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Preface of the First Edition

This book emerged from a course on solid state physics for third-year students of
physics and nanoscience, but it should also be useful for students of related fields
such as chemistry and engineering. The aim is to provide a bachelor-level survey
over the whole field without going into too much detail. With this in mind, a lot
of emphasis is put on a didactic presentation and little on stringent mathematical
derivations or completeness. For a more in-depth treatment, the reader is referred
to the many excellent advanced solid state physics books. A few are listed in the
Appendix.

To follow this text, a basic university-level physics course is required as well
as some working knowledge of chemistry, quantum mechanics, and statistical
physics. A course in classical electrodynamics is of advantage but not strictly nec-
essary.

Some remarks on sow to use this book: Every chapter is accompanied by a set of
“discussion” questions and problems. The intention of the questions is to give the
student a tool for testing his/her understanding of the subject. Some of the ques-
tions can only be answered with knowledge of later chapters. These are marked
by an asterisk. Some of the problems are more of a challenge in that they are more
difficult mathematically or conceptually or both. These problems are also marked
by an asterisk. Not all the information necessary for solving the problems is given
here. For standard data, for example, the density of gold or the atomic weight of
copper, the reader is referred to the excellent resources available on the World
Wide Web.

Finally, I would like to thank the people who have helped me with many discus-
sions and suggestions. In particular, I would like to mention my colleagues Arne
Nylandsted Larsen, Ivan Steensgaard, Maria Fuglsang Jensen, Justin Wells, and
many others involved in teaching the course in Aarhus.
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Preface of the Second Edition

The second edition of this book is slightly enlarged in some subject areas and
significantly improved throughout. The enlargement comprises subjects that
turned out to be too essential to be missing, even in a basic introduction such as
this one. One example is the tight-binding model for electronic states in solids,
which is now added in its simplest form. Other enlargements reflect recent
developments in the field that should at least be mentioned in the text and
explained on a very basic level, such as graphene and topological insulators.

I decided to support the first edition by online material for subjects that were
either crucial for the understanding of this text, but not familiar to all readers, or
not central enough to be included in the book but still of interest. This turned out
to be a good concept, and the new edition is therefore supported by an extended
number of such notes; they are referred to in the text. The notes can be found on
my homepage www.philiphofmann.net.

The didactical presentation has been improved, based on the experience of
many people with the first edition. The most severe changes have been made in
the chapter on magnetism but minor adjustments have been made throughout
the book. In these changes, didactic presentation was given a higher priority than
elegance or conformity to standard notation, for example, in the figures on Pauli
paramagnetism or band ferromagnetism.

Every chapter now contains a “Further Reading” section in the end. Since these
sections are supposed to be independent of each other, you will find that the same
books are mentioned several times.

I thank the many students and instructors who participated in the last few years’
Solid State Physics course at Aarhus University, as well as many colleagues for
their criticism and suggestions. Special thanks go to NL architects for permitting
me to use the flipper-bridge picture in Figure 11.3, to Justin Wells for suggesting
the analogy to the topological insulators, to James Kermode for Figure 3.7, to Arne
Nylandsted Larsen and Antonija Grubisi¢ Cabo for advice on the sections on solar
cells and magnetism, respectively.
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Physical Constants and Energy Equivalents

Planck constant
Boltzmann constant

Proton charge

Bohr radius

Bohr magneton
Avogadro number
Speed of light

Rest mass of the electron
Rest mass of the proton
Rest mass of the neutron
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Permittivity of vacuum
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1
Crystal Structures

Our general objective in this book is to understand the macroscopic properties
of solids in a microscopic picture. In view of the many particles in solids, coming
up with any microscopic description appears to be a daunting task. It is clearly
impossible to solve the equations of motion (classical or quantum mechanical).
Fortunately, it turns out that solids are often crystalline, with the atoms arranged
on a regular lattice, and this symmetry permits us to solve microscopic mod-
els, despite the very many particles involved. This situation is somewhat simi-
lar to atomic physics where the key to a description is the spherical symmetry
of the atom. We will often imagine a solid as one single crystal, a perfect lat-
tice of atoms without any defects whatsoever, and it may seem that such perfect
crystals are not particularly relevant for real materials. But this is not the case.
Many solids are actually composed of small crystalline grains. These solids are
called polycrystalline, in contrast to a macroscopic single crystal, but the num-
ber of atoms in a perfect crystalline environment is still very large compared to
the number of atoms on the grain boundary. For instance, for a grain size on
the order of 1000% atomic distances, only about 0.1% of the atoms are at the grain
boundaries. There are, however, some solids that are not crystalline. These are
called amorphous. The amorphous state is characterized by the absence of any
long-range order. There may, however, be some short-range order between the
atoms.

This chapter is divided into three parts. In the first part, we define some
basic mathematical concepts needed to describe crystals. We keep things
simple and mostly use two-dimensional examples to illustrate the ideas. In the
second part, we discuss common crystal structures. At this point, we do not
ask why the atoms bind together in the way that they do, as this is treated in
the next chapter. Finally, we go into a somewhat more detailed discussion of
X-ray diffraction, the experimental technique that can be used to determine the
microscopic structure of crystals. X-ray diffraction is used not only in solid state
physics but also for a wide range of problems in nanotechnology and structural
biology.

Solid State Physics: An Introduction, Second Edition. Philip Hofmann.
© 2015 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2015 by Wiley-VCH Verlag GmbH & Co. KGaA.
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1 Crystal Structures

1.1
General Description of Crystal Structures

Our description of crystals starts with the mathematical definition of the lattice.
A lattice is a set of regularly spaced points with positions defined as multiples of
generating vectors. In two dimensions, a lattice can be defined as all the points
that can be reached by the vectors R, created from two vectors a; and a, as

R = Wlal + naz, (1.1)
where 7 and m are integers. In three dimensions, the definition is
R = ma, + na, + oa;. (1.2)

Such a lattice of points is also called a Bravais lattice. The number of possible
Bravais lattices that differ by symmetry is limited to 5 in two dimensions and to
14 in three dimensions. An example of a two-dimensional Bravais lattice is given
in Figure 1.1. The lengths of the vectors a; and a, are often called the lattice
constants.

Having defined the Bravais lattice, we move on to the definition of the prim-
itive unit cell. This is any volume of space that, when translated through all the
vectors of the Bravais lattice, fills space without overlap and without leaving voids.
The primitive unit cell of a lattice contains only one lattice point. It is also possi-
ble to define nonprimitive unit cells that contain several lattice points. These fill
space without leaving voids when translated through a subset of the Bravais lattice
vectors. Possible choices of a unit cell for a two-dimensional rectangular Bravais
lattice are given in Figure 1.2. From the figure, it is evident that a nonprimitive
unit cell has to be translated by a multiple of one (or two) lattice vectors to fill
space without voids and overlap. A special choice of the primitive unit cell is the
Wigner—Seitz cell that is also shown in Figure 1.2. It is the region of space that is
closer to one given lattice point than to any other.

The last definition we need in order to describe an actual crystal is that of a basis.
The basis is what we “put” on the lattice points, that is, the building block for the
real crystal. The basis can consist of one or several atoms. It can even consist of

a1

Figure 1.1 Example for a two-dimensional Bravais lattice.
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Wigner—Seitz v |
cell /:
/‘V //'
Primitive UV —
=

cells | —

Nonprimitve —— p \
unit cells ﬁ

Figure 1.2 lllustration of unit cells (primitive and nonprimitive) and of the Wigner-Seitz
cell for a rectangular two-dimensional lattice.

complex molecules as in the case of protein crystals. Different cases are illustrated
in Figure 1.3.

Finally, we add a remark about symmetry. So far, we have discussed trans-
lational symmetry. But for a real crystal, there is also point symmetry.
Compare the structures in the middle and the bottom of Figure 1.3. The former
structure possesses a couple of symmetry elements that the latter does not
have, for example, mirror lines, a rotational axis, and inversion symmetry. The
knowledge of such symmetries can be very useful for the description of crystal

properties.
Bravais Basis Crystal
lattice
[ J [ ]
[ ]

[ J [ ]
[ [ J
[ J
[ J [ ]
[ J [ ]
[ ]

[ J [ ]

Figure 1.3 A two-dimensional Bravais lattice with different choices for the basis.
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1 Crystal Structures

1.2
Some Important Crystal Structures

After this rather formal treatment, we look at a number of common crystal struc-
tures for different types of solids, such as metals, ionic solids, or covalently bonded
solids. In the next chapter, we will take a closer look at the details of these bonding

types.

1.2.1
Cubic Structures

We start with one of the simplest possible crystal structures, the simple cubic
structure shown in Figure 1.4a. This structure is not very common among ele-
mental solids, but it is an important starting point for many other structures. The
reason why it is not common is its openness, that is, that there are many voids if
we think of the ions as spheres touching each other. In metals, the most common
elemental solids, directional bonding is not important and a close packing of the
ions is usually favored. For covalent solids, directional bonding is important but
six bonds on the same atom in an octahedral configuration are not common in
elemental solids.

The packing density of the cubic structure is improved in the body-centered
cubic (bcc) and face-centered cubic (fcc) structures that are also shown in
Figure 1.4. In fact, the fcc structure has the highest possible packing density for
spheres as we shall see later. These two structures are very common. Seventeen
elements crystallize in the bcc structure and 24 elements in the fcc structure.
Note that only for the simple cubic structure, the cube is identical with the
Bravais lattice. For the bcc and fec lattices, the cube is also a unit cell, but not
the primitive one. Both structures are Bravais lattices with a basis containing one
atom but the vectors spanning these Bravais lattices are not the edges of the cube.

(a) Simple cubic (b) Body-centered cubic  (c) Face-centered cubic
~,

Figure 1.4 (a) Simple cubic structure; than in the situation of most dense pack-
(b) body-centered cubic structure; and ing and not all of the spheres on the faces
(c) face-centered cubic structure. Note that of the cube are shown in (c).

the spheres are depicted much smaller
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CsCl structure NaCl structure

sl

Figure 1.5 Structures of CsCl and NaCl. The spheres are depicted much smaller than in the
situation of most dense packing, but the relative size of the different ions in each structure
is correct.

—

a

Cubic structures with a more complex basis than a single atom are also impor-
tant. Figure 1.5 shows the structures of the ionic crystals CsCl and NaCl that are
both cubic with a basis containing two atoms. For CsCl, the structure can be
thought of as two simple cubic structures stacked into each other. For NaCl, it
consists of two fcc lattices stacked into each other. Which structure is preferred
for such ionic crystals depends on the relative size of the ions.

1.2.2
Close-Packed Structures

Many metals prefer structural arrangements where the atoms are packed as
closely as possible. In two dimensions, the closest possible packing of ions (i.e.,
spheres) is the hexagonal structure shown on the left-hand side of Figure 1.6.
For building a three-dimensional close-packed structure, one adds a second
layer as in the middle of Figure 1.6. For adding a third layer, there are then two
possibilities. One can either put the ions in the “holes” just on top of the first layer
ions, or one can put them into the other type of “holes”” In this way, two different
crystal structures can be built. The first has an ABABAB... stacking sequence,
and the second has an ABCABCABC... stacking sequence. Both have exactly the

Figure 1.6 Close packing of spheres leading to the hcp and fcc structures.
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1 Crystal Structures

same packing density, and the spheres fill 74% of the total volume. The former
structure is called the hexagonal close-packed structure (hcp), and the latter
turns out to be the fcc structure we already know. An alternative sketch of the hcp
structure is shown in Figure 1.14b. The fcc and hcp structures are very common
for elemental metals. Thirty-six elements crystallize as hcp and 24 elements as
fcc. These structures also maximize the number of nearest neighbors for a given
atom, the so-called coordination number. For both the fcc and the hcp lattice,
the coordination number is 12.

An open question is why, if coordination is so important, not all metals crys-
tallize in the fcc or hep structure. A prediction of the actual structure for a given
element is not possible with simple arguments. However, we can collect some fac-
tors that play a role. Not optimally packed structures, such as the bcc structure,
have a lower coordination number, but they bring the second-nearest neighbors
much closer to a given ion than in the close-packed structures. Another important
consideration is that the bonding is not quite so simple, especially for transition
metals. In these, bonding is not only achieved through the delocalized s and p
valence electrons as in simple metals, but also by the more localized d electrons.
Bonding through the latter has a much more directional character, so that not only
the close packing of the ions is important.

The structures of many ionic solids can also be viewed as “close-packed” in some
sense. One can arrive at these structures by treating the ions as hard spheres that
have to be packed as closely to each other as possible.

1.23
Structures of Covalently Bonded Solids

In covalent structures, the atoms’ valence electrons are not completely delocalized
but shared between neighboring atoms and the bond length and direction are
far more important than the packing density. Prominent examples are graphene,
graphite, and diamond as displayed in Figure 1.7. Graphene is a single sheet of
carbon atoms in a honeycomb lattice structure. It is a truly two-dimensional
solid with a number of remarkable properties; so remarkable, in fact, that their

(@) (b)

Figure 1.7 Structures for (a) graphene, (b) graphite, and (c) diamond. sp? and sp? bonds
are displayed as solid lines.
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discovery has lead to the 2010 Nobel prize in physics being awarded to A. Geim
and K. Novoselov. The carbon atoms in graphene are connected by sp? hybrid
bonds, enclosing an angle of 120°. The parent material of graphene is graphite, a
stack of graphene sheets that are weakly bonded to each other. In fact, graphene
can be isolated from graphite by peeling off flakes with a piece of scotch tape. In
diamond, the carbon atoms form sp>-type bonds and each atom has four nearest
neighbors in a tetrahedral configuration. Interestingly, the diamond structure can
also be described as an fcc Bravais lattice with a basis of two atoms.

The diamond structure is also found for Si and Ge. Many other isoelectronic
materials (with the same total number of valence electrons), such as SiC, GaAs,
and InP, also crystallize in a diamond-like structure but with each element on a
different fcc sublattice.

1.3
Crystal Structure Determination

After having described different crystal structures, the question is of course how to
determine these structures in the first place. By far, the most important technique
for doing this is X-ray diffraction. In fact, the importance of this technique goes
far beyond solid state physics, as it has become an essential tool for fields such as
structural biology as well. There the idea is that, if you want to know the structure
of a given protein, you can try to crystallize it and use the powerful methodology
for structural determination by X-ray diffraction. We will also use X-ray diffraction
as a motivation to extend our formal description of structures a bit.

1.3.1
X-Ray Diffraction

X-rays interact rather weakly with matter. A description of X-ray diffraction can
therefore be restricted to single scattering, that is, incoming X-rays get scattered
not more than once (most are not scattered at all). This is called the kinematic
approximation; it greatly simplifies matters and is used throughout the treatment
here. In addition to this, we will assume that the X-ray source and detector are
very far away from the sample so that the incoming and outgoing waves can be
treated as plane waves. X-ray diffraction of crystals was discovered and described
by M. von Laue in 1912. Also in 1912, W. L. Bragg came up with an alternative
description that is considerably simpler and serves as a starting point here.

1.3.1.1 Bragg Theory

Bragg treated the problem as the reflection of the incoming X-rays at flat crystal
planes. These planes could, for example, be the close-packed planes making up the
fcc and hep crystals, or they could be alternating Cs and Cl planes making up the
CsCl structure. At first glance, this has very little physical justification because
the crystal planes are certainly not “flat” for X-rays that have a wavelength similar
to the atomic spacing. Nevertheless, the description is highly successful, and we

7
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Figure 1.8 Construction for the derivation of the Bragg condition. The horizontal lines
represent the crystal lattice planes that are separated by a distance d. The heavy lines
represent the X-rays.

shall later see that it is actually a special case of the more complex Laue description
of X-ray diffraction.

Figure 1.8 shows the geometrical considerations behind the Bragg description.
A collimated beam of monochromatic X-rays hits the crystal. The intensity of
diffracted X-rays is measured in the specular direction. The angle of incidence and
emission is 90° — ©. The condition for constructive interference is that the path
length difference between the X-rays reflected from one layer and the next layer is
an integer multiple of the wavelength A. In the figure, this means that 2AB = n4,
where AB is the distance between points A and B and # is a natural number. On
the other hand, we have sin § = AB/d such that we arrive at the Bragg condition

nA =2dsin. (1.3)

It is obvious that if this condition is fulfilled for one layer and the layer below, it will
also be fulfilled for any number of layers with identical spacing. In fact, the X-rays
penetrate very deeply into the crystal so that thousands of layers contribute to the
reflection. This results into very sharp maxima in the diffracted intensity, similar
to the situation for an optical grating with many lines. The Bragg condition can
obviously only be fulfilled for 4 < 2d, putting an upper limit on the wavelength of
the X-rays that can be used for crystal structure determination.

1.3.1.2 Lattice Planes and Miller Indices
The Bragg condition will work not only for a special kind of lattice plane in a crys-
tal, such as the hexagonal planes in an hcp crystal, but for all possible parallel
planes in a structure. We therefore come up with a more stringent definition of
the term lattice plane. It can be defined as a plane containing at least three non-
collinear points of a given Bravais lattice. If it contains three, it will actually contain
infinitely many because of translational symmetry. Examples for lattice planes in
a simple cubic structure are shown in Figure 1.9.

The lattice planes can be characterized by a set of three integers, the so-called
Miller indices. We arrive at these in three steps:

1) We find the intercepts of the plane with the crystallographic axes in units of
the lattice vectors, for example, (1, oo, 00) for the leftmost plane in Figure 1.9.
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(1,0,0) (1,1,0) (1,1,1)

Figure 1.9 Three different lattice planes in the simple cubic structure characterized by
their Miller indices.

2) We take the “reciprocal value” of these three numbers. For our example, this
gives (1,0, 0).

3) By multiplying with some factor, we reduce the numbers to the smallest set
of integers having the same ratio. This is not necessary in the example as we
already have integer values.

Such a set of three integers can then be used to denote any given lattice plane.
Later, we will encounter a different and more elegant definition of the Miller
indices.

In practice, the X-ray diffraction peaks are so sharp that it is difficult to align and
move the sample such that the incoming and reflected X-rays lie in one plane with
the normal direction to a certain crystal plane. An elegant way to circumvent this
problem is to use a powder of very small crystals instead of a large single crystal.
This will not only ensure that some small crystals are orientated correctly to get
constructive interference from a certain set of crystal planes, it will automatically
give the interference pattern for all possible crystal planes.

1.3.1.3 General Diffraction Theory

The Bragg theory for X-ray diffraction is useful for extracting the distances
between lattice planes in a crystal, but it has its limitations. Most importantly,
it does not give any information on what the lattice actually consists of, that
is, the basis. Also, the fact that the X-rays should be reflected by planes is
physically somewhat obscure. We now discuss a more general description of
X-ray diffraction that goes back to M. von Laue.

The physical process leading to X-ray scattering is that the electromagnetic field
of the X-rays forces the electrons in the material to oscillate with the same fre-
quency as that of the field. The oscillating electrons then emit new X-rays that
give rise to an interference pattern. For the following discussion, however, it is
merely important that something scatters the X-rays, not what it is.

It is highly beneficial to use the complex notation for describing the
electromagnetic X-ray waves. For the electric field, a general plane wave
can be written as

E(r,t) = E kTt (1.4)

9
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Figure 1.10 [lllustration of X-ray scattering from a sample. The source and detector for the
X-rays are placed at R and R/, respectively. Both are very far away from the sample.

The wave vector K points in the direction of the wave propagation with a length
of 2z /A, where A is the wavelength. The convention is that the physical electric
field is obtained as the real part of the complex field and the intensity of the wave
is obtained as

I(r) = |Epe™ T2 = |E,)2. (1.5)

Consider now the situation depicted in Figure 1.10. The source of the X-rays is
far away from the sample at the position R, so that the X-ray wave at the sample
can be described as a plane wave. The electric field at a point r in the crystal at
time ¢ can be written as

E(r,t) = E kT R-iot, (1.6)

Before we proceed, we can drop the absolute amplitude £, from this expression
because we are only concerned with relative phase changes. The field at point r is
then

E(r,t) x kR gmiot, (1.7)

A small volume element dV located at r will give rise to scattered waves in all
directions. The direction of interest is the direction towards the detector that shall
be placed at the position R/, in the direction of a second wave vector k’. We assume
that the amplitude of the wave scattered in this direction will be proportional to
the incoming field from (1.7) and to a factor p(r) describing the scattering proba-
bility and scattering phase. We already know that the scattering of X-rays proceeds
via the electrons in the material, and for our purpose, we can view p(r) as the
electron concentration in the solid. For the field at the detector, we obtain

ER',t) x E(r,t)p(r)e® ® -1 (1.8)

Again, we have assumed that the detector is very far away from the sample such
that the scattered wave at the detector can be written as a plane wave. Inserting
(1.7) gives the field at the detector as

e(RI’ £) o eik-(r—R)p(r)eik’-(R’—r)e—iwt — ei(k’~R’—k~R)p(r)ei(k—k’)-r e—ia)t. (19)
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We drop the first factor that does not contain r and will thus not play a role for
the interference of X-rays emitted from different positions in the sample. The total
wave field at the detector can finally be calculated by integrating over the entire
volume of the crystal V. As the detector is far away from the sample, the wave
vector k' is essentially the same for all points in the sample. The result is

ER,t) x e / p(r)e &gy, (1.10)
%4

In most cases, it will only be possible to measure the intensity of the X-rays, not
the field, and this intensity is
2 2
e—iwt / p(r)ei(k—k')TdV’ —
v

I(K) « , (1.11)

/ p(r)e KT dy
v

where we have introduced the so-called scattering vector K = k’ — k, which is
just the difference of outgoing and incoming wave vectors. Note that although
the direction of the wave vector for the scattered waves k' is different from that
of the incoming wave Kk, the length is the same because we only consider elastic
scattering.

Equation (1.11) is the final result. It relates the measured intensity to the electron
concentration in the sample. Except for very light elements, most of the electrons
are located close to the ion cores and the electron concentration that scatters the
X-rays is essentially identical to the geometrical arrangement of the ion cores.
Hence, (1.11) can be used for the desired structural determination. To this end,
one could try to measure the intensity as a function of scattering vector K and to
infer the structure from the result. This is a formidable task. It is greatly simpli-
fied if the specimen under investigation is a crystal with a periodic lattice. In the
following, we introduce the mathematical tools that are needed to exploit the crys-
talline structure in the analysis. The most important one is the so-called reciprocal
lattice.

1.3.1.4 The Reciprocal Lattice
The concept of the reciprocal lattice is fundamental to solid state physics because
it permits us to exploit the crystal symmetry for the analysis of many problems.
Here we will use it to describe X-ray diffraction from periodic structures and we
will meet it again and again in the next chapters. Unfortunately, the meaning of the
reciprocal lattice turns out to be hard to grasp. Here, we choose to start out with a
formal definition and we provide some mathematical properties. We then discuss
the meaning of the reciprocal lattice before we come back to X-ray diffraction. The
full importance of the concept will become apparent throughout this book.

For a given Bravais lattice

R = Wlal + naz + Oa3, (1.12)
we define the reciprocal lattice as the set of vectors G for which

R-G =2zl (1.13)

1
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where [ is an integer. Equivalently, we could require that
OR =1. (1.14)

Note that this equation must hold for any choice of the lattice vector R and recip-
rocal lattice vector G. We can write any G as the sum of three vectors

G =m'by + 1'b, + 0'bs, (1.15)

where ', n’ and o’ are integers. The reciprocal lattice is again a Bravais lattice. The
vectors by, b,, and bz spanning the reciprocal lattice can be constructed explicitly
from the lattice vectors

a, X a, a; X a, a; X a,
b, =21 ———, b, =271 ———, b, =2r———.
a, - (a, Xay) a, - (ay Xaz) a, - (a, Xay)
(1.16)
From this, one can derive the simple but useful property,”
a; - b; = 216, (1.17)

which can easily be verified. Equation (1.17) can then be used to verify that the
reciprocal lattice vectors defined by (1.15) and (1.16) do indeed fulfill the funda-
mental property of (1.13) that defines the reciprocal lattice (see Problem 1.6).

Another way to view the vectors of the reciprocal lattice is as wave vectors that
yield plane waves with the periodicity of the Bravais lattice because

olGT — piGTHiGR _ ,iG-(r+R) (1.18)

Finally, one can define the Miller indices in a much simpler way using the recip-
rocal lattice: The Miller indices (i, j, k) define a plane that is perpendicular to the
reciprocal lattice vector ib; + jb, + kb; (see Problem 1.8).

1.3.1.5 The Meaning of the Reciprocal Lattice

We have now defined the reciprocal lattice in a proper way, and we will give some
simple examples of its usefulness. The most important point of the reciprocal lat-
tice is that it facilitates the description of functions that have the periodicity of the
lattice. To see this, consider a one-dimensional lattice, a chain of points with a lat-
tice constant a. We are interested in a function with the periodicity of the lattice,
like the electron concentration along the chain p(x) = p(x + a). We can write this
as a Fourier series of the form

px)=C+ Z {Cn cos(x2znj/a)+ S, sin(x27m/a)} (1.19)
n=1

with real coefficients C,, and S,,. The sum starts at » = 1, that is, the constant part
C has to be taken out of the sum. We can also write this in a more compact form

Py = Y pue™ (1.20)

Hn=—00

1) 6 is Kronecker’s delta, which is 1 for i = j and zero otherwise.
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Figure 1.11 Top: Chain with a lattice con- in real space as well as their Fourier coeffi-
stant a as well as its reciprocal lattice, a cients. The magnitude of the Fourier coeffi-
chain with a spacing of 2z /a. Middle and cients |p,| is plotted on the reciprocal lattice

bottom: Two lattice-periodic functions p(x) vectors they belong to.

using complex coefficients p,. To ensure that p(x) is still a real function, we have
to require that

P = (1.21)

that is, that the coefficient p_, must be the conjugate complex of the coefficient p,,.
This description is more elegant than the one with the sine and cosine functions.
How is it related to the reciprocal lattice? In one dimension, the reciprocal lattice
of a chain of points with lattice constant a is also a chain of points with spacing
27 /a (see (1.17)). This means that we can write a general reciprocal lattice “vector”
as
2r
g= }17, (1.22)
where 7 is an integer. Exactly these reciprocal lattice “vectors” appear in (1.20).
In fact, (1.20) is a sum of functions with a periodicity corresponding to the recip-
rocal lattice vectors, weighted by the coefficients p,. Figure 1.11 illustrates these
ideas by showing the lattice and reciprocal lattice for such a chain as well as two
lattice-periodic functions, as real space functions and as Fourier coefficients on
the reciprocal lattice points. The advantage of describing the functions by the coef-
ficients p,, is immediately obvious: Instead of giving p(x) for every point in a range
of 0 < x < a, the Fourier description consists only of three numbers for the upper
function and five numbers for the lower function. Actually, it is only two and three
numbers because of (1.21).
The same ideas also work in three dimensions. In fact, one can use a Fourier
sum for lattice-periodic properties, which exactly corresponds to (1.20). For the
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lattice-periodic electron concentration p(r) = p(r + R), we get
p(r) = D peee™, (1.23)
G

where G are the reciprocal lattice vectors.

With this we have seen that the reciprocal lattice is very useful for describing
lattice-periodic functions. But this is not all: It can also simplify the treatment of
waves in crystals in a very general sense. Such waves can be X-rays, elastic lattice
distortions, or even electronic wave functions. We will come back to this point at
a later stage.

1.3.1.6 X-Ray Diffraction from Periodic Structures

Turning back to the specific problem of X-ray diffraction, we can now exploit the
fact that the electron concentration is lattice-periodic by inserting (1.23) in our
expression (1.11) for the diffracted intensity. This gives

ZPG/ei(G—K)-rdV
G 4

Let us inspect the integrand. The exponential function represents a plane wave
with a wave vector G — K. If the crystal is very big, the integration will average
over the crests and troughs of this wave and the result of the integration will be
very small (or zero for an infinitely large crystal). The only exception to this is the
case where

2

I(K) (1.24)

K=Kk -k =G, (1.25)

that is, when the difference between incoming and scattered wave vector is equal
to a reciprocal lattice vector. In this case, the exponential function in the integral is
1, and the value of the integral is equal to the volume of the crystal. Equation (1.25)
is often called the Laue condition. It is central to the description of X-ray diffrac-
tion from crystals in that it describes the condition for the observation of con-
structive interference.

Looking back at (1.24), the observation of constructive interference for a chosen
scattering geometry (or scattering vector K) clearly corresponds to a particular
reciprocal lattice vector G. The intensity measured at the detector is proportional
to the square of the Fourier coefficient of the electron concentration [pg|%. We
could therefore think of measuring the intensity of the diffraction spots appearing
for all possible reciprocal lattice vectors, obtaining the Fourier coefficients of the
electron concentration and reconstructing this concentration. This would give all
the information needed and conclude the process of the structural determination.
Unfortunately, this straightforward approach does not work because the Fourier
coefficients are complex, not real numbers. Taking the square root of the inten-
sity at the diffraction spot therefore gives the magnitude but not the phase of pg.
The phase is lost in the measurement. This is known as the phase problem in
X-ray diffraction. One has to work around it to solve the structure. One simple
approach is to calculate the electron concentration for a structural model, obtain
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the magnitude of the pg; values and thus also the expected diffracted intensity, and
compare this to the experimental result. Based on the outcome, the model can be
refined until the agreement is satisfactory.

More precisely, this can be done in the following way. We start with (1.11), the
expression for the diffracted intensity that we had obtained before introducing the
reciprocal lattice. But now we know that constructive interference is only observed
in a geometry that corresponds to fulfilling the Laue condition and we can there-
fore write the intensity for a particular diffraction spot as

2

I(G) x ' / p(r)e 6TV (1.26)
174

We also know that the crystal is made of many identical unit cells at the positions
of the Bravais lattice R. We can split the integral up as a sum of integrals over the
individual unit cells

%

where N is the number of unit cells in the crystal and we have used the lattice
periodicity of p(r) and (1.14) in the last step. We now assume that the electron
concentration in the unit cell p(r) is given by the sum of atomic electron concen-

2 2

I(G) . (1.27)

/ p(r + R)e™C TR gy
V.

cell

N / p(r)e 6TV
v,

cell

trations p;(r) that can be calculated from the atomic wave functions. By doing so,
we neglect the fact that some of the electrons form the bonds between the atoms
and are not part of the spherical electron cloud around the atom any longer. If the
atoms are not too light, however, the number of these valence electrons is small
compared to the total number of electrons and the approximation is appropriate.
We can then write

p(r) = p(r—r,), (1.28)

where we sum over the different atoms in the unit cell at positions r;. This permits
us to rewrite the integral in (1.27) as a sum of integrals over the individual atoms
in the unit cell

/ p(r)e 6T dV = Z e G / p(xe ST dV’, (1.29)
Veeu i Vatom
where r’ = r —r;. The two exponential functions give rise to two types of inter-
ference. The first describes the interference between the X-rays scattered by the
different atoms in the unit cell, and the second the interference between the X-rays
scattered by the electrons within one atom. The last integral is called the atomic
form factor and can be calculated from the atomic properties alone. We therefore
see how the diffracted intensity for an assumed structure can be calculated from
the atomic form factors and the arrangement of the atoms.

1.3.1.7 The Ewald Construction
In 1913, P. Ewald published an intuitive geometrical construction to visualize the
Laue condition (1.25) and to determine the directions kK’ for which constructive

15
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° °
° °
° °
° ° § ° ™

Figure 1.12 Ewald construction for finding the directions in which constructive interfer-
ence can be observed. The dots represent the reciprocal lattice. The arrows labeled k and
k’ are the wave vectors of the incoming and scattered X-rays, respectively.

interference is to be expected. The construction is shown in Figure 1.12, which
represents a cut through the reciprocal lattice; the black points are the reciprocal
lattice points. The construction works as follows:

1) We draw the wave vector k of the incoming X-rays such that it ends in the
origin of the reciprocal lattice (we may of course choose the point of origin
freely).

2) We construct a circle of radius |k| around the starting point of k.

3) Wherever the circle touches a reciprocal lattice point, the Laue condition
k' — k = G is fulfilled.

For a three-dimensional crystal, this construction has to be carried out in different
planes, of course. The figure clearly shows that (1.25) is a very stringent condition:
It is not likely for the sphere to hit a second reciprocal lattice point, so that con-
structive interference is only expected for very few directions. As in the Bragg
description, we see that the wavelength of the X-rays has to be short enough (|k|
has to be long enough) for any constructive interference to occur.

Practical X-ray diffraction experiments are often carried out in such a way that
many constructive interference maxima are observed despite the strong restric-
tions imposed by the Laue condition (1.25). This can, for example, be achieved by
using a wide range of X-ray wavelengths, that is, non monochromatic radiation
or by doing diffraction experiments not on one single crystal but on a powder of
randomly oriented small crystals.

1.3.1.8 Relation Between Bragg and Laue Theory

We conclude our treatment of X-ray diffraction by showing that the Bragg descrip-
tion of X-ray diffraction is just a special case of the Laue description. We start by
noting that the Laue condition (1.25) consists, in fact, of three separate conditions
for the three components of the vectors. In the Bragg experiment, two of these
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conditions are automatically fulfilled because of the specular geometry: The wave
vector change parallel to the lattice planes is zero. So, the vector equation (1.25)
reduces to the scalar equation

K, —k, =2k = 227” §in@®=G,, (1.30)
where G| is a reciprocal lattice vector perpendicular to the lattice planes. We
have seen in Section 1.3.1.4 that such a reciprocal lattice vector exists for any
set of planes. The planes can be defined by their Miller indices (i, ], k) or by the
reciprocal lattice vector G, = ib; + jb, + kb, that is perpendicular to the planes
(see Problem 1.8). The shortest possible G, has a length of 27z /d with d being
the distance between the planes, but any integer multiple of this will also work.
If we thus insert m2x /d for G, into (1.30), we obtain the usual form of the Bragg
condition (1.3).

1.3.2
Other Methods for Structural Determination

While X-ray diffraction is arguably the most widespread and powerful method for
structural determination, other techniques are used as well. Similar diffraction
experiments can be carried out by making use of the wave character of neutrons
or electrons. The former interact very weakly with matter because they are charge-
neutral. They are also more difficult to produce than X-rays. However, the use of
neutrons has two distinct advantages over X-rays: First, that their relative interac-
tion strength with light atoms is stronger and second, that they carry a magnetic
moment. They can therefore interact with the magnetic moments in the solid, that
is, one can determine the magnetic order. Electrons, on the other hand, have the
advantages that they are easy to produce and that one can use electron-optical
imaging techniques, whereas making optical elements for X-rays is very difficult.
On the other hand, their very strong interaction with matter causes a breakdown
of the kinematic approximation, that is, multiple scattering events have to be taken
into account. Because of the strong interaction with matter, low-energy electrons
do not penetrate deeply into crystals either. Therefore, they are more appropriate
for surface structure determination.

133
Inelastic Scattering

Our discussion has been confined to the case of elastic scattering. In real experi-
ments, however, the X-rays or particles can also lose energy during the scattering
events. This can be described formally by considering the diffraction from a struc-
ture that does not consist of ions at fixed positions but is time-dependent, that is,
which fluctuates with the frequencies of the atomic vibrations. We cannot go into
the details of inelastic scattering processes here, but it is important to emphasize
that the inelastic scattering, especially of neutrons, can be used to measure the
vibrational properties of a lattice.

17
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1.4

Crystal Structures

Further Reading

The concepts of lattice-periodic solids, crystal structure, and X-ray diffraction are
discussed in all standard texts on solid state physics, for example,

» Ashcroft, N.W. and Mermin, N.D. (1976) Solid State Physics, Holt-Saunders.

¢ Ibach, H. and Liith, H. (2009) Solid State Physics, 4th edn, Springer.

« Kittel, C. (2005) Introduction to Solid State Physics, 8th edn, John Wiley & Sons,
Inc.

* Rosenberg, H.M. (1988) The Solid State, 3rd edn, Oxford University Press.

For a more detailed discussion of X-ray diffraction, see, for example,

» Als-Nielsen, J. and McMorrow, D. (2011) Elements of Modern X-Ray Physics,
2nd edn, John Wiley & Sons, Ltd.

1.5

Discussion and Problems

Discussion

1)

What mathematical concepts do you need to describe the structure of any
crystal?

2) What are typical crystal structures for metals and why?

3) Why do covalent crystals typically have a much lower packing density than
metal crystals?

4) How can the reciprocal lattice conveniently be used to describe lattice-
periodic functions?

5) How can you determine the structure of crystals?

6) What is the difference between the Bragg and von Laue descriptions of X-ray
diffraction?

7) How can you use the reciprocal lattice of a crystal to predict the pattern of
diffracted X-rays?

Problems

1) Fundamental concepts: In the two-dimensional crystal in Figure 1.13, find (a)
the Bravais lattice and a primitive unit cell, (b) a nonprimitive, rectangular
unit cell, and (c) the basis.

2) Real crystal structures: Show that the packing of spheres in a simple cubic
lattice fills 52% of available space.

3)  Real crystal structures: Figure 1.14 shows the structure for a two-dimensional

hexagonal packed layer of atoms, a hcp crystal, a two-dimensional sheet
of carbon atoms arranged in a honeycomb lattice (graphene), and three-
dimensional graphite. (a) Draw a choice of vectors spanning the Bravais
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Figure 1.13 A two-dimensional crystal.

Figure 1.14
tal structure of a hexagonal close-packed
layer of atoms. (b) Crystal structure for a
three-dimensional hcp crystal. (c) Two-
dimensional crystal structure for graphene.

(a) Two-dimensional crys-
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(d) Three-dimensional crystal structure for
graphite (strongly compressed along the ¢
direction). The lines are a mere guide to the
eye, not indicating bonds or the size of the
unit cell.

lattice for the hexagonal layer of atoms and for graphene, and compare them
to each other. (b) Show that the basis for the hexagonal layer contains one
atom, while the bases for graphene and the three-dimensional hcp crystal
contain two atoms. (c) (*) Choose the vectors for the Bravais lattice for
graphite and show that the basis contains four atoms.
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4)

5)

6)

7)

aq

Crystal Structures

Real crystal structures: Consider the hcp lattice shown in Figure 1.14b. The
Bravais lattice underlying the hcp structure is given by two vectors of length
a in one plane, with an angle of 60° between them and a third vector of length
¢ perpendicular to that plane. There are two atoms per unit cell. (a) Show that
for the ideal packing of spheres, the ratio c/a = (8/3)'/%. (b) (*) Construct the
reciprocal lattice. Does the fact that there are two atoms per unit cell in the
hcp crystal have any relevance? Hint: Use the result of Problem 1.7.

X-ray diffraction: (a) Determine the maximum wavelength for which con-
structive interference can be observed in the Bragg model for a simple cubic
crystal with a lattice constant of 3.6 A. (b) What is the energy of the X-rays in
electron volts? (c) If you were to perform neutron diffraction, what would the
energy of the neutrons have to be in order to obtain the same de Broglie wave-
length? (d) You could argue that if you take X-rays with twice the wavelength,
you would still get a Bragg peak because there would be constructive inter-
ference between the X-rays that are reflected from every other plane. Why is
this argument not valid? (e) You could describe the same crystal by using a
unit cell that is a bigger cube of twice the side length, containing eight atoms
instead of one. The lattice constant would then be 7.2 A. Discuss how this
different description would affect the X-ray diffraction from the crystal.

The reciprocal lattice: Using the explicit definition of the reciprocal lattice
(1.16), show first that (1.17) is fulfilled and then, using this relation, show that
the reciprocal lattice defined by (1.16) does indeed fulfill the condition (1.13).
The reciprocal lattice: For a two-dimensional Bravais lattice

R = ma, + na,, (1.31)
the reciprocal lattice is also two-dimensional:
G =m'by + 1'b,. (1.32)

Often, the most practical way to construct the reciprocal lattice is to use the
relation

a; - b; =275, (1.33)

which remains valid in the two-dimensional case. Find the reciprocal lattice
for the three cases given in Figure 1.15.

Square Rectangular Hexagonal

32 az 32

A 4

laql = layl laql = la,l laql = lay|

y =90° y =90° y =60°

Figure 1.15 Two-dimensional Bravais lattices.



8)

1.5 Discussion and Problems

Miller indices: We have stated that the reciprocal lattice vector mb, + nb, +
obys is perpendicular to the lattice plane given by the Miller indices (11, 1, 0).

(a) Verify that this is correct for the lattice planes drawn in Figure 1.9. (b) (*)
Show that this is true in general.
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2
Bonding in Solids

After studying the structure of crystals, we now discuss the different mechanisms
that lead to bonding between atoms such that they form these structures. We will
encounter different scenarios such as ionic, covalent, or metallic bonding. It has to
be kept in mind that these are just idealized limiting cases. Often mixed bonding
types are found, for example, a combination of metallic and covalent bonding in
the transition metals.

As in conventional chemistry, only a fraction of the electrons, the so-called
valence electrons, participate in the bonding. These are the electrons in the out-
ermost shell(s) of an atom. The electrons in the inner shells, or core electrons, are
bound so tightly to the nucleus that their energies and wave functions are hardly
influenced by the presence of other atoms in their neighborhood.

2.1
Attractive and Repulsive Forces

Two different forces must be present to establish bonding in a solid or in a mole-
cule. An attractive force is necessary for any bonding. Different types of attractive
forces are discussed in the following sections. A repulsive force, on the other hand,
is required in order to keep the atoms from getting too close to each other. A
simple expression for an interatomic potential can thus be written as

, (2.1)

where r is the distance between the atoms and n > m, that is, the repulsive part has
to prevail for short distances (sometimes, this is achieved by assuming an expo-
nential repulsion potential). Such a potential and the resulting force are shown in
Figure 2.1. The reason for the strong repulsion at short distances is the Pauli exclu-
sion principle. For a strong overlap of the electron clouds of two atoms, the wave
functions have to change in order to become orthogonal to each other, because
the Pauli principle forbids having more than two electrons in the same quantum
state. The orthogonalization costs much energy, hence the strong repulsion.

Solid State Physics: An Introduction, Second Edition. Philip Hofmann.
© 2015 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2015 by Wiley-VCH Verlag GmbH & Co. KGaA.
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Figure 2.1 (a) Typical interatomic potential ¢(r) for bonding in solids according to (2.1)
with n =6 and m = 1. (b) Resulting force, that is, —grad¢(r).

2.2

lonic Bonding

Ionic bonding involves the transfer of electrons from an electropositive atom to an
electronegative atom. The bonding force is the Coulomb attraction between the
two resulting ions. Turning the atoms into ions usually costs some energy. In the
case of NaCl, the ionization energy of Na is 5.1 eV and the electron affinity of Cl
is 3.6 eV. The net energy cost for creating a pair of ions is thus 5.1 — 3.6 = 1.5 eV.
The energy gain is given by the Coulomb interaction. For just one Na and one Cl
ion separated by the distance found in the actual crystal structure of NaCl (a =
0.28 nm), this is —e? /4meya, which amounts to 5.1 eV.

Knowing the crystal structure for NaCl, we can also calculate the electrostatic
energy gain for forming an entire crystal. Consider one Na ion at the center of the
NacCl cube in Figure 1.5. It has six Cl ions at a distance of 2 = 0.28 nm. They lead
to an electrostatic energy gain of —6e? /4reya. At a distance of a\/E, there are 12
other Na ions that give rise to an energy increase of +12¢? /47reoa\/§. Then, one
finds eight Cl ions that again decrease the energy. Eventually, this series converges
and the total energy gain is

e? e?

Ey, =-1.748 =-M . 2.2
Na dreya Y4neqa @2

M, is called the Madelung constant. It is specific for a given structure (for the
calculation of M, see Problem 2.3). For calculating the electrostatic energy gain
per mole, we have to multiply (2.2) by Avogadro’s number N,. We also have to
multiply it by a factor of 2 to account for the fact that we have both Na and Cl
ions in the solid. But at the same time, we have to divide it by 2 in order to avoid a
double counting of bonds when we evaluate the electrostatic energy gain. So in the
end, the energy gain for 1 mol of NaCl is simply —N, 1.748¢? /4re a. Note that M,
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is larger than 1 so that the energy gain for forming a solid is higher than that for
an isolated dimer of ions. This is of course obvious since your salt shaker contains
little crystals, not a molecular powder.

We can define the following contributions to the energy balance for forming
the solid. The cohesive energy is the total energy difference between any solid
and the isolated atoms it is made of. For an ionic crystal, the cohesive energy can
be calculated in a simple way. First, we need to consider how much energy it costs
to turn the atoms into ions using the ionization energy and electron affinity
of the atoms. Then, the total electrostatic energy gain for the crystal needs to be
calculated using the known crystal structure, as done above for NaCl. This energy
gain is called the lattice energy. The cohesive energy is then simply the lattice
energy minus the energy needed to turn the atoms into ions (see Problem 2.2).

It could appear as if we could calculate the cohesive energy for ionic solids
from purely classical physics, but this is not correct. Note that we have used the
experimental interatomic distance for the calculation of the lattice energy. The cal-
culation of this distance would involve quantum mechanics because it contains the
repulsive part of the potential. In fact, the presence of the repulsive potential also
causes the actual potential minimum for a given interatomic distance a to be a bit
shallower than expected from the pure Coulomb potential (by 10% or so). This can
be seen in Figure 2.1 where the potential minimum lies above the Coulomb con-
tribution to the potential at the equilibrium distance. In any event, ionic bonding
is very strong. The cohesive energy per atom is on the order of several electron
volts.

23
Covalent Bonding

Covalent bonding is based on the true sharing of electrons between different
atoms. The simplest case is that of the hydrogen molecule that we will discuss
quantitatively below. In solids, covalent bonding is often found for elements with
a roughly half-filled outer shell. A prominent example is carbon that forms solids
such as diamond, graphene, and graphite as well as complex molecules such
as Buckminster Fullerene Cg, or carbon nanotubes. The covalent bonds in dia-
mond are constructed from a linear combination of the 2s orbital and three 2p
orbitals. This results in four so-called sp® orbitals that stick out in a tetrahedral
configuration from the carbon atoms. In graphene and graphite, the 2s orbital
is combined with only two 2p orbitals, giving three sp? orbitals, all in one plane
and separated by an angle of 120°, and one p orbital oriented perpendicular
to this plane. This linear combination of orbitals already reveals an important
characteristic for the covalent bonding: It is highly directional. In addition to this,
it is also very stable and the cohesive energies for covalently bonded solids are
typically several electron volts per atom.

An example for covalent bonding is the hydrogen molecule H, for which we
will sketch a solution here. We go into some detail, as much of this will be useful
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for the later discussion of magnetism in Chapter 8. However, understanding these
details is not crucial at this point, and the reader could decide to jump to Section
2.4 instead and return here later.

As a starting point, take two hydrogen atoms with their nuclei at R, and Rz and
we call [R; —R,| = R. We do, of course, know the solution of the Schrodinger
equation for each of the atoms. Let the ground-state wave functions be ¢, and
¢p, respectively. The Hamilton operator for the hydrogen molecule can be
written as

_ _hZV% _ hzvg eZ {l N 1
2m, 2m,  4mwey LR |r; — 1y
1 1 1 1 }
- - - - : (2.3)
IRy — 1] Rp — 1y IRy — 1y IRg — 1|

where r; and r, are the coordinates of the electrons belonging to the A and the
B nucleus, respectively. The first two terms refer to the kinetic energy of the two
electrons. The operators V2 and V act only on the coordinates r; and r,, respec-
tively. The electrostatic term contains the repulsion between the two nuclei and
the repulsion between the two electrons, as well as the attraction between each
electron and each nucleus.

The solution of this problem is not simple. It would be greatly simplified by
removing the electrostatic interaction between the two electrons because then
the Hamiltonian could be written as the sum of two parts, one for each electron
(the fixed nuclei would merely contribute with an energy offset). If the last two
terms in (2.3) are also removed, the problem could be solved by a product of the
two wave functions that are solutions to the two individual atomic Hamiltonians.
The two-particle wave function would look like ¢(r;, ;) = ¢, (r1)p5(T,).

Actually, this is not quite right because such a wave function is not in accordance
with the Pauli principle. Since the electrons are fermions, the total wave function
must be antisymmetric with respect to particle exchange and the simple product
wave function does not fulfill this requirement. The total wave function consists of
a spatial part and a spin part and, therefore, there are two possibilities for forming
an antisymmetric wave function. We can either choose a symmetric spatial part
and an antisymmetric spin part or vice versa. This is achieved by constructing the
spatial wave function of the form

Tu(rl’ ry) < ¢, (r))Pp(ry) + ¢y (ry)dp(r;) (2.4)
TTT(l‘l, ry) x @, (r)dp(ry) — hu(ry))Pp(ry), (2.5)

The plus sign in (2.4) returns a symmetric spatial wave function that we can com-
bine with an antisymmetric spin wave function with the total spin equal to zero
(the so-called singlet state); the minus in (2.5) results in an antisymmetric spatial
wave function for a symmetric spin wave function with the total spin equal to 1
(the so-called triplet state).

The antisymmetric wave function (2.5) vanishes if r; = r,, that is, the two elec-
trons cannot be at the same place simultaneously. This leads to a depletion of the
electron density between the nuclei and hence to an antibonding state. For the
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Figure 2.2 The energy changes AE;; and AE,, for the formation of the hydrogen
molecule. The dashed lines represent the approximation for long distances. The two
insets show gray scale images of the corresponding electron probability density.

symmetric case, on the other hand, the electrons have opposite spins and can be
at the same place, which leads to a charge accumulation between the nuclei and
hence to a bonding state (see Figure 2.2).

An approximate way to calculate the eigenvalues of (2.3) was suggested by
W. Heitler and F. London in 1927. The idea is to use the known single-particle 1s
wave functions for atomic hydrogen for ¢, and ¢ to form a two-electron wave
function ¥(r,,r,), which is given by either (2.4) or (2.5). These wave functions
might not be entirely correct because the atomic wave functions will certainly
be modified by the presence of the other atom. However, even if they are only
approximately correct, we can obtain the molecular energy levels as

[ W (ry, 1)) HY(r,, r))dr, dr,

- : 26
/ W (rl ’ I'Z)‘P(rl, r2)dr1dl‘2 ( )

According to the variational principle in quantum mechanics, the resulting energy
will be higher than the correct ground-state energy but it will approach it for a
good choice of the trial wave functions.
The calculation is quite lengthy and shall not be given here.” The resulting
ground-state energies for the singlet and triplet states can be written as
Esinglet

E,

= 2E, + AE,,, 2.7)
= 2E, + AE,,. (2.8)

riplet

1) For the full calculation, see online note on www.philiphofmann.net.
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E, is the ground-state energy for one hydrogen atom that appears here twice
because we start with two atoms. The energies AE;; and AE;, are also shown
in Figure 2.2. AE, is always larger than zero and does not lead to any chemical
bonding. AE; |, on the other hand, shows a minimum below zero at approximately
1.5 times the Bohr radius a,,. This is the bonding state.

For long distances between the nuclei, (2.7) and (2.8) can be rewritten to give

E=2E,+C=+X, (2.9)

where the +(—) sign is applied for the singlet (triplet) state. Now the energy change
upon bonding has two parts, one that does depend on the relative spin orientations
of the electrons (+X) and one that does not (C). The energy difference between the
two states is then given by 2X, where X is called the exchange energy. In the case
of the hydrogen molecule, the exchange energy is always negative. Equation (2.9)
is a remarkable result because it means that the energy of the system depends on
the relative orientation of the spins, even though these spins did not actually enter
the Schrodinger equation.

We will encounter similar concepts in the chapter about magnetism where the
underlying principle for magnetic ordering is very similar to what we see here:
The total energy of a system of electrons depends on their relative spin directions
through the exchange energy and, therefore, a particular ordered spin configura-
tion is favored. For two electrons, the “magnetic” character is purely given by the
sign of X. For a negative X, the coupling with two opposite spins is favorable (the
“antiferromagnetic” case), whereas a positive X would lead to a situation where
two parallel spins give the lowest energy (the “ferromagnetic” case).

24
Metallic Bonding

In metals, the valence electrons are removed from the ion cores, but in contrast
to ionic solids, there are no electronegative ions to bind them. Therefore, they
are free to migrate between the ion cores. These delocalized valence electrons are
involved in the conduction of electricity and are therefore often called conduction
electrons. One can expect metals to form from elements for which the energy cost
of removing outer electrons is not too big. Nevertheless, this removal always costs
some energy that has to be more than compensated by the bonding. Explaining the
energy gain from the bonding in an intuitive picture is difficult, but we can at least
try to make it plausible. The ultimate reason must be some sort of energy lowering.

One energy contribution that is lowered is the kinetic energy of the conduc-
tion electrons. Consider the kinetic energy contribution in a Hamiltonian, T =
—h2V?2/2m,. A matrix element (¥|T|¥) measures the kinetic energy of a particle
TV is proportional to the second spatial derivative of the wave function, that is,
the curvature. For an electron that is localized to an atom, the curvature of the
wave function is much higher than for a nearly free electron in a metal and this is
where the energy gain comes from.
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The other contribution to the electron energy is the potential energy. One
should think that the average electrostatic potential of any single electron in a
solid is almost zero because there are (almost) as many other electrons as there
are ions with the same amount of charge. But this turns out to be wrong. In fact,
the electrons see an attractive potential. The reason is again partly due to the Pauli
principle that, loosely speaking, does not allow two electrons with the same spin
direction to be at the same place (see (2.5)) and, therefore, the electrons go “out
of each other’s way” In addition to this, there is also a direct Coulomb interaction
between the electrons, which makes them avoid each other. We will discuss this
in more detail when dealing with magnetism.

We can also understand why metals prefer close-packed structures. First of all,
the metallic bonding does not have any directional preference. Second, close-
packed structures secure the highest possible overlap between the valence orbi-
tals of the atoms, maximizing the delocalization of the electrons and thereby the
kinetic energy gain. The structures also maximize the number of nearest neighbors
for any given atom, again giving rise to strongly delocalized states.

Typically, metallic bonding is not as strong as covalent or ionic bonding but it
amounts to a few electron volts per atom. Stronger bonding is found in transition
metals, that is, metals with both s and p conduction electrons and a partially filled
d shell. The explanation for this is that we have a mixed bonding. The s and p elec-
trons turn into delocalized metallic conduction electrons, whereas the d electrons
create much more localized, covalent-type bonds.

25
Hydrogen Bonding

Hydrogen atoms have only one electron and can form one covalent bond. If the
bond is formed with a very electronegative atom (like F or O), the electron is
mostly located close to that atom and the hydrogen nucleus represents an isolated
positive (partial) charge. This can lead to a considerable charge density because
of the small size, and it can therefore attract negative (partial) charges in other
molecules to form an electrostatic bond. This type of bonding is called hydro-
gen bonding. It is usually quite weak but in some cases, the cohesive energy can
be up to several hundred meV per atom. It is responsible for the intermolecular
attraction in water ice and for the bonding of the double helix in DNA.

2.6
van der Waals Bonding

The term van der Waals bonding refers to a weak and purely quantum mechanical
effect. The electron cloud around an atom or a molecule has no static charge
distribution but one governed by quantum mechanical fluctuations. A simple
atom with a closed shell can thus be viewed as a fluctuating dipole. The field
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of this dipole can polarize other atoms nearby, and the interaction of the two
neighboring dipoles reduces the total energy, that is, it can lead to bonding. This
type of interaction is present in every solid but it is much weaker than ionic,
covalent, or metallic bonding. Typical binding energies per atom are in the meV
range and, therefore, van der Waals bonding is only observable for solids that do
not show other bonding behavior, for example, noble gases. Pure van der Waals
crystals can only exist at very low temperatures.

2.7
Further Reading

Several of the bonding types discussed here are identical to those relevant for the
formation of molecules (with the exception of metallic bonding). They are there-
fore discussed in great depth in the literature for chemistry and molecular physics.
A good overview on bonding in solids is given in

+ Ibach, H. and Liith, H. (2009) Solid State Physics, 4th edn, Springer.
« Kittel, C. (2005) Introduction to Solid State Physics, 8th edn, John Wiley & Sons,
Inc.

2.8
Discussion and Problems

Discussion

1) Why is a typical interatomic potential, such as in Figure 2.1, so asymmetric?

2) Which elements are likely to form crystals through ionic bonding?

3) What kind of forces are important for ionic bonding?

4) How does the lattice energy in an ionic crystal depend on the interatomic
distance?

5) Explain the difference between cohesive energy and lattice energy.

6) Which elements are likely to form metals?

7) Where does the energy gain in metallic bonding come from?

8) What is the difference between a simple metal and a transition metal (defini-
tion and typical physical properties)?

9) Why is van der Waals bonding much weaker than most other bonding types?

Problems

1) Metallic bonding: The most important contribution to the stability gained by
metallic bonding is the lowering of kinetic energy. To see this, consider an
electron in a one-dimensional box. The potential shall be zero and infinite
inside and outside the box, respectively. Consider first a box with a length
corresponding to the size of an atom, say, twice the Bohr radius, and calculate
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Figure 2.3 One-dimensional chain of ions.

3)

4)

the lowest energy eigenvalue. Give the result in electron volts. Clearly, this
energy is only kinetic energy. By how much is the kinetic energy lowered when
you increase the size of the box by a factor of 10, so that it is roughly the size
of the interatomic spacing in a crystal?

Ionic bonding: Calculate the potential energy for an ion in a sodium chloride
crystal (the interatomic distance a is 2.81 A) in units of electron volts and
joules. Neglect the influence of the repulsive potential. From this, calculate the
lattice energy of sodium chloride and compare the result to the experimental
value of 776 k] mol~!. Also, calculate the cohesive energy in the same units.
Ionic bonding: The Madelung constant for a three-dimensional crystal of NaCl
was presented in Section 2.2. (a) Derive the Madelung constant analytically
for a one-dimensional chain of NaCl, as shown in Figure 2.3. (b) (*) Calculate
the Madelung constant numerically for a one-dimensional, two-dimensional,
and three-dimensional NaCl lattice and plot the result as a function of the
number of neighbor “shells” included in the computation. Compare the result
for the one-dimensional case to the analytical value from (a).

van der Waals force: Show that the bonding energy due to the van der Waals
force between two atoms depends on their distance r as #~°. Hint: The van der
Waals force is caused by the mutual interaction of fluctuating dipoles. Sup-
pose that one atom forms a spontaneous dipole moment at some time. This
can be modeled as two point charges, separated by a distance d. This electric
dipole gives rise to an electric field £(r) and the other atom is polarized in
this field, such that a dipole moment p is induced in this second atom. p is
proportional to the field, that is, p = a&€(r) (see (9.4)). The potential energy
of an electric dipole in an electric field is U = =€ - p = —&(r) - a&(r). There-
fore, all you have to show is that the electric field caused by the dipole in the
first atom decays as r~2 for r > d.
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3
Mechanical Properties

In this chapter, we discuss the macroscopic behavior of a solid that is subject to
mechanical stress, and we will try to explain it in a microscopic picture. Our dis-
cussion is restricted to isotropic solids, that is, solids for which the direction of
the applied mechanical stress with respect to the crystal lattice is not important.

We start out with some fundamental definitions that are all illustrated in
Figure 3.1. The applied stress on a solid ¢ is defined as the force F per area A
perpendicular to the direction of the applied force (Figure 3.1a). Depending on
the force direction, one can distinguish between tensile and compressive stress.
The stress has the same dimension as a pressure, that is, Nm~2 or Pa. The solid
responds to the stress by a deformation called strain e. In the case of the tensile
stress applied in Figure 3.1a, the response is a length extension A/, in the direction
of the force. The strain is defined as the relative length extension e = A/, /[;. It
is therefore dimensionless, but in technical texts sometimes the unit meter per
meter is found. The strain A/, /[, in Figure 3.1a is frequently accompanied by
length changes in the two other directions Al, and Al;. In most cases, the solid
contracts in these directions. We shall discuss this in more detail below.

A shear stress 7 is defined in a similar way as the applied force F per area A, but
now the force is applied tangentially to the area (Figure 3.1b). Again, the material
deforms as a consequence of the shear stress. The deformation is described by the
angle a shown in the figure. The last situation illustrated in Figure 3.1c is the expo-
sure of the solid to hydrostatic pressure from all sides. This leads to a reduction of
the volume. There are other mechanical deformations such as torsion, and these
lead to similar definitions, but we do not discuss them here.

If we consider only the relation between stress and strain, the typical response
of a solid is illustrated in Figure 3.2. It shows the resulting stress as a function of
applied strain. This type of plot can seem rather odd at first. If you think of the
strain as a consequence of the applied stress, you might be tempted to draw the
curve with swapped axes. For the interpretation of the curve as it is displayed, one
should adopt another point of view: The solid’s length is increased and the stress
that is “pulling back” is measured for every extension, very much like the force
upon the extension of a mechanical spring.

Different regions in the curve can be distinguished. For a very small strain, typi-
cally much smaller than 1%, the deformation is elastic, that is, the solid goes back

Solid State Physics: An Introduction, Second Edition. Philip Hofmann.
© 2015 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2015 by Wiley-VCH Verlag GmbH & Co. KGaA.
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toits initial shape once the stress is released. In this region, the stress is also a linear
function of the strain and this will allow the definition of various elastic constants
in the next section. Beyond a certain yield strain ¢, or yield stress o, plastic
deformation sets in. This means that the deformation is permanent; once the stress
is released, the solid does not return to its original shape. It only contracts slightly.
The curve’s shape in the region of plastic deformation will be discussed in a later
section. Eventually, the strain becomes so high that the material fractures. This,
naturally, defines the end of the stress/strain curve.

While the region of elastic deformation is usually quite small, the amount of
possible plastic deformation can vary widely. Some materials, such as glass or cast
iron, will fracture immediately at the end point of the elastic limit. Such materials
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are called brittle. Materials that do show plastic deformation before they fracture
are called ductile. Most metals are ductile.

3.1
Elastic Deformation

The elastic regime of deformation is small, but it is of high technical importance
because most applications require the deformation of materials to remain elastic.
Apart from exploring the limits of elastic deformation, an interesting question
is how strongly the material resists such a deformation. This is described by the
macroscopic elastic constants that we shall introduce now. We will also see that
these constants can be connected to the picture of interatomic bonding that we
have encountered earlier.

3.1.1
Macroscopic Picture

3.1.1.1 Elastic Constants
The linear behavior for the small deformations in the elastic regime leads to a
few definitions of macroscopic elastic constants. The relation between stress and
strain is given by Young’s modulus Y:
o F I

V=T A .
Young’s modulus has therefore the same unit as the stress, that is, Pascal. It is the
slope of the initial stress/strain curve in Figure 3.2. The values of Young’s modulus
are very high, typically in the gigapascal region.

The possibility to define Young’s modulus is equivalent to the validity of Hooke’s
law that is commonly used to describe a “spring-like” force response. Suppose you
extend a spring by some small amount. It is going to respond by a force that is
proportional to the extension. This is equivalent to

o =Ye. (32)

Multiplication by A gives

F=2u (33)
so that the usual spring constant is YA/I. The advantage of using Y instead of the
spring constant is that it depends only on the material, not on the geometry.

The shearing of a solid can also be described by an elastic constant. The modu-
lus of rigidity G is defined by

G=1. (3.4)
o
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Finally, the exposure of the solid to hydrostatic pressure leads to the definition of
the bulk modulus K via
v

AV’
where p = F/A is the pressure and V the volume. The minus sign is introduced in
order to obtain a positive bulk modulus for a decrease in volume. Note that both
G and K have the unit Pascal, just like Y.

K=-p (3.5)

3.1.1.2 Poisson’s Ratio
When mechanical stress is applied to a solid, the strain in the direction of the
stress is not the only consequence. In addition to this, the solid’s dimensions may
change in the directions perpendicular to the stress, as illustrated in Figure 3.1a.
This change is described by Poisson’s ratio v, which is defined as

Lh _8h_ _Bh_ . (36)

L Ly L

As we discuss only isotropic solids, the fractional changes Al, /I, and Al;/l; are
the same. The minus sign in the definition assures that v is positive in the “normal”
situation where the solid contracts sideways upon tensile stress. However, there
are some exotic materials with a negative Poisson’s ratio, for example, special types
of molecular foam that expand sideways upon being exposed to tensile stress and
which contract when subject to compressive stress.

Poisson’s ratio cannot take all possible values. It is limited to a range between
—1 and +0.5. The lower limit is not so relevant as materials with a negative Pois-
son’s ratio are rather rare. The upper limit is caused by the fact that a solid cannot
decrease its volume when we pull on one side and that it cannot increase its vol-
ume when we press it from one side. To calculate the upper limit of v, consider
the volume of the solid after the application of stress

(I, + AL, + AL) (U + Al). (3.7)
For small changes, we can neglect higher order terms in the A/’s and this becomes
Ll + AL + [ ALL + 1 1AL (3.8)

So the change in volume is

Al Al
Ahbl+ L ALl + hhAL = MLl + 1 =v—2h )b +hh( - vl
1

1
= (1 — 2v)AL Ly, (3.9)

For a positive Al;, this must not be negative, which can only be achieved for values
of v smaller than or equal to 0.5.

Typical values of Poisson’s ratio range between 0.2 and 0.4 for most materials.
Rubber has a v very close to 0.5, that is, it is an almost ideal noncompressible solid.
Cork has v ~ 0, which is advantageous when you try to put a wine cork back into
the bottle.
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3.1.1.3 Relation between Elastic Constants

In a broader mathematical context, all the macroscopic constants can be derived
from a few fundamental elastic properties. Not surprisingly, they are therefore
related to each other. For example,”

Y
T 21 +v)

A similar relation exists between the bulk modulus and Young’s modulus (3.17),
and Problem 3.1 enables us to understand the origin of this relation. The close
connection between different elastic properties has an advantage for our task
to explain the macroscopic behavior in a microscopic picture. We will, in most
cases, restrict ourselves to explaining one type of mechanical property and we
are allowed to do so without great loss of generality. In any case, we see from
(3.10) and (3.17) that for a given material with v in the “normal” range, the elastic
constants Y, G, and K have the same order of magnitude.

(3.10)

3.1.2
Microscopic Picture

The elastic deformation of a solid can be explained in terms of changing inter-
atomic distances. According to Figure 2.1, the equilibrium distance between two
atoms corresponds to the minimum in the interatomic potential ¢» and the force at
this distance, which is just the negative spatial derivative of the potential, is zero.
Upon the application of a compressive stress, the distance between the atoms is
decreased. This results in a force that presses the atoms away from each other.
For tensile stress, it is the other way round. Once the stress is released, the atoms
return to their equilibrium distance.

This explains why the behavior is elastic, but why is it linear? A linear force for
distance changes close to the equilibrium can readily be seen in Figure 2.1b. More
formally, we can expand the potential for distances close to the equilibrium x = a
as a Taylor series:

¢T)

¢ = @)+ LD - )+"”)

¢l//

(x—a)’ + @—aﬁ ) (3.11)

The first term is simply an offset of the absolute energy scale and therefore irrel-
evant here. The second term is zero because the derivative of ¢ vanishes at the
equilibrium distance. The third term is responsible for the elastic behavior. It states
that the potential close to the equilibrium is proportional to the square of the dis-
tance change, that is, the force depends linearly on the distance change. Moreover,
it is the curvature of the potential that gives rise to the interatomic force constant.
The fourth and higher order terms are usually neglected.

For distances (x — a) that are sufficiently large, terminating the Taylor series
after the third term may become imprecise, and one would expect to see nonlinear
elastic deformation. In this case, the elastic constants would depend on the actual

1) For a derivation of this equation, see online note on www.philiphofmann.net.

37


http://www.philiphofmann.net

38

3 Mechanical Properties

change of the atomic separation, for example, Young’s modulus would depend on
the applied stress. It turns out, however, that this is very rarely observed. For most
solids, the plastic deformation sets in for a strain of less than 1%, and this is before
higher order terms in (3.11) become important.

The interatomic force constant that is calculated from the Taylor series (3.11)
also allows for harmonic vibrations of the atoms. Indeed, we will later see that it is
possible to relate the vibrational properties of a solid to its elastic properties (see
Section 4.1.5.2).

We conclude our treatment of the elastic regime by looking at typical values of
Young’s modulus in Figure 3.3. As stated earlier, Y is very high for most materials,
on the order of many gigapascal. It is also apparent how different bonding types
lead to different values of Young’s modulus. Metals and alloys are all in the range
between 15 and 300 GPa. As a tendency, transition metals have a higher Y than
simple metals, consistent with a stronger bonding due to localized d electrons.
W and Mo have particularly strong bonding, something that leads to a high Y and
high melting points, as we shall see later. Solids with covalent bonding span a much
wider range. The sp? and sp® bonds in graphite and diamond lead to particular
strength, but note that graphite also appears at the lower end of the range. This
is because we have neglected the possibility of anisotropy in solids. Graphite is
strongly bonded parallel to the sp?-linked planes but very weakly perpendicular to
these planes. Not surprisingly, graphene, the single layer of graphite, has the same
Young’s modulus as graphite in the two-dimensional plane. Polymers show low
values of Y. The reason is that a reversible length extension in a polymer does not
have to be achieved by extending interatomic bonds. It is sufficient to change the
angles of the many bonds in a polymer, that is, to “unfold” it. Composite materials
and fibers cover a wide range of Y, from carbon nanotubes that have an extremely
high Y, just like graphene (they can be viewed as rolled-up graphene sheets), to
wood perpendicular to the grains that has Y < 1 GPa.

Note that Young’s modulus does not reflect the same physical quantity as the
cohesive energy discussed in Chapter 2. The cohesive energy measures how deep
the potential minimum in Figure 2.1 is. Young’s modulus, on the other hand, cor-
responds to the curvature of the potential around the minimum. Obviously, these
two are related as the properties in Figure 3.3 correspond well to what we have
discussed in connection with the cohesive energies. The covalent bonds in dia-
mond, for example, give rise to a high cohesive energy, and at the same time, they
strongly resist small changes in the bonding distance.

3.2
Plastic Deformation

Now we address the plastic deformation part of the stress/strain curve. We will be
able to establish a link to microscopic models, but a detailed understanding of all
phenomena cannot be accomplished on the basis of the perfect crystal. It will be
necessary to introduce different types of imperfections, such as point defects and
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Figure 3.3 Young's modulus for different materials. The values are merely a guide, as
strong variations are possible.

dislocations. Such imperfections will also be important in our later treatment of
electrical resistance.

3.2.1
Estimate of the Yield Stress

The most important practical question for many applications of materials is where
plastic deformation starts to set in. Can we estimate the yield stress or yield stra