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To Karen

Los rios no llevan agua,
el sol las fuentes seco . . .

i Yo sé donde hay una fuente
que no ha de secar el sol!
La fuente que no se agota

€s mi propio corazon . ..

— V. Ruiz Aguilera (1862)
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What's New in the
Tenth Edition

Over the past few editions, I agonized over the benefit of continuing to include the
hand computational algorithms that, to my thinking, have been made obsolete by
present-day great advances in computing. I no longer have this “anxiety” because I
sought and received feedback from colleagues regarding this matter. The consensus is
that these classical algorithms must be preserved because they are an important part
of OR history. Some responses even included possible scenarios (now included in this
edition) in which these classical algorithms can be beneficial in practice.

In the spirit of my colleagues collective wisdom, which I now enthusiastically
espouse, I added throughout the book some 25 entries titled Aha!/ moments. These
entries, written mostly in an informal style, deal with OR anecdotes/stories (some
dating back to centuries ago) and OR concepts (theory, applications, computations,
and teaching methodology). The goal is to provide a historical perspective of the roots
of OR (and, hopefully, render a “less dry” book read).

Additional changes/additions in the tenth edition include:

e Using a brief introduction, inventory modeling is presented within the more
encompassing context of supply chains.

e New sections are added about computational issues in the simplex method
(Section 7.2.3) and in inventory (Section 13.5).

¢ This edition adds two new case analyses, resulting in a total of 17 fully developed
real-life applications. All the cases appear in Chapter 26 on the website and are
cross-referenced throughout the book using abstracts at the start of their most
applicable chapters. For convenience, a select number of these cases appear in the
printed book (I would have liked to move all the cases to their most applicable
chapters, but I am committed to limiting the number of hard-copy pages to less
than 900).

¢ By popular demand, all problems now appear at end of their respective chapters
and are cross-referenced by text section to facilitate making problem assignments.

¢ New problems have been added.
e TORA software has been updated.
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1.1

1.2

CHAPTER 1

What Is Operations Research?

INTRODUCTION

The first formal activities of Operations Research (OR) were initiated in England
during World War II, when a team of British scientists set out to assess the best utiliza-
tion of war materiel based on scientific principles rather than on ad hoc rules. After the
war, the ideas advanced in military operations were adapted to improve efficiency and
productivity in the civilian sector.

This chapter introduces the basic terminology of OR, including mathematical
modeling, feasible solutions, optimization, and iterative algorithmic computations. It
stresses that defining the problem correctly is the most important (and most difficult)
phase of practicing OR. The chapter also emphasizes that, while mathematical model-
ing is a cornerstone of OR, unquantifiable factors (such as human behavior) must be
accounted for in the final decision. The book presents a variety of applications using
solved examples and chapter problems. In particular, the book includes end-of-chapter
fully developed case analyses.

OPERATIONS RESEARCH MODELS

Consider the following tickets purchasing problem. A businessperson has a 5-week
commitment traveling between Fayetteville (FYV) and Denver (DEN). Weekly
departure from Fayetteville occurs on Mondays for return on Wednesdays. A regular
roundtrip ticket costs $400, but a 20% discount is granted if the roundtrip dates span
a weekend. A one-way ticket in either direction costs 75% of the regular price. How
should the tickets be bought for the 5-week period?

31
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We can look at the situation as a decision-making problem whose solution
requires answering three questions:

1. What are the decision alternatives?
2. Under what restrictions is the decision made?
3. What is an appropriate objective criterion for evaluating the alternatives?

Three plausible alternatives come to mind:

1. Buy five regular FYV-DEN-FYV for departure on Monday and return on
Wednesday of the same week.

2. Buyone FYV-DEN, four DEN-FYV-DEN that span weekends,and one DEN-FYV.

3. Buy one FYV-DEN-FYV to cover Monday of the first week and Wednesday of
the last week and four DEN-FYV-DEN to cover the remaining legs. All tickets in
this alternative span at least one weekend.

The restriction on these options is that the businessperson should be able to leave
FYV on Monday and return on Wednesday of the same week.

An obvious objective criterion for evaluating the proposed alternatives is the price
of the tickets. The alternative that yields the smallest cost is the best. Specifically, we have:

Alternative 1 cost = 5 X $400 = $2000
Alternative 2 cost = .75 X $400 + 4 X (.8 X $400) + .75 X $400 = $1880
Alternative 3 cost = 5 X (.8 X $400) = $1600

Alternative 3 is the cheapest.

Though the preceding example illustrates the three main components of an OR
model—alternatives, objective criterion, and constraints—situations differ in the details
of how each component is developed, and how the resulting model is solved. To illus-
trate this point, consider the following garden problem: A home owner is in the process
of starting a backyard vegetable garden. The garden must take on a rectangular shape to
facilitate row irrigation. To keep critters out, the garden must be fenced. The owner has
enough material to build a fence of length L = 100 ft. The goal is to fence the largest
possible rectangular area.

In contrast with the tickets example, where the number of alternatives is finite, the
number of alternatives in the present example is infinite; that is, the width and height of
the rectangle can each assume (theoretically) infinity of values between 0 and L. In this
case, the width and the height are continuous variables.

Because the variables of the problem are continuous, it is impossible to find the
solution by exhaustive enumeration. However, we can sense the trend toward the best
value of the garden area by fielding increasing values of width (and hence decreasing
values of height). For example, for L = 100 ft, the combinations (width, height) = (10,
40), (20, 30), (25, 25), (30, 20), and (40, 10) respectively yield (area) = (400, 600, 625,
600, and 400), which demonstrates, but not proves, that the largest area occurs when
width = height = L /4 = 25 ft. Clearly, this is no way to compute the optimum, par-
ticularly for situations with several decision variables. For this reason, it is important to
express the problem mathematically in terms of its unknowns, in which case the best
solution is found by applying appropriate solution methods.
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To demonstrate how the garden problem is expressed mathematically in terms of
its two unknowns, width and height, define

w = width of the rectangle in feet

h

height of the rectangle in feet
Based on these definitions, the restrictions of the situation can be expressed verbally as

1. Width of rectangle + Height of rectangle = Half the length of the garden fence
2. Width and height cannot be negative

These restrictions are translated algebraically as

1. 2(w+h)=1L
2. w=0,h=0

The only remaining component now is the objective of the problem; namely,

maximization of the area of the rectangle. Let z be the area of the rectangle, then the
complete model becomes

Maximizez = wh
subject to
2(w+h) =1L
w,h =0

Actually, this model can be simplified further by eliminating one of the variables in the
objective function using the constraint equation; that is,

wZ%—h
The result is
z=wh=(5-hh=4 —n

The maximization of z is achieved by using differential calculus (Chapter 20), which
yields the best solution as & = & = 25 ft. Back substitution in the constraint equation
then yields w = % = 25 ft. Thus the solution calls for constructing a square-shaped
garden.

Based on the preceding two examples, the general OR model can be organized in

the following general format:

Maximize or minimize Objective Function
subject to

Constraints
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A solution is feasible if it satisfies all the constraints. It is optimal if, in addition to
being feasible, it yields the best (maximum or minimum) value of the objective func-
tion. In the ticket purchasing problem, the problem considers three feasible alternatives,
with the third alternative being optimal. In the garden problem, a feasible alternative
must satisfy the condition w + # = %, with w and & = 0, that is, nonnegative variables.
This definition leads to an infinite number of feasible solutions and, unlike the ticket
purchasing problem, which uses simple price comparisons, the optimum solution is
determined using differential calculus.

Though OR models are designed to optimize a specific objective criterion sub-
ject to a set of constraints, the quality of the resulting solution depends on the degree
of completeness of the model in representing the real system. Take, for example, the
ticket purchasing model. If all the dominant alternatives for purchasing the tickets are
not identified, then the resulting solution is optimum only relative to the alternatives
represented in the model. To be specific, if for some reason alternative 3 is left out of
the model, the resulting “optimum” solution would call for purchasing the tickets for
$1880, which is a suboptimal solution. The conclusion is that “the” optimum solution of
a model is best only for that model. If the model happens to represent the real system
reasonably well, then its solution is optimum also for the real situation.

SOLVING THE OR MODEL

In practice, OR does not offer a single general technique for solving all mathematical
models. Instead, the type and complexity of the mathematical model dictate the nature
of the solution method. For example, in Section 1.2 the solution of the tickets purchas-
ing problem requires simple ranking of alternatives based on the total purchasing price,
whereas the solution of the garden problem utilizes differential calculus to determine
the maximum area.

The most prominent OR technique is linear programming. It is designed for
models with linear objective and constraint functions. Other techniques include integer
programming (in which the variables assume integer values), dynamic programming (in
which the original model can be decomposed into smaller more manageable subprob-
lems), network programming (in which the problem can be modeled as a network), and
nonlinear programming (in which functions of the model are nonlinear). These are only
a few among many available OR tools.

A peculiarity of most OR techniques is that solutions are not generally obtained
in (formula-like) closed forms. Instead, they are determined by algorithms. An algorithm
provides fixed computational rules that are applied repetitively to the problem, with
each repetition (called iteration) attempting to move the solution closer to the optimum.
Because the computations in each iteration are typically tedious and voluminous, it is
imperative in practice to use the computer to carry out these algorithms.

Some mathematical models may be so complex that it becomes impossible to
solve them by any of the available optimization algorithms. In such cases, it may be
necessary to abandon the search for the optimal solution and simply seek a good solu-
tion using heuristics or metaheuristics, a collection of intelligent search rules of thumb
that move the solution point advantageously toward the optimum.
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Aha! Moment: Ada Lovelace, the First-Ever Algorithm Programmer

Though the first conceptual development of an algorithm is attributed to the founder of alge-
bra Muhammad Ibn-Musa Al-Khwarizmi (born c. 780 in Khuwarezm, Uzbekistan, died c. 850
in Baghdad, Iraq),! it was British Ada Lovelace (1815-1852) who developed the first computer
algorithm. And when we speak of computers, we are referring to the mechanical Difference and
Analytical Engines pioneered and designed by the famed British mathematician Charles Babbage
(1791-1871).

Lovelace had a keen interest in mathematics. As a teenager, she visited the Babbage home
and was fascinated by his invention and its potential uses in doing more than just arithmetic
operations. Collaborating with Babbage, she translated into English an article that provided the
design details of the Analytical Engine. The article was based on lectures Babbage presented in
Italy. In the translated article, Lovelace appended her own notes (which turned out to be longer
than the original article and included some corrections of Babbage’s design ideas). One of her
notes detailed the first-ever algorithm, that of computing Bernoulli numbers on the yet-to-be-
completed Analytical Engine. She even predicted that the Babbage machine had the potential to
manipulate symbols (and not just numbers) and to create complex music scores.?

Ada Lovelace died at the young age of 37 In her honor, the computer language Ada,
developed for the United States Department of Defense, was named after her. The annual
mid-October Ada Lovelace Day is an international celebration of women in science, technol-
ogy, engineering, mathematics (STEM). And those of us who have visited St. James Square in
London may recall the blue plaque that read “Ada Countess of Lovelace (1815-1852) Pioneer
of Computing.”

QUEUING AND SIMULATION MODELS

Queuing and simulation deal with the study of waiting lines. They are not optimization
techniques; rather, they determine measures of performance of waiting lines, such as
average waiting time in queue, average waiting time for service, and utilization of ser-
vice facilities, among others.

Queuing models utilize probability and stochastic models to analyze waiting lines,
and simulation estimates the measures of performance by “imitating” the behavior of
the real system. In a way, simulation may be regarded as the next best thing to observ-
ing a real system. The main difference between queuing and simulation is that queuing
models are purely mathematical, and hence are subject to specific assumptions that
limit their scope of application. Simulation, on the other hand, is flexible and can be
used to analyze practically any queuing situation.

! According to Dictionary.com, the word algorithm originates “from Medieval Latin algorismus, a mangled
transliteration of Arabic al-Khwarizmi.”

2Lack of funding, among other factors, prevented Babbage from building fully working machines during his
lifetime. It was only in 1991 that the London Science Museum built a complete Difference Engine No. 2 using
the same materials and technology available to Babbage, thus vindicating his design ideas. There is currently
an ongoing long-term effort to construct a fully working Analytical Engine funded entirely by public contri-
butions. It is impressive that modern-day computers are based on the same principal components (memory,
CPU, input, and output) advanced by Babbage 100 years earlier.
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The use of simulation is not without drawbacks. The process of developing simula-
tion models is costly in both time and resources. Moreover, the execution of simulation
models, even on the fastest computer, is usually slow.

ART OF MODELING

The illustrative models developed in Section 1.2 are exact representations of real situ-
ations. This is a rare occurrence in OR, as the majority of applications usually involve
(varying degrees of) approximations. Figure 1.1 depicts the levels of abstraction that
characterize the development of an OR model. We abstract the assumed real world from
the real situation by concentrating on the dominant variables that control the behavior of
the real system. The model expresses in an amenable manner the mathematical functions
that represent the behavior of the assumed real world.

To illustrate levels of abstraction in modeling, consider the Tyko Manufacturing
Company, where a variety of plastic containers are produced. When a production order
is issued to the production department, necessary raw materials are acquired from the
company’s stocks or purchased from outside sources. Once a production batch is com-
pleted, the sales department takes charge of distributing the product to retailers.

A viable question in the analysis of Tyko’s situation is the determination of the
size of a production batch. How can this situation be represented by a model?

Looking at the overall system, a number of variables can bear directly on the
level of production, including the following (partial) list categorized by department:

1. Production Department. Production capacity expressed in terms of available
machine and labor hours, in-process inventory, and quality control standards.

2. Materials Department: Available stock of raw materials, delivery schedules from
outside sources, and storage limitations.

3. Sales Department: Sales forecast, capacity of distribution facilities, effectiveness
of the advertising campaign, and effect of competition.

FIGURE 1.1

Levels of abstraction in model development

Real World

Assumed Real World Model
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Each of these variables affects the level of production at Tyko. Trying to establish
explicit functional relationships between them and the level of production is a difficult
task indeed.

A first level of abstraction requires defining the boundaries of the assumed real world.
With some reflection, we can approximate the real system by two dominant parameters:

1. Production rate.
2. Consumption rate.

The production rate is determined using data such as production capacity, quality con-
trol standards, and availability of raw materials. The consumption rate is determined
from the sales data. In essence, simplification from the real world to the assumed real
world is achieved by “lumping” several real-world parameters into a single assumed-
real-world parameter.

It is easier now to abstract a model from the assumed real world. From the
production and consumption rates, measures of excess or shortage inventory can be
established. The abstracted model may then be constructed to balance the conflicting
costs of excess and shortage inventory —that is, to minimize the total cost of inventory.

MORE THAN JUST MATHEMATICS

Because of the mathematical nature of OR models, one tends to think that an OR
study is always rooted in mathematical analysis. Though mathematical modeling is a
cornerstone of OR, simpler approaches should be explored first. In some cases, a “com-
monsense” solution may be reached through simple observations. Indeed, since the
human element invariably affects most decision problems, a study of the psychology
of people may be key to solving the problem. Six illustrations are presented here to
demonstrate the validity of this argument.

1. The stakes were high in 2004 when United Parcel Service (UPS) unrolled its
ORION software (based on the sophisticated Traveling Salesman Algorithm—see
Chapter 11) to provide its drivers with tailored daily delivery itineraries. The software
generally proposed shorter routes than those presently taken by the drivers, with poten-
tial savings of millions of dollars a year. For their part, the drivers resented the notion that
a machine could “best” them, given their long years of experience on the job. Faced with
this human dilemma, ORION developers resolved the issue simply placing a visible ban-
ner on the itinerary sheets that read “Beat the Computer.” At the same time, they kept
ORION:-generated routes intact. The drivers took the challenge to heart, with some actu-
ally beating the computer suggested route. ORION was no longer putting them down.
Instead, they regarded the software as complementing their intuition and experience.?

2. Travelers arriving at the Intercontinental Airport in Houston, Texas, com-
plained about the long wait for their baggage. Authorities increased the number of

3http://www.fastcompany.com/3004319/brown-down-ups—drivers-vs—ups—algorithm, See also “At UPS, the
Algorithm Is the Driver,” Wall Street Journal, February 16,2015.
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baggage handlers in hope of alleviating the problem, but the complaints persisted. In
the end, the decision was made to simply move arrival gates farther away from baggage
claim, forcing the passengers to walk longer before reaching the baggage area. The
complaints disappeared because the extra walking allowed ample time for the luggage
to be delivered to the carousel.*

3. In a study of the check-in counters at a large British airport, a U.S.—Canadian
consulting team used queuing theory to investigate and analyze the situation. Part
of the solution recommended the use of well-placed signs urging passengers within
20 mins of departure time to advance to the head of the queue and request priority
service. The solution was not successful because the passengers, being mostly British,
were “conditioned to very strict queuing behavior.” Hence they were reluctant to move
ahead of others waiting in the queue.

4. In a steel mill in India, ingots were first produced from iron ore and then used
in the manufacture of steel bars and beams. The manager noticed a long delay between
the ingots production and their transfer to the next manufacturing phase (where end
products were produced). Ideally, to reduce reheating cost, manufacturing should start
soon after the ingots leave the furnaces. Initially, the problem could be perceived as a
line-balancing situation, which could be resolved either by reducing the output of ingots
or by increasing the capacity of manufacturing. Instead, the OR team used simple charts
to summarize the output of the furnaces during the three shifts of the day. They discov-
ered that during the third shift starting at 11:00 PM., most of the ingots were produced
between 2:00 and 7:00 A.M. Investigation revealed that third-shift operators preferred
to get long periods of rest at the start of the shift and then make up for lost production
during morning hours. Clearly, the third-shift operators have hours to spare to meet their
quota. The problem was solved by “leveling out” both the number of operators and the
production schedule of ingots throughout the shift.

5. In response to complaints of slow elevator service in a large office building,
the OR team initially perceived the situation as a waiting-line problem that might
require the use of mathematical queuing analysis or simulation. After studying the
behavior of the people voicing the complaint, the psychologist on the team suggested
installing full-length mirrors at the entrance to the elevators. The complaints disap-
peared, as people were kept occupied watching themselves and others while waiting
for the elevator.

6. A number of departments in a production facility share the use of three trucks
to transport material. Requests initiated by a department are filled on a first-come-
first-serve basis. Nevertheless, the departments complained of long wait for service,
and demanded adding a fourth truck to the pool. Ensuing simple tallying of the usage
of the trucks showed modest daily utilization, obviating a fourth truck. Further inves-
tigations revealed that the trucks were parked in an obscure parking lot out of the
line of vision for the departments. A requesting supervisor, lacking visual sighting of
the trucks, assumed that no trucks were available and hence did not initiate a request.

4Stone, A., “Why Waiting Is Torture,” The New York Times, August 18,2012.
SLee, A., Applied Queuing Theory, St. Martin’s Press, New York, 1966.
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The problem was solved simply by installing two-way radio communication between
the truck lot and each department.

Four conclusions can be drawn from these illustrations:

1. The OR team should explore the possibility of using “different” ideas to re-
solve the situation. The (common-sense) solutions proposed for the UPS problem
(using Beat the Computer banner to engage drivers), the Houston airport (moving
arrival gates away from the baggage claim area), and the elevator problem (installing
mirrors) are rooted in human psychology rather than in mathematical modeling. This is
the reason OR teams may generally seek the expertise of individuals trained in social
science and psychology, a point that was recognized and implemented by the first OR
team in Britain during World War I1.

2. Before jumping to the use of sophisticated mathematical modeling, a bird’s
eye view of the situation should be adopted to uncover possible nontechnical reasons
that led to the problem in the first place. In the steel mill situation, this was achieved
by using only simple charting of the ingots production to discover the imbalance in the
third-shift operation. A similar simple observation in the case with the transport trucks
situation also led to a simple solution of the problem.

3. An OR study should not start with a bias toward using a specific mathemati-
cal tool before the use of the tool is justified. For example, because linear programming
(Chapter 2 and beyond) is a successful technique, there is a tendency to use it as the
modeling tool of choice. Such an approach may lead to a mathematical model that is far
removed from the real situation. It is thus imperative to analyze available data, using
the simplest possible technique, to understand the essence of the problem. Once the
problem is defined, a decision can be made regarding the most appropriate tool for the
solution. In the steel mill problem, simple charting of the ingots production was all that
was needed to clarify the situation.

4. Solutions are rooted in people and not in technology. Any solution that does
not take human behavior into consideration is apt to fail. Even though the solution
of the British airport problem may have been mathematically sound, the fact that the
consulting team was unaware of the cultural differences between the United States
and Britain resulted in an unimplementable recommendation (Americans and Cana-
dians tend to be less formal). The same viewpoint can, in a way, be expressed in the
UPS case.

PHASES OF AN OR STUDY

OR studies are rooted in teamwork, where the OR analysts and the client work side by
side. The OR analysts’ expertise in modeling is complemented by the experience and
cooperation of the client for whom the study is being carried out.

G. P. Cosmetatos, “The Value of Queuing Theory— A Case Study,” Interfaces, Vol. 9, No. 3, pp. 47-51, 1979.
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As a decision-making tool, OR is both a science and an art: It is a science by
virtue of the mathematical techniques it embodies, and an art because the success of
the phases leading to the solution of the mathematical model depends largely on the
creativity and experience of the OR team. Willemain (1994) advises that “effective
[OR] practice requires more than analytical competence: It also requires, among other
attributes, technical judgment (e.g., when and how to use a given technique) and skills
in communication and organizational survival.”

It is difficult to prescribe specific courses of action (similar to those dictated by
the precise theory of most mathematical models) for these intangible factors. We can,
however, offer general guidelines for the implementation of OR in practice.

The principal phases for implementing OR in practice include the following:

Definition of the problem.

Construction of the model.

Solution of the model.
Validation of the model.
Implementation of the solution.

N oA W -

Phase 3, dealing with model solution, is the best defined and generally the easiest to
implement in an OR study, because it deals mostly with well-defined mathematical
models. Implementation of the remaining phases is more an art than a theory.

Problem definition involves delineating the scope of the problem under investi-
gation. This function should be carried out by the entire OR team. The aim is to iden-
tify three principal elements of the decision problem: (1) description of the decision
alternatives, (2) determination of the objective of the study, and (3) specification of the
limitations under which the modeled system operates.

Model construction entails an attempt to translate the problem definition into
mathematical relationships. If the resulting model fits one of the standard mathematical
models, such as linear programming, we can usually reach a solution by using available
algorithms. Alternatively, if the mathematical relationships are too complex to allow the
determination of an analytic solution, the OR team may opt to simplify the model and
use a heuristic approach, or the team may consider the use of simulation, if appropri-
ate. In some cases, mathematical, simulation, and heuristic models may be combined to
solve the decision problem, as some of the end-of-chapter case analyses demonstrate.

Model solution is by far the simplest of all OR phases because it entails the use
of well-defined optimization algorithms. An important aspect of the model solution
phase is sensitivity analysis. It deals with obtaining additional information about the
behavior of the optimum solution when the model undergoes some parameter changes.
Sensitivity analysis is particularly needed when the parameters of the model cannot
be estimated accurately. In these cases, it is important to study the behavior of the
optimum solution in the neighborhood of the parameters estimates.

Model validity checks whether or not the proposed model does what it purports
to do—that is, does it adequately predict the behavior of the system under study?
Initially, the OR team should be convinced that the model’s output does not include
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“surprises.” In other words, does the solution make sense? Are the results intuitively
acceptable? On the formal side, a common method for validating a model is to com-
pare its output with historical output data. The model is valid if, under similar input
conditions, it reasonably duplicates past performance. Generally, however, there is
no guarantee that future performance will continue to duplicate past behavior. Also,
because the model is usually based on examination of past data, the proposed compari-
son should usually be favorable. If the proposed model represents a new (non-existing)
system, no historical data would be available. In some situations, simulation may be
used as an independent tool for validating the output of the mathematical model.

Implementation of the solution of a validated model involves the translation of
the results into understandable operating instructions to be issued to the people who
will administer the recommended system. The burden of this task lies primarily with
the OR team.

ABOUT THIS BOOK

Morris (1967) states “the teaching of models is not equivalent to the teaching of
modeling.” I have taken note of this important statement during the preparation of
this edition, making every effort to introduce the art of modeling in OR by including
realistic models and case studies throughout the book. Because of the importance of
computations in OR, the book discusses how the theoretical algorithms fit in com-
mercial computer codes (see Section 3.7). It also presents extensive tools for carrying
out the computational task, ranging from tutorial-oriented TORA to the commercial
packages Excel, Excel Solver, and AMPL.

OR is both an art and a science —the art of describing and modeling the problem
and the science of solving the model using (precise) mathematical algorithms. A first
course in the subject should give the student an appreciation of the importance of both
areas. This will provide OR users with the kind of confidence that normally would be
lacking if training is dedicated solely to the art aspect of OR, under the guise that com-
puters can relieve the user of the need to understand why the solution algorithms work.

Modeling and computational capabilities can be enhanced by studying published
practical cases. To assist you in this regard, fully developed end-of-chapter case analy-
ses are included. The cases cover most of the OR models presented in this book. There
are also some 50 cases that are based on real-life applications in Appendix E on the
website that accompanies this book. Additional case studies are available in journals
and publications. In particular, Interfaces (published by INFORMS) is a rich source of
diverse OR applications.
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PROBLEMS’
Section Assigned Problems
12 1-1to 1-11

1-1. In the tickets example,
(a) Provide an infeasible alternative.
(b) Identify a fourth feasible alternative and determine its cost.
1-2. In the garden problem, identify three feasible solutions, and determine which one is better.
1-3. Determine the optimal solution of the garden problem. (Hint: Use the constraint to
express the objective function in terms of one variable, then use differential calculus.)
*1-4. Amy, Jim, John, and Kelly are standing on the east bank of a river and wish to cross
to the west side using a canoe. The canoe can hold at most two people at a time. Amy,
being the most athletic, can row across the river in 1 minute. Jim, John, and Kelly would
take 3, 6, and 9 minutes, respectively. If two people are in the canoe, the slower person
dictates the crossing time. The objective is for all four people to be on the other side of
the river in the shortest time possible.
(a) Define the criterion for evaluating the alternatives (remember, the canoe is the only
mode of transportation, and it cannot be shuttled empty).

*(b) What is the shortest time for moving all four people to the other side of the river?
1-5. In a baseball game, Jim is the pitcher and Joe is the batter. Suppose that Jim can throw
either a fast or a curve ball at random. If Joe correctly predicts a curve ball, he can

maintain a .400 batting average, else, if Jim throws a curve ball and Joe prepares for a

fast ball, his batting average is kept down to .200. On the other hand, if Joe correctly

predicts a fast ball, he gets a .250 batting average, else, his batting average is only .125.

(a) Define the alternatives for this situation.

(b) Define the objective function for the problem and discuss how it differs from the
familiar optimization (maximization or minimization) of a criterion.

7Appendix B gives the solution to asterisk-prefixed problems. The same convention is used in all end-of-
chapter problems throughout the book.
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1-6. During the construction of a house, six joists of 24 ft each must be trimmed to the correct
length of 23 ft. The operations for cutting a joist involve the following sequence:

Operation Time (seconds)
1. Place joist on saw horses 15
2. Measure correct length (23 ft) 5
3. Mark cutting line for circular saw 5
4. Trim joist to correct length 20
5. Stack trimmed joist in a designated area 20

Three persons are involved: Two loaders must work simultaneously on operations 1,2,
and 5, and one cutter handles operations 3 and 4. There are two pairs of saw horses on
which untrimmed joists are placed in preparation for cutting, and each pair can hold up
to three side-by-side joists. Suggest a good schedule for trimming the six joists.

1-7. An upright symmetrical triangle is divided into four layers: The bottom layer consists
of four (equally-spaced) dots, designated as A, B, C, and D. The next layer includes dots
E, F, and G, and the following layer has dots H and I. The top layer has dot J. You want
to invert the triangle (bottom layer has one dot and top layer has four) by moving the
dots around as necessary.
(a) Identify two feasible solutions.
(b) Determine the smallest number of moves needed to invert the triangle.

1-8. You have five chains, each consisting of four solid links. You need to make a bracelet by
connecting all five chains. It costs 2 cents to break a link and 3 cents to re-solder it.

(a) Identify two feasible solutions and evaluate them.
(b) Determine the cheapest cost for making the bracelet.

1-9. The squares of a rectangular board of 11 rows and 9 columns are numbered sequentially
1 through 99 with a hidden monetary reward between 0 and 50 dollars assigned to each
square. A game using the board requires the player to choose a square by selecting any
two digits and then subtracting the sum of its two digits from the selected number. The
player then receives the reward assigned the selected square. What monetary values
should be assigned to the 99 squares to minimize the player’s reward (regardless of how
many times the game is repeated)? To make the game interesting, the assignment of $0 to
all the squares is not an option.

1-10. You have 10 identical cartons each holding 10 water bottles. All bottles weigh 10 oz.
each, except for one defective carton in which each of the 10 bottles weighs on 9 oz. only.
A scale is available for weighing.
(a) Suggest a method for locating the defective carton.

*(b) What is the smallest number of times the scale is used that guarantees finding the
defective carton? (Hint: You will need to be creative in deciding what to weigh.)
*1-11. You are given two identical balls made of a tough alloy. The hardness test fails if a ball
dropped from a floor of a 120-storey building is dented upon impact. A ball can be
reused in fresh drops only if it has not been dented in a previous drop. Using only these
two identical balls, what is the smallest number of ball drops that will determine the high-
est floor from which the ball can be dropped without being damaged?

8Problems 1-7 and 1-8 are adapted from Bruce Goldstein, Cognitive Psychology: Mind, Research, and
Everyday Experience, Wadsworth Publishing, 2005.



This page intentionally left blank



2.1

CHAPTER 2

Modeling with Linear Programming

Real-Life Application—Frontier Airlines Purchases Fuel Economically

The fueling of an aircraft can take place at any of the stopovers along a flight route.
Fuel price varies among the stopovers, and potential savings can be realized by tankering
(loading) extra fuel at a cheaper location for use on subsequent flight legs. The disadvan-
tage is that the extra weight of tankered fuel will result in higher burn of gasoline. Linear
programming (LP) and heuristics are used to determine the optimum amount of tanker-
ing that balances the cost of excess burn against the savings in fuel cost. The study, carried
out in 1981, resulted in net savings of about $350,000 per year. With the significant rise
in the cost of fuel, many airlines are using LP-based tankering software to purchase fuel.
Details of the study are given in Case 1, Chapter 26 on the website.

TWO-VARIABLE LP MODEL

This section deals with the graphical solution of a two-variable LP. Though two-variable
problems hardly exist in practice, the treatment provides concrete foundations for the
development of the general simplex algorithm presented in Chapter 3.

Example 2.1-1 (The Reddy Mikks Company)

Reddy Mikks produces both interior and exterior paints from two raw materials, M1 and M2.
The following table provides the basic data of the problem:

Tons of raw material per ton of
Maximum daily

Exterior paint Interior paint availability (tons)
Raw material, M1 6 4 24
Raw material, M2 1 2 6
Profit per ton ($1000) 5

45
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The daily demand for interior paint cannot exceed that for exterior paint by more than 1 ton.
Also, the maximum daily demand for interior paint is 2 tons.

Reddy Mikks wants to determine the optimum (best) product mix of interior and exterior
paints that maximizes the total daily profit.

All OR models, LP included, consist of three basic components:

1. Decision variables that we seek to determine.
2. Objective (goal) that we need to optimize (maximize or minimize).
3. Constraints that the solution must satisfy.

The proper definition of the decision variables is an essential first step in the development of the
model. Once done, the task of constructing the objective function and the constraints becomes
more straightforward.

For the Reddy Mikks problem, we need to determine the daily amounts of exterior and
interior paints to be produced. Thus the variables of the model are defined as:

x1 = Tons produced daily of exterior paint
X, = Tons produced daily of interior paint

The goal of Reddy Mikks is to maximize (i.e., increase as much as possible) the total daily
profit of both paints. The two components of the total daily profit are expressed in terms of the
variables x; and x; as:

Profit from exterior paint = 5x; (thousand) dollars
Profit from interior paint = 4x, (thousand) dollars

Letting z represent the total daily profit (in thousands of dollars), the objective (or goal) of
Reddy Mikks is expressed as

Maximize z = 5x; + 4x,

Next, we construct the constraints that restrict raw material usage and product demand. The
raw material restrictions are expressed verbally as

(Usage of a raw material) _ <Maximum raw material)
by both paints B availability

The daily usage of raw material M1 is 6 tons per ton of exterior paint and 4 tons per ton of inte-
rior paint. Thus,

Usage of raw material M1 by both paints = 6x; + 4x, tons/day
In a similar manner,
Usage of raw material M2 by both paints = 1x; + 2x, tons/day

The maximum daily availabilities of raw materials M1 and M2 are 24 and 6 tons, respectively.
Thus, the raw material constraints are:

6x; + 4x, = 24 (Raw material M1)
x1 +2x, = 6 (Raw material M2)

The first restriction on product demand stipulates that the daily production of interior paint
cannot exceed that of exterior paint by more than 1 ton, which translates to:

X, —x; =1 (Market limit)
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The second restriction limits the daily demand of interior paint to 2 tons—that is,
X, =2 (Demand limit)

An implicit (or “understood-to-be”) restriction requires (all) the variables, x; and x,, to
assume zero or positive values only. The restrictions, expressed as x; = 0 and x, = 0, are referred
to as nonnegativity constraints.

The complete Reddy Mikks model is

Maximize z = 5x; + 4x,

subject to

IA

6x; + 4x,

X1 + 2)(2

24 (1)
)
®)
(4)
©)

Any values of x; and x, that satisfy all five constraints constitute a feasible solution.
Otherwise, the solution is infeasible. For example, the solution x; = 3 tons per day and x, = 1
ton per day is feasible because it does not violate any of the five constraints;a result that is
confirmed by using substituting (x; = 3,x, = 1) in the left-hand side of each constraint. In
constraint (1), we have 6x; + 4x, = (6 X 3) + (4 X 1) = 22, which is less than the right-hand
side of the constraint (= 24). Constraints 2 to 5 are checked in a similar manner (verify!). On
the other hand, the solution x; = 4 and x, = 1 is infeasible because it does not satisfy at least
one constraint. For example, in constraint (1), (6 X 4) + (4 X 1) = 28, which is larger than the
right-hand side (=24).

The goal of the problem is to find the optimum, the best feasible solution that maximizes
the total profit z. First, we need to show that the Reddy Mikks problem has an infinite number of
feasible solutions, a property that is shared by all nontrivial LPs. Hence the problem cannot be
solved by enumeration. The graphical method in Section 2.2 and its algebraic generalization in
Chapter 3 show how the optimum can be determined in a finite number of steps.

IA

I\

—X1 + X2

X2

v

IA
S N =

X1, X2

Remarks. The objective and the constraint function in all LPs must be linear.
Additionally, all the parameters (coefficients of the objective and constraint functions)
of the model are known with certainty.

GRAPHICAL LP SOLUTION
The graphical solution includes two steps:

1. Determination of the feasible solution space.

2. Determination of the optimum solution from among all the points in the solution
space.

The presentation uses two examples to show how maximization and minimiza-
tion objective functions are handled.
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of a Maximization Model

Example 2.2-1

This example solves the Reddy Mikks model of Example 2.1-1.

Step 1.

FIGURE 2.1

Determination of the Feasible Solution Space:
First, consider the nonnegativity constraints x; = 0 and x, = 0. In Figure 2.1, the
horizontal axis x; and the vertical axis x, represent the exterior- and interior-paint
variables, respectively. Thus, the nonnegativity constraints restrict the variables to the
first quadrant (above the x;-axis and to the right of the x,-axis).

To account for the remaining four constraints, first replace each inequality with
an equation, and then graph the resulting straight line by locating two distinct points.
For example, after replacing 6x; + 4x, = 24 with the straight line 6x; + 4x, = 24,

two distinct points are determined by setting x; = 0 to obtain x, = % = 6 and then

by setting x, = 0 to obtain x; = % = 4. Thus the line 6x; + 4x, = 24 passes through
(0,6) and (4, 0), as shown by line (1) in Figure 2.1.

Next, consider the direction (> or <) of the inequality. It divides the (x1,x;) plane
into two half-spaces, one on each side of the graphed line. Only one of these two halves
satisfies the inequality. To determine the correct side, designate any point not lying on
the straight line as a reference point. If the chosen reference point satisfies the inequality,
then its side is feasible; otherwise, the opposite side becomes the feasible half-space.

The origin (0, 0) is a convenient reference point and should always be used so
long as it does not lie on the line representing the constraint. This happens to be true
for all the constraints of this example. Starting with the constraint 6x; + 4x, =< 24,

Feasible space of the Reddy Mikks model

X2
@*»
Constraints:
AN 6x, +4r,=24 (D
X1+ 2x= 6 @
T -t =1 @
X = 2 @
4 —
X1 0 @
3 N X= 0 @
5 @
E D I
Soluti ¢
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/ F space
2 \ L B ! I




Step 2.

2.2 Graphical LP Solution 49

substitution of (xq,x,) = (0,0) automatically yields zero for the left-hand side.
Since it is less than 24, the half-space containing (0, 0) is feasible for inequality

(1), as the direction of the arrow in Figure 2.1 shows. A similar application of the
reference-point procedure to the remaining constraints produces the feasible solution
space ABCDEF in which all the constraints are satisfied (verify!). All points outside
the boundary of the area ABCDEF are infeasible.

Determination of the Optimum Solution:
The number of solution points in the feasible space ABCD EF in Figure 2.1 is infinite,
clearly precluding the use of exhaustive enumeration. A systematic procedure is thus
needed to determine the optimum solution.

First, the direction in which the profit function z = 5x; + 4x, increases (recall
that we are maximizing z) is determined by assigning arbitrary increasing values
to z. In Figure 2.2, the two lines 5x; + 4x, = 10 and 5x; + 4x, = 15 corresponding
to (arbitrary) z = 10 and z = 15 depict the direction in which z increases. Moving
in that direction, the optimum solution occurs at C because it is the feasible point
in the solution space beyond which any further increase will render an infeasible
solution.

The values of x| and x, associated with the optimum point C are determined by
solving the equations associated with lines (1) and (2):

6X1 + 4)62 =24

X1+2)C2:6

FIGURE 2.2
Optimum solution of the Reddy Mikks model

2 (Maximize z = 5x; + 4x,)

x, = 1.5 tons
z = $21,000

6x, + 4x, = 24

< Xq
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The solutionis x; = 3and x, = 1.5withz = (5 X 3) + (4 X 1.5) = 21.This calls
for a daily product mix of 3 tons of exterior paint and 1.5 tons of interior paint. The
associated daily profit is $21,000.

Remarks. In practice, a typical LP may include hundreds or even thousands of variables
and constraints. Of what good then is the study of a two-variable LP? The answer is that
the graphical solution provides a key result: The optimum solution of an LP, when it exists,
is always associated with a corner point of the solution space, thus limiting the search for the
optimum from an infinite number of feasible points to a finite number of corner points. This
powerful result is the basis for the development of the general algebraic simplex method
presented in Chapter 3.!

Solution of a Minimization Model

Example 2.2-2 (Diet Problem)

Ozark Farms uses at least 800 1b of special feed daily. The special feed is a mixture of corn and
soybean meal with the following compositions:

Ib per 1b of feedstuff
Feedstuff Protein Fiber Cost ($/1b)
Corn .09 .02 .30
Soybean meal .60 .06 90

The dietary requirements of the special feed are at least 30% protein and at most 5% fiber.
The goal is to determine the daily minimum-cost feed mix.
The decision variables of the model are:

x1 = 1b of corn in the daily mix

x, = lb of soybean meal in the daily mix
The objective is to minimize the total daily cost (in dollars) of the feed mix—that is,

Minimize z = 3x; + .9x,

ITo reinforce this key result, use TORA to verify that the optimum of the following objective func-
tions of the Reddy Mikks model (Example 2.1-1) will yield the associated corner points as defined in
Figure 2.2 (click View/Modify Input Data to modify the objective coefficients and re-solve the problem
graphically):

(a) z = 5x; + x, (optimum: point B in Figure 2.2)

(b) z = 5x; + 4x, (optimum: point C)

(¢) z = x; + 3x, (optimum: point D)

(d) z = x, (optimum: point D or E, or any point inbetween—see Section 3.5.2)
(e) z = —2x; + x, (optimum: point F)

() z = —x; — x, (optimum: point A)
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The constraints represent the daily amount of the mix and the dietary requirements. Ozark
Farms needs at least 800 Ib of feed a day—that is,

x; + x, = 800

The amount of protein included in x; Ib of corn and x; 1b of soybean meal is (.09x; + .6x;) Ib.
This quantity should equal at least 30% of the total feed mix (x; + x;) lb—that s,

09x1 + .6x, = 3(x; + x3)
In a similar manner, the fiber requirement of at most 5% is represented as
.OZX] + .06X2 = .05()61 + .Xz)

The constraints are simplified by moving the terms in x; and x; to the left-hand side of each
inequality, leaving only a constant on the right-hand side. The complete model is

Minimize z = 3x; + .9x,
subject to
x; +  x, = 800

.21X1 - .30)62 =0

.03X1 - .01X2 =0

X1, Xy = 0
Figure 2.3 provides the graphical solution of the model. The second and third constraints pass
through the origin. Thus, unlike the Reddy Mikks model of Example 2.2-1, the determination of

FIGURE 2.3

Graphical solution of the diet model
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the feasible half-spaces of these two constraints requires using a reference point other than (0, 0)
[e.g., (100, 0) or (0,100)].

Solution:

The model minimizes the value of the objective function by reducing z in the direction shown
in Figure 2.3. The optimum solution is the intersection of the two lines x; + x, = 800 and
21x; — 3x, = 0, which yields x; = 470.61b and x, = 329.41b. The minimum cost of the feed
mix is z = .3 X 470.6 + .9 X 329.4 = $437.64 per day.

Remarks. One may wonder why the constraint x; + x, = 800 cannot be replaced with
x1 + x, = 800 because it would not be optimum to produce more than the minimum quantity.
Although the solution of the present model did satisfy the equation, a more complex model may
impose additional restrictions that would require mixing more than the minimum amount. More
importantly, the weak inequality (=), by definition, implies the equality case, so that the equation
(=) is permitted if optimality requires it. The conclusion is that one should not “preguess” the
solution by imposing the additional equality restriction.

COMPUTER SOLUTION WITH SOLVER AND AMPL

In practice, where typical LP models may involve thousands of variables and constraints,
the computer is the only viable venue for solving LP problems. This section presents
two commonly used software systems: Excel Solver and AMPL. Solver is particularly
appealing to spreadsheet users. AMPL is an algebraic modeling language that, like all
higher-order programming languages, requires more expertise. Nevertheless, AMPL,
and similar languages,” offers great modeling flexibility. Although the presentation in
this section concentrates on LPs, both AMPL and Solver can handle integer and nonlin-
ear problems, as will be shown in later chapters.

LP Solution with Excel Solver

In Excel Solver, the spreadsheet is the input and output medium for the LP. Figure 2.4
shows the layout of the data for the Reddy Mikks model (file solverRM1.xls). The top
of the figure includes four types of information: (1) input data cells (B5:C9 and F6:F9),
(2) cells representing the variables and the objective function (B13:D13), (3) algebraic
definitions of the objective function and the left-hand side of the constraints (cells
D5:D9), and (4) cells that provide (optional) explanatory names or symbols. Solver
requires the first three types only. The fourth type enhances readability but serves
no other purpose. The relative positioning of the four types of information on the

2Other known commercial packages include AIMMS, GAMS, LINGO, MPL, OPL Studio, and
Xpress-Mosel.
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A = — TV = ST S 58 T J

1 Reddy Mikks Model

2 Input data: Cell Formula Copy to
_____ 3 | x1 x2 D5 |-B5*B$13+C5:CS13(D6:09

4 Exterior |Interior| Totals Limits |D13|=D5

5 |Objective 5 4 |1 21 |

6 [Raw material 1 6 4 | 24 le=| 24

7 Raw material 2| 1 2 |, 6 ;==| 6

6 |Market limit = 1 | 15 I== 1

9 |Demand limit 0 I 15 <[

10 ) =0 |

11 | Qutput results:

12 x1 x2 =

E Saolve ]

16 | setTarget Cell: §Ds5 ﬁ
AT | Equal To: ®mMax OMin () Value of: 0
:113 By Changing Cells:

20 |$B$13:5E$13

Guess

21 Subject to the Constraints:

23 EB£13:8CE13 ==10
............. £D55:5050 <= SFE5:SFET

Close

Options

Cell Reference: Constraint:
| <= B | E3
L 0K ] ’_ Cancel := Add ] [ Help ]
int
bin

FIGURE 2.4

Defining the Reddy Mikks model with Excel Solver (file solverRM1.xls)

spreadsheet (as suggested in Figure 2.4) is convenient for proper cell cross-referencing
in Solver, and its use is recommended.

How does Solver link to the spreadsheet data? First, we provide “algebraic” defi-
nitions of the objective function and the left-hand side of the constraints using the
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input data (cells B5:C9 and F6:F9) and the objective function and variables (cells
B13:D13). Next, we place the resulting formulas appropriately in cells D5:D9, as the
following table shows:

Algebraic expression Spreadsheet formula Entered in cell
Objective, z S5x; + 4x, =B5*$B$13+C5*$C$13 D5
Constraint 1 6x; + 4x, =B6*$B$13+C6*$C$13 D6
Constraint 2 x1 + 2x, =B7#$B$13+C7+*$C$13 D7
Constraint 3 —x; + x, =B8*$B$13+C8*$C$13 D8
Constraint 4 0x; + x, =B9*$B$13+C9+$C$13 D9

Actually, you only need to enter the formula for cell DS and then copy it into cells
D6:D9. To do so correctly, it is necessary to use fixed referencing of the cells represent-
ing x; and x, (i.e., $B$13 and $C$13, respectively).

The explicit formulas just described are impractical for large LPs. Instead, the
formula in cell D5 can be written compactly as

= SUMPRODUCT(B5:C5,$B$13:$C$13)

The new formula can then be copied into cells D6:D9.

All the elements of the LP model are now in place. To execute the model, click
Solver from the spreadsheet menu bar® to access Solver Parameters dialogue box
(shown in the middle of Figure 2.4). Next, update the dialogue box as follows:

Set Target Cell: $D$5
Equal To: © Max
By Changing Cells: $B$13:$C$13

This information tells Solver that the LP variables (cells $B$13 and $C$13) are deter-
mined by maximizing the objective function in cell $DS$5.

To set up the constraints, click Add in the dialogue box to display the Add
Constraint box (bottom of Figure 2.4) and then enter the left-hand side, inequality
type, and right-hand side of the constraints as*

$D$6:3D$9 <= $F$6:$F$9
For the nonnegativity restrictions, click Add once again and enter
$B$13:$C$13 >=10

Another way to enter the nonnegative constraints is to click Options in the Solver
Parameters box to access Solver Options (see Figure 2.5) and then check ¥ Assume
Non-Negative . Also, while in the same box, check ¥/ Assume Linear Model .

3If Solver does not appear under Data menu (on Excel menu bar), click Excel Office Button — Excel
Options — Add Ins — Solver Add-in — OK; then close and restart Excel.

“In the Add Constraint box in Figure 2.4, the two additional options, int and bin, which stand for integer and
binary, are used with integer programs to restrict variables to integer or binary values (see Chapter 9).
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wveroptions | [
Solver Ontions
Solver options dialogue box

Max Time: 100 seconds
Precision: 0.000001 Load Model. ..
Tolerance: 5 % Save Model...
Conwvergence: 0.0001
Assume Linear Model [] use Automatic Scaling
Assume Non-Megative [] show Iteration Results
Estimates Derivatives Search

{(*) Tangent (%) Forward (%) Newton

() Quadratic ) central () Conjugate

In general, the remaining default settings in Solver Options need not be changed.
However, the default precision of .000001 may be too “high” for some problems, and
Solver may incorrectly return the message “Solver could not find a feasible solution”.
In such cases, less precision (i.e., larger value) needs to be specified. If the message per-
sists, then the problem may be infeasible.

Descriptive Excel range names can be used to enhance readability. A range is
created by highlighting the desired cells, typing the range name in the top left box of
the sheet, and then pressing Return. Figure 2.6 (file solverRM2.xls) provides the details
with a summary of the range names used in the model. The model should be contrasted
with the file solverRM1 .xls to see how ranges are used in the formulas.

To solve the problem, click Solve on Solver Parameters. A new dialogue box,
Solver Results, then gives the status of the solution. If the model setup is correct, the
optimum value of z will appear in cell DS and the values of x; and x, will go to cells
B13 and C13, respectively. For convenience, cell D13 exhibits the optimum value of z by
entering the formula = D5 in cell D13, thus displaying the entire optimum solution in
contiguous cells.

If a problem has no feasible solution, Solver will issue the explicit message
“Solver could not find a feasible solution”. If the optimal objective value is unbounded
(not finite), Solver will issue the somewhat ambiguous message “The Set Cell values do
not converge”. In either case, the message indicates that there is something wrong with
the formulation of the model, as will be discussed in Section 3.5.

The Solver Results dialogue box provides the opportunity to request further details
about the solution, including the sensitivity analysis report. We will discuss these addi-
tional results in Section 3.6.4.

The solution of the Reddy Mikks by Solver is straightforward. Other models may
require a “bit of ingenuity” before they can be set up. A class of LP models that falls in
this category deals with network optimization, as will be demonstrated in Chapter 6.
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A B = D E F G H
1 Reddy Mikks Model
2 Input data: Range name | Cells
3 x1 x2 JnitzProduced |B13:C13
4 Exterior| Interior| Totals Limits | JnitProfit B5:C5
5 |Objective 5 a | 21 | Totals D609
6 |[Raw material 1 6 4 1 24 1==| 24 |Limits F&:F9
7 |Raw material § 1 2 1 6 Te=| & |rotabromt Ds
8 Market limit -1 1 1 15 1==| 1
9 |Demand limit 0 1 !__1_5__! 2=| 2
10 ==0 =0 |
11 | Qutput results:
12 x1 X2 z
13 Solution | 3 1.5 21 |
]g Solver Parameters [X |
16 | setTarget Cell: Sclve
]; EBqualhTo: . ® IMax OmMn O valueof: |0
19 By Changing Cels:
20 |UnitsProduced Guess
21 Subject to the Constraints: Uptons
;g TO?3|5 <= Limits Add

UnitsProduced =0

z
25
2
27

Help

FIGURE 2.6

Use of range names in Excel Solver (file solverRM2.xls)

LP Solution with AMPL®

This section provides a brief introduction to AMPL. The material in Appendix C on the
website details AMPL syntax. It will be cross-referenced with the presentation in this
section and with other AMPL presentations in the book. The two examples presented
here deal with the basics of AMPL.

Reddy Mikks Problem— A Rudimentary Model. AMPL provides a facility for modeling
an LP in a rudimentary longhand format. Figure 2.7 gives the self-explanatory code for the
Reddy Mikks model (file amplRM1.txt). All reserved keywords are in bold. All other names
are user generated. The objective function and each of the constraints must have distinct
(user-generated) names followed by a colon. Each statement closes with a semicolon.

The longhand format is problem-specific, in the sense that a new code is needed
whenever the input data are changed. For practical problems (with complex structure
and a large number of variables and constraints), the longhand format is at best cum-
bersome. AMPL alleviates this difficulty by devising a code that divides the problem
into two components: (1) a general algebraic model for a specific class of problems

SFor convenience, the AMPL student version is on the website. Future updates may be downloaded from
www.ampl.com. AMPL uses line commands and does not operate in Windows environment.
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maximize z: 5*x1+4*x2; FIGURE 2.7

subject to Rudimentary AMPL model for
cl: 6*x1+4*x2<=24; the Reddy Mikks problem (file
c2: x142*x2<=6; amplRM.txt)
c3: -x1+x2<=1;
cd: x2<=2;

solve;

display z,x1,x2;

applicable to any number of variables and constraints, and (2) data for driving the
algebraic model. The implementation of these two points is addressed in the following
section using the Reddy Mikks problem.

Reddy Mikks Problem—An Algebraic Model. Figure 2.8 lists the statements of the
model (file amplRM?2.txt). The file must be strictly text (ASCII). The symbol # designates
the start of explanatory comments. Comments may appear either on a separate line or
following the semicolon at the end of a statement. The language is case sensitive, and all
of its keywords, with few exceptions, are in lower case. (Section C.2 provides more details.)

The algebraic model in AMPL views the general LP problem with n variables and
m constraints in the following generic format (restr is a user-generated name):

n
Maximize z: Ecjxj
=1

n
subject to restr,-:Ea,-,»xj =b,i=12,....,m
=1

xi=0,j=12,....n

It gives the objective function and constraint i the (user-specified) names z and restr;.
The model starts with the param statements that declare m, n, ¢, b, and a;; as
parameters (or constants) whose specific values are given in the input data section

of the model. It translates ¢;(j = 1,2,...,n) as c{1..n}, b;(i =1,2,...,m) as
b{l..m}, and a;(i=1,2,...,m,j=1,2,...,n) as a{l..m,1..n}. Next, the
variables x; (j = 1,2,...,n) together with the nonnegativity restriction are defined

by the var statement
var x{1..n}>=0;

A variable is considered unrestricted if >=0 is removed from its definition. The nota-

tion in {} represents the set of subscripts over which a param or a var is defined.
The model is developed in terms of the parameters and the variables in the follow-

ing manner. The objective function and constraints carry distinct names fo}llowed by a

colon (:).The objective statement is a direct translation of maximize z = »,¢;x;:
j=1
maximize z: sum{j in 1..n}c[Jj]1*x[J];
Constraint i is given the (arbitrary) root name restr indexed over theset {1. .m}:

restr{i in 1..m}:sum{j in 1..n}a[i,jl*x[jl<=bl[i];
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o algebraic model

maximize z: sum{j in 1..n}c[j]l*x[]J];
subject to restr{i in 1..m}:

sum{j in 1..n}al[i,jl*x[jl<=b[i];
o specify model data

o solve the problem
solve;
display z, x;

FIGURE 2.8
AMPL model of the Reddy Mikks problem using hard-coded input data (file ampIRM2.txt)

n
The statement is a direct translation of restr; Ea,-jx/- = b,
=1
The algebraic model may now be used with any set of applicable data that can
be entered following the statement data;. For the Reddy Mikks model, the data
tells AMPL that the problem has two variables (param n:=2;) and four constraints
(param m:=4;).The compound operator := must be used, and the statement must
start with the keyword param. For the single-subscripted parameters, ¢ and b, each
element is represented by its index followed by its value and separated by at least one
blank space. Thus, ¢; = 5 and ¢, = 4 are entered as

param c:= 1 5 2 4;

The data for param b is entered in a similar manner.
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For the double-subscripted parameter a;;, that data set reads as a two-dimensional
matrix with its rows designating i and its columns designating j. The top line defines the
subscript j, and the subscript i is entered at the start of each row as

param a:

w N
|

o R o R

S SN N

i

’

The data set must terminate with a semicolon. Note the mandatory location of the
separator : and the compound operator : = after param a.

The model and its data are now ready. The command solve; invokes the solu-
tion algorithm and the command display z, x; provides the solution.

To execute the model, first invoke AMPL (by clicking ampl.exe in the AMPL direc-
tory). At the amp1l : prompt, enter the following model command, and then press Return:

model amplRM2.txt;

The output of the system will then appear on the screen as follows:

MINOS 5.5: Optimal solution found.
2 iterations, objective = 21

x[*]:=

1 =3
2 =1.5

The bottom four lines are the result of executing display z,x;. Actually, AMPL
has formatting capabilities that enhance the readability of the output results (see
Section C.5.2).

AMPL allows separating the algebraic model and the data into two indepen-
dent files. This arrangement is more convenient because only the data file needs to be
changed once the model has been developed. See the end of Section C.2 for details.

AMPL offers a wide range of programming capabilities. For example, the input/
output data can be secured from/sent to external files, spreadsheets, and databases, and
the model can be executed interactively for a wide variety of options. The details are
given in Appendix C on the website.

LINEAR PROGRAMMING APPLICATIONS

This section presents realistic LP models in which the definition of the variables and
the construction of the objective function and the constraints are not as straightfor-
ward as in the case of the two-variable model. The areas covered by these applications
include the following:

1. Investment.
2. Production planning and inventory control.
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3. Workforce planning.
4. Urban development planning.
5. Oil refining and blending.

Each model is detailed, and its optimum solution is interpreted.

Investment

Multitudes of investment opportunities are available to today’s investor. Examples of
investment problems are capital budgeting for projects, bond investment strategy, stock
portfolio selection, and establishment of bank loan policy. In many of these situations,
LP can be used to select the optimal mix of opportunities that will maximize return
while meeting requirements set by the investor and the market.

Example 2.4-1 (Bank Loan Model)

Bank One is in the process of devising a loan policy that involves a maximum of $12 million. The
following table provides the pertinent data about available loans.

Type of loan Interest rate Bad-debt ratio
Personal .140 .10
Car 130 .07
Home 120 .03
Farm 125 .05
Commercial .100 .02

Bad debts are unrecoverable and produce no interest revenue.

Competition with other financial institutions dictates the allocation of at least 40% of the
funds to farm and commercial loans. To assist the housing industry in the region, home loans
must equal at least 50% of the personal, car, and home loans. The bank limits the overall ratio of
bad debts on all loans to at most 4%.

Mathematical Model: The situation deals with determining the amount of loan in each
category, thus leading to the following definitions of the variables:

x; = personal loans (in millions of dollars)

X, = car loans
x3 = home loans

farm loans

X4
x5 = commercial loans
The objective of the Bank One is to maximize net return, the difference between interest revenue

and lost bad debts. Interest revenue is accrued on loans in good standing. For example, when
10% of personal loans are lost to bad debt, the bank will receive interest on 90% of the loan—that
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is, it will receive 14% interest on .9x; of the original loan x;. The same reasoning applies to the
remaining four types of loans. Thus,

Total interest = .14(.9x;) + .13(.93x,) + 12(.97x3) + .125(.95x,) + .1(.98xs)
.126)(] + 1209)(2 + 1164X3 + 11875X4 + .098X5

We also have
Bad debt = .1x; + .07x, + .03x3 + .05x4 + .02x5
The objective function combines interest revenue and bad debt as:

Maximize z = Total interest — Bad debt
= (.126x; + .1209x, + .1164x; + .11875x4 + .098xs)

= (x; + .07x, + .03x3 + .05x4 + .02x5)

.026x; + .0509x, + .0864x; + .06875x4 + .078x5
The problem has five constraints:
1. Total funds should not exceed $12 (million):
Xyt X+ x3+ x4 + x5 =12
2. Farm and commercial loans equal at least 40% of all loans:
X4+ x5 = 4(x; + x5 + X3 + x4 + X5)
or
Axy + A4xy, + Axz — 6x4 — 6x5 =0
3. Home loans should equal at least 50% of personal, car, and home loans:
X3 = 5(x) + x + x3)
or
Sxp + 5x — S5 =0
4. Bad debts should not exceed 4% of all loans:
dxy + .07x; + .03x3 + .05x4 + .02x5 = .04(x; + xp + x3 + x4 + X5)
or

.06X] + .03x2 - .01X3 + .01X4 - .OZXS =0
5. Nonnegativity:

x| = O,X2 = O,X3 = O,X4 = O,XS =0

A subtle assumption in the preceding formulation is that all loans are issued at approxi-
mately the same time. This allows us to ignore differences in the time value of the funds allocated
to the different loans.
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Solution:
The optimal solution is computed using AMPL (file amplEx2.4-1.txt):
zZ = 99648, X1 = 0, Xy = 0, X3 = 72, X4 = O, X5 = 4.8

Remarks.

1. You may be wondering why we did not define the right-hand side of the second con-
straint as .4 X 12 instead of .4(x; + x, + x3 + x4 + x5). After all, it appears plausible
that the bank would want to loan out all $12 million. The answer is that the usage given
in the formulation does not disallow this possibility. But there are two more reasons why
you should not use .4 X 12: (1) If other constraints in the model are such that all $12 mil-
lion cannot be used (e.g., the bank may set caps on the different loans), then the choice
4 X 12 could lead to an infeasible or incorrect solution. (2) If you want to experiment
with the effect of changing available funds (say from $12 to $13 million) on the optimum
solution, there is a real chance that you may forget to change .4 X 12 to .4 X 13,in which
case the solution will not be correct. A similar reasoning applies to the left-hand side of
the fourth constraint.

2. The optimal solution calls for allocating all $12 million: $72 million to home loans and $4.8
million to commercial loans. The remaining categories receive none. The return on the
investment is

z .99648
Rate of return = L. 1 .08034
This shows that the combined annual rate of return is 8.034%, which is less than the best
net interest rate (= 8.64% for home loans ), and one wonders why the model does not take
full advantage of this opportunity. The answer is that the stipulation that farm and com-
mercial loans must account for at least 40% of all loans (constraint 2) forces the solution
to allocate $4.8 million to commercial loans at the lower net rate of 7.8%, hence lowering
the overall interest rate to 100 (286472 o 078 X 48y = §.(034%. In fact, if we remove con-
straint 2, the optimum will allocate all the funds to home loans at the higher 8.64 % rate (try

it using the AMPL model!).

Production Planning and Inventory Control

There is a wealth of LP applications in the area of production planning and inventory
control. This section presents three examples. The first deals with production sched-
uling to meet a single-period demand. The second deals with the use of inventory in
a multiperiod production system to meet future demand, and the third deals with the
use of inventory and worker hiring/firing to “smooth” production over a multiperiod
planning horizon.

Example 2.4-2 (Single-Period Production Model)

In preparation for the winter season, a clothing company is manufacturing parka and goose
overcoats, insulated pants, and gloves. All products are manufactured in four different depart-
ments: cutting, insulating, sewing, and packaging. The company has received firm orders for its
products. The contract stipulates a penalty for undelivered items. Devise an optimal production
plan for the company based on the following data:
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Time per unit (hr)

Department Parka Goose Pants Gloves Capacity (hr)
Cutting .30 .30 25 15 1000
Insulating 25 35 .30 .10 1000
Sewing 45 .50 40 22 1000
Packaging 15 15 1 .05 1000
Demand 800 750 600 500

Unit profit $30 $40 $20 $10

Unit penalty $15 $20 $10 $8

Mathematical Model: The variables of the problem are as follows:

x; = number of parka jackets
X, = number of goose jackets
X3 = number of pairs of pants
x4 = number of pairs of gloves

The company is penalized for not meeting demand. The objective then is to maximize net profit,
defined as

Net profit = Total profit — Total penalty

The total profit is 30x; + 40x, + 20x3 + 10x4. To compute the total penalty, the demand con-
straints can be written as

X1 + N SOO,X2 + Sy, = 750,X3 + S3 = 600,X4 + Sq4 = 500,
% =0,5=0j=1234

The new variable s; represents the shortage in demand for product j, and the total penalty can be
computed as 15s; + 20s, + 10s3 + 8s4. The complete model thus becomes

Maximize z = 30x; + 40x, + 20x3 + 10x4 — (15s; + 20s, + 10s3 + 8s4)
subject to
30x; + .30x, + 25x3 + .15x4 < 1000
25x1 + .35x; + .30x3 + .10x4 = 1000
A45x1 + S0xy + .40x; + .22x4 = 1000
A5x; + 15x, + .10x3 + .05x4 = 1000
x; + 51 = 800, x, + s, = 750, x3 + s3 = 600, x4 + s4 = 500

XjZO,SjZO,j: 1,2,3,4

Solution:

The optimum solution (obtained using file amplEx2.4-2.txt) is z = $64,625, x; = 800, x, = 750,
x3 = 387.5, x4, = 500,s; = s, = s4 = 0,53 = 212.5. The solution satisfies all the demand for
both types of jackets and the gloves. A shortage of 213 (rounded up from 212.5) pairs of pants
will result in a penalty cost of 213 X $10 = $2130.
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Example 2.4-3 (Multiple Period Production-Inventory Model)

Acme Manufacturing Company has a contract to deliver 100, 250, 190, 140, 220, and 110 home
windows over the next 6 months. Production cost (labor, material, and utilities) per window
varies by period and is estimated to be $50, $45, $55, $48, $52, and $50 over the next 6 months.
To take advantage of the fluctuations in manufacturing cost, Acme can produce more windows
than needed in a given month and hold the extra units for delivery in later months. This will
incur a storage cost at the rate of $8 per window per month, assessed on end-of-month inventory.
Develop a linear program to determine the optimum production schedule.

Mathematical Model: The variables of the problem include the monthly production amount
and the end-of-month inventory. Fori = 1,2, ..., 6,let

x; = Number of units produced in month i

I; = Inventory units left at the end of monthi

The relationship between these variables and the monthly demand over the 6-month horizon is
represented schematically in Figure 2.9. The system starts empty (I, = 0).
The objective is to minimize the total cost of production and end-of-month inventory.

Total production cost = 50x; + 45x, + 55x; + 48x4 + 52x5 + 50x4
Total inventory (storage)cost = 8(Iy + I, + I3 + I + I5 + I5)
Thus the objective function is
Minimizez = 50x; + 45x, + 55x3 + 48x4y + 52x5 + 50xg + 8(I; + I, + I3 + I, + I5 + I4)

The constraints of the problem can be determined directly from the representation in
Figure 2.9. For each period we have the following balance equation:

Beginning inventory + Production amount — Ending inventory = Demand

This is translated mathematically for the individual months as

x; —I; =100 (Month1)
Iy + x, — I, =250 (Month2)
I, + x3 — I3 =190 (Month3)
I + x4, — I, = 140 (Month 4)
Iy + x5 — Is = 220 (Month 5)
Is + x4 = 110 (Month 6)

Xpi=1,2,...,6,,=0,i=12 ...,5

FIGURE 2.9

Schematic representation of the production-inventory system

X X2 X3 X4 Xs X6

I= 01 I L I I Is Is
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100 250 190 140 220 110
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100 440 0 140 220 110
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100 250 190 140 220 110

FIGURE 2.10

Optimum solution of the production-inventory problem

Note that the initial inventory, Iy, is zero. Also, in any optimal solution, the ending inventory /g
will be zero because it is not economical to incur unnecessary additional storage cost.

Solution:

The optimum solution (obtained using file amplEx2.4-3.txt) is summarized in Figure 2.10. It shows
that each month’s demand is satisfied from the same month’s production, except for month 2,
where the production quantity (= 440units) covers the demand for both months 2 and 3. The
total associated cost is z = $49,980.

Example 2.4-4 (Multiperiod Production Smoothing Model)

A company is planning the manufacture of a product for March, April, May, and June of next
year. The demand quantities are 520, 720, 520, and 620 units, respectively. The company has a
steady workforce of 10 employees but can meet fluctuating production needs by hiring and fir-
ing temporary workers. The extra costs of hiring and firing a temp in any month are $200 and
$400, respectively. A permanent worker produces 12 units per month, and a temporary worker,
lacking equal experience, produces 10 units per month. The company can produce more than
needed in any month and carry the surplus over to a succeeding month at a holding cost of $50
per unit per month. Develop an optimal hiring/firing policy over the 4-month planning horizon.

Mathematical Model: This model is similar to that of Example 2.4-3 in the sense that each
month has its production, demand, and ending inventory. The only exception deals with handling
a permanent versus temporary workforce.

The permanent workers (10 in all) can be accounted for by subtracting the units they
produce from the respective monthly demand. The remaining demand is then satisfied through
the hiring and firing of temps. Thus,

Remaining demand for March = 520 — 12 X 10 = 400 units
Remaining demand for April = 720 — 12 X 10 = 600 units
Remaining demand for May = 520 — 12 X 10 = 400 units
Remaining demand for June = 620 — 12 X 10 = 500 units
The variables of the model for month i can be defined as
x; = Net number of temps at the start of month i after any hiring or firing
S; = Number of temps hired or fired at the start of month i

I; = Units of ending inventory for month i
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By definition, x; and /; are nonnegative, whereas S; is unrestricted in sign because it equals the
number of hired or fired workers in month i. This is the first instance in this chapter of using an
unrestricted variable. As we will see shortly, special substitution is needed to allow the imple-
mentation of hiring and firing in the model.

In this model, the development of the objective function requires constructing the constraints
first. The number of units produced in month i by x; temps is 10x;. Thus, we have the following
inventory constraints:

10x; = 400 + I; (March)
I; + 10x, = 600 + I, (April)
I, + 10x; = 400 + I; (May)
Iz + 10x4 = 500 (June)

X1, X2, X3, X4 = 07 115127 13 =0

For hiring and firing, the temp workforce starts with x; workers at the beginning of March. At
the start of April, x; will be adjusted (up or down) by S, temps to generate x,. The same idea
applies to x5 and x4, thus leading to the following constraint equations:

xp =8

X, =x+ 8,

X3 =x; + 83

X4 = x3 + 8,

S1, 82, 83, 84 unrestricted in sign
X1, X0, X3, X4 = 0

Next, we develop the objective function. The goal is to minimize the inventory cost plus the
cost of hiring and firing. As in Example 2.4-3,

Inventory holding cost = 50(1; + I, + I3)

Modeling the cost of hiring and firing is a bit involved. Given the costs of hiring and firing a temp
are $200 and $400, respectively, we have

(Cost of hiring) ~ 50 0( Number of hired temps ) N ( Number of fired temps )
and firing at the start of each month at the start of each month

If the variable S; is positive, hiring takes place in month i. If it is negative, then firing occurs. This
“qualitative” assessment can be translated mathematically by using the substitution

S; =S8; — 87, whereS;,Sf =0

The unrestricted variable S; is now the difference between the two nonnegative variables
S7 andS7. We can think of S; as the number of temps hired and S} as the number fired. For
example, if S = 5and S = 0,then S; = 5 — 0 = + 5, which represents hiring. If §; = 0 and
ST =17,then S; =0 — 7 = — 7, which represents firing. In the first case, the corresponding
cost of hiring is 200S; = 200 X 5 = $1000, and in the second case, the corresponding cost of
firing is 40087 = 400 X 7 = $2800.

The substitution S; = S7 — S} is the basis for the development of cost of hiring and firing.
First we need to address a possible question: What if both S; and S} are positive? The answer is
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that this cannot happen because it implies both hiring and firing in the same month. Interestingly,
the theory of LP (see Chapter 7) tells us that S; and S7 cannot be positive simultaneously, a
mathematical result that confirms intuition.

We can now write the total cost of hiring and firing as

Cost of hiring = 200(S7 + S, + S35 + S%)
Cost of firing = 400(ST + S + ST + S%)

It may appear necessary to add to z the amount 400x, representing the cost of end-of-horizon-
firing of x4 temps. From the standpoint of optimization, this factor is accounted for by the
presence of S} in the objective function. Hence the optimum will not change, except for inflating
optimum z by 400x4 (try it!).

The complete model is as follows:

Minimizez = 50(1; + I, + I3) + 200(S7 + S + S3 + S3) + 400(ST + S3 + S3 + S%)
subject to
10x; = 400 + I,
I + 10x, = 600 + I,
I, + 10x; = 400 + L4
I; + 10x4 = 500
x; =S8y —S7
X, =x +8; — ST
X3 =x,+ 83 — 5%
Xy =x3+ S5 — S}
S1,87185,57,55,54,854, 5, =0
X1, X2, X3, X4 = 0

Il’ 127 13 =0

Solution:

The optimum solution (obtained using file amplEx2.4-4.txt) is z = $19, 500, x; = 50, x, = 50,
X, = 50,x3 = 45,x, = 45, ST = 50,83 =5, I; = 100, 1; = 50. All the remaining variables
are zero. The solution calls for hiring 50 temps in March (S7 = 50) and holding the workforce
steady till May when five temps are fired (S5 = 5). No further hiring or firing is recommended
until the end of June, when, presumably, all temps are terminated. This solution requires 100 units
of inventory to be carried into May and 50 units to be carried into June.

Workforce Planning

Real-Life Application—Telephone Sales Workforce Planning
at Qantas Airways

Australian airline Qantas operates its main reservation offices from 7:00 till 22:00
using six shifts that start at different times of the day. Qantas used LP (with imbedded
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queuing analysis) to staff its main telephone sales reservation office efficiently while
providing convenient service to its customers. The study, carried out in the late 1970s,
resulted in annual savings of over 200,000 Australian dollars per year. The study is
detailed in Case 15, Chapter 26, on the website.

Fluctuations in a labor force to meet variable demand over time can be achieved
through the process of hiring and firing, as demonstrated in Example 2.4-4. There are
situations in which the effect of fluctuations in demand can be “absorbed” by adjusting
the start and end times of a work shift. For example, instead of following the traditional
three 8-hr-shift start times at 8:00 a.m., 3:00 p.m., and 11:00 p.m., we can use overlapping
8-hr shifts in which the start time of each is made in response to increase or decrease
in demand.

The idea of redefining the start of a shift to accommodate fluctuation in demand
can be extended to other operating environments as well. Example 2.4-5 deals with the
determination of the minimum number of buses needed to meet rush-hour and off-
hour transportation needs.

Example 2.4-5 (Bus Scheduling Model)

Progress City is studying the feasibility of introducing a mass-transit bus system to reduce in-city
driving. The study seeks the minimum number of buses that can handle the transportation needs.
After gathering necessary information, the city engineer noticed that the minimum number of
buses needed fluctuated with time of the day, and that the required number of buses could be
approximated by constant values over successive 4-hr intervals. Figure 2.11 summarizes the engi-
neer’s findings. To carry out the required daily maintenance, each bus can operate only 8 succes-
sive hours a day.

Mathematical Model: The variables of the model are the number of buses needed in each shift,
and the constraints deal with satisfying demand. The objective is to minimize the number of
buses in operation.

The stated definition of the variables is somewhat “vague.” We know that each bus will run
for 8 consecutive hours, but we do not know when a shift should start. If we follow a normal
three-shift schedule (8:01 A.M. to 4:00 p.m., 4:01 p.M. to 12:00 midnight, and 12:01 a.M. to 8:00 A.M.)
and assume that xq, x;, and x3 are the number of buses starting in the first, second, and third
shifts, we can see in Figure 2.11 that x; = 10, x, = 12, and x3 = 8. The corresponding minimum
number of daily busesis x; + x, + x3 = 10 + 12 + 8 = 30.

The given solution is acceptable only if the shifts must coincide with the normal three-
shift schedule. However, it may be advantageous to allow the optimization process to choose
the “best” starting time for a shift. A reasonable way to accomplish this goal is to allow a shift
to start every 4 hr. The bottom of Figure 2.11 illustrates this idea with overlapping 8-hr shifts
starting at 12:01 a.m., 4:01 A.M., 8:01 a.m., 12:01 pM., 4:01 P.M., and 8:01 p.M. Thus, the variables
are defined as

x1 = number of buses starting at 12:01 A.m.

X, = number of buses starting at 4:01 a.m.
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Number of buses as a function of the time of the day

X3 = number of buses starting at 8:01 A.m.
x4 = number of buses starting at 12:01 p.m.

number of buses starting at 4:01 p.m.

Xs
Xx¢ = number of buses starting at 8:01 p.M.

We can see from Figure 2.11 that because of the overlapping of the shifts, the number of buses
for the successive 4-hr periods can be computed as follows:

Time period Number of buses in operation
12:01 A.M. to 4:00 A.M. x| + Xg
4:01 A.M. to 8:00 a.m. x; + x
8:01 a.M. to 12:00 noon Xy + X3
12:01 p.m. to 4:00 p.m. X3 + x4
4:01 p.M. to 8:00 .M. X4 + x5
8:01 a.M. to 12:00 A.m. X5 + Xg

The complete model thus becomes

Minimize z = x| + X, + x3 + x4 + x5 + X4
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subject to
X1 + xs = 4(12:01 AM.—4:00 A.M.)

8 (4:01 Am.—8:00 a.M.)
10 (8:01 A.M.—12:00 noon)

7 (12:01 p.M.—4:00 P.M.)
12 (4:01 p.M.—8:00 P.M.)

4 (8:01 p.M.—12:00 P.M.)
x=0,j=12...,6

v

x1+x2

v

X2+X3

v

X3+X4

v

X4+X5

v

x5+x6

Solution:

The optimal solution (obtained using file amplEx2.4-5.txt, solverEx2.4-5.xls, or toraEx2.4-5.txt)
calls for scheduling 26 buses (compared with 30 buses when the three traditional shifts are
used). The schedule calls for x; = 4 buses to start at 12:01 a.m., x, = 10 at 4:01 A.M., x, = 8 at
12:01 pM., and x5 = 4 at 4:01 pm. (Note: File solverEx2.4-5.xls yields the alternative optimum
X =2, =6,x3 =4,x, = 6,x5 = 6,and x5 = 2, with z = 26.)

Urban Development Planning®

Urban planning deals with three general areas: (1) building new housing developments,
(2) upgrading inner-city deteriorating housing and recreational areas, and (3) planning
public facilities (such as schools and airports). The constraints associated with these
projects are both economic (land, construction, and financing) and social (schools,
parks, and income level). The objectives in urban planning vary. In new housing
developments, profit is usually the motive for undertaking the project. In the remaining
two categories, the goals involve social, political, economic, and cultural considerations.
Indeed, in a publicized case in 2004, the mayor of a city in Ohio wanted to condemn
an old area of the city to make way for a luxury housing development. The motive was
to increase tax collection to help alleviate budget shortages. The example presented in
this section is fashioned after the Ohio case.

Example 2.4-6 (Urban Renewal Model)

The city of Erstville is faced with a severe budget shortage. Seeking a long-term solution, the city
council votes to improve the tax base by condemning an inner-city housing area and replacing it
with a modern development.

The project involves two phases: (1) demolishing substandard houses to provide land for the
new development and (2) building the new development. The following is a summary of the situation.

1. Asmany as 300 substandard houses can be demolished. Each house occupies a .25-acre lot.
The cost of demolishing a condemned house is $2000.

2. Lot sizes for new single-, double-, triple-, and quadruple-family homes (units) are .18, .28,
4, and .5 acre, respectively. Streets, open space, and utility easements account for 15% of
available acreage.

OThis section is based on Laidlaw (1972).
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In the new development, the triple and quadruple units account for at least 25% of the
total. Single units must be at least 20% of all units, and double units at least 10%.

The tax levied per unit for single, double, triple, and quadruple units is $1000, $1900, $2700,
and $3400, respectively.

The construction cost per unit for single-, double-, triple-, and quadruple-family homes is
$50,000, $70,000, $130,000, and $160,000, respectively.

Financing through a local bank is limited to $15 million.

How many units of each type should be constructed to maximize tax collection?

Mathematical Model: Besides determining the number of units of each type of housing to be
constructed, we also need to decide how many houses must be demolished to make room for the
new development. Thus, the variables of the problem can be defined as follows:

x1 = Number of units of single-family homes
X, = Number of units of double-family homes
x3 = Number of units of triple-family homes
x4 = Number of units of quadruple-family homes
x5 = Number of condemned homes to be demolished
The objective is to maximize total tax collection from all four types of homes—that is,
Maximize z = 1000x; + 1900x, + 2700x; + 3400x,
The first constraint of the problem deals with land availability.

(Acreage used for new) _ <Net available)
homes construction / acreage

From the data of the problem, we have

Acreage needed for new homes = .18x; + .28x, + .4x3 + .5x4

To determine the available acreage, each demolished home occupies a .25-acre lot, thus netting
25x5 acres. Allowing for 15% open space, streets, and easements, the net acreage available is

85(

or

.25x5) = .2125x5. The resulting constraint is

.18X1 + .28X2 + .4X3 + .SX4 = 2125)(5

A8x; + 28x, + 4x3 + Sxy — 2125x5 = 0

The number of demolished homes cannot exceed 300, which translates to

x5 = 300

Next, we add the constraints limiting the number of units of each home type.

(Number of single units) = (20% of all units)
(Number of double units) = (10% of all units)

Number of triple and quadruple units) = (25% of all units
p q p
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These constraints translate mathematically to
X1 = 2(x; +xp + x3 + x4)
X, = 1(x; +xp + x3 + x4)
X3+ x4 = 25(x; + xp + x3 + x4)

The only remaining constraint deals with keeping the demolition/construction cost within the
allowable budget—that is,

(Construction and demolition cost) = (Available budget)
Expressing all the costs in thousands of dollars, we get
(50x; + 70x, + 130x3 + 160x4) + 2x5 =< 15000
The complete model thus becomes

Maximize z = 1000x; + 1900x, + 2700x3 + 3400x,4

subject to
A8x; + 28x, +  dx3 +  Sxy — 2125x5 =0
x5 = 300
—.8x1 + .2X2 + .2X3 + .Z.X'4 = 0
.1X] - .9X2 + .1X3 + .1X4 =0
25x1 + 25x, — 75x5 — 75x4 =0
SOX] + 70X2 + 130)63 + 160)(4 + 2XS = 15000
X1, Xg, X3, X4, X5 = 0
Solution:

The optimum solution (obtained using file amplEX2.4-6.txt or solver Ex2.4-6.xls) is

Total tax collection = z = $343, 965

Number of single homes = x; = 35.83 = 36 units
Number of double homes = x, = 98.53 = 99 units
Number of triple homes = x; = 44.79 = 45 units
Number of quadruple homes = x4 = 0 units

Number of homes demolished = x5 = 244.49 = 245 units

Remarks. Linear programming does not automatically guarantee an integer solution, and this
is the reason for rounding the continuous values to the closest integer. The rounded solution
calls for constructing 180 (=36 + 99 + 45) units and demolishing 245 old homes, which
yields $345,600 in taxes. Keep in mind, however, that, in general, the rounded solution may
not be feasible. In fact, the current rounded solution violates the budget constraint by $70,000
(verify!). Interestingly, the true optimum integer solution (using the algorithms in Chapter 9)
is x; = 36,x, = 98,x3 = 45,x, = 0, and x5 = 245 with z = $343,700. Carefully note that the
rounded solution yields a better objective value, which appears contradictory. The reason is
that the rounded solution calls for producing an extra double home, which is feasible only if
the budget is increased by $70,000.
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Blending and Refining

A number of LP applications deal with blending different input materials to manu-
facture products that meet certain specifications while minimizing cost or maximizing
profit. The input materials could be ores, metal scraps, chemicals, or crude oils, and
the output products could be metal ingots, paints, or gasoline of various grades. This
section presents a (simplified) model for oil refining. The process starts with distilling
crude oil to produce intermediate gasoline stocks, and then blending these stocks to
produce final gasoline products. The final products must satisfy certain quality speci-
fications (such as octane rating). In addition, distillation capacities and demand limits
can directly affect the level of production of the different grades of gasoline. One goal
of the model is to determine the optimal mix of final products that will maximize an
appropriate profit function. In some cases, the goal may be to minimize a cost function.

Example 2.4-7 (Crude Oil Refining and Gasoline Blending)

Shale Oil, located on the island of Aruba, has a capacity of 1,500,000 bbl of crude oil per day. The
final products from the refinery include three types of unleaded gasoline with different octane
numbers (ON): regular with ON = 87, premium with ON = 89, and super with ON = 92.
The refining process encompasses three stages: (1) a distillation tower that produces feedstock
(ON = 82) at the rate of .2 bbl per bbl of crude oil, (2) a cracker unit that produces gasoline
stock (ON = 98) by using a portion of the feedstock produced from the distillation tower at the
rate of .5 bbl per bbl of feedstock, and (3) a blender unit that blends the gasoline stock from the
cracker unit and the feedstock from the distillation tower. The company estimates the net profit
per barrel of the three types of gasoline to be $6.70, $7.20, and $8.10, respectively. The input
capacity of the cracker unit is 200,000 bbl of feedstock a day. The demand limits for regular,
premium, and super gasoline are 50,000, 30,000, and 40,000 bbl, respectively, per day. Develop a
model for determining the optimum production schedule for the refinery.

Mathematical Model: Figure 2.12 summarizes the elements of the model. The variables can be
defined in terms of two input streams to the blender (feedstock and cracker gasoline) and the
three final products. Let

X; = bbl/day of input stream i used to blend final product j,i = 1,2;j = 1,2, 3

FIGURE 2.12

Product flow in the refinery problem

1:1
1t Xt X X1, + Xp3, ON = 87
ON = 82
Blender
5:1 2:1 + N =
X12 X220, O 89
Crude o X1+ Xpp + X3
— | Distillation Cracker Xq3 + X3, ON = 92
ON = 82 ON =98 >
Feed-
stock
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Using this definition, we have

Daily production of regular gasoline = x;; + x,; bbl/day
Daily production of premium gasoline = xy, + x,, bbl/day

Daily production of super gasoline = x;3 + x,3 bbl/day

( Daily output ) _ (Daily regular) N (Daily premium) N (Daily super)

of blender unit/  \ production production production

(x11 + x21) + (x12 + x») + (x13 + xp3) bbl/day

(Daily feedstock

to blender X1 + x12 + x13 bbl/day

+ xp +
feed to blender ¥y + Xy + xp3 bbliday

2(xy; + Xy + xp3) bbl/day

(Daily cracker unit)

<Daily feedstock
to cracker

(Daily crude oil used

in the reﬁnery ) = S(XH + X12 + X13) + 10(X21 + X22 + XZ3) bbl/day

The objective of the model is to maximize the total profit resulting from the sale of all
three grades of gasoline. From the definitions given earlier, we get
Maximizez = 6.70(x; + x51) + 7.20(x15 + x55) + 8.10(x13 + x3)
The constraints of the problem are developed as follows:
1. Daily crude oil supply does not exceed 1,500,000 bbl/day:
S(xp + xp2 + x13) + 10(xp; + x20 + Xx23) = 1,500,000
2. Cracker unit input capacity does not exceed 200,000 bbl/day:
2(x51 + X2 + xp3) = 200,000
3. Daily demand for regular does not exceed 50,000 bbl:
X1 + x; = 50,000
4. Daily demand for premium does not exceed 30,000 bbl:
X1 + xpn = 30,000
5. Daily demand for super does not exceed 40,000 bbl:
X3 + x03 = 40,000
6. Octane number (ON) for regular is at least 87:

The octane number of a gasoline product is the weighted average of the octane numbers of
the input streams used in the blending process and can be computed as
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(Average ON of ) _
regular gasoline

Feedstock ON X feedstock bbl/day + Cracker unit ON X Cracker unit bbl/day

Total bbl/day of regular gasoline
_ 82xy; + 98xy
S x
Thus, octane number constraint for regular gasoline becomes

82X]1 + 98){,'21
X1 T Xy

= 87

The constraint is linearized as
82x11 + 98.X21 = 87(X11 + X21)

Octane number for premium is at least 89:

82)6'12 + 98)C22 = 89
XpptXp

which is linearized as

82)(12 + 98)(22 = 89()(12 + )C22)

. Octane number for super is at least 92:

82x13 + 98x23
X13 + X3

=92

or
82x13 + 98xy3 = 92(x13 + X23)
The complete model is thus summarized as
Maximizez = 6.70(x; + xp1) + 7.20(x15 + xp) + 8.10(x13 + xp3)
subject to
S5(xqp + x12 + x13) + 10(xp + x5 + x53) = 1,500,000
2(x51 + X2 + x3) = 200,000
x11 + x91 = 50,000
X2 + x90 = 30,000
X13 + xp3 = 40,000
82x11 + 98xy = 87(xy; + x21)
82x15 + 98x5 = 89(xpp + x27)
82x13 + 98x53 = 92(x13 + x23)
X11, X12, X13, X21, X22, X23 = 0

The last three constraints can be simplified to produce a constant right-hand side.
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Solution:

The optimum solution (obtained using file toraEx2.4-7txt or amplEx2.4-7txt) is z = 875,000,
X11 — 34,375,)(21 = 15,625, X1p = 16,875, Xy = 13,125,X13 = 15,000, X3 = 25,000 This trans-
lates to

Daily profit = $875,000

Daily amount of regular gasoline = x1; + x; = 34,375 + 13,125 = 30,000 bbl/day
Daily amount of premium gasoline = x;;, + x = 16,875 + 13,125 = 30,000 bbl/day
Daily amount of super gasoline = x3 + x,3 = 15,000 + 25,000 = 40,000 bbl/day

The solution shows that regular gasoline production is 20,000 bbl/day short of satisfying the
maximum demand. The demand for the remaining two grades is satisfied.

Additional LP Applications

The preceding sections have demonstrated representative LP applications in five areas.
Problems 2-77 to 2-87 provide additional areas of application, ranging from agriculture
to military.

BIBLIOGRAPHY

Dantzig, G. and M. Thapa, Linear Programming 1: Introduction, Springer, New York, 1997

Fourer, R., D. Gay, and B. Kernighan, AMPL, A Modeling Language for Mathematical Program-
ming,2nd ed., Brooks/Cole-Thomson, Pacific Grove, CA, 2003.

Laidlaw, C. Linear Programming for Urban Development Plan Evaluation, Praegers, London,
1972.

Lewis, T., “Personal Operations Research: Practicing OR on Ourselves,” Interfaces, Vol. 26, No. 5,
pp. 3441, 1996.

Shepard, R., D. Hartley, P. Hasman, L. Thorpe, and M. Bathe, Applied Operations Research,
Plenum Press, New York, 1988.

Stark, R.,and R. Nicholes, Mathematical Programming Foundations for Design: Civil Engineering
Systems, McGraw-Hill, New York, 1972.

PROBLEMS

Section Assigned Problems Section Assigned Problems
2.1 2-1to2-4 242 2-47 to 2-54
221 2-5t02-27 243 2-55 to 2-60
222 2-28 to 2-35 244 2-61 to 2-66
231 2-36 to 2-37 245 2-67 to 2-76
232 2-38 to 2-39 2.4.6 2-77 to 2-87

241 2-40 to 2-46




Problems 77

2-1. For the Reddy Mikks model, construct each of the following constraints, and express it
with a linear left-hand side and a constant right-hand side:

*(a)
(b)
*(c)
(d)

*(e)

The daily demand for interior paint exceeds that of exterior paint by at least 1 ton.
The daily usage of raw material M1 in tons is at most 8 and at least 5.
The demand for exterior paint cannot be less than the demand for interior paint.

The maximum quantity that should be produced of both the interior and the
exterior paint is 15 tons.

The proportion of exterior paint to the total production of both interior and exterior
paints must not exceed .5.

2-2. Determine the best feasible solution among the following (feasible and infeasible) solutions
of the Reddy Mikks model:

(a)
(b)
(c)
(d)
(e)

xp=1,x =2.
x;=3,x =1
x; =3,x =15.
xX;=2,x=1.

X1 = 2,](2 = -1

*2-3. For the feasible solution x; = 1, x, = 2 of the Reddy Mikks model, determine the un-
used amounts of raw materials M1 and M2.
2-4. Suppose that Reddy Mikks sells its exterior paint to a single wholesaler at a quantity discount.
The profit per ton is $5000 if the contractor buys no more than 5 tons daily and $4300 other-
wise. Express the objective function mathematically. Is the resulting function linear?

2-5. Determine the feasible space for each of the following independent constraints, given
that X1, Xp = 0.

*(a)
(b)
(©
(d)

*(e)

—3x; +x, = 6.
X — 2xy, = 5.
2x1 — 3x, = 12.
X — X = 0.

—X1 + Xy = 0.

2-6. Identify the direction of increase in z in each of the following cases:

*(a)
(b)
(c)

*(d)

Maximizez = x; — X,.

Maximizez = —8x; — 3x,.
Maximizez = —x; + 3x,.
Maximizez = —3x; + x,.

2-7. Determine the solution space and the optimum solution of the Reddy Mikks model for
each of the following independent changes:

(a)

(b)
(©
(d)
(e)

The maximum daily demand for interior paint is 1.9 tons and that for exterior paint
is at most 2.5 tons.

The daily demand for interior paint is at least 2.5 tons.
The daily demand for interior paint is exactly 1 ton higher than that for exterior paint.
The daily availability of raw material M1 is at least 24 tons.

The daily availability of raw material M1 is at least 24 tons, and the daily demand for
interior paint exceeds that for exterior paint by at least 1 ton.
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2-8. A company that operates 10 hrs a day manufactures two products on three sequential
processes. The following table summarizes the data of the problem:

Minutes per unit

Product Process 1 Process 2 Process 3 Unit profit
1 10 6 8 $20
5 20 10 $30

Determine the optimal mix of the two products.

*2-9. A company produces two products, A and B. The sales volume for A is at least 80% of
the total sales of both A and B. However, the company cannot sell more than 110 units of
A per day. Both products use one raw material, of which the maximum daily availability
is 300 1b. The usage rates of the raw material are 2 1b per unit of A, and 4 1b per unit of B.
The profit units for A and B are $40 and $90, respectively. Determine the optimal product
mix for the company.

2-10. Alumco manufactures aluminum sheets and aluminum bars. The maximum production
capacity is estimated at either 800 sheets or 600 bars per day. The maximum daily demand
is 550 sheets and 560 bars. The profit per ton is $40 per sheet and $35 per bar. Determine
the optimal daily production mix.

*2-11. An individual wishes to invest $5000 over the next year in two types of investment:
Investment A yields 5%, and investment B yields 8%. Market research recommends
an allocation of at least 25% in A and at most 50% in B. Moreover, investment in A
should be at least half the investment in B. How should the fund be allocated to the
two investments?

2-12. The Continuing Education Division at the Ozark Community College offers a total of
30 courses each semester. The courses offered are usually of two types: practical and
humanistic. To satisfy the demands of the community, at least 10 courses of each type
must be offered each semester. The division estimates that the revenues of offering prac-
tical and humanistic courses are approximately $1500 and $1000 per course, respectively.

(a) Devise an optimal course offering for the college.

(b) Show that the worth per additional course is $1500, which is the same as the reve-
nue per practical course. What does this result mean in terms of offering additional
courses?

2-13. ChemlLabs uses raw materials / and /1 to produce two domestic cleaning solutions, A and
B.The daily availabilities of raw materials / and /I are 150 and 145 units, respectively.
One unit of solution A consumes .5 unit of raw material / and .6 unit of raw material /1.
One unit of solution B uses .5 unit of raw material / and .4 unit of raw material //. The
profits per unit of solutions A and B are $8 and $10, respectively. The daily demand for
solution A lies between 30 and 150 units, and that for solution B between 40 and 200
units. Find the optimal production amounts of A and B.

2-14. In the Ma-and-Pa grocery store, shelf space is limited and must be used effectively to
increase profit. Two cereal items, Grano and Wheatie, compete for a total shelf space of
60 ft>. A box of Grano occupies .2 ft? and a box of Wheatie needs .4 ft>. The maximum
daily demands of Grano and Wheatie are 200 and 120 boxes, respectively. A box of
Grano nets $1.00 in profit and a box of Wheatie $1.35. Ma-and-Pa thinks that because
the unit profit of Wheatie is 35% higher than that of Grano, Wheatie should be allocated
35% more space than Grano, which amounts to allocating about 57% to Wheatie and
43% to Grano. What do you think?
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Jack is an aspiring freshman at Ulern University. He realizes that “all work and no play
make Jack a dull boy.” Jack wants to apportion his available time of about 10 hrs a day
between work and play. He estimates that play is twice as much fun as work. He also
wants to study at least as much as he plays. However, Jack realizes that if he is going

to get all his homework assignments done, he cannot play more than 4 hrs a day. How
should Jack allocate his time to maximize his pleasure from both work and play?

Wild West produces two types of cowboy hats. A Type 1 hat requires twice as much labor
time as a Type 2. If all the available labor time is dedicated to Type 2 alone, the company
can produce a total of 400 Type 2 hats a day. The respective market limits for Type 1

and Type 2 are 150 and 200 hats per day, respectively. The profit is $8 per Type 1 hat and
$5 per Type 2 hat. Determine the number of hats of each type that maximizes profit.

Show & Sell can advertise its products on local radio and television (TV). The advertising
budget is limited to $10,000 a month. Each minute of radio advertising costs $15, and each
minute of TV commercials $300. Show & Sell likes to advertise on radio at least twice as
much as on TV. In the meantime, it is not practical to use more than 400 minutes of radio
advertising a month. From past experience, advertising on TV is estimated to be 25 times
as effective as on radio. Determine the optimum allocation of the budget to radio and TV
advertising.

Wyoming Electric Coop owns a steam-turbine power-generating plant. Because Wyoming
is rich in coal deposits, the plant generates its steam from coal. This, however, may result
in emission that does not meet the Environmental Protection Agency (EPA) standards.
EPA regulations limit sulfur dioxide discharge to 2000 parts per million per ton of coal
burned and smoke discharge from the plant stacks to 20 Ib per hour. The Coop receives
two grades of pulverized coal, C1 and C2, for use in the steam plant. The two grades

are usually mixed together before burning. For simplicity, it can be assumed that the
amount of sulfur pollutant discharged (in parts per million) is a weighted average of

the proportion of each grade used in the mixture. The following data is based on the
consumption of 1 ton per hr of each of the two coal grades.

Sulfur discharge Smoke discharge Steam generated
Coal grade in parts per million in Ib per hour in Ib per hour
C1 1800 2.1 12,000
2 2100 9 9,000

(a) Determine the optimal ratio for mixing the two coal grades.

(b) Determine the effect of relaxing the smoke discharge limit by 1 1b on the amount of
generated steam per hour.

Top Toys is planning a new radio and TV advertising campaign. A radio commercial costs
$300 and a TV ad costs $2000. A total budget of $20,000 is allocated to the campaign.
However, to ensure that each medium will have at least one radio commercial and one
TV ad, the most that can be allocated to either medium cannot exceed 80% of the total
budget. It is estimated that the first radio commercial will reach 5000 people, with each
additional commercial reaching only 2000 new ones. For TV, the first ad will reach 4500
people, and each additional ad an additional 3000. How should the budgeted amount be
allocated between radio and TV?

The Burroughs Garment Company manufactures men’s shirts and women’s blouses for
Walmark Discount Stores. Walmark will accept all the production supplied by Burroughs.
The production process includes cutting, sewing, and packaging. Burroughs employs

25 workers in the cutting department, 35 in the sewing department, and 5 in the
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2-23.

2-24.

packaging department. The factory works one 8-hr shift, 5 days a week. The following
table gives the time requirements and profits per unit for the two garments.

Minutes per unit

Garment Cutting Sewing Packaging Unit profit ($)

Shirts 20 70 12 8
Blouses 60 60 4 12

Determine the optimal weekly production schedule for Burroughs.

A furniture company manufactures desks and chairs. The sawing department cuts the
lumber for both products, which is then sent to separate assembly departments. Assembled
items are sent to the painting department for finishing. The daily capacity of the sawing
department is 200 chairs or 80 desks. The chair assembly department can produce

120 chairs daily, and the desk assembly department 60 desks daily. The paint department
has a daily capacity of either 150 chairs or 110 desks. Given that the profit per chair is

$50 and that of a desk is $100, determine the optimal production mix for the company.

An assembly line consisting of three consecutive stations produces two radio models: HiFi-1
and HiFi-2. The following table provides the assembly times for the three workstations.

Minutes per unit

‘Workstation HiFi-1 HiFi-2

1 6 4
2 5 5
3 4 6

The daily maintenance for stations 1,2, and 3 consumes 10%, 14%, and 12%, respectively,
of the maximum 480 minutes available for each station each day. Determine the optimal
product mix that will minimize the idle (or unused) times in the three workstations.
Determination of the Optimum LP Solution by Enumerating All Feasible Corner Points.
The remarkable observation gleaned from the graphical LP solution is that the optimum,
when finite, is always associated with a corner point of the feasible solution space. Show
how this idea is applied to the Reddy Mikks model by evaluating all of its feasible corner
points A, B, C, D, E, and F.

TORA Experiment. Enter the following LP into TORA, and select the graphic solution
mode to reveal the LP graphic screen.

Minimize z = 3x; + 8x,

subject to

v

X1+X2

IA
o

2x1 - 3)(2

IA

X1 + ZXZ 30

%
o

3X1 - X

I

X1 10

v

X2

%
o

X1, X2
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Next, on a sheet of paper, graph and scale the x;- and x,-axes for the problem (you may
also click Print Graph on the top of the right window to obtain a ready-to-use scaled
sheet). Now, graph a constraint manually on the prepared sheet, and then click on the
left window of the screen to check your answer. Repeat the same for each constraint,
and then terminate the procedure with a graph of the objective function. The suggested
process is designed to test and reinforce your understanding of the graphical LP solution
through immediate feedback from TORA.

2-25. TORA Experiment. Consider the following LP model:
Maximize z = 5x; + 4x,
subject to
6x; + 4x, =< 24
6x; + 3x, =225
X1 t+tx=5
X +t2x% = 6
—xtx =1
X, = 2
X, X = 0

In LP, a constraint is said to be redundant if its removal from the model leaves the
feasible solution space unchanged. Use the graphical facility of TORA to identify the
redundant constraints, and then show that their removal (simply by not graphing them)
does not affect the solution space or the optimal solution.

2-26. TORA Experiment. In the Reddy Mikks model, use TORA to show that the removal of
the raw material constraints (constraints 1 and 2) would result in an unbounded solution
space. What can be said in this case about the optimal solution of the model?

2-27. TORA Experiment. In the Reddy Mikks model, suppose that the following constraint is
added to the problem:

X, =3
Use TORA to show that the resulting model has conflicting constraints that cannot be
satisfied simultaneously, and hence it has no feasible solution.
2-28. Identify the direction of decrease in z in each of the following cases:
*(a) Minimize z = 4x; — 2x;,.
(b) Minimize z = —6x; + 2x;.
(¢) Minimize z = —3x; — 6x,.
2-29. For the diet model, suppose that the daily availability of corn is limited to 400 Ib. Identify
the new solution space, and determine the new optimum solution.

2-30. For the diet model, determine the optimum solution given the feed mix does not exceed
500 1b a day? Does the solution make sense?

2-31. John must work at least 20 hours a week to supplement his income while attending school.
He has the opportunity to work in two retail stores. In store 1, he can work between
4.5 and 12 hours a week, and in store 2, he is allowed between 5.5 and 10 hours. Both
stores pay the same hourly wage. In deciding how many hours to work in each store, John
wants to base his decision on work stress. Based on interviews with present employees,
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2-36.
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2-38.

John estimates that, on an ascending scale of 1 to 10, the stress factors are 8 and 6 at stores
1 and 2, respectively. Because stress mounts by the hour, he assumes that the total stress
for each store at the end of the week is proportional to the number of hours he works in
the store. How many hours should John work in each store?

OilCo is building a refinery to produce four products: diesel, gasoline, lubricants, and

jet fuel. The minimum demand (in bbl/day) for each of these products is 14,000, 30,000,
10,000, and 8000, respectively. Iraq and Dubai are under contract to ship crude to OilCo.
Because of the production quotas specified by OPEC (Organization of Petroleum
Exporting Countries), the new refinery can receive at least 40% of its crude from Iraq
and the remaining amount from Dubai. OilCo predicts that the demand and crude oil
quotas will remain steady over the next 10 years.

The specifications of the two crude oils lead to different product mixes. One barrel
of Iraq crude yields .2 bbl of diesel, .25 bbl of gasoline, .1 bbl of lubricant, and .15 bbl of
jet fuel. The corresponding yields from Dubai crude are .1, .6, .15, and .1, respectively.
OilCo needs to determine the minimum capacity of the refinery (in bbl/day).

Day Trader wants to invest a sum of money that would generate an annual yield of at
least $10,000. Two stock groups are available: blue chips and high tech, with average
annual yields of 10% and 25%, respectively. Though high-tech stocks provide higher
yield, they are more risky, and Trader wants to limit the amount invested in these stocks
to no more than 60% of the total investment. What is the minimum amount Trader
should invest in each stock group to accomplish the investment goal?

An industrial recycling center uses two scrap aluminum metals, A and B, to produce a
special alloy. Scrap A contains 6% aluminum, 3% silicon, and 4% carbon. Scrap B has
3% aluminum, 6% silicon, and 3% carbon. The costs per ton for scraps A and B are $100
and $80, respectively. The specifications of the special alloy require that (1) the aluminum
content must be at least 3% and at most 6%, (2) the silicon content must be between

3% and 5%, and (3) the carbon content must be between 3% and 7%. Determine the
optimum mix of the scraps that should be used in producing 1000 tons of the alloy.

TORA Experiment. Consider the Diet Model, and let the objective function be given as
Minimize z = .8x; + .8x,

Use TORA to show that the optimum solution is associated with two distinct corner
points, and that both points yield the same objective value. In this case, the problem is
said to have alternative optima. Explain the conditions leading to this situation, and show
that, in effect, the problem has an infinite number of alternative optima. Then provide a
formula for determining all such solutions.

Modify the Reddy Mikks Solver model of Figure 2.4 to account for a third type of paint
named “marine.” Requirements per ton of raw materials 1 and 2 are .6 and .85 ton, re-
spectively. The daily demand for the new paint lies between .6 ton and 1.9 tons. The profit
per ton is $3700.

Develop the Excel Solver model for the following problems:

(a) The diet model of Example 2.2-2.

(b) Problem 2-21.

(c) Problem 2-34.

In the Reddy Mikks model, suppose that a third type of paint, named “marine,” is produced.
The requirements per ton of raw materials M1 and M2 are .7 and .95 ton, respectively. The

daily demand for the new paint lies between .4 ton and 2.1 tons, and the profit per ton is
$4500. Modify the Excel Solver model solverRM2.xls and the AMPL model amplRM2.txt to
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account for the new situation and determine the optimum solution. Compare the additional
effort associated with each modification.

Develop AMPL models for the following problems:

(a) The diet problem of Example 2.2-2 and find the optimum solution.

(b) Problem 2-22.

(¢) Problem 2-34.

Fox Enterprises is considering six projects for possible construction over the next
four years. Fox can undertake any of the projects partially or completely. A partial
undertaking of a project will prorate both the return and cash outlays proportionately.
The expected (present value) returns and cash outlays for the projects are given in the
following table.

Cash outlay ($1000)

Project Year 1 Year 2 Year 3 Year 4 Return ($1000)

1 10.5 14.4 22 2.4 324.00

2 8.3 12.6 9.5 3.1 358.00

3 10.2 14.2 5.6 42 177.50

4 7.2 10.5 7.5 5.0 148.00

5 12.3 10.1 83 6.3 182.00

6 9.2 7.8 6.9 5.1 123.50
Available funds ($1000) 60.0 70.0 35.0 20.0

(a) Formulate the problem as a linear program, and determine the optimal project mix
that maximizes the total return using AMPL, Solver, or TORA. Ignore the time
value of money.

(b) Suppose that if a portion of project 2 is undertaken, then at least an equal portion
of project 6 must be undertaken. Modify the formulation of the model, and find the
new optimal solution.

(¢) In the original model, suppose that any funds left at the end of a year are used in
the next year. Find the new optimal solution, and determine how much each year
“borrows” from the preceding year. For simplicity, ignore the time value of money.

(d) Suppose in the original model the yearly funds available for any year can be exceeded,
if necessary, by borrowing from other financial activities within the company. Ignoring
the time value of money, reformulate the LP model, and find the optimum solution.
Would the new solution require borrowing in any year? If so, what is the rate of return
on borrowed money?

Investor Doe has $10,000 to invest in four projects. The following table gives the cash
flow for the four investments.

Cash flow ($1000) at the start of

Project Year 1 Year 2 Year 3 Year 4 Year 5
1 —1.00 0.50 0.30 1.80 1.20
2 —1.00 0.60 0.20 1.50 1.30
3 0.00 —1.00 0.80 1.90 0.80
4 —1.00 0.40 0.60 1.80 0.95
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The information in the table can be interpreted as follows: For project 1, $1.00 invested
at the start of year 1 will yield $.50 at the start of year 2, $.30 at the start of year 3, $1.80
at the start of year 4, and $1.20 at the start of year 5. The remaining entries can be in-
terpreted similarly. The entry 0.00 indicates that no transaction is taking place. Doe has
the additional option of investing in a bank account that earns 6.5% annually. All funds
accumulated at the end of 1 year can be reinvested in the following year. Formulate the
problem as a linear program to determine the optimal allocation of funds to investment
opportunities. Solve the model using Solver or AMPL.

HiRise Construction can bid on two l-year projects. The following table provides the
quarterly cash flow (in millions of dollars) for the two projects.

Cash flow (in millions of §) at

Project January 1 April 1 July 1 October 1 December 31

I -1.0 -3.1 -15 1.8 5.0
II -3.0 -2.5 1.5 1.8 2.8

HiRise has cash funds of $1 million at the beginning of each quarter and may borrow
at most $1 million at a 10% nominal annual interest rate. Any borrowed money must
be returned at the end of the quarter. Surplus cash can earn quarterly interest at an
8% nominal annual rate. Net accumulation at the end of one quarter is invested in the
next quarter.

(a) Assume that HiRise is allowed partial or full participation in the two projects.
Determine the level of participation that will maximize the net cash accumulated on
December 31. Solve the model using Solver or AMPL.

(b) Isit possible in any quarter to borrow money and simultaneously end up with surplus
funds? Explain.
In anticipation of the immense college expenses, Joe and Jill started an annual investment

program on their child’s eighth birthday that will last until the eighteenth birthday. They
plan to invest the following amounts at the beginning of each year:

Year 1 2 3 4 5 6 7 8 9 10
Amount (§) 2000 2000 2500 2500 3000 3500 3500 4000 4000 5000

To avoid unpleasant surprises, they want to invest the money safely in the following
options: insured savings with 7.5% annual yield, 6-year government bonds that yield
7.9% and have a current market price equal to 98% of face value, and 9-year municipal
bonds yielding 8.5% and having a current market price of 1.02 of face value. How should
the money be invested?

A business executive has the option to invest money in two plans: Plan A guarantees that
each dollar invested will earn $.70 a year later, and plan B guarantees that each dollar
invested will earn $2 after 2 years. In plan A, investments can be made annually, and

in plan B, investments are allowed for periods that are multiples of 2 years only. How
should the executive invest $100,000 to maximize the earnings at the end of 3 years?
Solve the model using Solver or AMPL.

A gambler plays a game that requires dividing bet money among four choices. The game
has three outcomes. The following table gives the corresponding gain or loss per dollar
for the different options of the game.
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Return per dollar deposited in choice

Outcome 1 2 3 4
1 -3 4 =7 15
2 5 -3 9 4
3 3 -9 10 -8

The gambler has a total of $1500, which may be played only once. The exact outcome of
the game is not known a priori. Because of this uncertainty, the gambler’s strategy is to
maximize the minimum return produced by the three outcomes. How should the gambler
allocate the $1500 among the four choices? Solve the model using Solver or AMPL.
(Hint: The gambler’s net return may be positive, zero, or negative.)

Lewis (1996). Bills in a household are received monthly (e.g., utilities and home mort-
gage), quarterly (e.g., estimated tax payments), semiannually (e.g., insurance), or annually
(e.g., subscription renewals and dues). The following table provides the monthly bills for
next year.

Month | Jan. Feb. Mar. Apr. May June July Aug Sep. Oct. Nov. Dec. | Total

$ 800 1200 400 700 600 900 1500 1000 900 1100 1300 1600 | 12,000

To account for these expenses, the family sets aside $1000 per month, which is the
average of the total divided by 12 months. If the money is deposited in a regular savings
account, it can earn 4% annual interest, provided it stays in the account at least 1 month.
The bank also offers 3-month and 6-month certificates of deposit that can earn 5.5%
and 7% annual interest, respectively. Develop a 12-month investment schedule that will
maximize the family’s total return for the year. State any assumptions or requirements
needed to reach a feasible solution. Solve the model using Solver or AMPL.

Toolco has contracted with AutoMate to supply their automotive discount stores with
wrenches and chisels. AutoMate’s weekly demand consists of at least 1570 wrenches and
1250 chisels. Toolco cannot produce all the requested units with its present one-shift ca-
pacity, and must use overtime and possibly subcontract with other tool shops. The result
is an increase in the production cost per unit, as shown in the following table. Market
demand restricts the ratio of chisels to wrenches to at least 2:1.

Weekly production
Tool Production type range (units) Unit cost ($)
Wrenches Regular 0-500 2.00
Overtime 501-800 2.80
Subcontracting 801—o0 3.00
Chisel Regular 0-620 2.10
Overtime 621-900 3.20
Subcontracting 901 -0 4.20

(a) Formulate the problem as a linear program, and determine the optimum production
schedule for each tool.

(b) Explain why the validity of the model is dependent on the fact that the unit produc-
tion cost is an increasing function of the production quantity.

(¢) Solve the model using AMPL, Solver, or TORA.
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Four products are processed sequentially on three machines. The following table gives
the pertinent data of the problem.

Manufacturing time (hr) per unit

Machine Costper hr (§)  Product1  Product2  Product3  Product4  Capacity (hr)
1 10 2 3 4 2 500
2 S 3 2 1 2 380
3 4 7 3 2 1 450
Unit selling
price (§) 75 70 55 45

Formulate the problem as an LP model and find the optimum solution using AMPL, Solver,
or TORA.

A manufacturer produces three models, I, I, and III, of a certain product using raw
materials A and B. The following table gives the data for the problem.

Requirements per unit

Raw material 1 11 111 Availability
A 2 3 5 4000
B 4 2 7 6000

Minimum demand 200 200 150
Price per unit ($) 30 20 50

The labor time per unit of model I is twice that of IT and three times that of III. The
entire labor force of the factory can produce the equivalent of 1500 units of model I.
Market requirements specify the ratios 3:2:5 for the production of the three respective
models. Formulate the problem as a linear program and find the optimum solution using
AMPL, Solver, or TORA.

The demand for ice cream at All-Flavors Parlor during the three summer months (June,
July, and August) is estimated at 500, 600, and 400 20-gallon cartons, respectively. Two
wholesalers, 1 and 2, supply All-Flavors with its ice cream. Although the flavors from the
two suppliers are different, they are interchangeable. The maximum number of cartons
either supplier can provide is 400 per month. Also, the price the two suppliers charge
change monthly according to the following schedule:

Price per carton in month

June July August
Supplier 1 $100 $110 $120
Supplier 2 $115 $108 $125

To take advantage of price fluctuation, All-Flavors can purchase more than is needed
for a month and store the surplus to satisfy the demand in a later month. The storage
cost of an ice cream carton is $5 per month. It is realistic in the present situation to
assume that the storage cost is a function of the average number of cartons on hand
during the month. Develop a model to determine the optimum schedule for buying
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ice cream from the two suppliers and find the optimum solution using TORA, Solver,
or AMPL.

The demand for an item over the next four quarters is 280, 400, 450, and 300 units,
respectively. The price per unit starts at $20 in the first quarter and increases by $1 each
quarter thereafter. The supplier can provide no more than 400 units in any one quarter.
Although we can take advantage of lower prices in early quarters, a storage cost of $3.80
is incurred per unit per quarter. In addition, the number of units that can be held over
from one quarter to the next must be 80 or less. Develop an LP model to determine the
optimum schedule for purchasing the item to meet the demand, and find the optimum
solution using AMPL, Solver, or TORA.

A company has contracted to produce two products, A and B, over the months of June,
July, and August. The total production capacity (expressed in hours) varies monthly.
The following table provides the basic data of the situation:

June July August
Demand for A (units) 500 5000 750
Demand for B (units) 1000 1200 1200
Capacity (hours) 3000 3500 3000

The production rates in units per hour are .75 and 1 for products A and B, respectively.
All demand must be met. However, demand for a later month may be filled from the
production in an earlier one. For any carryover from one month to the next, holding
costs of $.90 and $.75 per unit per month are charged for products A and B, respectively.
The unit production costs for the two products are $30 and $28 for A and B, respectively.
Develop an LP model to determine the optimum production schedule for the two prod-
ucts and find the optimum solution using AMPL, Solver, or TORA.

The manufacturing process of a product consists of two successive operations, [ and II.
The following table provides the pertinent data over the months of June, July, and August:

June July August
Finished product demand (units) 500 450 600
Capacity of operation I (hr) 800 700 550
Capacity of operation II (hr) 1000 850 700

Producing a unit of the product takes .6 hr on operation I plus .8 hr on operation II.
Overproduction of either the semifinished product (operation I) or the finished product
(operation II) in any month is allowed for use in a later month. The respective holding costs
for operations I and II are $.20 and $.40 per unit per month. The production cost varies by
operation and by month. For operation 1, the unit production cost is $10, $12, and $11 for June,
July, and August. For operation 2, the corresponding unit production cost is $15, $18, and $16.
Develop an LP model to determine the optimal production schedule for the two operations
over the 3-month horizon and find the optimum solution using AMPL, Solver, or TORA.
Two products are manufactured sequentially on two machines. The time available on
each machine is 8 hours per day and may be increased by up to 4 hours of overtime, if
necessary, at an additional cost of $110 per hour. The table below gives the production
rate on the two machines as well as the price per unit of the two products. Develop an
LP model to determine the optimum production schedule, and the recommended use of
overtime, if any. Solve the problem using AMPL, Solver, or TORA.
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Production rate (units/hr)

Product 1 Product 2
Machine 1 5 5
Machine 2 8 4
Price per unit ($) 120 128

In the bus scheduling example suppose that buses can run either 8- or 12-hr shifts. If a bus runs
for 12 hr, the driver must be paid for the extra hours at 150% of the regular hourly pay. Do
you recommend the use of 12-hr shifts? Solve the new model using AMPL, Solver, or TORA.

A hospital employs volunteers to staff the reception desk between 8:00 A.m. and 10:00 p.m.
Each volunteer works three consecutive hours except for those starting at 8:00 p.M. who
work for two hours only. The minimum need for volunteers is approximated by a step
function over 2-hour intervals starting at 8:00 A.M. as 8,6, 8, 6,4, 6, and 5. Because most
volunteers are retired individuals, they are willing to offer their services at any hour of the
day (8:00 a.M. to 10:00 p.m.). However, because of the large number of charities compet-
ing for their service, the number needed must be kept as low as possible. Determine an
optimal schedule (using AMPL, Solver, or TORA) for the start time of the volunteers.

In Problem 2-56, suppose that no volunteers will start at 2:00 p.m. or 7:00 p.M. to allow
for lunch and dinner. Develop the LP, and determine the optimal schedule using AMPL,
Solver, or TORA.

In an LTL (less-than-truckload) trucking company, terminal docks include casual work-
ers who are hired temporarily to account for peak loads. At the Omaha, Nebraska dock,
the minimum demand for casual workers during the seven days of the week (starting on
Monday) is 12,20, 14, 10, 15, 18, and 10 workers. Each worker is contracted to work five
consecutive days. Develop the LP model, and determine an optimal weekly hiring practice
of casual workers for the company using AMPL, Solver, or TORA.

On most U.S. university campuses, students are contracted by academic departments to
do errands, such as answering the phone and typing. The need for such service fluctu-
ates during work hours (8:00 A.M. to 5:00 p.M.). In one department, the minimum num-
ber of students needed is 2 between 8:00 A.m. and 10:00 A.M., 4 between 10:01 A.M. and
11:00 A.M., 3 between 11:01 a.m. and 1:00 p.M., and 2 between 1:01 p.m. and 5:00 p.m. Each
student is allotted 3 consecutive hours (except for those starting at 3:01, who work for 2
hours, and those who start at 4:01, who work for 1 hour). Because of their flexible sched-
ule, students can usually report to work at any hour during the work day, except that no
student wants to start working at lunch time (12:00 noon). Develop the LP model, and
determine a time schedule specifying the time of the day and the number of students
reporting to work. Use AMPL, Solver, or TORA to determine the solution.

A large department store operates 7 days a week. The manager estimates that the
minimum number of salespersons required to provide prompt service is 12 for Monday,
18 for Tuesday, 20 for Wednesday, 28 for Thursday, 32 for Friday, and 40 for each of
Saturday and Sunday. Each salesperson works 5 days a week, with the two consecutive
off-days staggered throughout the week. For example, if 10 salespersons start on Monday,
2 can take their off-days on Tuesday and Wednesday, 5 on Wednesday and Thursday, and
3 on Saturday and Sunday. How many salespersons should be contracted, and how should
their off-days be allocated? Use AMPL, Solver, or TORA to find the solution.

A realtor is developing a rental housing and retail area. The housing area consists of ef-
ficiency apartments, duplexes, and single-family homes. Maximum demand by potential
renters is estimated to be 500 efficiency apartments, 300 duplexes, and 250 single-family
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homes, but the number of duplexes must equal at least 50% of the number of efficiency
apartments and single homes. Retail space is proportionate to the number of home units
at the rates of at least 12 ft?, 18 ft%, and 20 ft” for efficiency, duplex, and single family units,
respectively. However, land availability limits retail space to no more than 15,000 ft%.

The monthly rental income is estimated at $650, $800, and $1500 for efficiency-, duplex-,
and single-family units, respectively. The retail space rents for $120/ft>. Develop an LP
model to determine the optimal retail space area and the number of family residences,
and find the solution using AMPL, Solver, or TORA.

The city council of Fayetteville is in the process of approving the construction of a new
180,000-ft> convention center. Two sites have been proposed, and both require exercising
the “eminent domain” law to acquire the property. The following table provides data about
proposed (contiguous) properties in both sites together with the acquisition cost.

Site 1 Site 2

Property  Area (1000 ft?)  Cost (1000$)  Area (1000 ft?)  Cost (1000 $)

1 20 1,000 80 2,800
2 50 2,100 60 1,900
3 50 2,350 50 2,800
4 30 1,850 70 2,500
5 60 2,950

Partial acquisition of property is allowed. At least 80% of property 4 must be acquired if site
1is selected, and at least 60% of property 3 must be acquired if site 2 is selected. Although
site 1 property is more expensive (on a per ft? basis), the construction cost is less than at

site 2, because the infrastructure at site 1 is in a much better shape. Construction cost is $30
million at site 1 and $32 million at site 2. Which site should be selected, and what properties
should be acquired? Find the solution using AMPL, Solver, or TORA.

A city will undertake five urban renewal housing projects over the next 5 years. Each
project has a different starting year and a different duration. The following table provides
the basic data of the situation:

Cost Annual income
Year 1 Year 2 Year3  Year4 Year5  (million $) (million §)
Project 1 Start End 5.0 .05
Project 2 Start End 8.0 .07
Project 3 Start End 15.0 15
Project 4 Start End 12 .02
Budget
(million §) 3.0 6.0 7.0 7.0 7.0

Projects 1 and 4 must be finished completely within their durations. The remaining two
projects can be finished partially within budget limitations, if necessary. However, each
project must be at least 25% completed within its duration. At the end of each year,
the completed section of a project is immediately occupied by tenants, and a propor-
tional amount of income is realized. For example, if 40% of project 1 is completed in
year 1 and 60% in year 3, the associated income over the 5-year planning horizon is

4 X $50,000 (for year 2) + .4 X $50,000 (for year 3) + (.4 + .6) X $50,000
(foryear 4) + (.4 + .6) X $50,000 (for year 5) = (4 X .4) + (2 X .6) X $50,000.
Develop an LP model to determine the schedule for the projects that will maximize
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the total income over the 5-year horizon, and find the solution using AMPL, Solver, or
TORA. For simplicity, disregard the time value of money.

The city of Fayetteville is embarking on an urban renewal project that will include lower-
and middle-income row housing, upper-income luxury apartments, and public housing.
The project also includes a public elementary school and retail facilities. The size of

the elementary school (number of classrooms) is proportional to the number of pupils,
and the retail space is proportional to the number of housing units. The following table
provides the pertinent data of the situation:

Lower  Middle  Upper Public School  Retail

income income income  housing room unit
Minimum number of units 100 125 75 300 0
Maximum number of units 200 190 260 600 25
Lot size per unit (acre) .05 .07 .03 .025 .045 1
Average number of pupils per unit 1.3 12 N 1.4
Retail demand per unit (acre) .023 .034 .046 .023 .034
Annual income per unit ($) 7,000 12,000 20,000 5,000 — 15,000

The new school can occupy a maximum of 2 acres. Class size is limited to 25 students per
room. The operating annual cost per schoolroom is $10,000. The project will be located
on a 50-acre vacant property owned by the city. Additionally, the project can make use of
an adjacent property occupied by 200 condemned slum homes. Each condemned home
occupies .25 acre. The cost of buying and demolishing a slum unit is $7000. Open space,
streets, and parking lots consume 15% of total available land.

Develop a linear program to determine the optimum plan for the project, and find
the solution using AMPL, Solver, or TORA.

Realco owns 900 acres of undeveloped land on a scenic lake in the heart of the Ozark
Mountains. In the past, little or no regulation was imposed upon new developments
around the lake. The lake shores are now dotted with vacation homes, and septic tanks
are in extensive use, most of them improperly installed. Over the years, seepage from the
septic tanks led to severe water pollution. To curb further degradation of the lake, county
officials have approved stringent ordinances applicable to all future developments:

(1) Only single-, double-, and triple-family homes can be constructed, with single-family
homes accounting for at least 50% of the total. (2) To limit the number of septic tanks,
minimum lot sizes of 2,3, and 5 acres are required for single-, double-, and triple-family
homes, respectively. (3) Recreation areas of 1 acre each must be established at the rate
of one area per 220 families. (4) To preserve the ecology of the lake, underground water
may not be pumped out for house or garden use. The president of Realco is studying

the possibility of developing the 800-acre property. The new development will include
single-, double-, and triple-family homes. It is estimated that 15% of the acreage will be
allocated to streets and utility easements. Realco estimates the returns from the different
housing units as follows:

Housing unit Single Double Triple

Net return per unit ($) 12,000 15,000 18,000

The cost of connecting water service to the area is proportionate to the number of
units constructed. However, the county charges a minimum of $120,000 for the project.
Additionally, the expansion of the water system beyond its present capacity is limited to
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220,000 gallons per day during peak periods. The following data summarize the water
service connection cost as well as the water consumption, assuming an average size family:

Housing unit Single Double Triple Recreation
Water service connection cost per unit ($) 1000 1200 1400 800
Water consumption per unit (gal/day) 400 600 840 450

Develop an LP model to determine the optimal plan for Realco, and find the solution
using AMPL, Solver, or TORA.

Consider the Realco model of Problem 2-65. Suppose that an additional 100 acres of
land can be purchased for $450,000, which will increase the total acreage to 900 acres.

Is this a profitable deal for Realco?

Hi-V produces three types of canned juice drinks, A, B, and C, using fresh strawber-

ries, grapes, and apples. The daily supply is limited to 200 tons of strawberries, 90 tons of
grapes, and 150 tons of apples. The cost per ton of strawberries, grapes, and apples is $210,
$110, and $100, respectively. Each ton makes 1500 Ib of strawberry juice, 1200 Ib of grape
juice, and 1000 1b of apple juice. Drink A is a 1:1 mix of strawberry and apple juice. Drink
B is 1:1:2 mix of strawberry, grape, and apple juice. Drink Cis a 2:3 mix of grape and apple
juice. All drinks are canned in 16-oz (1 1b) cans. The price per can is $1.15, $1.25, and $1.20
for drinks A, B, and C. Develop an LP model to determine the optimal production mix of
the three drinks, and find the solution using AMPL, Solver, or TORA.

A hardware store packages handyman bags of screws, bolts, nuts, and washers. Screws come
in 100-1b boxes and cost $120 each, bolts come in 100-1b boxes and cost $175 each, nuts
come in 80-Ib boxes and cost $75 each, and washers come in 30-1b boxes and cost $25 each.
The handyman package weighs at least 1 1b and must include, by weight, at least 10% screws
and 25% bolts, and at most 15% nuts and 10% washers. To balance the package, the number
of bolts cannot exceed the number of nuts or the number of washers. A bolt weighs 10 times
as much as a nut and 50 times as much as a washer. Develop an LP model to determine the
optimal mix of the package, and find the solution using AMPL, Solver, or TORA.

All-Natural Coop makes three breakfast cereals, A, B, and C, from four ingredients:
rolled oats, raisins, shredded coconuts, and slivered almonds. The daily availabilities of
the ingredients are 5 tons, 2 tons, 1 ton, and 1 ton, respectively. The corresponding costs
per ton are $100, $120, $110, and $200, respectively. Cereal A is a 50:5:2 mix of oats,
raisins, and almond. Cereal B is a 60:2:3 mix of oats, coconut, and almond. Cereal Cis a
60:3:4:2 mix of oats, raisins, coconut, and almond. The cereals are produced in jumbo 5-1b
sizes. All-Natural sells A, B, and C at $2.00, $2.50, and $3.00 per box, respectively. The
minimum daily demand for cereals A, B, and C is 500, 600, and 500 boxes, respectively.
Develop an LP model to determine the optimal production mix of the cereals and the
associated amounts of ingredients, and find the solution using AMPL, Solver, or TORA.

A refinery manufactures two grades of jet fuel, F'1 and F2, by blending four types of
gasoline, A, B, C, and D. Fuel F1 uses gasolines A, B, C,and D in the ratio 1:1:2:4, and
fuel F2 uses the ratio 2:2:1:3. The supply limits for A, B, C,and D are 1000, 1200, 900, and
1500 bbl/day, respectively. The costs per bbl for gasolines A, B, C, and D are $120, $90,
$100, and $150, respectively. Fuels F1 and F2 sell for $200 and $250 per bbl, respectively.
The minimum demand for F1 and F2 is 200 and 400 bbl/day, respectively. Develop an

LP model to determine the optimal production mix for F1 and F2, and find the solution
using AMPL, Solver, or TORA.

An oil company distills two types of crude oil, A and B, to produce regular and
premium gasoline and jet fuel. There are limits on the daily availability of crude oil
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and the minimum demand for the final products. If the production is not sufficient
to cover demand, the shortage must be made up from outside sources at a penalty.
Surplus production will not be sold immediately and will incur storage cost.

The following table provides the data of the situation:

Fraction yield per bbl

Crude Regular ~ Premium  Jet  Price/bbl (§) bbl/day
Crude A 20 1 25 30 2500
Crude B 25 3 .10 40 3000
Demand (bbl/day) 500 700 400
Revenue ($/bbl) 50 70 120
Storage cost for surplus

production ($/bbl) 2 3 4
Penalty for unfilled

demand ($/bbl) 10 15 20

Develop an LP model to determine the optimal product mix for the refinery, and find the
solution using AMPL, Solver, or TORA.

In the refinery situation of Problem 2-71, suppose that the distillation unit actually
produces the intermediate products naphtha and light oil. One bbl of crude A produces
.35 bbl of naphtha and .6 bbl of light oil, and one bbl of crude B produces .45 bbl of
naphtha and .5 bbl of light oil. Naphtha and light oil are blended to produce the three
final gasoline products: One bbl of regular gasoline has a blend ratio of 2:1 (naphtha to
light oil), one bbl of premium gasoline has a blend ratio of 1:1, and one bbl of jet fuel has
a blend ratio of 1:2. Develop an LP model to determine the optimal production mix, and
find the solution using AMPL, Solver, or TORA.

Hawaii Sugar Company produces brown sugar, processed (white) sugar, powdered sugar,
and molasses from sugarcane syrup. The company purchases 4000 tons of syrup weekly
and is contracted to deliver at least 25 tons weekly of each type of sugar. The production
process starts by manufacturing brown sugar and molasses from the syrup. A ton of
syrup produces .3 ton of brown sugar and .1 ton of molasses. White sugar is produced by
processing brown sugar. It takes 1 ton of brown sugar to produce .8 ton of white sugar.
Powdered sugar is produced from white sugar through a special grinding process that has
a 95% conversion efficiency (1 ton of white sugar produces .95 ton of powdered sugar).
The profits per ton for brown sugar, white sugar, powdered sugar, and molasses are

$150, $200, $230, and $35, respectively. Formulate the problem as a linear program, and
determine the weekly production schedule using AMPL, Solver, or TORA.

Shale Oil refinery blends two petroleum stocks, A and B, to produce two high-octane
gasoline products, I and II. Stocks A and B are produced at the maximum rates of 450
and 700 bbl/hr, respectively. The corresponding octane numbers are 98 and 89, and the
vapor pressures are 10 and 8 1b/in?. Gasoline I and gasoline I must have octane num-
bers of at least 91 and 93, respectively. The vapor pressure associated with both products
should not exceed 12 Ib/in. The profits per bbl of I and II are $7 and $10, respectively.
Develop an LP model to determine the optimum production rate for I and II and their
blend ratios from stocks A and B, and find the solution using AMPL, Solver, or TORA.
(Hint: Vapor pressure, like the octane number, is the weighted average of the vapor
pressures of the blended stocks.)

A foundry smelts steel, aluminum, and cast iron scraps to produce two types of metal
ingots, I and II, with specific limits on the aluminum, graphite, and silicon contents.
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Aluminum and silicon briquettes may be used in the smelting process to meet the desired
specifications. The following tables set the specifications of the problem:

Contents (%)

Input item Aluminum Graphite  Silicon ~ Cost/ton ($)  Available (tons/day)
Steel scrap 10 5 4 100 1000
Aluminum scrap 95 1 2 150 500
Cast iron scrap 0 15 8 75 2500
Aluminum briquette 100 0 0 900 Any amount
Silicon briquette 0 0 100 380 Any amount
Ingot I (%) Ingot I1 (%)

Ingredient Minimum  Maximum Minimum  Maximum

Aluminum 8.1 10.8 6.2 8.9

Graphite 15 3.0 41 ®

Silicon 2.5 0 2.8 4.1

Demand (tons/day) 130 250

Develop an LP model to determine the optimal input mix the foundry should smelt, and
find the solution using AMPL, Solver, or TORA.

Two alloys, A and B, are made from four metals, I, IT, ITI, and IV, according to the follow-
ing specifications:

Alloy Specifications Selling price ($)

A At most 80% of I 200
At most 30% of 11
At least 50% of IV

B Between 40% and 60% of 11 300
At least 30% of 111
At most 70% of IV

The four metals are extracted from three ores according to the following data:

Constituents (%)

Maximum quantity

Ore (tons) 1 11 11 v Others Price/ton ($)
1 1000 20 10 30 30 10 30
2000 10 20 30 30 10 40
3 3000 5 5 70 20 0 50

Develop an LP model to determine how much of each type of alloy should be produced,
and find the solution using AMPL, Solver, or TORA. (Hint: Let Xy be tons of ore i
allocated to alloy k, and define wy, as tons of alloy k produced.)

Shelf Space Allocation. A grocery store must decide on the shelf space to be allocated to
each of five types of breakfast cereals. The maximum daily demand is 110, 80, 150, 85, and
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100 boxes, respectively. The shelf space in square inches for the respective boxes is 15,25, 16,
20, and 22. The total available shelf space is 5000 in”. The profit per unit is $1.10, $1.30, $1.08,
$1.25, and $1.20, respectively. Determine the optimal space allocation for the five cereals.

Voting on Issues. In a particular county in the State of Arkansas, four election issues are on
the ballot: Build new highways, increase gun control, increase farm subsidies, and increase
gasoline tax. The county includes 100,000 urban voters, 250,000 suburban voters, and
50,000 rural voters, all with varying degrees of support for and opposition to, election issues.
For example, rural voters are opposed to gun control and gas tax and in favor of road build-
ing and farm subsidies. The county is planning a TV advertising campaign with a budget of
$100,000 at a cost of $1500 per ad. The following table summarizes the impact of a single
ad in terms of the number of pro and con votes as a function of the different issues:

Expected number of pro (+) and
con (—) votes per ad

Issue Urban Suburban Rural

New highways —30,000 +60,000 +30,000
Gun control +80,000 +30,000 —45,000
Smog control +40,000 410,000 0
Gas tax -+90,000 0 —25,000

An issue will be adopted if it garners at least 51% of the votes. Which issues will be
approved by voters, and how many ads should be allocated to these issues?

2-79. Assembly-Line Balancing. A product is assembled from three different parts. The parts

2-80.

are manufactured by two departments at different production rates as given in the fol-
lowing table:

Production rate (units/hr)

Capacity
Department (hr/wk) Part 1 Part 2 Part 3
1 100 6 8 12
2 90 6 12 4

Determine the maximum number of final assembly units that can be produced weekly.
(Hint: Assembly units = min {units of part 1, units of part 2, and units of part 3}.
Maximize z = min {x;, x,} is equivalent to max z subject to z < x; and z = x;.)

Pollution Control. Three types of coal, C1, C2, and C3, are pulverized and mixed together to
produce 50 tons per hour needed to power a plant for generating electricity. The burning of
coal emits sulfur oxide (in parts per million) which must meet the EPA specifications of no
more than 2000 parts per million. The following table summarizes the data of the situation:

C1 C2 C3
Sulfur (parts per million) 2500 1500 1600
Pulverizer capacity (ton/hr) 30 30 30
Cost per ton $30 $35 $33

Determine the optimal mix of the coals.
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*2-81. Traffic Light Control, Stark and Nicholes (1972). Automobile traffic from three high-

ways, H1, H2, and H3, must stop and wait for a green light before exiting to a toll road.
The tolls are $4, $5, and $6 for cars exiting from H1, H2, and H3, respectively. The flow
rates from H1, H2, and H3 are 550, 650, and 450 cars per hour. The traffic light cycle may
not exceed 2.2 minutes, and the green light on any highway must be at least 22 seconds.
The yellow light is on for 10 seconds. The toll gate can handle a maximum of 500 cars per
hour. Assuming that no cars move on yellow, determine the optimal green time interval
for the three highways that will maximize toll gate revenue per traffic cycle.

Fitting a Straight Line into Empirical Data (Regression). In a 10-week typing class for

beginners, the average speed per student (in words per minute) as a function of the
number of weeks in class is given in the following table.

2-82.

Week, x 1 2 3 4 5 6 7 8 9 10
Words per minute, y 5 9 15 19 21 24 26 30 31 35

Determine the coefficients a and b in the straight-line relationship, y = ax + b, that
best fit the given data. (Hint: Minimize the sum of the absolute value of the deviations
between theoretical § and empirical y. Min |w| is equivalent to min z subject to z = w
and z = —w, z = 0. Alternatively, min |w| is equivalent to min (z* + z~) subject to
w=z —z withz',z7 =0)

2-83. Leveling the Terrain for a New Highway, Stark and Nicholes (1972). The Arkansas

Highway Department is planning a new 10-mile highway on uneven terrain as shown
by the profile in Figure 2.13. The width of the construction terrain is approximately
50 yards. To simplify the situation, the terrain profile can be replaced by a step func-
tion as shown in the figure. Using heavy machinery, earth removed from high terrain
is hauled to fill low areas. There are also two burrow pits, I and II, located at the ends
of the 10-mile stretch from which additional earth can be hauled, if needed. Pit I has
a capacity of 20,000 cubic yards and pit II a capacity of 15,000 cubic yards. The costs
of removing earth from pits I and II are, respectively, $1.50 and $1.90 per cubic yard.

FIGURE 2.13
Terrain profile for Problem 2-83
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The transportation cost per cubic yard per mile is $.15, and the cost of using heavy
machinery to load hauling trucks is $.20 per cubic yard. This means that a cubic yard
from pit I hauled 1 mile will cost a total of (1.5 + .20) + 1 X .15 = $1.85 and a cubic
yard hauled 1 mile from a hill to a fill area will cost .20 + 1 X .15 = $.35. Develop a
minimum cost plan for leveling the 10-mile stretch.

Military Planning, Shepard and Associates (1988). The Red Army (R) is trying to

invade the territory defended by the Blue Army (B). Blue has three defense lines and
200 regular combat units and can draw also on a reserve pool of 200 units. Red plans to
attack on two fronts, north and south. Blue has set up three east-west defense lines, I, I,
and III. The purpose of defense lines 1 and 2 is to delay the Red Army attack by at least
4 days in each line and to maximize the total duration of the battle. The advance time of
the Red Army is estimated by the following empirical formula:

Blue units>

Battle duration in days = a + b
attle duration in days = a (Red units

The constants a and b are a function of the defense line and the north/south front
as the following table shows:

a b
1 11 1 1 11 1
North front .5 75 .55 8.8 7.9 10.2
South front 1.1 1.3 15 10.5 8.1 9.2

The Blue Army reserve units can be used in defense lines II and III only. The allocation
of units by the Red Army to the three defense lines is given in the following table:

Number of Red Army attack units

Defense line 1 Defense line 2 Defense line 3

North front 30 60 20
South front 30 40 20

How should Blue allocate its resources among the three defense lines and the
north/south fronts?

Water Quality Management, Stark and Nicholes (1972). Four cities discharge wastewater
into the same stream. City 1 is upstream, followed downstream by city 2, then city 3, and
then city 4. Measured alongside the stream, the cities are approximately 15 miles apart.
A measure of the amount of pollutants in wastewater is the BOD (biochemical oxygen
demand), which is the weight of oxygen required to stabilize the waste constituent in
water. A higher BOD indicates worse water quality. The EPA sets a maximum allowable
BOD loading, expressed in Ib BOD per gallon. The removal of pollutants from waste-
water takes place in two forms: (1) natural decomposition activity stimulated by the
oxygen in the air, and (2) treatment plants at the points of discharge before the waste
reaches the stream. The objective is to determine the most economical efficiency of each
of the four plants that will reduce BOD to acceptable levels. The maximum possible
plant efficiency is 99%.

To demonstrate the computations involved in the process, consider the following
definitions for plant 1:
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Q; = Stream flow (gal/hr) on the 15-mile reach 1-2 leading to city2
p1 = BOD discharge rate (in lb/hr)
x; = efficiency of plant1 ( = .99)
by = maximum allowable BOD loading in reach1-2 (in 1b BOD/gal)
To satisfy the BOD loading requirement in reach 1-2, we must have
pi(l = x1) = b0y
In a similar manner, the BOD loading constraint for reach 2-3 takes the form

(1 - o) ( BOD discharge ) ( BOD discharge
12\ rate in reach 1-2

> = b0,

rate in reach 2-3
or
(1 = rp)pi(1 — x1) + pa(1 — x3) = b0,

The coefficient 7, (<1) represents the fraction of waste removed in reach 1-2 by decom-
position. For reach 2-3, the constraint is

(1 = r3)[(1 = r2)pi(1 = x1) + pa(1 — x2)] + p3(1 — x3) = b303

Determine the most economical efficiency for the four plants using the following
data (the fraction of BOD removed by decomposition is 6% for all four reaches):

Reach 1-2 Reach 2-3 Reach 2-3 Reach 34
(i=1) (i=2) (i =3) (i=4)

Q; (gal/hr) 215,000 220,000 200,000 210,000
p;i (Ib/hr) 500 3,000 6,000 1,000
b; (Ib BOD/gal) .00085 .0009 .0008 .0008
Treatment cost

($/1b BOD removed) 20 25 15 18

2-86. Loading Structure, Stark and Nichole (1972).The overhead crane in Figure 2.14 with two
lifting yokes is used to transport mixed concrete to a yard for casting concrete barriers.

FIGURE 2.14
Overhead crane with two yokes (Problem 2-86)
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The concrete bucket hangs at midpoint from the yoke. The crane end rails can support a
maximum of 25 kip each, and the yoke cables have a 20-kip capacity each. Determine the
maximum load capacity, Wi and W,. (Hint: At equilibrium, the sum of moments about
any point on the girder or yoke is zero.)

2-87. Allocation of Aircraft to Routes. Consider the problem of assigning aircraft to four routes
according to the following data:

Number of daily trips on route

Capacity Number of
Aircraft type (passengers) aircraft 1 2 3 4
1 50 5 3 2 2 1
2 30 8 4 3 3 2
3 20 10 5 5 4 2
Daily number
of customers 1000 2000 900 1200

The associated costs, including the penalties for losing customers because of space
unavailability, are:

Operating cost ($) per trip on route

Aircraft type 1 2 3 4

1 1000 1100 1200 1500

2 800 900 1,000 1000
600 800 800 900

Penalty ($) per
lost customer 40 50 45 70

Determine the optimum allocation of aircraft to routes, and determine the associated
number of trips.
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CHAPTER 3

The Simplex Method and
Sensitivity Analysis

Real-Life Application—Optimization of Heart Valve Production

Biological heart valves are bioprostheses manufactured in different sizes from porcine
hearts for human implantation. On the supply side, porcine hearts cannot be “produced”
to specific sizes. On the demand side, the exact size of a manufactured valve cannot
be determined until the biological component of a pig heart has been processed. As a
result, some sizes may be overstocked and others understocked. A linear programming
model was developed to reduce the overstocked sizes and increase the quantity of
understocked sizes. The resulting savings exceeded $1,476,000 in 1981, the year the
study was made. Details of the study are presented at the end of the chapter.

LP MODEL IN EQUATION FORM

The development of the simplex method computations is facilitated by imposing two
requirements on the LP model:

1. All the constraints are equations with nonnegative right-hand side.

2. All the variables are nonnegative.!

Converting inequalities into equations with nonnegative right-hand side. To convert
a (=)-inequality to an equation, a nonnegative slack variable is added to the left-hand

lCommercial packages (and TORA) accept inequality constraints, nonnegative right-hand side, and unre-
stricted variables. Preconditioning of the constraints and the variables to conform with the simplex method
requirements is done internally in the software prior to solving the problem.

29
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side of the constraint. For example, the M1-constraint of the Reddy Mikks model
(Example 2.1-1) is converted into an equation as

6)C1 + 4XZ +S1 = 24,S1 =0

The nonnegative variable sy is the slack (or unused amount) of resource M1.

Conversion from (=) to (=) is achieved by subtracting a nonnegative surplus
variable from the left-hand side of the inequality. For example, in the diet model
(Example 2.2-2), the surplus variable S;(=0) converts the (=) feed mix constraint to
the equation

X1+X2_S1:800,S120

The amount of S represents the excess tons of the mix over the required minimum
(= 800 tons).

The only remaining requirement is for the right-hand side of the resulting equa-
tion to be nonnegative. The requirement can be satisfied simply by multiplying both
sides of the equation by —1, if necessary.

Dealing with unrestricted variables. The use of an unrestricted variable in an LP model
is demonstrated in the multiperiod production smoothing model of Example 2.4-4,
where the unrestricted variable §; represents the number of workers hired or fired in
period i. In the same example, the unrestricted variable is replaced by two nonnegative
variables by using the substitution

S, =8 -85 =0,8=0

In this case, S; represents the number of workers hired and S; the number of workers
fired. As explained in Example 2.4-4, it is impossible (both intuitively and mathemati-
cally) that S; and S} assume positive values simultaneously.

TRANSITION FROM GRAPHICAL TO ALGEBRAIC SOLUTION

The development of the algebraic simplex method is based on ideas conveyed by the
graphical LP solution in Section 2.2. Figure 3.1 compares the two methods. In the graph-
ical method, the solution space is the intersection of the half-spaces representing the
constraints, and in the simplex method, the solution space is represented by m simultane-
ous linear equations and n nonnegative variables. We can see that the graphical solution
space has an infinite number of solution points, but how can we draw a similar conclusion
from the algebraic representation of the solution space? The answer is that, in all non-
trivial LPs, the number of equations m is always less than the number of variables #n, thus
yielding an infinite number of solutions (provided the equations are consistent).> For
example, the equation x + y = 1 hasm = 1 and n = 2 and yields an infinite number of
solutions because any point on the straight line x + y = 1 is a solution.

2If the number of (independent) equations m equals the number of variables 7 (and the equations are con-
sistent), the system has exactly one solution. If m is larger than n, then at least m — n equations must be
redundant.
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Graphical Method

Algebraic Method
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Graph all constraints, including nonnegativity
restrictions

Solution space consists of infinity of feasible
points

Represent the solution space by m equations
in n variables and restrict all variables to
nonnegative values, m < n

The system has infinity of feasible solutions

Identify feasible corner points of the solution
space

Determine the feasible basic solutions of the
equations

Candidates for the optimum solution are given
by a finite number of corner points

Candidates for the optimum solution are given
by a finite number of basic feasible solutions

Use the objective function to determine the
optimum corner point from among all the
candidates

Use the objective function to determine the
optimum basic feasible solution from among
all the candidates

FIGURE 3.1

Transition from graphical to algebraic solution

In the algebraic solution space (defined by m X n equations, m < n), basic
solutions correspond to the corner points in the graphical solution space. They are
determined by setting n — m variables equal to zero and solving the m equations for
the remaining m variables, provided the resulting solution is unique. This means that the
maximum number of corner points is

n!
Ch=—"—"
" ml(n —m)!
As with corner points, the basic feasible solutions completely define the candidates for
the optimum solution in the algebraic solutions space.

Example 3.2-1
Consider the following LP with two variables:
Maximize z = 2x; + 3x,
subject to
2x1 + xp, =4
X1+ 2x =5
X1, X =0

Figure 3.2 provides the graphical solution space for the problem.
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FIGURE 3.2

LP Solution space of Example 3.2-1

Algebraically, the solution space of the LP is represented by the following m = 2 equations
and n = 4 variables:

2X1 + X2 + N 4
X1 + 2X2 + Sy = 5
X1, X2, §1, 82 = 0

The basic solutions are determined by setting n — m(= 4 — 2 = 2) variables equal to zero and
solving for the remaining m (= 2) variables. For example, if we set x; = 0 and x, = 0, the equa-
tions provide the unique basic solution

S1:4,S2:5

This solution corresponds to point A in Figure 3.2 (convince yourself that s; = 4 and s, = 5 at
point A). Another point can be determined by setting s; = 0 and s, = 0 and then solving the
resulting two equations
2X1 + Xy = 4
X1 + 2XZ =5
The associated basic solution is (x; = 1,x, = 2), or point C in Figure 3.2.

You probably are wondering which n — m variables should be set equal to zero to target
a specific corner point. Without the benefit of the graphical solution space (which is available
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only for at most three variables), we cannot specify the (n — m) zero variables associated with
a given corner point. But that does not prevent enumerating al// the corner points of the solu-
tion space. Simply consider all combinations in which n — m variables equal zero and solve the
resulting equations. Once done, the optimum solution is the feasible basic solution (corner point)
with the best objective value.

In the present example, the (maximum) number of corner points is C4 = % = 6. Looking
at Figure 3.2, we can spot the four corner points A, B, C, and D. So, where are the remaining
two? In fact, points E and F also are corner points. But, they are infeasible, and, hence, are not
candidates for the optimum.

To complete the transition from the graphical to the algebraic solution, the zero n — m
variables are known as nonbasic variables. The remaining m variables are called basic variables,
and their solution (obtained by solving the m equations) is referred to as basic solution. The
following table provides all the basic and nonbasic solutions of the current example.

Nonbasic (zero) Associated Objective
variables Basic variables Basic solution corner point Feasible? value, z
(xl, XZ) (Sl, Sz) (4, 5) A Yes 0
(xlvsl) (XZ’ 52) (47 _3) F No -
(Xl, S2) (xz, Sl) (2.5, 15) B Yes 7.5
(x2,81) (x1,82) 2,3) D Yes 4
(X2,52) (X],Sl) (5’_6) E No -
(515 52) (x1,%2) 1,2) c Yes 8
(optimum)

Remarks. We can see from the preceding illustration that, as the size of the problem increases,
enumerating all the corner points becomes a prohibitive task. For example, for m = 10 and
n = 20, it is necessary to solve C%8(= 184,756) sets of 10 X 10 equations, a staggering task,
particularly when we realize that a (10 X 20)-LP is a very small size (real-life LPs can include
thousands of variables and constraints). The simplex method alleviates this computational
burden dramatically by investigating only a subset of all possible basic feasible solutions (corner
points). This is what the simplex algorithm does.

THE SIMPLEX METHOD

Rather than enumerating all the basic solutions (corner points) of the LP problem (as
we did in Section 3.2), the simplex method investigates only a “select few” of these
solutions. Section 3.3.1 describes the iterative nature of the method, and Section 3.3.2
provides the computational details of the simplex algorithm.

Iterative Nature of the Simplex Method

Figure 3.3 provides the solution space of the LP of Example 3.2-1. For the sake of
standardizing the algorithm, the simplex method always starts at the origin where all
the decision variables, x;,j = 1,2, ..., n, are zero. In Figure 3.3, point A is the origin
(x; = x, = 0) and the associated objective value, z, is zero. The logical question now is
whether an increase in the values of nonbasic x; and x, above their current zero values
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\ Optimum (x; = 1, x, = 2)
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FIGURE 3.3

Iterative process of the simplex method

can improve (increase) the value of z. We can answer this question by investigating the
objective function:

Maximine z = 2x; + 3x,

An increase in x; or x, (or both) above their current zero values will improve the value
of z. The design of the simplex method does not allow simultaneous increases in vari-
ables. Instead, it targets the variables one at a time. The variable slated for increase is
the one with the largest rate of improvement in z. In the present example, the rate of
improvement in the value of z is 2 for x; and 3 for x,. We thus elect to increase x, (the
variable with the largest rate of improvement among all nonbasic variables). Figure 3.3
shows that the value of x, must be increased until corner point B is reached (recall
from Figure 3.1 that stopping short of corner point B is not an option because a can-
didate for the optimum must be a corner point). At point B, the simplex method, as
will be explained later, will then increase the value of x; to reach the improved corner
point C, which is the optimum.

The path of the simplex algorithm always connects corner points. In the present
example the path to the optimum is A — B — C. Each corner point along the path is
associated with an iteration. It is important to note that the simplex method always
moves alongside the edges of the solution space, which means that the method does
not cut across the solution space. For example, the simplex algorithm cannot go from
A to C directly.
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Aha! Moment: The Birth of Optimization, or How Dantzig Developed
the Simplex Method.3

Nobel Laureate Russian mathematician Leonid Kantorovich (1912-1986) is regarded as the
founder of the theory of linear programming. But it was the simplex algorithm developed by
American mathematician Goerge B. Dantzig (1914-2005) that rendered (large) LPs solvable
in practice. The success of Dantzig’s algorithm ushered innovative developments in previously
unexplored areas of optimization.

Dantzig spent his early career during WWII as a mathematical advisor to the Pentagon
where “[He] was asked to find a way to more rapidly compute time-staged deployment, train-
ing, and logistical supply program.” His development was influenced by the Input-Output
Economy Model developed by Nobel Laureate Wassily Leontief (1906-1999). Leontief’s
model utilized a matrix that quantified the one-to-one correspondence between the produc-
tion processes and the items produced by these processes for the purpose of determining the
effect of changes in one economic sector on other sectors. Dantzig extended this fundamental
idea to include alternative activities, culminating with his Activity Analysis Model that essen-
tially consisted of linear equations and inequalities that defined the feasible solution space.
Dantzig’s initial model faced two significant hurdles: (1) It was very large, making computabil-
ity (in the absence of the “digital” computer) an insurmountable issue. (2) The model had no
objective function because the goal of the model was usually stated in “fuzzy” ad hoc ground
rules.* In the end, Dantzig devised the optimized (maximized or minimized) objective function,
a concept that he asserted was largely unknown prior to 1947 because of what he called model
“incomputability.” Dantzig considered the concept of using an optimized function to be “revo-
lutionary” and credited it with paving the way for the discovery of his simplex method. The new
algorithm has stood the test of time and opened the door for the development of today’s rich
field of mathematical optimization.

Dantzig demonstrates the effectiveness of linear programming by citing the (by today’s
standards modest-size) example of finding the best assignment of 70 people (with different
skills and hence different costs) to 70 jobs (see Section 5.4). Even with fastest current-day com-
puters, the time needed to enumerate all 70!(>10'%) permutations is prohibitively staggering.
By comparison, it takes but a moment to solve the resulting (140 X 4900) linear program
because the simplex method evaluates only a fraction of the feasible extreme points of the
solution space.

Computational Details of the Simplex Algorithm

This section provides the computational details of a simplex iteration. The vehicle of
explanation is a numerical example.

You will shortly discover that the simplex method computations are repetitious, tedious,
and voluminous. Nevertheless, it is imperative that you experience these hand com-
putations, if only to appreciate the indispensable role of the computer in solving OR
problems. And even though in practice you may never solve an LP by hand, the present
experience is important because it provides you with an understanding of how and why
the algorithm works. In that context, [ recommend that you maintain a mental image of

3Dantzig, G. B. “Linear Programming,” Operations Research, Vol. 15, No. 1,2002, pp. 4247

“Dantzig states that when the military commanders were asked about their perception of the goal of his
Activity Analysis Model, the response was “to win the war building better bombers and battleships.”
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the graphical solution space displayed with Example 3.3-1 to gain insight into the close
association between the algebraic iteration and the graphical corner point. In particular,
at the end of each iteration, read the resulting solution point directly from the simplex
tableau and then locate its corresponding corner point on the graphical solution space. In
this manner, you will have a better understanding of the essence of the simplex method.

Example 3.3-1
Consider the Reddy Mikks model (Example 2.1-1) expressed in equation form:

Maximize z = 5x; + 4x, + Os; + Os, + Os3 + Osy

subject to
6x; + 4x, + 51 = 24 (Raw material M1)
x1 + 2x, + 5 =6 (Raw material M2)
X1+ x + 53 = (Market limit)
X, + s, =2 (Demand limit)

X1, X2, 81, 82, 83, §4 = 0

The variables s, s,, 53, and s4 are the slacks associated with the respective constraints.
Next, we write the objective equation as

z—5x1—4x2=0

In this manner, the starting simplex tableau can be represented as follows:

Basic z X1 X3 S1 S 53 Sy Solution
z 1 =5 —4 0 0 0 0 0 Z-TOW
s1 0 6 4 1 0 0 0 24 §1-TOW
s 0 1 2 0 1 0 0 6 §5-TOW
53 0 -1 1 0 0 1 0 1 §3-TOW
S4 0 0 1 0 0 0 1 2 S4-TOW

The layout of the simplex tableau automatically provides the solution at the starting itera-
tion. The solution starts at the origin [(xy,x,) = (0, 0)], thus defining (x{, x,) as the nonbasic
variables and (s1, 55, 53, 54) as the basic variables. The associated objective z and the basic vari-
ables (s1, 52, 53, 4) are listed in the leftmost Basic-column. Their values, z = 0, s; = 24,5, = 6,
s3 = 1,54 = 2, appearing in the rightmost Solution-column, are given directly by the right-hand
sides of the model’s equations (a convenient consequence of starting at the origin). The result
can be seen by setting the nonbasic variables (x, x,) equal to zero in all the equations, and also
by noting the special identity-matrix arrangement of the constraint coefficients of the basic vari-
ables (all diagonal elements are 1, and all off-diagonal elements are 0).

Is the starting solution optimal? The objective function z = 5x; + 4x, shows that
the solution can be improved by increasing the value of nonbasic x; or x, above zero.
As argued in Section 3.3.1, xy is to be increased because it has the most positive objective
coefficient. Equivalently, in the simplex tableau where the objective function is written as
z — 5x; — 4x, = 0, the selected variable is the nonbasic variable with the most negative coef-
ficient in the objective equation. This rule defines the so-called simplex optimality condition.
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In the terminology of the simplex algorithm, x; is known as the entering variable because it
enters the basic solution.

If x, is the entering variable, one of the current basic variables must leave — that is, it becomes
nonbasic at zero level (recall that the number of nonbasic variable must always be n — m).
The mechanics for determining the leaving variable calls for computing the ratios of the right-
hand side of the equations (Solution column) to the corresponding (strictly) positive constraint
coefficients under the entering variable, x1, as the following table shows.

Entering
Basic X1 Solution Ratio (or intercept)
S1 6 24 x| = %4 = 4 < minimum
—6_
Ay 1 6 X1 =1= 6
53 -1 1 x; = 47 = —1(negative denominator, ignore )
54 0 2 X, = % = o (zero denominator, ignore)

Conclusion: xq enters (at level 4) and sq leaves (at level zero)

How do the computed ratios determine the leaving variable and the value of the entering
variable? Figure 3.4 shows that the computed ratios are actually the intercepts of the constraint
lines with the (entering variable) x;-axis. We can see that the value of x; must be increased to the

FIGURE 3.4
Graphical interpretation of the simplex method ratios in the Reddy Mikks model
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smallest nonnegative intercept with the x;-axis (= 4) to reach corner point B. Any increase beyond
B is infeasible. At point B, the current basic variable s; associated with constraint 1 assumes a zero
value and becomes the leaving variable. The rule associated with the ratio computations is referred
to as the simplex feasibility condition because it guarantees the feasibility of the new solution.

The new solution point B is determined by “swapping” the entering variable x; and the leav-
ing variable s; in the simplex tableau to yield

Nonbasic (zero) variables at B: (sq, x,)
Basic variables at B: (xq, $5, 53, S4)

The swapping process is based on the Gauss-Jordan row operations. It identifies the entering
variable column as the pivot column and the leaving variable row as the pivot row with their
intersection being the pivot element. The following tableau is a restatement of the starting
tableau with its pivot row and column highlighted.

Enter
!
Basic z X1 X 51 b3 S3 54 Solution
z 1 =5 —4 0 0 0 0 0
Leave «— 51 0 6 4 1 0 0 0 24 Pivot row
S 0 1 2 0 1 0 0 6
s3 0 -1 1 0 0 1 0 1
S4 0 0 1 0 0 0 1 2
Pivot
column

The Gauss-Jordan computations needed to produce the new basic solution include two types.

1. Pivot row

a. Replace the leaving variable in the Basic column with the entering variable.
b. New pivot row = Current pivot row + Pivot element

2. All other rows, including z

New row = (Current row) — (Pivot column coefficient) X (New pivot row)
These computations are applied to the preceding tableau in the following manner:

1. Replace s in the Basic column with x;:
New x;-row = Current s;-row + 6
=1(064100024)
(013:0004)

2. New z-row = Current z-row — (—5) X New x;-row
=(1-5-400000)-(-5)x01%2t0004)
=(10-2200020)
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3. New s,-row = Current s,-row — (1) X New x;-row
=(01201006)—(1)x(013%L0004)
=(00%5-t1002)

4. New s3-row = Current s3-row — (—1) X New x;-row
=(071100101)*(71)X(01§%0004)
=(003L0105)

5. New s4-row = Current sy-row — (0) X New x;-row
=00100012)—(0)(013t0004)
=(00100012)

The new basic solution is (x1, 55, 53, 54), and the new tableau becomes

|
Basic z X1 X3 51 k) 53 S4 Solution
z 1 0 -2 2 0 0 0 20
X1 0 1 2 L 0 0 0 4
— 52 0 0 4 -1 1 0 0 2
53 0 0 3 L 0 1 0 5
54 0 0 1 0 0 0 1 2

Observe that the structure of the new tableau is similar to that of the starting tableau, in the
sense that the constraint coefficients of the basic variable form an identity matrix. As a result,
when we set the new nonbasic variables x, and s; to zero, the Solution-column automatically
yields the new basic solution (x; = 4,5, = 2,53 = 5,854 = 2).5 This “conditioning” of the tab-
leau is the result of the application of the Gauss-Jordan row operations. The corresponding new
objective value is z = 20, which is consistent with

New z = Old z + New xy-value X its objective coefficient
=0+4X5=20

Alternatively,z = (4 X x,-value + 0 Xs,-value + 0 X s3-value + 0 X s4-value) = (4 X5+
0X2+0X5+0x2)=20.

In the last tableau, the optimality condition shows that x, (with the most negative z-row
coefficient) is the entering variable. The feasibility condition produces the following information:

Entering
Basic X Solution Ratio
X 5 4 m=4+3=6
52 : 2 x; =2 + % = 1.5(minimum)
53 % 5 X, =5+ % =3
54 1 2 X=2+1=2

>Throughout my teaching experience, I have noticed that while students can carry out the tedious simplex
method computations, in the end some cannot tell what the solution is. To assist in overcoming this potential
difficulty, stress is made on “reading” the solution of the LP from each tableau.
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Thus, s, leaves the basic solution, and the new value of x; is 1.5. The corresponding increase in z is

2x, =% X 1.5 = 1, which yields new z = 20 + 1 = 21, as the tableau below confirms.

Replacing s, in the Basic column with entering x,, the following Gauss-Jordan row opera-
tions are applied:
1. New pivot x,-row = Current s,-row =+ %
2. New z-row = Current z-row — (—3) X New x,-row
3. New x;-row = Current x;-row — (%) X New x,-row
4. New s3-row = Current s3-row — (%) X New x,-row

5. New sy-row = Current s4-row — (1) X New x,-row

The operations above produce the following tableau (verify!):

Basic z X1 Xy 51 K2 53 S4 Solution
z 1 0 0 2 : 0 0 21
X 0 1 0 L -1 0 0 3
x> 0 0 1 -1 3 0 0 2
53 0 0 0 2 -3 1 0 3
54 0 0 0 L -3 0 1 !

Based on the optimality condition, none of the z-row coefficients are negative. Hence, the last
tableau is optimal.

The optimum solution can be read from the simplex tableau in the following manner. The
optimal values of the variables in the Basic column are given in the right-hand-side Solution
column and can be interpreted as

Decision variable Optimum value Recommendation
X1 3 Produce 3 tons of exterior paint daily
X % Produce 1.5 tons of interior paint daily
z 21 Daily profit is $21,000

The solution also gives the status of the resources. A resource is designated as scarce if its
associated slack variable is zero—that is, the activities (variables) of the model have used the
resource completely. Otherwise, if the slack is positive, then the resource is abundant. The follow-
ing table classifies the constraints of the model:

Resource Slack value Status
Raw material, M1 s1=0 Scarce
Raw material, M2 s, =0 Scarce
Market limit 53=13 Abundant
Demand limit s4=1 Abundant
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Remarks. The simplex tableau offers a wealth of additional information that include the following:

1. Sensitivity analysis, which deals with determining the conditions that will keep the current
solution unchanged.

2. Post-optimal analysis, which deals with finding a new optimal solution when the data of the
model are changed.

Section 3.6 deals with sensitivity analysis. Post-optimal analysis is covered in Chapter 4.

TORA Moment

The Gauss-Jordan computations are tedious, voluminous, and, above all, boring. In addition,
they are the least important, because in practice these computations are carried out by the com-
puter. What is important is that you understand how the simplex method works. TORA’s inter-
active user-guided option (with instant feedback) can be of help because it allows you to specify
the course of the simplex computations (i.e., determination of the entering and leaving vari-
ables) without the need to carry out the burdensome Gauss-Jordan calculations. To use TORA
with the Reddy Mikks problem, enter the model and then, from the SOLVE /MODIFY menu,
select Solve = Algebraic = TIterations = All-Slack. (The All-Slack selection in-
dicates that the starting basic solution consists of slack variables only. The remaining
options will be presented in Sections 3.4, 4.3, and 74.2.) Next, click Go To Output Screen .
You can generate one or all iterations by clicking Next Iteration or All Iterations. If you opt
to generate the iterations one at a time, you can interactively specify the entering and leaving
variables by clicking the headings of their respective column and row. If your selections are
correct, the column turns green and the row turns red. Else, an error message is posted.

Summary of the Simplex Method

So far, we have dealt with the maximization case. In minimization problems, the optimality
condition calls for selecting the entering variable as the nonbasic variable with the most
positive objective coefficient in the z-row, the exact opposite rule of the maximization
case. This follows because max z is equivalent to min (—z). As for the feasibility condi-
tion for selecting the leaving variable, the rule remains unchanged.

Optimality condition. The entering variable in a maximization (minimization) problem
is the nonbasic variable with the most negative (positive) coefficient in the z-row. Ties
are broken arbitrarily. The optimum is reached at the iteration where all the z-row coef-
ficients are nonnegative (nonpositive).

Feasibility condition. For both the maximization and the minimization problems, the
leaving variable is the basic variable associated with the smallest nonnegative ratio
with strictly positive denominator. Ties are broken arbitrarily.

Gauss-Jordan row operations.
1. Pivot row

a. Replace the leaving variable in the Basic column with the entering variable.
b. New pivot row = Current pivot row + Pivot element

2. All other rows, including z
New row = (Current row) — (Its pivot column coefficient) X (New pivot row).



112

3.4

3.4.1

Chapter 3 The Simplex Method and Sensitivity Analysis

ARTIFICIAL STARTING SOLUTION

As demonstrated in Example 3.3-1, LPs in which all the constraints are (=) with non-
negative right-hand sides offer a convenient all-slack starting basic feasible solution.
Models involving (=) and/or (=) constraints do not.

The procedure for starting “ill-behaved” LPs with (=) and (=) constraints is
to use artificial variables that play the role of slacks at the first iteration. The artificial
variables are then disposed of at a later iteration. Two closely related methods are
introduced here: the M-method and the two-phase method.

M-Method®

The M-method starts with the LP in equation form (Section 3.1). If equation i does
not have a slack (or a variable that can play the role of a slack), an artificial variable,
R;,is added to form a starting solution similar to the all-slack basic solution. However,
because the artificial variables are not part of the original problem, a modeling “trick”
is needed to force them to zero value by the time the optimum iteration is reached
(assuming the problem has a feasible solution). The desired goal is achieved by assign-
ing a penalty defined as:

o . .. . .. —M, in maximization problems
Artificial variable objective function coefficient = e
M, in minimization problems

M is a sufficiently large positive value (mathematically, M — ).

Example 3.4-1

Minimize z = 4x; + x,
subject to
3+ x,=3
4 +3x, = 6
X+ 2x =4
X1, X =0

To convert the constraint to equations, use x3 as a surplus in the second constraint and x4
as a slack in the third constraint. Thus

Minimize z = 4x; + x,

%The M-method, one of the oldest LP techniques, is never used in commercial codes because of its inherent
machine roundoff error problem. Instead, the two-phase method (Section 3.4.2), or a variation thereof, is
the preferred technique. Nevertheless, the use of the penalty M to force a variable to assume a zero value is
an important concept in OR modeling.
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subject to
3%+ x =3
4x; + 3xy — x3 =6
x| + 2x, +x,=4

X1, X, X3, X4 = 0

The third equation has its slack variable, x4, but the first and second equations do not. Thus,
we add the artificial variables Ry and R; in the first two equations and penalize them in the
objective function with MR; + MR, (because we are minimizing). The resulting LP becomes

Minimize z = 4x; + x, + MR, + MR,

subject to
3 + x + Ry =3
4x; + 3x; — x3 + R, =6
x1 + 2x, +x,=4

X1, X2, X3, X4, R17 R2 =0

The starting basic solution is (Ry, Ry, x4) = (3,6, 4).

From a computational standpoint, solving the problem on the computer requires replacing
M with a (sufficiently large) numeric value. Yet, in all textbook treatments, including the first
seven editions of this book, M is manipulated algebraically in the simplex tableau. The result is
an unnecessary layer of computational difficulty that can be avoided by substituting an appropri-
ate numeric value for M (which is what we would do anyway if we use the computer). We break
away from the long tradition of manipulating M algebraically and use a numerical substitution
instead. The intent, of course, is to simplify the presentation without losing substance.

What value of M should we use? The answer depends on the data of the original LP. Recall
that the penalty M must be sufficiently large relative to the original objective coefficients to force
the artificial variables to be zero (which happens only if a feasible solution exists). At the same
time, since computers are the main tool for solving LPs, M should not be unnecessarily too large,
as this may lead to serious roundoff error. In the present example, the objective coefficients of x;
and x; are 4 and 1, respectively, and it appears reasonable to set M = 100.”

Using M = 100, the starting simplex tableau is given as follows (for convenience, from now on
the z-column will be eliminated from the tableau because it does not change in all the iterations):

Basic Xq X X3 Ry R, X4 Solution
z —4 -1 0 —-100 —100 0 0
Ry 3 1 0 1 0 3
R, 3 -1 0 1 6
Xy 1 2 0 0 0 1 4

"Technically, the M-method need not involve substituting out M numerically. Instead, the ith objective row
coefficient in a simplex tableau reduces to computing the constants a; and b; in the algebraic expression
a;M + b;. Comparison of two algebraic expressions will then be based on comparing the constants a; and b;
only. The reason this procedure is not used in practice is the potentially tremendous computational overhead
associated with computing and comparing the constants a; and b;.
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Before proceeding with the simplex method computations, the z-row must be made
consistent with the rest of the tableau. The right-hand side of the z-row in the tableau currently
shows z = 0. However, given the nonbasic solution x; = x, = x3 = 0, the current basic solu-
tionis Ry = 3, R, = 6,and x4 = 4 yields z = (100 X 3) + (100 X 6) + (4 X 0) =900.
The inconsistency stems from the fact that Ry and R, have nonzero coefficients (=100, —100) in
the z-row (compare with the all-slack starting solution in Example 3.3-1, where the z-row coef-
ficients of the slacks are zero).

To eliminate the inconsistency, we need to substitute out R; and R, in the z-row using the
following row operation:

New z-row = Old z-row + (100 X Ry-row + 100 X Ry-row)

(Convince yourself that this operation is the same as substituting out Ry = 3 — 3x; — x, and
R, = 6 — 4x; — 3x, + x3in the z-row.)
The modified tableau thus becomes (verify!):

Basic X1 Xy X3 Ry R, X4 Solution
z 696 399 —100 0 0 0 900
Ry 3 1 0 1 0
R, 4 3 -1 0 1
X4 1 2 0 0 0 1

The result is that Ry and R, are now substituted out (have zero coefficients) in the z-row
with z = 900 as desired.

The last tableau is ready for the application of the simplex optimality and the feasibility
conditions, exactly as explained in Section 3.3.2. Because the objective function is minimized,
the variable x; having the most positive coefficient in the z-row (= 696) enters the solution. The
minimum ratio of the feasibility condition specifies R; as the leaving variable (verify!).

Once the entering and the leaving variables have been determined, the new tableau can be
computed by using the familiar Gauss-Jordan operations.

Basic X1 X X3 R R, X4 Solution
z 0 167 -100  -232 0 0 204
x| 1 ! 0 H 0 0 1
Ry 3 -1 -3 1 2
X4 3 0 -1 0 1 3

The last tableau shows that x; and R, are the entering and leaving variables, respectively.
Continuing with the simplex computations, two more iterations are needed to reach the opti-
mum: x; = %, X, = g, z = 15l (verify with TORA!).

Note that the artificial variables Ry and R, leave the basic solution (i.e., become equal to
zero) promptly in the first and second iterations, a result that is consistent with the concept of
penalizing them in the objective function.
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Remarks. The use of the penalty M will not force an artificial variable to zero in the final
simplex iteration if the LP does not have a feasible solution (i.e., the constraints cannot be
satisfied simultaneously). In this case, the final simplex iteration will include at least one artificial
variable with a positive value. Section 3.5.4 explains this situation.

Two-Phase Method

In the M-method, the use of the penalty, M, can result in computer roundoff error. The
two-phase method eliminates the use of the constant M altogether. As the name sug-
gests, the method solves the LP in two phases: Phase I attempts to find a starting basic
feasible solution, and, if one is found, Phase II is invoked to solve the original problem.

Summary of the Two-Phase Method

Phase I. Put the problem in equation form, and add the necessary artificial vari-
ables to the constraints (exactly as in the M-method) to secure a start-
ing basic solution. Next, find a basic solution of the resulting equations
that always minimizes the sum of the artificial variables, regardless of
whether the LP is maximization or minimization. If the minimum value
of the sum is positive, the LP problem has no feasible solution. Otherwise,
proceed to Phase I1.

Phase II. Use the feasible solution from Phase I as a starting basic feasible
solution for the original problem.

Example 3.4-2
We use the same problem in Example 3.4-1.
Phase I
Minimize r = Ry + R,

subject to
3x; + x + Ry =3
4x; + 3xy — x3 + R, =6
x; + 2x, +x,=4

Xy, Xp, X3, X4, R1, Ry = 0

The associated tableau is

Basic X1 X7 X3 R, R, X4 Solution
r 0 0 0 -1 =l 0 0
Ry 3 1 0 1 0
R, 4 3 -1 0 1

X4 1 2 0 0 0 1 4
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As in the M-method, Ry and R, are substituted out in the r-row by using the following row
operations:
New r-row = OIld r-row + (1 X Ry-row + 1 X Ry-row)

The new r-row is used to solve Phase I of the problem, which yields the following optimum tab-
leau (verify with TORA’s Iterations = Two-phase Method ):

Basic X1 X X3 R R, X4 Solution
r 0 0 0 =1 -1 0 0
X1 1 0 5 : -3 3
w01 4 E o
X4 0 0 1 1 =il 1 1

Because minimum r = 0, Phase I produces the basic feasible solution x; = % X, = % and
x4 = 1. At this point, the artificial variables have completed their mission, and we can eliminate
their columns altogether from the tableau and move on to Phase II.

Phase 11
After deleting the artificial columns, we write the original problem as

Minimize z = 4x; + x,

subject to
X + %x3 = %
Xy — %X3 = g
x3+txs=1

X1, X, X3, X4 = 0

Essentially, Phase I has transformed the original constraint equations in a manner that provides
a starting basic feasible solution for the problem, if one exists. The tableau associated with Phase
II problem is thus given as

Basic X X X3 X4 Solution
z —4 -1 0 0 0
x| 1 0 L 2
X 0 1 -3 0 ¢
X4 0 0 1 1 1

Again, because the basic variables x; and x; have nonzero coefficients in the z-row, they
must be substituted out, using the following operations.

New z-row = Old z-row + (4 X x;-row + 1 X x,-row)
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The initial tableau of Phase II is thus given as

Basic X1 X X3 X4 Solution
z 0 0 i 0 e
x| 1 0 L 0 2
Xy 0 1 _% 0 g
X4 0 0 1 1 1

Because we are minimizing, x3 must enter the solution. Application of the simplex method will
produce the optimum in one iteration (verify with TORA).

Remarks. The removal of the artificial variables and their columns at the end of
Phase I can take place only when they are all nonbasic (as Example 3.4-2 illustrates). If
one or more artificial variables are basic (at zero level) at the end of Phase I, then their
removal requires the following additional steps:

Step 1. Select a zero artificial variable to leave the basic solution and designate its row
as the pivot row. The entering variable can be any nonbasic nonartificial vari-
able with a nonzero (positive or negative) coefficient in the pivot row. Perform
the associated simplex iteration.

Step 2. Remove the column of the (just-leaving) artificial variable from the tableau. If
all the zero artificial variables have been removed, go to Phase II. Otherwise,
go back to Step 1L

The logic behind step 1 is that the feasibility of the remaining basic variables will
not be affected when a zero artificial variable is made nonbasic regardless of whether
the pivot element is positive or negative. Problems 3-47 and 3-48 illustrate this situa-
tion. Problem 3-49 provides an additional detail about Phase I calculations.

SPECIAL CASES IN THE SIMPLEX METHOD

This section considers four special cases that arise in the use of the simplex method.

Degeneracy

1.

2. Alternative optima
3. Unbounded solutions
4.

Nonexisting (or infeasible) solutions

The remainder of this section presents a theoretical explanation of these situa-
tions. It also provides an interpretation of what these special results mean in a real-life
problem.
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Degeneracy

In the application of the feasibility condition of the simplex method, a tie for the mini-
mum ratio may occur and can be broken arbitrarily. When this happens, at least one basic
variable will be zero in the next iteration, and the new solution is said to be degenerate.
Degeneracy can cause the simplex iterations to cycle indefinitely, thus never terminat-
ing the algorithm. The condition also reveals the possibility of at least one redundant
constraint.

The following example explains the practical and theoretical impacts of degeneracy.

Example 3.5-1 (Degenerate Optimal Solution)

Maximize z = 3x; + 9x,
subject to
x| +4x, =8
X, +2x =4
X1, X =0

Using the slack variables x3 and x4, the solution tableaus are

Iteration Basic X1 X X3 X4 Solution
0 z -3 -9 0 0 0
X, enters X3 4 1 0 8
x3 leaves X4 1 2 0 1 4
1 z -3 0 ? 18
X enters X 4l 1 i
x4 leaves X4 % 0 f% 1
2 z 0 0 2 2 18
(optimum) X 0 1 ! -1 2
X1 1 0 -1 2 0

In iteration 0, x3 and x4 tie for the leaving variable, leading to degeneracy in iteration 1
because the basic variable x4, assumes a zero value. The optimum is reached in one additional
iteration.

Remarks.

1. What is the practical implication of degeneracy? Look at the graphical solution in
Figure 3.5. Three lines pass through the optimum point (x; = 0,x, = 2). Because this
is a two-dimensional problem, the point is overdetermined, and one of the constraints
is redundant. Redundancy means that an associated constraint can be removed
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X FIGURE 3.5
LP degeneracy in Example 3.5-1

Optimal
degenerate
solution

without changing the solution space. Thus, in Figure 3.5, x; + 4x, = 8 is redundant
but x; + 2x, = 4 is not. The mere knowledge that some resources are superfluous can
be important during the implementation phase of the solution. The information may
also lead to discovering irregularities in the modeling phase of the solution. Unfor-
tunately, there are no efficient computational techniques for identifying redundant
constraints.

2. From the theoretical standpoint, degeneracy can lead to cycling. In simplex iterations
1 and 2, the objective value does not improve (z = 18), and it is thus possible for the
simplex method to enter a repetitive sequence of iterations, never improving the objective
value and never satisfying the optimality condition (see Problem 3-54). Cycling may not
be a common occurrence, but there have been reports of it being encountered in practice.8
Though algorithms have been developed for eliminating cycling, their use can lead to dras-
tic slowdown in computations and hence they should not be implemented unless there is
evidence that cycling is actually taking place.’

3. Although an LP model may not start with redundant constraints (in the direct sense shown
in Figure 3.5), computer roundoff error may actually create degeneracy-like conditions
during the course of solving a real-life LP. In such cases, the iterations will “stall” at a solu-
tion point, thus mimicking cycling. Commercial codes attempt to alleviate the problem by
periodically perturbing the values of the basic variables (see Section 3.7 for more details
about how commercial codes are developed).

Alternative Optima

An LP problem may have an infinite number of alternative optima when the objective
function is parallel to a nonredundant binding constraint (i.e., a constraint that is satis-
fied as an equation at the optimal solution). The next example demonstrates the practical
significance of such solutions.

8See T. C. Kotiah and D. I. Steinberg, “Letter to the Editor-On the Possibility of Cycling with the Simplex
Method,” Operations Research, Vol. 26, No. 2, pp. 374-376, 1978.

%See R. Bland, “New Finite Pivoting Rules for the Simplex Method,” Mathematics of Operations Research,
Vol. 2,No. 2, pp. 103-107,1977.
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Example 3.5-2 (Infinite Number of solutions)

Maximize z = 2x; + 4x,
subject to
X +2x, =5
X+t xn=4
X1, X =0

Figure 3.6 demonstrates how alternative optima can arise in the LP model when the objec-
tive function is parallel to a binding constraint. Any point on the line segment BC represents an
alternative optimum with the same objective value z = 10.

The iterations of the model are given by the following tableaus.

Iteration Basic X1 X7 X3 X4 Solution
0 z -2 —4 0 0 0
X, enters X3 1 2 1 0 5
x3 leaves X4 1 1 0 1 4
1 (optimum) z 0 0 2 0 10
X enters X % 1 % 0 %
x4 leaves X4 % 0 _% 1 %
2 z 0 0 2 0 10
(alternative optimum) Xy 0 1 1 -1 1
X1 1 -1 2 3

Iteration 1 gives the optimum solution x; = 0, x, = % and z = 10 (point B in Figure 3.6).
The existence of alternative can be detected in the optimal tableau by examining the z-equation

X FIGURE 3.6

LP alternative optima in Example 3.5-2

X1
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coefficients of the nonbasic variables. The zero coefficient of nonbasic x; indicates that x; can be
made basic, altering the values of the basic variables without changing the value of z. Iteration 2
does just that, using x; and x4 as the entering and leaving variables, respectively. The new solution
point occurs at C(x; = 3,x, = 1,z = 10). (TORA’s Iterations option allows determining one
alternative optimum.)

The simplex method deals with corner point optima only —namely points B and C in the
present example. Mathematically, we can determine all the points (x;, x,) on the line segment
BC as a nonnegative weighted average of points B (x; = 0,x, = 3) and C(x; = 3,x, = 1) —
that is,

)+(1—a)(1):1+§a}’0§“§1

Remarks. In practice, alternative optima are useful because we can choose from many solutions
without experiencing deterioration in the objective value. For instance, in the present example,
the solution at B shows that activity 2 only is at a positive level. At C, both activities are at a posi-
tive level. If the example represents a product-mix situation, it may be advantageous to market
two products instead of one.

Unbounded Solution

In some LP models, the solution space is unbounded in at least one variable —meaning
that variables may be increased indefinitely without violating any of the constraints.
The associated objective value may also be unbounded in this case.

An unbounded solution space may signal that the model is poorly constructed.
The most likely irregularity in such models is that some key constraints have not been
accounted for. Another possibility is that estimates of the constraint coefficients may
not be accurate.

Example 3.5-3 (Unbounded Objective Value)

Maximize z = 2x; + x;
subject to

Xl_X2S10

2xq =40
X1, X% =0
Starting Iteration
Basic X1 X X3 X4 Solution
z -2 =1l 0 0 0
X3 1 =1l 1 0 10

x4 2 0 0 1 40
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X \ FIGURE 3.7
\\ LP unbounded solution in Example 3.5-3
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In the starting tableau, both x; and x, have negative z-equation coefficients—meaning that
an increase in their values will increase the objective value. Although x; should be the enter-
ing variable (it has the most negative z-coefficient), we note that all the constraint coefficients
under x; are = 0—meaning that x; can be increased indefinitely without violating any of the
constraints (compare with the graphical interpretation of the minimum ratio in Figure 3.4). The
result is that z can be increased indefinitely. Figure 3.7 shows the unbounded solution space and
also that x, and z can be increased indefinitely.

Remarks. Had x; been selected as the entering variable in the starting iteration (per the opti-
mality condition), a later iteration would eventually have produced an entering variable with the
same properties as x;. See Problem 3-58.

Infeasible Solution

LP models with inconsistent constraints have no feasible solution. This situation does
not occur if all the constraints are of the type = with nonnegative right-hand sides
because the slacks provide an obvious feasible solution. For other types of constraints,
penalized artificial variables are used to start the solution. If at least one artificial vari-
able is positive in the optimum iteration, then the LP has no feasible solution. From the
practical standpoint, an infeasible space points to the possibility that the model is not
formulated correctly.

Example 3.5-4 (Infeasible Solution Space)
Consider the following LP:

Maximize z = 3x; + 2x,
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subject to
2X1 + Xy = 2

3x; + 4x, = 12

v

X1, Xp = 0

Using the penalty M = 100 for the artificial variable R, the following tableau provide the
simplex iterations of the model.

Iteration Basic X1 X7 X4 X3 R Solution
0 z =303 —402 100 0 0 —1200
X, enters X3 2 1 0 1 0 2
x3 leaves R 3 4 -1 0 1 12
1 b4 501 0 100 402 0 —396
(pseudo-optimum) X 2 1 0 1 0 2
R =5 0 -1 —4 1 4

Optimum iteration 1 shows that the artificial variable R is positive (=4) —meaning that the
LP is infeasible. Figure 3.8 depicts the infeasible solution space. By allowing the artificial vari-
able to be positive, the simplex method has in essence reversed the direction of the inequality
from 3x; + 4x, = 12 to 3x; + 4x, = 12 (can you explain how?). The result is what we may call
a pseudo-optimal solution.

3.6 SENSITIVITY ANALYSIS

In LP, the parameters (input data) of the model can change within certain limits with-
out causing changes in the optimum. This is referred to as sensitivity analysis and will
be the subject matter of this section. Later, Chapter 4 will study post-optimal analysis,

X FIGURE 3.8

Infeasible solution of Example 3.5-4

Psuedo-optim
solution

X1
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which deals with determining the new optimum solution when targeted input data
are changed.

The presentation explains the basic ideas of sensitivity analysis using the more
concrete graphical solution. These ideas are then extended to the general LP problem
using the simplex tableau results.

Graphical Sensitivity Analysis
This section demonstrates the general idea of sensitivity analysis. Two cases will be

considered:

1. Sensitivity of the optimum solution to changes in the availability of the resources
(right-hand side of the constraints).

2. Sensitivity of the optimum solution to changes in unit profit or unit cost
(coefficients of the objective function).

We will use individual examples to explain the two cases.

Example 3.6-1 (Changes in the Right-Hand Side)

JOBCO manufactures two products on two machines. A unit of product 1 requires 2 hrs on
machine 1 and 1 hr on machine 2. For product 2, one unit requires 1 hr on machine 1 and 3 hrs
on machine 2. The revenues per unit of products 1 and 2 are $30 and $20, respectively. The total
daily processing time available for each machine is 8 hrs.

Letting x; and x; represent the daily number of units of products 1 and 2, respectively, the
LP model is given as

Maximize z = 30x; + 20x,
subject to
26 + x, =8 (Machine 1)
X +3x, =8 (Machine 2)
X1, X =0

Figure 3.9 illustrates the change in the optimum solution when changes are made in the capacity
of machine 1. If the daily capacity is increased from 8 to 9 hrs, the new optimum will move to
point G. The rate of change in optimum z resulting from changing machine 1 capacity from 8 to
9 hrs can be computed as:

Rate of revenue change
resulting from increasing _ g — Z¢ 142 — 128 §14/hr
machine 1 capacity by 1 hr (Capacity change) 9-38

(point C to point G)

The computed rate provides a direct link between the model input (resources) and its output (total
revenue). It says that a unit increase (decrease) in machine 1 capacity will increase (decrease)
revenue by $14.
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FIGURE 3.9

Graphical sensitivity of optimal solution to changes in the availability of resources
(right-hand side of the constraints)

The name unit worth of a resource is an apt description of the rate of change of the
objective function per unit change of a resource. Nevertheless, early LP developments have
coined the abstract name dual (or shadow) price and this name is now standard in all the LP
literature and software packages. The presentation in this book conforms to this standard.
Nevertheless, think “unit worth of resource” whenever you come across standard names “dual
or shadow price.”

Looking at Figure 3.9, we can see that the dual price of $14/hr remains valid for changes
(increases or decreases) in machine 1 capacity that move its constraint parallel to itself to any
point on the line segment BF. We compute machine 1 capacities at points B and F as follows:

Minimum machine 1 capacity [at B = (0,2.67)] =2 X 0 + 1 X 2.67 = 2.67 hr
Minimum machine 1 capacity [at F = (8,0)] =2 X 8 + 1 X 0 = 16hr

The conclusion is that the dual price of $14.00/hr remains valid only in the range
2.67 hr = Machine 1 capacity = 16 hr

Changes outside this range produce a different dual price (worth per unit).
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Using similar computations, you can verify that the dual price for machine 2 capacity is $2/hr,
and it remains valid for changes in machine 2 capacity within the line segment DE. Now,

Minimum machine 2 capacity [at D = (4,0)] =1 X4 +3 X 0=4hr
Minimum machine 2 capacity [at E = (0,8)] =1 X 0 +3 X 8 = 24 hr
Thus, the dual price of $2/hr for machine 2 remains applicable for the range
4 hr = Machine 2 capacity = 24 hr

The computed limits for machine 1 and 2 are referred to as the feasibility ranges. All software
packages provide information about the dual prices and their feasibility ranges. Section 3.6.4
shows how AMPL, Solver, and TORA generate this information.

The dual prices allow making economic decisions about the LP problem, as the following
questions demonstrate:

Question 1. If JOBCO can increase the capacity of both machines, which machine should
receive priority?

From the dual prices for machines 1 and 2, each additional hour of machine 1 increases
revenue by $14, as opposed to only $2 for machine 2. Thus, priority should be given to machine 1.

Question 2. A suggestion is made to increase the capacities of machines 1 and 2 at the addi-
tional cost of $10/hr for each machine. Is this advisable?

For machine 1, the additional net revenue per hour is 14 — 10 = $4, and for machine 2, the
netis $2 — $10 = —$8. Hence, only machine 1 should be considered for capacity increase.

Question 3. If the capacity of machine 1 is increased from 8 to 13 hrs, how will this increase
impact the optimum revenue?

The dual price for machine 1 is $14 and is applicable in the range (2.67, 16) hr. The pro-
posed increase to 13 hrs falls within the feasibility range. Hence, the increase in revenue
is $14(13 — 8) = $70, which means that the total revenue will be increased from $128 to
$198(=$128 + $70).

Question 4. Suppose that the capacity of machine 1 is increased to 20 hrs, how will this increase
affect the optimum revenue?

The proposed change is outside the feasibility range (2.67 16) hr. Thus, we can only make an
immediate conclusion regarding an increase up to 16 hrs. Beyond that, further calculations are
needed to find the answer (see Chapter 4). Remember that falling outside the feasibility range
does not mean that the problem has no solution. It only means that available information is not
sufficient to make a complete decision.

Question 5. How can we determine the new optimum values of the variables associated with a
change in a resource?

The optimum values of the variables will change. However, the procedure for determining
these values requires additional computations, as will be shown in Section 3.6.2.

Example 3.6-2 (Changes in the Objective Coefficients)

Figure 3.10 shows the graphical solution space of the JOBCO problem presented in Example
3.6-1. The optimum occurs at point C(x; = 3.2, x, = 1.6, z = 128). Changes in revenue units
(i.e., objective-function coefficients) will change the slope of z. However, as can be seen from
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xl\g

FIGURE 3.10
Graphical sensitivity of optimal solution to changes in the revenue units (coefficients of the objective function)

the figure, the optimum solution at point C remains unchanged so long as the objective function
lies between lines BF and DE.

How can we determine ranges for the coefficients of the objective function that will keep the
optimum solution unchanged at C? First, we write the objective function in the general format:

Maximinze z = cix; + X,

Imagine now that line z is pivoted at C and that it can rotate clockwise and counterclockwise.
The optimum solution will remain at point C so long as z = c1x; + ¢, + x; lies between the two
lines x; + 3x, = 8 and 2x; + x, = 8. This means that the ratio % can vary between % and % which
yields the following optimality range:'’

1 1

— =
(&)

or 333=2 =<2
(%)

— N

— =
3

19The “ratio” condition works correctly in this situation because the slopes for the two lines passing through
the optimum point C have the same sign. Other situations are more complex.
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This information can provide immediate answers regarding the optimum solution as the follow-
ing questions demonstrate:

Question 1. Suppose that the unit revenues for products 1 and 2 are changed to $35 and $25,
respectively. Will the current optimum remain the same?
The new objective function is

Maximinze z = 35x; + 25x,

The solution at C will remain optimal because % = % = 1.4 remains within the optimality
range (.333, 2). When the ratio falls outside this range, additional calculations are needed
to find the new optimum (see Chapter 4). Notice that although the values of the variables
at the optimum point C remain unchanged, the optimum value of z changes to 35 X (3.2) +
25 X (1.6) = $152.

Question 2. Suppose that the unit revenue of product 2 is fixed at its current value ¢, = $20.
What is the associated optimality range for the unit revenue for product 1, ¢, that will keep the
optimum unchanged?

Substituting ¢, = 20 in the condition% =g =2, weget

I X20=¢, =2x%X20o0r 667 <c¢ =40
We can similarly determine the optimality range for ¢, by fixing the value of ¢; at $30.00. Thus,
(; =30 X3andc, =%) or 15=¢, =90

As in the case of the right-hand side, all software packages provide the optimality ranges for each
objective function coefficient. Section 3.6.4 shows how AMPL, Solver,and TORA generate these
results.

Remarks. Although the material in this section has dealt only with two variables, the results
lay the foundation for the development of sensitivity analysis for the general LP problem in
Sections 3.6.2 and 3.6.3.

Algebraic Sensitivity Analysis—Changes in the Right-Hand Side

In Section 3.6.1, we used the graphical solution to determine the dual price (unit worth
of a resource) and its feasibility ranges. This section extends the analysis to the general
LP model. A numeric example (the TOYCO model) will be used to facilitate the
presentation.

Example 3.6-3 (TOYCO Model)

TOYCO uses three operations to assemble three types of toys—trains, trucks, and cars. The
daily available times for the three operations are 430, 460, and 420 mins, respectively, and the
revenues per unit of toy train, truck, and car are $3, $2, and $5, respectively. The assembly
times per train at the three operations are 1, 3, and 1 mins, respectively. The corresponding
times per train and per car are (2, 0, 4) and (1, 2, 0) mins (a zero time indicates that the opera-
tion is not used).
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Letting x1, x,, and x3 represent the daily number of units assembled of trains, trucks, and
cars, respectively, the associated LP model is given as:
Maximinze z = 3x; + 2x, + 5x3
subject to
X1 + 2x, + x3 = 430 (Operation 1)
3x; + 2x3 = 460 (Operation 2)
X1 + 4x, = 420 (Operation 3)

X1, X, X3 = 0
Using x4, x5, and xg as the slack variables for the constraints of operations 1, 2, and 3, respec-
tively, the optimum tableau is

Basic X1 X X3 X4 X5 Xg Solution
z 4 0 0 1 2 0 1350
X -1 1 0 ! -1 0 100
X3 2 0 1 0 ! 0 230
X6 2 0 0 -2 1 1 20

The solution recommends manufacturing 100 trucks and 230 cars but no trains. The associ-
ated revenue is $1350.

Determination of dual prices and feasibility ranges. We will use the TOYCO model to
show how this information is obtained from the optimal simplex tableau. Recognizing
that the dual prices and their feasibility ranges are rooted in making changes in the
right-hand side of the constraints, suppose that D1, D,, and D5 are the (positive or nega-
tive) changes made in the allotted daily manufacturing time of operations 1, 2, and 3,
respectively. The original TOYCO model can then be changed to

Maximinze z = 3x; + 2x, + 5x3
subject to
X1+ 2x + x3 =430 + Dy (Operation 1)
3x; + 2x3 = 460 + D, (Operation 2)
X1 + 4x, = 420 + D, (Operation 3)
X1, X2, X3 = 0

To express the optimum simplex tableau of the modified problem in terms of the
changes D1, D5, and D3, we first rewrite the starting tableau using the new right-hand
sides, 430 + Dy, 460 + D,,and 420 + Ds.
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Solution
Basic X1 X2 X3 X4 X5 X6 RHS D] D2 D';
z -3 -2 -5 0 0 0 0 0 0 0
Xy 1 2 1 1 0 0 430 1 0 0
X5 3 0 2 0 1 0 460 0 1 0
X6 1 4 0 0 0 1 420 0 0 1

The two shaded areas are identical. Hence, if we repeat the same simplex itera-
tions (with the same row operations) as in the original model, the columns in the two
highlighted area will also be identical in the optimal tableau—that is,

Solution
Basic X1 X X3 X4 X5 Xg RHS Dy D, Ds
z 4 0 0 1 2 0 1350 1 2 0
w1 0 b A0 1003 b
X3 2 1 0 L0 230 0 I o0
X6 2 0o - 1 1 20 -2 1

The new optimum tableau provides the following optimal solution:
z = 1350 + D; + 2D,
x, =100 + iD, — 1D,
x3 =230 + 1D,
xg =20 — 2D, + D, + Dy

We now use this solution to determine the dual prices and the feasibility ranges.
Dual prices: The value of the objective function can be written as

= 1350 + lDl + 2D2 + 0D3
The equation shows that
1. A unit change in operation 1 capacity (D; = * 1 min) changes z by $1.

2. A unit change in operation 2 capacity (D, = 1 min) changes z by $2.
3. A unit change in operation 3 capacity (D; = £ 1 min) changes z by $0.

This means that, by definition, the corresponding dual prices are 1,2, and 0 ($/min) for
operations 1,2, and 3, respectively.

The coefficients of D1, D5, and D3 in the optimal z-row are exactly those of the
slack variables x4, x5, and xg. This means that the dual prices equal the coefficients of
the slack variables in the optimal z-row. There is no ambiguity as to which coefficient
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applies to which resource because each slack variable is uniquely identified with a
constraint.

Feasibility range: The current solution remains feasible if all the basic variables remain
nonnegative —that is,

x, =100 + 1D, — 1D, = 0
x3=230+1D,=0
x6=20—2D1+D2+D320

Simultaneous changes D4, D,, and D5 that satisfy these inequalities will keep the solu-
tion feasible. The new optimum solution can be found by substituting out the values of
Dl, Dz, and D3.

To illustrate the use of these conditions, suppose that the manufacturing
time available for operations 1, 2, and 3 are 480, 440, and 400 mins, respectively. Then,
Dy = 480 — 430 = 50, D, = 440 — 460 = —20, and D; = 400 — 420 = —20. Substi-
tuting in the feasibility conditions, we get

x, = 100 + 5(50) — £(—20) =130 > 0 (feasible)
x3 =230 + 3(—20) =220 >0 (feasible)
x¢ =20 — 2(50) + (—20) + (—10) = —110 < 0 (infeasible)

The calculations show that x4 < 0, hence the current solution does not remain feasible.
Additional calculations will be needed to find the new solution (see Chapter 4).

Alternatively, if the changes in the resources are such that D = —30, D, = —12,
and D5 = 10, then
x, = 100 + %(—30) — %(—12) =8>0 (feasible)
x3 =230 + 2(—12) =224 >0 (feasible)

Xg =20 — 2(=30) + (—12) + (10) =78 > 0 (feasible)

The new (optimal) feasible solution is x; = 88, x3 = 224, and x4 = 68 withz = 3(0) +
2(88) + 5(224) = $1296. Notice that the optimum objective value can also be com-
puted using the dual prices as z = 1350 + 1(—=30) + 2(—12) + 0(10) = $1296.

The given conditions can produce the individual feasibility ranges associated
with changing the resources one at a time (as defined in Section 3.6.1). For example,
a change in operation 1 time only means that D, = D; = 0. The simultaneous condi-
tions thus reduce to

x, =100 + 1D, = 0= D, = —200
x3=230>0 =-200=D; =10
x=20—-2D;=z0=D; =10
This means that the dual price for operation 1 is valid in the feasibility range
-200 = D, = 10.
We can show in a similar manner that the feasibility ranges for operations 2 and 3
are —20 = D, = 400 and —20 = D; = . respectively (verify!).



132

3.6.3

Chapter 3 The Simplex Method and Sensitivity Analysis

We can now summarize the dual prices and their feasibility ranges for the TOYCO
model as follows:!!

Resource amount (minutes)

Resource Dual price($) Feasibility range Minimum Current Maximum
Operation 1 1 -200=D; = 10 230 430 440
Operation 2 2 —20 = D, =400 440 440 860
Operation 3 0 =20 =D;< 400 420 e

It is important to notice that the dual prices will remain applicable for any simul-
taneous changes that keep the solution feasible, even if the changes violate the individ-
ual ranges. For example, the changes D, = 30, D, = —12,and D; = 100 will keep the
solution feasible even though D; = 30 violates the feasibility range —200 =< D; =< 10,
as the following computations show:

x, = 100 + 1(30) — $(—12) =118 > 0 (feasible)

x3 =230 + 3(—12) =224 >0 (feasible)

X = 20 — 2(30) + (—12) + (100) = 48 > 0 (feasible)
This means that the dual prices will remain applicable, and we can compute the new
optimum objective value from the dual prices as z = 1350 + 1(30) + 2(—12) +
0(100) = $1356.
Algebraic Sensitivity Analysis—Objective Function

In Section 3.6.1, we used graphical sensitivity analysis to determine the conditions that
will maintain the optimality of the solution of a two-variable LP. In this section, we
extend these ideas to the general LP problem.

Definition of reduced cost. To facilitate the explanation of the objective func-
tion sensitivity analysis, first we need to define reduced costs. In the TOYCO model
(Example 3.6-2), the objective z-equation in the optimal tableau can be written as

z = 1350 — 4x; — x4 — 2x5

The optimal solution does not produce toy trains (x; = 0). The reason can be seen from
the z-equation, where a unit increase in x; (above its current zero value) decreases z by
$4—namely, z = 1350 — 4 X (1) — 1 X (0) — 2 X (0) = $1346.

1 Available LP packages usually present this information as standard output. Practically none provide the
case of simultaneous conditions, presumably because its display is cumbersome for large LPs.
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We can think of the coefficient of x{ in the z-equation (= 4) as a unit cost because
it causes a reduction in the revenue z. But where does this “cost” come from? We know
that the revenue per unit of x; is $3 (per the original model). We also know that the
production of toy train incurs cost because it consumes resources (operations time).
Thus, from the standpoint of optimization, the “attractiveness” of x; depends on the
cost of consumed resources relative to revenue. This relationship defines the so-called
reduced cost and is formalized in the LP literature as

Reduced cost Cost of consumed .
= — (Revenue per unit)

per unit resources per unit

To appreciate the significance of this definition, in the original TOYCO model
the revenue per unit for toy trucks (= $2) is less than that for toy trains (= $3). Yet
the optimal solution recommends producing toy trucks (x, = 100 units) and no toy
trains (x; = 0). The reason is that the cost of the resources used by one toy truck
(i.e., operations time) is smaller than its unit price. The opposite applies in the case
of toy trains.

With the given definition of reduced cost, we can see that an unprofitable variable
(such as x;) can be made profitable in two ways:

1. By increasing the unit revenue.
2. By decreasing the unit cost of consumed resources.

In most situations, the price per unit is dictated by market conditions and may be
difficult to increase at will. On the other hand, reducing the consumption of resources
is a more viable option because the manufacturer may be able to reduce cost by mak-
ing the production process more efficient.

Determination of the optimality ranges. We now turn our attention to determin-
ing the conditions that will keep a solution optimal. The development is based on the
definition of reduced cost.

In the TOYCO model, let d4, d», and d3 represent the change in unit revenues for
toy trucks, trains, and cars, respectively. The objective function then becomes

Maximizez = (3 + dl)xl + (2 + dz)XZ + (5 + d3)X3

We first consider the general situation in which all the objective coefficients are
changed simultaneously.
With the simultaneous changes, the z-row in the starting tableau appears as:

Basic X1 X7 X3 X4 X5 Xg Solution

z —3-d, —2-d, —5-ds 0 0 0 0
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When we generate the simplex tableaus with the same sequence of entering
and leaving variables used in the original model (before the changes d; are made), the
optimal iteration will appear as follows (convince yourself that this is indeed the case
by carrying out the simplex row operations):

Basic X1 Xy X3 X4 Xs Xg Solution
z 4—tdy+3dy—d; 0 0 1+3%d, 2-td,+3%d; 0 1350 + 100d, + 23d;
X2 -1 1 0 ! -1 100
X3 2 1 0 ! 230
X6 -1 0 -2 1 1 20

The new optimal tableau is the same as in the original optimal tableau, except
for the reduced costs (z-equation coefficients). This means that changes in the
objective-function coefficients can affect the optimality of the problem only. (Com-
pare with Section 3.6.2, where changes in the right-hand side affect feasibility
only.)

You really do not need to carry out the simplex row operation to compute the
new reduced costs. An examination of the new z-row shows that the coefficients of
d; are taken directly from the constraint coefficients of the optimum tableau. A con-
venient way for computing the new reduced cost is to add a new top row and a new
leftmost column to the optimum tableau, as shown by the shaded areas in the following
illustration.

dy dy ds 0 0 0
Basic X1 X X3 X4 X5 Xg Solution
1 z 4 0 0 1 2 0 1350
d X 7% 1 0 % 71? 0 100
ds X3 % 1 0 % 0 230
0 X6 2 0 -2 1 1 20

The entries in the top row are the change d; associated with variable x;. For the leftmost
column, the top element is 1 in the z-row followed by d; basic variable x;. Keep in mind
that d; = 0 for slack variable x;.

To compute the new reduced cost for any variable (or the value of z), multiply
the elements of its column by the corresponding elements in the leftmost column,
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add them up, and subtract the top-row element from the sum. For example, for xq,
we have

Reduced cost forx; = [4 X 1 + (_}T) X d, +% Xdy +2X0] —d
=4 - d, +3d; — dy

The current solution remains optimal so long as the new reduced costs (z-
equation coefficients) remain nonnegative (maximization case). We thus have the
following simultaneous optimality conditions corresponding to nonbasic x1, x4, and xs:

4—%dy+3ds—d; =0
1+3d,=0
2-td,+3d;=0

Remember that the reduced cost for a basic variable is always zero, as the modified
optimal tableau shows.

To illustrate the use of these conditions, suppose that the objective function
of TOYCO is changed from z = 3x; + 2x, + 5x3 to z = 2x; + x, + 6x3. Then,
d=2-3=-%$1,dy=1—-2= —$1, and d; = 6 — 5 = $1. Substitution in the
given conditions yields

4—ta,+3dy—d=4-1-1)+3(1) - (1) = 6.75 > 0 (satisfied)
1+id,=1+4(-1)=5>0 (satisfied)
2-ta,+idy=2-4(-1)+i1)=275>0 (satisfied )

The results show that the proposed changes will keep the current solution (x; = 0,
x, = 100, x3 = 230) optimal (with a new value of z = 1350 + 100d, + 230d; =
1350 + 100 X —1 + 230 X 1 = $1480). If any condition is not satisfied, a new solu-
tion must be determined (see Chapter 4).

The preceding discussion has dealt with the maximization case. The only differ-
ence in the minimization case is that the reduced costs (z-equations coefficients) must
be = 0 to maintain optimality.

The optimality ranges dealing with changing d; one at a time can be developed
from the simultaneous optimality conditions.'? For example suppose that the objective
coefficient of x, only is changed to 2 + d, —meaning that d; = d; = 0.The simultane-
ous optimality conditions thus reduce to

I

4-1dy=0=d,=16
l+3d,=20=>dy=2,=>-2=<d, =<8
2-1d,=0=>4d,=38

IA

2The individual ranges are standard outputs in all LP software. Simultaneous conditions usually are not part
of the output, presumably because they are cumbersome for large problems.
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In a similar manner, you can verify that the individual changes (3 + d;) and (5 + d3)
for x1 and x3 yield the optimality ranges d; =< 4 and d; = —%, respectively.

The given individual conditions can be translated to total unit revenue ranges.
For example, for toy trucks (variable x,), the total unit revenue is 2 + d,, and its opti-
mality range —2 = d, = 8 translates to

$0 = (Unit revenue of toy truck) = $10

It assumes that the unit revenues for toy trains and toy cars remain fixed at $3 and $5,
respectively.

It is important to notice that the changes di, d», and d; may be within their allow-
able individual ranges without satisfying the simultaneous conditions and vice versa. For
example, consider z = 6x; + 8x, + 3x3. Here di = 6 — 3 = $3,d, = 8 — 2 = $6,
and d; =3 — 5= —82, which are all within the permissible individual ranges
(o <d;=4,-2=d, =8, and —§ = d; < ). However, the corresponding simul-
taneous conditions yield

4—tdy,+3dy—dy=4-%6) +3(-2) —3=-35<0 (notsatisfied)
1+3d,=1+%6)=4>0 (satisfied)
2-tdy+idy=2-3(6)+5(-2)=-5<0 (not satisfied)

Remarks. The feasibility ranges presented in Section 3.6.2 and the optimality ranges
developed in Section 3.6.3 work fine so long as the sensitivity analysis situation calls
for changing the parameters of the problem one at a time, a rare occurrence in prac-
tice. The fact of the matter is that this limited usefulness is dictated by how far math-
ematics allows us to go before the results become too unwieldy. So, what should one do
in practice to carry out meaningful sensitivity analyses that entail making simultaneous
changes anywhere in the model? The good news is that advances in computing and in
mathematical programming languages (e.g., AMPL) now make it possible to solve huge
LPs rather quickly. Thus, a viable option is to solve complete LP scenarios completely,
and then compare the answers. Of course, a great deal of thought must be given to
constructing viable scenarios that will allow testing model changes in a systematic and
logical manner.

Sensitivity Analysis with TORA, Solver, and AMPL

We now have all the tools to decipher the output provided by LP software, particularly
with regard to sensitivity analysis. We will use the TOYCO example to demonstrate the
TORA, Solver, and AMPL output.

TORA'’s LP output report provides the sensitivity analysis data automatically as
shown in Figure 3.11 (file toraTOYCO.txt). The output includes the reduced costs and
the dual prices as well as their allowable optimality and feasibility ranges.

Figure 3.12 provides the Solver TOYCO model (file solverTOYCO.xls) and its
sensitivity analysis report. After you click Solve in the Solver Parameters dialogue box,
you can request the sensitivity analysis report in the new dialogue box Solver Results.
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***Sensitivity Analysis***

Variable CurrObjCoeff MinObjCoeff MaxObjCoeff Reduced Cost
x1: 3.00 —-infinity 7.00 4.00
x2: 2.00 0.00 10.00 0.00
x3: 5.00 2.33 infinity 0.00
Constraint Curr RHS Min RHS Max RHS Dual Price
1(<): 430.00 230.00 440.00 1.00
2(<): 460.00 440.00 860.00 2.00
3(<): 420.00 400.00 infinity 0.00
FIGURE 3.11

TORA sensitivity analysis for the TOYCO model

A B c D E E. G
1 TOYCO Model
2 Input data:
3 x1 x2 x3 Selver found a soluticn. All constraints and aptimabty
4 trains | trucks | cars | Totals _ Limits | conditions are satsfied.
5 Objective 1350
6 Operation 1 430 <= 430 (&) Keep Solver Scluion
7 Operation 2 460 <= 460 O Restore Original Values
B Operation 3 [ 400 <=| 420 =
9 =05 (= S =0 ok J [ concel | [ savescenario.. | [ teb |
10 Qutput results:
1 x1 x2 x3 z
12 Soltion [0 100 230 1350_] :
£ -
W74 b W Sensitvity Report 1 Sheetl/ |4] | ol i

Reacy

6 |Adjustable Cells
T Final Reduced Objective Allowable Allowable

g Cell MName Value Cost Coefficient Increase Decrease

3 $B%12 Solution x1 o -4 3 4 1E+30

10 $CH12 Solution x2 100 o 2 g 2

11 $0%12 Solution %3 230 [a] 5 1E+30 2 BEEBBEBEEG7

12

13 Constraints

14 Final Shadow Constraint Allowable Allowable

15 Cell Name Value Price R.H. Side Increase Decrease

16| $E$5_Operation 1 Totals 430 T 430 10 200

17 FES7 Operation 2 Totals 460 2 460 400 20

18 FEFS Operation 3 Totals 400 0 420 1E+30 20
FIGURE 3.12

Excel Solver sensitivity analysis report for the TOYCO model

You can then click Sensitivity Report 1 to view the results. The report is similar to that
of TORA’s, with three exceptions: (1) the reduced cost carries an opposite sign, (2) it
uses the name shadow price instead of dual price, and (3) the optimality ranges are
for the changes d; and D; only, rather than for the original objective coefficients and
constraint right-hand sides. The differences are minor, and the interpretation of the re-
sults remains the same.
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oper.down oper.current oper.up oper.dual := FIGURE3.13
! 230 430 440 ! AMPL sensitivity analysis
2 440 460 860 2
3 400 420 le+20p 0 report for the TOYCO model
: x.down x.current X.Uup X.rc =
1 -le+20 3 7 -4
2 0 2 10 0
3 2.33333 5 le+20 0

In AMPL, the sensitivity analysis report is readily available. File ampl/TOYCO.txt
provides the code necessary to determine the sensitivity analysis output. It requires the
following additional statements (the report is sent to file a. out):

option solver cplex;

option cplex_options ‘sensitivity’;

solve;

o sensitivity analysis
display oper.down,oper.current,oper.up,oper.dual>a.out;
display x.down,x.current,x.up,x.rc>a.out;

The CPLEX option statements are needed to obtain the standard sensitivity analysis
report. In the TOYCO model, the indexed variables and constraints use the root
names x and oper, respectively. Using these names, the suggestive suffixes .down,
.current,and .up in the display statements automatically generate the formatted
sensitivity analysis report in Figure 3.13. The suffixes . dual and . rc provide the dual
price and the reduced cost, respectively.

COMPUTATIONAL ISSUES IN LINEAR PROGRAMMING'3

This chapter has presented the details of the simplex algorithm. Subsequent chapters
present other algorithms: the dual simplex (Chapter 4), the revised simplex (Chapter 7),
and the interior point (Chapter 22 on the website). Why the variety? The reason is that
each algorithm has specific features that can be beneficial in the development of robust
computer codes.

An LP code is deemed robust if it satisfies two fundamental requirements:

1. Speed.
2. Accuracy.

Both requirements present challenges even on the most advanced computers. The
reasons stem from the nature of the algorithmic computations and the limitations of the
computer. To be sure, the simplex tableau format presented in this chapter is not numeri-
cally stable; meaning that computer roundoff error and digit loss present serious com-
putational problems, particularly when the coefficients of the LP model differ widely
in magnitude. Despite these challenges, the different LP algorithms have in fact been
integrated cleverly to produce highly efficient codes for solving extremely large LPs.

I3This section has benefited from R. Bixby, “Solving Real-World Linear Programs: A Decade and More of
Progress,” Operations Research,Vol. 50, No. 1, pp. 3-15,2002.
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This section explains the transition from basic textbook presentations to current
state-of-the-art robust LP codes. It addresses the issues that affect speed and accuracy
and presents remedies for alleviating the problems. It also presents a comprehensive
framework regarding the roles of the different LP algorithms (simplex, dual simplex,
revised simples, and interior point) in the development of numerically stable computer
codes. The presentation is purposely kept math free to concentrate on the key concepts
underlying successful LP codes.

1. Simplex entering variable (pivot) rule. A new simplex iteration determines the
entering and leaving variables by using the optimality and feasibility criteria. Once the
two variables are determined, pivot-row operations are used to generate the next sim-
plex tableau.

Actually, the optimality criterion presented in Section 3.3.2 is but one of several
used in the development of LP codes. The following table summarizes the three promi-
nent criteria:

Entering variable rule Description

Classical (Section 3.3.2) The entering variable is the one having the most favorable reduced cost
among all nonbasic variables.

Most improvement The entering variable is the one yielding the largest total improvement in the
objective value among all nonbasic variables.

Steepest edge'* The entering variable is the one that yields the most favorable normalized

reduced cost among all nonbasic variables. The algorithm moves along the
steepest edge leading from the current to a neighboring extreme point.

For the classical rule, the objective row of the simplex tableau readily provides the
reduced costs of all the nonbasic variables with no additional computations. On the other
hand, the most improvement rule requires considerable additional computing that first
determines the value at which a nonbasic variable enters the solution and then the result-
ing total improvement in the objective value. The idea of the steepest edge rule, though in
the “spirit” of the most improvement rule (in the sense that it indirectly takes into account
the value of the entering variable), requires much less computational overhead.

The trade-off among the three rules is that the classical rule is the least costly
computationally but, in all likelihood, requires the highest number of iterations to
reach the optimum. On the other hand, the most improvement rule is the most costly
computationally but, most likely, entails the smallest number of simplex iterations. The
steepest edge rule seems to represent a happy medium in terms of the amount of ad-
ditional computations and the number of simplex iterations. Interestingly, test results
show that the payoff from the additional computations in the most improvement rule
seems no better than for the steepest edge rule. For this reason, the most improvement
rule is rarely implemented in LP codes.

Although the steepest edge rule is the most common default for the selection
of the entering variable, successful LP codes tend to use hybrid pricing. Initially, the

l4See D. Goldfarb and J. Reid, “A Practicable Steepest Edge Simplex Algorithm,” Mathematical Programming,
Vol. 12, No. 1, pp. 361-371, 1977
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simplex iterations use (a variation of) the classical rule. As the number of iterations
increases, a switch is made to (a variation of) the steepest edge rule. Extensive compu-
tational experience indicates that this strategy pays off in terms of the total computer
time needed to solve an LP.

2. Primal vs. dual simplex algorithm. This chapter has mainly concentrated on the
details of what is sometimes referred to in the literature as the primal simplex method.
In the primal algorithm, the starting basic solution is feasible but nonoptimal. Successive
iterations remain feasible as they move toward the optimum. A subsequent algorithm,
called the dual simplex, was developed for LPs that start infeasible but (better than)
optimal and move toward feasibility, all the while maintaining optimality. The final
iteration occurs when feasibility is restored. The details of the dual algorithm are given
in Chapter 4 (Section 4.4.1).

Initially, the dual algorithm was used primarily in LP post-optimal analysis
(Section 4.5) and integer linear programming (Chapter 9), but not as a standalone
algorithm for solving the LPs. The main reason is that its rule for selecting the leaving
variable was weak. This all changed, however, when the idea of the primal steepest edge
rule was adapted to determine the leaving variable in the dual simplex algorithm.'
Today, the dual simplex with the steepest-edge adaptation is proven in the majority
of tests to be twice as fast as the primal simplex, and it is currently the dominant all-
purpose simplex algorithm in the major commercial codes.

3. Revised simplex vs. tableau simplex. The simplex computations presented ear-
ly in this chapter (and also in Chapter 4 for the dual simplex) generate the next simplex
tableau from the immediately preceding one. The following reasons explain why the
tableau simplex is not used in any commercial LP codes:

(a) Most practical LP models are highly sparse (i.e., contain a high percent-
age of zero coefficients in the starting iteration). Available numerical
methods can reduce the amount of local computations by economiz-
ing (even eliminating) arithmetic operations involving zero coefficients,
which in turn can substantially speed up computations. This is a serious
missed opportunity in tableau computations because successive tableaus
can quickly populate the tableau with nonzero elements.

(b) The machine roundoff error and digit loss, inherent in all computers, can
propagate quickly as the number of iterations increases, possibly leading
to serious loss of accuracy, particularly in large LPs.

(¢) Simplex row operations carry out more computations than needed to
generate the next tableau (recall that all that is needed in an iteration is
the entering and leaving variables). These extra computations represent
wasted computer time.

The revised simplex algorithm presented in Section 7.2 improves on these draw-
backs. Though the method uses the exact pivoting rules as in the tableau method, the main
difference is that it carries out the computations using matrix algebra. More details on this
point are in Section 7.2.3 following the presentation of the revised simplex algorithm.

13See J. Forrest and D. Goldfarb, “Steepest-Edge Simplex Algorithm for Linear Programming,” Mathematical
Programming, Vol. 57, No. 3, pp. 341-374, 1992.
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4. Barrier (interior point) algorithm vs. simplex algorithm. The interior point
algorithm (see Section 22.3 on the website) is totally different from the simplex algo-
rithm in that it cuts across the feasible space and gradually moves (in the limit) to the
optimum. Computationally, the algorithm is polynomial in problem size. The simplex
algorithm, on the other hand, is exponential in problem size (hypothetical examples
have been constructed where the simplex algorithm visits every corner point of the
solution space before reaching the optimum).

The interior point algorithm was initially introduced in 1984 and, surprisingly, was
patented by AT&T and sold on a specialized computer (apparently for an exuberant
fee) without releasing its computational details. Eventually, the scientific community
“got busy” and discovered that the interior point method had roots in earlier nonlinear
programming algorithms of the 1960s (see, e.g., the SUMT algorithm in Section 21.2.5).
The result is the so-called barrier method with several algorithmic variations.

For extremely large problems, the barrier method has proven to be consider-
ably faster than the fastest dual simplex algorithm. The disadvantage is that the barrier
algorithm does not produce corner-point solutions, a restriction that limits its applica-
tion in post-optimal analysis (Chapter 4) and also in integer programming (Chapter 9).
Although methods to convert a barrier optimum interior point to a corner-point solu-
tion have been developed, the associated computational overhead is enormous, limiting
its use in such applications as integer programming, where the frequent need for locat-
ing corner-point solutions is fundamental to the algorithm. Nevertheless, all commercial
codes include the barrier algorithm as a tool for solving large LPs.

5. Degeneracy. As explained in Section 3.5.1, degenerate basic solutions can
result in cycling, which can cause the simplex iterations to stall indefinitely at a degen-
erate corner point without ever reaching termination. In early versions of the simplex
algorithm, degeneracy and cycling were not incorporated in most codes because of the
assumption that their occurrence in practice was rare. As instances of more difficult
and larger problems (particularly in the area of integer programming) were tested,
computer roundoff error gave rise to degeneracy/cycling-like behavior that caused the
computations to “stall” at the same objective value. The problem was circumvented
by interjecting conditional random perturbation and shifting in the values of the basic
variables.'®

6. Input model conditioning (pre-solving). All commercial LP modeling languag-
es and solvers attempt to condition the input data prior to actually solving it. The goal is
to “simplify” the model in two key ways:!/

(a) Reducing the model size (rows and columns) by identifying and removing
redundant constraints and by possibly fixing and substituting out variables.

(b) Scaling the coefficients of the model that are widely different in magni-
tude to mitigate the adverse effect of digit loss when manipulating real
numbers of widely different magnitudes.

16See P. Harris, “Pivot Selection Methods of the devex LP Code,” Mathematical Programming, Vol. 5,
pp. 1-28,1974.

7See L. Bearley, L., Mitra, and H. Williams, “Analysis of Mathematical Programming Problems Prior to
Applying the Simplex Algorith,” Mathematical Programming, Vol. 8, pp. 54-83,1975.
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Input model |—>| Pre-solver |—>| Solver |—>| Output results

FIGURE 3.14

Components of an LP numerical algorithm

Figure 3.14 summarizes the stages of solving an LP problem. The input model can
be fed via a pre-solver to a solver, such as CPLEX or XPRESS. Alternatively, a con-
venient modeling language, such as AMPL, GAMS, LINDO, MOSEL, or MPL, can be
used to model the LP algebraically and then internally pre-solve and translate its input
data to fit the format of the solver. The solver then produces the output results in terms
of the variables and constraints of the original LP model.

7. Advances in computers. It is not surprising that in the last quarter of a century,
computer speed has increased by more than one-thousand fold. Today, a desktop com-
puter has more power and speed than the supercomputers of yesteryears. These hardware
advances (together with the algorithmic advances cited earlier) have made it possible to
solve huge LPs in a matter of seconds as opposed to days (yes, days!) in the past.
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Case Study: Optimization of Heart Valves Production'®
Tool: LP

Area of application: Bioprostheses (production planning)

Description of the situation:

Biological heart valves are bioprostheses manufactured from porcine hearts for human implanta-
tion. Replacement valves needed by the human population come in different sizes. On the supply
side, porcine hearts cannot be “produced” to specific sizes. Moreover, the exact size of a manu-
factured valve cannot be determined until the biological component of the pig heart has been
processed. As a result, some needed sizes may be overstocked and others may be understocked.

183ource: S. S. Hilal and W. Erikson, “Matching Supplies to Save Lives: Linear Programming the Production
of Heart Valves,” Interfaces, Vol. 11, No. 6, pp. 48-55, 1981.
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Raw hearts are provided by several suppliers in six to eight sizes, usually in different
proportions depending on how the animals are raised. The distribution of sizes in each ship-
ment is expressed in the form of a histogram. Porcine specialists work with suppliers to ensure
distribution stability as much as possible. In this manner, the manufacturer can have a reason-
ably reliable estimate of the number of units of each size in each shipment. The selection of the
mix of suppliers and the size of their shipments is thus crucial in reducing mismatches between
supply and demand.

LP model:
Let

m = Number of valve sizes

n = Number of suppliers

pij = Proportion of raw valves of size i supplied by vendor j, 0 < p; < 1,i = 1,2, ..., m,
j=L2 ....n>" pi=Lj=12....n
¢; = Purchasing and processing cost of a raw heart of size i,i = 1,2,...,m

¢; = Average cost from supplier j

= Ecipij,j = 1,2,....,”
=1
D; = Average monthly demand for valves of size i
H; = Maximum monthly supply vendor j can provide, j = 1,2,...,n
L; = Minimum monthly supply vendor j is willing to provide, j = 1,2,...,n

The variables of the problem can be defined as
x; = Monthly supply amount (number of raw hearts) by vendorj,j = 1,2,...,n

The LP model seeks to determine the amount from each supplier that will minimize the
total cost of purchasing and processing subject to demand and supply restrictions.

n
Minimize z = Ec,-xj
=1
subject to
n
Ep,]x] = Di,i = 1,2,...,m
j=1

Li=xj=H,j=12,...,n

To be completely correct, the variables x; must be restricted to integer values. However,
the parameters p;; and D; are mere estimates and, hence, rounding the continuous solution to the
closest integer may not be a bad approximation in this case.

AMPL Implementation:

Although the LP is quite simple as an AMPL application, the nature of the input data
is somewhat cumbersome. A convenient way to supply the data to this model is through
a spreadsheet. File excelCase2.xls gives all the tables for the model and AMPL file
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amplCase2.txt shows how the data involving 8 valve sizes and 12 suppliers are read from
Excel tables."”

Analysis of the results:

The output of the AMPL model for the data in excelCase2.xIs is given in Figure 3.15. In the strict
sense, the solution results cannot be used for scheduling purposes because the demand D, for
heart valve i is based on expected value calculations. Thus, the solution x;,j = 1,2, ..., n, will
result in some months showing surplus and others exhibiting shortage.

How useful then is the model? Actually, the results can be used effectively for planning
purposes. Specifically, the solution suggests grouping the vendors into three categories:

1. Vendors 1,2, and 3 must be deleted from the list of suppliers because x; = x, = x3 = 0.

2. Vendors 5, 6,8, and 9 are crucial for satisfying demand because the solution requires these
vendors to supply all the hearts they can produce.

3. The remaining vendors (4,7,10, 11, and 12) exhibit “moderate” importance from the stand-
point of satisfying demand because their maximum production capacity is not fully utilized.

FIGURE 3.15
Output of the valve production model
Cost = $ 42210.82

solution:

j L[7] x[73] H[]] reduced cost Av. unit price
1 0 0.0 500 2.39 14.22
2 0 0.0 500 0.12 15.88
3 0 0.0 400 5.22 15.12
4 0 116.4 500 0.00 14.70
5 0 300.0 300 -0.49 16.68
6 0 500.0 500 -2.13 14.89
7 0 250.5 600 0.00 18.12
8 0 400.0 400 -6.22 16.61
9 0 300.0 300 -4.20 17.19
10 0 357.4 500 -0.00 14.47
11 0 112.9 400 0.00 15.62
12 0 293.1 500 0.00 16.31
i D[i] Surplus[i] Dual value

1 275 0.0 29.28

2 310 28.9 0.00

3 400 0.0 19.18

4 320 88.1 0.00

5 400 0.0 24.33

6 350 0.0 8.55

7 300 0.0 62.41

8 130 28.2 0.00

YThere is one requirement about reading the data in array format from spreadsheet excelCase2.xls as used
in file amplCase2.txt. The ODBC handler requires column headings in an Excel read table to be strings,
which means that a pure numeric heading is not acceptable. To get around this restriction, all column head-
ings are converted to strings using the Excel TEXT function. Thus, the heading 1 can be replaced with the
formula =TEXT(COLUMN(A1), “0”). Copying this formula into succeeding columns will automatically
convert the numeric code into the desired strings.
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The given recommendations are further supported by the values of the reduced costs in
Figure 3.15. Vendor 9 can raise its average unit prices by as much as $4.00 and still remain viable
in the optimum solution, whereas vendor 3 will continue to be unattractive even if it reduces the
average unit cost by as much as $5.00. This result is true despite the fact that the average unit
prices for excluded vendor 9 are among the lowest (= $15.12) and that for “star” vendor 9 are
among the highest (= $17.19). The reason for this apparently unintuitive conclusion is that the
model is primarily demand driven, in the sense that vendors 5, 6, 8, and 9 provide relatively more
of the sizes needed than the remaining vendors. The opposite is true for vendors 1,2, and 3. This
means that a change in levels of demand could result in a different mix of vendors. This is the
reason that, under reasonably steady projected demand, the manufacturer works closely with
its “star” vendors, providing them with nutrition and animal care recommendations that ensure
their distributions of valve sizes will remain reasonably stable.

Valve size 7 appears to be the most critical among all sizes because it has the highest dual
price (= $62.41), which is more than twice the dual prices of other sizes. This means that size 7
stock should be monitored closely to keep its surplus inventory at the lowest level possible. On
the other hand, sizes 2,4, and 8 exhibit surplus, and efforts must be made to reduce their inventory.

Comments on the implementation of the model:

The proposed LP model is “rudimentary,” in the sense that its results produce general plan-
ning guidelines rather than definitive production schedules. Yet, the monetary savings from the
proposed plan, as reported in the original article, are impressive. The elimination of a number
of vendors from the pool of suppliers and the identification of “star” vendors have resulted in
reduction in inventory with significant cost savings. The same plan is responsible for reducing
chances of shortage that were prevalent before the model results were used. Also, by identifying
the most favored vendors, it was possible for porcine specialists in the production facility to train
the workers in the slaughterhouses of these vendors to provide well-isolated and well-trimmed
hearts. This, in turn, has led to streamlining production at the production facility.

PROBLEMS
Section Assigned Problems Section Assigned Problems
31 3-1to 3-10 352 3-55 to 3-57
32 3-11to 3-15 353 3-58 to 3-60
331 3-16 to 3-20 354 3-61 to 3-62
332 3-21to0 3-33 3.6.1 3-63 to 3-67
341 3-34 to 3-42 3.6.2 3-68 to 3-80
342 3-43 to 3-50 3.6.3 3-81 to 3-88
351 3-51 to 3-54 3.6.4 3-89 to 3-98

*3-1. In the Reddy Mikks model (Example 2.2-1), consider the feasible solution x; = 2 tons and
X, = 2 tons. Determine the value of the associated slacks for raw materials M1 and M2.

3-2. In the diet model (Example 2.2-2), determine the surplus amount of feed consisting of
525 1b of corn and 425 Ib of soybean meal.

3-3. Consider the following inequality
22)('1 - 4x2 = -7

Show that multiplying both sides of the inequality by —1 and then converting the resulting
inequality into an equation is the same as converting it first to an equation and then multi-
plying both sides by —1.
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3.4,

3-7.

3-8.

*3-9.

Two different products, P1 and P2, can be manufactured by one or both of two different
machines, M1 and M2. The unit processing time of either product on either machine is the
same. The daily capacity of machine M1 is 200 units (of either P1 or P2, or a mix of both),
and the daily capacity of machine M2 is 250 units. The shop supervisor wants to balance the
production schedule of the two machines such that the total number of units produced on
one machine is within 5 units of the number produced on the other. The profit per unit of
P1is $10 and that of P2 is $15. Set up the problem as an LP in equation form.

Show how the following objective function can be presented in equation form:

Minimize z = max {|x; — x, + 3x3], |—x; + 3x, — x3/}
X1, X9, X3 = 0

(Hint: |a| = bisequivalenttoa < b and a = —b.)

Show that the m equations

Ea,,, bii=12,....,m

are equivalent to the following m + 1 inequalities:

E(l,‘ijS bi,i: 1,2,...,m
j=1

n m
(S v = Sn
j=1 i

McBurger fast-food restaurant sells quarter-pounders and cheeseburgers. A quarter-
pounder uses a quarter of a pound of meat, and a cheeseburger uses only .2 1b. The
restaurant starts the day with 250 Ib of meat but may order more at an additional cost of
28 cents per pound to cover the delivery cost. Any surplus meat at the end of the day is
donated to charity. McBurger’s profits are 22 cents for a quarter-pounder and 18 cents
for a cheeseburger. McBurger does not expect to sell more than 950 sandwiches per day.
How many of each type sandwich should McBurger plan for the day? Solve the problem
using TORA, Solver, or AMPL.

Two products are manufactured in a machining center. The production times per unit of
products 1 and 2 are 10 and 12 minutes, respectively. The total regular machine time is
2400 minutes per day. The daily production is between 150 and 200 units of product 1 and
no more than 45 units of product 2. Overtime may be used to meet the demand at an ad-
ditional cost of $1 per minute. Assuming that the unit profits for products 1 and 2 are $12
and $15, respectively, formulate the problem as an LP model, and then solve with TORA,
Solver, or AMPL to determine the optimum production level for each product as well as
any overtime needed in the center.

JoShop manufactures three products whose unit profits are $2, $5, and $3, respectively.
The company has budgeted 80 hrs of labor time and 65 hrs of machine time for the
production of the three products. The labor requirements per unit of products 1,2, and 3
are 2, 1, and 2 hrs, respectively. The corresponding machine-time requirements per unit
are 1, 1, and 2 hrs. JoShop regards the budgeted labor and machine hours as goals that
may be exceeded, if necessary, but at the additional cost of $15 per labor hour and $10
per machine hour.

Formulate the problem as an LP, and determine its optimum solution using TORA,
Solver, or AMPL.
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3-10. In an LP in which there are several unrestricted variables, a transformation of the type

Xj=xj — x,-*, X, xj+ = () will double the corresponding number of nonnegative variables.

We can, instead, replace k unrestricted variables with exactly £ + 1 nonnegative variables

by using the substitution x; = x; — w, xj, w = 0. Use TORA, Solver, or AMPL to show

that the two methods produce the same solution for the following LP:
Maximize z = —2x; + 3x, — 2x3
subject to
4x; — x, — S5x3 = 10
2x; + 3xy + 2x3 = 12
x; = 0, x,, x3 unrestricted
3-11. Consider the following LP:
Maximize z = 2x; + 3x,
subject to
x; +3x, =12
3x; + 2xp = 12
X, X =0

(a) Express the problem in equation form.

(b) Determine all the basic solutions of the problem, and classify them as feasible and
infeasible.

*(c) Use direct substitution in the objective function to determine the optimum basic
feasible solution.

(d) Verify graphically that the solution obtained in (c) is the optimum LP solution—
hence, conclude that the optimum solution can be determined algebraically by
considering the basic feasible solutions only.

*(e) Show how the infeasible basic solutions are represented on the graphical solution space.

3-12. Determine the optimum solution for each of the following LPs by enumerating all the
basic solutions.

(a) Maximize z = 2x; — 4x, + Sx3 — 6x4
subject to

X1+4X2_2X3+8X452

IA
_

—x; + 2%, + 3x3 + 4x,
X1, X9, X3, X4 = 0
(b) Minimize z = x; + 2x, — 3x3 — 2x4
subject to
Xy +2x —3x3+ x4, =4
X1+ 2%+ x3+2x,=4

Xy, X2, X3, %4 = 0
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*3-13.

3-14.

3-15.

3-16.

3-17.

Show algebraically that all the basic solutions of the following LP are infeasible.
Maximize z = x; + x;
subject to
X+ 2x) =3
2x; + xp, =8
X, X =0
Consider the following LP:
Maximize z = 2x; + 3x, + 5x3
subject to
—6x; + 7%, — 9x3 = 4
X, + x, + 4x3 =10
X, x3 =0
X, unrestricted

Conversion to the equation form involves using the substitution x, = x; — x3. Show that
a basic solution cannot include both x; and x simultaneously.

Consider the following LP:
Maximize z = x; + 3x,
subject to
X1 tx =2
—x1+tx =4
X unrestricted
X, =0

(a) Determine all the basic feasible solutions of the problem.

(b) Use direct substitution in the objective function to determine the best basic
solution.

(¢) Solve the problem graphically, and verify that the solution obtained in (c) is the
optimum.

In Figure 3.3, suppose that the objective function is changed to

Maximize z = 4x; + 7x,

Identify the path of the simplex method and the basic and nonbasic variables that define
this path.

Consider the graphical solution of the Reddy Mikks model given in Figure 2.2. Identify
the path of the simplex method and the basic and nonbasic variables that define this path.
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3-19.

3-20.

3-21.
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X3 FIGURE 3.16

Solution space of Problem 3-18

X
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Consider the three-dimensional LP solution space in Figure 3.16, whose feasible extreme

points are A, B, ...,and J.

(a) Which of the following pairs of corner points cannot represent successive simplex
iterations: (A, B), (H,I), (E, H),and (A, I)? Explain why.

(b) Suppose that the simplex iterations start at A and that the optimum occurs at H.
Indicate whether any of the following paths are not legitimate for the simplex algo-
rithm, and state the reason.

i) A—-B—>G—H.
(ii) A D>F—->C—>A—B—>G—H.
(iii) A>C—I—H.

For the solution space in Figure 3.16, all the constraints are of the type = and all the

variables x1, x,, and x5 are nonnegative. Suppose that sy, 55, s3,and s4 (= 0) are the slacks

associated with constraints represented by the planes CEIJF, BEIHG, DFJHG, and

1JH, respectively. Identify the basic and nonbasic variables associated with each feasible

corner point of the solution space.

For each of the given objective functions and the solution space in Figure 3.16, select the

nonbasic variable that leads to the next simplex corner point, and determine the associated

improvement in z.

*(a) Maximize z = x; — 2x; + 3x3

(b) Maximize z = 5x; + 2x, + 4x3

(¢) Maximize z = —2x; + 7x; + 2x3

(d) Maximize z = x; + x, + x3

This problem is designed to reinforce your understanding of the simplex feasibility

condition. In the first tableau in Example 3.3-1, we used the minimum (nonnegative)

ratio test to determine the leaving variable. The condition guarantees feasibility (all the
new values of the basic variables remain nonnegative as stipulated by the definition of
the LP). To demonstrate this point, force s,, instead of s1, to leave the basic solution,

and carry out the Gauss-Jordan computations. In the resulting simplex tableau, s is
infeasible (= —12).
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3-22.

*3-23.

3-24.

3-25.

Consider the following set of constraints:
x| + 2x; + 2x3 + 4xy = 40
2x1 — Xxp+ x3+2x4 =8
4x; — 2%+ x3— x4 =10
X1, X0, X3, X4 = 0

Solve the problem for each of the following objective functions.
(a) Maximize z = 2x; + x5 — 3x3 + Sx4.

(b) Maximize z = 8x; + 6x, + 3x3 — 2x4.

(¢) Maximize z = 3x; — x, + 3x3 + 4x4.

(d) Minimize z = 5x; — 4x, + 6x3 — 8x4.

Consider the following system of equations:

Xx; + 2xy — 3x3 + Sx4 + x5 =8
Sx; — 2x, + 6xy4 + X =16
2x; + 3x5 — 2x3 + 3x4 + x7 =
—Xq + x3— 2x4 +x3=0
X1, X0, ..., X3 =0
Let xs, x¢, . . . , and xg be a given initial basic feasible solution. Suppose that x; becomes

basic. Which of the given basic variables must become nonbasic at zero level to guarantee
that all the variables remain nonnegative, and what is the value of x; in the new solution?
Repeat this procedure for x,, x3, and xy4.

Consider the following LP:

Maximize z = x;

subject to
Sx; + x; =4
6x; + X3 =38
3x; +x4 =3

X1, X2, X3, X4 = 0

(a) Solve the problem by inspection (do not use the Gauss-Jordan row operations), and
justify the answer in terms of the basic solutions of the simplex method.

(b) Repeat (a) assuming that the objective function calls for minimizing z = x;.

Solve the following problem by inspection, and justify the method of solution in terms of
the basic solutions of the simplex method.

Maximize z = Sx; — 6x, + 3x3 — Sx4 + 12x5
subject to
x; + 3x, + Sx3 + 6x4 + 3x5 = 30
X1, X, X3, X4, X5 = 0

(Hint: A basic solution consists of one variable only.)



Problems 151

3-26. The following tableau represents a specific simplex iteration. All variables are nonnegative.
The tableau is not optimal for either maximization or minimization. Thus, when a nonbasic
variable enters the solution, it can either increase or decrease z or leave it unchanged,
depending on the parameters of the entering nonbasic variable.

Basic X1 X2 X3 X4 X5 X6 X7 Xg Solution
z 0 =5 0 4 -1 -10 0 0 620
X3 0 3 0 -2 -3 -1 5 1 12
X3 0 1 1 3 1 0 3
X1 1 -1 0 0 6 —4 0

(a) Categorize the variables as basic and nonbasic, and provide the current values of all
the variables.

*(b) Assuming that the problem is of the maximization type, identify the nonbasic
variables that have the potential to improve the value of z. If each such variable
enters the basic solution, determine the associated leaving variable, if any, and the
associated change in z. Do not use the Gauss-Jordan row operations.

(¢) Repeat part (b) assuming that the problem is of the minimization type.

(d) Which nonbasic variable(s) will not cause a change in the value of z when selected
to enter the solution?

3-27. Consider the two-dimensional solution space in Figure 3.17
(a) Suppose that the objective function is given as

Maximize z = 6x; + 3x,

If the simplex iterations start at point A, identify the path to the optimum point D.

(b) Determine the entering variable, the corresponding ratios of the feasibility condi-
tion, and the change in the value of z, assuming that the starting iteration occurs at
point A and that the objective function is given as

Maximize z = x; + 4x,

X, FIGURE 3.17
Solution Space for Problem 3-27
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(¢) Repeat (b), assuming that the objective function is

Maximize z = 8x; + 2x,

3-28. Consider the following LP:

*3-29.

3-30.

3-31.

subject to

Maximize z = 16x; + 15x,

40X1 + 31X2 = 124
—X1 + Xy =1
X1 =3

X1, Xy = 0

(a) Solve the problem by the simplex method, where the entering variable is the
nonbasic variable with the most negative z-row coefficient.

(b)

Resolve the problem by the simplex algorithm, always selecting the entering variable

as the nonbasic variable with the least negative z-row coefficient.

(c)

Compare the number of iterations in (a) and (b). Does the selection of the entering

variable as the nonbasic variable with the most negative z-row coefficient lead to a
smaller number of iterations? What conclusion can be made regarding the optimality
condition?

(d)

Suppose that the sense of optimization is changed to minimization by multiplying z

by —1. How does this change affect the simplex iterations?

In Example 3.3-1, show how the second-best optimal value of z can be determined from
the optimal tableau.

Can you extend the procedure in Problem 3-9 to determine the third-best optimal

value of z?

The Gutchi Company manufactures purses, shaving bags, and backpacks. The construction
includes leather and synthetics, leather being the scarce raw material. The production pro-
cess requires two types of skilled labor: sewing and finishing. The following table gives the
availability of the resources, their usage by the three products, and the profits per unit.

Resource requirements per unit

Resource Purse Bag Backpack Daily availability
Leather (ft?) 2 1 3 42
Sewing (hr) 2 1 2 40 hr
Finishing (hr) 1 5 1 45 hr
Selling price ($) 24 22 45

(a) Formulate the problem as a linear program, and find the optimum solution (using

TORA, Excel Solver, or AMPL).
(b) From the optimum solution, determine the status of each resource.
3-32. TORA experiment. Consider the following LP:

Maximize z = x; + x, + 3x3 + 2x4
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subject to

X+ 2x) —3x3 + 5x4 =4
S5x1 — 2x, + 6x4 =8
2x; + 3x) — 2x3 + 3x4, = 3
X + x3+2x, =0

X1, X2, X3, X4 = 0

(a) Use TORAs iterations option to determine the optimum tableau.

(b) Select any nonbasic variable to “enter” the basic solution, and click Next Iteration
to produce the associated iteration. How does the new objective value compare with
the optimum in (a)? The idea is to show that the tableau in (a) is optimum because
none of the nonbasic variables can improve the objective value.

3-33. TORA experiment. In Problem 3-32, use TORA to find the next-best optimal solution.

3-34. Use hand computations to complete the simplex iteration of Example 3.4-1 and obtain
the optimum solution.

3-35. TORA experiment. Generate the simplex iterations of Example 3.4-1 using TORA’s
Iterations = M-method module (file toraEx3.4-1.txt). Compare the effect of using
M = 1,M = 10, and M = 1000 on the solution. What conclusion can be drawn from
this experiment?

3-36. In Example 3.4-1,identify the starting tableau for each of the following (independent)
cases, and develop the associated z-row after substituting out all the artificial variables:

*(a) The third constraint is x; + 2x, = 4.
*(b) The second constraint is 4x; + 3x, =< 6.
(¢) The second constraint is 4x; + 3x, = 8.
(d) The objective function is to maximize z = 5x; + 2x,.
3-37. Consider the following set of constraints:

2% +3x, =3 (
4x; + 5%, = 10 (
x1+2x% =5 (3)
6x; +7x, =3 (
4+ 8, =5  (
X, X =0

For each of the following problems, develop the z-row after substituting out the artificial
variables:

(a) Maximize z = 5x; + 6x;, subject to (1), (3), and (4).

(b) Maximize z = 2x; — 7x, subject to (1), (2), (4), and (5).
(¢) Minimize z = 3x; + 6x, subject to (3), (4), and (5).

(d) Minimize z = 4x; + 6x, subject to (1), (2), and (5).

(e¢) Minimize z = 3x; + 2x, subject to (1) and (5).
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3-38.

*3-39.

*3-40.

*3-41.

3-42.

Consider the following set of constraints:

x1+ X2+X3: 7

vV

2x; — Sxy + x5 = 10
X1, X3, %3 = 0
Solve the problem for each of the following objective functions:
(a) Maximize z = 2x; + 3x, — 5x3.
(b) Minimize z = 2x; + 3x, — 5x3.
(¢) Maximize z = x; + 2x; + x3.
(d) Minimize z = 4x; — 8x, + 3x;.
Consider the problem
Maximize z = 2x; + 4x, + 4x3 — 3xy

subject to

X1+ X, + X3 =4

x| + 4x, +x4=28

X1, Xp, X3, X4 = 0

Solve the problem with x3 and x4 as the starting basic variables and without using any

artificial variables. (Hint: x3 and x, play the role of slack variables. The main difference is
that they have nonzero objective coefficients.)

Solve the following problem using x3 and x4 as starting basic feasible variables. As in
Problem 3-39, do not use any artificial variables.

Minimize z = 3x; + 2x, + 3x3
subject to
x|+ 4x, + x5 =14
2x1 + X +x, =20

X1, X2, %3, X4 = 0

Consider the problem
Maximize z = x; + 5x, + 3x3
subject to
X, +2x +x3=6
2x1 — X =8
X1, X, x3 = 0

The variable x5 plays the role of a slack. Thus, no artificial variable is needed in the first
constraint. In the second constraint, an artificial variable, R, is needed. Solve the problem
using x3 and R as the starting variables.

Show that the M-method will conclude that the following problem has no feasible solution.

Maximize z = 2x; + 5x,
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3-44.
3-45.
3-46.

3-47.

3-48.
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subject to
3 + 2%, =6
2%+ xp =2
X1, X =0

In Phase [, if the LP is of the maximization type, explain why we do not maximize the
sum of the artificial variables in Phase I.

For each case in Problem 3-37 write the corresponding Phase I objective function.
Solve Problem 3-38, by the two-phase method.

Write Phase I for the following problem, and then solve (with TORA for convenience) to
show that the problem has no feasible solution.

Minimize z = 2x; + 5x,
subject to
3x; + 2x, = 12
21+ x, =4
X1, X =0
Consider the following problem:
Maximize z = 2x; + 2x, + 4x;
subject to
21+ xp t+ x3 =2
3x; + 4xy + 243 = 8
X1, X0, X3 = 0

(a) Show that Phase I will terminate with an artificial basic variable at zero level (you
may use TORA for convenience).

(b) Remove the zero artificial variable prior to the start of Phase II, then carry out
Phase II iterations.

Consider the following problem:
Maximize z = 3x; + 2x, + 3x3
subject to
2x1+ xp + x3=4
X+ 3%+ x3 =12
3x; + 4x, + 2x3 = 16
X1, X0, X3 = 0

(a) Show that Phase I terminates with two zero artificial variables in the basic solution
(use TORA for convenience).

(b) Show that when the procedure of Problem 3-47(b) is applied at the end of Phase I,
only one of the two zero artificial variables can be made nonbasic.
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(c) Show that the original constraint associated with the zero artificial variable that can-
not be made nonbasic in (b) must be redundant—hence, its row and its column can
be removed at the start of Phase II.

*3-49. Consider the following LP:
Maximize z = 3x; + 2x, + 3x3
subject to
2x1+ xp + x3 =2
3x; + 4xy + 2x3 = 8
X1, X0, X3 = 0

The optimal simplex tableau at the end of Phase I is

Basic X X X3 X4 X5 R Solution
r =5 0 -2 -1 —4 0 0
X 2 1 1 0 1 0 2
R =5 0 -2 -1 —4 1 0

Explain why the nonbasic variables x1, x3, x4, and x5 can never assume positive
values at the end of Phase II. Hence, conclude that their columns can be dropped before
we start Phase II. In essence, the removal of these variables reduces the constraint equa-
tions of the problem to x, = 2—meaning that it is not necessary to carry out Phase II in
this problem.

3-50. Consider the LP model
Minimize z = 2x; — 4x, + 3x3
subject to
S5x1 — 6xy + 2x3 =5
—x1 + 3%, + 5x3 = 8
2x; + 5x) —4x3 =4
X1, X0, X3 = 0

Show how the inequalities can be modified to a set of equations that requires the use of
single artificial variable only (instead of two).

*3-51. Consider the graphical solution space in Figure 3.18. Suppose that the simplex iterations
start at A and that the optimum solution occurs at D. Further, assume that the objective
function is defined such that at A, x; enters the solution first.

(a) Identify (on the graph) the corner points that define the simplex method path to the
optimum point.
(b) Determine the maximum possible number of simplex iterations needed to reach the
optimum solution, assuming no cycling.
3-52. Consider the following LP:

Maximize z = 3x; + 2x,



3-53.

3-54.
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R9)

X

FIGURE 3.18

Solution space of Problem 3-51

subject to

4X1 - X =

4
4x; +3x, = 6
dx; + x, = 4
X1, X =0
(a) Show that the associated simplex iterations are temporarily degenerate (you may
use TORA for convenience).

(b) Verify the result by solving the problem graphically (TORA’s Graphic module can
be used here).

TORA experiment. Consider the LP in Problem 3-52.

(a) Use TORA to generate the simplex iterations. How many iterations are needed to
reach the optimum?

(b) Interchange constraints (1) and (3) and re-solve the problem with TORA. How
many iterations are needed to solve the problem?

(¢) Explain why the numbers of iterations in (a) and (b) are different.

TORA Experiment. Consider the following LP (authored by E.M. Beale to demonstrate
cycling):

Maximize z = 3 x; — 20x, + X3 — 6%,
subject to
Iy — 8 — x3+ 9% =0
o= 12x — Sx3 + 35, =0
X3 =1

X1, X2, X3, X4 = 0
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*3-58.

3-56.

3-57.

3-58.

From TORA’s SOLVE/MODIFY menu, select Solve = Algebraic = Iterations =
All-slack . Next, “thumb” through the successive simplex iterations using the command
Next iteration (do not use All iterations, because the simplex method will then cycle
indefinitely). You will notice that the starting all-slack basic feasible solution at iteration
0 will reappear identically in iteration 6. This example illustrates the occurrence of cycling
in the simplex iterations and the possibility that the algorithm may never converge to the
optimum solution. (It is interesting that cycling will not occur in this example if all the
coefficients in this LP are converted to integer—try it!)

For the following LP, identify three alternative optimal basic solutions, and then write a
general expression for all the nonbasic alternative optima comprising these three basic
solutions.

Maximize z = x; + 2x, + 3x3
subject to
x; + 2x + 3x3 = 10
X+ x =5
X1 =1
X1, X0, X3 = 0

Note: Although the problem has more than three alternative basic solution optima,
you are only required to identify three of them. You may use TORA for
convenience.

Solve the following LP:
Maximize z = 2x; — x, + 3x3
subject to
X;— X t5x =5
2x1 — xp + 3x3 = 20
X1, X3, %3 = 0

From the optimal tableau, show that all the alternative optima are not corner points
(i.e., nonbasic). Give a two-dimensional graphical demonstration of the type of solution space
and objective function that will produce this result. (You may use TORA for convenience.)

For the following LP, show that the optimal solution is degenerate and that none of the
alternative solutions are corner points. You may use TORA for convenience.

Maximize z = 3x; + x;
subject to
x; + 2x, = 5
X1t xn— x3= 2
Tx; + 3xy — S5x3 = 20
X1, X, X3 = 0

TORA Experiment. Solve Example 3.5-3 using TORA’s Iterations option and show
that even though the solution starts with x; as the entering variable (per the optimality
condition), the simplex algorithm will point eventually to an unbounded solution.
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3-60.

*3-61.

3-62.

3-63.
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Consider the LP:
Maximize z = 20x; + 5x, + x3

subject to

3x; + S5xy — S5x3 = 50

X =10

x; + 3x — 4x3 =20

X1, X0, X3 = 0

(a) By inspecting the constraints, determine the direction (x1, x,, or x3) in which the

solution space is unbounded.

(b) Without further computations, what can you conclude regarding the optimum
objective value?

In some ill-constructed LP models, the solution space may be unbounded even though
the problem may have a bounded objective value. Such an occurrence points to possible
irregularities in the construction of the model. In large problems, it may be difficult to
detect “unboundedness” by inspection. Devise an analytic procedure for determining
whether or not a solution space is unbounded.

Toolco produces three types of tools, 71, 72, and 73. The tools use two raw materials, M1
and M2, according to the data in the following table:

Number of units of raw materials per tool

Raw material TI 12 T3
M1 3 5
M2 5 3

The available daily quantities of raw materials M1 and M2 are 2000 units and 2400 units,
respectively. Marketing research shows that the daily demand for all three tools must be
at least 1000 units. Can the manufacturing department satisfy the demand? If not, what is
the most Toolco can produce?

Consider the LP model
Maximize z = 3x; + 2x; + 3x3
subject to
21+ xp + x3 =4
3x; + 4x, + 2x3 = 16
X1, X3, %3 = 0

Use hand computations to show that the optimal solution can include an artificial basic
variable at zero level. Does the problem have a feasible optimal solution?

A company produces two products, A and B.The unit revenues are $2 and $3, respec-
tively. Two raw materials, M1 and M2, used in the manufacture of the two products have
daily availabilities of 8 and 18 units, respectively. One unit of A uses 2 units of M1 and

2 units of M2, and 1 unit of B uses 3 units of M1 and 6 units of M2.



160 Chapter 3 The Simplex Method and Sensitivity Analysis

*3-64.

3-65.

3-66.

*3-67.

3-68.

(a) Determine the dual prices of M1 and M2 and their feasibility ranges.

(b) Suppose that 2 additional units of M1 can be acquired at the cost of 25 cents per unit.
Would you recommend the additional purchase?

(c) What is the most the company should pay per unit of M2?

(d) If M2 availability is increased by 3 units, determine the associated optimum revenue.
Wild West produces two types of cowboy hats. A Type 1 hat requires twice as much labor
time as a Type 2. If all the available labor time is dedicated to Type 2 alone, the company
can produce a total of 400 Type 2 hats a day. The respective market limits for the two types
are 150 and 200 hats per day. The revenue is $8 per Type 1 hat and $5 per Type 2 hat.

(a) Use the graphical solution to determine the number of hats of each type that
maximizes revenue.

(b) Determine the dual price of the production capacity (in terms of the Type 2 hat) and
the range for which it is applicable.

(c) If the daily demand limit on the Type 1 hat is decreased to 120, use the dual price to
determine the corresponding effect on the optimal revenue.

(d) What is the dual price of the market share of the Type 2 hat? By how much can the
market share be increased while yielding the computed worth per unit?

Consider Problem 3-63.

c
(a) Determine the optimality condition for CA that will keep the optimum unchanged.
B

(b) Determine the optimality ranges for ¢4 and cp, assuming that the other coefficient is
kept constant at its present value.

(¢) If the unit revenues c4 and cp are changed simultaneously to $5 and $4, respectively,
determine the new optimum solution.

(d) If the changes in (c) are made one at a time, what can be said about the optimum
solution?

In the Reddy Mikks model of Example 2.2-1:

(a) Determine the range for the ratio of the unit revenue of exterior paint to the unit
revenue of interior paint.

(b) If the revenue per ton of exterior paint remains constant at $6000 per ton, determine the
maximum unit revenue of interior paint that will keep the present optimum solution
unchanged.

(¢) If for marketing reasons the unit revenue of interior paint must be reduced to $2500,
will the current optimum production mix change?

In Problem 3-64:

(a) Determine the optimality range for the unit revenue ratio of the two types of hats
that will keep the current optimum unchanged.

(b) Using the information in (a), will the optimal solution change if the revenue per unit
is the same for both types?

In the TOYCO model, suppose that the changes Dy, D,, and D5 are made simultaneously in

the three operations.?”

(a) If the availabilities of operations 1,2, and 3 are changed to 440, 490, and 400 minutes,
respectively, use the simultaneous conditions to show that the current basic solution

20In Problems 3-68 to 3-80, you may find it convenient to generate the optimal simplex tableau with TORA..
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3-70.

3-71.

(b)
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remains feasible, and determine the change in the optimal revenue by using the
optimal dual prices.

If the availabilities of the three operations are changed to 460, 440, and 370 minutes,
respectively, use the simultaneous conditions to show that the current basic solution
is infeasible.

Consider the TOYCO model.

(@

(b)

()
(d)

(e)

Suppose that any additional time for operation 1 beyond its current capacity of

430 mins per day must be done on an overtime basis at $50 an hour. The hourly cost
includes both labor and the operation of the machine. Is it economically advantageous
to use overtime with operation 1?

Suppose that the operator of operation 2 has agreed to work 2 hrs of overtime daily
at $45 an hour. Additionally, the cost of the operation itself is $10 an hour. What is
the net effect of this activity on the daily revenue?

Is overtime needed for operation 3?

Suppose that the daily availability of operation 1 is increased to 440 mins. Any
overtime used beyond the current maximum capacity will cost $40 an hour.
Determine the new optimum solution, including the associated net revenue.

Suppose that the availability of operation 2 is decreased by 15 mins a day and that
the hourly cost of the operation during regular time is $30. Is it advantageous to
decrease the availability of operation 2?

A company produces three products, A, B, and C. The sales volume for A is at least 50%
of the total sales of all three products. However, the company cannot sell more than 80
units of A per day. The three products use one raw material, of which the maximum daily
availability is 240 Ib. The usage rates of the raw material are 2 Ib per unit of A,

4 1b per unit of B, and 3 Ib per unit of C.The unit prices for A, B, and C are $20, $50, and
$35, respectively.

(a)
(b)

(o)

Determine the optimal product mix for the company.

Determine the dual price of the raw material resource and its allowable range. If
available raw material is increased by 120 1b, determine the optimal solution and the
change in total revenue using the dual price.

Use the dual price to determine the effect of changing the maximum demand for
product A by 10 units.

A company that operates 10 hrs a day manufactures three products on three processes.
The following table summarizes the data of the problem:

(a)
(b)
(©)

Minutes per unit

Product  Process1  Process2  Process3  Unit price

1 10 6 8 $4.50
5 8 10 $5.00
3 6 9 12 $4.00

Determine the optimal product mix.
Use the dual prices to prioritize the three processes for possible expansion.

If additional production hours can be allocated, what would be a fair cost per
additional hour for each process?
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The Continuing Education Division at the Ozark Community College offers a total of

30 courses each semester. The courses offered are usually of two types: practical, such

as woodworking, word processing, and car maintenance, and humanistic, such as history,
music, and fine arts. To satisfy the demands of the community, at least 10 courses of each
type must be offered each semester. The division estimates that the revenues of offering
practical and humanistic courses are approximately $1500 and $1000 per course, respectively.
(a) Devise an optimal course offering for the college.

(b) Show that the dual price of an additional course is $1500, which is the same as
the revenue per practical course. What does this result mean in terms of offering
additional courses?

(c) How many more courses can be offered while guaranteeing that each will contribute
$1500 to the total revenue?

(d) Determine the change in revenue resulting from increasing the minimum requirement
of humanistics by one course.

Show & Sell can advertise its products on local radio and television (TV), or in newspapers.
The advertising budget is limited to $10,000 a month. Each minute of advertising on
radio costs $15 and each minute on TV costs $300. A newspaper ad costs $50. Show &
Sell likes to advertise on radio at least twice as much as on TV. In the meantime, the use
of at least 5 newspaper ads and no more than 400 mins of radio advertising a month is
recommended. Past experience shows that advertising on TV is 50 times more effective
than on radio and 10 times more effective than in newspapers.

(a) Determine the optimum allocation of the budget to the three media.
(b) Are the limits set on radio and newspaper advertising justifiable economically?

(¢) If the monthly budget is increased by 50%, would this result in a proportionate
increase in the overall effectiveness of advertising?

The Burroughs Garment Company manufactures men’s shirts and women’s blouses for

Walmark Discount Stores. Walmark will accept all the production supplied by Burroughs.

The production process includes cutting, sewing, and packaging. Burroughs employs

25 workers in the cutting department, 35 in the sewing department, and 5 in the packaging

department. The factory works one 8-hr shift, 5 days a week. The following table gives

the time requirements and prices per unit for the two garments:

Minutes per unit

Garment Cutting Sewing Packaging Unit price ($)

Shirts 20 70 12 8.00
Blouses 60 60 4 12.00

(a) Determine the optimal weekly production schedule for Burroughs.

(b) Determine the worth of 1 hr of cutting, sewing, and packaging in terms of the total
revenue.

(¢) If overtime can be used in cutting and sewing, what is the maximum hourly rate
Burroughs should pay for overtime?

ChemlLabs uses raw materials / and /I to produce two domestic cleaning solutions, A

and B.The daily availabilities of raw materials / and /I are 150 and 145 units, respectively.

One unit of solution A consumes .5 unit of raw material / and .6 unit of raw material /1,

and one unit of solution B uses .5 unit of raw material / and .4 unit of raw material /1.
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The prices per unit of solutions A and B are $8 and $10, respectively. The daily demand
for solution A lies between 30 and 150 units and that for solution B between 40 and
200 units.

(a) Find the optimal amounts of A and B that ChemLabs should produce.

(b) Use the dual prices to determine which demand limits on products A and B should
be relaxed to improve profitability.

(¢) If additional units of raw material can be acquired at $20 per unit, is this advisable?
Explain.

(d) A suggestion is made to increase raw material /1 by 25% to remove a bottleneck in
production. Is this advisable? Explain.

An assembly line consisting of three consecutive workstations produces two radio

models: DiGi-1 and DiGi-2. The following table provides the assembly times for the three

workstations.

Minutes per unit

Workstation DiGi-1 DiGi-2

1 6 4
2 5 4
3 4 6

The daily maintenance for workstations 1,2, and 3 consumes 10%, 14%, and 12%,
respectively, of the maximum 480 minutes available for each workstation each day.

(a) The company wishes to determine the optimal product mix that will minimize the
idle (or unused) times in the three workstations. Determine the optimum utilization
of the workstations. [Hint: Express the sum of the idle times (slacks) for the three
operations in terms of the original variables.]

(b) Determine the worth of decreasing the daily maintenance time for each workstation
by 1.5 percentage point.

(c) Itis proposed that the operation time for all three workstations be increased to 600 minutes
per day at the additional cost of $1.50 per minute. Can this proposal be improved?

The Gutchi Company manufactures purses, shaving bags, and backpacks. The construction
of the three products requires leather and synthetics, with leather being the limiting raw
material. The production process uses two types of skilled labor: sewing and finishing.
The following table gives the availability of the resources, their usage by the three prod-
ucts, and the prices per unit.

Resource requirements per unit

Resource Purse Bag Backpack Daily availability
Leather (ft?) 2 1 3 42
Sewing (hr) 2 1 2 40
Finishing (hr) 1 5 1 45

Price ($) 24 22 45

Formulate the problem as a linear program, and find the optimum solution. Next, indicate
whether the following changes in the resources will keep the current solution feasible.
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For the cases where feasibility is maintained, determine the new optimum solution (values
of the variables and the objective function).

(a)
(b)
(c)
(d)
(e)
®
(4]

Available leather is increased to 45 ft2.

Available leather is decreased by 1 ft2.

Available sewing hours are changed to 38 hrs.
Available sewing hours are changed to 46 hrs.
Available finishing hours are decreased to 15 hrs.
Available finishing hours are increased to 50 hrs.

Would you recommend hiring an additional sewing worker at $15 an hour?

HiDec produces two models of electronic gadgets that use resistors, capacitors, and chips.
The following table summarizes the data of the situation:

Unit resource requirements

Resource Model 1 (units) Model 2 (units) Maximum availability (units)
Resistor 2 3 1200

Capacitor 2 1 1000

Chips 0 4 800

Unit price ($) 3 4

Let x; and x, be the amounts produced of Models 1 and 2, respectively. Following are the
LP model and its associated optimal simplex tableau.

Maximize z = 3x; + 4x,

subject to

2x1 + 3x, = 1200 (Resistors)

A

2x; + x, = 1000 (Capacitors)
4x, = 800 (Chips)

X1, Xy = 0
Basic X1 X 51 S 53 Solution
z 0 0 2 i 0 1750
x1 1 0 -1 3 0 450
53 0 0 -2 2 1 400
X2 0 1 l -1 0 100

*(a) Determine the status of each resource.

*(b) In terms of the optimal revenue, determine the dual prices for the resistors, capacitors,

and chips.

(¢) Determine the feasibility ranges for the dual prices obtained in (b).

(d) If the available number of resistors is increased to 1300 units, find the new optimum

solution.

*(e) If the available number of chips is reduced to 350 units, will you be able to deter-

mine the new optimum solution directly from the given information? Explain.
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(f) If the availability of capacitors is limited by the feasibility range computed in (c),
determine the corresponding range of the optimal revenue and the corresponding
ranges for the numbers of units to be produced of Models 1 and 2.

(g) A new contractor is offering to sell HiDec additional resistors at 40 cents each, but
only if HiDec would purchase at least 500 units. Should HiDec accept the offer?

The 100% feasibility rule. A simplified rule based on the individual changes D1, D,, ...,
and D,, in the right-hand side of the constraints can be used to test whether or not
simultaneous changes will maintain the feasibility of the current solution. Assume that the
right-hand side b; of constraint i is changed to b; + D; one at a time, and that p; =< D; < q;
is the corresponding feasibility range obtained by using the procedure in Section 3.6.2.

By definition, we have p; = 0(g; = 0) because it represents the maximum allowable
decrease (increase) in b;. Next, define r; to equal %’ if D; is negative and % if D; is positive.
By definition, we have 0 = r; = 1. The 100% rule thus says that, given the changes Dy,
D,,...,and D,,, a sufficient (but not necessary) condition for the current solution to
remain feasible is that r; + r, + ... + r,, = 1. If the condition is not satisfied, then

the current solution may or may not remain feasible. The rule is not applicable if D; falls
outside the range (p;, q;).

In reality, the 100% rule is too weak to be consistently useful. Even in the cases
where feasibility can be confirmed, we still need to obtain the new solution using the
regular simplex feasibility conditions. Besides, the direct calculations associated with
simultaneous changes given in Section 3.6.2 are straightforward and manageable.

To demonstrate the weakness of the rule, apply it to parts (a) and (b) of Problem
3-68 based on the TOYCO model of Example 3.6-2. The rule fails to confirm the feasibil-
ity of the solution in (a) and does not apply in (b) because the changes in D; are outside
the admissible ranges. Problem 3-80 further demonstrates this point.

Consider the problem
Maximize z = x; + X,
subject to
2x1+ X, =6
X, +t2x%, =6
X+ =0

(a) Show that the optimal basic solution includes both x; and x, and that the feasibility
ranges for the two constraints, considered one at a time, are —3 = D; =< 6 and
-3=D,=6.

*(b) Suppose that the two resources are increased simultaneously by A > 0 each. First,
show that the basic solution remains feasible for all A > 0. Next, show that the
100% rule will confirm feasibility only if the increase is in the range 0 < A =< 3 units.
Otherwise, the rule fails for 3 < A < 6 and does not apply for A > 6.

In the TOYCO model, determine if the current solution will change in each of the

following cases:*!

(i) z= x+x+4x;
(i) z =4x; + 6x, + x3
(iii) z = 6x; + 3x, + 9x3

2lTn Problems 3-80 to 3-87 you may find it convenient to generate the optimal simplex tableau with TORA..
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B&K grocery store sells three types of soft drinks: the brand names A1 Cola, A2 Cola,
and the cheaper store brand BK Cola. The price per can for A1, A2, and BK are 80, 70,
and 60 cents, respectively. On the average, the store sells no more than 500 cans of all
colas a day. Although A1 is a recognized brand name, customers tend to buy more A2
and BK because they are cheaper. It is estimated that at least 100 cans of A1 are sold
daily and that A2 and BK combined outsell A1 by a margin of at least 4:2.

(a) Show that the optimum solution does not call for selling the A3 brand.
(b) By how much should the price per can of A3 be increased to be sold by the store?

(c¢) To be competitive with other stores, the store decided to lower the price on all three
types of cola by 5 cents per can. Recompute the reduced costs to determine if this
promotion will change the current optimum solution.

Baba Furniture Company employs four carpenters for 10 days to assemble tables and

chairs. It takes 2 person-hours to assemble a table and half a person-hour to assemble

a chair. Customers usually buy one table and four to six chairs. The prices are $135 per

table and $50 per chair. The company operates one 8-hr shift a day.

(a) Determine the 10-day optimal production mix.

(b) If the present unit prices per table and chair are each reduced by 10%, use sensitivity
analysis to determine if the optimum solution obtained in (a) will change.

(¢) If the present unit prices per table and chair are changed to $120 and $25, respectively,
will the solution in (a) change?

The Bank of Elkins is allocating a maximum of $200,000 for personal and car loans
during the next month. The bank charges 14% for personal loans and 12% for car loans.
Both types of loans are repaid at the end of a 1-year period. Experience shows that about
3% of personal loans and 2% of car loans are not repaid. The bank usually allocates at
least twice as much money to car loans as to personal loans.

(a) Determine the optimal allocation of funds between the two loans and the net rate of
return on all the loans.

(b) If the percentages of personal and car loans are changed to 4% and 3%, respectively,
use sensitivity analysis to determine if the optimum solution in (a) will change.
Electra produces four types of electric motors, each on a separate assembly line. The
respective capacities of the lines are 500, 500, 800, and 750 motors per day. Type 1 motor
uses 8 units of a certain electronic component, type 2 motor uses 5 units, type 3 motor
uses 4 units, and type 4 motor uses 6 units. The supplier of the component can provide
8000 units a day. The prices per motor for the respective types are $60, $40, $25, and $30.

(a) Determine the optimum daily production mix.

(b) The present production schedule meets Electra’s needs. However, because of competi-
tion, Electra may need to lower the price of type 2 motor. What is the largest reduction
that can be implemented without changing the present production schedule?

(¢) Electra has decided to slash the price of all motor types by 25%. Use sensitivity
analysis to determine if the optimum solution remains unchanged.

(d) Currently, type 4 motor is not produced. By how much should its price be increased
to be included in the production schedule?

Popeye Canning is contracted to receive daily 50,000 1b of ripe tomatoes at 7 cents per
pound, from which it produces canned tomato juice, tomato sauce, and tomato paste. The
canned products are packaged in 24-can cases. A can of juice uses 1 1b of fresh tomatoes,
a can of sauce uses 5 Ib, and a can of paste uses % Ib. The company’s daily share of the
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market is limited to 1500 cases of juice, 1500 cases of sauce, and 1000 cases of paste. The
wholesale prices per case of juice and paste are $21, $9, and $12, respectively.

(a) Develop an optimum daily production program for Popeye.

(b) If the price per case for juice and paste remains fixed as given in the problem, use
sensitivity analysis to determine the unit price range Popeye should charge for a case
of sauce to keep the optimum product mix unchanged.

Dean’s Furniture Company assembles regular and deluxe kitchen cabinets from precut
lumber. The regular cabinets are painted white, and the deluxe are varnished. Both
painting and varnishing are carried out in one department. The daily capacity of the
assembly department is 400 regular cabinets and 300 deluxe. Varnishing a deluxe unit
takes twice as much time as painting a regular one. If the painting/varnishing depart-
ment is dedicated to the deluxe units only, it can complete 360 units daily. The company
estimates that the revenues per unit for the regular and deluxe cabinets are $100 and
$140, respectively.
(a) Formulate the problem as a linear program, and find the optimal production sched-
ule per day.

(b) Suppose that competition dictates that the price per unit of each of regular and
deluxe cabinets be reduced to $90. Use sensitivity analysis to determine whether or
not the optimum solution in (a) remains unchanged.

The 100% Optimality Rule. A rule similar to the 100% feasibility rule outlined in

Problem 3-79, can also be developed for testing the effect of simultaneously changing

all¢jtoc; + d;,j = 1,2, ..., n, on the optimality of the current solution. Suppose that

u; = d; = v;is the optimality range obtained as a result of changing each c; to ¢; + d;

one at a time, using the procedure in Section 3.6.3. In this case, u; = 0 (v; = 0),

because it represents the maximum allowable decrease (increase) in ; that will keep

the current solution optimal. For the cases where u; < d; < v;, define r; equal to 7 if d;

is positive and % if d; is negative. By definition, 0 = r; = 1.The 100% rule says that a

sufficient (but not necessary) condition for the current solution to remain optimal is that

ry +r, + ... + r, = 1.1f the condition is not satisfied, the current solution may or may
not remain optimal. The rule does not apply if d, falls outside the specified ranges.

Demonstrate that the 100% optimality rule is too weak to be consistently reliable
as a decision-making tool by applying it to the following cases:

(a) Parts (ii) and (iii) of Problem 3-81

(b) Part (b) of Problem 3-87.

Consider Problem 2-40 (Chapter 2). Use the dual price to decide if it is worthwhile to

increase the funding for year 4.2

Consider Problem 2-41 (Chapter 2).
(a) Use the dual prices to determine the overall return on investment.

(b) If you wish to spend $2000 on pleasure at the end of year 1, how would this affect
the accumulated amount at the start of year 5?

Consider Problem 2-42 (Chapter 2).
(a) Give an economic interpretation of the dual prices of the model.

22Before answering the Problems 3-89 to 3-98, you are expected to generate the sensitivity analysis report
using AMPL, Solver, or TORA.
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(b) Show how the dual price associated with the upper bound on borrowed money at
the beginning of the third quarter can be derived from the dual prices associated
with the balance equations representing the in-out cash flow at the five designated
dates of the year.

Consider Problem 2-43, (Chapter 2). Use the dual prices to determine the rate of return

associated with each year.

Consider Problem 2-44, (Chapter 2). Use the dual price to determine if it is worthwhile

for the executive to invest more money in the plans.

Consider Problem 2-45 (Chapter 2). Use the dual price to decide if it is advisable for the

gambler to bet an additional $400.

Consider Problem 2-47, (Chapter 2). Relate the dual prices to the unit production costs of

the model.

Consider Problem 2-48, (Chapter 2). Suppose that any additional capacity of machines

1 and 2 can be acquired only by using overtime. What is the maximum cost per hour the

company should be willing to incur for either machine?

Consider Problem 2-49, (Chapter 2).

(a) Suppose that the manufacturer can purchase additional units of raw material A at
$12 per unit. Would it be advisable to do so?

(b) Would you recommend that the manufacturer purchase additional units of raw
material B at $5 per unit?

Consider Problem 2-76 (Chapter 2).
(a) Which of the specification constraints impacts the optimum solution adversely?

(b) Is it economical for the company to purchase ore 1 at $100/ton. Explain in terms of
dual prices.
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Duality and Post-Optimal Analysis

DEFINITION OF THE DUAL PROBLEM

The dual problem is defined systematically from the primal (or original) LP model.
The two problems are closely related, in the sense that the optimal solution of one
problem automatically provides the optimal solution to the other. As such, it may be
advantageous computationally in some cases to determine the primal solution by solv-
ing the dual. But that computational advantage may be minor when compared with
what the rich primal-dual theory offers, as we will demonstrate throughout the book.

In all textbooks this author is familiar with, the dual is defined for various forms
of the primal depending on the sense of optimization (maximization or minimization),
types of constraints (=<, =, or =), and sign of the variables (nonnegative or unre-
stricted). Not only are there too many combinations to memorize, but their use may
require a degree of reconciling with the simplex algorithm results, primarily because
the primal from which the dual is constructed is not in the standard format used by the
simplex algorithm (e.g., the primal from which the dual is constructed may have nega-
tive right-hand sides in the constraints).

This book offers a single definition that automatically subsumes all forms of the
primal. Our definition of the dual problem requires expressing the primal problem in
the equation form presented in Section 3.1, a format consistent with the simplex start-
ing tableau (all the constraints are equations with nonnegative right-hand sides, and all
the variables are nonnegative). Hence, any results obtained from the primal optimal
solution apply unambiguously to the associated dual problem.

The following is a summary of how the dual is constructed from the (equation-
form) primal:

1. A dual variable is assigned to each primal (equation) constraint and a dual con-
straint is assigned to each primal variable.
2. The right-hand sides of the primal constraints provide the coefficients of the dual
objective function.
169
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TABLE 4.1 Rules for Constructing the Dual Problem

Dual problem
Primal problem
objective?® Objective Constraints typeb Variables sign
Maximization Minimization = Unrestricted
Minimization Maximization = Unrestricted

2All primal constraints are equations with nonnegative right-hand sides, and all the variables are nonnegative.
YA convenient way to remember the constraint type (= or <) in the dual is that if the dual objective is a
“pointing-down” minimization, then all the constraints are “pointing-up” (=)-inequalities. The opposite
applies when the dual objective is maximization.

3. The dual constraint corresponding to a primal variable is constructed by transpos-
ing the primal variable column into a row with (i) the primal objective coefficient
becoming the dual right-hand side and (ii) the remaining constraint coefficients
comprising the dual left-hand side coefficients.

4. The sense of optimization, direction of inequalities, and the signs of the variables
in the dual are governed by the rules in Table 4.1

The following examples demonstrate the use of the rules in Table 4.1. The examples
also show that our definition incorporates all forms of the primal automatically.

Example 4.1-1
Primal Primal in equation form Dual variables
Maximize z = S5x; + 12x, + 4x3 Maximize z = 5x; + 12x, + 4x3 + Oxy
subject to subject to
X+ 2x + x3=10 X +2x+ x5+ x4 =10 Y1
2x; — xp +3x3= 8 2x1 — xp t+3x3 +0xy = 8 Y2
X1, X2, X3 = 0 X1, X, X3, X4 = 0
Dual Problem
Minimize w = 10y; + 8y,
subject to
yit2y;= 5
2yp — yp =12
yit3yy=4
yit0yp= 0

. = = (, y, unrestricted
Vi, V2 unrestrlcted} (1 2 )
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Example 4.1-2

Primal

Primal in equation form Dual variables

Minimize z = 15x; + 12x,
subject to

X +2x =3

2X1 - 4X2 =5

Minimize z = 15x; + 12x, + Ox3 + Oxy

subject to
Y1

y2

Xy +2x; — x3+0x4 =3
2x; —4dx, + 0x3 + x4 =5

.0 =0 X1, X3, X3, X4 = 0
Dual Problem
Maximize w = 3y; + 5y,
subject to
yit2, =15
2y — 4y, = 12
N =0
= 0,=01=0y=0)
Y1, ¥, unrestrricted
Example 4.1-3
Primal Primal in equation form Dual variables

Maximize z = 5x; + 6x,
subject to
Xy +2x =15
—x; +5x =3
4x; + Tx, = 8
xp unrestricted, x, = 0

Substitute x; = x] — xi.
Maximize z = 5x] — 5x] + 6x,

subject to
x; — xi +2x, =5 3!
—X7 + X7+ 5% — x; =3 Y2
4x] — 4xT + Tx, +x,=38 Y3

- 7t
X1, X1, X2, X3, %4 = 0

Dual Problem
subject to
yi— ytdy; =
it -4y =
2y1 + 5y, + Tyz =
2 =
y3 =

Minimize z = 5y, + 3y, + 8y;

5 Y1_Y2+4y%25}
: -y, t4y; =5
—5}:>y1—y2+4Y355 =Y~ )2 Y3
6
0
0 p = (y; unrestricted, y, = 0,y; = 0)

Y1, Y2, ¥3 unrestricted

The first and second constraints are replaced by an equation. The general rule is that an unre-
stricted primal variable always corresponds to an equality dual constraint. Conversely, a primal

equation produces an unrestrict

ed dual variable, as the first primal constraint demonstrates.
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TABLE 4.2 Rules for Constructing the Dual Problem

Maximization problem Minimization problem

Constraints Variables

> = =0

= S =0

= =3 Unrestricted
Variables Constraints

= ( = =

=0 = =
Unrestricted s =

Summary of the rules for constructing the dual. Table 4.2 summarizes the primal—
dual rules as they are usually presented in the literature. It is a good exercise to verify
that these explicit rules are subsumed by the two rules in Table 4.1.

Note that the column headings in the table do not use the designation primal and
dual. What matters here is the sense of optimization. If the primal is maximization, then
the dual is minimization, and vice versa. Note also that no provision is made for includ-
ing artificial variables in the primal because artificial variables would not change the
definition of the dual (see Problem 4-5).

PRIMAL-DUAL RELATIONSHIPS

Changes made in the data of an LP model can affect the optimality and/or the feasibility
of the current optimum solution. This section introduces a number of primal-dual
relationships that can be used to recompute the elements of the optimal simplex tab-
leau. These relationships form the basis for the economic interpretation of the LP model
and for post-optimality analysis.

The section starts with a brief review of matrices, a convenient tool for carrying
out the simplex tableau computations. A more detailed review of matrices is given in
Appendix D on the website.

Review of Simple Matrix Operations

The simplex tableau can be generated by three elementary matrix operations: (row
vector) X (matrix), (matrix) X (column vector), and (scalar) X (matrix). These op-
erations are summarized here for convenience. First, we introduce some matrix
definitions:

1. A matrix, A, of size (m X n) is a rectangular array of elements with m rows and
n columns.

2. A rowvector,V,of size misa (1 X m) matrix.
3. A column vector,P,of size nis an (n X 1) matrix.
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These definitions can be represented mathematically as

an ap ap P1
an ax aop P2
V=@.o..co0), A= T T TR
(251 [10%) An Pn

1. (Row vector X matrix, VA). The operation is valid only if the size of the row
vector V and the number of rows of A are equal. For example,

1 2
(11,22,33)13 4| = (1 X11 +3X22+5X33,2X11+4X22+6X33)
5 6

= (242,308)

2. (Matrix X column vector, AP). The operation is valid only if the number of col-
umns of A and the size of column vector P are equal. For example,

(1 3 5) - _<1><11+3><22+5><33>_(242>
2 4 6 2 S \2X11+4x22+6x33) \308

3. (Scalar X matrix, «A). Given the scalar (or constant) quantity «, the multiplica-
tion operation aA results in a matrix of the same size as matrix A. For example,

given a = 10,
1 2 3 10 20 30
(10)(4 5 6>_<40 50 60)

Simplex Tableau Layout

The simplex tableau in Chapter 3 is the basis for the presentation in this chapter.
Figure 4.1 represents the starting and general simplex tableaus schematically. In the
starting tableau, the constraint coefficients under the starting variables form an iden-
tity matrix (all main-diagonal elements are 1, and all off-diagonal elements are zero).
With this arrangement, subsequent iterations of the simplex tableau generated by the
Gauss—Jordan row operations (see Chapter 3) modify the elements of the identity
matrix to produce what is known as the inverse matrix. As we will see in the remainder
of this chapter, the inverse matrix is key to computing all the elements of the associated
simplex tableau.

Remarks. The inverse matrix in the general tableau has its roots in the starting tableau
constraint columns. That means that the inverse at any iteration can be computed (from
scratch) using the original constraint columns of the LP problem (as will be demon-
strated in the remarks following Example 4.2-1). This is an important relationship that
has been exploited to control round-off errors in the simplex algorithm computations.
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Starting variables
Objective z-row { | | =

1 0 .. O
Constraint o 1 .. 0 B
columns 2 2 %@ -
0o 0 .. 1

Identity matrix

(Starting tableau)

Starting variables
Objective z-row { | | =

[]

Constraint

Inverse matrix =
columns

(General iteration)

FIGURE 4.1

Schematic representation of the starting and general simplex tableaus

4.2.3 Optimal Dual Solution

The primal and dual solutions are closely related, in the sense that the optimal solution
of either problem directly yields the optimal solution to the other, as is explained subse-
quently. Thus, in an LP model in which the number of variables is considerably smaller
than the number of constraints, computational savings may be realized by solving the
dual because the amount of computations associated with determining the inverse matrix
primarily increases with the number of constraints. Notice that the rule addresses only the
amount of computations in each iteration but says nothing about the total number of itera-
tions needed to solve each problem.
This section provides two methods for determining the dual values.

Method 1.
Optimal value of Optimal primal z-coefficient of starting basic variable x;
dual variable y; - i
! Original objective coefficient of x;
Method 2.
R tor of
Optimal values . O\,V Ve?c oro . Optimal primal
. original objective coefficients X .
of dual variables inverse

of optimal primal basic variables
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The elements of the row vector must appear in the same order the basic variables are
listed in the Basic-column of the simplex tableau.

Example 4.2-1
Consider the following LP:
Maximize z = 5x; + 12x, + 4x;
Subject to
X+ 2%+ x3=10
2x; — X +3x3 = 8
X1, X9, X3 = 0

To prepare the problem for solution by the simplex method, we add a slack x4 in the first con-
straint and an artificial R in the second. The resulting primal and the associated dual problems
are thus defined as follows:

Primal Dual
Maximize z = 5x; + 12x, + 4x3 — MR Minimize w = 10y; + 8y,
subject to subject to
X1+ 2x + x5+ x4 =10 yit2p=5
2x1 — X + 3x3 +R= 8 2y1 — y, =12
X1, X2, X3, X4, R = 0 yi+3y,= 4
n =0
Y2 = —M ( = y, unrestricted)

Table 4.3 provides the optimal primal tableau.
We now show how the optimal dual values are determined using the two methods described
at the start of this section.

Method 1. In Table 4.3, the starting primal variables x4 and R uniquely correspond to the
dual variables y; and y,, respectively. Thus, we determine the optimum dual solution as
follows:

Starting primal basic variables Xy R

z-equation coefficients % —% + M
Original objective coefficient 0 -M

Dual variables N1 Y2

Optimal dual values ? +0= 25*9 2+ M+ (-M) = -1

Method 2. The optimal inverse matrix, highlighted in Table 4.3 under the starting variables x4
and R, is

[A[SERVAT

Optimal inverse =

nj—=



176

Chapter 4 Duality and Post-Optimal Analysis

TABLE 4.3 Optimal Tableau of the Primal of Example 4.2-1

Basic X1 X X3 X4 R Solution
29 2 4
z 0 0 2 2 2+ M 54%
X 0 1 _1 2 _1 2
5 5 5 5
X1 1 0 7 1 2 26
5 5 5 5

The order of the optimal primal basic variables in the Basic-column is x, followed by x;. The
elements of the original objective coefficients for the two variables must appear in the same
order —namely,

(Original objective coefficients) = (Coefficient of x,, coefficient of x;)
= (12,5)
The optimal dual values are

Original objective ) o
) = - X (Optimal
(31.32) (coefflclents of x,, x; (Optimal inverse)

= (12,5)

QD= N
L =

- (2%)

Remarks. We pause here to demonstrate the important relationship between the
inverse matrix in a simplex tableau and the associated basic matrix obtained from
original constraint columns in the starting tableau. For example, in the optimal tab-
leau, the basic variables, taken in order, are (x,, x1). Hence, the associated (optimal)
basic matrix is obtained from the original problem as

Optimal Constraint Constraint b 1
basic = | column of columnof | = < 1 2)
matrix X bt

When this basic matrix is inverted (using one of the methods in Appendix D on the
website), it will yield the inverse in the optimum tableau. We can verify that this is true
because matrix theory tells us that the product of the basic matrix and its inverse must
be an identity matrix; namely,
_ ( 1 0)
0 1

(3 2)

The relationship holds true for any simplex iteration. Note importantly that the col-
umns of the basic matrix must coincide with the order of the basic variables in the
tableau.

W= i
WY =



424

4.2 Primal-Dual Relationships 177

Optimum

~ ’

Maximize z N / Minimize w

\

FIGURE 4.2

Relationship between maximum z and minimum w

Primal-dual objective values. For any pair of feasible primal and dual solutions,

( Objective value in the) _ (Objective value in the )

maximization problem minimization problem

At the optimum, the relationship holds as a strict equation, meaning that the two ob-
jective values are equal. Note that the relationship does not specify which problem is
primal and which is dual. Only the sense of optimization (maximization or minimiza-
tion) is important in this case.

The optimum cannot occur with z strictly less than w (i.e., z < w) because, no
matter how close the two values are, there is always room for improvement, which con-
tradicts optimality as Figure 4.2 demonstrates.

Example 4.2-2

In Example 4.2-1,(x; = 0,x, = 0,x; = 3) and (y; = 6,y, = 0) are (arbitrary) feasible primal
and dual solutions. The associated values of the objective functions are

Maximization (primal): z = 5x; + 12x, + 4x3 = 5(0) + 12(0) + 4(§) = 102
Minimization (dual): w = 10y; + 8y, = 10(6) + 8(0) = 60

Since z < w, the solutions are not optimal. The optimum value of z (= 54%) falls within the
range (102, 60).

Simplex Tableau Computations

This section shows how any iteration of the simplex tableau can be generated from the
original data of the problem, the inverse associated with the iteration, and the dual
problem. Using the layout of the simplex tableau in Figure 4.1, we can divide the com-
putations into two types:

1. Constraint columns (left-hand and right-hand sides).
2. Objective z-row.

Formula 1: Constraint column computations. In any simplex iteration, a left-hand or
a right-hand side column is computed as follows:

(Constraint column) B (Inverse in) o < Original )
in iteration i iteration i constraint column
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Formula 2: Objective z-row computations. In any simplex iteration, the objective
equation coefficient (reduced cost) of x; is computed as follows:

( Primal z-equation ) B ( Left-hand side of) 3 (Right—hand side of>

coefficient of variable x; jth dual constraint jth dual constraint

Example 4.2-3

We use the LP in Example 4.2-1 to illustrate the application of Formulas 1 and 2. From the optimal
tableau in Table 4.3, we have

Optimal inverse =
( x;-column in ) _ ( Inverse in ) y ( original )
optimal iteration optimal iteration x1-column

(:)-()

X =

2 1

Similar computations generate the optimal columns for x5, x3, x4, R, and the right-hand side (verify!).
Next, we demonstrate how the objective row computations are carried out with Formula 2.

The optimal values of the dual variables, (y;, y,) = (252, —2), are computed in Example 4.2-1. These
values are used in Formula 2 to compute all the z-coefficients, as illustrated here for x; and R.

(S]]
NN W=

2
5
1
5

[T

z-cofficient of x; = y; + 2y, — 5 = %9 +2x-2-5=0
z-cofficient of R = y, — (-M) = 7% — (—=M) — 7% + M

Similar computations can be used to determine the z-coefficients of x;, x3, and x4 (verify!).

Remarks. The simplex tableau format in Chapter 3 which generates the current
tableau from the immediately preceding one is a sure recipe for propagating the round-
off error, greatly distorting the quality of the optimum solution. Fortunately there is a
way out! You will notice from the discussion in Sections 4.2.2 and 4.2.3 that the inverse
matrix of an iteration plays the key role in determining all the elements of the associated
simplex tableau (by using this inverse and the original data of the problem). Indeed, the
inverse itself can be determined from the original data once the basic solution is known,
as demonstrated in the remarks following Example 4.2-1. This essentially means that at
any iteration, all the elements of a tableau (inverse matrix included) can be determined
from the original data of the model. This is a powerful result that has been used to keep
computational round-off error in check. And this is precisely the overriding reason for
the development of the revised simplex method presented in Chapter 7.

ECONOMIC INTERPRETATION OF DUALITY

The LP problem can be viewed as a resource allocation model that seeks to maximize
revenue under limited resources. Looking at the problem from this standpoint, the as-
sociated dual problem offers interesting economic interpretations.
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To formalize the discussion, consider the following representation of the general
primal and dual problems:

Primal Dual

n m
Maximize z = chxj Minimize w = Eb,-yi

= =1
subject to subject to
n m
Sapx;=byi=1,2,....m Sayi=cj=12,...,n
j=1 i=1
x=0,j=12,...,n yvi=0,i=1,2,...,m

Viewed as a resource allocation model, the primal problem has n economic activities
and m resources. The coefficient ¢; in the primal represents the revenue per unit of
activity j and resource i with availability b; is consumed at the rate a;; units per unit of
activity j.

Economic Interpretation of Dual Variables

Section 4.2.3 states that for any two primal and dual feasible solutions, the values of the
objective functions, when finite, must satisfy the following inequality:

At the optimum, the two objective values are equal —that is, z = w.
In terms of the resource allocation model, z represents § revenue, and b; repre-
sents available units of resource i. Thus, dimensionally, z = w implies

m

m
$ revenue = > b;y; = >, (units of resource i) X ($ per unit of resource i)
= =

This means that the dual variable,y,, represents the worth per unit of resource i (cf. the
graphical definition of unit worth of a resource in Section 3.6.1)

As stated in Section 3.6.1, the standard name dual (or shadow) price of resource i
replaces the suggestive name worth per unit used in all LP literature and software pack-
ages, and hence the standard name is adopted in this book as well.

Using the same dimensional analysis, we can interpret the inequality z < w (for
any two feasible primal and dual solution) as

(Revenue) < (Worth of resources)

This relationship says that so long as the total revenue from all the activities is less
than the worth of the resources, the corresponding primal and dual solutions are not
optimal. Optimality is reached only when the resources have been exploited com-
pletely. This can happen only when the input (worth of the resources) equals the
output (revenue dollars).
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Example 4.3-1
The Reddy Mikks model (Example 2.1-1) and its dual are given as follows:

Reddy Mikks primal Reddy Mikks dual
Maximize z = 5x; + 4x, Minimize w = 24y, + 6y, + y3 + 2y,
subject to subject to

6x; + 4x, = 24 (resourcel, M1) 6y + y, — y3 =35

x1 + 2x, = 6 (resource 2, M2) 4y + 2y, +y3 +y, =4
—x; + x, = 1 (resource 3, market) Vi, V2 V3, V4 = 0
X, = 2 (resource 4, demand)
X1, Xy = 0

Optimum solution: Optimum solution:
x; =3,x=15z=21 y1=.75y,=05y; =y, =0,w =21

The Reddy Mikks model deals with the production of two types of paint (interior and exterior)
using two raw materials M1 and M2 (resources 1 and 2) and subject to market and demand limits
represented by the third and fourth constraints. The model determines the amounts (in tons/day)
of exterior and interior paints that maximize the daily revenue (expressed in thousands of dollars).

The optimal dual solution shows that the dual price (worth per unit) of raw material M1
(resource 1) is y; = .75 (or $750 per ton) and that of raw material M2 (resource 2) is y, = .5 (or
$500 per ton). These results hold true for specific feasibility ranges as was shown in Section 3.6.
For resources 3 and 4, representing the market and demand limits, the dual prices are both zero,
which indicates that their associated resources are abundant (i.e., they are not critical in deter-
mining the optimum and, hence, their worth per unit, or dual price, is zero).

Economic Interpretation of Dual Constraints

The economic meaning of the dual constraints can be achieved by using Formula 2 in
Section 4.2.4, which states that at any primal iteration,

(Left-hand side of) B (Right—hand side of)
dual constraint j dual constraint j

Objective coefficient of x;

m
= Dayi— ¢
i=1

We use dimensional analysis once again to interpret this equation. The revenue per
unit, ¢;, of acti\fity jisin dollars per unit. Hence, for consistency, the quantity Ef”: 1Y
must also be in dollars per unit. Next, because c; represents revenue, the quantity
Eﬁla,-jy,-, with opposite sign, must represent cost. Thus we have

n (Usage of resource i) « (Cost per unit )

m
$cost = D ay, = . o .
121 i ,Z{ per unit of activity j of resource i

The conclusion is that the dual variable y; represents what is known in the LP litera-
ture as the imputed cost per unit of resource i, and we can think of the quantity >, ;"zlaijyi
as the imputed cost of all the resources needed to produce one unit of activity j. As
stated in Section 3.6, the quantity Eznzlaijyi - cj.(z imputed cost _of activity j — ¢;)
is known by the standard name reduced cost of activity j. The maximization optimality
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condition of the simplex method says that an increase in the level of an unused (non-
basic) activity j can improve revenue only if its reduced cost is negative. In terms of the
preceding interpretation, this condition states that

Imputed cost of

Revenue per unit
resources used by | <

. o of activity j
one unit of activity j

Thus, the maximization optimality condition says that it is economically advantageous
to increase the level of an activity if its unit revenue exceeds its unit imputed cost.

Example 4.3-2

TOYCO assembles three types of toys—trains, trucks, and cars—using three operations. Available
assembly times for the three operations are 430, 460, and 420 minutes per day, respectively, and the
revenues per toy train, truck, and car are $3, $2, and $5, respectively. The assembly times per train
for the three operations are 1, 3, and 1 minutes, respectively. The corresponding times per truck
and per car are (2, 0,4) and (1, 2, 0) minutes (a zero time indicates that the operation is not used).

Letting x1, x5, and x3 represent the daily number of units assembled of trains, trucks, and
cars, the associated LP model and its dual are given as follows:

TOYCO primal TOYCO dual
Maximize z = 3x; + 2x, + 5x3 Minimize w = 430y, + 460y, + 420y;
subject to subject to
x; + 2x, + x3 = 430 (Operation 1) yi+3pmt+ y3=3
3x; + 2x3 = 460 (Operation 2) 2y, + 4y; =2
x; + 4x, = 420 (Operation 3) y1 + 2y, =35
X1, %, %3 = 0 Y1, ¥2,y3 =0
Optimal solution: Optimal solution:
x; = 0,x, = 100, x3 = 230,z = $1350 yi=1y,=2,y;=0,w = $1350

The optimal primal solution calls for producing no toy trains, 100 toy trucks, and 230 toy cars.

Suppose that TOYCO is interested in producing toy trains (x;) as well. How can this be
achieved? Looking at the reduced cost for x1,toy trains becomes attractive economically only if its
unit imputed cost is strictly less than its unit revenue. TOYCO can achieve this by increasing the
unit price. It can also decrease the imputed cost of the consumed resources (= y; + 3y, + y3).

A decrease in the unit imputed cost entails reducing the assembly times used by a unit toy
train on the three operations. Let rq, r, and r3 represent the reduction ratios on operations 1, 2,
and 3, respectively. The goal is to determine the values of r, r,, and r3 such that the new imputed
cost per toy train is less than its unit revenue —that is,

L1 = r))yr +3(1 =)y + 1(1 = r3)ys <3
0=rn=10=n=1,0=n=1
For the optimal dual values, y; = 1, y, = 2, and y; = 0, this inequality reduces to
rnt6rn>40=rnr=10=rn=1

Any values of r; and r, that satisfy these conditions will make toy trains profitable. Note, how-
ever, that this goal may not be attainable because it requires impractically large reductions in
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the times of operations 1 and 2. For example, even a 50% reduction (i.e.,r; = r, = .5) fails to
satisfy the given condition. The logical conclusion then is that TOYCO should not produce toy
trains unless the time reductions are accompanied with increase in unit revenue.

ADDITIONAL SIMPLEX ALGORITHMS

Chapter 3 presents the (primal) simplex algorithm that starts feasible and continues to
be feasible until the optimum is reached. This section presents two additional algorithms:
The dual simplex starts infeasible (but better than optimal) and remains infeasible until
feasibility is restored, and the (author’s) generalized simplex combines the primal and
dual simplex methods, starting both nonoptimal and infeasible. All three algorithms are
used with post-optimal analysis in Section 4.5.

Dual Simplex Algorithm

The dual simplex method starts with a better than optimal and infeasible basic solu-
tion. The optimality and feasibility conditions are designed to preserve the optimality
of the basic solutions as the solution move toward feasibility.

Dual feasibility condition. The leaving variable, x,, is the basic variable having the
most negative value (ties are broken arbitrarily). If all the basic variables are nonnega-
tive, the algorithm ends.!

Dual optimality condition. Given that x, is the leaving variable, let ¢; be the re-
duced cost of nonbasic variable x; and «,; the constraint coefficient in the x,-row and
xj-column of the tableau. The entering variable is the nonbasic variable with «,; < 0
that corresponds to

s oy < O}

S
Cl,j

min {
Nonbasic x;
(Ties are broken arbitrarily.) If a,; = 0 for all nonbasic x;, the problem has no feasible
solution.
To start the LP optimal and infeasible, two requirements must be met:

1. The objective function