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Preface

The aim of this book is to provide an overview of mathematical concepts
and their relationships not only for graduate students in the fields of Opera-
tions Research, Management Science and Industrial Engineering but also for
practitioners and academicians who seek to refresh their mathematical skills.

The contents, which could broadly be divided into two as linear algebra
and real analysis, may also be more specifically categorized as linear algebra,
convex analysis, linear programming, real and functional analysis. The book
has been designed to include fourteen chapters so that it might assist a 14—
week graduate course, one chapter to be covered each week.

The introductory chapter aims to introduce or review the relationship
between Operations Research and mathematics, to offer a view of mathe-
matics as a language and to expose the reader to the art of proof-making.
The chapters in Part 1, linear algebra, aim to provide input on preliminary
linear algebra, orthogonality, eigen values and vectors, positive definiteness,
condition numbers, convex sets and functions, linear programming and du-
ality theory. The chapters in Part 2, real analysis, aim to raise awareness of
number systems, basic topology, continuity, differentiation, power series and
special functions, and Laplace and z-transforms.

The book has been written with an approach that aims to create a snowball
effect. To this end, each chapter has been designed so that it adds to what the
reader has gained insight into in previous chapters, and thus leads the reader
to the broader picture while helping establish connections between concepts.

The chapters have been designed in a reference book style to offer a con-
cise review of related mathematical concepts embedded in small examples.
The remarks in each section aim to set and establish the relationship between
concepts, to highlight the importance of previously discussed ones or those
currently under discussion, and to occasionally help relate the concepts under
scrutiny to Operations Research and engineering applications. The problems
at the end of each chapter have been designed not merely as simple exercises
requiring little time and effort for solving but rather as in—depth problem
solving tasks requiring thorough mastery of almost all of the concepts pro-
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vided within that chapter. Various Operations Research applications from de-
terministic (continuous, discrete, static, dynamic) modeling, combinatorics,
regression, optimization, graph theory, solution of equation systems as well
as geometric and conceptual visualization of abstract mathematical concepts
have been included.

As opposed to supplying the readers with a reference list or bibliography
at the end of the book, active web resources have been provided at the end
of each chapter. The rationale behind this is that despite the volatility of
Internet sources, which has recently proven to be less so with the necessary
solid maintenance being ensured, the availability of web references will enable
the ambitious reader to access materials for further study without delay at
the end of each chapter. It will also enable the author to keep this list of web
materials updated to exclude those that can no longer be accessed and to
include new ones after screening relevant web sites periodically.

I would like to acknowledge all those who have contributed to the comple-
tion and publication of this book. Firstly, I would like to extend my gratitude
to Prof. Fred Hillier for agreeing to add this book to his series. I am also
indebted to Gary Folven, Senior Editor at Springer, for his speedy processing
and encouragement,.

I owe a great deal to my professors at Bilkent University, Mefharet Ko-
catepe, Erol Sezer and my Ph.D. advisor Mustafa Akgiil, for their contri-
butions to my development. Without their impact, this book could never
have materialized. I would also like to extend my heartfelt thanks to Prof.
Caglar Giiven and Prof. Halim Dogrusoz from Middle East Technical Univer-
sity for the insight that they provided as regards OR methodology, to Prof.
Murat Koksalan for his encouragement and guidance, and to Prof. Nur Evin
Ozdemirel for her mentoring and friendship.

The contributions of my graduate students over the years it took to com-
plete this book are undeniable. I thank them for their continuous feedback,
invaluable comments and endless support. My special thanks go to Dr. Tevhide
Altekin, former student current colleague, for sharing with me her view of the
course content and conduct as well as for her suggestions as to the presentation
of the material within the book.

Last but not least, I am grateful to my family, my parents in particular, for
their continuous encouragement and support. My final words of appreciation
go to my local editor, my wife Sibel, for her faith in what started out as a
far-fetched project, and most importantly, for her faith in me.

Ankara, Turkey,

June 2006 Levent Kandiller
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Introduction

Operations Research, in a narrow sense, is the application of scientific models,
especially mathematical and statistical ones, to decision making problems.
The present course material is devoted to parts of mathematics that are used
in Operations Research.

1.1 Mathematics and OR

In order to clarify the understanding of the relation between two disciplines,
let us examine Figure 1.1. The scientific inquiry has two aims:

e cognitive: knowing for the sake of knowing
o instrumental: knowing for the sake of doing

If A is Bis a proposition, and if B belongs to A, the proposition is analytic.
It can be validated logically. All analytic propositions are a priori. They are
tautologies like “all husbands are married”. If Bis outside of A, the proposition
is synthetic and cannot be validated logically. It can be a posteriori like “all
African- Americans have dark skin” and can be validated empirically, but there
are difficulties in establishing necessity and generalizability like “Fenerbahge
beats Galatasaray”.

Mathematics is purely analytical and serves cognitive inquiry. Operations
Research is (should be) instrumental, hence closely related to engineering,
management sciences and social sciences. However, like scientific theories, Op-
erations Research

s refers to idealized models of the world,
e employs theoretical concepts,
e provides explanations and predictions using empirical knowledge.

The purpose of this material is to review the related mathematical knowledge
that will be used in graduate courses and research as well as to equip the
student with the above three tools of Operations Research.
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Fig. 1.1. The scientific inquiry.

1.2 Mathematics as a language

The main objective of mathematics is to state certainty. Hence, the main role
of a mathematician is to communicate truths but usually in its own language.
One example is

VieS, 3jeT 3ilj = VjeT, Fiel 3ilj <= SIT.

That is, if for all i in S there exists an element j of T such that i is orthogonal
to j then for all elements j of T there is an element j of S such that j is
orthogonal to i; if and only if, S is orthogonal to T.

To help the reader appreciate the expressive power of modern mathemat-
ical language, and as a tribute to those who achieved so much without it,
a few samples of (original but translated) formulation of theorems and their
equivalents have been collected below.

(a+0b)* =a%+b* +2ab

If a straight line be cut at random, the square on the whole is equal to the
squares on the segments and twice the rectangle contained by the segments
(Euclid, Elements, 1I.4, 300B.C.).

1+2+4---+2" is prime = 2"(1+ 2+ --- + 2™) is perfect
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If as many numbers as we please beginning from a unit be set out continu-
ously in double proportion, until the sum of all becomes prime, and if the sum
multiplied into the last make some number, the product will be perfect (Euclid,
Elements, 1X.36, 300B.C.).

271'27"-1" — 2

The area of any circle is equal to a right-angled triangle in which one of

the sides about the right angle is equal to the radius, and the other to the
circumference, of the circle (Archimedes, Measurement of a Circle, 225B.C.).

A=

S = 4mr?

The surface of any sphere is equal four times the greatest circle in it (Archimedes,
On the Sphere and the Cylinder, 220B.C.).

_3n+ n2+m3 3 n+ n2+m3
=V2 YRR 2 14727

Rule to solve 3 + mx = n: Cube one-third the coefficient of x; add to it the
square of one-half the constant of the equation; and take the square root of
the whole. You will duplicate this, and to one of the two you add one-half the
number you have already squared and from the other you subtract one-half the
same... Then, subtracting the cube root of the first from the cube root of the
second, the remainder which is left is the value of z (Gerolamo Cardano, Ars
Magna, 1545).

However, the language of mathematics does not consist of formulas alone.
The definitions and terms are verbalized often acquiring a meaning different
from the customary one. In this section, the basic grammar of mathematical
language is presented.

Definition 1.2.1 Definition is a statement that is agreed on by all parties
concerned. They exist because of mathematical concepts that occur repeatedly.

Example 1.2.2 A prime number is a natural integer which can only be (in-
teger) divided by itself and one without any remainder.

Proposition 1.2.3 A Proposition or Fact is a true statement of interest that
1s being attempted to be proven.

Here are some examples:

Always true Two different lines in a plane are either parallel or they intersect
at exactly one point.

Always false —1 = 0.

Sometimes true 2z =1, 5y <1, 2 > 0 and x,y, 2z € R.
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Needs proof! There is an angle t such that cost = t.

Proof. Proofs should not contain ambiguity. However, one needs creativity, in-
tuition, experience and luck. The basic guidelines of proof making is tutored
in the next section. Proofs end either with Q.E.D. (“Quod Erat Demonstran-
dum”), means “which was to be demonstrated” or a square such as the one
here. O

Theorem 1.2.4 Theorems are important propositions.

Lemma 1.2.5 Lemma is used for preliminary propositions that are to be used
in the proof of a theorem.

Corollary 1.2.6 Corollary is a proposition that follows almost immediately
as a result of knowing that the most recent theorem is true.

Axiom 1.2.7 Azioms are certain propositions that are accepted without for-
mal proof.

Example 1.2.8 The shortest distance between two points is a straight line.

Conjecture 1.2.9 Conjectures are propositions that are to date neither proven
nor disproved.

Remark 1.2.10 A remark is an important observation.

There are also quantifiers:

3 there is/are, exists/exist

V for all, for each, for every

€ in, element of, member of, choose
5 such that, that is

: member definition

An example to the use of these delimiters is
VyeS={z€Z" :zisodd}, y* €S,

that is the square of every positive odd number is also odd.

Let us concentrate on A = B, i.e. if A is true, then B is true. This
statement is the main structure of every element of a proposition family which
is to be proven. Here, statement A is known as a hypothesis whereas B is
termed as a conclusion. The operation table for this logical statement is given
in Table 1.1. This statement is incorrect if A is true and B is false. Hence,

the main aim of making proofs is to detect this case or to show that this case
cannot happen.
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Table 1.1. Operation table for A = B

A B |[A=B
True|True| True
True|False| False
False| True| True
False|False] True

Formally speaking, A = B means

whenever A is true, B must also be true.
. B follows from A.

. B is a necessary consequence of A.

. A is sufficient for B.

. A only if B.

There are related statements to our primal assertion A = B:

[

B = A: converse
A = B: inverse
B = A: contrapositive

where A is negation (complement) of A.

1.3 The art of making proofs

This section is based on guidelines of how to read and make proofs. Qur
pattern here is once again A = B. We are going to start with the forward-
backward method. After discussing the special cases defined in A or B in terms
of quantifiers, we will see proof by Contradiction, in particular contraposition.
Finally, we will investigate uniqueness proofs and theorem of alternatives.

1.3.1 Forward—-Backward method

If the statement A = B is proven by showing that B is true after assuming
A is true (A — B), the method is called full forward technique. Conversely, if
we first assume that B is true and try to prove that A is true (4 + B), this
is the full backward method.

Proposition 1.3.1 If the right triangle XYZ with sides z, y and hypotenuse

of length 2 has an area of % (A), then the triangle XYZ is isosceles (B). See
Figure 1.2.



6 1 Introduction

Y
Z X

Fig. 1.2. Proposition 1.3.1

Proof. Backward: o

Bz=y(z-y=0)& YXZ=XYZ (triangle is equilateral)
Forward: R

A—(i) Area: 1zy =%

A-—(ii) Pythagorean Theorem: z2 + y* = z

& %xy:mz—zyj sz?-2ry+y2 =0 (z-yP?=0z—-y=0. 0O

2

The above proof is a good example of how forward-backward combination
can be used. There are special cases defined by the forms of A or B with the
use of quantifiers. The first three out of four cases are based on conditions on
statement B and the last one arises when A has a special form.

Construction (3)

If there is an object (3z € N) with a certain property(z > 2) such that
something happens (22 — 5z + 6 = 0), this is a construction. Our objective
here is to first construct the object so that it possesses the certain property
and then to show that something happens.

Selection (V)

If something (3z € R 3 2* = y) happens for every object (Vy € R,) with
a certain property (y > 0), this is a selection. Our objective here is to first
make a list (set) of all objects in which something happens (' = {y € R, :
Jz € R 5 2 = y}) and show that this set is equivalent to the set whose
elements has the property (S = R, ). In order to show an equivalence of two
sets (S = T'), one usually has to show (§ C T') and (T C S) by choosing a
generic element in one set and proving that it is in the other set, and vice
versa.

Specialization

If A is of the form “for all objects with a certain property such that some-
thing happens”, then the method of specialization can be used. Without loss
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of generality, we can fix an object with the property. If we can show that
something happens for this particular object, we can generalize the result for
all the objects with the same property.

Proposition 1.3.2 Let T C S C R, and u be an upper bound for S; i.e.
vz € S, z < u. Then, u is an upper bound for T.

Proof. Let u be an upper bound for S, so Vz € S, < u. Take any element
yof . TCS=y€S=y<u Thus, Vy € T, y < u. Then, u is an upper
bound for T. 0O

Uniqueness

When statement B has the word unique in it, the proposition is more re-
strictive. We should first show the existence then prove the uniqueness. The
standard way of showing uniqueness is to assume two different objects with
the property and to conclude that they are the same.

Proposition 1.3.3
VreR,, Juniquez e R 23 =r.

Proof. Existence: Let y =13, y € R.

Uniqueness: Let z,y e Roz # y, 22 =r =9 = 22 -9y =0 =
(z—y)(@®+zy+9%) =0 = (22 +zy+y?) =0, since z # y. The roots of
the last equation (if we take y as parameter and solve for ) are

yE FE _ —yx /O
2 - 2 ‘

Hence, y =0 = y® = 0 = r ¢ R,.. Contradiction. Thus, z = y. O

1.3.2 Induction Method

Proofs of the form “for every integer n > 1, something happens” is made
by induction. Formally speaking, induction is used when B is true for each
integer beginning with an initial one (ng). If the base case (n = ng) is true,
it is assumed that something happens for a generic intermediate case (n =
nk). Consequently, the following case (n = nyy;) is shown, usually using the
properties of the induction hypothesis (n = ny). In some instances, one may
relate any previous case (n;, 0 <[ < k). Let us give the following example.

Theorem 1.3.4
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Proof. Base:n=1= li?. N
Hypothesis: n = j, > %1 _(1;_12 |
Conclusion: n = j + 1, ZJ“ k= ]+1)2(]+22‘
j G+1)(G+2)
ZJ-H J+1) + Zk 1k = (J+1)+J(]+1) — (]+1) [1+ 2] — J+1)2(]+ )
Thus, 1 + 2+ +n=3, k= n§n2+1 0

1.3.3 Contradiction Method

When we examine the operation table for A => B in Table 1.2, we immediately
conclude that the only circumstance under which A = B is not correct is when
A is true and B is false.

Contradiction

Proof by Contradiction assumes the condition (A is true B is false) and tries
to reach a legitimate condition in which this cannot happen. Thus, the only
way A = B being incorrect is ruled out. Therefore, A = B is correct. This
proof method is quite powerful.

Proposition 1.3.5
n € N, n? is even => n is even.

Proof. Let us assume that n € N, n? is even but nis odd. Let n = 2k~1, k €
N. Then, n? = 4k? — 4k + 1 which is definitely odd. Contradiction. O

Contraposition

In contraposition, we assume A and B and go forward while we assume A
and come backward in order to reach a Contradiction. In that sense, con-
fraposition is a special case of Contradiction where all the effort is directed
towards a specific type of Contradiction (4 vs. A). The main motivation under
contrapositivity is the following:

A=>B=AvVB=(AVB)VA=(AAB)= A.

One can prove the above fact simply by examining Table 1.2.

Table 1.2. Operation table for some logical operators.

A|AB|B|A= B|AVBIAAB|AAB= A
TIF|T[F| T T F T
T|F|F|T| F F T F
F|T|T|F| T T F T
F|T|F|T| T T F T
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Proposition 1.3.6
+q
p,g €Ry Bx/pq#p———g = pFq.

Proof. A: \/pq # %‘1 and hence A: \/pq = L;'l Similarly, B: p # ¢ and B:
p = q. Let us assume B and go forward 1%‘1 =p = /p? = /pq. However, this
is nothing but 4: \/pg = &EL. Contradiction. O

1.3.4 Theorem of alternatives

If the pattern of the proposition is A = either C or (else) D is true (but not
both), we have a theorem of alternatives. In order to prove such a proposition,
we first assume A and C and try to reach D. Then, we should interchange C
and D, do the same operation.

Proposition 1.3.7 If 22 — 52+ 6 > 0, then either x <2 or x > 3.
Proof. Let > 2. Then,
#2-524+6>0 = (z-2)(z-3)>0 = (z-3)>0 = z>3.
Let « < 3. Then,

22 ~52+6>0 = (z-2)(z-3)>0 = (z-2)<0 = 2<2 O

Problems

1.1. Prove the following two propositions:

(a) If f and g are two functions that are continuous ! at z, then the function
f + g is also continuous at z, where (f + ¢)(y) = f(y) + 9(y).

(b) If f is a function of one variable that (at point x) satisfies

3¢>0, § > 0such that Vy 3 |z — y| < 4, If(z) = fy)| < clz —yl
then f is continuous at z.

1.2. Assume you have a chocolate bar consisting, as usual, of a number of
squares arranged in a rectangular pattern. Your task is to split the bar into
small squares (always breaking along the lines between the squares) with a
minimum number of breaks. How many will it take? Prove2.

! A function f of one variable is continuous at point z if
Ve >0, 36 > 0 such that Vy 3 [z — y| < é = |f(z) - f(¥)| <e.
2 www.cut-the-knot.org/ proofs/chocolad.shtml
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Preliminary Linear Algebra

This chapter includes a rapid review of basic concepts of Linear Algebra. After
defining fields and vector spaces, we are going to cover bases, dimension and
linear transformations. The theory of simultaneous equations and triangular
factorization are going to be discussed as well. The chapter ends with the
fundamental theorem of linear algebra.

2.1 Vector Spaces

2.1.1 Fields and linear spaces
Definition 2.1.1 A set F together with two operations

+:F x F— F Addition
< FxFw—F Multiplication

is called a field if

1. a) a+fB=B+a, Va,B € F (Commutative)
b) (a+B)+v=a+(B+7), Va,B,7 € F (Associative)
¢) 3 a distinguished element denoted by 0> Va € F, a+0 = a (Additive
identity)
d)VaeFI-aeF 3a+ (—a)=0 (Ezistence of an inverse)
2. a) a-B=0-a, Yo, € F (Commutative)
b) (a-B)-y=a-(B-7), Ya,B,7 € F (Associative)
c) 3 an element denoted by 1 5 Va € F, a-1 = a (Multiplicative
identity)
d)Va#0e€F3a~l€F da a7l =1 (Ezistence of an inverse)
3. a-(B+7) =(a-B)+ (a-7), Ya,B,7 € F (Distributive)
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Definition 2.1.2 Let F be a field. A set V with two operations

+:V xV — V Addition
2 Fx V=V Scalar multiplication

is called a vector space (linear space) over the field F if the following azioms
are satisfied:

1. ¢J u+v=u+v, Vu,veV
b) (u+v)+w=u+(v+w), Yu,v,weV
¢) 3 a distinguished element denoted by § > Yv €V, v+ 60 =v
d) VveV I unigue—veV dv+(-v)=10
2 a)a-(B-u)y=(a-B) u,Va,BE€F, YuecV
b) a-(u+v)=(a-u)+{(a-v), Va €F, Vu,v eV
c) (a+B)-u=(a-u)+ (B -u), Vo, 3 €F, YueV
d) 1-u=u, Yu €V, where 1 is the multiplicative identity of

Example 2.1.3 R* = {(al,az,...,an)T 1O, 00,...,0y € IR} is a vector

space over R with (a1, az,...,an)+(B1, 82, ..., Bn) = (1+81, 09+ B2, . .. ,an+

Bn); ¢+ (a1, aa,...,00) = (cay,caz,...,ca,); and 8 = (0,0,...,0)T.

Example 2.1.4 The set of all m by n complex matrices is a vector space over
C with usual addition and multiplication.

Proposition 2.1.5 In a vector space V,

i. @ is unique.

. 0-v=0,VveV.

i (=1)-v=—-v,VwevV.
w, —0=20.
v.a-v=0a=0o0rv=2_4.

Proof. Exercise. 0O

2.1.2 Subspaces

Definition 2.1.6 Let V' be a vector space over F, and let W C V. W is called
a subspace of V if W itself is a vector space over F.

Proposition 2.1.7 W is a subspace of V' if and only if it is closed under vec-
tor addition and scalar multiplication, that is

wi,wa €W, an,ae EF S ar-wy +ag-we € WL

Proof. (Only if: =) Obvious by definition.
(If: <) we have to show that € W and Vw € W, —w € W.

i. Let oy = 1, ag = ~1, and w; = ws. Then,

lL-wy+ (—1) - wy =wy + (~wy) =0 € W.
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ii. Take any w. Let @y = —1, a2 = 0, and w; = w. Then,
(=) w+(0)-we=-weW. O

Example 2.1.8 S C R?*3, consisting of the matrices of the form

[2 « € B« _:2,7] is a subspace of]R2><3,

Proposition 2.1.9 If Wy, W, are subspaces, then so is W1 N W.

Proof. Take wy,wa € W1 N Wy, ai,az € F.

i w,wp eWy =01 -w1+az-wr €W,
i, wy,wo € Wo =y - w1 + g -wy €Wy

Thus, ayw; + asws € Wi NWy., O

Remark 2.1.10 If Wy, Wy are subspaces, then Wy U Ws is not necessarily a
subspace.

Definition 2.1.11 Let V be a vector space over F, X C V. X is said to
be linearly dependent if there exists a distinct set of x1,x9,...,xx € X and
scalars oy, aa,...,ar € F not all zero 3 Ele a;x; = 0. Otherwise, for any
subset of size k,

k
T1,%2,..-,Tk € X, Zaixi=0=>a1:a2=~-~=ak=0.

i=]

In this case, X is said to be linearly independent.

We term an expression of the form Zleaia:i as linear combination.
In particular, if Ele a; = 1, we call it affine combination. Moreover, if
Zle oa; = lando; 20, Vi = 1,2,...,k, it becomes conver combination.
On the other hand, if a; > 0, Vi = 1,2,...,k; then Zle o;x; 18 said to be
canonical combination.

Example 2.1.12 In R", let E = {e;};_, where eI = (0,---0,1,0,---,0) is
the ith canonical unit vector that contains 1 in itsit* position and 0s elsewhere.
Then, E is an independent set since

a
0=are;+--+opep=| ! | =a,=0, Vi
Qn
Let X = {z;};; where zf = (0,---0,1,1,---,1) is the vector that con-

tains 0s sequentially up to position i, and it contains 1s starting from position
1 onwards. X is also linearly independent since
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(431
o) + a2 )
8=aix)+ -+ oayTn = . = o; =0, Vi.

o+t an

Let Y = {y;}., where yf = (0,---0,—1,1,0,---,0) is the vector that
contains -1 in ith position, 1 in (i + 1)* position, and 0s elsewhere. Y is not
linearly independent since y; + -+ + yn = 0.

Definition 2.1.13 Let X C V. The set

k
Span(X)z{v:Zaixi eV:x,z0,...,28 € X; a1,09,...,0r €T, keN}

=1

is called the span of X. If the above linear combination is of the affine combi-
nation form, we will have the affine hull of X ; if it is a convex combination,
we will have the convez hull of X ; and finally, if it is a canonical combination,
what we will have is the cone of X. See Figure 2.1.

Cone(x) ,

"

% Affine(p.q) Cone(p,q)
- Al

Affine hull o .

Convex hull 4 b B

* ~
.

X P

5 S ) R: by
S Spanip.q)=
Span(x) _# Convex(p.q)

Fig. 2.1. The subspaces defined by {z} and {p, ¢}.

Proposition 2.1.14 Span(X ) is a subspace of V.

Proof. Exercise. O

2.1.3 Bases

Definition 2.1.15 A set X is called a basis for V if it is linearly independent
and spans V.
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Remark 2.1.16 Since Span(X) C V, in order to show that it covers V, we
only need to prove that Vv € V, v € Span(X).

Example 2.1.17 InR", E = {e;};-, is a basis since E is linearly indepen-
dent and Vo = (a1, 02, ...,0,)T €R?, a =aie; + - + anen € Span(E).

X = {z;}]_, is also a basis for R™ since Yo = (on,0aa,...,an)T € R,
a =071+ (ag — 1)z + -+ + (@ — An-1)zn € Span(X).

Proposition 2.1.18 Suppose X = {z;};-; is a basis for V over F. Then,

a) Yv € V can be expressed as v = S @iz where a;’s are unigue.
b) Any linearly independent set with exactly n elements forms a basis.
c) All bases for V contain n vectors, where n is the dimension of V.

Remark 2.1.19 Any vector space V of dimension n and an n-dimensional
field F™ have an isomorphism.

Proof. Suppose X = {z;};_, is a basis for V over F. Then,

a) Suppose v has two different representations: v = Y i a;x; = > i Bii.
Then, § =v —v = Zf;l(ai - Bi)zi = a; = B;, Vi=1,2,...,n. Contra-
diction, since X is independent.

b) Let Y = {y;}.-, be linearly independent. Then, y; = 3 §;z; (M), where at
least one §; # 0. Without loss of generality, we may assume that §; # 0.
Consider X1 = {y1,%2,...,2n}. X1 is linearly independent since § =
Bryr + Yoy Bimi = Br(Y 6:ix)® + 30, Biwi = Brdrzy + Y o(Brdi +
Bi)zi = p161 = 0; B16i + B =0, Vi = 2,...,n = B =0 (& # 0); and
Bi =0, Vi =2,...,n. Any v € V can be expressed as v = Y .| %% =
ML+ Y g Vil
v =767y — X, 6 i)W = (T D + Lo (v — 1676w
Thus, Span(X;)=V.

Similarly,
X2 = {y1,y2,23,...,2,} is a basis.

Xn={y1,¥2,...,yn} =Y is a basis.
c¢) Obvious from part b). O

Remark 2.1.20 Since bases for V are not unique, the same vector may have
different representations with respect to different bases. The aim here is to
find the best (simplest) representation.

2.2 Linear transformations, matrices and change of basis

2.2.1 Matrix multiplication

Let us examine another operation on matrices, matrix multiplication, with
the help of a small example. Let A € R3*4, B € R**2, C e R3*2
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b11 b1z
€11 C12 a11 @12 @13 A14 boy bas
c21 ¢22 | =C = AB = | a1 a2 a3 a4 by bas
C31 €32 agy) @32 as3 a3q bay bas

ay1biy + a1abar + a13d31 + arabay ar1bia + a12b22 + a13dz2 + a14bs2
= | a21b11 + agabey + az3bsr + a2abar az1biz + a22baz + ax3bsz + azaby:
az1b11 + az2bar + assbsr + assbsr asibiz + azzbaz + aszbsz + azabaz

Let us list the properties of this operation:
Proposition 2.2.1 Let A, B,C, D be matrices and & be a vector.

1. (AB)z = A(Bxz).

2. (AB)C = A(BC).

3. A(B+C)=AB+ AC and (B+C)D = BD +CD.

4. AB = BA does not hold (usually AB # BA) in general.

5. Let I,, be a square n by n matriz that has 1s along the main diagonal and
0s everywhere else, called identity matriz. Then, Al = IA = A.

2.2.2 Linear transformation

Definition 2.2.2 Let A € R™*" z € R™. The map z — Az describing a
transformation R™ — R™ with property (matriz multiplication)

Vr,y € R™; Va,b € R, A(bx + cy) = b(Az) + c(Ay)

is called linear.

Remark 2.2.3 Every matriz A leads to a linear transformation A. Con-
versely, every linear transformation A can be represented by a matriz A. Sup-
pose the vector space V has a basis {vy,va,...,v,} and the vector space W
has a basis {wy,ws, ..., wy}. Then, every linear transformation A from V to
W is represented by an m by n matriz A. Its entries a;; are determined by
applying A to each vj, and expressing the result as o combination of the w’s:

m
.A’U] =Zaijwi,j= 1,2,...,n
=1

Example 2.2.4 Suppose A is the operation of integration of special polyno-
mials if we take 1,¢,8%,83,-- as a basis where v; and w; are given by ti~1.
Then,

; t 1
.A’Uj = /t]_ldt = = TWj41.
J J
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0000
1000
For ezample, if dim V =4 and dim W =5 then A= |01 0 0 |. Let us try
00210
0003
to integrate v(t) = 2t + 8t3 = Ovy + 2vg + Ovs + 8vy:
0000 0 0
1000 9 0
0300 =1 c#/@t+&%dh=ﬁ+2#=ug+2w5
" 0
0010 0
1 8
0001 2
Proposition 2.2.5 If the vector x yields coefficients of v when it is ezpressed
in terms of basis {v1,vq,...,Un}, then the vector y = Az gives the coefficients
of Av when it is expressed in terms of the basis {w1,wa, ..., wm}. Therefore,

the effect of A on any v is reconstructed by matriz multiplication.
m
.AU = Zyi“’i = Z A T5W;.
i=1 i,
Proof.
n n n
v= ijvj = Av= A(Z z;0;) = Z.TjAUj = ij Zaijwi. O
i=1 1 1 j i
Proposition 2.2.6 If the matrices A and B represent the linear transforma-

tions A and B with respect to bases {v;} in V, {w;} in W, and {2;} in Z, then
the product of these two matrices represents the composite transformation BA.

Proof. A:v— Av B: Av— BAv = BA:v— BAv. O

Example 2.2.7 Let us construct 3 X 5 matriz that represents the second
2
derivative ;%7, taking Py (polynomial of degree four) to Ps.

a3t 2P 2, t 1

1
80388 0100 0020 0
= B=[00200  4=0020|=4B= 0006 0
PO 0003 000012

Let v(t) = 2t + 83, then

0020 0 0
d*o(t
;§)= 0006 0

000012 0

O 00O O
Il
'S
oo
I
S
o0
o
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Proposition 2.2.8 Suppose {vi1,v2,...,vn} and {wy,ws,...,wn} are both

bases for the vector space V, and let v € V, v = Y v, = Y7 yjwy. If
" n

vj = Y1 Sijwi, then y; = Y1 si;T;.

Proof.
E zTjv; = E E x;8;;w; is equal to E YiWw; _S_ E 81T W;.
J J oo i iJ

Proposition 2.2.9 Let A : V +— V. Let A, be the matriz form of the
transformation with respect to basis {v1,vs,...,vn} and A, be the matriz
form of the transformation with respect to basis {wi,wa,...,wn}. Assume
that v; =Y, sijwj. Then,

A, =8714,5.

Proof. Let v € V, v = Y z;v;. Sz gives the coefficients with respect to w’s,
then A, Sz yields the coefficients of Av with respect to original w’s, and fi-
nally S—1A,, Sz gives the coefficients of .Av with respect to original v’s. O

Remark 2.2.10 Suppose that we are solving the system Az = b. The most
appropriate form of A is I, so that x = b. The next simplest form is when
A is diagonal, consequently x; = . In addition, upper-triangular, lower-
triangular and block-diagonal forms for A yield easy ways to solve for x. One
of the main aims in applied linear algebra is to find a suitable basis so that
the resultant coefficient matriz A, = S~1A,S has such a simple form.

2.3 Systems of Linear Equations

2.3.1 Gaussian elimination

Let us take a system of linear m equations with n unknowns Az = b. In
particular,

utv+w= 1 211 u 1
u+v=-2 & 410 v =|-2
—2u+2v+w= T -221 w 7

Let us apply some elementary row operations:

S1. Subtract 2 times the first equation from the second,
S2. Subtract —1 times the first equation from the third,
S3. Subtract —3 times the second equation from the third.

The result is an equivalent but simpler system, Uz = ¢ where U is upper-
triangular:

2 1 1 u 1

0-1-2 v|=]-4

0 0-4 w —4
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Definition 2.3.1 A matriz U (L) is upper(lower)-triangular if all the entries
below (above) the main diagonal are zero. A matriz D is called diagonal if all
the entries except the main diagonal are zero.

Remark 2.3.2 If the coefficient matriz of a linear system of equations is
either upper or lower triangular, then the solution can be characterized by
backward or forward substitution. If it is diagonal, the solution is obtained
immediately.

Let us name the matrix that accomplishes S1 (E2;), subtracting twice the
first row from the second to produce zero in entry (2,1) of the new coefficient
matrix, which is a modified I3 such that its (2,1)st entry is —2. Similarly,
the elimination steps S2 and S3 can be described by means of E3; and Eja,
respectively.

100 100 100
Eyy=1]-210|,FE3 =010, E32= (010
001 101 031

These are called elementary matrices. Consequently,
E33E31E9A = U and EgpEs1Eaib =,

100
where F32E31F2 = | —2 10| is lower triangular. If we undo the steps of
-531
Gaussian elimination through which we try to obtain an upper-triangular
system Uz = c to reach the solution for the system Ax = b, we have

A=ER'EF ESMU = LU,

where
100 100] 100 1 00
L=Ej'E;'E;;' = 1210 010 |010| =] 2 10
001| |-101] |[031 ~1-31

is again lower-triangular. Observe that the entries below the diagonal are ex-
actly the multipliers 2, —1, and —3 used in the elimination steps. We term L
as the matrix form of the Gaussian elimination. Moreover, we have Lc = b.
Hence, we have proven the following proposition that summarizes the Gaus-
sian elimination or triangular factorization.

Proposition 2.3.3 As long as pivots are nonzero, the square matriz A can
be written as the product LU of a lower triangular matriz L and an upper
triangular matriz U. The entries of L on the main diagonal are 1s; below the
main diagonal, there are the multipliers l;; indicating how many times of row j
s subtracted from row i during elimination. U is the coefficient matriz, which
appears after elimination and before back—substitution; its diagonal entries are
the pivots.
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In order to solve z = A1 = U~'¢c = U~*L~1b we never compute inverses
that would take n3-many steps. Instead, we first determine ¢ by forward-
substitution from Lc = b, then find z by backward-substitution from Uz = c.
This takes a total of n? operations. Here is our example,

1 00 c1 1 c1 1

2 10| jcf=1-2| = |a|=|-4} =
-1-31 C3 7 C3 —4

2 1 1 1 1 I -1

0-1-2 Ty | =|—-4| = |22 = 2

0 0-4 T3 —4 T3 1

Remark 2.3.4 Once factors U and L have been computed, the solution x'
for any new right hand side b’ can be found in the similar manner in only n?
operations. For instance

8 c 8 z} 2
=111 = || =|-5|= [z =13
3 g —4 @ 1

Remark 2.3.5 We can factor out a diagonal matriz D from U that contains
pivots, as illustrated below.

1 %2 %3 ... YWn ]

dy dy 1

dy 1 23 .., Yn

dg d2

ds
U= 1 -

dn :

1]

Consequently, we have A = LDU, where L is lower triangular with 1s on the
main diagonal, U s upper diagonal with 1s on the main diagonal and D is
the diagonal matriz of pivots. LDU factorization is uniquely determined.

Remark 2.3.6 What if we come across a zero pivot? We have two possibil-
ities:
Case (i) If there is a nonzero entry below the pivot element in the same col-

umn;
We interchange rows. For instance, if we are faced with

0= )

we will interchange row 1 and 2. The permutation matriz, Py; = (1) (1) ,

represents the exchange. A permutation matriz Py, is the modified identity
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matriz of the same order whose rows k and l are interchanged. Note that
Pu = Pl;1 (exercise!). In summary, we have

PA=LDU.

Case (i1) If the pivot column is entirely zero below the pivot entry:

The current matriz (so was A) is singular. Thus, the factorization is lost.
2.3.2 Gauss-Jordan method for inverses
Definition 2.3.7 The left (right) inverse B of A exists if BA=1 (AB=1).
Proposition 2.3.8 BA=1 and AC=1& B=C.
Proof. B(AC)=(BA)C & BI=ICsB=C. O
Proposition 2.3.9 If A and B are invertible, so is AB.

(AB)"'=B7'4L

Proof.

(AB)(B'A Y)Y = ABB™)A ' = AIA ' = AA" ' =T
(B'AWAB=B'(A'AB=B"'IB=B"'B=I1. O
Remark 2.3.10 Let A = LDU. A~! = U™'D7'L™! is never computed. If
we consider AA™! = I, one column at a time, we have Az; = e;,Vj. When

we carry out elimination in such n equations simultaneously, we will follow
the Gauss-Jordan method.

Example 2.3.11 In our ezample instance,

211100 2 1 1 100
[Alereses] = | 410/010] — [0-1-2[—210
-221[001 0 3 2{101
2 1 1] 100 100/ 5 §-3
= |0-1-2/-210| =[UlL7' > [010]-2 1 1} =[11471
0 0-4|—
531 001 § -}~
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2.3.3 The most general case

In this subsection, we are going to concentrate on the equation system, Az = b,
where we have n unknowns and m equations.

Axiom 2.3.12 The system Ax = b is solvable if and only if the vector b
can be expressed as the linear combination of the columns of A (lies in
Span[columns of A] or geometrically lies in the subspace defined by columns

of A).

Definition 2.3.13 The set of non-trivial solutions « # 8 to the homogeneous
system Ax = 0 is itself a vector space called the null space of A, denoted by

N(A).

Remark 2.3.14 All the possible cases in the solution of the simple scalar
equation ax = B are below:

ea#0:VBER, dJx= § € R (nonsingular case),
e a=p=0: Yz € R are the solutions (undetermined case),

e a=0,8#0: there is no solution (inconsistent case).

Let us consider a possible LU decomposition of a given A € R™*™ with
the help of the following example:

1 332 1332 1332
A= 2 695 - (0031 —- 0031} =U.
-1-330 0062 0000

The final form of U is upper-trapezoidal.

Definition 2.3.15 An upper-triangular (lower-triangular) rectangular ma-
triz U is called upper-(lower-)trapezoidal if all the nonzero entries u;; lie on
and above (below) the main diagonal, ¢ < j (i > j). An upper-trapezoidal
matrices has the following “echelon” form:

© * * % % % % *x %
0[® * % % % % % %
0 0 0|® * * % % x
0000000|® =
000000000
000000000

In order to obtain such an U, we may need row interchanges, which would
introduce a permutation matrix P. Thus, we have the following theorem.

Theorem 2.3.16 For any A € R™*"™, there is a permutation matriz P, a

lower-triangular matriz L, and an upper-trapezoidal matriz U such that PA =
LU.
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Definition 2.3.17 In any system Az = b & Uz = ¢, we can partition the
unknowns z; as basic (dependent) variables those that correspond to a column
with a nonzero piwot ®, and free (nonbasic,independent) variables correspond-
ing to columns without pivots.

We can state all the possible cases for Az = b as we did in the previous
remark without any proof.

Theorem 2.3.18 Suppose the m by n matrix A is reduced by elementary row
operations and row exchanges to a matriz U in echelon form. Let there be r
nonzero pivots; the last m — r rows of U are zero. Then, there will be r basic
variables and n — r free variables as independent parameters. The null space,
N(A), composed of the solutions to Az = 6, has n —r free variables.

If n = r, then null space contains only = = 6.

Solutions exist for every b if and only if r = m (U has no zero rows), and
Uz = ¢ can be solved by back-substitution.

If r < m, U will have m — r zero rows. If one particular solution & to
the first r equations of Uz = ¢ (hence to Ax = b) exists, then & + ax, Vi €
N(A)\ {8}, Va € R is also a solution.

Definition 2.3.19 The number r is called the rank of A.

2.4 The four fundamental subspaces

Remark 2.4.1 If we rearrange the columns of A so that all basic columns
containing piots are listed first, we will have the following partition of U:

At =[] [

where B € R™*", N € R™*(*=7) g € R™™", Uy € R™*=1) 0 is an
(m — ) X n matriz of zeros, Vy € R"™*(""") and I, is the identity matriz of
order r. Ug is upper-triangular, thus non-singular.

If we continue from U and use elementary row operations to obtain I, in
the Up part, like in the Gauss-Jordan method, we will arrive at the reduced
row echelon form V.

2.4.1 The row space of A

Definition 2.4.2 The row space of A is the space spanned by rows of A. It
is denoted by R(AT).

R(AT) = Span({a;}i~,) = {y eER™:y= Zm:aiai}

i=1

={deR™:FyeR">5yT4A=d"}.
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Proposition 2.4.3 The row space of A has the same dimension r as the row
space of U and the row space of V. They have the same basis, and thus, all
the row spaces are the same.

Proof. Each elementary row operation leaves the row space unchanged. O

2.4.2 The column space of A

Definition 2.4.4 The column space of A is the space spanned by the columns
of A. It is denoted by R(A).

R(A) = Span {C’/j}:___l = {y ER":y= Zﬂjaj}
j=1

={beR":3x € R" 5> Axr = b}.

Proposition 2.4.5 The dimension of column space of A equals the rank r,
which is also equal to the dimension of the row space of A. The number of
independent columns equals the number of independent rows. A basis for R(A)
is formed by the columns of B.

Definition 2.4.6 The rank is the dimension of the row space or the column

space.

2.4.3 The null space (kernel) of A
Proposition 2.4.7

NA) ={zeR": Az =0(Uz =6,V =0)} = N(U) = N(V).
Proposition 2.4.8 The dimension of N(A) is n —r, and a base for N'(A)

—Vn
In—-r '

is the columns of T = [

Proof.
Az =0 Uz=0 V=0 x5+ Vyay =0.

is linearly independent because of the last (n—7)

The columns of T = ;VN
coeflicients. Is their span N(A)?
Let y = 3, 05T7, Ay = ¥ a;(=V§, + Vi) = 6. Thus, Span({Tf};.:f) C

N(A). Is Span({Tf};::) DN(A)? Let z = [—;ﬁ—:}] € N(A). Then,

_ _ _ rp _ —VN iYnN—7
Az =0 g+ Vyzy =0z = [:—E—;] = [In—r] TN € Span({TJ}jzl)

Thus, Span({Tj};.:lr) DN(A). O
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2.4.4 The left null space of A

Definition 2.4.9 The subspace of R™ that consists of those vectors y such
that yT A = 8 is known as the left null space of A.

NATY ={yeR™:yTA=6}.

Proposition 2.4.10 The left null space N'(AT) is of dimension m —r, where
the basis vectors are the last m—r rows of L™'P of PA= LU or L"'PA=U.

Proof.
I.|Vy

A:[A|Im]—>V=[ O

1P|

Then, (L7!P) = [—gl—], where Sp; is the last m — r rows of L™'P. Then,
I
SirA=46. O

Fig. 2.2. The four fundamental subspaces defined by A € R™*".

2.4.5 The Fundamental Theorem of Linear Algebra

Theorem 2.4.11 R(AT)= row space of A with dimension r;
N(A)= null space of A with dimension n —r;

R(A)= column space of A with dimension r;

N(AT)= left null space of A with dimension m — r;

Remark 2.4.12 From this point onwards, we are going to assume thatn > m
unless otherwise indicated.
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Problems

2.1. Graph spaces

Definition 2.4.13 Let GF(2) be the field with + and x (addition and multi-
plication modulo 2 on Z?)

+[01 x[01
0[01 and 0/00
110 101

Fig. 2.3. The graph in Problem 2.1

Consider the node-edge incident matrix of the given graph G = (V| E)
over GF(2), A € RIVIXIEL;

[12345678910111213]

, |1100000000 000

, (1000000010 0 0 0

. 0110000000 0 0 0
A= g |0011000010 000
, (0001100001000

f 0000110000 0 1 1
0000011000 1 0 0

z 0000000101 1 0 1
;10000001100 0 1 0]

The addition + operator helps to point out the end points of the path
formed by the added edges. For instance, if we add the first and ninth columns
of A, we will have [1,0,0,1,0,0,0,0,0]7, which indicates the end points (nodes
a and d) of the path formed by edges one and nine.

(a) Find the reduced row echelon form of A working over GF(2). Interpret
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the meaning of the bases.
(b) Let T = {1,2,3,4,5,6,7,8} and T+ = E\ T = {9,10,11,12,13}.

+  |Ig N
LetA——[OO

with non-zero entries. Interpret z;

(c)Let Y = []IV} For each column 37, j € T+, color the edges with non-zero
5

]. Let Z = [Ig]N]. For each row, 2;,i € T, color the edges

entries. Interpret y;.
(d) Find a basis for the four fundamental subspaces related with A.

2.2. Derivative of a polynomial

Let us concentrate on a (n — k + 1) X (n + 1) real valued matrix A(n, k)
that represents “taking k** derivative of n® order polynomial”

Pty =ap+art+ -+ ant™

(a) Let n = 5 and k = 2. Characterize bases for the four fundamental sub-
spaces related with A(5,2).

(b) Find bases for and the dimensions of the four fundamental subspaces re-
lated with A(n,k).

(c) Find B(n, k), the right inverse of A(n, k). Characterize the meaning of the
underlying transformation and the four fundamental subspaces.

2.3. As in Example 2.1.12, let Y = {y;},—; be defined as
sz = (Oa"'07_171707"' 70)’

the vector that contains -1 in 5** position, 1 in (i 4 1)** position, and Os else-
where. Let A = {y1|y2|-- - |yn]. Characterize the four fundamental subspaces
of A.
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Orthogonality

In this chapter, we will analyze distance functions, inner products, projection
and orthogonality, the process of finding an orthonormal basis, QR and sin-
gular value decompositions and conclude with a final discussion about how to
solve the general form of Az = b.

3.1 Inner Products

Following a rapid review of norms, an operation between any two vectors
in the same space, inner product, is discussed together with the associated
geometric implications.

3.1.1 Norms

Norms (distance functions, metrics) are vital in characterizing the type of
network optimization problems like the Travelling Salesman Problem (TSP)
with the rectilinear distance.

Definition 3.1.1 A norm on a vector space V is a function that assigns to
each vector, v € V| a nonnegative real number ||v|| satisfying

i. |lv|l >0, Yv # 0 and {|6]| = 0,
it. |lav|| = la|||vl|, Va €R; v e V.
. lu+o|l < Jlull + |lv|l, Yu,v € V' (triangle inequality).

Definition 3.1.2 Vz € C", the most commonly used norms, |[.||; , ||-ll2+ l|-lloo»
are called the ly, ly and lo, norms, respectively. They are defined as below:

L lelly = |21l + -+ + |2nl,

2 1
2. |lzlly = (lz2)* + - + |zal®) 2,
3. |zl = max{|z1],...,|z.]}.



34 3 Orthogonality

Furthermore, we know the following relations:

llz|l
‘—\/—7—12 <zl < Hllly s

lell < llel, < el V7
L <ol < ol

Remark 3.1.3 The good—-old Euclidian distance is the ly norm that indicates
the bird-flight distance. In Figure 3.1, for instance, a plane’s trajectory between
two points (given latitude and longitude pairs) projected on earth (assuming
that it is flat!) is calculated by using the Pythagoras Formula. The rectilinear
distance (l; norm) is also known as the Manhatten distance. It indicates the
mere sum of the distances along the canonical unit vectors. It assumes the
dependence of the movements along with the coordinate azes. In Figure 3.1,
the length of the pathway restricted by blocks, of the car from the entrance of a
district to the current location is calculated by adding the horizontal movement
to the vertical. The Tchebychev’s distance () simply picks the mazimum
distance among all movements along the coordinate azes, and thus, assumes
total independence. The forklift in Figure 3.1 can move sideways by its main
engine, and it can independently raise or lower its fork by another motor. The
total time it takes for the forklift to pick up an object 10m. away from a rack
lying on the floor and place the object on a rack shelf 3m. above the floor is
simply the mazimum of the travel time and the raising time. A detailed formal
discussion of metric spaces is located in Section 10.1.

¥
o

Fig. 3.1. Metric examples: {|.|l,, I|.ll;, |Illo

| [

Definition 3.1.4 The length ||z||, of a vector x in R™ is the positive square

root of
n
2
lla]* =) .
i=1
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Remark 3.1.5 ||w|[§ geometrically amounts to the Pythagoras formula ap-
plied (n-1) times.

Definition 3.1.6 The quantity z7y is called inner product of the vectors ¢

and y in R™
Ty=3 z
i=1

Proposition 3.1.7
Ty=0ezly.

Proof. (<) Pythagoras Formula: ||| + |ly||* = ||z — y|%
lz = yll* = 30 (i — ;)% = |lz))* +||yl” — 22Ty. The last two identities yield

i=1
the conclusion, z7y = 02. \ ,
@) zTy=0= " +yl"=llz -yl =2z Ly D
Theorem 3.1.8 (Schwartz Inequality)
2%y < lally iyl =y € R™
Proof. The following holds Va € R:
0 < |lz+ayll; = "z +2lal 2"y +a®yTy = |3 +2|al 2Ty + o |lyll;, COF)

Case (z L y): In this case, we have = 27y = 0 < ||z|l, [|yll,-

2

Case (z Ly): Let us fix a = “—zflh Then, (1) 0 < — ||;1g||2 + _%_2”2’34%32_ 0

oy

3.1.2 Orthogonal Spaces

Definition 3.1.9 Two subspaces U and V of the same space R™ are called
orthogonal if Vu e UYv €V, u L v.

Proposition 3.1.10 N(A) and R(AT) are orthogonal subspaces of R™, N'(AT)
and R(A) are orthogonal subspaces of R™.

Proof. Let w € N(A) and v € R(AT) such that Aw = 6, and v = ATz for
some z € R™. wTv = wT(ATz) = (wTAT)z =67z =0. O

Definition 3.1.11 Given a subspace V of R™, the space of all vectors orthog-
onal to V is called the orthogonal complement of V, denoted by V*.

Theorem 3.1.12 (Fundamental Theorem of Linear Algebra, Part 2)

N(4) = (R(AT))*,  R(4AT) = W(A)*,
N(AT) = (R(A)Y,  R(4) = W(AT).
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Remark 3.1.13 The following statements are equivalent.

i W=Vt
W V=wt,
1. W L'V and dimV + dimW =n.

Proposition 3.1.14 The following are true:

i. N(AB)2 N(B).
#. R(AB) C R(A).

iii. N((AB)T) 2 N'(AT).
. R((AB)T) C R(BT).

Proof. Consider the following:

i. Bz =0= ABx = 0. Thus, Yz € N(B), z € N(AB).

ii. Let b > ABx = b for some z, hence 3y = Bx > Ay = b.
iii. Items (iii) and (iv) are similar, since (AB)T = BTAT. 0O

Corollary 3.1.15
rank(AB) < rank(A),

rank(AB) < rank(B).
3.1.3 Angle between two vectors

See Figure 3.2 and below to prove the following proposition.

c=b—a= cosc=cos(b—a)=cosbcosa +sinbsina

U v Uz Vg U1V + Ug¥2
COSC = mmmr e f e = T
el ffoll  flull vl llul] ]|
“=(qu&)
4
2 “(?‘7/
x .
<
> 0y
§ v=(V,,V,)
o N
AKX
X-Axis

Fig. 3.2. Angle between vectors
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Proposition 3.1.16 The cosine of the angle between any two vectors u and
v 18

Remark 3.1.17 The law of cosines:

2 2 2
[l = wll™ = [lull™ + {[vI” = 2 fjufl lv]| cosc.

3.1.4 Projection

Let p = Zv where “—f—)’{—l =T € R is the scale factor. See Figure 3.3.

vTu
-p) L Tu—p)=067=—.
(u—p)Lve v (u-p) T=

u=(ti,,u,)
\
@ ,
@ < ]
< N0 ool
> ~ -~
S
v=(v,,v,)
kS *q
Q
-
e X-Axis

Fig. 3.3. Projection

Definition 3.1.18 The projection p of the vector u onto the line spanned by

the vector v is given by p = Yr7v.
The distance from the vector u to the line is (Schwartz inequality) therefore

O | W, (T - 07
vTy '

vTy

3.1.5 Symmetric Matrices

Definition 3.1.19 A square matriz A is called symmetric if AT = A.

Proposition 3.1.20 Let A € R™*", rank(A) = r. The product ATA is a
symmetric matriz and rank(ATA) = r.
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Proof. (ATA)T = AT(AT)T = ATA.
Claim: V(A) = N(ATA).

i N(A) CNMATA) iz e NA) = Az =0=> ATAz = ATh=0 ==z ¢
N(AT 4).

ii. N(ATA) C N(A) : ¢ € N(ATA) = ATAz = 8 = 2TATAz = 0 &
Azl =0« Az =0,z e N(A). O

Remark 3.1.21 AT A has n columns, so does A. Since N(A) = N(AT A),

dimN(A) =n—r = dimR(ATA)=n—-(n—r)=r.

Corollary 3.1.22 If rank(A) = n = AT A is a square, symmetric, and in-
vertible (non-singular) matriz.

3.2 Projections and Least Squares Approximations

Az = b is solvable if b € R(A). If b ¢ R(A), then our problem is choose
T 3 ||b — AZ|| is as small as possible.

AT —b 1L R(A) & (Ay)T(AT - b) =0 &
yT[ATAT — ATb) =0 (yT #6) = ATAT — ATb =0 = AT Az = ATb.
Proposition 3.2.1 The least squares solution to an inconsistent system
Az = b of m equations and n unknowns satisfies ATAT = ATb (normal

equations).
If columns of A are independent, then AT A is invertible, and the solution is

= (ATA)"1ATh.
The projection of b onto the column space is therefore
p =A% = A(ATA)"1ATb = P,
where the matriz P = A(AT A)~' AT that describes this construction is known
as projection matriz.
Remark 3.2.2 (I-P) is another projection matriz which projects any vector
b onto the orthogonal complement: (I — P)b = b — Pb.

Proposition 3.2.3 The projection matriz P = A(ATA)"' AT has two basic
properties:

a. it is idempotent: P2 = P.
b. it is symmetric: PT = P.
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Conversely, any matriz with the above two properties represents a projection
onto the column space of A.

Proof. The projection of a projection is itself.
P? = A[(ATA)TATA)(ATA)71AT = A(ATA)1AT = P.
We know that (B™1)T = (B7)~1. Let B = ATA.
PT = (AT)T[(ATA)1TAT = A[AT(AT)"]'AT = A(ATA)'AT=P. O

3.2.1 Orthogonal bases

Definition 3.2.4 A basis V = {v;};_, is called orthonormal if

oy = 0,1 # j (ortagonality)
¢ %77 ) 1,4 =j (normalization)

Example 3.2.5 E = {e;};_, is an orthonormal basis for R", whereas X =
{z:},_, in Ezample 2.1.12 is not.

Proposition 3.2.6 If A is an m by n matriz whose columns are orthonormal
(called an orthogonal matriz), then ATA = I,,.

P:AAT:alaf+...+ana£=>i-.:ATb

is the least squared solution for Ax = b.

Corollary 3.2.7 An orthogonal matriz Q has the following properties:

1. QTQ=1=QQ7,
2.QT=Q7,
3. Q7 is orthogonal.

Example 3.2.8 Suppose we project a point o¥ = (a,b,c) into R? plane.
Clearly, p = (a,b,0) as it can be seen in Figure 3.4.

a 0

elefaz 0, egeQTaz b
0 0

100]

P=ciel +ezel = [010
000 ]

100 a al
Pa=1010 bl =1b
000 c 0]
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4 1
*a I
- 4
G s Vi
/ Pa=(a,b,0)

Fig. 3.4. Orthogonal projection

Remark 3.2.9 When we find an orthogonal basis that spans the ground vec-
tor space and the coordinates of any vector with respect to this basis is on
hand, the projection of this vector into a subspace spanned by any subset of
the basis has coordinates 0 in the orthogonal complement and the same coordi-
nates in the projected subspace. That is, the projection operation simply zeroes
the positions other than the projected subspace like in the above example. One
main aim of using orthogonal bases like E = {e;};_, for the Cartesian sys-
tem, R™, is to have the advantage of simplifying projections, besides many
other advantages like preserving lengths.

Proposition 3.2.10 Multiplication by an orthogonal @ preserves lengths
Q|| = llz||, Va;

and inner products
(Q2)T(Qy) = 2Ty, Vz,y.

3.2.2 Gram-Schmidt Orthogonalization

Let us take two independent vectors a and b. We want to produce two per-
pendicular vectors v; and vsg:

vTb
T

v1=>va2=0:vllv2.
v

v = a, ’l)2=b—-p=b—

If we have a third independent vector ¢, then

T T

vic c
Vg =C— —7 V1 — 7% v2:>v3J_v2,v3J_'v1.
V10 Uy U2

If we scale vy, v, v3, we will have orthonormal vectors:

V1 V2 V3

Q=5 B= .
lloall” lJoal” l[vs]|

q1 =
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Proposition 3.2.11 Any set of independent vectors ay,az, . .., a, can be con-
verted into a set of orthogonal vectors vy,va, . .., Un by the Gram-Schmidt pro-
cess. First, v1 = a1, then each v; is orthogonal to the preceding v1,va, ..., v;—1:
v{ a; U;’P—Mi
Vi =0~ 75—V — = V1.
vy U1 Vi q1Vi-1
For every choice of i, the subspace spanned by original ay,as,...,a; is also
spanned by v1,vq,...,v;. The final vectors
n
{q. _ _vz;_}
) [lv:l i=1
are orthonormal.
1 1 0
Example 3.2.12 Leta; = |0}, a,=|1],a3=]1
1 0 1
v = ay, and
1
I RN Cly = 1
viv, T V2 = a2 — 501 = 1
2
-2
aTv1 1 aT;i vg L 1 1 3
vlivl = 3 vl vy :‘g',=>113=a3—-2—1)1—§1}2= 3- Then,
2
3
1 1 L
L) W = = %2 = /2 = 2
“=qar = | 01 @=qu V3 ! v |
7 -2l |-
2 L
3 NG
— - 9 2| _ A
andqg——lﬁgﬂ—,/ﬁ 5= 7
2 i
3 V3

ap =1 = \/_ql
az = 3u1 +v3 = \/7414-\/'(12
az = 5211 + §U2 +vg = \/;QI + \/%(D + \/%%
& la1,az,a3] = (g1, 92, ¢3] 0 \/7 \/— < A=QR.
4
3
Proposition 3.2.13 A = QR where the columns of Q are orthonormal vec-

tors, and R is upper-triangular with ||v;|| on the diagonal, therefore is invert-
ible. If A is square, then so are QQ and R.
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Definition 3.2.14 A = QR is known as Q-R decomposition.
Remark 3.2.15 If A = QR, then it is easy to solve Az = b:

z=(ATA)'ATb = (RTQTQR)'RTQ"b = (R"R)"'R"Q"b = R™'Q"b.

Rz = QTb.

3.2.3 Pseudo (Moore-Penrose) Inverse
Az =bo AT =p=Pbo i=(ATA)"1ATb.

AZ = p have only one solution < The columns of A are linearly inde-
pendent <> N(A) contains only § < rank(A) =n <« AT A is invertible.

Let AY be pseudo inverse of A. If A is invertible, then A' = A~1, Oth-
erwise, AT = (ATA)~1A7T, if the above conditions hold. Then, z = Afb.
Otherwise, the optimal solution is the solution of AZ = p which is the one
that has the minimum length.

Let #5y > A%y = p, %o = & + w where 2, € R(AT) and w € N(A). We
have the following properties:

i. Az, = A(&, + w) = Azy = p.

ii. VZ 3 AZ = p, T = &, + w with a variation in w part only, where %, is
fixed.

ifi. (|2 +wl| = & || + fw]”.

Proposition 3.2.16 The optimal least squares solution to Az = b is £, (or
simply &), which is determined by two conditions

1. AZ = p, where p is the projection of b onto the column space of A.
2. T lies in the row space of A.

Then, T = A'b.
0000

Example 3.2.17 A= {08 00| wherea >0, 8> 0.
00«0

Then, R(A) = R? and p = Pb = (0, by, b3)7.

00007 | 0
Az =p& (0800 ; = | by
00a0 3 bs

T4
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0 0007 r, 000
b 00| |} 050

- _atp— |V5 T
=z é ATb 00% Zz.Thus,A 00%
0 000 3 000

3.2.4 Singular Value Decomposition

Definition 3.2.18 A € R™*", A = Q,XQ%} is known as singular value
decomposition, where Q1 € R™*™ orthogonal, Q2 € R™*™ orthogonal, and
XY has a special diagonal form

0

L B

with the nonzero diagonal entries called singular values of A.

Q=

Wi

Proposition 3.2.19 At = Q,X1QT where Xt =

Proof. ||Az —b|| = ||Q12QTz — b|| = | ZQFz — QTb||.
This is multiplied by QT y = QTx = Q5 'z with |jy|| = ||z]|-

min || Zy — QTb|| — 5 = Z1QTb.
2I=0Q7=QX'QTv = AT =Q,21QT. n

Remark 3.2.20 A typical approach to the computation of the singular value
decomposition is as follows. If the matriz has more rows than columns, a QR
decomposition is first performed. The factor R is then reduced to a bidiagonal
matriz. The desired singular values and vectors are then found by performing
a bidiagonal QR iteration (see Remarks 6.2.3 and 6.2.8).
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3.3 Summary for Az = b

Let us start with the simplest case which is illustrated in Figure 3.5. A ¢ R™**"
is square, nonsingular (hence invertible), rank(A) = n = r. Thus, A represents
a change-of-basis transformation from R™ onto itself. Since n = r, we have
Vb € R(A) = R™. Therefore, there exists a unique solution z = A~'b. If we
have a decomposition of A (PA= LU, A= QR, A= Q12Q%), we follow an
casy way to obtain the solution:

(A= LU) = Lec = b,Uzx = ¢ using forward/backward substitutions as illus-
trated in the previous chapter;

(A=QR) = Rz = QTb using backward substitution after multiplying the
right hand side with QT

(A= 2QT) = z = Q257 'QTb using matrix multiplication operations
after we take the inverse of the diagonal matrix X simply by inverting the
diagonal elements.

Fig. 3.5. Unique solution: b€ R(A), A:nxn,and r =n

If A € R™*™ has full rank r = m < n, we choose any basis among the
columns of A = [B|N] to represent R(A) = R™ that contains b. In this case,
we have a p = n — m dimensional kernel N(A) whose elements, being the
solutions to the homogeneous system Ax = 0, extend the solution. Thus, we
have infinitely many solutions g = B~!'b — B"!Nxzy, given any basis B.
One such solution is obtained by xy = 6 = x5 = B~ 'b is called a basic
solution. In this case, we may use decompositions of B (B = LU, B = @R,
B = Q1 XQ}) to speed up the calculations.

If A € R™*™ has rank » < m < n as given in Figure 3.6, we have
dim(NV(A)) =p =n—r, dim(N(AT)) =g =m—r and R(A) = R(AT) = R".
The elementary row operations yield A - [—l—g N ] There exists solution(s)

gxmn
only if b € R(A). Assuming that we are lucky to have b € R(A4), and if
is a solution to the first r equations of Az = b (hence to [B|N]z = b), then
Z -+ ai, Vi € N(A)\ {0}, Ya € R is also a solution. Among all solutions
zp =B %W — B 'Nzy, any =0 = zp = B~ b is a basic solution. We may
use decompositions of B to obtain xg as well.
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Fig. 3.6. Parametric solution: b € R(A), A: m X n, and r = rank(A)

What if b ¢ R(A)? We cannot find a solution. For instance, it is quite
hard to fit a regression line passing through all observations. In this case, we
are interested in the solutions, z, yielding the least squared error ||b — Az||,.
If b € N(AT), the projection of b over R(A) is the null vector 8. Therefore,
N(A) is the collection of the solutions we seek.

F={A"A)"'A"D Rn

& n=p+r

Fig. 3.7. Unique least squares solution: (AT A) is invertible and AT = (AT A)7*AT

If b is contained totally in neither R(A) nor N(AT), we are faced with the
non-trivial least squared error minimization problem. If AT A is invertible,
the unique solution is # = (AT A)~! ATb as given in Figure 3.7. The regression
line in Problem 3.2 is such a solution. We may use A = QR or A = @, XQ¥
decompositions to find this solution easily, in these ways: Rz = QTb or & =
Q2X1QTb, respectively.

Otherwise, we have many = € R” leading to the least squared solution as
in Figure 3.8. Among these solutions, we are interested in the solution with
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an =p+r
Fig. 3.8. Least norm squared solution: (AT A) is not invertible and A" = Q. Z1QT
Table 3.1. How to solve Az = b, where A € R™*"
Case Subcase ” Solution l Type | Special Forms | Inverse |
A=LU = Le=bUz=c
r=n=m Exact | A=QR = Rz=Q"b At=4"1
z=A"1b | unique A= 2QY =
r=Q: 5 'QTb
= B=LU = Lc=bUzxp=c
r=m <n || B 'b— | Exact | B=QR = Rxp=Q7b
be R(A) | A=[B|N] ||B~'Nz,| many B=Q,5QY = At~ B!
z3=Q2X1QTb
r=m<n Tp= B=LU = Lc=bUzp=c
[A|jb] = || B7'b~ | Exact | B=QR = Rap=Q%b
B|N||b
[JO_H”O‘:I B_lNa:n many B=Q12Q§ = At = B!
ep=Q: X7'Q7b
r<m many | Trivial
I|N -
be N(AT)|A = {—‘O—J VZ € | Least F=a’ [TN:I , none
N(A) |Squares VYa € R*™"
Unique| A=QR = Rz=QTb Al=
(AT A): T=A'b | Least A= 207 = (AT A)1 AT
b¢& R(A) | invertible Squares =02 X71QTb
bEN(A) | (ATA): many | Least Al=
not #=A% | Norm A=, 2Q7 = Q. xtQf
invertible ||min.norm|{Squares =Q: Z1QTb
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the smallest magnitude, in some engineering applications. We may use the

singular value decomposition in this process.
The summary of the discussions about Az = b is listed in Table 3.1.

Problems

3.1. Q-R Decomposition

1
Find QR decomposition of 4 = i :
-1
3.2. Least Squares Approximation: Regression

Assume that you have sampled n pairs of data of the form (x,y). Find the
regression line that minimizes the squared errors. Give an example for n=5.

3.3. Ax=b
Solve the following Ax = b using the special decomposition forms.
132 8
(a) Let Ay = |213] and by = | 19 | using LU decomposition.
321 3
(21310 8
(b) Ao = (13201 and by = | 19 | using LU decomposition. Find at least
132110 | 3
two solutions. _
1 2 2
4 5 5 . ..
(c) Az = 78 and by = 6 | vsing QR decomposttion.
11011 8
-1 0 01 2
1-1 00 4 , . ..
(d) A4 = 0 1-10 and by = g | using singular value decomposition.
0 0-11 3

‘Web material

http://abel.math.harvard.edu/“knill/math21b2002/10-orthogonal/
orthogonal.pdf
http://astro.temple.edu/"dhill001/modern/l-sect6-2.pdf
http://avalon.math.neu.edu/ bridger/lschwart/lschvart.html
http://ccrma-wuw.stanford.edu/~jos/mdft/
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Norm_Induced_Inner_Product.html
http://ccrma-www.stanford.edu/~jos/r320/Inner_Product.html
http://ccrma-wuw.stanford.edu/"jos/sines/
Geometric_Signal_Theory.html
http://ccrma.stanford.edu/~ jos/mdft/Inner_ Product.html
http://cnx.org/content/m10561/latest/
http://elsa.berkeley.edu/ ruud/cet/excerpts/PartI0verview.pdf
http://en.wikipedia.org/wiki/Inner_product_space
http://en.wikipedia.org/wiki/Lp._space
http://en.wikipedia.org/wiki/Moore-Penrose_inverse
http://en.wikipedia.org/wiki/QR_decomposition
http://en.wikipedia.org/wiki/Singular_value_decomposition
http://engr.smu.edu/emis/8371/book/chap2/node8.html
http://eom.springer.de/P/p074290.htm
http://eom.springer.de/R/r130070.htm
http://epoch.uwaterloo.ca/"ponnu/syde312/algebra/page09.htm
http://epubs.siam.org/sam-bin/dbq/article/30478
http://genome-www.stanford.edu/SVD/
http://geosci.uchicago.edu/"gidon/geos31415/genLin/svd.pdf
http://info.wlu.ca/ wwwmath/faculty/vaughan/ma255/
ma2b5orthogprojo0s.pdf
http://ingrid.ldeo.columbia.edu/dochelp/StatTutorial/SVD/
http://iria.pku.edu.cn/~ jiangm/courses/IRIA/node119.html
http://isolatium.uhh.hawaii.edu/linear/lectures.htm
http://kwon3d.com/theory/jkinem/svd.html
http://library.lanl.gov/numerical/bookcpdf/c2-10.pdf
http://linneus20.ethz.ch:8080/2_2_1.html
http://lmb.informatik.uni-freiburg.de/people/dkats/
DigitalImageProcessing/pseudoInvNew.pdf
http://mathnt.mat.jhu.edu/matlab/5-15.html
http://mathnt.mat.jhu.edu/matlab/5-6.html
http://maths.dur.ac.uk/~dmaOwmo/teaching/1h-la/LAnotes/nodel8.html
http://mathworld.wolfram.com/InnerProductSpace.html
http://mathworld.wolfram.com/MatrixInverse.html
http://mathworld.wolfram.com/Moore~PenroseMatrixInverse.html
http://mathworld.wolfram.com/QRDecomposition.html
http://mathworld.wolfram.com/SchwvarzsInequality.html
http://mathworld.wolfram.com/SingularValueDecomposition.html
http://mcraefamily.com/MathHelp/BasicNumberIneqCauchySchwarz.htm
http://mymathlib.webtrellis.net/matrices/vectorspaces.html
http://planetmath.org/encyclopedia/CauchySchwarzInequality.html
http://planetmath.org/encyclopedia/InnerProduct.html
http://planetmath.org/encyclopedia/InnerProductSpace.html
http://planetmath.org/encyclopedia/
MoorePenroseGeneralizedInverse.html
http://planetmath.org/encyclopedia/NormedVectorSpace.html
http://planetmath.org/encyclopedia/OrthogonalityRelations.html
http://planetmath.org/encyclopedia/QRDecomposition.html
http://planetmath.org/encyclopedia/SingularValueDecomposition.html
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http://psblade.ucdavis.edu/papers/ginv.pdf
http://public.lanl.gov/mewall/kluwer2002.html
http://rkb.home.cern.ch/rkb/AN16pp/node224.html
http://robotics.caltech.edu/"jwb/courses/ME116/handouts/pseudo. pdf
http://staff.science.uva.nl/"brandts/NW2/DOWNLOADS/hoofdstukl . pdf
http://tutorial.math.lamar.edu/Al11Browsers/2318/
InnerProductSpaces.asp
http://web.mit.edu/be.400/www/SVD/Singular_Value_Decomposition.htm
http://wks7.itlab.tamu.edu/Math640/notes7b.html
http://world.std.com/ sweetser/quaternions/quantum/bracket/
bracket.html
http://www-ccrma.stanford.edu/~jos/mdft/Inner_Product.html
http://wuw.axler.net/Chapter6.pdf
http://www.ccmr.cornell.edu/ "muchomas/8.04/1995/psb/nodel7 .html
http://www.cco.caltech.edu/ mihai/Ma8-Fal12004/Notes/Notes4/nd.pdf
http://www.cs.brown.edu/research/ai/dynamics/tutorial/Postscript/
SingularValueDecomposition.ps
http://www.cs.hartford.edu/“bpollina/m220/html/7.1/
7.1_InnerProducts.html
http://www.cs.rpi.edu/"flaherje/pdf/linll.pdf
http://wuw.cs.unc.edu/ krishnas/eigen/node6.html
http://wuw.cs.ut.ee/"toomas_1/linalg/linl/node10.html
http://wuw.csit.fsu.edu/"gallivan/courses/NLA2/set9.pdf
http://www.ctcems.nist.gov/ wcraig/variational/node2.html
http://wuw.ctcms.nist.gov/ wcraig/variational/node3.html
http://www.davidson.edu/math/will/svd/index.html
http://wuw.ee.ic.ac.uk/hp/staff/dmb/matrix/decomp.html
http://wuw.emis.de/journals/AM/99-1/cruells.ps
http://www.eurofreehost.com/ca/Cauchy-Schwartz_inequality.html
http://wuw.everything2.com/index.pl?node_id=53160
http://wuw.fiu.edu/"economic/wp2004/04-08.pdf
http://www.fmrib.ox.ac.uk/“tkincses/jc/SVD.pdf
http://www.fon.hum.uva.nl/praat/manual/
generalized_singular_value_decomposition.html
http://wuw.free-download-soft.com/info/sdatimer.html
http://www.iro.umontreal.ca/ ducharme/svd/svd/index.html
http://www.library.cornell.edu/nr/bookcpdf/c2-6.pdf
http://wuw.mast.queensu.ca/~speicher/Section6.pdf
http://www.math.duke.edu/education/ccp/materials/linalg/leastsq/
leas2.html
http://www.math.duke.edu/education/ccp/materials/linalg/orthog/
http://www.math.harvard.edu/“knill/teaching/math21b2002/
10-orthogonal/orthogonal . pdf
http://www.math.ohio-state.edu/"gerlach/math/BVtypset/node6.html
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Eigen Values and Vectors

In this chapter, we will analyze determinant and its properties, definition of
eigen values and vectors, different ways how to diagonalize square matrices
and finally the complex case with Hermitian, unitary and normal matrices.

4.1 Determinants

4.1.1 Preliminaries

Proposition 4.1.1 det A # 0 = A is nonsingular.

Remark 4.1.2 Is A — A (where A is the vector of eigen values) invertible?
det(A— M) ="0

where det(A — AI) is a polynomial of degree n in A, thus it has n roots.

Proposition 4.1.3 (Cramer’s Rule) Az = b where A is nonsingular. Then,
the solution for the jth unknown is

L _ det(A( & b))
7 det A ’

where A(j « b) is the matriz obtained from A by interchanging column j with
the right hand side b.

Proposition 4.1.4 det A = + [product of pivots].

Proposition 4.1.5 |det A|=Vol(P), where P=conv{}__, e;a;, e; is the jth
unit vector} is parallelepiped whose edges are from rows of A. See Figure 4.1.
Corollary 4.1.6 |det A| = [T;", lai| -

Definition 4.1.7 Let det A™! = 1.
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w Volume=det(A)

a1 aiz2 a3
A= |ax az a2
Row 1
Row 3

as1 as2 ass

Fig. 4.1. | det A} = Volume(P).

4.1.2 Properties

1. The determinant of I is 1.

Example 4.1.8
10

01

2. The determinant is a linear function of any row, say the first row.

=1

Example 4.1.9

ab ab
det [cd} =lcd = ad — cb.
ta tb ab
. d‘—-tad—tcd—tcd.
3. If A has a zero row, then det A = 0.
Example 4.1.10
00
cd =0.

4. The determinant changes sign when two rows are exchanged.

Example 4.1.11
cd ab
ab cd

5. The elementary row operations of subtracting a multiple of one row from
another leaves the determinant unchanged.

Example 4.1.12

=cb—ad=—

ab
cdf

a—achb—ad

c d = (ad — acd) — (be — acd) = ad — be =

6. If two rows are equal (singularity!), then det A = 0.

Example 4.1.13
ab

ab:O'
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10.

11.
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det AT = det A.

Example 4.1.14
ac ab

bd cd
If A is triangular, then det A =[] a;; (det I =1).
Example 4.1.15

=ad-ch=

ab
0d

al

cd:ad.

= ad,

. A, B € R™"™ nonsingular, det(AB) = (det A)(det B).

Example 4.1.16

ZZ ;{L‘——- (ad — cb)(eh — gf) = adeh — adgf — cbeh + cbgf.
ae+bg af +bh| _
ce + dg cf+dh‘— (ae + bg)(cf + dh) — (af + bh){(ce + dg)

= aecf + aedh + bgcf + bgdh — afce — afdg — bhce — bhdg
= adeh — adgf — cbeh + cbgf.
Let A be nonsingular, A = P~!LDU. Then,
det A = det P! det L det D det U = %(product of pivots).

The sign + is the determinant of P~! (or P) depending on whether the
number of row exchanges is even or odd. We know det L = det U = 1 from
property 7.

Example 4.1.17 By one Gaussian elimination step, we have

abl |10ja O 1% . ab a b
cdl=la 1l ad=be|ly §| - since | . 4 — 0d—be . Thus,
(ZZ:ad—bc:detD.

det A = a;14i1 + aipdia + - + ainAin (property 1!) where A;;’s are
cofactors o

A,’j = (—I)H-] det Mij
where the minor M;; is formed from A by deleting row ¢ and column j.
Example 4.1.18

apy aiz 413 a1t a12 a13
a21 G2 Ga3|= agz az23|+|a21 a23|+|a91 az2
a31 a32 a33 a2z a3z agi ass a1 asz2

= 011(0226%33 - 023632) + (112((123031 - 621033) + ala(azlaaz - G22a31)

= 11022033 + Q12023031 + 13021032 — A11023032 — 312021033 — 413022031 .
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4.2 Eigen Values and Eigen Vectors

Definition 4.2.1 The number A is an eigen value of A, with a corresponding
nonzero eigen vector v such that Av = Av.

The last equation can be organized as (AJ—A)v = 0. In order to have a non-
trivial solution v # @, the corresponding null space (kernel) N(AI — A) should
contain vectors other than 6. Thus, the kernel has dimension larger than 0,
which means we get at least one zero row in Gaussian elimination. Therefore,
(AT — A) is singular. Hence, A should be chosen such that det(A\ — A) = 0.
This equation is known as characteristic equation for A.

d(s) =det(sI — A) = s" +dys"" +--- +d, =0.
Then, the eigen values are the roots.
d(s)=(s— A1) (s = A)™ ... (s = M) = H(s — )"
The sum of multiplicities should be equal to the dimension, i.e. Y. n; = n.
The sum of n-eigen values equals the sum of n-diagonal entries of A.

Art+c A=A+ ugAe = ann + 00 + Gan.

This sum is known as trace of A. Furthermore, the product of the n-eigen
values equals the determinant of A.

n k
[1X =] A" =detA
i=1 i=1

Remark 4.2.2 If A is triangular, the eigen values Ay, ..., A, are the diagonal
entries Gy1, ..., 0nn-

Example 4.2.3

300
A=|110
033

det A = 1(1)3 = 3 (property 8).

1

$§—3 0 0

1

d(s) =| —% s-—ll O3=(s——~2—)(5—1)<3—§>.
~1 57 %

8o, At = § = a11, A2 = 1 =as2, A3 = § = ass. Finally,

tT(A)=%+1+2-='Z—.
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4.3 Diagonal Form of a Matrix

Proposition 4.3.1 FEigen vectors associated with distinct eigen values form
a linearly independent set.

Proof. Let \; «>v;,1=1,...,k.
Consider Y1 ; a;v; = 6. Multiply from the left by Hfzz(A - NI
Since (A — \I) = 6, we obtain (A — A\, T)v; = (A; — Ai)v;, which yields

al(/\l bt )\2)(/\1 - )\3) e ()\1 — )\k)’Ul =6.
v1# 0, A ~A2 #0,..., A1 — A # 0= a; = 0. Then, we have >, a;v; = 0.
Repeat by multiplying Hf:g(A —Ail) to get az =0,and soon. 0O
4.3.1 All Distinct Eigen Values

d(s) = [1i;(s—A:). The n eigen vectors v, .. ., v, form a linearly independent
set. Choose them as a basis: {v;};_;.

Avy = AMvp + 0vg + -+ + Ouyy
Ave = Qvy + Agvg + -+ 4 Ovuy,

Av, = 0v1 +0vs + - - + Ay,

MO 0
0 Xy O
Thus, A has representation A= | | | | .

Alternatively, let S = [v1|va| - |up]
AS = [Avi|Ava| -+ - |Avy) = [Mv1)Agva] - - | A ]
AL

AS = [vi]vz| -+ |vn] . = SA.

Thus, S~1AS = A (Change of basis). Hence, we have proven the following
theorem.

Theorem 4.3.2 Suppose the n by n matric A has n linearly independent
eigen vectors. If these vectors are columns of a matriz S, then

A
—1 4 )\2
STIAS =A=
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Example 4.8.3 From the previous example,

100
H 1 3
A= %10 i/\lz—,/\z':l,)\;;:—-.
2 4
ol3
i4
Az =Nz & %$1+$2 = %3:2
%xg—%%xg %:c3
1
sty + s =0 21+ 22 =0.
=|-1
41}2.1:2+%ac?,—O<:>:1:2-{-:103—0}Thus’ o 1
2“”1
Ar = lz & 2x1+m2
4$2+ 325
0
¢>4x2——x3-—0<:>:c2—x }Thus V2= i
3 e
Az = A3z & %IIII-'-JIQ = %.’Ez
122+ 33 3z3
z; =0. 0
& 1y - tey=0=>22,+2,=0. } Thus,v3= |0
.’13220. 1
100
Therefore, S= | -110
111
100100 100/ 100 100/ 1 00
[S|[I]=|-110/010| = {010} 110| — |010] 1 10| =[I|S7}].
111001 011/-101 001-2-11
Then,
1 00][200][ 100 199
ST'AS=| 1 10| |i10||-110|=|010]=A
-2-11] |13 111 003

Remark 4.3.4 Any matriz with distinct eigen values can be diagonalized.
However, the diagonalization matriz S is not unique; hence neither is the
basis {v};_;. If we multiply an eigen vector with a scalar, it will still remain
an eigen vector. Not all matrices posses n linearly independent eigen vectors;
therefore, some matrices are not dioganalizable.
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4.3.2 Repeated Eigen Values with Full Kernels

In this case, (recall that d(s) = Hle(s — Ai)"™), we have dimN ([A — N I]) =
n;, Vi. Thus, there exists n; linearly independent vectors in N'([4 — A;I]), each
of which is an eigen vector associated with A;, V.

AL € V11, U125 -+ 5 Ving
A2 € V21, V225 .+ ., V2,
Ak € Uk, Vk2, - - - 3 Vkny

U, {vij };“:1 is linearly independent (Exercise}. Thus, we have obtained
n linearly independent vectors, which constitute a basis. Consequently, we get

[ A1 |
A1
S71AS = ,
Ak
i Ak |
Example 4.3.5
31-1
A=(13-1
00 2
s—3 -1 1
d(s) =det(sT—A)y=| -1 s—3 1 [=0
0 0 s—2

=(s=3)(s-2)~ (s -2) = (s - 2)[(s - 3)* - 1]
=(s=2)(s—4)(s—2) = (s = 2)*(s — 4).
S>M=2,nm=2and A3 =4, np =1.

11-1
00 O

v = (1,-1,0)7, w12 = (0,1, n7.

-1 1-1
A—-I= 1-1-11.

0 0-2
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vy = (1,1,0)7.
101 ;-3 3% 200
S=|-111|, $'=|0 0 1|, S7'AS=({020].
010 i i1 004

4.3.3 Block Diagonal Form
In this case, we have
Ji 3n; > 1, dim(N[A - \I)) <ny

Definition 4.3.6 The least degree monic (the polynomial with leading co-
efficient one) polynomial m(s) that satisfies m(A)=0 is called the minimal

polynomial of A.

Proposition 4.3.7 The following are correct for the minimal polynomial.

i. m(s) divides d(s);
i m(N) =0, Vi=1,2,... k
iii. m(s) is unique.

Example 4.3.8

|

cl0
0cO

, d(s) = det(sI
00 c]

Ai=c¢, ng=3m(s)=" (s~
01
[A—XMI]= {00
00
010
[A—MIP= (000
000

Then, to find the eigen vectors

010]
000

s—c¢ —1
0 s—c¢
0 0

—A) =

§—¢C

), (s —c)?, (s —c)3:

0
0

():I # O3 = m(s) # (s — ¢).

(010
000

J =03 = m(s) = (s — ¢)°.
000

(A-cl)z=0%
000]

Proposition 4.3.9

d(S) = Hikzl(s - )‘i)niﬂ TTL(S) = Hikzl(s - )‘i)mia 1 <m; < Ni, i= 132’ v
WA= \D) G (A -

= N[(A - NI)™

1 0
z=0=vy;=]0],vi2=10].
0 1

MDA G GN(A - D)™
== N[(A = ND)™)
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Proposition 4.3.10 m(s) = IIX (s — \;)™, then
Cr=N[A=-M)™]@ - dN[(A-\)™],
where @ is the direct sum of vector spaces.
Theorem 4.3.11 d(s) = ITE | (s — A\))™, m(s) = IIF_ (s — \))™:.

i. dim(N[(A = X)™)) =ny;
#. If columns of n X n; matrices B; form bases for N[(A — A;)™] and B =
[B1]:-+|Bg], then B is nonsingular and

i
B1AB 42

Ay

where A; are n; X n;;
ii. Independent of the bases chosen for N[(A — A;)™],

det(sI — A;) = (s — A)™;
iv. Minimal polynomial of A; is (s — A))™.

Example 4.3.12

0 10 s—1 0
A=[O OIJ,d(s): 0 s -1l=(s=1)3%*s-2)=0.
2-54 -2 5s-4
/\1=1,n1=2;/\2=2,n2=1.
-1 10
[A—)\lI] = l: 0-1 1} s dzm(N[(A——)\l)])ZI <2:n1(')
2-53
m1>1=my=2=m(s) = (s~ 1)%(s — 2) = d(s).
1-21
[A—\IP = [2 —4 2} , dim(N[(A - A)?)) =2
4 -84

10
v = (1,0,-1)7, v12 = (0,1,2)7, B, = ( 0 1:| .
-12

-2 10]
/\2 = 2, [A - )\2[] = |: 0-21 , dzm(N[(A - )\2)]) =1.
2-52]
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1
vo = (1,2,4)T, By = | 2| . Therefore,
4
10]1 0 2-1 01
B=| 012|=B1'=|-2 5-2{=B"1'4B=|-12| |,
—-124 1-2 1 2
where/ﬁ:[_(l);] and Ay = [2].

4.4 Powers of A

Example 4.4.1 (Compound Interest) Let us take an example from engi-
neering economy. Suppose you invest $§ 500 for siz years at 4 % in Citibank.
Then,

Piy1 = 1.04P;, Ps = (1.04)%, Py = (1.04)%500 = $632.66.
Suppose, the time bucket is reduced to a month:

0.04 0.04\ " -
Pyi1= (1 + —12—> Py, Py = (1 + F) , Py = (1.003)72500 = $635.37.

What if we compound the interest daily?

0.04 0.04) #1855
Piy1 = (1 + %‘I) Py, P6(364)+1-5 = (1 + 36_4) , Py = $635.72.
Thus, we have
Poy1— P dP _ 0.04¢
T = 0.04P, = = = 0.04P = P(t) = "Ry,

In the above simplest case, what we have is a difference/differential equa-
tion with one scalar variable. What if we have a matrix representing a set of
difference/differential equation systems? What is e~4¢?

Example 4.4.2 (Fibonacci Sequence)
Foio=Fpp1+Fy, F1 =0, F, = 1.

| Fra | Frz| {11 | Frgr | _
e i) -

k
111%[1

Hence, we sometimes need powers of a matriz!
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4.4.1 Difference equations
Theorem 4.4.3 If A can be diagonalized (A = SAS™!), then
up = AFug = (SASH(SAS™Y) - (SAS Hug = SAFSLug.

Remark 4.4.4
AP
up = [vg, -+, vp] Sy = al)\’fvl + -~+an/\’fbvn.

)\k

n

The general solution is a combination of special solutions Afv; and the coeffi-
cients oy that match the initial condition ug are a1 Avy + -+ + 0 A0, = ug
or Sa = up or a = 87 ug. Thus, we have three different forms to the same
equation.

Example 4.4.5 (Fibonacci Sequence, continued)

|11 _s=1-11 o _
A—[lo],d(s)— _1 S}—-s —s—1=0.
_1+v5  1-V5
/\1“‘ D) ?/\2_ D) ’
_ A1 A A 1 =X 1
A=54A 1_ 1 A2 1 2 .
54§ [1 1][ Ag -1 A | A=A

Fk+1 k l:)\lx\g /\Ilc 1 1
[Fk] Uk =111 A =1 X = A,
k k
oo M X 1 1+Ve) (146
A A-Xx V5 2 2

Since = (1' 5)1c < 1, Fiooo = the nearest integer to —= (152 00
3 5 471000 V5 p) .

V5
Note that the ratio —I%,i—‘ = 1—‘%@ 2 1.618 is known as the Golden Ratio, which
represents the ratio of the lengths of the sides of the most elegant rectangle.

Example 4.4.6 (Markov Process) Assume that the number of people leav-
ing Istanbul annually is 5 % of its population, and the number of people en-
tering is 1 % of Turkey’s population outside Istanbul. Then,

#inside | _ |y | _ [0.950.01| {yo
#Houtside | — |z [0.05099] 12!

s—0.95 -0.01

4 [0:95001
= ~0.05 s — 0.99

0.05 0.99] » dls) =

': (s — 1.0)(s — 0.94).
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1
A =10, Ay =094 = v; = h],vzz [_1
0

117 [1.00 e
— -1 _ 5 6
msas = [ 4] 0] 1
ve] [095001]%[yo] [ 117 [1.00%
2z |~ 10.050.99 2| |-11 0.94%
5 5 L 5 1 1
- = hd 5 v _ = k
= (6yo+ 6z0> [1] + (Gyo 6zo> 0.94 [_1] .
Since 0.94% — 0 as k — oo,

(1] = (G §) [] = 12 [5].

The steady—state probabilities are computed as in the classical way, Aue =
1-us, corresponding to the eigen value of one. Thus, the steady-state vector
s the eigen vector of A corresponding to A = 1, after normalization to have
legitimate probabilities (see Remark 4.3.4):

[ S W[

4.4.2 Differential Equations

~

Example 4.4.7

du

Ay = |23 _ At
E——Au—-{lll]u@u(t)—e ug.

/\1 = 57 N = (17 1)Ta )‘2 = ]-a Vg = (_3, ]-)Ta

u(t) = areMto; + age*tvy = e’ [” + el [_:1;] )

wmaff o[- [z
o~ ([ la]-["

The power series expansion of the exponentiation of one scalar is

2 3
¢ =1+z+ o ++2

TR T
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and if we generalize to the matrices

(At)? (At

At _— ..
A =Tk At S e
If we take the derivative of both sides, we have
deAt A%(2t) A3(3t%)
S =l A e T
2 3
=A [I+At+£’—@—+ (A1) +] = Aet,
2! 3!
If A=8548"1,
2¢-142 3q—143
eAt=I+SAS“‘+SA St +SA St +
2! 3!
2 3
=8 [I+At+ (A—;')— + (/;) +} Sl = GeAtgl.

Thus, we have the following theorem.

Theorem 4.4.8 If A can be diagonalized as( A = SAS™!), then & = Au
has the solution u(t) = etug = Se*S~lug, or equivalently u(t) = oyetv; +
coi 4 apetnty,, where a = S lug.

4.5 The Complex case

In this section, we will investigate Hermitian and unitary matrices. The com-
plex field C is defined over complex numbers (of the form z+iy where z,y € R
and i2 = —1) with the following operations:

(a+ib)+ (c+id) = ((a+c)+i(b+d)) (a+1ib)(c+id) = ((ac—bd) +i(cb+ad)).

Definition 4.5.1 The complex conjugate of a+1ib € C is a + ib = a —ib. See
Figure 4.2.

Properties:

i. (@a+db)(c+id) = (a+ib)(c+id),
ii. (a+1b) + (c+1id) = (a+ ib) + (c+ id),
i1, (a+ib)a + ib = a? 4 b? = r? where 7 is called modulus of a + ib.

We have a = Va2 + b2 cosf and b = va? + b2sinf and
a+ib= a2+ b2(cosf +isinf) = re’® (Polar Coordinates),

where re® = cos@ + isiné.
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Im
a+ib=r (cos0 + i sin0)
b
.{0\\
X
- ol Re
a
-b a+ib=a-ib

Fig. 4.2. Complex conjugate

Definition 4.5.2 A' = AH with entries (AH);; = (A)i; is known as conju-
gate transpose (Hermitian transpose).

Properties:

i <zy>=zly, 2 Llyeatiy=0,
ii. ||| = (z9)3,
iii. (AB)Y = BH AH

Definition 4.5.3 A is Hermitian if A7 = A.

Properties:

i. AH = A vzeCr, zHAz e R

4. Buvery eigen value of a Hermitian matriz is real.

#1s. The eigen vectors of a Hermitian matriz, if they correspond to different
eigen values, are orthogonal to each other.

iv. (Spectral Theorem)
A = AH  there exists a diagonalizing unitary (complex matriz of orthonor-
mal vectors as columns) U such that

U™'AU = UM AU = A
Therefore, any Hermitian matriz can be decomposed into
A=USUH = Mool + -+ Avpofl
Definition 4.5.4 If B= M 1AM (change of variables), then A and B have

the same eigen values with the same multiplicities, termed as A is similar to
B.
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Properties:

i. A e C™*" Junitary M = U > U YAU = T is upper-triangular. The
eigen values of A must be shared by the similar matric T and appear
along the main diagonal.

1. Any Hermitian matriz A can be diagonalized by a suitable U.

Definition 4.5.5 The matriz N is called normal if NN¥ = NEN. Only for
normal matrices, T = U'NU = A where A is diagonal.

Problems

4.1, Determinant
Prove property 11 in Section 4.1.2.

4.2. Jordan form

1 1-1-1-1 21
2 1 1 2 1 2
Let A=|0 1 1 0-—1/|.Find S such that S~1AS = 21
1-1 1 3 1 2
2-2 2 2 4 2
Hint:

Choose v € N[(A — AI)?], v1 = [A — A]v,. Similarly, choose vs and vs.
Finally, choose vs € N[(A4 — AI)].

4.3. Using Jordan Decomposition

—
[~ 2]~

Let A= . Find A0,

10
0

o o 5~
g5~ o

4.4. Differential Equation System

Let the Blue (allied) forces be in a combat situation with the Red (enemy)
forces. There are two Blue units (Xi, X2) and two Red military units (Y7, Y3).
At the start of the combat, the first Blue unit has 100 (X{ = 100) combatants,
the second Blue unit has 60 (X§ = 60) combatants. The initial conditions
for the Red force are Y = 40 and Y = 30. Since the start of the battle
(t = 0), the number of surviving combatants (less than the initial values due
to attrition) decrease monotonically and the values are denoted by X}, X%,
Y}, and Y4,

The first Blue unit is subjected to directed fire from all the Red forces,
with an attrition rate coeflicient of 0.03 Blue 1 targets/Red 1 firer per unit
time and 0.02 Blue 1 targets/Red 2 firer per unit time. The second Blue unit
is also subjected to directed fire from all the Red forces, with an attrition rate
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coefficient of 0.04 Blue 2 targets/Red 1 firer per unit time and 0.01 Blue 2
targets/Red 2 firer per unit time. The first Red unit is under directed fire from
both Blue units, with an attrition rate coeflicient of 0.05 Red 1 targets/Blue
1 firer per unit time and 0.02 Red 1 targets/Blue 2 firer per unit time. The
second Red unit is subjected to directed fire from only Blue 1, with an attri-
tion rate coefficient of 0.03 Red 2 targets/Blue 1 firer per unit time.

(a) Write down the differential equation system to represent the combat dy-

namics.
(b) Find the closed form values as a function of time ¢ for X{, X}, Y{, Y3.

(c) Calculate X}, X4, Y, Y4, t=0,1,2,3,4,5.

‘Web material

http://149.170.199.144/multivar/eigen.htm
http://algebra.math.ust.hk/determinant/03_properties/lecturel.shtml
http://algebra.math.ust.hk/eigen/01_definition/lecture2.shtml
http://bass.gmu.edu/ececourses/ece521/lecturenote/chapl/node3.html
http://c2.com/cgi/wiki?EigenValue
http://ceee.rice.edu/Books/LA/eigen/
http://cepa.newschool.edu/het/essays/math/eigen.htm
http://cio.nist.gov/esd/emaildir/lists/opsftalk/msg00017.html
http://cnx.org/content/m2116/latest/
http://cnx.rice.edu/content/m10742/latest/
http://college.hmco.com/mathematics/larson/elementary_linear/4e/
shared/downloads/c08s5.pdf
http://college.hmco.com/mathematics/larson/elementary_linear/5e/
students/ch08-10/chap_8_5.pdf
http://ece.gmu.edu/ececourses/ece521/lecturenote/chapl/node3.html
http://en.wikipedia.org/wiki/Determinant
http://en.wikipedia.org/wiki/Eigenvalue
http://en.wikipedia.org/wiki/Hermitian_matrix
http://en.wikipedia.org/wiki/Jordan_normal_form
http://en.wikipedia.org/wiki/Skew-Hermitian_matrix
http://encyclopedia.laborlawtalk.com/Unitary_matrix
http://eom.springer.de/C/c023840.htm
http://eom.springer.de/E/e035150.htm
http://eom.springer.de/H/h047070.htm
http://eom.springer.de/J/j054340 .htm
http://eom.springer.de/L/1059520.htm
http://everything2.com/index.pl?node=determinant
http://fourier.eng.hmc.edu/e161/lectures/algebra/node3.html
http://fourier.eng.hmc.edu/e161/lectures/algebra/node4.html
http://gershwin.ens.fr/vdaniel/Doc-Locale/Cours-Mirrored/
Methodes-Maths/white/math/s3/s3spm/s3spm.html
http://home.iitk.ac.in/"arlal/book/nptel/mth102/node57.html
http://homepage.univie.ac.at/Franz.Vesely/cp0102/dx/node28.html
http://hyperphysics.phy-astr.gsu.edu/hbase/deter.html
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http://kr.cs.ait.ac.th/ “radok/math/mat/51.htm
http://kr.cs.ait.ac.th/“radok/math/mat3/m132.htm
http://kr.cs.ait.ac.th/ radok/math/mat3/m133.htm
http://kr.cs.ait.ac.th/ radok/math/mat3/mi46.htm
http://kr.cs.ait.ac.th/ radok/math/mat7/stepl7.htm
http://linneus20.ethz.ch:8080/2_2_1.html
http://math.carleton.ca:16080/"daniel/teaching/114W01/117_EigVal.ps
http://math.fullerton.edu/mathews/n2003/JordanFormBib.html
http://mathworld.wolfram.com/Determinant.html
http://mathworld.wolfram.com/DeterminantExpansionbyMinors.html
http://mathworld.wolfram.com/Eigenvalue.html
http://mathworld.wolfram.com/Eigenvector.html
http://mathworld.wolfram.com/HermitianMatrix.html
http://mathworld.wolfram.com/JordanCanonicalForm.html
http://mathworld.wolfram.com/UnitaryMatrix.html
http://meru.rnet.missouri.edu/people/hai/research/jacobi.c
http://mpec.sc.mahidol.ac.th/radok/numer/STEP17.HTM
http://mysoftwear.com/go/0110/10406671133e894d172cd42.html
http://ocw.mit.edu/NR/rdonlyres/Electrical-Engineering-and-Computer-
Science/6-241Fal12003/A685C9EE~6FF0-4E1A-81AC~04A8981C4FD9/0/
rech.pdf
http://oonumerics.org/MailArchives/oon-1ist/2000/06/0486 .php
http://oonumerics.org/MailArchives/oon-1ist/2000/06/0499.php
http://orion.math.iastate.edu/hentzel/class.510/May.23
http://ourworld.compuserve.com/homepages/fcfung/mlaseven.htm
http://planetmath.org/encyclopedia/Determinant2.html
http://planetmath.org/encyclopedia/
DeterminantIonTermsOfTracesOfPowers.html
http://planetmath.org/encyclopedia/Eigenvalue.html
http://planetmath.org/encyclopedia/JordanCanonicalForm.html
http://planetmath.org/encyclopedia/
Proof0fJordanCanonicalFormTheorem.html
http://psroc.phys.ntu.edu.tw/cjp/v41/221.pdf
http://rakaposhi.eas.asu.edu/cse494/£02-hwi-qnl.txt
http://rkb.home.cern.ch/rkb/AN16pp/node68.html
http://schwehr.org/software/density/html/Eigs_8C.html
http://sherry.ifi.unizh.ch/mehrmann99structured.html
http://sumantsumant .blogspot.com/2004/12/one~of -beauty-of -matrix-
operation-is.html
http://www-gap.dcs.st-and.ac.uk/ history/Search/historysearch.cgi?
SUGGESTION=Determinant&CONTEXT=1
http://www-history.mcs.st-andrews.ac.uk/history/Biographies/
Jordan.html
http://wuw-history.mcs.st-andrews.ac.uk/history/HistTopics/
Matrices_and_determinants.html
http://wuw-math.mit.edu/18.013A/HTML/chapter04/section01.html#
DeterminantVectorProducts
http://www.bath.ac.uk/mech-eng/units/xx10118/eigen.pdf
http://www.caam.rice.edu/software/ARPACK/UG/node46 . html
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http://www.cap-lore.com/MathPhys/Implicit/eigen.html
http://www.cs.berkeley.edu/~wkahan/MathH110/jordan.pdf
http://www.cs.ucf.edu/courses/cap6411/cot6505/Lecture-2.PDF
http://wuw.cs.ucf.edu/courses/cap6411/cot6505/spring03/Lecture-2.pdf
http://wuw.cs.uleth.ca/ holzmann/notes/eigen.pdf
http://www.cs.ut.ee/"toomas_1/linalg/linl/nodel4.html
http://www.cs.ut.ee/ toomas_l/linalg/linl/node16.html
http://www.cs.ut.ee/ toomas_1/linalg/lin2/node18.html
http://www.cs.ut.ee/ toomas_1/linalg/lin2/node20.html
http://www.cs.utk.edu/"dongarra/etemplates/
http://www.dpmms.cam.ac.uk/site2002/Teaching/IB/LinearAlgebra/
jordan.pdf
http://www.ece.tamu.edu/ " chmbrlnd/Courses/ELEN601/ELEN601-Chap7 . pdf
http://www.ece.uah.edu/courses/ee448/append_2.pdf
http://wuw.ee.bilkent.edu.tr/~sezer/EEE501/Chapter8.pdf
http://wuw.ee.ic.ac.uk/hp/staff/www/matrix/decomp.html
http://www.emunix.emich.edu/"phoward/£03/416£3fh.pdf
http://www.freetrialsoft.com/free-download-1378.html
http://wuw.gold-software.com/MatrixTCL-review1378.htm
http://www.itl.nist.gov/div898/handbook/pmc/section5/pmc532.htm
http://wuw.mat.univie.ac.at/“kratt/artikel/detsurv.html
http://wuw.math.colostate.edu/"achter/369/help/jordan.pdf
http://wuw.math.ku.dk/ma/kurser/symbolskdynamik/konjug/node14.html
http://www.math.lsu.edu/"verrill/teaching/linearalgebra/linalg/
linalg8.html
http://wwv.math.missouri.edu/courses/math4140/331eigenvalues.pdf
http://wuw.math.missouri.edu/ hema/331eigenvalues.pdf
http://www.math.poly.edu/courses/ma2012/Notes/Eigenvalues.pdf
http://wuw.math.sdu.edu.cn/mathency/math/u/u062.htm
http://www.math.tamu.edu/"dallen/m640_03c/lectures/chapter8.pdf
http://www.math.uah.edu/mathclub/talks/11-9-2001.html
http://wuw.math.ucdavis.edu/"daddel/linear_algebra_appl/
Applications/Determinant/Determinant/Determinant.html
http://www.math.ucdavis.edu/"daddel/linear_algebra_appl/
Applications/Determinant/Determinant/node3.html
http://www.math.ucdavis.edu/~daddel/Math22al_S02/LABS/LAB9/1ab8_w00/
node15.html
http://wuw.math.umd.edu/ hck/Normal.pdf
http://www.mathreference.com/la-det,eigen.html
http://www.mathreference.com/la-jf,canon.html
http://wuw.maths.gla.ac.uk/“t1l/minimal.pdf
http://wuw.maths.lancs.ac.uk/“gilbert/m306¢c/node16.html
http://www.maths.liv.ac.uk/"vadim/M298/108.pdf
http://wuw.maths.lse.ac.uk/Personal/james/old_ma201/lectli.pdf
http://www.maths.mq.edu.au/"wchen/lnlafolder/lal2.pdf
http://wuw.maths.surrey.ac.uk/interactivemaths/emmaspages/
option3.html
http://wuw.mathwords.com/d/determinant .htm
http://www.mines.edu/ rtankele/cs348/LA%207 .doc
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nova.edu/“zhang/01CommAlgJordanForm. pdf
numbertheory.org/courses/MP274/realjord.pdf
numbertheory.org/courses/MP274/uniq. pdf
oonumerics.org/MailArchives/oon-1ist/2000/05/0481.php
oonumerics.org/oon/oon-list/archive/0502.html
perfectdownloads.com/audio-mp3/other/

download-matrix-tcl.htm

http://www.
http://wuw.
http://www.
http://wuw.
http://wuw.
http://wuw.
http://wuw.
http://wuw.
http://wuw.
http://wuw.
http://wuw.
http://wuw.
http://wuw.
http://www.
http://wuw.
http://wuw.

ping.be/ ping1339/determ.htm
ppsw.rug.nl/"gladwin/eigsvd.html
reference.com/browse/wiki/Hermitian_matrix
reference.com/browse/wiki/Unitary_matrix
riskglossary.com/link/eigenvalue.htm
sosmath.com/matrix/determ0/determ0.html
sosmath.com/matrix/determ2/determ2.html
sosmath.com/matrix/inverse/inverse.html
stanford.edu/class/ee263/jctf.pdf
stanford.edu/class/ee263/jcf2.pdf
techsoftpl.com/matrix/doc/eigef.htm
tversoft.com/computer/eigen.html
wikipedia.org/wiki/Determinant
wikipedia.org/wiki/Unitary_matrix
yotor.com/wiki/en/de/Determinant.htm
2zdv.uni-tuebingen.de/static/hard/zrsinfo/x86_64/nag/

mark20/NAGdoc/f1/html/indexes/kwic/determinant .html
http://wuwl.mengr.tamu.edu/aparlos/MEEN651/

EigenvaluesEigenvectors.pdf
http://www2.maths.unsw.edu.au/ForStudents/courses/math2509/ch9. pdf
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Positive Definiteness

Positive definite matrices are of both theoretical and computational impor-
tance in a wide variety of applications. They are used, for example, in opti-
mization algorithms and in the construction of various linear regression mod-
els. As an initiation of our discussion in this chapter, we investigate first the
properties for maxima, minima and saddle points when we have scalar func-
tions with two variables. After introducing the quadratic forms, various tests
for positive (semi) definiteness are presented.

5.1 Minima, Maxima, Saddle points

5.1.1 Scalar Functions

Let us remember the properties for maxima, minima and saddle points when
we have scalar functions with two variables with the help the following exam-
ples.

Fig. 5.1. Plot of f(z,y) =z + 3*
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Example 5.1.1 Let f(x,y) = 22 + y>. Find the extreme points of f(z,y):

of(x . of(x .
U EY) _gpzgmy=o YY) 900y
Oz Oy
Since we have only one critical point, it is either the mazimum or the min-
imum. We observe that f(z,y) takes only nonnegative values. Thus, we see
that the origin is the minimum point.

Fig. 5.2. Plot of f(z,y) =axy — x> —y* — 2z — 2y + 4

Example 5.1.2 Find the extreme points of f(z,y) = zy—xz?—y?—22—2y+4.
The function is differentiable and has no boundary points.

=@y _ 5 = 0f(z,y)

o7 ="y =z —-2y—2.
Thus, x =y = —2 is the critical point.
0%f(z,y) 0%f(z,y) 0*f(z,y)
w:-———————:——z:——-————-——:: y Jay = —F/— = = 1.
fae Ox? Oy? fov: Jau Ozdy !
The discriminant (Jacobian) of f at (a,b) = (-2,-2) is
fl‘ﬂ? fw - —
e ol sty mam1-a

Since foe <0, frafyy — 3_,} > 0= f has a local mazimum at (-2, -2).
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Theorem 5.1.3 The extreme values for f(x,y) can occur only at

i. Boundary points of the domain of f.
it. Critical points (interior points where f, = fy = 0, or points where f; or
fy fails to ewist).

If the first and second order partial derivatives of f are continuous throughout
an open region containing a point (a,b) and fy(a,b) = fy(a,b) =0, you may
be able to classify (a,b) with the second derivative test:

i fox <0, foxfyy — f2, >0 at (a,b) = local mazimum;

#. fez >0, foafyy — f2, > 0 at (a,b) = local minimum;

i, fozfyy — f2y <0 at (a,b) = saddle point;

W. foafyy — ffy =0 at (a,b) = test is inconclusive (f is singular).

5.1.2 Quadratic forms

Definition 5.1.4 The quadratic term f(x,y) = azx? + 2bxy + cy? is positive
definite (negative definite) if and only if a > 0 (a < 0) and ac—b* > 0. f has
a minimum (mazimum) ot x =y = 0 if and only if fz5(0,0) > 0 (f2(0,0) <
0) and fr2(0,0)fyy(0,0) > f2,(0,0). If f(0,0) = 0, we term f as positive
(negative) semi-definite provided the above conditions hold.

Now, we are able to introduce matrices to the quadratic forms:

2 2 ab xT
ax® + 2bzy + cy® = [z, ] [bc] [y]

Thus, for any symmetric A, the product f = 7 Az is a pure quadratic
form: it has a stationary point at the origin and no higher terms.

a1 @12 "+ Gin 51

T ag1 Q22 ** - G2q T2
Az = [(L'l,ili'z,"' s Tn

Any An2 *** Gnn Tn

n n

— 2 2 _

= apnxi] + 12122 + -+ App T, = E E Qi T;T;.
i=1 j=1

Definition 5.1.5 If A is such that a;; = FB;% (hence symmetric), it is

called the Hessian matriz. If A is positive definite (xTAzx > 0, Vx # 0) and
if f has a stationary point at the origin (all first derivatives at the origin are
zero), then f has a minimum.
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Remark 5.1.6 Let f : R® 5 R and z* € R™ be the local minimum, V f(z*) =
6 and V2f(z*) is positive definite. We are able to explore the neighborhood
of z* by means of x* + Az, where ||Ax|| is sufficiently small (such that the
second order Taylor’s approzimation is pretty good) and positive. Then,

F@* + Az) = f(2") + ATV (") + %Aﬂv? (@) Az,

The second term is zero since x* is a critical point and the third term 1is
positive since the Hessian evaluated at x* is positive definite. Thus, the left
hand side is always strictly greater than the right hand side, indicating the
local minimality of x*.

5.2 Detecting Positive-Definiteness

Theorem 5.2.1 A real symmetric matriz A is positive definite if and only if
one of the following holds:

i 2T Ax >0, Yz #0;

1. All the eigen values of A satisfy A; > 0;

111. All the submatrices Ay have positive determinants;

w. All the pivots (without row exchanges) satisfy d; > 0;

v. 3 a nonsingular matrir W 3 A = WTW (called Cholesky Decomposition);

Proof. A is positive definite.
1. (i) & (i7)

(1) = (ii): Let z; be the unit eigen vector corresponding to eigen value
Ai.
Az, = \jz; & .’L‘ZTAJ?, = .’BZT/\l.’B, = A
Then, A; > 0 since A is positive definite.
(7) <= (4¢): Since symmetric matrices have a full set of orthonormal eigen

vectors
(Exercise!).

z = Zaix,- = Az = ZaiAxi = 2T Az = (Z a,-x;f)(z a;\iZi).

Because of orthonormality z7 Az = Y a?); > 0.
2. (1) & (i) & () & (v)

(1) = (482): det A = Ay - A+ Ay, since (1) & (41).
Claim: If A is positive definite, so is every Ay.

Proof: If x = [x()k] , then
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Ag x| |z
T Az = [k, 0] [ *]‘ *] [ Ok] = :cfAkxk > 0.
If we apply (i) & (i) for Ay (its eigen values are different, but all
are positive), then its determinant is the product of its eigen values
yielding a positive result.
(742) = (fv): Claim: If A = LDU, then the upper left corner satisfy A, =

Ly DUy

Proof: A.“ Li 0 [ Dy 0| |[Up F| _ | Le DUy LDy F
roofA=1gcel|lo E|l|o G|~ | BDyWUs BDyF +CEG|"

det Ay, = det Ly, det Dy, det Uy = det Dy = dy - dg - - dy, =

dy = ﬁf—l (Pivot=Ratio of determinants). If all determinants are

positive, then all pivots are positive.

(iv) = (v): In a Gaussian elimination of a symmetric matrix U = L7,
then A = LDLT. One can take the square root of positive pivots
d; > 0. Then,

(v) = (i):

A=LVvDVDLT =WTWw.

2T Az = 2T WTWz = |Wa|)* > 0.
Wax = 0 = x = 6 since W is nonsingular.

Therefore, z7 Az > 0, Vo £ 6. O

Remark 5.2.2 The above theorem would be exactly the same in the complex
case, for Hermitian matrices A = AH.

5.3 Semidefinite Matrices

Theorem 5.3.1 A real symmetric matriz A is positive semidefinite if and
only if one of the following holds:

i. zTAz >0, Vx # 6;

1. All the eigen values of A satisfy A\; > 0;

1ii. All the submatrices Ay have nonnegative determinants;

w. All the pivots (without row exchanges) satisfy d; > 0;

v. 3 a possibly singular matric W 5 A=WTW;

Remark 5.3.2 7 Az > 0 & \; > 0 is important.
A=QAQT = ¢T Az = 2T QAQTz = yT Ay = M2 + - 4+ M,

and it is nonnegative when A;’s are nonnegative. If A has rank r, there are r
nonzero eigen values and r perfect squares.
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Remark 5.3.3 (Indefinite matrices) Change of Variables: y = Cx. The
quadratic form becomes yT CTACy. Then, we have congruence transforma-
tion: A — CTAC for some nonsingular C. The matriz CT AC has the same
number of positive (negative) eigen values of A, and the same number of zero
eigen values. If we let A =1, CTAC = CTC. Thus, for any symmetric matriz
A, the signs of pivots agree with the signs of eigen values. A and D have the
same number of positive (negative) entries, and zero entries.

5.4 Positive Definite Quadratic Forms

Proposition 5.4.1 If A is symmetric positive definite, then

P(z) = §$TACL’ — 2T

assumes its minimum at the point Ax = b.

Proof. Let x 5 Az = b. Then, Yy € R",

P(y) — P(z) = <%yTAy - yTb) - (%mTAac - :va>

1
1yTAy —yT Az + ~2T Ax
2 2
1
5= 2)T Ay - 2)
> 0.

Il

Hence, Yy # z, P(y) > P(z) = x is the minimum. O

Theorem 5.4.2 (Rayleigh’s principle) Without loss of generality, we may
assume that
A1 <A< S A

The quotient, R(x) = %‘%, is minimized by the first eigen vector vy and its
minimum value is the smallest eigen value Ay :

of Avy 'l),111/\1’l)1

R(’Ul ) = =
'U;{"Ul U’1T’U1

:)\1.

Remark 5.4.3 V&, R(x) is an upper bound for A;.

Remark 5.4.4 Rayleigh’s principle is the basis for the principle component
analysis, which has many engineering applications like factor analysis of the
variance covariance matriz (symmetric) in multivariate data analysis.

Corollary 5.4.5 If x is orthogonal to the eigen vectors vy,...,vj-1, then
R(z) will be minimized by the next eigen vector v;.



5.5 Web material 77

Remark 5.4.6 \; = mingcr~ R(z) A; = maxgere R(z)
s.t. s.t.
:BTvl =0 mij.H =0
eTj1 =0 zTv, =0
Problems

5.1. Prove the following theorem.

Theorem 5.4.7 (Rayleigh-Ritz) Let A be symmetric, A < Ag < -+ < Ay

A = min 27 Az, A\, = max z¥ Az.

flzll=1 lz|l=1
5.2. Use
1 210
A=-—"—1121
100 011

to show Theorem 5.3.1.

5.3. Let

1 1 1
f(il,‘l,a?g) = 5311:13 + 5117% + 2.’E1$2 + 51‘3 —Z2+ 19.
Find the stationary and boundary points, then find the minimizer and the

maximizer over -4 <z, <0<z <3.

‘Web material

http://bmbiris.bmb.uga.edu/wampler/8200/using~££/s1d027.htm
http://delta.cs.cinvestav.mx/ “mcintosh/comun/contours/node8.html
http://delta.cs.cinvestav.mx/“mcintosh/oldweb/lcau/node98.html
http://dft.rutgers.edu/~etsiper/rrosc.html
http://econ.lse.ac.uk/courses/ec319/M/lectures.pdf
http://employees.oneonta.edu/GoutziCJ/fall_2003/math276/maple/
Lesson_141.html
http://en.wikipedia.org/wiki/Cholesky_decomposition
http://en.wikipedia.org/wiki/Maxima_and_minima
http://en.wikipedia.org/wiki/Positive-semidefinite_matrix
http://en.wikipedia.org/wiki/Quadratic_form
http://eom.springer.de/b/b016370.htm
http://eom.springer.de/C/c120160.htm
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http://eom.springer.de/N/n130030.htm
http://eom.springer.de/q/q076080.htm
http://epubs.siam.org/sam-bin/dbg/article/38133
http://esperia.iesl.forth.gr/~amo/nr/bookfpdf/£2-9.pdf
http://gaia.ecs.csus.edu/"hellerm/EEE242/chapter’201/pd.htm
http://homepage.tinet.ie/ phabfys/maxim.htm
http://iridia.ulb.ac.be/"fvandenb/mythesis/node72.html
http://kr.cs.ait.ac.th/ “radok/math/mat3/m131.htm
http://kr.cs.ait.ac.th/ radok/math/mat5/algebra62.htm
http://kr.cs.ait.ac.th/ radok/math/mat9/03c.htm
http://mat.gsia.cmu.edu/QUANT/NOTES/chapi/node8.html
http://mathworld.wolfram.com/CholeskyDecomposition.html
http://mathworld.wolfram.com/Maximum.html
http://mathworld.wolfram.com/PositiveDefiniteMatrix.html
http://mathworld.wolfram.com/PositiveSemidefiniteMatrix.html
http://mathworld.wolfram.com/QuadraticForm.html
http://mathworld.wolfram.com/topics/MaximaandMinima.html
http://modular.fas.harvard.edu/docs/magma/htmlhelp/text654.htm
http://ocw.mit.edu/NR/rdonlyres/Chemical-Engineering/10-34Fall-2005/
695E79DF-11F7-4FB7-AD7E-FEDA7T4B9BFEF/0/lecturenotes142. pdf
http://omega.albany.edu:8008/calc3/extrema-dir/define-m2h.html
http://oregonstate.edu/instruct/mth254h/garity/Fall2005/Notes/
10.15_8.pdf
http://people.hofstra.edu/faculty/Stefan_Waner/realworld/
Calcsumm8.html
http://planetmath.org/encyclopedia/CholeskyDecomposition.html
http://planetmath.org/encyclopedia/
DiagonalizationOfQuadraticForm.html
http://planetmath.org/encyclopedia/PositiveDefinite.html
http://planetmath.org/encyclopedia/QuadraticForm.html
http://pruffle.mit.edu/3.016/collected_lectures/node39.html
http://pruffle.mit.edu/3.016/Lecture_10_web/node2.html
http://random.mat.sbg.ac.at/"ste/diss/node25.html
http://rkb.home.cern.ch/rkb/AN16pp/node33.html
http://scienceandreason.blogspot.com/2006/03/quadratic-forms.html
http://sepwww.stanford.edu/sep/prof/gem/hlx/paper_html/nodell.html
http://slpl.cse.nsysu.edu.tw/chiaping/la/chap6.pdf
http://taylorandfrancis.metapress.com/media/59dambdwuj2xwl8rvvtk/
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http://wuw-math.mit.edu/~djk/18_022/chapter04/section02.html
http://wuw.analyzemath.com/Equations/Quadratic_Form_Tutorial.html
http://wuw.answers.com/topic/quadratic-form
http://wuw.artsci.wustl.edu/"e503jn/files/math/DefiniteMatrics.pdf
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Computational Aspects

For square matrices, we can measure the sensitivity of the solution of the linear
algebraic system Az = b with respect to changes in vector b and in matrix
A by using the notion of the condition number of matrix A. If the condition
number is large, then the matrix is said to be ill-conditioned. Practically, such
a matrix is almost singular, and the computation of its inverse or solution of a
linear system of equations is prone to large numerical errors. In this chapter,
we will investigate computational methods for solving Az = b, and obtaining
eigen values/vectors of A.

6.1 Solution of Az =b

Let us investigate small changes in the right hand side of Az = b as if we are
making a sensitivity analysis:

bbb+ Ay =+ 4,
A(.’E-{—Ax):b—i—Ab@A(Ax):Ab.

Similarly, one can investigate the effect of perturbing the coeflicient matrix
A:

A A+ Ay =2+ 4,
We will consider these cases with respect to the form of the coefficient matrix
A in the following subsections.

6.1.1 Symmetric and positive definite

Let A be symmetric. Without loss of generality, we may assume that we or-
dered the nonnegative eigen values: 0 < Ay < Ay < --- < \,. Since 4 is a
vector itself, it could be represented in terms of the basis formed by the asso-
ciated eigen vectors vy, vs,...,v,. Moreover, we can express A as a convex
combination because its norm is sufficiently small.
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n
Ay = Zaivi where v; & A, Za,- =1, a; > 0,Vi.
i=1
If A, is along vy, i.e. Ay = evq, then A, = —f—f since A, = A™1A,. That is,
the error of size ||A|| is amplified by the factor ,\ll, which is just the largest

eigen value of A~1. On the other hand, if b = v,, then x = A~'b = -, which
makes the relative error

A
4.0 _ B a4
[ I R

as much as possible.

Proposition 6.1.1 For a positive definite matriz, the solution x = A™'b and
the error A, = A~'A, always satisfy

ol 2 B ana < 220

Therefore, the relative error is bounded by

14al] _ A (146l
el = X ol

Definition 6.1.2 The quantity ¢ = % = %\l’ﬁf is known as condition number
of A.

Remark 6 1.3 Notice that ¢ is not affected by the size of a matriz. If A =1
or A = 10 thency =1 =cy = %m&l However, det A =1, det A’ = 10~",
Thus, determinant is a terrible measure of il conditioning.

Example 6.1.4

. [2.00002 2

— -5 — ~ 5
2 2.00002]$)\1—2x10 , A2 =4.00002 = ¢ = 2 x 10°.

In particular,

bop - [200000] - fos] .. [200002] _ [l
=01 = 1000001 | TTT T o] Y27 g 2= 1ol

Then, we have

[lb]l = 2.00001v/2, Ay = by — by = 1075 [_i] = ||A]| = V2 x 1075,
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V2 1] 1 V2
||$||=7, Am=$2—$1:§ 1 =>|]Az||=—§~

[| A -6
=1 and ~ 5 x107°.
flzll ol
Ayl .. 10° |4s

The relative amplification in this particular instance, =l ~ o Tl 18

approzimately %, which 1s a lower bound for the condition number ¢ =~ 2 X
10°.

Remark 6.1.5 As a rule of thumb (experimentally verified), a computer can
loose log ¢ decimal places to the round-off errors in Gaussian elimination.

6.1.2 Symmetric and not positive definite

Let us now drop the positivity assumption while we keep A still symmetric.
Then, nothing is changed except

[Amaz|
l)\minl

Cc =

6.1.3 Asymmetric

In this case, the ratio of eigen values cannot represent the relative amplifica-
tion.

Example 6.1.6 Let the parameter £ > 0 be large enough.

[1s 1 [l-k .
A_I:Ol]@A —-0 1],/\1—/\2—1.

In particular,

b=b1:[’;j':>w:x1= [(1) and by = [g]éxgz [g]

Then, we have

0
ol = VIR 2=t = [ 9] = au =
lzll =1, Ap =22 — 2, = [_T] = [ 4sll = V14 &2

Il Azl l| A | 1
=+/14+ k2 and = .
|zl ol V14 k2

The relative amplification in this particular instance is 1+ k2. Hence, we
should have 1 < 1+ k% < c(A). The condition number c(A) is not just the
ratio of eigen values, which is 1; but it should have a considerably larger value
in this example, since A is not symmetric.
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Definition 6.1.7 The norm of A is the number defined || A|| = max,¢ Hﬁ.

Remark 6.1.8 ||A|| bounds the “amplifying power” of the matriz.
Azl < [|A[[{lx]l, Va;

and equality holds for at least one nonzero x. It measures the largest amount
by which any vector (eigen vector or not) is amplified by matriz multiplication.

Proposition 6.1.9 For a square nonsingular matriz, the solution x = A~'b
and the error A, = A™' Ay satisfy

| A ]|

Ag _

el

Proof. Since
b= Az = [|b]| < [|A] [|z|| and
Ap = A7 A = [|Ag = < || A7 [1As]], we have

I8l < 1Al lz]] and [|A] < [[A72]|14s]|. O

Remark 6.1.10 When A is symmetric,

s e=l4] |47 = _L'

141 =, 47 = 5 !

and the relative error satisfies

Example 6.1.11 Let us continue the previous example, where
1k K 0
a=oi] =[] -]

<Al <k+1, and k< ||A7Y| <k +1,

Since we have

then the relative amplification is approzimately x* = || A|| ”A‘1||.
Remark 6.1.12

|Az|)?  2TATAz
7 = max T
[l Tt

| Al = max : Rayleigh quotient!
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Proposition 6.1.13 The norm of A is the square root of the largest eigen
value of AT A. The vector that is amplified the most is the corresponding eigen
vector of AT A.

2TAT Az 27 Apaxe

= Amax = HA“ .

zTx Tz

Example 6.1.14 Let us further continue the previous example:

oo e[

01 0 1
ATA-—[I K }:>s—1 K

2

- 2 _ (.2 —
ke s—n—l‘_0:>s (k*+2)s+1=0

kK241
A= (k2 +2)2 =41 = k¥ (K2 +4) =

—_ —(—k? = 2) + /K2(K2 + 4)
max — 2(1)

~ k% = || Al = VAmax = K.

Similarly, ||A‘1” = vV Amax[(A~)T A1 = k. Thus, the relative amplification
is controlled by ||A|| ||A™Y|| ~ x2.

Remark 6.1.15 If A is symmetric, then ATA = A? and || A|| = max |\
Let us consider now the changes in the coefficient matrix.

Proposition 6.1.16 If we perturb A, then

14|l lAall ;
o+ A <] e = Atz
Proof.
Az =1b N
(A+A4)(z+ 4;) =D
AA, + Ap(z+ A) =0 A, = A7 AL)(z + A,).
_ A - |44l
Al < ||A7H||1AA .Z'—|—Az<=>——l—|———<AlA=C .
Example 6.1.17
1 10 100 111 1
A=11055 1 |, b= |8 I=sz=02=]1
11 L 111
0 100

10 100
131329
= (|4l = / Amax[ATA] = |/ == = 100.5099, =] = V/3,
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1 100 0
999 999
A—l _ _10 _ 1010 1000
- 10989 999 99
100 100 100
10989 999
28831
"= )T = 10.2021.
= [|A7Y = 1/ Amaxl A=/ 5 = 1020
111
-1-10 0 00100 u
Ag=|-10 & -1|=A+4,=|01 0| =z = |4
1 1 111
0-5%5 — 105 10 0 ma
ey
100
V1020342
> A, =z —z1= || = ||4,|| = —=— =10.1012, and
9 100
100
N ATAL /14963
”AA” = max[A AA = 10.1236.
Al  10.1012 < 101236 HAAH
lz+ A~ V3 - 1005099° (Al
10.1012
= -————wﬁsﬁ 57.9 < c = ||A|| ||A7"|| = 100.5099(10.2021) = 1025.412.
100.5099

The relative amplification in this instance is 57.9 whereas the theoretic upper
bound is 1025.412.

Remark 6.1.18 The following are the main guidelines in practise:

1. ¢ and || A|| are never computed but estimated.

2. c explains why AT Az = ATb are so hard to solve in least squares problems:
c(AT A) = [c(A)]? where ¢(.) is the condition number. The remedy is to
use Gram-Schmidt or singular value decomposition, A = Q1XQ%. The
entries o; in X are singular values of A, and o2 are the eigen values of
ATA. Thus, ||A]| = Omas- Recall that ||Az|| = ||Q12QT x| = || Zz|.

6.2 Computation of eigen values

There is no best way to compute eigen values of a matrix. But there are
some terrible ways. In this section, a method recommended for large-sparse
matrices, the power method, will be introduced.

Let ug be initial guess. Then, ugy = Aup = A¥ 1 ug. Assume A has full
set of eigen vectors x1,Z2,. .., 2y, then up = ay Nz + -+ + an)\ﬁxn. Assume
further that Ay < Ay < -+ < A1 < Ay; that is, the last eigen value is not
repeated.
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k k
Uk _ )\1 )\n——l
E_al i T+ 4oy . Tn—1 + AnZn.

The vectors u point more and more accurately towards the direction of z,,
H )\n~
and the convergence factor is r = |—|/\—|1|

Example 6.2.1 (Markov Process, continued) Recall Ezample 4.4.6:
1

:,@)\1:].(—')[5]:1)1, Az =0.94

0.05 0.99 1

1 0.95 0.903 0.85882
YW=101 "= 10.05| ¥ |0.097|’ 8T |0.14118 "

] = Q1.
0.94

The convergence rate is quite low r = 0.94 = 3= = JI:_?IL Since the power
method is designed especially for large sparse matrices, it converges after 210
iterations if the significance level is siz digits after the decimal point.

Ao [0.95 0.01

_ [osi7201] _ [o.asee67]
Ua=10.182700 | " U210 7 | 9833333 | T Yoo T

DUt Ol

Remark 6.2.2 (How to increase r) If r = 1, the convergence is slow. If
|An—1| = |Anl], no convergence at all. There are some methods to increase the
convergence rate:

i. Block power method: Work with several vectors at once. Start with p or-
thonormal vectors, multiply by A, then apply Gram-Schmidt to orthogo-
nalize again. Then, we have ' = k\l-:\::'L

i. Inverse power method: Operate with A~ instead of A. vgp1 = A7 lvy =
Avgy1 = v (save L and U!). The convergence rate is ' = ’j\\_;ll’ provided
that r" < 1. This method guarantees convergence to the smallest eigen

vector.

ii2. Shifted inverse power method: The best method. Let A be replaced by A —
BI. All of the eigen values are shifted by 3. Consequently, r'" = Ii;:g:
If we choose B as a good approrimation to A1, the convergence will be
accelerated.

a1y Q222 AnTn

et
(A =Bk~ (A2~ B)* (An — B)*
If we know (B, then we may use A — I = LU and solve Uzy =
(1,1,-++ ,1)T by back substitution. We can choose B = [ at each step
T
3 (A= BrDwrsr = wg. If A = AT, By, = R(ug) = %fz’%, then we will
get the cubic convergence.

(A - BI)wk+1 =Wk =
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Remark 6.2.3 (QR Algorithm) Start with Ag. Factor it using the Gram-
Schmidt process into Qo Ry, then reverse factors Ay = RgQg. Ay is similar to
Ao: Qa1 A0Qo = Q51 (QoRo)Qo = A1. So, A, = QrRy = Agy1 = RiQy. Ay
approaches to a triangular form in which we can read the eigen values from
the main diagonal. There are some modifications to speed up this procedure as
well.

Definition 6.2.4 If a matriz is less than a triangular form, one nonzero di-
agonal below the main diagonal, it is called in Hessenberg form. Furthermore,
if it is symmetric then it is said to be in tridiagonal form.

Definition 6.2.5 A Householder transformation (or an elementary reflector)

is a matriz of the form

’U’UT

H=1-2—"5.
lell

Remark 6.2.6 Often v is normalized to become a unit vector u = ﬁ, then

H =1 -2uu®. In either case, H is symmetric and orthogonal:
HTH = (I - 2uu™)T(I - 2uu®) = T - 4uu” + duuTwu” =1.
In the complex case, H is both Hermitian and unitary.
H is sometimes called elementary reflector since

Proposition 6.2.7 Letz = e; = (1,0,--- ,0)7, and 0 = ||z||, and v = z+02.
Then, Hx = —0z = (—0,0,---,0)T.

Proof.
T 2 T
Hx:x—ZT—;:x-—(w+az) (m-{-Toz) o
llvl (z+02)T(x+02)

Hr=z—(r+o02)=-0z 0O

Remark 6.2.8 Assume that we are going to transform A into a tridiagonal
or Hessenberg form U~ AU. Let

asy 1 -0
as1 0 0
T = ,z2=|.|, Hx=

anl 0 0
10000 11 * * % *
0 —0 k% k% %
Uy=|0 H =UY, and UPAU; = | O % % % »
0 0 % %%

0 0 % *x %%
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The second stage is similar: T consists of the last n — 2 entries in the second
column, z is the first unit coordinate vector of matching length, and Hy is of
order n — 2:

100 0 O * %k %k %k X
010 00 * K % K %
U= 100 =U;t, and Uy L (U T AU Uz = [ 0% % x %
00 H, 00 * % %
00 00 % %

Following a similar approach, one may operate on the upper right corner
of A simultaneously to generate o tridiagonal matriz at the end. This process
is the main motivation of the QR algorithm.

Problems

6.1. Show that for orthogonal matrices ||Q|| = ¢(@) = 1. Orthogonal matrices
and their multipliers («Q) are only perfect condition matrices.

6.2. Apply the QR algorithm for

0.5000 —-1.1180 0 0 0 0
-1.1180 91.2000 —80.0697 0 0 0

A= 0 —80.0697 81.0789 4.1906 0 0
0 0 4.1906 2.5913 0.2242 0

0 0 00.2242 0.1257 —0.0100

0 0 0 0 —0.0100 0.0041

6.3. Let A(n) € R**", A(n) = (ai;), where a;; = ﬁ_—l
(a) Take A(2).

and by = . Calculate the relative error.

1.0 1.5
1. Let by = [0'5 1.0j|
2. Find a good upper bound for the relative error obtained after perturbing
the right hand side.

[V )
ol Bt

3. Find the relative error of perturbing A(2) by Ay = [ J Take

by = (1)(; as the right hand side.

4. Find a good upper bound for the relative error obtained after perturbing
A(2).
(b) Take A(3)TA(3) and find its condition number and compare with the
condition number of A(3).
(c) Take A(4) and calculate its condition number after finding the eigen values
using the @R algorithm.
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7

Convex Sets

This chapter is compiled to present a brief summary of the most important
concepts related to convex sets. Following the basic definitions, we will con-
centrate on supporting and separating hyperplanes, extreme points and poly-
topes.

7.1 Preliminaries
Definition 7.1.1 A set X in R™ is said to be convezx if

V1,22 € X andVa € Ry,0 < a < 1, the point azy + (1 — a)zp € X.

CONVEX NON-CONVEX

Fig. 7.1. Convexity

Remark 7.1.2 Geometrically speaking, X is convex if for any points xy,x2 €
X, the line segment joining these two points is also in the set. This is illus-
trated in Figure 7.1.

Definition 7.1.3 A point z € X is an extreme point of the convex set X if
and only if
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Az, xe (1 #22)€X dx=(1-a)r1tax, 0<a<l
Proposition 7.1.4 Any extreme point is on boundary of the set.

Proof. Let xg be any interior point of X. Then Je > 0 3 every point in this €
neighborhood of zg is in this set. Let x1 # z¢ be a point in this € neighborhood.
Consider

To = —x1 + 2x0, IZL‘Q - .’JZ()| = I:L’l - .’L'o[

then x4 is in € neighborhood. Furthermore, zg = %(a:l + x2); hence, zg is not

an extreme point. 0O

Remark 7.1.5 Not all boundary points of a convex set are necessarily ez-
treme points. Some boundary points may lie between two other boundary
points.

Proposition 7.1.6 Convez sets in R™ satisfy the following relations.

i. If X is a convexr set and B € R, the set BX = {y : y = Bz,xz € X} is
COnvez.

i. If X and Y are conver sets, then the set X +Y ={2:z2=z+y,z €
X,y €Y} is conven.

#4i. The intersection of any collection of convex sets is convexz.

@

@

0 (i) (iti)

Fig. 7.2. Proof of Proposition 7.1.6

Proof. Obvious from Figure 7.2. O

Another important concept is to form the smallest convex set containing
a given set.

Definition 7.1.7 Let S C R™. The convex hull of S is the set which is the
intersection of all convex sets containing S.

Definition 7.1.8 A cone C is a set such that if x € C, then ax € C, Ya €
R4. A cone which is also convex is known as convex cone. See Figure 7.3.
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8 L]
CONVEX
NON-CONVEX NON-CONVEX

Fig. 7.3. Cones

7.2 Hyperplanes and Polytopes

The most important type of convex set (aside from single points) is the hy-
perplane.

Remark 7.2.1 Hyperplanes dominate the entire theory of optimization; ap-
pearing in Lagrange multipliers, duality theory, gradient calculations, etc. The
most natural definition for a hyperplane is the generalization of a plane in R3.

Definition 7.2.2 A set V in R™ is said to be linear variety, if, given any
1,2 € V, we have azy + (1 — a)zz € V,Va € R.

Remark 7.2.3 The only difference between a linear variety and a convex set
is that a linear variety is the entire line passing through any two points, rather
than a simple line segment.

Definition 7.2.4 A hyperplane in R™ is an (n—1)-dimensional linear variety.
It can be regarded as the largest linear variety in a space other than the entire
space itself.

Proposition 7.2.5 Leta € R",a # 0 and b € R. The set
H={zeR": a"z="5}
18 a hyperplane in R™.
Proof. Let x1 € H. Translate H by —x1, we then obtain the set
M=H-z;={yeR':JxecH>y=2—11},

which is a linear subspace of R*. M = {y € R™ : aTy = 0} is also the set of
all orthogonal vectors to a € R™, which is clearly (n — 1) dimensional. O

Proposition 7.2.6 Let H be an hyperplane in R™. Then,

JacR">H={xecR:alz =0}
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Proof. Let z; € H, and translate by —x; obtaining M = H — ;. Since H is
a hyperplane, M is an (n — 1)-dimensional space. Let a be any orthogonal to
M,ie. a € M*. Thus, M = {y € R" : aTy = 0}. Let b = aTz; we see that
if 2o € H, £3 — z1 € M and therefore aTzy — aTx; = 0 = a7z, = b. Hence,
H C {z € R:a%z = b}. Since H is, by definition, of (n — 1) dimension, and
{z € R: aTz = b} is of dimension (n — 1) by the above proposition, these two
sets must be equal (see Figure 7.4). O

/ //

Fig. 7.4. Proof of Proposition 7.2.6

Definition 7.2.7 Let a € R", b € R. Corresponding to the hyperplane H =
{z : aTx = b}, there are positive and negative closed half spaces:

Hy={z:a"z>0b}, H = {z:a"z <b}

and ) ]
Hy={z:a"z>0b}, H ={z:a"z < b}.

Half spaces are convex sets and Hy UH_ = R™.
Definition 7.2.8 A set which can be expressed as the intersection of a finite
number of closed half spaces is said to be a convex polyhedron.

Convex polyhedra are the sets obtained as the family of solutions to a set
of linear inequalities of the form

aﬁw < by,

Since each individual entry defines a half space and the solution family is
the intersection of these half spaces.

Definition 7.2.9 A nonempty bounded polyhedron is called a polytope.
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7.3 Separating and Supporting Hyperplanes

Theorem 7.3.1 (Separating Hyperplane) Let X be a conver set and y
be a point exterior to the closure of X. Then, there exists a vector a € R™ >
aTy < infyex a¥z. (Geometrically, a given point y outside X, a separating
hyperplane can be passed through the point y that does not touch X. Refer to
Figure 7.5)

Fig. 7.5. Separating Hyperplane

Proof. Let § = inf,cx |z — y| > 0 Then, there is an zo on the boundary of X
such that |zg — y| = §. Let z € X. Then,

Va, 0 <a <1, zo+ az—xp)

is the line segment between zy and z. Thus, by definition of zg,
|zo + (2 — @) — y[* > |20 — y[*

7

& (zo-y) T (wo—y)+2a(z0—Yy) " (2=20)+0* (z—z0)T (2—20) > (zo—y)T (z0~y)

& 2a(zg — )T (2 — 20) + a?lz — 202 > 0
Let o — 07, then &? tends to 0 more rapidly than 2a. Thus,
(o~ ) (z2—20) 20 (wo—y) 2 — (w0 —y)Tz0 20
& (xo—y)T2 > (mo—y) 0 = (w0 —9)Ty+(z0+y)" (€0 ~y) = (wo—y)Ty+6°

& (xo —y)Ty < (zo — v)Tzo < (xo — )2, V2 € X (Since 6 > 0).

Let a = (o — y), then aTy < aTxg = inf,ex a¥z. O
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Theorem 7.3.2 (Supporting Hyperplane) Let X be a convex set, and let
y be a boundary point of X. Then, there is a hyperplane containing y and
containing X in one of its closed half spaces.

Proof. Let{yx} be sequence of vectors, exterior to the closure of X, converging
to y. Let {ax} be a sequence of corresponding vectors constructed according to
the previous theorem, normalized so that |ax| = 1, such that af yx < infyex.
Since {ax} is a boundary sequence, it converges to a. For this vector, we have
aTy = lim afyk <az. O

Definition 7.3.3 A hyperplane containing a convex set X in one of its closed
half spaces and containing o boundary point of X is said to be supporting
hyperplane of X.

7.4 Extreme Points

Remark 7.4.1 We have already defined extreme points. For example, the
extreme points of a square are its corners in R? whereas the extreme points
of a circular disk are all (infinitely many!) the points on the boundary circle.
Note that, a linear variety consisting of more than one point has no extreme
points.

Lemma 7.4.2 Let X be a convex set, H be a supporting hyperplane of X and
T =X N H. Every extreme point of T is an extreme point of X.

Proof. Suppose xg € T is not an extreme point of X. Then,
zo = azy + (1 — &)z, for some z1, 22 € X, 0 <a < 1.

Let H = {z : a¥z = ¢} with X contained in its closed positive half space.
Then, aTz1 > ¢, a’x3 > c. However, since z¢ € H,

c=aTzy = aa¥z, + (1 — a)aTz,.
Thus, z1,22 € H. Hence, 1,22 € T and x( is not an extreme point of 7. 0O

Theorem 7.4.3 A closed bounded convexr set in R™ is equal to the closed
convex hull of its extreme points.

Proof. This proof is by induction on n.
For n = 1, the statement is true for a line segment:

[g,b)={zeR:iz=a+(1-a)h0<a<l1}.

Suppose that the theorem is true for (n — 1). Let X be a closed bounded
convex set in R™, and let K be the convex hull of the extreme points of X.
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We will show that X = K.
Assume that 3y € X 3 y ¢ K. Then, by Theorem 7.3.1, there is a hyperplane
separating y and K
Ja#£03aTy < inf o’z
z€EK

Let xo = infzex(aT2). z¢ is finite and 3zo € X 3 aTzy = by (because by
Weierstrass’ Theorem: The continuous function a”z achieve its minimum over
any closed bounded set).

Hence, the hyperplane H = {z : a2 = by} is a supporting hyperplane to X.
Since by < aTy < infyex ax, H is disjoint from K. Let T = H N X. Then,
T is a bounded closed convex set of H, which can be regarded as a space
in R*~!, T # 0, since g € T. Hence, by induction hypothesis, T contains
extreme points; and by the previous Lemma, these are the extreme points
of X. Thus, we have found extreme points of X not in K, Contradiction.
Therefore, X C K, and hence X = K (since K C X, i.e. K is closed and
bounded). O

Remark 7.4.4 Let us investigate the implications of this theorem for convex
polytopes. A convex polytope is a bounded polyhedron. Being the intersection of
closed halfspaces, a convex polytope is closed. Thus, any convex polyhedron is
the closed convex hull of its extreme points. It can be shown that any polytope
has at most a finite number of extreme points, and hence a convex polytope is
equal to the convex hull of a finite number of points. The converse can also be
established, yielding the following two equivalent characterizations.

Theorem 7.4.5 A convex polytope can be described either as a bounded in-
tersection of a finite number of closed half spaces, or as the convexr hull of a
finite number of points.

Problems

7.1. Characterize (draw, give an example, list extreme points and half spaces)
the following polytopes:

a) zero dimensional polytopes.

b) one dimensional polytopes.

¢) two dimensional polytopes.

7.2. d-simplex
d-simplex is the convex hull of any d + 1 independent points in R™ (n > d).
Standard d — simplex with d + 1 vertices in R4+ is

d+1
Ag={z e R™ > "z =1Lz, > 0,i=1,...,d+1}.

i=1

Characterize A, in R3.
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7.3. Cube and Octahedron
Characterize cubes and octahedrons with the help of three dimensional cube
Cjs, and octahedron 03“.

7.4. Pyramid
Let P,4i1=conv(Cy,zo) be a (n+1)-dimensional pyramid, where zo ¢ Cy.

Draw
Ps = conv(Cq: a =1, (1/2,1/2,1)T)

and write down all describing inequalities.

7.5. Tetrahedron

The vertices of a tetrahedron of side length v/2 can be given by a particularly
simple form when the vertices are taken as corners of the unit cube. Such a
tetrahedron inside a cube of side length 1 has side length /2 with vertices
(0,0,0)%, (0,1, )7, (1,0,1)T, (1,1,0)T. Draw and find a set of describing
inequalities. Is it possible to express P,y as a union / intersection / direct
sum of a cone and a polytope?

7.6. Dodecahedron
Find the vertices of a dodecahedron (see Figure 7.6) of side length a = /5 — 1.

Fig. 7.6. A dodecahedron

‘Web material

http://cepa.newschool.edu/het/essays/math/convex.htm
http://cm.bell-labs.com/who/clarkson/cis677/lecture/6/index.html
http://cm.bell-labs.com/who/clarkson/cis677/lecture/8/
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PlanetMath_Exchange/52-XX_Convex_and_discrete_geometry
http://eom.springer.de/c/c026340.htm
http://grace.speakeasy.net/ dattorro/EDMAbstract.pdf
http://grace.speakeasy.net/"dattorro/Meboo.html
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http://www.cas.mcmaster.ca/ deza/CombOptim_Ch7.ppt
http://www.cis.upenn.edu/"cis610/polytope.pdf
http://www.cs.cmu.edu/afs/cs/academic/class/16741-806/www/
Lecturel3.pdf
http://www.cs.wustl.edu/"pless/506/12.html
http://www.cse.unsw.edu.au/"lambert/java/3d/ConvexHull.html
http://wuw.eecs.berkeley.edu/ "wainwrig/ee227a/Scribe/
lecturel2_final_verB.pdf
http://www.eleves.ens.fr/home/trung/supporting_hyperplane.html
http://www.geom.uiuc.edu/graphics/pix/Special_Topics/
Computational_Geometry/cone.html
http://wuw.geom.uiuc.edu/graphics/pix/Special_Topics/
Computational_Geometry/half.html
http://wuw.hss.caltech.edu/"kcb/Eci01/index.shtml#Notes
http://wuw.ics.uci.edu/"eppstein/junkyard/polytope.html
http://wuw.irisa.fr/polylib/D0C/node16.html
http://www.isye.gatech.edu/"spyros/LP/nodel5.html
http://wuv.jstor.org/view/00029939/d1970732/97p0127h/0
http://www.mafox.com/articles/Polytope
http://www.math.rutgers.edu/pub/sontag/pla.txt
http://wuw.maths.lse.ac.uk/Personal/martin/fme9a.pdf
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Linear Programming

A Linear Programming problem, or LP, is a problem of optimizing a given
linear objective function over some polyhedron. We will present the forms
of LPs in this chapter. Consequently, we will focus on the simplex method
of G. B. Dantzig, which is the algorithm most commonly used to solve LPs;
in practice it runs in polynomial time, but the worst-case running time is
exponential. Following the various variants of the simplex method, the duality
theory will be introduced. We will concentrate on the study of duality as a
means of gaining insight into the LP solution. Finally, the series of Farkas’
Lemmas, the most important theorems of alternatives, will be stated.

8.1 The Simplex Method

This section is about linear programming: optimization of a linear objective
function subject to finite number (m) of linear constraints with n unknown
and nonnegative decision variables.

Example 8.1.1 The following is an LP:
Min z =2z + 3y
s.t.
20 +y>6
z+2y>6
z,y > 0.
Standard Form:
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Canonical form: Min z =[cT|67] [m]
Min z=c'z+ 0Ty st
s.t. & T
Az —y=1b [Al - 1] y =t
z,y >0
HE

Example 8.1.2
Min z =2z + 3y

s.t.
2c4+y>6
r+2y>6
z,y > 0.
x=0¢
2x+y=6 Feasible
set
2x+3y=10
> ~
x+2y=6\

o ~ ~ \\ h ‘R y=0
T ~ ~
~ ~
~ ~
~ v 2x+3y=6

~
~

~
SO 2x+3y=0

Fig. 8.1. The feasible solution region in Example 8.1.2

See Figure 8.1.
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Definition 8.1.3 The extreme points of the feasible set are exactly the basic
feasible solutions of Ax = b. A solution is basic when n of its m+n components
are zero, and is feasible when it satisfies x > 6. Phase I of the simplex method
finds one basic feasible solution, and Phase I moves step by step to the optimal
one.

If we are already at a basic feasible solution z, and for convenience we
reorder its components so that the n zeros correspond to free variables.

x
z = [xNBze] ’AZ{B,N]’CT:(CE’C%)

) z
Min z=(c%,c%) [a:NiO]

Min z =chxp + chan

s.t.
- s.t.
[B|N] [x;:iﬁ} =b Bzp + Nzy =b
zp, TN > 6
[ T ]>9.
.’BN:B -

Let us take the constraints
Bzp+Nzy = b Bxy =b—Nay < zp = B~} [b—Nzy] = B"'0—B ' Nay.
Now plug zp in the objective function
z=chap+chany = cS[B7 - B"'Nzy] + chan

=cEB7 b+ (¢ — cgB7'N)zy.
Ifwelet zy =8, thenazg=B"1b>0= 2= c'{-),B“lb.

Proposition 8.1.4 (Optimality Condition) If the vector (c§, —c5B~1N)
is nonnegative, then no reduction in z cen be achieved. The current extreme
point (xp = B~1b,xn = 0) is optimal and the minimum objective function
value is cg B~1b.

Assume that the optimality condition fails, the usual greedy strategy is to
choose the most negative component of ¢y — cg B~!N, known as Dantzig’s
rule. Thus, we have determined which component will move from free to basic,
called as entering variable x.. We have to decide which basic component is
to become free, called as leaving variable, x;. Let N¢ be the column of N
corresponding to z.. xg = B~'b — B! N¢x,. If we increase z. from 0, some
entries of xp may begin to decrease, and we reach a a neighboring extreme
point when a component of xp reaches 0. It is the component corresponding
to x;. At this extreme point, we have reached a new z which is both feasible
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and basic: it is feasible because x > 8, it is basic since we again have n zero
components. z. is gone from zero to «, replaces x; which is dropped to zero.
The other components of xp might have changed their values, but remain
positive.

Proposition 8.1.5 (Min Ratio) Suppose u = N€, then the value of . will
be:
(B~'b); _ (B~'b)

“= a:::rl}tlztslic (B‘lu)j B (B—I’U,)[

and the objective function will decrease to c5B~b — aB™tu.

Remark 8.1.6 (Unboundedness) The minimum is taken only over posi-
tive components of B~ lu, since negative entries will increase Tp and zero
entries keeps xp as their previous values. If there are no positive components,
then the next extreme point is infinitely far away, then the cost can be reduced
forever; z = —oo! In this case we term the optimization problem as unbounded.

Remark 8.1.7 (Degeneracy) Suppose that more than n of the variables are
zero or two different components if the minimum ratio formula give the same
minimum ratio. We can choose either one of them to be made free, but the
other will still be in the basis at zero level. Thus, the new extreme point will
have (n + 1) zero components. Geometrically, there is an extra supporting
plane at the extreme point. In degeneracy, there is the possibility of cycling
forever around-the same set of extreme points without moving toward z*,
the optimal solution. In general, one may assume nondegeneracy hypothesis
(zp = B~1b > 6).

Example 8.1.8 Assume that we are at the extreme point P in Figure 8.1,
corresponding to the following basic feasible solution:

6 21
r
o= mB]: Sl _ (v
N 0 T
0 z2

21 YT 29 s .
A=[B|N]=|-12[1 0 ’CT:(CEIC%)=< 1y z2).
0112 -1

& — EBIN = [20] - [03] [_(1) ﬂ_l[
2

10

2-1|"
12|10 5 1-2|-10 o 10]-1 ~ Bl -12
0101 0 1) 01 01 01 1 01}
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¢y —cEBTIN =[20] - [03] [—é ﬂ [; —(1)]

&~ EBIN = [20] - [03] [g :ﬂ = (*‘Z z;)

Since the first component is negative, P is not optimal; x should enter the
basis, i.e.

_ e |1 ~lpre _ |3 -1, _ {6} _|~&
e -]

op=B"'b- B 'N°z, = [zy‘] = [g] - {g] z > [8]

éa:Min{§=2,g=3}=2. Thus, 2 = 21,2 = 2,y =6 — 2a = 2.

2 T
_|zB) _ 2| _|¥ _ _J12l-1 o
x_[?d_ 0| ~ |a ’A"[BIN]‘[M‘ 0*1]‘
0 z9
T =[chlck]=[2300], B= [; ﬂ
Bl < [1210 1 2/ 10 10l-3 3] _ g
[ |]‘[21'01 - 0—3‘—21]—’ 01) 2-1 =[1]B7"].
T _ Tp-1 -3 3|[-1 0
cN—cBB—Nz[oo]—[23][ 5 3 [ O_l]z
3 3

[OO] — [2 3] [_

Thus, extreme point Q in Figure 8.1 is optimal, c5B~'b = 10 is the optimal
value of the objective function.

Wk ofe

Ol Qo=
—_
I
—
ol
=
—

\Y
o)

8.2 Simplex Tableau

We have achieved a transition from the geometry of the simplex method to
algebra so far. In this section, we are going to analyze a simplex step which
can be organized in different ways.

The Gauss-Jordan method gives rise to the simplex tableau.

[Allo] = [BINI|b] — [I|B™'N||B~"b].
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Adding the cost row

I|BIN|B~1%

gl & | 0

Il BN || B
0|k — cEB7IN|—-cEB b |’

The last result is the complete tableau. It contains the solution B~'b, the
crucial vector cyT — ¢cgTB™IN and the current objective function value
cgTB~1b with a superfluous minus sign indicating that our problem is mini-
mization. The simplex tableau also contains reduced coefficient matrix BN
that is used in the minimum ratio. After determining the entering variable
z., we examine the positive entries in the corresponding column of B~!N,
(v =B7'u = B7IN®) and « is determined by taking the ratio of (1(3%11—1\5’%)11—,
for all positive v;’s.

If the smallest ratio occurs in I** component, then the I** column of B
should be replaced by u. The I** element of (B~1N®); = v; is distinguished
as pivot element.

It is not necessary to return the starting tableau, exchange two columns
and start again. Instead we can continue with the current tableau. Without
loss of generality, we may assume that the first row corresponds to the leaving
variable, that is the pivot element is v;.

r. . . . T

21:0---0%-o%: vy kx| (BTIB)
I |\B"'N :B~'N|| B~%

:0: U

:0:0---0 *u»*fce—cgvf*ou* ~c£B‘1b_

The first step in the pivot operation is to divide the leaving variable’s row
by the pivot element to create 1 in the pivot entry. Then, we have
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:ﬁ'O 0] %---%: 1 ook a
0 3’[}2'
I |B"'N :B-IN|| B~
:0: U
_5030-'~0 *»u*fce—cgvf*---* —ch_lb_

For all the rows except the objective function row, do the following oper-
ation. For row ¢, multiply v;*(the updated first row) and subtract from row
i. For the objective function row, multiply the first row by (c. — cg¥v) and
subtract from the objective function row.

What we have at the end is another simplex tableau.

E % O - 0lk---%i1 ke % o ]
Lo 0
+
I * *
H
o 0
_EZC-EUIIEE—UE()---O ook O ke k —cEB7b — afce — chv) |

Example 8.2.1 The starting tableau at point P is

T 012 —1i6
c ”O

cglc?\}HO

The final tableau after Gauss-Jordan iterations is

z1y| T z||RHS
n| 10 3=2] 6| _({ BN |B'
y[01] 2-1 6 O|ck — ch"lN“——cost
z|00]—4 3 —-18
Since the reduced cost for © is —4 < 0, z should enter the basis. The
minimum ratio o = Min{$,$} = 2 due to 21, thus z; should leave the basis.
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| z1ylz z||RHS
z| 301-3] 2
y|-3100 3| 2
=2 300 3| -10

Thus, x* =2 =y* = 2z* = 10.

Remark 8.2.2 All the pivot operation can be handled by multiplying the in-
verse of the following elementary matriz.

1 vy :0 0 1 .
0
0
0
e Ly0...0 o Bl o

0...0:.:1 : 11

1o .

0
0

(0. .. Ol 1] i (! 1]

Thus, the pivot operation is
[I|B"'N||B~'b| — [E'I|E"'B-!N||E~'B~1b].

New basis ts BE (B except the lth column is replaced by u = N¢) and basis
inverse is (BE)™! = E~'B~L. This is called product form of the inverse.
Thus, if we store E~1’s then we can implement the simplex method on a
simplex tableau.

8.3 Revised Simplex Method

Let us investigate what calculations are really necessary in the simplex
method. Each iteration exchanges a column of N with a column of B, and
one has to decide which columns to choose, beginning with a basis matrix B
and the current solution xg = B~1b.

S1. Compute row vector A = c5B~! and then ¢k — AN.
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S2. If 071\1, — AN > 4, stop; the current solution is optimal. Otherwise, if the
most negative component is e component, choose et* column of N to
enter the basis. Denote it by u.

S3. Compute v = B~ 1u.

S4. Calculate ratios of B~1b to v = B~ !u, admitting only positive compo-
nents of v. If there are no positive components, the minimal cost is —oo;
if the smallest ratio occurs at component I, then I** column of current B
will be replaced with u.

S5. Update B (or B™!) and the solution is g = B~'b. Return to S1.

Remark 8.3.1 We need to compute A = cz'B~',v = B~lu, and 25 =
B~1b. Thus, the most popular way is to work only on B~1. With the help of
previous remark, we can update B~’s by premultiplying E~1’s.

The excessive computing (multiplying with E~1’s) could be avoided by
directly reinverting the current B at a time and deleting the current E~1’s
that contain the history.

Remark 8.3.2 The alternative way of computing A\,v and xp is AB =
cE,Bv = u, and Bxp = b. Then, the standard decompositions (B = QR
or PB = LU ) lead directly to these solutions.

Remark 8.3.3 How many simplez iterations do we have to take?

There are at most (77:1) extreme points. In the worst case, the simplex method
may travel almost all of the vertices. Thus, the complexity of the simplex
method is exponential. However, experience supports the following average be-
havior. The simplex method travels about m extreme points, which means an
operation count of about m?n, which is comparable to ordinary elimination to
solve Ax = b, and that is the reason of its success.

8.4 Duality Theory

The standard primal problem is: Minimize ¢Tz subject to Az > b and = > 6.
The dual problem starts from the same A, b, and ¢ and reverses everything:
Maximize y7'b subject to ATy < c and y > 6.

There is a complete symmetry between the two. The dual of the dual is
the primal problem. Both problems are solved at once. However, one must
recognize that the feasible sets of the two problems are completely different.
The primal polyhedron is a subset of R™, marked out by matrix A and the
right hand side b. The dual polyhedron is a subset of R™, determined by AT
and the cost vector c.

The whole theory of linear programming hinges on the relation between
them.

Theorem 8.4.1 (Duality Theorem) If either the primal problem or the
dual has an optimal vector, then so does the other, and their values are the
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same: The minimum of ¢z equals the mazimum of yTb. Otherwise, if optimal
vectors do not exist, either both feasible sets are emptly or else one is empty
and the other problem is unbounded.

Theorem 8.4.2 (Weak Duality) Ifx andy are feasible vectors in the min-
imum and mazimum problems, then yTb < Tz,

Proof. Since they are feasible, Az > b and ATy < ¢ (& yTA < cT). They
should be nonnegative as well: x > 6, y > 0. Therefore, we can take inner
products without ruining the inequalities: yT Az > yTb and yTAz < cTx.
Thus, y7'b < cT'z since left-hand-sides are identical. O

Corollary 8.4.3 If the vectors © and y are feasible, and if cTx = yTb, then
these vectors must be optimal.

Proof. No feasible y can make yTb larger than ¢Tz. Since our particular y
achieves this value it should be optimal. Similarly, x should be optimal. O

Theorem 8.4.4 (Complementary Slackness) Suppose the feasible vectors
x and y satisfy the following complementary slackness conditions:

if (Az); > b, then y; = 0 and if (ATy); < c;, then z; = 0.
Then, x and y are optimal. Conversely, optimal vectors must satisfy comple-
mentary slackness.

Proof. At optimality we have
yTb =y (Az) = (yT Az = Tz

If y > 0 and Az > b = yTb < yT(Az). When yTb = yT(Ax) holds, if
b; < (Azx);, the corresponding factor y; should be zero. The same is true
for yTAz < Tz If ¢; > (ATy); then z; = 0 to have yT Az = cTz. Thus,
complementary slackness guarantees (and is guaranteed by) optimality. O

Proof (Strong Duality). We have to show that y7b = ¢z is really possible.

Max c¢Tz, Az >b, > 6

& Max [T[67] [ﬂ [A]-1] [;J = b, [f] > 6.

(411 = [BIV], [£] = [22] = [252] . (en1em) = (1R ).
Optimality condition: NT(BT) lcp < cy.
Since we have finite number of extreme points, the optimality condition is
eventually met. At that moment, the minimum cost is Tz = c5B 'z p.

T T
Max bTy subject to [ilI] y < [8] - [fﬂ] y < l:(c:f[] & BTy =cp
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Furthermore, this choice of y is optimal, and the strong duality theorem has
been proven. This is a constructive proof, z* and y* were actually computed,
which is convenient since we know that the simplex method finds the optimal
values. O

8.5 Farkas’ Lemma

b Column2
X
9 T
\4((« Column3 9\‘% Column3
Column4 Column4

(i) Ax=b has a nonnegative solution (ii) Else

Fig. 8.2. Farkas’ Lemma

By the fundamental theorem of Linear Algebra,
either b € R(A) or Iy e N(AT) 5y L b,

that is, there is a component of b in the left null space. Here, we immediately
have the following theorem of alternatives.

Proposition 8.5.1 FEither Az = b has a solution, or else there is a y 3
ATy =0,4Tb # 0.

If b € Cone(a*,a?,a3,...) then Az = b is solvable. If b ¢ Cone(columns
of A), then there is a separating hyperplane which goes through the origin
defined by y that has b on the negative side. The inner product of y and b is
negative (y7b < 0) since they make a wide angle (> 90°) whereas the inner
product of y and every column of 4 is positive (ATy > 6). Thus, we have the
following theorem:.

Proposition 8.5.2 FEither Ax = b,x > 6 has a solution, or else there is a y
such that ATy > 8,yTb < 0.

Corollary 8.5.3 Either Az > b,x > 6 has a solution, or else there is a y
such that ATy > 0,yTb <0,y < 4.
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Proof. Av >b,x >80 — Ac—1z=0,22>0.

Either [A ~I} [T} has a nonnegative solution or =y > [A

T lsal
y>0,y"bh <.

z —TI

= ATy >0,yThb<0,y<6. O

Remark 8.5.4 The propositions in this section can also be shown using the
primal dual pair of linear programming problems: If the dual is unbounded,
the primal is infeasible.

1. Either Az = b has a solution, or else there is ay 3 ATy = 0,y"b # 0:

(P1): Maz 6%z (D1): Min bly
s.t. s.t.
Ax =10 Aty =9
r: URE y: URE

(P2): Min 0Tz (D2): Maz bTy
s.t. s.t.
Az =b ATy =0
z: URE y: URE

Either P1 (or P2) is feasible, or D1 (or D2) is unbounded. For D1 (D2)
to be unbounded, we must have BTy < 0 BTy > 0). Thus, either Ax = b
ordy > ATy = 6,yTb # 0.

Either Ax = b,x > 6 has a solution, or else there is a y such that
ATy >0,y"bh <0:

(P3): Maz 0%z (D3): Min by
s.t. s.t.
Axr=1b ATy >0
x>0 y: URE

Either P3 is feasible, or D38 is unbounded. For D3 to be unbounded, we
must have bTy < O . Thus, either Az = b,z > 0 has a solution, or else
dy > ATy >0, y'b <0.
Fither Ax > b,z > 6 has a solution, or else there is a y such that
ATy > 0,47h < 0,y < 6:

(P4): Maz 0%z (D4) : Min b7y
s.t. s.t.
Az >b Aty >0
© 0 y <o
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Either P4 is feasible, or D4 is unbounded. For Dj to be unbounded, we
must have bTy < 0 . Thus, either Az > b,z > 8 has a solution, or else
Jys ATy >0, yTb <0, y<4b.

Problems
8.1. (P):
Maz z =x1 4 229 + 223
s.t.
21 +x2 < 8
I3 S 10
To > 2

Z1, T2, 23 = 0.

Let the slack/surplus variables be s1, s2, $3.
a)Draw the polytope defined by the constraints in R3, identify its extreme
points and the minimum set of supporting hyperplanes.
b) Solve (P) using

1. matrix form,

2. simplex tableau,

3. revised simplex with product form of the inverse,

4. revised simplex with B = LU decomposition,

5. revised simplex with B = QR decomposition.

c) Write the dual problem, draw its polytope.
8.2. Let P = {(x1,z2,23) > 0 and
2.’171 — Ty — I3 Z 3

Ty — T2+ T3 > 2
@1 — 2w + 223 > 4}

Let s1, 82, 83 be the corresponding slack/surplus variables.

a) Find all the extreme points of P.

b) Find the extreme rays of P (if any).

¢) Considering the extreme rays of P (if any) check whether we have a finite
solution z € P if we maximize

1.z + 20 + 23,
2. =2z, — 9 — 3z3,
3. —x1 — 229 + 2x3.

d) Let z9 = 6, 70 = 1, z3 = % Express this solution with the convex
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combination of extreme points plus the canonical combination of extreme
rays (if any) of P.
e) Let the problem be

min x; + 229 + 2x3 subject to (zy,x2,23) € P.

1. Solve.
2. What if we reduce the right hand side of (1) by 3 and (3) by 1.
3. Consider the solution found above. What if we add a new constraint

2z + 529 + x3 < 3.

8.3. Upper bounded simplex

Modify the simplex algorithm without treating the bounds as specific con-
straints but modifying the optimality, entering and leaving variable selection
conditions to solve the following LP problem:

max 227 + 3z2 + x3 + 424
s.t.
Ty + 2z + 323+ 524 <30 (1)

1+ o <13 (2)
33+ 14 <20 (3)
1<z <6, 0€22 <10, 3<23<9, 0<z24<5

a) Start with the initial basis as {s1, sz, s3} where s, 32,3 are the corre-
sponding slack variables at their lower bounds. Use Bland’s (lexicographically
ordering) rule in determining the entering variables. Find the optimal solu-
tion.

b) Take the dual after expressing the nonzero lower/upper bounds as specific
constraints. Find the optimal dual values by considering only the optimal
primal solution.

8.4. Decomposition

Let a € A be an arc of a network N = (V, A), where ||V|| = n, ||4] = m.
Given a node i € V, let T'(i) be the set of arcs entering to ¢ and H(i) be
the set of arcs leaving from i. Let there be k = 1,..., K commodities to be
distributed; cp, denotes the unit cost of sending a commodity through an arc,
uke denotes the corresponding arc capacity, dy; denotes the supply/demand
at node ¢, and U, is the total carrying capacity of arc a.

a) Let zp, be the decision variable representing the flow of commodity k
across arc a. Give the classical Node-Arc formulation of the minimum cost
multi-commodity flow problem, where commodities share capacity. Discuss
the size of the formulation.
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Fig. 8.3. Starting bfs solution for our multi-commodity flow instance

b) Let Pk be the set of paths from source node sy, to sink node t;, for commod-
ity k. For P € P, let fp: flow on path P (decision variable),
l,ifaisin P
0, otherwise

Cip: unit cost of flow = Y I,pcra

Dy: demand for the circulation

pp: upper bound on flow = min {ug, : Iop = 1}
Give the Path-Cycle formulation, relate to the Node-Arc formulation, and dis-
cuss the size.
c¢) Take the path cycle formulation. Let w, be the dual variable of the capac-
ity constraint and m; the dual variable of the demand constraint. What will
be the reduced cost of path P? What will the reduced cost of path P at the
optimality? Write down a subproblem {column generation) that seeks a path
with lower cost to displace the current flow. Discuss the properties.
d) Solve the example instance using column generation starting from the so-
lution given in Figure 8.3. Let us fix all capacities at 10 and all positive
supplies/demands at 10 with unit carrying costs.
e) Sketch briefly the row generation, which is equivalent to the Dantzig-
Wolfe/Bender’s decompositions’ viewpoint.

IaP =
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Number Systems

In this chapter, we will review the basic concepts in real analysis: order re-
lations, ordered sets and fields, construction and properties of the real and
the complex fields, and finally the theory of countable and uncountable sets
together with the cardinal numbers. The known sets of numbers that we will
use in this chapter are

N: Natural
Z: Integer
Q: Rational
R: Real

C: Complex

9.1 Ordered Sets

Definition 9.1.1 Let S be a set. An order on S is a relation < such that

i) If x,y are any two elements of S, then one and only one of the following
1s true:
<y, xT=yy <

i) Ifx,y,2€ S andx <y and y < z, then z < z.

r<yty=<zx.
z Xy means T <y or z =y without specifying one.

Example 9.1.2 § = Q has an order; define x < y if y — x is positive.

Definition 9.1.3 An ordered set is a set S on which there is an order.

Definition 9.1.4 Let S be an ordered set and 0 # E C S. E is

o bounded above if 3b € S 3 Vz € E,z < b where b is an upper bound of E.
o bounded below if Ja € S 5 Vz € E,a X ¢ where a is a lower bound of E.
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o bounded if E is both bounded above and below.
Example 9.1.5 A={peQ:p>0,p2 <2} is

o bounded above, b=3/2,2,... are upper bounds.
e bounded below, a =0,-1/2,... are lower bounds.

Definition 9.1.6 Let S be an ordered set and 0 # E C S be bounded above.
Suppose b € § >:

1. b is an upper bound of E.
2. if) € S and b < b then V' is not an upper bound of E. Equivalently, if
b’ is any upper bound of E if b = b.

Then, b is called least upper bound (lub) or supremum (sup) of E and denoted

by
b=supFE =1lubFE.

Greatest lower bound (glb) or infimum (inf) of F is defined analogously.

Example 9.1.7 S=Q, E={peQ:p>0, p? <2} infE =0, but E has
no supremum in S = Q. Suppose pg = sup E exists in Q. Then, either pg € E
orpy ¢ E.

Ifpo € E, 3g€ E 3 pg < q because E has no largest element; therefore, p is
not an upper bound of E.

Ifpy & E, then py = 0 because it is an upper bound and p3 = 2 because py ¢ E.
Then, either p§ = 2 (not true because py € Q) or p3 = 2 (true), then pg €
B={peQ:p>0, p2 > 2}. Then, 3o € B > qo < po (*) because B
has no smallest element. Vp € E, p* < 2 < g2 = qo is an upper bound of E.
Moreover, po < qo because lub Contradiction to (*).

Definition 9.1.8 Let S be an ordered set. We say that S has the least upper
bound property if every nonempty subset of S which is bounded above has lub
in S.

Example 9.1.9 S = Q does not have lub-property.

Theorem 9.1.10 Let S be an ordered set with lub-property. Then, every
nonempty subset of S which is bounded below has inf in S.

Proof. Let B # (), B C S be bounded below, L be the set of all lower bounds
of B. Then, L # (¢ (because B is bounded below), y € B be arbitrary, then
for any & € L we have z < y. So, y is an upper bound of L; i.e. all elements of
B are upper bounds of L = L is bounded above. & = sup L, o € S (because
S has lub property).

Claim (i): a = inf B

Proof (i): Show a is lower bound of B; i.e. show Vz € B, a < . Assume that
it is not true; i.e. Jzg € B 3 o > zo. Then, x4 is not an upper bound of «
(because a = supL) = z¢ ¢ B (because all elements of B are upper bounds
of L). Contradiction! (zg € B). Therefore, « is a lower bound of B.
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Claim (ii): « is the greatest of the lower bounds.

Proof (ii): Show if a« < 8, 8€ S = B is not a lower bound of B.
B ¢ L (because a < 3); i.e. 3 is not a lower bound of B.
Therefore, « =inf B. 0O

9.2 Fields

Let us repeat Definition 2.1.1 for the sake of completeness.

Definition 9.2.1 A field is a set F # @ with two operations, addition(+) and
multiplication(.), which satisfy the following azioms:
(A) Addition Azioms:
(A1)Vaz,y € F, z +y € F (closed under +)
(A2)Vx,y € F, z +y =y + x (commutative)
(A8)Vx,y,z € F, (x+y) +2z=a+ (y+ 2) (associative)
(A4) 30 € Fo3Vz € F z+0 =z (existence of ZERO element)
(A5) Vz € F,3 an element —x € F 3 z + (—x) = 0 (existence of INVERSE
element)

(M) Multiplication Azioms:
(M1)Vz,ye F, z-y € F (closed under -)
(M2)Vz,y € F, -y =y -z (commutative)
(M3)Vz,y,z € F, (x-y)-z=x-(y-2) (associative)
(M4) 31 #£0>5Vx e F, 1 -2 =ua (existence of UNIT element)
(M5)Vz # 03 an element L € F 5zl =1 (existence of INVERSE element)

(D) Distributive Law:
Vz,y,2 € F, z-(y+2) =zy + a2

Notation :

1 x
e+ (-y)=z-y w(;) =3 r+{y+z)=(r+y)+=z
z-x =12+ =12z z(yz) = xyz, -
Example 9.2.2 F = Q with usual + and - is a field.

Example 9.2.3 Let F = {a,b,c} where a #b, a # ¢, b# c.
Define

+labc Jabec
alabc ala a a
bibca blabe
cicab clach

F is a field with0=a, 1 =0.
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Proposition 9.2.4 In a field F, the following properties hold:

(a) x+y=1x+ 2= y= 2z (cancelation law for addition).
b)z+y=z=>y=0.

(c) c+y=0=>y=—z.

(d) ~{(—z)==z.

(e) x#0 and zy = xz = y = z (cancelation law for multiplication).
(f)z£0anday=a=>y=1.

(9) z#£0andzy=1=y=1

(h) = #0, ﬁ%&j =z.

(i) Vz € F, 0z = 0.

(5) x#0 and y # 0, then xy # 0 (no zero divisors).

(k) V:v,y EF, (_J:)("‘y) =Y.

Definition 9.2.5 Let F be an ordered set and a field of F' is an ordered field
if

i) z,y,2€ Fandz <y=>zx+z2<y+z

@ x>0,y>0=zy>0.

If x = 0, call x as positive, If £ < 0, call x as negative.
Example 9.2.6 S = Q is an ordered field.
Proposition 9.2.7 Let F be an ordered field. Then,

(a) >0e —z <0.

(b) z>0andy <z = zy < zz.

(c) z<0andy < z= xy > xz.

(d) x #0= 22> 0. In particular 1 = 0.
(6 0<z<y=0=<7 <1

Proof. F is an ordered field.
(a) Assume z > 0=z + (—z) > 0+ (—z) = 0 > —=.

—r<0= -2+ <0+2=>0<zx.

(b) Letz =0andy <2z =0<z—-y= 0<z(z—y) =202 — 2y = 29 < Z2.

() z<0andy <z = —z>0andz—y>0=> —z(z2—y) = 0= z2(2—y) <
0= zz < zy.

dyz#0=>z>0= (y==zin (b)) 22> 0or
t<0=-z>0(y=-2)= (-z)(~z) =2% >~ 0.

(¢) Let > 0. Show 2 > 0. If not, L < 0 = (z » 0), 2 =1 <0,
Contradiction!
Assume0<x<y=>%>-0, 1> 0, therefore (by (b))

ll>0} 1 1

Ty = -=<-. 0O

T <y y oz
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Remark 9.2.8 C with usual + and - is a field. But it is not an ordered field.
If £ =i then i2 = —1 > 0, hence property (d) does not hold.

Definition 9.2.9 Let F (with +,-) and F' (with ®,®) be two fields. We say
F is a subfield of F' if F C F' and two operations & and © when restricted to
F are + and -, respectively. That is, ifx,y € F = z@y=zc+y, 2Oy =2x-y.
Then, we have Op = 0p/, and 1p = 1p.

Moreover, if F' (with <) and F' with (with <') are ordered fields, then we say
F is an ordered subfield of F' if F is a subfield of F' and for Vx € F with
O <z=0p < 2.

9.3 The Real Field

Theorem 9.3.1 (Existence & Uniqueness) There is an ordered field R
with lub property > Q is an ordered subfield of R. Moreover if R is another
such ordered field, then R and R’ are “isomorphic”: 3 a function¢d : R— R’ >

i) ¢ is 1-1 and onto,

W) Va,y €R, ¢(z +y) = ¢(z) + ¢(y) and ¢(zy) = ¢(z)¢(y),
iii) Yz, € R with x > 0, we have ¢(z) > 0).

Theorem 9.3.2 (ARCHIMEDEAN PROPERTY)

z,y €R and z > 0 = 3n € N(depending on x and y) > nzx > y.

Proof. Suppose Jz,y € R with « > 0 for which claim is not true. Then,
Yn € N, nz <X y. Let A = {nx : n € N}. A is bounded above (by y).
a=sup A € R, since R has lub property. 2 > 0 => a — z < &, 50 @ — z is not
an upper bound for A.

Therefore, Im €¢ N > (a—2z) < mz = « < (m + 1)z. Contradiction
(e =supA4). O

Theorem 9.3.3 (Q is dense in R)

Ve,yc Ruwithz <y, peQ3x<p=<y.

Proof. z,yeR, z<y=>y—2x>0
(By Theorem 9.3.2) In €N 3 n(y—z) > 1= ny > 1+ na.

Imy €N 3 my > nz + (y = nz,z =1) in Theorem 9.3.2.

Let A={m € Z :nz <m}. A+#0, because m; € A. A is bounded below. So
A has a smallest element my, then nz < my = (mg — 1) X nz.

If not, nx < mgy — 1, but my is the smallest element: Contradiction.

= (mo—1)Xnz Xmg=nzx <my<nz+l<ny=z <2 <y Let
p=22cQ O
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Theorem 9.3.4
VeeR, z=0,VneN JauniqueyecR, y =0 3 3" = x.

Proof. [Existence]:
Givenaz >0, ne N. Let E={teR:¢t> 0 and t" < z}.
Claim 1: E #£ 0
Lett::pi] =0, t<1,t<r;,0<t<1=t"<t
0<t<1=0<t?<t<1=..=0=<t"=<t=<1).
Also we have, t <z = t" < x; therefore, { = xil e F.
Claim 2: E' is bounded above
If 1 + z is an upper bound of E.
If not, 3t € £ 3¢ > 1 + x. In particular, ¢ > 1 (because z ~ 0) =
i™ =t > 14 x = x; therefore, t ¢ E: Contradiction!
y = sup E € R because R has lub property.
y > 0, because (z > 0).
Claim 3: y" =z
If not, then either y"* < x or x < y”*.
We know the following:
Let 0 < a < b. Then, b* —a® = (b —a)("" ' + 0" 2%a + -+ + a""!) =
(<) : b —a™ < (b~ a)nb™ L.

i) y'”’%.r:>MTIJ}%;;T>O.Findn€R90<h<1and0<%,
(*): (y+ )™ — ()™ < hn(y + h)* < hn{y + 1) <z —y»
Therefore, (y+ h)* <z =y+h &€ E. But y+ h > y = y is not an upper
bound of E, Contradiction!

i) @ <y" Let k = —T%'T%— = 0 and z < y [because y" — z < ny"~'].
Claim: y - k is an upper bound of E.
Suppose not, A € E>t >y —k > 0.
Then, t" > (y — k)" = —t" < —(y— k)" = y" —t" <y" — (y — k)"
)y —(y—k)" <kny" =yt =yttt <yt ="z =t ¢ E,
Contradiction!
Therefore, y — k is an upper bound of E.
However, y is lub of E, Contradiction!

[Uniqueness]:
Suppose y = 0, ¥’ > 0 arc two positive roots 2 y # ¢’ and y" = x = (y')*.
Without loss of generality, we may assume that , y* = y > 0, (because y #
y') = y" < (y')"*, Contradiction! Thus, y is unique. [

Definition 9.3.5 Real numbers which are not rational are called irrational
numbers.

Example 9.3.6 /2 is an irrational number.

Corollary 9.3.7 Leta > 0, b = 0 and n € N. Then, (ab)l/™ = a'/7p1/",
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Proof. Let a =a/?, B=b'/"=a”=qa, f"=b= (af)"=a"f" =ab> 0
and n*” root is unique = (ab)!/* = aB. O
Definition 9.3.8 (Extended real numbers) R U {+o00,—0c0} 3 preserve

the order in R and Vx € R, —0co < < co. RU {+00, —00} is an ordered set
and every non-empty subset has supremum/infimum in R U {400, —00}.

In RU {400, —00}, we make the following conventions:

i) Forz € R, 2 4+ 00 = +00, £ — 00 = —00,
ii) If z < 0, we have z - (+00) = —00, - (—00) = +00,
iii) 0- (+o00), 0 (—o0) are undefined.

9.4 The Complex Field

Let C be the set of all ordered pairs (a, b) of real numbers. We say
(a,b) = (¢,d) if and only if ¢ = c and b =d.
Let = (a,b), y = (¢,d). Define
z+y=(a+cb+d), zy = [ac— bd,ad + b].

Under these operations C is a fleld with (0,0) being the zero element, and
(1,0) being the multiplicative unit.
Define ¢ : R — C by ¢(a) = (a,0), then ¢ is 1-1.

$(a+b) = (a+b,0) = (a,0) + (b,0) = ¢(a) + $(b).
$(ab) = (ab, 0) = (a,0)(b,0) = ¢(a)$(b).

Therefore, R can be identified by means of ¢ with a subset of C in such a
way that addition and multiplication are preserved. This identification gives
us the real field as a subfield of the complex field.

Let i = (0,1) = 2 = (0,1)(0,1) = (=1,0) = ¢(—1), i.e. 2 corresponds to the
real —1.

Let us introduce some notation.
#(a) = (a,0) = a = i? = ¢(~1) = —1, also if (a,b) € C, a+ib = (a,b).
Hence, '
C={a+ib:a,beR}.

If z=a+1ib e C, we define Z = a — ib (conjugate of z),

2+7Z z—Z
5 , b=1Im(z) = o

frzweC=7Fw=2+T, 50 =70
If z€ C= 2z = a? + b% = 0, we define |z| = V2Z = Va2 + b2.

a = Re(z) =
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Proposition 9.4.1 Let z,w € C. Then,

(a) z#0=|z| > 0 and |0] = 0.

(b) [z = |z|.

(c) |zw| = [2][w].

(d) |Re(2)| 2 |2, [Im(2)| < |2].

(e) |z +w| < |z| + |wl|, [Triangle inequality].

Proof. The first three is trivial. Then,

(d) Let z=a+ib |Im(z)] = |b| = VB2 < VaZ + 0% = |2|.

(@) |z +wf? = (2 + w)(Z + @) = |2|* + 20 + Zw + [w|* = (|2] + |w])?
Zw + 2W = 2Re(2W) <X |2Re(2W)| < 2|2W| = |2 + w| X |2]| + |w|.
Take positive square roots of both sides, i.e. if a = 0, b > 0 and a? <
b2 = a < b. If not, b < a = b? < ab, ba < a® = b? < a?. Contradiction!

a

Theorem 9.4.2 (Schwartz Inequality) Let a;,b; € C, j = 1,...,n.

Then,
2

n . n "
a3 el [ Do 11
i=1 j=1 j=1

—_—— —_——— ——
C A B

Proof. B = 0. If B =0 then b; = 0Vj = LHS = 0; therefore, 0 < 0.
Assume B > 0 =

0= |Ba;j - Cb;|* = _(Ba; — Cb;)(Baj — Cb;)

j=1 j=1

= Baj|* - ) BCa;b; — Y CBba; + Y |C[b;[?
i=1 =1 j=1 j=1

= B%A - B|C|* - CBC +|C|)*B = B(AB - |C}?).
Thus, AB = |C|?, since B> 0. O

9.5 Euclidean Space

Definition 9.5.1 Let k € N, we define R* as the set of all ordered k-
tuples * = (x1,...,%k) of real numbers z1,...,zx. We define (x +y) =
(x1 + 1,2 + ). Ifa € R, az = (az,...,azg). This way R* be-
comes a vector space over R.

We define an inner product in R* by z-y = S 2,9:. AndVao € R¥, z-z = 0.

We define the norm of x € R by ||z|| = vZ - = = \/Zﬁzl 2,
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Definition 9.5.2 An equivalence relation in X is a binary relation (where ~
means equivalent) with the following properties:

(a) Vz € X, x ~ z (reflexibility).
(b) x ~y=y~zx (symmetry).
(c) T ~y, y~z= 1~ 2z (transitivity).

Definition 9.5.3 If ~ is an equivalence relation in X, we define the equiva-
lence class of any © € X as the following set:

[l ={ye X :x2~y}

Remark 9.5.4 If ~ is an equivalence relation in X, then the collection of all
equivalence classes forms a partition of X ; and conversely, given any partition
of X there is an equivalence relation in X such that equivalence classes are
the sets in the partition.

Remark 9.5.5 Let C be any collection of nonempty sets. For X,Y € C,
define X ~Y (X and Y are numerically equivalent) if there erists a one-
to one and onto function f : X — Y (or f=1 : Y — X). Then, ~ is an
equivalence relation in C.

9.6 Countable and Uncountable Sets

Definition 9.6.1 Let J, = {1,2,...,n}, n=1,2,.... Let X # 0. We say

i) X is finite if In e N, X ~ J,.
1) X is infinite if X is not finite.
i11) X is countable if X ~ N

(i.e. 3f :N— X, 1-1 onto, or 3g : X — N, 1-1 onto).
w) X is uncountable if X is not finite and not countable.
v) X is at most countable if X 1is finite or countable.

Example 9.6.2 X = N is countable. Let f : N — N be the identity function.

Example 9.6.3 X = Z is countable. Define f : N+ Z as

f(n) = { 5, if n is even;

——"T‘l, if n is odd.

Example 9.6.4 Q% is countable. Let r € Q%, then r = = where m,n € N.
List elements of Q" in this order as in Table 9.1. If we apply the counting
schema given in Figure 9.1, we get the sequence

112

- 4,...
72’ ’3’ ’

1
3a 21'7 _3'7 57
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Define f : N— Q,

Va L 4 Y 4
Cantor’s Counting Schema Another Counting Scheme

Fig. 9.1. Counting schema for rational’s

Table 9.1. List of rational numbers

n
m |1 2 3 4 5
1/11/21/31/41/5 ---
2/12/22/32/42/5 -
3/13/23/33/43/5---
4/14/24/34/4 4/5 -
5/15/25/35/45/5 -

A L

Example 9.6.5 Q is countable. Since Q" is countable, the elements of QF
can be listed as a sequence {1,22,23,...}. Then, Q~ = {q : ¢ < 0} can be
listed as {—x1, —x3, —T3,...}.
Q=O.’E1 —x] g —Tg X3 —T3 ...
T+t 11
N=12 3 4 5 6 7
f N Q can be defined in this way.

Ty, ifn is even
o]

—Zno1, if n 1s odd
0, ifn=1.
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Proposition 9.6.6 If ¢ = {x;,7 € I} is a countable class of countable sets,
then Ujerx; is also countable. That is, countable union of countable sets are
countable.

Proof. We have f : N+ I, 1-1, onto. Let Y;, = X (5. The elements of ¥, can
be listed as a sequence. Y,, = {X7, X%,...} ¥n. Use the Cantor’s counting
scheme for the union. Another counting schema is given in Figure 9.1. O

Example 9.6.7 X = [0,1) is not countable.

0

1
Suppose [0,1) s countable. Then, its elements can be listed as a sequence
{Xt, X2, X3,...}. Consider their binary expansions

FEvery z € [0,1) has a binary ezpansion z = 0.a1az2a3 . .. where a, =

X' =0.aja3a} ...
X? =0.aa3a3 ...

X3 =0.a%add}. ..

_f0,ifal=1  [0,ifai=1 _ [0,ifal=1
Le“‘l—{mfa{:()’“?_ Lifa2=0" T 1, ifad=0"""
Let

z = 0.a1az2a3 ... € [0,1).

But this number is not contained in the list {X!, X% X3,...}
x is different from X' by the first digit after 0;

z is different from X? by the second digit after 0;
x is different from X3 by the third digit after 0;

Therefore, x # X™, Vn; since x and X™ differ in the nt* digit after zero. So,
X =[0,1) is not countable.

Example 9.6.8 X = (0,1) is not countable. Since X = [0,1) is not count-
able, excluding a countable number of elements (just zero) does not change
uncountability. Thus, X = (0,1) is uncountable.

Example 9.6.9 For any open interval (a,b) we have
(a,b) ~ (0,1) f:(a,b) (0,1).
Refer to Figure 9.2.

Example 9.6.10 X = R is not countable. Since R ~ (=1,1), by projection
R is not countable [because (0,1) is not countable]. One way of showing I-1
correspondence between any open interval and (0,1) is illustrated in Figure
9.3.
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0| "

Fig. 9.2. Uncountability equivalence of (a,b) and (0,1)

-1 0 +1

R
L%
Cd

Fig. 9.3. The correspondence between (-1,1) and R.

Example 9.6.11 f : R — (-%,%), f(z) = arctan(z) is a I-1 correspon-
dence, i.e. f(x) is 1-1 and onto. Refer to Figure 9.4.

Fig. 9.4. The correspondence between (-Z,%Z) and R

Proposition 9.6.12 If (a,b) is any open interval, then
(0,1) ~ (a,b) ~R ~ [0,1).
Proof.
3f:(0,1) = [0,1) is 1-1 (f(z) = z).
dg:[0,1) = R is 1-1 (g(z) = ).
Jh: R+ (0,1) is 1-1 and onto (f(z) = z).
[0,1) » R~ (0,1) is 1-1.
By Cantor-Schruder-Bernstein Theorem [0,1) ~ (0,1). O
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Definition 9.6.13 Roughly speaking, the cardinality of o set (or cerdinal
number of a set) is the number of elements in this set.

If X =0, Card(X) =0,

IfX ~J,={12,...,n}, Card(X) = n,

If X ~ N (i.e. countable), Card(X) = Rq (aleph zero),

If X ~R, Card(X) =y (aleph one).

Definition 9.6.14 Let m and n be two cardinal numbers We say m < n if
there are two sets X andY > Card(X) =m, Card(Y) = n.

Remark 9.6.15 The list of cardinal numbers:
0<1=<2<--<n=<--<Ng=<N; =c.

Remark 9.6.16 Question: 37 a cardinal number between Rg and Ny ¢

The answer is still not known. Conjecture: The answer is no!

Question: Is there a cardinal number bigger than Ry ¢

The answer is yes. Consider P(R) : the set of all subsets of R (power set
of R). Xy = Card(R) < Card(P(R)). We know if Card(X) = n, then
Card(P(X)) = 2". Analogously Card(P(N)) = 2% = R,. Then, we can say
that Card(P(R)) = 28t = X,.

Problems

9.1. Let A be a non-empty subset of R which is bounded below. Define ~A =
{—z :x € A}. Show that inf A = — sup(—A).

9.2. Let b > 1. Prove the following:

a) Vm,n € Z with n > 0, (b™)Y/ = (bY/m)™.

b) Vm,n € Z with n > 0, (b™)" = b™™ = (b")™.

c)Vn € Z with n = 0, 11/ =1,

d) Vn,q € Z with n,q = 0, b1/ = (b1/™)1/9 = (p/a)1/n,
e) Vp,q € Z bPTe = bPha,

9.3. Do the following:

a) Let m,n,p,q € Zwithn <0,¢ > 0andr =2 = 5. Show that (b™)1/» =
(b?)}/9 using the above properties.

b) Prove that b"t¢ = b"b® if r and s are rational.

c) Let z € R. Define B(z) = {b' : t € Q, t < z}. Show that if r € Q, " =
sup B(r}.

d) Show that b*+¥ = b%bY Vz,y € R.

9.4. Fix b > 1 and y > 0. Show the following:
a)VneN, b® —1>n(b—1).
b) (b—1) = n(b*/™ — 1). Hint: ¥n € N, b/™ > 1 holds. So replace (b > 1)
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above by /" > 1.

¢)If t > 1 and n > 21, then b'/™ < t.

d) If w 2 b¥ <y, then BTV <y for sufficiently large n.

e) If b = y, then b*~ /™ = y for sufficiently large n.

f) Let A ={w € R:b" < y}. Show that = = sup A satisfies b* =y,
g) Prove that 2 above is unique.

9.5. Let I be an ordered field. Prove the following:
a)z,y€ Fand 2>+ 4> =0=>2=0and y = 0.
b) z1,70,...,xn €EFand 22+ -+ 22 =0=>1, =25 = =2, = 0.

9.6. Let m be a fixed integer. For a,b € Z, define a ~ b if a — b is divisible by
m, 1l.e. there is an integer k such that a — b = mk.

a) Show that ~ is an equivalence relation in Z.

b) Describe the equivalence classes and state the number of distinct equiva-
lence classes.

9.7. Do the following:

a)Let X =R, and z ~ yif x € [0,1] and y € [0,1]. Show that ~ is symmetric
and transitive, but not reflexive.

b) Let X # @ and ~ is a relation in X. The following seems to be a proof
of the statement that if this relation is symmetric and transitive, then it is
necessarily reflexive:

r~y=y~x, r~yandy~z=2~ux;

therefore, x ~ z, Yo € X. In view of part a), this cannot be a valid proof.
What is the flaw in the reasoning?

9.8, Prove the following:

a) If X1,Xs,..., X, are countable sets, then X = II7" | X; is also countable.

b) Every countable set is numerically equivalent to a proper subset of itself.

¢) Let X and Y be non-empty sets and f : X +— Y be an onto function. Prove
that if X is countable then Y is at most countable.
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Basic Topology

In this chapter, basic notions in general topology will be defined and the re-
lated theorems will be stated. This includes the following: metric spaces, open
and closed sets, interior and closure, neighborhood and closeness, compactness
and connectedness.

10.1 Metric Spaces

In R¥, we have the notion of distance:
Ifp= ($17m27 s axk)Taq - (ylvyZa cee 1yk)Ta Y2/ S Rkv then

d2(p,q) = v/ (w1 = y1)? + (w2 — 92)? + - + (2k — )2

Definition 10.1.1 Let X # () be a set. Suppose there is a function
d: X x X =Ry =1[0,00) with the following properties:

i) d(pg) =0 p=gq;
ZZ) d(pa Q) = d(qap)r Vp, q;
iii) d(p,q) < d(p,r) +d(r,q), Vp,q,r [triangle inequality].

Then, d is called a metric (or distance function) and the pair (X, d) is called
a metric space.

Example 10.1.2 Let X # 0 be any set. For p,q € X define

w.0={y 17

is called the discrete metric.

Definition 10.1.3 Let S be any fized nonempty set. A function f : S +— R is
called bounded if f(S) is a bounded subset of R.
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Example 10.1.4 Is f : R — R, f(s) = s% bounded? (Ezercise!).
f:R =R, f(s) = arctan(s) = tan~!(s) is bounded. See Figure 9.4.

Definition 10.1.5 Let X = B(S) = all bounded functions f : § — R.

For

f,g € B(S), we define the distance asd(f,g) = sup {|f(s) — g(s)| : s € S}.

Proposition 10.1.6 d(f,g) > 0 is a metric, Vf,g € X = B(S).

Proof. by proving axioms of a metric:

(i)

(i)
(ii)

(=)

ifd(f,9) =0=|f(s)—g(s)| =0,VseS = f(s)=g(s), Vs€ S=> f=g.
(«)

if f=g=4d(f,g9)=0.

trivial.

Proposition 10.1.7 Let A # 0, B # { be subsets of R. Define
A+B={a+b: ac A, be B}.
If A and B are bounded above then A + B is bounded above and
sup(A + B) < sup A + sup B.

Proof. Let x =sup A, y = sup B.
Givence A+ B,thenJa€ A, b€ B >c=a+b. Then,c=a+b < z+y.
Moreover, sup(A+ B) <z +y. O

Proposition 10.1.8 Let C, D be nonempty subsets of R, let D be bounded
above. Suppose Ve € C, 3d € D > ¢ < d. Then, C 1s also bounded above
and supC < sup D.

Proof. Given c€ C, 3d € D 3¢ < d. So,Vec € C, ¢ <y =supD. Hence,
y is an upper bound for C. Therefore, supC <supD. O

Triangular Inequality: Let f, g, h € B(S).

C ={lf(s) —g(s)| : s € S}, then d(f,g) = supC.
A={]f(s) — h(s)|: s € S}, then d(f, h) = sup A.
B = {|h(s) — g(s)| : s € S}, then d(h,g) = sup B.
Given z € C, then 3s € § 3z = |f(s) — g(s)]

z = |f(s)—g(s)| = |f(s) = h(s) + h(s) —g(s)] < |f(s)—h(s)|+]|h(s)—g(s)]
= supC <sup(A+ B) <supA+supB. 0O

Example 10.1.9 Let X = R¥, P = (z1,...,2:)T and Q = (y1,...,m)T €

R*.

di(p,q) = [z1 —y1| + -+ |zx — ykl + {1 metric.
dao(p,q) = [(z1 —y1)? + - + (zp — yk)z]l/2 : 1o metric.
doo(P,q) = maz {|z1 — w1, ..., |26 — Y|} : loo metric.
See Figure 10.1.
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Fig. 10.1. Example 10.1.9

Definition 10.1.10 Let (X, d) be a metric space, p € X, r > 0.
B,.(p) ={q € X :d(p,q) < r} open ball centered at p of radius r.
B.pl ={q€ X :d(p,q) < r} closed ball centered at p of radius r.

Example 10.1.11 X =R?, d = dy. See Figure 10.2.

CLOSED BALL OPEN BALL
7’ .- T s ~
4 A Y
r ’ / \
i 1
p ' p !
AY ,I
Br[P] ‘. B .

- -

Fig. 10.2. Example 10.1.11

Example 10.1.12 Let us have X # 0, and the discrete metric.

{p},if r<1 {p},if r<1
B.(p)=q {p},if r=1 BJp]=¢ X, if r=1
X, if r>1 X, ifr>1

Example 10.1.13 X = B C (a,b) = {f : (a,b) = R : f is bounded}

f,9€ X =d(f,g) =sup{|f(s) —g(s)| : s € (a,)}

139

Let f € X,r > 0,B.(f) is the set of all functions g whose graph lie within the

dashed envelope in Figure 10.35.
Example 10.1.14 X = R? with d, metric:

di(p,q) = |y — 21| + [y2 — zal-
See Figure 10.4.
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Y

Fig. 10.3. Example 10.1.13

Example 10.1.15 X = R? with do, metric:

doo (P, q) = max {|y1 — z1],|y2 — 22|} .

Definition 10.1.16 A subset E # 0 of a vector space V is convez if
tp+ (1 —t)g € E whenever p,q € E and ¢t € [0,1].

Proposition 10.1.17 X = R* with dy, d; or do metric. Then, every (open)
ball B.(p) is convez.

Proof. Using d, metric:
Fix B,(p). Let u,v € B,(p),0 <t < 1. Show that tu + (1 — t)v € B,(p) :
Let p = (p1,...,Pk), v = (u1,...,ux), v = (v1,...,vx). Then,
doo(t’ll, + (1 - t)'u,p) = doo(tu + (1 - t)’U,tp + (1 - t)p)

= max {[tu; + (1 — )i — tpi — (1 - il Y1y

= [tu; + (1 — t)v; — tp; — (1 = t)p;| = [t(u; — p;) + (1 = t)(v; — p;)]

< tlluj—pj|+11—t||v;—p;| = tdoo (u, p)+(1=t)doo (u,p) < tr+(1-t)r =1r.
O

Definition 10.1.18 Let (X,d) be a metric space, E C X. A point p € E
is called an interior point of E if Ir > 0 3> B.(p) C E. The set of all
interior points of E is denoted by intE or E° and is called the interior of E
(intE C E).

s, NN
. \
y 7 \\ A
’ P roos
N I 7|
N Iz
N s
Vo )
[N 7y
[N 2,
NN <,

Rectilinear Euclidean Tchebycheff's

Fig. 10.4. Example 10.1.14
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Example 10.1.19 See Figure 10.5. g € intE but p € intE.

Fig. 10.5. Example 10.1.19

Example 10.1.20 Let X be any set with at least two elements, with the dis-

crete metric: L
_ sy PF 4
d(p,q) = {0, otherwise

Letp € X, E = {p}. Then,
imtE=E, r<1=B,(p)=pC E=pecintE.

Example 10.1.21 Let X = R? with d> metric. See Figure 10.6.

Fig. 10.6. Example 10.1.21

E={p=(zy) eR: 1<z’ +y* <4} =
intE = {p=(z,y) e R? 1 1 <z +y? < 4}.
Definition 10.1.22 F is said to be open set if intE = E, i.e.

Vpe FE,Ir>0 3B, (p) CE.

Example 10.1.23 InR?, E = {p = (z,9) € R?: 1 <& +y? < 4} is open.
Remark 10.1.24 By convention, E =0, E = X are open sets.

Definition 10.1.25 Let p € X. A subset N of X is called a neighborhood of
pifp € intN.
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-

Fig. 10.7. Example 10.1.26

Example 10.1.26 N is a neighborhood of P but it is not neighborhood of Q).
See Figure 10.7.

Definition 10.1.27 A point p € X is called a limit point (or accumulation
point) (or cluster point) of the set E C X if every neighborhood N of p
contains ¢ of E > q # p. i.e. ¥V neighborhood N of p, 3g € ENN, ¢ # p.
Equivalently, Vr > 0, 3¢ € EN B,(p) > ¢ #p.

Example 10.1.28 E = {p = (z,y) € R? : 1 <? +y? <4}U{(3,0)}. Limat
points of E are all points p = (z,y) 3 1 < 2% + y? < 4. See Figure 10.8.

Limit
Points

\

- )
P

D

! <
A _
-‘r'—l__-d{

Isolated

point

Fig. 10.8. Example 10.1.28

Definition 10.1.29 A point p € E is called an isolated point of E if p is not
a limit point of E; i.e. 3r >0 3 B,.(p)NE = p.

Example 10.1.30 X =R, d =d;:

111
E= O
{1,2,3,4’ }a

0 is the only limit point of E. Vp € E are all isolated points.
Definition 10.1.31 E is closed if every limit point of E belongs to E.
Example 10.1.32 See Figure 10.9.
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CLOSED OPEN Not CLOSED Not OPEN

Fig. 10.9. Example 10.1.32

Definition 10.1.33 E is perfect if it is closed and every point of E is a limit
point of E; i.e. if E is closed and has no isolated points. E is bounded if
IM >0 > Vp,q€ Edlp,q) < M. E is dense in X if every point of X is
either a point of E or a limit point of E.

Example 10.1.34 X = R, E = N is unbounded. Suppose it is bounded.
Then, AM >0 > Vz,ye NjjJz —y| < M. Letn eNbesd3n>M+1=
l1—nl=n-1<M—n< M+ 1. Contradiction!

Example 10.1.35 X =R, E=Q (Q is dense in R; i.e. given x € R either
xz € Q or z is a limit point of Q). Let z € R, if x € Q, we are done. If x ¢ Q,
we will show that z is a limit point of Q:

Givenr >0, Bo(z) =(z—r,z+71). Then, 3yeQ 2 s —r<y<z+r=
yeB.(2)NQandy#z=>z€R, yeQ.

Let us introduce the following notation:
E': set of all limit points of E.
E = EUE', Eis called the closure of E.

pEE&SYr>0, B.(p)NE #.

Proposition 10.1.36 Every open ball B,.(p) is an open set.

Proof. Let q € B,(p), we will show that 3s >0 > B(q) C B.(p):
g € B.(p) = d(g,p) <r,let s =71 —d{q,p) > 0. Let z € By(q),

d(z,p) < d(z,q) +d(g,p) < s +d(¢,p) =7 = 2 € B,(p). O

Theorem 10.1.37 p is a limit point of E if and only if every neighborhood
N of p contains infinitely many points of E.

Proof. («=): trivial.

(=): Let p be the limit point of E. Let N be an arbitrary neighborhood
of p. Then, 3r > 0 3 B,(p) C N. Since B,(p) is a neighborhood of p
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g1 € B/(p)NED>qu #p=d(q,p)=11>0.

32 € B.(p)NE > g2 #p.
Then, g3 # ¢1. Since g2 # p, 72 = d(ga,p) > 0.

Jgs € Br,(p)NE 3> gs#p# @2 # q1;-++. O

Corollary 10.1.38 If E is a finite set, E' = {).
Theorem 10.1.39 F is open if and only if E€ is closed.

Proof. (=): Let E be open, Let p be a limit point of E°. Show p € E°.
Suppose not:

pe E=3r >0 3 B.(p) CE [because E is open] (*)

Since p is a limit point of E¢, for every neighborhood N of p, NN E° # (. In
particular (by taking N = B,.(p)), B-(p) N E° # @, Contradiction to (*).
(«): Assume E° is closed. Show E is open;i.e.VYpe€ E, Ir >0 3 B,.(p) C
E.Letp € E = p ¢ E° = pisnot alimit point of E°. So 3r > 0 > B,(p)NE*°
does not contain any g # p (p either). = B,.(p)NE*=0= B,(p) CE. O

Theorem 10.1.40 Let E C X, then

(a) E is closed.

(b) E=E < E is closed.

(c) E is the smallest closed set which contains E; i.e. if F is closed and
ECF=ECF.

Proof. EC X.

(a): (E)¢ is open.
Letpe (BE)=p¢ E=3r>0 3 B.(p)NE=0= B.(p) C (E).
Show that B,(p) C (E):
If it is not true 3¢ € B,(p) and g ¢ (E)° = q € E°.
Find s > 0 3 Bs(q) C B.(p). Then Bs(q) NE # 0 = B,(q) N E # .
Contradiction.

(b): (=): Immediate from (a).
(&): Eisclosed. Show E=E,ie. ECE.Letpec E=EUEFE' iffpeE,
we are done.
If pe E' = p € E (because E is closed).

(c): Let F be closed, E C F. Show that E C F. Let p € E = EUFE/, if
pE€FE=pe F.If pe E' we have to show that p € F':
Given r > 0, show B,(p) N F contains a point ¢ # p. Since p € E,
B,(p) N E contains a point ¢ # p. Then, ¢ € B,(p) N F (because E C F).
So,p € F' = p € F (because F is closed). O
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Let (X,d) be a metric space, then

1. The union of a finite collection of open sets is open.

2. The intersection of a finite collection of open sets is open (not true for
infinite).

3. The intersection of any collection of closed sets is closed.

The union of a finite collection of closed sets is closed (not necessarily true

for infinite).

E is open & E° is closed.

Eisclosed & E = E,

E is the smallest closed set containing E.

intE is the largest open set contained in £ (i.e. if A C E and A is open

then A C intE).

-~

® o ot

Example 10.1.41 Intersection of infinitely many open sets needs not to be
open, X = R, d(z,y) = |xr — y|: Let A,, = (4%,%), n =1,2,.... Then,
Moy A =[0,1]. If0 <z < 1 thenz € (-1, iy = A4, Vn =z € (00, An.
Let x € (N, Ay, show that 0 <z < 1:

Ifnot, z <Qorzxz>11Ifxr>1, dneN 2 1< ’—Lfli <z, v é¢ A, Case

z < 0 is similar.

Proposition 10.1.42 Let ) # E C R be bounded above. Then, sup E € E.

Proof. y = sup E, show that Vr > 0, B,.(y)NE #0: Sincey —~r<y=y-—r
isnot upper boundof E. 4z €¢ E > y>a>y—r=z & (y—ry+r)NE =
B.(y)yNE#D. O

Let (X,d) be a metric space and ) # Y C X, then Y is a metric space
in its own right with the same distance function d. In this case, (Y,d) is a
subspace of (X, d).

If ECY, E may be open in (Y,d) but not open in (X, d).

Example 10.1.43 X =R? Y =R, E = (a,b): When considered in R, E is
open whereas E is not open in R?, as seen in Figure 10.10.

Fig. 10.10. Example 10.1.43

Definition 10.1.44 Let ECY C X. We say E is open (respectively closed)
relative to Y if E is open (respectively closed) as a subset of the metric space
(Y,d).
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E is open relative to Y <> Vp e E3r >0 3> B.(p)NY C E.
E is closed relative to Y < Y \ E = Y N E° is open relative to Y.

Theorem 10.1.45 Let X C Y C E. Then,

(a) E is open relative to Y < 3 an open set F in X 5 E=FNY.
(b) E is closed relative to Y <> 3 a closed set F in X 3 E=FNY.

Proof. X CY CE.
(a) (=):

Let E be open relative to Y. Then,
VpeE3Ir,>03 B,,(p)NY CE.

Let F' = {J,cg Br,(p). F is open in X.

UB.,p)nYIcE FNYCE
pEE

Conversely, ¢ € E, then
q€B, (g CF,qe ECY=qe FNY=ECFNY

(=)
E = FNY where F is open in X. Given p € E = p € F. Since F is open,
Ir>03B.(p)CF.

B.(p)NY CFNY =E.

(b) (=):
E is closed relative to Y = Y \ E is open relative to Y. Then,
JFeXopeninX3 Y\E=FnNY.
E=Y\(Y\E)=Y\(FNY)=YN(FNY)=YNFU)=YNF"
F€ closed in X.
(«):
E = FNY where F is closed in X.
Y\E=YN(FNY)*=YNFe (F¢openin X) = Y\ E is open relative
toY.
= F is closed relative to Y. O

10.2 Compact Sets

Definition 10.2.1 Let (X, d) be a metric space, E C X be a nonempty subset
of X. An open cover of E is a collection of open sets {G;:i €I} inX 3> E C

U; G:.
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Example 10.2.2 X = R* with dg metric:
E = By(0), forneN, G, =B (0 )= Ec U2

nl

Example 10.2.3 X =R, £ = (O, 1):
Ve (0,1),G, =(~lLz2)=EC Uﬁe(o,l) Gy

Definition 10.2.4 E is said to be compact if for every open cover {G; . 1 € I}
of E, we can find
Giyy oo, Gy

n

= EC[GI']UGZ'ZU"'UG{,”.

Example 10.2.5 In X =R, F = (0,1) is not compact:

Consider{G sz € (0,1)} where G, = (—1,2). Suppose Az1,...,z, € (0,1) D
(0,1) Cc U ( 1% Let Y = max{z,... rn}:>0<y<1:;>(0,1)
( 1 y) Letz =1 > 0<z <1, ¢ (~1,y) Contradiction! Thus, (0,1) is
not compact.

Remark 10.2.6 In the Euclidean space, open sets are not compact.

Theorem 10.2.7 Let K C Y C X. Then, K is compact relative to Y if and
only if K is compact relative to X.

Proof. (=): Suppose K is compact relative to Y. Let {G;,7 € I'} be an open
cover of K in X. Then, K C {J,;Giys0 K = KNY C (U;e; G)NY =
Uiel(Gi MNY): open relative to Y. Since K is open relative to Y, diy,...,2, 3
KC(GihinY)u(GinY)u---U(Gip,NY)= K C U, G

(«=): Suppose K is compact relative to X. Let {FE;,i € I} be any open
cover of K in Y. Then,
Vie IJdanopenset G; € X > E =G NY. KC (U Ei) C (Uier Gi)-
So, {G;,i € I'} is an open cover in X. Then, Jiy,...,i, 2
KCGhUGizU UG7,L:>K KQYC(GilﬂY)U--'U(Gi,nﬂY):
Eil U..u Ei,”. 0

Theorem 10.2.8 Let (X, d) be a metric space and K C X be compact. Then,
K is closed.

Proof. We will show that K¢ is open.
Let p € K° be an arbitrary fixed point. Vg € K = d(p,q) > 0. Let rq =

3d(p.q) > 0.
Vo =B(p), Wy = Br(q). K CU,ecx Wy (because K is compact)

= 3q, g EKDK CW, U UW, =W

Let V=V, NV, N---nV, . Ifr=Min{ry,...,r,,} >0, then V= B.(p).
Let us show that WNV =0: Ifnot, lz e WNV = 2z¢c W = 2 € Wq, for
some ¢ = 1,...,n. Hence, d(z,¢) <1, = —21-d(p, ¢). 2 €V = z €V, for the
same i. Thus, d(z,p) < rq, = 2d(p, ¢;).
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= d(p,¢:;) < d(p, 2) + d(2, ) < d(p, @)

Contradiction! Therefore, W NV = (.
Thus, V = B,(p) C X° C K®= K°is open = K is closed. O

Theorem 10.2.9 Closed subsets of compact sets are compact.

Corollary 10.2.10 If F is closed and K is compact, then FN K is compact.

Theorem 10.2.11 Let {K;;i € I} be a collection of compact subsets of a
metric space such that the intersection of every finite subcollection of K; is

nonempty. Then,
[ K: # 0.
iel
Proof. Assume (;c; K; = 0.
Fix a member of {K;,¢ € I} and call it K. Then,
Kni() Kl=0=Kc[{J k7.
K #K K;#K

Since K is compact, 3K4,..., K, > K C [KfU---UK{] = KNnK;Nn---N
K, = 0, since we intersect a finite subcollection, we have a contraposition
(Contradiction). O

Corollary 10.2.12 If (K,,) is a sequence of nonempty compact sets 3 K1 D
Ky Do, then o, Kn # 0.

Theorem 10.2.13 (Nested Intervals) Let (I,,) be a sequence of non-empty,
closed and bounded intervals in R I C I C -+, then

() I #0.
n=1

Proof. Let I, = [an,byn] 2 @y < by,. Then,
LCchcC=a<as <, < - <by <-voby < by

Moreover, if k <n=I; C I, and a; < a, < b, < b;.
Let E = a4, as,... is bounded above by b,. Let * = sup E, then Vn, a,, < z.
Let us show that Vn, z < b,: If not, In 3 b, < x => Jay € E > b, < ay.

case 1: k <n= a; <a, < b, <ag, Contradiction!
case 2: k> n = a, < ag < by <b, < ai, Contradiction!

Thus, Vn, e <bp, =z el,, Vn=ae(oo In=r In#0. O
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Remark 10.2.14 Here are some remarks:

1 Iflimp oo (by — an) = limy o0 length(l,) = 0, = (o, I, consists of one
point.

2. If I,’s are not closed, conclusion is false, e.g. I, = (0, %)

3. If I,’s are not bounded, conclusion is false, e.g. I, = [n, oo].
Definition 10.2.15 Let a1 < by, ..., ar < by be real numbers, then the set of
all points p € R¥ 3 p = (1, ,2k), oy S xp < by, i =1,...,k is called a
k-cell. So a k-cell is

[ai,bi] X X [ak,bk].

Theorem 10.2.16 Let k € N be fired. Let I, be a sequence of k-cells in R* 3
Iy DIy D . Then, Mooy In # 0.

Theorem 10.2.17 FEvery k-cells is compact (with da metric).

Proof. Let I = [a1,b1] x - X [ak, bx] C R¥ be a k-cell. If a1 = by,...,ax = by,
then I consists of one point. Then, I is compact. So assume for at least one
Joa; < by, je{l,...k} Let ¢ = [Zle(bi — ;)47 > 0. Suppose I is not
compact. So, there is an open cover {Gqo,a € A} of I 5 {G,} does not have
any finite subcollection the union of whose elements covers I.

Let ¢; = Q‘g—b' Then, [a;, b;] = [a;, ei] N e, bi).

This way I can be divided into 2% k-cells Q; > szil Q:.=1.

Also, Vj we have p,q € Q;, d(p,q) < %6.

Since I cannot be covered by a finite number of G’s, at least one of the @);’s,
say I; cannot be covered by a finite number of G, 's. Subdivide I; into 2% cells
by halving each side. Continue this way ... We eventually get a sequence {I,,}
of k-cells such that

a) Lcl,c- -
b) I, cannot be covered by any finite subcollection of {G4,z € A}, Vn;
C) D, q € [n = d(P, Q) S ‘2‘177‘(5, Vn.

By a) Moo In # 0. Let p* € Moo, I, C I, then Jag € A 5 p* € G, . Since
Gap 15 open, Ir >0 3 Bp(p*) C Gq,. Findng e N3 & < 2™ [ie. 5% <7,

Show In, C Gyt p"G(ViLy In C Ing. Let p € Iy, by ¢) d(p,p*) < za50 <.

= p € B.(p*) C Gy, = In, C Gy, and this contradicts to b). Thus, I is
compact. U0

Theorem 10.2.18 Consider R* with dy metric, let E C R*. Then, the fol-
lowing are equivalent:

(a) E is closed and bounded.
(b) E is compact.
(¢) Every infinite subset of E has a limit point which is contained in E.
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Remark 10.2.19 Consider the following remarks on Theorem 10.2.18:

1. The equivalence of (a) and (b) is known as Heine-Barel Theorem.:
A subset E of R® is compact if and only if it is closed and bounded.

2. (b)e(c) holds in every metric space.

3. (c)=(a), (b)=(a) hold in every metric space.

4. (a)=(c), (a)=(b) are not true in general.

Theorem 10.2.20 (Balzano-Weierstrass) Every bounded infinite subset
of R¥ has a limit point in RF.

Proof. Let £ C R* be infinite and bounded. Since E is bounded 3 a k-cell
I3 E C I. Since I is compact, E has a limit point pc I C R¥. 0

Theorem 10.2.21 Let P +# () be a perfect set in RE. Then, P is countable.

10.3 The Cantor Set

Definition 10.3.1 Let

continue this way. Then, Cantor set C is defined as

O
C = ﬂEn.

n=1
Some properties are listed below:
. C is compact.
C#9.
. C contains no segment (c, 3).

. C is perfect.
. ' is countable.

S U RN

Proof (Property 3). In the first step, (3, 2) has been removed; in the second

step (35, %), (312 %) have been removed; and so on. C contains no open in-

terval of the form (—S—I%Hil, 3%%2
the 15¢,...,(n — 1)% steps.
Now, suppose C contains an interval (o, 3) where a < 8. Let o > 0 be a

constant which will be determined later. Choose n € N 3 37" < %ﬁ Let &
be the smallest integer 5 a < 31;1’ ie. 91”—3;1— < k,thenk—-1< 93—{-1 Show

BfTR < B ie k< ﬁlg—g E<1+ "‘3,3'"1; so show 1 + 3—311 < _,113_3_:%7 ie.

), since all such intervals have been removed in
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(B-0)3"—1_a3™™3"—1_ a-1

1
1< 2[A3" —2—a3" +1] = >
15 ad” +1] 3 3 3

> 1,
3

is what we want. So, a > 4. Then, (%ﬂ—[—l, i’;—ﬁ) C {a, ) ¢ C, Contradiction!
0

Proof (Property 4). Let x € C be an arbitrary point of C. Let B.(z) =
{(x — r,x + ) be any open ball centered at z. Find n € N 3 % <
rnxeC =N 1En=2€E, =1I}U- UIL, (disjoint intervals).
Soxz ¢ I3 for some j = 1,2,...,2" Then, z € (x — r,z + 1) ﬂI]’-" and

length(/7) = % <r =I1}C(x-rz+r).

Let y be the end point of 7' 3 y # x. Then, y € CN(z —r,z+7) = xis
a limit point of C. O

10.4 Connected Sets

Definition 10.4.1 Let (X,d) be a metric space and A, B C X. We say A
and B are separated if ANB =0 and AN B = 0. A subset E of X is said to
be disconnected if 3 two nonempty separated sets A, B> E=AUB. ECX
18 colled connected if it is not a union of two nonempty separated sets, i.e. 1
no nonempty separated subsets A,B > E = AUB (V A,B pairs).

Example 10.4.2 X = R?, with dy,d; or deometric.
Let E = {(z,y): 2* <y*} = {(x,y) : |z| < |y|}. See Figure 10.11.

/
N\ v
E ~ /
N E 7
.
N /
vl
Y hY
[ [EN (8 BN
/ N £ Y
/! ~ ! by
E » / i
ff Y / & Y
CONNECTED DISCONNECTED

Fig. 10.11. Example 10.4.2

Theorem 10.4.3 A subset E # 0 of R is connected if and only if E is an
interval (E is an interval if and only if z,x € E and ¢ < z = Yy with = <
y<z=yeckE)
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Proof. Let us mark the statement
€ Fandr <z=Vywither<y<z=yeE ().
(=)
Let E # 0 be connected. If E is not an interval = (*) does not hold. i.e.
dr,ze Esar<zand Jy 2 z<y<zandy ¢ E. Let Ay = (—o0,y) N
E,By, = (y,+o0)NE. Ay, # 0 (because x € Ay) and B, # 0 (because z € B,).
AyUBy, = [(~00,y) U (y,00)|NE = E. Ay C (—00,y) = A, C (~00,y] and
By C (y,00) = A, N B, C (—00,y] N (y,+00) =0 = A, N B, = .
Similarly, Ay N By = {) = E is disconnccted, Contradiction!
(<)
Suppose F is disconnected. Then 3 nonempty separated sets A, B> AUB =
E. Let x € A,y € B. Assume without loss of generality z < y (because
ANB =10, z#y). Let z =sup(AN [x,y]), then 2 € AN[z,y] C A (because
ACB=ACB),z¢ B.Sincex € AN[z,y], we havez < z. z € AN[z,y] C
[y =[x,y > z<y=>2<2<y.
z=y€eA
ye B
So,z<z<y, and z € A.
g A= <z<y. Sox,ye Ede<yandz3 2 <z<y. z¢ E because
z¢ B,z¢ A. So (*) does not hold.
If € A= z ¢ B (because sets are separated).
Claim: (z,y) ¢ B. If not, (z,y) € B = (2,9) C B = [z,y] C B = 2z € B,
Contradiction.
Therefore, 321 € (z,y) 221 € B =2 <z<2 <y = 21 € [x,y)].
Ifz7 € A, then 21 < 2 = 21 ¢ Az ¢ E. = z,y € E 32 < yand
z1 D x < z1 < y, Contradiction to (*)I O

} =y € An B =, Contradiction; hence, z < .

Problems

10.1. Let X s § be any set. Let d, g be two metrics on X. We say the metrics
d and g are equivalent if there are two constants:

A,B>05 Ag(p.q) < d(p,q) < Bglp,q), Vp.q € X.
Show that the metrics dy, da, ds for R* are all equivalent, i.e. find A, B.

10.2. Let (X, d) be a metric space, p € X,7 > 0. One is inclined to believe
thatB,(p) = B,[p]; i.e. the closure of the open ball is the closed ball. Give an
example to show that this is not necessarily true.

10.3. Show that a metric space (X, d) is disconnected if and only if X has a
nonempty proper subset which is both open and closed.

10.4. Consider the Printed Circuit Board (PCB) given in Figure 10.12 having
36 legs separated uniformly along the sides of the wafer. Suppose that a CNC
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Fig. 10.12. The PCB example

machine with a robot arm makes vias (a kind of drill operation) at points
A, B,...,L. A high volume of PCB’s are processed one after another.

a) Suppose that the robot arm moves in horizontal as well as vertical direction
using a single motor. It switches its direction in an infinitesimal time unit.
The CNC programmer uses the following logic to find the sequence of vias
to be processed: Start from A, go to the closest neighbor if it has not been
processed yet. Break the ties in terms of ascending lexicographical order of
locations. Once the initial sequence (Hamiltonean tour) is obtained, examine
the nonconsecutive pair of edges of the tour if it is possible to delete these
edges and counstruct another tour (which is uniquely determined by the four
locations) that yields smaller tour in length. In order to check whether there
exist such an opportunity, the programmer calculates the gains associated
with all possible pairs once. Suppose that the connections between («, ) and
(v, 4) is broken in the current tour. Then, new connections («, ) and (£, ) is
constructed in such a way that some portion of the tour is reversed and a new
tour spanning all locations is obtained. Once all the gains are calculated, all
the independent switches is made. This improvement procedure is executed
only once.

1. Find the initial tour after deciding on the appropriate metric.
2. Improve the tour.

b) What if the robot arm moves in any direction using its motor?

¢} What if the robot arm moves in horizontal as well as vertical direction
using two independent but identical motors?

d) Suppose that we have N PCBs to process. All the operation times are
identical, each taking p time units. The robot arm moves at a speed of one
leg distance per unit time along each direction. Let Cy be the cost of making
the robot arm to move along any direction using the single motor and C; be
the cost of adding a second motor. Using the improved solutions found, which
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robot configuration is to be selected when the opportunity cost of keeping the
system busy is C, per unit time?

Web material
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Continuity

In this chapter, we will define the fundamental notions of limits and continuity
of functions and study the properties of continuous functions. We will discuss
these properties in more general context of a metric space. The concept of
compactness will be introduced. Next, we will focus on connectedness and
investigate the relationships between continuity and connectedness. Finally,
we will introduce concepts of monotone and inverse functions and prove a set
of Intermediate Value Theorems.

11.1 Introduction

Definition 11.1.1 Let (X,dx), (Y, dy) be two metric spaces; E # 0, E C X.
Let f:E—~Y,pe EqeY. We say limp,p, f(z) =q or f(z) > qasz = p
if Ve > 0,36 > 0 3 Vo € E with dx(z,p) < 6 we have dy (f(z),q) <&

(i.e. Ye > 0,36 > 03 f(ENB§(p)) C B¥(q)).

Fig. 11.1. Limit and continuity

Definition 11.1.2 Let (X,dx),(Y,dy) be metric spaces; § # E C X, and
f: XY, peE. fissaid to be continuous at p if
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Ve > 0,36 > 0 3 Vz € E with dy(z,p) < & we have dy(f(z), f(p)) < €.

Remark 11.1.3 The following characteristics are noted:

e [ has to be defined at p, but p does not need to be a limit point of E.
Ifp is an isolated point of E, then f is continuous at p. That is, givene > 0
(no matter what € is), find § 3 EN B¥(p) = {p}. Then, z € E,d(p,z) <
d = z = p. Hence, dy(f(z), f(p)) =0<e.

e Ifp is a limit point of E, then f is continuous at p & lim,_,, f(z) = f(p).

Definition 11.1.4 If f is continuous at every point of E, we say f is con-
tinuous on E.

Proposition 11.1.5 Let (X,dx), (Y,dy),(Z,dz) be metric spaces and @ #
Ec X,f:E~—Y,g: f(E) — Z. If f is continuous at p € E and g is
continuous at f(p), then go f is continuous at p.

Proof. Let g = f(p). Let € > 0 be given. Since g is continuous at ¢, 3In > 03
Yy € f(E) with dy (y,q) < n we have d2(g(y), 9(¢)) < . Since f is continuous
at p, 36 > 0 3 Vz € E with dx(x,p) < § = we have dy (f(z), f(p)) < 7.
Let x € FE be 2 dx(z,p) < §. Then, y = f(z) € f(E) and dy(y,q) =
dy (f(z), f(p)) < n. Hence, dz{(g(f()),9(f(p))) = dz(9(v),9(q)) <e. O

Theorem 11.1.6 Let (X,dx),(Y,dy) be metric spaces, and let f : X — Y.
Then, f is continuous on X if and only if V open setV in Y, f1(V)={pe€
X : f(p) €V} is open in X.

Proof. (=):

Let V be open in Y. If f71(V) # 0, let p € f~(V) be arbitrary. Show
Ir>03BX(p) C fHV):pe f7YV) implies f(p) € V. Since V is open,
3s > 03 BY (f(p)) C V. Since f is continuous at p, fore =s, Ir > 03 Vz €
X vzith)dm(w,p) <r=dy(f(z),f(p) < s= f(z) € B (f(p)) >z € fH(V).

<)

Let p € X be arbitrary. Given ¢ > 0, let V = BY(f(p)) be open. Then,
f71(V) is open and p € f~1(V). Hence, 36 3 Bs(p) C f~1(V). If d(z,p) <
§ =z € Bf(p) C f71(V), then f(z) € V = d,(f(z), f(p)) <e. O

Corollary 11.1.7 f: X =Y is continuous on X if and only if V closed set
CinY, f71(C) is closed in X.
Proof. f~1(E) = (f~Y(E))°. O

Definition 11.1.8 Let (X,d) be a metric space and f1,...,fr : X ~ R.
Define f : X = R* by f(z) = (fi(z),..., fulx)T, then fy,..., fu are called
components of f.
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Proposition 11.1.9 f is continuous if and only if every component is con-
tinuous.

Proof. (=>): Fix j. Show that f; is continuous: Fix p € X. Show that f;
is continuous at p. Given ¢ > 0 36 > 0 > Vz with da(z,p) < 6, then
1552) = £ = di (f5(2), £50)) < da(f(2), £(p)) < .

(«=): Assume that Vj, f; is continuous at p € X. Show that f is continuous
at p. Let € > 0 be given.

f1 is continuous at p = 3§; > 0 3 da(z,p) < 61 = |f1(z) — filp)| < ﬁ
f2 is continuous at p = by > 0 3 da(z,p) < b2 = |fa(z) — f2(p)| < ﬁ

fi is continuous at p = 38, > 0 3 dao(z,p) < 0k = |fu(z) — fr(p)] < T
Let § = min{d;,...,8x} > 0. Let X be 3 d(z,p) < 6. Then,

A1) = 5501 P < [g’“;( )} ;

J=1

11.2 Continuity and Compactness

Theorem 11.2.1 The continuous image of a compact space is compact, i.e.
if f: X — Y is continuous and (X,d) is compact, then f(X) is a compact
subspace of (Y,dy).

Proof. Let {Vo : & € A} be any open cover of f(X). Since f is continuous,
§71(Va) is open in X. f(2) € Unea Vo = X € LH(F(2)) C Uney /7 (V)
Since X is compact, Jai,...,a, > X C [f —1( QI)U Uf 1(Van)]
flz) C f[f—l(val)U"'Uf—l(Va")] = Vo, U:---UVa,, since for A C
fYf(A), f1f(B) C B we have

FJ4a) =J f(4a) and F7( JBa) = F(Ba). O

Corollary 11.2.2 A continuous real valued function on a compact metric
space attains its mazimum and minimum.

Proof. f(X) is a compact subset of R = f(X) is bounded. Let m =
inf f(z), M = sup f(z). Then, m, M € R; since f(X) is bounded. Also,
m,M € f(X). Furthermore, f(z) = f(z), since f(X) is compact. Thus,
dJpeX>5m=f(p)and Ig € X 5 M = f(g). Finally, m = f(p) < f(z) <
fley=M,Vze X. O

Theorem 11.2.3 Let (X,dx) be a compact metric space, (Y,dy) be a metric
space, f : X Y be continuous, one-to-one and onto. Then, f~1:Y +— X is
continuous.
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Proof. Let g = f~! : Y — X. Show that V closed set C' in X, g~1(C) is a
closed set in Y: ¢g7}(C) = (f~1)"YC) = f(C), since X is compact. Hence,
f(C) is closed, thus g~1(C) is closed. O

Remark 11.2.4 If compactness is relazed, the theorem s not true. For ez-
ample, take X = [0,27) with d; metric. Y = {(z,y) € R? : 2% + y? = 1} with
dy metric.

f: XY, f(t) = (cost,sint).

f is one-to-one, onto, continuous. However f~' is not continuous at P =
(0,1) = f(0). If we let ¢ = m, suppose there is a 6 > 0 3 V(z,y) € Y with
d2((z,y),(1,0)) < 4, then we have

IF~Ha,y) — F71(1,0)] < e.
However, for (z,y) 3 37” < f Yz, y) <2 (0= V2), we have

£ @ y) - £711,0)] > 37” >

Thus, we do not have

If @) - A0 <e =7 ¥(z,y) €Y > dy[(z,y),(1,0)] < 4.

11.3 Uniform Continuity

Definition 11.3.1 Let (X,dx),(Y,dy) be two metric spaces, f : X + Y.
We say f is uniformly continuous on X if

Ve >0, 36 > 05 Vp,q € X with dx(p,q) < 9§, we have dy{f(p), f(q)) < e.

Remark 11.3.2 Uniform continuity is a property of a function on a set,
whereas continuity can be defined at a single point. If f is uniformly continuous
on X, it is possible for each € > 0 to find one number § > 0 which will do for
all points p of X. Clearly, every uniform continuous function is continuous.

Example 11.3.3
1
flz,y) =2z + o E={(z,y) eR*:1<y <2}

Let us show that f is uniformly continuous on E. Let € > 0 be given. Suppose
we have found § > 0 whose value will be determined later. Let p = (z,y),q =
(u,v) € E be such that da2(p,q) < 8, Show |f(z,y) — f(u,v)] < e: da(p,q) <
d=lz—ul<dandly—v| <d=|f(z,y) - f(u,v)| = |2:c+;12——2u—;151 <
2e—ul+(k-%) < 26+‘%’#)| = 20+ Llletwl ginee Lmylltul 45,
we have | f(z,y) — f(u,v)| < 66 = €. Hence, one can safely choose 6 = § > 0.
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Example 11.3.4 f(z) = 1, F = (0,1) C R. Let us show that f is not uni-
formly continuous on E but continuous on E: givene > 0, let § > 0 be chosen.
Let x € E and |z — zo| < 4.

Ifrog—6>0, thenlx —xzpl < d S 2o — 0 <z <20+ 9.

1 1
xT To

_ 2
<M§_g_<__é__<€:>53ﬂ
- zxg zzg  (xo — )xo 1+exg

Hence, f is continuous at xg and d depends on € and xo. However, dependence
on xq does not imply that f is not uniformly continuous, because some other
calculation may yield another & which is independent of xo. So, we must show
that the negation of uniform continuity to hold:

Je>03V6>0 Ay, 290 € E D |.’E1 —.’1,‘2| < & but |f(£L‘1) - f(:L'z)l > €.

Lete =1. Let § be given. If § < § ,onecanﬁndk95< 1 i.e. k—(——l]

Thus, k > 2. Let z1 = 6, x2-6+ =>0<1:1§ O<x2<25< <l=

wl,a?zEEl$1—$2|=%S%<5,|f($1)—f($2)| |§- 5| = (zi’”)—

> 1. If6>l:>Let6’:%. Find z1,32 3 |21 — x2} < ' < § and

5(k+1) 3

|f (1) — f(=z2)] <e.

Theorem 11.3.5 Let (X,dx) be a compact metric space, (Y,dy) be a metric
space, and f : X — Y be continuous on X. Then, f is uniformly continuous.

Remark 11.3.6 Let } # F C R be non-compact. Then,

(a) 3 a continuous f : E — R which is not bounded. If E is noncompact then
etther E is not closed or not bounded. If E is bounded and not closed,
then E has a limit point xg > zo ¢ E. Let f(z) = Vee E.IfE is
unbounded then let f(z) =z, Vx € E.

(b) 3 a continuous bounded function f : E — R which has no mazimum.
If E is bounded let xy be as in (a). Then, f(z) = ml_z—o)f, Vz € E.
sup f(z)=1but Inoz € E> f(z) =

(c) If E is bounded, 3 a continuous function f : E — R which is not
uniformly continuous. Let xg be as in (a). Let f(z) = ﬁ, Yz € FE
which is not uniformly continuous.

m:c’

11.4 Continuity and Connectedness

Theorem 11.4.1 Let (X,dx),(Y,dy) be metric spaces, § # E € X be con-
nected and let f: X — Y be continuous on X. Then, f(E) is connected.
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Proof. Assume that f(FE) is not connected, i.e.
J nonempty A, BCY3ANB=0, ANB=0, f(E)=AUB.

Let G=ENfYA), H=ENfYB), A#0=3q€ AC f(E)=q= f(p)
forsomepc E =pc fl(A)=>pecG=G+#0.
Assume GNH #0. Let pec GNH=>pe H=EN f~1(B) =
fp)eB,peG=EnfHA) CfHA) (¥
ACA= f~YA):closed = f-1(A)C fY(A)=pe f (A=
flp) € A (xx)
(M)+(**)= f(p) € AN B # 0, Contradiction. Thus, G N H = . Similarly,
0.

EcC 7Y (f(B) = fTH(AUB) = fTH (AU fT(B)
E=EN[f~{ (AU B)=[EnfHAVENF(B)]=GUH,

meaning that E is not connected. Contradiction! 0O

Corollary 11.4.2 (Intermediate Value Theorem) Let f : [a,b] — R be
continuous and assume f(a) < f(b). Let ¢c € R be such that

fla)<e< f(b) = ce€ f(la,b]), ie. Iz € (a,b)> f(z)=c.

Proof. [a,b] is connected, so f([a,b]) is connected; thus f([a,b]) is an interval

[, B]. f(a), £(b) € [, B] = ¢ € f([a,b]),
Jz € a,b] 3 f(x)=¢, fla)<c=>z#aand f(b) >c=x #b.

Thus, z € (a,b). O

Example 11.4.3 Let I = [0,1],f : I — I be continuous. Let us show that
dz € I3 f(z) =x. Let g(z) = f(z) — & be continuous. Show Iz € I 3 g(z) =
0. If 3 such = = Yz € I we have g(z) > 0 or g(x) < 0.

(i) g(z) >0, Yz €I = f(z)>z,Vz € 1. Then, f(1) > 1; a Contradiction.
(it) g(xz) <0, Ve € I = f(z) < z,Vz € I. Then, f(0) < 0; a Contradiction.

Definition 11.4.4 (Discontinuities) Let f : (a,b) — X where (X,d) is a
metric space. Let x be 5 a < z < b and ¢ € X. We say, f(z+) = q or
lmy oy f()) = ¢ if Ve > 036 >0 >Vtwithzs <t < xz+38 we have
d(f(t), f(z)) < e. f(z4) = ¢ & V subsequence {t,} with z < t, < b,¥n
and lim, o0 by, = z we have lim,_,o f(t) = ¢q. f(z=) = lim,,_ f(t) is
defined analogously. Let x € (a,b) = lime,, f(t) exists & f(z+) = f(z—) =
lim;_,, f(t). Suppose f is discontinuous at some x € (a,b).
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y=x

f(x)

Fig. 11.2. Example 11.4.3

(i) If f(z+) or f(z—) does not exist, we say the discontinuity at x is of the
second kind.
(it) If f(z+) and f(z—) both exist, we say the discontinuity at  is of the first
kind or simple discontinuity.
(1) If f(z+) = f(z—), but f is discontinuous at z, then the discontinuity at
z is said to be removable.

y=x

0.5- - - - 128 |

y=1-x

Fig. 11.3. Example 11.4.5

Example 11.4.5

) |, z€eQ

f is continuous (only) at z = %:

Lete > 0 be given. Let 6 =¢. Let t € R 5 |t — x| < § where z = L.
te Q= () - @) =lt—al=|t— 4 <6 =c.
teR\Q=|f(t) - flz)|=|1-t-z|=|} —z|=|l-z|<d=e.
Hence, f is continuous at x = %
CLAIM:f is discontinuous every other point than z = —21-
(without loss of generality, we may assume that x > §):

Let © # %. Show f(z+) does not exist. Let £ = 12m2——1| Assume f(z+) exists,
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then for this specific ¢ > 0, 36 > 0 3 Vt with ¢ < t < x + §, we have
1f(t) = f@)] <e.

CASE 1: X € Q.

Findt e R\Q3z <t<z+0d |f(t)— fz)] <e= L2221

But 4|f(t) — f(z)|=1~-t—z|=2z-1+t—z|=|22 - 1) = (x = t)|.
Since |a —b| > ||a| — |b] [,

If@) — f(@)| = 12z - 1| = |e = 1|| 2 [22 = 1| — |z — £| > |20 — 1] - 6.
Then, we have

|22 — 1]
< ——

22 = 1] = 6 < |£(0) - (a)] < =2

=0> Br;—ll, Contradiction since § > 0 can be taken as small as we want.
CASE 2: X € R\ Q. Proceed in similar way, but choose t as rational.

11.5 Monotonic Functions

Definition 11.5.1 Let f: (a,b) — R. [ is said to be monotonically increas-
ing (decreasing) on (a,b) if and only if

a<z<za<b= f(z1) < f(x2) (flz1) = flz2)).

Proposition 11.5.2 Let f : (a,b) — R be monotonically increasing on (a,b).
Then, Vz € (a,b), f(z+) and f(z—) ezist and

ailing(t) = f(z-) < fz) < fla+) = mirggbf(t)-

Furthermore, a < 21 < z2 < b= f(z1+) < fz2-).

Theorem 11.5.3 Let f : (a,b) — R be monotonically decreasing on (a,b),
then Vz € (a,b), f(z+) and f(x—) exist and
inf f(t) = f(z=) 2 f(z) 2 f(a+) = sup f(2).

a<t<z z<t<b

Furthermore, a < £1 < 22 < b= f(z1+) > f(z2—).

Proof. Let z € (a,b) be arbitrary. V¢ with 0 < ¢ < z, we have f(t) > f(z). So,
{f(#) : a <t < z} is bounded below by f(z). Let A = inf{f(t):a <t < z}.
We will show A = f(z1-):

Let € > 0 be given. Then, A+« is no longer lower bound of {f(¢) : a < t < z}.
Hence, 3ty € (a,2) 3 f(to) < Ad+e. Letd =2 -1ty Vi D2z -0 =1ty <t <
z= f(z) < f(to) < A+eand f(t) > A > A—e. Hence, Vt € (z — 6,z) we
have A —e < f(t) < A+¢ = |f(t) — A] <e. Thus, A = f(z—). Therefore,
infocics f(t) = A= f(z—) > f(z). Similarly, sup, ., f(z) = f(z+) < f(2).
Let a < z; < 23 < b, apply first part b + z2 and z + z;. f(z1+) =
Supzl<t<zz f(t) Z inf.’m<t<w2 f(t) = f(.'l?2+) O
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f
\.
f(x-) |- - - - 0
) - - - - -
|
fx#) |- - - = =
N
]
i
0 X

Fig. 11.4. Proof of Theorem 11.5.3

Corollary 11.5.4 Monotonic functions have no discontinuities of the second
type.

Theorem 11.5.5 Let f : (a,b) — R be monotonic. Let A be the set of dis-
continuous points of f, then A is at most countable.

Proof. Assume f is decreasing, then A = {z € {a,b} : f(z+) < f(z—)}. Vz €
A, find f(z) € Q3 f(z+) < r(z) < f(z—) and fix r(z). Define g : A — Q by
g(x) = r(z). We will show that g is one-to-one: Let 1 # z2 € 4,21 < 22 =
r(z1) > f(z1+) = flza—) > r(z2) = r(z1) # r(x2). Thus, g is one-to-one,
and A is numerically equivalent to Q by g(z) = r(z). Therefore, A is at most
countable. 0O

Remark 11.5.6 The points in A may not be isolated. In fact, given any
countable subset E of (a,b) (E may even be dense), there is a monotonic
function f: (a,b) = R 3 f is discontinuous at every x € E and continuous
at every other point. The elements of E as a sequence {x1,22,...}. Let ¢, >
0 > Y ¢, is convergent. Then, every rearrangement Ec¢(n) also converges
and has the same sum. Given z € (a,b) let Ny = {n : z, < z}. This set may
be empty or not. Define f(x) as follows

) 0’ Nz = @
fle) = ZWGNZ Cn, Otherwise

This function is called saltus function or pure jump function.

(a) f is monotonically increasing on (a,b):
Leta<z<y<b IfN,=0, f(z)=0 and f(y) > 0.
Iwa 75 @, r<y= f(iL‘) = ZnGNm Cn —<- ZneNy Cn = f(y)

(b) [ is discontinuous at every T, € E:
Letxm € E be fized. f(zm+) = infy,, <<t f(t), flam—)= SUPg<s<zy, f(s).
Let xpy, <t < b, a < 8 <z, be arbitrary = a < s < &y, <t < b. Then,
NscNt, mENt, m¢Ns:>m€Nt\Ns.
f(t)— f(s) = ZnENt Cp — ZnGNs Cn = ZnENs\Nt Cn 2 Cm =
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f(t) > cm + f(s). Fix f(s) = cm + f(5) is a bound for all f(t)'s. So,

take the infimum over t's. f(Tm+) > f(s) + cm & f(@mt) — cm >

f(s). If we take supremum over s’s, we will have f(zm+) — cm =

f@m=) = f(@m+) — f(&m—) = cm. Therefore, f(zm+) # f@m—) (In

fact, f(@m+) = f(@m—) = cm).

(c) f is continuous at every x € (a,b)\ E:

Let x € (a,b)\ E be fized. We will show that f is continuous at x. Lete > 0

be given, since Y ¢, converges, 3N 3 Z:;NH Cn <00 CNy1+SN =85 =

rNy1 = 8§ — sn. Let &' = Min{|z — z41|,...,|z — zn|,2 — a,b — z}. Let

§=19.

Clairz;t(i) Ife <zp <z+d6thenn > N+1. If n < N+ 1, then
|z — xzn| > & = 28, Contradiction.

Claim (i) If t — 8§ < x < x, then n > N +1. f(z) —¢ < f(z —
d), fla+0) < f(a)+e, f(@)—f(@=0)=3,cn, Cn—2neNn, ;Cn =
P oneNAN, s Cn S Y omenN41 Cn < €. For the second claim, f(z +6) —
flz)= ZneNﬂ‘, Cn“zneNm Cn = ZneNm+5\NI cn £ Z;T:N—H Cn <E.
Lett be 3 Jt—z| < b, i.e. 2—6 <t < z+6 = f(z—~8) < f(t) < F(z+9).
Hence, f(z) —e < f(t) < f(z)+¢, |f(&) — f(z)]| <e.

Problems

11.1. Let (X,d) be a metric space. A function f : X — R is called lower
semi-continuous (lsc) if Vb € R the set {z € X : f(x) > b} is open in X;
upper semi-continuous (usc) if Vb € R the set {z € X : f(z) < b} is open in
X. Show that

a) fislsc & Ve >0, Vao; 30 > 03 x € Bs(zo) = f(z) > flzo) — €.

b) fis usc & Ve > 0, Vzo; 36 > 03 z € Bs(z0) = f(z) < f(xo) + .

11.2. Let (X, dx) be a compact metric space, (Y,dy) be a metric space and
let f: X — Y be continuous and one-to-one. Assume for some sequence {p, }
in X and for some ¢ € Y, lim; o f(Pn) = q. Show that

dp€ X3 lim p, =pand f(p) =g¢.
11.3. Give a mathematical argument to show that a heated wire in the shape

of a circle (see Figure 11.5) must always have two diametrically opposite points
with the same temperature.

‘Web material

http://archives.math.utk.edu/visual.calculus/1/continuous.7/
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Fig. 11.5. A heated wire
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Differentiation

In physical terms, differentiation expresses the rate at which a quantity, y,
changes with respect to the change in another quantity, , on which it has
a functional relationship. This small chapter will start with the discussion
of the derivative, which is one of the two central concepts of calculus (the
other is the integral). We will discuss the Mean Value Theorem and look at
some applications that include the relationship of the derivative of a function
with whether the function is increasing or decreasing. We will expose Taylor’s
theorem as a generalization of the Mean Value Theorem. In calculus, Taylor’s
theorem gives the approximation of a differentiable function near a point by a
polynomial whose coefficients depend only on the derivatives of the function
at that point. There are many OR applications of Taylor’s approximation,
especially in linear and non-linear optimization.

12.1 Derivatives

Definition 12.1.1 Let f : [a,b] = R. Vz € [a,b], let ¢(t) = L8={@ 4 <
t < b t#zx fl{r) =limy_, ¢(t) provided that the limit exists. f' is called
the derivative of f. If ' is defined at x, we say f is differentiable at x. If f’
is defined at Vz € FE C [a,b], we say f is differentiable on E. Moreover, left-
hand (right-hand) limits give rise to the definition of left-hand (right-hand)
derivatives.

Remark 12.1.2 If f is defined on (a,b) and if a < x < b, then f' can be

defined as above. However, f'(a) and f'(b) are not defined in general.

Theorem 12.1.3 Let f be defined on [a,b], f is differentiable at x € [a,b]
then f is continuous at .

Proof. Ast— g, f(t) — f(z) = L9=LE (1 _2) & f'(z)-0=0. O
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Remark 12.1.4 The converse is not true. One can construct continuous
functions which fail to be differentiable at isolated points.

Let us state some properties: Suppose f and g are defined on [a, b] and are
differentiable at = € [a,b]. Then, f + g, f-g and f/g are differentiable at x,
and

(a) (f+9)(2) = f<x>+g'<a:>.
(b) (- 9)(2) = f'(@)g() + f(2)g' ().
(0) (f/g)'(w) = L@ M@ | g(5) 2 0.
) =

(d) Chain Rule: If h(t) = (go f)(¢) = g(f(t)), a <t < b, and if f is continuous

at [a,b], f' exists at z € [a,b], g is defined over range of f and g is
differentiable at f(z). Then, A is differentiable at  and

h'(z) = g'(f (@) f'(x)-
Example 12.1.5 (Property (c)) The derivative of a constant is zero. If
f(z) =x then fl(z) = 1. If f(x) =z -x = 2% then f'(z) = 2+ 2z = 2z by
property (b). In general, if f(z) = z™ then f'(z) = na" !, n e N. If f(z) =
L =z71 then f'(z) = 5 = —272. In this case,  # 0. if f(z) =27, neN
then f'(z) = —nz~ (D) | Thus, every polynomial is differentiable, and every

rational function is differentiable except at the points where denominator is
zero.

Example 12.1.6 (Property (d)) Let
zsind z#0
f(@) { f), z=0

Then, f'(x) =sinl —L1cosl z#0. Atz =0, L is not defined fi%:—oﬁo—) =
sin 1. Ast — 0, the limit does not exist, thus f'(0) does not exist.

12.2 Mean Value Theorems

Definition 12.2.1 Let f : [a,b] — R. We say f has a local mazimum at
pEX if3>0 3 flq) < f(p), Vg € X with d(p,q) < §. Local minimum is
defined similarly.

Theorem 12.2.2 Let f : [a,b] = R. If f has a local mazimum (minimum,)
at x € (a,b) and if f'(x) exists, then f'(z) = 0.

Proof. We will prove the maximum case:
Choose ¢ as in the definition: a <z —-d <z <z +d<b.
Ifz—-d<t<z, then %20. Let t = 2= f'(z) > 0.

Ifx<t<:c+6,thenﬂ%ﬂSO.Lett%oo:'f’(m)SO
Thus, f'(z) =0. O
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Theorem 12.2.3 Suppose f : [a,b] — R is differentiable and f'(a) < A <
') If (@) > x> f/(b)]. Then, 3z € (a,b) > f'(z) = A

Proof. Let g(t) = f(t) — At. Then, ¢'(a) < 0 [¢’(a) > 0] so that g(t1) <
g(a) [g(t1) > g(a)] for some t; € (a,b), so that g(t2) < g(b) [g(t2) > g(a)]
for some ty € (a,b). Hence, g attains its minimum [maximum] on [a,b] at
some points = € (a,b). By the first mean value theorem, g'(x) = 0. Hence,

fllxy=X O
Corollary 12.2.4 If f is differentiable on [a,b], then f' cannot have any
simple discontinuities on [a,b].
Remark 12.2.5 But f' may have discontinuities of the second kind.
Theorem 12.2.6 (L‘Hospital’s Rule) Suppose f and g are real and dif-
ferentiable in (a,b) and ¢'(z) # 0, Vz € (a,b) where o0 < a < b < F00.
Suppose

f'(z)

g'(z)
If f(x) = 0 and g(z) —» 0 as z — a or if f(z) = +00 and g{z) = +oo as
x — a, then
f(=z)
9(z)

Proof. Let us consider the case —co < A < +00: Choose ¢ € R 3 A < ¢, and
choose r 3 A < r < g. By (¢),

= Aasz - a (o).

— A as T — a.

f'(x)
9'(z)

If a < £ < y < ¢, then by the second mean value theorem,

F@) = f0) _ FO)
VeV e T T gw) <" W

Jee(@b)da<z<c= <7 (W)

Suppose f(z) — 0 and g(z) — 0 as z — a. Then, (Q)%Sr<q,a<y<c.

Suppose g(z) — +oo as  — a. Keeping y fixed, we can choose ¢; € (a,y) 3
g9(z) > g(y) and g(z) > 0if a < & < ;. Multiplying (#) by [g(z) - 9(y)]/9(z),

we have % <r- ggy; + g((:g, a<z<e. lfz—adee(ae)3 ;’g;c))
g, @ < z < cz. Summing with (&) Vg 3 A < q yields
3029—[(—3:—)<qifa<x<02.
g(z)

Similarly, if —co < A < 400 and p 3 p < 4, 3039p<ggm—;,a<m<03. a
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12.3 Higher Order Derivatives

Definition 12.3.1 If f has a derivative f' on an interval and if f' is itself
differentiable, we denote derivative of f' as f”, and call the second derivative
of f. Higher order derivatives are denoted by 008 ™) each of
which is the derivative of the previous one.

Theorem 12.3.2 (Taylor’s Theorem) Let f : [a,b] = R, n € N, f(»-1)

be continuous on [a,b], and f(™(t) exists ¥t € [a,b]. Let a # B € [a,b] and
define

Then, 3z € (e, B) 2 f(B) = p(B) + A )(a) (B —a)".

Remark 12.3.3 Forn = 1, the above theorem is just the mean value theorem.

Proof. Let M 3 f(8) = p(B) + M(8 — a)™.

Let g(t) = f(¢) —p(t) - M(t—a)", a <t < b, the error function. We will show
that n! M = £ (z) for some z € (a,b). We have g™ (t) = f™)(t)—n! M, a <
t <b. If 3z € (a,b) 3 ¢ (z) = 0, we are done.

p®(a) = f®a), k=0,....,n—1 =

g@) =g (@ =g"(@@)=-=¢"V(a)=0.
Our choice of M yields g(8) = 0, thus ¢g'(z1) = 0 for some z; € (&, () by
the Mean Value Theorem. This is for ¢”(-), one may continue in this manner.
Thus, ¢(™(z,) = 0, for some z,, € (@, zn—1) C (,3). O

Definition 12.3.4 A function is said to be of class C” if the first r derivatives
exist and continuous. A function is said to be smooth or of class C™ if it is
of class C", ¥r € N.

Theorem 12.3.5 (Taylor’s Theorem) Let f : A — R, be of class C" for
A C R”, an open set. Let z,y € A and suppose that the segment joining x
and y lies in A. Then, 3c in that segment >

r—1
@) = 5@ = Y IO =2y = 2) + (@O~ a)
27 .

where fOy—z,...,y=2) = o, ., [(5550) o = 2i) - (i, = 21,)] -

i
Setting y = x + h, we can write Taylor’s formula as

f@+h)=fz)+ f(z) h+-+ ﬁf”*”(w) “(h,...,h) + R,_1(z, h),
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where R._1(z,h) is the remainder. Furthermore,

R,«_l(.’li, h)

—7— — 0 ash—0.
Il

Problems

12.1. Suppose f : [0,00) — R is continuous, f(0) = 0, f is differentiable on
(0,00) and f’ is nondecreasing. Prove that g(z) = ﬂzﬂ is nondecreasing for
x> 0.

12.2. Let A C R™ be an open convex set and f : A — R™ be differentiable.
If /(¢t) = 0, Vt then show that f is constant.

12.3. Compute the second order Taylor’s formula for f(z,y) = sin(z + 2y)
around the origin.

12.4. Let f € C% and z* € R" be local minimizer.
a) Prove the first order necessary condition (z*
V f(z*) = 8) using Taylor’s approximation.

b) Prove the second order necessary condition (z* is a local minimizer then
V2f(z*) is positive semi-definite) using Taylor’s approximation.

c¢) Design an iterative procedure to find Vf(z) = 6 in such a way that it
starts from an initial point and updates as zy = xk_1 + pr. The problem at
each iteration is to find a direction pj that makes V f(xy—1) closer to the null
vector. Use the second order Taylor’s approximation to find the best p; at
any iteration.

d) Use the above results to find a local solution to

is a local minimizer then

min f(z1,22) = ] + 223 + 2422 + 25 + 1222,

Start from [1,1]7.
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Power Series and Special Functions

In mathematics, power series are devices that make it possible to employ
much of the analytical machinery in settings that do not have natural notions
of “convergence”. They are also useful, especially in combinatorics, for provid-
ing compact representations of sequences and for finding closed formulas for
recursively defined sequences, known as the method of generating functions.
We will discuss first the notion of series, succeeded by operations on series
and tests for convergence/divergence. After power series is formally defined,
we will generate exponential, logarithmic and trigonometric functions in this
chapter. Fourier series, gamma and beta functions will be discussed as well.

13.1 Series

13.1.1 Notion of Series

Definition 13.1.1 An expression

o0 o0
Zuk=2uk:uo+u1+u2+---
k=0 0

where the numbers uy, (terms of the series) depend on the inder k =0,1,2,...
is called a (number) series. The number

Sp=up+uy+--+u,, n=0,1,...

is called the n** partial sum of the above series.
We say that the series is convergent if the limit, lim,_,oo S, = S, exists.
In this case, we write

0
S=U0+U1+U2+"':Zuk
k=0

and call S the sum of the series; we also say that the series converges to S.
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Proposition 13.1.2 (Cauchy’s criterion) The series
0
S
k=0

is convergent if and only if

Ye>0, AN >Yn,pe N,n >N, |upt1+ -+ Ungp| = [Sngp — Sn| < e

Remark 13.1.3 In particular, putting p = 1 we see that if > p. o uk is con-
vergent its general term uy tends to zero. This condition is necessary but not
sufficient!

Definition 13.1.4 The series are called the remainder series of the series

Z = ;
k=0 U !

Since the conditions of Cauchy’s criterion are the same for the series and its
remainder series, they are simultaneously convergent or divergent. If they are
convergent, the remainder series is

lim Zun+k = hm (Sn+m Sn)=8—-5,.

n—>00

If the series are real and nonnegative, its partial sums form a nondecreas-
ing sequence S1 < Sy < S3 < --- and if this sequence is bounded (i.e.
Sn < M, n=1,2,...), then the series is convergent and its sum satisfies
the inequality

lim §, =5 <M.

n—o0
If this sequence is unbounded the series is divergent limy, oo S, = 00. In this
case, we write Y_po o uk = co and say that the series with nonnegative terms
is divergent to co or properly divergent.

Example 13.1.5 The n* partial sum of the series 1+ z 4 22 4+ -+ is
1-— zn+1

Snl2) = =T 2—

for z # 1.
If 2] < 1 then |z"*Y| = [2|™*' — 0, that is 2! — 0 as n — oco.
If |z| > 1 then |z"t1| — oco.
Finally, if |z| = 1 then 2™*' = cos(n + 1)8 + isin(n + 1)8, where 6 is the
argument of z, and we see that the variable 2" has no limit as n — oo
because its real or imaginary part (or both) has no limit as n — oco. For
z =1, the divergence of the series is quite obvious.

We see that the series is convergent and has a sum equal to (1 —2)7! in
the open circle |z| < 1 of the complez plane and is divergent all other points
z.



13.1 Series 177
13.1.2 Operations on Series

Proposition 13.1.6 If > po,ukr and Y 7o, vk are convergent series and a €
C, then the series Y poq QUi and Y peq{ur £ vk) are also convergent and we

have
o0 o0 o0 o0 o0
Zauk = aZuk and Z(uk ) = Zuk + ka.
k=0 k=0 k=0 k=0 k=0

Proof. Indeed,

Y0 auk = limp o0 g 0up = aliMn oo D g Uk = @Y g Uk, and

Yoo (ke £ vk) = limy o0 Yoo (ur £ vg) = limy,y 00 30 uk £ limpsee D og Uk =
Ego ug + Zgo vE. O

Remark 13.1.7 It should be stressed that, generally speaking, the conver-

gence of >  ur x> o vk does not imply the convergence of each of the series
S e Uk and Y pe o vk, which can be confirmed by the ezample below:

(a—a)+{a—-a)+---, VaeCl.

13.1.3 Tests for positive series

Theorem 13.1.8 (Comparison Tests) Let there be given two series

(o)

(i) > uk and (i) > v
0

0
with nonnegative terms.

(a) If up, < v, Vk, the convergence of series (ii) implies the convergence of
series (i) and the divergence of series (i) implies the divergence of series

(b) If limgoo 38 = A > 0, then series (i) and (i) are simultaneously con-
vergent and divergent.

Proof. Exercisel 0O

Theorem 13.1.9 (D’Alembert’s Test) Let there be a positive series
o
Zuk Sug >0, VE=0,1,...
0

(a) If % < g < 1, Vk, then the series 3 o uy is convergent. If iff;—i > 1,
then the series Y o uy is divergent.
(b) If limy_, oo "1’::1 = q then the series 3 " ux is convergent for ¢ < 1 and

divergent for g > 1.

Proof. We treat the cases individually.
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(a) We have

and therefore
Uk+1
Uk

<g<l1l=u, <ugg™, ¢<1,Yn.

Since the series Z‘lx’ ugq™ is convergent, the series 280 ug, is convergent.

U
kL > 1= u, > ug, Vn.

Uk
Since the series ug + ug + - - - is divergent, so is Ego Ug.
(b) limk_)oo":;:‘ =q¢g<1=2>Ve>0>q+e<1; weha.vel%;cCL < q+
€ < 1, k> N, where N is sufficiently large. Then, the series Y uk is
convergent and hence so is 280 ug. On the other hand,

. U U
lim = —g>1= -t S 1, Vbk>N
k—oo Uk Uk

for sufficiently large N, and therefore 3 o° uy, is divergent. O

Theorem 13.1.10 (Cauchy’s Test) Let > ;° ux be a series with positive
terms,

(a)

[o 0}

(uk)% < q < 1,Yk = the series Zuk is convergent.
0

o0
(uk)% > 1,Vk = the series Zuk 1s divergent.
0

(b) If limkﬁw(uk)% = q, then the series 3 o ux is convergent for ¢ <1 and
divergent for ¢ > 1.

Remark 13.1.11 Let a series be convergent to a sum S. Then, the series
obtained from this series by rearranging and renumbering its terms in an ar-
bitrary way is also convergent and has the same sum S.

13.2 Sequence of Functions

Definition 13.2.1 A sequence of functions {f,), n = 1,2,3,... converges
uniformly on E to a function f if

Ve>0, AN eN>3n>N=|folz) - f(z)| <e, VZ € E.

Similarly, we say that the series Y fn(x) converges uniformly on E if the
sequence (Spn) of partial sums converges uniformly on E.
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Remark 13.2.2 Every uniformly convergent sequence is pointwise conver-
gent. If (f,) converges pointwise on E, then there exist a function f such
that, for every € > 0 and for every x € E, there is an integer N, depending
on € and x, such that |f,(z) — f(z)} < € holds if n > N; if {f,) converges
uniformly on E, it is possible, for each € > 0, to find one integer N which will
do for all x € E.

Proposition 13.2.3 (Cauchy’s uniform convergence) A sequence of func-
tions, {f.), defined on E, converges uniformly on E if and only if

YVe>0,INENSm>N,n> N,z € E=|fn(z) — fu(z)] e
Corollary 13.2.4 Suppose lim,, ;o fo(z) = f(z), z € E. Put
M, = sup |fn(z) — f(2)].
zE€FE

Then, f, — f uniformly on E if and only if M,, —> 0 as n — co.

Proposition 13.2.5 (Weierstrass) Suppose (f,.) is a sequence of functions
defined on E, and |f(z)| < M,, x € E, n=1,2,3,... Then, > f, converges
uniformly on E if > M, converges.
Proposition 13.2.6

23, n(0) = Jimg fimn S (0)

Remark 13.2.7 The above assertion means the following: Suppose f, — f
uniformly on a set E in a metric space. Let x be a limit point of E, and
suppose that limy_.q fr(t) = Ap, n = 1,2,3... Then, (A,) converges, and
limg ., f(2) = limp 00 An-

Corollary 13.2.8 If {f,) is a sequence of continuous functions on E, and if
fn = [ uniformly on E, then f is continuous on E.

Remark 13.2.9 The converse is not true. A sequence of continuous func-
tions may converge to a continuous function, although the convergence is not
uniform.

13.3 Power Series

Definition 13.3.1 The functions of the form

flz) = Z cne”
n=0

or more generally,

are called analytic functions.
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Theorem 13.3.2 Suppose the series Y oo, cn™ converges for |z| < R, and
define

o
fz) = Z cnz™, x| < R
n=0
which converges uniformly on [—R+¢€, R—¢€|, no matter which € > 0 is chosen.
The function f is continuous and differentiable in (—R, R), and

= chn(x -a)" ! 2| <R

Corollary 13.3.3 f has derivatives of all orders in (—R, R), which are given
by

Z (n—1)-(n—k+ ca(z —a)"*.

In particular,
F®0) = kley, k=10,1,2,...

Remark 13.3.4 The above formula is very interesting. On one hand, it shows
how we can determine the coefficients of the power series representation of f.
On the other hand, if the coefficients are given, the values of derivatives of f
at the center of the interval (—R, R) can be read off immediately.

A function f may have derivatives of all order, but the power series need
not to converge to f(z) for any x # 0. In this case, f cannot be expressed as
a power series about the origin.

Theorem 13.3.5 (Taylor’s) Suppose, f(z) = Y .0, cnz™, the series con-
verging in |lz| < R. If —R < a < R, then f can be expanded in a power series
about the point x = a which converges in |z — a| < R — |a|, and

® ¢(n)(g
fay=3 86 oy

n=0

Remark 13.3.6 If two power series converge to the same function in (—R, R),
then the two series must be identical.

13.4 Exponential and Logarithmic Functions

We can define
X on

nz;)% vz € C.

It is one of the exercise questions to show that this series is convergent V2 € C.
If we have an absolutely convergent (if |ug| + |us| + -+ is convergent) series,
we can multiply the series element by element. We can safely do it for E(z):
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n k, n—k

E(Z)E(“’)ZZ% D %T' = /;(:)— )

This yields

E(z)E(-2z)=E(z—-2)=E(0)=1,Vz € C.

E(z)#0,Vz€eC. E(z) >0, Vz e R.

E(z) - 400 as z — +00.

0<z<y= E(z) < E(y), B(—y) < E{—=z).

Hence, E(x) is strictly increasing on the real axis.

limp ¢ EL&%& = E(z).
E(zy 4+ -+ 2n) = E(z1) -+ E{2,). Let us take zy = --- = z, = 1. Since
E(1) = e, we obtain E(n) =e", n =1,2,3,... Furthermore, if p = n|m,
where n,m € N, then [E(p)]™ = E(mp) = E(n) = ¢" so that E(p) =
eP, p € Q4. Since E(—p) = e"P, p € Q4, the above equality holds for all
rational p.

e Since z¥ = sup,eqgsp<y T¥> VT, ¥ € R, z > 1, we define e” = sup,egsp<, €
The continuity and monotonicity properties of E show that

E(z) = €® = exp(z).
Thus, as a summary, we have the following proposition:

Proposition 13.4.1 The following are true:

(a) €® is continuous and differentiable for all z,
(b) (e) =e",
(c) e* is a strictly increasing function of z, and e* > 0,
(d) e*tY = e®e¥,
(e) €* — +00 as ¢ — +o0, €* — 0 as £ — —00,
(f) limg 4o 2"~ =0, Vn.
Proof. We have already proved (a) to (e). Since e* > (%Tl—l)!, for x > 0, then
e < (—"—;—'—1—)—‘ and (f) follows. O
Since FE' is strictly increasing and differentiable on R, it has an inverse

function L which is also strictly increasing and differentiable whose domain is
E(R) =R,.

ELy) =y, y>0& L(E(x) =z, z€R.

Differentiation yields

L'(B(@) E(@) =1=L'(y) y & L'(y) = 5 y>0.
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x = 0= L(1) = 0. Thus, we have
Ydx
L(y) = / — =logy.
1 T

Let u = E(z), v=E(y);
L(w) = L(E(z)E(y)) = L(E(z + y)) =z + y = L{u) + L(v).

We also have logz — +o00 as £ — 400 and logz — —oc0 as ¢ — 0. Moreover,

1
z" = E(nL(z)), « € Ry;n,m e N, am =E <;n—L(:c)>

t® = E(aL(z)) = e*'°8%, Yo € Q.

One can define z®, for any real o and any x > 0 by using continuity and
monotonicity of E and L.

(z%) = E(aL(m))% = az®™?

One more property of log z is

lim z7%logz =0, Va > 0.

T~ +00

13.5 Trigonometric Functions
Let us define

Clz) = %[E(ix) + B(=iz)], S(z) = %[E(ix) — B(—iz)).

By the definition of E(z), we know E(z) = E(z). Then, C(z), S(z) € R, z €
R. Furthermore,
E(iz) = C(z) + iS(x).

Thus, C(z), S(z) are real and imaginary parts of E(iz) if z € R. We have

also
|B(iz))* = E(iz)E(iz) = E(iz)E(-iz) = E(0) = 1.

so that
|[E(iz)| =1, = e R.

Moreover,

C(0) =1, $(0) = 0; and C'(z) = —S(z), §'(z) = C(x)
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We assert that there exists positive numbers © such that C(z) = 0. Let z¢ be
the smallest among them. We define number 7 by

T = 2.’170.

Then, C(3) =0, and S(§) = £1. Since C(z) > 0 in (0, ), S is increasing in
(0, %); hence S(§) = 1. Therefore,

and the addition formula gives
E(mi) = -1, EQ2nmi)=1;

hence
E(z + 2mi) = E(2),Yz € C.

Theorem 13.5.1 The following are true:

(a) The function E is periodic, with period 2mi.

(b) The functions C and S are periodic, with period 2.
(c) If 0 < t < 27, then E(it) # 1.

(d) If z€ C 3 |z| =1, T unique t € [0,27) > E(it) = z.

Remark 13.5.2 The curve vy defined by v(t) = E(it), 0 < ¢t < 21 is a
simple closed curve whose range is the unit circle in the plane. Since v'(t) =
1E(it), the length of v is fo% [v/(t)| dt = 2m. This is the expected result for
the circumference of a circle with radius 1.

The point v(t) describes a circular arc of length to as t increases from 0
to tg. Consideration of the triangle whose vertices are zy = 0, 29 = v(to),
and z3 = C(tg) shows that C(t) and S(t) are indeed identical with cos(t) and
sin(t) respectively, the latter are defined as ratios of sides of a right triangle.

The saying the complex field is algebraically complete means that every
nonconstant polynomial with complex coefficients has a complex root.

Theorem 13.5.3 Suppose ag,...,a, € C, n € N, a, # 0,
P(z)= Z arz®.
0

Then, P(z) = 0 for some z € C.

Proof. Without loss of generality, we may assume that a,, = 1.
Put p = inf,ec |P(2)]. If |2] = R then

[P(2)] > R*(1 — |an—1| R™" = -+ = |ag| R™").
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The right hand side of the above inequality tends to co as R — co. Hence,
ARy 3 |P(z)| > u if |2| > Ryg. Since |P]| is continuous on the closed disc with
center at the origin and radius Ry, it attains its minimum; i.e. 329 3 |P(20)] =

e
We claim that g = 0. If not, put Q(2) = 57()5(}:)92. Then, @ is nonconstant

polynomial, Q(0) = 1, and |@(z)| > 1, Vz. There is a smallest integer k,
1 < k < n such that

Q(2) =14 bpz + -+ b2, b #0.

By Theorem 13.5.1 (d), § € R 3 e*%; = — |bg|. If 7 > 0 and r* |bi| < 1, we
have |1+ bgr¥e*®| =1 — r¥ |by], so that

Q(re®)] < 1= r*lbe] =7 brsa] =+ = 7" 7F [bal]).

For sufficiently small r, the expression in squared braces is positive; hence
|Q(rei9)| < 1, Contradiction. Thus, p =0 = P(z). O

13.6 Fourier Series

Definition 13.6.1 A trigonometric polynomial is a finite sum of the form

N
flz)y=ag+ Z(an cosnz + b, sinnz), z € R,
n=1
where ag,a1,...,an,b1,...,0n € C. One can rewrite

N
flz) = chei"m, z €R,
-N

which is more convenient. It is clear that, every trigonometric polynomial is
pertodic, with period 2.

Remark 13.6.2 Ifn € N, €'"® is the derivative of elzz
2mw. Hence,

- which also has period

1 ™
2r J_,

1,n=0,

ine .
e dr = {0, n=+1,+2,...
If we multiply f(z) by e~*™® where m € Z, then if we integrate, we have
1 T
Cm = — e'™* dx
2r J_,

for |m| < N. Otherwise, |m| > N, the integral above is zero.
Therefore, the trigonometric polynomial is real if and only if

Cop=0Cp, n=0,...,N.
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Definition 13.6.3 A trigonometric series is a series of the form
oo
flz) = chemz, z e R.
—00

If f is an integrable function on [—m, 7], the numbers ¢y, are called the Fourier
coefficients of f, and the series formed with these coefficients is called the
Fourier series of f.

13.7 Gamma Function

Definition 13.7.1 For 0 < z < o0,

is known as the gamma function.

Proposition 13.7.2 Let I'(z) be defined above.

(a) Tz +1) =zl (z), 0 < z < oco.
(b)) '(n+1)=n!l, neN. I'(1) =1.
(¢) log I' is convez on (0,00).

Proposition 13.7.3 If f is a positive function on (0,00) such that

(a) f(z+1) =zf(z),
() f(1) =1,

(¢) log f is convex.
then f(z) = I'(z).
Proposition 13.7.4 If z,y € R,

' I(2)I(y)
1 -t dt =
A (=) I'(z+y)
This integral is so—called beta function B(x,y).
Remark 13.7.5 Lett =sind, then
o - - I'(x)I'(y)
2 )% (cos )1 df = —L—=.
/0 (sin8) (cosf) T@t )

The special case x =y = % gives
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Remark 13.7.6 Let t = s% in the definition of I'.

o0
I'(z) = 2/ s 1e=5" s 0 < z < o0.
0
The special case T = § gives

/::;e_s2 ds = /7.
=2 (5)(241)

Remark 13.7.7 (Stirling’s Formula) This provides a simple approxzimate
expression for I'(x + 1) when x is large. The formula is

This yields

I'(z+1)

z—00 (f)m 27x

= 1.

Problems

13.1. Prove Theorem 13.1.8, the comparison tests for nonnegative series.

13.2. DISCU.SS the convergence and divergence of the following series:

a) 325 % kn

b) ¥7° ka,wherea>0
<) Xy ("f"c -1
d) Xy In (1+ )
e) Y.2° ¢V, where ¢ > 0
£y S 7L

1 n

13.3. One can model every combinatorial problem (instance r) as

Z.ti:’/', xiESi§Z+.LetAij:{é’§.Z?

Then, the power series
x>
9(@) =] 4 Z axa*
i j=0

is known as the generating function, where the number of distinct solutions to
>; Ti = r is the coefficient a,. We know that, one can write down a generating
function for every combinatorial problem in such a way that a, is the number
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of solutions in a general instance r.

Use generating functions to
a) Prove the binomial theorem

(1+z)" = i; <:L> 7

and extend to the multinomial (you may not use the generating functions)
theorem

n ; ;
n __. 21 Tk
(x1 4 zp)" = E <i1 Z.k)xl cexpk
RN

il,...,ik€Z+
i1t tik=n

b) Prove that

[ _1+ )
(1+m+x2+:c3+...)"=z<n ; Z)x’
i=0

¢) Find the probability of having a sum of 13 if we roll four distinct dice.
d) Solve the following difference equation: a,, = 5an—1—6an_2, ¥n = 2,3,4,...
with ag = 2 and a; = 5 as boundary conditions.

13.4. Consider the following air defense situation. There are ¢ = 1,...,1 en-
emy air threats each to be engaged to one of the allied z = 1,..., Z high value
zones with a value of w,. The probability that a threat (¢) will destroy its tar-
get (z) is ¢;,. More than one threats can engage to a single zone. On the other
hand, there are j = 1,...,J allied air defense systems that can engage the
incoming air threats. The single shot kill probability of an air defense missile
fired by system j to a threat ¢ is pj;;. Let the main integer decision variable
be z;; indicating the number of missiles fired from system j to threat <.
a) Write down the nonlinear constraint if there is a threshold value d;, the
minimum desired probability for destroying target ¢. Try to linearize it using
one of the functions defined in this chapter.
b) Let our objective function that maximizes the expected total weighted sur-
vival of the zones be

max Zz wea, (0), where a, = Hi [1 — Giz (Hj(l - pji)wji):' = Hz Biz-
Then, v, = log(a,) = Y, log(Biz) = Y, di. and we have the second objective
function: max ), w,v. (0'). Isn’t this equivalent to max)_, w, Y, d;, (0”),

where §;, = log [1 — Gz <Hj(1 - pji)wjiﬂ ? Since B;, = 1—g;, (Hj(l - p].i)a:ji>
and we have

max §;; = maxlog(f;,) = max S, = min(l — B;,) = minlog(1l — 8;,),
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our fourth objective function (linear!) is min)_ w, Y., 6, (0'), where
8;, = log(l — B;,) = log(g:,) + (Zj[log(l - pji)]mji). Since we can drop the
constants, log(g;,), in the objective function, we will have the fifth objective
function as min)_, w; ., (Z] [log(1 — pji)]acji) (0%), which is not (clearly)
equivalent to the initial objective function in catching the same optimum so-
lution! Where is the flaw?

(0)7 = (0')? = (0")? = (0")? = (0™)?

‘Web material

http://archives.math.utk.edu/visual.calculus/6/power.1/index.html
http://archives.math.utk.edu/visual.calculus/6/series.4/index.html
http://arxiv.org/PS_cache/math-ph/pdf/0402/0402037.pdf
http://calclab.math.tamu.edu/ belmonte/mi62/L/ca/LA4.pdf
http://calclab.math.tamu.edu/ belmonte/m152/L/ca/LA5 . pdf
http://cr.yp.to/2005-261/benderi/IS. pdf
http://education.nebrwesleyan.edu/Research/StudentTeachers/
secfall2001/Serinaldi/Chap¥%209/ts1d009.htm
http://en.wikipedia.org/wiki/Power_series
http://en.wikipedia.org/wiki/Trigonometric_function#
Series_definitions
http://en.wikipedia.org/wiki/Wikipedia:WikiProject_Mathematics/
PlanetMath_Exchange/40-XX_Sequences,_series,_summability
http://eom.springer.de/c/c026150.htm
http://eom.springer.de/T/t094210.htm
http://faculty.eicc.edu/bwood/malb5supplemental/
supplementalmal55.html
http://home.att.net/ numericana/answer/analysis.htm
http://kr.cs.ait.ac.th/~“radok/math/mat11/chap8.htm
http://kr.cs.ait.ac.th/ “radok/math/mat6/calc8.htm
http://kr.cs.ait.ac.th/ radok/math/mat6/calc81.htm
http://math.fullerton.edu/mathews/c2003/
ComplexGeometricSeriesMod.html
http://math.fullerton.edu/mathews/n2003/ComplexFunTrigMod.html
http://math.furman.edu/~dcs/book/cbpdf/secs7.pdf
http://math.furman.edu/~dcs/book/c8pdf/sec87.pdf
http://mathworld.wolfram.com/ConvergentSeries.html
http://mathworld.wolfram.com/HarmonicSeries.html
http://mathworld.wolfram.com/PowerSeries.html
http://media.pearsoncmg.com/aw/aw_thomas_calculus_11/topics/
sequences.htm
http://motherhen.eng.buffalo.edu/MTH142/spring03/lec11.html
http://oregonstate.edu/ peterseb/mth306/docs/306w2005_prob_1.pdf
http://persweb.wabash.edu/facstaff/footer/Courses/M111-112/Handouts/



13.8 Web material 189

http://planetmath.org/encyclopedia/PowerSeries.html
http://planetmath.org/encyclopedia/SlowerDivergentSeries.html
http://shekel. jct.ac.il/“math/tutorials/complex/node48.html
http://sosmath.com/calculus/series/poseries/poseries.html
http://syssci.atu.edu/math/faculty/finan/2924/cal92.pdf
http://tutorial.math.lamar.edu/Al1Browsers/2414/

http
http

http:
http:
http:
http:

http

http:

http

http:

http

http:
http:
http:
http:
http:

http

//www

//www

//waw.
.math.unl.edu/ webnotes/classes/class38/class38.htm
/ /.

A

ConvergenceOfSeries.asp
://web.
o/ Jwww,
[/,
//waw.
//www.
//waw.
o/ fuww,
//waw.
S waw.
//wuw.
o/ /v,
/ /v,
.math.ucla.edu/"elion/ta/33b.1.041/midterm2.pdf

mat .bham.ac.uk/R.W.Kaye/seqser/intro2series
cs.unc.edu/"dorianm/academics/comp235/fourier
du.edu/"etuttle/math/logs.htm
ercangurvit.com/series/series.htm
math.cmu.edu/ bobpego/21132/seriestools.pdf
math.columbia.edu/"kimball/CalcII/w9.pdf
math.columbia.edu/"rf/precalc/narrative.pdf
math.harvard.edu/"~ jay/writings/p-adicsl.pdf
math.hmc.edu/calculus/tutorials/convergence/
math.mcgill.ca/labute/courses/255w03/L18.pdf
math.niu.edu/ “rusin/known-math/index/40-XX.html
math.princeton.edu/ "nelson/104/SequencesSeries.pdf

math.unh.edu/"jjp/radius/radius.html

math.uwo.ca/courses/Online_calc_notes/081/unit6/Unit6.pdf
math.wpi.edu/Course_Materials/MA1023B04/seq_ser/

nodel.html

http
http
http

http:
http:
http:
http:
http:
http:
http:
http:
http:

http

I IR
s/ /v
2/ fwaw .
/ /v,
.maths.mq.edu.au/ wchen/Infycfolder/fyc19-ps.pdf

//www

//waw.
/v,
/ /v,
//wuw.
//wuw.
//wuw.
//wuw.
o/ /v,
20Transcendentals/upfiles/FourierSeriesbET. pdf

math2.org/math/expansion/tests.htm
math2.org/math/oddsends/complexity/e}5bEitheta.htm
mathreference.com/lc-ser,intro.html
maths.abdn.ac.uk/~igc/tch/ma2001/notes/node53.html

mecca.org/ halfacre/MATH/series.htn

ms .uky.edu/"carl/ma330/sin/sinl.html
pa.msu.edu/”stump/champ/10.pdf
richland.edu/staff/amoshgi/m230/Fourier.pdf
sosmath.com/calculus/improper/gamma/gamma.html
sosmath.com/calculus/powser/powser0l.html
sosmath.com/calculus/series/poseries/poseries.html
stewartcalculus.com/data/CALCULUSY,20Early’

http://wwwé.ncsu.edu/ acherto/NCSU/MA241/sections81-5.pdf

http://wwwé2.homepage.villanova.edu/frederick.hartmann/Boundaries/
Boundaries.pdf

www.cwru.edu/artsci/math/butler/notes/compar.pdf



14

Special Transformations

In functional analysis, the Laplace transform is a powerful technique for ana-
lyzing linear time-invariant systems. In actual, physical systems, the Laplace
transform is often interpreted as a transformation from the time-domain point
of view, in which inputs and outputs are understood as functions of time, to
the frequency-domain point of view, where the same inputs and outputs are
seen as functions of complex angular frequency, or radians per unit time.
This transformation not only provides a fundamentally different way to un-
derstand the behavior of the system, but it also drastically reduces the com-
plexity of the mathematical calculations required to analyze the system. The
Laplace transform has many important Operations Research applications as
well as applications in control engineering, physics, optics, signal processing
and probability theory. The Laplace transform is used to analyze continuous—
time systems whereas its discrete-time counterpart is the Z transform. The
Z transform among other applications is used frequently in discrete probabil-
ity theory and stochastic processes, combinatorics and optimization. In this
chapter, we will present an overview of these transformations from differen-
tial/difference equation systems’ viewpoint.

14.1 Differential Equations

Definition 14.1.1 An (ordinary) differential equation is an equation that can
be written as:

B(t,y,y,...,y™) =0.
A solution of above is a continuous function y : I ~ R where I is a real
interval such that &(t,y,y',...,y"™) =0, Vt € I. A differential equation is a
linear differential equation of order n if

y™ + a1y 4+ a0y + aot)y = b(t)

where ap_1,*++ ,01,Q0,b are continuous functions on I to R. If Va; = ¢;, the
above has constant coefficients. If b(t) = 0,Vt € I, then the above is called
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homogeneous, otherwise it is non-homogeneous. If we assume 0 € I, and

y(O)}: vo, ¥'(0) = vb, ...,y V(0) = y(()"—l) where Yo, Yo, - - - ,y((,n_l) are n
specified real numbers, this is called initial value problems where y(()*)

prescribed initial values.

’s are the

Example 14.1.2 (The 1° and 2"¢ order linear initial value problems)
y'(t) = a(®)y(®) + £(t), 9(0) = yo;
and for n = 2, the constant coefficient problem is

¥ (t) + aay' (t) + aoy(t) = b(t); ¥(0) = yo, ¥'(0) = yp.
Remark 14.1.3 Let

y(t) =n(t)  yi(t) = ya(t)
Y1) =y(t)  ya(t) = us(t)
. (=4 .
YD) = 9a(t)  vn(t) = —on-1vn(t) = - — c1pa(t) — a0y (1) + b(t)
0 1 0 -+ 0 y1(t)
0 0 1 -~ 0 y2(t)
0 0 0 1 Yn—1(t)
—g —Q1 — Qg —Qn—1 yn(t)
Yo 0
Yo 0
((Jn—2) 0
yo" ™V b(®)

We have linear differential systems problem:

y'(t) = Ay(t) + f(t); y(0) = wo.

14.2 Laplace Transforms

Definition 14.2.1 The basic formula for the Laplace transformation y to n
s

n(s) = / e ty(1) dt.

We call the function, n, the Laplace transform of y if 3z € R 3 n(s) exists,
Vs > xg. We call y as the inverse-Laplace transform of 7.

n(s) = L{y(®)}, y(t)=L""{n(s)}.
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Proposition 14.2.2 If y : R — R satisfies
(i) y(t) =0 fort <0,

(it) y(t) is piecewise continuous,
(iii) y(t) = O(e*°?) for some zg € R,
then y(t) has a Laplace transform.

Tables 14.1 and 14.2 contain Laplace transforms and its properties.

Table 14.1. A Brief Table for Laplace Transforms

Inverse Laplace Transform Valid s > z¢
y(t) n{s) o
(1) 1 1 0
(2) e L, aeC Ra
3) t",m=12,... R 0
(4) t"e*, m=1,2,... (;:;';—’mn,aec Ra
(5) sin bt PRars 0
(6) ios. bt ;2%7;2‘ 0
(7 e sindt oot ¢
(8) e cosdt [PELETE c

Table 14.2. Properties of Laplace Transforms

Inverse Laplace Transform
(1) y(t) n(s)
(2) ay(t) + bz(t) an(s) + b¢(s)
3 y'(t) sn(s) — y(0)
(4) y™ (1) s™n(s) — s"y(0)
_ y("”l)(O)

0,t < cwherec>0 o cs
O w= {315 3
©  le¥y(t),a>0 n(as +b)
(M Ty, m=1,2,... (=1)™n™ (s)
(8) 0 S n(w) du
(9) Lyt - we(w) du n(s)¢(s)

Remark 14.2.3 Ifa = c+id is non-real, £L{e®*} = L {e* cosdt}+il {e*sindt}
then obtain Laplace transform using (2) in Table 14.1.

Remark 14.2.4 Proceed the following steps to solve an initial value problem:
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S1. y(t) — n(s).

S2. Solve the resulting linear algebraic equation, call the solution n(s) the
formal Laplace transform of y(t).

S3. Find the inverse-Laplace transform y(t).

S4. Verify that y(t) is a solution.

Example 14.2.5 Find the solution to
y'(t) = —4y(t) + f(t); y(0)=0,
where f(t) is the unit step function
0,¢<1
f(t)_{l,tzl.
and I = [0,00). Transforming both sides, we have

—8

sn(s) = y(0) = —4n(s) + =

—$S

sn(s) = —dn(s) + =

E]

At the end of S2, we have n(s) = 3(2;4)'

1 11 1
s(s+4) 4\s s+4)°

Therefore,

Thus,

Example 14.2.6 Let us solve

Y'(t) = ay(t) + f(t); y(0)=0

such that y'(t) = f(t).
Let us take y'(t) = f(t) then sn(s) — yo = &(s), where ¢(s) = L{f(t)}. Thus,

1 1
n(s) = Yoo + ;(ﬁ(s).
We use formula (9) in Table 1/.2.

y(t) = vo +/O f(u)du.
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If we relaz y'(t) = f(t), then we have

1 1
s—a s-—a

n(s) = yo #(s)

and .
olt) = e+ [ e fu) dus
where ¢(s) is the Laplace transform of f(t).
Remark 14.2.7 In order to solve the matriz equation,
y'(t) = Ay(t) + £(t); ¥(0) =yo
we will take the Laplace transform as
n(s)(sI — A) = yo + ¢(s).

where n(s) = [n1(s), -+, (s)]T is the vector of Laplace transforms of the
components of y. If s is not an eigenvalue of A, then the coefficient matriz is
nonsingular. Thus, for sufficiently large s

1(s) = (s = A)~ yo + (sI — A) 7' (s)
where the matriz (sI — A)~! is called the resolvent matriz of A and
L(e) = (sI = A)™* for f(t) =0.

Example 14.2.8 Let us take an example problem as Matriz exponentials.
The problem of finding et for an arbitrary square matriz A of order n can
be solved by finding the Jordan form. For n > 3, one should use a computer.
However, we will show that how Cayley—-Hamilton Theorem leads to another
method for finding et when n = 2. Let us take the following system of equa-
tions

Then,

S R

tA et 0
¢ _S[O e'tJ

-1 1 [et +e7t et ——e‘t]
=3 _ )
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Then, the unique solution is y(t) = e*4yg + p(t), where

2e¢t + et
ethyo = [2et _ -t | ond

fot[et(e”" +ue™) +e e — uev)] du:| '

) =1
Pt =73 fot[et(e‘“ +ue™¥) +e e +ue™¥)] du

Then, after integration we have
et —et -t 3et — ¢t
O A BTUR el §

One can solve the above differential equation system using Laplace trans-

forms:
sosso-se 3] -[]- 2] 56 1]
o[- Bl (3] o
Then, the resolvent matriz is S
I A7 = o [3a) ®)

If we multiply both sides of (x) by (%), we have
(s) = 1 3s+17 1 s2+1

T =G+ [ s+3] T 2(s-D(s+1) | 2s

1 [3 1 0 1]-1 17 0

me) =T [3] M [0} +?2[ o} *3 [-2]

3et —t
=0 =30 73]
In order to find et*, we expand right hand side of (xx) as

1 z 1
77(3):8_1[ %}+s+l{— jl

If we invert it, we will have the following

oA 1 [et—i—e”‘ et —e‘t]

[T ST
N N =

9 let —etet +et
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14.3 Difference Equations

Let us start with first-order difference equations:

y(k+ 1) = y(k) + f(k) - B
y(0) = o } Ay(k) = f(k), k=1,2,...

The initial value problem of the above equation can be solved by the
following recurrence relation:

y(k) :y(k+1) _f(k)v k= "'1a_2""
Therefore, we find

Yo+ 3010 flu), k=1,2,3,...;
y(k) =< vo, . k=0;
Yo — Yomep J(u), k=—-1,-2,...

For second-order equations, we will consider first the homogeneous case:
y(k +2) + oay(k + 1) + aoy(k) = 0; y(0) = yo, y(1) = y1.
We seek constants
AL A2 3 z(k+1) = Azz(k); 2(0) = y1 — Ao

which are the roots of
M+ aA+ag=0.

If A; # A2, then y(k) = c;AF 4 coAE where ¢;, ¢ are the unique solutions
of
€1+ 2 = Yo, CiA1+ A2 = Y1,

If Ay = A2 = A, then y(k) = ¢\ + c2A* where ¢1,c; are the unique
solutions of
€1 =1Yo, A+ c2A =y

When the roots are non-real, A = pe’® and X = pe~%, then
y(k) = c1p" cos k@ + cpp" sin k6,
where ¢; and cp are the unique solutions of
¢1 = 1Yo; cp1cosb+ cosinf = y;.
If we have systems of equations,
y(k+1) = Ay(k), k=0,1,2,...; y(0) = yo,

we, then, have as a recurrence relation
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y(k) = A*yo and A® = I.

When A is singular, there does not exist a unique solution y(—1) satisfying
Ay(—1) = yo. When A is non-singular,

y(k) = A y(k + 1).

Then, y(—1) = A7y, y(=2) = A %y, -~ where A™%F = A~1A-k+1 =
(A~1)k k =12,3,... Recall that, if A = SJS™! then A% = SJ’“S 1. Then,

y(k) = SIS Yy, k=0,1,...
For the non-homogeneous case,
y(k + 1) = Ay(k) + f (k).

If A is nonsingular,
y(k) = Afyo + p(k),

where p(k + 1) = Ap(k) + f(k); p(0) = 0. This yields

-1
_ Z Ak—l_vf(’l)).

v=k

Example 14.3.1 For k=0,1,...,
yi(k+1) =y

(

y2(k ) =%
+ (=
- (=

We know,

SRR () g Y (D)t =5~ (k- g

)
113

8
2k? — 3(~1)k +3
2k2+4k+3( 1) -

ool oolg
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14.4 Z Transforms

Definition 14.4.1 The Z Transformation y to n is

n(z) = Z y(u)’ where z € C.

ZU,

We call the function v the Z transform of y if
Ir € R 5 n(z) converges whenever |z| > r,

in such cases y is the inverse Z transform of 7.

n(z) = Z{y®)}, y(t) =2 {n(=)}.
Proposition 14.4.2 If y satisfies

(i) ylk) =0 fork=—-1,-2,...,
(ii) y(k) = O(k"), n € Z,

then y has a Z transform.

If 5(z) is the Z transform for some function |z| > r, then that function is

5= Jo 2 In(2) dz k= 0,1,2,.
y(k) = { k=1 9.

where C is positively oriented cycle of radius v/ > r and center at z = 0.
For Z transform related information, please refer to Tables 14.3 and 14.4.

Remark 14.4.3

¥(2) + E/.(?L) + o= zn(z) — zy(0).

Z{ylk+ 1)} =y(l)+ 2 22

The Laplace transform of y'(t) is sn(s) — y(0).

Remark 14.4.4 The procedure to follow for using Z transforms to solve an
initial value problem is as follows:

S1. y(k) > n(z).

S2. Solve the resulting linear algebraic equation n(z) = Z {y(k)}.
S3. Find the inverse Z transform y(k) = Z7' {n(z)}.

S4. Verify that y(k) is a solution.

Example 14.4.5

y(k +1) = ay(k) + f(k), k=0,1,...; y(0)=yo, a #0

#0(z) = 2y = an(z) + 6(2) > (=) = ——4() =m(2) + m2).
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We know

14 Special Transformations

Table 14.3. A Brief Table for Z transforms

Valid
[nverse 7 transform |z] > r
y(k) n(z) T
(1) 1 5 1
(2) k T 1
(3) K T !
. 2
(4) K e i) 1
(5) k"™, m =0,1,2, eearesy 1
(6) a* = lal
(7 ka® T fal
(8) o et 0
(9) e—-uk Z_Z"ﬂ e ¢
(10) sin bk Tt 1
(11) cos bk % 1
(12) e sin bk At e
(13) e~ cos bk 22_22(;—72“';’0::11;)72" e ¢
Table 14.4. Properties of Z transforms
Inverse 7 transform
(D) y(k) n(z)
(2) ay1 (k) + bya(k) am(z) + bna(2)
(3) ylk +1) zn(z) — 2y(0)
(1) y(k +n) 2"n(z) - 2"y(0)
2" ly(1) = - = zy(n — 1)
(5) ylk—¢), 20 z7n(z)
(6) a®y(k) n(Z)
(7) ky (k) —z 452
(8) k*y(k) —zt[—27/(2)]
9) Kmylk), m=0,1,2,... (—-z%)m n(z)
(10) Sou_owi(k— u)ya(u) n(z)n2(z)
(11) y1(k)ya(k) == Jop imp)nalp™ ' 2) dp
(12) >h o y(w) 2on(2)
Loge) = —2 29 (o) = 28 oy = p - ),
Z—Q z—a z

Then, by superposition,

k
y(k) = afyo + Y flk—1—w)a".

u=0
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Remark 14.4.6 In order to solve the linear difference system
y(k+1) = Ay(k) + f(k); 9(0) = yo,
we will take the Z transform of the components of y(k), then we have
(2I = A)n(2) = zyo + ¢(2),

where n(z) = 1(2),+++ ,mn(2)]T is the vector of Z transforms of the com-
ponents of y. If z is not an eigenvalue of A, then the coefficient maitriz is
nonsingular. Thus, for sufficiently large |z|, the unique solution is

n(z) = 2(zI — A) 'yo + (21 — A) 7 (2),

where we have

zZ {Ak} =z2(zI — A)7L.

In order to find a particular solution, we solve (zI — A)™p(z) = ¢(2) for p(z)
and find its inverse Z transform.

Example 14.4.7 Let us take our previous example problem:
vi(k+1) =y2(k) + 1, 1(0) =3,

y2(k+1) = y1(k) + 1, 32(0) = 1.

19 = 565D [ii] m +(7—~1)1(z_+1~) [i i] [(—_}}]

Z{AFyo} = zi [;} + zj—l [_ﬂ

—

Problems
14.1. Solve y”(t) — y(t) = e*; y(0) =2, y'(0) = 0.

14.2. Solve y(k + 1) = y(k) + 2€*; y(0) = 1.



202 14 Special Transformations

14.3. Consider a combat situation between Blue (z) and Red (y) forces in
which Blue is under a directed fire from Red at a rate of 0.2 Blue-units/unit-
time/Red-firer and Red is subjected to directed fire at a rate of 0.3 Red-
units/unit-time/Blue-firer plus a non-combat loss (to be treated as self di-
rected fire) at a rate of 0.1 Red-units/unit-time/Red-unit. Suppose that there
are 50 Blue and 100 Red units initially. Find the surviving Red units at times
t=0,1,2,3,4 using the Laplace transformation.

14.4. Find the closed form solution for the Fibonacci sequence Fy 42 = Fi11+
Fy, Fy =1, F; = 1 using the Z-transformation and calculate Figg.

‘Web material

http://ccrma.stanford.edu/~jos/filters/Laplace_Transform_
Analysis.html
http://claymore.engineer.gvsu.edu/”jackh/books/model/chapters/
laplace.pdf
http://cnx.org/content/m10110/latest/
http://cnx.org/content/m10549/1atest/
http://dea.brunel.ac.uk/cmsp/Home_Saeed_Vaseghi/Chapter04-Z-
Transform.pdf
http://dspcan.homestead.com/files/Ztran/zdiffl.htm
http://dspcan.homestead.com/files/Ztran/zlap.htm
http://en.wikipedia.org/wiki/Laplace_Transform
http://en.wikipedia.org/wiki/Z-transform
http://eom.springer.de/1/1057540.htm
http://eom.springer.de/Z/z130010.htm
http://fourier.eng.hmc.edu/e102/lectures/Z_Transform/
http://home.case.edu/ pjh4/MATH234/zTransform. pdf
http://homepage.newschool.edu/~foleyd/GEC06289/1laplace.pdf
http://kwon3d.com/theory/filtering/ztrans.html
http://lanoswww.epfl.ch/studinfo/courses/cours_dynsys/extras/
Smith(2002) _Introduction_to_Laplace_Transform_Analysis.pdf
http://lorien.ncl.ac.uk/ming/dynamics/laplace.pdf
http://math.fullerton.edu/mathews/c2003/ztransform/ZTransformBib/
Links/ZTransformBib_lnk_3.html
http://math.fullerton.edu/mathews/c2003/ZTransformBib.html
http://math.ut.ee/ " toomas_l/harmonic_analysis/Fourier/node35.html
http://mathworld.wolfram.com/LaplaceTransform.html
http://mathworld.wolfram.com/Z-Transform.htm
http://mywebpages.comcast.net/pgoodmann/EET357/Lectures/Lecture8.ppt
http://ocw.mit.edu/0cwWeb/Electrical-Engineering-and-Computer-
Science/6-003Fall-2003/LectureNotes/
http://phyastweb.la.asu.edu/phy501-shumway/notes/lec20.pdf
http://planetmath.org/encyclopedia/LaplaceTransform.html
http://umech.mit.edu/weiss/PDFfiles/lectures/lec12wm.pdf
http://umech.mit.edu/weiss/PDFfiles/lectures/lecbwm.pdf
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http://web.mit.edu/2.161/www/Handouts/ZLaplace.pdf
http://www.absoluteastronomy.com/z/z-transform
http://www.atp.ruhr-uni-bochum.de/rt1/syscontrol/nodell.html
http://www.atp.ruhr-uni-bochum.de/rt1/syscontrol/node6.html
http://wuw.cbu.edu/"rprice/lectures/laplace.html
http://wuw.cs.huji.ac.il/"control/handouts/laplace_Boyd.pdf
http://www.dspguide.com/ch33.htm
http://www.ece.nmsu.edu/ctrlsys/help/lxprops.pdf
http://www.ece.rochester.edu/courses/ECE446/The,20z-transform. pdf
http://www.ece.utexas.edu/ bevans/courses/ee313/lectures/
15_Z_Transform/index.html
http://www.ece.utexas.edu/"bevans/courses/ee313/lectures/
18_Z_Laplace/index.html
http://www.ee.columbia.edu/"dpwe/e4810/lectures/LO4-ztrans.pdf
http://www.efunda.com/math/laplace_transform/index.cfm
http://wwu.facstaff .bucknell.edu/mastascu/eControlHTML/Sampled/
Sampledl.html
http://www.faqs.org/docs/sp/sp-142.html
http://www.geo.cornell.edu/geology/classes/brown/eas434/Notes/
Fourier’20family.doc
http://www.intmath.com/Laplace/Laplace.php
http://wuw.just.edu.jo/ hazem-ot/signall.pdf
http://wuw.ling.upenn.edu/courses/1ing525/z.html
http://www.ma.umist.ac.uk/kd/ma2ml/laplace.pdf
http://www.maths.abdn.ac.uk/~igc/tch/engbook/node59.html
http://www.maths.manchester.ac.uk/~kd/ma2mi/laplace.pdf
http://www.plmsc.psu.edu/ “www/matscb97/fourier/laplace/laplace.html
http://www.realtime.net/~drwolf/papers/dissertation/nodel117 .html
http://www.roymech.co.uk/Related/Control/Laplace_Transforms.html
http://www.sosmath.com/diffeq/laplace/basic/basic.html
http://www.swarthmore.edu/NatSci/echeevel/Ref/Laplace/Table.html
http://www.u-aizu.ac. jp/~qf-zhao/TEACHING/DSP/lec04.pdf
http://www.u-aizu.ac. jp/ qf-zhao/TEACHING/DSP/1lec05.pdf
www.brunel.ac.uk/depts/ee/Research_Programme/COM/Home_Saeed_Vaseghi/
Chapter04-Z-Transform.pdf
www.ee.ucr.edu/“yhua/eeld4l/lectured.pdf
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Problems of Chapter 1
1.1
a) Since, f is continuous at z:

Ver >036, >0 aVyalz—yl < = |f(z) - fly)| < e
g is continuous at z:

Vea > 0302 >0 3y 3 |z —y| < &2 = |g(z) — 9(¥)] < e2.
Fix €1 and €3 at 5.

36, >0 aVy 3|z —y| < b = |flz) - f(y) <

NI N

36, >0 >Vy o lz—y| <= lglx) —g(y)] <

Let § = min{d,d2} > 0.
Wy lo—yl <= [f() - F@)I <5, lo@) — o)l < 3
I(f +9)(@) = (f + )W) = 1f (@) +9(z) - fy) —9(¥)| <
(@) = W) +l9(@) - 9w < 5 +5 =€

Thus, Ve > 036 >0 aVyalz—gy| <d=>|(f+g)@)-(f+9)(y)l <e
Therefore, f + g is continuous at x.

(b) f is continuous at &
Ver >036 >0 aVysjz—y| <d=|f(z)- fly)l <e
Fix € = €. Then,
36 >0 (say 8) D Vy (can fix at §) 3 |z — y| < = |f(z) - f(y)] < &
We have o — §| < 8 = |f(z) - F(§)| < &
Yy 3 Jz -yl <9, |f(2) - F)l < cle —yl.
Choose § 3 & — | < &, |f(z) - f(§)| < clz - §| < cd.

If { 0< fii ES}’ we will reach the desired condition. One can choose 0 < § <

min {6, £}

Vg3 lz—gl <6 <d, |f2) - fWl<Scle—gl<cb<e
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1.2 Observation: Every time we break a piece, the total number of pieces
is increased by one. When there is no pieces to break, each piece is a small
square. At the beginning when we had the whole chocolate with n squares
after b=0 breaks, we had p=1 piece. After one break (b=1), we got p=2 pieces.
Therefore, p is always greater by one than b, i.e. p = b+ 1. In the end,

p=b+1=mn.

The above argument constitutes a direct proof. Let us use induction to prove
that the above observation b = n — 1 is correct.

1. n =2 = b =1, ie. if there are only two squares, we clearly need one
break.

2. Assume that for 2 < k < n — 1 squares it takes only k£ — 1 breaks. In order
to break the chocolate bar with n squares, we first split into two with k;
and kg squares (k; + k2 = n). By the induction hypothesis, it will take
k1 — 1 breaks to split the first bar and k3 — 1 to split the second. Thus,
the total is

b:1+(k1—1)+(k2—1):k1+k2-—1=n—1.

1.3
@ (7)=(2,):
Full Forward Method:

<Z> NG —ni)!r! = (nn—!— S (n . T)

Combinatorial Method:

(:‘) denotes the number of different ways of selecting r objects out of n ob-
jects in an urn. If we look at the same phenomenon from the viewpoint of the
objects left in the urn, the number of different ways of selecting n — r objects
out of nis (" ). These two must be equal since we derive them from two
viewpoints of the same phenomenon.

®) (7) = (7 + (2):
Full Backward Method:

n—1 n—1) (n—1)! (n—-1)! _
< r >+ (r—-l) T (n-1=7)r(r-1) * (n=r)n—r-DI(r-1)
_(=Dln=—r+r] _ (n)

B (n—n)lr! 7

Combinatorial Method:
(:’) denotes the number of different ways of selecting r balls out of n objects in
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an urn. Let us fix a ball, call it super ball. Two mutually exclusive alternatives
exist; we either select the super ball or it stays in the urn. Given that the
super ball is selected, the number of different ways of choosing r — 1 balls out
of n—11is (*71). In the case that the super ball is not selected, (") denotes
the number of ways of choosing r balls out of n — 1. By the rule of sum, the
right hand side is equal to the left hand side.

© @)+ (1) +--+ () =2m
We will use the corollary to the following theorem.

Theorem S.1.1 (Binomial Theorem)

(142)" = (g)xu (g) . (Z)x

Corollary S.1.2 Let x = 1 in the Binomial Theorem. Then,

sz =) () ()

Combinatorial Method:

2™ is the number of subsets of a set of size n. (8) = 1 is for the empty set,
() = L is for the set itself, and ("), 7 =2,...,n— 1 is the number of proper
subsets of size r.

@ () = (G20

Forward — Backward Method:

—~—
(Z) (T) - (n—rZ;!(nL(mini)!r! - (n——m)!?in—r)!r!

n\({n—-r\ _ n! m _ n!
(r)(m—r) _r!w(n—m)!(m—r)! ol (n—m)l(m—7)!

Combinatorial Method:

(77:;) denotes the number of different ways of selecting m Industrial Engineering
students out of n M.E.T.U. students and (T) denotes the number of different
ways of selecting r Industrial Engineering students taking the Mathematics
for O.R. course out of m LE. students. On the other hand, (:) denotes the
number of ways of selecting r Industrial Engineering students taking Math-
ematics for O.R. from among n M.E.T.U. students and (7") denotes the
number of different ways of selecting m — r Industrial Engineering students
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not taking Mathematics for O.R. out of n — r M.E.T.U. students not taking
Mathematics for O.R. These two are equivalent.

(@ () + (1) +o00 (F7) = (47

Trivial:
Apply item (b) r-times to the right hand side.

Combinatorial Method:

The right hand side, ("*7*'), denotes the number of different ways of selecting
r balls out of m = n+2 balls with repetition, known as the multi-set problem.
Let | be the column separator if we reserve a column for each of m objects, let
\/ be used as the tally mark if the object in the associated column is selected.
Then, we have a string of size » + (m — 1) in which there are r tally marks
and m — 1 column separators. For instance, if we have three objects {z,y, 2},
and we sample four times, “y/|v/+/|v/” means x and z are selected once and y
is selected twice. Then, the problem is equivalent to selecting the places of
tally marks in the string of size r + (m — 1), which is ("*"71).

Let us fix the super ball again. The left hand side is the list of the number
of times that the super ball is selected in the above multi-set problem instance.
That is, (}) refers to the case in which the super ball is not selected, ("{")
refers to the case in which the super ball is selected once, and (":rr) refers to
the case in which the super ball is always selected.

These two are equivalent.
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Problems of Chapter 2

2.1 (a)

12345678910111213
110000000
100000001
011000000
001100001
000110000
000011000
000001100
000000010

(000000110

)
o
e

[Alllo] =

O, OO R OOOo

O = OO OOoOCOo

R OO R OO0

SR O OO O COo
[a—y

®, TR SO A0 O

a+b—=b a+b—a, bt+tc—oc c+d—d;

d+e—e et f—=fi f+rg—=g g+i—i h+i—n

i) — [N

[10000000/10000/0100000007
010000600110000)2110000000
00100000{10000{111000000
00010000(000004111100000
0000100001000)111110000
0000010001011})111111000
goooo0010/01111)111111100
00000001/01101}j000000010
10000000000000)111111111

|

ST S0 a0 oR

Fig. S.1. The tree T in Problem2.1

Each basis corresponds to a spanning tree T in G = (V,E), where
T C E connects every vertex and ||T|| = ||VI| — 1. Here, we have T =
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{1,2,3,4,5,6,7,8}. See Figure S.1.

(b} Each row represents a fundamental cocycle (cut) in the graph. In the tree,
we term one node as root (node i), and we can associate an edge of the tree
with every node like 1 - b, 2 5 a, 3 > ¢, 4 = d, ---, 8 > h asif we
hanged the tree to the wall by its root. Then, if the associated edge (say edge
6) in the tree for the node (say f) in the identity part of z; is removed, we
partition the nodes into two sets as Vi = {a,b,¢,d,e, f} and Vo = {g,h,i}.
The nonzero entries in zy correspond to edges 10,12,13, defining the set of
edges connecting nodes in different parts of this partition or the cut. The set
of such edges are termed as fundamental cocycle. See Figure S.2.

Fig. S.2. The cocycle defined by cutting edge 6 — f in Problem2.1

(c) Each column represents a fundamental cycle. If we add the edge identified
by I5 part into T, we will create a cycle defined by the nonzero elements of
y?. See Figure S.3.

(d) The first 8 columns of A form a basis for column space R(A). The columns
of matrix Y is a basis for the null space N'(4). The rows of C constitute a
basis for the row space R(AT). Finally, the row(s) of matrix D is (are) the
basis vectors for the left-null space N (AT).

Remark S.2.1 If our graph G = (V,E) is bipartite, i.e. V = V;|JVo >
ViNVea =0, Vi # 0 # Vo and Ve = (v1,v2) € B, v € V1, v2 € Vs,
and we solve maxcTz s.t. Ax = b, x > 0 using standard simplez algorithm
over GF(2), we will have ezactly what we know as the transportation simplex
method. Furthermore, for general graphs G = (V, E), if we solve maxcTz s.t.
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Fig. S.3. The fundamental cycle defined by edge 10 in Problem2.1

Az = b, z > 0 using a standard simplez algorithm over GF(2), we will get
the network simplex method.

2.2 (a)
00120 0 O
0006 0 0
A(5,2) = 000012 0O _[N|B]
0000 020
[BIN] = [Up|UN] — [14]VnN]
where
20 0 0O 00 00
06 00 00 00
UB: 0012 0 )UN: 00 :04X27 VN: 00 :O4><2'
00 020 00 00
Then,

R(A) = Span {2e1,6ez,12¢3,20e4} = Span {e1, ez, e3,e4} = R,
The rank of A(n, k) is r = 4.
R(AT) = Span {2e3,6e4, 12e5,20es} = Span {es, e, e5,e6} = R*.

N(A) = Span = Span {e1, ez} = R

co o oo -
cocoo~ro

N(AT) = {6}, dimN(AT) = 0.
Thus, RS = R(AT)@N (4) = R‘@R? and R* = R(A)@N(AT) = Ria0 = R4
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(0. 0l[[L,i0 0 0 0
Aln,k)=1]0---0| 0 0 Hi:_]]_ll 0 0 = [N(n, k)| B(n, k)]
i 0 o 0 . .
_0-.- 0f 0 0 0 0 H?:n—k+17:_
[B(n,k)|N(n, k)] = [Tn—k+1]0]
Then,
R(4) = Span { (H ’) €1 g ( H z) en—k+1}
=1 i=n—k+1
=Span{el,... en—k-{-l}:Rn—k_H,
k n
R(AT Spm{(H)ekH,...,( H i)en}
=1 i=n—k+1
= Span {ek+17 N ,en} — Rn—-k-{-l.
{ 1 0 \
0 .
’ 0
N(A) :S;Dan _9_ s y _]._ :Span{el,.., aek}sz.
0 0
0 0/ )

\

N(AT) = {6}, dimN(AT) =
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(c) Integrator:

0 0 0
0
1
M, 0
Bn, k) = 0o 0 0 0
0 0 TEI—— 0 0
0 0 0o - 0
1
L 0 0 0 0 H?:n—k-}-li-‘

After permuting some rows, we have

r_1
s 0 0 0 0

PB(nk)=| 0 0

where

o 0 o0 . 0
0 0 06 0 #t

Hin=n—k+l i Jd

Thus,
R(B) = R" %! = R(BT).

Furthermore,

N(BT) =R* and N(B) = {6} .
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2.3
1. Let » = 4 and characterize bases for the four fundamental subspaces
related to A = [y1]ya| - - - |yn]-
(-1 0 0 1/1000] 10 0-1||-1 000
AllL] = 1-1 0 o0fo100 o 01 0-1)—-1-100 5
Al =1 o 1.1 ooo1o 01-1 0| 0 010
6 0 1-1)0001| 00 1-1} 0 001
10 0-1ll-1 0007 100/-1{|-1 0 00]
01 0-1}-1-100 010/-1{-1-1 00 [Is|Vw||Ss
00-1 1] 1 110 001|-1f-1-1-10| ~ | O [{Si|’
00 1-1] 0 001] 000 O] 1 1 11]
-17 -1 0 00
where Vy = | ~1], 8= |-1-1 00|, Syy=[1111].
—1] -1-1-10
Thus, R(A) = Span {y1,y2,y3}. N(A) = Span {t}, where
(1
co =] |
T s |1
|1
Moreover,
-1 1 0]
. ol -1 1
R(A") = Span ol 1 ol 121l = Span{-ya—91,~v2}.
1 0 0]

And finally, N(AT) =

Span{Si1} = Span{[l 11 1]T

The case for n = 3 is illustrated in Figure S.4. y; is on the plane defined
by Span{e1,ez}, y2 is on the plane defined by Span {ez,e3} and ys is
on the Span {e1,e3}. Let us take {y1,y2} in the basis for R(A), which
defines the red plane on the right hand side of the figure. The normal to

the plane is defined by the basis vector of N(A) =

have N(A) = since N'(A) =

(R(A))*

Span {[1,1,1]7}. We

N(AT) (therefore, R(AT) = R(A)

by the Fundamental Theorem of Linear Algebra-Part 2) in this particular

exercise.

2. Let us discuss the general case. Let e =

i

[A||L.)

T
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Span(e,,ez)

oy

Span(ez,ea)

R(A)=Span(y:.y2)

Fig. S.4. The range and null spaces of A = [y1|y2|ys]

-1 -1 0 0[]0
where Vy = H =—e Sp= R ,SH:[l,---,l]:eT_
-1 1. 1|0

Thus, R(A) = Span {y1,** ,Yn-1}. N(A) = Span {t}, where

-V !
_ Nl _ |- _
t = l: Il :l = : = e.
Moreover,
‘a(‘lT) ‘Spa’n{ Yn, —Y1,° 1, yn—?}-

And finally, N (AT) = Span {Srr} = Span {r[l, ++,1]T} = Span {e} . We
have N(A) = (R(A))* since N(A4) = N(AT) (therefore, R(AT) = R(A)
by the Fundamental Theorem of Linear Algebra-part 2) in this particular
exercise.
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3.1
1 2 0
- 1-1 3 — (1,2 3 4
A 1-1 3 = [a a‘ a a]
-1 1-3
1
v =al = } = vlv =4, vfa® = -1, vTa® = 9, vTa? = 2.
-1
9
1
-1 _% T T 9
U2—G——-4—’Ul 3 #'[}2’(}2 , Ug @ —J, v et
1
3
1
27 0
-5 -9 0
1)3:(13——-2_.511)2——2—-1}1: 0
1
0
This result is acceptable since a® = 2a' — a?; hence it is dependent on o' and
2
a’.
. 0
-5 -2 1
U4:a4——2—_72"02-"‘—4—1)1= 1
4
2
Thus,
1 V3 0
3 2
6
q1 = . % q2 22 _lg q4 = A -—%:
=7 = y @4 = 0 =
[lod]] il loall | -3 loall — | ¥
1
—z V6
? 2 -
al =2q v,
(12—”%Q1+§%3Q2=—;1;v1+v2
@® =220) = (~3ar+ 3B)g; = §a1 + =5 3qp = 201 — vy
0t = g1~ Ve — Va1 = oy + oy + v
1 V3
2 2 9 1 9 1
L _ V3 /6 2 2
=] 2 66 =038 33 _
Q | BE|0H 5 V3
276 6
_1 V3 V6 0 0 0 V6
2 6 3
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3.2
y = Po+ Pz + e = Ey] = fo + p1z.
Data;

y1 = Bo + Bixy 1l n

y2 = Bo + Prxe 12 Bo Y2
. & .. =1 . | &A=y
: Co &} :

Ym = Bo + B1zm lz, Ym

The problem is to minimize SSE = ||y — AB|)? = S (ys — Bo — Bizy)?.

The solution is to choose § = [ﬁ_o] such that Af is as close as possible to y.

B
1CL‘1
A= 1x2 :ATA:[mei§ ] det(ATA) =m Y z? — () )
1z,
T 4y-1 _ 1 Yl -
A = s | 50 TR
B — (ATA)—IATy
hn
5 1 Yot -Ya|[1 1. 1]]|%
R Eroro Bt | |
Ym
5 __ (AT AN=1 AT, __ 1 25’%2 - 2T DY
B =(A"A) Ay—mme—(in)z [_in m ][E%yz]

p= (3] =ity = oot B EE End ]

We know from statistics that

B = 55 0 =Y — D17,
where
_ > - > i _ - _ - _ .
T=St = s SSay =D (€i=Z)(Yi—F), SSae = Y _(wi—F)(z:i— 7).
Since

S8, = Z(xl —z)? = fo - 23?Za:i + mz?



Solutions
SS8zz = me —2mz? 4+ m3® = Zaxf — ma?,

SSey  —mSSsy _ =D T )Yt mY Ty
S8z -mSSy,  my.zi- (> =z)?

which is dictated by the matrix equation above.

b=

= §SS;: —%8Sey Gzl —myz’ - T Y my + myi’

o 88. 55 ’
Gy = GO Ty _ Ly E — YT Y Tith
0 Sszz mSSM ’

Bo = Ew?Eyi — 2T Y Ty
my x?— (Y @)
which is dictated by the matrix equation above.
‘We may use calculus to solve min SSE:

m

SSE = |ly— ABIP = 3 (v ~ [fo + Brai])?

i=1

219

SSE=Y "y} -2 yifo—281 Y vizi+mB} +2BB1 Y _zi+ i Y al.

dSSE
250 =-2> yi+2mBo+261 Y @i =0
¢>,80: Zyz "nflzxi ::ﬁ_/",Blii'-
dSSE

95, = -2 wyi+260 Y @i +26 Y a2 =0
@Zﬁiyi-(g—ﬁlfi‘)z_xi_ﬂlzxz?i_o

3 _ 2Ty — P P witi —mE _ 8Say
‘TS iy nal-ma? | S8,

As it can be observed above, the matrix system and the calculus mini-

mization yield the same solution!
Let the example data be (1,1), (2,4), (3,4), (4,4), (5,7). Then,

11 1
12 4
AB=y& |13 [ﬂo]: 4
14| L 4
15 7

r, [515] _[13 _—
ATA= [15 55] _5[311} , det(AT 4) = 10.
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1
3 1 [1-3][111117 %
3 0 T a\-14T, _ 1 -
p= [ﬂl] a4 Ay‘1o[—3 1] [12345} b
7

- (8 1 [11-3][20] _[04] _
b= [ﬁ?] (74T = 55 [—3 1} {72] = [1.2} =
5=3,7=4,

S8Szy = (1-3)(1-4)+(2-3)(4—4)+(3-3)(4—4)+(4-3)(4—4)+(5-3)(7—4) = 12,
SSee = (1-3)+ (2-3)° + (3-3) + (4~ 9)* + (5 - 3)° = 10.

B = %’ 3 =4 —1.2(3) = 0.4.
3.3
(a) Let us interchange the first two equations to get A} = LU:
213 22171321
Aj={132| =% 10]|0 2
321 1 o0} |00

Here, the form of L is a bit different, but serves for the purpose. We solve
LUz = b, = [19,8,3]7 in two stages: Lc = ¥, then Uz = c.

- 1 e 19 = c5 = 18.
Le=by & |3 10 Iicz}z 8 @{ =ep=7

1 00| L¢s 3 =3

321 z; ] 3 =z, =0.
Ur=c& O%% [932 =7 @{ = Iq = —2

0038 Lzs] |18 z3 =7

Final check:

Aiw=[213] | -2
321 L 7

(1327 1 0} 8
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(b) Let us take the first three columns of A; as the basis:
213 10 xy
T4
B=|132|,N=|01|, a5 = xg,:vN-——[ }
x
321 10 T3 5
Let zy = 8. Then, Bxp = by is solved by LU decomposition as above:
2 1
377 1 C1 8 = C3 = 972
Le=by & % 10 c|l =119 & = ¢y = 18
1 00] Les 3 a=3
321 I 3 =T = —%1.
Ur=c& 0%% | =18 :>x2=1?6
18 60 =10
00 e Z3 2 z3 3
zp = [, 8, 7. If a2y # 0, then zp = [=12, 38 10T — B=1Ngy. Let
zn = [1,1]7. Then,
Ty —131 % —'1% 1 1 —-23
rp=— | X2 | = -13—6 - ——% '118" == 31
10 11 1 6
Final check:
11
3
21310 2 8
Ax= 13201 % = 19| v
32110 0 3
0
F o3
21310 31 8
Ax=113201] = 9 =119{ v
32110 6 3
(c)
12
4 5 14710 166 188
Az = , AT = , AT Ay = :
7 8 25811 188 214
10 11
107 _ 47
A7 As is clearly invertible, and (A A3)~'=| %) 2 }
~ 45 90
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9 7
(A§A3)-1AT_ %_%] [14710] _ I:_ﬁ)_ 15 _516 %]
- 47 - 4 13 1 3
25811 4 1 1 _3

T4

z=(ATA5) " ATy = {””’1] = l_

T2

The A3z = QR decomposition is given below:

—0.07762 —0.83305 —0.39205 —0.38249

| —0.31046 —0.45124 0.23763 0.80220
@= ~0.54331 —0.06942 0.70087 —0.45693
—0.77615 0.31239 —0.54646 0.03722

—12.8840 —14.5920
0.0000 —1.0413
0.0000  0.0000
0.0000  0.0000

R =

The equivalent system RZ = QT b3 is solved below:

—0.07762 —0.31046 —0.54331 —0.77615 2 —-11.1770
OTbs = —0.83305 —-0.45124 —0.06942 0.31239 51 | -1.8397
7 | —0.39205 0.23763 0.70087 —0.54646 61 0.2376
—0.38249 0.80220 —0.45693 0.03722 8 0.8022
—12.8840 —14.5920 —-11.1770
Ri = 0.0000 —1.0413| (=, | | —1.8397
- 0.0000 0.0000 | [zs| 0.2376
0.0000  0.0000 0.8022
- - oy = SRS = 11338
zg = 15T = 1.7667
The two solutions, (©) and ({), are equivalent.
1 2 2.4201 2
4 5 - . 5
Agz = 1.1333 _ 4.3503 ” = b
78 1.7667 6.2805 6
10 11 8.2107 8
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2.4201] [2 0.4201
5 —
sz — b = || | 439031 _ = ||| 706497 |1 _ 8695 is the minimum
6.2805 | |6 0.2805
82107| L8 0.8495
€ITor.
(d)
10 01 1100 2-1 0-1
121 00 0-1 1 0 “1 2-1 0
Aa= AL = AT A=
0 1-10 0 0-1-1 0-1 2-1
0 0-11 100 1 -1 0-1 2

Clearly, AT A4 is not invertible. Then, we resort to the singular value decom-
position A4 = Q1 XQF, where

-3¢ 03 1000 —3—¢ 03}
1 vz il 0020 2 _1 ¥2 g1
2 2 2 2 2 2
1 g 21 0000 1 g 21
2 2 2 2 2 2
Then, & = Q2 XTQTb, finds the solution:
—3 273 2| [00
2 2
|8 0% ojjojoo|
1
0—-@ 0;@ 003
1 1 1 1 0000
2 2 2 2
1 1_1 1
2 272 3|09 y 0.22855
| 0% 0l ]4 _ |# | _ |-042678
0-¥2 ovz||3 zs| | —0.25000
R R E T4 0.12500
2 2 2 2
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Problems of Chapter 4

4.1 In order to prove that

det A = (lilAil + aizAn + -t ainAina

(property 11) where A;;’s are cofactors (A;; = (—1)"*7 det M;;, where the
minor M;; is formed from A by deleting row ¢ and column j);
without loss of generality, we may assume that ¢ = 1.

Let us apply some row operations,

a11 22 413 *°* Qin
a1 @22 Q23 **+ A2n
A= (@31 Q22 G33 *** G3n
Unl Gn2 Gn3 *°* Gnn

L —aijaitaiiaiy oo
where a;; = e L =2,

@11 @22 413 *° G1n

0 ag asz -+ ag,
- | 0 aszas3 - asn |

0 0n2 Gna - Gnn

—a12a821+az2011

,n. In particular, age = “

Furthermore,
a11 G2 a1z ' Gin aiy @22 413 - G1n
0 oo asg -+ ogn 0 oog agz -+ azg
Ao | 0 aposs - asn| | 0 0 Bz Ban |
0 QAp2 Op3 "+ Qpp 0 0 /Bn3,8nn
where f3;; = :ﬂﬁ%‘?—ﬂ, i, =2,...,n. In particular,

Bs = —0i30i32 + (33023
33 = =

23]

(al2a31 - a32a11)(a23a11 - a13a21) + (1133011 - a13a31)(a22a11 - a12a21)
a11(az2a11 - alzam)
If we open up the parentheses in the numerator, the terms without a1y cancel
each other, and if we factor a;; out and cancel with the same term in the
denominator, we will have

8 012023031 + Q13032021 — (11023032 — 613031022 — 412021033 + 11422033
33— .
—Q12a21 + A22011

If we further continue the row operations to reach the upper triangular form,
we will have

a1y a2 a13 - Gin
0 a9y a3 - aopn
A ... 0 0 1833"':83n
0 0 0 : Cnn
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Let un = 2. Thus,

—aiadgy + (122&11] ]

det A= a1 02 B33 (nn = aq1 - [
a1

012023031 + 13032021 — (11023032 — 013331022 — 12021033 + a11(122(133}
—a12021 + 622011

Z
ZzZ1
Since the denominator of one term cancels the numerator of the previous term,

detA=2= Z A1p,A2p, * * * Anp, detlep, , ep,, ... €p. ], (%)

peP
where P has all n! permutations (p1,...,pn) of the numbers {1,2,...,n}, e,
is the pt* canonical unit vector and det P, = det|ep,, €p,, . . .,€p,] = %1 such

that the sign depends on whether the number of exchanges in the permutation
matrix P, is even or odd.

Consider the terms in the above formula for det A involving a;;3. They
occur when the choice of the first column is p; = 1 yielding some permutation
P = (p2,...,pn) of the remaining numbers {2,3,...,n}. We collect all these
terms as A;; where the cofactor for aq, is

A = Z QAop, **  Onp,, det PI;.
peP

Hence, det A should depend linearly on the row (a11,@13,...,01n):
det A = a11 A1 + a12A12 + - + a1, A1n.

Let us prove Property 11 using the induction approach. The base condition
was already be shown to be true by the example in the main text. We may
use (*) as the induction hypothesis for n = k.

Claim: Z;ﬁeﬁ Apy *** Anp, det Py = (—1)1*1 det My,. We will use induction

for proving the claim.

Q22 Q23

a32 a33

Induction(n =k + 1): 3°c p @2,pp ** Akt 1,piys det Py = (1)1 det M.
Using the induction hypothesis for n = k in (x) we have:

Base(n = 3): A11 = agza33 — azzazs = (—1)?

det My; = agaAag + -+ + agnAan,

in which we may use the induction hypothesis of the claim for the cofactor
Ajyj. The rest is almost trivial.



226 Solutions

4.2 Let
1 1-1-1-1
2 1 1 2 1
A=10 1 1 0-1| = ds)=(s-2)°% k=12 =2,n =5

1-1 1 3 1
2-2 2 2 4

-1 1-1-1-1

2-1 1 2 1

Ai=A-2I=| 0 1-1 0-1

1-1 1 1 1

2-2 2 2 2

= dimN (A1) =5 —rank(4;)=5-3=2.
A2 =0 = dimN(42) =5 = m; =2, m(s) = (s — 2)%

Choose vo € N(A2) 5 Ajvs # 0.

vy =€ =(1,0,0,0,0)T = v = Ajv; = (-1,2,0,1,2)7.

Choose v4 # ave 3 a # 0, vy € N(A432) 3 Aju, # 6.

vg =e5 =(0,1,0,0,0)7 = vy = Ajvy = (1,-1,1,-1,2)7.
Choose vs € N(A1) independent from v; and vs.
vs = (1,0,0,-1,0)T.
Thus,
-11 10 1 21
20-11 0 2
S=| 00 10 0| = S 'AS= 21
10-10-1 2
20-20 0 2
4.3
L Ly 3
10 10 1
A=|0555%| = ds)=s— = ,k:l,,\zi,n:?,
1 10 10
0 0 55
A A 1I 8%?) 10
1= — T~ = 10
100 1o 070
= dimN (A1) =3 —rank(4,)=3-2=1.
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00110
Ay =A% = (A—-I) 00 0
00 0

= dimN(A) =3 —rank(A;))=3-1=2.
1\3
A2 =0 = dmN(4})=3= m=3,m(s) = (S—E) .
Choose v3 € N(A3) 3 vy = Ajuz # 0 # A2vs = vy.
1 \7 1 T
U3 ——63 (0 0, 1) = vy = Avg = <U,E,O> = v1 = Ajvg = <1—06,0,0> .

Thus,

—

1 1 10
w_ 1 11045 mloo —1311 100 s
Al = o5 [0 110 040 5 10 | =S541%871
001 001 = 1

Note that the calculation of A is as hard as that of A° since A is not
diagonal. However, because (easy to prove by induction)

Al " A" (AR () An—2
Al = A (Mt
A A

we have
10 9 8
N (&) 10 (1-113)10 45 ($)9 1 100 4500
A0 = (5)°10(%)° | =5 |0 1 100
( 1 )10 0 0 1
10
Hence, it is still useful to have Jordan decomposition.
4.4 (a) Ix ix
L _ oz _
o = 0.03Y7 - 0.02Y> 7 0.04Y7 — 0.01Y;
dY;
d—tl = —0.05X; — 0.02X, % = —0.03X; — 0.00X,

Let WT = [X}, X2,Y1,Y,]. Then, the above equation is rewritten as

dW
o =AW
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where 5 .
0 0 —15 — %5
00 % -
A=1_1 _1 ¢
20 50
-3 0 0 0

and the initial condition is Wy = [100, 60, 40, 30]7.

(b) A= SAS™!, where

0.46791 —-0.46791 —0.20890 —0.20890
0.54010 —0.54010 0.69374 0.69374

5= 0.64713 0.64713 0.33092 —0.33092
0.26563 0.26563 —0.60464 0.60464
0.79296 0.23878 0.63090 0.34529
- g1 —0.79296 —0.23878 0.63090 0.34529

—0.61736 0.53484 0.27717 —0.67525
—0.61736 0.53484 —0.27717 0.67525

—0.052845 0.000000 0.000000 0.000000
and A — 0.000000 0.052845 (.000000 0.000000
0.000000 0.000000 —0.010365 0.000000
0.000000 0.000000 0.000000 0.010365
The solution is W = SeAtS~1W:

Xi(t) 0.46791 —0.46791 —0.20890 —0.20890
Xo(t) | _ |0.54010 —0.54010 0.69374 0.69374
Yi(t) 0.64713 0.64713 0.33092 —0.33092
Ya(t) 0.26563 0.26563 —0.60464 0.60464
¢—0-052845 ¢
0052845 ¢
o—0.010365 ¢
£0-010365 ¢

0.79296 0.23878 0.63090 0.34529 100
~-0.79296 —0.23878 0.63090 0.34529 60
—0.61736 0.53484 0.27717 —0.67525 40
~0.61736 0.53484 —0.27717 0.67525 30

129.220
~-58.028
—38.816
—20.475

Since S™1W, =

, we have



Solutions 229

46791 —.46791 —.20890 —.20890 ] [ (129.22)¢=0052845¢
54010 —.54010 .69374 69374 | | (—58.028)e0-052845¢
64713 64713 .33092 —.33092 | | (—38.816)¢—0-010365¢
26563 26563 —.60464 .60464 | | (—20.475)e0-010365¢

[100.00007 [ X1(1) 98.3222] [X1(2) 96.8859
60.0000 | | X5(1)| _ |58.2381 |X5(2)| _ |56.7490
40.0000 | | Yy(1) | T |33.8610 )" | Yy(2) | T |27.8324 |
| 30.0000 | | Ya(1) 27.0258 | | Ya(2) 24.0983
[95.68717 [ X1(4) 94.72277 [X.(5) 93.9900
55.5282 | | Xo(4) | | 54.5719| | Xo(5)| _ |53.8772
21.8967 | | Yi(4) | T |16.0369 |’ | vi(5) | = | 10.2360
1212102 | | Ya(4) 18.3547 | | Ya(5) 15.5246
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Problems of Chapter 5

5.1
Proof. Let Q"1AQ = A and Q7' = Q7,

yTAy  Myi+-+
yTy v+t oyl

z=Qy= R(z) =

y1=1,y2 =+ =y, = 0= \; < R(z) since
AT+ +ya) Syt +o o+ dayn = A =min {A L,
Similarly, A, (A4) = max);|=1 27 Az. O
5.2
i. 2T Az >0, Vz # 6,

1 210 I1
IITTAZL‘ = [:Ul To Z‘3]m 121 o
011

T3

1
= 150 [22% + @132 + 2122 + 2x3 + T2x3 + T2T3 + T3

=~ 100 (w1 + z2)? + (22 + z3)? + xf] >0, Yz # 6!
ii. All the eigen values of A satisfy A\; > 0;
L [100s -2 -1 0

—A)= —| -1 100s-2 -1
Aetel =4 = 10 0 C  100s -1

=0&

53— 0.055% +0.00065 —0.000001 = (5—0.002)(s—0.01552)(s—0.03248) = 0
= A; = 0.002 > 0, Ay = 0.01552 > 0, A3 = 0.03248 > 0!

itii. All the submatrices Ay have nonnegative determinants;
Since each entry of A is nonnegative, all 1 X 1 minors are OK.

21 20 10
Lo|=3>0,[{|=2>0,|,,|=1>0
21 20 10
01l=2>0[01[=2>0,| |=1>0
12 11 21
01=1>0 g =1>0,7 |=2>0

All 2 x 2 minors are OK.
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210
121
011

=1 =105det(4) > 0!

The 3 x 3 minor, itself, is OK as well.
iv. All the pivots (without row exchanges) satisfy d; > 0;

210 210 210
121 1021|051
011 011 001
2 3 1
= -— = — = — !
= d 100>0, do 2OO>O, ds 300>0

v. 3 a possibly singular matrix W 3 A = WTW;

, [210 L 110 L J100 .
A= t121] =01 1011 110l =wrw
100 414 10 1901 101911

100
and W = 1—10 110 is nonsingular!
011
5.3
Vf(z) = ;%% 2% 4 21 + 229 - [0
T lef | T | 2yt -1 0
Oz
(1 - 1)(z1-2)=0
= {111'2 =1- 2.’131
Therefore,

w3 o[

are stationary points inside the region defined by -4 < 2o < 0 < 27 < 3.
Moreover, we have the following boundaries

0 3
Ty = [932] , XTI = [$2] and zyr; = [iﬂ , Tpy = [agJ

defined by
0 0 3 3
wo= o oo =) =[] =[]

Let the Hessian matrix be

3%f 3%f
v2f(x) — Ox10z, Ox10zo — 2$1 + 1 2
8f  9f 2 1)
Oxe0z) Ox28x0
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Then, we have
9 132 2 152

\Y f(mA)‘ [21] and V f(«TB)— 21"

Let us check the positive definiteness of V2 f(x4) using the definition:

32
vTV2f(za)v = [v1,v2] [2 1] [Z;] = 3v% + dvvp + V3.

If ; = —0.5 and v2 = 1.0, we will have v¥ V2 f(z4)v < 0. On the other hand,
if v = 1.5 and vy = 1.0, we will have vTV?f(z4)v > 0. Thus, V2 f(x4) is

indefinite. Let us check V2f(zp):

2
vTvzf(wB)v = [vhv?] [g 1:| [Z:jl = 5’(1% + 4vivg +U§ = ’U% + (21}1 +'U2)2 > 0.

Thus, V2f(zg) is positive definite and 5 = [_g] is a local minimizer with

f(zg) = 19.166667.

F LA
2
—r
s
=z
-

R
R
i

i

Fig. S.5. Plot of f(21,r2) = tal + %m% + 2z122 + %mg —x2+19



Solutions 233

Let us check the boundary defined by z;:
df(oa :1:2) -

-1=0=z=1.
d:l?z 72

1
F(0,22) = -2—.'17% - Zg+19 =

Since ‘ﬂ—{i%ﬁ"ﬁ =1>0, z2 =1 > 0 is the local minimizer outside the feasible
region. As the first derivative is negative for —4 < 2o < 0, we will check 23 = 0

for minimizer and z3 = —4 for maximizer (see Figure S.5).
Let us check the boundary defined by zrr:
1 df (3, z3) .
f(3,.’l)2)_—2-.’lf2+5 2+—2-$ dzs =22+5=0= 29 =-5.

2
Since é_fd_(a%_@ =1>0, 20 = =5 < —4 is the local minimizer outside the
2
feasible region. As the first derivative is positive for —~4 < zo < 0, we will

check 22 = —4 for minimizer and z5 = 0 for maximizer (see Figure S.5).
Let us check the boundary defined by zj;;:
1 1 dj 0 .
f(z1,0) = =23 + mf+19:—f—(g—v1—’—)=xf+x1=0=>w1=0,—1.
3 2 diL‘l

2
Since 42—"(7(%‘—’0—) = 2x1; + 1, ;1 = 0 is the local minimizer (d—(-c’;v%’—ol =1>0)

on the boundary, and z; = —1 is the local maximizer (d—z%ﬁﬁz =-1<0)
1

outside the feasible region. As the first derivative is positive for 0 < 25 < 3,
we will check 9 = 3 for maximizer (see Figure S.5).
Let us check the boundary defined by zv:

df(:L‘l, —4)
d.’L‘l

-1++1432
5 .

1
73— 8z +31 = =2+, -8=0

f(mly 4) 1+2

= I =

2
Since ¢ fngl,—4 = 2z; + 1 again, the positive root z; = -‘—1—*—'2— V33 — 23723
1

2
is the local minimizer ( d—%’éﬁo—) > 0), and the negative root is the local
1

maximizer but it is outside the feasible region. As the first derivative is positive
for 0 < x5 < 3, we will check z2 = 3 for maximizer again (see Figure S.5).

To sum up, we have to consider (2, —3), (0,0) and (2.3723, —4) for the
minimizer; (3,0) and (0, —4) for the maximizer:

£(2,-3) = 19.16667, f(0,0) = 19, f(2.3723, —4) = 19.28529

= (0,0) is the minimizer!

£(3,0) = 32.5, f(0,—4) = 31 = (3,0) is the maximizer!
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Problems of Chapter 6

6.1 The norm of a matrix A is defined as || A|| = 1/largest eigen value of AT A.
If Q is orthogonal then Q7 = Q=1 & QTQ = I and the unique eigen value of
QTQ is 1. Hence

el = [|Q"|| = L.
Furthermore,

c=lQlQ7!| = lel* =1

Hence for orthogonal matrices,
c=Ql =1

Let Q=aQ. Then QT = Q' =1QT =101 QTQ =aQlQT =1
Thus,
el =|e”| =1,
and

e= 227 = allQl : 1ol = QI =1

For orthogonal matrices, ||Q|| = ¢(Q) = 1. Orthogonal matrices and their
multipliers (aQ) are only perfect condition matrices. It is left as an exercise
to prove the only part.

6.2 A= QoRy, where

~0.4083 —0.3762 —0.5443 0.5452 —0.3020 0.0843
0.9129 —0.1882 —0.2434 0.2438 —0.1351 0.0377
_ 0 0.9111 —0.2696 0.2701 —0.1496 0.0418
Qo = 0 0 —0.7562 —0.5672 0.3142 —0.0877
0 0 0 —0.4986 —0.8349 0.2331
0 0 0 0 0.2689 0.9632 ]
[—~1.2247 83.7098 —73.0929 0 0 0]
0 —87.8778 87.3454 3.8183 0 0
R = 0 0 —5.5417 —3.0895 —0.1695 0
0= 0 0 0 —0.4497 —0.1898 0.0050
0 0 0 0 —0.0372 0.0095
i 0 0 0 0 0 0.0016 |
[—76.9159 80.2207 0 0 0 0]
80.2207 94.3687 —5.0493 0 0 0
Ay = RoQo = 0 —5.0493  3.8305 0.3400 0 0
! 0%0 0 0 0.3400 0.3497 0.0185 0
0 0 0 0.0185 0.0336 0.0004
0 0 0 0 0.0004 0.0016 |

A1 = Q1R17 where



Q1= 0 0 —0.2734 —0.9595 0.0685 0.0009
0 0 0 —0.0712 —0.9974 —0.2331
i 0 0 0 0 —0.0135 0.9999 |
—111.1369 123.6364 —3.6447 0 0 0]
0 —8.9636 5.0452 0.1915 0 0
R - 0 0 —1.2438 —3.0895 —0.0051 0
1= 0 0 0 —0.4497 —0.0202 0
0 0 0 0 —0.0322 —0.0005
0 0 0 0 0 0.0016
[166.1589 —6.4701 0 0 0 0]
—6.4701 7.9677 —0.7006 0 0 0
_ _ 0 —0.7006 1.0885 0.0711 0 0
Ay = RyQy = 0 0 0.0711 0.2511 0.0023 0
0 0 0 0.0023 0.0322 0
i 0 0 0 0 0 0.0016 |
[166.4231 0 0 0 0 0]
0 7.7768 —0.0002 0 0 0
_ _ 0 —0.0002 1.0218 0.0002 0 0
Ag =I5 Qs = 0 0 0.0002 0.2447 0 0
0 0 0 00.0321 0
I 0 0 0 0 0 0.0016 |
Ag = Qg Rg, where
[ —1.0000 0 0 0 0 0]
0 —1.0000 0 0 0 0
0 0 0 —1.0000 0.0002 0 0
6= 0 0 —0.0002 —1.0000 0 0
0 0 0 0 —1.0000 0
i 0 0 0 0 0 1.0000 |
(—166.4231 0 0 0 0 0]
0 —7.7768 0.0002 0 0 0
R = 0 0 —1.0218 —0.0003 0 0
6= 0 0 0 —0.2447 0 0
0 0 0 0 —0.0321 0
I 0 0 0 0 0 0.0016 |

Solutions

0.7218 —0.5718 —0.3750 0.1063 —0.0076 —0.0001
0 0.5633 —0.7948 0.2253 —-0.0161 —-0.0002

[—0.6921 —0.5964 —0.3911  0.1109 —0.0079 —0.0001 ]

235
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[166.4231 0 0 0 0
0 7.7768 0 0 0
0 —0.0002 1.0218 0.0001 0

A7 = ReQs = 0 0 0.0001 0.2447 0

0 0 0 0 0.0321
I 0 0 0 0 0 0.0016 |
A7 = Q7R7, where
—~1.0000 0 0 0 0 0
0 —1.0000 0 0 0 0
0 = 0 0 —1.0000 0.0001 0 0
[ 0 0 —0.0001 —1.0000 0 0
0 0 0 0 —1.0000 0
0 0 0 0 0 1.0000
—166.4231 0 0 0 0 0]
0 —7.7768 0.0002 0 0 0
R = 0 0 —1.0218 —0.0001 0 0
T 0 0 0 —0.2447 0 0
0 0 0 0 —0.0321 0
0 0 0 0 0 0.0016 |
166.4231 0 0 0 0 07
0 7.7768 0 0 0 0
0 01.0218 0 0 0
Ag = R7Qr = 0 0 0 0.2447 0 0
0 0 0 0 0.0321 0
0 0 0 0 0 0.0016 |

The diagonal entries are the eigen values of A.
6.3 (a) Take A(2).
1.

[l —y

[N ST
| S|

e =aen = 368 = o).
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B 4 -6 [1.5 0
zrr = A2) by = [—6 12] [1.0] = [3]
A 4
Ay = by — by = [ ] = (|44 = \f o]l = \[ [|||bzbl|ll 10

am 10
Ax:.'EI—:L‘II: ——1 :>|IA1:”=\/E’ HxI“:__\/I___> | ” — oy
] el ~ V1

10
Then, the relative error for this case is ACEI = 5.0.

2. The maximum error is the condition number.

s—1 -3 1\ 1
der(s =AY =|" Ty T =(s—1)<s-§>—2:0
4-+/13 4+V13
ﬁ )\]_ = B /\2 = .
6 6
Therefore, c¢[A(2)] = %’f = i:/‘/—% = g:ggiii; = 19.2815 is the upper

bound.

ol M=
M e
LI B[

2

L

1.0
Lzpr=br=zyr=b = [0.5} .

1
A2)+Aae) = |

2.0 1A V4.25
Ay =1y — 21 = = = = 1.84391
e [05] lzr + Azll ~ V1.25
4+ 1
AR = Ag = +6‘/—3 —~ 1.26759
0-1
HAA(g) H is the largest eigenvalue of 1 z , which is 0.9343. Then,
2 3
|Aae)| 09343 0.7371 = ﬁ”TAﬁs”:T _ 184
A2 — 1.2676 |44 — 07371 7
TA)]

4. The maximum error is ||A(2)|||A(2)7!||, where ||A(2)7!||is the largest
eigenvalue of A(2)! as calculated below:

s—4 6

o S_l2l:(s——4)(s—12)—36i0

det(sI — A(2)™}) =
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- \/208 16 + /208
== s B2 = 2
= |AQ) Y| =pe = 16+ 16+ V208 _ = 15.2111
Then, ||A(2)] |A(2)7}| = 1.2676(15.2111) = 19.2815 = c[A(2)].
We know, = ;\1; and pg = /\% Consequently,
= A
A2 =22 = 192815 = AL = 22 = ([4(2)]
251 bYe A
(b) Take A(3)
111 49 3 2
23 36 4 40
AB) =331 |=>A@)TAB)= | 4 W
111 21 3 769
345 40 10 3600
-8 -3 -3
T .
det(sI — A(3)" A(3)) = -$s- & -21=0
_21 3 o 769
40 10 3600

= (s — 3/415409)(s — 255/17041)(s — 1192/601) = 0 =>

L3 285 1192
YT 4154090 2T 17041 0T 601
Vs 1192
= c[A(3)TA(3)) = = = 5L = 274635.3
Y1 115409
133
det(sI — A(3)) = |33 3|=0
111
345
= (s — 26/9675)(s — 389/3180)(s — 745/529) = 0 =>
26 389 745 DY -
A= o Ap = ) A3 = o =3 c[A(3)] = 22 = 520
1= 96750 M T 31800 ™ T 5 MBI =3 26

Clearly, c[A(3)T A(3)

(c) Take A(4).

J = (c[A@3))?

A GOt DO et
[ it QO [t N3 [t
D= CT= = Lo
EN (=N P N T

= 524.0566
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—0.83812 0.52265 —0.15397 —-0.02631
—0.41906 —0.44171 0.72775 0.31568
—~0.27937 —0.52882 —0.13951 —0.78920
—0.20953 —0.50207 —0.65361 0.52613

—1.19320 —0.67049 —0.47493 ~0.36984
0.00000 —0.11853 —0.12566 —0.11754
0.00000 0.00000 —0.00622 —0.00957
0.00000 0.00000 0.00000 0.00019

A(4) = QoRo =

A(4)1 = RoQo
1.49110 0.10941 0.0037426 —3.9372 x 1075
0.10941 0.17782 0.0080931 —9.4342 x 105
0.00374 0.00809 0.0071205 —0.00012282

—3.9372 x 1075 —9.4342 x 10~% —0.00012282 9.8863 x 10~°
—0.997320 0.073211 —0.000868 2.1324 x 10~

A(4); = QiRy = —0.073173 —0.996260 0.046000 —0.0002696
1= i = —0.002503 —0.045938 —0.998790 0.0175510
2.6333 x 107°  0.000538 0.017545 0.9998500

—1.49520 —0.12214 —0.0043425 4.6479 x 1075
0.00000 —0.16952 —0.0081160 9.6801 x 10~°
0.00000 0.00000 —0.0067449  0.00012010
0.00000 0.00000 0.0000000 9.6718 x 10~°

1.500100 0.012424 1.6887 x 107% 2.5468 x 10~°
0.012424 0.169260 0.0003099 5.1991 x 108
1.6887 x 10~° 0.000310 0.0067389 1.6969 x 106
2.5468 x 1079 5.1991 x 1078 1.6969 x 10~% 9.6703 x 105

A(4)2 = R1Qy =

A(4)2 = Q2R,

—-0.999970 0.008282 —3.9108 x 1075 —1.3792 x 10710
—0.008282 -0.999960 0.0018313  1.5392 x 1077
—1.1257 x 10~° —0.001831 -1.0000000 —0.00025182

—1.6977 x 1072 —-3.0723 x 10~7 ~0.0002518 1.00000000

—1.50010 —0.01383 —1.9529 x 1075 —2.9966 x 10~°

0.00000 —0.16915
0.00000 0.00000
0.00000 0.00000

—-0.0003221 —5.5105 x 1078
—0.0067383 —1.7212 x 10~
0.0000000 9.6702 x 10~°

A(4)3 = R2Q2
1.500200 0.001401 7.5850 x 10~8 —1.6405 x 10713
B 0.001401 0.169140 1.2340 x 1075 —2.9710 x 10~}
- 7.5850 x 1078  1.2340 x 1075 0.0067383 —2.4351 x 108

~1.6417 x 10~13 —2.9710 x 10

-11

—2.4351 x 1078 9.6702 x 105
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A(4)s = Q3R3
—1.0000000 0.0009338 —1.7566 x 10~8 8.8905 x 10~15
—0.0009338 —1.0000000 7.2955 x 1075 —8.7996 x 1011
—5.0559 x 1078 —7.2955 x 105 —1.0000 3.6138 x 10~
1.0943 x 10713 1.7565 x 10710 3.6138 x 10~ 1.06000

—1.50020 —0.00156 —8.7713 x 1078 1.9304 x 10~13
0.00000 —0.16914 —1.2831 x 10~° 3.1503 x 10~!
0.00000  0.00000 —0.006738 2.4701 x 10~8
0.00000  0.00000 0.000000 9.6702 x 10~5

A(4)4 = R3Qs

1.500200 0.000158 3.4068 x 10710 —1.0796 x 10~16
0.000158 0.169140 4.9159 x 10~7 1.7074 x 10~14
3.4068 x 10710 4.9159 x 1077 0.0067383 3.4947 x 10~1°
1.0582 x 10717 1.6986 x 10~ 3.4947 x 1071°  9.6702 x 10~°

A(4)s = Q4Ry
—1.0000 0.00010528 —7.8899 x 1011 —5.7307 x 10~19
. —0.00010528 —1.0000 2.9064 x 10~% 5.0310 x 10~14
~2.2709 x 10719 —2.9064 x 10~° —1.0000 —5.1863 x 10~8
—7.0539 x 1018 —1.0042 x 10713 —5.1863 x 108 1.0000

—1.50020 —0.00018 —3.9397 x 10~1% 1.0608 x 1016
0.00000 —0.16914 —5.1117 x 1077 ~1.8100 x 1014
0.00000 0.00000 —0.0067383 —3.5448 x 10710
0.00000 0.00000 0.0000000  9.6702 x 10~5

A(4)s = R4Q4

1.5002  1.7808 x 1075 1.5304 x 1012 1.1853 x 1016

1.7808 x 1075 0.16914  1.9584 x 10~8 —9.8322 x 10~17
1.5302 x 10712 1.9584 x 10~8 0.0067383 —5.0152 x 10712
—6.8213 x 10722 —9.7112 x 10718 —5.0153 x 1012 9.6702 x 1075

1.5002
0.16914
0.0067383 and
0.0000967

Thus, A =

1.5002

A4 = ———— _ — .
A} = Go000067 = 15514
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Problems of Chapter 7

7.1

a) A zero dimensional polytope is a point.

b) One dimensional polytopes are line segments.

¢) Two dimensional polytopes are n-gons:

triangle (3), rectangle (4), trapezoid (4), pentagon (5), ...

7.2 Ay=conv(ey,esq,e3). See Figure S.6.

Fig. S.6. A, in R3

7'3 CSZCOHV((()’ 07 O)T’ (a’ 07 O)T’ (0’ a’ 0)T7 (0’ 07 a)T7 (a, a’ 0)T7
(@,0,0)T,(0,a, )T, (2, @, @)T)

Ch={zeR": 0<z; <a,i=1,...,n; a € R} }.

- - >

/
’ CUBE ’ u OCTAHEDRON

Fig. S.7. Cube and octahedron

241

C:?:COIIV((CV, 07 0)T7 (Oa «, O)Ta (O’ Oa a)T7 (—(1, Oa O)Ta (Oa —Q, O)T7 (Oa 0$ *a)T)

C’f:{xE]R": ledﬁa,aéﬂh}.

i=1
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Fig. S.8. 3-dimensional pyramid

7.4

See Figure S.8 for a drawing of P y1.

Let a* be the normal to face F;, i == 0,1,2,3,4. Let a’z < b; be the
respective defining inequalities.

We know Fy is the x1—29 plane. Then, Fy = {1“ eR3: x5 = O} .

We know that ¢ and a* are perpendicular to x;-axis. Similarly, a! and

3 are perpendicular to x; -axis. Thus,

o
al = (0,%,%)7, % = (x,0,9)7, a® = (0,%,%)7, a* = (x,0,%)7.
Since F contains (1/2,1/2,1), (1,0,0), (0,0,0), what we have is
Fy={2z € R*: Oz, — 235 + 1z3 = 0} .
Since Fy contains (1/2,1/2,1), (1,0,0), (1,1,0), we have
Fy = {z € R®: 221 + Oz + lz3 = 2} .
Since Fy contains (1/2,1/2,1), (1,1,0), (0,1,0), it is
Fy={x € R®: Ozy + 2zs + log = 2} .
And finally, (1/2,1/2,1), (0,1,0), (0,0,0) are in Fy,
Fp={z€R®: —2z; + Ozp + 123 = 0} .

Therefore,

Pa={rcR®: 23>0, 2x9 +23 <0, 22, +23 <2,
25132 + I3 < 2, —2:1,'1 + x5 < O}
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P, 41 is not a union of a cone at zy and a polytope.
P, 11 is a direct sum of a cone at zp and Cl,.
P, .1 is an intersection of a cone at zg and Cy41 provided that 2g € C,11\Cp.

7.5 See Figure S.9.

(0,11

Fig. S.9. A tetrahedron

The diagonal ray (1,1, 1)7 of the cube is orthogonal to facet Fy. Thus, Fy =
{z € R®: 1 + 22 + z3 = a}. Since this facet contains (0,1,1)T, (1,0,1)7,
(1,1,0)7, the value of « is 2. Therefore,

Fy={zeR®: o1+ 12+ 23 =2}.

Since (0,0, 0)7 is on the tetrahedron, the following halfspace is valid and facet

defining
H4={xER3: x1+w2+m3§2}

Similarly,
Flz{zEIR3: wl—:cg—a:;:,:O},

ng{xeRS: —x1+9:2—a:3=0},
F3={zeR®: —z) — 22+ 23 =0}.
The following set describes the tetrahedron:
Ty +x2+ 23 L2,
zy —x2 — 13 L0,
-1 +x2 —x3 < 0,

—-x1 — 2o +x3 < 0.
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-1.1,-1) Mac
F
'
/
/
I /
(NTRRIWS
T
110 —— e ——
); rd ql
/ S
/ /
/
I
,'(
(1-1,1) (1.:1,1)

~N

1
[
/
/ ff ’ VAR i o
/ ’, 47 4.0) A i/’"" _‘1‘- ------- K
[ 4
3
04" 4)

Fig. S.10. The dodecahedron, ¢: golden ratio

7.6 See Figure S.10.
The polyhedron vertices of a dodecahedron can be given in a simple form

for a dodecahedron of side length a = V5 =1 by
0,£07Y,£0)7, (£6,0, 26717, (267!, £6,0)" and (£1,£1,£1)7;

where ¢ = 1—“;‘@ is the golden ratio. We know ¢ —1 = 7 and ¢ = 2cos §. See
Figure S.11.
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(4"9.0)

{1,0.41)

/ g wanl

K J / (1.1,0Y

Fig. S.11. The extreme points of the dodecahedron, ¢: golden ratioc
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Problems of Chapter 8

8.1
a) We have six variables and three constraints, therefore we have (5) = 20
candidate bases.

T1 X2 X3 81 82 83
21010 0
A= 00101 0
01000-1

By = {z1,22,23}, Ba = {%1,%2,81}, Bs = {1,%2,52}, By = {21, 22,53},
Bs = {&x1,23,51}, Bs = {z1,23,82}, Br = {z1,23,53}, Bg = {x1,51,52},
By = {1, 1,83}, Bro = {z1, 82,83}, Bu1 = {®2,23,81}, Bia = {z2,23,52},
Bis = {z2,23,53}, Bia = {x2,51,52}, Bis = {2, 51,83}, Bis = {22, 52,53},
Bir = {z3, 51,52}, Bis = {3,51,53}, Bio = {3, 82,53}, Bao = {s1,52,83}.
B,, By, By, Bg, Bg, By, Bya, B15, B17, Byg are not bases since they form sin-
gular matrices. By, Byg, Big, Bag are infeasible since they do not satisfy non-
negativity constraints. Thus, what we have is
(@1, T2, T3, 51, S2, 33)T = (3,2,10,0,0,0)T from B; < point F,

(x1, 2,23, 51,82, 83)T = (3,2,0,0,10,0)T from B; < point C,

(21, 2,3, 81, 82,53)T = (0,2,10,6,0,0)7 from By — point E,
(21,2, 73, 81, 82,83)T = (0,8,10,0,0,6)T from B3 — point D,
(%1, 22,23, 81,52, 83)T = (0,2,0,6,10,0)T from B4 < point B,
(%1, T2, T3, 81, 52, 83) T = (0,8,0,0, 0,6)T from Big < point A.

See Figure S.12.

b)

1. matrix form:
— T _ T
Let zp = (s1,23,22)7, n = (z1,52,3)" . Then,

101 10-1
B={010|=Bt'=|01 0
001 00 1
10-1 8 6
zp=B7'b=[01 0] |10]| = |10
00 1 2 2
We are on point E.
6
z=chrp =[0,2,2] | 10| = 24.
2

10-17 20 0
cn —cEBTIN =[1,0,0]-1[0,2,2] {01 0] [01 O} =][1,-2,2].
00 1] ]00-1
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x2
A .
E=0210) 71 -
F=(3,2,10)
D=(0.8,10)
e
s 7
7
. -
2 ° +7 > xl
BF(0,2,0), S e
C=(3,2,0)
8
A=(0,8,0
x3 k ¢ )
CAN .
AT

(2,0,2) \‘\ R
(1/2,0.2)

Pl

Fig. S.12. Exercise 8.1: Primal and dual polyhedra

Thus, s3 enters.

10-1 0 17 s
B7IN® =101 0 0] =| 0 z3
00 1| |-1 —1| z

Thus, s; leaves.
New partition is zp = (s3,23,22)7, zx§ = (21, 82,51)7. Then,

001 10 -1
B=1| 010{ = B! 01 0
-101 10 0

247
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10-17T10 6
zp=B"1=101 0 8| =110
10 0 2 8

We are on point D.

6
z=ckep=10,2,2] [ 10| = 36.
8—
10-17[201
& —cEB7IN =1[1,0,00-1[0,2,2] |01 0| {010 =[-3,-2,-2].
10 0] [000
Thus, D is the optimal point.
2. simplex tableau:
Ty o X3 81 82 S3 RHS Tt T2 T3 S1 S2 83 RHS
si] 2001 0[Lff 6 53200101 6
z3l 0 0101 0 10 2300 01 010 10
z2 01 0 0 0-1 2 212 1 00 00 8
z[-1 0 0 0 2-2]] 24 23002 2 0] 36
3. revised simplex with product form of the inverse:
10-1
Let zp = (s1,23,72)T, zn = (1,52,83)T. Then, B~ = |01 0
00 1

w=cyB™=0,2,2].

Ty, = Cp —wWN® =1-[0,2,2] =1>0.

2
0
0
[0
Tey = Cop —wN*2=0-1[0,2,2] | 1| =-2<0.
0
[ 0
0

Tsg = Csy — WN =0~ [0,2,2] =2>0
|1
100
s3 is the entering variable and s; leaves. B = —% 10
~1
-==01

1

zp = E7'b = (6,8,10)T.
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w=[0,2,2)ET'B™! =[2,2,0].

w —CBB '=10,2,2]
(2]
Ty = Cgy —wWN"' =1-12,2,0] |0 =-3<0.
10|
0]
Tey =Csp —wN?2=0-102,2,0] |1| =-2<0.
_0_
0
re, =cCo, —wN* =0-100,2,2] | 0| =-2<0.
-1
Optimal.
. revised simplex with B = LU decomposition:
101
Let x5 = (s1,73,72)7, n = (71, 82,53)T. Then, B = | 010 is upper
001

triangular, L = I3. Solve Bxpg = b by back substitution.
Ty =2, xz3 =10, 51 =8 — 13 = 6.
Solve wB = cp by back substitution.
wy =0, wy =2, wg =2 —w; = 2.

The rest is the same, s3 enters and s; leaves.

001
New basis is B = 010
-101
001 001 ~-101
PB=LU< |010 010]| = 010]| =I3U.
100 -101 001

Solve Bxp = Pb = (2,10,8)T by substitution.

e =2, x3=10, s3 =22 — 2 =6.
Solve wB = Pcg = (2,2,0)7 by substitution.

wy =0, wy =2, wg=2—-w; =2.

The rest is the same.
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5. revised simplex with B = QR decomposition:

101
Let zp = (81,23,72)7, n = (21,52,83)T. Then, B = | 010 | is upper
001
triangular, ) = I3. The rest is the same as above, s3 enters and s; leaves.
001 001 10-1
B = 010 = 010 |01 0] =Q@R.
-101 -100 00 1

In order to solve Bxg = QRzp = b= (8,10,2)" = Q(Rzp) = QV,
5 =28, by, =10, b =-2=12,=8, z3=0, s3 =22 —2=6.
In order to solve wB = cg, first solve wQR = cg = w'R.
wy =0, wh =2, wy =2+ w; =2.
Then, solve w@ = v’
wy =0, we =2, wy = 2.

The rest is the same.

c)
(D):
Min w =8y; + 10y, — 2y3
s.t.
2 > 1
Y1—ys > 2
y2 > 2
Y1, Y2,y3 2 0.

See Figure S.12.

8.2 The second constraint is redundant whose twice is exactly the last con-
straint plus the nonnegativity of z;. Then,

1 Ty T3 81 83
A= 2-1-1-1 0
1-2 2 0-1

a) The bases are

By = {x1,22}, B2 = {z1,23}, B3 = {z1,%1}, Bs = {1, 83}, Bs = {2,223},

Bg = {x2,51}, By = {2,83}, Bs = {23,581}, By = {3, 83}, B1o = {51, 53}
All bases except Ba, B3 yield infeasible solutions since they do not satisfy

the nonnegativity constraints. Thus, (z1, z2, 23, 51,53)7 = (2,0,1,0,0)7T from

Bs, and (21,2, 73, 81,83)7 = (4,0,0,5,0)T from Bj.
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b)
Method 1:
At (2,0,1,0,0)7, we have

Ty 81 83 5
SIS E RIS
_3 1 _2
5 575
Tl*—l'g—Q
Ifxgentcrsxjw_m_l L—>7:2—9:)>r-(2—+—4991+3900)
$2>O

feasible for § > 0. Thus, r! = (2,
and hence an extreme ray.
T — éSg =2
If s3 enters g4 — .5.53 =1 p > s3=0=r=(2+ éH,O,l + %Q,O,Q)T

U!I-b

% is an unboundedness direction

is feasible for ¢ > 0. Thus, r? = (é 0, é 0,1)7 is another unboundedness
direction and hence an extreme ray.
At (4,0,0,5,0)7, we have
Ty T3 83
BIN=|-32-1],B %= [ﬂ .
~3 5 -2

) — 21’2 =4
If g enters 8] ~ 379 =5 p < a9 = 0 = r = (4 +20,0,0,5 + 30,0)7" is
o > 0
feasible for # > 0. Thus, r* = (2,1,0,3,0)7 is an unboundedness direction
and hence an extreme ray.

€Xry — 83 = 4
If s3 enters 8] — 253 =5 » — s3 =0 =7 = (4+6,0,0,20,0)7 is feasible
S3 Z 0

for @ > 0. Thus, 7* = (1,0,0,2,1)7 is another unboundedness direction and
hence an extreme ray.

Method 2:
Try to find some nonnegative vectors in N (A).

"
f<rl= (3,1,2,0,()) € N(A).

12 T
QST'Q: <g,0,;),071> GN(A)

6 <r3=(21,0,3,007 € N(A).
0 <r'=(1,0,0,2,1)" € N(A).
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So, they are rays. Since every pair of the above vectors have zeros in different
s Y Y Yy

places, we cannot express one ray as a linear combination of the others, they
are extreme rays.

c)

1. z1 4+ x5 + z3:
' =(1,1,1,0,007 =

(M)Trl=2+1+$40+0=22>0< unbounded
(01)Tr2=%+0+§+0+0:§>0<—+unbounded
()Tr®=24+14040+0=3>0< unbounded
(")Tr*=140+40+0+0=1> 0 <> unbounded

Thus, there is no finite solution.
2. —2x1 — x9 — 3x3:

?=(-2,-1,-3,0,007 =
(A)Trt=-8-1-2+4+0+0=~2 #0 < bounded

()Tr?2=-2-0-8+0+0=—28 %0 bounded
(T3 =—-4—-1404+0+40=—5 % 0 < bounded
()Tr*=—-2+4+0+0+0+0=—2 % 0 bounded

Thus, there is finite solution.
3, —x1 — 2x9 + 223:
A =(~1,-2,2,0,007 =

(A)Trl=-2-24+84+0+0=-2 %0 bounded
() Tr?=-1+0+3+0+0=2> 0 unbounded
()73 =-2-24+0+0+0=—4 # 0 < bounded
(3)Trt=-14+0+0+0+0=—13% 0 — unbounded

Thus, there is no finite solution.

_1 _ 15 —_
d)$1=6,$2=1,$3—§=>81-——2—, sg=1

6 2 4 2 : 2 1
1 0 0 1 0 1 0
é =a|l|+1-a)|0]| +m % + p2 % +us (O] +pa |0
o 0 5 0 0 3 2
1 0 0 0 1 0 1

O, i, fh2, fh3s hg = 0

We have 5 unknowns and 5 equations. The solution is
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6 2 4 -g— % 2 1
1 1 0 1 0 1 0 1 0
§:§1+-2—0+0§+0§+10+10
1-2— 0 5 0 0 3 2
1 0 0 0 1 0 1
convex combination of canonical combination of
extreme points extreme rays
e)
1.
{a:l To T3 81 S3 “RHS’
z[1 -5 0 -2 -3 2
230 -3 1 ¢ 2] 1
-z]0 4 0 0 1] —4
2.
21 7 3
- 2x| (3] _[3 2 z 2
wo-an=| (][ - -] = [3]
55 5 5

The values of basic variables will change but not the optimal basis.
3. The solution above is (2,0,2)T which satisfies the new constraint, no
problem!

8.3 a)

1. B = {s1,82,83} = B =1, cg =8, N = {x1,72,73,74} at their lower
bounds and ¢k = (2,3,1,4).

30 1235 (1)
xB=B“1b—B‘1NxN=[13}— 1100/ |4
20 0034
0
30 10 20 51
= [13] — 1| =12 = S2
20 9 11 S3

= z=chap+chay=2+0+3+0=05.

¢k — ¢EB7IN = (2,3,1,4). Then, Bland’s rule (lexicographical order)
marks the first variable. Since the reduced cost of z; is positive and z; is
at its lower bound; as x; is increased, so is z. Hence, =1 enters.
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0
0
0

1
1
0

S1
82
S3

<

|

x1 leaves immediately at its upper bound, z; = 6.

RERERHE

a < 6 — 1= 5(bounds of z;)
= o = min {20,12,5} = 5.

2. B=1I,¢cg =40, c% =(2,3,1,4), xg =(15,7,11) 2 =12+ 0+ 3+ 0 = 15,
ck —cEBIN = (2,3,1,4). Then, Bland’s rule marks the second variable.
Since the reduced cost of x4 is positive and z4 is at its lower bound; as z2
is increased, so is z. Hence, z2 enters.

0 $1 15 2
0| < (sl =] 7| —-|1]a,
0 83 11 0
a <10 — 0 = 10(bounds of )
> a= min{%ﬂ, 10} =T.
Thus, s leaves.
3.

B={s1,z2,83} = B = {

81
T2
53

[2]-
()|

=2z =(0,3,0)

4
13
20

c%_ch*UV:(zalA)—UL&U)[

1-20
0 10
0 01

B

-1-235]

0 034]

E

1
7
11

1 100

120] 1-20
010 =B 1t=[0 10
001 0 01
- - 6
30 1-207T1035 0
13(—-10 10]]1100 5
| 20 |0 01 |0034 0
g 4 3 1
3| = 13(=16|=|7
0 20 9 11
6
0,1,4) g =21+ (12 + 3) = 36.
0
-1-235
1 100
0 034

=(2,0,1,4) — (3,3,0,0) = (=1, -3,1,4),
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where N' = {1, s1,73,24}. Then, Bland’s rule (lexicographical order)
marks the first variable. Since the reduced cost of z; is negative and z; is
at its upper bound; as 1 is decreased, z is increased. Hence, z; enters.

0 81 1 -1 (0.9
0| <l =) 7| - lla< {10},
0 S3 11 0 ['s)

a <6 —1=>5(bounds of z;)
= a=min{1,10 - 7,5} = L

Thus, s; leaves.

4.
120 -1 20
B={z1,29,83} =>B=|[110| =B =] 1-10
001 0 01
110
T -1 2 0] |30 -1 20 1035 0
zp= x| =1 -10 13| — 1-10 0100 3
S3 0 01 20 0 01 0034] 0
0
-4 -1 2-3-57 | [—4 -9 (5
:17—1—1353217—928
20 0 0 3 4 0 | 20 9 |11
; 0
=2=(2,3,0)| 8| +(0,0,1,4) 3] = (10 + 24) + 3 = 37.
11
O.-
-1 2-3-5
& —cEB7IN =(0,0,1,4) - (2,3,0) | 1-1 3 5
0 0 3 4
= (an, 1)4) - (1a 113’5) = (_17 —17 _27 _1)7
where N == {s1, 82, 73,74}. All of the reduced costs are negative for all
the nonbasic variables that all are at their lower bounds. Hence, z* =
(z1, 72, 23,24)T = (5,8,3,0)7 is the optimum solution, where z* = 37.
b)(P):

max 2xy + 3z2 + x3 + 4z4

s.t.
1+ 229 + 323 + 5xg < 30 (yl)

z1+22 <13 (y2)
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3r3+124 <20 (y3)

-z <=1 (ya)
1 <6 (ys5)
ze <10 (ye)

~23 <=3 (1)
3<9 (ys)
z4 <5 (yo)

T1,X2,T3,T4 Z 0
(D):
min 30y; + 13ye + 20ys — y4 + 6ys + 10ys — 3y7 + Yys + Syg

s.t.
N+ye—ya+ys =22 (1)

2 +y2+ys >3 (72)
3y1+3y2 —yr+uys =1 (x3)
S5y1 +ys+ye >4 (z4)

Y1, Y2, Y3, Y4, Ys, Y6, Y7, Y8, Yo 2 0

The optimal primal solution, z* = (z1, 72,23, 24)T = (5,8,3,0)7, satisfies
constraints (y1,y2,y7) as binding, i.e. the corresponding slacks are zero. By
complementary slackness, the dual variables y1, y2, y7 might be in the optimal
dual basis. The other primal constraints have positive surplus values at the
optimality, therefore y5 = v} = y§ = y§ = v§ = yg = 0. Moreover, the
reduced costs of the surplus variables at the optimal primal solution are both
1 for s; and s, which are the optimal values of yj = y3 = 1. Since the
optimal primal basis contains the nonzero valued zy and z2, the corresponding
dual constraints are binding: 1+1—-0+0 = 2y/ and 2+ 1+ 0 = 34/
Furthermore, the optimal primal solution has nonbasic variables z3 and z4,
then the corresponding dual surplus variables may be in the dual basis: 3+3 —
y7 +02> 1, and 54+ 0+ 0 > 4 = the corresponding surplus, say t; = 1 in the
dual optimal basis. The optimal primal objective function value is 2* = 37,
which is equal to the optimal dual objective function value by the strong
duality theorem. Then, 37 = 30(1) + 13(1) + 20(0) — (0) + 6(0) + 10(0) — 3y +
9(0) + 5(0) + 0t7 + 0t30¢5 + Oty, yielding y5 = 2.
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8.4

Fig. S.13. A multi-commodity flow instance

Let us take the instance given in Figure S.13, where K = 3 and
vV ={1,2,3,4,5,6,A,C,I, K, OP},

A= {a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p}.

Let us fix all capacities at 10 and all positive supplies/demands at 10 with
unit carrying costs.

a)
Min Z Z Ckalka
k a

s.t.
Y Tra— Y, Tka = dii
a€T(3) acH(3)
Z"Bka S Ua
k
Tka S Uka

Tiq > 0 (integer)

In general, we have mK variables, m + nK constraints and mK simple
bounds other than the nonnegativity constraints. In our example instance, we
have



258 Solutions

Min (210 + T2a + T30) + - + (T1p + T2p + T3p)
s.t.
(10 + 219) — (@16 + T15) =0
(@2q + T2g) — (@26 + 22f) =0 » node 1
(T30 + 3¢) — (w35 + x3f) =0

(xlp) - ((L‘lo) =10
(22p) — (%20) = =10 » node OP
(5”317) — (230) =0
T1q + T2g + T3¢ < 10

Tip + T2p + T3p <10

Tia, " 1 L3p > 0 (integer)
b)
Min Y > Ckpfp
k PePpPk
s.t.

> fp=Dy

pepk

>3 Lefp<U
k Pepk

fe<pp

fp > 0 (integer)

We have (huge number of) K2™ variables, m + K constraints and K2™
simple bounds other than the nonnegativity constraints. The following sets
the relation between the decision variables of the two formulations whose
constraints are isomorphic:

Tok = E Lpfp, frp= néig E Zqk (applied recursively).
a
Pepk k
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In our example instance, sy is node A and t3 is node I. If we enumerate
paths (some of them is given in Figure S.14), we have

Comm. Path# Path

1 a—»f—h—rm—p
2 a—bd—omwep
1 3 amfrh—oend-ome—p
4 armfHogobod—me—p
5 ambodHljohme—p
6 a—»fgobod-ol—ji—h—smep
7 o-n—emc
8 ormrn—lwjh—e—c
2 9 onHljgmabeoec
10 ol jimg frhsec
11 o—nemd—Il-jg—b-c
12 k—=j—>hm—i
13 k—jmgob—d—i
14 k—j—h—e—d—2
15 k=j=heomened
3 16 k—j—h—omep—o—n—i
17 k—j—h—enrd—rm—=n—i
18 k= jgbad—me—en—i
19 k—jorg—bad—m—p—=o—n—i
20 k= johsemnrdHom—p—oon—i

Fig. S.14. Some paths in our multi-commodity flow instance
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and the formulation will be

Min 5f1+ -+ 1020
s.t.
fit+fe=10
fot o+ =10
Siz 4+ fao=10
fithtfs+fatfs+fe <10

fi+fot fa+ fat fs+ fo+ fre + fro+ f20 S 10
fi,+++, fao > 0 (integer)

The first three constraints make the capacity constraints for arcs a, ¢, ¢
and k redundant.

c)
waHZ Z IanPSUa
k Pcpk
Ty 4> Z fp =Dy
Pepk

Then, the reduced cost of a path P will be

Z(cka + w(l) - 7rk'7

acP

and the current solution is optimal when

i atWa) p 2 Tk, Vk.
}21&{2(% tw )} < Tk

a€P

The above problem is equivalent to find the shortest path between s and #
using arc costs cgq + w, for each commodity k. The problem is decomposed
into K single commodity shortest path problems with a dynamic objective
function that favors paths with arcs that have not appeared many times in
current paths.

d)

f =

[f1, fas f3, fa, f5y fos f7, £, fos fr0, fa1, f12, f13, f1a, S5, fi6, firs fis, fi9, fool

'3b1 SdySe;8f,8g9,Shy S8l 8m,y Sns Soy Sp]'
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c=[5577894779946668881010'000000000000]

[(11111100000000000000/000000000000 ]
00000011111000000000|000000000000
00000000000111111111{000000000000
01001100101010000110,100000000000
01111100001011001111{010000000000
00100011011001001001|0010000060000
10110100010000000000|000100000000
A=100010100111010000110{000010000000
10101101010101111001|0600001000000
00001101111111111111{000000100000
00001101111000000000/000000010000
11111100000000011111{000000001000
00000011111000111111j000000000100
000000111110000120011|000000000010
0110000100000000010011j000000000001 |

Fig. S.15. Starting bfs solution for our multi-commodity flow instance: repeated
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100000000000000]
010000000000000
001000000000000
001100000000000
001010000000000
010001000000000
1000001000600000
B;=1001000010000000
100000001000000
001000000100000
000000000010000
100000000001000
010000000000100
010000000000010
100000000000001

ch, =[546000000000000].
y1 = cp, By ! = [n|w] = [5,4,6]0].

Then, the lengths of arcs are ¢xq +w, =14+ 0=1, V arcs.

For commodity one, the minimum shortest path (Py : a — b +— d —
m > p) other than Py has length 5 which is equal to the corresponding dual
variable m; = 5. For commodity two, the minimum shortest path has length 6
which is strictly greater than the corresponding dual variable mo = 4. However,
P2 : kv~ 7+ h+— ihas length 4 < 6 = w3! Thus, fi2 enters to the basis
with the updated column

(B{*A®)T=1001-1-100-11000000]

and the updated RHS is

xgl = (By'n)T = [ﬁ f7 f13 St Sa Se S§ Sg Sh Sj SI Sm Sn So Sp |

zp, = (B{')T=[1010100000000100000],

therefore the slack variable corresponding to arc h, s, leaves.
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[1000000000000007
010000000000000
001000001000000
001100000000000
001010000000000
010001000000000
100000100000000
B,=1001000010000000
100000001000000
001000001100000
0006000000010000
100000000001000
010000000000100
010000000000010
[100000000000001 |

¢k, =[546000004000000]
y2 = [746/00000-2000000]

Then, the lengths of arcs are cg, +w, = 140 = 1, V arcs except arc h, whose
lengthis 1 — 2 = —~1.

For commodity one, the minimum shortest path Po: a — b—d— m—p
has length 5, which is strictly less than the corresponding dual variable 7 = 7.
Thus, f; enters to the basis with the updated column

(By'A%)T =[101000-1-1-100000 —1]
and the updated RHS is
wgz = (B;'b)" = [f1 f7 f13 Sb Sd Se Sf g f12 85 S1 Sm Sn So Sp |

ag, = (By')T=[1010100000000100000];

therefore, either f; or f7 leaves. We choose f;!
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[100000000000000]
010000000000000
001000001000000
101100000000000
101010000000000
010001000000000
000000100000000
B;=|001000010000000
000000001000000
001000001100000
000000000010000
100000000001000
010000000000100
010000000000010
(000000000000001

cp, =[546000004000000]
ys =[546/00000-2000000]

Then, the lengths of arcs are ¢, +w, = 140 = 1, V arcs except arc h, whose
length is 1 — 2 = —1. For all the three commodities, the minimum shortest
distances between the source and the sink nodes are greater and equal to the
corresponding dual variables. Therefore, the current solution given below is
optimal.

x5, = (B3'0)T = [ f2 fr f13 5 54 8¢ 55 Sg fi2 Sj S1 Sm Sn So Sp)]
zp, = (By'6)T =[1010000010101001000 0 10]

The optimum solution is depicted in Figure S.16.

e) When the number of variables (columns of A4) is huge, the following ques-
tion is asked: Can one generate column A7 by some oracle that can answer
the question, Does there exist a column with with reduced cost < 0?7 If so,
the oracle returns one. So, the sketch of so called “A Column Generation
Algorithm” is given below:

S1. Solve LP(J):

min chxj : ZAja;j =b, 2> O}
i€d i€d
for some J C I = {1,...,n}.

52. Using dual variables 7 that are optimal for LP(J), ask the oracle if there
exists j ¢ J such that ¢;m47 < 0. If so, add it to J and perform pivot(s)
to solve new LP(J); Go back S1. If not, we have the optimal solution to
LP over all columns.
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Fig. S.16. The optimum solution for our multi-commodity flow instance

In a sense, we partition the optimization problem into two levels: Main /
Subproblem, or Master / Slave, or Superior / Inferior; where the subproblem
has a structure that can be exploited easily. The main problem generates dual
variables and the subproblem generates new primal variables; and the loop
stops when primal-dual conditions are satisfied.

The dual to the above column generation approach gives rise to the sep-
aration problem, where we are about to solve LP with large number of rows
(equations). We first solve over restricted subset of rows (analogous to solving
over subset of columns) and ask oracle if other rows are satisfied. If so, we
are done; if not, we ask the oracle to return a separating hyperplane that
has current rows satisfied in one half space and a violation in the other. This
approach leads to Bender’s decomposition.
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Problems of Chapter 9

9.1 Let o = inf A. Then, Vz € A, o < z & —x < —a. Hence, (—4) in
bounded above. Also, -« is an upper bound of (—A). So,

sup(—A) < —a & —sup(—A4) > a = inf A.

Conversely, let 8 = sup(—A). Then, Vz € 4, —z < 8 & = > —f. Hence,
—f is a lower bound of A. So,

infA > —3 = —sup(—A4).

Thus, inf A = — sup(—A).

9.2
a) If m =0, (b™)V/™ = (B%)1/7 = 11/™ = 1 (see (c)).
(b...b)l/" pln .. . pl/n
—_— = ——

K¥m >0, (b™)Y" = = (pt/™)m™.

m times m times
If m <0, let m' = —m > 0. Then,

) = (™) = (b—vln—")l/n = (bm'l)l/n = (bl/}»)m’ = (bl/r})“m = (b!/m)™.

b) If m = 0, all terms are 1.

L N
Em>0,0")"=~—~—"=p...b---h---b =b"",
n N N~
m m

Similarly, (b™)" = b™".

If m <0, let m" = —m > 0. Then,

(bm)n = (b—m )n = (F%F)n = (brnl')n = ;)r—nl"n— = b—(%nn) =bm".

¢) Let 1/" = z where z > 0. Then, " = 1. Also, 1'/* = 1. Since the positive
nt* root of 1 is unique, we get z = 1.

d) Let b¥/7 = a, and (b¥/")'/9 = 8 where a, 3 > 0.

Then, b = o™ and b'/™ = B89 = b = (B9)" = BI" = "9 = ™. Since the
positive ng*" root of b is unique, we get o = 3, i.e. b*/74 = (b1/7)1/9, Similarly,
bl/nq — (bl/q)l/n'

e) If p = 0, then BT = 0+ = p? = 0B = bPBY. Similarly, if ¢ = 0,
bPT4 = pPh9. So assume p £ 0, g # 0.
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beeb b---bb---b
Casel: p>0,q>0,bPH =~ = S~~~ "~~~ = PP},

pt+gq p q ,
Case2: p<0,q>0,Let p = —p>0. So, ¥PT9 =p=P 14,

{ . _ " 30 _ e _
CaseQa.p’—q:bPﬂ_b_l___W BPBY.
bhe-b
N’
b---b b---b P’ b
Case2b: p' < q=5b" PW—V—\v-/,__.___:W:bpbq_
¢-p q-p b
pl
\C’ase2c:p’>q=>b‘?"+‘1:—_b‘(7’"‘1)=bp,1_q:#_W_b”bq

Case 3: p >0, g <0, similar to Case 2;

\0(1864 p<0 q<0 thenp+q<0$b”+q .b(P—+‘1)_beq_—bpbq
9.3
a) Let a = (b™)V/", B = (b*)1/9 where o, 5 > 0.

So,

b)

(Casel: m=0,=p=0.50,a=0=1.
Case2: m>0,=p>0.a=>b")1/"= " =p™ = b= (a")m.
Similarly, b = (89)% => b™P = o™ = BI™.
Thus, np = gm = o™ = §"P.
Since the positive (np)*" root is unique, o = .
Cased: m<0,=p<0.Let m = —m, p —p=m,p’ > 0.Case 2!
(bm)l/n — (b m )l/n — ( )l/n — 1

= omhyim
~ = Gy = (Y

b, r € Q are well defined.

Let r = &, s=§wheren,q>0.

= ((6™)9) 77 ((BP)™) 77 = (((5™)) M) /(7)) /)9 =
(bm)l/n(bp)l/q = b"h°.

Bt = (bMOtTP) G = (BMIBTP) e = (b™9)Rq (B7P)Re =

c) Let b* € B(r). Then, t € Q, t <r=>r—t>0,r—t € Q. Since b > 1 and
T — t is a nonnegative rational number, we get b7t > 1.

Claim: Let b> 1, s € Q4. b° > 1.
Proof: If s = 0 = b* = b° = 1. Assume s > 0. Then, s = ':13 where p,q > 0.

BP=0)9b>1=a=b0P>1=b=a1>1.

Hence, 1 > b"~t = b"b~¢ = & => b* < b". That is Vb € B(r), b* < b'; i.e.

b" is an upper bound for B(r). Then, sup(B(r)) < b". If r € Q, b" € B(r). So,
b" < sup(B(r)). Thus, b" = sup(B(r)).

Now, we can safely define b* = sup(B(z)), ¥z € R.

d) Fix b" arbitrary in B(z) and fix b* arbitrary in B(y): r,s € Q, 7 < z,s < y.
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Then, r+s€Q,r+s<z+y= 071 =00 € Blx+y) = b"b* < b°Hy.

Keep s fixed. b" < ¥, Vb € B(z). Thus, & is an upper bound for B(z).
Hence, b° = sup(B(z)) < %~ & b° < b2, Similarly, b7 < b5,

Now vary s. Vb® € B(y), b* < bz:y. Thus, b_:;g is an upper bound for

B(y).

bety

bY = sup(B(y)) < = bbY < BT,

bx

Claim: b®bY > b=+Y,

Proof: Suppose not. b*b¥ < b*1¥ for some z,y € R. da € Q C R 3 b*b¥ <
a < b**Y, by Archimedean property. b=, > 0 = a > 0. Since a < b*1Y,
a is NOT an upper bound of B(z + y). So, 3b" € B(z +y) > a > b". Let
t = L’a: >1.Ifn > It’—f—} (see problem 9.4-c)) prln <t = % =a<bhln =
b"=1/™ (true for rationals). Also r —1/n <r < z+y. So,r— L -z < y.
E\UEQBT—%~£<v<y.Then,v<yandr—%—v<m.Thus,b" € B(y)

and b~ %" € B(z). That is, b* < b¥ and

1

PRV BT e bR = bR VY < BEHY < g < b7,
We have a contradiction from the first and the last terms of the above relation.

9.4
a) b —1=(b—1)(b" 1+ 24 4 b+1) > (b—1)(1+---+1) > (b—)n.

b) Let t = b*/™. Apply part a) for t: t* —1 > n(t—1) = b~ 1> n(b?/™ — 1).

o) =l «n= bt ct—1= 241 <t We have 222 > p¥/™ — 1. Thus,

bt/n < .

d) Let t = % > 1. Use part c), b¥/" < t = & = bw+l/n = pwpl/n <y if
n> b=t
b=l

e)y>0=>t=%>1.lfn>%—:—%,usec),bl/"<t:%=>y<lj%:
bw—l/n'

£)

Claim: A is bounded above.

Proof: If not, V8 > 0, 3w € A 3 w > B. In particular, Vn € N, Jw €
A2 w>n.Hence, V/n € N, Jw € A3 b < b <y, ie. Vn e N, b" < y.
If 0 < y €1, we have a Contradiction since " > 1. Assume y > 1, use
{c)Vn > n > %:—%, y'/" < b= y < b Hence, Vn 3 n > yb:—}wehave
b” < y < b™, Contradiction.

Let = sup(A4) = sup{w € R: b* < y}.



Solutions 269

Claim: b® = y.

Proof: If not, b* < y or b* > y. If b < y, by (d) Vn € N, b*tV/" <
y, ¢ + 1/n € A. Contradiction to the upper bound z > x + 1/n. If b* > y,
then Claim: if u < z, u € A. Proof: u < £ = u is nor an upper bound of A.
weAdsu<w=w-u>0=b0""">1= 55 >1=0b">b So,uc A
y<b®* =>use(e)VneN3>y< bV sozx+1/n¢g A Thus, z <z - 1/n
(u < z = u € A), Contradiction.

Hence, b* = y.

g) Let b> 1, y > 0 be fixed. Suppose z # ' 3 b° =y = b*.
Without loss of generality, we may assume that , 2 < 2’ = 2/ —2z > 0 =
b = b* > b*, Contradiction.

9.5
a)Vz2e€F, 22> 0(fz=0=22=0.Ifz > 0= 22 > 0). Assume that
0.1

fy? = 0= 22+ 4% > 0, Contradiction. So z = 0, then

b) Trivial by induction.

9.6 Note that “a ~ b if @ — b is divisible by m” is different from saying “97—;—1’
is an integer”, since the above one is defined for all fixed m € Z including
m = 0, but the latter one is defined for all m # 0.

a) a ~ a, Ya € Z ( take k = 0). Then, ~ is reflexive.
a~b=3k €Z>a-b=mk Then, b—a = m(—k) where —k € Z. Thus,
b ~ a, yielding that ~ is symmetric.
a~bandb~c= Jk,ky €Z>>a-b=km, b—c = kym. Then,
a — ¢ = (k1 + kg)m where k; + ko € Z. Hence, a ~ ¢, meaning that ~ is
transitive.

Thus, ~ is an equivalence relation.

b) Case 1: m = 0. Then, a ~ b < a = b. So, [a] = {a}, and the number of
equivalence classes is oco.
Case 2: m # 0. Then, a ~ b < Jk € Z > a = b+ mk. Hence,

[a] = {a,a +m,a —m,a+2m,a —2m,---},

and the number of distinct equivalence classes is [m].

9.7

a)z~y=z€[0,1] and y € [0,1] = y ~ z (i.e. symmetric).
t~yandy~z=a€l0,1 and y € [0,1] and z € [0,1] = = ~ 2z (i.e.
transitive).

If z ¢ [0,1], then 2 ~ & does not hold. For reflexibility we want = ~ z to hold
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Vz € R. Hence, ~ is not reflexive.

b) The statement
r~y=>y~zx, x~yand y~x =z~ x; therefore, z ~z, Vz € X

starts with the following assumption: Vo € X, 3y € X 2z ~ y. If ~ is
symmetric and transitive and also has this additional property, then it is nec-
essarily reflexive. But if it does not have this property, then it is not reflexive.

9.8

a) We will make the proof by induction on n. If n = 1, X = X} is countable by
hypothesis. Assume that the proposition is true for n = k, i.e. X3 X --- x X
is countable. We will prove the proposition for n = k + 1, i.e. prove that
X = Xy X+« x Xp X Xgqy is countable. Let ¥ = X; x --- x Xj. Then,
X =Y X Xg41 and Y is countable by the induction hypothesis. Then, the
elements of Y and Xy can be listed as sequences Y = {y1,92,...}, Xk41 =
{r1,z2,...}. Now, for X =Y X Xj,1, we use Cantor’s counting scheme and
see that X is countable.

b) Let X be countable. Then, X = {z1,zs,...}. Let A = {2, 23,...}. Then, A
is a proper subset of X and f : X — A defined by f(z,,) = zpnt1, n=1,2,...
is one-to-one and onto. Thus, every countable set is numerically equivalent to
a proper subset of itself.

¢)If f: X — Y isonto, then 3g: Y — X 3 fog = idy. Moreover, g is
one-to-one. Let A = ¢g(Y), then A C X and g: Y + A is one-to-one and onto.
So, A~Y.Since A C X and X is countable, A is either finite or countable.
To see that A cannot be uncountable, we express X = {z,z2,...}. If Ais not
finite, then A = {x;,,z4,,...}, where i,,’s are positive integers and @, # inm
for n # m. Now, we define f : N+— A by f(n) = x;,. Then, f is one-to-one
and onto. If A is finite, A ~ Y = Y is finite; if A is countable, A~Y =Y
is countable. Thus, Y is at most countable.
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Problems of Chapter 10

10.1 Fix z,y € R* arbitrary.

da(w,y) = [Y_(@: —v:)1"%, di(z,y) lez vil,

doo(xay) = mlax{|:zzz - y‘it} = 1:17.7' - yj!'

ledoo:
k
doo(m’y) = Ixj _yj’ < Z|xz '“yil = dl(way) = A=1
=1
doo(x’y) = |$] _yjl 2 |xi '—yi" Vi = 1’27'”7]{:
k
= kdoo(m’y) = kle _yjl 2 Zlmz _yi[ = B =k.
i=1
dy ~ doo:

k
[dOO(xv y)]z = (112_7' - yj)2 < Z(wz - yi)2 = doo(x’y) < dg(:L‘, y) =>A=1

[doo(z,9)]2 = (25 — y;)? > |2 —wil, Vi =1,2,...,k
= kldoo(z,y)* 2 [da(2,9)]* = B = VEk.
di ~da: dy ~do and dy ~ doo = dy ~ da.
10.2

Consider the discrete metric d(p, ¢) = {0’ ifp =g,

r,ifp#q on X

B,-(p) = {p}’ Br[p] =X, m = {p} # X.

10.3

(=)
Let @ # A G X. A is both open and closed. Let B = A°, B is also both
open and closed AUB = X.If Ais closed then B is open, we have AN B =
AN B ={. If B is closed then A is open, we have BN A = AN B = §. Thus
X is disconnected.

(=) B B
X is disconnected. 3A #0,3IB#0 5 X = AUBand (ANB)N(ANB) =
0= ANB=0.Thus A=B#0=>AG X.
AUB=X=AUB=X, ANB=0= A= (B)%ie Ais open.
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AUB=X=AUB=X, AnB=0= B=(A)°ie. B is open.
A and B are separated and AUB = X = A = B¢, so A is closed. Similarly,
B is closed.

10.4
Let us place the origin at the lower left corner of the PCB. Then,
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Nearest neighbor (in I; metric):
A—-»C—-»B—DDo F)» E—~F—H

=IlorJ)»J—»K—G—L— A
Initial tour length is 54. See Figure S.17.
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Fig. S.17. Nearest neighbor (in I; metric): initial solution
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Delete (E, F) & (L, A): gain=18-12 Improved Tour: Length is 48

Fig. S.18. Nearest neighbor (in {; metric): first improvement

The gain values are tabulated below. See Figure S.18.

GAIN|(B,D) (D,E) (E,F) (F,H) (H,I) (1,J) (J,K) (K,G) (G,L) (L, A)
4,0)] -2 -8 -6 -8 -8 —-10 -12 -8 —6

(C,B) -4 -2 -4 -8 -8 -12 -14 -4 2
(B, D) 2 -2 -8 -12 -14 -14 -4 0
(D, E) -4 -8 -14 -16 -16 -4 0
(E,F) -2 -8 -10 -10 -4 6
(F,H) -4 -6 -6 2 0
(H,T) 0o -2 2 6
1,J) —2 4 0
(J,K) 2 4
(K,G) 6

The maximum gain is 6, due to the deletion of (F, F') and (L, A). The situation
after this step is illustrated in Figure S.19.
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Fig. S.19. Nearest neighbor (in l; metric): second improvement

b) Use I3 norm:

K

J

A B C¢C D EFE F G H I

=CEE -EEEEE -5
<EEEEEE 25 - -
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58 EEESE el
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B2 oosiEEEEEs
33 < 82K 0 < EEE
» <9 3E NSEEEEE
- ~SEEEEEEE . 2

la

TROAREOE~~ XK

Nearest neighbor (in I metric):

A~-C—»B—D—FEF~F—HwJ

—~I—»GGorK)—w K—L— A

Initial tour length is 38.3399. See Figure S.20.
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Fig. S.20. Nearest neighbor (in l; metric): initial solution

The gain values are tabulated below. See Figure S.21 for the improvement.

GAIN\(B,D) (D,E) (E,F) (F,H) (H,I) (I,J) (JJK) (K,G)(G,L) (L,A)
(A,C)| —3.35 -7.37 —4.58 —5.59 —8.24 —-945 -6.90 -7.59 -9.19
(C,B) -3.96 -2.70 —-3.46 -7.01 -876 -—-6.93 -—-7.62 —-7.38 0.63
(B, D) —1.04 —2.65 —-6.74 —-9.82 —-9.06 —-9.61 —-7.38 —1.41
(D, E) —2.78 —6.28 —10.28 —10.37 —11.12 —-7.19 —1.98
(E', F) -1.74 -5.43 -5.48 -7.12 =5.15 2.92
(F, H) -3.64 —4.13 —-4.07 —1.20 0.00
(H,1) ~170 —1.25 —0.29 1.94
1,7) 127 021 1.21
(J,K) ~162 175
(K,G) —2.45
:_}Q{? 6 -
Y
‘f Q
; / /,/ N‘J/ \;a', -
W TN T
N ;\/‘h\t P
;;{ £ ¥

Delete (E,F) & (L, A): gain=2.9196

Improved Tour: Length is 35.42026

Fig. S.21. Nearest neighbor (in 3 metric): improvement
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¢) Use I norm:

W ABCDEFGHIJKL
A031563556788
B|3022335567838
Cl120452445677
D524012645677
Ei63510373556¢6
F|332230423455
G|554674052337
H|554432503243
I665553230125
JI776654321024
K|887765342206
L8887 765735460

Nearest neighbor (in /., metric):
A»C—»B—=D—E—-F—H—J

I~ GGorK)» K—L— A
Initial tour length is 33. See Figure S.22.

Fig. S.22. Nearest neighbor (in /. metric): initial solution
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The gain values are tabulated below. See Figure S.23 for the improvement.

GAIN|(B,D) (D,E) (E,F) (F\H) (H,I) (1,J) (J.K) (K,G) (G, L) (L, A)
(4,0) -4 -8 -4 —4 -8 -10 -7 -8 -8
(C, B) 4 -3 -3 -7 -9 -6 -7 -T 0
(B, D) 0 -3 -7 -9 -8 -7 -7 -3
(D, E) 2 6 -9 -9 -8 -6 -4
(E, F) 2 4 4 6 -2 2
(F, H) 4 -6 -6 2 0
(H,1) 2 -2 0 0
{,J) ~1 0 -1
(J,K) -1 0
(K, G) 4

_'Ji!_ ; {\

/ e

B ©- »'[ i'-/?' ‘\‘3\ ©
J N\ o o |
| Ry i
N R ) o 4!

i 1 | -~ 1 i |

Delete (E, F) & (L, A): gain=2

Improved Tour: Length is 31

Fig. S.23. Nearest neighbor (in /o metric): improvement

d)

Case 1: we need to complete the tour for the consecutive PCB’s:

Current situation (/; norm): Tour duration is 44 time units.
Proposition 1 (I3 norm): Tour duration is 35.42026 time units.
Proposition 2 (lo, norm): Tour duration is 31 time units.

Proposition 1 is economically feasible if (44 — 35.42026)NC,, > C;. Simi-
larly, proposition 2 is economically feasible if (44 — 31)NC, > Cs.

Case 2: we may delete the most costly connection:

For the odd numbered PCBs among 1,..., N;
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linom: L—J—K—»G—»I—-H—F—A—Cw— B~ D~ E with
length 38;

lpnoorm: K G—I—wJ—H—F—» A~ Cw+— B D+— Ew L with
length 29.42026;

lownorm: K—G@—=I—~J—H—-wF—~A—-»C—B— D~ E— L with
length 25.

For the even numbered PCBs, we reverse the order as

lynoom: E»D—»B—C—A—F—H—-I—G@-» K- J- L;
lgnorm: L E—»D—»B—C—»A—»F—H—J—w1— G~ K;
lonorm: L E—D—»B—~C— A F—>H—J-»I—G— K.

Current situation (I; norm): Path duration is 38 time units.
Proposition 1 (I3 norm): Path duration is 29.42026 time units.
Proposition 2 (I, norm): Path duration is 25 time units.

Proposition 1 is economically feasible if (38 — 29.42026)NC, > C;. Simi-
larly, proposition 2 is economically feasible if (38 — 25)NC, > C>.

If 8.57974 < ﬁcé; and 13 < FCCZZ’ then we keep the existing robot arm con-

figuration. Otherwise, we select proposition 1 if 0.65998 > %; select proposi-
tion 2 if 0.65998 < &&.
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Problems of Chapter 11

11.1
a) (=): Let ¢ > 0 and zg be given. Let b = f(x¢) — €. Then, by assumption,
the set B = {x € X : f(z) > f(zo) — ¢} is open. Moreover, zp € B since
f(zo) > f(zo) —€. So, 36 > 03 Bs(zo) C B; that is, z € Bs(zo) = z € B>
f(@) > f(zo) — €.

(«<): Let b € R be given. We will show that theset A= {z € X : f(z) > b}
is open. If A = (), then A is open. Assume A # (), show that every point of A
is an interior point. Let g € A. Then, f(xo) > b. Let € = f(xp) — b. Then,
by our assumption, 36 > 03 z € Bs(zg) = f(z) > f(zo) —e=b=> 2z € A
Hence, Bs(zo) C A, that is zg € intA.

b) Similar as above.

11.2 f is continuous and X is compact = f(X) = B is compact in Y.
q € f(X) = B = B since B is compact, therefore closed. So, by ¢ € B = f(X),
we have 3p € X 3 ¢q = f(p). Next, we will show that p, = p. f: X = B
is continuous, one-to-one and onto. Since X is compact, f~! : B — X is
continuous. Moreover, f(p,),q € B and f(p,) — ¢. Then,

FHfen) 7N
————— o e —,

Dn P

11.3 Let the wire be the circle C, = {(z,y) : * + 3> =r?}. Fora = (z,y) €
C,, let T(a) be the temperature at « and let f : C. ~ R be such that
f(a) = T(a) = T(—c). Note that @ and —a are diametrically opposite points.
Then, T', and hence, f are continuous.
Claim: Ja € C, 3 f(a) = 0.
Proof: Assume not, Vo € C,, T(a) # T(—a).Define A = {a € C, : f(a) > 0},
B={a€eC,: f(a) <0}. Then, A and B are both open in C,. Why? (since
they are the inverse images of the open sets (0, +occ) and (—00,0) under the
continuous function f.) AN B # ), because of the heated wire; AU B = C,,
since we assumed Yo € C,, T(a) # T(—«); moreover, A # @, there is at
least one point (the point where heat is applied). Suppose not, then C, = B,
Va € Cp, f(a) <0 T(a) < T(—a). But, then T'(~a) < T{—(~a)) = T(a),
Contradiction. Hence A # {. Similarly, with the same argument, B # @, think
of the opposite point to where heat is applied. So, A is nonempty, proper
(A° = B # () subset of C, which is both open and closed (A° is open). Thus,
C, is disconnected. Contradiction.

Another way of proving the statement is the following: Let z € A and
y € B, and we know that f is continuous as well as f(z) > 0 > f(y). Apply
the intermediate value theorem (Corollary 11.4.2) to conclude that 3o € C,. 3

fle) =0.
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Problems of Chapter 12

12.1 Use the Mean Value Theorem: h : R +- R is nondecreasing if h'{x) > 0.

y<z= hiz)-hly) =" (r—y)>0= h(z) > hly).

g () = S iy — p(z) — f(0) = fl)r < af(z), 0<c< .

So g'(z) > 0 Vz :> g is nondecreasing.

12.2 Use the Mean Value Theorem: f;(y) — fi(z) = fl(c:)ly—z). ' =0=
fI =10, ¥i; thus f;(y) = fi(z) which means f is constant.

12.3 5£(0,0) = cos(0+2-0) =1, §L(0, 0)_2c05(0+2 0) = 2;

2, N2 f
55£(0,0) = 0, 5£(0,0) = 0, £(0,0) = 0 and ££(0,0) = 0.
flx,y) =2+ 2y + Ra(x,9)(0,0),

where IR r)]jz)(() 0) — 0 as (z,y) — (0,0).
12.4

a) Let us take the first order Taylor’s approximation for any nonzero direction
h,
R] (l'*, h)
1
1Al

— 0 as h — 6.

flx* +h) = fla*) + VI@)Th + Ri(z*, h),

Since R]il(/ElI DI FhTV2f(€)h, where € = 2" + ah, 0 < a <1, we say that

flx* +h) = fz*)+ V) h

Since z* is a local minimizer, f(z*) < f(z* 4+ h), Yh small. Therefore, for
all feasible directions Vf(z*)Th > 0, where the left hand side is known as
the directional derivative of the function. Since we have an unconstrained
minimization problem, all directions h (and so are inverse directions —h) are
feasible,

Vi) Th>0> V) Th =z (~h) > 0,Vh 0.
Thus, we must have V f(z*) = 0.

b) Let us take the second order Taylor’s approximation for any nonzero (but
small in magnitude) direction A,

fle* 4+ h) =~ f(z*) + Via)Th+ %h,Tv%f(:z;*)h.

Since Vf(z*) = 0, we have
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1
f(z* +h)~ f(z*) + §hTV2f($*)h-
Suppose that V2 f(z*) is not positive semi-definite. Then,
Jv e R 5 vTV2f(2*)v < 0;

even for the remainder term, vTV2f(£)v < 0 if ||z* — £|| is small enough. If
we take h as being along v, we should have f(z*) > f(z* + h), Contradiction
to the local minimality of f(z*). Thus, V?f(z*) is positive semi-definite.

If we combine the first order necessary condition and the second order
necessary condition after deleting the term -semi-, we will arrive at the suffi-
ciency condition for z* being the strict local minimizer.

¢) At every iteration, we will approximate f(z) by a quadratic function Q(p)
using the first three terms of its Taylor series about the point zg_j:

flzh-1+p) =~ flzr-1) + Vf(zr_1)Tp+ %PTV2f($k—1);D = Q(p);

and we will minimize () as a function of p, then we will finally set z; =

Tk—1 + Dk-
Let us take the derivative of @:
©_v v? Tpa v
e f(@r-1) + Vf(zk-1)" p = VF(Tk-1 + D).

Since we expect 8 = V f(zx_1 + pr) & V(zr_1) + V2 f(zr-1)"pr,
V(1) ok = =V f(zr-1) © pr = = [V f(25-1)] 7'V (@h-1).

This method of finding a root of a function is known as Newton’s method,
which has a quadratic rate of convergence except in some degenerate cases.
Newton’s method for finding Vf(z) = € is simply to iterate as x5 = zg_1 —
[V2f(zk-1)] 7'V f(Zk-1)-

d) See Figure S.24 for the plot of the bivariate function, f(zi,z) = z} +
273 + 24x% + x4 + 1222, in the question.

vi(l=]) = 423 + 622 + 487,
z2|) 4x3 + 24z, ’

ver (%)) = 1222 + 122; +48 0

T2 0 1222 +24 |-
1 11\ 58] oar/[1]\ _[72 0

R R ) AR ([ MR

e [ % 1811 -B| 8]
W= 11 w128 [1-2 L
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Fig. S.24. Plot of f(z1,22) = 1 + 22} + 242} + 25 + 1223

vf 0.194444 1\ _ |9.589592
0.222222 | ) = | 5.377229 |’

V2§ 0.194444 |\ _ |50.78704 0
0.222222 | | — 0 24.59259
Then,

0.194444 5757 9.589592 0.005625
Tpoy = — | 50.78704 = .
>~ | 0.222222 sezss | | 5377229 0.003570

vf 0.005625 |\ _ 10.270179
0.003570 | / ~ | 0.085676 |’

V2f 0.005625 |\ | 48.06788 0
0.003570 | ) — 0 24.00015
Then,

oo — 0:005625] [ i 0.270179] _ [0.00000398
®) = | 0.003570 sroasts | 10.085676 | — | 0.00000002 | °

vf 0.00000398 |\ _ | 0.000191000
0.00000002 | / ~ | 0.000000364 |’
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2 0.00000398 48.00005 0
vef = .
0.00000002 0 24

Then,

_ [0.00000398] [ soboss 0.0001910000
¥4 = | 0.00000002 L | | 0.000000364

—12 —-11
Finally, V f ([1.98 ><010 D _ [9.5 ><010

1.98 x 1012
0 )

, which is close to 6.

Thus, z* = [g] = Vf(z*) =0, V2f(z*) = [408 204]. Since VZf(z*) is
diagonal with positive entries, it is positive definite. Therefore, z* = 0 is a

local minimizer with f(z*) = 0.
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Problems of Chapter 13

13.1
Let there be given two series

Aziuk andeivk
0 0

with nonnegative terms.

(a) If up < vg, Vk, the convergence of series B implies the convergence of
series A and the divergence of series A implies the divergence of series B.
Suppose that B is convergent. Let S = Y o i be finite.

iuksivkgs, n=01,...
0 0

thus partial sum of A is bounded, hence it is convergent.
Suppose that A is divergent. Thus its n*® partial sum increases indefinitely

together with n.
n n
Zuk SZ’U};, n:O,l,...
0 0

Thus, nt* partial sum of B increases indefinitely together with n, too.
That is, B is divergent.

(b) If img_ 0o vk =qa >0, then series A and B are simultaneously convergent
and divergent.
limg o0 %f =qa >0, vy >0, Vk. Then,

Ye > 0dN > a—e<g£<a+e,\7’k>N.
k

= vp{a —€) < up < vg(a +¢€). If B is convergent, so is Y o vg(a — €).
Thus, A is convergent by (a). If B is divergent, so is 3_o° vg(a — €). Thus,
A is divergent by (a).

13.2
k

a) X¢ g

It is convergent for z = 0. Let us assume that z > 0.

ZhH
et DL T g a5k — 00
Uk zk k+1
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Thus, it is convergent.
b) 1 &, where a > 0:

It is convergent for z = 0. Let us assume that 0 <z < 1.

zlc-§—1

ety _ (RtDe k a—>xask—+00-
Uk %2_ k+1

"Z:lﬁzask%oo.lf

Thus, it is convergent. If z > 1, it is divergent since
z =1, we have 37" k™%, a > 0. Then,

lim 24l - By

nsoo wu,  \k+1 '
The series is convergent when « > 1 and divergent when « < 1. In the special
case where a = 1, it is (f), the harmonic series which is divergent.

&) T (et - 1):

er —1r + as k — oo. Thus, it is divergent (see part f) below).

d) ¥ In(1+3):

In (1+ £) ~ # as k — oo. Thus, it is divergent (see part f) below).

e) 1 ¢k*+VE, where ¢ > 0:

ur = ¢ +t*"° 5 g as k — oo. Thus, it is convergent for 0 < ¢ < 1 and
divergent for ¢ > 1. If ¢ = 1, then ux = 1 and >_ 1 is divergent.
f) S50 1.

1 n’

== =———1lask — o0

1
Uktl _ FFI k
Uk -,15 k+1

The Harmonic series is divergent!

13.3
a) For each object i = 1,...,n, either it is selected or not; that is z; € S; =

{0,1}. Then,

n
g9(z) = [[=° +2") = (1 + )",
i=1
Without loss of generality, we may assume that r = Y z; objects are selected.
We know from Problem 1.3.a) that the number of distinct ways of selecting
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r < n objects out of n objects is ( ) Thus, a, = (’:) We cannot choose more
than n objects; that is a, = 0, » > n. Therefore,

n
— n __ n T
glz)=(1+z)" =) <r>:c .
r=0
Let us prove the power expansion as a corollary to the Binomial theorem.

m+w"=ij)ﬂw%

=0

The Binomial theorem states that (1+2)" = 377 (7)2*. Let 2 = Z. Then,

(3) -2 () G - (59 -52-2 (0 (6)

=0
- n
PN n_ i n—i'
@+y)" =) @)my

i=0

Let us prove the multinomial theorem as a corollary to the Binomial the-
orem by induction on k.

S IlD S PR I* S

i],...,ik€Z+
i+ tie=n

Let | = 2 and =, = z, x5 = y. We use the power expansion to state that
the induction base (k = ! = 2) is true. Let use assume as induction hypothesis

that
[N n: n il. i
(1 + - -x) Z (il’”.’il>x1 -
11ye.yty € 24
4+ =n
holds.

($1+"'+$1+$1+1)n=

2 : n i ti41

) T (Zla"'azlazl-f-l) 1 l +1
1y ey i, 041 € Z+

ittt =n

needs to be shown.
Let £ = zy +--- 4+ z; and y = ;41 in the power expansion.
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n - n i,.n—1i
(z+y)" = E (.)(zl+-~+x1)ml+1

n .
_ n (] i i m—i
—Z . Z . N SRR A A4
5 1 2y .58

1y-00, 8 € Ly

W+ tig=1

Z n i1 il Z'H—l
, S (7'17"'711,“4-1) ! AR
i1y 8,041 € Zy

n+-+utia=n

b) For each object i = 1,...,n, either it is not selected or selected once, twice,
thrice, and so on; that is z; € S; = Z. Then,

g@) = [[@ +a' +a* +--) = 1 +zta®+- ),

i=1

Without loss of generality, we may assume that r = > z; objects are selected.
We know from 14.4 that the number of distinct ways of selecting r objects
out of n objects with replacement is ("1"7') = (*"!*"). Thus, a, = ("7}77).
Therefore,

g(w)=(1+x+x2+-~~)":g)(n_:J’T)xr.

Tyt axo+xs+a4=13, 2;=1,2,3,4,5,6 Vi =>
giz)=(z+22+ 23+t + 28 + 2% =2 + o+ 22 + 2 + 2* + 25)*
We are interested in the coefficient of z!® of g(z), which is the coefficient of

2% of h(z) = (1 +z + 22 + 2% + 2t + 2°)%.

pz)=1+z+z*+23+ 24 + ..
zp(z) = s+t +ad 4zt +- -
z) =

(1 - ) 1;

1 =p(x) =
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pla)=1+z+a+28+at+ a5+ 2%+ +-

z%p(z) = 28’4
Similarly, 20
(1-2%p(z)= 1+z+22+a3+a?+2° = 1__2
Then,

hz) =1 -z p@)* =1 -8 +z+ 22 +2° + 2 + - ) = k(2)l(z);

by the Binomial theorem

= () () Q- ()

and by the multiset problem

1) = (3) + (1)e+ (5)=2+ (5)a+ ()a +-+ (5)a" -

The ninth convolution of k(z)l(z) is the answer:

()(2)- () -sm-s

Therefore, the probability is
. 140
P(having a sum of 13) = = 0.1080247
Gp — Bapn_1+6a,_0=0, Vn=2,3,4,... &
AnT™ — Bap_12" + 6ap_9x™ =0, Vn =2,3,4,...
Summing the above equation for all n, we get
oo o< [e o)
Z anx” —5 Z an_12" + 6 Z p_oz™ =10
n=2 n=2 n=2
[9(2) — a1z — ao] - 5z[g(z) ~ ao] + 62%[g(z)] = 0
Using the boundary conditions (ag = 2 and a; = 5) we have

(x)_ao+a1x—5aoa:_ 2 -5z 1 n 1
T =62 “pr+1  (@Bz-D(2z-1) 1-2z 1-3z

gy =(1+2z+42® +- + 22 + - )+ (1 +3z+ 922 + - + 32 +-.+)
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= a, =2" + 3"

13.4
a) The left hand side of the following constraint represents the complementary
survival probability of a threat,

1- H(l bt pji)zji 2 d,‘, V4.
J

Then,

1-4d; >H1—— )% & (log(1l — d; ZClog - pj)]Tji,¥¢ > 0.
j

With a suitable choice of ¢, and let —b; = (log(1 — d;), —a;; = (log(1 — pji),

we will have
Zajixji 2 bi, Yi.
J
Let aj; = |aj;] and B; = |b;] (with a suitable choice of ¢ > 0), yielding

Zajiwji > By, Vi
J

b) The first three objective functions are equivalent to each other, so are the
last two. The flaw lies in the equivalence of the third and the fourth objective
functions: max §;, # min(1 — f;,). In particular,

maxy; + y2 +ys = min{l —y1) + (1 — y2) + (1 — y3)
is true. However,
maxy;yoys = min(l —y1) (1 —y2) (1 —y3) =1 =+ — y1%203

is false because of the cross terms.
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Problems of Chapter 14

14.1

y“(t) — y(t) = e** & s°n(s) — 25 —n(s) = s_i—Q ens)(s?-1) = 57 2s.

1 2s
)= Gy T e o1

1. Ifn(s) = 25 + ;‘% + 551 = GopGrony - Solve for A, B, C:

A+B+C=0 9
3B+C =0 :>A—EB:

—-A+2B-2C =1

Thus, 77( ) 6(3 2) + 6(3+1) 6(.93—1)'
2. Ifn(s) = + 55 = TG = s Solve for E, F:
E+F=2

E_F:0}=>E:1,F:1.

Thus, 7(s) = 25 + s-lu'

Then, we have

1 7 1
)= sy teern T2

14.2

y(k+1) = y(k)+2e* & 2n(z)—2 = n(z)

(2)(z—1) =

—z—l 2(z—1)(z %

If 7](2) (2——1‘)-(7:;3—) = zfl then A= Ee and B = ———T

Therefore,

n(z)zzi1+z[1ie(zil>+e-2-1<Z16>]

14.3
— = —0.3z — 0.1y, z(0) = 50, y(0) = 100.

dy _
dt

i __gad 1d—y:>dy —0.06y+0.1%

= —0.3z - 01y=>dt2——. 7 . prD gt

= 0 (X)
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dt?
since %%|t=0 = —0.3(50) — 0.1(100) = —25. Moreover,

77 [ﬁ] = s°n(s) — sy(0) — y (0) = s>n(s) — 100s + 25,

dy

0| 2] = 16~ 400) = sn(5) - 100

OF) : [s*n(s) — 100s + 25] — 0.067(s) + 0.1[sn(s) — 100] = 0
& n(s)(s* - 0.06 + 0.1s) = 1005 — 25 + 10 <
100s — 15 A B
") = GF03)(5=02) 5503 T 5-02
A+B=100,-024+03B=-15=>A=90, B=10=

90 10

) _ — g).—0-3t 0.2t
OF) : n(s) = .(5*_0.3-4—3_0.2 = y(t) = 90e + 10e
4(0) 100.0000
y(1) 78.88767
(@) | = | 64.31129
y(3) 54.81246
y(4) 49.36289

14.4
Let z(n) = F,41, and the initial conditions are z(0) = 1, z(1) = 1.

zn+l)=z(n)+z(n—-1),n=2,3,... (¥)

nfz(n +1)] = 2n(2) — 22(0) = 2n(2) - z and lz(n ~ 1)] = 1n(2).

(¥): 2(n+ 1) =z(n)+x(n-1) & 2n(z) — 2 - n(2) - -:;n(Z) =0

5+v5 1 5-5 1
(¥): n(z) = 10 (1___@>+ 10 (1_1+ 5)

1—
2z

Since Z271(;2¢) = a™y(n), we have
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o) = V5 (1475 R Rl R ERV-A N
T10 2 10 2 T T
Thus,
n-1 n—1
5+v5 [1+V5 5-v5 [1++5
F,=z(n-1)= 0 ( 5 ) + 10 5 ,n=12...
Finally,

Fio0 = 2(99) = 354224 848 179 261 915 075
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rational, 122, 124, 130, 133, 143, 267
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function
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differentiable, 169-170, 173
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218
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hull, 16
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bfs, 105, 246, 250
bounded simplex method, 116,
253-255
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simplex tableau, 107, 115, 248
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basis, 39

block diagonal, 58

column space, 26, 28, 44, 211-215

condition number, 82-86, 234-240

determinant, 51

diagonal, 21, 22, 43, 55, 56, 65, 226,
227

elementary, 21, 110

hermitian, 64

Hessenberg, 88

Hessian, 73, 231, 281

idempotent, 38

identity, 52

incidence, 28

Jordan form, 65, 226

left null space, 27, 28, 44, 211-215

minor, 53

multiplication, 17

nonsingular, 74

norm, 84-86, 234-240

normal, 65

null space, 26, 28, 44, 54, 57, 211-215

orthogonal, 39, 89, 234

permutation, 24

pivot, 21, 22, 53, 74, 75, 231

powers, 60, 227

projection, 38

pseudo inverse, 42, 47

rank, 25, 26, 38, 44, 75

resolvent, 195

row space, 25, 28, 44, 211-215

singular, 75

square, 51, 81

symmetric, 37, 38, 73-75, 81-84, 230

trace, 54

trapezoidal, 24

triangular, 21, 22, 41, 53, 54

tridiagonal, 88

unitary, 64

metric

dy, 138, 139, 152, 153, 271-274, 277

da, 138, 141, 149, 152, 153, 271,
274-275, 277

doo, 138, 140, 152, 153, 271, 276-277

Index 295

closed ball, 139, 152, 271

discrete, 137, 139, 141, 271

open, 149

open ball, 139, 143, 152, 271

space, 137, 157-166, 279
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multi-commodity network flow problem,

116, 257-264
multi-set problem, 209, 287, 288
multinomial theorem, 286

natural, 129
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Newton’s method, 281

norm, 33-35, 40, 82-89, 137
1, 34, 138, 153, 272-274, 277
l2, 34, 138, 153, 274275, 277
I, 34, 138, 153, 276-277
matrix, 84-86, 234-240

number systems, 121-134, 266-270

octahedron, 100, 241

orthogonality, 35-47
complement, 35
Gram-Schmidt, 40, 87
orthonormality, 39
vector space, 35

pivot, 21, 22, 53, 108, 110
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basic, 105, 246, 250
bfs, 105, 246, 250
boundary, 71, 77, 94, 231
extreme, 93, 94, 98-100, 105, 115,
246, 250
interior, 94, 140
isolated, 142, 158, 165, 170
limit, 142, 143, 150, 158, 179
maximum, 71-73, 77, 233
minimum, 71-73, 76, 77, 233
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saddle, 71, 73
stationary, 73, 77, 231
polyhedron, 96
polynomial, 18, 20, 29, 170, 212
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derivative, 20, 29, 213
integral, 29, 214
minimal, 58
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polytope, 96, 99-100, 115, 241-244, 246
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proof, 4
proof making, 5-9, 206-209
combinatorial method, 207-209
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contraposition, 8
forward-backward method, 5, 207-208
induction, 7, 98, 225, 227, 269, 270,
286
selection, 6
specialization, 6
theorem of alternatives, 9, 113-115
uniqueness, 7
proposition, 3
pyramid, 100, 242

QR algorithm, 88, 89, 234-236, 238
quadratic form, 76, 281
quantifiers, 4

rational, 122, 130, 133, 267
ray, 115, 251, 252
Rayleigh, 76-77, 84, 230
regression, 47, 218
relation
equivalence, 129, 134, 269
order, 121, 134, 269
remark, 4

Schwartz Inequality, 35, 128
scientific inquiry, 1
series, 175-188, 284289
convergent, 165, 175-180, 186,
284-285
divergent, 176-180, 186, 284-285
Fourier, 184
partial sum, 175
power, 179-188, 285-289
remainder, 176
tests, 177-179, 186, 284-285
trigonometric, 185
set
at most countable, 129-133, 165
bounded, 121, 143, 150, 161
Cantor, 150-151

closed, 142, 144-148, 150, 153, 158,
161, 271

closed ball, 139, 152, 271

closure, 143, 144, 152, 271

compact, 147-150, 159-161, 166, 279

connected, 151-153, 161-164, 166,
271, 279

continuity, 157-166, 279

convex, 93-102, 173

countable, 129-134, 150, 270

dense, 143

finite, 129-133

glb, 122, 133, 266

infimum, 122, 133, 159, 266

interior, 141, 145

k-cell, 149

lub, 122, 133, 266

neighborhood, 142, 143

nested intervals, 148

open, 141, 143-146, 153, 158, 173,
271

open ball, 139, 143, 152, 271

ordered, 121-123

perfect, 143, 150

seperated, 151, 153, 271

supremum, 122, 133, 145, 159, 266

uncountable, 129-133

span, 16, 24, 95
Stirling, 186

Taylor
approximation, 74, 172, 173, 180,
280-281
theorem, 172
tetrahedron, 100, 243
theorem, 4
TSP, 33, 153, 272278

variable
basic, 25, 44, 105
dependent, 25, 105
entering, 105, 116, 253
Bland’s rule, 116, 253
Dantzig’s rule, 105
free, 25
independent, 25, 105
leaving, 105, 116, 254
nonbasic, 25, 44, 105, 253
vector space, 13
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