 06.

7-42. Verify that the dual problem of the numeric example given at the end of Theorem 7.4-1 is 
correct. Then verify graphically that both the primal and dual problems have no feasible 
solution.

7-43. Consider the following LP:

Maximize z = 50x1 + 30x2 + 10x3

subject to

2x1 +  x2 =  1
2x2 = -5

4x1 + x3 = 6
x1, x2, x3 Ú 0

(a) Write the dual.

(b) Show by inspection that the primal is infeasible.

(c) Show that the dual in (a) is unbounded.

(d) From Problems 7-42 and 7-43, develop a general conclusion regarding the relation-
ship between infeasibility and unboundedness in the primal and dual problems.

7-44. Consider the following LP:
Maximize z = 5x1 + 12x2 + 4x3

subject to

2x1 - x2 + 3x3 = 2
x1 + 2x2 + x3 + x4 = 5

x1, x2, x3, x4 Ú 0
(a) Write the dual.

(b) In each of the following cases, first verify that the given basis B is feasible for the 
primal. Next, using Y = CBB-1, compute the associated dual values and verify 
whether or not the primal solution is optimal.
(i) B = 1p4, p32

(ii) B = 1p2, p32
(iii) B = 1p1, p22
(iv) B = 1p1, p42



7-45. Consider the following LP:

Maximize z = 2x1 + 4x2 + 4x3 - 3x4

subject to

x1 + x2 + x3 = 4
x1 + 4x2 + + x4 = 8

x1, x2, x3, x4 Ú 0

(a) Write the dual problem.

(b) Verify that B = 1p2, p32 is optimal by computing zj - cj for all nonbasic pj.

(c) Find the associated optimal dual solution.
*7-46. An LP model includes two variables x1 and x2 and three constraints of the type … . The 

associated slacks are x3, x4, and x5. Suppose that the optimal basis is B = 1p1, p2, p32, 
and its inverse is

B-1 = £0 -1 1
0 1 0
1 1 -1

≥
The optimal primal and dual solutions are

 XB = 1x1, x2, x32T = 11, 3, 12T

 Y = 1y1, y2, y32 = 10, 3, 22
Determine the optimal value of the objective function in two ways using the primal and 
dual problems.

*7-47. Write the dual of max z = 5CX � aX = b,  X  unrestricted6.
7-48. Show that the dual of max z = 5CX � aX … b, 0 6 L … X …  U6 always possesses a 

feasible solution.
*7-49. In Example 7.5-1, suppose that t is unrestricted in sign. Determine the range of t for 

which XB0
 remains optimal.

7-50. Solve Example 7.5-1, assuming that the objective function is given as
(a) Maximize z = 13 + 3t2x1 + 2x2 + 15 - 6t2x3

(b) Maximize z = 13 - 2t2x1 + 12 + t2x2 + 15 + 2t2x3

(c) Maximize z = 13 + t2x1 + 12 + 2t2x2 + 15 - t2x3

7-51. Study the variation in the optimal solution of the following parameterized LP, given t Ú 0.

Minimize z = 14 - t2x1 + 11 - 3t2x2 + 12 - 2t2x3

subject to
 3x1 + x2 + 2x3 = 6

 4x1 + 3x2 + 2x3 Ú 12

 x1 + 2x2 + 5x3 … 8

x1, x2, x3 Ú 0

7-52. The analysis in this section assumes that the optimal solution of the LP at t = 0 is 
 obtained by the (primal) simplex method. In some problems, it may be more convenient 
to obtain the optimal solution by the dual simplex method (Section 4.4.1). Show how the 
parametric analysis can be carried out in this case, then analyze the LP of Example 4.4-1, 
assuming that the objective function is given as 

Minimize z = 13 + t2x1 + 12 + 4t2x2 + x3, t Ú 0

*

Problems   339
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*7-53. In Example 7.5-1, suppose that the objective function is nonlinear in t 1t Ú 02 and is 
defined as

Maximize z = 13 + 2t22x1 + 12 - 2t22x2 + 15 - t2x3

Determine the first critical value t1.
7-54. In Example 7.5-2, find the first critical value, t1, and define the vectors of B1 in each of 

the following cases:
(a) b1t2 = 140 + 2t, 60 - 3t, 30 + 6t2T

(b) b1t2 = 140 - t, 60 + 2t, 30 - 5t2T

*7-55. Study the variation in the optimal solution of the following parameterized LP, given t Ú 0:

Minimize z = 4x1 + x2 + 2x3

subject to

 3x1 + x2 + 2x3 = 6 + 6t

 4x1 + 3x2 + 2x3 Ú 12 + 4t

 x1 + 2x2 + 5x3 … 8 - 2t

x1, x2, x3 Ú 0

7-56. The analysis in this section assumes that the optimal LP solution at t = 0 is obtained by 
the (primal) simplex method. In some problems, it may be more convenient to obtain the 
optimal solution by the dual simplex method (Section 4.4.1). Show how the  parametric 
analysis can be carried out in this case, and then analyze the LP of Example 4.4-1, 
 assuming that t Ú 0 and the right-hand side vector is 

b1t2 = 13 + 2t, 6 - t, 3 - 4t2T

7-57. Solve Problem 7-55 assuming that the right-hand side is changed to

b1t2 = 13 + 3t2, 6 + 2t2, 4 - t22T

Further assume that t can be positive, zero, or negative.

*
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Chapter 8

Goal programming

Real-Life Application—Allocation of Operating Room Time in Mount Sinai Hospital

The situation takes place in Canada, where health-care insurance is mandatory 
and  universal. Funding, which is based on a combination of premiums and taxes, is 
controlled by the individual provinces. Under this system, hospitals are advanced a 
fixed annual budget, and each province pays physicians retrospectively using a fee-
for-service funding mechanism. This funding arrangement limits the availability of 
hospital facilities (e.g., operating rooms), which in turn curbs physicians’ tendency 
to boost personal gain through overservice to patients. The objective of the study is 
to determine an equitable daily schedule for the use of available operating rooms. 
The problem is modeled using a combination of goal and integer programming. The 
case at the end of the chapter provides the details of the study.

8.1 A GOAL PROGRAMMinG FORMuLATiOn

The idea of goal programming (GP) is illustrated by Example 8.1-1.

Example 8.1-1 (Tax Planning)1

Fairville is a small city with a population of about 20,000 residents. The annual taxation base 
for real estate property is $550 million. The annual taxation bases for food and drugs and for 
general sales are $35 million and $55 million, respectively. Annual local gasoline consumption 
is estimated at 7.5 million gallons. The city council wants to develop the tax rates based on four 
main goals:

1. Tax revenues must be at least $16 million to meet the city’s financial commitments.
2. Food and drug taxes cannot exceed 10% of all taxes collected.

 341

1This example is based on Chissman and Associates, 1989.
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3. General sales taxes cannot exceed 20% of all taxes collected.
4. Gasoline tax cannot exceed 2 cents per gallon.

Let the variables xp, xf , and xs represent the tax rates (expressed as proportions of taxation 
bases) for property, food and drug, and general sales and define the variable xg as the gasoline 
tax in cents per gallon. The goals of the city council are then expressed as

550xp + 35xf + 55xs + .075xg Ú 16  1Tax revenue2
35xf … .11550xp + 35xf + 55x3 + .075xg2  1Food/drug tax2
55xs … .21550xp + 35xf + 55xs + .075xg2  1General tax2

xg … 2           1Gasoline tax2
xp, xf , xs, xg Ú 0

These constraints are then simplified as

550xp + 35xf + 55xs + .075xg Ú 16

55xp - 31.5xf + 5.5xs + .0075xg Ú 0 

110xp + 7xf - 44xs + .015xg Ú 0 

 xg … 2 

xp, xf , xs, xg Ú 0

Each of the inequalities of the model represents a goal that the city council aspires to 
 satisfy. Most likely, however, the best that can be done is a compromise solution involving these 
conflicting goals.

The manner in which GP finds a compromise solution is to convert each inequality into a 
flexible goal in which the corresponding constraint may be violated, if necessary. In terms of the 
Fairville model, the flexible goals are expressed as follows:

 550xp + 35xf + 55xs + .075xg + s1
- - s1

+ = 16

 55xp - 31.5xf + 5.5xs + .0075xg + s2
- - s2

+ = 0

 110xp + 7xf - 44xs + .015xg + s3
- - s3

+ = 0

 xg + s4
- - s4

+ = 2

xp, xf , xs, xg Ú 0

si
-, si

+ Ú 0, i = 1, 2, 3, 4

The nonnegative variables si
- and si

+, i = 1, 2, 3, 4, are deviational variables representing the de-
viations below and above the right-hand side of constraint i.

The deviational variables si
- and si

+ are by definition dependent, and hence cannot be basic 
variables simultaneously (per the theory of the simplex method). This means that in any sim-
plex iteration, at most one of the two deviational variables can assume a positive value. If the 
original ith inequality is of the type … and its si

- Ú 0, then the ith goal is satisfied; otherwise, 
goal i is not satisfied. In essence, the definition of si

- and si
+ allows meeting or violating the ith 

goal at will. This is the type of flexibility that characterizes GP when it seeks a compromise 
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solution. Logically, a good compromise solution seeks to minimize the amount by which each 
goal is violated.

In the Fairville model, given that the first three constraints are of the type Ú and the fourth 
constraint is of the type … , the deviational variables s1

-, s2
-, s3

-, and s4
+ (shown in the model in 

bold) represent the amounts by which the respective goals are violated. Thus, the compromise 
solution seeks to satisfy the following four objectives as much as possible:

Minimize G1 = s1
-

Minimize G2 = s2
-

Minimize G3 = s3
-

Minimize G4 = s4
+

These functions are minimized subject to the constraint equations of the model.
How can we optimize a multiobjective model with conflicting goals? Two methods have 

been developed for this purpose: (1) the weights method and (2) the preemptive method. Both 
methods are based on converting the multiple objectives into a single function. Section 8.2 
 provides the details.

8.2 GOAL PROGRAMMinG ALGORiTHMS

This section presents two algorithms for solving GP. Both methods are based on rep-
resenting the multiple goals by a single objective function. In the weights method, the 
single objective function is the weighted sum of the functions representing the goals of 
the problem. The preemptive method starts by prioritizing the goals in order of impor-
tance. The model then optimizes the goals one at a time in order of priority and in a 
manner that does not degrade a higher-priority solution.

The proposed two methods do not generally produce the same solution. Neither 
method, however, is superior to the other, because the two techniques entail distinct 
decision-making preferences.

8.2.1 The Weights Method

Suppose that the GP model has n goals and that the ith goal is given as

Minimize Gi, i = 1, 2, c, n

The combined objective function used in the weights method is then defined as

Minimize z = w1G1 + w2G2 + g + wnGn

The parameters wi, i = 1, 2, c, n, are positive weights that reflect the decision 
 maker’s preferences regarding the relative importance of each goal. For example, 
wi = 1, for all i, signifies that all goals are of equal importance. The determination of 
the specific values of these weights is subjective. Indeed, the apparently sophisticated 
analytic procedures developed in the literature (see, e.g., Cohon, 1978) are still rooted 
in subjective assessments.
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Example 8.2-1 

TopAd, a new advertising agency with 10 employees, has received a contract to promote a new 
product. The agency can advertise by radio and television. The following table gives the num-
ber of people reached daily by each type of advertisement and the cost and labor requirements.

Radio Television

Exposure (in millions of persons)/min 4  8
Cost (in thousands of dollars)/min 8 24
Assigned employees/min 1  2

The contract prohibits TopAd from using more than 6 minutes of radio advertisement. 
Additionally, radio and television advertisements need to reach at least 45 million people. TopAd 
has a  budget goal of $100,000 for the project. How many minutes of radio and television adver-
tisement should TopAd use?

Let x1 and x2 be the minutes allocated to radio and television advertisements. The GP for-
mulation for the problem is given as

Minimize G1 = s1
- 1Satisfy exposure goal2

Minimize G2 = s2
+ 1Satisfy budget goal2

subject to

4x1 +  8x2 + s1
- - s1

+ =  45 1Exposure goal2
8x1 + 24x2 + s2

- - s2
+ = 100 1Budget goal2

 x1 +  2x2 …  10 1Personnel limit2
x1               …   6 1Radio limit2

x1, x2, s1
-, s1

+, s2
-, s2

+ Ú 0

TopAd’s management estimates that the exposure goal is twice as important as the budget 
goal. The combined objective function thus becomes

Minimize z = 2G1 + G2 = 2s1
- + s2

+

The optimum solution is z = 10, x1 = 5 min, x2 = 2.5 min, s1
- = 5 million persons, s1

- = 0, 
and s2

- = 0.
The fact that the optimum value of z is not zero indicates that at least one of the goals is not 

met. Specifically, s1
- = 5 means that the exposure goal (of at least 45 million persons) is missed 

by 5 million individuals. Conversely, the budget goal (of not exceeding $100,000) is not violated, 
because s2

+ = 0.

Aha! Moment: Satisficing versus Maximizing, or How Long to Age Wine!

In his book Science of the Artificial, American Nobel Laureate Herbert A. Simon (1916–2001) 
coined the verb satisfice (a combination of satisfy and suffice) as an alternative goal to maximize 
in decision making. The difference is explained by the dilemma of an immortal (presumably 
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 expecting eternal life) in possession of a bottle of fine wine. The wine gets tastier with age and the 
immortal must decide when to consume it. The satisficer would choose a reasonable future time 
to open the bottle but the maximizer would say never!

Though GP is presented in the context of optimized linear programs, its end result 
seeks a satisficing rather than an optimum solution. This conclusion can be demonstrated by  
Example 8.2-1, where the “optimum” GP solution yields x1 = 5 min and x2 = 2.5 min with ex-
posure of 40 million persons and a cost $100,000. By contrast, the feasible solution x1 = 6 min 
and x2 = 2 min yields the same exposure 14 * 6 + 8 * 2 = 40 million persons2 but costs less 
18 * 6 + 24 * 2 = $96,0002. In essence, what GP does is to find a satisficing rather than an 
optimum solution. The failure to find the best solution raises doubts about the viability of GP as 
an optimization technique (see Example 8.2-3 for further discussion).

8.2.2 The Preemptive Method

In the preemptive method, the decision maker ranks the goals of the problem in 
order of importance. Given an n-goal situation, the objectives of the problem are 
written as

Minimize G1 = r1 1Highest priority2
f

Minimize Gn = rn 1Lowest priority2

The variable ri is the component of the deviational variables, si
- or si

+,  representing 
goal i. For example, in the TopAd model (Example 8.2-1), r1 = s1

- and r2 = s2
+.

The solution procedure starts with optimizing the highest priority, G1, and termi-
nates with optimizing the lowest, Gn. The preemptive method is designed such that a 
lower-priority solution never degrades a higher-priority solution.

The literature on GP presents a “special” simplex method that guarantees the 
nondegradation of higher-priority solutions. The method uses the column- dropping 
rule that calls for eliminating a nonbasic variable xj with nonzero reduced cost 
1zj - cj ≠ 02 from the optimal tableau of goal Gk prior to solving the problem of goal 
Gk + 1. The rule recognizes that such nonbasic variables, if elevated above zero level in 
the optimization of succeeding goals, may degrade (but never improve) the quality of a 
higher-priority goal. The procedure requires including the objective functions of all the 
goals in the simplex tableau of the model.

The proposed column-dropping modification needlessly complicates GP. In this 
presentation, we show that the same results can be achieved in a more straightforward 
manner using the following steps:

Step 0. Identify the goals of the model and rank them in order of priority:

G1 = r1 ≻ G2 = r2 ≻ g ≻ Gn = rn

Set i = 1.
General Step. Solve LPi that minimizes Gi, and let ri = ri* define the correspond-

ing optimum value of the deviational variable ri. If i = n, stop; LPn solves 
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the n-goal program. Otherwise, add the constraint ri = ri* to the constraints 
of the Gi-problem to ensure that the value of ri is not degraded in future 
problems. Set i = i + 1, and repeat step i.

The successive addition of the special constraints ri = ri* may not be as  “elegant” 
theoretically as the column-dropping rule. Nevertheless, it achieves the exact same 
 result. More importantly, it is easier to implement and to understand.

remarks. Some may argue that the column-dropping rule offers computational 
 advantage because the rule makes the problem successively smaller by removing vari-
ables, whereas our procedure makes the problem larger by adding new constraints. 
Considering the nature of the additional constraints 1ri = ri*2, we can modify the sim-
plex algorithm to implement the additional constraint implicitly by substituting out 
ri = ri*. The substitution (affecting only the constraint in which ri appears) reduces the 
number of variables as the algorithm moves from one goal to the next. Alternatively, we 
can use the bounded simplex method of Section 7.4.2 by replacing ri = ri* with ri … ri*,  
in which case the additional constraints are accounted for implicitly. In this regard, the 
column-dropping rule, theoretical appeal aside, does not appear to offer a particular 
computational advantage.

For the sake of completeness, Example 8.2-3 will illustrate how the column- 
dropping rule works.

Example 8.2-2 

The problem of Example 8.2-1 is solved by the preemptive method. Assume that the exposure 
goal has a higher priority.

Step 0. G1 ≻ G2

G1: Minimize s1
- 1Satisfy exposure goal2

G2: Minimize s2
+ 1Satisfy budget goal2

Step 1. Solve LP1.

Minimize G1 = s1
-

subject to

4x1 +  8x2 + s1
- - s1

+ =  45 1Exposure goal2
8x1 + 24x2 + s2

- - s2
+ = 100 1Budget goal2

 x1 +  2x2 …  10 1Personnel limit2
x1                …   6 1Radio limit2

x1, x2, s1
-, s1

+, s2
-, s2

+ Ú 0

The optimum solution (determined by TORA) is x1 = 5 min, x2 = 2.5 min, s1
- = 5 

million people, with the remaining variables equal to zero. The solution shows that 
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the exposure goal, G1, is violated by 5 million persons. The additional constraint to be 
added to the G2-problem is s1

- = 5 1or, equivalently, s1
- … 52.

Step 2. The objective function of LP2 is

Minimize G2 = s2
+

The constraints are the same as in step 1 plus the additional constraint s1
- = 5. 

(TORA’s MODIFY option can be used conveniently to represent the new constraint 
by assigning 5 to both the lower and upper bounds of s1

-.)
In general, the additional constraint s1

- = 5 can also be accounted for by substitut-
ing out s1

- in the first constraint. The result is that the right-hand side of the exposure 
goal constraint will be changed from 45 to 40, thus reducing LP2 to

Minimize G2 = s2
+

subject to

4x1 +  8x2 - s1
+ =  40 1Exposure goal2

8x1 + 24x2 + s2
- - s2

+ = 100 1Budget goal2
 x1 +  2x2 …  10 1Personnel limit2
x1             …   6 1Radio limit2

x1, x2, s1
+, s2

-, s2
+ Ú 0

The new formulation is one variable less than the one in LP1, which is the general idea 
advanced by the column-dropping rule.

Actually, the optimization of LP2 is not necessary in this problem, because the op-
timum solution to problem G1 already yields s2

+ = 0; that is, it is already optimum for 
LP2. Such computational-saving opportunities should be exploited during the course 
of implementing the preemptive method.

Example 8.2-3 (Column-Dropping Rule)

In this example, we show that a better solution for the problem of Examples 8.2-1 and 8.2-2 can 
be obtained if the preemptive method is used to optimize objectives rather than to satisfice goals. 
Later on, the same example is solved using the column-dropping rule.

The goals of Example 8.2-1 can be restated as

Priority 1: Maximize exposure 1P12
Priority 2: Minimize cost 1P22

Mathematically, the two objectives are given as

 Maximize P1 = 4x1 + 8x2   1Exposure2
 Minimize P2 = 8x1 + 24x2  1Cost2
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The specific goal limits for exposure and cost 1= 45 and 1002 in Examples 8.2-1 and 8.2-2 
are removed, because we will allow the simplex method to determine these limits optimally.

The new problem can thus be stated as

 Maximize P1 = 4x1 + 8x2

 Minimize P2 = 8x1 + 24x2

subject to

x1 + 2x2 … 10

x1 … 6

x1, x2 Ú 0

We first solve the problem using the procedure introduced in Example 8.2-2.

Step 1. Solve LP1.

Maximize P1 = 4x1 + 8x2

subject to

x1 + 2x2 … 10

x1 … 6

x1, x2 Ú 0

The optimum solution (obtained by TORA) is x1 = 0, x2 = 5 with P1 = 40, which 
shows that the most exposure we can get is 40 million persons.

Step 2. Add the constraint 4x1 + 8x2 Ú 40 to ensure that goal G1 is not degraded. Thus, we 
solve LP2 as

Minimize P2 = 8x1 + 24x2

subject to

 x1 + 2x2 … 10

x1 … 6

4x1 + 8x2 Ú 40 1additional constraint2
x1, x2 Ú 0

The optimum solution of LP2 is P2 = $96,000, x1 = 6 min, and x2 = 2 min. It yields the 
same exposure (P1 = 40 million people) but at a smaller cost than the one in Example 8.2-2, 
where we seek to satisfy rather than optimize the goals.

The same problem is solved now by using the column-dropping rule. The rule calls for carry-
ing the objective rows associated with all the goals in the simplex tableau, as we will show below.
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Lp1 (exposure maximization). The LP1 simplex tableau carries both objective rows 
P1 and P2. The optimality condition applies to the P1-objective row only. The P2-row 
plays a passive role in LP1 but must be updated (using the simplex row operations) 
with the rest of the simplex tableau in preparation for the optimization of LP2.

LP1 is solved in two iterations as follows:

Iteration Basic x1 x2 s1 s2 Solution

1 P1 -4  -8  0 0   0
P2 -8 -24  0 0   0

s1    1    2  1 0  10
s2    1    0  0 1   6

2 P1   0    0  4 0  40
P2   4    0 12 0 120

x2    12    1  1
2

0   5

s2    1    0  0 1   6

The last tableau yields the optimal solution x1 = 0, x2 = 5, and P1 = 40.
The column-dropping rule calls for eliminating any nonbasic variable xj with 

zj - cj ≠ 0 from the optimum tableau of LP1 before LP2 is optimized. The reason is 
that these variables, if left unchecked, could become positive in lower-priority optimi-
zation problems, which can degrade the quality of higher-priority solutions.

Lp2 (Cost minimization). The column-dropping rule eliminates s1 (with zj - cj = 4 in 
LP1). We can see from the P2-row that if s1 is not eliminated, it will be the entering vari-
able at the start of the P2-iterations and will yield the optimum solution x1 = x2 = 0,  
which will degrade the optimum objective value of the P1-problem from P1 = 40 to 
P1 = 0. (Try it!)

The P2-problem is of the minimization type. Following the elimination of s1, the 
variable x1 with zj - cj = 417  -02 can improve the value of P2. The following table 
shows the LP2 iterations. The P1-row has been deleted because it serves no purpose in 
the optimization of LP2.

Iteration Basic x1 x2 s1 s2 Solution

1 P1  40
P2 4 0    0 120

x2 1
2

1    0   5

 s2 1 0    1   6

2 P1   40
P2 0 0  -4  96

x2 0 1  -1
2

  2

x1 1 0    1   6

The optimum solution 1x1 = 6, x2 = 22 with a total exposure of P1 = 40 and a 
total cost of P2 = 96 is the same as obtained earlier.
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AMPL Moment

AMPL lends itself readily to applying the idea presented in Example 8.2-2, where simple con-
straints are added to ensure that higher-priority solutions are not degraded. File amplEx8.1-1.txt 
provides a generic AMPL code that allows the application of the preemptive method. The model 
must be implemented interactively as explained in Section C.9 on the website.
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Case Study: allocation of Operating room time in Mount Sinai hospital2

Tools: GP, ILP

Area of application: Health care

Description of the situation: 

The situation takes place in Canada, where health-care insurance is mandatory and universal 
for all citizens. Funding, which is based on a combination of premiums and taxes, is controlled 
by the individual provinces. Under this system, hospitals are advanced a fixed annual budget 
and each province pays physicians retroactively using a fee-for-service funding mechanism. 
 Local governments control the size of the health-care system by placing limits on hospital 
spending. The result is that the use of health resources, particularly operating rooms, is con-
trolled effectively.

Mount Sinai Hospital has 10 staffed operating rooms serving 5 departments: surgery, 
gynecology, ophthalmology, otolaryngology, and oral surgery. There are 8 main surgical rooms 
and 2 elective outpatient surgery (EOPS) rooms. An operating room is either ”short” or 
“long,” depending on the daily number of hours the room is in use. Because of the socialized 
nature of health care in Canada, all surgeries are scheduled during work days only (Monday 
through Friday). Table 8.1 summarizes the daily availability of the different types of rooms 
and Table 8.2 provides the weekly demand for operating room hours. The limit on the underal-
located hours in Table 8.2 is the most hours a department can be denied relative to its weekly 
request.

2J. T. Blake and J. Donald, “Mount Sinai Hospital Uses Integer Programming to Allocate Operating Room 
Time,” Interfaces, Vol. 32, No. 2, pp. 63–73, 2002.



The objective of the study is to determine a reasonably equitable daily schedule for the 
 utilization of available operating rooms.

Mathematical model:

The best that can be done in this situation is to devise a daily schedule that most satisfies the 
weekly target hours for the different departments. In other words, we set the target hours for 
each department as a goal and try to satisfy it. The objective of the model is to minimize the total 
deviation from the weekly target hours.

Let

xijk = Number of rooms of type i assigned to department j on day k

dik = Duration (availability in hours) of room type i on day k

aik = Number of rooms of type i available on day k

hj = Requested (ideal) target hours for department j

uj
- = Maximum underallocated hours permitted in department

The given situation involves 6 departments and 4 types of rooms. Thus, i = 1, 2, 3, 4 and 
j = 1, 2, c, 6. For a 5-day work week, the index k assumes the values 1 through 5.

The following integer-GP model represents the Mount Sinai Hospital scheduling 
 situation:

Minimize z = a
6

j = 1
1 sj

-

hj
2

TAble 8.1 Surgery Room Availability in Mount Sinai Hospital

Availability hours

Weekday Main “short” Main “long” EOPS “short” EOPS “long”

Monday 08:00–15:30 08:00–17:00 08:00–15:30 08:00–16:00
Tuesday 08:00–15:30 08:00–17:00 08:00–15:30 08:00–16:00
Wednesday 08:00–15:30 08:00–17:00 08:00–15:30 08:00–16:00
Thursday 08:00–15:30 08:00–17:00 08:00–15:30 08:00–16:00
Friday 09:00–15:30 09:00–17:00 09:00–15:30 09:00–16:00

Number of rooms 4 4 1 1

TAble 8.2 Weekly Demand for Operating Room Hours

Department Weekly target hours
Admissible limit of 

underallocated hours

Surgery 189.0 10.0
Gynecology 117.4 10.0
Ophthalmology  39.4 10.0
Oral surgery  19.9 10.0
Otolaryngology  26.3 10.0
Emergency   5.4  3.0
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subject to

 a
4

i = 1
a

5

k = 1
dikxijk + sj

- - sj
+ = hj, for all j 112

 a
6

j = 1
xijk … aik, for all i and k 122

 0 … sj
- … uj

-, for all j 132
 xijk Ú 0 and integer for all i, j, and k 142
 sj

-, sj
+ Ú 0, for all j 152

The logic of the model is that it may not be possible to satisfy the target hours hj for depart-
ment j, j = 1, 2, c, 6. Thus, the objective is to determine a schedule that minimizes possible 
“underallocation” of rooms to the different departments. To do this, the nonnegative variables 
sj

- and sj
+ in constraint (1) represent the under- and overallocation of hours relative to the target hj 

for department j. The ratio 
sj

-

hj
 measures the relative amount of underallocation to department j. 

Constraint (2) recognizes room availability limits. Constraint (3) is used to limit the amount by 
which a department is underallocated. The limits uj

- are user specified.

Model results

File amplCase6.txt gives the AMPL model of the problem. Figure 8.1 gives the solution for the data 
provided in the statement of the problem. It shows that all goals are met 1z = 02, and it details 
the allocation of rooms (by type) to the different departments during the work week (Monday 
through Friday). Indeed, the departmental summary given at the bottom of the figure shows that 
the requests for 5 (out of 6) departments are oversatisfied. This happens to be the case because 
there is abundance of resources for the week and the model does not try to minimize the overal-
location of hours to the different departments. Actually, it makes no sense in the present model to 
try to do away with overallocation of hours, because the rooms are available and might as well be 
apportioned to the different departments. In essence, the main concern is about underallocation 
when available resources do not meet the demand.

Computational experience

In the model, the variable xijk represents the number of allocated rooms. It must assume in-
teger values, and here lies a familiar problem that continues to plague integer programming 
computations. The AMPL model executed rapidly with the set of data given in the description 
of the problem. However, when the data representing target hours, hj, were adjusted slightly 
(keeping all other data unchanged), the computational experience was totally different. First, 
the execution time lasted more than 1 hr (as opposed to a few seconds with the initial set of 
data) and, after exploring more than 45 million branch-and-bound nodes, failed to produce a 
feasible solution, let alone the optimum. This experience appears to take place when the sup-
ply exceeds the demand. Actually, the behavior of this ILP is unpredictable, because when the 
objective function is changed to simply minimize the unweighted sum of sj

-,  all previously un-
solvable cases are solved instantly. On the website, the questions at the end of this case (Case 6)  
outline these computational experiences.

What courses of action are available for overcoming this problem? At first thought, the 
temptation may be to drop the integer requirement and then round the resulting linear program-
ming solution. This option will not work in this case because, in all likelihood, it will not produce 
a feasible solution. Given that a specific number of hospital rooms are available, it is highly 
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Output of Mount Sinai Hospital model

z = 0.00
Weekly Time Allocation:

Mon:
Gynecology: 39.0 hrs

4 room(s) type Main_L
1 room(s) type Main_S 

Ophthalmology: 17.0 hrs
1 room(s) type Main_S
1 room(s) type EOPS_S 

Oral_surgery: 16.5 hrs
1 room(s) type Main_S
1 room(s) type EOPS_L 

Otolaryngology: 9.0 hrs
1 room(s) type Main_S

Tue:
Surgery: 17.0 hrs

1 room(s) type Main_S
1 room(s) type EOPS_S 

Gynecology: 39.0 hrs
4 room(s) type Main_L
1 room(s) type Main_S 

Oral_surgery: 7.5 hrs
1 room(s) type EOPS_L 

Otolaryngology: 18.0 hrs
2 room(s) type Main_S

Wed:
Surgery: 66.5 hrs

3 room(s) type Main_L
4 room(s) type Main_S
1 room(s) type EOPS_S 

Ophthalmology: 15.0 hrs
1 room(s) type Main_L
1 room(s) type EOPS_L

Thu:
Surgery: 72.5 hrs

4 room(s) type Main_L
3 room(s) type Main_S
1 room(s) type EOPS_L
1 room(s) type EOPS_S 

Ophthalmology: 9.0 hrs
1 room(s) type Main_S

Fri:
Surgery: 34.0 hrs

3 room(s) type Main_S
1 room(s) type EOPS_S 

Gynecology: 39.0 hrs
4 room(s) type Main_L
1 room(s) type Main_S 

Emergency: 6.5 hrs
1 room(s) type EOPS_L

Departmental summary:
Surgery allocated 190.0 hrs (101%)
Gynecology allocated 117.0 hrs (100%)
Ophthalmology allocated 41.0 hrs (104%)
Oral_surgery allocated 24.0 hrs (121%)
Otolaryngology allocated 27.0 hrs (103%)
Emergency allocated 6.5 hrs (120%)
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 unlikely that a trial-and-error rounded solution will meet room availability limits. This means 
that there is no alternative to imposing the integer condition.

One way to improve the chances for a successful execution of the integer model is to limit 
the feasible ranges for the variables xijk by taking into account the availability of other resources. 
For example, if the hospital has only two dental surgeons on a given day, no more than two 
rooms (of any type) can be assigned to that department on that day. Setting tighter bounds may 
be effective in securing an optimal integer solution. Short of meeting this requirement, the only 
remaining option is to devise a heuristic for the problem.

PROBLEMS 

Section Assigned Problems

8.1 8-1 to 8-11
8.2.1 8-12 to 8-21
8.2.2 8-22 to 8-25

*8-1. Formulate the Fairville tax problem, assuming that the town council is specifying an 
 additional goal, G5, that requires gasoline tax to equal at least 20% of the total tax bill.

8-2. The NW Shopping Mall conducts special events to attract potential patrons. Among the 
events that seem to attract teenagers, the young/middle-aged group, and senior citizens, 
the two most popular are band concerts and art shows. Their costs per presentation are 
$1500 and $3000, respectively. The total (strict) annual budget allocated to the two events 
is $20,000. The mall manager estimates the attendance as follows:

Number attending per presentation

Event Teenagers Young/middle-age Seniors

Band concert 200 100   0
Art show   0 400 250

The manager has set minimum goals of 1500, 450, and 900 for the attendance of teenagers, 
the young/middle-aged group, and seniors, respectively. Formulate the problem as a goal 
programming model.

*8-3. The Ozark University admission office is processing freshman applications for the up-
coming academic year. The applications fall into three categories: in-state, out-of-state, 
and international. The male–female ratios for in-state and out-of-state applicants are 
1:1 and 3:2, respectively. For international students, the corresponding ratio is 8:1. The 
American College Test (ACT) score is an important factor in accepting new students. 
The statistics gathered by the university indicate that the average ACT scores for 
in-state, out-of-state, and international students are 27, 26, and 23, respectively. The 
committee on admissions has established the following desirable goals for the new 
freshman class:
(a) The incoming class is at least 1200 freshmen.

(b) The average ACT score for all incoming students is at least 25.

(c) International students constitute at least 10% of the incoming class.



(d) The female–male ratio is at least 3:4.

(e) Out-of-state students constitute at least 20% of the incoming class.

Formulate the problem as a GP model.
8-4. Circle K Farms consumes 3 tons of special feed daily. The feed—a mixture of limestone, 

corn, and soybean meal—must satisfy the following nutritional requirements:

Calcium. At least 0.8% but not more than 1.2%.

Protein. At least 22%.

Fiber. At most 5%.

The following table gives the nutritional content of the feed ingredients:

lb per lb of ingredient

Ingredient Calcium Protein Fiber

Limestone .380 .00 .00
Corn .001 .09 .02
Soybean meal .002 .50 .08

Formulate the problem as a GP model, and state your opinion regarding the applicability 
of GP to this situation.

*8-5. Mantel produces a toy carriage, whose final assembly must include four wheels and two 
seats. The factory producing the parts operates three shifts a day. The following table 
provides the amounts produced of each part in the three shifts:

Units produced per run

Shift Wheels Seats

1 500 300
2 600 280
3 640 360

Ideally, the number of wheels produced is exactly twice that of the number of seats. 
However, because production rates vary from shift to shift, exact balance in production 
may not be possible. Mantel is interested in determining the number of production runs 
in each shift that minimizes the imbalance in the production of the parts. The capacity 
limitations restrict the number of runs to between 4 and 5 for shift 1, 10 and 20 for shift 2, 
and 3 and 5 for shift 3. Formulate the problem as a GP model.

8-6. Camyo Manufacturing produces four parts that require the use of a lathe and a drill 
press. The two machines operate 10 hours a day. The following table provides the time in 
minutes required by each part:

Production time in min

Part Lathe Drill press

1 5 3
2 6 2
3 4 6
4 7 4
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It is desired to balance the two machines by limiting the difference between their total 
operation times to at most 30 minutes. The market demand for each part is at least 
10 units. Additionally, the number of units of part 1 may not exceed that of part 2.  
Formulate the problem as a GP model.

 8-7. Two products are manufactured on two sequential machines. The following table gives 
the machining times in minutes per unit for the two products:

Machining time in min

Machine Product 1 Product 2

1 5 3
2 6 2

The daily production quotas for the two products are 80 and 60 units, respectively. Each 
machine runs 8 hours a day. Overtime, though not desirable, may be used if necessary to 
meet the production quota. Formulate the problem as a GP model.

 8-8. Vista City Hospital plans the short-stay assignment of surplus beds (those that are not 
already occupied) 4 days in advance. During the 4-day planning period, about 30, 25, and 
20 patients will require 1-, 2-, or 3-day stays, respectively. Surplus beds during the same 
period are estimated at 20, 30, 30, and 30, respectively. Use GP to resolve the problem of 
overadmission and underadmission in the hospital.

 8-9. The Von Trapp family is in the process of moving to a new city where both parents have 
accepted new jobs. In trying to find an ideal location for their new home, the family list 
the following goals:
(a) It should be as close as possible to Mrs. Von Trapp’s place of work (within 14 mile).

(b) It should be as far as possible from the noise of the airport (at least 10 miles).

(c) It should be reasonably close to a shopping mall (within 1 mile).
Mr. and Mrs. Von Trapp use a landmark in the city as a reference point and locate 

the (x, y)-coordinates of work, airport, and shopping mall at (1, 1), (20, 15), and (4, 7), 
respectively (all distances are in miles). Formulate the problem as a GP model. (Note: 
The resulting constraints are not linear.)

8-10. Regression analysis. In a laboratory experiment, suppose that yi is the ith observed 
(independent) yield associated with the dependent observational measurements 
xij, i = 1, 2, c, m; j = 1, 2, c, n. It is desired to determine a linear regression fit into 
these data points. Let bj, j = 0, 1, c, n, be the regression coefficients. It is desired to 
determine all bj such that the sum of the absolute deviations between the observed 
and the estimated yields is minimized. Formulate the problem as a GP model.

8-11. Chebyshev Problem. An alternative goal for the regression model in Problem 8-10 is to 
minimize over bj the maximum of the absolute deviations. Formulate the problem as a 
GP model.

*8-12. Consider Problem 8-1, dealing with the Fairville tax situation. Solve the problem, 
assuming that all five goals have the same weight. Does the solution satisfy all the 
goals?

8-13. In Problem 8-2, suppose that the goal of attracting young/middle-aged people is twice as 
important as for either of the other two categories (teens and seniors). Find the associ-
ated solution, and check if all the goals have been met.



8-14. In the Ozark University admission situation described in Problem 8.3, suppose that the 
limit on the size of the incoming freshmen class must be met, but the remaining require-
ments can be treated as flexible goals. Further, assume that the ACT score goal is twice as 
important as any of the remaining goals.
(a) Solve the problem, and specify whether or not all the goals are satisfied.

(b) If, in addition, the size of the incoming class can be treated as a flexible goal  
that is twice as important as the ACT goal, how would this change affect  
the  solution?

*8-15. In the Circle K model of Problem 8-4, is it possible to satisfy all the nutritional 
 requirements?

8-16. In Problem 8-5, determine the solution, and specify whether or not the daily production 
of wheels and seats can be balanced.

8-17. In Problem 8-6, suppose that the market demand goal is twice as important as that of 
balancing the two machines, and that no overtime is allowed. Solve the problem, and 
determine if the goals are met.

*8-18. In Problem 8-7, suppose that production strives to meet the quota for the two products, 
using overtime if necessary. Find a solution to the problem, and specify the amount of 
overtime, if any, needed to meet the production quota.

8-19. In the Vista City Hospital of Problem 8-8, suppose that only the bed limits represent 
 flexible goals and that all the goals have equal weights. Can all the goals be met?

8-20. The Malco Company has compiled the following table from the files of five of its 
employees to study the impact on income of three factors: age, education (expressed in 
number of college years completed), and experience (expressed in number of years in 
the business).

Age 
(year)

Education 
(year)

Experience 
(year)

Annual income 
($)

30 4  5 40,000
39 5 10 48,000
44 2 14 38,000
48 0 18 36,000
37 3  9 41,000

Use the GP formulation in Problem 8-10 to fit the data into the linear equation 
y = b0 + b1x1 + b2x2 + b3x3.

8-21. Solve Problem 8-20 using the Chebyshev method proposed in Problem 8-11.
8-22. In Example 8.2-2, suppose that the budget goal is increased to $150,000. The exposure 

goal remains unchanged at 45 million persons. Show how the preemptive method will 
reach a solution.3

*8-23. Solve Problem 8-1 using the following priority ordering for the goals:

G1 ≻ G2 ≻ G3 ≻ G4 ≻ G5.

3You may find it computationally convenient to use interactive AMPL to solve Problems 8-22 to 8-25.
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8-24. Consider Problem 8-2, which deals with the presentation of band concerts and art shows 
at the NW Mall. Suppose that the goals set for teens, the young/middle-aged group, and 
seniors are referred to as G1, G2, and G3, respectively. Solve the problem for each of the 
following priority orders:
(a) G1 ≻ G2 ≻ G3

(b) G3 ≻ G2 ≻ G1

Show that the satisfaction of the goals (or lack of it) can be a function of the priority 
order.

8-25. Solve the Ozark University model (Problem 8-3) using the preemptive method, assuming 
that the goals are prioritized in the same order given in the problem.



Chapter 9

Integer Linear programming

Real-Life Application—Optimizing Trailer Payloads at PFG Building Glass

PFG uses specially equipped (fifth-wheel) trailers to deliver packs of sheets of flat 
glass to customers. The packs vary in both size and weight, and a single trailer load 
may include different packs, depending on received orders. Government regulations 
set maximum limits on axle weights, and the actual positioning of the packs on the 
trailer is crucial in determining these weights. The problem deals with determining the 
optimal loading of the packs on the trailer bed to satisfy axle-weight limits. The prob-
lem is solved as an integer program. Case 7 in Chapter 26 on the website provides the 
details of the study.1

9.1 ILLusTRATIve APPLIcATIOns

Integer linear program (ILP) applications generally fall into two categories: direct 
and transformed. In the direct category, the nature of the situation precludes assign-
ing fractional values to the variables of the model. For example, the problem may in-
volve determining whether or not a project is undertaken (binary variable) or finding 
the optimal number of machines needed to perform a task (general integer variable). 
In the transformed category, auxiliary integer variables are used to convert analyti-
cally intractable situations into models that can be solved by available optimization 
algorithms. For example, in sequencing two jobs, A and B, on a single machine, job A 
may precede job B or vice versa. The or-constraints make the problem analytically in-
tractable because all mathematical programming algorithms deal with and-constraints 
only. Section 9.1.4 shows how auxiliary binary variables are used to transform the or-
constraints into and-constraints without altering the nature of the model.

 359

1Cases at the end of Chapters 7 and 8 use ILP. Also, case 17 in Chapter 26 on the website combines integer 
programming and queueing theory.
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For convenience, a problem is defined as a pure integer program when all the 
variables are integer. Else, it is a mixed integer program involving a mixture of integer 
and continuous variables.

9.1.1 capital Budgeting

Decisions about whether or not to undertake a project is usually made under limited-
budget considerations and preset priorities. The next example deals with one of these 
situations.

example 9.1-1 (Project selection)

Five projects are being evaluated over a 3-year planning horizon. The following table gives the 
expected returns for each project and the associated yearly expenditures:

 
Project

Expenditures ($ million)/year  
Returns ($ million)1  2   3

1  5  1  8 20
2  4  7 10 40
3  3  9  2 20
4  7  4  1 15
5  8  6 10 30

Available funds ($ million) 25 25 25

Which projects should be selected over the 3-year horizon?
The problem reduces to a “yes–no” decision for each project. Define the binary variable xj as

xj = e 1, if project j is selected
0, if project j is not selected

The ILP model is

Maximize z = 20x1 + 40x2 + 20x3 + 15x4 + 30x5

subject to

5x1 + 4x2 + 3x3 + 7x4 + 8x5 … 25

x1 + 7x2 + 9x3 + 4x4 + 6x5 … 25

8x1 + 10x2 + 2x3 + x4 + 10x5 … 25

x1, x2, x3, x4, x5 = 10, 12
The optimum integer solution (obtained by AMPL, Solver, or TORA)2 is x1 = x2 =  

x3 = x4 = 1, x5 = 0, with z = 95 ($ million). The solution excludes project 5 from the product mix.

2To use TORA, select Integer Programming from Main Menu. After entering the problem data, go to output 
screen, and select Automated B&B to obtain the optimum solution. Solver use is the same as in LP except 
that the targeted variables must be declared integer. The integer option (int or bin) is available in the Solver 
parameters dialogue box when you add a new constraint. AMPL implementation for integer programming is 
the same as in linear programming, except that some or all the variables are declared integers by adding the key 
word integer (or binary) in the definition statement of the targeted variables. For example, the statement 
var x{J}>=0, integer; declares xj as nonnegative integer for all je J. If xj is binary, the statement is changed 
to var x{J} binary;. For execution, the statement option solver cplex; must precede solve;.
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remarks. It is interesting to compare the continuous LP solution with the ILP solution. The 
LP optimum, obtained by replacing xj = 10, 12 with 0 … xj … 1 for all j, yields x1 = .5789, 
x2 = x3 = x4 = 1, x5 = .7368, and z = 108.68 ($ million). The solution is meaningless because 
binary x1 and x5 assume fractional values. We may round the solution to the closest integer, which 
yields x1 = x5 = 1. However, the resulting solution violates the constraints. Moreover, the con-
cept of rounding is meaningless here because xj represents a “yes–no” decision.

9.1.2 set-covering Problem

In this class of problems, overlapping services are offered by a number of installations 
to a number of facilities. The objective is to determine the minimum number of instal-
lations that will cover (i.e., satisfy the service needs of)—each facility. For example, 
water treatment plants can be constructed at various locations, with each plant serving 
specific communities. The overlapping occurs when more than one plant can serve a 
given community.

example 9.1-2 (Installing security Telephones)

To promote on-campus safety, the U of A Public Safety Department is in the process of install-
ing emergency telephones at selected locations. The department wants to install the minimum 
number of telephones that serve each of the campus main streets. Figure 9.1 maps the campus 
principal streets.

It is logical to maximize the utility of the telephones by placing them at street intersections. 
In this manner, a single unit can serve at least two streets.

Define

xj = e1, a telephone is installed at intersection j, j = 1, 2, c, 8
0, otherwise
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The constraints of the problem require installing at least one telephone on each of the 11 streets 
(A to K). Thus, the model is

Minimize z = x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8

subject to

 x1 + x2  Ú 1 (Street A)

 x2 + x3  Ú 1 (Street B)

 x4 + x5  Ú 1 (Street C)

 x7 + x8 Ú 1 (Street D)

  x6 + x7  Ú 1 (Street E)

 x2  + x6  Ú 1 (Street F)

 x1  + x6  Ú 1 (Street G)

 x4  + x7  Ú 1 (Street H)

 x2  + x4  Ú 1 (Street I)

 x5  + x8 Ú 1 (Street J)

 x3 + x5  Ú 1 (Street K)

xj =  (0, 1),  j = 1, 2, c,  8

The optimum solution of the problem requires installing four telephones at intersections 1, 2, 5, 
and 7.

remarks. In the strict sense, set-covering problems are characterized by the following criteria: 
(1) The variables xj, j = 1, 2, c, n, are binary, (2) the left-hand-side coefficients of the con-
straints are 0 or 1, (3) the right-hand side of each constraint is of the form 1Ú12, and (4) the 
objective function minimizes c1x1 + c2x2 + c + cnxn,  where cj 7 0 for all j = 1, 2, c, n. In 
the present example, cj = 1 for all j. If cj represents the installation cost in intersection j, then 
these coefficients may assume values other than 1. Variations of the set-covering problem include 
additional side conditions, as described by some of the situations in Problems 9-19 to 9-27.

AMPL Moment 

File amplEx9.1-2.txt provides a general AMPL model for any set-covering problem. The formula-
tion is detailed in Section C.9 on the website.

9.1.3 Fixed-charge Problem

The fixed-charge problem deals with situations in which the economic activity incurs 
two types of costs: a fixed cost needed to initiate the activity and a variable cost pro-
portional to the level of the activity. For example, the initial tooling of a machine prior 
to starting production incurs a fixed setup cost regardless of how many units are manu-
factured. Once the setup is done, the cost of labor and material is proportional to the 
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amount produced. Given that F is the fixed charge, c is the variable unit cost, and x is 
the level of production, the cost function is expressed as

C1x2 = eF + cx, if x 7 0
0,     otherwise

The function C(x) is intractable analytically because it involves a discontinuity at 
x = 0. The next example shows how auxiliary binary variables are used to render the 
model analytically tractable.

example 9.1-3 (choosing a Telephone company)

I have been approached by three telephone companies to subscribe to their long-distance ser-
vice in the United States. MaBell will charge a flat $16 per month plus $.25 a minute. PaBell 
will charge $25 a month but will reduce the per-minute cost to $.21. As for BabyBell, the flat 
monthly charge is $18, and the cost per min is $.22. I usually make an average of 200 minutes of 
long-distance calls a month. Assuming that I do not pay the flat monthly fee unless I make calls 
and that I can apportion my calls among all three companies as I please, how should I use the 
three companies to minimize my monthly telephone bill?

This problem can be solved readily without ILP. Nevertheless, it is instructive to formulate 
it as an integer program.

Define

x1 = MaBell long-distance minutes per month

x2 = PaBell long-distance minutes per month

x3 = BabyBell long-distance minutes per month

y1 = 1 if x1 7 0 and 0 if x1 = 0

y2 = 1 if x2 7 0 and 0 if x2 = 0

y3 = 1 if x3 7 0 and 0 if x3 = 0

We can ensure that yj equals 1 when xj is positive by using the constraint

xj … Myj, j = 1, 2, 3

The value of M should be selected sufficiently large so as not to restrict the variable xj artifi-
cially. Because I make about 200 minutes of calls a month, then xj … 200 for all j, and it is safe 
to select M = 200.

The complete model is

Minimize z = .25x1 + .21x2 + .22x3 + 16y1 + 25y2 + 18y3

subject to

 x1 + x2 + x3 = 200

 x1 … 200y1

 x2 … 200y2

 x3 … 200y3

x1, x2, x3 Ú 0

y1, y2, y3 = 10, 12
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The formulation shows that the jth monthly flat fee will be part of the objective function 
z only if yj = 1, which can happen only if xj 7 0 (per the last three constraints of the model). 
If xj = 0 at the optimum, then the minimization of z, together with the fact that the objective 
coefficient of yj is positive, forces yj to equal zero, as desired.3

The optimum solution yields x3 = 200, y3 = 1, and all the remaining variables equal to 
zero, which shows that BabyBell should be selected as my long-distance carrier. Remember 
that the information conveyed by y3 = 1 is redundant because the same result is implied by 
x3 7 0 1=  2002. Actually, the main reason for using y1, y2, and y3 is to account for the monthly 
flat fee. In effect, the three binary variables convert an ill- behaved (nonlinear) model into 
an  analytically tractable formulation. This conversion has resulted in introducing the integer 
 (binary) variables in an otherwise continuous problem.

9.1.4 either-Or and If-Then constraints

In the fixed-charge problem (Section 9.1.3), auxiliary binary variables are used to 
handle the discontinuity in the objective cost function. This section deals with models 
in which constraints are not satisfied simultaneously (either-or) or are dependent (if-
then), again using auxiliary binary variables. The transformation uses a mathematical 
trick to present the special constraint as and-constraints.

example 9.1-4 (Job sequencing Model)

Jobco uses a single machine to process three jobs. Both the processing time and the due date (in 
days) for each job are given in the following table. The due dates are measured from zero, the 
assumed start time of the first job.

Job Processing time (day) Due date (day) Late penalty ($/day)

1  5 25 19
2 20 22 12
3 15 35 34

The objective of the problem is to determine the job sequence that minimizes the late penalty 
for processing all three jobs.

Define

xj = Start date in days for job j 1measured from time zero2

yij = e1, if i precedes j
0, if j precedes i

The problem has two types of constraints: the noninterference constraints (guaranteeing that 
no two jobs are processed concurrently) and the due-date constraints. Consider the noninterfer-
ence constraints first.

3For generalization, the condition yi = 0 if xi = 0 can be replaced with the compound condition yi = 1 if 
xi 7 0 and 0 if xi = 0 to make it independent of the sense of optimization (maximization or minimization). 

The result is achieved by replacing the constraint xi … Myi with 
xi

M
 … yi … xi.
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Two jobs i and j with processing time pi and pj will not be processed concurrently if (depend-
ing on whether which job is processed first)

xi Ú xj + pj or xj Ú xi + pi

For M sufficiently large, the or-constraints are converted to and-constraints by using

Myij + 1xi - xj2 Ú pj and M11 - yij2 + 1xj - xi2 Ú pi

The conversion guarantees that only one of the two constraints can be active at any one time. 
If yij = 0, the first constraint is active, and the second is redundant (because its left-hand side 
will include M, which is much larger than pi). If yij = 1, the first constraint is redundant, and the 
second is active.

Next, given that dj is the due date for job j, the job is late if xj + pj 7 dj. We can use two 
nonnegative variables, sj

- and sj
+,  to determine the status of a completed job j with regard to its 

due date—namely, the due date constraint can be written as

xj + pj + sj
- - sj

+ = dj

Job j is ahead of schedule if sj
- 7 0,  and late if sj

+ 7 0. The late-penalty cost is thus proportional 
to sj

+.
The model for the given problem is

Minimize z = 19s1
+ + 12s2

+ + 34s3
+

subject to

 x1 - x2 + My12  Ú 20

 -x1 + x2 - My12  Ú 5 - M

 x1 - x3 + My13  Ú 15

 -x1 + x3 - My13  Ú 5 - M

 x2 - x3 + My23  Ú 15

 - x2 + x3 - My23  Ú 20 - M

 x1 + s1
- - s1

+  = 25 - 5

 x2 + s2
- - s2

+  = 22 - 20

 x3 + s3
- - s3

+
    = 35 - 15

x1, x2, x3, s1
-, s1

+, s2
-, s2

+, s3
-, s3

+ Ú 0

y12, y13, y23 = (0, 1)

The resulting model is a mixed ILP.
To solve the model, we choose M = 100, a value that is larger than the sum of the pro-

cessing times for all three activities. The optimal solution is x1 = 20, x2, = 0, and x3 = 25, This 
means that job 2 starts at time 0, job 1 starts at time 20, and job 3 starts at time 25, thus yield-
ing the optimal processing sequence 2 S 1 S 3. The solution calls for completing job 2 at time 
0 + 20 = 20, job 1 at time = 20 + 5 = 25, and job 3 at 25 + 15 = 40 days. Job 3 is delayed by 
40 - 35 = 5 days past its due date at a cost of 5 * $34 = $170.
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AMPL Moment

File amplEx9.1-4.txt provides the AMPL model for the problem of Example 9.1-4. The model is 
explained in Section C.9 on the website.

example 9.1-5 (Job sequencing Model Revisited)

In Example 9.1-4, suppose that we have the following additional condition: If job i precedes job 
j, then job k must precede job m. Mathematically, the if-then condition is written as

if xi + pi … xj, then xk + pk … xm

Given e17  02 infinitesimally small, and M sufficiently large, this condition is equivalent to the 
following two simultaneous constraints:

xj - 1xi + pi2 … M11 - w2 - e

1xk + pk2 - xm … Mw

w = 10, 12
If xi + pi … xj,  then xj - 1xi + pi2 Ú 0,  which requires w = 0, and the second constraint be-
comes xk + pk … xm,  as desired. Else, w may assume the value 0 or 1, in which case the second 
constraint may or may not be satisfied, depending on other conditions in the model.

9.2 InTeGeR PROGRAMMInG ALGORIThMs

The ILP algorithms are based on exploiting the tremendous computational success of 
LP. The strategy of these algorithms involves three steps.

Step 1.  Relax the solution space of the ILP by deleting the integer restriction on all 
integer variables and replacing any binary variable y with the continuous 
range 0 … y … 1. The result of the relaxation is a regular LP.

Step 2. Solve the LP, and identify its continuous optimum.

Step 3.  Starting from the continuous optimum point, add special constraints that 
iteratively modify the LP solution space in a manner that eventually renders 
an optimum extreme point satisfying the integer requirements.

Two general methods have been developed for generating the special constraints 
in step 3.

1. Branch-and-bound (B&B) method
2. Cutting-plane method

Neither method is consistently effective computationally. However, experience shows 
that the B&B method is far more successful than the cutting-plane method.
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9.2.1 Branch-and-Bound (B&B) Algorithm4

The first B&B algorithm was developed in 1960 by A. Land and G. Doig for the general 
mixed and pure ILP problem. Later, in 1965, E. Balas developed the additive algorithm for 
solving ILPs with pure binary (zero or one) variables.5 The additive algorithm’s com-
putations were so simple (mainly addition and subtraction) that it was initially hailed 
as a possible breakthrough in the solution of general ILP. Unfortunately, it failed to 
produce the desired computational advantages. Moreover, the algorithm, which ini-
tially appeared unrelated to the B&B technique, was shown to be but a special case of 
the general Land and Doig algorithm.

This section presents the general Land–Doig B&B algorithm only. A numeric 
example is used to provide the details.

example 9.2-1 

Maximize z = 5x1 + 4x2

subject to

x1 + x2 … 5

10x1 + 6x2 … 45

x1, x2 nonnegative integer

The lattice points (dots) in Figure 9.2 define the ILP solution space. The associated continu-
ous LP1 problem at node 1 (shaded area) is defined from ILP by removing the integer restric-
tions. The optimum solution of LP1 is x1 = 3.75, x2 = 1.25, and z = 23.75.

Because the optimum LP1 solution does not satisfy the integer restrictions, the solution 
space is subdivided in a systematic manner that eventually locates the ILP optimum. First, B&B 
selects an integer variable whose optimum value at LP1 is not integer. In this example, both x1 
and x2 qualify. Selecting x1 1=  3.752 arbitrarily, the region 3 6 x1 6 4 of the LP1 solution space 
contains no integer values of x1, and thus it can be deleted. This is equivalent to replacing the 
original LP1 with two new LPs:

LP2 space = LP1 space + 1x1 … 32
LP3 space = LP1 space + 1x1 Ú 42

Figure 9.3 depicts the LP2 and LP3 spaces. The two spaces combined contain the same feasi-
ble integer points as the original ILP—meaning that no information is lost when LP1 is replaced 
with LP2 and LP3.

5A general ILP can be expressed in terms of binary (0–1) variables as follows. Given an integer variable x 
with a finite upper bound u (i.e., 0 … x … u), then

x = 20y0 + 21y1 + 22y2 + c + 2kyk

The variables y0, y1, . . . , and yk are binary, and the index k is the smallest integer satisfying 2k + 1 - 1 Ú u.

4TORA integer programming module is equipped with a facility for generating the B&B tree interactively. 
To use this facility, select User-guided B&B in the output screen of the integer programming module. The 
resulting screen provides all the information needed to create the B&B tree.
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If we intelligently impose sequential constraints that exclude the integer-free regions 
(e.g., 3 6 x1 6 4 in LP1), we will be reducing the continuous solution space of LP1 into a 
number of LP subproblems whose optimum extreme points satisfy the integer restrictions. 
The best of these subproblems is the optimum solution of ILP.

The new restrictions, x1 … 3 and x1 Ú 4, are mutually exclusive, so that LP2 and LP3 at 
nodes 2 and 3 must be dealt with as separate LPs, as Figure 9.4 shows. This dichotomization 

x1

x2

0 21 3 54 6

3

4

5

6

7

8

Optimum (continuous):
x1 5 3.75, x2 5 1.25
z 5 23.75

Feasible integer points

2
LP1

1

FIgure 9.2 

Solution space for ILP (lattice points) and LP1 
(shaded area) of Example 9.2-1 (LP1)

x1

x2

0 21 3 54

3

4

5

6

LP3
LP2

2

1

x1 # 3 x1 $ 4

FIgure 9.3 

Solution Spaces of LP2 and LP3 for  
Example 9.2-1 
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gives rise to the concept of branching in the B&B algorithm. In this case, x1 is called the 
branching variable.

The optimum ILP lies in either LP2 or LP3. Hence, both subproblems must be examined. 
We arbitrarily examine LP2 (associated with x1 … 3) first:

Maximize z = 5x1 + 4x2

subject to

x1 + x2 … 5

10x1 + 6x2 … 45

x1 … 3

x1, x2 Ú 0

The solution of LP2 (which can be solved efficiently by the upper-bounded algorithm of 
Section 7.3) is x1 = 3, x2 = 2, and z = 23. The LP2 solution satisfies the integer requirements for 
x1 and x2. Hence, LP2 is said to be fathomed—meaning it cannot yield any better ILP solution 
and no further branching from node 2 is required.

We cannot say at this point that the integer solution obtained from LP2 is optimum for the 
original problem, because LP3 may yield a better integer solution. All we can say is that z = 23 
is a lower bound on the optimum (maximum) objective value of the original ILP. This means that 
any unexamined subproblem that cannot yield a better objective value than the lower bound 
must be discarded as nonpromising. If an unexamined subproblem produces a better integer 
solution, then the lower bound must be updated accordingly.

Given the lower bound z = 23, we examine LP3 (the only remaining unexamined subprob-
lem at this point). Because optimum z = 23.75 at LP1 and all the coefficients of the objective 
function happen to be integers, it is impossible that LP3 can produce a better integer solution 
(with z 7 23). As a result, we discard LP3 and conclude that it has been fathomed.

The B&B algorithm is now complete because both LP2 and LP3 have been examined and 
fathomed, the first for producing an integer solution and the second for failing to produce a better 
integer solution. We thus conclude that the optimum ILP solution is the one associated with the 
lower bound—namely, x1 = 3, x2 = 2, and z = 23.

LP2
x1 5 3, x2 5 2, z 5 23

Lower bound (optimum)

2

LP3
x1 5 4, x2 5 .83, z 5 23.33

3

LP1
x1 5 3.75, x2 5 1.25, z 5 23.75

1

x1 $ 4x1 # 3

FIgure 9.4 

Using branching variable x1 to create LP2 and LP3 for Example 9.2-1 
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Two questions remain unanswered regarding the algorithm:

1. At LP1, could we have selected x2 as the branching variable in place of x1?
2. When selecting the next subproblem to be examined, could we have solved LP3 first in-

stead of LP2?

The answer to both questions is “yes,” but ensuing computations may differ dramatically. Figure 9.5 
demonstrates this point. Suppose that we examine LP3 first (instead of LP2 as we did in Figure 9.4). 
The solution is x1 = 4, x2 = .83, and z = 23.33 (verify!). Because x2 1=  .832 is noninteger, LP3 
is examined further by creating subproblems LP4 and LP5 using the branches x2 … 0 and x2 Ú 1, 
respectively. This means that

 LP4 space = LP3 space + 1x2 … 02
 = LP1 space + 1x1 Ú 42 + 1x2 … 02

 LP5 space = LP3 space + 1x2 Ú 12
 = LP1 space + 1x1 Ú 42 + 1x2 Ú 12

LP6
x1 5 4, x2 5 0, z 5 20

Lower bound

6 5

LP4
x1 5 4.5, x2 5 0, z 5 22.5

4

LP3
x1 5 4, x2 5 0.83, z 5 23.33

2

LP2
x1 5 3, x2 5 2, z 5 23

Lower bound (optimum)

7

3

LP5
No feasible solution

LP7
No feasible solution

LP1
x1 5 3.75, x2 5 1.25, z 5 23.75

1

x1 $ 4x1 # 3

x2 $ 1x2 # 0

x1 $ 5x1 # 4

FIgure 9.5 

Alternative B&B tree for Example 9.2-1 
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We now have three “dangling” subproblems to be examined: LP2, LP4, and LP5. Suppose 
that we arbitrarily examine LP5 first. LP5 has no feasible solution, and hence it is fathomed. 
Next, let us examine LP4. The optimum solution is x1 = 4.5, x2 = 0, and z = 22.5. The nonin-
teger value of x1 leads to the two branches x1 … 4 and x1 Ú 5 and the creation of subproblems 
LP6 and LP7 from LP4.

LP6 space = LP1 space + 1x1 Ú 42 + 1x2 … 02 + 1x1 … 42
LP7 space = LP1 space + 1x1 Ú 42 + 1x2 … 02 + 1x1 Ú 52

Now, subproblems LP2, LP6, and LP7 remain unexamined. Selecting LP7 for examination, 
the problem is fathomed because it has no feasible solution. Next, we select LP6. The problem yields 
the first integer solution 1x1 = 4, x2 = 0, z = 202, and, thus provide the first lower bound 1=  202 
on the optimum ILP objective value. We are now left with subproblem LP2, and it yields a better 
 integer solution 1x1 = 3, x2 = 2, z = 232. Thus, the lower bound is updated from z = 20 to z = 23.  
At this point, all the subproblems have been fathomed (examined), and the optimum solution is 
the one associated with the most up-to-date lower bound—namely, x1 = 3, x2 = 2, and z = 23.

The solution sequence in Figure 9.5 1LP1 S LP3 S LP5 S LP4 S LP7 S LP6 S LP22 is 
intentionally selected to dramatize a worst-case scenario that, nevertheless, may well occur in 
practice. In Figure 9.4, we were lucky to “stumble” upon a good lower bound at the very first 
subproblem (LP2), and that in turn allowed us to fathom LP3 without further examination. In 
essence, we completed the procedure by solving a total of two LPs. In Figure 9.5, the story is dif-
ferent; we solved seven LPs to terminate the B&B algorithm.

AMPL Moment

AMPL can be used interactively to generate the B&B search tree. The following table shows 
the sequence of commands needed to generate the tree of Example 9.2-1 (Figure 9.5) starting 
with the continuous LP1. AMPL model (file amplEx9.2-1.txt) has two variables x1 and x2 and 
two constraints c0 and c1. You will find it helpful to synchronize the AMPL commands with the 
branches in Figure 9.5.

AMPL command Result

ampl: model amplEx9.2-1.txt;solve;display x1,x2; LP1 1x1 = 3.75, x2 = 1.252
ampl: c2:x1>=4;solve;display x1,x2; LP3 1x1 = 4, x2 = .832
ampl: c3:x2>=1;solve;display x1,x2; LP5 (no solution)
ampl: drop c3;c4:x2<=0;solve;display x1,x2; LP4 1x1 = 4.5, x2 = 02
ampl: c5:x1>=5;solve;display x1,x2; LP7 (no solution)
ampl: drop c5;c6:x1<=4;solve;display x1,x2; LP6 1x1 = 4, x2 = 02
ampl: drop c2;drop c4;drop c6;c7:x1<=3; solve; display x1,x2; LP2 1x1 = 3, x2 = 22

solver Moment

Solver can be used to obtain the solution of the different subproblems by using the add/change/
delete options in the Solver parameters dialogue box.

remarks. Example 9.2-1 points to a principal weakness in the B&B algorithm: 
Given multiple choices, how do we select the next subproblem and its branching 
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variable? In answering this question, there is but one goal in mind: Find a (good) 
 feasible integer solution ASAP! This goal, though stated qualitatively, is of paramount 
importance. The reason is simple: finding a (good) feasible integer solution early on 
in the search tree can obviate exploring subproblems and hence speed up the ter-
mination of the search. But how can a (good) feasible solution be found? There are 
three possibilities:

1. Use a rounded LP optimal solution if feasibility can be ascertained.
2. Use heuristic programming to find a good feasible solution (see Chapter 10).
3. Use appropriate heuristics to select the next subpoblem and its branching 

variable.

The first possibility is at best iffy, particularly in large models with equality constraints. 
The second is plausible though costly computationally, and the third is where most of 
the research has been concentrated.

The overall idea of the third strategy is based on two broad options with marked 
trade-offs: (1) A high-echelon subproblem (closer to the start of the search tree) is 
more likely to produce a tighter objective bound (because it is closer—hence less 
 additional constraints—to the continuous LP optimum), but less likely to produce a 
feasible integer solution (because of the smaller number of integer-branching con-
straints leading to the subproblem). (2) Conversely, a low-echelon subproblem is more 
likely to produce a feasible integer solution but less likely to generate a tight objective 
value bound. In essence, the first option explores the subproblems horizontally in one 
echelon before moving to the next echelon, whereas the second option explores the 
subproblems (sort of) vertically. But the two options still do not address how a branch-
ing variable is selected at each subproblem.

Although heuristics are available for the selection of both the next subproblem 
and its branching variable, computational experience shows that the effectiveness of 
these heuristics is data-dependent. In view of this difficulty, ILP software is usually 
not sufficiently sophisticated to be used as an input–output black box as in LP soft-
ware; meaning there are cases where manual intervention is needed to “tweak” the 
B&B search. For example, the search may alternate periodically between horizontal 
and  vertical selection of the next subproblem in hope of encountering a good objec-
tive value bound. Indeed all available commercial ILP packages allow this manual in-
tervention. A typical example is demonstrated by the commands used in the AMPL 
 moment following Example 9.2-1.

The fact remains that integer programming algorithms are not totally reliable. 
But perhaps their performance can be improved by tweaking the ILP model itself. One 
possibility is to seek a formulation with the smallest possible number of integer vari-
able (i.e., approximating some of the integer variables with continuous ones). Another 
is to tighten the feasible ranges on the integer variables as much as possible. And a 
third is to use a different solution venue altogether (e.g., knapsack problems can be 
formulated as a shortest route network model). But perhaps the most plausible pos-
sibility is to settle for a near-optimum solution using heuristics. Chapter 10, on heuristic 
programming, provides three such heuristics.
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Summary of the B&B algorithm. Assume a maximization problem. Set an initial 
lower bound z = -∞  on the optimum objective value of ILP and set i = 0.6

Step 1. (Fathoming/bounding). Select LPi, the next subproblem to be examined. 
Solve LPi, and attempt to fathom it using one of three conditions:

(a) The optimal z-value of LPi cannot yield a better objective value than the 
current lower bound.

(b) LPi yields a better feasible integer solution than the current lower bound.
(c) LPi has no feasible solution.

Two cases will arise.

(a) If LPi is fathomed and a better solution is found, update the lower 
bound. If all subproblems have been fathomed, stop; the lower bound 
gives the optimum solution (if no finite lower bound exists, the problem 
has no feasible solution). Else, set i = i + 1, and repeat step 1.

(b) If LPi is not fathomed, go to step 2 for branching.

Step 2. (Branching). Select one of the integer variables xj, whose optimum value xj* in the 
LPi solution is not integer. Create the two LP subproblems that correspond to

xj … [xj*] and xj Ú [xj*] + 1

Set i = i + 1, and go to step 1.

The B&B algorithm can be extended to mixed problems (in which only some of 
the variables are integer), simply by never branching a continuous variable. A feasible 
subproblem provides a new bound on the objective value if the values of the discrete 
variables are integers with an improved objective value.

9.2.2 cutting-Plane Algorithm

As in the B&B algorithm, the cutting-plane algorithm also starts at the continuous 
optimum LP solution. Special constraints (called cuts) are added to the solution space 
in a manner that renders an integer optimum extreme point. In Example 9.2-2, we first 
demonstrate graphically how cuts are used to produce an integer solution and then 
implement the idea algebraically.

example 9.2-2 

Consider the following ILP:

Maximize z = 7x1 + 10x2

subject to

-x1 + 3x2 … 6

7x1 + x2 … 35

x1, x2 Ú 0 and integer

6For minimization problems, replace the lower bound with an initial upper bound z = + ∞ .
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Figure 9.6 gives an example of two such cuts. Initially, we start with the continuous LP 
optimum z = 661

2, x1 = 41
2, x2 = 31

2. Next, we add cut I, which produces the (continuous) LP 
optimum solution z = 62, x1 = 44

7, x2 = 3. Then, we add cut II, which (together with cut I and 
the original constraints) produces the integer LP optimum z = 58, x1 = 4, x2 = 3.

The added cuts do not eliminate any of the original feasible integer points, but must 
pass through at least one feasible or infeasible integer point. These are basic requirements 
of any cut.

It is purely accidental that a 2-variable problem used exactly 2 cuts to reach the optimum 
integer solution. In general, the number of cuts, though finite, cannot be determined based on 
the size of the problem, in the sense that a smaller problem may require more cuts than a larger 
problem.

Next, we use the same example to show how the cuts are constructed and implemented 
algebraically. Given the slacks x3 and x4 for constraints 1 and 2, the optimum LP tableau is 
given as

Basic x1 x2 x3 x4 Solution

Z 0 0    63
22

31
22 661

2

x2 0 1   7
22

1
22  31

2
x1 1 0 - 1

22
3

22  41
2

The optimum continuous solution is z = 66 12, x1 = 4 12, x2 = 3 12, x3 = 0, x4 = 0. The cut is 
developed under the assumption that all the variables, including all the slacks, are integers. Note 
also that because all the original objective coefficients are integers in this example, the value of 
z also is integer.

The information in the optimum tableau can be written explicitly as

z  + 63
22 x3 + 31

22 x4 = 66 12    (z@equation)

x2 + 7
22 x3 + 1

22 x4 = 3 12     (x2@equation)

x1 - 1
22 x3 + 3

22 x4 = 4 12     (x1@equation)

A constraint equation can be used as a source row for generating a cut, provided its right-hand 
side is fractional. Also, the z-equation can be used as a source row in this example because z 
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Optimum: (4   , 3   )1
2

1
2 Optimum: (4   , 3)4
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Cut II4
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0 1 2 3 4 5

Optimum: (4, 3)

FIgure 9.6 

Illustration of the use of cuts in ILP
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happens to be defined by an integer expression. We will demonstrate how a cut is generated 
from each of these source rows, starting with the z-equation.

First, we factor out all the noninteger coefficients of the equation into an integer value and 
a positive fractional component. For example,

5
2 = 12 + 1

22
-7

3 = 1 -3 + 2
32

The factoring of the z-equation yields

z + 12 + 19
222x3 + 11 + 9

222  x4 = 166 + 1
22

Moving all the integer components to the left-hand side and all the fractional components to the 
right-hand side, we get

 z + 2x3 + 1x4 - 66 = -19
22 x3 - 9

22 x4 + 1
2 (1)

Because x3 and x4 are nonnegative (and all the fractions are positive by construction), the right-
hand side must satisfy the following inequality:

 -19
22 x3 - 9

22 x4 + 1
2 … 1

2 (2)

Now, because the left-hand side in Equation (1), z + 2x3 + 1x4 - 66,  is an integer expression by 
construction, the right-hand side, -19

22 x3 - 19
22 x4 + 1

2,  must also be integer. It then follows that 
(2) can be replaced with the inequality:

-19
22 x3 - 9

22 x4 + 1
2 … 0

This result is justified because an integer value less than a positive fraction must necessarily 
be … 0.

The last inequality is the desired cut, and it represents a necessary (but not sufficient) condi-
tion for obtaining an integer solution. It is also referred to as the fractional cut because all its 
coefficients are fractions.

Because x3 = x4 = 0 in the optimum continuous LP tableau given above, the current 
 continuous solution violates the cut (because it yields 1

2 … 02. Thus, if we add this cut to the 
optimum tableau, the resulting optimum extreme point moves the solution toward satisfying the 
integer restrictions.

Before showing how a cut is implemented in the optimal tableau, we will demonstrate how 
cuts can also be constructed from the constraint equations. Consider the x1-row:

x1 - 1
22 x3 + 3

22 x4 = 4 12

Factoring out the equation, we get

x1 + 1-1 + 21
222 x3 + 10 + 3

222x4 = 14 + 1
22

The associated cut is

-21
22 x3 - 3

22 x4 + 1
2 … 0

Similarly, the x2-equation

x2 + 7
22 x3 + 1

22 x4 = 3 12

is factored as

x2 + 10 + 7
222x3 + 10 + 1

222x4 = 3 + 1
2
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Hence, the associated cut is

- 7
22 x3 - 1

22 x4 + 1
2 … 0

Any one of three cuts given above can be used in the first iteration of the cutting-plane 
algorithm. It is not necessary to generate all three cuts before selecting one.

Arbitrarily selecting the cut generated from the x2-row, we can write it in equation 
form as

- 7
22 x3 - 1

22 x4 + s1 = -1
2, s1 Ú 0  1Cut I2

This constraint is added to the LP optimum tableau as follows:

Basic x1 x2 x3 x4 s1 Solution

z 0 0   63
22   31

22
0 661

2

x2 0 1   7
22   1

22
0  31

2
x1 1 0 - 1

22   3
22

0  41
2

s1 0 0 - 7
22 - 1

22
1  -1

2

The tableau is optimal but infeasible. We apply the dual simplex method (Section 4.4.1) to 
recover feasibility, which yields

Basic x1 x2 x3 x4 s1 Solution

z 0 0 0 1   9 62

x2 0 1 0 0   1   3
x1 1 0 0 1

7 -1
7 4 47

x3 0 0 1 1
7 -22

7 14
7

The last solution is still noninteger in x1 and x3 (recall that all variables, including slack and 
surplus, must be integer), and we arbitrarily select x1 as the next source row—that is,

x1 + 10 + 1
72x4 + 1-1 + 6

72s1 = 4 + 4
7

The associated cut is

-1
7 x4 - 6

7 s1 + s2 = -4
7, s2 Ú 0  1Cut II2

Adding cut II to the previous optimal tableau, we get

Basic x1 x2 x3 x4 s1 s2 Solution

z 0 0 0   1  9 0 62

x2 0 1 0 0 1 0 3
x1 1 0 0 1

7 -1
7

0 4 47
x3 0 0 1 1

7 -22
7

0 14
7

s2 0 0 0 -1
7 -6

7
1 -4

7
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The dual simplex method yields the following tableau:

Basic x1 x2 x3 x4 s1 s2 Solution

z 0 0 0 0 3 7 58

x2 0 1 0 0   1   0 3
x1 1 0 0 0 -1   1 4
x3 0 0 1 0 -4   1 1
x4 0 0 0 1   6 -7 4

The optimum solution 1x1 = 4, x2 = 3, z = 582 is all integer. It is not accidental that all the 
coefficients of the last tableau are integers also, a consequence of using the fractional cuts.

remarks. It is important to point out that the fractional cut assumes that all the variables, 
 including slack and surplus, are integer. This means that the cut deals with pure integer problems 
only. The importance of this assumption is illustrated by an example.

Consider the constraint

x1 + 1
3 x2 … 13

2

x1, x2 Ú 0 and integer

From the standpoint of solving the associated ILP, the constraint is treated as an equation by 
using the nonnegative slack s1—that is,

x1 + 1
3 x2 + s1 = 13

2

The application of the fractional cut assumes that the constraint has a feasible integer solution 
in all x1, x2, and s1. However, the given equation will have a feasible integer solution in x1 and x2 
only if s1 is noninteger. This means that the cutting-plane algorithm will conclude, through the 
applications of the dual simplex, that the problem has no feasible (integer) solution, even though 
the variables of concern, x1 and x2, can assume feasible integer values.

There are two ways to “remedy” this situation.

1. Multiply the entire constraint by a proper constant to remove all the fractions. For example, 
multiplying the constraint above by 6, we get

6x1 + 2x2 … 39

Any integer solution of x1 and x2 automatically yields integer slack. However, this type of 
conversion may produce excessively large integer coefficients in some cases, and this in 
turn may lead to computational roundoff errors on the computer.

2. Use a special cut, called the mixed cut, which allows only a subset of variables to assume inte-
ger values, with all the other variables (including slack and surplus) remaining continuous. 
The details of this cut will not be presented in this chapter (see Taha, 1975, pp. 198–202).

An unavoidable flaw in floating-point arithmetic on the computer is the roundoff 
error. Fractions such as 1/3 is approximated as .33333, and no matter how many trailing 
threes one carries, the representation remains an approximation. And herein lies one of 
the most serious challenges to the use of the fractional cut whose construction, ironically, 
rests squarely on the use of fractions. Though attempts were made to avoid the use of 
fractions by using the so-called all-integer cuts that require an all-integer starting tableau 



378   Chapter 9    Integer Linear Programming

(an unreasonable condition to boot!), the resulting algorithm is extremely slow because in 
seeking accuracy it forgoes speed. Another disadvantage of the cutting plane algorithms 
is their dual infeasibility; meaning that no feasible solution is available before the natural 
termination of the algorithm. Thus, unlike the B&B algorithm, there will be no solution 
to show if computations are stopped prematurely. The conclusion is that, from the practi-
cal standpoint, an ILP algorithm rooted only in the use of cuts is not recommended and 
for this reason branch-and-bound is the algorithm of choice in all solvers (in fact, Ralph 
Gomory, the developer of the fractional cut, was himself skeptical about the practicality 
of an all fractional-cut-based ILP algorithm because of the ensuing numerical instability).

Yet, cuts can play a role in enhancing the efficiency and efficacy of the branch-
and-bound algorithm by periodically applying them to the optimum tableau of a sub-
problem where massive degeneracy at its optimum extreme point may make it difficult 
to determine the associated branches (of the type x … a and x Ú a + 1).7

Aha! Moment: seminal Development of Dantzig–Fulkerson–Johnson cut.8

The branch and cut algorithm developed in 1954 by Dantzig, Fulkeson, and Johnson for solving 
the traveling salesman problem (see Chapter 11) is seminal in that it ushered the start of the idea 
of imposing secondary constraints (cuts) on the optimum (continuous) LP solution to produce an 
integer optimum solution. Their work laid the foundation for the development of the branch and 
cut algorithm for the general mixed ILP. Additionally, the authors’ idea of using cuts motivated 
the development of the Gomory’s fractional cut in 1958 (see Section 9.2.2).
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PROBLeMs 

Section Assigned Problems

9.1.1 9-1 to 9-18
9.1.2 9-19 to 9-27
9.1.3 9-28 to 9-37
9.1.4 9-38 to 9-54
9.2.1 9-55 to 9-64
9.2.2 9-65 to 9-70

   9-1. Modify and solve the capital budgeting model of Example 9.1-1 to account for the following 
additional restrictions:
(a) Project 4 must be selected if either project 1 or project 3 is selected.

(b) Projects 2 and 4 are mutually exclusive.
 9-2. Five items are to be loaded in a vessel. The weight wi, volume vi, and value ri for item i 

are tabulated below.

Item i Unit weight, wi (tons) Unit volume, vi (yd3) Unit worth, ri ($100)

1 5 1 4
2 8 8 7
3 3 6 6
4 2 5 5
5 7 4 4

The maximum allowable cargo weight and volume are 210 tons and 198 yd3, respec-
tively. Formulate the ILP model, and find the most valuable cargo.

*9-3. Suppose that you have 7 full wine bottles, 7 half-full, and 7 empty. You would like to divide 
the 21 bottles among three individuals so that each will receive exactly 7.  Additionally, each 
individual must receive the same quantity of wine. Express the problem as ILP constraints, 
and find a solution. (Hint: Use a dummy objective function with all zero coefficients.)9

 9-4. An eccentric sheikh left a will to distribute a herd of camels among his three children: 
Tarek receives at least one-half of the herd, Sharif gets at least one third, and Maisa gets 
at least one-seventh. The remainder goes to charity. The will does not specify the size 
of the herd except to say that it is an odd number of camels and that the named charity 
receives exactly one camel. Use ILP to determine how many camels the sheikh left in the 
estate and how many each child got.

 9-5. The three children of a farm couple are sent to the market to sell 90 apples. Karen, the 
oldest, carries 50 apples; Bill, the middle one, carries 30; and John, the youngest, car-
ries only 10. The parents have stipulated five rules: (a) The selling price is either $1 for 

9Problems 9-3 to 9-6 are adapted from Malba Tahan, El Hombre que Calculaba, Editorial Limusa, Mexico 
City, pp. 39–182, 1994. Problems 9-13 to 9-16 are adapted from puzzles compiled in http://www.chlond.demon.
co.uk/puzzles/puzzles1.html.
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7 apples or $3 for 1 apple, or a combination of the two prices. (b) Each child may exercise 
one or both options of the selling price. (c) Each of the three children must return with 
exactly the same amount of money. (d) Each child’s income must be in whole dollars (no 
cents allowed). (e) The amount received by each child must be the largest possible under 
the stipulated conditions. Given that the three kids are able to sell all they have, use ILP 
to show how they can satisfy the parents’ conditions.

*9-6. Once upon a time, there was a captain of a merchant ship who wanted to reward three 
crew members for their valiant effort in saving the ship’s cargo during an unexpected 
storm in the high seas. The captain put aside a certain sum of money in the purser’s office 
and instructed the first officer to distribute it equally among the three mariners after the 
ship had reached shore. One night, one of the sailors, unbeknown to the others, went to 
the purser’s office and decided to claim (an equitable) one-third of the money in advance. 
After he had divided the money into three equal shares, an extra coin remained, which the 
mariner decided to keep (in addition to one-third of the money). The next night, the second 
mariner got the same idea and, repeating the same three-way division with what was left, 
ended up keeping an extra coin as well. The third night, the third mariner also took a third 
of what was left, plus an extra coin that could not be divided. When the ship reached shore, 
the first officer divided what was left of the money equally among the three mariners, again 
to be left with an extra coin. To simplify things, the first officer put the extra coin aside 
and gave the three mariners their allotted equal shares. How much money was in the safe 
to start with? Formulate the problem as an ILP, and find the solution. (Hint: The problem 
has a countably infinite number of integer solutions. For convenience, assume that we are 
interested in determining the smallest sum of money that satisfies the problem conditions. 
Then, boosting the resulting sum by 1, add it as a lower bound and obtain the next smallest 
sum. Continuing in this manner, a general solution pattern will emerge.)

 9-7. Weber (1990). You have the following three-letter words: AFT, FAR, TVA, ADV, JOE, 
FIN, OSF, and KEN. Suppose that we assign numeric values to the alphabet starting with 
A = 1 and ending with Z = 26. Each word is scored by adding numeric codes of its 
three letters. For example, AFT has a score of 1 + 6 + 20 = 27. You are to select five of 
the given eight words that yield the maximum total score. Simultaneously, the selected 
five words must satisfy the following conditions:

asum of letter 1  
 scores

b 6 asum of letter 2
 scores

b 6 asum of letter 3
 scores

b

Formulate the problem as an ILP, and find the optimum solution.
 9-8. Solve Problem 9-7 given that, in addition to the total sum being the largest, the sum of 

column 1 and the sum of column 2 will be the largest as well. Find the optimum solution.
 9-9. Weber (1990). Consider the following two groups of words:

Group 1 Group 2

AREA ERST
FORT FOOT
HOPE HEAT
SPAR PAST
THAT PROF
TREE STOP

All the words in groups 1 and 2 can be formed from the nine letters A, E, F, H, O, P, R, 
S, and T. Develop a model to assign a unique numeric value from 1 through 9 to these 
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letters such that the difference between the total scores of the two groups will be as small 
as possible. (Note: The score for a word is the sum of the numeric values assigned to its 
individual letters.)

*9-10. The Record-a-Song Company has contracted with a rising star to record eight songs. The 
sizes in MB of the different songs are 8, 10, 8, 7, 9, 6, 7, and 12, respectively. Record-a-Song 
uses two CDs for the recording. Each CD has a capacity of 40 MB. The company would 
like to distribute the songs between the two CDs such that the used space on each CDs is 
about the same. Formulate the problem as an ILP, and find the optimum solution.

 9-11. In Problem 9-10, suppose that the nature of the melodies dictates that songs 3 and 4 can-
not be recorded on the same CD. Formulate the problem as an ILP. Would it be possible 
to use a 30 MB CDs to record the eight songs? If not, use ILP to determine the minimum 
CD capacity needed to make the recording.

*9-12. Graves and Associates (1993). Ulern University uses a mathematical model that opti-
mizes student preferences taking into account the limitation of classroom and faculty 
resources. To demonstrate the application of the model, consider the simplified case of 
10 students who are required to select two courses out of six offered electives. The table 
below gives scores that represent each student’s preference for individual courses, with a 
score of 100 being the highest. For simplicity, it is assumed that the preference score for a 
two-course selection is the sum of the individual score. Course capacity is the maximum 
number of students allowed to take the class.

 
 

Student

Preference score for course

 1   2   3   4 5 6

 1 20 40 50 30 90 100
 2 90 100 80 70 10 40
 3 25 40 30 80 95 90
 4 80 50 60 80 30 40
 5 75 60 90 100 50 40
 6 60 40 90 10 80 80
 7 45 40 70 60 55 60
 8 30 100 40 70 90 55
 9 80 60 100 70 65 80
10 40 60 80 100 90 10

Course capacity 6 8 5 5 6 5

Formulate the problem as an ILP and find the optimum solution.
9-13. You have three currency denominations with 11 coins each. The total worth (of all 11 

coins) is 12 bits for denomination 1, 14 bits for denomination 2, and 20 bits for denomina-
tion 3. You need to buy one 30-bit item. Use ILP to determine the smallest number of 
coins of the three denominations needed to make the purchase.10

9-14. You have a 4 * 4 grid and a total of 10 tokens. Use ILP to place the tokens on the grid 
such that each row and each column will have an even number of tokens.

9-15. A street vendor selling electronic gadgets was robbed of all his possessions. When report-
ing the matter to the police, the vendor did not know the number of gadgets he had but 
stated that when dividing the total in lots of size 2, 3, 4, 5, or 6, there was always one 

10Problems 9-13 to 9-16 are adapted from puzzles compiled in http://www.chlond.demon.co.uk/puzzles/ 
puzzles1.html.
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gadget left over. On the other hand, there was no remainder when the total was divided 
into lots of size 7. Use ILP to determine the total number of gadgets the vendor had.

9-16. Given i = 1, 2, c, n, formulate a general ILP model (for any n) to determine the 
smallest number y that, when divided by the integer amount 2 + i, will always produce a 
remainder equal to i; that is, y mod 12 + i2 = i.

9-17. A widely circulated puzzle requires assigning a single distinct digit (0 through 9) to each 
letter in the equation SEND + MORE = MONEY. Formulate the problem as an integer 
program, and find the solution. (Hint: This is an assignment model with side conditions.)

9-18. The world-renowned logic puzzle, Sudoku, deals with a 9 * 9 grid subdivided into 9 non-
overlapping 3 * 3 subgrids. The puzzle calls for assigning the numerical digits 1 through 
9 to the cells of the grid such that each row, each column, and each subgrid contain 
distinct digits. Some of the cells may be fixed in advance.

Formulate the problem as an integer program, and find the solution for the in-
stance given below.

6 1 4 5

8 3 5 6

2 7

8 4 7 6

6 3

7 9 1 4

5 2

7 2 6 9

4 5 8 7

[Hint: Let xijk = 1 if digit k is placed in cell (i, j), i, j, k = 1, 2, c, n, n = 9. If you use 
AMPL, keep in mind that for n = 9, the resulting number of variables will exceed the 
capacity of student AMPL. If you do not have access to the full AMPL version, you can 
develop a general model for n = 4 or 9, and then solve it for the simpler (almost trivial) 
case of a 4 * 4 grid with a 2 * 2 subgrid.]

*9-19. ABC is an LTL (less-than-truckload) trucking company that delivers loads on a daily basis 
to five customers. The following list provides the customers associated with each route:

Route Customers served on the route

1 3,  2
2 5, 3, 4
3 2, 5, 1, 3
4 2, 3, 5
5 1, 4, 2
6 1, 3, 5

The segments of each route are dictated by the capacity of the truck delivering the 
loads. For example, on route 1, the capacity of the truck is sufficient to deliver the loads 
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to customers 3 and 2 only. The following table lists distances (in miles) among the truck 
terminal (ABC) and the customers.

Miles from i to j

j
i

ABC 1 2 3 4 5

ABC 0 10 12 16 9 8
1 10 0 32 8 17 10
2 12 32 0 14 21 20
3 16 8 14 0 15 18
4 9 17 21 15 0 11
5 8 10 20 18 11 0

The objective is to determine the least distance needed to make the daily deliver-
ies to all five customers. Though the solution may result in a customer being served by 
more than one route, an approximation in the implementation phase assumes that only 
one such route is used. Formulate the problem as an ILP, and find the optimum solution.

*9-20. The U of A is in the process of forming a committee to handle students’ grievances. The 
administration wants the committee to include at least one female, one male, one student, 
one administrator, and one faculty member. Ten individuals (identified, for simplicity, 
by the letters a to j) have been nominated. The mix of these individuals in the different 
categories is given as follows:

Category Individuals

Females a, b, c, d, e
Males f, g, h, i, j
Students a, b, c, j
Administrators e, f
Faculty d, g, h, i

The U of A wants to form the smallest committee with representation from each of 
the five categories. Formulate the problem as an ILP, and find the optimum solution.

9-21. Washington County includes six towns that need emergency ambulance service. Be-
cause of the proximity of some of the towns, a single station may serve more than one 
community. The stipulation is that the station must be within 18 minutes of driving time 
from the towns it serves. The table below gives the driving times in minutes among the 
six towns.

Time in minutes from i to j

j
i

1 2 3 4 5 6

1 0 19 23 18 20 25
2 19 0 22 13 22 11
3 23 22 0 60 17 20
4 18 13 60 0 55 17
5 20 22 17 55 0 12
6 25 11 20 17 12 0
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FIgure 9.7 

Museum Layout for Problem 9-22

Formulate an ILP whose solution will produce the smallest number of stations and 
their locations. Find the optimum solution.

9-22. The great treasures of King Tut are on display in the Giza Museum in Cairo. The layout 
of the museum is shown in Figure 9.7, with the different rooms joined by open doors. A 
guard standing at a door can watch two adjoining rooms. The museum’s security policy 
requires guard presence in every room. Formulate the problem as an ILP to determine 
the smallest number of guards.

9-23. Bill has just completed his exams for the academic year and wants to celebrate by seeing 
every movie showing in theaters in his town and in six other neighboring cities. If he 
travels to another town, he will stay there until he has seen all the movies he wants. The 
following table provides the information about the movie offerings and the round-trip 
distance to the neighboring town:

Theater location Movie offerings Round-trip miles Cost per show ($)

In-town 1, 3   0 7.95
City A 1, 6, 8 25 5.50
City B 2, 5, 7 30 5.00
City C 1, 8, 9 28 7.00
City D 2, 4, 7 40 4.95
City E 1, 3, 5, 10 35 5.25
City F 4, 5, 6, 9 32 6.75

The cost of driving is 75 cents per mile. Bill wishes to determine the towns he 
needs to visit to see all the movies while minimizing his total cost.

9-24. Walmark Stores is in the process of expansion in the western United States. During 
next year, Walmark is planning to construct new stores that will serve 10 geographically 
dispersed communities. Past experience indicates that a community must be within 25 
miles of a store to attract customers. In addition, the population of a community plays an 
important role in where a store is located, in the sense that bigger communities generate 
more participating customers. The following table provides the populations as well as the 
distances (in miles) between the communities:
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Miles from community i to community j

j
i

1 2 3 4 5 6 7 8 9 10 Population

 1 20 40 35 17 24 50 58 33 12 10,000
 2 20 23 68 40 30 20 19 70 40 15,000
 3 40 23 36 70 22 45 30 21 80 28,000
 4 35 68 36 70 80 24 20 40 10 30,000
 5 17 40 70 70 23 70 40 13 40 40,000
 6 24 30 22 80 23 12 14 50 50 30,000
 7 50 20 45 24 70 12 26 40 30 20,000
 8 58 19 30 20 40 14 26 20 50 15,000
 9 33 70 21 40 13 50 40 20 22 60,000
10 12 40 80 10 40 50 30 50 22 12,000

The idea is to construct the least number of stores, taking into account the distance 
restriction and the concentration of populations.

Specify the communities where the stores should be located.
*9-25. Guéret and Associates (2002), Section 12.6. MobileCo is budgeting $15 million to construct 

as many as 7 transmitters to cover as much population as possible in 15 contiguous geo-
graphical communities. The communities covered by each transmitter and the budgeted 
construction costs are given below.

Transmitter Covered communities Cost (million $)

1 1, 2 3.60
2 2, 3, 5 2.30
3 1, 7, 9, 10 4.10
4 4, 6, 8, 9 3.15
5 6, 7, 9, 11 2.80
6 5, 7, 10, 12, 14 2.65
7 12, 13, 14, 15 3.10

The following table provides the populations of the different communities:

Community 1 2 3 4 5 6 7 8 9 10

Population (in 1000s) 10 15 28 30 40 30 20 15 60 12

Which of the proposed transmitters should be constructed?
9-26. Gavernini and Associates (2004). Modern electric networks use automated electric util-

ity meter reading in place of the more costly manual meter reading. In the automated 
system, meters from several customers are linked wirelessly to a single receiver. The me-
ter sends monthly signals to a designated receiver to report the customer’s consumption 
of electricity. The data are then channeled to a central computer to generate the utility 
bills. The objective is to determine the smallest number of receivers needed to serve a 
given number of meters. In real life, the problem encompasses thousands of meters and 
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receivers. This problem deals with 10 meters and 8 possible locations for receivers, with 
the following configurations:

Receiver 1 2 3 4 5 6 7   8

Meters 1, 2, 3 2, 3, 9 5, 6, 7 7, 9, 10 3, 6, 8 1, 4, 7, 9 4, 5, 9 1, 4, 8

9-27. Solve Problem 9-26 if, additionally, each receiver can handle at most 4 meters and re-
ceiver 8 can handle meters 1, 4, 8, and 10.

9-28. Leatherco is contracted to manufacture batches of pants, vests and jackets. Each product 
requires a special setup of the machines needed in the manufacturing processes. The 
following table provides the pertinent data regarding the use of raw material (leather) 
and labor time together with cost and revenue estimates. Current supply of leather is 
estimated at 3800 ft2 and available labor time is limited to 2850 hours.

Pants Vests Jackets

Leather material per unit (ft2) 5.5 3.5 7.5
Labor time per unit (hrs) 4.5 3.5 5.5
Production cost per unit ($) 30 20 80
Equipment setup cost per batch ($) 110 90 140
Price per unit ($) 60 40 120
Minimum number of units needed 100 150 200

Determine the optimum number of units that Leatherco must manufacture of each 
product.

*9-29. Jobco is planning to produce at least 2000 widgets on three machines. The minimum lot size 
on any machine is 600 widgets. The following table gives the pertinent data of the situation.

Machine Setup cost ($) Production cost/unit ($) Capacity (units)

1 300  2 650
2 100 10 850
3 200  5 1250

Formulate the problem as an ILP, and find the optimum solution.
*9-30. Oilco is considering two potential drilling sites for reaching four targets (possible oil 

wells). The following table provides the preparation costs at each of the two sites and the 
cost of drilling from site i to target j 1i = 1, 2; j = 1, 2, 3, 42:

Drilling cost ($ million) to target

Preparation cost ($ million)Site 1 2 3 4

1 2 1 8 5 5
2 4 6 3 1 6

Formulate the problem as an ILP, and find the optimum solution.
9-31. Three industrial sites are considered for locating manufacturing plants. The plants send their 

supplies to three customers. The supply at the plants, the demand at the customers, and the 
unit transportation cost from the plants to the customers are given in the following table:
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Unit transportations cost ($)

Customer
Plant

1 2 3 Supply

1 10 15 12 1800
2 17 14 20 1400
3 15 10 11 1300

Demand 1200 1700 1600

In addition to the transportation costs, fixed costs are incurred at the rate of 
$12,000, $11,000, and $12,000 for plants 1, 2, and 3, respectively. Formulate the problem 
as an ILP, and find the optimum solution.

9-32. Repeat Problem 9-31 assuming that the demands at each of customers 2 and 3 are 
changed to 800.

9-33. Liberatore and Miller (1985). A manufacturing facility uses two production lines to pro-
duce three products over the next 6 months. Backlogged demand is not allowed. However, 
a product may be overstocked to meet demand in later months. The following table pro-
vides the data associated with the demand, production, and storage of the three products:

Demand in period
Unit holding  

cost ($)/month
Initial  

inventoryProduct 1 2 3 4 5 6

1 50 30 40 60 20 45 .50 55
2 40 60 50 30 30 55 .35 75
3 30 40 20 70 40 30 .45 60

There is a fixed cost for switching a line from one product to another. The following 
tables give the switching cost, the production rates, and the unit production cost for 
each line:

Line switching cost ($)

Product 1 Product 2 Product 3

Line 1 200 180 300
Line 2 250 200 174

Production rate (units/month) Unit production cost ($)

Product 1 Product 2 Product 3 Product 1 Product 2 Product 3

Line 1 40 60 80 10 8 15
Line 2 90 70 60 12 6 10

Develop a model for determining the optimal production schedule.
9-34. Jarvis and Associates (1978). Seven cities are being considered as potential locations for 

the construction of at most four wastewater treatment plants. The following table provides 
the data for the situation. Missing links indicate that a pipeline cannot be constructed.
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Cost ($) of pipeline construction between cities per 1000 gal/hr capacity

To
From

1 2 3 4 5 6 7

1 100 200 50
2 120 150
3 400 120 90
4 120 120
5 200 100 200
6 110 180 70
7 200 150

Cost ($ million) of  
 plant construction

 
1.00

 
1.20

 
2.00

 
1.60

 
1.80

 
.90

 
1.40

Population (1000s) 50 100 45 90 75 60 30

The capacity of a pipeline (in gallons per hour) is a direct function of the amount of 
wastewater generated, which is a function of the populations. Approximately 500 gallons 
per 1000 residents are discharged in the sewer system per hour. The maximum plant 
capacity is 100,000 gal/hr. Determine the optimal location and capacity of the plants.

9-35. A company uses four special tank trucks to deliver four different gasoline products to 
customers. Each tank has five compartments with different capacities: 500, 750, 1200, 
1500, and 1750 gallons. The daily demands for the four products are estimated at 10, 15, 
12, and 8 thousand gallons. Any quantities that cannot be delivered by the company’s 
four trucks must be subcontracted at the additional costs of 5, 12, 8, and 10 cents per 
gallon for products 1, 2, 3, and 4, respectively. Develop the optimal daily loading schedule 
for the four trucks that will minimize the additional cost of subcontracting.

9-36. A household uses at least 3000 minutes of long-distance telephone calls monthly and can 
choose to use the services of any of three companies: A, B, and C. Company A charges 
a fixed monthly fee of $10 and 5 cents per minute for the first 1000 minutes and 4 cents 
per minute for all additional minutes. Company B’s monthly fee is $20 with a flat 4 cents 
per minute. Company C’s monthly charge is $25 with 5 cents per minute for the first  
1000 minutes and 3.5 cents per minute beyond that limit. Which company should be  
selected to minimize the total monthly charge?

*9-37. Barnett (1987). Professor Yataha needs to schedule eight round-trips between Boston 
and Washington, D.C. The route is served by three airlines, Eastern, US Air, and Conti-
nental, and there is no penalty for the purchase of one-way tickets. Each airline offers 
bonus miles for frequent fliers. Eastern gives 1500 miles per (one-way) ticket plus 5000 
extra miles if the number of tickets in a month reaches 3 and another 5000 miles if the 
number exceeds 5. US Air gives 1800 miles per ticket plus 12,000 extra for each 6 tickets. 
Continental gives 2000 miles per ticket plus 7500 extra for each 5 tickets. Professor Ya-
taha wishes to allocate the 16 one-way tickets among the three airlines to maximize the 
total number of bonus miles earned.

*9-38. A game board has 3 * 3 equal squares. You are required to fill each square with a 
number between 1 and 9 such that the sum of the numbers in each row, each column, and 
each diagonal equals 15. Additionally, the numbers in all the squares must be distinct. 
Use ILP to determine the assignment of numbers to squares.

9-39. A machine is used to produce two interchangeable products. The daily capacity of the 
machine can produce at most 20 units of product 1 and 40 units of product 2. Alternatively, 
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the machine can be adjusted to produce at most 45 units of product 1 and 25 units of prod-
uct 2 daily. Market analysis shows that the maximum daily demand for the two products 
combined is 50 units. Given that the unit profits for the two respective products are $10 and 
$12, which of the two machine settings should be selected? Formulate the problem as an 
ILP and find the optimum. [Note: This two-dimensional problem can be solved by inspect-
ing the graphical solution space. This is not the case for the n-dimensional problem.]

*9-40. Gapco manufactures three products, whose daily labor and raw material requirements 
are given in the following table.

Product
Required daily labor  

(hr/unit)
Required daily raw material 

(lb/unit)

1 3 4
2 4 3
3 5 6

The profits per unit of the three products are $20, $25, and $18, respectively. Gapco 
has two options for locating its plant. The two locations differ primarily in the availability 
of labor and raw material, as shown in the following table:

Location Available daily labor (hr) Available daily raw material (lb)

1 150 150
2 135 180

Formulate the problem as an ILP, and determine the optimum location of the plant.
9-41. Jobco Shop has 10 outstanding jobs to be processed on a single machine. The follow-

ing table provides processing times and due dates. All times are in days, and due time is 
measured from time 0:

Job Processing time (day) Due time (day)

1 10 20
2  3 98
3 13 100
4 15 34
5  9 50
6 22 44
7 17 32
8 30 60
9 12 80

10 16 150

If job 4 precedes job 3, then job 9 must precede job 7. The objective is to process all 
10 jobs in the shortest possible time. Formulate the model as an ILP, and determine the 
optimum solution by modifying the AMPL file amplEx9.1-4.txt.

9-42. In Problem 9-41, suppose that job 4 cannot be processed until job 3 has been completed. 
Also, machine settings for jobs 7 and 8 necessitate processing them one right after the 
other (i.e., job 7 immediately succeeds or precedes job 8). Jobco’s objective is to process 
all ten jobs with the smallest sum of due-time violations. Formulate the model mathemat-
ically, and determine the optimum solution.
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9-43. Jaco owns a plant in which three products are manufactured. The labor and raw material 
requirements for the three products are given in the following table.

Product
Required daily labor  

(hr/unit)
Required daily raw material  

(lb/unit)

1 3 4
2 4 3
3 5 6

Daily availability 100 100

The profit per unit for the three products are $25, $30, and $45, respectively. If 
product 2 is to be manufactured at all, then its production level must be at least 12 units 
daily. Formulate the problem as a mixed ILP, and find the optimal mix.

9-44. UPak is a subsidiary of an LTL transportation company. Customers bring their ship-
ments to the UPak terminal to be loaded on the trailer and can rent space up to 36 ft. 
The customer pays for the exact linear space (in foot increments) the shipment occupies. 
No partial shipment is allowed, in the sense that a shipment requiring no more than 36 ft 
must be loaded on one trailer. A movable barrier, called bulkhead, is installed to separate 
shipments. The per-foot fee UPak collects depends on the destination of the shipment. 
The following table provides the outstanding orders UPak needs to process:

Order 1 2 3 4 5 6 7 8 9 10

Size (ft)   5 11 22 15   7   9 18 14  10 12
Rate ($) 120 93 70 85 125 104 98 130 140 65

The terminal currently has two trailers ready to be loaded. Determine the priority orders 
that will maximize the total income from the two trailers. (Hint: A formulation using 
binary xij to represent load i on trailer j is straightforward. However, you are challenged 
to define xij as feet assigned to load i in trailer j. Then use if-then constraint to prevent 
partial load shipping.)

9-45. N queens problem. In the game of chess, queens attack by moving horizontally, vertically, 
or diagonally. It is desired to place N queens on an (N * N)-grid so that no queen can 
“take” any other queen. Formulate the problem as an integer program, and solve with 
AMPL (or any other software) for N = 4, 5, 6, and 8. [Hint: Formulations 1: Let xij = 1 
if a queen is placed in square (i, j), and zero otherwise. The constraints of the problem are 
of the type “if xij 7 0, then no other queen can be placed in row i, column j, or diagonal(s) 
from square (i, j).” Formulations 2: Let Ri = row associated with column i in which queen 
i is placed on the grid. The constraints prevent diagonal placements of queens.]

9-46. A manufacturing process uses four interchangeable raw materials. The raw materials dif-
fer in properties, which leads to different output units per unit of raw material. They also 
differ in cost and lot sizes. The following table summarizes the data of the situation:

Material 1 Material 2 Material 3 Material 4 Material 5

Lot size (units) 100 160   80 310  50
Product units per unit  
 of raw material

 
  3

 
  2

 
  5

 
  1

 
  4

Cost per unit of raw material ($)  30  80 200  10 120
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A raw material, if used, must be in the indicated lots only (e.g., Material 1 can be bought ei-
ther as a lot of size 100 units or none at all). The number of output units must be at least 950. 
Formulate a model to determine the raw materials that should be used at minimum cost.

9-47. Show how the nonconvex shaded solution spaces in Figure 9.8 can be represented by a 
set of simultaneous constraints. Find the optimum solution that maximizes z = 2x1 + 3x2 
subject to the solution space given in (a).

9-48. Given the binary variables x1, x2, x3, x4, and x5, if x1 = 1 and x2 = 0, then x3 = 1, x4 = 1, 
and x5 = 1. Formulate the condition as simultaneous constraints.

*9-49. Suppose that product zw occurs in a constraint, where z and w are binary variables. Show 
how this term can be linearized.

9-50. Consider the binary variable yi, i = 1, 2, c, n. Express the following condition as a set 
of simultaneous ILP constraints: If i = k, then yk = 1, and all the remaining variables 
equal zero.

9-51. Suppose that it is required that any k out of the following m constraints must be active:

gi1x1, x2, c , xn2 … bi, i = 1, 2, c , m

Show how this condition may be represented.
9-52. In the following constraint, the right-hand side may assume one of values, b1, b2, . . . , and bm.

g1x1, x2, c, xn2 … 1b1, b2 , c, or bm2
Show how this condition is represented.

9-53. Consider the following objective function

Minimize  z = min52x1 + x2, 4x1 - 3x2 � x1 Ú 1, x2 Ú 06
Use auxiliary binary variables to convert the objective function z into an analytically 
manageable format that eliminates the min function.

9-54. Give the binary variables y1, y2, . . . , yn, such that if xi = 1, then xi - 1 or xi + 1 must equal 1, 
i = 1, 2, . . . , n, where y0 and yn + 1 define the variable yn.

9-55. Solve the ILP of Example 9.2-1 by the B&B algorithm starting with x2 as the branching 
variable. Start the procedure by solving the subproblem associated with x2 … [x2

*].11

x1 x1 x1

x2 x2 x2

0 2
(a)

1 3

3

2

1

0 2
(b)

1 3

3

2

1

0 2
(c)

1 3

3

2

1

FIgure 9.8 

Solution Spaces for Problem 9-47

11In Problems 9-55 to 9-64, you may solve the subproblems interactively with AMPL or Solver or by using 
TORA’s MODIFY option for the upper and lower bounds.
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9-56. Develop the B&B tree for each of the following problems. For convenience, always select 
x1 as the branching variable at node 0.

*(a) Maximize z = 3x1 + 2x2

subject to

2x1 + 5x2 … 18

4x1 + 2x2 … 18

x1,  x2 Ú 0 and integer

(b) Maximize z = 2x1 + 3x2

subject to

7x1 + 5x2 … 36

4x1 + 9x2 … 35

x1,  x2 Ú 0 and integer

(c) Maximize z = 2x1 + 2x2

subject to

2x1 + 5x2 … 27

6x1 + 5x2 … 16

x1,  x2 Ú 0 and integer

*(d) Minimize z = 5x1 + 4x2

subject to

3x1 + 2x2 Ú 5

2x1 + 3x2 Ú 7

x1,  x2 Ú 0 and integer

(e) Maximize z = 5x1 + 7x2

subject to

2x1 + x2 … 13

5x1 + 9x2 … 41

x1,  x2 Ú 0 and integer

*9-57. Repeat Problem 9-56, assuming that x1 is continuous.
9-58. Show graphically that the following ILP has no feasible solution, and then verify the 

result using B&B.

Maximize z = 2x1 + x2

subject to

10x1 + 9x2 … 8

  8x1 + 6x2 Ú 1

x1, x2 Ú 0 and integer
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9-59. Solve the following problems by B&B:

Maximize z = 18x1 + 14x2 + 8x3 + 4x4

subject to

15x1 + 12x2 + 7x3 + 4x4 + x5 … 37

x1, x2, x3, x4, x5 = 10, 12
9-60. Convert the following problem into a mixed ILP, and find the optimum solution:

Maximize z = x1 + 2x2 + 5x3

subject to

� -x1 + 10x2 - 3x3 � Ú 15

2x1 + x2 + x3 …  10

 x1, x2, x3 Ú 0

9-61. TORA/Solver/AMPL Experiment. The following problem is designed to demonstrate the 
bizarre behavior of the B&B algorithm even for small problems. In particular, note how 
many subproblems are examined before the optimum is found and how many are needed 
to verify optimality.

Minimize y

subject to

21x1 + x2 +  g + x152 + y = 15

All variables are 10, 12
(a) Use TORA’s automated option to show that although the optimum is found after 

only 9 subproblems, over 25,000 subproblems are examined before optimality is 
confirmed.

(b) Show that Solver exhibits an experience similar to TORA’s. [Note: In Solver, you can 
watch the change in the number of generated branches (subproblems) at the bottom 
of the spreadsheet.]

(c) Solve the problem with AMPL, and show that the solution is obtained instantly with 
0 mixed integer program (MIP) simplex iterations and 0 B&B nodes. The reason for 
this superior performance can only be attributed to the presolve steps performed by 
AMPL and/or the CPLEX solver.

9-62. TORA Experiment. Consider the following ILP:

Maximize  z = 18x1 + 14x2 + 8x3

subject to

 15x1 + 12x2 +  7x3 … 43

x1, x2, x3 nonnegative integers

Use TORA’s B&B user-guided option to generate the search tree with and without 
activating the objective-value bound. What is the impact of activating the objective-value 
bound on the number of generated subproblems? For consistency, always select the 
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branching variable as the one with the lowest index and investigate all the subproblems 
in a current row from left to right before moving to the next row.

*9-63. TORA Experiment. Reconsider Problem 9-62. Convert the problem into an equivalent 
0-1 ILP, then solve it with TORA’s automated option. Compare the size of the search 
trees in the two problems.

9-64. AMPL Experiment. In the following 0-1 ILP, use interactive AMPL to generate the as-
sociated search tree. In each case, show how the z-bound is used to fathom subproblems.

Maximize  z = 3x1 + 2x2 - 5x3 - 2x4 + 3x5

subject to

x1 + x2 + x3 + 2x4 + x5 … 4

7x1 + 3x3 - 4x4 + 3x5 … 8

11x1 - 6x2 + 3x4 - 3x5 Ú 3

x1, x2, x3, x4, x5 = 10, 12
9-65. In Example 9.2-2, show graphically whether or not each of the following constraints can 

form a legitimate cut:
*(a) x1 + 2x2 … 10

(b) 2x1 + x2 … 10

(c) 3x2 … 10

(d) 3x1 + x2 … 15
9-66. In Example 9.2-2, show graphically how the following two (legitimate) cuts can lead to 

the optimum integer solution:

x1 + 2x2 … 10 1Cut I2
3x1 + x2 … 15 1Cut II2

9-67. Express cuts I and II of Example 9.2-2 in terms of x1 and x2, and show that they are the 
same ones used graphically in Figure 9.6.

9-68. In Example 9.2-2, derive cut II from the x3-row. Use the new cut to complete the solution 
of the example.

9-69. Show that, even though the following problem has a feasible integer solution in x1 and 
x2, the fractional cut would not yield a feasible solution unless all the fractions in the 
constraint were eliminated.

Maximize  z = x1 + 2x2

subject to

 x1 + 1
2 x2 … 13

4

x1, x2 Ú 0  and integer

9-70. Solve the following problems by the fractional cut, and compare the true optimum inte-
ger solution with the solution obtained by rounding the continuous optimum.
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*(a) Maximize z = 4x1 + 6x2 + 2x3

subject to

4x1 - 4x2 … 5

-x1 + 6x2 … 5

-x1 + x2 + x3 … 5

x1, x2, x3 Ú 0 and integer

(b) Maximize z = 3x1 + x2 + 3x3

subject to

-x1 + 2x2 + x3 … 4

4x2 - 3x3 … 2

x1 - 3x2 + 2x3 … 3

x1, x2, x3 Ú 0 and integer
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Chapter 10

heuristic programming

Real-Life Application: FedEx Generates Bid Lines Using Simulated Annealing

FedEx delivers millions of items throughout the world daily using a fleet of more 
than 500 aircraft and more than 3000 pilots. Bid lines (roundtrips), starting and end-
ing at one of nine crew domiciles (or hubs), must satisfy numerous Federal Aviation 
Administration and FedEx regulations and, to the extent possible, personal prefer-
ences based on pilots’ seniority. The main objective is to minimize the required number 
of bid lines (i.e., required manning). The complexity of the constraints precludes the 
implementation of an integer programming model. Instead, a simulated annealing heu-
ristic is used to solve the problem.1

10.1 IntRodUctIon

Heuristics are designed to find good, approximate solutions to difficult combinatorial 
problems that otherwise cannot be solved by available optimization algorithms. A heu-
ristic is a direct search technique that uses favorable rules of thumb to locate improved 
solutions. The advantage of heuristics is that they usually find (good) solutions quickly. 
The disadvantage is that the quality of the solution (relative to the optimum) is gener-
ally unknown.

Early generations of heuristics are based on the greedy search rule that mandates 
making improvement in the value of the objective function with each search move. The 
search ends at a local optimum where no further improvements are possible.

In the 1980s, a new generation of metaheuristics sought to improve the quality 
of the heuristic solutions by allowing the search to escape entrapment at local optima. 
The realized advantage comes at the expense of increased computations.

 397

1Details of the study can be found in Camplell, K., B. Durfee, and G. Hines, “FedEx Bid Lines Using 
Simulated Annealing,” Interfaces, Vol. 27, No. 2, pp. 1–16, 1997.
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Section 10.2 deals with the greedy heuristic. Section 10.3 presents three prominent 
metaheuristics: tabu, simulated annealing, and genetic. Section 10.4 applies metaheuris-
tics to the general integer programming problem. The chapter concludes in Section 10.5 
with a brief discussion of the related constrained-based search known as constraint 
programming.

Aha! Moment: Earliest decision-Making Heuristic—the Franklin Rule

Some argue that Benjamin Franklin (1705–1790) is the first ever operations researcher, and he 
might well have been, at least in the Americas. He was a person of diverse superior talents, but 
his association with OR (at best informal) originates from a letter2 he wrote in 1772 to the famed 
English natural philosopher and scientist Joseph Priestley (discoverer of oxygen), in which he 
outlined a first-ever publicized description of a decision-making heuristic using the pro and con 
list. He described the heuristic, now dubbed the Franklin Rule, in the following manner:

In the Affair of so much Importance to you, wherein you ask my Advice, I cannot for want of 
sufficient Premises, advise you what to determine, but if you please I will tell you how.

When these difficult Cases occur, they are difficult chiefly because while we have them under 
Consideration all the Reasons pro and con are not present to the Mind at the same time; but 
sometimes one Set present themselves, and at other times another, the first being out of Sight. 
Hence the various Purposes or Inclinations that alternately prevail, and the  Uncertainty that 
perplexes us.

To get over this, my Way is, to divide half a Sheet of Paper by a Line into two Columns,  writing 
over the one Pro, and over the other Con. Then during three or four Days Consideration I put 
down under the different Heads short Hints of the different Motives that at different Times 
occur to me for or against the Measure. When I have thus got them all together in one View, 
I endeavour to estimate their respective Weights; and where I find two, one on each side, that 
seem equal, I strike them both out: If I find a Reason pro equal to some two Reasons con, I 
strike out the three. If I judge some two Reasons con equal to some three Reasons pro, I strike 
out the five; and thus proceeding I find at length where the Ballance lies; and if after a Day or 
two of farther Consideration nothing new that is of Importance occurs on either side, I come to 
a Determination accordingly.

And tho’ the Weight of Reasons cannot be taken with the Precision of Algebraic Quantities, 
yet when each is thus considered separately and comparatively, and the whole lies before me, 
I think I can judge better, and am less likely to take a rash Step; and in fact I have found great 
Advantage from this kind of Equation, in what may be called Moral or Prudential Algebra.

10.2 GREEdy (LocAL SEARcH) HEURIStIcS

The main ideas of the greedy heuristic are explained via a single-variable problem. 
These ideas are subsequently extended to cover multiple variables.

Define the optimization problem with a solution space S as

Minimize z = F1x2, x ∈ S

2W. Bell Jr., ed. “Benjamin Franklin’s 1772 letter to Joseph Priestley,” Mr. Franklin: A Selection from His 
Personal Letters. New Haven, CT: Yale University Press, 1956.
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The iterative process of a greedy heuristic starts from a (random) feasible point and 
then attempts to move to a better solution point in the neighborhood of the current 
solution point. Specifically, at iteration k, given the solution point xk, the heuristic   
examines all the feasible points in the neighborhood N(xk) in search of a better 
 solution. The search ends when no further improvements are possible.

The definition of N(xk) is important in the design of the heuristic. For example, 
for integer x, N1xk2 = 5xk - 1, xk + 16 defines the immediate neighborhood of xk. 
Alternatively, an expanded neighborhood can include additional neighboring solution 
points. The first definition involves less local search computations but could impair 
the quality of the final solution. The second definition (expanded neighborhood) re-
quires more local search computations, but could lead to improvement in the quality 
of the solution.

Sections 10.2.1 and 10.2.2 apply the greedy heuristic to discrete and continuous 
single variables. Extension of the heuristic to multiple variables is discussed at the end 
of Section 10.2.2.

10.2.1 discrete Variable Heuristic

This section presents two examples that use the greedy heuristic for estimating the 
optimum of a single discrete-variable function. The first example uses the immediate 
neighborhood and the second one expands the domain to include more solution points.

Example 10.2-1 

Consider the function F(x) given in Figure 10.1 and define the optimization problem as

Minimize F1x2, x ∈ S = 51, 2, c, 86
The function has a local minimum at x = 3 1B2  and a global minimum at x = 7 1D2.
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FiGure 10.1 

Function F1x2, x ∈ S = 51, 2, c, 86, with local 
minimum at x = 3 and global minimum at x = 7
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Table 10.1 provides the iterations of the heuristic using immediate neighborhood, 
N1xk2 = 5xk - 1, xk + 16. The random number R = .1002 selects the starting point x = 1 
from among all the feasible points x = 1, 2, c, and 8. At iteration 1, N112 = 526 because 
x = 0 is infeasible. The search ends at iteration 3 because F1x2 7 F1x* = 32 for all x ∈ N132. 
This means that the search stops at the local minimum x* = 3 with F1x*2 = 50.

Table 10.1 shows that the greedy search stops at a local minimum (x = 3 in Figure 10.1). We 
can improve the quality of the solution in two ways:

1. Repeat the heuristic using random starting points.
2. Expand the size of the neighborhood to allow reaching more feasible solution points.

The application of the first idea is straightforward and requires no further explanation.
Expanded neighborhood search can be based on evaluating all the neighborhood 

points, a strategy that increases the computational burden. Alternatively, we can determine 
the next search move by random selection from the neighborhood. Specifically, at iteration 
k, the next move, xk + 1, is selected from N(xk) with probability 1/m, where m is the number 
of elements in the neighborhood set. Sampling from the same neighborhood is repeated, 
if necessary, until an improved solution is found or until a specified number of iterations 
has been reached The  random selection rule describes what is known as a random-walk 
heuristic.

Example 10.2-2 (Random-Walk Heuristic)

This example applies once again to F(x) in Figure 10.1. We arbitrarily define the expanded 
neighborhood set N(xk) as 51, 2, c, xk - 1, xk + 1, c, 86. The search starts at x0 = 1 and 
can continue for any number of iterations (the longer the more likely it is to find a better 
solution). In this example, the search is limited to 5 iterations to conserve space. Denote xk

=  
[selected from N(xk)] as a possible next move. It is accepted as the new search move only if it 
improves the solution. If it does not, a new random selection from N(xk) is attempted.

Table 10.2 details the application of the random-walk heuristic. In contrast with immediate- 
neighborhood heuristic in Example 10.2-1, the random-walk heuristic produces the  solution 
x = 7 and F1x2 = 40 at iteration 4, which accidentally happens to be better than the one 
 obtained in Example 10.2-1.

TabLe 10.1 Greedy Heuristic Applied to F(x) in Figure 10.1 Starting at x0 = 1 with N1xk2 = 5xk - 1, xk + 16
Iteration k xk N(xk) F1xk - 12 F1xk + 12 Action

(Start) 0 1 Set x* = 1, F1x*2 = 90, and xk + 1 = 1
1 1 5- , 26 - 60 F1xk + 12 6 F1x*2: Set x* = 2, F1x*2 = 60, xk + 1 = 2
2 2 51, 36 90 50 F1xk + 12 6 F1x*2: Set x* = 3, F1x*2 = 50, xk + 1 = 3

(End) 3 3 52, 46 60 80 F1xk - 12 and F1xk + 12 7 F1x*2: Local minimum 
reached, stop

Search result: x* = 3, F1x*2 = 50, occurs at iteration 2.
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Note the behavior of the heuristic. At iteration 3, the possible random move xk
= = 1 from 

N1x3 = 22 = 51, 3, 4, 5, 6, 7, 86 does not improve the solution. Hence, at iteration 4 another 
random move is attempted from the same neighborhood. This time the move produces the supe-
rior solution x* = 6.

10.2.2 continuous Variable Heuristic

The optimization problem is defined as

Minimize F1x2, L … x … U

The continuous random-walk heuristic differs from that of the discrete case 
(Example 10.2-2) in the definition of the (continuous) neighborhood and the selection 
of the next move from the neighborhood. The domain L … x … U defines the contin-
uous neighborhood of xk at any iteration k (a subset of this domain is also acceptable).

The next move, xk + 1, is computed as a random (positive or negative) displace-
ment above or below xk. There are two ways to achieve this result:

1. The displacement is based on a uniform distribution in the range 1 -U - L
2 , U - L

2 2 . 
Given R is a (0, 1) random number, then

 xk + 1 = xk + 1 - 1U - L
2 2 + R1U - L22

 = xk + 1R - .521U - L2
2. The displacement is based on a normal distribution with mean xk and standard 

deviation U - L
6  (the estimate of the standard deviation is based on the assumption 

that U - L approximates the 6-sigma spread of the normal distribution). Thus,

xk + 1 = xk + 1U - L
6 2N10, 12

The standard N(0, 1) deviate is determined from the normal tables in Appendix 
A, or by using ExcelStatTables.xls. Excel function NORMSINV(R) may also 
be used.

TabLe 10.2 Random-Walk Heuristic Applied to F(x) in Figure 10.1 Starting at x0 = 1

Iteration k xk F(xk) N(xk) Rk xk
= F(xk

= ) Action

(Start) 0 1 90 x* = 1, F1x*2 = 90
1 1 90 {2, 3, 4, 5, 6, 7, 8} .4128 4  80 F1xk

= 2 6 F1x*2: Set x* = 4, F1x*2 = 80, xk + 1 = 4
2 4 80 {1, 2, 3, 5, 6, 7, 8} .2039 2  60 F1xk

= 2 6 F1x*2: Set x* = 2, F1x*2 = 60, xk + 1 = 2
3 2 60 {1, 3, 4, 5, 6, 7, 8} .0861 1 100 F1xk

= 2 7 F1x*2: Resample from N(xk)
4 2 60 {1, 3, 4, 5, 6, 7, 8} .5839 6  40 F1xk

= 2 6 F1x*2: Set x* = 6, F1x*2 = 40, xk + 1 = 6
(End) 5 6 40 {1, 2, 3, 4, 5, 7, 8} .5712 4  80 F1xk

= 2 7 F1x*2: Resample from N(xk)

Best solution: x = 6, F1x2 = 40, occurs at iteration 4.
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In the two formulas given above, it may be necessary to recompute xk + 1 more 
than once, using the same xk, until xk + 1 falls within the feasible range (L, U). Moreover, 
if F1xk + 12 is not an improved solution relative to F(x*), the random selection is  repeated 
for a specified number of iterations or until an improvement is realized, whichever 
 occurs first.

Example 10.2-3 

Consider the following problem

Minimize F1x2 = x5 - 10x4 + 35x3 - 50x2 + 24x, 0 … x … 4

Starting with x = .5, the example details how the random-walk heuristic is used to approximate 
the minimum solution.

Tables 10.3 and 10.4 provide 5 iterations each using uniform and normal sampling. An in-
crease in the number of iterations usually produces better-quality solutions (relative to the true 
optimum). Although normal sampling produces a better-quality solution in this example, the 
result may not be true in general.

The two sampling procedures can be combined into a hybrid heuristic: First, we implement the 
uniform sampling heuristic. Then the resulting solution is used to start the normal sampling heu-
ristic. The idea is that the normal sampling heuristic may “fine-tune” the solution obtained by the 
uniform sampling heuristic (see next Excel moment). This idea is implemented later using Excel.

TabLe 10.3 Minimization of F1x2 = x5 - 10x4 + 35x3 - 50x2 + 24x, 0 … x … 4 Using Uniform Random-Walk 
Heuristic with x0 = .5 and xk

= = xk + 41R - .52
Iteration k xk F(xk) Rk xk

= F1xk
= 2 Action

(Start) 0 .5 3.281 Set x* = .5, F1x*2 = 3.281, xk + 1 = .5
1 .5 3.281 .4128 .151 2.602 F1xk

= 2 6 F1x*2: x* = .1512,  F1x*2 = 2.602,  xk + 1 = .151
2 .1512 2.602 .2039 -1.033 Out of range: Resample using xk + 1 = xk

3 .1512 2.602 .9124 1.801 - .757 F1xk
= 2 6 F1x*2: x* = 1.801, F1x*2 = - .757, xk + 1 = 1.801

4 1.801 - .757 .5712 2.086 .339 F1xk
= 2 7 F1x*2: Resample using xk + 1 = xk

(End) 5 1.801 - .757 .8718 3.288 -1.987 F1xk
= 2 6 F1x*2: x* = 3.288, F1x*2 = -1.987, xk + 1 = 3.288

Search result: x = 1.801, F1x2 = - .757 occurs at iteration 3 [exact global minimum: x* = 3.64438, F1x*2 = -3.631].

TabLe 10.4 Minimization of F1x2 = x5 - 10x4 + 35x3 - 50x2 + 24x, 0 … x … 4 Using Normal Random-Walk 
Heuristic with x0 = .5 and xk

= = xk + 14/62N10, 12.

Iteration k xk F(xk) Rk N(0,1) xk
= F1xk

= 2 Action

(Start) 0 .5 3.281 Set x* = .5, F1x*2 = 3.281, xk + 1 = .5
1 .5 3.281 .4128 - .2203 .353 3.631 F1xk

= 2 7 F1x*2: Resample using xk + 1 = xk

2 .5 3.281 .2039 - .8278 - .0519 Out of range: Resample using xk + 1 = xk

3 .5 3.281 .9124 1.3557 1.404 -1.401 F1xk
= 2 6 F1x*2: x* = 1.404, F1x*2 = -1.401, 

xk+1 = 1.404
4 1.404 -1.401 .5712 .1794 1.523 -1.390 F1xk

= 2 7 F1x*2: Resample using xk + 1 = xk

(End) 5 1.404 -1.401 .8718 1.1349 2.160 .6219 F1xk
= 2 7 F1x*2: Resample using xk + 1 = xk

Search result: x = 1.404, F1x2 = -1.401, occurs at iteration 3 [exact global minimum: x* = 3.64438, F1x*2 = -3.631].
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extension of the greedy search multiple variables. Given X = 1x1, x2, c, xn2 and a 
solution space S, the optimization problem is defined as

Minimize z = F1X2, X ε S

The greedy search algorithm is extended to the multivariable case by targeting 
the variables one at a time in each iteration, where a target variable is selected 
randomly from the set 1x1, x2, c, xn2 . The single-variable discrete and continu-
ous heuristics given in Sections 10.2.1 and 10.2.2 are then applied to the selected 
variable.

Excel Moment

Figure 10.2 is a snapshot of the Excel spreadsheet application of the continuous random-walk 
heuristic (file excelContSingleVarHeuristic.xls). Using Excel syntax, the function F(x) is entered 
in cell D2, with cell D5 assuming the role of the variable x. The sense of optimization (max or 
min) is specified in cell C2. The search range is entered in cells D3 and D4. The drop-down menu 
in cell D5 allows the use of uniform or random sampling.

A hybrid heuristic using uniform and normal sampling in tandem can be carried out in the 
following manner:

1. Assign a starting point in cell H3 and the number of iterations in cell H4.
2. Select uniform sampling in cell D5, and execute the heuristic by pressing the command 

button in step 6.
3. Use the solution from uniform sampling (cell D6) as a new starting point in cell H3.
4. Select normal sampling in cell D5 and re-execute the heuristic.

FiGure 10.2 

Excel random-walk heuristic for finding the optimum (maximum or minimum) of a single-variable continuous 
function (file excelContSingleVarHeuristic.xls)



404   Chapter 10    Heuristic Programming

10.3 MEtAHEURIStIc

The greedy heuristics presented in Section 10.2 share a common strategy: At iteration 
k, the search moves to a new point Xk + 1 ∈ N1Xk2 only if the new point improves the 
value of the objective function F(X). If no better Xk + 1 can be found in N(Xk) or if a 
user-specified number of iterations is reached, the solution is entrapped at a local opti-
mum and the search ends.

Metaheuristics are primarily designed to escape entrapment at local optima by 
permitting inferior moves, if necessary. The hope is that the added search flexibility will 
lead to a better solution.

Unlike the greedy heuristic, which always terminates when a local optimum is 
reached, termination of a metaheuristic search can be based on one of the following 
benchmarks:

1. The number of search iterations exceeds a specified number.
2. The number of iterations since the last best solution exceeds a specified number.
3. The neighborhood associated with the current search point is either empty or 

cannot lead to a new viable search move.
4. The quality of the current best solution is acceptable.

This section presents three prominent search metaheuristics: tabu, simulated 
annealing, and genetic. These algorithms differ primarily in the manner in which the 
search escapes a local optimum. Each metaheuristic is illustrated by two examples: 
The first, dealing with a single-variable function F(x), is designed to explain the basics 
of the metaheuristics. The second, dealing with the more complex job-shop scheduling 
problem, reveals additional intricacies in the implementation of the metaheuristics. In 
Chapter 11, the three metaheuristics are applied to the traveling salesperson problem.

10.3.1 tabu Search Algorithm

When search is trapped at a local optimum, tabu search (TS) selects the next (possibly 
 inferior) search move in a manner that temporarily prohibits reexamining previous  solutions. 
The main instrument for achieving this result is a tabu list that “remembers” previous search 
moves and disallows them during a specified tenure period. When a tabu move completes 
its tenure, it is removed from the tabu list and becomes available for future moves.

Example 10.3-1 (Minimization of a Single-Variable Function)

This example details the application of TS to the minimization of the function F(x) in Figure 10.1.
For iteration k, let

xk = Current trial solution

N1xk2 = Neighborhood of xk

Lk = Tabu list of inadmissible values of x at iteration k

t = Tabu tenure period expressed in number of successive iterations

x* = Best solution encountered during the search
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In terms of the function F(x) in Figure 10.1, the feasible values of x are 1, 2, . . . , and 8. 
At iteration k, the neighborhood set of xk can be defined as N1xk2 = 5xk - q, c, xk - 1, 
xk + 1, c, xk + q6 - Lk, where q is an integer constant. The definition implicitly ex-
cludes infeasible solution points.3 For example, for the case where xk = 3, q = 4, and 
Lk = 566, N1xk2 = 5-1* , 0* , 1, 2, 4, 5, 6, 76 - 566 = 51, 2, 4, 5, 76. The crossed-out elements 
are infeasible.

As explained in Section 10.2, the next search move xk + 1 can be selected as the best among 
all the solutions in N(xk), or as a random element of N(xk) (random-walk selection). This ex-
ample uses random selection.

Table 10.5 provides 5 iterations of the TS algorithm. The search starts at x0 = 1 (selected 
randomly from {1, 2, . . . , 8} using R = .0935). Define the neighborhood using q = 4 and as-
sume a fixed tenure period t = 3 iterations (the tenure period can be random as Problem 10-11 
demonstrates).

To illustrate the computations, N1x0 = 12 = 52, 3, 4, 56. At iteration 1, L1 = 516 and 
R1 = .4128 selects x1 = 3 from N(x0), which yields N1x12 = 51, 2, 4, 5, 6, 76 - 516 =  
52, 4, 5, 6, 76 and updates the tabu list at iteration 2 to L2 = 51, 36.

An element is dropped from the tabu list on first-in-first-out basis after a tenure period of 
t = 3 successive iterations. For example, element {1} stays on the tabu list during iterations 1, 2, 
and 3 until it is dropped at iteration 4.

Example 10.3-2 (Job Sequencing)

Consider the case of sequencing n jobs on a single machine. The processing time for job j is tj and 
its due date is dj (measured from zero). Completing job j ahead of its due date incurs a holding 
(storage) cost hj per unit time. A tardy job j results in a penalty cost pj per unit time. Table 10.6 
provides the data for a 4-job problem.

Define

jik = Job j occupies sequence position i during iteration k

sk = Job sequence used in iteration k

N1sk2 = Neighborhood sequences of sk

3Actually, a tabu element can define a next search move if it satisfies the so-called Aspiration Level Criterion, 
as will be explained following Example 10.3-2.

TabLe 10.5 TS Minimization of F(x) in Figure 10.1 with Tabu Tenure Period t = 3 and 
N1xk2 = 5xk - 4, c, xk - 1, xk + 1, c, xk + 46 - Lk

Iteration k Rk xk F(xk) Lk N(xk)

(Start) 0 .0935 1 90 {2, 3, 4, 5}
1 .4128 3 50 {1} {2, 4, 5, 6, 7}
2 .2039 4 80 {1, 3} {2, 5, 6, 7, 8}
3 .0861 2 60 {1, 3, 4} {5, 6}
4 .5839 5 100 {3, 4, 2} {1, 6, 7, 8}

(End) 5 .5712 7 20 {4, 2, 5} {3, 6, 8}

Best heuristic solution: x = 7, F1x2 = 20, at iteration 5 (also happens to be the optimum).
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Lk = Tabu list at iteration k

t = Tenure period expressed in number of successive iterations

zk = Total cost 1holding + penalty2 of sequence sk

s* = Best sequence available during the search

z* = Total cost associated with s*

Possible options for determining the neighborhood, N(sk), from sk include:

1. Exchange the positions of successive pairs of jobs.
2. Exchange the positions of pairs comprised of every other job.
3. Exchange the position of a job with another selected randomly from the remaining jobs.

The first definition is used in this example. To demonstrate its use, consider s0 = 11@2@3@42.  
The neighborhood set is N1s02 = 512@1@3@42, 11@3@2@42,11@2@4@326, which corresponds to 
swapping the positions (in s0) of jobs 1 and 2, jobs 2 and 3, and jobs 3 and 4, respectively. The 
selection of the next move s1 from N(s0) can be made either randomly or based on the least-
cost criterion. This example employs random selection.

Table 10.7 summarizes 5 iterations assuming a tenure period t = 2 iterations. The sequence 
(3-1-2-4) in iteration 2 provides the best solution with z* = 126. To demonstrate cost computa-
tions in the table, the value of z for the sequence s2 = 13@1@2@42 of iteration 2 is determined in 
the following order:4

Job

Processing time

Due date

Completion date

Holding time

Delay time

Holding cost

Late penalty cost

3

6

10

6

4

0

20

0

1

10

15

16

0

1

0

10

2

8

20

24

0

4

0

88

4

7

30

31

0

1

0

8

Thus, z = Holding cost + Penalty cost = 20 + 110 + 88 + 82 = $126.
The heuristic operates in the following manner: At iteration 1, R = .5124 selects the se-

quence s1 = 11@3@2@42 randomly from N1s02. The associated tabu list becomes L1 = 53 - 26, 

TabLe 10.6 Data of the Job Sequencing Problem for Example 10.3-2 

Job,  
j

Processing time  
in days, Tj

Due date,  
dj

Holding cost, hj 
($/day) 

Penalty cost, pj 
($/day) 

1 10 15  3 10
2  8 20  2 22
3  6 10  5 10
4  7 30  4  8

4For convenience, cost calculations are automated using the spreadsheet excelJobSequencing.xls for situa-
tions involving four and five jobs. You can modify the spreadsheet to account for other situations.
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which means that the positions of jobs 2 and 3 cannot be swapped during the tenure period (i.e., 
during two successive iterations). This is the reason the sequence (1-2-3-4) in N(s1) is excluded. 
The same reasoning applies to the crossed-out sequences in subsequent iterations. Note that the 
calculations in Table 10.7 apply R to admissible (uncrossed-out) neighborhood elements only.

“Fine-tuning” tS. The following refinements can prove effective in improving the 
quality of the final solution:

1. aspiration Criterion. The design of TS search disallows moves that are on the 
tabu list. An exception occurs when a disallowed move leads to an improved solu-
tion. For example, in Table 10.7 (Example 10.3-2 ), the crossed-out tabu sequences 
in iterations 1, 2, 3, and 4 should be examined for the possibility of producing bet-
ter search moves. If they do, they should be accepted as search moves.

2. Intensification and Diversification. Two additional strategies, called intensifica-
tion and diversification, are usually applied when a string of successive iterations 
fails to produce improvement. Intensification calls for a more thorough examina-
tion of nearby solution points and diversification attempts to move the search to 
unexplored solution regions. One way to implement these strategies is by control-
ling the size of the tabu list. A shorter tabu list increases the size of the allowable 
neighborhood set and hence intensifies the search to points that lie close to the 
best solution. A longer tabu list does the opposite in that it permits escape from a 
local optimum point by allowing the exploration of “remote” regions.

TabLe 10.7 TS Applied to the Job Sequencing Problem with Tenure Period t = 2 Iterations

Iteration, k
Sequence,  

sk Total cost 1holding2 + 1penalty2 z*
Tabu list,  

L(sk) R
Neighborhood,  

N(sk)*

(Start) 0 (1-2-3-4) 15 * 3 + 2 * 22 + 114 * 10 + 1 * 82 = 167 167 .5124 (2-1-3-4)
(1-3-2-4)✓
(1-2-4-3)

1 (1-3-2-4) 15 * 32 + 16 * 10 + 4 * 22 + 1 * 82 = 171 {3-2} .3241 (3-1-2-4)✓ 
(1-2-3-4)
(1-3-4-2)

2 (3-1-2-4) 14 * 52 + 11 * 10 + 4 * 22 + 1 * 82 = 126 126 {3-2, 3-1} .2952 (1-3-2-4)
(3-2-1-4)✓
(3-1-4-2)

3 (3-2-1-4) 14 * 5 + 6 * 22 + 19 * 10 + 1 * 82 = 130 {3-1, 2-1} .4241 (2-3-1-4)✓ 
(3-1-2-4)
(3-2-4-1)

4 (2-3-1-4) 112 * 22 + 14 * 10 + 9 * 10 + 1 * 82 = 162 {2-1, 2-3} .8912 (3-2-1-4)
(2-1-3-4)
(2-3-4-1)✓

(End) 5 (2-3-4-1) 112 * 2 + 9 * 42 + 14 * 10 + 16 * 102 = 260 {2-3, 4-1} .0992 (3-2-4-1)✓
(2-4-3-1) 
(2-3-1-4)

Best search sequence: (3-1-2-4) with cost = 126 at iteration 2.

*Check mark ✓ designates the non-tabu element selected randomly from N(sk) using R.
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Summary of tabu Search Algorithm

Step 0: Select a starting solution s0 ∈ S. Initialize the tabu list L0 = ∅, and choose a 
schedule for specifying the size of the tabu list. Set k = 0.

Step 1: Determine the feasible neighborhood N(sk) that excludes (inferior) members 
of the tabu list Lk.

Step 2: Select the next move sk + 1 from N(sk) (or from Lk if it provides a better 
 solution), and update the tabu list Lk + 1.

Step 3: If a termination condition is reached, stop. Otherwise, set k = k + 1 and go 
to step 1.

10.3.2 Simulated Annealing Algorithm

Simulated annealing (SA) escapes entrapment at a local optimum by using a prob-
ability condition that accepts or rejects an inferior move (a no-worse move is always 
accepted). The idea of determining the acceptance probability of the next search move 
is explained in the following manner: Suppose the optimization problem is given as

Maximize or minimize z = F1s2, s e S

As the number of iterations increases, SA seeks a more selective determination 
of solution strategies by using an adjustable parameter T, called temperature, that is 
made progressively smaller according to a temperature schedule.5 Typically, a sched-
ule of I elements for T is defined as 5T = Ti, i = 0, 1, c, I6. Each Ti applies for a 
specified number of consecutive accept-iterations, t.6 Given s0 is the starting strategy of 
the search, Ti is typically computed as

 T0 = r0 F1s02, 0 6 r0 6 1,

 Ti = ri Ti- 1, 0 6 ri 6 1, i = 1, 2, c, I

Define sa as the last accepted solution strategy. At iteration k, the probability of 
 accepting a neighborhood strategy as the next search move, sk + 1, is computed as

P5accept sk + 1 � sk + 1 ∈ N1sk26 = •
1,  if F1sk + 12 is not worse than F1sa2 
e

- 0F1sa2- F1sk + 120
T , if otherwise

The formula says that the next search move, sk + 1, is accepted if F1sk + 12 is not 
worse than F(sa). Otherwise, F1sk + 12 is an inferior solution, and sk + 1 is accepted only if  

Rk … e
- 0F1sa2- F1sk + 120

T
, where Rk is a (0, 1) random number. If sk + 1 is rejected, a different 

solution strategy, chosen from N(sa), is attempted. Notice that the temperature sched-
ule decreases the probability of acceptance as the number of iterations increases by 
making Ti progressively smaller.

5SA is inspired by the annealing process in metallurgy, which involves heating and controlled cooling of a 
material, hence the use of the term temperature. The use of metallurgical jargon in the description of SA is 
purely traditional, with no technical bearing on the development of the heuristic, save the general idea im-
bedded in the annealing process.
6Basing change in temperature on the number of accept-iterations is an arbitrary rule and can be replaced 
by others, such as making the change based on the total number of intervening (accept or reject) iterations.
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Example 10.3-3 (Minimization of a Single-Variable Function)

This example applies SA to find the minimum of the single-variable function in Figure 10.1.
Table 10.8 provides five iterations. The solution arbitrarily defines the neighborhood at any 

iteration k as N1xk2 = 51, 2, c, 86 - 5xa6, where xa is the solution associated with the most 
recent accept-iteration.

To illustrate the computations, the search arbitrarily selects x0 = 1 with t = 3 accept-
iterations and sets ri = .5 for all i Ú 0. Thus, N1x02 = 52, 3, 4, 5, 6, 7, 86, F112 = 90, and 
T0 = .5 F112 = 45. For k = 1, the random number R11 = .4128 selects the (possible) next- 
solution point x1 = 4 from N(x0) with F142 = 80. Because F(x1) is better than F(x0), we  accept 
the move. At iteration 2, we set a = 1 with F1xa2 = 80. The next move x2 = 2 is selected  
from N1x12 = 51, 2, 3, 5, 6, 7, 86  using R12 = .2039. The move is again accepted because 
it improves the solution from F1x12 = 80 to F1x22 = 60. This sets a = 2 with F1xa2 = 60.  
At iteration 3, R13 = .0861 selects x3 = 1 from N1x22 = 51, 3, 4, 5, 6, 7, 86 with F1x32 = 90.  
The new solution is inferior to F1xa2 = 60. Thus, ∆ = � 60-90 � = 30, and e-∆/T = .5134.  
Given R23 = .5462, the solution x3 = 1 is rejected, which requires re-sampling from the last 
accept-neighborhood N(x2). At iteration 4, x4 = 6 is accepted because it yields an improved 
solution (relative to that of iteration 2). At this point, the condition t = 3 is satisfied, which 
changes the temperature to T1 = .5, T0 =  22.5 at the next iteration. At iteration 5, given 
x5 =  5, R25 1=  .01972 6 e - ∆/T 1=  .06952 accepts the move even though it is an inferior solu-
tion [F152 = 100].

TabLe 10.8 Minimization of F(x) in Figure 10.1 Using SA Heuristic with Schedule T0 = .5F1x02, Ti = .5Ti- 1,
i =  1, 2, 3, cand t = 3 Accept-Iterations

Iteration k R1k xk F(xk) a T ∆ = � Change in F � e-∆/T R2 k Decision N(xk)

(Start) 0 1 90 0 45.0 {2, 3, 4, 5, 6, 7, 8}
1 0.4128 4 80 1 45.0 Accept: F1x12 6 F1x02 {1, 2, 3, 5, 6, 7, 8}
2 0.2039 2 60 2 45.0 Accept: F1x22 6 F1x12 {1, 3, 4, 5, 6, 7, 8}
3 0.0861 1 90 2 45.0 � 60 - 90 � = 30 .5134 .5462 Reject: R2k 7 e-∆/T Same as N(x2)
4 0.5839 6 40 4 45.0 Accept: F1x42 6 F1x22 {1, 2, 3, 4, 5, 7, 8}

(End) 5 0.5712 5 100 5 22.5 � 40 - 100 � = 60 .0695 .0197 Accept: R2k 6 e-∆/T {1, 2, 3, 4, 6, 7, 8}

Search best solution: x = 6 with F162 = 40.

Example 10.3-4 (Job Sequencing)

This problem is solved in Example 10.3-2 using TS. The problem statement is repeated here for 
convenience. Jobs are sequenced on a single machine. Each job j has a processing time tj and a 
due date dj. If j is completed earlier than its due date, a holding cost hj per unit time is incurred. 
A tardy job j results in a penalty cost pj per unit time. Table 10.9 provides the data for a 4-job 
scheduling problem.

Define

sk = Job sequence used in iteration k

N1sk2 = Neighborhood sequences of sk

Ti = Temperature schedule, i = 1 2 c, I

ck = Total cost 1holding + penalty2 of sequence sk
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Table 10.10 provides five SA iterations. Iteration 3 gives the best sequence. Note that when 
a sequence is rejected at iteration k, we reuse the neighborhood of the last accept-iteration to 
randomly select the sequence for iteration k + 1. This occurs at iteration 2, where the neighbor-
hood remains the same as at iteration 1. Note also that the t = 3 is satisfied at iteration 4, causing 
temperature change from 83.5 to 41.75 at iteration 5.

Summary of Simulated Annealing Algorithm

Step 0: Select a starting solution s0 e S. Set k = 0, p = 0, and  i = 0.

Step 1: Generate the neighborhood N(sk), and set temperature T = Ti.
Step 2: Determine the solution sk + 1 randomly from N(sk). If sk + 1 is not worse than the last 

 accepted solution or if R 6 P 5accept sk + 16, then accept sk + 1, set p = p + 1, and go to 
step 3. Else, reject sk + 1, and set N1sk + 12 = N1sk2. Set k = k + 1, and go to step 1.

Step 3: If a termination condition is reached, stop. Otherwise, set k = k + 1. If p = t, then set 
i = i + 1. Go to step 1.

TabLe 10.9 Data for the Job Sequencing Problem of Example 10.3-4 

Job,  
j

Processing time  
in days, Dj

Due date,  
dj

Holding cost, hj 
($/day) 

Penalty cost, pj 
($/day) 

1 10 15 3 10
2  8 20 2 22
3  6 10 5 10
4  7 30 4  8

TabLe 10.10 SA Applied to the Job Sequencing Problem with Schedule T0 = .5c0, Ti = .5Ti- 1, 
i =  1, 2, 3, cand t = 3 Accept-Iterations

Iteration  
k

Sequence  
sk

Total cost  
ck = 1holding2 + 1penalty2 Tk

z = � Change in cost �  
Tk e-z R1k Decision R2k 

Neighborhood,  
N(sk)*

(Start) 0 (1-2-3-4) 15 *  3 +  2 *  22  +  114 *  10 
+  1 *  82 = 167

83.5 .5462 (2-1-3-4)
(1-3-2-4)✓
(1-2-4-3)

1 (1-3-2-4) 15 *  32  +  16 *  10 +  4 
*  22 +  1 *  82 = 171

83.5 .0479 .9532 .5683 Accept:  
R11 6 e-z

.7431 (3-1-2-4)
(1-2-3-4)
(1-3-4-2)✓

2 (1-3-4-2) 15 *  3 +  7 *  42  +  16 *  10 
+  11 *  222 = 345

83.5 2.083 .1244 .3459 Reject:  
R12 7 e-z

.1932 (3-1-2-4)✓
(1-2-3-4)
(1-3-4-2)

3 (3-1-2-4) 14 *  52  +  11 *  10 +  4 
*  22 +  1 *  82 = 126

83.5 Accept:  
c3 6 c1

.6125 (1-3-2-4)
(3-2-1-4)✓
(3-1-4-2)

4 (3-2-1-4) 14 *  5 +  6 *  32  +  19 *  10 
+  1 *  82 = 130

83.5 .0479 .9532 .6412 Accept: 
R14 6 e-z

.2234 (2-3-1-4)✓
(3-1-2-4)
(3-2-4-1)

(End) 5 (2-3-1-4) 112 *  22  +  14 *  10 +  9 
*  10 +  1 *  82 = 162

41.75 .766 .4647 .5347 Reject: 
R15 7 e-z

.8127 (2-3-1-4)
(3-1-2-4)
(3-2-4-1)✓

Best search solution: (3-1-2-4) with cost 126 at iteration 3.

*Check mark ✓ indicates the sequence selected using random number R2k.
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10.3.3 Genetic Algorithm

The genetic algorithm (GA) mimics the biological evolution process of “survival of the 
fittest.” Each feasible solution of a problem is regarded as a chromosome encoded by a 
set of genes. The most common gene codes are binary (0, 1) and numeric (0, 1, 2, . . .). For  
example, the chromosomes of a single variable whose feasible values are 0, 1, . . . , and 8 
can be represented by the binary codes (0000, 1000, 0100, 1100, 0010, 1010, 0110, 1110, 
and 0001). The chromosomes for a two-variable problem (x1, x2) with x1 = 50, 16 and 
x2 = 50, 1, 2, 36 can be represented by the numeric codes (0, 0), (0, 1), (0, 2), (0, 3), (1, 0),  
(1, 1), (1, 2), and (1, 3). The multivariable numeric codes may also be represented as binary 
codes. For example, the binary code of 1x1, x22 = 10, 32 is (000, 110). There are other 
coding schemes, including node code for network models (see Beasley and Associates, 
1993, Part 2).

A set of N feasible solutions is referred to as a population with N chromosomes. 
The fitness of a chromosome is measured in terms of an appropriate objective function. 
A more fit chromosome yields a better value of the objective function.

The overall idea of GA is to select two parents from a population. The genes of 
the two parents are then crossed over and (possibly) mutated (as will be explained in 
Example 10.3-5) to produce two children. The offspring replace the two weakest (least-
fit) chromosomes in the population, and the process of selecting new parents is repeated.

The actual implementation of GA requires additional problem-specific details. 
Also, the rules for selecting parents and creating children may vary. For example, the 
parents may be selected totally randomly from a population, or they may consist of the 
two fittest chromosomes. Some of these details will be provided later.

Example 10.3-5 (Minimization of a Single-Variable Function)

The GA is applied to the single-variable discrete problem in Figure 10.1 with the feasible do-
main X = 51, 2, 3, 4, 5, 6, 7, 86. We will arbitrarily specify a population of size N = 4 parents 
whose chromosomes are determined from X using uniform random sampling.

The random number R is applied to the uniform distribution in Table 10.11 to generate the 
four members 1N = 42 of the initial population and their fitness, as shown in Table 10.12. The 
solution for i = 4 is a repeat of the solution for i = 3 1x3 = x42, hence the solution for i = 4 is 
discarded. The initial population is X0 = 58, 3, 5, 16, and the associated best solution is x* = 3 
with F1x*2 = 50.

Two parents can be selected from the initial population X0 = 58, 3, 5, 16 in a number of 
ways: (1) Select the two fittest members. (2) Select the fittest member and then a random one 
from the remaining members. (3) Select two parents randomly from X0. In this presentation, we 
use the third option. Specifically, the two random numbers R1 = .2869 and R2 = .0281 yield 
x = 3 with F132 = 50 and x = 8 with F182 = 70.

The two children are created from the two selected parents by using genes crossover. There 
are several methods for implementing the crossover.

TabLe 10.11 Uniform Random Sampling from the Domain X = 5x = 1, 2, 3, 4, 5, 6, 7, 86
x 1 2 3 4 5 6 7 8

Cumulative probability, P(x) .125 .250 .375 .500 .625 .750 .875 1.
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1. Uniform crossover. In this rule, parents’ common genes apply to both children. The re-
maining genes for one child are determined randomly, with the other child getting the 
complement gene.

2. One-point crossover. The genes of parents P1 and P2 are split randomly at the same point 
and then swapped; that is, P1 = 1P11, P12 2 and P2 = 1P21, p222 yield the children chro-
mosomes as C1 = 5P11, p226 and C2 = 5P21, P126 .

3. Multipoint crossover. This rule extends the one-point crossover to multiple random points. 
For example, in a 2-point crossover, P1 = 1P11, P12, P132 and P2 = 1P21, p22, P232 
yield C1 = 1P11, p22, P132 and C2 = 1P21, P12, P232.

This example uses the uniform crossover rule. The one-point crossover rule will be used in 
Example 10.3-6.

For the two parents 1x1 = 3, x2 = 82 generated in Table 10.12, we have

 P1 = 11 1 0 02
 P2 = 10 0 0 12

In uniform crossover, the common (underlined) third gene in P1 and P2 carries over to both 
children. The remaining three genes are determined randomly as follows: For child 1, the gene is 
1 if 0 … R 6  .5 and 0 if .5 … R … 1. The corresponding genes for child 2 are the complements 
of those assigned to child 1. For example, the three random numbers .2307, .7346, and .6220 
show that genes 1, 2, and 4 for child 1 are 1, 0, and 0, respectively, which automatically assigns 
the complement genes 0, 1, and 1 to child 2. Thus

 C1 = 11 0 0 02 1or x = 12
 C2 = 10 1 0 12 1or x = 102

Child 2 corresponds to an infeasible solution (recall that the feasible range is x = 1, 2, c, 8).  
However, before discarding a child infeasible solution, we first apply random mutation 
 (replacing one gene with another) and then check the mutated offspring for feasibility. 
If  infeasibility persists, totally new offspring must be created (from the same parents). The 
 process can be repeated as necessary until feasibility is achieved.

The probability of mutation is usually about .1, meaning a gene is mutated if 0 … R 6 .1.  
For child 1, the random number sequence .6901, .7698, .0871, .9534 shows that the third gene 
only is mutated from 0 to 1, yielding C1 = 11 0 1 02 [or x = 5 with F152 = 100]. For Child 2, 
the sequence .5954, .2632, .6731, .0983 mutates gene 4 and yields C2 = 10 1 0 02 [or x = 2 with 
F122 = 60]. Both child chromosomes are feasible, but neither yields a better solution. Hence, 
the solution x* = 3 of the initial population continues to be the best so far.

The least-fit parents in X0 1x = 5 and x = 12 are now replaced with the two offspring so-
lutions 1x = 5 and x = 22. This, in effect, says that the next population is X1 = 18, 3, 5, 22. We 
now use X1 to start a new iteration.

TabLe 10.12 Generation of the Starting Population with N = 4

i Ri xi Binary-coded xi F(xi)

1 .3025 3 1100 50
2 .9842 8 0001 70
3 .5839 5 1010 100
4 .5712 5 Discard
5 .0926 1 1000 90
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Dealing with continuous variables. The genetic coding in Example 10.3-5 assumes 
that the variable x is integer. The coding can be modified to include continuous vari-
ables in the following manner: Specify a finite (preferably tight) feasible range of the 
form l … x … u, where l and u are constants. Let v represent the numeric value of a 
binary string s of length n bits. The string s is then translated to a real (continuous) 
value by using

x = l + 1u - l21 v

2n - 12
The logic of the formula is that the maximum value of an n-bit binary string is 
20 + 21 + 22 + g +  2n - 1 = 2n -1, and 1 v

2n - 12  is the proportion of the quantity 
1u - l2, which when added to the lower bound l will produce the corresponding 
value of x in the range (l, u). For example, given -1 … x … 3 and arbitrarily choos-
ing n = 5, the binary string (0 0 1 0 1) has v = 22 + 24 = 20, and the associated 
value of x is

x = -1 + [3 - 1-12]1 20
25 - 1

2 = 1.580645

The design of the code indicates that larger values of n yield better accuracy.
The n-bit strings representing v are used in the same manner as given in 

Example 10.3-5. This means that children are created through crossover and mutation 
of the parents’ genes. Indeed, a multivariable situation is handled in a similar manner 
with each variable represented by an independent n-bit string.

Example 10.3-6 (Job Sequencing)

This problem was solved in Example 10.3-2 using TS and in Example 10.3-4 using SA. We repeat 
the problem statement here for convenience (a fifth job is added to render the example more 
viable). Jobs are sequenced on a single machine. Each job j has a processing time tj and a due 
date dj. If job j is completed earlier than its due date, a holding cost hj per unit time is incurred. 
A tardy job j results in a penalty cost pj per unit time. Table 10.13 provides the data for a 5-job 
scheduling problem.

Define

sk = Job sequence used in iteration k

N1sk2 = Neighborhood sequences of sk

zk = Total cost 1holding + penalty2 of sequence sk

TabLe 10.13 Data for a Single-Machine 5-Job Sequencing Problem

Job, j Processing time in days, Tj Due date, dj Holding cost, hj ($/day) Penalty cost, pj ($/day)

1 10 15 3 10
2  8 20 2 22
3  6 10 5 10
4  7 30 4  8
5  4 12 6 15
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s* = Best sequence available during the search

z* = Total cost associated with s*

The first task is to develop the genetic code of the chromosomes. Although binary coding 
can be used in the job sequencing problem (see, e.g., Yamada and Nakano, 1997), the resulting 
algorithm is complex because the crossover and mutation operations may result in infeasible 
schedules that must be “repaired.” Thus, instead of using a binary code, the nature of the problem 
allows representing a chromosome as a job sequence (e.g., 1-2-5-3-4).

To show how children are created, consider parents chromosomes P1 = 1@3@5@2@4 and 
P2 = 5@4@2@3@1. Suppose that a random 1-point crossover occurs at gene 3. The first two genes of 
C1(C2) are constructed by swapping the first two genes of P1(P2). The last three genes are the 
ones remaining from P1(P2) after excluding the first two genes—that is,

First 2 genes of C1 = 55, 46
First 2 genes of C2 = 51, 36 

Last 3 genes of C1 = 51, 3, 5, 2, 46 - 55, 46 = 51, 3, 26 

Last 3 genes of C2 = 55, 4, 2, 3, 16 - 51, 36 = 55, 4, 26 

Thus, C1 = 5@4@1@3@2 and C2 = 1@3@5@4@2.
Next, mutations of C1 and C2 are carried out in the following manner: If random num-

ber R 6 .1, a child chromosome is subject to mutation. Mutation is then implemented for the 
child by swapping two randomly selected genes (jobs). For example, the random numbers 
R = .8452 1 7  .1 2 and R = .0342 16.12 applied to C1 and C2, respectively, indicate that only 
C2 is mutated. Using R = .1924 and R = .8239 to determine swapped genes in C2, the first 
random number selects position 1 (job 1), and the second random number selects position 
5 (job 2). Thus, C2 is mutated from 1-3-5-4-2 to 2-3-5-4-1.

Table 10.14 summarizes the calculations for iterations 0 to 3. For convenience, the cost cal-
culations (values of z) are automated using the spreadsheet excelJobSequencing.xls. The best 
sequence is associated with P4 in iteration 3.

Summary of Genetic Algorithm

Step 0: 
(a) Generate a random population X of N feasible chromosomes.
(b) For each chromosome s in the selected population, evaluate its associated fit-

ness. Record s* as the best solution so far available.
(c) Encode each chromosome using binary or numeric representation.

Step 1: 
(a) Select two parent chromosomes from population X.
(b) Crossover the parents genes to create two children.
(c) Mutate the children genes randomly.
(d) If resulting solutions are infeasible, repeat step 1 until feasibility is achieved. 

Else, replace the weakest two parents with the new children to form a new 
population X and update s*. Go to step 2

Step 2: If a termination condition has been reached, stop; s* is the best available 
 solution. Else, repeat step 1.



10.4  application of Metaheuristics to integer Linear Programs   415

TabLe 10.14 GA Iterations Applied to the Job Sequencing Problem of Example 10.3-6 

Iteration Sequence, s z Explanation

0 P1
P2
p3
p4
C1
C2

mC1
mC2

1-2-3-4-5
2-3-4-1-5
4-1-5-2-3
3-2-1-4-5
3-2-4-1-5
4-1-3-2-5
3-5-4-1-2
5-1-3-2-4

512
605
695
475
573
829
534
367

Initial random population (P1, P2, P3, P4).
Chosen parents are P4 (best z) and P3 (random).
Crossover P3 and P4 starting at position 3.

Mutate C1 by exchanging positions 2 and 5.
Mutate C2 by exchanging positions 1 and 5.

1 p1
P2
p3
P4
C1
C2

mC1
mC2

1-2-3-4-5
3-5-4-1-2
5-1-3-2-4
3-2-1-4-5
5-1-3-2-4
1-2-3-5-4
5-3-1-2-4
1-5-3-2-4

512
534
367
475
367
439
314
361

Worst parents P2 and P3 in iteration 0 are replaced  
 with their mC1 and mC2.
Chosen parents are P3 (best z) and P1 (random).
Crossover P1 and P3 starting at position 4.
Mutate C1 by exchanging positions 2 and 3.
Mutate C2 by exchanging positions 2 and 4.

2 p1
P2
P3
p4
C1
C2

mC1
mC2

5-3-1-2-4
1-5-3-2-4
5-1-3-2-4
3-2-1-4-5
3-2-5-1-4
5-3-2-1-4
2-3-5-1-4
5-3-2-1-4

314
361
367
475
292
222
324
222

Worst parents P1 and P2 in iteration 1 are replaced  
 with their mC1 and mC2.
Chosen parents are P1 (best z) and P4 (random).
Crossover P1 and P4 starting at position 3.
Mutate C1 by exchanging positions 1 and 2.
No mutation in C2.

3 P1
p2
P3
p4
C1
C2

5-3-1-2-4
1-5-3-2-4
2-3-5-1-4
5-3-2-1-4
5-3-1-2-4
1-5-3-2-4

314
361
324
222
314
361

Worst parents P3 and P4 in iteration 2 are replaced  
 with their mC1 and mC2.
Chosen parents are P4 (best z) and P2 (random).
Crossover P2 and P4 starting at position 3.
No mutation.
No mutation.

10.4  AppLIcAtIon oF MEtAHEURIStIcS to IntEGER 
LInEAR pRoGRAMS

This section shows how the metaheuristics developed in Section 10.3 are applied to the 
following general integer linear programs (ILPs):

Maximize z = a
n

j = 1
cj xj

subject to

a
n

j = 1
aij xj1… , Ú , or = 2bi, i = 1, 2, c, m

Lj … xj … Uj, j = 1, 2, c, n

xj integer, j = 1, 2, c, n
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The basic elements of an ILP metaheuristic include selection of the starting solu-
tion, definition of the neighborhood, and determination of the next search move.

1. Selection of starting solution. The metaheuristics use the rounded continuous 
optimum solution as the starting solution. In this chapter, the (arbitrary) rule for 
rounding is: Round up if the fractional value is greater than or equal to .5; else, 
round down.

2. Definition of neighborhood. It is more manageable computationally to search 
the variables one at a time by defining the neighborhood for variable xj as

N1xj2 = 51x1, c xj - 1, c, xn2, 1x1, c, xj + 1, c, xn26
For example, suppose that the current solution in a 5-variable problem is (8, 6, 4, 
0, 2), and assume that x3 is targeted for change. Then

N1x32 = 518, 6, 3, 0, 22, 18, 6, 5, 0, 226
Infeasible solutions that violate lower or upper bounds are excluded from the 
neighborhood. For example, if x4 is designated for change and 0 … x4 … ∞ ,  then 
N1x42 = 518, 6, 4, -1, 22, 18, 6, 4, 1, 226 = 518, 6, 4, 1, 226, because x4 = -1 
is infeasible.

3. Determination of the next search move. The next search move is determined 
from a neighborhood as the solution X = 1x1, x2, c, xn2 with the least infeasi-
bility.7 The infeasibility measure is computed as

IX = a1… 2 
 max {0, a

n

j = 1
aijxj -  bi} + a1Ú 2

 max {0, bi - a
n

j = 1
aijxj}

+ a1= 2 
max {0, � a

n

j = 1
aij xj -  bi � } + a

n

j = 1
1max {0, Lj - xj} + max {0, xj - Uj}2

If IX = 0, then the next search move is feasible.
The remainder of the section details the development of TS, SA, and GA 

ILP.8 The ideas can be applied to any ILP and, indeed, can be extended to non-
linear programs.

10.4.1 ILp tabu Algorithm

The TS algorithm for an n-variable ILP uses the following definitions:

X = 1x1, c, xj, c, xn2
Lj = Lower bound on xj 1default = 02
Uj = Upper bound on xj 1default = ∞ 2

8A review of Section 10.3 is recommended before proceeding with this material.

7More sophisticated metaheuristics include techniques for restoring feasibility or use of Lagrangean func-
tions to penalize feasibility violations (see, e.g., Abramson and Randall, 1999).
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N1xj2 = 51x1, cxj - 1, c, xn2, 1x1, c, xj + 1, c, xn26
Xj

t1k2 = Solution X in which xj is replaced with xj + k 1k = {12 at iteration t

I j
t1k2 = Infeasibility measure of solution Xj

t 1k2
zj

t 1k2 = Objective value associated with Xj
t 1k2

X* = Best feasible solution encountered during the search

z* = Objective value associated with X*

I* = min5I j
t 1k2, j = 1, 2, c, n; k = -1, 16 encountered in iteration t

j* = Index j associated with I*

k* = Value of k 1 = {12 associated with I*

t = Tabu tenure period, expressed in number of iterations

The tabu list is composed of the indices of tabu variables.
The algorithm starts by setting X equal to the rounded optimum LP solution. At 

iteration t, a tabu variable is allowed (per the aspiration criterion, Section 10.3.1) to 
define the next search move if it results in an improved feasible solution. Otherwise, a 
tabu variable is excluded.

At iteration t, the search computes the associated infeasibility measure I j
t1k2 and 

the objective value zj
t1k2 for all j and k. The algorithm keeps track of the candidate for 

the next move by updating the indices j* and k*. A better feasible solution automati-
cally defines the next move. Otherwise, the non-tabu move with the least infeasibility 
measure is selected. If j* = 0, all neighborhood solutions are tabu and the tabu list is 
emptied to allow the search to continue.

Example 10.4-1 

The TS is applied to the following ILP:

Maximize z =  2x1 +  x2 +  3x3 +  2x4

Subject to

x1 + 2x2 - 3x3 - x4 …  10

3x1 - 2x2 + x3 - x4 … 14

2x1 + x2 - 2x3 + 2x4 … 9

-x1 + x2 + x3  … 10

x1, x2, x3, x4  nonnegative integers

The optimum continuous solution is x1 = 4.625, x2 = 0, x3 = 14.625, x4 = 14.5 with z = 82.125. 
Its optimum integer solution (obtained by TORA) is x1 = 5, x2 = 1, x3 = 14, x4 = 13 with 
z = 79. The rounded solution is X = 15, 0, 15, 152. The associated infeasibility measures are 
IX = 2 with zX = 85. (Verify!)

Table 10.15 gives five iterations using a tabu tenure period t = 4 iterations. An underlined 
index identifies a tabu variable. For example, x11=  42  enters the tabu list at iteration 1, hence it 
is underlined. At iteration 5, the underline is removed because the tabu tenure period is t = 4.  
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The search encounters the first feasible solution at iteration 3 (which happens to be the best 
solution in all 5 iterations). At iteration 4, all the variables are tabu, and no neighborhood 
solution leads to a better solution. Thus, the tabu list is emptied, releasing all four variables 
and yielding the solution (4, 1, 14, 14) as the start of future search. At iteration 5 the neigh-
borhood x2 = 0 yields I = 0 and hence is selected (and underlined). However, the resulting 
solution (4, 0, 14, 14) is a repeat of iteration 3 solution. Hence the next iteration will restart 
with iteration 4 solution (4, 1, 14, 14) with x2 tabooed to allow a different search move. In 
this case, iteration 6 will produce the new (minimum-infeasibility) solution (4, 1, 14, 13) with 
z = 77. (Try it!)

Excel Moment

File excelTabu-IP-Heuristic.xls allows experimentation with small-size problems (up to 10 
variables). The spreadsheet presentation is basically a learning tool designed to reinforce your 
understanding of the details of TS. Commercial TS algorithms include additional rules for 
solving very large problems.

10.4.2 ILp Simulated Annealing Algorithm

In Section 10.4.1 dealing with TS, all the variables are examined before selecting the 
next search move. The same strategy can be used with SA. However, for the sake of 
variation, we will adopt a new strategy that calls for examining one randomly selected 
variable in each iteration.

The following definitions are used in detailing the steps of the SA algorithm:

X = 1x1, c, xj, c, xn2
Lj = Lower bound on xj 1default = 02
Uj = Upper bound on xj 1default = ∞ 2
N1xj2  =  51x1, cxj - 1, c, xn2, 1x1, c, xj + 1, c, xn26
Xj

t1k2 = Solution X in which xj is replaced with xj + k1k = {12 at iteration t

I j
t1k2 = Infeasibility measure of solution Xj

t1k2

TabLe 10.15 Tabu Search of ILP Example with Tenure Period t = 4

Iteration x1 x2 x3 x4 I* z j* k*

LP optimum 4.625 0 14.625 14.5 82.125
Search start 5 0 15 15 2 85

1 4 0 15 15 1 83 1 -1
2 4 0 15 14 1 81 4 -1

(Best) 3 4 0 14 14 0 78 3 -1
(All-tabu list) 4 4 1 14 14 1 79 2 1

(Empty tabu list) 4a 4 1 14 14
(Repeat of iteration 3) 5 4 0 14 14 0 78 2 -1

(Restart, iteration 4) 5a 4 1 14 14
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zj
t1k2 = Objective value associated with Xj

t1k2
X* = Best feasible solution encountered during the search

z* = Objective value associated with X*

I* =  min5I j
t1k2, k = -1, 1; j = 1, 2, c, n6 encountered in iteration t

j* = Index j associated with I*

k* = Index k associated with I*

T0 = Initial temperature

r = Temperature reduction ratio applied every t accept-iterations

Ti = Temperature at level i

= rTi-1, 0 6 r 6 1

a = Counter of number of accept-iteration since last temperature reduction

a* = Number of accept-iterations needed to trigger temperature reduction

zlast = Objective value of the last accepted solution

R = 10, 12 random number

At the start of the algorithm, X is set equal to the rounded LP solution. In each 
iteration, an index j = j* is selected randomly from the variables set 51, 2, c, n6, and 
the feasibility measure I j

t1k2 is determined for the neighborhood solutions. Feasibility 
includes checking the upper and lower bounds Uj and Lj.

1. If solution Xj*
t 1k*2 has been encountered previously (i.e., redundant), reject it 

and start a new iteration.
2. If Xj*

t 1k*2 is infeasible, allow it as the next move.
3. If Xj*

t 1k*2 is a no-worse feasible solution, allow it as the next move.
4. If Xj*

t 1k*2 is an inferior feasible solution, accept it as the next move if 

R … exp¢-� zlast - zt
j*1k*2 �

T
≤. Otherwise, reject it.

Prior to the start of a new iteration, the temperature T is reduced if a = a*.

Example 10.4-2 

We use the ILP defined in Example 10.4-1 starting with the rounded solution 1x1 = 5, x2 = 0, 
x3 = 15, x4 = 152 and the initial temperature T0 = .75 * 1LP optimum objective value2 =  
.75182.1252 ≈ 62. Temperature reduction is triggered every a* = 2 accept-iterations using a 
reduction ratio r = .5. Table 10.16 summarizes 10 iterations. At each iteration, the randomly 
selected variable is labeled with an underline. For example, x1 is the random selection at itera-
tion 1 and x4 at iteration 2. According to the rules of the algorithm, an infeasible nonredundant 
solution is allowed as a move toward achieving feasibility. This occurs at iterations 1, 2, and 4. 
Also, a move is always generated from the most recent allowed/accepted move. For example, 
the move at iteration 6 is generated from the allowed move at iteration 4 because the move at 
iteration 5 is rejected.
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TabLe 10.16 Simulated Annealing Applied to ILP of Example 10.4-1 with T0 = .75 (LP Objective Value), r = .5, 
and a* = 2

Iteration t x1 x2 x3 x4 I* zj*
t 1k*2 zlast Temp T

exp¢ - � zlast - zt
j*1k*2 �

T
≤

R Explanation

Search start 5 0 15 15 2 85 -∞ 62 Infeasible first trial solution
1 4 0 15 15 3 83 -∞ 62 Infeasible move: Allow
2 4 0 15 14 1 81 -∞ 62 Infeasible move: Allow

(Best) 3 4 0 14 14 0 78 -∞ 62 First feasible move: Accept
4 4 0 13 14 1 75 78 62 Infeasible move: Allow
5 4 0 14 14 0 78 78 62 Redundant: Reject
6 4 0 13 13 0 73 78 62 0.92 0.11 R 6 P5accept6: Accept
7 4 1 13 13 0 74 73 31 zj*k*

t  7  zlast: Accept
8 4 1 13 12 0 72 74 31 0.94 0.93 R 6 P5accept6: Accept
9 4 1 12 12 0 69 72 15.5 0.82 0.96 R 7 P5accept6: Reject

10 4 0 13 12 0 71 72 15.5 0.94 0.38 R 6 P5accept6: Accept

Best solution occurs at iteration 3.

The move at iteration 3 is accepted because it is the first feasible solution encountered in 
the search. This sets z* = 78 and X* = 14, 0, 14, 142. At iteration 6, the inferior feasible solu-
tion is accepted because it satisfies the condition R 6 P5accept6 . At iteration7, the feasible 
move is  accepted because it is an improvement over last accept-solution (zlast) in iteration 6. 
Note that the temperature T is adjusted every 2 accept-iterations at iterations 7 and 9.

Excel Moment 

As in TS, file excelSA-IP-Heuristic.xls allows experimentation with small-size problems (number 
of variables ≤ 10). The user can study the impact of changing the data in steps 2 and 3 on the ef-
ficacy of the algorithm. One of the immediate observations about the behavior of the algorithm 
is that the “frequency” of rejecting feasible solutions increases with the number of iterations, a 
typical behavior of SA.

10.4.3 ILp Genetic Algorithm

In Section 10.2.3, binary coding is used in the development of the GA. The same 
idea can be applied to ILP. For example, in a 3-variable problem, the solution 
1x1, x2, x32 = 1100, 24, 602 can be represented by the binary code in Table 10.17. In 
general, the number of binary bits is adjusted to represent the maximum value of any 
of the variables.

A convenient way to represent the ILP variables is to use numeric coding. 
In this case, the rounded LP solution in an n-variable problem is represented as  

TabLe 10.17 Binary Coding of 1x1, x2, x32 = 1100, 24, 602

x1 = 100 x2 = 24 x3 = 60 

0010011 0001100 0011110
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X = 1x1, x2, c, xn2. The initial population chromosomes can be generated randomly 
from the range 1xj - qxj, xj + qxj2, 0 6 q 6 1. The resulting limits of the range are 
adjusted if the bounds Lj … xj … Uj, j = 1, 2, c, n are tighter. A convenient way to 
determine the genes is to sample from the continuous search range and then approxi-
mate the result to an integer value.

Table 10.18 demonstrates the idea of generating a population of three par-
ent chromosomes starting with the solution 1x1, x2, x32 = 1100, 1, 602 with bounds 
0 … x1 … 99, 0 … x2 … ∞ , 50 … x3 … ∞ , and using q = .2. The genes of each parent 
are determined randomly from the respective (adjusted) ranges.

Suppose that parents 1 and 2 in Table 10.18 are selected to create the two children 
based on a one-point crossover at x3. This means that gene 3 is swapped between par-
ents 1 and 2 to provide the child chromosomes as

Child 1: 192, 7, 702
Child 2: 181, 9, 582

(It is immaterial which chromosome is designated as child 1 or child 2.)
Mutation is applied according to a specified (small) probability. Suppose that 

gene 1 of child 1 is mutated from the original value of 92 to the new random value of 
89 selected from the search range (80, 99). The mutated chromosome of child 1 thus 
becomes (89, 7, 70).

The GA algorithm uses the following definitions:

X = 1x1, c, x j, c, xn2
q = Neighborhood search ratio 1612
X* = Best feasible solution encountered during the search

z* = Objective value associated with X*

Ii = Infeasibility associated with chromosome i

I* = Smallest infeasibility associated with the current population

i* =  Chromosome with the best objective value or the smallest infeasibility in the 
current population

i** = Chromosome with the worst infeasibility in the current population

TabLe 10.18 Random Generation of Initial Population of 3 Parents Starting with 
Solution 1x1, x2, x32 = 1100, 1, 602

x1 x2 x3

Starting value 100 8 60
Lj … xj … Uj 0 … x1 … 99 0 … x2 … ∞ 50 … x3 … ∞
1xj - qxj, xj + qxj2, q = .2 (80, 120) (6.4, 9.6) (48, 72)
Adjusted search ranges (80, 99) (6, 10) (50, 72)
Parent 1 92 7 58
Parent 2 81 9 70
Parent 3 90 8 62
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i*** = Chromosome with the next-worst infeasibility relative to i**

P = Population size

c = Number of crossovers

p = Mutation probability

The GA metaheuristic starts with a population of P chromosomes. The population 
is then examined for the best feasible solution. Such a solution, if it exists, identifies par-
ent 1. If no feasible solution exists, the chromosome with the smallest infeasibility is used 
instead to identify parent 1. Parent 2 is then determined randomly from the remaining 
chromosomes (after excluding that of parent 1). Child 1 and child 2 are created from par-
ent 1 and parent 2 (using crossovers or some other method) with random mutation. Next, 
child 1 and child 2 replace chromosomes i** and i*** having the two worst infeasibilities.

Example 10.4-3 

For the ILP in Example 10.4-1, Table 10.19 provides a starting population of 10 chromosomes 
generated randomly from the rounded LP solution (5, 0, 15, 15).

The search ranges, based on q = .2, are given at the bottom of the table. All ten chromo-
somes happen to be infeasible. Chromosome 5 is chosen as parent 1 because it has the smallest 
infeasibility. Chromosome 2 is selected randomly from the remaining chromosomes to represent 
parent 2. Thus,

Parent 1: 14, 0, 15, 162
Parent 2: 15, 0, 15, 172

With a single crossover 1c = 12, the partition (selected randomly) occurs at variable 4. 
Thus, the children are created by exchanging gene 4 (shown in bold) as

Child 1: 14, 0, 15, 172
Child 2: 15, 0, 15, 162

TabLe 10.19 Starting Population of Size p = 10 Generated from the Rounded LP 
Solution (5, 0, 15, 15) with q = .2,  c = 1 Crossover, and Mutation Probability .1

Chromosome x1 x2 x3 x4 I z

1 4 1 16 15 3 87
(Parent 2) 2 5 0 15 17 5 89

3 6 1 17 12 9 88
4 4 0 12 14 3 72

(Parent 1) 5 4 0 15 16 2 85
6 5 1 12 13 4 73
7 6 0 14 13 6 80
8 6 1 15 12 5 82
9 6 0 15 15 7 87

10 4 0 12 16 7 76
Child 1 4 0 15 14 1 81
Child 2 5 0 15 16 3 87

Search ranges (4, 6) (0, 1) (12, 18) (12, 18)



10.5  introduction to Constraint Programming (CP)   423

Next, we apply mutation to each child. The probability of mutation of .1 calls for mutating a 
gene (to a new value in the search range) if R 6 .1. As shown in the table, only (underlined) 
gene 4 of child 1 is mutated from 17 to 14.

In the next iteration, child 1 and child 2 replace two parents in the current population. 
Parent 3 has the highest infeasibility 1=  92, hence i** = 3. There is a tie between parents 9 
and 10 for the next-worst infeasibility. The tie is broken in favor of the chromosome with worse 
objective value (87 for parent 9 versus 76 for parent 10), which yields i** = 10. Hence, parent 3 
and parent 10 are replaced by child 1 and child 2, respectively. The new population is now ready 
for a new iteration.

Excel Moment

With the Excel implementation of GA file excelGA-IP-Heuristic.xls, you can step through the 
iterations one at a time or execute all the iterations automatically. In the former case, FIRST 
Iteration button initializes the computations. Each additional click of NEXT Iteration button 
generates a new iteration. This iterative design uses color codes to show how a child chromosome 
replaces a parent chromosome in the next iteration.

If the number of crossovers, c, in cell H4 is set equal to zero, the genes of the two children 
are given by the arithmetic and geometric means of the parents.

10.5 IntRodUctIon to conStRAInt pRoGRAMMInG (cp)

Suppose that we want to determine the values of the variables x, y, and z that satisfy 
the following requirements:

x e51, 2, c, 86
y e51, 2, c, 106
z e51, 2, c, 106

x ≠ 7, y ≠ 2, x - y = 3z

One way to solve the problem is to enumerate all 800 combinations, which is com-
putationally inefficient. Constraint programming solves the problem by producing 
tighter domains for the variables and then applying an “intelligent” search tree to find 
the feasible solutions.

The constraints x ≠ 7 and y ≠ 2 reduce the domains of x and y to

Domain of x: x e51, 2, 3, 4, 5, 6, 86
Domain of y: y e51, 3, 4, 5, 6, 7, 8, 9, 106

Next, the constraint x - y = 3z requires the minimum value of x to be 4, which oc-
curs when y = z = 1. The maximum value of y is 5, which occurs when x = 8 and 
z = 1. Next, max 1x - y2 = 7, which occurs when x = 8 and y = 1 and produces 
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max 1z2 = 2. This so-called constraint propagation results in the following feasible, 
but tight, domains:

x e54, 5, 6, 86
y e51, 3, 4, 56
z e51, 26

The use of constraint propagation reduces the number of combinations from 800 
to 32. Although the new problem is more manageable computationally, we can do better 
by using the search tree in Figure 10.3. We will select z to initiate the search because it 
has the smallest domain, giving rise to the two branches only: z = 1 and z = 2. Branch 
z = 1 implies that x - y = 3, which is satisfied for 1x = 4, y = 12, 1x = 6, y = 32, 
and 1x = 8, y = 52, resulting in three solutions in Figure 10.3. For z = 2, the resulting 
condition x - y = 6 is impossible to satisfy for the given domains. This completes the 
search tree. The computational advantage here is that we only need to investigate 4 
out the possible 32 combinations.

The example above provides the gist of what CP does. It is basically an efficient 
search process that is based on describing the problem in terms of the domains for the 
variables and a set of constraints. To facilitate the search, special computer languages 
have been developed that allow restricting the values of the variables within their do-
mains to satisfy the constraints. As an illustration, Figure 10.4 codes the problem in 
ILOG OPL. The code directly describes the problem in terms of variable domains and 
constraints. All domain reductions are carried out automatically by the language pro-
cessor using intelligent procedures.

As the example demonstrates, CP is not an optimization technique in the sense 
used in mathematical programming. However, the fact that CP can be used to de-
termine feasible solutions can enhance the efficiency of mathematical programming 
algorithms. In particular, CP can be imbedded within the B&B algorithm for the MIP 
problem.

x « {4, 5, 6, 8}, y « {1, 3, 5}, z « {1, 2}

Feasible solutions:
(x, y , z) 5 (4, 1, 1)
(x, y , z) 5 (6, 3, 1)
(x, y , z) 5 (8, 5, 1)

No feasible solution

z 5 1 5. x 2 y 5 3  z 5 2 5. x 2 y 5 6

Constraint: x 2 y 5 3z 

FiGure 10.3 

Construction of search tree for CP example
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pRoBLEMS

Section Assigned Problems Section Assigned Problems

10.3.1 10-9 to 10-16 10.4.2 10-33 to 10-35
10.3.2 10-17 to 10-23 10.4.3 10-36 to 10-38
10.3.3 10-24 to 10-29 10.5 10-39 to 10-40
10.4.1 10-30 to 10-32

 10-1. Re-solve the problem of Example 10.2-1 to estimate the maximum value of F(x).  
Repeat the calculations using x = 7 as a starting solution.

 10-2. Re-solve the problem of Example 10.2-2 to estimate the maximum value of F(x).
 10-3. Re-solve the problem of Example 10.2-3 to estimate the maximum value of F(x) using 

uniform sampling. Next, use the solution from uniform sampling as a starting solution 
for the application of normal sampling.

 10-4. Excel experiment. Consider the following function:

f1x2 = .01172x6 - .3185x5 + 3.2044x4 - 14.6906x3 + 29.75625x2 - 19.10625x

1 var int x in 1..8;
2 var int y in 1..10;
3 var int z in 1..10;
4 solve{
5 x<>7;
6 y<>2;
7 x–y=3*z;
8 };

FiGure 10.4 

ILOG OPL code for the CP example
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The function has multiple maxima and minima in the range 0 … x … 10. Use 
excelContVarHeuristic.xls to estimate the maximum and minimum of the function using 
uniform sampling starting at x0 = 5 and then refine the solution using normal sampling 
in which the starting point is the solution obtained from uniform sampling.

 10-5. Consider the problem of forming a maximum-area rectangle out of a piece of wire of 
length 100 inches.
(a) Excel experiment. Use excelContVarHeuristic.xls with uniform sampling to  

generate 5 iterations of the continuous variable heuristic to estimate the  
dimensions of the rectangle. Start with a base of rectangle equal to 5 inches.

(b) Excel experiment. Use excelContVarHeuristic.xls with normal sampling to refine 
the solution obtained in (a). Carry out 5 iterations.

*10-6. Taxation can be used as an instrument to curb the demand for cigarettes. Suppose that, 
for a tax rate t, the average daily consumption per smoker follows the linear function 
53 - 1001t/1002, 10 … t … 60. If the tax rate is set high, demand will drop, and the tax 
revenue will drop as well. The goal is to determine the tax rate that maximizes the tax 
revenue. For the purpose of taxation, the base price per cigarette is 15 cents. Formulate 
the problem as a mathematical model, and use a heuristic to determine the tax rate.

 10-7. Apply the uniform sampling heuristic to estimate the minimum solution of the following 
two-variable function: f1x2 = 3x2 + 2y2 - 4xy - 2x - 3y, 0 … x … 5, 0 … y … 5.

 10-8. The height of a cylindrical water tank must be at least twice as much as its base 
diameter. Neither the diameter nor the height can exceed 10 ft. The volume of the 
tank must be at least 300 ft3. The cost of the elevated structure on which the tank is 
installed is proportional to the area of the base. The sheet metal cost is $8/ft2, and the 
cost of the supporting structure is $15/ft2. Formulate the problem as a mathematical 
model, and develop a random-walk heuristic to estimate the diameter and height of 
the tank.

 10-9. Solve Example 10.2-1 to estimate the maximum solution point. Use x0 = 8 and t = 2.
10-10. Consider the following function:

f1x2 = .01172x6 - .3185x5 + 3.2044x4 - 14.6906x3 + 29.75625x2 - 19.10625x

The function has multiple maxima and minima in the range x = 1, 2, c, 10. Apply 
10 TS iterations to estimate the maximum and minimum. Use x0 = 5 and tabu tenure 
period t = 2 iterations.

10-11. Apply TS with t = 3 iterations to solve the 5-job sequencing problem using the data 
in Table 10.20. (Hint: You may find it convenient to use file excelJobSequencing.xls to 
compute the cost functions.)

TabLe 10.20 Data for Problem 10-11

Job,  
j

Processing time  
in days, Tj

Due date,  
dj

Holding cost, hj 
($/day)

Penalty cost pj 
($/day)

1 10 12 3 10
2 12 30 1 20
3  5  9 5 12
4  7 25 2  8
5  9 40 4 15
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10-12. Consider 10 Boolean variables, Bi, i = 1, 2, c, 10. Each variable assumes the value  
T (true) or F (false). Next, consider the following six expressions (the notation Bi 
defines not Bi):

(B1 and B3 and B8) or (B4 and B10) and B6

B2 and B7

(B2 or B5) and (B1 or B4 or B6)

(B1 and B3 or B4) or (B5)

(B4 and B6) or B9

B2 or B5 or B6 or (B1 and B3)

Use TS to assign a solution to each Boolean variable that maximizes the 
 number of true logical expressions. Carry out five TS iterations starting with 
solution S0 = 1T, F, T, F, T, F, T, F, T, F2  and a tabu tenure period of two iterations. 
(Hint: For convenience, file exelSAT.xls automates the evaluation of the Boolean 
expressions.)

10-13. Repeat Problem 10-12 for the following Boolean expressions:

(B1 and B5) or (B3 and B9) and (B2 or B10)

B3 or B6 and (B7 or B9 and B10)

B4 and B7 and B8

B2 or B3 and B4 and B5 or B8 and (B1 or B6)

(B3 and B4 and B10) or (B5 and B7) or (B9 and B10)

B1 or (B4 and B7) or B8

(B3 and B5 or B6) or (B1 or B8 and B9 or B10)

10-14. Warehouse allocation. Consider the case of 4 warehouses and 5 stores. The fixed cost 
of opening a warehouse is 20 ($ thousand). The transportation cost, cij, of shipments 
between the warehouses and the stores is summarized in Table 10.21.
(a) Formulate the problem as an ILP, and find the optimum solution (using AMPL or 

Solver).

(b) Solve the problem using TS with a tabu tenure period of two iterations.

TabLe 10.21 Data for Problem 10-14

cij

j
i 1 2 3 4 5

1 10 15 20  9 40
2 12 17 15 20 10
3 18 14 10 35 16
4  9 12 33 28 19
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10-15. Constrained Minimal Spanning Tree, Glover (1990). Section 6.2 presents an optimum 
algorithm for finding the minimal spanning tree that links all the nodes of a network 
(by definition, a tree contains no cycles). In a practical setting, it may be necessary to 
impose interdependence restrictions on the arcs (branches) of the minimal spanning 
tree (e.g., only one of a subset of arcs can be in the spanning tree). TS can be used to 
account for the additional restrictions.

Consider the 6-arc network (a, b, c, d, e, f, g, h) in Figure 10.5 with the following 
additional restrictions:

1. Only one of the two arcs, a and c, can be in the tree.
2. If arc b is in the tree then arc d must also be in the tree.

The application of TS to determine the constrained minimal spanning tree is 
achieved as follows: The unconstrained minimal spanning tree (b, c, f, g, h) of length 
12 + 3 + 1 + 6 + 42 = 16 is used as a starting solution. The remaining arcs, a, d, and 
e, are designated as free. A neighborhood spanning tree (solution) can be generated by 
adding a free arc to the current spanning tree and deleting an existing one to prevent 
cycles. For example, arc b or c must be deleted if free arc a is admitted in spanning 
tree (b, c, f, g, h) to prevent the formation of cycle a, b, c. The swapping produces two 
alternatives: add a and delete b, or add a and delete c. Similar alternatives can be 
generated when the remaining free variables, d and e, are considered. The collection of 
all these alternatives defines the neighborhood.

The fitness of an alternative includes the length of the spanning tree plus a penalty 
for the violation of the additional constraints given earlier. For example, given the tree 
(b, c, f, g, h), the alternative “add a and delete b” produces the tree (a, c, f, g, h) whose 
fitness is [15 + 3 + 1 + 6 + 42 + 1penalty for violating the first constraint2].  
Similarly, the alternative “add arc a and delete arc c” produces the tree (a, b, f, g, h) 
whose fitness is [15 + 2 + 1 + 6 + 42 + 1penalty of violating the second constraint2].  
The penalty must be sufficiently large (e.g., a multiple of the sum of the lengths of all 
the arcs in the network). In the present situation, the total length of the network is 37, 
and a penalty of 200 is appropriate. The alternative with the smallest fitness provides 
the next trial solution. The corresponding free variable is then augmented to the tabu 
list to prevent it from leaving the tree during its tenure period.

Apply five iterations to the network in Figure 10.5.
10-16. Cartographic label placement, Yamamoto and Associates (2002). Unambiguous 

placement of the names of cities, streets, lakes, and rivers on printed maps has long been 
a time-consuming manual process. With the advent of online map generation (as in 
Google and MapQuest), the manual process is not a viable option. A tabu heuristic can 
be used to automate label placement on map. This problem will deal with the case of 
labeling cities. The general goal is to avoid label overlapping, while accounting for label 
placement preferences relative to the location of the named city on the map.

h 2 4

d 2 7

b 2 2
f 2 1

a 2 5

c 2 3 e 2 9

2 5

6

g 2 6
43

1

FiGure 10.5 

Network for Problem 10-15
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Figure 10.6 provides an example of placing the names of four cities, A, B, C, and D, 
on a map. Each city has four placement options represented by four rectangles. Priority 
for label placement among the four rectangles can be in any order. In Figure 10.6, we 
assume a counterclockwise best-to-worst order of preference for the rectangles of each 
city. For example, for city A, the order of labeling preference is A1-A2-A3-A4. A typical 
solution selects a specific rectangle for each city. For example, (A1, B2, C3, D2) is a 
solution for the four cities in Figure 10.6.

The “cost” of selecting a specific rectangle in a solution is the sum of two components: 
a numeric preference score in the range (0, 1) in which zero is best, and the number of 
overlaps with other rectangles. Figure 10.6 gives the preference scores for the city A 
1A1 = 0, A2 = .02, A3 = .03, and A4 = .042. The same scores apply to corresponding 
rectangles in cities B, C, and D as well. To determine the overlaps, consider the solution 
(A1, B2, C3, D2). Only C3 and D2 overlap.

The following matrix summarizes the scores associated with solution (A1, B2, C3, D2).

A1 B2 C3 D2

A1 .00 .00 .00 .00
B2 .00 .02 .00 .00
C3 .00 .00 .03 1.00
D2 .00 .00 1.00 .02

All diagonal entries equal the preference scores of the associated rectangle. An off-
diagonal element equals 1 if the corresponding elements overlap. Else, it is zero. The 
cost associated with the solution (A1, B2, C3, D2) is the sum of all the entries in the 
matrix [=  1.02 + .03 + .022 + 11 + 12 = 2.7]. The objective of the model is to find 
the solution that minimizes the total cost.
(a) Construct the 116 * 162 fitness table that will account for all possible label 

 placements.

(b) Find a solution to the problem using three TS iterations with a two-iteration tabu 
tenure. [Hint: The optimum solution for this trivial problem is obvious: (A1, B1, 
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FiGure 10.6 

Label options for Problem 10-16
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B2, B3, and B4) with zero total fitness. To demonstrate meaningful TS iterations, 
however, you are required to start with the solution A1, B2, C3, D2. A neighborhood 
solution consists of replacing one of the rectangles of a city with another, for 
example, replacing C3 with C1. In this case, city C is placed on the tabu list for the 
duration of the tenure period.]

10-17. Carry out five additional iterations in Example 10.3-3.
10-18. Solve Example 10.3-3 to estimate the maximum solution point. Use x0 = 2 and t = 3.
10-19. Carry out four additional iterations of the job sequencing problem in Example 10.3-4.
10-20. Timetable scheduling. Consider a case of developing a timetable of teaching 5 classes 

(C) by 5 teachers (T). The teachers provide the following preferences for teaching 
classes (first of the list is most desired):

T1: C2-C3-C1-C5

T2: C2-C1-C4-C5

T3: C1-C4-C5-C3

T4: C4-C2-C5-C3

T5: C2-C5-C3-C1

The situation is simplified to developing a one-day five-period timetable that minimizes 
dissatisfaction among teachers. A measure of dissatisfaction is represented by how far 
down the preference list a course is assigned to a teacher. For example, the measure of 
dissatisfaction is zero if C2 is assigned to T1 and 3 if C5 is assigned to T1. A timetable is 
evaluated by the sum of its individual measures.

Develop a 5-iteration SA heuristic for the problem.
10-21. Map-coloring problem. The coloring problem deals with determining the least number 

of colors for painting the regions of a map such that no two adjacent regions will have 
the same color. Figure 10.7(a) provides an example of a 6-region map. The problem 
can be modeled as a network in which the nodes represent the regions as shown in 
Figure 10.7(b). An arc between two nodes signifies that the corresponding two regions 
are adjacent (share a common border). The map-coloring problem can represent other 
practical situations, as Problem 10-22 demonstrates.

1

2

3 
5 4 

6 

(a) (b)

1

2
5

6

43

FiGure 10.7 

(a) Six-region map (b) network representation for Problem 10-21
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An SA heuristic can be applied to the coloring problem. The starting solution, x0, 
can be determined in one of two ways:

1. Assign a unique color to each node of the network. Thus, x0 = 11, 2, c, 62 for the 
network in Figure 10.7(b),

2. Use a greedy algorithm that starts by assigning color 1 to node 1. Next, given that 
nodes 1, 2, c, and i - 1 use the colors 1, 2, c, and c, c … i - 1, assign the smallest 
color number in the set 11, 2, c, c2 to node i without creating bad arcs (those whose 
two end nodes use the same color). If none can be found, apply a new color c + 1. For 
the network in Figure 10.7(b), the successive steps for constructing x0 are

x0
1 = 112

x0
2 = 11, 22

x0
3 = 11, 2, 32

x0
4 = 11, 2, 3, 12

x0
5 = 11, 2, 3, 1, 42

x0 = x0
6 = 11, 2, 3, 1, 4, 22

The greedy algorithm uses 4 color classes, C1 = 11, 12, C2 = 12, 22, C3 = 132, 
C4 = 142, that apply to nodes 1 and 4, nodes 2 and 6, node 3, and node 5,  
respectively.

A neighborhood solution, xi+ 1, is determined by changing the color of a random 
node in xi to a random color in the same set. For example, given x0 = 11, 2, 3, 1, 4, 22 
and its associated color set c0 = 11, 2, 3, 42, random selections of color 1 from c0 and 
node (position) 5 from x0 give

x1 = 11, 2, 3, 1, 1, 22
The new color classes of x1 are C1 = 11, 1, 12, C2 = 12, 22, and C3 = 132 corresponding 
to nodes (1, 4, 5), (2, 6), and (3), respectively. To generate x2 from x1, randomly select 
a color from c1 = 11, 2, 32 to replace the color of a randomly selected node in x1. If 
necessary, repeat the random exchange until x2 becomes distinct from x1.

Next, we develop a measure of performance for solution. A simple measure calls 
for the minimization of the number of bad arcs (those whose two end nodes bear 
the same color). A more sophisticated measure can be developed in the following 
manner: Solution x1 is better than x0 from the standpoint of reducing the number of 
color classes (i.e., uses less colors by increasing the size of at least one color class), but 
simultaneously increases the chance of creating bad arcs. Specifically, x0 of the greedy 
algorithm has no bad arcs, and x1 has one bad arc, 4–5. Thus, an empirical measure 
of performance that balances the two conflicting situations [increasing the sizes 
(cardinalities) of the color classes and, simultaneously, reducing the number of bad 
arcs] calls for maximizing

f1x2 = a
k

j = 1
1 � Cj � 22 - 2a

k

k = 1
� Cj � . � Aj �

where

k = Number of color classes

Aj = Set of bad arcs associated with color class j
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[The notation � S � represents the number of elements (cardinality) of the set S.] In terms 
of x0 and x1 of the greedy algorithm, we have

f1x02 = 122 + 22 + 12 + 122 - 212 * 0 + 2 * 0 + 1 * 0 + 1 * 02 = 10

f1x12 = 132 + 22 + 122 - 213 * 1 + 1 * 0 + 2 * 02 = 8

The two values show that x1 is worse than x0 [recall that we are maximizing f(x)]. Hence, 
per SA heuristic, we accept x1 if R 6 e-�f1x02- f1x12�/T.

Note that the generation of xi+ 1 from xi may result in an infeasible color assignment. 
(This point does not arise in Examples 10.3-3 and 10.3-4 because of the nature of the 
associated problems.) In these cases, an infeasible move can be accepted using the 
probability condition of SA, but the best solution is updated only if a better feasible 
solution is encountered.

Apply three additional SA iterations to the coloring network in Figure 10.7(b)  
using the greedy algorithm to determine the starting solution and the measure of 
 performance f(x), as explained above.

10-22. Scheduling conflicting classroom courses. A simplified version of college course 
scheduling calls for assigning eight courses (1, 2, . . . , 8) in the least possible number 
of time periods. Table 10.22 assigns “x” to conflicting courses (those that cannot be 
scheduled in the same time period).
(a) Express the problem as a map-coloring network (Problem 10-21).

(b) Determine a starting solution using the greedy algorithm.

(c) Apply three SA iterations to estimate the minimum number of periods.
10-23. Consider the well-known six-hump camelback function:

f1x, y2 = 4x2 - 2.1x4 + x6/3 + xy - 4y2 + 4y4, -3 … x … 3, -2 … y … 2

The exact global minima are 1- .08984, .712662 and 1.08984, - .712662 with 
f* = -1.0316. Apply five SA iterations to estimate the minima of f(x, y). Start with 
1x0, y02 = 12, 12, T0 = .5f1x0, y02, Ti = .5Ti- 1, and t = 3 accept-iterations.

10-24. Suppose that GA is used to find the maximum of F(x), x = 0, 1, c, 275. Let x = 107 
and x = 254 represent parents P1 and P2.
(a) Represent P1 and P2 as binary codes.

(b) Use uniform crossover to create C1 and C2.

(c) Create C1 and C2 using a 1-point crossover.

TabLe 10.22 Conflicts in Course Schedules for Problem 10-22

1 2 3 4 5 6 7 8

1 x x x x

2 x x x x

3 x x x

4 x x x x

5 x x x x

6 x x x x x

7 x x x x

8 x x x x
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(d) Create C1 and C2 using a 2-point crossover.

(e) In Part (b), use random numbers to mutate C1 and C2.
10-25. Carry out two additional iterations of Example 10.3-5.
10-26. Carry out an additional iteration of Example 10.3-6.

*10-27. You have a deck of ten cards numbered 1 to10. You need to divide the ten cards into 
two piles such that the sum of pile 1 cards is 36 and the product of the pile 2 cards is 
also 36. Develop a GA for the problem using an initial population of 4 parents, 1-point 
crossover, and 1% mutation rate. Carry out 5 iterations.

10-28. You have a piece of wire whose length is L = 107.1 inches and you would like to shape 
it into a rectangular frame. Use the genetic algorithm to determine the width and height 
that will yield the maximum area of the rectangle.

10-29. Repeat Problem 10-28 assuming that the wire is used to form a box with the maximum 
volume. 

10-30. Consider the following problem:

Maximize f1x, y2  =  xsin14x2  +  1.1sin12y2, x =  0, 1, 2, c, 10, y =  0, 1, 2, c, 10

Carry out five GA iterations to estimate the optimum solution.
10-31. In the game of chess, queens move horizontally, vertically, or along a (45°) diagonal 

path. We need to position N queens in the 1N * N2 grid so that no queen can “take” 
any other queen. Design a GA for the problem starting with a random population of 
4 parents and using a 1-point crossover. A reasonable measure of effectiveness is the 
number of queens in conflict. Carry out three iterations.

10-32. Verify the entries in iterations 1, 2, and 3 in Table 10.15.
10-33. Carry out 10 TS iterations for each of the following problems:

(a) Maximize z = 4x1 + 6x2 + 2x3

subject to

4x1 - 4x2 … 5

-x1 + 6x2 … 5

-x1 + x2 + x3 … 5

x1, x2, x3 Ú 0  and integer

(b) Maximize z = 3x1 + x2 + 3x3

subject to

-x1 + 2x2 +   x3 … 4

4x2 - 3x3 … 2

  x1 - 3x2 + 2x3 … 3

x1, x2, x3 Ú 0  and integer

10-34. Excel experiment. Use excelTabu-IP-heuristc.xls to find a solution for the following 
 problems:
(a) Project selection problem of Example 9.1-1.

(b) Set covering problem of Example 9.1-2.
Compare the heuristic and exact solutions. 
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10-35. Carry out 5 iterations of Example 10.4-2 assuming cj = 1 for all j.
10-36. Carry out 5 SA iterations for the following problem:

Maximize z =  99x1 + 90x2 + 58x3 + 40x4 + 79x5 
 + 92x6 + 102x7 + 74x8 + 67x9 + 80x10

subject to

30x1 + 8x2 + 6x3 + 5x4 + 20x5 + 12x6 + 25x7 + 24x8 + 32x9 + 29x10 … 100

All variables are binary

10-37. Excel experiment. Use file excels-IP-Heuristic.xls to find a solution for the following ILP:

Minimize z = x1 + x2 + x3 + x4 + x5 + x6 + x7

subject to

x1 + x4 + x5 + x6 + x7 Ú 20

x1 + x2 + x5 + x6 + x7 Ú 12

x1 + x2 + x3 + x6 + x7 Ú 14

x1 + x2 + x3 + x4 + x7 Ú 17

x1 + x2 + x3 + x4 + x5 Ú 18

x2 + x3 + x4 + x5 + x6 Ú 19

x3 + x4 + x5 + x6 + x7 Ú 14

All variables are binary

10-38. Carry out the next iteration that follows the one given in Table 10.19.
10-39. Carry out two iterations of Problem 10-36.
10-40. Excel experiment. Apply excelIPHeuristicGA.xls to Problem 10-37.
10-41. Construct the search tree in Figure 10.3 using the variable x to initiate the search. 

 Compare the resulting amount of computations with that in Figure 10.3.
10-42. Repeat Problem 10-41 using the variable y.



Chapter 11

traveling Salesperson problem (tSp)

Real-Life Application

The Australian Defence Sciences and Technology Organisation employs synthetic 
aperture radar mounted on an aircraft to obtain high-resolution images of up to 
20 rectangular swaths of land. Originally, flight path covering a sequence of swaths 
was done visually using time-consuming and usually suboptimal mapping software. 
Subsequently, a TSP-based software was developed to plan missions with up to 
20 swaths. The new software can plan a mission in less than 20 seconds, compared 
with 1 hr using the visual process. Additionally, the average mission length is 15% less 
than the one obtained manually.1

11.1 Scope of the tSp

Classically, the TSP problem deals with finding the shortest (closed) tour in an n-city 
situation, where each city is visited exactly once before returning back to the starting 
point. The associated TSP model is defined by two pieces of data:

1. The number of cities, n.
2. The distances dij between cities i and j (dij = ∞  if cities i and j are not linked).

The maximum number of tours in an n-city situation is (n - 1)! if the network is di-
rected 1i.e., dij ≠ dji2 and half that much if it is not.

In reality, TSP applications extend well beyond the classical definition of visit-
ing cities. The real-life application given at the start of this chapter describes mission 
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1Details of the study can be found in D. Panton and A. Elbers, “Mission Planning for Synthetic Aperture 
Radar Surveillance,” Interfaces, Vol. 29, No. 2, pp. 73–88, 1999.
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planning for synthetic aperture radar surveillance. The Aha! Moment below describes 
a noted TSP application in the late nineteenth century that ushered the first known use 
of mathematical modeling in archaeology (a field mainly dominated by art historians 
and linguists). A brief list of other TSP applications is given in Problem 11-1. Additional 
applications are also given in Problems 11-2 to 11-14.

Aha! Moment: earliest Mathematical Model in Archaeology,  
or how to “Seriate” Ancient egyptian Graves Using tSp2

In 1894, the eminent British Egyptologist Flinders Petrie (1853–1942) excavated a vast site of 
predynastic graves west of the Nile in Naqada, Egypt. A standard method, called seriation, was 
used to establish the chronological order (or time sequence) of the relative dates the graves were 
built. The method employs classifications of time-based changes of artifacts, such as stone tools 
and pottery fragments.

The Naqada tomb site boasted an abundance of potteries used to store essentials  Ancient 
Egyptians thought necessary for the afterlife. Petrie kept meticulous records of the potteries in 
each grave, but needed a systematic process to translate the data into a chronological order of 
the time the graves were constructed. He started with some 900 promising graves,  classifying 
their potteries into 9 principal styles. He then designed (narrow) paper slips each comprised 
of 10 columns. The first column holds the grave code and the remaining nine  columns repre-
sented the nine pottery styles. Codes of the styles found in a grave were entered in their proper 
columns. A column is left blank if its style is not found in the grave. In the end, a column entry 
in a slip is viewed in a 0-1 (binary) fashion representing the absence or presence of a pottery 
style in the grave.

The data slips allowed the determination of a numeric score representing the close-
ness (in time) of two graves: a count of the entries that differ from one another among all 
nine pottery styles. For example, the following two slips yield a score of 4 as shown by the 
underlines:

Grave 1: absent, present, present, present, absent, present, present, absent, present

Grave 2: absent, absent, absent, present, present, present, present, present, present

A zero or small score indicates that the two graves are likely built within the same era; 
otherwise, large scores suggest the graves originated in distinct eras. Using this line of reason-
ing, Petrie physically ordered the slips vertically so that graves with similar scores were placed 
close to one another (cf. Nearest Neighbor heuristic, Section 11.4.1) and was thus able to infer 
a chronological order of the relative times the graves were constructed. Petrie noted that his 
seriation problem could be solved by finding the arrangement of all graves that minimizes the 
sum of their associated scores.

In today’s terminology, Petrie’s seriation problem is a classical TSP application in 
which the graves stand for cities and the scores represent the lapses (“distances”) between 
the times two graves were constructed. Though Petrie described his model in archaeological 
terms (rather than mathematically), it is clear that he had an exceptional mathematical mind. 
Remarkably, using the binary code he developed in the late nineteenth century to represent 

2Thomas L. Gertzen and Martin Grotschel, Flinders Petrie (1853–1942), the Travelling Salesman Problem, 
and the Beginning of Mathematical Modeling in Archaeology, Documenta Mathematica, Extra Vol. ISMP, 
pp. 199–210, 2012.
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(absence- presence of) a pottery style in a grave site, Petrie’s numeric score is the same as what 
is now known as Hamming distance, devised in 1950 by Richard Hamming and currently used 
in telecommunications and information science.

Because of the similarity between the seriation problem and the TSP, Petrie is credited 
with ushering in the use of the first “mathematical” model in archaeology.

As a historical note, Petrie had no formal schooling and his knowledge in mathematics 
included two self-taught courses in algebra and trigonometry at age 24. Yet, his discoveries as 
an archaeologist resulted in a prestigious professorship in Egyptology at University College 
London. Among Petrie’s students was Howard Carter who later discovered the tomb of “boy 
king” Tutankhamun in 1922. Petrie remained committed to scientific discovery even after his 
own death, as he donated his skull (and brain) to the Royal College of Surgeons of England 
to permit study of his own exceptional intellectual abilities. The Petrie Museum of Egyptian 
Archaeology in London houses more than 80,000 pieces and ranks fourth in Egyptian artifacts 
after the Cairo Museum, the British Museum, and the Ägyptisches Museum, Berlin.

11.2 tSp MAtheMAticAL ModeL

As stated in Section 11.1, a TSP model is defined by the number of cities n and the dis-
tance matrix ‘dij ‘ . The definition of a tour disallows linking a city to itself by assigning 
a very high penalty to the diagonal elements of the distance matrix. A TSP is symmetric 
if dij = dji for all i and j; else it is asymmetric.

Define

xij = e1, if city j is reached from city i
0, otherwise

The TSP model is given as

Minimize z = a
n

i = 1
a
n

j = 1
dij xij, dij = ∞  for all  i = j

subject to

  a
n

j = 1
xij = 1, i = 1, 2, c, n (1)

  a
n

i = 1
xij = 1, j = 1, 2, c, n (2)

  xij = 10, 12 (3)

  Solution forms a roundtrip n@city tour (4)

Constraints (1), (2), and (3) define a regular assignment model (Section 5.4) in which 
xij = 1 if node (city) i is linked to node (city) j, and zero otherwise. If the solution of 
the assignment model happens to be a tour [i.e., it satisfies constraint (4)], then it is 
automatically optimal for the TSP. This is a rare occurrence, however, and the assign-
ment model is likely to consist of subtours. Additional computations are then needed 
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to determine the optimal tour solution. Figure 11.1 demonstrates a 5-city TSP with a 
tour and a subtour solution. The nodes represent cities, and the arcs represent two-way 
routes that can be distinct if the TSP is asymmetric.

example 11.2-1 

The daily production schedule at the Rainbow Company includes batches of white (W), 
 yellow (Y), red (R), and black (B) paints. The production facility must be cleaned between 
successive batches. Table 11.1 summarizes the cleanup times in minutes. The objective is to 
determine the sequencing of colors that minimizes the total cleanup time.

In the TSP model, each color represents a “city,” and the cleanup time between two succes-
sive colors represents “distance.” Let M be a sufficiently large penalty and define

xij = 1 if paint j follows paint i and zero otherwise

The TSP model is given as

Minimize z = 10xWY + 17xWB + 15xWR + 20xYW + 19xYB + 18xYR + 50xBW + 44xBY

+ 22xBR + 45xRW + 40xRY + 20xRB + M1xWW + xyy + xBB + xRR2

5-city problem Tour solution
(x12 5 x25 5 x54 5 x43 5 x31 5 1)

Subtour solution
(x23 5 x32 5 1)(x15 5 x54 5 x41 5 1)

1

2

3

4

5

1

2

3

4

5

1

2

3

4

5

Figure 11.1 

A 5-city TSP example with a tour or subtour solution of the associated assignment model depending on the 
specific distance matrix instance

Table 11.1 Interbatch Cleanup Times (in minutes) for the Paint Production Problem

Interbatch cleanup time (min)

Paint White Yellow Black Red

White ∞ 10 17 15
Yellow 20 ∞ 19 18
Black 50 44 ∞ 22
Red 45 40 20 ∞
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subject to

xWW + xWY + xWB + xWR = 1

xYW  + xYY + xYB + xYR  = 1

xBW  + xBY + xBB + xBR  = 1

xRW  + xRY + xRB + xRR  = 1

xWW + xYW + xBW + xRW = 1

xWY  + xYY + xBY + xRY  = 1

xWB  + xYB + xBB + xRB  = 1

xWR  + xYR + xBR + xRR  = 1

xij = 10, 12 for all i and j

Solution is a tour 1loop2
The use of the penalty M in the objective function is equivalent to deleting xWW, xYY, xBB, 

and xRR from the model. The underlying assignment-model structure is the basis for the devel-
opment of the TSP algorithms.

tSp solution. A straightforward way to solve TSP is exhaustive enumeration. The maximum 
number of tours in an n-city problem is (n - 1)!. For the present example, exhaustive 
enumeration is feasible because the number of possible tours is small 1=  62. Table 11.2 lists and 
evaluates all six tours and shows that tour W S Y S B S R S W is optimum.

Exhaustive enumeration is not practical for the general TSP. Instead, Section 11.3 presents 
two exact integer programming algorithms: branch-and-bound (B&B) and cutting plane. Both 
algorithms are rooted in the solution of the assignment model, with added restrictions to guar-
antee a tour solution. Unfortunately, as is typical with most integer programming algorithms, 
the proposed methods are not computationally reliable. For this reason, heuristics are used to 
provide good (but not necessarily optimal) solutions to the problem. Three of these heuristics 
are presented in Section 11.5.

Interpretation of the optimum solution. The optimum production sequence W S Y S  
B S R S W in Table 11.2 starts with the white color, followed by yellow, then black, and then 
red. It is really immaterial which color we use to start the production cycle because the solution 
is a closed-tour. For example, the sequences B S R S W S Y S B and Y S B S R S W S Y 
are also optimal.

Table 11.2 Solution of the Paint Sequencing Problem by 
Exhaustive Enumeration

Production loop Total cleanup time (min)

W S Y S B S R S W 10 + 19 + 22 + 45 = 96
W S Y S R S B S W 10 + 18 + 20 + 50 = 98
W S B S Y S R S W 17 + 44 + 18 + 45 = 124
W S B S R S Y S W 17 + 22 + 40 + 20 = 99
W S R S B S Y S W 15 + 20 + 44 + 20 = 99
W S R S Y S B S W 15 + 40 + 19 + 50 = 124
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Open-tour tSp. Open tours occur when a return to the starting city is not required. This case 
can be demonstrated in the paint problem when production is limited to exactly one batch of 
each color. For example, in the open-tour sequence, B S W S Y S R, the last “city” (R) does 
not link back to the starting “city” (B).

The condition can be accounted for in an n-city situation by adding a fictitious city, n + 1,  
with zero distances to and from all the real cities—that is, di, n + 1 = 0, i = 1, 2, c, n and 
dn + 1, j = 0, j = 1, 2, c, n. For the paint example, the new distance matrix becomes

‘dij ‘ = • ∞ 10 17 15 0
20 ∞ 19 18 0
50 44 ∞ 22 0
45 40 20 ∞ 0
0 0 0 0 ∞

µ
Row 5 and column 5 represent the fictitious color.

The optimum tour is

W S Y S R S B S Fictitious S W, length = 48 min

The solution can be read by rearranging the tour starting and terminating points with the fictitious 
color:

Fictitious S W S Y S R S B S Fictitious

Removing the fictitious color, we get the following open-tour solution:

W S Y S R S B

It is important to note that the open-tour optimum solution cannot be obtained from the opti-
mum closed-tour solution (W S Y S B S R S W) directly.

Lower bound on the optimum tour length. A lower bound on the optimum tour length can be 
useful in solving the TSP by either the exact or the heuristic algorithms. In the case of the exact 
algorithms, a tight lower bound restricts the feasible space and thus makes the algorithm more 
efficient (particularly in the case of B&B). For the heuristics, a lower bound can be used to judge 
the quality of the heuristic solution.

There are a number of methods for estimating a lower bound. Two of them are presented 
here:

1. Assignment model. The assignment model is a relaxation of the TSP model, and its 
optimum solution provides a lower bound on the optimum tour length. Indeed, if the 
 optimum solution of the assignment model is feasible (i.e., a tour), then it is also  optimum 
for the TSP.

The solution of the (closed tour) assignment model for the paint problem yields a 
lower bound of 72 min.

2. Linear programming. A lower bound in an n-city situation can be determined by inscrib-
ing the largest nonoverlapping circles around all the cities. Let rj, j = 1, 2, c, n, be the 
largest radius of a circle inscribed around city j. The optimum value of the following LP 
provides a lower bound:

Maximize z = 21r1 + r2 + c + rn2
subject to

ri + rj …  min 1dij, dji2  i, j = 1, 2, c, n, i 6 j



11.3  exact TSP algorithms   441

The objective function recognizes that a salesperson entering the circle around city i must 
cover a distance of at least 2ri before entering the circle domain of any other city in the network. 
The constraints guarantee that none of the circles overlap.

For the paint example, we have

Maximize z = 21rW + rY + rB + rR2
subject to

rW + ry …  min110, 202
rW + rB …  min117, 502
rW + rR …  min115, 452
rY + rB …  min119, 442
rY + rR …  min118, 402
rB + rR …  min122, 202

rW, rY, rB, rR, Ú 0

The solution yields a lower bound of 60 min, which is not as tight as the one obtained from 
the assignment model 1=  72 min2. Actually, experimentation with the two methods suggests 
that the assignment model consistently yields tighter lower bounds, particularly when the TSP is 
asymmetric. Note that the LP will always provide a trivial zero-value lower bound for an open-
tour TSP because the zero “in–out” distances of the fictitious city set a zero limit on all the radii.

AMpL Moment

The assignment and the LP models given above for estimating the lower bound can be solved 
using the following AMPL files provided on the website:

model amplAssign.txt; data amplInputData.txt; commands solutionAssign.txt;

model amplLP.txt; data amplInputData.txt; commands solutionLP.txt;

File amplInputData.txt provides the TSP data of the paint problem.

11.3 exAct tSp ALGoRithMS

This section presents two exact IP algorithms: B&B and cutting plane. Both algo-
rithms guarantee optimality theoretically. The computational issue is a different 
story—meaning that the algorithms may fail to produce the optimum in a reasonable 
amount of time, prompting the development of the heuristics in Sections 11.4 and 11.5.

11.3.1 B&B Algorithm

The idea of the B&B algorithm is to start with the optimum solution of the associated 
assignment problem. If the solution is a tour, the process ends. Otherwise, restrictions 
are imposed on the resulting solution to disallow subtours. The idea is to create branches 
that assign a zero value to each of the variables of one of the subtours. Normally, the 
subtour with the smallest number of cities is selected for branching because it creates 
the smallest number of branches.
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If the solution of the assignment problem at any node is a tour, its objective value 
provides an upper bound on the optimum tour length. If it does not, further branching 
at the node is required. A subproblem is fathomed if it yields a smaller upper bound, 
or if there is evidence that it cannot lead to a better upper bound. The optimum tour is 
given at the node with the smallest upper bound.

The following example provides the details of the TSP B&B algorithm.

example 11.3-1 

Consider the following 5-city TSP distance matrix:

‘dij ‘ = • ∞ 10 3 6 9
5 ∞ 5 4 2
4 9 ∞ 7 8
7 1 3 ∞ 4
3 2 6 5 ∞

µ
The associated assignment is solved using AMPL, TORA, or Excel. The solution is

z = 15, 1x13 = x31 = 12, 1x25 = x54 = x42 = 12, all others = 0

It consists of two subtours, 1-3-1 and 2-5-4-2, and constitutes the starting node of the B&B search 
tree, as shown at node 1 in Figure 11.2.

In the present example, we will use an arbitrary tour, 1-2-3-4-5-1, to determine the ini-
tial upper bound—namely, 10 + 5 + 7 + 4 + 3 = 29 units. Alternatively, the heuristics in 
Sections 11.4 and 11.5 may be used to yield improved (smaller) upper bounds. The estimated 

4 5

z 5 19
(1-4-2-5-3-1)

z 5 17
(2-5-2)(1-4-3-1)

z 5 21
(1-4-5-2-3-1)

2

1

z 5 15
(1-3-1)(2-5-4-2)

3

z 5 16
(1-3-4-2-5-1)

x31 5 0x13 5 0

x52 5 0x25 5 0

Figure 11.2 

B&B solution of the TSP problem of Example 11.3-1 
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upper bound means that the optimum tour length cannot exceed 29. Future B&B nodes seek 
smaller upper bounds, if any exists.

At node 1 of the B&B tree, the smaller subtour 1-3-1 creates branch x13 = 0 leading to node 
2 and x31 = 0 leading to node 3. The associated assignment problems at nodes 2 and 3 are cre-
ated from the problem at node 1 by setting d13 = ∞  and d31 = ∞ , respectively.

At this point, we can examine either node 2 or node 3, and we arbitrarily choose to explore 
node 2. Its assignment solution is 2-5-2 and 1-4-3-1 with z = 17. Because the solution is not 
a tour, we select the smaller subtour 2-5-2 for branching: branch x25 = 0 leads to node 4 and 
branch x52 = 0 leads to node 5.

We now have three unexplored subproblems: nodes 3, 4, and 5. We arbitrarily examine the 
subproblem at node 4, setting d25 = ∞  in the distance matrix at node 2. The resulting solution, 
tour 1-4-5-2-3-1, yields the smaller upper bound z = 21.

The two subproblems at nodes 3 and 5 remain unexplored. Arbitrarily selecting subproblem 
5, we set d52 = ∞  in the distance matrix at node 2. The result is tour 1-4-2-5-3-1 with the smaller 
upper bound z = 19. Subproblem 3 is the only one that remains unexplored. Substituting d31 = ∞  
in the distance matrix at node 1, we get yet a better tour solution: 1-3-4-2-5-1 with the smaller upper 
bound z = 16.

All the nodes in the tree have been examined, thus completing the B&B search. The optimal 
tour is the one associated with the smallest upper bound: 1-3-4-2-5-1 with length 16 units.

Remarks. The solution of Example 11.3-1 reveals two points:

1. The search sequence 1 S 2 S 4 S 5 S 3 was selected deliberately to demonstrate a worst 
case scenario in the B&B algorithm, in the sense that it requires exploring 5 nodes. Had we 
explored node 3 (x31 = 0) prior to node 2 (x13 = 0), we would have encountered the upper 
bound z = 16 units, and concluded that branching at node 2, with z = 17, cannot lead to a 
better solution, thus eliminating the need to explore nodes 4 and 5.

Generally, there are no exact rules for selecting the best search sequence, save some 
rules of thumb. For example, at a given node we can start with the branch having the larg-
est dij among all the created branches. The hope is that the elimination of the largest tour 
leg would lead to a tour with a smaller length. In Example 11.3-1, this rule would have 
given priority to node 3 over node 2 because d311=  42 is larger than d131=  32, as desired. 
Another rule calls for sequencing the exploration of the nodes horizontally (rather verti-
cally), that is, breadth before depth. The idea is that nodes closer to the starting node are 
more likely to produce tighter upper bounds because the number of additional constraints 
(of the type xij = 0) is smaller. This rule also would have produced the computationally 
efficient search 1 S 2 S 3.

2. The heuristics in Sections 11.4 and 11.5 can enhance the computational efficiency of the 
B&B algorithm by providing a “tight” upper bound. For example, the nearest-neighbor 
heuristic in Section 11.4.1 yields the tour 1-3-4-2-5-1 with length z = 16. This tight upper 
bound would have immediately eliminated the need to explore node 2 (the distance matrix 
is all integer, thus no better solution can be found at node 2).

AMpL Moment

Interactive AMPL commands are ideal for the implementation of the TSP B&B algorithm 
using the general assignment model file amplAssign.txt. The data of the problem is given in 
file Ex11.3-1.txt. The file solutionAssign.txt solves and displays the solution. The following  
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table summarizes the AMPL commands needed to create the B&B tree in Figure 11.2 
 (Example 11.3-1) interactively:

AMPL commands Result

ampl:  model amplAssign.txt;data Ex11.3-1.txt; 
commands solutionAssign.txt;

Node 1 solution

ampl:  fix x[1,3]:=0;commands  
solutionAssign.txt;

Node 2 solution

ampl:  fix x[2,5]:=0;commands  
solutionAssign.txt;

Node 4 solution

ampl:  unfix x[2,5];fix x[5,2]:=0; 
commands solutionAssign.txt;

Node 5 solution

ampl:  unfix x[5,2];unfix x[1,3];fix x[3,1]:=0; 
commands solutionAssign.txt;

Node 3 solution

toRA Moment

TORA can also be used to generate the B&B tree. Start with the assignment model at node 1. 
The branch condition xij = 0 is effected by using Solve>Modify Input Data to change the upper 
bound on xij to zero.

11.3.2 cutting-plane Algorithm

In the cutting-plane algorithm, a set of constraints is added to the assignment problem to 
exclude subtour solutions. Define a continuous variable uj 1Ú  02 for city j = 2, 3, c,  
and n. The desired additional constraints (cutting planes) are

ui - uj + nxij … n - 1, i = 2,3, c, n; j = 2,3, c, n; i ≠ j

The addition of these cuts to the assignment model produces a mixed integer linear 
program with binary xij and continuous uj.

example 11.3-2 

Consider the following distance matrix of a 4-city TSP problem:

‘dij ‘ = § - 13 21 26
10 - 29 20
30 20 - 5
12 30 7 -

¥
The complete mixed integer problem consists of the assignment model and the additional con-
straints in Table 11.3. All xij = 10, 12 and all uj Ú 0.

The optimum solution is u2 = 0, u3 = 2, u4 = 3, x12 = x23 = x34 = x41 = 1. The corre-
sponding tour is 1-2-3-4-1 with length 59. The solution satisfies all the additional constraints. 
(Verify!)

To demonstrate that the given optimum solution cannot satisfy a subtour solution, consider 
the subtour (1-2-1, 3-4-3), or x12 = x21 = 1, x34 = x43 = 1. The optimum values u2 = 0, u3 = 2,
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and u4 = 3 together with x43 = 1 do not satisfy constraint 6, 4x43 + u4 - u3 … 3, in Table 11.3. 
[Convince yourself that the same conclusion is true for other subtour solutions, such as 
(3-2-3, 1-4-1).]

The disadvantage of the cutting-plane model is that the size of the resulting mixed integer 
linear program grows exponentially with the number of cities, making the model computation-
ally intractable. When this happens, the only recourse is to use either the B&B algorithm or one 
of the heuristics in Sections 11.4 and 11.5.

AMpL Moment

A general AMPL model of the cutting-plane algorithm is given in file amplCut.txt. The 4-city TSP 
of Example 11.3-2 uses the following AMPL commands:

model amplCut.txt; data Ex11.3-2.txt; commands SolutionCut.txt;

The output is presented in the following convenient format:

Optimal tour length = 59.00

Optimal tour: 1- 2- 3- 4- 1

11.4 LocAL SeARch heURiSticS

This section presents two local search heuristics for TSP: nearest-neighbor and reversal. 
Local search heuristics terminate at a local optimum. One way to improve the quality 
of the solution is to repeat the search using randomly generated starting tours. Another 
option is to use metaheuristics, whose basic idea is to escape entrapment at a local 
 optimum. The metaheuristics will be covered in Section 11.5.

11.4.1 Nearest-Neighbor heuristic

As the name suggests, a TSP solution can be found by starting with a city (node) and 
then connecting it to the closest unlinked city (break ties arbitrarily). The just-added 
city is then linked to its nearest unlinked city. The process continues until a tour is 
formed.

Table 11.3 Cuts for Excluding Subtours in the Assignment Model of Example 11.3-2 

No. x11 x12 x13 x14 x21 x22 x23 x24 x31 x32 x33 x34 x41 x42 x43 x44 u2 u3 u4

1 4 1 -1 …  3

2 4 1 -1 …  3

3 4 -1 1 …  3

4 4 1 -1 …  3

5 4 -1 1 …  3

6 4 -1 1 …  3
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example 11.4-1 

The matrix below summarizes the distances in miles in a 5-city TSP.

‘dij ‘ = • ∞ 120 220 150 210
120 ∞ 100 110 130
220 80 ∞ 160 185
150 ∞ 160 ∞ 190
210 130 185 ∞ ∞

µ
The heuristic can start from any of the five cities. Each starting city may lead to a different tour. 
Table 11.4 provides the steps of the heuristic starting at city 3. (Distances for previously selected 
cities are replaced with —).

The resulting tour, 3-2-4-1-5-3, has a total length of 80 + 110 + 150 + 210 + 185 = 735 
miles. Observe that the quality of the solution depends on the selection of the starting city. For 
example, starting from city 1, the resulting tour is 1-2-3-4-5-1 with length 780 miles (try it!). A bet-
ter solution may thus be found by repeating the heuristic starting with different cities.

11.4.2 Reversal heuristic

In an n-city TSP, the reversal heuristic attempts to improve a current tour by re-
versing the order of nodes of an open subtour (a subtour is open if it is missing 
exactly one leg). For example, consider tour 1-3-5-2-4-1 in Figure 11.3. Reversal of 
open subtour 3-5-2 produces the new tour 1-2-5-3-4-1 by deleting legs 1-3 and 2-4 
and adding legs 1-2 and 3-4, as Figure 11.3 shows. The smallest number of reversed 
subtour is 2 (e.g., 3-5 or 5-2). The largest number is n - 2 if the distance matrix is 
symmetric and n - 1 if it is asymmetric.3 The heuristic scans all reversals in search 
for a better tour.

The length of the starting tour in the reversal heuristic need not be finite (i.e., it 
could have missing legs). Indeed, starting with a finite-length tour does not appear to 
offer a particular advantage regarding the quality of the final solution (see Problem 
11-24, for an illustration).

Table 11.4 Steps of the Nearest-Neighbor Heuristic for Solving the TSP of Example 11.4-1 

Step Action Tour construction

1 Start at city 3 3
2 City 2 is closest to city 3 1d32 =  min5220, 80, ∞ , 160, 18562 3-2
3 City 4 is closest to city 2 1d24 = min5120, ∞ , :, 110, 13062 3-2-4
4 City 1 is closest to city 4 1d41 = min5150, ∞ , :9,:9, 19062 3-2-4-1
5 City 5 is closest to city 1 1d15 = min5∞ , :9, :9, :9, 21062 3-2-4-1-5
6 Add city 3 to complete the tour 3-2-4-1-5-3

3 In a symmetric distance matrix, the (n - 1)-city subtour reversal does not produce a different tour. For ex-
ample, reversing 2-4-5-3 in the tour 1-2-4-5-3-1 yields the identical tour 1-3-5-4-2-1 when the distance matrix 
is symmetric (dij = dji, for all i and j). This may not be true in the asymmetric case because legs i - j and 
j - i may not be equal.
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example 11.4-2 

Consider the TSP of Example 11.4-1. The (self-explanatory) reversal steps are carried out in 
Table 11.5 starting with an arbitrary tour 1-4-3-5-2-1 of length 745 miles.

The four-at-a-time reversal is investigated because the distance matrix is asymmetric. Also, 
none of the reversals can include the home city of the initial tour (=  1 in this example) as this 
will not yield a feasible tour. For example, the reversal 1-4 leads to 4-1-3-5-2-1, which is not a tour.

The solution determined by the reversal heuristic is a function of the starting tour. For ex-
ample, if we start with 2-3-4-1-5-2 with length 750 miles, the heuristic produces a different tour: 
2-5-1-4-3-2 with length 730 miles (verify!). For this reason, the quality of the solution can be im-
proved if the heuristic is repeated with different starting tours.

excel Moment

Figure 11.4 provides a general Excel spreadsheet (file excelReversalTSP.xls) using the rules given 
above (a subset of the model provides the nearest-neighbor solution—see options 1 and 4 given 
below). The distance matrix may be entered manually, or it may be populated randomly (symmetric 
or asymmetric) with specified density. The heuristic automatically checks for matrix symmetry and 
adjusts the maximum reversal level accordingly. It also automates four options for the starting tour:

1. Option all applies the nearest-neighbor heuristic using each of the cities as a starting point. 
The best amongst the resulting tours is then used to start the reversal heuristic.

2. Option tour allows the use of a specific starting tour.
3. Option random generates a random starting tour.
4. Option specific city number applies the nearest-neighbor heuristic starting at the designated 

city.

Delete

Delete

Add

3

5

2
4

1

Figure 11.3 

Subtour reversal 3-5-2 in tour 1-3-5-2-4-1  
produces tour 1-2-5-3-4-1 by deleting legs  
1-3 and 2-4 and adding legs 1-2 and 3-4

Table 11.5 Application of the Reversal Heuristic to the TSP of Example 11.4-1.

Type Reversal Tour Length

Start — (1-4-3-5-2-1) 745

Two-at-a-time  
reversal

4-3 1-3-4-5-2-1 820
3-5 (1-4-5-3-2-1) 725
5-2 1-4-3-2-5-1 730

Three-at-a-time  
reversal

4-3-5 1-5-3-4-2-1 ∞
3-5-2 1-4-2-5-3-1 ∞

Four-at-a-time  
reversal

4-3-5-2 1-2-5-3-4-1 745
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Figure 11.4 

Execution of the TSP heuristic using Excel spreadsheet (file excelReversalTSP.xls)

Aha! Moment: tSp computational experience, or how to Reproduce Leonardo 
da Vinci’s Mona Lisa!4

TSP has been in circulation since the nineteenth century. But interest in solving the problem 
did not start in earnest until G. Dantzig, R. Fulkerson, and S. Johnson (1954) developed an 
LP-based algorithm for determining the optimal (shortest) tour for visiting 49 cities in the 
continental United States. Lacking computers then, the problem was solved by hand (it took 
only a few weeks, the horror!).5 Since then, and with the advent of modern computing, much 
larger instances were solved culminating in 2004 with the optimal tour of 24,978 cities in 
Sweden.

In a different application setting, TSP was used in the mid-1980s at Bell Labs to manu-
facture a computer chip that required laser-vaporization of 85,900 interconnections of simple 
logic gates. The goal was to move the laser on the chip from one location to the next tracing the 
shortest tour (smallest total travel distance). Attempts to find the solution started in 1991 and 
culminated in 2006 with the optimum tour. Amazingly, this 15-year “crusade” has resulted in less 
than .1% (0.0923%, to be exact) reduction in the length of the tour found in 1991. In a practical 
sense, it would appear that the 1991 solution is just as good as that of 2006. On the other hand, 
academic posturing demands nothing but the best!

Another application from the world of art is the reproduction of Leonardo da Vinci’s 
Mona Lisa using a continuous-line drawing among stipples (dots) characterizing the original 
painting (where shades of darkness are mimicked by how close or far apart the stipples are). An 
instance of n dots representing the relative locations of these stipples completely defines the as-
sociated TSP. In 2009, a challenge was made to solve the Mona Lisa instance using n = 100,000 
stipples. Since then, the gap relative to a lower bound on the shortest length of the tour (com-
puted by an LP relaxation of the TSP) was reduced from 2212 distance units to 107 as of 2012. 
When the optimal of the Mona Lisa TSP is eventually found, the problem will be the largest ever 
attempted. And the race continues!

4http://www.math.uwaterloo.ca/tsp/index.html, accessed 05-10-2015, 2:33P.M.
5For the sake of comparison, a 49-city instance can now be solved in a split second using Concorde TSP 
Solver. For information about Concorde, refer to the University of Waterloo website, op. cit.
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11.5 MetAheURiSticS

The drawback of the local search heuristics in Section 11.4 is possible entrapment at 
a local optimum. Metaheuristics, as explained in Chapter 10, are designed to alleviate 
this problem. This section details the application of tabu, simulated annealing, and ge-
netic search to TSP. It is recommended that you review related material in Chapter 10 
before proceeding with the rest of this chapter.

11.5.1 tSp tabu Algorithm

As explained in Section 10.3.1, tabu search escapes entrapment at local optima by per-
mitting inferior search moves. A tabu list prevents repeating previously encountered 
solutions during a specified number of successive iterations, called tenure period. A 
tabu move can be accepted if it leads to an improved solution. For the TSP model, the 
elements of the tabu search are defined as follows:

1. Starting tour. Four options are available: (a) a specific tour, (b) a specific start-
ing city for a tour constructed by the nearest-neighbor heuristic (Section 11.4.1), 
(c) the best among all tours constructed by the nearest-neighbor heuristic using 
each of cities 1, 2, c, and n as a starting point, and (d) a random tour.

2. Subtour reversal. Two added tour legs replace two deleted ones to produce a 
new tour (see Section 11.4.2 for details).

3. Neighborhood at iteration i. All tours (including infeasible ones with infinite 
length) generated by applying subtour reversals to tour i.

4. tabu move. A reversal tour is tabu if both of its deleted legs are on the tabu list.
5. Next move at iteration i. Identify the shortest tour in neighborhood i and select 

it as the next move if it is non-tabu, or if it is tabu but yields a better solution. 
Else, exclude the shortest (tabu) tour and repeat the test with the next shortest 
neighborhood tour.

6. tabu tenure period T at iteration i. The tenure period is the (random or deter-
ministic) number of successive iterations a tabu element stays on the tabu list.

7. Changes in tabu list at iteration i. Reversal legs defining tour i from tour i - 1 
are added to the list. Tour legs completing tenure (those that entered the list at 
iteration i - t + 1) are deleted from the list.

example 11.5-1 

We will use the distance matrix of Example 11.4-1 to demonstrate the application of the tabu 
metaheuristic.

‘dij ‘ = • ∞ 120 220 150 210
120 ∞ 100 110 130
220 80 ∞ 160 185
150 ∞ 160 ∞ 190
210 130 185 ∞ ∞

µ
Assume a tabu tenure t = 2 iterations and use 1-2-3-4-5-1 of length 780 as the starting tour.
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Table 11.6 provides five iterations. In iterations 1, 2, and 3, the shortest tours are non-tabu. 
In iteration 4, the shortest tour, 1-4-3-5-2-1 of length 745, is tabu because the reversal requires 
deleting legs 4-5 and 3-2, and both are on the tabu list. Since the (tabu) tour is not better than 
the best recorded solution (tour 1-4-5-3-2-1 of length 725 in iteration 3), the next shortest tour, 
1-4-5-2-3-1 of length 790, which happens to be non-tabu, defines the next move.

In iteration 5, the two tours 1-4-5-3-2-1 (length = 725) and 1-4-3-2-5-1 (length = 730) are 
tabu (and neither provides a better tour). The next best tour in the neighborhood, 1-4-2-5-3-1 (of 
infinite length), is non-tabu and hence represents the next move. Note that only one deleted leg 
(4-5) in the selected tour 1-4-2-5-3-1 appears on the tabu list, which is not sufficient to declare the 
tour tabu because both deleted legs must be on the list. Note also that the top tour 1-5-4-2-3-1 
(of infinite length) is not selected because it is missing two legs, compared with one missing leg 
in the selected tour, 1-4-2-5-3-1.

Table 11.6 Tabu Heuristic Solution of Example 11.5-1 with Tenure Period t = 2 Iterations

Iteration Reversal Tour Length (miles) Delete Add Tabu list (t = 2)

0 — 1-2-3-4-5-1 780 —

1 2-3 1-3-2-4-5-1 810
3-4 1-2-4-3-5-1 785
4-5 1-2-3-5-4-1 ∞
2-3-4 1-4-3-2-5-1 730 1-2, 5-4 1-4, 2-5 1-4, 2-5
3-4-5 1-2-5-4-3-1 ∞
2-3-4-5 1-5-4-3-2-1 ∞

2 4-3 1-3-4-2-5-1 ∞
3-2 1-4-2-3-5-1 ∞
2-5 1-4-3-5-2-1 745 3-2, 5-1 3-5, 2-1 1-4, 2-5, 3-5, 2-1
4-3-2 1-2-3-4-5-1 780
3-2-5 1-4-5-2-3-1 790
4-3-2-5 1-5-2-3-4-1 750

3 4-3 1-3-4-5-2-1 820
3-5 1-4-5-3-2-1 725 4-3, 5-2 4-5, 3-2 3-5, 2-1, 4-5, 3-2
5-2 1-4-3-2-5-1 730
4-3-5 1-5-3-4-2-1 ∞
3-5-2 1-4-2-5-3-1 ∞
4-3-5-2 1-2-5-3-4-1 745

4 4-5 1-5-4-3-2-1 ∞
5-3 1-4-3-5-2-1 745 4-5, 3-2 — Tabu
3-2 1-4-5-2-3-1 790 5-3, 2-1 5-2, 3-1 4-5, 3-2, 5-2, 3-1
4-5-3 1-3-5-4-2-1 ∞
5-3-2 1-4-2-3-5-1 ∞
4-5-3-2 1-2-3-5-4-1 ∞

5 4-5 1-5-4-2-3-1 ∞
5-2 1-4-2-5-3-1 ∞ 4-5, 2-3 4-2, 5-3 5-2, 3-1, 4-2, 5-3
2-3 1-4-5-3-2-1 725 5-2, 3-1 — Tabu
4-5-2 1-2-5-4-3-1 ∞
5-2-3 1-4-3-2-5-1 730 4-5, 3-1 — Tabu
4-5-2-3 1-3-2-5-4-1 ∞
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excel Moment

Figure 11.5 presents the Excel spreadsheet (file excelTabuTSP.xls) for applying tabu search to 
the TSP model. To facilitate experimentation, symmetric or asymmetric TSPs can be generated 
randomly. Also, the initial tour can be specified either deterministically or randomly. The on/off 
buttons (row 6 of the spreadsheet) reveal/suppress the details of the iterations, including changes 
in the tabu list.

 

Figure 11.5 

TSP tabu metaheuristic using Excel spreadsheet (file excelTabuTSP.xls)
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11.5.2 tSp Simulated Annealing Algorithm

Section 10.3.2 explains that at any iteration in simulated annealing, a no-worse neigh-
borhood solution is always accepted as the next move. If no such solution exists, the 
search can move to an inferior neighborhood solution conditionally if

R 6 e1
Lcur - Lnext

T 2

where

R = 10, 12 Random number
Lcur = Tour length at current iteration
Lnext = 1Inferior2  Tour length at next iteration 17  Lcur2
T = Temperature

The temperature T assumes smaller values as the number of search iterations increases, 
thus decreasing the value of e1

Lcur - Lnext

T 2,  rendering a more selective search. Also, the ac-
ceptance measure favors moves whose objective value, Lnext, is closer to the current 

objective value, Lcur, because it increases the value of e1
Lcur - Lnext

T 2.
The principal components of simulating annealing are as follows:

1. Starting tour. Four options are available: (a) A specific tour, (b) a specific start-
ing city for a tour constructed by the nearest-neighbor heuristic (Section 11.4.1), 
(c) the best among all tours constructed by the nearest-neighbor heuristic using 
each of cities 1, 2, c, and n as a starting point, and (d) a random tour.

2. Subtour reversal. Two added tour legs replace two deleted legs to produce a 
new tour (see Section 11.4.2 for details).

3. temperature schedule. 5Tk, k = 0, 1, c6, T0 = starting temperature, Tk =  
rkTk - 1, 0 6 rk 6 1, k = 1, 2, c, with the change from one temperature to the 
next taking place every t accept-iterations.

4. Neighborhood at iteration i. All tours (including infeasible ones with infinite 
length) generated from applying subtour reversals (Section 11.4.2) to tour i.

5. Next move at iteration i. Select the subtour reversal that is no worse than the 
current best tour; else, scan tours in neighborhood i in ascending order of tour 
length until a move is accepted (using the probability measure).

example 11.5-2 

We will use the distance matrix of Example 11.4-1 to demonstrate the application of simulated 
annealing metaheuristic.

‘dij ‘ = • ∞ 120 220 150 210
120 ∞ 100 110 130
220 80 ∞ 160 185
150 ∞ 160 ∞ 190
210 130 185 ∞ ∞

µ
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Table 11.7 Simulated Annealing Solution of Example 11.5-2 with Tk = .5Tk -  1, T0 = 50, and Change from Tk -  1 to 
Tk Taking Place Every Two Accept-Iterations

Iteration Reversal Tour
Length 
(miles) Lcur Lnext T p = e1

Lcur - Lnext

T 2 R Decision

0 — 3-2-5-4-1-3 ∞ ∞ 50 — —
1 2-5 3-5-2-4-1-3 795 50

5-4 3-2-4-5-1-3 810 50
4-1 3-2-5-1-4-3 730 50
2-5-4 3-4-5-2-1-3 820 50
5-4-1 3-2-1-4-5-3 725 ∞ 725 50 — Accept move, Lnext 6 Lcur
2-5-4-1 3-1-4-5-2-3 790 50

50

2 2-1 3-1-2-4-5-3 825 50
1-4 3-2-4-1-5-3 735 725 735 50 .8187 .8536 Reject move, R 7 p
4-5 3-2-1-5-4-3 ∞ 50
2-1-4 3-4-1-2-5-3 745 725 745 50 .6703 .3701 Accept move, R 6 p
1-4-5 3-2-5-4-1-3 ∞ 50
2-1-4-5 3-5-4-1-2-3 ∞ 50

∞

3 4-1 3-1-4-2-5-3 ∞ 25
1-2 3-4-2-1-5-3 ∞ 25
2-5 3-4-1-5-2-3 750 25
4-1-2 3-2-1-4-5-3 725 745 725 25 Accept move, Lnext 6 Lcur
1-2-5 3-4-5-2-1-3 820 25
4-1-2-5 3-5-2-1-4-3 745 25

Assume the temperature schedule Tk = .5Tk - 1 with T0 = 50. A change fom Tk - 1 to Tk takes 
place every two accept-iterations. The example starts with the infeasible (infinite length) tour 
3-2-5-4-1-3.

Table 11.7 details the computations for three iterations. The best reversal move 5-4-1 in 
iteration 1 is accepted because it yields a better tour length 1Lnext = 725 versus Lcur = ∞2. 
This means that tour 3-2-1-4-5-3 is the best solution available so far. Iteration 2 produces in-
ferior moves, meaning that the previous move, 5-4-1 in iteration 1, is a local minimum. Hence, 
we scan all the tours in iteration 2 in ascending order of tour length until a tour is accepted (if 
all tours are rejected, either the scan is repeated using a new round of random numbers or the 
search ends). Move 1-4 with a tour length of 735 is rejected because R = .8536 is larger than 
p = e1

725 - 735
50 2 = .8187. The next-in-order move, 2-1-4, with tour length of 745 is accepted because 

R = .3701 is less than p = e1
725 - 745

50 2 = .6703.
At iteration 3, two accept-iterations have been realized at iterations 1 and 2. Hence, the 

temperature is changed from 50 to .51502 = 25. The iterative process then continues until a ter-
minating condition takes place.

excel Moment

Figure 11.6 provides a snapshot of simulated annealing application to TSP (file excelSimu-
latedAnnealingTSP.xls). The spreadsheet follows the general layout of the tabu spreadsheet 
in Figure 11.5.
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11.5.3 tSp Genetic Algorithm

In the genetic metaheuristic introduced in Section 10.3.3, two parents are selected from a 
population to create two children. The children then become parents themselves replacing 
the two least fit (in terms of tour length) parents in the population. The process of creating 
children and of retiring parents is repeated until a termination condition is reached.

The following is a description of the main elements of the genetic metaheuristic 
as it applies to the TSP.

1. Gene coding. The coding can be binary or numeric. The literature presents heu-
ristics based on both types of coding. This presentation adopts the direct numeric 
tour code (e.g., 1-2-5-4-3-1).

2. Initial population. The first step is to identify the sets of outgoing nodes from 
each node in the network that can be reached by a finite tour leg. Starting from 
a specific (home) node, a tour is constructed by adding in the rightmost position 
a unique nonredundant node selected from among all the outgoing nodes of the 

 

Figure 11.6 

TSP simulated annealing metaheuristic using Excel spreadsheet (file excelSimulatedAnnealingTSP.xls)
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last-added node. If a point is reached where no unique outgoing node exists, the 
entire process is repeated until a finite-length tour is found.

The requirement stipulating that outgoing nodes be reached by finite links 
guarantees that the constructed tour is feasible (has a finite length). Unlike tabu 
and simulated annealing where a new search move can be infeasible, infeasible 
parent tours may never lead to the creation of feasible child tours. This result is 
particularly true when the distance matrix is sparse.

3. Child creation. The process starts by selecting two parents, P1 and P2, whose 
genes are swapped to create two children, C1 and C2. We will assume that P1 
represents the best parent (in terms of tour length) and P2 the next best. There 
are numerous ways for gene swapping [see Larrañaga et al. (1999) for a list of 25 
such procedures]. In this presentation, we will use the order crossover procedure, 
whose steps are explained in Table 11.8.

The proposed procedure for creating children may lead to infeasible tours 
(with missing legs). If this happens, the procedure should be repeated as neces-
sary until offspring feasibility is realized.

4. Mutation. Mutation in child genes takes place with a small probability of about 
.1, interchanging the nodes of two randomly selected positions in the tour (exclud-
ing those of the home node). Random selection may be repeated to secure two 
distinct positions.

example 11.5-3 

We will use the TSP of Example 11.4-1 to demonstrate the application of the genetic heuristic.

‘dij ‘ = • ∞ 120 220 150 210
120 ∞ 100 110 130
220 80 ∞ 160 185
150 ∞ 160 ∞ 190
210 130 185 ∞ ∞

µ

Table 11.8 Steps for Creating Children C1 and C2 from Parents P1 and P2 Using Order Crossover

Step Action Example (assume n = 7 nodes)

0 Select P1 and P2 from population. P1 = 1@2@5@4@3@7@6 (link back to node 1)
P2 = 5@4@2@6@3@1@7 (link back to tour 5)

1 Randomly select two crossover points, c1 and 
c2 with c1 6 c2.

  R = .4425 yields c1 = int17 * .34252 + 1 = 3
  R = .7123 yields c2 = int17 * .71232 + 1 = 5

2 Swap positions 1c1, c1 + 1, c, c22 in P1 and 
P2 to partially form C2 and C1, respectively.

C1 = ?@?@2@6@3@?@?
C2 = ?@?@5@4@3@?@?

3 Create list L1(L2) by rearranging the 
elements of P1(P2) in the clockwise order 
c2 + 1, c2 + 2, c, n, 1, 2, c, c2.

L1 = 17, 6, 1, 2, 5, 4, 32
L2 = 11, 7, 5, 4, 2, 6, 32

4 From L1 (L2), create L1= 1L2=2 by deleting 
the nodes already assigned to C1(C2) in step 2 
while preserving the order in L1 and L2.

L1= = L1 - 12, 6, 32 = 17, 1, 5, 42
L2= = L2 - 15, 4, 32 = 11, 7, 2, 62

5 Assign the elements of L1=1L2=2 to the 
missing elements in C1(C2) in the order 
c2 + 1, c2 + 2, c, n, 1, 2, c, c1 - 1.

C1 = 5@4@2@6@3@7@1 (link back to node 5)
C2 = 2@6@5@4@3@1@7 (link back to node 2)
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The list of outgoing nodes can be determined from the distance matrix as

Node i Outgoing nodes

1 {2, 3, 4, 5}
2 {1, 3, 4, 5}
3 {1, 2, 4, 5}
4 {1, 3, 5}
5 {1, 2, 3}

Table 11.9 provides the details of iterations 1, 2, and 11. Iteration 11 provides the best solution 
(which also happens to be optimum). The intervening iterations were omitted to conserve space.

We demonstrate the determination of initial population (6 parents) in iteration 1 by consid-
ering parent 1. Starting with home node 1, node 4 is selected randomly from the outgoing node 
set {2, 3, 4, 5}. Next, the outgoing nodes from node 4 are 51, 3, 56 - 516 because {1} is already in 
the partial tour. Selecting node 5 randomly yields the partial tour 1-4-5. The process is repeated 
until the full tour 1-4-5-2-3-1 is constructed. Keep in mind that if the construction of the tour is 
dead-ended (no new nodes can be added), then the entire process must be repeated anew. For 
example, tour construction cannot continue past partial tour 1-2-3-5 because there is no link from 
node 5 to (the only remaining) outgoing node 4.

Table 11.9 Genetic Algorithm Applied to TSP of Example 11.4-3 

Iteration Member Tour Crossovers Length (miles)

 1 1 1-4-5-2-3-1 790
2 3-2-4-5-1-3 810
3 1-2-4-5-3-1 825

(Parent 2) 4 2-5-3-4-1-2 745
5 3-4-5-1-2-3 780

(Parent 1) 6 1-5-3-2-4-1 735
Child 1 5-2-3-4-1-5 3 and 5 750
Child 2 5-1-3-2-4-5 810

 2 1 1-4-5-2-3-1 790
2 5-1-3-2-4-5 810
3 5-2-3-4-1-5 750

(Parent 2) 4 2-5-3-4-1-2 745
5 3-4-5-1-2-3 780

(Parent 1) 6 1-5-3-2-4-1 735
Child 1 5-3-2-4-1-5 4 and 5 735
Child 2 5-3-1-2-4-5 825

… … … … …

11 (Parent 2) 1 1-5-3-2-4-1 735
2 5-3-2-4-1-5 735
3 5-3-2-4-1-5 735
4 5-3-2-4-1-5 735

(Parent 1) 5 4-5-3-2-1-4 725
6 5-3-2-4-1-5 735

Child 1 4-5-3-2-1-4 3 and 4 725
Child 2 1-5-3-2-4-1 735
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In iteration 1, P1 = 1@5@3 @2@4 and P2 = 2@5@3 @4 @1 because they are the two fittest parents 
(note that the definitions of P1 and P2 do not include the last elements 1 and 2, respectively). Using 
the (randomly generated) crossover points c1 = 3 and c2 = 5, we get partial C1 = ?@?@3 @4 @1 and 
C2 = ?@?@3 @2 @4. Next, L1= = 51, 5, 3, 2, 46 - 53, 4, 16 = 55, 26, which yields C1 = 5@2@3 @4 @1.  
Similarly, L2= = 52, 5, 3, 4, 16 - 53, 2, 46 = 55, 16, which yields C2 = 5@1@3 @2@4. Children 
C1 and C2 now replace the least-fit parents 2 and 3 corresponding to the worst (longest) tour 
lengths (810 and 825) to yield the new population to be used in iteration 2 (it is immaterial which 
child replaces which of the two worst parents).

For small problems, the iterations may “saturate” rather quickly, in the sense that the children 
become indistinguishable from the parents they replace, as iteration 11 demonstrates. The only 
recourse in this case is to restart a new execution cycle that allows the use of a new (randomized) 
starting condition.

excel Moment

Figure 11.7 provides a general Excel-based model for experimenting with the genetic meta-
heuristic (file excelGeneticTSP.xls). The model can be executed one iteration at a time or it can 
be automated until a termination condition is reached. The randomization of the starting condi-
tions provides different stating conditions each time the execution button is pressed.

 

Figure 11.7

TSP genetic metaheuristic using Excel spreadsheet (file excelGeneticTSP.xls)
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pRoBLeMS 

Section Assigned Problems Section Assigned Problems

11.1 11-1 to 11-1 11.4 11-23 to 11-26
11.2 11-2 to 11-14 11.5.1 11-27 to 11-29
11.3.1 11-15 to 11-19 11.5.2 11-30 to 11-32
11.3.2 11-20 to 11-22 11.5.3 11-33 to 11-35

11-1. In each of the following instances, describe the data elements (cities and distances) 
needed to model the problem as a TSP.
(a) Seers Service Center schedules its daily repair visits to customers. The jobs are cat-

egorized and grouped and each group assigned to a repairperson. At the end of the 
assignment, the repairperson reports back to the service center.

(b) A baseball fan wishes to visit eight major league parks in (1) Seattle, (2) San 
 Francisco, (3) Los Angeles, (4) Phoenix, (5) Denver, (6) Dallas, (7) Chicago, and  
(8) Tampa before returning home in Seattle. Each visit lasts about one week. The 
goal is to spend the least money on airfare.

(c) A tourist in New York City wants to visit 8 tourist sites using local transportation. 
The tour starts and ends at a centrally located hotel. The tourist wants to spend the 
least money on transportation.

(d) A manager has m employees working on n projects. An employee may work on more 
than one project, which results in overlap of the assignments. Currently, the manager 

*
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meets with each employee individually once a week. To reduce the total meeting 
time for all employees, the manager wants to hold group meetings involving shared 
projects. The objective is to reduce the traffic (number of employees) in and out of 
the meeting room.

(e) Meals-on-Wheels is a charity service that prepares meals in its central kitchen for deliv-
ery to people who qualify for the service. Ideally, all meals should be delivered within 
20 minutes from the time they leave the kitchen. This means that the return time from 
the last location to the kitchen is not a factor in determining the sequence of deliveries.

(f) DNA sequencing. In genetic engineering, a collection of DNA strings, each of a 
specified length, is concatenated to form one universal string. The genes of indi-
vidual DNA strings may overlap. The amount of overlaps between two successive 
strings is measurable in length units. The length of the universal string is the sum 
of the lengths of the individual strings less the overlaps. The goal is to concat-
enate the individual strings in a manner that minimizes the length of the universal 
string.

(g) Automatic guided vehicle. An AGV makes a round-trip, starting and ending at the 
mailroom, to deliver mail to departments on the factory floor. The AGV moves 
along horizontal and vertical aisles. The goal is to minimize the length of the 
round-trip.

(h) Integrated circuit board. Holes in identical circuit boards are drilled to mount elec-
tronic components. The boards are fed sequentially under a moving drill. The goal 
is to determine the sequence that completes drilling all the holes in a board in the 
shortest time possible.

(i) Protein clustering. Proteins are clustered using a numeric measure of similarity based 
on protein-to-protein interaction. Clustering information is used to predict unknown 
protein functions. The best cluster is the one that maximizes (minimizes) the sum of 
the measures of similarity (dissimilarity) between adjacent proteins.

(j) Celestial objects imaging. The US space agency NASA uses satellites for imaging 
celestial objects. The amount of fuel needed to reposition the satellites depends on 
the sequence in which the objects are imaged. The goal is to determine the optimal 
imaging sequence that minimizes fuel consumption.

(k) Mona Lisa TSP art. This intriguing application re-creates Leonardo da Vinci’s Mona 
Lisa using a continuous line drawing. The general idea is to approximate the original 
painting by using computer graphics to cluster dots on a graph. The dots are then 
connected sequentially by piecewise-linear segments.

*11-2. A book salesperson who lives in Basin must call once a month on four customers located 
in Wald, Bon, Mena, and Kiln before returning home to Basin. The following table gives 
the distances in miles among the different cities. 

Miles between cities

Basin Wald Bon Mena Kiln

Basin   0 125 225 155 215
Wald 125   0  85 115 135
Bon 225  85   0 165 190
Mena 155 115 165   0 195
Kiln 215 135 190 195   0
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The objective is to minimize the total distance traveled by the salesperson.
(a) Write down the LP for computing a lower-bound estimate on the optimum tour 

length.

(b) Compare the lower bounds on the optimum tour length using both the assignment 
model and linear programming. Is the assignment model solution optimum for the 
TSP?

11-3. Seers Service Center schedules its daily repair visits to customers. The matrix ‘Tij ‘  be-
low gives the travel time (in minutes) between the service center (row 1 and column 1)  
and seven jobs. The jobs are assigned to one of the repairpersons during an 8-hr shift.  
At the end of the day, the repairperson returns to the service center to complete  
paperwork.

‘Tij ‘ = ® 0 20 15 19 24 14 21 11
20 0 18 22 23 22 9 10
15 18 0 11 21 14 32 12
19 22 11 0 20 27 18 15
24 23 21 20 0 14 25 20
14 22 14 27 14 0 26 17
21 9 32 18 25 26 0 20
11 10 12 15 20 17 20 0

∏
(a) Compare the lower bounds on the optimum tour length using both the assignment 

model and linear programming. Is the assignment model solution optimum for the 
TSP?

(b) Given that journeying between jobs is nonproductive and assuming a 1-hr lunch 
break, determine the maximum productivity of the repairperson during the day.

11-4. A baseball fan wishes to visit eight major league parks in (1) Seattle, (2) San Francisco, 
(3) Los Angeles, (4) Phoenix, (5) Denver, (6) Dallas, (7) Chicago, and (8)Tampa before 
returning home to Seattle.  The fan will use air transportation between the different cit-
ies. The matrix ‘pij ‘  below provides the price in dollars of one-way ticket between the  
8 cities.

‘pij ‘ = ® 0 255 305 295 245 325 385 455
255 0 190 220 230 300 310 395
305 190 0 140 310 295 390 410
295 220 140 0 200 275 285 350
245 230 310 200 0 240 255 400
325 300 295 275 240 0 260 370
385 310 390 285 255 260 0 420
455 395 410 350 400 370 420 0

∏
The fan has budgeted $2200 for air travel. Is this a realistic travel budget?

11-5. Proteins clustering. Proteins are clustered using an overall measure of similarity based 
on protein–protein interaction information. Clustering information is used to pre-
dict unknown protein functions. By definition, the best cluster maximizes the sum of 
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the measures of similarity between adjacent proteins. Matrix ‘sij ‘  below provides the 
 measure of similarities (expressed as a percentage) among 8 proteins.

‘sij ‘ = ®100 20 30 29 24 22 38 45
20 100 10 22 0 15 31 0
30 10 100 14 11 95 30 41
29 22 14 100 20 27 28 50
24 0 11 20 100 24 55 0
22 15 95 27 24 100 26 37
38 31 30 28 55 26 100 40
45 0 41 50 0 37 40 100

∏
(a) Define the distance matrix of the TSP.

(b) Determine an upper bound on the measure of similarity for the optimum protein 
cluster.

11-6. A tourist in New York City uses local transportation to visit 8 sites. The start and end and 
the order in which the sites are visited are unimportant. What is important is to spend the 
least amount of money on transportation. Matrix ‘cij ‘  below provides the fares in dollars 
between the different locations.

‘cij ‘ = ® 0 20 30 25 12 33 44 57
22 0 19 20 20 29 43 45
28 19 0 17 38 48 55 60
25 20 19 0 28 35 40 55
12 18 34 25 0 21 30 40
35 25 45 30 20 0 25 39
47 39 50 35 28 20 0 28
60 38 54 50 33 40 25 0

∏
The tourist is budgeting $120 for cab cost to all eight sites. Is this a realistic expectation? 
(Hint: This is an open-tour TSP.)

*11-7. A manager has a total of 10 employees working on six projects. Projects are reviewed 
weekly with each employee. A project may employ more than one employee resulting in 
assignment overlaps, as the following table shows:

Project
1 2 3 4 5 6

1 x x x
2 x x x
3 x x x x
4 x x x

Employee 5 x x x
6 x x x x x
7 x x x x
8 x x x
9 x x

10 x x x x x
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Currently, the manager meets individually once a week with each employee. Each 
meeting lasts about 20 min for a total of 3 hr and 20 min for all 10 employees. To reduce 
the total time, the manager wants to hold group meetings depending on shared projects. 
The objective is to schedule the meetings in a way that will reduce the traffic (number 
of employees) in and out of the meeting room.
(a) Define the cities and the distance matrix of the TSP.

(b) Determine a lower bound on the optimum tour length using the assignment model. 
Is the assignment model solution optimum for the TSP?

 11-8. Meals-on-Wheels is a charity service that prepares meals in its central facility for deliv-
ery to people who qualify for the service. Ideally, all meals should be delivered within 
20 min from the time they leave the kitchen. This means that the return time from the 
last-meal location to the kitchen is not a factor in determining the sequence of deliver-
ies. The charity is in the process of determining the delivery route. The first pilot sched-
ule includes seven recipients with the following travel times, ‘ tij ‘  (row 1 and column 1 
represent the kitchen).

‘ tij ‘ = ® 0 10 12 5 17 9 13 7
10 0 9 20 8 11 3 5
12 9 0 14 4 10 1 16
5 20 14 0 20 5 28 10
17 8 4 20 0 21 4 9
9 11 10 5 21 0 2 3
13 3 1 28 4 2 0 2
7 5 16 10 9 3 2 0

∏
(a) Compare the lower bounds on the optimum tour length using both the assignment 

model and linear programming. Is the assignment model solution optimum for the 
TSP?

(b) Based on the information in (a), is it possible to deliver the eight meals within the 
20-min time window?

 11-9. (Integrated circuit boards) Circuit boards (such as those used in PCs) are drilled with 
holes for mounting different electronic components. The boards are fed one at a time 
under a moving drill. The matrix ‘dij ‘  below provides the distances (in millimeters) 
between pairs of 6 holes of a specific circuit board.

‘dij ‘ = ¶ - 1.3 .5 2.6 4.1 3.2
1.3 - 3.5 4.7 3.0 5.3
.5 3.5 - 3.5 4.6 6.2
2.6 4.7 3.5 - 3.8 .9
4.1 3.0 4.6 3.8 - 1.9
3.2 5.3 6.2 .9 1.9 -

∂
Suppose that the drill moves at a linear speed of 9 millimeters per second and that it 
takes .7 second to drill hole. Determine an upper bound on the production rate (boards 
per hour).

11-10. DNA sequencing. In genetic engineering, a collection of DNA strings, each of length  
10 ft, is concatenated to form one universal string. The genes of individual DNA strings 
may overlap, thus producing a universal string with length less than the sum of the 
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individual lengths. The matrix ‘Oij ‘  below provides the length in feet of overlaps for a 
hypothetical case of six DNA strings.

‘Oij ‘ = ¶ - 1 0 3 4 3
1 - 4 5 3 2
0 4 - 3 5 6
3 5 3 - 2 1
4 3 5 2 - 2
3 2 6 1 2 -

∂
Compare the lower bounds on the optimum tour length using both the assignment 
model and linear programming. Is the assignment model solution optimum for the 
TSP?

11-11. The U.S. space agency, NASA, uses satellites for imaging celestial objects. The amount of 
fuel needed to reposition the satellites is a function of the sequence in which the objects 
are imaged. The matrix ‘cij ‘  below provides units of fuel consumption used to realign 
the satellites with the objects.

‘cij ‘ = ¶ - 1.5 2.6 3.1 4.4 3.8
1.9 - 4.7 5.3 3.9 2.7
2.9 4.3 - 3.5 5.4 6.2
3.4 5.1 3.6 - 2.2 1.9
4.4 3.4 5.9 2.4 - 2.6
3.1 2.7 6.5 1.1 2.9 -

∂
Suppose that the cost per fuel unit is $12. Estimate a lower bound on the cost of imag-
ing all six objects.

11-12. Automatic guided vehicle. An AGV makes a round-trip (starting and ending at the mail-
room) to deliver mail to 5 departments on a factory floor. Using the mailroom as the 
origin (0, 0), the (x, y) locations of the delivery spots are (10, 30), (10, 50), (30, 10), (40, 
40), and (50, 60) for the five departments. All distances are in meters. The AGV moves 
along horizontal and vertical aisles only. The objective is to minimize the length of the 
round-trip.
(a) Define the cities and the distance matrix of the TSP model.

(b) Assuming that the AGV moves at a speed of 35 meters per minute, can the round-
trip be made in less than 5 minutes?

11-13. Wallpaper cutting, Garfinkel (1977). Covering the walls of a room usually requires 
cutting sheets of different lengths to account for doors and windows, and the like. The 
sheets are cut from a single roll, and their start points must be aligned to match the 
repeating pattern of the roll. The amount of waste thus depends on the sequence in 
which the sheets are cut. For the purpose of determining the waste, we can regard a 
single pattern as a unit length (regardless of its real measurement) and then express 
the length of a sheet in terms of this unit. For example, a sheet of length 9.50 patterns 
requires 10 consecutive patterns. If the matching of the patterns on the wall requires 
starting the sheet a quarter of the way down from the first pattern, then the sheet (of 
length 9.50 patterns) must end three quarters of the way down the tenth pattern. Thus, 
waste in a sheet can take place in the first and last patterns only, and its amount is 
always less than the length of a full pattern.
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Let 0 … si … 1 and 0 … ei … 1 be the locations of the cuts down the first and last 
patterns. Then for sheet i of length Li pattern, we have

ei = 1si + Li2 mod112
For the example just cited, s = .25 and e = 1.25 + 9.52 mod112 = .75.

The waste between two sequential sheets, i and j, in which sheet i is immediately 
followed by sheet j, can be computed in the following manner: If sj Ú ei, the waste is 
sj - ei. Else, if sj 6 ei, then the end cut of i and the start cut of j overlap. The result is 
that the start cut sj of sheet j must be made in the pattern that immediately follows the 
one in which the end cut ei of sheet i has been made. In this case, the resulting waste is 
1 - ei + sj.

Actually, the two amounts of waste 1sj - ei and 1 - ei + sj2 can be expressed in 
one expression as

wij = 1sj - ei2 mod112
For example, given e1 = .8 and s2 = .35, we use the formula for s2 6 e1 to get w12 = 1 - .8  
+  .35 = .55. The same result can be obtained using w12 = 1.35 - .82 mod112 = 1- .452 
mod112 = 1-1 + .552 mod112 = .55.

To account for the waste resulting from the cut in the first pattern of the first 
sheet (node 1) and the last pattern of the last sheet (node n), a dummy sheet (node 
n + 1) is added with its sn + 1 = en + 1 = 0. The length of a tour passing through all n + 1 
nodes provides the total waste resulting from a specific sequence. The problem can now 
be modeled as an (n + 1)-node TSP with distance wij.
(a) Compute the matrix wij for the following set of raw data (for convenience, spread-

sheet excelWallPaper.xls automates the computations of wij.):

Sheet, i Pattern start cut, si Sheet length, Li

1 0 10.47
2 .342  3.82
3 .825  5.93
4 .585  8.14
5 .126  1.91
6 .435  6.32

(b) Show that the optimum solution of the associated assignment produces the optimum 
tour.

(c) Quantify the total waste as a percentage of the length of all sheets.
11-14. Warehouse order picking, Ratliff and Rosenthal (1983). In a rectangular warehouse, a 

stacker overhead crane is used to pick and deliver orders between specified loca-
tions in the warehouse. The tasks of the crane involve the following: (1) picking a 
load at a location, (2) delivering a load to a location, and (3) moving unloaded to 
reach a picking location. Suppose that there are n orders to be picked and delivered. 
The goal would be to complete all the orders while minimizing the unproductive 
time of the crane [item (3)]. The unproductive times can be computed based on the 
pickup and delivery locations of the orders and the lateral and traversal speeds of 
the crane, among other factors. For the purpose of this situation, the crane starts on 
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the orders from an idle state and also terminates in an idle state after all orders are 
completed.

For a specific pool of eight orders, the times (in minutes) to reach the locations of 
orders 1, 2, c, and 8 from idle state are .1, .4, 1.1, 2.3, 1.4, 2.1, 1.9, and 1.3, respectively. 
The following table provides the unproductive times (in minutes) associated with the 
sequencing of the orders:

‘ tij ‘ = ® 0 1.0 1.2 .5 1.7 .9 1.3 .7
1.1 0 .9 2.0   .8 1.1   .3 .5
1.2 1.9 0 1.4   .4 1.0 1.  1.6
1.5 2.3 .4 0 2.0 1.5 2.8 1.
1.2 1.8 1.4 2.5 0 2.1   .4   .9
  .9 1.1 1.0 .5 2.1 0 .2 .3
1.3   .8 1.1 2.2 1.4 .6 0 1.2
1.7 1.5 1.6 1.0 1.9 .9 2.0 0

∏
(a) Define the cities and distance matrix of the TSP model.

(b) Determine a lower bound on the unproductive time during the completion of all 
orders.

11-15. Solve Example 11.3-1 using subtour 2-5-4-2 to start the branching process at node 1,  
using the following sequences for exploring the nodes:
(a) Explore all the subproblems horizontally from left to right in each tier before pro-

ceeding to the next tier.

(b) Follow each path vertically from node 1, always selecting the leftmost branch, until 
the path ends at a fathomed node.

11-16. Solve Problem 11-2, by B&B.
*11-17. Solve Problem 11-7, by B&B.
11-18. Solve Problem 11-9, by B&B.
11-19. AMPL experiment. Use AMPL files amplAssign.txt and solutionAssign.txt to solve 

 Problem 11-6, by B&B.
11-20. Write down the cuts associated with the following TSP:

‘dij ‘ = • ∞ 43 21 20 10
12 ∞ 9 22 30
20 10 ∞ 5 13
14 30 42 ∞ 20
44 7 9 10 ∞

µ
11-21. AMPL experiment. Use AMPL to solve the following TSP problem by the cutting-plane 

algorithm:
(a) Problem 11-3.

(b) Problem 11-4.

(c) Problem 11-12.
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11-22. AMPL experiment. In the circuit board model of Problem 11-9, the input data are usually 
given in terms of the (x, y)-coordinates of the holes rather than the distance between the 
respective holes. Specifically, consider the following (x, y) coordinates for a 9-hole board:

Hole (x, y) in mm

1 (1, 2)
2 (4, 2)
3 (3, 7)
4 (5, 3)
5 (8, 4)
6 (7, 5)
7 (3, 4)
8 (6, 1)
9 (5, 6)

The drill always traverses the shortest distance between two successive holes.
(a) Modify the data file to determine the optimum drilling tour using the (x-y) coordi-

nates.

(b) Determine the production rate in boards per hour given that the drill moving 
speed is 5 mm/sec and the drilling time per hole is .5 sec. Use files amplCut.txt and 
solutionCut.txt.

11-23. In Table 11.5 of Example 11.4-2, specify the deleted and added legs associated with each 
of the two-at-a-time reversals.

11-24. In Table 11.5 of Example 11.4-2, use the infinite-length disconnected tour 3-2-5-4-1-3 
(i.e., a tour missing at least one leg) as a starting tour to demonstrate that the subtour 
reversal heuristic can still lead to a solution that is just as good as when the heuristic 
starts with a connected tour.

11-25. Apply the reversal heuristic to the following problems starting with best nearest- 
neighbor tour:
(a) The paint sequencing problem of Example 11.1-1.

(b) Problem 11-2.

(c) Problem 11-5.

(d) Problem 11-6.
11-26. Excel–AMPL Experiment. The matrix below provides the distances among 10 cities 

(all missing entries = ∞ ). (For convenience, file Prob.txt gives the distance matrix in 
AMPL format.)

1 2 3 4 5 6 7 8 9 10

 1 100   2 11 80 5 39 95 28
 2 17  42 33 21 59 46 79 29
 3  63 57 92 55 68 52
 4 36  27  25 40 49 48 63 16
 5 51  11  46 60 22 11 13 54 55
 6  20  46 15 93 76 47 21 10
 7 17  45 88 28 26 33 30 49
 8 35  49  87 76 55 64 93
 9 35  48 100 3 55 41 73
10  50  70 43 82 43 23 49 89
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Use file excelReversalTSP.xls to implement the following situations:
(a) Use the nearest-neighbor heuristic to determine the associated tour starting at 

node 1.

(b) Determine the tour using the reversal heuristic starting with the tour 4-5-3-2-6-7-8-
10-9-1-4-5.

(c) Determine the tour using the reversal heuristic starting with the best nearest- 
neighbor tour.

Compare the quality of the solutions in parts (a), (b), and (c) with the exact optimum 
solution obtained by AMPL.

11-27. Carry out three more iterations of Example 11.5-1.
11-28. Apply tabu to the following problems starting with best nearest-neighbor tour:

(a) The paint sequencing problem of Example 11.1-1.

(b) Problem 11-2.

(c) Problem 11-5.

(d) Problem 11-6.
11-29. Excel–AMPL Experiment. The matrix below provides the distances among 10 cities 

(all off-diagonal missing entries = ∞). (For convenience, file prob11-29.txt gives the 
distance data in AMPL format.)

1 2 3 4 5 6 7 8 9 10

 1 100   2 11 80  5 39 95 28
 2 17  42 33 21 59 46 79 29
 3  63 57 92 55 68 52
 4 36  27  25 40 49 48 63 16
 5 51  11  46 60 22 11 13 54 55
 6  20  46 15 93 76 47 21 10
 7 17  45 88 28 26 33 30 49
 8 35  49  87 76 55 64 93
 9 35  48 100  3 55 41 73
10  50  70 43 82 43 23 49 89

Use file ExcelTabuTSP.xls starting with the following:
(a) A random tour.

(b) Tour 4-5-3-2-6-7-8-10-9-1-4.

(c) The best nearest-neighbor tour.
Compare the quality of the solutions in parts (a), (b), and (c) with the exact  optimum 
solution obtained by AMPL using file amplCut.txt.

11-30. Carry out three more iterations of Example 11.5-2.
11-31. Apply simulated annealing to the following problems starting with best nearest- 

neighbor tour:
(a) The paint sequencing problem of Example 11.1-1.

(b) Problem 11-2.

(c) Problem 11-5.

(d) Problem 11-6.
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11-32. Excel–AMPL Experiment. The matrix below provides the distances among 10 cities (all 
off-diagonal missing entries = ∞). (For convenience, file prob11-32.txt gives the distance 
data in AMPL format.)

1 2 3 4 5 6 7 8 9 10

 1 100   2 11 80  5 39 95 28
 2 17  42 33 21 59 46 79 29
 3  63 57 92 55 68 52
 4 36  27  25 40 49 48 63 16
 5 51  11  46 60 22 11 13 54 55
 6  20  46 15 93 76 47 21 10
 7 17  45 88 28 26 33 30 49
 8 35  49  87 76 55 64 93
 9 35  48 100  3 55 41 73
10  50  70 43 82 43 23 49 89

Use file excelSimulatedAnnealingTSP.xls starting with the following:
(a) A random tour.

(b) Tour 4-5-3-2-6-7-8-10-9-1-4.

(c) The best nearest-neighbor tour.
Compare the quality of the solutions in parts (a), (b), and (c) with the exact optimum 
solution obtained by AMPL.

11-33. Carry out iterations 3 and 4 in Example 11.5-3.
11-34. Apply the genetic metaheuristic to the following problems starting with best nearest-

neighbor tour:
(a) The paint sequencing problem of Example 11.1-1.

(b) Problem 11-2.

(c) Problem 11-5.

(d) Problem 11-6.
11-35. Excel–AMPL Experiment. The matrix below provides the distances among 10 cities (all 

off-diagonal missing entries = ∞). (For convenience, file prob11-35.txt gives the distance 
data in AMPL format.)

1 2 3 4 5 6 7 8 9 10

 1 100  2 11 80  5 39 95 28
 2 17 42 33 21 59 46 79 29
 3 63 57 92 55 68 52
 4 36 27 25 40 49 48 63 16
 5 51 11 46 60 22 11 13 54 55
 6 20 46 15 93 76 47 21 10
 7 17 45 88 28 26 33 30 49
 8 35 49 87 76 55 64 93
 9 35 48 100  3 55 41 73
10 50 70 43 82 43 23 49 89

Use file excelGeneticTSP.xls starting with the following:
(a) A random tour.

(b) Tour 4-5-3-2-6-7-8-10-9-1-4-5.

(c) The best nearest-neighbor tour.
Compare the quality of the solutions in parts (a), (b), and (c) with the exact optimum 
solution obtained by AMPL.
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Chapter 12

Deterministic Dynamic programming

Real-Life Application—Optimization of Crosscutting and Log Allocation 
at Weyerhaeuser

Mature trees are harvested and crosscut into logs to manufacture different end products 
(construction lumber, plywood, wafer boards, or paper). Log specifications (e.g., length 
and end diameters) differ depending on the mill where the logs are  processed. With 
harvested trees measuring up to 100 ft in length, the number of crosscut combinations 
meeting mill requirements can be large, and the manner in which a tree is disassembled 
into logs can affect revenues. The objective is to determine the crosscut combinations 
that maximize the total revenue. The study uses dynamic programming to optimize the 
process. The proposed system was first implemented in 1978 with an annual increase in 
profit of at least $7 million. Details of the case are presented at the end of the chapter.

12.1  ReCuRsive NAtuRe Of DyNAmiC PROgRAmmiNg (DP) 
COmPutAtiONs

The main idea of DP is to decompose the problem into (more manageable) subprob-
lems. Computations are then carried out recursively where the optimum solution of 
one subproblem is used as an input to the next subproblem. The optimum solution 
for the entire problem is at hand when the last subproblem is solved. The manner in 
which the recursive computations are carried out depends on how the original prob-
lem is decomposed. In particular, the subproblems are normally linked by common 
constraints. The feasibility of these common constraints is maintained at all iterations.

example 12.1-1  (Shortest-Route Problem)

Suppose that we want to select the shortest highway route between two cities. The network in 
Figure 12.1 provides the possible routes between the starting city at node 1 and the destination 
city at node 7. The routes pass through intermediate cities designated by nodes 2 to 6.

 469
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We can solve this problem by enumerating all the routes between nodes 1 and 7 (there 
are five such routes). However, exhaustive enumeration is computationally intractable in large 
networks.

To solve the problem by DP, first decompose it into stages as delineated by the vertical 
dashed lines in Figure 12.2. Next, carry out the computations for each stage separately.

The general idea for determining the shortest route is to compute the shortest (cumulative) 
distances to all the terminal nodes of a stage and then use these distances as input data to the 
immediately succeeding stage. Starting from node 1, stage 1 reaches three end nodes (2, 3, and 4), 
and its computations are simple.

Stage 1 Summary.

Shortest distance from node 1 to node 2 = 7 miles (from node 1)

Shortest distance from node 1 to node 3 = 8 miles (from node 1)

Shortest distance from node 1 to node 4 = 5 miles (from node 1)
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Route network for Example 12.1-1 
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Decomposition of the shortest-route problem into stages
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Next, stage 2 has two end nodes, 5 and 6. Figure 12.2 shows that node 5 can be reached 
from nodes 2, 3, and 4 via routes (2, 5), (3, 5), and (4, 5). This information, together with the 
summary results (shortest distances) in stage 1, determines the shortest (cumulative) distance 
to node 5 as

 aShortest distance
to node 5

b =  min
i = 2, 3, 4

e aShortest distance
to node i

b + a  Distance from
node i to node 5

b f

 = min c 7 + 12 = 19
8 +  8 = 16
5 +  7 = 12

s = 12 1from node  42

Node 6 can be reached from nodes 3 and 4 only. Thus

 aShortest distance
to node  6

b = min
i = 3, 4

e aShortest distance
to node i

b + a Distance from
node i to node 6

b f

 = min e 8 +  9 = 17
5 + 13 = 18

f = 17 1from node 32

Stage 2 Summary.

Shortest distance from node 1 to node 5 = 12 miles (from node 4)

Shortest distance from node 1 to node 6 = 17 miles (from node 3)

The last step is to consider stage 3. The destination node 7 can be reached from either node 5 
or 6. Using the summary results from stage 2 and the distances from nodes 5 and 6 to node 7, 
we get

 aShortest distance
to node  7

b = min
i = 5, 6

e aShortest distance
to node i

b + a Distance from
node i to node 7

b f

 = min e12 + 9 = 21
17 + 6 = 23

f = 21 1from node 52

Stage 3 Summary.

Shortest distance from node 1 to node 7 = 21 miles (from node 5)

Stage 3 summary shows that the shortest distance between nodes 1 and 7 is 21 miles. To 
determine the optimal route, start at stage 3 summary, where node 7 links to node 5; stage 2 
 summary links node 4 to node 5; and stage 1 summary links node 4 to node 1. Thus, the shortest 
route is 1 S 4 S 5 S 7.

The example reveals the basic properties of DP computations:

1. The computations at each stage are a function of the feasible routes of that stage, and 
only that stage.

2. A current stage is linked to the immediately preceding stage only (without regard to 
earlier stages) based on the shortest-distance summary of the immediately preceding 
stage.
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recursive equation. This section shows how the recursive computations in 
Example 12.1-1 can be expressed mathematically. Let fi(xi) be the shortest distance to 
node xi at stage i, and define d1xi- 1, xi2 as the distance from node xi- 1 to node xi. The 
DP recursive equation is defined as

 f01x0 = 12 = 0

 fi1xi2 = min
all feasible

1xi - 1, xi2 routes

5d1xi- 1, xi2 + fi- 11xi- 126, i = 1, 2, 3

All distances are measured from 0 by setting f01x0 = 12 = 0. The main recursive 
equation expresses the shortest distance fi(xi) at stage i as a function of the next node, xi. 
In DP terminology, xi is referred to as the state at stage i. The state links successive stages 
in a manner that permits making optimal feasible decisions at a future stage indepen-
dently of the decisions already made in all preceding stages.

The definition of the state leads to the following unifying framework for DP.

principle of Optimality. Future decisions for all future stages constitute an optimal 
policy regardless of the policy adopted in all preceding stages.

The implementation of the principle of optimality is evident in the computations 
in Example 12.1-1. In stage 3, the recursive computations at node 7 use the shortest 
distance to nodes 5 and 6 (i.e., the states of stage 2) without concern about how nodes 
5 and 6 are reached from the starting node 1.

The principle of optimality does not address the details of how a subproblem 
is optimized. The reason is the generic nature of the subproblem. It can be linear or 
nonlinear, and the number of alternative can be finite or infinite. All the principle 
of optimality does is “break down” the original problem into more computationally 
tractable subproblems.

Aha! Moment: Solving Marriage Problem . . . with Dynamic Programming!

The German mathematician Johannes Kepler (1571–1630), arguably one of the greatest as-
tronomers ever, was faced with a personal problem: He was seeking a compatible spouse and a 
stepmother for his young children after his wife died. A marriage broker presented him with 11 
candidates, and over a span of two years he interviewed them one at a time. He rejected some 
for lack of compatibility but could not make up his mind regarding the remaining ones, who in 
turn, tired of waiting, withdrew their names. After much agonized vacillation, he re-wooed the 
fifth woman he interviewed, and the union was a happy one.

Kepler’s problem, initially dubbed as the marriage problem and later as the secretary 
 (selection) problem, generated considerable interest starting in 1960. The solved version posed 
additional restrictions that were not followed by Kepler himself: Given a pool of n applicants 
seeking to fill a single position, candidates are interviewed one at a time in random order. 
 Following each interview, an irrevocable decision is made to accept or reject the candidate. Ac-
ceptance of a candidate ends the process; otherwise the next candidate, if any, is interviewed. If 
all the first n - 1 candidates have been rejected (or if n = 1), then candidate n must be accepted.

Finding the best candidate in the pool is complicated by the irrevocable accept/reject deci-
sion immediately following each interview. Short of interviewing all n candidates (in which case 
the absolute best candidate could be determined), a proposed game strategy calls for rejecting 
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the first r - 1 candidates (r is yet to be determined from the solution) and then continuing the 
interview process, stopping at the first applicant who is better than all the ones rejected. This strat-
egy makes use of previous interviewing experiences in the hope of finding a better (possibly the 
best) future candidate, and it is more efficient because it could stop short of interviewing all n 
candidates. One way to optimize the decision problem is to determine the cutoff r that maximizes 
the probability that a future applicant i is better than the first 1r - 12 rejected candidates.

The described problem (and its variants) was solved by dynamic programming.1 Other 
solution models include probability theory, linear programming, and Markov chains.2 The solu-
tions show that the desired probability, defined as P1r � n2, is concave in r and that

P1r � n2 Ú max 5 lim
nS ∞

 P1r � n26 = 1
e = 1

2.718 ≈ .37,  for all n 7 1

This remarkable simple result says that for r ≈ .37n + 1, there is at least a notable 37% chance 
that a future candidate i Ú r is better than the first r - 1 candidates, no matter how large n is.

The proposed solution was actually realized in Kepler’s case when he married candidate 
number 5 1note that .37 * 11 = 4.072. In all likelihood, however, the outcome is purely coinci-
dental because Kepler did not quite follow the rules of the proposed problem. Not to mention 
that, per published accounts, Kepler first tried to woo candidate number 4 but was unsuccessful. 
Nevertheless, the conjecture is a story worth telling!

12.2  FoRWARD AnD BAckWARD RecuRSion

Example 12.1-1 uses forward recursion in which the computations proceed from stage 1 
to stage 3. The same example can be solved by backward recursion, starting at stage 3 and 
ending at stage 1.

Naturally, both the forward and backward recursions yield the same optimum. 
Although the forward procedure appears more logical, DP literature mostly uses back-
ward recursion. The reason for this preference is that, in general, backward recursion 
can be more efficient computationally.

We will demonstrate the use of backward recursion by applying it to 
Example 12.1-1. The demonstration will also provide the opportunity to present the 
DP computations in a compact tabular form.

example 12.2-1 

The backward recursive equation for Example 12.2-1 is

  f41x4 = 72 = 0

 fi1xi2 = min
all feasible

routes 1xi - 1, xi2
5d1xi- 1, xi2 + fi- 11xi- 126, i = 1, 2, 3

The order of computations is f3 S f2 S f1.

1Beckmann, M., “Dynamic Programming and the Secretary Problem,” Computers and Mathematics with 
Applications, Vol. 19, No. 11, pp. 25–28, 1990.
2Thomas S. Ferguson, “Who Solved the Secretary Problem?” Statistical Science, Vol. 4, No. 3, pp. 282–289, 
1989. Stable URL: http://www.jstor.org/stable/2245639 accessed 7-29-2015 9:10 P.M.
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Stage 3. Node 7 1x4 = 72 is connected to nodes 5 and 6 1x3 = 5 and 62 with exactly one route 
each.  The following table summarizes stage 3 computations:

d(x3, x4) Optimum solution

x3 x4 = 7 f3(x3) x4
*

5 9 9 7
6 6 6 7

Stage 2. Route (2, 6) does not exist. Given f3(x3) from stage 3, we can compare the feasible 
alternatives as the following table shows:

d1x2, x32 + f31x32 Optimum solution

x2 x3 = 5 x3 = 6 f2(x2) x3
*

2 12 + 9 = 21 — 21 5
3  8 + 9 = 17  9 + 6 = 15 15 6
4  7 + 9 = 16 13 + 6 = 19 16 5

The optimum solution of stage 2 reads as follows: For cities 2 and 4, the shortest routes pass 
through city 5, and for city 3, the shortest route passes through city 6.

Stage 1. From node 1, we have three alternative routes: (1, 2), (1, 3), and (1, 4). Using f2(x2) 
from stage 2, we get

d1x1, x22 + f21x22 Optimum solution

x1 x2 = 2 x2 = 3 x2 = 4 f1(x1) x2
*

1 7 + 21 = 28 8 + 15 = 23 5 + 16 = 21 21 4

Stage 1 solution links city 1 to city 4. Next, stage 2 solution links city 4 to city 5. Finally, 
stage 3 solution connects city 5 to city 7. The optimum route is 1 S 4 S 5 S 7, and the associ-
ated  distance is 21 miles.

12.3 seLeCteD DP APPLiCAtiONs

This section presents four applications, each with a new idea in the implementation of 
DP. All the examples use the backward recursive equation because of its prevalence in 
the literature.

As you study each application, pay special attention to the three basic elements 
of the DP model:

1. Definition of the stages
2. Definition of the alternatives at each stage
3. Definition of the states for each stage
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Of the three elements, the definition of the state is usually the most subtle. The appli-
cations presented here show that the definition of the state varies depending on the 
situation being modeled. Nevertheless, as you investigate each application, you will 
find it helpful to consider the following questions:

1. What relationships bind the stages together?
2. What information is needed to make feasible decisions at the current stage 

without regard to how the decisions made at the preceding stages have been 
reached?

You can enhance your understanding of the concept of the state by questioning 
the validity of the way it is defined here. Try another definition that may appear “more 
logical” to you, and use it in the recursive computations. You will soon discover that 
the definitions presented here are correct. Meanwhile, the associated mental process 
should give you a better understanding of the role of states in the development of DP 
recursive equation.

12.3.1  knapsack/Fly-Away kit/cargo-Loading Model

The knapsack model classically deals with determining the most valuable items a com-
bat soldier carries in a backpack. The problem represents a general resource allocation 
model in which limited resources are used by a number of economic activities. The 
objective is to maximize the total return.3

The (backward) recursive equation is developed for the general problem of al-
locating n items to a knapsack with weight capacity W. Let mi be the number of units 
of item i in the knapsack, and define ri and wi as the unit revenue and weight of item i. 
The general problem can be represented as

Maximize z = r1m1 + r2m2 + c + rnmn

subject to

w1m1 + w2m2 + c + wnmn … W

m1, m2, c, mn nonnegative integers

The three elements of the model are

1. Stage i is represented by item i, i = 1, 2, c, n.
2. The alternatives at stage i are the number of units of item i, mi = 0, 1, c, 3W

wi 4 ,  
where 3W

wi 4  is the largest integer less than or equal to W
wi. This definition allows the 

solution to allocate none, some, or all of the resource W to any of the m items. The 
return for mi is rimi.

3The knapsack problem is also known in the literature as the fly-away kit problem (determination of the 
most valuable items a jet pilot takes on board) and the cargo-loading problem (determination of the most 
valuable items to be loaded on a navy ship). It appears that the three names were coined to ensure equal 
representation of three branches of the armed forces: army, air force, and navy!
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3. The state at stage i is represented by xi, the total weight assigned to stages (items) 
i, i + 1, c,  and n. This definition recognizes that the weight limit is the only 
constraint that binds all n stages.4

Define

fi1xi2 = maximum return for stages i, i + 1, and n, given state xi

The most convenient way to construct the recursive equation is a two-step procedure:

Step 1. Express fi (xi) as a function of fi 1xi+ 12 as follows:

fn + 11xn + 12 K 0

fi1xi2 = min
mi = 0, 1, c cW

wi
d
5rimi + fi+ 11xi+ 126, i = 1, 2, c, n

xi … W

Step 2. Express xi+ 1 as a function of xi to ensure consistency with the left-hand side of the 
recursive equation. By definition, xi - xi+ 1 = wimi represents the weight used 
at stage i. Thus, xi+ 1 = xi - wimi,  and the proper recursive equation is given as

fi1xi2 =  max
mi = 0, 1, c cW

wi
d
5ri mi + fi+ 11xi - wi mi26, i = 1, 2, c, n

xi … W

example 12.3-1 

A 4-ton vessel can be loaded with one or more of three items. The following table gives the unit 
weight, wi, in tons and the unit revenue in thousands of dollars, ri, for item i. The goal is to deter-
mine the number of units of each item that will maximize the total return.

Item i wi ri

1 2 31
2 3 47
3 1 14

Because the unit weight wi and the maximum weight W are integers, the state xi assumes 
integer values only.

Stage 3. The exact weight to be allocated to stage 3 (item 3) is not known in advance but can 
assume one of the values 0, 1, . . . , and 4 (because W = 4 tons and w3 = 1 ton). A value of m3 
is feasible only if w3m3 … x3. Thus, all the infeasible values (with w3m3 7 x32 are excluded. The 
revenue for item 3 is 14m3. Thus, the recursive equation for stage 3 is

f31x32 =  min
m3 = 0, 1, c, 4

514m36

4The definition of the state can be multidimensional. For example, the volume of the knapsack may pose 
 another restriction. In general, a multidimensional state implies more complex stage calculations. See 
Section 12.4.
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The following tableau summarizes the computations for stage 3:

14m3 Optimum solution

x3 m3 = 0 m3 = 1 m3 = 2 m3 = 3 m3 = 4 f3 (x3) m3
*

0 0 — — — —  0 0
1 0 14 — — — 14 1
2 0 14 28 — — 28 2
3 0 14 28 42 — 42 3
4 0 14 28 42 56 56 4

Stage 2. max 5m26 = 34
3 4 = 1, or m3 = 0, 1, f21x22 = max

m = 0, 1
547m2 + f31x2 - 3m226

47m2 + f3 1x2 - 3m22 Optimum solution

x2 m2 = 0 m2 = 1 f2 (x2) m2
*

0 0 + 0 = 0 —  0 0
1 0 + 14 = 14 — 14 0
2 0 + 28 = 28 — 28 0
3 0 + 42 = 42 47 + 0 = 47 47 1
4 0 + 56 = 56 47 + 14 = 61 61 1

Stage 1.  max 5m16 = 34
2 4 = 2 or m1 = 0, 1, 2, f11x12 = max

m3 = 0, 1, 2
531m2 + f21x1 - 2m126

31m1 + f2 1x1 - 2m12 Optimum solution

x1 m1 = 0 m1 = 1 m1 = 2 f1(x1) m1
*

0 0 + 0 = 0 — —  0 0
1 0 + 14 = 14 — — 14 0
2 0 + 28 = 28 31 + 0 = 31 — 31 1
3 0 + 47 = 47 31 + 14 = 45 — 47 0

4 0 + 61 = 61 31 + 28 = 59 62 + 0 = 62 62 2

The optimum solution is determined in the following manner: Given W = 4 tons, from 
stage 1, x1 = 4 gives the optimum alternative m1

* = 2—meaning that 2 units of item 1 will be 
loaded on the vessel. This allocation leaves x2 = x1 - 2m2

* = 4 - 2 * 2 = 0 for stages 2 and 
3. From stage 2, x2 = 0 yields m2

* = 0, which leaves x3 = x2 - 3m2 = 0 - 3 * 0 = 0 units for 
stage 3. Next, from stage 3, x3 = 0 gives m2

* = 0. Thus, the complete optimal solution is m1
* = 2,  

m2
* = 0, and m3

* = 0. The associated return is f1142 = $62, 000.
In the table for stage 1, we actually need to compute the row for x1 = 4 only, because this is 

the last stage to be considered. However, the computations for x1 = 0, 1, 2, and 3 are included to 
allow carrying out sensitivity analysis. For example, what happens if the vessel capacity is 3 tons 
in place of 4 tons? The new optimum solution can be determined as

1x1 = 32 S 1m1
* = 02 S 1x2 = 32 S 1m2

* = 12 S 1x3 = 02 S 1m3
* = 02

Thus the optimum is 1m1
*, m2

*, m3
*2 = 10, 1, 02, and the optimum revenue is f1132 = $47,000.
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excel moment

The nature of DP computations makes it impossible to develop a general computer code that can 
handle all DP problems. Perhaps this explains the persistent absence of commercial DP software.

In this section, we present an Excel-based algorithm for handling a subclass of DP problems: 
the single-constraint knapsack problem (file excelKnapsack.xls). The algorithm is not data-specific 
and can handle problems in which an alternative can assume values in the range of 0 to 10.

Figure 12.3 shows the starting screen of the knapsack (backward) DP model. The screen is 
divided into two sections: The right section (columns Q:V) summarizes the output solution. In 
the left section (columns A:P), the input data for the current stage appear in rows 3, 4, and 6. 
Stage computations start at row 7. (Columns H:N are hidden to conserve space.) The input data 
symbols are self-explanatory. To fit the spreadsheet conveniently on one screen, the maximum 
feasible value for alternative mi at stage i is 10 (cells D6:N6).

Figure 12.4 shows the stage computations generated by the algorithm for Example 12.3-1. 
The computations are carried out one stage at a time, and the user provides the basic data that 
drive each stage.

Starting with stage 3, and using the notation and data in Example 12.3-1, the input cells are 
updated as the following list shows:

Cell(s) Data

D3 Number of stages, N = 3
G3 Resource limit, W = 4
C4 Current stage = 3
E4 w3 = 1
G4 r3 = 14
D6:H6 m3 = 10, 1, 2, 3, 42

Note that the feasible values of m3 are 0, 1, . . . , and 4 1 =  3W
w3 4 = 34

14 2 ,  as in Example 12.3-1. 
The spreadsheet automatically checks the validity of the values the user enters and issues self-
explanatory messages in row 5: “yes,” “no,” and “delete.”

As stage 3 data are entered and verified, the spreadsheet “comes alive” and generates 
all the necessary computations of the stage (columns B through P) automatically. The value 
-1111111 is used to indicate that the corresponding entry is not feasible. The optimum solu-
tion (f3, m3) for the stage is given in columns O and P. Column A provides the values of f4, 
which equal 0 for all x3 because the computations start at stage 3 (you can leave A9:A13 
blank or enter zeros).

Figure 12.3

Excel starting screen of the general DP knapsack model (file excelKnapsack.xls)
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Now that stage 3 calculations are complete, take the following steps to create a perma-
nent record of the optimal solution of the current stage and to prepare the spreadsheet for  
next stage:

Step 1. Copy the x3-values, C9:C13, and paste them in Q5:Q9 in the optimum solution 
summary section. Next, copy the (f3, m3)-values, O9:P13, and paste them in R5:S9. 
Remember that you need to paste values only, which requires selecting Paste Special 
from Edit menu and Values from the dialogue box.

Stage 2: 

Stage 3: 

Stage 1: 

Figure 12.4

Excel DP model for the knapsack problem of Example 12.3-1 (file excelKnapsack.xls)
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Step 2. Copy the f3-values in R5:R9, and paste them in A9:A13 (you do not need Paste Special 
in this step).

Step 3. Change cell C4 to 2, and enter the new values of w2, r2, and m2 for stage 2.

Step 2 places fi+ 11xi - wi mi2 in column A in preparation for calculating fi1xi2 at stage i 
(see the recursive formula for the knapsack problem in Example 12.3-1). A similar procedure 
is repeated for stage 1. When stage 1 is complete, the solution summary can be used to read the 
optimum solution, as was explained in Example 12.3-1. Note that the organization of the output 
solution summary area (columns Q:V) is free formatted, and you can organize its contents in any 
manner you desire.

12.3.2  Workforce Size Model

Labor needs in construction projects can be met through hiring and firing of workers. 
Both activities incur cost. The goal is to minimize the total cost of labor needed for the 
project.

Assume that the duration of the project is n weeks and that the minimum labor 
force required in week i is bi workers. The model assumes that additional cost is in-
curred if a week’s workforce exceeds the minimum requirement or if additional hiring 
takes place in a week. For simplicity, no cost is incurred when firing takes place.

The cost of maintaining a workforce xi larger than the minimum bi in week i 
incurs excess cost C11xi - bi2. If xi 7 xi- 1, hiring occurs at the additional cost of 
C21xi - xi- 12.

The elements of the DP model are defined as follows:

1. Stage i is represented by week i, i = 1, 2, c, n.
2. The alternatives at stage i are xi, the number of laborers in week i.
3. The state at stage i is xi- 1, the number of laborers available in week i - 1.

The DP recursive equation is given as

fn + 11xn2 K 0

fi1xi- 12 = min
xi Ú bi

5C11xi - bi2 + C21xi - xi- 12 + fi+ 11xi26, i = 1, 2, c, n

The computations start at stage n and terminate at stage 1.

example 12.3-2 

A contractor estimates that the size of the workforce needed over the next 5 weeks is 5, 7, 8, 4, 
and 6 workers, respectively. Excess labor kept on the force will cost $300 per worker per week, 
and new hiring in any week will incur a fixed cost of $400 plus $200 per worker per week.

The data of the problem are

b1 = 5, b2 = 7, b3 = 8, b4 = 4, b5 = 6

C11xi - bi2 = 31xi - bi2, xi 7 bi, i = 1, 2, c, 5

C21xi - xi- 12 = 4 + 21xi - xi- 12, xi 7 xi- 1, i = 1, 2, c, 5
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The cost functions C1 and C2 are in hundreds of dollars.

Stage 5. 1b5 = 62

C11x5 - 62 + C21x5 - x42 Optimum solution

x4 x5 = 6 f5(x4) x5
*

4 3102 + 4 + 2122 = 8 8 6
5 3102 + 4 + 2112 = 6 6 6
6 3102 + 0 = 0 0 6

Stage 4. 1b4 = 42

C11x4 - 42 + C21x4 - x32 + f51x42 Optimum solution

x3 x4 = 4 x4 = 5 x4 = 6 f4(x3) x4
*

8 3102 + 0 + 8 = 8 3112 + 0 + 6 = 9 3122 + 0 + 0 = 6 6 6

Stage 3. 1b3 = 82

C11x3 - 82 + C21x3 - x22 + f41x32 Optimum solution

x2 x3 = 8 f3(x2) x6
*

7 3102 + 4 + 2112 + 6 = 12 12 8
8 3102 + 0 + 6 = 6 6 8

Stage 2. 1b2 = 72

C11x2 - 72 + C21x3 - x22 + f31x22 Optimum solution

x1 x2 = 7 x2 = 8 f2(x1) x2
*

5 3102 + 4 + 2122 + 12 = 20 3112 + 4 + 2132 + 6 = 19 19 8
6 3102 + 4 + 2112 + 12 = 18 3112 + 4 + 2122 + 6 = 17 17 8
7 3102 + 0 + 12 = 12 3112 + 4 + 2112 + 6 = 15 12 7
8 3102 + 0 + 12 = 12 3112 + 0 + 6 = 9  9 8

Stage 1. 1b1 = 52

C11x1 - 52 + C21x1 - x02 + f21x12 Optimum solution

x0 x1 = 5 x1 = 6 x1 = 7 x1 = 8 f1(x0) x1
*

0 3102 + 4 + 2152 3112 + 4 + 2162 3122 + 4 + 2172 3122 + 4 + 2182
         + 19 = 33           + 17 = 36            + 12 = 36            + 9 = 35 33 5
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The optimum solution is determined as

x0 = 0 S x1
* = 5 S x2

* = 8 S x3
* = 8 S x4

* = 6 S x5
* = 6

The solution can be translated to the following plan:

Week i
Minimum labor 

force (bi)
Actual labor  

force (xi) Decision Cost

1 5 5 Hire 5 workers 4 + 2 * 5 = 14
2 7 8 Hire 3 workers 4 + 2 * 3 + 1 * 3 = 13
3 8 8 No change 0
4 4 6 Fire 2 workers 3 * 2 = 6
5 6 6 No change 0

The total cost is f1102 = $3300.

12.3.3 equipment Replacement model

Machines that stay longer in service incur higher maintenance cost and may be re-
placed after a number of years in operation. The situation deals with determining the 
most economical age of a machine.

Suppose that the machine replacement problem spans n years. At the start of 
each year, a machine is either kept in service an extra year or replaced with a new one. 
Let r(t), c(t), and s(t) represent the yearly revenue, operating cost, and salvage value, re-
spectively, of a t-year-old machine. The cost of acquiring a new machine in any year is I.

The elements of the DP model are as follows:

1. Stage i is represented by year i, i = 1, 2, c, n.
2. The alternatives at stage (year) i are keep (K) or replace (R) the machine at the 

start of year i.
3. The state at stage i is the age of the machine at the start of year i.

Given that the machine is t years old at the start of year i, define

fi1t2 = maximum net income for years i, i + 1, c, and n

The recursive equation is

fn1t2 = max e r1t2 - c1t2 + s1t + 12,                  if KEEP
r102 + s1t2 + s112 - I - c102,   if REPLACE

fi1t2 = max e r1t2 - c1t2 + fi+ 11t + 12,               if KEEP
r102 + s1t2 - I - c102 + fi+ 1112, if REPLACE

f , i = 1, 2, c, n - 1

example 12.3-3 

A company needs to determine the optimal replacement policy for a current 3-year-old ma-
chine over the next 4 years 1n = 42. A 6-year-old machine must be replaced. The cost of a new 
 machine is $100,000. The following table gives the data of the problem:
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Age, t (yr) Revenue, r(t) ($) Operating cost, c(t) ($) Salvage value, s(t) ($)

0 20,000  200 —
1 19,000  600 80,000
2 18,500 1200 60,000
3 17,200 1500 50,000
4 15,500 1700 30,000
5 14,000 1800 10,000
6 12,200 2200   5000

The determination of the feasible values for the age of the machine at each stage is 
somewhat tricky. Figure 12.5 summarizes the network representing the problem. At the start 
of year 1, we have a 3-year-old machine. We can either replace it (R) or keep it (K) for an-
other year. If replacement occurs, the new machine will be 1 year old at the start of year 2; 
otherwise, the kept machine will be 4 years old. The same logic applies at the start of years 2 
to 4. If a 1-year-old machine is replaced at the start of years 2, 3, and 4, its replacement will be 
1 year old at the start of the following year. Also, at the start of year 4, a 6-year-old machine 
must be replaced, and at the end of year 4 (end of the planning horizon), we salvage (S) the 
machine.

The network shows that at the start of year 2, the possible ages of the machine are 1 and 4 
years. For the start of year 3, the possible ages are 1, 2, and 5 years, and for the start of year 4, the 
possible ages are 1, 2, 3, and 6 years. The network also assumes that the machine will be salvaged 
at the start of year 5 regardless of age.
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Representation of machine age as a function of decision year in Example 12.3-3 
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The solution of the network in Figure 12.5 is equivalent to finding the longest route 
(i.e., maximum revenue) from the start of year 1 to the end of year 4. We will use the tabular 
form to solve the problem. All values are in thousands of dollars. Note that if a machine is re-
placed in year 4 (i.e., end of the planning horizon), its revenue will include the salvage value, s(t), 
of the replaced machine and the salvage value, s(1), of the replacement machine. Also, if in year 4 
a machine of age t is kept, its salvage value will be s1t + 12.

Stage 4.

K R Optimum solution

t r1t2 + s1t + 12 - c1t2 r102 + s1t2 + s112 - c102 - I f4(t) Decision

1 19.0 + 60 - .6 = 78.4 20 + 80 + 80 - .2 - 100 = 79.8 79.8 R
2 18.5 + 50 - 1.2 = 67.3 20 + 60 + 80 - .2 - 100 = 59.8 67.3 K
3 17.2 + 30 - 1.5 = 45.7 20 + 50 + 80 - .2 - 100 = 49.8 49.8 R
6 (Must replace) 20 + 5 + 80 - .2 - 100 = 4.8  4.8 R

Stage 3.

K R Optimum solution

t r1t2 - c1t2 + f41t + 12 r102 + s1t2 - c102 - I + f4112 f3(t) Decision

1 19.0 - .6 + 67.3 = 85.7 20 + 80 - .2 - 100 + 79.8 = 79.6 85.7 K
2 18.5 - 1.2 + 49.8 = 67.1 20 + 60 - .2 - 100 + 79.8 = 59.6 67.1 K
5 14.0 - 1.8 + 4.8 = 17.0 20 + 10 - .2 - 100 + 79.8 = 9.6 17.0 R

Stage 2.

K R Optimum solution

t r1t2 - c1t2 + f31t + 12 R102 + s1t2 - c102 - I + f3112 f2(t) Decision

1 19.0 - .6 + 67.1 = 85.5 20 + 80 - .2 - 100 + 85.7 = 85.5 85.5 K or R
4 15.5 - 1.7 + 17.0 = 30.8 20 + 30 - .2 - 100 + 85.7 = 35.5 35.5 R

Stage 1.

K R Optimum solution

t r1t2 - c1t2 + f21t + 12 R102 + s1t2 - c102 - I + f2112 f1(t) Decision

3 17.2 - 1.5 + 35.5 = 51.2 20 + 50 - .2 - 100 + 85.5 = 55.3 55.3 R

Figure 12.6 summarizes the optimal solution. At the start of year 1, given t = 3, the optimal 
decision is to replace the machine. Thus, the new machine will be 1 year old at the start of year 2, 
and t = 1 at the start of year 2 calls for either keeping or replacing the machine. If it is replaced, 
the new machine will be 1 year old at the start of year 3; otherwise, the kept machine will be 
2 years old. The process is continued in this manner until year 4 is reached.
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The alternative optimal policies starting in year 1 are (R, K, K, R) and (R, R, K, K).  The total 
cost is $55,300.

12.3.4 investment model

Suppose that you want to invest the amounts P1, P2, . . . , Pn at the start of each of the 
next n years. You have two investment opportunities in two banks: First Bank pays an 
interest rate r1, and Second Bank pays r2, both compounded annually. To encourage 
deposits, both banks pay bonuses on new investments in the form of a percentage of 
the amount invested. The respective bonus percentages for First Bank and Second 
Bank are qi1 and qi2 for year i. Bonuses are paid at the end of the year in which the 
investment is made and may be reinvested in either bank in the immediately suc-
ceeding year. This means that only bonuses and fresh new money may be invested in 
either bank. However, once an investment is deposited, it must remain in the bank 
until the end of year n.

The elements of the DP model are as follows:

1. Stage i is represented by year i, i = 1, 2, c, n.
2. The alternatives at stage i are Ii and Ii, the amounts invested in First Bank and 

Second Bank, respectively.
3. The state, xi, at stage i is the amount of capital available for investment at the start 

of year i.

We note that Ii = xi - Ii by definition. Thus

 x1 = P1

 xi = Pi + qi- 1, 1Ii- 1 + qi- 1, 21xi- 1 - Ii- 12
 = Pi + 1qi- 1, 1 - qi- 1, 22 Ii- 1 + qi- 1, 2xi- 1, i = 2, 3, c, n

The reinvestment amount xi includes only new money plus any bonus from invest-
ments made in year i - 1.

Define

fi1xi2 = optimal value of the investments for years i, i + 1, c, and n, given xi

(t 5 2)K (t 5 3)K

(t 5 3) (t 5 1)R

R

(t 5 1)R (t 5 2)K K

Sell

Year 3 Year 4Year 1 Year 2

Figure 12.6 

Solution of Example 12.3-3 
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Next, define si as the accumulated sum at the end of year n, given that Ii and 1xi - Ii2 
are the investments made in year i in First Bank and Second Bank, respectively. Letting 
ak = 11 + rk2, k = 1, 2,  the problem can be stated as

Maximize z = s1 + s2 + c + sn

where

 si = Ii a1
n + 1 - i + 1xi - Ii2a2

n + 1 - i

 = 1a1
n + 1 - i - a2

n + 1 - i2Ii + a2
n + 1 - ixi, i = 1, 2, c, n - 1

 sn = 1a1 + qn1 - a2 - qn22In + 1a2 + qn22xn

The terms qn1 and qn2 in sn are added because the bonuses for year n are part of the 
final accumulated sum of money from the investment.

The backward DP recursive equation is thus given as

fn + 11xn + 12 K 0

fi1xi2 = max
0 … Ii … xi

 5si + fi+ 11xi+ 126, i = 1, 2, c, n - 1

As given previously, xi+ 1 is defined in terms of xi.

example 12.3-4 

Suppose that you want to invest $4000 now and $2000 at the start of years 2 to 4. The interest 
rate offered by First Bank is 8% compounded annually, and the bonuses over the next 4 years 
are 1.8%, 1.7%, 2.1%, and 2.5%, respectively. The annual interest rate offered by Second Bank 
is .2% lower than that of First Bank, but its bonus is .5% higher. The objective is to maximize the 
accumulated capital at the end of 4 years.

Using the notation introduced previously, we have

 P1 = $4,000, P2 = P3 = P4 = $2000

 a1 = 11 + .082 = 1.08

 a2 = 11 + .0782 = 1.078

 q11 = .018, q21 = .017, q31 = .021, q41 = .025

 q12 = .023, q22 = .022, q32 = .026, q42 = .030

Stage 4.

f41x42 = max
0 … I4 … x4

5s46

where

s4 = 1a1 + q41 - a2 - q422I4 + 1a2 + q422x4 = - .003I4 + 1.108x4

The function s4 is linear in I4 in the range 0 … I4 … x4, and its maximum occurs at I4 = 0 
because of the negative coefficient of I4. Thus, the optimum solution for stage 5 can be sum-
marized as
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Optimum solution

State f4(x4) I 4
*

x4 1.108x4 0

Stage 3.

f31x32 = max
0 … l3 … x3

5s3 + f41x426
where

 s3 = 11.082 - 1.07822I3 + 1.0782x3 = .00432I3 + 1.1621x3

 x4 = 2000 - .005I3 + .026x3

Thus,

 f31x32 = max
0 … I3 … x3

5.00432I3 + 1.1621x3 + 1.10812000 - .005I3 + 0.026x36

 = max
0 … I3 … x3

52216 - .00122I3 + 1.1909x36

Optimum solution

State f3(x3) I 3
*

x3 2216 + 1.1909x3 0

Stage 2.

f21x22 = max
0 … I2 … x2

5s2 + f31x326
where

 s2 = 11.083 - 1.07832I2 + 1.0783x2 = .006985I2 + 1.25273x2

 x3 = 2000 - .005I2 + .022x2

Thus,

 f21x22 = max
0 … I2 … x2

 5.006985I2 + 1.25273x2 + 2216 + 1.190912000 - .005I2 + .022x226

 = max
0 … I2 … x2

54597.8 + .0010305I2 + 1.27893x26

Optimum solution

State f2(x2) I 2
*

x2 4597.8 + 1.27996x2 x2

Stage 1.

f11x12 = max
0 … I1 … x1

5s1 + f21x226
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where

 s1 = 11.084 - 1.07842I1 + 1.0784x1 = .01005I2 + 1.3504x1

 x2 = 2000 - .005I1 + .023x1

Thus,

 f11x12 = max
0 … I1 … x1

 5.01005I1 + 1.3504x1 + 4597.8 + 1.27996 12000 - .005I1 + .023x126

 = max
0 … I1 … x1

 57157.7 + .00365I1 + 1.37984x16

Optimum solution

State f1(x1) I 1
*

x1 = $4000 7157.7 + 1.38349x1 $4,000

Working backward and noting that I 1
* = 4000, I 2

* = x2, I 3
* = I 4

* = 0,  we get

 x1 = 4000

 x2 = 2000 - .005 * 4000 + .023 * 4000 = $2072

 x3 = 2000 - .005 * 2072 + .022 * 2072 = $2035.22

 x4 = 2000 - .005 * 0 + .026 * $2035.22 = $2052.92

The optimum solution is thus summarized as

Year Optimum solution Decision Accumulation

1 I 1
* = x1 Invest x1 = $4000 in First Bank s1 = $5441.80

2 I 2
* = x2 Invest x2 = $2072 in First Bank s2 = $2610.13

3 I 3
* = 0 Invest x3 = $2035.22 in Second Bank s3 = $2365.13

4 I 4
* = 0 Invest x4 = $2052.92 in Second Bank s4 = $2274.64

Total accumulation = f11x12 = 7157.7 + 1.38349140002 = $12,691.66 1=  s1 + s2 + s3 + s42

12.3.5  inventory Models

DP has important applications in the area of inventory control. Chapters 13 and 16 
present some of these applications. The models in Chapter 13 are deterministic, and 
those in Chapter 16 are probabilistic. Other probabilistic DP applications are given in 
Chapter 24 on the website.

12.4  PRoBLeM oF DiMenSionALity

In all the DP models presented in this chapter, the state at any stage is represented by 
a single element. For example, in the knapsack model (Section 12.3.1), the only restric-
tion is the weight of the item. More realistically in this case, the volume of the knapsack 
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may also be another viable restriction, in which case the state at any stage is said to be 
two dimensional: weight and volume.

The increase in the number of state variables increases the computations at 
each stage. This is particularly clear in DP tabular computations because the number 
of rows in each tableau corresponds to all possible combinations of state variables. 
This computational difficulty is sometimes referred to in the literature as the curse of 
dimensionality.

The following example is chosen to demonstrate the problem of dimensionality. It 
also serves to show the relationship between linear and dynamic programming.

example 12.4-1 

Acme Manufacturing produces two products. The daily capacity of the manufacturing process 
is 430 minutes. Product 1 requires 2 minutes per unit, and product 2 requires 1 minute per unit. 
There is no limit on the amount produced of product 1, but the maximum daily demand for 
product 2 is 230 units. The unit profit of product 1 is $2 and that of product 2 is $5. Find the 
optimal solution by DP.

The problem is represented by the following linear program:

Maximize z = 2x1 + 5x2

subject to

 2x1 + x2 … 430

 x2 … 230

 x1, x2 Ú 0

The elements of the DP model are as follows:

1. Stage i corresponds to product i, i = 1, 2.
2. Alternative xi is the amount of product i, i = 1, 2.
3. State (v2, w2) represents the amounts of resources 1 and 2 (production time and demand 

limits) used in stage 2.
4. State (v1, w1) represents the amounts of resources 1 and 2 (production time and demand 

limits) used in stages 1 and 2.

Stage 2.
Define f21v2, w22 as the maximum profit for stage 2 (product 2), given the state (v2, w2). Then

f21v2, w22 = max
0 … x2 … v2

55x26
0 …x2 …w2

Thus, max 55x26 occurs at x2 =  min 5v2, w26, and the solution for stage 2 is

Optimum solution

State f2(v2, w2) x2

(v2, w2) 5 min 5v2, w26 min 5v2, w26
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Stage 1.

 f11v1, w12 = max
0 … 2x1 … v1

52x1 + f21v1 - 2x1, w126

 = max
0 … x1 … v1>2

52x1 + 5 min 1v1 - 2x1, w126

The optimization of stage 1 involves the solution of a (generally more difficult) minimax 
problem. For the present problem, we set v1 = 430 and w1 = 230, which gives 0 … x1 … 215.  
Because min 1430 - 2x1, 2302  is the lower envelope of two intersecting lines (verify!), it fol-
lows that

min1430 - 2x1, 2302 = e230,  0 … x1 … 100
430 - 2x1, 100 … x1 … 215

and

 f11430, 2302 = max
0 … x1 … 215

52x1 + 5 min 1430 - 2x1, 23026

 = max 
x1

e2x1 + 1150,  0 … x1 … 100
-8x1 + 2150, 100 … x1 … 215

You can verify graphically that the optimum value of f1(430, 230) occurs at x1 = 100.  Thus, we get

Optimum solution

State f1(v1, w1) x1

(430, 230) 1,350 100

To determine the optimum value of x2, we note that

 v2 = v1 - 2x1 = 430 - 200 = 230

 w2 = w1 - 0 = 230

Consequently,

x2 =  min1v2, w22 = 230

The complete optimum solution is thus summarized as

x1 = 100 units,  x2 = 230 units,  z = $1350
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Case Study: Optimization of Crosscutting and Log allocation at Weyerhaeuser5 

tool: DP

Area of application: Log mill operation

Description of the situation: 

Mature trees are harvested and crosscut into logs in different mills to manufacture different end 
products (such as construction lumber, plywood, wafer boards, and paper). Log specifications (e.g., 
lengths and end diameters) for each mill depend on the end product the mill produces. With har-
vested trees measuring up to 100 ft in length, the number of crosscut combinations meeting mill 
requirements can be large. Different revenues can be realized depending on the way logs are cut 
from a tree. The objective is to determine the crosscut combination that maximizes the total revenue.

Mathematical model:

The basis of the model is that it is not practical to develop an optimum solution that applies to an 
“average” tree because, in general, harvested trees come in different lengths and end diameters. 
Thus optimum crosscutting and log allocation must apply to individual trees.

A simplifying assumption of the model is that the usable length L (feet) of a harvested tree 
is a multiple of a minimum length K (feet). Additionally, the length of a log cut from the tree is 
also a multiple of K. This means that logs can only be as small as K feet and as large as NK feet, 
where, by definition, N … L

K.
Define

M = Number of mills requesting logs

I = L
K

Rm1i, j2 =  Revenue at mill m from a log of length jK cut from the larger end of a stem (or 
trunk) of length iK, m = 1, 2, c, M; i = 1, 2, c, I; j = 1, 2, c, N; j … i

c = Cost of making a crosscut at point i of the tree, i = 1, 2, c, I - 1

cij = e c, if j 6 i
0, if j = i

The definition of cij recognizes that if the length iK of the stem equals the desired log length jK, 
then no cuts are made.

To understand the meaning of the notation Rm(i, j), Figure 12.7 provides a representation 
of a tree with I = 8 and L = 8K. The crosscuts at points A and B result in one log for mill 1 and 
two for mill 2. The cutting starts from the larger end of the tree and produces log 1 for mill 2 by 
making a crosscut at point A. The cut corresponds to 1i = 8, j = 32 and produces the revenue 
R2(8, 3). The remaining stem now has a length 5K. The next crosscut at point B produces log 2 
for mill 1 with the length 2K. This log corresponds to 1i = 5, j = 22 and generates the revenue 
R1(5, 2). The remaining stem of length 3K exactly equals the length of log 3 for mill 2. Hence no 
further cutting is needed. The associated revenue is R1(3, 3). The crosscutting cost associated with 
the solution is c83 = c, c52 = c, and c33 = 0.

The problem can be formulated and solved as a DP model.

5Lembersky, M. R., and U. H. Chi, “Decision Simulators Speed Implementation and Improve Operations,” 
Interfaces, Vol. 14, No. 4, pp. 1–15, 1984.
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Let

f1i2 = Maximum revenue when the length of the remaining stem is iK, i = 1, 2, c, I

The DP recursive equation is then given as

 f102 K 0

 f1i2 = max
j = 1, 2, c,  min 1i, N2

5Rm1i, j2 - cij + f1i - j26, i = 1, 2, c, I

m = 1, 2, cM

The idea is that given a stem of length iK,  f(i) is a function of the revenue of cutting a log of length 
j 1…  i2 minus the cost of making a crosscut plus the best cumulative revenue from the remaining 
stem of length 1i - j2K.

example computations:

The recursive equation is computed in the order f (1), f (2), . . . , f (I). The situation deals with 
two mills 1M = 22, a tree of length L = 12 ft, and a minimum log length K = 2 ft, thus yield-
ing I = 6. The cost of a crosscut is c = $.15. Either mill will accept logs of length 2, 4, 6, 8, or 
10 ft. This means that N = 5. Figure 12.8 provides the spreadsheet solution of the example (file 
excelCase8.xls). The basic DP calculations (rows 15–20) are partially automated and will change 
automatically when Rm(i,  j) in rows 6–11 are altered. All italicized boldface elements are entered 
manually.6 The spreadsheet is limited to problems with I = 6, N = 5, and M = 2, in essence 
allowing changes in the entries of Rm(i, j) only.7 The values of Rm(i, j), j … i, are given in rows 
5 through 11 in the spreadsheet. Note that for a specific j = j*, the value of Rm1i, j*2 increases 
with i to reflect increases in end diameters of the log.

To illustrate the DP calculations in rows 15–20, note that each stage consists of one row be-
cause the state of the system at stage i consists of one value only—namely, the partial stem length. 
At stage i = 1, the (remaining) stem length is 1K, hence resulting in one log only of length 1K 
(i.e., j = 1). Also, c11 = 0 because no cutting takes place. Thus,

 f112 = max5R111, 12 - c11 + f102, R211, 12 - c11 + f1026
 = max51 - 0 + 0, 1.1 - 0 + 06
 = 1.1

6It is a straightforward Excel exercise to automate columns M and N. I chose not to do that to engage the 
reader in taking part in determining the optimum solution.
7The spreadsheet formulas should provide sufficient information to extend the spreadsheet to other input 
data. Also, a general spreadsheet solution can be developed using (the more involved) VBA macros to specify 
the size of the matrices Rm(i,  j) and to automate all the calculations.

L  8K

K

log 3, mill 2

B A

i  1 i  2 i  8…

log 2, mill 1 log 1, mill 2

5

5 5 5

Figure 12.7 

Typical solution in a two-mill situation



The associated optimum decision at i = 1 calls for a log of length 1K 1j* = 12 for mill 2 1m* = 22,  
or 1j*, m*2 = 11, 22.

For stage 2 1i = 22, logs can assume a length of 1K or 2K (i.e., j = 1 or 2) for both mills 
1m = 1 or 22. Thus,

 f122 =  max 5R112, 12 - c21 + f112, R112, 22 - c22 + f102, R212, 12 - c21 + f112, 
                         R212, 22 - c22 + f1026

 =  max 51.1 - .15 + 1.1, 1.15 - 0 + 0, 1.1 - .15 + 1.1, 2.3 - 0 + 06
 =  max 52.05, 1.15, 2.05, 2.36 = 2.3

The associated optimum decision is 1j*, m*2 = 12, 22, which calls for cutting one log of length 
2K for mill 2.

The remaining calculations are carried out in a similar manner as shown in Figure 12.8,  
rows 15–20. Note that entries B15:F20, H15:L20, and M15:M20 are automated in the 
 spreadsheet. The entries 1j*, m*2  in N15:N20 are created manually after the automated 

Figure 12.8 

Spreadsheet solution of the mill example problem
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 computations in rows 15–20 are completed. Manually highlighted cells in rows 15–20 define 
f(i), i = 1, 2, c, 6.

The optimum solution is read from cells N15:N20 as follows:

1i = 62 S 1j*, m*2 = 12, 22 S 1i = 42 S 1j*, m*2 = 11, 22 S

1i = 32 S 1j*, m*2 = 11, 12 S 1i = 22 S 1j*, m*2 = 12, 22
The solution translates to making cuts at i = 2, 3, and 4 and produces a total value of $9.85 for 
the tree.

Practical considerations:

The results of the DP optimization model are used by field operators in the day-to-day opera-
tion of the mill. Thus the implementation of the model must be user-friendly—meaning that 
the (intimidating) DP calculations are transparent to the user. This is precisely what Lem-
berskey and Chi [1] did when they developed the VISION (Video Interactive Stem Inspec-
tion and OptimizatioN) computer system. The system is equipped with a database of large 
representative samples of tree stems from the regions where trees are harvested. The data 
include the geometry of the stem as well as its quality (e.g., location of knots) and the value 
(in dollars) for stems with different lengths and diameters. In addition, quality characteristics 
for the different mills are provided.

A typical user session with VISION includes the following steps:

Step 1: The operator may select a sample stem from the database or create one using the 
graphic capabilities of VISION. This will result in a realistic representation of the 
stem on the computer screen. The mills requesting the logs are also selected from the 
 database.

Step 2: After inspecting the stem on the screen, the operator can “cut” the stem into logs 
based on experience. Next, an optimum DP solution is requested. In both cases, 
graphic displays of the created logs together with their associated values are pro-
jected on the screen. The user is then given the chance to compare the two solutions. 
In particular, the DP solution is examined to make sure that the created logs meet 
quality specifications. If not, the user may elect to modify the cuts. In each case, the 
associated value of the stem is displayed for comparison.

In VISION, DP optimization is transparent totally to the user. In addition, the interactive 
graphic nature of the output makes the system ideal for training operators and improving their 
decision-making skills. The design of the system shows how complex mathematical models can 
be imbedded within a user-friendly computer system.

PRoBLeMS 

Section Assigned Problems Section Assigned Problems

12.1 12-1 to 12-2 12.3.3 12-23 to 12-27
12.2 12-3 to 12-5 12.3.4 12-28 to 12-30
12.3.1 12-6 to 12-18 12.4 12-31 to 12-32
12.3.2 12-19 to 12-22
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 *12-1. Solve Example 12.1-1, assuming the following routes are used:

 d11, 22 = 5, d11, 32 = 9, d11, 42 = 8

 d12, 52 = 10, d12, 62 = 17

 d13, 52 = 4, d13, 62 = 10

 d14, 52 = 9, d14, 62 = 9

 d15, 72 = 19

 d16, 72 = 9

 12-2. I am an avid hiker. Last summer, my friend G. Don and I went on a 5-day hike-and-
camp trip in the beautiful White Mountains in New Hampshire. We decided to limit 
our hiking to an area comprising three well-known peaks: Mounts Washington, 
Jefferson, and Adams. Mount Washington has a 6-mile base-to-peak trail. The 
 corresponding base-to-peak trails for Mounts Jefferson and Adams are 4 and 5 
miles, respectively. The (two-way) trails joining the bases of the three mountains 
are 3 miles between Mounts Washington and Jefferson, 2 miles between Mounts 
Jefferson and Adams, and 5 miles between Mounts Adams and Washington. We 
started on the first day at the base of Mount Washington and returned to the same 
spot at the end of 5 days. Our goal was to hike as many miles as we could. We also 
decided to climb exactly one mountain each day and to camp at the base of the 
mountain we would be climbing the next day. Additionally, we decided that the 
same mountain could not be visited in any two consecutive days. Use DP to plan 
the 5-day hike.

 12-3. For Problem 12-1, develop the backward recursive equation, and use it to find the 
optimum solution.

 12-4. For Problem 12-2, develop the backward recursive equation, and use it to find the 
optimum solution.

*12-5. For the network in Figure 12.9, it is desired to determine the shortest route between 
cities 1 to 7. Define the stages and the states using backward recursion, and then solve 
the problem.
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Figure 12.9 

Network for Problem 12-5
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 12-6. In Example 12.3-1, determine the optimum solution, assuming that the maximum 
weight capacity of the vessel is 2 tons. Repeat the question for a weight capacity of  
5 tons.8 

 12-7. Solve the cargo-loading problem of Example 12.3-1 for each of the following sets of 
data:
(a) w1 = 4, r1 = 70, w2 = 1, r2 = 20, w3 = 2, r3 = 40, W = 6

(b) w1 = 1, r1 = 15, w2 = 2, r2 = 30, w3 = 3, r3 = 40, W = 4
 12-8. In the cargo-loading model of Example 12.3-1, suppose that the revenue per item 

includes a constant amount that is realized only if the item is chosen, as the following 
table shows:

Item Revenue

1 e -5 + 31m1,  if m1 7 0 
0,                   otherwise 

2 e -15 + 47m2, if m2 7 0 
0,                     otherwise 

3 e -4 + 14m3, if m3 7 0 
0,                   otherwise 

Find the optimal solution using DP. (Hint: You can use the Excel file excelSetupKnap-
sack.xls to check your calculations.)

 12-9. A wilderness hiker must pack three items: food, first-aid kits, and clothes. The back-
pack has a capacity of 3 ft3. Each unit of food takes 1 ft3. A first-aid kit occupies 1�4 ft

3,  
and each piece of cloth takes about 1�2 ft

3. The hiker assigns the priority weights 3, 
4, and 5 to food, first aid, and clothes, respectively, which means that clothes are the 
most valuable of the three items. From experience, the hiker must take at least one 
unit of each item and no more than two first-aid kits. How many of each item should 
the hiker take?

12-10. A student must select 10 electives from four different departments, with at least one 
course from each department. The 10 courses are allocated to the four departments in a 
manner that maximizes “knowledge.” The student measures knowledge on a 100-point 
scale and comes up with the following chart:

Number of courses

Department 1 2 3 4 5 6 Ú  7

I 25 50 60  80 100 100 100
II 20 70 90 100 100 100 100
III 40 60 80 100 100 100 100
IV 10 20 30  40  50  60  70

How should the student select the courses?

*

*

8In Problems 12-6 to 12-18, you are encouraged where applicable to verify hand computations using the 
template excelKnapsack.xls.
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12-11. I have a small backyard garden that measures 10 * 20 ft. This spring I plan to plant 
three types of vegetables: tomatoes, green beans, and corn. The garden is organized 
in 10-foot rows. The corn and tomatoes rows are 2 ft wide, and the beans rows are 3 ft 
wide. I like tomatoes the most and beans the least, and on a scale of 1 to 10, I would 
assign 10 to tomatoes, 7 to corn, and 3 to beans. Regardless of my preferences, my 
wife insists that I plant at least one row of green beans and no more than two rows of 
 tomatoes. How many rows of each vegetable should I plant?

12-12. Habitat for Humanity is a wonderful (U.S.-based) international charity organization 
that builds homes for needy families using volunteer labor and donated building 
materials. An eligible family can choose from three home sizes: 1000, 1100, and 
1200 ft2. Each size requires a certain number of labor volunteers. The Fayetteville, 
Arkansas, chapter has received five applications for the upcoming 6 months. The 
committee in charge assigns a score to each application based on several factors. 
A higher score signifies higher need. For the next 6 months, the chapter can count 
on a maximum of 23 volunteers. The following data summarize the scores for the 
applications and the required number of volunteers. Which applications should the 
committee approve?

Application
House  

size (ft2) Score
Number of  
volunteers

1 1200 78 7
2 1000 64 4
3 1100 68 6
4 1000 62 5
5 1200 85 8

12-13. Sheriff Bassam is up for reelection in Washington County. The funds available for the 
campaign are about $10,000. Although the reelection committee would like to launch 
the campaign in all five precincts of the county, limited funds dictate otherwise. The 
table given below lists the voting population and the amount of funds needed to launch 
an effective campaign in each precinct. A precinct can receive either all its allotted 
funds or none. How should the funds be allocated?

Precinct Population Required funds ($)

1 3100 3500
2 2600 2500
3 3500 4000
4 2800 3000
5 2400 2000

12-14. An electronic device consists of three components. The three components are in series 
so that the failure of one component causes the failure of the device. The reliability 
(probability of no failure) of the device can be improved by installing one or two 
standby units in each component. The table listed below charts the reliability, r, and the 
cost, c. The total capital available for the construction of the device is $10,000. How 
should the device be constructed? (Hint: The objective is to maximize the reliability, 
r1r2r3, of the device. This means that the decomposition of the objective function is 
multiplicative rather than additive.)

*
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Number of  
parallel units

Component 1 Component 2 Component 3

r1 c11$2 r2 c21$2 r3 c31$2
1 .6 1000 .7 3000 .5 2000
2 .8 2000  .8 5000 .7 4000
3 .9 3000 .9 6000 .9 5000

12-15. Solve the following model by DP:

Maximize z = q
n

i = 1
yi

subject to

y1 + y2 + c + yn = c

yj Ú 0, j = 1, 2, c, n

(Hint: This problem is similar to Problem 12-14, except that the variable yj is  
continuous.)

12-16. Solve the following problem by DP:

Minimize z = y1
2 + y2

2 + c + yn
2

subject to

q
n

i = 1
yi = c

yi 7 0, i = 1, 2, c, n

12-17. Solve the following problem by DP:

Maximize z = 1y1 + 222 + y2 y3 + 1y4 - 522

subject to

y1 + y2 + y3 + y4 … 5

yi Ú 0 and integer,  i = 1, 2, 3, 4

12-18. Solve the following problem by DP:

Minimize z =  max 5f1y12, f1y22, c, f1yn26
subject to

y1 + y2 + c + yn = c

yi Ú 0, i = 1, 2, c, n

Provide the solution for the special case of n = 3, c = 10, and f1y12 = y1 + 5, 
f1y22 = 5y2 + 3, and f1y32 = y3 - 2.

12-19. Solve Example 12.3.2 for each of the following minimum labor requirements:
(a) b1 = 6, b2 = 5, b3 = 3, b4 = 6, b5 = 8

(b) b1 = 6, b2 = 4, b3 = 7, b4 = 8, b5 = 2
*
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12-20. In Example 12.3-2, if a severance pay of $100 is incurred for each fired worker,  
determine the optimum solution.

*12-21. Luxor Travel arranges 1-week tours to southern Egypt. The agency provides 7, 4, 7, and 
8 rental cars over the next 4 weeks. Luxor Travel subcontracts with a local car dealer to 
supply rental needs. The dealer charges a rental fee of $220 per car per week, plus a flat 
fee of $500 for any rental transaction. Luxor, however, may elect to keep the rentals for 
an additional week and simply continue to pay the rent. What is the best way for Luxor 
Travel to handle the rental situation?

12-22. GECO is contracted for the next 4 years to supply aircraft engines at the rate of four 
engines a year. Available production capacity and production costs vary from year to 
year. GECO can produce five engines in year 1, six in year 2, three in year 3, and five 
in year 4. The corresponding production costs per engine over the next 4 years are 
$200,000, $330,000, $350,000, and $420,000, respectively. GECO can elect to produce 
more than it needs in a certain year, in which case the engines must be properly stored 
until shipment date. The storage cost per engine also varies from year to year, and is 
estimated to be $20,000 for year 1, $30,000 for year 2, $40,000 for year 3, and $50,000 
for year 4. Currently, at the start of year 1, GECO has one engine ready for shipping. 
Develop an optimal production plan for GECO.

12-23. In each of the following cases, develop the network, and find the optimal solution for 
the model in Example 12.3-3:
(a) The machine is 2 years old at the start of year 1.

(b) The machine is 1 year old at the start of year 1.

(c) The machine is bought new at the start of year 1.
*12-24. My son, age 13, has a lawn-mowing business with 10 customers. For each customer, he 

cuts the grass 3 times a year, which earns him $50 for each mowing. He has just paid 
$200 for a new mower. The maintenance and operating cost of the mower is $120 for 
the first year in service and increases by 20% a year thereafter. A 1-year-old mower has 
a resale value of $150, which decreases by 10% a year thereafter. My son, who plans to 
keep his business until he is 16, thinks that it is more economical to buy a new mower 
every 2 years. He bases his decision on the fact that the price of a new mower will 
increase only by 10% a year. Is his decision justified?

12-25. Circle Farms wants to develop a replacement policy for its 2-year-old tractor over the 
next 5 years. A tractor must be kept in service for at least 3 years, but must be disposed 
of after 5 years. The current purchase price of a tractor is $40,000 and increases by 10% 
a year. The salvage value of a 1-year-old tractor is $30,000 and decreases by 10% a year. 
The current annual operating cost of the tractor is $1300 but is expected to increase by 
10% a year.
(a) Formulate the problem as a shortest-route problem.

(b) Develop the associated recursive equation.

(c) Determine the optimal replacement policy of the tractor over the next 5 years.
12-26. Consider the equipment replacement problem over a period of n years. A new 

piece of equipment costs c dollars, and its resale value after t years in operation is 
s1t2 = n - t for n 7 t and zero otherwise. The annual revenue is a function of the age t 
and is given by r1t2 = n2 - t2 for n 7 t and zero otherwise.
(a) Formulate the problem as a DP model.

(b) Find the optimal replacement policy given that c = $10,000, n = 5, and the  
equipment is 2 years old.
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12-27. Solve Problem 12-26, assuming that the equipment is 1 year old and that n = 4, 
c = $6000, and r1t2 = n

1 + t.
12-28. Solve Example 12.3-4, assuming that r1 = .085 and r2 = .08. Additionally, assume that 

P1 = $5000, P2 = $4000, P3 = $3000, and P4 = $2000.
12-29. An investor with an initial capital of $10,000 must decide at the end of each year how 

much to spend and how much to invest in a savings account. Each dollar invested 
returns a = $1.09 at the end of the year. The satisfaction derived from spending $y in 
any one year is quantified monetarily as $1y. Solve the problem by DP for a span of 
5 years.

12-30. A farmer owns k sheep. At the end of each year, a decision is made as to how many to 
sell or keep. The profit from selling a sheep in year i is pi. The sheep kept in year i will 
double in number in year i + 1. The farmer plans to sell out completely at the end of  
n years.
(a) Derive the general recursive equation for the problem.

(b) Solve the problem for n = 3 years, k = 2 sheep, p1 = $100, p2 = $130, and 
p3 = $120.

12-31. Solve the following problems by DP.
(a) Maximize z = 4x1 + 14x2

subject to

2x1 + 7x2 … 21

7x1 + 2x2 … 21

x1, x2 Ú 0

(b) Maximize z = 8x1 + 7x2

subject to

2x1 + x2 … 8

5x1 + 2x2 … 15

x1, x2 Ú 0 and integer

(c) Maximize z = 7x1
2 + 6x1 + 5x2

2

subject to

x1 + 2x2 … 10

x1 - 3x2 … 9

x1, x2 Ú 0

12-32. In the n-item knapsack problem of Example 12.3-1, suppose that the weight and volume 
limitations are W and V, respectively. Given that wi, vi, and ri are the weight, value, and 
revenue per unit, respectively, of item i, write the DP backward recursive equation for 
the problem.

*



Chapter 13

Inventory Modeling (with Introduction 
to Supply Chains)

Real-Life Application: Kroger Improves Pharmacy Inventory Management

The Kroger Company operates approximately 2500 pharmacies in its stores across the 
United States. Drug shortages and excessive inventory were kept in check through the 
use of a spreadsheet simulation optimization model. The use of the spreadsheet made 
it easy to gain wide acceptance by both the management and pharmacy personnel. 
Kroger reports an increase in revenue of $80 million and a reduction in inventory of 
more than $120 million from November 2011 to March 2013. The full case study is pre-
sented at the end of the chapter.

13.1 InventoRy PRobLeM: A SuPPLy ChAIn PeRSPeCtIve1 

Supply chain is a recent modeling conceptualization of end-to-end flow of goods, funds, 
and information among four principal entities: supplier, manufacturer, retailer, and 
consumer. Directions of flow can be summarized as

 Goods flow:  Supplier S Manufacturer S Retailer S Consumer

 Funds flow:  Supplier d Manufacturer d Retailer d Consumer 

 Information flow:  Supplier 4 Manufacturer 4 Retailer 4 Consumer

Goods flow starts at the supplier and ends at the consumer. Funds flow starts at the 
consumer, the main source of revenue for the entire chain, and moves upstream, allotting 
portions of the revenue to retailer, manufacturer, and supplier. Information flow requires 

 501

1This brief presentation of supply chains is not intended to compete with the rich resources on the subject 
already available in the literature. The intent is to introduce the inventory problem in the relevant context of 
the encompassing modeling view of supply chains.
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close collaboration among all the entities of the chain. Among the most crucial informa-
tion exchange is the sales data at the consumer level. This data is used to predict the 
nature of the demand distribution, which is subsequently used to determine the optimum 
levels and movements of goods at/to all locations in the supply chain. From this stand-
point, it is important to recognize that no member of the supply chain should attempt to 
gain economic advantages at the expense of another member. In the end, such policy will 
result in a higher cost for the final product and, hence, lower revenue for all the members 
of the supply chain.

The arrows in the supply chain representation given above symbolize the  distance 
and time lapse separations among the physical locations of the four entities of the chain. 
The important implication here is that each location must maintain a level of inventory 
to guarantee a reasonable degree of operational responsiveness (to client’s needs). At 
the same time, the supply chain must be efficient, in the sense that the inventory cost of 
storing, transporting, handling, and running out of stock must be kept in check. Thus, in 
deciding the level of inventory, a balance must be maintained between level of respon-
siveness and the degree of efficiency.

13.1.1  An Inventory Metric in Supply Chains

Businesses use simple ratios and formulas to evaluate the impact of inventories on 
the financial health of the company. A common metric is the following turnover 
ratio:

Turnover ratio =
Cost of goods sold in a period

Cost of average inventory in the same period

It measures the number of times a business has sold through its inventory during a spec-
ified period (usually a year) to realize given sales. Note importantly that the  numerator 
is the cost and not the revenue of goods sold.

As a general rule, a ratio less than 1 is a strong indicator that a business car-
ries too much inventory for its realized sales volume. A high turnover ratio, on 
the other hand, is desirable because it indicates lower inventory and high sales 
volume. However, unreasonably high inventory turnover could be an indication 
that the business is carrying low inventory, giving rise to lost sales caused by 
stock-outages.

All the data for computing this ratio are usually taken from the (end-of-year) bal-
ance sheet of the company. For this reason, the turnover ratio is computed over a 1-year 
period and the average inventory is the simple average of the beginning and ending 
inventory costs for the year. This simple average assumes that inventory is depleted 
uniformly over the year, which may not be true. For example, distortion will occur in 
the extreme case of the inventory staying constant for the first 10 months of the year 
and then depleted sharply during the Christmas shopping months of November and 
December. This bias can be alleviated by tracking the actual inventory on a monthly 
or quarterly basis. However, collecting the information for this task may be costly (as 
opposed to simply using balance sheet data).
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A companion metric of the turnover ratio is the number of days inventory is held 
in the system before it is turned over, computed as:

Days in inventory =
360

Turnover ratio

example 13.1-1 

The following table summarizes financial information taken from the balance sheets of a 
 hypothetical company.

(Million $)

December 31, 2014 December 31, 2013 December 31, 2012

Cost of goods sold 3989.1 3872.1 3562.7
Inventories:
 Supplies  310.2  210.4  156.2
 Raw materials  189.7  199.4  172.6
 Work-in-process  339.1  310.5  342.3
 Finished goods  200.1  196.4  150.7

Assess how well the company is managing its inventory.
The following table summarizes the calculation of the turnover ratios:

(Million $) 2014 2013 2012

Cost of goods sold 3989.1 3872.1 3562.7
Total inventory 1039.1  916.7  821.8
Average inventory 11039.1 + 916.72 >2 = 977.9 1916.7 + 821.82 >2 = 869.25 
Turnover ratio     13989.1>977.92 = 4.08 13872.1>869.252 = 4.45 
Days in inventory       1365>4.082 = 89.46 1365>4.452 = 82.02 

The calculations show an unfavorable inventory situation: Low inventory turns (approxi-
mately 4 times a year) in 2013 and 2014 and high average days in inventory (over 80 days). 
Moreover, a worsening inventory situation occurs in 2014 compared to 2013.

The results above deals with assessing the inventory situation based on (end-
of-year) balance sheet information. It provides generic metrics that simply pinpoint 
whether or not the inventory held by a business over the past year was in line with 
expectations. In this regard, the metrics do not suggest solutions for reducing excessive 
inventories as much as raise red flags about the inventory situation.

To alleviate the problem, it is necessary to devise tools suitable for determining 
the optimum inventory levels at all operational levels of the supply chain, from raw 
material to finished goods. These tools can be used to target a single item or a group of 
(homogeneous) items.

The nature of demand for an item can be broadly categorized as either determin-
istic or probabilistic. This categorization is a key factor in the development of inventory 
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optimization tools. The remainder of this chapter deals with the (more analytically 
amenable) deterministic case. The probabilistic case will be presented in Chapter 16 
following a review of probability and statistics in Chapter 14.

13.1.2  elements of the Inventory optimization Model

Most businesses must maintain inventory on hand to deal with uncertainties in demand. 
Too much inventory increases the holding cost of maintaining inventory in stock (capital, 
storage, maintenance, and handling), and too little increases shortage cost (lost sales, disrup-
tion in production, and loss of customer’s goodwill). As units are withdrawn from stock, 
inventory is replenished periodically by initiating new orders from suppliers, with each new 
order incurring a (fixed) setup cost that is independent of the size of the order. In most 
cases, the purchase price from the supplier is discounted for large-size orders. What this all 
means is that the associated total inventory cost can be expressed as£ Total

inventory
cost

≥ = aPurchasing
cost

b + aSetup
cost

b + aHolding
cost

b + aShortage
cost

b

These are conflicting costs, in the sense that smaller order sizes will reduce the holding 
cost (per unit time) while, at the same time, increasing the remaining costs, and vice 
versa. In this situation, the best that can be done is to seek a trade-off among these 
costs by deciding an inventory level that minimizes the total inventory cost.

The inventory problem reduces to devising an inventory policy that answers two 
questions:

1. How much to order?
2. When to order?

The basis of the inventory model is the following generic cost function:£ Total
inventory

cost
≥ = aPurchasing

cost
b + aSetup

cost
b + aHolding

cost
b + aShortage

cost
b

A description of the components of the cost function is given subsequently:

1. Purchasing cost is the price per unit of an inventory item. At times, the item is of-
fered at a discount if the order size exceeds a certain amount, which is a factor in 
deciding how much to order.

2. Setup cost represents the fixed charge incurred when an order is placed. It can 
also include the cost associated with receiving a shipment. The cost is fixed re-
gardless of the size of the order requested or the shipment received.

3. Holding cost represents the cost of maintaining inventory in stock. It includes the 
interest on capital and the cost of storage, maintenance, handling, obsolescence, 
and shrinkage due to fraud or theft.
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4. Shortage cost is the penalty incurred when stock is out. It includes potential loss 
of income, disruption in production, the additional cost of ordering emergency 
shipments (usually overnight), and the (hard-to-estimate) subjective cost of loss 
in customer goodwill.

The described costs are conflicting, in the sense that an increase in one may result 
in the reduction of another (e.g., more frequent ordering results in higher setup cost 
but lower inventory holding cost). The purpose of the minimization of the total inven-
tory cost function is to balance these conflicting costs.

How much to order simply translates to determining the size of the order at re-
plenishment time. When to order is a bit more involved. An inventory system may re-
quire periodic reviews (e.g., ordering at the start of every week or month), or it may 
be based on continuous reviews, placing a new order whenever the inventory level 
drops to a specific reorder point. An example of the two types occurs in retail stores. 
The review is periodic if the item is replenished every week or month. It is continuous 
if replenishment takes place whenever the inventory level dips below a certain level.

The presentation above gives a unifying framework for deciding the optimum 
inventory policy. Yet, the specific models for determining these policies are as diverse 
as the different situations they handle. In general, the complexity of the resulting 
models depends to a great degree on the degree of uncertainty in the demand for the 
inventory item.

13.2  RoLe of DeMAnD In the DeveLoPMent of InventoRy 
MoDeLS

In general, the analytic complexity of inventory models depends on whether the demand 
is deterministic or probabilistic. Within either category, the demand may or may not vary 
with time. For example, the consumption of natural gas used in heating homes is sea-
sonal. Though the seasonal pattern repeats itself annually, a same-month consumption 
may vary from year to year, depending, for example, on the severity of weather.

In practical situations, the demand pattern in an inventory model may assume 
one of four types:

1. Deterministic and constant (static) with time.
2. Deterministic and variable (dynamic) with time.
3. Probabilistic and stationary over time.
4. Probabilistic and nonstationary over time.

This categorization assumes the availability of reliable data to forecast future demand.
In terms of the development of inventory models, the first category is the simplest 

analytically, and the fourth is the most complex. On the other hand, the first category is 
the least likely to occur in practice and the fourth is the most prevalent. In practice, the 
goal is to balance model simplicity and model accuracy.

How can we decide if a certain approximation of demand is acceptable? 
An initial “guesstimate” is based on computing the mean and standard deviation 
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of consumption for a specific period (e.g., monthly). The coefficient of variation, 
V = Standard deviation

Mean * 100, can then be used to assess the nature of demand using the 
following guideline:2

1. If the average monthly demand (taken over a number of years) is “approxi-
mately” constant and V is reasonably small 16  20%2, then the demand may be 
considered deterministic and constant.

2. If the average monthly demand varies appreciably among the different months 
but V remains reasonably small for all months, then the demand may be consid-
ered deterministic but variable.

3. If in Case 1 V is high 1720%2 but approximately constant, then the demand is 
probabilistic and stationary.

4. The remaining case is the probabilistic nonstationary demand, which occurs when 
the averages and coefficients of variation vary appreciably month to month.

example 13.2-1 

The data in Table 13.1 provide the monthly (January through December) consumption of natu-
ral gas in a rural residential home over a span of 10 years (1990–1999). The supplier sends a 
truck to fill a tank at the request of a homeowner.

From the standpoint of inventory modeling, it is reasonable to assume that each month rep-
resents a decision period for the placement of an order. The purpose of this example is to analyze 
the nature of the demand.

2The coefficient of variation, V, measures the relative variation or spread of the data around the mean. 
In general, higher values of V indicate higher uncertainty in the use of the mean as an approximation of 
monthly consumption. For deterministic demand, V = 0, because the associated standard deviation is zero.

TAble 13.1 Monthly (January through December) Consumption of Natural Gas

Natural-Gas Consumption in Cubic Feet

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

1990 100 110 90 70 65 50 40 42 56 68 88 95
1991 110 125 98 80 60 53 44 45 63 77 92 99
1992 90 100 88 79 56 57 38 39 60 70 82 90
1993 121 130 95 90 70 58 41 44 70 80 95 100
1994 109 119 99 75 68 55 43 41 65 79 88 94
1995 130 122 100 85 73 58 42 43 64 75 80 101
1996 115 100 103 90 76 55 45 40 67 78 98 97
1997 130 115 100 95 80 60 49 48 64 85 96 105
1998 125 100 94 86 79 59 46 39 69 90 100 110
1999 87 80 78 75 69 48 39 41 50 70 88 93
Mean 111.7 110 95 82.5 69.6 55 42.7 42 62.8 77 91 98
Std Dev 15.54 15.2 7.5 7.99 7.82 3.9 3.4 2.9 6.09 6.9 6.7 6
V (%) 13.91 13.8 7.9 9.68 11.2 7.1 7.96 6.8 9.69 8.9 7.4 6.1
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An examination of the mean and the coefficient of variation, V, in Table 13.1 reveals two 
results:

1. Average consumption is dynamic (not constant) because of the high average consumption 
during winter months.

2. The coefficient of variation, V, is reasonably small 1615%2 so, as a first assessment, the 
monthly demand can be considered approximately deterministic.

The conclusion is that the monthly demand is (approximately) deterministic but variable.

13.3 StAtIC eConoMIC-oRDeR-QuAntIty MoDeLS

This section presents three variations of the economic-order-quantity (EOQ) model 
with static (constant) demand. These models are simple analytically.

13.3.1  Classical eoQ Model

The simplest of the inventory models involves constant-rate demand with instanta-
neous order replenishment and no shortage. Define

y = Order quantity (number of units)

D = Demand rate (units per unit time)

t0 = Ordering cycle length (time units)

The inventory level follows the pattern depicted in Figure 13.1. When the inventory 
reaches zero level, an order of size y units is received instantaneously. The stock is 
depleted uniformly at a constant demand rate, D. The ordering cycle for this pattern is

t0 =
y

D
 time units

The cost model requires two cost parameters:

K = Setup cost associated with the placement of an order (dollars per order)
h = Holding cost (dollars per inventory unit per unit time)

Points in time at which orders are received

    Average
inventory 5

Time

Inventory
level

y

t0 5
y
D

y
2

FIguRe 13.1 

Inventory pattern in the classical EOQ model
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Given that the average inventory level is 
y
2, the total cost per unit time (TCU) is

 TCU1y2 = Setup cost per unit time + Holding cost per unit time

 =
Setup cost + Holding cost per cycle t0

t0

 =
K + h1y

22 t0
t0

 =
K

1 y
D2 + h1y

22

The optimum value of the order quantity y is determined by minimizing TCU(y). 
Assuming y is continuous, a necessary condition for optimality is

d TCU1y2
dy

= -
KD

y2 +
h
2

= 0

The condition is also sufficient because TCU(y) is convex.
The solution of the equation yields the EOQ y* as

y* = C2KD
h

Thus, the optimum inventory policy for the proposed model is

Order y* = 42KD
h  units every t0

* = y*

D time units

Actually, a new order need not be received at the instant it is ordered. Instead, a 
positive lead time, L, may occur between the placement and the receipt of an order, as 
reorder point occurs when the inventory level drops to LD units.

Figure 13.2 assumes that the lead time, L, is less than the cycle length t0
*, which 

may not be the case in general. In such cases, we define the effective lead time as

Le = L - nt0
*

Reorder points

L L Time

Inventory
level

y*

FIguRe 13.2 

Reorder point in the classic EOQ model



13.3  Static economic-Order-Quantity Models   509

The parameter n is the largest integer value not exceeding L
t0

*. The formula recognizes 
that after n cycles the actual interval between the placement and the receipt of two 
successive orders is Le. Thus, the reorder point occurs at LeD units, and the inventory 
policy can be restated as

Order the quantity y* whenever the inventory level drops to LeD units.

example 13.3-1 

Neon lights on the U of A campus are replaced at the rate of 100 units per day. The physical 
plant orders the neon lights periodically. It costs $100 to initiate a purchase order. A neon 
light kept in storage is estimated to cost about $.02 per day. The lead time between placing 
and receiving an order is 12 days. Determine the optimal inventory policy for ordering the 
neon lights.

From the data of the problem, we have

 D = 100 units per day  

 K = $100 per order  

 h = $.02 per unit per day 

 L = 12 days  

Thus,

y* = C2KD
h

= C2 * $100 * 100
.02

= 1000 neon lights

The associated cycle length is

t0
* = y*

D = 1000
100 = 10 days

Because the lead time L 1=  12 days2 exceeds the cycle length t0* 1=  10 days2, we must 
 compute Le. The number of integer cycles included in L is

n = 1 largest integer … L
t0

*2 = 1 largest integer … 12
102 = 1

Thus,

Le = L - nt0
* = 12 - 1 * 10 = 2 days

The reorder point thus occurs when the inventory level drops to

Le D = 2 * 100 = 200 neon lights

The inventory policy is

Order 1000 units whenever the inventory level drops to 200 units.

The daily inventory cost associated with the proposed policy is

 TCU1y2 =
K

1 y
D2 + h1y

22

 =
$100

11000
100 2

+ $.0211000
2 2 = $20 per day
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excel Moment

File exelEOQ.xls is designed to carry out the computations for the general EOQ with short-
age and simultaneous production–consumption operation (see Problem 13-12). It also solves the 
price-breaks situation presented in Section 13.3.2. To use the template with the special case of 
Example 13.3-1, enter -1 in cells C3:C5, C8, and C10 to indicate that the corresponding data are 
not applicable, as shown in Figure 13.3.

Aha! Moment: eoQ history, or Giving Credit Where Credit Is Due!

Practically all the inventory control literature (including editions 3 through 9 of this book) 
has identified the classical EOQ as the “Wilson formula,” in recognition of R. H. Wilson, who, 
as a business and industry consultant, was instrumental in promoting the use of the formula. 
In point of fact, the formula was developed by Ford W. Harris in 1913,3 some 15 years before 

 

FIguRe 13.3 

Excel solution of Example 13.3-1 (file excelEOQ.xls)

3Harris, Ford W. [Reprint from 1913] “How Many Parts to Make at Once,” Operations Research, Vol. 38, 
No. 6, pp. 947–950, 1990.
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Wilson started publishing accounts of its use in his consulting work. Yet, Harris’s contribution 
was obscured and misplaced, whether accidently or by design, for nearly 75 years until Donald 
Erlenkotter of the University of California, Los Angles, set the record straight, publishing a 
series of articles starting in 1989 detailing the circumstances that led to this unfortunate lapse 
in EOQ history.4

Perhaps one of the reasons for not giving Harris his due credit is that he was not aca-
demic, hence he lacked the exposure afforded in academic circles. In fact, Harris did not have 
any formal education past a high school diploma. Yet, through tutoring and self-study, he 
was hired as an engineer at Westinghouse, where he patented numerous inventions. Later, 
once again relying on self-study, he decided to change careers and became a successful patent 
 lawyer.

13.3.2  eoQ with Price breaks

This model is the same as in Section 13.3.1, except that the inventory item may be pur-
chased at a discount if the size of the order, y, exceeds a given limit, q. Mathematically, 
the unit purchasing price, c, is given as

c = e c1, if y … q
c2, if y 7 q

f , c1 7 c2

Hence,

Purchasing cost per unit time = µ
c1y

t0
=

c1y

1 y
D2 = Dc1, y … q

c2y

t0
=

c2y

1 y
D2 = Dc2, y 7 q

Using the notation in Section 13.3.1, the total cost per unit time is

TCU1y2 = µ
TCU11y2 = Dc1 +

KD
y

+
h
2

y, y … q

TCU21y2 = Dc2 +
KD

y
+

h
2

y, y 7 q

The functions TCU1 and TCU2 are graphed in Figure 13.4. Because the two func-
tions differ only by a constant amount, their minima must coincide at

ym = C2KD
h

4Erlenkotter, D., “Ford Whitman Harris’s Economical Lot Size Model,” International Journal of Production 
Economics, Vol. 155. pp. 12–15, 2014.
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The determination of the optimum order quantity y* depends on where the price 
breakpoint, q, lies with respect to zones I, II, and III, delineated in Figure 13.4 by the 
ranges 10, ym], 1ym, Q], and 1Q, ∞ 2, respectively. The value of Q17ym2 is determined 
from the equation

TCU21Q2 = TCU11ym2

or

c2D +
KD
Q

+
hQ

2
=  TCU11ym2

which simplifies to

Q2 + a 21c2D - TCU11ym22
h

b  Q +
2KD

h
= 0

Figure 13.5 shows that the desired optimum quantity y* is

y* = eym, if q is in zones I or III
q,   if q is in zone II 

The steps for determining y* are as follows:

Step 1.  Determine ym = C2KD
h

. If q is in zone I, then y* = ym. Otherwise, go to step 2.

Step 2.  Determine Q17ym2 from the Q-equation

Q2 + a 21c2D - TCU11ym22
h

b  Q +
2KD

h
= 0

Define zones II and III. If q is in zone II, y* = q. Otherwise, q is in zone III, 
and y* = ym. 

II IIII

Cost
TCU1

TCU2

y
ym Q

FIguRe 13.4 

Inventory cost function with price breaks
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example 13.3-2 

LubeCar specializes in fast automobile oil change. The garage buys car oil in bulk at $3 per gal-
lon discounted to $2.50 per gallon if the order quantity is more than 1000 gallons. The garage 
services approximately 150 cars per day, and each oil change takes 1.25 gallons. LubeCar stores 
bulk oil at the cost of $.02 per gallon per day. Also, the cost of placing an order is $20. There is a 
2-day lead time for delivery. Determine the optimal inventory policy.

The consumption of oil per day is

D = 150 cars per day * 1.25 gallons per car = 187.5 gallons per day

We also have

 h = $.02 per gallon per day 

 K = $20 per order  

 L = 2 days  

 c1 = $3 per gallon  

 c2 = $2.50 per gallon  

 q = 1000 gallons  

Cost

Minimum

TCU1
TCU2

y
ym

Case 1: q falls in zone I, y* 5 ym

Qq

Cost

Minimum

TCU1
TCU2

y
ym

Case 2: q falls in zone II, y* 5 q

Qq

Cost

Minimum

TCU1 TCU2

y
ym

Case 3: q falls in zone III, y* 5 ym

Q q

FIguRe 13.5 

Optimum solution of the inventory problems with price breaks
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Step 1.  Compute

ym = C2KD
h

= C2 * 20 * 187.5
.02

= 612.37 gallons

Because q = 1000 is larger than ym = 612.37, we move to step 2.

Step 2.  Determine Q.

 TCU11ym2 = c1D +
KD
ym

+
hym

2

 = 3 * 187.5 +
20 * 187.5

612.37
+

.02 * 612.37
2

 = 574.75

Hence, the Q-equation is calculated as

Q2 + a2 * 12.5 * 187.5 - 574.752
.02

b  Q +
2 * 20 * 187.5

.02
= 0

or

Q2 - 10, 599.74 Q + 375, 000 = 0

The solution Q = 10, 564.25 17ym2 defines the zones as

 Zone I = 10, 612.37)

 Zone II = 1612.37, 10, 564.25)

 Zone III = 110, 564.25, ∞ 2
Now, q 1=  10002 falls in zone II, which yields the optimal order quantity y* = q =

1000 gallons.
Given a 2-day lead time, the reorder point is 2D = 2 * 187.5 = 375 gallons. Thus, the op-

timal inventory policy is

Order 1000 gallons when the inventory level drops to 375 gallons.

excel Moment

File excelEOQ.xls solves the discount price situation as a special case of template in Figure 13.3. 
Enter applicable data in the input data section C3:C11. The output gives the optimal inventory 
policy as well as all the intermediate calculations of the model.

13.3.3  Multi-Item eoQ with Storage Limitation

This model deals with multiple items whose individual inventory fluctuations follow 
the pattern as in Figure 13.1 (no shortage allowed). The difference is that the items 
compete for a limited storage space.
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Define for item i, i = 1, 2, c, n,

 Di = Demand rate  

 Ki = Setup cost  

 hi = Unit holding cost per unit time  

 yi = Order quantity  

 ai = Storage area requirement per inventory unit  

 A = Maximum available storage area for all n items 

Under the assumption of no shortage, the mathematical model representing the inven-
tory situation is given as

Minimize TCU1y1, y2, c, yn2 = a
n

i = 1
aKiDi

yi
+

hi yi

2
b

subject to

a
n

i = 1
aiyi … A

yi 7 0, i = 1, 2, c, n

To solve the problem, we try the unconstrained solution first:

yi* = C2KiDi

hi
, i = 1, 2, c, n

If the solution satisfies the constraint, then the process ends. Otherwise, the constraint 
is binding and must be accounted for.

In previous editions of this book, we used the (rather involved) Lagrangean algo-
rithm and trial-and-error calculations to find the constrained optimum solution. With the 
availability of powerful packages (such as AMPL and Solver), the problem can be solved 
directly as a nonlinear program, as will be demonstrated in the following example.

example 13.3-3 

The following data describe three inventory items:

Item i Ki ($) Di (units per day) hi ($) a1 (ft2)

1 10 2 .30 1
2  5 4 .10 1
3 15 4 .20 1

Total available storage area = 25 ft2 
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The unconstrained optimum values, yi* = 42KiDi

hi
, i = 1, 2, 3, are 11.55, 20.00, and 24.49 

units, respectively, which violate the storage constraint y1 + y2 + y3 … 25. The constrained 
problem can be solved as a nonlinear program using Solver or AMPL as explained below.

The optimum solution is y1
* = 6.34 units, y2

* = 7.09 units, y3
* = 11.57 units,  and cost =

$13.62>day. 

Solver Moment

Figure 13.6 shows how Solver can be used to solve Example 13.3-3 as a nonlinear program 
(file solverConstrEOQ.xls). Details of the formulas used in the template and of the Solver 
 parameters are shown in the figure. As with most nonlinear programs, initial solution values 
must be given (in this template, y1 = y2 = y3 = 1 in row 9). A nonzero initial value is mandatory 
because the objective function includes division by yi. Indeed, it may be a good idea to replace 
KiDi>yi with  KiDi> 1yi + ∆2, where ∆ is a very small positive value, to avoid division by zero 
during the iterations. In general, different initial values may be needed before a (local optimum) 
solution is found. In this example, the resulting solution is the global optimum because the ob-
jective function and the constraints are well behaved (convex objective function and convex 
solution space).

AMPL Moment

The AMPL nonlinear model for the general multi-item EOQ with storage limitation (file 
 amplConstrEOQ.txt) is explained in Figure C.16 in Appendix C on the website.

 

FIguRe 13.6 

Solver template for Example 13.3-3 (file solverConstrEOQ.xls)
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13.4 DynAMIC eoQ MoDeLS

These models differ from those in Section 13.3 in two respects:

1. The inventory level is reviewed periodically over a finite number of equal periods.
2. The demand per period, though deterministic, is dynamic, in that it varies from 

one period to the next.

A situation in which dynamic deterministic demand occurs is materials 
 requirement planning (MRP). The idea of MRP is described by an example. Suppose 
that the quarterly demands over the next year for two final models, M1 and M2, of a 
given product are 100 and 150 units, respectively. Deliveries of the quarterly lots are 
made at the end of each quarter. The production lead time is 2 months for M1 and 
1 month for M2. Each unit of M1 and M2 uses 2 units of a subassembly S. The lead time 
for the production of S is 1 month.

Figure 13.7 depicts the production schedules for M1 and M2. The schedules start 
with the quarterly demand for the two models (shown by solid arrows) occurring at the 
end of months 3, 6, 9, and 12. Given the lead times for M1 and M2, the dashed arrows 
show the planned starts of each production lot.

To start the production of the two models on time, the delivery of subassembly S 
must coincide with the occurrence of the dashed M1 and M2 arrows. This information 
is shown by the solid arrows in the S-chart, where the resulting S-demand is 2 units 
per unit of M1 or M2. Using a lead time of 1 month, the dashed arrows on the S-chart 
give the production schedules for S. From these two schedules, the combined demand 
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Example of dynamic demand generated by MRP
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for S corresponding to M1 and M2 can then be determined as shown at the bottom of 
Figure 13.7. The resulting variable but known demand for S is typical of the situation 
where dynamic EOQ applies.

Two models are presented in this section. The first model assumes no setup (order-
ing) cost, and the second one does. This seemingly “small” variation makes a difference 
in the complexity of the model.

13.4.1  no-Setup eoQ Model

This model involves a planning horizon of n equal periods. Each period has a limited 
production capacity with one or more production levels (e.g., regular time and over-
time represent two production levels). A current period may produce more than its im-
mediate demand to satisfy the need in later periods, in which case an inventory holding 
cost takes place.

The general assumptions of the model are as follows:

1. No setup cost is incurred in any period.
2. No shortage is allowed.
3. The unit production cost function in any period either is constant or has increas-

ing (convex) marginal costs.
4. The unit holding cost in any period is constant.

The absence of shortage signifies that delayed production in future periods can-
not fill the demand in a current period. This assumption requires the cumulative pro-
duction capacity for periods 1, 2, . . . , and i to equal at least the cumulative demand for 
the same periods.

Figure 13.8 illustrates the unit production cost function with increasing margins. 
For example, regular time and overtime production correspond to two levels where the 
unit production cost during overtime exceeds that regular time.

The n-period problem can be formulated as a transportation model (see Chapter 5)  
with kn sources and n destinations, where k is the number of production levels per pe-
riod (e.g., k = 2 if each period uses regular time and overtime). The production capac-
ity of each of the kn production-level sources equals the supply amounts. The demand 

Cost

0 Quantity produced

Level
II

Level
I

Level
III

Level
IV
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Convex unit production cost function



13.4  Dynamic eOQ Models   519

amounts are specified by each period’s demand. The unit “transportation” cost from a 
source to a destination is the sum of the applicable production and holding costs per 
unit. The solution of the problem as a transportation model determines the minimum-
cost production amounts in each production level.

The resulting transportation model can be solved without using the familiar trans-
portation technique presented in Chapter 5. The validity of the new solution algorithm 
rests on the special assumptions of no shortage and a convex production-cost function.

example 13.4-1 

Metalco produces draft deflectors for use in home fireplaces during the months of December to 
March. The demand starts slow, peaks in the middle of the season, and tapers off toward the end. 
Because of the popularity of the product, Metalco may use overtime to satisfy the demand. The 
following table provides the production capacities and the demands for the four winter months:

Capacity

Month Regular (units) Overtime (units) Demand (units)

1  90 50 100
2 100 60 190
3 120 80 210
4 110 70 160

Unit production cost in any period is $6 during regular time and $9 during overtime. Holding 
cost per unit per month is $.10.

To ensure that the model has a feasible solution when shortage is not allowed, each month’s 
cumulative supply cannot be smaller than its cumulative demand, as the following table shows:

Month Cumulative supply Cumulative demand

1 90 + 50 = 140 100
2 140 + 100 + 60 = 300 100 + 190 = 290 
3 300 + 120 + 80 = 500 290 + 210 = 500 
4 500 + 110 + 70 = 680 500 + 160 = 660 

Table 13.2 summarizes the model and its solution. The symbols Ri and Oi represent regular 
and overtime production levels in period i, i = 1, 2, 3, 4. Because cumulative supply at  period 
4 exceeds cumulative demand, a dummy surplus destination is added to balance the model as 
shown in Table 13.2. All the “transportation” routes from a previous to a current period are 
blocked because no shortage is allowed.

The unit “transportation” cost is the sum of applicable production and holding costs. For 
 example, unit cost from R1 to period 1 equals unit production cost only 1= $62, whereas unit 
cost from O1 to period 4 equals unit production cost in O1 plus unit holding cost from period 1 to  
period 4—that is, $9 + 1$.1 + $.1 + $.12 = $9.30. The unit cost to any surplus destination is zero.

The model is solved starting at column 1 and ending at the surplus column. For each col-
umn, the demand is satisfied giving priority to its cheapest routes.5 For column 1, route (R1, 1) 

5For a proof of the optimality of this procedure, see S. M. Johnson, “Sequential Production Planning over 
Time at Minimum Cost,” Management Science, Vol. 3, pp. 435–437, 1957.
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is the cheapest and is thus assigned the maximum feasible amount = min590, 1006 = 90 units.  
This assignment leaves 10 unsatisfied units in column 1. The next-cheapest route in column 
1 is (O1, 1), to which 10 1=min550, 1062  are assigned. The demand for period 1 is now 
satisfied.

Next, we move to column 2. The assignments in this column occur in the following order: 
100 units to (R2, 2), 60 units to (O2, 2), and 30 units to (O1, 2). The unit costs of these assignments 
are $6, $9, and $9.10, respectively. We did not use the route (R1, 2), whose unit cost is $6.10, be-
cause all the supply of R1 has been assigned to period 1 already.

Continuing in the same manner, we satisfy the demands of column 3 and then column 4. The 
optimum solution (shown in boldface in Table 13.2) is summarized as follows:

Period Production Schedule

Regular 1
Overtime 1
Regular 2
Overtime 2
Regular 3
Overtime 3
Regular 4
Overtime 4

Produce 90 units for period 1.
Produce 50 units: 10 units for period 1, 30 for 2, and 10 for 3.
Produce 100 units for period 2.
Produce 60 units for period 2.
Produce 120 units for period 3.
Produce 80 units for period 3.
Produce 110 units for period 4.
Produce 50 units for period 4, with 20 units of idle capacity.

The associated total cost is 90 * $6 + 10 * $9 + 30 * $9.10 + 100 * $6 +60 * $9 + 10 *
$9.20 + 120 * $6 + 80 * $9 + 110 * $6 + 50 * $9 = $4685.

TAble 13.2 Solution of Example 13.4-1 

1 2 3 4 Surplus
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6.1 6.2 6.3 0
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6
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13.4.2  Setup eoQ Model

In this situation, no shortage is allowed, and a setup cost is incurred each time a new 
production lot is started. Two solution methods will be presented: an exact dynamic 
programming algorithm and a heuristic.

Figure 13.9 summarizes the inventory situation schematically. The symbols shown 
in the figure are defined for period i, i = 1, 2, c, n, as

 zi = Amount ordered  

 Di = Demand for period i  

 xi = Inventory at the start of period i 

The cost elements of the situation are defined as

 Ki = Setup cost in period i  

 hi = Unit inventory holding cost from period i to i + 1 

The associated production cost function for period i is

Ci1zi2 = e0, zi = 0
Ki + ci1zi2, zi 7 0

The function ci (zi) is the marginal production cost function, given zi.

General dynamic programming algorithm. In the absence of shortage, the inventory 
model is based on minimizing the sum of production and holding costs for all n periods. 
For simplicity, we will assume that the holding cost for period i is based on end-of-
period inventory, defined as

xi+ 1 = xi + zi - Di

For the forward recursive equation, the state at stage (period) i is defined as xi+ 1, the 
end-of-period inventory level. In the extreme case, the remaining inventory, xi+ 1, can 
satisfy the demand for all the remaining periods—that is,

0 … xi+ 1 … Di+ 1 + c + Dn

z1

x1

D1

z2

x2

zi

xi

Di

xn11 5 0

zi11

xi11

zn

xn

Dn
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Elements of the dynamic inventory model with setup cost
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Let fi1xi+ 12 be the minimum inventory cost for periods 1, 2, . . . , and i given the 
end- of-period inventory xi+ 1. The forward recursive equation is

 f11x22 = min
z1 = D1 + x2 - x1

5C11z12 + h1x26

 fi1xi+ 12 = min
0 … zi … Di + xi + 1

5Ci1zi2 + hixi+ 1 + fi- 11xi+ 1 + Di - zi26, i = 2, 3, c, n

Note that for period 1, z1 exactly equals D1 + x2 - x1. For i 7 1, zi can be zero 
 because Di can be satisfied from the production in preceding periods.

example 13.4-2 

The following table provides the data for a 3-period inventory situation:

Period  
i

Demand  
Di (units)

Setup cost  
Ki ($)

Holding cost  
hi ($)

1 3 3 1
2 2 7 3
3 4 6 2

The demand occurs in discrete units, and the starting inventory is x1 = 1 unit. The unit produc-
tion cost, ci (zi), is $10 for the first 3 units and $20 for each additional unit—that is,

ci1zi2 = e10zi, 0 … zi … 3
30 + 201zi - 32, zi Ú 4

Determine the optimal inventory policy.

period 1: D1 = 3, 0 … x2 … 2 + 4 = 6, z1 = x2 + D1 - x1 = x2 + 2 

C11z12 + h1x2 

z1 = 2 3 4 5 6 7 8 Optimal solution

x2 h1x2 C11z12 = 23 33 53 73 93 113 133 f1(x2) z1
* 

0 0 23  23 2
1 1 34  34 3
2 2 55  55 4
3 3 76  76 5
4 4 97  97 6
5 5 118 118 7
6 6 139 139 8

Note that because x1 = 1, the smallest value of z1 is D1 - x1 = 3 - 1 = 2.
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excel Moment

Template excelDPInv.xls is designed to solve the general DP inventory problem with up to 10 
periods. The design of the spreadsheet is similar to that of excelKnapsack.xls given in Section 
12.3.1, where the computations are carried out one stage a time and user input is needed to link 
successive stages.

Figure 13.10 shows the application of excelDPInv.xls to Example 13.4-2. The input data are 
entered for each stage. The computations start with period 1. Note how the cost function ci1zi2 is 
entered in row 3: 1G3 = 10, H3 = 20, I3 = 32 means that the unit cost is $10 for the first three 
items and $20 for additional items. Note also that the amount entered for D1 must be the net after 
the initial inventory has been written off 1=  3 - x1 = 3 - 1 = 22. Additionally, you need to 
create the feasible values of the variable z1. The spreadsheet automatically checks if the entered 
values are correct, and issues self-explanatory messages in row 6 (yes, no, or delete).

period 2: D2 = 2, 0 … x3 … 4, 0 … z2 … D2 + x3 = x3 + 2 

C21z22 + h2x3 + f11x3 + D2 - z22 
Optimal 
solutionz2 = 0 1 2 3 4 5 6

x3 h2x3 C21z22 = 0 17 27 37 57 77 97 f2(x3) z2
* 

0 0 0 + 55 17 + 34 27 + 23  50 2
= 55 = 51 = 50 

1 3 3 + 76 20 + 55 30 + 34 40 + 23  63 3
= 79 = 75 = 64 = 63 

2 6 6 + 97 23 + 76 33 + 55 43 + 34 63 + 23  77 3
= 103 = 99 = 88 = 77 = 86 

3 9 9 + 118 26 + 97 36 + 76 46 + 55 66 + 34 86 + 23 100 4
= 127 = 123 = 112 = 101 = 100 = 109 

4 12 12 + 139 29 + 118 39 + 97 49 + 76 69 + 55 89 + 34 109 + 23 123 5
= 151 = 147 = 136 = 125 = 124 = 123 = 132 

period 3: D3 = 4, x4 = 0, 0 … z3 … D3 + x4 = 4 

C31z32 + h3x4 + f2 1x4 + D3 - z32 
Optimal 
solutionz3 = 0 1 2 3 4

x4 h3x4 C31z32 = 0 16 26 36 56 f3(x4) z3
* 

0 0 0 + 123 16 + 100 26 + 77 36 + 63 56 + 50 99 3
 = 123   = 116  = 103    = 99  = 106 

The optimum solution is read in the following manner:

1x4 = 02 S � z3 = 3 � S 1x3 = 0 + 4 - 3 = 12 S � z2 = 3 �
S 1x2 = 1 + 2 - 3 = 02 S � z1 = 2 �

Thus, the optimum solution is z1
* = 2, z2

* = 3, and z3
* = 3, with a total cost of $99.
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Once all input data have been entered, the optimum values of fi and zi for the stage are 
given in columns S and T. Next, a permanent record for period 1 solution, (x1, f1, z1), is created in 
the optimum solution summary section of the spreadsheet, as Figure 13.10 shows. This requires 
copying D9:D15 and S9:T15 and then pasting them using pastespecial + values (you may need 
to review the proper procedure for creating the permanent record given in conjunction with 
excelKnapsack.xls in Section 12.3.1).

Next, to prepare for stage 2, copy f1 from the permanent record and paste it in column A, as 
shown in Figure 13.10. All that is needed now is to update the input data for period 2. The process 
is repeated for period 3.

Dynamic programming algorithm with constant or decreasing marginal costs. The 
general DP given above is applicable with any cost function. This generalization dic-
tates that the state xi and the alternatives zi at stage i assume values in increments of 1, 
which could result in large tableaus when the demand amounts are large.

A special case of the general DP model holds promise in reducing the volume of 
computations. In this special situation, both the unit production and the unit holding 

Period 1:

Period 2:

Period 3:

FIguRe 13.10 

Excel DP solution of Example 13.4-2 (file excelDPInv.xls)
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costs are nonincreasing (concave) functions of the production quantity and the inven-
tory level, respectively. This situation typically occurs when the unit cost function is 
constant or when quantity discount is allowed.

Under the given conditions, it can be proved that6

1. Given zero initial inventory (x1 = 0), it is optimal to satisfy the demand in any 
period i either from new production or from entering inventory, but never from 
both—that is, zi xi = 0. (For the case with positive initial inventory, x1 7 0, the 
amount can be written off from the demands of the successive periods until it is 
exhausted.)

2. The optimal production quantity, zi, for period i must either be zero or it must 
satisfy the exact demand for one or more contiguous succeeding periods.

example 13.4-3 

A four-period inventory model operates with the following data:

Period i Demand Di (units) Setup cost Ki ($)

1 76  98
2 26 114
3 90 185
4 67  70

The initial inventory x1 is 15 units, the unit production cost is $2, and the unit holding cost 
per period is $1 for all the periods. (For simplicity, the unit production and holding costs are the 
same for all the periods.)

The solution is determined by the forward algorithm given previously, except that the values 
of xi+ 1 and zi now assume “lump” sums rather than in increments of one. Because x1 = 15, the 
demand for the first period is adjusted to 76 - 15 = 61 units.

period 1. D1 = 61 

C11z12 + h1x2 
Optimal  
solutionz1 = 61 87 177 244

x2 h1x2 C11z12 = 220 272 452 586 f1(x2) z1
* 

  0   0 220 220 61
 26  26 298 298 87
116 116 568 568 177
183 183 769 769 244

Order in 1 for 1 1, 2 1, 2, 3 1, 2, 3, 4

6See H. Wagner and T. Whitin, “Dynamic Version of the Economic Lot Size Model,” Management Science, 
Vol. 5, pp. 89–96, 1958. The optimality proof imposes the restrictive assumption of constant and identical cost 
functions for all the periods. The assumption was later relaxed by A. Veinott Jr. to allow different concave 
cost functions.
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period 2. D2 = 26 

C21z22 + h2x3 + f11x3 + D2 - z22 
Optimal 
solutionz2 = 0 26 116 183

x3 h2x3 C21z22 = 0 166 346 480 f2(x3) z2
* 

0   0 0 + 298 166 + 220 298 0
= 298 = 386 

90  90 90 + 568 436 + 220 656 116
= 658 = 656 

157 157 157 + 769 637 + 220 857 183
= 926 = 857 

Order in 2 for — 2 2, 3 2, 3, 4

period 3. D3 = 90 

C31z32 + h3x4 + f21x4 + D3 - z32 
Optimal 
solutionz3 = 0 90 157

x4 h3x4 C31z32 = 0 365 499 f3(x4) z3
* 

 0  0 0 + 656 = 656 365 + 298 = 663 656 0
67 67 67 + 857 = 924 566 + 298 = 864 864 157

Order in 3 for — 3 3, 4

period 4. D4 = 67 

C41z42 + h4x5 + f31x5 + D4 - z42 
Optimal 
solutionz4 = 0 67

x5 h4x5 C41z42 = 0 204 f4(x5) z4
* 

0 0 0 + 864 = 864 204 + 656 = 860 860 67

Order in 4 for — 4

The optimal policy is determined from the tableaus as follows:

1x5 = 02 S � z4 = 67 � S 1x4 = 02 S � z3 = 0 �
S 1x3 = 902 S � z2 = 116 � S 1x2 = 02 S � z1 = 61 �

This gives z1
* = 61,z2

* = 116,z3
* = 0,  and z4

* = 67, at a total cost of $860.
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excel Moment

Template excelWagnerWhitin.xls is similar to that of the general model excelDPInv.xls. The only 
difference is that lump sums are used for the state x and alternative z. Also, for simplicity, the 
new spreadsheet does not allow for quantity discount. The template is limited to a maximum of 
10 periods. Remember to use paste special + values when creating the output solution summary 
(columns Q:V).

Silver-Meal heuristic. This heuristic is valid only when the unit production cost is 
constant and identical for all the periods. For this reason, it balances only the setup and 
holding costs.

The heuristic identifies the successive future periods whose demand can be filled 
from the production of the current period. The objective is to minimize the associated 
setup and holding costs per period.

Suppose that we produce in period i for periods i, i + 1, c, and t, i 6 t, and 
define TC(i, t) as the associated setup and holding costs for the same periods. Using the 
same notation of the DP models, we have

TC1i, t2 = c Ki,                                                                                        t = i

Ki + hiDi+ 1 + 1hi + hi+ 12Di+ 2 + . . . + a a
t- 1

k = i
hkbDt, t 7 i

Next, define TCU(i, t) as the associated cost per period—that is,

TCU1i, t2 =
TC1i, t2

t - i + 1

Given a current period i, the heuristic determines t* that minimizes TCU(i, t).
The function TC(i, t) can be computed recursively as

 TC1i, i2 = Ki

 TC1i, t2 = TC1i, t - 12 + a a
t- 1

k = i
hkbDt, t = i + 1, i + 2, c, n

Step 0.  Set i = 1.
Step 1.  Determine the local minimum t* that satisfies the following two conditions:

TCU1i, t* - 12 Ú TCU1i, t*2
TCU1i, t* + 12 Ú TCU1i, t*2

The heuristic calls for ordering the amount 1Di + Di+ 1 + c + Dt*2 in period i  
for periods i, i + 1, c, and t*.

Step 2.  Set i = t* + 1. If i 7 n, stop; the entire planning horizon has been covered. 
Otherwise, go to step 1.
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example 13.4-4 

Find the optimal inventory policy for the following six-period inventory situation:

Period i Di (units) Ki ($) hi ($)

1 10 20 1
2 15 17 1
3  7 10 1
4 20 18 3
5 13  5 1
6 25 50 1

The unit production cost is $2 for all the periods.

Iteration 1 1i = 1, K1 = $202. The function TC(1, t) is computed recursively in t. For example, 
given TC11, 12 = $20, TC11, 22 = TC11, 12 + h1D2 = 20 + 1 * 15 = $35.

Period t Di TC(1, t) TCU(1, t)

1 10 $20 20
1 = $20.00 

2 15 20 + 1 * 15 = $35 35
2 = $17.50 

3  7 35 + 11 + 12 * 7 = $94 49
3 = $16.33 

4 20 49 + 11 + 1 + 12 * 20 = $109 109
4 = $27.25 

The local minimum occurs at t* = 3, which calls for ordering 10 + 15 + 7 = 32 units in 
period 1 for periods 1 to 3. Set i = t* + 1 = 3 + 1 = 4.

Iteration 2 1i = 4, K4 = $182.

Period t Di TC(4, t) TCU(4, t)

4 20 $18 18
1 =  $18.00 

5 13 18 + 3 * 13 = $57 57
2 = $28.50 

The calculations show that t* = 4, which calls for ordering 20 units in period 4 for period 4. 
Set i = 4 + 1 = 5.

Iteration 3 1i = 5, K5 = $52

Period t Dr TC(5, t) TCU(5, t)

5 13 $5 5
1 =  $5

6 25 5 + 1 * 25 = $30 30
2 = $15 
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The minimum occurs at t* = 5, which requires ordering 13 units in period 5 for period 5. 
Next, we set i = 5 + 1 = 6. However, because i = 6 is the last period of the planning horizon, 
we must order 25 unit in period 6 for period 6.

Remarks. The following table compares the heuristic and the exact DP solution. We have 
deleted the unit production cost in the dynamic programming model because it is not included 
in the heuristic computations.

Heuristic Dynamic programming

Period Units produced Cost ($) Units produced Cost ($)

1 32 49 10 20
2  0  0 22 24
3  0  0  0  0
4 20 18 20 18
5 13  5 38 30
6 25 50  0  0

Total 90 122 90 92

The heuristic production schedule costs about 32% more than that of the DP solution 
($122 vs. $92). The “inadequate” performance of the heuristic may be attributed to the na-
ture of the data, as the problem may lie in the extreme setup cost values for periods 5 and 
6. Nevertheless, the example shows that the heuristic does not have the capability to “look 
ahead” for better scheduling opportunities. For example, ordering in period 5 for periods 5 
and 6 (instead of ordering for each period separately) can save $25, which will bring the total 
heuristic cost down to $97.

excel Moment

Excel template excelSilverMeal.xls is designed to carry out all the iterative computations and 
provide the final solution. The procedure starts with entering the data needed to drive the calcu-
lations, including N, K, h, and D for all the periods (these entries are highlighted in turquoise in 
the spreadsheet). The user must then initiate each iteration manually until all the periods have 
been covered.

Figure 13.11 shows the application of the Excel heuristic to Example 13.4-4. The first itera-
tion is initiated by entering the value 1 in cell J11, signaling that iteration 1 starts at period 1. The 
spreadsheet will then generate as many rows as the number of periods, N 1=  6 in this example2.  
The period number will be listed in ascending order in cells K11:K16. Now, examine TCU in col-
umn P (highlighted in turquoise) and locate the period that corresponds to the local minimum 
at t = 3 with TCU = $16.33. This means that the next iteration will start at period 4. Now, skip 
a blank row, and enter the value 4 in J18. This action, which produces the calculations for itera-
tion 2, shows that its local minimum will be at period 4 (TCU = $18.00) and signals the start 
of iteration 3 at period 5. Again, entering 5 in J22, the local minimum for iteration 3 occurs at 
node 5. Next, entering the value 6 in J25 produces the terminating iteration of the problem. The 
spreadsheet will automatically update the associated optimal policy and its total cost, as shown 
in Figure 13.11.
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13.5  StICKy ISSueS In InventoRy MoDeLInG

Implementation of inventory modeling in practice faces two hurdles:

1. Selection of the appropriate model.
2. Estimation of the cost parameters.

The task of selecting an appropriate model is exacerbated by the plethora of avail-
able inventory models (many presented in this chapter and more to come in Chapter 16). 
Each model is a simplified version of the general inventory problem. Unfortunately, the 
complexity of the inventory problem makes it analytically impossible to develop a uni-
fied mathematical model that fits all situations. And of course, when all available math-
ematical models fail to deliver, there is always the alternative of modeling the situation 
using simulation (Chapter 19) and/or heuristics (Chapter 10)—see also the case study at 
the end of this chapter for an illustration of the use of imbedded spreadsheet simulation 
in inventory modeling.

With regard to the estimation of inventory cost parameters, it is true that despite 
the complexity of the inventory problem, all inventory situations share a common ob-
jective; namely,

Minimize 1setup cost + holding cost + shortage cost2
But even with this unified objective, there is the challenge of how the associated cost 
parameters (for example, K, h, and p defined earlier in this chapter) are determined 
in practice.

FIguRe 13.11 

Excel solution of Example 13.4-4 using Silver-Meal heuristic (file ExcelSilverMeal.xls)
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The topic of estimating inventory cost parameters has not received the same level 
of attention in the literature as the (sometimes highly theoretical) development of new 
mathematical models. And those papers that deal with the subject matter only offer 
general guidelines with sketchy details. The reason is that cost parameters are highly 
business specific, ranging from the familiar retailing and manufacturing businesses to 
the highly bureaucratic government entities. As such, the problem of estimating cost 
parameters is indeed tough, and no amount of details can lead to universal rules that 
cover all situations.
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Case Study: Kroger Improves pharmacy Inventory Management7 

Application Area: Pharmacies inventory control

tools: Inventory formulas, heuristics, spreadsheet simulation

Software: Excel

Description of the situation

The Kroger Co., a supermarket chain, operates close to 2000 in-store pharmacies in the United 
States with a total retail value of about $8 billion. Most pharmacies typically carry an average of 
2500 drugs each. The pharmacies receive the majority of their drug supplies from Kroger’s ware-
houses. The rest is shipped from third-party warehouses.

The pressing issue has been how to manage the enormous drug inventory problem at the 
store level. Understocking means frequent shortages with its negative impact on revenue and 
customer loyalty, and overstocking leads to tying up capital, high maintenance cost, and possible 
drug obsolescence. The goal of good inventory management at Kroger is to strike a balance be-
tween overstocking and understocking.

7Based on Zhang, X. D., Meiser, Y. Liu, B. Bonner, and L. Lin, “Kroger Uses Simulation-Optimization to 
Improve Pharmacy Inventory Management,” Interfaces, Vol. 44, No. 1, pp. 70–84, 2014.
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Inventory policy

Kroger pharmacy employs the (s, S) periodic review policy that calls for bringing the inventory 
level up to S whenever the inventory position (on hand + on order) drops below the reorder 
point s. Thus, if at review time the current inventory level is x 16  s2, an order of size S - x is 
placed. Otherwise ordering must await the next review process. Order sizes are rounded up to a 
multiple of a prespecified package size. Reviews take place during the review period, normally 
one or two days before a scheduled delivery.

The ultimate goal of this study is to determine the quantities s and S of the inventory 
policy that will minimize the total inventory cost comprised of the three traditional cost of carry-
ing inventory: (1) cost of placing an order, (2) inventory holding cost, and (3) shortage cost. The 
developed model must be user-friendly for the pharmacy personnel in charge of determining the 
inventory policy for the thousands of drugs each pharmacy carries.

nature of demand

Typical demand for a drug per customer per day occurs in discrete values of 0, or 30-, 60-, and 
90-day supplies. Higher quantities (e.g., 120-, 150-, and 180-day supplies) can occur when multiple 
customers buy the same drug on any one day. Demand for a specific drug varies widely among 
store locations depending on demographic factors, population composition, and prevailing dis-
eases. The end result is that demand for the majority of the drugs is intermittent and irregular and 
likely cannot be represented by known theoretical distributions. The most practical way to model 
such demand is to use direct sampling from the empirical discrete distribution.

Spreadsheet simulation model

The spreadsheet was selected as the software of choice for modeling Kroger’s inventory problem 
because it is a familiar tool to most computer users. This advantage was important in gaining 
the acceptance of the final software, not only by Kroger management but also by the pharmacy 
personnel responsible for deciding the inventory policy for each drug.

Figure 13.12 illustrates a 20-day spreadsheet simulation (normally the simulation runs for 
a full year).8 Each spreadsheet deals with a single drug. Daily demand data (A9:A28) for the 
drug are generated randomly from the empirical discrete distribution of approximately one year 
of historical data. Column A provides one such (random) scenario using the inverse sampling 
method.9 This scenario now forms a deterministic equivalence of the empirical demand distribu-
tion. It should remain unaltered throughout subsequent iterative search comparisons aimed at 
determining an acceptable inventory policy.

The main input data that drive the simulation are the periodic review values s and S in 
(B2:B3). The initial (s, S) values used to start iterative simulations are

Q = Economic order quantity (computed using file excelEOQ.xls, Section 13.3.1)

s = maximum demand of an order period based on historical data 

S = s + Q 

The output results of the simulation are then used to search for an (s, S) policy with lower 
cost, and, if found, the new (s, S) values are entered in (B2:B3) and the simulation is run anew for 

8I had no access to any of the software or the spreadsheets used in the Interfaces article. I developed this 
spreadsheet using fictitious data. The goal is to demonstrate the functionality of the simulation.
9The inverse method for generating random discrete samples is presented in Section 19.3.2. 



the same demand stream in column A. The procedure is repeated until no better policy can be 
found, as will be explained below.

The remaining input data provide start week day (D2), starting inventory (D3), package 
size (D4), and lead time (D5). The start week day is used to enhance readability. All orders are 
rounded up to multiples of the package size. For simplicity this spreadsheet uses a constant lead 
time (=  2 days). Realistically, the lead time may be random (e.g., 2 days with probability .6 and 
3 days with probability .4).

The spreadsheet calculations are based on the following ordering policy and simulation 
formulas:

Ordering policy:

1. On a review day, if (inventory position) 6  s order (S–inventory position), else do not order.
2. Inventory position reviewed on days MWF.
3. Order is placed at end of day and remains outstanding throughout lead time.

FIguRe 13.12 

Excel spreadsheet simulation of a specific (s, S) policy for a given stream of daily  
demand (file excelKrogerCase9.xls)
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4. Filled order is received at end of day.
5. All unfilled demand is backordered (no lost sales).

Simulation formulas (day i):
1. 1Beginning inventory2i = 1Ending inventory2i- 1 
2. 1Ending inventory2i = 1Beginning inventory2i + 1Received order2i - 1Demand2i 
3. 1Inventory position2i = 1Beginning inventory2i + 1On order2i- 1 

The primary reason for assuming the backordering policy is that it provides information about 
shortages. Successive simulations are then carried out to determine a periodic review (s, S)-policy 
that will reduce if not eliminate shortages.

A summary output of the simulation includes average demand (G2); average positive 
ending inventory (G3); average shortage ending inventory (G4); number of placed orders (G5); 
minimum positive ending inventory, I + (G6); and maximum shortage ending inventory, I - (G7).

The output data include the (normalized) total inventory cost per day (H4) comprised of 
the sum of order setup cost, holding cost, and shortage cost.10 This cost function evaluates differ-
ent periodic review policies.

As explained next, the output data minimum positive inventory (G6) and maximum short-
age (G7) are used to direct the search for finding a better inventory policy.

Local search algorithm

One way to find a good, if not optimal, solution is to assume a reasonable range of discrete 
values for s (e.g., 120 to 300 in steps of 10) and Q (e.g., 10 to 100 in steps of 10) and then run 
the simulation for all possible combinations s and S 1=  s + Q2. This, of course, is not efficient. 
The alternative is to devise heuristics that could lead to a good solution quickly.

The search starts with an initial review policy (s, s + Q) defined previously. The values 
used in Figure 13.12 are s = 120 and Q = 60, giving S = 180. Define (s, S) as the best review 
policy so far found with cost C (initially, C = ∞) and quantities I + and I - (G6:G7). The idea is to 
look for a better review policy in the neighborhood of (s, S) based on two steps:

Step 1.  (Fixed Q):
(a) Set s′ = s + I - and S′ = s′ + Q and run the simulation for the new policy 1s′, S′2.  

If it yields a lower cost, update 1s, S2 = 1s′, S′2 and repeat (a). Else go to (b).
(b) Set s′ = s - I +  and S′ = s′ + Q and run the simulation for the new policy 

1s′, S′2. If it yields a lower cost, update 1s, S2 = 1s′, S′2 and repeat (a). Else, no 
better solution can be found for fixed Q. Go to Step 2.

Step 2.  (Variable Q): Let r = min1I +, I -2. 
(a) Set S′ = S + r, yielding Q′ = S′ - s 17  Q2, and run the simulation for the new 

policy 1s, S ′2. If it yields a lower cost, update 1s, S2 = 1s′, S2 and go to step 1(a). 
Else go to (b).

(b) Set s′ = s - r, yielding Q′ = S - s′ 16Q2, and run the simulation for the new 
policy 1s, S′2. If it yields a lower cost, update 1s, S2 = 1s′, S2 and go to step 1(a). 
Else, no better solution can be found for variable Q. Stop.

10The source article does not specify the cost parameters of the total cost function nor does it explain how 
they are determined. For the lack of better data, I used a “normalized” definition in which the holding and 
shortage costs per unit per day are percentages of the setup cost (1% and 2.5%, respectively).
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In step 1, Q is kept fixed by changing (increasing or decreasing) s and S by equal amounts. Step 
1(a) increases both s and S in an attempt to eliminate the shortage I - and step 1(b) tires to bring 
the minimum ending inventory I + to zero by decreasing both s and S. If step 1 fails to produce a 
better solution for a fixed Q, step 2 (with a similar line of reasoning as in step 1) varies the value 
of Q by changing s and S, one at a time. When step 2 cannot produce a better review policy, the 
search ends with the last (s, S) providing the best heuristic solution.

Implementation

Kroger reports that developed model was implemented in 2011 in all the pharmacies in the 
United States. It has resulted in appreciable reduction in shortages and increase in revenues. The 
increase in revenues is estimated at $80 million and was coupled with a reduction in inventory of 
about $120 million.

Plans are underway to extend the model to other store departments. In particular, perish-
able products could benefit from a similar inventory control application with the goal of eliminat-
ing losses resulting from spoilage.

PRobLeMS  

Section Assigned Problems Section Assigned Problems

13.1.1 13-1 to 13-2 13.3.3 13-18 to 13-21
13.3.1 13-3 to 13-12 13.4.1 13-22 to 13-25
13.3.2 13-13 to 13-17 13.4.2 13-26 to 13-36

*13-1.  The current-year balance sheet of a company shows a beginning and end inventories 
of $90.4 million and $20.2 million, respectively.  The net revenue from sales for the year 
is $210.3 million and the gross profit is $30.4 million. The final report claims that the com-
pany’s average days-in-inventory is about 4 months. Assess the company’s claim.

13-2.  A small business financial data show that its inventory level of an item held steady at 1000 
units during the first 9 months of the year. Sales accelerated during the last quarter in 
time for Christmas shopping, ending the year with only 20 units left in stock. The company 
estimates the total inventory cost at $.10 per unit per day. It sells the item at $190 per unit, 
a markup of 60% over cost. Assess the company’s inventory situation based on (a) simple 
inventory average based on starting and ending levels, and (b) the actual inventory average.

13-3.  In each of the following cases, no shortage is allowed, and the lead time between placing 
and receiving an order is 35 days. Determine the optimal inventory policy and the associ-
ated cost per day.
(a) K = $120, h = $.04, D = 25 units per day 

(b) K = $80, h = $.03, D = 35 units per day 

(c) K = $100, h = $.02, D = 50 units per day 

(d) K = $110, h = $.03, D = 25 units per day 
*13-4.  McBurger orders ground meat at the start of each week to cover the week’s demand of 

300 lb. The fixed cost per order is $20. It costs about $.03 per lb per day to refrigerate 
and store the meat.
(a) Determine the inventory cost per week of the present ordering policy.

(b) Determine the optimal inventory policy that McBurger should use, assuming zero 
lead time between the placement and receipt of an order.
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 13-5.  A company stocks an item that is consumed at the rate of 60 units per day. It costs the 
company $25 each time an order is placed. An inventory unit held in stock for a week 
will cost $.36.
(a) Determine the optimum inventory policy, assuming a lead time of 2 weeks.

(b) Determine the optimum number of orders per year (based on 365 days per year).
 *13-6.  Two inventory policies have been suggested by the purchasing department of a company:

Policy 1. Order 150 units. The reorder point is 50 units, and the time between placing 
and receiving an order is 10 days.
Policy 2. Order 200 units. The reorder point is 75 units, and the time between placing 
and receiving an order is 15 days.

The setup cost per order is $20, and the holding cost per unit inventory per day is $.02.
(a) Which of the two policies should the company adopt?

(b) If you were in charge of devising an inventory policy for the company, what would 
you recommend assuming that the supplier requires a lead time of 22 days?

 13-7.  Walmark Store compresses and palletizes empty merchandise cartons for recycling. The 
store generates five pallets a day. The cost of storing a pallet in the store’s back lot is 
$.10 per day. The company that moves the pallets to the recycling center charges a flat 
fee of $100 for the rental of its loading equipment plus a variable transportation cost of 
$3 per pallet. Graph the change in number of pallets with time, and devise an optimal 
policy for hauling the pallets to the recycling center.

 13-8. A hotel uses an external laundry service to provide clean towels. The hotel generates 600 
soiled towels a day. The laundry service picks up the soiled towels and replaces them with 
clean ones at regular intervals. There is a fixed charge of $81 per pickup and delivery ser-
vice, in addition to the variable cost of $.60 per towel. It costs the hotel $.02 a day to store 
a soiled towel and $.01 per day to store a clean one. How often should the hotel use the 
pickup and delivery service? (Hint: There are two types of inventory items in this situation. 
As the level of the soiled towels increases, that of clean towels decreases at an equal rate.)

 13-9. Lewis (1996). An employee of a multinational company is on loan from the United 
States to the company’s subsidiary in Europe. During the year, the employee’s financial 
obligations in the United States (e.g., mortgage and insurance premium payments) 
amount to $12,000, distributed evenly over the months of the year. The employee can 
meet these obligations by depositing the entire sum in a U.S. bank prior to departure 
for Europe. However, at present the interest rate in the United States is quite low 
(about 1.5% per year) in comparison with the interest rate in Europe (6.5% per year). 
The cost of sending funds from overseas is $50 per transaction. Determine an optimal 
policy for transferring funds from Europe to the United States, and discuss the practical 
implementation of the solution. State all the assumptions.

13-10.  Consider the inventory situation in which the stock is replenished uniformly (rather 
than instantaneously) at the rate a. Consumption occurs at the constant rate D. Because 
consumption also occurs during the replenishment period, it is necessary that a 7 D. 
The setup cost is K per order, and the holding cost is h per unit per unit time. If y is the 
order size and no shortage is allowed, show that
(a) The maximum inventory level is y11 - D

a 2 .

(b) The total cost per unit time given y is

TCU1y2 = KD
y + h

2 11 - D
a 2y
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(c) The economic order quantity is

y* = C 2KD

h11 - D
a 2

, D 6 a

(d) Show that the EOQ under instantaneous replenishment can be derived from the 
formula in (c).

13-11.  A company can produce an item or buy it from a contractor. If it is produced, it will 
cost $20 each time the machines are set up. The production rate is 100 units per day. If 
it is bought from a contractor, it will cost $15 each time an order is placed. The cost of 
maintaining the item in stock, whether bought or produced, is $.02 per unit per day. The 
company’s usage of the item is estimated at 26,000 units annually. Assuming that no 
shortage is allowed, should the company buy or produce?

13-12.  In Problem 13-10, suppose that shortage is allowed at a penalty cost of p per unit per 
unit time.

(a) If w is the maximum shortage during the inventory cycle, show that

TCU 1y, w2 =
KD

y
+

h5y11 - D
a 2 - w62 + pw

2

211 - D
a 2y

y* = C2KD1p + h2
ph11 - D

a 2

w* = C2KDh11 - D
a 2

p1p + h2

(b) Show that the EOQ results in Section 13.3.1 can be derived from the general 
 formulas in (a).

13-13. Consider the hotel laundry service situation in Problem 13-8. The normal charge for 
washing a soiled towel is $.60, but the laundry service will charge only $.45 if the 
hotel delivers them in lots of at least 2600 towels. Should the hotel take advantage 
of the discount?

*13-14. An item is consumed at the rate of 30 items per day. The holding cost per unit per day 
is $.05, and the setup cost is $100. Suppose that no shortage is allowed and that the pur-
chasing cost per unit is $10 for any quantity not exceeding 500 units and $8 otherwise. 
The lead time is 21 days. Determine the optimal inventory policy.

13-15. An item sells for $30 a unit, but a 10% discount is offered for lots of 200 units or more. 
A company uses this item at the rate of 20 units per day. The setup cost for ordering a lot 
is $50, and the holding cost per unit per day is $.30. The lead time is 15 days. Should the 
company take advantage of the discount?

*13-16.  In Problem 13-15, determine the range on the price discount percentage that, when 
 offered for lots of size 150 units or more, will not result in any financial advantage to the 
company.

13-17. In the inventory model discussed in Section 13.3.2, suppose that the holding cost per 
unit per unit time is h1 for quantities below q and h2 otherwise, h1 7 h2. Show how the 
 economic lot size is determined.
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*13-18. The following data describe five inventory items:11

Item i Ki ($) Di (units per day) hi ($) ai (ft2)

1 35 22 0.35 1.0
2 28 34 0.15 0.8
3 30 14 0.28 1.1
4 25 21 0.30 0.5
5 20 26 0.42 1.2

Total available storage area = 22 ft2 

Determine the optimal order quantities.
13-19.  Solve the model of Example 13.3-3, assuming that we require the sum of the average 

inventories for all the items to be less than 25 units.
13-20.  In Problem 13-19, assume that the only restriction is a limit of $1000 on the amount of 

capital that can be invested in inventory. The purchase costs per unit of items 1, 2, and 3 
are $100, $55, and $100, respectively. Determine the optimum solution.

*13-21.  The following data describe four inventory items:

Item i Ki ($) Di (units per day) hi ($)

1 100 10 .1
2  50 20 .2
3  90  5 .2
4  20 10 .1

The company wishes to determine the economic order quantity for each of the four 
items such that the total number of orders per 365-day year is at most 150. Formulate 
the problem as a nonlinear program, and find the optimum solution.

13-22.  In Figure 13.7, determine the combined requirements for subassembly S in each of the 
following cases:
(a) Lead time for M1 is only one period.

(b) Lead time for M1 is three periods.
13-23.  Solve Example 13.4-1, assuming that the unit production and holding costs are as given 

in the following table:

Period i
Regular time  
unit cost ($)

Overtime unit  
cost ($)

Unit holding cost ($)  
to period i + 1 

1 5.00 7.50 .10
2 3.00 4.50 .15
3 4.00 6.00 .12
4 1.00 1.50 .20

*

11You will find files solverConstrEOQ.xls and amplConstrEOQ.txt useful in solving Problems 13-18 to 13-21.
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13-24.  An item is manufactured to meet known demand for four periods according to the fol-
lowing data:

Unit production cost ($) for period

Production range (units) 1 2 3 4

    1–3 1 2 2 3
 4–11 1 4 5 4
12–15 2 4 7 5
16–25 5 6 10 7
Unit holding cost to next period ($) .30 .35 .20 .25
Total demand (units) 11 4 17 29

(a) Find the optimal solution, indicating the number of units to be produced in each period.

(b) Suppose that 30 additional units are needed in period 4. Where should they be produced?
*13-25.  The demand for a product over the next five periods may be filled from regular produc-

tion, overtime production, or subcontracting. Subcontracting may be used only if the 
overtime capacity has been used. The following table gives the supply, demand, and cost 
data of the situation:

Production capacity (units)

Period Regular time Overtime Subcontracting Demand

1 100 50 30 153
2  40 60 80 200
3  90 80 70 150
4  60 50 20 200
5  70 50 100 203

The unit production costs for the three levels in each period are $4, $6, and $7, 
respectively. The unit holding cost per period is $.50. Determine the optimal solution.

*13-26.  Consider Example 13.4-2.
(a) Will x4 = 0 in the optimum solution?

(b) For each of the following two cases, determine the feasible ranges for z1, z2, z3, x1, 
x2, and x3. (You will find it helpful to represent each situation as in Figure 13.10.)

(i) x1 = 3 and all the remaining data are the same.
(ii) x1 = 0, D1 = 5, D2 = 4, and D3 = 5.

*13-27.  (a) Find the optimal solution for the following four-period inventory model:

Period i
Demand  
Di (units)

Setup cost  
Ki ($)

Holding cost  
hi ($)

1 5 5 1
2 2 7 1
3 3 9 1
4 3 7 1

The unit production cost is $1 each for the first 6 units and $2 each for additional units.

(b) Verify the computations using excelDPInv.xls.
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13-28.  Suppose that the inventory-holding cost is based on the average inventory during the 
period. Develop the corresponding forward recursive equation.

13-29.  Develop the backward recursive equation for the model, and then use it to solve 
 Example 13.4-2.

13-30.  Develop the backward recursive equation for the model, assuming that the inventory-
holding cost is based on the average inventory in the period.

*13-31.  Solve Example 13.4-3, assuming that the initial inventory is 80 units. You may use 
 excelWagnerWhitin.xls to check your calculations.

13-32.  Solve the following 10-period deterministic inventory model. Assume an initial inventory 
of 50 units.

Period i
Demand  
Di (units)

Unit production 
cost ($)

Unit holding  
cost ($)

Setup  
cost ($)

 1 150 6 1 100
 2 100 6 1 100
 3  20 4 2 100
 4  40 4 1 200
 5  70 6 2 200
 6  90 8 3 200
 7 130 4 1 300
 8 180 4 4 300
 9 140 2 2 300
10  50 6 1 300

13-33.  Find the optimal inventory policy for the following five-period model. The unit production 
cost is $10 for all periods. The unit holding cost is $1 per period.

Period i Demand Di (units) Setup cost K1 ($)

1  50 80
2  70 70
3 100 60
4  30 80
5  60 60

13-34.  Find the optimal inventory policy for the following six-period inventory situation: 
The unit production cost is $2 for all the periods.

Period i Di (units) Ki ($) hi ($)

1 10 20 1
2 15 17 1
3  7 10 1
4 20 18 3
5 13  5 1
6 25 50 1

*13-35.  The demand for fishing poles is at its minimum during the month of December and 
reaches its maximum during the month of April. Fishing Hole, Inc., estimates the 
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December demand at 50 poles. It increases by 10 poles a month until it reaches 90 
in April. Thereafter, the demand decreases by 5 poles a month. The setup cost for a 
production lot is $250, except during the peak demand months of February to April, 
when it increases to $300. The production cost per pole is approximately constant at 
$15 throughout the year, and the holding cost per pole per month is $1. Fishing Hole is 
developing next year’s (January through December) production plan. How should it 
schedule its production facilities?

13-36.  A small publisher reprints a novel to satisfy the demand over the next 12 months. The 
demand estimates for the successive months are 100, 120, 50, 70, 90, 105, 115, 95, 80, 85, 
100, and 110. The setup cost for reprinting the book is $200, and the holding cost per 
book per month is $1.20. Determine the optimal reprint schedule.
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Chapter 14

review of Basic probability

14.1 Laws of ProbabiLity

Probability deals with random outcomes of an experiment. The conjunction of all the 
outcomes is the sample space, and a subset of the sample space is an event. As an 
 illustration, the experiment of rolling a (six-faced) die produces the sample space {1, 2, 
3, 4, 5, 6}. The subset {1, 3, 5} defines the event of turning up odd values.

An experiment may deal with a continuous sample space as well. For example, the 
time between failures of an electronic component may assume any nonnegative value.

If an event E occurs m times in an n-trial experiment, then the probability of real-
izing the event E is defined as

P5E6 =  lim
nS ∞

m
n

The definition says that when the experiment is repeated an infinite number of times 
1n S ∞2, the probability of realizing an event is m

n . For example, the longer a fair coin is 
flipped, the closer will be the estimate of P{head} (or P{tail}) to the theoretical value of 0.5.

By definition,

0 … P5E6 … 1

An event E is impossible if P5E6 = 0, and certain if P5E6 = 1. For example, in a six-
faced die experiment, rolling a seven is impossible, but rolling a number in the range 
of 1 to 6 is certain.

aha! Moment: teaching (Probability) by Example: the birthday Challenge!

I taught the introductory probability/statistics course many times. In the first class meeting, 
 following a brief exchange of pleasantries, I took note of the size of the class, and if it exceeded 
25 or so, I always posed a challenge to the students: “Who is willing to bet that there is a better 

 543
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than 50-50 chance that at least two of you have the same birthday?” (see Problem 14-2). And so 
the game started with the students taking turns calling their birthdays and others raising their 
hands if they coincided. Of course, in some classes I “won” and in others my students did. And 
when they “won,” there was a glee of satisfaction on their faces because they thought I was 
“proven” wrong. But my goal from the experiment was fulfilled just the same: “A better than 
50-50 chance does not mean that the anticipated outcome will happen for certain,” I told my 
students. “It only means that there is a greater chance it will happen; but, at the same time, there 
still is a positive probability that it won’t. And that is what probability is all about: quantifying the 
degree of certainty/uncertainty regarding a proposition.”

14.1.1 addition Law of Probability

The union of two events E and F is E + F or E ∪ F, and their intersection is EF or E ¨ F. 
The events E and F are mutually exclusive if the occurrence of one event precludes the 
occurrence of the other, or P5EF6 = 0. Based on these definitions, the addition law of 
probability can be stated as

P5E + F6 = eP5E6 + P5F6,      E and F mutually exclusive
P5E6 + P5F6 - P5EF6, otherwise

Example 14.1-1 

Consider the experiment of rolling a die. The sample space of the experiment is {1, 2, 3, 4, 5, 6}. 
For a fair die, we have

P516 = P526 = P536 = P546 = P556 = P566 = 1
6

Define

E = 51, 2, 3, or 46
F = 53, 4, or 56

The event EF = 53 or 46 because the outcomes 3 and 4 are common between E and F. Thus,

 P5E6 = P516 + P526 + P536 + P546 = 1
6 + 1

6 + 1
6 + 1

6 = 2
3

 P5F6 = P536 + P546 + P556 = 1
2

 P5EF6 = P536 + P546 = 1
3

 P5E + F6 = P5E6 + P5F6 - P5EF6 = 2
3 + 1

2 - 1
3 = 5

6

Intuitively, the result makes sense because P5E + F6 = P51, 2, 3, 4, 56 = 5
6.

14.1.2 Conditional Law of Probability

Given the two events E and F with P5F6 7 0, the conditional probability of E given 
F is computed as

P5E � F6 =
P5EF6
P5F6 , P5F6 7 0
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If E is a subset of F, then P5EF6 = P5E6. The two events are independent if, and 
only if,

P5E � F6 = P5E6
In this case, the conditional probability law reduces to

P5EF6 = P5E6P5F6

Example 14.1-2 

You are playing a game in which another person is rolling a die. You cannot see the die, but 
you are given information about the outcomes. Your job is to predict the outcome of each roll. 
Determine the probability that the outcome is 6, given that you are told that the roll has turned 
up an even number.

Let E = 566, and define F = 52, 4, or 66. Thus,

P5E � F6 =
P5EF6
P5F6 =

P5E6
P5F6 = a1>6

1>2
b = 1

3

Note that P5EF6 = P5E6 because E is a subset of F.

14.2 randoM VariabLEs and ProbabiLity distributions

The outcomes of an experiment can be naturally numeric (e.g., rolling a die) or can 
be represented by numeric code (e.g., flipping a coin, with the outcome head/tail 
coded as 0/1). The numeric representation of the outcomes defines what is known as 
a random variable.

A random variable, x, may be discrete (as in die rolling) or continuous (as in 
time-to-failure of an equipment). Each continuous or discrete random variable x is 
quantified by a probability density function (pdf), f (x) or p(x), satisfying the following 
conditions:

Random variable, x

Characteristic Discrete Continuous

Applicability range x = a, a + 1, c, b a … x … b 

Conditions for the pdf p1x2 Ú 0, a
b

x = a
p1x2 = 1 f1x2 Ú 0, L

b

a
f1x2dx = 1 

An important probability measure is the cumulative distribution function (CDF), 
defined as

P5x … X6 = c P1X2 = a
X

x = a
p1x2,  x discrete

F1X2 = 1  X
 a f1x2dx, x continuous
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Example 14.2-1 

Consider the random variable x = 51, 2, 3, 4, 5, 66 representing the experiment of rolling a fair 
die. The associated pdf and CDF are

 p1x2 =
1
6

, x = 1, 2, c, 6

 P1X2 =
X
6

, X = 1, 2, c, 6

Figure 14.1 graphs the two functions. The pdf p(x) is a uniform discrete function because all the 
values of the random variables occur with equal probabilities.

The continuous counterpart of uniform p(x) is illustrated by the following experiment. 
A  needle of length l is pivoted in the center of a circle with diameter l. After marking an 
 arbitrary reference point on the circumference, the needle is spun clockwise, and the circumfer-
ence  distance, x, from where the pointer stops to the marked point is measured. Because any 
stopping point on the circumference is equally likely to occur, the distribution of x is uniform in 
the range 0 … x … pl with the following pdf:

f1x2 =
1
pl

, 0 … x … pl

The associated CDF, F(X), is computed as

F1X2 = P5x … X6 = L
X

0
f1x2dx = L

X

0
 

1
pl

 dx =
X
pl

, 0 … X … pl

Figure 14.2 graphs the two functions.
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FiguRe 14.1 

CDF and pdf for rolling a fair die

1

0 x

pdf, f(x)

CDF, F(x)

1
pl

pl

FiguRe 14.2 

CDF and pdf for spinning a needle
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14.3 ExPECtation of a randoM VariabLE

Given a real function h(x) of a random variable x, the expected value of h(x) is 
 computed as

E5h1x26 = c a
b

x = a
h1x2p1x2,   x discrete

1b
a h1x2f1x2dx, x continuous

Example 14.3-1 

During the first week of each month, I pay all my bills and answer a few letters. I usually buy 
20  first-class mail stamps each month for this purpose. The number of stamps I actually use 
 varies randomly between 10 and 24, with equal probabilities. Determine the average number of 
stamps left (i.e., average surplus) per month.

The pdf of the number of stamps used is

p1x2 = 1
15, x = 10, 11, c, 24.

The number of stamps left is

h1x2 = e20 - x, x = 10, 11, c, 19
0,     otherwise

Thus,

E5h1x26 = 1
15 3120 - 102 + 120 - 112 + 120 - 122 + c + 120 - 1924 + 5

15 102 = 3 23

The product 5
15102 accounts for the outcome of being left with no stamps, which corre-

sponds to the probability of using at least 20 stamps—that is,

P5x Ú 206 = p1202 + p1212 + p1222 + p1232 + p1242 = 51 1
152 = 5

15

14.3.1 Mean and Variance (standard deviation) of a random Variable

The mean value E{x} is a measure of the central tendency (or weighted sum) of the 
random variable x. The variance var{x} is a measure of the dispersion or deviation 
of x around its mean value. Its square root is known as the standard deviation of x, 
stdDev{x}. A larger standard deviation implies higher uncertainty.

The formulas for the mean and variance can be derived from the general definition 
of E5h1x26 in Section 14.3 by substituting h1x2 = x to obtain E{x} and by substituting 
h1x2 = 1x - E5x622 to obtain var{x}—that is

 E5x6 = c a
b

x = a
xp1x2,  x discrete

1b
a xf1x2dx, x continuous

 var 5x6 = c a
b

x = a
1x - E5x622 p1x2,    x discrete

1b
a 1x - E5x622 f1x2  dx, x continuous

 stdDev5x6 = 3var5x6
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Example 14.3-2 

We compute the mean and variance for each of the two experiments in Example 14.2-1.

Case 1 (Die rolling). The pdf is p1x2 = 1
6, x = 1, 2, c, 6. Thus,

 E5x6 = 111
62 + 211

62 + 311
62 + 411

62 + 511
62 + 611

62 = 3.5

 var5x6 = 11
62511 - 3.522 + 12 - 3.522 + 13 - 3.522 + 14 - 3.522

+ 15 - 3.522 + 16 - 3.5226 = 2.917

 stdDev1x2 = 12.917 = 1.708

Case 2 (Needle Spinning). Suppose that the length of the needle is 1 inch. Then,

f1x2 =
1

3.14
, 0 … x … 3.14

The mean and variance are

 E1x2 = L
3.14

0
x1 1

3.142dx = 1.57 inch

 var1x2 = L
3.14

0
1x - 1.57221 1

3.142dx = .822 inch2

 stdDev1x2 = 1.822 = .906 inch

Excel Moment

Template excelStatTables.xls computes the mean, standard deviation, probabilities, and percen-
tiles for 16 common pdfs, including the discrete and continuous uniform distributions. The use of 
the spreadsheet is self-explanatory.

14.3.2 Joint random Variables

Consider the two continuous random variables x1 and x2, where a1 … x1 … b1 and 
a2 … x2 … b2. Define f (x1, x2) as the joint pdf of x1 and x2 and f1(x1) and f2(x2) as their 
respective marginal pdfs. Then

f1x1, x22 Ú 0, a1 … x1 … b1, a2 … x2 … b2

L
b1

a1

dx1L
b2

a2

dx2 f1x1, x22 = 1

f11x12 = L
b2

a2

f1x1, x22 dx2

f21x22 = L
b1

a1

f1x1, x22 dx1

f1x1, x22 = f11x12f21x22, if x1 and x2 are independent

The same formulas apply to discrete pdfs, replacing integration with summation.
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For the special case y = c1x1 + c2x2, where the random variables x1 and x2 are 
jointly distributed according to the pdf f (x1, x2), we can prove that

E5c1x1 + c2x26 = c1E5x16 + c2E5x26
var5c1x1 + c2x26 = c1

2var5x16 + c2
2var5x26 + 2c1c2cov5x1, x26

where

 cov5x1, x26 = E51x1 - E5x1621x2 - E5x262
 = E1x1x2 - x1E5x26 - x2E5x16 + E5x16E5x262
 = E5x1x26 - E5x16E5x26

If x1 and x2 are independent, then E5x1x26 = E5x16E5x26 and cov5x1, x26 = 0. 
The converse is not true, in the sense that two dependent variables may have zero 
covariance.

Example 14.3-3 

A lot includes four defective (D) items and six good (G) ones. One item is selected randomly 
and tested. Next, a second item is selected from the remaining nine items and tested. Let x1 and 
x2 represent the outcomes of the first and second selections.

(a) Determine the joint and marginal pdfs of x1 and x2.
(b) Suppose that a good item nets a revenue of $5 and a defective item results in a 

loss of $6. Determine the mean and variance of revenue following the testing of 
two items.

Let p(x1, x2) be the joint pdf of x1 and x2, and define p1(x1) and p2(x2) as the respective mar-
ginal pdfs. First, we determine p1(x1) as

p11G2 = 6
10 = .6,  p11D2 = 4

10 = .4

Next, we know that the second outcome x2 depends on the first outcome x1. Hence, to determine 
p2(x2), we first determine the joint pdf p(x1, x2) (using the formula P5AB6 = P5A � B6P5B6 in 
Section 14.1.2), from which we can determine the marginal distribution p2(x2). Thus,

 P5x2 = G � x1 = G6 = 5
9

 P5x2 = G � x1 = B6  = 6
9

 P5x2 = B � x1 = G6  = 4
9

 P5x2 = B � x1 = B6  = 3
9

Next,

 p5x2 = G, x1 = G6 = 5
9 * 6

10 = 5
15

 p5x2 = G, x1 = B6 = 6
9 * 4

10 = 4
15

 p5x2 = B, x1 = G6 = 4
9 * 6

10 = 4
15

 p5x2 = B, x1 = B6 = 3
9 * 4

10 = 2
15
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The expected revenue can be determined from the joint distribution by recognizing that G 
 produces $5 and B yields - $6. Thus,

Expected revenue =  15 + 52 5
15 + 15 - 62 4

15  + 1-6 + 52 4
15 + 1-6 - 62 2

15 = $1.20

The same result can be determined by recognizing that the expected revenue for both selec-
tions equals the sum of the expected revenue for each individual selection (even though the two 
variables are not independent). These computations require determining the marginal distribu-
tions, p1(x1) and p2(x2).

A convenient way to determine the marginal distributions is to present the joint distribu-
tion, p(x1, x2), as a table and then add the respective columns and rows to determine p(x1) and 
p(x2), respectively. Thus,

x2 = G x2 = B p11x12 

x1 = G 5
15 4

15 9
15 = .6 

x1 = B 4
15 2

15 6
15 = .4 

p21x22 9
15 = .6 6

15 = .4 

Now, the expected revenue is determined from the marginal distributions as

 Expected revenue =  Selection 1 expected revenue + Selection 2 expected revenue

 = 15 * .6 - 6 * .42 + 15 * .6 - 6 * .42 = $1.20

To compute the variance of the total revenue, we note that

var5revenue6 = var5revenue 16 + var5revenue 26 + 2 cov5revenue 1, revenue 26
Because p11x12 = p21x22, var5revenue 16 = var5revenue 26. To compute the variance, 

we use the following formula (see Problem 14-24):

var5x6 = E5x26 - 1E5x622

Thus,

var5revenue 16 = [52 * .6 + 1-622 * .4] - .62 = 29.04

Next, to compute the covariance, we use the formula

cov5x1, x22 = E5x1x26 - E5x16E5x26
The term E{x1x2} can be computed from the joint pdf of x1 and x2 as

Convariance = 315 * 521 5
152 + 15 * -621 4

152 + 1-6 * 521 4
152

+ 1-6 * -621 2
1524 - .6 * .6 = -3.23

Thus,

Variance = 29.04 + 29.04 + 21-3.232 = 51.62
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14.4 four CoMMon ProbabiLity distributions

In Sections 14.2 and 14.3, we discussed the (discrete and continuous) uniform distribution. 
This section presents four additional pdfs that are encountered often in operations research 
studies: discrete binomial and Poisson, and continuous exponential and normal.

14.4.1 binomial distribution

A manufacturer produces an item in lots of n items each. The fraction of defective 
items, p, in each lot is estimated from historical data. We are interested in determining 
the pdf of the number of defectives in a lot.

There are Cx
n = n!

x!1n - x2! distinct combinations of x defectives in a lot of size n, 
and the probability of realizing each combination is px11 - p2n - x. Thus, from the addi-
tion law (Section 14.1.1), the probability of k defectives in a lot of n items is

P5x = k6 = Ck
n pk11 - p2n - k, k = 0, 1, 2, c, n

This is the binomial distribution with parameters n and p. Its mean and variance are

 E5x6 = np

 var5x6 = np11 - p2

Example 14.4-1 

John Doe’s daily chores require making 10 round trips by car between two towns. Once through 
with all ten trips, Mr. Doe can take the rest of the day off, a good enough motivation to drive 
above the speed limit. Experience shows that there is a 40% chance of getting a speeding fine 
on any round trip.

(a) What is the probability that the day will end without a speeding ticket?
(b) If each speeding ticket costs $80, what is the average daily fine?

The probability of getting a ticket on any one trip is p = .4. Thus, the probability of not get-
ting a ticket in any one day is

P5x = 06 = C0
101.4201.6210 = .006

This means that there is less than 1% chance of finishing the day without a fine.
The average fine per day is

Average fine = $80 E5x6 = $80 1np2 = 80 * 10 * .4 = $320

remarks. P5x = 06 can be computed using excelStatTables.xls. Enter 10 in F7, .4 in G7, and 0 
in J7. The answer, P5x = 06 = .006047, is given in M7.

14.4.2 Poisson distribution

Customers arrive at a bank or a grocery store in a “totally random” fashion—meaning 
that arrival times cannot be predicted in advance. The pdf describing the number of 
 arrivals during a specified time period is the Poisson distribution.
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Let x be the number of events (e.g., arrivals) that take place during a specified 
time period (e.g., a minute or an hour). Given that l is a known constant, the Poisson 
pdf is defined as

P5x = k6 =
lke-l

k!
, k = 0, 1, 2, c

The mean and variance of the Poisson are

 E5x6 = l

 var5x6 = l

The formula for the mean reveals that l must represent the rate at which events occur.
The Poisson distribution figures prominently in the study of queues (see Chapter 18).

Example 14.4-2 

Repair jobs arrive at a small-engine repair shop randomly at the rate of 10 per day.

(a) What is the average number of jobs that are received daily at the shop?
(b) What is the probability that no jobs will arrive during any 1 hour, assuming that 

the shop is open 8 hours a day?

The average number of jobs received per day equals l = 10 jobs per day. To compute 
the probability of no arrivals per hour, we need to compute the arrival rate per hour—namely, 
lhour = 10

8 = 1.25 jobs per hour. Thus

 P5no arrivals per hour6 =
1lhour20e-lhour

0!

 =
1.250e-1.25

0!
= .2865

remarks. The probability above can be computed with excelStatTables.xls. Enter 1.25 in F16 
and 0 in J16. The answer, .286505, appears in M16.

14.4.3 negative Exponential distribution

If the number of arrivals at a service facility during a specified time period follows the 
Poisson distribution (Section 14.4.2), then, automatically, the distribution of the inter-
arrival time (i.e., between successive arrivals) is the negative exponential (or, simply, 
exponential) distribution. Specifically, given l is the rate of occurrence of Poisson ar-
rivals, then the distribution of interarrival time, x, is

f1x2 = le-lx, x 7 0

Figure 14.3 graphs f (x).
The mean and variance of the exponential distribution are

 E5x6 =
1
l

 var5x6 =
1
l
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The mean E{x} is consistent with the definition of l. If l is the rate at which events 
occur, then 1l is the average time interval between successive events.

Example 14.4-3 

Cars arrive randomly at a gas station. The average interarrival time is 2 minutes. Determine the 
probability that the interarrival time does not exceed 1 minute.

The determination of the desired probability is the same as computing the CDF of 
x—namely,

 P5x … A6 = L
A

0
le-lxdx

 =  -e-lx � o
A

 = 1 - e-lA

The arrival rate for the example is l = 1
2  arrival per minute. Substituting A = 1, the desired 

probability is

P5x … 16 = 1 - e-11
22112 = .3934

remarks. You can use excelStatTables.xls to compute the preceding probability. Enter .5 in 
F9, 1 in J9. The answer 1= .3934682 appears in O9.

14.4.4 normal distribution

The normal distribution describes many random phenomena in everyday life, such as 
test scores and weights and heights of individuals. The pdf of the normal distribution is

f1x2 =
122ps2

 e-1
21x -m

s 22
,  -∞ 6 x 6 ∞

The mean and variance are

 E5x6 = m

 var5x6 = s2

The notation N1m, s2 is usually used to represent a normal distribution with mean m 
and standard deviation s.

x

 f(x)

f(x) 5 le2  x

l

l

FiguRe 14.3 

Probability density function of the exponential 
distribution
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Figure 14.4 graphs the normal pdf. The function is always symmetrical around the 
mean m.

An important property of the normal random variable is that it approximates the 
distribution of the average of a sample taken from any distribution. This remarkable 
result is based on the following theorem:

Central Limit theorem. Let x1, x2,..., and xn be independent and identically dis-
tributed random variables, each with mean m and standard deviation s, and define

sn = x1 + x2 + g + xn

The distribution of sn is asymptotically normal with mean nμ and variance ns2, regard-
less of the original distribution of x1, x2, c, and xn.

A special case of the central limit theorem deals with the distribution of the aver-
age of a sample of size n (drawn from any distribution). The average is asymptotically 
normal with mean m and variance s

2

n . This result has important applications in statistical 
quality control.

The CDF of the normal random variable cannot be determined in a closed form. 
Table A.1 in Appendix A gives the probabilities for N(0, 1), the standard normal distri-
bution with mean zero and standard deviation 1. A general normal random variable x 
with mean m and standard deviation s can be converted to a standard normal z using 
the transformation

z =
x - m

s

Over 99% of the area under any normal density function is enclosed in the range 
m - 3s … x … m + 3s, also known as the 6-sigma limits.

Example 14.4-4 

The inside diameter of a cylinder has the specification 1 { .03 cm. The output of the machin-
ing process producing the cylinder follows a normal distribution with mean 1 cm and standard 
deviation .1 cm. Determine the percentage of production that will meet the specifications.

Defining x as the inside parameter of the cylinder, the probability that a cylinder will meet 
specifications is

P51 - .03 … x … 1 + .036 = P5.97 … x … 1.036

x

 f(x)

f(x) 5 e1

2      2
x21

2
2

ps

m
s

m

2

FiguRe 14.4 

Probability density function of the normal 
random variable
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This probability is computed using the standard normal (Table A.1 in Appendix A). Given 
m = 1 and s = .1, we have

 P5.97 … x … 1.036 = P5.97 - 1
.1  … z … 1.03 - 1

.1 6
 = P5- .3 … z … .36
 = P5z … .36 - P5z … - .36
 = P5z … .36 - P5z Ú .36
 = P5z … .36 - [1 - P5z … .36]

 = 2P5z … .36 - 1

 = 2 * .6179 - 1

 = .2358

Notice that P5z … - .36 = 1 - P5z … .36 because of the symmetry of the pdf, as shown in 
Figure 14.5. The cumulative probability P5z … .361=  .61792 is obtained from the standard nor-
mal table (Table A.1 in Appendix A) as the entry designated with row z = 0.3 and column 
z = 0.00.

remarks. P5.97 … x … 1.036 can be computed directly from excelStatTables.xls. Enter 1 in 
F15, .1 in G15, .97 in J15, and 1.03 in K15. The answer 1= .2358232 appears in Q15.

14.5 EMPiriCaL distributions

The preceding sections have dealt with the pdfs and CDFs of five common distributions—
uniform, binomial, Poisson, exponential, and normal. How are these distributions recog-
nized in practice?

The basis for identifying any pdf is the raw data we collect about the situation 
under study. This section shows how sampled data can be converted into a pdf.

Step 1.  Summarize the raw data in the form of an appropriate frequency histogram 
to determine the associated empirical pdf.

Step 2.  Use the goodness-of-fit test to test if the resulting empirical pdf is sampled 
from a known theoretical pdf.

z0 .32.3

 f (z) FiguRe 14.5 

Calculation of P5- .3 … z … .36 in a 
standard normal distribution
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Frequency histogram. A frequency histogram is constructed from raw data by dividing 
the range of the data (minimum value to maximum value) into nonoverlapping bins. The 
frequency in each bin is the tally of all the raw data values that fall within the bin’s desig-
nated boundaries.

Example 14.5-1 

The following data represent the service time (in minutes) in a service facility for a sample of 
60 customers:

.7 .4 3.4 4.8 2.0 1.0 5.5 6.2 1.2 4.4
1.5 2.4 3.4 6.4 3.7 4.8 2.5 5.5 .3 8.7
2.7 .4 2.2 2.4 .5 1.7 9.3 8.0 4.7 5.9
.7 1.6 5.2 .6 .9 3.9 3.3 .2 .2 4.9

9.6 1.9 9.1 1.3 10.6 3.0 .3 2.9 2.9 4.8
8.7 2.4 7.2 1.5 7.9 11.7 6.3 3.8 6.9 5.3

The minimum and maximum values of the data are .2 and 11.7, respectively. This means that 
the sample is covered by the range (0, 12). We arbitrarily divide the range (0, 12) into 12 bins, 
each of width 1 minute. The proper selection of the bin width is crucial in revealing the shape 
of the empirical distribution. Although there are no hard rules for determining the optimal bin 
width, a general rule of thumb is to use from 10 to 20 bins. In practice, it may be necessary to try 
different bin widths before deciding on an acceptable histogram.

The following table summarizes the histogram information for the given sample. The relative- 
frequency column, fi, is computed by dividing the entries of the observed-frequency column, oi, 
into the total number of observations 1n = 602. For example, f1 = 11

60 = .1833. The cumulative- 
frequency column, Fi, is generated by summing the values of fi recursively. For example, F1 = f1 =  
.1833 and F2 = F1 + f2 = .1833 + .1333 = .3166.

i Bin interval Observations tally
Observed  

frequency, oi 
Relative  

frequency, fi 
Cumulative relative  

frequency, Fi 

1 (0, 1) 0 0 0 0 0 0 0 0 0  11 .1833 .1833
2 (1, 2) 0 0 0 0 0 0 0   8 .1333 .3166
3 (2, 3) 0 0 0 0 0 0 0 0   9 .1500 .4666
4 (3, 4) 0 0 0 0 0 0   7 .1167 .5833
5 (4, 5) 0 0 0 0 0   6 .1000 .6833
6 (5, 6) 0 0 0 0   5 .0833 .7666
7 (6, 7) 0 0 0 0   4 .0667 .8333
8 (7, 8) 0 0   2 .0333 .8666
9 (8, 9) 0 0 0   3 .0500 .9166

10 (9, 10) 0 0 0   3 .0500 .9666
11 (10, 11) 0   1 .0167 .9833
12 (11, 12) 0   1 .0167 1.0000

Totals 60 1.0000

The values of fi and Fi provide a “discretized” version of the pdf and the CDF for the 
 service time. We can convert the resulting CDF into a piecewise-continuous function by joining 



14.5  empirical Distributions   557

the resulting points with linear segments. Figure 14.6 provides the empirical pdf and CDF for 
the example. The CDF, as given by the histogram, is defined at midpoints of the bins.

We can now estimate the mean, tQ, and variance, st
2, of the empirical distribution. Let N be the 

number of bins in the histogram, and define tQi as the midpoint of bin i, then

 tQ = a
N

i = 1
fi tQi

 st
2 = a

N

i = 1
fi1 tQi - tQ22

Applying these formulas to the present example, we get

 tQ = .1833 * .5 + .133 * 1.5 + g + 11.5 * .0167 = 3.934 minutes

 st
2 = .1883 * 1.5 - 3.93422 + .1333 * 11.5 - 3.93422 + g

+ .0167 * 111.5 - 3.93422 = 8.646 minutes2

Excel Moment

Histograms can be constructed conveniently using Excel. Select Data Analysis 1 Histogram, 
then enter the pertinent data in the dialogue box.

The Histogram tool in Excel does not produce the mean and standard deviation directly as 
part of the output.1 You may use Excel template excelMeanVar.xls to calculate the sample mean, 
variance, maximum, and minimum. Also, Excel allows the use histogram tool.

Goodness-of-fit test. The goodness-of-fit test evaluates whether the sample used in 
determining the empirical distribution is drawn from a specific theoretical distribu-
tion. An initial evaluation of the data can be made by comparing the empirical CDF 
with the CDF of the assumed theoretical distribution. If the two CDFs do not deviate 
“excessively,” then it is likely that the sample is drawn from the proposed theoretical 

1.0

0.8

0.6

0.4

0.2

0
1 2 3 4 5 6 7

t (min)
8 9 10 11 12

pdf

CDF FiguRe 14.6 

Piecewise-linear CDF of an empirical 
distribution

1Data Analysis in Excel does provide a separate tool called Descriptive Statistics, which can be used to com-
pute the mean and variance (as well as volumes of other statistics you may never use!).



558   Chapter 14    Review of Basic Probability

distribution. This initial “hunch” can be supported further by applying the goodness-of-
fit test. The following example provides the details of the proposed procedure.

Example 14.5-2 

This example we tests the data of Example 14.5-1 for a hypothesized exponential distribution. 
The first task is to specify the function that defines the theoretical distribution. From Example 
14.5-1, tQ = 3.934 min. Hence, l = 1

3.934 = .2542 service per minute for the hypothesized expo-
nential distribution (see Section 14.4.3), and the associated pdf and CDF are given as

 f1t2 = .2542e-.2542t, t 7 0

 F1T2 = L
T

0
f1t2 dt = 1 - e-.2542T, T 7 0

We can use the CDF, F(T), to compute the theoretical CDF for T = .5, 1.5, c, and 11.5, 
and then compare them graphically with empirical value Fi, i = 1, 2, c, 12, as computed in 
Example 14.5-1 as shown in Figure 14.7. A cursory examination of the two graphs suggests that 
the exponential distribution may indeed provide a reasonable fit for the observed data.

The next step is to implement a goodness-of-fit test. Two such tests exist: (1) the Kolmogrov–
Smirnov test, and (2) the chi-square test. We will limit this presentation to the chi-square test.

The chi-square test is based on a measurement of the deviation between the empirical and 
theoretical frequencies. Specifically, for bin i, the theoretical frequency ni corresponding to the 
observed frequency oi is computed as

 ni = nL
Ii

Ii - 1

f1t2dt

 = n1F1Ii2 - F1Ii- 122
 = 601e-.2542Ii - 1 - e-.2542Ii2

1.0

Empirical cumulative distribution

Exponential cumulative distribution

0.50
t (min)

1.5 2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5 10.5 11.5

FiguRe 14.7 

Comparison of the empirical CDF and theoretical exponential CDF
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Next, assuming N bins, a measure of the deviation between the empirical and observed frequencies 
is computed as

x2 = a
N

i = 1

1oi - ni22

ni

The measure x2 is asymptotically a chi-square pdf with N - k - 1 degrees of freedom, where k 
is the number of parameters estimated from the raw data and used for defining the theoretical 
distribution.

The null hypothesis for the test stating that the observed sample is drawn from the theoreti-
cal distribution f(t) is accepted if

H: Accept f1t2 if x2 6 xN - k - 1, 1 -a
2

The critical value xN - k - 1, 1 -a
2  is obtained from chi-square tables (see Table A.3, Appendix A) 

corresponding to N - k - 1 degrees of freedom and a significance level a.
The computations of the test are shown in the following table:

i Bin
Observed  

frequency, oi 
Theoretical  
frequency, ni 

1oi - ni22

ni

1 (0, 1) 11 13.448 .453
2 (1, 2) 8 10.435 .570
3 (2, 3) 9 8.095 .100
4 (3, 4) 7 6.281 .083
5
6

(4, 5)
(5, 6)

6
5 f  11 

4.873
3.781 f  8.654 

.636

7
8
9

(6, 7)
(7, 8)
(8, 9)

4
2
3 
f  9

 

2.933
2.276
1.766 

f  6.975
 

.588

10
11
12

(9, 10)
(10, 11)
(11, ∞) 

3
1
1 
f  5

 

1.370
1.063
3.678 

f  6.111
 

.202

Totals n = 60 n = 60 x2@value = 2.623 

As a rule of thumb, the theoretical frequency count in any bin must be at least 5. This require-
ment is usually resolved by combining successive bins until the rule is satisfied, as shown in the 
table. The resulting number of bins becomes N = 7. Because we are estimating one parameter 
from the observed data (namely, l), the degrees of freedom for the chi-square is 7 - 1 - 1 = 5. 
If we assume a significance level a = .05, we get the critical value x5, .05

2 = 11.07 (use Table A.3 
in Appendix A, or, in excelStatTables.xls, enter 5 in F8 and .05 in L8, and get the answer in R8). 
Because the x2@value 1= 2.6232 is less than the critical value, we accept the hypothesis that the 
sample is drawn from an exponential pdf.

aha! Moment: Mark twain Gives “statistics” a bum wrap!

In a nutshell: statistics is all about data and how to interpret them. The goal is to predict the 
 future, not with certainty but with a reasonable degree of confidence. It is a noble goal; so why 
is statistics getting a bum wrap? Mark Twain’s infamous quote “There are lies, damned lies, and 
 statistics,” Darrell Huff’s “How to Lie with Statistics” (in print since 1954), and, more recently, 
Joel Best’s “More Damned Lies and Statistics,” are but three popularly adopted slogans/books 
that tend to cast doubt about statistics and its use.
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Actually, we are talking about two distinct types of “statistics”: The one often criticized 
is used by media and politicians, and the other is used in OR studies (and other sciences) to 
intelligently assess the past and predict the future. In the first type, simple statistical measures, 
including averages, percentage, and pie/bar charts, are sometimes misused in connection with 
situations of public interest. For example, the proposed U.S. tax cut in 2001 claimed an average 
reduction in tax burden of over $1000 per family, but did not add that 50% of all families would 
receive less than $100—left unsaid: the tax cut favored the rich! In the second type, OR and other 
sciences use sophisticated statistical tools to reach robust conclusions about the future behavior 
of a system. This is the type that interests us, and, properly utilized, it is an indispensable tool in 
practically all OR projects.
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ProbLEMs  

Section Assigned Problems Section Assigned Problems

14.1 14-1 to 14-3 14.3.2 14-26 to 14-26
14.1.1 14-4 to 14-7 14.4.1 14-27 to 14-32
14.1.2 14-8 to 14-14 14.4.2 14-33 to 14-36
14.2 14-15 to 14-17 14.4.3 14-37 to 14-38
14.3 14-18 to 14-20 14.4.4 14-39 to 14-41
14.3.1 14-21 to 14-25 14.5 14-42 to 14-44

 *14-1. In a survey conducted in the State of Arkansas high schools to study the correlation 
between senior year scores in mathematics and enrollment in engineering colleges, 
400 out of 1000 surveyed seniors have studied mathematics. Engineering enrollment 
shows that, of the 1000 seniors, 150 students have studied mathematics and 29 have 
not. Determine the probabilities of the following events:
(a) A student who studied mathematics is (is not) enrolled in engineering.

(b) A student neither studied mathematics nor enrolled in engineering.

(c) A student is not studying engineering.
 *14-2. Consider a random gathering of n persons. Determine the smallest n that will make 

it more likely that two persons or more have the same birthday. (Hint: Assume no 
leap years and that all days of the year are equally likely to be a person’s  
birthday.)
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 *14-3. Answer Problem 14-2 assuming that in a room full of n persons at least one person 
shares your birthday.

 14-4. A fair 6-faced die is tossed twice. Letting E and F represent the outcomes of the two 
tosses, compute the following probabilities:
(a) The sum of E and F is 10.

(b) The sum of E and F is even.

(c) The sum of E and F is odd and greater than 3.

(d) E is odd less than 6 and F is even greater than 1.

(e) E is greater than 2 and F is less than 4.

(f) E is 4 and the sum of E and F is even.
 14-5. Two dice are rolled independently and the two numbers that turn up are recorded. 

Determine the following:
(a) The probability that the two numbers are odd with values less than 5.

(b) The probability that the sum of the two numbers is 10.

(c) The probability that the two numbers differ by at least 3.
*14-6. You can toss a fair coin up to 7 times. You will win $100 if three tails appear before a 

head is encountered. What are your chances of winning?
*14-7. Ann, Jim, John, and Nancy are scheduled to compete in a racquetball tournament. Ann 

is twice as likely to beat Jim, and Jim is at the same level as John. Nancy’s past winning 
record against John is one out of three. Determine the following:
(a) The probability that Jim will win the tournament.

(b) The probability that a woman will win the tournament.

(c) The probability that no woman will win.
 14-8. In Example 14.1-2, suppose that you are told that the outcome is less than 6.

(a) Determine the probability of getting an even number.

(b) Determine the probability of getting an odd number larger than one.
 14-9. The stock of WalMark Stores, Inc. trades on the New York Stock Exchange under the 

symbol WMS. Historically, the price of WMS goes upward with the Dow 65% of the 
time and goes downward with the Dow 20% of the time. There is also a 10% chance 
that WMS will go up when the Dow goes down and 5% that it will go down when the 
Dow goes up.
(a) Determine the probability that WMS will go up regardless of the Dow.

(b) Find the probability that WMS goes up given that the Dow is up.

(c) What is the probability WMS goes down given that Dow is down?
*14-10. Graduating high school seniors with an ACT score of at least 26 can seek admission 

in two universities, A and B. The probability of being accepted in A is .4 and in B .25. 
The chance of being accepted in both universities is only 15%.
(a) Determine the probability that the student is accepted in B given that A has 

granted admission as well.

(b) What is the probability that admission will be granted in A given that the student 
was accepted in B?

14-11. Prove that if the probability P5A 0B6 = P5A6, then A and B must be independent.
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14-12. Bayes’ theorem.2 Given the two events A and B, show that

P5A 0B6 =
P5B 0A6P5A6

P5B6 , P5B6 7 0

14-13. A retailer receives 70% of its batteries from Factory A and 30% from Factory B. 
The percentages of defectives produced by A and B are known to be 3% and 5%, 
respectively. A customer has just bought a battery randomly from the retailer.
(a) What is the probability that the battery is defective?

(b) If a battery is defective, what is the probability that it came from Factory A?  
(Hint: Use Bayes’ theorem in Problem 14-12.)

*14-14. Statistics show that 70% of all men have some form of prostate cancer. The PSA test 
will show positive 90% of the time for afflicted men and 10% of the time for healthy 
men. What is the probability that a man who tested positive does have prostate 
cancer?

14-15. The number of units, x, needed of an item is discrete from 1 to 6. The probability, p(x), is 
directly proportional to the number of units needed. The constant of proportionality is K.
(a) Determine the pdf and CDF of x, and graph the resulting functions.

(b) Find the probability that x is an even value.
14-16. Consider the following function:

f1x2 =
k

x2, 10 … x … 20

*(a) Determine the value of the constant k that will render f(x) a pdf.

(b) Determine the CDF, and find the probability that x is (i) larger than 12 and  
(ii) between 13 and 15.

*14-17. The daily demand for unleaded gasoline is uniformly distributed between 750 and 
1250 gallons. The 1100-gallon gasoline tank is refilled daily at midnight. What is the 
probability that the tank will be empty just before a refill?

14-18. In Example 14.3-1, compute the average shortage of stamps per month. (Hint: Shortage 
can occur if I need more than 20 stamps.)

14-19. The results of Example 14.3-1 and of Problem 14-18 show positive averages for both the 
surplus and shortage of stamps. Are these results inconsistent? Explain.

*14-20. The owner of a newspaper stand receives 50 copies of Al Ahram newspaper every 
morning. The number of copies sold, x, varies randomly according to the following 
probability distribution:

p1x2 = c 1
45, x = 35, 36, c, 49
1
30, x = 50, 51, c, 59
1
33, x = 60, 61, c, 70

(a) Determine the probability that the owner will sell out completely.

(b) Determine the expected number of unsold copies per day.

(c) A single copy costs 50 cents and sells for $1.00. Unsold copies have no value. 
 Determine the expected net income per day.

2Section 15.2.2 provides more details about Bayes’ theorem.
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*14-21. Compute the mean and variance of the random variable defined in Problem 14-15.
14-22. Compute the mean and variance of the random variable in Problem 14-16.
14-23. Show that the mean and variance of a uniform random variable x, a … x … b, are

 E5x6 =
b + a

2

 var 5x6 =
1b - a22

12

14-24. For the pdf f(x), prove that

var5x6 = E5x26 - 1E5x622

14-25. Given the pdf f(x) and y = cx + d, where c and d are constants, prove that

 E5y6 = cE5x6 + d

 var5y6 = c2 var5x6
14-26. The joint pdf of x1 and x2 is

x2 = 1 x2 = 2 x2 = 3 

x1 = 1 .2 0 .2

p1x1, x22 = x1 = 2 0 .2 0

x1 = 3 .2 0 .2

*(a) Find the marginal pdfs p1(x1) and p2(x2).

*(b) Are x1 and x2 independent?

(c) Compute E5x1 + x26.

(d) Compute cov5x1, x26.

(e) Compute var55x1 - 6x26.
*14-27. A fair die is rolled 10 times. What is the probability that the rolled die will not show an 

even number?
14-28. Suppose that four fair coins are tossed independently. What is the probability that 

exactly one of the coins will be different from the remaining three?
*14-29. A fortune-teller claims to predict whether people will amass financial wealth in their 

lifetime by examining their handwriting. To verify this claim, 10 millionaires and 10 
university professors were asked to provide samples of their handwriting. The samples 
are then paired, one millionaire and one professor, and presented to the fortune-teller. 
We say that the claim is true if the fortune-teller makes at least eight correct predictions. 
What is the probability that the claim is correct?

14-30. In a gambling casino, you play the game of selecting a number from 1 to 6 before the 
operator rolls three fair dice simultaneously. The casino pays you as many dollars as the 
number of dice that match your selection. If there is no match, you pay the casino only 
$1. Determine your long-run expected payoff.

14-31. Suppose that you throw 2 fair dice simultaneously. If there is a match, you receive 50 cents. 
Otherwise, you pay 10 cents. Determine the expected payoff of the game.
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14-32. Prove the formulas for the mean and variance of the binomial distribution.
*14-33. Customers arrive at a service facility according to a Poisson distribution at the rate of 

three per minute. What is the probability that at least one customer will arrive in any 
given 45-second interval?

14-34. The Poisson distribution with parameter l approximates the binomial distribution with 
parameters (n, p) when n S ∞ , p S 0, and np S l. Demonstrate this result for the 
situation where a manufactured lot is known to contain 1% defective items. If a sample 
of 10 items is taken from the lot, compute the probability of at most one defective 
item in a sample, first by using the (exact) binomial distribution and then by using the 
(approximate) Poisson distribution. Show that the approximation will not be acceptable 
if the value of p is increased to, say, 0.5.

*14-35. Customers arrive randomly at a checkout counter at the average rate of 10 per hour.
(a) Determine the probability that the counter is idle.

(b) What is the probability that at least one person is in line awaiting service?
14-36. Prove the formulas for the mean and variance of the Poisson distribution.

*14-37. Customers shopping at Walmark Store are both urban and suburban. Urban customers 
arrive at the rate of 5 per minute, and suburban customers arrive at the rate of 10 per 
minute. Arrivals are totally random. Determine the probability that the interarrival time 
for all customers is less than 8 seconds.

14-38. Prove the formulas for the mean and variance of the exponential distribution.
14-39. The college of engineering at U of A requires a minimum ACT score of 27. The test 

scores among high school seniors in a given school district are normally distributed with 
mean 23 and standard deviation 4.
(a) Determine the percentage of high school seniors who are potential engineering recruits.

(b) If U of A does not accept any student with an ACT score less than 17, what percent-
age of students will not be eligible for admission at U of A?

*14-40. The weights of individuals who seek a helicopter ride in an amusement park have a mean 
of 180 lb and a standard deviation of 15 lb. The helicopter can carry five persons but has a 
maximum weight capacity of 1000 lb. What is the probability that the helicopter will not 
take off with five persons aboard? (Hint: Apply the central limit theorem.)

14-41. The inside diameter of a cylinder is normally distributed with a mean of 1 cm and a 
standard deviation of .01 cm. A solid rod is assembled inside each cylinder. The diameter 
of the rod is also normally distributed with a mean of .99 cm and a standard deviation of 
.01 cm. Determine the percentage of rod–cylinder pairs that will not fit in an assembly. 
(Hint: The difference between two normal random variables is also normal.)

14-42. The following data represent the interarrival time (in minutes) at a service facility:

4.3 3.4 .9 .7 5.8 3.4 2.7 7.8
4.4 .8 4.4 1.9 3.4 3.1 5.1 1.4
.1 4.1 4.9 4.8 15.9 6.7 2.1 2.3

2.5 3.3 3.8 6.1 2.8 5.9 2.1 2.8
3.4 3.1 .4 2.7 .9 2.9 4.5 3.8
6.1 3.4 1.1 4.2 2.9 4.6 7.2 5.1
2.6 .9 4.9 2.4 4.1 5.1 11.5 2.6
.1 10.3 4.3 5.1 4.3 1.1 4.1 6.7

2.2 2.9 5.2 8.2 1.1 3.3 2.1 7.3
3.5 3.1 7.9 .9 5.1 6.2 5.8 1.4
.5 4.5 6.4 1.2 2.1 10.7 3.2 2.3

3.3 3.3 7.1 6.9 3.1 1.6 2.1 1.9
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(a) Use Excel to develop three histograms for the data based on bin widths of .5, 1, and 
1.5 minutes, respectively.

(b) Compare graphically the cumulative distribution of the empirical CDF and that of 
a corresponding exponential distribution.

(c) Test the hypothesis that the given sample is drawn from an exponential distribution. 
Use a 95% confidence level.

(d) Which of the three histograms is “best” for the purpose of testing the null hypothesis?
14-43. The following data represent the period (in seconds) needed to transmit a message.

25.8 67.3 35.2 36.4 58.7
47.9 94.8 61.3 59.3 93.4
17.8 34.7 56.4 22.1 48.1
48.2 35.8 65.3 30.1 72.5
5.8 70.9 88.9 76.4 17.3

77.4 66.1 23.9 23.8 36.8
5.6 36.4 93.5 36.4 76.7

89.3 39.2 78.7 51.9 63.6
89.5 58.6 12.8 28.6 82.7
38.7 71.3 21.1 35.9 29.2

Use Excel to construct a suitable histogram. Test the hypothesis that these data are 
drawn from a uniform distribution at a 95% confidence level, given the following 
 additional information about the theoretical uniform distribution:
(a) The range of the distribution is between 0 and 100.

(b) The range of the distribution is estimated from the sample data.

(c) The maximum limit on the range of the distribution is 100, but the minimum limit 
must be estimated from the sample data.

14-44. An automatic device is used to count the volume of traffic at a busy intersection. The 
arrival time is recorded and translated into an absolute time starting from zero. The 
following table provides the arrival times (in minutes) for the first 60 cars. Use Excel 
to construct a suitable histogram. Test the hypothesis that the interarrival time is 
exponential using a 95% confidence level.

Arrival
Arrival time 

(min) Arrival
Arrival time 

(min) Arrival
Arrival time 

(min) Arrival
Arrival time 

(min)

1 5.2 16 67.6 31 132.7 46 227.8
2 6.7 17 69.3 32 142.3 47 233.5
3 9.1 18 78.6 33 145.2 48 239.8
4 12.5 19 86.6 34 154.3 49 243.6
5 18.9 20 91.3 35 155.6 50 250.5
6 22.6 21 97.2 36 166.2 51 255.8
7 27.4 22 97.9 37 169.2 52 256.5
8 29.9 23 111.5 38 169.5 53 256.9
9 35.4 24 116.7 39 172.4 54 270.3

10 35.7 25 117.3 40 175.3 55 275.1
11 44.4 26 118.2 41 180.1 56 277.1
12 47.1 27 124.1 42 188.8 57 278.1
13 47.5 28 1127.4 43 201.2 58 283.6
14 49.7 29 127.6 44 218.4 59 299.8
15 67.1 30 127.8 45 219.9 60 300.0
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Chapter 15

Decision analysis and Games

Real-Life Application—Layout Planning of a Computer Integrated 
Manufacturing (CIM) Facility

The engineering college in an academic institution wants to establish a computer 
 integrated manufacturing (CIM) laboratory in a vacated building. The new lab will 
serve as a teaching and research facility and as industry center of technical excellence. 
Recommendations regarding the ideal and absolute minimum square footage for each 
unit are solicited and compiled from the faculty. The study uses both AHP (analytic 
hierarchy process) and goal programming to reach a satisfactory compromise solution 
that meets the goals for teaching, research, and service to industry. The details of the 
study are given in Case 10 in Chapter 26 on the website.

15.1 DeCIsIon MAkIng UnDeR CeRtAInty—AnALytIC HIeRARCHy 
PRoCess (AHP)

The LP models presented in Chapters 2 through 9 are examples of decision making 
under certainty (all the data are known with certainty). AHP is designed for situations 
in which ideas, feelings, and emotions affecting the decision process are quantified to 
provide a numeric scale for prioritizing the alternatives.

example 15.1-1 (overall Idea of AHP)

Martin Hans, a bright high school senior, has received full academic scholarships from three 
institutions: U of A, U of B, and U of C. Martin bases his choice on two criteria: location and 
academic reputation. To him, academic reputation is five times as important as location, and 
he assigns a weight of approximately 83% to reputation and 17% to location. He then uses a 
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systematic process (which will be detailed later) to rank the three universities from the stand-
point of location and reputation, as the following table shows:

Percent weight estimates for

Criterion U of A U of B U of C

Location 12.9 27.7 59.4
Reputation 54.5 27.3 18.2

The structure of the decision problem is summarized in Figure 15.1. The problem involves 
a single hierarchy (level) with two criteria (location and reputation) and three decision alterna-
tives (U of A, U of B, and U of C).

The ranking of each university is based on the following composite weights:

 U of A = .17 * .129 + .83 * .545 = .4743

 U of B = .17 * .277 + .83 * .273 = .2737

 U of C = .17 * .594 + .83 * .182 = .2520

Based on these calculations, Martin chooses U of A because it has the highest composite weight.

remarks. The general structure of AHP may include several hierarchies of crite-
ria. Suppose in Example 15.1-1 that Martin’s twin sister, Jane, was also accepted with 
full scholarship to the three universities. The parents insist that the two siblings at-
tend the same university. Figure 15.2 summarizes the decision problem, which now 
involves two hierarchies. The values p and q at the first hierarchy are the relative 
weights representing Martin’s and Jane’s opinions (presumably equal). The weights 
(p1, p2) and (q1, q2) at the second hierarchy, respectively, represent Martin’s and 

Select a
university

Location
(.17)

Hierarchy 1
criteria:

Decision:

Alternatives: U of B
(.277)

U of C
(.594)

U of A
(.129)

U of A U of B U of C

Reputation
(.83)

U of B
(.273)

U of C
(.182)

U of A
(.545)

.17 3 .129 1 .83 3 .545 5 .4743 .17 3 .277 1 .83 3 .273 5 .2737 .17 3 .594 1 .83 3 .182 5 .2520

FiGure 15.1 

Summary of AHP calculations for Example 15.1-1 
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Jane’s preferences regarding location and reputation of each university. The remain-
der of the decision-making chart can be interpreted similarly. Note that p + q = 1, 
 p1 + p2 = 1, q1 + q2 = 1, p11 + p12 + p13 = 1, p21 + p22 + p23 = 1, q11 + q12 + q13 = 1, and  
q21 + q22 + q23 = 1. The bottom of Figure 15.2 demonstrates how the U of A composite 
weight is computed.

Determination of the weights. The crux of AHP is the determination of the 
relative weights (such as those used in Example 15.1-1) to rank the alternatives. 
Assuming that we are dealing with n criteria at a given hierarchy, AHP establishes 
a pairwise n * n comparison matrix, a, that quantifies the decision maker’s judg-
ment of the relative importance of the criteria. The pairwise comparison is made 
such that the criterion in row i 1i = 1, 2, c, n2 is ranked relative to every other 
criterion. Letting aij define the element (i, j) of a, AHP uses a numeric scale from 
1 to 9 in which aij = 1 signifies that i and j are of equal importance, aij = 5 indi-
cates that i is strongly more important than j, and aij = 9 indicates that i is extremely 
more important than j. Other intermediate values between 1 and 9 are interpreted 
correspondingly. Consistency in judgment means that if aij = k, then aji = 1

k . Also, 
all the diagonal elements aii of a equal 1, because these elements rank each crite-
rion against itself.

Select a
university

Hierarchy 2
criteria:

Hierarchy 1
criteria:

Decision:

Alternatives:

U of A
(p11)

U of B
(p12)

U of A 5 p(p1 3 p11 1 p2 3 p21) 1 q(q1 3 q11 1 q2 3 q21)

U of C
(p13)

Location (p1)

U of A
(p21)

U of B
(p22)

U of C
(p23)

Reputation (p2)

Martin (p)

U of A
(q11)

U of B
(q12)

U of C
(q13)

Location (q1)

U of A
(q21)

U of B
(q22)

U of C
(q23)

Reputation (q2)

Jane (q)

FiGure 15.2 

Embellishment of the decision problem of Example 15.1-1 
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example 15.1-2 

To show how the comparison matrix a is determined for Martin’s decision problem of 
Example 15.1-1, we start with the top hierarchy dealing with the criteria of location (L) and 
reputation (R). In Martin’s judgment, R is strongly more important than L, and hence a21 = 5 
and, automatically, a12 = 1

5,  thus yielding the following comparison matrix:

a =
L
R
a

L R
1 1

5

5 1
b

The relative weights of R and L can be determined by normalizing a to create a new matrix 
N. The process requires dividing the individual elements of each column by the column sum. 
Thus, we divide the elements of columns 1 by 6 11 + 52 and those of column 2 by 1.2 1=  15 + 12. 
The desired relative weights, wR and wL, are then computed as row averages:

N =
L
R
a

L R
.17 .17
.83 .83

b 
Row averages

wL = .17 + .17
2 = .17

wR = .83 + .83
2 = .83

The computations yield wL = .17 and wR = .83, the weights we used in Figure 15.1. The 
columns of N are equal, an indication that the decision maker is exhibiting consistent judgment 
in specifying the entries of the comparison matrix a. Consistency is always guaranteed in 2 * 2 
comparison matrices but not in higher-order matrices (as we explain shortly).

Martin’s preferences regarding the relative importance of the three universities from the 
standpoint of the two criteria L and R are summarized in the following comparison matrices:

aL =
A
B
C
°

A B C
1 1

2
1
5

2 1 1
2

5 2 1
¢ , aR =

A
B
C
°

A B C
1 2 3
1
2 1 3

2
1
3

2
3 1

¢

Next, we have

aL@column sum = 18, 3.5, 1.72
aR@column sum = 11.83, 3.67, 5.52

The normalized matrices are determined by dividing each column-entry by its respective column- 
sum—namely,

NL =
A
B
C
°

A B C
.125 .143 .118
.250 .286 .294
.625 .571 .588

¢ 

Row averages    
wLA = .125 + .143 + .118

3 = .129
wLB = .250 + .286 + .294

3 = .277
wLC = .625 + .571 + .588

3 = .594

NR =
A
B
C
°

A B C
.545 .545 .545
.273 .273 .273
.182 .182 .182

¢ 

Row averages    
wLA = .545 + .545 + .545

3 = .545
wLB = .273 + .273 + .273

3 = .273
wLC = .182 + .182 + .182

3 = .182
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The values of (wLA, wLB, and wLC) (=  .129, .277, and .594) provide the respective location 
weights for U of A, U of B, and U of C, respectively. Similarly, the values of (wRA, wRB, and 
wRC) (=  .545, .273, .182) give the relative weights regarding academic reputation of the three 
universities. These are the values used in Figure 15.1.

Consistency of the comparison matrix. In Example 15.1-2, all the columns of the nor-
malized matrices N and NR are identical, and those of NL are not. This means that a 
and aR are consistent and aL is not.

Consistency implies rational judgment on the part of the decision maker. 
Mathematically, we say that a comparison matrix a is consistent if

aijajk = aik, for all i, j, and k

For example, in matrix aR of Example 15.1-2, a13 = 3 and a12a23 = 2 * 3
2 = 3. This 

property requires all the columns (and rows) of aR to be linearly dependent. In par-
ticular, the columns of any 2 * 2 comparison matrix, such as a, are by definition 
dependent, and hence a 2 * 2 matrix is always consistent.

It is unusual for higher-order comparison matrices to be always consistent, and 
a degree of inconsistency is expected. To decide what level of inconsistency is “toler-
able,” we need to develop a quantifiable measure of consistency for the comparison 
matrix a. We have seen in Example 15.1-2 that a consistent a produces a normalized 
matrix N in which all the columns are identical—that is,

N = § w1 w1 c w1

w2 w2 c w2

c c c c
wn wn c wn

¥
The original comparison matrix a can be determined from N by a reverse process that 
divides the elements of column i by wi —that is,

a = § 1 w1
w2 c w1

wn
w2
w1 1 c w2

wn

c c c c
wn
w1 

wn
w2 c 1

¥
Post-multiplying a by w = 1w1, w2, c, wn2T, we get§ 1 w1

w2 c w1
wn

w2
w1 1 c w2

wn

c c c c
wn
w1 

wn
w2 c 1

¥ § w1

w2

c
wn

¥ = §nw1

nw2

c
nwn

¥ = n§ w1

w2

c
wn

¥
Hence, a is consistent if,

aw = nw
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For the case where a is not consistent, the relative weight, wi, is approximated by 
the average of the n elements of row i in the normalized matrix N (see Example 15.1-2). 
Letting w be the vector of computed averages, it can be shown that

aw = nmaxw, nmax Ú n

In this case, the closer nmax is to n, the more consistent is the comparison matrix a. 
Based on this observation, AHP computes the consistency ratio as

CR =
CI
RI

where

 CI = Consistency index of a

 =
nmax - n

n - 1

 RI = Random consistency of a

 =
1.981n - 22

n
The random consistency index, RI, is determined empirically as the average CI of a 
large sample of randomly generated comparison matrices, a.

If CR … .1,  the level of inconsistency is acceptable. Otherwise, the inconsistency 
is high, and the decision maker may need to revise the estimates of the elements aij to 
realize better consistency.

The value of nmax is computed from aw = nmaxw by noting that the ith equation is

a
n

j = 1
aijwj = nmaxwi, i = 1, 2, c, n

Given a n
i = 1wi = 1, we get

a
n

i = 1
a a

n

j = 1
aijwjb = nmaxa

n

i = 1
wi = nmax 

This means that the value of nmax equals the sum of the elements of the column vec-
tor aw.

example 15.1-3 

In Example 15.1-2, the matrix aL is inconsistent because the columns of its NL are not identical. 
To test the consistency of NL, we start by computing nmax. From Example 15.1-2, we have

w1 = .129, w2 = .277, w3 = .594

Thus,

 aLw = £1 1
2 1

5

2 1 1
2

5 2 1
≥£ .129

.277

.594
≥ = £0.3863

0.8320
1.7930

≥
 nmax = .3863 + .8320 + 1.7930 = 3.0113
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Now, for n = 3,

 CI =
nmax - n

n - 1
=

3.0113 - 3
3 - 1

= .00565

 RI =
1.981n - 22

n
=

1.98 * 1
3

= .66

 CR =
CI
RI

=
.00565

.66
= .00856

Because CR 6 .1,  the level of inconsistency in aL is acceptable.

excel Moment

Template excelAHP.xls is driven by user input and can handle comparison matrices of size 8 * 8 
or less. Figure 15.3 demonstrates the application of the model to Example 15.1-2 (columns F:I and 
rows 10:13 are hidden to conserve space). The comparison matrices of the problem are entered 
one at a time in the (top) input data section of the spreadsheet. The order in which the compari-
son matrices are entered is unimportant, though it makes more sense to consider them in their 
natural hierarchal order.

The output (bottom) section of the spreadsheet provides the associated normalized matrix 
and its consistency ratio, CR.1 The weights, w, are copied from column J and pasted into the 
solution summary area (the right section of the spreadsheet). Remember to use Paste Special 
1  Values when performing this step to guarantee a permanent record. The process is repeated 

until all the weights for all the comparison matrices have been stored in the solution summary 
area starting at column K.

In Figure 15.3, the final ranking is given in cells (K18:K20). The formula in cell K18 is

= $L$4*$L7+ $L$5*$N7

1The more accurate results of the spreadsheet differ from those in Examples 15.1-2 and 15.1-3 because of 
manual roundoff approximation.

FiGure 15.3 

Excel solution of Example 15.1-2 (file excelAHP.xls)
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This formula provides the composite weight for alternative UA and is copied in cells K19 and 
K20 to evaluate alternatives UB and UC. Note from the formula in K18 that cell reference to the 
alternative UA must be column-fixed (namely, $L7 and $N7), whereas all other references must 
be row-and-column-fixed (namely, $L$4 and $L$5). The validity of the copied formulas requires 
stacking the (column-fixed) alternative weights of each matrix in a single column (no intervening 
empty cells). In Figure 15.3, the AR -weights are in column L and the AL-weights are in column N. 
There are no restrictions on the placement of the A-weights because they are row- and column-
fixed in the formula.

You can embellish the formula in K18 to capture the names of the alternatives by using

= $K7&"="&TEXT1$L$4*$L7+ $L$5*$N7,"#### 0.00000"2
The procedure for evaluating alternatives can be extended to any number of hierarchy  levels. 

Once you develop the formula correctly for the first alternative, the same formula is copied to 
the remaining cells. Remember that all cell references in the formula must be row-and-column-
fixed, except for references to the alternatives, which must be column-fixed only. Problem 15-2, 
asks you to develop the formula for a 3-level problem.

15.2 DeCIsIon MAkIng UnDeR RIsk

Under conditions of risk, the payoffs associated with each decision alternative are rep-
resented by probability distributions, and decision can be based on the expected value 
criterion—maximization of expected profit or the minimization of expected cost. The 
expected value criterion is sometimes modified to account for other situations, as will 
be described later in this section.

Real-Life Application—Booking Limits in Hotel Reservations

Hotel La Posada has a total of 300 guest rooms. Its clientele includes both business 
and leisure travelers. Room prices are discounted, mainly to leisure travelers. Business 
travelers, who usually are late in booking their rooms, pay full price. La Posada sets a 
booking limit on the number of discount rooms to take advantage of the full price paid 
by business customers. The case study at the end of this chapter utilizes decision tree 
analysis to determine the booking limits.

15.2.1 Decision tree–Based expected Value Criterion

The expected value criterion seeks the maximization of expected (average) profit or 
the minimization of expected cost. The data of the problem assumes that the payoff (or 
cost) associated with each decision alternative is probabilistic.

Decision tree analysis. The following example considers simple decision situations 
with a finite number of decision alternatives and explicit payoff matrices.

example 15.2-1 

Suppose that you want to invest $10,000 in the stock market by buying shares in one of two com-
panies: A and B. Shares in Company A, though risky, could yield a 50% return during the next 
year. If the stock market conditions are not favorable (i.e., a “bear” market), the stock may lose 
20% of its value. Company B provides safe investments with a 15% return in a “bull” market 
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and only 5% in a “bear” market. All the publications you have consulted (and there is always a 
flood of them at the end of the year!) are predicting a 60% chance for a “bull” market and 40% 
chance for a “bear” market. How should you invest your money?

The decision problem is summarized in the following table:

1-year return on $10,000 investment

Decision alternative “Bull” market ($) “Bear” market ($)

Company A stock 5000 -2000 
Company B stock 1500    500
Probability of occurrence .6 .4

The problem can also be represented as a decision tree as shown in Figure 15.4. Two types of 
nodes are used in the tree: A square (n) represents a decision point, and a circle (~) represents 
a chance event. Thus, the two branches from decision point 1 represent the two alternatives of 
investing in stock A or stock B. Next, the two branches emanating from chance events 2 and 3 
represent the “bull” and the “bear” markets with their respective probabilities and payoffs.

From Figure 15.4, the expected 1-year returns are

 Stock A = $5000 * .6 + 1-20002 * .4 = $2200

 Stock B = $1500 * .6 + $500 * .4 = $1100

Stock A is chosen because it yields a higher expected return.

remarks. In the terminology of decision theory, the probabilistic “bull” and the 
“bear” markets are called states of nature. In general, a decision problem may include n 
states of nature and m alternatives. If pj17  02 is the probability of occurrence for state 
j and aij is the payoff of alternative i, given state j 1i = 1, 2, c, m; j = 1, 2, c, n2,  
then the expected payoff for alternative i is computed as

EVi = ai1 p1 + ai2 p2 + c + ain pn, i = 1, 2, c, n

p1 + p2 + c + pn = 1

The best alternative corresponds to maxi 5EVi6 and mini5EVi6 for the cases of profit 
and loss, respectively.

“Bull” market (.6)

“Bear” market (.4)

Invest in stock A
2

“Bull” market (.6)

“Bear” market (.4)

$5000

2$2000

$1500

$500

Invest in stock B
3

1

FiGure 15.4 

Decision-tree representation 
of the stock market problem



576   Chapter 15    Decision Analysis and Games

15.2.2 Variants of the expected Value Criterion

This section addresses two issues relating to the expected value criterion: the determi-
nation of posterior probabilities based on experimentation and the use of utility versus 
actual value of money.

posterior (Bayes’) probabilities. The probabilities used in the expected value crite-
rion are usually estimated from historical data (see Section 14.5). In some cases, the 
accuracy of these estimates can be enhanced by using additional experimentation. The 
resulting probabilities are referred to as posterior (or Bayes’) probabilities, as opposed 
to the prior probabilities determined from raw data.

Real-Life Application—Casey’s Problem: Interpreting and evaluating  
a new test

A screening test of a newborn, named Casey, reveals a C14:1 enzyme deficiency. The 
enzyme is required to digest a particular form of long-chain fats, and its absence could 
lead to severe illness or mysterious death (broadly categorized under the sudden infant 
death syndrome or SIDS). The test had been administered previously to approximately 
13,000 newborns, and Casey was the first to test positive. Though the screening test does 
not in itself constitute a definitive diagnosis, the extreme rarity of the condition led her 
doctors to conclude that there was an 80 to 90% chance that she was suffering from 
this deficiency. Given that Casey tested positive, Bayes’ posterior probability is used 
to assess whether or not the child has the C14:1 deficiency. The situation is detailed in 
Case 11 in Chapter 26, on the website.

example 15.2-2 

This example demonstrates how the expected-value criterion is modified to take advantage of 
posterior probabilities. In Example 15.2-1, the (prior) probabilities of .6 and .4 of a “bull” and 
a “bear” market are determined from available financial publications. Suppose that rather than 
relying solely on these publications, you have decided to conduct a more “personal” investiga-
tion by consulting a friend who has done well in the stock market. The friend quantifies a “for/
against” investment recommendation in the following manner: In a “bull” market, there is a 
90% chance the recommendation is “for.” It drops to 50% in a “bear” market. How does the 
additional information affect the decision?

The friend’s statement provides conditional probabilities of the recommendations “for” and 
“against” given that the states of nature are “bull” and “bear” markets. Define

 v1 = “For” vote  

 v2 = “Against” vote 

 m1 = “Bull” market  

 m2 = “Bear” market 

Thus, the friend’s statement may be written in the form of probability statements as

P5v1 0  m16 = .9, P5v2 0  m16 = .1

P5v1 0  m26 = .5, P5v2 0  m26 = .5
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With this representation, the decision problem is summarized as:

1. If the friend’s recommendation is “for,” would you invest in stock A or in stock B?
2. If the friend’s recommendation is “against,” would you invest in stock A or in stock B?

The decision tree in Figure 15.5 represents the problem. Node 1 is a chance event represent-
ing the “for” and “against” possibilities. Nodes 2 and 3 are decision points for choosing between 
stocks A and B, given the “for” and “against” recommendations, respectively. Finally, nodes 4 to 
7 are chance events representing the “bull” and “bear” markets.

To evaluate the different alternatives in Figure 15.5, it is necessary to compute the posterior 
probabilities P5mi 0 vj6 shown on the m1- and m2-branches of nodes 4, 5, 6, and 7. These pos-
terior probabilities take into account the additional information provided by the friend’s “for/
against” recommendation and are computed according to the following general steps:

Step 1. Summarize the conditional probabilities P5vj 0mi6 in the following tabular form:

v1 v2

m1 .9 .1

m2 .5 .5

“Bull” market (m1)

“Bear” market (m2)

“Bull” market (m1)

“Bear” market (m2)

Stock A
4

$5000

–$2000

$1500

$500

Stock B
5

2

“Bull” market (m1)

“Bear” market (m2)

“Bull” market (m1)

“Bear” market (m2)

Stock A
6

$5000

–$2000

$1500

$500

Stock B
7

1

3

“For” vote (y1)

“Against” vote (y2)

P  m1|y1   5 .730

P  m2|y1   5 .270

P  m1|y1   5 .730

P  m2|y1   5 .270

P  m1|y2   5 .231

P  m2|y2   5 .769

P  m1|y2   5 .231

P  m2|y2   5 .769

FiGure 15.5 

Decision tree for the stock market problem with posterior probabilities
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Step 2. Compute the joint probabilities as

P5mi, vj6 = P5vj 0mi6P5mi6, for all i and j

Given the prior probabilities P5m16 = .6 and P5m26 = .4, the joint probabilities are 
determined by multiplying the first and the second rows of the table in step 1 by .6 and 
.4, respectively—that is,

v1 v2

m1 .54 .06

m2 .20 .20

The sum of all the entries in the table equals 1.
Step 3. Compute the absolute probabilities as

P5vj6 = a
all i

P5mi, vj6, for all j

These probabilities are the column sums in the table in step 2—that is,

P{v1} P{v2}

.74 .26

Step 4. Determine the desired posterior probabilities as

Pemi ` vj f =
P5mi, vj6

P5vj6

These probabilities are computed by dividing each column in the table of step 2 by the 
corresponding column sum in the table of step 3, which yields

v1 v2

m1 .730 .231

m2 .270 .769

These are the probabilities used in Figure 15.5 and are different from the prior prob-
abilities P5m16 = .6 and P5m26 = .4.

We are now ready to evaluate the alternatives based on the expected payoffs for 
nodes 4, 5, 6, and 7—that is,

“For” Recommendation

Stock A at node 4 = 5000 * .730 + 1-20002 * .270 * = $3110 

Stock B at node 5 = 1500 * .730 + 500 * .270 = 1230 

Decision. Invest in stock A.
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“Against” Recommendation

Stock A at node 6 = 5000 * .231 + 1-20002 * .769 = - $383 

Stock B at node 7 = 1500 * .231 + 500 * .769 = $731 

Decision. Invest in stock B.

The given decisions are equivalent to saying that the expected payoffs at decision nodes 2 
and 3 are $3110 and $731, respectively (see Figure 15.5). Thus, given the probabilities P5v16 = .74 
and P5v26 = .26 as computed in step 3, we can compute the expected payoff for the entire deci-
sion tree. (See Problem 15-30.)

excel Moment

Excel file excelBayes.xls is designed to determine the posterior probabilities for prior probability 
matrices of sizes up to 10 * 10 (some rows and columns have been hidden to conserve space). 
The input data include P5m6 and P5v � m6. The spreadsheet checks input data errors and dis-
plays appropriate error messages.

Aha! Moment: An eighteenth-Century Lottery that yields Infinite expected 
 Payoff, or Does It?

In the early eighteenth century, Swiss mathematician Nicolas Bernoulli introduced a paradoxical  
theoretical lottery game with an expected payoff of infinity. The paradox arises because the game 
sets no limit on the amount of money a player can win. The game was published by Nicolas’ 
brother, Daniel, in 1738 in the St. Petersburg Academy Proceedings and became known as the 
 petersburg paradox. The rules of the game are simple: Toss a fair coin. If the outcome is heads (H), 
the game continues; otherwise, the game ends at the first occurrence of tails (T). Starting with $2 
for the first H, the payoff doubles with the occurrence of each successive H, yielding the monetary 
stream $2, $4, $8, $16, . . . The probability that an H will recur in toss n is 11

22n - 111
22 = 1 1

2n2. Thus, 
assuming the game is played indefinitely,

Expected payoff = a
∞

n = 1
2n1 1

2n2 = 1 + 1 + 1 + c = ∞

If the infinite expected payoff is the “fair” value of the game, then, theoretically, a player should 
accept any price for playing the game, a paradoxical outcome particularly when a rational deci-
sion maker realizes that a low payoff is probable (e.g., there is a 50-50 chance of winning $2) and 
a high payoff is unlikely [e.g., the probability of winning the (by-comparison) modest amount of 
$10241=  2102 is less than .001].

The paradox was resolved by Daniel Bernoulli2 by introducing the concepts of utility func-
tions and risk aversion to replace monetary amounts in the expected value computations, as the 
remainder of this section explains.

2http://www.econ.ucsb.edu/~tedb/Courses/GraduateTheoryUCSB/Bernoulli.pdf, accessed 06-14-2015. Bernoulli 
acknowledged that ten years earlier his Swiss colleague Gabriel Cramer independently came very close to re-
solving the paradox.
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Utility functions. In the preceding presentation, the expected value criterion is ap-
plied to situations where the payoff is real money. There are cases where the utility 
rather than the real value should be used in the analysis. To illustrate this point, sup-
pose there is a 50-50 chance that a $20,000 investment will produce a profit of $40,000 
or be lost. The associated expected profit is 40,000 * .5 - 20,000 * .5 = $10,000. 
Although there is a net expected profit, different individuals vary in interpreting the 
result. An investor who is willing to accept risk may undertake the investment for a 
50% chance to make a $40,000 profit. Conversely, a conservative investor may not be 
willing to risk losing $20,000. The concept of utility function is devised to reflect these 
differences. The utility function then takes the place of real money in the decision-
making model.

How is the subjective attitude toward risk quantified in the form of a utility 
function? In the preceding investment illustration, the best payoff is $40,000, and 
the worst is - $20, 000. We can establish a utility scale, U, from 0 to 100 that speci-
fies U1- $20,0002 = 0 and U1$40,0002 = 100. The value of U for investment re-
turn between - $20, 000 and $40,000 can be determined in the following manner: If 
the decision maker is neutral (indifferent) toward risk, then U can be represented 
by a straight line joining 10, - $20,0002 and (100, $40,000). In this case, both real 
money and its utility lead to the same decisions. More generally, the function U can 
take other forms reflecting different attitudes toward risk. Figure 15.6 illustrates the 
cases of individuals X, Y, and Z. Individual Y is risk neutral, individual X is risk 
averse (or cautious), and individual Z, the opposite of X, is a risk seeker. The figure 
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Utility functions for risk averse (X), neutral (Y), and risk seeker (Z) decision makers
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demonstrates that for the risk-averse X, the drop in utility bc corresponding to a loss 
of $10,000 is larger than the increase ab associated with a gain of $10,000. The op-
posite is true for risk seeker Z where de 7 ef. In general, an individual can be both 
risk averse and risk seeking, in which case the associated utility curve will follow an 
elongated S-shape.

Utility curves similar to the ones demonstrated in Figure 15.6 are determined by 
“quantifying” the decision maker’s attitude toward risk for different levels of cash money. 
In our example, the desired range is (- $20,000 to $40,000) with U1- $20,0002 = 0 
and U1$40,0002 = 100. To specify the values of U for intermediate cash values (e.g., 
- $10,000, $0, $10,000, $20,000, and $30,000), we establish a lottery for a cash amount x 
whose expected utility is

 U1x2 = pU1-20,0002 + 11 - p2U1$40,0002, 0 … p … 1

 = 0p + 10011 - p2
 = 100 - 100p

To determine U(x), the decision maker must state a preference between a guar-
anteed cash amount x and the chance to play a lottery for which there is a loss of 
- $20,000 with probability p and a profit of $40,000 with probability 1 - p. The value 
of p reflects the decision maker’s neutrality (or indifference) toward risk. For example, 
for x = $20,000, the decision maker may feel that a guaranteed $20,000 cash and the 
lottery with p = .8 are equally attractive. In this case, we can compute the utility of 
x = $20,000 as

U1$20,0002 = 100 - 100 * .8 = 20

Note that higher values of p for the same lottery reflect risk seeking (as opposed to risk 
aversion). For example, for p = .1,

U1$20,0002 = 100 - 100 * .2 = 80

15.3 DeCIsIon UnDeR UnCeRtAInty

Decision making under uncertainty, as under risk, involves alternative actions whose 
payoffs depend on the (random) states of nature. Specifically, the payoff matrix of a de-
cision problem with m alternative actions and n states of nature can be represented as

s1 s2 c sn 

a1 v1a1, s12 v1a1, s22 c v1a1, sn2
a2 v1a2, s12 v1a2, s22 c v1a2, sn2
f f f f f 

am v1am, s12 v1am, s22 c v1am, sn2

The element ai represents action i and the element sj represents state of nature j. The 
payoff or outcome associated with action ai and state sj is v(ai, sj).
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In decision making under uncertainty, the probability distribution associated with 
the states sj, j = 1, 2, c, n, is either unknown or cannot be determined. This lack of 
information has led to the development of special decision criteria:

1. Laplace
2. Minimax
3. Savage
4. Hurwicz

These criteria differ in how conservative the decision maker is in the face of uncertainty.
The Laplace criterion is based on the principle of insufficient reason. Because the 

probability distributions are not known, there is no reason to believe that the probabil-
ities associated with the states of nature are different. The alternatives are thus evalu-
ated using the liberal assumption that all states are equally likely to occur—that is, 
P5s16 = P5s26 = c = P5sn6 = 1

n. Given that the payoff v(ai, sj) represents gain, 
the best alternative is the one that yields

 max
ai

 e 1
n

 a
n

j = 1
v1ai, sj2 f

The maximin (minimax) criterion is based on the conservative attitude of making 
the best of the worst-possible conditions. If v(ai, sj) is loss, then we select the action 
that corresponds to the following minimax criterion:

min
ai

emax 
sj

v1ai, sj2 f

If v(ai, sj) is gain, we use the maximin criterion given by

max
ai

emin
Sj

 v1ai, sj2 f

The Savage regret criterion aims at “moderating” the degree of conservatism in 
the minimax (maximin) criterion by replacing the (gain or loss) payoff matrix v(ai, sj) 
with a loss (or regret) matrix, r(ai, sj), by using the following transformation:

r1ai, sj2 = µ
v1ai, sj2 - min

ak

5v1ak, sj26,  if v is loss

max
ak

5v1ak, sj26 - v1ai, sj2,  if v is gain

To show why the Savage criterion moderates the minimax (maximin) criterion, 
consider the following loss matrix:

v1ai, sj2 =
a1

a2
 
    

s1     
s2  

Row max

$11,000 $90  $11,000
$10,000 $10,000  $10,000 d Minimax
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The application of the minimax criterion shows that a2, with a definite loss of $10,000, 
is the preferred alternative. However, it may be better to choose a1 because there is a 
chance of limiting the loss to $90 only if s2 occurs. This happens to be the case when the 
regret matrix is used:

r1ai, vj2 =
a1

a2
 

s1   
s2  

Row max

$1,000 $0 $1,000 d Minimax
$0 $9,910 $9,910

The last criterion, hurwicz, is designed to represent different decision-making 
attitudes, ranging from the most liberal (optimistic) to the most conservative (pessi-
mistic). Define 0 … a … 1. The selected action must be associated with

max
ai  

ea max
sj

 v1ai, sj2 + 11 - a2min
sj

 v1ai, sj2 f , if v is gain

min
ai

ea min
sj

 v1ai, sj2 + 11 - a2max
sj

 v1ai, sj2 f , if v is loss

The parameter a is the index of optimism. If a = 0, then the criterion reduces to con-
servative minimax criterion, seeking the best of the worst conditions. If a = 1, then the 
criterion is liberal because it seeks the best of the best conditions. The degree of opti-
mism (or pessimism) can be adjusted by selecting a value of a between 0 and 1. In the 
absence of strong feeling regarding extreme optimism and extreme pessimism, a = .5 
may be a fair choice.

example 15.3-1 

National Outdoors School (NOS) is preparing a summer campsite in the heart of Alaska to 
train individuals in wilderness survival. NOS estimates that attendance can fall into one of four 
categories: 200, 250, 300, and 350 persons. The cost of the campsite will be the smallest when its 
size meets the demand exactly. Deviations above or below the ideal demand levels incur addi-
tional costs resulting from constructing more capacity than needed or losing income opportuni-
ties when the demand is not met. Letting a1 to a4 represent the sizes of the campsites (200, 250, 
300, and 350 persons) and s1 to s4 the level of attendance, the following table summarizes the 
cost matrix (in thousands of dollars) for the situation:

s1 s2 s3 s4

a1  5 10 18 25

a2  8  7 12 23

a3 21 18 12 21

a4 30 22 19 15

The problem is analyzed using all four criteria.



584   Chapter 15    Decision Analysis and Games

Laplace. Given P5sj6 = 1
4, j = 1 to 4, the expected values for the different actions are computed as

 E5a16 =
1
4
15 + 10 + 18 + 252 = $14,500

 E5a26 =
1
4
18 + 7 + 12 + 232 = $12,500 d Optimum

 E5a36 =
1
4
121 + 18 + 12 + 212 = $18,000

 E5a46 =
1
4
130 + 22 + 19 + 152 = $21,500

Minimax. The minimax criterion produces the following matrix:

s1 s2 s3 s4 Row max

a1  5 10 18 25 25

a2  8  7 12 23 23

a3 21 18 12 21 21 d Minimax 

a4 30 22 19 15 30

Savage. The regret matrix is determined by subtracting 5, 7, 12, and 15 from columns 1 to 4, 
respectively. Thus,

s1 s2 s3 s4 Row max

a1  0  3 6 10 10

a2  3  0 0  8  8 d Minimax 

a3 16 11 0  6 16

a4 25 15 7  0 25

hurwicz. The following table summarizes the computations:

Alternative Row min Row max a1Row min2 + 11 - a21Row max2 

a1  5 25 25-20a 
a2  7 23 23-16a 
a3 12 21 21- 9a 
a4 15 30 30-15a 

Using an appropriate a, we can determine the optimum alternative. For example, at a = .5, 
either a1 or a2 is the optimum, and at a = .25, a3 is the optimum.

excel Moment

Template excelUncertainty.xls can be used to automate the computations of Laplace, maximin, 
Savage, and Hurwicz criteria. The spreadsheet is based on the use of a cost matrix. To use a reward 
matrix, all entries must be multiplied by -1. The maximum matrix size is 110 * 102. 
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15.4 gAMe tHeoRy

Game theory deals with decision situations in which two intelligent opponents with 
 conflicting objectives are vying to outdo one another. Typical examples include 
launching advertising campaigns for competing products and planning strategies for 
war battles.

In a conflict, each of two players (opponents) has a (finite or infinite) number 
of alternatives or strategies. Associated with each pair of strategies is the payoff one 
player receives from the other. Such a situation is known as a two-person zero-sum 
game, because a gain by one player is an equal loss by the other. This means that we 
can represent the game in terms of the payoff to one player. Designating the two play-
ers as A and B with m and n strategies, respectively, the game is usually presented in 
terms of the payoff matrix to player A as

B1   B2    c  Bn

A1

A2

f

Am

 

a11 a12 c a1m

a21 a22 c a2m

f f f f

am1 am1 c amn

The representation indicates that if A uses strategy i and B uses strategy j, the payoff to 
A is aij, and the payoff to B is -aij.

Real-Life Application—ordering golfers on the Final Day of Ryder Cup Matches

On the final day of a golf tournament, two teams compete for the championship. 
Each team captain must submit a slate (an ordered list of golfers) that determines the 
matches. For two competing players occupying the same order in their respective slates, 
it is plausible to assume that there is 50-50 chance that either golfer will win the match. 
The  win-probability increases for a higher-order golfer when matched with a lower-
order player. The goal is to develop an analytical procedure that will support or refute 
the idea of using slates. Case 12, Chapter 26 on the website details the study based on 
game theory.

15.4.1 optimal solution of two-Person Zero-sum games

Because games involve a conflict of interest, the basis for the selection of optimal strat-
egies guarantees that neither player is tempted to seek a different strategy because a 
worse payoff will ensue. These solutions can be in the form of a single pure strategy or 
several strategies mixed randomly.

example 15.4-1 

Two companies, A and B, sell two brands of flu medicine. Company A advertises in radio (A1), 
television (A2), and newspapers (A3). Company B, in addition to using radio (B1), television (B2), 
and newspapers (B3), also mails brochures (B4). Depending on the effectiveness of each advertising 
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campaign, one company can capture a portion of the market from the other. The following matrix 
summarizes the percentage of the market captured or lost by company A:

B1 B2 B3 B4 Row min

A1   8 -2 9 -3 -3 

A2   6 5 6 8 5 d Maximin 

A3 -2 4 -9 5 -9 

Column max   8 5 9 8
c

Minimax
 

The solution of the game is based on the principle of securing the best of the worst for each 
player. If Company A selects strategy A1, then regardless of what B does, the worst that can happen is 
that A loses 3% of the market share to B. This is represented by the minimum value of the entries in 
row 1. Similarly, with strategy A2, the worst outcome is for A to capture 5% from B, and for strategy 
A3, the worst outcome is for A to lose 9% to B. These results are listed under row min. To achieve 
the best of the worst, Company A chooses strategy A2 because it corresponds to the maximin value.

Next, for Company B, the given payoff matrix is for A and B’s best of the worst solution is 
based on the minimax value. The result is that Company B will select strategy B2.

The optimal solution of the game calls for selecting strategies A2 and B2, which means that 
both companies should use television advertising. The payoff will be in favor of company A, be-
cause its market share will increase by 5%. In this case, we say that the value of the game is 5% 
and that A and B are using a pure saddle-point solution.

The saddle-point solution precludes the selection of a better strategy by either company. 
If B moves to another strategy (B1, B3, or B4), Company A can stay with strategy A2, ensuring 
worse loss for B (6% or 8%). By the same token, A would not seek a different strategy because 
B can change to B3 to realize a 9% market gain if A1 is used and 3% if A3 is used.

The optimal saddle-point solution of a game need not be a pure strategy. Instead, 
the solution may require mixing two or more strategies randomly, as the following 
 example illustrates.

example 15.4-2 

Two players, A and B, play the coin-tossing game. Each player, unbeknownst to the other, 
chooses a head (H) or a tail (T). Both players would reveal their choices simultaneously. If they 
match (HH or TT), player A receives $1 from B. Otherwise, A pays B $1.

The following payoff matrix for player A gives the row-min and the column-max values cor-
responding to A’s and B’s strategies, respectively:

BH BT Row min

AH   1 -1 -1 

AT -1   1 -1 

Column max   1   1

The maximin and the minimax values of the games are - $1 and $1, respectively, and the 
game does not have a pure strategy solution because the two values are not equal. Specifically, 
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if player A selects AH, player B can select BT to receive $1 from A. If this happens, A can 
move to strategy AT to reverse the outcome by receiving $1 from B. The constant temptation 
to switch to another strategy shows that a pure strategy solution is not acceptable. What is 
needed in this case is for both players to randomly mix their respective pure strategies. The 
optimal value of the game will then occur somewhere between the maximin and the minimax 
values of the game—that is,

maximin 1lower2 value … value of the game … minimax 1upper2 value

In the coin-tossing example, the value of the game must lie between - $1 and +  $1 (see Problem 
15-45).

15.4.2 solution of Mixed strategy games

Games with mixed strategies can be solved either graphically or by linear programming. 
The graphical solution is suitable for games with exactly two pure strategies for one or 
both players. Linear programming, on the hand, can solve any two-person zero-sum game. 
The graphical method is interesting because it explains the idea of a saddle point pictorially.

Graphical solution of games. We start with the case of 12 * n2 games in which player 
A has two strategies, A1 and A2.

x1: A1

1 - x1: A2

  

y1 y2 c yn

B1 B2 c Bn

a11 a12 c a1m

a21 a22 c a2m

Player A mixes strategies A1 and A2 with probabilities x1 and 1 - x1, 0 … x1 … 1. 
Player B mixes strategies B1, B2, …, and Bn with probabilities y1, y2, c,  and yn, yj Ú 0 
for j = 1, 2, c, n,  and y1 + y2 + c + yn = 1. In this case, A’s expected payoff 
corresponding to B’s jth pure strategy is

1a1j - a2j2x1 + a2j, j = 1, 2, c, n

Player A seeks the value of x1 that maximizes the minimum expected payoffs—that is,

max
xi

 min
j
51a1j - a2j2x1 + a2j6 

example 15.4-3 

Consider the following 2 * 4 game. The payoff is for player A.

B1 B2 B3 B4

A1 2 2 3 -1 
A2 4 3 2 6

The game has no pure strategy solution because the maximin and minimax values are not 
equal (verify!). A’s expected payoffs corresponding to B’s pure strategies are given as
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B’s pure strategy A’s expected payoff

1 -2x1 + 4 
2 -x1 + 3 
3 x1 + 2 
4 -7x1 + 6 

Figure 15.7 provides TORA plot of the four straight lines associated with B’s pure strategies 
(file toraEx15.4-3.txt).3 To determine the best of the worst solution, the lower envelope of the four 
lines (delineated by vertical stripes) represents the minimum (worst) expected payoff for A regard-
less of B’s choices. The maximum (best) of the lower envelope corresponds to the maximin solution 
point at x1

* = .5. This point is the intersection of the lines associated with strategies B3 and B4. 

3From Main Menu, select Zero@sum Games and enter the problem data, then select Graphical  from the 
SOLVE>MODIFY menu.

FiGure 15.7 

TORA graphical solution of the two-person zero-sum game of Example 15.4-3 (file toraEx15.4-3.txt)
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Player A’s optimal solution thus calls for 50-50 mix of A1 and A2. The corresponding value of the 
game, v, is determined by substituting x1 = .5 in the function of either line 3 or line 4, which gives

v = e  1
2 + 2 = 5

2, from line 3
-711

22 + 6 = 5
2, from line 4

Player B’s optimal mix is determined by the two strategies that define the lower envelope 
of the graph. This means that B can mix strategies B3 and B4, in which case y1 = y2 = 0 and 
y4 = 1 - y3. As a result, B’s expected payoffs corresponding to A’s pure strategies are

A’s pure strategy B’s expected payoff

1 4y3 - 1 
2 -4y3 + 6 

The best of the worst solution for B is the minimum point on the upper envelope of the given 
two lines (you will find it instructive to graph the two lines and identify the upper envelope). This 
process is equivalent to solving the equation

4y3 - 1 = -4y3 + 6

The solution gives y3 = 7
8, which yields the value of the game as v = 4 * 17

82 - 1 = 5
2. 

The solution of the game calls for player A to mix A1 and A2 with equal probabilities and for 
player B to mix B3 and B4 with probabilities 78 and 18 (Actually, the game has alternative solutions 
for B, because the maximin point in Figure 15.7 is determined by more than two lines. Any non-
negative combination of these alternative solutions is also a legitimate solution.)

remarks. Games in which player A has m strategies and player B has only two can 
be treated similarly. The main difference is that we will be plotting B’s expected payoff 
corresponding to A’s pure strategies. As a result, we will be seeking the minimax, rather 
than the maximin, point of the upper envelope of the plotted lines. However, to solve the 
problem with TORA, it is necessary to express the payoff in terms of the player that has 
two strategies, multiplying the payoff matrix by -1.

Aha! Moment: Cooperation should Be the name of the game!

In a two-person zero-sum game, the gain of one player is an equal loss to the opponent. A 
different noncooperative game involving N1Ú22 players was developed in 1951 by American 
mathematician John Nash.4 The goal is to maximize each player’s payoff given that the strate-
gies of the remaining N - 1 players are held fixed. Each player’s strategy is optimal against 
those of the others. An example of the noncooperative game is the well-known prisoner’s 
Dilemma, where two suspects are held incommunicado in prison pending trial. The maximum 
sentence for the crime is 5 years. Each prisoner has two possible interrogation strategies: re-
main silent or testify against the other prisoner. If both remain silent, they each get 1-year jail 
sentence for lack of evidence, If both simultaneously testify against one another, each gets  
3 years, but if one remains silent and the other testifies, the silent prisoner gets the maximum 
sentence and the other is set free. The following matrix summarizes the game where the payoff 
1reward2 = 5 - jail sentence:

4See, Nash, J., “Non-Cooperative Games,” The Annals of Mathematics, Vol. 54, No. 2, pp. 286–295, 1951.
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Prisoner B
(Underlined elements give the  

payoffs to Prisoner B.)

Be silent Testify

Prisoner A
Be silent 4, 4 0, 5
Testify 5, 0 2, 2

The optimum strategy of the game calls for A and B to testify against one another (result-
ing in a 3-year jail sentence—2-year reward for each) because neither player is tempted to select 
another strategy without getting a worse deal eventually (convince yourself that this is the case 
by tracking changes of strategy). The pure “Testify” strategy is called Nash equilibrium and it is, 
in a way, the equivalent of the saddle point in the two-person zero-sum game. If the game has no 
optimal pure strategy, Nash equilibrium is replaced with a probability-weighted mixed strategy. 
Interestingly, if cooperation between the two players is allowed, both will benefit by choosing to be 
silent (1-year jail sentence).

The arms race between superpowers can be modeled as a prisoner’s dilemma game with 
resulting mutual benefits if all parties choose to cooperate [as exemplified by the likes of the 1968 
Nuclear Nonproliferation Treaty (NPT) principally between the United States and the former So-
viet Union]. Other possible applications occur between competing manufacturers, among others.

As an end note, John Nash (1928–2015) shared the 1994 Nobel Prize in Economics for 
his contribution in noncooperative games. His work in mathematics and his severe bouts with 
schizophrenia when he was only in his 30s inspired the 2001 American film A Beautiful Mind.

Linear programming solution of games. Game theory bears a strong relationship to 
linear programming, in the sense that any two-person zero-sum game can be expressed 
as a linear program, and vice versa. In fact, G. Dantzig (1963, p. 24) states that J. von 
Neumann, father of game theory, when first introduced to the simplex method in 1947, 
immediately recognized this relationship and further pinpointed and stressed the con-
cept of duality in linear programming. This section explains how games are solved by 
linear programming.

Player A’s optimal probabilities, x1, x2, c, and  xm, can be determined by solving 
the following maximin problem:

max
xi

 •minaa
m

i = l
ai1xi, a

m

i = 1
ai2xi, c, a

m

i = 1
ainxib ¶

x1 + x2 +  g + xm = 1

xi Ú 0, i = 1, 2, c, m

Let

v =  mine a
m

i = 1
ai1xi, a

m

i = 1
ai2xi, c, a

m

i = 1
ainxi f

The equation implies that

a
m

i = 1
aijxi Ú v, j = 1, 2, c, n
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Player A’s problem thus can be written as

Maximize z = v

subject to

 v - a
m

i = 1
aijxi … 0, j = 1, 2, c, n

  x1 + x2 + g + xm = 1

 xi Ú 0, i = 1, 2, c, m

v unrestricted

Note that the value of the game, v, is unrestricted in sign.
Player B’s optimal strategies, y1, y2, c,  and yn, are determined by solving the 

problem

 min
yj

 •maxa a
n

j = 1
a1jyj, a

n

j = 1
a2jyj, c, a

n

j = 1
amjyjb ¶

 y1 + y2 + g + yn = 1

 yj Ú 0, j = 1, 2, c, n

Using a procedure similar to that of player A, B’s problem reduces to

Minimize w = v

subject to

v - a
n

j = 1
aijyj Ú 0, i = 1, 2, c, m

 y1 + y2 + g + yn = 1

 yj Ú 0, j = 1, 2, c, n

 v unrestricted 

The two problems optimize the same (unrestricted) variable v, the value of the 
game. The reason is that B’s problem is the dual of A’s problem (verify this claim using 
the definition of duality in Chapter 4). This means that the optimal solution of one 
problem automatically yields the optimal solution of the other.

example 15.4-4 

Solve the following game by linear programming. The value of the game, v, lies between -2 and 2.

B1 B2 B3 Row min

A1   3 -1 -3 -3 

A2 -2   4 -1 -2 

A3 -5 -6   2 -6 

Column max   3   4   2
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player a’s linear program

Maximize z = v

subject to

v - 3x1 + 2x2 + 5x3 … 0

v + x1 - 4x2 + 6x3 … 0

v + 3x1 + x2 - 2x2 … 0

 x
1

+ x2 + x3 = 1

 x1, x2, x3 Ú 0

 v unrestricted

The optimum solution5 is x1 = .39, x2 = .31, x3 = .29,  and v = -0.91. 

player B’s Linear program

Minimize z = v

subject to

v - 3y1 + y2 + 3y3 Ú 0

v + 2y1 - 4y2 + y3 Ú 0

v + 5y1 + 6y2 - 2y3 Ú 0

 y1 + y2 + y3 = 1

 v unrestricted

The solution yields y1 = .32, y2 = .08, y3 = .60,  and v = -0.91. 

BIBLIogRAPHy

Chen, S., and C. Hwang, Fuzzy Multiple Attribute Decision Making, Springer-Verlag, Berlin, 1992.
Clemen, R. J., and T. Reilly, Making Hard Decisions with Decision Tools, Suite Update Edition, 

Duxbury, Pacific Grove, CA, 2004.
Cohan, D., S. Haas, D. Radloff, and R. Yancik, “Using Fire in Forest Management: Decision 

 Making under Uncertainty,” Interfaces, Vol. 14, No. 5, pp. 8–19, 1984.
Dantzig, G. B., Linear Programming and Extensions, Princeton University Press, Princeton, NJ, 1963.
Meyerson, R., Game Theory: Analysis of Conflict, Harvard University Press, Cambridge, MA, 1991.
Rapport, A. “Sensitivity Analysis in Decision Making,” The Accounting Review, Vol. 42, No. 3,  

pp. 441–456, 1967.
Saaty, T. L., Fundamentals of Decision Making, RWS Publications, Pittsburgh, 1994.

5  TORA Zero@sum Games 1 Solve 1 LP@based  can be used to solve any two-person zero-sum game.



Case Study: Booking Limits in Hotel reservations   593

Case Study: Booking Limits in hotel reservations6 

tool: Decision tree analysis

Area of application: Hotels

Description of the situation: 

Hotel La Posada has a total of 300 guest rooms. Its clientele includes both business and leisure 
travelers. Rooms can be sold in advance (usually to leisure travelers) at a discount price. Business 
travelers, who invariably are late in booking their rooms, pay full price. La Posada must thus estab-
lish a booking limit on the number of discount rooms sold to leisure travelers to take advantage of 
the full-price business customers.

Mathematical model:

Let N be the number of available rooms and suppose that the current protection level of rooms 
sold at full price is Q + 1, 0 … Q 6 N. The associated booking limit (rooms sold at a discount) 
is N - Q - 1. Figure 15.8 summarizes the situation.

To determine if the protection level should be lowered from Q + 1 to Q, we use the 
decision tree in Figure 15.9. Let D be the random variable representing historical or forecast 
demand for full-price (business) rooms. Further, let c be the full price and d be the discount 
price (d 6 c). A decision to lower the protection level from Q + 1 to Q signifies that room 
Q + 1 will be sold at the discount price d because there will be ample opportunity to do so. 
Alternatively, not lowering the protection level will result in two probabilistic outcomes: If 
the demand for business rooms is greater than or equal to Q + 1, then room Q + 1 will sell at 
full price, c; else the room will not sell at all. The associated probabilities are P5D Ú Q + 16 
and P5D … Q6 , respectively. It thus follows that the decision to lower the protection level to 
Q should be adopted if

6Netessine, S., and R. Shumsky, “Introduction to the Theory and Practice of Yield Management,” INFORMS 
Transactions on Education, Vol. 3, No. 1, pp. 20–28, 2002.

N

Protection level Q + 1

Booking limit, N – Q – 1

FiGure 15.8 

Booking limit and protection level
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d Ú cP5D Ú Q + 16 + 0P5D … Q6
or

P5D … Q6 Ú
c - d

c

Given the distribution of demand D, together with the unit costs c and d, the protection level Q 
can be determined readily.

Collection of data:

The most crucial piece of information needed to determine the protection level is the distribu-
tion of demand for full price rooms. We can use historical data over a specified time period 
for this purpose. The number of days a block of rooms Q is reserved at full fare then estimates 
the demand probability P5D = Q6 from which the cumulative probability can be determined. 
Table 15.1 provides the data for determining the distribution of demand. The first two columns 
include the raw data.

The use of the information in Table 15.1 can be illustrated by the following situation. Suppose 
that the full fare is $159 and the discount fare is $105. The protection limit is determined such that

P5D … Q6 Ú
159 - 105

159
= .33962

The cumulative probability column in Table 15.1 shows the protection level to be Q = 79 rooms.

Conclusion:

The ideas presented in this study can be extended similarly to setting booking limits for airline tick-
ets. Additionally, in place of using one booking limit, the analysis can be modified to allow setting 
several levels of booking limits with the discount price increasing with the nearness of the reserva-
tion date. The most important information for the model is a reliable estimate of demand data.

Lower protection
level from Q  1
to Q

Sell room Q 1 at a discount

yes

no

P{D  Q 1}

P{D Q}

$d

$c

$0

Room Q  1 sells at full price

Room Q 1 does not sell

FiGure 15.9 

Decision tree for determining protection level Q
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PRoBLeMs  

Section Assigned Problems Section Assigned Problems

15.1 15-1 to 15-8 15.3 15-38 to 15-40
15.2.1 15-9 to 15-27 15.4.1 15-41 to 15-45
15.2.2 15-28 to 15-37 15.4.2 15-46 to 15-53

*15-1. Suppose that the following weights are specified for the situation of Martin and Jane 
(Figure 15.2):

 p =  .5, q = .5

 p1 =  .4, p2 = .6

 p11 = .129, p12 = .277, p13 = .594

 p21 =  .545, p22 = .273, p23 = .182

 q1 =  .6, q2 = .4

 q11 =  .2, q12 = .3, q13 = .5

 q21 =  .5, q22 = .2, q23 = .3

Based on this information, rank the three universities.
 15-2. Consider the two-hierarchal data of Problem 15-1. Copy the weights in a logical order 

into the solution summary section of the spreadsheet excelAHP.xls, then develop the 

TABLe 15.1 Calculation of P5D = x6 and P5D … x6 

Number of  
rooms, Q

Number of days  
in demand P5D = Q6 P5D … Q6 

0–70  12 0.09756 0.097561
71   3 0.02439 0.12195
72   3 0.02439 0.14634
73   2 0.01626 0.16260
74   0 0.00000 0.16260
75   4 0.03252 0.19512
76   4 0.03252 0.22764
77   5 0.04065 0.26829
78   2 0.01626 0.28455
79   7 0.05691 0.34146
80   4 0.03252 0.37398
81  10 0.08130 0.45528
82  13 0.10569 0.56098
83  12 0.09756 0.65854
84   4 0.03252 0.69106
85   9 0.07317 0.76423
86  10 0.08130 0.84553

786  19 0.15447 1.00000

Total 123 1.00000
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formula for evaluating the first alternative, UA, and copy it to evaluate the remaining 
two alternatives.7

 *15-3. The personnel department at C&H has narrowed the search for a new hire to three 
candidates: Steve (S), Jane (J), and Maisa (M). The final selection is based on three 
criteria: personal interview (I), experience (E), and references (R). The department 
uses matrix a (given below) to establish the preferences among the three criteria. After 
interviewing the three candidates and compiling the data regarding their experiences 
and references, the matrices aI, aE, and aR are constructed. Which of the three 
candidates should be hired? Assess the consistency of the data.

 a =
I

E
R

 £ I E R
1 2 1

4
1
2 1 1

5

4 5 1
≥ aI =

S
J

M
£S J M

1 3 4
1
3 1 1

5
1
4 5 1

≥
 aE =

S
J

M
£S J M

1 1
3 2

3 1 1
2

1
2 2 1

≥ aR =
S
J

M
£S J M

1 1
2 1

2 1 1
2

1 2 1
≥

 15-4. Kevin and June Park (K and J) are in the process of buying a new house. Three houses, 
A, B, and C, are available. The Parks have agreed on two criteria for the selection of 
the house—amount of yard work (Y) and proximity to place of work (W)—and have 
developed the following comparison matrices. Rank the three houses in order of 
priority, and compute the consistency ratio for each matrix.

 a =
K
J
a

K J
1 2
1
2 1b

 aK =
Y
W

a
Y W
1 1

3

3 1
b aj =

Y
W

 a
Y W
1 4
1
4 1

b

aKY =
A
B
C
£A B C

1 2 3
1
2 1 2
1
3

1
2 1

≥  aKW =
A
B
C
£A B C

1 2 1
2

1
2 1 1

3

2 3 1
≥  aJY =

A
B
C
£A B C

1 4 2
1
4 1 3
1
2

1
3 1

≥ aJW =
A
B
C

 £A B C
1 1

2 4
1
2 1 3
1
4

1
3 1

≥
*15-5. A new author sets three criteria for selecting a publisher for an OR textbook: royalty 

percentage (R), marketing (M), and advance payment (A). Two publishers, H and P, 
have expressed interest in the book. Using the following comparison matrices, rank the 
two publishers and assess the consistency of the decision.

7Spreadsheet excelAHP.xls should prove helpful in verifying your calculations in Problems 15-2 to 15-8.
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 a =
R

M 
A
£R M A

1 1 1
4

1 1 1
5

4 5 1

≥
 aR =

H
P
a

H P
1 2
1
2 1

b aM =
H
P

 a
H P
1 1

2

2 1
b aA =

H
P

 a
H P
1 1
1 1

b

 15-6. A professor of political science wants to predict the outcome of a school board election. 
Three candidates, Ivy (I), Bahrn (B), and Smith (S), are running for one position. 
There are three categories of voters: left (L), center (C), and right (R). The candidates 
are judged based on three factors: educational experience (E), stand on issues (S), 
and personal character (P). The following are the comparison matrices for the first 
hierarchy of left, center, and right:

a =
L
C
R

 £L C R
1 2 1

2
1
2 1 1

5

2 5 1
≥  aL =

E
S
P

 £E S P
1 3 1

2
1
3 1 1

3

2 3 1

≥
ac =

E
S
P

 £E S P
1 2 2
1
2 1 1
1
2 1 1

≥  aR =
E
S
P

 £E S P
1 1 9
1 1 8
1
9

1
8 1

≥
The professor generated nine more comparison matrices for the second hierarchy 

representing experience (E), stand on issues (S), and personal character (P). AHP was 
then used to reduce these matrices to the following relative weights:

Left Center Right

Candidate E S P E S P E S P

Ivy .1 .2 .3 .3 .5 .2 .7 .1 .3
Bahrn .5 .4 .2 .4 .2 .4 .1 .4 .2
Smith .4 .4 .5 .3 .3 .4 .2 .5 .5

Determine the winning candidate, and assess the consistency of the decision.
 15-7. A school district is in dire need to reduce expenses to meet new budgetary 

restrictions at its elementary schools. Two options are available: delete the physical 
education program (E), or delete the music program (M). The superintendent 
has formed a committee with equal-vote representation from the school board 
(S) and the parent–teacher association (P) to study the situation and make a 
recommendation. The committee has decided to study the issue from the standpoint 
of budget restriction (B) and students needs (N). The analysis produced the 
following comparison matrices:
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 as =
B
N

 a
B N
1 1
1 1

b  aP =
B
N

 a
B N
1 1

2

2 1
b

 aSB =
E
M

 a
E M
1 1

2

2 1
b  aSN =

E
M

 a
E M
1 1

3

3 1
b

 aPB =
E
M

 a
E M
1 1

3

3 1
b  aPN =

E
M

 a
E M
1 2
1
2 1

b

Analyze the decision problem, and make a recommendation.
 15-8. An individual is in the process of buying a car and has narrowed the choices to three 

models: M1, M2, and M3. The deciding factors include purchase price (PP), maintenance 
cost (MC), cost of city driving (CD), and cost of rural driving (RD). The following table 
provides the relevant data for 3 years of operation:

Car Model PP ($) MC ($) CD ($) RD ($)

M1    6000 1800 4500 1500
M2    8000 1200 2250  750
M3 10,000  600 1125  600

Use the cost data to develop the comparison matrices. Assess the consistency of the 
matrices, and determine the choice of model.

 15-9. You have been invited to play the Fortune Wheel game on television. The wheel 
operates electronically with two buttons that produce hard (H) or soft (S) spin. The 
wheel itself is divided into white (W) and red (R) half-circle regions. You have been told 
that the wheel is designed to stop on white 30% of the time. The payoff of the game is

W R

H     $800  $200
S - $2500 $1000

Develop the associated decision tree, and determine a course of action based on the 
expected value criterion.

*15-10. Farmer McCoy can plant either corn or soybeans. The probabilities that the next 
harvest prices will go up, stay the same, or go down are .25, .30, and .45, respectively. 
If the prices go up, the corn crop will net $30,000 and the soybeans will net $10,000. 
If the prices remain unchanged, McCoy will (barely) break even. But if the prices 
go down, the corn and soybeans crops will sustain losses of $35,000 and $5000, 
respectively.
(a) Represent McCoy’s problem as a decision tree.

(b) Which crop should McCoy plant?
15-11. You have the chance to invest in three mutual funds: utility, aggressive growth, and 

global. The value of your investment will change depending on the market conditions. 
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There is a 20% chance the market will go down, 45% chance it will remain moderate, 
and 35% chance it will perform well. The following table provides the percentage 
change in the investment value under the three conditions:

Percent return on investment

Alternative Down market (%) Moderate market (%) Up market (%)

Utility   +5 +7   +8 
Aggressive growth -10 +5 +30 
Global   +2 +7 +20 

(a) Represent the problem as a decision tree.

(b) Which mutual fund should you select?
15-12. You have the chance to invest your money in either a 7.5% bond that sells at face 

value or an aggressive growth stock that pays only 1% dividend. If inflation occurs, 
the interest rate will go up to 8%, in which case the principal value of the bond will 
go down by 10%, and the stock value will go down by 20%. If recession materializes, 
the interest rate will go down to 6%. In this case, the principal value of the bond is 
expected to go up by 5%, and the stock value will increase by 20%. If the economy 
remains unchanged, the stock value will go up by 8% and the bond principal value 
will remain the same. Economists estimate a 10% chance of inflation and 5% 
of recession. You are basing your investment decision on next year’s economic 
conditions.
(a) Represent the problem as a decision tree.

(b) Would you invest in stocks or bonds?
15-13. AFC is about to launch its new Wings ‘N Things fast food nationally. The research 

department is convinced that Wings ‘N Things will be a great success and wants 
to introduce it immediately in all AFC outlets without advertising. The marketing 
department sees “things” differently and wants to unleash an intensive advertising 
campaign. The advertising campaign will cost $120,000 and if successful will produce 
$950,000 revenue. If the campaign is unsuccessful (and there is a 25% chance it won’t 
be), the revenue is estimated at only $200,000. If no advertising is used, the revenue is 
estimated at $400,000 with probability .7 if customers are receptive to the new product 
and $200,000 with probability .3 if they are not.
(a) Draw the associated decision tree.

(b) What course of action should AFC follow in launching the new product?
*15-14. A fair coin is flipped three successive times. You receive $1.00 for each head (H) that 

turns up and an additional $.25 for each two successive heads that appear (remember 
that HHH includes two sets of HH). However, you give back $1.10 for each tail that 
shows up. You have the option to either play or not play the game.
(a) Draw the decision tree for the game.

(b) Would you favor playing this game?
15-15. You have the chance to play the following game in a gambling casino. A fair die is 

rolled twice, leading to four outcomes: (1) both rolls show the same even number, 
(2) both rolls show the same odd number, (3) the two rolls show either even followed 
by odd or odd followed by even, and (4) all other outcomes. You are allowed to bet 
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your money on exactly two outcomes with equal dollar amounts. For example, you can 
bet equal dollars on even-match (outcome 1) and odd-match (outcome 2). The payoff 
for each dollar you bet is $2.00 for the first outcome, $1.95 for the second and the third 
outcomes, and $1.50 for the fourth outcome.
(a) Draw the decision tree for the game.

(b) Which two choices would you make?

(c) Do you ever come out ahead in this game?
15-16. Acme Manufacturing produces lots of widget with .8%, 1%, 1.2%, and 1.4% defectives 

according to the respective probabilities .4, .3, .25, and .05. Three customers, A, B, and 
C, are contracted to receive batches with no more than .8%, 1.2%, and 1.4% defectives, 
respectively. If the defectives are higher than contracted, Acme is penalized $100 for 
each .1% increase. Supplying higher-quality batches than required costs Acme $50 
for each .1% below specifications. Assume that the batches are not inspected before 
shipment.
(a) Draw the associated decision tree.

(b) Which of the three customers should have the highest priority to receive their 
order?

15-17. TriStar plans to open a new plant in Arkansas. The company can open a full-size plant 
now or a small-size plant that can be expanded 2 years later if warranted by high 
demand. The time horizon for the decision problem is 10 years. TriStar estimates that 
the probabilities for high and low demands over the next 10 years are .75 and .25, 
respectively. The cost of immediate construction is $5 million for a large plant and 
$1 million for a small plant. The expansion cost of a small plant 2 years from now is 
$4.2 million. The income from the operation over the next 10 years is given in the 
following table:

Annual income estimates (in $1,000)

Alternative High demand Low demand

Full-size plant now 1000 300
Small-size plant now  250 200
Expanded plant in 2 years  900 200

(a) Develop the associated decision tree, given that after 2 years TriStar has the option 
to expand or not expand the small plant.

(b) Develop a construction strategy for TriStar over the next 10 years. (For simplicity, 
ignore the time value of money.)

15-18. Rework Problem 15-17, assuming that decisions are made taking into account the time 
value of money at an annual interest rate of 10%. [Note: You need compound interest 
tables to solve this problem. You can use Excel function NPV(i, R) to compute the 
present value of cash flows stored in range R, given interest rate i. NPV assumes that 
each cash flow occurs at the end of the year.]

15-19. Rework Problem 15-17, assuming that the demand can be high, medium, and low with 
probabilities .7, .2, and .1, respectively. Expansion of a small plant will occur only if 
demand in the first 2 years is high. The following table provides estimates of the annual 
income. Ignore the time value of money.
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Annual income estimates (in $1000)

Alternative High demand Medium demand Low demand

Full-sized plant now 1000 500 300
Small-sized plant now  400 280 150
Expanded plant in 2 years  900 600 200

*15-20. Sunray Electric Coop uses a fleet of 20 trucks to service its electric network. The company 
wants to develop a preventive maintenance schedule for the fleet. The probability of 
a breakdown in year 1 is zero. For year 2, the breakdown probability is .03, increasing 
annually by .01 for years 3 through 10. Beyond year 10, the breakdown probability 
remains constant at .13. The cost per truck is $200 for a random breakdown and $75 for a 
preventive maintenance.
(a) Develop the associated decision tree.

(b) Determine the optimal period (in years) between successive preventive maintenances.
15-21. Daily demands for loaves of bread at a grocery store are specified by the following 

probability distribution:

n 100 150 200 250 300

pn .20 .25 .30 .15 .10

The store buys a loaf for 55 cents and sells it for $1.20 each. Any unsold loaves 
at the end of the day are disposed of at 25 cents each. Assume that the stock level is 
restricted to one of the demand levels specified for pn.
(a) Develop the associated decision tree.

(b) How many loaves should be stocked daily?
15-22. In Problem 15-21, suppose that the store wishes to extend the decision problem to a 

2-day horizon. The alternatives for the second day depend on the demand in the first 
day. If demand on day 1 equals the amount stocked, the store will continue to order 
the same quantity for day 2; if it exceeds the amount stocked, the store can order any 
of the higher-level stocks; and if it is less than the amount stocked, the store can order 
any of the lower-level stocks. Develop the associated decision tree, and determine the 
optimal ordering strategy.

*15-23. An automatic machine produces a (thousands of) units of a product per day. As a 
increases, the proportion of defectives, p, goes up according to the following probability 
density function:

f1p2 = eapa- 1, 0 … p … 1
0, otherwise 

Each defective item incurs a loss of $50. A good item yields $5 profit.
(a) Develop a decision tree for this problem.

(b) Determine the value of a that maximizes the expected profit.
15-24. The outer diameter, d, of a cylinder is processed on an automatic machine with upper 

and lower tolerance limits of d + tU and d - tL. The production process follows a 
normal distribution with mean m and standard deviation s. Oversized cylinders are 
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reworked at the cost of c1 dollars each. Undersized cylinders are salvaged at the cost 
of c2 dollars each. Develop the decision tree, and determine the optimal setting d for the 
machine.

15-25. Cohan and Associates (1984). Modern forest management uses controlled fires to 
reduce fire hazards and to stimulate new forest growth. Management has the option to 
postpone or plan a burning. In a specific forest tract, if burning is postponed, a general 
administrative cost of $300 is incurred. If a controlled burning is planned, there is a 
50% chance that good weather will prevail and burning will cost $3200. The results of 
the burning may be either successful with probability .6 or marginal with probability 
.4. Successful execution will result in an estimated benefit of $6000, and marginal 
execution will provide only $3000 in benefits. If the weather is poor, burning will be 
cancelled incurring a cost of $1200 and no benefit.
(a) Develop a decision tree to determine whether burning should be planned or post-

poned.

(b) Study the sensitivity of the solution to changes in the probability of good weather.
15-26. Rapport (1967). A manufacturer has used linear programming to determine the 

optimum production mix of the various TV models it produces. Recent information 
received by the manufacturer indicates that there is a 40% chance that the supplier of 
a component used in one of the models may raise the price by $35. The manufacturer 
thus can either continue to use the original (optimum) product mix (A1) or use a new 
(optimum) mix based on the higher component price (A2). Naturally, action A1 is 
ideal if the price is not raised, and action A2 will also be ideal if the price is raised. The 
following table provides the resulting total profit per month as a function of the action 
taken and the random outcome regarding the component price.

Price increase (O1) No price increase (O2)

Original mix (A1) $400,000 $295,500

New mix (A2) $372,000 $350,000

(a) Develop the associated decision tree, and determine which action should be 
 adopted.

(b) The manufacturer can invest $1000 to obtain additional information about whether 
or not the price will increase. This information says that there is a 58% chance that 
the probability of price increase will be .9 and a 42% chance that the probability of 
price increase will be .3. Would you recommend the additional investment?

*15-27. Aspiration Level Criterion. Acme Manufacturing uses a chemical in one of its processes. 
The shelf life is 1 month, and any amount left is destroyed. The amount, x, in gallons of 
the chemical used by Acme is represented by the following distribution:

f1x2 = •
200

x2 , 100 … x … 200

0, otherwise

The actual consumption of the chemical occurs instantaneously at the start of the 
month. Acme wants to determine the level of the chemical that satisfies two conflict-
ing criteria (or aspiration levels): The average excess quantity for the month does not 
exceed 20 gallons, and the average shortage quantity for the month does not exceed  
40 gallons.
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15-28. Data in a community college show that 80% of new students who took calculus in high 
school do well, compared with 50% of those who did not take calculus. Admissions for 
the current academic year show that only 40% of the new students have completed a 
course in calculus. What is the probability that a new student will do well in college?

*15-29. Elektra receives 75% of its electronic components from vendor A and the remaining 
25% from vendor B. The percentage of defectives from vendors A and B are 1% and 
2%, respectively. When a random sample of size 5 from a received lot is inspected, only 
one defective unit is found. Determine the probability that the lot is received from 
vendor A. From vendor B. (Hint: The probability distribution of defective items in a 
sample is binomial.)

15-30. In Example 15.2-2, suppose that you have the additional option of investing the original 
$10,000 in a safe certificate of deposit that yields 4% interest. The friend’s advice 
applies to investing in the stock market only.
(a) Develop the associated decision tree.

(b) What is the optimal decision in this case? (Hint: Make use of P5v16 and P5v26 
given in step 3 of Example 15.2-2 to determine the expected value of investing in 
the stock market.)

*15-31. You are the author of what promises to be a successful novel. You have the option 
to either publish the novel yourself or through a publisher. The publisher is offering 
you $20,000 for signing the contract. If the novel is successful, it will sell 200,000 
copies. Else, it will sell 10,000 copies only. The publisher pays a $1 royalty per copy. 
A market survey indicates that there is a 70% chance that the novel will be successful. 
If you undertake publishing, you will incur an initial cost of $90,000 for printing and 
marketing, but each copy sold will net you $2.
(a) Based on the given information, would you accept the publisher’s offer or publish 

the novel yourself?

(b) Suppose that you contract a literary agent to conduct a survey concerning the po-
tential success of the novel. From past experience, the agent advises you that when 
a novel is successful, the survey will predict the wrong outcome 20% of the time. 
When the novel is not successful, the survey will give the correct prediction 85% of 
the time. How would this information affect your decision?

15-32. Consider Farmer McCoy’s decision situation in Problem 15-10. The farmer has the 
additional option of using the land as a grazing range, in which case a payoff of $7500 
is guaranteed. The farmer has also secured additional information from a broker 
regarding the degree of stability of future commodity prices. The broker’s assessment of 
“favorable” and “unfavorable” is described by the following conditional probabilities:

a1 a2

s1 .85 .15

P5aj 0  sl 0 6 = s2 .50 .50

s3 .15 .85

The symbols a1 and a2 represent the “favorable” and “unfavorable” assessments, and  
s1, s2, and s3 represent the “up,” “same,” and “down” changes in future prices.
(a) Develop the associated decision tree.

(b) Specify the optimal decision for the problem.
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15-33. In Problem 15-13, suppose that AFC management has decided to test-market its 
Wings ’N Things in selective locations. The outcome of the test is either “good” (a1) or 
“bad” (a2). The test yields the following conditional probabilities with and without the 
advertising campaign:

P5aj 0  vi6 - With campaign P5aj 0  wi6 -  No campaign 

a1 a2 a1 a2

v1 .95 .05 w1 .8 .2

v2 .3 .7 w2 .4 .6

The symbols v1 and v2 represent “success” and “no success,” and w1 and w2 represent 
“receptive” and “not receptive.”
(a) Develop the associated decision tree.

(b) Determine the best course of action for AFC.
15-34. Historical data at Acme Manufacturing estimate a 5% chance that a batch of widgets 

will be unacceptable (bad). A bad batch has 15% defective items, and a good batch 
includes only 4% defective items. Letting a = u1 and a = u2 represent a good and a bad 
batch, respectively, the associated prior probabilities are given as

P5a = u16 = .95 and P5a = u26 = .05

Instead of shipping batches based solely on prior probabilities, a test sample of two 
items is used, giving rise to three possible outcomes: (1) both items are good (z1),  
(2) one item is good (z2), and (3) both items are defective (z3).
(a) Determine the posterior probabilities P5ui 0  zj6, i = 1, 2; j = 1, 2, 3. 

*(b) Suppose that the manufacturer ships batches to two customers, A and B. The 
contracts specify that the defectives for A and B should not exceed 5% and 8%, 
respectively. A penalty of $100 is incurred per percentage point above the maxi-
mum limit. Supplying better-quality batches than specified by the contract costs the 
manufacturer $50 per percentage point. Develop the associated decision tree, and 
determine a priority strategy for shipping the batches.

*15-35. You are a student at the University of Arkansas and desperately want to attend the next 
Razorbacks basketball game. The problem is that the admission ticket costs $10, and 
you have only $5. You can bet your $5 in a poker game, with a 50-50 chance of either 
doubling your money or losing all of it.
(a) Based on the real value of money, would you be tempted to participate in the 

poker game?

(b) Based on your ardent desire to see the game, translate the actual money into a 
 utility function.

(c) Based on the utility function you developed in (b), would you be tempted to 
 participate in the poker game?

*15-36. The Golden family has just moved to a location where earthquakes are not uncommon. 
They must decide whether to build their house according to the high-standard 
earthquake code. The construction cost using the earthquake code is $850,000; 
otherwise, a comparable house can be constructed for only $350,000. If an earthquake 
occurs (and there is a probability of .001 it might happen), a substandard home will cost 
$900,000 to repair. Develop the lottery associated with this situation, assuming a utility 
scale from 0 to 100.
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15-37. An investment of $10,000 in a high-risk venture has a 50-50 chance over the next year 
of increasing to $14,000 or decreasing to $8000. Thus the net return can be either $4000 
or - $2000.
(a) Assuming a risk-neutral investor and a utility scale from 0 to 100, determine 

the utility of $0 net return on investment and the associated indifference  
probability.

(b) Suppose that two investors A and B have exhibited the following indifference 
probabilities:

Indifference probability

Net return ($) Investor A Investor B

-2000 1.00 1.00
-1000 0.30 0.90

0 0.20 0.80
1000 0.15 0.70
2000 0.10 0.50
3000 0.05 0.40
4000 0.00 0.00

Graph the utility functions for investors A and B, and categorize each investor as 
either a risk-averse person or a risk seeker.

(c) Suppose that investor A has the chance to invest in one of two ventures. Venture 
I can produce a net return of $2000 with probability .4 or a net loss of $1000 with 
probability .6. Venture II can produce a net return of $3000 with probability .6 and 
no return with probability .4. Based on the utility function in (b), use the expected 
utility criterion to determine the venture investor A should select. What is the 
expected monetary value associated with the selected venture? (Hint: Use linear 
interpolation of the utility function.)

(d) Repeat part (c) for investor B.
*15-38. Hank is an intelligent student and usually makes good grades, provided that he can 

review the course material the night before the test. For tomorrow’s test, Hank is faced 
with a small problem: His fraternity brothers are having an all-night party in which he 
would like to participate. Hank has three options:

a1 = Party all night 
a2 = Divide the night equally between studying and partying
a3 = Study all night 

Tomorrow’s exam can be easy (s1), moderate (s2), or tough (s3), depending on the 
professor’s unpredictable mood. Hank anticipates the following scores:

s1 s2 s3

a1 85 60 40

a2 92 85 81

a3 100 88 82

(a) Recommend a course of action for Hank (based on each of the four criteria of 
decisions under uncertainty).
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(b) Suppose that Hank is more interested in the letter grade he will get. The dividing 
scores for the passing letter grades A to D are 90, 80, 70, and 60, respectively. Would 
this attitude toward grades call for a change in Hank’s course of action?

15-39. For the upcoming planting season, Farmer McCoy can plant corn (a1), wheat (a2), or 
soybeans (a3) or use the land for grazing (a4). The payoffs associated with the different 
actions are influenced by the amount of rain: heavy rainfall (s1), moderate rainfall (s2),  
light rainfall (s3), or drought (s4). The payoff matrix (in thousands of dollars) is 
estimated as

s1 s2 s3 s4

a1 -20 60 30 -5 

a2 40 50 35 0

a3 -50 100 45 -10 

a4 12 15 15 10

Develop a course of action for Farmer McCoy based on each of the four decisions 
under uncertainty criteria.

15-40. One of N machines must be selected for manufacturing Q units of a specific product. 
The minimum and maximum demands for the product are Q* and Q**, respectively. 
The total production cost for Q items on machine i involves a fixed cost Ki and a 
variable cost per unit ci, and it is given as

TCi = Ki + ciQ

(a) Devise a solution for the problem under each of the four criteria of decisions under 
uncertainty.

(b) For 1000 … Q … 4000,  solve the problem for the following set of data:

Machine i Ki ($) Ci ($)

1 100  5
2  40 12
3 150  3
4  90  8

15-41. In games (a) and (b) given below, the payoff is for player A. Each game has a pure 
strategy solution. In each case, determine the strategies that define the saddle point and 
the value of the game.
*(a)  B1 B2 B3 B4

A1 9 6 2 8

A2 8 9 4 5

A3 7 5 2 5

(b)  B1 B2 B3 B4

A1 5 -4 -5 6

A2 -3 -4 -8 -2

A3 6 8 -8 -9

A4 7 3 -9 6
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15-44. Two companies promote two competing products. Currently, each product controls 50% 
of the market. Because of recent improvements in the two products, each company 
plans to launch an advertising campaign. If neither company advertises, equal market 
shares will continue. If either company launches a stronger campaign, the other 
company is certain to lose a proportional percentage of its customers. A survey of the 
market shows that 50% of potential customers can be reached through television, 30% 
through newspapers, and 20% through radio.
(a) Formulate the problem as a two-person zero-sum game, and determine the adver-

tising media for each company.

(b) Determine a range for the value of the game. Can each company operate with a 
single pure strategy?

15-45. Let aij be the (i, j)th element of a payoff matrix with m strategies for player A and n 
strategies for player B. The payoff is for player A. Prove that

max
i

 min
j

 aij … min
i

  max
i

 aij

*15-46. Solve the coin-tossing game of Example 15.4-2 graphically.8

15-42. In games (a) and (b) below, the payoff is for player A. Determine the values of p and q 
that will make (A2, B2) a saddle point:
(a)  

B1 B2 B3

A1 1 q  6

A2 p 5 10

A3 6 2  3

(b)  
B1 B2 B3

A1  2 4 5

A2 10 7 q

A3  4 p 6

15-43. In the games below, the payoff is for player A. Specify the range for the value of the 
game in each case.
*(a)  B1 B2 B3 B4

A1 1 9 6 0

A2 2 3 8 4

A3 -5 -2 10 -3 

A4 7 4 -2 -5 

(b)  B1 B2 B3 B4

A1 -1 9 6 8

A2 -2 10 4 6

A3   5 3 0 7

A4   7 -2 8 4

(c)  B1 B2 B3

A1 3 6 1

A2 5 2 3

A3 4 2 -5 

(d)  B1 B2 B3 B4

A1 3 7 1 3

A2 4 8 0 -6 

A3 6 -9 -2 4

8 TORA Zero-Sum Games module can be used with Problems 15-46 to 15-49 to verify your answer.
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*15-47. Robin travels between two cities and may use one of two routes: Route A is a fast 
four-lane highway, and route B is a long winding road. She has the habit of driving 
“superfast.” The highway patrol has a limited police force. If the full force is allocated to 
the route driven by Robin, she is certain to receive a $100 speeding fine. If the force is 
split 50-50 between the two routes, there is a 50% chance of getting a $100 fine on route 
A, and only a 30% chance of getting the same fine on route B. Develop a strategy for 
both Robin and the police patrol.

15-48. Solve the following games graphically. The payoff is for Player A.
(a)  

15-49. Consider the following two-person, zero-sum game:

B1 B2 B3

A1 5 50 50

A2 1   1   .1

A3 10   1 10

(a) Verify that the strategies 11
6, 0, 562 for A and 149

54, 5
54, 02 for B are optimal, and deter-

mine the value of the game.

(b) Show that the optimal value of the game equals

a
3

i = 1
 a

3

j = 1
aij xiyj

15-50. On a picnic outing, 2 two-person teams are playing hide-and-seek. There are four hiding 
locations (A, B, C, and D), and the two members of the hiding team can hide separately 
in any two of the four locations. The other team can then search any two locations. The 
searching team gets a bonus point if they find both members of the hiding team. If they 
miss both, they lose a point. Otherwise, the outcome is a draw.

*(a) Set up the problem as a two-person zero-sum game.

(b) Determine the optimal strategy and the value of the game.
15-51. UA and DU are devising their strategies for the 1994 national championship men’s 

college basketball game. Assessing the strengths of their respective “benches,” each 
coach comes up with four strategies for rotating the players during the game. The ability 
of each team to score 2-pointers, 3-pointers, and free throws is key to determining the 
final score of the game. The following table summarizes the net points UA will score per 
possession as a function of the different strategies available to each team:

DU1 DU2 DU3 DU4

UA1 3 -2 1 4

UA2 2 3 -5 0

UA3 -1 2 -2 2

UA4 -3 -5 4 1

B1 B2 B3

A1 2 -3 8

A2 3 3 -6

(b)  B1 B2

A1 5 8

A2 6 5

A3 5 7
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(a) Solve the game by linear programming and determine a strategy for the champion-
ship game.

(b) Based on the given information, which of the two teams is projected to win the 
championship?

(c) Suppose that the entire game will have a total of 60 possessions (30 for each team). 
Predict the expected number of points by which the championship will be won.

15-52. Colonel Blotto’s army is fighting for the control of two strategic locations. Blotto has 
two regiments and the enemy has three. A location will fall to the army with more 
regiments. Otherwise, the result of the battle is a draw.
*(a) Formulate the problem as a two-person zero-sum game, and solve by linear 

 programming.

(b) Which army will win the battle?
15-53. In the two-player, two-finger Morra game, each player shows one or two fingers, and 

 simultaneously guesses the number of fingers the opponent will show. The player 
making the correct guess wins an amount equal to the total number of fingers shown. 
Otherwise, the game is a draw. Set up the problem as a two-person zero-sum game, and 
solve by linear programming.
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Chapter 16

probabilistic Inventory Models

Real-Life Application—Inventory Decisions in Dell’s Supply Chain

Dell, Inc., implements a direct-sales business model in which personal computers are 
sold directly to customers in the United States. When an order arrives from a  customer, 
the specifications are sent to a manufacturing plant in Austin, Texas, where the com-
puter is built, tested, and packaged in about 8 hours. Dell carries little inventory. 
Its  suppliers, normally located in Southeast Asia, are required to keep what is known 
as “revolving” inventory on hand in revolvers (warehouses) near the manufacturing 
plants. These revolvers are owned by Dell and leased to the suppliers. Dell then “pulls” 
parts as needed from the revolvers, and it is the suppliers’ responsibility to replenish 
the inventory to meet Dell’s demand. Although Dell does not own the inventory in 
the revolvers, its cost is indirectly passed on to customers through component pricing. 
Thus, any reduction in inventory directly benefits Dell’s customers by reducing prod-
uct prices. The proposed solution has resulted in an estimated $2.7 million in annual 
 savings. Case 14 in Chapter 26 on the website provides the details.

16.1 ContInuouS RevIew MoDeLS

This section presents two models: (1) a “probabilitized” version of the deterministic 
EOQ (Section 13.3.1) that uses a buffer stock to account for probabilistic demand and 
(2) a more exact probabilistic EOQ model that includes the random demand directly 
in the formulation.

16.1.1 “Probabilitized” eoQ Model

Some practitioners have sought to adapt the deterministic EOQ model (Section 13.3.1) 
to approximate the probabilistic nature of demand. The critical period during the 
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inventory cycle occurs between placing and receiving orders. This is the time period 
when shortage (running out of stock) could occur. The idea then is to maintain a con-
stant buffer stock that will put a cap on the probability of shortage. Intuitively, lower 
shortage probability entails larger buffer stock, and vice versa.

Figure 16.1 depicts the relationship between the buffer stock, B, and the parame-
ters of the deterministic EOQ model that include the lead time, L; the average demand 
during lead time, mL; and the EOQ, y*. Note that L is the effective lead time as defined 
in Section 13.3.1.

The main assumption of the model is that the demand per unit time is normal 
with mean D and standard deviation s—that is, N1D, s2. Under this assumption, the 
demand during lead time L must also be normal with mean mL = DL and standard 
deviation sL = 2Ls2. The formula for sL assumes that L is (approximated, if neces-
sary, by) an integer value.

The size of the buffer B is determined such that the probability of shortage  during 
L is at most a. Let xL be the demand during lead time L, then

P5xL Ú B + mL6 … a

Using N(0, 1), z = xL - mL
sL  (as defined in Section 14.4.4), we get

Pez Ú
B
sL

f … a

Figure 16.2 defines the parameter Ka for the standard normal distribution such that 
P5z Ú ka6 … a. It follows that

B Ú sLKa

The amount sLKa provides the minimum value of B. (The value of Ka can be deter-
mined from the standard normal table in Appendix A or by using file  excelStatTables.xls.)

Inventory
level

Time

B 1 y*

B

L
0

B 1 mL

FIgure 16.1 

Buffer stock, B, imposed on the classical EOQ model
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example 16.1-1 

In Example 13.3-1 dealing with determining the inventory policy of neon lights, the EOQ is 1000 
units. Assume that the daily demand is N(100, 10)—that is, D = 100 units and standard devia-
tion s = 10 units. Determine the buffer size, B, using a = .05.

From Example 13.3-1, the effective lead time is L = 2 days. Thus,

mL = DL = 100 * 2 = 200 units

sL = 2s2L = 2102 * 2 = 14.14 units

Given K.05 = 1.645, the buffer size is computed as

B Ú 14.14 * 1.645 ≈ 23 neon lights

The (buffered) optimal inventory policy calls for ordering 1000 units whenever the inventory 
level drops to 2231=  B + mL = 23 + 2 * 1002 units.

16.1.2 Probabilistic eoQ Model

The basis for the development of the “probabilitized” EOQ model in Section 16.1.1 is 
“plausible,” but there is no reason to believe that the model yields an optimal inven-
tory policy. The fact that pertinent information regarding the probabilistic nature of 
demand is initially ignored, only to be “revived” in a totally independent manner at a 
later stage of the calculations, is sufficient to refute optimality. To remedy the situation, 
this section presents a more accurate model in which the probabilistic nature of the 
demand is included directly in the formulation of the model. Of course, higher accuracy 
comes at the expense of more complex computations.

Figure 16.3 depicts a typical change in inventory level with time. Shortage may 
or may not occur during (possibly random) lead times, as illustrated by cycles 1 and 2, 
respectively. The policy calls for ordering the quantity y whenever the amount of 
 inventory on hand drops to level R. As in the deterministic case, the reorder level R is a 

zK

 f(z)

0

N(0, 1)

Area 5 a

a

FIgure 16.2 

Probability of running out of stock, 
P5z Ú Ka6 = a
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function of the lead time between placing and receiving an order. The optimal values of 
y and R are determined by minimizing the expected sum of setup, holding, and short-
age costs per unit time.

The model is based on three assumptions:

1. Unfilled demand during lead time is backlogged.
2. No more than one outstanding order is allowed.
3. The distribution of demand during lead time remains stationary with time.

To develop the total cost function per unit time, let

f1x2 = pdf of demand, x, during lead time

D = Expected demand per unit time

h = Holding cost per inventory unit per unit time

p = Shortage cost per inventory unit

K = Setup cost per order

The elements of the cost function are now determined.

1. Setup cost. The approximate number of orders per unit time is Dy , so that the setup 
cost per unit time is approximately KD

y .
2. Expected holding cost. Given I is the average inventory level, the expected hold-

ing cost per unit time is hI. The average inventory level is computed as

I =
1y + E5R - x62 + E5R - x6

2
=

y

2
+ R - E5x6

The formula averages the starting and ending expected inventories in a cycle— 
y + E5R - x6 and E5R - x6, respectively. As an approximation, the expression 
ignores the case where R - E5x6 may be negative.

Lead time

Cycle 1 Cycle 2

Lead time

y y

yR

FIgure 16.3 

Probabilistic inventory model 
with shortage
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3. Expected shortage cost. Shortage occurs when x 7 R. Its expected value per cycle 
is computed as

S = L
∞

R

1x - R2f1x2dx

Because p is assumed to be proportional to the shortage quantity only, the expected 
shortage cost per cycle is pS, and, based on Dy  cycles per unit time, the shortage cost per 

unit time is 
pS

y >D = pDS
y .

The resulting total cost function per unit time is

TCU1y, R2 =
DK

y
+ ha y

2
+ R - E5x6b +

pD
y L

∞

R
1x - R2f1x2  dx

The optimal values, y* and R*, are determined from

0TCU
0y

= - aDK

y2  b +
h
2

-
pDS

y2 = 0

0TCU
0R

= h - apD
y

 b L
∞

R

f1x2dx = 0

These two equations yield

  y* = B2D1K + pS2
h

 (1)

  L
∞

R*
f1x2dx =

hy*

pD
 (2)

The optimal values of y* and R* cannot be determined in closed forms. An itera-
tive algorithm, developed by Hadley and Whitin (1963, pp. 169–174), is applied to (1) 
and (2) to find the solution. The algorithm converges in a finite number of iterations, 
provided a feasible solution exists.

For R = 0, equation (1) and (2) yield

yn = B 2D1K + pE{x}2
2

y∼ =
PD
h

Unique optimal values of y and R exist when y∼ Ú yn. The smallest value of y* is 32KD
h , 

which occurs when S = 0.
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The steps of the algorithm are

Step 0.  Use the initial solution y1 = y* = 32KD
h  , and let R0 = 0. Set i = 1, and go 

to step i.
Step 1.  Use yi to determine Ri from Equation ( 2). If Ri ≈ Ri- 1, stop; the optimal  

solution is y* = yi, and R* = Ri. Otherwise, use Ri in Equation (1) to 
 compute yi. Set i = i + 1, and repeat step i.

example 16.1-2 

Electro uses resin in its manufacturing process at the rate of 1000 gallons per month. It cost 
Electro $100 to place an order. The holding cost per gallon per month is $2, and the shortage 
cost per gallon is $10. Historical data show that the demand during lead time is uniform in the 
range (0, 100) gallons. Determine the optimal ordering policy for Electro.

Using the symbols of the model, we have

D = 1000 gallons per month

K = $100 per order

h = $2 per gallon per month

p = $10 per gallon

f1x2 = 1
100, 0 … x … 100

E5x6 = 50 gallons

First, we need to check whether the problem has a unique solution. Using the equations for 
yn and y∼ we get

yn = B 2 * 10001100 + 10 * 502
2

 = 774.6 gallons

y∼ =
10 * 1000

2
= 5000 gallons

Because y∼ Ú yn, a unique solution exists for y* and R*.
The expression for S is computed as

S = L
100

R
1x - R2 1

100
 dx =

R2

200
- R + 50

Using S in Equations (1) and (2), we obtain

 yi = B 2 * 10001100 + 10S2
2

 = 1100,000 + 10,000S gallons (3)

 L
100

R

1
100

 dx =
2yi

10 * 1000
 (4)
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Equation (4) yields

 Ri = 100 -
yi

50
 (5)

We now use Equations (3) and (5) to determine the optimum solution.

Iteration 1

 y1 = B 2KD
h

 = B 2 * 1000 * 100
2

 = 316.23 gallons

 R1 = 100 -
316.23

50
= 93.68 gallons

Iteration 2

 S =
R1

2

200
- R1 + 50 = .19971 gallons

 y2 = 2100,000 + 10,000 * .19971 = 319.37 gallons

Hence,

R2 = 100 -
319.39

50
  - = 93.612

Iteration 3

 S =
R2

2

200
- R2 + 50 = .20399 gallon

 y3 = 2100,000 + 10,000 * .20399 = 319.44 gallons

Thus,

R3 = 100 -
319.44

50
= 93.611 gallons

Because y3 ≈ y2 and R3 ≈ R2, the optimum is R* ≈ 93.611 gallons, y* ≈ 319.44 gallons. 
File excelContRev.xls can be used to determine the solution to any degree of accuracy by speci-
fying the tolerance 0Ri- 1 - Ri 0 . The optimal inventory policy calls for ordering approximately 
320 gallons whenever the inventory level drops to 94 gallons.

16.2 SIngLe-PeRIoD MoDeLS

This section deals with inventory items that are in stock during a single time period. 
At the end of the period, leftover units, if any, are disposed of, as in fashion items. Two 
models will be developed. The difference between the two models is whether or not a 
setup cost is incurred for placing an order.
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The symbols used in the development of the models include

K = Setup cost per order

h = Holding cost per held unit during the period

p = Penalty cost per shortage unit during the period

f1D2 = pdf of demand, D, during the period

y = Order quantity

x = Inventory on hand before an order is placed.

The model determines the optimal value of y that minimizes the sum of the ex-
pected holding and shortage costs. Given optimal y 1=y*2, the inventory policy calls 
for ordering y*-x if x6y; otherwise, no order is placed.

16.2.1 no-Setup Model (newsvendor Model)

This model is known in the literature as the newsvendor model (the original classi-
cal name is the newsboy model). It deals with stocking and selling newspapers and 
periodicals.

The assumptions of the model are:

1. Demand occurs instantaneously at the start of the period immediately after the 
order is received.

2. No setup cost is incurred.

Figure 16.4 demonstrates the inventory position after the demand, D, is satisfied. 
If D 6 y, the quantity y - D is held during the period. Otherwise, a shortage amount 
D - y will result if D 7 y.

The expected cost for the period, E5C1y26, is expressed as

E5C1y26 = hL
y

0
1y - D2f1D2dD + pL

∞

y
1D - y2f1D2dD

y 2 D

D , y

0

y
D

D 2 y

D . y

0

(b)

Time

(a)

y
D

FIgure 16.4 

Holding and shortage inventory in a single-period model
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The function E5C1y26 can be shown to be convex in y, thus having a unique mini-
mum. Taking the first derivative of E5C1y26 with respect to y and equating it to zero, 
we get

hL
y

0
f1D2dD - pL

∞

0
f1D2dD = 0

or

hP5D … y6 - p11 - P5D … y62 = 0

or

P5D … y*6 =
p

p + h

If the demand, D, is discrete, then the associated cost function is

E5C1y26 = h a
y

D = 0
1y - D2f1D2 + p a

∞

D = y + 1
1D - y2f1D2

The necessary conditions for optimality are

E5C1y - 126 Ú E5C1y26 and E5C1y + 126 Ú E5C1y26

These conditions are also sufficient because E5C1y26 is a convex function. After 
some algebraic manipulations, the application of these conditions yields the following 
inequalities for determining y*:

P5D … y* - 16 …
p

p + h
 … P5D … y*6

example 16.2-1 

The owner of a newsstand wants to determine the number of newspapers of USA Now to be 
stocked at the start of each day. The owner pays 30 cents for a copy and sells it for 75 cents. The 
sale of the newspaper typically occurs between 7:00 and 8:00 a.m. (practically, instant demand). 
Newspapers left at the end of the day are recycled for an income of 5 cents a copy. How many 
copies should the owner stock every morning, assuming that the demand for the day can be 
described as

(a) A normal distribution with mean 300 copies and standard deviation 20 copies.
(b) A discrete pdf, f1D2, defined as

D 200 220 300 320 340
f1D2 .1 .2 .4 .2 .1
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The holding and penalty costs are not defined directly in this situation. The data of the 
problem indicate that each unsold copy will cost the owner 30 - 5 = 25 cents and that the pen-
alty for running out of stock is 75 - 30 = 45 cents per copy. Thus, in terms of the parameters 
of the inventory problem, we have h = 25 cents per copy per day and p = 45 cents per copy 
per day.

First, we determine the critical ratio as

p

p + h
=

45
45 + 25

= .643

Case (a). The demand D is N(300, 20). We can use excelStatTables.xls to determine the opti-
mum order quantity by entering 300 in F15, 20 in G15, and .643 in L15, which gives the desired 
answer of 307.33 newspapers in R15. Alternatively, we can use the standard normal tables in 
Appendix A. Define

z =
D - 300

20

Then from the normal tables

P5z … .3666 ≈ .643

or

y* - 300

20
= .366

Thus, y* = 307.3. The optimal order is approximately 308 copies.

Case (b). The demand D follows a discrete pdf, f (D). First, we determine the CDF P5D … y6 as

y 200 220 300 320 340
P5D … y6 .1 .3 .7 .9 1.0

For the computed critical ratio of .643, we have

P1D … 2202 … .643 … P1D … 3002
It only follows that y* = 300  copies.

16.2.2 Setup Model (s-S Policy)

The present model differs from the one in Section 16.2.1 in that a setup cost K is in-
curred. Using the same notation, the total expected cost per period is

 E5C1y26 = K + E5C1y26

 = K + hL
y

0
1y - D2f1D2dD + pL

∞

y
1D - y2f1D2dD
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As shown in Section 16.2.1, the optimum value y* must satisfy

P5y … y*6 =
p

p + h

Because K is constant, the minimum value of E5CQ1y26 must also occur at y*.
In Figure 16.5, S = y*, and the value of s 16S2 is determined from the equation

E5C1s26 = E5C1S26 = K + E5C1S26, s 6 S

The equation yields another value s1 17S2, which is discarded.
Assume that x is the amount on hand before an order is placed. How much should 

be ordered? This question is answered under three conditions:

1. x 6 s.
2. s … x … S.
3. x 7 S.

Case 1 1x * s 2 . Because x is already on hand, its equivalent cost is given by 
E5C1x26. If any additional amount y - x1y 7 x2 is ordered, the corresponding cost 
given y is E5C1y26, which includes the setup cost K. From Figure 16.5, we have

min
y7x

 E5C1y26 = E1C1S22 6 E5C1x26

Thus, the optimal inventory policy in this case is to order S - x units.

Case 2 1s " x " S 2 . From Figure 16.5, we have

E5C1x26 … min
y7x

 E5C1y26 = E1C1S22

Thus, it is not advantageous to order in this case and y* = x.

Case 3 1x + S 2 . From Figure 16.5, we have for y 7 x,

E5C1x26 6 E5C1y26

S

K

ys s1

Do not orderOrder

E  C(y)

E  C(y)

E  C(S)

E  C(S)

FIgure 16.5 

(s-S) optimal ordering policy in a  
single-period model with setup cost
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This condition indicates that, as in case (2), it is not advantageous to place an order—
that is, y* = x.

The optimal inventory policy, frequently referred to as the s-S policy, is summa-
rized as

If x 6 s, order S - x

If x Ú s, do not order

The optimality of the s-S policy is guaranteed because the associated cost function is 
convex.

example 16.2-2 

The daily demand for an item during a single period occurs instantaneously at the start of the 
period. The pdf of the demand is uniform between 0 and 10 units. The unit holding cost of the 
item during the period is $.50, and the unit penalty cost for running out of stock is $4.50. A fixed 
cost of $25 is incurred each time an order is placed. Determine the optimal inventory policy for 
the item.

To determine y*, consider

p

p + h
=

4.5
4.5 + .5

= .9

Also,

P5D … y*6 = L
y*

0

1
10

  dD =
y*

10

Thus, S = y* = 9.
The expected cost function is

 E5C1y26 = .5 L
y

0

1
10

 1y - D2dD + 4.5 L
10

y

1
10

 1D - y2 dD

 = .25y2 - 4.5y + 22.5

The value of s is determined by solving

E5C1s26 = K + E5C1S26
or

.25s2 - 4.5s + 22.5 = 25 + .25S2 - 4.5S + 22.5

Given S = 9, the preceding equation reduces to

s2 - 18s - 19 = 0

The solution of this equation is s = -1 or s = 19. The value of s 7 S is discarded. Because 
the remaining value is negative 1=  -12, s has no feasible value. As Figure 16.6 shows, the opti-
mal inventory policy in this case calls for not ordering the item. This result usually happens when 
the cost function is “flat” or when the setup cost is high relative to the other costs of the model.
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16.3 MuLtIPeRIoD MoDeL

This section presents a multiperiod model under the assumption of no setup cost. 
Additionally, the model allows backlog of demand and assumes a zero-delivery lag. It 
further assumes that the demand D in any period is described by a stationary pdf, f1D2.

The multiperiod model considers the discounted value of money. If a16  12 is 
the discount factor per period, then an amount $A available n periods from now has a 
present value of $anA.

Suppose that the inventory situation encompasses n periods and that unfilled de-
mand can be backlogged exactly one period. Define

Fi1xi2 = Maximum expected profit for periods i, i + 1, c, and n, given that

xi  is the amount on hand before an order is placed in period i

Using the notation in Section 16.2 and assuming that c and r are the cost and revenue 
per unit, respectively, the inventory situation can be formulated using the following 
probabilistic dynamic programming model (see Chapter 24 on the website):

Fn + 11yn - D2 = 0

Fi1xi2 = max
yi Ú xi

e -c1yi - xi2 + L
yi

 0
3rD - h1yi - D24  f1D2dD

+ L
∞

yi

3ryi + ar1D - yi2 - p1D - yi24  f1D2dD

+ aL
∞

0
Fi+ 11yi - D2f1D2dDf , i = 1, 2, c, n

The value of xi may be negative because unfilled demand is backlogged. The quantity 
ar1D - yi2 in the second integral is included because (D - yi) is the unfilled demand 
in period i that must be filled in period i + 1.

S 5 9

K

ys 5 21 0 s1 5 19

Infeasible
range Do not order

E  C(y) FIgure 16.6 

s-S policy applied to Example 16.2-2 
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The problem can be solved recursively. For the case where the number of periods 
is infinite, the recursive equation reduces to

F1x2 = max
y Ú x

e -c1y - x2 + L
y

 0
3rD - h1y - D24  f1D2dD

+ L
∞

y
3ry + ar1D - y2 - p1D - y24  f1D2dD

+ aL
∞

0
F1y - D2f1D2dD f

where x and y are the inventory levels for each period before and after an order is 
received, respectively.

The optimal value of y can be determined from the following necessary condi-
tion, which also happens to be sufficient because the expected revenue function F(x) 
is concave:

01.2
0y

= -c - hL
y

0
 f1D2  dD + L

∞

y
311 - a2r + p4  f1D2dD

+ aL
∞

0

0F1y - D2
0y

 f1D2dD = 0

The value of 
0 F1y - D2

0 y  is determined as follows. If there are b1702 more units on hand 
at the start of the next period, the profit for the next period will increase by cb, because 
this much less has to be ordered. This means that

0F1y - D2
0y

= c

The necessary condition thus becomes

-c - h L
y

0
f1D2dD + c 11 - a2r + p d a1 - L

y

0
f1D2dDb + ac L

∞

0
f1D2dD = 0

The optimum inventory level y* is thus determined from

L
y*

0
f1D2dD =

p + 11 - a21r - c2
p + h + 11 - a2r

The optimal inventory policy for each period, given its entering inventory level x, 
is thus given as

If x 6 y*, order y* - x

If x Ú y*, do not order
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PRoBLeMS 

Section Assigned Problems

16.1.1 16-1 to 16-3
16.1.2 16-4 to 16-7
16.2.1 16-8 to 16-15
16.2.2 16-16 to 16-18
16.3 16-19 to 16-21

 16-1. In Example 16.1-1, determine the optimal inventory policy for each of the following 
cases:

*(a) Lead time = 15 days.

(b) Lead time = 25 days.

(c) Lead time = 10 days.

(d) Lead time = 12 days.
 16-2. The daily demand for a popular CD in a music store is approximately N(200, 20). The cost 

of keeping the CD on the shelves is $.04 per disc per day. It costs the store $100 to place a 
new order. There is a 7-day lead time for delivery. Determine the store’s optimal inventory 
policy given that the store wishes to limit the probability of shortage to at most .02.

 16-3. The daily demand for camera films at a gift shop is N(300, 5). The cost of holding a roll 
in the shop is $.02 per day, and the fixed cost of placing a replenishment order is $30. 
The shop’s inventory policy is to order 150 rolls whenever the inventory level drops to 
80 units. It simultaneously maintains a buffer of 20 rolls at all times.
(a) Determine the probability of running out of stock.

(b) Given the data of the situation, recommend an inventory policy for the shop given 
that the shortage probability cannot exceed .10.

 16-4. For the data given in Example 16.1-2, determine the following:
(a) The approximate number of orders per month.

(b) The expected monthly setup cost.

(c) The expected holding cost per month.

(d) The expected shortage cost per month.

(e) The probability of running out of stock during lead time.
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 *16-5. Solve Example 16.1-2, assuming that the demand during lead time is uniform between 
0 and 50 gallons.

 *16-6. In Example 16.1-2, suppose that the demand during lead time is uniform between 
40 and 60 gallons. Compare the solution with that obtained in Example 16.1-2, and 
interpret the results. (Hint: In both problems, E5x6 is the same, but the variance in the 
present problem is smaller.)

  16-7. Find the optimal solution for Example 16.1-2, assuming that the demand during lead 
time is N(100, 2). Assume that D = 10,000 gallons per month, h = $2 per gallon per 
month, p = $4 per gallon, and K = $20.

  16-8. For the single-period model, show that for the discrete demand the optimal order 
quantity is determined from

P5D … y* - 16 …
p

p + h
 … P5D … y*6

  16-9. The demand for an item during a single period occurs instantaneously at the start of the 
period. The associated pdf is uniform between 15 and 20 units. Because of the difficulty 
in estimating the cost parameters, the order quantity is determined such that the 
probability of either surplus or shortage does not exceed .1. Is it possible to satisfy both 
conditions simultaneously?

*16-10. The unit holding cost in a single-period inventory situation is $1. If the order quantity 
is 4 units, find the permissible range of the unit penalty cost implied by the optimal 
conditions. Assume that the demand occurs instantaneously at the start of the period 
and that the pdf of demand is as follows:

D 0 1 2 3 4 5 6 7 8
f1D2 .05 .1 .1 .2 .25 .15 .05 .05 .05

16-11. The U of A Bookstore offers a program of reproducing class notes for participating 
professors. Professor Yataha teaches a freshmen-level class with an enrollment of 
between 100 and 150 students, uniformly distributed. A copy costs $10 to produce, and it 
sells for $25. The students purchase their books at the start of the semester. Any unsold 
copies of Professor Yataha’s notes are shredded for recycling. In the meantime, once the 
bookstore runs out of copies, no additional copies are printed. If the bookstore wants to 
maximize its revenues, how many copies should it print?

16-12. QuickStop provides its customers with coffee and donuts at 6:00 a.m. each day. The 
convenience store buys the donuts for 7 cents apiece and sells them for 25 cents 
apiece until 8:00 a.m. After 8:00 a.m., the donuts sell for 5 cents apiece. The number 
of customers buying donuts between 6:00 and 8:00 is uniformly distributed between 
30 and 50. Each customer usually orders 3 donuts with coffee. Approximately how 
many dozen donuts should QuickStop stock every morning to maximize revenues?

*16-13. Colony Shop is stocking heavy coats for next winter. Colony pays $50 for a coat and 
sells it for $110. At the end of the winter season, Colony offers the coats at $55 each. 
The demand for coats during the winter season is more than 20 but less than or equal 
to 30, all with equal probabilities. Because the winter season is short, the unit holding 
cost is negligible. Also, Colony’s manager does not believe that any penalty would 
result from coat shortages. Determine the optimal order quantity that will maximize the 
revenue for Colony Shop. You may use continuous approximation.
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16-14. For the single-period model, suppose that the item is consumed uniformly during the 
period (rather than instantaneously at the start of the period). Develop the associated 
cost model, and find the optimal order quantity.

16-15. Solve Example 16.2-1, assuming that the demand is continuous and uniform during the 
period and that the pdf of demand is uniform between 0 and 100. (Hint: Use the results 
of Problem 16-14.)

*16-16. Determine the optimal inventory policy for the situation in Example 16.2-2, assuming 
that the setup cost is $5.

16-17. In the single-period model in Section 16.2.1, suppose that the model maximizes 
profit and that a setup cost K is incurred. Given that r is the unit selling price and 
using the information in Section 16.2.1, develop an expression for the expected 
profit, and determine the optimal order quantity. Solve the problem numerically for 
r = $3, c = $2, p = $4, h = $1, and K = $10. The demand pdf is uniform between 0 
and 10.

16-18. Work Problem 16-12, assuming that there is a fixed cost of $10 associated with the 
delivery of donuts.

16-19. Consider a two-period probabilistic inventory model in which the demand is 
backlogged, and orders are received with zero delivery lag. The demand pdf per period 
is uniform between 0 and 10, and the cost parameters are given as

Unit selling price = $2
Unit purchase price = $1
Unit holding cost per month = $.10
Unit penalty cost per month = $3
Discount factor = .8

Find the optimal inventory policy for the two periods, assuming that the initial inven-
tory for period 1 is zero.

*16-20. The pdf of the demand per period in an infinite-horizon inventory model is given as

f1D2 = .08D, 0 … D … 5

The unit cost parameters are

Unit selling price = $10
Unit purchase price = $8
Unit holding cost per month = $1
Unit penalty cost per month = $10
Discount factor = .9

Determine the optimal inventory policy assuming zero delivery lag and that the unfilled 
demand is backlogged.

16-21. Consider the infinite-horizon inventory situation with zero delivery lag and 
backlogged demand. Develop the optimal inventory policy based on the minimization 
of cost given that

Holding cost for z units = hz2

Penalty cost for z units = px2

Show that for the special case where h = p, the optimal solution is independent of pdf of 
demand.



This page intentionally left blank 



 629

Chapter 17

Markov Chains

Real-Life Application—Forest Cover Change Prediction Using Markov Chain 
Model: A Case Study on Sub-Himalayan Town Gangtok, India

This case assesses the present and future land use and land cover in the sub-Himalayan 
capital Gangtok, India. Increasing population has resulted in converting forested land 
for agricultural use and urban development. Time-series satellite imageries, used for 
monitoring changes in environmental conditions, are the basis for representing the differ-
ent states of forest changes (urbanization, agriculture, forest land) in terms of a Markov 
chain transition probabilities. The Markov chain model is then used to predict future land 
use in the study area. Case 15 in Chapter 26 on the website provides the details.

17.1 DeFInITIon oF A MARkov CHAIn

Let Xt be a random variable that characterizes the state of the system at discrete points 
in time t = 1, 2, c. The family of random variables 5Xt6 forms a stochastic process 
with a finite or infinite number of states.

example 17.1-1 (Machine Maintenance)

The condition of a machine at the time of the monthly preventive maintenance is fair, good, or 
excellent. For month t, the stochastic process for this situation can be represented as follows:

Xt = •
0, if the condition is poor
1, if the condition is fair
2, if the condition is good

¶ ,  t = 1, 2, c

The random variable Xt is finite because it represents three states: poor (0), fair (1), and good (2).

 629
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example 17.1-2 (Job Shop)

Jobs arrive randomly at a shop at the rate of 5 jobs per hour. The arrival process follows a 
Poisson distribution, which, theoretically, allows any number of jobs to arrive at the shop dur-
ing the time interval (0, t). The infinite-state process describing the number of arriving jobs is 
Xt = 0, 1, 2, c, t 7 0.

Markov process. A stochastic process is a Markov process if a future state depends 
only on the immediately preceding state. This means that given the chronological 
times t0, t1, c, tn, the family of random variables 5Xtn6 = 5x1, x2, c, xn6 is a Markov 
process if

P5Xtn = xn 0Xtn - 1
= xn - 1, c, Xt0 = x06 = P5Xtn = xn 0Xtn - 1

= xn - 16
In a Markovian process with n exhaustive and mutually exclusive states, the prob-

abilities at a specific point in time t = 0, 1, 2, c are defined as

pij = P5Xt = j 0Xt- 1 = i6, i = 1, 2, c, n, j = 1, 2, c, n, t = 0, 1, 2, c, T

This is known as the one-step transition probability of moving from state i at t - 1 to 
state j at t. By definition, we have

 a
j

pij = 1, i = 1, 2, c, n

 pij Ú 0,1i, j2 = 1, 2, c, n

The one-step transition probabilities can be presented in matrix form as:

p =  ±
p11 p12 p13 c p1n

p21 p22 p23 c p2n

c c c c c
pn1 pn2 pn3 c pnn

≤

The matrix p defines a Markov chain. It has the property that all its transition prob-
abilities pij are stationary and independent over time. Although a Markov chain may 
include an infinite number of states, the presentation in this chapter is limited to finite 
chains only, as this is the only type needed in the text.

example 17.1-3 (The Gardener Problem)

Every year, during the March-through-September growing season, a gardener uses a chemical 
test to check soil condition. Depending on the outcome of the test, productivity for the new sea-
son can be one of three states: (1) good, (2) fair, and (3) poor. Over the years, the gardener has 
observed that last year’s soil condition impacts current year’s productivity and that the situation 
can be described by the following Markov chain:
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State of the  
system next  

year 

1  2  3

p =
State of

the system
this year

 •
1
2
3
°

.2 .5 .3
0 .5 .5
0 0 1

¢

The transition probabilities show that the soil condition can either deteriorate or stay the 
same but never improve. For example, if this year’s soil condition is good (state 1), there is a 20% 
chance it will not change next year, a 50% chance it will be fair (state 2), and a 30% chance it 
will deteriorate to a poor condition (state 3). The gardener alters the transition probabilities p by 
using organic fertilizer. In this case, the transition matrix becomes:

p1 =
1
2
3
  
 £ 1 2 3
.30 .60 .10
.10 .60 .30
.05 .40 .55

≥
The use of fertilizer can lead to improvement in soil condition.

Aha! Moment: Spammers Go Markovian!

A while back I received an email from an unknown source. The message was syntactically 
correct but its content was nonsensical (e.g., “In a model, he has all solutions in parallel 
when it comes across 10 it emits 0.”). I discarded the email and assumed that the sender’s 
command of English was to blame. When the same experience was repeated in new emails, 
I decided to do a bit of research. It turned out that these syntactically correct but otherwise 
nonsensical inserts are totally computer generated and are used by spammers to bypass spam 
filters. Interestingly, the computer code used to generate these messages has its roots in 
Markov chains. The idea is to scan through a text (a paragraph, a chapter, or an entire book) 
to create a table that tallies the frequencies a word in the text is followed by other words. 
For example, in the text “It is not what you say; it is what you do.” the states of the Markov 
chain are represented by 7 words (8, if It and it are distinguishable) and two punctuations. 
There is a 100% chance that It (or it) is followed by is, and a 50-50 chance that is is followed 
by either not or what. Following this logic, the entire Markov chain can be populated with 
the transition probabilities. Once done, a new text can be generated by starting at a random 
state (e.g., what) and then randomly deciding what the next word (or punctuation) should 
be. The next word is then used to decide on the succeeding word, and so on. Further refine-
ments are of course needed to ensure that syntactical correctness and other desired features 
are accounted for.

Spammers are not the only users of this Markov model. The same model is used satiri-
cally as parody generator. The idea has also been used to compare styles of writing of different 
authors.
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17.2 AbSoLUTe AnD n-STeP TRAnSITIon PRobAbILITIeS

Given the transition matrix p of a Markov chain and the initial probabilities vector 
a102 = 5aj

102, j = 1, 2, c, n6, the absolute probabilities a1n2 = 5aj
1n2, j = 1, 2, c, n6 

after n 17  02 transitions are computed as follows:

a112 = a102p

a122 = a112p = a102pp = a102p2

a132 = a122p = a102p2p = a102p3

f

a1n2 = a102pn

The matrix pn is known as the n-step transition matrix. From these calculations, we 
can see that

pn = pn - 1p

and

pn = pn - m pm, 0 6 m 6 n

These are known as Chapman–Kolomogorov equations.

example 17.2-1 

The following transition matrix applies to the gardener problem with fertilizer (Example 17.1-3):

p =
1
2
3
  £ 1 2 3

.30 .60 .10

.10 .60 .30

.05 .40 .55

≥
The initial condition of the soil is good—that is a102 = 11, 0, 02. Determine the absolute prob-
abilities of the three states of the system after 1, 8, and 16 gardening seasons.

p8 = £ .30 .60 .10
.10 .60 .30
.05 .40 .55

≥8

= £ .101753 .525514 .372733
.101702 .525435 .372863
.101669 .525384 .372863

≥
p16 = £ .30 .60 .10

.10 .60 .30

.05 .40 .55
≥16

= £ .101659 .52454 .372881
.101659 .52454 .372881
.101659 .52454 .372881

≥
Thus, the required absolute probabilities are computed as

 a112 = 11 0 02 £ .30 .60 .10
.10 .60 .30
.05 .40 .55

≥ = 1.30 .60 .12

 a182 = 11 0 02 £ .101753 .525514 .372733
.101702 .525435 .372863
.101669 .525384 .372863

≥ = 1.101753 .525514 .3727332
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 a1162 = 11 0 02 £ .101659 .52454 .372881
.101659 .52454 .372881
.101659 .52454 .372881

≥ = 1.101659 .52454 .3728812

The rows of p8 and the vector of absolute probabilities a(8) are almost identical. The result 
is more evident for p16. It demonstrates that, as the number of transitions increases, the absolute 
probabilities become independent of the initial a(0). The resulting probabilities are known as the 
steady-state probabilities.

remarks. The computations associated with Markov chains are tedious. Template 
 excelMarkovChains.xls provides a general easy-to-use spreadsheet for carrying out 
these calculations (see the Excel Moment following Example 17.4-1).

17.3 CLASSIFICATIon oF THe STATeS In A MARkov CHAIn

The states of a Markov chain can be classified based on the transition probability pij of p.

1. A state j is absorbing if it is certain to return to itself in one transition—that is 
pjj = 1.

2. A state j is transient if it can reach another state but cannot be reached back from 
another state. Mathematically, this will happen if  lim

nS ∞
 p

ij

1n2 = 0, for all i.
3. A state j is recurrent if the probability of being revisited from other states is 1. 

This can happen if, and only if, the state is not transient.
4. A state j is periodic with period t 7 1 if a return is possible only in t, 2t, 3t, . . . steps. 

This means that pjj
1n2 = 0 when n is not divisible by t.

Based on the given definitions, a finite Markov chain cannot consist of all-transient 
states because, by definition, the transient property requires entering other “trapping” 
states and never revisiting the transient state. The “trapping” state need not be a single 
absorbing state. For example, consider the chain

p = §0 1 0 0
0 0 1 0
0 0 .3 .7
0 0 .4 .6

¥
States 1 and 2 are transient because they cannot be reentered once the system is 
“trapped” in states 3 and 4. States 3 and 4, in a way playing the role of an absorbing state, 
constitute a closed set. By definition, all the states of a closed set must communicate, 
which means that it is possible to go from any state to every other state in the set in one or 
more transitions—that is, pij

1n2 7 0 for all i ≠ j and n Ú 1. Notice that each of states 3 
and 4 can be absorbing if p33 = p44 = 1. In such a case, each state forms a closed set.

A closed Markov chain is said to be ergodic if all its states are recurrent and 
aperiodic (not periodic). In this case, the absolute probabilities after n transitions, 
a1n2 = a102pn, always converge uniquely to a limiting (steady-state) distribution that is 
independent of the initial probabilities a(0), as will be shown in Section 17.4.
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example 17.3-1 (Absorbing and Transient States)

Consider the gardener Markov chain with no fertilizer:

p = £ .2 .5 .3
0 .5 .5
0 0 0

≥
States 1 and 2 are transient because they can reach state 3 but can never be reached back. State 
3 is absorbing because p33 = 1. These classifications can also be seen when lim

nS ∞
 p

ij

1n2 = 0 is com-
puted. For example, consider

p100 =  £ 
0 0 1
0 0 1
0 0 1

≥
The result shows that, in the long run, the probability of reentering transient state 1 or 2 is zero, 
and the probability of being “trapped” in absorbing state 3 is certain.

example 17.3-2 (Periodic States)

We can test the periodicity of a state by computing pn and observing the values of pii
1n2 for 

n = 2, 3, 4, c. These values will be positive only at the corresponding period of the state. For 
example, consider

 p = £0 .6 .4
0 1 0
.6 .4 0

≥ , p2 = £ .24 .76 0
0 1 0
0 .76 .24

≥, p3 = £ 0 .904 .0960
0 1 0

.144 .856 0
≥

 p4 = £ .0567 .9424 0
0 1 0
0 .9424 .0576

≥, p5 = £ 0 .97696 .02304
0 1 0

.03456 .96544 0
≥

The results show that p11 and p33 are positive for even values of n and zero otherwise (you can 
confirm this observation by computing pn for n 7 5). This means that each of states 1 and 3 has 
period t = 2.

17.4  STeADy-STATe PRobAbILITIeS AnD MeAn ReTURn TIMeS 
oF eRGoDIC CHAInS

In an ergodic Markov chain, the steady-state probabilities are defined as

pj = lim
nS ∞

  aj
1n2, j = 0, 1, 2, c

These probabilities, which are independent of 5aj
1026, can be determined from the equations

 P = P p

 a
j
pj = 1
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(One of the equations in P  =   Pp is redundant.) What P  =   Pp says is that the 
probabilities P remain unchanged after an additional transition, and for this reason, 
they represent the steady-state distribution.

A direct by-product of the steady-state probabilities is the determination of the 
expected number of transitions before the system returns to a state j for the first time. 
This is known as the mean first return time or the mean recurrence time, and it is com-
puted in an n-state Markov chain as

mjj =
1
pj

, j = 1, 2, c, n

example 17.4-1 

To determine the steady-state probability distribution of the gardener problem with fertilizer 
(Example 17.1-3), we have

1p1 p2 p32 = 1p1 p2 p32 °
.3 .6 .1
.1 .6 .3
.05 .4 .55

¢

or

 p1 = .3p1 + .1p2 + .05p3

 p2 = .6p1 + .6p2 + .4p3

 p3 = .1p1 + .3p2 + .55p3

p1 + p2 + p3 = 1

(Any one of the first three equations is redundant.) The solution is p1 = 0.1017, p2 = 0.5254, 
and p3 = 0.3729—meaning that in the long run the soil condition will be good 10% of the time, 
fair 52% of the time, and poor 37% of the time.

The mean first return times are computed as

m11 =
1

.1017
= 9.83, m22 =

1
.5254

= 1.9, m33 =
1

.3729
= 2.68

This means that, on the average, it will take approximately 10 gardening seasons for the soil to 
return to a good state, 2 seasons to return to a fair state, and 3 seasons to return to a poor state. 
These results point to a less promising outlook for the soil condition under the proposed use of 
fertilizers. A more aggressive program should improve the picture. For example, consider the 
following transition matrix in which the probabilities of moving to a good state are higher than 
in the previous matrix:

p = °
.35 .6 .05
.3 .6 .1
.25 .4 .35

¢

In this case, p1 = 0.31, p2 = 0.58, and p3 = 0.11, which yields m11 = 3.2, m22 = 1.7, and 
m33 = 8.9, a reversal of the bleak outlook given previously.
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excel Moment

Figure 17.1 applies the general Excel template excelMarkovChains.xls to the gardener example. 
The template computes n-step, absolute, and steady-state probabilities, and mean return time for 
any Markov chain. The steps are self-explanatory. In step 2a, you may override the default state 
codes (1, 2, 3, . . .) by a code of your choice, and then click the button located in cell L2. The new 
codes will automatically transfer throughout the spreadsheet when you execute step 4.

example 17.4-2 (Cost Model)

Consider the gardener problem with fertilizer (Example 17.1-3). The garden needs two bags of 
fertilizer if the soil is good. The amount is increased by 25% if the soil is fair and 60% if the soil 
is poor. The cost of the fertilizer is $50 per bag. The gardener estimates an annual yield of $250 if 
no fertilizer is used and $420 if fertilizer is applied. Is it economical to use fertilizer?

Using the steady-state probabilities in Example 17.4-1, we get

 Expected annual cost of fertilizer = 2 * $50 * p1 + 11.25 * 22 * $50 * p2

 + 11.60 * 22 * $50 * p3

 = 100 * .1017 + 125 * .5254 + 160 * .3729

 = $135.51

Differential increase in the annual value of the yield = $420 - $250 = $170
The use of fertilizer is recommended.

17.5 FIRST PASSAGe TIMe

In Section 17.4, we used the steady-state probabilities to compute mjj, the mean first 
return time for state j. In this section, we are concerned with the mean first passage time 
mij, defined as the expected number of transitions to reach state j from state i for the 

FiguRE 17.1 

Excel spreadsheet for Markov chain computations (file excelMarkovChains.xls)
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first time. The calculations are rooted in the determination of the probability of at least 
one passage from state i to state j, defined as fij = g∞

n = 1 f ij
1n2, where f ij

1n2 is the prob-
ability of a first passage from state i to state j in n transitions.

1. If fij 6 1, it is not certain that the system will ever pass from state i to state j and 
mij = ∞ .

2. If fij = 1, the Markov chain is ergodic, and the mean first passage time from state 
i to state j is computed as

mij = a
∞

n = 1
nf ij

1n2

A straightforward way to compute mij is to use the following idea: a return from 
state i to state j can occur in one transition with probability pij, or it can occur by tran-
siting through another state k with probability pik followed by a transition from k to 
j, either directly or through (multiple) other states. In the first case the length of the 
transition is 1, and the second the expected transition length is 1 + mkj. This translates 
into the following equation

mij = 1pij + a
k ≠ j

11 + mkj2pik = a
k

pik + a
k ≠ j

mkjpik = 1 + a
k ≠ j

mkjpik

or, for Markov chain with m states, we have

mij - a
k ≠ j

mkjpik = 1, i, j = 1, 2, c, m

These long-form equations reduce neatly to the following matrix form as is demon-
strated in the Example 17.5-1 

7mij 7 = 1I - Nj2 - 11, j ≠ i

where

 I = 1m - 12-identity matrix
 Nj = transition matrix p less its jth row and jth column of target state j
 1 = 1m - 12 column vector with all elements equal to 1

The matrix operation 1I - Nj2 - 11 essentially sums the columns of 1I - Nj2 - 1.

example 17.5-1 

Consider the gardener Markov chain with fertilizers once again.

p = °
.30 .60 .10
.10 .60 .30
.05 .40 .55

¢

To demonstrate the computation of the first passage time to a specific state from all 
others, consider the passage from states 2 and 3 (fair and poor) to state 1 (good)—meaning 
j = 1.
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First we use the long-form equations to justify the use of the matrix formula given above:

m21 - .60m21 - .30m31 = 1

m31 - .40m21 - .55m31 = 1

These equations can be written in matrix form as

c a1 0
0 1

b - a .60 .30
.40 .55

b dM = a1
1
b

or,

c I - N1 dM = 1 1 M = c I - N1 d
- 1

1

Continuing with example,

1I - N12 - 1 = a .4 - .3
- .4 .45

b
- 1

= a7.50 5.00
6.67 6.67

b

Thus,

am21

m31
b = a7.50 5.00

6.67 6.67
b a1

1
b = a12.50

13.34
b

Thus, on the average, it will take 12.5 seasons to pass from fair to good soil, and 13.34 seasons to 
go from bad to good soil.

Similar calculations can be carried out to obtain m12 and m32 from 1I - N22 and m13 and m23 
from 1I - N32, as demonstrated in Excel moment below.

excel Moment

Excel template excelFirstPassTime.xls can be used to carry out the calculations of the mean first 
passage times. Figure 17.2 shows the calculations associated with Example 17.5-1. Step 2 of the 
spreadsheet automatically initializes the transition matrix p to zero values per the size given in 
step 1. In step 2a, you may override the default state codes in row 6 with a code of your choice. The 
code is then transferred automatically throughout the spreadsheet. After you enter the transition 
probabilities, step 3 creates the matrix I - p. Step 4 is carried out entirely by you using I - p as 
the source for creating I - Nj 1 j = 1, 2, and 32. You can do so by copying the entire I - p and its 
state codes and pasting it in the target location and then using appropriate Excel Cut and Paste 
operations to rid I - p of row j and column j. For example, to create I - N2, first copy I - p and 
its state codes to the selected target location. Next, highlight column 3 of the copied matrix, cut 
it, and paste it in column 2, thus eliminating column 2. Similarly, highlight row 3 of the resulting 
matrix, cut it, and then paste it in row 2, thus eliminating row 2. The created I - N2 automatically 
carries its correct state code.

Once I - Nj is created, the inverse, 1I - Nj2 - 1, is computed in the target location. The 
 associated operations are demonstrated by inverting 1I - N12 in Figure 17.2:

1. Enter the formula = MINVERSE1B18:C192 in E18.
2. Highlight E18:F19, the area where the inverse will reside.
3. Press F2.
4. Press CTRL + SHIFT + ENTER.
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The values of the first passage times from states 2 and 3 to state 1 are then computed by 
summing the rows of the inverse—that is, by entering = SUM1E18:F182 in H18 and then copy-
ing H18 into H19. After creating I - N for i = 2 and i = 3, the remaining calculations are auto-
mated by copying E18:F19 into E22:F23 and E26:F27, and copying H18:H19 into H22:H23 and 
H26:H27.

17.6 AnALySIS oF AbSoRbInG STATeS

In the gardener problem, without fertilizer the transition matrix is given as

p = °
.2 .5 .3
0 .5 .5
0 0 1

¢

States 1 and 2 (good and fair soil conditions) are transient, and State 3 (poor soil 
condition) is absorbing, because once in that state the system will remain there 
 indefinitely. A Markov chain may have more than one absorbing state. For example, 
an employee may remain employed with the same company until full retirement or 

FiguRE 17.2 

Excel spreadsheet calculations of first passage time of Example 17.5-1 (file excelFirstPassTime.xls)



640   Chapter 17    Markov Chains

may quit early (two absorbing states). In these types of chains, we are interested 
in determining the probability of reaching absorption and the expected  number of 
transitions to absorption, given that the system starts in a specific transient state. For 
example, in the gardener Markov chain given above, if the soil is currently good, we 
will be interested in determining the average number of gardening seasons till the 
soil becomes poor and also the probability associated with this transition.

The analysis of Markov chains with absorbing states can be carried out conve-
niently using matrices. First, the Markov chain is partitioned in the following manner:

p = aN a
0 I

b

The arrangement requires all the absorbing states to occupy the southeast corner of 
the new matrix. For example, consider the following transition matrix:

p =

1
2
3
4

  § 1 2 3 4
.2 .3 .4 .1
0 1 0 0
.5 .3 0 .2
0 0 0 1

¥
The matrix p can be rearranged and partitioned as

p* =

1
3
2
4

  § 1 3 2 4
.2 .4 .3 .1
.5 0 .3 .2
0 0 1 0
0 0 0 1

¥
In this case, we have

N = a .2 .4
.5 0

b , a = a .3 .1
.3 .2

b , I = a1 0
0 1

b

Given the definition of a and N and the unit column vector 1 (of all 1 elements), 
it can be shown that

Expected time in state j starting in state i = element 1i, j2  of 1I - N2 - 1

Expected time to absorption = 1I - N2 - 11

Probability of absorption = 1I - N2 - 1a

example 17.6-11

A product is processed on two sequential machines, I and II. Inspection takes place after a prod-
uct unit is completed on either machine. There is a 5% chance that the unit will be junked before 

1Adapted from J. Shamblin and G. Stevens, Operations Research: A Fundamental Approach, McGraw-Hill, 
New York, Chapter 4, 1974.
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inspection. After inspection, there is a 3% chance the unit will be junked, and a 7% chance of 
being returned to the same machine for reworking. Else, a unit passing inspection on both ma-
chines is good.

(a) For a part starting at machine I, determine the average number of visits to each 
state.

(b) If a batch of 1000 units is started on machine I, determine the average number of 
completed good units.

For the Markov chain, the production process has 6 states: start at I (s1), inspect after I (i1), 
start at II (s2), inspect after II (i2), junk after inspection I or II (J), and good after II (G). States 
J and G are absorbing states. The transition matrix is given as

p =

s1
i1
s2
i2
J
G

 ¶ s1 i1 s2 i2 J G
0 .95 0 0 .05 0

.07 0 .9 0 .03 0
0 0 0 .95 .05 0
0 0 .07 0 .03 .9
0 0 0 0 1 0
0 0 0 0 0 1

∂
Thus,

 N =

s1
i1
s2
i2

§ s1 i1 s2 i2
0 .95 0 0

.07 0 .9 0
0 0 0 .95
0 0 .07 0

 ¥ ,
 
a = § J G

.05 0

.03 0

.05 0

.03 .9

¥
Using the spreadsheet calculations in excelEx17.6-1.xls (see the Excel Moment following Example 
17.5-1), we get

 1I - N2-1 = ±
1 - .95 0 0

- .07 1 - .9 0
0 0 0 - .95
0 0 - .07 1

≤

-1

= ±
1.07 1.02 .98 0.93
0.07 1.07 1.03 0.98

0 0 1.07 1.02
0 0 0.07 1.07

≤

 1I - N2 - 1a = ±
1.07 1.02 .98 0.93
0.07 1.07 1.03 0.98

0 0 1.07 1.02
0 0 0.07 1.07

≤   ±
.05 0
.03 0
.05 0
.03 .9

≤ = ±
.16 .84
.12 .88
.08 .92
.04 .96

≤

The top row of 1I - N2 - 1 shows that, on the average, machine I is visited 1.07 times, inspec-
tion I is visited 1.02 times, machine II is visited .98 time, and inspection II is visited .93 time. The 
reason the number of visits in machine I and inspection I is greater than 1 is because of rework 
and reinspection. On the other hand, the corresponding values for machine II are less than 1 
because some parts are junked before reaching machine II. Indeed, under perfect conditions (no 
parts junked and no rework), the matrix 1I - N2 - 1 will show that each station is visited exactly 
once (try it by assigning a transition probability of 1 for all the states). Of course, the duration 
of stay in each state could differ. For example, if the processing times at machines I and II are 
20 and 30 minutes and if the inspection times at I and II are 5 and 7 minutes, then a part starting 
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at machine 1 will be processed (i.e., either junked or completed) in 1.07 * 20 + 1.02 * 5 +  
.98 * 30 + .93 * 7 = 62.41 minutes.

To determine the number of completed parts in a starting batch of 1000 pieces, we can see 
from the top row of 1I - N2 - 1a that

Probability of a piece being junked = .16

Probability of a piece being completed = .84

This means that 1000 * .84 = 840 pieces will be completed in a starting batch of 1000.
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PRobLeMS 

Section Assigned Problems

17.1 17-1 to 17-4
17.2 17-5 to 17-9
17.3 17-10 to 17-12
17.4 17-13 to 17-28
17.5 17-29 to 17-33
17.6 17-34 to 17-45

 17-1. An engineering professor acquires a new computer once every two years. The professor 
can choose from three models: M1, M2, and M3. If the present model is M1, the next 
computer can be M2 with probability .25 or M3 with probability .1. If the present model 
is M2, the probabilities of switching to M1 and M3 are .5 and .15, respectively. And, if 
the present model is M3, then the probabilities of purchasing M1 and M2 are .7 and .2, 
respectively. Represent the situation as a Markov chain.

 *17-2. A police car is on patrol in a neighborhood known for its gang activities. During 
a patrol, there is a 60% chance of responding in time to the location where help 
is needed; else regular patrol will continue. Upon receiving a call, there is a 10% 
chance for cancellation (in which case normal patrol is resumed) and a 30% chance 
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that the car is already responding to a previous call. When the police car arrives 
at the scene, there is a 10% chance that the instigators will have fled (in which 
case the car returns back to patrol) and a 40% chance that apprehension is made 
immediately. Else, the officers will search the area. If apprehension occurs, there is a 
60% chance of transporting the suspects to the police station; else they are released 
and the car returns to patrol. Express the probabilistic activities of the police patrol 
in the form of transition matrix.

 17-3. Cyert and Associates (1963). Bank1 offers loans which are either paid when due or are 
delayed. If the payment on a loan is delayed by more than 4 quarters (1 year), Bank1 
considers the loan a bad debt and writes it off. The following table provides a sample of 
Bank1’s past experience with loans.

Loan amount Quarters late Payment history

$20,000 0 $2000 paid, $3000 delayed by an extra quarter, $3000 delayed by 
2 extra quarters, and the rest delayed 3 extra quarters.

$50,000 1 $4000 paid, $12,000 delayed by an extra quarter, $6000 delayed 
by 2 extra quarters, and the rest delayed by 3 extra quarters.

$75,000 2 $7500 paid, $15,000 delayed by an extra quarter, and the rest 
delayed by 2 extra quarters.

$84,000 3 $42,000 paid and the rest delayed by an extra quarter.
$200,000 4 $50,000 paid.

Express Bank1’s loan situation as a Markov chain.
 17-4. Pliskin and Tell (1981). Patients suffering from kidney failure can either get a 

transplant or undergo periodic dialysis. During any one year, 30% undergo cadaveric 
transplants, and 10% receive living-donor kidneys. In the year following a transplant, 
30% of those who receive the cadaveric transplants and 15% of living-donor recipients 
go back to dialysis. Death percentages among the two groups are 20% and 10%, 
respectively. Of those in the dialysis pool, 10% die, and of those who survive more than 
one year after a transplant, 5% die and 5% go back to dialysis. Represent the situation 
as a Markov chain.

 17-5. Consider Problem 17-1. Determine the probability that the professor will purchase the 
current model in 4 years.

 *17-6. Consider Problem 17-2. If the police car is currently at a call scene, determine the 
probability that an apprehension will take place in two patrols.

 17-7. Consider Problem 17-3. Suppose that Bank1 currently has $1,000,000 worth of 
outstanding loans. Of these, $300,000 have just been paid, $150,000 are one quarter 
late, $250,000 are two quarters late, $200,000 are three quarters late, and the rest are 
over four quarters late. What would the picture of these loans be like after two cycles 
of loans?

 17-8. Consider Problem 17-4.
(a) For a patient who is currently on dialysis, what is the probability of receiving a 

transplant in two years?

(b) For a patient who is currently a more-than-one-year survivor, what is the probabil-
ity of surviving four more years?

 17-9. A die-rolling game uses a 4-square grid. The squares are designated clockwise as A, B, 
C, and D with monetary rewards of $4, – $2, – $6, and $9, respectively. Starting at square 
A, roll the die to determine the next square to move to in a clockwise direction. For 
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example, if the die shows 2, we move to square C. The game is repeated using the last 
square as a starting point.
(a) Express the problem as a Markov chain.

(b) Determine the expected gain or loss after the die is rolled 5 times.
17-10. Classify the states of the following Markov chains. If a state is periodic, determine its 

period:

*(a) °
0 1 0
0 0 1
1 0 0

¢

*(b) ±

1
2 1

4 1
4 0

0 0 1 0
1
3 0 1

3 1
3 

0 0 0 1

≤

(c) ¶0 1 0 0 0 0
0 .5 .5 0 0 0
0 .7 .3 0 0 0
0 0 0 1 0 0
0 0 0 0 .4 .6
0 0 0 0 .2 8

∂
(d) °

.1 0 .9

.7 .3 0

.2 .7 .1
¢

17-11. A game involves four balls and two urns. A ball in either urn has 50:50 chance of being 
transferred to the other urn. Represent the game as a Markov chain, and show that its 
states are periodic with period t = 2.

17-12. A museum has six rooms of equal sizes arranged in the form of a grid with two rows 
and three columns. Each interior wall has a door that connects adjacent rooms. Museum 
guards move about the rooms through the interior doors. Represent the movements of 
each guard in the museum as a Markov chain, and show that its states are periodic with 
period t = 2.

*17-13. On a sunny day, MiniGolf can gross $2000 in revenues. If the day is cloudy, revenues 
drop by 20%. A rainy day will reduce revenues by 80%. If today’s weather is sunny, 
there is an 80% chance it will remain sunny tomorrow with no chance of rain. If it is 
cloudy, there is a 20% chance that tomorrow will be rainy and a 30% chance it will be 
sunny. Rain will continue through the next day with a probability of .8, but there is a 
10% chance it may be sunny.
(a) Determine the expected daily revenues for MiniGolf.

(b) Determine the average number of days the weather will not be sunny.
17-14. Joe loves to eat out in area restaurants. His favorite foods are Mexican, Italian, Chinese, 

and Thai. On the average, Joe pays $12.00 for a Mexican meal, $17.00 for an Italian 
meal, $11.00 for a Chinese meal, and $13.00 for a Thai meal. Joe’s eating habits are 
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predictable: There is a 70% chance that today’s meal is a repeat of yesterday’s and equal 
probabilities of switching to one of the remaining three.
(a) How much does Joe pay on the average for his daily dinner?

(b) How often does Joe eat Mexican food?
17-15. Some ex-cons spend the rest of their lives either free, on trial, in jail, or on probation. 

At the start of each year, statistics show that there is 50% chance that a free ex-con will 
commit a new crime and go on trial. The judge may send the ex-con to jail with probability 
.6 or grant probation with probability .4. Once in jail, 10% of ex-cons will be set free for 
good behavior. Of those who are on probation, 10% commit new crimes and are arraigned 
for new trials, 50% will go back to finish their sentence for violating probation orders, and 
10% will be set free for lack of evidence. Taxpayers underwrite the cost associated with the 
punishment of the ex-felons. It is estimated that a trial will cost about $8000, an average jail 
sentence will cost $25,000, and an average probation period will cost $2000. 
(a) Determine the expected cost per ex-con.

(b) How often does an ex-con return to jail? Go on trial? Be set free?
17-16. A store sells a special item whose daily demand can be described by the following pdf:

Daily demand, D 0 1 2 3
P{D} .1 .3 .4 .2

The store, using daily review, is comparing two ordering policies: (1) Order up to 3 units 
if the stock level is less than 2; else do not order. (2) Order 3 units if the stock level is 
zero; else do not order. The fixed ordering cost per shipment is $300, and the cost of 
holding excess units per unit per day is $3. Immediate delivery is expected.
(a) Which policy should the store adopt to minimize the total expected daily cost of 

ordering and holding?

(b) For the two policies, compare the average number of days between successive 
inventory depletions.

*17-17. There are three categories of income tax filers in the United States: those who never 
evade taxes, those who sometimes do it, and those who always do it. An examination 
of audited tax returns from 1 year to the next shows that of those who did not evade 
taxes last year, 95% continue to be in the same category this year, 4% move to the 
“sometimes” category, and the remainder move to the “always” category. For those 
who sometimes evade taxes, 6% move to “never,” 90% stay the same, and 4% move to 
“always.” As for the “always” evaders, the respective percentages are 0%, 10%, and 90%.
(a) Express the problem as a Markov chain.

(b) In the long run, what would be the percentages of “never,” “sometimes,” and 
“ always” tax categories?

(c) Statistics show that a taxpayer in the “sometimes” category evades taxes on about 
$5000 per return and in the “always” category on about $12,000. Assuming that 
the taxpayer population is 70 millions and that the average income tax rate is 12%, 
determine the annual reduction in collected taxes due to evasion.

17-18. Warehouzer owns a renewable forest land for growing pine trees. Trees can fall into one 
of four categories depending on their age: baby (0–5 years), young (5–10 years), mature 
(11–15 years), and old (more than 15 years). Ten percent of baby and young trees die 
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before reaching the next age group. For mature and old trees, 50% are harvested and 
only 5% die. Because of the renewal nature of the operation, all harvested and dead 
tree are replaced with new (baby) trees by the end of next 5-year cycle.
(a) Express the forest dynamics as a Markov chain.

(b) If the forest land can hold a total of 1,000,000 trees, determine the long-run 
composition of the forest.

(c) If a new tree is planted at the cost of $1.50 per tree and a harvested tree has 
a market value of $25, determine the average annual income from the forest 
operation.

17-19. Population dynamics is impacted by the continual movement of people who are 
seeking better quality of life or better employment. The city of Mobile has an inner-city 
population, a suburban population, and a surrounding rural population. The census 
taken in 10-year intervals shows that 10% of the rural population move to the suburbs 
and 5% to the inner city. For the suburban population, 30% move to rural areas and 
15% to the inner city. The inner-city population would not move into suburbs, but 20% 
of them move to the quiet rural life.
(a) Express the population dynamics as a Markov chain.

(b) If the greater Mobile area currently includes 20,000 rural residents, 100,000 subur-
banites, and 30,000 inner-city inhabitants, what will the population distribution be 
in 10 years? In 20 years?

(c) Determine the long-run population picture of Mobile.
17-20. A car rental agency has offices in Phoenix, Denver, Chicago, and Atlanta. The agency 

allows one- and two-way rentals so that cars rented in one location may end up in 
another. Statistics show that at the end of each week 70% of all rentals are two way. As 
for the one-way rentals: From Phoenix, 20% go to Denver, 60% to Chicago, and the rest 
goes to Atlanta; from Denver, 40% go to Atlanta and 60% to Chicago; from Chicago, 
50% go to Atlanta and the rest to Denver; and from Atlanta, 80% go to Chicago, 10% 
to Denver, and 10% to Phoenix.
(a) Express the situation as a Markov chain.

(b) If the agency starts the week with 100 cars in each location, what will the distribu-
tion be like in two weeks?

(c) If each location is designed to handle a maximum of 110 cars, would there be a 
long-run space availability problem in any of the locations?

(d) Determine the average number of weeks that elapse before a car is returned to its 
originating location.

17-21. A bookstore restocks a popular book to a level of 100 copies at the start of each day. 
The data for the last 30 days provide the following end-of-day inventory position: 1, 2, 0, 
3, 2, 1, 0, 0, 3, 0, 1, 1, 3, 2, 3, 3, 2, 1, 0, 2, 0, 1, 3, 0, 0, 3, 2, 1, 2, 2.
(a) Represent the daily inventory as a Markov chain.

(b) Determine the steady-state probability that the bookstore will run out of books in 
any one day.

(c) Determine the expected daily inventory.

(d) Determine the average number of days between successive zero inventories.
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17-22. In Problem 17-21, suppose that the daily demand can exceed supply, which gives rise to 
shortage (negative inventory). The end-of-day inventory level for the past 30 days is given 
as: 1, 2, 0, -2, 2, 2, -1, -1, 3, 0, 0, 1, -1, -2, 3, 3, -2, -1, 0, 2, 0, -1, 3, 0, 0, 3, -1, 1, 2, -2.
(a) Express the situation as a Markov chain.

(b) Determine the long-term probability of a surplus inventory in a day.

(c) Determine the long-term probability of a shortage inventory in a day.

(d) Determine the long-term probability that the daily supply meets the daily demand 
exactly.

(e) If the holding cost per (end-of-day) surplus book is $.15 per day and the penalty cost 
per shortage book is $4.00 per day, determine the expected inventory cost per day.

17-23. A store starts a week with at least 3 PCs. The demand per week is estimated at 0 with 
probability .15, 1 with probability .2, 2 with probability .35, 3 with probability .25, and 
4 with probability .05. Unfilled demand is backlogged. The store’s policy is to place an 
order for delivery at the start of the following week whenever the inventory level drops 
below 3 PCs. The new replenishment always brings the stock back to 5 PCs.
(a) Express the situation as a Markov chain.

(b) Suppose that the week starts with 4 PCs. Determine the probability that an order 
will be placed at the end of two weeks.

(c) Determine the long-run probability that no order will be placed in any week.

(d) If the fixed cost of placing an order is $200, the holding cost per PC per week is 
$5, and the penalty cost per shortage PC per week is $20, determine the expected 
inventory cost per week.

17-24. Solve Problem 17-23, assuming that the order size, when placed, is exactly 5 pieces.
17-25. In Problem 17-24, suppose that the demand for the PCs is 0, 1, 2, 3, 4, or 5 with equal 

probabilities. Further assume that the unfilled demand is not backlogged, but that the 
penalty cost is still incurred.
(a) Express the situation as a Markov chain.

(b) Determine the long-run probability that a shortage will take place.

(c) If the fixed cost of placing an order is $200, the holding cost per PC per week is 
$5, and the penalty cost per shortage PC per week is $20, determine the expected 
ordering and inventory cost per week.

17-26. The federal government tries to boost small business activities by awarding annual 
grants for projects. All bids are competitive, but the chance of receiving a grant is 
highest if the owner has not received any during the last three years and lowest if 
awards were given in each of the last three years. Specifically, the probability of getting 
a grant if none were awarded in the last 3 years is .9. It decreases to .8 if one grant was 
awarded, .7 if two grants were awarded, and only .5 if 3 were received.
(a) Express the situation as a Markov chain.

(b) Determine the expected number of awards per owner per year.
17-27. Jim Bob has a history of receiving many fines for driving violations. Unfortunately for 

Jim Bob, modern technology can keep track of his previous fines. As soon as he has 
accumulated 4 tickets, his driving license is revoked until he completes a new driver 
education class, in which case he starts with a clean slate. Jim Bob is most reckless 
immediately after completing the driver education class and he is invariably stopped by 
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the police with a 50-50 chance of being fined. After each new fine, he tries to be more 
careful, which reduces the probability of a fine by .1.
(a) Express Jim Bob’s problem as Markov chain.

(b) What is the average number of times Jim Bob is stopped by police before his 
license is revoked again?

(c) What is the probability that Jim Bob will lose his license?

(d) If each fine costs $100, how much, on the average, does Jim Bob pay between 
 successive suspensions of his license?

17-28. The daily weather in Fayettville, Arkansas, can be cloudy (C), sunny (S), rainy (R), or  
windy (W). Records over the past 90 days are CCSWRRWSSCCCRCSSWRCRRRR 
CWSSWRWWRCRRRRCWSSWRWCCSWRRWSSCCCRCSSWSSWRWWRCR 
RRRCWSSWRWCCSWRRWSSS. Based on these records, use a Markov chain to 
determine the probability that a typical day in Fayetteville will be cloudy, sunny, rainy, 
or windy.

*17-29. A mouse maze consists of the paths shown in Figure 17.3. Intersection 1 is the 
maze entrance, and intersection 5 is the exit. At any intersection, the mouse has 
equal probabilities of selecting any of the available paths. When the mouse reaches 
intersection 5, the experiment is repeated by reentering the maze at intersection 1.
(a) Express the maze as a Markov chain.

(b) Determine the probability that, starting at intersection 1, the mouse will reach the 
exit after three trials.

(c) Determine the long-run probability that the mouse will locate the exit intersection.

(d) Determine the average number of trials needed to reach the exit point from inter-
section 1.

17-30. In Problem 17-29, intuitively, if more options (routes) are added to the maze, will 
the average number of trials needed to reach the exit point increase or decrease? 
Demonstrate the answer by adding a route between intersections 3 and 4.

17-31. Jim and Joe start a game with five tokens, three for Jim and two for Joe. A coin is 
tossed, and if the outcome is heads, Jim gives Joe a token; else Jim gets a token from 
Joe. The game ends when Jim or Joe has all the tokens. At this point, there is 30% 
chance that Jim and Joe will continue to play the game, again starting with three tokens 
for Jim and two for Joe.
(a) Represent the game as a Markov chain.

(b) Determine the probability that Joe will win in three coin tosses. That Jim will win in 
three coin tosses.

2

1

3

4

5 FiguRE 17.3 

Mouse maze for Problem 17-29
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(c) Determine the probability that a game will end in Jim’s favor. Joe’s favor.

(d) Determine the average number of coin tosses needed before Jim wins. Joe wins.
17-32. An amateur gardener with training in botany is tinkering with cross-pollinating pink 

irises with red, orange, and white irises. Annual experiments show that pink can produce 
60% pink and 40% white; red can produce 40% red, 50% pink, and 10% orange; orange 
can produce 25% orange, 50% pink, and 25% white; and white can produce 50% pink 
and 50% white.
(a) Express the gardener situation as a Markov chain.

(b) If the gardener started the cross-pollination with equal numbers of each type of 
iris, what would the distribution be like after 5 years? In the long run?

(c) Determine the average number of years a red iris would take to produce a white 
bloom

*17-33. Customers tend to exhibit loyalty to product brands but may be persuaded through 
clever marketing and advertising to switch brands. Consider the case of three brands: 
A, B, and C. Customer “unyielding” loyalty to a given brand is estimated at 75%, 
giving the competitors only a 25% margin to realize a switch. Competitors launch 
their advertising campaigns once a year. For brand A customers, the probabilities of 
switching to brands B and C are .1 and .15, respectively. Customers of brand B are likely 
to switch to A and C with probabilities .2 and .05, respectively. Brand C customers can 
switch to brands A and B with equal probabilities.
(a) Express the situation as a Markov chain.

(b) In the long run, how much market share will each brand command?

(c) How long on the average will it take for a brand A customer to switch to brand B? 
To brand C?

17-34. In Example 17.6-1, suppose that the labor cost for machines I and II is $25 per hour and 
that for inspection is only $15 per hour. Further assume that it takes 30 minutes and 
20 minutes to process a piece on machines I and II, respectively. The inspection time 
at each of the two stations is 10 minutes. Determine the labor cost associated with a 
completed (good) piece.

*17-35. When I borrow a book from the city library, I try to return it after one week. Depending 
on the length of the book and my free time, there is a 30% chance that I keep it for 
another week. If I have had the book for two weeks, there is a 10% chance that I’ll keep 
it for an additional week. Under no condition do I keep it for more than three weeks.
(a) Express the situation as a Markov chain.

(b) Determine the average number of weeks before returning a book to the library.
17-36. In Casino del Rio, a gambler can bet in whole dollars. Each bet will either gain $1 with 

probability .4 or lose $1 with probability .6. Starting with three dollars, the gambler will 
quit if all money is lost or the accumulation is doubled.
(a) Express the problem as a Markov chain.

(b) Determine the average number of bets until game ends.

(c) Determine the probability of ending the game with $6. Of losing all $3.
17-37. Jim must make five years worth of progress to complete his doctorate degree at ABC 

University. However, he enjoys the life of a student and is in no hurry to finish his 
degree. In any academic year there is a 50% chance he may take the year off and a 50% 
chance of pursuing the degree full time. After completing three academic years, there is 
a 30% chance that Jim may “bail out” and simply get a master’s degree, a 20% chance 
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of taking the next year off but continuing in the Ph.D. program, and 50% chance of 
attending school full time toward his doctorate.
(a) Express Jim’s situation as a Markov chain.

(b) Determine the expected number of academic years before Jim’s student life comes 
to an end.

(c) Determine the probability that Jim will end his academic journey with only a 
master’s degree.

(d) If Jim’s fellowship pays an annual stipend of $18,000 (but only when he attends 
school), how much will he be paid before ending up with a degree?

17-38. An employee who is now 55 years old plans to retire at the age of 62, but does not rule 
out the possibility of quitting earlier. At the end of each year, he weighs his options 
(and state of mind regarding work). The probability of quitting after one year is only .1 
but seems to increase by approximately .01 with each additional year.
(a) Express the problem as a Markov chain.

(b) What is the probability that the employee will stay with the company until planned 
retirement at age 62? 

(c) At age 57, what is the probability that the employee will call it quits?

(d) At age 58, what is the expected number of years before the employee is off the payroll?
17-39. In Problem 17-3,

(a) Determine the expected number of quarters until a debt is either repaid or lost as 
bad debt.

(b) Determine the probability that a new loan will be written off as bad debt. Repaid 
in full.

(c) If a loan is 6 months old, determine the number of quarters until its status is settled.
17-40. In a men’s singles tennis tournament, Andre and John are playing a match for the 

championship. The match is won when either player wins three out of five sets. Statistics 
show that there is 60% chance that Andre will win any one set.
(a) Express the match as a Markov chain.

(b) On the average, how long will the match last, and what is the probability that  
Andre will win the championship?

(c) If the score is 1 set to 2 in John’s favor, what is the probability that Andre will win?

(d) In Part (c), determine the average number of sets till the match ends, and interpret 
the result.

*17-41. Students at U of A have expressed dissatisfaction with the fast pace at which the math 
department is teaching the one-semester Cal I. To cope with this problem, the math 
department is now offering Cal I in 4 modules. Students will set their individual pace for 
each module and, when ready, will take a test that will elevate them to the next module. 
The tests are given once every 4 weeks, so that a diligent student can complete all 4 
modules in one semester. After a couple of years with this self-paced program, 20% of 
the students did not complete the first module on time. The percentages for modules 2 
through 4 were 22%, 25%, and 30%, respectively.
(a) Express the problem as a Markov chain.

(b) On the average, would a student starting with module 1 at the beginning of the 
current semester be able to take Cal II the next semester (Cal I is a prerequisite for 
Cal II)?
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(c) Would a student who has completed only one module last semester be able to 
 finish Cal I by the end of the current semester?

(d) Do you recommend extending the module idea to other basic classes? Explain.
17-42. At U of A, promotion from assistant to associate professor requires the equivalent 

of five points (years) of acceptable performance. Performance reviews are conducted 
once a year, and the candidate is given an average rating, a good rating, or an excellent 
rating. An average rating is the same as probation, and the candidate gains no points 
toward promotion. A good rating is equivalent to gaining one point, and an excellent 
rating adds two points. Statistics show that in any year 10% of the candidates are rated 
average and 70% are rated good, and the rest are rated excellent.
(a) Express the problem as a Markov chain.

(b) Determine the average number of years until a new assistant professor is promoted.
17-43. Pfifer and Carraway (2000). A company targets its customers through direct mail 

advertising. During the first year, the probability that the customer will make a 
purchase is .5, which decreases to .4 in year 2, .3 in year 3, and .2 in years 4. If no 
purchases are made in four consecutive years, the customer is deleted from the mailing 
list. Making a purchase resets the count back to zero.
(a) Express the situation as a Markov chain.

(b) Determine the expected number of years a new customer will be on the  
mailing list.

(c) If a customer has not made a purchase in two years, determine the expected  
number of years on the mailing list.

17-44. An NC machine is designed to operate properly with power voltage setting between 
108 and 112 volts. If the voltage falls outside this range, the machine will stop. The 
power regulator for the machine can detect variations in increments of one volt. 
Experience shows that change in voltage takes place once every 15 minutes. Within the 
admissible range (118 to 112 volts), voltage can go up by 1 volt, stay the same, or go 
down by one volt, all with equal probabilities.
(a) Express the situation as a Markov chain.

(b) Determine the probability that the machine will stop because the voltage is low. 
High.

(c) What should be the ideal voltage setting that will render the longest working 
 duration for the machine?

17-45. Consider Problem 17-4, dealing with patients suffering from kidney failure. Determine 
the following measures:
(a) The expected number of years a patient stays on dialysis.

(b) The longevity of a patient who starts on dialysis.

(c) The life expectancy of a patient who survives 1 year or longer after a transplant.

(d) The expected number of years before an at-least-1-year transplant survivor goes 
back to dialysis or dies.

(e) The quality of life for those who survive a year or more after a transplant 
 (presumably, spending fewer years on dialysis signifies a better quality of life).
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Chapter 18

Queuing Systems

Real-Life Application—Study of an Internal Transport System  
in a Manufacturing Plant

Three trucks are used in a manufacturing plant to transport materials. The trucks wait 
in a central parking lot until requested. A truck answering a request will travel to the 
customer location, carry a load to its destination, and then return to the central parking 
lot. The principal departments using the service are production, workshop, and main-
tenance. Complaints about long waits for a free truck have prompted users, especially 
production, to request adding a fourth truck to the fleet. This is an unusual application, 
because queuing theory is used to show that the source of long delays is mainly logisti-
cal and that with a simple change in the operating procedure of the truck pool, a fourth 
truck is not needed. Details of the study are given at the end of the chapter.

18.1 Why STudy QueueS?

Waiting for service is part of daily life. We wait for service in restaurants, we queue up 
to board a plane, and we line up for service in post offices. And the waiting phenom-
enon is not an experience limited to human beings: Jobs wait to be processed on a 
machine, planes circle in stack before given permission to land, and cars stop at traffic 
lights. Eliminating waiting altogether is not a feasible option because the cost of install-
ing and operating the service facility can be prohibitive. Our only recourse is to strike 
a balance between cost of offering a service and the cost of waiting experienced by 
customers. Queuing analysis is the vehicle for achieving this goal.

The study of queues deals with quantifying the phenomenon of waiting using 
representative measures of performance, such as average queue length, average wait-
ing time in queue, and average facility utilization. The following example demonstrates 
how these measures can be used to design a service facility.

 653
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example 18.1-1 

McBurger is a fast-food restaurant with three service counters. The manager wants to expedite 
service. A study reveals the following relationship between the number of service counters and 
the waiting time for service:

Number of cashiers 1 2 3 4 5 6 7

Average waiting time (min) 16.2 10.3 6.9 4.8 2.9 1.9 1.3

An examination of these data shows a 7-min average waiting time for the present 3-counter 
situation. Five counters would reduce waiting to about 3 minutes.

Cost-based model. The results of queuing analysis can be incorporated in a cost 
optimization mode that seeks the minimization of the sum of the cost of offering the 
service and the cost of waiting by customers. Figure 18.1 depicts a typical cost model 
(in dollars per unit time) where the cost of service increases with the increase in the 
level of service (e.g., the number of service counters). At the same time, the cost of 
waiting decreases with the increase in level of service.

The main obstacle in implementing cost models is the difficulty of determining 
the cost of waiting, particularly when waiting is experienced by human beings. This 
point is discussed in Section 18.9.

18.2 eLeMenTS of A QueuIng ModeL

The principal players in a queuing situation are the customer and the server. Customers 
arrive at a (service) facility from a source. On arrival, a customer can start service im-
mediately or wait in a queue if the facility is busy. When a facility completes a service, it 
automatically “pulls” a waiting customer, if any, from the queue. If the queue is empty, 
the facility becomes idle until a new customer arrives.

Total cost

Cost of operating
the service facility
per unit time

Optimum level
of service

Cost of waiting
customers per
unit time

Level of service

C
os

t

Figure 18.1 

Cost-based queuing decision model
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From the standpoint of analyzing queues, the arrival of customers is represented 
by the interarrival time (time between successive arrivals), and the service is measured 
by the service time per customer. Generally, the interarrival and service times are prob-
abilistic (e.g., operation of a post office) or deterministic (e.g., arrival of applicants for 
job interviewer for a doctor’s appointment).

Queue size plays a role in the analysis of queues. It may be finite (as in the buf-
fer area between two successive machines) or, for all practical purposes, infinite (as in 
mail-order facilities).

Queue discipline, which represents the order in which customers are selected 
from a queue, is an important factor in the analysis of queuing models. The most com-
mon discipline is first-in, first-out (FIFO). Other disciplines include last-in, first-out 
(LIFO) and service in random order (SIrO). Customers may also be selected from the 
queue based on some order of priority. For example, rush jobs in a shop are processed 
ahead of regular jobs.

Queuing behavior plays a role in waiting-line analysis. Customers may jockey 
from a longer queue to a shorter one to reduce waiting time, they may balk from join-
ing a queue altogether because of anticipated long delay, or they may renege from a 
queue because they have been waiting too long.

The design of the service facility may include parallel servers (e.g., post office or 
bank operation). The servers may also be arranged in series (e.g., jobs processed on 
successive machines), or they may be networked (e.g., routers in a computer network).

The source from which customers are generated may be finite or infinite. A finite 
source limits the number of arriving customers (e.g., machines requesting the service of 
a repairperson). An infinite source is, for all practical purposes, forever abundant (e.g., 
calls arriving at a telephone exchange).

Variations in the elements of a queuing situation give rise to a variety of math-
ematical queuing models. This chapter provides examples of these models. Complex 
queuing situations that cannot be represented mathematically are usually analyzed by 
using simulation (see Chapter 19).

Aha! Moment: Perception of Waiting, and the Cultural factor!

Of course mathematical queuing models should be employed to design efficient queuing operations, 
especially when dealing with machines or computer/telephone networks. But when the operations 
involve humans, particularly as customers, there are factors that mathematics may not be able to 
handle, that of human boredom while waiting. In these cases, an important psychology-of-waiting-
principle must be acknowledged: Time goes faster when people are occupied doing something. And 
this is exactly what happened in the two real situations I cited in Section 1.6: In the elevator situa-
tion patrons were kept busy watching themselves and others in large mirrors in the entry way while 
awaiting elevators; and in the Houston airport case, passengers were kept busy walking longer before 
reaching the luggage area simply by parking arriving planes at the farthest gate from the carousels. 
In both cases, complaints about waiting disappeared, not by implementing queuing model-based im-
provements in the physical facilities but by altering patrons’ perception of waiting, even though the 
actual time of completing the activity remained unchanged. Indeed, I often wondered why tabloids 
are featured in supermarkets near check-outs rather than in magazines/newspapers/books section 
(mind you, I am not equating the two contents!). I think that the display is done on purpose to keep 
customers occupied reading “far-out” sensational headlines while awaiting check-out.
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And there is no better than Disney when it comes to using ploys to alleviate waiting boredom in 
its massive theme parks, including posting digital timers along the waiting lines that inflate the waits 
so guests will be pleasantly surprised when they beat expectations, making lines look shorter by 
using serpentine queues, placing visual and sound attractions all along the waiting line to entertain 
guests, and establishing a central command (run by “imagineers,” no less!) that anticipates conges-
tion spots and immediately amasses needed resources to alleviate or eliminate the problem.

Of course, perception of waiting and its negative effects can be a cultural thing; and what 
may appear unacceptable queuing behavior in some countries could be perfectly acceptable in 
others. I recall an experience while living for an extended period overseas. I was standing in line 
in a bank almost within reach of the teller when a man walked in and formed his own one-person 
line directly at the window. This is when I shouted, “Hey, you need to stand in line like the rest 
of us,” upon which the man responded “What is your problem? I am not standing in your line!” 
Perplexed by his logic, I suddenly heard the bank teller, apparently alerted by the ongoing com-
motion, calling my name (he knew me from previous visits) and asking if he could be of help. 
Realizing that I probably was the only “odd” person around, I simply followed the adage “When 
in Rome . . . ” and advanced to the window to finish my transaction. The amazing thing is that no 
one else in the line objected to any of what was taking place (the man forming his own line, the 
teller’s offer to help ahead of others before me, and my cutting in line to finish my transaction). It 
was not an issue for them. And one wonders why the line was formed in the first place!

18.3 RoLe of exPonenTIAL dISTRIbuTIon

In most queuing situations, arrivals occur randomly. Randomness means that the oc-
currence of an event (e.g., arrival of a customer or completion of a service) is not in-
fluenced by the length of time that has elapsed since the occurrence of the last event.

Random interarrival and service times are described quantitatively in queuing 
models by the exponential distribution, which is defined as

f1t2 = le -lt, t 7 0

Section 12.4.3 shows that for the exponential distribution

E5t6 = 1
l

P5t … T6 = L
T

0
le-ltdt = 1 - e-lT

The definition of E{t} shows that l is the rate per unit time at which events (arrivals or 
departures) are generated.

The exponential distribution describes a totally random phenomenon. For exam-
ple, if the time now is 8:20 a.m. and the last arrival has occurred at 8:02 a.m., the prob-
ability that the next arrival will occur by 8:29 is a function of the interval from 8:20 to 
8:29 only, and it is totally independent of the length of time that has elapsed since the 
occurrence of the last event (8:02 to 8:20).

The totally random property of the exponential is referred to as forgetfulness or 
lack of memory. Given f(t) is the exponential distribution of the time, t, between suc-
cessive (arrival) events, if S is the interval since the occurrence of the last event, then 
the forgetfulness property implies that

P5t 7 T + S 0 t 7 S6 = P5t 7 T6
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To prove this result, we note that for the exponential with mean 1l,

P5t 7 Y6 = 1 - P5t 6 Y6 = e -lY

Thus,

 P5t 7 T + S � t 7 S6 =
P5t 7 T + S, t 7 S6

P5t 7 S6 =
P5t 7 T + S6

P5t 7 S6

 =
e-l1T + S2

e -lS = e-lT

 = P5t 7 T6

example 18.3-1 

A service machine always has a standby unit for immediate replacement upon failure. The time 
to failure of the machine (or its standby unit) is exponential and occurs every 5 hours, on the  
average. The machine operator claims that the machine is “in the habit” of breaking down every 
night around 8:30 p.m. Analyze the operator’s claim.

The average failure rate of the machine is l = 1
5 = .2 failure per hour. Thus, the exponential 

distribution of the time to failure is

f1t2 = .2e-.2t, t 7 0

Regarding the operator’s claim, we know offhand that it cannot be true because it conflicts with 
the fact that the time between breakdowns is exponential and, hence, totally random. The prob-
ability that a failure will occur by 8:30 p.m. cannot be used to support or refute the operator’s 
claim, because the value of such probability depends on the time (relative to 8:30 p.m.) at which 
it is computed. For example, if the time now is 8:20 p.m., then there is a low probability that the 
operator’s claim is right—namely,

p5 t 6 10
606 = 1 - e-.2110

602 = .03278

If the time now is 1:00 p.m., then the probability that a failure will occur by 8:30 p.m. increases 
to approximately .777 (verify!). These two extreme values show that the operator’s claim is  
not true.

18.4  PuRe bIRTh And deATh ModeLS (ReLATIonShIP beTWeen 
The exPonenTIAL And PoISSon dISTRIbuTIonS)

This section presents two queuing situations: the pure birth model, in which only arriv-
als occur, and the pure death model, in which only departures take place. An example 
of the pure birth model is the creation of birth certificates for newly born babies. The 
pure death model may be demonstrated by the random withdrawal of a stocked item 
in a store.

The exponential distribution is used to describe the interarrival time in the pure 
birth model and the interdeparture time in the pure death model. A by-product of 
the development of the two models is to show the close relationship between the 
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exponential and the Poisson distributions, in the sense that one distribution automati-
cally defines the other.

18.4.1 Pure birth Model

Define

p01t2 = Probability of no arrivals during a period of time t

Given that the interarrival time is exponential and that the arrival rate is l customers 
per unit time, then

 p01t2 = P5interarrival time Ú t6
 = 1 - P5interarrival time … t6
 = 1 - 11 - e -lt2
 = e -lt

For a sufficiently small time interval h 7 0, we have

p01h2 = e -lh = 1 - lh +
1lh22

2!
- g = 1 - lh + 01h22

The exponential distribution is based on the assumption that during h 7 0, at most 
one event (arrival) can occur. Thus, as h S 0,

p11h2 = 1 - p01h2 ≈ lh

This result shows that the probability of an arrival during h is directly proportional to 
h, with the arrival rate, l, being the constant of proportionality.

To derive the distribution of the number of arrivals during a period t when the 
interarrival time is exponential with mean 1l, define

pn1t2 = Probability of n arrivals during t

For a sufficiently small h 7 0,

 pn1t + h2 ≈ pn1t211 - lh2 + pn - 11t2lh,  n 7 0

 p01t + h2 ≈ p01t211 - lh2,   n = 0

In the first equation, n arrivals will be realized during t + h if there are n arrivals dur-
ing t and no arrivals during h, or n - 1 arrivals during t and one arrival during h. All 
other combinations are not allowed because, according to the exponential distribution, 
at most one arrival can occur during a very small period h. The product law of prob-
ability is applicable to the right-hand side of the equation because arrivals are indepen-
dent. For the second equation, zero arrivals during t + h can occur only if no arrivals 
occur during t and h.

Rearranging the terms and taking the limits as h S 0 to obtain the first derivative 
of pn(t) with respect to t, we get



 p′n1t2 =  lim
hS0

 
pn1t + h2 - pn1t2

h
= -lpn1t2 + lpn - 11t2,  n 7 0

 p′01t2 =  lim
hS0

 
p01t - h2 - p01t2

h
= -lp01t2,   n = 0

The solution of the preceding difference-differential equations yields

pn1t2 =
1lt2ne-lt

n!
, n = 0, 1, 2, c

This is a poisson distribution with mean E5n 0 t6 = lt arrivals during t.
The preceding result shows that if the time between arrivals is exponential with 

mean 1
l, then the number of arrivals during a specific period t is Poisson with mean lt. 

The converse is also true.
The following table summarizes the relationships between the exponential and 

the Poisson, given the arrival rate l:

Exponential Poisson

Random variable Time between successive  
arrivals, t

Number of arrivals, n, during a specified  
period T

Range t Ú 0 n = 0, 1, 2, c

Density function f1t2 = le-lt, t Ú 0 pn1T2 =
1lT2ne-lT

n!
, n = 0, 1, 2, c

Mean value
1
l

  time units lT arrivals during T

Cumulative probability P5t … A6 = 1 - e-lA pn … N1T2 = p01T2 + p11T2 + g + pN1T2
P{no arrivals during period A} P5t 7 A6 = e-lA p01A2 = e-lA

remark. The Poisson distribution has the unique property that its mean and vari-
ance are equal (see Section 14.4.2). This observation can be useful in making an initial 
“guesstimate” as to whether or not the empirical data describe a Poisson distribution: 
If the mean and variance of the sample are far apart, then in all likelihood the sample 
does not come from a Poisson distribution. The opposite is not necessarily true, how-
ever, and it will be necessary to carry out at least a goodness-of-fit test (Section 14.5) 
to accept or reject the hypothesis. Above all, one must have a “gut-feeling” reason as to 
why a process should be designated as completely random.

example 18.4-1 

Babies are born in a large city at the rate of one birth every 12 minutes. The time between births 
follows an exponential distribution. Find the following:

(a) The average number of births per year.
(b) The probability that no births will occur during 1 day.
(c) The probability of issuing 50 birth certificates in 3 hours, given that 40 certificates 

were issued during the first 2 hours of the 3-hr period.

18.4  Pure Birth and Death Models   659



660   Chapter 18    Queuing Systems

The birth rate per day is computed as

l =
24 * 60

12
= 120 births/day

Thus, the number of births per year in the state is

lt = 120 * 365 = 43,800 births/year

The probability of no births during 1 day is

p0112 =
1120 * 120e-120 * 1

0!
= e-120 = 0

Another way to compute the same probability is to note that no birth in any one day is equiva-
lent to saying that the time between successive births exceeds one day. We can thus use the 
exponential distribution to compute the desired probability as

P5t 7 16 = e-120 = 0

Because the distribution of the number of births is Poisson, the probability of issuing 50 
certificates in 3 hours, given that 40 certificates were issued during the first 2 hours, is equivalent 
to having 101=  50 - 402 births in one 1=  3 - 22 hr—that is,

p10112 =
160

12 * 1210e-5 * 1

10!
= .01813

excel Moment

The calculations associated with the Poisson distribution and, indeed, all queuing formulas 
are tedious and require programming skill to secure reasonable computational accuracy. You 
can use Excel POISSON, POISSONDIST, and EXPONDIST functions to compute the indi-
vidual and cumulative probabilities Poisson and exponential probabilities. These functions 
are also automated in exceStatTables.xls. For example, for a birth rate of 5 babies per hour, 
the probability of exactly 10 births in .5 hr is computed by entering 2.5 in F16 and 10 in J16 
to obtain the answer .000216 in M16. The cumulative probability of at most 10 births is given 
in O16 1=  .9999382. To determine the probability of the time between births being less than 
or equal to 18 minutes, use the exponential distribution by entering 2.5 in F9 and .3 in J9. The 
answer, .527633, is found in O9.

ToRA/excel Moment

You can also use TORA (file toraEx18.4-1.txt) or template excelPoissonQ.xls to determine all sig-
nificant (7  10-5 in TORA and 7  10-7 in Excel) Poisson probabilities automatically. In both cases, 
the input data are the same. For the pure birth model of Example 18.4-1, the data are as follows:

Lambda Mu c System limit Source limit

5 0 0 Infinity Infinity

Note the entry under Lambda lt = 5 * 1 = 5 births per day. Note also that Mu = 0 identifies 
the model as pure birth.



18.4.2 Pure death Model

In the pure death model, the system starts with N customers at time 0, with no new 
arrivals allowed. Departures occur at the rate m customers per unit time. To de-
velop the difference-differential equations for the probability pn(t) of n customers 
remaining after t time units, we follow the arguments used with the pure birth model 
(Section 18.4.1). Thus,

 pN1t + h2 = pN1t211 - mh2
 pn1t + h2 = pn1t211 - mh2 + pn + 11t2mh, 0 6 n 6 N

 p01t + h2 = p01t2112 + p11t2mh

As h S 0, we get

 p′N1t2 = -mpN1t2
 p′n1t2 = -mpn1t2 + mpn + 11t2, 0 6 n 6 N

 p′01t2 = mp11t2
The solution of these equations yields the following truncated poisson distribution:

 pn1t2 =
1mt2N - n e-mt

1N - n2!
, n = 1, 2, c, N

 p01t2 = 1 - a
N

n - 1
pn 1t2

example 18.4-2 

The florist section in a grocery store stocks 18 dozen roses at the beginning of each week. On the 
average, the florist sells 3 dozens a day (one dozen at a time), but the actual demand follows a 
Poisson distribution. Whenever the stock level reaches 5 dozens, a new order of 18 new dozens is 
placed for delivery at the beginning of the following week. Because of the nature of the item, all 
roses left at the end of the week are disposed of. Determine the following:

(a) The probability of placing an order in any one day of the week.
(b) The average number of dozen roses discarded at the end of the week.

Because purchases occur at the rate of m = 3 dozens per day, the probability of placing an 
order by the end of day t is

pn …51t2 = p01t2 + p11t2 + c + p51t2

= p01t2 + a
5

n = 1

13t218 - ne-3t

118 - n2!
, t = 1, 2, c, 7

The calculations of pn …51t2 are best done using excelPoissonQ.xls or TORA. TORA’s mul-
tiple scenarios may be more convenient in this case. The associated input data for the pure 
death model corresponding to t = 1, 2, c, and 7 are Lambda = 0, Mu = 3t, c = 1, System 
Limit = 18, and Source Limit = 18. Note that t must be substituted out numerically as shown 
in file toraEx18.4-2.txt.

18.4  Pure Birth and Death Models   661
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The output is summarized as follows:

t (day) 1 2 3 4 5 6 7

mt 3 6 9 12 15 18 21
pn … 51t2 .0000 .0088 .1242 .4240 .7324 .9083 .9755

The average number of dozen roses discarded at the end of the week 1t = 72 is E5n � t = 76.  
To calculate this value, we need pn172, n = 0, 1, 2, c, 18, which can be determined using pro-
vided software. The result is

E5n � t = 76 = a
18

n = 0
npn172 = .664 ≈ 1 dozen

18.5 geneRAL PoISSon QueuIng ModeL

This section develops a general queuing model that combines both arrivals and depar-
tures based on the Poisson assumptions—that is, the interarrival and the service times 
follow the exponential distribution. The model is the basis for the derivation of the 
specialized Poisson models in Section 18.6.

The development of the generalized model is based on the long-run or steady-
state behavior of the queuing situation, achieved after the system has been in opera-
tion for a sufficiently long time. This type of analysis contrasts with the transient (or 
warm-up) behavior that prevails during the early operation of the system. (One reason 
for not discussing the transient behavior in this chapter is its analytical complexity. 
Another reason is that the study of most queuing situations occurs under steady-state 
conditions.)

The general model assumes that both the arrival and departure rates are state 
dependent—meaning that they depend on the number of customers in the service  
facility. For example, at a highway toll booth, attendants tend to speed up toll collection 
during rush hours. Another example occurs in a shop where the rate of machine break-
down decreases as the number of broken machines increases (because only working 
machines are capable of generating new breakdowns).

Define

 n = Number of customers in the system (in-queue plus in-service)
 ln = Arrival rate, given n customers in the system
mn = Departure rate, given n customers in the system

 pn = Steady@state probability of n customers in the system

The generalized model derives pn as a function of ln and mn. These probabilities are 
then used to determine the system’s measures of performance, such as the average 
queue length, the average waiting time, and the average utilization of the facility.

The probabilities pn are determined by using the transition-rate diagram in 
Figure 18.2. The queuing system is in state n when the number of customers in the 
system is n. As explained in Section 18.3, the probability of more than one event 
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occurring during a small interval h tends to zero as h S 0. This means that for n 7 0, 
state n can change only to two possible states: n - 1 when a departure occurs at the 
rate mn, and n + 1 when an arrival occurs at the rate ln. State 0 can only change to 
state 1 when an arrival occurs at the rate l0. Notice that m0 is undefined because no 
departures can occur if the system is empty.

Under steady-state conditions, for n 7 0, the expected rates of flow into and out 
of state n must be equal. Based on the fact that state n can be changed to states n - 1 
and n + 1 only, we get

aExpected rate of
flow into state  n

b = ln - 1pn - 1 + mn + 1pn + 1

Similarly,

a Expected rate of
flow out of state  n

b = 1ln + mn2pn

Equating the two rates, we get the following balance equation:

ln - 1pn - 1 + mn + 1pn + 1 = 1ln + mn2pn, n = 1, 2, c

From Figure 18.2, the balance equation associated with n = 0 is

l0p0 = m1p1

The balance equations are solved recursively in terms of p0. For n = 0, we have

p1 = a l0

m1
bp0

Next, for n = 1, we have

l0p0 + m2p2 = 1l1 + m12p1

Substituting p1 = 1l0
m02p0 and simplifying, we get (verify!)

p2 = a l1l0

m2m1
bp0

We can show by induction that

pn = aln - 1ln - 2cl0

mnmn - 1cm1
bp0, n = 1, 2, c

The value of p0 is determined from the equation g∞
n = 0 pn = 1

……0 21

l

m m m m

l l l

n 2 1 n n 1 1

   0

    1     2     n     n 1 1

   n21   1    n

Figure 18.2 

Poisson queues transition diagram
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example 18.5-1 

B&K Groceries operates with three checkout counters. The manager uses the following schedule 
to determine the number of counters in operation, depending on the number of customers in line:

Number of customers in store Number of counters in operation

1 to 3 1
4 to 6 2

More than 6 3

Customers arrive in the counters area according to a Poisson distribution with a mean rate 
of 10 customers per hour. The average checkout time per customer is exponential with mean  
12 minutes. Determine the steady-state probability pn of n customers in the checkout area.

From the information of the problem, we have

 ln = l = 10 customers per hour,              n = 0, 1, c

 mn = •
60
12 = 5 customers per hour, n = 0, 1, 2, 3
2 * 5 = 10 customers per hour, n = 4, 5, 6
3 * 5 = 15 customers per hour, n = 7, 8, c

Thus,

 p1 = 110
5 2p0 = 2p0

 p2 = 110
5 22 p0 = 4p0

 p3 = 110
5 23 p0 = 8p0

 p4 = 110
5 23110

102p0 = 8p0

 p5 = 110
5 23110

1022 p0 = 8p0

 p6 = 110
5 23110

1023 p0 = 8p0

 pn Ú7 = 110
5 23110

1023110
152n - 6 p0 = 812

32n - 6 p0

The value of p0 is determined from the equation

p0 + p052 + 4 + 8 + 8 + 8 + 8 + 812
32 + 812

322 + 812
323 + c6 = 1

or, equivalently

p0531 + 811 + 12
32 + 12

322 + c26 = 1

Using the geometric sum series

a
∞

i = 0
xi =

1
1 - x

, � x � 6  1

we get

p0e31 + 8a 1

1 - 2
3
b f = 1

Thus, p0 = 1
55.

Given p0, we can now determine pn for n 7 0. For example, the probability that only one coun-
ter will be open is computed as the probability that there are at most three customers in the system:

p0 + p1 + p2 + p3 = 11 + 2 + 4 + 82 1 1
552 ≈ .273
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We can use pn to determine measures of performance for the B&K situation. For example,

 aExpeted number
of idle counters 

b = 3p0 + 21p1 + p2 + p32 + 11p4 + p5 + p62

 +  01p7 + p8 + c2
 = 1 counter

18.6 SPeCIALIzed PoISSon QueueS

Figure 18.3 depicts the specialized Poisson queuing situation with c parallel servers. 
A waiting customer is selected from the queue to start service with the first available 
server. The arrival rate at the system is l customers per unit time. All parallel servers 
are identical, meaning that the service rate for any server is m customers per unit time. 
The number of customers in the system is defined to include those in service and those 
waiting in queue.

A convenient notation for summarizing the characteristics of the queuing situa-
tion in Figure 18.3 is given by the following format:

1a>b>c2: 1d>e>f2
where

a = Arrivals distribution
b = Departures (service time) distribution
c = Number of parallel servers 1=  1, 2, c, ∞2
d = Queue discipline
e =  Maximum number (finite or infinite) allowed in the system  

(in-queue plus  in-service)
f = Size of the calling source (finite or infinite)

…

…

Server
1

Arrival rate   
Departure rate

Departure rate

Departure rate

Server
2

Server
c

Service
facility

Queue

System

l

m

m

m

Figure 18.3 

Schematic representation of a queuing system with c parallel servers
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The standard notation for representing the arrivals and departures distributions 
(symbols a and b) is

 M =  Markovian (or Poisson) arrivals or departures distribution (or equivalently  
exponential interarrival or service time distribution)

  D = Constant (deterministic) time

Ek =  Erlang or gamma distribution of time (or, equivalently, the sum of inde-
pendent exponential distributions)

GI = General (generic) distribution of interarrival time

  G = General (generic) distribution of service time

The queue discipline notation (symbol d) includes

 FIFO = First@in, first-out

LIFO = Last@in, first-out

SIRO = Service in random order

GD = General discipline (i.e., any type of discipline)

To illustrate the use of the notation, the model (M/D/10):1GD/20/∞2 uses Poisson 
arrivals (or exponential interarrival time), constant service time, and 10 parallel servers. 
The queue discipline is GD, and there is a limit of 20 customers on the entire system. The 
size of the source from which customers arrive is infinite.

As a historical note, the first three elements of the notation (a/b/c) were devised 
by D. G. Kendall in 1953 and are known in the literature as the Kendall notation. In 
1966, A. M. Lee added the symbols d and e to the notation. I added the last element, 
symbol f, in 1968. The addition of f is not meant to be “decorative,” for it completes 
all the input data needed to compute the steady-state results of the Poisson queuing 
model using TORA and Excel spreadsheet, as will be explained subsequently.

Before presenting the details of the specialized Poisson queues, we show how 
the steady-state measures of performance of the generalized queuing situation can be 
derived from the steady-state probabilities pn given in Section 18.5.

Aha! Moment: The Last Will be first . . . , or how to Move  
Queues More Rapidly!

A paper titled “The curse of the first-in-first-out queue discipline” published in 2015 by two Dan-
ish economists, Trine T. Platz and Lars P. Østerdal,1 purports that a (LIFO discipline can move 
queues faster in situations where the queue is totally under the control of the server (which pre-
cludes, for the most part, queues involving face-to-face human interaction). The authors provide 
a number of situations where their model results can be applicable: (1) planes circling in a stack 
awaiting landing, (2) planes taking off from an airport, (3) 4.5 million Danish taxpayers accessing 
their returns on the Internet (all returns are released online at a specified date and hour), and  
(4) phone-based support centers. In these situations, the server is invisible to the customer. More-
over, the server can manage the queue in any preferred order (including LIFO). Under such con-
ditions, the authors’ mathematical model shows that LIFO moves the queue more rapidly.

1http://sciencenordic.com/queues-move-faster-if-last-person-served-first (accessed September 22, 2015, 6:00 AM).
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The main argument of the authors is that FIFO, though perceived as the fairest of all queu-
ing disciplines, is actually the worst when it comes to reducing the average wait. Nevertheless, 
they concede that the implementation of LIFO in queues involving face-to-face human interac-
tion is highly improbable, barring a change in existing cultural habits.

Naturally, the provocative use of the LIFO rule was reported in global social media, al-
beit in a layperson’s fashion. Readers’ comments appearing in London’s Daily Mail (a total 
of 128) were particularly revealing. The majority of the commenters are, as expected, British 
who are conditioned to strict FIFO queuing behavior. Practically all of them are willing to 
forgo the purported LIFO efficiency for the sake of the FIFO fairness. In particular, one com-
menter pointedly states (no doubt tongue-in-cheek) “I lost the will to live trying to read this 
[article]”!

18.6.1 Steady-State Measures of Performance

The most commonly used measures of performance in a queuing situation are

  Ls = Expected number of customers in system

 Lq = Expected number of customers in queue

 Ws = Expected waiting time in system

Wq = Expected waiting time in queue

    c = Expected number of busy servers

Recall that the system includes both the queue and the service facility.
We show now how these measures are derived (directly or indirectly) from the 

steady-state probability of n in the system pn as

 Ls = a
∞

n = 1
npn

 Lq = a
∞

n = c + 1
1n - c2pn

The relationship between Ls and Ws (also Lq and Wq) is known as Little’s 
 formula, and it is given as

 Ls = leffWs

 Lq = leffWq

These relationships are valid under rather general conditions. The parameter leff is 
the effective arrival rate at the system. It equals the (nominal) arrival rate l when all 
arriving customers can join the system. Otherwise, if some customers cannot join be-
cause the system is full (e.g., a parking lot), then leff 6 l. We will show later how leff 
is determined.

A direct relationship also exists between Ws and Wq. By definition,

aExpected waiting
time in system

b = aExpected waiting
time in queue

b + aExpected service
time

b
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This translates to

Ws = Wq +
1
m

Next, we can relate Ls to Lq by multiplying both sides of the last formula by leff, 
which together with Little’s formula gives

Ls = Lq +
leff

m

The difference between the average number in the system, Ls, and the average 
number in the queue, Lq, must equal the average number of busy servers, c. Thus,

c = Ls - Lq =
leff

m

It follows that

a  Facility
utilization

b =
c
c

example 18.6-1 

Visitors’ parking at Ozark College is limited to five spaces only. Cars making use of this space 
arrive according to a Poisson distribution at the rate of six cars per hour. Parking time is expo-
nentially distributed with a mean of 30 minutes. Visitors who cannot find an empty space on 
arrival may temporarily wait inside the lot until a parked car leaves. That temporary space can 
hold only three cars. Other cars that cannot park or find a temporary waiting space must go 
elsewhere. Determine the following:

(a) The probability, pn, of n cars in the system.
(b) The effective arrival rate for cars that actually use the lot.
(c) The average number of cars in the lot.
(d) The average time a car waits for a parking space inside the lot.
(e) The average number of occupied parking spaces.
(f) The average utilization of the parking lot.

We note first that a parking space acts as a server, so that the system has a total of c = 5 
parallel servers. Also, the maximum capacity of the system is 5 + 3 = 8 cars.

The probability pn can be determined as a special case of the generalized model in 
Section 18.5 using

 ln = 6 cars>hour, n = 0, 1, 2, c, 8

 mn = en160
302 = 2n cars hour,   n = 1, 2, 3, 4, 5

5160
302 = 10 cars>hour,   n = 6, 7, 8

From Section 18.5, we get

pn = µ
3n

n!
 p0,  n = 1, 2, 3, 4, 5

3n

5!5n - 5 p0, n = 6, 7, 8



18.6  Specialized Poisson Queues   669

The value of p0 is computed by substituting pn, n = 1, 2, c, 8, in the following equation:

p0 + p1 + c + p8 = 1

or

p0 + p0  a 3
1!

+
32

2!
+

33

3!
+

34

4!
+

35

5!
+

36

5!5
+

37

5!52 +
38

5!53 b = 1

This yields p0 = .04812 (verify!). From p0, we can now compute p1 through p8 as

n 1 2 3 4 5 6 7 8

pn .14436 .21654 .21654 .16240 .09744 .05847 .03508 .02105

The effective arrival rate leff can be computed by observing the schematic diagram in 
Figure 18.4, where customers arrive from the source at the rate l cars per hour. An arriving car 
may enter the parking lot at the rate leff or it may go elsewhere at the rate llost. This means that 
l = leff + llost.

A car will not be able to enter the parking lot if 8 cars are already in. This means that the 
proportion of cars that will not be able to enter the lot is p8. Thus,

 l lost = lp8 = 6 * .02105 = .1263 cars per hour

 leff  = l - llost = 6 - .1263 = 5.8737 cars per hour

The average number of cars in the lot (those waiting for or occupying a space) equals Ls, the 
average number in the system. We can compute Ls from pn as

Ls = 0p0 + 1p1 + c + 8p8 = 3.1286 cars

A car waiting in the temporary space is actually a car in queue. Thus, its waiting time until a 
space is found is Wq. To determine Wq we use

Wq = Ws -
1
m

Thus,

Ws =
Ls

leff
=

3.1286
5.8737

= .53265 hour

Wq = .53265 -
1
2

= .03265 hour

The average number of occupied parking spaces is the same as the average number of 
busy servers:

c = Ls - Lq =
leff

m
=

5.8737
2

= 2.9368 spaces

SystemSource    eff

   lost

l l

l

Figure 18.4 

Relationship between l, leff,  and llost
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From c, we get

Parking lot utilization =
c
c

=
2.9368

5
= .58736 

18.6.2 Single-Server Models

This section presents two models for the single-server case 1c = 12. The first model 
sets no limit on the maximum number in the system, and the second model assumes a 
finite system limit. Both models assume an infinite-capacity source. Arrivals occur at 
the rate l customers per unit time and the service rate is m customers per unit time.

The results of the two models (and indeed of all the remaining models in Section 18.6) 
are derived as special cases of the results of the generalized model of Section 18.5.

The extended Kendall notation will be used to characterize each situation. 
Because the derivations of pn in Section 18.5 and of all the measures of performance 
in Section 18.6.1 are totally independent of a specific queue discipline, the symbol GD 
(general discipline) will be used with the notation.

(M/M/1):(GD/H /H). Using the notation of the general model, we have

ln = l

mn = m
f , n = 0, 1, 2, c

Also, leff = l and llost = 0, because all arriving customers can join the system.
Letting r = l

m, the expression for pn in the generalized model reduces to

pn = rnp0, n = 0, 1, 2, c

To determine the value of p0, we use the identity

p011 + r + r2 + c2 = 1

The sum of the geometric series is 1 1
1 - r2, provided r 6 1. Thus

p0 = 1 - r, r 6 1

The general formula for pn is thus given by the following geometric distribution:

pn = 11 - r2rn, n = 1, 2, c1r 6 12
The mathematical derivation of pn imposes the condition r 6 1,  or l 6 m. If 

l Ú m, the geometric series diverges, and the steady-state probabilities pn do not exist. 
This result makes intuitive sense, because unless the service rate is larger than the ar-
rival rate, queue length will continually increase and no steady state can be reached.

The measure of performance Lq can be derived in the following manner:

 Ls = a
∞

n = 0
npn = a

∞

n = 0
n11 - r2rn

 = 11 - r2r 
d

dr
 a

∞

n = 0
rn

 = 11 - r2r 
d

dr
 a 1

1 - r
b =

r

1 - r
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Because leff = l for the present situation, the remaining measures of performance are 
computed using the relationships in Section 18.6.1. Thus,

 Ws =
Ls

l
=

1
m11 - r2 =

1
m - l

 Wq = Ws -
1
m

=
r

m11 - r2

 Lq = lWq =
r2

1 - r

 c = Ls - Lq = r

example 18.6-2 

Automata car wash is a one-bay facility. Cars arrive according to a Poisson distribution with a 
mean of 4 cars per hour and may wait in the facility’s parking lot or on the street bordering the 
wash facility if the bay is busy. The time for washing and cleaning a car is exponential, with a 
mean of 10 minutes. This means that, for all practical purposes, there is no limit on the size of the 
system. The manager of the facility wants to determine the size of the parking lot.

For this situation, we have l = 4 cars per hour, and m = 60
10 = 6 cars per hour. Because 

r = l
m 6 1, the system can operate under steady-state conditions. The TORA or excelPoissonQ 

.xls input for this model is

Lambda Mu c System limit Source limit

4 6 1 infinity Infinity

The output of the model is shown in Figure 18.5. The average number of cars waiting in the 
queue, Lq, is 1.33 cars.

Generally, using Lq as the sole basis for the determination of the number of parking 
spaces is not advisable, because the design should, in some sense, account for the maximum 
possible length of the queue. For example, it may be more plausible to design the parking 
lot such that an arriving car will find a parking space at least 90% of the time. To do this, let 
S represent the number of parking spaces. Having S parking spaces is equivalent to having 
S + 1 spaces in the system (queue plus wash bay). An arriving car will find a space 90% of 
the time if there are at most S cars in the system. This condition is equivalent to the following 
probability statement:

p0 + p1 + c +  pS Ú .9

From Figure 18.5, cumulative pn for n = 5 is .91221. This means that the condition is satisfied for 
S Ú 5 parking spaces.

The number of spaces S can be determined also by using the mathematical definition of 
pn—that is,

11 - r211 + r + r2 + c + rS2 Ú .9

The sum of the truncated geometric series is 
1 - rS + 1

1 - r , which reduces the condition to

11 - rS + 12 Ú .9
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Simplification of the inequality yields

rS + 1 … .1

Taking the logarithms on both sides (and noting that log1x2 6 0 for 0 6 x 6 1, which reverses 
the direction of the inequality), we get

S  Ú
 ln 1.12
 ln 14

62 - 1 = 4.679 ≈ 5

(M/M/1):(GD/N/H). This model differs from 1M/M/12:1GD/∞ /∞2 in that there is 
a limit N on the number in the system (maximum queue length = N - 1). Examples 
include manufacturing situations in which a machine may have a limited buffer space 
and a one-lane drive-in window in a fast-food restaurant. New arrivals are not allowed 
when the number of customers in the system reaches N. Thus,

ln = el, n = 0, 1, c, N - 1
0, n = N, N + 1 

mn = m,        n = 0, 1, c

Using r = l
m, the generalized model in Section 18.5 yields

pn = er
np0 n … N

0,  n 7 N

Scenario 1: (M/M/1):(GD/infinity/infinity)

Lambda = 4.00000 Mu = 6.00000
Lambda eff = 4.00000 Rho/c = 0.66667

Ls = 2.00000 Lq = 1.33333
Ws = 0.50000 Wq = 0.33333

n Probability pn Cumulative Pn n Probability pn Cumulative Pn

 0 0.33333 0.33333 13 0.00171 0.99657

 1 0.22222 0.55556 14 0.00114 0.99772
 2 0.14815 0.70370 15 0.00076 0.99848
 3 0.09877 0.80247 16 0.00051 0.99899
 4 0.06584 0.86831 17 0.00034 0.99932
 5 0.04390 0.91221 18 0.00023 0.99955

 6 0.02926 0.94147 19 0.00015 0.99970
 7 0.01951 0.96098 20 0.00010 0.99980
 8 0.01301 0.97399 21 0.00007 0.99987
 9 0.00867 0.98266 22 0.00004 0.99991
10 0.00578 0.98844 23 0.00003 0.99994

11 0.00385 0.99229 24 0.00002 0.99996
12 0.00257 0.99486 25 0.00001 0.99997

Figure 18.5 

TORA output of Example 18.6-2 (file toraEx18.6-2.txt)
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The value of p0 is determined from the equation a
∞

n = 0
pn = 1, which yields

p011 + r + p2 + c + rN2 = 1

or

p0 = µ
1 - r

1 - rN + 1, r ≠ 1

1
N + 1

, r = 1

Thus,

pn  = µ
11 - r2rn

1 - rN + 1 , r ≠ 1

1
N + 1

, r = 1
∂ , n = 0, 1, c, N

The value of r = l
m need not be less than 1 in this model, because arrivals at the system 

are controlled by the system limit N. This means that leff, rather than l, is the rate that 
matters in this case. Because customers will be lost when there are N in the system, 
then, as shown in Figure 18.4,

 llost = lpN

 leff = l - llost = l11 - pN2
In this case, leff 6 m.

The expected number of customers in the system is computed as

 Ls = a
N

n = 1
npn

 =
1 - r

1 - rN + 1 a
N

n = 0
nrn

 = a 1 - r

1 - rN + 1 br
d

dr
 a

N

n = 0
rn

 =
11 - r2r
1 - rN + 1  

d
dr

 a 1 - rN + 1

1 - r
b

 =
r31 - 1N + 12rN + NrN + 14

11 - r211 - rN + 12 , r ≠ 1

When r = 1, Ls = N
2  (verify!). We can derive Ws, Wq, and Lq from Ls using leff, as 

shown in Section 18.6.1.
The use of a hand calculator to compute the queuing formulas is at best cum-

bersome (the formulas get more complex in later models!). The use of TORA or the 
template excelPoissonQ.xls to handle these computations is recommended.
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example 18.6-4 

Consider the car wash facility of Example 18.6-2. Suppose that the facility has a total of 
four parking spaces. If the parking lot is full, newly arriving cars balk to other facilities. The 
owner wishes to determine the impact of the limited parking space on losing customers to the 
competition.

In terms of the notation of the model, the limit on the system is N = 4 + 1 = 5. The fol-
lowing input data provide the output in Figure 18.6.

Lambda Mu c System limit Source limit

4 6 1 5 Infinity

Because the limit on the system is N = 5, the proportion of lost customers is 
p5 = .04812, which, based on a 24-hr day, is equivalent to losing the business of 1lp52 * 24 =  
4 * .04812 * 24 = 4.62 cars a day. A decision regarding increasing the size of the parking lot 
should be based on the value of lost business.

Looking at the problem from a different angle, the expected total time in the system, Ws, is 
.3736 hr, or approximately 22 minutes, down from 30 minutes in Example 18.6-3, when all arriv-
ing cars are allowed to join the facility. This reduction of about 25% is secured at the expense of 
losing about 4.8% of all potential customers because of the limited parking space.

18.6.3 Multiple-Server Models

This section considers three queuing models with multiple parallel servers. The first 
two models are the multiserver versions of the models in Section 18.6.2. The third 
model treats the self-service case, which is equivalent to having an infinite number of 
parallel servers.

Scenario 1:(M/M/1):(GD/5/infinity)

Lambda = 4.00000 Mu = 6.00000
Lambda eff = 3.80752 Rho/c = 0.66667

Ls = 1.42256 Lq = 0.78797
Ws = 0.37362 Wq = 0.20695

n Probability pn Cumulative Pn n Probability pn Cumulative Pn

0 0.36541 0.36541 3 0.10827 0.87970

1 0.24361 0.60902 4 0.07218 0.95188
2 0.16241 0.77143 5 0.04812 1.00000

Figure 18.6

TORA output of Example 18.6-4 (file toraEx18.6-4.txt)
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Real-Life Application—Telephone Sales Workforce Planning  
at Qantas Airways

To reduce operating costs, Qantas Airways seeks to staff its main telephone sales 
reservation office efficiently while providing convenient service to its customers. 
Traditionally, staffing needs are estimated by forecasting future telephone calls based 
on historical increase in business. The increase in staff numbers is then calculated based 
on the projected average increase in telephone calls divided by the average number of 
calls an operator can handle. Because the calculations are based on averages, the ad-
ditional number of hired staff does not take into account the fluctuations in demand 
during the day. In particular, long waiting time for service during peak business hours 
has resulted in customer complaints and lost business. The problem deals with the de-
termination of a plan that strikes a balance between the number of hired operators 
and the customer needs. The solution uses (M/M/c) queuing analysis imbedded into an 
integer programming model. Savings from the model in the Sydney office alone were 
around $173,000 in fiscal year 1975–1976. The details of the study are given in Case 17, 
Chapter 26, on the website.

(M/M/c):(GD/∞ /∞). This model deals with c identical parallel servers. The arrival 
rate is l and the service rate per server is m. In this situation, leff = l because there is 
no limit on the number in the system.

The effect of using c identical parallel servers is a proportionate increase in the 
facility service rate. In terms of the generalized model (Section 18.5), ln and mn are thus 
defined as

 ln = l,     n Ú   0

 mn = enm, n  6   c
cm, n  Ú   c

Thus,

pn = e ln

m12m213m2c1nm2  p0 =
ln

n!mn  p0 =
rn

n!
 p0,       n 6 c

ln

1q c
i = 1im2 1cm2n - c 

 p0 =
ln

c!cn - c mn p0 =
rn

c!cn - c p0,  n Ú c

Letting r = l
m, and assuming 

r
c 6 1, the value of p0 is determined from a ∞

n = 0  pn = 1, 
which gives,

 p0 = e a
c - 1

n = 0

rn

n!
+

rc

c!
 a

∞

n = c
ar

c
b

n - c

f
-1

 = e a
c - 1  

n = 0

rn

n!
+

rc

c!
 a 1

1 - r
c 
b f

-1

, 
r

c
   6   1
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The expression for Lq can be determined as follows:

 Lq = a
∞

n = c
1n - c2pn

 = a
∞

k = 0
kpk + c

 = a
∞

k = 0
k 
rk + c

ckc!
 p0

 =
rc + 1

c!c
 p0a

∞

k = 0
kar

c
b

k - 1

 =
rc + 1

c!c
 p0

d

d1rc 2  a
∞

k = 0
1rc 2k

 =
rc + 1

1c - 12!1c - r22 p0

Because leff = l, Ls = Lq + r. The measures Ws and Wq are determined by dividing 
Ls and Lq by l.

example 18.6-5 

A community is served by two cab companies. Each company owns two cabs, and both share 
the market equally, with calls arriving at each company’s dispatching office at the average 
rate of eight per hour. The average time per ride is 12 minutes. Calls arrive according to a 
Poisson distribution, and the ride time is exponential. The two companies have been bought 
by an investor and will be consolidated into a single dispatching office. Analyze the new 
owner’s proposal.

From the standpoint of queuing, the cabs are the servers, and the cab ride is the service. 
Each company can be represented by the model 1M/M/22:1GD/∞ /∞2 with l = 8 calls per hour 
and m = 60

10 = 5 rides per cab per hour. The consolidated model is 1M/M/42:1GD/∞ /∞2 with 
l = 2 * 8 = 16 calls per hour and m = 5 rides per cab per hour.

A suitable measure for comparing the two models is the average waiting time for a ride, Wq. 
The following table gives TORA comparative analysis input data:

Scenario Lambda Mu c System limit Source limit

1   8 5 2 Infinity Infinity
2 16 5 4 Infinity Infinity

Figure 18.7 provides the output for the two scenarios. The results show that the waiting 
time for a ride is .356 hr 1≈   21 minutes2 for the two-cab situation and .149 1≈  9 minutes2 for 
the consolidated situation, a remarkable reduction of more than 50% and a clear evidence that 
the consolidation of the two companies is warranted.
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remarks. The conclusion from the preceding analysis is that service pools always 
provide a more efficient mode of operation. This conclusion is true even if the separate 
installations happen to be “very” busy (see Problem 18-69 and its mathematical gen-
eralization in Problem 18-77). Moreover, it appears intuitively plausible that service 
pools mode of operation should apply even if the queuing situation does not follow the 
Poisson model (for more on this point, see the Excel Moment following Section 19.5.2). 
Indeed, this remarkable result appears to have gained wide acceptance in the United 
States and abroad as can be witnessed in post offices, airport security checks and cus-
toms clearing of international arrivals, and store checkouts, among others.

(M/M/c):(GD/N/H), c " N. This model differs from 1M/M/c2:1GD/∞ /∞2 in that the 
system limit is finite and equal to N. This means that the maximum queue size is N - c.  
The arrival and service rates are l and m. The effective arrival rate leff is less than l 
because of the system limit, N.

In terms of the generalized model (Section 18.5), ln and mn for the current model 
are defined as

 ln = el, 0 … n … N
0, n 7 N

 mn = enm, 0 … n … c
cm, c … n … N

Substituting ln and mn in the general expression in Section 18.5 and noting that r = l
m, 

we get

pn = µ
rn

n!
 p0, 0 … n 6 c

rn

c!cn - c p0, c … n … N

where

p0 = e ° a
c - 1

n = 0

rn

n!
+

rc11 - 1rc2N - c + 12
c!11 - r

c2 ¢
-1

, 
r

c
 ≠ 1

a a
c - 1

n = 0

rn

n!
+

rc

c!
 1N - c + 12 b

-1

, 
r

c
= 1

Comparative analysis

c Lambda Mu L’da eff p0 Ls Ws Lq Wq

2 8.000 5.000 8.00 0.110 4.444 0.556 2.844 0.356
4 16.000 5.000 16.00 0.027 5.586 0.349 2.386 0.149

Figure 18.7 

TORA output for Example 18.6-5 (file toraEx18.6-5.txt)



678   Chapter 18    Queuing Systems

Next, we compute Lq for the case where 
r
c ≠ 1 as

 Lq = a
N

n = c
1n - c2pn

 = a
N - c

j = 0
jpj+ c

 =
rcr

c!c
 p0 a

N - c

j = 0
jar

c
b

j- 1

 =
rc + 1

cc!
 p0

d

d1rc2  a
N - c

j = 0
1rc2 j

 =
rc + 1

1c - 12!1c - r22 e1 - ar
c
b

N - c + 1

- 1N - c + 12 a1 -
r

c
b ar

c
b

N - c

fp0

It can be shown that for 
r
c = 1, Lq reduces to

Lq =
rc1N - c21N - c + 12

2c!
 p0, 

r

c
= 1

To determine Wq and hence Ws and Ls, we compute the value of leff as

 llost = lpN

 leff = l - llost = 11 - pN2l

example 18.6-6 

In the consolidated cab company problem of Example 18.6-5, suppose that new funds cannot be 
secured to purchase additional cabs. The owner was advised that one way to reduce the wait-
ing time is for the dispatching office to inform new customers of potential excessive delay once 
the waiting list reaches six customers. The expectation is that these customers will seek service 
elsewhere, which in turn will reduce the average waiting time for those on the waiting list. Assess 
the situation.

Limiting the waiting list to 6 customers is equivalent to setting N = 6 + 4 = 10 customers, 
leading to the model 1M/M/42:1GD/10/∞ 2 with l = 16 customers per hour and m = 5 rides per 
hour. The following input data provide the results in Figure 18.8.

Lambda Mu C System limit Source limit

16 5 4 10 Infinity

The average waiting time, Wq, before setting a limit on the capacity of the system is .149 hr 
1≈  9 minutes2 (see Figure 18.7), which is about twice the new average of .075 hr 1≈  4.5 minutes2 
This remarkable reduction is achieved at the expense of losing about 3.6% of potential custom-
ers 1p10 = .035742. However, this result does not reflect the intangible loss of customer good-
will on the operation of the company.
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(M/M/H):(GD/H /H)—Self-Service Model. In this model, the arrival and service 
rates are l and m, respectively, and the number of servers is unlimited because the 
customer is also the server. A typical example is taking the written part of a driver’s 
 license test. Self-service gas stations and 24-hr ATM banks do not fall under this 
model because the servers in these cases are actually the gas pumps and the ATM 
machines.

In terms of the general model of Section 18.5, we have

 ln = l,   n = 0, 1, 2, c

 mn = nm,  n = 0, 1, 2, c

Thus,

pn =
ln

n!mn p0 =
rn

n!
 p0, n = 0, 1, 2, c

Because a ∞
n = 0  pn = 1, it follows that

p0 =
1

1 + r +
r2

2!
+ c

=
1
er

= e-r

As a result,

pn =
e-rrn

n!
, n = 0, 1, 2, c

which is Poisson with mean Ls = r. As should be expected, Lq and Wq are zero be-
cause it is a self-service facility.

Scenario1: (M/M/4):(GD/10/infinity)

Lambda =  16.00000 Mu =  5.00000
Lambda eff =  15.42815 Rho/c =  0.80000

Ls =  4.23984 Lq =  1.15421
Ws =  0.27481 Wq =  0.07481

n
Probability  

pn
Cumulative  

Pn  n
Probability  

pn
Cumulative  

Pn

0 0.03121 0.03121  6 0.08726 0.79393

1 0.09986 0.13106  7 0.06981 0.86374
2 0.15977 0.29084  8 0.05584 0.91958
3 0.17043 0.46126  9 0.04468 0.96426
4 0.13634 0.59760 10 0.03574 1.00000

Figure 18.8

TORA output of Example 18.6-6 (file toraEx18.6-6.txt)
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example 18.6-7

An investor invests $1000 a month, on average, in a stock market security. Because the investor 
must wait for good “buy” opportunity, the actual time of purchase is random. The investor usu-
ally keeps the securities for about 3 years on the average but will sell at random times when a 
good “sell” opportunity presents itself. Although the investor is generally recognized as a shrewd 
stock market player, past experience indicates that about 25% of the securities decline at about 
20% a year. The remaining 75% appreciate at the rate of about 12% a year. Estimate the inves-
tor’s (long-run) average equity in the stock market.

This situation can be treated as (M/M/∞):(GD/∞ /∞) because, for all practical purposes, 
the investor does not have to wait in line to buy or to sell securities. The average time between 
order placements is 1 month, which yields l = 12 securities per year. The rate of selling secu-
rities is m = 1

3 security per year. You can secure the model output using the following input:

Lambda Mu c System limit Source limit

12 .3333333 Infinity Infinity Infinity

Given the values of l and m, we obtain

Ls = r =
l

m
= 36 securities

The estimate of the (long-run) average annual net worth of the investor is

1.25Ls * $1000211 - .202 + 1.75Ls * $1000211 + .122 = $63,990

18.6.4 Machine Servicing Model—(M/M/R):(GD/K/K), R * K

The venue for this model is a shop with K machines. When a machine breaks down, one 
of R repairpersons is called upon to do the repair. The rate of breakdown per  machine 
is l breakdowns per unit time, and a repairperson will service broken  machines at 
the rate of m machines per unit time. All breakdowns and services follow the Poisson 
distribution.

The source in this model is finite because only machines in working order can 
break down and hence can generate calls for service. Once all machines are broken, no 
new calls for service can occur.

Given l, that is, the rate of breakdown per machine, the rate of breakdown for the 
entire shop is proportional to the number of working machines. In terms of the queuing 
model, having n machines in the system signifies that n machines are broken, and the 
associated rate of breakdown for the entire shop is

ln = 1K - n2l, 0 … n … K

In terms of the generalized model of Section 18.5, we have

 ln = e 1K - n2l, 0 … n … K
0, n Ú K

 mn = enm,       0 … n … R
Rm,       R … n … K
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From the generalized model, we can then obtain (verify!)

 pn = •
Cn

Krnp0, 0 … n … R

Cn
K n!rn

R!Rn - R p0, R … n … K

 p0 = a a
R

n = 0
Cn

Krn + a
K

n = R + 1
Cn

K 
n!rn

R!Rn - R b
-1

There is no closed form expression for Ls, and hence it must be computed using 
the following basic definition:

Ls = a
K

n = 0
npn

The value of leff is computed as

leff = E5l1K - n26 = l1K - Ls2
Using the formulas in Section 18.6.1, we can compute the remaining measures of per-
formance Ws, Wq, and Lq.

example 18.6-8 

Toolco operates a machine shop with 22 machines. On the average, a machine breaks down 
every 2 hours. It takes an average of 12 minutes to complete a repair. Both the time between 
breakdowns and the repair time are exponential. Toolco is interested in determining the number 
of repairpersons needed to keep the shop running “smoothly.”

The situation can be analyzed by investigating the productivity of the machines as a func-
tion of the number of repairpersons, defined as

 a Machines
productivityb =

Available machines - Broken machines
Available machines

 * 100

 =
22 - Ls

22
 * 100

The results for this situation can be obtained using the following input data: lambda = .5, 
mu = 5, R = 1, 2, 3, or 4, system limit = 22, and source limit = 22. Figure 18.9 provides the 

Comparative Analysis

c Lambda Mu L’da eff p0 Ls Lq Ws Wq

1 0.500 5.00 4.9980 0.0004 12.0040 11.0044 2.4018 2.2018
2 0.500 5.00 8.8161 0.0564 4.3677 2.6045 0.4954 0.2954
3 0.500 5.00 9.7670 0.1078 2.4660 0.5128 0.2525 0.0525
4 0.500 5.00 9.9500 0.1199 2.1001 0.1102 0.2111 0.0111

Figure 18.9 

TORA comparative analysis output for Example 18.6-8 (file toraEx18.6-8.txt)
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output. The following table gives the associated productivity as a function of the number of 
repairpersons:

Repairperson, R 1 2 3 4

Machines productivity (100%) 45.44 80.15 88.79 90.45
Marginal increase (100%) — 34.71  8.64 1.66

The results show that with one repairperson, the productivity is low 1=45.44%2. By 
 increasing the number of repairpersons to two, the productivity jumps by 34.71 to 80.15%. When 
the shop employs three repairpersons, the productivity increases only by about 8.64 to 88.79%, 
whereas four repairpersons will increase the productivity by a meager 1.66 to 90.45%.

Judging from these results, the use of two repairpersons is justifiable. The case for three 
repairpersons is not as strong, as it raises the productivity by only 8.64%. Perhaps a monetary 
comparison between the cost of hiring a third repairperson and the income attributed to the 
8.64% increase in productivity can be used to settle this point (see Section 18.10 for discussion 
of cost models).

18.7  (M/G/1):(GD/H/H) —PoLLACzek–khInTChIne (P–k) foRMuLA

Queuing models in which arrivals and departures do not follow the Poisson distribu-
tion are complex. In general, it is advisable to use simulation as an alternative tool for 
analyzing these situations (see Chapter 19).

This section presents one of the few non-Poisson queues for which analytic results 
are available. It deals with the case in which the service time, t, is represented by any 
probability distribution with mean E{t} and variance var{t}. The results of the model 
include the basic measures of performance Ls, Lq, Ws, and Wq, as well as p0. The model 
does not provide a closed-form expression for pn because of analytic intractability.

Let l be the arrival rate at the single-server facility. Given E{t} and var{t} of the 
service-time distribution and that lE5t6 6 1, it can be shown using sophisticated 
probability/Markov chain analysis that

Ls = lE5t6 +
l21E25t6 + var5t62

211 - lE5t62 , lE5t6 6 1

The probability that the facility is empty (idle) is computed as

p0 = 1 - lE5t6 = 1 - r

Given leff = l, the remaining measures of performance (Lq, Ws, and Wq) can be de-
rived from Ls, as explained in Section 18.6.1.

Template excelPKFormula.xls automates the calculations of this model.

example 18.7-1 

In the Automata car wash facility of Example 18.6-2, suppose that a new system is installed so 
that the service time for all cars is constant and equal to 10 minutes. How does the new system  
affect the operation of the facility?
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From Example 18.6-2, leff = l = 4 cars per hour. The service time is constant so that 
E5t6 = 10

60 = 1
6 hr and var5t6 = 0. Thus,

 Ls = 411
62 +

421 11
622 + 02

211 - 4
62

= 1.33 cars

 Lq = 1.333 - 14
62 = .667 cars

 Ws =
1.333

4
= .333 hr

 Wq =
.667

4
= .167 hr

It is interesting to compare the waiting times with those of the Poisson case in Example 18.6-2, 
1M/D/12:1GD/∞ /∞ 2. The arrival and departure rates are the same in both cases (l = 4 cars 
per hour and m = 1

E5t6 = 6 cars per hour). Yet, as the table given below shows, the expected 
waiting time is lower in the current model. The results make sense because a constant service 
time indicates more certainty in the operation of the facility. Indeed, the P–K formula shows that 
the waiting time increases when Var{t} increases (again because of increase in uncertainty in the 
operation of the queuing system).

1M/M/12:1GD/∞ /∞ 2 1M/D/12:1GD/∞ /∞ 2
Ws (hr) .500 .333
Wq (hr) .333 .167

18.8 oTheR QueuIng ModeLS

The preceding sections have concentrated on the Poisson queuing models. Queuing lit-
erature is rich with other types of models. In particular, queues with priority for service, 
network queues, and non-Poisson G/G/c queues form an important body of the queuing 
theory literature. These models can be found in most specialized books on queuing theory.

remarks. Poisson queuing models have enjoyed great successes in a number of areas 
including telecommunication and computing. Indeed, queuing theory got started in the 
early twentieth century by the Danish mathematician A. K. Erlang out of the practi-
cal need for deciding how many automatic telephone exchanges should be used to sat-
isfy demand for placing telephone calls in his village. One of the convenient aspects of 
Poisson models is that, in practically all cases, the formulas for determining the system’s 
steady-state measures of performance are computationally tractable. But alas!, not every 
queuing model is Poisson, and the variety of the real-life queuing situations in which 
the Poisson assumptions do not apply are numerous and tangible. The most promising 
models are Erlang’s D/M/1 and D/M/c with constant interarrival time and Pollaczek–
Khintchine M/G/1 model with general service-time distribution (Section 18.7). Though 
efforts were made to solve the general G/G/c model in which any probability distribu-
tion can be used, the high-level mathematics associated with these models either resulted 
in “spotty” or approximate information about the system’s measures of performance. 
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Unfortunately, the quality and ease-of-use of these results are not on par with those of 
the Poisson models.

Simulation is an alternative tool for analyzing complex queuing situations liter-
ally by mimicking their real-life behavior on the computer. Measures of performance 
are obtained by observing the system’s behavior and gathering relevant statistics as 
the simulation progresses in time. Although simulation is a highly flexible tool, it has 
its drawbacks. Chapter 19 is dedicated to presenting the details of this important tool.

18.9 QueuIng deCISIon ModeLS

The service level in a queuing facility is a function of the service rate, m, and the number 
of parallel servers, c. This section presents two decision models for determining “suit-
able” service levels for queuing systems: (1) a cost model and (2) an aspiration-level 
model. Both models recognize that higher service levels reduce the waiting time in the 
system. The goal is to strike a balance between service level and waiting.

18.9.1 Cost Models

Cost models attempt to balance two conflicting costs:

1. Cost of offering the service.
2. Cost of delay in offering the service (customer waiting time).

An increase in one cost automatically causes a decrease in the other, as demonstrated 
earlier in Figure 18.1.

Letting x (=  m or c) represent the service level, the cost model can be expressed as

ETC1x2 = EOC1x2 + EWC1x2
where

ETC = Expected total cost per unit time

EOC = Expected cost of operating the facility per unit time

EWC = Expected cost of waiting per unit time

The simplest forms for EOC and EWC are the following linear functions:

 EOC1x2 = C1x

 EWC1x2 = C2Ls

where

C1 = Marginal cost per unit of x per unit time

C2 = Cost of waiting per unit time per (waiting) customer

The following two examples illustrate the use of the cost model. The first example 
assumes x = m, and the second assumes x = c.



18.9  Queuing Decision Models   685

example 18.9-1 

KeenCo Publishing is in the process of purchasing a high-speed commercial copier. Four models 
whose specifications are summarized below have been proposed by vendors.

Copier model Operating cost ($/hr) Speed (sheets/min)

1 15 30
2 20 36
3 24 50
4 27 66

Jobs arrive at KeenCo in a Poisson stream at the rate of four jobs per 24-hr day. Job size 
is random but averages about 10,000 sheets per job. Contracts with the customers specify  
a penalty cost for late delivery of $80 per jobs per day. Which copier should KeenCo 
purchase?

The total expected cost per day associated with copier i is

 ETCi = EOCi + EWCi

 = C1i * 24 + C2iLsi

 = 24C1i + 80Lsi, i = 1, 2, 3, 4

The values of C1i are given by the data of the problem. We determine Lsi by recognizing 
that, for all practical purposes, each copier can be treated as 1M/M/12:1GD/∞ /∞ 2 model. The 
arrival rate is l = 4 jobs/day. The service rate mi associated with model i is computed as

Model i Service rate mi (jobs/day)

1 4.32
2 5.18
3 7 .20
4 9.50

Computation of the service rate is demonstrated for model 1.

Average time per job =
10,000

30
 *

1
60

= 5.56 hrs

Thus,

m1 =
24

5.56
= 4.32 jobs/day

The values of Lsi, computed by TORA or excePoissonQ.xls, are given in the following table:

Model i li (Jobs/day) mi (Jobs/day) Lsi (Jobs)

1 4 4.32 12.50
2 4 5.18 3.39
3 4 7 .20 1.25
4 4 9.50 0.73
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The costs for the four models are computed as follows:

Model i EOCi ($) EWCi ($) ETCi ($)

1 360.00 1000.00 1360.00
2 480.00 271.20 751.20
3 576.00 100.00 676.00
4 648.00 58.40 706.40

Model 3 produces the lowest cost.

example 18.9-2 

In a multiclerk tool crib facility, requests for tool exchange occur according to a Poisson distri-
bution at the rate of 17.5 requests per hour. Each clerk can handle an average of 10 requests 
per hour. The cost of hiring a new clerk in the facility is $12 an hour. The cost of lost production 
per waiting machine per hour is approximately $50. Determine the optimal number of clerks 
for the facility.

The situation corresponds to an (M/M/c) model in which it is desired to determine the op-
timum value of c. Thus, in the general cost model presented at the start of this section, we put 
x = c, resulting in the following cost model:

 ETC1c2 = C1c + C2Ls1c2
 = 12c + 50Ls1c2

Note that Ls(c) is a function of the number of (parallel) clerks in the crib.
We use  1M/M/c2:1GD/∞ /∞ 2 with l = 17.5 requests per hour and m = 10 requests per 

hour. Steady state is reached only if c 7 l
m—that is, c Ú 2 for the present example. The table 

below provides the necessary calculations for determining optimal c. The values of Ls(c) (deter-
mined by excelPoissonQ.xls or TORA) show that the optimum number of clerks is 4.

c Ls(c) (requests) ETC(c) ($)

2 7 .467 397 .35
3 2.217 146.85
4 1.842 140.10
5 1.769 148.45
6 1.754 159.70

18.9.2 Aspiration Level Model

The viability of the cost model depends on how well we can estimate the cost param-
eters. Generally, these parameters are difficult to estimate, particularly the one associated 
with the waiting time of customers. The aspiration level model alleviates this difficulty by 
working directly with the measures of performance of the queuing situation. The idea is 
to determine an acceptable range for the service level (m or c) by specifying reasonable 
limits on conflicting measures of performance. Such limits are the aspiration levels the 
decision maker wishes to reach.
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The model is applied to the multiple-server model to determine an “acceptable” 
number of servers, c*, taking into account two (conflicting) measures of performance:

1. The average time in the system, Ws.
2. The idleness percentage of the servers, X.

The idleness percentage can be computed as follows:

X =
c - c

c
 * 100 =

c - 1Ls - Lq2
c

 * 100 = a1 -
leff

cm
b * 100

(See Problem 18-79 for the proof.)
The problem reduces to determining the number of servers c* such that

Ws … a and  X … b

The constants a and b are the levels of aspiration specified by the decision maker. For 
example, a = 3 minutes and b = 10%.

The solution of the problem may be determined by plotting Ws and X as a func-
tion of c, as shown in Figure 18.10. By locating a and b on the graph, we can determine 
an acceptable range for c*. If the two conditions cannot be satisfied simultaneously, 
then one or both must be relaxed before a feasible range can be found.

example 18.9-3 

In Example 18.9-2, suppose that it is desired to determine the number of clerks such that the ex-
pected waiting time until a tool is received stays below 5 minutes. Simultaneously, the percentage 
of idleness should be below 20%.

Offhand, and before any calculations are made, an aspiration limit of 5 minutes on the wait-
ing time until a tool is received (i.e., Ws  … 5 minutes) is unreachable because, according to the 
data of the problem, the average service time alone is 6 minutes.

The following table summarizes Ws and X as a function of c:

c 2 3 4 5 6 7 8

Ws (min) 25.4  7 .6  6.3  6.1  6.0  6.0  6.0
X (%) 12.5 41.7 56.3 65.0 70.8 75.0 78.0

Acceptable range of c

0

WS X X

b

a

WS

c

Figure 18.10 

Application of aspiration levels in queuing 
decision making
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Based on these results, we should either reduce the service time or recognize that the source of 
the problem is that tools are being requested at an unreasonably high rate (l = 17.5 requests 
per hour). This, most likely, is the area that should be addressed. For example, we may want to 
investigate the reason for such high demand for tool replacement. Could it be that the design of 
the tool itself is faulty? Or could it be that the operators of the machines are purposely trying to 
disrupt production to express grievances?
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Case Study: analysis of an Internal transport System in a Manufacturing plant2

Tools: Queuing theory, simulation

Area of application: Materials handling

description of the situation: 

Three trucks are used to transport materials in a manufacturing plant. The trucks wait in a cen-
tral parking lot until requested. A requested truck will travel to the customer location, carry 
load to destination, and then return to the central parking lot. The principal user of the service 
is production (P) followed by the workshop (W) and maintenance (M). Other departments (O) 
occasionally may request the use of the trucks. Complaints about the long wait for a free truck 
have prompted users, especially production, to request adding a fourth truck to the fleet. The 
study deals with the justification of the cost for a fourth truck.

Input data summary:

Information on the operation of the internal transport system was collected over a period of 17 
consecutive two-shift work days. Tables 18.1 and 18.2 provide a summary of the collected data. 
In Table 18.1, we have the average rate of requests (arrival rate), the average time the truck is 
in use (service time), and the average waiting time for a request. Table 18.2 gives the number of 
trucks in use as a function of the number of requests made throughout the observation period.

2Source: G. P. Cosmetatos, “The Value of Queuing Theory—A Case Study,” Interfaces, Vol. 9, No. 3,  
pp. 47–51, 1979.
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Analysis of the situation:

Analysis of the raw data used to obtain the information in Table 18.1 yields the following obser-
vations:

1. Requests for truck use are random and can be represented by a Poisson distribution.
2. The service time (in-use truck time from the moment it travels to the customer until it returns 

to the parking lot) is unimodal and skewed and does not appear to follow an exponential 
distribution. Perhaps the triangular distribution can be used to approximate the situation in 
this case.

3. Although no priority or allocation of trucks to users is in operation, truck drivers tend to 
show preference to closer customers.

The data in Table 18.2 lead to two observations:

a. In 73.6% of the requests, all three trucks are idle.
b. In only 9.8% of the requests, all three trucks are in use.

Because arrivals are random and can be described by a Poisson distribution and the ser-
vice time is not exponential distribution, the queuing model that best represents the problem 
is the M/G/c/∞ /∞. However, computations for the M/G/c model are not easily tractable. As a 
result, it is decided that an equivalent M/M/c model may be used to provide an upper-bound 
estimate on the waiting time in the queue. The justification is that exponential service time 
is the “most random” of all distributions and hence will result in a worst-case scenario for 
the present situation. (By the same logic, the M/D/c model provides a lower bound on the 
average queuing time because the service time is constant and hence represents the “least 
random” case.)

TABle 18.1 Summary Data of the Operation of the Internal Transport System

Truck user

P W M O Overall

Average number of truck requests per hour 3.02 .84 .26 .48 4.6
Average in-use truck time per request (min) 18.0 25.0 32.0 20.0 20.3
Standard deviation of truck time per request (min) 8.0 11.0 15.0 14.0 10.6
Average waiting time for a truck request (min) 9.2 9.4 9.2 8.4 9.0

TABle 18.2 Number of Trucks in Use as a Function of the Number of Requests

Number of trucks in use at the time a request is made

0 1 2 3 Total

Number of requests 862 28 167 115 1172
Percentage of total 73.6 2.4 14.2 9.8
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The following is a summary of the results of the M/M/c model for c = 3, l = 4.6
60 = .0767 

request per minute and m = 1
20.3 = .0493 service per minute:

Probability that the system is empty, p0 = .197
Probability of at least three requests in the system, pn Ú  3 = .133
Average length of queue, Lq = .277 request
Average waiting time in queue, Wq = 3.6 min

Looking at these results, one notices the perplexing observation that the upper bound on 
the average waiting time in the queue (estimated from the M/M/c model) is much lower than 
what is actually observed (Wq = 3.6 min versus the observed 9.0 minutes given in Table 18.2). 
This observation leads to one of two conclusions: Either the estimates of l and m are inaccurate 
or the estimate of the average waiting is unreliable. A careful study of the data shows that the 
data are indeed reliable. To reinforce the results of the M/M/c model, simulation is used in which 
the service-time distribution is approximated by a triangular distribution with parameters (15, 
20.3, 30). The middle value represents the observed average service time and the lower and up-
per values are estimated based on the standard deviation of service time 1=  10.6 min2 and the 
observed minimum and maximum service times. The simulation can be carried out using Excel 
template excelMultiServer.xls with Poisson arrival rate of .0767 request per minute and triangular 
service time. With 10 replications that simulate 450 requests each, the average queuing time was 
found to vary from a minimum of 1.1 minutes to a maximum of 3.62 minutes and an average 
value of 2.07 minutes. This result gave more credence to the upper-bound result of 3.6 minutes 
obtained from the M/M/c model. Moreover, the high waiting time obtained from the observed 
data 1=  9.0 min2 seems to contradict the data in Table 18.2, where 73.6% of the time all three 
trucks were idle when a service request arrived.

How can this inconsistency between observed and estimated results be explained?  Going 
back to the plant floor to further study the operation of the transport system, an analyst made 
a fortunate observation: The layout of the parking lot was such that waiting trucks could not 
be seen by the users, who then assumed that no trucks were available. This in essence was 
equivalent to operating with less than three trucks, which in turn resulted in an artificial  
increase in waiting time. Once this problem had been discovered, the solution became ob-
vious: Provide the truck drivers and the users with a two-way communication system. The 
proposed solution led to immediate improvement in service and a noticeable decrease in the 
waiting time.

Although the proposed solution was not “propelled” by queuing results in a direct manner, 
it was the logic inherent in queuing analysis that led to the discovery of data inconsistency and, 
hence, to pinpointing the source of the problem.

PRobLeMS 

Section Assigned Problems Section Assigned Problems

18.1 18-1 to 18-2 18.6.2 18-50 to 18-67
18.2 18-3 to 18-7 18.6.3 18-68 to 18-94
18.3 18-8 to 18-20 18.6.4 18-95 to 18-103
18.4.1 18-21 to 18-28 18.7 18-104 to 18-112
18.4.2 18-29 to 18-38 18.9.1 18-113 to 18-125
18.5 18-39 to 18-47 18.9.2 18-126 to 18-127
18.6.1 18-48 to 18-49
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*18-1. Suppose that further analysis of the McBurger restaurant (Example 18.1-1) reveals the 
following additional results:

Number of cashiers 1 2 3 4 5 6 7

Idleness (%) 0 8 12 18 29 36 42

(a) What is the productivity of the operation (expressed as the percentage of time the 
employees are busy) when the number of cashiers is five?

(b) The manager wants to keep the average waiting time around 3 minutes and, 
 simultaneously, maintain the efficiency of the facility at approximately 90%. 
Can the two goals be achieved? Explain.

 18-2. Acme Metal Jobshop is in the process of purchasing a multipurpose drill press. Two 
models, A and B, are available with hourly operating costs of $20 and $35, respectively. 
Model A is slower than model B. Queuing analysis of similar machines shows that when 
A is used, the average number of jobs in the queue is 4, which is 30% higher than the 
queue size in B. A delayed job represents lost income, which is estimated by Acme at 
$10 per waiting job per hour. Which model should Acme purchase?

 18-3. In each of the following situations, identify the customer and the server:
*(a) Planes arriving at an airport.

*(b) Taxi stand serving waiting passengers.

(c) Tools checked out from a crib in a machining shop.

(d) Letters processed in a post office.

(e) Registration for classes in a university.

(f) Legal court cases.

(g) Checkout operation in a supermarket.

*(h) Parking lot operation.
 18-4. For each of the situations in Problem 18-3, identify the following: (a) nature of the 

calling source (finite or infinite), (b) nature of arriving customers (individually or in 
bulk), (c) type of the interarrival time (probabilistic or deterministic), (d) definition and 
type of service time, (f) queue capacity (finite or infinite), and (g) queue discipline.

 18-5. Study the following system and identify the associated queuing situations. For each 
situation, define the customers, the server(s), the queue discipline, the service time, 
the maximum queue length, and the calling source. Orders for jobs are received at a 
workshop for processing. On receipt, the supervisor decides whether it is a rush or 
a regular job. Some orders require the use of one of several identical machines. The 
remaining orders are processed in a two-stage production line, of which two are available. 
In each group, one facility is assigned to handle rush jobs. Jobs arriving at any facility are 
processed in order of arrival. Completed orders are shipped on arrival from a shipping 
zone having a limited capacity. Sharpened tools for the different machines are supplied 
from a central tool crib. When a machine breaks down, a repairperson is summoned from 
the service pool to make the repair. Machines working on rush orders always receive 
priorities both in acquiring new tools from the crib and in receiving repair service.

 18-6. True or False?
(a) An impatient waiting customer may not elect to renege.

(b) If a long waiting time is anticipated, an arriving customer may not elect to balk.

(c) Jockeying from one queue to another is exercised in hope of reducing waiting time.
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 18-7. In each of the situations in Problem 18-3, discuss the possibility of the customers 
jockeying, balking, and reneging.

 18-8. (a) Explain your understanding of the relationship between the arrival rate l and the 
average interarrival time. What are the units describing each parameter?

(b) In each of the following cases, determine the average arrival rate per hour, l, and 
the average interarrival time in hours.
*(i) One arrival occurs every 20 minutes.
(ii) Two arrivals occur every 6 minutes.

(iii) Number of arrivals in a 30-minute period is 10.
(iv) The average interval between successive arrivals is .5 hour.

(c) In each of the following cases, determine the average service rate per hour, m, and 
the average service time in hours.
*(i) One service is completed every 15 minutes.
(ii) Two departures occur every 15 minutes.

(iii) Number of customers served in a 30-minute period is 5.
(iv) The average service time is .3 hour.

 18-9. In Example 18.3-1, determine the following:
(a) The average number of failures per day, assuming the service is offered 24 hours a 

day, 7 days a week.

(b) The probability of at least one failure in a 3-hour period.

(c) The probability that the next failure will not occur within 4 hours.

(d) If no failure has occurred 3 hours after the last failure, what is the probability that 
interfailure time is at least 5 hours?

18-10. The time between arrivals at the State Revenue Office is exponential with mean value 
.04 hour. The office opens at 8:00 a.m.

*(a) Write the exponential distribution that describes the interarrival time.

*(b) Find the probability that no customers will arrive at the office by 8:15 a.m.

(c) It is now 8:35 a.m. The last customer entered the office at 8:26. What is the prob-
ability that the next customer will arrive before 8:38 a.m.? That the next customer 
will not arrive by 8:40 a.m.?

(d) What is the average number of arriving customers between 8:10 and 8:45 a.m.?
18-11. Suppose that the time between breakdowns for a machine is exponential with mean 

5 hours. If the machine has worked without failure during the last 4 hours, what is the 
probability that it will continue without failure during the next 2 hours? That it will 
break down during the next hour?

18-12. The time between arrivals at the game room in the student union is exponential, with 
mean 10 minutes.
(a) What is the arrival rate per hour?

(b) What is the probability that no students will arrive at the game room during the 
next 15 minutes?

(c) What is the probability that at least one student will visit the game room during the 
next 20 minutes?

18-13. The manager of a new fast-food restaurant wants to quantify the arrival process of 
customers by estimating the fraction of interarrival time intervals that will be (a) less 
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than 1 minutes, (b) between 1 and 2 minutes, and (c) more than 2 minutes. Arrivals in 
similar restaurants occur at the rate of 20 customers per hour. The interarrival time is 
exponentially distributed.

*18-14. Ann and Jim, two employees in a fast-food restaurant, play the following game while 
waiting for customers to arrive: Jim pays Ann 2 cents if the next customer does not 
arrive within 1 minute; otherwise, Ann pays Jim 2 cents. Determine Jim’s average payoff 
in an 8-hr period. The interarrival time is exponential with mean 1.5 minute.

18-15. Suppose that in Problem 18-14 the rules of the game are such that Jim pays Ann 2 cents 
if the next customer arrives after 1.5 minutes, and Ann pays Jim an equal amount if the 
next arrival is within 1 minute. For arrivals within the range 1 to 1.5 minutes, the game is 
a draw. Determine Jim’s expected payoff in an 8-hr period.

18-16. In Problem 18-14, suppose that Ann pays Jim 2 cents if the next arrival occurs within 1 
minute and 3 cents if the interarrival time is between 1 and 1.5 minutes. Ann receives from 
Jim 5 cents if the interarrival time is between 1.5 and 2 minutes and 6 cents if it is larger 
than 2 minutes. Determine Ann’s expected payoff in an 8-hour period.

*18-17. A customer arriving at a McBurger fast-food restaurant within 4 minutes of the immedi-
ately preceding customer will receive a 10% discount. If the interarrival time is between 4 
and 5 minutes, the discount is 6%. If the interarrival time is longer than 5 minutes, the  
customer gets 2% discount. The interarrival time is exponential with mean 6 minutes.
(a) Determine the probability that an arriving customer will receive the 10% discount.

(b) Determine the average discount per arriving customer.
18-18. The time between failures of a Kencore refrigerator is known to be exponential with 

mean value 9000 hrs (about 1 year of operation), and the company issues a 1-year 
warranty on the refrigerator. What are the chances that a breakdown repair will be 
covered by the warranty?

18-19. The U of A runs two bus lines on campus: red and green. The red line serves north 
campus, and the green line serves south campus with a transfer station linking the two 
lines. Green buses arrive randomly (exponential interarrival time) at the transfer station 
every 10 minutes. Red buses also arrive randomly every 7 minutes.
(a) What is the probability distribution of the waiting time for a student arriving on 

the red line to get on the green line?

(b) What is the probability distribution of the waiting time for a student arriving on 
the green line to get on the red line?

18-20. Prove that the mean and standard deviation of the exponential distribution are equal.
*18-21. In Example 18.4-1, suppose that the clerk who enters the information from birth 

certificates into the computer normally waits until at least 6 certificates have 
accumulated. Find the probability that the clerk will be entering a new batch every hour.

18-22. An art collector travels to art auctions once a month on the average. Each trip 
is guaranteed to produce one purchase. The time between trips is exponentially 
distributed. Determine the following:
(a) The probability that no purchase is made in a 2-month period.

(b) The probability that no more than 6 purchases are made per year.

(c) The probability that the time between successive trips will exceed 2 month.
18-23. In a bank operation, the arrival rate is 3 customers per minute. Determine the following:

(a) The average number of arrivals during 10 minutes.

(b) The probability that no arrivals will occur during the next minute.
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(c) The probability that at least one arrival will occur during the next minute.

(d) The probability that the time between two successive arrivals is at least 2 minutes.
18-24. The time between arrivals at L&J restaurant is exponential with mean 5 minutes. The 

restaurant opens for business at 11:00 a.m. Determine the following:
*(a) The probability of having 10 arrivals in the restaurant by 11:12 a.m., given that  

4 customers arrived by 11:05 a.m.

(b) The probability that a new customer will arrive between 11:29 and 11:36 a.m., given 
that the last customer arrived at 11:25 a.m.

18-25. The Springdale Public Library receives new books according to a Poisson distribution 
with mean 25 books per day. Each shelf in the stacks holds 100 books. Determine the 
following:
(a) The average number of shelves that will be stacked with new books each (30-day) 

month.

(b) The probability that more than 10 bookcases will be needed each month, given that 
a bookcase has 5 shelves.

18-26. The U of A runs two bus lines on campus: red and green. The red line serves north 
campus and the green line serves south campus with a transfer station linking the two 
lines. Green buses arrive randomly (according to a Poisson distribution) at the transfer 
station every 10 minutes. Red buses also arrive randomly every 7 minutes.

*(a) What is the probability that two buses (red and/or green) will stop at the station 
during a 5-minute interval?

(b) A student whose dormitory is located next to the station has a class in 10 minutes. 
Either bus will take the student to the classroom building. The ride takes 5 minutes, 
after which the student will walk for about 3 minutes to reach the classroom. What 
is the probability that the student will make it to class on time?

18-27. Prove that the mean and variance of the Poisson distribution during an interval t equal 
lt, where l is the arrival rate.

18-28. Derive the Poisson distribution from the difference-differential equations of the pure 
birth model. Hint: The solution of the general differential equation

y′ + a1t2y = b1t2
is

y = e-La(t)dt
 e Lb1t2eLa(t) dt + constant

18-29. In Example 18.4-2, use excelPoissonQ.xls or TORA to compute pn172, n = 1, 2, c, 18, 
and then verify manually that these probabilities yield E5n 0 t = 7 0 6 = .664   dozen.

18-30. Consider Example 18.4-2. In each of the following cases, first write the answer 
algebraically, and then use excelPoissonQ.xls or TORA to provide numerical answers.

*(a) The probability that the stock is depleted after 3 days.

(b) The average number of dozen roses left at the end of the second day.

*(c) The probability that at least one dozen is purchased by the end of the fourth day, 
given that the last dozen was bought at the end of the third day.

(d) The probability that the time remaining until the next purchase is at most half a 
day, given that the last purchase occurred a day earlier.
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(e) The probability that no purchases will occur during the first day.

(f) The probability that no order will be placed by the end of the week.
18-31. The Springdale High School band is performing a benefit concert in its new 400-seat 

auditorium. Local businesses buy the tickets in blocks of 5 and donate them to youth 
organizations. Tickets go on sale to business entities for 5 hours only the day before 
the concert. The process of placing orders for tickets is Poisson with a mean 12 calls 
per hour. Any (blocks of) tickets remaining after the box office is closed are sold at a 
discount as “rush tickets” 1 hour before the concert starts. Determine
(a) The probability that it will be possible to buy rush tickets.

(b) The average number of rush tickets available.
18-32. Each morning, the refrigerator in a small machine shop is stocked with two cases (24 

cans per case) of soft drinks for use by the shop’s 12 employees. The employees can 
quench their thirst at any time during the 8-hour work day (8:00 a.m. to 4:00 p.m.), and 
each employee is known to consume approximately 4 cans a day, but the process is 
totally random (Poisson distribution). What is the probability that an employee will not 
find a drink at noon (the start of the lunch period)? Just before the shop closes?

*18-33.    A freshman student receives a bank deposit of $100 a month from home to cover 
incidentals. Withdrawal checks of $20 each occur randomly during the month and 
are spaced according to an exponential distribution with a mean value of 1 week. 
Determine the probability that the student will run out of incidental money before the 
end of the fourth week.

18-34. Inventory is withdrawn from a stock of 80 items according to a Poisson distribution at 
the rate of 5 items per day. Determine the following:
(a) The probability that 10 items are withdrawn during the first 2 days.

(b) The probability that no items are left at the end of 4 days.

(c) The average number of items withdrawn over a 4-day period.
18-35. A machine shop has just stocked 10 spare parts for the repair of a machine. Stock 

replenishment that brings the stock level back to 10 pieces occurs every 7 days. The time 
between breakdowns is exponential with mean 1 day. Determine the probability that 
the machine will remain broken for 2 days because no spare parts are available.

18-36. Demand for an item occurs according to a Poisson distribution with mean 3 per day. 
The maximum stock level is 25 items, which occurs on each Monday immediately 
after a new order is received. The order size depends on the number of units left at 
the end of the week on Saturday (business is closed on Sundays). Determine the 
following:

*(a) The average weekly size of the order.

*(b) The probability of shortage at the start of business on Friday.

(c) The probability that the weekly order size exceeds 10 units.
18-37. Prove that the distribution of the time between departures corresponding to the truncated 

Poisson in the pure death model is an exponential distribution with mean 1
m time units.

18-38. Derive the truncated Poisson distribution from the difference-differential equations of 
the pure death model using induction. [Note: See the hint in Problem 18-28.]

18-39. In Example 18.5-1, determine the following:
(a) The probability distribution of the number of open counters.

(b) The average number of busy counters.
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18-40. In the B&K model of Example 18.5-1, suppose that the interarrival time at the check-
out area is exponential with mean 8 minutes and that the checkout time per customer 
is also exponential with mean 12 minutes. Suppose further that B&K will add a fourth 
counter. Counters 1, 2, and 3 will open based on increments of two customers and 
counter 4 will open when there are 7 or more in the store. Determine the following:
(a) The steady-state probabilities, pn for all n.

(b) The probability that a fourth counter will be needed.

(c) The average number of idle counters.
*18-41.    In the B&K model of Example 18.5-1, suppose that all three counters are always 

open and that the operation is set up such that the customer will go to the first empty 
counter. Determine the following:
(a) The probability that all three counters will be in use.

(b) The probability that an arriving customer will not wait.
18-42. First Bank of Springdale operates a one-lane drive-in ATM machine. Cars arrive 

according to a Poisson distribution at the rate of 10 cars per hour. The time per car 
needed to complete the ATM transaction is exponential with mean 5 minutes. The 
lane can accommodate a total of 10 cars. Once the lane is full, other arriving cars seek 
service in another branch. Determine the following:
(a) The probability that an arriving car will not be able to use the ATM machine be-

cause the lane is full.

(b) The probability that a car will not be able to use the ATM machine immediately 
on arrival.

(c) The average number of cars in the lane.
18-43. Have you ever heard someone repeat the contradictory statement, “The place is so 

crowded no one goes there any more”? This statement can be interpreted as saying that 
the opportunity for balking increases with the increase in the number of customers seeking 
service. A possible platform for modeling this situation is to say that the arrival rate at the 
system decreases as the number of customers in the system increases. More specifically, we 
consider the simplified case of M&M Pool Club, where customers usually arrive in pairs 
to “shoot pool.” The normal arrival rate is 6 pairs (of people) per hour. However, once the 
number of pairs in the pool hall exceeds 8, the arrival rate drops to 5 pairs per hour. The 
arrival process is assumed to follow the Poisson distribution. Each pair shoots pool for 
an exponential time with mean 30 minutes. The pool hall has a total of 5 tables and can 
accommodate no more than 12 pairs at any one time. Determine the following:
(a) The probability that customers will begin balking.

(b) The probability that all tables are in use.

(c) The average number of tables in use.

(d) The average number of pairs waiting for a pool table to be available.
*18-44. A barbershop serves one customer at a time and provides three seats for waiting 

customers. If the place is full, customers go elsewhere. Arrivals occur according to a 
Poisson distribution with mean four per hour. The time to get a haircut is exponential 
with mean 15 minutes. Determine the following:
(a) The steady-state probabilities.

(b) The expected number of customers in the shop.

(c) The probability that customers will go elsewhere because the shop is full.
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18-45. Consider a one-server queuing situation in which the arrival and service rates are 
given by

 ln = 10 - n, n = 0, 1, 2, 3

 mn =
n
2

+ 5, n = 1, 2, 3, 4

This situation is equivalent to reducing the arrival rate and increasing the service rate as 
the number in the system, n, increases.
(a) Set up the transition diagram and determine the balance equation for the system.

(b) Determine the steady-state probabilities.
18-46. Consider the single-queue model where only one customer is allowed in the system. 

Customers who arrive and find the facility busy never return. Assume that the 
arrivals distribution is Poisson with mean l per unit time and that the service time is 
exponential with mean 1

m time units.
(a) Set up the transition diagram and determine the balance equations.

(b) Determine the steady-state probabilities.

(c) Determine the average number in the system.
18-47. The induction proof for deriving the general solution of the generalized model is 

applied as follows. Consider

pk = q
k - 1

i = 0
a li

mi+ 1
bp0,  k = 0, 1, 2, c

We substitute for pn - 1 and pn - 2 in the general difference equation involving pn, pn - 1, 
and pn - 2 to derive the desired expression for pn. Verify this procedure.

18-48. In Example 18.6-1, do the following:
*(a) Compute Lq directly using the formula g∞

n = c + 11n - c2pn.

(b) Compute Ws from Lq.

*(c) Compute the average number of cars that will not be able to enter the parking lot 
during an 8-hr period.

*(d) By definition, the average number of empty spaces can be computed as 
c - 1Ls - Lq2 or g c - 1

n = 01c - n2pn. Show that the second definition can be derived 
directly from the first using algebraic manipulations.

18-49. Solve Example 18.6-1 using the following data: number of parking spaces = 6, number of 
temporary spaces = 4, l = 10 cars per hour, and average parking time = 45 minutes.

18-50. In Example 18.6-2, do the following.
(a) Determine the percent utilization of the wash bay.

(b) Determine the probability that an arriving car must wait in the parking lot prior to 
entering the wash bay.

(c) If there are six parking spaces, determine the probability that an arriving car will 
find an empty parking space.

(d) How many parking spaces should be provided so that an arriving car may find a 
parking space 95% of the time?
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*18-51. John Macko is a student at Ozark U. He does odd jobs to supplement his income. 
Job requests come every 5 days on the average, but the time between requests is 
exponential. The time for completing a job is also exponential with mean 4 days.
(a) What is the probability that John will be out of jobs?

(b) If John gets about $50 a job, what is his average monthly income?

(c) If at the end of the semester, John decides to subcontract on the outstanding jobs 
at $40 each. How much, on the average, should he expect to pay?

18-52. Over the years, Detective Columbo, of the Fayetteville Police Department, has had 
phenomenal success in solving every single crime case. It is only a matter of time before 
any case is solved. Columbo admits that the time per case is “totally random,” but, on the 
average, each investigation will take about a week and half. Crimes in peaceful Fayetteville 
are not very common. They occur randomly at the rate of one crime per (4-week) month. 
Detective Columbo is asking for an assistant to share the heavy workload. Analyze 
Columbo’s claim, particularly from the standpoint of the following points:
(a) The average number of cases awaiting investigation.

(b) The percentage of time the detective remains busy.

(c) The average time needed to solve a case.
18-53. Cars arrive at the Lincoln Tunnel toll gate according to a Poisson distribution, with a mean 

of 90 cars per hour. The time for passing the gate is exponential with mean 38 seconds. 
Drivers complain of the long waiting time, and authorities are willing to reduce the average 
passing time to 30 seconds by installing automatic toll-collecting devices, provided two 
conditions are satisfied: (1) the average number of waiting cars in the present system 
exceeds 5 and (2) the percentage of the gate idle time with the new device installed does 
not exceed 10%. Can the new device be justified?

*18-54. A fast-food restaurant has one drive-in window. Cars arrive according to a Poisson 
distribution at the rate of 2 cars every 5 minutes. The space in front of the window 
can accommodate at most 10 cars, including the one being served. Other cars can wait 
outside this space if necessary. The service time per customer is exponential, with a 
mean of 1.5 minutes. Determine the following:
(a) The probability that the facility is idle.

(b) The expected number of customers waiting to be served.

(c) The expected waiting time until a customer reaches the window to place an order.

(d) The probability that the waiting line will exceed the 10-space capacity.
18-55. Customers arrive at a one-window drive-in bank according to a Poisson distribution, 

with a mean of 10 per hour. The service time per customer is exponential, with a mean 
of 5 minutes. There are three spaces in front of the window, including the car being 
served. Other arriving cars line up outside this 3-car space.
(a) What is the probability that an arriving car can enter one of the 3-car spaces?

(b) What is the probability that an arriving car will wait outside the designated 3-car 
space?

(c) How long is an arriving customer expected to wait before starting service?

*(d) How many car spaces should be provided in front of the window (including the 
car being served) so that an arriving car can find a space there at least 90% of the 
time?
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18-56. In the 1M/M/12:1GD/∞ /∞2, give a plausible argument as to why Ls does not equal 
Lq + 1, in general. Under what condition will the equality hold?

18-57. For the 1M/M/12:1GD/∞ /∞2, derive the expression for Lq using the basic definition g∞
n = 21n - 12pn.

18-58. For the 1M/M/12:1GD/∞ /∞2, show that
(a) The expected number in the queue, given that the queue is not empty, = 1

11 - r2 .
(b) The expected waiting time in the queue for those who must wait = 1 1

m - l2 .
*18-59.    In Example 18.6-4, determine the following:

(a) Probability that an arriving car will go into the wash bay immediately on arrival.

(b) Expected waiting time until a service starts.

(c) Expected number of empty parking spaces.

(d) Probability that all parking spaces are occupied.

(e) Percent reduction in average service time that will limit the average time in the system 
to about 10 minutes. (Hint: Use trial and error with excelPoissonQ.xls or TORA.)

18-60. Consider the car wash facility of Example 18.6-4. Determine the number of parking 
spaces such that the percentage of cars that cannot find a space does not exceed 3%.

18-61. The time barber Joe takes to give a haircut is exponential with a mean of 12 minutes.  
Because of his popularity, customers usually arrive (according to a Poisson 
distribution) at a rate much higher than Joe can handle: six customers per hour. Joe 
will really feel comfortable if the arrival rate is effectively reduced to about four 
customers per hour. To accomplish this goal, he came up with the idea of providing 
limited seating in the waiting area so that newly arriving customers will go elsewhere 
when they discover that all the seats are taken. How many seats should Joe provide 
to accomplish his goal?

*18-62.    The final assembly of electric generators at Electro is produced at the Poisson rate of 
10 generators per hour. The generators are then conveyed on a belt to the inspection 
department for final testing. The belt can hold a maximum of 7 generators. An 
electronic sensor will automatically stop the conveyor once it is full, preventing the final 
assembly department from assembling more units until a space becomes available. The 
time to inspect the generators is exponential, with a mean of 15 minutes.
(a) What is the probability that the final assembly department will stop production?

(b) What is the average number of generators on the conveyor belt?

(c) The production engineer claims that interruptions in the assembly department 
can be reduced by increasing the capacity of the belt. In fact, the engineer claims 
that the capacity can be increased to the point where the assembly department can 
operate 95% of the time without interruption. Is this claim justifiable?

18-63. A cafeteria can seat a maximum of 50 persons. Customers arrive in a Poisson stream at 
the rate of 10 per hour and are served (one at a time) at the rate of 12 per hour.
(a) What is the probability that an arriving customer will not eat in the cafeteria  

because it is full?

(b) Suppose that three customers (with random arrival times) would like to be 
seated together. What is the probability that their wish can be fulfilled?  
(Assume that arrangements can be made to seat them together as long as  
three seats are available.)
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18-64. Patients arrive at a 1-doctor clinic according to a Poisson distribution at the rate of  
20 patients per hour. The waiting room does not accommodate more than 14 patients. 
Examination time per patient is exponential, with a mean of 8 minutes.
(a) What is the probability that an arriving patient will not wait?

(b) What is the probability that an arriving patient will find a seat in the room?

(c) What is the expected total time a patient spends in the clinic?
18-65. The probabilities pn of n customers in the system for an (M/M/1):1GD/5/∞2 are given in 

the following table:

n 0 1 2 3 4 5

pn .399 .249 .156 .097 .061 .038

The arrival rate l is five customers per hour. The service rate m is eight customers per 
hour. Compute the following:

*(a) Probability that an arriving customer will be able to enter the system.
*(b) Rate at which arriving customers will not be able to enter the system.
(c) Expected number in the system.
(d) Average waiting time in the queue.

18-66. Show that when r = 1 for 1M/M/12:1GD/N/∞2, the expected number in the system, Ls, 

equals N2 .  1Hint:  1 + 2 + c + i = i1i + 12
2 .2

18-67. Show that leff for 1M/M/12:1GD/N/∞2 can be computed from the formula

leff = m1Ls - Lq2
18-68. Consider Example 18.6-5.

(a) Show that the remarkable reduction in waiting time by more than 50% for the consoli-
dated case is coupled with an increase in the percentage of time the servers remain busy.

(b) Suppose that calls for cab service in the consolidated company is increased to 20 cus-
tomers per hour. What is the minimum number of cabs the company should employ?

(c) In Part (b), determine the minimum number of cabs that would  limit the average 
waiting time for a ride to less than 5 minutes.

*18-69.    In the cab company example, suppose that the average time per ride is actually about 
14.5 minutes, so that the utilization 1=  lmc2 for the 2- and 4-cab operations increases to 
more than 96%. Is it still worthwhile to consolidate the two companies into one? Use 
the average waiting time for a ride as the comparison measure.

18-70. Determine the minimum number of parallel servers needed in each of the following 
(Poisson arrival/departure) situations to guarantee that the operation of the queuing 
situation will be stable (i.e., the queue length will not grow indefinitely):
(a) Customers arrive every 6 minutes and are served at the rate of 10 customers per hour.
(b) The average interarrival time is 3 minutes, and the average service time is 6 minutes.
(c) The arrival rate is 25 customers per hour, and the service rate per server is 40 cus-

tomers per hour.
18-71. Customers arrive at Thrift Bank according to a Poisson distribution, with a mean 

of 45 customers per hour. Transactions per customer last about 5 minutes and are 
exponentially distributed. The bank wants to use a single-line multiple-teller operation, 
similar to the ones used in airports and post offices. The manager is conscious of the 
fact that customers may switch to other banks if they perceive that their wait in line is 
“excessive.” For this reason, the manager wants to limit the average waiting time in the 
queue to no more than 3 minutes. How many tellers should the bank provide?
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*18-72.    McBurger fast-food restaurant has 3 cashiers. Customers arrive according to a Poisson 
distribution every 3 minutes and form one line to be served by the first available 
cashier. The time to fill an order is exponentially distributed with a mean of 5 minutes. 
The waiting room inside the restaurant is limited. However, the food is good, and 
customers are willing to line up outside the restaurant, if necessary. Determine the size 
of the waiting room inside the restaurant (excluding those at the cashiers) such that the 
probability that an arriving customer does not wait outside the restaurant is at least .999.

18-73. A small post office has two open windows. Customers arrive according to a Poisson 
distribution at the rate of 1 every 3 minutes. However, only 80% of them seek service 
at the windows. The service time per customer is exponential, with a mean of 5 minutes. 
All arriving customers form one line and access available windows on a FIFO basis.
(a) What is the probability that an arriving customer will wait in line?

(b) What is the probability that both windows are idle?

(c) What is the average length of the waiting line?

(d) Would it be possible to offer reasonable service with only one window? Explain.
18-74. The U of A computer center is equipped with four identical mainframe computers. The 

number of users at any time is 25. Each user is capable of submitting a job from a terminal 
every 15 minutes, on the average, but the actual time between submissions is exponential. 
Arriving jobs will automatically go to the first available computer. The execution time per 
submission is exponential with mean 2 minutes. Compute the following:

*(a) The probability that a job is not executed immediately upon submission.

(b) The average time until the output of a job is returned to the user.

(c) The average number of jobs awaiting execution.

(d) The percentage of time the entire computer center is idle.

*(e) The average number of idle computers.
18-75. Drake Airport services rural, suburban, and transit passengers. The arrival distribution 

for each of the three groups is Poisson with mean rates of 15, 10, and 20 passengers per 
hour, respectively. The time to check in a passenger is exponential with mean 6 minutes. 
Determine the number of counters that should be provided at Drake under each of the 
following conditions:
(a) The total average time to check a customer in is less than 15 minutes.

(b) The percentage of idleness of the counters does not exceed 10%.

(c) The probability that all counters are idle does not exceed .01.
18-76. In the United States, the use of single-line, multiple-server queues is common in post 

offices and in passenger check-in counters at airports. However, both grocery stores and 
banks (especially in smaller communities) tend to favor single-line, single-server setups, 
despite the fact that single-line, multiple-server queues offer a more efficient operation. 
Comment on this observation.

18-77. For the 1M/M/c2:1GD/∞ /∞2 model, Morse (1958, p. 103) shows that as 
r
c S 1,

Lq =
r

c - r

Noting that 
r
c S 1 means that the servers are extremely busy, use this information to 

show that the ratio of the average waiting time in queue in the 1M/M/c2:1GD/∞ /∞2 
model to that in the 1M/M/12:1GD/∞ /∞2 model approaches 1c  as 

r
c S  1. Thus, for  

c = 2, the average waiting time can be reduced by 50%. The conclusion from this  
exercise is that it is always advisable to pool services regardless of how “overloaded”  
the servers may be.
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18-78. In the derivation of pn for the 1M/M/c2:1GD/∞ /∞2 model, indicate which part of the 
derivation requires the condition 

r
c 6 1. Explain verbally the meaning of the condition. 

What will happen if the condition is not satisfied?
18-79. Prove that Ls = Lq + c starting with the definition Lq = g∞

n = c + 11n - C2pn, where c 

is the average number of busy servers. Hence, show that c = leff
m .

18-80. Show that pn for the 1M/M/12:1GD/∞ /∞2 model can be obtained from that of the 
1M/M/c2:1GD/∞ /∞2 model by setting c = 1.

18-81. Show that for the 1M/M/c2:1GD/∞ /∞2 model

Lq =
cr

1c - r22 pc

18-82. For the 1M/M/c2:1GD/∞ /∞2 model, show the following:
(a) The probability that a customer is waiting is 

r

1c - r2  pc.

(b) The average number in the queue given that it is not empty is c
1c - r2 .

(c) The expected waiting time in the queue for customers who must wait is 1
m1c - r2 .

18-83. In Example 18.6-6, determine the following:
(a) The expected number of idle cabs.

(b) The probability that a calling customer will be next to last on the list.

(c) The limit on the waiting list if it is desired to keep the waiting time in the queue to 
below 3.5 minutes.

18-84. Eat & Gas convenience store operates a two-pump gas station. The lane leading to 
the pumps can house at most 3 cars, excluding those being serviced. Arriving cars go 
elsewhere if the lane is full. The distribution of arriving cars is Poisson with mean 20 per 
hour. The time to fill up and pay for the purchase is exponential with mean 6 minutes. 
Determine the following:
(a) Percentage of cars that will seek business elsewhere.

(b) Percentage of time both pumps are in use.

*(c) Percent utilization of the two pumps.

*(d) Probability that an arriving car will not start service immediately, but will find an 
empty space in the lane.

(e) Capacity of the lane that will ensure that, on the average, no more than 10% of the 
arriving cars are turned away.

(f) Capacity of the lane that will ensure that the probability that both pumps are idle 
is .1 or less.

18-85. A small engine repair shop is run by three mechanics. Early in March of each year, 
people bring in their tillers and lawn mowers for service and maintenance. The shop 
is willing to accept all the tillers and mowers that customers bring in. However, when 
new customers see the floor of the shop covered with waiting jobs, they go elsewhere 
for more prompt service. The floor shop can house a maximum of 12 mowers or tillers, 
excluding those being serviced. The customers arrive at the shop every 15 minutes on 
the average, and it takes a mechanic an average of 40 minutes to complete each job. 
Both the interarrival and the service times are exponential. Determine the following:
(a) Average number of idle mechanics.

(b) Amount of business lost to competition per 8-hour day because of the limited capac-
ity of the shop.
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(c) Probability that the next arriving customer will be serviced by the shop.

(d) Probability that at least one of the mechanics will be idle.

(e) Average number of tillers or mowers awaiting service.

(f) A measure of the overall productivity of the shop.
18-86. At U of A, newly enrolled freshmen students are notorious for wanting to drive 

their cars to class (even though most of them are required to live on campus and can 
conveniently make use of the university’s free transit system). During the first couple 
of weeks of the fall semester, traffic havoc prevails on campus as first-year students 
try desperately to find parking spaces. With unusual dedication, the students wait 
patiently in the lanes of the parking lot for someone to leave so they can park their 
cars. Let us consider a specific scenario: The parking lot has 30 parking spaces but can 
also accommodate 10 more cars in the lanes. These additional 10 cars cannot park in 
the lanes permanently and must await the availability of one of the 30 parking spaces. 
Freshman students arrive at the parking lot according to a Poisson distribution, with 
a mean of 20 cars per hour. The parking time per car averages about 60 minutes but 
actually follows an exponential distribution.

*(a) What is the percentage of freshmen who are turned away because they cannot 
enter the lot?

*(b) What is the probability that an arriving car will wait in the lanes?

(c) What is the probability that an arriving car will occupy the only remaining parking 
space on the lot?

*(d) Determine the average number of occupied parking spaces.

*(e) Determine the average number of spaces that are occupied in the lanes.

(f) Determine the number of freshmen who will not make it to class during an 8-hr 
period because the parking lot is totally full.

18-87. Verify the expression for p0 for the 1M/M/c2:1GD/N/∞ 2 model, given that 
r
c ≠ 1.

18-88. Prove the following equality for 1M/M/c2:1GD/N/∞ 2:

leff = mc,

where c is the number of busy servers.
18-89. Verify the expression for p0 and Lq for 1M/M/c2:1GD/N/∞ 2 when 

r
c = 1.

18-90. For 1M/M/c2:1GD/N/∞ 2 with which N = c, define ln and mn in terms of the general 
model (Section 18.5), then show that the expression for pn is given as

pn =
rn

n!
 p0, n = 1, 2, c, c

where

p0 = a1 + a
c

n = 1
 
rn

n!
b

-1

18-91. In Example 18.6-7, compute the following:
(a) The probability that the investor will sell out completely.

(b) The probability that the investor will own at least 20 securities.

(c) The probability that the investor will own between 20 and 30 securities, inclusive.

(d) The investor’s net annual equity if only 20% of the securities depreciate by 30% a 
year, and the remaining 80% appreciate by 12% a year.
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18-92. New drivers are required to pass written tests before they are given road driving 
test. These tests are usually administered in the city hall. Records at the City of 
Springdale show that the average number of written tests is 100 per 8-hr day. The 
average time needed to complete the test is about 30 minutes. However, the actual 
arrival of test takers and the time each spends on the test are totally random. 
Determine the following:

*(a) The average number of seats the test hall should provide.

*(b) The probability that the number of test takers will exceed the average number of 
seats provided in the test hall.

(c) The probability that no tests will be administered in any one day.
18-93. Demonstrate (by using excelPoissonQ.xls or TORA) that for small r = .1, the values 

of Ls, Lq, Ws, Wq, and pn for c as small as 4 servers, the 1M/M/c2:1GD/∞ /∞2 model can 
be estimated reliably using the less cumbersome formulas of the 1M/M/∞ 2:1GD/∞ /∞2 
model for c as small as 4 servers.

18-94. Repeat Problem 18-93 for large r = 9, and show that the same conclusion holds 
except that the value of c must be higher (at least 14). From the results of Problems 
18-93 and 18-94, what general conclusion can be drawn regarding the use of 
1M/M/c2:1GD/∞ /∞2 to estimate the results of the 1M/M/c2:1GD/∞ /∞2 model?

18-95. In Example 18.6-8, do the following:
(a) Verify the values of leff given in Figure 18.9.

*(b) Compute the expected number of idle repairpersons, given R = 4.

(c) Compute the probability that all repairpersons are idle, given R = 3.

*(d) Compute the probability that the majority (more than half) of repairpersons are 
idle, given R = 3.

18-96. In Example 18.6-8, define and compute the productivity of the repairpersons for 
R = 1, 2, 3, and 4. Use this information in conjunction with the measure of machine 
productivity to decide on the number of repairpersons Toolco should hire.

18-97. In the computations in Figure 18.9, it may appear confusing that the average rate of 
machine breakdown in the shop, leff, increases with the increase in R. Explain why the 
increase in leff should be expected.

*18-98. An operator attends five automatic machines. After each machine completes a batch 
run, the operator must reset it before a new batch is started. The time to complete a 
batch run is exponential with mean 45 minutes. The setup time is also exponential with 
mean 8 minutes.
(a) Determine the average number of machines that are awaiting setup or are being set up.

(b) Compute the probability that all machines are working.

(c) Determine the average time a machine is down.
18-99. Kleen All is a service company that performs a variety of odd jobs, such as yard work, 

tree pruning, and house painting. The company’s four employees leave the office with 
the first assignment of the day. After completing an assignment, the employee calls the 
office requesting instruction for the next job to be performed. The time to complete an 
assignment is exponential, with a mean of 35 minutes. The travel time between jobs is 
also exponential, with a mean of 30 minutes.
(a) Determine the average number of employees who are traveling between jobs.

(b) Compute the probability that no employee is on the road.
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*18-100. After a long wait, the Newborns were rewarded with quintuplets, two boys and three 
girls, thanks to the wonders of new medical advances. During the first 5 months, the 
babies’ life consisted of two states: awake (and mostly crying) and asleep. According to 
the Newborns, the babies’ “awake-asleep” activities never coincide. Instead, the whole 
affair is totally random. In fact, Mrs. Newborn, a statistician by profession, believes 
that the length of time each baby cries is exponential, with a mean of 30 minutes. The 
amount of sleep each baby gets also happens to be exponential, with a mean of 2 hrs. 
Determine the following:
(a) The average number of babies who are awake at any one time.

(b) The probability that all babies are asleep.

(c) The probability that the Newborns will not be happy because more babies are 
awake (and crying) than are asleep.

18-101. Verify the expression for pn for the (M/M/R): (GD/K/K) model.
18-102. Show that the rate of breakdown in the shop can be computed from the formula

leff = mR

where R is the average number of busy repairpersons.
18-103. Verify the following results for the special case of one repairperson 1R = 12:

 pn =
K!rn

1K - n2!
 p0

 p0 = a1 + a
R

n = 1
 

K!rn

1K - n2 b
-1

 Ls = K -
11 - p02

r

18-104. In Example 18.7-1, compute the percentage of time the facility is idle.
18-105. Solve Example 18.7-1, assuming that the service-time distribution is given as follows:

*(a) Uniform between 8 and 20 minutes.

(b) Normal with m = 10 minutes and s = 3 minutes.

(c) Discrete with values equal to 4, 8, and 12 minutes and probabilities .1, .6, and .3, 
respectively.

18-106. Layson Roofing Inc. installs shingle roofs on new and old homes in Arkansas. 
Prospective customers request the service randomly at the rate of 6 jobs per 30-day 
month and are placed on a waiting list to be processed on a FCFS basis. Homes sizes 
vary, but it is fairly reasonable to assume that the roof areas are uniformly distributed 
between 120 and 360 squares. The work crew can usually complete 60 squares a day. 
Determine the following:
(a) Layson’s average backlog of roofing jobs.

(b) The average time a customer waits until a roofing job is completed.

(c) If the work crew is increased to the point where they can complete 100 squares a 
day, how will this affect the average time until a job is completed?

*18-107. Optica makes prescription glasses according to orders received from customers. Each 
worker is specialized in certain types of glasses. The company has been experiencing 
unusual delays in the processing of bifocal and trifocal prescriptions. The worker in 
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charge receives 30 orders per 8-hr day. The time to complete a prescription is normally 
distributed, with a mean of 12 minutes and a standard deviation of 3 minutes. After 
spending between 2 and 4 minutes, uniformly distributed, to inspect the glasses, the 
worker can start on a new prescription. Determine the following:
(a) The percentage of time the worker is idle.

(b) The average backlog of bifocal and trifocal prescriptions in Optica.

(c) The average time until a prescription is filled.
18-108. A product arrives according to a Poisson distribution at the rate of one every 45 minutes.  

The product requires two tandem operations attended by one worker. The first 
operation uses a semiautomatic machine that completes its cycle in exactly 28 minutes. 
The second operation makes adjustments and minor changes, and its time depends 
on the condition of the product when it leaves operation 1. Specifically, the time of 
operation 2 is uniform between 3 and 6 minutes. Because each operation requires the 
complete attention of the worker, a new item cannot be loaded on the semiautomatic 
machine until the current item has cleared operation 2.
(a) Determine the number of items awaiting processing on the semiautomatic  

machine.

(b) What is the percentage of time the worker will be idle?

(c) How much time is needed, on the average, for an arriving item to clear operation 2?
18-109. 1M/D/12:1GD/∞ /∞2. Show that for the case where the service time is constant, the 

P-K formula reduces to

Ls = r +
r2

211 - r2

where m = 1
E5t6  and r = l

m = lE{t}.

18-110. 1M/Em/12:1GD/∞ /∞2. Given that the service time is Erlang with parameters m and m 
(i.e., E5t6 = m

m  and var5t6 = m
m2), show that the P–K formula reduces to

Ls = mr +
m11 + m2r2

211 - mr2
18-111. Show that the P–K formula reduces to Ls of the 1M/M/12:1GD/∞ /∞2 when the service 

time is exponential with a mean of 1
m time units.

18-112. In a service facility with c parallel servers, suppose that customers arrive according to a 
Poisson distribution, with a mean rate of l. Arriving customers are assigned to servers 
(busy or free) on a strict rotational basis.
(a) Determine the probability distribution of the interarrival time.

(b) Suppose in part (a) that arriving customers are assigned randomly to the c serv-
ers with probabilities ai, ai Ú 0, i = 1, 2, c, c, and a1 + a2 + g + ac = 1. 
Determine the probability distribution of the interarrival time.

18-113. In Example 18.9-1, do the following:
(a) Verify the values of m2, m3, and m4 given in the example.

(b) Suppose that the penalty of $48 per job per day is levied only on jobs that are not 
“in progress” at the end of the day. Which copier yields the lowest total cost per 
day?
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*18-114. Metalco is in the process of hiring a repairperson for a 10-machine shop. Two 
candidates are under consideration. The first candidate can carry out repairs at the 
rate of 5 machines per hour and earns $15 an hour. The second candidate, being more 
skilled, receives $20 an hour and can repair 8 machines per hour. Metalco estimates 
that each broken machine will incur a cost of $50 an hour because of lost production. 
Assuming that machines break down according to a Poisson distribution with a mean 
of 3 per hour and that repair time is exponential, which repairperson should be hired?

18-115. BB&K Groceries is opening a new store boasting “state-of-the-art” check-out 
scanners. Mr. Bih, one of the owners of B&K, has limited the choices to two scanners: 
scanner A can process 15 items a minute, and the better-quality scanner B can scan 20 
items a minute. The daily (10 hours) cost of operating and maintaining the scanners 
are $30 and $50 for models A and B, respectively. Customers who finish shopping 
arrive at the cashier according to a Poisson distribution at the rate of 10 customers 
per hour. Each customer’s cart carries between 25 and 35 items, uniformly distributed. 
Mr. Bih estimates the average cost per waiting customer per minute to be about 20 
cents. Which scanner should B&K acquire? (Hint: The service time per customer is not 
exponential. It is uniformly distributed.)

18-116. H&I Industry produces a special machine with different production rates (pieces 
per hour) to meet customer specifications. A shop owner is considering buying one 
of these machines and wants to decide on the most economical speed (in pieces per 
hour) to be ordered. From past experience, the owner estimates that orders from 
customers arrive at the shop according to a Poisson distribution at the rate of three 
orders per hour. Each order averages about 500 pieces. Contracts between the owner 
and the customers specify a penalty of $100 per late order per hour.
(a) Assuming that the actual production time per order is exponential, develop a 

general cost model as a function of the production rate, m.

*(b) From the cost model in (a), determine an expression for the optimal production 
rate.

*(c) Using the data given in the problem, determine the optimal production rate the 
owner should request from H&I.

18-117. Jobs arrive at a machine shop according to a Poisson distribution at the rate of 80 jobs 
per week. An automatic machine represents the bottleneck in the shop. It is estimated 
that a unit increase in the production rate of the machine will cost $250 per week. 
Delayed jobs normally result in lost business, which is estimated to be $500 per job per 
week. Determine the optimum production rate for the automatic machine.

18-118. Pizza Unlimited sells two franchised restaurant models. Model A has a capacity of 20 
groups of customers, and model B can seat 30 groups. The monthly cost of operating 
model A is $12,000 and that of model B is $16,000. An investor wants to set up a buffet-
style pizza restaurant and estimates that groups of customers, each occupying one 
table, arrive according to a Poisson distribution at a rate of 25 groups per hour. If all 
the tables are occupied, customers will go elsewhere. Model A will serve 26 groups per 
hour, and model B will serve 29 groups per hour. Because of the variation in group sizes 
and in the types of orders, the service time is exponential. The investor estimates that 
the average cost of lost business per customer group per hour is $15. A delay in serving 
waiting customers is estimated to cost an average of $10 per customer group per hour.
(a) Develop an appropriate cost mode.

(b) Assuming that the restaurant will be open for business 10 hrs a day, which model 
would you recommend for the investor?
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18-119. Suppose in Problem 18-118 that the investor can choose any desired restaurant 
capacity based on a specific marginal cost for each additional capacity unit 
requested. Derive the associated general cost model, and define all its components 
and terms.

18-120. Second Time Around sells popular used items on consignment. Its operation can 
be viewed as an inventory problem in which the stock is replenished and depleted 
randomly according to Poisson distributions with rates l and m items per day. Every 
time unit the item is out of stock, Second Time loses $C1 because of lost opportunities, 
and every time unit an item is held in stock, a holding cost $C2 is incurred.
(a) Develop an expression for the expected total cost per unit time.

(b) Determine the optimal value of r = l
m. What condition must be imposed on the 

relative values of C1 and C2 in order for the solution to be consistent with the as-
sumptions of the  1M/M/12: 1GD/∞ /∞2 model?

18-121. Solve Example 18.9-2, assuming that C1 = $25 and C2 = $50.
*18-122. Tasco Oil owns a pipeline booster unit that operates continuously. The time between 

breakdowns for each booster is exponential with a mean of 20 hrs. The repair time 
is exponential with mean 3 hrs. In a particular station, two repairpersons attend 10 
boosters. The hourly wage for each repairperson is $18. Pipeline losses are estimated 
to be $30 per broken booster per hour. Tasco is studying the possibility of hiring an 
additional repairperson.
(a) Will there be any cost savings in hiring a third repairperson?

(b) What is the schedule loss in dollars per breakdown when the number of repairper-
sons on duty is two? Three?

18-123. A company leases a wide-area telecommunications service (WATS) telephone line 
for $2000 a month. The office is open 200 working hours per month. At all other 
times, the WATS line service is used for other purposes and is not available for 
company business. Access to the WATS line during business hours is extended to 
100 salespersons, each of whom may need the line at any time but averages twice 
per 8-hr day with exponential time between calls. A salesperson will always wait 
for the WATS line if it is busy at an estimated inconvenience of 1 cent per minute 
of waiting. It is assumed that no additional needs for calls will arise while the 
salesperson waits for a given call. The normal cost of calls (not using the WATS line) 
averages about 50 cents per minute, and the duration of each call is exponential, with 
a mean of 6 mins. The company is considering leasing (at the same price) a second 
WATS line to improve service.
(a) Is the single WATS line saving the company money over a no-WATS system? How 

much is the company gaining or losing per month over the no-WATS system?

(b) Should the company lease a second WATS line? How much would it gain or lose 
over the single WATS case by leasing an additional line?

*18-124. A machine shop includes 20 machines and 3 repairpersons. A working machine breaks 
down randomly according to a Poisson distribution. The repair time per machine 
is exponential with a mean of 6 minutes. A queuing analysis of the situation shows 
an average of 57 .8 calls for repair per 8-hr day for the entire shop. Suppose that 
the production rate per machine is 25 units per hour and that each produced unit 
generates $2 in revenue. Further, assume that a repairperson is paid at the rate of $20 
an hour. Compare the cost of hiring the repairpersons against the cost of lost revenue 
when machines are broken.
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18-125. The necessary conditions for ETC(c) (defined earlier) to assume a minimum value at 
c = c* are

ETC1c* - 12 Ú ETC1c*2 and ETC1c* + 12 Ú ETC1c*2
Show that these conditions reduce to

Ls1c*2 - Ls1c* + 12 …
C1

C2
… Ls1c* - 12 - Ls1c*2

Apply the result to Example 18.9-2, and show that it yields c* = 4.
*18-126. A shop uses 10 identical machines. Each machine breaks down once every 7 hrs on 

the average. It takes half an hour on the average to repair a broken machine. Both 
the breakdown and repair processes follow the Poisson distribution. Determine the 
following:
(a) The number of repairpersons needed such that the average number of broken 

machines is less than 1.

(b) The number of repairpersons needed so that the expected delay time until repair 
is started is less than 10 minutes.

18-127. In the cost model in Section 18.9.1, it is generally difficult to estimate the cost 
parameter C2 (cost of waiting). As a result, it may be helpful to compute the cost C2 
implied by the aspiration levels. Using the aspiration level model to determine c*, we 
can then estimate the implied C2 by using the following inequality:

Ls1c*2 - Ls1c* + 12 …
C1

C2
… Ls1c* - 12 - Ls1c*2

((See Problem 18-125, for the derivation.) Apply the procedure to the problem in 
Example 18.9-2, assuming c* = 3 and C1 = $15.00.
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Chapter 19

Simulation Modeling

19.1 Monte Carlo SiMulation

A forerunner to present-day simulation is the Monte Carlo experiment, a modeling 
scheme that estimates stochastic or deterministic parameters based on random sam-
pling. Examples of Monte Carlo applications include evaluation of multiple integrals, 
estimation of the constant p 1≅ 3.141592, and matrix inversion.

This section uses an example to demonstrate the Monte Carlo technique. The 
objective of the example is to emphasize the statistical nature of simulation.

example 19.1-1 

We will use Monte Carlo sampling to estimate the area of the following circle:

1x - 122 + 1y - 222 = 25

The radius of the circle is r = 5 cm, and its center is 1x, y2 = 11, 22.
The procedure for estimating the area requires enclosing the circle tightly in a square whose 

side equals the diameter of the circle, as shown in Figure 19.1. The corner points are determined 
from the geometry of the square.

The estimation of the area of the circle is based on a sampling experiment that gives equal 
chance to selecting any point in the square. If m out of n sampled points fall within the circle, then

a Approximate 
area of the circle

b =
m
n

 a Area of
the square

b =
m
n

 110 * 102

To ensure that all the points in the square are equally probable, the coordinates x and y of a 
point in the square are represented by the following uniform distributions:

f11x2 =
1
10

, -4 … x … 6

f21y2 =
1
10

, -3 … y … 7

 711
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The determination of a sample (x, y) is based on the use of independent 0-1 random numbers. 
Table 19.1 lists a sample of such numbers which we will use in the examples in this chapter. For 
the purpose of general simulation, special arithmetic operations are used to generate (pseudo) 0-1 
random numbers, as will be shown in Section 19.4.

A pair of 0-1 random numbers, R1 and R2, can be used to generate a random point (x, y) in 
the square by using the following formulas:

 x = -4 + [6 - 1-42]R1 = -4 + 10R1

 y = -3 + [7 - 1-32]R2 = -3 + 10R2

To demonstrate the application of the procedure, consider R1 = .0589 and R2 = .6733.

 x = -4 + 10R1 = -4 + 10 * .0589 = -3.411

 y = -3 + 10R2 = -3 + 10 * .6733 = 3.733

This point falls inside the circle because

1-3.411 - 122 + 13.733 - 222 = 22.46 6 25

remarks. The accuracy of the area estimate can be enhanced by using procedures 
from ordinary statistical experiments:

1. Increase the sample size, n.
2. Use replications, N.

(24, 7) (6, 7)

(24, 23) (6, 23)

(1, 2)

r 5
 5

Figure 19.1 

Monte Carlo estimation of the 
area of a circle

Table 19.1 A Short List of 0-1 Random Numbers

.0589 .3529 .5869 .3455 .7900 .6307

.6733 .3646 .1281 .4871 .7698 .2346

.4799 .7676 .2867 .8111 .2871 .4220

.9486 .8931 .8216 .8912 .9534 .6991

.6139 .3919 .8261 .4291 .1394 .9745

.5933 .7876 .3866 .2302 .9025 .3428

.9341 .5199 .7125 .5954 .1605 .6037

.1782 .6358 .2108 .5423 .3567 .2569

.3473 .7472 .3575 .4208 .3070 .0546

.5644 .8954 .2926 .6975 .5513 .0305
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The discussion in Example 19.1-1 poses two questions regarding the simulation 
experiment:

1. How large should the sample size be?
2. How many replications are needed?

There are some formulas in statistical theory for determining n and N, and they depend on 
the nature of the simulation experiment as well as the desired confidence level. However, 
as in any statistical experiment, the golden rule is that higher values of n and N mean more 
accurate simulation results. In the end, the sample size will depend on the cost associ-
ated with conducting the simulation experiment. Generally speaking, however, a selected 
sample size is considered “adequate” if it produces a relatively “small” standard deviation.

It is necessary to express the results as a confidence interval to account for the 
random variation in the output of the experiment. Letting A and s be the mean and 
variance of N replications, then, given a confidence level a, the confidence interval for 
the true area A is

A -
s1N

 t a

2 , N - 1 … A … A +
s1N

 t a

2 , N - 1

The parameter ta
2 , N - 1 is determined from the t-distribution tables given a confidence level 

a and N - 1 degrees of freedom (see the t-table in Appendix A or use excelStatTables.xls). 
Note that N equals the number of replications, which is distinct from the sample size n.

excel Moment

The computations associated with each sample in Example 19.1-1 are voluminous. Excel tem-
plate excelCircle.xls (with VBA macros) is used to test the effect of sample size and number of 
replications on the accuracy of the area estimate. The input data include the circle radius, r; and 
its center (cx, cy); sample size, n; number of replications, N; and the confidence level, a. The entry 
Steps in cell D4 allows executing several samples in the same run. For example, if n = 30,000 and 
Steps = 3, the template will automatically produce output for n = 30,000, 60,000, and 90,000. 
New estimates are realized each time the command button Press to Execute Monte Carlo  is 
clicked because Excel refreshes the seed of the random number generator.

Figure 19.2 summarizes the results for 5 replications and sample sizes of 30,000, 60,000, and 
90,000. The exact area is 78.54 cm2, and the Monte Carlo results show that the mean estimated 
areas for the three sample sizes are slightly different.

Figure 16.2 gives the 95% confidence intervals for each n. For example, the confidence 
interval 78.452 … A … 78.68 corresponds to n = 90,000, with N = 5, A = 78.566 cm2, and 
s = .092 cm, and t.025,4 = 2.776. In general, to realize reasonable accuracy in the estimation of 
the confidence interval, the value of N should be at least 5.

aha! Moment. retirement Planning online: the Monte Carlo Way!

In days past, a financial advisor was a real person with whom an investor could meet face 
to face to discuss financial plans for retirements. Though real-person advising continues to 
thrive (particularly for large investors), the trend now, especially for small investors, is to 
seek financial advice online. Available software estimates post-retirement cash flow based 
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on historical time-based financial information about stocks and bonds and the like, together 
with the annual contributions to the retirement fund, anticipated retirement date, and other 
pertinent data. But the most important element of the model is how it accounts for the vola-
tility (ups and downs) of the stock market based on foreseen and unforeseen events. This is a 
complex stochastic process that describes the ever-present uncertainty in the market behavior 
over time. In practice, almost all available retirement calculators translate market volatility 
as simple percentage estimates that reflect the degree of uncertainty in the market. These 
percentages are the basis for the use of random (or Monte Carlo) sampling to simulate the 
stock market behavior. Practically all financial brokers use some version of a (Monte Carlo-
based) data-driven black box simulator. But in the end, the output, as in any simulation model, 
is simply the result of a peculiar statistical experiment (see Section 19.6), and is thus bound 
by the limitations of the design and execution of such experiments. As such, the quality of 
proposed advices is dependent on the robustness of the model and the accuracy of the input 
data driving the model.

Figure 19.2 

Excel output of Monte Carlo estimation of the area of a circle (file excelCircle.xls)
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19.2 tyPeS of SiMulation

The execution of present-day simulation is based on the idea of sampling used with the 
Monte Carlo method. It differs in that it deals with the study of the behavior of real 
systems as a function of time. Two distinct types of simulation models exist.

1. Continuous models deal with systems whose behavior changes continuously with 
time. These models usually use difference-differential equations to describe the 
interactions among the different elements of the system. A typical example deals 
with the study of world population dynamics.

2. Discrete models deal primarily with the study of waiting lines, with the objective 
of determining such measures as the average waiting time and length of the queue. 
These measures change only when a customer enters or leaves the system. The in-
stants at which changes take place occur at specific discrete points in time (arrivals 
and departure events), giving rise to the name discrete event simulation.

This chapter presents the basics of discrete event simulation, including a descrip-
tion of the components of a simulation model, collection of simulation statistics, and 
the statistical aspect of the simulation experiment. The chapter also emphasizes the 
role of the computer and simulation languages in the execution of simulation models.

19.3 eleMentS of DiSCrete event SiMulation

The ultimate goal of simulation is to estimate some desirable measures of performance 
that describe the behavior of the simulated system. For example, in a service facility, 
the associated measures of performance can include the average waiting time until a 
customer is served, the average length of the queue, and the average utilization of the 
service facility. This section shows how the statistics of the simulated system are col-
lected based on the concept of events.

19.3.1 Generic Definition of events

All discrete event simulations describe, directly or indirectly, queuing situations in 
which customers arrive (for service), wait in a queue (if necessary), and then  receive 
service before leaving the service facility. As such, any discrete event simulation, 
 regardless of the complexity of the system it describes, reduces to dealing with two 
basic events: arrivals and departures. The following example illustrates the use of the 
arrival and departure events to describe a system consisting of distinct queues.

example 19.3-1 

Metalco Jobshop receives two types of jobs: regular and rush. All jobs are processed on two 
consecutive machines with ample buffer areas. Rush jobs always assume nonpreemptive priority 
over regular jobs.

This situation consists of two tandem queues representing the two machines. At first, one 
may be inclined to identify the events of the situation as

A11: A regular job arrives at machine 1.
A21: A rush job arrives at machine 1.
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D11: A regular job departs machine 1.
D21: A rush job departs machine 1.
A12: A regular job arrives at machine 2.
A22: A rush job arrives at machine 2.
D12: A regular job departs machine 2.
D22: A rush job departs machine 2.

In reality, there are only two events: an arrival of a (new) job at the shop and a departure of 
a (completed) job from a machine. First notice that events D11 and A12 are actually one and 
the same. The same applies to D21 and A22. Next, in discrete simulation we can use one event 
 (arrival or departure) for both types of jobs and simply “tag” the event with an attribute that 
identifies the job type as either regular or rush. (We can think of the attribute in this case as a 
personal identification descriptor, and indeed it is.) Given this reasoning, the events of the model 
reduce to (1) an arrival A (at the shop) and (2) a departure D (from a machine). The actions 
 associated with the arrival event depend on the type of arriving job (rush or regular) and the 
availability of a machine. Similarly, the processing of the departure event will depend on the 
machine and the status of waiting jobs.

Having defined the basic events of a simulation model, we show how the model is executed. 
Figure 19.3 gives a schematic representation of typical occurrences of events on the simulation 
timescale. After all the actions associated with a current event have been performed, the simu-
lation advances by “jumping” to the next chronological event. In essence, the execution of the 
simulation occurs at the instants at which the events occur.

How does the simulation determine the occurrence time of the events? The arrival events 
are separated by the interarrival time (the interval between successive arrivals), and the departure 
events are a function of the service time in the facility. These times may be deterministic (e.g., a 
train arriving at a station every 5 minutes) or probabilistic (e.g., the random arrival of customers 
at a bank). If the time between events is deterministic, the determination of their occurrence 
times is straightforward. If it is probabilistic, we use a special procedure to sample from the cor-
responding probability distribution. This point is discussed in the next section.

19.3.2 Sampling from Probability Distributions

Randomness in simulation arises when the interval, t, between successive events is 
probabilistic. This section presents three methods for generating successive random 
samples 1t = t1, t2, c2 from a probability distribution f (t):

1. Inverse method.
2. Convolution method.
3. Acceptance–rejection method.

Event 1 Event 2 Event 3 Event 4 Event 5

Time

Figure 19.3 

Example of the occurrence of simulation events on the timescale
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The inverse method is particularly suited for analytically tractable probability density 
functions, such as the exponential and the uniform. The remaining two methods deal with 
more complex cases, such as the normal and the Poisson. All three methods are rooted in 
the use of independent and identically distributed uniform 0-1 random numbers.

This section will present the first two methods only. Details of the acceptance–
rejection method can be found in Law (2007).

Inverse method. To obtain a random sample x from the (continuous or discrete) 
probability density function f (x), the inverse method first determines a closed-form 
 expression of the cumulative density function F1x2 = P5y … x6, where 0 … F1x2 … 1,  
for all defined values of y. It can be proved that the random variable z = F1x2 is uni-
formly distributed in the interval 0 … z … 1. Based on this result, a random sample 
from f (x) is determined using the following steps (F - 1 is the inverse of F):

Step 1. Generate a 0-1 random number, R.
Step 2. Compute the desired sample x = F - 11R2.

Figure 19.4 illustrates the procedures for both a continuous and a discrete random 
distribution.

example 19.3-2 (exponential Distribution)

The exponential probability density function f1t2 = le -lt, t 7 0 represents the interarrival 
time t at a facility with a mean value of 1

l. The cumulative density function is

F1t2 = L
t

 0
 le -lxdx = 1 - e -lt, t 7 0

Setting R = F1t2, we can solve for t as

t = - a 1
l
b  ln11 - R2

F(x)

1

0

R1

xx1

F(x)

(b)    x Discrete(a)    x Continuous

1

0

R1

xx1

Figure 19.4 

Sampling from a probability distribution by the inverse method
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For example, for l = 4 customers per hour and R = .9, the time period until the next ar-
rival occurs is

t1 = - a1
4
b  ln11 - .92 = .577 hour = 34.5 minutes

Note that ln11 - R2 may be replaced with ln(R) because 1 - R is the complement of R.

Convolution method. The basic idea of the convolution method is to express the 
desired sample as the statistical sum of other easy-to-sample random variables. 
Typical among these distributions are the Erlang and the Poisson, whose samples can 
be obtained from the exponential distribution samples.

example 19.3-3 (erlang Distribution)

The m-Erlang random variable is defined as the statistical sum (convolutions) of m independent 
and identically distributed exponential random variables. Let y represent the m-Erlang random 
variable; then

y = y1 + y2 + g + ym

The random variables yi, i = 1, 2, c, m, are independent and identically distributed exponen-
tials with the following probability density function:

f1yi2 = le -lyi, yi 7 0, i = 1, 2, c, m

From Example 19.3-2, a sample from the ith exponential distribution is computed as

yi = - a 1
l
b  ln1Ri2, i = 1, 2, c, m

Thus, the m-Erlang sample is computed as

 y = - a 1
l
b{ln1R12 + ln1R22 + g +  ln1Rm2}

 = - a 1
l
b  lnaq

m

i = 1
Rib

To illustrate the use of the formula, suppose that m = 3 and l = 4 events per hour. The first 
3 random numbers in column 1 of Table 19.1 yield R1R2R3 = 1.058921.673321.47992 = .0190,  
which yields

y = - 11
42 ln1.0192 = .991 hr

example 19.3-4 (Poisson Distribution)

Section 18.4.1 shows that if the distribution of the time between the occurrences of successive 
events is exponential, then the distribution of the number of events per unit time is Poisson, and 
vice versa. We use this relationship to sample the Poisson distribution.

Assume that mean of the Poisson distribution is l events per unit time. It follows that the 
time between events is exponential with mean 1

l time units. This means that a Poisson sample, n, 
will occur during t time units if, and only if,

Period till event n occurs … t 6 Period till event n + 1 occurs
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This condition translates to

t1 + t2 + g + tn … t 6 t1 + t2 + g + tn + 1, n 7 0

0 … t 6 t1, n = 0

The random variable ti, i = 1, 2 c, n + 1, is a sample from the exponential distribution with 
mean 1

l. From the result in Example 19.3-3, we have

- a 1
l
b  lnaq

n

i = 1
Rib … t 6 - a 1

l
b   lnaq

n + 1

i = 1
Rib , n 7 0

0 … t 6 - a 1
l
b  ln1R12, n = 0

These expressions reduce to

q
n

i = 1
Ri Ú e -lt 7 q

n + 1

i = 1
Ri, n 7 0

1 Ú e -lt 7 R1, n = 0

To illustrate the implementation of the sampling process, suppose that l = 4 events per 
hour. To obtain a sample for a period t = .5 hr, we first compute e -lt = .1353. The random 
number R1 = .0589 is less than e -lt = .1353. Hence, the corresponding sample is n = 0.

example 19.3-5 (normal Distribution)

The central limit theorem (see Section 14.4.4) states that the sum (convolution) of n indepen-
dent and identically distributed random variables becomes asymptotically normal as n becomes 
sufficiently large. We use this result to generate samples from normal distribution with mean m 
and standard deviation s.

Define

x = R1 + R2 + c + Rn

The random variable is asymptotically normal by the central limit theorem. Given that the uni-
form (0, 1) random number R has a mean of 12 and a variance of 1

12, it follows that the mean and 
variance of x are n

2 and n
12, respectively. Thus, a random sample, y, from a normal distribution 

N1m, s2, with mean m and standard deviation s, can be computed from x as

y = m + s°x - n
2 2 n

12 
¢

In practice, we take n = 12 for convenience, which reduces the formula to

y = m + s1x - 62
To illustrate the use of this method, suppose that we wish to generate a sample 

from N(10, 2) (mean m = 10 and standard deviation s = 2). Taking the sum of the first 
12 random numbers in columns 1 and 2 of Table 19.1, we get x = 6.1094. Thus, y = 10 +  
216.1094 - 62 = 10.2188.

Box-Muller normal sampling formula. The disadvantage of the preceding proce-
dure is that it requires generating 12 random numbers per normal sample, which 
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is computationally inefficient. A more efficient procedure calls for using the 
transformation

x = cos12pR222-2 ln1R12
Box and Muller (1958) prove that x is a standard N(0, 1). Thus, y = m + sx will 
 produce a sample from N1m, s2. The new procedure is more efficient because it re-
quires two 0-1 random numbers only. Actually, this method is even more efficient than 
stated, because Box and Muller prove that the given formula produces another N(0, 1) 
sample if sin12pR22 replaces cos12pR22.

To illustrate the implementation of the Box–Muller procedure to the normal dis-
tribution N(10, 2), the first two random numbers in column 1 of Table 19.1 yield the 
following N(0, 1) samples:

x1 = cos12p * .673322-2 ln1.05892 ≈ -1.103

x2 = sin12p * .673322-2 ln1.05892 ≈ -2.109

Thus, the corresponding N(10, 2) samples are

y1 = 10 + 21-1.1032 = 7.794

y2 = 10 + 21-2.1092 = 5.782

19.4 Generation of ranDoM nuMberS

Uniform (0, 1) random numbers play a key role in sampling from distributions. True 
0-1 random numbers can be generated by electronic devices only. However, because 
simulation models are executed on the computer, the use of electronic devices to 
generate  random numbers is much too slow for that purpose. Additionally, electronic 
devices are activated by laws of chance, making it impossible to duplicate the same 
sequence of  random numbers at will. This point is important because debugging, veri-
fication, and validation of the simulation model often require duplicating the random 
numbers sequence.

The only feasible way for generating 0-1 random numbers for use in simulation is 
based on arithmetic operations. Such numbers are not truly random because the entire 
sequence can be generated in advance. It is thus more appropriate to refer to them as 
pseudorandom numbers.

The most common arithmetic operation for generating (0, 1) random numbers is 
the multiplicative congruential method. Given the parameters u0, b, c, and m, a pseudo-
random number Rn can be generated from the formulas:

 un = 1bun - 1 + c2  mod1m2, n = 1, 2, c

 Rn =
un

m
, n = 1, 2, c
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The initial value u0 is usually referred to as the seed of the generator.
Variations of the multiplicative congruential method that improve the quality of 

the generator can be found in Law (2007).

example 19.4-1 

Generate three random numbers based on the multiplicative congruential method using b = 9, 
c = 5, and m = 12. The seed is u0 = 11.

 u1 = 19 * 11 + 52  mod 12 = 8, R1 =
8
12

= .6667

 u2 = 19 * 8 + 52  mod 12 = 5, R2 =
5
12

= .4167

 u3 = 19 * 5 + 52  mod 12 = 2, R3 =
2
12

= .1667

excel Moment

Excel template excelRN.xls implements the multiplicative congruential method. Figure 19.5 gen-
erates the sequence associated with the parameters of Example 19.4-1. Notice that the cycle 

Figure 19.5 

Excel random numbers output for the data of Example 19.4-1 (file excelRN.xls)
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length is exactly 4, after which the sequence repeats itself. The point to be made here is that 
the selected values of u0, b, c, and m are critical in determining the (statistical) quality of the 
generator and its cycle length. Thus, “casual” implementation of the congruential formula is not 
recommended. Instead, one must use a reliable and tested generator. All commercial computer 
programs are equipped with dependable random number generators.

19.5 MeChaniCS of DiSCrete SiMulation

This section details how typical statistics are collected in a simulation model. The 
 vehicle of explanation is a single-queue model. Section 19.5.1 uses a numeric exam-
ple to detail the actions and computations that take place in a single-server queuing 
simulation model. Because of the tedious computations that typify the execution of a 
simulation model, Section 19.5.2 shows how the single-server model is modeled and 
executed using an Excel spreadsheet.

19.5.1 Manual Simulation of a Single-Server Model

example 19.5-1 

The interarrival time of customers at HairKare Barbershop is exponential with mean 15 
minutes. The shop is operated by only one barber, and it takes between 10 and 15 minutes, 
 uniformly  distributed, to do a haircut. Customers are served on a first-in, first-out (FIFO) basis. 
The  objective of the simulation is to compute the following measures of performance:

1. The average utilization of the shop.
2. The average number of waiting customers.
3. The average time a customer waits in queue.

In the remainder of this section, the barbershop situation in Example 19.5-1 is 
used to describe the logic of the simulation model, detailing the actions associated with 
the arrival and departure events. Concurrently, the presentation details how the simu-
lation statistical data/observations are collected.

arrival event

1. Generate and store chronologically the occurrence time of the next arrival event 
1=  current simulation time + interarrival time2.

2. If the facility (barber) is idle
a. Start service and declare the facility busy. Update the facility utilization 

 statistics.
b. Generate and store chronologically the time of the departure event for the 

customer 1= current simulation time + service time2.
3. If the facility is busy, place the customer in the queue, and update the queue 

statistics.
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Departure event

1. If the queue is empty, declare the facility idle. Update the facility utilization statistics.
2. If the queue is not empty

a. Select a customer from the queue, and place it in the facility. Update the facility 
utilization and queue statistics.

b. Generate and store chronologically the occurrence time of the departure 
event for the customer 1=  current simulation time + service time2.

From the data of the problem, the interarrival time is exponential with mean 
15 minutes, and the service time is uniform between 10 and 15 minutes. Letting p and 
q represent random samples of interarrival and service times, then, as explained in 
Section 19.3.2, we get

 p = -15  ln1R2  minutes,   0 … R … 1

 q = 10 + 5R minutes,   0 … R … 1

For the purpose of this example, we use R from Table 19.1, starting with column 1. 
We also use the symbol T to represent the simulation clock time. We further assume that 
the first customer arrives at T = 0 and that the facility starts empty.

Because the simulation computations are typically voluminous, the simulation 
is limited to the first 5 arrivals only. The example is designed to cover all possible 
situations that could arise in the course of the simulation. Later in Section 19.5.2, 
we introduce the template excelSingleServer.xls that allows experimenting with the 
model without the need to carry out the computations manually.

arrival of customer 1 at T = 0. Generate the arrival of customer 2 at

T = 0 + p1 = 0 + [-15  ln1.05892] = 42.48 minutes

Because the facility is idle at T = 0, customer 1 starts service immediately. The depar-
ture time is thus computed as

T = 0 + q1 = 0 + 110 + 5 * .67332 = 13.37 minutes

The chronological list of future events thus becomes

Time, T Event

13.37 Departure of customer 1
42.48 Arrival of customer 2

Departure of customer 1 at T = 13.37. Because the queue is empty, the facility is de-
clared idle. At the same time, we record that the facility has been busy between T = 0 
and T = 13.37 min. The updated list of future events becomes

Time, T Event

42.48 Arrival of customer 2
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arrival of customer 2 at T = 42.48. Customer 3 will arrive at

T = 42.48 + [-15 ln1.47992] = 53.49 minutes

Because the facility is idle, customer 2 starts service, and the facility is declared busy. 
The departure time is

T = 42.48 + 110 + 5 * .94862 = 57.22 minutes

The list of future events is updated as

Time, T Event

53.49 Arrival of customer 3
57.22 Departure of customer 2

arrival of customer 3 at T = 53.49. Customer 4 will arrive at

T = 53.49 + [-  15  ln1.61392] = 60.81 minutes

Because the facility is currently busy (until T = 57.22), customer 3 is placed in queue 
at T = 53.49. The updated list of future events is

Time, T Event

57.22 Departure of customer 2
60.81 Arrival of customer 4

Departure of customer 2 at T = 57.22. Customer 3 is taken out of the queue to start 
service. The waiting time is

W3 = 57.22 - 53.49 = 3.73 minutes

The departure time is

T = 57.22 + 110 + 5 * .59332 = 70.19 minutes

The updated list of future events is

Time, T Event

60.81 Arrival of customer 4
70.19 Departure of customer 3

arrival of customer 4 at T = 60.81. Customer 5 will arrive at

T = 60.81 + [-15 ln1.93412] = 61.83 minutes

Because the facility is busy until T = 70.19, customer 4 is placed in the queue. The 
updated list of future events is

Time, T Event

61.83 Arrival of customer 5
70.19 Departure of customer 3
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arrival of customer 5 at T = 61.83. The simulation is limited to 5 arrivals, hence 
 customer 6 arrival is not generated. The facility is still busy, hence the customer is 
placed in queue at T = 61.83. The updated list of events is

Time, T Event

70.19 Departure of customer 3

Departure of customer 3 at T = 70.19. Customer 4 is taken out of the queue to start 
service. The waiting time is

W4 = 70.19 - 60.81 = 9.38 minutes

The departure time is

T = 70.19 + [110 + 5 * .1782] = 81.08 minutes

The updated list of future events is

Time, T Event

81.08 Departure of customer 4

Departure of customer 4 at T = 81.08. Customer 5 is taken out of the queue to start 
service. The waiting time is

W5 = 81.08 - 61.83 = 19.25 minutes

The departure time is

T = 81.08 + 110 + 5 * .34732 = 92.82 minutes

The updated list of future events is

Time, T Event

92.82 Departure of customer 5

Departure of customer 5 at T = 92.82. There are no more customers in the system 
(queue and facility) and the simulation ends.

Figure 19.6 summarizes the changes in the length of the queue and the utilization 
of the facility as a function of the simulation time.

The queue length and the facility utilization are known as time-based vari-
ables because their variation is a function of time. As result, their average values 
are computed as

a Average value of a
time@based variable

b =
Area under curve
Simulated period
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Implementing this formula for the data in Figure 19.6, we get

 aAverage queue
length

b =
A1 + A2

92.82
=

32.36
92.82

= .349 customer

 aAverage facility
utilization

b =
A3 + A4

92.82
=

63.71
92.82

= .686 barber

The average waiting time in the queue is an observation-based variable whose 
value is computed as

a Average value of an
observation@based variable

b =
Sum of observations

Number of observations

Examination of Figure 19.6 reveals that the area under the queue-length curve actu-
ally equals the sum of the waiting time for the three customers who joined the queue; 
namely,

W1 + W2 + W3 + W4 + W5 = 0 + 0 + 3.73 + 9.38 + 19.25 = 32.36 minutes

The average waiting time in the queue for all customers is thus computed as

Wq = 32.36
5 = 6.47 minutes

19.5.2 Spreadsheet-based Simulation of the Single-Server Model

This section develops a spreadsheet-based model for the single-server model. The 
objective of the development is to reinforce the ideas introduced in Section 19.5.1. Of 
course, a single-server model is a simple situation that can be modeled readily in a 
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Changes in queue length and facility utilization as a function of simulation time, T
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spreadsheet environment. Other situations require more involved modeling effort, a 
task that is facilitated by available simulation packages (see Section 19.7).

The presentation in Section 19.5.1 shows that the simulation model of the single-
server facility requires two basic elements:

1. A chronological list of the model’s events.
2. A graph that keeps track of the changes in facility utilization and queue length.

These two elements remain essential in the development of the spreadsheet-based 
(indeed, any computer-based) simulation model. The difference is that the implemen-
tation is realized in a manner that is compatible with the use of the computer. As in 
Section 19.5.1, customers are served in order of arrival (FIFO).

Figure 19.7 provides the output of excelSingleServer.xls. The input data allow rep-
resenting the interarrival and service time in one of four ways: constant, exponential, 
uniform, and triangular. The triangular distribution is useful in that it can be used as a 
rough initial estimate of any distribution, simply by providing three estimates a, b, and 
c that represent the smallest, the most likely, and the largest values of the interarrival or 
service time. The only other information needed to drive the simulation is the length of 
the simulation run, which in this model is specified by the number of arrivals that can 
be generated in the model.

The spreadsheet calculations reserve one row for each arrival. The interarrival 
and service times for each arrival are generated from the input data. The first arrival is 
assumed to occur at T = 0. Because the facility starts idle, the customer starts service 
immediately. The spreadsheet provides sufficient information to demonstrate the inter-
nal computations given in Section 19.5.1.

Figure 19.7 

Excel output of a single-server simulation model (file excelSingleServer.xls)
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Another spreadsheet was developed for simulating multiserver models  
(excelMultiServer.xls). The design of the template is based on the same ideas used 
in the single-server case. However, the determination of the departure time is not as 
straightforward and requires the use of VBA macros.

excel Moment

In Example 18.6-5 and Problems 18-69 and 18-77, a case is made for the operational advantage of 
using service pools under the Poisson assumptions, even under very high facility utilization rates 
(i.e., 

r
c S 1). In the remarks following Example 18.6-5, I made the (unsubstantiated) claim that 

service pools can lead efficient mode of operation even if the queuing situation does not follow 
the Poisson model. The literature is void of mathematical arguments that could invalidate this 
claim. This chapter offers an opportunity to get a feel as to whether the claim may be plausible. 
Specifically, excel spreadsheets excelSingleServer.xls and excelMultiServer.xls simulate the single-
server and multiple-server queues with constant, exponential, uniform, and triangular interarrival 
and service times. You are encouraged to design an experiment that will “substantiate” or “refute” 
the claim. Keep in mind that you are just running an experiment and not seeking a proof.

19.6 MethoDS for GatherinG StatiStiCal obServationS

Simulation is a statistical experiment, and its output must be interpreted using proper 
statistical inference tools (e.g., confidence intervals and hypothesis testing). To accom-
plish this task, a simulation experiment must satisfy three conditions:

1. Observations are drawn from stationary (identical) distributions.
2. Observations are sampled from a normal population.
3. Observations are independent.

In a strict sense, the simulation experiment does not satisfy any of these conditions. 
Nevertheless, we can ensure that these conditions remain statistically acceptable by 
restricting the manner in which the observations are gathered.

First, we consider the issue of stationary distributions. Simulation output is a 
function of the length of the simulated period. The initial period produces erratic be-
havior and is usually referred to as the transient or warm-up period. When the output 
stabilizes, the system operates under steady state. Unfortunately, there is no definitive 
way to predict the start point of steady state in advance. In general, a longer simulation 
run has better chance of reaching steady state—meaning that the problem is addressed 
by using a sufficiently large sample size.

Next, we consider the requirement that simulation observations are drawn from 
a normal population. This requirement is realized by using the central limit theorem 
(see Section 14.4.4), which confirms that the distribution of the average of a sample is 
asymptotically normal regardless of the parent population. The central limit theorem 
is thus the main tool we use for satisfying the normal distribution assumption.

The third condition deals with the independence of the observations. In simula-
tion, an observation can be based on a single independent run or by subdividing a single 
run into subintervals each representing an observation. Each method has it advantages 
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and disadvantages. The first method alleviates the question of independence but has 
the  disadvantage of including the transient period in each observation. In the second 
method, the effect of the transient period is not as pronounced, but it inherently worsens 
the issue of independence. As will be explained subsequently in this section, a possible 
remedy calls for increasing the length of the simulation run.

The most common methods for collecting observations in simulation are

1. Subinterval method.
2. Replication method.
3. Regenerative (or cycles) method.

The first two methods can be readily automated in all widely used simulation languages 
(see Section 19.7). On the other hand, the third method, though it addresses directly the 
issue of independence by seeking identical starting conditions for the different observa-
tions, may be difficult to implement in practice.

Sections 19.6.1 and 19.6.2 present the first two methods. Details of the third 
method can be found in Law (2007).

19.6.1 Subinterval Method

Figure 19.8 illustrates the idea of the subinterval method. Suppose that the length 
of the simulation run is T time units. The subinterval method first truncates an ini-
tial transient period, and then subdivides the remainder of the simulation run into 
n equal subintervals (or batches). The average of a desired measure of performance 
(e.g., queue length or waiting time in queue) within each subinterval is then used to 
represent a single observation. Truncation of the initial transient period means that no 
statistical data are collected during that period.

The advantage of the subinterval method is that the effect of the transient (non-
stationary) conditions is mitigated, particularly for the observations that are collected 
toward the end of the simulation run. The disadvantage is that successive batches with 
common boundary conditions are not necessarily independent. The problem can be 
alleviated by increasing the time base for each observation.
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Collecting simulation data using the subinterval method



730   Chapter 19    Simulation Modeling

example 19.6-1 

Figure 19.9 shows the change in queue length in a single-queue model as a function of the simulation 
time. The simulation run length is T = 35 hrs, and the length of the transient period is estimated  
to equal 5 hrs. The time base for an observation is 6 hrs, which produces n = 5 observation.

Let Qi represent the average queue length in batch i. Because the queue length is a time-
based variable, we have

Qi =
Ai

t
, i = 1, 2, c, 5

where Ai is the area under the queue-length curve associated with batch (observation) i, and 
t 1=  62 is the time base per batch.

The data in Figure 19.9 produce the following observations:

Observation i 1 2 3 4 5

Ai 14 10 11 6 15

Qi 2.33 1.67 1.83 1.00 2.50

Sample mean = 1.87   Sample standard deviation = .59

The sample mean and variance can be used to compute a confidence interval, if desired. 
The computation of the sample variance in Example 19.6-1 is based on the following familiar 
formula:

s = R a
n

i = 1
xi

2 - n x2

n - 1
 

This formula is only an approximation of the true standard deviation because it ignores the effect 
of autocorrelation between the successive batches. The exact formula can be found in Law (2007).

19.6.2 replication Method

In the replication method, each observation is represented by an independent simula-
tion run in which the transient period is truncated, as illustrated in Figure 19.10. The 
computation of the observation averages for each batch is the same as in the subinterval 
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A1 5 14 A2 5 10 A4 5 6A3 5 11 A5 5 15
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2
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length Q
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Figure 19.9 

Change in queue length with simulation time in Example 19.6-1
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method. The only difference is that the standard variance formula is applicable because 
the batches are not independent.

The advantage of the replication method is that each simulation run is driven by 
a distinct 0-1 random number stream, which yields statistically independent observa-
tions. The disadvantage is that each observation may be biased by the initial effect of 
the transient conditions. Such a problem may be alleviated by making the run length 
sufficiently large.

19.7 SiMulation lanGuaGeS

Execution of simulation models entails two distinct types of computations: (1) file ma-
nipulations that deal with the chronological storage and processing of model events, and 
(2) arithmetic and bookkeeping computations associated with generation of random 
samples and collection of model statistics. The first type of computation involves exten-
sive logic in the development of list processing, and the second type entails tedious and 
time-consuming calculations. The nature of these computations makes the computer an 
essential tool for executing simulation models, and, in turn, prompts the development of 
special computer simulation languages for performing these computations conveniently 
and efficiently.

Available discrete simulation languages fall into two broad categories:

1. Event scheduling.
2. Process oriented.

In event scheduling languages, the user details the actions associated with the occur-
rence of each event, in much the same way they are given in Example 19.5-1. The 
main role of the language in this case is (1) automation of sampling from distributions, 
(2) storage and retrieval of events in chronological order, and (3) collection of model 
statistics.

Process-oriented languages use blocks or nodes that can be linked together to form 
a network that describes the movements of transactions or entities (i.e., customers) in the 
system. For example, the three most prominent blocks/nodes in any process-simulation 
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Collecting simulation data using the replication method
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language are a source from which transactions are created, a queue where they can wait 
if necessary, and a facility where service is performed. Each of these blocks/nodes is de-
fined with all the information needed to drive the simulation automatically. For example, 
once the interarrival time for the source is specified, a process-oriented language auto-
matically “knows” when arrival events will occur. In effect, each block/node of the model 
has standing instructions that define how and when transactions are moved in the simula-
tion network.

Process-oriented languages are internally driven by the same actions used in 
event-scheduling languages. The difference is that these actions are automated to re-
lieve the user of the tedious computational and logical details. In a way, we can regard 
process-oriented languages as being based on the input–output concept of the “black 
box” approach. This essentially means that process-oriented languages trade modeling 
flexibility for simplicity and ease of use.

Event-scheduling languages (such as SIMSCRIPT, SLAM, and SIMAN) are 
outdated and are rarely used in practice. Recently, a new language called DEEDS 
(Elizandro and Taha, 2008) is based on the novice approach of using an Excel spread-
sheet to drive event scheduling. DEEDS allows the modeling flexibility of event-
driven simulation languages while achieving the intuitive nature of a process-oriented 
language.

The predominant process-oriented commercial package is Arena. It uses ex-
tensive user interface to simplify the process of creating a simulation model. It also 
provides animation capabilities where changes in the system can be observed visually. 
However, to an experienced simulation professional, these interfaces may appear to 
reduce the development of a simulation model to a “slow-motion” pace. It is not sur-
prising that some users continue to prefer writing simulation models in higher-level 
programming languages.

remarks. Most simulation languages come equipped with animation that exhibits 
simultaneous event movements of objects or transactions (e.g., products transiting 
among processing machines). Representation of transaction movements can be ab-
stract (e.g., simple bullets traversing the model components with numeric counters 
recording the frequency of visitations along their routes) or a full-fledged near-real 
3D animation.

Animation can play a role in the verification phase of the model development, 
at times pinpointing irregularities in the movements of the transaction. However, this 
potential advantage can lose its flair in complex models, with the visual display getting 
cluttered with transactions moving randomly all over the place. Add to this the fact that 
human patience for watching a simulation animation usually reaches its limit in scant 
few minutes, no matter how realistic the display may be.

Some argue that animation is a “perfect” tool for convincing management of the 
viability of simulation modeling. This argument treats the simulation model as a “black 
box,” requiring only input data to produce output results. It does not educate the user 
about what simulation can or cannot do or about the complexity of the simulation 
experiment, not to mention the length of time and effort needed to produce a working 
model. These factors are of paramount importance when it comes to securing manage-
ment’s long-term support of simulation projects.
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ProbleMS 

Section Assigned Problems Section Assigned Problems

19.1 19-1 to 19-9    19.5.1 19-36 to 19-39
19.2 19-10 to 19-11 19.5.2 19-40 to 19-42
19.3.1 19-12 to 19-15 19.6.1 19-43 to 19-44
19.3.2 19-16 to 19-33 19.6.2 19-45 to 19-49
19.4 19-34 to 19-35

19-1. In Example 19.1-1, estimate the area of the circle using the first two columns of the 0-1 
random numbers in Table 19.1. (For convenience, go down each column, selecting R1 
first and then R2.) How does this estimate compare with the ones given in Figure 19.2?

19-2. Suppose that the equation of a circle is

1x - 422 + 1y + 322 = 25

(a) Define the corresponding distributions f (x) and f (y), and then show how a sample 
point (x, y) is determined using the (0, 1) random pair (R1, R2).

(b) Use excelCircle.xls to estimate the area and the associated 95% confidence interval 
given n = 100,000 and N = 10.

19-3. Use Monte Carlo sampling to estimate the area of the lake shown in Figure 19.11. Base 
the estimate on the first two columns of (0, 1) random numbers in Table 19.1.
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Lake map for Problem 19-3
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19-4. Consider the game in which two players, Jan and Jim, take turns in tossing a fair coin. 
If the outcome is heads, Jim gets $10 from Jan. Otherwise, Jan gets $10 from Jim.

*(a) How is the game simulated as a Monte Carlo experiment?

(b) Run the experiment for 5 replications of 10 tosses each. Use the first five columns 
of the 0-1 random numbers in Table 19.1, with each column corresponding to one 
replication.

(c) Establish a 95% confidence interval on Jan’s winnings.

(d) Compare the confidence interval in (c) with Jan’s expected theoretical winnings.
19-5. Consider the following definite integral:

L
1

0
 x4 dx

(a) Develop the Monte Carlo experiment to estimate the value of the integral.

(b) Use the first four columns in Table 19.1 to evaluate the integral based on 4 replica-
tions of size 5 each. Compute a 95% confidence interval, and compare it with the 
exact value of the integral.

19-6. Simulate five wins or losses of the following game of craps: The player rolls two fair 
dice. If the outcome sum is 7 or 11, the player wins $10. Otherwise, the player records 
the resulting sum (called point) and keeps on rolling the dice until the outcome sum 
matches the recorded point, in which case the player wins $10. If a 7 is obtained prior to 
matching the point, the player loses $10.

*19-7.    The lead time for receiving an order can be 1 or 2 days, with equal probabilities. The 
demand per day assumes the values 0, 1, and 2 with the respective probabilities of .2, .7, 
and .1. Use the random numbers in Table 19.1 (starting with column 1) to estimate the 
joint distribution of the demand and lead time. From the joint distribution, estimate the 
pdf of demand during lead time. (Hint: The demand during lead time assumes discrete 
values from 0 to 4.)

19-8. Buffon needle experiment. A horizontal plane is ruled with parallel lines spaced D cm 
apart. A needle of length d cm 1d 6 D2 is dropped randomly on the plane. The objective 
of the experiment is to determine the probability that either end of the needle touches or 
crosses one of the lines. Define

h = Perpendicular distance from the needle center to a (parallel) line
u = Inclination angle of the needle with a line

(a) Show that the needle will touch or cross a line only if

h …
d
2

  sin u, 0 … h …
D
2

, 0 … u … p

(b) Design the Monte Carlo experiment, and provide an estimate of the desired 
probability.

(c) Use Excel to obtain 4 replications of size 10 each of the desired probability. 
Determine a 95% confidence interval for the estimate. Assume D = 20 cm and 
d = 10 cm.

(d) Prove that the theoretical probability is given by the formula

p =
2d
pD

(e) Use the result in (c) together with the formula in (d) to estimate p.
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 19-9. Using the results in Figure 19.2 (Example 19.1-1) with n = 60,000 for estimating the area 
of a circle, design a Monte Carlo experiment for estimating the value of the constant p.
[Hint: 1Area of a circle2 >1Area of rectangle tightly enveloping the circle2 = p>4.]

19-10. Categorize the following situations as either discrete or continuous (or a combination 
of both). In each case, specify the objective of developing the simulation model.

*(a) Orders for an item arrive randomly at a warehouse. An order that cannot be 
filled immediately from available stock must await the arrival of new shipments.

(b) Goods arrive on pallets at a receiving bay of an automated warehouse. The 
pallets are loaded on a lower conveyor belt and lifted through an up-elevator 
to an upper conveyor that moves the pallets to corridors. The corridors are 
served by cranes that pick up the pallets from the conveyor and place them 
in storage bins.

(c) World population is affected by the availability of natural resources, food 
 production, environmental conditions, educational level, health care, and 
 capital investments.

19-11. Explain why you would agree or disagree with the following statement: “Most discrete 
event simulation models can be viewed in some form or another as queuing systems 
consisting of sources from which customers arrive, queues where customers may wait, 
and facilities where customers are served.”

19-12. Identify the discrete events needed to simulate the following situation: Three types of 
jobs arrive from different sources. All three types are processed on a single machine, 
with the highest priority given to jobs from the first source, followed by source 2, then 
source 3.

19-13. Jobs arrive at a constant rate at a carousel conveyor system. Two service stations 
are spaced equally around the carousel. If the server is idle when a job arrives at 
the station, the job is removed from the conveyor for processing. Otherwise, the job 
continues to rotate on the carousel until a server becomes available. A processed job 
is stored in an adjacent shipping area. Identify the discrete events needed to simulate 
this situation.

19-14. Cars arrive at a two-lane, drive-in bank, where each lane can house a maximum 
of four cars. If the two lanes are full, arriving cars seek service elsewhere. If at 
any time one lane is at least two cars longer than the other, the last car in the 
longer lane will jockey to the last position in the shorter lane. The bank operates 
the drive-in facility from 8:00 a.m. to 3:00 p.m. each work day. Define the discrete 
events for the situation.

*19-15. The cafeteria at Elmdale Elementary provides a single-tray, fixed-menu lunch to all 
its pupils. Kids arrive at the dispensing window every 30 seconds. It takes 18 seconds 
to receive the lunch tray. Map the arrival–departure events on the time scale for the 
first five pupils.

*19-16. In Example 19.3-2, suppose that the first customer arrives at time 0. Use the first 
three random numbers in column 1 of Table 19.1 to generate the arrival times of the 
next 3 customers, and graph the resulting events on the timescale.

*19-17. Uniform Distribution. Suppose that the time needed to manufacture a part on a machine 
is described by the following uniform distribution:

f1t2 =
1

b - a
, a … t … b

Determine an expression for the sample t, given the random number R.
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19-18. Jobs are received randomly at a one-machine shop. The time between arrivals is expo-
nential with mean 2 hrs. The time needed to manufacture a job is uniform between 1.1 and 
2 hrs. Assuming that the first job arrives at time 0, determine the arrival and departure 
time for the first five jobs using the (0, 1) random numbers in column 1 of  Table 19.1.

19-19. The demand for an expensive spare part of a passenger jet is 0, 1, 2, or 3 units per 
month with probabilities .3, .3, 2, and .2, respectively. The airline maintenance shop 
starts operation with a stock of 6 units, and will bring the stock level back to 6 units 
immediately after it drops below 5 units.

*(a) Devise the procedure for sampling demand.

(b) How many months will elapse until the first replenishment occurs? Use successive 
values of R from the first column in Table 19.1.

19-20. In a simulation situation, TV units are inspected for possible defects. There is a 70% 
chance that a unit will pass inspection, in which case it is sent to packaging. Otherwise, 
the unit is repaired. We can represent the situation symbolically in one of two ways.

goto REPAIR/.3, PACKAGE/.7

goto PACKAGE/.7, REPAIR/.3

These two representations appear equivalent. Yet, when a given sequence of (0, 1) 
random numbers is applied to the two representations, different decisions (REPAIR or 
PACKAGE) may result. Explain why.

19-21. A player tosses a fair coin repeatedly until a head occurs. The associated payoff is 3n, 
where n is the number of tosses until a head comes up.
(a) Devise the sampling procedure of the game.

(b) Use the random numbers in column 1 of Table 19.1 to determine the cumulative 
payoff after two heads occur.

19-22. Triangular Distribution. In simulation, the lack of data may make it impossible to 
determine the probability distribution associated with a simulation activity. In most of 
these situations, it may be easy to describe the desired variable by estimating its smallest, 
most likely, and largest values. These three values are sufficient to define a triangular 
distribution, which can then be used as “rough cut” estimation of the real distribution.
(a) Develop the formula for sampling from the following triangular distribution, whose 

respective parameters are a, b, and c:

f1x2 = e 21x - a2
1b - a21c - a2 , a … x … b

21c - x2
1c - b21c - a2 , b … x … c

(b) Generate three samples from a triangular distribution with parameters (1, 3, 7) using 
the first three random numbers in column 1 of Table 19.1.

19-23. Consider a probability distribution that consists of a rectangle flanked on the left and 
right sides by two symmetrical right triangles. The respective ranges for the triangle 
on the left, the rectangle, and the triangle on the right are [a, b], [b, c], and [c, d], 
a 6 b 6 c 6 d. Both triangles have the same height as the rectangle.
(a) Develop a sampling procedure.

(b) Determine five samples with 1a, b, c, d2 = 11, 2, 4, 62 using the first five random 
numbers in column 1 of Table 19.1.
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*19-24.    Geometric Distribution. Show how a random sample can be obtained from the following 
geometric distribution:

f1x2 = p11 - p2x, x = 0, 1, 2, c

The parameter x is the number of (Bernoulli) failures until a success occurs, and p is the 
probability of a success, 0 6 p 6 1. Generate five samples for p = .6, using the first 
five random numbers in column 1 of Table 19.1.

19-25. Weibull Distribution. Show how a random sample can be obtained from the Weibull 
distribution with the following probability density function:

f1x2 = ab-axa- 1e - 1x>b2a, x 7 0

where a 7 0 is the shape parameter, and b 7 0 is the scale parameter.
*19-26.    In Example 19.3-3, compute an Erlang sample, given m = 3 and l = 10 events per hour.1

19-27. In Example 19.3-4, generate three Poisson samples during a half-hour period, given that 
the mean of the Poisson is 9 events per hour.

19-28. In Example 19.4-5, generate two samples from N(7, 2) by using both the convolution 
method and the Box–Muller method.

19-29. Jobs arrive at Metalco Jobshop according to a Poisson distribution, with a mean of six 
jobs per day. Received jobs are assigned to the five machining centers of the shop on a 
strict rotational basis. Determine one sample of the interval between the arrival of jobs 
at the first machine center.

19-30. The ACT scores for the 1994 senior class at Springdale High are normal, with a mean of 
27 points and a standard deviation of 3 points. Suppose that we draw a random sample 
of six seniors from that class. Use the Box–Muller method to determine the mean and 
standard deviation of the sample.

*19-31.    Psychology professor Yataha is conducting a learning experiment in which mice are 
trained to find their way around a maze. The base of the maze is square. A mouse enters 
the maze at one of the four corners and must find its way through the maze to exit at the 
same point where it entered. The design of the maze is such that the mouse must pass by 
each of the remaining three corner points exactly once before it exits. The multipaths of the 
maze connect the four corners in a strict clockwise order. Professor Yataha estimates that 
the time the mouse takes to reach one corner point from another is uniformly distributed 
between 10 and 20 seconds, depending on the path it takes. Develop a sampling procedure 
for the time a mouse spends in the maze.

19-32. In Problem 19-31, suppose that once a mouse makes an exit from the maze, another mouse 
instantly enters. Develop a sampling procedure for the number of mice that exit the maze 
in 5 minute or less.

19-33. Negative Binomial. Show how a random sample can be determined from the negative 
binomial whose distribution is given as

f1x2 = Cx
r + x - 1pr11 - p2x, x = 0, 1, 2, c

where x is the number of failures until the rth success occurs in a sequence of indepen-
dent Bernoulli trials and p is the probability of success, 0 6 p 6 1. (Hint: The negative 
binomial is the convolution of r independent geometric samples. See Problem 19-24.)

*19-34.    Use excelRN.xls with the following sets of parameters, and compare the results with 
those of Example 19.4-1:

b = 17, c = 111, m = 103, seed = 7

1For Problems 19-26 to 19-33, use the random numbers in Table 19.1 starting with column 1.
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19-35. Find a random number generator on your computer, and use it to generate 500 zero-one 
random numbers. Histogram the resulting values (using the Microsoft histogram tool, 
see Section 12.5) and visually convince yourself that the obtained numbers reasonably 
follow the (0, 1) uniform distribution. Actually, to test the sequence properly, you would 
need to apply the following tests: chi-square goodness of fit (see Section 14.5), runs test 
for independence, and correlation test—see Law (2007) for details.

19-36. Suppose that the barbershop in Example 19.5-1 is operated by two barbers, and customers 
are served on a FCFS basis. Suppose further that the time to get a haircut is uniformly 
distributed between 15 and 30 minutes. The interarrival time of customers is exponential, 
with a mean of 10 minutes. Simulate the system manually for 75 time units. From the 
results of the simulation, determine the average time a customer waits in queue, the 
average number of customers waiting, and the average utilization of the barbers. Use the 
random numbers in Table 19.1.

19-37. Classify the following variables as either observation based or time based:
*(a) Time-to-failure of an electronic component.
*(b) Inventory level of an item.

(c) Order quantity of an inventory item.
(d) Number of defective items in a lot.
(e) Time needed to grade test papers.
(f) Number of cars in the parking lot of a car-rental agency.

*19-38.    The following table represents the variation in the number of waiting customers in a 
queue as a function of the simulation time.

Simulation time, T (hr) No. of waiting customers

0 … T … 3 0
3 6 T … 4 1
4 6 T … 6 2
6 6 T … 7 1
7 6 T … 10 0

10 6 T … 12 2
12 6 T … 18 3
18 6 T … 20 2
20 6 T … 25 1

Compute the following measures of performance:
(a) The average length of the queue.
(b) The average waiting time in the queue for those who must wait.

19-39. Suppose that the barbershop described at the start of Example 19.5-1 is operated by 
three barbers. Assume further that the utilization of the servers (barbers) is summarized 
as given in the following table:

Simulation time, T (hr) No. of busy servers

0 6 T … 10 0
10 6 T … 20 1
20 6 T … 30 2
30 6 T … 40 0
40 6 T … 60 1
60 6 T … 70 2
70 6 T … 80 3
80 6 T … 90 1
90 6 T … 100 0
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Determine the following measures of performance:
(a) The average utilization of the facility.

(b) The average busy time of the facility.

(c) The average idle time of the facility.
19-40. Using the input data in Example 19.5-1, run the Excel simulator for 10 arrivals and graph 

the changes in facility utilization and queue length as a function of the simulation time. 
Verify that the areas under the curves equal the sum of the service times and the sum of 
the waiting times, respectively.

19-41. Simulate the M/M/1 model for 500 arrivals, given the arrival rate l = 4 customers per 
hour and the service rate m = 6 departures per hour. Run 5 replications (by refreshing 
the spreadsheet—pressing F9) and determine a 95% confidence interval for all the 
measures of performance of the model. Compare the results with the steady-state 
theoretical values of the M/M/1 model.

19-42. Television units arrive on a conveyor belt every 15 minutes for inspection at a single-
operator station. Detailed data for the inspection station are not available. However, the 
operator estimates that it takes 10 minutes “on the average” to inspect a unit. Under the 
worst conditions, the inspection time does not exceed 13 minutes, and for certain units, 
inspection time may be as low as 9 minutes.
(a) Use the Excel simulator to simulate the inspection of 200 TV units.

(b) Based on five replications, estimate the average number of units awaiting inspection 
and the average utilization of the inspection station.

19-43. In Example 19.6-1, use the subinterval method to compute the average waiting time in 
the queue for those who must wait.

*19-44.    In a simulation model, the subinterval method is used to compute batch averages. The 
transient period is estimated to be 100, and each batch has a time base of 100 time units as 
well. Using the following data, which provide the waiting times for customers as a function 
of the simulation time, estimate the 95% confidence interval for the mean waiting time.

Time interval Waiting times

  0–100 10, 20, 13, 14, 8, 15, 6, 8
100–200 12, 30, 10, 14, 16
200–300 15, 17, 20, 22
300–400 10, 20, 30, 15, 25, 31
400–500 15, 17, 20, 14, 13
500–600 25, 30, 15

19-45. Patrons arrive randomly at a three-clerk post office. The interarrival time is exponential 
with mean 5 minutes. The time a clerk spends with a patron is exponential with a mean 
of 10 minutes. All arriving patrons form one queue and wait for the first available free 
clerk. Run a simulation model of the system for 480 minutes to determine the following:2

(a) The average number of patrons waiting in the queue.

(b) The average utilization of the clerks.

(c) Compare the simulation results with those of the M/M/c queuing model (Chapter 18) 
and with the spreadsheet MultiServerSimulator.xls.

2Work Problems 19-45 to 19-49 using a simulation language of your choice or a higher-order programming 
language.
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19-46. Television units arrive for inspection on a conveyor belt at the constant rate of 5 units 
per hour. The inspection time takes between 10 and 15 minutes, uniformly distributed. 
Past experience shows that 20% of inspected units must be adjusted and then sent back 
for reinspection. The adjustment time is also uniformly distributed between 6 and 8 
minutes. Run a simulation model for 480 minutes to compute the following:
(a) The average time a unit takes until it passes inspection.

(b) The average number of times a unit must be reinspected before it exits the system.
19-47. A mouse is trapped in a maze and desperately “wants out.” After trying between 

1 and 3 minutes, uniformly distributed, there is a 30% chance that it will find the 
right path. Otherwise, it will wander around aimlessly for between 2 and 3 minutes, 
uniformly distributed, and eventually end up where it started, only to try once again. 
The mouse can “try freedom” as many times as it pleases, but there is a limit to 
everything. With so much energy expended in trying and retrying, the mouse is certain 
to expire if it does not make it within a period that is normally distributed, with a 
mean of 10 minutes and a standard deviation of 2 minutes. Write a simulation model 
to estimate the probability that the mouse will be free. For the purpose of estimating 
the probability, assume that 100 mice will be processed by the model.

19-48. In the final stage of automobile manufacturing, a car moving on a transporter is situated 
between two parallel workstations to allow work to be done on both the left and right 
sides of the car simultaneously. The operation times for the left and right sides are 
uniform between 15 and 20 minutes and 18 and 22 minutes, respectively. The transporter 
arrives at the stations area every 20 minutes. Simulate the process for 480 minutes to 
determine the utilization of the left and right stations.

19-49. Cars arrive at a one-bay car wash facility where the interarrival time is exponential, 
with a mean of 10 minutes. Arriving cars line up in a single lane that can accommodate 
at most five waiting cars. If the lane is full, newly arriving cars will go elsewhere. It takes 
between 10 and 15 minutes, uniformly distributed, to wash a car. Simulate the system 
for 960 minutes, and estimate the time a car spends in the facility.
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Chapter 20

Classical Optimization theory

20.1 Unconstrained Problems

An extreme point of a function f1X2 defines either a maximum or a minimum of the 
function. Mathematically, a point X0 = 1x1

0, c, xj
0, c, xn

02 is a maximum if

f1X0 + h2 … f1X02

for all h = 1h1, c, hj, c, hn2, where 0 hj 0  is sufficiently small for all j. In a similar 
manner, X0 is a minimum if

f1X0 + h2 Ú f1X02

Figure 20.1 illustrates the maxima and minima of a single-variable function f(x)  
defined in the range a … x … b. The points x1, x2, x3, x4, and x6 are all extrema  
of f1x2, with x1, x3, and x6 as maxima and x2 and x4 as minima. The value f1x62 =
max5f1x12, f1x32, f1x626 is a global or absolute maximum, and f1x12 and f1x32 are 
local or relative maxima. Similarly, f1x42 is a local minimum and f1x22 is a global 
minimum.

Although x1 (in Figure 20.1) is a (local) maximum point, it differs from remaining 
local maxima in that the value of f corresponding to at least one point in the neigh-
borhood of x1 equals f1x12. In this respect, x1 is a weak maximum, whereas x3 and 
x6 are strong maxima. In general, for h as defined earlier, X0 is a weak maximum if 
f1X0 + h2 … f1X02 and a strong maximum if f1X0 + h2 6 f1X02.

In Figure 20.1, the first derivative (slope) of f equals zero at all extrema. This 
property is also satisfied at inflection and saddle points, such as x5. If a point with zero 
slope (gradient) is not an extremum (maximum or minimum), then it must be an inflec-
tion or a saddle point.

 741
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20.1.1 necessary and sufficient conditions

This section develops the necessary and sufficient conditions for an n-variable function 
f(X) to have extrema. It is assumed that the first and second partial derivatives of f(X) 
are continuous for all X.

theorem 20.1-1. A necessary condition for X0 to be an extreme point of f(X) is that

∇f1X02 = 0

Because the necessary condition is also satisfied at inflection and saddle points, 
it is more appropriate to refer to the points obtained from the solution of ∇f1X02 = 0 
as stationary points. The next theorem establishes the sufficiency conditions for X0 to 
be an extreme point.

theorem 20.1-2. A sufficient condition for a stationary point X0 to be an extremum is 
that the Hessian matrix h evaluated at X0 satisfy the following conditions:

(i) h is positive definite if  X0 is a minimum point.
(ii) h is negative definite if  X0 is a maximum point.

example 20.1-1

Consider the function

f1x1, x2, x32 = x1 + 2x3 + x2 x3 - x1
2 -  x2

2 - x3
2

a

f(x)

x1 x2 x3 x4 x5 x6 b x

Figure 20.1 

Examples of extreme points for a single-variable function
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The necessary condition ∇f1X02 = 0 gives

 
0f

0x1
= 1 - 2x1 = 0

 
0f

0x2
= x3 - 2x2 = 0

 
0f

0x3
= 2 + x2 - 2x3 = 0

The solution of these simultaneous equations is

X0 = a1
2

, 
2
3

, 
4
3
b

To determine the type of the stationary point, consider

0h 0 X0
= ß 02f

0x1
2

02f

0x10x2

02f

0x10x3

02f

0x20x1

02f

0x2
2

02f

0x20x3

02f

0x30x1

02f

0x30x2

02f

0x3
2

∑
X0

= £ -2 0 0
0 -2 1
0 1 -2

≥
The principal minor determinants of 0h 0 X0

 have the values -2, 4, and -6, respectively. Thus, as 
shown in Section D.3, Appendix D on the website, 0h 0 X0

 is negative-definite, and X0 =  11
2, 23, 432  

represents a maximum point.

In general, if 0h 0 X0
 is indefinite, X0 must be a saddle point. For nonconclusive 

cases, X0 may or may not be an extremum, and the sufficiency condition becomes 
rather involved, because higher-order terms in Taylor’s expansion must be considered.

The sufficiency condition established by Theorem 20.1-2 applies to single-variable 
functions as follows. Given that y0 is a stationary point, then

(i) y0 is a maximum if f ″1y02 6 0.
(ii) y0 is a minimum if f ″1y02 6 0.

If f ″1y02 = 0, higher-order derivatives must be investigated as the following theorem 
requires.

theorem 20.1-3. Given y0 , a stationary point of f(y), if the first 1n - 12 derivatives are 
zero and f 1n21y02 ≠ 0, then

(i) If n is odd, y0 is an inflection point.
(ii) If n is even, then y0 is a minimum if f 1n21y02 7 0 and a maximum if f 1n21y02 6 0.
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example 20.1-2

Figure 20.2 graphs the following two functions:

  f1y2 = y4

  g1y2 = y3

For f1y2 = y4, f ′1y2 = 4y3 = 0, which yields the stationary point y0 = 0. Now

f′102 = f ″102 = f 132102 = 0, f 142102 = 24 7 0

Hence, y0 = 0 is a minimum point (see Figure 20.2).
For g1y2 = y3, g′1y2 = 3y2 = 0, which yields y0 = 0 as a stationary point. Also

g′102 = g ″102, g132102 = 6 ≠ 0

Thus, y0 = 0 is an inflection point.

20.1.2 the newton–raphson method

In general, the necessary condition ∇f1X2 = 0 may be highly nonlinear and, hence, 
difficult to solve. The Newton–Raphson method is an iterative algorithm for solving 
simultaneous nonlinear equations.

Consider the simultaneous equations

fi1X2 = 0, i = 1, 2, c, m

Let Xk be a given point. Then by Taylor’s expansion

fi1X2 ≈  fi1Xk2 + ∇fi1Xk21X - Xk2, i = 1, 2, c, m

Thus, the original equations, fi1X2 = 0, i = 1, 2, c, m, may be approximated as

fi1Xk2 + ∇fi1Xk21X - Xk2 = 0, i = 1, 2, c, m

These equations may be written in matrix notation as

ak + Bk1X - Xk2 = 0

If Bk is nonsingular, then

X = Xk - Bk
-1ak

f(y)

0 y

0 y

g(y)y4 y3 Figure 20.2 

Extreme points of f1y2 = y4  
and g1y2 = y3
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The idea of the method is to start from an initial point X0, and then use the 
equation above to determine a new point. The process may or may not converge 
depending on the selection of the starting point. Convergence occurs when two suc-
cessive points, Xk and Xk + 1, are approximately equal (within specified acceptable 
tolerance).

A geometric interpretation of the method is illustrated by a single-variable func-
tion in Figure 20.3. The relationship between xk and xk + 1 for a single-variable function 
f  (x) reduces to

xk + 1 = xk -
f1xk2
f ′1xk2

The terms may be arranged as f ′1xk2 =
f1xk2

xk - xk + 1
—meaning that xk + 1 is determined 

from the slope of f(x) at xk, where tan  u = f ′1xk2, as the figure shows.
Figure 20.3 demonstrates that convergence is not always possible. If the initial 

point is a, the method will diverge. In general, it may be necessary to attempt a number 
of initial points before convergence is achieved.

f(x)

a bxk xk11

f(xk)

Tangent to f(x)
at xk

Convergence point
(solution)

u

Figure 20.3 

Illustration of the iterative process in the Newton–Raphson method
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example 20.1-3

To demonstrate the use of the Newton–Raphson method, consider the function

g1x2 = 13x - 22212x - 322

To determine the stationary points of g(x), we need to solve

f1x2 K g′1x2 = 72x3 - 234x2 + 241x - 78 = 0

Thus, for the Newton–Raphson method, we have

  f ′1x2 = 216x2 - 468x + 241

  xk + 1 = xk -
72x3 - 234x2 + 241x - 78

216x2 - 468x + 24

Starting with x0 = 10, the following table provides the successive iterations:

k xk

f1xk2
f ′1xk2 xk + 1

  0 10.000000 2.978923 7 .032108
  1   7 .032108 1.976429 5.055679
  2  5.055679 1.314367 3.741312
  3  3.741312 0.871358 2.869995
  4  2.869995 0.573547 2.296405
  5  2.296405 0.371252 1.925154
  6  1.925154 0.230702 1.694452
  7  1.694452 0.128999 1.565453
  8  1.565453 0.054156 1.511296
  9  1.511296 0.010864 1.500432
10  1.500432 0.000431 1.500001

The method converges to x = 1.5. Actually,  f  (x) has three stationary points at x = 2
3, 

x = 13
12, and x = 3

2. The remaining two points can be found by attempting different values for 
initial x0. In fact, x0 = .5 and x0 = 1 should yield the missing stationary points (try it!).

excel moment

Template excelNewtonRaphson.xls can be used to solve any single-variable equation. It requires 

entering 
f1x2

f ′1x2  in cell C3. For Example 20.1-3, we enter

= (72*A3^3-234*A3^2+241*A3-78)/(216*A3^2-468*A3+241)

The variable x is replaced with A3. The template allows setting a tolerance limit ∆, which speci-
fies the allowable difference between xk and xk + 1 that signals the termination of the iterations. 
You are encouraged to use different initial points, x0, to get a feel of how the method works.

20.2 constrained Problems

This section deals with the optimization of constrained continuous functions. Section 
20.2.1 introduces the case of equality constraints, and Section 20.2.2 deals with in-
equality constraints. The presentation in Section 20.2.1 is covered for the most part in 
Beightler and Associates (1979, pp. 45–55).
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20.2.1 equality constraints

This section presents two methods: the Jacobian and the Lagrangean. The Lagrangean 
method can be developed logically from the Jacobian. This relationship provides an 
interesting economic interpretation of the Lagrangean method.

Constrained derivatives (Jacobian) method. Consider the problem

Minimize z = f1X2
subject to

g1X2 = 0

where

 X = 1x1, x2, c, xn2
  g = 1g1, g2, c, gm2T

The functions f1X2 and g1X2, i = 1, 2, c, m, are twice continuously differentiable.
The idea of using constrained derivatives is to develop a closed-form expression 

for the first partial derivatives of f1X2 at all points satisfying g1X2 = 0. The corre-
sponding stationary points are identified as the points at which these partial derivatives 
vanish. The sufficiency conditions introduced in Section 20.1 can then be used to check 
the identity of stationary points.

To clarify the proposed concept, consider f1x1, x22 illustrated in Figure 20.4. This 
function is to be minimized subject to the constraint

g11x1, x22 = x2 - b = 0

where b is a constant. From Figure 20.4, the curve designated by the three points A, 
B, and C represents the values of f1x1, x22 satisfying the given constraint. The con-
strained derivatives method defines the gradient of f1x1, x22 at any point on the curve 
ABC. Point B at which the constrained derivative vanishes is a stationary point for the 
constrained problem.

The method is now developed mathematically. By Taylor’s theorem, for X + ∆X 
in the feasible neighborhood of X, we have

f1X + ∆X2 - f1X2 = ∇f1X2∆X + O1∆xj
22

and

g1X + ∆X2 - g1X2 = ∇g1X2∆X + O1∆xj
22

As ∆xj S 0, the equations reduce to

0 f1X2 = ∇f1X20X

and

0g1X2 = ∇g1X20X
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For feasibility, we must have g1X2 = 0, 0g1X2 = 0. Hence

 0f1X2 - ∇f1X20X = 0

 ∇g1X20X = 0

This gives 1m + 12 equations in 1n + 12 unknowns, 0f1X2 and 0X. Note that 0f1X2 is 
a dependent variable whose value is determined once 0X is known. This means that, in 
effect, we have m equations in n unknowns.

If m 7 n, at least 1m - n2 equations are redundant. Eliminating redundancy, 
the system reduces to m … n. If m = n, the solution is 0X = 0, and X has no feasible 
neighborhood, which means that the solution space consists of one point only. The re-
maining case 1m 6 n2 requires further elaboration.

Define

X = 1Y, Z2
such that

Y = 1y1, y2, c, ym2, Z = 1z1, z2, c, zn - m2

B

A C x2 5 b

x2

Contour of constrained
optimum objective value

B

f(x1, x2)

f(x1, x2)

Constrained
curve

Constraint g (X) 5 x2 2 b 5 0

x1

x1

Constrained
minimum

Unconstrained minimum

x2

b

A C

cf

Figure 20.4 

Demonstration of the idea of the 
Jacobian method
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The vectors Y and Z represent the dependent and independent variables, respectively. 
Rewriting the gradient vectors of f and g in terms of Y and Z, we get

 ∇f1Y, Z2 = 1∇Yf, ∇Zf2
 ∇g1Y, Z2 = 1∇Yg, ∇Zg2

Define

 J = ∇Yg = § ∇Yg1

f

∇Ygm

¥
 C = ∇Zg = § ∇Zg1

f

∇Zgm

¥
Jm * m is called the Jacobian matrix and Cm * n - m the control matrix. The Jacobian J is 
assumed nonsingular. This is always possible because the given m equations are inde-
pendent by definition. The components of the vector Y must thus be selected such that 
J is nonsingular.

The original set of equations in 0f1X2 and 0X may be written as

0f1Y, Z2 = ∇Yf0Y + ∇Z f0Z

and

J0Y = -C0Z

Given J is nonsingular, it follows that

0Y = -J-1C0Z

Substituting for 0Y in the equation for 0f1X2 gives 0f  as a function of 0Z—that is,

0f1Y, Z2 = 1∇Z f - ∇Yf J-1C20Z

From this equation, the constrained derivative with respect to the independent vector 
Z is given by

∇c f =
0c f1Y, Z2

0cZ
= ∇z f - ∇Yf J-1C

where ∇c f  is the constrained gradient vector of f with respect to Z. Thus, ∇c f1Y, Z2 
must be null at the stationary points.

The sufficiency conditions are similar to those developed in Section 20.1. The 
(constrained) Hessian matrix corresponds to the independent vector Z, and the ele-
ments of the Hessian matrix must be the constrained second derivatives.
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example 20.2-1

Consider the following problem:

 f1X2 = x1
2 + 3x2

2 + 5x1x3
2

 g11X2 = x1x3 + 2x2 + x2
2 - 11 = 0

 g21X2 = x1
2 + 2x1x2 + x3

2 - 14 = 0

Given the feasible point X0 = 11, 2, 32, we wish to study the variation in f1= 0c f2 in the feasible 
neighborhood of X0.

Let

Y = 1x1, x32 and Z = x2

Thus,

 ∇Yf = a 0 f

0x1
, 

0 f

0x3
b = 12x1 + 5x3

2, 10x1x32

 ∇Z f =
0 f

0x2
= 6x2

 J = ±

0g1

0x1

0g1

0x3

0g2

0x1

0g2

0x3

≤ ax3  x1

2x1 + 2x2 2x3
b

 C = ±

0g1

0x2

0g2

0x2

≤ = a2x2 + 2
2x1

b

Suppose that we need to estimate 0c f  in the feasible neighborhood of the feasible point 
X0 = 11, 2, 32, given a small change 0x2 = .01 in the independent variable x2. We have

J-1C = a3 1
6 6

b
-1

 a6
2
b = a

6
12 - 1

12

- 6
12

3
12
b a6

2
b ≈ a 2.83

-2.50
b

Hence, the incremental value of constrained f is given as

0c f = 1∇Z f - ∇Yf J-1C2  0Z = a6122 - 147, 302 a 2.83
-2.50

b b0x2 = -46.01 0x2

By specifying the value of 0x2 for the independent variable x2, feasible values of 0x1 and 0x2 are 
determined for the dependent variables x1 and x3 using the formula

0Y = -J-1C 0Z

Thus, for 0 x2 = .01,

a0x1

0x3
b = -J-1C0x2 = a - .0283

.0250
b
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We now compare the value of 0c f  as computed above with the difference 
f1X0 + 0X2 - f1X02, given 0x2 = .01.

X0 + 0X = 11 - .0283, 2 + .01, 3 + .0252 = 1.9717, 2.01, 3.025 2
This yields

f1X02 = 58, f1X0 + 0X2 = 57.523

or

f1X0 + 0X2 - f1X02 = - .477

The amount - .477 compares favorably with 0c f = -46.010x2 = - .4601. The difference between 
the two values is the result of the linear approximation in computing 0c f  at X0.

example 20.2-2

This example illustrates the use of constrained derivatives. Consider the problem

 Minimize f1X2 = x1
2 + x2

2 + x3
2

subject to

 g11X2 =   x1 +    x2 + 3x3 - 2 = 0

 g21X2 =  5x1 + 2x2 +    x3 - 5 = 0

We determine the constrained extreme points as follows. Let

Y = 1x1, x22   and  Z =  x3

Thus,

 ∇Yf = a 0f

0x1
, 

0f

0x2
b = 12x1, 2x22, ∇Z f =

0f

0x3
= 2x3

 J = a1 1
5 2

b , J-1 =  a -2
3

1
3

5
3 -1

3
b , C = a3

1
b

Hence,

 ∇c f =
0c f

0c x3
= 2x3 - 12x1, 2x22  a -2

3
1
3

5
3 -1

3
b  a3

1
b

 =  10
3  x1 - 28

3  x2 + 2x3

The equations for determining the stationary points are thus given as

∇c f = 0

g11X2 = 0

g21X2 = 0

or £10 -28 6
1 1 3
5 2 1

≥  £x1

x2

x3

≥ = £0
2
5
≥

The solution is

X0 ≈  1.81, .35, .282
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The identity of this stationary point is checked using the sufficiency condition. Given that x3 
is the independent variable, it follows from ∇c f  that

0c
2 f

0c x3
2 =

10
3

 adx1

dx3
b -

28
3

 adx2

dx3
b + 2 = a10

3
, -

28
3
b  ±

dx1

dx3

dx2

dx3

≤ + 2

From the Jacobian method,

±
dx1

dx3

dx2

dx3

≤ = -J-1C = a
5
3

-14
3
b

Substitution gives 
0c

2 f

0c x3
2 =

460
9

7 0. Hence, X0 is the minimum point.

Sensitivity analysis in the Jacobian method. The Jacobian method can be used to 
study the effect of small changes in the right-hand side of the constraints on the optimal 
value of f. Specifically, what is the effect of changing gi1X2 = 0 to gi1X2 = 0gi on the 
optimal value of f ? This type of investigation is called sensitivity analysis and is similar 
to that carried out in linear programming (see Chapters 3 and 4). However, sensitiv-
ity analysis in nonlinear programming is valid only in the small neighborhood of the 
extreme point. The development will be helpful in studying the Lagrangean method.

We have shown previously that

 0f1Y, Z2 =  ∇Yf 0Y + ∇Zf 0Z

 0g = J0Y +  C0Z

Given 0g ≠ 0, then

0Y = J-10g - J-1C0Z

Substituting in the equation for 0f1Y, Z2 gives

0f1Y, Z2 =  ∇Yf J-10g + ∇c f0Z

where

∇c f = ∇Z f - ∇Yf J-1C

as defined previously. The expression for 0f1Y, Z2 can be used to study variation in f in 
the feasible neighborhood of a feasible point X0 resulting from small changes 0g and 0 Z.

At the extreme (indeed, any stationary) point X0 = 1Y0, Z02, the constrained 
gradient ∇c f  must vanish. Thus

0f1Y0, Z02 =  ∇Y0
f J-10g1Y0, Z02

or

0f

0g
= ∇Y0

f J-1
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The effect of the small change 0g on the optimum value of f can be studied by evalu-
ating the rate of change of f with respect to g. These rates are usually referred to as 
sensitivity coefficients.

example 20.2-3

Consider the same problem of Example 20.2-2. The optimum point is given by X0 =
1x01, x02, x032 = 1.81, .35, .282. Given Y0 = 1x01, x022, then

∇Y0
f = a 0 f

0x1
, 

0 f

0x2
b = 12x01, 2x022 = 11.62, .702

Consequently,

a 0 f

0g1
, 

0 f

0g2
b = ∇Y0

fJ-1 = 11.62, .72  a -2
3

1
3

5
3 -1

3
b = 1.0876, .30672

This means that for 0g1 = 1, f will increase approximately by .0867. Similarly, for 0g2 = 1, f will 
increase approximately by .3067.

Lagrangean method. In the Jacobian method, let the vector L represent the sensitivity 
coefficients—that is

L = ∇Y0
J-1 =

0f

0g

Thus,

0f - L  0g = 0

This equation satisfies the necessary conditions for stationary points because 
0f

0g
 is 

computed such that ∇c f = 0. A more convenient form for presenting these equations 
is to take their partial derivatives with respect to all xj. This yields

0
0xj

 1f - Lg2 = 0, j = 1, 2, c, n

The resulting equations together with the constraint equations g1X2 = 0 yield the fea-
sible values of X and L that satisfy the necessary conditions for stationary points.

The given procedure defines the Lagrangean method for identifying the stationary 
points of optimization problems with equality constraints. Let

L1X, L2 = f1X2 - Lg1X2
The function L is called the Lagrangean function and the elements of the vector L
constitute the Lagrange multipliers. By definition, these multipliers have the same 
interpretation as the sensitivity coefficients of the Jacobian method

The equations

0L
0L 

= 0, 
0L
0X

= 0
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give the necessary conditions for determining stationary points of f(X) subject to 
g 1X 2 = 0. Sufficiency conditions for the Lagrangean method exist, but they are  
generally computationally difficult.

example 20.2-4

Consider the problem of Example 20.2-2. The Lagrangean function is

L1X, L2 = x1
2 + x2

2 + x3
2 - l11x1 + x2 + 3x3 - 22 - l215x1 + 2x2 + x3 - 52

This yields the following necessary conditions:

 
0L
0x1

= 2x1 - l1 - 5l2 = 0

 
0L
0x2

= 2x2 - l1 - 2l2 = 0

 
0L
0x3

= 2x3 - 3l1 - l2 = 0

 
0L
0l1

= - 1x1 + x2 + 3x3 - 22 = 0

 
0L
0l2

= - 15x1 + 2x2 + x3 - 52 = 0

The solution to these simultaneous equations yields

 X0 = 1x1, x2, x32 = 1.8043, .3478, .28262
 L = 1l1, l22 = 1.0870, .30432  

This solution combines the results of Examples 20.2-2 and 20.2-3. The values of the Lagrange 
multipliers, as given by the vector L, equal the sensitivity coefficients obtained in Example 20.2-3. 
The result shows that these coefficients are independent of the specific choice of the dependent 
vector Y in the Jacobian method.

20.2.2 inequality constraints—Karush–Kuhn–tucker (KKt) conditions1

This section extends the Lagrangean method to problems with inequality constraints. The 
main contribution of the section is the development of the general Karush–Kuhn–Tucker 
(KKT) necessary conditions for determining the stationary points. These conditions are 
also sufficient under certain rules that will be stated later.

Consider the problem

Maximize z = f1X2
subject to

g1X2  …  0

1W. Karush was the first to develop the KKT conditions in 1939 as part of an M.S. thesis at the University of 
Chicago. The same conditions were developed independently in 1951 by W. Kuhn and A. Tucker.
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The inequality constraints may be converted into equations by using nonnegative slack 
variables. Let Si

21Ú 02 be the slack quantity added to the ith constraint gi1X2 … 0 
and define

S = 1S1, S2, c, Sm2T, S2 = 1S1
2, S2

2, c, Sm
2 2T

where m is the total number of inequality constraints. The Lagrangean function is thus 
given by

L1X, S, L2 = f1X2 - L 3g1X2 + S24
Given the constraints g1X2  …  0, a necessary condition for optimality is that L be 
nonnegative (nonpositive) for maximization (minimization) problems. This result is 
justified by noting that the vector L measures the rate of variation of f with respect to 
g—that is,

L =
0f

0g

In the maximization case, as the right-hand side of the constraint g1X2 … 0 increases 
from 0 to the vector 0g, the solution space becomes less constrained and hence f can-
not decrease, meaning that L Ú 0. Similarly for minimization, as the right-hand side 
of the constraints increases, f cannot increase, which implies that L … 0. If the con-
straints are equalities, that is, g1X2 = 0, then L becomes unrestricted in sign (see 
Problem 20-18).

The restrictions on L  hold as part of the KKT necessary conditions. The remain-
ing conditions will now be developed.

Taking the partial derivatives of L with respect to X, S, and L, we obtain

 
0L
0X

= ∇f1X2 - L∇g1X2 = 0

 
0L
0Si

= -2liSi = 0, i = 1, 2, c, m

 
0L
0L 

= - 1g1X2 + S22 = 0

The second set of equations reveals the following results:

1. If li ≠ 0, then Si
2 = 0. This result means that the corresponding resource is 

scarce (i.e., consumed completely).
2. If Si

2 7 0, then li = 0. This means resource i is not scarce and, hence, it has no 
effect on the value of f 1i.e., li = 0f

0gi
= 02.

From the second and third sets of equations, we obtain

ligi1X2 = 0, i = 1, 2, c, m

This new condition essentially repeats the foregoing argument, because if li 7 0, 
gi1X2 = 0 or Si

2 = 0; and if gi1X2 6 0, Si
2 7 0, and li = 0.
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The KKT necessary conditions for maximization problem are summarized as follows:

 L Ú 0

 ∇f1X2 - L ∇g1X2 = 0

 ligi1X2 = 0,  i = 1, 2, c, m

 g1X2 … 0

These conditions apply to the minimization case as well, except that L must be non-
positive (verify!). In both maximization and minimization, the Lagrange multipliers 
corresponding to equality constraints are unrestricted in sign.

Sufficiency of the KKt conditions. The KKT necessary conditions are also sufficient 
if the objective function and the solution space satisfy the conditions in Table 20.1.

It is simpler to verify that a function is convex or concave than to prove that a 
solution space is a convex set. For this reason, we provide a subset of sufficiency con-
ditions which, though not as general as the ones in Table 20.1, are easier to apply in 
practice. To provide these conditions, we define the generalized nonlinear problems as

Maximize or minimize z = f1X2
subject to

 gi1X2 … 0,   i = 1, 2, c, r

 gi1X2 Ú 0,   i = r + 1, c, p

 gi1X2 = 0,   i = p + 1, c, m

L1X, S, L2 = f1X2 - a
r

i = 1
li[gi1X2 + Si

2] - a
p

i = r + 1
li[gi1X2 - Si

2] - a
m

i = p + 1
ligi1X2

The parameter li is the Lagrange multiplier associated with constraint i. The con-
ditions for establishing the sufficiency of the KKT conditions are summarized in 
Table 20.2.

The conditions in Table 20.2 are a subset of the conditions in Table 20.1 because a 
solution space can be convex without satisfying the conditions in Table 20.2.

Table 20.2 is valid because the given conditions yield a concave Lagrangean 
function L1X, S, L2 in case of maximization and a convex L1X, S, L2 in case of 

Table 20.1 Sufficiency of the KKT Conditions

Sense of 
optimization

Required conditions

Objective function Solution space

Maximization Concave Convex set
Minimization Convex Convex set
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minimization. This result is verified by noticing that if gi(x) is convex, then ligi1x2 is 
convex if li Ú 0 and concave if li … 0. Similar interpretations can be established for 
all the remaining conditions. Observe that a linear function is both convex and con-
cave. Also, if a function f is concave, then 1-f2 is convex, and vice versa.

example 20.2-5

Consider the following minimization problem:

Minimize f1X2 = x1
2 + x2

2 + x3
2

subject to

 g11X2 = 2x1 + x2 - 5 …  0

 g21X2 =   x1 + x3 - 2 …  0

 g31X2 = 1   - x1         …  0

 g41X2 = 2   - x2         …  0

 g51X2 =      -  x3         …  0

This is a minimization problem, hence L … 0. The KKT conditions are thus given as

1l1, l2, l3, l4, l52  …  0 

12x1, 2x2, 2x32 - 1l1, l2, l3, l4, l52  • 2 1 0
 1 0 1

-1 0 0
 0 -1 0
 0 0 -1

µ = 0

l1g1 = l2g2 = g = l5g5 =  0 

g1X2 … 0 

Table 20.2 Subset of KKT Sufficient Conditions

Sense of  
optimization

Required conditions

f (X) gi(X) li

Maximization Concave c Convex
Concave
Linear

 Ú 0
 … 0

 Unrestricted

 11 … i … r2
 1r + 1 … i … p2
 1p + 1 … i … m2

Minimization Convex c Convex
Concave
Linear

 … 0
 Ú 0

 Unrestricted

 11 … i … r2
 1r + 1 … i … p2
 1p + 1 … i … m2
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These conditions reduce to

l1, l2, l3, l4, l5 … 0

2x1 - 2l1 - l2 + l3 = 0

2x2 - l1 + l4 = 0

2x3 - l2 + l5 = 0

l112x1 + x2 - 52 = 0

l21x1 + x3 - 22 = 0

l311 - x12 = 0

l412 - x22 = 0

l5x3 = 0

2x1 + x2 … 5

x1 + x3 … 2

x1 Ú 1, x2 Ú 2, x3 Ú 0

The solution is x1 = 1, x2 = 2, x3 = 0, l1 = l2 = l5 = 0, l3 = -2, l4 = -4. Because both 
f (X) and the solution space g1X2 … 0 are convex, L1X, S, L2 must be convex, and the resulting 
stationary point yields a global constrained minimum. The KKT conditions are central to the 
development of the nonlinear programming algorithms in Chapter 21.
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Problems

Section Assigned Problems

20.1.1 20-1 to 20-4
20.1.2 20-5 to 20-6
20.2.1 20-7 to 20-16
20.2.2 20-17 to 20-21

20-1. Determine the extreme points of the following functions:
*(a) f1x2 = x3 + x

*(b) f1x2 = x4 + x2

(c) f1x2 = 4x4 - x2 + 5
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(d) f1x2 = 13x - 22212x - 322

*(e) f1x2 = 6x5 - 4x3 + 10
20-2. Determine the extreme points of the following functions:

(a) f1X2 = x1
3 + x2

3 - 3x1x2

(b) f1X2 =  2x1
2 + x2

2 + x3
2 + 61x1 + x2 + x32 + 2x1x2x3 

20-3. Verify that the function

f1x1, x2, x32 = 2x1x2x3 - 4x1x3 - 2x2x3 + x1
2 + x2

2 + x3
2 - 2x1 - 4x2 + 4x3

has the stationary points (0, 3, 1), 10, 1, -12, (1, 2, 0), (2, 1, 1), and 12, 3, -12. Use the 
sufficiency condition to identify the extreme points.

*20-4. Solve the following simultaneous equations by converting the system to a nonlinear 
objective function with no constraints:

 x2 - x1
2 = 0

  x2 - x1 = 2

[Hint: min f 21x1, x22 occurs at f ′1x1, x22 = 0.]
20-5. Use NewtonRaphson.xls to solve Problem 20-1(c).
20-6. Solve Problem 20-2(b), by the Newton–Raphson method.
20-7. Consider Example 20.2-1.

(a) Compute 0c f  by the two methods presented in the example, using 0x2 = .001 
instead of 0x2 = .01. Does the effect of linear approximation become more 
 negligible with the decrease in the value of 0x2?

*(b) Specify a relationship among the elements of 0X = 10x1, 0x2, 0x32 at the feasible 
point X0 = 11, 2, 32 that will keep the point X0 + 0X feasible.

(c) If Y = 1x2, x32 and Z = x1, what is the value of 0x1 that will produce the same 
value of 0c f  given in the example?

20-8. Suppose that Example 20.2-2 is solved in the following manner. First, use the constraints 
to express x1 and x2 in terms of x3; then use the resulting equations to express the 
objective function in terms of x3 only. By taking the derivative of the new objective 
function with respect to x3, we can determine the points of maxima and minima.
(a) Would the derivative of the new objective function (expressed in terms of x3) be 

different from that obtained by the Jacobian method?

(b) How does the suggested procedure differ from the Jacobian method?
20-9. Apply the Jacobian method to Example 20.2-1 by selecting Y = 1x2, x32 and Z = 1x12.

*20-10.  Solve by the Jacobian method:

Minimize f1X2 = a
n

i = 1
xi

2

subject to

q
n

i = 1
xi = C

C is a positive constant. Suppose that the right-hand side of the constraint is changed 
to C + d,  where d is a small positive quantity. Find the corresponding change in the 
optimal value of f.
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20-11. Solve by the Jacobian method:

Minimize f1X2 = 5x1
2 + x2

2 + 2x1x2

subject to

g1X2 = x1x2 - 10 = 0

(a) Find the change in the optimal value of f (X) if the constraint is replaced by 
x1x2 - 9.99 = 0.

(b) Find the change in value of f (X) in the neighborhood of the feasible point (2, 5), 
given that x1x2 = 9.99 and 0x1 = .01.

20-12. Consider the problem:

Maximize  f1X2 = x1
2 + 2x2

2 + 10x3
2 + 5x1x2

subject to

 g11X2 = x1 + x2
2 + 3x2x3 - 5 = 0

 g21X2 = x1
2 + 5x1x2 + x3

2 - 7 = 0

Apply the Jacobian method to find 0f1X2 in the neighborhood of the feasible point  
(1, 1, 1). Assume that this neighborhood is specified by 0g1 = - .01, 0g2 = .02, and 
0x1 = .01

20-13. Consider the problem

Minimize f1X2 = x1
2 + x2

2 + x3
2 + x4

2

subject to

 g11X2 = x1 + 2x2 + 3x3 + 5x4 - 10 = 0

 g21X2 = x1 + 2x2 + 5x3 + 6x4 - 15 = 0

(a) Show that by selecting x3 and x4 as independent variables, the Jacobian method 
fails to provide a solution and state the reason.

*(b) Solve the problem using x1 and x3 as independent variables, and apply the suffi-
ciency condition to determine the type of the resulting stationary point.

(c) Determine the sensitivity coefficients, given the solution in (b).
20-14. Solve the following linear programming problem by both the Jacobian and the 

Lagrangean methods:

Maximize f1X2 = 5x1 + 3x2

subject to

 g11X2 =   x1 + 2x2 + x3         - 6 = 0

 g21X2 = 3x1 +   x2          + x4 - 9 = 0

 x1, x2, x3, x4 Ú 0
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*20-15.  Find the optimal solution to the problem

Minimize f1X2 = x1
2 + 2x2

2 + 10x3
2

subject to

 g11X2 = x1 + x2
2 + x3 - 5 = 0

 g21X2 = x1 + 5x2 + x3 - 7 = 0

Suppose that g11X2 = .01 and g21X2 = .02. Find the corresponding change in the 
optimal value of f  (X).

20-16. Solve Problem 20-13, by the Lagrangean method, and verify that the values of the  
Lagrange multipliers are the same as the sensitivity coefficients obtained in  
Problem 20-13.

20-17. Consider the problem:

Maximize f1X2
subject to

g1X2 Ú 0

Show that the KKT conditions are the same as in Section 20.2.2, except that L … 0.
20-18. Consider the following problem:

Maximize f1X2
subject to

g1X2 = 0

Show that the KKT conditions are

 ∇f1X2 - L∇g1X2 = 0

 g1X2 = 0

L unrestricted in sign

20-19. Write the KKT necessary conditions for the following problems:
(a) Maximize f1X2 = x1

3 - x2
2 + x1x3

2

subject to

  x1 + x2
2 + x3 = 5

5x1
2 - x2

2 - x3 Ú 2

 x1, x2, x3 Ú 0

(b) Minimize f1X2 = x1
4 + x2

2 + 5x1x2x3
subject to

 x1
2 - x2

2 + x3
3 … 10

 x1
3 + x2

2 + 4x3
2 Ú 20
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20-20. Consider the problem

Maximize f1X2
subject to

g1X2 = 0

Given f  (X) is concave and gi1X2  1i = 1, 2, c, m2 is a linear function, show that the 
KKT necessary conditions are also sufficient. Is this result true if gi(X) is a convex 
nonlinear function for all i? Why?

20-21. Consider the problem

Maximize f1X2
subject to

g11X2 Ú 0, g21X2 = 0, g31X2 … 0

Develop the KKT conditions, and give the stipulations under which the conditions are 
sufficient.
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Chapter 21

Nonlinear programming algorithms

21.1 Unconstrained algorithms

This section presents two types of algorithms for the unconstrained problem: direct 
search and gradient.

21.1.1 direct search method

Direct search methods apply primarily to strictly unimodal single-variable  functions. 
Although the case may appear trivial, Section 21.1.2 shows that optimization of 
 single-variable functions is key in the development of the more general multivariable 
algorithm.

The idea of direct search methods is to identify the interval of uncertainty known 
to include the optimum solution point. The procedure locates the optimum by itera-
tively narrowing the interval of uncertainty to a desired level of accuracy.

Two closely related search algorithms are presented in this section: dichotomous 
and golden section. Both algorithms seek the maximization of a unimodal function 
f1x2 over the interval a … x … b that includes the optimum point x*. The two methods 
start with the initial interval of uncertainty I0 = 1a, b2.

General step i. Let Ii- 1 = 1xL, xR2 be the current interval of uncertainty (at iteration 
0, xL = a and xR = b). The following table shows how x1 and x2 are determined:

Dichotomous method Golden section method

x1 = 1
21xR + xL - ∆2 x1 = xR - 115 - 1

2 21xR - xL2
x2 = 1

21xR + xL + ∆2 x2 = xL + 115 - 1
2 21xR - xL2

The selection of x1 and x2 guarantees that xL 6 x1 6 x2 6 xR.

 763
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The next interval of uncertainty, Ii, is determined in the following manner:

1. If f1x12 7 f1x22, then xL 6 x* 6 x2. Let xR = x2 and set Ii = 1xL, x22 [see Figure 
21.1(a)].

2. If f1x12 6 f1x22, then x1 6 x* 6 xR. Let xL = x1 and set Ii = 1x1, xR2 [see Figure 
21.1(b)].

3. If f1x12 = f1x22, then x1 6 x* 6 x2. Let xL = x1 and xR = x2; set Ii = 1x1, x22.

The manner in which x1 and x2 are determined guarantees that Ii+ 1 6 Ii, as will be 
shown shortly. The algorithm terminates at iteration k if Ik … ∆, where ∆ is a user-
specified level of accuracy.

In the dichotomous method, the values x1 and x2 sit symmetrically around the 
midpoint of the current interval of uncertainty. This means that

Ii+ 1 = .51Ii + ∆2
Repeated application of the algorithm guarantees that the length of the interval of 
uncertainty will approach the desired accuracy, ∆.

In the golden section method, the idea is more involved. We notice that each 
iteration of the dichotomous method requires calculating the two values f1x12 
and f1x22, but ends up discarding one of them. What the golden section method 

f(x1)

a bxL

Ii21

Ii

I0

xRx1 x2

f(x2)

(a)

f(x1)

a bxL

Ii21

Ii

I0

xRx1 x2

f(x2)

(b)

Figure 21.1

Illustration of the general step of the dichotomous/golden section search method
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proposes is to save computations by reusing the discarded value in the immediately 
 succeeding iteration.

Define

x1 = xR - a1xR - xL2
x2 = xL + a1xR - xL2 f 0 6 a 6 1

Then the interval of uncertainty Ii at iteration i equals 1xL, x22 or 1x1, xR2. Consider 
the case Ii = 1xL, x22, which means that x1 is included in Ii. In iteration i + 1, we select 
x2 equal to x1 in iteration i, which leads to the following equation:

x21iteration i + 12 = x11iteration i2

Substitution yields

xL + a3x21iteration i2 - xL4 = xR - a1xR - xL2

or

xL + a3xL + a1xR - xL2 - xL4 = xR - a1xR - xL2

which simplifies to

a2 + a - 1 = 0

This equation yields a = - 1 { 15
2 . The positive root a = - 1 + 15

2 ≈ .681 is selected 
 because 0 6 a 6 1.

The design of the golden section computations guarantees an a@reduction in the 
successive intervals of uncertainty—that is

Ii+ 1 = aIi

The golden section method converges more rapidly than the dichotomous method be-
cause, in the dichotomous method, the narrowing of the interval of uncertainty slows 
down appreciably as I S ∆. In addition, the golden section method requires half the 
computations because it recycles one set of computations from the immediately pre-
ceding iteration.

example 21.1-1

Maximize f1x2 = e3x,
1
31-x + 202, 

0 … x … 2
2 … x … 3

The maximum value of f(x) occurs at x = 2. The following table demonstrates the calcula-
tions for iterations 1 and 2 using the dichotomous and the golden section methods, with ∆ = .1.
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Dichotomous method Golden section method

Iteration 1

 I0 = 10, 32 K 1xL, xR2
 x1 = 0 + .513 - 0 - .12 = 1.45, f1x12 = 4.35

 x2 = 0 + .513 - 0 + .12 = 1.55, f1x22 = 4.65

 f1x22 7 f1x12 1 xL = 1.45, I1 = 11.45, 32

Iteration 1

 I0 = 10, 32 K 1xL, xR2
 x1 = 3 - .61813 - 02 = 1.146, f1x12 = 3.438

 x2 = 0 + .61813 - 02 = 1.854, f1x22 = 5.562

 f1x22 7 f1x12 1 xL = 1.146, I1 = 11.146, 32
Iteration 2

 I1 = 11.45, 32 K 1xL, xR2
 x1 = 1.45 + .513 - 1.45 - .12 = 2.175, f1x12 = 5.942

 x2 = 3 + 1.45 + .1
2 = 2.275, f1x22 = 5.908

 f1x12 7 f1x22 1 xR = 2.275, I2 = 11.45, 2.2752

Iteration 2

 I1 = 11.146, 32 K 1xL, xR2
 x1 = x2 in iteratoin 0 = 1.854, f1x12 = 5.562

 x2 = 1.146 + .61813 - 1.1462 = 2.292, f1x22 = 5.903

 f1x22 7 f1x12 1 xL = 1.854, I2 = 11.854, 32

Continuing in the same manner, the interval of uncertainty will eventually narrow down to the 
desired ∆@ tolerance.

excel moment

Excel template excelDiGold.xls handles both methods by entering the letter X in either D5 
 (dichotomous) or F5 (golden section). The input data include f1x2, a,  b,  and ∆. The function 
f1x2 is entered in cell E3 as

=IF(C3<=2,3*C3,(-C3+20)/3)

Cell C3 plays the role of x in f1x2.
Figure 21.2 compares the two methods. The golden section method requires less than half 

the iterations of the dichotomous method, in addition to half the calculations at each iteration.

21.1.2 gradient method

This section develops a method for optimizing twice continuously differentiable func-
tions, called the steepest ascent method. The idea is to generate successive points in the 
direction of the gradient of the function.1 Termination of the gradient method occurs 
at the point where the gradient vector becomes null. This is only a necessary condition 
for optimality.

Suppose that f1X2 is maximized. Let X0 be the initial point from which the proce-
dure starts, and define ∇f1Xk2 as the gradient of f at point Xk. The idea is to determine 
a particular path p along which 

0f
0p is maximized at a given point. This result is achieved if 

successive points Xk and Xk + 1 are selected such that

Xk + 1 = Xk + rk∇f1Xk2
where rk is the optimal step size at Xk.

1The Newton–Raphson method in Section 20.1.2 is also a gradient method that locates the optimum indirectly 
by solving the necessary conditions equations.
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The step size rk is determined such that the next point, Xk + 1, leads to the largest 
improvement in f. This is equivalent to determining r = rk that maximizes the function

h1r2 = f3Xk + r∇f1Xk24
Because h(r) is a single-variable function, the search method in Section 21.1.1 may be 
used to find the optimum, provided that h(r) is unimodal.

The proposed procedure terminates when two successive trial points Xk and Xk + 1 
are approximately equal. This is equivalent to having rk∇f1Xk2 ≈ 0, or, equivalently, 
∇f1Xk2 ≈ 0.

Figure 21.2

Excel output of the dichotomous and golden section methods applied to Example 21.1-1 (file excelDiGold.xls)
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example 21.1-2

Consider the following problem:

Maximize f1x1, x22 = 4x1 + 6x2 - 2x1
2 - 2x1x2 - 2x2

2

The exact optimum occurs at 1x*1, x*22 = 11
3, 432 .

The gradient of f is

∇f1X2 = 14 - 4x1 - 2x2, 6 - 2x1 - 4x22
The quadratic nature of the function indicates that the gradients at two successive points are 
orthogonal (perpendicular to one another).

Suppose that we start at the initial point X0 = 11, 12. Figure 21.3 shows the successive 
 solution points.

Iteration 1 

∇f1X02 = 1-2, 02
The next point X1 is obtained by considering

X = 11, 12 + r1-2, 02 = 11 - 2r, 12
Thus,

h1r2 = f11 - 2r, 12 = -211 - 2r22 + 211 - 2r2 + 4

x2

f(X) 5 4x1 1 6x2 2 2x1
2 2 2x1x2 2 2x2

2

x1

X2

Optimum
2

1

1 2

X1
X0

3
2

3
2

1
2

1
2

Figure 21.3

Maximization of f1x1, x22 = 4x1 + 6x2 - 2x1
2 - 2x1x2 - 2x2

2 by the steepest-ascent method
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The optimal step size is obtained using the classical necessary conditions in Chapter 20 (you may 
also use the search algorithms in Section 21.1.1 to determine the optimum). The maximum value 
of h(r) is r1 = 1

4, which yields the next solution point X1 = 11
2, 12 .

Iteration 2 

 ∇f1X12 = 10, 12
 X =  11

2, 12 + r10, 12 = 11
2, 1 + r2

 h1r2 =  -211 + r22 +  511 + r2  + 3
2

Thus, r2 =  14 and  X2 = 11
2, 542 .

Iteration 3 

 ∇f1X22  =  1-1
2, 02

 X = 11
2, 542 +  r 1-1

2, 02  = 11 - r
2 , 542

 h1r2  =  -1
211 - r22 + 3

411 - r2 + 35
8

Hence, r3 =  14 and  X3 = 13
8, 542 .

Iteration 4 

 ∇f1X32  = 10, 142
 X = 13

8, 542  +  r 10, 142  = 13
8, 5 + r

4 2
 h1r2  =  -1

815 + r22 + 21
1615 + r2 + 39

32

Thus, r4 =  14  and X4 = 13
8, 21

162 .

Iteration 5 

 ∇f1X42  =  1-1
8, 02

 X = 13
8, 21

162  + r1-1
8, 02 = 13 - r

8 , 21
162

 h1r2  =  - 1
3213 - r22 + 11

6413 - r2 + 567
128

This gives r5 =  14 and X5 = 111
32, 21

162 .

Iteration 6 

∇f1X52  = 10, 1
162

The process can be terminated at this point because ∇f1X52 ≈ 0. The approximate maximum 
point is given by X5 = 1.3438, 1.31252. The exact optimum is X* = 1.3333, 1.33332.

21.2 constrained algorithms

The general constrained nonlinear programming problem is defined as

Maximize 1or minimize2 z = f1X2



770   Chapter 21    Nonlinear Programming Algorithms

subject to

g1X2 … 0

The nonnegativity conditions, X Ú 0, are part of the constraints. Also, at least one 
of the functions f (X) and g(X) is nonlinear, and all the functions are continuously 
differentiable.

The erratic behavior of the nonlinear functions precludes the development of 
a single algorithm for the general nonlinear model. Perhaps the most general result 
applicable to the problem is the KKT conditions (Section 20.2.2). Table 20.2 shows 
that the KKT conditions are only necessary, unless f  (X) and g(X) are well-behaved 
functions.

This section presents a number of algorithms that may be classified generally as 
indirect and direct methods. Indirect methods solve the nonlinear problem by dealing 
with one or more linear programs derived from the original program. Direct methods 
deal with the original problem.

The indirect algorithms presented in this section include separable, quadratic, and 
chance-constrained programming. The direct algorithms include the method of linear 
combinations and a brief discussion of SUMT (sequential unconstrained maximization 
technique). Other important nonlinear techniques can be found in the list of references 
at the end of the chapter.

21.2.1 separable Programming

A function f (x1, x2, . . . , xn) is separable if it can be expressed as the sum of n single-
variable functions f1(x1), f2(x2), . . . , fn(xn)—that is,

f1x1, x1,  c, xn2 = f11x12 + f21x22 + g + fn1xn2
For example, any linear function is separable. On the other hand, the function

h1x1, x2, x32 = x1
2 + x1 sin 1x2 + x32 + x2e

x3

is not separable.
Some (convoluted) nonlinear functions can be made separable using appropriate 

substitutions. Consider, for example, the case of maximizing z = x1x2. Let y = x1x2, 
then ln y = ln x1 +  ln x2, and the equivalent separable problem is

Maximize z = y

subject to

ln y = ln x1 +  ln x2

The substitution assumes that x1 and x2 are positive variables because the logarithmic 
function is undefined for nonpositive values. We can account for the case where x1 and 
x2 can assume zero values by employing the approximations

 w1 = x1 + d1 7 0

 w2 = x2 + d2 7 0

The constants d1 and d2 are very small positive values.
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This section shows how an approximate solution can be obtained for any 
 separable problem by using linear approximation and the simplex method of linear 
programming. The single-variable function f(x) can be approximated by a piecewise-
linear function using mixed integer programming (Chapter 9). Suppose that f1x2 is 
approximated over an interval [a, b], and define ak, k =  1, 2, c, K, as the kth break-
point on the x-axis such that a1 6 a2 6 c 6 aK. The points a1 and aK coincide with 
end points a and b of the designated interval. Thus, f(x) is approximated as

 f1x2 ≈ a
K

k = 1
f1ak2wk

x = a
K

k = 1
akwk

The nonnegative weights wk must satisfy the condition

a
K

k = 1
wk = 1, wk Ú 0, k = 1, 2, c, K

Mixed integer programming ensures the validity of the approximation by impos-
ing two additional conditions:

1. At most two wk are positive.
2. If wk is positive, then only an adjacent wk + 1 or wk - 1 can assume a positive value.

To show how these conditions are satisfied, consider the separable problem

Maximize1or minimize2 z = a
n

j = 1
fj1xj2

subject to

a
n

j = 1
gij1xj2 … bi, i = 1, 2, c, m

This problem can be approximated by a mixed integer program as follows. Let2

ajk = breakpoint k for variable xj

wjk = weight with breakpoint k of variable xj
fk = 1, 2, c, Kj, j = 1, 2, c, n

Then the equivalent mixed problem is

Maximize1or minimize2z = a
n

j = 1
a
Kj

k = 1
fj1ajk2wjk

2It is more accurate to replace the index k with kj to correspond uniquely to variable j. In this instant, we will 
forsake mathematical accuracy for a simpler notation.
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subject to

 a
n

j = 1
a
Kj

k = 1
gjk1ajk2wjk … bi,    i = 1, 2, c, m

 0 … wj1 … yj1,    j = 1, 2, c, n

 0 … wjk … yj,k - 1 + yjk,   k = 2, 3, c, Kj - 1, j = 1, 2, c, n

 0 … wjKj
… yj, Kj - 1,    j = 1, 2, c, n

 a
Kj - 1

k = 1
yjk = 1,    j = 1, 2, c, n

 a
Kj

k = 1
wjk = 1,    j = 1, 2, c, n

 yjk = 10, 12,   k = 1, 2, c, Kj, j = 1, 2, c, n

The variables in the approximation problem are wjk and yjk.
The formulation shows how any separable problem can be solved, in principle, by 

mixed integer programming. The difficulty is that the number of constraints increases 
rather rapidly with the number of breakpoints. In particular, the computational feasibil-
ity of the procedure is questionable because there are no consistently reliable computer 
codes for solving large mixed integer programming problems.

Another method for solving the approximation model is the regular simplex 
method (Chapter 3) using restricted basis. In this case, the additional constraints in-
volving yjk are dropped. The restricted basis modifies the simplex method optimality 
condition by selecting the entering variable wj with the best 1zjk - cjk2 that does not 
violate the adjacency requirement of the w-variables with positive values. The process 
is repeated until the optimality condition is satisfied or until it is impossible to satisfy 
the restricted basis condition, whichever occurs first.

The mixed integer programming method yields a global optimum to the approxi-
mate problem, whereas the restricted basis method can only guarantee a local opti-
mum. Additionally, in the two methods, the approximate solution may not be feasible 
for the original problem, in which case it may be necessary to refine the approximation 
by increasing the number of breakpoints.

example 21.2-1

Consider the problem

Maximize z = x1 + x2
4

subject to

3x1 + 2x2
2 … 9

x1, x2 Ú 0
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The exact optimum solution to this problem, obtained by AMPL or Solver, is x1 = 0,  
x2 = 2.12132, and z* = 20.25. To show how the approximating method is used, consider the 
separable functions

f11x12 = x1

f21x22 = x2
4

g11x12 = 3x1

g21x22 = 2x2
2

The variable x1 is not approximated because the functions f1(x1) and g11x12 are already 
linear. Considering f2(x2) and g21x22, we assume four breakpoints: a2k = 0, 1, 2,  and 3 for 
k = 1, 2, 3, and 4, respectively. Given x2 … 3, it follows that

k a2k f21a2k2 = a2k
4 g21a2k2 = 2a2k

2

1 0  0  0
2 1  1  2
3 2 16  8
4 3 81 18

Thus

  f21x22 ≈ w21f21a212 + w22 f21a222 + w23 f21a232 + w24 f21a242
 ≈ 0w21 + 1w22 + 16w23 + 81w24 = w22 + 16w23 + 81w24

Similarly,

g21x22 ≈ 2w22 + 8w23 + 18w24

The approximation problem thus becomes

Maximize z = x1 + w22 + 16w23 + 81w24

subject to

3x1 + 2w22 + 8w23 + 18w24 … 9

w21 + w22 + w23 + w24 = 1

x1 Ú 0, w2k Ú 0, k = 1, 2, 3, 4

The values of w2k, k = 1, 2, 3, 4, must satisfy the restricted basis condition.
The initial simplex tableau (with rearranged columns to provide a starting solution) is given by

Basic x1 w22 w23 w24 s1 w21 Solution

z -1 -1 -16 -81 0 0 0

s1   3   2   8 18 1 0 9
w21   0   1 1 1 0 1 1

The variable s11Ú 02 is a slack. (This problem happened to have an obvious starting solution. In 
general, one can use artificial variables, as presented in Section 3.4.)
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From the z-row, w24 is the entering variable. Because w21 is currently basic and positive, the 
restricted basis condition dictates that it must leave before w24 can enter the solution. However, 
by the feasibility condition, s1 must be the leaving variable, which means that w24 cannot enter 
the solution. The next-best entering variable, w23, requires w21 to leave the basic solution, a con-
dition that happens to be satisfied by the feasibility condition. The new tableau thus becomes

Basic x1 w22 w23 w24 s1 w21 Solution

z -1 15 0 -65 0 16 16

s1 3 -6 0 10 1 -8  1
w23 0 1 1 1 0 1  1

Next, w24 is the entering variable, which is admissible because w23 is positive. The simplex 
method shows that s1 will leave. Thus,

Basic x1 w22 w23 w24 s1 w21 Solution

z 37
2 -24 0 0 13

2 -36 22 12

w24
3

10 - 6
10

0 1 1
10 - 8

10  1
10

w23 - 3
10

16
10

1 0 - 1
10

18
10

9
10

The tableau shows that w21 and w22 are candidates for the entering variable. The variable w21 is not 
adjacent to basic w23 or w24, hence it cannot become basic. Similarly, w22 cannot enter because w24 
cannot leave. Thus, the last tableau is the best restricted-basis solution for the approximate problem.

The optimum solution to the original problem is

 x1 = 0

 x2 ≈ 2w23 + 3w24 = 21 9
102 + 31 1

102 = 2.1

 z = 0 + 2.14 = 19.45

The value x2 = 2.1 approximately equals the true optimum value 1=2.121322.

Separable convex programming. A special case of separable programming occurs 
when gij(xj) is convex for all i and j, which ensures a convex solution space. Additionally, 
if fj1xj2 is convex (minimization) or concave (maximization) for all j, then the problem 
has a global optimum (see Table 20.2, Section 20.2.2). Under such conditions, the fol-
lowing simplified approximation can be used.

Consider a minimization problem, and let fj1xj2 be as shown in Figure 21.4. 
The breakpoints of the function fj1xj2 are xj = ajk, k = 0, 1, c, Kj. Let xjk define 
the  increment of the variable xj in the range 1aj, k - 1, ajk2, k = 1, 2, c, Kj, and let rjk  
be the corresponding rate of change (slope of the line segment) in the same range. 
Then

 fj1xj2 ≈ a
Kj

k = 1
rjk xjk + fj1aj02

 xj = a
Kj

k = 1
xjk

 0 … xjk … ajk - aj, k - 1, k = 1, 2, c, Kj
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The fact that fj1xj2 is convex ensures that rj1 6 rj 2 6 g6 rjKj
. This means that 

in the minimization problem the variable xjp is more attractive than xjq for p 6 q. 
Consequently, xjp will always reach its maximum limit before xjq can assume a positive 
value.

The convex constraint functions gij1xj2 are approximated in essentially the 
same way. Let rijk be the slope of the kth line segment corresponding to gij1xj2. It 
follows that

gij1xj2 ≈ a
Kj

k = 1
rijkxjk + gij1aj02

The complete problem is thus given by

Minimize z = a
n

j = 1
a a

Kj

k = 1
rjkxjk + fj1aj02 b

subject to

 a
n

j = 1
a a

Kj

k = 1
rijkxjk + gij1aj02 b … bi, i = 1, 2, c, m

0 … xjk … ajk - aj, k - 1, k = 1, 2, c, Kj, j = 1, 2, c, n

where

 rjk =
fj1ajk2 - fj1aj, k - 12

ajk - aj, k - 1

 rijk =
gij1ajk2 - gij1aj, k - 12

ajk - aj, k - 1

The maximization problem is treated in essentially the same way. In this case, 
rj1 7 rj2 7 g 7 rjKj

, which means that, for p 6 q, the variable xjp will always reach 
its maximum value before xjq is allowed to assume a positive value (see Problem 21-11, 
for proof).

The new problem can be solved by the simplex method with upper-bounded vari-
ables (Section 7.3). The restricted basis concept is not needed because the convexity 
(concavity) of the functions guarantees correct selection of basic variables.

fj(xj)

aj0 aj1 aj2 aj3 xj

Figure 21.4

Piecewise-linear approximation of a convex 
function
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example 21.2-2

Consider the problem

Maximize z = x1 - x2

subject to

 3x1
4 +   x2 … 243

   x1 + 2x2
2 … 32

   x1            Ú 2.1

               x2 Ú 3.5

The separable functions of this problem are

 f11x12 = x1,  f21x22 = -x2

 g111x12 = 3x1
4,  g121x22 = x2

 g211x12 = x1,  g221x22 = 2x2
2

These functions satisfy the convexity condition required for the minimization problems. The 
functions f1(x1), f2(x2), g12(x2), and g21(x1) are already linear.

The ranges of the variables x1 and x2 (estimated from the constraints) are 0 … x1 … 3 and 
0 … x2 … 4. Let K1 = 3 and K2 = 4. The slopes corresponding to the separable functions are 
determined as follows.

For j = 1,

k a1k g111a1k2 = 3a1k
4 r11k x1k

0 0   0 — —
1 1   3 3 x11

2 2  48 45 x12

3 3 243 195 x13

For j = 2,

k a2k g221a2k2 = 2a2k
2 r22k x2k

0 0  0 — —
1 1  2 2 x21

2 2  8 6 x22

3 3 18 10 x23

4 4 32 14 x24

The complete problem then becomes

Maximize z = x1 - x2
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subject to

 3x11 + 45x12 + 195x13 +     x2       … 243              112
 x1 + 2x21 + 6x22 + 10x23 + 14x24 … 32             122
 x1               Ú 2.1            132
                  x2 Ú 3.5                142

 x11 + x12 + x13 - x1             = 0                  152
 x21 + x22 + x23 + x24 - x2       = 0                162

 0 … x1k … 1, k = 1, 2, 3             172
 0 … x2k … 1, k = 1, 2, 3, 4              182

x1, x2 Ú 0

Constraints 5 and 6 are needed to maintain the relationship between the original and new 
variables. The optimum solution is

z = - .52, x1 = 2.98, x2 = 3.5, x11 = x12 = 1, x13 = .98, x21 = x22 = x23 = 1, x24 = .5

amPl moment

AMPL modeling of the original nonlinear problem of Example 21.2-2 is very much the same 
as in linear problems. Obtaining the solution is an entirely different matter because of the 
 “unpredictable” behavior of the nonlinear functions. File amplEx21.2-2.txt provides the model. 
An explanation of the model is given in Appendix C on the website (see Figure C.17).

21.2.2 Quadratic Programming

A quadratic programming model is defined as

Maximize z = CX + XTDX

subject to

aX … b, X Ú 0

where

 X = 1x1, x2, c, xn2T

 C = 1c1,  c2, c,  cn2
 b = 1b1,  b2, c,  bm2T

a = £ a11 c a1n

f f f
am1 c amn

≥ 

D = £d11 c d1n

f f f
dn1 c dnn

≥
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The function XtDX defines a quadratic form (see Section D.3 on the website). 
The matrix D is assumed symmetric and negative definite—meaning that z is strictly 
concave. The constraints are linear, which guarantees a convex solution space.

The solution to this problem is based on the KKT necessary conditions. These con-
ditions (as shown in Table 20.2, Section 20.2.2) are also sufficient because z is concave 
and the solution space is a convex set.

The quadratic programming problem will be treated for the maximization case. 
Conversion to minimization is straightforward. The problem may be written as

Maximize z = CX +  XTDX

subject to

G1X2 = a a
-I

bX - ab
0
b … 0

Let

 L = 1l1, l2, c, lm2T

 U = 1m1, m2, c, mn2T

be the Lagrange multipliers corresponding to constraints aX - b … 0 and -X … 0, 
respectively. Application of the KKT conditions yields

L Ú 0, U Ú 0

∇z - 1LT, UT2∇G1X2 = 0

liabi - a
n

j = 1
aij xjb = 0, i = 1, 2, c, m

mjxj = 0, j = 1, 2, c, n

 aX … b

 -X … 0

Now

 ∇z = C + 2XTD

 ∇G1X2 = a a
-I

b

Let S = b - aX Ú 0 be the slack variables of the constraints. The conditions reduce to

 -2XTD + LTa - UT = C

 aX + S =  b

mjxj = 0 = liSi for all i and j

L, U,  X,  S Ú 0

Because DT = D, the transpose of the first set of equations can be written as

-2DX + aTL - U = CT
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Hence, the necessary conditions may be combined as¢ -2D aT -I 0
a 0 0 I

≤  §X
L 
U
S

¥ = aCT

b
b

mjxj = 0 = liSi, for all i and j

L, U,  X,  S Ú 0

Except for the conditions mj xj = 0 = liSi, the remaining equations are linear in X, L, 
U, and S. Thus, the problem is equivalent to solving a set of linear equations with the 
additional conditions mj xj = 0 = liSi.

The solution of the system is obtained by using phase I of the two-phase method 
(Section 3.4.2), with the added restrictions liSi = 0 and mj xj = 0. This means that li 
and si cannot be positive simultaneously, and neither can mj and xj. This is the same idea 
of the restricted basis used in Section 21.2.1.

Phase I will render all the artificial variables equal to zero provided the problem 
has a feasible solution space.

example 21.2-3

Consider the problem

Maximize z = 4x1 + 6x2 - 2x1
2 - 2x1x2 - 2x2

2

subject to

x1 + 2x2 … 2

x1, x2 Ú 0

This problem can be put in the following matrix form:

Maximize z = 14, 62 ax1

x2
b + 1x1, x22 a -2 -1

-1 -2
b ax1

x2
b

subject to

11, 22 ax1

x2
b … 2

x1, x2 Ú 0

The KKT conditions are given as£4 2 1 -1 0 0
2 4 2 0 -1 0
1 2 0 0 0 1

≥¶ x1

x2

l1

m1

m2

s1

∂ = £4
6
2
≥, m1x1 = m1x2 = l1s1 = 0
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The initial tableau for phase 1 is obtained by introducing the artificial variables R1 and R2 and 
updating the objective row.

Basic x1 x2 l1 m1 m2 R1 R2 s1 Solution

r 6 6 3 -1 -1 0 0 0 10

R1 4 2 1 -1    0 1 0 0  4
R2 2 4 2    0 -1 0 1 0  6
s1 1 2 0    0    0 0 0 1  2

Iteration 1. The most promising entering variable x1 can be made basic because m1 = 0.

Basic x1 x2 l1 m1 m2 R1 R2 s1 Solution

R 0 3    32    12 -1 -3
2 0 0 4

x1 1 1
2    14 -1

4    0  14 0 0 1

R2 0 3    32    12 -1 -1
2 1 0 4

s1 0 3
2 -1

4    14    0 -1
4 0 1 1

Iteration 2. The most promising variable x2 can be made basic because m2 = 0.

Basic x1 x2 l1 m1 m2 R1 R2 s1 Solution

r 0 0 2 0 -1 -1 0 -2 2

x1 1 0   13 -1
3    0    13 0 -1

3
2
3

R1 0 0    2    0 -1    0 1 -2 2

x1 0 1 -1
6    16    0 -1

6 0    23
2
3

Iteration 3. The multiplier l1 can be made basic because s1 = 0.

Basic x1 x2 l1 m1 m2 R1 R2 s1 Solution

r 0 0 0 0 0 -1 -1    0 0

x1 1 0 0 -1
3   16   13 -1

6    0 1
3

l1 0 0 1    0   -1
2    0   12 -1 1

x2 0 1 0    16 - 1
12 -1

6  1
12    12

5
6

The last tableau gives the optimal feasible solution 1x1* = 1
3, x2* = 5

62 . The associated 
 optimal value of z is 4.16.
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solver moment

Solver template excelQP.xls solves Example 21.2-3. The data are entered in a manner similar 
to linear programming (see Section 2.3.1). The main difference occurs in the way the nonlinear 
functions are entered. Specifically, the nonlinear objective function is entered in target cell D5 as

=4*B10+6*C10-2*B10^2-2*B10*C10-2*C10^2

The changing cells are B10:C10 [ K 1x1, x22]. Notice that cells B5:C5 are not used at all in the 
model. For readability, we entered the symbol NL to indicate that the associated constraint is 
nonlinear. Also, you can specify the nonnegativity of the variables either in the Options dialogue 
box or by adding explicit nonnegativity constraints.

Show that z is strictly convex, and then solve by the quadratic programming algorithm.

21.2.3 chance-constrained Programming

Chance-constrained programming deals with situations in which the parameters of 
the constraints are random variables and the constraints are realized with a minimum 
probability. Mathematically, the problem is defined as

Maximize z = a
n

j = 1
cj xj

subject to

Pe a
n

j = 1
aij xj … bi f Ú 1 - ai, i = 1, 2, c , m, xj Ú 0, for all j

The parameters aij and bi are random variables, and constraint i is realized with a mini-
mum probability of 1 - ai, 0 6 ai 6 1.

Three cases are considered:

1. Only aij is random for all i and j.
2. Only bi is random for all i.
3. Both aij and bi are random for all i and j.

In all three cases, it is assumed that the parameters are normally distributed with 
known means and variances.

Case 1. Each aij is normally distributed with mean E{aij}, variance var{aij}, and 
cov5aij, ai=j=6 of aij and ai=j=.

Consider

Pe a
n

j = 1
aij xj … bi f Ú 1 - ai
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Define

hi = a
n

j = 1
aij xj

The random variable hi is normally distributed with

 E5hi6 = a
n

j = 1
E5aij6xj

 var5hi6 = XTDiX

where

X = 1x1, c, xn2T

 Di = ith covariance matrix

 = £ var5ai16 c cov5ai1, ain6
f f f

cov5ain, ai16 c var5ain6
≥

Now

P5hi … bi6 = Pb hi - E5hi62var5hi6
…

bi - E5hi62var5hi6
r Ú 1 - ai

Letting F be the CDF of the standard normal distribution, it follows that

P5hi … bi6 = F °bi - E5hi62var5hi6
¢

Let Kai
 be the standard normal value such that

F1Kai
2 = 1 - ai

Then the statement P5hi … bi6 Ú 1 - ai is realized if, and only if,

bi - E5hi62var5hi6
Ú Kai

This yields the following nonlinear deterministic constraint:

a
n

j = 1
E5aij6xj + Kai

2XTDiX … bi

For the special case where the parameters aij are independent, cov5aij, ai=j=6 = 0, 
and the last constraint reduces to

a
n

j = 1
E5aij6xj + KaiB a

n

j = 1
var5aij6xj

2 … bi
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This constraint can be put in the separable programming form (Section 21.2.1) by  using 
the substitution

yi = B a
n

j = 1
var5aij6xj

2,  for all i

Thus, the original constraint is equivalent to

a
n

j = 1
E5aij6xj + Kai yi … bi

and

a
n

j = 1
var5aij6xj

2 - yi
2 = 0

Case 2. Only bi is normal with mean E{bi} and variance var{bi}.
Consider the stochastic constraint

Pebi Ú a
n

j = 1
aij  xj f Ú ai

As in case 1,

P• bi - E5bi62var5bi6
Ú

a
n

j = 1
aij xj - E5bi62var5bi6

¶ Ú ai

This can hold true only if

a
n

j = 1
aij xj - E5bi62var5bi6

… Kai

Thus, the stochastic constraint is equivalent to the deterministic linear constraint

a
n

j = 1
aij xj … E5bi6 + Kai

2var5bi6

Case 3. All aij and bi are normal random variables.
Consider the constraint

a
n

j = 1
aij xj … bi

This may be written

a
n

j = 1
aij xj - bi … 0

Because all aij and bi are normal, a n
j = 1aij xj - bi is also normal. This shows that the 

chance constraint reduces to the situation in case 1 and is treated in a similar manner.
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example 21.2-4

Consider the chance-constrained problem

Maximize z = 5x1 + 6x2 + 3x3

subject to

 P5a11x1 + a12x2 + a13x3 … 86 Ú .95

 P55x1 + x2 + 6x3 … b26 Ú .10

x1, x2, x3 Ú 0

Assume that the parameters a1jj, j = 1, 2, 3, are independent and normally distributed random 
variables with the following means and variances:

 E5a116 = 1, E5a126 = 3, E5a136 = 9

 var5a116 = 25, var5a126 = 16, var5a136 = 4

The parameter b2 is normally distributed with mean 7 and variance 9.
From standard normal tables in Appendix A (or excelStatTables.xls),

Ka1
= K.05 ≈ 1.645, Ka2

= K.10 ≈ 1.285

For the first constraint, the equivalent deterministic constraint is

x1 + 3x2 + 9x3 + 1.645225x1
2 + 16x2

2 + 4x3
2 … 8

and for the second constraint

5x1 + x2 + 6x3 … 7 + 1.285132 = 10.855

The resulting problem can be solved as a nonlinear program (using AMPL or Solver), or it can 
be converted to a separable program as follows:

y2 = 25x1
2 + 16x2

2 + 4x3
2

The problem becomes

Maximize z = 5x1 + 6x2 + 3x3

subject to

 x1 + 3x2 + 9x3 + 1.645y … 8

 25x1
2 + 16x2

2 + 4x3
2 - y2 = 0

 5x1 + x2 + 6x3 … 10.855

 x1, x2, x3, y Ú 0

The problem can be solved by separable programming. Also, Excel file excelCCP.xls can be used 
to solve the nonlinear problem directly.
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21.2.4 linear combinations method

This method deals with the following problem in which all constraints are linear:

Maximize z = f1X2
subject to

aX … b, X Ú 0

The procedure is based on the steepest-ascent (gradient) method (Section 21.1.2). 
However, the direction specified by the gradient vector may not yield a feasible solu-
tion for the constrained problem. Also, the gradient vector will not necessarily be null 
at the optimum (constrained) point. The steepest ascent method thus must be modi-
fied to handle the constrained case.

Let Xk be the feasible trial point at iteration k. The objective function f1X2 can 
be expanded in the neighborhood of Xk using Taylor’s series. This gives

f1X2 ≈ f1Xk2 + ∇f1Xk21X - Xk2 = 1f1Xk2 - ∇f1Xk2Xk2 + ∇f1Xk2X

The procedure calls for determining a feasible point X = X* such that f1X2 is maxi-
mized subject to the (linear) constraints of the problem. Because f1Xk2 - ∇f1Xk2Xk 
is a constant, the problem for determining X* reduces to solving the following linear 
program:

Maximize wk1X2 = ∇f1Xk2X

subject to

aX … b, X Ú 0

Given that wk is constructed from the gradient of f1X2 at Xk, an improved solu-
tion point can be secured if and only if wk1X*2 7 wk1Xk2. From Taylor’s expansion, 
the condition does not guarantee that f1X*2 7 f1Xk2 unless X* is in the neighbor-
hood of Xk. However, given wk1X*2 7 wk1Xk2, there must exist a point Xk + 1 on the 
line segment 1Xk, X*2 such that f1Xk + 12 7 f1Xk2. The objective is to determine Xk + 1.  
Define

Xk + 1 = 11 - r2Xk + rX* = Xk + r1X* - Xk2, 0 6 r … 1

This means that Xk + 1 is a linear combination of Xk and X*. Because Xk and X* are 
two feasible points in a convex solution space, Xk + 1 is also feasible. In terms of the 
steepest-ascent method (Section 21.1.2), the parameter r represents step size.

The point Xk + 1 is determined such that f1X2 is maximized. Because Xk + 1 is a 
function of r only, Xk + 1 is determined by maximizing

h1r2 = f1Xk + r1X* - Xk22
The procedure is repeated until, at the kth iteration, wk1X*2 … wk1Xk2. At this 

point, no further improvements are possible, and the process terminates with Xk as the 
best solution point.
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The linear programming problems generated at the successive iterations differ 
only in the coefficients of the objective function. Post-optimal analysis procedures 
presented in Section 4.5 thus may be used to carry out calculations efficiently.

example 21.2-5

Consider the quadratic programming of Example 21.2-3.

Maximize f1X2 = 4x1 + 6x2 - 2x1
2 - 2x1x2 - 2x2

2

subject to

 x1 + 2x2 … 2

x1, x2 Ú 0

Let the initial trial point be X0 = 11
2, 122 , which is feasible. Now

∇f1X2 = 14 - 4x1 - 2x2, 6 - 2x1 - 4x22

Iteration 1 

∇f1X02 = 11, 32
The associated linear program maximizes w1 = x1 + 3x2 subject to the constraints of the original 
problem. This gives the optimal solution X* = 10, 12. The values of w1 at X0 and X* equal 2 and 
3, respectively. Hence, a new trial point is determined as

X1 = 11
2, 122 + r310, 12 - 11

2, 1224 = 11 - r
2 , 1 + r

2 2
The maximization of

h1r2 = f11 - r
2 , 1 + r

2 2
yields r1 = 1. Thus X1 = 10, 12 with f1X12 = 4.

Iteration 2 

∇f1X12 = 12, 22
The objective function of the new linear programming problem is w2 = 2x1 + 2x2. The optimum 
solution to this problem yields X* = 12, 02. Because the values of w2 at X1 and X* are 2 and 4, 
respectively, a new trial point must be determined. Thus

X2 = 10, 12 + r[12, 02 - 10, 12] = 12r, 1 - r2
The maximization of

h1r2 = f12r, 1 - r2
yields r2 = 1

6. Thus X2 = 11
3, 562  with f1X22 ≈ 4.16.

Iteration 3 

∇f1X22 = 11, 22
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The corresponding objective function is w3 = x1 + 2x2. The optimum solution of this prob-
lem yields the alternative solutions X* = 10, 12  and X* = 12, 02 . The value of w3 for both 
points equals its value at X2. Consequently, no further improvements are possible. The ap-

proximate  optimum solution is X2 = 11
3, 562  with f1X22 ≈ 4.16. This happens to be the exact 

optimum.

21.2.5 sUmt algorithm

In this section, a more general gradient method is presented. It is assumed that the 
objective function f1X2 is concave and each constraint function gi1X2 is convex. 
Moreover, the solution space must have an interior. This rules out both implicit and 
explicit use of equality constraints.

The SUMT (Sequential Unconstrained Maximization Technique) algorithm 
is based on transforming the constrained problem into an equivalent unconstrained 
problem. The procedure is more or less similar to the Lagrange multipliers method. 
The transformed problem can then be solved using the steepest-ascent method 
(Section 21.1.2).

To clarify the concept, consider the new function

p1X, t2 = f1X2 + ta a
m

i = 1
 

1
gi1X2 - a

n

j = 1

1
xj
b

where t is a nonnegative parameter. The second summation sign accounts for the 
nonnegativity constraints, which must be put in the form -xj … 0 to be consistent 
with the original constraints. Because gi(X) is convex, 1

gi1X2  is concave. This means 
that p(X, t) is concave in X. Consequently, p(X, t) possesses a unique maximum. 
Optimization of the original constrained problem is equivalent to optimization of 
p(X, t).

The algorithm is initiated by arbitrarily selecting an initial nonnegative value for t. 
An initial point X0 is selected as the first trial solution. This point must be an interior 
point—that is, it must not lie on the boundaries of the solution space. Given the value of 
t, the steepest-ascent method is used to determine the corresponding optimal solution 
(maximum) of p(X, t).

The new solution point will always be an interior point, because if the solution 
point is close to the boundaries, at least one of the functions 1

gi1X2  or - 1
xi will acquire a 

very large negative value. Because the objective is to maximize p(X, t), such solution 
points are automatically excluded. The main result is that successive solution points 
will always be interior points. Consequently, the problem can always be treated as an 
unconstrained case.

Once the optimum solution corresponding to a given value of t is obtained, a 
new value of t is generated, and the optimization process (using the steepest-ascent 
method) is repeated. If t′ is the current value of t, the next value, t″, must be selected 
such that 0 6 t″ 6 t′.

The SUMT algorithm ends when, for two successive values of t, the correspond-
ing optimum values of X obtained by maximizing p(X, t) are approximately the same. 
At this point, further trials will produce little improvement.
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Actual implementation of SUMT involves more details than have been pre-
sented here. Specifically, the selection of an initial value of t is an important factor 
that can affect the speed of convergence. Further, the determination of an initial in-
terior point may require special techniques. These details can be found in Fiacco and 
McCormick (1968).
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ProBlems

Section Assigned Problems

21.1.1 21-1 to 21-4
21.2.1 21-5 to 21-13
21.2.2 21-14 to 21-15
21.2.3 21-16 to 21-17
21.2.4 21-18 to 21-18

21-1. Use Excel template excelDiGold.xls to solve Example 21.1-1 assuming that ∆ = .01.  
Compare the amount of computations and the accuracy of the results with those in 
Figure 21.2.

21-2. Find the maximum of each of the following functions by dichotomous search. Assume 
that ∆ = .05:

(a) f1x2 =
1

� 1x - 323 �
, 2 … x … 4

(b) f1x2 = x cos x, 0 … x … p

*(c) f1x2 = x sin px, 1.5 … x … 2.5

(d) f1x2 = - 1x - 322, 2 … x … 4

*(e) f1x2 = e4x, 
4 - x,

 
0 … x … 2
2 … x … 4

*21-3. Show that, in general, the Newton–Raphson method (Section 20.1.2) when applied to a 
strictly concave quadratic function will converge in exactly one step. Apply the method 
to the maximization of

f1X2 = 4x1 + 6x2 - 2x1
2 - 2x1x2 - 2x2

2
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21-4. Carry out five iterations for each of the following problems using the method of steepest 
ascent/descent. Assume that X0 = 0 in each case.
(a) min  f1X2 =  min  f1X2 = 1x2 - x1

222 + 11 - x12
(b) max  f1X2 = cX + XTaX

where

 c = 11, 3, 52

 a = £ -5 -3 -1
2

-3 -2 0
-1

2 0 -1
2

≥
(c) min f1X2 = x1 - x2 + x1

2 - x1x2

21-5. Approximate the following problem as a mixed integer program:

Maximize z = e-x1 + x1 + 1x2 + 122

subject to

 x1
2 + x2 … 3

 x1, x2 Ú 0

*21-6. Repeat Problem 21-5 using the restricted basis method. Then find the optimal 
solution.

21-7. Consider the problem

Maximize z = x1x2 x3

subject to

x1
2 + x2 + x3 … 4

x1, x2, x3 Ú 0

Approximate the problem as a linear program for use with the restricted basis 
method.

*21-8. Show how the following problem can be made separable:

Maximize z = x1x2 + x3 + x1x3

subject to

 x1x2 + x2 + x1x3 … 10

 x1, x2 x3 Ú 0

21-9. Show how the following problem can be made separable:

Minimize z = e2x1 + x2
2

+ 1x3 - 222

subject to

 x1 + x2 + x3 … 6

x1, x2 x3 Ú 0
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21-10. Show how the following problem can be made separable:

Maximize z = ex1x2 + x2
2x3 + x4

subject to

 x1 + x2x3 + x3 … 10

 x1, x2, x3 Ú 0

 x4 unrestricted in sign

21-11. Show that in separable convex programming, it is never optimal to have xki 7 0 when 
xk - 1, i is not at its upper bound.

21-12. Solve as a separable convex programming problem.

Minimize z = x1
4 + x2 + x3

2

subject to

 x1
2 + x2 + x3

2 … 4

 � x1 + x2 � … 3

 x1, x3 Ú 0

 x2 unrestricted in sign

21-13. Solve the following as a separate convex programming problem:

Minimize z = 1x1 - 222 + 41x2 - 622

subject to

6x1 + 31x2 + 122 … 12

x1, x2 Ú 0

*21-14.  Consider the problem

Maximize z = 6x1 + 3x2 - 4x1x2 - 2x1
2 - 3x2

2

subject to

x1 + x2 … 1

2x1 + 3x2 … 4

x1, x2 Ú 0

Show that z is strictly concave, and then solve the problem using the quadratic  
programming algorithm.

*21-15.  Consider the problem:

Minimize z = 2x1
2 + 2x2

2 + 3x3
2 + 2x1x2 + 2x2x3 + x1 - 3x2 - 5x3

subject to

x1 +   x2 + x3 Ú 1

3x1 + 2x2 + x3 … 6

x1, x2, x3 Ú 0
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*21-16.  Convert the following stochastic problem into an equivalent deterministic model:

Maximize z = x1 + 2x2 + 5x3

subject to

 P5a1x1 + 3x2 + a3x3 … 106 Ú 0.9

 P57x1 + 5x2 + x3 … b26 Ú 0.1

x1, x2, x3 Ú 0

Assume that a1 and a3 are independent and normally distributed random variables 
with means E5a16 = 2 and E5a36 = 5 and variances var5a16 = 9 and var5a36 = 16 
and that b2 is normally distributed with mean 15 and variance 25.

21-17. Consider the following stochastic programming model:

Maximize z = x1 + x2
2 + x3

subject to

P5x1
2 + a2x2

3 + a31x3 … 106 Ú 0.9

x1, x2, x3 Ú 0

The parameters a2 and a3 are independent and normally distributed random variables 
with means 5 and 2, and variance 16 and 25, respectively. Convert the problem into a 
(deterministic) separable programming form.

21-18. Solve the following problem by the linear combinations method:

Minimize f1X2 = x1
3 + x2

3 - 3x1x2

subject to

 3x1 +    x2 … 3

 5x1 - 3x2 … 5

 x1, x2 Ú 0
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Appendix A

Statistical Tables1

 793

1 Spreadsheet excelStatTable.xls replaces the (hard-copy) statistical tables of 12 common distributions, including 
the ones presented in this appendix.

Table a.1 Normal Distribution Function`

F1z2 =
112p

 L
z

-∞
 e-11

22t2dt 

z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359
0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753
0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141
0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517
0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879

0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224
0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549
0.7 0.7580 0.7611 0.7642 0.7673 0.7704 0.7734 0.7764 0.7794 0.7823 0.7852
0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133
0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389

1.0 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621
1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830
1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015
1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177
1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.9319

1.5 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9429 0.9441
1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545
1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633
1.8 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9699 0.9706
1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9761 0.9767
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Table a.1 Continued 

z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

2.0 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817
2.1 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857
2.2 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878 0.9881 0.9884 0.9887 0.9890
2.3 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9916
2.4 0.9918 0.9920 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936

2.5 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952
2.6 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963 0.9964
2.7 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.9971 0.9972 0.9973 0.9974
2.8 0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9979 0.9980 0.9981
2.9 0.9981 0.9982 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986

3.0 0.9987 0.9987 0.9987 0.9988 0.9988 0.9989 0.9989 0.9989 0.9990 0.9990
3.1 0.9990 0.9991 0.9991 0.9991 0.9992 0.9992 0.9992 0.9992 0.9993 0.9993
3.2 0.9993 0.9993 0.9994 0.9994 0.9994 0.9994 0.9994 0.9995 0.9995 0.9995
3.3 0.9995 0.9995 0.9995 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9997
3.4 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9998

3.5 0.9998
4.0 0.99997
5.0 0.9999997
6.0 0.999999999

Source: Miller, I., and J. Freund, Probability and Statistics for Engineers, Prentice Hall, Upper Saddle River, NJ, 1985.

Table a.2 ta, y (Student t) Values

v a = 0.10 a = 0.05 a = 0.025 a = 0.01 a = 0.005 v 

 1 3.078 6.314 12.706 31.821 63.657 1
 2 1.886 2.920  4.303  6.965  9.925 2
 3 1.638 2.353  3.182  4.541  5.841 3
 4 1.533 2.132  2.776  3.747  4.604 4

 5 1.476 2.015  2.571  3.365  4.032 5
 6 1.440 1.943  2.447  3.143  3.707 6
 7 1.415 1.895  2.365  2.998  3.499 7
 8 1.397 1.860  2.306  2.896  3.355 8
 9 1.383 1.833  2.262  2.821  3.250 9
10 1.372 1.812  2.228  2.764  3.169 10

11 1.363 1.796  2.201  2.718  3.106 11
12 1.356 1.782  2.179  2.681  3.055 12
13 1.350 1.771  2.160  2.650  3.012 13
14 1.345 1.761  2.145  2.624  2.977 14
15 1.341 1.753  2.131  2.602  2.947 15

16 1.337 1.746  2.120  2.583  2.921 16
17 1.333 1.740  2.110  2.567  2.898 17
18 1.330 1.734  2.101  2.552  2.878 18
19 1.328 1.729  2.093  2.539  2.861 19
20 1.325 1.725  2.086  2.528  2.845 20
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Table a.2 Continued

v a = 0.10 a = 0.05 a = 0.025 a = 0.01 a = 0.005 v 

21 1.323 1.721 2.080 2.518 2.831 21
22 1.321 1.717 2.074 2.508 2.819 22
23 1.319 1.714 2.069 2.500 2.807 23
24 1.318 1.711 2.064 2.492 2.797 24
25 1.316 1.708 2.060 2.485 2.787 25

26 1.315 1.706 2.056 2.479 2.779 26
27 1.314 1.703 2.052 2.473 2.771 27
28 1.313 1.701 2.048 2.467 2.763 28
29 1.311 1.699 2.045 2.462 2.756 29
Inf. 1.282 1.645 1.960 2.326 2.576 inf.

Source: Abridged by permission of Macmillan Publishing Co. Inc., from Statistical 
Methods for Research Workers, 14th ed., by R. A. Fisher. Copyright © 1970 University 
of Adelaide.

Table a.3 xa, v
2  (Chi-Square) Values

  v a = 0.995 a = 0.99 a = 0.975 a = 0.95 a = 0.05 a = 0.025 a = 0.01 a = 0.005 v 

 1  0.0000393  0.000157  0.000982  0.00393  3.841  5.024  6.635  7.879  1
 2  0.0100  0.0201  0.0506  0.103  5.991  7.378  9.210 10.597  2
 3  0.0717  0.115  0.216  0.352  7.815  9.348 11.345 12.838  3
 4  0.207  0.297  0.484  0.711  9.488 11.143 13.277 14.860  4
 5  0.412  0.554  0.831  1.145 11.070 12.832 15.056 16.750  5
 6  0.676  0.872  1.237  1.635 12.592 14.449 16.812 18.548  6
 7  0.989  1.239  1.690  2.167 14.067 16.013 18.475 20.278  7
 8  1.344  1.646  2.180  2.733 15.507 17.535 20.090 21.955  8
 9  1.735  2.088  2.700  3.325 16.919 19.023 21.666 23.589  9
10  2.156  2.558  3.247  3.940 18.307 20.483 23.209 25.188 10
11  2.603  3.053  3.816  4.575 19.675 21.920 24.725 26.757 11
12  3.074  3.571  4.404  5.226 21.026 23.337 26.217 28.300 12
13  3.565  4.107  5.009  5.892 22.362 24.736 27.688 29.819 13
14  4.075  4.660  5.629  6.571 23.685 26.119 29.141 31.319 14
15  4.601  5.229  6.262  7.261 24.996 27.488 30.578 32.801 15
16  5.142  5.812  6.908  7.962 26.296 28.845 32.000 34.267 16
17  5.697  6.408  7.564  8.672 27.587 30.191 33.409 35.718 17
18  6.265  7.015  8.231  9.390 28.869 31.526 34.805 37.156 18
19  6.844  7.633  8.907 10.117 30.144 32.852 36.191 38.582 19
20  7.434  8.260  9.591 10.851 31.410 34.170 37.566 39.997 20
21  8.034  8.897 10.283 11.591 32.671 35.479 38.932 41.401 21
22  8.643  9.542 10.982 12.338 33.924 36.781 40.289 42.796 22
23  9.260 10.196 11.689 13.091 35.172 38.076 41.638 44.181 23
24  9.886 10.856 12.401 13.484 36.415 39.364 42.980 45.558 24
25 10.520 11.524 13.120 14.611 37.652 40.646 44.314 46.928 25
26 11.160 12.198 13.844 15.379 38.885 41.923 45.642 48.290 26
27 11.808 12.879 14.573 16.151 40.113 43.194 46.963 49.645 27
28 12.461 13.565 15.308 16.928 41.337 44.461 48.278 50.993 28
29 13.121 14.256 16.047 17.708 42.557 45.772 49.588 52.336 29
30 13.787 14.953 16.791 18.493 43.773 46.979 50.892 53.672 30

Source: This table is based on Table 8 of Biometrika Tables for Statisticians, Vol. 1, by permission of Biometrika trustees.
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Appendix B

partial Answers to Selected  
problems1

 797

Chapter 1

 1-4. (b) 19 minutes.
1-10. (b) Exactly once.
1-11. 15 drops.

Chapter 2

 2-1. (a) -x1 + x2 Ú 1.
(c) x2 - x1 … 0.
(e) .5x1 - .5x2 … 0.

 2-3. Unused 1M1 = 10, M2 = 12 tons/day .
 2-5. (a and e) See Figure B.1.
 2-6. (a and d) See Figure B.2.

1Solved problems in this appendix are designated by * in the text.

(a)

(e)

022 2

2

4

6

4

x1

x2

Figure B.1

(d) (a)

021 1

1

2

3

2

x2

x1

Figure B.2
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 2-9. Let
x1 = Number of units of A

x2 = Number of units of B

Maximize z = 40x1 + 90x2 subject to 

- .2x1 + .8x2 … 0, 2x1 + 4x2 … 300,  
x1 … 110, x1, x2 Ú 0

Optimum: 1x1, x22 = 1100, 252, z = $6,250.
2-11. Let

x1 = Dollars invested in A

x2 = Dollars invested in B

Maximize z = .05x1 + .08x2 subject to

.75x1 - .25x2 Ú 0, .5x1 - .5x2 Ú 0

x1 - .5x2 Ú 0, x1 + x2 … 5000, x1, x2 Ú 0

Optimum: 1x1, x22 = 12500, 25002, z = $325
2-18. Let

x1 = Tons of C1 per hour

x2 = Tons of C2 per hour

Maximize z = 12000x1 + 9000x2 subject to

-200x1 + 100x2 … 0, 2.1x1 + .9x2 … 20, x1, x2 Ú 0

Optimum: 1x1, x22 = 15.13, 10.262, z = 153, 846 lb

(a) Optimum ratio C1:C2 = .5.

(b) Optimum ratio is the same, but steam generation will increase by 7692 lb/hr.
2-22. Let

x1 = Number of HiFi1 units

x2 = Number of HiFi2 units

Minimize z = 1267.2 - 115x1 + 15x22 subject to

6x1 + 4x2 … 432, 5x1 + 5x2 … 412.8

4x1 + 6x2 … 422.4, x1, x2 Ú 0

Optimum: 1x1, x22 = 150.88, 31, 682, z = 31.68 idle min.
2-28. (a) See Figure B.3.
2-32. Let

x1 = Thousand bbl>day from Iran

x2 = Thousand bbl>day from Dubai
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Minimize z = x1 + x2 subject to

- .6x1 + .4x2 … 0, .2x1 + .1x2 Ú 14

.25x1 + .6x2 Ú 30, .1x1 + .15x2 Ú 10

.15x1 + .1x2 Ú 8, x1, x2 Ú 0

Optimum: x1 = 55, x2 = 30, z = 85
2-34. Let

x1 = Ratio of scrap A alloy

x2 = Ratio of scrap B alloy

Minimize z = 100x1 + 80x2 subject to

.03 … .06x1 + .03x2 … .06, .03 … .03x1 + .06x2 … .05

.03 … .04x1 + .03x2 … .07, x1 + x2 = 1, x1, x2 Ú 0

Optimum: x1 = .33, x2 = .67, z = $86,667
2-41. Let

xi = Dollars invested in project i, i = 1, 2, 3, 4

yj = Dollars invested in bank in year j, j = 1, 2, 3, 4

Maximize z = y5 subject to

x1 + x2 + x4 + y1 … 10, 000

.5x1 + .6x2 - x3 + .4x4 + 1.065y1 - y2 = 0

x2

x12

z 
5

 4
x 1

 2
 2

x 2
 5

 8

24

Figure B.3
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.3x1 + .2x2 + .8x3 + .6x4 + 1.065y2 - y3 = 0

1.8x1 + 1.5x2 + 1.9x3 + 1.8x4 + 1.065y3 - y4 = 0

1.2x1 + 1.3x2 + .8x3 + .95x4 + 1.065y4 - y5 = 0

x1, x2, x3, x4, y1, y2, y3, y4, y5 Ú 0
Optimum solution:

x1 = 0, x2 = $10,000, x3 = $6000, x4 = 0

y1 = 0, y2 = 0, y3 = $6800, y4 = $33,642

z = $53,628.73 at the start of year 5

2-44. Let xiA = Amount invested in year i using plan A, i = 1, 2, 3
xiB = Amount invested in year i using plan B, i = 1, 2, 3

Maximize z = 3x2B + 1.7x3A subject to

 x1A + x1B … 100  1start of year 12
 -1.7x1A + x2A + x2B = 0  1start of year 22

 -3x1B - 1.7x2A + x3A = 0  1start of year 32
 xiA, xiB Ú 0, i = 1, 2, 3  

Optimum solution: Invest $100, 000 in plan A in year 1 and $170, 000 in plan B 
in year 2, z = $510. Problem has alternative optima.

2-49. Let xj = Number of units of product j, j = 1, 2, 3

Maximize z = 30x1 + 20x2 + 50x3 subject to

2x1 + 3x2 + 5x3 … 4000
4x1 + 2x2 + 7x3 … 6000
x1 + .5x2 + .33x3 … 1500

2x1 - 3x2 = 0

5x2 - 2x3 = 0

x1 Ú 200, x2 Ú 200, x3 Ú 150

x1, x2, x3 Ú 0

Optimum solution: x1 = 324.32, x2 = 216.22, x3 = 540.54, z = $41,081.08
2-53. Let xij = Quantity produced by operation i in month j, i = 1, 2, j = 1, 2, 3

Iij = Entering inventory of operation i in month j, i = 1, 2, j = 1, 2, 3 

Minimize z = a
3

j = 1
1c1j x1j + c2j x2j + .2I1j + .4I2j2 subject to

.6x11 … 800, .6x12 … 700, .6x13 … 550

.8x21 … 1000, .8x22 … 850, 8x23 … 700
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x1j + I1, j- 1 = x2j + I1j, x2j + I2, j- 1 = dj + I2j, j = 1, 2, 3

I1, 0 = I2, 0 = 0, all variables Ú 0

dj = 500, 450, 600 for j = 1, 2, 3

c1j = 10, 12, 11 for j = 1, 2, 3

c2j = 15, 18, 16 for j = 1, 2, 3

Optimum: x11 = 1333.33 units, x13 = 216.67, x21 = 1250 units, x23 = 300 units, 
z = $39,720.

2-55. Let xi1yi2 = Number of 8-hr (12-hr) buses starting in period i. Objective func-
tion coefficients 1 and 1.75 are relative cost weights per bus for 8-hr and 12-hr 
operations, respectively.

Minimize z = a
6

i = 1
xi + 1.75a

6

i = 1
yi subject to

x1 + x6 + y1 + y5 + y6 Ú 4, x1 + x2 + y1 + y2 + y6 Ú 8,

x2 + x3 + y1 + y2 + y3 Ú 10, x3 + x4 + y2 + y3 + y4 Ú 7

x4 + x5 + y3 + y4 + y5 Ú 12, x5 + x6 + y4 + y5 + y6 Ú 4
All variables are nonnegative

Solution: x1 = 4, x2 = 4, x4 = 2, x5 = 4, y3 = 6, all others = 0.

z = 24.5. Total number of buses = 20. For the case of 8@hr shift,

number of buses = 26 and comparable z = 1 * 26 = 26. Thus, 18@hr + 12@hr2
shift is better.

2-59. Let xi = Number of students starting in period i (i = 1 for 8:01 a.m., i = 9 for 
4:01 p.m.)

Minimize z = x1 + x2 + x3 + x4 + x6 + x7 + x8 + x9 subject to

x1 Ú 2, x1 + x2 Ú 2, x1 + x2 + x3 Ú 4,

x2 + x3 + x4 Ú 3, x3 + x4 Ú 3, x4 + x6 Ú 2,

x6 + x7 Ú 2, x6 + x7 + x8 Ú 2, x7 + x8 + x9 Ú 2

x5 = 0, all other variables are nonnegative

Solution: x1 = x3 = 2, x4 = x6 = x7 = x9 = 1, total hired = 8. Problem has  
alternative optima.

2-63. Let

xij = Portion of project i completed in year j

Maximize z = .0514x11 + 3x12 + 2x132 + .0713x22 + 2x23 + x242
+  .1514x31 + 3x32 + 2x33 + x342 + .0212x43 + x442

subject, to

x11 + x12 + x13 = 1, x43 + x44 = 1

.25 … x22 + x23 + x24 + x25 … 1

.25 … x31 + x32 + x33 + x34 + x35 … 1
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5x11 + 15x31 … 3, 5x12 + 8x22 + 15x32 … 6

5x13 + 8x23 + 15x33 + 1.2x43 … 7

8x24 + 15x34 + 1.2x44 … 7, 8x25 + 15x35 … 7

all xij Ú 0

Optimum: x11 = .6, x12 = .4, x24 = .255, x25 = .025, x32 = .267,

x33 = .387, x34 = .346, x43 = 1, z = $523,750

2-68. Let xs = lb of screws/package, xb = lb of bolts/package, xn = lb of nuts/package,  
x

w
= lb of washers/package

Minimize z = 1.2xs + 1.75xb + 175
802xn + 125

302x
w

 subject to

y = xs + xb + xn + x
w

y Ú 1, xs Ú .1y, xb Ú .25y, xn … .15y, x
w

… .1y

1 1
102xb … xn, 1 1

502xb … x
w

All variables are nonnegative

Solution: z = $1.26, y = 1, xs = .5, xb = .25, xn = .15, x
w

= .1.
2-71. Let xA = bbl of crude A/day, xB = bbl of crude B/day, xr = bbl of regular/day 

xp = bbl of premium/day, xj = bbl of jet fuel/day

Maximize z = 501xr - sr
+ 2 + 701xp - sp

+ 2 + 1201xj - sj
+ 2

-  110sr
- + 15sp

- + 20sj
- + 2sr

+ + 3sp
+ + 4sj

+ 2
-  130xA + 40xB2  subject to

xA … 2500, xB … 3000, xr = .2xA + .25xB, xp = .1xA + .3xB, xj = .25xA + .1xB

xr + sr
- - sr

+ = 500, xp + sp
- - sp

+ = 700, xj + sj
- - sj

+ = 400, All variables Ú 0

Solution: z = $21,852.94, xA = 1176.47 bbl>day, xB = 1058.82, xr = 500 bbl>day

xp = 435.29 bbl>day, xj = 400 bbl>day, sp
- = 264.71

2-81. |__________ g1
__________|y1|_______________________ r1

___________________|
|____________ r2___________|_______ g2

_____________|y2|_________r2
_________|

|_________________________ r3
_______________________|________ g3

_______|y3|
|____________________________________________ 2.2 minutes_______________|

Let gi, yi, and ri be the durations of green, yellow, and red lights for cars exiting 
highway i. All time units are in seconds. No cars move on yellow.

maximize z = 41500>36002g1 + 51650>36002g2 + 61450>36002g3 subject to

1550>36002g1 + 1650>36002g2 + 1450>36002g3 … 1500>3600212.2 * 60 - 3 * 102
g1 + g2 + g3 + 3 * 10 … 2.2 * 60, g1 Ú 22, g2 Ú 22, g3 Ú 22

Solution: g1 = 22 sec, g2 = 45.1 sec, g3 = 34.9 sec. Booth income = $80.33>hr.
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Chapter 3

 3-1. 4 tons/day and 0 ton/day for raw materials M1 and M2, respectively.
 3-4. Let xij = Units of product i produced on machine j.

Maximize z = 101x11 + x122 +  151x21 + x222 subject to

x11 + x21 - x12 - x22 + s1 = 5

-x11 - x21 + x12 + x22 + s2 = 5

x11 + x21 + s3 = 200

x12 + x22 + s4 = 250

si, xij Ú 0, for all i and j
 3-9. Let xj = Units of product j, j = 1, 2, 3.

Maximize z = 2x1 + 5x2 + 3x3 - 15x4
+ - 10x5

+  subject to

2x1 + x2 + 2x3 + x4
- - x4

+ = 80

x1 + x2 + 2x3 + x5
- - x5

+ = 65

x1, x2, x3, x4
- , x4

+ , x5
- , x5

+ Ú 0

Optimum solution: x2 = 65 units, x4
- = 15 units, all others = 0, z = $325.

3-11. (c) x1 = 12
7 , x2 = 24

7 , z = 96
7 .

(e) Corner points 1x1 = 0, x2 = 62 and 1x1 = 12, x2 = 02 are infeasible.
3-13. Infeasible basic solutions are:

 1x1, x22 = 113
3 , -  232 , 1x1, x32 = 14, -12

 1x1, x42 = 13, -22, 1x2, x32 = 18, -132
 1x2, x42 = 13

2, -13
2 2 , 1x3, x42 = 13, -82

3-18. (a) (A, B) and (H, I) can represent successive simplex iterations because associ-
ated corner points are adjacent. The remaining pairs are not adjacent corner 
points.

(b) (i) Yes. (ii) No, path returns to a previous corner point, A. (iii) No, C and I 
are not adjacent.

3-20. (a) x3 enters at value 1, z = 3 at corner point D.
3-23.

New basic variable x1 x2 x3 x4

Value 3 2 0 1.6
Leaving variable x7 x7 x8 x4

3-26. (b)  x2,  x5, and x6 can increase value of z. If x2 enters, x8 leaves and ∆z =
5 * 4 = 20. If x5 enters, x1 leaves and ∆z = 0 because x5 equals 0 in the new 
solution. If x6 enters, no variable leaves because all the constraint coefficients 
of x6 are less than or equal to zero. ∆z = ∞  because x6 can be increased to 
infinity without causing infeasibility.



804   Appendix B   Partial Answers to Selected Problems

3-29. Second-best value of z = 20 occurs when s2 is made basic.
3-36. (a) Minimize z = 18M - 42x1 + 16M - 12x2 - Ms2 - Ms3 = 10M

(b) Minimize z = 13M - 42x1 + 1M - 12x2 = 3M
3-39. The starting tableau is

Basic x1 x2 x3 x4 Solution

z -1 -12 0 0 -8

x3   1    1 1 0   4
x4   1    4 0 1   8

3-40. Optimum: x1 = 0, x2 = 7>2, x3 = 0, x4 = 33>2, z = 7.
3-41. Optimum: x1 = 4, x2 = 0, x3 = 2, z = 10.
3-43. Always minimize the sum of artificial variables because the sum represents the 

amount of infeasibility in the problem.
3-49. Any nonbasic variable having nonzero objective coefficients at end of Phase I can-

not become positive in Phase II because it will mean that the optimal objective 
value in Phase I will be positive, that is, infeasible Phase I solution.

3-51. (a) A S B S C S D.
(b) 1 at A, 1 at B, C2

4 = 6 at C, and 1 at D.
3-55. Alternative basic optima: 10, 0, 10

3 2 , (0, 5, 0), 11, 4, 132 . Nonbasic alternative  optima:

1a3, 5a2 + 4a3, 
10
3 a1 + 1

3a32, a1 + a2 + a3 = 1, 0 … ai … 1, i = 1, 2, 3.

3-59. (a) Solution space is unbounded in the direction of x3.
(b) Objective value is unbounded because each unit increase in (unbounded) 

x3 increases z by 1.
3-61. The most that can be produced is 550 units.
3-64. Let

x1 = Number of Type 1 hats per day,

x2 = Number of Type 2 hats per day

Maximize z = 8x1 + 5x2 subject to

2x1 + x2 … 400

x1 … 150, x2 … 200

x1, x2 Ú 0

(a) See Figure B.4: x1 = 100, x2 = 200, z = 1800 at point B.
(b) $4 per Type 2 hat in the range (200, 500).
(c) No change because the dual price is $0 per unit in the range 1100, ∞ 2.
(d) $1 worth per unit in the range (100, 400). Maximum increase = 200 Type 2.

3-67. (a) 0 … c1
c2 … 2.

(b) New c1
c2 = 1. Solution remains unchanged.
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3-69. (a) Yes, because additional revenue per  min = $1 (for up to 10 min of over-
time) exceeds additional cost of $.83/min.

(b) Additional revenue is $2>min 1for up to 400 min of overtime2 = $240 for  
2 hr. Additional cost for 2 hr = $110. Net revenue = $130.

(c) No, its dual price is zero because the resource is already abundant.
(d) D1 = 10 min.  Dual price = $1>min for D1 … 10.  x1 = 0, x2 = 105, x3 = 230,  

net revenue = 1$1350 + $1 * 10 min2 - 1$40
60 * 10 min2 = $1353.33.

(e) D2 = -15. Dual price = $2>min for D2 Ú -20. Decrease in revenue = $30.  
Decrease in cost = $7.50. Not recommended.

3-73. Let

x1 = radio minutes, x2 = TV minutes, x3 = newspaper ads

Maximize z = x1 + 50x2 + 10x3 subject to

15x1 + 300x2 + 50x3 + s1 = 10, 000, x3 - S2 = 5

x1 + s3 = 400, -  x1 + 2x2 + s4 = 0, x1, x2, x3 Ú 0

s1, S2, s3, s4 Ú 0

(a) x1 = 59.09 min, x2 = 29.55 min, x3 = 5 ads, z = 1561.36
(b) From TORA, z + .158s1 + 2.879S2 + 0s3 + 1.364s4 = 156.364. Dual prices 

for the respective constraints are .158, -2.879, 0, and 1.36. Lower limit set on 
newspaper ads can be decreased because its dual price is negative 1=  -2.8792.  
There is no advantage in increasing the upper limit on radio minutes because 
its dual price is zero (the present limit is already abundant).

(c) From TORA, x1 = 59.9091 + .00606D1 Ú 0, x3 = 5, x2 = 29.54545 +
.00303D1 Ú 0, s3 = 340.90909 - .00606D1 Ú 0. Thus, dual price = .158 for 
the range -9750 … D1 … 56250. A 50% increase in budget 1D1 = $50002 
is recommended because the dual price is positive.

3-78. (a) Scarce: resistor and capacitor resource; abundant: chip resource.
(b) Worths per unit of resistor, capacitor, and chips are $1.25, $.25, and $0.
(e)  Change D3 = 350 - 800 = -450 falls outside the feasibility range 

D3 Ú -400. Hence the problem must be solved anew.

0

100

100

200

300

400

x2

x1

A 5 (0, 200)
B 5 (100, 200) optimum
C 5 (150, 200)
D 5 (150, 100)
E 5 (150, 0)
F 5 (0, 400)

A B C

D

E

F

200

Figure B.4
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3-80. (b)  Solution x1 = x2 = 2 + ∆
3   is feasible for all ∆ 7 0. For 0 6 ∆ … 3, r1 + r2  =   

∆
3 … 11

4 1 feasibility confirmed. For 3 … ∆ 6 6, r1 + r2 = ∆
3 7 11

4 1 fea-
sibility not confirmed. For ∆ 7 6, the change falls outside the ranges for D1  
and D2.

3-82. (a) x1 = Cans of A1, x2 = Cans of A2, x3 = Cans of BK.

Maximize z = 80x1 + 70x2 + 60x3 subject to

x1 + x2 + x3 … 500, x1 Ú 100, 4x1 - 2x2 - 2x3 … 0

Optimum: x1 = 166.67, x2 = 333.33, x3 = 0, z = 36666.67.
(b) From TORA, reduced cost per can of BK = 10. Price should be increased 

by more than 10 cents.
(c) d1 = d2 = d3 = -5 cents. From TORA, the reduced costs for the nonbasic 

variables are

x3: 10 +  d2 - d3 Ú 0, satisfied

s1: 73.33 + .67d2 + .33d1 Ú 0, satisfied

s3: 1.67 - .17d2 + .17d1 Ú 0, satisfied

Solution remains the same.
3-85. (a) xi = Number of units of motor i, i = 1, 2, 3, 4.

Maximize z = 60x1 + 40x2 + 25x3 + 30x4 subject to

8x1 + 5x2 + 4x3 + 6x4 … 8000, x1 … 500, x2 … 500

x3 … 800, x4 … 750, x1, x2, x3, x4 Ú 0

Optimum: x1 = 500, x2 = 500, x3 = 375, x4 = 0, z = $59,375
(b) From TORA, 8.75 + d2 Ú 0. Type 2 motor price can be reduced by up to $8.75.
(c) d1 = -$15, d2 = -$10, d3 = -$6.25, d4 = -$7.50. From TORA,

x4: 7.5 + 1.5d3 - d4 Ú 0, satisfied

s1: 6.25 + .25d3 Ú 0, satisfied

s2: 10 - 2d3 + d1 Ú 0, satisfied

s3: 8.75 - 1.25d3 + d2 Ú 0, satisfied

Solution remains the same, but z will be reduced by 25%.
(d) Reduced cost of x4 = 7.5. Increase price by more than $7.50.

3-93. The dual price for the investment constraint x1A + x1B … 100 is $5.10 per dollar 
invested for any amount of investment.

3-97. (a) Dual price for raw material A is $10.27 per lb. The cost of $12.00 per lb ex-
ceeds the expected revenue. Hence, purchase of additional raw material A 
is not recommended.
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(b) Dual price for raw material B is $0. Resource is already abundant, and no 
additional purchase is warranted.

Chapter 4

 4-2. Let y1, y2, and y3 be the dual variables.

Maximize w = 3y1 + 5y2 + 4y3 subject to

y1 + 2y2 + 3y3 … 15, 2y1 - 4y2 + y3 … 12

y1 Ú 0, y2 … 0, y3 unrestricted

 4-4. (c) Let y1 and y2 be the dual variables.

Minimize z = 5y1 +  6y2 subject to

2y1 + 3y2 = 1, y1 - y2 = 1

y1, y2 unrestricted

 4-5. Dual constraint associated with the artificial variables is y2 Ú -M. Mathemati-
cally, M S ∞ 1 y Ú - ∞ ,which is the same as y2 being unrestricted.

 4-7. (a) AV1 is undefined.
(e) V2A = 1-28 -642.

 4-8. 

(a) Inverse = ±

1
4 -1

2 0 0
-1

8
3
4 0 0

3
8 -5

4 1 0
1
8 -3

4 0 1

≤

4-12. Let y1 and y2 be the dual variables.

Minimize w = 15y1 + 20y2 subject to

y1 + y2 Ú 5, 5y1 - 5y2 Ú 2, 2y1 - 6y2 Ú 3

y1 Ú -M1 1 y1 unrestricted2, y2 Ú 0

Solution: y1 = 5, y2 = 0, w = 75.
4-15. Let y1 and y2 be the dual variables.

Minimize w = 3y1 + 4y2 subject to

y1 + 2y2 Ú 1, 2y1 - y2 Ú 5, y1 Ú 3

y2 unrestricted

Solution: y1 = 3, y2 = -1, w = 5
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4-17. (a) 1x1, x22 = 13, 02, z = 15, 1y1, y22 = 13, 12, w = 14. Range = 114, 152.
4-18. (a)  Even though z = w = 17, solutions cannot be optimal because solutions 

are not feasible.
4-20. (a) Feasibility: 1x2, x42 = 13, 152 1 feasible.

Optimality: Reduced costs of nonbasic 1x1, x32 = 10, 22 1 optimal.
4-22.

Basic x1 x2 x3 x4 x5 Solution

z 0 0 -2
5 -1

5
0 12

5

x1 1 0 -3
5   15 0 3

5
x2 0 1   45 -3

5
0 6

5
x5 0 0 -1   1 1 0

Solution is optimal and feasible.
4-25. Objective value: From primal, z = c1x1 + c2x2, and from the dual, w = b1y1 +

b2y2 + b3y3. b1 = 4, b2 = 8, c1 = 2, c2 = 5 1 z = w = 34.
4-29.  (a) Let 1x1, x2, x3, x42 = daily units of SC320, SC325, SC340, and SC370

Maximize z = 9.4x1 + 10.8x2 + 8.75x3 + 7.8x4 subject to

10.5x1 + 9.3x2 + 11.6x3 + 8.2x4 … 4800
20.4x1 + 24.6x2 + 17.7x3 + 26.5x4 … 9600
3.2x1 + 2.5x2 + 3.6x3 + 5.5x4 … 4700

5x1 + 5x2 + 5x3 + 5x4 … 4500

x1 Ú 100, x2 Ú 100, x3 Ú 100, x4 Ú 100

(b) Only soldering capacity can be increased because it has a positive dual price 
1=  .49442.

(c) Dual prices for lower bounds are … 0 (- .6847, -1.361, 0, and -5.3003), 
which means that the bounds have an adverse effect on profitability.

(d) Dual price for soldering is $.4944/min valid in the range (8920, 10201.72), 
which corresponds to a maximum capacity increase of 6.26% only.

4-32. New fire truck toy is profitable because its reduced cost = -2.
4-33. Parts PP3 and PP4 are not part of the optimum solution. Current reduced costs 

are .1429 and 1.1429. Thus, rate of deterioration in revenue per unit is $.1429 for 
PP3 and $1.1429 for PP4.

4-35. (b)  No, because point E is feasible, and the dual simplex must stay infeasible 
until optimum is reached.

4-38. (c) Add the artificial constraint x1 … M. Problem has no feasible solution.
4-45. Let Q be the weekly feed in lb (=  5200, 9600, 15000, 20000, 26000, 32000, 

38000, 42000, for weeks 1, 2, . . . , and 8). Optimum solution: Limestone = .028Q,  
corn = .649Q, and soybean meal = .323Q. Cost = .81221Q.
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4-48. (a) Additional constraint is redundant.
4-51. (a) New dual values = 11

2, 0, 0, 02. Current solution remains optimal.
(c) New dual values = 1-1

8, 11
4 , 0, 02, z - .125s1 + 2.75s2 = 13.5.

New solution: x1 = 2, x2 = 2, x3 = 4, z = 14
4-53. 

p
100 1y1 + 3y2 + y32 - 3 Ú 0. For y1 = 1, y2 = 2, and y3 = 0, p Ú 42.86%.

4-55. (a)  Reduced cost for fire engines = 3y1 + 2y2 + 4y3 - 5 = 2 7 0. Fire engines 
are not profitable.

Chapter 5

 5-4. Assign a very high cost, M, to the route from Detroit to dummy destination.
 5-6. (a and b) Use M = 10, 000. Solution is shown in bold. Total cost = $49,710.

1 2 3 Supply

Plant 1
600 700 400

25 25

Plant 2
320

23

300

17

350

40

Plant 3
500 480

25

450

5 30

Excess  
Plant 4

1000

13

1000 M

13

Demand 36 42 30

(c) City 1 excess cost = $13,000.
 5-9. Solution (in million gallons) is shown in bold. Area 2 will be 2 million gallons 

short. Total cost = $480,000.

A1 A2 A3 Supply

Refinery 1
18 18

6

M

6

Refinery 2
30

4

80

1

90

5

Refinery 3
22 20 12

6 6

Dummy
M 50

1

50

1 2

Demand 4 8 7
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5-15. Total cost = $804. Problem has alternative optima.

Sharpening service

Day New Overnight 2-day 3-day Disposal

Monday 24 0 6 18 0
Tuesday 12 12 0 0 0
Wednesday 2 14 0 0 0
Thursday 0 0 20 0 0
Friday 0 14 0 0 4
Saturday 0 2 0 0 12
Sunday 0 0 0 0 22

5-18. Total cost = $190,040. Problem has alternative optima.

Period Capacity Produced amount Delivery

1 500 500 400 for (period) 1 and 100 for 2
2 600 600 200 for 2, 220 for 3, and 180 for 4
3 200 200 200 for 3
4 300 200 200 for 4

5-22. (a) Northwest: cost = $42. Least-cost: cost = $37. Vogel: cost = $37.
5-27. (a) Cost = $1475.

(b) c12 Ú 3, c13 Ú 8, c23 Ú 13, c31 Ú 7.
5-36. Use the code (city, date) to define the rows and columns of the assignment 

problem. Example: The assignment (D, 3)–(A, 7) means leaving Dallas on Jun 3 
and returning from Atlanta June 7 at a cost of $400. Solution is shown in bold. 
Cost = $1180. Problem has alternative optima.

(A, 7) (A, 12) (A, 21) (A, 28)

(D, 3) 400 300 300 280

(D, 10) 300 400 300 300

(D, 17) 300 300 400 300

(D, 25) 300 300 300 400

5-37. Optimum assignment: I-d, II-c, III-a, IV-b.
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Chapter 6

 6-1. For network (i): (a) 1-3-4-2. (b) 1-5-4-3-1. (c and d) See Figure B.5.
 6-5. Name squares sequentially as A, B, . . . , H starting from top left square on first 

row. Each square is a node with adjacent squares connected by arcs. Each of 
nodes D and E has the largest number of emanating arcs and hence must be 
replaced with the two numbers having the most nonadjacent numbers—namely, 
the numbers 1 and 8. This problem has more than one solution. See Figure B.6.

 6-8. (a) 1-2, 2-5, 5-6, 6-4, 4-3. Total length = 14 miles.
6-11. High pressure: 1-2-3-7-4. Low pressure: 1-5-6 and 5-9-8. Total length = 49.
6-13. Buy new car in years 1 and 4. Total cost = $8900. See Figure B.7.
6-16. For arc 1i, vi2 - 1i + 1, vi+ 12, define p1q2 = value (units of item i). Solution: 

Select one unit of each of items 1 and 2, total value = $80. See Figure B.8.
6-18. (c) Delete all nodes but 4, 5, 6, 7, and 8. Shortest distance = 8 associated with 

routes 4-5-6-8 and 4-6-8.

1

3 4

5

Tree

1

3 4

2

5

Spanning tree

Figure B.5

7 1 8

3 5

4 6

2

Figure B.6

1 3 4 6
3800 4800

4100

5300

Figure B.7

1, 5 2, 5

2, 3

2, 1

3, 5

3, 2

3, 3 End

3, 0

3, 1

0(0) 0(0)

0(0) 0(0)

0(0)

0(0)

0(0)

0(0)

50(1)
70(1)

30(1)

50(1)
60(2)

Figure B.8
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6-21. (a) 5-4-2-1, distance = 12.
6-24. Figure B.9 summarizes the solution. Each arc has unit length. Arrows show one-

way routes. Example solution: Bob to Joe: Bob-Kay-Rae-Kim-Joe. Largest number 
of contacts = 4.

6-25. (a) Right-hand side of equations for nodes 1 and 5 are 1 and -1, respectively, all 
others = 0. Optimum solution: 1-3-5 or 1-3-4-5, distance = 90.

6-28. Cut 1: 1-2, 1-4, 3-4, 3-5, capacity = 60.
6-29. (a) Surplus capacities: arc 12@32 = 40, arc 12@52 = 10, arc 14@32 = 5.

(b) Node 2: 20 units, node 3: 30 units, node 4: 20 units.
(c) No, because there is no surplus capacity out of node 1.

6-35. Maximum number of chores is 4. Rif-3, Mai-1, Ben-2, Kim-5. Ken has no chore.
6-44. See Figure B.10.
6-52. Critical path: 1-3-4-5-6-7. Duration = 19.
6-60. (a)    20. (b) 3. (c) 0.
6-62. (a) Critical path: 1-3-6 (B-F), duration = 45 days.

(b) A, D, and E.
(c) Each of C, D, and G will be delayed by 5 days. E will not be affected.
(d) Minimum equipment = 2 units.

Chapter 7

 7-2.  Points (1, 0) and (0, 2) are in Q, but l 11, 02 + 11 - l210, 22 = 1l, 2 - 2l2 
does not lie in Q for 0 6 l 6 1.

Bob

2

Joe

1

Jim

4

Kim

6

Rae

5

Kay

3

Figure B.9

Dig

Dig 
II SteelII

Steel Conc. Conc. Conc. Conc.
1 2 4 5 7 9 10

Dig

III

Dig

IV
3 6 8

I I I II III IV

Steel

III

Steel

IV

Figure B.10
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 7-6. (b) Unique solution with x1 7 1 and 0 6 x2 6 1. See Figure B.11.
(d) An infinite number of solutions.
(f)  No solution.

 7-7. (a) Basis because det B = -4.
(d) Not a basis because a basis must include exactly 3 independent vectors.

 7-9.
B- 1 = a .3 - .2

.1 .1
b

Basic x1 x2 x3 x4 Solution

z 1.5 - .5 0 0 21.5

x3 0 .5 1 0 2
x4 .5 0 0 1 1.5

Solution is feasible but nonoptimal.
7-12. z = c1x1 + c2x2. c1 = 2, c2 = 5 from tableau, optimal z = 34. Determine RHS

1b1, b2, b32 = 14, 6, 82. 
Maximize z = 2x1 + 5x2 subject to x1 … 4, x2 … 6, x1 + x2 … 8, x1, x2 Ú 0

7-14. (a) p3 must leave.
(b) B = 1p2, p42 is a feasible basis.

7-15. For the basic vector xB, we have

5zj - cj6 = cBB- 1B - cB = cBi - cB = cB - cB = 0

7-21. Under nondegeneracy, the number of adjacent extreme points is n - m.
7-23. In case of degeneracy, number of extreme points is less than the number of basic 

solutions, else they are equal.
7-24. (a) new xj = 1

a old xj.

(b) new xj = b
a old xj.

7-28. (b) 1x1, x2, x32 = 11.5, 2, 02, z = 5.
7-33. 1x1, x2, x3, x4, x5, x62 = 10, 1, .75, 1, 0, 12, z = 22.
7-41. Maximize w = Yb subject to YA … c, Y Ú 0.

22 21 1

1

2

3

2 3

P2

P1

b

x1 . 1, 0 , x2 , 1

Figure B.11
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7-46. Method 1: 1b1, b2, b32 = 12, 3, 42 1 dual objective value = 17.
Method 2: 1c1, c22 = 12, 52 1 primal objective value = 17.

7-47. Minimize w = Yb subject to YA = C, Y unrestricted.
7-49. -2

7 … t … 1
7-50. (a)

Basic solution Applicable range of t

1x2, x3, x62 = 15, 30, 102 0 … t … 1
3

1x2, x3, x12 = 125
4 , 90

4 , 52 1
3 … t …  5

12

1x2, x4, x12 = 15
2, 15, 202 5

12 … t … ∞

7-53. 5zj - cj6j = 1, 4, 5 = 14 - 3t
2 - 3t2

2 , 1 - t2, 2 - t
2 +  t

2

2 2. Basis remains optimal for 
0 … t … 1.

7-54. (a) t1 = 10, B1 = 1p2, p3, p42
7-55. At t = 0, 1x1, x2, x42 = 1.4, 1.8, 12. It remains basic for 0 … t … 1.5. No feasible 

solution for t 7 1.5.

Chapter 8

 8-1. G5: Minimize s5
+, 110xp + 7xf + 11xs - .06xg + s5

- - s5
+ = 0.

 8-3. Let x1 = Number of in-state freshmen, x2 = Number of out-of-state freshmen, 
x3 = Number of international freshmen.

Gi: Minimize si
- , i = 1, 2, c, 5, subject to x1 + x2 + x3 + s1

- - s1
+ = 1200,

2x1 + x2 - 2x3 + s2
- - s2

+ = 0, - .1x1 - .1x2 + .9x3 + s3
- - s3

+ = 0,

.125x1 - .05x2 - .556x3 + s4
- - s4

+ = 0, - .2x1 + .8x2 - .2x3 + s5
- - s5

+ = 0
All variables are nonnegative.

 8-5. Let xj = Number of production runs in shift j, j = 1, 2, 3.

Minimize z = s1
- + s1

+ , subject to -100x1 + 40x2 - 80x3 + s1
- - s1

+ = 0

4 … x1 … 5, 10 … x2 … 20, 3 … x3 … 20

8-12. Objective function: Minimize z = s1
- + s2

- + s3
- + s4

+ + s5
+

Solution: xp = .0201, xf = .0458, xs = .0583, xg = 2 cents, s5
+ = 3.048

Gasoline tax is $3.048 million short of goal.
8-15. x1 = lb of limestone/day, x2 = lb of corn/day, x3 = lb of soybean meal/day.

Objective function: Minimize z = s1
- + s2

+ + s3
- + s4

- + s5
+

Solution: x1 = 166.08 lb, x2 = 2778.56 lb, x3 = 3055.36 lb, z = 0. Problem has 
alternative optima. All goals are satisfied, but goals 3 and 4 are overachieved.

8-18. xj = Number of units of product j, j = 1, 2.
Assign a relatively high weight to the quota constraints.
Objective function: Minimize z = 100s1

- + 100s2
- + s3

+ + s4
+
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Solution: x1 = 80, x2 = 60, s3
+ = 100 min, s4

+ = 120 min.
Production quota can be met with 100 minutes of overtime for machine 1 and 
120 minutes of overtime for machine 2.

8-23. G1 solution: xp = .0201, xf = .0458, xs = .0583, xg = 2,
s5

+ = 3.048, all others = 0. Goals G1, G2, G3, and G4 are satisfied. G5 is not and 
should remain this way because s5

+ = 3.048 was set at G1.

Chapter 9

 9-3.  xij = Number of bottles of type i assigned to individual j, where i = 1 (full),  
2 (half full), 3 (empty).
Constraints:

x11 + x12 + x13 = 7, x21 + x22 + x23 = 7, x31 + x32 + x33 = 7

x11 + .5x21 = 3.5, x12 + .5x22 = 3.5, x13 + .5x23 = 3.5

x11 + x21 + x31 = 7, x12 + x22 + x32 = 7, x13 + x23 + x33 = 7

All xij are nonnegative integers
Solution: Use a dummy objective function.

Number of bottles assigned to individual

Status 1 2 3

Full 1 3 3
Half full 5 1 1
Empty 1 3 3

 9-6.  y = Original sum of money. xj = Amount taken on night j, j = 1, 2, 3.
x4 = Amount given to each mariner by first officer.
Minimize z = y subject to 3x1 - y = 2, x1 + 3x2 - y = 2, x1 + x2 + 3x3 - y = 2 
y - x1 - x2 - x3 - 3x4 = 1. All variables are nonnegative integers.
Solution: y = 79 + 81n, n = 0, 1, 2, cMinimum y = 79.

9-10. CD1: 1, 4, 7, and 8 (34 MB).  CD2: 2, 3, 5, and 6 (33 MB).  Problem has alternative 
optima.

9-12. xij = 1 if student i selects course j, and zero otherwise, cij = associated prefer-

ence score, Cj = course j capacity. Maximize z = a
10

i = 1
a

6

j = 1
cijxij subject to

a
6

j = 1
xij = 2, i = 1, 2, c, 10, a

10

i = 1
xij … Cj, j = 1, 2, c, 6
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Solution: Course 1: students (2, 4, 9), 2: (2, 8), 3: (5, 6, 7, 9), 4: (4, 5, 7, 10), 5: (1, 3, 6, 
8, 10), 6: (1, 3). Total score = 1775.

9-19. Let xj = 1 if route j is selected and 0 otherwise. Total distance of route 
1ABC, 3, 2, ABC2 = 16 + 14 + 12 = 42 miles.

Minimize z = 42x1 + 50x2 + 66x3 + 52x4 + 60x5 + 34x6 subject to

x3 + x5 + x6 Ú 1, x1 + x3 + x4 + x5 Ú 1, x1 + x2 + x3 + x4 + x6 Ú 1,

x2 + x5 Ú 1, x2 + x3 + x4 Ú 1, xj = 10, 12, for all j.

Solution: Select routes (5, 3, 4) and (1, 4, 2), z = 110. Customer 4 should be 
skipped in one of the two routes.

9-20. Solution: 3-member committee is formed of individuals a, d, and f . Problem has 
alternative optima.

9-25. xt = 1 if transmitter t is selected, 0 otherwise. xc = 1 if community c is covered, 
0 otherwise. ct = cost of transmitter t. Sc = set of transmitters covering commu-
nity c. Pj = population of community j.

Maximize z = a
15

c = 1
Pcxc subject to

a
t∈Sc

xt Ú xc, c = 1, 2, c, 15, a
7

t = 1
ctxt … 15

Solution: Build transmitters 2, 4, 5, 6, and 7. All but community 1 are covered.
9-29. Let xj = Number of widgets produced on machine j, j = 1, 2, 3. yj = 1 if  

machine j is used and 0 otherwise. Minimize z = 2x1 + 10x2 + 5x3 + 300y1 +  
100y2 + 200y3 subject to x1 + x2 + x3 Ú 2000, x1 - 650y1 … 0, x2 - 850y2 … 0, 
x3 - 1250y3 … 0, x1, x2, x3 Ú 600 and integer, y1, y2, y3 = 10, 12.
Solution: x1 = 650, x2 = 600, x3 = 700, z = $11,650.

9-30. Solution: Site 1 is assigned to targets 1 and 2, and site 2 is assigned to targets 3 
and 4. z = 18.

9-37. xe = Number of Eastern (one-way) tickets, xu = Number of US Air tickets, 
xc = Number of Continental tickets. e1, and e2 binary variables. u and c non-
negative integers. Maximize z = 100011.5xe + 1.8xu + 2xc + 5e1 + 5e2 + 12u 
+  7.5c2 subject to e1 … xe>3, e2 … xe>6, u … xu>6, and c … xc>5, 
xe + xu + xc = 16.
Solution: Buy 6 tickets on US Air and 10 tickets on Continental. Bonus = 57800 
miles.

9-38. Let xij = Integer amount assigned to square 1i, j2. Use a dummy objective func-
tion with all zero coefficients.
Constraints:

a
3

j = 1
xij = 15, i = 1, 2, 3, a

3

i = 1
xij = 15, j = 1, 2, 3,
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x11 + x22 + x33 = 15, x31 + x22 + x13 = 15,

1x11 Ú x12 + 1 or x11 … x12 - 12, 1x11 Ú x13 + 1 or x11 … x13 - 12,

1x12 Ú x13 + 1 or x12 … x13 - 12, 1x11 Ú x21 + 1 or x11 … x21 - 12,

1x11 Ú x31 + 1 or x11 … x31 - 12, 1x21 Ú x31 + 1 or x21 … x31 - 12,

xij = 1, 2, c, 9, for all i and j

2 9 4

Solution: 7 5 3
6 1 8

Alternative solutions: Exchange rows 1 and 3 or columns 1 and 3.
9-40. xj = Daily number of units of product j.

Maximize z = 20x1 + 25x2 + 18x3 subject to

a3x1 + 4x2 + 5x3 … 150
4x1 + 3x2 + 6x3 … 150

b  or a3x1 + 4x2 + 5x3 … 135
4x1 + 3x2 + 6x3 … 180

b

x1, x2, x3 Ú 0 and integer

Solution: Produce 18 units of product 1, 24 of product 2, and none of product 3, 
and use location 1.

9-49. Define v = zw, v … z, v … w, v Ú z + w - 1, 0 … v … 1, z and w binary.
9-56.2 (a) z = 14, x1 = 4, x2 = 1.

(d) z = 12, x1 = 0, x2 = 3.
9-57. (a) z = 14.50, x1 = 3.5, x2 = 2.

(d) z = 10.5, x1 = .5, x2 = 2.
9-63. Equivalent 0-1 ILP:

Maximize z = 18y11 + 36y12 + 14y21 + 28y22 + 8y31 + 16y32 + 32y33  
subject to 15y11 + 30y12 + 12y21 + 24y22 + 7y31 + 14y32 + 28y33 … 43
All variables are binary.
Solution: z = 50, y12 = 1, y21 = 1, all others = 0. Equivalently, x1 = 2, x2 = 1.
The 0-1 version required 41 nodes. The original requires 29.

9-65. (a) Legitimate cut because it passes through an integer point and does not elim-
inate any feasible integer point. You can verify this result by plotting the cut 
on the LP solution space.

9-70. (a) Optimum integer solution: 1x1, x2, x32 = 12, 1, 62, z = 26.
Rounded solution: 1x1, x2, x32 = 13, 1, 62 - infeasible.

2Use TORA integer programming module to generate the B&B tree for Problems 9-56 and 9-57.
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Chapter 10

 10-6.  Maximize z = 151t>100) 153 - 1001t>10022, 10 … t … 60
  Demand will reach zero value at t = 53. Thus, search can be limited to the range  
(10, 53). Start search at t = 10%. 

10-27.   Represent a chromosome with a string of ten randomly generated binary ele-
ments such that card i = 0112 means it belongs to pile 1(2).

Fitness =  � 36 -  sum of cards in pile 1 � + � 36 - product of cards in pile 2 � .

 iteration 0:
 P1: 1011011010, Pile 1: (2, 5, 8, 10), Pile 2: (1, 3, 4, 6, 7, 9),
 z = � 36 - 25 � + � 36 - 4536 � = 11 + 4500 = 4511
 P2: 0011011111, P3: 0100110101, P4: 11001101111

Chapter 11

 11-1. (c). Each site/the hotel represents a city. The cab fare between locations repre-
sents distance.

 11-2. (a) LP for lower bound:

Minimize z = 2r1 + 2r2 + 2r3 + 2r4 + 2r5 subject to

r1 + r2 … 125, r1 + r3 … 225, r1 + r4 … 155, r1 + r5 … 215

r2 + r3 … 85, r2 + r4 … 115, r2 + r5 … 135

r3 + r4 … 165, r3 + r5 … 190

r4 + r5 … 195, all ri nonnegative.
(b) Using amplAssignment.txt and amplLP.txt, both yield a lower bound of 

720 miles. Assignment model solution includes subtours (1-4-1, 2-5-3-2), 
hence nonoptimal.

 11-7. (a) Each project represents a city. The table below gives the number of dis-
tinct employees who enter/leave the manager’s office when we switch from 
project i to project j (i.e., the number of mismatched “x” between column i 
and column j). The objective is to find a “tour” through all projects that will 
minimize the total traffic.

1 2 3 4 5 6

1 4 4 6 6 5
2 4 6 4 6 3
3 4 6 4 8 7
4 6 4 4 6 5
5 6 6 8 6 5
6 5 3 7 5 5

(b) Lower bound using solutionAssign.txt is 26. Although the lower bound 
happened to be exactly equal to the true minimum tour, the associated 
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 assignment solution includes subtours; namely, 1-3-1, 2-4-5-6-2. Optimal 
tour using amplCut.txt is 1-2-6-5-4-3-1.

11-17.  See Figure B.12. Problem has alternative optima; for example, 1-2-6-5-4-3-1, 
z = 26.

Chapter 12

 12-1. Solution: Shortest distance = 26 miles. Route: 1-4-6-7.
 12-5. Solution: Shortest distance = 17. Route: 1-2-3-5-7.
 12-7. (a) Solution: Value = 120. 1m1, m2, m32 = 10, 0, 32, 10, 4, 12, 10, 2, 22, or

10, 6, 02.
12-10. Solution: Total points = 250. Select 2 courses from I, 3 from II, 4 from III, and 

1 from IV.
12-12. Let xj = 1 if application j is accepted, and 0 otherwise. Equivalent knapsack 

model is

Maximize z = 78x1 + 64x2 + 68x3 + 62x4 + 85x5 subject to

7x1 + 4x2 + 6x3 + 5x4 + 8x5 … 23, xj = 10,12, j = 1, 2, c , 5

Solution: Accept all but the first application. Value = 279.
12-19. (a) Solution: Hire 6 for week 1, fire 1 for week 2, fire 2 for week 3, hire 3 for 

week 4, and hire 2 for week 5.

z 5 26
(12321)
(22422)
(52625)

x31 5 0 x13 5 0

x65 5 0 x56 5 0

1

5

3

3

2

4 3

Fathomed

at

by z

Fathomed

at

by z

z 5 26
(122242321)

(52625)

z 5 26
(12526222

42321)

Figure B.12
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12-21. Solution: Rent 7 cars for week 1, return 3 for week 2, rent 4 for week 3, and no 
action for week 4. Cost = $6,940.

12-24. Decisions for next 4 years: Keep, Keep, Replace, Keep. Total cost = $458.
12-30. (a) Let xi and yi be the number of sheep kept and sold at the end of period i, 

and define zi = xi + yi.

 fn1zn2 = max
yn = zn

5pn yn6

 fi1zi2 = max5piyi + fi+ 1
yi … zi

12zi - 2yi26, i = 1, 2, c, n - 1

Chapter 13

 13-1. Days in inventory = 112.31. Report is true.
 13-4. (a) Total cost per week = $51.50

(b) Total cost per week = $50.20, y* = 239.05 lb.
 13-6. (a) Choose policy 1 because its cost per day is $2.17 as opposed to $2.50 for 

policy 2.
(b) Optimal policy: Order 100 units whenever the inventory level drops to 10 units.

13-14. Optimal policy: Order 500 units whenever level drops to 130 units. Cost 
per day = $258.50.

13-16. No advantage if TCU11ym2 … TCU21q2, which translates to no advantage if 
the discount factor does not exceed .779%.

13-18. AMPL/Solver solution: 1y1, y2, y3, y4, y52 = 15.17, 6.44, 3.64, 6.03, 3.882, 
cost = $636.75,

13-21. Constraint:a
4

i = 1

365Di

yi
… 150.

Solver/AMPL solution:  1y1, y2, y3, y42 = 1155.3, 118.81, 74.36, 90.092, cost =  
$54.71.

13-22. (a) 500 units required at the start of periods 1, 4, 7, and 10.
13-25. Produce 173 units in period 1, 180 in period 2, 240 in period 3, 110 in period 4, 

and 203 in period 5.
13-26. (a) Yes, because inventory should not be held needlessly at end of horizon.

(b) (i)   0 … z1 … 5, 0 … z2 … 6, 0 … z3 … 6; x1 = 3, 1 … x2 … 6, 0 … x3 … 4.

(ii)  5 … z1 … 14, 0 … z2 … 9, 0 … z3 … 5; x1 = 0, 0 … x2 … 9, 0 … x3 … 5.
13-27. (a)  z1 = 7, z2 = 0, z3 = 6, z4 = 0. Total cost = $33.
13-31. Use initial inventory to satisfy the entire demand of period 1 and 4 units of period 

2, thus reducing demand for the four periods to 0, 22, 90, and 67, respectively.
Optimal solution: Order 112 units in period 2 and 67 units in period 4. Total 
cost = $632.

13-35. Solution: Produce 210 units in January, 255 in April, 210 in July, and 165 in  
October.
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Chapter 14

 14-1. (a) .15 and .25, respectively. (b) .571. (c) .821.
 14-2. n Ú 23.
 14-3. n 7 253.
 14-6. 5

32.
 14-7. Let p = probability Nancy wins. Probability John wins is 3p, which equals the  

probability Jim will win. Probability Ann wins is 6p. Because one of the four  
wins, p + 3p + 3p +3p + 6p = 1.

(a) 3
13.

(b) 7
13.

(c) 6
13.

14-10. (a) .375. (b) .6.
14-14. .9545.
14-16. (a) K = 20.
14-17. P5Demand Ú 11006 = .3.
14-20. (a) P550 … copies sold … 706 = .6667.

(b) Expected number of unsold copies = 2.67
(c) Expected net profit = $22.33

14-21. Mean = 4.333, variance = 2.22.
14-26. (a) P1x1 = 12 = P1x2 = 12 = .4, P1x1 = 22 = P1x2 = 22 = .2, P1x1 = 32 =

P1x2 = 32 = .4.
(b) No, because P1x1, x22 ≠ P1x12P1x22.

14-27. P5odd number6 = 11
2210

.
14-29. P5being correct6 = .0547.
14-33. .8946.
14-35. (a) P5n = 06 = .000045.

(b) P5n Ú 11 + 126 =  P5n Ú 26 ≃ .9995.
14-37. l = 15 arrivals/min. P5 t … 8 sec6 = .865.
14-40. .001435.

Chapter 15

 15-1. Weights for A, B, and C = 1.3493, .2573, .38342. Select C.
 15-3. CR 7 .1 for all matrices except A. 1wS, wJ, wM2 = 1.331, .292, .3772. Select 

Maisa.
 15-5. All matrices are consistent. 1wH, wP2 = 1.502, .4982. Select H.
15-10. (a) See Figure B.13.

(b) EV1corn2 = -$8250, EV1soybeans2 = $250. Select soybeans.
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15-14. (a) See Figure B.14. 
(b) EV1game2 = -$.025. Do not play the game.

15-20. (a) Expected breakdown cost in year t = $4000pt + $011 - pt2.
Preventive maintenance cost in any year = 20 * 75 = $1500.

(b) Optimum maintenance cycle = 8 years. Cost per year = $397.50.
15-23. (a) Expected profit given a = a1r - cp - rp2.

(b) Optimum production rate = 49 pieces per day.
15-27. Level must be between 99 and 151 gallons.
15-29. Let z be the event of having one defective item in a sample of size 5.

P5A � z6 = .6097, P5B � z6 = .3903.
15-31. (a) Expected revenue if you self@publish = $196,000.

Expected revenue if you use a publisher = $163,000.
(b) If survey predicts success, self-publish, else use a publisher.

15-34. (b) Ship lot to B if both items are bad, else ship lot to A.
15-35. (a) Expected value = $5, hence there is no advantage.

(b) For 0 … x 6 10, U1x2 = 0, and for x = 10, U1x2 = 100.
(c) Play the game.

Corn

Soybeans

U

S

D

U

S

D

.25

.30

.45

.25

.30

.45

$30,000

2$35,000

$0

$10,000

2$5000

$0

Figure B.13

Play

Do not play

.125(HHH)

.125(HHT)

.125(HTH)

$3.50

$1.15

$.90

2$1.20

$1.15

2$1.20

2$1.20

2$3.30

$0

.125(HTT)

.125(THH)

.125(THT)

.125(TTH)

.125(TTT)

Figure B.14
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15-36. Lottery: U1x2 = 100 - 100p, with U1-$1,250,0002 = 0 and U1$900,0002 =  
100.

15-38. (a) All methods: Study all night (action a1).
(b) All methods: Select actions a2 or a3.

15-41. (a) Saddle-point solution at (2, 3). Value of game = 4.
15-43. (a) 2 6 v 6 4.
15-46. Each player should mix strategies 50-50. Value of game = 0.
15-47. Police payoff matrix:

100%A 50%A–50%B 100%B

A 100 50 0

B 0 30 100

Strategy for Police: Mix 50-50 strategies 100%A and 100%B.
Strategy for Robin: Mix 50-50 strategies A and B. Value of game = $50 
1=  expected fine paid by Robin2.

15-50. (a) Payoff matrix for team 1:

AB AC AD BC BD CD

AB 1 0 0 0 0 -1

AC 0 1 0 0 -1 0

AD 0 0 1 -1 0 0

BC 0 0 -1 1 0 0

BD 0 -1 0 0 1 0

CD -1 0 0 0 0 1

Optimal strategy for both teams: Mix AB and CD 50-50. Value of the 
game = 0.

15-52. (a) 1m, n2 = (No. of regiments at location 1, No. of regiments at locations 2). 
Each location has a payoff of 1 if won and -1 if lost. For example, Botto’s 
strategy (1, 1) against the enemy’s (0, 3) will win location 1 and lose loca-
tion 2, with a net payoff of 1 + 1-12 = 0. Payoff matrix for Colonel Blotto:

3, 0 2, 1 1, 2 0, 3

2, 0 -1 -1   0   0

1, 1   0 -1 -1   0

0, 2   0   0 -1 -1

Optimal strategy for Blotto: Blotto mixes 50-50 strategies (2-0) and (0-2),  
and the enemy mixes 50-50 strategies (3-0) and (1-2). Value of the 
game = - .5, and Blotto loses. Problem has alternative optima.
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Chapter 16

 16-1. (a) Order 1000 units whenever inventory level drops to 537 units.
 16-5. Solution: y* = 317.82 gallons, R* = 46.82 gallons.
 16-6. Solution: y* = 316.85 gallons, R* = 58.73 gallons. In Example 16.1-2, y* =

319.44 gallons,  R* = 93.61 gallons. Order quantity remains about the same 
as in Example 16.1-2, but R* is smaller because the demand pdf has a smaller 
 variance.

16-10. .82 … p … 2.33
16-13. 32 coats.
16-16. Order 9 - x if x 6 4.53, else do not order.
16-20. Order 4.61 - x if x 6 4.61, else do not order.

Chapter 17

 17-2. S1: Car on patrol

S2: Car responding to a call

S3: Car at call scene

S4: Apprehension made

S5: Transport to police station

S1 S2 S3 S4 S5

S1 0.4 0.6 0 0 0

S2 0.1 0.3 0.6 0 0

S3 0.1 0 0.5 0.4 0

S4 0.4 0 0 0 0.6

S5 1 0 0 0 0

 17-6. Initial Probabilities:

S1 S2 S3 S4 S5

0 0 1 0 0

Input Markov chain:

S1 S2 S3 S4 S5

S1 0.4 0.6 0 0 0

S2 0.1 0.3 0.6 0 0

S3 0.1 0 0.5 0.4 0

S4 0.4 0 0 0 0.6

S5 1 0 0 0 0
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Output (2-step or 2 patrols) transition matrix p2

S1 S2 S3 S4 S5

S1 0.22 0.42 0.36   0    0

S2 0.13 0.15 0.48 0.24    0

S3 0.25 0.06 0.25 0.2 0.24

S4 0.76 0.24    0   0    0

S5 0.4 0.6    0   0    0

Absolute 2-step probabilities = 10 0 1 0 02p2

State Absolute (2-step)

S1 0.25
S2 0.06
S3 0.25
S4 0.20
S5 0.24

P5apprehension, S4, in 2 patrols6 = .2
17-10. (a) Using excelMarkovChains.xls, the chain is periodic with period 3.

(b) States 1, 2, and 3 are transient, state 4 is absorbing.
17-13. (a) Input Markov chain:

S C R

S 0.8 0.2 0

C 0.3 0.5 0.2

R 0.1 0.1 0.8

Output Results

State Steady state Mean return time

S 0.50 2.0
C 0.25 4.0
R 0.25 4.0

Expected revenues =  2 * .5 + 1.6 * .25 + .4 * .25 = $1, 500.
(b) Sunny days will return every mSS = 2 days—meaning two days of no sunshine.

17-17. (a) Input Markov chain:

Never Some Always

Never 0.95 0.04 0.01

Some 0.06 0.9 0.04

Always 0 0.1 0.9
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(b) 44.12% never, 36.76% sometimes, 19.11% always
(c) Expected uncollected taxes/year = .121$5000 * .3676 + $12,000 * .19112 *  

70,000,000 ≈ $34,711,641,000
17-29. (a) Input Markov Chain:

1 2 3 4 5

0 .3333 .3333 .3333 0

.3333 0 .3333 0 .3333

.3333 .3333 0 0 .3333

.5 0 0 0 .5

0 .3333 .3333 .3333 0

(b) a5 = .07407
(c) p5 = .214286
(d) m15 = 4.6666

17-33. (a) Input Markov Chain:

A B C

A .75 .1 .15

B .20 .75 .05

C .125 .125 .75

(b) A: 39.5%, B: 30.7%, C: 29.8%
(c) A S B: 9.14 years, A S C: 8.23 years

17-35. (a) States: 1 week, 2 weeks, 3 weeks, Library

Matrix p:

1 2 3 lib

1 0 0.3   0 0.7

2 0   0 0.1 0.9

3 0   0   0   1

lib 0   0   0   1

(b) On average, I keep the book 1.33 weeks.
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17-41. (a) Matrix p:

1 2 3 4 F

1 0.2 0.8     0     0   0

2   0 0.22 0.78     0   0

3   0     0 0.25 0.75   0

4   0     0     0 0.3 0.7

F   0     0     0     0   1

1i - n2 - 1 Mu

1 2 3 4 F

1 1.25 1.282 1.333 1.429 1 5.29

2 0 1.282 1.333 1.429 2 4.04

3 0 0 1.333 1.429 3 2.76

4 0 0 0 1.429 4 1.43

(c) To be able to take Cal II, the student must finish in 16 weeks (4 transitions) 
or less. Average number of transitions needed = 5.29. Hence, an average 
student will not be able to finish Cal I on time.

(d) No, per answer in (c).

Chapter 18

 18-1. (a) Productivity = 71%.
(b) The two requirements cannot be met simultaneously.

 18-3.

Situation Customer Server

(a) Plane Runway
(b) Passenger Taxi
(h) Car Parking space

 18-8.    (b) (i) l = 3 arrivals per hour, average interarrival time = 1
3 hour.

(c) (i) m = 4 services per hour, average service time = .25 hour.

18-10. (a) f1t2 = 25e - 25t, t 7 0.

(b) P5 t 7 15
606 = .00193.

(b) 



828   Appendix B   Partial Answers to Selected Problems

18-14. Jim’s payoff is 2 cents with probability P5t … 16 = .4866 and -2 cents with 
probability P5 t Ú 16 = .5134. In 8 hours, Jim pays Ann = 17.15 cents.

18-17. (a) P5t … 4 min6 = .4866.
(b) Average discount percentage = 6.208.

18-21. pn Ú 611 hour2 = .5542.
18-24. (a) p61t = 72 = .002579.
18-26. (a) Combined l = 1

10 + 1
7, p21t = 52 = .219.

18-30. (a)  p01t = 32 = .00532.
(c)  pn … 171t = 12 = .9502.

18-33. p0142 = .37116.

18-36. (a) Average order size = 25 - 7.11 = 17.89 items.
(b) p01t = 42 = .00069.

18-41. (a) pn Ú 3 = .4445.
(b) pn … 2 = .5555.

18-44. (a) pj = .2, j = 0, 1, 2, 3, 4.
(b) Expected number in shop = 2 customers.
(c) p4 = .2.

18-48. (a) Lq = 1p6 + 2p7 + 3p8 = .1918 car.
(c) llost = .1263 car per hour. Average number lost in 8 hr = 1.01 cars.

(d) No. of empty spaces =  c - 1Ls - Lq2 = c - a
8

n = 0
npn + a

8

n = c + 1
1n - c2pn. 

Carry out additional algebraic manipulations to obtain the desired result.
18-51. (a) p0 = .2.

(b) Average monthly income = $50 * mt = $375.
(c) Expected payment = $40 * Lq = $128.

18-54. (a) p0 = .4.
(b) Lq = .9 car.
(c) Wq = 2.25 min.
(d) pn Ú 11 = .0036.

18-55. (d) Number of spaces is at least 13.
18-59. (a) p0 = .3654.

(b) Wq = .207 hr.
(c) Expected number of empty spaces = 4 - Lq = 3.212.
(d) p5 = .04812.
(e) A 40% reduction lowers Ws to about 9.6 minutes 1m = 10 cars>hr2.

18-62. (a) p8 = .6.
(b) Lq = 6.34 generators.
(c) Probability of finding an empty space cannot  exceed .4 regardless of belt 

capacity. This means that the best utilization of the assembly department  
is 60%.
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 18-65. (a) 1 - p5 = .962.
(b) llost = lp5 = .19 customer per hour.

 18-69. For c = 2, Wq = 3.446 hr and for c = 4, Wq = 1.681 hr, an improvement of 
over 51%.

 18-72. Let K be the number of waiting-room spaces. Using TORA, p0 + p1 + g+  
pK + 2 Ú .999 yields K Ú 10.

 18-74. (a) pn Ú 4 = .65772.
(e) Average number of idle computers = .667 computer.

 18-84. (c) Utilization = 81.8%.
(d) p2 + p3 + p4 = .545.

 18-86. (a) p40 = .00014.
(d) p30 + p31 + g + p39 = .02453.
(e) Expected number of occupied spaces = Ls - Lq = 20.043 - .046 ≈ 20.
(f)   Probability of not finding a parking space = 1 - pn … 29 = .02467.   

Number of students who cannot park in an 8-hour period is approxi-
mately 4.

 18-92. (a) Approximately 7 seats.
(b) pn Ú 8 = .2911.

 18-95. (b) Average number of idle repairpersons = 2.01.
(d) P52 or 3 idle servers6 = p0 + p1 = .34492.

 18-98. (a) Ls = 1.25 machines.
(b) p0 = .33342.
(c) Ws = .25 hr.

18-100. l = 2 calls per hour per baby, m = .5 baby per hour, R = 5, K = 5.
(a) Number of awake babies = 5 - Ls = 1 baby.
(b) p5 = .32768.
(c) pn … 2 = .05792.

18-105. (a) E5t6 = 14 minutes and var 5t6 = 12 minutes2. Ls = 7.8672 cars.
18-107.  l  =  .0625 prescriptions per minute, E{t}  =  15 min, var{t}  =  9.33 min2.

(a) p0 = .0625.
(b) Lq = 7.3 prescriptions
(c) Ws = 132.17 min.

18-114. Use (M/M/1):1GD/10/102. Cost per hour is $431.50 for repairperson 1 and 
$386.50 for repairperson 2.

18-116. (b)  m = l + B c2l

c1

(c)  Optimum production rate = 2725 pieces per hour.
18-122. (a) No, cost per hr is $86.4 for two repairpersons and $94.80 for three.

(b) Schedule loss per breakdown = $30 * Ws = $121.11 for two repairper-
sons and $94.62 for three.

18-124. Rate of breakdowns per machine, l = .36125 per hour, m = 10 per hour. 
Model (M/M/3):1GD/20/202 yields Ls = .70529 machine. Lost revenue 
=  $36.60 and cost of three repairpersons = $60.
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18-126. (a) Number of repairpersons Ú 5.
(b) Number of repairpersons Ú 4.

Chapter 19

 19-4. (a)  P5H6 = P5T6 = .5. If 0 … R … .5, Jim gets $10.00. If .5 6 R … 1, Jan 
gets $10.00.

 19-7.  Lead time sampling: If 0 … R … .5, L = 1 day. If .5 6 R … 1, L = 2 days.
Demand per day sampling: If 0 … R … .2, demand = 0 unit. If .2 6 R … .9, 
demand = 1 unit. If .9 6 R … 1, demand = 2 units. Use one R to sample L. If 
L = 1, use another R to sample demand for one day, else if L = 2, use one R to 
generate demand for day 1 and then another R to generate demand for day 2.

19-10. (a) Discrete.
19-15. See Figure B.15.
19-16. t = - 1

l ln 11 - R2, l = 4 customers per hour.

Customer R t (hr) Arrival time

1 — — 0
2 0.0589 0.015176 0.015176
3 0.6733 0.279678 0.294855
4 0.4799 0.163434 0.458288

19-17. t = a + 1b - a2R.
19-19. (a) 0 … R 6 .3 : d = 0, .3 … R 6 .6 : d = 1, .6 … R 6 .8 : d = 2,  

.8 … R … 1 : d = 3.

19-24. If 0 … R … p, then x = 0, else x = alargest integer … ln 11 - R2
ln q b .

19-26. y = - 1
10 ln1.0589 * .6733 * .47992 = .396 hour.

19-31. t = x1 + x2 + x3 + x4, where xi = 10 + 10Ri, i = 1, 2, 3, 4.
19-34. In Example 19.4-1, cycle length = 4. With the new parameters, cycling was not 

evident after 50 random numbers were generated. The conclusion is that judi-
cious selection of the parameters is important.

19-37. (a) Observation-based.
(b) Time-based.

0

18 48 78 108 138

30 60 90 120

A1

D1 D2 D3 D4 D5

A2 A3 A4 A5

Figure B.15
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19-38. (a) 1.48 customers.
(b) 7.4 hours.

19-44. Confidence interval: 15.07 … m … 23.27.

Chapter 20

 20-1. (a) No stationary points.
(b) Minimum at x = 0.
(e) Inflection point at x = 0, minimum at x = .63, and maximum at x = - .63.

 20-4. 1x1, x22 = 1-1, 12 or 12, 42.
 20-7. (b) 10x1, 0x32 = 12.83, -2.52 0x2

20-10. Necessary conditions: 21xi - xn
2

xi 2 = 0, i = 1, 2, c, n - 1. Solution is

xi = 1n C, i = 1, 2, c, n. 0f = 2d2n
C2 - n.

20-13. (b) Solution 1x1, x2, x3, x42 = 1 - 5
74, -10

74, 155
74 , 60

742, which is a minimum point.
20-15. Minima points: 1x1, x2, x32 = 1-14.4, 4.56, -1.442 and (4.4, .44, .44).

Chapter 21

 21-2. (c) x = 2.5, achieved with ∆ = .000001.
(e) x = 2, achieved with ∆ = .000001.

 21-3. By Taylor’s expansion, ∇f1x2 = ∇f1x02 + H1x - x02. The Hessian H 
is independent of x because f (x) is quadratic. Also, the given expansion 
is exact because higher-order derivatives are zero. Thus, ∇f1x2 = 0 yields 
x = x0 - H- 1∇f1x02. Because x satisfies ∇f1x2 = 0, x must be optimum 
regardless of the choice of initial x0.

 21-6. Optimal solution: x1 = 0, x2 = 3, z = 17.
 21-8. Let wj = xj + 1, j = 1, 2, 3, v1 = w1w2, v2 = w1w3. Then,

Maximize z = v1 + v2 - 2w1 - w2 + 1

Subject to v1 + v2 - 2w1 - w2 … 9, ln v1 - ln w1 - ln w2 = 0,

ln v2 - ln w1 - ln w3 = 0, all variables are nonnegative.
21-14. Solution: x1 = 1, x2 = 0, z = 4.
21-15. Solution: x1 = 0, x2 = .4, x3 = .7, z = -2.35.
21-16. Maximize z = x1 + 2x2 + 5x3

Subject to 2x1 + 3x2 + 5x3 + 1.28y … 10

9x1
2 + 16x3

2 - y2 = 0

7x1 + 5x2 + x3 … 12

x1, x2, x3, y Ú 0



This page intentionally left blank 



Index

100% feasibility rule in LP, 165
100% optimality rule in LP, 167
6-sigma limits, 554
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Absorbing state. See Markov chains
Additive 0–1 algorithm, 367
Algorithm, definition of, 34
Al-Khwarizmi, Muhammad Ibn-Musa. 

See also Algorithm
Alternative optima in LP, 119
AMPL, 57, 61–65, 159, C.1–39

algebraic model, C.3–9
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Chapter 5, C.24–25
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Chapter 9, C.33–34
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execution of AMPL model, C.22
input files

read, C.13–14
spreadsheet, C.19
table, C.15
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interactive commands, C.20–21
long-hand model, C.1
mathematical expression, C.9–12
output files

print, C.14–15
sensitivity analysis in LP, 138
sets, C.3

indexed, C.12–13
subsets, C.12

Analytical Engine, Babbage’s, 35
Analytic Hierarchy Process (AHP),  

567–574
comparison matrix, 569
consistency, 571–572
normalizing a comparison matrix, 571

Applications of OR, selected.  
See Case analyses

Art of modeling, 41
Artificial constraints in dual simplex  

method, 202
Artificial variable in simplex method, 112. 

See also M-method
Aspiration criterion in tabu search, 407
Aspiration level criterion in queues, 686
Assignment model, 227–231

relationship to simplex method, 230
traveling salesperson problem, use in, 438

Attribute in simulation, 716



834   Index

B

Babbage, Charles, 35
Backward pass in CPM, 276
Backward recursive equation in DP, 473
Balance equation in queues, 663
Balancing transportation model, 209–210
Balking in queues, 655
Barrier algorithm, 141. See also Interior point 

algorithm
Basic solution, 101–102, 306–308

relationship to corner (extreme)  
point, 101, 306

Basic variable, 103, 307
Basis, 307. See also Inverse

restricted, 772–774, 779
vector representation of, 307–308

Bayes’ probabilities, 562, 576–579
Bernoulli, Daniel, 579
Bernoulli, Nicolas, 579
Binomial distribution, 551

Poisson approximation of, 551–552
probability calculations with  

excelStatTables.xls, 551
Birthday problem, 543–544
Blending and refining model, 73–76
Bounded variables

definition, 318
dual simplex algorithm for, 324
primal simplex algorithm for, 317–322

Box-Muller sampling method for normal  
distribution, 719–720

Branch-and-bound algorithm
integer programming, 367–373
traveling salesperson (TSP), 441–444

Bridges of Königsberg, 249
Bus scheduling model, 68–70

C

Capacitated network model, 22.1–11
conversion to uncapacitated, 22.33
LP equivalence, 22.2–4
simplex-based algorithm, 22.6–11

Capital budgeting, 360–361
Cargo-loading model. See Knapsack model

Case analysis
AHP

CIM facility layout, 26.45–54
assignment model

scheduling trade events, 26.13–17
Bayes’ probabilities

Casey’s medical test evaluation, 26.56–59
decision trees

hotel booking limits, 26.53–55
dynamic programming

Weyerhauser log cutting, 26.41–45
game theory

Ryder Cup matches, 26.59–61
goal programming

CIM facility layout, 26.45–54
Mount Sinai hospital, 26.29–33

heuristics
bid lines generation at FedEx, 397
fuel tankering, 26.2–9
scheduling trade events, 26.13–17

integer programming
Mount Sinai hospital, 26.29–33
PFG building glass, 26.33–40
Qantas telephone sales staffing, 26.74–80
ship routing, 26.21–28

inventory
Dell’s supply chain, 26.65–69
Kroger pharmacy inventory management 

using spreadsheet simulation, linear 
 programming, 501, 531–535, 26.61–65

fuel tankering, 26.2–9
heart valve production, 26.9–13

Markov chains
Forest cover change prediction  

sub-Himalayan India, 629, 26.69–71
queuing

internal transport system, 26.72–74
Qantas telephone sales staffing, 26.74–80

shortest route
saving federal travel dollars, 26.17–21

transportation
ship routing, 26.21–28

traveling salesperson
high resolution imaging in Australia, 435

Case studies, E.1–34
decision theory, E.25–28
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Correlation coefficient, 23.6
Covariance, 549
CPM. See Critical Path Method
Critical activity in CPM:

definition, 276
determination of, 277–278

Critical path method (CPM) calculations, 
276–278

Cumulative distribution function  
(CDF), 545

Curse of dimensionality in DP, 489
Cuts in

integer programming, 373–378
maximum flow network, 266–267
traveling salesperson problem, 444–445

Cutting plane algorithm
ILP, 373–378
TSP, 444–445

Cycle. See Loop
Cycling in LP, 118–119, 141

D

Dantzig, George B., 105, 250, 317, 378, 448, 590
Decision-making, types of, 567–609

certainty, 567–574
risk, 574–581
uncertainty, 581–584

Decision trees, 574–575
Decomposition algorithm, 22.13–21
Degeneracy, 118, 141. See also Cycling in LP
Determinant of a square matrix, D.5–6
Deviational variables in goal  

programming, 342
Dichotomous search, 788
Die rolling experiment, 545, 548
Diet problem, 50–52
Difference Engine, Babbage’s, 35
Dijkstra’s algorithm, 255–258. See also Floyd’s 

algorithm
Direct search method, 763–766
Discrete distribution, 547
Dual price

algebraic determination of, 129, 323
graphical determination of, 125
relationship to dual variables, 180

dynamic programming, E.23, E.34
forecasting, E.34
goal programming, E.15–16
integer programming, E.23–25
inventory, E.23–25, E.28–30
linear programming, E.1–7, E.13–15
networks, E.11–13, E.33
queuing, E.30–33
transportation, E.7–11

CDF. See Cumulative density function
Central limit theorem, 554
Chance-constrained programming,  

781–784
Chapman-Kolomogrov equations, 632
Chebyshev model for regression  

analysis, 356
Chi-square statistical table, 795
Chi-square test. See Goodness-of-fit test
Circling in LP. See Cycling in LP
Classical optimization

constrained, 746–758
Jacobian method, 747–753
Karush-Khun-Tucker conditions,  

754–758
Lagrangean method, 753–754

unconstrained, 741–746
Newton-Raphson method, 744–746

Column-dropping rule in goal programming, 
345–350

Computational issues in LP, 138–142
Concave function, D.15
Conditional probability, 544–545
Connected network, 248
Constrained gradient, 749
Constraint programming, 423–425

constraint propagation, 424
Continuous probability distribution, 545
Continuous review in inventory, 505
Convex combination, 306
Convex function, D.15
Convex set, 305
Corner point in LP, 50. See also Extreme 

point in LP
relationship to basic solution, 101
relationship to extreme point  

in LP, 305
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Employment scheduling model, 22.4–6
EOQ

constrained, 515
dynamic

no setup model, 518–520
setup model, 521–530

probabilistic, 611–617
static

classical, 507–511
price-breaks, 511–514
storage limitation, 514–518

Equation form of LP, 99–100
Equipment replacement model, 252–253, 482–485
Ergodic Markov chain, 634. See also 

Markov Chains
Euler, Leonard, 249, 250
Event in

probability, 543
simulation, 715

Excel Solver. See Solver (Excel-based)
Expected value, definition of, 547

joint random variables, 548–550
Experiment, statistical, 543
Exponential (negative) distribution, 552–553, 

656–657
forgetfulness property, 656
probability calculations with  

excelStatTables.xls, 553
Exponential smoothing, 23.3–4
Extreme point in LP

definition of, 305
relationship to basic solution, 306–308
viewed graphically as corner point, 50

F

Fathoming solutions in B&B algorithm, 369, 373
Feasible solution, 34
FIFO. See Queue discipline
First passage time. See Markov chains
Fixed-charge problem, 362–364
Floats in CPM, 280
Floyd’s algorithm, 258–261. See also Dijkstra’s 

algorithm
Fly-away kit model. See Knapsack model
Forecasting models, 23.1–10

Dual problem in LP
definition of, 169–172, 322
economic interpretation

dual constraint, 180–182
dual variable, 179–180. See also Dual price

optimal solution, 174–177, 320–324
use in transportation algorithm, 226–227
weak duality theory, 322

Dual simplex method, 140, 182–184, 324. 
See also Generalized simplex algorithm

artificial constraints in, 184, 185
bounded variables, 337
motivation for, 324
revised matrix form, 317–322

Dual variable
optimal value of, 174–177
relationship to dual price, 179

Dynamic programming, 469–500
applications

equipment replacement, 482–485
inventory

deterministic, 521–527
probabilistic, 587–589

investment, 485–488
knapsack problem, 475–480
mill operation, 26.71–75
shortest route model, 469–473
workforce size, 480–482

backward recursion, 473
deterministic models, 469–500
dimensionality problem, 488
forward recursion, 473
Markovian decision process, 25.2–5
optimality principle, 473
probabilistic models, 24.1–11
recursive equation, 472
stage in DP, 470, 475
state in DP, 472, 475

E

Economic order quantity. See EOQ
Edge in LP solution space, 104
Either-or constraint, 364–366
Elevator problem, 39
Empirical distribution, 555–560
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Heuristic
definition, 34
Silver-Meal, 527–530
TSP, 445–448
types of

greedy, 398–403
meta, 404–415

Histograms, 556
Hitchcock, Frank, 211
Hungarian method. See Assignment model
Hurwicz criterion, 583, 584

I

If-then constraint, 364
Imputed cost, 180. See also Dual price
Index of optimism, 583
Inequalities, conversion to equations, 99
Infeasible solution in LP, 122
Insufficient reason, principle of, 582
Integer programming algorithms

branch-and-bound, 367–373
bounding, 369, 373
branching, 369, 373
fathoming, 369, 373

cutting plane, 373–378
implicit enumeration. See Additive algorithm
traveling salesperson

branch and bound, 441–443
cutting plane, 444–445

Intensification and diversification in tabu 
search, 407

Interval programming, E.13–14
Inventory, case study

deterministic models
EOQ, 507–516

constrained, 515–516
price breaks, 511–514
spreadsheet solution of, 514

dynamic, spreadsheet solution of, 523–524
heuristic (Silver-Meal), spreadsheet 

 solution of, 529–530
static, 507–508

probabilistic models
EOQ, 611–617
multiple-period, 623–624

Forgetfulness of the exponential, 656
Forward pass in CPM, 276–277
Forward recursion in DP, 473
Fractional cut, 375
Franklin, Benjamin, 398
Franklin rule, 398
Full-rank matrix. See Nonsingular matrix

G

Game theory, zero-sum, 571–577
non-cooperative, (aha!), 589
optimal solution

graphical, 587–590
linear programming, 590–592
saddle point, 586
value, 586

Gauss-Jordan method, 108, 111, D.8
Generalized simplex algorithm, 184–185
Genetic algorithm, 411–415

crossover, 411, 412
gene coding, 411
ILP application, 420–423
mutation, 411
TSP application, 454–457

Goal programming, 341–350
column-dropping rule, 345–346, 347–350
deviatinal variables, 342
preemptive method, 343, 345–350
weights method, 343–345

Golden-section search method, 763
Goodness-of-fit test, 557–560
Gradient method, 733–736
Graphical solution

games, 587–590
LP maximization, 47
LP minimization, 50

Greedy search heuristic, 398–403

H

Hamming, Richard, 437
Hamming distance, 437
Harris EOQ formula. See also Inventory  

models
Harris, Ford, 511
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Lead time in inventory models, 508
Least-cost transportation starting solution, 

216–217
Leonardo da Vinci, 448
Leontief, Wassily, 105
LIFO. See Queue discipline
Linear combinations method, 770
Linear independence of vectors, 307
Linear programming

applications, 67–76. See also Case analysis
corner-point solution, 141. See also Extreme-

point solution
feasible solution, 47
graphical solution of a two-variable model

maximization, 48
minimization, 50

infeasible solution, 49
optimum feasible solution, 184
post-optimal analysis, 169–192. See also 

Linear programming; sensitivity analysis
additional constraint, 188–189
additional variable, 182
feasibility (right-hand side) changes, 186–187
optimality (objective function) changes, 

182–184
sensitivity analysis. See also Post-optimal 

analysis
algebraic, 132–136
using AMPL, 143–144
dual price, 132, 136, 200, 377
graphical, 124–132
reduced cost, 177, 180–184, 189, 311
using Solver, 141–142
using TORA, 137–138

Little’s queuing formula, 667
Loop in a network, 248
Lottery in a utility function, 579
Lovelace, Ada, 35

M

M-method, 112–115. See also Two-phase 
method

M/D/1 queue. See Pollaczek-Khintchine formula
M/M/1 queue, 670–672
M/M/c queue, 675–680
M/M/R queue, 680–681

Inventory, case study (Continued)
newsvendor problem, 618–620
s-S policy, 620–623

spreadsheet simulation of, 617, 620
Inventory policy, 504
Inventory ratio, 502–503
Interval of uncertainty, 763
Inverse of a matrix, D.7

computing methods
adjoint, D.8
partitioned matrix, D.11–D12
product form, D.9
row (Gauss-Jordan) operations, D.8

determinant of, D.5
location in the simplex tableau, 177

Investment model, 60–62, 485–488
Iteration, definition of, 34

J

Jacobian method, 747–753
relationship to Lagrangean method, 753

Job sequencing model, 364–366
Jockeying, 655
Joint probability distribution, 548–551

K

Kamarkar algorithm. See Interior point  
algorithm

Kantorovich, Leonid, 105, 211
Karush-Khun-Tucker (KKT) conditions, 

754–758
Kendall notation, 666
Kepler, Johannes, 472–473
Knapsack problem, 292, 475–480
Kolmogrov-Smirnov test, 558
Koopmans, Tjalling, 211

L

Lack of memory property. See Forgetfulness 
property

Lagrangean method, 753
Lagrangean multipliers, 753
Laplace criterion, 582
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applications
cartographic label placement, 428–429
job sequencing, 405–407, 409–410
map coloring, 430–432
minimal spanning tree, constrained, 428
timetable scheduling, 430
warehouse allocation, 427

Military planning, 96
Minimal spanning tree algorithm, 250–251

constrained, 428
Mixed cut, 377
Mixed integer problem, 360
Model, elements of an OR, 34

abstraction levels, 36
Modeling

art of, 36–37
levels of abstraction in, 36

Monge, Gaspard, 211
Monte Carlo simulation, 711–732
MRP, See Material requirement planning
Multiplicative congruential method for random 

numbers, 720
Multipliers, method of, 220. See also 

Transportation algorithm

N

N queens problem as ILP, 390
Nash Equilibrium, See Game theory, 

non-cooperative
Nash, John, 589
Needle spinning experiment, 548
Neighborhood in heuristics, definition of, 416
Network definitions, 247–250
Networks LP representation

capacitated network, 266
critical path method, 273–274
maximum flow, 272
shortest route, 282–283

News vendor problem, 618–620
Newton-Raphson method, 744–746
Non-Poisson queues, 682
Nonbasic variable, 103, 309
Nonlinear programming algorithms, 763–788
Nonnegativity restriction, 54
Nonsingular matrix, 307, D.6

Machine repair queuing model, 680–681
Manpower planning model, 68–70. See also 

Workforce size
Marginal probability distribution, 549
Mark Twain, 559
Markov chain, 629–642

absolute probabilities, 632–633
absorption, probability of, 640
closed set, 633
cost-based decision model, 636
first passage time, 636–638
initial probabilities, 632
mean return time, 634–636
n-step transition matrix, 632–633
Spam filter, use in,steady state probabilities, 631
state classification in Markov chains, 633–634

Markov process, definition of, 630
Markovian decision process, 25.1–25.16

Exhaustive enumeration solution, 25.8,  
25.11

linear programming solution, 25.13–25.15
policy iteration method, 25.11

Marriage problem, 472–473
Materials requirement planning, 517–518
Mathematical model, definition of, 34, 40–41
Matrices, D.1–D.5

addition of, D.1
product of, D.3–D.4
simple arithmetic operations, review of, 

172–173
Maximal flow model, 265–273

algorithm, 267–272
AMPL solution of, 273
cuts in, 267
LP formulation, 272–273
Solver solution of, 272–273

Maximin criterion, 582
Maximization, conversion to minimization, 111
Mean return time. See Markov chains
Mean value, 547. See also Expected value,  

definition of
Metaheuristics, 404–415

algorithms
genetic, 411–415
simulated annealing, 408–410
tabu, 404–408
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Principle of optimality in DP, 472
Prior probabilities, 576. See also Bayes’ 

probabilities
Prisoner’s Dilemma, 589–590
Pro-con list, See Franklin rule
Probability density function

definition of, 545
joint, 548–549
marginal, 548–550

Probability laws
addition, 544
conditional, 544–545

Probability theory, review of, 473
Product form of inverse, 317, D.9–D.11

in the revised simplex method, 316
Production-inventory control

multiple period, 64
with production smoothing, 65
shortest route model, viewed as a
single period, 62–63

Program evaluation and review technique 
(PERT), 273–285

Pseudorandom numbers, 720
Pure birth model, 657–660
Pure death model, 661–662
Pure integer problem, 360

Q

Quadratic forms, 778, D.14–15
Quadratic programming, 777–778, 781, 786, 790
Queue discipline, 655

FIFO, 655, 666
GD, 666
LIFO, 655, 666
SIRO, 655, 666

Queuing models, 655–684
decision models, 684–686

aspiration level, 686–688
cost, 654, 684–686

generalized model, 662–665
machine service model, 680–681
multiple-server models, 674–676
non-Poisson models, 682–683
single-server models, 670–674

simulation using spreadsheet, 726–728

Normal distribution, 553–555
calculations with excelStatTables.xls, 554–555
statistical tables, 781–782

Northwest-corner starting solution, 216–217, 219

O

Observation-based variable in simulation, 726
Optimal solution, 59, 181
OR study, phases of, 37, 39, 40
OR techniques, 34

P

Parametric programming, 325–329. See also 
Linear programming; sensitivity analysis

Partitioned matrices
inverse, 173, D.11–D.12
product of, 176, D.9–D11

Path in networks, 248
pdf. See Probability density function
Penalty method in LP. See M-method
Periodic review in inventory, 505
PERT. See Program evaluation and review 

technique
Petersburg paradox, 579
Petrie, Flinders, 436–437
Poisson distribution, 551–552, 658–659

approximation of binomial, 551
calculations with excelStatTables.xls, 548
truncated, 661

Poisson queuing model, generalized, 665
Policy iteration, 55.41
Pollaczek-Khintchine formula, 682
Post-optimal analysis, 185–192. See also 

Parametric programming
Posterior probabilities. See Bayes’ probabilities
Pre-solver, 142
Preemptive method in goal programming, 

345–347
Price breaks in inventory, 510–514
Pricing in LP, hybrid, 139
Primal simplex algorithm. See Simplex 

algorithm
Primal-dual relationships in LP, 172–178, 309
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Secondary constraints, 205
Secretary problem, See Marriage problem
Seed of a random number  

generator, 713
Self-service queuing model, 679
Sensitivity analysis in

dynamic programming, 477
Jacobian method, 752–753
linear programming. See Linear  

programming
Separable programming, 770–777

convex, 774–777
Set covering problem, 362
Shadow price. See Dual price
Shortest-route problem

algorithms
Dijkstra’s, 255–256
DP, 478
Floyds’s, 258
LP, 261–263
transshipment, 224

applications, 252–255
computer solution using

AMPL, 265
Solver, 263–265
TORA, 258, 261

Silver-Meal heuristic, 527–529
Simon, Herbert, 344
Simplex algorithm. See also Generalized 

 simplex algorithm
entering variable, 107–109, 111, 312
feasibility condition, 111, 114, 312
Gauss-Jordan row operations, 108–111
leaving variable, 110, 319
optimality condition, 111, 119, 181, 312
ratios, 107
steps of, 117, 312–313

Simplex method algorithms
dual, 182–184, 309
generalized, 182
primal, 140, 149, 178, 312–313

Simplex multiplier, 220. See also Dual price
Simplex tableau, 106, 172

layout of, 173–174
matrix computation of, 175–176
matrix form of, 172, 309–311

R

Random number generator, 713, 722
Random variables

definition of, 546
expected value, 547
standard deviation, 547–548
variance, 547–548

Reddy Mikks model, 45–53, 55–58
Reduced cost, 132–140, 144–145, 190–191, 311
Regression analysis, 23.4, 23.8

using mathematical programming,  
94–95, 356

Regret (Savage) criterion, 582
Reneging in queues, 655
Reorder point in inventory, 505, 508–509
Residuals in network, 267
Resource, types of, 110
Restricted basis, 772–774, 779
Revised simplex method

dual, 322–325
primal, 322–325

Risk, types of, 574
Roundoff error in simplex  

method, 112, 113, 115

S

s-S policy, 620–623
Saddle point, 586
Sample space in probability, 543–544
Sampling from distributions

discrete, 722–728
Erlang (gamma), 718
exponential, 717–718
normal, 719
Poisson, 718–719
triangular, 727–728
uniform, 727

Sampling in simulation, methods of
acceptance-rejection, 716–717
convolution, 716, 718–719
inverse, 717–718
normal distribution transformation,  

Box-Muller, 719–720
Savage criterion. See Regret criterion
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Supply chains, 501
Surplus variable, 100

T

Tabu search algorithm, 404–408
aspiration criterion, 407
ILP application, 415–418
intensification and diversification, 407
tabu list, 404
tabu tenure period, 404
TSP application, 449–451

Tankering (fuel), 45, 26.2–9
Time-based variable in simulation, 725
Tool sharpening model, 211–214
TOYCO model, 128
Traffic light control, 95
Transient period in simulation, 729
Transition probability. See Markov chains
Transition-rate diagram in queues 662
Transportation model

algorithm, 214–227
applications, 207, 211–214
balancing of, 209–210
definition, 207
LP equivalence, 208
solution using, AMPL, 226
Solver, 225
Starting solution, 214–219
tableau, 209

Transpose of a matrix, D.3
Transshipment model, 22.12–13
Traveling salesperson problem, 435–468

algorithms, exact
branch and bound, 441–444
cutting-plane, 444–445

algorithms, heuristics
nearest neighbor, 445–446
reversal, 446–448

algorithms, metaheuristics
genetic, 454–457
simulated annealing, 452–454
tabu, 449–451

applications
automatic guided vehicles, 459, 463
celestial objects imaging, 459, 463

Simulated annealing algorithm, 408–410
acceptance condition, 408
ILP application, 359–366
temperature schedule, 408
TSP application, 435–436

Simulation
discrete-event

animation, 732
languages, 731
mechanics of, 722–728
sampling, 716–720
spreadsheet, 726–728

inventory, 727, 738
queues, 684, 715–716, 727

steady state, 728
statistical observations, gathering of, 

728–731
regenerative method, 729
replication method, 730
subinterval method, 729

transient state, 728–730
Simultaneous linear equations, types of  

solutions, 306–307
Slack variable, 99
Solver, commercial, 141–142
Solver (Excel-based), 52–56
Spanning tree, definition of, 248

basic solution in capacitated network, 52.37
Stage in DP, definition of, 470
State in DP, definition of, 472
State classification. See Markov chains
Statistical tables, 793–795

chi-square, 795
Excel-based (16 pdfs), 548, 551, 552, 553, 555
normal, 793–794
student t, 794–795

Steady-state in
Markov chains. See Markov Chains
queuing. See Queuing models
simulation. See Discrete event simulation

Steepest ascent method. See Gradient method
Strategies in games, mixed and pure, 586–587
Student t statistical tables, 794–795
Suboptimal solution, 34
Sudoku puzzle as ILP, 382
SUMT algorithm, 787–788
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Variables, types of
artificial, 112
basic, 103
binary, 359, 360
bounded, 317–319
deviational, 342
integer, 359
nonbasic, 103
slack, 99–100
surplus, 100
unrestricted, 57, 66

Variance of a random variable,  
547–548

Vectors, D.1–2
linear independence, 307, D.2

Vogel approximation method  
(VAM), 218

W

Waiting line models. See Queuing models
Waiting time distribution, first-come  

first-serve, 655
Warm-up period, See Transient period
Water quality management, 96
Weak duality theory, 322
Weights method in goal programming,  

343–345
Wilson EOQ formula. See Harris’s EOQ 

formula
Workforce size model using DP, 480–482

Z

Zero-one integer problem, conversion  
to, 360

Zero-sum game, 585

DNA sequencing, 459, 462–463
high resolution imaging, 435
integrated circuit board, 459, 462
Mona Lisa art, 459
paint product sequencing, 438
protein clustering, 459, 460–461
wallpaper cutting, 463–464
warehouse order picking, 464–465

assignment model, relationship to, 438, 440
asymmetric distance matrix, 437
lower bound, 440–441
open tour solution, 440
solution of, 439
subtours, 437
symmetric distance matrix, 437

Tree, definition of, 248
Triple operation (Floyd’s algorithm), 258
TSP. See Traveling salesperson problem
Two-person zero-sum game, 585
Two-phase method, 115–117. See also M-method

U

Unbounded solution in LP, 121–122, 313, 323
Uniform distribution, 546, 711, 735
Unit worth of a resource. See Dual price
Unrestricted variable, 57, 66

in goal programming. See Deviational 
variables

Upper-bounded variables, 318
Urban renewal model, 70–72
Utility functions, 580–581

V

Value of a game, 586
VAM. See Vogel approximation method
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