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Preface 

The aim of this book is to provide an overview of mathematical concepts 
and their relationships not only for graduate students in the fields of Opera­
tions Research, Management Science and Industrial Engineering but also for 
practitioners and academicians who seek to refresh their mathematical skills. 

The contents, which could broadly be divided into two as linear algebra 
and real analysis, may also be more specifically categorized as linear algebra, 
convex analysis, linear programming, real and functional analysis. The book 
has been designed to include fourteen chapters so that it might assist a 14-
week graduate course, one chapter to be covered each week. 

The introductory chapter aims to introduce or review the relationship 
between Operations Research and mathematics, to offer a view of mathe­
matics as a language and to expose the reader to the art of proof-making. 
The chapters in Part 1, linear algebra, aim to provide input on preliminary 
linear algebra, orthogonality, eigen values and vectors, positive definiteness, 
condition numbers, convex sets and functions, linear programming and du­
ality theory. The chapters in Part 2, real analysis, aim to raise awareness of 
number systems, basic topology, continuity, differentiation, power series and 
special functions, and Laplace and z-transforms. 

The book has been written with an approach that aims to create a snowball 
effect. To this end, each chapter has been designed so that it adds to what the 
reader has gained insight into in previous chapters, and thus leads the reader 
to the broader picture while helping establish connections between concepts. 

The chapters have been designed in a reference book style to offer a con­
cise review of related mathematical concepts embedded in small examples. 
The remarks in each section aim to set and establish the relationship between 
concepts, to highlight the importance of previously discussed ones or those 
currently under discussion, and to occasionally help relate the concepts under 
scrutiny to Operations Research and engineering applications. The problems 
at the end of each chapter have been designed not merely as simple exercises 
requiring little time and effort for solving but rather as in-depth problem 
solving tasks requiring thorough mastery of almost all of the concepts pro-
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vided within that chapter. Various Operations Research applications from de­
terministic (continuous, discrete, static, dynamic) modeling, combinatorics, 
regression, optimization, graph theory, solution of equation systems as well 
as geometric and conceptual visualization of abstract mathematical concepts 
have been included. 

As opposed to supplying the readers with a reference list or bibliography 
at the end of the book, active web resources have been provided at the end 
of each chapter. The rationale behind this is that despite the volatility of 
Internet sources, which has recently proven to be less so with the necessary 
solid maintenance being ensured, the availability of web references will enable 
the ambitious reader to access materials for further study without delay at 
the end of each chapter. It will also enable the author to keep this list of web 
materials updated to exclude those that can no longer be accessed and to 
include new ones after screening relevant web sites periodically. 

I would like to acknowledge all those who have contributed to the comple­
tion and publication of this book. Firstly, I would like to extend my gratitude 
to Prof. Fred Hillier for agreeing to add this book to his series. I am also 
indebted to Gary Folven, Senior Editor at Springer, for his speedy processing 
and encouragement. 

I owe a great deal to my professors at Bilkent University, Mefharet Ko-
catepe, Erol Sezer and my Ph.D. advisor Mustafa Akgiil, for their contri­
butions to my development. Without their impact, this book could never 
have materialized. I would also like to extend my heartfelt thanks to Prof. 
Caglar Giiven and Prof. Halim Dogrusoz from Middle East Technical Univer­
sity for the insight that they provided as regards OR methodology, to Prof. 
Murat Koksalan for his encouragement and guidance, and to Prof. Nur Evin 
Ozdemirel for her mentoring and friendship. 

The contributions of my graduate students over the years it took to com­
plete this book are undeniable. I thank them for their continuous feedback, 
invaluable comments and endless support. My special thanks go to Dr. Tevhide 
Altekin, former student current colleague, for sharing with me her view of the 
course content and conduct as well as for her suggestions as to the presentation 
of the material within the book. 

Last but not least, I am grateful to my family, my parents in particular, for 
their continuous encouragement and support. My final words of appreciation 
go to my local editor, my wife Sibel, for her faith in what started out as a 
far-fetched project, and most importantly, for her faith in me. 

Ankara, Turkey, 

June 2006 Levent Kandiller 
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1 

Introduction 

Operations Research, in a narrow sense, is the application of scientific models, 
especially mathematical and statistical ones, to decision making problems. 
The present course material is devoted to parts of mathematics that are used 
in Operations Research. 

1.1 Mathematics and OR 

In order to clarify the understanding of the relation between two disciplines, 
let us examine Figure 1.1. The scientific inquiry has two aims: 

• cognitive: knowing for the sake of knowing 
• instrumental: knowing for the sake of doing 

If A is Bis a proposition, and if B belongs to A, the proposition is analytic. 
It can be validated logically. All analytic propositions are a priori. They are 
tautologies like "all husbands are married". If B is outside of A, the proposition 
is synthetic and cannot be validated logically. It can be a posteriori like "all 
African-Americans have dark skin" and can be validated empirically, but there 
are difficulties in establishing necessity and generalizability like "Fenerbahce 
beats Galatasaray". 

Mathematics is purely analytical and serves cognitive inquiry. Operations 
Research is (should be) instrumental, hence closely related to engineering, 
management sciences and social sciences. However, like scientific theories, Op­
erations Research 

• refers to idealized models of the world, 
• employs theoretical concepts, 
• provides explanations and predictions using empirical knowledge. 

The purpose of this material is to review the related mathematical knowledge 
that will be used in graduate courses and research as well as to equip the 
student with the above three tools of Operations Research. 
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F i g . 1 .1 . T h e scientific inquiry. 

1.2 Mathematics as a language 

The main objective of mathematics is to state certainty. Hence, the main role 
of a mathematician is to communicate truths but usually in its own language. 
One example is 

V* e 5, 3j e T 3 ilj => Vj G T, 3i e S 3 i±j <=> S±T. 

That is, if for all i in S there exists an element j of T such that i is orthogonal 
to j then for all elements j of T there is an element j of S such that j is 
orthogonal to i; if and only if, S is orthogonal to T. 

To help the reader appreciate the expressive power of modern mathemat­
ical language, and as a tribute to those who achieved so much without it, 
a few samples of (original but translated) formulation of theorems and their 
equivalents have been collected below. 

(a + bf = a2 + b2 + lab 

If a straight line be cut at random, the square on the whole is equal to the 
squares on the segments and twice the rectangle contained by the segments 
(Euclid, Elements, II.4, 300B.C). 

1 + 2 + • • • + 2" is prime => 2n( l + 2 + • • • + 2") is perfect 
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If as many numbers as we please beginning from a unit be set out continu­
ously in double proportion, until the sum of all becomes prime, and if the sum 
multiplied into the last make some number, the product will be perfect (Euclid, 
Elements, IX.36, 300B.C). 

2nr-r , 
A - ——— = 7rrJ 

The area of any circle is equal to a right-angled triangle in which one of 
the sides about the right angle is equal to the radius, and the other to the 
circumference, of the circle (Archimedes, Measurement of a Circle, 225B.C). 

S = 4wr2 

The surface of any sphere is equal four times the greatest circle in it (Archimedes, 
On the Sphere and the Cylinder, 220B.C). 

3 In n2 m3 3/ n n2 m3 

Rule to solve x3 + mx = n: Cube one-third the coefficient of x; add to it the 
square of one-half the constant of the equation; and take the square root of 
the whole. You will duplicate this, and to one of the two you add one-half the 
number you have already squared and from the other you subtract one-half the 
same... Then, subtracting the cube root of the first from the cube root of the 
second, the remainder which is left is the value of x (Gerolamo Cardano, Ars 
Magna, 1545). 

However, the language of mathematics does not consist of formulas alone. 
The definitions and terms are verbalized often acquiring a meaning different 
from the customary one. In this section, the basic grammar of mathematical 
language is presented. 

Definition 1.2.1 Definition is a statement that is agreed on by all parties 
concerned. They exist because of mathematical concepts that occur repeatedly. 

Example 1.2.2 A prime number is a natural integer which can only be (in­
teger) divided by itself and one without any remainder. 

Proposition 1.2.3 A Proposition or Fact is a true statement of interest that 
is being attempted to be proven. 

Here are some examples: 

Always true Two different lines in a plane are either parallel or they intersect 
at exactly one point. 

Always false —1 = 0. 
Sometimes true 2x — 1, by < 1, z > 0 and x,y,z e K. 
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Needs proof! There is an angle t such that cos t = t. 

Proof. Proofs should not contain ambiguity. However, one needs creativity, in­
tuition, experience and luck. The basic guidelines of proof making is tutored 
in the next section. Proofs end either with Q.E.D. ("Quod Erat Demonstran­
dum"), means "which was to be demonstrated" or a square such as the one 
here. • 

Theorem 1.2.4 Theorems are important propositions. 

Lemma 1.2.5 Lemma is used for preliminary propositions that are to be used 
in the proof of a theorem. 

Corollary 1.2.6 Corollary is a proposition that follows almost immediately 
as a result of knowing that the most recent theorem is true. 

Axiom 1.2.7 Axioms are certain propositions that are accepted without for­
mal proof. 

Example 1.2.8 The shortest distance between two points is a straight line. 

Conjecture 1.2.9 Conjectures are propositions that are to date neither proven 
nor disproved. 

Remark 1.2.10 A remark is an important observation. 

There are also quantifiers: 

3 there is/are, exists/exist 
V for all, for each, for every 
€ in, element of, member of, choose 
3 such that, that is 
: member definition 

An example to the use of these delimiters is 

~iy G S = {x e Z+ : x is odd }, y2 e S, 

that is the square of every positive odd number is also odd. 
Let us concentrate on A => B, i.e. if A is true, then B is true. This 

statement is the main structure of every element of a proposition family which 
is to be proven. Here, statement A is known as a hypothesis whereas B is 
termed as a conclusion. The operation table for this logical statement is given 
in Table 1.1. This statement is incorrect if A is true and B is false. Hence, 
the main aim of making proofs is to detect this case or to show that this case 
cannot happen. 
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Table 1.1. Operation table for A => B 

A 
True 
True 
False 
False 

B 
True 
False 
True 
False 

A = > B 
True 
False 
True 
True 

Formally speaking, A=> B means 

1. whenever A is true, B must also be true. 
2. B follows from A. 
3. B is a necessary consequence of A. 
4. A is sufficient for B. 
5. A only if B. 

There are related statements to our primal assertion A =>• B: 

B =>• A: converse 
A =>• B: inverse 
B => A: contrapositive 

where A is negation (complement) of A. 

1.3 The ar t of making proofs 

This section is based on guidelines of how to read and make proofs. Our 
pattern here is once again A =>• B. We are going to start with the forward-
backward method. After discussing the special cases defined in A or B in terms 
of quantifiers, we will see proof by Contradiction, in particular contraposition. 
Finally, we will investigate uniqueness proofs and theorem of alternatives. 

1.3.1 Forward-Backward method 

If the statement A =4> B is proven by showing that B is true after assuming 
A is true (A -t B), the method is called full forward technique. Conversely, if 
we first assume that B is true and try to prove that A is true (A <- B), this 
is the full backward method. 

Proposition 1.3.1 If the right triangle XYZ with sides x, y and hypotenuse 
of length z has an area of ^- (A), then the triangle XYZ is isosceles (B). See 
Figure 1.2. 
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X 

y 

Z x 

Fig. 1.2. Proposition 1.3.1 

Proof. Backward: 
B: x = y (a; - y = 0) <=> F X Z = .XTZ (triangle is equilateral) 

Forward: 
A-(i) Area: ^a;j/ = ^-
A-(ii) Pythagorean Theorem: x2 + y2 = z2 

<£• \xy = ^ ± ^ <£> a;2 - 2xj/ + y2 = 0 «• (a: - y)2 = 0 <=> a; - y = 0. • 

The above proof is a good example of how forward-backward combination 
can be used. There are special cases defined by the forms of A or B with the 
use of quantifiers. The first three out of four cases are based on conditions on 
statement B and the last one arises when A has a special form. 

Const ruct ion (3) 

If there is an object (3a; € N) with a certain property(a: > 2) such that 
something happens (x2 — 5x + 6 = 0), this is a construction. Our objective 
here is to first construct the object so that it possesses the certain property 
and then to show that something happens. 

Selection (V) 

If something (3a; E I 3 2* = j ) happens for every object (Vj/ € R+) with 
a certain property (y > 0), this is a selection. Our objective here is to first 
make a list (set) of all objects in which something happens (T — {y € M+ : 
3a; e R 3 2X — y}) and show that this set is equivalent to the set whose 
elements has the property (S = R + ) . In order to show an equivalence of two 
sets (S — T), one usually has to show (S C T) and (T C S) by choosing a 
generic element in one set and proving that it is in the other set, and vice 
versa. 

Specialization 

If A is of the form "for all objects with a certain property such that some­
thing happens", then the method of specialization can be used. Without loss 



1.3 The art of making proofs 7 

of generality, we can fix an object with the property. If we can show that 
something happens for this particular object, we can generalize the result for 
all the objects with the same property. 

Proposition 1.3.2 Let T C S C R, and u be an upper bound for S; i.e. 
Va; £ S, x < u. Then, u is an upper bound for T. 

Proof. Let u be an upper bound for S, so Vx £ S, x < u. Take any element 
yoiT.TCS=>y£S=>y<u. Thus, Vy £ T, y < u. Then, u is an upper 
bound for T. D 

Uniqueness 

When statement B has the word unique in it, the proposition is more re­
strictive. We should first show the existence then prove the uniqueness. The 
standard way of showing uniqueness is to assume two different objects with 
the property and to conclude that they are the same. 

Proposition 1.3.3 

W £ R+, 3 unique i £ R 3 i 3 = r. 

Proof. Existence: Let y = r 3 , 1/6K. 
Uniqueness: Let x, y £ M 3 x ^ y, x3 = r = y3 => x3 — y3 — 0 => 
(a; — y){x2 + xy + y2) = 0 => (x2 + xy + y2) = 0, since x ^ y. The roots of 
the last equation (if we take y as parameter and solve for a;) are 

-y ± \Jv2 - V = -y ± \/-3y2 

2 2 

Hence, y = 0 => y3 — 0 = r g R+ . Contradiction. Thus, x = y. • 

1.3.2 Induction Method 

Proofs of the form "for every integer n > 1, something happens" is made 
by induction. Formally speaking, induction is used when B is true for each 
integer beginning with an initial one (n0). If the base case (n = n0) is true, 
it is assumed that something happens for a generic intermediate case (n = 
nk). Consequently, the following case (n = n^+i) is shown, usually using the 
properties of the induction hypothesis (n — nk). In some instances, one may 
relate any previous case (nj, 0 < / < k). Let us give the following example. 

Theorem 1.3.4 

1 + 2 + • • • + n — > k = —̂  -. 
r-f 2 
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1-2 Proof. Base: n = 1 = - j -

Hypothesis: n = j , E L i * = = L ^ -
-J + l I. _ (.7 + D(J+2) Conciusion: n = j + 1, Efc=i & 

Thus, l + 2 + --- + n = £ ? _ , f c = ^ i . D 

1> = (i+1) [1+f] _ (j+l)(j+2) 
— 2 

fc=l' 

1.3.3 Contradiction Method 

When we examine the operation table for A =*• B in Table 1.2, we immediately 
conclude that the only circumstance under which A =4- B is not correct is when 
A is true and B is false. 

Contradiction 

Proof by Contradiction assumes the condition (A is true B is false) and tries 
to reach a legitimate condition in which this cannot happen. Thus, the only 
way A =$• B being incorrect is ruled out. Therefore, A => B is correct. This 
proof method is quite powerful. 

Proposition 1.3.5 

n 6 N, n is even =$• n is even. 

Proof. Let us assume that n 6 N, n2 is even but n is odd. Let n = 2k -1, A; 6 
N. Then, n2 = 4k2 - 4/c + 1 which is definitely odd. Contradiction. • 

Contraposition 

In contraposition, we assume A and B and go forward while we assume A 
and come backward in order to reach a Contradiction. In that sense, con­
traposition is a special case of Contradiction where all the effort is directed 
towards a specific type of Contradiction (̂ 4 vs. A). The main motivation under 
contrapositivity is the following: 

A=> B = AVB = (A\/ JB) V A = (A/\B)^> A. 

One can prove the above fact simply by examining Table 1.2. 

Table 1.2. Operation table for some logical operators. 

A 
T 
T 
F 
F 

A 
F 
F 
T 
T 

B 
T 
F 
T 
F 

B 
F 
T 
F 
T 

A^B 
T 
F 
T 
T 

Av B 
T 
F 
T 
T 

AAB 
F 
T 
F 
F 

A/\B^ A 
T 
F 
T 
T 
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Proposition 1.3.6 

p,qeR+3 y/pq^ V-~Y- => P hi­

proof. A: y/pq^^ and hence A: ^pq = *f*. Similarly, B: p £ q and B: 

p = q. Let us assume B and go forward 2±2 = p = ^ = ^fpq. However, this 

is nothing but A: ^/pq = Ey2 . Contradiction. D 

1.3.4 Theorem of alternatives 

If the pattern of the proposition is A => either C or (else) D is true (but not 
both), we have a theorem of alternatives. In order to prove such a proposition, 
we first assume A and C and try to reach D. Then, we should interchange C 
and D, do the same operation. 

Proposition 1.3.7 If x2 - 5x + 6 > 0, then either x < 2 or x > 3. 

Proof. Let x > 2. Then, 

a;2 - 5a; + 6 > 0 => (a; - 2)(x - 3) > 0 =» (a: - 3) > 0 => a; > 3. 

Let a; < 3. Then, 

x2 - 5x + 6 > 0 => (a; - 2)(x - 3 ) > 0 ^ ( a ; - 2 ) < 0 ^ a ; < 2 . D 

Problems 

1.1. Prove the following two propositions: 
(a) If / and g are two functions that are continuous * at x, then the function 
/ + g is also continuous at x, where (/ + g)(y) = f(y) + g(y). 
(b) If / is a function of one variable that (at point a;) satisfies 

3 c > 0, 5 > 0 such that Vy 3 \x - y\ < 6, \f(x) - f(y)\ <c\x-y\ 

then / is continuous at x. 

1.2. Assume you have a chocolate bar consisting, as usual, of a number of 
squares arranged in a rectangular pattern. Your task is to split the bar into 
small squares (always breaking along the lines between the squares) with a 
minimum number of breaks. How many will it take? Prove2. 

A function / of one variable is continuous at point x if 
Ve > 0, 35 > 0 such that Vy B \x - y\ < S =̂  |/(x) - f(y)\ < e. 

2 www.cut-the-knot.org/proofs/chocolad.shtml 



10 1 Introduction 

1.3. Prove the following: 

(a) (") = L%)-

(b) C) = (";1) + (":!)• 
( c ) ( ? + J" ) + ;"nP = 2"' 
( d ) ( m ) ( 7 ) = ( r ) ( m - r ) -(e)(s) + rr)+-- -+rr)-r; + 1 ) -
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Preliminary Linear Algebra 

This chapter includes a rapid review of basic concepts of Linear Algebra. After 
denning fields and vector spaces, we are going to cover bases, dimension and 
linear transformations. The theory of simultaneous equations and triangular 
factorization are going to be discussed as well. The chapter ends with the 
fundamental theorem of linear algebra. 

2 .1 V e c t o r S p a c e s 

2.1.1 Fields and linear spaces 

Definition 2.1.1 A set F together with two operations 

+ : F x F ^ F Addition 
• : F X F H F Multiplication 

is called a field if 

1. a) a + 0 — 0 + a, Va, 0 G F (Commutative) 
b) (a + 0) + 7 — a + (0 + 7), Va, 0,7 6 F (Associative) 
c) 3 a distinguished element denoted by 0 B Va E F, a + 0 = a (Additive 

identity) 
d) Va €W 3 — a s F 3 a + (—a) = 0 (Existence of an inverse) 

2. a) a • 0 — 0 • a, Va,/3 € F (Commutative) 
b) (a • 0) • 7 = a • (0 • 7), Va, 0,7 e F (Associative) 
c) 3 an element denoted by 1 B Va e F, a • 1 = a (Multiplicative 

identity) 
^ V a ^ 0 e F 3 a _ 1 e F 3 a - a _ 1 = l (Existence of an inverse) 

3. a • (/3 + 7) = (a • /?) + (a • 7), Va, 0,7 e F (Distributive) 
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Definition 2.1.2 Let ¥ be a field. A set V with two operations 

+ :V xV ^V Addition 
• : F x V H-> V Scalar multiplication 

is called a vector space (linear space) over the field F if the following axioms 
are satisfied: 

1. a) u + v = u + v, Vu, v G V 
b) (u + v) + w = u + (v + w), Vu, v, w G V 
c) 3 a distinguished element denoted by 8 3 W G V, v + 6 = v 
d) Vw G V 3 unique - v eV B v + (-v) = 6 

2. a) a • (0 • u) = (a • /3) • u, Va,^ G F, VM G V 
b) a • (u + v) = (a • u) + (a • v), Va G F, Vu,v eV 
c) (a + p) • u = (a • u) + (p • u), Va, p G F, VM G F 
d̂  1 • w = w, VM G V, where 1 is the multiplicative identity ofW 

Example 2.1.3 Mn = { ( a i , a 2 , . . . , Q „ ) J ' : Q i , a 2 , . . . , « r l 6 R } is a vector 
space overR with(aci,a2,-. .,an)+{Pi,P2,---,Pn) = (ai+Pi,oi2+P2,-- -,an+ 
Pn); c- (cti,a2,-.. , a„) = (cai,ca2,. ..,can); and 6 — (0,0,. . . , 0 ) r . 

Example 2.1.4 The set of all m by n complex matrices is a vector space over 
C with usual addition and multiplication. 

Proposition 2.1.5 In a vector space V, 

i. 0 is unique. 
ii. 0 • v = 6, Mv G V. 
Hi. (—1) • v = —v, Vw G V. 
iv. -6 = 6. 
v. a-v = 6<&a = 0orv = 8. 

Proof. Exercise. • 

2.1.2 Subspaces 

Definition 2.1.6 Let V be a vector space overW, and let W C V. W is called 
a subspace ofV ifW itself is a vector space over F. 

Proposition 2.1.7 W is a subspace of V if and only if it is closed under vec­
tor addition and scalar multiplication, that is 

u>i, w2 G W, a i , c*2 € F <̂> ai • w± + a2 • w2 G W. 

Proof. (Only if: =>) Obvious by definition. 
(If: <=) we have to show that 6 G W and Vw G W, -w G W. 

i. Let a i = 1, a>2 = —1, and w\ = W2- Then, 

l-wi + (-1) •wi=w1 + (-wi) = 9 eW. 
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ii. Take any w. Let e*i = - 1 , a2 = 0, and wi = w. Then, 

(-l)-w + (0)-w2 =-w eW. D 

Example 2.1.8 S C R2 x 3 , consisting of the matrices of the form 

0 P 7 
a a - P a + 27 

is a subspace of j>2x3 

Proposition 2.1.9 IfWx,W2 are subspaces, then so is W\ l~l W2. 

Proof. Take u>i, u>2 € Wi n W2, a i , a2 £ F. 

i. wi, w2 G Wi =>• a i • wi + a2 • w2 € Wi 
ii. wi,w2 e W2 => cti • Wi + a2 • w2 £ W2 

Thus, aitui + a2w2 € Wi n W2. • 

Remark 2.1.10 IfW\, W2 are subspaces, then W\ UW2 is not necessarily a 
subspace. 

Definition 2.1.11 Let V be a vector space over ¥, X C V. X is said to 
be linearly dependent if there exists a distinct set of xi,x2,... ,Xk £ X and 
scalars a\,a2, ...,atk 6 F not all zero 3 5^ i = 1 o^Xi = 9. Otherwise, for any 
subset of size k, 

k 

X\,X2,...,Xk £ X, 2_2aixi — ® => al — a2 = ••• = <*k = 0. 

In this case, X is said to be linearly independent. 
We term an expression of the form $Z i=1 ot{Xi as linear combination. 

In particular, if JZi=i ai — 1» we ca^ ^ affine combination. Moreover, if 
Si=i ai = 1 and ai > 0, Vi = 1,2, ...,k, it becomes convex combination. 
On the other hand, if a* > 0, Vi = 1,2,..., k; then X)=i 

said to be 
canonical combination. 

Example 2.1.12 In Rn, let E = {e;}"=1 where ef = (0, • • • 0,1,0, • • • , 0) is 
the ith canonical unit vector that contains 1 in its ith position and 0s elsewhere. 
Then, E is an independent set since 

aiei H h a „ e n = 

« i 

a„ 

at = 0, Vi 

Let X = {xi}"=1 where xf = (0, • • -0,1,1, • • • , 1) is the vector that con­
tains 0s sequentially up to position i, and it contains Is starting from position 
i onwards. X is also linearly independent since 
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8 = a\X\ + V anxn => a; = 0, Mi. 

Let Y = {Vi}"=1 where yf = (0, • • -0, -1 ,1 ,0 , • • • ,0) is the vector that 
contains -1 in ith position, 1 in(i + l)st position, and 0s elsewhere. Y is not 
linearly independent since y\ + • • • + yn — #• 

Definition 2.1.13 Let X C V. The set 

Span(X)= \v=YlaiXi £V : xi,x2,..-,xk€ X; ai,a2,---,ak eF; k€N> 

is called the span of X. If the above linear combination is of the affine combi­
nation form, we will have the affine hull of X; if it is a convex combination, 
we will have the convex hull of X; and finally, if it is a canonical combination, 
what we will have is the cone of X. See Figure 2.1. 

Affine b 

Convex 

Span(x) 

Cone(x) , 

Affine(p,q)v 

Span(p.q)=R 

/ 

Convex(p,q) 

Fig. 2.1. The subspaces defined by {a;} and {p, q}. 

Proposition 2.1.14 Span(X) is a subspace ofV. 

Proof. Exercise. • 

2.1.3 Bases 

Definition 2.1.15 A set X is called a basis for V if it is linearly independent 
and spans V. 
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Remark 2.1.16 Since Span(X) C V, in order to show that it covers V, we 
only need to prove that Vv € V, v € Span(X). 

Example 2.1.17 In Kn, E = {ej}"=1 is a basis since E is linearly indepen­
dent andVa = ( a i , a 2 , . . -,an)

T € Kn, a = a^ei -\ 1- ane„ € Span(E). 
X — {xi}™=1 is also a basis for Rn since Va = ( a i , a 2 , . . . ,an)

T € Rn , 
a = aixi + (a2 - " l ) ^ H 1- K - an-i)xn £ Span(X). 

Proposition 2.1.18 Suppose X = {a?i}7=i *s a ^0Sl'5 / o r ^ o w e r ^- ^ e n » 

aj Vw £ l^ can be expressed as v = E?=i aixi where cti 's are unique. 
b) Any linearly independent set with exactly n elements forms a basis. 
c) All bases for V contain n vectors, where n is the dimension ofV. 

Remark 2.1.19 Any vector space V of dimension n and an n-dimensional 
field F™ have an isomorphism. 

Proof. Suppose X = {xi}"=1 is a basis for V over F. Then, 

a) Suppose v has two different representations: v = Y17=iaix' = Y^i=i&iXi-

Then, 6 — v — v = E i = i ( a i ~ Pi)xi =^ °-% — ft, Vz — 1,2,.. . , n. Contra­
diction, since X is independent. 

b) Let Y = {j/i}7=i be linearly independent. Then, yi = Yl^ixi (40> where at 
least one S{ ^ 0. Without loss of generality, we may assume that Si ^ 0. 
Consider Xi = {yi,x?,... ,xn}. Xi is linearly independent since 6 = 

fttfi+E?=2#** = / M E W * * + E r = 2 f t ^ = ft^^i+£r=2(ft^ + 
fr)xi =*• ft<5i = 0; PiSi + ft = 0, Vi = 2 , . . . , n =*• )8i = 0 (<Ji # 0); and 
ft = 0, Vi = 2 , . . . , n. Any o e K can be expressed as v = E?=i 7*:c* = 

7iai + E_r=27iffi 
u = 7i(< r̂12/i - Er=2<Jr1^a;i)(*) = (7i^r1)yi + E"=2(7i - n s ^ s ^ . 
Thus, Span(Xi) = V. 
Similarly, 
X2 = {yi,y2,x3,...,xn} is a basis. 

Xn = {2/1,2/2, • • • ,2/n} = Y is a basis. 
c) Obvious from part b). • 

Remark 2.1.20 Since bases for V are not unique, the same vector may have 
different representations with respect to different bases. The aim here is to 
find the best (simplest) representation. 

2.2 Linear transformations, matrices and change of basis 

2.2.1 Matrix multiplication 

Let us examine another operation on matrices, matrix multiplication, with 
the help of a small example. Let A e K3 x 4 , B G R4 x 2 , C € R 3 x 2 
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C l l C12 

C21 C22 

C31 C32 

C = AB = 

_ 
a n a i 2 a i 3 014 

021 022 ^23 «24 

^31 «32 O33 034 j 

fell &12 

&21 &22 

631 fe32 
641 642 _ 

Ollfell + 012621 + 013&31 + 014&41 OH&12 + 012622 + 013632 + O14642 

021&11 + 022fe21 + 023fe31 + 024641 O21612 + 022&22 + O23632 + 024642 

031&11 + «32fe21 + 033631 + 034641 0 3 1 6 ^ + 032622 + 033632 + O34642 

Let us list the properties of this operation: 

Proposition 2.2.1 Let A, B, C, D fee matrices and x be a vector. 

1. {AB)x = A(Bx). 
2. {AB)C = A{BC). 
3. A(B + C) = AB + AC and (B + C)D = BD + CD. 
4. AB = BA does not hold (usually AB ^ BA) in general. 
5. Let In be a square n by n matrix that has Is along the main diagonal and 

Os everywhere else, called identity matrix. Then, AI = IA = A. 

2.2.2 Linear transformation 

Definition 2.2.2 Let A e R m x n , i e l " . The map x i-> Ax describing a 
transformation K™ i-> Km with property (matrix multiplication) 

Vx, y € R"; Vo, 6 € K, A(bx + cy) = b(Ax) + c(Ay) 

is called linear. 

Remark 2.2.3 Every matrix A leads to a linear transformation A. Con­
versely, every linear transformation A can be represented by a matrix A. Sup­
pose the vector space V has a basis {vi,t>2> • • • ,vn} and the vector space W 
has a basis {u>i,W2, • • •, wm}. Then, every linear transformation A from V to 
W is represented by an m by n matrix A. Its entries atj are determined by 
applying A to each Vj, and expressing the result as a combination of the w's: 

AVJ = ^2 aHwi, j = 1,2,..., n. 
i = i 

Example 2.2.4 Suppose A is the operation of integration of special polyno­
mials if we take l,t,t2,t3, • • • as a basis where Vj and Wj are given by V~x. 
Then, 

AVJ = / V~x dt = — = -Wj 
J J 3 

vj+1. 
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For example, if dim V = 4 and dim W = 5 then A = 

to integrate v(t) = 2t + 8t3 = 0«i + 2u2 + 0u3 + 8v4: 

"0 0 0 0" 
1 0 0 0 
0 \ 0 0 
0 0 | 0 
ooo \ 

Let us try 

"0 0 0 0" 
1 0 0 0 
0 \ 0 0 
0 0 \ 0 
ooo \ 

"0" 
2 
0 

8 

"0" 
0 
1 
0 
2 

<^ y (2* + 8t3) dt = t2 + 2t4 = w3 + 2w5. 

Proposition 2.2.5 If the vector x yields coefficients ofv when it is expressed 
in terms of basis {v\, V2, • • •, vn}, then the vector y = Ax gives the coefficients 
of Av when it is expressed in terms of the basis {w\,W2, • • • ,wm}. Therefore, 
the effect of A on any v is reconstructed by matrix multiplication. 

m 

Av = Y2yiWi = 5Z aijXJWi-
i=\ i,3 

Proof. 
n n n 

V = J2 xivi ^ Av = A(52 xiv^ = Z] xiAvi = X) xi X aiiWi- D 

j=l 1 1 j i 

Proposition 2.2.6 / / the matrices A and B represent the linear transforma­
tions A and B with respect to bases {vi} in V, {u>i} in W, and {zi} in Z, then 
the product of these two matrices represents the composite transformation BA. 

Proof. A : v i->- Av B : Av i-> BAv => BA : v >-> BAv. D 

Example 2.2.7 Let us construct 3 x 5 matrix that represents the second 
derivative J J I , taking P4 (polynomial of degree four) to Pi-

t4 ^ 4tz, t3
 M- 3t2, t2 >->• 2t, 11-> 1 

=*> B = 

01000 
00200 
00030 
00004 

Let v(t) = 2t + 8t3, then 

d2v(t) _ 

dt2 

A = 
0 1 0 0 
0 0 2 0 
0 0 0 3 

AB = 
0 0 2 0 0 
0 0 0 6 0 
0 0 0 0 12 

0 0 2 0 0 
0 0 0 6 0 
0 0 0 0 12 

'0' 
2 
0 
8 
0 

= 
" 0" 
48 
0 

= 48*. 
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Proposition 2.2.8 Suppose {vi,v2,. ..,vn} and {wi, w2, • • •, wn} are both 
bases for the vector space V, and let v € V, v = Y^lxivi ~ J2"yjwj- V 
Vj = ]T™ SijWi, then yt = YJl sijxj-

Proof. 

y ] XjVj - ] P ^2 XjSijWi is equal to ] P y{Wi J ^ ^ SijXjWi. • 
j i i i i j 

Proposition 2.2.9 Let A : V ^ V. Let Av be the matrix form of the 
transformation with respect to basis {vi,v2,. •. ,vn) and Aw be the matrix 
form of the transformation with respect to basis {wi,W2,.-.,wn}. Assume 
that Vj = J2i sijwj- Then, 

Proof. Let v € V, v — J2xjvj- ^x g i y e s the coefficients with respect to w's, 
then AwSx yields the coefficients of Av with respect to original w's, and fi­
nally S~1AwSx gives the coefficients of Av with respect to original u's. 0 

Remark 2.2.10 Suppose that we are solving the system Ax = b. The most 
appropriate form of A is In so that x = b. The next simplest form is when 
A is diagonal, consequently Xi = £-. In addition, upper-triangular, lower-
triangular and block-diagonal forms for A yield easy ways to solve for x. One 
of the main aims in applied linear algebra is to find a suitable basis so that 
the resultant coefficient matrix Av = 5_1>l l„5 has such a simple form. 

2.3 Systems of Linear Equations 

2.3.1 Gaussian elimination 

Let us take a system of linear m equations with n unknowns Ax 
particular, 

2u + v + w— 1 
4u + v=-2 <& 

-2u + 2v + w= 7 

Let us apply some elementary row operations: 

51. Subtract 2 times the first equation from the second, 
52. Subtract —1 times the first equation from the third, 
53. Subtract —3 times the second equation from the third. 

= b. In 

" 2 1 1 " 
4 10 

- 2 2 1 

u 
V 

w 
= 

r - 2 
7 

The result is an equivalent but simpler system, Ux 
triangular: 

c where U is upper-

"2 1 1" 
0 - 1 - 2 
0 0 - 4 

u 
V 

w 
= 

1" 
- 4 
- 4 
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Definition 2.3.1 A matrix U (L) is upper(lower)-triangular if all the entries 
below (above) the main diagonal are zero. A matrix D is called diagonal if all 
the entries except the main diagonal are zero. 

Remark 2.3.2 / / the coefficient matrix of a linear system of equations is 
either upper or lower triangular, then the solution can be characterized by 
backward or forward substitution. If it is diagonal, the solution is obtained 
immediately. 

Let us name the matrix that accomplishes SI (£21), subtracting twice the 
first row from the second to produce zero in entry (2,1) of the new coefficient 
matrix, which is a modified J3 such that its (2,l)st entry is - 2 . Similarly, 
the elimination steps S2 and S3 can be described by means of £31 and £32, 
respectively. 

£• 21 

1 0 0 " 
2 10 
0 0 1 

, £31 — 
"100" 
0 10 
1 0 1 

, £32 — 
1 0 0 
0 1 0 
0 3 1 

These are called elementary matrices. Consequently, 

E32E31E21A = U and £3 2£3i£2ib = c, 

where £32 £31 £21 = is lower triangular. If we undo the steps of 
1 0 0 " 

- 2 10 
- 5 3 1_ 

Gaussian elimination through which we try to obtain an upper-triangular 
system Ux = c to reach the solution for the system Ax = b, we have 

A - #32 -^31 E2\ U : LU, 

where 

p—1171—1171—1 
•^21 ^ 3 1 -^32 

" 1 0 0 " 
2 1 0 
0 0 1 

1 0 0 ' 
0 10 

- 1 0 1 

' 1 0 0 ' 
0 10 
0 3 1 

= 
1 0 0 
2 10 

-1 - 3 1 

is again lower-triangular. Observe that the entries below the diagonal are ex­
actly the multipliers 2 , - 1 , and - 3 used in the elimination steps. We term L 
as the matrix form of the Gaussian elimination. Moreover, we have Lc = b. 
Hence, we have proven the following proposition that summarizes the Gaus­
sian elimination or triangular factorization. 

Proposition 2.3.3 As long as pivots are nonzero, the square matrix A can 
be written as the product LU of a lower triangular matrix L and an upper 
triangular matrix U. The entries of L on the main diagonal are Is; below the 
main diagonal, there are the multipliers Uj indicating how many times of row j 
is subtracted from row i during elimination. U is the coefficient matrix, which 
appears after elimination and before back-substitution; its diagonal entries are 
the pivots. 
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In order to solve x = A~~xb — U~1c = U~1L~1b we never compute inverses 
that would take n3-many steps. Instead, we first determine c by forward-
substitution from Lc = b, then find x by backward-substitution from Ux = c. 
This takes a total of n2 operations. Here is our example, 

1 
2 
1 

0 0 
10 

- 3 1 

C\ 

Cl 

cz 
= 

1 
- 2 

7 
=» 

C\ 

C2 

C3 

= 

1 
- 4 
- 4 

2 1 1 
0 - 1 - 2 
0 0 - 4 

Z l 

X2 

xz 
= 

1 
- 4 
- 4 

=> 
xx 

Z2 

2 3 

= 

- 1 
2 
1 

Remark 2.3.4 Once factors U and L have been computed, the solution x' 
for any new right hand side b' can be found in the similar manner in only n2 

operations. For instance 

b' = 

Remark 2.3.5 We can factor out a diagonal matrix D from U that contains 
pivots, as illustrated below. 

8 
11 
3 

=» 
c\ 
c'i 

4 
= 

8 
- 5 
- 4 

=> 
x\ 
x2 
x3 

= 
2 
3 
1 

u 

di 
d2 

d„ 

I "12 "13 . . , 
d\ di 
1 H2a . . . 
1 d2 

d2 

1 

Consequently, we have A = LDU, where L is lower triangular with Is on the 
main diagonal, U is upper diagonal with Is on the main diagonal and D is 
the diagonal matrix of pivots. LDU factorization is uniquely determined. 

Remark 2.3.6 What if we come across a zero pivot? We have two possibil­
ities: 

Case (i) If there is a nonzero entry below the pivot element in the same col­
umn: 
We interchange rows. For instance, if we are faced with 

"0 2" 
3 4 

u 
V 

- V 

0 1 
_10_ 

represents the exchange. A permutation matrix P^i is the modified identity 

we will interchange row 1 and 2. The permutation matrix, P\2 



2.3 Systems of Linear Equations 23 

matrix of the same order whose rows k and I are interchanged. Note that 
Pki — P[^ (exercise!). In summary, we have 

PA = LDU. 

Case (ii) If the pivot column is entirely zero below the pivot entry: 
The current matrix (so was A) is singular. Thus, the factorization is lost. 

2.3.2 Gauss-Jordan method for inverses 

Definition 2.3.7 The left (right) inverse B of A exists ifBA = I (AB = I). 

Proposition 2.3.8 BA = I and AC = I <£> B = C. 

Proof. B(AC) = (BA)C &BI = IC&B = C. O 

Proposition 2.3.9 If A and B are invertible, so is AB. 

(AB)'1 = B-1A~1. 

Proof. 

(AB^B^A-1) = AiBB-^A'1 = AIA'1 = AA~X = I. 

(B^A-^AB = B~l{A~lA)B = B^IB = B~XB = 7. • 

Remark 2.3.10 Let A = LDU. A-1 = U^D^L-1 is never computed. If 
we consider AA_1 — I, one column at a time, we have AXJ = ej,Vj. When 
we carry out elimination in such n equations simultaneously, we will follow 
the Gauss-Jordan method. 

Example 2.3.11 In our example instance, 

[A\eie2e3] = 
" 2 1 1 

4 1 0 
- 2 2 1 

10 0" 
0 1 0 
0 0 1 

- > • 

"2 1 1 
0 - 1 - 2 
0 3 2 

1 0 0 ' 
- 2 10 

1 0 1 

-» 
"2 1 1 
0 - 1 - 2 
0 0 - 4 

1 0 0 " 
- 2 10 
- 5 3 1 

= \U\L-1] 

1 0 0| 

o i o j 
OOl l 

1 I _ I 
8 8 8 
k k k 
2 2 2 
5 _ 3 _ I 
4 4 4 

= m^1] 
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2.3.3 The most general case 

In this subsection, we are going to concentrate on the equation system, Ax = b, 
where we have n unknowns and m equations. 

Axiom 2.3.12 The system Ax = b is solvable if and only if the vector b 
can be expressed as the linear combination of the columns of A (lies in 
Spanfcolumns of A] or geometrically lies in the subspace defined by columns 
of A). 

Definition 2.3.13 The set of non-trivial solutions x ^ 8 to the homogeneous 
system Ax = 8 is itself a vector space called the null space of A, denoted by 

Remark 2.3.14 All the possible cases in the solution of the simple scalar 
equation ax = /? are below: 

• a 7̂  0: V/3 e R, 3a; = £ € K (nonsingular case), 
• a = (3 = 0: Vx € R are the solutions (undetermined case), 
• a — 0, (3 ^ 0: there is no solution (inconsistent case). 

Let us consider a possible LU decomposition of a given A 6 fl£»™xn with 
the help of the following example: 

U. 

The final form of U is upper-trapezoidal. 

Definition 2.3.15 An upper-triangular (lower-triangular) rectangular ma­
trix U is called upper- (lower-)trapezoidal if all the nonzero entries Uij lie on 
and above (below) the main diagonal, i < j (i > j). An upper-trapezoidal 
matrices has the following "echelon" form: 

1 332" 
2 695 
1-330 

-» 
"1332' 
0031 
0062 

-> 
"1332" 
0031 
0000 

© 
~ol© 

0 * * * * * 
© * 

0 0 0 
0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 

In order to obtain such an U, we may need row interchanges, which would 
introduce a permutation matrix P. Thus, we have the following theorem. 

Theorem 2.3.16 For any A 6 R m x n , there is a permutation matrix P, a 
lower-triangular matrix L, and an upper-trapezoidal matrix U such that PA = 
LU. 
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Definition 2.3.17 In any system Ax = b <£> Ux = c, we can partition the 
unknowns Xi as basic (dependent) variables those that correspond to a column 
with a nonzero pivot 0 , and free (nonbasic,independent) variables correspond­
ing to columns without pivots. 

We can state all the possible cases for Ax = b as we did in the previous 
remark without any proof. 

Theorem 2.3.18 Suppose the m by n matrix A is reduced by elementary row 
operations and row exchanges to a matrix U in echelon form. Let there be r 
nonzero pivots; the last m — r rows of U are zero. Then, there will be r basic 
variables and n — r free variables as independent parameters. The null space, 
Af(A), composed of the solutions to Ax = 8, has n — r free variables. 

If n — r, then null space contains only x = 6. 
Solutions exist for every b if and only if r = m (U has no zero rows), and 

Ux = c can be solved by back-substitution. 
If r < m, U will have m — r zero rows. If one particular solution x to 

the first r equations of Ux = c (hence to Ax = b) exists, then x + ax, \/x G 
Af(A) \ {6} , Va S R is also a solution. 

Definition 2.3.19 The number r is called the rank of A. 

2.4 The four fundamental subspaces 

Remark 2.4.1 If we rearrange the columns of A so that all basic columns 
containing pivots are listed first, we will have the following partition of U: 

A = [B\N] -> U = 
UB\UN 

o -^v = 
Ir\VN 

o 
where B € Rm*r, N € M™x("-'-)j \jB <= Rrxr^ Uff £ Rrx(n-r)> o is an 

(m-r) x n matrix of zeros, VN £ K r x ( n - r >, and Ir is the identity matrix of 
order r. UB is upper-triangular, thus non-singular. 

If we continue from U and use elementary row operations to obtain Ir in 
the UB part, like in the Gauss-Jordan method, we will arrive at the reduced 
row echelon form V. 

2.4.1 The row space of A 

Definition 2.4.2 The row space of A is the space spanned by rows of A. It 
is denoted by 1Z(AT). 

Tl(AT) = Spandat}^) =lyeRm:y = f > a < j 

= {d G Rm : 3y € Rm 9 yTA = dT) . 
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Proposition 2.4.3 The row space of A has the same dimension r as the row 
space of U and the row space of V. They have the same basis, and thus, all 
the row spaces are the same. 

Proof. Each elementary row operation leaves the row space unchanged. • 

2.4.2 The column space of A 

Definition 2.4.4 The column space of A is the space spanned by the columns 
of A. It is denoted by H(A). 

71(A) = Span {a^}n
j=1 = \y € R" : y = ^ / 3 , - a ' 

= {b e Rn : 3x E R" 3 Ax = b} . 

Proposition 2.4.5 The dimension of column space of A equals the rank r, 
which is also equal to the dimension of the row space of A. The number of 
independent columns equals the number of independent rows. A basis for 71(A) 
is formed by the columns of B. 

Definition 2.4.6 The rank is the dimension of the row space or the column 
space. 

2.4.3 The null space (kernel) of A 

Proposition 2.4.7 

N(A) = {x G Rn : Ax = 0(Ux = 6,Vx = 9)} = Af(U) = tf(V). 

Proposition 2.4.8 The dimension of J\f(A) is n — r, and a base for Af(A) 
\ -VN~ 

is the columns ofT = 

Proof. 

In-

The columns of T 

Ax = 6 «• Ux = 0 <£• Vx - 6 «• xB + VNxN = 0. 

-VN~ 
*n—r 

is linearly independent because of the last (n — r) 

coefficients. Is their span Af(A)? 

Let y = EjajTi, Ay = £ , - « ; ( - * # + V&) = 6. Thus, Span{{Ti}nZD Q 

M{A). Is Span({Ti}n
=l) DM(A)1 Let x XB 

Ax - 6 <& xB + VNXN = 8 <̂> x = xB 

xN 

XN 

~-VN 

*n — r 

eM{A). Then, 

xN G Span({Ti}".:;) 

Thus, Span({Ti}n
=l)DAf(A). D 
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2.4.4 The left null space of A 

Definition 2.4.9 The subspace of Rm that consists of those vectors y such 
that yTA = 6 is known as the left null space of A. 

M(AT) = { ! / eR m : yTA = 9} . 

Proposition 2.4.10 The left null space M{AT) is of dimension m - r, where 
the basis vectors are the lastm-r rows ofL~xP of PA = LU orL~lPA = U. 

Proof. 

Then, (L _ 1P) 

SUA = 6. • 

A = [A\Im] - • V •• 
Ir\VN 

o 
L~lP 

Si 
Sn 

where Sn is the last m - r rows of L lP. Then 

Fig. 2.2. The four fundamental subspaces defined by A G 

2.4.5 The Fundamental Theorem of Linear Algebra 

Theorem 2.4.11 TZ(AT)= row space of A with dimension r; 
N{A)= null space of A with dimension n — r; 
11(A) = column space of A with dimension r; 
Af(AT)— left null space of A with dimension m — r; 

Remark 2.4.12 From this point onwards, we are going to assume that n> m 
unless otherwise indicated. 
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Problems 

2.1. Graph spaces 

Definition 2.4.13 Let GF(2) be the field with + and x (addition and multi­
plication modulo 2 on I?) 

0 1 
0 1 
10 

and 
0 1 
0 0 
0 1 

Fig. 2.3. The graph in Problem 2.1 

Consider the node-edge incident matrix of the given graph G = (V, E) 
over G,F(2), A G RII^HXIISH: 

a 
b 
c 

A= d 
e 
f 
9 
h 

12 3456 789 10 11 12 13 
1 10000000 0 0 0 0 
100000001 0 0 0 0 
01 1000000 0 0 0 0 
0011000010 0 0 0 
0001 10000 1 0 0 0 
00001 1000 0 0 1 1 
000001 1 0 0 0 1 0 0 
000000010 1 1 0 1 
0000001100 0 1 0 

The addition + operator helps to point out the end points of the path 
formed by the added edges. For instance, if we add the first and ninth columns 
of A, we will have [1,0,0,1,0,0,0,0,0]T , which indicates the end points (nodes 
a and d) of the path formed by edges one and nine. 

(a) Find the reduced row echelon form of A working over GF(2). Interpret 
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the meaning of the bases. 

(b) Let T = {1,2,3,4,5,6,7,8} and Tx = E \ T = {9,10,11,12,13}. 

Let A = ® . Let Z - [h\N]. For each row, zt,i € T, color the edges 

with non-zero entries. Interpret z, 
(c) Let y = , . For each column yj, j £TX, color the edges with non-zero 

entries. Interpret j / j . 
(d) Find a basis for the four fundamental subspaces related with A. 

2.2. Derivative of a polynomial 

Let us concentrate on a (n - k + 1) x (n + 1) real valued matrix A(n, k) 
that represents "taking kth derivative of nth order polynomial" 

P(t) =a0 + ait + --- + a„tn. 

(a) Let n = 5 and k = 2. Characterize bases for the four fundamental sub-
spaces related with .4(5,2). 
(b) Find bases for and the dimensions of the four fundamental subspaces re­
lated with A(n, k). 
(c) Find B(n, k), the right inverse of A(n, k). Characterize the meaning of the 
underlying transformation and the four fundamental subspaces. 

2.3. As in Example 2.1.12, let Y = {2/j}™=1 be defined as 

yf = ( 0 , - " 0 , - l , l , 0 , - - - , 0 ) , 

the vector that contains -1 in ith position, 1 in (i + l)st position, and 0s else­
where. Let A = [2/1I2/2I • • • \yn]- Characterize the four fundamental subspaces 
of A 
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Orthogonality 

In this chapter, we will analyze distance functions, inner products, projection 
and orthogonality, the process of finding an orthonormal basis, QR and sin­
gular value decompositions and conclude with a final discussion about how to 
solve the general form of Ax = b. 

3.1 Inner Products 

Following a rapid review of norms, an operation between any two vectors 
in the same space, inner product, is discussed together with the associated 
geometric implications. 

3.1.1 Norms 

Norms (distance functions, metrics) are vital in characterizing the type of 
network optimization problems like the Travelling Salesman Problem (TSP) 
with the rectilinear distance. 

Definition 3.1.1 A norm on a vector space V is a function that assigns to 
each vector, v € V, a nonnegative real number \\v\\ satisfying 

i. \\v\\ >0,Vvy£9 and \\6\\ = 0, 
ii. \\av\\ - \a\ \\v\\, Ma € K; v £ V. 
Hi. \\u + v\\ < \\u\\ + \\v\\, Vu, v € V (triangle inequality). 

Definition 3.1.2 Vrc G C n , the most commonly used norms, H-l̂  , ||.||2, H-H ,̂ 
are called the li, li and l^ norms, respectively. They are defined as below: 

1. \\x\\x = |xi | + --- + |arn|, 
2. ||x||2 = (|x1|2 + --- + |o ; n |2) i ; 

3- Halloo z = m a x { l a ; l | ) - - - > l ; E n | } -
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Furthermore, we know the following relations: 

y/n 
< x < 

loo — 
12' 

l2< l i < I M I 2 -

y/n 
< X I < X 1 • 

R e m a r k 3.1.3 The good-old Euclidian distance is the l<z norm that indicates 
the bird-flight distance. In Figure 3.1, for instance, a plane's trajectory between 
two points (given latitude and longitude pairs) projected on earth (assuming 
that it is flat!) is calculated by using the Pythagoras Formula. The rectilinear 
distance (l\ norm) is also known as the Manhattan distance. It indicates the 
mere sum of the distances along the canonical unit vectors. It assumes the 
dependence of the movements along with the coordinate axes. In Figure 3.1, 
the length of the pathway restricted by blocks, of the car from the entrance of a 
district to the current location is calculated by adding the horizontal movement 
to the vertical. The Tchebychev's distance (1^) simply picks the maximum 
distance among all movements along the coordinate axes, and thus, assumes 
total independence. The forklift in Figure 3.1 can move sideways by its main 
engine, and it can independently raise or lower its fork by another motor. The 
total time it takes for the forklift to pick up an object 10m. away from a rack 
lying on the floor and place the object on a rack shelf 3m. above the floor is 
simply the maximum of the travel time and the raising time. A detailed formal 
discussion of metric spaces is located in Section 10.1. 

I 
Jl 

-x1 • 

Fig. 3.1. Metric examples: ||.| 2 ' 11*111 ' ll-lloo 

Definition 3.1.4 The length \\x\\2 of a vector x in K™ is the positive square 
root of 
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Remark 3.1.5 \\x\\l geometrically amounts to the Pythagoras formula ap­
plied (n-1) times. 

Definition 3.1.6 The quantity xTy is called inner product of the vectors x 
and y in K" 

n 
xTy = ^x^ji. 

»=i 

Proposition 3.1.7 
xTy = 0 # i l j . 

Proof. (<=) Pythagoras Formula: ||x|| + ||y|| = ||a; — y\\ , 

\\x ~ y\\2 = T,7=i(xi ~Vi)2 = \\x\? + \\y\\2-2xTy- T h e l a s t t w 0 identities yield 
the conclusion, xTy = 0. 

(=») xTy = 0 =*- IÎ H2 + \\yf = \\x - y\\2 =>x±y. • 

Theorem 3.1.8 (Schwartz Inequality) 

\xTy\ < \\x\\2 \\y\\2 , x,y£Rn. 

Proof. The following holds Va € R: 

0 < ||x + ay\\l =xTx + 2 \a\ xTy + o?yTy = \\x\\2
2 + 2 \a\ xTy + a2 \\y\\2

2 , (*) 

Case (x A. y): In this case, we have =>• xTy = 0 < \\x\\2 \\y\\2. 

Case (x JL y): Let us fix a = l^f. Then, (*) 0 < - ||a;||2 + 'ffljffi. • 

3.1.2 Orthogonal Spaces 

Definition 3.1.9 Two subspaces U and V of the same space R™ are called 
orthogonal ifMu 6 J/,Vu G V, u Lv. 

Proposition 3.1.10 Af(A) andlZ(AT) are orthogonal subspaces of W,M(AT) 
and H(A) are orthogonal subspaces of Km . 

Proof. Let w G M(A) and v G H(AT) such that Aw = 6, and v = ATx for 
some x G R". wTv = wT(ATx) = (wTAT)x — 9Tx — 0. • 

Definition 3.1.11 Given a subspace V o/Rn , the space of all vectors orthog­
onal to V is called the orthogonal complement of V, denoted by V1-. 

Theorem 3.1.12 (Fundamental Theorem of Linear Algebra, Part 2) 

Af(A) = (n(AT))^, K(AT) = (Af(A))\ 

Af(AT) = (K(A))^, 11(A) = (Af(AT))±. 
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Remark 3.1.13 The following statements are equivalent, 

i. W^V1. 

a v = w±. 
Hi. W ± V and dimV + dimW — n. 

Proposition 3.1.14 The following are true: 
i. N{AB)2M{B). 
ii. Tl(AB) C 11(A). 
iii.Af((AB)T)DAf(AT). 
iv. Tl{(AB)T) C Tl{BT). 
Proof. Consider the following: 

i. Bx = 0 => ABx = 0. Thus, Vx € M(B), x £ Af(AB). 

ii. Let b 3 ABx = b for some x, hence 3y = Bx 3 Ay = b. 

iii. Items (iii) and (iv) are similar, since (AB)T = BTAT. O 

Corollary 3.1.15 
rank(AB) < rank(A), 

rank(AB) < rank(B). 

3.1.3 Angle between two vectors 

See Figure 3.2 and below to prove the following proposition. 

c = b — a =$• cos c = cos(6 — a) = cos b cos a + sin b sin a 

— J iL J^L 4. Jf2__^2_ _ "1^1 + U2V2 
cosc~ U\U\ U\ Nl " IHIIHI " 

I 

X-Axis 

U=(U Lfe) 

v=(v„v2) 

Fig. 3.2. Angle between vectors 



3.1 Inner Products 37 

Proposition 3.1.16 The cosine of the angle between any two vectors u and 
v is 

COSC : 

T 
U V 

iu \\v\\ 

Remark 3.1.17 The law of cosines: 

\\u — v\\ = ||u|| + \\v|| — 2 ||u|| llvll cose. 

3.1.4 Projection 

Let p = xv where W = x 6 R is the scale factor. See Figure 3.3. 

(u - p) J- v «=> vT(u — p) = 0 & x = 
T 

Vx U 

X-Axis 

Fig. 3.3. Projection 

Definition 3.1.18 The projection p of the vector u onto the line spanned by 
T 

the vector v is given by p — %^-v. 
The distance from the vector u to the line is (Schwartz inequality) therefore 

i r u 
u =-v 

v1 v 
uTu - 2^- + &?vTv = (»r»)("r;)-(«r«)a, 

V1 V V1 V V1 V 

3.1.5 Symmetric Matrices 

Definition 3.1.19 A square matrix A is called symmetric if AT = A. 

Proposition 3.1.20 Let A e R m x n , rank{A) = r. The product ATA is a 
symmetric matrix and rank(ATA) = r. 
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Proof. (ATA)T = AT{AT)T = ATA. 
Claim: N{A) = H{AT A). 

i. M{A) C M{ATA) : x e M(A) =• Ax = 6 =>• 4 r A r - i T 9 = » 4 i £ 

ii. Af(ATA) C M{A) : x e M{ATA) => A7'Ax = 6 => a; r i4 rAc = 0 4* 
||Ar||2 = 0 & Ax = 9, x € M(A). D 

Remark 3.1.21 ATA has n columns, so does A. Since Af(A) = N(ATA), 
dimhf(A) = n — r => dimR(ATA) = n - {n - r) = r. 

Corollary 3.1.22 / / rank(A) = n =>• ATA is a square, symmetric, and in-
vertible (non-singular) matrix. 

3.2 Projections and Least Squares Approximations 

Ax = 6 is solvable if b e R(A). If b £ R(A), then our problem is choose 
x 3 \\b — Ax\\ is as small as possible. 

Ax - b J. R(A) <S> (Ay)T(Ax - b) = 0 <̂> 

yT[ATAx - .4T6] = 0 (yT jt 6) => ATAx -ATb = 9^ ATAx = ATb. 

Proposition 3.2.1 The least squares solution to an inconsistent system 
Ax — b of m equations and n unknowns satisfies ATAx = ATb (normal 
equations). 
If columns of A are independent, then AT A is invertible, and the solution is 

x = (ATA)-1ATb. 

The projection of b onto the column space is therefore 

p = Ax = A{ATA)~lATb = Pb, 

where the matrix P = A(ATA)"1 AT that describes this construction is known 
as projection matrix. 

Remark 3.2.2 (I — P) is another projection matrix which projects any vector 
b onto the orthogonal complement: (I — P)b — b — Pb. 

Proposition 3.2.3 The projection matrix P = A(ATA)~1AT has two basic 
properties: 

a. it is idempotent: P2 — P. 
b. it is symmetric: PT — P. 
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Conversely, any matrix with the above two properties represents a projection 
onto the column space of A. 

Proof. The projection of a projection is itself. 

P2 = A[{ATA)-1ATA](ATA)-1AT = A(ATA)~lAT = P. 

We know that ( S " 1 ) 7 = (BT)-\ Let B = ATA. 

PT = (AT)T[(ATA)-1}TAT = A[AT(AT)T}'1AT = A(ATA)~lAT = P. D 

3.2.1 Orthogonal bases 

Definition 3.2.4 A basis V = {VJ}"= 1 is called orthonormal if 

V7V. = (°^^J (ortagonality) 
— j (normalization) 

Example 3.2.5 E — {ej}™=1 is an orthonormal basis for M", whereas X = 
{xi}"=1 in Example 2.1.12 is not. 

Proposition 3.2.6 If A is an m by n matrix whose columns are orthonormal 
(called an orthogonal matrix), then ATA = In. 

P = AAT = aiaj H h ana
T

n =4> x = ATb 

is the least squared solution for Ax = b. 

Corollary 3.2.7 An orthogonal matrix Q has the following properties: 

1. QTQ = I = QQT> 

2. QT = Q~\ 
3. QT is orthogonal. 

Example 3.2.8 Suppose we project a point aT = (a,b,c) into R2 plane. 
Clearly, p — (a, b, 0) as it can be seen in Figure 3.4-

T 
e\ex a = 

a 
0 
0 

i e 2 e | , Q = 

P = eiej + e2e2 = 

Pa = 
" 1 0 0 ' 
0 1 0 
0 0( ) 

a 
b 
c 

"0" 
b 
0 

"100" 
0 1 0 
0 0 0_ 

= 

a 
b 
0 
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Pa=(a,b,0) 

Fig. 3.4. Orthogonal projection 

Remark 3.2.9 When we find an orthogonal basis that spans the ground vec­
tor space and the coordinates of any vector with respect to this basis is on 
hand, the projection of this vector into a subspace spanned by any subset of 
the basis has coordinates 0 in the orthogonal complement and the same coordi­
nates in the projected subspace. That is, the projection operation simply zeroes 
the positions other than the projected subspace like in the above example. One 
main aim of using orthogonal bases like E = {ej}™=1 for the Cartesian sys­
tem, W1, is to have the advantage of simplifying projections, besides many 
other advantages like preserving lengths. 

Proposition 3.2.10 Multiplication by an orthogonal Q preserves lengths 

\\Qx\\ = \\x\\, \fx; 

and inner products 
(Qx)T(Qy)=xTy,Vx,y. 

3.2.2 Gram-Schmidt Orthogonalization 

Let us take two independent vectors a and b. We want to produce two per­
pendicular vectors v\ and v2: 

, > VT° r 
vi = a, v2 = b — p = b Tp — vi =>• v{ v2 = 0 =>• vi ± v2. 

v(vx 

If we have a third independent vector c, then 

vi c vA c V3 = C 7f Vi f V2 => V3 -L V2, V3 ±Vi. 
V{ V\ V$ V2 

If we scale Vi,v2,v3, we will have orthonormal vectors: 

Vi 
Qi = i i—M, a2 

v2 v3 
93 = 

«2 " 3 
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Proposition 3.2.11 Any set of independent vectors ai,a,2,- • • ,an can be con­
verted into a set of orthogonal vectors v\, V2, • • •, vn by the Gram-Schmidt pro­
cess. First, Vi = a\, then each Vi is orthogonal to the preceding v\, v-i,..., «i_i: 

Vi = a,-
vj a% 

vfvi 
Vi 

ui-lui 
Vi-l. 

For every choice of i, the subspace spanned by original a i , a2 , - . . , a j is also 
spanned by v\, v-i,..., Vi. The final vectors 

{* = i&} 
Vj_ 

«illJi=i 

are orthonormal. 

Example 3.2.12 

vi = a%, and 

a~ v\ 1 
v(vi 2 * 

Let 

a2 -

ai = 

\vi --

"1" 
0 
1 

, a2 = 
1 
1 
0 

, as = 
0 
1 
1 

= f i => v3 = a3 i u i \v2 = Then, 

q\ 

and 03 

l 
V2 

"1" 
0 
1 

r ! i 
V2 
0 l 

?2 

- 1 • 

2 
1 
1 
2 . 

1 _ 

2 

vG 
1 

. V 6 . 

9 
12 

• 2 " 

3 
2 
3 
2 

. 3 . 

— 

1 " 
V3 
1 

v/3 
1 

. vs. 
Ol i>i = -v/2oj 

«2 = §«i + «2 = \J\qi + 

as = \vx + \v2 + v3 = yj\qi + yj\q2 + yj §< 

2°2 

<£> [ a i , a 2 , a 3 ] = [gi, 02,03] 

»3 

<̂> A = QR. 

Proposition 3.2.13 A — QR where the columns of Q are orthonormal vec­
tors, and R is upper-triangular with \\vi\\ on the diagonal, therefore is invert-
ible. If A is square, then so are Q and R. 
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Definition 3.2.14 A = QR is known as Q~R decomposition. 

Remark 3.2.15 If A = QR, then it is easy to solve Ax — b: 

x = (ATA)-1ATb = (RTQTQR)-1RTQTb = {RTR)-lRTQTb = R~1QTb. 

Rx = QTb. 

3.2.3 Pseudo (Moore-Penrose) Inverse 

Ax = b<->Ax=p = Pb<&x = (ATA)~lATb. 

Ax = p have only one solution o- The columns of A are linearly inde­
pendent <$• N{A) contains only 6 <& rank(A) = n •& ATA is invertible. 

Let A^ be pseudo inverse of A. If A is invertible, then A^ = A"1. Oth­
erwise, A^ — (ATA)~*AT', if the above conditions hold. Then, x = A%. 
Otherwise, the optimal solution is the solution of Ax — p which is the one 
that has the minimum length. 

Let x~o 9 j4afo = P> x"o = xr + w where xr G TZ(AT) and w £ N{A). We 
have the following properties: 

i. Axr = A{xr + w) = Ax~o = p. 
ii. VS 9 Ax — p, x = xr + w with a variation in w part only, where xr is 

fixed. 
2 iii. \\xr +w\\ — \\xr\\ w 

where a > 0, /3 > 0. 

Proposition 3.2.16 The optimal least squares solution to Ax = b is xr (or 
simply x), which is determined by two conditions 

1. Ax — p, where p is the projection ofb onto the column space of A. 
2. x lies in the row space of A. 

Then, x = A^b. 

"00 0 0 
Example 3.2.17 A = 0 / 3 0 0 

[o 0 a0 
Then, K(A) = R2 and p = Pb = (0, b2, b3)

T 

Ax =p •& 

x2 — -r, X3 — —, £ i=a ;4 = 0, with the minimum length! 
a a 

"0 0 0 0' 
0/3 0 0 
0 0 a 0 

Xi 

X2 

X~4 

= 

" 0 " 
&2 

b3 
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=> x = 

0" 

L 
a 
0 

= A*b = 

"0 0 0 
O i O 
o o i 
0 0 0 

Thus, A* = 

"0 0 

0 0 
.0 0 

0" 
0 

0. 

3.2.4 Singular Value Decomposition 

Definition 3.2.18 A 6 R m x n , A — Q\EQ% is known as singular value 
decomposition, where Qx G R m x m orthogonal, Q2 £ E""*"1 orthogonal, and 
E has a special diagonal form 

E = 

with the nonzero diagonal entries called singular values of A. 

Proposition 3.2.19 A* = Q2E^Ql where £+ 

Proof. ||Ac - 6|| = \\Qi2QZx - b\\ = \\EQ$x - Qfb\\. 
This is multiplied by Qf y = Q\x = Q2~

1x with \\y\\ = ||a 

min \\Ey - Q\b\\ -» y = E^Qjb. 

^x = Q2y = Q2E^Qjb => A^ = Q2E^Qj O 

Remark 3.2.20 A typical approach to the computation of the singular value 
decomposition is as follows. If the matrix has more rows than columns, a QR 
decomposition is first performed. The factor R is then reduced to a bidiagonal 
matrix. The desired singular values and vectors are then found by performing 
a bidiagonal QR iteration (see Remarks 6.2.3 and 6.2.8). 
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3.3 Summary for Ax = b 

Let us start with the simplest case which is illustrated in Figure 3.5. A G R" x" 
is square, nonsingular (hence invertible), rank(yl) = n = r. Thus, A represents 
a change-of-basis transformation from R" onto itself. Since n = r, we have 
V6 G Ti{A) = R™. Therefore, there exists a unique solution x = A~lb. If we 
have a decomposition of A (PA = LU, A = QR, A = QiEQ^), we follow an 
easy way to obtain the solution: 

(A = LU) => Lc = b, Ux = c using forward/backward substitutions as illus­
trated in the previous chapter; 

{A = QR) => Rx = QTb using backward substitution after multiplying the 
right hand side with QT; 

(A = Q\EQT) => x = Q-2E~lQjb using matrix multiplication operations 
after we take the inverse of the diagonal matrix E simply by inverting the 
diagonal elements. 

1-1 
••r:-&::-< 

- : • • : ' • . • ' . • ' . ' . • ' • ' • • : ; : - \ ; ; ' : l 

' GASE"' 
n . . . 2 1 

v 

Fig. 3.5. Unique solution: b £ 11(A), A : n x n, and r = n 

If A £ R m x n has full rank r = m < n, we choose any basis among the 
columns of A = [B\N] to represent 11(A) = Rm that contains b. In this case, 
we have a p = n — m dimensional kernel M(A) whose elements, being the 
solutions to the homogeneous system Ax = 0, extend the solution. Thus, we 
have infinitely many solutions XB = B~lb — B~1NXN, given any basis B. 
One such solution is obtained by .z'/v = 0 =4> XB = B~lb is called a basic 
solution. In this case, we may use decompositions of B (B = LU, B = QR, 
B = Q1EQ2) to speed up the calculations. 

If A G 
dim(M(A)) 

! m x " has rank r < m < n as given in Figure 3.6, we have 
= p = n-r, dim(Af(AT)) = q = m-r and 11(A) = K(AT) = W. 

The elementary row operations yield A B N 
O, qxn 

. There exists solution(s) 

only if b G 1Z(A). Assuming that we are lucky to have b G 1Z(A), and if x 
is a solution to the first r equations of Ax = b (hence to [B\N]x = b), then 
x + ax, V.x G N(A) \ {0} , VQ G R is also a solution. Among all solutions 
XB = B~lb — B~XNXN, XJV = 9 => XB = B~lb is a basic solution. We may 
use decompositions of B to obtain XB as well. 
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Fig. 3.6. Parametric solution: b 6 TZ(A), A : m x n, and r — rank(A) 

What if b $. 11(A)? We cannot find a solution. For instance, it is quite 
hard to fit a regression line passing through all observations. In this case, we 
are interested in the solutions, x, yielding the least squared error ||6 — J4X||2. 

If & € Af(AT), the projection of b over TZ(A) is the null vector 0. Therefore, 
Af(A) is the collection of the solutions we seek. 

Fig. 3.7. Unique least squares solution: (A1A) is invertible and A^ = (ATA) lA7 

If b is contained totally in neither TZ(A) nor J\f(AT), we are faced with the 
non-trivial least squared error minimization problem. If ATA is invertible, 
the unique solution is x = (ATA)~1ATb as given in Figure 3.7. The regression 
line in Problem 3.2 is such a solution. We may use A = QR or A = Q1SQ2 
decompositions to find this solution easily, in these ways: Rx — QTb or x — 
Q2^Qfb, respectively. 

Otherwise, we have many x € R™ leading to the least squared solution as 
in Figure 3.8. Among these solutions, we are interested in the solution with 
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w 
Fig. 3.8. Least norm squared solution: (ATA) is not invertible and A^ = QiE'Qj 

Table 3.1. How to solve Ax = b, where A G R m x " 

Case 

b e -£(4) 

b e M(AT) 

b <jL 11(A) 

bgAf(A) 

Subcase 

r=n=m 

r=m < n 

A=[B\N] 

r=m 

[A\\b 

B\N 

o 

r < 

A^ -

< n 

6 ' 

0 

m 

I\N~\ 
O \ 

(ATA): 

invertible 

(ATA): 

not 

invertible 

Solution 

x=A~1b 

XB = 

B _ 1 6 -

B~1Nxn 

XB = 

B-'b-

B^NXn 

many 

x=A*b 

many 

x=A*b 

min.norm 

Type 

Exact 

unique 

Exact 

many 

Exact 

many 

Trivial 

Least 

Squares 

Unique 

Least 

Squares 

Least 

Norm 

Squares 

Special Forms 

A=LU => Lc=b,Ux=c 

A=QR => Rx=QTb 

A = QtEQl =» 

x=Q2Z-xQlb 
B=LU => Lc=b,UxB=c 

B=QR => RxB=QTb 

B=Q-,EQl => 

xB=Q2S-1Qjb 

B=LU =• Lc=b,UxB-c 

B=QR => RxB=QTb 

B=Q1EQ2
r => 

xB=Q2Z~1QTb 

T 

x=a 

VaG 

' -N' 
I 

M.n~r 

) 

A=QR => Rx=QTb 

A = QxEQl => 

x=Q2E-lQjb 

A^QiEQZ =* 

x=Q2E
1iQjb 

Inverse 

A^A-1 

A^B-1 

A* « B-1 

none 

A*= 

(ATA)~1AT 

A*= 

Q2E^Ql 
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the smallest magnitude, in some engineering applications. We may use the 
singular value decomposition in this process. 

The summary of the discussions about Ax = b is listed in Table 3.1. 

1 
1 
1 
1 

2 0 - 1 
- 1 3 2 
- 1 3 2 

1 - 3 1 

Problems 

3.1. Q-R Decomposition 

Find QR decomposition of A — 

3.2. Least Squares Approximation: Regression 

Assume that you have sampled n pairs of data of the form (x,y). Find the 
regression line that minimizes the squared errors. Give an example for n=5. 

3.3. A x = b 

Solve the following Ax = b using the special decomposition forms. 
" 1 3 2 " 

(a) Let Ai= 2 1 3 
3 2 1 

"2 13 10 
(b) A2= 1 3 2 0 1 

32 1 1 0 
two solutions. 

1 2 

and b\ = 

and 62 = 

8" 
19 
3 

" 8 1 
19 
3 

(c) Az = 

(d) A, = 

4 5 
7 8 

10 11 
- 1 0 0 1 

1 - 1 0 0 
0 1 - 1 0 
0 0 - 1 1 

and 63 = 

using LU decomposition. 

using LU decomposition. Find at least 

using QR decomposition. 

and 64 = using singular value decomposition. 

Web material 

http://abel.math.harvard.edu/~knlll/math2lb2002/10-orthogonal/ 

orthogonal.pdf 

http://astro.temple.edu/~dhill001/modern/l-sect6-2.pdf 

http://avalon.math.neu.edu/~bridger/lschwart/lschwart.html 

http://ccrma-www.Stanford.edu/~j os/mdft/ 
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Norm_Induced_Inner_Product.html 

http://ccrma-www.Stanford.edu/~jos/r320/Inner_Product.html 

http://ccrma-www.Stanford.edu/"j os/sines/ 

Geometric_Signal_Theory.html 

http://ccrma.Stanford.edu/"j os/mdft/Inner_Product.html 

http://cnx.org/content/ml0561/latest/ 

http://elsa.berkeley.edu/~ruud/cet/excerpts/PartIOverview.pdf 

http://en.wikipedia.org/wiki/Inner_product_space 

http://en.wikipedia.org/wiki/Lp_space 

http://en.wikipedia.org/wiki/Moore-Penrose_inverse 

http://en.wikipedia.org/wiki/QR_decomposition 

http://en.wikipedia.org/wiki/Singular_value_decomposition 

http://engr.smu.edu/emis/8371/book/chap2/node8.html 

http://eom.springer.de/P/p074290.htm 
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Eigen Values and Vectors 

In this chapter, we will analyze determinant and its properties, definition of 
eigen values and vectors, different ways how to diagonalize square matrices 
and finally the complex case with Hermitian, unitary and normal matrices. 

4.1 Determinants 

4.1.1 Preliminaries 

Proposition 4.1.1 det A ^ 0 => A is nonsingular. 

R e m a r k 4.1.2 Is A — XI (where X is the vector of eigen values) invertible? 

det(A - XI) = ? 0 

where det(A — XI) is a polynomial of degree n in X, thus it has n roots. 

Proposition 4.1.3 (Cramer's Rule) Ax = b where A is nonsingular. Then, 
the solution for the jth unknown is 

_ det(A(j <- b)) 
j~ det ,4 ' 

where A(j <— b) is the matrix obtained from A by interchanging column j with 
the right hand side b. 

Proposition 4.1.4 det A = ± [product of pivots]. 

Proposition 4.1.5 \detA\ = Vol(P), where P=conv{Y^"=1eiai, ê  is the jth 
unit vector} is parallelepiped whose edges are from rows of A. See Figure 4-1-

Corollary 4.1.6 |detvl| = H?=1 \\a,i\\. 

Definition 4.1.7 Let det A"1 = g ^ . 
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A = 
an ai2 ai3 
0 2 1 <J22 0,23 

^ 3 1 « 3 2 « 3 3 

Volume=det(A) 

Fig. 4.1. |det A| = Volume(P). 

4.1.2 P roper t i e s 

1. The determinant of J is 1. 

Example 4.1.8 
10 
0 1 1. 

2. The determinant is a linear function of any row, say the first row. 

Example 4.1.9 

det 
a b 
c d 

a b 
c d 

= ad — cb. 

ta tb 
c d 

= tad — ted = t a b 
c d 

3. If A has a zero row, then det .4 = 0. 

Example 4.1.10 
0 0 
c d 

= 0. 

4. The determinant changes sign when two rows are exchanged. 

Example 4.1.11 

— cb — ad c d 
a b 

a b 
c d 

5. The elementary row operations of subtracting a multiple of one row from 
another leaves the determinant unchanged. 

Example 4.1.12 

a — acb — ad 
c d 

(ad — acd) — (be — acd) bc = 
a b 
c d 

6. If two rows are equal (singularity!), then det A = 0. 

Example 4.1.13 
ab

h=o. 
a b 
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7. det AT = det A. 

Example 4.1.14 
a c 
bd 

= ad — cb 
a b 
c d 

8. If A is triangular, then det A = Yi7=i a" (det / = 1). 

Example 4.1.15 
a b 
Od 

= ad, 
« 0 
c d 

= ad. 

9. A,B € R n x n , nonsingular, det (45) = (det A)(det B). 

Example 4.1.16 

a b 
c d 

ef 
9 h 

= (ad — cb)(eh — gf) = adeh — adgf — cbeh + cbgf. 

= (ae + bg){cf + dh) - (af + bh)(ce + dg) ae + bg af + bh 

ce + dg cf + dh 

= aecf + aedh + bgcf + bgdh — afce — afdg — bhce — bhdg 

= adeh — adgf — cbeh + cbgf. 

10. Let A be nonsingular, A = P-lLDU. Then, 

det A = det P _ 1 det L det D det U — ±(product of pivots). 

The sign ± is the determinant of P _ 1 (or P) depending on whether the 
number of row exchanges is even or odd. We know det L = det U = 1 from 
property 7. 

Example 4.1.17 By one Gaussian elimination step, we have 

a b 
c d 

1 0 
a 1 

a 0 
n ad—be 

a 

o l since 
a b 
c d -» 

a b 
Od-^ 

. Thus, 

a b 
c d 

= ad — bc — det D. 

11. det A = anAii + aiiAa + ••• + ainAin (property 1!) where A^'s are 
cofactors 

Atj = (-l)i+i det Mij 

where the minor Mij is formed from A by deleting row i and column j . 

Example 4.1.18 

a n «i2 a i 3 
O21 022 ^ 2 3 

0-31 0-32 0-33 

an 
0,22 023 

132 ^33 

a i 2 

^21 a 2 3 

^31 a 3 3 
+ 

a i 3 

O21 022 

&31 «32 

= 011(022033 - 023032) + 012(023031 - 021033) + 013(021032 - o 2 2 a 3 i ) 

: 011022033 + 012023031 + 013021032 — 011023032 — 012021033 — 013022031. 
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4.2 Eigen Values and Eigen Vectors 

Definition 4.2.1 The number X is an eigen value of A, with a corresponding 
nonzero eigen vector v such that Av = Xv. 

The last equation can be organized as (XI—A)v = 0. In order to have a non-
trivial solution v 7̂  9, the corresponding null space (kernel) M(XI — A) should 
contain vectors other than 9. Thus, the kernel has dimension larger than 0, 
which means we get at least one zero row in Gaussian elimination. Therefore, 
(XI — A) is singular. Hence, A should be chosen such that det(AJ — A) = 0. 
This equation is known as characteristic equation for A. 

d(s) = det(sl - A) = s11 + dxs
n+1 + • • • + dn = 0. 

Then, the eigen values are the roots. 

k 

d(s) = (s- X,r (s - A 2 ) " 2 . . . ( « - Xk)
n- = Y[(s - K)ni-

The sum of multiplicities should be equal to the dimension, i.e. Y^i ni — n-
The sum of n-eigen values equals the sum of n-diagonal entries of A. 

Ai + • • • + An = niAi + • • • + nfcAfc = o u + • • • + ann. 

This sum is known as trace of A. Furthermore, the product of the n-eigen 
values equals the determinant of A. 

n*<=nA"'= d e t A 
i=l 

Remark 4.2.2 If A is triangular, the eigen values X\,. 
entries an,... ,ann. 

., Xn are the diagonal 

Example 4.2.3 

A = 

I 0 0 
I I o 
u 4 4 

det.4 = i ( l ) | = |(property 8). 

d(s) = 
8~\ 0 
- i 8-1 

0 
0 

s — 
= 1 - 2 ( * - l ) 

So, Ai = \ = a n , A2 = 1 = a2i, A3 = | = a33. Finally, 

3 
S~4 
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4.3 Diagonal Form of a Matr ix 

Proposition 4.3.1 Eigen vectors associated with distinct eigen values form 
a linearly independent set. 

Proof. Let Aj •H- vi, i = 1 , . . . , k. 
Consider YA=I

 a*Vi ~ ®- Multiply from the left by Il i=2(^ — -^1). 
Since (A — Xil) = 9, we obtain (A — Xil)vj = (Xj — Xi)vj, which yields 

ai(Aj - A2)(Ai - A3) • • • (Ai - Xk)Vl = 6. 

v\ 7̂  9, Ai - A2 7̂  0, . . . , Ai - Afc ^ 0 => Qi = 0. Then, we have J27=2 aiv' = ®-
Repeat by multiplying J^ i=3(yl — Xil) to get a2 = 0, and so on. D 

4.3.1 All Distinct Eigen Values 

d{s) — n r= i (s~^i)- The n eigen vectors vi,... ,vn form a linearly independent 
set. Choose them as a basis: {wi}™=1-

Avi = Aii>i + 0v2 + 1- 0vn 

Av2 = 0^! + A2i>2 H h 0u„ 

Thus, A has representation A = 

Avn = Owi + 0v2 + h Xnvn 

"Ai 0 ••• 0 " 
0 A2 • • • 0 

0 0 • • • A„ 
Alternatively, let S — [f i|f2| • • • \vn] 

AS = [Avi\Av2\---\Avn] = [X1v1\X2v2\---\Xnvn} 

"Ai 

AS = [vi\v2\ 
X2 

Xn 

SA. 

Thus, S XAS = A (Change of basis). Hence, we have proven the following 
theorem. 

Theorem 4.3.2 Suppose the n by n matrix A has n linearly independent 
eigen vectors. If these vectors are columns of a matrix S, then 

A, 

S ,_1yl5 = yl = 
A2 

An 
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Example 4.3.3 From the previous example, 

A = 
MO 
i 1 0 
0 I 3 
" 4 4 

=*Ai = 1, A3 = 

Ax = X\x <& 

\x\ + |x2 = 0 <£> x\ + x2 = 0 
I x2 + | x 3 = 0 & x2 + x3 = 0 

±X1 

\x\ + x2 

;X2 + f x 3 _ 
= 

1 * 1 " 
1*2 

1 * 3 . 

:} 

Ax = X2x <=> 
| * i 

5X1 + X2 

fX2 | * 3 

Thus, v\ = 

Xi 

x2 

X3 

7*2 - 7X3 = 0 <4> X2 

Ax = A3x <=> 

H = 0.1 
- X3 = 0. J 

Thus, v2 = 

1*1 
\x\ + x2 

[X2 + fx3_ 

= 
"fai l" 

fx2 
. 1 * 3 . 

xx = 0 . 
O- §xi - \x2 = 0 =>• 2a:i + x2 = 0. \ Thus, v3 = 

x2 = 0. 

Therefore, S = 

[S\I] 

Then, 

1 0 0 
- 1 10 

1 1 1 

1 0 0 
- 1 10 

1 1 1 

1 0 0 ' 
0 1 0 
0 0 1 

- 4 

" 1 0 0 
0 1 0 
0 1 1 

1 0 0 ' 
1 10 

- 1 0 1 
-» 

' 1 0 0 
0 1 0 
0 0 1 

1 00" 
1 10 

- 2 - 1 1 
= [I\S - i i 

S^AS •• 

1 0 0 ' 
1 10 
2 - 1 1 

1 00" 
\ 1 0 
0 1 2 

. " 4 4 . 

1 0 0 ' 
- 1 10 

1 1 1 
= 

loo" 
0 1 0 

o o f 
= A. 

Remark 4.3.4 Any matrix with distinct eigen values can be diagonalized. 
However, the diagonalization matrix S is not unique; hence neither is the 
basis {«}"_!• If we multiply an eigen vector with a scalar, it will still remain 
an eigen vector. Not all matrices posses n linearly independent eigen vectors; 
therefore, some matrices are not dioganalizable. 
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4.3.2 Repeated Eigen Values with Full Kernels 

In this case, (recall that d(s) = Yii=i(s ~ A;)ni)i w e have dimAf([A — Xil]) — 
Tii,Vz. Thus, there exists n* linearly independent vectors in Af ([A — Xil]), each 
of which is an eigen vector associated with A;, Vi. 

Ai •H- Vn,Vl2,...,Vini 

A2 f* V2l,V22,---,V2n2 

Afc *-t Vkl,Vk2,...,Vknk 

Ur=i {v»i}?ii 1S linearly independent (Exercise). Thus, we have obtained 
n linearly independent vectors, which constitute a basis. Consequently, we get 

S~1AS = 

Ai 

Example 4.3.5 

A = 
3 1 - 1 
1 3 - 1 
0 0 2 

d(s) = det(sl - A) = 
s-3 - 1 1 
- 1 s - 3 1 
0 0 s - 2 

= 0 

= (* - 3)2(s - 2) - (a - 2) = (a - 2)[(* - 3)2 - 1] 

= (* - 2)(s - 4)(a - 2) = (a - 2)2(s - 4). 

=> Ai = 2, ni = 2 and A2 = 4, 712 = 1. 

A-\iI = 
1 1 - 1 
1 1 - 1 
0 0 0 

dim(Af([A - Aj/])) = 2. 

vii = ( l ) - l , 0 ) r , « i 2 = ( 0 , l , l ) T . 

-1 1 - 1 
A-\2I= 1 - 1 - 1 

0 0 - 2 
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10 r 
1 1 1 
0 1 0 

, 5 -

V2 

-1 _ 

= ( l , l , 0 ) r 

• I I I • 
2 2 2 

0 0 1 
1 1 1 

. 2 2 2 . 

, S~1AS = 
"200" 
0 2 0 
0 0 4 

s = 

4.3.3 Block Diagonal Form 

In this case, we have 

3i 9 iii > 1, dim(Af[A - A;/]) < n. 

Definition 4.3.6 The least degree monic (the polynomial with leading co­
efficient one) polynomial m(s) that satisfies m(A)=0 is called the minimal 
polynomial of A. 

Proposition 4.3.7 The following are correct for the minimal polynomial. 

i. m(s) divides d(s); 
ii. m(Xi) = 0 , Vi = 1,2,.. . , k; 
Hi. m(s) is unique. 

Example 4.3.8 

A = 
c 1 0 
OcO 
0 0 c 

, d{s) = det(s7 - A) 
s-c - 1 0 

0 s-c 0 
0 0 s-c 

= (s- c)3 = 0. 

Ax = c, ni = 3. m(s) = ? (s — c), (s — c)2, (s — c)3 

[A - Xil] = 
0 1 0 
0 0 0 
0 0 0 

[A - Ai/]2 = 
0 10 
0 0 0 
0 0 0 

0 1 0 
0 0 0 
0 0 0 

^03=> m(s) ^(s- c). 

= 0 3 => m(s) - (s - c)2. 

Then, to find the eigen vectors 

(A - d)x = <?<£> 
0 1 0 
0 0 0 
0 0 0 

x = 6 =>• Dn 
"1" 
0 
0 

, V\2 = 

"0" 
0 
1 

Proposition 4.3.9 

d(s) = nU(* - ^ ) " % m(s) = n?=1(a - Xi)m\ 1 < rrn < m, i = 1,2,. 

*W - Ai/)] § MU - V)2] i • • • i MU - v n 
= j V p - A*/)™^1] = • • • = N{{A - Xil)ni] 

,k. 
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Proposition 4.3.10 m(s) = ITf=1(s - Xi)mi, then 

C" = Af[(A - Ai)mi] e • • -®AT[(A - Xk)
mk], 

where © is the direct sum of vector spaces. 

Theorem 4.3.11 d(s) = n^=1(s - A*)"*, m(s) = n*=1{s - A*)mi. 

i. dim(Af[{A - A*)mi]) = m; 
ii. If columns of n x ni matrices Bi form bases for Af[(A — Aj)m*] and B = 

[Bi\ • • • |.Bfc], then B is nonsingular and 

B'XAB 

M 

Ak 

where Ai are ni x n,; 
Hi. Independent of the bases chosen for Af[(A — A;)mi], 

det(sl - A\) = (a - Xi)"*; 

iv. Minimal polynomial of Ai is (s — Xi)mi. 

Example 4.3.12 

"0 1 0 ' 
0 0 1 
2 - 5 4 

, d(s) = A = 

Ai = 1, m = 2; A2 = 2, n2 = 1. 

s - 1 0 
0 s - 1 

- 2 5 s - 4 
= ( s - l ) 2 ( s - 2 ) = 0 . 

[A- - AiJ] = 
" - 1 10" 

0 - 1 1 
2 - 5 3 

, dim{Af[{A - A:)]) = 1 < 2 = m(!) 

mi > 1 => mi = 2 => m(s) = (s - l)2(s - 2) = d(s). 

[A- -Ai / ] 2 = 
"1 - 2 1" 
2 - 4 2 
4 - 8 4 

, dim(M[(A - Aj)2]) = 2 

«11 = ( l , 0 , - l ) r
) «i2 = (0 , l ,2) T , B 1 = 

A2 = 2, [;4 - A27] = 

10 
0 1 

-12 

" - 2 
0 
2 

10" 
-2 1 
- 5 2 

dim(N[{A - Aa)]) = 1. 
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v2 = (l,2,4)T, B2 = . Therefore, 

B = 

where Ai 

10 
0 1 

- 1 2 
B-

0 2 - 1 
-2 5 - 2 
1 - 2 1 

= > r ' A B 
0 1 

- 1 2 

0 1 
-1 2 

and A2 = [2]. 

4.4 P o w e r s of A 

Example 4.4.1 (Compound Interest) Let us take an example from engi­
neering economy. Suppose you invest $ 500 for six years at 4 % in Citibank. 
Then, 

Pk+i = 1.04Pfc, P6 = (1.04)6, P0 = (1.04)6500 = $632.66. 

Suppose, the time bucket is reduced to a month: 

0.04 
~12~ 

Pk+i= ( l + ^ W Pr2= (l 

What if we compound the interest daily? 

0.04 

72 

Po = (1.003)72500 = $635.37. 

Pk+l = ( 1 + ^ J Pk, i>6(364) + 1.5 =(1+ 36^ J 
2185.5 

P0 = $635.72. 

Thus, we have 

Pk+i - Pk 
At 

= 0.04Pfc -» 
dP 
dt 

0.04P ^> P(t) = eomtP0. 

In the above simplest case, what we have is a difference/differential equa­
tion with one scalar variable. What if we have a matrix representing a set of 
difference/differential equation systems? What is e~Ai1 

Example 4.4.2 (Fibonacci Sequence) 

Fk+2 = Fk+i + Fk, Fi = 0, F2 — 1. 

Uk = 
Fk+i 

Fk 
Uk+l — 

Fk+2 
Fk+i 

1 1 
10 

Fk+1 
Fk 

- Auk. 

uk = Aku0 

Hence, we sometimes need powers of a matrix! 

1 1 
10 
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4.4.1 Difference equations 

Theorem 4.4.3 If A can be diagonalized (A — SAS"1), then 

uk = Aku0 = (SAS-^iSAS-1) • • • {SAS-^uo = SAkS~1u0-

Remark 4.4.4 

61 

Uk [vi,-

xk 

A_ 

S 1u0 = aiXiVi H hanX„vn. 

The general solution is a combination of special solutions XkVi and the coeffi­
cients a, that match the initial condition UQ are aiXlvi + • • • + a„A°un = Uo 
or Sa — uo or a = 5 _ 1MO- Thus, we have three different forms to the same 
equation. 

Example 4.4.5 (Fibonacci Sequence, continued) 

1 1 
10 

A, = 

d(s) = 

l + \/5 

s - 1 - 1 
- 1 s 

A2 = 

Ai A2 
1 1 A = SAS-1 

uk = AkuQ -

Ax 
A2 

= s* - s - 1 = 0. 

1 - \ / 5 

1 
2 ' 

1 -A2 

- 1 x1 

•ffc+i 
Fk 

Fk = 
Xk 

A 2 

Ai — A2 

k 

X\ — A2 

Ai A2 
1 1 

1 

71 

xk 

At 

1 + v ^ 

1 

Ai — A2 

1 

-1 M A2 

' 1 - V E T 

1000 
Since -4? (^—f^-J <\, Fww = the nearest integer to 4= (^ f l - ) 

Note that the ratio -J^ 1 = 1 - y 5 = 1.618 is known as the Golden Ratio, which 
represents the ratio of the lengths of the sides of the most elegant rectangle. 

Example 4.4.6 (Markov Process) Assume that the number of people leav­
ing Istanbul annually is 5 % of its population, and the number of people en­
tering is 1 % of Turkey's population outside Istanbul. Then, 

#inside 
jfcoutside 

0.95 0.01 
0.05 0.99 

A 
0.95 0.01 
0.05 0.99 

d(s) 
s - 0 . 9 5 -0.01 
-0.05 s - 0 . 9 9 = ( s - 1 . 0 ) ( s - 0 . 9 4 ) . 
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Ai = 1.0, A2 = 0.94 =>• V! , V2 

SAS'1 = 
| 1 

-1 1 
1.00 

Vk 
Zk 

0.95 0.01 
0.05 0.99 

-ik 
| 1 

-1 1 

0.94 

1.00* 

-1 

5 5 

5 _ I 
6 6 

0.94* 

/ 5 5 
= ^2/o + ^ o 

Since 0.94* -» 0 as A; -)• oo, 

+ I |»b " ^ o ) 0.94* 

I I 
I -I 

1 
- 1 

2/oo 

•2 CO 
= l ^ 2 / o + | « b L6 6 J 

TVie steady-state probabilities are computed as in the classical way, Auoo — 
1 • Moo, corresponding to the eigen value of one. Thus, the steady-state vector 
is the eigen vector of A corresponding to A = 1, after normalization to have 
legitimate probabilities (see Remark 4-3-4): 

5 [I Moo = avi = -
6 

" 1 ' 
5 

1 L J 

" 1 " 
6 
5 
6 

4.4.2 Differential Equations 

Example 4.4.7 

du 
~dl 

Au • 
2 3 
14 u <=> u(t) = eAtu0-

Xx = 5,vi = (l,lf, A2 = l, «2 = ( - 3 , l ) a 

u(t) = a 1 e A l S 1 + a2e*2tv2 = axe „5t 

U 0 = « 1 + a2 

u(t) 
1 - 3 
1 1 

a5t 

-3 
1 

OLi 

1 
1 

1 - 3 
1 1 

+ a2e
t 

Oil 

- 3 
1 

= S 
J>t 

5 - ^ 0 -

The power series expansion of the exponentiation of one scalar is 
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and if we generalize to the matrices 

eM = I + At + 
{At)2 (At)3 

2! 3! 

If we take the derivative of both sides, we have 

+ • 

deM
 T A A2{2t) A3{it2) 

= I + A + „. + +—)^—L + -
dt 

= A 

2! 3! 

' , (At)2 (At)3 

I + At+ ±-J- + ^J- + ••• 2! 3! 
= Ae At 

UA = SAS-1, 

At r OAO-I SA2S-H2 SA3S~H3 

eAt = / + SAS x + -. + -. + 
2! 

' , {At)2 {At)3 

i+At+^-^- + ^-T '—+• 

3! 

S" 1 = SeAtS~1. 
2! 3! 

Thus, we have the following theorem. 

Theorem 4.4.8 / / A can be diagonalized as( A = SAS-1), then ^ — Au 
has the solution u(i) = eAtuo = SeAtS~1uo, or equivalently u(i) = a ieA l 'v i + 
• • • + ane

Xntvn, where a — 5_ 1«o-

4.5 The Complex case 

In this section, we will investigate Hermitian and unitary matrices. The com­
plex field C is denned over complex numbers (of the form x+iy where x,y E.R 
and i2 — —1) with the following operations: 

{a + ib) + {c + id) = {{a + c) + i(b+d)) (a + ib)(c + id) = {{ac-bd) + i(cb+ad)). 

Definition 4.5.1 The complex conjugate ofa + ibsC is a + ib = a — ib. See 
Figure 4-2. 

Properties: 

i. (a + ib){c + id) — {a + ib)(c + id), 
ii. {a + ib) + (c + id) — {a + ib) + (c + id), 
Hi. (a + ib)a + ib = a2 + b2 — r2 where r is called modulus of a + ib. 

We have a = y/a2 + b2 cos 9 and b = \/a2 + b2 sin 9 and 

a + ib = \]a? + b2{cos9 + ism 9) = re10 (Polar Coordinates), 

where re1,6 — cos 9 + i sin 9. 
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Im 

a+ib= r (coxO + i sinO) 

*- Re 
a 

a+ib=a-ib 

Fig. 4.2. Complex conjugate 

Definition 4.5.2 A = AH with entries (AH)ij = (A)^ is known as conju­
gate transpose (Hermitian transpose). 

Properties: 

i. < x, y >— xHy, x A. y <=> xHy = 0, 
ii. \\x\\ = (xHx)z, 
in. {AB)H = BHAH. 

Definition 4.5.3 A is Hermitian if AH = A. 

Properties: 

i. A" = A,~ix<E C", xHAx € K". 
ii. Every eigen value of a Hermitian matrix is real. 
Hi. The eigen vectors of a Hermitian matrix, if they correspond to different 

eigen values, are orthogonal to each other, 
iv. (Spectral Theorem) 

A = AH, there exists a diagonalizing unitary (complex matrix of orthonor-

mal vectors as columns) U such that 

U'1AU = UHAU = A. 

Therefore, any Hermitian matrix can be decomposed into 

A = USUH = Xivxv? + ••• + \„vnv%. 

Definition 4.5.4 If B = M~1AM (change of variables), then A and B have 
the same eigen values with the same multiplicities, termed as A is similar to 
B. 
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Properties: 

i. A 6 C m X n , 3 unitary M — U 9 U~lAU = T is upper-triangular. The 
eigen values of A must be shared by the similar matrix T and appear 
along the main diagonal. 

ii. Any Hermitian matrix A can be diagonalized by a suitable U. 

Definition 4.5.5 The matrix N is called normal if NNH = NHN. Only for 
normal matrices, T = U"1NU = A where A is diagonal. 

Problems 

4.1. Determinant 
Prove property 11 in Section 4.1.2. 

4.2. Jordan form 

Let A = 

1 1 - 1 - 1 - 1 
2 1 1 2 1 
0 1 1 0 - 1 
1 - 1 1 3 1 
2 - 2 2 2 4 

Find S such that S^AS = 

"2 1 
2 

2 1 
2 

2_ 
Hint: 
Choose V2 € M[{A - XI)2}, v\ = [A - A/]w2. Similarly, choose v± and 
Finally, choose v* e M"UA - XI)}. 

v3-
Finally, choose v5 6 N[{A - XI)}. 

4.3. Using Jordan Decomposition 

Let A = 

- 1 
10 

0 

0 

I 
10 
l 

10 

0 

0 ' 
l 

10 
I 

10 . 

Find A10. 

4.4. Differential Equation System 
Let the Blue (allied) forces be in a combat situation with the Red (enemy) 
forces. There are two Blue units (Xi, X2) and two Red military units (Yi, Y )̂-
At the start of the combat, the first Blue unit has 100 (X° = 100) combatants, 
the second Blue unit has 60 (X° = 60) combatants. The initial conditions 
for the Red force are Y° = 40 and Y2° = 30. Since the start of the battle 
(t = 0), the number of surviving combatants (less than the initial values due 
to attrition) decrease monotonically and the values are denoted by X\, X\, 
Y{, and Y\. 

The first Blue unit is subjected to directed fire from all the Red forces, 
with an attrition rate coefficient of 0.03 Blue 1 targets/Red 1 firer per unit 
time and 0.02 Blue 1 targets/Red 2 firer per unit time. The second Blue unit 
is also subjected to directed fire from all the Red forces, with an attrition rate 



66 4 Eigen Values and Vectors 

coefficient of 0.04 Blue 2 targets/Red 1 firer per unit time and 0.01 Blue 2 
targets/Red 2 firer per unit time. The first Red unit is under directed fire from 
both Blue units, with an attrition rate coefficient of 0.05 Red 1 targets/Blue 
1 firer per unit time and 0.02 Red 1 targets/Blue 2 firer per unit time. The 
second Red unit is subjected to directed fire from only Blue 1, with an attri­
tion rate coefficient of 0.03 Red 2 targets/Blue 1 firer per unit time. 
(a) Write down the differential equation system to represent the combat dy­
namics. 
(b) Find the closed form values as a function of time t for X{, X\, Y±, Y$. 
(c) Calculate X{, X\, Y{, Yj,t = 0,1,2,3,4,5. 

Web material 

http://149.170.199.144/multivar/eigen.htm 

http://algebra.math.ust.hk/determinant/03_properties/lecturel.shtml 

http://algebra.math.ust.hk/eigen/01_definition/lecture2.shtml 

http://bass.gmu.edu/ececourses/ece521/lecturenote/chapl/node3.html 

http://c2.com/cgi/wiki?EigenValue 

http://ceee.rice.edu/Books/LA/eigen/ 

http://cepa.newschool.edu/het/essays/math/eigen.htm 

http://cio.nist.gov/esd/emaildir/lists/opsftalk/msg00017.html 

http://cnx.org/content/m2116/latest/ 

http://cnx.rice.edu/content/ml0742/latest/ 

http://college.hmco.com/mathematics/larson/elementary_linear/4e/ 

shared/downloads/c08s5.pdf 

http://college.hmco.com/mathematics/larson/elementary_linear/5e/ 

students/ch08-10/chap_8_5.pdf 

http://ece.gmu.edu/ececourses/ece521/lecturenote/chapl/node3.html 

http://en.wikipedia.org/wiki/Determinant 

http://en.wikipedia.org/wiki/Eigenvalue 

http://en.wikipedia.org/wiki/Hermitian_matrix 

http: //en. wikipedia. org/wiki/Jordan_normal_f orm 

http://en.wikipedia.org/wiki/Skew-Hermitian_matrix 

http://encyclopedia.laborlawtalk.com/Unitary_matrix 

http://eom.springer.de/C/c023840.htm 

http://eom.springer.de/E/e035150.htm 

http://eom.springer.de/H/h047070.htm 

http://eom.springer.de/J/j 054340.htm 

http://eom.springer.de/L/1059520.htm 

http://everything2.com/index.pl?node=determinant 

http://fourier.eng.hmc.edu/el61/lectures/algebra/node3.html 

http://fourier.eng.hmc.edu/el61/lectures/algebra/node4.html 

http://gershwin.ens.fr/vdaniel/Doc-Locale/Cours-Mirrored/ 

Methodes-Maths/white/math/s3/s3spm/s3spm.html 

http://home.iitk.ac.in/~arlal/book/nptel/mthl02/node57.html 

http://homepage.univie.ac.at/Franz.Vesely/cp0102/dx/node28.html 

http://hyperphysics.phy-astr.gsu.edu/hbase/deter.html 
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http://kr.cs.ait.ac.th/~radok/math/mat/51.htm 

http://kr.cs.ait.ac.th/~radok/math/mat3/ml32.htm 

http://kr.cs.ait.ac.th/"radok/math/mat3/ml33.htm 

http://kr.cs.ait.ac.th/"radok/math/mat3/ml46.htm 

http://kr.cs.ait.ac.th/~radok/math/mat7/stepl7.htm 

http://linneus20.ethz.ch:8080/2_2_1.html 

http://math.carleton.ca:16080/"daniel/teaching/114W01/117_EigVal.ps 

http://math.fullerton.edu/mathews/n2003/JordanFormBib.html 

http://mathworId.wolfram.com/Determinant.html 

http://mathworId.wolfram.com/DeterminantExpansionbyMinors.html 

http://mathworld.wolfram.com/Eigenvalue.html 

http://mathworld.wolfram.com/Eigenvector.html 

http://mathworld.wolfram.com/Hermit ianMatrix.html 

http://mathworld.wolfram.com/JordanCanonicalForm.html 

http://mathworld.wolfram.com/UnitaryMatrix.html 

http: //meru. met. mis sour i. edu/people/hai/research/j acobi. c 

http://mpec.sc.mahidol.ac.th/radok/numer/STEP17.HTM 

http://mysoftwear.com/go/0110/10406671133e894dl72cd42.html 

http://ocw.mit.edu/NR/rdonlyres/Electrical-Engineering-and-Computer-

Science/6-241Fall2003/A685C9EE-6FF0-4ElA-81AC-04A8981C4FD9/0/ 

rec5.pdf 

http://oonumerics.org/MailArchives/oon-list/2000/06/0486.php 

http://oonumerics.org/MailArchives/oon-list/2000/06/0499.php 

http://orion.math.iastate.edu/hentzel/class.510/May.23 

http://ourworld.compuserve.com/homepages/fcfung/mlaseven.htm 

http://planetmath.org/encyclopedia/Determinant2.html 

http://planetmath.org/encyclopedia/ 

DeterminantlonTermsOfTracesOfPowers.html 

http://planetmath.org/encyclopedia/Eigenvalue.html 

http://planetmath.org/encyclopedia/JordanCanonicalForm.html 

http://planetmath.org/encyclopedia/ 

ProofOfJordanCanonicalFormTheorem.html 

http://psroc.phys.ntu.edu.tw/cjp/v41/221.pdf 

http://rakaposhi.eas.asu.edu/cse494/f02-hwl-qnl.txt 

http://rkb.home.cern.ch/rkb/AN16pp/node68.html 

http://schwehr.org/software/density/html/Eigs_8C.html 

http://sherry.if i.unizh.ch/mehrmann99structured.html 

http://sumantsumant.blogspot.com/2004/12/one-of-beauty-of-matrix-

operation-is. html 

http://www-gap.dcs.st-and.ac.uk/"history/Search/historysearch.cgi? 

SUGGESTION=Determinant&CONTEXT=l 

http://www-history.mcs.st-andrews.ac.uk/history/Biographies/ 

Jordan.html 

http://www-history.mcs.st-andrews.ac.uk/history/HistTopics/ 

Matrices_and_determinants.html 

http://www-math.mit.edU/18.013A/HTML/chapter04/section01.html# 

DeterminantVectorProducts 

http://www.bath.ac.uk/mech-eng/units/xxl0118/eigen.pdf 

http://www.caam.rice.edu/software/ARPACK/UG/node46.html 
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http://www.cap-lore.com/HathPhys/Implicit/eigen.html 

http://www.cs.berkeley.edu/~wkahan/MathHl10/j ordan.pdf 

http://www.cs.ucf.edu/courses/cap6411/cot6505/Lecture-2.PDF 

http://www.cs.ucf.edu/courses/cap6411/cot6505/spring03/Lecture-2.pdf 

http://www.cs.uleth.ca/~holzmann/notes/eigen.pdf 

http://www.cs.ut.ee/"toomas_l/linalg/linl/nodel4.html 

http://www.cs.ut.ee/~toomas_l/linalg/linl/nodel6.html 

http://www.cs.ut.ee/"toomas_l/linalg/lin2/nodel8.html 

http://www.cs.ut.ee/~toomas_l/linalg/lin2/node20.html 

http://www.cs.utk.edu/~dongarra/etemplates/ 

http://www.dpmms.cam.ac.uk/site2002/Teaching/IB/LinearAlgebra/ 

jordan.pdf 

http://www.ece.tamu.edu/"chmbrlnd/Courses/ELEN601/ELEN601-Chap7.pdf 

http://www.ece.uah.edu/courses/ee448/appen4_2.pdf 

http://www.ee.bilkent.edu.tr/~sezer/EEE501/Chapter8.pdf 

http://www.ee.ic.ac.uk/hp/staff/www/matrix/decomp.html 

http://www.emunix.emich.edu/"phoward/f03/416f3fh.pdf 

http://www.freetrialsoft.com/free-download-1378.html 

http://www.gold-software.com/MatrixTCL-reviewl378.htm 

http://www.itl.nist.gov/div898/handbook/pmc/section5/pmc532.htm 

http://www.mat.univie.ac.at/"kratt/artikel/detsurv.html 

http://www.math.colostate.edu/~achter/369/help/jordan.pdf 

http://www.math.ku.dk/ma/kurser/symbolskdynamik/konjug/node14.html 

http://www.math.lsu.edu/~verrill/teaching/linearalgebra/linalg/ 

linalg8.html 

http://www.math.missouri.edu/courses/math4140/331eigenvalues.pdf 

http://www.math.missouri.edu/~hema/331eigenvalues.pdf 

http://www.math.poly.edu/courses/ma2012/Notes/Eigenvalues.pdf 

http://www.math.sdu.edu.cn/mathency/math/u/u062.htm 

http://www.math.tamu.edu/~dallen/m640_03c/lectures/chapter8.pdf 

http://www.math.uah.edu/mathclub/talks/ll-9-2001.html 

http://www.math.ucdavis.edu/~daddel/linear_algebra_appl/ 

Applications/Determinant/Determinant/Determinant.html 

http://www.math.ucdavis.edu/~daddel/linear_algebra_appl/ 

Applications/Determinant/Determinant/node3.html 

http://www.math.ucdavis.edu/~daddel/Math22al_S02/LABS/LAB9/lab9_w00/ 

nodel5.html 

http://www.math.umd.edu/~hck/Normal.pdf 

http://www.mathreference.com/la-det,eigen.html 

http://www.mathreference.com/la-j f,canon.html 

http://www.maths.gla.ac.uk/~tl/minimal.pdf 

http://www.maths.lanes.ac.uk/~gilbert/m306c/nodel6.html 

http://www.maths.liv.ac.uk/~vadim/M298/108.pdf 

http://www.maths.lse.ac.uk/Personal/james/old_ma201/lectll.pdf 

http://www.maths.mq.edu.au/~wchen/lnlafolder/lal2.pdf 

http://www.maths.surrey.ac.uk/interactivemaths/emmaspages/ 

option3.html 

http://www.mathwords.com/d/determinant.htm 

http://www.mines.edu/~rtankele/cs348/LAy.207.doc 
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http://www.nova.edu/"zhang/OlCommAlgJordanForm.pdf 
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http://www.oonumerics.org/MailArchives/oon-list/2000/05/0481.php 
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http://www.ping.be/~pingl339/determ.htm 
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http://www.reference.com/browse/wiki/Unitary.matrix 

http://www.riskglossary.com/link/eigenvalue.htm 
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http://www.sosmath.com/matrix/determ2/determ2.html 

http://www.sosmath.com/matrix/inverse/inverse.html 
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http://www.techsoftpl.com/matrix/doc/eigen.htm 

http://www.tversoft.com/computer/eigen.html 

http://www.wikipedia.org/wiki/Determinant 

http://www.wikipedia.org/wiki/Unitary_matrix 

http://www.yotor.com/wiki/en/de/Determinant.htm 

http://www.zdv.uni-tuebingen.de/static/hard/zrsinfo/x86_64/nag/ 

mark20/NAGdoc/f1/html/indexes/kwic/determinant.html 
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EigenvaluesEigenvectors.pdf 

http://www2.maths.unsw.edu.au/ForStudents/courses/math2509/ch9.pdf 
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Positive Definiteness 

Positive definite matrices are of both theoretical and computational impor­
tance in a wide variety of applications. They are used, for example, in opti­
mization algorithms and in the construction of various linear regression mod­
els. As an initiation of our discussion in this chapter, we investigate first the 
properties for maxima, minima and saddle points when we have scalar func­
tions with two variables. After introducing the quadratic forms, various tests 
for positive (semi) definiteness are presented. 

5.1 Minima, Maxima, Saddle points 

5.1.1 Scalar Functions 

Let us remember the properties for maxima, minima and saddle points when 
we have scalar functions with two variables with the help the following exam­
ples. 

Fig. 5.1. Plot of f(x, y) = x2 + y2 
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Example 5.1.1 Let f(x,y) = x2 + y2. Find the extreme points of f(x,y): 

ox ay 

Since we have only one critical point, it is either the maximum or the min­
imum. We observe that f(x,y) takes only nonnegative values. Thus, we see 
that the origin is the minimum point. 

Fig. 5.2. Plot of f(x, y) = xy - x2 - y2 - 2x - 2y + 4 

Example 5.1.2 Find the extreme points off(x,y) = xy-x2—y2-2x — 2y+4. 
The function is differentiate and has no boundary points. 

1 dx v dy y 

Thus, x = y = — 2 is the critical point. 

_82f(x,y)_ n_d2f(x,y)_ _d2f(x,y) _ 1 
Jxx ~ dx2 ~ dy2 ~Jvy' Jxy ~ Dxdy ~ 

The discriminant (Jacobian) of f at (a,b) = (—2,-2) is 

— fxxfyy — fXy = 4 — 1 = 0. 

Since fxx < 0, fxxfyy — f2y > 0 =>• / has a local maximum at (—2, —2). 

Jxx Jxy 

Jxy fyy 
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Theorem 5.1.3 The extreme values for f(x,y) can occur only at 

i. Boundary points of the domain of f. 
ii. Critical points (interior points where fx = fy = 0, or points where fx or 

fy fails to exist). 

If the first and second order partial derivatives of f are continuous throughout 
an open region containing a point (a,b) and fx(a,b) = fy(a,b) — 0, you may 
be able to classify (a, b) with the second derivative test: 

i- fxx < 0, fxxfyy - fL > 0 at (a,b) 
ii- fxx > 0, fxxfyy ~ /J y > 0 at (a,b) 

c2 in- fxxfyy - f2
y<0 at (a,b) 

iv- fxxfyy- fL = 0 at (a,b) 

local maximum; 
local minimum; 

saddle point; 
test is inconclusive (f is singular). 

5.1.2 Quadratic forms 

Definition 5.1.4 The quadratic term f(x,y) = ax2 + 2bxy + cy2 is positive 
definite (negative definite) if and only if a > 0 (a < 0) and ac—b2>0.f has 
a minimum (maximum) at x = y = 0 if and only if fxx(0,0) > 0 (/Xx(0,0) < 
0) and fxx(0,0)fyy{0,0) > f2

y{0,0). If f(0,0) = 0, we term f as positive 
(negative) semi-definite provided the above conditions hold. 

Now, we are able to introduce matrices to the quadratic forms: 

ax2 + 2bxy + cy2 — [x, y) 
a b 
be 

Thus, for any symmetric A, the product / = x7 Ax is a pure quadratic 
form: it has a stationary point at the origin and no higher terms. 

xATx - [xi,x2,--- ,xn] 

an 

021 

an\ 

aX2 • 

" 2 2 • 

0-n2 • 

• 0-in 

• « 2 n 

ann _ 

Xi 

X2 

%n 

= anZj +a12xix2 H V annx
2
n = ^ ^ ai}-XjXj. 

i = l j=l 

Definition 5.1.5 If A is such that â - = dxJx. (hence symmetric), it is 
called the Hessian matrix. If A is positive definite (xTAx > 0, Vx ^ 6) and 
if f has a stationary point at the origin (all first derivatives at the origin are 
zero), then f has a minimum. 
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Remark 5.1.6 Let f : M™ M- R andx* G Rn be the local minimum, Vf(x*) = 
0 and V2f(x*) is positive definite. We are able to explore the neighborhood 
of x* by means of x* + Ax, where \\Ax\\ is sufficiently small (such that the 
second order Taylor's approximation is pretty good) and positive. Then, 

f(x* + Ax) S f(x*) + AxTVf(x*) + ^AxTV2f(x*)Ax. 

The second term is zero since x* is a critical point and the third term is 
positive since the Hessian evaluated at x* is positive definite. Thus, the left 
hand side is always strictly greater than the right hand side, indicating the 
local minimality of x*. 

5.2 Detecting Positive-Definiteness 

Theorem 5.2.1 A real symmetric matrix A is positive definite if and only if 
one of the following holds: 

i. xTAx > 0, Vz ^ 6; 
ii. All the eigen values of A satisfy A; > 0; 
Hi. All the submatrices Ak have positive determinants; 
iv. All the pivots (without row exchanges) satisfy di > 0; 
v. 3 a nonsingular matrix W B A = WTW (called Cholesky Decomposition); 

Proof. A is positive definite. 

1. (i) <& (ii) 

(i) => (ii): Let x, be the unit eigen vector corresponding to eigen value 
Xi. 

J\Xi = = A J X J \^ XA J\-X{ = Xi AjXj — A j . 

Then, Ai > 0 since A is positive definite. 
(i) <= (ii): Since symmetric matrices have a full set of orthonormal eigen 

vectors 
(Exercise!). 

x — 2_,aixi ^* Ax = 2~\onAxi =>• xTAx = (2~]aixf)(2~]cti\iXi). 

Because of orthonormality xTAx = ^ ctf Aj > 0. 
2. (i) <£• (Hi) <=> (iv) <& (v) 

(i) => (Hi): det A = \\ • X2 • • • A„, since (i) o (ii). 
Claim: If A is positive definite, so is every Ak-

Xk 
Proof: If x 

0 
, then 
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cTAx •• [xk,0] 
Ak * 
* * 

Xk 

0 = x\AkXk > 0. 

If we apply (i) <=> (ii) for Ak (its eigen values are different, but all 
are positive), then its determinant is the product of its eigen values 
yielding a positive result. 

(Hi) =$• (iv): Claim: If A = LDU, then the upper left corner satisfy Ak = 
LkDkUk-

Proof: A Lk 0 
B C 

Dk 0 
0 E 

UkF 
0 G 

= 
LkDkUk LkDkF 
BDkUk BDkF + CEG 

det Ak = det Lk det Dk det Uk — det Dk = d\ • di • • • dk => 

dk — fotA* (Pivot=Ratio of determinants). If all determinants are 
positive, then all pivots are positive. 

(iv) => (v): In a Gaussian elimination of a symmetric matrix U = LT, 
then A = LDLT. One can take the square root of positive pivots 
dt > 0. Then, 

A = Ly/D~VDLT = WTW. 
(v) =* (i): 

xTAx = xTWTWx = \\Wx\\2 > 0. 

Wx = 6 => x = 9 since W is nonsingular. 
Therefore, xTAx > 0, Vcc ̂  6. D 

Remark 5.2.2 The above theorem would be exactly the same in the complex 
case, for Hermitian matrices A — AH. 

5.3 Semidefinite Matrices 

Theorem 5.3.1 A real symmetric matrix A is positive semidefinite if and 
only if one of the following holds: 

i. xTAx > 0, Vx ^ 6; 
ii. All the eigen values of A satisfy A; > 0; 
Hi. All the submatrices Ak have nonnegative determinants; 
iv. All the pivots (without row exchanges) satisfy d, > 0; 
v. 3 a possibly singular matrix W 3 A = WTW; 

Remark 5.3.2 xTAx >0o\i>0is important. 

A = QAQT => xTAx = xTQAQTx = yTAy = Xxy\ + ••• + \nyl, 

and it is nonnegative when Ai 's are nonnegative. If A has rank r, there are r 
nonzero eigen values and r perfect squares. 
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Remark 5.3.3 (Indefinite matrices) Change of Variables: y = Cx. The 
quadratic form becomes yTCTACy. Then, we have congruence transforma­
tion: A H-> CT AC for some nonsingular C. The matrix CT AC has the same 
number of positive (negative) eigen values of A, and the same number of zero 
eigen values. If we let A = I, CT AC = CTC. Thus, for any symmetric matrix 
A, the signs of pivots agree with the signs of eigen values. A and D have the 
same number of positive (negative) entries, and zero entries. 

5.4 Positive Definite Quadratic Forms 

Proposition 5.4.1 If A is symmetric positive definite, then 

P(x) = -xTAx - xTb 

assumes its minimum at the point Ax = b. 

Proof. Let x 9 Ax = b. Then, Vy € Rn , 

P(y) - P(x) = (\yTAy - yTb^ - {^xTAx - xTb^ 

= -^VTAy - yTAx + -xTAx 

= ^{V ~ xf A{y - x) 

> 0 . 

Hence, Vy ^ x, P(y) > P(x) => x is the minimum. D 

Theorem 5.4.2 (Rayleigh's principle) Without loss of generality, we may 
assume that 

Ai < A2 < • • • < An. 

The quotient, R(x) — x ^ , is minimized by the first eigen vector v\ and its 
minimum value is the smallest eigen value \\: 

vfAvi ufAi«i 
R(Vl) = —f = -^T = A l -

v( Vi v[ v\ 

Remark 5.4.3 Va;, R(x) is an upper bound for X\. 

Remark 5.4.4 Rayleigh's principle is the basis for the principle component 
analysis, which has many engineering applications like factor analysis of the 
variance covariance matrix (symmetric) in multivariate data analysis. 

Corollary 5.4.5 If x is orthogonal to the eigen vectors vi,...,Vj-i, then 
R(x) will be minimized by the next eigen vector Vj. 
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Remark 5.4.6 Xj = minxSRn R(x) \j = m a x l 6 r R(x) 
s.t. s.t. 

xTv\ = 0 xTvj+i = 0 

xTVj-i = 0 xTvn = 0 

Problems 

5.1. Prove the following theorem. 

Theorem 5.4.7 (Rayleigh-Ritz) Let A be symmetric, Ai < A2 < • • • < An. 

Ai = min x1Ax, An = max x1Ax. 
IMI=i llx||=i 

5.2. Use 

to show Theorem 5.3.1. 

5.3. Let 

A = 
1 

" 100 

2 10 
1 2 1 
0 1 1 

f(x1,x2) = -x\ + -x\ + 2xxx2 + -x\ -x2 + 19. 

Find the stationary and boundary points, then find the minimizer and the 
maximizer over — 4 < x2 < 0 < x\ < 3. 
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http://www.artsci.wustl.edu/~e503jn/files/math/DefiniteMatrics.pdf 
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http://www.matf.bg.ac.yu/r3nm/NumericalMethods/LAESolve/ 
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Computational Aspects 

For square matrices, we can measure the sensitivity of the solution of the linear 
algebraic system Ax = b with respect to changes in vector 6 and in matrix 
A by using the notion of the condition number of matrix A. If the condition 
number is large, then the matrix is said to be ill-conditioned. Practically, such 
a matrix is almost singular, and the computation of its inverse or solution of a 
linear system of equations is prone to large numerical errors. In this chapter, 
we will investigate computational methods for solving Ax = b, and obtaining 
eigen values/vectors of A. 

6.1 Solution of Ax = b 

Let us investigate small changes in the right hand side of Ax = b as if we are 
making a sensitivity analysis: 

6 n> b + Ab => x i-»- x + Ax 

A(x + Ax) = b + Ab& A(AX) = Ab. 

Similarly, one can investigate the effect of perturbing the coefficient matrix 
A: 

A\-^A + AA^-x^x + Ax 

We will consider these cases with respect to the form of the coefficient matrix 
A in the following subsections. 

6.1.1 Symmetric and positive definite 

Let A be symmetric. Without loss of generality, we may assume that we or­
dered the nonnegative eigen values: 0 < Ai < A2 < • • • < An. Since Ab is a 
vector itself, it could be represented in terms of the basis formed by the asso­
ciated eigen vectors v\,V2,...,vn. Moreover, we can express Ab as a convex 
combination because its norm is sufficiently small. 
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n 
A/, — 2_.aivi where Vi <-> A,, 2 _ a j ~ ^' a> — 0;Vi. 

i=l 

If A), is along i>i, i.e. At, — ev\, then Ax = ^- since Zix = A~lAb- That is, 
the error of size || A>|| is amplified by the factor j - , which is just the largest 
eigen value of A-1. On the other hand, if b — v„, then x = A~xb = •£-, which 
makes the relative error 

\AX\\ 

INI 
A„ II A, 

MIL Xi 
An 

as much as possible. 

Proposition 6.1.1 For a positive definite matrix, the solution x — A lb and 
the error Ax — A~xAb always satisfy 

||x|| > M and \\AX\\ < J!M. 

Therefore, the relative error is bounded by 

\AX 
< 

A„ \\Ah 

Definition 6.1.2 The quantity c — k°- = v™*"1 is known as condition number 
2 a Ai Am in 

of A. 

Remark 6.1.3 Notice that c is not affected by the size of a matrix. If A — I 
or A' — -k then cA = 1 = cA> = 4™^. However, detA = 1, det A' = 10~". 
Thus, determinant is a terrible measure of ill conditioning. 

Example 6.1.4 

2.00002 2 
2 2.00002 => Ai = 2 x 10~°, A2 = 4.00002 => c « 2 x 10s. 

2.00001 
2.00001 

0.5 
0.5 

In particular, 

0 = Oi = 2 Qnnm =$• X = X\ 

Then, we have 

\\b\\ = 2.00001 v^, Ab = b2-b1 = 10_ s 

and b2 = 

1 
- 1 

2.00002 
2 X2 

\Ab\\ = \ / 2 x 10-5; 
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\\x\\ = -y> Ax = x2 -xi = -

= 1 ana 

1 
- 1 =* IIArll = 

V2 

Ml 
5 x 10~6. 

l o i M J T/ie relative amplification in this particular instance, ",, 1}' ~ -g-

approximately ^-, which is a lower bound for the condition number c « 2 x 
105. 

Remark 6.1.5 As a rule of thumb (experimentally verified), a computer can 
loose logc decimal places to the round-off errors in Gaussian elimination. 

6.1.2 Symmetric and not positive definite 

Let us now drop the positivity assumption while we keep A still symmetric. 
Then, nothing is changed except 

\"max | 

6.1.3 Asymmetric 

In this case, the ratio of eigen values cannot represent the relative amplifica­
tion. 

Example 6.1.6 Let the parameter K ̂ > 0 be large enough. 

A = 
1 K 

0 1 
<*A~X = 

1 -K 

0 1 
Ai = A2 = 1. 

In particular, 

b = b\ = 1 =£• x = x\ 

Then, we have 

\\b\\ = V l + K2, Ab = h - h = 

and b? = =>• x2 = 

\M = l; 

1, Ax = X2 — X\ 

l|AJ 

K 

- 1 

V 1 + K2 and 

» \\AX\\ = Vl + K2 

Ah\\ 1 

\m\ \\o\\ %/i + K2 " 
The relative amplification in this particular instance is 1 + K2 . Hence, we 
should have 1 C 1 + K2 < c(A). The condition number c(A) is not just the 
ratio of eigen values, which is 1; but it should have a considerably larger value 
in this example, since A is not symmetric. 
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Definition 6.1.7 The norm of A is the number defined \\A\\ = xnaxx^o |d!f 

Remark 6.1.8 ||.A|| bounds the "amplifying power" of the matrix. 

\\Ax\\ < \\A\\ \\x\\, Vz; 

and equality holds for at least one nonzero x. It measures the largest amount 
by which any vector (eigen vector or not) is amplified by matrix multiplication. 

Proposition 6.1.9 For a square nonsingular matrix, the solution x = A~1b 
and the error Ax = A~1Ab satisfy 

J!M<M||.u-i||JJM. 

Proof. Since 
b=Ax=> \\b\\ < \\A\\\\x\\ and 
Ax = A-xAb =$> \\AX =|| < | | ^ _ 1 | | ||A>||, we have 

H&HPHIWI and I I^Hl^- 1 ! ! ! !^ 

Remark 6.1.10 When A is symmetric, 

W = |A„I, i i ^ - 1 ^ J- |=> c : 

D 

l A l l I U - 1 ! ^ 
|Ai| 

and the relative error satisfies 

\AX\\ K \\Ab[ 

"1 K 

0 1 ,b = 
K 

1 , A» = 
0" 

- 1 

Example 6.1.11 Let us continue the previous example, where 

A = 

Since we have 

« < | | ^ | | < « + 1 , and K < \\A~*\\ < K+ 1, 

then the relative amplification is approximately K2 « ||.A|| | |A _ 1 | 

Remark 6.1.12 

ll2 \\Ax\\2 xTATAx 
\\A\\' = max 

M = max • : Rayleigh quotient! 
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Proposition 6.1.13 The norm of A is the square root of the largest eigen 
value of ATA. The vector that is amplified the most is the corresponding eigen 
vector of ATA. 

Jtj 4L / l i l y JU ''TTIH.X**^ 
An U\\. 

Example 6.1.14 Let us further continue the previous example: 

1 K 

0 1 
and A l = 1 -K 

0 1 

ATA = 
1 K 

K K? + 1 
S — 1 K 

— K S — K2 — 1 
= 0 => s2 - (K2 + 2)s + 1 = 0 

A2 = (K2 + 2)2-4(1)1 = K2(K2+4) 

^max — 
-(-K2-2)+y/K2(K2+4) 

2(1) 
K2 =$• \\A\\ = \ /Am a x « K. 

Similarly, \\A 1 | | = \/Amax[(j4 1)TA :] « «. 77ms, i/ie relative amplification 
is controlled by \\A\\ ||-A-1|| « «2-

Remark 6.1.15 / / A is symmetric, then ATA = A2 and \\A\\ = max|A;|. 

Let us consider now the changes in the coefficient matrix. 

Proposition 6.1.16 If we perturb A, then 

' IAJI . \\AA\< 
\\x + Ax 

<c1 where c •• \A\\ A-

Proof. 
Ax = b 
(A + AA){x + Ax) 4 =» 

AAX + AA(x + Ax) = 0&Ax = -A-l{AA){x + Ax). 

|A c | |< IU- 1 | | | |Z l A | | | | : C + A c | | ^ 

Example 6.1.17 

A = 

I A, 
\x + Ax 

< A - H 

1 10 100 

Wffi 1 
1 -i- - i -
x 10 100 . 

, b = 

'\-JATA\- AI-

111 
i n 
10 
i n 

. 100 . 

31329 

X = Xi 

\*A\ 
U\\ 

D 

13 
= 100.5099, ||x|| = VS, 
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A~ 

1_ 
999 
10 

10989 
100 

10989 

999 u 

1010 1000 
999 99 
100 
999 

100 
99 

AA = 

\A~X 

-1 -

- J\max[(A-i)TA] = 

10 

-10 -§-1 U 10 

0 - - i - i-
" 10 100 

AA = 

28831 
277 

0 0 100 

0 1 0 

10 0 

= 10.2021. 

=> x2 = 

i n 
100 
111 
10 

111 
100 

=>• Ax — x2 — x\ 

l i 
100 
101 
10 
11 

100 

=> 114*11 = 
V1020342 

100 
= 10.1012, and 

\AA\\ = \J \ma.x\ATAAA} 
14963 

146 
= 10.1236. 

10.1012 10.1236 \\AA\ 
< c = c-

sft 
10.1236 

100.5099 

Jz + A J ^ 3 " 100.5099" " \\A\\ 

= 57.9 < c = P | | | U _ 1 | | = 100.5099(10.2021) = 1025.412. 

The relative amplification in this instance is 51.9 whereas the theoretic upper 
bound is 1025412. 

Remark 6.1.18 The following are the main guidelines in practise: 

c and \\A\\ are never computed but estimated. 
c explains why AT Ax = ATb are so hard to solve in least squares problems: 
c(ATA) = [C(J4)]2 where c(.) is the condition number. The remedy is to 
use Gram-Schmidt or singular value decomposition, A = Qi£Q%. The 
entries a, in S are singular values of A, and a\ are the eigen values of 
ATA. Thus, \\A\\ = amax. Recall that \\Ax\\ = \\QiEQ^x\\ = \\Ex\\. 

6.2 Computat ion of eigen values 

There is no best way to compute eigen values of a matrix. But there are 
some terrible ways. In this section, a method recommended for large-sparse 
matrices, the power method, will be introduced. 

Let wo be initial guess. Then, u^+i = Auk — Ak+1uo- Assume A has full 
set of eigen vectors xi,x2, • • • ,xn, then Uk = aiAjXi H \-an\l^xn. Assume 
further that Ai < A2 < • • • < An_i < An; that is, the last eigen value is not 
repeated. 
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The vectors uk point more and more accurately towards the direction of xn 

and the convergence factor is r = ' ,'^~}'. 

Example 6.2.1 (Markov Process, continued) Recall Example 4-4-6: 

« 4 

A 

'0 
0 

= 

'l' 
0 

81' 
182 

"0.95 0.01" 
0.05 0.99 

. "I = 

r29i" 
1709 1 

=> 

0.95' 
0.05 

Ai = 1 <H-

, "2 = 

, "210 -

• l • 

5 
1 

0.903 
0.097 

0.16666 
0.83333 

= vi, A2 

, "3 = 

7] 

= 0.94 

"0.85882 
0.14118 

" l" 
6 
5 
6 

= av\. 

The convergence rate is quite low r = 0.94 = 2y^ = L21 Since the power 
method is designed especially for large sparse matrices, it converges after 210 
iterations if the significance level is six digits after the decimal point. 

Remark 6.2.2 (How to increase r) If r « 1, the convergence is slow. If 
|An_i| = |Ara|, no convergence at all. There are some methods to increase the 
convergence rate: 

i. Block power method: Work with several vectors at once. Start with p or-
thonormal vectors, multiply by A, then apply Gram-Schmidt to orthogo-

nalize again. Then, we have r' = ' ,^~!''. 

ii. Inverse power method: Operate with A^1 instead of A. vk+i — A~xvk => 
Avk+i = Vk (save L and U!). The convergence rate is r" = Ml , provided 
that r" < 1. This method guarantees convergence to the smallest eigen 
vector. 

Hi. Shifted inverse power method: The best method. Let A be replaced by A — 
PI. All of the eigen values are shifted by (3. Consequently, r'" = K ' la . 
/ / we choose j3 as a good approximation to Xi, the convergence will be 
accelerated. 

(A - Pl)wk+i =wk = 
OL\X\ 

+ 
OL2X2 

(Xi-P)k (A 2 - /3) f c + ••• + 
Qn^n 

- R\k-(A„ - (3) 

/ / we know /3, then we may use A — [31 = LU and solve Ux\ 
(1,1, • • • , 1)T by back substitution. We can choose (3 = (3k at each step 

3 (A - /3kI)wk+i = wk. If A = AT, /3k = R{uk) 
get the cubic convergence. 

M,tr "*, then we will 
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Remark 6.2.3 (QR Algorithm) Start with Ao. Factor it using the Gram-
Schmidt process into QQRQ, then reverse factors A\ = RQQO- A\ is similar to 
Ao: Q0 AoQo — QQ (QORO)QO — A\. So, Ak = QkRk =^ Ak+i = RkQk- Ak 
approaches to a triangular form in which we can read the eigen values from 
the main diagonal. There are some modifications to speed up this procedure as 
well. 

Definition 6.2.4 / / a matrix is less than a triangular form, one nonzero di­
agonal below the main diagonal, it is called in Hessenberg form. Furthermore, 
if it is symmetric then it is said to be in tridiagonal form. 

Definition 6.2.5 A Householder transformation (or an elementary reflector) 
is a matrix of the form 

T 
H = I-2- |2 " 

Remark 6.2.6 Often v is normalized to become a unit vector u = jr^r, then 

H — I — 2uuT. In either case, H is symmetric and orthogonal: 

HTH =(I- 2uuT)T{I - 2uuT) = 1- AuuT + AuuTuuT = I. 

In the complex case, H is both Hermitian and unitary. 

H is sometimes called elementary reflector since 

, 0 ) r , and a — \\x\\, andv = x+crz. Proposition 6.2.7 Let z = e\ — (1,0, 
Then, Hx = -az = {-a, 0, • • • , 0)T . 

Proof. 

Hx 
T VV X 

(x + az)-
2(x + az)Tx 

IHI' v (x + az)T(x + az) 

Hx = x — (x + az) — —az. D 

Remark 6.2.8 Assume that we are going to transform A into a tridiagonal 
or Hessenberg form U~1AU. Let 

Hx = 

a-21 

031 

_0.nl _ 

, z = 

"1" 
0 

0 

Ui 

10 0 0 0 
0 
0 H 
0 
0 

[/f\ andU~lAUi = 

an * * * * 
—a * * * * 
0 * * * * 
0 * * * * 
0 * * * * 
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The second stage is similar: x consists of the last n — 2 entries in the second 
column, z is the first unit coordinate vector of matching length, and H2 is of 
order n — 2: 

Uo = 

1 0 0 0 
0 1 0 0 
0 0 
0 0 H2 

0 0 

= U21, and U^iU^AUiM 0 * * * * 
0 0 * * * 
0 0 * * * 

Following a similar approach, one may operate on the upper right corner 
of A simultaneously to generate a tridiagonal matrix at the end. This process 
is the main motivation of the QR algorithm. 

Problems 

6.1. Show that for orthogonal matrices ||Q|| = c(Q) — 1. Orthogonal matrices 
and their multipliers (aQ) are only perfect condition matrices. 

6.2. Apply the QR algorithm for 

A = 

0.5000 -1.1180 0 0 0 
-1.1180 91.2000 -80.0697 0 0 

0 -80.0697 81.0789 4.1906 0 
0 0 4.1906 2.5913 0.2242 
0 0 0 0.2242 0.1257 -
0 0 0 0 -0.0100 

6.3. Let A{n) 6 R n x n , A(n) = (a^-
, wnere aij — i,j_^. 

(a) Take A{2). 

1. Let 6/ = 1.0 
0.5 

and bu = 1.5 
1.0 

. Calculate the relative 

0 
0 
0 
0 

-0.0100 
0.0041 

error. 

2. Find a good upper bound for the relative error obtained after perturbing 
the right hand side. 

3. Find the relative error of perturbing A(2) by AA(2) . Take 

h 
1.0 
0.5 

as the right hand side. 

4. Find a good upper bound for the relative error obtained after perturbing 
.4(2). 

(b) Take ^4(3)TA(3) and find its condition number and compare with the 
condition number of A(3). 
(c) Take A(4) and calculate its condition number after finding the eigen values 
using the QR algorithm. 
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Web material 

http://202.41.85.103/manuals/planetmath/entries/65/ 

MatrixConditionNumber/MatrixConditionNumber.html 

http://bass.gmu.edu/ececourses/ece499/notes/note4.html 
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http://efgh.com/math/invcond.htm 

http://en.powerwissen.com/Gl+DpIQ8h2QSmPsQTtN08Q== 

_QR_algorithm.html 

http://en.wikipedia.org/wiki/Condition_number 

http://en.wikipedia.org/wiki/Matrix_norm 

http://en.wikipedia.org/wiki/QR_algorithm 

http://en.wikipedia.org/wiki/Tridiagonal_matrix 

http://epubs.siam.org/sam-bin/dbq/article/23653 

http://esperia.iesl.forth.gr/"amo/nr/bookfpdf/fll-5.pdf 

http://lish.cims.nyu.edu/educational/num_meth_I_2005/lectures/ 

lec_ll_qr.algorithm.pdf 

http://gosset.wharton.upenn.edu/"foster/teaching/540/ 

class_s_plus_l/Notes/nodel.html 

http://mate.dm.uba.ar/"mat iasg/papers/condi-arxiv.pdf 

http://math.arizona.edu/"restrepo/475A/Notes/sourcea/node53.html 

http://math.fullerton.edu/mathews/n2003/hessenberg/HessenbergBib/ 

Links/HessenbergBib_lnk_2.html 

http://math.fullerton.edu/mathews/n2003/qrmethod/QRMethodBib/Links/ 

QRMethodBib_lnk_2.html 

http://mathworId.wolfram.com/Condit ionNumber.html 

http://mpec.sc.mahidol.ac.th/numer/STEP16.HTM 

http://olab.is.s.u-tokyo.ac.jp/"nishida/la7/sld009.htm 

http://planetmath.org/encyclopedia/ConditionNumber.html 

http://planetmath.org/encyclopedia/MatrixConditionNumber.html 

http://w3.cs.huj i.ac.il/course/2005/csip/condition.pdf 

http://web.ics.purdue.edu/~nowack/geos657/lecture8-dir/lecture8.htm 

http://www-math.mit.edu/~persson/18.335/lecl4handout6pp.pdf 

http://www-math.mit.edu/~persson/18.335/lecl5handout6pp.pdf 

http://www-math.mit.edu/"persson/18.335/lecl6.pdf 

http://www.absoluteastronomy.com/encyclopedia/q/qr/ 

qr_algorithml.htm 

http://www.acm.caltech.edu/~mlatini/research/ 

presentation-qr-feb04.pdf 

http://www.acm.caltech.edu/"mlat ini/research/qr_alg-feb04.pdf 

http://www.caam.rice.edu/"timwar/MA375F03/Lecture22.ppt 

http://www.cas.mcmaster.ca/~qiao/publications/nm-2005.pdf 

http://www.cs.Colorado.edu/~mcbryan/3656.04/mail/54.htm 

http://www.cs.unc.edu/~krishnas/eigen/node4.html 
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http://www.efgh.com/math/invcond.htm 
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http://www.library.Cornell.edu/nr/bookcpdf/cl1-3.pdf 

http://www.library.Cornell.edu/nr/bookcpdf/cl1-6.pdf 

http://www.ma.man.ac.uk/~higham/pap-le.html 

http://www.ma.man.ac.uk/~nareport s/narep447.pdf 

http://www.math.vt.edu/people/renardym/class_home/nova/bifs/ 

node52.html 

http://www.math.wsu.edu/faculty/watkins/slides/qr03.pdf 

http://www.maths.lancs.ac.uk/~gilbert/m306c/node22.html 

http://www.maths.nuigalway.ie/MA385/novl4.pdf 

http://www.mathworks.com/company/newsletters/news_notes/pdf/ 

sum95cleve.pdf 

http://www.nasc.snu.ac.kr/sheen/nla/html/nodel3.html 

http://www.nasc.snu.ac.kr/sheen/nla/html/node23.html 

http://www.netlib.org/scalapack/tutorial/tsldl91.htm 

http://www.physics.arizona.edu/~restrepo/475A/Notes/sourcea/ 

node53.html 

http://www.sci.wsu.edu/math/faculty/watkins/slides/qr03.pdf 

http://www.ugrad.cs.ubc.ca/~cs402/handouts/handoutl2.pdf 

http://www.ugrad.cs.ubc.ca/~cs402/handouts/handout26.pdf 

http://www.ugrad.cs.ubc.ca/~cs402/handouts/handout28.pdf 

http://www.uwlax.edu/faculty/will/svd/condition/index.html 

http://www.uwlax.edu/faculty/will/svd/norm/index.html 

http://www2.msstate.edu/~pearson/num-anal/num-anal-notes/ 

qr-algorithm.pdf 

http://www4.ncsu.edu/eos/users/w/white/www/white/dir1.7/ 

seel.7.6.html 
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Convex Sets 

This chapter is compiled to present a brief summary of the most important 
concepts related to convex sets. Following the basic definitions, we will con­
centrate on supporting and separating hyperplanes, extreme points and poly-
topes. 

7 .1 P r e l i m i n a r i e s 

Definition 7.1.1 A set X in K" is said to be convex if 

Mxi,X2 G X and Va e R + , 0 < a < 1, the point ax\ + (1 - a)a;2 € X. 

CONVEX NON-CONVEX 

Fig. 7.1. Convexity 

Remark 7.1.2 Geometrically speaking, X is convex if for any points X\,X2 £ 
X, the line segment joining these two points is also in the set. This is illus­
trated in Figure 7.1. 

Definition 7.1.3 A point x € X is an extreme point of the convex set X if 
and only if 
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/3xi , X2 (xi ^ X2) G X 3 x = (1 - a)xi + ax2, 0 < a < 1. 

Proposition 7.1.4 v4nj/ extreme point is on boundary of the set. 

Proof. Let £0 be any interior point of X. Then 3e > 0 B every point in this e 
neighborhood of so is in this set. Let x\ / XQ be a point in this e neighborhood. 
Consider 

X2 = ~X\ + 2x0, \x2 ~ X0\ = \X\ - XQ\ 

then X2 is in e neighborhood. Furthermore, XQ = \{x% + X2); hence, xo is not 
an extreme point. • 

Remark 7.1.5 Not all boundary points of a convex set are necessarily ex­
treme points. Some boundary points may lie between two other boundary 
points. 

Proposition 7.1.6 Convex sets in R™ satisfy the following relations. 

i. If X is a convex set and /3 £ R, the set (3X = {y : y = j3x, x G X} is 
convex, 

ii. If X and Y are convex sets, then the set X + Y = {z : z = x + y,x £ 
X,y EY} is convex. 

Hi. The intersection of any collection of convex sets is convex. 

o 
© 

(iii) 

Fig. 7.2. Proof of Proposition 7.1.6 

Proof. Obvious from Figure 7.2. • 

Another important concept is to form the smallest convex set containing 
a given set. 

Definition 7.1.7 Let S C i " . The convex hull of S is the set which is the 
intersection of all convex sets containing S. 

Definition 7.1.8 A cone C is a set such that ifxGC, then ax G C, Va € 
R+. A cone which is also convex is known as convex cone. See Figure 7.3. 
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Fig. 7.3. Cones 

7.2 Hyperplanes and Polytopes 

The most important type of convex set (aside from single points) is the hy-
perplane. 

R e m a r k 7.2.1 Hyperplanes dominate the entire theory of optimization; ap­
pearing in Lagrange multipliers, duality theory, gradient calculations, etc. The 
most natural definition for a hyperplane is the generalization of a plane in R3 . 

Def in i t ion 7.2.2 A set V in R n is said to be linear variety, if, given any 
x\,X2 £ V, we have ax\ + (1 — a)x2 £ V,Va £ R. 

R e m a r k 7.2.3 The only difference between a linear variety and a convex set 
is that a linear variety is the entire line passing through any two points, rather 
than a simple line segment. 

Def in i t ion 7.2.4 A hyperplane in R™ is an (n—1)-dimensional linear variety. 
It can be regarded as the largest linear variety in a space other than the entire 
space itself. 

P r o p o s i t i o n 7.2.5 Let a £ R " , a ^ 9 and b G R. The set 

ff = { i £ l " : arx = b} 

is a hyperplane in R". 

Proof. Let x\ £ H. Translate H by — x\, we then obtain the set 

M = H - Xi ={y€Rn:3xeH3y = x~ xx}, 

which is a linear subspace of R n . M — {y G R™ : a? y = 0} is also the set of 
all orthogonal vectors to a G R n , which is clearly (n — 1) dimensional. D 

P r o p o s i t i o n 7.2.6 Let H be an hyperplane in R". Then, 

3a G R" 3 H = {x G R : aTx = b}. 

NON-COtWEX 
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Proof. Let xi 6 H, and translate by -x\ obtaining M = H — x\. Since H is 
a hyperplane, M is an (n — 1)-dimensional space. Let a be any orthogonal to 
M, i.e. a 6 ML. Thus, M = {y e M" : aTt/ = 0}. Let 6 = aTxi we see that 
if x2 E H, X2 — xi G M and therefore aTX2 - aTx\ = 0 => aTX2 = &• Hence, 
H C {a; € K : aTx = 6}. Since i? is, by definition, of (n — 1) dimension, and 
{ x e R : aTx = b} is of dimension (n — 1) by the above proposition, these two 
sets must be equal (see Figure 7.4). • 

a 

z - ^ 7 

^ 7 ' H 

e 

Fig. 7.4. Proof of Proposition 7.2.6 

Definition 7.2.7 Let o e l " , fo e M. Corresponding to the hyperplane H = 
{x : aTx = b}, there are positive and negative closed half spaces: 

H+ = {x : aTx > b}, H- = {x : aTx < b} 

and 
H+ = {x : aTx > b}, # _ = {x : aTa; < &}. 

ffa// spaces are convex sets and H+ U H- = W1. 

Definition 7.2.8 A set which can be expressed as the intersection of a finite 
number of closed half spaces is said to be a convex polyhedron. 

Convex polyhedra are the sets obtained as the family of solutions to a set 
of linear inequalities of the form 

a\x < b\ 

a\x < b<2 

a-mX < bm 

Since each individual entry defines a half space and the solution family is 
the intersection of these half spaces. 

Definition 7.2.9 A nonempty bounded polyhedron is called a polytope. 
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7.3 Separating and Supporting Hyperplanes 

Theorem 7.3.1 (Separating Hyperplane) Let X be a convex set and y 
be a point exterior to the closure of X. Then, there exists a vector a £ M.n 3 
aTy < inixex aTx. (Geometrically, a given point y outside X, a separating 
hyperplane can be passed through the point y that does not touch X. Refer to 
Figure 7.5) 

Fig. 7.5. Separating Hyperplane 

Proof. Let 6 = inf^gx \x — y\ > 0 Then, there is an XQ on the boundary of X 
such that |xo — y\ — S. Let z £ X. Then, 

Va, 0 < a < 1, XQ + a(z — XQ) 

is the line segment between xo and z. Thus, by definition of xo, 

\x0 + a(z - x0) - y\2 > \x0 - y\2 

«=> (x0-y)T(x0-y)+2a(x0-y)T(z-xo)+a2(z-x0)
T(z-xo) > (x0-y)T(x0-y) 

<=> 2a(x0 - y)T(z - x0) + a2\z - x0\
2 > 0 

Let a —$• 0+ , then a2 tends to 0 more rapidly than 2a. Thus, 

(x0 - y)T(z - x0) > 0 <s> (x0 - y)Tz - (x0 - y)Tx0 > 0 

& (x0-y)Tz > (x0-y)Tx0 = (x0-y)Ty + (x0 + y)T{x0-y) = (x0-y)Ty + 52 

& (x0 - y)Ty < (x0 - y)Tx0 < (x0 - y)Tz, Vz£X (Since 5 > 0). 

Let a = (XQ — y), then aTy < aTxo = infz6x <iTz. U 
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Theorem 7.3.2 (Supporting Hyperplane) Let X be a convex set, and let 
y be a boundary point of X. Then, there is a hyperplane containing y and 
containing X in one of its closed half spaces. 

Proof. Let{yk} be sequence of vectors, exterior to the closure of X, converging 
to y. Let {a,k} be a sequence of corresponding vectors constructed according to 
the previous theorem, normalized so that \dk\ = 1, such that a^yk < infx€x-
Since {a*,} is a boundary sequence, it converges to a. For this vector, we have 
aTy = lima^j/fe < ax. O 

Definition 7.3.3 A hyperplane containing a convex set X in one of its closed 
half spaces and containing a boundary point of X is said to be supporting 
hyperplane of X. 

7.4 Extreme Points 

Remark 7.4.1 We have already defined extreme points. For example, the 
extreme points of a square are its corners in M.2 whereas the extreme points 
of a circular disk are all (infinitely many!) the points on the boundary circle. 
Note that, a linear variety consisting of more than one point has no extreme 
points. 

Lemma 7.4.2 Let X be a convex set, H be a supporting hyperplane of X and 
T = X D H. Every extreme point ofT is an extreme point of X. 

Proof. Suppose xo 6 T is not an extreme point of X. Then, 

xo = ax\ + (1 — a)x2 for some X\,X2 6 X, 0 < a < 1. 

Let H — {x : aTx = c} with X contained in its closed positive half space. 
Then, aTX\ > c, aTx^ > c. However, since XQ £ H, 

c = aTxo = aaTxi + (1 — a)aTX2-

Thus, xi, X2 E H. Hence, x\, X2 &T and xo is not an extreme point of T. • 

Theorem 7.4.3 A closed bounded convex set in Rn is equal to the closed 
convex hull of its extreme points. 

Proof. This proof is by induction on n. 
For n = 1, the statement is true for a line segment: 

[a, b] = {x £ R : x = a + (1 - a)b,0 < a < 1}. 

Suppose that the theorem is true for (n — 1). Let X be a closed bounded 
convex set in Kn, and let K be the convex hull of the extreme points of X. 



7.4 Problems 99 

We will show that X = K. 
Assume that 3y e X 3 y $ K. Then, by Theorem 7.3.1, there is a hyperplane 
separating y and K; 

3a ^ 0 3 aTy < inf aTx 
xEK 

Let XQ = m{X£x(aTx)- xo is finite and 3xo £ X 3 aTxo = bo (because by 
Weierstrass' Theorem: The continuous function aTx achieve its minimum over 
any closed bounded set). 
Hence, the hyperplane H = {x : aTx = bo} is a supporting hyperplane to X. 
Since b0 < aTy < mixeK aTx, H is disjoint from K. Let T = H D X. Then, 
T is a bounded closed convex set of H, which can be regarded as a space 
in R n _ 1 . T ^ 0, since XQ € T. Hence, by induction hypothesis, T contains 
extreme points; and by the previous Lemma, these are the extreme points 
of X. Thus, we have found extreme points of X not in K, Contradiction. 
Therefore, X C K, and hence X = K (since K C X, i.e. K is closed and 
bounded). • 

Remark 7.4.4 Let us investigate the implications of this theorem for convex 
polytopes. A convex polytope is a bounded polyhedron. Being the intersection of 
closed halfspaces, a convex polytope is closed. Thus, any convex polyhedron is 
the closed convex hull of its extreme points. It can be shown that any polytope 
has at most a finite number of extreme points, and hence a convex polytope is 
equal to the convex hull of a finite number of points. The converse can also be 
established, yielding the following two equivalent characterizations. 

Theorem 7.4.5 A convex polytope can be described either as a bounded in­
tersection of a finite number of closed half spaces, or as the convex hull of a 
finite number of points. 

Problems 

7.1. Characterize (draw, give an example, list extreme points and halfspaces) 
the following polytopes: 
a) zero dimensional polytopes. 
b) one dimensional polytopes. 
c) two dimensional polytopes. 

7.2. d-simplex 
d-simplex is the convex hull of any d+1 independent points in R™ (n > d). 
Standard d — simplex with d+1 vertices in Rd + 1 is 

d+l 

Ad = {x£ Rd+1 : ] T Xi = 1; x{ > 0, i = 1 , . . . , d + 1}. 

Characterize A2 in R3. 
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7.3. Cube and Octahedron 
Characterize cubes and octahedrons with the help of three dimensional cube 
C3, and octahedron C^. 

7.4. Pyramid 
Let Pn+i=conv(Cn,:Eo) be a (n+l)-dimensional pyramid, where XQ $ Cn. 
Draw 

P3 = conv{C2 : a = 1, (1/2,1/2,1)T) 

and write down all describing inequalities. 

7.5. Tetrahedron 
The vertices of a tetrahedron of side length \[2 can be given by a particularly 
simple form when the vertices are taken as corners of the unit cube. Such a 
tetrahedron inside a cube of side length 1 has side length \/2 with vertices 
(0,0,0)T , (0,1,1)T , (1,0,1)T , (1,1,0)T . Draw and find a set of describing 
inequalities. Is it possible to express Pn+\ as a union / intersection / direct 
sum of a cone and a polytope? 

7.6. Dodecahedron 
Find the vertices of a dodecahedron (see Figure 7.6) of side length a = \/5 — 1. 

Fig. 7.6. A dodecahedron 

Web material 

http://cepa.newschool.edu/het/essays/math/convex.htm 

http://cm.bell-labs.eom/who/clarkson/cis677/lecture/6/index.html 

http://cm.bell-labs.eom/who/clarkson/cis677/lecture/8/ 
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http://en.wikipedia.org/wiki/Polytope 
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http://grace.speakeasy.net/"dattorro/EDMAbstract.pdf 

http://grace.speakeasy.net/~dattorro/Meboo.html 
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8 

Linear Programming 

A Linear Programming problem, or LP, is a problem of optimizing a given 
linear objective function over some polyhedron. We will present the forms 
of LPs in this chapter. Consequently, we will focus on the simplex method 
of G. B. Dantzig, which is the algorithm most commonly used to solve LPs; 
in practice it runs in polynomial time, but the worst-case running time is 
exponential. Following the various variants of the simplex method, the duality 
theory will be introduced. We will concentrate on the study of duality as a 
means of gaining insight into the LP solution. Finally, the series of Farkas' 
Lemmas, the most important theorems of alternatives, will be stated. 

8.1 The Simplex Method 

This section is about linear programming: optimization of a linear objective 
function subject to finite number (m) of linear constraints with n unknown 
and nonnegative decision variables. 

Example 8.1.1 The following is an LP: 

Min z =2x + 3y 

s.t. 

2x + y>Q 

x + 2y>6 

x,y>0. 

Standard Form: 

Min z —ex 

s.t. 

Ax>b 

x>9 
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Canonical form: 

Min z =c x + 6 y 

s.t. 

Ax — y = 6 

x,y>0 

<S=> 

Example 8.1.2 

Min z =2x + 3y 

s.t. 

2x + y>6 

x + 2y>6 

x,y>0. 

Min z^c'ie1} 

s.t. 

x >e. v 

= b 

Feasible 
set 

Fig. 8.1. The feasible solution region in Example 8.1.2 

See Figure 8.1. 

A = 
"12 
2 1 

- 1 0' 
0 - 1 ,6 = 

"6' 
6 ,c = 

[2] 
3 
0 
0 
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Definition 8.1.3 The extreme points of the feasible set are exactly the basic 
feasible solutions of Ax = b. A solution is basic when n of its m+n components 
are zero, and is feasible when it satisfies x > 6. Phase I of the simplex method 
finds one basic feasible solution, and Phase II moves step by step to the optimal 
one. 

If we are already at a basic feasible solution x, and for convenience we 
reorder its components so that the n zeros correspond to free variables. 

XB 

xN = < 
,A = [B,N], (cB,cN) 

Min z =(cB',cJf) 

s.t. 

[B\N] 

xB 

XN -

XB 
XN = 6 

= b 
<=> 

XB 

XN = ' 

Min z —CQXB + CNXN 

s.t. 

BxB + NxN = b 

XB,XN >0 

>e. 

Let us take the constraints 

BXB+NXN =bo Bxb = b-NxN «• xB - B~1[b-NxN] - B~1b-B~1NxN-

Now plug XB in the objective function 

z = CT
BXB + CNXN = c%[B~1b - B_1NXN] + CNXN 

= cT
BB~lb + {cT

N - cBB-lN)xN. 

If we let XN = 0, then xB = B~lb > 6 => z — cB'B~1b. 

Proposition 8.1.4 (Optimality Condition) If the vector (cN - cBB~1N) 
is nonnegative, then no reduction in z can be achieved. The current extreme 
point (XB = B~1b,XN = 0) is optimal and the minimum objective function 
value is CBB~1b. 

Assume that the optimality condition fails, the usual greedy strategy is to 
choose the most negative component of CJV — CBB~1N, known as Dantzig's 
rule. Thus, we have determined which component will move from free to basic, 
called as entering variable xe. We have to decide which basic component is 
to become free, called as leaving variable, x\. Let Ne be the column of N 
corresponding to xe. xB = B~lb- B~1Nexe. If we increase xe from 0, some 
entries of XB may begin to decrease, and we reach a a neighboring extreme 
point when a component of XB reaches 0. It is the component corresponding 
to x\. At this extreme point, we have reached a new x which is both feasible 
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and basic: it is feasible because x > 0, it is basic since we again have n zero 
components. xe is gone from zero to a, replaces xi which is dropped to zero. 
The other components of XB might have changed their values, but remain 
positive. 

Proposition 8.1.5 (Min Ratio) Suppose u = Ne, then the value of' xe will 
be: 

. {B-lb)j (B^b), 
a = min —r1- = , , 

Xj-.basic (B~lU)j (B LU)l 

and the objective function will decrease to cBB~1b — aB~1u. 

Remark 8.1.6 (Unboundedness) The minimum is taken only over posi­
tive components of B~1u, since negative entries will increase XB and zero 
entries keeps XB as their previous values. If there are no positive components, 
then the next extreme point is infinitely far away, then the cost can be reduced 
forever; z — — oo/ In this case we term the optimization problem as unbounded. 

Remark 8.1.7 (Degeneracy) Suppose that more thann of the variables are 
zero or two different components if the minimum ratio formula give the same 
minimum ratio. We can choose either one of them to be made free, but the 
other will still be in the basis at zero level. Thus, the new extreme point will 
have (n + 1) zero components. Geometrically, there is an extra supporting 
plane at the extreme point. In degeneracy, there is the possibility of cycling 
forever around the same set of extreme points without moving toward x*, 
the optimal solution. In general, one may assume nondegeneracy hypothesis 
{xB=B~lb>6). 

Example 8.1.8 Assume that we are at the extreme point V in Figure 8.1, 
corresponding to the following basic feasible solution: 

XB 

[xN\ 

"6" 
6 
U 
0_ 

' Zl' 

y 
X 

. z 2 . 

A = [B\N] = 
zi y 

- 1 2 
0 1 

x z2 

1 0 
2 - l _ 

CN 

rT __ ( r T \ T \ 
c — \CB\CN) 

cT
BB-lN = [2 0] - [0 3] 

-12 
0 1 

- l 

zi y X Z2 

0 3 

1 0 
2 - 1 

2 0 

- 1 2 
01 

10' 
01 —> 

[1 -2 
0 1 

- 1 0 ] 
01 —> 

[10 
01 

- 1 2 ] 
01 ^B-1^ 

-12 
0 1 
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cT
N-cT

BB~xN = [2 0] - [0 3 

cT
N-cT

BB~lN= [2 0] - [0 3] 

>] 
- 1 2 ' 

0 1 

" 3 - 2 ' 
2 - 1 

[ l Ol 
2 - 1 

( X Z2 

v - 4 3 

Since the first component is negative, P is not optimal; x should enter the 
basis, i.e. 

x,Ne = => B^N' = ,B _ 1 6 = 

Zl 

y 
= 

6 
6 

-
3 
2 

x> 
0 
0 

xB = B-1b-B-1Nexe 

a = Min{l = 2, § = 3} = 2. Thus, xL = zuxe = 2,y = Q-2a = 2. 

xB 

_XN _ 

"2' 
2 

U 
0 

X 

y 
Zl 

. Z 2 . 

4 = [B\N] = 

cT=[cT\cl] = [2 3\0 0],B = 

[5 | / ] = n 

c £ - c £ £ - 1 J V = [0 0] - [2 3] 

12 
2 1 

- 1 0 
0 - 1 

1 2 
2 1 

10 
0 1 

1 2 
0 - 3 

10 
- 2 1 - > • 

1 2 
2 1 

1 Ol —^ ^ 
1 u l 3 3 Oil ^ _ I U 1I 3 3 

[ J | * - l ] . 

I I 
I - I 

- 1 0 
0 - 1 

00 23 
1 _2 
3 3 
2 _ 1 

"3 3 
H]>«-

77ms, extreme point Q in Figure 8.1 is optimal, c^B xb = 10 is the optimal 
value of the objective function. 

8.2 Simplex Tableau 

We have achieved a transition from the geometry of the simplex method to 
algebra so far. In this section, we are going to analyze a simplex step which 
can be organized in different ways. 

The Gauss-Jordan method gives rise to the simplex tableau. 

[A\\b] = [B\N\\b] —• [IIB^NWB-H]. 
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Adding the cost row 

I \B-lN\\B-lb 

-N 0 

B-lN B~xb 

Oc^-c^B-^ll-cSB-^ 

The last result is the complete tableau. It contains the solution B~1b, the 
crucial vector CNT — cB

TB~1N and the current objective function value 
cB

TB~1b with a superfluous minus sign indicating that our problem is mini­
mization. The simplex tableau also contains reduced coefficient matrix B~lN 
that is used in the minimum ratio. After determining the entering variable 
xe, we examine the positive entries in the corresponding column of B~XN, 
(v = B~lu = B~1Ne) and a is determined by taking the ratio of tB-iNl\. 
for all positive Vj's. 

If the smallest ratio occurs in Ith component, then the Ith column of B 
should be replaced by u. The Ith element of (B~lNe)i = V[ is distinguished 
as pivot element. 

It is not necessary to return the starting tableau, exchange two columns 
and start again. Instead we can continue with the current tableau. Without 
loss of generality, we may assume that the first row corresponds to the leaving 
variable, that is the pivot element is vi. 

1 :0---0 

0 

: 0 : 0 - - - 0 

V2 

B^N: :B-XN 

• • * :cR 

T 
CBV.* • 

(B-'bh 

B~lb 

-cT
BB~lb. 

The first step in the pivot operation is to divide the leaving variable's row 
by the pivot element to create 1 in the pivot entry. Then, we have 
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:J-:0---0 

: / 

0 :0- - -0 

* • • • * : 1 

B~lN\ '•.B~lN 

• *:ce — Cnv: * • 

B-lb 

-dB^b 
For all the rows except the objective function row, do the following oper­

ation. For row i, multiply Vi*(the updated first row) and subtract from row 
i. For the objective function row, multiply the first row by (ce — CBTV) and 
subtract from the objective function row. 

Wha t we have at the end is another simplex tableau. 

:0---0 

_Vj_ 

,~Ce
 cgV.Q. . . Q 

:0 

:0 

* • • • * : 0 : * • • • * 

a 

+ 

+ 

—c^B 1b — a(ce — CgV 
BU) A 

E x a m p l e 8.2.1 The starting tableau at point P is 

A b 

=rllo 

B\N\\b 

rT\rT\\() 
CB\CN\\U 

= 

" - 1 2 
0 1 
0 3 

1 0 
2 - 1 
2 0 

6" 
6 

0 

The final tableau after Gauss-Jordan iterations is 

Zl 

y 
z 

zi y 
1 0 
0 1 
0 0 

X Zi 

3 - 2 
2 - 1 

- 4 3 

RHS~ 
6 
6 

-18 

= 
B-XN \B~lb 

0\rT 

v\cN 
c^^JVll -cost 

Since the reduced cost for x is — 4 < 0, x should enter the basis. The 
minimum ratio a = M m { | , | } = 2 due to z\, thus z\ should leave the basis. 
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"10 
0 1 
0 0 

3 - 2 
2 - 1 

- 4 3 

6" 
6 

-18 
-

X 

y 

2i y\x z2\\RHS-

- I I I 2 
III ^ 

§0|0 -10 

77ms, x* = 2 = y* => 2* 10. 

Remark 8.2.2 AZZ i/ie pwo£ operation can be handled by multiplying the in­
verse of the following elementary matrix. 

E = 

1 

0 

0 . 

0 . 

\vi :0 . 

0 : . :. 

liwjio . 

. 0: . :1 

.: . : 1 

.: . : 0 

• Q'-vm: 

. 0 

. 0 

0 

1_ 

<F> E~ 

— V\ 
Vl 

1_ 
Vl 

Thus, the pivot operation is 

[^B^NWB-H} —> [E-1I\E-1B-1N\\E-1B-Ib] . 

New basis is BE (B except the Ith column is replaced byu = Ne) and basis 
inverse is (BE)"1 — E~1B~1. This is called product form of the inverse. 
Thus, if we store E"1 's then we can implement the simplex method on a 
simplex tableau. 

8.3 Revised Simplex Method 

Let us investigate what calculations are really necessary in the simplex 
method. Each iteration exchanges a column of N with a column of B, and 
one has to decide which columns to choose, beginning with a basis matrix B 
and the current solution XB = B~lb. 

SI. Compute row vector A = cjgB x and then cL — XN. 
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52. If Cjy — XN > 6, stop; the current solution is optimal. Otherwise, if the 
most negative component is eth component, choose eth column of N to 
enter the basis. Denote it by u. 

53. Compute v = B~lu. 
54. Calculate ratios of B~lb to v = B~lu, admitting only positive compo­

nents of v. If there are no positive components, the minimal cost is —oo; 
if the smallest ratio occurs at component I, then Ith column of current B 
will be replaced with u. 

55. Update B (or £?_1) and the solution is XB = B~lb. Return to SI. 

Remark 8.3.1 We need to compute X = cB^B~l,v = B~lu, and XB = 
B~*b. Thus, the most popular way is to work only on B"1. With the help of 
previous remark, we can update B~l 's by premultiplying E_1 's. 

The excessive computing (multiplying with E~lys) could be avoided by 
directly reinverting the current B at a time and deleting the current E~l,s 
that contain the history. 

Remark 8.3.2 The alternative way of computing X,v and XB is XB = 
Cg,Bv — u, and BXB = b. Then, the standard decompositions (B = QR 
or PB = LU) lead directly to these solutions. 

Remark 8.3.3 How many simplex iterations do we have to take? 
There are at most (^) extreme points. In the worst case, the simplex method 
may travel almost all of the vertices. Thus, the complexity of the simplex 
method is exponential. However, experience supports the following average be­
havior. The simplex method travels about m extreme points, which means an 
operation count of about m2n, which is comparable to ordinary elimination to 
solve Ax = b, and that is the reason of its success. 

8.4 Duality Theory 

The standard primal problem is: Minimize cTx subject to Ax > b and x > 6. 
The dual problem starts from the same A, b, and c and reverses everything: 
Maximize yTb subject to ATy < c and y > 8. 

There is a complete symmetry between the two. The dual of the dual is 
the primal problem. Both problems are solved at once. However, one must 
recognize that the feasible sets of the two problems are completely different. 
The primal polyhedron is a subset of M.n, marked out by matrix A and the 
right hand side b. The dual polyhedron is a subset of Km, determined by AT 

and the cost vector c. 
The whole theory of linear programming hinges on the relation between 

them. 

Theorem 8.4.1 (Duality Theorem) / / either the primal problem or the 
dual has an optimal vector, then so does the other, and their values are the 
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same: The minimum of cTx equals the maximum ofyTb. Otherwise, if optimal 
vectors do not exist, either both feasible sets are empty or else one is empty 
and the other problem is unbounded. 

Theorem 8.4.2 (Weak Duality) If x andy are feasible vectors in the min­
imum and maximum problems, then yTb < cTx. 

Proof. Since they are feasible, Ax > b and ATy < c (<& yTA < cT). They 
should be nonnegative as well: x > 8, y > 9. Therefore, we can take inner 
products without ruining the inequalities: yTAx > yTb and yTAx < cTx. 
Thus, yTb < cTx since left-hand-sides are identical. D 

Corollary 8.4.3 / / the vectors x and y are feasible, and if cTx = yTb, then 
these vectors must be optimal. 

Proof. No feasible y can make yTb larger than cTx. Since our particular y 
achieves this value it should be optimal. Similarly, x should be optimal. D 

Theorem 8.4.4 (Complementary Slackness) Suppose the feasible vectors 
x and y satisfy the following complementary slackness conditions: 

if (Ax)i > bi, then yt = 0 and if (ATy)j < Cj, then Xj = 0. 
Then, x and y are optimal. Conversely, optimal vectors must satisfy comple­
mentary slackness. 

Proof. At optimality we have 

yTb = yT(Ax) = (yTA)x = cTx. 

If y > 0 and Ax > b =4- yTb < yT(Ax). When yTb — yT{Ax) holds, if 
bi < (Ax)i, the corresponding factor «/; should be zero. The same is true 
for y1Ax < cTx. If Cj > (ATy)j then Xj = 0 to have yTAx = cTx. Thus, 
complementary slackness guarantees (and is guaranteed by) optimality. • 

Proof (Strong Duality). We have to show that yTb = cTx is really possible. 

Max cTx, Ax>b, x>8 

«• Max [cT\9T] . M-'] = 6, >e. 

[A\-I] -¥ [B\N] -» 
XB 

XN 

B~lb 

0 [cH^] - • [ « ] • 

Optimality condition: NT(BT) XCB < c^. 

Since we have finite number of extreme points, the optimality condition is 
eventually met. At that moment, the minimum cost is cTx = CQB~1XB-

Max by subject to 
Ar 

-I y< 
c 
0 -> 

B1 

y< 
CB 

CN 
<S=> BTy = cB 
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&yTB cT
B^yT cT

BB~x & yTb = cT
BB~xb = cTx\ 

Furthermore, this choice of y is optimal, and the strong duality theorem has 
been proven. This is a constructive proof, x* and y* were actually computed, 
which is convenient since we know that the simplex method finds the optimal 
values. D 

8.5 Farkas' Lemma 

Coll 

rt £<i H 1 

mnl 

Column2 

•— o \J// / / -
> / / / Column3 

Column4 

i) Ax=b has s i nonnegative solution 

b 

H 

* J 

-«e f-

Coli 

i J]\ 1 

mnl 

^ / ^ C o l u m n 2 

- » • _ 

i^(// Column?" 

Column4 

(ii) Else 

Fig. 8.2. Farkas' Lemma 

By the fundamental theorem of Linear Algebra, 

either b G U(A) or 3y e M(AT) By JLb, 

that is, there is a component of b in the left null space. Here, we immediately 
have the following theorem of alternatives. 

Proposition 8.5.1 Either Ax — b has a solution, or else there is a y 3 
ATy = 9,yTb^0. 

If b € Cone(a1, a2, a3 , . . . ) then Ax — b is solvable. If 6 0 Cone(columns 
of A), then there is a separating hyperplane which goes through the origin 
defined by y that has b on the negative side. The inner product of y and b is 
negative (yTb < 0) since they make a wide angle (> 90°) whereas the inner 
product of y and every column of A is positive (ATy > 0). Thus, we have the 
following theorem. 

Proposition 8.5.2 Either Ax = b,x > 9 has a solution, or else there is a y 
such that ATy > 6, yTb < 0. 

Corollary 8.5.3 Either Ax > b,x > 9 has a solution, or else there is a y 
such that ATy > 9, yTb < 0, y < 9. 



Proof. Ax > b, x > 

Either \A-I\ X AT 

-I 
y > 0,yTb < 0. 
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» -» Ax - Iz = b,z>9. 

has a nonnegative solution or 3y 3 

=> ATy > 9, yTb < 0, y < 9. D 

Remark 8.5.4 The propositions in this section can also be shown using the 
primal dual pair of linear programming problems: If the dual is unbounded, 
the primal is infeasible. 

1. Either Ax = b has a solution, or else there is a y 3 A1 y = 9, y1 b =/= 0; 

(PI) : Max 6Tx (Dl) : Min bTy 

s.t. s.t. 

Ax = b ATy = 9 

x : URE y : URE 

(P2) : Min 9Tx (D2) : Max bTy 

s.t. s.t. 

Ax = b ATy = 9 

x : URE y : URE 

Either PI (or P2) is feasible, or Dl (or D2) is unbounded. For Dl (D2) 
to be unbounded, we 'must have bTy < 0 (b1 y > 0). Thus, either Ax = b 
or By 3 ATy = 9, yTb ^ 0. 

2. Either Ax = b,x > 9 has a solution, or else there is a y such that 
ATy>9,yTb<0: 

(P3) : Max 9Tx (D3) : Mm bTy 

s.t. s.t. 

Ax = b ATy > 9 

x>9 y. URE 

Either PS is feasible, or D3 is unbounded. For D3 to be unbounded, we 
must have bTy < 0 . Thus, either Ax = b, x > 9 has a solution, or else 
3y 3 Ary > 9, yTb < 0. 

3. Either Ax > b, x > 9 has a solution, or else there is a y such that 
ATy> 9,yTb < 0, y < 9: 

(P4) : Max 9rx (D4) : Min bTy 

s.t. s.t. 

Ax > b ATy > 9 

x>9 y<9 
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Either P4 is feasible, or D4 is unbounded. For D4 to be unbounded, we 
must have bTy < 0 . Thus, either Ax > b,x > 8 has a solution, or else 
3y 3 ATy > 6, yTb < 0, y < 9. 

Problems 

8.1. (P): 

Max z =xi + 2x2 + 2x3 

s.t. 

2xi + x2 < 8 

x3 < 10 

x2 > 2 

x i , x 2 , x 3 > 0. 

Let the slack/surplus variables be «i, S2, S3. 
a)Draw the polytope defined by the constraints in R3, identify its extreme 
points and the minimum set of supporting hyperplanes. 
b) Solve (P) using 

1. matrix form, 
2. simplex tableau, 
3. revised simplex with product form of the inverse, 
4. revised simplex with B = LU decomposition, 
5. revised simplex with B = QR decomposition. 

c) Write the dual problem, draw its polytope. 

8.2. Let P = {(xi ,x2 ,x3) > 0 and 

2xi — x2 — X3 > 3 

xi - x2 + x3 > 2 

xi - 2 x 2 + 2x3 > 4}. 

Let «i,S2,S3 be the corresponding slack/surplus variables. 
a) Find all the extreme points of P. 
b) Find the extreme rays of P (if any). 
c) Considering the extreme rays of P (if any) check whether we have a finite 
solution x G P if we maximize 

1. xi + x 2 + x3, 
2. - 2 x i — X2 - 3x3, 
3. —xi — 2x2 + 2x3. 

d) Let xi = 6, x2 = 1, X3 = | . Express this solution with the convex 
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combination of extreme points plus the canonical combination of extreme 
rays (if any) of P. 
e) Let the problem be 

minxi + 2x2 + 2x3 subject to (xi,X2,X3) € P. 

1. Solve. 
2. What if we reduce the right hand side of (1) by 3 and (3) by 1. 
3. Consider the solution found above. What if we add a new constraint 

2xi + 5x2 + X3 < 3. 

8.3. Upper bounded simplex 
Modify the simplex algorithm without treating the bounds as specific con­
straints but modifying the optimality, entering and leaving variable selection 
conditions to solve the following LP problem: 

max 2xi + 3x2 + x3 + 4x4 

s.t. 

xa + 2x2 + 3x3 + 5x4 < 30 (1) 

xx + x2 < 13 (2) 

3x3 + x4 < 20 (3) 

1 < xi < 6, 0 < x2 < 10, 3 < x3 < 9, 0 < x4 < 5 

a) Start with the initial basis as {si,S2,S3} where si,S2,ss are the corre­
sponding slack variables at their lower bounds. Use Bland's (lexicographically 
ordering) rule in determining the entering variables. Find the optimal solu­
tion. 
b) Take the dual after expressing the nonzero lower/upper bounds as specific 
constraints. Find the optimal dual values by considering only the optimal 
primal solution. 

8.4. Decomposition 
Let a e A be an arc of a network TV = (V,A), where ||V|| = n, \\A\\ = m. 
Given a node i € V, let T(i) be the set of arcs entering to i and H(i) be 
the set of arcs leaving from i. Let there be k — 1 , . . . , K commodities to be 
distributed; Cka denotes the unit cost of sending a commodity through an arc, 
Uka denotes the corresponding arc capacity, du% denotes the supply/demand 
at node i, and Ua is the total carrying capacity of arc a. 
a) Let Xfc0 be the decision variable representing the flow of commodity k 
across arc a. Give the classical Node-Arc formulation of the minimum cost 
multi-commodity flow problem, where commodities share capacity. Discuss 
the size of the formulation. 
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Fig. 8.3. Starting bfs solution for our multi-commodity flow instance 

b) Let Vk be the set of paths from source node sk to sink node tk for commod­
ity k. For P e V, let fp: flow on path P (decision variable), 

r . , 1, if a is in P 
lap = 

= 1} 

0, otherwise 
Ckp: unit cost of flow = ^ a Iapcka 

Dk- demand for the circulation 
fip: upper bound on flow = min {uka '• 

Give the Path-Cycle formulation, relate to the Node-Arc formulation, and dis­
cuss the size. 
c) Take the path cycle formulation. Let wa be the dual variable of the capac­
ity constraint and TTk the dual variable of the demand constraint. What will 
be the reduced cost of path PI What will the reduced cost of path P at the 
optimality? Write down a subproblem (column generation) that seeks a path 
with lower cost to displace the current flow. Discuss the properties. 
d) Solve the example instance using column generation starting from the so­
lution given in Figure 8.3. Let us fix all capacities at 10 and all positive 
supplies/demands at 10 with unit carrying costs. 
e) Sketch briefly the row generation, which is equivalent to the Dantzig-
Wolfe/Bender's decompositions' viewpoint. 
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Number Systems 

In this chapter, we will review the basic concepts in real analysis: order re­
lations, ordered sets and fields, construction and properties of the real and 
the complex fields, and finally the theory of countable and uncountable sets 
together with the cardinal numbers. The known sets of numbers that we will 
use in this chapter are 

• N: Natural 
• Z: Integer 
• Q: Rational 
• R: Real 
• C: Complex 

9.1 Ordered Sets 

Definition 9.1.1 Let S be a set. An order on S is a relation -< such that 

i) If x, y are any two elements of S, then one and only one of the following 
is true: 

x < y, x = y, y < x. 

ii) If x,y,z G S and x <y and y -< z, then x -< z. 
x <y i^ y <x. 
x < y means x -< y or x = y without specifying one. 

Example 9.1.2 S = Q has an order; define x -< y ify — x is positive. 

Definition 9.1.3 An ordered set is a set S on which there is an order. 

Definition 9.1.4 Let S be an ordered set and 0 ^ E C S. E is 

• bounded above if3bES^VxEE,x<b where b is an upper bound of E. 
• bounded below if 3a G S 9 Vx £ E, a -< x where a is a lower bound of E. 
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• bounded if E is both bounded above and below. 

Example 9.1.5 A = {p G Q : p >- 0,p2 •< 2} is 

• bounded above, b — 3 /2 ,2 , . . . are upper bounds. 
• bounded below, a = 0, —1/2,.. . are lower bounds. 

Definition 9.1.6 Let S be an ordered set and 0 ^ E C S be bounded above. 
Suppose 3 b G S 9 : 

i. b is an upper bound of E. 
2. if b' & S and b' -< b then b' is not an upper bound of E. Equivalently, if 

b" is any upper bound of E if b" >- b. 

Then, b is called least upper bound (lub) or supremum (sup) of E and denoted 
by 

b = supE = lubE. 

Greatest lower bound (gib) or infimum (ml) of E is defined analogously. 

Example 9.1.7 S = Q, E = {p G Q : p >• 0, p2 -< 2} inf £ = 0, but E has 
no supremum in S = Q. Suppose po = sup E exists in Q. Then, either po G E 
or po <£ E. 
If po 6 E, 3q € E 3 po -< Q because E has no largest element; therefore, p is 
not an upper bound of E. 
IfPo & E, thenpo >- 0 because it is an upper bound andp\ >: 2 because po £ E. 
Then, either pg = 2 (not true because po 6 Q) or p^ > 2 (true), then po G 
B = {p G Q : p y 0, p2 >- 2}. Then, 3q0 e B 3 q0 -< p0 (*) because B 
has no smallest element. Vp G E, p2 -< 2 -< q^ =? qo is an upper bound of E. 
Moreover, po < qo because lub Contradiction to (*). 

Definition 9.1.8 Let S be an ordered set. We say that S has the least upper 
bound property if every nonempty subset of S which is bounded above has lub 
in S. 

Example 9.1.9 S — Q does not have lub-property. 

Theorem 9.1.10 Let S be an ordered set with lub-property. Then, every 
nonempty subset of S which is bounded below has inf in S. 

Proof. Let B ^ 0, B c S be bounded below, L be the set of all lower bounds 
of B. Then, L ^ 0 (because B is bounded below), y G B be arbitrary, then 
for any l E i w e have x <y. So, y is an upper bound of L; i.e. all elements of 
B are upper bounds of L => L is bounded above, a = sup L, a G S (because 
S has lub property). 
Claim (i): a = inf B 
Proof (i): Show a is lower bound of B; i.e. show V:r G B, a <x. Assume that 
it is not true; i.e. 3a;o G B 9 a >- XQ. Then, XQ is not an upper bound of a 
(because a = sup L) => XQ <£ B (because all elements of B are upper bounds 
of L). Contradiction! (XQ G B). Therefore, a is a lower bound of B. 
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Claim (ii): a is the greatest of the lower bounds. 
Proof (ii): Show if a -< /?, /3 £ 5 => /? is not a lower bound of B. 
ft fi L (because a -< (3); i.e. /? is not a lower bound of .B. 
Therefore, a = inf B. • 

9.2 Fields 

Let us repeat Definition 2.1.1 for the sake of completeness. 

Definition 9.2.1 A field is a set F / 0 with two operations, addition(+) and 
multiplication(.), which satisfy the following axioms: 

(A) Addition Axioms: 
(Al) Vx, y £ F, x + y £ F (closed under +) 
(A2) Vx,y £ F, x + y = y + x (commutative) 
(A3) Vx, y,z £ F, (x + y) + z — x + (y + z) (associative) 
(A4) 30 e F 9 Vx G F x + 0 = x (existence of ZERO element) 
(A5) \fx £ F, 3 an element -x £ F B x + ( -x) = 0 (existence of INVERSE 
element) 

(M) Multiplication Axioms: 
(Ml) Vx,y £ F, x • y € F (closed under •) 
(M2) \/x,y £ F, x • y = y • x (commutative) 
(MS) Vx, y,z £ F, (x • y) • z — x • (y • z) (associative) 
(M4) 31 7̂  0 3 Vx £ F, 1-x = x (existence of UNIT element) 
(M5) Vx ^ 0 3 an element ^ g F 3 j i = 1 (existence of INVERSE element) 

(D) Distributive Law: 
Vx, y,z £ F, x • (y + z) = xy + xz 

Notation : 

x + (-«/) =x-y; x(-) = - ; x + {y + z) = (x + y) + z 
\VJ V 

x • x = x2; x + x = 2x; x(yz) = xyz, • • • 

Example 9.2.2 F = Q with usual + and • is a field. 

Example 9.2.3 Let F = {a, b, c} where a^b, a ^ c, b ^ c. 

a 
b 
c 

a b c 
a a a 
a b c 
a c b 

+ 
a 
b 
c 

a b c 
a b c 
b c a 
cab 

F is a field with 0 = a, 1 — b. 
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Proposition 9.2.4 In a field F, the following properties hold: 

(a) x + y = x + z=>y = z (cancelation law for addition). 
(b) x + y = x =>• y — 0. 
(c) x + y — 0=^y= —x. 
(d) —{—x) = x. 
(e) x y£ 0 and xy = xz => y = z (cancelation law for multiplication). 
(f) x ^ 0 and xy = x => y — 1. 
(g) x ^ 0 and xy = 1 =>- y = £. 
(h) x^O, j£fc = x. 
(i) Vx e F, Ox = 0. 
(j) x ^ 0 and 2 / ^ 0 , £/ien xy ^ 0 (no zero divisors). 
(k) Wx,ye F, (-x){-y) = xy. 

Definition 9.2.5 Let F be an ordered set and a field of F is an ordered field 

if 

i) x, y, z £ F and x~<y=>x + z-<y + z, 
ii) xyO, y y 0 =>• xy y 0. 

If xy 0, call x as positive, If x -< 0, call x as negative. 

Example 9.2.6 S = Q is an ordered field. 

Proposition 9.2.7 Let F be an ordered field. Then, 

(a) x y 0 «• -x -< 0. 
(b) x y 0 and y < z => xy -< xz. 
(c) x -< 0 and y < z => xyy xz. 
(d) x =̂  0 => x2 y 0. /n particular 1 >- 0. 
f e j ( M x ^ y ^ 0 ^ ± ^ ± . 

Proof. F is an ordered field. 

(a) Assume x >>- 0 =>• x + (-x) y 0 + ( -x) => 0 > x. 

- x - < 0 = > - x + x - < 0 + x = > 0 ^ : x . 

(b) Let x >- 0 and y < z => 0 -< z - y => 0 -< x(z - y) = xz — xy =$ xy < xz. 
(c) a; -< 0 and y < z =>• - x >- 0 and z - y >- 0 =>• —x(z — y)y0=> x(z — y)< 

0 => xz -< xy. 
(d) x =£ 0 => x y 0 =$> (y = x in (b)) x2 >- 0 or 

x - < 0 = » - x ^ 0 ( j / = - x ) => ( - x ) ( - x ) = x2 y 0. 
(e) Let x >- 0. Show \ y 0. If not, ± ^ 0 =* (x >- 0), x± = 1 < 0, 

Contradiction! 
Assume 0~<x-<y=>±y0, ^ y 0, therefore (by (b)) 

i±>-ol 
x y 1 

x -< y J 

1 1 
> => < - . 

y x 
U 



9.3 The Real Field 125 

Remark 9.2.8 C with usual + and • is a field. But it is not an ordered field. 
If x — i then i2 = — 1 y 0, hence property (d) does not hold. 

Definition 9.2.9 Let F (with +, •) and F' (with ©, ®) be two fields. We say 
F is a subfield of F' if F C F' and two operations (B and © when restricted to 
F are + and •, respectively. That is, ifx,y € F => x®y — x + y, xQy = x-y. 
Then, we have OF — OF', and IF = I F ' -
Moreover, if F (with -<) and F' with (with -<') are ordered fields, then we say 
F is an ordered subfield of F' if F is a subfield of F' and for Vx € F with 
0F -< x => 0F< <' x. 

9.3 The Real Field 

Theorem 9.3.1 (Existence & Uniqueness) There is an ordered field R 
with lub property 3 Q is an ordered subfield of R. Moreover if R' is another 
such ordered field, then K and M! are "isomorphic": 3 a function <f>: R i-> R' 9 

i) <j) is 1-1 and onto, 
ii) Vx, j / 6 R , <j>(x + y) = <f>(x) + (j>{y) and cj>{xy) = 4>{x)4>(y), 

Hi) Vz, € K with x y 0, we have (j)(x) >- 0). 

Theorem 9.3.2 (ARCHIMEDEAN PROPERTY) 

x, y £ R and x y 0 => 3n G N (depending on x and y) 3 nx >- y. 

Proof. Suppose 3x,y e R with x >- 0 for which claim is not true. Then, 
Vn £ N, nx •< y. Let A = {nx : n £ N}. A is bounded above (by y). 
a = sup A € R, since R has lub property, x y 0 => a — x < a, so a — a: is not 
an upper bound for A. 
Therefore, 3m £ N 3 (a — x) ~< mx => a -< (m + l)x. Contradiction 
(a = sup A). D 

Theorem 9.3.3 (Q is dense in R) 

Vx, y £ R with x -< y, 3p£Q3x~<p<y. 

Proof, x, y £ R , x <y ^ y — x y 0 
(By Theorem 9.3.2) 3n £ N 3 n(y - x) y 1 => ny y 1 + nx. 

3mi £ N 3 mi >- nx f- (y = nx, x = 1) in Theorem 9.3.2. 

Let A = {m £ Z : nx -< m}. A ^ 0, because mi £ A. A is bounded below. So 
A has a smallest element mo, then nx -< mo =>• (mo — 1) •< nx. 
If not, nx -< mo — 1, but mo is the smallest element: Contradiction. 
=> (mo — 1) •< nx -< mo =*• nx -< mo ^ nx + 1 -< ny => x -< ^^ -< j / . Let 
P = =* 6 Q. • 
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Theorem 9.3.4 

Va; G R, x y 0, Vn G N 3 a Mrogtte y G R, y X 0 9 yn = x. 

Proof. [Existence]: 
Given x X 0, n G N. Let £ = {t G R : i X 0 and tn < x). 

Claim 1: E ^ 0 
Let £ = ^ y x 0, £ -< 1, t -< x; 0 -< t -< 1 => i" -< t 
(0 -< i -< 1 => 0 -< t2 •< t < 1 => . . . => 0 -< T -< i < 1). 
Also we have, t < x ^> tn < x\ therefore, £ = ^ j G E, 

Claim 2: E1 is bounded above 
If 1 + x is an upper bound of E. 
If not, 3t€E3tyl + x. In particular, t X 1 (because a; X 0) => 
f X /, X 1 + x X• x; therefore, t ^ E: Contradiction! 
y = sup E G R because R has lub property. 
y X 0, because (x X 0). 

Claim 3: yn = x 
If not, then either yn -< x or x < yn. 
We know the following: 
Let () ^ a < b. Then, bn - an = (b - a){bn~l + bn~2a + ••• + a'1"1) => 
(*) : bn -an -< {b - a)nbn-1. 

0 J/" "< * => ^ T f f - r >- 0. Find n G R 3 0 -< ^ 1 and 0 -< * = # £ £ ? . 
(*): (y + /i)" - (j/)" -< hn(y + h)n -< hn(y + l ) " " 1 -< x - yn 

Therefore, (y + h)n -<x=>y + h(zE. But y + h X y => y is not an upper 
bound of E, Contradiction! 

ii) x -< yn. Let k = v, ~Xi >~ 0 and x -< y [because yn — x -< ny"~l). 
Claim: y — k is an upper bound of E. 
Suppose not, 3t G E 3 t X y — k X 0. 
Then, tn X (y - k)n => -tn -< ~{y - k)n => yn - tn •< yn - (y ~ k)n 

(*): yn -{y-'k)n -< knyn~x = yn-x => yn-tn -< yn~x => tn y x => t <£ E, 
Contradiction! 
Therefore, y — k is an upper bound of E. 
However, y is lub of E, Contradiction! 

[ Uniqueness]: 
Suppose y y 0, y' y 0 arc two positive roots 3 y ^ y' and yn = x — (?/)"• 
Without loss of generality, we may assume that , y' y y y 0, (because y ^ 
?/) =̂  2/" ^ (?/)"> Contradiction! Thus, y is unique. O 

Definition 9.3.5 Real numbers which are not rational are called irrational 
numbers. 

Example 9.3.6 \/2 is an irrational number. 

Corollary 9.3.7 Let a. y 0, 6 x 0 and n&N. Then, (ab)1/" = al/nbl/n. 
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Proof. Let a = a1/", /? = b1'71 => an = a, (3n = b => (a/?)" = an(3n = ab y 0 
and n"1 root is unique => (ab)1/™ = a/3. D 

Definition 9.3.8 (Extended real numbers) R U {+oo, -oo} 3 preserve 
the order in R and Vx £ R, —oo -< x -< oo. R U {+oo, —oo} is an ordered set 
and every non-empty subset has supremum/infimum in R U {+oo, —oo}. 

In R U {+oo, -oo} , we make the following conventions: 

i) For x € R, x + oo = -t-oo, x — oo = —oo, 
ii) If x -< 0, we have x • (+oo) = —oo, x • (—oo) = +oo, 
iii) 0 • (+oo), 0 • (—oo) are undefined. 

9.4 The Complex Field 

Let C be the set of all ordered pairs (a, b) of real numbers. We say 

(a, b) — (c, d) if and only if a — c and b = d. 

Let x = (a,b), y = (c, d). Define 

x + y = (a + c,b + d), xy = [ac — bd, ad + be]. 

Under these operations C is a field with (0,0) being the zero element, and 
(1,0) being the multiplicative unit. 
Define 4>: R H-> C by <j>{a) = (a,0), then (j> is 1-1. 

</>(a + b) = (a + 6,0) = (a, 0) + (b, 0) = 0(a) + </>(&). 

0(a&) = (a&,0) = (a,0)(6,0) = 4>{a)<f>{b). 

Therefore, R can be identified by means of <j> with a subset of C in such a 
way that addition and multiplication are preserved. This identification gives 
us the real field as a subfield of the complex field. 
Let i = (0,1) => i2 = (0,1)(0,1) = (-1,0) = <£(-l), i-e. i2 corresponds to the 
real — 1. 

Let us introduce some notation. 
<l>(a) = (a,0) = a => i2 = 0 ( - l ) = - 1 , also if (a,b) € C, a + ib = (a,b). 
Hence, 

C = {a + ib: a,b£R}. 

If z = a + ib G C, we define 1 = a — ib (conjugate of z), 

Z ~\~ ~Z Z — ~Z 

a = Re{z) = - y - , b = Im(z) = -^r-. 

If z,w G C ^> z + w = J + w, Jw ='zw. 
If z € C => zz = a2 + b2 y 0, we define \z\ = \ /5 i = \ /o 2 + 62. 
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Proposition 9.4.1 Let z,w G C. Then, 

(a) z ^ 0 => \z\ > 0 and |0| = 0. 

W 1*1 = N-
(c,) |^u)| = |z||i«|. 
(dj |ite(z)| ^ |z|, |Im(*)| < \z\. 
(e) \z + w\ < \z\ + \w\, [Triangle inequality]. 

Proof. The first three is trivial. Then, 

(d) Let z = a + ib \Im(z)\ = \b\ = y/P < Va2 + b2 = \z\. 
(e) \z + w\2 = (z + w)(z + w) = \z\2 + zw + zw + \w\2 < (\z\ + \w\)2 

~zw + zw = 2Re(zw) < \2Re(zw)\ •< 2\zw\ => \z + w\ •< \z\ + \w\. 
Take positive square roots of both sides, i.e. if a >z 0, b >z 0 and a2 < 
b2 =4- a •< b. If not, b < a =$> b2 ^ ab, ba < a2 =>• b2 ^ a2. Contradiction! 

• 
Theorem 9.4.2 (Schwartz Inequality) Let aj,bj £ C, j = l , . . . , n . 
Then, 

J2aibi 
i=i 

-< 

Proof. ByO.HB = 0 then bj = 0 V? => LHS = 0; therefore, 0 ^ 0 . 
Assume B y 0 => 

n n 

0 r< ]T \Baj - Cbjf = Yl(Bai - Cbj)(BN ~ Cb~) 
j = i i = i 

= Y/
B2\ai\2-JlBCaibi-Y,CBbM + y£\c\2\bi\ 

3 = 1 3 = 1 3 = 1 3 = 1 

= B2A - B\C\2 - CBC+ \C\2B = B(AB - |C|2). 

Thus, .45 >: |C|2 , since B ^ 0. D 

9.5 Euclidean Space 

Definition 9.5.1 Let k £ N, we define Rk as the set of all ordered It-
tuples x = (x\,... ,Xk) of real numbers x\,...,Xk- We define {x + y) = 
(xi + 2/ii • • • )#*; + Vk)- If a £ R, ax — (ax\,... ,axk). This way Rk be­
comes a vector space over K. 
We define an inner product inRk byx-y = 5Z i=1 £J2/J. AndVx £ Rk, x-x X 0. 

We define the norm of x £Rk by \\x\\ = \Jx • x = y ^ r l = 1 x2^. 
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Definition 9.5.2 An equivalence relation in X is a binary relation (where ~ 
means equivalent) with the following properties: 

(a) Vx G X, x ~ x (reflexibility). 
(b) x ~ y => y ~ x (symmetry). 
(c) x ~ y, y ~ z => x ~ z (transitivity). 

Definition 9.5.3 7 /~ is an equivalence relation in X, we define the equiva­
lence class of any x G X as the following set: 

[x] = {y G X : x ~ y}. 

Remark 9.5.4 7 /~ is an equivalence relation in X, then the collection of all 
equivalence classes forms a partition of X; and conversely, given any partition 
of X there is an equivalence relation in X such that equivalence classes are 
the sets in the partition. 

Remark 9.5.5 Let C be any collection of nonempty sets. For X,Y G C, 
define X ~ Y (X and Y are numerically equivalent) if there exists a one-
to one and onto function f : X i-> Y (or f~l : Y H-> X). Then, ~ is an 
equivalence relation in C. 

9.6 Countable and Uncountable Sets 

Definition 9.6.1 Let Jn = {1,2, . . . ,n}, n = 1,2,.... Let X ^ 0. We say 

i) X is finite if 3n G N, X ~ Jn. 
ii) X is infinite if X is not finite. 
Hi) X is countable if X ~ N 

(i.e. 3 / : N 4 l , 1-1 onto, or3g:X^N, 1-1 onto), 
iv) X is uncountable if X is not finite and not countable, 
v) X is at most countable if X is finite or countable. 

Example 9.6.2 X = N is countable. Let f : N n- N be the identity function. 

Example 9.6.3 X = Z is countable. Define f : N H> Z as 

/ ( » ) = ( n - l 
§, if n is even; 

2 , if n is odd. 

Example 9.6.4 Q + is countable. Let r G Q + , then r = — where m,n G N. 
List elements of Q+ in this order as in Table 9.1. If we apply the counting 
schema given in Figure 9.1, we get the sequence 

! I 2 I 3 i ^ 3 
' 2 ' ' 3 ' ' 4 ' 3 ' 2 ' ' " " 
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Define f:N^Q+, 

/ ( l ) = 1, /(2) = | , /(3) = 2, /(4) = | , 

Cantor's Counting Schema Another Counting Scheme 

F i g . 9 . 1 . Count ing schema for ra t ional ' s 

T a b l e 9 . 1 . List of rat ional numbers 

n 
m 

1 
2 
3 
4 
5 

1 2 3 4 5 
1/1 1/2 1/3 1/4 1/5 ••• 
2/1 2/2 2/3 2/4 2/5 •• • 
3/1 3/2 3/3 3/4 3/5 •• • 
4/1 4/2 4/3 4/4 4/5 •• • 
5/1 5/2 5/3 5/4 5/5 ••• 

Example 9.6.5 Q is countable. Since <Q 
can be listed as a sequence {2:1,0:2,2:3, • • 
listed as {—x±, —#2, —£3,.. •}• 

Q = 0 Xi —Xi X2 —X2 X3 -X3 . . . 

N = 1 2 3 4 5 6 7 . . . 
/ : N i-> Q can be defined in this way. 

is countable, the elements of Q + 

. Then, Q~ - {q : q -< 0} can be 

XR, if n is even 
/ (n) — I — Xn^, if n is odd 

20, ifn=l. 
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Proposition 9.6.6 If s = {xi,i £ 1} is a countable class of countable sets, 
then Ui£iXi is also countable. That is, countable union of countable sets are 
countable. 

Proof. We have / : N 4 / , 1-1, onto. Let Y„ — Xf(ny The elements of Yn can 
be listed as a sequence. Yn = {X^,X^, • • •} Vra. Use the Cantor's counting 
scheme for the union. Another counting schema is given in Figure 9.1. • 

Example 9.6.7 X = [0,1) is not countable. 

Every x € [0,1) has a binary expansion x = 0.aia2«3 • • • where an = 

Suppose [0,1) is countable. Then, its elements can be listed as a sequence 
{X1, X2, X3,...}. Consider their binary expansions 

X1 = Q.a\a\a\ ... 

X2 = O.ajalal... 

X3 = O.afalal... 

Tpfn _ / 0 , i / a i = l _ f 0, */ al = 1 _ / 0 , t / o i = l 
Letai-\l,ifal=0'a2-\l,ifal=0'a3-\l,ifa3 = 0'---
Let 

x = 0.aia2a3 . . . e [0,1). 

But this number is not contained in the list {X1, X2, X3,...} 

x is different from X1 by the first digit after 0; 
x is different from X2 by the second digit after 0; 
x is different from X3 by the third digit after 0; 

Therefore, x ^ Xn, Vn; since x and Xn differ in the nth digit after zero. So, 
X = [0,1) is not countable. 

Example 9.6.8 X = (0,1) is not countable. Since X — [0,1) is not count­
able, excluding a countable number of elements (just zero) does not change 
uncountability. Thus, X = (0,1) is uncountable. 

Example 9.6.9 For any open interval (a, b) we have 

M ) ~ ( 0 , 1 ) f : (a,b) ^ (0,1). 

Refer to Figure 9.2. 

Example 9.6.10 X — K is not countable. Since R ~ (—1,1), by projection 
R is not countable [because (0,1) is not countable]. One way of showing 1-1 
correspondence between any open interval and (0,1) is illustrated in Figure 
9.3. 

? 
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1 !• ^ %- -%f y >y y ^ 

Fig. 9.2. Uncountability equivalence of (a,b) and (0,1) 

-1 +1 

Fig. 9.3. The correspondence between (-1,1) and '. 

E x a m p l e 9 .6 .11 / : R i-» ( — f , f ) , / ( x ) = arctan(rr) is a i - i correspon­
dence, i.e. fix) is 1-1 and onto. Refer to Figure 9.4-

*= 

arctan(x) ^ ^ - ^ 

7l<2 

j , *arctan(x) x 

~~rJ2 

Fig. 9.4. The correspondence between (-f , f ) and 

P r o p o s i t i o n 9 .6 .12 / / (a, b) is any open interval, then 

( 0 , l ) ~ ( a , & ) ~ R ~ [ 0 , l ) -

Proof. 

3 / : ( 0 , l ) ^ [ 0 , l ) i s l - l ( / ( a : ) = a ; ) . 

3g : [0,1) ^ R is 1-1 {g(x) = x). 

1 : R 4 (0,1) is 1-1 and onto (f(x) = x). 

[0,1) 4 M 4 (0,1) is 1-1. 

By Cantor-Schruder-Bernstein Theorem [0,1) ~ (0,1). • 
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Definition 9.6.13 Roughly speaking, the cardinality of a set (or cardinal 
number of a set) is the number of elements in this set. 
IfX = 9, Card(X) = 0, 
ffX~Jn = {l,2,...,n}, Card(X) = n, 
If X ~ N (i.e. countable), Card(X) = Ko (aleph zero), 
IfX~R, Card(X) = Nx (aleph one). 

Definition 9.6.14 Let m and n be two cardinal numbers We say m -< n if 
there are two sets X and Y 3 Card(X) = m, Card(Y) = n. 

Remark 9.6.15 The list of cardinal numbers: 

0 - < l - < 2 ^ - - - - < n - < - - - - < N 0 ^ : t t 1 = c . 

Remark 9.6.16 Question: 3? a cardinal number between Ko and Hi ? 
The answer is still not known. Conjecture: The answer is no! 
Question: Is there a cardinal number bigger than Hi ? 
The answer is yes. Consider P(R) : the set of all subsets of R (power set 
of R). Hi = Card(R) -< Card(P(R)). We know if Card(X) = n, then 
Card(P(X)) = 2n. Analogously Card(P(N)) = 2*° = Hx. Then, we can say 
that Card(P(R)) = 2*1 = H2. 

Problems 

9.1. Let A be a non-empty subset of R which is bounded below. Define — A — 
{-x : x G A}. Show that inf A = - sup(-A). 

9.2. Let b y 1. Prove the following: 
a) Vm,n G Z with nyQ, (bm)lln = (bl'n)m. 
b) Vm,n G Z with n y 0, (bm)n = bmn = (bn)m. 
c) Vn G Z with n y 0, ll'n = 1. 
d) V n , 3 £ Z with n,qy0, b1/^ = (fe1/")1^ = (blli)lln. 
e) \tp,q€l bP+q = &>&. 

9.3. Do the following: 
a) Let m,n,p,q G Z with n -< 0, q y 0 and r = ^ 

(ypy/i using the above properties. 
b) Prove that bT+s = brbs if r and s are rational. 
c) Let x G R. Define B(x) = {bl : t G Q, t < x} 
sup B(r). 
d) Show that fox+y = bxW Vx, y G R. 

9.4. Fix by 1 and y y 0. Show the following: 
a) VnGN, bn -1 yn(b-l). 
b) (b - 1) h n{bl'n - 1). Hint: Vn G N, ft1/" y 1 holds. So replace (b y 1) 

= E. Show that (6"1)1/" = 

Show that if r G Q, 6r = 
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above by bl//'n >- 1. 
c) If t >• 1 and n >- f^ j , then 61/" x i. 
d) If w 3 6"' X y, then bw+l/n -< y for sufficiently large n. 
e) If fe"J x ?y, then fr'""1/" >_. ^ for sufficiently large n. 
f) Let 71 = {u; e K : 61U X t/}. Show that x = sup/1 satisfies 6* = y. 
g) Prove that x above is unique. 

9.5. Let F be an ordered field. Prove the following: 
a) x, y & F and x2 + y2 = 0 =̂ - x = 0 and y — 0. 
b) xi, x'2, • • •, .x'n G F and .xf + • • • + x^ = 0 => xi = x-i = • • • = x„ = 0. 

9.6. Let m be a fixed integer. For a, b 6 Z, define a ~ 6 if a — 6 is divisible by 
m, i.e. there is an integer fc such that a — b = mk. 
a) Show that ~ is an equivalence relation in Z. 
b) Describe the equivalence classes and state the number of distinct equiva­
lence classes. 

9.7. Do the following: 
a) Let X = R, and x ~ y if x £ [0,1] and y £ [0,1]. Show that ~ is symmetric 
and transitive, but not reflexive. 
b) Let. X / I and ~ is a relation in X. The following seems to be a proof 
of the statement that if this relation is symmetric and transitive, then it is 
necessarily reflexive: 

x ~ y => y ~ x, x ~ y and y ~ x ==> x ~ x; 

therefore, x ~ x, Vx £ X. In view of part a), this cannot be a valid proof. 
What is the flaw in the reasoning? 

9.8. Prove the following: 
a) If Xy, X2, • • •, Xn are countable sets, then X — II]l

=:1Xi is also countable. 
b) Every countable set is numerically equivalent to a proper subset of itself. 
c) Let X and Y be non-empty sets and / : X 1—> Y be an onto function. Prove 
that if X is countable then Y is at most countable. 

Web material 

http://129.118.33.l/~pearce/courses/5364/notes_2003-03-31.pdf 

http://alpha.fdu.edu/~mayans/core/real_numbers.html 

http://comet.lehman.cuny.edu/keenl/realnosnotes.pdf 

http://en.wikipedia.org/wiki/Complex_number 

http://en.wikipedia.org/wiki/Countable 

http://en.wikipedia.org/wiki/Field_(mathematics) 

http://en.wikipedia.org/wiki/Numeral_system 

http://en.wikipedia.org/wiki/Real_number 
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http://math.berkeley.edu/~benjamin/741ecture38s05.pdf 

http://mathforum.org/alejandre/numerals.html 

http://mathworld.wolfram.com/CountablyInfinite.html 

http://numbersorg.com/Algebra/ 

http://pirate.shu.edu/proj ects/reals/infinity/uncntble.html 

http://planetmath.org/encyclopedia/MathbbR.html 

http://planetmath.org/encyclopedia/Real.html 

http://planetmath.org/encyclopedia/Uncountable.html 

http://plato.Stanford.edu/entries/set-theory/ 
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CS-TR-67-75.pdf 

http://www.absoluteastronomy.com/c/countable_set 
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http://www.cse.cuhk.edu.hk/~csc3640/tutonotes/tuto3.ppt 

http://www.csie.nctu.edu.tw/~myuhsieh/dmath/Module-4.5-
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http://www.cut-the-knot.org/do_you_know/few_words.shtml 

http://www.dpmms.cam.ac.uk/~wtglO/countability.html 

http://www.eecs.umich.edu/~aey/eecs501/lectures/count.pdf 

http://www.faqs.org/docs/sp/sp-121.html 

http://www.faqs.org/docs/sp/sp-122.html 

http://www.introducingmathematics.com/settheoryone/01.html 

http://www.jcu.edu/math/vignettes/infinity.htm 

http://www.math.brown.edu/~sjmiller/l/CountableAlgTran.pdf 

http://www.math.niu.edu/~beachy/aaol/contents.html 

http://www.math.niu.edu/~rusin/known-math/index/11-XX.html 

http://www.math.niu.edu/~rusin/known-math/index/12-XX.html 

http://www.math.toronto.edu/murnaghan/courses/mat240/field.pdf 

http://www.math.ucdavis.edu/~emsilvia/mathl27/chapter1.pdf 

http://www.math.ucdavis.edu/"emsilvia/mathl27/chapter2.pdf 

http://www.math.uic.edu/"lewis/laslOO/uncount.html 

http://www.math.uiuc.edu/~r-ash/Algebra/Chapter3.pdf 

http://www.math.umn.edu/~garrett/m/intro_algebra/notes.pdf 

http://www.math.unl.edu/~webnotes/classes/classAppA/classAppA.htm 

http://www.math.uvic.ca/faculty/gmacgill/guide/cardinality.pdf 
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http://www.math.vanderbilt.edu/"schectex/courses/thereals/ 

http://www.math.wise.edu/~ram/math541/ 

http://www.mathreference.com/set-card,cable.html 

http://www.mes.vuw.ac.nz/courses/MATH114/2006FY/Notes/11.pdf 

http://www.msc.uky.edu/ken/mal09/lectures/real.htm 

http://www.swarthmore.edu/NatSci/wstromql/stat53/CountableSets.doc 

http://www.topology.org/tex/conc/dgchaps.html 
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Basic Topology 

In this chapter, basic notions in general topology will be defined and the re­
lated theorems will be stated. This includes the following: metric spaces, open 
and closed sets, interior and closure, neighborhood and closeness, compactness 
and connectedness. 

10.1 Metr ic Spaces 

In Rfc, we have the notion of distance: 
I f p = (xi,x2,...,xk)

T,q = (yi,V2,---,yk)T, P,Q € Rfc, then 

dz(p,q) = y/{xi - yi)2 + (x2 - y2)2 + h (xk - Vk)2 

Definition 10.1.1 Let X 7̂  0 be a set. Suppose there is a function 
d : X X X => E_)_ = [0,00) with the following properties: 

i) d(p, q) = 0 <=> p = q; 
ii) d(p,q) = d(q,p), \/p,q; 

Hi) d(p,q) < d(p,r) + d(r,q), \/p,q,r [triangle inequality]. 

Then, d is called a metric (or distance function) and the pair (X, d) is called 
a metric space. 

Example 10.1.2 Let X ^ 0 be any set. For p,q e X define 

d(va) = i1' ifp¥:q 
d(P'q) \ 0 , ifp = q 

is called the discrete metric. 

Definition 10.1.3 Let S be any fixed nonempty set. A function f : S •->• R is 
called bounded if f(S) is a bounded subset o/R. 
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Example 10.1.4 Is / : R H-» R, f(s) = s2 bounded? (Exercise!). 
/ : R i-> R, f(s) = arctan(s) — tan_ 1(s) is bounded. See Figure 9.4-

Definition 10.1.5 Let X = B{S) = all bounded functions f : S i-> R. 

For f,g £ B(S), we define the distance asd(f,g) — sup{|/(s) — g(s)\ : s £ S}. 

Proposition 10.1.6 d(f,g) > 0 is a metric, Vf,g £X = B(S). 

Proof, by proving axioms of a metric: 

(i) (=») 
if d(f,g) = 0 =» \f(s)-g(s)\ = 0 , V s e 5 ^ f(s) = g(s), Vs £ S => f = g. 

iff = g^d(f,g)=0. 
(ii) trivial, 

(iii) Proposition 10.1.7 Let A ^ 0, B ^ 0 be subsets ofR. Define 

A + B = {a + b: a £ A, b £ B} . 

If A and B are bounded above then A + B is bounded above and 

sup(A + B) < sup A + sup B. 

Proof. Let x = sup A, y = sup B. 
Given c e A + B, then 3a £ A, b £ B 3 c = a + b. Then, c = a + b < x + y. 
Moreover, sup(A + B) < x + y. • 

Proposition 10.1.8 Let C, D be nonempty subsets o/R, let D be bounded 
above. Suppose Vc £ C, 3d £ D 3 c < d. Then, C is also bounded above 
and sup C < sup D. 

Proof. Given c £ C, 3d £ D 3 c < d. So, Vc £ C, c < y = sup£>. Hence, 
y is an upper bound for C. Therefore, sup C < sup D. D 

Triangular Inequality: Let f,g,h £ B(S). 
C = {|/(s) - g(s)\ :s£S}, then d(f,g) = supC. 
A = {\f{s) - h(s)\ :s£S}, then d(f, h) = sup A 
B = {\h\s) - g(s)\ :s£S}, then d(h,g) = supB. 
Given x £ C, then 3s £ S 3 x — | /(s) - g(s)\ 

x=\f(s)-g(s)\ = \f(s)-h(s) + h(s)-g(s)\ < \f(s)-h(S)\ + \h(s)-g(s)\ 

=> sup C < sup(A + B) < sup A + sup B. • 

Example 10.1.9 Let X = Rk, P = (Xl,...,xk)
T and Q = {yi,...,yk)

T € 
Rfe. 

di(p,q) = \xi-yi\-\ h \xk -yk\ : h metric. 
<kip, q) = [(xi - 2/i)2 H + (xfe - yk)

2}1/2 • h metric. 
doo(p,q) =max{\x1 -yx\,...,\xk - yk\) : l^ metric. 
See Figure 10.1. 
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P<.. . 

6̂  

-d,— 
'Oinfty • 

Fig. 10.1. Example 10.1.9 

Definition 10.1.10 Let (X,d) be a metric space, p 6 X, r > 0. 
Br(p) = {q S X : d(p, q) < r} open ball centered at p of radius r. 
Br\p] — {q £ X : d(p, q) < r} closed ball centered at p of radius r. 

Example 10.1.11 X = M2, d = d2. See Figure 10.2. 

CLOSED BALL OPEN BALL 

P 
Br[P] / " Br(P) 

j y s ^ , „ ' 

Fig. 10.2. Example 10.1.11 

Example 10.1.12 Let us have X ^ 0, and the discrete metric. 

{p} , if r < 1 f {p}, if r < 1 
MP) ={{p},if r = l Br\p] ={ X, if r = 1 

X, if r > 1 { X, if r>l 

Example 10.1.13 X = B c (a, b) = {/ : (a, b) >-> R : / is bounded} 

f,9EX^ d(f,g) = sup{|/(s) - g(s)\ : a € (a, 6)} 

Let f € X,r > 0, Br(f) is the set of all functions g whose graph lie within the 
dashed envelope in Figure 10.3. 

Example 10.1.14 X = W2 with d\ metric: 

d\{p,q) = 12/i -xi\ + |s/2 -x2\. 

See Figure 10.4-
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Fig. 10.3. Example 10.1.13 

Example 10.1.15 X = K2 with rfoo metric: 

doo(p,q) = max{|t/i -xi\,\y2 - x2\} • 

Definition 10.1.16 A subset E 7̂  0 of a vector space V is convex if 
tp + (1 - t)q G E whenever p,q G E and t € [0,1]. 

Proposition 10.1.17 X — M.k withd2, d\ or d^ metric. Then, every (open) 
ball Br(p) is convex. 

Proof. Using c ^ metric: 
Fix Br{p). Let u,v £ Br(p),0 < t < 1. Show that tu + (1 - t)v G Br(p) : 
Letp = (pi,...,Pk), u = (ui,...,uk), v = (vi,...,vk). Then, 
doo(tu+ (1 - t)v,p) = d00(tu + (1 - t)v,tp+ (1 - t)p) 

= max{|<Mi + (1 - t)vi - tpi - (1 - t)pi\}i=1 

= \tuj + (1 - t)vj - tpj - (1 - *)pj-| = \t{uj - pj) + (1 - i)(u,- - p7-)l 
< |<||uj-pj| + | l- t | |u J--pj | = td00(u,p) + (l-t)d00(u,p) < tr+(l-t)r = r. 

D 

Definition 10.1.18 Let (X,d) be a metric space, E C X. A point p G E 
is called an interior point of E if 3r > 0 3 Br(p) C E. The set of all 
interior points of E is denoted by intE or E° and is called the interior of E 
(intEcE). 

1 / X 1 / S 
1/ / 

Y %. K 
iv X 
Is X 
1 \ 

X ^ 
X N 

X \' 
r X l 

Rectilinear 

I / \ > 

P r \ 

Euclidean Tchebycheff's 

Fig. 10.4. Example 10.1.14 
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Example 10.1.19 See Figure 10.5. q G intE but p g" intE. 

Fig. 10.5. Example 10.1.19 

Example 10.1.20 Let X be any set with at least two elements, with the dis­
crete metric: 

Letpe X, E = {p}. Then, 

intE = E, r < 1 => Br(p) = p c E => p £ intE. 

Example 10.1.21 Let X = R2 with d2 metric. See Figure 10.6. 

T 
Fig. 10.6. Example 10.1.21 

E = {p = (x,y) £ R2 : 1 < x2 + y2 < 4} => 

intE = {p = (x,y) e M2 : 1 < x2 + y2 < 4} . 

Definition 10.1.22 E is said to be open set if intE = E, i.e. 

\fpeE,3r>0 3 Br(p) C E. 

Example 10.1.23 In K2, E = {p = (x,y) £ E2 : 1 < x2 + y2 < 4} is open. 

Remark 10.1.24 By convention, E = 0, E = X are open sets. 

Definition 10.1.25 Let p £ X. A subset N of X is called a neighborhood of 
p if p G intN. 
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Fig. 10.7. Example 10.1.26 

Example 10.1.26 N is a neighborhood of P but it is not neighborhood of Q. 
See Figure 10.7. 

Definition 10.1.27 A point p S X is called a limit point (or accumulation 
point) (or cluster point) of the set E C X if every neighborhood N of p 
contains q of E 3 q ^ p. i.e. V neighborhood N of p, 3q € E f\ N, q ^ p. 
Equivalent^, Vr > 0, 3<7 G E D Br(p) 9 q ^ p. 

Example 10.1.28 £ = { p = ( i , j / ) € R 2 : K i 2 + t / 2 < 4 } u { ( 3 , 0 ) } . Limit 
points of E are all points p = (x,y) 3 1 < x2 + y2 < 4. See Figure 10.8. 

Fig. 10.8. Example 10.1.28 

Definition 10.1.29 A point p € E is called an isolated point of E if p is not 
a limit point of E; i.e. 3r > 0 3 Br{p) n E = p. 

Example 10.1.30 X = R, d = dx: 

E={i\W~)> 
0 is the only limit point of E. \fp £ E are all isolated points. 

Definition 10.1.31 E is closed if every limit point of E belongs to E. 

Example 10.1.32 See Figure 10.9. 
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CLOSED OPEN Not CLOSED Not OPEN 

(o) (d) (o) 
Fig. 10.9. Example 10.1.32 

Definition 10.1.33 E is perfect if it is closed and every point of E is a limit 
point of E; i.e. if E is closed and has no isolated points. E is bounded if 
3M > 0 9 Vp, q G E d\p, q] < M. E is dense in X if every point of X is 
either a point of E or a limit point of E. 

Example 10.1.34 X = K, E — N is unbounded. Suppose it is bounded. 
Then, 3M > 0 B Vx, y G N, \x - y\ < M. Let n G N be B n > M + 1 => 
| l - n | = r a - l < M - » n < M + l. Contradiction! 

Example 10.1.35 X = M, E = Q (Q is dense in R; i.e. given x G K either 
x G Q or x is a limit point ofQ). Let i £ l , if x G Q, we are done. If x ^ Q, 
we will show that x is a limit point of Q: 
Given r > 0, Br{x) = (x — r, x + r). Then, 3y € Q 3 x — r<y<x + r=> 
y G Br(x) n Q and y ^x => x €R, y G Q. 

Let us introduce the following notation: 
E': set of all limit points of E. 
E — E U E', E is called the closure of E. 

pE E <=* W > 0, Br(p) n £ / 0. 

Proposition 10.1.36 Every open ball Br(p) is an open set. 

Proof. Let q G Br(p), we will show that 3s > 0 3 Bs(q) C Br(p): 
q G Br(p) => d(q,p) < r, let s = r - d(q,p) > 0. Let z G Bs(q), 

d(z,p) < d{z,q) + d{q,p) < s + d(q,p) =r =>• z G Br(p). • 

Theorem 10.1.37 p is a limit point of E if and only if every neighborhood 
N of p contains infinitely many points of E. 

Proof. (<=): trivial. 

(=>): Let p be the limit point of E. Let N be an arbitrary neighborhood 
of p. Then, 3r > 0 B Br(p) C N. Since Br(p) is a neighborhood of p 
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3qx G Br(p) r\E3qi^p^ d(q,p) = n > 0. 

3q2 eBr(p)DE 9 q2^p. 

Then, q2^qi- Since q2 ^ p, r2 = d(q2,p) > 0. 

3q3 e Br2(p) D E 9 q3^p^q2^qi;--- . D 

Corollary 10.1.38 7 / F is a/mite set, E' = 0. 

Theorem 10.1.39 E is open if and only if Ec is closed. 

Proof. (=>): Let E be open, Let p be a limit point of Ec. Show p G Ec. 
Suppose not: 

p G E =>• 3r > 0 9 -Br(p) C E [because E is open] (*) 

Since p is a limit point of Ec, for every neighborhood N of p, N D Ec ^ 0. In 
particular (by taking N = Br(p)), Br(p) OEc ^%, Contradiction to (*). 

(<=): Assume Ec is closed. Show E is open; i.e. Vp G E, 3r > 0 9 F r(p) C 
E. Let p G E =4> p £ F c => p is not a limit point of F c . So 3r > 0 9 Br(p)f)Ec 

does not contain any q / p (p either). =*> _Br(p) (~l Ec = 0 =>• Br(p) C E. D 

Theorem 10.1.40 Let E C X, then 

(a) E is closed. 
(b) E-E-^Eis closed. 
(c) E is the smallest closed set which contains E; i.e. if F is closed and 

E C F => E CF. 

Proof. EcX. 

(a): (F) c is open. 
Let p G (F) c => p <£ E_=> 3r > 0 B Br{p) n F = 0 => Br(p) C (F) c . 
Show that Br{p) C {E)c: 
If it is not true 3q G Br(p) and q $ (E)c =$• q€ Ec. 
Find s > 0 3 £ s(g) C £ r (p) . Then Bs(g) n E ^ 0 => Br(g) n F ^ 0. 
Contradiction, 

(b): (=>): Immediate from (a). 
(«=): F is closed. Show E = E, i.e. F C F . Let p G F = F U F ' , if p G F , 
we are done. 
If p G F ' =>• p G F (because F is closed), 

(c): Let F be closed, E C F. Show that E C F . Let p G E = E U E', if 
p G F => p G F . If p G F ' we have to show that p G F ' : 
Given r > 0, show Br(p) fl F contains a point q ^ p. Since p G F ' , 
S r(p) n F contains a point </ ^ p. Then, q G F r(p) n F (because F c F) . 
So, p G F ' =*> p G F (because F is closed). • 
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Let (X,d) be a metric space, then 

1. The union of a finite collection of open sets is open. 
2. The intersection of a finite collection of open sets is open (not true for 

infinite). 
3. The intersection of any collection of closed sets is closed. 
4. The union of a finite collection of closed sets is closed (not necessarily true 

for infinite). 
5. £ is open <=> Ec is closed. 
6. E is closed <=> E = E. 
7. £ is the smallest closed set containing E. 
8. intE is the largest open set contained in E (i.e. if A C E and A is open 

then A C intE). 

E x a m p l e 10 .1 .41 Intersection of infinitely many open sets needs not to be 

open, X = R, d(x,y) = \x - y\: Let An = ( - ^ , n ± i ) , n = 1 ,2 , . . . . Then, 

f T = i A-. = [0,1]. / / 0 < .x < 1 ( A m i G ( - £ , ^ ) = An, Vn => a; G n ~ = 1
 A « -

Let x G 0^=1 ^ n - s / t o w **oi 0 < a; < 1: 
If not, x < 0 or x > 1. If x > 1, 3n E N 3 1 < ^ < x, j ; ^ An. Case 
x < 0 is similar. 

P r o p o s i t i o n 10 .1 .42 Lei 0 ^ £ C R 6e bounded above. Then, sup E G £ . 

Proof, y = sup £ , show tha t Vr > 0, Br(y) n L / 0: Since y — r<y=>y — r 
is not upper bound of E. Bx G £ 9 y >_ x > y — r =$• x € (y — r,y -\-r)C\E => 
Br{y)C\E^%. 0 

Let (X, rf) be a metric space and I / 7 C X, then 7 is a metric space 
in its own right with the same distance function d. In this case, (Y, d) is a 
subspace of (X, d). 

If £ C Y, E may be open in (Y, d) but not open in (X, d). 

E x a m p l e 10 .1 .43 X = R2 , Y = R, £ = (a, 6): WTierc considered in R, £ is 
open whereas E is not open in R2 , as seen in Figure 10.10. 

•** ~ •% 

Hr^m 

a N\ c-^// b 

Fig. 10.10. Example 10.1.43 

Def ini t ion 10 .1 .44 Let E C Y C X. We say E is open (respectively closed) 
relative to Y if E is open (respectively closed) as a subset of the metric space 
(Y,d). 
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E is open relative to Y •» Vp e E 3r > 0 3 Br(p) r\Y CE. 
E is closed relative to Y •£> Y \ E = Y n Ec is open relative to y . 

Theorem 10.1.45 LetX CY C E. Then, 

(a) E is open relative to Y ^3 an open set F in X 3 E = F f]Y. 
(b) E is closed relative to Y <&3 a closed set F in X 3 E — F <~)Y. 

Proof. X C Y C E. 

(a) (=»): 

Let E be open relative to Y. Then, 

Vp G E 3rp > 0 3 Brp{p) n Y C E. 

Let F = {JpeE Brp(p). F is open in X. 

\J[Brp(p)nY}cE FHYCE 
p€E 

Conversely, q G E, then 

q e Brq(q) C F, qeEcY=^qeF(lY^EcFC]Y 

(<=)• 

E = FDY where F is open in X. Given p G E =>• p G F. Since F is open, 
3r > 0 3 Br{p) C F. 

Br(p)f)Y CFDY = E. 

(b) (=»): 
£? is closed relative to Y =>• Y \ £ is open relative to Y. Then, 
3F G X open in X 9 Y\E = FC\Y. 
E = Y\(Y\E) = Y\(FnY) = Yn(Fr\Y)c = YnFcU<D = YDFc. 
Fc closed in X. 

(<=) = 
£ = F n 7 where F is closed in X. 
Y\E = Yn{Fr\Y)c = YHFC (Fc open in X) = > Y \ £ is open relative 
t o y . 
=> E is closed relative to Y. D 

10.2 Compact Sets 

Definition 10.2.1 Let (X, d) be a metric space, E C X be a nonempty subset 
of X. An open cover of E is a collection of open sets {d : i G / } in X 3 E C 
UiGi. 
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Example 10.2.2 X = Rk with d2 metric: 
E = B1(0), for n £ N, Gn = 3^.(0) = > £ c U??=i Gn. 

Example 10.2.3 X = R, E = (0,1): 
V.x 6 (0,1),GX = ( -1,1) => E C Ux€(o,i) G -

Definition 10.2.4 i? is said to be compact if for every open cover {Gi : i £ 1} 
of E, we can find 

Gi,,..., Gin 3 EC [Gu U Gh u • • • U G,;J. 

Example 10.2.5 / n X = R, J3 = (0,1) is not compact: 
Consider {Gx : x £ (0,1)} where Gx = ( — 1,2;). Suppose 3xi,..., xn 6 (0,1) 3 
(0,1) C Ur=i(- 1 ' a ; i ) - Let Y = max{.x1 , . . . ,x„} =* 0 < y < 1 =* (0,1) C 
(-1,y) . Lei ,i = ^ => 0 < K 1, a; £ (-1,2/) Contradiction! Thus, (0,1) is 
no/, compact. 

Remark 10.2.6 /« i/ie Euclidean space, open sets are not compact. 

Theorem 10.2.7 Let K C Y C X. Then, K is compact relative to Y if and 
only if K is compact relative to X. 

Proof. (=>): Suppose K is compact relative to Y. Let {Gi,i £ 1} be an open 
cover of K in X. Then, K c U i e / ft, so X = / C n Y C (U, :e/ G^tlY = 
\Ji(:]{GiC\Y): open relative to Y. Since K is open relative to Y, 3i\,. . ., in 3 
K <z {Gix n Y) u (Gi2 n y) u • • • u {Gin n y) => ir c \J"=1 Gz. 

{<=): Suppose K is compact relative to X. Let {Ei,i £ 7} be any open 
cover of K in Y. Then, 
V?; e / 3 an open set Gt £ X 3El = GlnY.K c (\JieT Et) c ((J i e / G<). 
So, {Gi, i G 7} is an open cover in X. Then, 3i\,... ,in 3 
K c Gu U Gi2 U • • • U Gin => K = K n r C (G^ n y) U • • • U (G ln n Y) = 
EuU..UEln. 0 

Theorem 10.2.8 Let {X, d) be a metric space and K C X be compact. Then, 
K is closed. 

Proof We will show that K° is open. 
Let p £ Kc be an arbitrary fixed point. Vg £ K => d(p, g) > 0. Let ?*9 = 
\d{p,q) >0. 

Vr, = Br{p), Wq = #r(</)- # C U9e/c f̂/ (because if is compact) 

=> 3gi, . . . ,<7„ e i f S / f C ^ U - U W,„ = W. 

Let K = Vqx n V92 n • • • n Vqn Air = Min {rqi,..., r,ln } > 0, then V = Br{p). 
Let us show that W n V = 0: If not, 3 z e V K n V = > z e V K = > z € Wg, for 
some i — 1 , . . . ,n. Hence, d(z,qi) < r,h — ^d{p,q{). z £ V => z £ Vq% for the 
same i. Thus, d{z,p) < r(h = ^d{p,qi). 



148 10 Basic Topology 

=> d{p, qi) < d{p, z) + d(z, qi) < d(p, qi). 

Contradiction! Therefore, W D V = 0. 
Thus, V = Br(p) C Xc C Kc => Kc is open => K is closed. D 

Theorem 10.2.9 Closed subsets of compact sets are compact. 

Corollary 10.2.10 If F is closed and K is compact, then FC\K is compact. 

Theorem 10.2.11 Let {Ki\i G / } be a collection of compact subsets of a 
metric space such that the intersection of every finite subcollection of Ki is 
nonempty. Then, 

Proof. Assume f]ieI Ki — 0. 
Fix a member of {Ki, i G 1} and call it K.. Then, 

/cn[ f l Ki] = 9^JCc[\J K?]. 

Since K is compact, 3KX, ...,Kn 3 l C c [K[ U • • • U K%\ => K. D Kx n • • • D 
Kn = 0, since we intersect a finite subcollection, we have a contraposition 
(Contradiction). D 

Corollary 10.2.12 If (Kn) is a sequence of nonempty compact sets 3 K\ D 
K2D---, then OZi Kn ? 0-

Theorem 10.2.13 (Nested Intervals) Let(In) be a sequence of non-empty, 
closed and bounded intervals in R 3 I\ C I2 C • • •, then 

n = l 

Proof. Let In = [an,bn] 3 an <bn. Then, 

h C h C • • • => ai < a2 < • • • < a„ < • • • < bn < • • • b2 < 61. 

Moreover, if k < n => Ik C In and a^ < an <bn <bk-
Let E = 01,02,. . . is bounded above by 61. Let x — sup-E, then Vn, an < x. 
Let us show that Vn, x < bn: If not, 3n 3 bn < x => 3a,k £ E 3 bn < a/.. 

case 1: k < n =>• a^ < an < bn < a^, Contradiction! 
case 2: k > n => an < ak < bk < bn < a^, Contradiction! 

Thus, Vn, a: < bn =* a; G /„ , Vn =>• x e fX°=i A. => l T = i J» ? 0- • 
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R e m a r k 10 .2 .14 Here are some remarks: 

1. 7 / l im„_ l o o (6 n - an) = l i m ^ ^ length(In) = 0, => f£°=i In consists of one 
point. 

2. If In 's are not closed, conclusion is false, e.g. In = (0, - ) . 
3. If In's are not bounded, conclusion is false, e.g. In = [n,oo]. 

Def ini t ion 10.2 .15 Let ax < b\,..., ak < bk be real numbers, then the set of 
all points p G Rk 3 p = {x\,... ,xk), â  < xt < l>i, i = 1 , . . . , k is called a 
k-cell. So a k-cell is 

[ai,bi] x • • • x [ak,bk]. 

T h e o r e m 10.2 .16 Let k G N be fixed. Let In be a sequence of k-cells in Rfc 3 

IiDl2D---.Then, ' fl~i W 0. 

T h e o r e m 10 .2 .17 Every k-cells is compact (with d2 metric). 

Proof. Let / = [ai,bi] x • • • x \ak,bk} C Rfc be a k-cell. If a\ = b\,... ,ak = bk, 
then / consists of one point. Then, / is compact. So assume for at least one 
j , dj < bj, j G { 1 , . . . k}. Let 5 = [Yll=i(°i — di)2}1 > 0. Suppose / is not 
compact. So, there is an open cover {Ga,a G A} of / 3 {Ga} does not have 
any finite subcollection the union of whose elements covers / . 
Let c% = ^ | ^ . Then, \aubi\ = [a^c,] n [ci:bi\. 

This way / can be divided into 2fc k-cells Qj 3 | J L i Qc = I-

Also, Vj we have p,q G Qj, d(p,q) < ^S. 
Since / cannot be covered by a finite number of Ga's, at least one of the Qj's, 
say /] cannot be covered by a finite number of Ga's. Subdivide I\ into 2 cells 
by halving each side. Continue this way . . . We eventually get a sequence {/„} 
of k-cells such that 

a) / , C h C • • •; 
b) / „ cannot be covered by any finite subcollection of {Ga,x G A} , Vn; 
c) p,q £ In => d(p, q) < ^-S, Vn. 

By a) | X L i In + $• L e t P* e 0^=1 In C I, then 3 a 0 G A 3 p* G Gao. Since 
Gan is open, 3r > 0 3 Br{p*) c GQ(). Find n0 G N 3 % < 2n" [i.e. ^ < r ] . 
Show /,,,„ c G„„ : p*Gfir=i Ai c ^n„- Let p G J n o , by c) d{p,p*) < ^ 5 < r. 
=> p G Br(p*) C G„„ => /„,„ C G a o and this contradicts to b). Thus, / is 
compact. • 

T h e o r e m 10.2 .18 Consider Rk with d2 metric, let E C Rfc. Then, the fol­
lowing are equivalent: 

(a) E is closed and bounded. 
(b) E is compact. 
(c) Every infinite subset of E has a limit point which is contained in E. 
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Remark 10.2.19 Consider the following remarks on Theorem 10.2.18: 

1. The equivalence of (a) and (b) is known as Heine-Ba,rel Theorem,: 
A subset E of Rk is compact if and only if it is closed and bounded. 

2. (b)<&(c) holds in every metric space. 
3. (c)=> (a) , (b)=> (a) hold in every metric space. 
4- (a)=>(c) , (a)=>(b) are not true in general. 

Theorem 10.2.20 (Balzano-Weierstrass) Every bounded infinite subset 
of Rfc has a limit point in Rk. 

Proof. Let E C Kfc be infinite and bounded. Since E is bounded 3 a k-cell 
/ 9 E C I. Since I is compact, E has a limit point p E I c Rk. • 

Theorem 10.2.21 Let P ^ 0 be a perfect set in Rk. Then, P is countable. 

10.3 The Cantor Set 

Definition 10.3.1 Let 
E0 = [0,l], 
E, = [ 0 , i ] U [ | , l ] , 
E2 = [0, £] U [£, £] U [$, £] U [JM], 

continue this way. Then, Cantor set C is defined as 

oo 

C= f]En. 
n = l 

Some properties are listed below: 

1. C is compact. 
2. C ^ 0 . 
3. C contains no segment (a, (3). 
4. C is perfect. 
5. C is countable. 

Proof (Property 3). In the first step, ( | , | ) has been removed; in the second 
step (Jy, -p-), (T^, ^ ) have been removed; and so on. C contains no open in­
terval of the form (3k^1, 3kJ,~2), since all such intervals have been removed in 
the I s *, . . . , ( n - l) s ' ;steps. 
Now, suppose C contains an interval (a,/?) where a < j3. Let a > 0 be a 
constant which will be determined later. Choose n £ N 3 3~" < —^-- Let k 
be the smallest integer B a < ^pr^, i.e. ^K~ < k, then k - 1 < a3'3~

l- Show 
^ < 0, i.e. fc < ^ ^ k < 1 + a31=i; so show 1 + 2^LI < S^Lzl] i.e. 
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1 1 a3~"3n - 1 a 
— > ^ > — > 1, 

is what we want. So, a > 4. Then, (^f^1, ^ | ^ ) C (a,/?) C C, Contradiction! 
• 

Proof (Property 4). Let x £ C be an arbitrary point of C. Let Br(x) = 
(x — r,x + r) be any open ball centered at x. Find n 6 N 3 4r < 
r, x G C = CC=1Em => x e £„ = / f U ••• U /£, , (disjoint intervals). 
So x £ / " for some j = 1,2,... ,2™. Then, x £ (x - r,x + r) D / j 1 and 
length(/™) = -L < r => / " C (x - r, x + r). 

Let y be the end point of 7™ 3 y ^ x. Then, y £ C n(x — r,x + r) => x is 
a limit point of C. D 

10.4 Connected Sets 

Definition 10.4.1 Let (X,d) be a metric space and A,B C X. We say A 
and B are separated if A n B = 0 and .4 n B = 0. /I subset E of X is said to 
be disconnected if 3 two nonempty separated sets A,B3E = AUB. E C X 
is called, connected if it is not a union of two nonempty separated sets, i.e. 3 
no nonempty separated subsets A, B B E — AL) B (V A,B pairs). 

Example 10.4.2 X =• K2, with d2,dx or 
Let E = {(x,y) : x2 < y2} = {{x,y) : \x\ < \y\}. See Figure 10.11. 

CONNECTED DISCONNECTED 

Fig. 10.11. Example 10.4.2 

Theorem 10.4.3 A subset E ^ 0 of R is connected if and only if E is an 
interval (E is an interval if and only if z,x £ E and x < z => Vy with x < 
y < z => y £ E). 
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Proof. Let us mark the statement 
2, x £ E and x < z => Vy with x<y<z=$-y€E (*). 

Let E ^ 0 be connected. If £" is not an interval => (*) does not hold. i.e. 
3x,z G E 3 x < z and 3y 3 x < y < z and y ^ E. Let yly — (—oo,y) n 
U, i?w = (y, +oo)niJ. i4y 7̂  0 (because x G J4W) and By^% (because 2 G 5 y ) . 
Ay U By = [(-oo, y) U (?y, oo)] (IE = E. Ay C (-oo, y) =̂> .4y C (-oo, y] and 
5,; C (y, oo) => Ay n Sy C (-oo, y] n (;</, + oo) = 0 => Ay n 5 y = 0. 
Similarly, Ay II By = Q => E is disconnected, Contradiction! 

Suppose ZJ is disconnected. Then 3 nonempty separated sets A, B 3 A U B = 
E1. Let i e A,t/ e B. Assume without loss of generality x < y (because 
A n B = 0,_z ^_y). Let 2 = sup(A n [x, y}), then z E An [x, y\ C A (because 
Ac B => A C B), z ^ B. Since x £ An[x, y], we have x < 2. 2 G .4 n [x, y] C 
[x, y] = [x,y] =$• z < y =$• x < z < y. 

z = i] G A 1 -
If ' > => jy G J4 n B = 0, Contradiction; hence, 2 < iy. 
So, x < z < y, and 2 £ A. 
If z £ A =$• x < z < y. So x,y €. E 3 x < y and Z 3 I < 2 < J , z ^ E because 
z <£ B,z g A. So (*) does not hold. 
lfz€zA=>ztf:B (because sets are separated). 
Claim: (z,y) <£ B. If not, (z,y) C B 4 (z,i/) C B 4 [z,i/] C B =* z e B , 
Contradiction. 
Therefore, 3z\ G (z,y) 3 z\ & B => x < z < z\ < y => z\ € [x,y]. 
If 2] G A, then z\ < z => z\ ^ A, z\ tf: E. =$• x,y €• E 3 x < y and 
2i 3 x < z\ < y, Contradiction to (*)! • 

Problems 

10.1. Let X y^ 0 be any set. Let d, g be two metrics on X. We say the metrics 
d and y are equivalent if there are two constants: 

A, B > 0 3 Ag(p, q) < d{p, q) < Bg(p, q), Vp, qeX. 

Show that the metrics di,d2,d00 for Rk are all equivalent, i.e. find A,B. 

10.2. Let (X,d) be a metric space, p G X, r > 0. One is inclined to believe 
that£?r(p) = Br\p\\ i.e. the closure of the open ball is the closed ball. Give an 
example to show that this is not necessarily true. 

10.3. Show that a metric space (X, d) is disconnected if and only if X has a 
nonempty proper subset which is both open and closed. 

10.4. Consider the Printed Circuit Board (PCB) given in Figure 10.12 having 
36 legs separated uniformly along the sides of the wafer. Suppose that a CNC 



10.4 Problems 153 

Fig. 10.12. The PCB example 

machine with a robot arm makes vias (a kind of drill operation) at points 
A, B,..., L. A high volume of PCB's are processed one after another. 

a) Suppose that the robot arm moves in horizontal as well as vertical direction 
using a single motor. It switches its direction in an infinitesimal time unit. 
The CNC programmer uses the following logic to find the sequence of vias 
to be processed: Start from A, go to the closest neighbor if it has not been 
processed yet. Break the ties in terms of ascending lexicographical order of 
locations. Once the initial sequence (Hamiltoncan tour) is obtained, examine 
the nonconsecutive pair of edges of the tour if it is possible to delete these 
edges and construct another tour (which is uniquely determined by the four 
locations) that yields smaller tour in length. In order to check whether there 
exist such an opportunity, the programmer calculates the gains associated 
with all possible pairs once. Suppose that the connections between (a , /3) and 
(7, S) is broken in the current tour. Then, new connections (a, 7) and (/3, 5) is 
constructed in such a way tha t some portion of the tour is reversed and a new 
tour spanning all locations is obtained. Once all the gains are calculated, all 
the independent switches is made. This improvement procedure is executed 
only once. 

1. Find the initial tour after deciding on the appropriate metric. 
2. Improve the tour. 

b) Wha t if the robot arm moves in any direction using its motor? 
c) Wha t if the robot arm moves in horizontal as well as vertical direction 
using two independent but identical motors? 
d) Suppose that we have N PCBs to process. All the operation times are 
identical, each taking p time units. The robot arm moves at a speed of one 
leg distance per unit time along each direction. Let C\ be the cost of making 
the robot arm to move along any direction using the single motor and Ci be 
the cost of adding a second motor. Using the improved solutions found, which 
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robot configuration is to be selected when the opportunity cost of keeping the 
system busy is C0 per unit time? 
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Continuity 

In this chapter, we will define the fundamental notions of limits and continuity 
of functions and study the properties of continuous functions. We will discuss 
these properties in more general context of a metric space. The concept of 
compactness will be introduced. Next, we will focus on connectedness and 
investigate the relationships between continuity and connectedness. Finally, 
we will introduce concepts of monotone and inverse functions and prove a set 
of Intermediate Value Theorems. 

11.1 Introduction 

Definition 11.1.1 Let (X, dx), (Y, dy) be two metric spaces; E ^ 0, E C X. 
Let f : E i-> Y,p £ E,q € Y. We say limn^+p f(x) = q or f(x) —> q as x —» p 
if Me > 0,3£ > 0 9 Vx G E with dx(x,p) < 5 we have dY(f{x), q) < e 
(Le. Ve > 0,38 > 0 3 f{E D Bf(p)) C B»(g);. 

Fig. 11.1. Limit and continuity 

Definition 11.1.2 Let (X,dx), (Y,dY) be metric spaces; 0 ^ E C X, and 
f : X t-¥ Y,p E E. f is said to be continuous at p if 
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Ve > 0,36 > 0 9 Vx 6 E with dx(x,p) < S we have du(f(x), f(p)) < s. 

Remark 11.1.3 The following characteristics are noted: 

• / has to be defined at p, but p does not need to be a limit point of E. 
• Ifp is an isolated point ofE, then f is continuous at p. That is, given e > 0 

(no matter what £ is), find S 3 E fl Bf{p) = {p}. Then, x & E, d{p, x) < 
6 =>• x = p. Hence, dy(f(x), f(p)) = 0 < e. 

• Ifp is a limit point of E, then f is continuous atp-^f- limx_>p / (x) = / (p) . 

Definition 11.1.4 If f is continuous at every point of E, we say f is con­
tinuous on E. 

Proposition 11.1.5 Let (X,dx),(Y,dY),(Z,dz) be metric spaces and 0 ^ 
E C X, f : E i-» Y, g : f(E) i-» Z. If f is continuous at p G E and g is 
continuous at f(p), then g o f is continuous at p. 

Proof. Let q = / (p) . Let e > 0 be given. Since g is continuous at q, 3n > 0 9 
Vy G f(E) with dy(y,q) < n we have d-2(g{y),g(q)) < e. Since / is continuous 
at p, 35 > 0 9 Vx e E with dx{x,p) < 6 =$> we have dy( / (x) , / (p)) < n. 
Let x G E be 9 djr(:r,p) < <5. Then, y = f(x) G / ( E ) and dY(y,q) = 
dy(f(x),f(p)) < n. Hence, dz{g{f{x)),g{f{p))) = dz(g(y),g(q)) < s. • 

Theorem 11.1.6 Lei (X, dx-),(Y, dy) 6e metric spaces, and let f : X t-> Y. 
T/ien, / is continuous on X if and only i/V open se£ V in Y, / - 1 ( V ) = { p € 
•^ : /(p) S y } is open in X. 

Proof. (=>•): 
Let V be open in Y. If f~l(V) ^ 0, let p G / _ 1 ( ^ ) be arbitrary. Show 
3r > 0 9 B*(p) C / - 1 ( ^ ) : p G / - 1 ( V ) implies /(p) G V. Since V is open, 
3s > 0 9 BY(f(p)) C V. Since / is continuous at p, for e = s, 3r > 0 9 Vx G 
X with 4 ( x , p ) < r =• <W(x) , /(p)) < s =* / (x) G B s

y(/(p)) =» x G /"^(V) . 

Let p G X be arbitrary. Given e > 0, let V = J3^(/(p)) be open. Then, 
/ - 1 ( V ) is open and p G f~l{V). Hence, 3<J 9 B«(p) C / _ 1 ( V ) . If <4(x,p) < 
5 => x G B f (p) C / " H V ) , then / (x) G V => rf,(/(x),/(p)) < e. D 

Corollary 11.1.7 / : X —> Y is continuous on X if and only i/V closed set 
C in Y, f~l{C) is closed in X. 

Proof. f-l{Ec) = {f-\E))c. U 

Definition 11.1.8 Let (X,d) be a metric space and / : , . . . , / * : X i-» R. 
De/me / : X M- Rfc 6j/ / (x) = ( / i (x ) , . . . , fk{x))T, then / i , . . . , /fc are ca/ted 
components of f. 
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k 1 

£(TE). 

1/2 

= 6. 

Proposition 11.1.9 / is continuous if and only if every component is con­
tinuous. 

Proof. (=>•): Fix j . Show that fj is continuous: Fix p £ X. Show that fj 
is continuous at p. Given e > 0 35 > 0 3 Vx with d2{x,p) < 5, then 
1/iW - / » l = *(/>(*),/;(p)) < d2(f(x),f(p)) < e. 

(<=): Assume that Vj, fj is continuous a t p S l . Show that / is continuous 
at p. Let e > 0 be given. 
/ i is continuous at p => 35\ > 0 3 d2(x,p) < S\ =>• |/i(x) — /i(p) | < -4?. 

/ 2 is continuous at p => 3<52 > 0 9 d2(x,p) < 52 => 1/2(2;) — /2(f)! < TTJ-

/it is continuous at p => 3 4 > 0 3 d2(x,p) < 5k => |/fc(a;) - /fe(p)| < -j%-
Let 5 = min{#i, . . . ,5k} > 0. Let X be 9 d(x,p) < 5. Then, 

d2(f(x),f(p)) = [J2\fi^)-fi(p)\2]1/2< 

11.2 Continuity and Compactness 

Theorem 11.2.1 The continuous image of a compact space is compact, i.e. 
if f : X i-t Y is continuous and (X,d) is compact, then f(X) is a compact 
subspace of (Y, dy). 

Proof. Let {Va : a 6 A} be any open cover of f(X). Since / is continuous, 
f-l(Va) is open in X. f(x) C \Ja&A Va =» X C / " H/fr)) C \JaeA f~HVa). 
Since X is compact, 3au...,an 9 X C [ / _ 1 (V Q l ) | J - ' ' U / " 1 ^ ™ ) ] => 
/(*) C / [ / - 1 ( V a l ) U - - - U / _ 1 ( ^ a J ] = ^ U - ' - U ^ , since for A C 
/ - ' / W . r V ^ C B w e h a v e 

/(IK) = U/(^)and /_1(IK) = U/"1^)- D 

Corollary 11.2.2 yl continuous real valued function on a compact metric 
space attains its maximum and minimum. 

Proof. f(X) is a compact subset of K => f(X) is bounded. Let m = 
inf/(a;), M = sup f(x). Then, m,M e R; since f(X) is bounded. Also, 
m,M e f(X). Furthermore, f(x) = f(x), since / ( X ) is compact. Thus, 
3p e X 3 m = /(p) and 3? 6 I 3 M = /(g). Finally, m = /(p) < f{x) < 
f{q) = M,VxeX. D 

Theorem 11.2.3 Let (X,dx) be a compact metric space, (Y, dy) be a metric 
space, f : X H-» Y be continuous, one-to-one and onto. Then, f~x :Y>-¥Xis 
continuous. 
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Proof. Let g = f'1 : Y -> X. Show that V closed set C in X, g~l{C) is a 
closed set in Y: 5_ 1(C) = (/~1)~1(C) — / (C) , since X is compact. Hence, 
/ (C) is closed, thus g~l{C) is closed. D 

Remark 11.2.4 If compactness is relaxed, the theorem is not true. For ex­
ample, take X — [0,2n), with d\ metric. Y — {(x, y) £ R2 : x2 + y2 = 1} with 
d% metric. 

f :X<->Y, f(t) = (cos t, sin t). 

f is one-to-one, onto, continuous. However / _ 1 is not continuous at P = 
(0,1) = / (0) . If we let e = 7r, suppose there is a 8 > 0 9 V(x,y) £ Y wiift 
d2{{x,y), (1,0)) < 8, then we have 

\r1(x,y)-r1(l,0)\<e. 

However, for {x,y) 9 ^ < f~1(x,y) < 2ir (S = V%), we have 

\f-\x,v)-r1M\>\>*-
Thus, we do not have 

\f~\x,y) - r\l,0)\ < e = 7T V(x,y) €Y B d2[(x,y), (1,0)] < J. 

11.3 Uniform Continuity 

Definition 11.3.1 Let (X, dx), (Y, dy) be two metric spaces, f : X M- Y. 
We say f is uniformly continuous on X if 

\/e > 0, 38 > 0 3 Vp, <? € X with dx(p, q) < 8, we have dY(f(p), f(q)) < e. 

Remark 11.3.2 Uniform continuity is a property of a function on a set, 
whereas continuity can be defined at a single point. If f is uniformly continuous 
on X, it is possible for each e > 0 to find one number 5 > 0 which will do for 
all points p of X. Clearly, every uniform continuous function is continuous. 

Example 11.3.3 

f{x,y) = 2x+\, E = {(x,y)eR2:l<y<2}. 

Let us show that f is uniformly continuous on E. Let e > 0 be given. Suppose 
we have found 8 > 0 whose value will be determined later. Let p = (x,y),q = 
(u,v) G E be such that d2(p,q) < 8, Show \f(x,y) — f(u,v)\ < e: d2(p,q) < 
8 =>\x-u\ <8 and \y - v\ < 8 =*> \f(x,y) - f(u,v)\ = \2x+-^ -2u- -^\ < 

2\x-u\ + {^-^)<28 + 

we have \f(x,y) - f(u,v) 

{y-y)(v+y) 
= 28+ l«-»jl»+»l. Since I"-»JIP+"I < 48, 

(vy)2 

< 65 = s. Hence, one can safely choose 8 = | > 0. 
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Example 11.3.4 f(x) = -,E = (0,1) C R. Let us show that f is not uni­
formly continuous on E but continuous on E: given e > 0, let S > 0 be chosen. 
Let x € E and \x — xo\ < 6. 

If x0 — 6 > 0, then \x — x0\ < 5 <£> x0 - 8 < x < x0 + 5. 

1 1 
X XQ 

< j x 0 - x | < J ^ < 5 < £ ^ s < exl 
XXQ XXQ (XQ — 5)XQ 1 + EXQ 

Hence, f is continuous at XQ and 6 depends on e and Xo . However, dependence 
on XQ does not imply that f is not uniformly continuous, because some other 
calculation may yield another 6 which is independent of XQ. So, we must show 
that the negation of uniform continuity to hold: 

3e > 0 3 V<5 > 0 3xi ,x2 e E 3 |xj - x2\ < S but | / (xi) - f(x2)\ > e. 

Let e = 1. Let S be given. If 5 <\, one can find k 3 5 < -A-^ i.e. k = [ | — 1]. 
Thus, k>2.Letxi=5, x2 = 6 + £ => 0 < xi < | , 0 < x2 < 25 < § < 1 => 

Xl,x2 E E. \xi - x2\ = f < f < 6, I/On) - f{x2)\ i-rii 
(S/k) 

W+T) 
Sik+D > 1. //(5 > | => Let 5' = | . Find x\,x2 3 \x% — x2\ < 5' < 5 and 
Ifix^-fix^lKe. 

Theorem 11.3.5 Let (X,dx) be a compact metric space, (Y, dy) be a metric 
space, and f : X H-> Y be continuous on X. Then, f is uniformly continuous. 

Remark 11.3.6 Let 0 ^ E C R be non-compact. Then, 

(a) 3 a continuous f : E —> R which is not bounded. If E is noncompact then 
either E is not closed or not bounded. If E is bounded and not closed, 
then E has a limit point x$ 3 XQ £ E. Let f(x) = J- , Vx G E. If E is 
unbounded then let f{x) = x, Vx G E. 

(b) 3 a continuous bounded function f : E —» R which has no maximum. 
If E is bounded let x§ be as in (a). Then, f(x) — 1+/x

1_x ^ , Vx G E. 
sup f{x)=l but 3 no x G E 3 f{x) = 1. 

(c) If E is bounded, 3 a continuous function f : E —• R which is not 
uniformly continuous. Let XQ be as in (a). Let f{x) = —^—, Vx G E 
which is not uniformly continuous. 

11.4 Continuity and Connectedness 

Theorem 11.4.1 Let (X,dx),(Y,dy) be metric spaces, 0 ^ E G X be con­
nected and let f : X >-> y be continuous on X. Then, f(E) is connected. 
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Proof. Assume that f{E) is not connected, i.e. 

3 n o n e m p t y A , B c y 9 A f l f l = f), A n B = 0, f{E) = A U B. 

LetG = EDf~1(A), H = Enf~1(B), A ± 0 =* 3q G A C /(£?) =• q = f(p) 
for some_p E E =$ p e f~l{A)_^ p £ G =$• G J± $. 

Assume G n H ^ 0. Let p G G n J? =*• p G if = £7 n / _ 1 ( ^ ) =* 

/(p) G B , p G G = £ n / - 1 ( y l ) c /-'(A) (*) 

A c i 4 / _ 1 ( A ) : closed =» / - x ( > 0 C / _ 1 ( 3 ) = ^ p 6 / _ 1 ( 3 ) =» 

/(P) G A (**) 
(*)+(**)=> /(p) e i n f l / l , Contradiction. Thus, G n ff = 0. Similarly, 
G O # = 0. 

£ c r'iHE)) = / - ^ UB) = r X(A) u r 1 ^ ) 
£ = £n t/-1^) u rHB)] = [En f~\A)] u [£ n r\B)) = GUH, 

meaning that E is not connected. Contradiction! • 

Corollary 11.4.2 (Intermediate Value Theorem) Let f : [a, b] —» K be 
continuous and assume f(a) < f(b). Let c G R be such that 

f{a) <c< f(b) =>ce f([a,b]), i.e. 3x G (a,b) 3 f(x) = c. 

Proof. [a,b] is connected, so /([a, 6]) is connected; thus /([a, 6]) is an interval 
[a,0].f(a),f(b)e[a,l3]=*cef([a,b]), 

3x G [a, b] 3 f(x) = c, / (a) < c =$> x ^ a and /(ft) > c =>• x ^ b. 

Thus, x G (a, 6). • 

Example 11.4.3 Let I=[0,l],f:I—>Ibe continuous. Let us show that 
3x G I 3 f{x) = x. Let g{x) = f{x) —x be continuous. Show 3x £ I 3 g{x) = 
O.If$ such x => Vx G I we have g(x) > 0 or g(x) < 0. 

(i) g(x) > 0, V i € / ^ f(x) > x, Vx G / . Then, / ( l ) > 1; a Contradiction, 
(ii) g(x) < 0, Vx G 7 => / (x) < x,Vx G J. TTien, /(0) < 0; a Contradiction. 

Definition 11.4.4 (Discontinuities) Let f : (a,b) -» X w/iere (-X", d) is a 
metric space. Let xbe3a<x<b and q € X. We say, f(x+) — q or 
limj-yj,.). f(t) = q if Ve > 0 35 > 0 9 V£ wii/i x < £ < x + (5we /lave 
d(f(t),f(x)) < e. f(x+) = q <$ V subsequence {tn} with x < tn < 6,Vn 
and l im^oo bn = x we have limn_>oo f(t) - q. f(x-) = l i m ^ z - f(t) is 
defined analogously. Let x G (a, b) => limt_,.x f(t) exists •& f(x+) = f(x-) = 
lim*-^ f(t). Suppose f is discontinuous at some x G (a, b). 
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Fig. 11.2. Example 11.4.3 

(i) If f(x+) or f(x—) does not exist, we say the discontinuity at x is of the 
second kind, 

(ii) If f(x+) and f(x—) both exist, we say the discontinuity at x is of the first 
kind or simple discontinuity. 

(Hi) If f(x+) = f(x-), but f is discontinuous at x, then the discontinuity at 
x is said to be removable. 

y=l-x 

Fig. 11.3. Example 11.4.5 

E x a m p l e 11.4 .5 

/ :K->K, f(x) = x, x e Q 
l - x, x e M \ i 

/ is continuous (only) at x = | : 
Let e > 0 be given. Let 5 = e. Let teRB\t — x\<6 where x—\. 

t £ Q = > \f(t) - f(x)\ = \t-x\ = \t-±\<8 = e. 
ten\Q=>\f(t)-f(x)\ = \i-t-x. 
Hence, f is continuous at x — -

_ 11 |1 — x\ < 6 = e. 

2 ' 
CLAIM:f is discontinuous every other point than x —\ 
(without loss of generality, we may assume that x > ^): 

Let x ^ \. Show f(x+) does not exist. Let e = ' x
2~~ ' . Assume f(x+) exists, 
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then for this specific e > 0, 35 > 0 9 W with x < t < x + 5, we have 
\f(t)-f(x)\<e. 
CASE 1: X G Q. 
FindteR\Q3x<t<x + S \f(t)-f(x)\ <e= &=^. 
But 4|/(£) - f(x)\ = |1 - t - x\ = |2x - 1 + t - x| = |(2x - 1) - (x - t)\. 
Since \a — b\ > | |a| — |6| |, 

| /( t) - / (x ) | > | |2x - 1| - |x - 1| | > \2x -l\-\x-t\> \2x -l\-6. 

Then, we have 

\2x-l\~8<\f(t)-f(x)\<1-^^. 

=>• (5 > 2~ ', Contradiction since 5 > 0 con fee iafcen as small as we want. 
CASE 2: X G R \ <Q>. Proceed in similar way, but choose t as rational. 

11.5 Monotonic Functions 

Definition 11.5.1 Let f : (a,b) t-» R. / is said to 6e monotonically increas­
ing (decreasing) on (a, 6) if and only if 

a < xi < x2 < b => f(Xl) < f{x2) (/(aJi) > f(x2)). 

Proposition 11.5.2 Let f : (a, b) i-> R 6e monotonically increasing on (a,b). 
Then, Vx 6 (a, fr), f(x+) and f{x—) exist and 

sup f(t) = f(x-)<f(x)<f(x+)= inf /(*). 
a<t<x x<t<b 

Furthermore, a < x\ < x2 < b =$• f(xi+) < f{x2—). 

Theorem 11.5.3 Let f : (a,b) H-> R be monotonically decreasing on (a,b), 
then Vx G (a, 6), f(x+) and f(x—) exisi and 

inf /(*) = / ( x - ) > /(x) > f(x+) = sup /(f). 
a < t < x x<t<b 

Furthermore, a < x\ < x2 < b =>• / ( x i + ) > f(x2 — ) . 

Proof. Let x G (a, 6) be arbitrary. Vf with 0 < £ < x, we have /(£) > / (x) . So, 
{/(i) : a < £ < x} is bounded below by / (x) . Let 4̂ = ini{f(t) : a < t < x}. 
We will show A — f(x\—): 
Let e > 0 be given. Then, A + e is no longer lower bound of {f(t) : a < t < x}. 
Hence, 3t0 G (a, x) 9 / ( i 0 ) < A + e. Let <5 = x - t0 Vt3x-5 = t0<t< 
x => f(x) < f(t0) < A + e and f(t) > A > A - e. Hence, Vr G (x - £, x) we 
have A - s < f(t) < A + e =>• |/(r) - ^ | < e. Thus, 4 = f(x-). Therefore, 
info<t<x f(t) = A = / ( x - ) > f(x). Similarly, sup a ; < t < b / (x) = / (x+) < f(x). 
Let a < xi < x2 < b, apply first part b <- x2 and x <r- x\. / ( x i + ) = 
SUPar^^xa /(*) ^ i^iKKi)! /(<) = f{*2 + )- • 
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f(x-) 

f(x) 

f(x+) 

f 

^ 0 

Fig. 11.4. Proof of Theorem 11.5.3 

Corol lary 11 .5 .4 Monotonic functions have no discontinuities of the second 
type. 

T h e o r e m 11.5 .5 Let f : (a, b) H» K be monotonic. Let A be the set of dis­
continuous points of f, then A is at most countable. 

Proof. Assume / is decreasing, then A = {x G {a,b} : f(x+) < f(x—)}. Vx G 
A, find f(x) G Q B f(x+) < r(x) < f(x-) and fix r(x). Define g : A i-» <Q> by 
g(x) = r{x). We will show tha t g is one-to-one: Let x\ ^ X2 G A,X\ < X2 =>-
r(xi) > f(xi+) > f{x2—) > r(x2) => r(x\) / r(x2). Thus, <? is one-to-one, 
and A is numerically equivalent to Q by g(x) = r (x ) . Therefore, 4̂ is at most 
countable. • 

R e m a r k 11.5 .6 The points in A may not be isolated. In fact, given any 
countable subset E of (a, b) (E may even be dense), there is a monotonic 
function f : (a,b) H-> R B f is discontinuous at every x G E and continuous 
at every other point. The elements of E as a sequence { x i , £ 2 , . . . } . Let cn > 
0 3 Ylcn is convergent. Then, every rearrangement Yl c4>(n) a^so converges 
and has the same sum. Given x G (a, b) let Nx = {n : xn < x}. This set may 
be empty or not. Define f(x) as follows 

1 luneNx
 c»> otherwise 

This function is called saltus function or pure jump function. 

(a) f is monotonically increasing on (a,b): 
Leta<x<y<b.IfNx=0, f(x) = 0 and f(y) > 0. 

/ / Nx jL 0, x < y =» f(x) = E n e j v . c» < T.neNy ^ = f(y). 
(b) f is discontinuous at every xm G E: 

Letxm G E befixed. f{xm+) = MXm<t<bf(t), f{xm-) = s u p a < s < X m f(s). 
Let xm < t < b, a < s < xm be arbitrary =>• a < s < xm <t<b. Then, 
NscNt, m<E;Nt, m<£Ns=>meNt\Ns. 

J\t) ~ j(S) — Z^nENt C " — 2-m€NB
 C« ~ Z^nENa\Nt

 C» — Cm => 



166 11 Continuity 

f(t) > Cm + /(«)• Fix f(s) => cm + f(s) is a bound for all f(t)'s. So, 
take the infimum over t's. f(xm+) > f(s) + cm •& f(xm+) — cm > 
f(s). If we take supremum over s's, we will have f(xm+) — cm > 
f{xm-) => f(xm+) - f{xm-) > cm. Therefore, f(xm+) ^ f(xm-) (In 
fact, f(xm+) - f(xm-) = cm). 

(c) f is continuous at every x £ (a,b) \ E: 
Let x £ (a,b)\E be fixed. We will show that f is continuous at x. Let e > 0 
be given, since ^ c„ converges, 3N 3 XI^LJV+I c„ < oo CJV+I +SJV = s => 
rN+i — s — sjv- Let 5' = Min{\x — a^l , . . . , |x — XN\,X — a,b — x}. Let 
u 2 . 

Claim (i) If x < xn < x + 5 then n > N + 1. If n < N + 1, then 
\x — XN\ > 5' = 25, Contradiction. 

Claim (ii) If x — 5 < xn < x, then n > N + 1. f(x) — e < f(x — 

5), f(x + 5)<f(X)+S, f{x)-f(x-S) = Y/„eNx
Cn-Tln€N:c_s

Cn = 

12neNx\Nx-S
 Cn - S r = w + i c " < £- For the second claim, f(x + 5) -

f(x) — J2n£Nx+s
 cn-2^neNx

 C" ~ 12n&Nx+s\Nx
 C« - z2n=N+l C« < £-

Lett be 3 \t-x\ < 6, i.e. x-5 < t < x+6 => f(x-6) < f{t) < F(x+5). 
Hence, f{x) - e < f(t) < f(x) + e, \f(t) - f(x)\ < e. 

Problems 

11.1. Let (X, d) be a metric space. A function / : X t-t R is called lower 
semi-continuous (Isc) if V6 £ R the set {x £ X : f{x) > b} is open in X; 
upper semi-continuous (use) if V6 £ R the set {x £ X : f(x)<b} is open in 
X. Show that 
a) / is Isc <£> Ve > 0, Vx0; 35 > 0 3 x £ Bs(x0) => f(x) > f(x0) - e. 
b) / is use <£> Ve > 0, Vx0; 35 > 0 3 x £ B5(x0) => f(x) < f(x0) + s. 

11.2. Let (X, dx) be a compact metric space, (Y, dy) be a metric space and 
let / : X t-> Y be continuous and one-to-one. Assume for some sequence {pn} 
in X and for some q £Y, linXr^oo f(pn) = q. Show that 

3p £ X 3 lim pn = P and f(p) = q. 
x—>oo 

11.3. Give a mathematical argument to show that a heated wire in the shape 
of a circle (see Figure 11.5) must always have two diametrically opposite points 
with the same temperature. 

Web material 

http://archives.math.utk.edu/visual.calculus/1/continuous.7/ 
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Fig. 11.5. A heated wire 
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Differentiation 

In physical terms, differentiation expresses the rate at which a quantity, y, 
changes with respect to the change in another quantity, x, on which it has 
a functional relationship. This small chapter will start with the discussion 
of the derivative, which is one of the two central concepts of calculus (the 
other is the integral). We will discuss the Mean Value Theorem and look at 
some applications that include the relationship of the derivative of a function 
with whether the function is increasing or decreasing. We will expose Taylor's 
theorem as a generalization of the Mean Value Theorem. In calculus, Taylor's 
theorem gives the approximation of a differentiable function near a point by a 
polynomial whose coefficients depend only on the derivatives of the function 
at that point. There are many OR applications of Taylor's approximation, 
especially in linear and non-linear optimization. 

12.1 Derivatives 

Definition 12.1.1 Let f : [a,b] K-> K. VX G [a, b], let (j>(t) = / ( t)lf ( x ) , a < 
t < b, t ^ x. f'{x) = limt_>.x <j>(t) provided that the limit exists. f is called 
the derivative of f. If f is defined at x, we say f is differentiable at x. If f 
is defined at\fx € E C [a,b], we say f is differentiable on E. Moreover, left-
hand (right-hand) limits give rise to the definition of left-hand (right-hand) 
derivatives. 

Remark 12.1.2 If f is defined on (a,b) and if a < x < b, then f can be 
defined as above. However, f'(a) and f'(b) are not defined in general. 

Theorem 12.1.3 Let f be defined on [a,b], f is differentiable at x G [a, b] 
then f is continuous at x. 

Proof. Ast-^x, f(t) - f{x) = f(t)
tZ

f
x
{x) (t - x) -> f'{x) -0 = 0. • 
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Remark 12.1.4 The converse is not true. One can construct continuous 
functions which fail to be differentiate at isolated points. 

Let us state some properties: Suppose / and g are denned on [a, b] and are 
differentiable at x G [a,b]. Then, f + g, f • g and f/g are differentiable at x, 
and 

(a) (f + gy(x) = f'(x)+g'(x). 
(b) (f-gy(x) = f'(x)g(x) + f(x)g>(x). 
(c) (f/g)'(x) = /'(*)g(*)-/(«)g'(«), g{x) + o. 
(d) Chain Rule: If h(t) = (g°f)(t) = g(f{t)), a < t < b, and if/ is continuous 

at [a, b], f exists at x £ [a,b], g is defined over range of / and g is 
differentiable at f(x). Then, h is differentiable at x and 

h'(x) = g'(f(x))f(x). 

Example 12.1.5 (Property (c)) The derivative of a constant is zero. If 
f(x) — x then f'(x) — 1. / / f(x) — x • x = x2 then f'(x) — x + x = 2x by 
property (b). In general, if f(x) = xn then f'(x) = nxn~1, n € N. If f{x) = 
i = x~l then f'(x) = ^ = -x~2. In this case, x ^ 0. if f(x) = x~n , n E N 
then f'(x) = — nx~ -("+1). Thus, every polynomial is differentiable, and every 
rational function is differentiable except at the points where denominator is 
zero. 

Example 12.1.6 (Property (d)) Let 

/ ( * ){X sin -, x ^ 0 
0, x = 0 

Then, f'(x) = sin \ - \ cos A, x ^ 0. At x = 0, A is no* de/med / ( t | l ^ 0 ) = 
sin j . yls £ —>• 0, £/ie Kraii does not exist, thus / '(0) does not exist. 

12.2 Mean Value Theorems 

Definition 12.2.1 Let f : [a,b] H-» K. We say f has a local maximum at 
peXif35>0 B f{q) < f(p), V</ G X with d{p,q) < 5. Local minimum is 
defined similarly. 

Theorem 12.2.2 Let f : [a,b] i-> K. / / / has a local maximum (minimum) 
at x £ (a,b) and if f'(x) exists, then f'(x) = 0. 

Proof. We will prove the maximum case: 
Choose S as in the definition: a < x — 5<x<x + 5<b. 
lix-8<t<x, then m

tZ
fJx) > 0. Let t -> x => /'(a:) > 0. 

If x < t < x + (5, then f{t)
tZ

f
x
{x) < 0. Let t -> oo => /'(a;) < 0. 

Thus, / ' (x) = 0. D 
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Theorem 12.2.3 Suppose f : [a,b] H->- R is differentiable and f'(a) < A < 
f'(b) [/'(a) > A > /'(&)]. Then, 3x e (a, 6) 3 /'(a;) = A. 

Proof. Let g(<) = /(£) - Xt. Then, #'(a) < 0 [g'(a) > 0] so that g(h) < 
g(a) [g(ti) > g(a)] for some *i e (a,6), so that g(f2) < g{b) [g{h) > #(a)l 
for some £2 G (a, b). Hence, g attains its minimum [maximum] on [a,b] at 
some points x 6 (a,b). By the first mean value theorem, g'(x) = 0. Hence, 
f'{x) = X. D 

Corollary 12.2.4 / / / is differentiable on [a,b], then f cannot have any 
simple discontinuities on [a,b]. 

Remark 12.2.5 But f may have discontinuities of the second kind. 

Theorem 12.2.6 (L'Hospital's Rule) Suppose f and g are real and dif­
ferentiable in (a,b) and g'(x) ^ 0, Vx € (a,b) where oo < a < b < +oo. 
Suppose 

,; . -> A as x -> a (o). 
ff'(x) 

/ / / (x) —> 0 and g(x) —> 0 as x —> a or i/ / (x) -> +oo and g(x) —> +oo as 
x —> a, i/ien 

#(») 
4 OS I -> O. 

Proof. Let us consider the case —oo < 4̂ < +oo: Choose g 6 R 3 A < g, and 
choose r 9 A < r < q. By (o), 

fix) 
3c E (a, b) 3 a < x < c => :L-y-~ < r. (£) 

g(x) 

If a < x < y < c, then by the second mean value theorem, 

*6(M),&ia.m<r.(», 
g(x)-g{y) g'(y) 

Suppose / (x) -> 0 and g(x) -» 0 as x -> a. Then, (4) | M <r<q,a<y<c. 
Suppose g(x) -* +oo as x —> a. Keeping y fixed, we can choose c\ £ (a,y) 3 
g{x) > g{y) and g(x) > 0 if a < x < cx. Multiplying (4) by \g(x)-g(y)]/g(x), 
we have $ g < r - r f ( g + $ g , o < z < cx. If a: - • a 3c2 € (a,C l) 9 $ g < 
q, a < x < C2. Summing with (4») Vo 3 A < q yields 

f(x\ 
3c2 3 -j-r < q if a < x < c2. 

Similarly, if —oo < A < +oo and p 3 p < A, 3c^ 3 p < :4fy, a < x < C3. D 
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12.3 Higher Order Derivatives 

Definition 12.3.1 / / / has a derivative / ' on an interval and if f is itself 
differentiate, we denote derivative of f as / " , and call the second derivative 
of f. Higher order derivatives are denoted by / ' , / " , / ^ 3 ' , . . . ,f^n\ each of 
which is the derivative of the previous one. 

Theorem 12.3.2 (Taylor's Theorem) Let f : [a,b] i-> K, n G N, f(n~l) 

be continuous on [a,b], and f^n\t) exists Vi G [a,b]. Let a / (3 G [a,b] and 
define 

fc=0 

Then, 3x G (a, (3) 3 /(/3) = p(/3) + ^ f s i (/3 - a ) " . 

Remark 12.3.3 Forn = 1, the above theorem is just the mean value theorem. 

Proof. Let M 3 /(/3) = p(f3) + M(0 - a)n. 
Let g(t) = f(t)-p(t)-M(t-a)n, a < t < b, the error function. We will show 
that n\M = f{n){x) for some x G (a, 6). We have g^(t) = fn\t)-n\ M, a < 
t < b. If 3x G (a, 6) 9 ^*n^(x) = 0, we are done. 

p(k\a) = f{k)(a), k = 0,...,n-l => 

g{a) = g'(a) = g»(a) = • • • = ^""^(a) = 0. 

Our choice of M yields g{(i) = 0, thus g'(x\) = 0 for some x\ G (a,/3) by 
the Mean Value Theorem. This is for <?"(•), one may continue in this manner. 
Thus, g(n\xn) = 0, for some xn G (a, x„_i) C (a,fi). • 

Definition 12.3.4 A function is said to be of class Cr if the first r derivatives 
exist and continuous. A function is said to be smooth or of class C°° if it is 
of class Cr, VrGN. 

Theorem 12.3.5 (Taylor's Theorem) Let f : A H-> E, be of class Cr for 
A C M", an open set. Let x,y G A and suppose that the segment joining x 
and y lies in A. Then, 3c in that segment 3 

r _ 1 1 1 
f{y)-f(x) = ^-fW(y-x,...,y-x) + -(c)fV(y-x,...,y-x) 

fc=i ' r ' 

where fW(y-x,...,y-x) = Y;iu...,ik (e,f•*•&,,, ) fan ~ xh) •'' (!/<„ ~ xiJ • 
Setting y = x + h, we can write Taylor's formula as 

f(X + h) = f{x) + f'(x) • h + • • • + ^J—^f^)ix) .(h,...,h) + Rr-^X, h), 
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where Rr-\(x,h) is the remainder. Furthermore, 

mr1 

Problems 

12.1. Suppose / : [0, oo) H-» K is continuous, /(0) = 0, / is differentiable on 
(0, oo) and / ' is nondecreasing. Prove that g(x) — ^p- is nondecreasing for 
x > 0. 

12.2. Let A C R" be an open convex set and / : A H-J- IRm be differentiable. 
If f'(t) = 0, Vi then show that / is constant. 

12.3. Compute the second order Taylor's formula for f(x,y) = sin(x + 2y) 
around the origin. 

12.4. Let feC2 and x* e _." be local minimizer. 
a) Prove the first order necessary condition (x* is a local minimizer then 
V/(x*) = 6) using Taylor's approximation. 
b) Prove the second order necessary condition (x* is a local minimizer then 
V2/(x*) is positive semi-definite) using Taylor's approximation. 
c) Design an iterative procedure to find V/(x) = 8 in such a way that it 
starts from an initial point and updates as x& = Xk-\ + Pk- The problem at 
each iteration is to find a direction Pk that makes V/(xfc_i) closer to the null 
vector. Use the second order Taylor's approximation to find the best pk at 
any iteration. 
d) Use the above results to find a local solution to 

min/ (x 1 ,x 2 ) = x\ + 2x\ + 2Ax\ + x\ + Y2x\. 

Start from [1, if. 

Web material 
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Theorem.html 
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Power Series and Special Functions 

In mathematics, power series are devices that make it possible to employ 
much of the analytical machinery in settings that do not have natural notions 
of "convergence". They are also useful, especially in combinatorics, for provid­
ing compact representations of sequences and for finding closed formulas for 
recursively defined sequences, known as the method of generating functions. 
We will discuss first the notion of series, succeeded by operations on series 
and tests for convergence/divergence. After power series is formally defined, 
we will generate exponential, logarithmic and trigonometric functions in this 
chapter. Fourier series, gamma and beta functions will be discussed as well. 

13.1 Series 

13.1.1 Notion of Series 

Definition 13.1.1 An expression 

oo oo 

X/Uk = X/Uk ~ u°+Ui+"2 —̂ 
fc=0 0 

where the numbers Uk (terms of the series) depend on the index k — 0 ,1 ,2 , . . . 
is called a (number) series. The number 

Sn — u0 + ui -i \-un, n = 0 , 1 , . . . 

is called the nth partial sum of the above series. 
We say that the series is convergent if the limit, l i m n - ^ Sn = S, exists. 

In this case, we write 

oo 

S = Up + Ui + U2 + • • • = } j Uk 
k=0 

and call S the sum of the series; we also say that the series converges to S. 
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Proposition 13.1.2 (Cauchy's criterion) The series 

oo 

k-0 

is convergent if and only if 
Ve > 0, SN 3 \fn,p e N,n > N, \un+1 + ••• + un+p\ = \Sn+p - Sn\ < e. 

Remark 13.1.3 In particular, putting p — 1 we see that ifJ2T=oUk *s con~ 
vergent its general term Uk tends to zero. This condition is necessary but not 
sufficient! 

Definition 13.1.4 The series are called the remainder series of the series 

Eoo 
fe=0Wfc; 

oo 
U„+l + W„+2 H = 2_, un+k-

fc = l 

Since the conditions of Cauchy 's criterion are the same for the series and its 
remainder series, they are simultaneously convergent or divergent. If they are 
convergent, the remainder series is 

m 

lim S~] un+k = lim (S„ + m - S„) = S - S„. 
n—+oo *—* n—>oo 

fc=l 

/ / the series are real and nonnegative, its partial sums form a nondecreas-
ing sequence Si < S2 < S3 < • • • and if this sequence is bounded (i. e. 
Sn < M, n = 1,2,...), then the series is convergent and its sum satisfies 
the inequality 

lim Sn = S < M. 
n—>oo 

/ / this sequence is unbounded the series is divergent linin-^oo Sn = 00. In this 
case, we write Ĵ J*Lo uk — 00 and say that the series with nonnegative terms 
is divergent to 00 or properly divergent. 

Example 13.1.5 The nth partial sum of the series 1 + z + z2 + • • • is 

S„(z)= i _ z forz^l. 

If \z\ < 1 then 
If\z\>l then 

zn+l = \z\n+ -> 0, that is zn+1 -> 0 as n -> 00. 

- > 0 0 . 

Finally, if \z\ = 1 then zn+1 = cos(n + 1)9 + isin(n + 1)6, where 6 is the 
argument of z, and we see that the variable zn+1 has no limit as n —> 00 
because its real or imaginary part (or both) has no limit as n —• 00. For 
z — 1, the divergence of the series is quite obvious. 

We see that the series is convergent and has a sum equal to (1 — z)"1 in 
the open circle \z\ < 1 of the complex plane and is divergent all other points 
z. 
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13.1.2 Operations on Series 

Proposition 13.1.6 IfJ2T=o uk and SfcLo Vk are convergent series and a € 
C, then the series Yl'kLo aUk and 12<kLo(Uk -'- Vk) are a^so convergent and we 
have 

oo oo oo oo oo 

^ c r a f e = a ^ M f c and Y^(uk±vk) = y^uk±y^Vk-
k=0 k=0 fc=0 fc=0 fc=0 

Proof. Indeed, 
J2T auk = linin^oc ^ o auk = «lim„->oo J2ouk=a Eo° ufc> a n d 

X)~(«fc ± vk) = linin^oo J]g (wfc ± Wfe) = limnr+00 ^)o ufc ± lim.n_>oo S o wfc = 

J2™uk±J2'o'vk- D 

Remark 13.1.7 .ft should be stressed that, generally speaking, the conver­
gence of ^ ^ ° Uk ± X ô° Wfc does not imply the convergence of each of the series 
££1:0 wfc and SfcLo^*" w'l*c'1 c a n be confirmed by the example below: 

(a-a) + (a-a)-\ , Va e C. 

13.1.3 Tests for positive series 

Theorem 13.1.8 (Comparison Tests) Let there be given two series 

oo oo 

(i) ^Uk and (ii) ^ « f c 
o o 

with nonnegative terms. 

(a) If Uk < Vk, VA;, the convergence of series (ii) implies the convergence of 
series (i) and the divergence of series (i) implies the divergence of series 
(ii). 

(b) If linifc-Kx, ^ = A > 0, then series (i) and (ii) are simultaneously con­
vergent and divergent. 

Proof. Exercise! D 

Theorem 13.1.9 (D'Alembert's Test) Let there be a positive series 

oo 

Y^Uk 3 uk > 0, Vk = 0,1,... 
o 

(a) If ^^ < q < 1, VA;, then the series J2™ uk is convergent. If ^ ^ > 1, 
then the series ]Po° uk *s divergent. 

(b) If linifc-̂ oo ^^ = q then the series J^'o' Uk *s convergent for q < 1 and 
divergent for q > 1. 

Proof. We treat the cases individually. 
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(a) We have 
U\ U2 Un 
"1 u-2 « n w n i l 

un = "o 1 Vra = 0 ,1 ,2 , . . . 
U0 U\ Un_! 

< q < 1 =>• un < u0q
n, q < l,Vn. 

and therefore 

Mfc + l 

Uk 

Since the series ] T ^ «o<Zn is convergent, the series ^ ^ ° Uk is convergent. 

Mfc+l 

Uk 
> 1 => M„ > wo, Vn. 

Since the series «o + «o + • • • is divergent, so is 53^° Uk-
(b) linife^oo ^ = ? < 1 ^ V £ > 0 3 ? + £ < 1 ; T O have 2±±i < q + 

e < 1, k > N, where iV is sufficiently large. Then, the series Y^N uk ' s 

convergent and hence so is Y^f wfc. On the other hand, 

lim ^±l=q>l^^±l>1^k>N 
fc-+oo Uk Uk 

for sufficiently large N, and therefore 53 o° u^ is divergent. • 

Theorem 13.1.10 (Cauchy's Test) Let 53o° Uk be a series with positive 
terms, 

(a) 
oo 

(uk)* < q < 1,VA; =£• the series 2_]uk *s convergent. 
o 

oo 

(uk)J > 1,Vfc =>• £/ie series ]>Uk is divergent. 
o 

(b) If'limfc_>oo(wfc)E = 9; £/&en *^e series £Zo°ufc «s convergent for q < 1 and 
divergent for q > 1. 

Remark 13.1.11 Lei a series be convergent to a sum S. Then, the series 
obtained from this series by rearranging and renumbering its terms in an ar­
bitrary way is also convergent and has the same sum S. 

13.2 Sequence of Functions 

Definition 13.2.1 A sequence of functions ( /„}, n = 1,2,3, . . . converges 
uniformly on E to a function f if 

Ve > 0, 3N e N 3 n > N =» \fn(x) - f{x)\ < e, Vx e E. 

Similarly, we say that the series Y fn(x) converges uniformly on E if the 
sequence (Sn) of partial sums converges uniformly on E. 
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Remark 13.2.2 Every uniformly convergent sequence is pointwise conver­
gent. If (/„) converges pointwise on E, then there exist a function f such 
that, for every e > 0 and for every x £ E, there is an integer N, depending 
on e and x, such that |/„(x) — f{x)\ < e holds if n > N; if (/„) converges 
uniformly on E, it is possible, for each e > 0, to find one integer N which will 
do for all x £ E. 

Proposition 13.2.3 (Cauchy's uniform convergence) A sequence of func­
tions, (fn), defined on E, converges uniformly on E if and only if 

Ve > 0 , 3N eN3m>N,n>N,x e E=> \fm{x) - fn{x)\ < e. 

Corollary 13.2.4 Suppose linin-yoo fn{x) = / (x) , x G E. Put 

M„ = s u p | / n ( x ) - / ( x ) | . 
xeE 

Then, fn —> / uniformly on E if and only if Mn —>• 0 as n —>• oo. 

Proposition 13.2.5 (Weierstrass) Suppose (/„) is a sequence of functions 
defined on E, and | / (x) | < M„, x € E, n = 1, 2, 3 , . . . Then, ^ fn converges 
uniformly on E if ^2 Mn converges. 

Proposition 13.2.6 

lim lim fn{t) = lim lim fn(t). 
t~¥x n—+oo n—>oo t—>x 

Remark 13.2.7 The above assertion means the following: Suppose /„—>•/ 
uniformly on a set E in a metric space. Let x be a limit point of E, and 
suppose that limt_>x/n(i) —> An, n = 1 ,2,3. . . Then, (An) converges, and 
l im^a f(t) = limn_>oo An. 

Corollary 13.2.8 / / (/„) is a sequence of continuous functions on E, and if 
fn —> f uniformly on E, then f is continuous on E. 

Remark 13.2.9 The converse is not true. A sequence of continuous func­
tions may converge to a continuous function, although the convergence is not 
uniform. 

13.3 Power Series 

Definition 13.3.1 The functions of the form 
oo 

f(x) = YlCnxU 

n=0 

or more generally, 
oo 

f(x) = Y2cn(x-a)r 

ra=0 

are called analytic functions. 
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Theorem 13.3.2 Suppose the series J2^=ocnxn converges for \x\ < R, and 
define 

oo 

f(X) = YlcnXn, \X\<R 
n=0 

which converges uniformly on [—R+e,R — e], no matter which e > 0 is chosen. 
The function f is continuous and differentiable in (—R,R), and 

oo 

f'{x) = Yjncn{x-a)n-\ \x\<R 
n=l 

Corollary 13.3.3 / has derivatives of all orders in (—R,R), which are given 
by 

f(k)(x) = J2 n{n - 1) • • • (n - k + l)cn(x - a)n~k. 
n=k 

In particular, 
f(k\0) = k\ck, k = 0,1,2,... 

Remark 13.3.4 The above formula is very interesting. On one hand, it shows 
how we can determine the coefficients of the power series representation of f. 
On the other hand, if the coefficients are given, the values of derivatives of f 
at the center of the interval (—R,R) can be read off immediately. 

A function f may have derivatives of all order, but the power series need 
not to converge to f(x) for any x ^ 0. In this case, f cannot be expressed as 
a power series about the origin. 

Theorem 13.3.5 (Taylor's) Suppose, f(x) = Y^=ocnXn, the series con­
verging in \x\ < R. If —R < a < R, then f can be expanded in a power series 
about the point x = a which converges in \x — a\ < R— \a\, and 

/(„-i;ffl2>(,-.,-. 
n=0 

Remark 13.3.6 If two power series converge to the same function in (-R, R), 
then the two series must be identical. 

13.4 Exponential and Logarithmic Functions 

We can define 
oo n 

n=0 

It is one of the exercise questions to show that this series is convergent Vz G C. 
If we have an absolutely convergent (if |uo| + |ui| + • • • is convergent) series, 
we can multiply the series element by element. We can safely do it for E(z): 
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00
 yn °° ,.,m °° n

 yk..,n-k 

E(z)E(w) = E ^ E ^ = E E 7^-Tn v ; v ' ^ n\ ^ TO! ^ ^ kUn - k\) 
n=0 m=0 n=0fc=0 V ' 

° ° i n / \ °° / , \rj 

n=0 fc=0 V ' n=0 

This yields 

• E(z)E(-z) = E(z -z) = E(0) = 1, V* € C. 
• J5(«) ^ 0, V2 G C. E(x) > 0, Vx G ffi. 

-B(a;) —> +00 a s x - 4 +00. 
0 < x < y =» £?(ar) < £ ( y ) , £ ( - ? / ) < £ ( - x ) . 
Hence, £?(ir) is strictly increasing on the real axis. 

. l i m ^ 0 *<«+*0-*('> = E(z). 

• E{z\ + • • • + zn) = E{z\) • • • E(zn). Let us take z\ = • • • = zn = 1. Since 
E(l) = e, we obtain E(n) — e", n = 1 , 2 , 3 , . . . Furthermore, if p — n\m, 
where n , m e N, then [£ (p ) ] m = £ ( m p ) = £ ( n ) = e n so tha t E(p) = 
ep, p 6 Q + . Since E(—p) = e~p, p e Q+, the above equality holds for all 
rational p. 

• Since xy — snpp€QBp<y xp, Vx, j / £ l , a; > 1, we define ex — supp 6Q9 p < ; 2 . ep . 
The continuity and monotonicity properties of E show tha t 

E(x) = ex = exp(x). 

Thus, as a summary, we have the following proposition: 

P r o p o s i t i o n 13.4 .1 The following are true: 

(a) ex is continuous and differentiable for all x, 

(b) (e*)' = e*, 
(c) ex is a strictly increasing function of x, and ex > 0, 
(d) ex+y = exey, 
(e) ex -> +00 as x -) +00, ex —> 0 as x —> —00, 
(f) l i m x ^ + 0 0 xne~x = 0, Vn. 

Proof. We have already proved (a) to (e). Since ex > ?n+1y, for x > 0, then 

xne-x < {"±1)1 a n d (f) follows. D 

Since E is strictly increasing and differentiable on R, it has an inverse 
function L which is also strictly increasing and differentiable whose domain is 
E(R) = K+. 

E(L(y)) = y, y > 0 <£> L(E(x)) = I , I £ R . 

Differentiation yields 

£ ' ( £ ( * ) ) • E[x) = 1 = L'(y) • y «• L'(y) = - , j , > 0. 
y 
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x = 0 => L{1) — 0. Thus, we have 

rv dx 
L(y) = — = logy-

Ji x 

Let u — E(x), v = E(y); 

L{uv) = L{E{x)E(y)) = L{E{x + y))=x + y = L(u) + L(v). 

We also have logx —> +oo as x —> +oo and logs —>• —oo as x —> 0. Moreover, 

xn = E(nL(x)), x G R+; n, m G N, x™ = £ ( — L(x) J 

x a = £(aL(x)) = e
Q l o g x , Va € Q. 

One can define xa, for any real a and any x > 0 by using continuity and 
monotonicity of E and L. 

(xa)' = E{aL{x))- = ax"-1 

One more property of log x is 

lim x~a logx = 0, Va > 0. 
x—»-f oo 

13.5 Trigonometric Functions 

Let us define 

C(x) = \{E(ix) + E(-ix)}, S(x) = ^[E(ix) - E(-ix)}. 
z zz 

By the definition of £(z) , we know E(z) = £(2). Then, C(x), S(x) G R, x G 
R. Furthermore, 

£(ix) = C(x)+iS(x). 

Thus, C(x), 5(x) are real and imaginary parts of E(ix) if x G R. We have 
also 

|£(ix) |2 = £(ix)£(ix) = E(ix)E{-ix) = E(0) = 1. 

so that 
\E(ix)\ = 1, x G R. 

Moreover, 

C(0) = 1, 5(0) = 0; and C"(x) = -S (x ) , S'(x) = C(x) 
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We assert that there exists positive numbers x such that C(x) = 0. Let XQ be 
the smallest among them. We define number 7r by 

7T = 2XQ. 

Then, C(§) = 0, and S(§) = ±1 . Since C(x) > 0 in (0, §), S is increasing in 
(0, §); hence 5 ( f ) = 1. Therefore, 

and the addition formula gives 

E(iri) = - 1 , E(2m) = 1; 

hence 

£(z + 27™) = £:(z),V2eC. 

Theorem 13.5.1 The following are true: 

(a) The function E is periodic, with period 2-Ki. 
(b) The functions C and S are periodic, with period 2n. 
(c) If0<t< 2ir, then E{it) ^ 1. 
(d) IfzeCB \z\ = 1, 3 unique t e [0, 2TT) 3 E{it) = z. 
Remark 13.5.2 The curve 7 defined by 7(f) = E(it), 0 < t < 2w is a 
simple closed curve whose range is the unit circle in the plane. Since -f'(t) — 
iE(it), the length of 7 is JQ \j'(t)\ dt = 2w. This is the expected result for 
the circumference of a circle with radius 1. 

The point ^(t) describes a circular arc of length to as t increases from 0 
to to. Consideration of the triangle whose vertices are z\ — 0, Z2 = j(to)> 
and Z3 = C(to) shows that C(t) and S(t) are indeed identical with cos(t) and 
sin(t) respectively, the latter are defined as ratios of sides of a right triangle. 

The saying the complex field is algebraically complete means that every 
nonconstant polynomial with complex coefficients has a complex root. 

Theorem 13.5.3 Suppose ao,..., an G C, n G N, an ^ 0, 

n 

0 

Then, P(z) = 0 for some z € C. 

Proof. Without loss of generality, we may assume that an = 1. 
Put n = inf26C \P(z)\- If \A = R then 

\P{z)\ > Rn(l - {a^R-1 \a0\ R~n). 
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The right hand side of the above inequality tends to oo as R —)• oo. Hence, 
3i?o B \P(z)\ > n if \z\ > Ro- Since \P\ is continuous on the closed disc with 
center at the origin and radius RQ, it attains its minimum; i.e. 3ZQ 9 |P(^o)| — 

We claim that [i = 0. If not, put Q(z) = pZ)- Then, Q is nonconstant 
polynomial, Q(0) = 1, and |<5(z)| > 1, Vz. There is a smallest integer k, 
1 < k < n such that 

Q{z) = 1 + bkz
k + ••• + bnz

n, bk ^ 0. 

By Theorem 13.5.1 (d), 9 e l 3 eik0bk = - \bk\. If r > 0 and rk \bk\ < 1, we 
have |l + bkr

keike\ = 1 - rk \bk\, so that 

|Q(re i 0)| < 1 - rfc[|6fc| - r \bk+1\ rn~k \bn\\. 

For sufficiently small r, the expression in squared braces is positive; hence 
|<9(reiS)| < 1, Contradiction. Thus, \i = 0 = P(z0). D 

13.6 Fourier Series 

Definition 13.6.1 A trigonometric polynomial is a finite sum of the form 

N 

f(x) = ao + 2_j ian c o s nx + bn sin nx), x 6 M, 
n = l 

where ao,a\,..., a^, b\,..., 6 AT € C One can rewrite 

N 

- i V 

which is more convenient. It is clear that, every trigonometric polynomial is 
periodic, with period 2ir. 

Remark 13.6.2 J/rt € N, emx is the derivative of —.— which also has period 
2n. Hence, 

n = 0, 
2TT J ~ 1 0, n = ± l , ± 2 , . . . 
— / einx dr = l *' 

i/iye multiply f(x) by e~lmx where m £ Z, then if we integrate, we have 
1 r emx dx 

for \m\ < N. Otherwise, \m\ > N, the integral above is zero. 
Therefore, the trigonometric polynomial is real if and only if 

C—n — Cxi, 7i — U, . . . , i V . 
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Definition 13.6.3 A trigonometric series is a series of the form 

oo 

f(x) = Y,c"einx>xeR-
— oo 

If f is an integrable function on [—IT, IT], the numbers cm are called the Fourier 
coefficients of f, and the series formed with these coefficients is called the 
Fourier series of f. 

13.7 G a m m a Function 

Definition 13.7.1 For 0 < x < oo, 

/»oo 

r(x)= / tx-le-ldt. 
Jo 

is known as the gamma function. 

Proposition 13.7.2 Let F(x) be defined above. 

(a) r(x + 1) = xr{x), 0 < x < oo. 
(b) r(n + 1) = n\, n <= N. T(l) = 1. 
(c) log-T is convex on (0,oo). 

Proposi t ion 13.7.3 If f is a positive function on (0, oo) such that 

(a) f(x+l) = xf(x), 
(b) / ( I ) = 1, 
(c) log / is convex. 

then f{x) = r{x). 

Proposi t ion 13.7.4 If x,y G R+, 

[\^{i-t)y^dt = r}fr^. 
Jo r(x + y) 

This integral is so-called beta function (3(x,y). 

R e m a r k 13.7.5 Let t = sin9, then 

2 f~2 (sing)2-1 (cosefy^de = r};f)r{y}. 
Jo ' r(x + y) 

The special case x = y = | gives 
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Remark 13.7.6 Let t = s2 in the definition of T. 

/>oo 

r(x) = 2 s2x-le-a2 ds, 0 < x < oo. 
Jo 

The special case x — \ gives 

/»oo 

e~s ds — \Zn. f 
This yields 

^yx— 1 ^>^(1H^) 
Remark 13.7.7 (Stirling's Formula) This provides a simple approximate 
expression for T(x + 1) when x is large. The formula is 

lim F^+S = 1. 
*°° (f )XV2KX 

Problems 

13.1. Prove Theorem 13.1.8, the comparison tests for nonnegative series. 

13.2. Discuss the convergence and divergence of the following series: 

a) Eo°° £ 
b) ET f £ > w h e r e « > o 
c) E~(ei - 1) 
•OSTMi + i) 
e) E r 9fc+V^> where V > ° 

13.3. One can model every combinatorial problem (instance r) as 

^ P X J = r, Xi e St C Z+. Let A -̂ = s Q 

Then, the power series 

j&Si 
0, j # Si 

i j-0 k=0 

is known as the generating function, where the number of distinct solutions to 
^2t Xi = r is the coefficient ar. We know that, one can write down a generating 
function for every combinatorial problem in such a way that ar is the number 
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of solutions in a general instance r. 

Use generating functions to 
a) Prove the binomial theorem 

u«>-£ (I) 
i=0 x ' 

and extend to the multinomial (you may not use the generating functions) 
theorem 

<*+•••*>•= . E ( ,„.".„») 
i\,.. .,ik € £+ 

i\-\ \-ik = n 

b) Prove that 

{l + x + x2+x3 + ...)n = J2 
»=0 

n — 1 + ^> 

c) Find the probability of having a sum of 13 if we roll four distinct dice. 
d) Solve the following difference equation: an — 5a„_i—6an_2, Vn = 2, 3, 4 , . . . 
with ao — 2 and a\ = 5 as boundary conditions. 

13.4. Consider the following air defense situation. There are i = 1 , . . . , / en­
emy air threats each to be engaged to one of the allied z — 1 , . . . , Z high value 
zones with a value of wz. The probability that a threat (i) will destroy its tar­
get (z) is qiz. More than one threats can engage to a single zone. On the other 
hand, there are j = 1 , . . . , J allied air defense systems that can engage the 
incoming air threats. The single shot kill probability of an air defense missile 
fired by system j to a threat i is Pji. Let the main integer decision variable 
be Xji indicating the number of missiles fired from system j to threat i. 
a) Write down the nonlinear constraint if there is a threshold value di, the 
minimum desired probability for destroying target i. Try to linearize it using 
one of the functions defined in this chapter. 
b) Let our objective function that maximizes the expected total weighted sur­
vival of the zones be 

m a x E * w*az (0), where az = Y\i 1 - qiz [U.j{l - Pji)Xji) = Hi Piz-

Then, 7Z = log(az) = J2% l°g(Az) = S i $iz a n d we have the second objective 
function: m&xJ2z Wzlz (0')- Isn't this equivalent to max^T^ wz J2i $iz (0")> 
where Siz = log 1 - qiz (FT / 1 ~ Pji)Xji) ? S i n c e Piz = 1~9« \Ilj(l ~ Pji)Xsi) 

and we have 

m&x5iz — maxlog(/3iz) = max/3i2 = min(l - @iz) = minlog(l - j3iz), 
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our fourth objective function (linear!) is min _3z wz _3i @iz (0"')> where 

0iz = log(l - piz) = log(qiz) + \J2j[\og(l -Pji)]xjij. Since we can drop the 

constants, \og(qiz), in the objective function, we will have the fifth objective 

function as r n i n ^ wz ^ f 53 -[log(l - Pji)]xji) (0tv), which is not (clearly) 

equivalent to the initial objective function in catching the same optimum so­

lution! Where is the flaw? 

(0)? = (0')? = (0")? = (0'")? = (<H? 
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Special Transformations 

In functional analysis, the Laplace transform is a powerful technique for ana­
lyzing linear time-invariant systems. In actual, physical systems, the Laplace 
transform is often interpreted as a transformation from the time-domain point 
of view, in which inputs and outputs are understood as functions of time, to 
the frequency-domain point of view, where the same inputs and outputs are 
seen as functions of complex angular frequency, or radians per unit time. 
This transformation not only provides a fundamentally different way to un­
derstand the behavior of the system, but it also drastically reduces the com­
plexity of the mathematical calculations required to analyze the system. The 
Laplace transform has many important Operations Research applications as 
well as applications in control engineering, physics, optics, signal processing 
and probability theory. The Laplace transform is used to analyze continuous-
time systems whereas its discrete-time counterpart is the Z transform. The 
Z transform among other applications is used frequently in discrete probabil­
ity theory and stochastic processes, combinatorics and optimization. In this 
chapter, we will present an overview of these transformations from differen­
tial/difference equation systems' viewpoint. 

14.1 Differential Equations 

Definition 14.1.1 An (ordinary) differential equation is an equation that can 
be written as: 

#(t , j / ,y ' , . . . ) j / ( n ) ) = 0. 

A solution of above is a continuous function y : I H> R where I is a real 
interval such that $(t, y, y',..., j / " ) ) = 0, W E I. A differential equation is a 
linear differential equation of order n if 

j/"> + an^(t)y^-^ + ••• + ai(t)y' + a0(t)y = b(t) 

where a n _ i , • • • ,a\, ao,b are continuous functions on I to K. Ificti — Ci, the 
above has constant coefficients. If b(t) — 0, Wt 6 / , then the above is called 
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homogeneous, otherwise it is non-homogeneous. If we assume 0 6 / , and 

2/(0) = 2/o, y'(0) = y'o,...,y
(-n~1)(0) = y{^'X) where y0,y'0,... ,y0

n~1] are n 
(*) 

specified real numbers, this is called initial value problems where y$ 's are the 
prescribed initial values. 

Example 14.1.2 (The 1*' and 2nd order linear initial value problems) 

y'(t) = a(t)y(t) + f(t), y(0) = y0; 

and for n — 2, the constant coefficient problem is 

y"(t) + aiy'(t) + a0y(t) = b(t); y(0) = y0, y'(0) = y'0. 

Remark 14.1.3 Let 

y(t) = yi(t) y'1(t) = y2(t) 
y'(t) = y2(t) y'2(t) = y3(t) 

,(«-!) (t) = y„(t) y'n(t) = -an-iyn{t) 

<=> A = 

0 1 0 •• 

0 0 1 •• 

0 0 0 •• 
Ct0 —Oil -012 • • 

2/o = 

2/o 
2/o 

(n-2) 
2/0 

(n-1) 
L2/0 J 

0 
0 

1 
- « n - l . 

. v(f) = 

, /(*) = 

0 ' 
0 

0 
b(t). 

atiy2{t) - a0yi(t) + b(t) 

2/1 (*) 
2/2(0 

yn-i(t) 
yn(t) 

We have linear differential systems problem: 

y'(t) = Ay(t) + f{t); j/(0) = y0. 

14.2 Laplace Transforms 

Definition 14.2.1 The basic formula for the Laplace transformation y to rj 
is 

n(s 
Jo 

*»(*) dt. 

We call the function, n, the Laplace transform of y if Eteo € R 9 r](s) exists, 
Vs > XQ. We call y as the inverse-Laplace transform of n. 

V(s) = C{y(t)}, y(t) = C~l {V(s)} . 
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Proposition 14.2.2 / / J / : R H R satisfies 

(i) y{t) = 0fort<0, 
(ii) y(t) is piecewise continuous, 
(Hi) y(t) = 0{eXot) for some x0 6 M, 

then y(t) has a Laplace transform. 

Tables 14.1 and 14.2 contain Laplace transforms and its properties. 

Table 14.1. A Brief Table for Laplace Transforms 

Inverse Laplace Transform Valid s > xo 
z/W v(s) xp 

- J - , a e C Ka 
s~a ' 

, I $ r 0 
b 

(1) 
(2) 
(3) 
( 4 ) . 

(5) 
(6) 
(7) 
(8) 

tm, 

1 
eat 

m = 1,2,. 
tmeat, m = l ,2 

sin bt 
cos bt 

ect sin dt 

ect cos dt 

sa+62 

a 

( s - c ) 2 + d 2 

(3-c)"2+d2 

Table 14.2. Properties of Laplace Transforms 

(1) 
(2) 
(3) 
(4) 

(5)2/, 

(6) 
(7) 
(8) 
(9) 

Inverse 

y(t) 
ay(t) + bz(t) 

y'(t) 
y{n)(t) 

ft\ J 0, i < c where c > 0 
e ( ) ~ \ l , t>c 

s e " " » ( s ) . < » > 0 
tmy(t), m = l , 2 , . . . 

r^Ct) 
/n J/(* - w)«(w) d" 

Laplace Transform 
7?(S) 

otj(a) + b((s) 
sri{s) - j/(0) 

a"»j(a) - a — y o ) 

e - c 8 

s 

7j(0S + &) 

( - l ) m 7 ? ( m ) ( s ) 
/s°° n(u) du 

v(s)C(s) 

Remark 14.2.3 If a = c+id is non-real, £{eat} = C{ect cos dt}+iC{edt sin dt} 
then obtain Laplace transform using (2) in Table HA. 

Remark 14.2.4 Proceed the following steps to solve an initial value problem: 
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51. y(t)^V(s). 
52. Solve the resulting linear algebraic equation, call the solution n(s) the 

formal Laplace transform of y(t). 
53. Find the inverse-Laplace transform y(t). 
S4- Verify that y(t) is a solution. 

Example 14.2.5 Find the solution to 

y'(t) = -4y(t) + f(t); 2/(0) = 0, 

where f(t) is the unit step function 

and I = [0,oo). Transforming both sides, we have 

e~s 

sr)(s) - j/(0) = -4n(s) + 
s 

e~s 

sn(s) — -4n(s) H . 

At the end of S2, we have n{s) = Sfs+A\ • 

1 1 / 1 1 
s(s + 4) 4 \s s + 4 / ' 

Therefore, 

V(s) = -.e 
s s + 4 

Thus, 
^ _ / 0 , t<l; 

Example 14.2.6 Let us solve 

y'(t) = ay(t) + f(t); 2/(0) = 0 

such that y'(t) = f(t). 
Let us take y'(t) = f(t) then sn(s) — y0 — (f)(s), where 4>(s) = £ {/(<)}. Thus, 

V(s) = 2 / o - + -<A(s). 
s s 

We use formula (9) in Table 14-2. 

y(t) = 2/o + / f(u) du. 
Jo 
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/ / we relax y'{t) = f(t), then we have 

1 1 
V(s) = Vo + s — a 

(s) 

and 

y(t) = eaty0+ f ea^f(u)du; 
Jo 

where </>(s) is the Laplace transform of f(t). 

Remark 14.2.7 In order to solve the matrix equation, 

y'(t) = Ay(t) + f(t); 2/(0) = 2/o 

we will take the Laplace transform as 

r](s)(sI-A) = yo+4>(s). 

where n(s) = [r)i(s),--- ,rjn(s)]T is the vector of Laplace transforms of the 
components of y. If s is not an eigenvalue of A, then the coefficient matrix is 
nonsingular. Thus, for sufficiently large s 

V(s) = (si - Ay'yo + (si - A)-1^) 

where the matrix (si — A)-1 is called the resolvent matrix of A and 

C(etA) = (si - A)'1 for f{t) = 0. 

Example 14.2.8 Let us take an example problem as Matrix exponentials. 
The problem of finding etA for an arbitrary square matrix A of order n can 
be solved by finding the Jordan form. For n > 3, one should use a computer. 
However, we will show that how Cayley-Hamilton Theorem leads to another 
method for finding etA when n = 2. Let us take the following system of equa­
tions 

y[(t) = y2(t) + 1 t/i(0) = 3, 

J/2(*) = !/i(*) + < 2/2(0) = 1. 

Then, 
0 1 
10 , /(*) = 2/o 

S~1AS = 

s-1 

1 1 
1 - 1 

etA-

_ 1 " 
~ 2 

0 1 
10 

1 1 
1 - 1 

1 0 
0 - 1 

0 
0 e' 

ec + e" 
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Then, the unique solution is y(t) = etAyo +p(t), where 

etAyo 
2e* + e" 
2e< - e~ 

and 

p(t) = 
/ 0 V (e~u + ue"") + e- ' (e~" - ue -")] du 
/o [e'(e-" + we"") + e ^ e " " + we" du 

Then, after integration we have 

p(t) = 
- 2 v(t) 

3et-t 
3 e * - 2 

One can sotoe i/ie akwe differential equation system using Laplace trans­
forms: 

y'(t) = Ay(t) + f(t)^s 

<£> 
s - 1 

- 1 s 

» i ( s )~ 

*7i(«) 

0 1 
10 

l 

^i(s) 

(*) 

+ 
i i 

i 

Then, the resolvent matrix is 

(sI-A)-^ 
1 

( s - l ) ( s + l 

If we multiply both sides of (*) 6y (**), we /wroe 

s 1 
1 s 

(**) 

T](S) = 

T)(s) 

1 

( s - i ) ( s + i) L 

I 
s-l + 

3s+ 1 
s + 3 

1 

y(*) = 

+ s 2 ( s - l ) ( s + l) 

1 

s2 + l 
2s 

0 
- 2 

3 e ( - £ 
3e' - 2 

In order to find e , we expand right hand side of (•*) as 

n(s) = 
["1 

2 
1 

L2 

l l 
2 
1 
2 J 1 i i + s + 1 • \ 2-

If we invert it, we will have the following 

•" = £ 
e* + e * el — e * 
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14.3 Difference Equations 

Let us start with first-order difference equations: 

»<* + '> = » « + > « } Ay{k) = m k = h%^ 

The initial value problem of the above equation can be solved by the 
following recurrence relation: 

y(k)=y(k+l)-f(k), A: = - 1 , - 2 , . . . 

Therefore, we find 

( 2/o + £*lS/(«)>* = 1,2,3,...; 
V(k) = < 2/o, k = 0; 

U - £ : = * / ( « ) , fc = - i , - 2 , . . . 

For second-order equations, we will consider first the homogeneous case: 

y(fc + 2) + axy{k + 1) + a0y(fc) = 0; j/(0) = yQ, 2/(1) = 2/1 • 

We seek constants 

Ai, A2 3 z(k + 1) = A2z(fc); z(0) = yi - Ait/0 

which are the roots of 
A2 + aiA + ao = 0. 

If Ai 7̂  A2, then y(k) = ciAf + C2A2 where Ci, c2 are the unique solutions 
of 

ci + c2 = yo, C1A1+ c2A2 = 2/1. 

If Ai = A2 = A, then y(k) = ci\h + c2A
fc where ci,c2 are the unique 

solutions of 
c\ — 2/o, ciA + c2A = yx. 

When the roots are non-real, A = pel6 and A = pe~l6, then 

y(k) — c\pk cos kO + c2/9
fc sin k6, 

where c\ and c2 are the unique solutions of 

ci = j/oi cicos0 +C2sin# = 2/1. 

If we have systems of equations, 

y{k + 1) = ^( fc ) , fc = 0 ,1 ,2 , . . . ; 2/(0) = j / 0 , 

we, then, have as a recurrence relation 
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y(k) = Aky0 and A0 = I. 

When A is singular, there does not exist a unique solution y(—1) satisfying 
Ay( — 1) = 2/o- When yl is non-singular, 

j,(fc) = ^- 1
J / (A:+l) . 

Then, j / ( - l ) = A^yo, y(-2) = ^~22/o, ••• where ^- f c = A ^ A - ^ 1 = 
(^-1) f c , A = 2 , 3 , . . . Recall that, if A = SJS'1 then Ak = S^S'1. Then, 

y(k) = SJS-1y0, k = 0 , 1 , . . . 

For the non-homogeneous case, 

y(fc + 1) = Aj/(fc) +/(fc). 

If >1 is nonsingular, 

2/(fc) = ^fc!/o+p(*0, 

where p(fc + 1) = Ap(k) + f(k); p(0) = 0. This yields 

- l 

p(k) = -YlA
k~1-vf{.v). 

v—k 

Example 14.3.1 For k = 0 ,1 , . . . , 

Vi(k + l) = y2(k) + l, yi(0) = 3, 

y2{k + 1) = yi(k) + 1, 3/2(0) = 1. 

Ak = l l + (-l) f c l - ( - l ) f c 

1 - (- l) f c l + (-l) f c , Aky0 = 
2 + ( - l ) f e 

2 - ( - l ) f c 

fc-i 

p(*) = « £ 
«=0 

A;-M + ( - l ) " ( 2 - f c + w) 
fc-u-(-l)u(2-fc + u) 

Ŵe know, 

>£<*_,,, >*G+I> and 
M = 0 

fc-i fc-i 

|(2 - *) ^C-1)" + | S "(-1)" = | - §(-!) 
u=0 u=0 

1 r 2 fc 2 -3( - l ) f c + 3 
_2k2 + 4k + 3{-l)k - 3 

5 

P(k) = -

y(k) = k2 + k + (-!)* + 
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14.4 Z Transforms 

Definition 14.4.1 The Z Transformation y to rj is 

oo , . 
/ ^ V ^ V(U) , ~, 

rj(z) = 2 ^ ^-~, where z e C. 
u=o 2 

We call the function rj the Z transform of y if 

3 r 6 R 9 r](z) converges whenever \z\ > r, 

in such cases y is the inverse Z transform of n. 

n(z) = Z {y(t)} , y(t) = Z"1 {V(z)} . 

Proposition 14.4.2 If y satisfies 
(i) y(k) = 0fork = - 1 , - 2 , . . . , 
(ii) y(k) = 0(kn), neZ+, 

then y has a Z transform. 

If 7]{z) is the Z transform for some function \z\ > r, then that function is 

v(k). i^Jcz
k-lv(z)dz,k = 0,1,2,... 

y W " \ 0 , fc = - l , - 2 , . 

where C is positively oriented cycle of radius r' > r and center at z — 0. 
For Z transform related information, please refer to Tables 14.3 and 14.4. 

Remark 14.4.3 

Z {y(k + 1)} = j/(l) +'& + y^. + ... = Zri(z) - zy(Q). 
z zl 

The Laplace transform ofy'(t) is s'ij(s) —y(Q). 

Remark 14.4.4 The procedure to follow for using Z transforms to solve an 
initial value problem, is as follows: 

51. y(k) ^ r,(z). 
52. Solve the resulting linear algebraic equation 'q(z) = Z {y(k)}. 
53. Find the inverse Z transform y(k) = Z~x {t]{z)}. 
S4- Verify that y(k) is a solution. 

Example 14.4.5 

y(k + 1) = ay{k) + f(k), k = 0 , 1 , . . . ; y(0) = y0, a ^ 0 

z 1 
zrj(z) - zyQ = arj{z) + <j){z) => r/{z) = y0 H 4>{z) = 7/1(2) + rj2(z). 
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Table 14.3. A Brief Table for Z transforms 

y{k) 

(2) 

(3) 

1 
k 

k2 

(4) 
(5) k{m 

(6) 
(7) 

(8) 
(9) 

(10) 

(11) 
(12) 

(13) 

fc3 

, m = 0,1, 
ak 

kak 

k\ 
e-ak 

sin bk 

cos bk 

e-ak sm bk 

e~akcosbk 

Valid 
Z transform \z\ > r 

r](z) r 

- l 

u-1)4 

(*-«)2 

it 

z 
z - e - ° 
z sin b 

2 2 —2z cos fc+e"2ft 

2(2 —cos 6) 
2 2 - 2 z cosb + fi~2" 

z e " " s i n b 
z^ — 2ze~a cos 6 + e — 2 " 

z(z — ti'~" c o s fc) 
z 2 — 2 ^ e ~ a cos b-f-e~2 f l 

Table 14.4. Properties of Z transforms 

(1) 
(2) 
(3) 
(4) 

(5) 
(6) 
(7) 
(8) 

0) 
(10) 

(11) 
(12) 

Inverse 
y(k) 

ayi(k) + by2(k) 
y(k + \) 
y(k + n) 

y(k-c), c > 0 
aky(k) 
ky{k) 
k2y(k) 

kmy(k), m = 0 ,1 ,2 , . . . 
Y.ku=oV^k ~ u)y2{u) 

yi(fc)ya(fe) 
£ « = 0 2/(U) 

Z transform 

V(z) 
arii(z) + brj2(z) 
zri(z) - zy(0) 

znn{z) - zny(0) 
~zn~]y(l) z y ( n - l ) 

«~ c77(a) 

^ ) 
, d 7 j ( z ) 
4 rfz 

- ^ [ - ^ ' W ] 
(-*£)%(*) 

771(2)772(2) 

^ J r P ' 1 1 l ( / ' ) ' ) 2 ( P ^ 2 ) < i / ' 

^ ( * ) 

-0(2) We know 
z — a ' 2 — a 2 

Then, by superposition, 

-, and rj2{z) V2(k) = f(k 

y(k) = aky0 + J2 f(k - 1 - ")«"• 
u = 0 
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Remark 14.4.6 In order to solve the linear difference system 

y(k + l) = Ay(k) + f(k); y(0) = y0, 

we will take the Z transform of the components of y(k), then we have 

(zI-A)rj(z) = zy0 + (t>{z), 

where n(z) = [771(2),-•• ,r]n(z)}T is the vector of Z transforms of the com­
ponents of y. If z is not an eigenvalue of A, then the coefficient matrix is 
nonsingular. Thus, for sufficiently large \z\, the unique solution is 

V(z) = z(zl - A)-l
Vo + (zl - i4)" V(«), 

where we have 
Z{Ak}=z(zI-A)-1. 

In order to find a particular solution, we solve (zl — A) 1p(z) = 4>(z) forp(z) 
and find its inverse Z transform. 

Example 14.4.7 Let us take our previous example problem: 

yi(k + 1) = y2(k) + 1, 2/i(0) = 3, 

y2(k + l) = yi(k) + l, 2/2(0) = 1. 

V(z) = 
z 1 

(z-l)(z + l) [lz_ 

Z{Aky0} 
z - \ 

+ 
2 
2 

1 zl 
(*-l)(z + l) [ i f 

z 1 
-1 

C^IFJ 

n(z) = 
z 

(z-ir 
z 

+ (z-iy 

=> y(k) = k2 
1 

L 4 J 
+ k 

' 1 ' 
4 
3 

. 4 . 

"0" 
1 

. 2 _ 

+ 

z+1 

z 

(z-1) 

+ (-l) f c 

+ 

+ 

( * + l ) 

19 
8 
13 

P r o b l e m s 

14.1. Solve y"(t) - y(t) = e2t; y(0) = 2, j,'(0) = 0. 

14.2. Solve y(k + 1) = y(k) + 2ek; y(0) = 1. 



202 14 Special Transformations 

14.3. Consider a combat situation between Blue (x) and Red (y) forces in 
which Blue is under a directed fire from Red at a rate of 0.2 Blue-units/unit-
time/Red-firer and Red is subjected to directed fire at a rate of 0.3 Red-
units/unit-time/Blue-firer plus a non-combat loss (to be treated as self di­
rected fire) at a rate of 0.1 Red-units/unit-time/Red-unit. Suppose that there 
are 50 Blue and 100 Red units initially. Find the surviving Red units at times 
t = 0,1,2,3,4 using the Laplace transformation. 

14.4. Find the closed form solution for the Fibonacci sequence Fk+2 — -Ffe+i + 
Ffc, F\ = 1, i7. = 1 using the ^-transformation and calculate -Fioo-

Web material 

http://ccrma.stanford.edu/~jos/filters/Laplace_Transform_ 

Analysis.html 

http://claymore.engineer.gvsu.edu/~j ackh/books/model/chapters/ 

laplace.pdf 

http://cnx.org/content/ml0110/latest/ 

http://cnx.org/content/ml0549/latest/ 

http://dea.brunel.ac.uk/cmsp/Home_Saeed_Vaseghi/Chapter04-Z-

Transform.pdf 

http://dspcan.homestead.com/files/Ztran/zdiff1.htm 

http://dspcan.homestead.com/files/Ztran/zlap.htm 

http://en.wikipedia.org/wiki/Laplace_Transform 

http://en.wikipedia.org/wiki/Z-transform 

http://eom.springer.de/1/1057540.htm 

http://eom.springer.de/ZZz130010.htm 

http://fourier.eng.hmc.edu/el02/lectures/Z_Transform/ 

http://home.case.edu/"pjh4/MATH234/zTransform.pdf 

http://homepage.newschool.edu/~foleyd/GEC06289/laplace.pdf 

http://kwon3d.com/theory/filtering/ztrans.html 

http://lanoswww.epf1.ch/studinfo/courses/cours_dynsys/extras/ 

Smith(2002)_Introduction_to_Laplace_Transform_Analysis.pdf 

http://lorien.ncl.ac.uk/ming/dynamics/laplace.pdf 

http://math.fullerton.edu/mathews/c2003/ztransform/ZTransformBib/ 

Links/ZTransformBib_lnk_3.html 

http://math.fullerton.edu/mathews/c2003/ZTransformBib.html 

http://math.ut.ee/~toomas_l/harmonic_analysis/Fourier/node35.html 

http://mathworld.wolfram.com/LaplaceTransform.html 

http://mathworld.wolfram.com/Z-Transform.htm 

http://mywebpages.comcast.net/pgoodmann/EET357/Lectures/Lecture8.ppt 

http://ocw.mit.edu/OcwWeb/Electrical-Engineering-and-Computer-

Science/6-003Fall-2003/LectureNotes/ 

http://phyastweb.la.asu.edu/phy501-shumway/notes/lec20.pdf 

http://planetmath.org/encyclopedia/LaplaceTransform.html 

http://umech.mit.edu/weiss/PDFfiles/lectures/lecl2wm.pdf 

http://umech.mit.edu/weiss/PDFfiles/lectures/lec5wm.pdf 
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http://web.mit.edu/2.161/www/Handouts/ZLaplace.pdf 

http://www.absoluteastronomy.com/z/z-transform 

http://www.atp.ruhr-uni-bochum.de/rt1/syscontrol/node11.html 

http://www.atp.ruhr-uni-bochum.de/rtl/syscontrol/node6.html 

http://www.cbu.edu/~rprice/lectures/laplace.html 

http://www.cs.huj i.ac.il/"control/handouts/laplace_Boyd.pdf 

http://www.dspguide.com/ch33.htm 

http://www.ece.nmsu.edu/ctrlsys/help/lxprops.pdf 

http: //www. ece. rochester. edu/courses/ECE446/The'/,20z-transf orm. pdf 

http://www.ece.utexas.edu/~bevans/courses/ee313/lectures/ 

15_Z_Transform/index.html 

http://www.ece.utexas.edu/~bevans/courses/ee313/lectures/ 

18_Z_Laplace/index.html 

http://www.ee.Columbia.edu/"dpwe/e4810/lectures/L04-ztrans.pdf 

http://www.efunda.com/math/laplace_transform/index.cfm 

http://www.facstaff.bucknell.edu/mastascu/eControlHTML/Sampled/ 

Sampledl.html 

http://www.faqs.org/docs/sp/sp-142.html 

http://www.geo.Cornell.edu/geology/classes/brown/eas434/Notes/ 

Fourier%20family.doc 

http://www.intmath.com/Laplace/Laplace.php 

http://www.just.edu.j o/~hazem-ot/signal1.pdf 

http://www.ling.upenn.edu/courses/ling525/z.html 

http://www.ma.umist.ac.uk/kd/ma2ml/laplace.pdf 

http://www.maths.abdn.ac.uk/~igc/tch/engbook/node59.html 

http://www.maths.manchester.ac.uk/~kd/ma2ml/laplace.pdf 

http://www.plmsc.psu.edu/~www/matsc597/fourier/laplace/laplace.html 

http://www.realtime.net/~drwolf/papers/dissertation/nodell7.html 

http://www.roymech.co.uk/Related/Control/Laplace_Transforms.html 

http://www.sosmath.com/diffeq/laplace/basic/basic.html 

http://www.swarthmore.edu/NatSci/echeevel/Ref/Laplace/Table.html 

http://www.u-aizu.ac.jp/~qf-zhao/TEACHING/DSP/lec04.pdf 

http://www.u-aizu.ac.jp/"qf-zhao/TEACHING/DSP/lec05.pdf 

www.brunel.ac.uk/depts/ee/Research_Programme/COM/Home_Saeed_Vaseghi/ 

Chapter04-Z-Transform.pdf 

www.ee.ucr.edu/"yhua/eel41/lecture4.pdf 
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Problems of Chapter 1 

l . l 

(a) Since, / is continuous at x: 

Vei > 0 3Ji > 0 9 Vy 9 \x - y\ < ^ =» |/(x) - f(y)\ < ex. 

g is continuous at x: 

Ve2 > 0 382 > 0 3 \/y 9 |x - y\ < S2 => \g(x) - g(y)\ < e2. 

Fix ei and e2 at | . 

3tfi > 0 9 My 3 \x - y\ < 8, =• | /(x) - /(j/)| < | 

35i > 0 3 \/y 3 |x - y\ < S2 => \g(x) - g(y)\ < | 

Let 8 = min{<5i,£2} > 0. 

My 9 |x - 2/| < J =• | /(x) - /(j/)| < | , |5(x) - g(j/)| < 1 

l(/ + </)(*) - (/ + </)(*) I = I/O*) + <K*) - f(v) - g(v)\ < 

\f(x)-f(y)\ + \g(x)-g(y)\<^ + ^ e 

Thus, Ve > 0 3d > 0 9 Vy 9 |x - 2/| < 8 =» | ( / + <?)(x) - (/ + fl)(j/)| < e. 
Therefore, / + g is continuous at x. 

(b) / is continuous at x: 

Vei > 0 3<5 > 0 9 My 3 |x - j / | < 8 =» |/(x) - /(j/) | < e. 

Fix e = e. Then, 

3J > 0 (say 8) 3 My (can fix at y) 9 |x — y\ < 8 =>• | /(x) — /(j/)| < e. 

We have |x — f/| < 5 =>• | /(x) — /(j/)| < £• 

Vy 9 |x - y\ < 8, | /(x) - f(y)\ <c\x-y\. 

Choose y 3 \x — y\ < 8, \f(x) — f(y)\ < c\x — y\ < c6. 

If < . c- >, we will reach the desired condition. One can choose 0 < 8 < 

min {£,§}. 

My 9 \x - y\ < 5 < 6, | /(x) - f(y)\ < c\x - y\ < cS < e. 
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1.2 Observation: Every time we break a piece, the total number of pieces 
is increased by one. When there is no pieces to break, each piece is a small 
square. At the beginning when we had the whole chocolate with n squares 
after 6=0 breaks, we had p—1 piece. After one break (6=1), we got p—2 pieces. 
Therefore, p is always greater by one than b, i.e. p = b + 1. In the end, 

p = b+ 1 = n. 

The above argument constitutes a direct proof. Let us use induction to prove 
that the above observation b = n — 1 is correct. 

1. n = 2 => b — 1, i.e. if there are only two squares, we clearly need one 
break. 

2. Assume that for 2 < k < n — 1 squares it takes only k — 1 breaks. In order 
to break the chocolate bar with n squares, we first split into two with k\ 
and &2 squares {k\ + k2 = n). By the induction hypothesis, it will take 
ki — 1 breaks to split the first bar and k^ — 1 to split the second. Thus, 
the total is 

b = 1 + (fci - 1) + (k2 - 1) = h + k2 - 1 = n - 1. 

1.3 

Full Forward Method: 

n\ n\ n\ i n ).! 77.! 

{n — r)\r\ r\(n — r)\ \n — r 

Combinatorial Method: 
(") denotes the number of different ways of selecting r objects out of n ob­

jects in an urn. If we look at the same phenomenon from the viewpoint of the 
objects left in the urn, the number of different ways of selecting n — r objects 
out of n is ( " ) • These two must be equal since we derive them from two 
viewpoints of the same phenomenon. 

CO C) = C71) + » 
Full Backward Method: 

n - l \ (n-l\ _ ( n - 1 ) ! (n - 1) 

r J \r — lj (n — 1 — r)\r{r — 1)! (n — r)(n — r — 1)! (r — 1)! 

(n — 1)! [n — r + r] fn^ 
(n — r)\r\ \r/ 

Combinatorial Method: 
(") denotes the number of different ways of selecting r balls out of n objects in 
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an urn. Let us fix a ball, call it super ball. Two mutually exclusive alternatives 
exist; we either select the super ball or it stays in the urn. Given that the 
super ball is selected, the number of different ways of choosing r — 1 balls out 
of n— 1 is (™l|). In the case that the super ball is not selected, (n~1) denotes 
the number of ways of choosing r balls out of n — 1. By the rule of sum, the 
right hand side is equal to the left hand side. 

(«0(S) + G) + - + O = 2 » : 
We will use the corollary to the following theorem. 

Theorem S. l . l (Binomial Theorem) 

( i + . ) -=cy + cy + . . . + (^ 
Corollary S.1.2 Let x = 1 in the Binomial Theorem. Then, 

Combinatorial Method: 
2" is the number of subsets of a set of size n. (JJ) = 1 is for the empty set, 
(^) = 1 is for the set itself, and ("), r = 2 , . . . , n — 1 is the number of proper 
subsets of size r. 

w a y (?) = (") (r_;)= 
Forward - Backward Method: 

n\ fm\ n\ m\ n\ 

mj \r J (n — m)\ ml (m — r)\r\ (n — m)\ (m — r)\r\ 

n\fn — r\ n\ (n — r)\ n\ 
r) \m — T) r\ (n — r)! (n — m)! (m — r)! r! (n — m)\ (m — r)\ 

Combinatorial Method: 
(^) denotes the number of different ways of selecting m Industrial Engineering 
students out of n M.E.T.U. students and (™) denotes the number of different 
ways of selecting r Industrial Engineering students taking the Mathematics 
for O.R. course out of m I.E. students. On the other hand, (™) denotes the 
number of ways of selecting r Industrial Engineering students taking Math­
ematics for O.R. from among n M.E.T.U. students and (^1^.) denotes the 
number of different ways of selecting in — r Industrial Engineering students 
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not taking Mathematics for O.R. out of n — r M.E.T.U. students not taking 
Mathematics for O.R. These two are equivalent. 

( e ) ( s ) + r r l ) + - + ( B r ) = (B+
r
r+1): 

Trivial: 
Apply item (b) r-times to the right hand side. 

Combinatorial Method: 
The right hand side, ( n +^+ 1 ) , denotes the number of different ways of selecting 
r balls out of m — n + 2 balls with repetition, known as the multi-set problem. 
Let | be the column separator if we reserve a column for each of m objects, let 
\J be used as the tally mark if the object in the associated column is selected. 
Then, we have a string of size r + (m — 1) in which there are r tally marks 
and m — 1 column separators. For instance, if we have three objects {x, y, z}, 
and we sample four times, "\/l\A/lv /" means x and z are selected once and y 
is selected twice. Then, the problem is equivalent to selecting the places of r 
tally marks in the string of size r + (m — 1), which is ( r +™_ 1). 

Let us fix the super ball again. The left hand side is the list of the number 
of times that the super ball is selected in the above multi-set problem instance. 
That is, (Q) refers to the case in which the super ball is not selected, (n~J~ ) 
refers to the case in which the super ball is selected once, and (n + r) refers to 
the case in which the super ball is always selected. 

These two are equivalent. 
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Problems of Chapter 2 

2.1 (a) 

[A\\h] = 

2 3 4 5 6 78 9 10 11 12 13 
10000000 0 0 0 0 
000000010 0 0 0 
1 1000000 0 0 0 0 
011000010 0 0 0 
001100001 0 0 0 
000110000 0 1 1 
000011000 1 0 0 
000000101 1 0 1 
000001100 0 1 0 

a + b —> b; a + b —)• a; b + c —> c; c + d —)• d\ 

d + e -» e; e + /->-/; f + g -^ g; g + i -> i; h + i -> i 

[A\\h 
h\N 

10000000 
0 1000000 
00100000 
00010000 
00001000 
00000 100 
000000 10 
00000001 

0 

10000 
10000 
10000 
00000 
01000 
0 10 11 
0 1111 
0110 1 

c 

0000000000000 

D 

010000000 
110000000 
111000000 
111100000 
111110000 
111111000 
111111100 
0000000 10 
111111111 

Fig. S.l. The tree T in Problem2.1 

Each basis corresponds to a spanning tree T in G = (V,E), where 
T C E connects every vertex and ||T|| = ||V|| — 1. Here, we have T = 
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{1,2,3,4,5,6,7,8}. See Figure S.l. 

(b) Each row represents a fundamental cocycle (cut) in the graph. In the tree, 
we term one node as root (node i), and we can associate an edge of the tree 
with every node like 1 -> b, 2 -¥ a, 3 -» c, 4 -4 d, • • • , 8 ->• h as if we 
hanged the tree to the wall by its root. Then, if the associated edge (say edge 
6) in the tree for the node (say / ) in the identity part of Zi is removed, we 
partition the nodes into two sets as V\ = {a,b,c,d,e,f} and V2 = {g,h,i}. 
The nonzero entries in Zf correspond to edges 10,12,13, defining the set of 
edges connecting nodes in different parts of this partition or the cut. The set 
of such edges are termed as fundamental cocycle. See Figure S.2. 

Fig. S.2. The cocycle denned by cutting edge 6 —>• / in Problem2.1 

(c) Each column represents a fundamental cycle. If we add the edge identified 
by 1$ part into T, we will create a cycle defined by the nonzero elements of 
yi. See Figure S.3. 

(d) The first 8 columns of A form a basis for column space 11(A). The columns 
of matrix Y is a basis for the null space Af(A). The rows of C constitute a 
basis for the row space 1Z(AT). Finally, the row(s) of matrix D is (are) the 
basis vectors for the left-null space Af(AT). 

Remark S.2.1 If our graph G = (V,E) is bipartite, i.e. V = V1IJV2 9 
Vif]V2 = 0, Vi ± 0 + V2 and Me = (vx,v2) G E, vi G Vu v2 G V2, 
and we solve m&x.cTx s.t. Ax = b, x > 0 using standard simplex algorithm 
over GF(2), we will have exactly what we know as the transportation simplex 
method. Furthermore, for general graphs G = (V, E), if we solve maxcTx s.t. 



212 Solutions 

Fig. S.3. The fundamental cycle defined by edge 10 in Problem2.1 

Ax = b, x > 0 using a standard simplex algorithm over GF(2), we will get 
the network simplex method. 

2.2 (a) 

4(5,2) = 

00 
00 
00 
00 

2 0 0 0 
0 6 0 0 
0 0 12 0 
0 0 0 20 

[N\B] 

where 

UB = 

[B\N] = \UB\UN] -)• [h\VN] 

= 04x2, VN = 

20 0 0' 
0 6 0 0 
0 0 12 0 
0 0 0 20 

, uN = 
"0 0" 
0 0 
0 0 
0 0 

00 
00 
00 
00 

= 04x2-

Then, 

TZ(A) = Span {2ei,6e2,12e3,20e4} = Span {e±, e2, e%, e^} = R4. 

The rank of A(n, k) is r = 4. 

1Z(AT) = Span {2e3,6e4,12e5,20ee} = Span{e3,e4,e$,eQ} = R4. 

Af(A) = Span < 

if1) 
0 
0 0 
0 

I Voy1 

1 

(o\) 
1 
0 
0 
0 

WJ 

> — Span {ei,e2} 

JV(4 r) = {0} , dimAf (AT) = 0. 

Thus, R6 = Tl(AT)®Af(A) = R4©R2 and R4 = 1l{A)®N{AT) = R 4 00 = R4. 
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(b) Differentiator: 

A(n,k) = 

0 • 

0 • 

0-

• 0 

• 0 

• 0 

n;=i» 
0 
0 

0 
0 

[B( 

0 0 0 

0 0 

o IlEj-'i o 
0 0 
0 0 0 

n,k)\N(n,h)]-> 

III 

[/„-

0 

0 
0 

0 

=n-fc+l l . 

-*+i|0] 

= [N(n,k)\B(n,k)] 

Then, 

K{A) = Span{ | Y[i J ei ,--- , I J | i J e„_fc+i 
V * = l 

= S p a n { e i , . - - , e n _ f c + 1 } = R " - f c + 1 . 

7e(Ar) = Sp«n<M J J i J e f c + x , - - , I J J i\e„ 
I \ i= l / \j=n-fc+l / 

= Span{ek+1,--- , en} = R"- fc+1. 

/ o \ l 
0 

A/"(i4) = Span < > = Span{ei,--- ,ek} = '. 

I W \0/J 
M{AT) = {0} , dimM(AT) = 0. 
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(c) Integrator: 

B(n,k) = 
Utii 

0 
0 

0 
0 

0 

0 

0 
0 

0 

0 

mir" 
0 
0 

0 

0 
0 

0 r 

0 

0 
0 

0 
I 

n" 
After permuting some rows, we have 

0 

PB(n,k) = 

n?=i< 

o o n 5 ^ o 

0 0 
0 0 

0 
0 

0 
0 

0 
H j = n~fc+1 ^ 

[PB(n,k)} \UB] 
0 

-» In-k+1 
0 

where 

UE 

I\LI< 

0 
0 

0 
0 

0 

0 
0 

0 

rtfi'-1* 
0 
0 

0 
0 

0 r 

0 
0 

0 
1 

Thus, 

Furthermore, 

K(B) = M.n-k+1 =K(BT). 

M(BT) = Rk and M{B) = {6} . 
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2.3 

1. Let n = 4 and characterize bases for the four fundamental subspaces 
related to A = [yi\y2\ • • • \yn]-

[A\\h 

10 0 - 1 
0 1 0 - 1 
0 0 - 1 1 
0 0 1 - 1 

- 1 0 0 1 
1 - 1 0 0 
0 1 - 1 0 
0 0 1 - 1 

1 0 0 0 
0 1 0 0 
0 0 10 
0 0 0 1 

-> 

10 0 - 1 
0 1 0 - 1 
0 1 - 1 0 
0 0 1 - 1 

- 1 0 0 0 
- 1 - 1 0 0 

0 0 1 0 
0 0 0 1 

1 0 0 0 ] 
1 - 1 0 0 
1 1 1 0 
0 0 0 1 

-> 

' 1 0 0 
0 10 
0 0 1 
0 0 0 

- 1 
- 1 
- 1 

0 

- 1 0 00" 
- 1 - 1 0 0 
- 1 - 1 - 1 0 

1 1 1 1 

= 
r/3|v^ 

0 
Si] 
SII\ 

where Vjv = 
- 1 
- 1 
- 1 

Si = , Sn= [ 1 1 1 1 ] . 

Thus, TZ(A) = Span{yi,y2,y3}. Af(A) = Span{t}, where 

- 1 0 0 0 
- 1 - 1 0 0 
- 1 - 1 - 1 0 

t = - v N 
h-3 

1 
1 
1 
1 

Moreover, 

K(AT) = Span < 

- 1 
0 
0 
1 

5 

1 
- 1 

0 
0 

J 

0 
1 

- 1 
0 

Span{-y4,-y1,-y2} 

And finally, N(AT) = Span {Sn} = Span j [ 1 1 1 1 ] T \ . 

The case for n = 3 is illustrated in Figure S.4. y\ is on the plane defined 
by Span{ei,e2}, y2 is on the plane defined by Span {e2,e^} and 2/3 is 
on the Span{ei,es}. Let us take {2/1,2/2} in the basis for 11(A), which 
defines the red plane on the right hand side of the figure. The normal to 
the plane is defined by the basis vector of Af(A) = Span {[1,1,1]T}. We 
have M(A) = {K{A))L since N{A) = tf(AT) (therefore, K(AT) = H(A) 
by the Fundamental Theorem of Linear Algebra-Part 2) in this particular 
exercise. 
Let us discuss the general case. Let e = (!,-•• , 1)T 

[A\\In] -» 
ITI-I\VN 

0 
Si] 
Sn 
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t 
/, 
wis 

, r w ̂ 
0' 

• * * > * 

A 

.ttT* 
R(A)=Span(yi.y2) 

Fig. S.4. The range and null spaces of A — [j/i |y2J2/3] 

where Vjv 

- 1 

-e, S, = 

- 1 0 0 

: '•• 0 
_1 . . . _ i 

0" 

0_ 
) &II [ l , . . . , l ] = eT . 

Thus, 11(A) = Span {j/i, • • • , yn-i}- A/-(A) = Span {£}, where 

* = r-vwi 
L Ji J 

i—
i 

i 

Moreover, 
1l(AT) = Span {-yn, -yi, ••• , -yn-2} • 

And finally, Af(AT) = Span {5//} = Span {[1, • • • , 1]T} = Span {e} . We 
have Af(A) = (ftM)-1- since A/"U) = -^(A- ) (therefore, 1Z(AT) = 11(A) 
by the Fundamental Theorem of Linear Algebra-part 2) in this particular 
exercise. 
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Problems of Chapter 3 

3.1 

Vi = a 

i>2 = a 

A = 

1 
1 
1 

- 1 

-vi 

1 2 0 - 1 
1 - 1 3 2 
1 - 1 3 2 

-1 1 - 3 1 

[a 1 a2 a3 a4] . 

=> vfvi = 4, v~[a2 = - 1 , v\a3 = 9, vfa4 = 2. 

v3 = a ° 

T 
V2V2 — , t^cT = - 9 , v2a = - - . 

27 

•27-W2 - - J -« i -

This result is acceptable since a3 = 2a1 — a2; hence it is dependent on a1 and 
a2. 

- ^ - 2 4 2 4 

W4 = a - - j f - ^ - — W i 
T 

Thus, 

Qi 
\\vi\ 

12 
V2 

\v21 

2 

6 

6 

6 J 

Qi 
V4 

Kl 

o 
_ ^ 

6 
_ ^ 

6 

3 J 

a1 = 2q\Vi 

a2 = -\qi + h&q2 = -\vi+v2 

a3 = 2 (2 f t ) - (-§(& + ^ ) < ? 2 = | g i + ^ % = 2Wl - «2 

a4 = qi - A/392 - \ /65 4 = \vx + =£v2 + vA 

Q = 

<£> 

I ^ Q 
2 2 u 

1 \ / 3 \ /6 
2 6 6 
1 y/3 y/6 
2 6 6 
1 y/3 V6 

. 2 6 3 . 

, R = 

r2 - i ^ n 
L 2 2 X 

0 3 ^ 3 _ 3 ^ 3 _ ^ 

0 0 0 \ /6 
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3.2 
V = A) + P\x + e =» E[y) =/30+ 0ix. 

Data: 

yi= Po + P\x\ 

2/2 = Po + P\x1 

Vm = Po + P\Xm 

& 

1 X\ 

1 x2 

_ J- X m _ 

' / S o ' = 

" j / i " 

2/2 

_2/m_ 

«• A/3 = y. 

The problem is to minimize SSE = ||y - Apf = EHi fa i - Po - Pixi)2 

\Po' The solution is to choose P = 
Pi 

such that Ap is as close as possible to y. 

1 xi 
1 xi 

=* AJ A = m Ex» 
I>i E^2 

(ATAy1 = 

, det(,4TA) = m ^ x2 - ( ^ x* 

Ex? -£*< 
m£if - (E^)2 L-E^i m 

0 = ( ^ ) - M T j , 

P = 
1 E^f - E ^ I I ••• I 

*̂ 1 **-*2 ' ' * •&m 

2/1 

2/2 

0 = (ATA)-1ATy = 
m E x 2 - ( E x i ) 

E2/i 
Ex i2/i 

/?: 
A) ( A ' M ) - 1 ^ = 

TOEX?- (Ex*)2 
E x1 E 2/J - E xi E xi2/i 
~ E a* E 2/« + "i E x,2/i 

We know from statistics that 

bbx 

bbx 
Pi = ^PL,Po = y-Pix, 

where 

Since 

—^1, V = -, SSxy = ^2{xi-x)(yi-y), SSXX = ] P ( x ; - x ) ( x , - x ) . 

bbxx = / \Xj — x) = y ^ xi — 2x y ^ Xi -f ; • m x 2 
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SSXX = ] P x2 - 2mx2 + mx2 = y ^ x ; 2 - 2 
mx , 

Pi — 
-mSSxy __ - E x» E 2/i + TO E x i V i 

which is dictated by the matrix equation above. 

•v S S ^ - x SSxy _ y E A ~ myx2 - x ]T xtyi + myx2 

0o = 

A> = y E xl - x E ^2/i _ E ?/; E ^ - E ^ E ^2/* 

A) 

bbxx mbbxx 

E ^i E 2/i - E Xi E â iJ/i 
"»!>?-Q><)2 

which is dictated by the matrix equation above. 
We may use calculus to solve min SSE: 

SSE = Hi/ - A/3||2 = £ ( W - [A, + /3iXi])2 

SS£ = J2 Vf - 2 5Z Vifa - 2/3i X) ^ * + m/3° + 2^>^ I ] Xi + # 13 x?-
dSSE 

d(3o 
-2 ^ i/j + 2m/30 + 2/3! ^ Xi = 0 

^ „ E 2/i - /?i E ^t - „ -«• /30 = — —— = y - fax. 

dSSE 

dpi = -2 J2 xiVi + 2/3o J2 Xi + 2& Yl x2i = ° 

«• 5 3 aiij/i - (?/ - /3ix) ̂  Xj - ft ^ x2 = 0 

a _ ExiVi -yYuxi _ Ea:»yi - mxv = ssxv 

2-jXi ~~ x 2-jXi /_jXi ~ m x bbxx 

As it can be observed above, the matrix system and the calculus mini­
mization yield the same solution! 

Let the example data be (1,1), (2,4), (3,4), (4,4), (5,7). Then, 

A/3 = y& 

"1 r 
12 
13 
14 
15 

r a 1 
PO = 

"1" 
4 
4 
4 
7 

A1 A = 
5 15 

15 55 
1 3 
3 11 

, det{ATA) = 10. 
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$ • 

00 
0i 

1 
= (A<A)-Wy=^ 

11 
- 3 

1 1 1 1 1 
1 2 3 4 5 

0 = 0o 
0i 

= {A1A)^A*y 
10 

" 11 - 3 ' 
- 3 1 

"20" 
72 = 

'0.4' 
1.2 = 

'0o 
01 

5 = 3, y = 4, 

SSxy = ( l -3 ) ( l -4 )+ (2 -3 ) (4 -4 )+(3 -3 ) (4 -4 )+(4 -3 ) (4 -4 )+(5 -3 ) (7 -4 ) = 12, 

SSXX = (1 - 3)2 + (2 - 3)2 + (3 - 3)2 + (4 - 3)2 + (5 - 3)2 = 10. 

12 -
ft = - , # > = 4-1 .2(3) = 0.4. 

3.3 
(a) Let us interchange the first two equations to get A[ = LU: 

A[ = 

Here, the form of L is a bit different, but serves for the purpose. We solve 
LUx = 6'j = [19,8,3]T in two stages: Lc = b', then Ux = c. 

"2 1 3" 

1 32 
32 1 

= 

• 2 

3 
1 
3 

1 

"Ml 
1 0 

0 0 

"3 2 1" 

0 I i 
u 3 3 
0 O f _ 

Lc =b[ & § 

Ux = c<=> 

Final check: 

• 2 

3 
1 
3 

1 

-Ml 
10 
0 0_ 

"ci" 
C2 

. C 3 . 

__ 
'19" 

8 

3 

=*• c3 = 18. 

<̂> c2 = 7 
ci = 3 

3 2 1 
n i l 
U 3 3 
0 0 f _ 

'xi 

X2 

.X3. 

_ 
" 3" 

7 

_18_ 

=> xi = 0. 
<£> => x2 = - 2 

x3 = 7 

Aix = 

"132" 

2 1 3 

32 1_ 

0' 
- 2 

7 
= 

" 8" 

19 

3_ 

/ 
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(b) Let us take the first three columns of A2 as the basis: 

B 

"2 13" 

1 32 

3 2 1 

, N = 

"10" 

0 1 

_10_ 

, XB 

Xi 

X2 

Xi 

, XN = 
X4 

X5 

Let XN — 0. Then, BXB — b2 is solved by LU decomposition as above: 

" 2 

Lc = b2& k 10 c2 = 19 & < => c2 = 18 
ci = 3 

r2 - 1 ii 
3 7 L 

3 10 
1 00_ 

C l " 

C2 

. C 3 . 

_ 
" 8" 

19 

3 

=*> C3 — y -

£/x = c<£> 

" 3 2 1 " 

0 1 s 
U 3 3 
00 T _ 

X i 

« 2 

Xz_ 
= 

3" 

18 
60 

. 7 . 

=> X l = - -

<=> 
^ 3 

10 
3 

X2 = f 

X S = 

XJV = [1,1] 

11 16 10]T 
3 ' 3 ' 3 J • 

"T Then, 
If XJV ^ 6, then x# = [• -j±,f,f]T

 -B^NXN. Let 

x B 

X l 

X2 

. X 3 . 

= 

• 11 • 
3 
16 
3 

10 
3 . 

-

_5_ 
18 
_7_ 
18 
_i_ 
18 

1 

1 L J 

1 
_ 6 

" -23" 

31 

19_ 

Final check: 

A2x = 

A2x = 

2 13 10 

13201 

32 110 

2 1310 

1320 1 

32 110 

• 11 • 
3 

16 
3 

10 
3 

0 

0_ 

= 

8" 

19 

3 

/ 

- 2 3 

31 

19 

6 

6 

19 

3 

/ 

(c) 

A* = 

" 1 

4 

7 

2" 

5 

8 

.10 11. 

J
 A 3 

1 4 7 10 

2 5 8 11 
AJA3 = 

166 188 

188 214 

A^A^ is clearly invertible, and (A3A3) l = 
107 
90 

_ 4 7 
45 

47 
"45 

83 
90 
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{AIM \ - i AT A1 = 
107 
90 

_iZ 
45 

47 
45 
83 
90 

1 4 7 10 

2 5 8 11 

J 7 1_ 2 
10 15 30 5 
4 13 J 3_ 
5 30 15 10 

x = (AUsr1ATb3 
Xi 

X2 

_9 7 L 2 
10 15 30 5 
4 13 J _3_ 
5 30 15 10 

[21 
5 
6 

LsJ 

34 " 
30 
53 
30 

The A3 — QR decomposition is given below: 

Q = 

-0.07762 -0.83305 -0.39205 -0.38249 
-0.31046 -0.45124 0.23763 0.80220 
-0.54331 -0.06942 0.70087 -0.45693 
-0.77615 0.31239 -0.54646 0.03722 

R = 

-12.8840 -14.5920 
0.0000 -1.0413 
0.0000 0.0000 
0.0000 0.0000 

The equivalent system Rx — QTb$ is solved below: 

QTh = 

-0.07762 -0.31046 -0.54331 -0.77615 
-0.83305 -0.45124 -0.06942 0.31239 
-0.39205 0.23763 0.70087 -0.54646 
-0.38249 0.80220 -0.45693 0.03722 

(9) 

-11.1770 
-1.8397 

0.2376 
0.8022 

Rx = 

*2 = E$S = 1-7667 

12.8840 -
0.0000 
0.0000 
0.0000 

-14.5920 
-1.0413 

0.0000 
0.0000 

Xi 

X2 

-11.1770 
-1.8397 

0.2376 
0.8022 

Xi 
-11 .177-1 .7667(-14 .592) 

-12 .884 = -1.1333 (0) 

The two solutions, (9) and (<C>), are equivalent. 

A3x = 

" 1 2" 

4 5 

7 8 

.10 11. 

-1.1333 

1.7667 
= 

2.4201 

4.3503 

6.2805 

8.2107 

^ 

"2" 

5 

6 

. 8 . 

= 63 
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P3a:-6|| = 

error. 

[2.4201 
4.3503 
6.2805 

[8.2107 

-

"2" 
5 
6 

.8 . 

= 

0.4201 

-0.6497 

0.2805 

0.8495 

= 0.8695 is the minimum 

(d) 

A4 = 

- 1 0 0 1 

1 - 1 0 0 

0 1 - 1 0 

0 0 - 1 1 

Ai = 

- 1 1 0 0 

0 - 1 1 0 

0 0 - 1 - 1 

1 0 0 1 

AiAt = 

2 - 1 0 - 1 

- 1 2 - 1 0 

0 - 1 2 - 1 

- 1 0 - 1 2 

Clearly, AJA4 is not invertible. Then, we resort to the singular value decom­
position A4 = Q1SQ2 , where 

Qi 

I \/2 
' 2 2 o| 

0 -& i 
u 2 2 

^2 
2 of 

V2 1 
2 2 

, £ = 

"4 0 0 0" 

0 2 0 0 

0 0 2 0 

. 0 0 0 0 . 

I Q2 

_ I v^ 
2 2 of 

0 - ^ i 
u 2 2 

2 of 
\ /2 1 
2 2 

Then, x = Q2^Qjbi finds the solution: 

IE = 

_ 1 1 _1 1 
2 2 2 2 

- ^ 0 ^ 0 

0 - ^ 0 ^ 
1 I I I 
2 2 2 2 J 

1 0 0 0 
0 1 0 0 
0 0 i 0 

0 0 0 0 

1 
"2 
/ 2 
2 

0 
1 
2 

1 1 1 " 
2 2 2 

0 & 0 
^2 n ^/2 
2 U 2 
1 1 1 
2 2 2 J 

2 
4 
3 
3 

=> 

X i 

^2 

X3 

X4 

0.22855 
-0.42678 
-0.25000 

0.12500 
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Problems of Chapter 4 

4 .1 In order to prove tha t 

det A = an An + a^A^ H h ainAin, 

(property 11) where Aij's are cofactors (Aij = (—l ) , + J ' d e tMj j , where the 
minor Mij is formed from A by deleting row i and column j); 
without loss of generality, we may assume that i = 1. 

Let us apply some row operations, 

O n «22 «13 

«21 ^22 «23 

«31 a 2 2 «33 

O n l « n 2 On3 

O l n 

« 2 n 

« 3 n ->• 

O i l «22 «13 - - - 0,\n 

0 0 2 2 « 2 3 ' • • a 2 „ 

0 a 3 2 Q33 • • • Ctzn 

0 a„2 «n3 " • « r 

where atj = " a i j a ; 1 + a ^ a i 1 , i,j = 2,..., n. In particular, a 2 2 = -a '*a»o»+0«°n . 
Furthermore, 

>!->• 

a n ^22 ^ 1 3 ' 

0 Q22 C*23 • 

0 « 2 2 « 3 3 • 

0 a n 2 a n 3 • 

• 0,in 

• a2n 

• a3n 

Otnn _ 

—• 

a n «22 « 1 3 • • 

0 C*22 Q23 • ' 

0 0 /?33 • • 

din 

OLln 

fan 

0 0 /3„3 • • • Pn 

where /3y = - " ' J 0 " ^ " " , M = 2 , . . . , n. In particular, 

-0:230:32 + «33Q22 
/333 = 

«22 

(ai2«3i ~ fl32Qii)(a23aii - Q13Q21) + (033011 ~ Qi303i)(o220ii - 012O21) 
«ii(022011 - a i 2 a 2 i ) 

If we open up the parentheses in the numerator, the terms without an cancel 
each other, and if we factor an out and cancel with the same term in the 
denominator, we will have 

A»3 = 
Q12Q23Q31 + Q13Q32Q21 — O l l Q 2 3 0 3 2 ~ 0 1 3 0 3 1 0 2 2 ~ 0 1 2 0 2 1 0 3 3 + Q11Q22Q33 

~a12a1l + 022&11 

If we further continue the row operations to reach the upper triangular form, 
we will have 

A-+ • 

an 
0 
0 

0 

022 «13 " 

Q22 a 2 3 • 

0 /333 • 

0 0 • 

• oi„ 
• ain 

Snn 
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Let Cnn — Yz- Thus, 

det A = an- a22 • fe • • • (nn = au 
-Q12Q21 + 0 2 2 0 1 1 

an 

012023031 + 013Q32Q21 ~ Q11023032 ~ Q13Q31022 ~ 012021033 + Q11022033 

- 0 1 2 0 2 1 + 0 2 2 0 1 1 

" Z ' 

zz 
Since the denominator of one term cancels the numerator of the previous term, 

det A = Z = y , aipia2P2 

peP 
*npt 

det [epi, eP2,..., ePn J, (*) 

where P has all n\ permutations (pi,... ,pn) of the numbers {1, 2 , . . . , n}, ePi 

is the pf1 canonical unit vector and det Pp = det[epi, eP2,..., ePn] = ±1 such 
that the sign depends on whether the number of exchanges in the permutation 
matrix Pp is even or odd. 

Consider the terms in the above formula for det A involving a n . They 
occur when the choice of the first column is p\ — 1 yielding some permutation 
P = (P2J • • • >Pn) °f the remaining numbers {2, 3 , . . . , n}. We collect all these 
terms as An where the cofactor for a n is 

E' 
pep 

-An = y , a2P2"
-a' npn O-ei i p . 

Hence, det A should depend linearly on the row (an, 012,. • 

det A = a n An + 012^12 H h alnA\n. 

)Oi„ ) : 

Let us prove Property 11 using the induction approach. The base condition 
was already be shown to be true by the example in the main text. We may 
use (*) as the induction hypothesis for n = k. 
Claim: J2PeP a2p2 " ' anpn det Pp = (—1)1+1 d e tMn . We will use induction 
for proving the claim. 

Base(n = 3): An = 022033 - a23a32 = (-l)2**22 ° 2 3 . 
032 033 

Induction(n = k + 1): Y.^pa2,P2 • • • ak+i,Pk+1 det Pp- = ( -1 ) 1 + 1 de tMn-
Using the induction hypothesis for n — k in (*) we have: 

det Mn = a22A22 H h a2n^2n, 

in which we may use the induction hypothesis of the claim for the cofactor 
A2j- The rest is almost trivial. 
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4.2 Let 

A = 

"1 1 
2 1 
0 1 
1 - 1 
2 - 2 

- 1 
1 
1 
1 
2 

- 1 
2 
0 
3 
2 

- 1 
1 

- 1 
1 
4 

d(s) 2)5, fc = 1, Ax = 2 , m = 5 . 

Ai = A - 11 = 

- 1 1 - 1 - 1 - 1 
2 - 1 1 2 1 
0 1 - 1 0 - 1 
1 - 1 1 1 1 
2 - 2 2 2 2 

=> dimN{A{) = 5 - rank^) = 5 - 3 = 2. 

A\ = 0 => dimN{A\) = 5 => mj = 2, m(s) = (s - 2)2. 

Choose v2 e JV(-AI) 9 Axv2 ^ 0. 

«2=e? = ( l ,0 ,0 ,0 ,0 ) r => v1=A1v2 = (-l,2,0,l,2)T. 

Choose v4 ^ OT2 3 a ^ 0, v4 e Af(Al) 3 Axv2 / 6. 

v4 = e\ = (0,1,0,0,0)2 
V3 AlV4 = (l,-l,l,-l,2)T. 

Choose W5 € Af(Ai) independent from v\ and vz-

V5 = (1 ,0 ,0 ) -1 ,0) T . 

Thus, 

5 = 

-11 10 1 
2 0 - 1 1 0 
0 0 10 0 
1 0 - 1 0 - 1 
2 0 - 2 0 0 

S-lAS = 

"2 1 
2 

2 1 
2 

2 

4.3 

A = 

-A- -i- 0 " 10 lo r 
0 — — 
v 10 10 
0 0 * > . 

=* d(s) = (a - — J , fc = 

A1 = A-l/ = 
"o ^ o" 
0 0 i 
0 0 0 

= 1,A = 
1 

T o ' n = 3 

dimM(Ai) = 3 - ranfc(A1) = 3 - 2 1. 
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A2 = Al = (A--lf = 
0 0 ^ 
00 0 
00 0 

=> dimM(Ai) = 3 - rank(Ai) = 3 - 1 = 2. 

A\ = 0 => rfim7V(yl?) = 3 =>• m = 3, m(s) = f s - — J . 

Choose v3 e Af(Al) 9 » 2 = AiV3 ^6 ^ Afv3 = ui-

t;3 = ê  = (0,0, l ) J => v2 = A1v3= 0,— ,0 

Thus, 

A10 = 
1010 

5 = 

1 10 45 
0 1 10 
0 0 1 

1 
00 ool 
0 ^ 0 
0 0 1 

= 

• 1 

100 

0 
0 

=> 

00" 
TO 0 
0 1_ 

10' 

S~lAS 

Vi = A\V2 Vioo 
,0,0 

i n -1-

10 

10 

10 J-
10 J 

10 
100 

10 
1 

= Syl1 0^-1 . 

Note that the calculation of A10 is as hard as that of A10 since A is not 
diagonal. However, because (easy to prove by induction) 

A" ( i)A"-1 Q)A"-2 

A" (^)A"-1 

An 

[A 1 1 
A 1 

A 

n 

= 

we have 

A10 = 
( ^ ) ° i o ( ^ ) 9 « ( ^ ) 8 

(TO)10IO(^) 

(TO)10. 
10 10 

1 100 4500 
0 1 100 
0 0 1 

Hence, it is still useful to have Jordan decomposition. 

4.4 (a) 

—— = -0.03Yi - 0.02F2 — - = -0.04Yi - 0.0iy2 at at 

^ = -0.05.Yi - 0.02X2 ~ = -0.03Xi - 0.00X2 at at 

Let WT = [Xi,X2,Yi,Y2}. Then, the above equation is rewritten as 

dW 
dt 

= AW, 
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where 

A = 

' 0 

0 
1 

20 
3 

L 100 

0 

0 
1 

50 

0 

3 
100 

1 
25 

0 

0 

1 -1 
50 
1 

100 

0 

0 

and the initial condition is W0 = [100,60,40,30]T. 

(b) A = SAS-\ where 

S = 

0.46791 
0.54010 
0.64713 
0.26563 

-0.46791 -0.20890 -0.20890 
-0.54010 0.69374 0.69374 
0.64713 0.33092 -0.33092 
0.26563 -0.60464 0.60464 

0.79296 0.23878 0.63090 0.34529 
-0.79296 -0.23878 0.63090 0.34529 
-0.61736 0.53484 0.27717 -0.67525 
-0.61736 0.53484 -0.27717 0.67525 

and A — 

-0.052845 0.000000 
0.000000 0.052845 
0.000000 0.000000 
0.000000 0.000000 

AtC-U 

0.000000 0.000000 
0.000000 0.000000 
-0.010365 0.000000 
0.000000 0.010365 

The solution is W = SeMS~lW0 

X1(t) 

Yi(t) 
Y2(t) 

0.46791 -0.46791 
0.54010 -0.54010 
0.64713 0.64713 
0.26563 0.26563 

-0.20890 -0.20890 
0.69374 0.69374 
0.33092 -0.33092 

-0.60464 0.60464 

-0.052845 t 

„0.052845 t 

-0 .010365 t 

„0.010365« 

0.79296 0.23878 0.63090 0.34529 
-0.79296 -0.23878 0.63090 0.34529 
-0.61736 0.53484 0.27717 -0.67525 
-0.61736 0.53484 -0.27717 0.67525 

100 
60 
40 
30 

Since 5 _ 1 W 0 = 

129.220 
-58.028 
-38.816 
-20.475 

we have 
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'*!(*)* 
X2(t) 
Yi(t) 

Mt) 

.46791 -.46791 -.20890 -.20890 

.54010 -.54010 .69374 .69374 

.64713 .64713 .33092 -.33092 

.26563 .26563 -.60464 .60464 

(129.22)e-0052845* 
(-58.028)e0052845t 

(-38.816)e-°-010365' 
(-20.475)e0010365t 

X2(Q) 
Yi(0) 
y2(o) 

"100.0000' 
60.0000 
40.0000 
30.0000 

J 

'Xi(lY 
xa(i) 
Yi(l) 
Y*(l) 

"98.3222' 
58.2381 
33.8610 
27.0258 

i 

-X1(2)' 
X2(2) 
Yi(2) 
Y2(2) 

"96.8859" 
56.7490 
27.8324 
24.0983 

'*i(3)" 
X2(3) 

Yi(3) 
y2(3) 

"95.6871' 
55.5282 
21.8967 
21.2102 

; 

'X1(4)' 
X2(4) 
^(4) 
y2(4) 

"94.7227" 
54.5719 
16.0369 
18.3547 

? 

'XiW 
X2(5) 
Yi(5) 
r2(5) 

"93.9900" 
53.8772 
10.2360 
15.5246 
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Problems of Chapter 5 

5.1 

Proof. Let Q~lAQ = A and Q~l = QT, 

yTAy Xiyf + • • • + XnVl 
x = Qy => R(x) = 

yTy vi + '-' + vl 

2/1 = 1,2/2 = • • • = yn = 0 => Ai < i?(x) since 

Ai(2/f + ' •' + Vl) < Aiy? + •' • + A„2/£ «= Ai = min {AJf=1. 

Similarly, A„(A) — max||x||=i xTAx. D 

5.2 

i. xTAx > 0, Vx ^ 0; 

x r .4x = [xix2x3] —— 
100 

"2 10' 
12 1 
01 1 

Xi 

^2 

.X3. 

— [2x1 + xix2 + xxx2 + 2x2 + ^2X3 + x2x3 + X3] 
100 

- ^ [(xi + x2f + (x2 + x3)2 + xi] > 0, Vx ^ 6\ 

ii. All the eigen values of A satisfy A, > 0; 

d e t ( , I - A ) = — 
0 100s - 2 - 1 

- 1 1 0 0 s - 2 - 1 
0 - 1 100s - 1 

= 0<£> 

s3-0.05s2+0.0006s-0.000001 = (s-0.002)(s-0.01552)(s-0.03248) = 0 

=> Ai = 0.002 > 0, A2 = 0.01552 > 0, A3 = 0.03248 > 0! 

iii. All the submatrices Ak have nonnegative determinants; 
Since each entry of A is nonnegative, all 1 x 1 minors are OK. 

= 1 > 0 

= 1 > 0 

= 2 > 0 

2 1 
1 2 

2 1 
01 

12 
01 

= 3>0, 

= 2>0, 

= 1>0, 

20 
1 1 

20 
01 

1 1 
01 

= 2>0, 

= 2>0, 

= 1 >0, 

10 
21 

10 
1 1 

2 1 
1 1 

All 2 x 2 minors are OK. 
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2 1 0 
1 2 1 
0 1 1 

= 1 = 106det(^) > 0! 

The 3 x 3 minor, itself, is OK as well, 
iv. All the pivots (without row exchanges) satisfy di > 0; 

"2 10" 
12 1 
0 1 1 

<-* 
"2 1 0' 
0 | 1 
0 1 1_ 

< - ) • 

"2 1 0" 
0 * 1 

L°°|J 
d i T | > 0 , d ^ A > o , r f 3 = ^ > 0 ! 

v. 3 a possibly singular matrix W B A = WTW; 

A 

and W = i 

1 
loo 

"2 10" 
1 2 1 
0 1 1 -{i 

"1 10" 
0 1 1 
0 0 1 }(i 

"100" 
1 10 
0 1 1 

= WTW 

1 0 0 
1 10 
0 1 1 

is nonsingular! 

5.3 

V/(x) = 
1L 

dxi 

dx2 

x\ + Xi + 2X2 
2xx + x2 - 1 

xi = 1 — 2xi 
(an - l)(ari - 2) = 0 

Therefore, 

xA — 
1 

- 1 , xB = 
2 

- 3 

are stationary points inside the region defined by — 4 < x2 < 0 < xi < 3. 
Moreover, we have the following boundaries 

xi = 
" 0 " 

L X 2 \ 
, XII = 

' 3 " 

1^2 J 
and xin = Xi 

- 4 , Xiv 
Xl 

0 

defined by 

xc = 
[ol 
0 , xD = 

[ ol 
-4_ , xE = 

[3] 
0 , X F = 

[ 3] 
- 4 

Let the Hessian matrix be 

V2f(x) = 
2J_ 

dx\dx\ dx\dx^ 
a2f 

dxzdxi Qx^dx^ 

2xi + 1 2 
2 1 
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Then, we have 

V 2 / ( * A ) 
32 
2 1 

and V2f(xB) = 
52 
2 1 

Let us check the positive definiteness of V2f(xA) using the definition: 

vTV2f{xA)v = [vi,vi] 
32 
2 1 Zv{ + 4«iv2 + v\ 

If Vl = -0 .5 and v2 = 1.0, we will have vTV2 /(xA)w < 0. On the other hand, 
if vi = 1.5 and v2 = 1.0, we will have vTV2f(xA)v > 0. Thus, S72f(xA) is 
indefinite. Let us check V 2 / ( X B ) : 

vTV2 / (xB)w = [vi,i>2] 
5 2 
2 1 

= 5v2 + 4viv2 + v\ = v\ + (2wi + v2)2 > 0. 

Thus, V2/(XB) is positive definite and xB 

f{xB) = 19.166667. 

is a local minimizer with 

Fig. S.5. Plot of f(xi,x2) = \x\ + \x\ + 2xix2 + \x\ - x2 + 19 
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Let us check the boundary denned by xj\ 

/ (0 , X2) = l-x\ - X2 + 19 =» ^ ^ ^ = a* - 1 = 0 => Z2 = 1. 

Since —£.? = 1 > 0, x2 = 1 > 0 is the local minimizer outside the feasible 
region. As the first derivative is negative for — 4 < x2 < 0, we will check x2 = 0 
for minimizer and x2 = —4 for maximizer (see Figure S.5). 

Let us check the boundary denned by xn'-

Since —{> f2' = 1 > 0, x2 = — 5 < —4 is the local minimizer outside the 
feasible region. As the first derivative is positive for — 4 < x2 < 0, we will 
check x2 = —4 for minimizer and £2 = 0 for maximizer (see Figure S.5). 

Let us check the boundary defined by xju: 

f(Xl,0) = ±x* + \x\ + 19 =* ^ - f t =x2
1+x1=0=>x1=0, - 1 . 

Since d2f£i'0) = 2xx + 1, a;i = 0 is the local minimizer (d2^°s '
0) = 1 > 0) 

on the boundary, and x\ = —1 is the local maximizer (—^~2' ' = — 1 < 0) 
outside the feasible region. As the first derivative is positive for 0 < x2 < 3, 
we will check x2 — 3 for maximizer (see Figure S.5). 

Let us check the boundary denned by x/y: 

/(an, -4 ) = \x\ + \x\ - 8Xl + 31 => rf/(2'~4) = ^ + ^ 1 - 8 = 0 

- l ± v / l + 32 ^ X l = _ _ . 

Since c'2/(jc
xV~4) = 2xx + 1 again, the positive root xi = =i±sM = 2.3723 

is the local minimizer (— dxi— > 0), and the negative root is the local 
maximizer but it is outside the feasible region. As the first derivative is positive 
for 0 < x2 < 3, we will check x2 = 3 for maximizer again (see Figure S.5). 

To sum up, we have to consider (2 , -3) , (0,0) and (2.3723,-4) for the 
minimizer; (3,0) and (0, —4) for the maximizer: 

/ ( 2 , - 3 ) = 19.16667, /(0,0) = 19, /(2.3723,-4) = 19.28529 

=> (0,0) is the minimizer! 

/(3,0) = 32.5, / (0 , -4 ) = 31 => (3,0) is the maximizer! 
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Problems of Chapter 6 

6.1 The norm of a matrix A is denned as ||.4|| = -y/largest eigen value of AT A. 
If Q is orthogonal then QT = Q~l •£> QTQ = I and the unique eigen value of 
QTQ is 1. Hence 

\\Q\\ = \\QT\\ = i. 

Furthermore, 
c=\\Q\\\\Q-1\\ = \\Q\\2 = l. 

Hence for orthogonal matrices, 

c = | | Q | | = l. 

IIS|| = ||QT|| = i, 

C = | | Q | | | | Q - 1 | | = a | | Q | | i | | Q | | = ||Q||2 = l. 

For orthogonal matrices, ||Q|| = c(Q) = 1. Orthogonal matrices and their 
multipliers (aQ) are only perfect condition matrices. It is left as an exercise 
to prove the only part. 

Let Q = aQ. Then QT 

Thus, 

and 

6.2 A = QQRQ, where 

Qo = 

i?0 = 

'-0.4083 -0.3762 -
0.9129 -0.1882 -

0 0.9111 -
0 0 -
0 0 
0 0 

-1.2247 83.7098 
0 -87.8778 
0 0 
0 0 
0 0 
0 0 

-0.5443 0.5452 -0.3020 0.0843' 
-0.2434 0.2438 -0.1351 0.0377 
-0.2696 0.2701 -0.1496 0.0418 
-0.7562 -0.5672 0.3142 -0.0877 

0 -0.4986 -0.8349 0.2331 
0 0 0.2689 0.9632 

-73.0929 0 0 0 
87.3454 3.8183 0 0 
-5.5417 -3.0895 -0.1695 0 

0 -0.4497 -0.1898 0.0050 
0 0 -0.0372 0.0095 
0 0 0 0.0016 

Ax = R0Qo = 

Ai = QiRi, where 

-76.9159 80.2207 
80.2207 94.3687 

0 -5.0493 
0 0 
0 0 
0 0 

0 0 0 0 
-5.0493 0 0 0 
3.8305 0.3400 0 0 
0.3400 0.3497 0.0185 0 

0 0.0185 0.0336 0.0004 
0 0 0.0004 0.0016 
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Qx 

-0.6921 -0.5964 -0.3911 
0.7218 -0.5718 -0.3750 

0 0.5633 -0.7948 
0 0 -0.2734 
0 0 0 
0 0 0 

0.1109 -0.0079 -0.0001 
0.1063 -0.0076 -0.0001 
0.2253 -0.0161 -0.0002 

-0.9595 0.0685 0.0009 
-0.0712 -0.9974 -0.2331 

0 -0.0135 0.9999 

Ri = 

-111.1369 123.6364 -3.6447 0 
0 -8.9636 5.0452 0.1915 

0 -1.2438 -3.0895 
0 0 -0.4497 
0 0 0 

0 

0 
0 
0 
0 0 0 

0 
0 

-0.0051 
-0.0202 
-0.0322 

0 

A2 = RiQi 

166.1589 -6.4701 0 0 0 
-6.4701 7.9677 -0.7006 0 0 

0 -0.7006 1.0885 0.0711 0 
0 0 0.0711 0.2511 0.0023 
0 0 0 0.0023 0.0322 
0 0 0 0 

0 
0 
0 
0 

-0.0005 
0.0016 

0" 
0 
0 
0 
0 

0 0.0016 

R5Q5 

^6 = QeR&, where 

166.4231 0 0 0 0 

Qe 

0 7.7768 -0.0002 0 0 0 
0 -0.0002 1.0218 0.0002 0 0 
0 0 0.0002 0.2447 0 0 
0 0 0 0 0.0321 0 
0 0 0 0 

-1.0000 
0 
0 
0 
0 
0 

0 0 0 
-1.0000 0 0 

0 -1.0000 0.0002 
0 -0.0002 -1.0000 
0 
0 

0 -1.0000 

0 0.0016 

0 

-Rfi 

-166.4231 0 0 0 
0 -7.7768 0.0002 0 
0 0 -1.0218 -0.0003 
0 0 0 -0.2447 

0 1.0000 

0 
0 
0 
0 

-0.0321 

0 
0 
0 
0 
0 

0 0.0016 
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A-j = ReQe = 

A7 = Q7R7, where 

166.4231 0 0 0 
0 7.7768 0 0 
0 -0.0002 1.0218 0.0001 
0 0 0.0001 0.2447 
0 
0 

0 0.0321 

0 
0 
0 
0 
1 

0 
0 
0 
0 
0 

0 0 0.0016 

Qr = 

R7 

-1.0000 
0 -
0 
0 
0 
0 

"-166.4231 
0 
0 
0 
0 
0 

1jQr = 

0 
1.0000 

0 -
0 -
0 
0 

0 
-7.7768 

0 
0 
0 
0 

"166.4231 

0 
0 

0 
0 

1.0000 0.0001 
0.0001 -1.0000 

0 
0 

0 
0.0002 

0 0 
0 0 
0 0 
0 0 

0 -1.0000 0 
0 

0 
0 

-1.0218 -0.0001 

0 
0 7.7768 
0 
0 
0 
0 

0 -0.2447 
0 
0 

0 
0 

0 1.0218 
0 
0 
0 

0 -
0 

0 
0 
0 

0 0.2447 
0 
0 

0 1.0000 

0 0 
0 0 
0 0 
0 0 

0.0321 0 
0 0.0016 

0 0 
0 0 
0 0 
0 0 

0 0.0321 0 
0 0 0.0016 

The diagonal entries are the eigen values of A. 

6.3 (a) Take .4(2). 

1. 

[A(2)\h] = 

<-)• 

i = A(2 

A(2) = 

1 i l l 1 0 

. 2 3 T 1 

"10 4 - 6 " 

0 lj—6 12 

)"16 / = 
4 

- 6 

1 1 
. 2 3 _ 

<-> 
"l | | 1 0" 

0 ^ l - 1 1 
y 12I 2 1 . 

= [h\A(2)-\ 

- 6 ' 
12 

"1.0" 
0.5 = 

1" 
0 
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xn = A(2)-%I = 4 - 6 
- 6 12 

1.5 
1.0 

Ab = bi - bu = 

xi - xu 

-0 .5 
-0 .5 

f 
- 3 

=HIA,II = \H 

VlO, ||a;/|| = VT=» 
\\xi\\ 

Then, the relative error for this case is is ^ 2 = 5.0. 

2. The maximum error is the condition number 

det(sJ - 4(2)) = 
s - 1 

l = (-D(-J)-^o 

=>Ai = 
6 

-v 
4-v/ l3 

13 4 + \/T3 
"*2 = ^ • 

Therefore, c[4(2)] = % = ^ § = £ f f f § = 19.2815 is the upper 
bound. 

3. 

4(2) + AA(2) = 
1 | 
1 I 
2 3 

+ 
0 2" 

I 1 

Ax = xui -xi -

hxin = bi => xiu = bi 

Ax\\ 

1.0 
0.5 

2.0 
0.5 

= $ • 

_ y /425 
\xi + Ax\\ ~ y/h25 

= 1.84391 

||4(2)|| = A2 =
 4 + / 1 3 = 1.26759 

|AA(2) | | is the largest eigenvalue of 1 2 
' 2 3 

, which is 0.9343. Then, 

M(2)| 

P(2)| 
0.9343 
1.2676 

0.7371 
\\xr + Ax 

iM2)\ 

1.84391 
0.7371 

= 2.5017 

ll^(2)|| 

4. The maximum error is ||4(2)|| | |4(2)_ 1 | | , where | |4(2)_1 | | is the largest 
eigenvalue of 4 ( 2 ) _ 1 as calculated below: 

d e t ( s / - 4 ( 2 ) - 1 ) 
s - 4 6 

6 s - 1 2 = ( s - 4 ) ( s - 1 2 ) - 3 6 = 0 
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=> Hi = 
16 - V208 

M2 = 
16 + V208 

Then, ||yl(2)|| | | ^ (2) _ 1 | | = 1.2676(15.2111) = 19.2815 = c[A(2)}. 
We know, fi\ = j - and ji2 — j ~ - Consequently, 

c[A(2)-1} = ^ = 19.2815 = AL = ^ = c[^(2)] 
/^i IT A i 

(b) Take .4(3). 

r i 
i 
2 
1 

L3 

1 
•2 
1 
3 
1 
4 

1 I 
3 
1 
4 
1 
5 J 

4(3) 

det(aJ - A{3)TA{3)) = 

:3)rA(3) = 

s _ 49 
* 36 

'49 
36 
3 
4 
21 

. 40 

3 
4 

3 „ 61 
4 a 144 
21 
40 •3- s 

10 * 

3 21 
4 40 
61 3 
144 10 
3 769 
10 3600 

21 
40 
3 
10 

769 
3600 

= 0 

(s - 3/415409)(s - 255/17041)(s - 1192/601) = 0 ; 

v\ 415409' vi 
255 

17041 vz = 
1192 
60T 

vz •c[A(3)M(3)] = ^ = 
1192 
601 = 274635.3 

415409 

det(s/ - A(3)) = 

1 A A 
A 2 3 

I I I 
2 3 4 

i l l 
3 4 5 

= 0 

Ai = 
26 

9675' 

(s- 26/9675) (s 

389 
A2 = 

3180' Aa 529 

389/3180)(s 

745 

Clearly, c[A(3)TA(3)} = (c[4(3)])2. 

c[A(3)] 

745/529) = 0 =*• 

^ i = J{2£- = 524.0566 
\ 2b 

1 9675 

(c) Take A(A). 

m = 
I l 
4 5 

I 1 
5 6 
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-4(4) = Q0Ro = 

-0.83812 0.52265 -0.15397 -0.02631 
-0.41906 -0.44171 0.72775 0.31568 
-0.27937 -0.52882 -0.13951 -0.78920 
-0.20953 -0.50207 -0.65361 0.52613 

-1.19320 -0.67049 -0.47493 -0.36984 
0.00000 -0.11853 -0.12566 -0.11754 
0.00000 0.00000 -0.00622 -0.00957 
0.00000 0.00000 0.00000 0.00019 

4(4)i = RoQo 

1.49110 0.10941 0.0037426 -3.9372 x 10~5 

0.10941 0.17782 0.0080931 -9.4342 x 10~5 

0.00374 0.00809 0.0071205 -0.00012282 
-3.9372 x 10~5 -9.4342 x 10~5 -0.00012282 9.8863 x 10 - 5 

A(4)i = QiRi = 

-0.997320 0.073211 -0.000868 2.1324 x 10~6 

-0.073173 -0.996260 0.046000 -0.0002696 
-0.002503 -0.045938 -0.998790 0.0175510 

2.6333 x 10~5 0.000538 0.017545 0.9998500 

A(A)2 = RiQi 

A(4)2 = Q2R2 

-1.49520 -0.12214 -0.0043425 4.6479 x 10~5 

0.00000 -0.16952 -0.0081160 9.6801 x 10~5 

0.00000 0.00000 -0.0067449 0.00012010 
0.00000 0.00000 0.0000000 9.6718 x 10~5 

1.500100 0.012424 1.6887 x 10~5 2.5468 x 10~9 

0.012424 0.169260 0.0003099 5.1991 x KT8 

1.6887 x 10"5 0.000310 0.0067389 1.6969 x 10"6 

2.5468 x 10~9 5.1991 x 10"8 1.6969 x 10~6 9.6703 x 10~5 

-0.999970 
-0.008282 

-1.1257 x 10~5 

-1.6977 x 10-9 

0.008282 -3.9108 x 10"6 -1.3792 x 10"10 

-0.999960 0.0018313 1.5392 x 10~7 

-0.001831 -1.0000000 -0.00025182 
-3.0723 x 10-7 -0.0002518 1.00000000 

-1.50010 -0.01383 -1.9529 x 10"5 -2.9966 x 10 - 9 

0.00000 -0.16915 
0.00000 0.00000 
0.00000 0.00000 

-0.0003221 -5.5105 x 10~8 

-0.0067383 -1.7212 x 10~6 

0.0000000 9.6702 x 10~5 

4̂(4)3 = R2Q2 

1.500200 
0.001401 

7.5850 x 10-8 

-1.6417 x 10~13 

0.001401 
0.169140 

1.2340 x 10-5 

-2.9710 x 10-11 

7.5850 x 10-8 -1.6405 x 10" 
1.2340 x 10~5 -2.9710 x 10" 

0.0067383 -2.4351 x 10 
-2.4351 x 10~8 9.6702 x 10 
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4(4)3 = Q3-R3 

-1.0000000 0.0009338 -1.7566 x 10~8 8.8905 x 10~15 

-0.0009338 -1.0000000 7.2955 x 10~5 -8.7996 x KT 1 1 

-5.0559 x 10-8 -7.2955 x 10"5 -1.0000 3.6138 x lO"6 

1.0943 x 10"13 1.7565 x KT1 0 3.6138 x 10"6 1.0000 

-1.50020 -0.00156 -8.7713 x 10~8 1.9304 x 10~13 

0.00000 -0.16914 -1.2831 x 10~5 3.1503 x lO"11 

0.00000 0.00000 -0.006738 2.4701 x 10 - 8 

0.00000 0.00000 0.000000 9.6702 x 10~5 

A(4)4 = R3Q3 

1.500200 0.000158 3.4068 x lO"10 -1.0796 x 10~16 

0.000158 0.169140 4.9159 x 10~7 1.7074 x 10"14 

3.4068 x 10-10 4.9159 x 10~7 0.0067383 3.4947 x lO"10 

1.0582 x KT 1 7 1.6986 x 10~14 3.4947 x 10~10 9.6702 x 10~5 

4(4)4 = Q4R4 

-1.0000 
-0.00010528 

-2.2709 x 10~10 

0.00010528 -7.8899 x 10"11 

-1.0000 2.9064 x 10~6 

-2.9064 x 10 - 6 -1.0000 
-7.0539 x 10 - 1 8 -1.0042 x 10~13 -5.1863 x 10~8 

-5.7307 x 10~19 ' 
5.0310 x 10"14 

-5.1863 x 10"8 

1.0000 

-1.50020 
0.00000 
0.00000 
0.00000 

,4(4)5 = R4Q4 

-0.00018 
-0.16914 
0.00000 
0.00000 

-3.9397 x 10~10 1.0608 x KT1 6 

-5.1117 x 10-7 -1.8100 x 10-14 

-0.0067383 -3.5448 x lO"10 

0.0000000 9.6702 x 10~5 

1.5002 
1.7808 x 10~5 

1.5302 x 10~12 

-6.8213 x 10~22 

1.7808 x 10~5 1.5304 x 10~12 1.1853 x 10~16 ' 
0.16914 1.9584 x 10~8 -9.8322 x lO"17 

1.9584 x 10~8 0.0067383 -5.0152 x 10~12 

-9.7112 x 10~18 -5.0153 x 10~12 9.6702 x 10"5 

Thus, A = 

1.5002 
0.16914 

0.0067383 
0.0000967 

and 

rAfA„ 1.5002 

^ ^ = 01)000967 = 1 5 5 1 4 
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Problems of Chapter 7 

7.1 
a) A zero dimensional polytope is a point. 
b) One dimensional polytopes are line segments. 
c) Two dimensional polytopes are n-gons: 
triangle (3), rectangle (4), trapezoid (4), pentagon (5), 

7.2 Zi2=conv(ei,e2,e3). See Figure S.6. 

+1- / 

(1,0,0) x i 

Fig. S.6. A2 in 

7.3 C3=conv((0,0,0)T, (a, 0,0)T, (0, a, 0)T , (0,0, a)T, (a, a, 0)T , 
(a, 0, a)T, (0, a, a)T, (a, a, a)T) 

Cn = {xeWl : 0 <Xi < a, i = l , . . . , n ; a €R+}. 

A k 

-4-

f ~ 

CUBE OCTAHEDRON 

Fig. S.7. Cube and octahedron 

C3
4=conv((a, 0,0)T, (0, a, 0)T , (0,0, a)T, ( - a , 0,0)T, (0, - a , 0)T , (0,0, -a)T) 

C* = J x e Kn : ^ |xi| < a , a E R + . 
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X 

(0.1.0) 
ts 

Fig. S.8. 3-dimensional pyramid 

7.4 
See Figure S.8 for a drawing of Pn+\. 
Let a1 be the normal to face Fj , i — 0 ,1 ,2 ,3 ,4 . Let alx < bi be the 

respective defining inequalities. 
We know Fo is the X\-X2 plane. Then, Fo = {x *E K3 : x 3 = 0} . 
We know that a2 and a4 are perpendicular to x2--axis. Similarly, a1 and 

aA are perpendicular to xj axis. Thus, 

a} = ( 0 , * , * ) T , a2 = (* ,0 ,* ) T , a3 = (0 ,* ,*) 7 ' , a4 = ( * , 0 , * ) r . 

Since F] contains (1 /2 ,1 /2 ,1 ) , (1 ,0 ,0) , (0 ,0 ,0) , what we have is 

Fi = {x e R3 : Oxi - 2x2 + l z 3 = °} • 

Since F 2 contains (1 /2 ,1 /2 ,1 ) , (1 ,0 ,0) , (1 ,1 ,0) , we have 

F 2 = {x e R3 : 2xi + 0x2 + l x 3 = 2} . 

Since F 3 contains (1 /2 ,1 /2 ,1 ) , (1 ,1 ,0) , (0 ,1 ,0) , it is 

F 3 = {x e R3 : Oxi + 2x2 + I13 = 2} . 

And finally, ( 1 /2 ,1 /2 ,1 ) , (0 ,1 ,0) , (0,0,0) are in F 4 , 

F 4 = {x £ R3 : - 2 x i + 0x2 + l x 3 = 0} . 

Therefore, 

F 3 = {x G R3 : x 3 > 0, - 2 x 2 + x 3 < 0, 2xi + x 3 < 2, 
2 x 2 + x 3 < 2, - 2 x i +x3 < 0 } . 
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Pn+\ is not a union of a cone at XQ and a poly tope. 
Pn+i is a direct sum of a cone at xo and Cn. 
P„ + i is an intersection of a cone at x0 and Cn+i provided that XQ £ Cn+i\Cn. 

7.5 See Figure S.9. 

(0,1,1 

' • • 

(1,1,0) 

^r , 

% ! 
(1,0,1) 

Fig. S.9. A tetrahedron 

The diagonal ray (1,1,1)T of the cube is orthogonal to facet F4. Thus, F4 = 
{x e R3 : xi + X2+ x3 = a}. Since this facet contains (0,1,1)T , (1,0, l ) r , 
(1,1,0)T , the value of a is 2. Therefore, 

F4 = {x 6 K3 : xi + x2 + x3 = 2} . 

Since (0,0,0)T is on the tetrahedron, the following halfspace is valid and facet 
defining 

ff4={i6i3: xi+x2 + x3< 2} 

Similarly, 

Fi = {x £ R3 : xi - x2 - x3 = 0} , 

F2 = {x e R3 : -X! + x2 - x3 = 0} , 

F 3 = { i e R 3 : - x i - x2 + x3 = 0} . 
The following set describes the tetrahedron: 

xi +x2 + x3 < 2, 

xi - x2 - x3 < 0, 

—x\ + x2 - x3 < 0, 

—xi — x2 + x3 < 0. 
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Fig. S.10. The dodecahedron, 0: golden ratio 

7.6 See Figure S.10. 
The polyhedron vertices of a dodecahedron can be given in a simple form 

for a dodecahedron of side length a = \/b - 1 by 

( 0 , ± r \ ± < / > f , (±^,0,±<A-1)T, ( ± < T \ ± ^ 0 ) T a n d ( ± l , ± l , ± l ) T ; 

where <j> — ^^- is the golden ratio. We know (f> - 1 = ^ and 0 = 2 cos f. See 
Figure S.ll. 
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(•"',•.0) 

Fig. S . l l . The extreme points of the dodecahedron, cj>: golden ratio 
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Problems of Chapter 8 

8.1 
a) We have six variables and three constraints, therefore we have (3) 
candidate bases. 

X\ X2 X3 Si S2 S3 

2 1 0 1 0 0 
0 0 1 0 1 0 
0 1 0 0 0 - 1 

= 20 

A = 

Bi = {x 1 ,x 2 ,x 3 }, B2 = {xi,x2,si}, B3 = {xi,x2,s2}, B4 = {xi,x2,s3}, 
B5 = {xi,x3,si}, B6 = {xi,x3,s2}, B7 = {21,2:3,53}, J58 = {x1,s1,s2}, 
BQ = {xi,si,s3}, Bw = {xi,s2,s3}, Bn - {x2,x3,si}, BX2 = {x2,x3,s2}, 
B\3 = {x2,x3,s3}, B14 = {x 2 , s i , s 2 } , B15 = {x 2 , s i , s 3 } , B16 = {x2,s2,s3}, 
Bn = {x3,s1,s2}, B1S = {x3,si,s3}, B19 = {x3,s2,s3}, B20 = {si,s2,s3}. 

B2, B4, B$, BQ, Bg, BQ, B\2, S15, Bn, Big are not bases since they form sin­
gular matrices. Br,Bio,Bis,B20 are infeasible since they do not satisfy non-
negativity constraints. Thus, what we have is 
(xi, x2, x3, si, s2, s3)

T = (3,2,10,0,0,0)T from Bx •-> point F, 
{xi,x2,x3, si,s2, s3)

T = (3,2,0,0,10,0)T from B3 <->• point C, 
(xx,x2, x3, si,s2, s3)

T = (0, 2,10, 6, 0, 0)T from Blx <-> point E, 
(x1,x2,x3,s1,s2,s3)

T = (0,8,10,0,0, 6)T from B13 '-> point D, 
(xi,x2,x3,S!,s2,s3)

T = (0,2,0,6,10,0) r from Bu <-» point B, 
( x i , x 2 , x 3 , s i , s 2 , s 3 ) T = (0,8,0,0,10,6)T from Bi6 <->• point A. 
See Figure S.12. 

xN 
(x1,s2,s3)

T. Then, 

1 0 1 
0 1 0 
0 0 1 

=>B~ 

b) 

1. matrix form: 
Let xB = (si,x3,x2)

T, 

B = 

xB = B-Xb 

We are on point E. 

z = cT
BxB = [Q,2, 2] 

cT
N-cT

BB-lN= [1,0,0] - [0 ,2 ,2] 

" 1 0 -
0 1 
0 0 

- 1 " 
0 
1 

" 1 0 - 1 " 
0 1 0 
0 0 1 

' 8" 
10 
2 

= 
" 6" 
10 
2 

6 
10 
2 

= 24. 

" 1 0 - 1 " 
0 1 0 
00 1 

"2 0 0" 
0 1 0 
0 0 - 1 

= [1,-2,2]. 
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D=(0,8,10) 

x3 A 

,V,Y, V 

72> 

Fig. S.12. Exercise 8.1: Primal and dual polyhedra 

Thus, S3 enters. 

B-iNss = 

1 0 - 1 
0 1 0 
0 0 1 

0 
0 

- 1 
= 

1 
0 

- 1 

•Si 

X3 

x2 

Thus, «i leaves. 
New partition is XB — (sz,X3,X2)T, x?j = (xi,S2,s\)T. Then, 

£ = 
OOll 
0 10 

- 1 0 1 
J5-1 

"10 
0 1 
1 0 

- 1 " 
0 
0 
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xB = B~lb = 
[ 1 0 - 1 ] 

0 1 0 
10 0 

[10" 
8 
2 

= 

[ 6" 
10 
8 

We are on point D. 

z = cT
BxB = [0,2,2] 

6 
10 = 36. 

cl-clB^N =[1,0,0] - [0 ,2 ,2] 

Thus, D is the optimal point. 

2. simplex tableau: 

"10 - 1 " 
0 1 0 
10 0 

"20 1" 
0 1 0 
0 0 0 

= [-3,-2,-2]. 

«1 

Xz 
x2 

z 

X\ X2 X3 Si S2 

2 0 0 1 0 
S3 

1 
0 0 1 0 1 0 
0 1 0 0 0 - 1 

- 1 0 0 0 2 - 2 

RHS~ 

6 
10 
2 

24 

S3 

2̂ 3 

x2 

z 

Xi X2 X3 Si S2 S 3 

2 0 0 1 0 1 
0 0 1 0 1 0 
2 1 0 0 0 0 
3 0 0 2 2 0 

RHS' 
6 

10 
8 

36. 

3. revised simplex with product form of the inverse: 

Let xB = (s1,x3,a;2)T, xN = (a;i,s2 ,s3)T- Then, B~l 
1 0 - 1 
0 1 0 
0 0 1 

w = cT
BB~l = [0,2,2]. 

rXl =cXl ~wNXl = 1 - [ 0 , 2 , 2 ] 

cS2 - wNS2 = 0 - [0,2,2] 

uNS3 = 0 - [ 0 , 2 , 2 ] 

0 
1 
0 

0 
0 

- 1 

S3 is the entering variable and Si leaves. Ex
 l = 

xB = £ 1 - 1 6= (6,8,10)T. 

= 1 > 0 . 

= - 2 < 0 . 

= 2 > 0 . 

f 0 0 

- f l O 
- ^ 0 1 
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w=[0,2,2]Ei1B-1 = [2,2,0]. 

w = cT
BB~l = [0,2,2] 

rXl = cXl - wNxi = 1 - [2,2,0] 

rS2 = cS2 - wNS2 = 0 - [2,2,0] 

rSl =cSl -wNs> = 0 - [ 0 , 2 , 2 ] 

= - 3 < 0. 

= - 2 < 0. 

= - 2 < 0 . 

Optimal. 

4. revised simplex with B = LU decomposition: 

Let XB = (si,X3,X2)T, XN = (x\,S2,sz)T. Then, B = 

triangular, L = I3. Solve BXB — bhy back substitution. 

X2 = 2, x3 = 10, si = 8 — X2 = 6. 

Solve wB = CB by back substitution. 

i y i = 0 , W2 = 2, W3 = 2 — tui = 2. 

1 0 1 
0 1 0 
0 0 1 

is upper 

The rest is the same, S3 enters and s± leaves. 
0 0 1 " 
0 1 0 

-10 1 
New basis is B = 

"00 r 
0 1 0 
100 

0 0 1 " 
010 

- 1 0 1 
= 

"-10 r 
0 1 0 
0 0 1 

PB = LU & 
1 

Solve BxB - Pb= (2,10, 8)T by substitution. 

x2 = 2, £3 = 10, s3 = x2 - 2 = 6. 

Solve wB = PcB = (2 ,2 ,0) r by substitution. 

wi = 0, w2 = 2, w3 = 2 - wi = 2. 

The rest is the same. 

= hU. 
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5. revised simplex with B = QR decomposition: 

Let XB = (si,x3,x2)
T, XN = (xi,s2,s3)

T. Then, B 
1 0 1 
0 1 0 
0 0 1 

is upper 

triangular, Q = I3. The rest is the same as above, s3 enters and si leaves. 

B = 
0 0 1 ' 
0 1 0 

- 1 0 1 
= 

" 0 0 1' 
0 1 0 

- 1 0 0 

" 1 0 - 1 " 
0 1 0 
0 0 1 

= QR. 

In order to solve BxB = QRxB = b = (8,10,2) r = Q(RxB) = Qb', 

b'3 = 8, b'2 = 10, &i = - 2 =*• x2 = 8, x3 = 0, s3 = x2 - 2 = 6. 

In order to solve wB = c^, first solve wQR — cB = w'R. 

w[ - 0, w'2 = 2, w3 = 2 + wi = 2. 

Then, solve wQ = w' 

W3 = 0 , w2 = 2, wi = 2. 

The rest is the same. 

c) 
(D): 

Min w =8yi + I0y2 - 2y3 

s.t. 

2?/i > 1 

2/1 - 2/3 > 2 

2/2 > 2 

2/1,2/2,2/3 > 0. 

See Figure S.12. 

8.2 The second constraint is redundant whose twice is exactly the last con­
straint plus the nonnegativity of x\. Then, 

A = 
Xi X2 X3 Si S3 

2 - 1 - 1 - 1 0 
1 - 2 2 0 - 1 

a) The bases are 
Bi = {xi,x2}, B2 = {xi,x3}, B3 = {xi,«i}, B4 = {xi ,s 3}, B5 = {x2,x3}, 
B6 = {x2, Si}, B7 = {x2, s3}, B8 = {x3, s i} , B9 = {x3, s3}, Bw = {si, s3}. 

All bases except B2,B3 yield infeasible solutions since they do not satisfy 
the nonnegativity constraints. Thus, (xi,x2,x3, Si,s3)

T = (2 ,0 ,1 ,0 ,0) r from 
B2, and (xi,x2,x3,S!, s3)

T = (4,0,0, 5, 0)T from B3. 
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b) 
Method 1: 

At (2,0,1,0,0)T , we have 

B~]N = 
x2 s i .S3 

_ i —2 _ i 
5 5 5 

_ 3 1 _ 2 
5 5 5 

, B - ^ : 

X\ - 5^2 = 2 

If x2 enters 23 - | x 2 = 1 
x2 > 0 

,T2 = (9 => r = (2 + §0,0,1 + f 0,0,0)T is 

feasible for 9 > 0. Thus, r1 = ( | , l , f , 0 , 0 ) T is an unboundedness direction 
and hence an extreme ray. 

xi - ±s3 = 2 \ 
If s3 enters X3 - |,S;3 = i \ -» s3 = 0 =» r = (2 + ±0,0,1 + |0 ,O,0) r 

s3 > 0 J 
is feasible for 0 > 0. Thus, r2 = (±,0, f, 0,1)T is another unboundedness 
direction and hence an extreme ray. 

At (4,0,0,5,0)7\ we have 

B-lN 
x2 x3 s3 

- 3 2 - 1 
- 3 5 - 2 

B~lb-

x'l - 2x2 = 4 I 
If x2 enters .si - 3x2 --= 5 > <-+ x2 = 0 => r = (4 + 2(9,0, 0,5 + 30, O)7' is 

x2 > 0 I 
feasible for 0 > 0. Thus. (2,1,0,3,0) is an unboundedness direction 
and hence an extreme ray. 

Xi - S3 = 4 ~) 

If .s3 enters sx - 2s3 = 5 \ <-> s3 = 0 => r = (4 + 0,0,0, 2(2, 0 ) r is feasible 
•S3 > 0 J 

for 0 > 0. Thus, r4 = (1,0,0,2,1)T is another unboundedness direction and 
hence an extreme ray. 

Method 2: 
Try to find some nonnegative vectors in N{A). 

r 
0<rl =(l,l,l,0,o\ eAf(A). 

Q , 0 , ^ , 0 , 1 ) eAf(A). 0 < r 2 

6><r3 = (2,l,0,3,0) rGAA(yl). 

0<r4 = (1,0,0,2, l ) T e / / (>* ) • 
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So, they are rays. Since every pair of the above vectors have zeros in different 
places, we cannot express one ray as a linear combination of the others, they 
are extreme rays. 

c) 

1. Xi + X2 + £ 3 : 
c1 = ( l , l , l , 0 , 0 ) T = > 

( (cl)Trl = f + l + f + 0 + 0 = ^ > 0 < - ) - unbounded 

(c1) 1\T„2 f + o + f + o- 0 I > 0 "-> unbounded 
( c i )T r 3 = 2 + l + 0 + 0 + 0 = 3 > 0 - - » unbounded 

_ ( c i )T r 4 = 1 + 0 + o + 0 + 0 = l > 0 < - > unbounded 

Thus, there is no finite solution. 
2. —2xi — X2 — 3x3: 

c^ = ( - 2 , - l , - 3 , 0 , 0 ) J =• 

( ( c 2)T r i : = : _ | _ 1 _ 9 + o + 0 = - f ^ O - > bounded 

(c2) ,2\T_2 _ - l - o - i + o- 0 = - | ^ 0 a b o u n d e d 
-5 i> 0 °-> bounded (c2)T r3 = _ 4 _ 1 + 0 + o + 0 

(c2)Tr4 = - 2 + 0 + 0 + 0 + 0 = - 2 ^ 0 -->• bounded 

Thus, there is finite solution. 

3. -x\ - 2^2 + 2a;3: 
c3 = ( - l , - 2 , 2 , 0 , 0 ) T ^ 

( {c
z)Trl = - § - 2 + § + 0 + 0 = - § ^ 0 < - + bounded 

(c3)Tr2 = - | + 0 + | + 0 + 0 = | > 0 ^ unbounded 
(c3JT r3 = _ 2 _ 2 + 0 + 0 + 0 = - 4 ^ 0 ' - > bounded 

[ ( c
3 ) T r 4 = - 1 + 0 + 0 + 0 + 0 = - 1 ^ 0 ^ unbounded 

Thus, there is no finite solution, 

d) xi = 6, x2 = 1, x3 = \ Si = ±5 
*i — 2 ' 

«3 = 1 

r 6n 

1 
1 

J 
2 
i_ 

= a 

~2 
0 
1 
0 
0 

4 
0 
0 
5 
0 

+ A«i 

4 
5 
1 
3 
5 0 
0 

+ M2 

i 
5 
0 
2 
5 0 
1 

+ /̂ 3 

2 
1 
0 
3 
0 

+ M4 

1 
0 
0 
2 
1 

( l - « ) 

a,Mi)M2.M3,A«4 > 0 

We have 5 unknowns and 5 equations. The solution is 
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6' 
1 

} 
4 

i 

i 
~ 2 

2 
0 
1 
0 
0 

1 
+ 2 

4 
0 
0 
5 
0 

+ 0 

4 
5 
1 
3 

0 
0 

+ 0 

1 
5 
0 
2 
5 
0 
1 

+ 1 

2 
1 
0 
3 
0 

+ 1 

1 
0 
0 
2 
1 

convex combination of 
extreme points 

canonical combination of 
extreme rays 

1. 
\xi 

X\ 1 

X3J0 
- z | 0 

X2 X3 

-1 0 
- I 1 
4 0 

«1 «3 

2 1 
S 5 

1 2 
5 5 

0 1 

RHS1 

2 

1 

- 4 

S _ 1 ( 6 - z l 6 ) 
2 1" 
5 5 
1 2 

L 5 5 J 

( 

\ 

3 
4 

3 
1 

) - 2 
1 

7"" 
5 
1 

L 5 J 

" 3 " 
5 
6 

I b J 

The values of basic variables will change but not the optimal basis. 
3. The solution above is 

problem! 
,0,1) which satisfies the new constraint, no 

8.3 a) 

1. B = {si,52,33} -
bounds and cjj = 

> B = I,cB 

(2,3,1,4). 
6, J\f — {xi,X2,xs,X4} at their lower 

xB =B~1b-B-lNx N 

[30] 
13 
20 

-
[ 1 2 3 5 ] 

1 1 0 0 
0 0 3 4 

"1" 
0 
3 
0 

30 
13 
20 

-
10 
1 
9 

= 

20 
12 
11 

= 
Sl 

«2 

S3 

Z = Cg'xB + cJjXN = 2 • 0 + 3 + 0 = 5. 

cN — CgB~ N — (2,3,1,4). Then, Bland's rule (lexicographical order) 
marks the first variable. Since the reduced cost of #1 is positive and Xi is 
at its lower bound; as x\ is increased, so is z. Hence, x± enters. 
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0 
0 
0 

< 
Si 

«2 

S3 

= 

20 
12 
11 

-
1 
1 
0 

a < 6 — 1 = 5(bounds of x\) 

=>a = min{20,12,5} = 5. 

xi leaves immediately at its upper bound, xi = 6. 
2. B = I,cB = T (2,3,1,4), xT

B = (15,7,11) z = 12 + 0 + 3 + 0 = 15, 
CN ~ CgB N = (2, 3,1,4). Then, Bland's rule marks the second variable. 
Since the reduced cost of x2 is positive and x2 is at its lower bound; as x2 

is increased, so is z. Hence, x2 enters. 

0 
0 
0 

< 
Si 

Si 

S3 

= 

15 
7 

11 
-

2 
1 
0 

a < 10 - 0 = 10(bounds of x2) 

=> a = mini —-,7,10 > = 7. 

Thus, S2 leaves. 
3. 

B= {si,x2,s3} =4> B -
1 2 0 
0 10 
0 0 1 

B' 
"1 
0 
0 

-2 0" 
10 
0 1 

XB = 

Si 

X2 

. S 3 . 

= 
"1 - 2 0" 
0 10 
0 0 1 

"301 
13 
20 

-
"1 - 2 0 " 
0 10 
0 0 1 

" 1 0 3 5 " 
1 1 0 0 
0 0 3 4 

"6" 
0 
3 
0 

4 
13 
20 

2 = (0,3,0) 

- 1 - 2 3 5 ' 
1 1 0 0 
0 0 3 4 

CO
 

O
 

C
O

 
O

 

4 
13 
20 

— 
3 
6 
9 

= 

1 
7 

11 

1 
7 

11 
+ (2,0,1,4) = 21 + (12 + 3) = 36. 

cT
N-cT

BB~lN = (2,0,1,4) - ( 0 , 3 , 0 ) 
-2 3 5 
1 0 0 
0 3 4 

= (2 ,0 ,1 ,4) - (3 ,3 ,0 ,0) = ( - 1 , - 3 , 1 , 4 ) , 
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where Af = {xi,si,X3,X4}. Then, Bland's rule (lexicographical order) 
marks the first variable. Since the reduced cost of xi is negative and xi is 
at its upper bound; as X\ is decreased, z is increased. Hence, X\ enters. 

0 
0 
0 

< 
Si 

x2 

«3 

= 

1 
7 

11 
-

- 1 
1 
0 

a < 
0 0 

10 
CO 

a < 6 — 1 = 5(bounds of x\) 

=>a = m i n { l , 1 0 - 7 , 5 } = 1. 

Thus, s\ leaves. 
4. 

B = {__,__, s3} => B = 
1 20 
1 10 
0 0 1 

=*B~l = 
- 1 2 0 

1 - 1 0 
0 0 1 

xB = 

Xi 

x2 

S3 

-1 2 0" 
1 - 1 0 
0 0 1 

'30 ' 
13 
20 

-
- 1 2 0" 

1 - 1 0 
0 0 1 

" 1 0 3 5 ] 
0 1 0 0 
0 0 3 4 

O
 

O
 

C
O

 
O

 

- 4 
17 
20 

1 2 - 3 - 5 " 
1 - 1 3 5 
0 0 3 4 

"0" 
0 
3 
0 

— 
- 4 
17 
20 

-
- 9 

9 
9 

= 
5 
8 

11 

z = (2,3,0) 
5 
8 

11 
(0,0,1,4) (10 + 24) + 3 = 37. 

c ; -4r 1 iV=(0 ,0 , l , 4 ) - (2 ,3 ,0 ) 
-1 2 - 3 - 5 
1 - 1 3 5 
0 0 3 4 

= (0,0,1,4) - (1,1,3,5) = ( - 1 , - 1 , - 2 , - 1 ) , 

where Af = {s\, s2,xz,Xi). All of the reduced costs are negative for all 
the nonbasic variables that all are at their lower bounds. Hence, x* = 
(xi,X2,X3,X4)T = (5,8,3,0)T is the optimum solution, where z* = 37. 

b)(P): 
max 2xi + 3x2 + x$ + 4x4 

s.t. 

xi + 2x2 + 3x3 + 5x4 < 30 (j/i) 

xi+x2 < 13 (y2) 
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3x 3 + x 4 < 2 0 (2/3) 

-xi < - 1 (2/4) 

x\ < 6 (1/5) 

£2 < 10 (l/e) 

-x3 < - 3 (2/T) 

X3 < 9 (j/8) 

x 4 < 5 (2/9) 

X i , x 2 , x 3 , x 4 > 0 

(D): 

min302/i + 13t/2 + 2O2/3 - 2/4 + 62/5 + Kfye - 32/7 + 92/8 + 5?/9 

s.t. 
2/i + 2/2 - 2/4 + 2/5 > 2 (xi) 

22/i + 2/2 + 2/6 > 3 (x2) 

3i/i + 3y2 - 2/7 + 2/8 > 1 (x3) 

52/i + 2/3 + 2/9 > 4 (2:4) 

2/1,2/2,2/3,2/4,2/5,2/6,2/7,2/8,2/9 > 0 

The optimal primal solution, x* = (xi,X2,X3,X4)T = ( 5 , 8 , 3 , 0 ) T , satisfies 
constraints (2/1,2/2,2/7) a s binding, i.e. the corresponding slacks are zero. By 
complementary slackness, the dual variables 2/1,2/2,2/7 might be in the optimal 
dual basis. The other primal constraints have positive surplus values at the 
optimality, therefore 2/3 = 2/4 = Vt — 2/6 = V& = Vl = 0- Moreover, the 
reduced costs of the surplus variables at the optimal primal solution are both 
1 for s\ and S2, which are the optimal values of y\ = 2/2 = 1- Since the 
optimal primal basis contains the nonzero valued x\ and X2, the corresponding 
dual constraints are binding: 1 + 1 — 0 + 0 = 2-*/ and 2 + 1 + 0 = 3A/-
Furthermore, the optimal primal solution has nonbasic variables X3 and X4, 
then the corresponding dual surplus variables may be in the dual basis: 3 + 3 — 
2/7 + 0 > 1, and 5 + 0 + 0 > 4 = > the corresponding surplus, say t\ = 1 in the 
dual optimal basis. The optimal primal objective function value is z* = 37, 
which is equal to the optimal dual objective function value by the strong 
duality theorem. Then, 37 = 30(1) +13(1) + 20(0) - (0) + 6(0) +10(0) - 3j/J + 
9(0) + 5(0) + 0t\ + 0 ^ 0 ^ + 0tl, yielding 2/7 = 2. 
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Fig. S.13. A multi-commodity flow instance 

Let us take the instance given in Figure S.13, where K = 3 and 

V = {l,2,3,4,5,6,A,C,I,K,OP}, 

A - {a, b, c, d, e, f, g, h, i, j , k,l,m, n, o, p} . 

Let us fix all capacities at 10 and all positive supplies/demands at 10 with 
unit carrying costs. 

a) 

Cka'Eka 

k a 

S.t. 

/ J %ka / J %ka — U*ki 

aET(i) a£H(i) 

k 

•Kka — l^ka 

Xka > 0 (integer) 

In general, we have mK variables, m + nK constraints and mK simple 
bounds other than the nonnegativity constraints. In our example instance, we 
have 
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Min (xia + x2a + x3a) H 1- {xip + x2p + x3p) 

s.t. 

(xla + xig) - (xlb + xlf) = 0\ 
(x2a + X29) - (x2b + x2f) = 0 > node 1 
(X3a + XZg) - (x3b + X3f) = 0 J 

(zip) - (xio) = 10 
(x2p) - {x2o) = —10 ^ node OP 

(x3p) - (x3o) = 0 

Xla + X2a + X3a < 10 

b) 

xip + x2p + x3p < 10 

xia,--- ,x3p>0 (integer) 

Min ]T Y Ckrfp 
k pevk 

s.t. 

Y fp = D<< 
Pf=Vk 

Y Y ^fr ^ U* 
k P£Vk 

fp < V-P 
fP>0 (integer) 

We have (huge number of) K2m variables, m + K constraints and K1m 

simple bounds other than the nonnegativity constraints. The following sets 
the relation between the decision variables of the two formulations whose 
constraints are isomorphic: 

xak = Y taPfP' fp = m^YXak ( aPP l i e d recursively). 
P£Vk k 
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In our example instance, «i is node A and £3 is node / . If we enumerate 
paths (some of them is given in Figure S.14), we have 

Comm. P a t h # Pa th 

1 ai->fh^hh^mi->p 

5 a i - » & i - » d i - » / i - > j i - > / j h - > m H - » p 

6 a i -> / i -»<7h->-6h->-dh-> / i -» .7 ' i -> - / i> ->-mi ->p 

7 o 
8 o 
9 o 
10 o 
11 o 

M- n 
H-> n 

t-4 n 
i-> n 

>-»Zi->-ji->/ii->e>-->-c 

i->ei->'(ii->Zh->-jh->-5i->6i->c 

12 k 
13 A; 

1 4 jfe 

15 k 
16 
17 
18 k 
19 fc 

20 A; 

4 J 4 l i 4 r a ^ p i - > o ^ n 4 i 

i->-j^/i i->ei->c!H->TOH->ni-»z 
1—̂ - y 1—>• ^ 1—>• 6 1—>• rf i—>- m 1—> n *-> i 

Fig. S.14. Some paths in our multi-commodity flow instance 
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and the formulation will be 

Min 5/i + • • • + 10/20 

s.t. 

A + • • • + /e = 10 

h + • • • + hi = 10 

/12 + • • • + /20 = 10 

fl+f2 + f3 + U + h + f6< 10 

/ l + /2 + /3 + h + h + k + /l6 + /l9 + /20 < 10 

/ l , - - - ,/20 > 0 (integer) 

The first three constraints make the capacity constraints for arcs a, c, i 
and k redundant. 

c) 
Wa -B- ] P ^ i ap /p < t/a 

TTfc «-» ]T] fp= Dk 

P<EVk 

Then, the reduced cost of a path P will be 

^ ( C i a + Wa) -TTfc, 

and the current solution is optimal when 

min I YVc fca + wa) } > ^k, Vfc. 
°^k [ftp J P6V 

The above problem is equivalent to find the shortest path between s^ and t^ 
using arc costs Cfc0 + wa for each commodity k. The problem is decomposed 
into K single commodity shortest path problems with a dynamic objective 
function that favors paths with arcs that have not appeared many times in 
current paths. 

d) 

[fli f2i f3, f4, fei f6i f7, f8, f9, flQ, fll, fl2, fl3, fl4, flbi fl6i fl7i flS, fl9, f2o\ 
l^bi Sd-> ^e i &f 1 Sg-> ^ / i ; $j1 &fo $mi Sni ^01 Sp\* 
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c=[557789477994666888 10 10|000000000000] 

1 1 1 
000 
000 

1 1 1 
000 
000 

000 
1 1 1 
000 

000 
110 
001 

000 
000 
1 1 1 

00000 
00000 
m i l 

000 
000 
000 

0000 
0000 
0000 

00000 
00000 
00000 

010 
Oil 
001 
101 
000 
101 
000 
000 
1 1 1 
000 
000 
100 

01 1 
1 1 1 
000 
101 
101 
01 1 
01 1 
01 1 
1 1 1 
000 
000 
001 

001 
000 
1 10 
000 
001 
010 
01 1 
01 1 
000 
1 1 1 
1 1 1 
000 

010 
010 
110 
100 
110 
101 
1 1 1 
1 10 
000 
1 10 
1 10 
000 

100 
110 
010 
000 
100 
Oil 
1 1 1 
000 
000 
001 
000 
000 

00110 
01111 
0 100 1 
00000 
00110 
11001 
1 1 1 1 1 
00000 
1 1 1 1 1 
1 1 1 1 1 
100 11 
10011 

100 
010 
001 
000 
000 
000 
000 
000 
000 
000 
000 
000 

0000 
0000 
0000 
1000 
0100 
0010 
0001 
0000 
0000 
0000 
0000 
0000 

00000 
00000 
00000 
00000 
00000 
00000 
00000 
10000 
01000 
00100 
00010 
00001 

Fig. S.15. Starting bfs solution for our multi-commodity flow instance: repeated 
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B, = 

100 
010 
001 
001 
001 
010 
100 
001 
100 
00 1 
000 
100 
010 
010 
100 

000 
000 
000 
100 
010 
001 
000 
000 
000 
000 
000 
000 
000 
000 
000 

000 
000 
000 
000 
000 
000 
100 
0 10 
00 1 
000 
000 
000 
000 
000 
000 

000 
000 
000 
000 
000 
000 
000 
000 
000 
100 
0 10 
001 
000 
000 
000 

000 
000 
000 
000 
000 
000 
000 
000 
000 
000 
000 
000 
100 
010 
00 1 

c^ = [5 4600000000000 0] 

[5,4,6|0]. 2/i =CTB1
BI l = [Aw] 

Then, the lengths of arcs are c&a + wa = 1 + 0 = 1, V arcs. 
For commodity one, the minimum shortest path (P2 : a 4 6 4 d 4 

m\-$ p) other than Pi has length 5 which is equal to the corresponding dual 
variable 7Ti = 5. For commodity two, the minimum shortest path has length 6 
which is strictly greater than the corresponding dual variable n2 = 4. However, 
P12 : k i->- j i-t h i-+ i has length 4 < 6 = ^3! Thus, /12 enters to the basis 
with the updated column 

{B-lA12)T = [ 0 0 1 - 1 - 1 0 0 - 1 1 0 0 0 0 0 0 ] 

and the updated RHS is 

X Bl = (Bllb)T =[fl h / l 3 H Sd Se Sf Sg Sh Sj Si Sm Sn S0 Sp] 

XT
BY = (B^bf = [10 10 10 0 0 0 0 0 0 0 10 0 0 0 0] , 

therefore the slack variable corresponding to arc h, s/,, leaves. 
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Bn 

1 00 
0 10 
00 1 
001 
001 
010 
100 
00 1 
100 
001 
000 
100 
010 
010 
100 

000 
000 
000 
100 
010 
00 1 
000 
000 
000 
000 
000 
000 
000 
000 
000 

000 
000 
001 
000 
000 
000 
100 
010 
001 
00 1 
000 
000 
000 
000 
000 

000 
000 
000 
000 
000 
000 
000 
000 
000 
100 
0 10 
001 
000 
000 
000 

000 
000 
000 
000 
000 
000 
000 
000 
000 
000 
000 
000 
100 
010 
001 

cl2 = [5 4 6 0 0 0 0 0 4 0 0 0 0 0 0] 

2/2 = [7 4 6|0 0 0 0 0 - 2 0 0 0 0 0 0] 

Then, the lengths of arcs are Cka + u>0 = 1+0 = 1, V arcs except arc h, whose 
length is 1 - 2 = - 1 . 

For commodity one, the minimum shortest path P2 : a^b^d^m^-p 
has length 5, which is strictly less than the corresponding dual variable wi = 7. 
Thus, fi enters to the basis with the updated column 

{B^lA2)T = [ 1 0 1 0 0 0 - 1 - 1 - 1 0 0 0 0 0 - 1 ] 

and the updated RHS is 

X B 2
 = (B2lb)T = [fl h / l3 Sb Sd Se Sf Sg /12 Sj Si Sm Sn S0 Sp] 

xT
B2 = (B^bf = [10 10 10 0 0 0 0 0 0 0 10 0 0 0 0] ; 

therefore, either /x or fa leaves. We choose / 1 ! 
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Ba 

100 
0 10 
00 1 
101 
101 
010 
000 
001 
000 
001 
000 
100 
010 
010 
000 

000 
000 
000 
100 
0 10 
001 
000 
000 
000 
000 
000 
000 
000 
000 
000 

0000 
0000 
0010 
0000 
0000 
0000 
1000 
0 100 
0010 
00 11 
0000 
0000 
0000 
0000 
0000 

00000 
00000 
00000 
00000 
00000 
00000 
00000 
00000 
00000 
00000 
10000 
01000 
00100 
00010 
00001 

cl3 = [5 4600000400000 0] 

2/3 = [5 4 6J0 0 0 0 0 - 2 0 0 0 0 0 0 ] 

Then, the lengths of arcs are Cka + wa = 1 + 0 = 1, V arcs except arc h, whose 
length is 1 — 2 = —1. For all the three commodities, the minimum shortest 
distances between the source and the sink nodes are greater and equal to the 
corresponding dual variables. Therefore, the current solution given below is 
optimal. 

X^3 = (B3lb)T = [h h / l 3 Sb Sd Se Sf Sg / l 2 Sj Si Sm Sn S0 Sp] 

xl3 = (B^bf = [ 10 10 0 0 0 0 10 10 10 0 10 0 0 0 10] 

The optimum solution is depicted in Figure S.16. 

e) When the number of variables (columns of A) is huge, the following ques­
tion is asked: Can one generate column A* by some oracle that can answer 
the question, Does there exist a column with with reduced cost < 0? If so, 
the oracle returns one. So, the sketch of so called "A Column Generation 
Algorithm" is given below: 

SI. Solve LP(J): 

mm 

for some J C I — { 1 , . . . , n). 
S2. Using dual variables 7r that are optimal for LP(J), ask the oracle if there 

exists j 0 J such that CjirA^ < 0. If so, add it to J and perform pivot(s) 
to solve new LP(J); Go back SI. If not, we have the optimal solution to 
LP over all columns. 
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Fig. S.16. The optimum solution for our multi-commodity flow instance 

In a sense, we partition the optimization problem into two levels: Main / 
Subproblem, or Master / Slave, or Superior / Inferior; where the subproblem 
has a structure that can be exploited easily. The main problem generates dual 
variables and the subproblem generates new primal variables; and the loop 
stops when primal-dual conditions are satisfied. 

The dual to the above column generation approach gives rise to the sep­
aration problem, where we are about to solve LP with large number of rows 
(equations). We first solve over restricted subset of rows (analogous to solving 
over subset of columns) and ask oracle if other rows are satisfied. If so, we 
are done; if not, we ask the oracle to return a separating hyperplane that 
has current rows satisfied in one half space and a violation in the other. This 
approach leads to Bender's decomposition. 
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Problems of Chapter 9 

9.1 Let a = inf A Then, Vx e A, a < x «=> -x < -a. Hence, (-A) in 
bounded above. Also, —a is an upper bound of (—A). So, 

sup(-.A) < -a <=> - sup(--A) > a = inf A. 

Conversely, let /? = sup(—.4). Then, Vx G A, — x < (3 •£> x > —/?. Hence, 
—/? is a lower bound of A. So, 

inf A > - /J — - sup(- .A) . 

Thus, inf A = - s u p ( - A ) . 

9.2 
a) If m = 0, (bm)l'n = (60)1/™ = l 1 /" = 1 (see (c)). 

(b---b)1/n b1/n---b1/n 

If m > 0, (ft"1)1/" = < ^ -—' = ' » ' = (b^n)m. 
m times m times 

If m < 0, let m' = - m > 0. Then, 
(vm\l/n _ / i . -m' \ l /n _ / 1 \ l /n _ 1 _ 1 _ 1 _ (ul/n\m 
\ U I — \ U I — Vhm' ) — (hm'\l/n ~ /U/ t i \m ' — (hl/n)-m ~ (" ) • 

b) If TO — 0, all terms are 1. 
n 

bm •••bm , " . 

If m > 0, (bm)n = v ' = b...b...b...b = 6 m n . 

m m 
Similarly, (bm)n = bmn. 
If TO < 0, let TO' = -TO > 0. Then, 
(i.m\n (u—m'\n / 1 \n 1 1 1 umn 
\ U ) — \ U ) — \~g^7) — (fcm')n — bm'n ~ (,-(mn) ~ " 

c) Let l1/™ = x where x >- 0. Then, xn — 1. Also, l1/™ = 1. Since the positive 
nth root of 1 is unique, we get x = 1. 

d) Let 61/™? = a, and (61/")!/? = p where a,/3 X 0. 
Then, b = anq and 61/" = /?« => 6 = (/39)n = /3"n = £"9 = anq. Since the 
positive nqth root of 6 is unique, we get a = /3, i.e. bl/nq = (61/™)1/9. Similarly, 
frl/ng _ /bl/q\l/n_ 

e) If p = 0, then W+q = b0+q = W = b°W = WW. Similarly, if q = 0, 
6?+9 = bPW. So assume p ^ 0, g ̂  0. 
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b---b b---bb---b 
Case 1 : p > 0, q > 0, W+q = ^~" = ^ - v - ' ^ - ' = ^69; 

P + <? p q 
Case 2 : p < 0, q > 0, Let p' = - p > 0. So, lf+q = b-P'+q; 

' Case 2a: p' = q ^ &-"'+« = 6° = l = j£ = ^ = fcPfc*. 

,, 6 • • • b b- • -b W ,„ 
Case 26 : p' < q =• b~" +q = s ~ ^ - ' = ^ ^ -r^-r = &= WW. 

q-p q-p &"3 
P' 

_ Case 2c : p' > a =» b-r>'+q = 6"CP'-«) = ^ = ^ = £ = *W. 
Case 3 : p > 0, q < 0, similar to Case 2; 

I Case 4 : p < 0, a < 0, then, p + a < 0 => &»+« = p ^ , = ^ ^ = WW. 

9.3 
a) Let a = (bm)lln, (3 = (&P)1/9 where a,/3 > 0. 

' Case 1 : m — 0, => p = 0. So, a = /3 = 1. 
Case 2 : m > 0, =» p > 0. a = ft™)1/" =>. a » = ft™ =-, ft = ( a n ) £ . 

Similarly, 6 = (/3«)* =>• 6mP = a"? = /?«m. 
Thus, np = qm=> anp = /3 n p . 
Since the positive (np)th root is unique, a = 0. 

Case 3 : m < 0, =>• p < 0. Let m' = —m, p' = —p => m',p' > O.Case 2! 
(um\l/n _ / L - m ' \ l / n _ / 1 U / n _ 1 _ 

= 1 = (bp)1/g 

(b-p'y/i ^ > 

So, 6r, r £ Q are well defined. 
b) Let r = ^ , s = | where n,g > 0. 

br+s _ (pmq+np^i-q _ ^mg^p^ _ ^ m q ^ ^ n p ^ _ 

= ((bm)")^ ((W)n)^ = (((bm)q)1^)^n(((bp)n)^n)1^q = 

{bm)1ln{bp)l/q = brbs. 

c) Let 6* e B{r). Then, < e Q , t < r ^ r - t > 0 , r - * e Q . Since 6 > 1 and 
r — t is a nonnegative rational number, we get br~l > 1. 

Claim: Let & > 1, s e Q+. 6s > 1. 
Proof: If s = 0 =>• 6s = b° = 1. Assume s > 0. Then, s = E where p, 0 > 0. 

ftS = (&P)l/«. 6 > 1 = i . a = 6 P > 1 = > . 6 » = a l / « > L 

Hence, 1 > 6 r - ' = Wb'1 = ^ =• 6* < br. That is V6' £ B(r), b* < br; i.e. 
br is an upper bound for B(r). Then, sup(£(r)) < br. If r € Q, br £ B(r). So, 
br < sup(5(r)). Thus, br = sup(j5(r)). 

Now, we can safely define bx = sup(B(x)), Vx £ R. 

d) Fix 6r arbitrary in -B(a;) and fix 6s arbitrary in B(y): r, s £ Q, r < x, s < y. 
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Then, r + s G Q, r + s < x + y =$• br+s = bsbr G B(x + y) =̂> brbs < bx+y. 

Keep s fixed. 6r < ^ - , V6r € -B(x). Thus, ^ j - is an upper bound for B(x). 

Hence, 6* = sup(£(x)) < ^ <£> bs < ^ . Similarly, 6r < ^ . 

Now vary s. W € -B(y), &s < ^js~- Thus, ^ j - is an upper bound for 
B(y). 

by = sup{B(y)) < h^- => bxby < bx+y. 
bx 

Claim: bxby > bx+y. 
Proof: Suppose not. bxby < bx+y for some x, y 6 K. 3a G Q C K 3 6x6y < 

a < 6a!+!/, by Archimedean property, b * , ^ > 0 =>• a > 0. Since a < 6x+!/, 
a is NOT an upper bound of B(x + y). So, 3br G B(x + y) 3 a > br. Let 
t = £ > 1. If n > f f i (see problem 9.4-c)) 61 / n < i = £ =>• a < fc^-1/" = 
^r-i/n ^rue for rationals). Also r — 1/n < r < x + y. So, r — A — x < y. 
3v€<Q>3r-^-x<v<y. Then, v < y and r - ^ -1> < x. Thus, 6W € -B(y) 
and 6 r - i - " 6 B(x). That is, bv < by and 

br-*-v < bx «• 6 r - " = br~"-vbv < bxby <a< br~". 

We have a contradiction from the first and the last terms of the above relation. 

9.4 
a) bn-l = (b-l)(bn-1+bn-2 + --- + b+l) > ( 6 - 1)(1H hi ) > (b-l)n. 

b) Let t = b1/". Apply part a) for t: tn - 1 > n(t - 1) => b - 1 > n{bxln - 1). 

c ) £ f A < n = > ^ < t - l = > ^ ± + l < i . We have ^=i > blln - 1. Thus, 

bl'n < t. 

d) Let t = $• > 1. Use part c), 61/" < t = $• =4> fc^+V" = fc^1/" < y if 

e) y > 0 => t = ^ > 1. If n > bjE$, use c), 61/" < t = % => y < •& = 
lAV — l/n 

f) 
Claim: A is bounded above. 
Proof: If not, V/3 > 0, 3w G A 3 w > j3. In particular, Vn G N, 3w G 

A 9 w > n. Hence, Vn G N, 3w G A 3 6" < 6W < y, i.e. Vn G N, 6" < y. 
If 0 < y < 1, we have a Contradiction since bn > 1. Assume y > 1, use 
(c) \fn 3 n > fEj, V1/n < b => y < bn. Hence, Vn 3 n > | 5 j we have 
bn <y <bn, Contradiction. 

Let x = sup(yl) = sup {w G R : bw -< y). 
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Claim: bx = y. 
Proof: If not, bx < y or bx > y. If bx < y, by (d) Vn G N, bx+lln < 

y, x + 1/n G A. Contradiction to the upper bound x > x + 1/n. If bx > y, 
then Claim: if u < x, u G A. Proof: u < x => u is nor an upper bound of A. 
3weA3u<w=>w-u>0^> bw~u > 1 =>• | ^ > 1 =*- bw > bu. So, u G A. 
y < bx => use (e) Vn G N 9 y < bx~1/n; so x + 1/n g" A. Thus, x < x - 1/n 
(u < x =$> u 6 A), Contradiction. 

Hence, bx = y. 

g) Let b > 1, y > 0 be fixed. Suppose x ^ x' B bx — y = bx . 
Without loss of generality, we may assume that , x < x' =$• x' — x > 0 => 
frx-x _^ fox > fjx ^ Contradiction. 

9.5 
a) Vz G F, z2 y 0 (if z = 0 => z2 = 0. If z y 0 => z2 y 0). Assume that 
x ^ 0 =$> x2 y 0. If y2 >: 0 =4> a;2 + y2 y 0, Contradiction. So x = 0, then 
x2 + y2 = 0 + y2 = 0 => y = 0. 

b) Trivial by induction. 

9.6 Note that "a ~ 6 if a — 6 is divisible by TO" is different from saying ' < 2 ^ 
is an integer", since the above one is defined for all fixed m G Z including 
m = 0, but the latter one is defined for all TO jt 0. 

a) a ~ a, Va G Z ( take k = 0). Then, ~ is reflexive. 
a ~ 6 = 4 > 3 A : G Z 9 a — 6 = mk. Then, b — a = m(—k) where — k G Z. Thus, 
b ~ a, yielding that ~ is symmetric. 
a ~ & and 6 ~ c => 3fci,/c2 € Z 9 a — b = k\m, b — c = k^m. Then, 
a — c — (fci + k2)m where &i + fo G Z. Hence, a ~ c, meaning that ~ is 
transitive. 

Thus, ~ is an equivalence relation. 

b) Case 1: TO = 0. Then, a ~ b o- a = b. So, [a] = {o}, and the number of 
equivalence classes is 00. 

Case 2: TO ̂  0. Then, a ~ 6 o 3 f c G Z 3 a = 6 + TO/C. Hence, 

[a] = {a, a + m, a — m, a + 2m, a — 2m, • • • } , 

and the number of distinct equivalence classes is \m\. 

9.7 
a) x ~ y =>• a; G [0,1] and ?/ G [0,1] =>• y ~ x (i.e. symmetric). 
a; ~ y and y ~ z =$• x G [0,1] and y G [0,1] and z G [0,1] => x ~ 2: (i.e. 
transitive). 
If x ^ [0,1], then x ~ x does not hold. For reflexibility we want x ~ x to hold 
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Vx € R. Hence, ~ is not reflexive. 

b) The statement 

x ~ y =>• y ~ x, x ~ y and y ~ x => x ~ x; therefore, x ~ x, Vx € X 

starts with the following assumption: Vx € X, 3y 6 X 3 x ~ y. If ~ is 
symmetric and transitive and also has this additional property, then it is nec­
essarily reflexive. But if it does not have this property, then it is not reflexive. 

9.8 
a) We will make the proof by induction on n. If n = 1, X = X\ is countable by 
hypothesis. Assume that the proposition is true for n = k, i.e. X\ x • • • x Xk 
is countable. We will prove the proposition for n = k + 1, i.e. prove that 
X = Xi x • • • x Xk x Xk+i is countable. Let Y = X\ x • • • x Xk- Then, 
X = Y x Xk+i and Y is countable by the induction hypothesis. Then, the 
elements of Y and Xk+i can be listed as sequences Y = {y\,y2, • • •}> ^Oc+i = 
{xi,X2,. . .}. Now, for X = Y x Xk+i, we use Cantor's counting scheme and 
see that X is countable. 

b) Let X be countable. Then, X = {xi,X2,.. .}. Let A = {x2,X3,...}. Then, A 
is a proper subset of X and / : X \-> A defined by f(xn) = xn+i, n = 1,2,... 
is one-to-one and onto. Thus, every countable set is numerically equivalent to 
a proper subset of itself. 

c) If / : X H-> Y is onto, then 3g : Y H4 X 3 f o g = idy. Moreover, g is 
one-to-one. Let A — g(Y), then Ac X and g : Y H-> A is one-to-one and onto. 
So, A ~ Y. Since A C X and X is countable, A is either finite or countable. 
To see that A cannot be uncountable, we express X — {xi, X2,.. .}. If A is not 
finite, then A = {xi1,Xi2,...}, where in's are positive integers and in ^ im 

for n ^ m. Now, we define / : N »-» A by / (n) = Xjn. Then, / is one-to-one 
and onto. If A is finite, A ~ y =̂> Y" is finite; if A is countable, >1 ~ Y =*> Y 
is countable. Thus, Y is at most countable. 
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Problems of Chapter 10 

10.1 Fix x,y eM.k arbitrary. 

k k 

d2(x,y) = \^2{xi - Vi)2]1/2, di(x,y) = ^ |a?i - j / j | , 
»=i i= i 

doo{x,y) = max{|a;i - j/<|} = \XJ - % | . 
i 

di ~ doo-. 

doo(x,y) = \XJ -yj\ < ^2\xi -yi\ = di(x,y) => A = 1. 
»=i 

doo(x,y) = |£j — 3/j | > \xi -yi\, Vi = 1,2, . . . , /c 

=>• kdocix^) = k\xj - yj\ > ^ |xi - i/j| => B = k. 

[ ^ ( ^ y ) ] 2 = (XJ - yjf < ^2(xi - y{f => d^x.y) < d2{x,y) =>A = 1. 
»=i 

\2 [doo(x,y)]2 = (a:, -1/ ,) > \xt - yt\, Vi = 1,2, ...,fc 

=>• fc[doo(a;, 2 / ) ] 2 >M 2 (x ,2 / ) ] 2 ^S = Vfc. 

di ~ c^: c?i ~ ^oo and d2 ~ d<x> =>• <̂ i ~ ^2-

10.2 

Consider the discrete metric dtp, a) = < ' . ' on X. 

Br(p) = {p} ,Br\p} = X, Br(P) = {p} ? X. 

10.3 

(<=0 
Let 0 ^ A C X. A is both open and closed. Let B = Ac, B is also both 
open and closed. A U B = X. If A is closed then B is open, we have A (1B = 
A n B = 0. If B is closed then .4 is open, we have B n i = 4 n B = 0. Thus 
X is disconnected. 

(=*) 
X is disconnected. 3 4 ^ 0,3B ^ 0 B X = AU B and (An B) n (Af) B) = 
0 =» A n B = 0. Thus Ac = B ^ 0 =» A g X. 
i U B = I = > v 4 U B = I , . 4 n B = 0=^vl = (B)c, i.e. ^ is open. 
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AUB = X =>AUB = X, AC\B = %=>B = (A)c 

A and B are separated and A\J B = X => A = Bc 

B is closed. 

i.e. B is open. 
so A is closed. Similarly, 

10.4 
Let 

I 

us place the origin at the lower left corner of the PCB. Then, 
I | E i i i i i ,, 

A = 

l> = 

(T' = 

,/ = 

h i 

l 

\°~ 
b 

[6" 
Lu 

"8l 

3 

, B = 

, E = 

, H = 

, K = 

"1] 
4 

"Si 
t\ 

("fi 

[b 
"ql 

1 

, c = 

, F = 

, / = 

. L = 

[91 

2 

Ml 
4J 

"7] 
2 

"ql 

7 

Use /i norm: 
k 
A 
B 
C 
D 
E 
F 
G 
H 
I 
J 

K 
L 

A B 
0 3 
3 0 
2 3 
6 3 
8 5 
6 3 
6 9 
9 6 
7 8 
9 8 
8 11 

C D E F G H I J K L 
2 6 8 6 6 9 7 9 8 14 
3 3 5 3 9 6 8 8 11 11 
0 4 6 4 6 7 5 7 8 12 
4 0 2 4 10 5 9 9 12 8 
6 2 0 4 10 5 9 9 12 6 
4 4 4 0 6 3 5 5 8 8 
6 10 10 6 0 5 3 5 4 10 
7 5 5 3 5 0 4 4 7 5 
5 9 9 5 3 4 0 2 3 7 
7 9 9 5 5 4 2 0 3 5 
8 12 12 8 4 7 3 3 0 6 

14 11 12 8 6 8 10 5 7 5 6 0 

Nearest neighbor (in l\ metric): 

i n t C K ) B 4 D(D or F) H-> E i-» F H> H 

M- / ( / or J) H> J H->- if H-S- G »->• L h-> A 

Initial tour length is 54. See Figure S.17. 
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Fig. S.17. Nearest neighbor (in h metric): initial solution 

-6-

Delete (E, F) k, (L, A): gain=18-12 Improved Tour: Length is 48 

Fig. S.18. Nearest neighbor (in h metric): first improvement 

The gain values are tabulated below. See Figure S.18. 

GAIN 
(A,C) 
(C,B) 
(B,D) 
(D,E) 
(E,F) 
(F,H) 
(H,I) 
(I, J) 
(J,K) 
(K,G) 

(B,D) (D,E) (E,F) (F,H) (H,I) (I, J) (J,K) (K,G) (G,L) (L,A) 
- 2 - 8 - 6 - 8 

- 4 - 2 - 4 
- 2 - 2 

- 4 

- 8 -10 -12 
- 8 - 8 -12 
- 8 -12 -14 
- 8 -14 -16 
- 2 - 8 -10 

- 4 - 6 
0 

- 8 
-14 
-14 
-16 
-10 
- 6 
- 2 
- 2 

- 6 
- 4 2 
- 4 0 
- 4 0 
- 4 6 

2 0 
2 6 
4 0 
2 4 

6 

The maximum gain is 6, due to the deletion of (E, F) and (L, A). The situation 
after this step is illustrated in Figure S.19. 
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^ i s- ! 

-—§*•# 

, j»M 1 

\ 

* 
• * -

r 

te 

" j 

^ 

L 

-

f 

M_. 
' 

X 

Delete {I, J) & (G,L): gain=12~8 Improved Tour: Length is 44 

Fig. S.19. Nearest neighbor (in h metric): second improvement 

b) Use I2 norm: 

h 
A 
B 
C 
D 
E 
F 
G 
H 
I 
J 
K 
L 

A B C D E F G H I J K L 

0 3 \/2 \/26 \/40 VT8 \/26 \/4l A/37 \/53 8 10 
3 0 ^ V5 \/i3 3 y/41 ^ ViO V50 V73 V73 

V2 VE 0 4 \/26 \/8 V̂ O 5 5 \/37 \/50 \/74 
\/26 \/5 4 0 \/2 \/8 \/40 vT7 \/4T V45 \/74 \/50 
\/40vT3\/26 \/2 0 Vl0 \/58 \/l3 \/4l V i l \/72 6 
\/l8 3 v / S v / S v / l O O v / ^ O v / s y H v / r r v / s l v / S i 
V^6 \/4l V̂ O \/40 \/58 v 7 ^ 0 5 \/5 \/l3 v ^ v/58 
\/41\/26 5 VTf Vl3 VE 5 0 vTO >/8 5 \/l3 
\/37\/40 5 x/ilv'ilx/is VE Vw 0 V2 VE v ^ 
>/53 v^O \/37 V̂ 45 v̂ 41 V^7 Vl3 v^ "v^ 0 VE Vl7 

8 ^73 \/50 V74 \/72 \/34 VTO 5 \/E VE 0 6 
10 V73V74VE0 6 v/34 v ^ \/T3 %/29 VT7 6 \/0 

Nearest neighbor (in I2 metric): 

<-+I>-+ G{G or K)^K^L^-A 

Initial tour length is 38.3399. See Figure S.20. 
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Fig. S.20. Nearest neighbor (in £2 metric): initial solution 

The gain values are tabulated below. See Figure S.21 for the improvement. 

GAIN 
(A,C) 
(C,B) 
(B,D) 
(D,E) 
(E,F) 
(F,H) 
(H,I) 

(I, J) 
(J,K) 
(K,G) 

(B,D)(D,E)(E,F)(F,H)(H,I) 
-3.35 -7.37 

-3.96 
-4.58 -5.59 -8.24 
-2.70 -3.46 -7.01 
-1.04 -2.65 -6.74 

-2.78 -6.28 
-1.74 

(I, J) 
-9.45 
-8.76 
-9.82 

-10.28 
-5.43 
-3.64 

(J,K) (K,G)(G,L)(L,A) 
-6.90 -7.59 -9.19 
-6.93 -7.62 -7.38 0.63 
-9.06 -9.61 -7.38 -1.41 

-10.37 -11.12 -7.19 -1.98 
-5.48 -7.12 -5.15 2.92 
-4.13 -4.07 -1.20 0.00 
-1.70 -1.25 -0.29 1.94 

-1.27 -0.21 1.21 
-1.62 1.75 

-2.45 

J. j E 

Delete (E,F) k (L,A): gain=2.9196 Improved Tour: Length is 35.42026 

Fig. S.21. Nearest neighbor (in h metric): improvement 
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c) Use loo norm: 

UABCDEFGHIJKL 
0 3 1 
3 0 2 
1 2 0 
5 2 4 
6 3 5 
3 3 2 
5 5 4 
5 5 4 
6 6 5 
7 7 6 
8 8 7 
8 8 7 

5 
2 
4 
0 
1 
2 
6 
4 
5 
6 
7 
7 

6 
3 
5 
1 
0 
3 
7 
3 
5 
5 
6 
6 

3 
3 
2 
2 
3 
0 
4 
2 
3 
4 
5 
5 

5 
5 
4 
6 
7 
4 
0 
5 
2 
3 
3 
7 

5 
5 
4 
4 
3 
2 
5 
0 
3 
2 
4 
3 

6 7 8 8 
6 7 8 8 
5 6 7 7 
5 6 7 7 
5 5 6 6 
3 4 5 5 
2 3 3 7 
3 2 4 3 
0 1 2 5 
1 0 2 4 
2 2 0 6 
5 4 6 0 

Nearest neighbor (in loo metric): 

>-»/>-> G(G or K) K+ K .-> L H-> A 

Initial tour length is 33. See Figure S.22. 

Fig. S.22. Nearest neighbor (in lx metric): initial solution 
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The gain values are tabulated below. See Figure S.23 for the improvement. 

GAIN 
(AC) 
(C,B) 
(B,D) 
(D,E) 
(E,F) 
(F,H) 
(H,I) 
(I, J) 
(J,K) 
(K,G) 

(B,D) (D,E) (E,F) (F,H) (H,I) (I, J) (J,K) (K,G) (G,L) (L,A) 
- 4 - 8 - 4 - 4 - 8 -10 

- 4 - 3 - 3 - 7 - 9 
0 - 3 - 7 - 9 

- 2 - 6 - 9 
- 2 - 4 

- 4 

- 7 
- 6 
- 8 
- 9 
- 4 
- 6 
- 2 

- 8 
- 7 
- 7 
- 8 
- 6 
- 6 
- 2 
- 1 

- 8 
- 7 0 
- 7 - 3 
- 6 - 4 
- 2 2 

2 0 
0 0 
0 - 1 

- 1 0 
- 4 

Delete (E,F) & (L,A): gain=2 Improved Tour: Length is 31 

Fig. S.23. Nearest neighbor (in /oo metric): improvement 

d) 
Case 1: we need to complete the tour for the consecutive PCB's: 

Current situation (/i norm): Tour duration is 44 time units. 
Proposition 1 (l2 norm): Tour duration is 35.42026 time units. 
Proposition 2 (/<*, norm): Tour duration is 31 time units. 

Proposition 1 is economically feasible if (44 - 35.42026)./VCo > C\. Simi­
larly, proposition 2 is economically feasible if (44 - 31)NC0 > C2. 

Case 2: we may delete the most costly connection: 

For the odd numbered PCBs among 1 , . . . , N; 
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li norm: Li-tJi-tKi-tGi->Ii->Hi->Fi-+Ai-*Cy-*B*->Di-*E with 
length 38; 

l2 norm: f H C ^ / n J ^ i / ^ F ^ i ^ C ^ B i - y D ^ B ^ L with 
length 29.42026; 

loo norm: K^G^I^J^H^Ft-^A^C^B^D^fE^L with 
length 25. 

For the even numbered PCBs, we reverse the order as 

li norm: E*-*Di-+Bi->Ci->Ai-tFi->Hi->Ii->Gi-tKi-tJi-tL; 
l2 norm: L^tE\-^D^B^C^tA^F^H^J^I^G^K\ 
loo norm: Li-^Ei-^D^Bi-^Ci-^Ai-^Fi-^Hi-^J^Ih-^G^K. 

Current situation (li norm): Path duration is 38 time units. 
Proposition 1 (l2 norm): Path duration is 29.42026 time units. 
Proposition 2 (loo norm): Path duration is 25 time units. 

Proposition 1 is economically feasible if (38 - 29.42026)./VCo > C\. Simi­
larly, proposition 2 is economically feasible if (38 — 25)NC0 > C2. 

If 8.57974 < jfe- and 13 < jf^r, then we keep the existing robot arm con­
figuration. Otherwise, we select proposition 1 if 0.65998 > Q-\ select proposi­
tion 2 if 0.65998 < £L. 
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Problems of Chapter 11 

11.1 
a) (=>): Let e > 0 and XQ be given. Let b — /(xo) — e. Then, by assumption, 
the set B = {x £ X : f(x) > f(xo) — e} is open. Moreover, xo £ B since 
/ (x 0 ) > f(x0) - e. So, 36 > 0 3 Bs(x0) C B; that is, x £ Bs(x0) => x £ B => 
f(x) > f(x0) - e. 

(«=): Let b £ K be given. We will show that the set A = {x £ X : / (x) > b} 
is open. If A = 0, then A is open. Assume A ^ 0, show that every point of A 
is an interior point. Let XQ G A. Then, /(xo) > b. Let e = f(xo) — b. Then, 
by our assumption, 35 > 0 3 x € Bs(x0) =>• / (x) > / (x 0 ) - e = J ^ i € i 
Hence, BS(XQ) C A, that is a?o S inM. 

b) Similar as above. 

11.2 / is continuous and X is compact =>• / ( X ) = B is compact in y . 
q G / ( X ) = B — B since .B is compact, therefore closed. So, by q £ B — f{X), 
we have 3p € X B q = /(p) . Next, we will show that pn -* p. f : X <-+ B 
is continuous, one-to-one and onto. Since X is compact, f"1 : B H-> X is 
continuous. Moreover, f(pn),q £ J3 and /(p„) —> g. Then, 

f-Hf(Pn)\ , /-H9) 

11.3 Let the wire be the circle Cr = {(x, y) : x2 + 2/2 = r - 2}. For a = (x, y) G 
C r , let T(a) be the temperature at a and let / : Cr t-> K be such that 
/ ( a ) = T(a) — T(—a). Note that a and —a are diametrically opposite points. 
Then, T, and hence, / are continuous. 
Claim: 3a e Cr 3 f(a) = 0. 
Proof: Assume not, Ma G Cr, T(a) ^ T(-a). Define A = {a £ Cr : f(a) > 0}, 
B — {a £ Cr : f(a) < 0}. Then, A and B are both open in Cr. Why? (since 
they are the inverse images of the open sets (0, +oo) and (-co, 0) under the 
continuous function / . ) A n B ^ 0, because of the heated wire; AL)B = Cr, 
since we assumed Va G Cr, T(a) ^ T(—a); moreover, A / 0, there is at 
least one point (the point where heat is applied). Suppose not, then Cr = B, 
\/a G Cr, / ( a ) < 0 <£> T(a) < T(-a). But, then T ( - a ) < T(-(-a)) = T(a), 
Contradiction. Hence A ^ 0. Similarly, with the same argument, 5 ^ 0 , think 
of the opposite point to where heat is applied. So, A is nonempty, proper 
(Ac = B =fi 0) subset of Cr which is both open and closed (Ac is open). Thus, 
Cr is disconnected. Contradiction. 

Another way of proving the statement is the following: Let x £ A and 
y £ B, and we know that / is continuous as well as / (x) > 0 > f(y). Apply 
the intermediate value theorem (Corollary 11.4.2) to conclude that 3a £ Cr 3 
/ ( a ) = 0. 
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P r o b l e m s of C h a p t e r 12 

12.1 Use the Mean Value Theorem: h : R >—» R is nondecreasing if h'(x) > 0. 

y<x=> h(x) - h{y) = ti{c)(x - y) > 0 => /i(z) > /i(y). 

.9%T) = xf'(x)
x;

fix\ f(x) = f(x) - /(0) = f'(c)x < xf'(x), 0<c<x. 
So g'(x) > 0, V.T =4- g is nondecreasing. 

12.2 Use the Mean Value Theorem: fi(y) - fi(x) = //(cj)(y - x). / ' = 0 =» 
/.; = 0, Vi; thus /,(y) = /',;(x') which means / is constant. 

12.3 | | ( 0 , 0 ) = cos(0 + 2-0) = l, §£(0,0) = 2cos(0 + 2-0) = 2 ; 

0 ( 0 , 0 ) = 0, 0 ( 0 , 0 ) = 0, 0 ( 0 , 0 ) = 0 and jg£(0 ,0) = 0. 

f(x,y)=x + 2y + R2(x,y)(0,Q), 

where j g f # ( 0 , 0 ) ^ 0 as {x,y) -* (0,0). 

12.4 
a) Let us take the first order Taylor's approximation for any nonzero direction 
h, 

f(x* + h) = f(x*) I Vf(x*)Th + R,(x*, h), R^f'h) - 0 as h - 6. 

Since , 'y | |i
 t} w | / i 7 V2/(£)/2, where £ = ,x* + a/j,, 0 < a < 1, we say that 

/(.x* + / ' 0 « / ( x * ) + V/(:r*)Tft. 

Since x* is a local minimize!', fix*) < f(x* + h), V/i small. Therefore, for 
all feasible directions Vfix*)Th > 0, where the left hand side is known as 
the directional derivative of the function. Since we have an unconstrained 
minimization problem, all directions h (and so are inverse directions —h) are 
feasible, 

Vfix*)Th > 0 > -Vfix*)Th = Vfix*)ri~h) > 0,V/i ^ 0. 

Thus, we must have V/(.x*) = 9. 

b) Let us take the second order Taylor's approximation for any nonzero (but 
small in magnitude) direction h, 

fix* + h)^ fix*) + Vfix*)Th -f l-hTV2fix*)h. 

Since Vfix*) = 0, we have 
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f(x*+h)^f(x*)+1-hTV2f(x*)h. 

Suppose that V2/(x*) is not positive semi-definite. Then, 

3 « e l n 9 vTV2f(x*)v < 0; 

even for the remainder term, vTV2f(£)v < 0 if \\x* — £|| is small enough. If 
we take h as being along v, we should have f(x*) > f(x* + h), Contradiction 
to the local minimality of f(x*). Thus, V2/(x*) is positive semi-definite. 

If we combine the first order necessary condition and the second order 
necessary condition after deleting the term -semi-, we will arrive at the suffi­
ciency condition for x* being the strict local minimizer. 

c) At every iteration, we will approximate f(x) by a quadratic function Q(p) 
using the first three terms of its Taylor series about the point xk-\: 

V/(x fc_i) + V 2 / ( a * - i ) r P * V/(x fc_! + p). 

f(xk-i + p) « /(x f e- i) + V/(x f c_ 1) rp + -pTV2f(xk^)p = Q(p); 

and we will minimize Q as a function of p, then we will finally set xk = 

Xk-l +Pk-
Let us take the derivative of Q: 

dQ 
dp 

Since we expect 6 = V/(x fc_i + pk) « V/(x fc_i) + V2 /(x f c_i) rp f c , 

V2/(fc-i)rPfc = -V/(x f c_x) &pk = -[V2 / (x f t_1)]-1V/(x f c_1) . 

This method of finding a root of a function is known as Newton's method, 
which has a quadratic rate of convergence except in some degenerate cases. 
Newton's method for finding V/(x) = 8 is simply to iterate as xk = xk-i — 

[vvock-or'v/fo-i). 
d) See Figure S.24 for the plot of the bivariate function, / (x i ,x 2 ) = x\ + 
2x\ + 24x2 + x\ + 12x2, m t n e question. 

4xf + ®xi + 4 8 x i 
4x1 + 2 4 x 2 

v/( 

v2/( 

Let X(o) = 1 
1 

Xi 

X2 

X i 

X2 

) " 

= v̂/ 1 
1 

)"[ 
12xf 

) " 

12xf + 12xi + 48 0 
1 1™ 0 12x2 + 24 

58 
28 , V 2 / 

72 0 
0 36 

. Then, 
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-0.5 
-0.5 

-1 -1 

Fig. S.24. Plot of f(xux2) = xi + 2x\ + 2Ax\ + x% + 12x| 

Then, 

V / 
0.194444 
0.222222 

x{2) = 

V 2 / 

0.194444 
0.222222 

0.194444 
0.222222 

50.78704 

24.59259 

9.589592 
5.377229 

50.78704 0 
0 24.59259 

9.589592 
5.377229 

0.005625 
0.003570 

V / 
0.005625 
0.003570 

Then, 

Z(3) = 

V 2 / 

0.005625 
0.003570 

0.005625 
0.003570 

l 
48.06788 

1 
24.00015 

0.270179 
0.085676 

48.06788 0 
0 24.00015 

0.270179 
0.085676 

0.000003981 
0.00000002 

V/ 
0.00000398 
0.00000002 

0.000191000 
0.000000364 
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V 2 / 
0.00000398 
0.00000002 

48.00005 0 
0 24 

Then, 

xw = 
0.00000398" 
0.00000002 

Finally, V / ( 

-
• 1 

48.00005 

1.98 x 10"1 2 ' 
n ) -

1 
2 4 . 

0.0001910000] 
0.000000364 J ~ 

'9.5 x 10"1 1 ' 
0 , which is 

r ^ n " J / L " J r ^ « n 
Thus, x* = 

0 =• v/(x*) = e, v2/(x*) = 4 0 U 

0 24 

1.98 x 10"12 

0 

. Since V2/(x*) is 

diagonal with positive entries, it is positive definite. Therefore, x* = 6 is a 
local minimizer with f(x*) = 0. 
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Problems of Chapter 13 

13.1 
Let there be given two series 

A = 2~] Uk and B — \ vk 

with nonnegative terms. 

(a) / / Wfc < Vk, yk, the convergence of series B implies the convergence of 
series A and the divergence of series A implies the divergence of series B. 
Suppose that B is convergent. Let S = Yl™ vk be finite. 

n n 

^2 uk < ] P vk < S, n = 0,1,... 
o o 

thus partial sum of A is bounded, hence it is convergent. 
Suppose that A is divergent. Thus its nth partial sum increases indefinitely 
together with n. 

n n 

0 0 

Thus, nth partial sum of B increases indefinitely together with n, too. 
That is, B is divergent. 

(b) / / lrnifc-̂ oo ^ = a > 0, then series A and B are simultaneously convergent 
and divergent. 
limfc-»oo % = a > 0, vk > 0, V*. Then, 

Ve > 0 3N 9 a - e < — < a + e, Vfc > N. 
Vk 

=>• Vk{a — e) < Uk < Vk(a + e). If B is convergent, so is ^ ^ ° Vk(a — e). 
Thus, A is convergent by (a). If B is divergent, so is ^ ^ ° vk{a — e). Thus, 
A is divergent by (a). 

13.2 

^ 0 ~k\-a) Eo°° X 

It is convergent for x = 0. Let us assume that x > 0. 

I*±! = J*+i)i = * _• 0 as A- • oo. 
uk * k + 1 



Solutions 285 

Thus, it is convergent. 

b) £ r f̂ > where a > 0: 

It is convergent for x = 0. Let us assume that 0 < x < 1. 

*"+x
a f k \ a 

= -—r— = x I 1 —> x as k —> oo. 
«fc f£ \k + lj 

Thus, it is convergent. If x > 1, it is divergent since ^ ^ —>• x as fc —> oo. If 
x = 1, we have E i ° fc~a, a > 0. Then, 

Un+l lim — , , 
n->oo «„ \k + 1 

The series is convergent when a > 1 and divergent when a < 1. In the special 
case where a = 1, it is (f), the harmonic series which is divergent. 

c) J2T(ei - 1): 

e* - l sa^asA:—• oo. Thus, it is divergent (see part f) below). 

d)£rm(l + £): 

In (l + jr) ss jr as k —> oo. Thus, it is divergent (see part f) below). 

e) E r qk+^, where q- > 0: 

t/u^ = ^1+fc -> 5 as k -> oo. Thus, it is convergent for 0 < q < 1 and 
divergent for q > 1. If q = 1, then ŵ  = 1 and E 1 is divergent. 

>oo 1 , oEra 
^ = * ± I = - * - - > l a s *->«>. 

"A: £ fc + 1 

The Harmonic series is divergent! 

13.3 
a) For each object i = 1 , . . . , n, either it is selected or not; that is Xi € Si = 
{0,1}. Then, 

n 

5(x) = JJ(a:0 + ;cl) = (1 + x ) n ' 

Without loss of generality, we may assume that r — E xi objects are selected. 
We know from Problem 1.3.a) that the number of distinct ways of selecting 
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r <n objects out of n objects is (™). Thus, ar = (™). We cannot choose more 
than n objects; that is ar = 0, r > n. Therefore, 

,,_n V / 
X 

\ r I 
r=0 

Let us prove the power expansion as a corollary to the Binomial theorem. 

The Binomial theorem states that (l + z)n = £ " = 0 (").?*. Let z = | . Then 

i + *V = y^ fnNi f£Y ^ (x + y \ n
 = (

x + v)n
 = \p (n\ (^ 

y) i^\i)\y) \ v ) vn fjwW 

i=0 ^ ' 

Let us prove the multinomial theorem as a corollary to the Binomial the­
orem by induction on k. 

zi , . . . , 4 S Z+ 
h-\ \-ik=n 

Let Z = 2 and a;i = x, X2 = y. We use the power expansion to state that 
the induction base (k = / = 2) is true. Let use assume as induction hypothesis 
that 

( * ' + ' • • * > " - , £ ( , „ . " . , « , ) • \ " n i / 

holds. 

(Xi + • • • + Xi + Xi + 1)
n = 

i i , . . . ,h,ii+i € Z + 

«i H M; + ij+i = n 

needs to be shown. 
Let x = xi + • • • + X[ and y = xi+i in the power expansion. 
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(x + y)n = Yf(^)(x1 + -.. + xl)
ixti 

i=0 

. „ , t / *-^ \ « i , • • - , « / 

i\-\ Yi\ — i 

Y^ I • ". • ix^-x^x 
7 1 * »i « * i ™ « ' + i 

i x ; x * + i 

b) For each object i = 1 , . . . , n, either it is not selected or selected once, twice, 
thrice, and so on; that is x, £ Si = Z+. Then, 

n 

</(x) = J J ^ 0 + x1 + x2 + • • •) = (1 + x + x2 + • • • )" , 
»=i 

Without loss of generality, we may assume that r = J3 Xj objects are selected. 
We know from 14.4 that the number of distinct ways of selecting r objects 
out of n objects with replacement is ( " j ^ 1 ) = (n~"*+r). Thus, ar = (n~l+r). 
Therefore, 

5(x) = (i+x+x2 + --.)n = ] r ( n ~ 1 + r V . 
r=0 ^ ' 

xi + x2 + x3 + x4 = 13, Xi = 1,2,3,4,5,6 Vi => 

5(x) = (x + x2 + x3 + x4 + x5 + x6)4 = x4( l + x + x2 + x3 + x4 + x5)4 

We are interested in the coefficient of x13 of g(x), which is the coefficient of 
x9 of h(x) = (1 + x + x2 + x3 + x4 + x5)4 . 

p(x) = 1+ x + x2 + x3 + x4 H 

xp(x) = x + x2 + x3 + x4 + • • • 

(1 - x)p(x) — 1 =̂> p(x) = 
1 - x 
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Similarly, 

p(x) = 1 + x + x2 + x3 + x4 + x 5 + x6 + x7 + 

x6p(x) = x6 + x5 + 

1 — x6 

(1 - x6)p(x) = 1 + x + x2 + x3 + x4 + x5 = 
1-x 

Then, 

h(x) = (1 - x6)4\p(x)}4 = (1 - x6)4(l +x + x2+x3 + x4 + ---)4 = k(x)l(x); 

by the Binomial theorem 

and by the multiset problem 

3 \ M \ / 5 \ 2 /6\ 3 /7\ 4 . . /12 

«*> - W + w* + ur + w1 + Ur+ • • •+1 • r+ 

The ninth convolution of k(x)l(x) is the answer: 

'J) C. a ) - (0(0-»-"»'— 
Therefore, the probability is 

140 
P(having a sum of 13) = -TJ- = 0.1080247 

d) 

an - 5an_i + 6an_2 = 0, Vn — 2 ,3 ,4 , . . . <=$ 

anx
n - 5a„_ixn + 6a n _ 2 z n = 0, Vn = 2 ,3 ,4 , . . . 

Summing the above equation for all n, we get 
oo oo oo 

^2 anx
n - 5 ̂ 2 an-ix

n + 6 ̂  a„_2a;" = 0 
n = 2 n=2 n—2 

\g{x) - axx - a0] - 5x[g(x) - a0] + 6x2[g(x)} = 0 

Using the boundary conditions (do = 2 and ai — 5) we have 

, . ao + a\x — 5a,QX 2 — 5x 1 1 
6 x 2 - 5 x + l ( 3 x - l ) ( 2 x - l ) l - 2 x 1 - 3x 

g(x) = (1 + 2x + 4x2 + • • • + 2 V + •••) + (1 + 3x + 9x2 + ••• + 3 V + •••) 



Solutions 289 

=>an = 2n+3n. 

13.4 
a) The left hand side of the following constraint represents the complementary 
survival probability of a threat, 

l-\\{l-Pji)Xii>du\/i. 
3 

Then, 

1 - dk > H(l-Pji)Xji <* Clog(l - dj) > X)[Clog(l -Pji)}xji,VC > 0-
3 3 

With a suitable choice of £, and let —6; = (,log(l — di), —Oji = £log(l —Pj%), 
we will have 

2_J
a0iX3i - »̂> ^*' 

Let ajj = [fljij and /3j = [6«J (with a suitable choice of £ > 0), yielding 

^ a , ^ > /3;, Vi. 
3 

b) The first three objective functions are equivalent to each other, so are the 
last two. The flaw lies in the equivalence of the third and the fourth objective 
functions: max/3;2 ^k min(l — /3,z). In particular, 

maxyx + y2 + 2/3 = min(l - yx) + (1 - y2) + (1 - 2/3) 

is true. However, 

maxj/ij/22/3 = min(l - 2/i)(l - y2)(l - y3) = 1 2/12/22/3 

is false because of the cross terms. 
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Problems of Chapter 14 

14.1 

y"(t) - y(t) = e2t & s2r](s) - 2s - r)(s) = <& r?(s)(s2 - 1) = r + 2s. 
s - 2 s-2 

V(s) = 
1 

+ 
2s 

( s - 2 ) ( s 2 - l ) s 2 - l ' 

= ( » - 2 ) ( ^ - l ) -1. If V(s) = ^ + ̂ r + ̂ r = (,-vU-iy S o l v e fOT A'B'C-

A+B+C=0 
W + C = 0 
-A + 2 5 - 2C = 1 *H-*4 C =T-

Thus, ??(s) = ^ T V T + - -6(8-2) ^ 6(3+1) 6 ( s - l ) -

2. If V(a) = ^ + ̂  = I ^ I = r ) = ^ j . Solve for tf,F: 

£ + F = 2 
E-F = 0 

=»E = 1, F = 1. 

Thus, i;(a) = -

Then, we have 

- +• -+-
1 ~ «+!• 

^ = 3(^2)+ 6^TI) + 2 ( ^ 1 ) ^*<*> = r2t+h~*+?*• 
14.2 

2/0 + 1) = t/(fc) + 2efe <=* zt](z)-z = r)(z) + 2 r <=> rj(z)(z-l) = z + 2 z 
z — e* z — e 

V{z) = + 2 
2 - 1 ( 2 - l ) ( , z - e ) ' 

If»?(«) = r-TTi v = -A + -s- then A = ^ - and B = - V 
'V / ( 2 - l l l z - e i z — 1 z —e 1 —e - ^ Therefore, 

(z —l)(z —e) z —1 z —e e - 1 -

!/(*) = 
2 - 1 

+ 2 
1 A 2 

+ 1 - e u - 1 ; e — 1 \ z — e 

14.3 

«.j,(fc) = l + - ( l - e f c ) . 
1 — e 

^ = -0.2y, ^ = -0 .3s - O.ly, x(0) = 50, y(0) = 100. 

§-o*-al.*g~a4-<u4^-Iu»,+Iu2 = o<*) 
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dt2 = s2r](s) - sy(0) - y (0) = s2rj(s) - 100s + 25, 

since %\t=0 = -0.3(50) - 0.1(100) = -25 . Moreover, 

V 
&y_ 

dt 
sr)(s) - j/(0) = srj(s) - 100 

(*) : [s2rj{s) - 100s + 25] - 0.06??(s) + 0.1[s?y(s) - 100] = 0 

<£> v(s)(s2 - 0.06 + 0.1s) = 100s - 25 + 10 &• 

100s - 15 
ri(s) = 

A B 
+ (s + 0.3)(s-0.2) s + 0.3 s - 0 . 2 

A + B = 100, - 0 .24 + 0.3S = -15 => 4 = 90, i5 = 10 => 

y(t) = 90e-°-3t + 10e°-2t , . , , , 90 10 
s + 0.3 s -0 .2 

r 2/(o)i 
2/(1) 
2/(2) 
2/(3) 

L 2/(4) J 

= 

"100.0000" 
78.88767 
64.31129 
54.81246 
49.36289 

14.4 

Let x(n) — Fn+i, and the initial conditions are x(0) = 1, x(l) = 1. 

x(n + 1) = x(n) + x(n - 1), n - 2, 3 , . . . (¥) 

r][x(n + 1)] = zrj(z) — zx(0) — zr)(z) - z and rj[x(n - 1)] = \r){z). 

(¥) : x(n + 1) = x(n) + x(n - 1) o- zrj(z) - z - rj(z) r)(z) = 0 

<*ri{z) 
z - l - ± z{l-±-\) 

z ^ z zJ / 

• « • 

7]{z) = 

z z^ 

1 A 
l _ l + 

£ 

( l - ^ ) ( l - ^ ) ^ ^ 1 

4 + 5 = 1 

1+75 
22 

,M) + B f i i^] = 0 ^ = ^ 5 = ^^ 
2* 

(¥) : V(z) 

2z 

5 + Vb , 
10 I 

10 10 

+ 
5 - \ / 5 / 1_ 

! _ i ^ i ; io ^ i _ ^ 

Since Z (yrs-) = any(n), we have 
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Thus, 

Finally, 
Fioo = x(99) = 354 224 848179 261915 075 
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