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Preface of the First Edition

This book emerged from a course on solid state physics for third-year students of

physics and nanoscience, but it should also be useful for students of related fields

such as chemistry and engineering. The aim is to provide a bachelor-level survey

over the whole field without going into too much detail. With this in mind, a lot

of emphasis is put on a didactic presentation and little on stringent mathematical

derivations or completeness. For amore in-depth treatment, the reader is referred

to the many excellent advanced solid state physics books. A few are listed in the

Appendix.

To follow this text, a basic university-level physics course is required as well

as some working knowledge of chemistry, quantum mechanics, and statistical

physics. A course in classical electrodynamics is of advantage but not strictly nec-

essary.

Some remarks on how to use this book: Every chapter is accompanied by a set of

”discussion” questions and problems. The intention of the questions is to give the

student a tool for testing his/her understanding of the subject. Some of the ques-

tions can only be answered with knowledge of later chapters. These are marked

by an asterisk. Some of the problems are more of a challenge in that they are more

difficult mathematically or conceptually or both.These problems are also marked

by an asterisk. Not all the information necessary for solving the problems is given

here. For standard data, for example, the density of gold or the atomic weight of

copper, the reader is referred to the excellent resources available on the World

Wide Web.

Finally, I would like to thank the people who have helped me with many discus-

sions and suggestions. In particular, I would like to mention my colleagues Arne

Nylandsted Larsen, Ivan Steensgaard, Maria Fuglsang Jensen, Justin Wells, and

many others involved in teaching the course in Aarhus.
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Preface of the Second Edition

The second edition of this book is slightly enlarged in some subject areas and

significantly improved throughout. The enlargement comprises subjects that

turned out to be too essential to be missing, even in a basic introduction such as

this one. One example is the tight-binding model for electronic states in solids,

which is now added in its simplest form. Other enlargements reflect recent

developments in the field that should at least be mentioned in the text and

explained on a very basic level, such as graphene and topological insulators.

I decided to support the first edition by online material for subjects that were

either crucial for the understanding of this text, but not familiar to all readers, or

not central enough to be included in the book but still of interest. This turned out

to be a good concept, and the new edition is therefore supported by an extended

number of such notes; they are referred to in the text. The notes can be found on

my homepage www.philiphofmann.net.

The didactical presentation has been improved, based on the experience of

many people with the first edition. The most severe changes have been made in

the chapter on magnetism but minor adjustments have been made throughout

the book. In these changes, didactic presentation was given a higher priority than

elegance or conformity to standard notation, for example, in the figures on Pauli

paramagnetism or band ferromagnetism.

Every chapter now contains a “Further Reading” section in the end. Since these

sections are supposed to be independent of each other, you will find that the same

books are mentioned several times.

I thank themany students and instructors who participated in the last few years’

Solid State Physics course at Aarhus University, as well as many colleagues for

their criticism and suggestions. Special thanks go to NL architects for permitting

me to use the flipper-bridge picture in Figure 11.3, to Justin Wells for suggesting

the analogy to the topological insulators, to James Kermode for Figure 3.7, to Arne

Nylandsted Larsen andAntonija Grubišić Čabo for advice on the sections on solar

cells and magnetism, respectively.

http://www.philiphofmann.net
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1

Crystal Structures

Our general objective in this book is to understand the macroscopic properties

of solids in a microscopic picture. In view of the many particles in solids, coming

up with any microscopic description appears to be a daunting task. It is clearly

impossible to solve the equations of motion (classical or quantum mechanical).

Fortunately, it turns out that solids are often crystalline, with the atoms arranged

on a regular lattice, and this symmetry permits us to solve microscopic mod-

els, despite the very many particles involved. This situation is somewhat simi-

lar to atomic physics where the key to a description is the spherical symmetry

of the atom. We will often imagine a solid as one single crystal, a perfect lat-

tice of atoms without any defects whatsoever, and it may seem that such perfect

crystals are not particularly relevant for real materials. But this is not the case.

Many solids are actually composed of small crystalline grains. These solids are

called polycrystalline, in contrast to a macroscopic single crystal, but the num-

ber of atoms in a perfect crystalline environment is still very large compared to

the number of atoms on the grain boundary. For instance, for a grain size on

the order of 10003 atomic distances, only about 0.1% of the atoms are at the grain

boundaries. There are, however, some solids that are not crystalline. These are

called amorphous. The amorphous state is characterized by the absence of any

long-range order. There may, however, be some short-range order between the

atoms.

This chapter is divided into three parts. In the first part, we define some

basic mathematical concepts needed to describe crystals. We keep things

simple and mostly use two-dimensional examples to illustrate the ideas. In the

second part, we discuss common crystal structures. At this point, we do not

ask why the atoms bind together in the way that they do, as this is treated in

the next chapter. Finally, we go into a somewhat more detailed discussion of

X-ray diffraction, the experimental technique that can be used to determine the

microscopic structure of crystals. X-ray diffraction is used not only in solid state

physics but also for a wide range of problems in nanotechnology and structural

biology.

Solid State Physics: An Introduction, Second Edition. Philip Hofmann.
© 2015 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2015 by Wiley-VCH Verlag GmbH & Co. KGaA.



2 1 Crystal Structures

1.1

General Description of Crystal Structures

Our description of crystals starts with the mathematical definition of the lattice.

A lattice is a set of regularly spaced points with positions defined as multiples of

generating vectors. In two dimensions, a lattice can be defined as all the points

that can be reached by the vectors 𝐑, created from two vectors 𝐚𝟏 and 𝐚𝟐 as

𝐑 = m𝐚𝟏 + n𝐚𝟐, (1.1)

where n andm are integers. In three dimensions, the definition is

𝐑 = m𝐚𝟏 + n𝐚𝟐 + o𝐚𝟑. (1.2)

Such a lattice of points is also called a Bravais lattice. The number of possible

Bravais lattices that differ by symmetry is limited to 5 in two dimensions and to

14 in three dimensions. An example of a two-dimensional Bravais lattice is given

in Figure 1.1. The lengths of the vectors 𝐚𝟏 and 𝐚𝟐 are often called the lattice
constants.

Having defined the Bravais lattice, we move on to the definition of the prim-

itive unit cell. This is any volume of space that, when translated through all the

vectors of the Bravais lattice, fills space without overlap and without leaving voids.

The primitive unit cell of a lattice contains only one lattice point. It is also possi-

ble to define nonprimitive unit cells that contain several lattice points. These fill

space without leaving voids when translated through a subset of the Bravais lattice

vectors. Possible choices of a unit cell for a two-dimensional rectangular Bravais

lattice are given in Figure 1.2. From the figure, it is evident that a nonprimitive

unit cell has to be translated by a multiple of one (or two) lattice vectors to fill

space without voids and overlap. A special choice of the primitive unit cell is the

Wigner–Seitz cell that is also shown in Figure 1.2. It is the region of space that is

closer to one given lattice point than to any other.

The last definitionweneed in order to describe an actual crystal is that of abasis.

The basis is what we “put” on the lattice points, that is, the building block for the

real crystal. The basis can consist of one or several atoms. It can even consist of

a2

a1

Figure 1.1 Example for a two-dimensional Bravais lattice.
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Primitive unit
cells

Nonprimitive
unit cells 

Wigner–Seitz
cell 

Figure 1.2 Illustration of unit cells (primitive and nonprimitive) and of the Wigner–Seitz
cell for a rectangular two-dimensional lattice.

complexmolecules as in the case of protein crystals. Different cases are illustrated

in Figure 1.3.

Finally, we add a remark about symmetry. So far, we have discussed trans-

lational symmetry. But for a real crystal, there is also point symmetry.

Compare the structures in the middle and the bottom of Figure 1.3. The former

structure possesses a couple of symmetry elements that the latter does not

have, for example, mirror lines, a rotational axis, and inversion symmetry. The

knowledge of such symmetries can be very useful for the description of crystal

properties.

+ =

+ =

+ =

Bravais
lattice

Basis Crystal

Figure 1.3 A two-dimensional Bravais lattice with different choices for the basis.
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1.2

Some Important Crystal Structures

After this rather formal treatment, we look at a number of common crystal struc-

tures for different types of solids, such asmetals, ionic solids, or covalently bonded

solids. In the next chapter, we will take a closer look at the details of these bonding

types.

1.2.1
Cubic Structures

We start with one of the simplest possible crystal structures, the simple cubic

structure shown in Figure 1.4a. This structure is not very common among ele-

mental solids, but it is an important starting point for many other structures. The

reason why it is not common is its openness, that is, that there are many voids if

we think of the ions as spheres touching each other. In metals, the most common

elemental solids, directional bonding is not important and a close packing of the

ions is usually favored. For covalent solids, directional bonding is important but

six bonds on the same atom in an octahedral configuration are not common in

elemental solids.

The packing density of the cubic structure is improved in the body-centered

cubic (bcc) and face-centered cubic (fcc) structures that are also shown in

Figure 1.4. In fact, the fcc structure has the highest possible packing density for

spheres as we shall see later. These two structures are very common. Seventeen

elements crystallize in the bcc structure and 24 elements in the fcc structure.

Note that only for the simple cubic structure, the cube is identical with the

Bravais lattice. For the bcc and fcc lattices, the cube is also a unit cell, but not

the primitive one. Both structures are Bravais lattices with a basis containing one

atom but the vectors spanning these Bravais lattices are not the edges of the cube.

(a) Simple cubic (b) Body-centered cubic (c) Face-centered cubic

Figure 1.4 (a) Simple cubic structure;
(b) body-centered cubic structure; and
(c) face-centered cubic structure. Note that
the spheres are depicted much smaller

than in the situation of most dense pack-
ing and not all of the spheres on the faces
of the cube are shown in (c).
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CsCl structure  NaCl structure

a

Cs+

CI−

Na+

CI−

Figure 1.5 Structures of CsCl and NaCl. The spheres are depicted much smaller than in the
situation of most dense packing, but the relative size of the different ions in each structure
is correct.

Cubic structures with a more complex basis than a single atom are also impor-

tant. Figure 1.5 shows the structures of the ionic crystals CsCl and NaCl that are

both cubic with a basis containing two atoms. For CsCl, the structure can be

thought of as two simple cubic structures stacked into each other. For NaCl, it

consists of two fcc lattices stacked into each other. Which structure is preferred

for such ionic crystals depends on the relative size of the ions.

1.2.2
Close-Packed Structures

Many metals prefer structural arrangements where the atoms are packed as

closely as possible. In two dimensions, the closest possible packing of ions (i.e.,

spheres) is the hexagonal structure shown on the left-hand side of Figure 1.6.

For building a three-dimensional close-packed structure, one adds a second

layer as in the middle of Figure 1.6. For adding a third layer, there are then two

possibilities. One can either put the ions in the “holes” just on top of the first layer

ions, or one can put them into the other type of “holes.” In this way, two different

crystal structures can be built. The first has an ABABAB... stacking sequence,

and the second has an ABCABCABC... stacking sequence. Both have exactly the

A

A

A
C

A hcp

fcc

A B

B

B

Figure 1.6 Close packing of spheres leading to the hcp and fcc structures.
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same packing density, and the spheres fill 74% of the total volume. The former

structure is called the hexagonal close-packed structure (hcp), and the latter

turns out to be the fcc structure we already know. An alternative sketch of the hcp

structure is shown in Figure 1.14b. The fcc and hcp structures are very common

for elemental metals. Thirty-six elements crystallize as hcp and 24 elements as

fcc. These structures also maximize the number of nearest neighbors for a given

atom, the so-called coordination number. For both the fcc and the hcp lattice,

the coordination number is 12.

An open question is why, if coordination is so important, not all metals crys-

tallize in the fcc or hcp structure. A prediction of the actual structure for a given

element is not possible with simple arguments. However, we can collect some fac-

tors that play a role. Not optimally packed structures, such as the bcc structure,

have a lower coordination number, but they bring the second-nearest neighbors

much closer to a given ion than in the close-packed structures. Another important

consideration is that the bonding is not quite so simple, especially for transition

metals. In these, bonding is not only achieved through the delocalized s and p

valence electrons as in simple metals, but also by the more localized d electrons.

Bonding through the latter has amuchmore directional character, so that not only

the close packing of the ions is important.

The structures ofmany ionic solids can also be viewed as “close-packed” in some

sense. One can arrive at these structures by treating the ions as hard spheres that

have to be packed as closely to each other as possible.

1.2.3
Structures of Covalently Bonded Solids

In covalent structures, the atoms’ valence electrons are not completely delocalized

but shared between neighboring atoms and the bond length and direction are

far more important than the packing density. Prominent examples are graphene,

graphite, and diamond as displayed in Figure 1.7. Graphene is a single sheet of

carbon atoms in a honeycomb lattice structure. It is a truly two-dimensional

solid with a number of remarkable properties; so remarkable, in fact, that their

(b)(a) (c)

Figure 1.7 Structures for (a) graphene, (b) graphite, and (c) diamond. sp2 and sp3 bonds
are displayed as solid lines.
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discovery has lead to the 2010 Nobel prize in physics being awarded to A. Geim

and K. Novoselov. The carbon atoms in graphene are connected by sp2 hybrid

bonds, enclosing an angle of 120∘. The parent material of graphene is graphite, a

stack of graphene sheets that are weakly bonded to each other. In fact, graphene

can be isolated from graphite by peeling off flakes with a piece of scotch tape. In

diamond, the carbon atoms form sp3-type bonds and each atom has four nearest

neighbors in a tetrahedral configuration. Interestingly, the diamond structure can

also be described as an fcc Bravais lattice with a basis of two atoms.

The diamond structure is also found for Si and Ge. Many other isoelectronic

materials (with the same total number of valence electrons), such as SiC, GaAs,

and InP, also crystallize in a diamond-like structure but with each element on a

different fcc sublattice.

1.3

Crystal Structure Determination

After having described different crystal structures, the question is of course how to

determine these structures in the first place. By far, the most important technique

for doing this is X-ray diffraction. In fact, the importance of this technique goes

far beyond solid state physics, as it has become an essential tool for fields such as

structural biology as well. There the idea is that, if you want to know the structure

of a given protein, you can try to crystallize it and use the powerful methodology

for structural determination byX-ray diffraction.Wewill also useX-ray diffraction

as a motivation to extend our formal description of structures a bit.

1.3.1
X-Ray Diffraction

X-rays interact rather weakly with matter. A description of X-ray diffraction can

therefore be restricted to single scattering, that is, incoming X-rays get scattered

not more than once (most are not scattered at all). This is called the kinematic

approximation; it greatly simplifiesmatters and is used throughout the treatment

here. In addition to this, we will assume that the X-ray source and detector are

very far away from the sample so that the incoming and outgoing waves can be

treated as plane waves. X-ray diffraction of crystals was discovered and described

by M. von Laue in 1912. Also in 1912, W. L. Bragg came up with an alternative

description that is considerably simpler and serves as a starting point here.

1.3.1.1 Bragg Theory

Bragg treated the problem as the reflection of the incoming X-rays at flat crystal

planes.These planes could, for example, be the close-packed planesmaking up the

fcc and hcp crystals, or they could be alternating Cs and Cl planes making up the

CsCl structure. At first glance, this has very little physical justification because

the crystal planes are certainly not “flat” for X-rays that have a wavelength similar

to the atomic spacing. Nevertheless, the description is highly successful, and we
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A
B

d

𝜃 𝜃

𝜃 𝜃

Figure 1.8 Construction for the derivation of the Bragg condition. The horizontal lines
represent the crystal lattice planes that are separated by a distance d. The heavy lines
represent the X-rays.

shall later see that it is actually a special case of themore complex Laue description

of X-ray diffraction.

Figure 1.8 shows the geometrical considerations behind the Bragg description.

A collimated beam of monochromatic X-rays hits the crystal. The intensity of

diffracted X-rays is measured in the specular direction.The angle of incidence and

emission is 90∘ − Θ. The condition for constructive interference is that the path

length difference between the X-rays reflected from one layer and the next layer is

an integer multiple of the wavelength 𝜆. In the figure, this means that 2AB = n𝜆,

where AB is the distance between points A and B and n is a natural number. On

the other hand, we have sin 𝜃 = AB∕d such that we arrive at the Bragg condition

n𝜆 = 2d sin 𝜃. (1.3)

It is obvious that if this condition is fulfilled for one layer and the layer below, it will

also be fulfilled for any number of layers with identical spacing. In fact, the X-rays

penetrate very deeply into the crystal so that thousands of layers contribute to the

reflection. This results into very sharp maxima in the diffracted intensity, similar

to the situation for an optical grating with many lines. The Bragg condition can

obviously only be fulfilled for 𝜆 < 2d, putting an upper limit on the wavelength of

the X-rays that can be used for crystal structure determination.

1.3.1.2 Lattice Planes and Miller Indices

TheBragg condition will work not only for a special kind of lattice plane in a crys-

tal, such as the hexagonal planes in an hcp crystal, but for all possible parallel

planes in a structure. We therefore come up with a more stringent definition of

the term lattice plane. It can be defined as a plane containing at least three non-

collinear points of a given Bravais lattice. If it contains three, it will actually contain

infinitely many because of translational symmetry. Examples for lattice planes in

a simple cubic structure are shown in Figure 1.9.

The lattice planes can be characterized by a set of three integers, the so-called

Miller indices. We arrive at these in three steps:

1) We find the intercepts of the plane with the crystallographic axes in units of

the lattice vectors, for example, (1,∞,∞) for the leftmost plane in Figure 1.9.
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Figure 1.9 Three different lattice planes in the simple cubic structure characterized by
their Miller indices.

2) We take the “reciprocal value” of these three numbers. For our example, this

gives (1, 0, 0).

3) By multiplying with some factor, we reduce the numbers to the smallest set

of integers having the same ratio. This is not necessary in the example as we

already have integer values.

Such a set of three integers can then be used to denote any given lattice plane.

Later, we will encounter a different and more elegant definition of the Miller

indices.

In practice, the X-ray diffraction peaks are so sharp that it is difficult to align and

move the sample such that the incoming and reflected X-rays lie in one plane with

the normal direction to a certain crystal plane. An elegant way to circumvent this

problem is to use a powder of very small crystals instead of a large single crystal.

This will not only ensure that some small crystals are orientated correctly to get

constructive interference from a certain set of crystal planes, it will automatically

give the interference pattern for all possible crystal planes.

1.3.1.3 General Diffraction Theory

The Bragg theory for X-ray diffraction is useful for extracting the distances

between lattice planes in a crystal, but it has its limitations. Most importantly,

it does not give any information on what the lattice actually consists of, that

is, the basis. Also, the fact that the X-rays should be reflected by planes is

physically somewhat obscure. We now discuss a more general description of

X-ray diffraction that goes back to M. von Laue.

The physical process leading to X-ray scattering is that the electromagnetic field

of the X-rays forces the electrons in the material to oscillate with the same fre-

quency as that of the field. The oscillating electrons then emit new X-rays that

give rise to an interference pattern. For the following discussion, however, it is

merely important that something scatters the X-rays, not what it is.

It is highly beneficial to use the complex notation for describing the

electromagnetic X-ray waves. For the electric field, a general plane wave

can be written as

(𝐫, t) = 0e
i𝐤⋅𝐫−i𝜔t . (1.4)
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Figure 1.10 Illustration of X-ray scattering from a sample. The source and detector for the
X-rays are placed at 𝐑 and 𝐑′, respectively. Both are very far away from the sample.

Thewave vector 𝐤 points in the direction of the wave propagation with a length
of 2𝜋∕𝜆, where 𝜆 is the wavelength. The convention is that the physical electric

field is obtained as the real part of the complex field and the intensity of the wave

is obtained as

I(𝐫) = |0ei𝐤⋅𝐫−i𝜔t|2 = |0|2. (1.5)

Consider now the situation depicted in Figure 1.10. The source of the X-rays is

far away from the sample at the position 𝐑, so that the X-ray wave at the sample
can be described as a plane wave. The electric field at a point 𝐫 in the crystal at
time t can be written as

(𝐫, t) = 0e
i𝐤⋅(𝐫−𝐑)−i𝜔t . (1.6)

Before we proceed, we can drop the absolute amplitude 0 from this expression

because we are only concerned with relative phase changes. The field at point 𝐫 is
then

(𝐫, t) ∝ ei𝐤⋅(𝐫−𝐑)e−i𝜔t . (1.7)

A small volume element dV located at 𝐫 will give rise to scattered waves in all
directions.The direction of interest is the direction towards the detector that shall

be placed at the position𝐑′, in the direction of a secondwave vector 𝐤′.We assume
that the amplitude of the wave scattered in this direction will be proportional to

the incoming field from (1.7) and to a factor 𝜌(𝐫) describing the scattering proba-
bility and scattering phase.We already know that the scattering of X-rays proceeds

via the electrons in the material, and for our purpose, we can view 𝜌(𝐫) as the
electron concentration in the solid. For the field at the detector, we obtain

(𝐑′, t) ∝ (𝐫, t)𝜌(𝐫)ei𝐤′⋅(𝐑′−𝐫). (1.8)

Again, we have assumed that the detector is very far away from the sample such

that the scattered wave at the detector can be written as a plane wave. Inserting

(1.7) gives the field at the detector as

(𝐑′, t) ∝ ei𝐤⋅(𝐫−𝐑)𝜌(𝐫)ei𝐤′⋅(𝐑′−𝐫)e−i𝜔t = ei(𝐤
′⋅𝐑′−𝐤⋅𝐑)𝜌(𝐫)ei(𝐤−𝐤′)⋅𝐫e−i𝜔t . (1.9)
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We drop the first factor that does not contain 𝐫 and will thus not play a role for
the interference of X-rays emitted from different positions in the sample.The total

wave field at the detector can finally be calculated by integrating over the entire

volume of the crystal V . As the detector is far away from the sample, the wave

vector 𝐤′ is essentially the same for all points in the sample. The result is

(𝐑′, t) ∝ e−i𝜔t ∫V

𝜌(𝐫)ei(𝐤−𝐤′)⋅𝐫dV . (1.10)

In most cases, it will only be possible to measure the intensity of the X-rays, not

the field, and this intensity is

I(𝐊) ∝
||||e−i𝜔t ∫V

𝜌(𝐫)ei(𝐤−𝐤′)⋅𝐫dV
||||
2

=
||||∫V

𝜌(𝐫)e−i𝐊⋅𝐫dV
||||
2

, (1.11)

where we have introduced the so-called scattering vector 𝐊 = 𝐤′ − 𝐤, which is
just the difference of outgoing and incoming wave vectors. Note that although

the direction of the wave vector for the scattered waves 𝐤′ is different from that
of the incoming wave 𝐤, the length is the same because we only consider elastic
scattering.

Equation (1.11) is the final result. It relates themeasured intensity to the electron

concentration in the sample. Except for very light elements, most of the electrons

are located close to the ion cores and the electron concentration that scatters the

X-rays is essentially identical to the geometrical arrangement of the ion cores.

Hence, (1.11) can be used for the desired structural determination. To this end,

one could try to measure the intensity as a function of scattering vector 𝐊 and to
infer the structure from the result. This is a formidable task. It is greatly simpli-

fied if the specimen under investigation is a crystal with a periodic lattice. In the

following, we introduce themathematical tools that are needed to exploit the crys-

talline structure in the analysis.Themost important one is the so-called reciprocal

lattice.

1.3.1.4 The Reciprocal Lattice

The concept of the reciprocal lattice is fundamental to solid state physics because

it permits us to exploit the crystal symmetry for the analysis of many problems.

Here we will use it to describe X-ray diffraction from periodic structures and we

will meet it again and again in the next chapters. Unfortunately, themeaning of the

reciprocal lattice turns out to be hard to grasp. Here, we choose to start out with a

formal definition and we provide some mathematical properties. We then discuss

themeaning of the reciprocal lattice before we come back to X-ray diffraction.The

full importance of the concept will become apparent throughout this book.

For a given Bravais lattice

𝐑 = m𝐚𝟏 + n𝐚𝟐 + o𝐚𝟑, (1.12)

we define the reciprocal lattice as the set of vectors 𝐆 for which

𝐑 ⋅𝐆 = 2𝜋l, (1.13)
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where l is an integer. Equivalently, we could require that

e𝐢𝐆⋅𝐑 = 1. (1.14)

Note that this equation must hold for any choice of the lattice vector𝐑 and recip-
rocal lattice vector 𝐆. We can write any 𝐆 as the sum of three vectors

𝐆 = m′𝐛𝟏 + n′𝐛𝟐 + o′𝐛𝟑, (1.15)

wherem′, n′ and o′ are integers.The reciprocal lattice is again a Bravais lattice.The

vectors 𝐛𝟏, 𝐛𝟐, and 𝐛𝟑 spanning the reciprocal lattice can be constructed explicitly
from the lattice vectors

𝐛1 = 2𝜋
𝐚2 × 𝐚3

𝐚1 ⋅ (𝐚2 × 𝐚3)
, 𝐛2 = 2𝜋

𝐚3 × 𝐚1
𝐚1 ⋅ (𝐚2 × 𝐚3)

, 𝐛3 = 2𝜋
𝐚1 × 𝐚2

𝐚1 ⋅ (𝐚2 × 𝐚3)
.

(1.16)

From this, one can derive the simple but useful property,1)

𝐚i ⋅ 𝐛j = 2𝜋𝛿ij, (1.17)

which can easily be verified. Equation (1.17) can then be used to verify that the

reciprocal lattice vectors defined by (1.15) and (1.16) do indeed fulfill the funda-

mental property of (1.13) that defines the reciprocal lattice (see Problem 1.6).

Another way to view the vectors of the reciprocal lattice is as wave vectors that

yield plane waves with the periodicity of the Bravais lattice because

ei𝐆⋅𝐫 = ei𝐆⋅𝐫ei𝐆⋅𝐑 = ei𝐆⋅(𝐫+𝐑). (1.18)

Finally, one can define theMiller indices in amuch simpler way using the recip-

rocal lattice: The Miller indices (i, j, k) define a plane that is perpendicular to the

reciprocal lattice vector i𝐛𝟏 + j𝐛𝟐 + k𝐛𝟑 (see Problem 1.8).

1.3.1.5 The Meaning of the Reciprocal Lattice

We have now defined the reciprocal lattice in a proper way, and we will give some

simple examples of its usefulness. The most important point of the reciprocal lat-

tice is that it facilitates the description of functions that have the periodicity of the

lattice. To see this, consider a one-dimensional lattice, a chain of points with a lat-

tice constant a. We are interested in a function with the periodicity of the lattice,

like the electron concentration along the chain 𝜌(x) = 𝜌(x + a). We can write this

as a Fourier series of the form

𝜌(x) = C +

∞∑
n=1

{
Cn cos(x2𝜋n∕a) + Sn sin(x2𝜋n∕a)

}
(1.19)

with real coefficients Cn and Sn. The sum starts at n = 1, that is, the constant part

C has to be taken out of the sum. We can also write this in a more compact form

𝜌(x) =

∞∑
n=−∞

𝜌ne
ixn2𝜋∕a, (1.20)

1) 𝛿ij is Kronecker’s delta, which is 1 for i = j and zero otherwise.
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Figure 1.11 Top: Chain with a lattice con-
stant a as well as its reciprocal lattice, a
chain with a spacing of 2𝜋∕a. Middle and
bottom: Two lattice-periodic functions 𝜌(x)

in real space as well as their Fourier coeffi-
cients. The magnitude of the Fourier coeffi-
cients |𝜌n| is plotted on the reciprocal lattice
vectors they belong to.

using complex coefficients 𝜌n. To ensure that 𝜌(x) is still a real function, we have

to require that

𝜌∗
−n

= 𝜌n, (1.21)

that is, that the coefficient 𝜌−nmust be the conjugate complex of the coefficient 𝜌n.

This description is more elegant than the one with the sine and cosine functions.

How is it related to the reciprocal lattice? In one dimension, the reciprocal lattice

of a chain of points with lattice constant a is also a chain of points with spacing

2𝜋∕a (see (1.17)).Thismeans that we canwrite a general reciprocal lattice “vector”

as

g = n
2𝜋

a
, (1.22)

where n is an integer. Exactly these reciprocal lattice “vectors” appear in (1.20).

In fact, (1.20) is a sum of functions with a periodicity corresponding to the recip-

rocal lattice vectors, weighted by the coefficients 𝜌n. Figure 1.11 illustrates these

ideas by showing the lattice and reciprocal lattice for such a chain as well as two

lattice-periodic functions, as real space functions and as Fourier coefficients on

the reciprocal lattice points.The advantage of describing the functions by the coef-

ficients 𝜌n is immediately obvious: Instead of giving 𝜌(x) for every point in a range

of 0 ⩽ x < a, the Fourier description consists only of three numbers for the upper

function and five numbers for the lower function. Actually, it is only two and three

numbers because of (1.21).

The same ideas also work in three dimensions. In fact, one can use a Fourier

sum for lattice-periodic properties, which exactly corresponds to (1.20). For the
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lattice-periodic electron concentration 𝜌(𝐫) = 𝜌(𝐫 + 𝐑), we get

𝜌(𝐫) =
∑
𝐆

𝜌𝐆e
i𝐆⋅𝐫 , (1.23)

where 𝐆 are the reciprocal lattice vectors.
With this we have seen that the reciprocal lattice is very useful for describing

lattice-periodic functions. But this is not all: It can also simplify the treatment of

waves in crystals in a very general sense. Such waves can be X-rays, elastic lattice

distortions, or even electronic wave functions. We will come back to this point at

a later stage.

1.3.1.6 X-Ray Diffraction from Periodic Structures

Turning back to the specific problem of X-ray diffraction, we can now exploit the

fact that the electron concentration is lattice-periodic by inserting (1.23) in our

expression (1.11) for the diffracted intensity. This gives

I(𝐊) ∝
|||||
∑
𝐆

𝜌𝐆 ∫V

ei(𝐆−𝐊)⋅𝐫dV
|||||
2

. (1.24)

Let us inspect the integrand. The exponential function represents a plane wave

with a wave vector 𝐆 −𝐊. If the crystal is very big, the integration will average
over the crests and troughs of this wave and the result of the integration will be

very small (or zero for an infinitely large crystal). The only exception to this is the

case where

𝐊 = 𝐤′ − 𝐤 = 𝐆, (1.25)

that is, when the difference between incoming and scattered wave vector is equal

to a reciprocal lattice vector. In this case, the exponential function in the integral is

1, and the value of the integral is equal to the volume of the crystal. Equation (1.25)

is often called the Laue condition. It is central to the description of X-ray diffrac-

tion from crystals in that it describes the condition for the observation of con-

structive interference.

Looking back at (1.24), the observation of constructive interference for a chosen

scattering geometry (or scattering vector 𝐊) clearly corresponds to a particular
reciprocal lattice vector𝐆. The intensity measured at the detector is proportional
to the square of the Fourier coefficient of the electron concentration |𝜌𝐆|2. We
could therefore think of measuring the intensity of the diffraction spots appearing

for all possible reciprocal lattice vectors, obtaining the Fourier coefficients of the

electron concentration and reconstructing this concentration. This would give all

the information needed and conclude the process of the structural determination.

Unfortunately, this straightforward approach does not work because the Fourier

coefficients are complex, not real numbers. Taking the square root of the inten-

sity at the diffraction spot therefore gives the magnitude but not the phase of 𝜌𝐆.

The phase is lost in the measurement. This is known as the phase problem in

X-ray diffraction. One has to work around it to solve the structure. One simple

approach is to calculate the electron concentration for a structural model, obtain
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themagnitude of the 𝜌𝐆 values and thus also the expected diffracted intensity, and

compare this to the experimental result. Based on the outcome, the model can be

refined until the agreement is satisfactory.

More precisely, this can be done in the following way. We start with (1.11), the

expression for the diffracted intensity that we had obtained before introducing the

reciprocal lattice. But nowwe know that constructive interference is only observed

in a geometry that corresponds to fulfilling the Laue condition and we can there-

fore write the intensity for a particular diffraction spot as

I(𝐆) ∝
||||∫V

𝜌(𝐫)e−i𝐆⋅𝐫dV
||||
2

. (1.26)

We also know that the crystal is made of many identical unit cells at the positions

of the Bravais lattice 𝐑. We can split the integral up as a sum of integrals over the
individual unit cells

I(𝐆) ∝
|||||
∑
𝐑

∫Vcell

𝜌(𝐫 + 𝐑)e−i𝐆⋅(𝐫+𝐑)dV
|||||
2

=
|||||N ∫Vcell

𝜌(𝐫)e−i𝐆⋅𝐫dV
|||||
2

, (1.27)

where N is the number of unit cells in the crystal and we have used the lattice

periodicity of 𝜌(𝐫) and (1.14) in the last step. We now assume that the electron
concentration in the unit cell 𝜌(𝐫) is given by the sum of atomic electron concen-
trations 𝜌i(𝐫) that can be calculated from the atomic wave functions. By doing so,
we neglect the fact that some of the electrons form the bonds between the atoms

and are not part of the spherical electron cloud around the atom any longer. If the

atoms are not too light, however, the number of these valence electrons is small

compared to the total number of electrons and the approximation is appropriate.

We can then write

𝜌(𝐫) =
∑
i

𝜌i(𝐫 − 𝐫i), (1.28)

where we sum over the different atoms in the unit cell at positions 𝐫i. This permits
us to rewrite the integral in (1.27) as a sum of integrals over the individual atoms

in the unit cell

∫Vcell

𝜌(𝐫)e−i𝐆⋅𝐫dV =
∑
i

e−i𝐆⋅𝐫i ∫Vatom

𝜌i(𝐫′)e−i𝐆⋅𝐫′dV ′, (1.29)

where 𝐫′ = 𝐫 − 𝐫i. The two exponential functions give rise to two types of inter-
ference. The first describes the interference between the X-rays scattered by the

different atoms in the unit cell, and the second the interference between theX-rays

scattered by the electrons within one atom. The last integral is called the atomic

form factor and can be calculated from the atomic properties alone.We therefore

see how the diffracted intensity for an assumed structure can be calculated from

the atomic form factors and the arrangement of the atoms.

1.3.1.7 The Ewald Construction

In 1913, P. Ewald published an intuitive geometrical construction to visualize the

Laue condition (1.25) and to determine the directions 𝐤′ for which constructive
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Figure 1.12 Ewald construction for finding the directions in which constructive interfer-
ence can be observed. The dots represent the reciprocal lattice. The arrows labeled 𝐤 and
𝐤′ are the wave vectors of the incoming and scattered X-rays, respectively.

interference is to be expected. The construction is shown in Figure 1.12, which

represents a cut through the reciprocal lattice; the black points are the reciprocal

lattice points. The construction works as follows:

1) We draw the wave vector 𝐤 of the incoming X-rays such that it ends in the
origin of the reciprocal lattice (we may of course choose the point of origin

freely).

2) We construct a circle of radius |𝐤| around the starting point of 𝐤.
3) Wherever the circle touches a reciprocal lattice point, the Laue condition

𝐤′ − 𝐤 = 𝐆 is fulfilled.

For a three-dimensional crystal, this construction has to be carried out in different

planes, of course.The figure clearly shows that (1.25) is a very stringent condition:

It is not likely for the sphere to hit a second reciprocal lattice point, so that con-

structive interference is only expected for very few directions. As in the Bragg

description, we see that the wavelength of the X-rays has to be short enough (|𝐤|
has to be long enough) for any constructive interference to occur.

Practical X-ray diffraction experiments are often carried out in such a way that

many constructive interference maxima are observed despite the strong restric-

tions imposed by the Laue condition (1.25). This can, for example, be achieved by

using a wide range of X-ray wavelengths, that is, non monochromatic radiation

or by doing diffraction experiments not on one single crystal but on a powder of

randomly oriented small crystals.

1.3.1.8 Relation Between Bragg and Laue Theory

Weconclude our treatment of X-ray diffraction by showing that the Bragg descrip-

tion of X-ray diffraction is just a special case of the Laue description. We start by

noting that the Laue condition (1.25) consists, in fact, of three separate conditions

for the three components of the vectors. In the Bragg experiment, two of these
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conditions are automatically fulfilled because of the specular geometry:The wave

vector change parallel to the lattice planes is zero. So, the vector equation (1.25)

reduces to the scalar equation

k′⟂ − k⟂ = 2k⟂ = 2
2𝜋

𝜆
sinΘ = G⟂, (1.30)

where G⟂ is a reciprocal lattice vector perpendicular to the lattice planes. We

have seen in Section 1.3.1.4 that such a reciprocal lattice vector exists for any

set of planes. The planes can be defined by their Miller indices (i, j, k) or by the

reciprocal lattice vector 𝐆⟂ = i𝐛𝟏 + j𝐛𝟐 + k𝐛𝟑 that is perpendicular to the planes
(see Problem 1.8). The shortest possible 𝐆⟂ has a length of 2𝜋∕d with d being

the distance between the planes, but any integer multiple of this will also work.

If we thus insertm2𝜋∕d for G⟂ into (1.30), we obtain the usual form of the Bragg

condition (1.3).

1.3.2
Other Methods for Structural Determination

While X-ray diffraction is arguably the most widespread and powerful method for

structural determination, other techniques are used as well. Similar diffraction

experiments can be carried out by making use of the wave character of neutrons

or electrons.The former interact very weakly withmatter because they are charge-

neutral. They are also more difficult to produce than X-rays. However, the use of

neutrons has two distinct advantages over X-rays: First, that their relative interac-

tion strength with light atoms is stronger and second, that they carry a magnetic

moment.They can therefore interact with themagneticmoments in the solid, that

is, one can determine the magnetic order. Electrons, on the other hand, have the

advantages that they are easy to produce and that one can use electron-optical

imaging techniques, whereas making optical elements for X-rays is very difficult.

On the other hand, their very strong interaction with matter causes a breakdown

of the kinematic approximation, that is,multiple scattering events have to be taken

into account. Because of the strong interaction with matter, low-energy electrons

do not penetrate deeply into crystals either. Therefore, they are more appropriate

for surface structure determination.

1.3.3
Inelastic Scattering

Our discussion has been confined to the case of elastic scattering. In real experi-

ments, however, the X-rays or particles can also lose energy during the scattering

events.This can be described formally by considering the diffraction from a struc-

ture that does not consist of ions at fixed positions but is time-dependent, that is,

which fluctuates with the frequencies of the atomic vibrations. We cannot go into

the details of inelastic scattering processes here, but it is important to emphasize

that the inelastic scattering, especially of neutrons, can be used to measure the

vibrational properties of a lattice.
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1.4

Further Reading

The concepts of lattice-periodic solids, crystal structure, and X-ray diffraction are

discussed in all standard texts on solid state physics, for example,

• Ashcroft, N.W. and Mermin, N.D. (1976) Solid State Physics, Holt-Saunders.
• Ibach, H. and Lüth, H. (2009) Solid State Physics, 4th edn, Springer.
• Kittel, C. (2005) Introduction to Solid State Physics, 8th edn, JohnWiley & Sons,
Inc.
• Rosenberg, H.M. (1988)The Solid State, 3rd edn, Oxford University Press.

For a more detailed discussion of X-ray diffraction, see, for example,

• Als-Nielsen, J. and McMorrow, D. (2011) Elements of Modern X-Ray Physics,

2nd edn, John Wiley & Sons, Ltd.

1.5

Discussion and Problems

Discussion

1) What mathematical concepts do you need to describe the structure of any

crystal?

2) What are typical crystal structures for metals and why?

3) Why do covalent crystals typically have a much lower packing density than

metal crystals?

4) How can the reciprocal lattice conveniently be used to describe lattice-

periodic functions?

5) How can you determine the structure of crystals?

6) What is the difference between the Bragg and von Laue descriptions of X-ray

diffraction?

7) How can you use the reciprocal lattice of a crystal to predict the pattern of

diffracted X-rays?

Problems

1) Fundamental concepts: In the two-dimensional crystal in Figure 1.13, find (a)

the Bravais lattice and a primitive unit cell, (b) a nonprimitive, rectangular

unit cell, and (c) the basis.

2) Real crystal structures: Show that the packing of spheres in a simple cubic

lattice fills 52% of available space.

3) Real crystal structures: Figure 1.14 shows the structure for a two-dimensional

hexagonal packed layer of atoms, a hcp crystal, a two-dimensional sheet

of carbon atoms arranged in a honeycomb lattice (graphene), and three-

dimensional graphite. (a) Draw a choice of vectors spanning the Bravais
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Figure 1.13 A two-dimensional crystal.

c

a 

(b)(a)

(d)(c)

Figure 1.14 (a) Two-dimensional crys-
tal structure of a hexagonal close-packed
layer of atoms. (b) Crystal structure for a
three-dimensional hcp crystal. (c) Two-
dimensional crystal structure for graphene.

(d) Three-dimensional crystal structure for
graphite (strongly compressed along the c
direction). The lines are a mere guide to the
eye, not indicating bonds or the size of the
unit cell.

lattice for the hexagonal layer of atoms and for graphene, and compare them

to each other. (b) Show that the basis for the hexagonal layer contains one

atom, while the bases for graphene and the three-dimensional hcp crystal

contain two atoms. (c) (*) Choose the vectors for the Bravais lattice for

graphite and show that the basis contains four atoms.
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4) Real crystal structures: Consider the hcp lattice shown in Figure 1.14b. The

Bravais lattice underlying the hcp structure is given by two vectors of length

a in one plane, with an angle of 60∘ between them and a third vector of length

c perpendicular to that plane.There are two atoms per unit cell. (a) Show that

for the ideal packing of spheres, the ratio c∕a = (8∕3)1∕2. (b) (*) Construct the

reciprocal lattice. Does the fact that there are two atoms per unit cell in the

hcp crystal have any relevance? Hint: Use the result of Problem 1.7.

5) X-ray diffraction: (a) Determine the maximum wavelength for which con-

structive interference can be observed in the Bragg model for a simple cubic

crystal with a lattice constant of 3.6 Å. (b) What is the energy of the X-rays in

electron volts? (c) If you were to perform neutron diffraction, what would the

energy of the neutrons have to be in order to obtain the same de Broglie wave-

length? (d) You could argue that if you take X-rays with twice the wavelength,

you would still get a Bragg peak because there would be constructive inter-

ference between the X-rays that are reflected from every other plane. Why is

this argument not valid? (e) You could describe the same crystal by using a

unit cell that is a bigger cube of twice the side length, containing eight atoms

instead of one. The lattice constant would then be 7.2 Å. Discuss how this

different description would affect the X-ray diffraction from the crystal.

6) The reciprocal lattice: Using the explicit definition of the reciprocal lattice

(1.16), show first that (1.17) is fulfilled and then, using this relation, show that

the reciprocal lattice defined by (1.16) does indeed fulfill the condition (1.13).

7) The reciprocal lattice: For a two-dimensional Bravais lattice

𝐑 = m𝐚𝟏 + n𝐚𝟐, (1.31)

the reciprocal lattice is also two-dimensional:

𝐆 = m′𝐛𝟏 + n′𝐛𝟐. (1.32)

Often, the most practical way to construct the reciprocal lattice is to use the

relation

𝐚i ⋅ 𝐛j = 2𝜋𝛿ij, (1.33)

which remains valid in the two-dimensional case. Find the reciprocal lattice

for the three cases given in Figure 1.15.

γ

Square

γ

Rectangular Hexagonal

γ

a2 a2 a2

a1 a1
a1

|a1| = |a2| |a1| ≠ |a2| |a1| = |a2|

γ = 90° γ = 90° γ = 60°

Figure 1.15 Two-dimensional Bravais lattices.
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8) Miller indices:We have stated that the reciprocal lattice vector m𝐛𝟏 + n𝐛𝟐 +
o𝐛𝟑 is perpendicular to the lattice plane given by the Miller indices (m, n, o).

(a) Verify that this is correct for the lattice planes drawn in Figure 1.9. (b) (*)

Show that this is true in general.
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2

Bonding in Solids

After studying the structure of crystals, we now discuss the different mechanisms

that lead to bonding between atoms such that they form these structures. We will

encounter different scenarios such as ionic, covalent, ormetallic bonding. It has to

be kept in mind that these are just idealized limiting cases. Often mixed bonding

types are found, for example, a combination of metallic and covalent bonding in

the transition metals.

As in conventional chemistry, only a fraction of the electrons, the so-called

valence electrons, participate in the bonding. These are the electrons in the out-

ermost shell(s) of an atom.The electrons in the inner shells, or core electrons, are

bound so tightly to the nucleus that their energies and wave functions are hardly

influenced by the presence of other atoms in their neighborhood.

2.1

Attractive and Repulsive Forces

Two different forces must be present to establish bonding in a solid or in a mole-

cule. An attractive force is necessary for any bonding. Different types of attractive

forces are discussed in the following sections. A repulsive force, on the other hand,

is required in order to keep the atoms from getting too close to each other. A

simple expression for an interatomic potential can thus be written as

𝜙(r) =
A

rn
−

B

rm
, (2.1)

where r is the distance between the atoms and n > m, that is, the repulsive part has

to prevail for short distances (sometimes, this is achieved by assuming an expo-

nential repulsion potential). Such a potential and the resulting force are shown in

Figure 2.1.The reason for the strong repulsion at short distances is the Pauli exclu-

sion principle. For a strong overlap of the electron clouds of two atoms, the wave

functions have to change in order to become orthogonal to each other, because

the Pauli principle forbids having more than two electrons in the same quantum

state. The orthogonalization costs much energy, hence the strong repulsion.

Solid State Physics: An Introduction, Second Edition. Philip Hofmann.
© 2015 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2015 by Wiley-VCH Verlag GmbH & Co. KGaA.
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Figure 2.1 (a) Typical interatomic potential 𝜙(𝐫) for bonding in solids according to (2.1)
with n = 6 and m = 1. (b) Resulting force, that is, −grad𝜙(𝐫).

2.2

Ionic Bonding

Ionic bonding involves the transfer of electrons from an electropositive atom to an

electronegative atom. The bonding force is the Coulomb attraction between the

two resulting ions. Turning the atoms into ions usually costs some energy. In the

case of NaCl, the ionization energy of Na is 5.1 eV and the electron affinity of Cl

is 3.6 eV. The net energy cost for creating a pair of ions is thus 5.1 − 3.6 = 1.5 eV.

The energy gain is given by the Coulomb interaction. For just one Na and one Cl

ion separated by the distance found in the actual crystal structure of NaCl (a =

0.28 nm), this is −e2∕4𝜋𝜖0a, which amounts to 5.1 eV.

Knowing the crystal structure for NaCl, we can also calculate the electrostatic

energy gain for forming an entire crystal. Consider one Na ion at the center of the

NaCl cube in Figure 1.5. It has six Cl ions at a distance of a = 0.28 nm. They lead

to an electrostatic energy gain of −6e2∕4𝜋𝜖0a. At a distance of a
√
2, there are 12

other Na ions that give rise to an energy increase of +12e2∕4𝜋𝜖0a
√
2. Then, one

finds eight Cl ions that again decrease the energy. Eventually, this series converges

and the total energy gain is

ENa = −1.748
e2

4𝜋𝜖0a
= −Md

e2

4𝜋𝜖0a
. (2.2)

Md is called the Madelung constant. It is specific for a given structure (for the

calculation ofMd , see Problem 2.3). For calculating the electrostatic energy gain

per mole, we have to multiply (2.2) by Avogadro’s number NA. We also have to

multiply it by a factor of 2 to account for the fact that we have both Na and Cl

ions in the solid. But at the same time, we have to divide it by 2 in order to avoid a

double counting of bonds whenwe evaluate the electrostatic energy gain. So in the

end, the energy gain for 1 mol of NaCl is simply−NA1.748e
2∕4𝜋𝜖0a. Note thatMd
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is larger than 1 so that the energy gain for forming a solid is higher than that for

an isolated dimer of ions.This is of course obvious since your salt shaker contains

little crystals, not a molecular powder.

We can define the following contributions to the energy balance for forming

the solid. The cohesive energy is the total energy difference between any solid

and the isolated atoms it is made of. For an ionic crystal, the cohesive energy can

be calculated in a simple way. First, we need to consider howmuch energy it costs

to turn the atoms into ions using the ionization energy and electron affinity

of the atoms. Then, the total electrostatic energy gain for the crystal needs to be

calculated using the known crystal structure, as done above for NaCl.This energy

gain is called the lattice energy. The cohesive energy is then simply the lattice

energy minus the energy needed to turn the atoms into ions (see Problem 2.2).

It could appear as if we could calculate the cohesive energy for ionic solids

from purely classical physics, but this is not correct. Note that we have used the

experimental interatomic distance for the calculation of the lattice energy.The cal-

culation of this distancewould involve quantummechanics because it contains the

repulsive part of the potential. In fact, the presence of the repulsive potential also

causes the actual potential minimum for a given interatomic distance a to be a bit

shallower than expected from the pure Coulomb potential (by 10% or so).This can

be seen in Figure 2.1 where the potential minimum lies above the Coulomb con-

tribution to the potential at the equilibrium distance. In any event, ionic bonding

is very strong. The cohesive energy per atom is on the order of several electron

volts.

2.3

Covalent Bonding

Covalent bonding is based on the true sharing of electrons between different

atoms. The simplest case is that of the hydrogen molecule that we will discuss

quantitatively below. In solids, covalent bonding is often found for elements with

a roughly half-filled outer shell. A prominent example is carbon that forms solids

such as diamond, graphene, and graphite as well as complex molecules such

as Buckminster Fullerene C60 or carbon nanotubes. The covalent bonds in dia-

mond are constructed from a linear combination of the 2s orbital and three 2p

orbitals. This results in four so-called sp3 orbitals that stick out in a tetrahedral

configuration from the carbon atoms. In graphene and graphite, the 2s orbital

is combined with only two 2p orbitals, giving three sp2 orbitals, all in one plane

and separated by an angle of 120∘, and one p orbital oriented perpendicular

to this plane. This linear combination of orbitals already reveals an important

characteristic for the covalent bonding: It is highly directional. In addition to this,

it is also very stable and the cohesive energies for covalently bonded solids are

typically several electron volts per atom.

An example for covalent bonding is the hydrogen molecule H2 for which we

will sketch a solution here. We go into some detail, as much of this will be useful
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for the later discussion of magnetism in Chapter 8. However, understanding these

details is not crucial at this point, and the reader could decide to jump to Section

2.4 instead and return here later.

As a starting point, take two hydrogen atoms with their nuclei at𝐑A and𝐑B and

we call |𝐑B − 𝐑A| = R. We do, of course, know the solution of the Schrödinger

equation for each of the atoms. Let the ground-state wave functions be 𝜙A and

𝜙B, respectively. The Hamilton operator for the hydrogen molecule can be

written as

H = −
ℏ2∇2

1

2me

−
ℏ2∇2

2

2me

+
e2

4𝜋𝜖0

{
1

R
+

1|𝐫1 − 𝐫2|
−

1|𝐑A − 𝐫1| − 1|𝐑B − 𝐫2| − 1|𝐑A − 𝐫2| − 1|𝐑B − 𝐫1|
}
, (2.3)

where 𝐫1 and 𝐫2 are the coordinates of the electrons belonging to the A and the
B nucleus, respectively. The first two terms refer to the kinetic energy of the two

electrons. The operators ∇2
1
and ∇2

2
act only on the coordinates 𝐫1 and 𝐫2, respec-

tively. The electrostatic term contains the repulsion between the two nuclei and

the repulsion between the two electrons, as well as the attraction between each

electron and each nucleus.

The solution of this problem is not simple. It would be greatly simplified by

removing the electrostatic interaction between the two electrons because then

the Hamiltonian could be written as the sum of two parts, one for each electron

(the fixed nuclei would merely contribute with an energy offset). If the last two

terms in (2.3) are also removed, the problem could be solved by a product of the

two wave functions that are solutions to the two individual atomic Hamiltonians.

The two-particle wave function would look like 𝜙(𝐫1, 𝐫2) = 𝜙A(𝐫1)𝜙B(𝐫2).
Actually, this is not quite right because such awave function is not in accordance

with the Pauli principle. Since the electrons are fermions, the total wave function

must be antisymmetric with respect to particle exchange and the simple product

wave function does not fulfill this requirement.The total wave function consists of

a spatial part and a spin part and, therefore, there are two possibilities for forming

an antisymmetric wave function. We can either choose a symmetric spatial part

and an antisymmetric spin part or vice versa.This is achieved by constructing the

spatial wave function of the form

Ψ↑↓(𝐫1, 𝐫2) ∝ 𝜙A(𝐫1)𝜙B(𝐫2) + 𝜙A(𝐫2)𝜙B(𝐫1) (2.4)

Ψ↑↑(𝐫1, 𝐫2) ∝ 𝜙A(𝐫1)𝜙B(𝐫2) − 𝜙A(𝐫2)𝜙B(𝐫1), (2.5)

The plus sign in (2.4) returns a symmetric spatial wave function that we can com-

bine with an antisymmetric spin wave function with the total spin equal to zero

(the so-called singlet state); the minus in (2.5) results in an antisymmetric spatial

wave function for a symmetric spin wave function with the total spin equal to 1

(the so-called triplet state).

The antisymmetric wave function (2.5) vanishes if 𝐫1 = 𝐫2, that is, the two elec-
trons cannot be at the same place simultaneously. This leads to a depletion of the

electron density between the nuclei and hence to an antibonding state. For the
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Figure 2.2 The energy changes ΔE↑↑ and ΔE↑↓ for the formation of the hydrogen
molecule. The dashed lines represent the approximation for long distances. The two
insets show gray scale images of the corresponding electron probability density.

symmetric case, on the other hand, the electrons have opposite spins and can be

at the same place, which leads to a charge accumulation between the nuclei and

hence to a bonding state (see Figure 2.2).

An approximate way to calculate the eigenvalues of (2.3) was suggested by

W. Heitler and F. London in 1927. The idea is to use the known single-particle 1s

wave functions for atomic hydrogen for 𝜙A and 𝜙B to form a two-electron wave

function Ψ(𝐫1, 𝐫2), which is given by either (2.4) or (2.5). These wave functions
might not be entirely correct because the atomic wave functions will certainly

be modified by the presence of the other atom. However, even if they are only

approximately correct, we can obtain the molecular energy levels as

E =
∫ Ψ∗(𝐫1, 𝐫2)HΨ(𝐫1, 𝐫2)d𝐫1d𝐫2
∫ Ψ∗(𝐫1, 𝐫2)Ψ(𝐫1, 𝐫2)d𝐫1d𝐫2

. (2.6)

According to the variational principle in quantummechanics, the resulting energy

will be higher than the correct ground-state energy but it will approach it for a

good choice of the trial wave functions.

The calculation is quite lengthy and shall not be given here.1) The resulting

ground-state energies for the singlet and triplet states can be written as

Esinglet = 2E0 + ΔE↑↓, (2.7)

Etriplet = 2E0 + ΔE↑↑. (2.8)

1) For the full calculation, see online note on www.philiphofmann.net.

http://www.philiphofmann.net
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E0 is the ground-state energy for one hydrogen atom that appears here twice

because we start with two atoms. The energies ΔE↑↑ and ΔE↑↓ are also shown

in Figure 2.2. ΔE↑↑ is always larger than zero and does not lead to any chemical

bonding.ΔE↑↓, on the other hand, shows a minimum below zero at approximately

1.5 times the Bohr radius a0. This is the bonding state.

For long distances between the nuclei, (2.7) and (2.8) can be rewritten to give

E = 2E0 + C ± X, (2.9)

where the+(−) sign is applied for the singlet (triplet) state. Now the energy change

uponbonding has twoparts, one that does depend on the relative spin orientations

of the electrons (±X) and one that does not (C).The energy difference between the

two states is then given by 2X, where X is called the exchange energy. In the case

of the hydrogen molecule, the exchange energy is always negative. Equation (2.9)

is a remarkable result because it means that the energy of the system depends on

the relative orientation of the spins, even though these spins did not actually enter

the Schrödinger equation.

We will encounter similar concepts in the chapter about magnetism where the

underlying principle for magnetic ordering is very similar to what we see here:

The total energy of a system of electrons depends on their relative spin directions

through the exchange energy and, therefore, a particular ordered spin configura-

tion is favored. For two electrons, the “magnetic” character is purely given by the

sign of X. For a negative X, the coupling with two opposite spins is favorable (the

“antiferromagnetic” case), whereas a positive X would lead to a situation where

two parallel spins give the lowest energy (the “ferromagnetic” case).

2.4

Metallic Bonding

In metals, the valence electrons are removed from the ion cores, but in contrast

to ionic solids, there are no electronegative ions to bind them. Therefore, they

are free to migrate between the ion cores. These delocalized valence electrons are

involved in the conduction of electricity and are therefore often called conduction

electrons. One can expectmetals to form from elements for which the energy cost

of removing outer electrons is not too big. Nevertheless, this removal always costs

some energy that has to bemore than compensated by the bonding. Explaining the

energy gain from the bonding in an intuitive picture is difficult, but we can at least

try tomake it plausible.The ultimate reasonmust be some sort of energy lowering.

One energy contribution that is lowered is the kinetic energy of the conduc-

tion electrons. Consider the kinetic energy contribution in a Hamiltonian, T =

−ℏ2∇2∕2me. A matrix element ⟨Ψ|T|Ψ⟩measures the kinetic energy of a particle
TΨ is proportional to the second spatial derivative of the wave function, that is,

the curvature. For an electron that is localized to an atom, the curvature of the

wave function is much higher than for a nearly free electron in a metal and this is

where the energy gain comes from.
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The other contribution to the electron energy is the potential energy. One

should think that the average electrostatic potential of any single electron in a

solid is almost zero because there are (almost) as many other electrons as there

are ions with the same amount of charge. But this turns out to be wrong. In fact,

the electrons see an attractive potential.The reason is again partly due to the Pauli

principle that, loosely speaking, does not allow two electrons with the same spin

direction to be at the same place (see (2.5)) and, therefore, the electrons go “out

of each other’s way.” In addition to this, there is also a direct Coulomb interaction

between the electrons, which makes them avoid each other. We will discuss this

in more detail when dealing with magnetism.

We can also understand why metals prefer close-packed structures. First of all,

the metallic bonding does not have any directional preference. Second, close-

packed structures secure the highest possible overlap between the valence orbi-

tals of the atoms, maximizing the delocalization of the electrons and thereby the

kinetic energy gain.The structures alsomaximize the number of nearest neighbors

for any given atom, again giving rise to strongly delocalized states.

Typically, metallic bonding is not as strong as covalent or ionic bonding but it

amounts to a few electron volts per atom. Stronger bonding is found in transition

metals, that is, metals with both s and p conduction electrons and a partially filled

d shell.The explanation for this is that we have a mixed bonding.The s and p elec-

trons turn into delocalizedmetallic conduction electrons, whereas the d electrons

create much more localized, covalent-type bonds.

2.5

Hydrogen Bonding

Hydrogen atoms have only one electron and can form one covalent bond. If the

bond is formed with a very electronegative atom (like F or O), the electron is

mostly located close to that atom and the hydrogen nucleus represents an isolated

positive (partial) charge. This can lead to a considerable charge density because

of the small size, and it can therefore attract negative (partial) charges in other

molecules to form an electrostatic bond. This type of bonding is called hydro-

gen bonding. It is usually quite weak but in some cases, the cohesive energy can

be up to several hundred meV per atom. It is responsible for the intermolecular

attraction in water ice and for the bonding of the double helix in DNA.

2.6

van der Waals Bonding

The term van derWaals bonding refers to a weak and purely quantummechanical

effect. The electron cloud around an atom or a molecule has no static charge

distribution but one governed by quantum mechanical fluctuations. A simple

atom with a closed shell can thus be viewed as a fluctuating dipole. The field
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of this dipole can polarize other atoms nearby, and the interaction of the two

neighboring dipoles reduces the total energy, that is, it can lead to bonding. This

type of interaction is present in every solid but it is much weaker than ionic,

covalent, or metallic bonding. Typical binding energies per atom are in the meV

range and, therefore, van der Waals bonding is only observable for solids that do

not show other bonding behavior, for example, noble gases. Pure van der Waals

crystals can only exist at very low temperatures.

2.7

Further Reading

Several of the bonding types discussed here are identical to those relevant for the

formation of molecules (with the exception of metallic bonding). They are there-

fore discussed in great depth in the literature for chemistry andmolecular physics.

A good overview on bonding in solids is given in

• Ibach, H. and Lüth, H. (2009) Solid State Physics, 4th edn, Springer.
• Kittel, C. (2005) Introduction to Solid State Physics, 8th edn, JohnWiley & Sons,
Inc.

2.8

Discussion and Problems

Discussion

1) Why is a typical interatomic potential, such as in Figure 2.1, so asymmetric?

2) Which elements are likely to form crystals through ionic bonding?

3) What kind of forces are important for ionic bonding?

4) How does the lattice energy in an ionic crystal depend on the interatomic

distance?

5) Explain the difference between cohesive energy and lattice energy.

6) Which elements are likely to form metals?

7) Where does the energy gain in metallic bonding come from?

8) What is the difference between a simple metal and a transition metal (defini-

tion and typical physical properties)?

9) Why is van derWaals bonding much weaker than most other bonding types?

Problems

1) Metallic bonding:Themost important contribution to the stability gained by

metallic bonding is the lowering of kinetic energy. To see this, consider an

electron in a one-dimensional box. The potential shall be zero and infinite

inside and outside the box, respectively. Consider first a box with a length

corresponding to the size of an atom, say, twice the Bohr radius, and calculate
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a

Na+ CI− Na+ CI− Na+ CI− Na+

Figure 2.3 One-dimensional chain of ions.

the lowest energy eigenvalue. Give the result in electron volts. Clearly, this

energy is only kinetic energy. By howmuch is the kinetic energy loweredwhen

you increase the size of the box by a factor of 10, so that it is roughly the size

of the interatomic spacing in a crystal?

2) Ionic bonding: Calculate the potential energy for an ion in a sodium chloride

crystal (the interatomic distance a is 2.81 Å) in units of electron volts and

joules.Neglect the influence of the repulsive potential. From this, calculate the

lattice energy of sodium chloride and compare the result to the experimental

value of 776 kJ mol−1. Also, calculate the cohesive energy in the same units.

3) Ionic bonding:TheMadelung constant for a three-dimensional crystal ofNaCl

was presented in Section 2.2. (a) Derive the Madelung constant analytically

for a one-dimensional chain of NaCl, as shown in Figure 2.3. (b) (*) Calculate

the Madelung constant numerically for a one-dimensional, two-dimensional,

and three-dimensional NaCl lattice and plot the result as a function of the

number of neighbor “shells” included in the computation. Compare the result

for the one-dimensional case to the analytical value from (a).

4) van der Waals force: Show that the bonding energy due to the van der Waals

force between two atoms depends on their distance r as r−6. Hint:The van der

Waals force is caused by the mutual interaction of fluctuating dipoles. Sup-

pose that one atom forms a spontaneous dipole moment at some time. This

can be modeled as two point charges, separated by a distance d. This electric

dipole gives rise to an electric field (𝐫) and the other atom is polarized in
this field, such that a dipole moment 𝐩 is induced in this second atom. 𝐩 is
proportional to the field, that is, 𝐩 = 𝛼(𝐫) (see (9.4)). The potential energy
of an electric dipole in an electric field is U = − ⋅ 𝐩 = −(𝐫) ⋅ 𝛼(𝐫). There-
fore, all you have to show is that the electric field caused by the dipole in the

first atom decays as r−3 for r ≫ d.
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3

Mechanical Properties

In this chapter, we discuss the macroscopic behavior of a solid that is subject to

mechanical stress, and we will try to explain it in a microscopic picture. Our dis-

cussion is restricted to isotropic solids, that is, solids for which the direction of

the applied mechanical stress with respect to the crystal lattice is not important.

We start out with some fundamental definitions that are all illustrated in

Figure 3.1. The applied stress on a solid 𝜎 is defined as the force F per area A

perpendicular to the direction of the applied force (Figure 3.1a). Depending on

the force direction, one can distinguish between tensile and compressive stress.

The stress has the same dimension as a pressure, that is, Nm−2 or Pa. The solid

responds to the stress by a deformation called strain 𝜖. In the case of the tensile

stress applied in Figure 3.1a, the response is a length extensionΔl1 in the direction

of the force. The strain is defined as the relative length extension 𝜖 = Δl1∕l1. It

is therefore dimensionless, but in technical texts sometimes the unit meter per

meter is found. The strain Δl1∕l1 in Figure 3.1a is frequently accompanied by

length changes in the two other directions Δl2 and Δl3. In most cases, the solid

contracts in these directions. We shall discuss this in more detail below.

A shear stress 𝜏 is defined in a similar way as the applied force F per areaA, but

now the force is applied tangentially to the area (Figure 3.1b). Again, the material

deforms as a consequence of the shear stress.The deformation is described by the

angle 𝛼 shown in the figure.The last situation illustrated in Figure 3.1c is the expo-

sure of the solid to hydrostatic pressure from all sides.This leads to a reduction of

the volume. There are other mechanical deformations such as torsion, and these

lead to similar definitions, but we do not discuss them here.

If we consider only the relation between stress and strain, the typical response

of a solid is illustrated in Figure 3.2. It shows the resulting stress as a function of

applied strain. This type of plot can seem rather odd at first. If you think of the

strain as a consequence of the applied stress, you might be tempted to draw the

curve with swapped axes. For the interpretation of the curve as it is displayed, one

should adopt another point of view: The solid’s length is increased and the stress

that is “pulling back” is measured for every extension, very much like the force

upon the extension of a mechanical spring.

Different regions in the curve can be distinguished. For a very small strain, typi-

cally much smaller than 1%, the deformation is elastic, that is, the solid goes back

Solid State Physics: An Introduction, Second Edition. Philip Hofmann.
© 2015 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2015 by Wiley-VCH Verlag GmbH & Co. KGaA.
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to its initial shape once the stress is released. In this region, the stress is also a linear

function of the strain and this will allow the definition of various elastic constants

in the next section. Beyond a certain yield strain 𝜖Y or yield stress 𝜎Y , plastic

deformation sets in.Thismeans that the deformation is permanent; once the stress

is released, the solid does not return to its original shape. It only contracts slightly.

The curve’s shape in the region of plastic deformation will be discussed in a later

section. Eventually, the strain becomes so high that the material fractures. This,

naturally, defines the end of the stress/strain curve.

While the region of elastic deformation is usually quite small, the amount of

possible plastic deformation can vary widely. Somematerials, such as glass or cast

iron, will fracture immediately at the end point of the elastic limit. Such materials
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are called brittle. Materials that do show plastic deformation before they fracture

are called ductile. Most metals are ductile.

3.1

Elastic Deformation

The elastic regime of deformation is small, but it is of high technical importance

because most applications require the deformation of materials to remain elastic.

Apart from exploring the limits of elastic deformation, an interesting question

is how strongly the material resists such a deformation. This is described by the

macroscopic elastic constants that we shall introduce now. We will also see that

these constants can be connected to the picture of interatomic bonding that we

have encountered earlier.

3.1.1
Macroscopic Picture

3.1.1.1 Elastic Constants

The linear behavior for the small deformations in the elastic regime leads to a

few definitions of macroscopic elastic constants. The relation between stress and

strain is given by Young’s modulus Y :

Y =
𝜎

𝜖
=

F

A

l

Δl
. (3.1)

Young’s modulus has therefore the same unit as the stress, that is, Pascal. It is the

slope of the initial stress/strain curve in Figure 3.2.The values of Young’s modulus

are very high, typically in the gigapascal region.

The possibility to define Young’s modulus is equivalent to the validity of Hooke’s

law that is commonly used to describe a “spring-like” force response. Suppose you

extend a spring by some small amount. It is going to respond by a force that is

proportional to the extension. This is equivalent to

𝜎 = Y𝜖. (3.2)

Multiplication by A gives

F =
YA

l
Δl, (3.3)

so that the usual spring constant is YA∕l. The advantage of using Y instead of the

spring constant is that it depends only on the material, not on the geometry.

The shearing of a solid can also be described by an elastic constant. Themodu-

lus of rigidity G is defined by

G =
𝜏

𝛼
. (3.4)
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Finally, the exposure of the solid to hydrostatic pressure leads to the definition of

the bulk modulus K via

K = −p
V

ΔV
, (3.5)

where p = F∕A is the pressure and V the volume.Theminus sign is introduced in

order to obtain a positive bulk modulus for a decrease in volume. Note that both

G and K have the unit Pascal, just like Y .

3.1.1.2 Poisson’s Ratio

When mechanical stress is applied to a solid, the strain in the direction of the

stress is not the only consequence. In addition to this, the solid’s dimensions may

change in the directions perpendicular to the stress, as illustrated in Figure 3.1a.

This change is described by Poisson’s ratio 𝜈, which is defined as

Δl2
l2

=
Δl3
l3

= −𝜈
Δl1
l1

= −𝜈𝜖. (3.6)

As we discuss only isotropic solids, the fractional changes Δl2∕l2 and Δl3∕l3 are

the same.Theminus sign in the definition assures that 𝜈 is positive in the “normal”

situation where the solid contracts sideways upon tensile stress. However, there

are some exoticmaterials with a negative Poisson’s ratio, for example, special types

of molecular foam that expand sideways upon being exposed to tensile stress and

which contract when subject to compressive stress.

Poisson’s ratio cannot take all possible values. It is limited to a range between

−1 and +0.5. The lower limit is not so relevant as materials with a negative Pois-

son’s ratio are rather rare. The upper limit is caused by the fact that a solid cannot

decrease its volume when we pull on one side and that it cannot increase its vol-

ume when we press it from one side. To calculate the upper limit of 𝜈, consider

the volume of the solid after the application of stress

(l1 + Δl1)(l2 + Δl2)(l3 + Δl3). (3.7)

For small changes, we can neglect higher order terms in theΔl’s and this becomes

l1l2l3 + Δl1l2l3 + l1Δl2l3 + l1l2Δl3. (3.8)

So the change in volume is

Δl1l2l3 + l1Δl2l3 + l1l2Δl3 = Δl1l2l3 + l1

(
− 𝜈

Δl1
l1

l2

)
l3 + l1l2

(
− 𝜈

Δl1
l1

l3

)
= (1 − 2𝜈)Δl1l2l3. (3.9)

For a positiveΔl1, this must not be negative, which can only be achieved for values

of 𝜈 smaller than or equal to 0.5.

Typical values of Poisson’s ratio range between 0.2 and 0.4 for most materials.

Rubber has a 𝜈 very close to 0.5, that is, it is an almost ideal noncompressible solid.

Cork has 𝜈 ≈ 0, which is advantageous when you try to put a wine cork back into

the bottle.
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3.1.1.3 Relation between Elastic Constants

In a broader mathematical context, all the macroscopic constants can be derived

from a few fundamental elastic properties. Not surprisingly, they are therefore

related to each other. For example,1)

G =
Y

2(1 + 𝜈)
. (3.10)

A similar relation exists between the bulk modulus and Young’s modulus (3.17),

and Problem 3.1 enables us to understand the origin of this relation. The close

connection between different elastic properties has an advantage for our task

to explain the macroscopic behavior in a microscopic picture. We will, in most

cases, restrict ourselves to explaining one type of mechanical property and we

are allowed to do so without great loss of generality. In any case, we see from

(3.10) and (3.17) that for a given material with 𝜈 in the “normal” range, the elastic

constants Y , G, and K have the same order of magnitude.

3.1.2
Microscopic Picture

The elastic deformation of a solid can be explained in terms of changing inter-

atomic distances. According to Figure 2.1, the equilibrium distance between two

atoms corresponds to theminimum in the interatomic potential𝜙 and the force at

this distance, which is just the negative spatial derivative of the potential, is zero.

Upon the application of a compressive stress, the distance between the atoms is

decreased. This results in a force that presses the atoms away from each other.

For tensile stress, it is the other way round. Once the stress is released, the atoms

return to their equilibrium distance.

This explains why the behavior is elastic, but why is it linear? A linear force for

distance changes close to the equilibrium can readily be seen in Figure 2.1b. More

formally, we can expand the potential for distances close to the equilibrium x = a

as a Taylor series:

𝜙(x) = 𝜙(a) +
𝜙′(a)

1!
(x − a) +

𝜙′′(a)

2!
(x − a)2 +

𝜙′′′

3!
(x − a)3 +… (3.11)

The first term is simply an offset of the absolute energy scale and therefore irrel-

evant here. The second term is zero because the derivative of 𝜙 vanishes at the

equilibriumdistance.The third term is responsible for the elastic behavior. It states

that the potential close to the equilibrium is proportional to the square of the dis-

tance change, that is, the force depends linearly on the distance change.Moreover,

it is the curvature of the potential that gives rise to the interatomic force constant.

The fourth and higher order terms are usually neglected.

For distances (x − a) that are sufficiently large, terminating the Taylor series

after the third termmay become imprecise, and onewould expect to see nonlinear

elastic deformation. In this case, the elastic constants would depend on the actual

1) For a derivation of this equation, see online note on www.philiphofmann.net.

http://www.philiphofmann.net
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change of the atomic separation, for example, Young’s modulus would depend on

the applied stress. It turns out, however, that this is very rarely observed. For most

solids, the plastic deformation sets in for a strain of less than 1%, and this is before

higher order terms in (3.11) become important.

The interatomic force constant that is calculated from the Taylor series (3.11)

also allows for harmonic vibrations of the atoms. Indeed, we will later see that it is

possible to relate the vibrational properties of a solid to its elastic properties (see

Section 4.1.5.2).

We conclude our treatment of the elastic regime by looking at typical values of

Young’s modulus in Figure 3.3. As stated earlier, Y is very high for most materials,

on the order of many gigapascal. It is also apparent how different bonding types

lead to different values of Young’s modulus. Metals and alloys are all in the range

between 15 and 300 GPa. As a tendency, transition metals have a higher Y than

simple metals, consistent with a stronger bonding due to localized d electrons.

W andMo have particularly strong bonding, something that leads to a high Y and

highmelting points, aswe shall see later. Solidswith covalent bonding span amuch

wider range. The sp2 and sp3 bonds in graphite and diamond lead to particular

strength, but note that graphite also appears at the lower end of the range. This

is because we have neglected the possibility of anisotropy in solids. Graphite is

strongly bonded parallel to the sp2-linked planes but very weakly perpendicular to

these planes. Not surprisingly, graphene, the single layer of graphite, has the same

Young’s modulus as graphite in the two-dimensional plane. Polymers show low

values of Y . The reason is that a reversible length extension in a polymer does not

have to be achieved by extending interatomic bonds. It is sufficient to change the

angles of the many bonds in a polymer, that is, to “unfold” it. Composite materials

and fibers cover a wide range of Y , from carbon nanotubes that have an extremely

high Y , just like graphene (they can be viewed as rolled-up graphene sheets), to

wood perpendicular to the grains that has Y < 1 GPa.

Note that Young’s modulus does not reflect the same physical quantity as the

cohesive energy discussed in Chapter 2. The cohesive energy measures how deep

the potential minimum in Figure 2.1 is. Young’s modulus, on the other hand, cor-

responds to the curvature of the potential around the minimum. Obviously, these

two are related as the properties in Figure 3.3 correspond well to what we have

discussed in connection with the cohesive energies. The covalent bonds in dia-

mond, for example, give rise to a high cohesive energy, and at the same time, they

strongly resist small changes in the bonding distance.

3.2

Plastic Deformation

Nowwe address the plastic deformation part of the stress/strain curve.We will be

able to establish a link to microscopic models, but a detailed understanding of all

phenomena cannot be accomplished on the basis of the perfect crystal. It will be

necessary to introduce different types of imperfections, such as point defects and
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dislocations. Such imperfections will also be important in our later treatment of

electrical resistance.

3.2.1
Estimate of the Yield Stress

Themost important practical question formany applications ofmaterials is where

plastic deformation starts to set in. Canwe estimate the yield stress or yield strain?

On the atomic scale, this is particularly simple for a shear deformation of a crystal.

Figure 3.4a shows two atom rows in a hexagonal crystal plane that in Figure 3.4b

is subject to shear stress.This leads to a deformation with a shear angle 𝛼 in which

the atomic rows are pulled away from their lowest energy position. For small shear

angles, we can relate 𝛼 to the interlayer distance a and the displacement x:

𝛼 = tan−1
(
x

a

)
≈

x

a
. (3.12)
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Figure 3.4 Estimate of the yield stress for shearing a solid. (a) Atoms in equilibrium posi-
tion. (b) Distortion for a small shear stress. (c) Meta-stable equilibrium. (d) New stable equi-
librium for the sheared solid.

This expression of 𝛼 is inserted in the definition of the modulus of rigidity (3.4):

𝜏 = G𝛼 ≈
Gx

a
, (3.13)

which directly establishes a link between macroscopic quantities and the micro-

scopic displacements.

For small values of 𝛼, the atoms will go back into their equilibrium positions

as soon as the shear stress is released; the deformation is elastic. But if the shear

stress is increased more and more, the rows of atoms will eventually start to glide

over each other. This leads to an unstable equilibrium when x is equal to half the

interatomic distance b, as in Figure 3.4c. Stable equilibrium is reached as x = b

(Figure 3.4d). In fact, the microscopic positions of the atoms with respect to each

other in the crystal do nowexactly correspond to the starting point before applying

any shear stress, but the crystal has undergone plastic deformation. Consequently,

the shear stress must be a periodic function of x with a period of b. We assume a

simple sine dependence and write

𝜏 = C sin

(
2𝜋x

b

)
, (3.14)

where C is the highest value of the shear stress that has to be overcome in order

to have the planes glide on top of each other. In other words, when the applied

𝜏 ≥ C, the solid can be plastically deformed and thus C is equal to the shear stress

at the yield point 𝜏Y . Equation (3.14) can be approximated for small x by replacing

the sine with its argument and combined with (3.13) to give

C
2𝜋x

b
=

Gx

a
, (3.15)

that is,

C = 𝜏Y =
Gb

2𝜋a
. (3.16)



3.2 Plastic Deformation 41

We can now estimate the order of magnitude for 𝜏Y . We set a ≈ b and 2𝜋 ≈ 10

and find 𝜏Y ≈ 0.1G. Also, since the modulus of rigidity G has the same order of

magnitude as Young’s modulus Y (see (3.10)), we are able to state 𝜏Y ≈ 0.1G ≈

0.1Y and obtain a direct estimate from data such as given in Figure 3.3. It turns

out that the mechanism of gliding crystal planes is also responsible for the yield

upon tensile stress, so that we can simultaneously estimate that 𝜎Y ≈ 𝜏Y ≈ 0.1Y .

But these estimates, however crude, cannot be reconciledwith the experimental

results. In fact, the measured yield stress is not found to be merely a factor of 10

lower than Young’s modulus but several orders of magnitude. For aluminum, for

example, Young’s modulus is≈ 70 GPa but its yield stress is only ≈ 30 MPa.What

is the reason for this disagreement? It turns out that there is nothing wrong with

the calculation for the simple model here; the problem is that we have assumed

a perfect defect-free crystal. Even a qualitative understanding of the stress/strain

curve in the plastic regime requires the introduction of defects.

3.2.2
Point Defects and Dislocations

Defects, or crystal imperfections, in solids are a wide research subject of their

own, and we have to take them into account to some degree, even though we

are mostly concerned with perfect crystals. Defects are more than small annoying

perturbations of the perfect crystal. In the present context, they are essential for

explaining themechanical properties, and later we will see that they are also indis-

pensable for phenomena like electrical resistance or for the electronic properties

of semiconductors. We broadly distinguish between very localized point defects

and extended defects such as grain boundaries or dislocations.

A crystal can have different types of point defects and we mention only a few

here.There can be an atommissing in the otherwise perfect crystal structure. Such

a defect is called a vacancy. Atoms of a different kind can be present, either on

the original lattice sites instead of the “correct” atoms or in between lattice sites.

These defects are called substitutional and interstitial, respectively. The former

play an important role for changing the conductivity of semiconductors; the latter

are often used to design alloys with improved mechanical properties (see below).

Dislocations are line-type defects and therefore much more extended. These

lines can extend through the whole crystal, or they can have the shape of a loop.

For themechanical properties of a solid, the edge dislocation shown in Figure 3.5

is of particular importance. This type of dislocation is caused by one extra sheet

of atoms in the crystal. It can move within the slip plane as we will explain next.

3.2.3
The Role of Defects in Plastic Deformation

The presence of edge dislocations can explain why the yield stress of a real crys-

tal is much smaller than predicted by (3.16). This is illustrated in Figure 3.6a. As

the solid with a dislocation is exposed to shear stress, a plastic yielding can be
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Figure 3.5 An edge dislocation formed by an extra sheet of atoms. The dislocation can
move in the slip plane.

τ
(a) (b)

Figure 3.6 (a) Shearing of a solid in the presence of an edge dislocation. The dislocation
moves through the solid by breaking only one row of bonds at a time. (b) A point defect
can pin a dislocation such that it cannot move.

achieved by moving the dislocation through the crystal. It is immediately evident

why this is much easier than the process shown in Figure 3.4: When a dislocation

is present, the plastic deformation can proceed by breaking one row of bonds at a

time instead of all bonds between two planes of atoms simultaneously. Since edge

dislocations are always present in real materials, the observed yield stress is the

stress at which dislocations start to move. It is thus far lower than the yield stress

from (3.16).

The yield stress of materials can therefore be increased by hindering the move-

ment of dislocations. Frequently, this is achieved by impurities that can “pin” a

dislocation as shown in Figure 3.6b. In fact, impurities often gather in the extra

space available in dislocations and simultaneously hinder their movement. Impu-

rities are therefore frequently introduced into real materials. Examples are car-

bon, turning iron into steel, or beryllium that can stop dislocation movement in

copper.

The presence of dislocations and defects now allows us to understand the details

of the plastic deformation in the stress/strain curve of Figure 3.2 up to the point
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of fracture. Once the yield stress is overcome, dislocation-assisted glide sets in.

This is the so-called easy-glide region. The stress increases only very little for a

big strain increase, that is, the curve is rather flat.

The next part of the curve is called the work hardening region. Here, the

stress/strain curve is considerably steeper.Themeaning of the term work harden-

ing becomes obvious when we consider what happens as the stress is released (see

Figure 3.2): The material will contract very little as the stress goes to zero. Upon

a new application of stress, the material will deform elastically until the original

stress/strain curve is reached again. But this point is reached at a higher stress

than for the original material. This means that the yield stress is higher and hence

the term work hardening. The microscopic picture behind the work hardening is

that the number of dislocations increases for higher strain values, for reasons not

discussed here. At some point, the dislocations hinder each other’s movement,

and the slope of the stress/strain curve increases. Work hardening can be a useful

technique to increase the strength of materials by pre-straining them.

Not only the presence of defects but also the solid’s temperature has a major

significance for its mechanical properties. At elevated temperature, the role of the

entropy in a crystal becomes more important and defects are generated in order

to minimize the Gibbs free energy. In addition to this, activation barriers, such as

the one needed tomove a dislocation across a point defect, can be overcomemore

easily.

3.3

Fracture

At the end of the stress/strain curve, the material will fracture. Immediately

before fracturing, the stress might even decrease. This is due to a phenomenon

called necking, in which the material narrows somewhere between the points

at which the stress is applied. The narrower cross section means that the local

stress is even higher than elsewhere. This causes a self-amplification that leads to

fracture.

So far, we have only discussed ductile materials that have a stress/strain curve

similar to the one shown in Figure 3.2. What happens in brittle materials that do

not show any plastic deformation at all, but fracture at the end of the elastic part of

the curve?This so-called brittle fracture follows a different physical mechanism.

It is associated with the presence of fine cracks in the material, perpendicular to

the direction of the applied stress. At the end of a crack, the local stress is higher

than the average stress in the material. More specifically, it is increased by a fac-

tor ≈ 2
√
l∕r, where l is the length of the crack and r the radius at the end. For

a ductile material, such local stress can be relieved by a plastic deformation that

work hardens the material in this area.Then, the crack is stopped and cannot pro-

ceed further. If such a plastic deformation cannot happen, the crack will propagate

through the whole material. Indeed, as the stress is increasing for deeper cracks,
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Figure 3.7 Calculated local stress field for a crack along the (1,1,1) plane in silicon. The
stress per atom is encoded as grayscale. Bright corresponds to high stress. Image courtesy
of James Kermode (www.jrkermode.co.uk).

this is a self-amplifying process that can lead to the spontaneous breaking of very

big structures (e.g., entire ocean-going ships).

It is even possible to calculate the local stress field on an atomic scale, and the

result of such a simulation is shown in Figure 3.7 for a crack in silicon along the

crystal plane with the Miller indices (1,1,1). The image encodes the local stress

in the grayscale of the atoms, and it is easy to see what drives the propagation of

the crack:The presence of the crack completely relaxes the stress in the crystal on

the left-hand side, above, and below the crack. However, it also leads to a strongly

increased stress near the tip of the crack, causing fracture there and thus further

propagation of the crack.

Again, temperature is important for the behavior of materials. At elevated tem-

peratures, the propagation of dislocations is easier and materials that behave brit-

tle at low temperature can be ductile as the temperature is raised. A prominent

example is glass, which is usually brittle, but at high temperature, it is so ductile

that its shape can be changed by blowing.

3.4

Further Reading

A discussion of the mechanical properties of solids is found in the general solid-

state physics books.

• Kittel, C. (2005) Introduction to Solid State Physics, 8th edn, JohnWiley & Sons,
Inc.
• Myers, H.P. (1990) Introductory Solid State Physics, 2nd edn, Taylor & Francis

Ltd.
• Rosenberg, H.M. (1988)The Solid State, 3rd edn, Oxford University Press.
• Turton, R.J. (2000)The Physics of Solids, Oxford University Press.

http://www.jrkermode.co.uk
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More detailed information can be found in

• Callister, W.D. Jr. and Rethwisch, D.G. (2009)Materials Science and Engineer-

ing: An Introduction, 8th edn, John Wiley & Sons, Inc.

3.5

Discussion and Problems

Discussion

1) What typically happens when a crystal is exposed to a small stress?

2) How can an elastic deformation of a crystal be describedmicroscopically, and

why would you expect Hooke’s law to hold for a small strain?

3) How do the stress/strain curves look for a typical ductile and brittle material?

4) (*)Young’s modulus can be estimated from the microscopic force constants

between atoms (or the other way round). Why and how?

5) The yield stress of a solid estimated from a simple calculation is often much

higher than the observed yield stress. Explain why.

6) Explain the phenomenon of work hardening.

Problems

1) Elastic constants: (a) Consider a cube of isotropic material and show that the

bulk modulus (3.5) is related to Young’s modulus (3.1) and Poisson’s ratio

(3.6) by

K =
Y

3(1 − 2𝜈)
. (3.17)

(b) What happens when 𝜈 reaches its upper limit of 0.5?

2) Elastic constants:We have stated that the numerical value of Poisson’s ratio

is always between +0.5 and −1, but we have proven only the upper limit. Use

(3.10) to argue why −1 is the lower boundary for the Poisson ratio.

3) Elastic constants:The metals with the highest values of Young’s modulus in

Figure 3.3 are also those with the highest cohesive energies and melting tem-

peratures (see Figure 4.16a). Are these two aspects of the same thing?
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4

Thermal Properties of the Lattice

In this chapter, we discuss some thermal properties of solids such as their heat

capacity, thermal conduction, thermal expansion, and melting. For now, we only

consider the contribution of the lattice, that is, the effects caused by the motion of

the atoms around their equilibriumposition. For some thermal effects, themotion

of the free electrons in metals can be very significant (e.g., thermal conduction),

but we neglect this for now and come back to it in the next two chapters.

4.1

Lattice Vibrations

The atoms in a crystal can vibrate around their equilibrium position. The restor-

ing force can be derived from the interatomic potential, as expressed in the Taylor

series (3.11). In most cases, it is sufficient to assume a linear restoring force, con-

sidering only the first three terms in the series. This leads to a description of the

lattice vibrations as harmonic oscillators and is therefore called the harmonic

approximation.

4.1.1
A Simple Harmonic Oscillator

When inspecting the interatomic potential in Figure 2.1 and the Taylor series for

the potential (3.11), onemight be tempted to describe the vibrations of a solid with

N atoms simply as 3N independent harmonic oscillators. The factor of 3 comes

from the three different directions the atoms can oscillate in. While this is clearly

much too simple (the oscillators are all coupled to each other), it is surprising how

far one gets with this picture.

If the force constant 𝛾 is equal to 𝜙′′(a) in (3.11) and x is the displacement from

the equilibrium position (for convenience, we set the origin of the coordinate sys-

tem such that a in (3.11) is zero), the equation of motion is

M
d2x

dt2
= −𝛾x, (4.1)

Solid State Physics: An Introduction, Second Edition. Philip Hofmann.
© 2015 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2015 by Wiley-VCH Verlag GmbH & Co. KGaA.
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whereM is the mass of the vibrating atom. This leads to a harmonic motion with

the frequency1)

𝜔 =

√
𝛾

M
. (4.2)

The total energy for a one-dimensional harmonic oscillator is the sum of kinetic

and potential energies:

E =
1

2
Mv2 +

1

2
𝛾x2. (4.3)

Assuming classical motion, we can estimate the amplitude of the vibration by

using the equipartition theorem of statistical mechanics. This theorem states

that every generalized momentum or position coordinate, which appears squared

in the Hamilton function (or in the total energy in our case), contributes with a

mean energy of kBT∕2 to the system. Here, we have two squared coordinates and,

therefore, the mean energy of the oscillator in contact with a heat bath is kBT . At

the highest displacement, the oscillator has only potential energy and so

1

2
𝛾x2

max
= kBT , (4.4)

and thus

xmax =

(
2kBT

𝛾

)1∕2
. (4.5)

This is usually a small percentage of the lattice spacing.

4.1.2
An Infinite Chain of Atoms

A more realistic model for crystal vibrations is a chain of atoms. This is still very

simple but now the oscillators are coupled to each other. If we restrict ourselves to

longitudinal vibrations in this chain, themodel is only one-dimensional. However,

we can learn a lot about vibrations in three-dimensional solids already from this.

We start with infinite chains of one and two different atoms per unit cell before

passing on to chains of finite length.

4.1.2.1 One Atom Per Unit Cell

Consider a one-dimensional atomic lattice with one atom per unit cell and a lat-

tice constant a. The atoms can move out of their equilibrium position along the

direction of the chain, as shown in Figure 4.1a. The atoms at the lattice sites shall

be connected to their neighbors with springs of a force constant 𝛾 . The equation

of motion for atom n is

M
d2un

dt2
= −𝛾(un − un−1) + 𝛾(un+1 − un), (4.6)

1) For simplicity, we will often speak merely of “frequency” when “angular frequency” would be the

correct term.
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Figure 4.1 (a) One-dimensional chain with one atom per unit cell. (b) Allowed vibrational
frequencies 𝜔 as a function of the wave vector k.

where un is the displacement of the nth atom in the chain (see Figure 4.1a), or

M
d2un
dt2

= −𝛾[2un − un−1 − un+1]. (4.7)

This can be solved by a kind of wave that is only defined on the lattice sites:

un(t) = uei(kan−𝜔t), (4.8)

where k = 2𝜋∕𝜆 is the one-dimensional wave vector with the wavelength 𝜆 and u

is the amplitude of the oscillation. Substituting this into the equation of motion

gives

−M𝜔2ei(kan−𝜔t) = −𝛾
[
2 − e−ika − eika

]
ei(kan−𝜔t) = −2𝛾(1 − cos ka)ei(kan−𝜔t), (4.9)

and this has a solution if we choose the 𝜔 = 𝜔(k) such that

𝜔(k) =

√
2𝛾(1 − cos ka)

M
= 2

√
𝛾

M

||||sin ka2 |||| . (4.10)

The resulting 𝜔(k) is plotted in Figure 4.1b.The solutions given by (4.8) now solve

the equation of motion if such an 𝜔(k) is chosen for a given wave vector k. They

describe waves propagating along the chain. What is special about these waves is

that they are only defined on the actual lattice sites.

Relations of the type of (4.10), which connect a frequency or energy to a wave

vector, are called dispersion relations.Wewill encounter themmanymore times,

for example, in connection with electronic states. A particular solution with 𝜔(k)

is called a normal mode of the chain. Note that such a vibration is not localized

to one particular atom in the chain. All the atoms move, and they do so with the
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Figure 4.2 Motion of the atoms in the chain for (a) k ≪ 𝜋∕a and (b) k = 𝜋∕a.

same frequency 𝜔. How do the atoms actually move? We study two important

cases, the situation for a very small k ≪ 𝜋∕a and that for k = 𝜋∕a. All we need for

doing this is the relation between the wave vector and the wavelength k = 2𝜋∕𝜆.

For a small k, the wavelength of the mode must be much longer than the lattice

constant. Therefore, atoms that are close to each other must very nearly move in

phase. If we pick a certain instant in time, and the leftmost atom of the chain in

Figure 4.2a happens to move to the right, the atoms in its vicinity perform essen-

tially the same motion. In fact, atoms moving in the opposite direction are only

found many lattice constants (𝜋∕(ak)) away from the atom under consideration.

For modes with a very small k, the particular atomic structure is thus not impor-

tant, it would be sufficient to view the chain as a macroscopic elastic medium. A

small k also allows us to replace the sine in (4.10) by its argument to obtain the

linear relation

𝜔(k) =

√
𝛾

M
ak = 𝜈k, (4.11)

where 𝜈 has the dimension of a velocity. If we now apply the usual definitions of the

phase velocity (𝜔∕k) and group velocity (𝜕𝜔∕𝜕k) for a wave, we see that (4.11)

describes a situation in which phase velocity and group velocity are the same

(𝜈).2) The propagation speed of the waves does, therefore, not depend on their

frequency. It turns out that this long wavelength limit corresponds to the prop-

agation of sound waves with 𝜈 being the speed of sound. In fact, the situation is

very similar to long-wavelength sound propagation in air, but since the atoms in a

solid aremuch closer packed than in air, the speed of sound is considerably higher.

The limit of short wavelengths is also very instructive. The shortest possible

wavelengthmust be two lattice spacings, such that 𝜆 = 2a and k = 𝜋∕a. If we again

assume that the leftmost atom in the chain of Figure 4.2b moves to the right, then

the atom two lattice spacings away must perform the same motion. The atom on

the neighboring lattice site, on the other hand, is half a wavelength away andmust

therefore move in the opposite direction. For k = ±𝜋∕a, the group velocity of the

wave is zero since the dispersion curve in Figure 4.1b is flat, meaning that the

solutions of (4.7) are standing waves, consistent with the motion in Figure 4.2b

(Problem 4.1 asks you to show this formally).

2) For a detailed discussion of the phase velocity and group velocity, see online note on www.

philiphofmann.net.

http://www.philiphofmann.net
http://www.philiphofmann.net
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Figure 4.3 Instantaneous position of atoms in a chain for two different wavelengths: 𝜆 =

10a and 𝜆 = (10∕11)a. Note that the wave is transverse for illustrative purposes. Otherwise,
we have only considered longitudinal waves in one-dimensional chains.

According to (4.10), 𝜔(k) is periodic in k with a period of 2𝜋∕a. This periodicity

corresponds precisely to one reciprocal lattice “vector” in our one-dimensional

crystal. If this is so, we could suspect that the actual motion of the atoms is also

unaffected if we add a reciprocal lattice vector to k. Amazingly, this is really the

case: It is illustrated in Figure 4.3, which shows the instantaneous displacement of

the atoms for two waves with wave vectors that differ by a reciprocal lattice vector.

The displacement of the atoms is the same even though the two waves differ in

wavelength. We see that this is so because the wave (4.8) is only defined on the

lattice sites. Another way of viewing this is to note again that the shortest possible

wavelength in a lattice of spacing a is 𝜆 = 2a or k = 𝜋∕a, which corresponds to

the situation where neighboring atoms move exactly out of phase. Any wave that

has an even shorter wavelength can be equivalently described by one with a longer

wavelength.

4.1.2.2 The First Brillouin Zone

Themost remarkable result of the last section is probably that we have easily man-

aged to describe the motion of all the atoms in an infinite chain just by making use

of the chain’s periodicity. It turned out that dispersion relation 𝜔(k) and even the

motion of the atoms themselves is unaffected if we change the wave vector bymul-

tiples of the reciprocal lattice vector 2𝜋∕a. Therefore, it is sufficient to know the

solution of the equation of motion only in an interval of length 2𝜋∕a. One could

even argue that an interval of 𝜋∕a is sufficient. This is due to the left/right sym-

metry of the chain. It does not matter if the wave travels to the left or to the right,

that is, if k is positive or negative.

This does not only show the usefulness of the reciprocal lattice for describing

waves in crystals, it also motivates another definition that appears rather formal

right now but turns out to be very useful. We call the region between k = −𝜋∕a

and k = 𝜋∕a the first Brillouin zone of the lattice. The first Brillouin zone and

similar constructions are often said to be placed in reciprocal space or k-space.

The first Brillouin zone is indicated in Figure 4.1b. For a definition of the first Bril-

louin zone in three dimensions, see Section 4.1.5.
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Figure 4.4 (a) One-dimensional chain with two atoms per unit cell. (b) Allowed vibrational
frequencies 𝜔 as a function of the wave vector k.

4.1.2.3 Two Atoms per Unit Cell

We also discuss the vibrations of a chain with two atoms per unit cell as shown in

Figure 4.4a. The calculation is very similar to the case of one atom per unit cell.

Now we call the lattice constant b and the length of the reciprocal lattice vector

is 2𝜋∕b. One of the two atoms in the unit cell is placed at the origin and the other

at b∕2. We write down the forces on each atom in a similar manner as above and

obtain two equations of motion, one for each type of atom.

M1
d2un
dt2

= −𝛾[2un − vn−1 − vn], M2
d2vn
dt2

= −𝛾[2vn − un − un+1], (4.12)

where un and vn are the displacements of the first and second atom in the nth unit

cell, respectively. This can again be solved by wave-type functions of the form

un(t) = uei(kbn−𝜔t), vn(t) = vei(kbn−𝜔t). (4.13)

When this is inserted into the equations of motion, we obtain a homogeneous

linear system of equations for the amplitudes u and v:

−𝜔2M1u = 𝛾v(1 + e−ikb) − 2𝛾u, −𝜔2M2v = 𝛾u(eikb + 1) − 2𝛾v. (4.14)

A solution exists if the determinant of the coefficient matrix vanishes, that is,||||| 2𝛾 − 𝜔2M1 −𝛾(e−ikb + 1)

−𝛾(1 + eikb) 2𝛾 − 𝜔2M2

||||| = 0. (4.15)

This happens when

𝜔2 = 𝛾

(
1

M1
+
1

M2

)
± 𝛾

[(
1

M1
+
1

M2

)2
−
4

M1M2
sin2

kb

2

]1∕2
, (4.16)
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Figure 4.5 Motion of the atoms for k ≈ 0 in the optical branch.  represents an external
electric field.

and these solutions are shown in Figure 4.4b. Again, the solutions have the peri-

odicity of the reciprocal lattice 2𝜋∕b, that is, it is sufficient to know them within

the first Brillouin zone. What is new is that we have two branches of solutions.

The solution that goes to zero for small k is called the acoustic branch. As before,

it corresponds to the propagation of sound waves through the crystal.

The solution that has a finite 𝜔 at k = 0 is called the optical branch. It is called

like this because of the possibility to couple these vibrations to the oscillating elec-

tric field of an electromagnetic wave. To see this, consider themotion of the atoms

in the optical branch for k = 0. For this wave vector, the two atoms in the unit

cell vibrate exactly out of phase, as shown in Figure 4.5 (see Problem 4.2). The

phase difference between the vibration of a given atom and the corresponding

atom in the neighboring unit cell is zero, and so the wavelength of the mode must

be infinite, consistent with k = 0. Figure 4.5 illustrates the particular situation of

an ionic crystal in which the two different ions in the unit cell carry opposite

charges. An electromagnetic field (as indicated by the -vector) can couple to

this motion. For the direction of  in the figure, the ions will move as indicated

by the arrows.

Let us assume that the electric field has a time dependence (t) = 0 exp(i𝜔t),

like the field of an electromagnetic wave. If 𝜔 is small, the field will slowly change

and the ions will follow from side to side. If𝜔matches the frequency of the optical

branch at k = 0, the electromagnetic wave can excite this vibrational mode very

efficiently.This situation is discussed in detail in Chapter 9. As we shall see below,

typical vibrational frequencies in the optical branch are of the order 1013 s−1.

Therefore, the exciting radiation must be in the infrared spectral range and the

corresponding wavelength is very long compared to the unit cell length b (on the

order of 10 μm).This implies that the field moves all ions in phase over a very long

distance, and so it is only the k ≈ 0 mode that can be excited by electromagnetic

radiation.

4.1.3
A Finite Chain of Atoms

For describing the properties of real solids, the models discussed so far have a

fundamental problem because the chains are infinite. This will, for example, lead

to infinite heat capacities. What we really want is a finite but long chain of atoms.

This can be done by limiting the length and introducing boundary conditions. For

example, one can hold the atoms at the ends fixed. This leads to standing waves

in the chain because we have fixed the nodes. Although this approach would not
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be wrong, it would be more convenient to start with traveling wave solutions if we

are to describe phenomena such as heat transport by lattice vibrations later.

The most convenient boundary conditions solving the problem of what to do at

the ends of the chain have been introduced in 1912 byM. Born andT. vonKármán.

For a chain with N atoms, these conditions state that

uN+n(t) = un(t). (4.17)

This can be visualized as a finite chain of atoms in which the end is tied to the

beginning. Therefore, the conditions are also called cyclic boundary conditions

or periodic boundary conditions. In three dimensions, this simple visualization

does not work, but we can think of a crystal of finite size that has identical crystals

with identical motions attached to its sides. In this way, we end up with an infi-

nite crystal lattice again but since it is made from finite crystals, we can use it to

describe the properties of one of these finite crystals and simultaneously get rid

of the crystals’ surfaces.

The dispersion relations 𝜔(k) are not affected by the chain being finite but the

periodic boundary conditions restrict the possible k values for the waves in the

crystal. First of all, it is clear that the longest possible wavelength for a chain of N

atoms with a spacing of a is Na. More precisely, we have to require that

eikan = eika(N+n), (4.18)

so that

eikNa = 1, (4.19)

and for this to be fulfilled, the possible values of k must be

k =
2𝜋

aN
m, (4.20)

where m is an integer. We have seen that the vibrations are unaffected by adding

multiples of 2𝜋∕a (i.e., reciprocal lattice vectors) to k and, therefore, we only get

N possible different values for k and hence no more than N different vibrational

frequencies 𝜔 per dispersion branch. The possible values of k can be chosen to

lie in the first Brillouin zone, that is, −𝜋∕a ≤ k < 𝜋∕a (or 0 ≤ k < 2𝜋∕a if only

positive values of k are desired).The allowed k values and corresponding frequen-

cies 𝜔(k) for a finite chain are illustrated in Figure 4.6. Note that for a macro-

scopic solid, the number of atoms in any direction is very large. Therefore, the

distances between the allowed k points are very small and the discrete vibrational

frequencies closely resemble the continuum of states for the infinite chain (see

Problem 4.3).

If we takeN free atoms that can onlymove in one dimension, each atom has one

degree of freedom.The total number of degrees of freedom is conserved when we

put the atoms into a chain linkedwith springs, sincewe also getN different normal

modes, one for each allowed k vector in the first Brillouin zone. We can make the

same argument for a chain with two atoms per unit cell. If we have N unit cells,

we again get N different k values. But now there are two vibrational modes for

each k: the acoustic and the optical mode. We thus obtain 2N normal modes, and
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Figure 4.6 Vibrational spectrum for a finite
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black markers represent the vibrational fre-
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again the number of degrees of freedom is conserved. Indeed, it is very useful to

view the normal modes of a chain as the fundamental possible vibrations, each

with a frequency 𝜔(k). When doing this, we only have to emphasize again that

the normal modes involve the vibration of all the atoms in the chain, all with the

same 𝜔.

4.1.4
Quantized Vibrations, Phonons

So far, we have neglected the quantized character of the lattice vibrations but tak-

ing this into account turns out to be essential for the correct description of many

properties, for example, the heat capacity.

For one harmonic oscillator, as described by (4.1), the quantization is very

simple. The frequency remains 𝜔 = (𝛾∕M)1∕2 and the quantized energy levels are

given by

El =

(
l +
1

2

)
ℏ𝜔, (4.21)

with l = 0, 1, 2,… . These energy levels are displayed in Figure 4.7a.

For a chain with N unit cells and one atom per unit cell, the quantization can

performed in exactly the same way if we start from the N normal modes with

frequencies 𝜔(k) and k = 2𝜋m∕aN . For this system, the quantized energy levels

become

El(k) =

(
l +
1

2

)
ℏ𝜔(k). (4.22)
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Figure 4.7 (a) Energy level diagram for one harmonic oscillator. (b) Energy level diagram
for a chain of atoms with one atom per unit cell and a length of N unit cells.

The first few of these energy levels are shown in Figure 4.7b. If we have more than

one atom per unit cell, the equation can be generalized by adding an index to 𝜔

that marks the branch of the dispersion (acoustic or optical).

The notation in (4.22) lends itself to an alternative interpretation of k. So far, we

have viewed k as the one-dimensional wave vector. But here it becomes apparent

that k also takes the role of a quantum number, just as l. k takes only discrete

values and can be used to “label” different normal modes. The combination of k

and l describes one vibrational excitation of the chain, the normal mode k that is

excited to the level l. The interpretation of k as a quantum number has a lot to do

with the symmetry of the system. In atoms, we have spherical symmetry that gives

rise to the quantum numbers l and m. In solids, we have translational symmetry

and the appropriate quantum number is k.

In the quantum mechanical picture of the chain, normal modes can thus be

excited in discrete energy quanta of ℏ in front of 𝜔(k). These excitation are called

phonons in analogy to photons, the quantized excitations of the electromagnetic

field,3) and relations such as (4.10) and (4.16) are often called phonon dispersion

relations. Depending on the type of experiment, photons can have wave character

as well as particle character and the same is true for phonons. So far, our descrip-

tion mostly emphasized the wave character but if we want to describe properties

like thermal conductivity, we need to think of phonons as “particles” that are gen-

erated at the hot end of some sample and conducted to the cold end. As in the

case of photons, the wave and particle character can be reconciled if we describe

the “particle” as a superposition of waves, which is localized in a certain volume

of space.4) An additional similarity between phonons and photons is that both are

bosons and therefore not subject to the Pauli exclusion principle. The quantiza-

tion of the excitation energies and the Bose–Einstein statistics for phonons will

become important when we evaluate the heat capacity of solids.

3) The similarity is quite far-reaching. Even mathematically (in quantum field theory), photons can be

viewed as excitations of quantum mechanical harmonic oscillators.

4) This is also discussed in the online note onphase velocity and group velocity onwww.philiphofmann.

net.
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The concept of phonons also permits an alternative view on the excitation of

optical vibrations by light (see Figures 4.4 and 4.5). Such an excitation involves

the creation of a phonon and the annihilation of a photon. For this to be allowed,

the phonon and photon must have the same energy and wave vector. The energy

of the photon h𝜈 must be in the infrared regime to match ℏ𝜔(k). The wave vector

of the photon has to be k = 𝜔(k)∕c, where c is the speed of light. As 𝜔(k) is quite

small and c is very high, the photon’s k is extremely small. This implies that only

phonons with k ≈ 0 can be excited by light (convince yourself of this by inserting

approximate numbers!).

4.1.5
Three-Dimensional Solids

Our discussion of atomic chains already contains most of the important physics

for the vibrational properties of three-dimensional crystals. Here we briefly gen-

eralize the discussion to three dimensions, not least because we wish to establish

a link to measured quantities of real solids.

4.1.5.1 Generalization to Three Dimensions

The concepts discussed for atomic chains are easily generalized to three dimen-

sions. We do not go into much detail because little additional physical insight

is gained and the equations get quite messy because one has to keep track of

many indices. The wave-type ansatz (4.13) also solves the equation of motion for

three-dimensional solids. However, the notation has to be more complex in order

to accommodate not only more atoms per unit cell but also more directions of

motion. For instance, for a three-dimensional solid with two atoms per unit cell

(i.e., a basis containing two atoms), the matrix corresponding to (4.15) will be a

6 × 6 matrix, giving six vibrational frequencies 𝜔 for every value of k. There will

be three acoustic branches, one with longitudinal polarization as in one dimen-

sion and twowith transverse polarization. Similarly, there will also be three optical

branches. If the crystal has a basis containing only one atom, there will only be

three acoustic branches.

In three dimensions, the one-dimensional k turns into a true wave vector 𝐤with
three components, but it does of course retain its additional interpretation as a

quantum number. For a simple cubic crystal with a lattice spacing a and N atoms

in every direction, the generalization of the periodic boundary conditions (4.20)

gives

𝐤 = (kx, ky, kz) =
2𝜋

aN
(nx, ny, nz) =

(
nx2𝜋

L
,
ny2𝜋

L

nz2𝜋

L

)
, (4.23)

with nx, ny, nz being integers and L the macroscopic side length of the crystal (the

restriction to a macroscopic cube makes life easier without any loss of generality).

As in one dimension, it is sufficient to describe the vibrational states only within

the first Brillouin zone. In three dimensions, the first Brillouin zone is defined
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Figure 4.8 Phonon dispersion in Al and diamond along several directions in reciprocal
space. The inset shows the first Brillouin zone, which has the same shape for both materials.
Reproduced from Grabowski, Hikkel and Neugebauer (2007), Mounet and Marzari (2005).

as all points that are closer to a given reciprocal lattice point (the origin) than

to any other. We recognize that this definition corresponds exactly to that of the

Wigner–Seitz cell in real space:The first Brillouin zone is theWigner–Seitz cell of

the reciprocal lattice.The geometrical shape of the first Brillouin zone can be quite

complicated. For a face-centered cubic (fcc) crystal, it is the truncated octahedron

that is shown in the inset of Figure 4.8. In the Brillouin zone and on the Brillouin

zone boundary, points of high symmetry are abbreviated by certain letters. The

letter Γ always stands for the center of the Brillouin zone, that is, for 𝐤 = (0, 0, 0),

and the zone center is often referred to as the Γ point.

Figure 4.8 shows the phonon dispersion curves for aluminum and diamond. In

both cases, we can clearly identify the acoustic phonon branch with a linear dis-

persion near the Γ point. For diamond, there are also optical phonons, that is,

phonons with a finite energy at Γ but these are not found for Al. The reason for

this is simple: Both materials have an fcc Bravais lattice but Al can be described

with only one atom as basis, whereas two atoms are needed for diamond.

4.1.5.2 Estimate of the Vibrational Frequencies from the Elastic Constants

We have previously used the idea of a harmonic potential between the atoms in

order to explain the elastic deformation of solids and the linear relation used to

define Young’smodulus.We can now relate Young’smodulus to the force constant

𝛾 that appears in the description of atomic vibrations. Consider a simple cubic

crystal with a lattice constant a and imagine that we cut a rod from this crystal

with a side length of just one lattice constant, as shown in Figure 4.9. When we
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Figure 4.9 Obtaining the interatomic force constant from Young’s modulus for a simple
cubic solid.

pull on this rod, the stress is

𝜎 =
F

a2
. (4.24)

For simplicity, we consider only one unit cell, as shown by the solid lines in

Figure 4.9. Upon applying the stress, the unit cell expands by Δa and since only

one atomic spring is expanded, we can write

F = 𝛾Δa, (4.25)

so that

𝜎 =
𝛾Δa

a2
. (4.26)

The strain for one unit cell is simply 𝜖 = Δa∕a and

Y =
𝜎

𝜖
=

𝛾Δa

a2
a

Δa
=

𝛾

a
. (4.27)

From Young’s modulus, we can therefore estimate the interatomic force constant

and the vibrational frequencies corresponding to this force constant. The result

can be compared to the experimental values determined by other techniques.

Table 4.1 shows such a comparison. We estimate the atomic force constant for

diamond and lead from (4.27), using Young’s modulus and the nearest neighbor

distance.Then, we assume that the highest vibrational frequency is 2
√
𝛾∕M, as in

a one-dimensional chain. While this estimate is admittedly rather crude, ignor-

ing the true three-dimensional nature of the problem and the existence of optical

phonons, it gives the right order of magnitude. We also see that diamond, which

has light atoms and strong bonds, has much higher vibrational frequencies than

lead, which has heavy atoms and weak bonds.

Table 4.1 Comparison between vibrational frequencies estimated
from Young’s modulus (𝜔calc) and the experimental result (𝜔measr )
for diamond and lead.

Diamond Pb

Mass 12 u 207 u

Nearest neighbor distance 1.55 Å 3.50 Å

Young’s modulus 950 GPa 15 GPa

𝜔calc 9 × 1013 Hz 4 × 1012 Hz

𝜔measr 2 × 1014 Hz 1 × 1013 Hz
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4.2

Heat Capacity of the Lattice

Historically, understanding the heat capacity of solids was one of the biggest early

successes of quantum theory. In the beginning of the last century, the situationwas

extremely puzzling. Classical statistical mechanics explained the heat capacity of

insulators at room temperature fairly well, but it failed for lower temperatures,

and it totally failed for metals. Metals were expected to have a much higher heat

capacity than insulators because of the many free electrons, but it turned out that

a metal’s heat capacity at room temperature is similar to that of an insulator, as if

the electrons were not there. We shall see later why this is so, and we focus on the

lattice now.

We ignore the difference between heat capacities at constant volume and at con-

stant pressure. For solids, this difference is usually quite small but not entirely

negligible. Experimentalists usually like to measure the heat capacity at constant

pressure, for example, at ambient pressure. Theorists, on the other hand, prefer

calculations at constant volume because otherwise all the quantum mechanical

eigenvalues have to be recalculated for every volume.

4.2.1
Classical Theory and Experimental Results

Classically, we can use two different approaches to calculate the heat capacity of

a solid. The worrying thing is that they do not give the same answer. Classical

thermodynamics does not tell us anything about the value of the heat capacity at

finite temperature, but it can be shown that it should vanish for zero temperature.

The argument leading to this is based on very few general principles, notably on

the requirement of a finite entropy at zero temperature.

Classical statistical mechanics, on the other hand, gives us the possibility to

calculate a numerical value for the heat capacity of a solid via the equipartition

theorem: For a one-dimensional harmonic oscillator in contact to a heat bath,

the mean energy is ⟨E⟩ = kBT . For a three-dimensional oscillator, it must be⟨E⟩ = 3kBT . This means that the heat capacity for a “solid” containing one atom is
𝜕⟨E⟩∕𝜕T = 3kB and for 1 mol of atoms it is 3kBNA = 3R = 24.9 JK−1 independent

of the temperature and the material.5) This result is called the rule of Dulong–

Petit. Table 4.2 shows the heat capacities for a number of solids. The agreement

with the Dulong–Petit value is rather good at room temperature but less good at

the boiling point of nitrogen where the heat capacity is generally smaller.

So, there already is a conflict between different types of classical theories. The

Dulong–Petit law predicts a temperature-independent heat capacity, whereas

the heat capacity has to vanish at zero temperature according to classical ther-

modynamics. A vanishing heat capacity at zero temperature is also supported by

5) While we have seen that the atoms do not behave as independent oscillators, we also know that the

number of independent normal modes is still three times the number of atoms.
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Table 4.2 Molar heat capacity of different solids at the boiling
point of nitrogen and at room temperature compared to the
Dulong–Petit value of 24.9 JK−1.

Material 77 (K) 273 (K)

Cu 12.5 24.3

Al 9.1 23.8

Au 19.1 25.2

Pb 23.6 26.7

Fe 8.1 24.8

Diamond 0.1 5.2
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Figure 4.10 Temperature-dependent heat capacity of diamond. Data from Desnoyers and
Morrison (1958), Victor (1903).

experimental results. Already Table 4.2 points in this direction. Another example

is shown in Figure 4.10, which shows the heat capacity of diamond as a function

of temperature. At high temperatures, the heat capacity approaches the Dulong–

Petit value but at lower temperatures it drops to zero. The figure is plotted using

a double logarithmic scale. The low-temperature limit is a line in this plot, sug-

gesting a power law behavior. From the slope, we can directly read that C ∝ T3.

A microscopic theory of the heat capacity should be able to reproduce this

behavior.
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4.2.2
Einstein Model

The breakthrough to understanding the temperature-dependent heat capacity of

solids wasmade by A. Einstein. His idea was to approach the problem using quan-

tum mechanics to describe the oscillators in the solid. The calculation starts out

by assuming that the solid’s vibrations are represented by independent harmonic

oscillators that all have the same frequency, the Einstein frequency 𝜔E, so that

their energy levels are

En =

(
n +
1

2

)
ℏ𝜔E. (4.28)

We are interested in the mean energy for 3NA of these oscillators per mole of

atoms, which are in contact to a heat bath. This is given by 3NA times the mean

energy for one oscillator:

⟨E⟩ = 3NA

(⟨n⟩ + 1
2

)
ℏ𝜔E. (4.29)

Themean quantum (or phonon) number ⟨n⟩ can be found using the Bose–Einstein
distribution since lattice vibrations are of bosonic character, that is, there is no

limit on the number of quanta n per state.

⟨n⟩ = 1

eℏ𝜔E∕kBT − 1
. (4.30)

The resulting mean energy for 3NA oscillators is therefore

⟨E⟩ = 3NA

(
1

eℏ𝜔E∕kBT − 1
+
1

2

)
ℏ𝜔E. (4.31)

The heat capacity is found by differentiation:

C =
𝜕⟨E⟩
𝜕T

= 3R

(
ℏ𝜔E

kBT

)2
eℏ𝜔E∕kBT

(eℏ𝜔E∕kBT − 1)2
. (4.32)

The result of this calculation is shown in Figure 4.11 together with a curve

representing typical experimental results similar to those in Figure 4.10. In the

high-temperature limit, the Einstein model correctly reproduces the Dulong–

Petit value. “High temperature” means that the temperature must be at least as

high as the Einstein temperature which is the temperature corresponding to the

vibrational frequency of the oscillators, that is, ΘE = ℏ𝜔E∕kB. The heat capacity

also drops to zero at lower temperatures, in agreement with the experimental

data. The only problem is that it drops too quickly to zero. At low temperatures

it shows an exponential behavior, whereas the experiment shows a power law

behavior C ∝ T3. On the linear temperature scale, this does not show up too

clearly but on the double log scale, the problem is evident.

Can we understand this behavior in simple terms? In the high-temperature

limit, the thermal energy is much greater than the spacing between the energy

levels ℏ𝜔E and the quantized nature of the problem becomes insignificant. This is
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Figure 4.11 Temperature-dependent heat capacity in the Einstein model compared to a
typical experimental result for an insulator (a) linear scale (b) log–log scale.

why we recover the Dulong–Petit value for the specific heat. The only condition

is that the temperature must be higher than the Einstein temperature. This

result will clearly still hold for a more complicated model with many different

vibrational frequencies, as long as the temperature is higher than the temperature

corresponding to the highest vibrational energy. At sufficiently low temperatures,

almost all the oscillators are in their ground state. If the temperature is raised

just a little, by much less than ℏ𝜔E, nothing will change and the heat capacity is

essentially zero. In fact, the probability of occupation of the first excited level of

the oscillators follows an exponential behavior:

p1 ∝ e−ℏ𝜔E∕kBT , (4.33)

which is the low-temperature limit of (4.30). Therefore, the exponential decrease

of the heat capacity when cooling an Einstein solid originates from the fact that

the oscillators are “frozen” into their ground state.

4.2.3
Debye Model

We have seen that the key problem in the Einstein model is the low-temperature

heat capacity. It falls off too quickly because all the Einstein oscillators get “frozen

out” below ΘE when there is not enough thermal energy available to supply the

ℏ𝜔E required to excite them out of their ground state. The problem cannot be

solved by choosing a lower 𝜔E because this shifts the transition to the Dulong–

Petit regime to lower temperatures, too.

P. Debye noticed that the problem can be cured by using a more realistic model

for the lattice vibrations. We have already seen that every solid has an acous-

tic phonon branch and this gives rise to quantum mechanical oscillators with
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very small energy level spacings near k = 0: The wave vector for the first oscil-

lator shown in Figure 4.7b is k = 2𝜋∕aN . Since N is very large for a macroscopic

solid, k is very small and so is𝜔(k) (see Problem 4.3).These oscillators can thus be

excited even at very low temperatures, and we avoid the Einstein model’s problem

of “freezing out” all the vibrations.

The excitations with the lowest energies near k = 0 are the sound waves for

which the dispersion of the acoustic branch (4.10) is approximated by the linear

dispersion (4.11).Thebasic assumption in theDebyemodel is now that this disper-

sion holds for all values of k. This is clearly inaccurate for the excitations at higher

k, as we have seen in Figure 4.1b. It is totally incorrect for a unit cell containing

more than one atom because it ignores the existence of the optical branches (see

Figure 4.4). However, these modes are not excited at low temperatures anyway. At

high temperatures, theymay be excited but this does notmatter somuch. From the

Einstein model, we have seen that the high-temperature heat capacity approaches

the classical value, independent of the actual oscillator frequencies. For low tem-

peratures, the Debye assumption is appropriate and it leads to good results as we

shall see now.

We need to calculate the mean thermal energy for a set of oscillators with fre-

quencies given by (4.11). For one oscillator with frequency 𝜔, we know that the

result is⟨E⟩ = ℏ𝜔

eℏ𝜔∕kBT − 1
(4.34)

(see (4.31)). The zero point energy ℏ𝜔∕2 is neglected right away as it does not

contribute to the heat capacity. For a three-dimensional solid, it is now tempting

to write the mean energy for all oscillators as

⟨E⟩ = 3∫ 𝜔D

0

ℏ𝜔

eℏ𝜔∕kBT − 1
d𝜔, (4.35)

where 𝜔D is the highest phonon frequency in the material. The factor of 3 stems

from the fact that there are three possibilities for the wave polarization for a given

𝜔: two different transverse and one longitudinal polarization. Here, we assume

that all three waves follow the dispersion 𝜔 = 𝜈|𝐤|.
But there are two problems: The first is that there may be more oscillators in,

say, the frequency interval 𝜔1 + d𝜔 than in 𝜔2 + d𝜔. This must be included by a

weighting factor g(𝜔) in the integral.This factor is called the density of states, for

obvious reasons. The second problem is that we have to establish the upper limit

𝜔D for the integration; in other words, we have

⟨E⟩ = 3∫ 𝜔D

0

g(𝜔)ℏ𝜔

eℏ𝜔∕kBT − 1
d𝜔 (4.36)

and we are looking for g(𝜔) and 𝜔D.

We start by calculating the density of states g(𝜔) for a three-dimensional solid.

It is not sufficient to do this in one dimension because g(𝜔) depends on the dimen-

sionality of the problem, and we want to explain the experimental data for real

solids.The density of states g(𝜔) is the number of states in a small frequency inter-

val d𝜔 around𝜔.Therefore, the strategy to calculate it is to first figure out the total
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Figure 4.12 (a) Points of integers (nx , ny , nz)
that represent the allowed vibrational states
and (b) the wave vectors (kx , ky , kz) cor-
responding to (nx , ny , nz). The sketch is a
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number of states below a certain frequency 𝜔. We call this N(𝜔) and obtain g(𝜔)

by differentiating N(𝜔) with respect to 𝜔.

We consider a cube of solid with a macroscopic side length L and use the

periodic boundary conditions (4.23). We can think of each vibrational state

as being defined by a triple of ks, (kx, ky, kz) or, equivalently, by a triple of ns,

(nx, ny, nz).
6) How many possible states N do we get for a given highest kmax

or nmax? If nmax is large, this comes down to a simple geometrical problem as

illustrated in Figure 4.12: We want to know howmany states lie within a sphere of

radius nmax or, alternatively, a sphere with radius kmax. This is given by the volume

of the sphere :

N =
4

3
𝜋n3

max
, (4.37)

or expressed in terms of kmax:

N =
4

3
𝜋

(
Lkmax

2𝜋

)3
. (4.38)

To calculate the density of states, we need to expressN as a function of frequency

𝜔 and this can be done by using the dispersion 𝜔(k) = 𝜈k:

N(𝜔) =
4

3
𝜋

(
L𝜔

2𝜋𝜈

)3
=

V

6𝜋2𝜈3
𝜔3, (4.39)

where V = L3 is the volume of the crystal. From this, we can get the density of

states by differentiation:

g(𝜔) =
dN

d𝜔
=

𝜔2V

2𝜋2𝜈3
. (4.40)

6) Actually, every such triple would characterize three different vibrational states, but we have already

taken care of this by the factor of 3 in (4.36).



66 4 Thermal Properties of the Lattice

Now we have to address the question of the upper integral limit 𝜔D for (4.36).

Whatever the nature of the excitations, the limit of the integral must be chosen

such that we recover the correct number of normal modes, so for N atoms in the

solid, we must have

3N = 3∫
𝜔D

0

g(𝜔)d𝜔. (4.41)

Using (4.40) and performing the integration results in

𝜔3
D
= 6𝜋2

N

V
𝜈3. (4.42)

𝜔D is called the Debye frequency and the corresponding temperature

ΘD = ℏ𝜔D∕kB is called the Debye temperature. With this (4.36) becomes

⟨E⟩ = 3∫ 𝜔D

0

𝜔2V

2𝜋2𝜈3
ℏ𝜔

eℏ𝜔∕kBT − 1
d𝜔 =

3Vℏ

2𝜋2𝜈3 ∫
𝜔D

0

𝜔3

eℏ𝜔∕kBT − 1
d𝜔, (4.43)

and with the substitution x = ℏ𝜔∕kBT and xD = ℏ𝜔D∕kBT we obtain

⟨E⟩ = 3Vk4BT4
2𝜋2𝜈3ℏ3 ∫

xD

0

x3

ex − 1
dx = 9NkBT

(
T

ΘD

)3
∫

xD

0

x3

ex − 1
dx. (4.44)

From this, the heat capacity of the solid can be determined by differentiation with

respect to temperature. Instead of writing down an expression for the heat capac-

ity, we focus on the low- and high-temperature limits.

For high temperatures, x in (4.44) is small and the exponential function in the

integral can be approximated by 1 + x. The integral is then merely over x2 and the

resulting energy is ⟨E⟩ = 3NkBT . For 1 mol of atoms, this is equal to 3RT , that is,
it leads to the Dulong–Petit result. This was of course expected from the Einstein

model: The Dulong–Petit result is always reached at sufficiently high tempera-

tures.

The less obvious limit is that for low temperatures. Here, x is large and we can

make the approximation to carry out the integration to infinity instead of xD.Then,

the integral has a value of 𝜋4∕15 and after differentiation, we find the heat capac-

ity to be

C =
12𝜋4

5
NkB

(
T

ΘD

)3
. (4.45)

This is the Debye T3 law that fits the experimental data far better than the expo-

nential behavior of the Einsteinmodel (see Figure 4.10).The reason that the Debye

model works so well at low temperatures has been mentioned in the preceding

text: It provides a good description of the vibrational modes at low energies and

long wavelengths while it is inaccurate for higher energies. But at low tempera-

tures, only the low-energy modes are excited anyway, and therefore it works well.

The Debye temperature ΘD plays a similar role as the Einstein temperature in

the Einstein model: It sets a temperature scale. Only for temperatures sufficiently

above the Debye temperature, the Dulong–Petit law is obeyed. Moreover, the

Debye frequency has been defined as the highest vibrational frequency of the
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Table 4.3 Debye temperatures and frequencies for
selected materials.

Material 𝚯D(K) 𝝎D(Hz)

Pb 105 1.37 × 1013

Cu 343 4.49 × 1013

Si 645 8.45 × 1013

Diamond 1860 2.44 × 1014

material, assuming a linear dispersion, and it is very often used as ameasure of the

maximum frequency or energy associated with vibrations in a given material. The

Debye temperatures and frequencies for a number of selected materials are given

in Table 4.3. The Debye temperatures follow a tendency that is consistent with

intuition: Heavy atoms andweak (i.e., metallic) bonds give rise to lower vibrational

frequencies than light atoms with strong (i.e., covalent) bonds. The standard

examples are again lead and diamond, and we find that 𝜔D’s order of magnitude

is consistent with the highest measured vibrational frequencies in Table 4.1.

4.3

Thermal Conductivity

In this section, we address the transport of heat through a crystal by lattice vibra-

tions (phonons), that is, the thermal conductivity 𝜅p. Daily experience tells us that

metals are usually much better thermal conductors than insulators.Therefore, the

contributions of the free electrons to the thermal conductivity could be thought

to be much more important than the lattice contribution. This, however, is not

always the case. A classic example is the insulator diamond that has one of the

highest thermal conductivities of all materials at room temperature. It may not

be close to daily experience, but it would not be good to make teaspoons out of

diamond. We will discuss the metals’ free electron contribution to the thermal

conductivity 𝜅e later. Fortunately, the two contributions just add. The total ther-

mal conductivity is the sum of the lattice and the electronic thermal conductivity

𝜅p and 𝜅e:

𝜅 = 𝜅p + 𝜅e. (4.46)

Before developing amodel for 𝜅p, we have to state more precisely what wemean

by thermal conductivity. Suppose we have a rodwith a cross-sectional areaA. One

end of the rod should be in a heat bath with temperature T , while the other end is

constantly heated with a power 𝜕Q∕𝜕t. Once dynamic equilibrium is established

after some time, we measure the temperature difference ΔT between two points

in the middle of the rod, which are separated by Δx. The thermal conductivity 𝜅

is then defined as

𝜅 =
1

A

𝜕Q

𝜕t

Δx

ΔT
. (4.47)
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Note the similarity of this expression with the usual definition of the electrical

conductivity. Here, ΔT∕Δx plays the role of the electric field and (1∕A)(𝜕Q∕𝜕t)

the role of the current density.

It is not straightforward to describe thermal conduction using the wave picture

of phonons we have discussed so far. If we consider a particular vibrational normal

mode𝜔(k) for a fixed k, this may be a traveling wave, but the wave amplitude is the

same over the entire crystal. What we need, however, are vibrational excitations

that can be generated at the “hot” end of the solid and which then propagate to

the “cold” end, that is, we need to describe the phonons as particles. This can be

achieved by the superposition of normalmodes to generatewave packets that then

travel through the crystal with a certain group velocity.7)

In this sense, lattice vibrations can be viewed as a type of particles that travel

through the solid. Often, such wave packets are also called “phonons.” Indeed, it

turns out that the thermal conductivity of the solid can be described by assuming

that these phonons are a gas of particles bouncing through the solid. For describ-

ing the thermal conductivity due to the gas of phonons, we adopt a result from

kinetic gas theory:

𝜅p =
1

3
c𝜆pvp, (4.48)

where c is the heat capacity of the solid per unit volume, 𝜆p is the mean free path

of the phonons, and vp is the phonon speed. In order to evaluate 𝜅p, we can take

vp to be the speed of sound 𝜈, and for the heat capacity, we can take the results of

the previous section. The only quantity that is unknown is the mean free path of

the phonons. We discuss it in the following.

As the phonons propagate through the crystal, they can be scattered by imper-

fections of the lattice, such as point defects, dislocations, and the like. It is possible

to grow crystals of such high perfection that these scattering effects become unim-

portant. Then, the scattering of the phonons at the sample boundaries can be

observed. Scattering from crystal imperfection is the dominant mechanism at low

temperatures.

At high temperatures, another scattering process becomes important:Thenum-

ber of phonons increases and phonons can be scattered from other phonons.This

causes the mean free path 𝜆p, and thereby also 𝜅p, to decrease. At low temper-

atures, on the other hand, the heat capacity in (4.48) decreases, causing 𝜅p to

decrease as well. This means that there must be an intermediate temperature at

which 𝜅p reaches a maximum. This can typically be found at about 10% of the

Debye temperature. An example is the thermal conductivity of silicon given in

Figure 4.13. Note the very strong temperature variation of 𝜅p.

Some numerical values for the thermal conductivity of solids at room tem-

perature are given in Table 4.4. Evidently, not only metals show high thermal

conductivity but also some insulators, especially diamond. Diamond has a nearly

perfect crystal structure such that defect scattering of phonons is unimportant.

7) The formation of wave packets is illustrate in the online note on phase velocity and group velocity

on www.philiphofmann.net. Problem 6.12 is also concerned with this subject for electron waves.

http://www.philiphofmann.net
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Figure 4.13 Temperature-dependent thermal conductivity of Si. Reproduced from
Glassbrenner and Slack (1964).

Table 4.4 Thermal conductivity 𝜅 for some metals
and insulators at room temperature.

Material 𝜿(Wm−1K−1)

Copper 386

Aluminum 237

Steel 50

Diamond 2300

Quartz 10

Glass 0.8

Polystyrene 0.03

Its bonding and structure are similar to Si, which also shows a very high thermal

conductivity but at a lower temperature (see Figure 4.13). In diamond, the

maximum in 𝜅(T) is shifted to a higher temperature with respect to Si because of

the much higher Debye temperature. Because of this, phonon–phonon scattering

only becomes important at higher temperatures, explaining diamond’s good

thermal conductivity at room temperature.

Phonon–phonon scattering deserves a comment: In the case of purely harmonic

vibrations and waves, this cannot happen. Consider, for example, water waves or

low-intensity light waves (i.e., anything but lasers). There, the principle of super-

position holds. The field amplitude at a given point of space is just the superposi-

tion of the field amplitudes from different waves propagating through space. The

waves “propagate through each other.”This principle also holds for phonons since

these are lattice waves for the harmonic solid. Phonon–phonon scattering can

only happen in the anharmonic case, that is, if the amplitude of the oscillations
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becomes so large that the fourth and higher order terms in (3.11) become impor-

tant. This may seem problematic because our whole treatment so far is based on

the assumption that the vibrations are harmonic. In fact, the whole concept of a

phonon only makes sense for a harmonic solid. If the anharmonic effects are not

too strong, however, we can save the phonon picture to some extent. We can still

think of phonons propagating through the crystal just that they now have a certain

finite lifetime after which they decay into other phonons.

4.4

Thermal Expansion

We have seen that anharmonic effects are responsible for limiting the thermal

conductivity of a crystal. In this section, wewill encounter another result of anhar-

monic vibrations, which is well known from daily experience: the thermal expan-

sion of solids.We restrict our treatment to the linear expansion of isotropic solids.

The coefficient of thermal expansion 𝛼 can be defined as

Δl

l
= 𝛼ΔT , (4.49)

where Δl∕l is the fractional length change of the solid and ΔT is the tempera-

ture change, usually with respect to room temperature. 𝛼 is always quite small

(see Table 4.5). It is also temperature-dependent and can be shown to vanish at

zero temperature, something that limits the validity of (4.49) to small tempera-

ture intervals. At room temperature, most materials have an 𝛼 on the order of

10−5 K−1. A remarkable exception is Invar, a nickel–iron alloy that has one of the

lowest coefficients of thermal expansion of all metallic compounds. Its discov-

ery by C.-E. Guillaume around 1900 was a major technical breakthrough because

it permitted the construction of highly stable measurement instruments, clocks,

and the like.

We can understand the thermal expansion of solids by an inspection of the

Taylor series for the interatomic potential (3.11). The first anharmonic term is

the cubic term, which turns the potential asymmetric and therefore results in a

change of the equilibriumdistance for different temperatures.This is easily seen in

Table 4.5 Coefficient of thermal expansion 𝛼

at room temperature.

Material 𝜶(10−5K−1)

Pb 2.9

Al 2.4

Cu 1.7

Steel 1.1

Glass 0.9

Invar 0.09
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Figure 4.14 Classical picture for the thermal expansion of a solid. The interatomic poten-
tial Φ is shown as a function of interatomic distance. The gray line marks the temperature-
dependent mean interatomic distance.

a classical picture. Figure 4.14 shows a scaled-up version of the interatomic poten-

tial in Figure 2.1.We choose the energy scale such that the potentialminimum is at

zero. According to the equipartition theorem, the mean energy of the oscillator at

a temperatureT is kBT . For a low temperature (T1), the oscillation thus takes place

between the positions r1 and r2. As the potential is roughly symmetric around its

minimum, the average interatomic spacing is equal to the equilibrium distance.

For a higher temperature (T2), the oscillation takes place between r3 and r4. The

potential is not symmetric anymore, and the interatomic distance expands slightly

on average. In effect, it follows the gray line for higher temperatures.

This picture is not changed qualitatively in a quantum mechanical treatment.

The energy levels are then discrete. For a purely harmonic oscillator, they are

equidistant and the mean interatomic distance is the same for all levels. For a

nonharmonic oscillator, the energy level separation is not constant and the mean

interatomic distance depends on the energy level.

4.5

Allotropic Phase Transitions andMelting

In our description of crystal structures, we have merely argued that the optimal

structure should be that with the strongest possible binding, that is, with the

lowest total energy.This is only true at zero temperature. For higher temperatures,

entropy effects have to be taken into account. Here, we discuss two types of

structural changes at higher temperatures caused by this: allotropic phase transi-

tions in which a crystal structure is transformed to another crystal structure and

melting.

We start with a thermodynamic picture. In most cases, we are interested in the

structure at a given temperature, pressure, and particle number. This means that
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a phase transition occurs.

we have to minimize the Gibbs free energy:

G = U + PV − TS. (4.50)

The situation for two competing phases is illustrated in Figure 4.15. For low tem-

peratures, the A phase has the lower Gibbs free energy, but at high temperatures,

the phase B has. There must be a phase transition between the two structures at a

transition temperature TC . This is the idea behind the so-called allotropic phase

transitions from one crystal structure to another. As an example, iron crystallizes

in a body-centered cubic (bcc) structure at low temperatures but transforms into

a fcc structure at 1185 K and again into a bcc structure at 1667 K.

Sometimes, structures with a high Gibbs free energy exist even though alterna-

tive structures with a lowerG are possible under the same conditions. An example

is diamond, which has a higher Gibbs free energy than graphite. Still, diamond

exists under normal conditions because there is a high activation barrier for the

transformation to graphite. Diamond is thus ametastable structure.

The melting of a crystal can be described in the same picture, only that the B

phase is taken to be the liquid. If we want to predict the melting temperature of a

solid, we therefore have to consider the energy and entropy of both the liquid and

the solid phase as a function of temperature, a formidable task.

There have also been attempts for a more simplistic prediction of the melting

temperature Tm, which neglects entropy effects. First of all, one might suspect

that Tm is related to the cohesive energy of a solid. There is indeed a strong corre-

lation, as shown in Figure 4.16a.We can easily understand the trends in the figure:

The noble gas crystals are merely bonded by the van der Waals interaction. This

results in a low cohesive energy and melting temperature. On the other extreme,

we have the refractory transition metals such W or Mo for which covalent bond-

ing is important, as well as covalent materials such as Si. Simple metals like the

alkali metals are found in the middle of the range.
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For the prediction of themelting temperature of a solid, the relation to the cohe-

sive energy is not very useful because the cohesive energy has to be known in the

first place. An alternative idea was developed by F. Lindemann in 1910. He sug-

gested that melting would occur when the amplitude of the interatomic vibration

xmax becomes too large, that is, when it reaches a certain fraction of the inter-

atomic spacing. Using (4.5), we try this idea, guessing that the solid melts once

xmax reaches 5% of the interatomic distance a, that is,

Tm =
(0.05a)2𝛾

2kB
=

(0.05a)2𝜔2M

2kB
. (4.51)
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For 𝜔, we can use the Debye frequency 𝜔D. If we now write the above expression

in terms of the Debye temperature, we get

Tm =
(0.05a)2Θ2

D
kBM

2ℏ2
. (4.52)

The result of this is shown in Figure 4.16b. With the given choice of 5% of the

interatomic distance as amelting criterion, the simplemodel reproduces the trend

correctly even though it neglects entropy effects as well as the influence of the

detailed atomic structure.
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4.6

Further Reading

The subject of this chapter is central to solid state physics and discussed in detail

in the standard literature, such as

• Ashcroft, N.W. and Mermin, N.D. (1976) Solid State Physics, Holt–Saunders.

• Ibach, H. and Lüth, H. (2009) Solid State Physics, 4th edn, Springer.
• Kittel, C. (2005) Introduction to Solid State Physics, 8th edn, JohnWiley & Sons,
Inc.
• Myers, H.P. (1990) Introductory Solid State Physics, 2nd edn, Taylor & Francis

Ltd.
• Omar, M.A. (1993) Elementary Solid State Physics, Addison–Wesley.

These books all include a more detailed discussion of the phonon dispersion for

three-dimensional solids.

For a more detailed discussion of the heat capacity, see, for example,

• Mandl, F. (1988) Statistical Physics, 2nd edn, John Wiley & Sons, Ltd.

4.7

Discussion and Problems

Discussion

1) What does the phonon dispersion, that is, the vibrational frequency as a

function of wave vector 𝜔(k), look like for an infinite chain of atoms with

one atom per unit cell?
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2) What does it look like for two atoms per unit cell? Why does one speak of

optical and acoustic branches?

3) The phonon dispersion for a one-dimensional chain with one and two atoms

per unit cell is given by (4.10) and (4.16), respectively.What about the ampli-

tude of the vibrations?

4) Why is the movement of the atoms in the chain the same when multiples of

2𝜋∕a are added to, or subtracted from, the wave vector?

5) Explain the meaning and use of periodic boundary conditions to describe

the properties of finite solids.

6) What predictions does the so-called Dulong–Petit law make about the heat

capacity of a solid and its temperature dependence (and why)? How does it

compare to the experiment?

7) At room temperature, do metals have a noticeably higher heat capacity than

insulators because of the mobile electrons?

8) Explain the Einstein model for the heat capacity of a lattice. How do its pre-

dictions compare to the experiment?

9) Explain the Debye model for the heat capacity of a lattice. In which respect

does it work better than the Einstein model and why?

10) What is the definition of the Debye temperature (or frequency) and what are

the typical values?

11) Which one has a higher Debye temperature, lead or diamond, and why?

12) The thermal conductivity of an insulator has a maximum at about 10% of

the Debye temperature. Why does it decrease for lower temperatures? Why

does it decrease for higher temperatures?

13) Explain why a solid undergoes thermal expansion in a microscopic model.

14) Thermal expansion is a so-called anharmonic process. Why is it called so?

Problems

1) One-dimensional chain with one atom per unit cell:We have determined the

phonon dispersion relation for an infinite chain of atoms with lattice spacing

a and one atom per unit cell (mass M). The result is (4.10), and (4.11) for a

small k, describing soundwaves. (a) Show that light waves in vacuumhave the

same dispersion relation as (4.11) when replacing the speed of sound with the

speed of light. (b) For k close to 0 (k ≪ 𝜋∕a) and for k at the Brillouin zone

boundary (k = 𝜋∕a), we have argued that the atoms move as in Figure 4.2.

Show this formally using (4.8).

2) One-dimensional chain with two atoms per unit cell: For two atoms per unit

cell of length b, we get two branches in the dispersion, the acoustic and the

optical branch. The solutions are given by (4.16). (a) Plot these solutions

inside the first Brillouin zone forM2 = 0.2 M1,M2 = 0.9 M1, andM2 = M1.

(b) Consider the case where M1 ≠ M2. For longitudinal vibrations, sketch

how the atoms would move for k close to 0 and for k at the Brillouin zone

boundary (k = 𝜋∕b). (c) Which movement corresponds to which solution of

(4.16)? (d) Explain what happens in the case ofM2 = M1 discussed in (a).



76 4 Thermal Properties of the Lattice

3) Periodic boundary conditions: Periodic boundary conditions lead to a restric-

tion of the possible k values. Consider a linear chain of copper atoms. The

length of the chain should be 1 cm, the lattice spacing should be 0.36 nm, and

the force constant should be 50 Nm−1. Calculate the smallest possible finite

wave vector k. What is the vibrational angular frequency for this wave vec-

tor? What is the corresponding energy in electron volts and temperature in

Kelvin?

4) The Debye model: The phonon dispersion for a one-dimensional chain of

atoms is given by (4.10) and shown in Figure 4.1b.What would the dispersion

look like in the Debye model?

5) Atomic force constants and Debye temperature: (a) Estimate the value of the

force constant 𝛾 and the angular frequency 𝜔 for the vibrations of the atoms

in copper. Use that Young’s modulus Y = 130 GPa and that the cubic lattice

constant is 0.36 nm (ignore that copper actually has an fcc structure instead

of a simple cubic structure). (b) Estimate the angular frequency for the vibra-

tions that correspond to the Debye temperature of 343 K and compare it to

the result in (a). (c) Estimate the amplitude of the vibrations as a fraction of

the lattice spacing at room temperature.

6) (*) Heat capacity of graphene: For a three-dimensional (3D) solid, we have

found the low-temperature heat capacity to be proportional to T3. How does

it depend on the temperature for the two-dimensional (2D) graphene? Hint:

In order to give a correct answer to this question, you have to know a curious

fact about the phonon dispersion in graphene. We have seen that the acous-

tic phonon branches in both one dimension and 3D have a dispersion with

𝜔(k) ∝ k. For graphene, this is not so: Graphene has three acoustic branches

and one of them has a dispersion for which 𝜔 ∝ k2. For very low tempera-

tures, this is the important branch and you should base your calculation on

this dispersion only. The reason for this unusual behavior is that graphene

may be 2D, but it exists in a 3D world. It therefore has two “normal” in-plane

acoustic phonon branches, one longitudinal and one transverse. In addition

to these, it has a phonon branch that corresponds to a “flexing” motion out of

the plane and this is the one with the unusual dispersion.

7) (*) Thermal expansion: Explain why the coefficient of thermal expansion for

a solid vanishes at T = 0.

8) Thermal expansion: In a Bragg reflection experiment using copper, a sharp

peak is observed at an angle of 25.23∘ at 300 K. At 500 K, the same peak is

observed at an angle of 25.14∘. Use this information to calculate the coefficient

of linear expansion for copper.
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5

Electronic Properties of Metals: Classical Approach

Here and in Chapters 6, 7, and 9, we are concerned with the electrical properties

of metals, semiconductors, and insulators. It would be natural to start out with a

definition of the difference between these types of materials, but this is actually

not so easy and we need to postpone it. Consider a couple of simple possibilities:

One could argue that metals are good conductors of heat and electricity, whereas

semiconductors and insulators are not. In the case of heat conduction, we have

already seen that diamond, which is an insulator, conducts even better than most

metals. Electrical conductivity is not of much help either: Some semiconductors

such as silicon conduct electricity reasonably well. Yet another possibility is to

define metals by the fact that they look “shiny” or “metallic.” But this applies to

some semiconductors, too, and again silicon can be taken as an example. It turns

out that a proper definition has towait until we treat electronic states in a quantum

mechanical model in the next chapter. Here we start out with a classical descrip-

tion of metals.

5.1

Basic Assumptions of the Drude Model

In 1900, only 3 years after the discovery of the electron by J. J. Thomson, P. Drude

suggested a simplemodel to explainmany of the observed properties ofmetals. He

did this by combining the existence of electrons as charge carriers with the highly

successful kinetic gas theory. We will later see that the Drude model has many

shortcomings, but it is still of fundamental importance for the concepts associated

with electrical conductivity. The model is based on the following assumptions:

• The electrons in a solid behave like a classical ideal gas.They do not interact with

each other at all: There is no Coulomb interaction and, as opposed to a classi-

cal gas model, they do not collide with each other either. This is known as the

independent electron approximation. We will later see that this approxima-

tion is quite a good one: The electrons do indeed not interact much with each

other.

Solid State Physics: An Introduction, Second Edition. Philip Hofmann.
© 2015 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2015 by Wiley-VCH Verlag GmbH & Co. KGaA.
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• The positive charge is located on immobile ion cores. The electrons can collide
with the ion cores.These collisions instantaneously change their velocity. How-

ever, in between collisions, the electrons donot interactwith the ions either.This

is known as the free electron approximation. We will see that this approxima-

tion is not very good. Indeed, the whole picture of the electrons colliding with

the ions is problematic. In a perfect crystalline solid at low temperatures, the

electrons do not collide with the ions at all, as we shall see later.

• The electrons reach thermal equilibrium with the lattice through the collisions
with the ions. According to the equipartition theorem, their mean kinetic

energy is

1

2
mev

2
t
=
3

2
kBT . (5.1)

At room temperature, this results in an average speed of vt ≈ 10
5 ms−1.

• In between collisions, the electrons move freely. The mean length of this free
movement is called themean free path 𝜆. Knowing the typical packing density

of the ions, we can estimate that 𝜆 ≈ 1 nm. Given the average speed vt , themean

free path also corresponds to a mean time between collisions given by 𝜏 = 𝜆∕vt .

𝜏 is called the relaxation time and plays a fundamental role in the theory. With

𝜆 = 1 nm and vt at room temperature, we estimate that 𝜏 ≈ 1 × 10−14 s.

For the description of almost all properties within the Drude model, it is essen-

tial to know the density of the gas formed by the free electrons. This is known as

the conduction electron density n, that is, the number of conduction electrons

per volume. n is calculated by assuming that every atom contributes ZV conduc-

tion electrons, that is, electrons from its outermost shell, to the metallic bonding.

The core electrons remain bound to the metal ions. For the alkali metals, ZV is 1,

for the alkaline earth metals, it is 2, and so on. There are 𝜌m∕M atoms per cubic

meter, where 𝜌m is the density of the solid in kg m
−3 andM is the atomic mass in

Table 5.1 Number of conduction electrons per atom ZV, calculated conduction electron
density n, and measured Hall coefficient RH of selected metals.

Metal Z𝐕 n(1028 m −3) Measured RH divided by−1∕ne

Li 1 4.7 0.8

Na 1 2.7 1.2

K 1 1.3 1.1

Rb 1 1.2 1.0

Cs 1 0.9 0.9

Cu 1 8.5 1.5

Ag 1 5.9 1.3

Be 2 24.7 −0.2

Mg 2 8.6 −0.4

Al 3 18.1 −0.3

Bi 5 14.1 ≈40 000
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kilograms per atom. Consequently, the conduction electron density n is ZV𝜌m∕M.

Values of n for selected metals are given in Table 5.1.

5.2

Results from the Drude Model

We now show how several properties of metals can be explained by the Drude

model. In Section 5.3, we will discuss the limitations of the model and the most

significant disagreements with the experimental results.

5.2.1
DC Electrical Conductivity

To explain the DC conductivity of metals, consider the behavior of an electron

when an electric field  is applied. The equation of motion is1)
me

d𝐯
dt

= −e, (5.2)

with the solution

𝐯(t) = −et

me

, (5.3)

that is, an accelerated drift motion in the direction opposite to the field. If we

assume that the drift motion is destroyed in a collision with the ions and that on

average the time for a collision-free drift is 𝜏 , the average drift velocity is2)

𝐯 =
−e𝜏

me

. (5.4)

We can estimate the order of magnitude for |𝐯|: For an electric field of
 ≈ 10 Vm−1, we get a drift velocity of |𝐯| = 10−2 ms−1. This is very slow

compared to the thermal movement of the electrons. The result justifies our

simple approach because the drift motion induced by the electric field will not

have a significant effect on the relaxation time.

Having the drift velocity, we can calculate the conductivity. Consider an area A

perpendicular to the electric field. The number of electrons passing through the

area per unit time is

n|𝐯|A. (5.5)

The amount of charge passing through the area is therefore

−en|𝐯|A. (5.6)

1) Note that the charge of the electron is −e throughout this book.

2) It is not obvious that (5.4) is the correct result for the average drift velocity. One could be tempted

to think that it is too high by a factor of 2. See Further Reading.
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With this we can calculate the current density

𝐣 = −en𝐯, (5.7)

and with (5.4) we get

𝐣 = ne2𝜏

me

 = 𝜎 =


𝜌
, (5.8)

that is, the current density is in the direction of the electric field and proportional

to the field strength. This result is the familiar Ohm’s law, and the constant of

proportionality 𝜎 is called the conductivity of the material. Its inverse 𝜌 is called

the resistivity.

Consider now the explicit expressions for the conductivity and resistivity, which

we have obtained. The conductivity is

𝜎 =
ne2𝜏

me

, (5.9)

and the resistivity

𝜌 =
me

ne2𝜏
. (5.10)

Note that the elementary charge appears squared in these equations. The reason

for this is that it is needed both to couple to the electric field, dragging the electrons

along, and in the definition of the current. The fact that it is squared means that

we would get the same result for charge carriers with a positive charge +e instead

of−e.Wewill come back to this when discussing semiconductors where positively

charged carriers do in fact appear.

Another useful definition is themobility of the electrons 𝜇. It is given by

𝜇 =
e𝜏

me

, (5.11)

and the conductivity and resistivity can, of course, also be defined using this

mobility:

𝜎 = n𝜇e, 𝜌 =
1

n𝜇e
. (5.12)

Why do we need this definition? The concept of mobility can be useful for solids

in which the electron concentration can be changed by some external parame-

ter without changing the scattering mechanism inside the solid, that is, without

changing the relaxation time. The mobility also has a simple physical meaning: It

is the ratio of drift velocity to applied electric field, as can be seen when dividing

(5.8) by −ne.

The Drude model thus explains Ohm’s law qualitatively. We can also perform a

quantitative comparison of the predicted andmeasured conductivities. Figure 5.1

shows this for some selected metals at two different temperatures. The calcula-

tions have beenmade assuming a mean free path of 𝜆 = 1 nm for all elements. For

T = 273 K, the calculation (solid line) reproduces the right order of magnitude

and lies in themiddle of the scattered experimental data points. Some elements lie
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Figure 5.1 Measured and calculated electrical conductivities of metals as a function of
conduction electron density for two different temperatures. The measured data are marked
by the elements’ names; the calculations are the solid lines.

far away from the calculation, notably the noble metals and the group V semimet-

als Sb and Bi. One could be tempted to conclude that the Drude model does not

reproduce the details, but the general trend is correct anyway. For lower temper-

atures, the situation becomes more problematic. At 77 K, the calculated conduc-

tivity increases because vt gets smaller, but the measured conductivity increases

much more. At even lower temperature, the comparison becomes increasingly

unfavorable.

5.2.2
Hall Effect

Another result of the Drude model is that it can explain the Hall effect.This effect

was discovered by E. Hall in 1879 when he investigated the influence of amagnetic

field on the current in a conductor. It is illustrated in Figure 5.2a. Hall found that

z
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Figure 5.2 (a) Illustration of the Hall effect. (b) Equilibrium between Lorentz force and
force caused by the Hall field for electrons passing through the sample (charge −e). (c) The
same for positively charged carriers passing through the sample (charge +e).
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an electric field H is built up, which is perpendicular to both the magnetic field
and the current density. The magnitude of this Hall field is proportional to both

current density jx and magnetic field Bz:

H = RHjxBz, (5.13)

where RH is called theHall coefficient. This is explained quite easily in the steady

state (see Figure 5.2b). For the electrons to pass through the sample, the Hall field

H must exactly compensate the Lorentz force in the opposite direction; thus,| − eH | = | − eBzvx|. (5.14)

Using this and the definitions of the current density (5.7) and RH , we obtain

RH =
H
jxBz

=
H

−envxBz

=
vxBz

−envxBz

=
−1

ne
. (5.15)

Therefore, measuring the Hall coefficient provides direct experimental access to

the conduction electron density.

We can compare the measured Hall coefficients to those calculated from the

electron density for different elements. The result is shown in Table 5.1 where

the measured RH has been divided by −1∕ne for easier comparison. For the alkali

metals, the result is close to the expected value of 1, and for the noble metals,

the agreement is also acceptable. It is very bad for Bi. The very high value means

that for some reason the true conduction electron density must be much smaller

than the calculated value. In a sense, the agreement is even worse for Be, Mg, and

Al because not only does the magnitude not quite fit, the measured RH is even

positive, not negative. In this context, it is important to note again that the sign of

the charge carriers is irrelevant for the conductivity of the sample, but it shows up

in the Hall effect. It appears therefore that the current in Be, Mg, and Al is carried

by positive charges: Imagine that we had positive charge carriers with a density p

(see Figure 5.2c). Then, it is easy to show that

RH =
1

pe
, (5.16)

that is, we get a positive RH . The notion of positive carriers does not make sense

in the Drude model, but we will see that the quantum model of the electronic

states is able to give an intuitive picture of positive carriers.Thiswill be particularly

useful for treating semiconductors, but we will also come back to the positive Hall

coefficient in metals in Section 7.2.2.

5.2.3
Optical Reflectivity of Metals

The Drude model can also explain why metals reflect light and therefore appear

shiny. Before we discuss this, we briefly state some fundamental relations from

optics.We shall need these equations again whenwe discuss the optical properties

of insulators in Chapter 9. Some of the concepts used here are explained in more

detail in the beginning of Chapter 9.
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Light can be described as a transverse, plane electromagnetic wave. We can

write the electric field for a wave propagating in the z direction as

(z, t) = 0e
i(kz−𝜔t), (5.17)

with the amplitude 0 in the x − y plane and the wave vector

k =
2𝜋N

𝜆0
, (5.18)

where 𝜆0 is the wavelength in vacuum, and

N = n + i𝜅 (5.19)

is the complex index of refraction. n, the real part of N (not to be confused with

the electron density), describes the change of thewavelength inmatter and thereby

the refraction at an interface, and the imaginary part 𝜅 accounts for the damping

inside the material.3) In general, N depends on the frequency 𝜔, a phenomenon

called dispersion. A familiar consequence of this is the separation of light into

different colors when refracted by a glass prism.

An alternative way to describe the optical properties of materials is to use the

complex dielectric function 𝜖 instead of the refractive indexN . Youmay be famil-

iar with the static dielectric constant 𝜖 that appears in the description of capaci-

tors. The dielectric function is the same quantity, but it accounts for a frequency

dependence, that is, in general 𝜖 depends on 𝜔. 𝜖 is related to N via

N =
√
𝜖 =

√
𝜖r + i𝜖i, (5.20)

where 𝜖r and 𝜖i are the real and imaginary parts of 𝜖, respectively. With this, (5.17)

can be written as

(z, t) = 0e
i((2𝜋N∕𝜆0)z−𝜔t) = 0e

i((𝜔
√
𝜖∕c)z−𝜔t). (5.21)

In the last step, we have used that 𝜆0𝜔∕2𝜋 = c, with c being the speed of light in

vacuum.

Having these basic equations, we can proceed to explain the reflectivity of met-

als. Consider an electron in the electromagnetic AC field given by the optical light

wave. If the angular frequency 𝜔 of the light is very small, we basically retain

the DC behavior. If, on the other hand, 𝜔 is so high that 2𝜋∕𝜔 is much shorter

than the relaxation time 𝜏 , then the electron is wiggled many times back and forth

by the field before a scattering process occurs. We can then ignore the collisions

with the ions altogether and treat the electrons as completely free. As 𝜏 is on the

order of 10−14 s, this condition is fulfilled reasonably well for optical frequencies.

We treat one single electron in the electric field of an electromagnetic wave.The

polarization should be such that the  field lies in the x direction, and the time-

dependent magnitude of field is 0e−i𝜔t . The electron will move according to the
equation of motion

me

d2x(t)

dt2
= −e0e−i𝜔t . (5.22)

3) This can be seen by inserting N = n + i𝜅 into (5.18) and (5.17) where it leads to a damping factor

exp(−2𝜋𝜅z∕𝜆0), that is, a damping for increasing z.
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A good ansatz for the solution of (5.22) appears to be

x(t) = Ae−i𝜔t , (5.23)

where A is a (complex) amplitude. By inserting (5.23) back into (5.22), we see that

it is indeed a solution if the amplitude is chosen to be

A =
e0
me𝜔

2
. (5.24)

The electron is now periodically displaced from its position, and this leads to a

changing dipole moment −ex(t). For a solid with a conduction electron density of

n, the macroscopic polarization P(t) resulting from these dipole moments is4)

P(t) = −nex(t) = −neAe−i𝜔t = −
ne20e−i𝜔t
me𝜔

2
. (5.25)

On the other hand, we know the general relation between the electric field  and
the dielectric displacement field D, which is

D = 𝜖𝜖0 = 𝜖0 + P, (5.26)

such that

𝜖 = 1 +
P(t)

𝜖00e−i𝜔t . (5.27)

Using this and our result for the polarization (5.25), we obtain an expression for

the dielectric function

𝜖 = 1 −
ne2

𝜖0me𝜔
2
= 1 −

𝜔2
P

𝜔2
, (5.28)

with the so-called plasma frequency 𝜔P given by

𝜔2
P
=

ne2

me𝜖0
. (5.29)

This expression for the dielectric function is our final result.Why does this explain

that metals reflect visible light? To see this, consider (5.21) and (5.28). We have

to distinguish between two cases: For 𝜔 < 𝜔P , 𝜖 is a real and negative number.

Therefore,
√
𝜖 is purely imaginary and (5.21) represents an exponentially damped

penetration of the wave into the solid. Equivalently, we see that for a negative 𝜖,

the complex index of refraction (5.19) contains only the imaginary component

i𝜅. The damping cannot be due to inelastic losses because our (5.22) does not

take such processes into account. Since the light is not transmitted through the

solid either, and energy is conserved, it must be reflected (for a more formal treat-

ment, see Problem 9.4). For 𝜔 > 𝜔P , on the other hand, 𝜖 is real and positive and

(5.21) represents a light wave that propagates into the metal. The bottom line is

that metals are reflecting low-frequency light, but they become transparent for

high-frequency light. The transition happens at the plasma frequency. The low-

frequency behavior is not surprising because it should essentially be the same as

4) For a definition of the polarization, see (9.2) in Chapter 9.
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Table 5.2 Observed values of the plasma energy ℏ𝜔P together with the values calculated
from the Drude model.

Metal Measured ℏ𝝎P (eV) Calculated ℏ𝝎P (eV)

Li 6.2 8.3

K 3.7 4.3

Mg 10.6 10.9

Al 15.3 15.8

in the electrostatic case for which it is assumed that metals are free of electric

fields.

The plasma frequency can be calculated solely from the conduction electron

density of the metal. Instead of the plasma frequency 𝜔P , one commonly uses the

plasma energy ℏ𝜔P . Calculated and measured values are given in Table 5.2. We

see that the agreement between experiment and prediction is fairly good and that

the plasma frequency for metals lies in the far ultraviolet region, that is, metals are

reflecting visible light but transmitting ultraviolet radiation.

5.2.4
TheWiedemann–Franz Law

In Drude’s time, one of the most convincing pieces of evidence for his the-

ory appeared to be that it yielded a quantitatively correct description of the

Wiedemann–Franz law. In 1853, G. H. Wiedemann and R. Franz found that the

ratio of thermal to electrical conductivity is constant for all metals at a given

temperature. Later, it was found by L. Lorenz that this constant is proportional to

the temperature; thus,

𝜅

𝜎
= LT , (5.30)

where L is the so-called Lorenz number.

In the Drude model, the ratio of thermal and electrical conductivity is readily

calculated.The thermal conductivity is that of a classical gas and can be described

by an equation similar to (4.48), only using corresponding properties (heat capac-

ity, speed, and mean free path) for the electron gas. The electrical conductivity is

given by (5.9). The result is

𝜅

𝜎
=
3

2

k2
B

e2
T = LT , (5.31)

which is just the Wiedemann–Franz law (see Problem 5.5). L, as calculated here,

is roughly a factor of 2 smaller than the value obtained by experiments (or by a

proper quantum mechanical calculation, see (6.19)). Drude, however, had made

a mistake of a factor of 2 in his calculation such that L came out almost correct.

Therefore, his theory was in impressive quantitative agreement with the experi-

mental data. It should be pointed out thatDrude’smistakewas rather subtle (it had
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to do with the scattering probabilities of the electrons) and therefore not readily

discovered by other researchers.

5.3

Shortcomings of the Drude Model

Despite its great success, the Drude model has a number of serious shortcomings.

We discuss several of them here to motivate the quantum treatment of metals

in the next chapter. Even before starting our work on the Drude model, several

assumptions could have raised suspicion. Take, for example, the nature of the scat-

tering.There is no justification for a missing electrostatic interaction between the

electrons and the lattice, and it is also not clear why the electrons collide only with

lattice ions and not among themselves. In addition to this, the de Broglie wave-

length for electrons with a thermal energy is on the order of nanometers. The

criterion for treating the electrons as classical particles, however, is that their de

Broglie wavelength is much smaller than the typical dimensions of the structures

they are moving in. This is clearly not fulfilled.

As for a comparison to experimental data, we have already seen that the pre-

dicted conductivity at low temperatures is not high enough. When assuming a

fixed mean free path, the Drude model does give a higher conductivity at low

temperatures because of the increased relaxation time (see Figure 5.1) but the

measured conductivity increases muchmore. It turns out that the assumption of a

fixed mean free path, given by the atomic spacing, is completely wrong. In fact, at

low temperatures, the mean free path of electrons in very pure and perfect crys-

tals can become macroscopic, micrometers, or even millimeters. Apparently, the

electronsmanage to sneak past all other electrons and all ions as well.This appears

quite mysterious, but we will be able to explain it in the next chapter. Another

problem is that the Drude model cannot explain the conductivity of alloys. Alloy-

ing a small amount of impurities into an otherwise pure metals can drastically

reduce the conductivity.This happens even if the impurity atoms are quite similar

to the host and would be expected to give rise to a similar electron concentration

(e.g., Au in Cu).

The historically most important issue associated with the classical treatment of

electrons in a metal is that these electrons should give a considerable contribu-

tion to the heat capacity, but this is not observed. In the previous chapter, we have

seen that the experimentally determined heat capacity of most solids, including

metals, agrees with the Dulong–Petit value at room temperature (see Table 4.2).

We could also understand the Dulong–Petit rule as the high-temperature limiting

case for the heat capacity of the solid’s lattice. In this classical picture, the presence

of free electrons should lead to an increased heat capacity for metals: For 1 mol of

classical metal, the heat capacity of the lattice would still be given by the Dulong–

Petit rule as 3NAkB = 3R but the electrons would be expected to contribute to

the total heat capacity as well. Each electron has three translational degrees of

freedom, each contributing with kB∕2 to the heat capacity. If the metal has one
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conduction electron per atom, these electrons would contribute to the molar heat

capacity with 3R∕2 and the total heat capacity would thus be 9R∕2. This is signif-

icantly higher than the Dulong–Petit value that is actually observed. For metals

with more conduction electrons per atom, the agreement with the experimental

result would be even poorer. The fact that the Dulong–Petit value is observed for

many metals therefore suggests that the electrons do not contribute to the heat

capacity, even though they are free to move and they do contribute to the con-

duction of electricity. This puzzle can only be resolved by a quantum mechanical

treatment of metals.

5.4

Further Reading

The Drude model is treated in many standard texts on solid state physics. A par-

ticularly good and in-depth description, including the issue of the factor of 2 in

(5.4), is found in

• Ashcroft, N.W. and Mermin, N.D. (1976) Solid State Physics, Holt-Saunders.

For a more detailed discussion of a metal’s reflectivity, see

• Fox, M. (2010) Optical Properties of Solids, 2nd edn, Oxford University Press.

5.5

Discussion and Problems

Discussion

1) Describe the basic assumption of the Drude model for metals. Explain the

relaxation time and the mean free path of the electrons.

2) How fast do the electrons move in the Drude model, and how does their

speed depend on the temperature?

3) Describe the electrical conduction in theDrudemodel.Where does the elec-

trical resistance come from?

4) How does the measured voltage drop along a metal wire as a function of

current through the wire compare to the prediction of the Drude model

qualitatively? How is the quantitative agreement?

5) (*) List cases in which Ohm’s law is not valid.

6) When an electric field is applied, how does the additional speed of the elec-

trons compare to their thermal speed (at room temperature)?

7) What is the Hall effect, and what can be measured by it?

8) Explain qualitatively why the sign of the Hall coefficient depends on the

charge of the particles carrying the current (positive or negative).

9) Why do metals not transmit light? Is this so for all light frequencies?
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10) What is the Wiedemann–Franz law?

11) Which properties of metals are not described adequately by the Drude

model?

Problems

1) Classical versus quantum description of metals: Calculate the classical mean

kinetic energy for the electrons in Na at room temperature. From this, deter-

mine their de Broglie wavelength 𝜆. For a classical description to be valid,

we have to require that 𝜆 is much smaller than the mean separation d of the

particles. Show that this is not the case.

2) Ohm’s law: Explain how expression (5.8) is related to the more familiar form

of Ohm’s law I = U∕R.

3) Optical reflectivity of metals: (a) Suggest a way of measuring the plasma

energy in a metal. (b) Suppose that you want to develop a metallic thin-film

coating for windows such that they would transmit visible light but not

infrared radiation. What properties would you require the coating material

to have?

4) Optical reflectivity of metals: Estimate how deeply visible light penetrates into

aluminum.This penetration depth is defined as the depth at which the inten-

sity of the incoming light wave has dropped to 1∕e of the original intensity.

5) Wiedemann–Franz law: Show that theWiedemann–Franz coefficient L in the

Drude model is indeed given by (5.31), that is,

L =
𝜅

𝜎T
=
3

2

k2
B

e2
. (5.32)

6) Resistivity: We have seen that the Drude model gives the correct order of

magnitude for the resistivity of many metals near room temperature, but

what about the temperature dependence of the resistivity? Experimentally, it

is found that this temperature dependence is linear near room temperature,

that is,

𝜌(T) = 𝜌0(1 + 𝛼(T − T0)), (5.33)

where 𝜌(T) is the temperature-dependent resistivity, 𝜌0 the resistivity at

room temperature T0, and 𝛼 the so-called thermal resistance coefficient.

Show that this experimental finding is in qualitative disagreement with the

Drude model, that is, that the Drude model does not give rise to a linear

temperature dependence.

7) Phonons in metals:The Drude model can be used to estimate the force con-

stants, vibrational frequencies, and related properties in metals. We use a

crude model to describe the vibration of a single ion in a monovalent metal:

The ion is assumed to be a positive point charge in a spherical unit cell that is

filled with electrons of the appropriate density n. All the rest of the crystal is

ignored. (a) Consider a small displacement of the ion from the center of the

unit cell. Show that the restoring force is proportional to the magnitude of



5.5 Discussion and Problems 89

the displacement. Hint: Use Gauss’ law to calculate the force. (b) What is the

vibrational frequency for a single ion of sodium? (c) Perform a crude estimate

of the speed of sound in sodium, and compare your result to the experimental

value of 3200 m s−1.
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6

Electronic Properties of Solids: Quantum

Mechanical Approach

In the previous chapter, we have discussed the Drude model in which the elec-

trons in a metal are treated as classical, free, and independent particles. We have

seen the success and the limitations of this approach. Now we take the quantum

mechanical nature of the problem into account, and we will see how this fixes

many of the shortcomings of the classical description. We will also see that, going

beyond the assumption of free electrons, it is possible to explain not only metals

but also nonmetallic solids. Indeed, we will come upwith amore formal definition

of what ametal is in the first place.Wewill, however, retain the approximation that

the electrons move independently from each other. This works surprisingly well

for many solids, and we will try to understand why.

Finding the quantum mechanical eigenstates for the electrons in the solid is a

formidable problem: We would have to construct a wave function that depends

on the coordinates of all the electrons and also of all the ions, which make up the

positive part of the potential. This is clearly hopeless! The first approximation we

make is to ignore the motion of the ions by “freezing” them into their equilibrium

position. We know that there are thermal vibrations and that this approximation

appears poorly justified. However, it turns out to work rather well. The reason is

the mass difference between the electrons and the ions. Suppose that the ions are

in some given position and the electrons are in their ground state. When the ions

move out of position, their motion is so slow that the fast electrons will be able to

readjust their distribution such that they stay in a modified ground state, but still

in the ground state. When the ions move back, the electrons adjust themselves to

the old ground state.Therefore, the electronic and ionicmotions can be effectively

separated. This is called the Born–Oppenheimer approximation, and it is also

often used for treating molecules.

The other fundamental simplification we make is that we do not consider the

correlated motion of the electrons. We merely calculate the electronic states for

one electron that is moving in an effective potentialU(𝐫), given by all the ions and
all the other electrons. The stationary Schrödinger equation for the one-electron

states then becomes

−
ℏ2∇2

2me

𝜓(𝐫) +U(𝐫)𝜓(𝐫) = E𝜓(𝐫). (6.1)

Solid State Physics: An Introduction, Second Edition. Philip Hofmann.
© 2015 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2015 by Wiley-VCH Verlag GmbH & Co. KGaA.
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Admittedly, this one-electron approximation creates the problem of finding the

right U(𝐫)! Amazingly, we will find that for many metals, U(𝐫) is quite small, that
is, the electrons behave as if they were nearly free.

One great help for finding the electronic energy levels is the symmetry of the

lattice. Nomatter how complicatedU(𝐫) is, at least we know that itmust be lattice-
periodic, that is,

U(𝐫) = U(𝐫 + 𝐑), (6.2)

where 𝐑 can be any vector of the Bravais lattice.
Finally, when we have found the eigenstates in the one-electron picture, we fill

them with all the electrons according to the Pauli principle. This gives the correct

occupation of the states but only for zero temperature. At higher temperatures,

the statistical occupation of the states is given by the Fermi–Dirac distribution.

Before we start with a detailed quantummechanical description of solids along

these lines, we consider very simple models for the electronic states in solids. We

motivate the idea of electronic energy bands, and we give an informal but intuitive

picture of the difference between metals, semiconductors, and insulators.

6.1

The Idea of Energy Bands

Let us consider the solid as a type of giant molecule and ask about the possi-

ble energy levels in such a molecule. This approach is intuitive and would give

the correct results, but it is not very practical for treating crystals, in particular

because their high degree of symmetry is not exploited. For simplicity, we build

the molecule from Na atoms that have only one valence electron. Figure 6.1 illus-

trates what happens as we assemble an ever bigger cluster of Na atoms. For two

atoms, the situation is similar to that of the hydrogen molecule in Figure 2.2: As

the atoms approach each other, bonding and antibonding molecular orbitals are

formed1). Each Na atom has one 3s electron and the two electrons are accommo-

dated in the bonding orbital. They have opposite spins in order to fulfill the Pauli

principle’s requirements (Figure 6.1a). Figure 6.1b illustrates the position of the

energy levels as a function of the interatomic separation. The energy scale is set

to zero for a very large separation of the atoms. For the separation a, the bonding

level reaches the lowest energy. Since only the bonding level is occupied by two

electrons, the energy of the antibonding state is irrelevant and the energy gain is

maximized for the separation a.

What happens if we take more than two atoms? The interaction of two atomic

states leads to the formation of two levels that are delocalized over the entire

1) There is a conceptual difference between our treatment of the hydrogenmolecule and the treatment

of a Na cluster here. In the hydrogen molecule, we have calculated the energy levels for a genuine

two-electron wave function. In this chapter, we stick to the one-electron approximation, that is, we

always calculate the electronic states of one electron in an effective potential of the ions and the

other electrons. Then, we fill these one-electron states according to the Pauli principle.
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Figure 6.1 The formation of energy bands
in solids. (a) Bonding and antibonding
energy levels and their occupation for a
molecule constructed from two Na atoms.
The black dots and arrows symbolize the
electrons with their spin. (b) The molecule’s
energy levels as a function of interatomic

separation. (c) The energy levels for a clus-
ter of many Na atoms as a function of their
separation. (d) For very many atoms, there is
a quasi-continuum between the lowest and
highest energy levels. This energy band is
half-filled with electrons (dark area) and half-
empty (bright area).

molecule. The situation is similar for N atoms. The N atomic energy levels split

up intoN nondegenerate molecular levels.2) N∕2 of these levels are then occupied

by two electrons each. This is shown in Figure 6.1c. For a very large N , the same

principles apply. There is a quasi-continuum of states between the lowest and the

highest level, which is half-filled (Figure 6.1d). This quasi-continuum is called an

energy band.

Nowwe can qualitatively see whyNa should showmetallic behavior.The energy

band of the valence electrons is exactly half-filled.When an electric field is applied

to a sample of Na, the electrons experience a force opposite to the field direction.

In order to move in that direction, they have to increase their kinetic energy by

a bit, that is, they have to go into a state with a slightly higher energy. For the

electrons in the highest occupied states, this is easily possible because there are

plenty of unoccupied states available at slightly higher energies.

To see a quite different behavior, consider the formation of energy bands in Si,

which is shown in Figure 6.2. The valence electrons involved in the bonding are

the two 3s and the two 3p electrons. As the Si atoms approach each other, the

2) Some of these levels might be degenerate because of symmetry, but this is not important for this

qualitative discussion.
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Figure 6.2 Band formation in Si. The lower band corresponds to the sp3 states and is com-
pletely filled.

orbitals hybridize and form two bands of states at equilibrium distance a, each

containing four states per Si atom, that is, a total of eight states per atom, derived

from two and six atomic s and p states, respectively. The lower band consists of

the sp3 orbitals, and these are fully occupied by the four valence electrons of each

Si atom. The upper band is completely unoccupied, and between the two bands,

there is an energy region without any states, a so-called band gap. This explains

the insulating behavior of Si: When a voltage is applied, the electrons in the filled

sp3 band cannot increase their kinetic energy by a small amount because there are

no vacant states with energies slightly above the band.

This picture allows us to group materials in two classes: metals and nonmetals.

Nonmetals can be further divided into semiconductors and insulators (see

Chapter 7). Unfortunately, the simple model lacks any predictive power. If we take

carbon that has the same number of valence electrons as Si, we would come to

the same picture for the bonding. This is correct for diamond that is sp3 bonded

and has a band gap. But for graphite, the situation is quite different. There are

also bands formed in graphite but there is no band gap.

6.2

Free Electron Model

6.2.1
The QuantumMechanical Eigenstates

The free electronmodel is the quantummechanical analogue to the Drudemodel.

Its objective is to obtain a simple descriptions of metals, assuming that the elec-

trons are free in the sense that they are not interacting with the ions or with

each other (the model is therefore also called the free electron gas). Treating free
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electrons in a quantummodel comes down to the standard problem of a free par-

ticle in a box. The task is to solve (6.1) with U(𝐫) = 0, assuming certain boundary
conditions. What boundary conditions should we choose? The situation is very

similar to that of a finite chain of atoms described in Section 4.1.3. The simplest

boundary conditions are that the wave function has to vanish at the boundaries.

This corresponds to holding the atoms at the end of a finite chain fixed. In both

cases, it leads to standing waves. As in the case of lattice vibrations, it would be

inconvenient to use such boundary conditions here because, ultimately, we will be

interested in traveling solutions to account for electrical and thermal conductivity.

Therefore, the periodic boundary conditions (4.17) are a better choice (for a more

in-depth discussion of the different boundary conditions, see Problem 11.1). We

consider the three-dimensional case right away rather thandiscussing the problem

in one dimension first, because a number of properties depend on the dimension-

ality. For simplicity, let us assume that we have a cubic box with a macroscopic

side length L and volume V = L3. Then, the periodic boundary conditions are

𝜓(𝐫) = 𝜓(x, y, z) = 𝜓(x + L, y, z) = 𝜓(x, y + L, z) = 𝜓(x, y, z + L). (6.3)

The solutions to the stationary Schrödinger equation are plane waves, normalized

such that the integrated probability to find an electron in the box is 1:

𝜓(𝐫) = 1√
V
ei𝐤⋅𝐫 . (6.4)

This is very similar to genuinely free electrons, but there are restrictions on the

allowed values of 𝐤 imposed by the periodic boundary conditions. These are the
same as for crystal vibrations (see (4.23)), that is,

𝐤 = (kx, ky, kz) =

(
nx2𝜋

L
,
ny2𝜋

L
,
nz2𝜋

L

)
, (6.5)

where nx, ny, and nz are integers. The energy levels are

E(𝐤) = ℏ2k2

2me

=
ℏ2

2me

(k2
x
+ k2

y
+ k2

z
). (6.6)

These are shown as a function of nx or kx in Figure 6.3 for ny = nz = 0. In the figure,

it appears as if the level separation increases for higher energies or higher values of

nx, but this is misleading and due to the fact that we have held ny and nz constant

at zero. Actually, the separation between the energy levels is of the order

ℏ2

2me

(
2𝜋

L

)2
, (6.7)

(for all energies), which is very small because L is a macroscopic distance. There-

fore, this model already gives rise to a quasi-continuum (or a band) of energy

levels, as qualitatively described in the previous section.

These calculated energy levels are one-electron levels. We can put in the elec-

trons according to the Pauli principle. We start by filling two electrons into the
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Figure 6.3 Electronic states in the free electron model. The increasing energy separation
between the points at higher energies is an artifact caused by holding ny = nz = 0.

lowest energy state with 𝐤 = (0, 0, 0) and E(𝐤) = 0. Then, we proceed by occupy-
ing levels at higher 𝐤, for example, 𝐤 = (0, 0, 2𝜋∕L) until we have used up all the

electrons.

We want to know the highest occupied energy that we get when filling up the

states. If the number of electrons to be distributed is very large, we can use the

same geometric construction as for the vibrational states (see Figure 4.12). Sup-

pose that we have N electrons in our enclosed volume, such that the conduction

electron density is n = N∕V = N∕L3. These can be accommodated on the N∕2

states with the lowest energy since we can have two electrons per state. We have

to fill all states that lie within a sphere of radius nmax or, alternatively, a sphere with

radius kmax such that

N

2
=
4

3
𝜋n3

max
, (6.8)

which gives

nmax =
(
3N

8𝜋

)1∕3
. (6.9)

From this, we can calculate the energy of the highest occupied electron states to

Emax =
ℏ2k2

max

2me

=
ℏ2

2me

(
2𝜋

L

)2
n2
max

. (6.10)

This energy has a special name: It is called the Fermi energy EF . For most metals,

it is a few electron volts, that is, in the range of typical chemical binding energies.

Similarly, kmax is called the Fermi wave vector kF . nmax is not used very much
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because it depends on the size of the system. A useful expression that follows from

(6.10) is the relation between Fermi energy EF and conduction electron density n:

EF =
ℏ2

2me

(
3𝜋2n

)2∕3
. (6.11)

The Fermi energy is the highest kinetic energy of the electrons in the solid. The

corresponding Fermi velocity vF can be calculated from v2
F
= 2EF∕me. The result

is on the order of 106 ms−1. This is very high, especially if we keep in mind that

everything has so far been calculated for a temperature of 0 K.

Finally, we can calculate the density of states g(E) in the free electron model,

that is, the energy-dependent number of available states per energy interval dE.

We will need this for the correct description of the situation at finite temperature

and for many other things. From (6.9) and (6.10), the highest occupied energy for

N electrons can be written as

E(N) =
ℏ2

2me

(
3𝜋2N

V

)2∕3
, (6.12)

from which we get the total number of states N(E) for a given highest energy E

and with this

g(E) =
dN

dE
=

V

2𝜋2

(
2me

ℏ2

)3∕2
E1∕2. (6.13)

This density of states for the free electron model is shown in Figure 6.4a.

So far, we have only considered the situation at zero temperature. At any finite

temperature, electrons will be thermally excited from their ground state. For

fermions, the occupation probability of the states is given by the Fermi–Dirac

distribution f (E,T)

f (E,T) =
1

e(E−𝜇)∕kBT + 1
, (6.14)

where 𝜇 is the chemical potential. For metals, we can set 𝜇 = EF and do not

distinguish between the Fermi energy and the chemical potential at all. At zero

temperature, this is exactly true, and at finite temperature, it is a very good approx-

imation. The Fermi–Dirac distribution is shown in Figure 6.4b. At zero tempera-

ture, it is represented by the dashed line that has a value of 1 for energies smaller

than 𝜇 and 0 for energies higher than 𝜇, meaning that all states below the chemical

potential are occupied and all others are empty. This is consistent with our above

discussion of how the states are filled. At finite temperature, the Fermi–Dirac dis-

tribution develops a “soft zone” around 𝜇 in which the occupation probability is

no longer 1 or 0 but something in between. The soft zone is symmetric around 𝜇

(or EF ), and it has a width of about 4kBT . At room temperature, kBT ≈ 25 meV,

such that the soft zone is around 100 meV wide.

It is instructive to compare the electrons’ mean kinetic energy in the quantum

model to the result of the Drude model. In the quantum model, it must be some

fraction of the Fermi energy EF (see Problem 6.1), whereas it is given by (5.1) in

the Drude model. The most important difference is not that the kinetic energy
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in the sketch for temperatures around room
temperature.

in the quantum model is fairly high but that it is so (almost) independent of the

temperature.

Finally, the density of occupied electron states at a given energy and temper-

ature can be found by multiplying the density of states g(E) with the Fermi–Dirac

distribution f (E,T), see Figure 6.4c. This definition gives us a way of calculating

the chemical potential at any temperature because the total number of electrons

N must be given by

N = ∫
∞

0

g(E)f (E,T)dE. (6.15)

As pointed out earlier, however, the chemical potential in a metal depends only

very weakly on the temperature (see Problem 7.3).
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It is important to notice how different the energy scales are. The Fermi energy

is several electron volts, while the soft zone of the Fermi–Dirac distribution is

only 100 meV wide at room temperature. This means that the relative number of

electrons in the soft zone is very small indeed. This turns out to be the key to

understanding many properties of metals, for example, their heat capacity.

6.2.2
Electronic Heat Capacity

The fact that the Dulong–Petit rule is not only valid for insulators but also for

many metals (see Table 4.2) suggests that the contribution of the free electrons to

the heat capacity of a metal is very small. The Drude model does not explain this,

but now we can understand why. When the temperature of the solid is raised,

only a very small fraction of the electrons can be thermally excited. This is illus-

trated by Figure 6.5. Assume that the temperature of the solid is raised from zero to

some finite temperature T . Classical particles would increase their kinetic energy

by 3kBT∕2. Here, this is impossible for most of the electrons because they are

trapped: There are already other electrons occupying the states at slightly higher

energies. A contribution to the heat capacity is, in fact, only possible for the elec-

trons near the Fermi energy.

Let us try a “quick-and-dirty” estimate of the electronic heat capacity.The num-

ber of electrons in the soft zone is of the order kBTg(EF ). If we say that the mean

thermal energy of these electrons is 3kBT∕2, the total mean thermal energy is

⟨E⟩ = 3
2
kBTg(EF )kBT (6.16)

plus some offset, which does not depend on the temperature. This gives

C =
𝜕⟨E⟩
𝜕T

= 3k2
B
Tg(EF ). (6.17)
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This is quite close to the correct result, which is

C =
𝜋2

3
k2
B
Tg(EF ) (6.18)

(see Problem 6.3). This expression has a number of interesting implications. The

heat capacity is proportional to the density of states at the Fermi energy g(EF ).This

is easy to understand because only the electrons close to the Fermi energy can

participate in thermal excitations. Since these electrons constitute only a small

fraction of all electrons, the free electrons in a metal do not usually lead to a

strong deviation from the Dulong–Petit behavior at high temperatures. On the

other hand, (6.18) is linear in T , whereas the (low temperature) heat capacity of

the lattice (4.45) is proportional to T3. This means that at low temperatures, the

lattice contribution vanishes faster than the electronic contribution and the lat-

ter can, in fact, be measured. This is illustrated in Figure 6.6 (see Problem 6.3 to

calculate the cross-over temperature).

6.2.3
TheWiedemann–Franz Law

The free electronmodel correctly reproduces theWiedemann–Franz law and also

gives the correct Lorenz number L. This can be seen by inserting the appropriate

expressions into (5.30). The thermal conductivity can be taken to have the same

form as (4.48) with appropriate modifications for the velocity, which should be

the Fermi velocity, and the heat capacity. For the electrical conductivity, we take

the expression from the Drude model. Both conductivities can be written such

that they contain the relaxation time 𝜏 . We do not know anything about 𝜏 , but

fortunately, it cancels out in the final expression. Working out the details of this is

left to the reader (see Problem 6.4). The final result is

𝜅

𝜎
=

𝜋2

3

k2
B

e2
T = LT . (6.19)
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This gives L = 2.45 × 10−8 WΩK−2, which agrees very well with the experimental

data for many metals.

6.2.4
Screening

An important feature of metals is their ability to screen out electric fields. In fact,

for the purpose of classical electrostatic field theory, it is commonly assumed that

the metals are internally field-free. In the Drude model, we have seen that this is

also a good approximation forACelectric fieldswith frequencies below the plasma

frequency. On the atomic scale, this is not quite so simple, but a metal is still very

effective in screening out external fields. Before we describe this quantitatively,

we develop a simple picture of the screening effect. Consider first the Coulomb

potential due to a positive point charge q in vacuum:

𝜙0(r) =
1

4𝜋𝜖0

q

r
, (6.20)

where r is the distance from the charge. Aswewill see inChapter 9, this result does

not change very much when we put the point charge into an insulator. We only

have to substitute 𝜖0 with 𝜖𝜖0, where 𝜖 is the dielectric constant of the insulator.

The total potential is thus reduced by a constant factor of 𝜖.

However, if we put the positive point charge into a metal, it will attract the

surrounding electrons. In sharp contrast to the situation in an insulator, these

electrons are free to move toward the point charge. This leads to a negative elec-

tron cloud around the point charge, strongly reducing the total potential at larger

distances. This is the effect of metallic screening that we will now describe quan-

titatively. We consider a positive point charge in a metal with the potential given

by (6.20).This potential is spherically symmetric, and it leads to an electron cloud

around the impuritywith a potential𝜙s(r) that also has spherical symmetry. Super-

position dictates that the total potential is 𝜙(r) = 𝜙0(r) + 𝜙s(r).

If we assume that e𝜙(r) is small compared to the Fermi energy EF , that 𝜙(r) is

slowly varying in space, and that the temperature is T = 0 K, the screening can be

described by the picture in Figure 6.7. Far away from the impurity, where 𝜙(r) is

essentially zero, the free electron metal states are filled up to the Fermi energy.

Close to the impurity, however, the electrons “feel” the additional electrostatic

energy from e𝜙(r), such that the energies of all the states are lowered. This cor-

responds to a shift of the density of states to lower energies (for a positive point

charge).This, in turn, leads to a situationwhere electrons from the rest of themetal

can move to the available lower energy states close to the impurity and occupy

them (light gray area on the figure) until equilibrium is reached. In the vicinity of

r, the accumulated charge density is thus given by −e times the size of the light

gray area, resulting in

𝜌(r) = −e2(1∕V )g(EF )𝜙(r). (6.21)

One might think that this flow of charge would have to lead to a charge reduc-

tion in the rest of the material. This is also correct, but the volume of the solid is
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assumed to be very large compared to the area around the impurity such that this

reduction can be neglected.

While we now know the charge density created by the total potential, we still

do not know the potential. We can find it using the Poisson equation ∇2𝜙(𝐫) =
−𝜌(𝐫)∕𝜖0 and (6.21). Since we have spherical symmetry, everything only depends
on the distance r and there is no angular dependence.The easiest way to solve the

problem is to write the Laplace operator ∇2 in spherical coordinates and use that

𝜙(𝐫) depends only on r, not on the direction. We then obtain

∇2𝜙(𝐫) = 𝜕2𝜙(r)

𝜕r2
+
2

r

𝜕𝜙(r)

𝜕r
=

e2

V𝜖0
g(EF )𝜙(r). (6.22)

We now need to find a solution to this differential equation, and it is easy to show

(by inserting into (6.22)) that such a solution is

𝜙(r) = c
1

r
e−r∕rTF , (6.23)

where c is a constant and rTF is the so-calledThomas–Fermi screening length

that is given by

rTF =

√
V𝜖0

e2g(EF )
. (6.24)

The constant c in (6.23) can be fixed by requiring that the bare Coulomb potential

for the positive point charge 𝜙0(r) in (6.20) is recovered for a situation in which

g(EF ) goes toward zero, that is, when the metal becomes similar to vacuum. For a

small g(E), rTF would be very large and the exponential function in (6.23) would

approach unity. Therefore, we have to choose c such that
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𝜙(r) =
1

4𝜋𝜖0

q

r
e−r∕rTF , (6.25)

which is the final result.

In most metals rTF is very small, on the order of 1 Å, and the exponential part in

(6.25) causes the screened potential to decay on the same length scale, much faster

than the bareCoulombpotential (see Figure 6.8).This confirms the expected result

that an electrostatic potential is screened out very rapidly in a metal. In fact, the

effective screening can be used as an argument to explain why the electrons are

free within a metal in the first place. With such an effective screening, it is not

possible to localize them close to the potential of an ion because the screened

ionic potential is too weak.

6.3

The General Form of the Electronic States

The free electron model appears to describe certain phenomena quite well, but it

still has some obvious shortcomings. In particular, it appears to be a fair descrip-

tion for metals, but what about nonmetallic compounds such as diamond or sil-

icon? As we have seen in Figure 6.2, their characteristic is that the sp3 band is

completely filled and that there are no states immediately above the top of the

band, in which electrons can be excited. This is not captured by the free electron

model that gives a continuum of states from the lowest energy to infinity. One

could argue that even for a metal, this might not be correct: As we have seen in

Figure 6.1d, the 3s band for Na is half-filled but it also has a finite width, that is,

there are no states at all possible energies.This is hardly relevant for most physical

phenomena such as conduction or heat capacity inwhich the excitation energies of
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the electrons are very small compared to the band width. But even in such cases,

the free electron model poses some problems. Take, for example, Al, which is a

simple metal (not a transition metal) and should be described quite well by the

free electron model. Yet, not even the sign of the Hall coefficient in Table 5.1 is

correct and going from the classical to the quantum free electron description does

not cure this problem.

Finally, the quantum mechanical free electron model is still not able to resolve

some of the most basic questions of electron motion in solids. One example is

that the mean free path of the electrons can reach macroscopic distances at low

temperatures, and we do not understand how the electrons can move through the

lattice of ions without scattering.The free electronmodel does not help here since

it simply ignores the presence of the ions, but the question remains valid.

In order tomake some progress, we have to describe themotion of the electrons

in a nonvanishing lattice-periodic potential (6.2) and solve (6.1). F. Bloch showed

that the general wave function solving this problem has the simple form

𝜓𝐤(𝐫) = ei𝐤⋅𝐫u𝐤(𝐫), (6.26)

where u𝐤(𝐫) is a function with the periodicity of the Bravais lattice:

u𝐤(𝐫) = u𝐤(𝐫 + 𝐑). (6.27)

Be careful not to confuse u𝐤(𝐫)with the lattice-periodic potentialU(𝐫)! The index
𝐤 refers to the fact that the function u𝐤(𝐫) can be changing, depending on the
wave vector 𝐤. One often refers to (6.26) as Bloch’s theorem and calls 𝜓𝐤(𝐫) a
Bloch wave function. Another way of stating Bloch’s theorem is to use the lattice

periodicity of u𝐤(𝐫) and require that

𝜓𝐤(𝐫 + 𝐑) = ei𝐤⋅𝐑𝜓𝐤(𝐫). (6.28)

Before we prove Bloch’s theorem, we mention one of its most important conse-

quences.The solution (6.26) is very similar to the free electron solution; it is a plane

wave modulated by a lattice-periodic function. This is an amazing fact because it

means that the electronic states are spread out over the whole crystal, even if we

turn on the lattice-periodic potential! In fact, the probability density for finding

an electron may vary within one unit cell, but it is identical for the correspond-

ing positions within every unit cell in the solid (see Problem 6.6). This means that

the electrons travel through the crystal without bouncing into the lattice ions at

all, immediately explaining the possibility of a very long mean free path, much

longer than the distance between the ions. In fact, if the electrons in a metal are

not scattered by the ions, we could expect the resistivity of a perfectly periodic

metal crystal to be zero. We will later see that this would indeed be the case, and

we will discuss which mechanisms cause a finite resistivity.

We now prove Bloch’s theorem (6.26). Like in the free electron model, we use

a cubic crystal of side length L and periodic boundary conditions. The allowed

values of 𝐤 are then given by (6.5). Every solution of the Schrödinger equation
(6.1) consistent with these boundary conditions can be written as a sum of plane

waves:
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𝜓(𝐫) =
∑
𝐤

c𝐤e
i𝐤⋅𝐫 , (6.29)

where 𝐤 are the values consistent with the boundary conditions, and the coef-
ficients c𝐤 are assumed to take care of the wave function’s normalization. The

lattice-periodic potential can also be written as a Fourier series, using the recip-

rocal lattice vectors 𝐆:

U(𝐫) =
∑
𝐆

U𝐆e
i𝐆⋅𝐫 . (6.30)

Since we want the potential to be a real quantity, we must further require that

U−𝐆 = U∗
𝐆. (6.31)

The two expansions can now be inserted into the Schrödinger equation (6.1). The

kinetic energy term then becomes

−
ℏ2∇2

2me

𝜓(𝐫) =
∑
𝐤

ℏ2k2

2me

c𝐤e
i𝐤⋅𝐫 . (6.32)

The potential energy term becomes

U(𝐫)𝜓(𝐫) =
(∑

𝐆
U𝐆e

i𝐆⋅𝐫
)(∑

𝐤
c𝐤e

i𝐤⋅𝐫
)

=
∑
𝐤𝐆

U𝐆c𝐤e
i(𝐆+𝐤)⋅𝐫

=
∑
𝐤′𝐆

U𝐆c𝐤′−𝐆e
i𝐤′⋅𝐫 .

(6.33)

In the last step, we have changed the summation index from 𝐤 to 𝐤′ = 𝐆 + 𝐤 in
order to obtain the same plane wave form as in the expression for the kinetic

energy.We are allowed to “shift” the indices by reciprocal lattice vectors aswewish

since the sum in question extends over all wave vectors consistent with the bound-

ary conditions, and the reciprocal lattice vectors are clearly a subset of these. If we

now rename the index 𝐤′ in the potential energy expression back to 𝐤, we canwrite
the whole Schrödinger equation in the new form:∑

𝐤
ei𝐤⋅𝐫

{(
ℏ2k2

2me

− E

)
c𝐤 +

∑
𝐆

U𝐆c𝐤−𝐆

}
= 0. (6.34)

Since the plane waves with different 𝐤 are orthogonal, every coefficient in the
equation has to vanish in order for the sum to vanish. So, the Schrödinger equation

is reduced to a set of equations:(
ℏ2k2

2me

− E

)
c𝐤 +

∑
𝐆

U𝐆c𝐤−𝐆 = 0. (6.35)

Since the summation in (6.34) runs over all 𝐤 consistent with the periodic bound-
ary conditions, we could choose 𝐤 in (6.35) to lie in the first Brillouin zone. Tech-
nically, the sum over the reciprocal lattice in (6.35) is infinite. In practice, however,

the potential can often be described by very few nonzero Fourier coefficients U𝐆,

so that the sum is rather short. Equation (6.35) then gives a relation between c𝐤
and the values c𝐤−𝐆 for whichU𝐆 ≠ 0. It is clear that there will be similar equations
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for each of these c𝐤−𝐆 coefficients. If, for example, U𝐆′ ≠ 0, we will also have to
consider the equation(

ℏ2(|𝐤 −𝐆′|2
2me

− E

)
c𝐤−𝐆′ +

∑
𝐆

U𝐆c𝐤−𝐆′−𝐆 = 0. (6.36)

The task is then to find the set of coefficients c𝐤, c𝐤+𝐆, c𝐤−𝐆 … that solves all these

equations simultaneously. This will be illustrated in the next section.

The problem of solving the Schrödinger equation is now reduced to solving a

set of equations such as (6.35), (6.36)... for every 𝐤 in the first Brillouin zone. For
a given 𝐤, these only contain the coefficients c𝐤, c𝐤+𝐆, c𝐤−𝐆 … , determining only

these coefficients. This means that for a certain 𝐤, the wave function (6.29) also
only contains nonvanishing terms with these coefficients and, therefore, it can be

written as

𝜓𝐤(𝐫) =
∑
𝐆

c𝐤−𝐆e
i(𝐤−𝐆)⋅𝐫 . (6.37)

This is equivalent to

𝜓𝐤(𝐫) = ei𝐤𝐫
(∑

𝐆
c𝐤−𝐆e

−i𝐆⋅𝐫
)
. (6.38)

We now realize that the term in brackets is a Fourier series over the reciprocal

lattice vectors and, therefore, a lattice-periodic function, hence we have proven

Bloch’s theorem.

From this proof, we immediately obtain another important property of the

Bloch functions. If we take (6.37) and shift 𝐤 by an arbitrary reciprocal lattice
vector 𝐆′, we get

𝜓𝐤+𝐆′ (𝐫) =
∑
𝐆

c𝐤−𝐆+𝐆′ei(𝐤−𝐆+𝐆′ )⋅𝐫 =
∑
𝐆′′

c𝐤−𝐆′′ei(𝐤−𝐆
′′)⋅𝐫 , (6.39)

with𝐆′′ = 𝐆 −𝐆′.We still sum over all reciprocal lattice vectors, so this is exactly

the same as the 𝜓𝐤(𝐫) we started with. Therefore,

𝜓𝐤+𝐆′ = 𝜓𝐤(𝐫), (6.40)

and when we insert this in the Schrödinger equation, we get

E(𝐤 +𝐆′) = E(𝐤). (6.41)

The periodicity of the potential in real space translates into a periodicity of the

solutions in reciprocal space, something that we had also seen for the lattice vibra-

tions.

6.4

Nearly Free Electron Model

Our proof of Bloch’s theoremhas also given us a rewritten formof the Schrödinger

equation (6.35). Remarkably, all we need to do in order to determine the electronic

wave functions and their energies for any three-dimensional solid is to find the
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correct coefficients c𝐤, assuming that we already know the potential. The crucial

difficulty is of course that we do not know the potential for real solids.

However, it is most instructive to solve the (6.35) for a one-dimensional solid

with a lattice constant a, assuming a simple potential.The reciprocal lattice for this

solid is spanned by “vectors” of length g = 2𝜋∕a and the potential can be written

as a Fourier series

U(x) =
∑
n

Une
ingx, (6.42)

where the sum runs over all integers. We shall use a very simple potential: U0 can

be set to zero because a constant potential offset does not change anything apart

from a rigid shift of the energy eigenvalues. The only coefficients we are going to

keep are U1 = U−1, and we call them simply U .

We start out by using a very smallU . In practice, this means that we are treating

free electrons but with the symmetry of the lattice. For a given k, we can write

downmany equations of the type (6.35). We require that only ck , ck−g , and ck+g are

different from zero, giving us a set of three equations. At present, there is no jus-

tification for this and we explore the consequences of including more coefficients

and equations further down. We get(
ℏ2(k − g)2

2me

− E

)
ck−g +Uck = 0,(

ℏ2k2

2me

− E

)
ck +Uck−g +Uck+g = 0,(

ℏ2(k + g)2

2me

− E

)
ck+g +Uck = 0. (6.43)

This is a linear systemof equations that has three solutions for every value of k.The

solutions are shown in Figure 6.9a. We find three parabolas that are identical to

the free electron result in Figure 6.3.The parabolas are centered on the reciprocal

lattice points 0, g, and −g. This periodicity is expected from (6.41). The only obvi-

ous problem is that there are no parabolas centered on higher order reciprocal

lattice vectors, such as 2g and −2g, and this is actually caused by the fact that we

have only used three coefficients and three equations in (6.43). We can extend

(6.43) to five equations with five coefficients by also considering ck−2g and ck+2g .

The result of this calculation is shown in Figure 6.9b. It is essentially the same as

in Figure 6.9a, only that we now also have parabolas centered on 2g and −2g (but

still none at the higher reciprocal lattice points). We see that neglecting higher

coefficients has two consequences in the present case: We do not get the correct

result outside the first Brillouin zone and we do not get the correct result in the

first Brillouin zone at high energies, because we lack the parabolas from the neigh-

boring Brillouin zones, which reach back into the first Brillouin zone. In any case,

the result is very much like the free electron result, but it also fulfills the symme-

try requirement (6.41) imposed by the lattice, at least to some extent. If we only

concentrate on the first Brillouin zone, the periodicity (6.41) has the effect that the

parabolas appear to be back-folded at the Brillouin zone boundary, such that the
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Figure 6.9 Electronic states in the nearly
free electron model for a one-dimensional
chain with unit cell length a. (a) Solutions for
three equations (6.43), using a nearly van-
ishing U = U1 = U−1. (b) Solutions of five
equations similar to (6.43), using a nearly
vanishing U = U1 = U−1. (c) Same as (b) but

for a larger value of U. (d) Same as (b) but
for larger values for both U1 = U−1 and U2 =

U−2. The gray bars symbolize the ranges
where a quasi-continuum of energies is avail-
able (bands). In between these, there are
band gaps.

second lowest band in the first Brillouin zone is essentially the same band as the

first, but originating in the neighboring zone.

What happens when we now turn on the lattice potential U? This is shown in

Figure 6.9c, again for the case of five equations of the type (6.35).Themain conse-

quence of the finiteU is the opening of gaps between the parabolas at the Brillouin

zone boundary; the other states are largely unaffected and appear still very much
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free electron like. However, this is a major change from the free electron model

because it means that the solid no longer has a continuum of states from the low-

est energy to infinity. In fact, we obtain a band gap, a range of energies for which

there are no states at all.

The effect of turning on higher order contributions of the potential is shown in

Figure 6.9d. Here, not onlyU1 = U−1 but alsoU2 = U−2 are chosen to have a finite

value.Themain effect of a finiteU2 = U−2 is an additional gap opening, now at the

crossing points of the parabolas at higher energies at the center of the Brillouin

zone (k = 0).

Quite generally, the solution to a systemof equations like (6.43) gives us n energy

eigenvalues for every value of k, or n relations of the type En(k). n runs over all

positive integers and k over the values consistent with the periodic boundary con-

ditions. The relations En(k) are the dispersion relations for the electronic states

and usually called the electronic band structure of the solid. In this context, n

plays the role of a band index. In Figure 6.9d, for example, we see the two lowest

bands and a part of the third band.

𝐤 can still be interpreted as the wave vector of the Bloch wave, but we can also
view it as a quantum number of the electronic states, in complete analogy with

the role of 𝐤 in the case of the lattice vibrations. Compare the situation to atomic
physics. There n, the main quantum number, specifies the shell containing the

electrons.The other quantumnumbers l andm are the parameters of the spherical

harmonics functions, which describe the angular part. In this sense, l and m are

quantum numbers that are related to the spherical symmetry of the atom. In the

solid, the symmetry is given by the periodic lattice and 𝐤 can be viewed as the
quantum number related to this symmetry.

We have now two different interpretations of 𝐤. It can be viewed as the wave
vector of the Bloch wave or as a quantum number describing the state containing

the electron. It is also very tempting also to interpret ℏ𝐤 as the momentum of the
electron, as in the case of free electrons. But this is wrong. This can be seen quite

easily.We apply themomentum operator−iℏ∇ on the Bloch wave (6.26) to obtain

−iℏ∇𝜓𝐤(𝐫) = ℏ𝐤𝜓𝐤(𝐫) − ei𝐤⋅𝐫 iℏ∇u𝐤(𝐫). (6.44)

We see thatℏ𝐤 is only an eigenvalue to themomentumoperatorwhenu𝐤(𝐫) is con-
stant, that is, when the Bloch wave is a free electron wave. In fact, we already know

thatℏ𝐤 cannot be themomentumof a Blochwave because the states do not change
if we add or subtract a reciprocal lattice vector (see (6.40) and (6.41)), something

that we have also seen in the discussion of phonons. However, ℏ𝐤 is still a useful
quantity because conservation rules for 𝐤 apply for scattering processes in solids.
Instead of simply “momentum”, ℏ𝐤 it is called the crystal momentum. In contrast

to regular momentum that is completely conserved, crystal momentum can only

be conserved within a reciprocal lattice vector. As an example, consider a process

in which an electron with energy E and wave vector 𝐤 is scattered by absorb-
ing a phonon with ℏ𝜔 and 𝐪. The scattered electron has an energy E + ℏ𝜔 and

a wave vector 𝐤 + 𝐪 +𝐆. Therefore, we have a conservation of crystal momentum
(or wave vector sum) that is very similar to momentum conservation. We will
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Figure 6.10 Qualitative explanation for the
gap openings at the Brillouin zone bound-
ary. Shown are the probability densities for
two possible standing electron waves with
k corresponding to the zone boundary 𝜋∕a.

These are either accumulated or depleted in
the vicinity of the ion cores compared to a
traveling free electron wave that has a con-
stant probability density.

understand the meaning of 𝐤 somewhat better when we discuss the transport of
electricity via Bloch states.

The occurrence of energy gaps at the Brillouin zone boundary can also be

made plausible by a very simple argument. Consider a free electron traveling

perpendicular to a set of lattice planes separated by a distance a. If x is the

direction perpendicular to the planes, the electron has the wave function

𝜓(x) ∝ eikx in this direction, that is, it behaves like a plane wave with a wavelength

𝜆 = 2𝜋∕k. Such a wave fulfills the Bragg condition (1.3) for a value of k = n𝜋∕a.

This means that the lattice will reflect the wave back to some degree. Since the

solid is very big, the amplitude of the back-reflected wave will eventually be the

same as for the forward-moving wave, so that the total wave function has the

form 𝜓(x) ∝ eikx + Ae−ikx with |A| = 1. The left/right symmetry of the crystal
assumed to be present here also requires A to be real and so there are two

possible results:

𝜓(+) ∝ ei(𝜋∕a)x + e−i(𝜋∕a)x = 2 cos
(
𝜋

a
x
)
, (6.45)

𝜓(−) ∝ ei(𝜋∕a)x − e−i(𝜋∕a)x = 2i sin
(
𝜋

a
x
)
. (6.46)

Both represent standing electrons waves. Their probability densities |𝜓(+)|2
and |𝜓(−)|2 are shifted with respect to the positive ion potential, as shown
in Figure 6.10. 𝜓(+) shows an accumulation of probability near the ion cores,

whereas 𝜓(−) shows a depletion. Therefore, 𝜓(+) has a lower energy than 𝜓(−)

even though both have the same wave vector k = n𝜋∕a. 𝜓(+) and 𝜓(−) thus

correspond to the solution just below and above the energy gap at the Brillouin

zone boundary, respectively. Note that these probability densities are quite

different from the case of a free electron wave where |𝜓|2 it is constant.
When discussing lattice vibrations, we have stated that the group velocity of the

lattice waves is given by d𝜔∕dk, where 𝜔 is the frequency of the wave and k the

wave vector. This expression for the group velocity is of very general character in
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the theory of waves, and it can be shown that it also holds for Bloch waves. There

it is convenient to write it as

vg =
d𝜔(k)

dk
=
1

ℏ

dE(k)

dk
. (6.47)

In other words, the group velocity is given by the slope of the bands. If we now

consider Figure 6.9c and d, we see that the group velocity of the bands with a

finite periodic potential is zero at the Brillouin zone boundaries. This means that

we have standing waves there, perfectly consistent with the argument we have just

made. Note that a group velocity of zero has to be seen in a quantum mechanical

sense. If we could measure the velocity vg of an electron wave packet at the zone

boundary, the expectation value would be zero, so we could not say if it moves to

the right or the left side. However, this does not mean that the electron does not

move. The expectation value for the kinetic energy is not zero.

6.5

Tight-binding Model

We have started this chapter by discussing a qualitative model for the electronic

structure of solids in which atomic energy levels from very many atoms were

combined to give a continuous band of states. For a quantitative description,

however, we have abandoned this picture and treated the electrons first as entirely

free and then as nearly free. This did indeed lead to a quasi-continuous distribu-

tion of energy levels with gaps in between them.We now return to the description

that starts with atomic states by constructing a Bloch wave function through a

linear combination of atomic orbitals. This method is known as the tight-

binding approach. The nearly free electron approach from the last section

is a more natural starting point to describe metals, while the tight-binding

approach is the obvious starting point for covalently bonded crystals or for the

more localized electrons in metals, such as the d electrons in transition metals.

Eventually, both are mere approximations and refining them will lead to the same

result from both ends. But discussing the tight-binding approach here gives us

some deeper insight into the meaning of the band structure of solids.

We sketch the tight-binding approximation in its simplest form. We start with

the Hamiltonian for the atoms making up the solid (considering only one kind of

atom for simplicity). It is given by

Hat = −
ℏ2∇2

2me

+ Vat (𝐫), (6.48)

where Vat is the atomic one-electron potential. Atoms have different energy levels

En and corresponding wave functions. When we put the atoms together to form

a solid, we expect that each energy level turns into a band in the solid. We could,

for example, think of the Na atoms from the beginning of the chapter and con-

sider the band that is derived from the 3s state with the energy E3s and the wave

function 𝜙3s(𝐫).
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If we have an atom on every point 𝐑 of the Bravais lattice, the Hamiltonian for
the solid can be written as

Hsol = −
ℏ2∇2

2me

+
∑
𝐑

Vat (𝐫 − 𝐑) = −
ℏ2∇2

2me

+ Vat(𝐫) +
∑
𝐑≠0

Vat(𝐫 − 𝐑). (6.49)

The first term is the kinetic energy of the single electron we consider; the second

is the sum of the atomic potentials of all the atoms in the solid. The potential in

this Hamiltonian has the periodicity of the lattice, as it must. The right-hand side

of the equation shows that we can split this potential up in any way we like, for

example, as the potential of the atom at the origin Vat(𝐫) plus the potential of the
rest of the solid. This can also be written as

Hsol = −
ℏ2∇2

2me

+ Vat (𝐫) + v(𝐫) = Hat + v(𝐫), (6.50)

where

v(𝐫) =
∑
𝐑≠0

Vat (𝐫 − 𝐑). (6.51)

This can be viewed as the Hamiltonian for an atom at the origin plus some cor-

rection potential from all the other atoms. Consider the situation in which the

atoms are quite far from each other. In this case, we can try to use the atomic wave

functions 𝜙n(𝐫) belonging to the atomic energy levels En to calculate the energy

eigenvalues of the solid. We obtain

∫ 𝜙∗
n
(𝐫)Hsol𝜙n(𝐫)d𝐫 = En + ∫ 𝜙∗

n
(𝐫)v(𝐫)𝜙n(𝐫)d𝐫 = En − 𝛽, (6.52)

where −𝛽 is a small shift of the atomic energy level due to the presence of the

other atoms’ potentials. If the atoms are sufficiently far away from each other, 𝛽 =

0 because the wave function 𝜙n(𝐫) will have dropped to zero before the potential
v(𝐫) from the neighboring atoms at 𝐑 ≠ 0 becomes appreciably larger than zero.
It is easy to see that the atomic wave function centered on any other site 𝐑 will
also solve the Schrödinger equation for the Hamiltonian (6.49).Wemerely have to

rewrite theHamiltonian such that it is centered on the atom at𝐑 plus the potential
from all the other atoms. So, the result of this treatment is that, for a solid of N

atoms, we obtainN degenerate solutions for every energy eigenvalue of the atomic

Hamiltonian. This is of course what one would expect if the atoms are placed so

far from each other that they do not interact. The “band structure” of this result

would be consisting of a “band” at the energy En with no dispersion at all.

We now discuss the more interesting situation where there is some interaction

between the neighboring atoms. We write the wave function of the solid as linear

combination of the atomic wave functions on every lattice site 𝐑

𝜓𝐤(𝐫) =
1√
N

∑
𝐑

c𝐤,𝐑𝜙n(𝐫 − 𝐑). (6.53)

The usefulness of normalization factor 1∕
√
N will become apparent later. The

coefficients c𝐤,𝐑 are yet to be determined. They will depend on the wave vec-

tor 𝐤. It might not be entirely correct to use the atomic wave functions 𝜙n(𝐫 − 𝐑)
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here because the presence of the other atoms could modify these wave functions

slightly. We choose to ignore this for simplicity.

The coefficients c𝐤,𝐑 are now determined by the requirement that (6.53) must

have the character of a Bloch wave if it is to be a solution of (6.49).This is achieved

by choosing the coefficients such that (6.53) turns into

𝜓𝐤(𝐫) =
1√
N

∑
𝐑

ei𝐤⋅𝐑𝜙n(𝐫 − 𝐑), (6.54)

where 𝐤 takes the values permitted by the periodic boundary conditions (6.5).This
wave function fulfills the Bloch condition as stated in (6.28) because

𝜓𝐤(𝐫 + 𝐑′) =
1√
N

∑
𝐑

ei𝐤⋅𝐑𝜙n(𝐫 − 𝐑 + 𝐑′)

=
1√
N
ei𝐤𝐑

′
∑
𝐑

ei𝐤⋅(𝐑−𝐑
′ )𝜙n(𝐫 − (𝐑 − 𝐑′))

=
1√
N
ei𝐤𝐑

′
∑
𝐑′′

ei𝐤⋅𝐑
′′

𝜙n(𝐫 − 𝐑′′) = ei𝐤⋅𝐑
′

𝜓𝐤(𝐫), (6.55)

where 𝐑′′ = 𝐑 − 𝐑′.

We now use this wave function to calculate the desired band structure E(𝐤),
using the same approach as for the hydrogen molecule (2.6). For now, we assume

that the wave functions are already normalized so that

E(𝐤) = ∫ 𝜓∗
𝐤 (𝐫)Hsol𝜓𝐤(𝐫)d𝐫

=
1

N

∑
𝐑,𝐑′

ei𝐤⋅(𝐑−𝐑
′) ∫ 𝜙∗

n
(𝐫 − 𝐑′)Hsol𝜙n(𝐫 − 𝐑)d𝐫, (6.56)

where both summations run over all the lattice sites andwhilewe have a finite solid

in mind, it should still be a solid in the sense of the periodic boundary conditions,

that is, even if we are close to a “surface”, the solid should periodically continue on

the other side of this surface. Therefore, all the sums for a particular choice of 𝐑′

are the same and we can get rid of the double summation by recognizing that we

have N such sums. If we arbitrarily set 𝐑′ = 0, we obtain

E(𝐤) =
∑
𝐑

ei𝐤⋅𝐑 ∫ 𝜙∗
n
(𝐫)Hsol𝜙n(𝐫 − 𝐑)d𝐫. (6.57)

Using (6.52), we can write this as

E(𝐤) = En − 𝛽 +
∑
𝐑≠0

ei𝐤⋅𝐑 ∫ 𝜙∗
n
(𝐫)Hsol𝜙n(𝐫 − 𝐑)d𝐫. (6.58)

With (6.50), the integral in the above expression can now be split up into

∫ 𝜙∗
n
(𝐫)Hsol𝜙n(𝐫 − 𝐑)d𝐫

= En ∫ 𝜙∗
n
(𝐫)𝜙n(𝐫 − 𝐑)d𝐫 + ∫ 𝜙∗

n
(𝐫)v(𝐫)𝜙n(𝐫 − 𝐑)d𝐫. (6.59)
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At this point, one usually neglects the first integral on the right-hand side because

it contains two wave functions on different lattice sites and these have very little

overlap. The second integral on the right-hand side is also small (for the same

reason) but often not quite as small because the potential v(𝐫) falls less rapidly
to zero when going away from 𝐑 and, therefore, v(𝐫)𝜙n(𝐫 − 𝐑) is increased in the
region where it overlaps with 𝜙∗

n
(𝐫). We introduce the abbreviation

𝛾(𝐑) = −∫ 𝜙∗
n
(𝐫)v(𝐫)𝜙n(𝐫 − 𝐑)d𝐫, (6.60)

and obtain the final expression for the band structure from (6.58)

E(𝐤) = En − 𝛽 −
∑
𝐑≠0

𝛾(𝐑)ei𝐤⋅𝐑. (6.61)

This describes how the atomic En level turns into a band when the atoms are

arranged in a crystalline lattice.

We now determine this band structure for a one-dimensional chain of atoms

with lattice spacing a, assuming that the band is derived from atomic s-orbitals

with an energy Es. Technically, (6.61) requires a summation over all the lattice

sites. However, since the wave functions fall off very rapidly away from the site 𝐑
they are centered on, it is sufficient to neglect all the contributions in the sum

that involve lattice vectors more than one unit cell away from the origin. We thus

restrict the sum (6.61) to only the nearest neighbors of an atom at +a and −a.

Moreover, since the atomic s-wave functions are spherically symmetric, we know

that 𝛾s = 𝛾(−a) = 𝛾(a) and obtain

Es(𝐤) = Es − 𝛽s − 𝛾s(e
ika + e−ika) = Es − 𝛽s − 2𝛾s cos ka, (6.62)

where 𝛽s is the value of 𝛽 calculated for this s-band. This result is the lowest band

plotted in Figure 6.11. The s-band has its lowest energy at k = 0 and its highest

at k = 𝜋∕a, that is, at the Brillouin zone boundary. Note that this dispersion

is remarkably similar to the lowest band in the nearly free electron result in

Figure 6.9d, despite of the totally different approach to calculate it. The center of

the band is shifted away from the atomic energy Es by −𝛽s. Usually, this shift is

quite small.

The extension of this to other atomic energy levels is straightforward and

the result for the next band, derived from an atomic p-level, is also shown

in Figure 6.11. Again, this is very similar to the nearly free electron result in

Figure 6.9(d). We also find a band gap at k = 𝜋∕a. The size of this gap is given by

the separation of the s- and p-levels, by difference in the shifts 𝛽s and 𝛽p, and the

width of the two bands.

It is interesting to consider the factors influencing the absolute energy width of a

band. In our one-dimensional model, the width is given by 2𝛾s, where the factor of

2 stems from the number of nearest neighbors and 𝛾s from the overlap of the wave

functions and the potential. A high coordination number of the atoms, as typically

present in the close-packed structures of metals, thus leads to a large band width.

The value of 𝛾s is usually even more significant for the width of the band because

of the very strong decay of the wave functions away from the nucleus. For a given
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Figure 6.11 Bands for a one-dimensional
solid calculated in the tight-binding approx-
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Bloch wave functions for the s- and p-band
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bolize the position of the nuclei and the two
different shades of gray symbolize the sign
of the wave function.

structure, an atomic wave function that is stronger localized near the nucleus will

lead to a significantly narrower band than a wave function that is less localized.

An atomic 3d level, for instance, leads to a much narrower band than an atomic 4s

level, even though the atomic levels are very similar in energy. An extreme case of

a localized wave function would be the innermost (1s) level of a heavy atom. The

1s wave functions of neighboring atoms do not at all overlap in the solid and the

1s-derived band has a width approaching zero, that is, it is totally flat: It retains its

atomic, localized character.

Finally, it is instructive to picture the Bloch wave functions (6.54) in the tight-

bindingmodel. Figure 6.11 shows these Blochwaves for the s-band and the p-band

at k = 0 and at the Brillouin zone boundary k = 𝜋∕a. For k = 0, the exponentials in

(6.54) are all unity and𝜓𝐤(𝐫) is thusmerely a sum over the orbitals on all the lattice
sites. For the s-orbitals, this leads to an increase of probability density in between

the atoms, that is, to a kind of “bonding molecular orbital.” For k = 𝜋∕a, the expo-

nentials in (6.54) give rise to a sign change when moving one lattice constant a

along the chain.This is symbolized by light gray (positive) and dark gray (negative)

localized wave functions. This, in turn, leads to a probability density depletion in

between the atoms, that is, to an “antibondingmolecular orbital.”This is consistent

with the energies in the s-band: The energy for the bonding state at k = 0 is low

and the energy for the antibonding state at k = 𝜋∕a is high. The opposite is true

for the p-band.The sign of an atomic p-wave function changes under spatial inver-

sion (it has an odd parity) and, therefore, adding the p-orbitals in phase for k = 0

leads to an antibonding state. Adding them with a sign change on every other site

(for k = 𝜋∕a) leads to a bonding state. Again, this is consistent with the calculated

dispersion. We can also link this picture to the interpretation of the nearly free

electron model wave functions near the Brillouin zone boundary in Figure 6.10.
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The wave function 𝜓(+) that has the lower energy at k = 𝜋∕a corresponds to the

s wave function here, consistent with the probability density accumulation near

the ion cores. The wave function 𝜓(−) that gives rise to the higher energy state at

k = 𝜋∕awith its probability density node at the ion cores corresponds to a pwave

function that also has a node there. Note that this comparison is only qualitative,

that is, the total probability densities in the nearly free electron model and in the

tight-binding model are not at all the same, but it illustrates the consistency of the

pictures.

6.6

Energy Bands in Real Solids

Nowwe are in a position to understand the electronic band structure in real mate-

rials and in three dimensions, at least qualitatively. In our one-dimensional mod-

els, we introduced two different ways of including a lattice-periodic potential.

First, we started with free electrons and included the potential as a weak perturba-

tion, arguing that this point of view is particularly appropriate for the nearly free

electrons inmetals.Then,we derived a very similar band structure by constructing

Bloch wave functions from localized atomic orbitals, an approach that appears to

bemore natural for covalently bonded solids withmore localized states. However,

we have to keep inmind that both approaches are just very simplemodels that help

us to understand the origin of band structure. In amore refined and accurate form,

both should ultimately lead to the same predictions for the band structure.

In both pictures, we have seen that a lattice-periodic potential has two main

effects. The first is the symmetry in the bands (6.41), which allows us to consider

the dispersion in the first Brillouin zone only, because it is identical around the

other points of the reciprocal lattice. This symmetry also causes a back-folding

of the bands at the Brillouin zone boundary. The second effect is gap openings

between bands that had been degenerate in the free electron model.

For three-dimensional materials, these effects are very similar, but the three-

dimensional character of the problem makes it sometimes harder to keep the

overview. The band energy now depends on a three-dimensional 𝐤 and the Bril-
louin zone looks more complicated, too. As in the case of vibrational properties,

we only discuss materials with an fcc Bravais lattice.

Figure 6.12 shows the energy bands of aluminum, a simplemetal with only s and

p electrons. The situation is still very similar to the free electron case. Consider

first the dispersion in only one direction, as shown in Figure 6.12a.The dispersion

is shown from the Γ to the X point at the Brillouin zone boundary and beyond

into the next zone, reaching Γ again and so on. At theX point, a gap is opened and

above the gap another band is dispersing back toward the Γ point. This band can

easily been recognized as the band stemming from the center of the next Brillouin

zone, as in the one-dimensional model in Figure 6.9. The only difference between

the two figures is the energy scale. In the one-dimensional model, we have cho-

sen the energy zero to be the bottom of the band. This appears to be the natural
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Figure 6.12 (a) Electronic energy bands in
Al along the Γ − X direction only. The inset
shows the first Brillouin zone. (b) Energy
bands in different directions given by the
dashed path between high-symmetry points
of the Brillouin zone. The horizontal dashed

line represents the fictitious Fermi energy for
aluminum with the same structure but only
one valence electron instead of three. Band
structure taken from Levinson, Greuter, and
Plummer (1983).

choice because it corresponds to the kinetic energy zero of the electrons. We are,

however, completely free to change the origin of the energy scale. In metals, one

almost always chooses the Fermi energy as E = 0, and this choice is also made in

Figure 6.12.

The band structure of solids can be determined experimentally by angle-

resolved photoemission spectroscopy. In this experiment, the sample is exposed

to monochromatic ultraviolet photons and electrons are emitted because of the

photoelectric effect. The emitted electrons are sorted according to their 𝐤-vector
and energy, and from this it is possible to work back to 𝐤 and the energy inside the
sample, that is, to the band structure. The cover illustration of this book displays

the experimental equivalent to Figure 6.12a.

Figure 6.12b shows the bands of Al in different high-symmetry directions in

the first Brillouin zone. The continuation into the next zones, as in Figure 6.12a,

is usually not shown to avoid redundancy. We can recognize the back-folding of

bands from the neighboring zones and the opening of band gaps at the Brillouin

zone boundaries. In fact, the band structure of aluminum can be described very

well in the nearly free electron picture. It only appears complicated because of the

bands appearing from the neighboring zones in three dimensions. The bands are
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filled up to the Fermi energy. There are many bands crossing the Fermi energy,

which means that the electrons in the occupied states just below the Fermi energy

can be excited to states within the same band just above the Fermi energy. In this

way, they can contribute to the transport of electric and thermal current.

Aluminum has three electrons per unit cell. These electrons have been filled

into the bands, and this results in a separation of the Fermi energy from the band

bottom of about 12 eV. What would happen if we had only one electron per unit

cell? The Fermi energy would lie much lower, approximately at the dashed line in

Figure 6.12b. In this case, the situation would be evenmore free-electron-like:The

bands would cross the Fermi energy at the same k distance from Γ in all directions,

and the electronic states at the Fermi energy would therefore constitute a sphere

in k-space. This is exactly the same as in the case of the free electron model.

We can now turn back to the initial question in this chapter:What characterizes

a metal as opposed to a semiconductor? Fromwhat is said above, we would define

a metal as a solid where bands cross the Fermi energy, such that the energy of the

electrons in these bands can be increased by a very small amount. Is this definition

consistent with the band structure of typical semiconductors/insulators? To see

this, we look at the band structures of Si and GaAs in Figure 6.13. Both have the

same Brillouin zone shape as Al. The bands for these materials look considerably

more complicated than those for the nearly free electrons or aluminum. However,

we can still recognize several features. For the very lowest energies, the bands

still look like parabolas. Band gap openings at the Brillouin zone boundaries and

back-folded bands can also be identified. But the electronic structure of both

materials differs from that of Al in two important ways. The first is the existence

of an absolute band gap, emphasized by a gray area in the figure. “Absolute”

means that this is not just a gap opening at some Brillouin zone boundary. It is a
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gap in the entire Brillouin zone; there are no states at any 𝐤 in the gray regions.
The second remarkable difference to Al is seen when filling the states with the

available electrons: When the states are occupied according to the Pauli principle,

the bands below the gray band gap are exactly filled, there are no electrons left for

the bands above the gap. Where this places the Fermi energy or, more precisely,

the chemical potential is a subtle question that we address in the next chapter.

Already now, we can say that it will be somewhere inside the gap region.The zero

of the energy scale can still be set in an arbitrary way, and for semiconductors,

it is often placed at the top of the occupied states. We can certainly state that

these materials are not metals in the sense of the definition made above: There

are no bands crossing the Fermi energy and no electrons that could increase their

energy by a small amount in order to participate in electrical conduction. In fact,

if the energy of an electron is to be increased, it must at least be increased by the

energy corresponding to the size of the gap.

An even simpler picture for seeing the difference between metals and insu-

lators/semiconductors emerges when we look at their density of states, as in

Figure 6.14. For free electrons, we have calculated the density of states to be

proportional to the square root of the energy (Figure 6.14a). For the nearly free
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electron model or the tight-binding model, the density of states must be more

complicated than this. Gaps appear in the band structure at the Brillouin zone

boundaries, and this can (but need not) lead to absolute gaps in the bands.

Such a more complicated density of states with an absolute band gap is shown

in Figure 6.14b. Now the difference between a metal and a semiconductor/

insulator depends on how many electrons we have to fill into these states. If

the highest energy we fill up to lies at a finite density of states, the solid is a

metal (Figure 6.14c); if we just manage to fill the states up to a gap, the solid is

a semiconductor/insulator (Figure 6.14d). Note that we have so far avoided to

define the difference between a semiconductor and an insulator. We will address

this in the next chapter.

Can we predict if a material is a metal or a semiconductor/insulator, starting

from the known crystal structure? In the picture discussed here, a material has to

be a metal if a band is only partially filled with electrons. With a given number

of valence electrons per unit cell, how many bands can we fill? It turns out that

one band can accommodate exactly two electrons per unit cell, one for each spin

direction. You can derive this important result formally in Problem 6.7, but also

note that it is perfectly consistent with the very simple picture of bonding we had

developed for a cluster of Na atoms in Section 6.1: There are as many states in the

band as there are unit cells (or atoms in the cluster) and each state can accom-

modate 2 electrons. Hence, we would expect a material with an odd number of

electrons per unit cell (such as Na) to be a metal. Another example is Al that crys-

tallizes in the fcc structure. The structure has one atom per unit cell and Al has

three valence electrons per atom; hence, there are three valence electrons per unit

cell. Two of these can completely fill one band, leaving another band half-filled.

Thus, we would expect Al to be a metal. This is of course true and also consistent

with Figure 6.12. The figure also shows the position of the Fermi energy for the

fictitious case of Al with only one valence electron. Following the same argument,

this would also be a metal. Note, however, that the reverse argument is not valid:

An even number of valence electrons per unit cell does not imply that the mate-

rial is a semiconductor/insulator. The reason for this is that the electrons could

be distributed into different bands in the three-dimensional band structure. Two

electrons per unit cell, for example, could be either placed in one completely filled

band, giving rise to a semiconductor /insulator, or in two different bands that over-

lap in energy.This latter case would result in two partially filled bands and thus in

a metal, despite the even number of electrons.

We can use the case of graphene to illustrate these ideas further, and we will

also see that graphene has some very special electronic properties, placing it at

the boundary between ametal and an insulator.The bonding and electronic struc-

ture of graphene are shown in Figure 6.15. Carbon has four valence electrons (two

2s and two 2p electrons). Bonding in the honeycomb structure of graphene (see

Figure 1.7a) is mainly achieved by an sp2 hybridization between the s and px,y
states to form strong 𝜎 bonds.The remaining pz orbitals stick out of the plane and

form 𝜋 bonds. The 𝜎 and 𝜋 bonds are shown in Figure 6.15a and b, respectively,

and the corresponding bands are shown in Figure 6.15c.
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Figure 6.15 Origin of the electronic energy
bands for graphene. (a) sp2 hybrid orbitals
giving rise to 𝜎 bonds. (b) pz orbitals giv-
ing rise to 𝜋 bonds. (c) Band structure taken
from Kogan and Nazarov (2012) (not all the

unoccupied bands are shown). (d) Two-
dimensional first Brillouin zone. (e) Density
of states in the immediate vicinity of Fermi
energy. (f ) Occupied density of states at
T = 0 K (gray area).

Let us see if this band structure is consistent with the electron counting

arguments presented above. Each carbon atom contributes with three electrons

to the 𝜎 bonds and with one electron to the 𝜋 bond. Graphene has two atoms per

unit cell, that is, a total of six 𝜎 and two 𝜋 electrons. The six 𝜎 electrons can fill

three bands completely (two electrons per band) and the two 𝜋 electrons can fill

one band.This is also seen in the band structure. In total, we have four completely

occupied bands and graphene could thus be an insulator/semiconductor. The

curious thing about graphene is that there is no band gap between the occupied

𝜋 band and the unoccupied 𝜋∗ band. These bands meet exactly at the corner

of the hexagonal, two-dimensional Brillouin zone, which is called the K point

(see Figure 6.15d). The density of states and the density of occupied states in

the vicinity of EF are shown in Figure 6.15e and f, respectively. For energies

close enough to EF , the dispersion of the 𝜋 and 𝜋∗ bands is linear and this,

together with the fact that graphene is two-dimensional, gives rise to a density

of states that is linear as a function of energy (see Problem 6.2). The density

of states goes exactly to zero at EF , but there is no gap. If we define a metal

as a material where the chemical potential (or Fermi energy) lies at an energy

where the density of states is finite, then graphene is not a metal. On the other

hand, graphene does not have band gap between the highest occupied and the

lowest unoccupied states, as one finds in the case of an insulator/semiconductor.
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Therefore, graphene is often called either a semimetal or a zero band gap

semiconductor.

6.7

Transport Properties

We finally arrive at the description of transport in the quantum mechanical

model, and we will confine the discussion to the transport of electrical charge.

The transport of heat via electrons proceeds along similar lines, and we have

some idea about the relation of electrical and thermal conductivity through

the Wiedemann–Franz law. The transport properties of solids are a formidably

complicated problem, and we just give some very basic ideas about what is

happening. These ideas can be presented by considering a one-dimensional solid.

When inspecting the Bloch wave (6.26), we see that it describes a modulated

plane wave that is delocalized over the whole crystal, very much like a free elec-

tron. In fact, introducing the periodic potential of the ions into the Schrödinger

equation does not lead to any scattering. This is an extremely remarkable result:

When discussing the shortcomings of the Drude model, we have asked how the

electrons can manage to have a very long mean free path at low temperatures

and to sneak past all the ions, completely incompatible with Drude’s assump-

tions. Now we see why. A Bloch electron does not scatter off the lattice ions at all.

Consequently, the electrical conductivity of perfectly crystalline metals should be

infinite.3) This is obviously not the case, and theremust be some scatteringmecha-

nism for the Bloch electrons as well.Wewill discuss possible candidates at the end

of this section. For now, we merely assume that there is some scattering present,

which gives rise to a finite relaxation time 𝜏 . Note that the situation is very simi-

lar to the transport of heat in a harmonic crystal. Phonons, which are packets of

harmonic waves, can propagate undisturbed through the crystal, and we had to

invoke some effects (like defects) to obtain a finite thermal conductivity.

When discussing an electron traveling through a crystal, the Bloch waves are

not an appropriate picture, precisely because they are delocalized over the whole

solid. We use the same approach to describe a localized particle as in the case of

lattice vibrations: We think of an electron traveling through the crystal as a wave

packet, that is, as a superposition of Bloch waves within a certain Δk close to the

k of interest (see Problem 6.12)4). Such a “particle” has a group velocity vg given by

(6.47), and we can arrive at a quasi-classical description of electrical conduction.

Consider a particle with a velocity vg and a charge−e in an electric field  . After
a short time dt, the particle has increased its kinetic energy by

dE = −evgdt. (6.63)

3) This is actually not quite true. In a metal without scattering, one would observe the so-called Bloch

oscillations. The Bloch oscillations are discussed in an online note on www.philiphofmann.net.

4) This is also discussed in the online note on phase velocity and group velocity on www.

philiphofmann.net.

http://www.philiphofmann.net
http://www.philiphofmann.net
http://www.philiphofmann.net
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Figure 6.16 Simple picture of conduction in
a metal. The circles symbolize filled electron
states at the allowed k points. (a) Situation
for a partially filled band without an applied
field. (b) Situation for a partially filled band
with an applied electric field. After some
time 𝛿t, all electrons have moved by an
amount 𝛿k due to the applied field. The
asymmetric distribution in the electrons’

group velocity gives rise to an electric cur-
rent. The electrons at kF can be scattered
back to lower lying states at −kF with a
probability proportional to the inverse relax-
ation time. (c and d) Corresponding situation
for a completely filled band without and
with electric field. All electrons are merely
moved into states that had been occupied
already in the field-free case.

On the other hand, we have

dE

dt
=

dE

dk

dk

dt
, (6.64)

and combining this with (6.47), we get

ℏ
dk

dt
= −e . (6.65)

This equation is quite plausible from the case of free electrons, where themomen-

tum is p = ℏk, but we have already shown that ℏk is not the momentum for Bloch

electrons. Nevertheless, the equation is correct. It means that an electric field

causes the Bloch electrons to change their k, and the rate of change is given by

the field strength.

The situation for a partially filled band is shown in Figure 6.16a,b. Without an

applied field, the distribution of electrons is symmetric. When the field is turned
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on, the electrons will have changed their k by dk after some short time dt, giving

rise to the more asymmetric distribution in Figure 6.16b. Equation (6.65) suggests

that the distribution would become increasingly asymmetric with time. In reality,

however, there will be an inelastic scattering mechanism with a relaxation time 𝜏 ,

which prevents this fromhappening. Such a process, shown in Figure 6.16b, brings

the accelerated electrons close to kF to unoccupied states at lower energy, close

to −kF . The combination of field acceleration and inelastic scattering leads to a

stationary state in which all the electrons are displaced by some 𝛿k. In most cases,

𝛿k will be small compared to the size of the Brillouin zone.The inelastic scattering

also leads to an energy dissipation and thus to a finite resistance.

According to (6.47), the asymmetric distribution in k corresponds to an asym-

metric distribution of the group velocities of the electrons as well.While thewhole

distribution has been moved by 𝛿k, most electrons have ended up in states that

had been occupied by other electrons before and nothing has changed. The only

points where the change is important are around the Fermi energy crossings −kF
and kF . In Figure 6.16b, the asymmetry of the distribution implies that there are

more electrons with a group velocity to the right than to the left, that is, there is an

electric current flowing. Obviously, the size of the current depends on the group

velocity of the electrons at the Fermi energy.

Figure 6.16c and d illustrate the situation for electrons in a full band. As the

field is applied, these electrons are also moved by a certain 𝛿k. But this does not

change the situation at all because all electrons move into states that were also

occupied before the field was turned on: The full band does not contribute to the

conduction. Note that this is perfectly consistent with the fact that ℏk cannot be

interpreted as the momentum of the Bloch electrons. Here, we increase ℏk for

all electrons but the average momentum is obviously still zero. The picture is also

consistent with our previous definition ofmetals and insulators. In an insulator, all

the bands are completely full and hence no current can be passed through it. An

exotic exception to this rule is graphene.Wehave seen in Figure 6.15 that graphene

has four filled bands. We might not expect these to contribute to a conductance,

but experimentally graphene is found to be one of the best conductors there is at

room temperature. The reason is the missing gap between the 𝜋 band and the 𝜋∗

band. The electrons from the 𝜋 band can move directly into the 𝜋∗ band when

accelerated.

It is quite instructive to combine (6.65) with (6.47) in the following way. Con-

sider the acceleration of an electron initially traveling with the group velocity vg :

a =
dvg

dt
=
1

ℏ

d

dt

dE(k)

dk
=
1

ℏ

d2E(k)

dk2
dk

dt
. (6.66)

If we substitute (6.65) for dk∕dt in the last term, we get

a = −
1

ℏ2
d2E(k)

dk2
e . (6.67)

This looks exactly like a classical equation of motion, if we define that the particles

have a so-called effective mass
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m∗ = ℏ2
(
d2E(k)

dk2

)−1

. (6.68)

The concept of the effective mass may appear rather artificial at first, but it allows

us to describe the conduction by a classical equation of motion, as in the Drude

model. The only effect of the solid is that it can change the effective mass of the

electrons. This effect can be dramatic: The effective mass can be much smaller or

much bigger than the free electron mass. It can also be negative (see Section 7.1.1

for a more detailed discussion of this case). For free electrons, the effective mass

is of course equal to the electron mass me (see Problem 6.11). Again, the situa-

tion of graphene is somewhat exotic: The band structure in Figure 6.15c shows

that the dispersion E(k) is linear in the vicinity of the Fermi energy. If this is so,

d2E(k)∕dk2 = 0 and applying the definition of (6.68) would lead to a divergent

effective mass, something that could perhaps suggest that graphene has a very

high resistivity. Quite the opposite is the case and the reason for this confusion is

a limitation of (6.68).5)

The concept of the effective mass brings us back to the Drude formula for

the electrical conductivity (5.9). If we treat conductivity in a quantum model,

starting out with an expression like (6.67), the resulting conductivity will have the

same form as (5.9). We have seen that only the electrons near the Fermi energy

in partially filled bands have to be considered to calculate the conductivity, so

the mass in a semiclassical version of (5.9) would have to be replaced by the

effective mass at the Fermi energy and the relaxation time would be that for

the electrons at the Fermi energy. The electron density n would still appear but

not because all the electrons contribute to the current. The reason for having

n in the equation is that the number of electrons at the Fermi energy depends

on the electron density. This is easily seen in the free electron model where

the size of kF and hence the size of the “Fermi sphere” depends on the electron

concentration.

We have seen that Bloch waves travel through the perfect crystal without any

scattering by the ions, in contrast to the electrons in the Drude model. Therefore,

we still have to discuss where the relaxation time 𝜏 comes from and why met-

als have a finite resistivity. Ultimately, all the explanations come down to the fact

that the lattice is not perfect. The most important imperfections at higher tem-

perature are lattice vibrations that destroy the perfect translational symmetry of

the lattice and cause a scattering of the Bloch electrons. This also means that our

initial assumption of the Born–Oppenheimer approximation is invalid, since we

have to consider the scattering of the electrons by lattice vibrations. Quite intu-

itively, the interaction between Bloch electrons and lattice vibrations is called the

electron–phonon interaction. This process can be expected to be important if

the temperature is not too low compared to the Debye temperature of the solid.

However, even at very low temperatures, the Bloch electrons are scattered because

of remaining imperfections in the crystal. These can be all kinds of defects, point

5) For a more detailed discussion of this, see online note on www.philiphofmann.net.

http://www.philiphofmann.net
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defects, dislocations, impurity atoms, and so on. Still, in a highly perfect crystal at

low temperature, the conductivity can be several orders of magnitude higher than

at room temperature.

6.8

Brief Review of Some Key Ideas

Many of the problems we had with the Drude model have been caused by not

taking into account that the electrons are fermions and thus underlie the Pauli

principle. This has readily been cured by the quantum mechanical free electron

model. Historically, the most important result was the heat capacity of the elec-

trons, but the fact that only the electrons close to the Fermi energy can be excited

by a small amount of energy (and not all the electrons) is decisive in many prop-

erties of metals (conductivity, magnetism, screening, superconductivity, etc.). In

formal terms, it is seen in the equations through the appearance of the density of

states at the Fermi energy g(EF ).

The free electron model can also give us some hints as to why the electrons do

not seem to interact much with each other: First, as the electrons move through

the solid, many scattering processes between them are impossible because the

states into which they could scatter are already occupied by other electrons. In

addition to this, the Coulomb interaction in metals is strongly weakened by the

very efficient screening. A real understanding of why the electrons do not inter-

act much with each other, however, is quite difficult and far beyond the scope of

this book.

Despite these successes, even the free electron model has some serious limita-

tions. Many of these were qualitatively solved by the introduction of Bloch waves

as a general solution to the Schrödinger equation for the periodic lattice and by the

nearly free electronmodel as a particularly simple solution.This could account for

different band structures that depended on the Fourier coefficients in the series

describing the potential (6.30). It could explain the existence of band gaps and

make it plausible that some materials are metals while others are not. We have

seen that we could arrive at a very similar result in the tight-binding model, even

thought this starts from an entirely different construction of the wave functions.

Our discussion of electrical conduction in a metal via Bloch states has also

helped to understand several problemswehadwith theDrudemodel.The increase

in the length of the mean free path and the conductivity at low temperatures

now follows naturally from the fact that the Bloch electrons do not scatter at all

from the perfect lattice. At room temperature, they are mainly scattered by lattice

vibrations, but at low temperatures, these vibrations are frozen out. We can also

understand why the resistivity of alloys can be much higher than for pure metals.

If the alloys are built such that the two (or more) types of ions in the alloy do not

form a periodic structure, this will lead to a strongly increased scattering of the

Bloch electrons. Even if they do form a perfectly crystalline lattice, there can still

be some disorder if the two types of atoms are randomly distributed on the lattice

sites.
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Finally, we have encountered the concept of the effective mass, leading to the

perhapsmost remarkable result of thewhole chapter:The electrons in the periodic

solid can be treated quite similarly to free electrons by a quasi-classical theory if we

replace the free electronmass by an effectivemass, which contains the information

about the solid’s band structure.
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6.9

Further Reading

The quantum mechanical description of the electronic states is covered by all the

standard texts in solid state physics. Consider, for example,

• Ashcroft, N.W. and Mermin, N.D. (1976) Solid State Physics, Holt-Saunders.

Gives a very thorough treatment of the subject.

• Ibach, H. and Lüth, H. (2009) Solid State Physics, 4th edn, Springer.

• Omar, M.A. (1993) Elementary Solid State Physics, Addison-Wesley. Gives a

basic and very well-written introduction.

Understanding the formation of band structure is not easy, and it can be helpful

to consider alternative descriptions to those of the standard textbooks. Two of

these are

• Feynman, R.P., Leighton, R.B., and Sand, M. (1966)The Feynman Lectures on

Physics, Addison-Wesley, also available as free online version. Presents a very

elegant approach to the formation of band structure in the tight-binding picture

(Volume III, Chapter 13).

• Hoffmann, R. (1988) Solids and Surfaces: A Chemist’s View on Bonding

in Extended Structures, Wiley-VCH, also published in Hoffmann, R. (1987)

Angew. Chem., 26, 846. A very insightful discussion of band structure formation

starting from atomic orbitals.

6.10

Discussion and Problems

Discussion

1) Describe the origin of electronic energy bands in solids qualitatively.

2) Describe the free electron model. How does the energy of an electron

depend on the wave vector? How does the density of states depend on the

energy?
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3) How do the free electrons in the quantum model contribute to the heat

capacity, and how does this differ from the Drude model?

4) Howdoes the heat capacity contribution of the electrons depend on the tem-

perature?

5) Is it possible to measure the electronic contribution to the heat capacity

despite the fact that it is usually quite small?

6) What is the form of the general solution of the Schrödinger equation for a

lattice-periodic potential?

7) Do the Bloch wave functions have the periodicity of the lattice?

8) The expression for the Bloch wave function suggests that the electrons can

travel through the lattice without scattering. Why is this so, and where does

the observed resistance come from?

9) What causes the existence of energy gaps in the electronic bands in a quan-

tum model (nearly free electron model or tight-binding model)?

10) What determines the width of a band (in energy) in the tight-bindingmodel?

11) How does the electrical resistivity of a metal depend on the temperature

(qualitatively) and why?

12) (*) The density of states at the Fermi energy of a metal, g(EF ), appears in

equations describingmany different physical phenomena, such as electronic

heat capacity, Pauli paramagnetism, screening, superconductivity, and oth-

ers. Why is this so?

13) What is the speed of the electrons that contribute to the electrical current in

the quantum model? How high is it compared to that in the Drude model,

and how does it depend on the temperature?

14) What is the physical interpretation (or several interpretations) of the vector

𝐤 for an electronic state in a solid?

Problems

1) Free electron model: (a) Show that the mean kinetic energy of one electron

in the quantum mechanical free electron model is 3/5 EF at T = 0 K.

(b) Calculate the Fermi energy and the mean kinetic energy for potassium

in electron volts. Use that K has a relative atomic mass ofM = 39.1 u and a

density of 856 kg m−3. (c) Calculate the corresponding electron velocities.

(d) Calculate the density of states at the Fermi energy. How large is the

number of electrons in the “soft zone” of about 4kBT around the Fermi

energy at room temperature relative to the total number of electrons?

(e) Estimate theThomas–Fermi screening length in potassium.

2) Free electron model: We have shown that the density of states for a free

electron gas in three dimensions is given by (6.13). (a) Show that the den-

sity of states for a free electron gas in two dimensions is independent of

the energy. (b) How does the density of the states depend on the energy if

the electronic dispersion is linear instead of quadratic, that is, if E(k) ∝ k

instead of E(k) ∝ k2? Discuss this for both the three-dimensional and the

two-dimensional case.
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3) Free electron model: (a) Calculate the electronic heat capacity for 1 mol of

copper at 300 K. Use that the Fermi energy of Cu is 7 eV and the molar vol-

ume 7.11 cm3. (b) Compare the result of (a) to the Dulong–Petit value of the

lattice, and explain why it is somuch smaller. (c) Belowwhich temperature is

the electronic contribution to the heat capacity higher than the contribution

from the lattice? Use that theDebye temperature of Cu is 343 K. (d)(*) Derive

the electronic heat capacity (6.18) in a proper way by calculating the total

energy and differentiating it. Hint: For this last part, assume that kBT ≪ EF .

In this case, the density of states g(E) in the vicinity of the Fermi energy can

be taken to be g(EF ), independent of the energy, and the chemical potential

can be taken as independent of the temperature, as usual, that is, 𝜇 = EF .

4) Free electron model: Show that the Wiedemann–Franz law is indeed given

by (6.19).

5) Nearly free electron model:We have seen that (6.43) gives an approximate

solution of the Schrödinger for a weak potential with Fourier components

U = U1 = U−1.The biggest deviation from the energies of free electrons was

found at the Brillouin zone boundary (k = 𝜋∕a). Using (6.43), show that ck−g
is much larger than ck+g if k = 𝜋∕a. Neglect then ck+g and use (6.43) to show

that the size of the gap opening at the Brillouin zone boundary is 2U .

6) Bloch electrons: Show that the spatial probability density for one-

dimensional free electrons is constant. (b) Show that it has the periodicity

of the corresponding Bravais lattice for Bloch electrons.

7) Metals and nonmetals: Consider a one-dimensional chain of N atoms with

one atom per unit cell. Assume periodic boundary conditions and that each

atom has Z valence electrons. (a) Show that you can fill exactly Z∕2 bands

with these electrons or, equivalently, that each band can accommodate 2N

electrons. (b) Figure 6.13 shows that Si has four filled bands (for some values

of 𝐤, the energies of the bands are degenerate, but not for all). There are also
four electrons per Si atom (not eight!). Explain why this is so. (c) Having an

even number of electrons per unit is necessary but not sufficient for a solid

to be a semiconductor/insulator. Give an example for an elemental solid that

is a metal despite having an even number of electrons per unit cell.

8) Tight-binding model: (a) Show that the dispersion (6.62) for the s-band in

the tight-binding model can be approximated by a parabolic dispersion in

the vicinity of k = 0, as in the nearly free electron model. (b) Calculate the

effective mass in this case, and discuss the result.

9) Tight-bindingmodel: Figure 6.11 shows the atomic s and p orbitals in a chain

of atoms and how these are combined to form the bonding and antibonding

states. For the s band, the bonding state is formed with the atomic wave

functions on all sites combined in phase, corresponding to a wave vector

k = 0, and the antibonding state is associated with a sign change of the wave

function on every other site, corresponding to a wave vector at the Brillouin

zone boundary. Now consider the 𝜋 bands in graphene, which are formed

from the pz orbitals, as shown in Figure 6.15b. (a) How should these orbitals

be combined to form bonding and antibonding 𝜋 states? (b) If we associate
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the bonding/antibonding states with the energy extrema of the 𝜋 band, it

appears that both are found at the Brillouin zone center (Γ). Is this consistent

with your result from (a)?

10) Transport properties: Show, in one dimension, that the average group veloc-

ity for a filled band is zero. Hint: For a chain with lattice constant a and

macroscopic length L, the distance between the allowed k values is 2𝜋∕L,

that is, it is very small. It is then useful to write the sum over the allowed

k-points as an integral.

11) Transport properties: Show that the effective mass for free electrons is equal

to the free electron massme.

12) (*) Transport properties: An electron moving through the crystal can be

described by a superposition of Bloch waves. Consider the time-dependent,

one-dimensional Bloch wave functions

𝜓k(x, t) = eikx−i𝜔(k)tuk(x) (6.69)

and the wave packet

Ψ(x, t) = ∫
∞

−∞

e−(k−k0)
2∕b2eikx−i𝜔(k)tuk(x)dk. (6.70)

If b is much smaller than the size of the Brillouin zone, the Gauss function

e−(k−k0)
2∕b2 is strongly peaked around k0, and we can assume that uk(x) =

uk0
(x) does not depend on k and that the dispersion of the electronic states

𝜔(k) = E(k)∕ℏ is linear, that is,

𝜔(k) = vg(k − k0) + 𝜔(k0) = vgk + 𝜔0 (6.71)

with 𝜔0 = 𝜔(k0) − vgk0 with vg = 𝜕𝜔∕𝜕k at k0. Show that the maximum of

the probability distribution associated with this wave packet moves with a

velocity vg .
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7

Semiconductors

In the previous chapter, we have defined the difference between metals and

semiconductors/insulators based on the density of states at the chemical poten-

tial at 0 K. If the density of states is finite, the solid is a metal. Otherwise, it

is an insulator or a semiconductor. We have not defined the character of the

solid based on its conductivity. In fact, this would have been a bad idea. The

conductivity of solids spans more than 27 orders of magnitude. As a general rule,

metals are good conductors and semiconductors/insulators are not, but even

among the metals, the variations are big. To make matters more complicated, the

conductivity of solids is strongly temperature-dependent, and this dependence is

qualitatively different for different types of solids. A solid that is a poor conductor

at low temperatures can be a good conductor at room temperature and vice versa.

The difference between semiconductors and insulators is not very clearly

defined. However, the general idea behind a semiconductor is that the band

gap between the highest occupied states and the lowest unoccupied states is

sufficiently small to get thermally excited electrons at reasonable temperatures.

We know that the width of the soft zone in the Fermi–Dirac distribution is about

100 meV at room temperature. Therefore, a semiconductor gap cannot be much

larger than a few electron volts because otherwise the number of excited electrons

would be vanishingly small. One often speaks of semiconductors in the case of

materials with band gaps below ≈ 3 eV and of insulators if the gap is larger. Gap

sizes for some important semiconductors and insulators are given in Table 7.1.

Themost common elemental semiconductors are the group IV elements Si and

Ge with their characteristic tetrahedral sp3 bonding. Many compound semicon-

ductors are isoelectronic to Si and Ge and show the same bonding type. Examples

are SiC that also contains only group IV elements, or combinations of groups III

and V such as GaAs, or II and VI such as CdSe.The latter two groups of materials

are commonly referred to as III–V and II–VI semiconductors.

The conductivity of semiconductors is strongly influenced by a very small

amount of impurities, and a precise control of the impurity concentration turns

out to be essential for the construction of semiconductor devices. In this chapter,

we shall first consider the properties of pure or intrinsic semiconductors, and

then those of impure or doped semiconductors. Finally, we shall briefly discuss

the basic working principles of some semiconductor devices.

Solid State Physics: An Introduction, Second Edition. Philip Hofmann.
© 2015 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2015 by Wiley-VCH Verlag GmbH & Co. KGaA.
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Table 7.1 Gap sizes for common semiconductors (above the horizontal line) and insulators
(below the horizontal line).

Material Gap size (eV)

InSb 0.18

InAs 0.36

Ge 0.67

Si 1.11

GaAs 1.43

CdSe 1.74

SiC 2.36

Diamond 5.5

MgF2 11

7.1

Intrinsic Semiconductors

In this section, we discuss the properties of pure (intrinsic) semiconductors.

Since a very small number of impurities has a strong impact on the behavior of

semiconductors, this intrinsic state is hard to realize and also of little techno-

logical relevance. However, many of the concepts we explore here can be easily

transferred to the case of doped semiconductors that we treat in the next section.

A semiconductor or insulator is, by definition, a solid for which the chemical

potential at zero temperature is placed at an energy where the density of states is

zero. In other words, there is a certain energy band that is completely filled, and

the next band at higher energy is completely empty.This situation is schematically

shown in Figure 7.1a.The highest occupied band and the lowest unoccupied band

are called the valence band (VB) and the conduction band (CB), respectively. At

finite temperature, the electrons have to be distributed according to the Fermi–

Dirac distribution shown in Figure 7.1b. This leads to some missing electrons in

the VB and some extra electrons in the CB. In order to calculate the resulting

electron concentrations, we have to know the position of the chemical potential.1)

We can find this based on the argument of charge neutrality:The excited electrons

in the CB must clearly come from the VB, and we must thus have as many extra

electrons in the CB as missing electrons in the VB. This requirement determines

the position of the chemical potential. To see this, suppose that the chemical

potential is just above the valence band maximum (VBM). This would result

in a density of occupied states as shown in Figure 7.1c. Many states would be

emptied in the VB, but only few states would be populated in the CB. In other

words, the total number of electrons would have decreased and the solid would

be charged positively, violating charge conservation. An equivalent argument can

1) Some authors use the term “Fermi energy” instead of “chemical potential” for semiconductors. We

speak of the Fermi energy only for metals.
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Figure 7.1 Charge neutrality and the posi-
tion of the chemical potential in an intrin-
sic semiconductor. (a) Schematic density of
states for a semiconductor. (b) Fermi–Dirac
distribution at finite temperature. (c) Occu-
pied density of states (gray area) for the
chemical potential just above the valence

band maximum. (d) Occupied density of
states for the chemical potential close to
the middle of the gap. Note that the tem-
perature in (b–d) is much higher than room
temperature to make the presence of excited
carriers visible.
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Figure 7.2 Transport of charge in an electric field  for a partially filled VB. The process
can be interpreted as a motion of electrons in the direction opposing the field or as a
motion of a hole in the field direction.

be made for a chemical potential just below the conduction band minimum

(CBM), which would lead to a negatively charged solid. Consequently, we see

that the chemical potential must lie close to the middle of the gap between the

VBM and the CBM (Figure 7.1d). At a finite temperature, this leads to an equal

number of missing electrons in the VB and excited electrons in the CB. Note that

the temperature for the distribution in Figure 7.1b was chosen to be very high in

order to make the effects in Figure 7.1c and d visible.

At finite temperature, the excited electrons in the CB cause this band to be par-

tially filled. Therefore, we can apply the same concept for electronic transport as

we have used for metals. The VB is also partially filled at finite temperature and

contributes to the conductivity via the remaining electrons. There is another pos-

sibility to view the conduction by the VB, which is illustrated in Figure 7.2. The

semiconductor is schematically shown as atoms with valence 4 bound together.
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Each bond represents one electron in the VB. At finite temperature, some of the

electrons in the VB are missing and these are represented by a missing bond and

a circle. When an electric field is applied, electrons can use these missing states to

travel to the positive potential as shown in the figure. But there is another, simpler

way of viewing this. Instead of considering the complicated motion of the elec-

trons, one can describe the conduction in terms of the moving missing electron

or so-called hole.

In the following two sections, we examine these ideas more quantitatively. We

calculate the position of the chemical potential under several circumstances. The

central idea is always that a change of temperature cannot lead to charging of the

solid. We also consider the electrical transport through the VB and the CB, and

we shall see that the concept of holes also emerges from the mathematical side of

the problem.

7.1.1
Temperature Dependence of the Carrier Density

The current through a semiconductor can be carried by both electrons and holes

and these are often discussed together as (charge) carriers. In order to understand

the conductivity of a semiconductor, we are thus interested in the density of these

carriers. It is simple to write down an expression for the electron density n in the

CB. It corresponds to the integrated occupied density of states:

n =
1

V ∫
∞

EC

gC(E)f (E,T)dE, (7.1)

where gC(E) is the density of states in the CB and EC is the energy of the CBM.

The density of missing electrons or holes in the VB p can be calculated by the

analogous formula:

p =
1

V ∫
EV

−∞

gV (E)[1 − f (E,T)]dE, (7.2)

with EV being the energy of the VBM. For the practical calculation, we have

to make some approximations. The first concerns the density of states gC(E)

and gV (E). These are derived from the semiconductor’s band structure and can

therefore be quite complicated (see Figure 6.13). However, we have noticed that

the chemical potential is roughly in the middle of the gap, quite far away from

the CBM and VBM. Since the Fermi–Dirac distribution falls to zero very rapidly

away from the chemical potential, most occupied electrons can be found very

close to the CBM and most holes very close to the VBM. If we inspect the band

dispersion close to these points, it is very nearly parabolic (see Figure 6.13). It

is therefore sensible to simplify the relevant band structure of a semiconductor

as in Figure 7.3a. Both the CB and the VB are represented by parabolas. These

are not necessarily free-electron-like as in (6.6), especially not the VB that has

the “wrong” curvature. However, they can be described using the concept of the

effective mass from (6.68). The effective mass is essentially the inverse curvature

of a band, such that a parabolic band has the same effective mass everywhere.
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Hence, only the two effective masses are needed to describe the relevant part of

the band structure and the density of states. Furthermore, it is common practice

to define the VBM as energy zero so that we have EV = 0 and EC = Eg with Eg

being the gap size.

The situation in Figure 7.3 closely resembles the dispersion for GaAs in

Figure 6.13, but it is somewhat different from the dispersion of Si. In GaAs, both

the VBM and the CBM are found at Γ, that is, at 𝐤 = (0, 0, 0), and the gap is called

a direct band gap. In Si, only the VBM is found at Γ (the CBM is somewhere

between Γ and X) and the gap is called an indirect band gap. But if we are only

interested in the carrier densities, the position in 𝐤 is not important, only the
energy is. The picture shown in Figure 7.3 will therefore work for both types of

band gap.

Figure 7.3a can also give us a more mathematical derivation for the concept of

holes in the VB. The CB is almost empty apart from some electrons close to its

minimum. When an electric field is applied, the situation is similar to that of a

metal depicted in Figure 6.16b with a “Fermi energy” just above the CBM. The

electrons near the CBM are accelerated in an external electric field  according to
a = (−e)∕m∗

e
. Sincem∗

e
is positive, this is the “normal” motion of electrons in an

electric field. In the VB, the situation is quite different. The band is almost filled,

apart from some missing electrons around the VBM. In this way, the situation is

very similar to conduction in a metal where the “Fermi energy” is just below the

VBM. The electrons are also accelerated according to a = (−e)∕m∗
h
, but now

the effective mass is negative such that we can write a = (−e)∕(−|m∗
h
|). But this

is the same as a = e∕(|m∗
h
|), and we can therefore interpret it as the motion of

holes, that is, positive carriers with a positive effective mass. In the following, we

assume thatm∗
h
is positive, and we consider holes rather than electrons as carriers

in the VB.

The dispersion of the CB can now be written as

E = Eg +
ℏ2k2

2m∗
e

. (7.3)
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The density of states in the free electron model is given by (6.13), and

consequently, the density of states in the CB is

gC(E) =
V

2𝜋2

(
2m∗

e

ℏ2

)3∕2
(E − Eg)

1∕2. (7.4)

For the VB, we get analogous expressions:

E = −
ℏ2k2

2m∗
h

(7.5)

with the (positive) effective massm∗
h
of the holes and

gV (E) =
V

2𝜋2

(
2m∗

h

ℏ2

)3∕2
(−E)1∕2. (7.6)

The density of states between the VB and CB is of course zero. Now we can

formally write down the electron density (7.1) and the hole density (7.2), but

unfortunately, the integrals cannot be solved analytically.

It is therefore useful to introduce a second simplification. If the chemical poten-

tial 𝜇 is close to the middle of the gap, the gap size is at least a few hundred meV

and if we are interested in the properties of thematerial around room temperature,

then (E − 𝜇) ≫ kBT for all the energies E in the CB.We can therefore approximate

the Fermi–Dirac distribution in the CB as

f (E,T) =
1

e(E−𝜇)∕kBT + 1
≈ e−(E−𝜇)∕kBT . (7.7)

For the holes in the VB, we can make the equivalent argument and obtain

1 − f (E,T) = 1 −
1

e(E−𝜇)∕kBT + 1
≈ e(E−𝜇)∕kBT (7.8)

(see Problem 7.1). Basically, these approximations mean that we have replaced the

Fermi–Dirac distribution with a (shifted) classical Boltzmann distribution.

Now the integrals for the electron and hole density can be solved. For (7.1) we

get

n =
1

V ∫
∞

Eg

V

2𝜋2

(
2m∗

e

ℏ2

)3∕2
(E − Eg)

1∕2e−(E−𝜇)∕kBTdE

=
(2m∗

e
)3∕2

2𝜋2ℏ3
e𝜇∕kBT ∫

∞

Eg

(E − Eg)
1∕2e−E∕kBTdE. (7.9)

The substitution Xg = (E − Eg)∕kBT gives

n =
(2m∗

e
)3∕2

2𝜋2ℏ3
(kBT)

3∕2e−(Eg−𝜇)∕kBT ∫
∞

0

X1∕2
g

e−Xg dXg . (7.10)

The last integral can be evaluated to give
√
𝜋∕2 so that the final result is

n =
1√
2

(
m∗

e
kBT

𝜋ℏ2

)3∕2
e−(Eg−𝜇)∕kBT = NC

eff
e−(Eg−𝜇)∕kBT , (7.11)
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where NC
eff
can be viewed as an effective number of states per volume for the CB.

The same calculation for the hole density gives

p =
1√
2

(
m∗

h
kBT

𝜋ℏ2

)3∕2
e−𝜇∕kBT = NV

eff
e−𝜇∕kBT . (7.12)

Equations (7.11) and (7.12) have a very intriguing and simple interpretation.

Formally, they look like Boltzmann distributions for two energy levels at Eg − 𝜇

and 𝜇. In this interpretation, the whole band character of the problem appears to

be lost (it is still hidden in the effective masses), and it is quite sufficient to think

of the VB and the CB as two discrete energy levels (see Figure 7.3b). Note that

this is not entirely correct: The distribution is not purely Boltzmann-like because

the effective numbers of statesN
V (C)

ef f
are functions of the temperature themselves.

Since their temperature dependence is, however, weak compared to the exponen-

tial term, it can often be neglected.

A useful relationship is derived by multiplying (7.11) by (7.12). We get

np = 4

(
kBT

2𝜋ℏ2

)3
(m∗

e
m∗

h
)3∕2e−Eg∕kBT , (7.13)

meaning that the product of electron and hole concentrations is constant at any

given temperature, independent of chemical potential’s position. This equation is

often called the law of mass action and particularly useful when treating doped

semiconductors.

From this, we can finally calculate the carrier concentration for an intrinsic

semiconductor at a given temperature. Obviously, the intrinsic electron density

ni has to be equal to the intrinsic hole density pi and from (7.13) we get

ni = pi =
√
np = 2

(
kBT

2𝜋ℏ2

)3∕2
(m∗

e
m∗

h
)3∕4e−Eg∕2kBT . (7.14)

Values for the important semiconductors Si andGaAs are given inTable 7.2.These

densities are strongly temperature-dependent andmuch smaller than those of typ-

ical metals (Table 5.1), and we can therefore expect intrinsic semiconductors to be

rather poor electrical conductors.

Again using (7.11) and (7.12), as well as the condition of charge neutrality n = p,

we obtain an expression for the position of the chemical potential

𝜇 =
Eg

2
+
3

4
kBT ln

(
m∗

h

m∗
e

)
. (7.15)

Table 7.2 Intrinsic carrier densities for Si and GaAs.

Material Gap size (eV) ni at 150 K (m−3) ni at 300 K (m−3)

Si 1.11 4.1 × 106 1.5 × 1016

GaAs 1.43 1.8 × 100 5 × 1013
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For zero temperature, the chemical potential does indeed lie in the middle of

the gap, as in our initial simple picture. Even at finite temperature, it remains in

the middle of the gap, as long as the effective masses for holes and electrons are

equal. However, in the case of different effective masses, there is a temperature-

dependent correction. If, for example, the holes are heavier than the electrons,

that is, the VB curvature is low and the CB curvature is high, many more holes

than electrons would be generated at elevated temperature for 𝜇 = Eg∕2. In order

to avoid this, the chemical potential has to move up as the temperature is raised.

To calculate all this, we needed essentially only three parameters: the gap size Eg

and the effective electron and hole masses m∗
e
and m∗

h
. How can these quantities

be measured? The gap size is relatively easy to measure, at least for direct gap

materials such as GaAs. The basic idea is that the semiconductor cannot absorb

light if the photon energy h𝜈 is smaller than the gap size Eg . Only if h𝜈 exceeds Eg ,

electrons from the VB can be excited into the CB. The gap size can therefore be

measured by studying the optical absorption of a semiconductor as a function of

photon energy. Strong absorption sets in as h𝜈 = Eg .

The effective masses of electrons and holes can be determined by the technique

of cyclotron resonance. When the semiconductor is placed in a static magnetic

fieldB, the electronsmove on circular (or helical) orbits around the axis of the field

(see Figure 7.4).The angular frequency of thismotion is calculated by equating the

Lorentz force with the centripetal force, resulting in

𝜔c =
Be

m∗
e

. (7.16)

The angular frequency and thus the effective mass can be measured by shining

radio frequency waves from the side into the system and measuring the transmis-

sion to the other side. Strong absorption occurs when the radio frequency exactly

matches𝜔c.This is because themagnetic field causes a quantization of the (nearly)

free electron energy levels with a constant level spacing of ℏ𝜔c, similar to a har-

monic oscillator, and the radio frequency wave can induce transitions between

these levels. A similar argument applies for the holes.

The effective masses for some semiconductor materials are given in Table 7.3.

Note that the effective masses can be quite different from the free electron mass.

B

Electron orbit

Erf

Figure 7.4 The measurement of cyclotron resonance. The electrons (or holes) are forced
to move on circular orbits by a magnetic field B. Radio frequency radiation with the electric
field vector rf can induce transitions between quantized circular orbits.
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Table 7.3 Effective masses for some semiconductors.

Material m∗
e
∕me m∗

h
∕me

Ge 0.60 0.28

Si 0.43 0.54

CdSe 0.13 0.45

InSb 0.015 0.39

InAs 0.026 0.41

GaAs 0.065 0.50

This is in contrast to the case of many simple metals. The electron masses are

typically smaller than the hole masses, and they can be very small in some

materials.

7.2

Doped Semiconductors

The carrier concentrations in most intrinsic semiconductors are too low to give

any appreciable conductivity at room temperature. The situation can be changed

by adding a very small amount of electrically active impurities, a process called

doping. The dopant atoms change the conductivity by either donating (giving)

electrons to the CB or accepting (taking) electrons from the VB, that is, by gen-

erating holes. They are therefore called donors and acceptors, respectively. It is

evident that a very small concentration of such impurity atoms changes the carrier

density drastically. Consider the case of Si. There are about 5 × 1028 Si atoms per

cubic meter, but at room temperature, the intrinsic carrier concentration is only

1.5 × 1016 m−3.Thismeans that a dopant concentration in excess of 1.5 × 1016 m−3

would be sufficient to create more carriers than present in the intrinsic case, at

least if every dopant atom gives rise to a free electron or hole. Thus, one dopant

atom in 1012 silicon atoms would be sufficient to modify the carrier concentration

significantly! It is, in fact, not possible to produce such pure samples so that there is

always some amount of unintentional doping. The lowest impurity concentration

that can currently be achieved is about 1018m−3.

7.2.1
n and p Doping

The two types of doping in a semiconductor are called n and p doping, for dopant

atoms that give rise to free electrons in the CB (donors) and free holes in the VB

(acceptors), respectively.

In silicon, n doping is achieved by putting pentavalent donor atoms such as P,

As, or Sb into the lattice. These atoms have a valence configuration of s2p3, but

only four of these five electrons are needed to form the sp3 hybrid orbitals needed
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Figure 7.5 Nonionized dopant atoms in a Si lattice: (a) donor (b) acceptor.

to place the dopant atom in the lattice. The remaining electron remains loosely

bound to the dopant ion, attracted by one positive net charge. This is shown in

Figure 7.5a.

The important point about the n doping is that the extra electron has a very

small binding energy and can therefore easily be removed by thermal excitations.

We can estimate the binding energy by noticing the similarity of the problem to

the hydrogen atom. The binding energies for hydrogen are

En = −
mee

4

8𝜖2
0
h2
1

n2
. (7.17)

A binding energy of zero would correspond to a free electron, that is, an electron

that has left the positively charged dopant atom and moves freely in the CB. The

state corresponding to n = 1 is the state that is most tightly bound and its binding

energy thus corresponds to the ionization energy of the impurity. This energy is

13.6 eV for a free hydrogen atom. For an impurity in Si, however, we have to change

(7.17) in two ways. First, we have to replace the electron massme by the effective

mass of a conduction electron in Si, which is 0.43me. More importantly, we have

to take into account that the donor “atom” is not placed in vacuum but in solid

Si. This leads to a polarization of the Si atoms around the impurity, reducing the

interaction. We can take this into account by replacing the dielectric constant of

the vacuum 𝜖0 by 𝜖0𝜖Si, where 𝜖Si = 11.7. The physical origin of 𝜖Si is discussed in

Chapter 9.The reduced effective mass and the polarization both reduce the bind-

ing energy, to the order of Ed ≈ 40 meV or so. Since the ionized state corresponds

to the electron in the CB, this binding energy refers to the CBM.The energy levels

are clarified in Figure 7.6a.

The size of the nonionized donor “atom” is also affected by the reduced interac-

tion due to the polarization of the Si atoms. We can estimate this by considering

the Bohr radius, which is given by

a0 =
4𝜋𝜖0ℏ

2

mee
2

. (7.18)

Applying the same substitutions as for the calculation of the energy, we see that

this radius increases by a factor of about 30 with respect to the usual hydrogen

Bohr radius.
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Figure 7.6 Energy levels for dopant
atoms. (a) The donor ground state is
placed just below the conduction band
minimum. Ionization of a donor atom
corresponds to the transfer of the extra
electron into the conduction band.

(b) The acceptor level is placed just above
the valence band maximum. Ionization of an
acceptor atom corresponds to accepting (tak-
ing) an electron from the valence band and
thereby to generating a mobile hole.

Similar considerations apply to p doping with trivalent acceptor atoms such as

B, Al, Ga, or In. This situation is shown in Figures 7.5b and 7.6b. The calculation

of the binding energy is equivalent to the case of n doping, only that we now have

a positively charged hole that is bound to a negatively charged ion.

7.2.2
Carrier Density

The calculation of the carrier density in a doped semiconductor is rather compli-

cated and only sketched here. The basic principle is the same as in the intrinsic

case: We have to fulfill a charge-neutrality condition to assure that a temperature

change does not lead to a charging of the crystal.This can be formulated such that

the number of electrons in the CB plus the number of (negatively) charged accep-

tor ions must be equal to the number of the holes in the VB plus the number of

positively charged donor ions.The problem is further complicated by the fact that

the replacement of the Fermi–Dirac statistics with the Boltzmann statistics is not

necessarily appropriate because the chemical potential can be very close to the VB

or CB edges.

Here, we just give a qualitative discussion for an n-doped semiconductor.

The situation is shown in Figure 7.7. At temperatures much lower than Ed∕kB,

essentially none of the donor atoms is ionized, they are frozen out. When the

temperature is raised, the donors are ionized and their electrons are moved to the

CB. In some intermediate temperature range, essentially all donors are ionized

and the carrier concentration in the CB corresponds to the concentration of the

donors. This temperature range is called the extrinsic region. At much high

temperatures, the excitation of intrinsic carriers across the band gap becomes

important, leading again to a strong increase of the carrier concentration. This

happens in the intrinsic region. From this, it is qualitatively clear how the
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Figure 7.7 Electron density and position of
the chemical potential for an n-doped semi-
conductor. (a) Qualitative picture: At very low
temperatures, almost none of the donors
are ionized (freeze-out region). At interme-
diate temperatures, almost all of the donors
are ionized but very few intrinsic carriers are

excited (extrinsic region). At high tempera-
tures, all the donors are ionized and some
intrinsic carriers are excited (intrinsic region).
(b) Quantitative picture: The position of the
chemical potential and the logarithmic car-
rier density are shown as a function of the
inverse temperature.

chemical potential must behave. At very low temperatures, it must be situated

between the CBM and the donor level Ed. At intermediate temperatures, it moves

toward the middle of the gap. In the intrinsic region, it is close to the middle

of the gap. The calculated position of the chemical potential is also shown in

Figure 7.7b.

The carrier concentration in Figure 7.7b was calculated numerically for

n-doped Si that would typically be used in a semiconductor device. Note that

the extrinsic region is found around room temperature. There the electron

concentration is much higher than in the intrinsic case but almost indepen-

dent of the temperature. We shall see later that this is the key to a working

semiconductor device: Via doping, we have the possibility to tune the electron

or hole concentration to the desired value and it is then fairly stable for a

range of operating temperatures. The construction of a working device would
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hardly be possible if the electron concentration depended exponentially on the

temperature near room temperature. Note also that the chemical potential in

the extrinsic region is quite far away from the CBM near room temperature,

so that we may even use the Boltzmann approximations to the Fermi–Dirac

distribution (7.7) and (7.8) to calculate the carrier density, at least for the purpose

of a semi-quantitative discussion of some semiconductor devices’ working

principles.

A useful expression for calculating the hole and electron densities is the law of

mass action (7.13), which remains valid because it is not based on any assump-

tions about the position of the chemical potential. The fact that np is constant at

a given temperature has some interesting consequences. If we increase the num-

ber of electrons by n doping, the number of holes in the VB has to be lower than

that in the intrinsic case because the product of n and p has to remain the same.

The law of mass action can thus be used to calculate the hole concentration p. The

mechanism responsible for the constant np is that electrons and holes annihilate

each other when they meet, since an electron in the CB can gain energy by taking

the place of a hole in the VB. This process is called carrier recombination. If the

concentration of one type of carrier is increased over the intrinsic case by doping,

this also increases the chances of these extra carriers annihilating the carriers of

the other type.

In a doped semiconductor, the number of one type of carriers is greatly

enhanced by the doping. These carriers are called the majority carriers. The

other type of carriers is still there, but we have just seen that its concentration is

even smaller than in the intrinsic case at the same temperature. These carriers

are called the minority carriers. One could be tempted to think that the

minority carriers are utterly unimportant because there are so few. But this is

actually not the case. The minority carriers are of essential importance for some

semiconductor devices such as transistors.

The density of electrons and holes can be measured using the Hall effect

described in Section 5.2.2. The Hall effect gives the sign and the density of the

carriers. For a semiconductor, a positive RH has the obvious interpretation as

being caused by the holes in the VB. If we have purely n- or p-doped samples and

the intrinsic carriers do not play a role, the interpretation of RH is simple. If both

types of doping are present, however, both holes and electrons contribute to RH

and the situation becomes more complicated (see Problem 7.6).

Finally, the results from semiconductors provide us with a plausible expla-

nation of the fact that some metals show a positive RH , too. The sign of RH is

determined by the details of the band structure and the position of the Fermi

energy in that band structure. If the Fermi energy of a metal is placed just

below a band maximum similar to the VBM in a semiconductor, the electrons

in that metal will behave like holes in a Hall measurement. Similarly, the mag-

nitude of RH is determined by the details of the band structure. The unusual

and instructive case of Bi (see Table 5.1) is discussed in an online note on

www.philiphofmann.net.

http://www.philiphofmann.net
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7.3

Conductivity of Semiconductors

In our discussion of the conductivity of metals in the quantum model, we have

seen that the simple Drude formula (5.9) can be viewed as approximately correct

if we replace the free electron mass with the effective mass at the Fermi energy.

The conduction of electrical current in a semiconductor is somewhat different

because it is carried by both electrons and holes. We therefore have to modify the

expression for the conductivity obtained in the Drude model, and we do so using

the concept of themobility, see (5.11) and (5.12). The total conductivity is then

𝜎 = e(n𝜇e + p𝜇h), (7.19)

with n and p representing the electron and hole densities and 𝜇e and 𝜇h their

mobilities. For semiconductors, using the mobilities in the expression for 𝜎 is

extremely convenient because the electron and hole concentrations can change

over many orders of magnitudes whereas the mobilities are (approximately)

constant for a given material. Note that the mobility contains both the relaxation

time and the effective mass of the carriers. For most semiconductors, the electron

effective mass is smaller than the hole effective mass and, therefore, a higher

conductivity can be achieved by n doping than by p doping (assuming that the

relaxation time is the same for both conduction mechanisms).

One of the most important characteristics of a semiconductor is the tempera-

ture dependence of its conductivity. This is so different from that of a metal, that

it is sometimes also used to define semiconducting behavior. For a metal, we have

seen that conductivity decreases as the temperature is raised. This is because

of the increasing probability for electrons to be scattered by phonons and the

accompanying reduction of the relaxation time. In a semiconductor, the same

effect also leads to a shorter relaxation time and to a decreased mobility at higher

temperatures. However, much more important is that the carrier densities (n or

p or both) in (7.19) are typically increasing at higher temperature.This increase is

much stronger than the decrease of the mobility and (7.19) therefore predicts an

increased conductivity at higher temperatures. Following Figure 7.7, we see that

this effect can be dramatic with the carrier concentration increasing over many

orders of magnitude in a small temperature window, especially in the intrinsic

regime.

However, Figure 7.7 also tells us that there are temperature ranges where the

carrier concentration of a doped semiconductor can be almost constant. In the

figure, this is the case around room temperature. If we measure the temperature-

dependent conductivity in a small temperature interval around room temperature,

it will therefore not change very much. It could even appear “metallic,” showing

a decrease of 𝜎 for higher T , if the effect of increased phonon scattering is more

important than the additional carriers at higher temperatures. In fact, for a semi-

conductor device, it is very important the conductivity is relatively constant near

the operating temperature. We therefore refrain from defining semiconducting

behavior via the temperature-dependent conductivity.
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7.4

Semiconductor Devices

Semiconductor devices are arguably the most important application of solid state

physics to date. Most semiconductor devices are based on the physical phenom-

ena that appear in inhomogeneous semiconductors, that is, semiconductors for

which the doping concentration and type depend on the location. The simplest

example of an inhomogeneous semiconductor is that of a pn junction. We treat

pn junctions semi-quantitatively and the more complicated transistors and opto-

electronic devices just qualitatively.

7.4.1
The pn Junction

The simplest inhomogeneous semiconductor device is the junction between an

n- and a p-doped semiconductor. Such a junction can be used as a check valve for

the current, a so-called diode. In real devices, such junctions are not fabricated

by joining bits of semiconductors but by starting with an undoped material and

doping it inhomogeneously (e.g., through diffusion of impurities into the mate-

rial). In this way, no absolutely sharp boundary can be achieved, but we assume

the existence of such a boundary here for simplicity.

Figure 7.8 shows what happens when we join p- (left) and n- (right) doped

semiconductors. In Figure 7.8a, the two semiconductors are still separated. At

not too high temperatures, the chemical potential of the p-doped semiconductor

is close to the VB, and in the n-doped semiconductor, it is close to the CB. In the

p-doped sample, most of the acceptors are negatively charged and the majority

carriers are holes. There are also some minority electrons. In the n-type sample,

most donors are ionized, the majority carriers are electrons, and there are also

some minority holes.

Figure 7.8b shows what happens when the two semiconductors are joined. Elec-

trons from the n side diffuse into the p side and holes from the p side diffuse into

the n side. When mobile electrons and holes meet, they recombine. What is left

then is a region of immobile ionized donors and acceptors without the compen-

sating charge of the generated carriers. Because of the absence of mobile carriers,

this region is called the depletion layer. The ionized donors and acceptors give

rise to an electric field between the two sides, marked by  in the figure.This field
represents an obstacle for the p holes to move into the n part and for the n elec-

trons to move into the p part. The field increases as the depletion layer widens,

and the process goes on until equilibrium is reached.

The same phenomenon can be described more formally by stating that in ther-

mal equilibrium, the chemical potential has to be constant in the whole system.

This implies a situation as in Figure 7.8c. The chemical potential is aligned in the

whole system, but this can only be achieved by a macroscopic potential in the

depletion region, which shifts the energy levels and “bends” the bands.The size of
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Figure 7.8 The pn junction. (a) Energy lev-
els and carrier densities in separate p and n
semiconductors. Ionized donors (acceptors)
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the potential change over the junction and the width of the depletion layer are the

central quantities to be determined in the treatment of the pn junction.

The potential in the depletion region can be calculated by assuming an instan-

taneous transition between the depletion region and the nondepleted regions as

shown in Figure 7.9a. The charge densities in the p and n part of the depletion

region are 𝜌p = −eNa and 𝜌n = +eNd, whereNa andNd are the acceptor and donor

concentrations, respectively. Charge neutrality furthermore requires that Nadp =

Nddn, where dp and dn are the depths of the depletion layer in the p and n sides,

respectively. If x is the direction perpendicular to the interface, it is possible to

calculate the macroscopic potential U(x) by solving the Poisson equation

d2U

dx2
= −

𝜌

𝜖𝜖0
, (7.20)

with 𝜖 being the dielectric constant of the semiconductor and the boundary con-

ditions that both U(x) and dU(x)∕dx have to be continuous at x = 0, as well as

dU

dx

||||x=−dp ,dn = 0. (7.21)
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Figure 7.9 Idealized model of the depletion zone solved using the Poisson equation. (a)
Charge density in the depletion zone. (b) Electric field. (c) Electrostatic potential.

The solutions for the electric field and the potential are shown in Figure 7.9b and c

(see Problem7.8 for the calculation).The total potential difference across the space

charge layer is found to be

ΔU =
e

2𝜖𝜖0

(
Ndd

2
n
+ Nad

2
p

)
. (7.22)

From this and the charge-neutrality conditions, the depth of the depletion zones

can be calculated as

dp =

(
ΔU2𝜖𝜖0
eNa

Nd

Na + Nd

)1∕2
, dn =

(
ΔU2𝜖𝜖0
eNd

Na

Na + Nd

)1∕2
. (7.23)

The problem is that we know neither ΔU nor dp and dn. However, we do know

that the chemical potential at low temperatures must be close to the VBM in

the p-doped region and close to the CBM in the n-doped region. Consequently,

ΔU ≈ Eg∕e. From this, we can estimate the thickness of the depletion layer to be

between 0.1 and 1 𝜇m.This is very big on the atomic scale, justifying our macro-

scopic approach when using the Poisson equation.

We proceed with a simplified semi-quantitative treatment of the pn junction,

illustrating how it can be used as a check valve for the current. First we write down

the approximate carrier densities in the CB and VB on both sides of the junction.

We use the notation that nn and pn are the electron and hole densities on the n

side and the corresponding notation for the p side. With the energy diagram in

Figure 7.10 as well as the expressions for the carrier densities in the Boltzmann

approximation (7.11) and (7.12), we can write down the densities.

np = NC
eff
e(𝜇−Eg−eΔU)∕kBT , pp = NV

eff
e(eΔU−𝜇)∕kBT , (7.24)

nn = NC
eff
e(𝜇−Eg )∕kBT , pn = NV

eff
e−𝜇∕kBT . (7.25)

The equilibrium of the pn junction is not static in the sense that there are no

currents across the junction. In the following, we discuss the existing currents

for electrons. Equivalent arguments can be made for hole currents. The majority

electrons on the n side can diffuse into the p side if their energy is high enough

to overcome the electric field in the depletion layer. This gives rise to a so-called
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Without any bias voltage. (b) Forward bias. (c) Reverse bias. The gray dashed lines show the
position of the n-side VB and CB without an applied voltage.

diffusion current. In equilibrium, there is an equal current of electrons from the

p side to the n side. It is caused by minority electrons on the p side that enter

the depletion layer. These electrons are pulled to the n side by the electric field.

This gives rise to the so-called drift current. The two currents are illustrated in

Figure 7.11a.

In order to find an expression for the drift and diffusion currents, let us assume

that these are proportional to the electron density on the p side (7.24) or, what is

the same, to the electron density on the n side for an energy just high enough to

overcome the barrier. We can thus write

|Idif fusion| = |Idrif t| = |I0| = Ce(𝜇−Eg−eΔU)∕kBT , (7.26)

where C is a proportionality constant.

Now it is easy to see how the pn junction with an applied external voltage acts

as a kind of check valve for the current. If we apply a voltageV across the junction,

we can assume that the whole voltage drop occurs over the depletion zone, that

is, we can rigidly shift the bands on one side by an amount eV against the other

side.This assumption is quite sensible because the resistance of the pn junction is

dominated by the depletion zone where there are no free carriers.



7.4 Semiconductor Devices 149

The situation for an external field opposing the field in the depletion zone

(forward bias) is shown in Figure 7.11b. As an energy zero, we keep the position

of the VBM on the n side without an applied voltage. The electron drift current is

unchanged, but the diffusion current is modified because the chemical potential

on the n side is shifted by eV :

|Idif fusion| = Ce((𝜇+eV )−Eg−eΔU)∕kBT . (7.27)

The net current across the junction is the difference between drift and diffusion

currents:

I = Idif fusion − Idrif t = I0

(
eeV∕kBT − 1

)
. (7.28)

This current is zero without a bias voltage and increases exponentially as the bias

voltage is raised. Qualitatively, this is easy to understand because the external field

lowers the barrier that has to be overcome by the majority electrons on the n side

to cross to the p side.

Figure 7.11c shows the situation for the voltage applied in the opposite direction

(reverse-bias). Now the chemical potential on the n side is lowered by eV ; the

diffusion current is

|Idif fusion| = Ce((𝜇−eV )−Eg−eΔU)∕kBT , (7.29)

and the resulting current is

I = Idif fusion − Idrif t = I0

(
e−eV∕kBT − 1

)
. (7.30)

For this polarity of the external voltage, the current is thus always small. It can

never exceed I0, which is about 100 nA.The resulting current–voltage (I(V )) curve

of the pn junction is plotted in Figure 7.12. It shows the check valve behavior of a

diode.

0
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Figure 7.12 Characteristic I(V) curve for a pn junction operated as diode.



150 7 Semiconductors

7.4.2
Transistors

Transistors form essential building blocks for microelectronic devices because

they can act as electrical amplifiers and switches. Here, there is not even space for

a superficial discussion of the various transistor types and applications. In order

to give you the flavor of transistor physics, we just pick out one specific type, a

siliconmetal oxide field effect transistor (MOSFET), and discuss how this can

be used as a switch.

The MOSFET is typically a part of an integrated circuit such as a computer

memory or processor chip. A sketch of one transistor is shown in Figure 7.13a.

The transistor is built onto a p-doped substrate. It consists of two n-doped regions

called source and drain and an oxide layer (usually SiO2) between them on the top

of the substrate. The top of the oxide, the so-called gate, is contacted with a metal

electrode and so are source and drain.

The switching behavior of the MOSFET is shown in Figure 7.13b and c. The

basic idea is to use the gate voltage in order to control the current between the

source and the drain. If no voltage is applied to the gate, no appreciable current of

electrons can flow from the source the drain, independent of the voltage between

them.This is because one of the two pn junctions in theMOSFET is always biased

in the reverse direction. If, however, a positive voltage is applied to the gate, two

things happen: The majority holes in the p-doped material are repelled from the

oxide layer, and the minority electrons are attracted. If the voltage at the gate is

larger than a threshold voltage, the minority electrons in a small channel below

the oxide layer actually become the majority carriers, and an effective electron

conduction is possible.

We can see how this switching is possible in Figure 7.14. For no applied voltage,

the chemical potential inside the semiconductor is equal to the Fermi energy of

the gate metal. When a positive voltage is applied, the electric field caused by this

bends the semiconductor bands close to the interface. For a sufficiently large gate

voltage, the band bending is so strong that theCBmoves very close to the chemical

potential, as in an n-doped semiconductor, even though the material is p-doped.

Therefore, many states in the CB become populated by electrons and one speaks

of an inversion layer.
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Metal
Oxide

Inversion layer
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Figure 7.13 Design and working principle of a MOSFET: (a) without applied voltage; (b)
with a small positive gate voltage; (c) with an applied voltage between source and drain
and a gate voltage large enough to generate an inversion layer.
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Figure 7.14 Generation of an inversion layer in the MOSFET. The positive gate voltage
leads to a band bending that is strong enough to turn electrons from being minority car-
riers into being majority carriers.

7.4.3
Optoelectronic Devices

As for transistors, we can only give themain ideas for some optoelectronic devices

here.There are two important classes: devices that turn electrical power into light

and those that turn light into electrical power. Their principles of operation are

closely related and sketched in Figure 7.15.

The light emitting diode shown in Figure 7.15a is essentially a normal diode

operated in forward bias.The current is transported by transferringmajority elec-

trons from the n side to the p side and majority holes from the p side to the n side.

Once these carriers have reached the depletion zone or the other side, there is a

high probability for them to recombine with the other type of carrier that is in

the majority. When this happens, the resulting energy can be emitted as light and

the recombination process is called radiative. Sincemost electrons are close to the

CBM and most holes close to the VBM, the energy of the emitted light is equal to

the gap energy of the semiconductor. Different light colors can therefore be chosen

via the appropriate semiconductor material.

Another very important design criterion is that the semiconductor material of

choice actually favors radiative recombination between electrons in the CBM and
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Figure 7.15 Optoelectronic devices. (a) A light emitting diode works because of radiative
carrier recombination. (b) A photodetector or solar cell is based on carrier separation in the
depletion zone.
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holes in the VBM.This is not so for Si, the most important semiconductor by far,

because of its indirect band gap: For the radiative recombination process, energy

and crystal momentum have to be conserved. Energy conservation requires that

the emitted photon has the energy of the band gap h𝜈 = Eg . Crystal momentum

conservation, on the other hand, requires that the wave vectors of the electron

and the hole can only differ by the wave vector of the generated photon (plus a

reciprocal lattice vector). The wave vector of a photon is kh𝜈 = 2𝜋𝜈∕c, where c is

the speed of light. For photons with energies h𝜈 in the visible part of the spectrum,

kh𝜈 is negligibly small. Therefore, the transition is only possible if the electron and

the hole have the same crystal momentum ℏ𝐤, that is, if the transition is vertical in
a band structure diagram. An inspection of the band structure of Si in Figure 6.13

shows that such a vertical transition is not possible between the VBM and CBM

because they lie at different values of 𝐤, the defining property of an indirect band
gap. But this is not the case for all semiconductor materials. The band structure

of GaAs, also shown in Figure 6.13, reveals that this material has a direct band

gap with the CBM and the VBM at the same 𝐤, and it is therefore better suited
for optoelectronic applications. Light emitting diodes are exclusively made from

materials with direct band gaps.

Power generation by light is realized in solar cells (Figure 7.15b), in a process

that is the reverse of that used for light generation. Again, the device is set up as

a pn junction. Photons of sufficient energy that hit the device can excite electrons

from the VB into the CB and thereby generate electron–hole pairs. If an electron–

hole pair is created in the depletion region, the built-in electric field sweeps the

electron out to the n side and the hole to the p side. This gives rise to a voltage

difference that can be used to drive a current. As for light emitting diodes, Si is

not an ideal material for the construction of solar cells because of its indirect band

gap. However, the problem is less severe: First of all, transitions across the indirect

band gap are still possible when the required crystal momentum is provided by

another particle, a phonon, for example. While such transitions are unlikely, this

can be compensated by choosing a thicker layer of absorbing Si. Also, light with

higher photon energies can still be absorbed directly, also leading to the generation

of electron–hole pairs. Today, Si is the most common material for solar cells and

relatively high efficiencies can be reached.

It is interesting to consider the actual design of a solar cell. A schematic illustra-

tion is given in Figure 7.16. The first step for power generation is the creation of

electron–hole pairs by light absorption. For this to work, the photon energy must

by higher than Eg . The incoming sunlight has a broad spectrum from the infrared

to the ultraviolet. It can be described as black body radiation for a temperature of

about 6000 K (the temperature of the sun’s surface).This puts themaximumflux in

the spectrum at ≈ 2.6 eV with a rapid decrease for higher energies. At the surface

of the earth, however, certain light frequencies are strongly suppressed because of

absorption in the atmosphere.

The solar cell in the figure resembles a typical silicon-based device. The cell is

covered by an anti-reflective coating in order to make sure that most of the light

hitting the surface also enters the cell. This can be achieved by an anti-reflective
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Front contact
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Anti-reflective coating

hν

Strongly doped n-type Si

Weakly doped p-type Si

Figure 7.16 Sketch of a silicon solar cell
and the electrical contact to an external load
R. The light enters the cell through an anti-
reflective coating and electron–hole pairs are

generated in the silicon. These are separated
by the junction between the n-type and p-
type material.

transparent material, a special texture of the surface or both. The pn junction is

realized between a thin strongly n-doped Si layer on the top and a more weakly

p-doped layer below. When electron–hole pairs are created and separated in the

device, they need to be collected by metal contacts on the front and the back of

the solar cell, such that they can be used to drive a current through an external

load, symbolized by the resistor R. For the back-contact, this is not a problem

because the whole back side of the device can be covered by a metal contact. For

the front side, this approach does not work since the light has to enter there, too.

For Si-based devices, the n-doped layer in the front is sufficiently conductive to

transport the generated electrons to metal bars that are positioned on the surface

in a regular array. Alternatively, a thin, conductive, and nearly transparentmaterial

has to be placed on the top semiconductor layer to conduct the electrons to the

outer contact. Clearly, the presence of such a layer or of the metal bars prevents

part of the light from entering the cell.

When electron–hole pairs are generated by light absorption within the deple-

tion layer, they are readily separated, as shown in Figure 7.15b. However, the sep-

aration can even work when the electron–hole pair is generated in the n or p type

material further away from the depletion layer, where there is no electric field. For

this to happen, it is sufficient that the minority carrier (the hole in the n layer or

the electron in the p layer) diffuses to the space charge layer and is swept across

it by the electric field. The likelihood of this decreases with the distance from the

space charge layer.

A crucial issue for the generation of electric energy in the device is carrier

recombination:The lifetime of the minority carrier of the electron–hole pair (e.g.,

the hole in the n-doped layer) is quite short because the risk of recombination

with a majority carrier (an electron in the n-doped layer) is very high. Any

such recombination prevents the photo-excited carriers from doing electric
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work in the external circuit. Recombination can take place in different ways.

We have already discussed radiative recombination that involves the emission

of a photon, that is, the inverse process of electron–hole pair generation the

device is intended to perform. It is also possible to have a three-body process, in

which an electron recombines with a hole and gives the excess energy to another

electron (a so-called Auger process). While these processes cannot be avoided,

there are additional pathways for recombination that depend on the design of

the solar cell: Notably, recombination can happen near structural defects, such

as crystalline grain boundaries, atomic contaminants, or even dopant atom sites.

Domain boundaries between small crystallites are present in solar cells based

on polycrystalline Si, but they are avoided when using single crystal Si. Doing

so does in fact lead to a higher efficiency, but the production cost is also higher.

Carrier recombination is also favored at irregular surfaces and interfaces, but

this can be limited by growing atomically flat interfaces or by passivating broken

bonds at the surfaces.

There is a theoretical limit to the highest achievable efficiency of a solar cell,

the efficiency being defined as the electrical energy provided by the cell divided

by the total solar energy it is exposed to. This highest efficiency depends on the

size of the band gap. Imagine the generation and separation of an electron–hole

pair as in Figure 7.15b, and consider what happens to the electron on the n side.

After the excitation, the electron will have an energy high above the CBM but

due to scattering with other electrons, it will quickly loose this energy and end

up near the CBM. This happens very quickly, within a hundred femtoseconds or

so, much faster than possible recombination processes. The same happens to the

hole on the p side. The energy difference between the hole on the p side and the

electron on the n side can thus be no bigger than the size of the gap in the mate-

rial (in Figure 7.15b, it is much smaller because of the strong doping difference

on both sides). Only this energy difference can do work in the external circuit. If

we build a solar cell from a semiconductor with a small band gap, we will thus

only end up with usable electron–hole pairs that have (at best) the energy of this

gap. This energy is increased for a material with a wider gap, but then we harvest

fewer photons because only those with energies larger than Eg can at all excite

electron–hole pairs. In both extremes, the efficiency drops and there must there-

fore be a maximum somewhere in the middle. It turns out that the theoretical

maximum efficiency is around 30%, reached for Eg ≈ 1.2 eV, quite close to the gap

value for Si. This is known as the Shockley–Queisser limit. It does not take the

detrimental effect of defect-induced recombination into account. In real Si solar

cell devices, efficiencies of around 25% are achievable but for most commercial

products, the value is lower. Using a more complex solar cell design based on

GaAs with multiple junctions and external light concentration, one can beat the

Shockley–Queisser limit, which is only valid for a single junction. Efficiencies of

more than 40% have been reached in the laboratory but at a very considerable

cost.
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7.5

Further Reading

A detailed discussion on semiconductor physics is given in the general solid state

physics book

• Ibach, H. and Lüth, H. (2009) Solid State Physics, 4th edn, Springer.

More detailed information on semiconductor devices can be found in

• Sze, S.M. (1982) Physics of Semiconductor Devices, 2nd edn, JohnWiley & Sons,

Inc.

• Van Zeghbroeck, B. (2011) Principles of Semiconductor Devices, online book

under http://ecee.colorado.edu/∼bart (accessed 13 November 2014).

and on solar cells in

• Honsberg, C. and Bowden, S. online book on pveducation.org, http://www.
pveducation.org/pvcdrom (accessed 13 November 2014).

• Nelson, J. (2003)The Physics of Solar Cells (Properties of Semiconductor Mate-

rials), Imperial College Press.

7.6

Discussion and Problems

Discussion

1) What is the difference between a metal, a semiconductor, and an insulator?

2) How does the conductivity of a semiconductor (typically) change as a func-

tion of temperature and why?

3) In an intrinsic semiconductor, the chemical potential lies in the middle of

the gap at low temperatures. Why?

4) Explain the difference between “electrons” and “holes.”

5) What is the concentration of mobile electrons and holes as a function of

temperature for an intrinsic semiconductor?

6) What is the meaning of the effective mass, and how can it be related to the

electronic band dispersion?

7) If you have a semiconductor with heavy holes and light electrons around the

VBM and CBM, respectively, can you draw the bands schematically?

8) How can you measure the effective mass of the carriers?

9) How can you measure the concentration of electrons or holes?

10) Why does a very small number of donor or acceptor atoms in a semiconduc-

tor have a big impact on the concentration of free carriers?

11) The interaction between a donor (acceptor) ion and its extra electron (hole)

can be described in a way very similar to the Bohr model for the hydrogen

atom, but the binding energy is much smaller and the radius much bigger.

Why?

http://ecee.colorado.edu/%E2%88%BCbart
http://www
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12) Where does the chemical potential in an n-doped semiconductor lie at low

and high temperatures?

13) Explain why a pn junction works as a check valve for the current.

14) Explain why GaAs is a more appropriate material for optoelectronic appli-

cations than Si.

Problems

1) Nondegenerate semiconductors: Derive the simplified expressions for the

Fermi function (7.7) and (7.8), assuming that the chemical potential is

situated approximately in the middle of the gap.

2) Intrinsic semiconductors:The chemical potential in an intrinsic semiconduc-

tor is given by (7.15). Using the band structure in Figure 7.3a, explain quali-

tatively why it depends on the effective masses in this way.

3) The chemical potential in metals: In Chapter 6, we have simply identified the

chemical potential 𝜇 in a metal with the Fermi energy EF and stated that

this is a good approximation for all temperatures, that is, that the position

of the chemical potential is independent of the temperature. Use the charge-

neutrality arguments introduced in this chapter to show that this is indeed a

justified approximation.

4) Doped semiconductors: Consider a nonionized phosphorus donor atom in a

Si crystal. (a) What is the “Bohr radius” of the resulting “atom?” (b) Estimate

how many Si atoms are contained within a sphere of this “Bohr radius”? (c)

Estimate how high the concentration of impurities would have to be for the

“Bohr radii” to overlap, and what would you expect to happen in this case?

5) Doped semiconductors: (a) Calculate the effective number of states per vol-

ume NC
eff
for the conduction band of silicon at T =150 K and T =300 K. (b)

In the intermediate temperature (extrinsic) case of Figure 7.7a, it appears that

almost all the electrons in the donor atoms have been excited into the conduc-

tion band. On the other hand, the chemical potential in this situationmust be

close to themiddle of the gap, whichmeans that the Fermi–Dirac distribution

is small at the donor levels but even smaller in the conduction band. So, why

are the electrons in the conduction band and not in the donor levels? (Hint:

Keep in mind that the doping concentration is on the order 1020 m−3).

6) Doped semiconductors: It is technically very difficult to produce semiconduc-

tor crystals showing truly intrinsic behavior. For the same reason, it is hard to

fabricate a truly n- or p-doped semiconductor, and in general, both types of

dopant atoms will be present (although the concentration of one will gener-

ally be much higher). Show that in the case of simultaneous n and p doping,

the Hall coefficient is given by

RH =
H
Bjx

=
p𝜇2

h
− n𝜇2

e

e(p𝜇h + n𝜇e)
2
. (7.31)

7) Optical properties: For an indirect gap semiconductor such as silicon, the dif-

ference in wave vector between the VBM and the CBM is on the order of
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𝛿k = 𝜋∕a, where a is the lattice constant of the material. (a) Explain why this

is so. (b) Estimate 𝛿k for Si, where the lattice constant is 0.543 nm. (c) For

an optical transition to take place, the photon needs to have at least the gap

energy (1.11 eV for Si) and it has to have a wave vector corresponding to 𝛿k.

What is the actual size of the wave vector of 1.11 eV photons? For which type

of electromagnetic radiation does the modulus of the wave vector become

comparable to the reciprocal lattice distances in a solid?

8) The pn junction: Solve the Poisson equation (7.20) to calculate the potential

within the pn junction and the absolute potential difference (7.22) across the

junction.
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8

Magnetism

In this chapter, we are concerned with the magnetic behavior of solids. We can

divide this into two categories.We shall first discuss how solids react to an external

magnetic field. For most materials, not much happens: The magnetic effects are

weak and can largely be understood by the properties of the atoms making up

the solid. We then inspect the more interesting case of a spontaneous magnetic

ordering in the absence of an applied magnetic field. This is obviously a genuine

effect of the solid that cannot be derived from atomic properties. As it turns out,

it is rather difficult to describe magnetic ordering by a simple model.

It is often appropriate to considermagnetic ordering between just the spinmag-

netic moments of the electrons. We could then choose a model based on local

spins with some interaction between them or amodel with completely delocalized

electrons, but the possibility of one spin (magnetization) direction to prevail. The

problem is that an accurate description lies somewhere in between these extremes.

Another difficulty is that it is no longer a good approximation to consider one elec-

tron in the mean potential of all the other electrons: When describing the interac-

tion between spins, the electrons in the immediate vicinity of a given electron are

more important than those that are further away, and this cannot be captured by

amean potential. We will anyway attempt to describe magnetic interactions using

an averaged interaction between electrons, and we will at least be able to account

for the basic phenomenon of ordering.

8.1

Macroscopic Description

Before we start to explore the magnetic properties of solids, it is quite useful to

review the basics of magnetostatics. In general, we assume that Gauss’ law for

magnetostatics

∮ 𝐁d𝐚 = 0, div𝐁 = 0 (8.1)

is obeyed:There are nomagnetic monopoles.The sources of themagnetic induc-

tion 𝐁 are magnetic dipoles. In vacuum, the magnetic induction is related to the
magnetic field 𝐇 by

Solid State Physics: An Introduction, Second Edition. Philip Hofmann.
© 2015 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2015 by Wiley-VCH Verlag GmbH & Co. KGaA.
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𝐁 = 𝜇0𝐇, (8.2)

with the permeability of vacuum 𝜇0 (𝜇0 = 4𝜋 × 10−7 V s A−1m−1 =

4𝜋 × 10−7 T2 m3 J−1). Note that the SI unit of 𝐁 is the Tesla = kg s−2 A−1
and that one Tesla is a rather strong magnetic field. The Earth’s magnetic field

is typically on the order of 5 × 10−5 T, and strong magnetic fields in medical

magnetic resonance scanners are only a few Tesla.

In matter, we have

𝐁 = 𝜇0(𝐇 +𝐌) = 𝐁0 + 𝜇0𝐌, (8.3)

where𝐌 is the macroscopic magnetization of the solid and it is useful to regard
𝐁0 = 𝜇0𝐇 as the “external field.” The unit of this field is T, like for 𝐁. The magne-
tization 𝐌 can be viewed as the number N of magnetic dipole moments 𝝁 per
volume V ,

𝐌 = 𝝁
N

V
. (8.4)

The unit of 𝐌 is J T−1 m−3. In many cases, there is a linear relation between the

external field and the magnetization:

𝜇0𝐌 = 𝜒m𝐁0, (8.5)

where 𝜒m is called themagnetic susceptibility.1) If the susceptibility is negative,

the solid is called diamagnetic, and if it is positive, the solid is called paramag-

netic. Instead of using the susceptibility, one can describe themagnetic properties

of matter by the relative permeability 𝜇 = 1 + 𝜒m. We do not use the relative

permeability in this chapter but be aware of the possible confusion that can arise

because the relative permeability and the magnetic moments are both denoted by

𝜇. Note that the linear relation (8.5) does not always hold. In some cases, a nonlin-

ear description must be used or the relation might even depend on the history of

the piece ofmaterial at hand.Wewill encounter this in the case of ferromagnetism.

Like for an electric dipole in an electric field, the potential energy U of a

magnetic dipole 𝝁 in a field 𝐁0 is U = −𝝁 ⋅ 𝐁0. One could thus think that the
energy of a macroscopic object of volume V and magnetization𝐌 is simply U =

−V𝐌 ⋅ 𝐁0. This is also correct, but only if 𝐌 does not depend on the field. In
the case that it does, as in (8.5), one has to take into account that the energy

change for a small increase of the field dB0 depends on the already induced

magnetization, giving an energy change of dU = −V𝐌d𝐁0. When the field is
turned on from zero to B0, we thus get an energy of

U = −V ∫
B0

0

MdB′
0
= −V ∫

B0

0

𝜒m

𝜇0
B′
0
dB′
0
= −V

𝜒m

2𝜇0
B2
0
, (8.6)

where we have ignored the vectorial character of 𝐌 and 𝐁0 since the magneti-
zation and the field are either parallel or antiparallel. For a paramagnetic solid,

1) Note that 𝜒m is dimensionless here. In the literature, other units for 𝜒m can be found, depending

on the definition ofM as magnetization per unit volume, unit mass, or per one mol of substance.

Under some circumstances, 𝜒m is also defined as 𝜇0𝜕𝐌∕𝜕𝐁0.
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U is thus negative, corresponding to an energy decrease for higher fields. Para-

magnetic solids therefore experience a force toward locations of higher magnetic

fields, that is, they are attracted to either pole of a permanentmagnet. Fordiamag-

netic solids, the opposite is true; they are expelled from regions of high magnetic

fields. As we shall see later, 𝜒m is usually very small, so that these effects are not

noticeable when you play with a permanent magnet and diamagnetic or param-

agnetic solids.

It is tempting to explain these magnetic phenomena in a simple classical pic-

ture. In the case of diamagnetism, such an explanation comes straight from Lenz’s

law: An increasing external magnetic field is experienced by all the electrons in

the atoms making up the solid, and this leads to the induction of microscopic cur-

rents. According to Lenz’s law, the magnetic moment arising from these currents

opposes the external field and hence one observes diamagnetic behavior. While

diamagnetism is therefore always present, paramagnetism can only be observed

when the atoms in the solid show a net magnetic moment, already without an

external field. Such magnetic moments can align with the external field, leading

to an energy gain. Atoms do not necessarily have a net magnetic moment because

all of the electrons’ orbital and spin magnetic moments may cancel out, but when

such a moment is present, it usually dominates the diamagnetism.

While this picture is intuitive, it is also misleading. It turns out that a classical

treatment does not give rise to any magnetism, even though some of the solid’s

magnetic properties are predicted correctly by classical arguments.2) The failure

of classical physics to account formagnetism is known as theBohr–van Leeuwen

theorem.

8.2

QuantumMechanical Description of Magnetism

In view of the failure of classical physics to account for magnetism, a quantum

mechanical treatment is called for. We approach this here from a rather general

point of view, asking how the energy of an electron changes when aweakmagnetic

field is included as a small perturbation in the Schröding equation. In principle,

this treatment can be applied to both atoms and solids. However, already in iso-

lated atoms, the situation is complicated because the magnetic moments of the

many electrons in the atom have to be added in the right way. This is treated in

the next section. It does not change the physical principles illustrated here.

Before we can use perturbation theory to see how a magnetic field changes the

energy of an electron, we have to discuss how the Schrödinger equation changes

in the presence of an electromagnetic field. To describe this in a convenient way,

we need the concept of the so-called vector potential, which you may not be

familiar with. The key idea is as follows: In electrostatics, the electric field (𝐫)
can be generated by means of a potential 𝜙(𝐫) such that (𝐫) = −grad𝜙(𝐫). The

2) See online note on www.philiphofmann.net.

http://www.philiphofmann.net
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introduction of this potential greatly simplifies many calculations as we only have

to find the (scalar) potential instead of the (vectorial) field. Due to the nonexis-

tence of magnetic monopoles, it is impossible to define a similar scalar potential

for the magnetic field, but one can define a so-called vector potential such that

𝐁 = curl𝐀. (8.7)

As we shall see in a moment and later in Chapter 10, the introduction of𝐀 greatly
simplifies the coupling of an external electromagnetic field into the Schrödinger

equation. Using 𝐀 also simplifies the notation in many other situations, for
example, for obtaining the wave equation of the electromagnetic field from the

Maxwell equations.

Having the vector potential 𝐀(𝐫), and the scalar potential 𝜙(𝐫), the rules for
coupling an external electromagnetic field to the Schrödinger equation are quite

simple: The scalar potential obviously only acts as an addition to the potential

that is already present, so we have to multiply it with the charge q of the par-

ticle described by the Schrödinger equation and add it to the Hamiltonian. The

magnetic field is included by substituting the momentum operator 𝐩 = −iℏ∇ by

𝐩 → 𝐩 − q𝐀. (8.8)

We now come back to the original problem to find out how a weak external

magnetic field changes the energy of an electron in an atom. Let us say that we

have a magnetic field of strength B0 only in the z direction, that is, 𝐁0 = (0, 0,B0).

A vector potential generating this field is

𝐀 = −
1

2
𝐫 × 𝐁0, (8.9)

which is easily verified by an explicit calculation of curl𝐀.We know that the vector
potential only affects the kinetic energy term of the electron, so we do not have

to bother with the potential energy here. The original kinetic energy part of the

Hamiltonian is now modified such that

Hkin → H′
kin
,

𝐩2
2me

→
1

2me

(𝐩 + e𝐀)2 = 1

2me

(
𝐩 − e

𝐫 × 𝐁0
2

)2
. (8.10)

Evaluating this expression gives

H′
kin

=
1

2me

(
𝐩2 + e𝐁0 ⋅ (𝐫 × 𝐩) + e2

4
(𝐫 × 𝐁0)2

)
, (8.11)

where we have used that 𝐚 ⋅ (𝐛 × 𝐜) = −𝐜 ⋅ (𝐛 × 𝐚). Nowwe exploit that𝐁0 has only
a component in the z direction, that is, 𝐁0 = (0, 0,B0).

H′
kin

= Hkin +H′ =
𝐩2
2me

+
e

2me

B0(𝐫 × 𝐩)z +
e2

8me

B2
0
(x2 + y2). (8.12)

The first term in this expression is the original kinetic energyHkin.The second and

third terms represent the perturbation caused by the magnetic field. The energy
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change due to the perturbation is E′ = ⟨𝜓|H ′|𝜓⟩ and thus
E′ =

e

2me

B0⟨𝜓|(𝐫 × 𝐩)z|𝜓⟩ + e2

8me

B2
0
⟨𝜓|(x2 + y2)|𝜓⟩. (8.13)

The second term in this expression represents the diamagnetism. We can see

this because the term is always positive and, therefore, a higher magnetic field

is always accompanied by an energy increase. The operator x2 + y2 determines

the expectation value of the electron’s squared distance from the origin in the

plane perpendicular to the field. In the case of an atom, this origin would be the

nucleus.

The first term in (8.13) contains the angular momentum of the electron pro-

jected onto the direction of the field (z). This is the paramagnetic term that gives

an energy-lowering when the electron’s magnetic moment aligns with the field.

This happens when the z-component of the angular momentum (𝐫 × 𝐩)z is neg-
ative, that is, when the projection of the angular momentum is pointing in the

opposite direction from the field. This is the usual situation for an electron: The

orbital angular momentum and the associated magnetic moment are antiparallel

because of the electron’s negative charge.

Finally, the electron also has a spin and an associated magnetic moment. This

is a relativistic effect and therefore not present in the nonrelativistic Schrödinger

equation. We could add it to (8.13) as an additional perturbation of the energy. It

is given by

gems
eℏ

2me

B0 = gems𝜇BB0, (8.14)

where 𝜇B is the Bohr magneton with a value of 9.274 × 10−24J T−1 =

5.788 × 10−5eVT−1, ms is the spin magnetic quantum number that can take the

values −1∕2 and 1∕2, and ge ≈ 2 is the gyromagnetic ratio for the electron.

8.3

Paramagnetism and Diamagnetism in Atoms

The paramagnetism in atoms is a bit more complicated than described above

because the spin and orbital magnetic moments interact with each other and the

contributions from different electrons can cancel each other. The diamagnetism

in atoms, on the other hand, can be treated by summing up the contributions

from all the electrons. We describe both phenomena here, but we only treat the

paramagnetism for the simplest case. For more detailed explanations, the reader

is referred to the literature about quantum mechanics or atomic physics.

The magnetic moment of an atom is caused by the orbital and spin angular

momenta. In a hydrogen atom, the orbital angular momentum 𝐋 of the single
electron (measured in units of ℏ) is accompanied by a magnetic moment 𝝁 with

𝝁 = −
eℏ

2me

𝐋 = −𝜇B𝐋. (8.15)
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Figure 8.1 (a) Precession of an atomic magnetic moment in an external field. (b) Possible
orientations for the magnetic moment in field direction for hydrogen with l = 2. (c) Possible
orientations for the magnetic moment in field direction for Cr3+ (J= 3/2).

Thismagneticmoment precesses around the direction of an applied field as shown

in Figure 8.1a. The component of the magnetic moment 𝜇l in the direction of the

field is quantized and given by the magnetic quantum numberml:

𝜇l = −
emlℏ

2me

= −ml𝜇B. (8.16)

If the orbital quantum number is l, then ml takes the 2l + 1 values −l,… , 0,… , l

This is illustrated for l = 2 in Figure 8.1b.

The situation for the spin 𝐒 (also measured in units of ℏ) is very similar. It also
leads to a magnetic moment

𝝁 = −ge𝜇B𝐒, (8.17)

and possible magnetic moments in the field direction of

𝜇s = −gems𝜇B, (8.18)

as already discussed in the previous section. Since ge ≈ 2, this means that 𝜇s ≈

±𝜇B. The hydrogen atom in the ground state has n = 1 and l = 0 and, therefore,

only the spin magnetic moment matters.

What about the more complex atoms with many electrons and an interaction

between spin and orbital magnetic moments? This problem is greatly simplified

by the observation that for a filled shell, that is, for a set of n, l, which is completely

occupied, the total orbital magnetic moment is zero because the components in

field direction and opposite to the field direction are equally strong. The same

is true for the total spin magnetic moment because there are equally many elec-

trons with spin +1∕2 and spin −1∕2. So, we only have to worry about nonfilled

shells. For these, we proceed in two steps. First, we have to find the total angular

momentum that is described by the quantum number J . Then, we have to cal-

culate the magnetic moment associated with J . Similar to the case of the orbital

magnetic moment, there are 2J + 1 possibilities for the orientation of the angular

momentum with respect to a magnetic field with magnetic moments in the field

direction of

𝜇J = −gmJ𝜇B, (8.19)
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where g is the so-called Landé splitting factor and mJ is the magnetic quantum

number belonging to J . The total angular momentum of the electrons can be cal-

culated from a vector sum of the spin and orbital momenta. For light atoms (with

weak spin–orbit coupling), these are independent and the so-called L–S coupling

scheme can be applied. With this, one obtains the quantum numbers for the total

orbital and spin momenta by

L =
∑

ml S =
∑

ms. (8.20)

Again,we can see thatL and S are zero for filled shells because all angularmomenta

compensate each other. For nonfilled shells the procedure for calculating L and S

is given by Hund’s rules:

1) The spins of the electrons are arranged such that the maximum value of S

consistent with the Pauli principle is achieved.

2) With the given S, the quantum numbers ml are chosen such that the maxi-

mum value of L is achieved.

3) J in the ground state is now calculated as J = L − S when the shell is less than

half full, as J = L + S if the shell is more than half full, and as L = 0, J = S if

the shell is half full.

The first rule arises from an effect similar to the exchange interaction, which we

have encountered for the hydrogen molecule in Chapter 2: If we require the spins

to be parallel, the electrons have to be distributed into orbitals with different ml.

Since the spatial wave functions of these orbitals aremutually orthogonal, the elec-

trons keep out of each other’s way and this reduces the Coulomb repulsion. The

origin of the second rule is a bit less obvious, but it is qualitatively related to the fact

that theCoulomb repulsion is also loweredwhen the electrons “revolve around the

nucleus in the same direction.”The third ruleminimizes the energy in the presence

of spin–orbit coupling. The rules can be justified by both experiment and theory

and shall not be discussed in further detail here.

As an example, consider the ion Cr3+ that has the electronic configuration

[Ar]3d3. The first of Hund’s rules requires S = 3∕2. The possibleml values for the

3d shell are −2,−1, 0, 1, 2. Hund’s second rule requires the largest possible value

of L, that is, we have to choose ml = 0, 1, 2 and therefore L = 3. Finally, Hund’s

third rule states that for less than half-filled shells, J = L − S = 3 − 3∕2 = 3∕2.The

magnetic quantum numbermJ therefore takes the values −3∕2,−1∕2, 1∕2, 3∕2.
3)

For the calculation of the possible magnetic moments, we only lack the Landé

splitting factor that is given by

gJ =
3J( J + 1) + S(S + 1) − L(L + 1)

2J( J + 1)
. (8.21)

The resulting possible orientations of the magnetic moment for Cr3+ are shown

in Figure 8.1c.

3) Note that even for partially filled shells, one can obtain J = 0 if S = L. Equation (8.19) would there-

fore suggest that this does not lead to any magnetic moment.This is not entirely true but we do not

treat this case here.
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We thus see that atoms or ions show paramagnetic behavior only when they

have open shells.This is different for diamagnetism. It is always there because it is

caused by all the electrons in the atoms and their reaction to themagnetic field.We

will see that diamagnetic effects are usually very weak and that paramagnetism, if

present, dominates.

We have already calculated the energy correction due to diamagnetism in (8.13).

We can nowuse this expression to estimate the size of the correspondingmagnetic

moment in an atom. As in the derivation of (8.6), we have to take into account

that the microscopic magnetic moment is induced by the field and is therefore

field-dependent. We thus obtain

𝜇 = −
𝜕E′

𝜕B0
= −

e2

4me

B0⟨𝜓|(x2 + y2)|𝜓⟩. (8.22)

This can be calculated if the atomic wave functions are known (see Problem 8.1).

In order to merely estimate the magnitude of the magnetic moment, we introduce

some approximations: For a spherically symmetric electron distribution, themean

square distance of an electron from the nucleus is r2 = x2 + y2 + z2, hence x2 +

y2 = (2∕3)r2, and we take r to be the atomic radius ra. In addition to this, an atom

contains not only one electron but Z electrons that we all take to have probability

distributions with a sharp maximum on the radius ra. With this, we arrive at an

expression for the diamagnetic moment of an atom, which is

𝜇 = −
Ze2

6me

r2
a
B0. (8.23)

The approximation of putting all the electrons into an “orbital” with the atomic

radius is rather crude and, together with the fact that the expression contains r2
a
,

it will certainly lead to an overestimation of 𝜇. We shall see, however, that the

resulting estimate is very small despite of this.

8.4

Weak Magnetism in Solids

As we shall see below, the magnetic effects in solids tend to be quite weak except

for the cases of magnetic ordering and superconductivity (see Chapter 10). Here,

we discuss the sources of this weak magnetism and find them directly related to

the results for atoms in the previous section.

What do we expect for the magnetism in solids related to that in atoms? The

diamagnetism discussed above arises from all electrons in the atom, the valence

electrons, and the core electrons. Therefore, it is not going to change much as we

form the solid. In fact, we can view the solid simply as a dense cloud of atoms and

calculate the diamagnetic susceptibility for this cloud. The only correction to this

picture is the diamagnetism of the itinerant electrons in metals that we will take

into account separately.

The situation is more difficult in the case of paramagnetism. Even though many

atoms with open outer shells should have a nonzero J and therefore a permanent



8.4 Weak Magnetism in Solids 167

magnetic moment, not so many solids actually show this behavior. It appears as

if the magnetic moment disappears upon the formation of the solid. The reason

for this is particularly easy to understand for ionic solids. Even though the con-

tributing atoms generally have an atomic magnetic moment because of their open

shells, the ionic solid does not, because it basically consists only of ionswith closed

shells. A similar situation is found for covalent bonds. Consider, for example, our

discussion of the H2 molecule in Chapter 2. Even though the electrons in the indi-

vidual hydrogen atoms have a net spin of 1∕2, the molecular ground state has zero

spin and it does not have any magnetic moment either.

For having a “good” paramagnetic solid, we need atoms with open shells, that

do not participate in the bonding and therefore do not change their properties

much upon the formation of a solid. Possible candidates could be the relatively

localized d states in the 3d and 4d transition metals, but in these the d electrons

still participate in the bonding to a large extent.The best examples for quasiatomic

paramagnetism in solids are therefore found in compounds of the 4f rare earth

elements because the 4f electrons are very localized indeed.

8.4.1
Diamagnetic Contributions

8.4.1.1 Contribution from the Atoms

The atomic contribution to the diamagnetic susceptibility of a solid can be esti-

mated directly from (8.23):

𝜒m = 𝜇0
M

B0
= −

𝜇0ZNe
2

6Vme

r2
a

(8.24)

and this is always very small, 10−5 or so, much smaller than 1, that is, the magne-

tization in the sample is much weaker than the external magnetic field. Since it is

purely an atomic effect, it is also independent of the temperature.

8.4.1.2 Contribution from the Free Electrons

The (nearly) free electrons in metals also show a diamagnetic contribution to the

susceptibility in a quantum mechanical picture. This contribution is given here

without further derivation. It is

𝜒m = −
1

3V
𝜇2
B
𝜇0g(EF )

(
me

m∗

)2
. (8.25)

The main ingredients of this contribution are quite intuitive. First of all, there

is the ubiquitous density of states at the Fermi energy, which stems from the

fact that only the electrons close to the Fermi energy can respond to a magnetic

field (or perform any other low-energy excitation, for that matter). In addition,

the susceptibility depends on the ratio of electron mass and the effective mass.

The smaller the effective mass, the stronger the diamagnetic contribution. In

total, the diamagnetic contribution of the free electrons is very small, of the same

order as the contribution from the atoms.
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8.4.2
Paramagnetic Contributions

As for diamagnetism, we treat two contributions to paramagnetism. One is the

alignment of existing atomic magnetic moments and the other stems from the

free electrons in metals. We will see that the first, when present at all, is usually

much stronger than the second and than the diamagnetic response, and it is there-

fore the dominant contribution to the magnetic properties. The second is of the

same order as the diamagnetic contribution of free electrons, but it is easier to

understand and the discussion is useful for our later description of spontaneous

magnetic ordering.

8.4.2.1 Curie Paramagnetism

Consider a solid with a unit cell that contains an atom with a localized magnetic

moment. Such a moment could stem from an ion with a partially filled 4f shell, for

example. Treating such a system of independent, distinguishable, and localized

magnetic moments is a standard example in statistical physics and details can be

found in the literature. Here we only sketch how the mean magnetization and the

susceptibility can be found.

We know that the possible energy levels of the magnetic moment in an external

field are given by gJ𝜇BmJB0 (see Figure 8.1c). The lowest energy level is −gJ𝜇BJB0
and this is reached for the situation where the magnetic moment’s z-component

gJ𝜇BJ is aligned parallel to the field B0. We can thus calculate the mean moment

in the direction of the external field by weighting all possible moments by a Boltz-

mann factor for their individual probabilities

𝜇 =
1

Z

J∑
mJ=−J

gJ𝜇BmJe
gJ𝜇BmJB0∕kBT , (8.26)

while normalizing the sum with the total sum of probabilities, the so-called parti-

tion function

Z =

J∑
mJ=−J

e−gJ𝜇BmJB0∕kBT . (8.27)

The details of this are quite involved except for a spin 1∕2 system with two states,

a case we shall return to later. However, once 𝜇 has been determined, one can

calculate the total magnetization of the sample according to (8.4). The result is

shown in Figure 8.2 as a function of gJ𝜇BB0∕kBT .

We can distinguish two limiting cases. For gJ𝜇BB0 ≫ kBT , the magnetic field

is strong enough and the temperature low enough to achieve the highest possi-

ble alignment of the magnetic moments in the field direction. This corresponds

to a strong and saturated magnetization of the sample, but it is hard to realize

experimentally, even for strong magnetic fields and the lowest reachable temper-

atures. The much more important limiting case is that gJ𝜇BB0 ≪ kBT . Then, the

magnetization is found to be proportional to the magnetic field such that we can
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Figure 8.2 Paramagnetic susceptibility of a solid with localized magnetic moments. The
limit of Curie’s law is indicated as a dashed line.

define a susceptibility 𝜒m according to (8.5). 𝜒m is inversely proportional to the

temperature, a result that is known as Curie’s law (after P. Curie)

𝜒m =
C

T
, (8.28)

with the Curie constant C given by

C =
𝜇0Ng

2
J
𝜇2
B
J(J + 1)

3VkB
. (8.29)

The limit of Curie’s law is indicated by the dashed line in Figure 8.2.

The Curie constant can be calculated when J , gJ , and the density of magnetic

atoms are known. The calculated values compare very well to the experimental

data for solids containing rare earth ions, as expected. The comparison is much

less favorable for the 3d transition metal compounds (see Problem 8.2). We

have already addressed this issue above: The 3d electrons participate in the

bonding and the states have a different character from the atomic orbitals

assumed in the derivation of Curie’s law. In fact, the potential in which these

electrons move is far from the spherical potential that is assumed for atoms

and much more dictated by the crystal symmetry. For the elements of the iron

group (Fe, Co, Ni), one observes values of C suggesting that the 3d electrons

have J = S, that is, only spin and no orbital angular momentum at all. This

effect is known as the quenching of the orbital angular momentum. If

present, it allows us to think about the magnetization as the alignment of spin

moments only.

The Curie paramagnetism is much stronger than the diamagnetism discussed

previously, but it is still weak. Typical values of 𝜒m at room temperature are on

the order of 10−3–10−2. Note that 𝜒m is also temperature-dependent, in contrast

to the diamagnetic susceptibility discussed above.



170 8 Magnetism

(a) (b)Almost no field

0

N

N

Energy

(c)

B0

B0

g
(E

)f
(E

,T
)/

2
 g

(E
)f

(E
,T

)/
2

EF

Finite B0 μBB0

μBB0

μBB0

0 EF

Finite B0 μBB0

μBB0

μBB0

0 EF

Figure 8.3 (a) Density of occupied states
for free electrons at T = 0 K, split up into
electrons having their magnetic moment
antiparallel (N↑↓B0

) or parallel (N↓↓B0
) to an

external field, but the field is almost zero.
(b) When B0 is no longer small, the energy
of the electrons is increased or reduced by
𝜇BB0, depending on the orientation of their

magnetic moments. (c) The electrons with
a magnetic moment antiparallel to the field
can reach a lower energy state by flipping
their spin. In this way, a stable situation with
a constant Fermi energy is reached. Note
that the energy shift induced by B0 is not
drawn to scale.

8.4.2.2 Pauli Paramagnetism

Free electrons also exhibit paramagnetic behavior. If every free electron has a spin

of 1/2 and a magnetic moment of 𝜇B, one could expect that they contribute to the

saturation magnetization of the solid with 𝜇B times the density of the electrons.

This saturation is achieved when all the magnetic moments align parallel to the

field (or the spins align antiparallel to the field).4) But this is not the case at all and

the paramagnetic susceptibility of free electrons is actually very small.

The paramagnetic susceptibility of free electrons can be understood and even

calculated using the picture given in Figure 8.3. In Figure 8.3a, the density of

occupied states for free electrons (6.13) is divided into two parts: one with the

orientation of the magnetic moments antiparallel to an external field B0 and

one with the orientation parallel. This external field is assumed to be almost

zero. Figure 8.3b shows what happens when B0 is increased to a finite value. The

electrons raise or lower their energy by 𝜇BB0, depending on the orientation of

their magnetic moments with respect to the field. Since 𝜇B is so small, this energy

change is tiny for any achievable field, only 10−5 eV or so, much smaller than

the distance from the bottom of the band to the Fermi energy. Once this shift

happens, the electrons that have moved above the Fermi energy can lower their

energy by flipping their spin and becoming electrons with a magnetic moment

parallel to the field, as shown in Figure 8.3c.This gives rise to more electrons with

amagneticmoment parallel than antiparallel to the field, that is, to a paramagnetic

response.

4) Here and in the following, we speak loosely of spins aligning parallel or antiparallel to a field or to

each other but of course they do not. Only the z component of the spin can align with the field.The

actual spin precesses around the field direction.
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In order to calculate 𝜒m, we must figure out how many electrons flip their

spin in order to have a magnetic moment parallel to the field. These electrons

are represented by the light gray areas in Figure 8.3c. The size of each area is

g(EF )𝜇BB0∕2. Therefore, we have a difference between electrons with their

magnetic moment parallel and antiparallel to the field, which is

N↓↓B0
− N↓↑B0

= g(EF )𝜇BB0, (8.30)

where the arrows denote whether the moments and the field are parallel or

antiparallel. The net magnetization is

M =
1

V
(N↓↓B0

− N↓↑B0
)𝜇B =

1

V
g(EF )𝜇

2
B
B0, (8.31)

and the susceptibility becomes

𝜒m =
1

V
𝜇0𝜇

2
B
g(EF ), (8.32)

which is small, in the same order as the diamagnetic susceptibilities.The small sus-

ceptibility is hard to understand from a semiclassical point of view. As in the case

of the electronic heat capacity, it has to do with the Fermi–Dirac statistics. The

field required to align all the spinswould not only have to be such that𝜇BB0 ≫ kBT

but such that 𝜇BB0 > EF , which is huge. In fact, the Pauli paramagnetism is quite

different from the Curie paramagnetism. In the latter, a strong magnetization can

actually be achieved because the magnetic energy only needs to be much higher

than the thermal energy. For Pauli paramagnetism, it would need to exceed the

Fermi energy, something that is not possible.

8.5

Magnetic Ordering

So far, we have studied the diamagnetic and the paramagnetic behavior of solids.

Neither leads to magnetic effects of appreciable size. In this section, we look at

a much more spectacular phenomenon: long-range magnetic ordering without

any applied field. The detailed understanding of this is very difficult, and we will

not attempt it. We just concentrate on some main ideas behind the mechanism of

magnetic ordering.

Different types of magnetic ordering are shown in Figure 8.4. The ordering you

are probably most familiar with is the ferromagnetic type that is observed for the

iron group (Fe, Co, Ni). It is also found for the rare earth elements gadolinium

and dysprosium and for several alloys. Ferromagnetic ordering originates from the

parallel alignment of themagnetic moments in the crystal. It gives rise to amacro-

scopically observable magnetization. A rather different case is antiferromagnetic

ordering, which also entails a long-range ordering of magnetic moments, but the

orientation of the moments on neighboring sites is opposite, such that no net

magnetization is observed. Many transition metal oxide insulators show antifer-

romagnetic ordering. A mixture between the two cases is ferrimagnetic ordering
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Figure 8.4 Types of magnetic ordering. The arrows denote the direction and size of the
localized magnetic moments.

where there is antiferromagnetic ordering between moments of different sizes in

one unit cell, but ferromagnetic ordering between the unit cells, such that a net

magnetization remains. An example for a material showing ferrimagnetic order-

ing is magnetite (Fe3O4).

Howcanwe know that there is a phenomenon such as antiferromagnetismwhen

it does not produce an observable macroscopic field? As discussed in Chapter 1,

one can determine the microscopic magnetic ordering by neutron diffraction.

Whereas X-rays only “see” the structure of the material, neutrons carry a mag-

neticmoment and are therefore sensitive to themagnetic structure.The difference

between geometric and magnetic structure is pronounced in antiferromagnetic

crystals because the magnetic unit cell is bigger than the geometric unit cell (see

Problem 8.8).

8.5.1
Magnetic Ordering and the Exchange Interaction

Now we try to understand, at least qualitatively, where the magnetic ordering

comes from. It is obviously related to some interaction between the magnetic

moments. This is holding the moments aligned, despite the disordering effect of

entropy (temperature). Knowing that ferromagnetic ordering exists even far above

room temperature, we see that the energies needed to destroy it are at least of the

order of kBT at room temperature, that is, 25 meV.

Before we describe what causes the ordering, it is a good idea to mention a

mechanism that is not causing it. This is the direct dipole–dipole interaction of

the localized magnetic moments. It is a common misconception that the “little

magnets” in the solid align themselves like an array of compass needles due to

their magnetic interaction, but in fact they do not. We can easily see this by esti-

mating the strength of the magnetic dipole–dipole interaction. It is very weak and

the energy difference corresponding to the parallel and antiparallel alignment of

two magnetic dipoles at typical atomic distances corresponds to temperatures on

the order of 1 K (see Problem 8.4).

If the magnetic interaction is not the cause of the alignment, what is? The

responsible interaction is the exchange interaction, a funny type of energy



8.5 Magnetic Ordering 173

that stems from a combination of Coulomb interaction and the Pauli principle,

that is, the need to have antisymmetric wave functions for fermions. We have

encountered the exchange interaction already in our discussion of the hydrogen

molecule in Chapter 2, where we have seen that the difference between the

singlet and the triplet states is approximately twice the value of the exchange

energy X5) or

E↑↑ − E↑↓ = −2X. (8.33)

For the hydrogen molecule, the exchange energy X is always negative (see

Figure 2.2), which means that the triplet state has a higher energy than the singlet

state and the ground-state ordering is therefore “antiferromagnetic.” An inspec-

tion of Figure 2.2 shows that the exchange energy X (i.e., the separation between

the singlet and triplet state) is by no means small. Even for large distances, it

amounts to a substantial fraction of an electron volt.

This already gives the basic ingredient for the coupling in solids aswell.Themag-

netic dipole moments order because of the exchange interaction that favors either

a parallel (positive X) or an antiparallel (negative X) alignment. The exchange

energy is typically smaller than in the hydrogen molecule, but it is still on the

order of 100 meV for the ferromagnetic elements. It is, however, very difficult to

make qualitative predictions about the size or even the sign of X, as the following

considerations illustrate.

In contrast to what we see in the hydrogen molecule, a positive exchange

energy X could be expected for a multielectron system on very general grounds.

The reason is the Pauli principle: For two electrons, the triplet wave function (2.5)

vanishes when the electrons have the same spatial coordinates, meaning that they

will never be at the same place. This reduces their Coulomb repulsion, leading to

an energy lowering compared to the singlet state and thus to a positive exchange

energy. The most prominent example for this is the He atom for which the triplet

states are found to have a lower energy than the corresponding singlet states. The

same idea is also the basis of Hund’s first rule that the electron states have to be

occupied such that the highest possible value of S is realized. We have discussed

the example of Cr3+, which has a partially filled d shell with three electrons in it.

The electrons are placed into different subshells to achieve the highest possible

S, which also means that the electrons are kept apart from each other and the

total potential energy is lowered. The same principle applies to free electrons in

a metal. Electrons with the same spin direction will not be at the same place. If

there is a majority of spin-up electrons, each of these electrons feels the presence

of the other electrons less and it is attracted more strongly to the ions in the

crystal. This leads to an energy gain.

5) In the literature on magnetism, the exchange energy is very often called J instead of X. We stick

to X here, as in the Heitler–London model, and in order to avoid confusion with the total angu-

lar momentum. Actually, identifying X in the Heitler–London model with the energy difference

between E↑↑ and E↑↓ is only approximately correct (see online note on www.philiphofmann.net)

but we ignore this here.

http://www.philiphofmann.net
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However, the situation is not that simple because other energy considerations

apply as well, even if we neglect the disordering effect of finite temperature.

For a free electron gas, a complete spin polarization would lower the Coulomb

repulsion between the electrons, but it would increase the kinetic energy by a

very large amount (on the order of the Fermi energy), as we have already seen

in our discussion of Pauli paramagnetism. In fact, spontaneous magnetization is

never observed for free-electron-like metals.

We now want to explain how the exchange interaction can lead to (ferro) mag-

netically ordered states, even without an external field.There are two complimen-

tary ways to describe this. We can either view a system of localized magnetic

moments that interact with each other via the exchange interaction or we can

inspect how the electronic band structure for completely delocalized Bloch elec-

trons changes when we make a certain direction of the magnetic moment ener-

getically more favorable than the other direction. The first approach works well

for describing the magnetism of the rare earth metals because their 4f electrons

are indeed very localized.The second description is adequate to describe themag-

netism in the 3d transition metals.

8.5.2
Magnetic Ordering for Localized Spins

For a system of localizedmagnetic moments that interact via the exchange energy,

the quantum mechanical description of the magnetization was formulated by W.

Heisenberg. For simplicity, we assume that the orbital magnetic moment of the

states under consideration is quenched and that we only deal with spins. Heisen-

berg’s formulation is based on the Heitler–London model for the H2 molecule

presented in Chapter 2. There we have seen that the energy of the molecule (2.9)

has three contributions and the last of these depends only on the relative spin

directions of the electrons.This is very remarkable since the spin did not explicitly

appear in the calculation. For themagnetism, this last contribution to the energy is

the only relevant part and, therefore, Heisenberg suggested that magnetism could

be studied by a Hamiltonian that only includes this spin contribution. For two

spins, theHeisenberg Hamiltonian is

H = −2X𝐒1 ⋅ 𝐒2. (8.34)

The 𝐒i are the spin operators. For our present discussion, it is acceptable to view

them simply as the spin directions on a certain site. The factor of 2 is introduced

to obtain an energy difference of 2X between the singlet and triplet states, as in

(8.33) for the hydrogen molecule.

Wenow try to capture the essence of spontaneous ferromagnetic ordering based

on the Heisenberg Hamiltonian. If we extend this to the solid, the spin 𝐒i on every

lattice site would interact with the spin on every other lattice site. If we also include

the possibility of an external magnetic field, the resulting Hamiltonian is

H = −
∑∑

i≠j
Xij𝐒i ⋅ 𝐒j + ge𝜇B𝐁0 ⋅

∑
i

𝐒i, (8.35)
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where i, j run over all the atoms in the solid and Xij is the exchange interaction

between spins on the lattice sites i and j. The second term represents the effect

of an external magnetic field on all the spins. Equation (8.35) can be simplified

because the exchange interaction very rapidly decreases for longer distances. It is

therefore a good approximation to assume that a spin on site i only interacts with

the spins on the nearest neighbor atoms. We also take Xij to be the same for all of

these neighbors, such that we can simply call it X. Then, we obtain

H = −X
∑
i

∑
nn

𝐒i ⋅ 𝐒nn + ge𝜇B𝐁0 ⋅
∑
i

𝐒i, (8.36)

where the second sum runs over the nearest neighbors nn of each atom.

It is quite difficult to formally find the solutions to the Hamiltonian (8.36), but it

is easy to guess how the ground state looks like: For a positive exchange energy X,

the state with the lowest energy must be the one in which all the spins are aligned

parallel to each other and opposite to the external field (such that their magnetic

moment is parallel to this field).

We would now like to show that (8.36) permits a spontaneous magnetization

evenwithout an applied field.The biggest hurdle for doing this is that the first term

in (8.36) explicitly contains the local interaction between the spins on the nearest

neighbor sites. Progress can be made by a so-called mean field approximation

in which all the spins on the neighboring sites are replaced by the average spin

direction in the solid ⟨𝐒⟩, so that
H =

∑
i

𝐒i ⋅
(
−
∑
nn

X⟨𝐒⟩ + ge𝜇B𝐁0

)
=
∑
i

𝐒i ⋅
(
−nnnX⟨𝐒⟩ + ge𝜇B𝐁0

)
, (8.37)

where nnn is the number of nearest neighbors. Now we can exploit that ⟨𝐒⟩ is
directly related to the macroscopic magnetization we are interested in since

according to (8.4) and (8.17)

𝐌 = −ge𝜇B⟨𝐒⟩NV , (8.38)

and it thus follows that

H =
∑
i

𝐒i ⋅
(
nnnXV

ge𝜇BN
𝐌 + ge𝜇B𝐁0

)
= ge𝜇B

∑
i

𝐒i ⋅
(
𝐁W + 𝐁0

)
, (8.39)

with

𝐁W = 𝐌
nnnXV

g2
e
𝜇2
B
N
. (8.40)

Formally (8.39) describes a system of localized and independent spins that are

exposed to a sum of two magnetic fields. The first field 𝐁W is caused by the mag-

netization𝐌, which acts on the individual spins 𝐒i and the second is the external

field. 𝐁W is also called the Weiss field, after a phenomenological treatment by

P. Weiss in 1907, that is, before the advent of quantummechanics. We emphasize

that 𝐁W is not a “real” magnetic field created by the magnetization of the sample

but merely a clever way to cast the consequence of the exchange interaction into
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something that can be treated like a magnetic field. Indeed, the crucial ingredient

of (8.40) is the exchange energy X, which is needed to obtain a finite 𝐁W when a

magnetization is present.

The situation described by (8.39) is identical to what we have encountered in

Curie paramagnetism in the sense that localized magnetic moments are exposed

to a magnetic field 𝐁W + 𝐁0. We can exploit this to calculate the temperature-
dependent magnetization in the same way as in the Curie model. The important

difference to the Curie model is that a part of the magnetic field, 𝐁W , is not an

external magnetic field but the Weiss field that arises because of the magneti-

zation. If 𝐁W is strong enough, this gives us the desired possibility to sustain a

magnetization without any external field 𝐁0.
We assume thatB0 = 0 and calculate the temperature-dependentmagnetization

purely in the presence of the Weiss field, using (8.26) for a two-state system. We

introduce the abbreviation x = ge|ms|𝜇BBW∕kBT . If we only deal with spins, we

can also approximate ge|ms| ≈ 1 and x ≈ 𝜇BBW∕kBT and obtain

M(T) =
𝜇BN

V

ex − e−x

e−x + ex
= M(0) tanh(x), (8.41)

whereM(0) = 𝜇BN∕V is the highest possible magnetization that can be reached

at 0 K. Equation (8.41) now gives the magnetization as a function of temperature

but with the difficulty that x on the right-hand side also depends on this mag-

netization, as it appears in the Weiss field (8.40). This is most clearly seen when

rewriting (8.41) as

M(T)

M(0)
= tanh

(
M(T)

M(0)

ΘC

T

)
, (8.42)

where we have introduced the so-called Curie temperature ΘC as

ΘC =
nnnX

g2
e
kB

(8.43)

For a given temperature T , we must thus seek anM(T) such that (8.42) is fulfilled.

Clearly, this is always possible for a nonmagnetized sample withM(T) = 0. How-

ever, it turns out that nontrivial solutions also exist, as long as the temperature is

lower thanΘC . These solutions can be found numerically and are shown in Figure

8.5. The temperature-dependent magnetization in this simple model appears to

agree quite well with the measured result for the ferromagnetic 3d transitionmet-

als Fe, Co, and Ni, even though the valence electrons giving rise to magnetism in

these elements are not particularly localized. Data for these elements are shown

along with the model.

We can estimate the magnitude of theWeiss field BW from the measured Curie

temperature (see Problem 8.5). One finds that BW is huge, on the order of hun-

dreds to thousands of Tesla, much stronger than any field that can be generated in

the laboratory. This explains why the Weiss field can sustain a spontaneous mag-

netization in the sample but it should be emphasized again that the Weiss field is

not an ordinary magnetic field. It is caused by the combination of magnetization

and exchange, as clearly seen in (8.40).
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Figure 8.5 Temperature-dependent magnetization of Fe, Co, and Ni below the Curie tem-
perature ΘC . The line is the prediction according to (8.42) for a spin 1/2 system. The data
points are taken from Tyler (1931).

Above the Curie temperature, the spontaneous magnetization is lost. This

implies a lack of long-range order but the magnetic moments are of course still

present. We can therefore expect to find paramagnetic behavior. To see this,

we can proceed in exactly the same way as for the Curie paramagnetism and

calculate (8.41) in the high-temperature limit where we can replace the tanh

function by its argument. Making also use of the (8.5), we obtain the so-called

Curie–Weiss law for the susceptibility:

𝜒m =
C

T − Θc

. (8.44)

Note that this is very similar to Curie’s law (8.28), only the origin is shifted by the

Curie temperature.The derivation of the Curie–Weiss law and the Curie Constant

C is the subject of Problem 8.6. The law suggests that the susceptibility diverges

as we approach the Curie temperature and this also appears to make sense: As we

go into the regime of ferromagnetism, a very small external field can cause a very

strong response. We have to remember, however, that the Curie–Weiss law is a

high-temperature limit, and it does therefore not necessarily describe the behavior

near the Curie temperature accurately.

Overall, the description of ferromagnetism by the Heisenberg model is thus

fairly successful. It can explain the existence of spontaneous magnetization, the

temperature-dependent strength of the magnetization below the Curie tempera-

ture, and the paramagnetism above the Curie temperature.We have only treated it

for a spin 1/2 systemwith two states but it can be extended to any desiredmagnetic

moment. However, it is important to remember that the model assumes magnetic

moments on the lattice sites. Therefore, we would expect it to work best for situa-

tions that come close to this idealization.The rare earthmetals Gd andDywith the

4f electrons are very close to this ideal and therefore well-described by theHeisen-

berg model. For the transition metals Fe, Co, and Ni, in which the magnetism is

caused by the more delocalized 3d electrons, the description of ferromagnetism
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by the Heisenbergmodel gives rise to some problems, despite the apparently good

agreement in Figure 8.5, and we come back to this below.

Wewere only able to calculate themagnetic properties in the Heisenbergmodel

because of the mean-field approximation, that is, because we replaced the spins

𝐒nn on the nearest neighbors of a certain atom i by the averaged value over the

whole sample ⟨𝐒⟩ in (8.37). This is not a very good approximation, especially not
nearΘC . Imagine what happens whenwe cool the sample, starting from just above

ΘC . As ΘC is reached, certain spins will find themselves surrounded by spins of

the same orientation and this local magnetization will quickly spread out.What is

therefore important is the local spin environment of an atom, not the global aver-

age spin. Indeed, it is found that theHeisenbergmodelwith themean-field approx-

imation does not give a very accurate description of the temperature-dependent

magnetization just below ΘC .

The Heisenberg model of localized spins can also be used to describe antiferro-

magnetic materials and there it often works very well, even for materials contain-

ing 3d electrons. This is because typical antiferromagnetic materials are oxides

for which the oxygen atoms act as “spacers” between the magnetic atoms and

the 3d electrons thus remain fairly localized (see Problem 8.8 for the structure

of antiferromagnetic NiO). In fact, the 3d orbitals are so localized that there is

no direct exchange interaction between these electrons on different atoms, and

the exchange leading to magnetism has to be “mediated” by the oxygen atoms in

between, a phenomenon called superexchange.Thepredictions for antiferromag-

netism are quite similar to those for ferromagnetism. Antiferromagnetic ordering

is also only possible below a certain temperature and this temperature is called the

Néel temperature.

8.5.3
Magnetic Ordering in a Band Picture

We have assumed that the maximum possible magnetization of a ferromagnetic

sample can be calculated from the density and the size of the magnetic moments.

If we only had spin magnetic moments, for instance, the highest possible mag-

netization would beM(0) ≈ 𝜇BN∕V and this would be reached at T = 0 K. If the

angular momentum on the ions was J instead, we would haveM(0) = 𝜇BgJN∕V .

The measured highest magnetizations for the 4f metals are not too far off this

expectation but for the 3d transition metals, the agreement is quite poor.6) This

could have several reasons, such as the (partial) quenching of the orbital magnetic

moment. It turns out, however, that the description of localized moments is inad-

equate because the 3d states are delocalized and thus have band character. Bands

can be only partially filled and this can explain why not all the electrons participate

in the magnetism but just a fraction of them.

6) Note that such problems are not apparent in Figure 8.5 because there the magnetization is

normalized to the experimental value of M(0). When plotting the data with respect to the

calculated value ofM(0), the agreement would be much less impressive (see Problem 8.3).
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Figure 8.6 (a) Occupied density of states
in a 3d transition metal, separated into two
spin directions but without a net magneti-
zation. (b) A spontaneous magnetization of
the d electrons occurs when many electrons
change their spin direction (here from “up”

to “down”). This corresponds having more
occupied states in the “down” band and this
is achieved by moving the bright area in the
spin “up” density of states to the spin “down”
density of states.

The description of magnetism for electronic states with band character goes

back to E. C. Stoner and E. P. Wohlfarth. Figure 8.6a shows a sketch of the density

of states in a transition metal. The s (and sometimes also p) electrons form the

familiar free electron density of states with g(E) ∝
√
E. The density of states looks

quite different for the d electrons. The d band only exists in a small energy range,

its density of states is relatively high, and it is almost centered on the Fermi energy.

This can be understood by considering the character of the d electrons:Theband is

narrow in energy because the localized nature of the d states gives rise to a smaller

overlap of the wave functions and a smaller splitting in energy. We have encoun-

tered this in the tight-binding model in Chapter 6: Equation (6.60) shows that the

parameter 𝛾 that determines the band width depends on how much overlap there

is betweenwave functions onneighboring sites. For localized d electrons this over-

lap, and hence the band width, is small. The density of states is high because the

narrow band has to accommodate 10 d states per atom in the crystal. Finally, it is

almost centered on the Fermi energy because it is only partially filled. For Fe, it

is occupied by 6 out of 10 d electrons. In the sketch in Figure 8.6a, the d band is

chosen to be exactly half-filled.

Now imagine a situation with a spontaneous magnetization of the d electrons

(the exchange energy for the s electrons is so small that it can be ignored). Suppose

we havemore electrons with spin “down” than with spin “up”. For obvious reasons,

the “down” spin is then called the majority spin and the “up” spin the minority

spin. We know that the magnetic state is stabilized by the fact that the “down”

spin electrons have gained an energy on the order of the exchange energy and the

“up” spin electrons have lost this energy.The two corresponding densities of states

are thus shifted against each other in energy, as shown in Figure 8.6b. In order to
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(a) (b) ≈50–100 nm

Figure 8.7 (a) Domains of different magnetization in a ferromagnetic solid. (b) Detailed
picture of the magnetization rotation in a Bloch wall between two domains.

maintain a constant Fermi energy, the electrons in the bright shaded area of the

occupied density of states change their spin from “up” to “down” and the desired

magnetization with more “down” spin electrons is reached.

Figure 8.6b clearly illustrates that many electrons near the sharp maximum of

the d density of states have moved to lower energies and we can see the magneti-

zation directly as an energy gain in this picture. We can also understand why the

highestmagnetization at zero temperature (as in our picture here) can correspond

to a fractional number of magnetic moments per unit cell: A complete magnetiza-

tion of the d electrons would correspond to completely emptying the “up” d band

but with the continuous shift here, any fractional magnetization is possible.

8.5.4
Ferromagnetic Domains

Not all ferromagnetic materials appear to show a macroscopic magnetization

below theCurie temperature. Sometimes it is necessary to “magnetize” themby an

external magnetic field.The reason for this is the existence of magnetic domains,

as suggested by P.Weiss in 1907 and shown in Figure 8.7a.Thedomains have differ-

entmagnetization directions such that the total averagemagnetization of the sam-

ple is zero or small. The domains are separated by so-called Bloch walls in which

the magnetization rotates from one direction to another. The Bloch walls are

typically around 50–100 nm thick. Magnetic domains can be made visible by very

fine iron powder on the magnet (the so-called Bitter method), or optically by the

so-called Kerr effect, or by spin-polarized scanning tunneling microscopy.7)

The existence of domains can be understood by consideringwhat happens when

the material is cooled below the Curie temperature. Ferromagnetic ordering sets

in spontaneously at different places in the sample and the Bloch walls are formed

where the domains meet. There is also another way to explain the origin of the

domains. Consider the single-domain magnet in Figure 8.8a. It leads to a strong

magnetic field outside the material with a certain energy density. By introducing

a few domains as in Figure 8.8b, the external field is strongly reduced, leading to

an energy gain, but the cost for this is the formation energy of the domain walls.

If the latter is not too high, the state with a few domains will be favorable. If now

7) See online note on www.philiphofmann.net.

http://www.philiphofmann.net
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(a) (b)

(c)

B0

Figure 8.8 (a) Magnetic material with a
single domain leading to a strong exter-
nal field. (b) The introduction of a few
domains greatly reduces the external field.
(c) The material can be magnetized by the

movement of domain walls caused by an
external field 𝐁0. The dashed gray lines cor-
respond to the situation in (b) before the
exposure to 𝐁0.

an external field is applied, the sample can be magnetized by moving the domain

walls relative to each other, as in Figure 8.8c.Themovement of the domainswalls is

clearly themost efficient way to change themagnetization of a sample. An alterna-

tivemechanismwould be to flip single magnetic moments in themiddle of a given

domain and eventually change the magnetization in the entire domain. However,

the energy barrier for flipping single moments is very high because such a process

would have to act against the huge local Weiss field.

8.5.5
Hysteresis

By moving the domain walls in a piece of ferromagnetic material via an external

field B0, different magnetizations can be achieved. Figure 8.9 shows the situa-

tion for an initially unmagnetized sample in a slowly oscillating field B0. In the
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Figure 8.9 Magnetization of a ferromagnetic sample as a function of externally applied
field B0. The starting point of the curve is the origin.
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beginning, the magnetizationM is zero, and it increases as the field is turned on.

For a certain field strength, the sample is completely magnetized in one direction,

that is, the saturation magnetization MS is reached. When the field is lowered

again, the magnetization decreases, but for B0 = 0, it has not reached zero but the

so-called remanentmagnetizationMR. Amagnetization ofM = 0 is first reached

at the coercive field BC in the opposite direction. For an even stronger field in the

opposite direction, saturation is reached again.

The cause for this hysteresis is partly that the movement of Bloch walls

through the sample is not a simple reversible process. Sometimes the Bloch

wall has to pass defects and this costs energy. The energy dissipation for one

closed loop of the hysteresis curve can be read directly from the curve if it

is displayed in a slightly different way as B(H) instead if of M(B0). Then, the

dissipation is simply ∮ BdH , that is, the area enclosed by the hysteresis curve.

The B(H) curve looks quite similar to the M(B0) curve, but it does not show

saturation in the same sense because B still increases as H increases even ifM is

saturated (see (8.3)).

Hysteresis can also be obtained in a simple model for a defect-free crystal.

Consider a one-domain ferromagnet at a very low temperature. All the spins are

aligned with an external magnetic field. The alignment will not be lost when the

field is turned to zero. In fact, a field in the opposite direction with considerable

strength is required to reverse the magnetization because all the spins have to be

flipped over. Once this is achieved, the external field can again be turned to zero

with little further changes in the magnetization.

The exact shape of the hysteresis curve depends strongly on the type and

structure of the material. It can be tailored to meet the needs of specific appli-

cations. If the goal is to have a good permanent magnet, both a large remanent

magnetization and a high coercive field are desirable. These properties charac-

terize so-called hard magnets. One can play certain tricks to achieve them. For

example, one can make the grain size of the material smaller than the typical size

of a magnetic domain. Then, the grains cannot change their magnetization by

moving domain walls. The magnetization is forced to flip over as a whole, which

is an expensive process.

In the opposite extreme, one needs so-called soft magnets, for example, for

applications in transformers. From what we have seen above, the energy dissi-

pated in each magnetization circle is the area enclosed by the hysteresis loop. In

a typical transformer, this energy is lost 50 (or 60) times a second, so the area

should be small. This means that both a small coercive field and a small rema-

nent magnetization are desirable. At the same time, one is looking for a high

saturation field and a material with a high resistance in order to minimize eddy

currents.
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Sons, Inc.
• Myers, H.P. (1990) Introductory Solid State Physics, 2nd edn, Taylor & Fran-

cis Ltd.
• Omar, M.A. (1993) Elementary Solid State Physics, Addison-Wesley.
• Rosenberg, H.M. (1988)The Solid State, 3rd edn, Oxford University Press.

More in-depth texts on magnetism are:

• Blundell, S. (2001)Magnetism in Condensed Matter, Oxford University Press.
• Buschow, K.H.J. and de Boer, F.R. (2003) Physics of Magnetism and Magnetic

Materials, Kluwer Academic Publishers.

• Himpsel, F.J., Ortega, J.E., Mankey, G.J., and Willis, R.F. (1998) Magnetic
Nanostructures, Adv. Phys., 47, 511. Journal article with special emphasis on

the nanoscale.
• Stöhr, J. and Siegmann, H.C. (2006) Magnetism. From Fundamentals to

Nanoscale Dynamics, Springer.

The diamagnetism of free electrons is discussed in

• Peierls, R.E. (1955) QuantumTheory of Solids, Oxford University Press.

The basics of orbital and spin angular momentum, the corresponding magnetic

moments, and the coupling to magnetic fields are treated in standard quantum

mechanics text, for example

• Griffiths, D.J. (2004) Introduction to Quantum Mechanics, Pearson Prentice

Hall.

For a basic text on statistical physics and its application to magnetism, see

• Mandl, F. (1988) Statistical Physics, 2nd edn, John Wiley & Sons.

8.7

Discussion and Problems

Discussion

1) What is the difference between diamagnetism and paramagnetism? What

are the basic physical causes for these phenomena? How do diamag-

netic/paramagnetic materials react when placed into an inhomogeneous

magnetic field?
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2) Can you give an example where the relation between the external field and

the magnetization is not linear, that is, where it deviates from (8.5)?

3) Describe the most important magnetic properties of atoms.

4) How do the free electrons in metals contribute to the magnetic properties?

5) What solids are likely to express Curie-type paramagnetism?

6) In a Curie-type paramagnet, all the ions with magnetic moments contribute

to the total susceptibility, but in a metal, only very few of the free electrons

contribute to Pauli paramagnetism. Why?

7) The Curie formula for the paramagnetic susceptibility 𝜒C = C∕T is only

valid under certain conditions. What are these conditions, and why is this

so?

8) What interaction is responsible for the magnetic ordering in ferromagnets

and antiferromagnets and how strong is it?

9) Explain the origin of the Weiss field and its significance for magnetic

ordering.

10) How does a ferromagnet behave magnetically above its Curie temperature?

11) Most ferromagnetic chunks of material do not show any macroscopic mag-

netization. Why?

12) When a chunk of ferromagnetic material is magnetized in an external field

and then the field is switched off, why does it keep a macroscopic magneti-

zation?

13) What is the difference between a magnetically soft and a magnetically hard

material?

Problems

1) Diamagnetic susceptibility of atoms: (a) Estimate the upper limit for the

(dia) magnetic moment of an atom. Use an atom with many electrons such

as Bi. From the magnetic moment, calculate the diamagnetic susceptibility

and compare it to the experimental value, which is 𝜒m = −1.7 × 10−4. (b)(*)

Calculate the magnetic moment for a hydrogen atom in an external field

exactly, starting from (8.13). You can use that the ground-state wave function

of hydrogen is

𝜓(r, 𝜃, 𝜙) = (𝜋a3
0
)−1∕2e−r∕a0 . (8.45)

You can also use that

∫
∞

0

xne−xdx = n! (8.46)

2) Curie paramagnetism:One often compares not the measured and calculated

Curie constants but rather the so-called effective magneton number p with

p2 = g2
J
J(J + 1). (a) Calculate p for the following ions and compare your result

to the experimental value given in brackets: Nd3+ with three 4f electrons (3.5),

Gd3+ with seven 4f electrons (8.0), Cr2+ with four 3d electrons (4.9), and Fe2+

with six 3d electrons (5.4). (b) Can the agreement for the 3d transition metals
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Figure 8.10 A two-dimensional version of NiO. The large circles represent Ni, the small
ones O.

be improved by assuming that the orbital angular momentum is quenched,

that is, that there is just the total spin?

3) Ferromagnetic ordering: For the ferromagnetic elements Gd3+ (with seven 4f

electrons) and Fe2+ (with six 3d electrons), calculate the highest possiblemag-

netization per atom and compare it to the experimental values taken at≈ 0 K,

which are 7.6𝜇B and 2.2𝜇B, respectively. Discuss the results.

4) Ferromagnetic ordering: We have argued that ferromagnetic ordering is

caused by the exchange interaction. It is a common misconception that it is

caused by the alignment of spins due to their mutual magnetic interaction. To

show this, estimate the magnetic interaction energy for two spins separated

by a typical atomic distance. (Hint: If you want to estimate the magnetic

field due to a microscopic moment, you can use an expression for the

on-axis field of a circular wire loop and assume that the radius of the loop

is very small). For what temperatures would you expect ordering due to this

effect?

5) Ferromagnetic ordering: Estimate the size of Weiss field based on the typical

Curie temperature of a ferromagnet (e.g., ΘC = 1043 K for Fe).

6) Curie–Weiss law: Derive the Curie–Weiss law (8.44) and show that the Curie

constant C corresponds to that in the Curie law (8.29).

7) Ferromagnetic ordering:Whatwould be the qualitative difference between the

density of states for a 3d transition metal shown in Figure 8.6a and that of a

4f transition metal?

8) Antiferromagnetic ordering: NiO is antiferromagnetic with a Néel temper-

ature of approximately 500 K. The magnetic moments are localized on the

Ni ions only. A two-dimensional version of NiO is shown in Figure 8.10.

(a) How would the magnetic moments be oriented in the antiferromagnetic

state? What would the unit cell and the reciprocal lattice look like, when
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the magnetic ordering is taken into account and when it is not taken into

account? (b) What experimental technique would reveal the magnetic order-

ing directly (and why) and thus allow you to study the transition between the

ordered and nonordered state?
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9

Dielectrics

In the previous chapter, we have discussed the response of a solid to a magnetic

field. In this one, we do the same thing for an electric field. We already know what

an electric field does tometals: It causes a current to flow.Here, we aremainly con-

cernedwith insulators, called dielectrics in this context, so that the present chapter

can also be seen as an extension of our discussion of conductivity in materials

(metals, semiconductors, and now insulators). At first glance, one could suspect

that nothing interesting happens when an insulator is exposed to an electric field

because no current can flow. It turns out that there are other important phenom-

ena such as the dielectric polarization and the piezoelectric effect. We will also

discuss the behavior of dielectrics in time-dependent electric fields, such as their

interaction with electromagnetic waves.

The formal description is in close analogywith that ofmagnetismandmany phe-

nomena can be described using the same ideas. But there are also some important

differences. The interaction of magnetic fields with solids is almost always very

weak (except in ferromagnetism) but for the electric field, this is not so. This has

some advantages and disadvantages for the formal treatment. For example, the

interaction of matter with electromagnetic waves is greatly simplified because we

can almost always neglect themagnetic part of the interaction. On the other hand,

the calculation of the electric field inside an insulator becomes difficult because

we have to take into account not only the external field but also the field created

by the polarized solid itself. This is something we could ignore for the description

of paramagnetism and diamagnetism (but not for ferromagnetism).

9.1

Macroscopic Description

Themacroscopic description of dielectric effects is similar to that for magnetism,

but it is not quite the same. Again, we start by a few formal definitions. An electric

field  leads to a dielectric polarization 𝐏 of the solid of the form

𝐏 = 𝜒e𝜖0, (9.1)

where 𝜒e is the electric susceptibility and 𝜖0 = 8.854 × 10
−12 C2 J−1 m−1 is the

vacuum permittivity. In vacuum, there is nothing to be polarized so 𝜒e = 0.

Solid State Physics: An Introduction, Second Edition. Philip Hofmann.
© 2015 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2015 by Wiley-VCH Verlag GmbH & Co. KGaA.
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The microscopic mechanism for the polarization will be discussed in the next

section. It mainly stems from the alignment of microscopic electrical dipoles that

are either already there or induced by the field. We write microscopic electric

dipole moments as 𝐩 = q𝜹, where q is the magnitude of the charges and 𝜹 their

separation vector. As usual for electric dipoles, this vector is defined as pointing

from the negative to the positive charge. The macroscopic polarization can then

be expressed in terms of the microscopic dipoles as

𝐏 =
N

V
𝐩 =

N

V
q𝜹. (9.2)

From this, it is evident that 𝐏 has the dimension of a surface charge density.
A material constant closely related to 𝜒e is the relative permittivity or

dielectric constant 𝜖, which is given by

𝜒e = 𝜖 − 1. (9.3)

Defined in this way, both 𝜒e and 𝜖 are dimensionless. When dealing with the

dielectric properties of solids, it is much more common to use 𝜖 rather than 𝜒e to

describe the material’s polarization. This is different from the case of magnetism

where we have used the susceptibility 𝜒m, rather than the relative permeability 𝜇.

As in the case of magnetism, the linear relation (9.1) represents a limit for weak

fields. The trouble is that the electric interaction with matter is not necessarily

weak andnonlinear effects are often encounteredwhenusing strong electric fields,

for example, from laser light. This is a very interesting research field in its own

right, but we do not discuss it any further here.

A standard example used to illustrate the electric polarization is the plane

plate capacitor shown in Figure 9.1. For the empty capacitor in Figure 9.1a,

Gauss’s law can be used to calculate that the electric field between the plates

of size A and distance d has the constant value || = 𝜎∕𝜖0, where 𝜎 is the

surface charge density on the plates. With this it immediately follows that the

capacitance is C = A𝜖0∕d. When a dielectric material is placed between the

plates, it is polarized leading to the macroscopic polarization 𝐏. We can imagine
this as arising from a very high density of microscopically small electric dipoles

(see Figure 9.1b). The most important effect of these dipoles is that they lead
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Figure 9.1 A plane plate capacitor. (a)
Charges on the plates of the capacitor with
no dielectric present between the plates.
(b) Polarization of the dielectric material

between the plates. (c) The net effect of the
polarization is surface charge densities on
the dielectric at the plate–dielectric interface.
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to a net surface charge density where the dielectric meets the plates. When

this is taken into account, the resulting average electric field in the capacitor is|| = (𝜎 − |𝐏|)∕𝜖0 = 𝜎∕𝜖𝜖0, that is, it is reduced by a factor of 𝜖. The capacity, in

contrast, is increased by the same factor.This is often used to determine the value

of 𝜖 experimentally.

The seemingly simple problem of changing the capacitance of a plane plate

capacitor is currently a big challenge in semiconductor device design. Consider

the MOSFET in Figure 7.13. The oxide below the gate is in effect the dielectric

material in a plane plate capacitor. This capacitor has to be able to store enough

charge to make theMOSFET work (without needing too high a gate voltage), that

is, it needs a sufficiently large capacitance.The technological goal is to design ever

smaller transistors and here the problem sets in. The capacitance is C = A𝜖𝜖0∕d,

where 𝜖 is the dielectric constant of the gate oxide SiO2. For a decrease in the size

of A, C also decreases. This can be compensated by decreasing the thickness of

the oxide layer d and this is what the semiconductor industry has been doing for

the last 30 years. But now it does not work anymore because d is at its limit (a few

nanometers). For an even thinner oxide, the film becomes “leaky” due to tunnel-

ing. Therefore, a current field of research is to find a material with a much higher

𝜖 than SiO2 to act as the gate oxide. Then, one could have the same capacitance

without the need for a very thin gate oxide.

9.2

Microscopic Polarization

There are several mechanisms giving rise to the microscopic electric dipole

moments leading to a macroscopic polarization. They are shown in Figure 9.2.

Figure 9.2a illustrates a mechanism that is really an atomic effect and has little

to do with the fact that the atoms are placed in a solid. In an electric field, the

(a) (b) (c)

p

p
p

O
H

H

E
E E

Na+

CI−

+

Figure 9.2 Mechanisms leading to micro-
scopic electric polarization. (a) The electric
field polarizes all the atoms in the solid. (b)
In ionic solids, like NaCl, the lattice can be
polarized, giving rise to local electric dipoles.
The dashed grid gives the position of the

ions without an applied field. (c) If there are
permanent dipoles in the solid and these are
free to rotate, they orient themselves paral-
lel to the field. A molecule with a permanent
dipole is, for example, water.
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spherical symmetry of an atom is lifted and the negative and positive charges are

displaced, giving rise to an electric dipole

𝐩 = 𝛼, (9.4)

where 𝛼 is the atomic polarizability.This effect is called electronic polarization

and present in all solids, of course. For a simple estimate of 𝛼 see Problem 9.1.

The next polarization mechanism is relevant to ionic solids, where something

very similar happens on a larger scale, as shown in Figure 9.2b. In the electric field,

the lattice itself gets polarized since the positive ions are displaced in the direction

of the external field and the negative ions opposite to the field.This effect is called

ionic polarization.

Finally, there is the possibility that already existing dipoles are oriented in the

field. Such permanent dipoles could be molecules such as water or HCl. This

polarization mechanism is called orientational polarization. However, it is

much more common in liquids or gases than in solids because the dipoles have

to be free to rotate.

With (9.1) and (9.3) in mind, the presence of different polarization mechanisms

should give rise to different dielectric constants 𝜖. Values of 𝜖 for a range of

materials are listed in Table 9.1. Some trends are immediately clear. Under

normal conditions, air has a dielectric constant close to 1 (an electric suscep-

tibility close to 0), simply because the density of air is very low (see (9.2)). The

dielectric constant is markedly higher for solids. One should expect a noticeably

higher dielectric constant for crystals with the possibility of ionic polarization

(NaCl or SrTiO3) than for crystals with only electronic polarization (diamond),

but this is not necessarily the case. NaCl has a very similar 𝜖 to diamond,

whereas the value is much higher for SrTiO3. We will discuss this special case

later on.

Table 9.1 Dielectric constant 𝜖 of selected materials at room temperature.

Material Dielectric constant, 𝝐

Vacuum 1

Air 1.000 573 (283 K, 1013 hPa)

Rubber 2.5–3.5

Glass 5–10

Diamond 5.7

Si 11.7

SiO2 3.9

CdSe 10.2

NaCl 6.1

SrTiO3 350

Ethanol (liquid) 25.8

Water (liquid) 81.1
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The microscopic mechanisms for the polarization of the solid are somewhat

reminiscent of themechanisms leading to amagnetization.There is, however, one

important difference. All the mechanisms described above lead to a polarization

in the direction of the external field, that is, to “para-electric” behavior, not to

“dia-electric” behavior.

9.3

The Local Field

Suppose that we know the dielectric constant 𝜖 of some solid and we want to cal-

culate the microscopic polarizability 𝛼 of the atoms making up the solid, knowing

that there are no othermechanisms of polarization.We can use (9.1)–(9.4) towrite

𝐏 = (𝜖 − 1)𝜖0 =
N

V
𝐩 =

N

V
𝛼, (9.5)

where  is the average electric field in the dielectric material, that is, the sum of

the external field and the average internal field due to the polarization. In the case

of a dielectric material inside a plane plate capacitor, we know this field . It is the

external field reduced by a factor 𝜖. Rearranging (9.5) gives the desired relation:

𝛼 =
(𝜖 − 1)𝜖0V

N
. (9.6)

Unfortunately, this is not correct because a microscopic dipole in the solid does

not feel the average field  but the local field loc at its site and this can be quite

different. We can think of this local field by simply taking out the dipole under

consideration and inspect the effect of all the other charges in its neighborhood.

This is shown in Figure 9.3. It becomes clear that the effect of the neighboring

dipoles gives rise to an additional field ′ that is parallel with the average field,

that is, the local field felt by every dipole is stronger than the average field in the

solid.
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Figure 9.3 The local field on microscopic
polarizable units. (a) Microscopic dipoles in
a dielectric placed in an external field. The
electric field  is the average internal field

in the dielectric. (b) The local field felt by
every single dipole is not just  but  + 

′

because the surrounding charges lead to a
field increase.
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We do not derive the strength of the local field here,1) we merely give the result,

which is

 loc =
1

3
(𝜖 + 2), (9.7)

so we get

𝐏 =
N

V
𝛼 loc =

N𝛼

3V
(𝜖 + 2). (9.8)

On the other hand, we have (9.1) with (9.3) or the left side of (9.5) as an expression

for 𝐏 and by setting the two equal, we obtain the so-called Clausius–Mossotti

relation, which relates the atomic polarizability to the dielectric constant:

𝛼 =
𝜖 − 1

𝜖 + 2

3𝜖0V

N
. (9.9)

Experimentally, the relation can best be tested for gases where the density can be

varied.

9.4

Frequency Dependence of the Dielectric Constant

9.4.1
Excitation of Lattice Vibrations

So far, we have only studied electrostatic behavior. Far more interesting is the

dynamic behavior for fields with a time dependence, in particular, in the region of

optical frequencies. We know from optics that 𝜖 is actually a complex number,2)

and in the Drude model we have already encountered a considerable frequency

dependence of 𝜖 (see Section 5.2.3 and in particular (5.28)). We have seen that

this can explain why metals become transparent for light with a frequency above

the plasma frequency 𝜔P . The frequency-dependent 𝜖(𝜔) is usually called the

dielectric function.

For insulators, it is also found that 𝜖(𝜔) is complex and frequency-dependent

and that energy can be resonantly transferred to the solid at some frequencies.

The frequency dependence of 𝜖 implies a frequency dependence of the refractive

indexN through (5.20) and this effect is well known as dispersion in optical mate-

rials such as glass. In the following, we discuss some simple models to explain the

frequency dependence of 𝜖.

In a static electric field, all types ofmicroscopic polarization are important: elec-

tronic polarization as well as ionic polarization and orientational polarization (the

latter two obviously only if they are possible). At very high frequencies, on the

other hand, the ions move too slowly to follow the changes of the electric field

1) For the derivation, see online note on www.philiphofmann.net.

2) For anisotropic materials, 𝜖 is not even a scalar quantity but a complex second rank tensor. As

everywhere else in this book, we ignore the effect of anisotropy, unless it is strictly needed for a

specific phenomenon.

http://www.philiphofmann.net
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Table 9.2 Dielectric constants 𝜖 of selected materials in the
electrostatic case and at optical frequencies.

Material Static 𝝐 Optical 𝝐

Diamond 5.68 5.66

NaCl 6.1 2.34

LiF 11.95 2.78

TiO2 94 6.8

and the rotation of permanent dipoles is even slower. Only the very fast electronic

polarization remains and, therefore, the total polarization of the solid decreases

greatly. Consequently, 𝜖(𝜔) should be lower at high frequencies than in the elec-

trostatic case.

In case of the ionic polarization, we have a good idea about the timescale

involved. In Chapter 4, we have seen that lattice vibrations have a frequency on

the order of 1013 Hz. So, for optical frequencies (≈ 1014–1015 Hz), the lattice

ions will not be able to follow the field anymore. This is confirmed by the data

in Table 9.2 in which the electrostatic and the optical 𝜖 are given for different

materials. The static 𝜖 is significantly larger than the optical 𝜖, apart from the case

of diamond, for which only electronic polarization can play a role.

We can describe the frequency dependence of 𝜖 more quantitatively for a sim-

ple but instructive model. We have discussed that light can only couple to optical

phonons very close to the center of the Brillouin zone at 𝐤 = 0. These phonons

correspond to an out-of-phase vibration of the positive and negative ions in the

unit cell, whereas the motion in between unit cells is in phase (see Figure 4.5

and Problem 4.2). The mode at 𝐤 = 0 is thus the only relevant vibration for the

interaction with light, and we therefore approximate the crystal as independent

harmonic oscillators with one such optical oscillator per unit cell. Each oscil-

lator shall be driven by an external field3) of the form 0 exp(−i𝜔t) and have a
resonance frequency 𝜔0 = (2𝛾∕M)1∕2, where 𝛾 is the force constant and M the

reduced mass of the two ions (see Problem 4.2). We also include a damping term

𝜂dx∕dt that is proportional to the velocity, that is, the rate at which the inter-

atomic distance changes. The physical meaning of this is that if this particular

motion gets very strong, it is likely to excite other vibrations and thus be damped.

The resulting equation of motion is that of a damped and driven harmonic oscil-

lator:

d2x

dt2
+ 𝜂

dx

dt
+ 𝜔2

0
x =

e0
M

e−i𝜔t. (9.10)

Note the similarity to the problem of a free electron in an external field where we

had the equation of motion (5.22), which has no restoring force and no damping.

As in that case, a good ansatz for the solution is

3) The electric field used here should actually be the local field, not the average internal field. This is

not important for the conclusions from this simple model but it is important for the phenomenon

of ferroelectricity, which is discussed later on.
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x(t) = Ae−i𝜔t , (9.11)

resulting in an expression for the amplitude A:

A =
e0
M

1

𝜔2
0
− 𝜔2 − i𝜂𝜔

. (9.12)

It will later be useful to split A into its real and imaginary parts by expanding the

fraction with the complex conjugate of the denominator to give

A =
e0
M

(
𝜔2
0
− 𝜔2

(𝜔2
0
− 𝜔2)2 + 𝜂2𝜔2

+
i𝜂𝜔

(𝜔2
0
− 𝜔2)2 + 𝜂2𝜔2

)
. (9.13)

The oscillation of the ions will be accompanied by an ionic polarization of

eAe−i𝜔t for every unit cell. From this, we can calculate the total polarization for a

crystal with N unit cells and volume V . Apart from the ionic polarization Pi(t),

we consider the electronic polarization of the ions Pe(t). This gives

P(t) = Pi(t) + Pe(t) =
N

V
eAe−i𝜔t +

N

V
𝛼0e−i𝜔t . (9.14)

For simplicity, we have assumed that there is only one type of ions with a density of

N∕V and an effective atomic polarizability 𝛼. The two different ions in the crystal

and their different polarizability can be taken care of by a suitable definition of 𝛼.

Now we can calculate the dielectric function

𝜖 =
P(t)

𝜖00e−i𝜔t + 1 =
NeA

V𝜖00 +
N𝛼

V𝜖0
+ 1. (9.15)

At sufficiently high frequencies, we know that Pi = 0 so that the optical limit must

be

𝜖opt =
N𝛼

V𝜖0
+ 1, (9.16)

and therefore

𝜖(𝜔) =
NeA

V𝜖00 + 𝜖opt . (9.17)

Combining this with (9.13), we get the final expression for the dielectric function

𝜖(𝜔) = 𝜖r(𝜔) + i𝜖i(𝜔) with the real and imaginary parts:

𝜖r(𝜔) =
Ne2

V𝜖0M

𝜔2
0
− 𝜔2

(𝜔2
0
− 𝜔2)2 + 𝜂2𝜔2

+ 𝜖opt (9.18)

and

𝜖i(𝜔) =
Ne2

V𝜖0M

𝜂𝜔

(𝜔2
0
− 𝜔2)2 + 𝜂2𝜔2

. (9.19)

Both parts of 𝜖(𝜔) are plotted in Figure 9.4.The real part of 𝜖(𝜔) is almost constant

much below and much above 𝜔0 but its value is higher at lower frequencies, con-

sistent with what we have said above. The imaginary part of 𝜖(𝜔) is zero almost
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Figure 9.4 Dielectric function for the damped, driven harmonic oscillator close to the
resonance frequency 𝜔0. (a) Real part and (b) imaginary part of 𝜖. 𝜖stat and 𝜖opt stand for
the static and optical value of the real part of 𝜖, respectively.

everywhere apart from the immediate vicinity of 𝜔0 where it shows a peak with a

width given mainly by 𝜂.

What is the meaning of 𝜖i? To see this, consider the energy dissipation in the

system.The instantaneous electrical power dissipated per unit volume is given by

p(t) = j(t)(t), (9.20)

where j(t) is the (AC) current density and (t) the electric field.4) As usual, wewrite
(t) = 0 exp(−i𝜔t). In an insulator, there are no free currents and, we assume
here, no magnetic fields. The only currents are polarization currents and using

Ampère’s law in matter (A.22) gives

j(t) = −
𝜕D

𝜕t
= −

𝜕

𝜕t
𝜖𝜖0(t) = 𝜖0(t)

(
i𝜔𝜖r − 𝜔𝜖i

)
. (9.21)

The average dissipated power per cycle can now be calculated by

p =
1

T ∫
T

0

(t)j(t)dt, (9.22)

where T = 2𝜋∕𝜔 is the period of one oscillation. We can easily see what happens

in two limiting cases. If the dielectric function is purely imaginary, j(t) is out of

phase with (t), and the product of the two is always negative. In this case, the
integral will give a nonzero value and the dissipated power per cycle is

1

2
𝜖0𝜖i𝜔20 . (9.23)

If, however, 𝜖 is purely real, there will be a phase shift of 𝜋∕2 between (t) and j(t),
the integrand oscillates around zero, and the integration gives p = 0.We therefore

see that 𝜖i measures the degree of power dissipation in the solid. It is obviously

highest at the resonance frequency where the vibrational amplitude is highest.

This leads to the excitation of other vibrations via the friction term in (9.10) and

to an accompanying power dissipation.

4) We work with scalar quantities here because we assume j(t) and (t) to be in the same direction
but not necessarily with the same phase.
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9.4.2
Electronic Transitions

Wehave now seen how light can excite optical phonons.This happens for infrared

light with a photon energy far below the band gap energy Eg . For photons with

h𝜈 > Eg , electronic excitations across the gap become possible, as we have already

discussed in connection with solar cells (see Figure 7.15b). In the following, we

explore this in a little more detail. What we describe is not limited to dielectrics. It

is equally valid for semiconductors when h𝜈 > Eg and the general idea can also be

used for metals.The question we ask is how the band structure of a material influ-

ences the absorption of light, and if there are specific light frequencies where the

absorption is particularly strong.This question can be answered in the framework

of a complex dielectric function that we have just developed.

At frequencies higher than the optical phonon frequency, we have so far

assumed that there is only electronic polarization, an atomic effect that gives rise

to a high-frequency 𝜖opt . As we see in Figure 9.4, the resulting high-frequency

dielectric function would be 𝜖(𝜔) = 𝜖opt + i0. The absence of an imaginary part

implies that no energy could be absorbed. For h𝜈 > Eg , this concept needs to be

revised. It turns out that 𝜖(𝜔) is not constant but has some pronounced structures

for most materials. This is already evident from the different colors materials

have, evenmetals.This frequency dependence of 𝜖(𝜔) in the visible and ultraviolet

region is due to the excitation of electrons from occupied to unoccupied states,

and we need to explore the band structure of a material to see what excitations

are actually possible. However, the key idea is already clear from atomic physics.

Atoms have discrete energy levels and when a transition between an occupied

level and an unoccupied level is allowed by the optical selection rules, this will

lead to a strong absorption of light when the photon energy is equal to the energy

difference between these two levels. For solids, the atomic energy levels are

broadened into bands, but strong absorption also takes place for photon energies

that allow many transitions from occupied states to unoccupied states.

Consider the simplified insulator/semiconductor band structure in Figure 9.5a.

We assume that the chemical potential lies somewhere between the valence band

(VB) and the conduction band (CB). Absorption of photons can occur when h𝜈 >

Eg and it leads to the excitation of electrons from the VB to the CB. As we have dis-

cussed previously (in Section 7.4.3), the wave vector for photons with energies in

the visible or ultraviolet range is very short and crystal momentum conservation

therefore requires that an electron’s 𝐤 vector remains unchanged in such a transi-
tion (plus a reciprocal lattice vector). Possible photon-induced transitions are indi-

cated by gray arrows in Figure 9.5a.These transitions correspond to the absorption

of energy by the solid and we have seen that such an absorption can be described

by 𝜖i. In the spirit of the simple model for the dielectric function, we can write that

𝜖i(h𝜈) ∝
∑
𝐤

M2𝛿(EC(𝐤) − EV (𝐤) − h𝜈), (9.24)

where the sum runs over all the permitted 𝐤 values in the first Brillouin zone,
M is a matrix element determining the transition probability, 𝛿 stands for the
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𝐤 = 𝐤′ because the VB and CB are parallel
there. (b) 𝜖i resulting from the possible tran-
sitions in this band structure.

Dirac delta function and EC(𝐤) and EV (𝐤) are the dispersions of the CB and VB,
respectively. If we ignore the matrix element, this expression basically counts

the possible transitions for a certain h𝜈: The 𝛿 function is only 1 if the energy

difference EC(𝐤) − EV (𝐤) is exactly equal to h𝜈.Therefore, 𝜖i(h𝜈) has maxima at h𝜈
values for which many different transitions between the VB and CB are possible.

In Figure 9.5a, this is the case for the onset of the absorption at h𝜈1 = Eg(𝐤 = 0)

and around 𝐤 = 𝐤′, a region of the Brillouin zone where the VB and CB are paral-
lel. Maxima in 𝜖i can thus be expected at h𝜈1 and h𝜈2, as illustrated in Figure 9.5b.

As these maxima correspond to a strong absorption, they determine the color of

the solid. While we have thereby made (9.24) plausible, this equation can also be

strictly derived using Fermi’s Golden Rule for time-dependent perturbations.

The key to strong absorption is thus to have the VB and CB states disperse in

parallel over large fractions of the Brillouin zone. This condition is obviously ful-

filled for very flat bands, arising from strongly localized states.Then, the situation

is reminiscent of the absorption of light by transitions between atomic levels.

9.5

Other Effects

9.5.1
Impurities in Dielectrics

A small amount of impurities can have a pronounced effect on the properties of

dielectrics, very much like in the case of semiconductors. We give two examples

here. The most “visible” case, as it were, is the change of optical properties that

can be caused by impurities. Due to their large gap, most insulators/dielectrics

tend to be transparent, for example, NaCl, diamond, and sapphire. If there are

impurities in the material with electronic states inside the gap, this can lead to a
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strong change in the optical properties because now transitions from or into the

impurity states are possible, and 𝜖i will show a resonance at the corresponding

energy (see (9.24)). Good examples of such impurity states exist in sapphire.

Depending on the type of impurity, sapphire can have many different colors

(and names), for example, topaz (yellow), amethyst (purple), ruby (red), emerald

(green), or sapphire (blue).

Impurities can also be used to make insulators conductive, exactly like doped

semiconductors. Donor or acceptor levels have to lie close to the CB and VB,

respectively, in order to give rise to a appreciable density of electrons and holes

and thereby to an increased conductivity. The important advantage over a usual

semiconductor material is that high-temperature applications are possible. In a

narrow-gap semiconductor, high temperatures are a problem because of the expo-

nentially increasing number of intrinsic carriers. In a doped insulator, this is not

an issue for practically relevant temperatures.

9.5.2
Ferroelectricity

Ferroelectric materials are solids that exhibit a spontaneous electric dipole

moment, very much like the spontaneous magnetic moment in ferromagnets.

Otherwise, the term “ferroelectric” is quite misleading because the typical ferro-

electric does not contain any iron and the mechanism leading to the polarization

can be quite different from ferromagnetism as well. A typical ferroelectric

material is barium titanate (BaTiO3) (Figure 9.6), in which the electric dipole

moment stems from ionic polarization: The (negatively charged) oxygen lattice is

shifted against the positively charged Ba and Ti ions. What is special about this

p

Ba2+

Ti4+

O2−

Figure 9.6 Upper part: The unit cell of barium titanate BaTiO3 with the charges of the ions.
Lower part: In the ferroelectric state, the (negative) oxygen sublattice is displaced from the
sublattice containing the (positive) Ba and Ti ions.
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polarization is that it is stable without an external electric field. If an external

electric field is applied, the orientation of a ferroelectric’s polarization can be

reversed and there is hysteresis, very much like in the case of ferromagnetism.

The basic idea behind the ferroelectric effect is as follows: We have discussed

the equation ofmotion for two ions in a unit cell, which leads to ionic polarization,

by using a simple harmonic oscillator as a model (see (9.10)). In this framework,

we have considered the motion of the ions under the influence of the average

electric field in the solid. We should have used the local field, but we have argued

that this does not change the course of the argument. In the case of ferroelectric

materials, this distinction does matter because when we move an ion out of its

equilibrium position, the local field force can pull it even further if it is stronger

than the harmonic restoring force. Eventually, force equilibrium is reached but

in this way, a distortion and a permanent electric dipole are generated. At a

certain temperature, the thermal fluctuations become strong enough to destroy

the ferroelectric state. As in the case of ferromagnetism, this temperature is

called the Curie temperature. For barium titanate, the Curie temperature

is about 130 ∘C.

The context of ferroelectricity allows us to understand the very high dielec-

tric constant of strontium titanate (see Table 9.1). SrTiO3 has the same crystal

structure as BaTiO3 and it is almost ferroelectric – but not quite (it can be made

ferroelectric in thin films and under strain). It remains very easily polarizable and

has a high dielectric constant. Materials on the verge of ferroelectricity could thus

have interesting applications as gate insulators in MOSFETs.

9.5.3
Piezoelectricity

Piezoelectricity is an effect in which applying stress to a material leads to a macro-

scopic electric polarization. This, in turn, gives rise to net surface polarization

charges, and these can be detected by measuring the voltage across the sample.

(see Figure 9.7a). The converse effect also exists. When a voltage is applied across

thematerial, this leads to amacroscopic strain (Figure 9.7b).The figure also shows

a possible microscopic structure that can give rise to this effect. The structure

contains three dipoles that are arranged such that the resulting dipole moment is

zero. A deformation of the unit gives rise to a net microscopic dipole moment.

Equivalently, the unit will deform in an applied electric field. It is important to

note that ferroelectric materials also show piezoelectricity but the opposite is not

necessarily true. What is special about ferroelectricity is the spontaneous electric

polarization of the solid.

Piezoelectricmaterials havemany applications. Some examples are sensors (like

inmicrophones), high voltage sources (cigarette lighters), or actuators (loudspeak-

ers). Piezocrystal-based actuators are especially important for nanotechnology

because they permit positioning with unrivaled precision.They are used for posi-

tioning the tip in a scanning tunneling microscope, for example.
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Figure 9.7 (a) Exposing a piezoelectric
material to mechanical stress results in a
macroscopic electric polarization. (b) Con-
versely, an electric field across the sam-
ple leads to a mechanical strain. (c) This is
caused by the deformation of microscopic
units in the crystal. Such a unit is shown

without applied field or stress on the left.
The unit consists of three dipole moments
that sum up to a total dipole moment of
zero. On the right, stress is applied. This
results in a distortion of the unit and a net
dipole moment that is no longer zero.

9.5.4
Dielectric Breakdown

If the electric field across an insulator is too high, the insulator will start to conduct

a current. This phenomenon is known as dielectric breakdown. The mechanism

for the breakdown is that some free carriers (e.g., caused by impurities) are accel-

erated in the field, so much that they can ionize other atoms and generate more

free carriers. Then, the breakdown proceeds like an avalanche. The breakdown

can be facilitated by operating the material close to a resonance frequency where

much energy is dissipated, the material is heated, and the probability of having

free carriers is increased.

9.6

Further Reading

Dielectrics are discussed in most general solid state physics books, see in

particular

• Ibach, H. and Lüth, H. (2009) Solid State Physics, 4th edn, Springer.

More detailed information on optical properties and ferroelectricity is

given in

• Fox, M. (2010) Optical Properties of Solids, 2nd edn, Oxford University

Press.
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9.7

Discussion and Problems

Discussion

1) What are the physical mechanisms that can lead to a dielectric polarization

of solids?

2) If we want to calculate the polarization of a dielectric from the polarizability

of the atoms, we have to use the local electric field, which is different from

the average internal electric field and from the external electric field. Explain

all three fields.Why could we ignore the corresponding complications in the

case of Curie-type paramagnetism?

3) Qualitatively describe the frequency dependence of the dielectric function

for a material with both electronic and ionic polarization.

4) What is the physical meaning of the imaginary part of the dielectric func-

tion?

5) Describe the role of impurities in dielectrics.Why are sapphire and diamond

transparent and how can impurities change this?

6) What is the difference between ferroelectricity and piezoelectricity?

Problems

1) Electronic polarization: (a) Assume that an atom consists of a uniform sphere

of negative charge with radius R surrounding a positive point charge. Show

that the atomic polarizability is equal to 4𝜋𝜖0R
3. The negative charge in the

sphere should be taken to remain uniform in an applied field. (b) Use this to

calculate the atomic polarizability for Ne and compare it to the experimen-

tal value of 4.3 × 10−41 Fm2. Take the atomic radius of Ne to be 0.51 Å. (c)

Estimate the index of refraction for Ne gas under normal conditions.

2) Dielectric function: Estimate the static dielectric constant of NaCl. Use that

NaCl has a density of 𝜌 = 2170 kgm−3, a lattice constant of a = 5.6 Å, and a

Young’s modulus of Y = 40 GPa. The optical 𝜖 can be taken from Table 9.2

and the result can be compared to the static 𝜖 from the same table.

3) Dielectric function:We have argued that the imaginary part of the dielectric

function 𝜖i(𝜔) is responsible for the dissipation of energy as an electromag-

netic wave travels through the solid. If this is so, one would also expect that

such a wave is strongly damped in regions where 𝜖i(𝜔) is high. We also know

that the damping of the wave is closely linked to the imaginary part of the

index of refraction N = n + i𝜅. (a) Show that for a given complex 𝜖, n, and 𝜅

can be calculated as

n =

√|𝜖| + 𝜖r

2
𝜅 =

√|𝜖| − 𝜖r

2
, (9.25)

(b) Plot n(𝜔) and 𝜅(𝜔) for one harmonic oscillator described by (9.18) and

(9.19) and discuss the result. (c) Is a strong damping of the waves (or a high

𝜅) always associated with a high imaginary part of the dielectric function?
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4) Reflectivity of Metals: After having studied the dielectric properties of insula-

tors more closely, we can go back to the reflectivity of a metal, which we have

discussed in connection with the Drude model. In Chapter 5, we have merely

argued that the a low-frequency wave cannot enter a metal (because of the

high 𝜅) but that it cannot be absorbed either (because of the lack of damping

in (5.22)) and so energy conservation dictates that it should be reflected. Now

we can calculate the reflectivity explicitly. The combination of the Maxwell

equations with the appropriate boundary conditions leads to the so-called

Fresnel equations, which describe the reflection and transmission through an

interface.The normal-incidence reflectivity of a solid in vacuum, for instance,

is given by

R =
(n − 1)2 + 𝜅2

(n + 1)2 + 𝜅2
(9.26)

Calculate and plot the reflectivity R(𝜔) for a free electron metal. To do this,

derive a general expression for n and 𝜅 for a given 𝜖 (see Problem 9.3a) and

use (9.26) in order to obtain the reflectivity.
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Superconductivity

Superconductivity, that is, the fact that a current can flow in materials with

zero resistance, was discovered in 1911 by H. Kamerlingh Onnes, shortly after it

became possible to liquefy helium and thereby to reach the required low temper-

atures. The discovery was made when Kamerlingh Onnes wanted to study the

low-temperature resistivity of mercury. At a temperature of 4.2 K, the resistivity

dropped to an unmeasurably small value. The discovery is a good example of a

spectacular, totally unexpected, and practically important result from very basic

research. It should be followed by many other surprises in the behavior of solids

at low temperatures. Superconductivity implies several phenomena in addition

to zero resistivity. These will be discussed in this chapter. It turns out that the

change from the normal state to the superconducting state is a phase transition

of the metal and that several properties change due to this transition.

Even though a lot of experimental and theoretical effort was made in order

to arrive at a microscopic explanation of superconductivity, it took more than

40 years until the fundamental aspects of such a theorywere laid out by J. Bardeen,

L. N. Cooper, and J. R. Schrieffer. Their theory is now known as the BCS theory

of superconductivity. The basic idea behind the theory is that charged carriers

in the superconductor condense into a single ground state, forming a coherent

and macroscopic matter wave, that is, a quantum mechanical wave function that

exists on amacroscopic scale. Today,macroscopic wave functions are known from

other branches of physics. One example is laser light, where many photons are in

the same quantum state and macroscopic coherence is achieved. Other examples

are superfluidity, a low-temperature quantum state of liquid 4He, which allows

flow without any friction, or Bose–Einstein condensation, in which many atoms

can condense into a single quantum state at very low temperatures. The particles

forming these macroscopic quantum states are bosons. Bosons do not underlie

the Pauli exclusion principle and can all condense in the same quantum state.The

obvious problem is that electrons in a metal should not be able to do this because

they are fermions. It turns out that the way around this problem is to form two-

electron pairs that have an integer spin and therefore behave as bosons.

In this chapter, we will first look at some basic experimental observations from

superconductors before we turn to the theory and physical principles behind

the phenomenon. After this, we will discuss some more advanced experimental

Solid State Physics: An Introduction, Second Edition. Philip Hofmann.
© 2015 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2015 by Wiley-VCH Verlag GmbH & Co. KGaA.
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observations and their explanation as well as at the so-called high-temperature

superconductors. We conclude the chapter with a few comments on the richness

of the field, which we can touch only very briefly here.

10.1

Basic Experimental Facts

10.1.1
Zero Resistivity

The most prominent phenomenon associated with superconductivity is of

course the vanishing resistivity below a certain critical temperature TC. The

temperature-dependent resistivities for a superconductor and a “normal” metal

that does not show superconductivity are shown in Figure 10.1. The resistivity

of a normal metal decreases as the temperature is lowered and eventually levels

off to a constant value. We have discussed the physical origin of this behavior

already. The resistivity in a metal is caused by imperfections in the lattice such

as impurity atoms, lattice defects, and thermal vibrations. For temperatures

much lower than the Debye temperature, the vibrations are effectively “frozen in”

but even at zero temperature, impurities and defects are present and hence the

resistivity is expected to remain finite.

For a superconductor, the picture is entirely different. Above the critical tem-

perature TC, the same behavior as for a normal metal is observed. At TC, however,

the resistivity drops to an unmeasurably small value.The temperature interval for

the transition is very small, usually below 10−3 K.Thewidth of the transition range

depends somewhat on the quality of the sample, but the transition temperature is

a characteristic constant of the material.
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Figure 10.2 Periodic table of the elements with the superconducting elements in bold
black letters. Gray letters indicate that the elements do only become superconducting in a
high-pressure modification.

Superconductivity appears to be a common phenomenon as seen from

Figure 10.2, which is a periodic table of the elements in which superconducting

elements are highlighted. The table does of course not give any certainty that the

other elements are not superconducting. It is possible that the necessary low tem-

perature has just not been reached yet. In fact, superconductivity in Li at normal

pressure was discovered as recent as 2007 at a temperature below 0.4 mK. In any

case, a few trends emerge quite clearly from the table. The first is that metals that

are good conductors are not necessarily also superconductors. In fact, the very

best conductors such as Ag and Cu have not been found to be superconducting.

Another is that the ferromagnetic elements are not superconducting either, sugg-

esting that ferromagnetism and superconductivity are somehow mutually exclu-

sive. Indeed, it also turns out that contaminating a superconducting sample with

a very small amount of magnetic impurities can destroy the superconductivity.

The critical temperature TC is quite low for all elements. It is highest for Nb,

which has TC = 9.2 K. TC can be higher for some metallic alloys, up to around

40 K, and it can be much higher for some transition metal oxides, the so-called

high-temperature superconductors.

Some elements do not undergo a transition to a superconducting state at ambi-

ent pressure, but they can be made superconducting by exerting pressure. These

elements are indicated in light gray in Figure 10.2. High pressure could possibly

change the structure of a crystal in order to turn it into a superconductor, but it

has to be clear that the structure as such is not important in the superconduct-

ing phase transition. It is the electronic structure and the vibrations that count,

as we will see later. However, if the elements do crystallize in different structures,

for example, due to high pressure, these structures also have different electronic

structures and, to a lesser degree, different vibrational properties.

Another possibility to achieve superconductivity in materials that are normally

not superconductors is to grow them in ultrathin films or as small clusters of

atoms. The films or clusters may still have the same structure as the bulk material

under normal conditions but their electronic structure and the superconducting
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behavior can be different (see Chapter 11). Finally, superconductivity can also be

realized in solids that do not have any long-range crystalline order, the so-called

amorphous solids. In some cases, this may actually favor the transition. One

example is the semimetal Bi, which is not superconducting in its normal

crystalline bulk structure but which is superconducting as an amorphous film.

How does one know that the resistivity in the superconducting state is really

zero and not just very small? In fact, one does not know this and it is not possible

to answer this question from any experiment. One can, however, try to find an

upper limit for the resistivity. The experimental approach to this is to induce

a current in a superconducting ring using a magnetic field. One should then

expect this current to go on forever without any decay. Observing the decay

(or rather the lack of it) over a long time (years!) gives the possibility to put an

upper limit on the resistivity. Currently, this upper limit is thought to be around

10−25 Ωm.

Apart from the temperature, there are two other important factors that can dest-

roy the superconducting state. These are a magnetic field and a current through

the sample.The combined effect of a magnetic field and the temperature is shown

in Figure 10.3a. For low temperatures and weak magnetic fields, in the region

below the curve, the solid is in its superconducting state. For too high a magnetic

field or too high a temperature, the superconductivity is lost, corresponding to the

region above the curve. For a given temperature T < TC, we can assign a critical

magnetic field BC(T), which turns out to be

BC(T) = BC(0)

[
1 −

(
T

T
C

)2]
. (10.1)

A current through the sample, as expressed by a current density j, has a similar

effect as a magnetic field. For too high a current density, the superconductiv-

ity breaks down. Again, this critical current density jC is a function of the
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temperature. It is also a function of the applied magnetic field B0, as shown in

Figure 10.3b. The superconducting state is only reached for low temperatures,

current densities, and magnetic fields. In a similar way, the critical magnetic field

can be viewed as a function of temperature and current density, of course.

Unfortunately, the critical current densities and magnetic fields for most ele-

mental superconductors are too low to permit any meaningful technical appli-

cations. Take, for example, the electromagnet in a medical magnetic resonance

scanner. This magnet has to produce a high field of more than 1 T. In order to do

this, very high currents are necessary. It is not possible to build such magnets out

of normal conductors because of the large amount of heat that would be produced

by ohmic losses. To build them from superconducting materials is not straight-

forward either, because of the high magnetic field and the high current densities.

Rather than elemental superconductors, one often uses superconducting alloys

that can have critical fields of up to 50 T and a critical current density of up to

1011 Am−2 at liquid He temperature.

10.1.2
The Meissner Effect

The so-called Meissner effect, discovered in 1933 by W. Meissner and

R. Ochsenfeld, is another fundamental property of a superconductor. It is the fact

that a superconductor shows perfect diamagnetism in its superconducting state,

that is, it has 𝜒m = −1 and therefore a magnetization 𝐌 = −𝐁0∕𝜇0, which
totally cancels the external field 𝐁0 inside the superconductor. The origin of the
macroscopic magnetization 𝐌 is, however, very different from that in normal
diamagnetic materials. In the latter, diamagnetism is caused by microscopic

magnetic moments that are induced by the external field throughout the entire

solid. In a superconductor, this is not the case. The magnetization 𝐌 of a
superconductor is rather caused by macroscopic supercurrents that flow close to

the surface of the specimen and keep the inside field-free.

The magnetic susceptibility of −1 implies that superconductors are strongly

expelled from magnetic fields. You are probably familiar with the Meissner effect

from diamagnetic levitation experiments, in which a small high-temperature

superconductor is levitated in an inhomogeneous magnetic field (see our

discussion of (8.6)).

It is very important to understand that the Meissner effect is a genuinely new

effect and not simply a consequence of the vanishing resistance, which can give

rise to a supercurrent to keep the inner specimen field-free. There is a difference

between a (hypothetical) material that becomes merely a perfect conductor with

𝜌 = 0 below TC and a true superconductor that also displays the Meissner effect.

For a perfect conductor, the entire physics is given by the Faraday’s law which, in

its integral form, is

∮ d 𝐥 = −
dΦB

dt
, (10.2)
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Figure 10.4 The Meissner effect is not
merely a consequence of zero resistivity.
(a) The behavior of a “perfect conductor,”
that is, a material that merely has zero
resistivity below TC . For this material, the
magnetic field in the specimen below TC

depends on the presence and size of a mag-
netic field before cooling down below TC. (b)
The situation for a genuine superconductor
that displays the Meissner effect. The inte-
rior of the specimen is field-free below TC ,
independent of the sample’s history.

where the integral is taken along a closed path in the conductor. For a perfect

conductor, no electric field can exist along such a closed path, which means that

the entire integral vanishes and the magnetic flux through the loop of integration

is constant.

Figure 10.4a illustrates this behavior of a perfect conductor in a magnetic field.

We start with two specimens above TC, one in an applied magnetic field 𝐁a and

one in a field-free region. Both are cooled below TC, where the resistivity of the

conductor drops to zero. Now the magnetic field is also turned on for the conduc-

tor that was in the field-free region before. Because of Faraday’s law, it expels the

field entirely and the inner part remains field-free. For the other specimen, noth-

ing changes because the field had been penetrating already before the transition

below TC. In the end, the field is taken to zero for both specimens. Since it cannot

change inside the perfect conductor, one remains field-free, and in the other one

a current is induced, which keeps the field in the specimen as it was before. In

short, we can have any field we like below TC. It only depends on the history and

the situation is thus far from perfect diamagnetism.

Now consider a real superconductor that exhibits the Meissner effect as

shown in Figure 10.4b. Again, we start with two specimens in the normal state,

one without a penetrating magnetic field and one with such a field. Once the

specimens are cooled below TC, the magnetic field is expelled in both cases,

that is, the interior of the superconductor is field-free, independent of the history

of the sample. Once the field is turned off, the interior of the specimen remains

of course field-free. The experimental observation that a superconductor does

indeed behave in this way was a very important step for the understanding of
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Figure 10.5 Illustration of the isotope
effect. The graph shows the critical tem-
perature as a function of isotope mass as a
log–log plot. The data points lie on a straight

line suggesting a power law behavior with
TC ∝ M−1∕2. Data taken from Maxwell (1952),
Serin, Reynolds, and Lohman (1952).

superconductivity because it permits the description of the superconducting state

as a single thermodynamic phase, which can be described by a few macroscopic

variables. A history-dependent magnetization of the sample would not permit

such a view.

The bottom line is that the Meissner effect is a genuine effect in itself, which is

not implied by zero resistivity. Any theory of superconductivity must be able to

explain not only resistance-free current flow but also the Meissner effect.

10.1.3
The Isotope Effect

There are several more experimental observations associated with superconduc-

tivity and some will be discussed in a later section. The so-called isotope effect,

however, is presented already here because it gives an important clue for the devel-

opment of a microscopic theory.

The effect is illustrated in Figure 10.5 that shows the critical temperature of Sn

as a function of the atomicmassM, which can be varied by using different isotopes

of Sn. The figure is actually a log–log plot on which the data appear as a straight

line, equivalent to a power law behavior with TC ∝ M−1∕2.

The fact that TC depends at all on M is remarkable. As a consequence of the

Born–Oppenheimer approximation, the electronic structure of a solid should not

depend on the mass of the ions, just on their chemical nature. The vibrational

properties, in contrast, do depend on the mass of the ions. For a simple harmonic

oscillator, we know that 𝜔 = (𝛾∕M)1∕2, that is, the vibrational frequency depends

on the mass in the same way as TC in a superconductor. This suggests that the

lattice vibrations of the solid play some role in superconductivity.



210 10 Superconductivity

10.2

Some Theoretical Aspects

10.2.1
Phenomenological Theory

Early theories of superconductivity were not atomistic butmerely sought amacro-

scopic formalism that explains both the resistance-free transport and theMeissner

effect. This was achieved by F. London and H. London in 1935. Their theory can

be summarized by the two so-called London equations that we now discuss.

Achieving infinite conductivity for a gas of charged particles is very easy in a

macroscopic theory. In fact, in the Drude model, the equation of motion for the

electrons was taken to be (5.2) and this does already lead to an infinite conduc-

tivity. In order to prevent this from happening, we had to introduce the concept

of the relaxation time. The first London equation is identical to (5.2), only that

the equation is now written using a current density 𝐣 instead of the velocity 𝐯 of a
single electron:

𝜕𝐣
𝜕t

=
nsq
2

ms

, (10.3)

where ns is the density of superconducting particles, ms is their mass and q their

charge.1) If we take the curl of this equation and combine it with Faraday’s law

(A.17), we get

𝜕

𝜕t

(
ms

nsq
2
curl𝐣 + 𝐁

)
= 0. (10.4)

What this means becomes clear if we integrate it over a cross-sectional area 𝐀
of the solid and then use Stokes’ integral theorem (A.11), giving

𝜕

𝜕t

(
∫

ms

nsq
2
curl𝐣d𝐀 + ∫ 𝐁d𝐀

)
=

𝜕

𝜕t

(
∮

ms

nsq
2
𝐣dl + ∫ 𝐁d𝐀

)
= 0. (10.5)

The result contains two types of magnetic flux through the area 𝐀. The first is
caused by an electric current density 𝐣 on the perimeter of the area and the second
is the actual flux from the external field 𝐁. We do not know the size of the first
contribution but the equation tells us that the sum is constant in time. So, if we

change the external field 𝐁, this change is exactly compensated by a change in
current density 𝐣 on the solid’s surface such that the total magnetic flux does not
change.The result expresses exactly what we already know to be true for a perfect

conductor (see Figure 10.4a).

The second London equation is obtained by not only requiring that the par-

tial derivative with respect to time in (10.4) is zero, but that the term in brackets

vanishes altogether, that is,

ms

nsq
2
curl𝐣 + 𝐁 = 0. (10.6)

1) If the particles carrying the supercurrent turn out to be different from electrons, we just have to

substitute the corresponding mass, charge, and density into the equations.
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Using the same procedure as for (10.5), we can see that this equation describes

the Meissner effect correctly. Now the current density 𝐣 can be calculated from
the external field 𝐁 and the internal field created by this current density exactly
compensates the external field.

Expelling the magnetic field from the inside of the superconductor is thus

achieved by a current density on the surface of the superconductor. But how far do

these currents penetrate into the material? The London equations permit a more

quantitative approach to this. Inside the superconductor where 𝐃 = 𝜖𝜖0 = 0, we

have Ampère’s law (A.22) as

curl𝐁 = 𝜇0𝐣. (10.7)

We combine this with (10.6) and get

curl curl𝐁 = 𝜇0curl𝐣 = −
𝜇0nsq

2

ms

𝐁. (10.8)

Now we can use that in general curl curl𝐁 = grad div𝐁 −△𝐁, so that2)

△𝐁 =
𝜇0nsq

2

ms

𝐁. (10.9)

With this we have a differential equation for the penetrating magnetic field and a

very similar equation can be derived for the current density, using the same tech-

nique. It is

△ 𝐣 =
𝜇0nsq

2

ms

𝐣. (10.10)

Both equations can be solved by an exponentially decreasing field and current

density, respectively. The situation for the field is shown in Figure 10.6. The char-

acteristic length of the exponential decrease is the so-called London penetration

depth 𝜆L, which is given by

𝜆L =
√
ms∕𝜇0nsq

2. (10.11)

Assuming that all the electrons are carriers of supercurrents and that they have a

free electron mass and charge, one can estimate the London penetration depth to

be on the order of 30 nm.The agreement with the measured penetration depth is

not perfect but the order of magnitude is correct. The quality of this agreement is

somewhat fortuitous: We will see that in a microscopic theory only a very small

fraction of the electrons participates in the superconductivity. Also, the density

of the superconducting particles is not constant. It varies both with position and

temperature.

A considerably more sophisticated phenomenological theory of superconduc-

tivity was presented in 1950 by V. L. Ginzburg and L. D. Landau.ThisGinzburg–

Landau theory defines a so-called order parameter Ψ(𝐫), which can be derived

2) You may not be familiar with the notation in which the Laplace operator△ is applied to a vec-
tor field. This notation just means that the Laplace operator is applied individually to each single

component of the original field, giving again a vector field.
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Figure 10.6 Exponential damping of an external magnetic field near the surface of a
superconductor.

from an equation similar to the Schrödinger equation and can be written as the

complex function

Ψ(𝐫) = Ψ0(𝐫)ei𝜙(𝐫), (10.12)

in which 𝜙(𝐫) is a macroscopically changing phase and |Ψ∗Ψ| = Ψ2
0
is equal to the

density of superconducting carriers ns. The spatial character of Ψ(𝐫) means that
ns does no longer need to be constant but it cannot change instantaneously either,

for example, from zero to a high value at the surface of a superconductor. Appre-

ciable changes of Ψ(𝐫), and thereby ns, have to happen over a length scale 𝜉, the
so-called coherence length of the superconductor.TheGinzburg–Landau theory

is remarkably successful in describing many phenomena associated with super-

conductivity even though it is not a microscopic theory. An especially notable

feature of the theory is that the order parameter already has the character of a

macroscopic quantum mechanical wave function.

10.2.2
Microscopic BCS Theory

The microscopic theory of superconductivity was formulated in 1957, more than

40 years after the discovery of the effect, by J. Bardeen, L. N. Cooper, and J. R.

Schrieffer. It is commonly referred to as the BCS theory, after the names of its

inventors. Several requirements for a microscopic theory were clear for a long

time before the theory was actually developed: It should of course be possible to

explain the vanishing resistivity and theMeissner effect.The theory should proba-

bly involve lattice vibrations in someway in order to account for the isotope effect.

Finally, it should not be specific to any particular material since we have seen that

superconductivity is a rather common phenomenon.

Why did it take such a long time to come up with a microscopic picture

of superconductivity? Part of the reason is that two of the most fundamental
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Figure 10.7 Local deformation of the lattice via the electrostatic interaction between the
electrons and the ions. Situation for (a) a very slow or static electron and (b) an electron
near the Fermi energy of a metal.

assumptions for the treatment of solids are not valid in the case of superconduc-

tivity and their breakdown is even essential for the theory. The first assumption

is the Born–Oppenheimer approximation that allowed us to treat the electronic

and the vibrational properties separately. The second is the independent electron

approximation in which we considered the properties of one electron in the

average potential of all others.3)

As alreadymentioned in the introduction, the superconducting state represents

a quantum phenomenon on a macroscopic scale. We will see some direct exper-

imental proof of this in the later sections. Like in a laser or in a Bose–Einstein

condensate, a macroscopic wave function is realized by very many particles occu-

pying the same quantum state. While we have to be careful in comparing the

condensing particles in the solid with noninteracting bosons, it is clear that these

particles cannot be the free electrons because these are fermions and have to obey

the Pauli principle.

It was L. N. Cooper who realized that the formation of electron pairs due to

a net attraction, no matter how weak, would resolve this problem and open the

possibility for a new ground state of the electron gas with entirely new properties

and a slightly lower energy than the original ground state discussed in Chapter 6.

Since the energy of the new state is lower, one would expect a phase transition to

this state, at least for very low temperatures where the entropy is not important.

A possible mechanism providing a weak attraction between electrons is the

interaction between the electrons and lattice vibrations, the so-called electron–

phonon interaction. This interaction is weak and usually ignored when we use

the Born–Oppenheimer approximation. But for superconductivity it is vital.

Figure 10.7a illustrates its origin. When an electron is placed somewhere in

the ionic lattice, it slightly deforms the bonds around it due to the electrostatic

interaction with the ions. Such a localized lattice distortion can be imagined

as wave packets made from phonons, very similar to a localized electron that

can be viewed as a packet from Bloch waves. The deformation is such that the

lattice ions are attracted toward the position of the electron. This leads to a local

polarization of the lattice, which in turn is attractive for other electrons. In this

way, an attractive interaction can exist between two electrons.

3) We have, of course, already abandoned this approximation in the case of magnetic ordering.
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The static picture given in Figure 10.7a does, however, not really work because

another electron that moves to the polarized part of the lattice would still feel

the strong electrostatic repulsion from the first electron. Also, we shall see that

the electrons relevant for superconductivity have kinetic energies close to the

Fermi energy and are therefore not static. Figure 10.7b shows a more appropriate

dynamic picture. An electron moves through the lattice with a high speed,

on the order of 106 ms−1 and attracts the positive lattice ions on its way. The

lattice is polarized, but since the ions move much slower than the electrons, the

polarization is not established instantaneously. We can estimate that the time

for polarizing the lattice has to be on the same timescale as the ion movement,

that is, 2𝜋∕𝜔D ≈ 10−13 s. By the time the maximum polarization is reached, the

electron has already traveled around 106 ms−1 × 10−13 s = 100 nm.

Now it is possible for a second electron to lower its energy bymoving in the trail

of the first. Electrostatic repulsion between the two electrons will be insignificant

because they are so far away from each other. If the second electron is to stay on

the same track, its wave vector 𝐤must either be the same as for the first electron
or exactly opposite. It can be shown that the energetically most favorable situation

arises when the two electrons have exactly opposite 𝐤 vectors and opposite spins.
The electron pairs formed from electrons with 𝐤 and −𝐤 and a total spin of zero
are called Cooper pairs.

While these simple arguments give a good visualization of the physical origin of

Cooper pair formation, we must be very careful not to take them too far. It is, for

example, somewhat stretching the imagination that the wave vector of the second

electron should be −𝐤 and not 𝐤, that is, that the second electron moves in the
opposite direction of the first. But we have to realize that the question of which

electron is where and moves how has already lost its meaning when we study a

wave function of just two electrons. It is not obvious either that the total spin of

the pair should be zero. In fact, there are some exotic superconductors in which it

is one.However, the crucial point still is that itmust be integer andnot half-integer,

that is, that the Cooper pairs are bosons, not fermions.

In order to see why we have used the velocity of the electrons at the Fermi

energy to estimate the separation between the pair of electrons, we describe

the electron–phonon interaction in a more quantum mechanical picture. The

interaction between two electrons via phonons can be viewed as the constant

emission and absorption of “virtual” phonons of energies up to ≈ ℏ𝜔D. The

emission of a phonon of energy ℏ𝜔 does not violate energy conservation if it is

only short-lived, that is, when it is rapidly absorbed by another electron. The

only electrons that can participate in the exchange of such “virtual” phonons and

in the formation of Cooper pairs are those close to the Fermi energy, within a

window of approximately ℏ𝜔D. None of the other electrons can emit or absorb

“virtual” phonons because they are trapped by the Fermi–Dirac distribution.

All the reachable states around them are already occupied. This picture also

explains why the interaction can be so important at low temperatures when

essentially all the phonons are “frozen in” and the lattice only performs zero point

motions.
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Figure 10.8 Occupation of single-electron
levels at zero temperature in (a) a normal
metal and (b) a superconductor. For the
superconductor, the electrons close to EF
are bound in Cooper pairs and these occupy
a many-body state, the BCS ground state,
which cannot be shown in this figure of

single-particle levels. In order to excite single
electrons out of this ground state, a Cooper
pair has to be broken. This costs an energy
of Δ per electron and creates two unpaired
electrons in the lowest possible unoccupied
single-particle states.

The formation of Cooper pairs is accompanied by their condensation into a

common ground state, something that is possible due to their bosonic charac-

ter. This state is called the BCS ground state and it represents an energy gain

compared to the conventional metallic grounds state. We first discuss this state at

zero temperature. The energy levels for a normal metal at zero temperature have

the familiar form shown in Figure 10.8a. They are completely filled up to EF and

empty above. In the BCS ground state, on the other hand, the electrons close to

the Fermi energy are all bound in Cooper pairs and they have gained an average

energy Δ per electron by doing so.

The Cooper pairs do not appear in a single-particle energy diagram such as

Figure 10.8. Their state is a many-body state with one total energy for all the elec-

trons bound inCooper pairs.This is similar to the hydrogenmolecule energy levels

shown in Figure 2.2. For H2 there are two energy levels for every possible inter-

atomic distance, one for the singlet and one for the triplet state. It does not make

sense to split these up into single-electron energies.The energy levels are genuine

two-electron states.

For the superconductor, we can look at the remaining electrons that are not

bound in Cooper pairs. Their energy levels are drastically modified as shown in

Figure 10.8b: A gap of size 2Δ is opened around EF , that is, there are no single-

particle states close to the Fermi energy any more. We can understand this qual-

itatively by the fact that the electron states just below EF have been removed to

form the Cooper pairs. Above EF , the lowest possible energy for a single electron

is Δ. This is consistent with the energy cost of breaking up a Cooper pair, which

is 2Δ and produces two single electrons in the lowest possible energy state, just

above the gap.
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Thegap in the single-electron energies is a very characteristic and central feature

of the BCS model. It is frequently referred to as the gap in the single-particle

excitation spectrum, because now theminimal excitation energy for an unpaired

electron is not zero (like in a normal metal) but 2Δ. In this respect, the situation

is similar to a semiconductor that also has a gap, but the gap here is very much

smaller and, as we will see in a moment, strongly dependent on the temperature.

What is the size of the superconducting gap? Only the electrons close to the

Fermi energy can take part in the exchange of “virtual” phonons, which leads to

the formation of Cooper pairs. One could therefore expect electrons with energies

of up to ℏ𝜔D below EF to participate in the pairing, so that Δ ≈ ℏ𝜔D. This is not

too far off the mark: We shall see below that Δ is indeed proportional to ℏ𝜔D but

it is usually a lot smaller. The BCS theory predicts that Δ at zero temperature is

related to the critical temperature TC as Δ = 3.53kBTC. Since we know TC from

experiments, we can calculate that Δ is very small, usually only a few meV.

Rather than taking the experimental value, TC can also be obtained from the

BCS theory as

TC = 1.13ΘD exp
−1

g(EF )V
, (10.13)

where ΘD is the Debye temperature, g(EF ) the electronic density of states at

the Fermi energy, and V a parameter measuring the electron–phonon coupling

strength. This confirms not only that Δ = 3.53kBTC ∝ ℏ𝜔D but it also tells us a

lot about BCS-type superconductivity. First of all, the transition temperature is

proportional to the Debye temperature. This readily explains the isotope effect

since ΘD ∝ 𝜔D ∝ M−1∕2. Equation (10.13) also shows that the Debye temperature

sets the temperature scale of the phenomenon. The exponential cannot become

larger than 1, so that one cannot hope to get a transition temperature higher

than 1.13ΘD. In reality, the exponential is much smaller than 1. Both the density

of states and the interaction strength enter the expression in the same way, such

that both increase TC. It is clear that only the density of states at the Fermi energy

is relevant since only the electrons at this energy participate in the formation of

Cooper pairs. With these results from the BCS theory, we estimate the number

of electrons in Cooper pairs (per volume) to be g(EF )Δ and the associated total

energy gain to be g(EF )Δ
2.

At finite temperatures, not all the electrons close to EF are bound in Cooper

pairs andmatters are made complicated by a typical phenomenon for the conden-

sation of bosons:The energy gain for the condensation of a particle into the ground

state depends on the number of particles already in this state. In other words, the

formation energy 2Δ for a Cooper pair depends on the number of pairs already

in the ground state and thus Δ becomes a function of temperature. The predicted

temperature dependence ofΔ is shown in Figure 10.9. When the sample is cooled

below TC, Δ assumes nonzero values and some Cooper pairs start to form. This,

in turn, increases the energy gain for the formation of further Cooper pairs. At

zero temperature, all the electrons close to EF are bound in Cooper pairs. As we

have seen above, the size of the gap can also be taken as a measure for how many

electrons are condensed in Cooper pairs.
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Figure 10.9 Gap size for a superconductor in the BCS model as a function of temperature
and comparison to experimental data from In, Sn and Pb. At the transition temperature TC ,
the gap is closed. Data from Giaever and Megerle (1961).

This intricate behavior is reminiscent of magnetic ordering in the solid where

the energy gain for the orientation of a spin depends on the number of spins

already present in that orientation. In magnetic ordering as in superconductivity,

a self-amplifying process sets in once the sample is cooled under the transition

temperature (note the similarity between Figures 8.5 and 10.9). Upon lowering

the temperature further, the magnetic alignment and the number of Cooper pairs

are increased in the magnet and superconductor, respectively. With this, we also

understand the fact that the transition to the superconducting state is so sharp in

temperature. Figure 10.9 also shows a comparison of the predicted gap size to the

experimental values for some elemental superconductors. The rapidly changing

gap size near TC is clearly confirmed experimentally.

The existence of Cooper pairs and the gap in the singe-particle spectrum can be

used to explain all the experimental observations associated with superconduc-

tivity. Here, we merely discuss the resistance-free transport and the existence of

a critical current density and a critical magnetic field. We do not show how the

Meissner effect can be explained but the basic idea is that an equation similar to

the second London equation (10.6) can be derived in the BCS model.

As already mentioned in connection with the London equations, a resistance-

free transport is readily obtained in both the classical and the quantum model of

electrons in a solid if we do not introduce a scattering mechanism to keep the

resistance finite. Exactly the same applies for Cooper pairs:The whole condensate

of pairs is accelerated when an electric field is applied to the sample. Before the

field is applied, the Cooper pairs are all in the same quantum state with same total

𝐤 = 0 per pair. When a current passes through the sample, all the pairs are still in

the same state but with a different 𝐤′ ≠ 0.The only thing we have to explain is the
absence of scattering processes that can lead to a decay of this current. In order

to see the difference between the Cooper pairs and unpaired electrons, it is useful

to look back at Figure 6.16b. In a normal metal, the current decays because the

electrons are scattered back to lower lying states by defects or thermal vibrations.
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This scattering is an individual process, affecting one electron at a time. Such a

process does not work for a condensate of Cooper pairs because it is not possible

to change 𝐤 for one pair without changing it for all the others at the same time, a
process that is exceedingly unlikely, unless it is done by applying the same force

on all the pairs at the same time, as by an electric field.

We also need to consider scattering processes that split a Cooper pair into two

individual electrons. This is, in fact, possible but only if the kinetic energy of the

pairs is high enough to provide the necessary 2Δ for the destruction of the Cooper

pair. The process will thus become important at high current densities for which

the number of Cooper pairs in the solid gradually decreases until superconduc-

tivity breaks up altogether, when the critical current density 𝐣C is reached. The
existence of a critical magnetic field BC can be explained in a very similar way.

This critical field is reached when the magnetic energy density exceeds the value

needed for breaking up the Cooper pairs. Finally, it is clear from Figure 10.9 why

the critical magnetic field and the critical current density depend on the temper-

ature. They decrease as TC is approached because of the shrinking gap size Δ and

the lower density of Cooper pairs.

10.3

Experimental Detection of the Gap

Theconcept of a gap in the excitation spectrum is central to the BCS theory.There-

fore, experimental tests of the existence and (temperature-dependent) size of the

gap have been important for confirming the suggested mechanism for supercon-

ductivity. In fact, the comparison shown in Figure 10.9 is very compelling in this

respect. Here, we discuss three approaches to actually measuring the size of the

gap: single-electron tunneling, optical reflectivity, and the low-temperature heat

capacity in the superconducting state.

A tunneling experiment between a superconductor below TC and a normal

metal is illustrated in Figure 10.10. The metal and the superconductor are sepa-

rated by an insulating barrier, such as an oxide, which is only a few nanometers

thick. The wave functions of the metal and the superconductor are not cut off

at the interfaces to the oxide but leak out into the oxide. The small overlap

between them permits the tunneling of electrons from one side to the other.

Here, we consider only elastic tunneling of single electrons.

If no external voltage is applied, the Fermi energy in the metal is aligned with

the chemical potential in the superconductor, that is, themiddle of the gap (Figure

10.10a). For a small positive tunneling voltage on the superconductor, no cur-

rent can flow because the electrons from the metal do not find empty states in

the superconductor to tunnel into (Figure 10.10b). As the tunneling voltage U

reaches a value of U = Δ∕e, this situation changes. Now the electrons close to

the Fermi energy of the metal find empty states in the superconductor and tun-

neling becomes possible (Figure 10.10c).This causes a sudden rise of the tunneling

current at Δ∕e (Figure 10.10d) that permits the determination of the gap size.
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Figure 10.10 Tunneling experiment
between a superconductor and a normal
metal. The two are separated by a thin insu-
lating oxide. Only elastic single-electron
tunneling is considered. (a) Situation with-
out applied voltage. (b) For a small applied
voltage no tunneling is possible because

of the lack of available states in the gap.
(c) As the tunneling voltage exceeds Δ∕e,
single-electron tunneling becomes possible.
(d) Thick line: tunneling current vs. voltage
for the present junction; dashed line: corre-
sponding curve for tunneling between two
metals.

Note that the situation would be entirely different for tunneling between twomet-

als: Tunneling would already be possible at very small voltages, and the number

of electrons able to tunnel would increase continuously with the voltage. Such a

behavior is indicated by the dashed line in Figure 10.10d.

Another possibility for detecting the existence of the gap is to measure the

absorption of electromagnetic radiation as it passes through a superconductor.

For electromagnetic radiation with an energy of h𝜈 < 2Δ, electronic transitions

across the gap are not possible and hence no absorption is observed. As the

photon energy reaches 2Δ, absorption sets in and the transmitted intensity is

strongly reduced. Since the gap size is at best a few meV, the electromagnetic

radiation required for this experiment lies in themicrowave or far infrared region.

Yet another experiment that points toward the existence of a gap is the

low-temperature heat capacity of a superconductor. Figure 10.11 shows a super-

conductor’s heat capacity both in the superconducting state and in the normal

state. Keeping the material in the normal state below TC can be achieved by

applying a weak magnetic field. Upon cooling below TC, the heat capacity shows
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Figure 10.11 Qualitative low-temperature heat capacity of a superconductor in both the
superconducting and the normal state. A normal state below TC can be realized by applying
a magnetic field.

a discontinuous change. It also shows a qualitatively different behavior at very

low temperatures, where it does not exhibit the characteristic linear temperature

dependence of a metal but an exponential decrease. This is another indication of

an excitation gap. We have already encountered such exponential behavior in the

case of the Einstein model for the phonon heat capacity where it is also caused

by an “energy gap” between the ground state and the first excited state of the

Einstein oscillators.

10.4

Coherence of the Superconducting State

Wehavementioned several times that the superconducting state is associatedwith

a macroscopically coherent wave function, which is built from the Cooper pairs

in their common ground state. This macroscopic coherence is, in fact, directly

observable in many experiments.

An immediate consequence of the macroscopically coherent wave function is

the quantization of magnetic flux through a superconducting ring, as the one

shown in Figure 10.12a. If we assume that the wave function of the superconduc-

tor is coherent in the entire ring, we can apply the Bohr quantization condition,

like for the hydrogen atom but on a macroscopic scale. The Bohr condition states

that an integer number of de Broglie wavelengths 𝜆 = h∕p has to fit in the circum-

ference of the ring in Figure 10.12a or that

∮
𝐩
h
d𝐫 = n, (10.14)
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Figure 10.12 (a) A superconducting ring enclosing a magnetic flux. The magnetic flux
through such a ring is quantized in multiples of h∕2e. (b) A superconducting quantum
interference device.

where the integration is carried out around the inner circumference of the ring

and n is an integer. If we want to see what happens in the presence of a magnetic

field, we can include this field in the equation using the vector potential and the

same rules as laid out in Section 8.2 for the quantum mechanical case. Following

(8.8), we write

∮ 𝐩 − q𝐀d𝐫 = nh. (10.15)

For particles of mass ms, density ns and charge q, we have that 𝐩 = ms𝐯; and the
current density associated with these particles is 𝐣 = nsq𝐯 such that we can write

ms

nsq ∮ 𝐣d𝐫 − q∮ 𝐀d𝐫 = nh. (10.16)

We now re-write the second integral using Stoke’s integral theorem (A.11), in

order to change the line integral into a surface integral over the area in the middle

of the ring.

∮ 𝐀d𝐫 = ∫ curl𝐀d𝐚 = ∫ 𝐁d𝐚 = ΦB, (10.17)

whereΦB is just the magnetic flux through the hole in the ring. With this, (10.16)

becomes

ms

nsq
2 ∮ 𝐣d𝐫 − ΦB = n

h

q
. (10.18)

This implies that the magnetic flux through the ring can only change in units of

h∕q if the current density in the first integral is constant. We can go one step

further and lay the integration path of the first integral a little deeper inside the

ring, just outside the screening currents that penetrate up to the London penetra-

tion depth 𝜆L. In many cases, the current density is then vanishingly small and

we get

ΦB = n
h

q
. (10.19)

This means that the magnetic flux through a superconducting ring is quantized

in units of h∕q. This was indeed shown experimentally in 1961. It was also found
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that q = −2e, beautifully confirming the existence of Cooper pairs predicted by the

BCS theory. The so-called flux quantum h∕2e is very small, only 2.067 ×

10−15 Tm2. To set this into context, consider the Earth’s magnetic field that is on

the order of 10−5 T, implying that an area of 1 mm2 contains ≈ 104 flux quanta.

The coherence of the superconducting state can be exploited in so-called super-

conducting quantum interference devices (SQUIDs), shown in Figure 10.12b.

We cannot describe in detail how these devices work but the key idea is as fol-

lows. The device consists of two superconducting “forks” and thin oxide layers or

point contacts between them (the so-called weak links). The Cooper pairs from

one superconductor can tunnel through the weak links into the other supercon-

ductor and there is a definite relation between the phase of the superconducting

state in one fork and that in the other fork. Amagnetic field entering perpendicular

through the hole in the middle gives rise to an additional supercurrent to keep the

flux through the ring an integer multiple of the flux quantum. This gives rise to a

phase difference for the current going through oneweak link and the current going

through the other weak link. The maximum current through the entire device is

given by the interference of the “left” and “right” currents and one observes oscil-

lations as a function of the applied magnetic field.These correspond to single flux

quanta entering the ring. In this way, very small magnetic field changes can be

measured.

10.5

Type I and Type II Superconductors

We have so far assumed that a magnetic field cannot enter a material in its super-

conducting state. It would be completely expelled by supercurrents near the

surface of the specimen. This is actually not always true. There is a class of super-

conductors for which amagnetic field can enter the bulk sample while thematerial

still remains in its superconducting state.These superconductors are called type II

superconductors, as opposed to the type I superconductors in which the field

cannot enter.

Figure 10.13 shows the behavior of a type I and a type II superconductor in an

external magnetic field at zero temperature. For the type I material, the super-

conductivity breaks down above a certain critical field BC. For lower fields, the

material is superconducting and its magnetization exactly compensates the exter-

nal field such that the inner of the material is field-free. For higher fields, the

magnetization vanishes and the external field completely penetrates the sample.

For a type II superconductor, the situation is different.There are two critical fields

BC1 and BC2. Below BC1, the material behaves exactly as a type I superconduc-

tor and above BC2 the superconductivity is destroyed. Between these two fields,

however, the magnetic field partly enters the material. There is a finite magneti-

zation but it is not large enough to compensate the external field. The remarkable

fact is that the resistivity is still zero between these two critical fields.
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If we compare the critical field BC for a type I superconductor to the two fields

for a type II material, it is typically much closer to BC1 than to BC2, meaning that

type II superconductors can tolerate a higher field than type I materials and still

remain superconducting. It is this feature thatmakes type II superconductors very

important for technical applications. One example is the coils for superconduct-

ing electromagnets. In these, type II materials such as NbTi are used, which have

critical fields above 10 T.

How can the superconductivity survive a magnetic field entering the type II

material? The answer is shown in Figure 10.14. The field penetrates through very

thin filaments of normal-state material while the rest of the specimen remains

superconducting. The filaments of normal-state material are enclosed by vortices

of supercurrent such that the rest of the material remains field-free and in its

superconducting state. It turns out that the filaments contain only one magnetic

flux quantum, so for higher external fields more vortices must enter the sample.

Eventually, the density of vortices becomes so large that the superconducting

regions of the sample disappear.

The existence of vortices in the superconductor represents a problem to the

superconductivity itself. As a current passes through the material, a force similar

to the Lorentz force is exerted on the vortices causing them tomove perpendicular

to the current and to the magnetic field. This movement leads to an energy dissi-

pation and hence to a finite resistance even in the superconducting state, resulting

in the destruction of superconductivity. However, there is one possibility to avoid
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Figure 10.14 Magnetic flux in a type
II superconductor. The field penetrates
through thin filaments of material in the
normal state (light gray) while the rest of

the sample remains superconducting (dark
gray). The filaments are surrounded by vor-
tices of supercurrent that keep the rest of
the sample field-free.

this phenomenon and this is to “pin” the vortices by a sufficient number of defects

in the crystal. Then a certain energy will be associated with “unpinning” the vor-

tices and as long as the current density is small enough, this energy will not be

available. Type II superconductors in technical applications are therefore far from

being perfect single crystals. Quite the opposite is desirable.Thematerials should

have a sufficient number of defects such as grain boundaries in order to pin vor-

tices efficiently.

The difference between a material being type I or type II depends on the ratio

between the two characteristic length scales, the London penetration depth 𝜆L
and the coherence length 𝜉 in the Ginzburg–Landau theory. We have seen that 𝜉

sets the length scale on which the density of Cooper pairs can change appreciably.

For our simple treatment here, it is appropriate to think of the coherence length as

the distance between the two electrons in a Cooper pair, which we estimated to be

on the order of 100 nm or so.When 𝜉 is smaller than 𝜆L, the formation of normal-

state filaments surrounded by supercurrents becomes favorable and the material

tends to be a type II superconductor. If 𝜉 is longer than 𝜆L, the formation of the

filaments is not favorable and the material is a type I superconductor. Disorder

tends to reduce the coherence length 𝜉 and, therefore, many intermetallic alloys

are type II superconductors.

10.6

High-Temperature Superconductivity

What would we have to do to design a superconductor with a very high TC,

preferably above room temperature?We have already discussed the BCS equation



10.6 High-Temperature Superconductivity 225

for the transition temperature (10.13) and seen that the scale for TC is set by

the Debye temperature of the solid. Debye temperatures for materials made of

light elements with strong bonds can be very high (several hundred Kelvin), so

that this is not the limiting factor. The limitation is in the exponential term in

(10.13) where one should try to obtain both a high density of states at the Fermi

energy and a strong electron–phonon coupling. Estimates of these quantities

show that one cannot hope to get a TC much higher than 30 K or so and, indeed,

the progress in designing materials with increasing TC was very slow initially

(Figure 10.15).

A disruptive change of this development came in 1986 when J. G. Bednorz

and K. A. Müller discovered superconductivity in the cuprate-perovskite ceramic

materials. TC for the particular material found by Bednorz and Müller was not

especially high, only 30 K, but higher than for any compound found before.

Moreover, superconductivity had been discovered in a new and unexpected

class of materials. A short time later, superconductors of a similar kind but

with a slightly different composition were found, which had a TC above the

boiling point of nitrogen. This opened (in principle) the possibility for new

technological applications because cooling with liquid nitrogen is considerably

cheaper than with liquid helium. It is in this sense one has to interpret the term

“high-temperature superconductivity.”

The cuprate-perovskite materials are actually insulators that can be doped to

become (poor) conductors and, at lower temperatures, superconductors. They

have a fairly complicated structure but for us the only important point is that

they consist of two-dimensional CuO2 layers that are separated by other building

blocks.

The mechanism of high-temperature superconductivity is not understood yet,

but there is agreement on a number of points. Most importantly, the supercurrent
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is also carried by Cooper pairs. It is unclear, however, what mechanism binds the

electrons together. Some theories suggest that the electron–phonon interaction

can play a role, much like in BCS superconductors, but most favor other mecha-

nisms, such as certainmagnetic excitations.The behavior of the high-temperature

superconductors in the normal state is not understood either. It is very different

from that of a normal metal.

The Cooper pairs in high-temperature superconductors are mainly localized in

the CuO2 planes of the perovskite structure, meaning that the material has very

anisotropic properties. In fact, one can view the high-temperature superconduc-

tivity as a process that practically happens in two dimensions. Unfortunately, the

anisotropy also brings about very low critical current densities for polycrystalline

samples, in which the planes in one domain do not match with the planes in the

neighboring domain. Nevertheless, many practical hurdles have been overcome

and high-temperature superconductors have started to play a role in commercial

applications.

10.7

Concluding Remarks

As already mentioned in the introduction of this chapter, we were merely able

to introduce some of the very basic ideas about superconductivity and we could

not even explain those in any detail. Superconductivity is an extremely rich sub-

ject, and there are many additional phenomena that were not included here. You

can also find exceptions to almost every “rule” we have discussed. There are, for

example, many superconductors that are well described by the BCS theory but fail

to show theM−1∕2 behavior in the isotope effect. Some even show no dependence

of TC on the isotope combination or one that goes in the “wrong” direction. The

high-temperature superconductors have a superconducting gap but it is of a very

different nature than for the “traditional” BCS superconductors. There is, in fact,

no absolute gap in the sense of Figure 10.8, that is, no energy interval without any

single-particle states around the Fermi energy.The gap in these materials appears

only in certain regions of the first Brillouin zone.

This list goes on but we conclude the chapter with a more general question:

What is the connection between superconductivity and magnetic ordering? At

first it seems that the answer is that there is none – they are mutually exclusive, as

we have seen several times in this chapter. But it is really more interesting than

that. Magnetic ordering and superconductivity have in common that the elec-

trons with the highest energy, those at the Fermi energy, have a possibility to

slightly lower their energy, either by establishing magnetic order or by condens-

ing into Cooper pairs.The energy lowering appears small relative to their absolute

kinetic energy but it is highly relevant compared to the average thermal energy. In

some materials, there is even a close competition between magnetism and super-

conductivity. Often antiferromagnetic ordering occurs in the same material as
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superconductivity or the material becomes superconductive at some low temper-

ature and normal, but ferromagnetically ordered, at an even lower temperature.

There are othermechanisms apart frommagnetic ordering and superconductiv-

ity that give the possibility of an energy lowering for the electrons near the Fermi

energy. Particularly complex and interesting situations arise when several of these

mechanisms compete with each other and this complexity is a very active research

area in current solid state physics.
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10.9

Discussion and Problems

Discussion

1) How can you be sure that a superconductor has zero resistance? How can you

measure its resistance?

2) What can be the cause for the superconductivity of a material breaking down,

even if the temperature is below the critical temperature?

3) Describe the Meissner effect. Why is the Meissner effect “more” than just a

consequence of zero resistance?

4) Is it really such that magnetic fields do not penetrate at all into a

superconductor?

5) Describe the key ideas behind the microscopic BCS theory for

superconductivity.

6) What experimental evidence supports the BCS theory?

7) What is the difference between a type I and a type II superconductor?
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Problems

1) Zero resistivity:We have seen that the decay of the superconducting current

can be measured by inducing a current in a superconducting ring and mea-

suring how the current decays. (a) How would you induce a current in such a

ring? (b) How would you measure if it decays or not? (c) Show that the decay

(if any) would be exponential in time. (d) Assume that the ring has a diame-

ter of 0.5 cm and is made of a very thin wire. If you observe that the current

decays by less than 1% in a year, estimate themaximum resistance of the wire.

Hint: For this last part, you need to know the strength of the B field through

the ring. For simplicity, assume that the field throughout the ring has the same

strength as in the center.

2) (*) Isotope effect: Calculate the absolute temperature range of TC for the

TC values in Figure 10.5. Experimentally, it can be difficult to scan the

temperature through the superconducting transition for all the samples.

Can you suggest an alternative experimental approach that avoids this

problem?

3) London penetration depth: In connection with Figure 10.6 and Equation

(10.9), it was argued that the 𝐁 field decays exponentially inside the super-
conductor. Show this explicitly for a situation as in Figure 10.6, where the

surface is in the x − y plane and the field has only an x component, that is,

𝐁 = (Bx, 0, 0).

4) BCS theory:TheBCS theory predicts an exponential temperature dependence

of the heat capacity at very low temperatures, instead of a linear heat capac-

ity usually observed for metals. (a) Explain qualitatively why this is so. (b)(*)

Explain qualitatively why the exponential behavior is only observed at very

low temperatures, that is, much lower than TC.

5) BCS theory: We have seen that both the typical dimension of the Cooper

pairs and the London penetration depth are on the order of 100 nm and we

have assumed that the Ginzburg–Landau coherence length 𝜉 has the same

order of magnitude. If 𝜉 is the length scale on which the density of Cooper

pairs can change appreciably, how likely is it that the superconducting state

breaks down in a volume 𝜉3? (a) Give a rough estimate of the total energy gain

for the condensation of Cooper pairs in a volume of (100 nm)3. (b) Can you

say something about the probability of the superconductivity breaking down

spontaneously due to a thermal fluctuation? Assume that the rate R of such

breakdowns per second follows a Boltzmann distribution

R = fe−E∕kBT . (10.20)

Argue that this rate is extremely small, even though you do not know the

actual value of the “attempt frequency” f .

6) (*) BCS theory: It is experimentally found that the thermal conductivity of a

superconductor well below TC is smaller than that for the same material in

the normal state. Can you explain this?
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7) (*) BCS theory:Consider the typical temperature dependence of the resistivity

𝜌(T) for a superconductor and a nonsuperconducting material. In the case

of Figure 10.1, it appears that the resistivity of the superconductor above TC

increases more strongly than for the nonsuperconducting material. Can you

give a plausible explanation?

8) BCS theory: How do you expect the London penetration depth 𝜆L to depend

on the temperature (qualitatively)?
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11

Finite Solids and Nanostructures

We have so far assumed that we deal with infinite solids or, more precisely, with

big but finite solids without any boundaries. This was achieved by using periodic

boundary conditions, and it has been a very successful concept. The perfect peri-

odicity of the lattice has allowed us to solvemany problems that we could not have

solved otherwise. One example is the vibrational motion of the atoms: Instead of

solving the equations of motion for a practically infinite number of atoms in a

linear chain of macroscopic dimensions, we have reduced the problem to a small

set of equations. Another example is the electronic structure, where the period-

icity of the problem and the introduction of the reciprocal lattice permitted a

solution of the Schrödinger equation.

In this chapter, we briefly treat finite solids with a specific emphasis on the

surfaces of bulk crystals as well as on nanostructured materials such as clusters

of a few atoms, ultrathin films, and so on. The current interest in nanotechnol-

ogy is (among other factors) driven by the fact that many materials drastically

change their properties on a small scale (electronic, optical, catalytic, etc.). Here,

we describe why this is so but we confine our attention to the very basic physical

ideas.

We focus on three aspects of the small scale: The first is that the number of

possible vibrations or electronic states is drastically reduced. As a consequence,

the continuum of allowed energy states in a macroscopic solid is turned into a few

discrete levels. This effect is called quantum confinement. The second aspect is

that small objects, like clusters, necessarily have a relatively large surface (or inter-

face) area, that is, a much larger ratio of surface area to bulk volume than macro-

scopic objects.The atoms at the surface (or interface) find themselves in a different

environment from that of the bulk atoms and can therefore have other vibrational

and electronic properties. If the structure is sufficiently small, these properties

will dominate the entire nano-object. In fact, the surfaces are also important for

large crystals because the surface is where the solid interacts with its environment,

for example, in chemical reactions. Finally, we will see how ferromagnetic order-

ing in a particle is affected by its size. For very small particles, the spins are still

aligned with respect to each other below the Curie temperature, but the magneti-

zation of the entire particle can be rotated by thermal fluctuations at much lower

temperatures.

Solid State Physics: An Introduction, Second Edition. Philip Hofmann.
© 2015 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2015 by Wiley-VCH Verlag GmbH & Co. KGaA.
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Another interesting aspect that we will not discuss any further is that of

reduced dimensionality. In three-dimensional crystals, we succeeded relatively

well to describe the electronic states by assuming no interaction between the

electrons. As the number of dimensions is reduced, to a two-dimensional sheet or

a one-dimensional wire, this assumption becomes increasingly problematic and

new phenomena arise because of the correlated motion of the electrons. In the

case of a strictly one-dimensional system, this is intuitively clear: Neglecting the

electron–electron interaction will be a bad approximation because the electrons

cannot even get past each other.

11.1

Quantum Confinement

In order to see how reducing the size of a system can change its properties, we

just have to look back at Figure 4.6 that shows the allowed vibrational frequencies

for a finite chain of 10 atoms. The possible vibrational frequencies are denoted by

black dots, and they are clearly a very small subset of the possible vibrations for

an infinite chain. Formally, this is caused by the requirement of having k-values

consistent with the boundary conditions. In the case of Figure 4.6, we had taken

these to be (4.20). If the system is sufficiently small, the number of allowed states

is thus drastically reduced; instead of having a quasicontinuum of states, we have

discrete levels that are separated by a significant energy. This is the essence of

quantum confinement.

A particularly good illustration of quantum confinement can be realized by

a very thin metal film that is grown on a semiconductor or an insulator (see

Figure 11.1a).The wave functionΨ(𝐫) of the electrons in the film can be separated
in parts parallel (along x, y) and perpendicular (along z) to the film

Ψ(𝐫) = Ψ(z)Ψ(x, y). (11.1)

(a)

Metal film

(b)

z

Metal film

0

d0

Vacuum
z = d

z = 0
Semiconductor/

insulator

P
ot

en
tia

l U
 (

ar
b.

 u
ni

ts
)

Semi-
conductor/
insulator

Vacuum

Figure 11.1 (a) A thin metal film on a semiconducting or insulating substrate. (b) Modeling
the metal film as a potential well. The dashed lines indicate the simplification of an infinitely
deep potential well.
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For the motion parallel to the film, we assume that the electrons behave like free

electrons. Ψ(x, y) is then a two-dimensional free electron wave function and the

energies associated with the motion parallel to the film are

Exy =
ℏ2𝐤2

xy

2me

, (11.2)

where 𝐤xy is the two-dimensional wave vector for the free electronmotion parallel
to the film. The possible values of 𝐤xy are given by the usual periodic boundary
conditions.

More interesting are the wave function and the energy levels for the motion

perpendicular to the film, that is, in the z direction. An appropriate model for

this is a simple potential well between the metal/semiconductor interface (z = 0)

and themetal/vacuum interface (z = d). Such a potential is shown in Figure 11.1b.

The potential inside the metal film can be taken to be zero. The potential well has

a finite depth and its height on the two sides is, in general, different.

The solutions for an infinitely deep potential well are known from elementary

quantummechanics.The solution inside the well can be written as the superposi-

tion of two free electron waves, one moving to the right and the other moving to

the left:

Ψ(z) = Aeikzz + Be−ikzz, (11.3)

where kz is the component of the wave vector in the z direction and A and B are

complex amplitudes. The boundary conditions are that this wave function has to

vanish at z = 0 and at z = d. This immediately gives the quantization condition

for k:

kzd = n𝜋, n = 1, 2, 3, ... (11.4)

If we now realize that kz = 2𝜋∕𝜆, then the quantization condition is 2d = n𝜆. This

has the familiar meaning that one round trip through the potential well must cor-

respond to an integer number of wavelengths. The possible energies for the states

in the z direction are

Ez =
ℏ2k2

z

2me

, (11.5)

and the total energy for a given kz and 𝐤xy is the sum of (11.2) and (11.5).
As mentioned above, the infinitely deep potential well is not a very appropri-

ate model and one should really use the potential in Figure 11.1b. However, the

resulting quantization condition is similar to (11.4). It turns out to be

2kzd + Φi + Φv = 2𝜋n, n = 1, 2, 3, ... (11.6)

The meaning of this equation is that the total phase change for one round trip of

the electron must be a multiple of 2𝜋. This total phase change must include the

phase shifts at the metal/semiconductor interface Φi and at the metal/vacuum

interface Φv. This model describes the resulting kz values for real thin metal films

relatively well.
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In all this, we have only considered the Schrödinger equation for free electrons

for which we know the solution already. The only thing we have changed is the

boundary conditions for the solution (in the z direction). The new boundary con-

ditions strongly restrict the possible states and give rise to the discrete energy

levels in the z direction.

Similar ideas can be used to describe the properties of semiconductor clusters

with a radius of less than≈100 nm, the so-called quantum dots. In these clusters,

the possible electron and hole energies are quantized because of confinement in

three dimensions. In a bulk semiconductor, the smallest energy for forming an

electron–hole pair is the gap energy Eg . In quantum dots, this energy is larger and

it increases as the dot’s size decreases. An approximate formula for the minimum

energy to separate an electron from a hole is

Emin = Eg +
ℏ2𝜋2

2𝜇r2
−
1.8e2

4𝜋𝜖0𝜖r
(11.7)

where r is the cluster radius and 𝜇 is the reduced mass from the electron and hole

effectivemasses.The second termon the right-hand side is due to the confinement

effect: It increases the energywhen the electron and hole wave functions are “com-

pressed” in a smaller quantum dot. Remember that in a simple potential well of

size r, the possible energies are also proportional to r−2 (see (11.4) and (11.5)).The

third term is due to the Coulomb interaction between the electron and the hole. It

works in the other direction because the attraction is stronger for a smaller clus-

ter. As the cluster size is decreased, the r−2 term eventually wins and becomes the

most important term for really small clusters. The change of the smallest excita-

tion energy as a function of cluster size is an extremely useful property because

it allows the production of clusters with optical absorption exactly at the desired

wavelength.

The small size of the clusters has also another effect on their optical properties.

If the cluster is small enough, the electrons are localized and the uncertainty prin-

ciple dictates that they must have a considerable momentum uncertainty, which

(for a free particle) is equivalent to a k uncertainty. In otherwords, k is not properly

defined anymore, consistent with the interpretation of k as the quantum number

of infinite translational symmetry. But if k is not well defined, this means that the

forbidden optical transitions across the indirect band gap in a material such as Si

are no longer strictly forbidden and one can start to exploit the optical properties

of Si and other materials with an indirect band gap.

11.2

Surfaces and Interfaces

Apart from the quantum confinement of bulk states, the existence of surfaces and

interfaces can lead to entirely new electronic and vibrational states that are located

at the surface (or the interface). This can give rise to surfaces with properties that

are quite different from those of the bulk material. It is, for example, possible to
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Figure 11.2 (a) Matching of a bulk electronic state (a Bloch wave) to an exponential decay
outside the surface. (b) An electronic surface state that is decaying as the distance from the
surface is increased, both outside and inside the solid.

have a metallic surface on an insulating bulk. We illustrate this for the electronic

states in Figure 11.2. Consider first Figure 11.2a that shows the behavior of a bulk

state near a surface. The bulk state is a Bloch wave

𝜓𝐤(𝐫) = ei𝐤𝐫u𝐤(𝐫). (11.8)

At the surface, this state and its derivative have to be matched continuously to an

exponentially decaying wave function in the vacuum.

The wave vector 𝐤 of the Bloch wave is a purely real quantity. Surface-localized
states can be described by allowing for a complex 𝐤. If we assume that the z com-
ponent of 𝐤 was complex, we could take the imaginary part ℑ(kz) of it out of the

plane wave part of the Bloch wave, leading to

𝜓𝐤(𝐫) = eℑ(kz)zei𝐤
′ ⋅𝐫u𝐤(𝐫), (11.9)

where 𝐤′ is the remaining real part of the wave vector, that is, (kx, ky,ℜ(kz)). For

a bulk state, this wave function clearly has a problem because it exponentially

increases in the +z direction. It can therefore not be normalized and is not physi-

cally meaningful.

Near the surface, however, solutions with a complex wave vector are possible

and an example is given in Figure 11.2b. The solution is exponentially increasing

in the z direction but, as the crystal is terminated by the surface, it can bematched

to an exponentially decreasing wave function outside the surface. Therefore, it

can still be normalized and it forms a surface-localized electronic state. Similar

arguments can be made for the interface between two solids where localized

interface states can exist.

While this argument for the possible existence of surface states is based on very

general principles, we also discuss an example related to the different bonding

of atoms at the surface. Suppose that we have a typical semiconductor with its

sp3-type bonding in the bulk. In the bulk, each sp3 orbital is filled with two elec-

trons. At the surface, some of these sp3 bonds will be broken and the broken bonds

will be filled with only one electron because of the missing neighbor atom. If the
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surface structure is now such that we have an odd number of broken bonds per

two-dimensional surface unit cell, then this corresponds to an odd number of

surface electrons in such a unit cell.We have seen in Section 6.6 that this leads to a

half-filled band and thereby to ametallic surface.This is quite remarkable because

we would have a metallic surface on a semiconducting bulk! The half-filled band

would exist only at the surface and it would be described by wave functions such

as (11.9). However, it is often found that the situation of metallic surface states

is not very stable. They could be destroyed by filling a second electron into the

broken sp3 bond. This could happen via a chemical reaction of the broken bond

with its environment (with hydrogen atoms, for instance) or even by pairing two

bonds from different unit cells. In fact, the nonmetallic situation is often ener-

getically more favorable and, therefore, metallic surfaces on semiconductors are

rarely encountered.

An exception to this rule of thumb are the surfaces of the recently discovered

so-called topological insulators. These materials have an insulating inside but

their surfaces are metallic, independent of the surface structure and orientation,

even when allowing for chemical reactions with the environment. The same is

true for their interfaces to any normal (or the so-called “topologically trivial”)

insulator. This remarkable behavior can be derived from the special properties

of the topological insulator’s bulk band structure, and it is easiest to understand

if we consider an interface between the topological insulator and a normal

insulator. It is sufficient to use the simplest possible representation of the valence

band (VB) and conduction band (CB) as single energy levels, as introduced in

Section 7.1.1. The situations for a normal insulator and a topological insulator

are shown in Figure 11.3a and b, respectively. The difference between the two is

here the color of the bands: The normal insulator has a bright VB and a dark CB

and for the topological insulator, this is the other way round. The color of the

bands represents a symmetry property of the wave functions. For the topological

insulator, the color ordering is inverted with respect to the normal insulator and

one often speaks of an inverted band gap. The appearance of a metallic interface

is now illustrated in Figure 11.3c. When an interface between the two materials

is formed, only bands of the same symmetry can be joined. As a consequence, the

VB (CB) of the normal insulator is connected with the CB (VB) of the topological

insulator and the states have to cross the chemical potential at or near the

interface. Thus, the interface becomes metallic.

The band crossing and the metallic interface do therefore result from the inner

material’s properties, not from the surface, and are stable against all changes at

the surface.This is called a topological protection. An excellent analogy is the sit-

uation that arises when two countries are to be joined by a road bridge, with the

difficulty that the driving rules in one country enforce right-hand traffic and in

the other left-hand traffic. A possible solution to this problem is the traffic flipper

bridge shown in Figure 11.3c, a proposal for a road connection between Hong

Kong and Mainland China. Clearly, the detailed design of the bridge could be

changed but the lane crossing cannot be avoided unless the traffic rules in one

of the countries are changed.
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Figure 11.3 Illustration of topologically
protected metallic states between two insu-
lators. (a) Simplified band diagram for a
“normal” insulator with single levels for
the VB and CB energies as a function of
position (i.e., the edges signify the macro-
scopic ends of the sample). The grayscale
represents the symmetry of the bands. (b)
Topological insulator with an inverted band
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states gives rise to metallic interface states.
(d) “Topological” traffic lane crossing at the
border of two countries with left- and right-
hand traffic. Image courtesy of NL architects
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This simple picture leaves some open questions: What is the meaning of the CB

and VB’s color? The color represents the parity of the wave functions, describing

how they transform under an inversion of the coordinates. As an example, con-

sider the s-type and p-type wave functions for k = 0 in Figure 6.11. If the sites of

the atoms are used as the origin of the coordinate system, the s-type wave func-

tion is not affected by an inversion of the coordinates (it has a parity of 1) but the

p-wave function changes sign (it has a parity of −1). In a topological insulator, the

parity ordering of the states is different from a normal insulator.

Also, the explanation may work for an interface between a topological and a

normal insulator, but what about surface of a topological insulator, that is, the

interface to vacuum or air? This is indeed not obvious from the simple picture

given here but it is in fact possible to derive the existence of metallic surface states

from the band structure of the topological insulator alone, without the need of an

interface to a second material.

11.3

Magnetism on the Nanoscale

If a solid is sufficiently small, we have to rethink our approach to its magnetization

and this has enormous technological consequences. For a largemagnet, the energy

required to flip one magnetic moment is on the order of the exchange energy,

or the energy corresponding to the Curie temperature kBΘC . This can be much

http://www.nlarchitects.nl
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higher than kBT at room temperature. Hence, large permanent magnets do not

lose their magnetization due to some thermal fluctuations. For a small ferromag-

netic particle this is still true, but now another possibility arises that can change

the magnetization of the particle even if T ≪ ΘC . If the particle is smaller than

the typical thickness of a Bloch wall, it will only contain one magnetic domain.

Instead of changing the magnetization by flipping all the moments one by one,

they can then stay aligned with each other and the magnetization of the entire

domain can be rotated at the same time. If the particle is sufficiently small, the

energy cost for doing this can become small enough to change the magnetization

of the entire particle at room temperature, even for ferromagnetic materials with

a strong exchange interaction and a high ΘC . This phenomenon is called super-

paramagnetism.

We give an estimate of the energy cost for rotating the entire magnetic moment

of a small particle. A key factor in this is that the magnetization of such a small

particle will have a preferred direction, the so-called easy axis. Energetically, it

does not matter if 𝐌 is parallel or antiparallel to the easy axis, but it does cost
energy to rotate it out of the easy axis direction. Therefore, an energy barrier has

to be overcome to reverse𝐌. The height of the energy barrier depends on several
factors, such as the shape of the small particle and its crystal structure.We cannot

go into these effects here, but merely present a very crude estimate of the order

of magnitude. Suppose that the magnetization of the particle is𝐌 and we assume
the barrier ΔE is given by the energy it takes to move𝐌 out of the 𝐁 field created
by𝐌 (see Section 8.1). In this case, we obtain

ΔE ≈ V𝜇0M
2. (11.10)

The energy required for rotating the magnetization thus depends linearly on the

volume of the particle. For iron particles with a size below a few nanometers,

this energy becomes comparable to kBT at room temperature (see Problem 11.3),

i.e., the particles become superparamagnetic. This is obviously a problem for the

fabrication of magnetic storage devices. The magnetic particles used for storing

one bit must be large enough to prevent thermally induced rotations of the mag-

netization. On the other hand, superparamagnetic nanoparticles do have useful

applications because of their large magnetic moments, for example, in medical

magnetic resonance imaging.

11.4

Further Reading

For further information on quantum confinement in nanoparticles, see

• Delerue, C. and Lannoo, M. (2004) Nanostructures - Theory and Modelling,

Springer.

• Klimov, V. (2010) Nanocrystal Quantum Dots, CRC Press.
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Surface states and topological insulators are discussed in

• Hofmann, Ph. (2013) Surface Physics, Self-Published, www.philiphofmann.net/

Philip_Hofmann/SurfacePhysics.html.

• Moore, J. (2010) The birth of topological insulators. Nature, 464, 194.

For magnetism on the nanoscale, see

• Himpsel, F.J., Ortega, J.E., Mankey, G.J., andWillis, R.F. (1998)Magnetic nanos-
tructures. Adv. Phys., 47, 511.

• Stöhr, J. and Siegmann, H.C. (2006) Magnetism: From Fundamentals to

Nanoscale Dynamics, Springer.

11.5

Discussion and Problems

Discussion

1) What are the main physical reasons why the properties of nanoscale solids

are different from macroscopic solids of the same material?

2) How are the optical properties of semiconductors changed in nanoscale

clusters?

3) Explain why it is possible that the magnetization of ferromagnetic nanopar-

ticles can rapidly fluctuate at room temperature, even though the Curie

temperature of the material is much higher.

Problems

1) Boundary conditions: In this chapter, we have seen that the different proper-

ties of solids on the nanoscale are largely due to new boundary conditions,

which lead to fewer and discrete solutions of the Schrödinger equation. This

is a bit worrying because in the previous chapters, we have just used what-

ever boundary conditions seemed most convenient. In particular, we have

preferred the periodic boundary conditions over the fixed boundary condi-

tions where the wave function (or the vibrational amplitude) has to vanish at

the boundary of a crystal. Fortunately, the precise choice of boundary condi-

tions is not so important if the solid is only big enough. In order to show this,

calculate the density of states for the free electron model in Chapter 6 when

assuming fixed boundary conditions. Compare the result to (6.13).

2) Semiconducting nanoclusters: (a) Calculate the minimum electron–hole

separation energy for CdSe nanoclusters as a function of cluster size. Plot

the two contributions (confinement and Coulomb interaction) and their sum

separately. (b) Such nanoclusters can be used as fluorescent markers. When

exposed to ultraviolet light, a separation of electrons and holes take place.

Eventually, these recombine under the emission of light corresponding to

http://www.philiphofmann.net/
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the minimum separation energy. How large would the clusters have to be to

emit yellow light?

3) Superparamagnetism: (a) How small would an iron particle need to be such

that the energy for rotating its entire magnetization becomes comparable to

kBT at room temperature? Assume that each iron atom contributes to the

magnetization with a moment of 2.2𝜇B. (b) Given the energy barrier ΔE,

assume that the rate of magnetization rotations R, that is, the number of

rotations per second, follows a Boltzmann distribution:

R = fe−ΔE∕kBT . (11.11)

The frequency f is of the order 109 s−1. How large would the magnetic iron

particles in a hard disk have to be if you only want to tolerate one flip every

10 years?
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Appendix A

This appendix briefly deals with some basics in electromagnetism. It assumes that

you are familiar with the Maxwell equations in vacuum in their integral form,

as discussed in most introductory physics textbooks. What is given here are the

explicit forms of vector calculus operations, the so-called differential form of the

Maxwell equations, and how the Maxwell equations change in the presence of

matter.

A.1

Explicit Forms of Vector Operations

In this book, several vector calculus operations are used, which are given here

explicitly. They all deal with differentiating a vector field or a scalar field. Let (𝐱)
be a vector field and 𝜙(𝐱) a scalar field.
The gradient of the scalar field 𝜙(𝐱) is a vector with the components:

grad𝜙 = ∇𝜙 =

(
𝜕

𝜕x
,
𝜕

𝜕y
,
𝜕

𝜕z

)
𝜙 =

(
𝜕𝜙

𝜕x
,
𝜕𝜙

𝜕y
,
𝜕𝜙

𝜕z

)
. (A.1)

The often-used operator ∇ (called “nabla”) is defined as

∇ =

(
𝜕

𝜕x
,
𝜕

𝜕y
,
𝜕

𝜕z

)
. (A.2)

The divergence of a vector field (𝐱) is a scalar field:

div = ∇ ⋅  =

(
𝜕

𝜕x
,
𝜕

𝜕y
,
𝜕

𝜕z

)
⋅  =

𝜕x
𝜕x

+
𝜕y
𝜕y

+
𝜕z
𝜕z

(A.3)

The curl of a vector field  is

curl = ∇ ×  =

(
𝜕

𝜕y
z − 𝜕

𝜕z
y, 𝜕

𝜕z
x − 𝜕

𝜕x
z, 𝜕

𝜕x
y − 𝜕

𝜕y
x
)
. (A.4)

It is always such that curl grad𝜙 = 0 and div curl = 0. Finally, an important sec-

ond derivative is the divergence of the gradient of a scalar field 𝜙(𝐱):

div grad𝜙 = ∇2𝜙 = △𝜙 =
𝜕2𝜙

𝜕x2
+

𝜕2𝜙

𝜕y2
+

𝜕2𝜙

𝜕z2
. (A.5)

△ is called the Laplace operator.

Solid State Physics: An Introduction, Second Edition. Philip Hofmann.
© 2015 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2015 by Wiley-VCH Verlag GmbH & Co. KGaA.
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A.2

Differential Form of the Maxwell Equations

The familiar, integral form of the Maxwell equations is

• Gauss’s law

∮ d𝐚 =
Qencl
𝜖0

; (A.6)

• Gauss’s law for magnetism

∮ 𝐁d𝐚 = 0; (A.7)

• Ampère’s law

∮ 𝐁d𝐥 = 𝜇0

(
Iencl. + 𝜖0

𝜕𝜙E

𝜕t

)
; (A.8)

• Faraday’s law

∮ d𝐥 = −
𝜕ΦB

𝜕t
. (A.9)

In order to transform these into the differential form frequently used in this

book, one makes use of two fundamental theorems. The first is the divergence

theorem

∮ d𝐚 = ∫ divdV , (A.10)

which turns a surface integral over a vector field into a volume integral over the

divergence of the same field. The second is Stokes’ integral theorem, which states

∮ dl = ∫ curld𝐚, (A.11)

turning an integral along a closed line into an integral over a surface enclosed by

the line.

Using the divergence theorem, we can find a differential version of Gauss’s law

(A.10). We calculate:

∮ d𝐚 = ∫ divdV =
Qencl
𝜖0

= ∫
𝜌

𝜖0
dV . (A.12)

Since this holds for an arbitrary volume, the differential version of Gauss’ law is

div =
𝜌

𝜖0
. (A.13)

Gauss’s law of magnetism can be treated in the same way to give

div𝐁 = 0. (A.14)

Equation (A.11) can be used in a similar way to rewrite the two other equations.

We start with Ampère’s law:

∮ 𝐁d𝐥 = ∫ curl𝐁d𝐚 = 𝜇0

(
Iencl. + 𝜖0

𝜕ΦE

𝜕t

)
= ∫ 𝜇0𝐣 + 𝜇0𝜖0

𝜕

𝜕t
d𝐚, (A.15)
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which means that the differential version of Ampère’s law is

curl𝐁 = 𝜇0𝐣 + 𝜇0𝜖0
𝜕

𝜕t
. (A.16)

Finally, we find Faraday’s law in the differential form as

curl = −
𝜕𝐁
𝜕t

. (A.17)

A.3

Maxwell Equations in Matter

In vacuum, theMaxwell equations contain two fields: the  field that is created by

all charges and the 𝐁 field that is created by all currents. In matter, it is convenient
tomodify the equations by the introduction of the newfields𝐃 and𝐇. Both appear
in a modified version of Ampère’s law. In vacuum, we have the current density 𝐣
of free charges in (A.16) but in matter there is the possibility to have additional

“bound” currents. The first, 𝐣m gives rise to a macroscopic magnetization 𝐌 via
𝐣m = curl𝐌, and the second is related to a change of the dielectric polarization 𝐏
via 𝐣e = 𝜕𝐏∕𝜕t. If we add these to the “free” current density 𝐣, this leads to

𝐣 + 𝐣m + 𝐣e =
1

𝜇0
curl𝐁 − 𝜖0

𝜕

𝜕t
, (A.18)

or

𝐣 = curl

(
1

𝜇0
𝐁 −𝐌

)
−

𝜕

𝜕t

(
𝜖0 + 𝐏

)
. (A.19)

This is then simplified by the introduction of the new fields

𝐇 =
1

𝜇0
𝐁 −𝐌 (A.20)

and

𝐃 = 𝜖0 + 𝐏, (A.21)

where the𝐃 and𝐇 fields correspond to the  and 𝐁 fields with the difference that
the latter are caused by all charges and currents, whereas𝐃 and𝐇 are only caused
by the “free” charges and currents. Ampère’s law in matter is stated in terms of

these new fields as

𝐣 = curl𝐇 −
𝜕𝐃
𝜕t

. (A.22)

Gauss’s law is also modified slightly. One has to take into account that the polar-

ization of the solid can lead to a local increase of charge density 𝜌e = −div𝐏.1) We
therefore get

div =
𝜌

𝜖0
+

𝜌e

𝜖0
=

𝜌

𝜖0
−

div𝐏
𝜖0

, (A.23)

1) Theminus sign stems from the sign difference in the definition of  and 𝐏. In the former, the vector
direction is from the positive to the negative charges, and in the latter, it is opposite.
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or, using the usual definition of 𝐃 (A.21),

div𝐃 = 𝜌. (A.24)

Gauss’s law for magnetostatics is unaffected in matter because there are still no

magnetic monopoles. The same is true for Faraday’s law, as there are no magnetic

monopole currents either.



245

Index

a
acceptors 139

acoustic branch 53

Ag 78

air 190

Al 39, 58, 61, 70, 78, 82, 85, 117,

120

Al2O3 39

allotropic phase transitions 71

amorphous solids 1

anharmonic vibrations 69, 70

atomic form factor 15

atomic polarizability 190

Au 61

b
band gap 94, 108, 109, 118

basis 2

BaTiO3 198

BCS theory 212

Be 39, 78

Bi 78, 143

Bitter method 180

Bloch oscillations 122

Bloch theorem 104–106, 113

Bloch wall 180, 238

body-centered cubic structure 4

Bohr magneton 163

Bohr–van Leeuwen theorem 161

Born–Oppenheimer approximation 91, 209,

213

Born–von Kármán boundary conditions, see

periodic boundary conditions

Bragg condition 8, 110

Bragg theory (X-ray diffraction) 7–8, 16

Bravais lattice 2

Brillouin zone 51, 57

brittle 35

brittle fracture 43

bulk modulus 36

c
C60 25

carbon nanotubes 25, 39

cast iron 39

CdSe 132, 139, 190

chemical potential 97, 132

Clausius–Mossotti relation

192

coefficient of thermal expansion

70

coercive field 182

coherence length 212, 224

cohesive energy 25, 72

concrete 39

conduction band 132

conduction electron density 78

conduction electrons 28

Cooper pair 214

coordination number 6

core electrons 23

covalent bonding 25

critical current density 206, 218

critical magnetic field 206, 218

critical temperature 204

crystal momentum 109, 152, 196

Cs 78

CsCl 5

Cu 61, 67, 70, 78

Curie temperature 199

Curie’s law 169

Curie–Weiss law 177

cyclic boundary conditions, see periodic

boundary conditions

cyclotron resonance 138
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246 Index

d
Debye frequency 66

Debye model (heat capacity) 63–67

Debye temperature 66, 67, 125, 216, 225

defects 41, 68, 125, 224

density of occupied states 98

density of states (free electrons) 97

density of states (phonons) 64

depletion layer 145

diamagnetism 160

diamond 6, 25, 39, 58, 59, 61, 67, 68, 72, 132,

190, 193

dielectric breakdown 200

dielectric constant 140, 188

dielectric function 83, 192

diffusion current 148

direct band gap 135, 152

dislocations 41

dispersion relation 49, 109

donors 139

doped semiconductors 139–145

drift current 148

ductile 35

Dulong–Petit rule 60, 86

e
easy axis of magnetization 238

easy-glide region 43

edge dislocation 41

effective mass 124, 135, 139

Einstein model (heat capacity) 62–63

Einstein temperature 62

elastic constants 35

elastic deformation 33

electric susceptibility 187

electrical conductivity 79–81, 122–126,

144–145

electron affinity 25

electron diffraction 17

electron–phonon interaction 125, 213

electronic band structure 109

electronic polarisation 190

equipartition theorem 48, 60, 71, 78

ethanol 190

Ewald construction 15

exchange interaction 28, 172

extrinsic region 141

f
face-centered cubic structure 4

Fe 61, 72

Fermi energy 96

Fermi velocity 97

Fermi wave vector 96

ferroelectricity 198

flux quantum(magnetic) 222, 223

Fourier series 12

fracture (mechanical) 43

free electron approximation 78, 94

free electron model 94

Fresnel equations 202

g
Γ point 58

GaAs 7, 118, 131, 132, 137, 139

Ge 7, 131, 132, 139

Gibbs free energy 72

Ginzburg–Landau theory 211, 224

glass 190

glass fiber 39

grain boundaries 1

graphene 6, 25, 39, 76, 121

graphite 6, 25, 39, 72

group velocity 50

h
H2 25, 165

Hall coefficient 82

Hall effect 81–82, 143

hard magnets 182

harmonic approximation 47

harmonic oscillator 47, 193

heat capacity, electrons 86, 99, 219

heat capacity, lattice 60–67

Heisenberg model 174

Heitler–London model 27, 174

hexagonal close-packed structure 6

high-temperature superconductivity

224–226

hole 134, 135

Hooke’s law 35, 59

Hund’s rules 165

hydrogen bonding 29

hysteresis 182, 199

i
InAs 132, 139

independent electron approximation 77, 213

index of refraction 83

indirect band gap 135, 152, 234

InP 7

InSb 132, 139

insulator definition, 131

interatomic potential 23, 37, 70

interstitial defect 41

intrinsic region 141

intrinsic semiconductors 132–139

inversion layer 150
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ionic bonding 24

ionic polarization 190

ionization energy 25

isotope effect 209, 216

k
K 78, 85

k-space 51

Kerr effect 180

kinematic approximation 7

l
Landé splitting factor 165

lattice 2

lattice constant 2

lattice energy 25

lattice plane 8

Laue condition 14

Laue theory (X-ray diffraction)

9–16

law of mass action 137, 143

Li 78, 85

LiF 193

light emitting diode 151

local field 191–192, 199

London equations 210

London penetration depth 211, 221,

224

Lorenz number 85, 101

m
Madelung constant 24

magnetic domains 180, 238

magnetic ordering 171–180

magnetite 172

majority carriers 143

mean field approximation 175

Meissner effect 207

melting 72

metal, definition 118

metallic bonding 28, 103

metastable structures 72

Mg 39, 78, 85

MgF2 132

Miller indices 8, 12

minority carriers 143

Mo 38, 39, 72

mobility of the carriers 80, 144

modulus of rigidity 35

MOSFET 150, 189, 199

n
n doping 139

Néel temperature 178

Na 78

NaCl 5, 24, 39, 190, 193

nearly free electron model 106–111

necking 43

neutron diffraction 17, 172

normal mode 49, 54

nylon 39

o
Ohm’s law 80

optical branch 53

orientational polarization 190

p
p doping 139

paramagnetism 160

Pb 59, 61, 67, 70

periodic boundary conditions 54, 65, 95, 104,

113, 231

permeability (of vacuum) 160

permeability, relative 160, 188

permittivity (of vacuum) 187

permittivity, relative 188

PET 39

phase problem in X-ray diffraction 14

phase velocity 50

phonon 56, 68, 213

piezoelectricity 199

plasma frequency 84, 101

plastic deformation 34, 38

pn junction 145, 151

point defects 41

point symmetry 3

Poisson’s ratio 36

polycrystalline solids 1

potential well 233

q
quantum confinement 232

quantum dot 234

quenching of the orbital angular momentum

169

r
Rb 78

reciprocal lattice 11

reciprocal space 51

recombination of carriers 143, 153

reflectivity (metals) 82

relaxation time 78, 122, 210

remanent magnetization 182

resistivity 80

rubber 39, 190



248 Index

s
screening (metals) 101–103

semiconductor, definition 131

semimetal 122

shear stress 33

Shockley–Queisser limit 154

Si 7, 39, 67, 69, 72, 118, 131, 132, 137, 139,

190

SiC 7, 39, 131, 132

simple cubic structure 4

simple metals 6, 72

SiN 39

singlet state 26, 215

SiO2 150, 189, 190

soft magnets 182

solar cell 151–154

speed of sound 50, 64

SQUIDS 222

SrTiO3 190, 199

steel 39

Stoner–Wohlfarth model 179

strain 33

stress 33

substitutional defect 41

superexchange 178

superparamagnetism 238

surface state 235

susceptibility, magnetic 160

t
teflon 39

thermal conductivity, electrons 85, 100

thermal conductivity, lattice 67–70

thermal expansion 70–71

Thomas–Fermi screening length 102

tight-binding model 111–116

TiO2 193

topological insulator 236

transistors 150–151

transition metals 6, 38

translational symmetry 3

triplet state 26, 215

type II superconductor 222–224

u
unit cell 2

unit cell, primitive 2

v
vacancy 41

valence band 132

valence electrons 23

van der Waals bonding 29

vector potential 161, 221

w
W 38, 39, 72

water 189, 190

WC 39

Weiss field 175

Wiedemann–Franz law 85, 100

Wigner–Seitz cell 2, 58

work hardening region 43

x
X-ray diffraction 7–17

y
yield strain 34

yield stress 34, 39

Young’s modulus 35, 58
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