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What should we do?

I think, we should be grateful to fate

that we safely emerged
from all adventures -
both from the real ones
and from those we dreamed about.

’Dream novel’

Yours Winni, Patrick, Steffen and Annette
with love



Preface

This book is devoted to Professor Jürgen Lehn, who passed away on September 29,
2008, at the age of 67. It contains invited papers that were presented at the Work-
shop on Recent Developments in Applied Probability and Statistics Dedicated to
the Memory of Professor Jürgen Lehn, Middle East Technical University (METU),
Ankara, April 23–24, 2009, which was jointly organized by the Technische Univer-
sität Darmstadt (TUD) and METU. The papers present surveys on recent develop-
ments in the area of applied probability and statistics. In addition, papers from the
Panel Discussion: Impact of Mathematics in Science, Technology and Economics
are included.

Jürgen Lehn was born on the 28th of April, 1941 in Karlsruhe. From 1961 to
1968 he studied mathematics in Freiburg and Karlsruhe, and obtained a Diploma
in Mathematics from the University of Karlsruhe in 1968. He obtained his Ph.D.
at the University of Regensburg in 1972, and his Habilitation at the University of
Karlsruhe in 1978. Later in 1978, he became a C3 level professor of Mathematical
Statistics at the University of Marburg. In 1980 he was promoted to a C4 level
professorship in mathematics at the TUD where he was a researcher until his death.

Jürgen Lehn supervised many theses, wrote three books, published numerous
articles and was the editor of proceedings and journals such as Statistical Papers,
Statistics and Decisions, Mathematische Semesterberichte and Journal of Compu-
tational and Applied Mathematics. He managed the interdisciplinary Center for
Practical Mathematics in Darmstadt, where he founded the stochastic simulation
research group and cooperated with structural engineering teams using principles
of applied mathematical statistics. His interdisciplinary work in mathematics gave
him satisfaction and joy, and not a small degree of success. He also organized an
interdisciplinary series of lectures entitled “What lies behind?”, and was a member
of the German federal selection committee for mathematical research.

Jürgen Lehn was a devoted teacher and a caring person. His ex-students, some
of whom are now professors, are thankful for having known him. Jürgen Lehn rose
from the rank of assistant to Dean and senator of TUD. He served on several high-
level committees within his university. In addition, the community of mathemati-
cians remembers Jürgen Lehn for his selfless dedication and unconditional depend-
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viii Preface

ability. He consulted often for the German Research Foundation (DFG), and he was
sought after by hiring committees at various universities. Through his work as a
founding member at the DFG and his activities in the Stochastik group of the Ger-
man Mathematician’s Union, he helped the general stochastics community in the
country. For six years he served as the secretary of the Conference of University
Teachers of Mathematical Stochastics. Throughout all this, Jürgen Lehn tried to in-
clude and help the younger scientific generation in research and professional life.

In his work for the mathematical community, the Mathematical Research In-
stitute at Oberwolfach played a special role. From 1992 until 2003, Jürgen Lehn
was the treasurer of the association Friends of Oberwolfach, and from 2003 on, he
served as its secretary. As one of the founding fathers of this association, Jürgen
Lehn’s energy and dedication saw the group through difficult early years, and was
instrumental in many emergency relief measures.

He played a most important role in establishing international cooperation be-
tween the Department of Mathematics of TUD and several mathematics depart-
ments around the globe. In particular, he was one of the leading figures in the foun-
dation of The Institute of Applied Mathematics (IAM) at METU.

As the editors of this book, we would like to express our thanks to all contrib-
utors, many of whom were not only his scientific colleagues but also his personal
friends. We are specially grateful to Alice Blanck and Dr. Niels Peter Thomas from
Springer for their cooperation with the publication of this book.

Ankara, Darmstadt, Kaiserslautern, Montreal Luc Devroye, Bülent Karasözen
January 2010 Michael Kohler, Ralf Korn
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On Exact Simulation Algorithms for Some
Distributions Related to Brownian Motion
and Brownian Meanders

Luc Devroye

Abstract We survey and develop exact random variate generators for several distri-
butions related to Brownian motion, Brownian bridge, Brownian excursion, Brown-
ian meander, and related restricted Brownian motion processes. Various parameters
such as maxima and first passage times are dealt with at length. We are particularly
interested in simulating process variables in expected time uniformly bounded over
all parameters.

1 Introduction

The purpose of this note is to propose and survey efficient algorithms for the exact
generation of various functionals of Brownian motion {B(t), 0 ≤ t ≤ 1}. Many ap-
plications require the simulation of these processes, often under some restrictions.
For example, financial stochastic modeling (Duffie and Glynn 1995; Calvin 2001;
McLeish 2002) and the simulation of solutions of stochastic differential equations
(Kloeden and Platen 1992; Beskos and Roberts 2005) require fast and efficient meth-
ods for generating Brownian motion restricted in various ways. Exact generation of
these processes is impossible as it would require an infinite effort. But it is possi-
ble to exactly sample the process at a finite number of points that are either fixed
beforehand or chosen “on the fly”, in an adaptive manner. Exact simulation of vari-
ous quantities related to the processes, like maxima, first passage times, occupation
times, areas, and integrals of functionals, is also feasible. Simulation of the process
itself can be achieved by three general strategies.

1. Generate the values of B(t) at 0 = t0 < t1 < · · · < tn = 1, where the ti’s are
given beforehand. This is a global attack of the problem.

Luc Devroye, School of Computer Science, McGill University, Montreal, H3A 2K6, Canada
e-mail: lucdevroye@gmail.com

L. Devroye et al. (eds.), Recent Developments in Applied Probability and Statistics,
DOI 10.1007/978-3-7908-2598-5_1, c© Springer-Verlag Berlin Heidelberg 2010
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2 Luc Devroye

2. Simulation by subdivision. In the popular binary division (or “bridge sampling”)
method (see, e.g., Fox 1999), one starts with B(0) and B(1), then generates
B(1/2), then B(1/4) and B(3/4), always refining the intervals dyadically. This
can be continued until the user is satisfied with the accuracy. One can imagine
other situations in which intervals are selected for sampling based on some cri-
teria, and the sample locations may not always be deterministic. We call these
methods local. The fundamental problem here is to generate B(λt + (1 − λ)s)

for some λ ∈ (0, 1), given the values B(t) and B(s).
3. Generate the values of B(t) sequentially, or by extrapolation. That is, given B(t),

generate B(t + s), and continue forward in this manner. We call this a linear
method, or simply, an extrapolation method.

We briefly review the rather well-known theory for all strategies. Related simu-
lation problems will also be discussed. For example, in case (ii), given an interval
with certain restrictions at the endpoints, exact simulation of the minimum, max-
imum, and locations of minima and maxima in the interval becomes interesting.
Among the many possible functionals, maxima and minima stand out, as they pro-
vide a rectangular cover of the sample path B(t), which may of interest in some
applications. Brownian motion may be restricted in various ways, e.g., by being
nonnegative (Brownian meander), by staying within an interval (Brownian motion
on an interval), or by attaining a fixed value at t = 1 (Brownian bridge). This leads
to additional simulation challenges that will be discussed in this paper.

We keep three basic principles in mind, just as we did in our book on random
variate generation (Devroye 1986). First of all, we are only concerned with exact
simulation methods, and to achieve this, we assume that real numbers can be stored
on a computer, and that standard algebraic operations, and standard functions such
as the trigonometric, exponential and logarithmic functions, are exact. Secondly, we
assume that we have a source capable of producing an i.i.d. sequence of uniform
[0, 1] random variables U1, U2, U3, . . .. Thirdly, we assume that all standard oper-
ations, function evaluations, and accesses to the uniform random variate generator
take one unit of time. Computer scientists refer to this as the RAM model of compu-
tation. Under the latter hypothesis, we wish to achieve uniformly bounded expected
complexity (time) for each of the distributions that we will be presented with. The
uniformity is with respect to the parameters of the distribution. Users will appre-
ciate not having to worry about bad input parameters. Developing a uniformly fast
algorithm is often a challenging and fun exercise. Furthermore, this aspect has often
been neglected in the literature, so we hope that this will make many applications
more efficient.

We blend a quick survey of known results with several new algorithms that we
feel are important in the exact simulation of Brownian motion, and for which we
are not aware of uniformly efficient exact methods. The new algorithms apply, for
example, to the joint location and value of the maximum of a Brownian bridge,
the value of a Brownian meander on a given interval when only the values at its
endpoints are given, and the maximum of a Brownian meander with given endpoint.

This paper is a first in a series of papers dealing with the simulation of Brownian
processes, focusing mainly on the process itself and simple parameters such as the



On Exact Simulation Algorithms for Some Distributions Related to Brownian Motion 3

maximum and location of the maximum in such processes. Further work is needed
for the efficient and exact simulation of passage times, occupation times, areas (like
the area of the Brownian excursion, which has the Airy distribution, for which no
exact simulation algorithm has been published to date), the maximum of Bessel
bridges and Bessel processes of all dimensions.

2 Notation

We adopt Pitman’s notation (see, e.g., Pitman 1999) and write

B(t) Brownian motion, B(0) = 0,
Br (t) Brownian bridge: same as B conditional on B(1) = r ,
Bbr(t) standard Brownian bridge: same as Br with r = 0,
Bme(t) Brownian meander: same as B conditional on B(t) ≥ 0 on [0, 1],
Bme
r (t) restricted Brownian meander: same as Bme conditional on Bme(1) = r ,

Bex(t) Brownian excursion: same as Bme
r with r = 0.

Conditioning on zero probability events can be rigorously justified either by weak
limits of some lattice walks or as weak limits of processes conditioned on ε-
probability events and letting ε ↓ 0 (see, e.g., Durrett et al. (1977), and consult
Bertoin and Pitman (1994) or Borodin and Salminen (2002) for further references).
The absolute values of the former three processes, also called reflected Brownian
motion and reflected Brownian bridge will only be briefly mentioned.

The maxima of these processes on [0, 1] are denoted, respectively, by

M,Mr ,M
br,Mme,Mme

r ,Mex.

In what follows, we reserve the notation N,N ′, N ′′, N1, N2, . . . for i.i.d. stan-
dard normal random variables, E,E′, E′′, E1, E2, . . . for i.i.d. exponential random
variables, U,U ′, U ′′, U1, U2, . . . for i.i.d. uniform [0, 1] random variables, and Ga

for a gamma random variable of shape parameter a > 0. All random variables ap-
pearing together in an expression are independent. Thus, U−U = 0 but U−U ′ has

a triangular density. The symbol
L= denotes equality in distribution. We use φ for

the normal density, and Φ for its distribution function. Convergence in distribution

is denoted by
L→. The notation ≡ means equality in distribution as a process. Also,

we use “X ∈ dy” for “X ∈ [y, y + dy]”.

3 Brownian Motion: Survey of Global and Local Strategies

We recall that B(1)
L= N and that for 0 ≤ t ≤ 1, {B(ts), 0 ≤ t ≤ 1} L=

{√sB(t), 0 ≤ t ≤ 1}. Furthermore, there are many constructions that relate the
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sample paths of the processes. Most useful is the definition, which states that for
any t0 < t1 < · · · ,< tn, we have that

(B(t1)− B(t0), . . . , B(tn)− B(tn−1))
L= (√

t1 − t0N1, . . . ,
√
tn − tn−1Nn

)
.

The simplest representation of Brownian bridges is the drift decomposition of
Br : assuming a bridge on [0, 1] with endpoint r , we have

Br (t) ≡ B(t)+ t (r − B(1)), 0 ≤ t ≤ 1.

Thus, given B(ti) at points t0 = 0 < t1 < · · · < tn = 1, we immediately have
Br (ti) by the last formula.

As B(1) is a sum of two independent components, B(t) and B(1) − B(t)
L=

B(1 − t), so that for a fixed t ,

Br (t)
L= tr +√

t(1 − t)N1 + t
√

1 − tN2
L= tr +√

t (1 − t)N.

This permits one to set up a simple local strategy. Given shifted Brownian motion
(i.e., Brownian motion translated by a value a) with values B(0) = a, B(1) = b,
then interval splitting can be achieved by the recipe

B(t) = a + t (b − a)+√
t (1 − t)N.

Introducing scaling, we have, with B(0) = a, B(T ) = b,

B(t) = a + t

T
(b − a)+

√
t

T

(
1 − t

T

)
N
√
T , 0 ≤ t ≤ T .

All further splitting can be achieved with fresh independent normal random va-

rieties. Extrapolation beyond t for Brownian motion is trivial, as B(t + s)
L=

B(t)+N
√
s, s > 0.

In 1999, Jim Pitman published an important paper on the joint law of the various
Brownian motion processes sampled at the order statistics of a uniform [0, 1] cloud
of points. These yield various distributional identities but also fast methods of simu-
lation. For the sake of completeness, we briefly recall his results here. The sampling
period is [0, 1]. The order statistics of n i.i.d. uniform [0, 1] random variables are
denoted by

0 = U(0) < U(1) < · · · < U(n) < U(n+1) = 1.

It is well-known that this sample can be obtained from a sequence of i.i.d. ex-
ponential random variables E1, E2, . . . in the following manner, denoting Si =
E1 + · · · + Ei :

U(i) = Si

Sn+1
, 1 ≤ i ≤ n+ 1.
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Fig. 1 Simulation of Brownian motion

See, e.g. Shorack and Wellner (1986). Denote by X(t) any of the processes defined
at the outset of this paper, and let it be independent of the uniform sample. Let Ti be
a time in [U(i−1), U(i)] when X attains its infimum on that interval. Consider then
the 2n+ 2-dimensional random vector

Xn
def= (

X(T1),X(U(1)), X(T2),X(U(2)), . . . , X(Tn+1),X(U(n+1))
)
.

Obtain an independent uniform sample

0 = V(0) < V(1) < · · · < V(n) < V(n+1) = 1,

which is based on an independent collection of exponentials with partial sums S′i ,
1 ≤ i ≤ n+ 1, so V(i) = S′i/S′n+1.

Proposition 1 (Pitman 1999). If X ≡ B and n ≥ 0, then

Xn
L= √

2Gn+3/2

(
Si−1 − S′i

Sn+1 + S′n+1
,

Si − S′i
Sn+1 + S′n+1

; 1 ≤ i ≤ n+ 1

)

.

If X ≡ Bme and n ≥ 0, then

Xn
L= √

2Gn+1

(
Si−1 − S′i

Sn+1 + S′n+1
,

Si − S′i
Sn+1 + S′n+1

; 1 ≤ i ≤ n+ 1

∣∣∣∣

n⋂

i=1

[Si > S′i]
)
.

If X ≡ Bbr and n ≥ 0, then
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Xn
L=

√
Gn+1

2

(
U(i−1) − V(i), U(i) − V(i); 1 ≤ i ≤ n+ 1

)
.

If X ≡ Bex and n ≥ 0, then

Xn
L=

√
Gn+1

2

(
U(i−1) − V(i−1), U(i) − V(i−1); 1 ≤ i ≤ n+ 1

∣
∣∣∣

n⋂

i=1

[U(i) > V(i)]
)
.

If X ≡ Br and n ≥ 0, then

Xn
L=

√
r2 + 2Gn+1 − |r|

2
(U(i−1) − V(i), U(i) − V(i); 1 ≤ i ≤ n+ 1)

+ r
(
U(i−1), U(i); 1 ≤ i ≤ n+ 1

)
.

The random vectors thus described, with one exception, are distributed as a
square root of a gamma random variable multiplied with a random vector that is
uniformly distributed on some polytope of R2n+2. Global sampling for all these
processes in time O(n) is immediate, provided that one can generate a gamma
random varieties Ga in time O(a). Since we need only integer values of a or in-

teger values plus 1/2, one can achieve this by using Gn
L= E1 + · · · + En and

Gn+1/2
L= E1 + · · · + En + N2/2. However, there are also more sophisticated

methods that take expected time O(1) (see, e.g., Devroye 1986).
There are numerous identities that follow from Pitman’s proposition. For exam-

ple,

(
min

0≤t≤U
Bbr(t), Bbr(U), min

U≤t≤1
Bbr(t)

)
L=

√
G2

2

(−U ′, U − U ′, U − 1
)
.

This implies that |Bbr(U)| L= √
G2/2|U − U ′| L= U

√
E/2.

In the last statement of Pitman’s result, we replaced a random variable Ln,r

(with parameter r > 0) in Sect. 8 of Pitman by the equivalent random variable√
r2 + 2Gn+1 − r . It is easy to verify that it has the density

yn(y + r)(y + 2r)n

n!2n
× exp

(
−y2

2
− ry

)
, y > 0.

4 Brownian Motion: Extremes and Locations of Extremes

The marginal distributions of the maximum M and its location X for B on [0, 1]
are well-known. We mention them for completeness (see, e.g., Karatzas and Shreve
1998): X is arc sine distributed, and
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M
L= |N |.

The arc-sine, or beta (1/2, 1/2) distribution, corresponds to random variables that
can be represented equivalently in all these forms, where C is standard Cauchy:

G1/2

G1/2 +G′
1/2

L= N2

N2 +N ′2
L= 1

1 + C2
L= sin2(2πU)

L= sin2(πU)
L= sin2(πU/2)

L= 1 + cos(2πU)

2
L= 1 + cos(πU)

2
.

In simulation, M is rarely needed on its own. It is usually required jointly with
other values of the process. The distribution function of Mr (see Borodin and Salmi-
nen 2002, p. 63) is

F(x) = 1 − exp

(
1

2

(
r2 − (2x − r)2)

)
, x ≥ max(r, 0).

By the inversion method, this shows that

Mr
L= 1

2

(
r +

√
r2 + 2E

)
. (1)

This was used by McLeish (2002) in simulations. Therefore, replacing r by N , we
have the following joint law:

(M,B(1))
L=

(
1

2

(
N +

√
N2 + 2E

)
, N

)
.

Putting r = 0 in (1), we observe that Mbr L= √
E/2, a result due to Lévy (1939). It

is also noteworthy that

M
L= |N | L= M − B(1).

The rightmost result is simply due to Lévy’s observation (1948) that |B(t)| is equiv-
alent as a process to M(t)− B(t) where M(t) is the maximum of B over [0, t].

Pitman’s Proposition together with the observation that 2G3/2
L= N2 + 2E′′,

show that

(M,B(1))
L= √

2G3/2 ×
(

E

E + E′ ,
E − E′

E + E′

)

L=
√
N2 + 2E′′ ×

(
E

E + E′ ,
E − E′

E + E′

)

L=
(
U
√
N2 + 2E, (2U − 1)

√
N2 + 2E

)
.

Furthermore, Pitman’s results allow us to rediscover Lévy’s result Mbr L= √
E/2.

Using E/(E + E′) L= U , we also have
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M
L= U

√
2G3/2

L= U
√
N2 + 2E

L= 1

2

(
N +

√
N2 + 2E

)
.

For x > 0, we define the first passage time (also called hitting time)

Tx = min{t : B(t) = x}.
For t > 0,

P {Tx > t} = P

{
max

0≤s≤t
B(s) < x

}

= P

{
max

0≤s≤1
B(s) < x/

√
t

}

= P

{
1

2

(
N +

√
N2 + 2E

)
< x/

√
t

}

= P

{(
2x

N +√
N2 + 2E

)2

> t

}

,

and therefore,

Tx
L=

( x

M

)2
.

Simulating hitting times and maxima are in fact equivalent computational questions.
The same argument can be used for Brownian meanders: the hitting time of x > 0
for a Brownian meander is distributed as

(
x

Mme

)2

.

Consider now the joint density of the triple (X,M,B(1)). Using (x,m, y) as the
running coordinates for (X,M,B(1)), Shepp (1979) [see also Karatzas and Shreve
1998, p. 100] showed that this density is

m(m− y)

πx3/2(1 − x)3/2
× exp

(
−m2

2x
− (m− y)2

2(1 − x)

)
, m ≥ y ∈ R, x ∈ (0, 1).

This suggests a simple method for their joint generation:

(X,M,B(1))
L=

(
X

def= 1 + cos(2πU)

2
,
√

2XE,
√

2XE −√
2(1 −X)E′

)
.

This is easily seen by first noting that if (X,M) = (x,m), then B(1)
L= m −√

2(1 − x)E′. Then, given X = x, M
L= √

2xE.
Finally, we consider the joint law of (X,Mr ) for Br . This is a bit more cum-

bersome, especially if we want to simulate it with expected complexity uniformly
bounded over all r . The joint density can be written as
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Fig. 2 A simulation of a Brownian bridge

Fig. 3 The density of a Brownian bridge for endpoint values varying from −1.5 to 1.4 in incre-
ments of 0.1. For all values of r , 0 excepted, there is a discontinuity. For the standard Brownian
bridge, we recover the scaled Rayleigh density

m(m− r)
√

2πer
2/2

πx3/2(1 − x)3/2
× exp

(
−m2

2x
− (m− r)2

2(1 − x)

)
, 0 ≤ x ≤ 1, m ≥ max(r, 0).

The standard Brownian bridge: r = 0. The special case of the standard Brownian
bridge (r = 0) has a simple solution. Indeed, the joint density reduces to

2m2

√
2πx3/2(1 − x)3/2

× exp

(
− m2

2x(1 − x)

)
, 0 ≤ x ≤ 1, m ≥ 0.
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Integrating with respect to dm shows that X is uniform on [0, 1]. And given X, we

see that Mbr L= √
2X(1 −X)G3/2. Thus,

(
X,Mbr

)
L=

(
U,

√
2U(1 − U)G3/2

)
.

Using Lévy’s result about Mbr, this implies that

√
2U(1 − U)G3/2

L=
√
U(1 − U)(N2 + 2E)

L=
√

E

2
.

The remainder of this section deals with the more complicated case r �= 0. We
will simulate in two steps by the conditional method. First, the maximum Mr is
generated as in (1): (1/2)(r +√

r2 + 2E). Call this value m for convenience. Then
the random variable X is generated, which has density proportional to

exp(−m2

2x − (m−r)2

2(1−x)
)

x3/2(1 − x)3/2
, 0 < x < 1. (2)

This was used by McLeish (2002) in simulations. Therefore, replacing r by N ,
we have the following joint law:

(M,B(1))
L=

(
1

2

(
N +

√
N2 + 2E

)
, N

)
.

Putting r = 0 in (1), we observe that Mbr L= √
E/2, a result due to Lévy (1939,

(20)). It is also noteworthy that

M
L= |N | L= M − B(1).

The rightmost result is simply due to Lévy’s observation (1948) that |B(t)| is equiv-
alent as a process to M(t)− B(t) where M(t) is the maximum of B over [0, t].

Pitman’s Proposition together with the observation that 2G3/2
L= N2 + 2E′′,

show that

(M,B(1))
L= √

2G3/2 ×
(

E

E + E′ ,
E − E′

E + E′

)

L=
√
N2 + 2E′′ ×

(
E

E + E′ ,
E − E′

E + E′

)

L=
(
U
√
N2 + 2E, (2U − 1)

√
N2 + 2E

)
.
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Furthermore, Pitman’s results allow us to rediscover Lévy’s result Mbr L= √
E/2.

Using E/(E + E′) L= U , we also have

M
L= U

√
2G3/2

L= U
√
N2 + 2E

L= 1

2

(
N +

√
N2 + 2E

)
.

For x > 0, we define the first passage time (also called hitting time)

Tx = min{t : B(t) = x}.
For t > 0,

P {Tx > t} = P

{
max

0≤s≤t
B(s) < x

}

= P

{
max

0≤s≤1
B(s) < x/

√
t

}

= P

{
1

2

(
N +

√
N2 + 2E

)
< x/

√
t

}

= P

{(
2x

N +√
N2 + 2E

)2

> t

}

,

and therefore,

Tx
L=

( x

M

)2
.

Simulating hitting times and maxima are in fact equivalent computational questions.
The same argument can be used for Brownian meanders: the hitting time of x > 0
for a Brownian meander is distributed as

(
x

Mme

)2

.

For this, we propose a rejection algorithm with rejection constant (the expected
number of iterations before halting, or, equivalently, one over the acceptance proba-
bility) R(m, r) depending upon m and r , uniformly bounded in the following sense:

sup
r

E{R(Mr , r)} < ∞. (3)

Note that supr,m≥max(r,0) R(m, r) = ∞, but this is of secondary importance. In fact,
by insisting only on (3), we can design a rather simple algorithm. Since we need to
refer to it, and because it is fashionable to do so, we will give this algorithm a name,
MAXLOCATION.
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ALGORITHM “MAXLOCATION”
Case I (m ≥ √

2)

Repeat Generate U,N . Set Y ← 1 + (m−r)2

N2

Until U exp(−m2/2) ≤ Y exp(−Ym2/2)
Return X ← 1/Y

Case II (m− r ≥ √
2)

Repeat Generate U,N . Set Y ← 1 + m2

N2

Until U exp(−(m− r)2/2) ≤ Y exp(−Y(m− r)2/2)
Return X ← 1 − 1/Y

Case III (m− r ≤ √
2, m ≤ √

2)
Repeat Generate U,N . Set X ← beta (1/2, 1/2)

Until U 4√
X(1−X)e2m2(m−r)2 ≤ exp(−m2/2X−(m−r)2/2(1−X))

(X(1−X))3/2

Return X

No attempt was made to optimize the algorithm with respect to its design param-
eters like the cut-off points. Our choices facilitate easy design and analysis. Note
also that the three cases in MAXLOCATION overlap. In overlapping regions, any
choice will do. Gou (2009) has another algorithm for this, but it is not uniformly
fast. However, for certain values of the parameters, it may beat MAXLOCATION in
given implementations.

Theorem 1. Algorithm MAXLOCATION generates a random variable X with den-
sity proportional to (2). Furthermore, if m is replaced by Mr = (1/2)(r +√
r2 + 2E), then (X,Mr ) is distributed as the joint location and value of the max-

imum of a Brownian bridge Br . Finally, the complexity is uniformly bounded over
all values of r in the sense of (3).

Proof. The first two cases are symmetric—indeed, X for given input values m, r

is distributed as 1 − X′, where X′ has input parameters m − r and −r . This fol-
lows from considering the Brownian motion backwards. Case I: Let X have density
proportional to (2), and let Y = 1/X. Then Y has density proportional to

y exp

(
−m2y

2

)
× (y − 1)−

3
2 exp

(
− (m− r)2y

2(y − 1)

)
, y > 1.

If m ≥ √
2, then the leftmost of the two factors is not larger than exp(−m2/2),

while the rightmost factor is proportional to the density of 1 + (m − r)2/N2, as is
readily verified. This confirms the validity of the rejection method for cases I and II.
Case III: note that (2) is bounded by

4√
x(1 − x)e2m2(m− r)2

,
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which is proportional to the beta (1/2, 1/2) density. To see this, observe that
(m2/(2x)) exp(−(m2/(2x))) ≤ 1/e, and ((m − r)2/(2(1 − x))) exp(−((m −
r)2/(2(1 − x)))) ≤ 1/e.

Finally, we verify (3) when the supremum is taken over the parameter ranges that
correspond to the three cases. It is helpful to note that m is now random and equal to
(1/2)(r +√

r2 + 2E). Thus, m(m− r) = E/2, a property that will be very useful.
The acceptance rate in case I (using the notation of the algorithm) is

P
{
U exp(−m2/2) ≤ Y exp(−Ym2/2)

} = E
{
Y exp((1 − Y)m2/2)

}

= E
{
Y exp(−m2(m− r)2/2N2)

}

≥ E
{
exp(−m2(m− r)2/2N2)

}

= E
{
exp(−E2/8N2)

}

def= δ > 0.

The acceptance rate for case II is dealt with in precisely the same manner—it is also
at least δ. Finally, in case III, the acceptance rate is

P

{
U

4√
X(1 −X)e2m2(m− r)2

≤ exp(−m2/2X − (m− r)2/2(1 −X))

(X(1 −X))3/2

}

= E

{
e2m2(m− r)2 exp(−m2/2X − (m− r)2/2(1 −X))

4X(1 −X)

}

≥ E

{
e2m2(m− r)2 exp(−1/X − 1/(1 −X))

4X(1 −X)

}

= E

{
e2E2 exp(−1/X(1 −X))

16X(1 −X)

}

= E

{
e2 exp(−1/X(1 −X))

8X(1 −X)

}

≥ E

{
e2 exp(−16/3)

8(3/16)
[X∈[1/4,3/4]]

}

= 1

3e10/3
.

Therefore,

E{R(Mr , r)} ≤ max(1/δ, 3e10/3). ��
The joint maximum and minimum of Brownian bridge and Brownian motion.
The joint maximum and minimum of Br can be done in two steps. First, we generate
Mr = (1/2)(r+√r2 + 2E) and then apply MAXLOCATION to generate the location
X of the maximum. Using a decomposition of Williams (1974) and Denisov (1984),
we note that the process cut at X consists of two Brownian meanders, back to back.
More specifically,
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Mr − Br (X + t), 0 ≤ t ≤ 1 −X,

is a Brownian meander with endpoint Bme(1−X) = Mr − r . The maximum Z1 of
this process is distributed as

√
1 −X ×Mme

s with s = Mr − r√
1 −X

.

The value Mme
s is generated by our algorithm MAXMEANDER, which will be devel-

oped further on in the paper. Similarly, the process

Mr − Br (X − t), 0 ≤ t ≤ X,

is a Brownian meander with endpoint Bme(X) = Mr . The maximum Z2 of this
process is distributed as

√
X ×Mme

s with s = Mr√
X

.

The value Mme
s is again generated by our algorithm MAXMEANDER. Putting things

together, and using the Markovian nature of Brownian motion, we see that the min-
imum of Br on [0, 1] is equal to

Mr − max(Z1, Z2).

The joint maximum and minimum for B is dealt with as above, for Br , when we
start with r = N .

5 Brownian Meander: Global Methods

Simple computations involving the reflection principle show that the density of B(1)
for Brownian motion started at a > 0 and restricted to remain positive on [0, 1] is

f (x)
def= exp(− (x−a)2

2 )− exp(− (x+a)2

2 )√
2πP{|N | ≤ a} , x > 0.

The limit of this as a ↓ 0 is the Rayleigh density x exp(−x2/2), i.e., the density of√
2E. An easy scaling argument then shows that

Bme(t)
L= √

2tE.

This permits simulation at a single point, but cannot be used for a sequence of points.
A useful property (see Williams 1970 or Imhof 1984) of the Brownian meander

permits carefree simulation: a restricted Brownian meander Bme
r can be represented

as a sum of three independent standard Brownian bridges:
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Fig. 4 Simulation of Brownian meander with end value r

Bme
r (t) ≡

√
(rt + Bbr(t))2 + (Bbr′(t))2 + (Bbr′′(t))2.

This is called the three-dimensional Bessel bridge from 0 to r . We obtain Bme as
Bme
r with r = √

2E. Bme can also be obtained from the sample path of B directly:
let τ = sup{t ∈ [0, 1] : B(t) = 0}. Then

Bme(t) ≡ |B(τ + t (1 − τ))|√
1 − τ

, 0 ≤ t ≤ 1.

This is not very useful for simulating Bme though.
For the standard Brownian bridge, Bbr(t) ≡ B(t) − tB(1). Maintaining three

independent copies of such bridges gives a simple global algorithm for simulating
Bme
r at values 0 = t0 < t1 < · · · < tn = 1, based on the values Bbr(ti).

There is also a way of simulating Bme
r inwards, starting at t = 1, and then obtain-

ing the values at points 1 = t0 > t1 > t2 > · · · > 0. Using Bbr(t)
L= √

t (1 − t)N ,
we have

Bme
r (t)

L=
√
(rt +√

t (1 − t)N)2 + t (1 − t)(N2
2 +N2

3 )

L=
√
(rt +√

t (1 − t)N)2 + 2Et(1 − t)

def= Z(t, r).

So, we have B(t0) = B(1) = r . Then

B(tn+1)
L= Z

(
tn+1

tn
, B(tn)

)
, n ≥ 0,

where the different realizations of Z(·, ·) can be generated independently, so that
B(tn), n ≥ 0 forms a Markov chain imploding towards zero.
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For Bex, a simple construction by circular rotation of a standard Brownian bridge
Bbr is possible (Vervaat 1979; Biane 1986). As noted above, for Bbr on [0, 1], the

minimum is located at X
L= U . Construct now the new process

Y(t) =
{
Bbr(X + t)− Bbr(X) if 0 ≤ t ≤ 1 −X;
Bbr(X + t − 1)− Bbr(X) if 1 −X ≤ t ≤ 1.

Then Y ≡ Bex on [0, 1]. Furthermore, the process Bex just constructed is inde-
pendent of X. This construction permits the easy simulation of Bbr given Bex, by
cutting and pasting starting at a randomly generated uniform [0, 1] position U . But
vice versa, the benefits for simulating Bex given Bbr are not so clear.

6 Brownian Meander: Local Methods

The local simulation problem for Brownian meanders can be summarized as fol-
lows: given a, b ≥ 0, and Bme(0) = a, Bme(1) = b, generate the value of Bme(t)

for given t ∈ (0, 1) in expected time bounded uniformly over a, b, t . Armed with
such a tool, we can continue subdividing intervals at unit expected cost per subdi-
vision. We may need to rescale things. Let us denote by Bme(t; a, b, s) the value
Bme(t) when 0 ≤ t ≤ s, given that Bme(0) = a, Bme(s) = b. Then

Bme(t; a, b, s) L= √
sBme

(
t

s
; a√

s
,

b√
s
, 1

)
.

Random variate generation can be tackled by a variant of the global method if
one is willing to store and carry through the values of all three Brownian motions in
the three-dimensional Bessel bridge approach. However, if this is not done, and the
boundaries of an interval are fixed, then one must revert to a truly local method. This
section discusses the simulation of Bme(t; a, b, 1). In the remainder of this section,
we will write Bme(t) instead of Bme(t; a, b, 1).

The (known) density of Bme(t) can be derived quite easily. We repeat the
easy computations because some intermediate results will be used later. Let us
start from the well-known representation for Brownian motion X(t) restricted to
X(0) = a,X(1) = b with 0 ≤ a < b:

X(t)
L= a + B(t)+ t (b − a − B(1)), 0 ≤ t ≤ 1.

Writing B(1) = B(t) + B ′(1 − t) (B ′ being independent of B), and replacing
B(t) = √

tN , B ′(1 − t) = √
1 − tN ′, we have

X(t)
L= a + t (b − a)+√

t(1 − t)N −√
1 − t tN ′

L= a + t (b − a)+√
t (1 − t)N.



On Exact Simulation Algorithms for Some Distributions Related to Brownian Motion 17

For the Brownian bridge Br on [0, 1], we know that

Mr
L= 1

2

(
r +

√
r2 + 2E

)
,

and thus, the minimum is distributed as

1

2

(
r −

√
r2 + 2E

)
.

Since X(t) is just a + Br (t) with r = b − a,

P

{
min

0≤t≤1
X(t) ≥ 0

}

= P

{
a + 1

2

(
b − a −

√
(b − a)2 + 2E

)
≥ 0

}

= P
{√

(b − a)2 + 2E ≤ a + b
}

= P
{
(b − a)2 + 2E ≤ (a + b)2}

= P {E ≤ 2ab}
= 1 − exp(−2ab).

For x > 0, assuming ab > 0,

P
{
Bme(t) ∈ dx

}

= P

{
X(t) ∈ dx

∣
∣∣ min

0≤s≤1
X(s) ≥ 0

}

= P{X(t) ∈ dx,min0≤s≤1 X(s) ≥ 0}
P{min0≤s≤1 X(s) ≥ 0}

= P{X(t) ∈ dx}P{min0≤s≤t Y (s) ≥ 0}P{mint≤s≤1 Z(s) ≥ 0}
P{min0≤s≤1 X(s) ≥ 0}

where Y(s) is Brownian motion on [0, t] with endpoint values a, x, and Z(s) is
Brownian motion on [t, 1] with endpoint values x, b. The decomposition into a
product in the numerator follows from the Markovian nature of Brownian motion.
Using scaling, we see that

P

{
min

0≤s≤t
Y (s) ≥ 0

}
= 1 − exp(−2(a/

√
t)(x/

√
t)) = 1 − exp(−2ax/t),

and similarly,

P

{
min
t≤s≤1

Z(s) ≥ 0

}
= 1 − exp(−2bx/(1 − t)).

Therefore, putting μ = a + t (b − a),
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P
{
Bme(t) ∈ dx

} = P
{
a + t (b − a)+√

t (1 − t)N ∈ dx
}

× (1 − exp(−2ax/t))(1 − exp(−2bx/(1 − t)))

1 − exp(−2ab)
.

The density of Bme(t) is
f (x) = g(x)× h(x),

where, for x > 0,

g(x)
def= 1√

2πt(1 − t)
exp

(
− (x − μ)2

2t (1 − t)

)
,

h(x)
def=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(1−exp(−2ax/t))(1−exp(−2bx/(1−t)))
1−exp(−2ab) if ab > 0,

x
bt
(1 − exp(−2bx/(1 − t))) if a = 0, b > 0,
x

a(1−t)
(1 − exp(−2ax/t)) if a > 0, b = 0,

2x2

t (1−t)
if a = b = 0.

When a = 0 or b = 0 or both, the density was obtained by a continuity argument.
The case a = 0, b > 0 corresponds to Brownian meander started at the origin and
ending at b, and the case a = b = 0 is just Brownian excursion. In the latter case,
the density is

2x2
√

2π(t (1 − t))3
exp

(
− x2

2t (1 − t)

)
, x > 0,

which is the density of

√
2t (1 − t)G3/2

L=
√
t (1 − t)(N2 + 2E).

More interestingly, we already noted the 3d representation of Brownian meanders,
which gives for a = 0 the recipe

Bme(t)
L=

√(
bt +√

t (1 − t)N
)2 + 2Et(1 − t),

and, by symmetry, for b = 0,

Bme(t)
L=

√(
a(1 − t)+√

t (1 − t)N
)2 + 2Et(1 − t).

We rediscover the special case a = b = 0. We do not know a simple generalization
of these sampling formulae for ab > 0. In the remainder of this section, we therefore
develop a uniformly fast rejection method for f .

If ab ≥ 1/2, we have 1 − exp(−2ab) ≥ 1 − 1/e, and thus
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h(x) ≤ e

e − 1
.

Since g is a truncated normal density, the rejection method is particularly simple:

Repeat Generate U,N . Set X ← μ+√
t (1 − t)N

Until X ≥ 0 and Ue/(e − 1) ≤ h(X)

Return X

The expected number of iterations is the integral under the dominating curve, which
is e/(e − 1).

Consider now the second case, ab ≤ 1/2. Using the general inequality 1−e−u ≤
u, and 1 − e−u ≥ u(1 − 1/e) for u ≤ 1, we have

h(x) ≤ e

e − 1
× x

bt
(1 − exp(−2bx/(1 − t))) ,

where on the right hand side, we recognize the formula for h when a = 0, b > 0
discussed above. Thus, using the sampling formula for that case, we obtain a simple
rejection algorithm with expected number of iterations again equal to e/(e − 1).

Repeat Generate U,N,E. Set X ←
√(

bt +√
t (1 − t)N

)2 + 2Et(1 − t)

Until e
e−1

UX
bt

≤ 1−exp(−2aX/t)
1−exp(−2ab)

Return X

7 Brownian Meander: Extrapolation

Given Bme(t) = a, we are asked to simulate Bme(t + s). We recall first that Brown-
ian meanders are translation invariant, i.e., Bme(t; a, b, t ′), 0 ≤ t ≤ t ′ is equivalent
to Bme(t + s; a, b, t ′ + s), 0 ≤ t ≤ t ′ for all s > 0. Also, it is quickly verified that
Bme(t; a, b, t ′), 0 ≤ t ≤ t ′ is equivalent to Brownian motion on [0, t ′] starting from
a and ending at b, conditional on staying positive (if a or b are zero, then limits
must be taken). Finally, scaling is taken care of by noting that given Bme(t) = a,
Bme(t+s) is distributed as

√
sBme(t+1) started at a/

√
s. These remarks show that

we need only be concerned with the simulation of Brownian motion B(1) on [0, 1],
given B(0) = a > 0 and conditional on min0≤t≤1 B(t) > 0. The case a = 0 reduces
to standard Brownian meander Bme(1), which we know is distributed as

√
2E.

As we remarked earlier, simple computations involving the reflection principle
show that the density of B(1) under the above restrictions is

f (x)
def= exp(− (x−a)2

2 )− exp(− (x+a)2

2 )√
2πP{|N | ≤ a} , x > 0.



20 Luc Devroye

The limit of this as a ↓ 0 is x exp(−x2/2), the density of
√

2E. The distribution
function is given by

F(x) = 1 − Φ(x + a)−Φ(x − a)

Φ(a)−Φ(−a)
,

where we recall that Φ is the distribution function of N . This is not immediately
helpful for random variate generation. We propose instead the following simple re-
jection algorithm, which has uniformly bounded expected time.

(Case a ≥ 1)
Repeat Generate U uniform [0, 1], N standard normal

X ← a +N

Until X > 0 and U ≥ exp(−2aX)

Return X

(Case 0 < a ≤ 1)
Repeat Generate U uniform [0, 1], E exponential

X ← √
2E/(1 − a2/3)

Until 2aUX exp(a2X2/6) ≤ exp(aX)+ exp(−aX)

Return X

For a ≥ 1, we apply rejection with as dominating curve the first term in the ex-
pression of f , which is nothing but the normal density with mean a. The acceptance
condition is simply U ≥ exp(−2aX), which we leave as a simple exercise. The
probability of rejection is

P{[a +N < 0] ∪ [U ≤ exp(−2a(a +N))]} ≤ P{N > a} + E{exp(−2a(a +N))}
= 1 −Φ(a)+ exp(−4a2)

≤ 1 −Φ(1)+ e−4

< 0.18.

This method applies for all a, but as a ↓ 0, we note with disappointment that the
rejection probability approaches 1. For 0 < a ≤ 1, we rewrite the numerator in f

as

exp

(
−x2

2
− a2

2

)
× (

eax + e−ax
)
,

and bound
eax + e−ax ≤ 2axe(ax)

2/6,

which is easily verified by comparing Taylor series on both sides. This explains the
rejection condition. Furthermore, the dominating curve is proportional to

x exp

(
−x2(1 − a2/3)

2

)
,
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which in turn is proportional to the density of
√

2E/(1 − a2/3). The probability of
acceptance is one over the integral of the dominating curve, which is

2ae−a2/2

√
2πP{|N | ≤ a}(1 − a2/3)

≤ 1

1 − a2/3
≤ 3

2
.

Thus, the rejection probability is less than 1/3. Therefore, the expected time taken
by the algorithm above is uniformly bounded over all choices of a.

8 Brownian Meander: Extremes

The maxima related to Bme are slightly more complicated to describe:

P{Mme ≤ x} = 1 + 2
∞∑

k=1

(−1)k exp
(−k2x2/2

)
, x > 0

(Chung 1975, 1976; Durrett and Iglehart 1977). This is also known as the (scaled)
Kolmogorov-Smirnov limit distribution. For this distribution, fast exact algorithms
exist (Devroye 1981)—more about this in the last section. Furthermore,

P{Mex ≤ x} = 1 + 2
∞∑

k=1

(1 − 4k2x2) exp
(−2k2x2), x > 0

(Chung 1975, 1976; Durrett and Iglehart 1977). This is also called the theta distri-
bution. For this too, we have fast exact methods (Devroye 1997).

The remainder of this section deals with Mme
r . Once we can simulate this, we

also have

(
Mme, Bme(1)

) ≡ (
Mme

r , r
)

with r = √
2E,

(
Mex, Bex(1)

) ≡ (
Mme

r , r
)

with r = 0.

The starting point is the following joint law,

P{Mme ≤ x, Bme(1) ≤ y}

=
∞∑

k=−∞

[
exp

(−(2kx)2/2
)− exp

(−(2kx + y)2/2
)]
, x ≥ y ≥ 0,

as obtained by Durrett and Iglehart (1977) and Chung (1976). Straightforward cal-
culations then show
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Fig. 5 The density of the maximum of a Brownian meander for r varying from 0.05 to 1.95 in
steps of 0.1. Note the accumulation at r = 0, which corresponds to the maximum of a Brownian
excursion, i.e., the theta distribution

P{Mme ≤ x, Bme(1) ∈ dy} =
∞∑

k=−∞
(2kx + y) exp

(−(2kx + y)2/2
)
dy,

x ≥ y ≥ 0.

Because Bme(1) has density y exp(−y2/2), we see that the distribution function of
Mme

r is
∞∑

k=−∞

2kx + r

r
exp

(
r2/2 − (2kx + r)2/2

)
, x ≥ r > 0.

Its density is

f (x)
def= r−1er

2/2
∞∑

k=−∞
2k

(
1 − (2kx + r)2) exp

(−(2kx + r)2/2
)
, x ≥ r > 0.

(4)
It helps to rewrite the density (4) of Mme

r by grouping the terms:

f (x) =
∞∑

k=1

fk(x)
def=

∞∑

k=1

2ke−2k2x2
g(r, k, x),

with

g(r, k, x) = 1

r
×

((
1 − (r + 2kx)2)e−2kxr − (

1 − (r − 2kx)2)e2kxr
)

= 1

r
×

(
(r2 + 4k2x2 − 1) sinh(2kxr)− 4kxr cosh(2kxr)

)
.
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The Jacobi theta function

θ(x) =
∞∑

n=−∞
exp

(−n2πx
)
, x > 0,

has the remarkable property that
√
xθ(x) = θ(1/x), which follows from the Poisson

summation formula, and more particularly from Jacobi’s theta function identity

1√
πx

∞∑

n=−∞
exp

(
− (n+ y)2

x

)
=

∞∑

n=−∞
cos (2πny) exp

(−n2π2x
)
,

y ∈ R, x > 0.

Taking derivatives with respect to y then shows the identity

1√
πx3

∞∑

n=−∞
(n+ y) exp

(
− (n+ y)2

x

)

=
∞∑

n=−∞
πn sin (2πny) exp

(−n2π2x
)
, y ∈ R, x > 0.

A term by term comparison yields the alternative representation

P{Mme ≤ x, Bme(1) ∈ dy}

= 2x
∞∑

k=−∞

(
k + y

2x

)
exp

(

− (k + y
2x )

2

1/(2x2)

)

dy

= 2x

√
π

8x6

∞∑

n=−∞
πn sin

(
2πn

y

2x

)
exp

(
−n2π2

2x2

)
dy

=
√

π

2x4

∞∑

n=−∞
πn sin

(
2πn

y

2x

)
exp

(
−n2π2

2x2

)
dy, x ≥ y ≥ 0.

The distribution function of Mme
r can also be written as

F(x) =
∞∑

n=1

Fn(x) sin
(πnr

x

)
, x ≥ r ≥ 0, (5)

where

Fn(x) =
√

2πx−2r−1er
2/2πn exp

(
−n2π2

2x2

)
.

This yields the density
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f (x) =
∞∑

n=1

F ′
n(x) sin (πnr/x)−

∞∑

n=1

Fn(x)(πnr/x2) cos (πnr/x)

=
∞∑

n=1

Fn(x)

((
n2π2 − 2x2

x3

)
sin (πnr/x)−

(πnr

x2

)
cos (πnr/x)

)

def=
∞∑

n=1

ψn(x). (6)

Armed with the dual representations (4) and (5), we develop an algorithm called
MAXMEANDER. It is based upon rejection combined with the series method devel-
oped by the author in 1981 (see also Devroye 1986). The challenge here is to have
an expected time uniformly bounded over all choices of r . For rejection, one should
make use of the properties of the family when r approaches its extremes. as r ↓ 0,

the figure above suggests that Mr
L→ M0, and that bounds on the density for M0

should help for small r . As r → ∞, the distribution “escapes to infinity”. In fact,

2r(Mr − r)
L→ E, a fact that follows from our bounds below. Thus, we should look

for exponential tail bounds that hug the density tightly near x = r . We have two
regimes, r ≥ 3/2, and r ≤ 3/2.

REGIME I: r ≥ 3/2.

Lemma 1. Assume r ≥ 3/2. For every K ≥ 1, x ≥ r ≥ 3/2,

− 1

1 − ζ
× 4K(1 + 4Kxr)

r
× e−2K2x2+2Kxr

≤
∞∑

k=K

fk(x)

≤ 1

1 − ξ
× 2K(r + 4K2x2/r)× e−2K2x2+2Kxr ,

where ξ = 6.8e−9 and ζ = 2.2e−9. Next, when r ≤ 3/2, x ≥ 3/2, we have

−8K2xe2Kxr−2K2x2

1 − τ
≤

∞∑

k=K

fk(x) ≤ 164

9(1 − ν)
K4x3e2Kxr−2K2x2

,

where ν = 16e−9 and τ = 4e−9.

This leads to an algorithm for r ≥ 3/2. Note that for this, we need a bound on f .
By Lemma 1,

f (x) ≤ s(x)
def= 2r2 + 8x2

(1 − ξ)r
× e−2x2+2xr

and the upper bound is easily checked to be log-concave for x ≥ r ≥ 3/2. Thus,
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s(x) ≤ s(r) exp((log s)′(r)(x − r)), x ≥ r,

and since (log s)′(r) = (8 − 10r2)/(5r), we have

f (x) ≤ g(x)
def= 10r

(1 − ξ)
× exp

(
−10r2 − 8

5r
(x − r)

)
, x ≥ r.

We have
∫ ∞

r

g(x)dx = 10r × 5r

(1 − ξ)(10r2 − 8)

= 5

(1 − ξ)
(
1 − 8/(10r2)

)

≤ 5

(1 − ξ) (1 − 32/90)
< 7.77.

This suggests that using g as a dominating curve for rejection yields an algorithm
that is uniformly fast when r ≥ 3/2. Also, the function g is proportional to the
density of r + cE with c = 5r/(10r2 − 8).

ALGORITHM “MAXMEANDER” (for r ≥ 3/2)
Repeat

Generate X = r + cE where c = 5r/(10r2 − 8)
Generate V uniformly on [0, 1], and set Y ← Vg(X) = 10rV e−E

(1−ξ)
k ← 2, S ← f1(X)

Decision ← “Undecided”
Repeat If Y ≤ S− 1

1−ζ
× 4k(1+4kXr)

r
× e−2k2X2+2kXr then Decision ← “Accept”

If Y ≥ S+ 2k
1−ξ

(
r + 4k2X2

r

)
× e−2k2X2+2kXr then Decision ← “Reject”

S ← S + fk(X)

k ← k + 1
Until Decision �= “Undecided”

Until Decision = “Accept”
Return X

REGIME II: r ≤ 3/2. The next Lemma provides approximation inequalities for
small values of x, thanks to the Jacobi-transformed representation (5).

Lemma 2. For every K ≥ 1, x ≤ 3/2, r ≤ 3/2,
∣
∣∣∣∣

∞∑

k=K

ψk(x)

∣
∣∣∣∣
≤ 1

1 − μ
FK(x)× K3π3r

x4
,

where μ = 16 exp(− 2π2

3 ) = 0.0222 . . . .
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Consider first x ≤ 3/2. Rejection can be based on the inequality

f (x) ≤ 1

1 − μ
F1(x)

(
π3r

x4

)

=
√

2πer
2/2π4

(1 − μ)x6
× exp

(
− π2

2x2

)

≤ g(x)
def=

√
2πe9/8π4

(1 − μ)x6
× exp

(
− π2

2x2

)
. (7)

It is remarkable, but not surprising, that the dominating function does not depend
upon r . It is uniformly valid over the range. We will apply it over R+. The random
variable π/

√
2G5/2 = π/

√
N2 + 2E1 + 2E2 has density

√
2ππ4

3x6
exp

(
− π2

2x2

)
, x > 0,

which is g(x)/p with p = 3e9/8/(1 − μ). Thus,
∫∞

0 g(x)dx = p, and rejection is
universally efficient.

Consider next x ≥ 3/2, a situation covered by the inequalities of Lemma 1.
Here we first need an upper bound to be able to apply rejection. Once again, an
exponential bound is most appropriate. To see this, not that

f (x) ≤ 164

9(1 − ν)
x3e2xr−2x2

, x ≥ 3/2.

The upper bound is log-concave in x, and we can apply the exponential tail tech-
nique for log-concave densities, which yields the further bound

f (x) ≤ g∗(x) def= q × (4 − 2r)e−(4−2r)(x−3/2), x ≥ 3/2, (8)

where

q
def=

∫ ∞

3/2
g∗(x)dx = 123 × e3r−9/2

2(1 − ν)(4 − 2r)
.

The function g∗ is proportional to the density of 3/2 +E/(4 − 2r). We are thus set
up to apply rejection with a choice of dominating curves, one having weight p for
x ≤ 3/2, and one of weight q for x ≥ 3/2. The algorithm, which has an expected
time uniformly bounded over the range r ≤ 3/2 (since p+q is uniformly bounded)
can be summarized as follows:
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ALGORITHM “MAXMEANDER” (for r ≤ 3/2)
Set p = 3e9/8

1−μ
, q = 123×e3r−9/2

2(1−ν)(4−2r) .
Repeat Generate U,V uniformly on [0, 1]

If U ≤ p
p+q

then X ← π√
N2+2E1+2E2

Y ← Vg(X) [g is as in (7)]

k ← 2, S ← ψ1(X)

Decision ← “Undecided”

Repeat If X ≥ 3/2 then Decision ← “Reject”

Set T ← 1
1−μ

Fk(X)× k3π3r

X4

If Y ≤ S − T then Decision ← “Accept”

If Y ≥ S + T then Decision ← “Reject”

S ← S + ψk(X)

k ← k + 1

Until Decision �= “Undecided”

else X ← 3
2 + E

4−2r

Y ← Vg∗(X) [g∗ is as in (8)]

k ← 2, S ← f1(X)

Decision ← “Undecided”

Repeat If Y ≤ S − 8k2Xe2kXr−2k2X2

1−τ

then Decision ← “Accept”

If Y ≥ S + 164
9(1−ν)

k4X3e2kXr−2k2X2

then Decision ← “Reject”

S ← S + fk(X)

k ← k + 1

Until Decision �= “Undecided”
Until Decision = “Accept”
Return X

Extensions. Using the ideas of this section, it is possible to develop a uniformly fast
generator for Mme when both endpoints are fixed and nonzero: Bme(0) = a and
Bme(1) = b. Majumdar et al. (2008) describe the distributions of the locations of
maxima in several constrained Brownian motions, including Brownian meanders. It
is also possible to develop uniformly fast exact simulation algorithms for them.

9 Notes on the Kolmogorov-Smirnov and Theta Distributions

The Kolmogorov-Smirnov statistic has the limit distribution function
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Fig. 6 The four main densities dealt with in this paper. The maximum of Brownian motion has
the half-normal density. the maximum of a Brownian excursion has the theta distribution. The
maximum of Brownian meander is distributed as 2K, where K has the Kolmogorov-Smirnov law.
Finally, the maximum of a standard Brownian bridge has the Rayleigh density

F(x) =
∞∑

n=−∞
(−1)ne−2n2x2

, x > 0

(Kolmogorov 1933). We call this the Kolmogorov-Smirnov distribution and denote
its random variable by K . It is known that

2K
L= Mme.

Exact random variate generation for the Kolmogorov-Smirnov law was first pro-
posed by Devroye (1981), who used the so-called alternating series method, which
is an extension of von Neumann’s (1963) rejection method. This method is useful
whenever densities can be written as infinite sums,

f (x) =
∞∑

n=0

(−1)nan(x),

where an(x) ≥ 0 and for fixed x, an(x) is eventually decreasing in n. Jacobi func-
tions are prime examples of such functions. In the present paper, we proposed an
algorithm for Mme

r that is uniformly fast over all r , and is thus more general. Re-
placing r by

√
E/2 yields a method for simulating 2K .

We say that T is theta distributed if it has distribution function

G(x) =
∞∑

n=−∞

(
1 − 2n2x2

)
e−n2x2

, x > 0.
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We warn that some authors use a different scaling: we call a random variable with
distribution function G a theta random variable, and denote it by T . It appears as the
limit law of the height of random conditional Galton-Watson trees (see, e.g., Renyi
and Szekeres 1967; de Bruijn et al. 1972; Chung 1975; Kennedy 1976; Meir and
Moon 1978; Flajolet and Odlyzko 1982). Furthermore,

T√
2

L= Mex

(see, e.g., Pitman and Yor 2001). Devroye (1997) published an exact algorithm for
T that uses the principle of a converging series representation for the density. The
algorithm presented in this paper for Mme

r with r = 0 can also be used.
Both T and K are thus directly related to the maxima dealt with in this paper.

But they are connected in a number of other ways that are of independent interest.
To describe the relationships, we introduce the random variables J and J ∗ where
the symbol J refers to Jacobi. The density of J is

f (x) = d

dx

∞∑

n=−∞
(−1)n exp

(
−n2π2x

2

)
=

∞∑

n=1

(−1)n+1n2π2 exp

(
−n2π2x

2

)
.

The density of J ∗ is

f ∗(x) = π

∞∑

n=0

(−1)n
(
n+ 1

2

)
exp

(
− (n+ 1/2)2π2x

2

)
.

We note that all moments are finite, and are expressible in terms of the Riemann zeta
function. The properties of these laws are carefully laid out by Biane et al. (2001).
Their Laplace transforms are given by

E
{
e−λJ

}
=

√
2λ

sinh(
√

2λ)
, E

{
e−λJ ∗

}
= 1

cosh(
√

2λ)
.

Using Euler’s formulae

sinh z = z

∞∏

n=1

(
1 + z2

n2π2

)
, cosh z =

∞∏

n=1

(
1 + z2

(n− 1/2)2π2

)
,

it is easy to see that J and J ∗ are indeed positive random variables, and that they
have the following representation in terms of i.i.d. standard exponential random
variables E1, E2, . . .:

J
L= 2

π2

∞∑

n=1

En

n2
, J ∗ L= 2

π2

∞∑

n=1

En

(n− 1/2)2
.
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It is known that J ∗ is the first passage time of Brownian motion started at the origin
for absolute value 1, and J is similarly defined for the Bessel process of dimension
3 (which is the square root of the sum of the squares of three independent Brownian
motions). See, e.g., Yor (1992, 1997). An exact algorithm for J ∗ is given by Devroye
(2009).

Watson (1961) first observed that K
L= (π/2)

√
J , and so we have

Mme L= π
√
J

L= 2K.

In addition, Mme is distributed as twice the maximum absolute value of a Brownian
bridge on [0, 1] (Durrett et al. 1977; Kennedy 1976; Biane and Yor 1987; Borodin
and Salminen 2002).

Let us write K(1),K(2), . . . for a sequence of i.i.d. copies of a Kolmogorov-
Smirnov random variable K . As noted by Biane et al. (2001), the distribution func-
tion of the sum J (1)+ J (2) of two independent copies of J is given by

∞∑

n=−∞

(
1 − n2π2x

)
e−n2π2x/2, x > 0.

Thus, we have the distributional identity

π2

2
(J (1)+ J (2))

L= T 2.

Using J
L= (4/π2)K2, we deduce

T
L=

√
2(K(1)2 +K(2)2).

This provides a route to the simulation of T via a generator for K .
It is also noteworthy that

J
L= J (1)+ J (2)

(1 + U)2

where U is uniform [0, 1] and independent of the J (i)’s (Biane et al. 2001,
Sect. 3.3). Thus we have the further identities

J
L= 2T 2

π2(1 + U)2
L= 4K2

π2
.

Finally,

K
L= T

(1 + U)
√

2
.

Further properties of K and of maxima of Bessel bridges are given by Pitman and
Yor (1999).
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Appendix

Proof (of Lemma 1). We deal with r ≥ 3/2 first. Clearly, using x ≥ r ,

g(r, k, x) ≤ (r + 4k2x2/r) exp(2kxr).

Define
h(r, k, x) = 2k(r + 4k2x2/r)× e−2k2x2+2kxr .

Also,
g(r, k, x) ≥ −(2/r)(1 + 4kxr) exp(2kxr).

Define

h∗(r, k, x) = 4k(1 + 4kxr)

r
× e−2k2x2+2kxr .

We have
−h∗(r, k, x) ≤ fk(x) ≤ h(r, k, x).

For k ≥ K ≥ 1,

h(r, k + 1, x)

h(r, k, x)
= (1 + 1/k)

1 + 4(k + 1)2(x/r)2

1 + 4k2(x/r)2
× e−(4k+2)x2+2xr

≤ 2 × 1 + 16

1 + 4
× e−6x2+2xr

≤ 34

5
× e−4x2 ≤ 34

5
× e−4r2 ≤ 34e−9

5
def= ξ.

Therefore,

∞∑

k=K

fk(x) ≤
∞∑

k=K

h(r, k, x) ≤ 1

1 − ξ
× h(r,K, x)

= 1

1 − ξ
× 2K(r + 4K2x2/r)× e−2K2x2+2Kxr .

Reasoning in a similar way,
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h∗(r, k + 1, x)

h∗(r, k, x)
=

(
1 + 1

k

)
×

(
1 + 4xr

1 + 4kxr

)
× e−(4k+2)x2+2xr

≤ 2

(
2 + 4r2

1 + 4r2

)
× e−6x2+2xr ≤ 2 × 11

10
e−4x2

≤ 2.2e−4r2 ≤ 2.2e−9 def= ζ.

Therefore,

∞∑

k=K

fk(x) ≥ −
∞∑

k=K

h∗(r, k, x) ≥ − 1

1 − ζ
× h∗(r,K, x)

≥ − 1

1 − ζ
× 4K(1 + 4Kxr)

r
× e−2K2x2+2Kxr .

Consider next the case r ≤ 3/2 but x ≥ 3/2. Observe that in this range, r2 +
4k2x2−1 ∈ [8, 5/4+4k2x2] ⊆ [8, (41/9)k2x2]. Also, for θ ≥ 0, sinh θ ∈ [θ, θeθ ].
Thus,

−rk(x)
def= −8k2xe2kxr−2k2x2 ≤ fk(x) ≤ 4 × 41

9
k4x3e2kxr−2k2x2 def= Rk(x).

For k ≥ 1,

Rk+1(x)

Rk(x)
= (1 + 1/k)4e2xr−2(2k+1)x2 ≤ 16e2xr−6x2 ≤ 16e3r−27/2 ≤ 16e−9 def= ν.

Thus,
∑

k≥K fk(x) ≤ RK(x)/(1 − ν) for all K ≥ 1. Similarly,

rk+1(x)

rk(x)
= (1 + 1/k)2e2xr−2(2k+1)x2 ≤ 4e−9 def= τ.

Thus,
∑

k≥K fk(x) ≥ −rK(x)/(1 − τ) for all K ≥ 1.

Proof (of Lemma 2). For the first part, assume x ≤ 3/2, and let ψk and Fk be
as defined in (6). For x ≤ π/

√
2 (which is ≥ Δ), using | sin x| ≤ |x|, and, for

α, β, θ ≥ 0, |α sin θ − β cos θ | ≤ αθ + β,

ψk(x) ≤ Fk(x)

(
k3π3r

x4
− πkr

x2

)
≤ Fk(x)

(
k3π3r

x4

)
def= Hk(x),

and ψk(x) ≥ −Hk(x). For k ≥ 1,

Hk+1(x)

Hk(x)
=

(
1 + 1

k

)4

e
− (2k+1)π2

2x2 ≤ 16e
− 3π2

2x2 ≤ 16e−
2π2

3
def= μ.

We conclude that
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∞∑

k=K

ψk(x) ≤
∞∑

k=K

Hk(x) ≤ 1

1 − μ
HK(x).

Similarly, on the bottom side,

∞∑

k=K

ψk(x) ≥ −
∞∑

k=K

Hk(x) ≥ − 1

1 − μ
HK(x).

Further references relevant to the material in this paper include Asmussen et al.
(1995), Bertoin et al. (1999), Bonaccorsi and Zambotti (2004), Calvin (2004),
Ciesielski and Taylor (1962), Fujita and Yor (2007), Lévy (1948), Pitman and Yor
(2003), Revuz and Yor (1991), and Zambotti (2003).
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A Review on Regression-based Monte Carlo
Methods for Pricing American Options

Michael Kohler

Abstract In this article we give a review of regression-based Monte Carlo methods
for pricing American options. The methods require in a first step that the generally
in continuous time formulated pricing problem is approximated by a problem in dis-
crete time, i.e., the number of exercising times of the considered option is assumed
to be finite. Then the problem can be formulated as an optimal stopping problem
in discrete time, where the optimal stopping time can be expressed by the aid of
so-called continuation values. These continuation values represent the price of the
option given that the option is exercised after time t conditioned on the value of
the price process at time t . The continuation values can be expressed as regression
functions, and regression-based Monte Carlo methods apply regression estimates to
data generated by the aid of artificial generated paths of the price process in order
to approximate these conditional expectations. In this article we describe various
methods and corresponding results for estimation of these regression functions.

1 Pricing of American Options as Optimal Stopping Problem

In many financial contracts it is allowed to exercise the contract early before expiry.
E.g., many exchange traded options are of American type and allow the holder any
exercise date before expiry, mortgages have often embedded prepayment options
such that the mortgage can be amortized or repayed, or life insurance contracts
allow often for early surrender. In this article we are interested in pricing of options
with early exercise features.

It is well-known that in complete and arbitrage free markets the price of a deriva-
tive security can be represented as an expected value with respect to the so called
martingale measure, see for instance Karatzas and Shreve (1998). Furthermore, the
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price of an American option with maturity T is given by the value of the optimal
stopping problem

V0 = sup
τ∈T([0,T ])

E
{
d0,τ gτ (Xτ )

}
, (1)

where gt is a nonnegative payoff function, (Xt )0≤t≤T is a stochastic process, which
models the relevant risk factors, T([0, T ]) is the class of all stopping times with val-
ues in [0, T ], and ds,t are nonnegative F((Xu)s≤u≤t )-measurable discount factors
satisfying d0,t = d0,s · ds,t for s < t . Here, a stopping time τ ∈ T([0, T ]) is a mea-
surable function of (Xt )0≤t≤T with values in [0, T ] with the property that for any
r ∈ [0, T ] the event {τ ≤ r} is contained in the sigma algebra Fr = F((Xs)0≤s≤r )

generated by (Xs)0≤s≤r .
There are various possibilities for the choice of the process (Xt )0≤t≤T . The most

simple examples are geometric Brownian motions, as for instance in the celebrated
Black-Scholes setting. More general models include stochastic volatility models,
jump-diffusion processes or general Levy processes. The model parameters are usu-
ally calibrated to observed time series data.

The first step in addressing the numerical solution of (1) is to pass from con-
tinuous time to discrete time, which means in financial terms to approximate the
American option by a so-called Bermudan option. The convergence of the discrete
time approximations to the continuous time optimal stopping problem is consid-
ered in Lamberton and Pagès (1990) for the Markovian case but also in the abstract
setting of general stochastic processes.

For simplicity we restrict ourselves directly to a discrete time scale and consider
exclusively Bermudan options. In analogy to (1), the price of a Bermudan option is
the value of the discrete time optimal stopping problem

V0 = sup
τ∈T(0,...,T )

E {fτ (Xτ )} , (2)

where X0, X1, . . . , XT is now a discrete time stochastic process, ft is the dis-
counted payoff function, i.e., ft (x) = d0,t gt (x), and T(0, . . . , T ) is the class of
all {0, . . . , T }-valued stopping times. Here a stopping time τ ∈ T(0, . . . , T ) is a
measurable function of X0, . . . , XT with the property that for any k ∈ {0, . . . , T }
the event {τ = k} is contained in the sigma algebra F(X0, . . . , Xk) generated by
X0, . . . , Xk .

2 The Optimal Stopping Time

In the sequel we assume that X0, X1, . . . , XT is a R
d -valued Markov process

recording all necessary information about financial variables including prices of the
underlying assets as well as additional risk factors driving stochastic volatility or
stochastic interest rates. Neither the Markov property nor the form of the payoff as
a function of the state Xt are very restrictive and can often be achieved by including
supplementary variables.
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The computation of (2) can be done by determination of an optimal stopping time
τ ∗ ∈ T(0, . . . , T ) satisfying

V0 = sup
τ∈T(0,...,T )

E {fτ (Xτ )} = E{fτ∗(Xτ∗)}. (3)

For 0 ≤ t < T let

qt (x) = sup
τ∈T(t+1,...,T )

E {fτ (Xτ )|Xt = x} (4)

be the so-called continuation value describing the value of the option at time t given
Xt = x and subject to the constraint of holding the option at time t rather than
exercising it. For t = T we define the corresponding continuation value by

qT (x) = 0 (x ∈ R
d), (5)

because the option expires at time T and hence we do not get any money if we sell
it after time T .

In the sequel we will use techniques from the general theory of optimal stopping
(cf., e.g., Chow et al. 1971 or Shiryayev 1978) in order to show that the optimal
stopping time τ ∗ is given by

τ ∗ = inf{s ∈ {0, 1, . . . , T } : qs(Xs) ≤ fs(Xs)}. (6)

Since qT (x) = 0 and fT (x) ≥ 0 there exists always some index where
qs(Xs) ≤ fs(Xs), so the right-hand side above is indeed well defined. The above
form of τ ∗ allows a very nice interpretation: in order to sell the option in an optimal
way, we have to sell it as soon as the value we get if we sell it immediately is at least
as large as the value we get in the mean in the future, if we sell it in the future in an
optimal way.

In order to prove (6) we need the following notations: Let T(t, t + 1, . . . , T ) be
the subset of T(0, . . . , T ) consisting of all stopping times which take on values only
in {t, t + 1, . . . , T } and let

Vt (x) = sup
τ∈T(t,t+1,...,T )

E
{
fτ (Xτ )

∣∣Xt = x
}

(7)

be the so-called value function which describes the value we get in the mean
if we sell the option in an optimal way after time t − 1 given Xt = x. For
t ∈ {−1, 0, . . . , T − 1} set

τ ∗t = inf{s ≥ t + 1 : qs(Xs) ≤ fs(Xs)}, (8)

hence τ ∗ = τ ∗−1. Then the following result holds:

Theorem 1. Under the above assumptions we have for any t ∈ {−1, 0, . . . , T } and
PXt -almost all x ∈ R

d :
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Vt (x) = E
{
fτ∗t−1

(Xτ∗t−1
)
∣∣Xt = x

}
. (9)

Furthermore we have
V0 = E {fτ∗(Xτ∗)} . (10)

The above theorem is well-known in literature (cf., e.g., Chap. 8 in Glasserman
2004), but usually not proven completely. For the sake of completeness we present
a complete proof next.

Proof. We prove (9) by induction. For t = T we have

τ ∗T−1 = T

and any τ ∈ T(T ) satisfies
τ = T .

So in this case we have

VT (x) = sup
τ∈T(T )

E
{
fτ (Xτ )

∣∣XT = x
} = E

{
fT (XT )

∣∣XT = x
}

= E
{
fτ∗T−1

(Xτ∗T−1
)
∣∣XT = x

}
.

Let t ∈ {0, . . . , T − 1} and assume that

Vs(x) = E
{
fτ∗s−1

(Xτ∗s−1
)
∣∣Xs = x

}

holds for all t < s ≤ T . In the sequel we prove (9). To do this, let τ ∈ T(t, . . . , T )

be arbitrary. Then

fτ (Xτ ) = fτ (Xτ ) · 1{τ=t} + fτ (Xτ ) · 1{τ>t}
= ft (Xt ) · 1{τ=t} + fmax{τ,t+1}(Xmax{τ,t+1}) · 1{τ>t}.

Since 1{τ=t} and 1{τ>t} = 1− 1{τ≤t} are measurable with respect to X0, . . . , Xt and
since (Xt )0≤t≤T is a Markov process we have

E{fτ (Xτ )|Xt }
= E{ft (Xt ) · 1{τ=t}|X0, . . . , Xt }
+ E{fmax{τ,t+1}(Xmax{τ,t+1}) · 1{τ>t}|X0, . . . , Xt }

= ft (Xt ) · 1{τ=t} + 1{τ>t} · E{fmax{τ,t+1}(Xmax{τ,t+1})|X0, . . . , Xt }
= ft (Xt ) · 1{τ=t} + 1{τ>t} · E{fmax{τ,t+1}(Xmax{τ,t+1})|Xt }.

Using the definition of Vt+1 together with max{τ, t + 1} ∈ T(t + 1, . . . , T ) and the
Markov property we get

E{fmax{τ,t+1}(Xmax{τ,t+1})|Xt } = E{E{fmax{τ,t+1}(Xmax{τ,t+1})|Xt+1}|Xt }
≤ E{Vt+1(Xt+1)|Xt },
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from which we can conclude

E{fτ (Xτ )|Xt } ≤ ft (Xt ) · 1{τ=t} + 1{τ>t} · E{Vt+1(Xt+1)|Xt }
≤ max{ft (Xt ),E{Vt+1(Xt+1)|Xt }}.

Now we make the same calculations using τ = τ ∗t−1. We get

E{fτ∗t−1
(Xτ∗t−1

)|Xt }
= ft (Xt ) · 1{τ∗t−1=t} + 1{τ∗t−1>t} · E{fmax{τ∗t−1,t+1}(Xmax{τ∗t−1,t+1})|Xt }.

By definition of τ ∗t we have on {τ ∗t−1 > t}
max{τ ∗t−1, t + 1} = τ ∗t .

Using this, the Markov property and the induction hypothesis we can conclude

E{fτ∗t−1
(Xτ∗t−1

)|Xt } = ft (Xt ) · 1{τ∗t−1=t} + 1{τ∗t−1>t} · E{E{fτ∗t (Xτ∗t )|Xt+1}|Xt }
= ft (Xt ) · 1{τ∗t−1=t} + 1{τ∗t−1>t} · E{Vt+1(Xt+1)|Xt }.

Next we show
E{Vt+1(Xt+1)|Xt } = qt (Xt ). (11)

To see this, we observe that by induction hypothesis, Markov property and because
of τ ∗t ∈ T(t + 1, . . . , T ) we have

E{Vt+1(Xt+1)|Xt } = E{E{fτ∗t (Xτ∗t )|Xt+1}|Xt } = E{fτ∗t (Xτ∗t )|Xt }
≤ sup

τ∈T(t+1,...,T )

E {fτ (Xτ )|Xt } = qt (Xt ).

Furthermore the definition of Vt+1 implies

E{Vt+1(Xt+1)|Xt } = E

{

sup
τ∈T(t+1,...,T )

E {fτ (Xτ )|Xt+1} |Xt

}

≥ sup
τ∈T(t+1,...,T )

E {E {fτ (Xτ )|Xt+1} |Xt } = qt (Xt ).

Using the definition of τ ∗t−1 we conclude

ft (Xt ) · 1{τ∗t−1=t} + 1{τ∗t−1>t} · E{Vt+1(Xt+1)|Xt }
= ft (Xt ) · 1{τ∗t−1=t} + 1{τ∗t−1>t} · qt (Xt )

= max{ft (Xt ), qt (Xt )}.
Summarizing the above results we have
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Vt(x) = sup
τ∈T(t,t+1,...,T )

E
{
fτ (Xτ )

∣∣Xt = x
} ≤ max{ft (x),E{Vt+1(Xt+1)|Xt = x}}

= max{ft (x), qt (x)} = E{fτ∗t−1
(Xτ∗t−1

)|Xt = x},
which proves

Vt(x) = max{ft (x), qt (x)} = E{fτ∗t−1
(Xτ∗t−1

)|Xt = x}. (12)

In order to prove (10) we observe that by arguing as above we get

V0 = sup
τ∈T(0,...,T )

E {fτ (Xτ )}

= sup
τ∈T(0,...,T )

E
{
f0(X0) · 1{τ=0} + fmax{τ,1}(Xmax{τ,1}) · 1{τ>0}

}

= E
{
f0(X0) · 1{f0(X0)≥q0(X0)} + fτ∗0 (Xτ∗0 ) · 1{f0(X0)<q0(X0)}

}

= E
{
f0(X0) · 1{f0(X0)≥q0(X0)} + E{V1(X1)|X0} · 1{f0(X0)<q0(X0)}

}

= E
{
f0(X0) · 1{f0(X0)≥q0(X0)} + q0(X0) · 1{f0(X0)<q0(X0)}

}

= E {max{f0(X0), q0(X0)}}
= E {fτ∗(Xτ∗)} . ��

Remark 1. The continuation values and the value function are closely related. As we
have seen already in the proof of Theorem 1 (cf., (11) and (12)) we have

qt (x) = E{Vt+1(Xt+1)|Xt = x}
and

Vt(x) = max{ft (x), qt (x)}.
Remark 2. Remark 1 shows that qs(Xs) ≤ fs(Xs) is equivalent to Vs(Xs) ≤
fs(Xs). Hence the optimal stopping time can be also expressed via

τ ∗ = inf{s ∈ {0, . . . , T } : Vs(Xs) ≤ fs(Xs)}. (13)

3 Regression Representations for Continuation Values

The previous section shows that it suffices to determine the continuation values
q0, . . . , qT−1 in order to determine the optimal stopping time. We show in our next
theorem three different regression representations for qt , which have been intro-
duced in Longstaff and Schwartz (2001), Tsitsiklis and Van Roy (1999) and Egloff
(2005), resp. In principle they allow a direct (and sometimes recursive) computation
of the continuation values by computing conditional expectations.

Theorem 2. Under the above assumptions for any t ∈ {0, . . . , T − 1} and PXt -
almost all x ∈ R

d the following relations hold:
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(a)
qt (x) = E

{
fτ∗t (Xτ∗t )

∣∣Xt = x
}
, (14)

(b)
qt (x) = E

{
max {ft+1(Xt+1), qt+1(Xt+1)}

∣∣Xt = x
}

(15)

(c)

qt (x) = E
{
Θ

(w)
t+1,t+w+1

∣∣Xt = x
}

(16)

for any w ∈ {0, 1, . . . , T − t − 1}, where

Θ
(w)
t+1,t+w+1

=
t+w+1∑

s=t+1

fs(Xs) · 1{ft+1(Xt+1)<qt+1(Xt+1),...,fs−1(Xs−1)<qs−1(Xs−1),fs (Xs)≥qs(Xs)}

+ qt+w+1(Xt+w+1) · 1{ft+1(Xt+1)<qt+1(Xt+1),...,ft+w+1(Xt+w+1)<qt+w+1(Xt+w+1)}.

Proof. (a) By (11), Theorem 1 and Markov property we get

qt (Xt ) = E
{
Vt+1(Xt+1)

∣∣Xt

}

= E
{
E
{
fτ∗t (Xτ∗t )

∣∣Xt+1
} ∣∣Xt

}

= E
{
E
{
fτ∗t (Xτ∗t )

∣∣X0, . . . , Xt+1
} ∣∣X0, . . . , Xt

}

= E
{
fτ∗t (Xτ∗t )

∣∣X0, . . . , Xt

}

= E
{
fτ∗t (Xτ∗t )

∣∣Xt

}
.

(b) Because of

fτ∗t (Xτ∗t ) = ft+1(Xt+1) · 1{τ∗t =t+1} + fτ∗t (Xτ∗t ) · 1{τ∗t >t+1}
= ft+1(Xt+1) · 1{ft+1(Xt+1)≥qt+1(Xt+1)}

+ fτ∗t+1
(Xτ∗t+1

) · 1{ft+1(Xt+1)<qt+1(Xt+1)}

we can conclude from (a) and Markov property

qt (Xt ) = E
{
ft+1(Xt+1) · 1{ft+1(Xt+1)≥qt+1(Xt+1)}

+ fτ∗t+1
(Xτ∗t+1

) · 1{ft+1(Xt+1)<qt+1(Xt+1)}
∣∣Xt

}

= E
{
E
{
. . .

∣∣X0, . . . , Xt+1
} ∣∣X0, . . . , Xt

}

= E
{
ft+1(Xt+1) · 1{ft+1(Xt+1)≥qt+1(Xt+1)}

+ E
{
fτ∗t+1

(Xτ∗t+1
)
∣∣Xt+1

} · 1{ft+1(Xt+1)<qt+1(Xt+1)}
∣∣Xt

}

= E
{
ft+1(Xt+1) · 1{ft+1(Xt+1)≥qt+1(Xt+1)}

+ qt+1(Xt+1) · 1{ft+1(Xt+1)<qt+1(Xt+1)}
∣∣Xt

}

= E
{
max

{
ft+1(Xt+1), qt+1(Xt+1)

}∣∣Xt

}
.

(c) For any w ∈ {0, 1, . . . , T − t − 1} we have
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fτ∗t (Xτ∗t )

=
w∑

s=0

ft+s+1(Xt+s+1) · 1{τ∗t =t+s+1} + fτ∗t (Xτ∗t ) · 1{τ∗t >t+w+1}

=
w∑

s=0

ft+s+1(Xt+s+1)

· 1{ft+1(Xt+1)<qt+1(Xt+1),...,ft+s (Xt+s )<qt+s (Xt+s ),ft+s+1(Xt+s+1)≥qt+s+1(Xt+s+1)}
+ fτ∗t+w

(Xτ∗t+w
) · 1{ft+1(Xt+1)<qt+1(Xt+1),...,ft+w+1(Xt+w+1)<qt+w+1(Xt+w+1)}.

Using a) and Markov property we conclude

qt (Xt ) = E
{
fτ∗t (Xτ∗t )

∣∣Xt

}

×E
{ w∑

s=0

ft+s+1(Xt+s+1)

· 1{ft+1(Xt+1)<qt+1(Xt+1),...,ft+s (Xt+s )<qt+s (Xt+s ),ft+s+1(Xt+s+1)≥qt+s+1(Xt+s+1)}
+ fτ∗t+w

(Xτ∗t+w
)

· 1{ft+1(Xt+1)<qt+1(Xt+1),...,ft+w+1(Xt+w+1)<qt+w+1(Xt+w+1)}
∣∣Xt

}

= E{E{. . . |X0, . . . , Xt+w+1}|X0, . . . , Xt }

= E
{ w∑

s=0

ft+s+1(Xt+s+1)

· 1{ft+1(Xt+1)<qt+1(Xt+1),...,ft+s (Xt+s )<qt+s (Xt+s ),ft+s+1(Xt+s+1)≥qt+s+1(Xt+s+1)}
+E{fτ∗t+w

(Xτ∗t+w
)|Xt+w+1}

· 1{ft+1(Xt+1)<qt+1(Xt+1),...,ft+w+1(Xt+w+1)<qt+w+1(Xt+w+1)}
∣
∣Xt

}

= E
{ w∑

s=0

ft+s+1(Xt+s+1)

· 1{ft+1(Xt+1)<qt+1(Xt+1),...,ft+s (Xt+s )<qt+s (Xt+s ),ft+s+1(Xt+s+1)≥qt+s+1(Xt+s+1)}
+ qt+w+1(Xt+w+1)

· 1{ft+1(Xt+1)<qt+1(Xt+1),...,ft+w+1(Xt+w+1)<qt+w+1(Xt+w+1)}
∣∣Xt

}
,

which implies the assertion. ��
Remark 3. Because of

Θ
(0)
t+1,t+1 = max{ft+1(Xt+1), qt+1(Xt+1)}

and
Θ

(T−t−1)
t+1,T = fτ∗t (Xτ∗t )
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the regression representation (16) includes (14) (for t = T − t − 1) and (15) (for
t = 0) as special cases.

Remark 4. There exists also regression representations for the value functions. E.g.,
as we have seen already in Theorem 1 and its proof we have

Vt (x) = E{fτ∗t−1
(Xτ∗t−1

)|Xt = x}
and

Vt (x) = max{ft (x),E{Vt+1(Xt+1)|Xt = x}}.
Furthermore, similarly to Theorem 2 it can be shown

Vt(x) = E{Θ(w+1)
t,t+w+1|Xt = x}.

Using Theorem 2 or Remark 4 we can compute the continuation values and the
value functions by (recursive) evaluation of conditional expectations. However, in
applications the underlying distributions will be rather complicated and therefore it
is not clear how to compute these conditional expectations in practice.

4 Outline of Regression-based Monte Carlo Methods

The basic idea of regression-based Monte Carlo methods is to use regression es-
timates as numerical procedures to compute the above conditional estimations ap-
proximately. To do this artificial samples of the price process are generated which
are used to construct data for the regression estimates. The algorithms either con-
struct estimates q̂n,t of the continuation values qt or estimates V̂n,t of the value
functions. Comparing the regression representations for the continuation values like

qt (x) = E
{
max {ft+1(Xt+1), qt+1(Xt+1)}

∣∣Xt = x
}

with the regression representation for the value function like

Vt (x) = max{ft (x),E{Vt+1(Xt+1)|Xt = x}},
we see that in the later relation the maximum occurs outside of the expectation
and as a consequence the value function will be in generally not differentiable. In
contrast in the first relation the maximum will be smoothed by taking its conditional
expectation. Since it is always easier to estimate smooth regression functions there
is some reason to focus on continuation values, which we will do in the sequel.

Let X0, X1, . . . , XT be a R
d -valued Markov process and let ft be the discounted

payoff function. We assume that the data generating process is completely known,
i.e., that all parameters of this process are already estimated from historical data.
In order to estimate the continuation values qt recursively, we generate in a first
step artificial independent Markov processes {Xi,t }t=0,...,T (i = 1, 2, . . . , n) which
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are identically distributed as {Xt }t=0,...,T . Then we use these so-called Monte Carlo
samples in a second step to generate recursively data to estimate qt by using one of
the regression representation given in Theorem 2.

We start with
q̂n,T (x) = 0 (x ∈ R

d).

Given an estimate q̂n,t+1 of qt+1, we estimate

qt (x) = E
{
fτ∗t (Xτ∗t )

∣∣Xt = x
}
,

= E
{
max{ft+1(Xt+1), qt+1(Xt+1)}

∣∣Xt = x
}

= E
{
Θ

(w)
t+1,t+w+1

∣∣Xt = x
}

by applying a regression estimate to an “approximative” sample of (Xt , Yt ) where

Yt = Yt (Xt+1, . . . , XT , qt+1, . . . , qT )

is either given by

Yt = Yt (Xt+1, . . . , Xt , qt+1, . . . , qT ) = fτ∗t (Xτ∗t ),

Yt = Yt (Xt+1, qt+1) = max{ft+1(Xt+1), qt+1(Xt+1)}
or

Yt = Yt (Xt+1, . . . , Xt+w+1, qt+1, . . . , qt+w+1) = Θ
(w)
t+1,t+w+1.

With the notation

Ŷi,t = Yt (Xi,t+1, . . . , Xi,T , q̂n,t+1, . . . , q̂n,T )

(where we have suppressed the dependency of Ŷi,t on n) this “approximative” sam-
ple is given by {(

Xi,t , Ŷi,t

)
: i = 1, . . . , n

}
. (17)

After having computed the estimates q̂0,n, . . . , q̂n,T we can use them in two different
ways to produce estimates of V0. Firstly we can estimate

V0 = E {max{f0(X0), q0(X0)}}
(cf. proof of Theorem 1) by just replacing q0 by its estimate, i.e., by a Monte Carlo
estimate of

E
{
max{f0(X0), q̂0,n(X0)}

}
. (18)

Secondly, we can use our estimates to construct a plug-in estimate

τ̂ = inf{s ∈ {0, 1, . . . , T } ≥ 0 : q̂n,s(Xs) ≤ fs(Xs)} (19)

of the optimal stopping rule τ ∗ and estimate V0 by a Monte Carlo estimate of
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E {fτ̂ (Xτ̂ )} . (20)

Here in (19) and in (20) the expectation is taken only with respect to X0, . . . , XT and
not with respect to the random variables used in the definition of the estimates q̂n,s .

This kind of recursive estimation scheme was firstly proposed by Carriér (1996)
for the estimation of value functions. In Tsitsiklis and Van Roy (1999) and Longstaff
and Schwartz (2001) it was used to construct estimates of continuation values.

In view of a theoretical analysis of the estimates it usually helps if new variables
of the price process are used for each recursive estimation step. In this way the error
propagation (i.e., the influence of the error of q̂n,t+1, . . . , q̂n,T ) can be analyzed
much easier, cf. Kohler et al. (2010) or Kohler (2008a).

5 Algorithms Based on Linear Regression

In most applications the algorithm of the previous section is applied in connection
with linear regression. Here basis functions

B1, . . . , BK : R
d → R

are chosen and the estimate q̂n,t is defined by

q̂n,t =
K∑

k=1

âk · Bk, (21)

where â1, . . . , âK ∈ R are chosen such that

1

n

n∑

i=1

∣∣∣∣Ŷi,t −
K∑

k=1

âk ·Bk(Xi,t )

∣∣∣∣

2

= min
a1,...,aK∈R

1

n

n∑

i=1

∣∣∣∣Ŷi,t −
K∑

k=1

ak ·Bk(Xi,t )

∣∣∣∣

2

. (22)

Here Ŷi,t are defined either by

Ŷi,t = max{ft+1(Xi,t+1), q̂n,t+1(Xi,t+1)}
in case of the Tsitsiklis-Van-Roy algorithm, or by

Ŷi,t = fτ̂i,t (Xi,τ̂i,t )

where
τ̂i,t = inf{s ∈ {t + 1, . . . , T } : fs(Xi,s) ≥ q̂n,s(Xi,s)}

in case of the Longstaff-Schwartz algorithm.
The estimate can be computed easily by solving a linear equation system. Indeed,

it is well-known from numerical analysis (cf., e.g., Stoer 1993, Chap. 4.8.1) that (22)
is equivalent to
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BT Bâ = BT Y (23)

where
Y = (Ŷ1,t , . . . , Ŷn,t )

T , B = (Bk(Xi,t ))i=1,...,n,k=1,...,K

and
â = (â1, . . . , âK)T .

It was observed e.g. in Longstaff and Schwartz (2001) that the above estimate
combined with the corresponding plug-in estimate (19) of the optimal stopping rule
is rather robust with respect to the choice of the basis functions. The most simplest
possibility are monomials, i.e.,

Bk(u1, . . . , ud) = u
s1,k
1 · us2,k

2 · · · usd,k
d

for some nonnegative integers s1,k , . . . sd,k . For d = 1 this reduce to fitting a poly-
nomial of a fixed degree (e.g., K−1) to the data. For d large the degree of the multi-
nomial polynomial (e.g. defined by s1,k + · · · + sd,k or by maxj=1,...,d,k=1,...,K sj,k
has chosen to be small in order to avoid that there are too many basis functions. It
is well-known in practice that the estimate gets much better if the payoff function is
chosen as one of the basis functions.

The Longstaff-Schwartz algorithm was proposed in Longstaff and Schwartz
(2001). It was further theoretical examined in Clément et al. (2002). The Tsitsiklis-
Van-Roy algorithm was introduced and theoretical examined in Tsitsiklis and Van
Roy (1999, 2001).

6 Algorithms Based on Nonparametric Regression

Already in Carriér (1996) it was proposed to use nonparametric regression to esti-
mate value functions. In the sequel we describe various nonparametric regression
estimates of continuation values.

According to Györfi et al. (2002) there are four (related) paradigms for defining
nonparametric regression estimates. The first is local averaging, where the estimate
is defined by

q̂n,t (x) =
n∑

i=1

Wn,i(x,X1,t , . . . , Xn,t ) · Ŷi,t (24)

with weights Wn,i(x,X1,t , . . . , Xn,t ) ∈ R depending on the x-values of the sample.
The most popular example of local averaging estimates is the Nadaraya-Watson
kernel estimate, where a kernel function

K : R
d → R

(e.g., the so-called naive kernel K(u) = 1{‖u‖≤1} or the Gaussian kernel K(u) =
exp(−‖u‖2/2)) and a so-called bandwidth hn > 0 are chosen and the weights are
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defined by

Wn,i(x,X1,t , . . . , Xn,t ) =
K(

x−Xi,t

hn
)

∑n
j=1 K(

x−Xj,t

hn
)
.

Here the estimate is given by

q̂n,t (x) =
∑n

i=1 K(
x−Xi,t

hn
) · Ŷi,t

∑n
j=1 K(

x−Xj,t

hn
).

The second paradigm is global modeling (or least squares estimation), where a func-
tion space Fn consisting of functions f : R

d → R is chosen and the estimate is
defined by

q̂n,t ∈ Fn and
1

n

n∑

i=1

|Ŷi,t − q̂n,t (Xi,t )|2 = min
f∈Fn

1

n

n∑

i=1

|Ŷi,t − f (Xi,t )|2. (25)

In case that Fn is a linear vector space (with dimension depending on the sample
size) this estimate can be computed by solving a linear equation system correspond-
ing to (23). Such linear function spaces occur e.g. in the definition of least squares
spline estimates with fixed knot sequences, where the set Fn is chosen as a set of
piecewise polynomials satisfying some global smoothness conditions (like differen-
tiability).

Especially for large d it is also useful to consider nonlinear function spaces. The
most popular example are neural networks, where for the most simple model Fn is
defined by

Fn =
{

kn∑

i=1

ci · σ(aT
i x + bi)+ c0 : ai ∈ R

d, bi ∈ R

}

(26)

for some sigmoid function σ : R → [0, 1]. Here it is assumed that the sigmoid
function σ is monotonically increasing and satisfies

σ(x) → 0 (x →−∞) and σ(x) → 1 (x →∞).

An example of such a sigmoid function is the logistic squasher defined by

σ(x) = 1

1 + e−x
(x ∈ R).

There exists a deepest decent algorithm (so-called backfitting) which computes the
corresponding least squares estimate approximately (cf., e.g., Rumelhart and Mc-
Clelland 1986).

The third paradigm is penalized modeling. Instead of restricting the set of func-
tions over which the so called empirical L2 risk
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1

n

n∑

i=1

|Ŷi,t − f (Xi,t )|2

is minimized, in this case a penalty term penalizing the roughness of the function
is added to the empirical L2 risk and this penalized empirical L2 risk is basically
minimized with respect to all functions.The most popular example of this kind of
estimates are smoothing spline estimates. Here the estimate is defined by

q̂n,t (·) = arg min
f∈Wk(Rd )

(
1

n

n∑

i=1

|f (Xi,t )− Ŷi,t |2 + λn · J 2
k (f )

)

, (27)

where k ∈ N with 2k > d , Wk(Rd) denotes the Sobolev space

{
f : ∂kf

∂x
α1
1 · · · ∂xαd

d

∈ L2(R
d) for all α1, . . . , αd ∈ N with α1 + · · · + αd = k

}
,

and

J 2
k (f ) =

∑

α1,...,αd∈N,α1+···+αd=k

k!
α1! · . . . · αd !

∫

Rd

∣∣∣∣
∂kf

∂x
α1
1 · · · ∂xαd

d

(x)

∣∣∣∣

2

dx.

Here λn > 0 is the smoothing parameter of the estimate.
The fourth (and last) paradigm is local modeling. It is similar to global modeling,

but this time the function is fitted only locally to the data and a new function is used
for each point in R

d . The most popular example of this kind of estimate are local
polynomial kernel estimates. Here the estimate, which depends on a nonnegative
integer M and a kernel function K : R

d → R, is given by

q̂n,t (x) = p̂x(x) (28)

where

p̂x(·) ∈ FM =
⎧
⎨

⎩

∑

0≤j1,...,jd≤M

aj1,...,jd · . . . · (x(1))j1 · · · (x(d))jd : aj1,...,jd ∈ R

⎫
⎬

⎭

(29)
satisfies

1

n

n∑

i=1

|p̂x(Xi,t )− Ŷi,t |2K
(
x −Xi

hn

)
= min

p∈FM

1

n

n∑

i=1

|p(Xi,t )− Ŷi,t |2K
(
x −Xi

hn

)
.

(30)
The estimate can be computed again by solving a linear equation system, but this
time of size n times n (instead Kn times Kn as for least squares estimates).

Each estimate above contains a smoothing parameter which determines how
smooth the estimate should be. E.g., for the Nadaraya-Watson kernel estimate it is
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the bandwidth hn > 0, where a small bandwidth leads to a very rough estimate. For
the smoothing spline estimate it is the parameter λn > 0, and for the least squares
neural network estimate the smoothing parameter is the number kn of neurons. For
a successful application of the estimates these parameters need to be chosen data-
dependent. The most simple way of doing this is splitting of the sample (cf., e.g.,
Chap. 7 in Györfi et al. 2002): Here the sample is divided into two parts, the first
part is used to compute the estimate for different values of the parameter, and the
second part is used to compute the empirical error of each of these estimates and
that estimate is chosen where this empirical error is minimal. Splitting of the sam-
ple is in case of regression-based Monte Carlo methods the best method to choose
the smoothing parameter, because there the data is chosen artificially with arbitrary
sample size so it does not hurt at all if the estimate depends primary on the first part
of the sample (since this first part can be as large as possible in view of computation
of the estimate).

The first article where the use of nonparametric regression for the estimation of
continuation values was examined theoretically was Egloff (2005). There nonpara-
metric least squares estimates have been used, where the parameters where chosen
by complexity regularization (cf., e.g., Chap. 12 in Györfi et al. 2002) and the consis-
tency for general continuation values and the rate of convergence of the estimate in
case of smooth continuation values has been investigated. For smooth continuation
values Egloff (2005) showed the usual optimal rate of convergence for estimation of
smooth regression functions. However, due to problems with the error propagation
the estimate was defined such that it was very hard to compute it in practice, and it
was not possible to check with simulated data whether nonparametric regression is
not only useful asymptotically (i.e., for sample size tending to infinity, as was shown
in the theoretical results), but also for finite sample size.

In Egloff et al. (2007) the error propagation was simplified by generating new
data for each time point which was (conditioned on the data corresponding to time t)
independent of all previously used data. In addition, a truncation of the estimate was
introduced which allowed to choose linear vector spaces as function spaces for the
least squares spline estimates, so that they can be computed by solving a linear
equation system. The parameter (here the vector space dimension of the function
space) of the least squares estimates were chosen by splitting of the sample. As
regression representation the general formula of Egloff (2005) (cf. Theorem 2(c))
has been used. Consistency and rate of convergence results for these estimates have
been derived, where as a consequence of the truncation of the estimate the rates con-
tained an additional logarithmic factor. But the main advantage of these estimates
is that they are easy to compute, so it was possible to analyze the finite sample size
behavior of the estimates.

In Kohler et al. (2010), Kohler (2008a) and Kohler and Krzyżak (2009) the error
propagation was further simplified by generation of new paths of the price process
for each recursive estimation step and by using only the simple regression represen-
tation of Tsitsiklis and Van Roy (1999) (cf. Theorem 2(b)). As a consequence it was
possible to analyze the estimates by using results derived in Kohler (2006) for re-
gression estimation in case of additional measurement errors in the dependent vari-
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able. Kohler et al. (2010) investigated least squares neural network estimates, which
are very promising in case of large d , and Kohler (2008a) considered smoothing
spline estimates. In both papers results concerning consistency and rate of conver-
gence of the estimates have been derived. Kohler and Krzyżak (2009) presents a
unifying theory which contains the results of the previous papers as well as results
concerning new estimates (e.g., orthogonal series estimates).

The above papers focus on properties of the estimates of the continuation values,
i.e., they consider the error between the continuation values and its estimates. As
was pointed out by Belomestny (2009), sometimes much better rate of convergence
results can be derived for the Monte Carlo estimate of (20) considered as estimate
of the price V0 of the option. Because in view of a good performance of the stopping
time it is not important that the estimate of the continuation values are close to the
continuation values, instead it is important that they lead to the same decision as the
optimal stopping rule. And for this it is only important that

ft (Xt ) ≥ q̂n,t (Xt )

is equivalent to
ft (Xt ) ≥ qt (Xt )

and not that q̂n,t (Xt ) and qt (Xt ) are close. Belomestny (2009) introduces a kind
of margin condition (similar to margin conditions in pattern recognition) measur-
ing how quickly qt (Xt ) approaches ft (Xt ), and shows under this margin condition
much better rate of convergence for the estimate (20) than previous results on the
rates of convergence of the continuation values imply for the estimate (19).

7 Dual Methods

The above estimates yield estimates

τ̂ = inf
{
s ∈ {0, . . . , T } : q̂s(Xn,s) ≤ fs(Xs)

}

of the optimal stopping time τ ∗. By Monte Carlo these estimates yields estimates of
V0, such that expectation

E {fτ̂ (Xτ̂ )}
of the estimate is less than or equal to the true price V0. It was proposed indepen-
dently by Rogers (2001) and Haugh and Kogan (2004) that by using a dual method
Monte Carlo estimates can be constructed such that the expectation of the estimate
is greater than or equal to V0. The key idea is the next theorem, which is already
well-known in literature (cf., e.g., Sect. 8.7 in Glasserman 2004).

Theorem 3. Let M be the set of all martingales M0, . . . , MT with M0 = 0. Then

V0 = inf
M∈M

E
{

max
t=0,...,T

(ft (Xt )−Mt)

}
= E

{
max

t=0,...,T

(
ft (Xt )−M∗

t

)}
, (31)
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where

M∗
t =

t∑

s=1

(max{fs(Xs), qs(Xs)} − E {max{fs(Xs), qs(Xs)}|Xs−1}) . (32)

For the sake of completeness we present next a complete proof of Theorem 3.

Proof. We first prove

max
t=0,...,T

(
ft (Xt )−

t∑

s=1

(max{fs(Xs), qs(Xs)} − E {max{fs(Xs), qs(Xs)}|Xs−1})
)

= max{f0(X0), q0(X0)}. (33)

To do this, we observe that we have by Theorem 2(b)

max
t=0,...,T

(

ft (Xt )−
t∑

s=1

(max{fs(Xs), qs(Xs)} − E {max{fs(Xs), qs(Xs)}|Xs−1})
)

= max
t=0,...,T

(

ft (Xt )−
t∑

s=1

(max{fs(Xs), qs(Xs)} − qs−1(Xs−1))

)

.

For any t ∈ {1, . . . , T } we have

ft (Xt )−
t∑

s=1

(max{fs(Xs), qs(Xs)} − qs−1(Xs−1))

≤ ft (Xt )−
t−1∑

s=1

(qs(Xs)− qs−1(Xs−1))− (ft (Xt )− qt−1(Xt−1))

= q0(X0),

furthermore in case t = 0 we get

ft (Xt )−
t∑

s=1

(max{fs(Xs), qs(Xs)} − qs−1(Xs−1)) = f0(X0),

which shows

max
t=0,...,T

(

ft (Xt )−
t∑

s=1

(max{fs(Xs), qs(Xs)} − qs−1(Xs−1))

)

≤ max{f0(X0), q0(X0)}.
But for t = τ ∗ we get in case of q0(X0) > f0(X0) by definition of τ ∗
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fτ∗(Xτ∗)−
τ∗∑

s=1

(max{fs(Xs), qs(Xs)} − qs−1(Xs−1))

= fτ∗(Xτ∗)−
τ∗−1∑

s=1

(qs(Xs)− qs−1(Xs−1))− (fτ∗(Xτ∗)− qτ∗−1(Xτ∗−1))

= q0(X0),

and in case of q0(X0) ≤ f0(X0) (which implies τ ∗ = 0) we have

fτ∗(Xτ∗)−
τ∗∑

s=1

(max{fs(Xs), qs(Xs)} − qs−1(Xs−1)) = f0(X0).

This completes the proof of (33).
As shown at the end of the proof of Theorem 1 we have

V0 = E {max{f0(X0), q0(X0)}} .
Using this together with (33) we get

E
{

max
t=0,...,T

(
ft (Xt )−M∗

t

)} = E {max{f0(X0), q0(X0)}} = V0.

Thus it suffices to show: For any martingale M0, . . . , MT with M0 = 0 we have

E
{

max
t=0,...,T

(ft (Xt )−Mt)

}
≥ sup

τ∈T(0,...,T )

E {fτ (Xτ )} = V0.

But this follows from the optional sampling theorem, because if M0, . . . , MT is a
martingale with M0 = 0 and τ is a stopping time we know

EMτ = EM0 = 0

and hence

E {fτ (Xτ )} = E {fτ (Xτ )−Mτ } ≤ E
{

max
t=0,...,T

(ft (Xt )−Mt)

}
.

This completes the proof. ��
Given estimates q̂n,s (s ∈ {0, 1, . . . , T }) of the continuation values, we can esti-

mate the martingale (32) by

M̂t =
t∑

s=1

(
max{fs(Xs), q̂n,s(Xs)} − E∗ {max{fs(Xs), q̂n,s(Xs)}|Xs−1

})
. (34)
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Provided we use unbiased and F(X0, . . . , Xt )-measurable estimates E∗ of the in-
ner expectation in (32) (which can be constructed, e.g., by nested Monte Carlo)
this leads to a martingale, too. This in turn can be used to construct Monte Carlo
estimates of V0, for which the expectation

E
{

max
t=0,...,T

(
ft (Xt )− M̂t

)}

is greater than or equal to V0. As a consequence we get two kind of estimates with
expectation lower and higher than V0, resp., so we have available an interval in
which our true price should be contained.

In connection with linear regression these kind of estimates have been studied in
Rogers (2001) and Haugh and Kogan (2004). Jamshidian (2007) studies multiplica-
tive versions of this method. A comparative study of multiplicative and additive du-
als is contained in Chen and Glasserman (2007). Andersen and Broadie (2004) de-
rive upper and lower bounds for American options based on duality. Belomestny et
al. (2009) propose in a Brownian motion setting estimates with expectation greater
than or equal to the true price, which can be computed without nested Monte Carlo
(and hence are quite easy to compute).

In Kohler (2008b) dual methods have been combined with nonparametric smooth-
ing spline estimates of the continuation values and consistency of the resulting es-
timates was shown for all bounded Markov processes. In Kohler et al. (2008) it is
shown how these estimates can be modified such that less nested Monte Carlo steps
are needed in an application.

8 Application to Simulated Data

The PhD thesis Todorovic (2007) contains various comparisons of regression-based
Monte Carlo methods on simulated data. Using the standard monomial basis for
linear regression (without including the payoff function) it turns out that for lin-
ear regression the regression representation of Longstaff and Schwartz (2001) pro-
duces often better results than the regression representation of Tsitsiklis and Van
Roy (1999) in view of the performance of the estimated stopping rule on new data.
But for nonparametric regression it does not seem to make a difference whether the
regression representation of Longstaff and Schwartz (2001), of Tsitsiklis and Van
Roy (1999) or the more general form of Egloff (2005) is used. Furthermore Todor-
ovic (2007) shows that nonparametric regression estimate lead sometimes to much
better performance than the linear regression estimates (and in his simulations never
really worse performance) as long as the payoff function is not included in the basis
function.

It turns out that this is less obvious if the payoff function is used as one of the
basis functions for linear regression. But as we show below, in this case a very
high sample size for the Monte Carlo estimates leads again to better results for



56 Michael Kohler

Fig. 1 Strangle spread payoff with strike prices 85, 95, 105 and 115

the nonparametric regression estimate. The reason for this is that the bias of the
nonparametric regression estimates can be decreased by increasing the sample size,
which is not true for linear regression.

In the sequel we consider an American option based on the average of three
correlated stock prices. The stocks are ADECCO R, BALOISE R and CIBA. The
stock prices were observed from Nov. 10, 2000 until Oct. 3, 2003 on weekdays when
the stock market was open for the total of 756 days. We estimate the volatility from
data observed in the past by the historical volatility

σ = (σi,j )1≤i,j≤3 =
⎛

⎝
0.3024 0.1354 0.0722
0.1354 0.2270 0.0613
0.0722 0.0613 0.0717

⎞

⎠ .

We simulate the paths of the underlying stocks with a Black-Scholes model by

Xi,t = x0 · er·t · e
∑3

j=1(σi,j ·Wj (t)− 1
2 ·σ 2

i,j t) (i = 1, . . . , 3),

where {Wj(t) : t ∈ R+} (j = 1, . . . , 3) are three independent Wiener processes and
where the parameters are chosen as follows: x0 = 100, r = 0.05 and components
σi,j of the volatility matrix as above. The time to maturity is assumed to be one year.
To compute the payoff of the option we use a strangle spread function (cf. Fig. 1)
with strikes 85, 95, 105 and 115 applied to the average of the three correlated stock
prices.

We discretize the time interval [0, 1] by dividing it into m = 48 equidistant time
steps with t0 = 0 < t1 < · · · < tm = 1 and consider a Bermudan option with
payoff function as above and exercise dates restricted to {t0, t1, . . . , tm}. We choose
discount factors e−r·tj for j = 0, . . . , m. For all three algorithms we use sample
size n = 40000 for the regression estimates of the continuation values.

For the nonparametric regression estimate we use smoothing splines as imple-
mented in the routine Tps from the library “fields” in the statistics package R,
where the smoothing parameter is chosen by generalized cross-validation. For the
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Fig. 2 Boxplots for 100 Monte Carlo estimates of lower bounds (lb) and upper bounds (ub) based
on the estimates of the continuation values generated by the algorithm of Tsitsiklis and Van Roy
(TTVR), Longstaff and Schwartz (LS) and nonparametric smoothing splines (SS)

Longstaff–Schwartz and Tsitsiklis–Van Roy algorithms we use linear regression as
implemented in R with degree 1 and payoff function included in the basis.

For each of these algorithms we compute Monte Carlo estimates of lower bounds
on the option price defined using the corresponding estimated stopping rule, and
Monte Carlo estimates of upper bounds on the option price using the corresponding
estimated optimal martingale. Here we use 100 nested Monte Carlo steps to approx-
imate the conditional expectation occurring in the optimal martingale. The sample
size of the Monte Carlo estimates is 10000 in case of estimation of upper bounds
and 40000 in case of estimation of lower bounds.

We apply all six algorithms for computing lower or upper bounds to 100 inde-
pendently generated sets of paths and we compare the algorithms using boxplots
for the 100 lower or upper bounds computed for each algorithm. We would like to
stress that for all three algorithms computing upper bounds the expectation of the
values are upper bounds to the true option price, hence lower values indicates a bet-
ter performance of the algorithms, and that for all three algorithms computing lower
bounds the expectation of the values are lower bounds to the true option price, hence
higher values indicates a better performance of the algorithms.

As we can see in Fig. 2, the algorithms based on nonparametric regression are
superior to Longstaff–Schwartz and Tsitsiklis–Van Roy algorithms, since the lower
boxplot of the upper bounds for this algorithm and the higher boxplot of the lower
bounds for this algorithm indicate better performance.
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Binomial Trees in Option Pricing—History,
Practical Applications and Recent Developments

Ralf Korn and Stefanie Müller

Abstract We survey the history and application of binomial tree methods in option
pricing. Further, we highlight some recent developments and point out problems for
future research.

1 Introduction

In many disciplines, there is the classical question on which came first, egg or hen;
but not so in the history of binomial option valuation. There is no denying the fact
that the diffusion model underlying the famous Black-Scholes formula (see Black
and Scholes 1973) triggered the development of the binomial approach to option
pricing. At first sight it seems surprising that the binomial approach originates from
the Black-Scholes model although the mathematics behind diffusion models are
clearly much more involved than that behind the discrete-time and finite state space
binomial models (the reason why we interpret the Black-Scholes model as the hen
and the simpler binomial model as the egg). To understand why the hen came first,
we need to recognize option valuation as a discipline that brings together mathemat-
ical modeling skills and economic interpretations of real-world markets.
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The Black-Scholes formula caused a shock amongst the economists at the time of
its introduction. The economic ideas underlying the Black-Scholes approach, such
as the principles of risk-neutrality and riskless portfolios, shook the theory of option
pricing to its core. However, its involved mathematical background based on diffu-
sion models might have appeared too academic or even awkward. This motivated
various economists to search for a simpler modeling framework that preserves the
economically relevant properties of the Black-Scholes framework but that is at the
same time more easily accessible. The binomial approach to option pricing grew
out of a discussion between M. Rubinstein and W.F. Sharpe at a conference in Ein
Borek, Israel (see Rubinstein 1992 for the historical background). They realized that
the economic idea behind the Black-Scholes model can be reduced to the follow-
ing principle: If an economy incorporating three securities can only attain two future
states, one such security will be redundant; i.e. each single security can be replicated
by the other two, a fact later referred to as market completeness. With this insight
at hand, it was obvious that one should introduce such a two-state model and verify
that the economic properties of the Black-Scholes diffusion approach are preserved.
This was the birth of binomial option pricing.

In this survey, we will first explain how to use binomial trees for option pricing in
the corresponding discrete-time financial market. However, in practical applications,
binomial trees are preferably used as numerical approximation tools for pricing op-
tions in more complex, continuous-time stock market models. We will present early
approaches to binomial trees: the models suggested by Cox et al. (1979) and by
Rendleman and Bartter (1979). In Black-Scholes settings, the application of the bi-
nomial approach to numerical option pricing can be justified by Donsker’s Theorem
on random walk approximations to a Brownian motion. Donsker’s Theorem im-
plies that as the period length tends to zero, the sequence of corresponding binomial
models (appropriately scaled in time) converges weakly to a geometric Brownian
motion, which underlies the Black-Scholes stock price model (provided that the
first two moments of the one-period log-returns are matched). The application of bi-
nomial models as numerical pricing tools will be explained in detail. We will focus
on aspects of practical relevance such as the convergence behavior of binomial esti-
mates to Black-Scholes option prices, the speed of convergence and the algorithmic
implementation. In particular, we discuss how to generalize the approximation by
binomial models to option pricing in the multi-asset Black-Scholes setting.

2 Option Pricing and Binomial Tree Models: the Single Asset
Case

An n-period binomial tree is a simple stochastic model for the dynamics of a stock
price evolving over time. More precisely, it is a discrete-time stochastic process
{S(n)(i), i ∈ {0, 1, . . . , n}} such that
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S(n)(i + 1) =
{
uS(n)(i), if the price increases from period i to i + 1,

dS(n)(i), if the price decreases from period i to i + 1,

where we require u > d and S(n)(0) = s. By our convention u > d , u is the
favorable one-period return. The time spacing is assumed to be equidistant, so that
each period has length Δt = T/n, where T is the time horizon. We also assume
that at each state (“node”) of the tree, we have the same probability p ∈ (0, 1) to
achieve the favorable one-period return u.

If we assume that in addition to trading this stock, the investor can also invest
in a bank account with a continuously compounded interest rate r (i.e. investment
grows by the factor erΔt per period), we will require the no-arbitrage relation

u > erΔt > d. (1)

If the above relation is violated, one can generate money without investing own
funds by either selling the stock short (in the case u ≤ erΔt ) or financing a stock
purchase by a credit (in the case of d ≥ erΔt ). In the following, we assume that the
market is arbitrage-free (i.e. that (1) holds).

In the highly simplified financial market introduced above, an option is a func-
tional B = f (S(n)(i), i = 1, . . . , n) of the path of the stock price process. The
owner of the option receives the payment B at the time horizon T (the maturity).
As the final payment is a function of the stock price process, it is not known at
the purchasing date. Consequently, trading the option can be identified with a bet
on the evolution of the stock price S(n). Analogous to the Black-Scholes setting,
the “fair” option price in the binomial model can be obtained via the principle of
replication, i.e. one determines the costs required to set up a trading strategy in the
stock and the riskless investment opportunity that will realize the same final pay-
ment B as received by holding the option (independently of the realized stock price
movements!). We have the following basic result (see Bjoerk 2004):

Theorem 1 (Risk-Neutral Valuation and Replication). Each option B in an n-
period binomial model can be replicated by an investment strategy in the stock and
the bond. The initial costs of this strategy determine the option price and are given
by

c0 = EQ(n)

(
e−rT B

)
,

where the measure Q(n) is the product measure of the one-period transition mea-
sures Q

(n)
i which are determined by

Q
(n)
i

(
S(n)(i + 1)

S(n)(i)
= u

)

= q = exp(rΔt)− d

u− d
,

and for which we have

S(n)(0) = EQ(n)

(
e−rT S(n)(n)

)
. (2)
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Equation (2) shows that under Q(n) the expected relative return of the stock and
the bond coincide. This motivates calling Q(n) the risk-neutral measure (note that
it can easily be verified that Q(n) is the unique equivalent probability measure with
this property). The risk-neutral probability q gives us the market view on the like-
lihood that the favorable one-period return u is attained. It can be different from
the physical probability p. Then, if E(n)(e−rT B) is computed with respect to p, we
have E(n)(e−rT B) �= EQ(n)(e−rT B), where EQ(n)(e−rT B) is the option price.

Note. The above result is identical to the result in the Black-Scholes setting: The
underlying market is complete (i.e. every (suitably integrable) final payment can
be replicated by appropriate trading in the underlying and the riskless investment)
and the resulting option price is obtained as the net present value of the option
payment under the risk-neutral measure. The risk-neutral measure is equivalent to
the physical measure for the stock price evolution. As under the risk-neutral measure
the corresponding discounted price processes of both assets are martingales, it is
also called the equivalent martingale measure.

As seen above, the binomial approach leads to a modeling framework for op-
tion pricing that is technically easy and contains economically meaningful insights.
However, the question remains whether the binomial model is in any reasonable
way related to the Black-Scholes stock price model for which the stock price
{S(t), t ∈ [0, T ]} is assumed to follow a geometric Brownian motion; that is

S(t) = s · exp

((
r − 1

2
σ 2

)
t + σW(t)

)

with W(t) a one-dimensional Brownian motion (under the risk-neutral measure Q

associated with the continuous-time financial market) and σ > 0 a given constant
describing the volatility of the stock price movements. The above question can be
made more precise in two different ways: As the period length tends to zero,

• do we have (weak) convergence of the stock price paths in the sequence of in-
creasing binomial models to the given geometric Brownian motion?

• does the sequence of binomial option prices (EQ(n)(e−rT B))n converge to the
corresponding option price in the Black-Scholes model?

The answers to these questions are intimately related to the concept of weak con-
vergence of the corresponding stochastic processes. In particular, if we are only
interested in the terminal value of the stock S(T ), the questions are answered by
the classical Central Limit Theorem: Let Xn denote the (random) number of up-
movements of the stock price in an n-period binomial model. We obviously have

Xn ∼ B(n, p),

where B(n, p) denotes the Binomial distribution with n trials and success probabil-
ity p. Rewriting the stock price in the n-period binomial model as

S(n)(n) = s · uXn · dn−Xn = s · eXn·ln( u
d )+n·ln(d),
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using the choice p = 1/2, b = r − 1
2σ

2 and

u = ebΔt+σ
√
Δt , d = ebΔt−σ

√
Δt ,

the Central Limit Theorem implies that

S(n)(n) = s · exp

(
bT + σ

√
T

(
2Xn − n√

n

))

D−→ s · exp (bT + σW (T )) = S (T ) .

Hence, for the above parameter specifications, the terminal stock price in the bi-
nomial model S(n)(n) converges in distribution to the terminal value in the Black-
Scholes model S(T ). Furthermore, provided the function g : R

+ → R
+ satisfies

suitable regularity conditions, the sequence (E(n)(e−rT g(S(n)(n))))n obtained along
the increasing binomial models converges to the quantity EQ(e−rT g(S(T ))) ob-
tained in the Black-Scholes model; for instance, it clearly suffices that g is bounded
and continuous. Yet EQ(e−rT g(S(T ))) is the Black-Scholes price for an option
with payment B = g(S(T )). Consequently, for path-independent options (i.e. op-
tions that depend only on the terminal stock price), the above argument allows us to
apply the binomial model specified above as a numerical valuation tool to approxi-
mate the option price in the Black-Scholes model. Of course, this is useful in prac-
tical applications if an explicit pricing formula is not known in the Black-Scholes
setting. However, for the given parameter specifications, the sequence of binomial
option prices (EQ(n)(e−rT g(S(n)(n))))n does in general not converge to the Black-
Scholes option price (!). Hence, we observe that for numerical option pricing, it is
only relevant whether the terminal distribution of the binomial model approximates
the lognormal distribution specifying the terminal stock price S(T ). By contrast, it
is irrelevant whether the corresponding probability p is determined according to the
risk-neutral measure.

To introduce a general approximation technique that also works for option pay-
ments depending on the entire path of the stock price process, we have to invoke
the concept of weak convergence of stochastic processes: Assume that the bino-
mial model is such that the first two moments of the one-period log-returns of the
stock price process S are matched. Then it follows from Donsker’s Theorem (see
e.g. Billingsley 1968) that (after linear interpolation) the binomial stock price pro-
cess converges weakly to the geometric Brownian motion underlying the Black-
Scholes stock price model. Hence, we have an affirmative answer to our first ques-
tion whether the two stock price models can be related to one another. Further-
more, it follows from the definition of weak convergence that if the payoff function
is bounded and continuous, the corresponding sequence (E(n)(e−rT f (S(n)(i), i =
1, . . . , n)))n converges to the option price in the Black-Scholes model. In fact, bi-
nomial option valuation can be justified for most common types of traded options;
but this issue will not be addressed in this survey.
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Note. According to the above arguments, the binomial method can be applied to
numerical valuation of options in the Black-Scholes model. In this context, it is
irrelevant whether the probability p coincides with the risk-neutral probability q

(compare the above example where p �= q). We only require that p be chosen such
that the first two moments of the one-period log-returns are matched, so that the
binomial stock price model approximates the Black-Scholes stock price model.

Of course, there are many possibilities to satisfy the moment matching condi-
tions. The first suggestions were made by Cox, Ross and Rubinstein (CRR tree) and
by Rendleman and Bartter (RB tree). The CRR tree is determined by the parameter
specifications

u = eσ
√
Δt , d = 1/u, p = 1

2

(
1 +

(
r − 1

2
σ 2

)
1

σ

√
Δt

)
.

Note that the probability p of an up-movement is only well-defined provided the
grid size is sufficiently small; to be precise, we need that

n >
(r − 1

2σ
2)2

σ 2
T .

Note further that under the above specification of parameters, the second moment
of the log-returns in the Black-Scholes model is only matched asymptotically; i.e.
if grid size tends to zero. However, due to Slutsky’s Theorem, it is clear that weak
convergence is preserved. The CRR model is such that the log-tree (i.e. the tree con-
taining the log-prices in the binomial model) is symmetric around the initial price
S(n)(0). Upward or downward tendencies in the log-prices of the Black-Scholes
model are incorporated into the binomial model via the above choice of the proba-
bility p.

The RB tree is given by the example considered above; that is,

p = 1

2
, u = e(r−

1
2σ

2)Δt+σ
√
Δt , d = e(r−

1
2σ

2)Δt−σ
√
Δt .

For this specification of parameters, the probabilities are automatically well-defined
and symmetric. Upward or downward tendencies in the log-prices of the Black-
Scholes model are incorporated into the discrete model via an appropriate form of
the one-period returns u and d .

Both models ensure weak convergence to the Black-Scholes stock price model.
Consequently, provided that the grid size is sufficiently small, the discounted ex-
pected value of the option payoff in the binomial models E(n)(e−rT f (S(n)(i); i =
1, . . . , n)) approximates the corresponding Black-Scholes option price. However,
for both methods, the computed discounted expected option payoff does in general
not coincide with the discrete-time option price because p �= q. As a consequence,
these models do not admit a simple economic interpretation. However, if the real-
world market is modeled according to Black-Scholes, they can be applied to numer-
ical option valuation.



Binomial trees 65

3 Binomial Trees in Action—Implementation, Problems and
Modifications

The binomial approach offers an attractive numerical pricing method because it
can be implemented in form of an efficient backward algorithm. More precisely,
for path-independent options with payment B = f (S(n)(i), i = 1, . . . , n) =
f (S(n)(n)), we have the following backward recursion:

Algorithm. Backward induction in the CRR tree

1. Set V (n)(T , S(n)(n)) = f (S(n)(n)).
2. For i = n− 1, . . . , 0 do

V (n)
(
i ·Δt, S(n)(i)

)

=
[
pV (n)

(
(i + 1) ·Δt, uS(n)(i)

)

+ (1 − p)V (n)

(
(i + 1) ·Δt,

1

u
S(n) (i)

)]
· e−rΔt .

3. Set E(n)(e−rT B) = V (n)(0, s) as the discrete-time approximation for the option
price.

Algorithm. Backward induction in the RB tree

1. Set V (n)(T , S(n)(n)) = f (S(n)(n)).
2. For i = n− 1, . . . , 0 do

V (n)
(
i ·Δt, S(n) (i)

)

= 1

2

[
V (n)

(
(i + 1) ·Δt, uS(n) (i)

)
+V (n)

(
(i + 1) ·Δt, dS(n) (i)

)]
· e−rΔt .

3. Set E(n)(e−rT B) = V (n)(0, s) as the discrete-time approximation for the option
price.

Apparently, due to the symmetry in probabilities, the RB model requires less
operation counts for backward induction than the CRR model.

Note that for path-dependent options, it depends on the specific payoff functional
whether there exist suitable modifications of the above algorithm. In particular, the
algorithm can easily be adapted to the valuation of American options. Due to the
widespread use of American options, this is an important advantage of the bino-
mial method compared to alternative valuation techniques such as e.g. Monte Carlo
methods. American options can be exercised at any time between the purchasing
date and the expiration date T . In the Black-Scholes setting, this small conceptual
difference causes a big difference in pricing because the optimal exercise date is not
known on the date of purchase. Rather, it depends on the random evolution of the
stock price process and is therefore itself random (mathematically, it is a stopping
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time with respect to the filtration generated by S). In contrast to the continuous-time
American valuation problem, the American valuation problem can always (i.e. for
any payoff function) be solved explicitly in the binomial model. Indeed, the main
modification to the above backward induction algorithm is that for each node of the
tree, the exercise value (i.e. the intrinsic value of the option) has to be compared
to the value obtained by holding the option at least until the next time period and
exercising it optimally afterwards. Let us illustrate binomial pricing of American
options for the RB tree:

Algorithm. Backward induction for American options in the RB tree

1. Set V (n)(T , S(n)(n)) = f (S(n)(n)).
2. For i = n− 1, . . . , 0 do

Ṽ (n)
(
i ·Δt, S(n) (i)

)

= 1

2

[
V (n)

(
(i + 1) ·Δt, uS(n) (i)

)
+ V (n)

(
(i + 1) ·Δt, dS(n) (i)

)]
· e−rΔt

and set

V (n)
(
i ·Δt, S(n) (i)

)
= max

{
Ṽ (n)

(
i ·Δt, S(n) (i)

)
, f

(
S(n) (i)

)}
.

3. Set E(n)(e−rT B) = V (n)(0, s) as the discrete-time approximation for the price
of an American option with final payment f .

Note. Due to the simplified dynamics of binomial models (finite state space and
discrete-time observations), binomial approximations to Black-Scholes option prices
can be obtained by an easy and efficient backward induction algorithm. This is
useful in practical applications if an analytic pricing formula is not known in the
Black-Scholes setting. In particular, as seen above, the tree algorithm can easily be
modified to the valuation of American options.

Although the binomial method is based on an efficient backward induction algo-
rithm, it suffers from several drawbacks in practical applications. First, if the payoff
function is discontinuous, the Berry-Esséen inequality on the rate of convergence of
binomial price estimates is in general tight; i.e. convergence is no faster than 1/

√
n.

Second, for many types of options convergence is not smooth, but oscillatory: we
observe low-frequency shrinking accompanied by high-frequency oscillations. Con-
sequently, choosing a smaller grid size does not necessarily provide a better option
price estimate, and extrapolation methods can typically not be applied. Well-known
examples of irregular convergence behavior are the so-called sawtooth effect and the
even-odd problem: Binomial price estimates obtained from the conventional meth-
ods described above often exhibit a sawtooth pattern. That is, if the grid size is in-
creased (n → n + 2), the discretization error in the corresponding binomial option
prices decreases to a negligible size. However, if the step size is further increased,
the error rises abruptly. This is again followed by a period of decreasing errors.
Figure 1 illustrates the sawtooth pattern. The sawtooth effect was first observed for
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Fig. 1 The sawtooth effect

Fig. 2 Scallops

barrier options (i.e. options for which the right to exercise either originates or ex-
pires on certain regions of the path space of S) by Boyle and Lau (1994); yet it can
also be present for other types of options. The price estimates obtained from con-
ventional tree methods (for n → n+2) also often converge in form of scallops. This
is illustrated in Fig. 2. In this survey, we do not wish to explain where the different
patterns come from, but let us stress that the convergence pattern observed depends
both on the valuation problem under consideration and on the parameter specifica-
tion of the tree method chosen. In addition to the irregular convergence behavior
observed along n → n+ 2, the binomial price estimates typically exhibit micro os-
cillations between even and odd values of n; the latter aspect is often referred to as
the even-odd effect. The micro oscillations are superimposed on the macro oscilla-
tions considered previously; i.e. they are superimposed on the irregular convergence
behavior along the even integers (the sawtooth pattern, scallops, etc.) and on the
irregular convergence behavior along the odd integers.
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There is a vast number of articles on controlling the discretization error, amongst
which are Leisen and Reimer (1996), Leisen (1998), Tian (1999) and Chang and
Palmer (2007). Leisen and Reimer use an odd number of periods with the tree cen-
tered around the strike value of interest. Leisen uses an even number of periods with
the central node placed exactly at the strike. For the model suggested by Tian (Tian
tree) and by Chang and Palmer (CP tree), the nodes in the tree are moved only a
small distance so that the strike falls onto a neighboring node or onto the geometric
average of the two neighboring nodes, respectively.

Example 1 (The Tian Tree). Let K ∈ R be arbitrary. For binomial valuation of call
and put options, the point K will be the strike value. The basic idea behind the Tian
model is that for any number of periods n, the terminal distribution of the CRR tree
is modified so that it admits a realization placed exactly at the point K . To be precise,
for each n ∈ N, there is some integer l(n) for which K ∈ (s

(n)
n (l(n)−1), s(n)n (l(n))],

where s
(N)
n (l(n) − 1) and s

(N)
n (l(N)) are adjacent terminal nodes in the CRR tree.

Given the sequence (l(n))n, we define a sequence (t (n))n with

t (n) := ln(K/s0)− (2l(n)− n)σ
√
T/n

T
.

While the log-tree suggested by Cox, Ross and Rubinstein is symmetric around
the starting value, the log-tree is now tilted by t (n)Δt . As a result, the strike value
always coincides with a terminal node (compare Chang and Palmer 2007 for de-
tails1). Note that the tilt t (n) depends on the number of periods n. It can be verified
that the tilt is sufficiently small to maintain weak convergence to the stock price
process S. As shown in Chang and Palmer (2007), the resulting binomial tree shows
an improved convergence behavior compared to the CRR tree: For cash-or-nothing
options (options with a piecewise constant payoff), the estimates still converge in
order 1/

√
n, but convergence is smooth, so extrapolation methods can be applied.

For plain-vanilla options (options with a piecewise linear payoff), the estimates con-
verge in order 1/n. In contrast to the CRR tree, the coefficient of the leading error
term is again constant.

Example 2 (The CP Tree). The CP model is such that for any number of periods
n, the strike K is optimally located between two adjacent terminal nodes. The ge-
ometry of the CRR tree implies that the strike value is optimally placed if it is set
at the geometric average of two adjacent nodes (compare Chang and Palmer 2007
for details). This can again be achieved by defining an appropriate sequence of tilt
parameters: Let (l(n))n be defined as above. Then, the appropriate sequence of tilt
parameters is given by (t̃(n))n with

t̃ (n) = ln(x/s0)− (2l(n)− n− 1)σ
√
T/n

T
.

1 In the original article by Tian, the improved convergence behavior is illustrated by numerical
examples. Theoretical results are given in Chang and Palmer (2007).
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As for the Tian model, the resulting tree remains close enough to the CRR tree to
ensure weak convergence. The convergence behavior of the CP model is further
improved compared to the Tian model. For the latter, the probability to end up in the
money (i.e. the likelihood that your bet on the stock price movement is correct) is
consistently under- or overestimated. The CP model takes account of this problem.
As a result, the rate of convergence for cash-or-nothing options is improved to 1/n
(without extrapolation).

A conceptually different approach to improve the convergence behavior of the
discretization error of binomial trees can be found in Rogers and Stapleton (1998).
They fix some Δx > 0 and view the diffusion only at the discrete set of times at
which it has moved Δx from where it was last observed. This approximation tech-
nique results in a random walk that approximates the diffusion uniformly closely,
so that the convergence behavior can be improved without an explicit re-location
of nodes in the tree. However, it leads to a pathwise binomial tree with a random
number of periods.

Remark (Trinomial Trees). As the completeness of the binomial market is irrele-
vant for numerical valuation of Black-Scholes option prices, the approximation by
tree methods is not limited to binomial models; that is, models that exhibit two-state
movements. In fact, the Black-Scholes option price can be approximated by any
k-nomial tree (i.e. a tree for which each node has the same number k of successor
nodes) provided the tree model satisfies the moment matching conditions required to
apply Donsker’s Theorem. Furthermore, if the corresponding tree is re-combining,
a backward induction algorithm similar to that described for binomial trees can be
used to efficiently compute discounted expectations in the k-nomial model. In a re-
combining tree, paths with the same number of up- and down-movements end at the
same node independently of the order in which the up- and down-movements have
occurred. Of course, if the tree model allows for additional states, the computational
effort required for backward induction increases compared to binomial trees. How-
ever, the application of multinomial models provides some additional free parame-
ters because there are two moment matching conditions only—independently of the
number of states in the discrete-time model. Consequently, recombining trinomial
trees (i.e. trees for which each node has three successors) are sometimes used in
practical applications to approximate the price of path-dependent options (such as
barrier options) as they are more flexible than their binomial counterparts.

Note. Trinomial trees can be adapted to complex valuation problems—this can
lead to an improved convergence behavior. However, trinomial option valuation is
more costly than binomial pricing. Alternatively, the convergence behavior can be
improved without increasing computational effort by applying advanced binomial
models. The implementation of advanced binomial models can be more involved.
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4 Multi-Asset Option Valuation and Binomial Trees

4.1 Standard Binomial Methods for Multi-Asset Options

Compared to the single-asset case, setting up multi-dimensional binomial trees is
more complicated because the entire correlation structure between the underly-
ing (log-)asset prices in the Black-Scholes setting have to be taken into account.
More precisely, if we use a binomial approximation to the multi-asset Black-Scholes
model given by

dSi(t) = Si(t) (rdt + σidWi) , Corr

(
dSi

Si
,
dSj

Sj

)
= ρij dt, i, j = 1, . . . , m,

(3)
the correlations between the log-prices have to be matched in addition to the pre-
vious conditions on the expectation and the variance of the one-period log-returns.
Consequently, the construction of multi-dimensional binomial trees becomes the
more involved, the more assets are traded in the market. Furthermore, the additional
moment matching conditions can lead to negative jump probabilities in the corre-
sponding binomial model, so that the model is no longer well-defined. In particular,
the above argument on weak convergence cannot be used anymore.

We define an m-dimensional n-period binomial tree via

S
(n)
i (k) = S

(n)
i ((k − 1)) eαiΔt+βi

√
ΔtZ

(n)
k,i , k = 1, . . . , n, i = 1, . . . , m,

where as before each period has length Δt = T
n

and Z
(n)
k,i are random variables

taking values in {−1, 1}. We choose the constants αi, βi and the jump probabilities
(defining the distribution of the random variables Z

(n)
k,i ) such that

• the random vectors (Z
(n)
k,1, . . . , Z

(n)
k,m), k = 1, . . . , n, are i.i.d. for fixed n,

• the first two moments of the one-period log-returns in the Black-Scholes model
coincide (at least) asymptotically with those in the tree; in particular, the covari-
ances of the random variables Z

(n)
k,i and Z

(n)
k,j satisfy

βiβj Cov
(
Z

(n)
k,i , Z

(n)
k,j

) n→∞−→ ρijσiσj , 1 ≤ i, j ≤ m.

Let us illustrate standard multi-asset binomial trees with multi-dimensional gen-
eralizations of the (one-dimensional) CRR tree and the (one-dimensional) RB tree:

Example 3 (The BEG Tree). The BEG tree as introduced in Boyle et al. (1989) is the
m-dimensional generalization of the one-dimensional CRR tree; that is

S
(n)
i (k) = S

(n)
i ((k − 1)) eσi

√
ΔtZ

(n)
k,i , k = 1, . . . , n, i = 1, . . . , m,

where for each period k, the distribution of the random vector (Z
(n)
k,1, . . . , Z

(n)
k,m) is

defined via the set of jump probabilities
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p
(n)
BEG(l) = 1

2m

⎛

⎝1 +
m∑

j=1

j−1∑

i=1

δij (l)ρij +
√
Δt

m∑

i=1

δi(l)
r − 1

2σ
2
i

σi

⎞

⎠ , 1 ≤ l ≤ 2m,

with

δi(l) =
{

1 if Z(n)
k,i = 1,

−1 if Z(n)
k,i = −1,

δij (l) =
{

1 if Z(n)
k,i = Z

(n)
k,j ,

−1 if Z(n)
k,i �= Z

(n)
k,j .

(4)

As for the CRR tree, the log-prices in the BEG-tree are symmetric around the start-
ing value. However, the probabilities depend in a complicated way on both the drift
and the covariance structure of the continuous-time model.

Example 4 (The m-Dimensional RB Tree). The m-dimensional Rendleman-Barrter
tree is described in Amin (1991) and in Korn and Müller (2009). It is given by

S
(n)
i (k) = S

(n)
i ((k − 1)) e

(
r− 1

2σ
2
i

)
Δt+σi

√
ΔtZ

(n)
k,i , k = 1, . . . , n, i = 1, . . . , m,

where for each period k, the distribution of the random vector (Z
(n)
k,1, . . . , Z

(n)
k,m) is

defined via the set of jump probabilities

p
(n)
RB (l) = 1

2m

⎛

⎝1 +
m∑

j=1

j−1∑

i=1

δij (l)ρij

⎞

⎠ , 1 ≤ l ≤ 2m,

with δij (.) given as in (4). While the log-prices in the RB-tree are non-symmetric,
the probabilities depend only on the covariance structure of the continuous-time
model. In particular, in contrast to the BEG tree, the jump probabilities depend nei-
ther on the number of periods n nor on the drift.

Let us emphasize that for both models, the jump probabilities are not necessarily
non-negative! In contrast to the common belief, this problem cannot always be fixed
by choosing a sufficiently large number of periods n (see Korn and Müller 2009 for
an explicit example).

Remark (Incompleteness of Multi-Dimensional Binomial Trees). There is no ana-
logue to Theorem 1 for multi-dimensional binomial trees. In particular, multi-
dimensional binomial markets are incomplete for dimensions m > 1. This implies
that there is in general no unique price for a given option payment. However, the
incompleteness of the multi-dimensional binomial model is irrelevant for the appli-
cation of the corresponding binomial model to numerical valuation of options in the
corresponding (complete) multi-dimensional Black-Scholes market: Provided

• the model is well-defined, and
• the first two moments of the one-period log-returns are (asymptotically) matched,

the option price in the Black-Scholes model can be approximated by computing
the expected discounted option payments in the multi-dimensional binomial mod-
els (with respect to the measure induced by the distribution of the random variables
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Z
(n)
k,j ). As for the one-dimensional setting, this procedure is justified by weak conver-

gence arguments based on Donsker’s Theorem. For an approximation of the multi-
dimensional Black-Scholes model by a complete multinomial model, we refer to He
(1990).

For the standard multi-dimensional trees considered above, the corresponding
algorithm for binomial option pricing is conceptually the same as for the one-
dimensional case. First, we assign possible payoff scenarios to the terminal nodes.
Afterwards, we step backwards through the tree by computing the value at each node
as the weighted average of the values assigned to its successor nodes. However, the
number of terminal nodes grows exponentially in the number of traded assets (this
effect is often referred to as the curse of dimensionality). Consequently, for high-
dimensional options (i.e. options whose payments depend on a large number of
assets), standard multi-dimensional trees are currently not practically useful. This is
an inherent drawback of the binomial approach as a method based on the discretiza-
tion of the underlying assets. However, up to dimension four, let us say, standard
multi-dimensional trees can lead to results that are perfectly competitive and often
superior to those obtained by Monte Carlo methods. Nevertheless, as inherited by
their one-dimensional counterparts, standard multi-dimensional trees often exhibit
an irregular convergence behavior.

Note. In principle, we can obtain multi-dimensional variants of the conventional
one-dimensional binomial trees considered above. However, the corresponding trees
are not well-defined for every parameter setting of the corresponding continuous-
time model. Provided that the tree is well-defined and that it converges weakly to
the multi-dimensional Black-Scholes stock price model, it can be applied to numer-
ical valuation of options in the limiting Black-Scholes market. This yields an easy
and efficient method to approximate the price of a multi-asset option, yet the cor-
responding tree model still suffers from several drawbacks with respect to practical
applications.

In the following, we suggest orthogonal trees as an alternative to standard multi-
dimensional trees.

4.2 Valuing Multi-Asset Options by Orthogonal Trees

The complications observed above motivate searching for alternative approaches
to multi-dimensional trees that ensure well-defined jump probabilities and easy mo-
ment matching. In this context, Korn and Müller (2009) introduced orthogonal trees,
which are based on a general decoupling method for multi-asset Black-Scholes set-
tings. The model we suggest contains the two-dimensional example of Hull (2006)
as a special case.

The construction of orthogonal trees consists of two steps: In contrast to stan-
dard multi-dimensional tree methods, we first decouple the components of the log-
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stock price process (ln(S1), . . . , ln(Sm)). Afterwards, we approximate the decou-
pled process by an m-dimensional tree defined as the product of appropriate one-
dimensional trees. Of course, in order to apply the resulting tree to numerical option
valuation, we have to apply a backtransformation to any time-layer of nodes that
contributes to the option payment under consideration.

To explain the above procedure in detail, we consider the multi-asset Black-
Scholes type market with m stocks following the price dynamics (3). The decou-
pling method is based on a decomposition of the volatility matrix Σ of the log-prices
(ln(S1(t)), . . . , ln(Sm(t))) via

Σ = GDGT (5)

with D a diagonal matrix. The above decomposition allows to introduce the trans-
formed (“decoupled”) log-price process Y defined by

Y(t) := G−1 (ln (S1(t)) , . . . , ln (Sm(t)))
T .

Note that the process Y = (Y1, . . . , Ym) follows the dynamics

dYj (t) = μjdt +
√
djj dW̄j (t), μ = G−1

(
r1 − 1

2
σ 2

)
,

σ 2 =
(
σ 2

1 , . . . , σ
2
m

)T

,

(6)

where W̄ (t) is an m-dimensional Brownian motion (see Korn and Müller 2009 for
details). In particular, the component processes are independent. Consequently, the
transformed process Y can be approximated by a product of (independent) one-
dimensional trees; one for each component process Yj . This implies that we have
to match only the mean and variance of one-period log-returns for each component
process. There is no need for correlation matching! In particular, it is easy to obtain
well-defined transition probabilities.

The decoupling approach allows for the following choices:

• Which one-dimensional tree(s) should be used to approximate the components?
• Which matrix decomposition should we choose in (5)?

In fact, each component process Yj can be approximated by an arbitrary one-
dimensional (factorial) tree. As discussed previously, the one-dimensional RB tree
leads to a backward induction algorithm that is cheaper than that obtained by the
CRR tree. Consequently, we suggest to approximate each component Yj by an ap-
propriate one-dimensional RB tree. In particular, this choice implies that the re-
sulting m-dimensional tree is always well-defined (independently of both the pa-
rameter setting and the number n of periods). To answer the second question, note
that there is an infinite number of decompositions solving (5). In particular, the
Cholesky decomposition and the spectral decomposition can be applied. However,
as shown by numerical and theoretical considerations, it is typically more favor-
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able to choose the spectral decomposition2 (compare Korn and Müller 2009 for
details). Applying the decoupling approach with the above choices results in the
following basic steps for numerical valuation of path-independent options with pay-
off B = f (S1(T ), . . . , Sm(T )):

Numerical Valuation of Path-Independent Options via Orthogonal RB Trees

1. Compute the spectral decomposition Σ = GDGT of the covariance matrix of
the log-stock prices.

2. Introduce the process Y(t) := GT (ln(S1(t)), . . . , ln(Sm(t)))T following the dy-
namics (6).

3. Approximate each component process Yj by a one-dimensional RB tree which
matches the mean and the variance of the one-period log-returns. This results in
an m-dimensional discrete process Y (n) following the dynamics

Y (n)(k + 1) =

⎛

⎜
⎜
⎝

Y
(n)
1 (k)+ μ1Δt + Z

(n)
k+1,1

√
d11

√
Δt

...

Y
(n)
m (k)+ μmΔt + Z

(n)
k+1,m

√
dmm

√
Δt

⎞

⎟
⎟
⎠ ,

Y (n)(0) = Y(0),

where (Z
(n)
k+1,1, . . . , Z

(n)
k+1,m) is a random vector of independent components,

each attaining the two values+1 and−1 with probability 1
2 . As above, we require

that the random vectors (Z
(n)
k,1, . . . , Z

(n)
k,m), k = 1, . . . , n, are i.i.d. Further, dii are

the eigenvalues of the covariance matrix Σ . By moment matching the drift vec-
tor (μ1, . . . , μm) and the distribution of (Zk+1,1, . . . , Zk+m,1) are determined in
such a way that the process Y (n) approximates the decoupled process Y .

4. Apply the backtransformation of the decoupling rule to the terminal nodes in the
tree associated with Y (n), i.e. with h(x) := (eG1x, . . . , eGmx) (where Gi denotes
the i th row of G) set

S(n)(n) := h
(
Y (n)(n)

)
.

Starting from the transformed terminal nodes (i.e. from the realizations of the
random variable S(n)(n)), we obtain an approximation to the Black-Scholes op-
tion price using the standard backward induction algorithm.

It remains to answer the question whether we can theoretically justify the above pro-
cedure to approximate Black-Scholes option prices via the decoupling approach. In
fact, one can show by weak convergence arguments that this is ensured by continuity
of the backtransformation map.

2 The triangular structure of the Cholesky decomposition is favorable when additional assets enter
the market. This issue will not be addressed in this survey.
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Numerical Performance of Orthogonal RB Trees

For path-independent options, the above valuation algorithm is cheaper than the con-
ventional multi-dimensional tree methods considered previously. This is due to the
fact that under the above choice of the embedded one-dimensional trees, each path
in the m-dimensional tree is equally likely. However, for path-dependent options, it
does not suffice to apply the backtransformation to the terminal nodes only. Rather,
the backtransformation has to be applied to every time layer in the tree that con-
tributes to the option payments. In particular, for the valuation of American options,
all time layers have to be transformed. This means that we have to transform the
entire tree associated with Y (n) into a “valuation tree” associated with the discrete
process S(n) defined by

S(n)(k) := h
(
Y (n)(k)

)
, k = 0, . . . , n.

Due to the additional computational effort required for backtransformation, numer-
ical valuation of path-dependent and American options is typically more expensive
for orthogonal trees than for conventional multi-dimensional trees. However, in case
that the latter are not well-defined, the decoupling approach at least justifies bino-
mial option valuation. Furthermore, the decoupling approach often leads to a more
regular convergence behavior than that observed for conventional multi-dimensional
methods. This is a consequence of the fact that by applying the backtransformation
to the nodes in the tree, the nodes are dislocated in an irregular (i.e. non-linear)
way. As a result, the probability mass gets smeared in relation to fixed strike val-
ues or barrier levels. The benefits due to the more regular convergence behavior
often overcompensate the additional computational effort required for backtransfor-
mation. In particular, the sawtooth effect can vanish completely, so that the order
of convergence can be improved by applying extrapolation methods (for a detailed
performance analysis see Korn and Müller 2009).

In addition to the above advantages, the decoupling approach is perfectly suited
to cut down high-dimensional valuation problems to the “important dimensions”.
To explain this, note that the dynamics of stock markets can often be explained by a
relatively small number of risk factors that is less than the number of traded assets.
In such a market, it seems reasonable to value an option by a tree whose dimen-
sion is lower than the number of underlyings. The above algorithm is particularly
suited to that purpose because it incorporates a principal component analysis in an
implicit way. In particular, it considers the underlying risk factors (rather than the
traded stocks) as the important ingredients. Consequently, if the number of rele-
vant risk factors is small, the decoupling approach can give a fast first guess on
high-dimensional valuation problems by considering the non-relevant risk factors
as deterministic (compare Korn and Müller 2009).

Note. We suggest orthogonal trees as an alternative to standard multi-dimensional
trees. On the one hand, the decoupling approach keeps the tree structure which re-
sults in an efficient backward induction algorithm; on the other hand, it is no longer
based on a random walk approximation to the correlated asset price processes, which
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leads to advantages in practical applications. In particular, the above orthogonal tree
procedure is always well-defined, and it can be combined with a principal compo-
nent analysis, which leads to model reduction. This will allow for a fast first guess
on the solution of high-dimensional valuation problems.

5 Conclusion and Outlook

Despite their conceptual simplicity, binomial trees can offer an efficient numerical
method to approximate Black-Scholes option prices. This is in particular true for
American options. However, multi-dimensional option valuation by binomial trees
suffers from the inherent drawback that it is currently not of practical use for high-
dimensional problems. Furthermore, as conventional binomial trees often lead to an
irregular convergence behavior, controlling the discretization error is important in
practical applications.

Binomial methods can also be applied to approximate option prices in continu-
ous-time stock price models other than the Black-Scholes model. There is still on-
going research on the application of the binomial method to stock price models
following non-Black-Scholes-type dynamics.

Further, the irregular convergence behavior of binomial methods remains a field
of intensive study. Previous research often concentrates on a particular type of op-
tions (such as barrier options) and thus leads to highly specialized approaches. An
exception is the orthogonal tree method of Korn and Müller (2009) which seems to
exhibit a more smooth convergence behavior for the popular types of exotic options.

As shown above, the orthogonal tree procedure can be cut down to important risk
factors. We suggest to analyse this issue for options on prominent indices. Further,
one could think of alternative approaches to deal with the curse of dimensionality.
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Uncertainty in Gaussian Process Interpolation

Hilke Kracker, Björn Bornkamp, Sonja Kuhnt, Ursula Gather, and Katja Ickstadt

Abstract In this article, we review a probabilistic method for multivariate interpo-
lation based on Gaussian processes. This method is currently a standard approach
for approximating complex computer models in statistics, and one of its advantages
is the fact that it accompanies the predicted values with uncertainty statements. We
focus on investigating the reliability of the method’s uncertainty statements in a
simulation study. For this purpose we evaluate the effect of different objective pri-
ors and different computational approaches. We illustrate the interpolation method
and the practical importance of uncertainty quantification in interpolation in a se-
quential design application in sheet metal forming. Here design points are added
sequentially based on uncertainty statements.

1 Introduction

Interpolation is an ubiquitous problem in the natural sciences. The situation usually
arises when a (typically continuous and smooth) function y(x), y : X �→ R with
x ∈ X ⊂ R

d , is difficult (i.e., time consuming) to calculate, so that it is impracti-
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cal to further work with y(.) for subsequent analyses (e.g., evaluation, optimization,
etc). In these cases a good approximation ŷ(.) of y(.) is desirable, which is cheap to
calculate. For this purpose one typically evaluates y(.) at a set of carefully chosen
design points x1, . . . , xn, with xi ∈ X and builds an approximation ŷ(.) that in-
cludes all information available on y(.). A basic requirement for ŷ(.), for example,
would be that ŷ(xi ) = y(xi ) for i ∈ {1, . . . , n}. If the true function y(.) is assumed
to be continuous and smooth, ŷ(.) should also be continuous and smooth. In some
cases one might have additional information available, for example, on the gradient
or the shape properties of y(.) such as positivity, monotonicity, convexity or uni-
modality. However, even if all available information can be incorporated, it remains
uncertain how well ŷ(x) predicts the value of y(x) for points x �∈ {x1, . . . , xn}.
Most approaches to interpolation do not explicitly account for this uncertainty in
the sense that they report ŷ(x) without any information on the certainty of this pre-
diction.

A way of incorporating uncertainty into general problems in numerical analy-
sis is by employing a probabilistic approach, see e.g. Diaconis (1988) or O’Hagan
(1992) for reviews. In this paper we will investigate a particular probabilistic method
for multivariate interpolation, called “Bayesian kriging” or “Gaussian process inter-
polation”, which allows for quantifying the uncertainty involved in the interpolation
process. The methodology originated in the geostatistics literature and has become
quite popular in other research areas in recent years. The main idea is to impose a
particular probabilistic model onto the interpolation process that post hoc allows to
evaluate the uncertainty in the predicted value ŷ(x) in probabilistic terms. We note
that measures of uncertainty, other than probability, may be employed to accompany
the prediction ŷ(.), for example, deterministic upper bounds on an approximation
error.

The application that is largely responsible for the increased interest in proba-
bilistic interpolation methods in statistics is the approximation of complex com-
puter models (see Santner et al. 2003). Computer models simulate a real world
physical process by a mathematical formalization of the process. Areas of appli-
cation include climate research, meteorology, hydrology (fluid dynamics), forming
(continuum mechanics) and pharmacokinetics (chemical kinetics). Often the mod-
eled process depends on input parameters x = (x(1), . . . , x(d)), and particularly in
engineering applications one is interested in finding a set of values for the input
parameters so that the process works optimally in a certain pre-specified way.

In principle the computer model may be evaluated at any input configuration of
interest, however, evaluations of the computer model can be extremely time consum-
ing so that in many situations only a limited number of computer code evaluations,
so called computer experiments, are feasible. Although conducting computer ex-
periments is usually much cheaper than performing real physical experiments, both
time-wise and financially, there is still a great potential of further speeding up the
computer modeling process by the use of interpolation methods.

Approximating computer models with Gaussian process interpolation goes back
to Sacks et al. (1989) and Currin et al. (1991) and has since then been accepted
as the current standard approach in this field. One of the reasons for the success
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of this methodology is the fact that it allows for uncertainty statements of the pre-
dicted value. We will illustrate why uncertainty is important for analyzing computer
models in the following two paragraphs by two specific examples.

One question arising naturally in the context of computer modeling is: How well
does the computer model describe the real world? In this case one has to perform
both real and simulated experiments. To judge the adequacy of an interpolation
model, it is now important to have an uncertainty statement available. If the com-
puter model approximation at a point deviates strongly from the experiment, it de-
pends on the uncertainty in the prediction of the interpolation model, whether we
would dismiss the computer model or not. If the uncertainty is large, we would pos-
sibly not dismiss the computer model, if the uncertainty is negligible however, we
are sufficiently sure that the computer model is biased. A similar problem arises,
when the computer model contains input variables that can be adjusted in the com-
puter model but not in the real world, for example, unknown physical constants or
numerical tuning parameters needed to evaluate y(.). How can we tune the computer
model so that it describes the real world as adequately as possible? This task is typ-
ically known as calibration, see Kennedy and O’Hagan (2001) and Bayarri et al.
(2007) for a Bayesian approach for computer model calibration based on Gaussian
process interpolation.

Another important aspect of computer experiments is the choice of the design
D = (x1, . . . , xn), hence at which points to observe the function y(.). In practice
often space-filling designs are used. They fill up the design region X as well as
possible with as few points as possible (see Santner et al. 2003 or Fang et al. 2006 for
details), and might be regarded as general purpose designs. When one is interested
in a specific characteristic of the computer model y(.), other designs might turn out
to be more adequate. Suppose for example one wants to find the minimum x∗ of
y(.), and the computer experiments are conducted sequentially. After evaluating the
computer model at a start design (for example, a space filling design), we would
like to add design points so that we learn most about the location of the minimum
of y(.). In general it is not a good strategy to sample the next point at the minimum
of the interpolating function. If the computer model has already been evaluated at
this point there is no gain of knowledge to evaluate the deterministic function again
at this point. To learn most about the minimum, we would rather like to choose a
design point, which might be a potential minimum, but where we are still sufficiently
uncertain about the specific function value. Thus it is smarter to sample the function
based on a balance between the uncertainty in the predicted function value and the
original goal of function minimization. One possibility is to place the new design
point, where the probability of being smaller than the current minimum is largest.
This effectively results in an exploration of the function for potential minima, rather
than a concentration on the currently found optimum.

Gaussian process interpolation differs from other approaches to multivariate in-
terpolation, because it delivers uncertainty statements, and one relies upon on them
in subsequent analyses, as illustrated above. However we are currently not aware of
papers that investigate the reliability of the uncertainty statements of the method.
The methodology imposes a certain probabilistic model onto the interpolation pro-
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cess, involving particular assumptions. To evaluate their impact on the uncertainty
statements, we will investigate three different, so called, uninformative or default
choices of the prior probability distribution and compare two different computa-
tional approaches to analyse the probabilistic model, one based on numerical opti-
mization and the other based on Markov chain Monte Carlo methods.

The outline of this paper is as follows: In Sect. 2 we describe the Gaussian pro-
cess approach to multivariate interpolation, with particular focus on three so-called
objective or default prior distributions for Gaussian process interpolation, as well
as on two different computational approaches to evaluate the probabilistic model in
Sect. 2.2. In Sect. 3 we will investigate the methodology in a variety of simulated
as well as real examples to evaluate the Gaussian process approach with respect to
the reliability of its uncertainty statements. Section 4 finally contains a real com-
puter modeling example, where the purpose of the experiment was to learn about a
contour of the computer model, i.e., one would like to learn about the input values
that result in a certain value of the computer model. Here the computer experiments
will be conducted sequentially (explicitly using the uncertainty statements of the
methodology) to obtain most information in as few computer code evaluations as
possible. Section 5 concludes.

2 Gaussian Processes for Multivariate Interpolation

After their introduction into the computer modeling world by Sacks et al. (1989)
and Currin et al. (1991), Gaussian process interpolation is currently seen as the de-
facto standard method for analyzing computer experiments (see, e.g., Santner et al.
2003) and forms the basis for the solutions of a variety of problems in the statistical
analysis of complex computer models such as sensitivity analysis (Schonlau and
Welch 2006; Oakley 2009), calibration and validation (Kennedy and O’Hagan 2001;
Bayarri et al. 2007) or sequential design (Jones et al. 1998; Lehman et al. 2004).

The Gaussian process interpolation method itself, however has an even longer
history in geostatistics. It was proposed by mining engineer Daniel Krige (Krige
1951) and further developed by Georges Matheron (Matheron 1963); Gaussian Pro-
cess interpolation is therefore also known under the name of Kriging especially
in spatial statistics (Cressie 1993). The connection to the Bayesian view on statis-
tics, where the probabilistic element of Gaussian process interpolation plays a more
dominant role was realized only later, see for example O’Hagan (1978). There ex-
ist surprisingly many cross links with other interpolation (and nonparametric re-
gression) methods. Fang et al. (2006), for example, illustrate that the functional
form of the predictor of local polynomial modeling and radial basis function in-
terpolation is identical to the posterior mean (5) in Gaussian process interpola-
tion for a certain choice of the underlying mean and covariance function. Also,
interpolating splines resulting from a minimization of a roughness penalty subject
to the interpolation condition can be obtained as a special case of Gaussian pro-
cess interpolation for a certain (non-stationary) covariance function (Wahba 1978;
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Gu 2002). There are also close connections to machine learning regression meth-
ods, such as neural networks and the support vector machine (see Seeger 2004) for
details.

We will describe Gaussian process interpolation from the Bayesian perspective
in Sect. 2.1 and will focus particularly on the choice of objective prior distributions
in Sect. 2.2.

2.1 Gaussian Process Interpolation

We are interested in approximating the deterministic function y(x) based on a small
number of evaluations at the design D = (x1, . . . , xn) and the computer model
function y(.) is known to be continuous and smooth. In the Bayesian probabilistic
formulation one defines a so-called prior distribution ỹ(.) for the function y(.). The
name prior distribution comes from the fact that it should represent information
available before any evaluation of y(.) has been performed (which is usually quite
scarce). When one evaluates the function at the design D one obtains observations
yn = (y(x1), . . . , y(xn))

′ and one can calculate the distribution of ỹ(.) conditional
on ỹ(x1) = y(x1), . . . , ỹ(xn) = y(xn), the so-called posterior distribution. This
posterior distribution then contains the information in the prior distribution and the
information based on the evaluation of (xi , y(xi )), i = 1, . . . , n.

The main idea of Gaussian process interpolation is to use a Gaussian process as
a prior for the function y(.). By definition a Gaussian process ỹ(.) is a stochastic
process which has the property that for any set of input points x1, . . . , xt , t =
1, 2, 3, . . . in X the joint distribution of ỹ(x1), . . . , ỹ(xt ) is multivariate normal
with mean μ = (μ(x1), . . . , μ(xt ))

′ and covariance matrix Γ ∈ R
t×t with Γ (i,j) =

c(xi , xj ), for a mean function μ(.) and a covariance function c(., .). Hence it is a
generalization of a normal distribution to an infinite space and its realizations are
functions on X rather than vectors.

A variety of choices can be used for μ(.) and c(., .) (see Santner et al. 2003).
Here we will present the most common choice in this setting, which uses a constant
process variance σ 2, i.e., c(x, x′) = σ 2r(x, x′) for a correlation function r(., .).
Another assumption commonly made, is covariance stationarity of the Gaussian
process, which implies that the correlation between two points depends only on the
points’ difference, i.e., r(x, x+h) = r(x ′, x′+h) for x, x+h, x′, x′+h ∈ X. This
is a relatively strong assumption as it implies a spatial homogeneity of the Gaussian
process, in the sense that the function’s fluctuations are the same throughout X.

The mean function is typically chosen as a parametric, for example, linear re-
gression model

μ(.) = f (.)T β, (1)

for a p-dimensional hyperparameter β and a fixed regression function f (.). For
approximating computer models simple mean functions, for example f (x) = 1 or
f (x) = (1, x(1), . . . , x(d)), have proven to be useful in many applications as long
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as no additional information on the mean is available.
A widely used stationary correlation function for modeling computer code output is
the power exponential correlation function

r(x, x′) = exp
(−d(x, x′)

)
with d(x, x′) =

d∑

j=1

ξj

∣∣∣x(j) − x′(j)
∣∣∣
aj

(2)

with correlation parameter vector ψ = (ξT , aT )T where ξ = (ξ1, . . . , ξd)
T and a =

(a1, . . . , ad)
T with ξj > 0 and 0 < aj ≤ 2. If aj = 2 for all j = 1, . . . , d we obtain

the important case of the Gaussian correlation function and if all ξ j = ξ and aj = a

for all j the correlation function is isotropic. Note that the correlation between two
points in (2) is monotonically decreasing in d(x, x′). Thus the computer model is
assumed to be more similar if the distance between the points in X is smaller. For
the power exponential correlation function it can be shown that the realizations are
(almost surely) continuous and for the Gaussian correlation function (with aj = 2,
j = 1, . . . , d) they are, in addition, infinitely often continuously differentiable,
while for aj < 2 realizations are not differentiable.

Gaussian processes are very flexible for modeling functions as their realizations
can take various forms. Tokdar and Ghosh (2007) even prove full support on the
space of continuous functions under relatively weak assumptions on the covariance
function. This flexibility is also illustrated in Fig. 1, where three two-dimensional
realizations with mean function 0 and exponential correlation function (2) are dis-
played corresponding to three different correlation parameters. The parameter vec-
tor ξ controls the wiggliness of the function: small values yield smooth functions
whereas the realizations are fluctuating more strongly with increasing values for ξ .
The exponent correlation parameter a controls the differentiability: A value smaller
than 2 results in non-differentiable functions. In this work we will subsequently
assume the power exponential correlation function. Of course there are other possi-
bilities, with the Matérn correlation function probably being the best known alterna-
tive/generalization. There are also extensions to non-stationary covariance functions
as proposed in Paciorek and Schervish (2004) or Xiong et al. (2007).

Fig. 1 Gaussian Process realizations with different correlation parameters (μ(x) = 0 and σ 2 = 1)
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To sum up, the prior distribution ỹn = (ỹ(x1), . . . , ỹ(xn))
T for the vector of

computer model evaluations at a design D for given β, σ and ψ , is a multivariate
normal distribution

ỹn ∼ N
(
Fβ, σ 2R

)
(3)

with regression matrix F = (f (x1)
T , . . . , f (xn)

T )T and correlation matrix R with
entries Ri,i′ = r(xi , xi′) for i, i′ ∈ 1, . . . , n. The other unknown parameters (so-
called hyperparameters) in the mean function and the covariance function of the
Gaussian process, β, σ 2 and ψ , also receive a prior distribution. Usually when mod-
eling computer experiments there is no specific prior information for the hyperpa-
rameters available. Hence, so called non-informative or objective prior distributions
are desirable. We factorize

p(β, σ 2,ψ) = p(β, σ 2|ψ) · p(ψ)

and use the standard flat prior p(β, σ 2|ψ) ∝ 1
σ 2 , where “∝” means that the prior of

β, σ 2 given ψ is proportional to 1
σ 2 . It is the Jeffreys prior in this model (Paulo 2005)

when treating ψ as a fixed value and assuming that (β, σ 2)′ and ψ are independent
a priori. We will first proceed with fixed ψ and discuss the choice of a prior for ψ

in Sect. 2.2 in more detail.
In the Bayesian probabilistic framework interest centers on the distribution of

ỹ(.) given the computer model evaluations, i.e. on the posterior distribution. Here
an advantage of Gaussian process priors is that the prior to posterior analysis in
large parts can be done analytically. This possibility of explicitly updating the pos-
terior distribution is one of the main reasons for the success of Gaussian processes
in practice. Let us hence look at the conditional posterior p(ỹ(.)|yn,ψ). It follows
from properties of the conditional distributions of the multivariate Gaussian distri-
bution and standard Bayesian linear model theory (see O’Hagan and Forster 2004,
pp. 393–398, for details) that the posterior process ỹ(.)|yn is a so-called Student
process

ỹ(.)|yn,ψ ∼ tn−p

(
m∗(.), c∗(., .)

)
(4)

with mean function m∗(.), scale function c∗(., .) and n − p degrees of freedom.
A Student process is the process generalization of the multivariate t-distribution,
where the response at any set of inputs has a multivariate t-distribution. The poste-
rior mean function m∗(.) is given by

m∗(.) = E(ỹ(.)|yn,ψ) = f (.)T β̂ + r(.,D)T R−1(yn − Fβ̂) (5)

where r(.,D) is the vector of correlation function evaluations between a new point

(.) and the design points and β̂ = (
F T R−1F

)−1
F T R−1yn equals the generalized

least squares estimate for the regression parameter. The posterior covariance func-
tion can be calculated as

Cov(ỹ(x), ỹ(x′)|yn,ψ) = n− p

n− p − 2
c∗(x, x′) (6)
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with

c∗(x, x′) = σ̂ 2
{
r(x, x′)− r(x,D)T R−1r(x ′,D)

− (f (x)T − r(x,D)T R−1F )(FR−1F )−1(f (x)T

− r(x,D)T R−1F )T
}

(7)

and σ̂ 2 = 1
n−p

(yn − Fβ̂)T R−1(yn − Fβ̂), the posterior process variance given ψ .
The mean of the posterior distribution m∗(.), given in (5), can now be used as a

point estimate ŷ(.) for y(.). The first part in the formula for m∗(.) is the estimated
linear regression function whereas the second part weights the deviations (yn−Fβ̂)

from observations and estimated mean using the correlation structure so that the ob-
servations yn at the design points are interpolated. Close to the design points the
posterior mean thus depends mostly on the correlation structure and with increasing
distance to the design points they are shrunken to the mean function. In the covari-
ance of (6) the weighting using the correlation structure plays an important role as
well: the variance is zero at the design points.

Fig. 2 Prediction for a one dimensional function y(.) based on 6 function evaluations and corre-
sponding 95% pointwise uncertainty intervals

To illustrate the theory described in this section we will employ a simple one
dimensional example. Suppose we would like to interpolate the function y(x) =
(x − 5)/10 sin(−x) + 1 on the interval [0, 10] based on a Gaussian process prior
ỹ(.) for y(.) with mean function μ(x) = β0 and Gaussian correlation function. For
the hyperparameters β, σ we used the prior p(β, σ 2|ξ) ∝ 1

σ 2 and fixed ξ at the
value 0.3.

Figure 2 shows a graphical representation of the conditional distribution ỹ(.) (that
is the posterior process) given the function values at the design D = (5/6, 15/6,
25/6, 35/6, 45/6, 55/6)T . The uncertainty at the design points is 0, so that all real-
izations from the posterior process interpolate the observations. The variance (and
hence uncertainty) grows with the distance to the design points.
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2.2 Priors for Correlation Structure

The parameters in the correlation function determine the smoothness of the poste-
rior process (as illustrated in Fig. 1), and thus also considerably the length of the
prediction intervals. So far we have treated the correlation parameter ψ as fixed, in
this case the model allows for analytical prior to posterior updating. In this section
we will discuss the prior to posterior analysis, when additionally ψ is treated as
unknown.

The posterior distribution for the parameter ψ is obtained by integrating out all
other parameters, which can be done analytically. The resulting marginal posterior
for the correlation parameter is then proportional to (see also Handcock and Stein
1993)

p(ψ |yn) ∝ p(ψ) · det(R)−1/2 det(F T R−1F )−1/2σ̂ 2−(n−p)/2
, (8)

which is not proportional to a known probability density.
The full posterior process is then formally given by

∫
p(ỹ(.)|yn,ψ)p(ψ |yn)dψ, (9)

an integral which cannot be calculated analytically. One approach to resolve such
a problem is to use Markov chain Monte Carlo methods to draw a large number
of samples ψ (1), . . . ,ψ (T ) from (8) and approximate (9) by 1/T

∑T
t=1 p(ỹ(.)|yn,

ψ (t)). An alternative method of approximating (9) is by optimizing (8) and plug-
ging the posterior mode ψ∗ into the conditional predictive distribution in (4), so that
the approximation of (9) is given by p(ỹ(.)|yn,ψ∗). This alternative method is the
current standard in the analysis of computer experiments, although it neglects the
uncertainty about the correlation parameters and therefore will tend to underesti-
mate the posterior variance. However only maximizing (8) is computationally much
cheaper than Monte Carlo integration and we must keep in mind that the major goal
of employing interpolation in computer models is to save computing time. In Sect. 3
we will investigate the differences of these two computational approaches and the
impact they have on the uncertainty intervals in a simulation study.

As the prior for p(ψ) might influence the posterior distribution, we will review
the development of objective priors for p(ψ) in the following based on the work
Berger et al. (2001) and particularly Paulo (2005). In the following we assume that
aj = 2 for j = 1, . . . , d (i.e., the Gaussian correlation function), because this is
the most relevant case of smooth functions. We will compare three different priors
for ξ : (i) An improper uniform (flat) prior distribution on [0,∞)d , subsequently
abbreviated p(1)(ξ ), which is a classical prior distribution in the case if more spe-
cific information is lacking. Note that formally this is not a non-informative prior.
Despite this fact it is often used, particularly when the chosen computational imple-
mentation is based on numerical optimization, since the results then coincide with
the REML estimator, see Santner et al. (2003). (ii) A prior based on a product of
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exponential densities, subsequently abbreviated p(2)(ξ), with means equal to the
ML estimators for the ξ j ’s. This approach is hence an empirical Bayes approach,
as the prior depends on the data. (iii) The third prior distribution is the marginal
independence Jeffreys prior, p(3)(ξ), as described (among other objective priors)
in Paulo (2005). In general the Jeffreys prior has some appealing properties: It is
invariant with respect to re-parametrization of the model, it can be shown to min-
imize prior information relative to the posterior in a certain information theoretic
sense and Bayesian credibility intervals resulting from Jeffreys prior often achieve
their nominal frequentist coverage probability faster than credibility intervals from
other arbitrary priors (see Kass and Wasserman 1996 for a detailed description of
the properties of Jeffreys prior and variants based on it). In the multivariate Gaus-
sian process situation there exist different variants of objective priors and Paulo
(2005) describes several of them and compares the frequentist coverage probability
of the credibility intervals for ξ in a simulation study. For this purpose Gaussian
processes with fixed hyperparameters were simulated and the coverage probability
of the credibility intervals for ξ were compared to their nominal level. The marginal
independence Jeffreys prior is recommended over other approaches in Paulo (2005)
since it lead to good performance in terms of frequentist coverage probability and
was computationally the cheapest approach. This is the reason, why we employ it
here. In summary we hence compare

p(1)(ξ) ∝ 1
¯

for ξj > 0,

p(2)(ξ ) =
d∏

i=1

fExp

(
ξ ,

(
ξ̂j,ML

)−1
)
,

and
p(3)(ξ) ∝ |IJ (ξ)|−1/2

with matrix

IJ (ξ) =

⎛

⎜⎜⎜
⎝

n trU1 trU2 · · · trUd

trU2
1 trU1U2 · · · trU1Ud

. . . · · · ...

trU2
d

⎞

⎟⎟⎟
⎠

where fExp denotes the density of the exponential distribution and Uj = ( ∂
∂ξj

R)R−1

for j = 1, . . . , d is the product of correlation matrix and the matrix’s partial deriva-
tive with respect to ξj . Interestingly Jeffreys prior p(3)(ξ), depends on the design D

through the correlation matrix R. In total the prior distributions for all hyperparam-
eters are given by p(β, σ 2, ξ) ∝ p(m)(ξ)(σ 2)−1, with m = 1, 2, 3 and assuming
β and (σ 2, ξ) are independent (Paulo 2005). Computationally Jeffreys prior is most
complex, as it requires the calculation of a matrix inverse for evaluation. The prod-
uct of exponentials prior is also relatively complex to calculate as it requires that the
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ML estimate is calculated before it can be evaluated. Computationally the simplest
prior is the flat prior.

Fig. 3 Jeffreys prior in one dimension for equidistant designs on [0, 1] with different sample sizes
(n = 3, 5, 10) and fixed aj = 2

The shapes of the flat prior p(1) and the product of exponentials prior p(2) are
well-known, while it is not obvious what the Jeffreys prior actually looks like. Fig-
ure 3 illustrates the Jeffreys prior for equidistant designs in one dimension for a
Gaussian correlation function: smaller values for ξ have greater prior probability.
The sample size determines how quickly the prior probability goes to zero with
increasing ξ . This shape also generalizes to larger dimensions and is therefore in
general more similar to the exponential than the flat prior.

When using improper priors (like p(1) and p(3) above) it is not guaranteed that
the posterior is proper as the integral in (9) can be infinite. Berger et al. (2001) show
in the one-dimensional case that an improper posterior distribution for ξ can arise
in a certain quite common situation, while Paulo (2005) shows that the posterior is
proper for the treated objective priors in the multivariate case for a factorial design
and, for example, a constant mean function. In practice, however a proper posterior
can be induced simply by bounding the parameter space at reasonable values for ξ

and thus making the prior distributions proper. When only using the posterior mode
for ξ and plugging this into (9), the issue is entirely bypassed.

3 Simulation Studies

In this section we will investigate the reliability of the uncertainty statements of
Gaussian process interpolation for the three different priors p(1), p(2), p(3) and the
two computational approaches described in the last section in a small simulation
study. The computational approach based on plugging in the posterior mode ψ∗
into (9) will subsequently be abbreviated as PM and the full Markov Chain Monte
Carlo approach will be abbreviated as MCMC. To evaluate the performance we will
use two approaches.
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In the first approach we will simulate random functions from a Gaussian process
and apply the Gaussian process interpolation methodology to each of the functions.
We will then investigate the across function coverage probability for the function
y(.) and the coverage probability of credibility intervals for the hyperparameters
ξ . Note that these simulations are the “ideal” case for Gaussian process interpo-
lation, as the probabilistic model for interpolation coincides with the true model.
Paulo (2005) also performs these type of simulations for several objective priors
and a factorial design of size n = 25. However, he only investigated the uncertainty
intervals for the hyperparameters ξ , while the coverage probability regarding the
response function y(.) is naturally of more interest in interpolation.

In the second approach we will investigate the performance for interpolation of
three realistic test functions, which not necessarily “look” like a typical realization
of a stationary Gaussian process. Here we will hence test the methodology, when the
probabilistic assumptions underlying Gaussian process interpolation are not met.

In all cases we will use space filling designs for D, in particular maximin Latin
hypercube designs, which are widely used for computer experiments. To generate
the designs we employed the lhs package (Carnell 2009) for the R statistical com-
puting language.

To calculate the posterior mode of the posterior density in (8) in the PM approach
we used the optim function in R with the Nelder-Mead optimizer. The posterior
density is usually multimodal so different starting values are used for the optimiza-
tion. For the MCMC approach, sampling was accomplished employing the random
walk Metropolis algorithm based on the posterior density for ξ given in (8). For this
purpose we used the R package mcmc (Geyer 2009). To achieve a reasonably effi-
cient Markov chain we tuned the algorithm in a starting phase. The step size of the
algorithm was tuned to achieve an acceptance rate of around 0.3 and the covariance
matrix of the proposal density was chosen proportional to the covariance matrix
estimated from the iterations of this preliminary chain (see Roberts and Rosenthal
2001 for details on tuning the random walk Metropolis algorithm). Using this spec-
ification we then started the random walk Metropolis at the posterior mode and ran
it for 15000 iterations. The first 100 iterations were discarded as burn in and only
every 10th value is taken for the analysis.

To evaluate the uncertainty statements for the function y(.) we used the across
function coverage, i.e. the probability that the true function is contained in the cred-
ibility interval predicted by the method averaged over the input space. This measure
seems reasonable from a practical viewpoint and a variant of it has also been used
in the smoothing spline regression literature (see Chap. 3.3 of Gu 2002, where it
is also investigated theoretically). For this purpose first pointwise prediction inter-
vals Py(x) = [Ly(x), Uy(x)] are calculated, where Ly(x) and Uy(x) are the 0.025
and the 0.975 quantile of the posterior distribution at x (in the PM approach this
is just a quantile of the t-distribution in (4), while in the MCMC approach empiri-
cal quantiles of samples from the predictive distribution are calculated). Then one
checks whether the true value y(x) is contained in Py(x) and denotes this value by
cy(x), i.e. cy(x) = 1[Ly(x),Uy(x)](y(x)). To obtain a single value for the coverage
over the entire function, we integrate over the design space to obtain one number:
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Cy = ∫
X cy(x)dx . Cy is hence the average coverage over the design space. In ad-

dition to the coverage probability one is usually also interested in the length of the
prediction intervals, hence we define by Hy = ∫

X |Uy(x)− Ly(x)|dx the average
length of the prediction intervals averaged over the design space. All integrals are
approximated using a straightforward numerical integration on X.

3.1 Simulations from a Gaussian Process

In a first step we simulated 100 realizations from a two dimensional Gaussian pro-
cess with constant mean function μ(x) = 1, σ 2 = 1.5, ξ = (3, 0.5)T and a = (2, 2)
on X = [0, 1]2. For the design D we used maximin Latin hypercube designs with
sample sizes n = 10, 15, 20, 25, 30, to investigate the impact of sample size on the
uncertainty statements.

For evaluation Gaussian process interpolation with an unknown constant mean
function is used. The exponent a in the correlation function is fixed to aj = 2,
j = 1, . . . , d , and the roughness parameter ξ is considered unknown. Addition-
ally the three different priors introduced in the last section and the two different
computational approaches were applied. In Table 1 one can observe the coverage
probabilities Cy and expected prediction interval lengths Hy averaged over the 100
simulated functions. For the MCMC based analysis the coverage for the correlation
parameters Cξj is reported as well (coverage intervals for ξ j were calculated based
on the empirical quantiles from the MCMC simulations).

For all prior distributions the across function coverage for a small sample size
n = 10 are below the target coverage with the best coverage values achieved using
the flat prior or the data dependent product of exponentials prior and an MCMC
based analysis. With increasing sample size they all approximately reach the nom-
inal level 0.95 and results seem to be even a bit conservative for n = 30. One can
observe the usual trade-off between length of the credibility interval and coverage
probability: The posterior mode estimate for ξ yields shorter credibility intervals
than MCMC, but (contrary to MCMC) does not achieve the nominal level in most
scenarios considered. However, the differences between MCMC and PM get smaller
for larger sample size. Overall none of the priors outperforms the other in terms of
coverage probability and interval length.

For the correlation parameter the simulation results are quite similar: For small
sample sizes the coverage is worse, but quickly approaches the nominal level. This
can be expected for ξ j , as asymptotically Bayesian credibility intervals can also be
interpreted as frequentist confidence intervals, particularly when objective priors are
used.

In summary, the results are quite positive in the sense that the methodology works
in the specific case it is designed for, provided the sample size is not too small.
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Table 1 Coverage probabilities of 95% prediction/credibility intervals when sampling from a
Gaussian process for the three different priors and the two computational approaches (MCMC and
PM), averaged over 100 simulations (in round brackets the 0.1 and 0.9 quantile of the coverages
observed in the simulation study)

sample size C
(MCMC)
y C

(PM)
y H

(MCMC)
y H

(PM)
y C

(MCMC)
ξ1

C
(MCMC)
ξ2

Flat prior
10 0.88 (0.64,1) 0.77 (0.34,1) 1.179 0.167 0.78 0.77
15 0.96 (0.84,1) 0.87 (0.64,1) 0.081 0.048 0.94 0.93
20 0.96 (0.88,1) 0.91 (0.72,1) 0.026 0.021 0.92 0.93
25 0.95 (0.84,1) 0.88 (0.69,1) 0.008 0.007 0.99 0.96
30 0.98 (0.95,1) 0.95 (0.88,1) 0.004 0.004 0.92 0.93

Exponential prior
10 0.87 (0.66,1) 0.74 (0.41,1) 0.209 0.148 0.80 0.83
15 0.94 (0.78,1) 0.86 (0.61,1) 0.065 0.046 0.93 0.90
20 0.94 (0.76,1) 0.87 (0.60,1) 0.025 0.020 0.94 0.91
25 0.95 (0.84,1) 0.89 (0.64,1) 0.008 0.007 0.96 0.93
30 0.98 (0.95,1) 0.94 (0.87,1) 0.004 0.004 0.97 0.94

Jeffreys prior
10 0.73 (0.24,1) 0.63 (0.26 ,0.98) 0.247 0.128 0.67 0.59
15 0.94 (0.76,1) 0.84 (0.51 ,1.00) 0.061 0.044 0.95 0.89
20 0.93 (0.74,1) 0.87 (0.60 ,1.00) 0.025 0.021 0.98 0.95
25 0.97 (0.89,1) 0.92 (0.76 ,1.00) 0.008 0.007 0.94 0.95
30 0.98 (0.92,1) 0.92 (0.80 ,1.00) 0.004 0.004 0.98 0.94

3.2 Evaluating Testfunctions

It is important to investigate how the method behaves when applied to test functions
that are not necessarily realizations of a Gaussian process. For this purpose we con-
sider three test functions of dimension two and seven with a complexity and sample
size that is comparable to the application in sheet metal forming in Sect. 4.1.

The first test function f1 is a two dimensional smooth convex combination of
beta distribution functions FBeta(x, α, β):

f1(x) = 1/3 · FBeta(0.5x1 + 0.5x2, 1, 1)+ 1/3 · FBeta(0.7x1 + 0.3x2, 20, 10)

+ 1/3 · FBeta(0.15x1 + 0.85x2, 15, 20).

This function (displayed in Fig. 4 left) increases moderately and should therefore be
well described by a covariance stationary Gaussian process.

Additionally we look at a physical process, which can rapidly be simulated,
because the function describing the process is available analytically. The piston
simulator from Kenett and Zacks (1998) models the cycle time of a complete
revolution of the piston’s shaft depending on seven input factors: piston weight
(M , 30–60 kg), piston surface area (S, 0.005–0.02 m2), initial gas volume (V0,
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Fig. 4 Test functions f1(x) and f3(x)

0.002–0.01 cm3), spring coefficient (k, 1000–5000 N/m), atmospheric pressure (P0,
9× 104–11× 104 N/m2), ambient temperature (T , 290–396 K) and filling gas tem-
perature (T0, 340–3602 K) as

cycletime = 2π

√
M

k + S2 P0V0
T0

T

V 2

with V = S
2k (

√
A2 + 4k P0V0

T0
T −A) and A = P0S + 19.62M − kV0

S
. This function

is included as it is higher dimensional and based on a real example. For convenience
we scale all inputs to [0, 1] and call the function describing the cycletime f2(x). As
this example is higher dimensional here 20000 MCMC iterations are used, saving
only every 10th value after a burn in of 1000.

For the third function we again consider a monotone combination of beta cdfs:

f3(x) = 0.8 · FBeta(x1, 30, 15)+ 0.2 · FBeta(x2, 3, 4).

This function has one single steep increase but is almost constant apart from that
(see Fig. 4 right). We included this comparably difficult example to investigate how
the methodology works, when a function is evaluated, which is rather unlikely to be
generated by a covariance stationary Gaussian process.

For each test function we consider three different sample sizes (5, 7 and 10 ob-
servations per dimension d), three different prior functions (p(1), p(2) and p(3))
and two computational methods (MCMC and PM). The mean function is consid-
ered constant and the exponents aj are fixed to 2 yielding smooth differentiable
realizations of Gaussian processes. We report the coverage Cy of the test func-
tions together with prediction interval lengths Hy in Table 2. Note that these val-
ues are results for a single function under consideration and not averaged over
replications as in Sect. 3.1. In addition we evaluated the root mean square error

RMSE =
√∫

X (ŷ(x)− y(x))2dx, where ŷ(x) is the posterior mean in the MCMC
or the PM approach.

For all test functions the across function coverage using the MCMC approach
is usually > 80% and for the posterior mode analysis in most cases > 70%. The
difference between the MCMC and the PM approach is a bit larger here than in the
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Table 2 Across function coverage for test functions

n / d prior Cy (MCMC) Cy (PM) Hy (MCMC) Hy (PM) RMSE (MCMC) RMSE (PM)

f1(x) (d = 2)
5 flat 0.875 0.512 0.149 0.082 0.056 0.059
5 exponential 0.578 0.397 0.094 0.070 0.064 0.064
5 Jeffreys 0.748 0.333 0.154 0.061 0.051 0.069
7 flat 1.000 0.862 0.218 0.141 0.037 0.044
7 exponential 0.891 0.796 0.160 0.129 0.045 0.046
7 Jeffreys 0.989 0.771 0.178 0.122 0.043 0.048
10 flat 0.891 0.760 0.087 0.067 0.022 0.024
10 exponential 0.844 0.703 0.078 0.063 0.024 0.026
10 Jeffreys 0.837 0.680 0.078 0.062 0.024 0.027

f2(x) (d = 7)
5 flat 0.913 0.832 0.048 0.038 0.013 0.014
5 exponential 0.871 0.833 0.041 0.038 0.013 0.014
5 Jeffreys 1.000 0.811 2.608 0.061 0.059 0.025
7 flat 0.964 0.781 0.043 0.032 0.013 0.016
7 exponential 0.860 0.703 0.034 0.026 0.015 0.017
7 Jeffreys 0.863 0.771 0.050 0.039 0.020 0.020
10 flat 0.786 0.758 0.020 0.017 0.009 0.009
10 exponential 0.781 0.727 0.018 0.015 0.009 0.009
10 Jeffreys 0.791 0.789 0.020 0.018 0.009 0.009

f3(x) (d = 2)
5 flat 1.000 0.900 1.011 0.210 0.123 0.067
5 exponential 0.961 0.816 0.237 0.191 0.077 0.076
5 Jeffreys 0.950 0.705 0.247 0.176 0.115 0.092
7 flat 0.986 0.812 0.170 0.115 0.041 0.039
7 exponential 0.902 0.730 0.148 0.128 0.037 0.035
7 Jeffreys 0.878 0.605 0.144 0.103 0.035 0.034
10 flat 0.506 0.385 0.073 0.061 0.054 0.056
10 exponential 0.426 0.327 0.066 0.056 0.058 0.059
10 Jeffreys 0.424 0.311 0.067 0.054 0.059 0.060

simulations in the last section. From the three different prior distributions the flat
prior seems to be closest to the nominal level. Overall, however, the coverage does
not reach a 95% coverage in many situations. As anticipated the performance for f3
is worse, particularly for 10 observations per dimension. It is interesting to note that,
contrary to the results in the last section, the coverage probability is not increasing
with the sample size, but decreasing (particularly for f2 and f3). It seems that by
increasing the sample size one introduces a “false” certainty: When the true func-
tion is deviating strongly from the assumptions underlying a stationary Gaussian
process model, the uncertainty statements become less reliable. Overall however,
particularly the MCMC approach seems to give reasonable results in the situations
considered.
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4 Application: Using Uncertainty in Interpolation for Sequential
Designs

As discussed in the introduction one application of the uncertainty statements of
Gaussian process interpolation are sequential designs for computer experiments.
The basic idea is as follows: after evaluating the computer model at a start design,
one uses the pointwise predictive distribution of the Gaussian process interpolation
to determine sequentially the point where to evaluate the computer model next. This
can reduce the number of computer model evaluations, especially, if the goal is
to estimate a specific characteristic of y(.) (such as the minimum, maximum or a
contour) rather than to approximate the simulation for the entire region.

In choosing sequential designs for computer models the concept of expected
improvement as proposed by Jones et al. (1998) is widely used and has been ex-
tended to various situations such as constraint optimization (Williams et al. 2000)
or contour estimation (Ranjan and Bingham 2008). In this paper we will illustrate by
means of an example in sheet metal forming how to sequentially design computer
experiments for contour estimation.

4.1 Example: Contour Estimation for Springback in Deep Drawing

Fig. 5 Workpiece geometry with springback angle y

In deep drawing a sheet metal is drawn into a forming die by applying force
with a punch. To simplify matters the shape of the formed workpiece is (most of
all) determined by the shape of the die. However, when releasing the force from the
punch the formed workpiece can spring back and the resulting shape deviates from
the original one. Here we look at a simple workpiece geometry displayed in Fig. 5
which is very prone to springback (see Gösling et al. 2007). Overall springback is
described here using the angle y and it is desired to deviate as little as possible from
the target geometry (i.e. the angle should be as small as possible).

The springback angle depends on various factors, for example, on the die geom-
etry and additional process parameters. Some of these parameters cannot be per-
fectly determined in the real production process such as the friction (quantified via
the friction coefficient varying between 0.06 and 0.18) and blank thickness (varying
between 0.8 and 1.2 mm). However, for the engineers it is of particular interest to
find values for blank thickness and friction, that lead to an acceptable springback
angle.
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The entire process of forming and springback can be simulated using a finite
element computer model. Here the commercial software PAMSTAMP 2G (2005)
has been used. Now in principal the springback angle can be simulated for any
combination of friction coefficient and blank thickness from the computer model.
However, this computer code is time-consuming to run so that as few computer
model evaluations as possible should be performed.

Now assume that the resulting workpiece is acceptable as long as the springback
angle y is smaller than a specified angle α = 9◦. We are interested to identify values
of the parameters friction and blank thickness such that the computer model yields
an acceptable degree of springback. This corresponds to the estimation of a contour
S(x : y(x) = α) which will divide the parameter space X in regions that have an
acceptable or unacceptable degree of springback.

For the purpose of this paper we will use an approximation of the computer model
based on previously performed computer model evaluations, rather than performing
the actual finite element simulations. The corresponding function is displayed in
Fig. 6. This approach has the advantage that the test function is close to a real com-
puter model but still quick to evaluate, so that different sequential approaches can
be compared for the purpose of this paper.

Fig. 6 Contours of the computer model function for springback (in black: contour y(x) = 9)

The sequential design algorithm adds design points sequentially using the ex-
pected improvement criterion and Gaussian process interpolation. The computer
model is first evaluated at a space filling start design of size ns , so that computer
experiments (xi , y(xi ))i=1,...,ns are available. The Gaussian process interpolation
yields a predictive process based on the current computer model evaluations. De-
sign points are then added sequentially such that we can achieve an improvement in
our goal of estimating the contour S(x : y(x) = α).

For example, it would be advantageous to sample in regions where y(x) lies
within a neighborhood [α − ε(x), α + ε(x)] of α. Therefore Ranjan and Bingham
(2008) propose the following improvement function I (x) for contour estimation

I (x) =
{
ε(x)2 − (ỹ(x)− α)2 if |ỹ(x)− α| < ε(x),

0 else,
(10)
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where the neighborhood is defined as ε(x) = γ · s(x) with a positive constant γ
and s(x) = √

c∗(x, x) from (7). The improvement is either zero when the deviation
of ỹ(x) from α is too large or when the uncertainty in x is very small as s2(x) is
proportional to the posterior variance (for an observed design point xi it is always
zero).
Now the uncertainty about ỹ(x) comes in to play: rather than maximizing the im-
provement function by plugging-in a fixed approximation ŷ(x), we maximize the
improvement that is expected under the predictive distribution of ỹ(x)|yn. The ex-
pected improvement criterion is hence calculated as

E [I (x)] =
∫ α+ε(x)

α−ε(x)

(
ε(x)2 − (ỹ − α)2

)
p(ỹ(x)|yn)dỹ (11)

and for fixed ψ it yields the closed form expression

E
[
I (x)|ψ]

=
(
ε(x)2 − (

m∗(x)− α
)2 − s2(x)

n− p

n− p − 2

) (
Tn−p(c2)− Tn−p(c1)

)

− 2
(
m∗(x)− α

)
s(x)

(
n− p + c2

1

n− p − 1
tn−p(c1)− n− p + c2

2

n− p − 1
tn−p(c2)

)

− s2(x)

(
c1(n− p)+ c3

1

n− p − 2
tn−p(c1)− c1(n− p)+ c3

2

n− p − 2
tn−p(c2)

)

(12)

with c1 = α−ε(x)−m∗(x)
s(x) , c2 = α+ε(x)−m∗(x)

s(x) and pdf Tν and density tν of the t-
distribution with ν degrees of freedom. When ψ is treated as unknown the expected
improvement is calculated by integrating (12) over the posterior of ψ .

The next computer experiment is evaluated at the point x̃ = argmaxE[I (x)],
that maximizes the expected improvement. The entire sequential algorithm is as
follows:

(i) Fit Gaussian process interpolation to the current data available.
(ii) Determine the point with highest expected improvement x̃.

(iii) Evaluate the computer model at x̃ and go back to step (i).

The procedure is stopped if either the budget of computer model evaluation is ex-
hausted or some other stopping criterion is met.

An estimator for the contour is given by Ŝ(x : ŷ(x) = α) and to illustrate
the uncertainty about the contour we look at the region in X where α lies within
pointwise 95 % uncertainty intervals for ỹ.

Now we apply the sequential contour estimation to our example in sheet metal
forming. We use a maximin Latin hypercube of size ns = 5 as a start design and
add 5 points sequentially based on the expected improvement criterion. In the se-
quential algorithm we chose γ = 1 for determining the contour neighborhood. For
comparison a single step 10 point maximin Latin hypercube is considered as well.
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Fig. 7 Contour estimation using sequential design (left) and single step space filling design (right)
in combination with posterior mode (top) and MCMC (bottom) computational approaches using
Jeffreys prior. Legend: • design point, sequential design point (with order number), – true con-
tour, - - estimated contour using 10 design points, contour uncertainty region

In the Gaussian process interpolation we use a constant mean, Gaussian correla-
tion function and the seldom used Jeffreys prior p(3)(ξ) to gain further insight into
its behavior in practice. Computations are accomplished using posterior mode and
MCMC analysis based on a chain of length 10000 using every 30th value after a
burnin of 1000 iterations.

The results using the posterior mode as well as the MCMC approach for analysis
are displayed in Fig. 7. It can be seen that for both computational approaches the
sequential design adds design points at quite similar locations (although in different
order). The design points are added on the border of the design region (where un-
certainty is usually largest) or close to the current estimate of the contour line as one
might expect from the improvement criterion. Additionally, as hoped for, contour
estimation based on the sequential design is closer to the truth than the single step
design. Thus here a sequential design leads to better results as the goal is to estimate
a specific characteristic, which can be exploited in the design criterion.

The computational approach seems to have only a minor influence in the se-
quential design and contour estimation for this example. Computationally however,
the MCMC based approach is much more complex, as it requires a full MCMC
run after each observation. To keep the computation time practical, especially for
the expected improvement function, we chose a higher thinning rate for the chain.
Recently Gramacy and Polson (2009) proposed a particle learning algorithm as an
alternative to MCMC, that can cope more efficiently with data arriving sequentially.
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Nevertheless in this example the posterior mode approach is a very attractive and
computationally efficient alternative.

5 Conclusions

Gaussian process interpolation comes with a big promise: The possibility to ac-
company predictions from an interpolation model with an uncertainty statement. As
illustrated, in several situations one subsequently relies on these uncertainty state-
ments particularly in the analysis of computer experiments. However, these uncer-
tainty statements are based on imposing a particular assumption (the prior probabil-
ity measure) to the interpolation process, and it is often not clear how reliable they
are for the practical situation under consideration.

In this article we studied the accuracy of the uncertainty statements for the
methodology in situations, when the assumptions are exactly correct (by simulating
functions to be interpolated from a Gaussian process in Sect. 3.1) and for realistic
test functions (which might not necessarily look like a realization of a stationary
Gaussian process). For this purpose we studied two computational approaches and
three different choices of priors for the hyperparameters in the correlation function:
The standard computational approach is the posterior mode approach described in
Sect. 2.2. This plug-in approach ignores the uncertainty due to not knowing the
correlation parameter and hence underestimates posterior uncertainty. As a second
computational approach we studied a full Markov Chain Monte Carlo approach,
to see to what extend it improves the uncertainty statements. The current standard
approach for choosing a default prior distribution for hyperparameters in the corre-
lation function consists of using an improper constant prior on the positive real num-
bers. Paulo (2005), however, proposed objective prior distributions based on general
formal rules for deriving objective prior distributions. In this work we investigated,
whether these formally objective prior distributions lead to an improvement in terms
of representation of the uncertainty.

To study the reliability of uncertainty statements we evaluated the across-function
coverage probability of the methodology, which we regard as the practically most
relevant value. It is built by pointwisely observing whether the function lies in or
outside a prediction interval resulting from the posterior and averaging this over the
input space. When sampling functions from a Gaussian process the coverage prob-
ability did approximately reach the nominal level for all priors and computational
approaches as long as the sample is not too small (with a slight advantage toward
the MCMC based approach). In a second study, when evaluating test functions that
are not necessarily a realization of a Gaussian process the coverage tends to be
smaller than the nominal level. In this situation the MCMC approach gives more
reliable results compared to the posterior mode approach. Note that for the extreme
test function that does not look like a typical realization of a stationary Gaussian
process the coverage does not approach the nominal level even with larger sample
size.
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Overall in our simulation study none of the objective priors turned out to be
clearly superior over the other. For evaluating our test functions the flat prior seems
to gain slightly higher coverages. The formally objective independence Jeffreys
prior distribution overall seems to perform even slightly worse than the other two
approaches, which might explain why this prior is seldom used in practice.

Regarding the computational implementation it seems that there are advantages
for MCMC (particularly in the simulation study), but they certainly come at the cost
of an increased computational effort, and it depends on time constraints, whether
one would want to implement this approach. In the sequential design example in
Sect. 4 the improvement due to an MCMC analysis are probably too small to justify
the increase in computational time.

In summary it seems that in terms of uncertainty representation, there are no
strong reasons to depart from the current standard procedures, i.e., the PM approach
and the flat prior distribution, although there are some advantages associated with
an MCMC based evaluation.

The reduced coverage values observed for the extreme non-stationary test func-
tion in Sect. 3.2, are certainly discomforting, although it is not clear, whether or to
what extent they affect for example the sequential design approaches. However, to
achieve reasonable function coverage values also in more extreme situations, one
could extend the prior distribution to non-stationarity, so that the model becomes
more flexible. There are several approaches available for modeling non-stationarity,
see for example Paciorek and Schervish (2004) or Xiong et al. (2007) for two re-
cent examples. An alternative would be to use a more flexible mean function, for
example, by using a spline basis for f (x), but then one usually runs into numerical
problems. Another way out are treed Gaussian processes that fit different covariance
stationary Gaussian processes to data based partitions of the input space (see Gra-
macy and Lee 2008). One should keep in mind, however, that all these extensions
require more parameters to be estimated from the data, which often requires a larger
sample size in turn.
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On the Inversive Pseudorandom Number
Generator

Wilfried Meidl and Alev Topuzoğlu

Abstract The inversive generator was introduced by J. Eichenauer and J. Lehn in
1986. A large number of papers on this generator have appeared in the last three
decades, some investigating its properties, some generalizing it. It has been shown
that the generated sequence and its variants behave very favorably with respect to
most measures of randomness.

In this survey article we present a comprehensive overview of results on the in-
versive generator, its generalizations and variants. As regards to recent work, our
emphasis is on a particular generalization, focusing on the underlying permutation
P(x) = axp−2 + b of Fp.

1 Introduction

The celebrated inversive (congruential pseudorandom number) generator is defined
as

xn =
{
ax−1

n−1 + b for xn−1 �= 0,

b for xn−1 = 0,
(1)

where x0, a, b are in the finite field Fp with p elements. The sequence (xn) hav-
ing terms in Fp, yields a sequence (yn) of pseudorandom numbers in [0, 1) with
yn = xn/p.

Since its introduction by Eichenauer and Lehn (1986), this generator gained a
wide popularity. Early work on the inversive generator is due to the researchers in
“Arbeitsgruppe 9 in TH Darmstadt” and their collaborators, see Eichenauer et al.
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(1987), Eichenauer and Niederreiter (1988), Eichenauer et al. (1989), Eichenauer-
Herrmann (1991, 1992c), and Eichenauer-Herrmann and Ickstadt (1994).

It is not surprising though that the enchanting properties of the inversive gener-
ator managed to attract the attention of other researchers around the world rather
quickly, leading to a vast amount of relevant work, that appeared since. Presenting a
complete survey of results on the inversive generator therefore is an impossible task.
The list of references we provide, though extensive, is also far from being complete.
Interested readers may also check L’Ecuyer and Hellekalek (1998), Eichenauer-
Herrmann (1992a, 1995), Eichenauer-Herrmann et al. (1998), Emmerich (1996),
Hellekalek (1998), Niederreiter (1992, 1994), Shparlinski (2003), Topuzoğlu and
Winterhof (2007).

Generalizations and modifications of the inversive generator include others using
one inversion, like explicit inversive generators, generators with more than one in-
versions, and inversive generators over other structures, like Galois rings (see Sole
and Zinoviev 2009). The underlying permutation

P(x) = axp−2 + b (2)

of Fp is, naturally, of interest also. Its cycle structure, for instance, yields the periods
of the sequence (1) for different starting values.

A recent generalization of the inversive generator focuses on the permutation
P in (2), and replaces P with a permutation involving more than one inversions.
Results on the period lengths of sequences obtained by such permutations are pre-
sented in Sect. 1.5.1. This work clearly indicates that the analysis of these generators
are more challenging. However one may expect that they also have favorable ran-
domness properties. For instance similar bounds on the linear complexity profile,
a randomness measure for sequences which will be recalled in Sect. 3, can be ob-
tained with the same approach used for the classical inversive generator, when the
number of inversions is small.

This recent work not only generalizes the inversive generator yielding an inter-
esting class of sequences, but also provides a new approach to studying permutation
polynomials over finite fields. These results are presented in detail in the last two
sections.

2 Notation and Terminology

We start by recalling that a sequence is defined to be pseudorandom (PR) if it is
generated by a deterministic algorithm, with the aim that it simulates a truly random
sequence. A pseudorandom sequence in the unit interval [0, 1) is called a sequence
of pseudorandom numbers (PRN). In particular, for a prime p, the finite field Fp

is identified with the set {0, 1, . . . , p − 1}, and a sequence (sn) in Fp gives rise to
a sequence (un) of PRNs, satisfying un = sn/p. The sequence (sn) in this case is
usually called a pseudorandom number generator.
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Randomness of a given PR sequence is measured by various methods: In addition
to many statistical tests that the sequence is expected to pass, a large number of the-
oretical tests have been developed. The significance of these theoretical tests were
first established by the seminal work of Marsaglia (random numbers fall mainly in
the planes, Marsaglia 1968), describing the weakness of the linear generator. Recall
that the linear generator is defined as

sn+1 = asn + b, (3)

for a, b ∈ Fp, a �= 0. We shall focus on some of the theoretical quality measures,
that are relevant for the analysis of the inversive generator and its generalizations.
Comparison with the linear generator justifies the wide interest gained by the inver-
sive generator. The reader is referred to L’Ecuyer and Hellekalek (1998), Hellekalek
(1998), Niederreiter (1992), Shparlinski (2003), Topuzoğlu and Winterhof (2007)
and references therein for detailed exposition of various other quality measures for
randomness, and performance of popular PR sequences under them.

We shall restrict ourselves to the study of PR sequences over a finite field Fq of
q = pr elements where r is a non-negative integer, and p is a prime. In order to
obtain PRNs when r ≥ 2, one chooses a fixed ordered basis {β1, . . . , βr} of Fq over
Fp. A sequence (yn) of PRNs in the unit interval can then be obtained from (ξn) in
Fq by yn = (kr + kr−1p + · · · + k1p

r−1)/q for ξn = k1β1 + · · · + krβr .
In particular the inversive generator (1) above can be expressed as a sequence

over Fq :

xn+1 = ax
q−2
n + b (4)

where the starting value x0, and a, b are in Fq . For results on the inversive generator
defined over the ring Zm, where m is a prime power, see for instance Eichenauer
et al. (1988b), Eichenauer-Herrmann and Topuzoğlu (1990), Eichenauer-Herrmann
and Grothe (1992), Eichenauer-Herrmann and Ickstadt (1994).

The sequences we consider are (purely) periodic, i.e., a sequence (ξn) satisfies
ξn+t = ξn for some positive integer t , for all n ≥ 0. We recall that the smallest such
t is defined to be the (least) period (or period length) of (ξn). For applications only
parts of the sequences are used, therefore sequences with long periods are sought
for. Hence knowledge of the period length of a given sequence is crucial.

It was shown in Eichenauer and Lehn (1986) that the inversive generator (1) in
Fp has maximum possible period length p, if x2 − ax− b is a primitive polynomial
over Fp. See the work of Flahive and Niederreiter (1993) for a refinement, namely
giving necessary conditions for xn to have period p. Chou (1995a, 1995b) extended
this result to the case of a prime power q. He also determined period lengths for all
starting values. See Sect. 5 for a generalization of this work.
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3 Analysis of the Inversive Generator and Its Variants

In this section we introduce some relevant randomness measures and describe the
favorable performance of the inversive generator and its variants under these mea-
sures.

We start by focusing on the so-called linear complexity, a quality measure which
is of particular importance for cryptographic applications. Let us first recall that
a sequence (sn)n≥0 of elements of Fq is called a (homogeneous) linear recurring
sequence of order k if there exist a0, a1, . . . , ak−1 in Fq , satisfying the linear recur-
rence of order k over Fq ;

sn+k = ak−1sn+k−1 + ak−2sn+k−2 + · · · + a0sn, n = 0, 1, . . . .

The linear complexity profile of a sequence (sn) over Fq is the sequence L(sn,N),
N ≥ 1, where its N th term is defined to be the smallest L such that a linear recur-
rence of order L over Fq , can generate the first N terms of (sn).

We put L(sn,N) = 0 if the first N elements of (sn) are all zero and L(sn,N) = N

if the first N − 1 elements of (sn) are zero and sN−1 �= 0.
The value

L(sn) = sup
N≥1

L(sn,N)

is called the linear complexity of the sequence (sn). For the linear complexity of any
periodic sequence of period t one can easily see that L(sn) = L(sn, 2t) ≤ t .

Linear complexity and linear complexity profile of a given sequence can be de-
termined by using the well-known Berlekamp-Massey algorithm (see e.g. Massey
1969). The algorithm is efficient for sequences with low linear complexity. There-
fore such sequences can easily be predicted and hence should be avoided for use in
cryptographical applications. The linear generator

sn+1 = asn + b,

for a, b ∈ Fp, a �= 0 is a typical example having L(sn) ≤ 2. In fact the knowledge of
three consecutive terms of this sequence is sufficient to retrieve the whole sequence.
PR sequences with low linear complexity are shown to be unsuitable for some ap-
plications using quasi-Monte Carlo methods, also see Niederreiter (1992, 2003),
Niederreiter and Shparlinski (2002a).

The expected values of linear complexity and linear complexity profile show that
a “truly random” sequence (sn), with least period t should have L(sn,N) close to
min{N/2, t} for all N ≥ 1.

As opposed to the linear generator failing this randomness test for any choice
of parameters a, b, the inversive generator (with least period t) over Fp has almost
optimal linear complexity profile, (see Shparlinski 2003):

L(xn,N) ≥ min{�N/3�, �t/2�}. (5)
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The following variant of the inversive generator exhibits a particularly nice behavior
with respect to the linear complexity profile. The explicit inversive congruential
generator (zn) was introduced by Eichenauer-Herrmann (1993) and is defined by
the recursion

zn = (an+ b)p−2, n = 0, . . . , p − 1, zn+p = zn, n ≥ 0, (6)

with a, b ∈ Fp, a �= 0, and p ≥ 5. It is shown by Meidl and Winterhof (2003) that

L(zn,N) ≥

⎧
⎪⎨

⎪⎩

(N − 1)/3, 1 ≤ N ≤ (3p − 7)/2,

N − p + 2, (3p − 5)/2 ≤ N ≤ 2p − 3,

p − 1, N ≥ 2p − 2.

(7)

Analogues of (7), when q = pr , r ≥ 2, are also given in Meidl and Winterhof
(2003). In this case they are called digital inversive generators, see Eichenauer-
Herrmann and Niederreiter (1994).

Note that the inversive generator (4) can be expressed as

xn+1 = f (xn)

for f (x) = axq−2 + b ∈ Fq [x]. One can naturally consider any polynomial f (x) ∈
Fq [x] of degree d ≥ 2, to obtain a nonlinear congruential pseudorandom number
generator (un):

un+1 = f (un), n ≥ 0, (8)

with some initial value u0 ∈ Fq , see Eichenauer et al. (1988a), and Niederreiter
(1988). Obviously, the sequence (un) is eventually periodic with some period t ≤ q.
Assuming it to be (purely) periodic, the following lower bound on the linear com-
plexity profile holds, see Gutierrez et al. (2003).

L(un,N) ≥ min
{
logd(N − �logd N�), logd t

}
, N ≥ 1.

The linear complexity profile of pseudorandom number generators over Fp, de-
fined by a recurrence relation of order m ≥ 1 is studied in Topuzoğlu and Winterhof
(2005). Consider the recursively defined sequence

un+1 = f (un, un−1, . . . , un−m+1), n = m− 1, m, . . . . (9)

Here initial values u0, . . . , um−1 are in Fp and f ∈ Fp(x1, . . . , xm) is a rational
function in m variables over Fp. The sequence (9) eventually becomes periodic
with least period t ≤ pm. The fact that t can actually attain the value pm gains
nonlinear generators of higher orders a particular interest. In case of a polynomial f ,
lower bounds for the linear complexity and linear complexity profile of higher order
generators are given in Topuzoğlu and Winterhof (2005).

A particular rational function f in (9) gives rise to a generalization of the inver-
sive generator (4), as described below. Let (xn) be the sequence over Fp, defined by
the linear recurring sequence of order m+ 1;
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xn+1 = a0xn + a1xn−1 + · · · + amxn−m, n ≥ m,

with a0, a1, . . . , am ∈ Fp and initial values x0, . . . , xm ∈ Fp. An increasing func-
tion N(n) is defined by

N(0) = min{n ≥ 0 : xn �= 0},
N(n) = min{l ≥ N(n− 1)+ 1 : xl �= 0},

and the nonlinear generator (zn) is produced by

zn = xN(n)+1x
−1
N(n), n ≥ 0

(see Eichenauer et al. 1987). It is easy to see that (zn) satisfies

zn+1 = f (zn, . . . , zn−m+1), n ≥ m− 1,

whenever zn · · · zn−m+1 �= 0, where the rational function f is given by

f (x1, . . . , xm) = a0 + a1x
−1
1 + · · · + amx

−1
1 x−1

2 · · · x−1
m .

A sufficient condition for (zn) to attain the maximal period length pm is given
in Eichenauer et al. (1987). It is shown in Topuzoğlu and Winterhof (2005) that the
linear complexity profile L(zn,N) of (zn) with the least period pm satisfies

L(zn,N) ≥ min

(⌈p −m

m+ 1

⌉
pm−1 + 1, N − pm + 1

)
, N ≥ 1.

This result is in accordance with (5), i.e., the case m = 1.
Given a periodic sequence (sn) over Fq , the subspaces L(sn, s) of F

s
q for s ≥ 1,

spanned by the vectors sn − s0, n = 1, 2, . . . where

sn = (sn, sn+1, . . . , sn+s−1), n = 0, 1, . . .

have been considered in order to study its structural properties. Starting with the re-
markable result of Eichenauer in 1991 (Inversive congruential pseudorandom num-
bers avoid the planes, Eichenauer-Herrmann 1991), lattice structure of the inversive
generator has attracted particular attention: A sequence (sn) is said to pass the s-
dimensional lattice test for some s ≥ 1, if L(sn, s) = F

s
q . It is obvious for example

that the linear generator (3) can pass the s-dimensional lattice test at most for s = 1,
whereas the inversive generator is well known to pass the test for all s ≤ (p + 1)/2
(see Eichenauer et al. 1988a).

On the other hand sequences, which pass the lattice test for large dimensions, can
have bad statistical properties, see Eichenauer and Niederreiter (1988). Accordingly
the notion of lattice profile at N is introduced by Dorfer and Winterhof (2003).
For given s ≥ 1 and N ≥ 2, (sn) passes the s-dimensional N -lattice test if the
subspace spanned by the vectors sn − s0, 1 ≤ n ≤ N − s, is F

s
q . The largest s for
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which (sn) passes the s-dimensional N -lattice test is called the lattice profile at N ,
and is denoted by S(sn,N).

It is shown in Dorfer and Winterhof (2003) that the lattice profile is closely re-
lated to the linear complexity profile. In fact, either

S(sn,N) = min{L(sn,N),N + 1 − L(sn,N)}
or

S(sn,N) = min{L(sn,N),N + 1 − L(sn,N)} − 1.

It therefore follows immediately that the inversive generators or its generaliza-
tions we described so far, behave favorably when the lattice profile is considered.

Now we turn our attention to another randomness measure. The nonlinear com-
plexity profile NLm(sn,N) of an infinite sequence (sn) over Fq is the function,
which is defined for every integer N ≥ 2, as the smallest k such that a polynomial
recurrence relation

sn+k = g(sn+k−1, . . . , sn), 0 ≤ n ≤ N − k − 1,

with a polynomial g(x1, . . . , xk) over Fq of total degree at most m can generate the
first N terms of (sn). It is easy to see that

L(sn,N) ≥ NL1(sn,N) ≥ NL2(sn,N) ≥ · · · .
Therefore lower bounds for the nonlinear complexity profile yield lower bounds for
the linear complexity profile. See Gutierrez et al. (2003) for results on the nonlinear
complexity profile for nonlinear and inversive generators.

One would expect that a periodic random sequence and a shift of it would have a
low correlation. Autocorrelation measures the similarity between a sequence (sn) of
period t and its shifts by k positions, for 1 ≤ k ≤ t − 1. See Eichenauer-Herrmann
(1992b) for results concerning the inversive generator. Niederreiter and Rivat (2008)
introduce two new types of inversive generators. Among other results, they obtain
good correlation properties for the associated binary sequences, where they use a
correlation measure introduced in Mauduit and Sarközi (1997).

So far we have considered randomness measures that are of particular impor-
tance for cryptological applications. For Monte Carlo applications, the uniformity
of distribution is much more significant.

Let P be a point set (finite sequence) y0, y1, . . . , yN−1 in [0, 1)s with s ≥ 1. The
discrepancy D

(s)
N of P is

D
(s)
N (P ) = D

(s)
N (y0, y1, . . . , yN−1) = sup

J

∣
∣∣∣
AN(J )

N
− V (J )

∣
∣∣∣ ,

where the supremum is taken over all subboxes J ⊆ [0, 1)s , AN(J ) is the number
of points y0, y1, . . . , yN−1 in J and V (J ) is the volume of J . We put DN(P ) =
D

(1)
N (P ).
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The well-known Erdős-Turán inequality (see for instance Drmota and Tichy
1997), (10), enables one to estimate discrepancy by the use of bounds on exponen-
tial sums. Let P be the point set y0, y1, . . . , yN−1 in [0, 1). There exists an absolute
constant C such that for any integer H ≥ 1,

DN(P ) < C

(
1

H
+ 1

N

H∑

h=1

1

h
|SN(h)|

)

, (10)

where SN(h) = ∑N−1
n=0 exp(2πihxn). For the case s ≥ 2 the generalized version

of (10), the Erdős-Turán-Koksma inequality (see Drmota and Tichy 1997) is used.
It follows by the law of the iterated logarithm that the order of magnitude of dis-

crepancy of N random points in [0, 1)s should be around N−1/2(log logN)1/2, see
Niederreiter (1992). Accordingly, as a measure of randomness of a PRN sequence,
one investigates the discrepancy of s-tuples of consecutive terms. It is possible to
show that the distribution of PRNs obtained by the inversive generator is sufficiently
irregular. To be precise, consider PRNs, produced by (1) over Fp, having the least
period p. Put

yn = (xn/p, xn+1/p, . . . , xn+s−1/p) ∈ [0, 1)s, n = 0, . . . , p − 1

where s ≥ 1. Depending on the parameters a, b ∈ Fp, and in particular on

the average, D
(s)
p (y0, . . . , yp−1) has an order of magnitude between p−1/2 and

p−1/2(logp)s for every s ≥ 2, see Niederreiter (1992). Compare with the result on
the linear generator where the similar order of magnitude is p−1(logp)s log logp

on the average (Niederreiter 1977).
We refer the reader to Eichenauer-Herrmann and Emmerich (1996), Emmerich

(1996), Larcher et al. (1999) for other relevant results, and in particular some on
another variant: the compound inversive generator. Further references are also listed
especially in Emmerich (1996).

As we have remarked earlier, only parts of the period of a PR sequence are used
in applications. Therefore bounds on the discrepancy of sequences in parts of the pe-
riod are of great interest. First non-trivial bounds for parts of the period are obtained
by Niederreiter and Shparlinski (1999). While bounds obtained for full period are
often the best possible, as the corresponding lower bounds demonstrate (see Nieder-
reiter 1992), bounds in Niederreiter and Shparlinski (1999) concerning nonlinear
congruential generators are rather weak. Better results are obtained for the inversive
congruential generators of period t . Niederreiter and Shparlinski (2001) showed that

DN(y0, y1, . . . , yN−1) = O(N−1/2p1/4 logp), 1 ≤ N ≤ t.

For an average discrepancy bound over all initial values of a fixed inversive congru-
ential generator see Niederreiter and Shparlinski (2002b).

For the distribution of (explicit) nonlinear generators see the series of papers
Niederreiter and Winterhof (2000, 2005), and Winterhof (2006). In particular for
the explicit inversive generator (6) one has
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DN(zn/p) = O(min{N−1/2p1/4 logp,N−1p1/2(logp)2}), 1 ≤ N ≤ p.

Now that the “randomness” of the inversive generator is well established, we turn
our attention to a recent generalization of it, which is particularly interesting since
it yields an alternative method to study permutations of a finite field.

4 Permuting the Elements of Fq by the Inversive Generator

Let ℘ ∈ Fq [x] be a polynomial over the finite field Fq . Then we can define a
corresponding function from Fq into Fq by x → ℘(x) for all x ∈ Fq . Conversely
for every function f from Fq into Fq there exists a polynomial ℘ ∈ Fq [x] such
that f (x) = ℘(x) for all x ∈ Fq , i.e. every function on a finite field is a polynomial
function. Given a function f (x) on a finite field, the polynomial ℘ for which f (x) =
℘(x) for all x ∈ Fq is not unique, but in fact the set of all functions on Fq equals
the set of all polynomial functions on Fq of degree smaller or equal to q − 1. More
precisely, under the operation of composition and reduction modulo xq − x, the set
of polynomials in Fq [x] of degree ≤ q − 1 forms a semigroup that is isomorphic to
the semigroup of functions on Fq .

A polynomial ℘ ∈ Fq [x] is called a permutation polynomial of Fq if the function
on Fq induced by ℘ is a permutation of Fq . As it is now obvious, the set of permu-
tation polynomials of Fq of degree ≤ q − 1 forms a group which is isomorphic to
Sq , the symmetric group on q elements.

A simple example of a permutation polynomial of Fq is the polynomial P(x) =
axq−2+b, the polynomial underlying the inversive generator. For instance if q = 11,
and we choose a = 2 and b = 7 we obtain the permutation

x : 0 1 2 3 4 5 6 7 8 9 10
P(x) : 7 9 8 4 2 3 0 1 10 6 5

.

Alternatively one can describe this permutation via its cycle decomposition:
(0 7 1 9 6) (2 8 10 5 3 4), meaning that P(0) = 7, P(7) = 1, P(1) = 9, P(9) = 6
and P(6) = 0 (similarly for the second cycle starting with the element 2). As obvi-
ous, the cycle decomposition of P(x) = 2x9 + 7 gives precisely the periods of the
inversive generator xn = 2x9

n−1 + 7 over F11. If one chooses u0 = 0, 7, 1, 9 or 6
then one obtains a 5-periodic sequence, for any other value for u0 the period length
will be 6.

Summarizing, the determination of the possible period lengths of the inversive
generator

xn+1 = ax
q−2
n + b, x0 ∈ Fq,

(see Chou 1995a, 1995b) is equivalent to analysing the cycle structure of the per-
mutation given by P(x) = axq−2 + b. We remark that the inversive generator has
maximal possible period q if and only if the permutation P(x) = axq−2 + b is a
single cycle (containing all elements of Fq ). In this case we will say that the permu-
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tation P is a full cycle. We recall that the inversive generator has maximal possible
period q, i.e. the permutation P(x) = axq−2 + b is a full cycle, if x2 − ax − b is a
primitive polynomial over Fq .

In the following we present results on the period of the inversive generator over
Fq in detail. We hereby define the inversive generator in a somewhat more general
way:

xn = P(xn−1), x0 ∈ Fq (11)

for a (permutation) polynomial of the form

P(x) = (a0x + a1)
q−2 + a2, a1, a2 ∈ Fq, a0 ∈ F

∗
q = Fq \ {0}. (12)

Note that for a1 = 0 this definition coincides with the classical inversive generator.
In a natural way we can correspond to the permutation P (12) the rational trans-

formation R(x) = (ax + b)/(cx + d) with a = a0a2, b = a1a2 + 1, c = a0 and
d = a1. The permutation P can then be expressed as

P(x) =
{
R(x) if x �= −d

c
,

a
c

if x = −d
c
.

(13)

Moreover as pointed out in Çeşmelioğlu et al. (2008a, 2008b), there is a one to
one correspondence between the set of permutations P given as in (12) and the set
of distinct permutations of the form (13) for a nonconstant rational transformation
R(x) = (ax + b)/(cx + d) ∈ Fq(x), c �= 0. The cycle structure of permutations
of the form (13) (or equivalently of the form P(x) = (a0x + a1)

q−2 + a2)—thus
the possible period lengths of the sequence (11)—has been presented in Sect. 2 of
Çeşmelioğlu et al. (2008b) (see also Chou 1995b): To a permutation given as in (13)
we naturally associate the matrix

A =
(
a b

c d

)

in GL(2, q), and its characteristic polynomial f (x) = x2 − tr(A)x + det(A) with
R(x) (or P(x)). In what follows, ord(z) denotes the order of an element z in the mul-
tiplicative group of Fq2 , and φ denotes the Euler φ-function. The following theorem
is from Çeşmelioğlu et al. (2008a).

Theorem 1. Let P be the permutation defined by (13) over Fq, q = pr . Suppose
that f (x) is the characteristic polynomial of the matrix A associated with P and
α, β ∈ Fq2 are the roots of f (x).

(1) Suppose f (x) is irreducible. If k = ord( α
β
) = q+1

t
, 1 ≤ t <

q+1
2 , then P is a

composition of t−1 cycles of length k and one cycle of length k−1. In particular
P is a full cycle if t = 1.

(2) Suppose α, β ∈ Fq and α �= β. If k = ord( α
β
) = q−1

t
, t ≥ 1, then P is a

composition of t − 1 cycles of length k, one cycle of length k− 1, and two cycles
of length 1.
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(3) Suppose f (x) = (x − α)2, α ∈ F
∗
q = Fq \ {0}, then P is a composition of one

cycle of length p − 1, pr−1 − 1 cycles of length p and one cycle of length 1.

For q ≥ 5 the number of distinct permutations P is equal to φ(k)
q−1

2 q in the
cases (1) and (2), and is equal to (q − 1)q in the case (3).

As explained earlier in detail, the inversive generator, and thus the underlying
permutation P(x) = axq−2 + b of Fq , has excellent behavior with respect to many
quality measures. A further quality measure frequently used in the area of coding
theory, is the dispersion of a permutation. In Çeşmelioğlu et al. (2009) the permuta-
tion P of the prime field Fp

P(x) = (a0x + a1)
p−2 + a2, (14)

has been analysed with respect to its (normalized) dispersion, which is defined as
follows: Let P be a permutation of the set {0, 1, . . . , N − 1}. The dispersion of P is
the cardinality of the set

D(P ) = {(i2 − i1, P (i2)− P(i1)) | 0 ≤ i1 < i2 ≤ N − 1}.
The normalized dispersion is defined as

γ (P ) = 2 |D(P )|
N(N − 1)

.

As obvious, the normalized dispersion can at most be 1. Permutations with normal-
ized dispersion 1 are called Costas arrays. They were introduced by J.P. Costas in
1965 for applications in sonar design. For a recent exposition of Costas arrays in-
cluding all currently known algebraic constructions we refer to Golomb and Gong
(2007).

We may consider a permutation P to have good randomness properties with
respect to dispersion if γ (P ) is close to the expected normalized dispersion of
a random permutation (which is approximately 0.8), see Avenancio-Leon (2005),
Corrada-Bravo and Rubio (2003), and Heegard and Wicker (1999).

In Çeşmelioğlu et al. (2009) the precise value for the dispersion of the permuta-
tion (14) is determined when a2 = 0 and p ≡ 5 mod 6 (for p ≡ 1 mod 6 a lower
bound is given). In order to state the result we have to introduce some notation: As
usual we identify Fp with {0, 1, . . . , p − 1} so that the element −a1/a0 ∈ Fp is
identified with an integer between 0 and p− 1. This integer shall be denoted by xI .
The next result is in Çeşmelioğlu et al. (2009).

Theorem 2. Let p ≡ 5 mod 6 and let P(x) = (a0x + a1)
q−2 ∈ Fp[x], a0 �= 0. The

dispersion |D(P)| of P(x) is then given by

∣∣D(P)
∣∣ =

{
(p+3)(p−1)+4xI (p−2xI−1)

4 , 0 ≤ xI ≤ p−1
2 ,

(p+3)(p−1)+4(p−1−xI )(2xI−p+1)
4 ,

p−1
2 < xI ≤ p − 1.



114 Wilfried Meidl and Alev Topuzoğlu

Consequently by a judicious selection of a0 and a1, the dispersion of P can be
pre-determined. The value for the normalized dispersion can be made close to the
expected normalized dispersion of a random permutation (see Çeşmelioğlu et al.
2009):

Corollary 1. Let p ≡ 5 mod 6. The maximum value for the normalized dispersion
is γ (P) = 0.75 + 5

4p . This value is attained for xI = �p−1
4 � and xI = � 3p−1

4 �.
One can also consider Dp(P), obtained by calculating modulo p. Obviously

Dp(P) ≤ D(P). For p ≡ 5 mod 6 it is shown in Çeşmelioğlu et al. (2009) that any
value for Dp(P), which only depends on xI and not on a2, can be combined with
any of the cycle decompositions given as in Theorem 1 by an appropriate choice of
the parameters a0, a1 and a2.

It is suggested that the cycle structure of a permutation P affects the performance
of P , as well as its dispersion, when used as an interleaver (see Avenancio-Leon
2005; Corrada-Bravo and Rubio 2003, and Heegard and Wicker 1999 for back-
ground on interleavers in coding theory). Of particular interest seem to be permuta-
tions that decompose into cycles of the same length (see Rubio and Corrada-Bravo
2004; Rubio et al. 2008). Theorem 1 where the cycle decomposition of the per-
mutations P(x) given as in (14) is presented, shows that P(x) has either only one
nontrivial cycle (of length > 1) or all nontrivial cycles are of the same length ex-
cept for one cycle having one element less. Therefore the fact that we can design
inversive permutation polynomials with prescribed dispersion modulo p and cycle
decomposition may suggest the use of this class of permutations as a toolkit for
simulations, that may contribute to a better understanding of the affect of dispersion
and cycle decomposition of an interleaver on its performance.

5 From the Inversive Generator to all Permutations of Fq

A further generalization of the inversive generator over a finite field Fq is obtained
by allowing more than one, say n inversions: For a1, an+1 ∈ Fq , ai ∈ F

∗
q for i =

0, 2, . . . , n and a starting value u0 ∈ Fq we can define a sequence (uk) with terms
in Fq by

uk = (· · · ((a0uk−1 + a1)
q−2 + a2)

q−2 · · · + an)
q−2 + an+1. (15)

A second motivation for considering constructions with more than one inversions
comes from a classical result of Carlitz (1953): The symmetric group on q letters,
which is isomorphic to the group of permutation polynomials of Fq of degree less
than q − 1 under the operation of composition and reduction modulo xq − x, is
generated by the linear polynomials ax + b, for a, b ∈ Fq , a �= 0, and xq−2.

As a consequence any permutation of a finite field Fq can be represented by a
polynomial of the form

Pn(x) = (· · · ((a0x + a1)
q−2 + a2)

q−2 · · · + an)
q−2 + an+1, n ≥ 0, (16)
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where a1, an+1 ∈ Fq , ai ∈ F
∗
q for i = 0, 2, . . . , n. With this notation the sequence

(15) above becomes uk = Pn(uk−1) with a starting value u0 ∈ Fq .
In the series of papers Çeşmelioğlu et al. (2008a, 2008b) and Aksoy et al. (2009),

permutations given in the form (16) have been analysed. In the following we sum-
marize the results starting with the analysis of the cycle structure of Pn for small n.
We hereby remark that similarly to the classical inversive generator, the period of
the sequence (uk), defined as in (15), depends on the cycle structure of the corre-
sponding permutation (16). We first need some technical preliminaries.

For the polynomial Pn(x) we consider the rational function

rn(x) = (· · · ((a0x + a1)
−1 + a2)

−1 · · · + an)
−1 + an+1

and its continued fraction expansion,

an+1 + 1/(an + 1/(· · · + a2 + 1/(a0x + a1) · · · )),
so as to form the nth convergent

Rn(x) = αn+1x + βn+1

αnx + βn

, (17)

where
αk = akαk−1 + αk−2 and βk = akβk−1 + βk−2, (18)

for k ≥ 2 and α0 = 0, α1 = a0, β0 = 1, β1 = a1. We remark that αk and βk cannot
both be zero.

We define the set of poles, On, as

On =
{

xi : xi = −βi

αi

, i = 1, . . . , n

}
⊂ P

1(Fq) = Fq ∪ {∞}. (19)

Obviously Pn(x) = Rn(x) for x ∈ Fq \On. Since the ordering and repetition of the
poles will be crucial, we also consider the string of poles On:

On = x1, x2, . . . , xn.

To every rational transformation Rn(x) of the form (17) we associate the permuta-
tion Fn(x) defined as in (13), i.e. Fn(x) = Rn(x) for x �= xn and Fn(xn) = αn+1/αn

when xn ∈ Fq .

5.1 On the Period Length of (uk) for P2 and P3

We recall that the possible period lengths of the sequence uk = Pn(uk−1) for a
permutation Pn(x) of the form (16) and a starting value u0 ∈ Fq are given by
the cycle structure of the permutation Pn(x). In Çeşmelioğlu et al. (2008a) the cycle



116 Wilfried Meidl and Alev Topuzoğlu

decomposition of the polynomial Pn(x) has been analysed for n = 2, and n = 3 and
a4 = 0. As already pointed out there is a one to one correspondence between the set
of permutations P1 and the set of distinct permutations of the form (13). Therefore
Theorem 1 on the cycle decomposition of permutations of the form (13) which turns
out to be crucial for the analysis of the cycle decomposition of the permutations Pn

covers the case n = 1.
As observed in Çeşmelioğlu et al. (2008a) the first three poles are distinct for any

permutation Pn(x) and the first two are not poles at infinity. Furthermore for Pn(x)

with n = 2, and n = 3 and a4 = 0 we have

P2 = (F2(x1)F2(x2))F2(x) (20)

with F2(x) = R2(x) if x �= x2 and F2(x2) = (a2a3 + 1)/a2, and

P3(x) = (F3(x2)F3(x1)F3(x3))F3(x) (21)

with F3(x) = R3(x) if x �= x3 and F3(x3) = a2/(a2a3 + 1) if x3 �= ∞, i.e.
a2a3 + 1 �= 0. If a2a3 + 1 = 0 then x1 = − a1

a0
, x2 = − a1a2+1

a0a2
, x3 = ∞ and

R3(x) = −a2(a0a2x + a1a2 + 1) (22)

is linear, thus F3(x) and R3(x) coincide, giving, (see Sect. 4 in Çeşmelioğlu et al.
2008a)

P3(x) = (F3(x1)F3(x2))F3(x) = (−a20)F3(x). (23)

Clearly the cycle decomposition of P2 and P3 respectively, is determined by the
cycle decomposition of F2 and F3 and the effect of the cycle (F2(x1)F2(x2)) and
(F3(x2)F3(x1)F3(x3)) (or F3(x1)F3(x2)) if x3 = ∞) on the cycle decomposition of
F2 and F3, respectively. Thus Theorem 1 on the cycle structure of permutations of
the form (13) naturally plays a crucial role in order to understand the cycle structure
of permutations P2, P3. In accordance with the notation introduced before stating
Theorem 1, for

P2(x) = ((a0x + a1)
q−2 + a2)

q−2 + a3, a0a2 �= 0.

The characteristic polynomial associated to the rational transformation R2(x) that
corresponds to P2(x) is of the form

f (x) = x2 − (a0(a2a3 + 1)+ a1a2 + 1)x + a0. (24)

The characteristic polynomial associated to the rational transformation R3(x) that
corresponds to

P3(x) = (((a0x + a1)
q−2 + a2)

q−2 + a3)
q−2, a0a2a3 �= 0 (25)

is given by
f (x) = x2 − (a0a2 + a1(a2a3 + 1)+ a3)x − a0. (26)
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We remark that in the case that x3 = ∞, i.e. a2a3 + 1 = 0, the polynomial (26)
becomes the reducible polynomial

f (x) = x2 − (a0a2 − a−1
2 )x − a0 = (x − a0a2)(x + a−1

2 ).

With the above given preliminaries one can determine the cycle decomposition
of permutations of the form P2 and P3 with a4 = 0. As an example consider the
case of a permutation P2 for which the associated characteristic polynomial f (x)

is irreducible and the roots α, β ∈ Fq2 of f (x) satisfy ord(α/β) = (q + 1)/2.
By Theorem 1 the permutation F2 that corresponds to P2 has then two cycles. If
the poles x1, x2 are not in the same cycle, then the transposition (F2(x1)F2(x2)) in
(20) causes a merging of the two cycles, i.e the permutation P2 is then a full cycle.
Whether x1, x2 are in the same cycle of F2 or not is determined by the parameter
γ0 = (β − 1)/(α− 1), more precisely x1, x2 are in the same cycle of F2 if and only
if γ (q+1)/2

0 = 1. We refer to Çeşmelioğlu et al. (2008a) for the details.
Similarly the cycle decomposition can be found for all other possible cases. It

turns out that one has to distinguish 7 cases for P2 (see Theorems 6 and 7 in Çeşme-
lioğlu et al. 2008a) and 20 cases for P3 with a4 = 0 (see Theorems 11, 13 and 15 in
Çeşmelioğlu et al. 2008a). We omit the presentation of all cases and refer to Çeşme-
lioğlu et al. (2008a). But we present all cases in which we obtain a full cycle since
then the sequence (uk) defined as in (15) has maximal possible period q. For the
sake of completeness we include the permutations P1. Therefore we note that the
characteristic polynomial associated to P1(x) = (a0x + a1)

q−2 + a2 is given by

f (x) = x2 − (a0a2 + a1)x − a0. (27)

Theorem 3. The permutation P1 is a full cycle if and only if the polynomial f (x) in
(27) is irreducible and the roots α, β ∈ Fq2 of f (x) satisfy ord(α/β) = (q + 1)/2.

The permutation P2 is a full cycle if and only if

(1) (i) the polynomial f (x) in (24) is irreducible,
(ii) the roots α, β ∈ Fq2 of f (x) satisfy ord(α/β) = (q + 1)/2,

(iii) γ0 = (β − 1)/(α − 1) satisfies γ
(q+1)/2
0 �= 1, or

(2) Fq is a prime field and f (x) = (x − 1)2 (then a0 = 1, a3 = −a1).

The permutation P3 with a4 = 0 is a full cycle if and only if one of the following
conditions (1)–(4) is satisfied.

(1) (i) The polynomial f (x) in (26) is irreducible,
(ii) the roots α, β ∈ Fq2 of f (x) satisfy ord(α/β) = q + 1 so that F3 is a full
cycle, and
(iii) the pole x1 lies between the poles x2, x3 in the cycle F3.

(2) (i) The polynomial f (x) in (26) is irreducible,
(ii) 3 divides q + 1, and the roots α, β ∈ Fq2 of f (x) satisfy ord(α/β) =
(q + 1)/3, i.e. F3 is composed of 2 cycles of length (q + 1)/3 and 1 cycle
of length (q − 2)/3,
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(iii) the elements γ1 = (β − a3)/(α − a3), γ2 = (a2β + 1)/(a2α + 1), γ3 =
(β − a1)/(α − a1) ∈ Fq2 satisfy γ

(q+1)/3
1 , γ

(q+1)/3
2 , γ

(q+1)/3
3 �= 1, i.e. the poles

x1, x2, x3 are in distinct cycles of F3.
(3) (i) The polynomial f (x) in (26) has two distinct roots α, β ∈ Fq ,

(ii) ord(α/β) = q − 1, i.e. F3 is composed of one cycle of length q − 2 and two
cycles of length 1,
(iii) a2a3 + 1 �= 0, i.e. the pole x3 is in Fq ,
(iv) a3 = −a0/a1 and a2 = −1/a1, i.e. x1, x2 are the fixed points of F3.

(4) (i) a2a3 + 1 = 0, i.e. F3(x) is linear,
(ii) ord(−a0a

2
2) = q − 1, and

(iii) either a1 = a0a2 or a2 = −1/a1, i.e. either x1 or x2 is the fixed point of F3.

Remark 1. The parameters γ1, γ2, γ3 are concerned with the distribution of the poles
in the cycles of F3. Indeed, xi, x3 are in the same cycle if and only if γ k

i = 1 for
i = 1, 2, and x1, x2 are in the same cycle if and only if γ k

3 = 1.

Based on the above results the number of distinct permutations of the types P2
and P3, a4 = 0, with full cycle has been determined in Çeşmelioğlu et al. (2008a).
Several of the cases in Theorem 3 had to be addressed with different approaches.
In the following theorem we include permutations of the type P1 for the sake of
completeness.

Theorem 4. The number of distinct permutations of the form P1(x) with full cycle
is φ(q − 1) q−1

2 q.

The number of distinct permutations of the form P2(x) with full cycle is φ(q+1
2 )×

(q+1)q(q−1)/4 when q = pr for a prime p with r > 1, and φ(
p+1

2 )(p+1)p(p−
1)/4 + p(p − 1) when q = p is prime.

The number of distinct permutations of the form P3(x) with a4 = 0 and full cycle
is

φ(q + 1)(q − 1)2(q − 2)

4
+ 3φ(q − 1)(q − 1)

if 3 | (q + 1), and

φ(q + 1)(q − 1)2(q − 2)

4
+ 3φ(q − 1)(q − 1)+ φ

(
q + 1

3

)
(q − 1)

(q + 1)2

9

if 3 | (q + 1).

The approach to permutations of a finite field via polynomials of the form Pn

permits a description of all full cycle permutations of a prime field Fp. As observed
by Çeşmelioğlu (2009), a permutation ℘(x) of the prime field Fp is a full cycle if
and only if it has a representation of the form

℘(x) = P2k(x) = (((· · · (· · · ((x + c1)
p−2 + c2)

p−2 · · · + ck+1)
p−2 − ck)

p−2

− ck−1)
p−2 − · · · − c2)

p−2 − c1 (28)
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for some integer k and c1 ∈ Fp, ci ∈ F
∗
p, 2 ≤ i ≤ k + 1. Moreover the rth iterate

of ℘(x) is obtained by exchanging ck+1 in (28) with rck+1. As a consequence the
set of permutations of the form (28) with fixed c1, . . . , ck and variable ck+1 ∈ F

∗
p

forms a Sylow p-subgroup of the group of permutations of Fp, and vice versa all
Sylow p-subgroups are obtained in this way.

A different approach to the construction of full cycle permutations of a finite field
Fq expressed in the form Pn has been worked out in Sect. 5 of Çeşmelioğlu et al.
(2008a). This approach uses results of Beck (1977) where a symmetric binary k×k-
matrix L, called link relation matrix, is assigned to a given sequence σ1, σ2, . . . , σk
of transpositions with elements of a set T (e.g. T = Fq ). Let τ be a full cycle
permutation of the set T , then the number of cycles of the permutation σ1σ2 · · · σkτ
can be determined from the rank of L.

The approach investigated in Çeşmelioğlu et al. (2008a) also permits the con-
struction of permutations of Fq written as Pn with a given number of cycles (not
necessarily one cycle). For details on the multiplication with transpositions, link
relation matrices, and the construction of full cycle permutations of Fq written as
Pn we refer the reader to Sect. 5 of Çeşmelioğlu et al. (2008a) and the references
therein.

5.2 The Carlitz Rank of a Permutation—or the Smallest Number
of Inversions Needed

We recall that following a classical result of Carlitz any permutation of a finite field
Fq can be represented by a polynomial of the form (16). Such a representation of a
permutation is of course not unique. For instance the polynomials

P6(x) = ((((((x + 16)15 + 8)15 + 14)15 + 5)15 + 9)15 + 2)15 (29)

and
P4(x) = ((((16x + 3)15 + 3)15 + 3)15 + 13)15 + 9 (30)

describe the same permutation ℘ of F17. As one observes six “inversions” xq−2 are
used in the description (29) whereas in description (30) of ℘ only four inversions are
needed. In fact 4 is the minimum number of inversions needed in order to describe
the permutation ℘ in the form (16).

In Aksoy et al. (2009) for a given permutation ℘(x) of a finite field Fq , the
smallest n satisfying ℘ = Pn for a permutation Pn of the form (16) was defined
as the Carlitz rank of ℘(x). In accordance with Aksoy et al. (2009) we denote the
Carlitz rank of ℘(x) by Crk(℘) and emphasize that Crk(℘) = n means that ℘(x)

is composed of at least n inversions xq−2 with n (or n + 1) linear polynomials.
Clearly linear polynomials are the permutation polynomials of Carlitz rank 0. The
set of polynomials P1 of the form (12) that is in one-to-one correspondence with
the set of permutations (13) defined by nonconstant rational linear transformations
(ax+ b)/(cx+ d) is precisely the set of permutation polynomials of Carlitz rank 1.
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In the following we give an overview of the results on the Carlitz rank obtained in
Aksoy et al. (2009).

Consider a permutation of the form

Ps(x) = (· · · ((a0x + a1)
q−2 + a2)

q−2 · · · + as)
q−2 + as+1

with the string of poles x1, x2, . . . , xs and the sth convergent Fs(x). As observed in
Aksoy et al. (2009).

Ps(x) = (Fs(xs)Fs(xs−1))(Fs(xs−1)Fs(xs−2)) · · · (Fs(x2)Fs(x1))Fs(x) (31)

if xi �= ∞, i = 1, . . . , s. If xi = ∞ for some integer i, 3 ≤ i ≤ s − 2, then in equa-
tion (31) we substitute (Fs(xi+1)Fs(xi))(Fs(xi)Fs(xi−1)) by (Fs(xi+1)Fs(xi−1)) (if
xs = ∞ or xs−1 = ∞, then the first transposition in (31) is (Fs(xs−1)Fs(xs−2)) or
(Fs(xs−2)Fs(xs−3)), respectively). For the details we refer to Corollary 1 in Aksoy
et al. (2009).

In all cases one then easily obtains a decomposition of Ps as

Ps = τ1 · · · τmFs(x) (32)

where τ1, . . . , τm are disjoint cycles. Once a permutation in the above form is given,
it is possible to determine the smallest integer n such that Ps = Pn for a permutation
Pn(x) and Fs = Fn, see Theorem 3 in Aksoy et al. (2009). If n ≤ (q − 2)/2 then
Crk(Ps) = n. Theorem 3 in Aksoy et al. (2009) is summarized as follows in the
following theorem. We write a ∈ supp(τ ) if a ∈ Fq is not fixed by the cycle τ .

Theorem 5. Suppose that Ps can be decomposed as

Ps(x) = τ1 · · · τmFs(x), (33)

where τ1, . . . , τm are disjoint cycles of length l(τj ) = lj ≥ 2, 1 ≤ j ≤ m.

(a) If Fs is not linear and Fs(xs) ∈ supp(τj ) for some 1 ≤ j ≤ m, then there exists
a permutation Pn with n = m +∑m

j=1 lj − 1 such that Ps(x) = Pn(x) for all
x ∈ Fq (and additionally Fn(x) = Fs(x)).

(b) If Fs is not linear and Fs(xs) /∈ supp(τj ) for any 1 ≤ j ≤ m, then there exists
a permutation Pn with n = m +∑m

j=1 lj + 1 such that Ps(x) = Pn(x) for all
x ∈ Fq (and additionally Fn(x) = Fs(x)).

(c) If Fs is linear, then there exists a permutation Pn with n = m +∑m
j=1 lj such

that Ps(x) = Pn(x) for all x ∈ Fq (and additionally Fn(x) = Fs(x)).

In all three cases, Crk(Ps) = n if n < (q − 1)/2.

Theorem 5 provides a method to determine the number B(n) of distinct permuta-
tions with given Carlitz rank n for n < (q−1)/2 by counting the number of distinct
permutations of the form (32) yielding Carlitz rank n. For this purpose we recall the
associated Stirling numbers of the first kind. Let t, k ≥ 1 and m ≥ 0 be integers.
We denote the number of permutations of a set of k elements with cycle decompo-
sition τ1 · · · τm, such that each cycle τj , 1 ≤ j ≤ m, has length l(τj ) at least t by
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S(t, k,m). The numbers S(t, k,m) for variable t, k and m are called the associated
Stirling numbers of the first kind (see for instance Comtet 1974 and id:A008306
in Sloane’s On-line Encyclopdia at http://www.research.att.com/~njas/sequences).
As the cycles in (32) have length at least 2 we need S(2, k,m), the number of per-
mutations of a set of k elements having m cycles and no fixed points, for counting
the permutations of Fq with fixed Carlitz rank. The associated Stirling numbers
S(2, k,m) satisfy the recurrence relation

S(2, k + 1,m+ 1) = kS(2, k,m+ 1)+ kS(2, k − 1,m) (34)

(with obvious starting values). The following theorem, where the formulas for B(n),
n < (q − 1)/2, that involve S(2, k,m) are presented, is the main result of Aksoy et
al. (2009). The explicit calculation of B(n) requires the calculation of the numbers
S(2, k,m) by the recursive formula (34).

Theorem 6. The number B(n) of permutations of Fq with Carlitz rank n is given by

B(n) = (q2 − q)

� n+1
3 �∑

m=1

(
q

n+ 1 −m

)
S(2, n+ 1 −m,m)(n+ 1 −m)

+ (q2 − q)

� n−1
3 �∑

m=1

(
q

n− 1 −m

)
S(2, n− 1 −m,m)(q − (n− 1 −m))

+ (q2 − q)

� n
3 �∑

m=1

(
q

n−m

)
S(2, n−m,m)

for all 2 ≤ n < (q − 1)/2.

For small n one then easily obtains explicit expressions for B(n):

B(0) = q(q − 1), B(1) = q2(q − 1), B(2) = q2(q − 1)2

B(3) = 1

2
q2(q − 1)2(2q − 3), B(4) = 1

6
q2(q − 1)2(q − 2)(6q − 13),

B(5) = 1

12
q2(q − 1)2(q − 2)(q − 3)(12q − 35),

B(6) = 1

120
q2(q − 1)2(q − 2)(q − 3)(120q2 − 926q + 1799),

B(7) = 1

120
q2(q − 1)2(q − 2)(q − 3)(q − 4)(120q2 − 1146q + 2765),

B(8) = 1

1260
q2(q − 1)2(q − 2)(q − 3)(q − 4)(q − 5)

× (1260q2 − 14373q + 41473),

http://www.research.att.com/~njas/sequences
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B(9) = 1

5040
q2(q − 1)2(q − 2)(q − 3)(q − 4)(q − 5)

× (5040q3 − 97182q2 + 626590q − 1349523),

B(10) = 1

10080
q2(q − 1)2(q − 2)(q − 3)(q − 4)(q − 5)(q − 6)

× (10080q3 − 223484q2 + 1657175q − 4106319).

As easily seen, the vast majority of permutations of Fq have Carlitz rank larger than
(q− 1)/2, hence with Theorem 6 only a small proportion of the permutations of the
finite field Fq can be counted.

An unsolved problem is the determination of the maximum value CrkM(q), of
the Carlitz rank that a permutation of Fq can have. In other words we are interested
in the smallest number CrkM(q) such that any permutation of Fq is a composition of
linear polynomials and at most CrkM(q) “inversions” xq−2. With a rough estimate
in Aksoy et al. (2009) the upper bound CrkM(q) ≤ (3q − 7)/2 has been obtained.

The Carlitz rank and the “polynomial degree” can be regarded as two complexity
measures for permutations of Fq . It is well known that the vast majority of the
permutations of Fq has large polynomial degree q − 2, and as pointed out above
the majority of the permutations of Fq does not have a small Carlitz rank. The
following theorem shows that a permutation cannot be “simple” with respect to
both complexity measures, polynomial degree and Carlitz rank, at the same time
(see Theorem 4 in Aksoy et al. 2009).

Theorem 7. Let g(x) be a permutation polynomial in Fq [x] with deg(g) = d > 1
and suppose that Crk(g) = n. Then

n ≥ q − 1 − d.

As observed in Aksoy et al. (2009) the lower bound CrkM(q) ≥ q − 1 − δ

immediately follows from Theorem 7 and the fact that xd is a permutation of Fq if
gcd(d, q − 1) = 1, when δ > 1 is the smallest integer satisfying gcd(δ, q − 1) = 1.

We hope that we have been able to familiarize the reader with the basic properties
and problems concerning the permutation polynomials Pn(x) (16). This viewpoint
enables us to generate new types of PR sequences with advantages. We have already
mentioned sequences obtained by (15). Alternatively one can choose the terms ai
in (16) suitably to obtain a sequence (un) defined by un = Pn(u0). Depending on
the period of the sequence (an), the period length of (un) can be increased. The
predictability of (un) in this case is related to that of (an). Hence this generalization
can yield sequences which are highly unpredictable—an advantage over inversive
generators in the light of a recent result on the predictability of the inversive gener-
ator, see Blackburn et al. (2003). Naturally randomness properties of these new PR
sequences are of interest. Work on this and related problems is under progress.
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Aksoy, E., Çeşmelioğlu, A., Meidl, W., Topuzoğlu, A.: On the Carlitz rank of permutation polyno-
mials. Finite Fields Appl. 15, 418–440 (2009)

Avenancio-Leon, C.: Analysis of some properties of interleavers for Turbo codes. In: Proc. of
NCUR, Lexington, USA (2005)

Beck, I.: Cycle decomposition of transpositions. J. Comb. Theory, Ser. A 23, 198–207 (1977)
Blackburn, S., Gomez-Perez, D., Gutierrez, J., Shparlinski, I.: In: Predicting the inversive genera-

tor. Lecture Notes in Computer Science, vol. 2898, pp. 264–275. Springer, Berlin (2003)
Carlitz, L.: Permutations in a finite field. Proc. Am. Math. Soc. 4, 538 (1953)
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Strong and Weak Approximation Methods
for Stochastic Differential Equations—Some
Recent Developments

Andreas Rößler

Abstract Some efficient stochastic Runge–Kutta (SRK) methods for the strong
as well as for the weak approximation of solutions of stochastic differential equa-
tions (SDEs) with improved computational complexity are considered. Their con-
vergence is analyzed by a concise colored rooted tree approach for both, Itô as well
as Stratonovich SDEs. Further, order conditions for the coefficients of order 1.0 and
1.5 strong SRK methods as well as for order 2.0 weak SRK methods are given. As
the main novelty, the computational complexity of the presented order 1.0 strong
SRK method and the order 2.0 weak SRK method depends only linearly on the di-
mension of the driving Wiener process. This is a significant improvement compared
to well known methods where the computational complexity depends quadratically
on the dimension of the Wiener process.

1 Approximation of Solutions of Stochastic Differential
Equations

Let (Ω,F,P) be a complete probability space with a filtration (Ft )t≥0 fulfilling the
usual conditions and let I = [t0, T ] for some 0 ≤ t0 < T < ∞. We denote by
X = (Xt )t∈I the solution of the d-dimensional SDE system

Xt = Xt0 +
∫ t

t0

a(s,Xs) ds +
m∑

j=1

∫ t

t0

bj (s,Xs) ∗ dWj
s (1)

with an m-dimensional driving Wiener process (Wt )t≥0 = ((W 1
t , . . . ,W

m
t )T )t≥0

w.r.t. (Ft )t≥0 for d,m ≥ 1 and t ∈ I. We write ∗dWj
s = dWj

s in the case of an
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Itô stochastic integral and ∗dWj
s = ◦dWj

s for a Stratonovich stochastic integral.
Suppose that a : I × R

d → R
d and b : I × R

d → R
d×m are continuous functions

which fulfill a global Lipschitz condition and denote by bj the j th column of the
d × m-matrix function b = (bi,j ) for j = 1, . . . , m. Let Xt0 ∈ L2(Ω) be the
Ft0 -measurable initial value. In the following, we suppose that the conditions of the
Existence and Uniqueness Theorem (cf., e.g., Kloeden and Platen 1999) are fulfilled
for SDE (1) and we denote by ‖ · ‖ the Euclidean norm. Let Cl

P (R
d ,R) denote the

space of all g ∈ Cl(Rd ,R) with polynomial growth, see e.g. Kloeden and Platen
(1999) or Rößler (2006a, 2009) for details. Then g belongs to C

k,l
P (I × R

d ,R) if
g ∈ Ck,l(I × R

d,R) and g(t, ·) ∈ Cl
P (R

d ,R) is fulfilled uniformly in t ∈ I.
For the numerical approximation let a discretization Ih = {t0, t1, . . . , tN } with

t0 < t1 < · · · < tN = T of the time interval I with step sizes hn = tn+1 − tn for
n = 0, 1, . . . , N − 1 be given. Further, let h = max0≤n<N hn denote the maximum
step size. If one is interested in a good pathwise approximation of the solution of
SDE (1), then strong approximation methods converging in the mean-square sense
are applied. Note that mean-square convergence implies strong convergence.

Definition 1. A sequence of approximation processes Yh = (Y (t))t∈Ih
converges

in the mean-square sense with order p to the solution X of SDE (1) at time T if
there exists a constant C > 0 and some δ0 > 0 such that for each h ∈ ]0, δ0]

(E(‖XT − Yh(T )‖2))1/2 ≤ C hp . (2)

However, if one is interested in the approximation of some distributional character-
istics of the solution of SDE (1), then weak approximation methods are applied.

Definition 2. A sequence of approximation processes Yh = (Y (t))t∈Ih
converges

in the weak sense with order p to the solution X of SDE (1) at time T if for each
f ∈ C

2(p+1)
P (Rd ,R) exists a constant Cf and some δ0 > 0 such that for each

h ∈ ]0, δ0]
|E(f (XT ))− E(f (Y h(T )))| ≤ Cf hp . (3)

2 A General Class of Stochastic Runge–Kutta Methods

For the approximation of the solution X of SDE (1) we consider the universal class
of stochastic Runge–Kutta (SRK) methods introduced in Rößler (2006b): Let M be
an arbitrary finite set of multi-indices with κ = |M| elements, let θ(k)ι (h) ∈ L2(Ω)

for ι ∈ M and 0 ≤ k ≤ m be some suitable random variables. Further, define
b0(t, x) := a(t, x). Then, an s-stages SRK method is given by Y0 = Xt0 and

Yn+1 = Yn +
s∑

i=1

m∑

k=0

∑

ν∈M

z
(k),(ν)
i bk

(
tn + c

(ν)
i hn,H

(ν)
i

)
(4)

for n = 0, 1, . . . , N − 1 with Yn = Y(tn), tn ∈ Ih, and with stages
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H
(ν)
i = Yn +

s∑

j=1

m∑

l=0

∑

μ∈M

Z
(ν),(l),(μ)
ij bl

(
tn + c

(μ)
j hn,H

(μ)
j

)

for i = 1, . . . , s and ν ∈ M. Here, let 0 ∈ M and let for i, j = 1, . . . , s

z
(k),(ν)
i =

∑

ι∈M

γ
(ι)
i

(k),(ν)
θ (k)ι (hn), Z

(ν),(l),(μ)
ij =

∑

ι∈M

C
(ι)
ij

(ν),(l),(μ)
θ(l)ι (hn)

with θ
(0)
0 (hn) = hn and the coefficients γ

(ι)
i

(k),(ν)
, C

(ι)
ij

(ν),(l),(μ) ∈ R of the SRK

method. In the following, we use the notation z(k),(ν) = (z
(k),(ν)
i )1≤i≤s ∈ R

s and

Z(ν),(l),(μ) = (Z
(ν),(l),(μ)
ij )1≤i,j≤s ∈ R

s×s . The vector of weights can be defined by

c(ν) =
∑

μ∈M

C
(0)
ij

(ν),(0),(μ)
e (5)

with e = (1, . . . , 1)T ∈ R
s . If C

(ι)
ij

(ν),(l),(μ) = 0 for j ≥ i then (4) is called an
explicit SRK method, otherwise it is called implicit. We assume that the random
variables θ

(k)
ι (h) satisfy the moment condition

E

( m∏

k=0

((θ(k)ι1
(h))p

k
1 · . . . · (θ(k)ικ

(h))p
k
κ )

)
= O

(
hp0

1+...+p0
κ+

∑m
k=1(p

k
1+...+pk

κ )/2) (6)

for all pk
i ∈ N0, k = 0, 1, . . . , m, and ιi ∈ M, 1 ≤ i ≤ κ . Further, we assume

that in the case of an implicit method each random variable can be expressed as
θ
(0)
ι (h) = h · ϑ(0)

ι and θ
(k)
ι (h) = √

h · ϑ(k)
ι , 1 ≤ k ≤ m, for ι ∈ M with suitable

bounded random variables ϑ
(0)
ι , ϑ

(k)
ι ∈ L2(Ω) such that each stage can be solved

w.r.t. H(ν)
i for sufficiently small h. These conditions are not necessary in the case of

explicit SRK methods (see also Rößler 2006b or Milstein and Tretyakov 2004).

3 Colored Rooted Tree Analysis

In the following, we present a concise rooted tree analysis for the convergence of
the general class of SRK methods (4). For simplicity, we restrict our investigations
without loss of generality to the autonomous SDE (1) in this section. We denote by
T S the set of all stochastic trees, see also Rößler (2004b, 2010a), which have a root
τγ = ' and which can furthermore be composed of deterministic nodes τ0 = " and
stochastic nodes τj = !j with some j ∈ {1, . . . , m}. The index j is associated with
the j th component of the m-dimensional driving Wiener process of the considered
SDE. Some examples of trees in T S are presented in Fig. 1. Let d(t) denote the
number of deterministic nodes τ0 and let s(t) denote the number of stochastic nodes
τj with j ∈ {1, . . . , m} of the tree t ∈ T S. The order ρ(t) of the tree t ∈ T S is
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Fig. 1 Four elements of T S with some j1, j2, j3, j4 ∈ {1, . . . , m}

defined as ρ(τγ ) = 0 and ρ(t) = d(t)+ 1
2 s(t). As an example, for the trees in Fig. 1

we have ρ(tI ) = ρ(tII ) = ρ(tIV ) = 2 and ρ(tIII ) = 2.5.
Every tree can be written by a combination of brackets: If t1, . . . , tk are col-

ored subtrees then we denote by [t1, . . . , tk]j the tree in which t1, . . . , tk are each
joined by a single branch to the node τj for some j ∈ {γ, 0, 1, . . . , m}. There-
fore proceeding recursively, for the trees in Fig. 1 we obtain tI = [[τ0, τj2]j1 ]γ ,
tII = [[[τj3 , τj4]j2 ]j1]γ , tIII = [τ0, [τ0]j1 ]γ and tIV = [[τj3 ]j1, [τj4 ]j2]γ .

Next, we assign to each tree t ∈ T S an elementary differential which is defined
recursively by F(τγ )(x) = f (x), F(τj )(x) = bj (x) and

F(t)(x) =
⎧
⎨

⎩

f (k)(x) · (F (t1)(x), . . . , F (tk)(x)) for t = [t1, . . . , tk]γ ,
bj

(k)
(x) · (F (t1)(x), . . . , F (tk)(x)) for t = [t1, . . . , tk]j

(7)

for j ∈ {0, 1, . . . , m}. Here f (k) and bj
(k)

define a symmetric k-linear differential
operator, and one can choose the sequence of subtrees t1, . . . , tk in an arbitrary
order.

Finally, we assign to every tree a multiple stochastic integral. Let (Zt )t≥t0 be a
progressively measurable stochastic process. Then, we define for t ∈ T S the corre-
sponding multiple stochastic integral recursively by

It;t0,t [Z·] =
⎧
⎨

⎩

(
∏k

i=1 Iti ;t0,t )[Z·] if t = [t1, . . . , tk]γ ,
(
∫ t

t0

∏k
i=1 Iti ;t0,s ∗ dWj

s )[Z·] if t = [t1, . . . , tk]j , j ∈ {0, 1, . . . , m}
(8)

with ∗dW 0
s = ds, Iτj ;t0,t [Z·] =

∫ t

t0
Zs ∗ dWj

s , Iτγ ;t0,t [Z·] = Zt , It;t0,t = It;t0,t [1]
provided that the stochastic integral exists and by using the notation

(∫ t

t0

∫ sn

t0

· · ·
∫ s2

t0

∗dWj1
s1 ∗ dWj2

s2 · · · ∗ dWjn
sn

)
[Z·] = I(j1,j2,...,jn)[Z·]t0,t

=
∫ t

t0

∫ sn

t0

· · ·
∫ s2

t0

Zs1 ∗ dWj1
s1 ∗ dWj2

s2 · · · ∗ dWjn
sn (9)

in (8). The product of two stochastic integrals can be written as a sum (cf., e.g.,
Kloeden and Platen 1999)



Strong and Weak Approximation Methods for Stochastic Differential Equations 131

∫ t

t0

Xs ∗ dWi
s

∫ t

t0

Ys ∗ dWj
s

=
∫ t

t0

Xs Ys 1{i=j �=0∧∗�=◦} ds +
∫ t

t0

Xs

(∫ s

t0

Yu ∗ dWj
u

)
∗ dWi

s

+
∫ t

t0

(∫ s

t0

Xu ∗ dWi
u

)
Ys ∗ dWj

s (10)

for 0 ≤ i, j ≤ m, where the first summand on the right hand side appears only in
the case of Itô calculus. E.g., we calculate for tI and tII

ItI ;t0,t [1] =
∫ t

t0

Iτ0;t0,s Iτj2 ;t0,s ∗ dWj1
s [1] = I(0,j2,j1)[1]t0,t + I(j2,0,j1)[1]t0,t ,

ItII ;t0,t [1] =
∫ t

t0

∫ s

t0

Iτj3 ;t0,u Iτj4 ;t0,u ∗ dWj2
u ∗ dWj1

s

= I(j3,j4,j2,j1)[1]t0,t + I(j4,j3,j2,j1)[1]t0,t + I(0,j2,j1)[1{j3=j4 �=0∧∗�=◦}]t0,t
where the last summand for ItII ;t0,t [1] only appears in the case of Itô calculus.

Let t ∈ T S with t = [t1, . . . , t1, t2, . . . , t2, . . . , tk, . . . , tk]j = [tn1
1 , tn2

2 , . . . ,

tnkk ]j , j ∈ {γ, 0, 1, . . . , m}, where t1, . . . , tk are distinct subtrees with multiplici-
ties n1, . . . , nk , respectively. Then the symmetry factor σ is recursively defined by
σ(τj ) = 1 and

σ(t) =
k∏

i=1

ni ! σ(ti )ni . (11)

For the trees in Fig. 1, we obtain σ(tI ) = σ(tIII ) = 1. For the tree tII we have to
consider two cases: If j3 �= j4 we have σ(tII ) = 1. However, in the case of j3 = j4
we have some symmetry and thus we calculate σ(tII ) = 2. Further, for tree tIV we
get σ(tIV ) = 2 if j1 = j2 and j3 = j4 and σ(tIV ) = 1 otherwise. E.g., all trees up
to order 1.5 and the corresponding multiple integrals are presented in Table 1.

Next, we define the coefficient function ΦS which assigns to every tree an el-
ementary weight. For every t ∈ T S the function ΦS is defined by ΦS(τγ ) = 1
and

ΦS(t) =
⎧
⎨

⎩

∏k
i=1 ΦS(ti ) if t = [t1, . . . , tk]γ ,

∑
ν∈M z(j),(ν)

T ∏k
i=1 Ψ

(ν)(ti ) if t = [t1, . . . , tk]j , j ∈ {0, 1, . . . , m}
(12)

where Ψ (ν)(∅) = e with the representation τj = [∅]j and for each subtree t =
[t1, . . . , tq ]l with some l ∈ {0, 1, . . . , m} we recursively define

Ψ (ν)(t) =
∑

μ∈M

Z(ν),(l),(μ)

q∏

i=1

Ψ (μ)(ti ). (13)
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Table 1 All trees t ∈ T S of order ρ(t) ≤ 1.5 with j1, j2, j3 ∈ {1, . . . , m} arbitrarily eligible

t tree It;t0,t σ (t) ρ(t)

t0,1 τγ 1 1 0

t0.5,1 [τj1 ]γ I(j1)[1]t0,t 1 0.5

t1,1 [τ0]γ I(0)[1]t0,t 1 1

t1,2 [τj1 , τj2 ]γ I(j1,j2)[1]t0,t + I(j2,j1)[1]t0,t 1 + 1{j1=j2} 1

+ I(0)[1{j1=j2∧∗�=◦}]t0,t
t1,3 [[τj2 ]j1 ]γ I(j2,j1)[1]t0,t 1 1

t1.5,1 [[τj1 ]0]γ I(j1,0)[1]t0,t 1 1.5

t1.5,2 [[τ0]j1 ]γ I(0,j1)[1]t0,t 1 1.5

t1.5,3 [τ0, τj1 ]γ I(0,j1)[1]t0,t + I(j1,0)[1]t0,t 1 1.5

t1.5,4 [τj1 , τj2 , τj3 ]γ I(j1,j2,j3)[1]t0,t + I(j1,j3,j2)[1]t0,t 1 + 1{j1=j2 �=j3} 1.5

+ I(j2,j1,j3)[1]t0,t + I(j2,j3,j1)[1]t0,t + 1{j1=j3 �=j2}
+ I(j3,j1,j2)[1]t0,t + I(j3,j2,j1)[1]t0,t + 1{j2=j3 �=j1}
+ (I(j1,0)[1]t0,t + I(0,j1)[1]t0,t )1{j2=j3∧∗�=◦} + 5 · 1{j1=j2=j3}
+ (I(j2,0)[1]t0,t + I(0,j2)[1]t0,t )1{j1=j3∧∗�=◦}
+ (I(j3,0)[1]t0,t + I(0,j3)[1]t0,t )1{j1=j2∧∗�=◦}

t1.5,5 [[τj2 ]j1 , τj3 ]γ I(j2,j3,j1)[1]t0,t + I(j3,j2,j1)[1]t0,t 1 1.5

+ I(j2,j1,j3)[1]t0,t + I(0,j1)[1{j2=j3∧∗�=◦}]t0,t
+ I(j2,0)[1{j1=j3∧∗�=◦}]t0,t

t1.5,6 [[τj2 , τj3 ]j1 ]γ I(j3,j2,j1)[1]t0,t + I(j2,j3,j1)[1]t0,t 1 + 1{j2=j3} 1.5

+ I(0,j1)[1{j2=j3∧∗�=◦}]t0,t
t1.5,7 [[[τj3 ]j2 ]j1 ]γ I(j3,j2,j1)[1]t0,t 1 1.5

Here e = (1, . . . , 1)T and the product of vectors in the definition of Ψ (ν) is
defined by component-wise multiplication, i.e. with (a1, . . . , an)(b1, . . . , bn) =
(a1b1, . . . , anbn). In the following, we also write ΦS(t; t, t + h) = ΦS(t) in or-
der to emphasize the dependency on the current time step with step size h.

Now, the following local Taylor expansions can be proved: For the solution X of
SDE (1) and for p ∈ 1

2N0 with f ∈ C2p+2(Rd,R) and a, bj ∈ C2p+1(Rd,R
d) for

j = 1, . . . , m, we obtain the expansion (see Rößler 2004b, 2010a)

f (Xt ) =
∑

t∈T S
ρ(t)≤p

F (t)(Xt0)
It;t0,t
σ (t)

+ R∗
p(t, t0) (14)

P-a.s. with remainder term R∗
p(t, t0) provided all multiple Itô integrals exist. For the

approximation Y by the SRK method (4) and for p ∈ 1
2N0 with f ∈ C2p+1(Rd ,R)

and a, bj ∈ C2p(Rd ,R
d), j = 1, . . . , m, we get the expansion (see Rößler 2006b,

2009)



Strong and Weak Approximation Methods for Stochastic Differential Equations 133

f (Y (t)) =
∑

t∈T S
ρ(t)≤p

F (t)(Y (t0))
ΦS(t; t0, t)

σ (t)
+ RΔ

p (t, t0) (15)

P-a.s. with remainder term RΔ
p (t, t0).

4 Order Conditions for Stochastic Runge–Kutta Methods

Using the colored rooted tree analysis, we obtain order conditions for the random
variables and the coefficients of the SRK method (4) if it is applied to SDE (1). The
following results can be applied for the development of SRK methods for the Itô as
well as the Stratonovich version of SDE (1). First, we consider conditions for strong
convergence with some order p ∈ 1

2N due to Rößler (2010b). Therefore, let T S∗
denote the set of trees t ∈ T S which have only one ramification at the root node
τγ , i.e. which are of type [[. . .]j ]γ for some j ∈ {0, 1, . . . , m}. The reason is, that
we are interested in the approximation of X, thus we have to choose f (x) = x.
However, in this case all elementary differentials vanish except for the trees in T S∗.
For example, the trees t1,2, t1.5,3, t1.5,4 and t1.5,5 in Table 1 as well as the trees tIII
and tIV in Fig. 1 do not belong to T S∗. A comparison of the Taylor expansions (14)
and (15) results in the following two theorems.

Theorem 1. Let p ∈ 1
2N0 and a, bj ∈ C�p�,2p+1(I × R

d,R
d) for j = 1, . . . , m.

Then, the SRK method (4) has mean–square order of accuracy p if the conditions

(a) for all t ∈ T S∗ with ρ(t) ≤ p

It;t,t+h = ΦS(t; t, t + h) P-a.s., (16)

(b) for all t ∈ T S∗ with ρ(t) = p + 1
2

E(It;t,t+h) = E(ΦS(t; t, t + h)), (17)

are fulfilled for arbitrary t, t + h ∈ I and if (5) and (6) hold.

For the proof of Theorem 1 we refer to Rößler (2009). Next, we give conditions
for the weak convergence of the SRK method (4) based on trees in T S having also
multiple ramifications at the root node (see Theorem 6.4 in Rößler 2006b).

Theorem 2. Let p ∈ N and a, bj ∈ C
p+1,2p+2
P (I×R

d,R
d) for j = 1, . . . , m. Then

the SRK method (4) is of weak order p if for all t ∈ T S with ρ(t) ≤ p+ 1
2 the order

conditions
E(It;t,t+h) = E(ΦS(t; t, t + h)) (18)

are fulfilled for arbitrary t, t + h ∈ I, provided that (5) and (6) apply and that the
approximation Y has uniformly bounded moments w.r.t. the number N of steps.

For the proof of Theorem 2 we refer to Rößler (2006b).
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Remark 1. The approximation Y by the SRK method (4) has uniformly bounded
moments if bounded random variables are used by the method, if (6) is fulfilled and

if E(z(k,ν)
T
e) = 0 for 1 ≤ k ≤ m and ν ∈ M (see Rößler 2006b for details).

Further, Theorem 2 provides uniform weak convergence with order p in the case of
a non-random time discretization Ih.

5 Strong Approximation of SDEs

For higher order strong numerical approximation methods for SDEs, the simulation
of multiple stochastic integrals is necessary in general. Therefore, for tn, tn+1 ∈ Ih
and 1 ≤ i, j ≤ m let

I(i),n =
∫ tn+1

tn

dWi
s , I(i,j),n =

∫ tn+1

tn

∫ s

tn

dWi
u dWj

s ,

denote the multiple Itô stochastic integrals. For convenience we write e.g. I(i) =
I(i),n if n is obvious from the context. The increments of the Wiener process I(i),n
are independent N(0, hn) distributed with hn = tn+1 − tn. From (10) follows that
I(0,i) = hnI(i) − I(i,0). In the case of i = j , formula (10) results in I(i,i) = 1

2 (I
2
(i) −

hn). Further, let I(i,i,i) = 1
6 (I

3
(i) − 3I(0) I(i)). In the following, the multiple integrals

I(i,0) can be simulated by I(i,0) = 1
2hn(I(i)+ 1√

3
ζi) with some independent N(0, hn)

distributed random variables ζi which are independent from I(j) for all 1 ≤ j ≤ m

(cf., e.g., Kloeden and Platen 1999 or Milstein 1995). However, since the exact
distribution and thus the exact simulation of the multiple stochastic integrals I(i,j)
for 1 ≤ i, j ≤ m with i �= j is not known, we substitute them in our numerical
experiments by sufficiently exact and efficient approximations as recently proposed
by Wiktorsson (2001). Further, let (pD, pS) with pD ≥ pS denote the order of
convergence of the considered SRK scheme if it is applied to a deterministic or
stochastic differential equation, respectively.

5.1 Order 1.0 Strong SRK Methods

Firstly, we consider an efficient order 1.0 strong SRK method for Itô SDEs (1). Yet,
known derivative free order 1.0 strong approximation methods suffer from an inef-
ficiency in the case of an m-dimensional driving Wiener process. For example, the
derivative free scheme (11.1.7) in Kloeden and Platen (1999) needs one evaluation
of the drift coefficient a, however m + 1 evaluations of each diffusion coefficient
bj , j = 1, . . . , m, each step. Thus, the computational complexity grows quadrati-
cally in m which is a significant drawback especially for high dimensional problems.
Therefore, efficient SRK methods were firstly proposed in Rößler (2009) where the
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number of necessary evaluations of each drift and each diffusion coefficient is inde-
pendent of the dimension m of the driving Wiener process.

For the multi-dimensional Itô SDE (1) with d,m ≥ 1, the efficient s-stages order
1.0 strong SRK method due to Rößler (2009) is given by Y0 = Xt0 and

Yn+1 = Yn +
s∑

i=1

αi a(tn + c
(0)
i hn,H

(0)
i ) hn

+
m∑

k=1

s∑

i=1

(
β
(1)
i I(k) + β

(2)
i

√
hn

)
bk(tn + c

(1)
i hn,H

(k)
i ) (19)

for n = 0, 1, . . . , N − 1 with stages

H
(0)
i =Yn +

s∑

j=1

A
(0)
ij a(tn + c

(0)
j hn,H

(0)
j ) hn

+
m∑

l=1

s∑

j=1

B
(0)
ij bl(tn + c

(1)
j hn,H

(l)
j ) I(l),

H
(k)
i =Yn +

s∑

j=1

A
(1)
ij a(tn + c

(0)
j hn,H

(0)
j ) hn

+
m∑

l=1

s∑

j=1

B
(1)
ij bl(tn + c

(1)
j hn,H

(l)
j )

I(l,k)√
hn

(20)

for i = 1, . . . , s and k = 1, . . . , m. A modified version of the efficient SRK
method (19) suitable for Stratonovich SDEs can be found in Rößler (2009). The
SRK method (19) can be characterized by its coefficients given by an extended
Butcher tableau:

c(0) A(0) B(0)

c(1) A(1) B(1)

αT β(1)T β(2)T

(21)

Here, the class of SRK methods (4) is applied with M = {ν : 0 ≤ ν ≤ m} and

z
(0),(0)
i = αi hn , Z

(0),(0),(0)
ij = A

(0)
ij hn , Z

(0),(k),(k)
ij = B

(0)
ij I(k) ,

z
(k),(k)
i = β

(1)
i I(k) + β

(2)
i

√
hn , Z

(k),(0),(0)
ij = A

(1)
ij hn ,

Z
(k),(l),(l)
ij = B

(1)
ij

I(l,k)√
hn

,

for 1 ≤ k, l ≤ m and all other coefficients in (4) are set equal to zero. Thus, the
presented SRK method (19) belongs to the general class (4). The application of the
rooted tree analysis and Theorem 1 gives order conditions up to strong order 1.0 for
the coefficients of the SRK method (19), see also Rößler (2009).
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Table 2 Coefficients for the strong SRK schemes SRI1 of order (1.0, 1.0) on the left hand side
and SRI2 of order (2.0, 1.0) on the right hand side

0

0 0 0

0 0 0 0 0

0

0 0 1

0 0 0 −1 0

1 0 0 1 0 0 0 1
2 − 1

2

0

1 1 0

0 0 0 0 0

0

1 1 1

1 1 0 −1 0
1
2

1
2 0 1 0 0 0 1

2 − 1
2

Theorem 3. Let a, bj ∈ C1,2(I × R
d,R

d) for j = 1, . . . , m. If the coefficients of
the SRK method (19) fulfill the equations

1. αT e = 1 2. β(1)T e = 1 3. β(2)T e = 0

then the method attains order 0.5 for the strong approximation of the solution of the
Itô SDE (1). If a, bj ∈ C1,3(I × R

d,R
d) for j = 1, . . . , m and if in addition the

equations

4. β(1)T B(1)e = 0 5. β(2)T B(1)e = 1 6. β(2)T A(1)e = 0

7. β(2)T (B(1)e)2 = 0 8. β(2)T (B(1)(B(1)e)) = 0

are fulfilled and if c(i) = A(i)e for i = 0, 1, then the SRK method (19) attains order
1.0 for the strong approximation of the solution of the Itô SDE (1).

For the detailed proof of Theorem 3 we refer to Rößler (2009). The Euler–
Maruyama scheme EM is the basic explicit order 0.5 strong SRK scheme with
s = 1 stage, α1 = β

(1)
1 = 1 and β

(2)
1 = A

(0)
1,1 = A

(1)
1,1 = B

(0)
1,1 = B

(1)
1,1 = 0. As

an example for some explicit order 1.0 strong SRK schemes, the coefficients pre-
sented in Table 2 define the order (1.0, 1.0) strong SRK scheme SRI1 and the order
(2.0, 1.0) strong SRK scheme SRI2. As the main advantage, the scheme SRI1 needs
one evaluation of the drift coefficient a and only 3 evaluations of each diffusion co-
efficient bj , j = 1, . . . , m, each step. Thus, the number of evaluations of the drift
and diffusion coefficients is independent of the dimension m of the Wiener process.

5.2 Order 1.5 Strong SRK Methods for SDEs with Scalar Noise

In contrast to the multi-dimensional Wiener process case, higher order 1.5 strong
approximation methods can be applied if the driving Wiener process is scalar. E.g.,
order 1.5 strong SRK methods for Stratonovich SDEs with a scalar Wiener process
have been proposed by Burrage and Burrage (1996, 2000). On the other hand, for Itô
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SDEs with a scalar Wiener process order 1.5 strong SRK methods have been pro-
posed by Kaneko (1995) and by Kloeden and Platen (1999). However, the scheme
due to Kaneko (1995) is not efficient because it needs 4 evaluations of the drift co-
efficient a, 12 evaluations of the diffusion coefficient b and the simulation of two
independent normally distributed random variables for each step. On the other hand,
the scheme (11.2.1) in Kloeden and Platen (1999) due to Platen needs 3 evaluations
of the drift coefficient a, 5 evaluations of the diffusion b and also the simulation of
two independent normally distributed random variables each step. In contrast to this,
we consider the order 1.5 strong SRK method for Itô SDEs with less computational
complexity proposed in Rößler (2009).

For the Itô SDE (1) with d ≥ 1 and m = 1 the efficient order 1.5 strong SRK
method due to Rößler (2009) is defined by Y0 = Xt0 and

Yn+1 = Yn +
s∑

i=1

αi a(tn + c
(0)
i hn,H

(0)
i ) hn

+
s∑

i=1

(
β
(1)
i I(1) + β

(2)
i

I(1,1)√
hn

+ β
(3)
i

I(1,0)

hn

+ β
(4)
i

I(1,1,1)

hn

)

× b(tn + c
(1)
i hn,H

(1)
i ) (22)

for n = 0, 1, . . . , N − 1 with stages

H
(0)
i = Yn +

s∑

j=1

A
(0)
ij a(tn + c

(0)
j hn,H

(0)
j ) hn +

s∑

j=1

B
(0)
ij b(tn + c

(1)
j hn,H

(1)
j )

× I(1,0)

hn

, (23)

H
(1)
i = Yn +

s∑

j=1

A
(1)
ij a(tn + c

(0)
j hn,H

(0)
j ) hn +

s∑

j=1

B
(1)
ij b(tn + c

(1)
j hn,H

(1)
j )

√
hn

for i = 1, . . . , s. A more general version of the order 1.5 strong SRK method
(22) for SDEs with diagonal noise and a simplified version for additive noise can
be found in Rößler (2009). The SRK method (22) is characterized by the Butcher
tableau:

c(0) A(0) B(0)

c(1) A(1) B(1)

αT β(1)T β(2)T

β(3)T β(4)T

(24)

For the SRK method (22) we choose M = {0, 1} and we then define
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z
(0),(0)
i = αi hn , z

(1),(1)
i = β

(1)
i I(1) + β

(2)
i

I(1,1)√
hn

+ β
(3)
i

I(1,0)

hn

+ β
(4)
i

I(1,1,1)

hn

,

Z
(0),(0),(0)
ij = A

(0)
ij hn , Z

(0),(1),(1)
ij = B

(0)
ij

I(1,0)

hn

,

Z
(1),(0),(0)
ij = A

(1)
ij hn , Z

(1),(1),(1)
ij = B

(1)
ij

√
hn ,

with all remaining coefficients in (4) defined equal to zero. Then, the SRK method
(22) is also covered by the class (4) of SRK methods. Thus, we can apply Theorem 1
with p = 1.5 to obtain strong order 1.5 conditions, see Rößler (2009) for details.

Theorem 4. Let a, b ∈ C1,2(I×R
d,R

d). If the coefficients of the SRK method (22)
fulfill the equations

1. αT e = 1 2. β(1)T e = 1 3. β(2)T e = 0

4. β(3)T e = 0 5. β(4)T e = 0

then the method attains order 0.5 for the strong approximation of the solution of the
Itô SDE (1). If a, b ∈ C1,3(I × R

d,R
d) and if in addition the equations

6. β(1)T B(1)e = 0 7. β(2)T B(1)e = 1

8. β(3)T B(1)e = 0 9. β(4)T B(1)e = 0

are fulfilled and if c(i) = A(i)e for i = 0, 1, then the SRK method (22) attains order
1.0 for the strong approximation of the solution of the Itô SDE (1) with scalar noise.
If a, b ∈ C2,4(I × R

d,R
d) and if in addition the equations

10. αT A(0)e = 1

2
11. αT B(0)e = 1

12. αT (B(0)e)2 = 3

2
13. β(1)T A(1)e = 1

14. β(2)T A(1)e = 0 15. β(3)T A(1)e = −1

16. β(4)T A(1)e = 0 17. β(1)T (B(1)e)2 = 1

18. β(2)T (B(1)e)2 = 0 19. β(3)T (B(1)e)2 = −1

20. β(4)T (B(1)e)2 = 2 21. β(1)T (B(1)(B(1)e)) = 0

22. β(2)T (B(1)(B(1)e)) = 0 23. β(3)T (B(1)(B(1)e)) = 0

24. β(4)T (B(1)(B(1)e)) = 1

25.
1

2
β(1)T (A(1)(B(0)e))+ 1

3
β(3)T (A(1)(B(0)e)) = 0
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Table 3 Strong SRK scheme SRI1W1 of order (2.0, 1.5) on the left hand side and SRI2W1 of
order (3.0, 1.5) on the right hand side

0
3
4

3
4

3
2

0 0 0 0 0

0 0 0 0 0 0 0

0
1
4

1
4

1
2

1 1 0 −1 0
1
4 0 0 1

4 −5 3 1
2

1
3

2
3 0 0 −1 4

3
2
3 0 −1 4

3 − 1
3 0

2 − 4
3 − 2

3 0 −2 5
3 − 2

3 1

0

1 1 0
1
2

1
4

1
4 1 1

2

0 0 0 0 0 0 0

0
1
4

1
4 − 1

2

1 1 0 1 0
1
4 0 0 1

4 2 −1 1
2

1
6

1
6

2
3 0 −1 4

3
2
3 0 1 − 4

3
1
3 0

2 − 4
3 − 2

3 0 −2 5
3 − 2

3 1

are fulfilled and if c(i) = A(i)e for i = 0, 1, then the SRK method (22) attains order
1.5 for the strong approximation of the solution of the Itô SDE (1) in the case of
scalar noise.

For a proof of Theorem 4 we refer to Rößler (2009). Coefficients for the order 1.5
strong SRK schemes SRI1W1 of order (2.0, 1.5) and SRI2W1 of order (3.0, 1.5)
are given in Table 3. The SRK scheme SRI1W1 needs only 2 evaluations of the
drift coefficient, 4 evaluations of the diffusion coefficient b and the simulation of
two independent normally distributed random variables for each step. Note that the
explicit 2-stages SRK method (22) with coefficients α1 = β

(1)
1 = β

(2)
2 = A

(1)
2,1 =

B
(1)
2,1 = 1, β(2)

1 = −1 and α2 = β
(1)
2 = A

(0)
2,1 = B

(0)
2,1 = β

(3)
1 = β

(3)
2 = β

(4)
1 = β

(4)
2 =

0 coincides with the order 1.0 strong scheme (11.1.3) in Kloeden and Platen (1999).

5.3 Numerical Results

The presented efficient SRK methods are applied to some test SDEs in order to
analyze their performance. Let EM denote the order 0.5 strong Euler–Maruyama
scheme and let MIL denote the order 1.0 strong Milstein scheme in Milstein (1995).
Further, the order 1.0 strong scheme (11.1.7) denoted as SPLI and the order 1.5
strong scheme (11.2.1) called SPLIW1 for Itô SDEs with scalar noise in Kloeden
and Platen (1999) are applied. As a measure for the computational effort, we take
the number of evaluations of the drift and diffusion coefficients as well as the num-
ber of realizations of (normally distributed) random variables needed each step. If
the approximation method needs the random variables I(i,j) for 1 ≤ i, j ≤ m with
i �= j , then I(i,j) is simulated by the method due to Wiktorsson (2001) and we need
to simulate 1

2m(m− 1)+ 2mq independent normally distributed random variables
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Table 4 Computational complexity of some schemes per step for a d-dimensional SDE system
with a m-dimensional Wiener process (m = 1 for SPLIW1 and SRI1W1)

number of evaluations random variables

scheme order ak bk,j ∂bk,j

∂xl I(j) I(j,0) I(i,j)

EM 0.5 d md – + – –
MIL 1.0 d md md2 + – +
SPLI 1.0 d (m2 +m) d – + – +
SPLIW1 1.5 3 d 5 d – + + –
SRI1 1.0 d 3md – + – +
SRI1W1 1.5 2 d 4 d – + + –

each step with q ≥ �√5m2(m− 1)/(24π2) h−1/2� in the mean (see Wiktorsson
2001), provided that the m random variables I(i) are given. Thus, the additional
computational effort increases with order O(h−1/2) as h → 0. The computational
complexity is given in Table 4. E.g., the computational complexity of the scheme
MIL is d+md+md2+m+ 1

2m(m−1)+2mq whereas scheme SRI1 has only com-
plexity d+3md+m+ 1

2m(m−1)+2mq each step. Thus, the scheme SRI1 has lower
computational complexity than the Milstein scheme MIL in the case of d > 2 and
m ≥ 1 even if we neglect the effort for the calculation of the derivatives of bj needed
by the Milstein scheme. Further, the scheme SRI1 has also lower computational
complexity than the scheme SPLI1 due to Platen in the case of d ≥ 1 and m > 2.

We simulate 2000 trajectories and take the mean of the attained errors at T =
1 as an estimator for the expectation in (2). Then, we analyze the mean–square
errors versus the computational effort as well as versus the step size in log–log–
diagrams with base two. We denote by peff the effective order of convergence which
is the slope of the resulting line in the mean–square errors versus effort diagrams.
Considering the effective order may cause an order reduction such that an strong
order 1.0 scheme attains the effective order peff = 2/3 as h → 0. This is due
to the effort for the simulation of the multiple integrals I(i,j) which depends on
h. Dotted order lines with slope 0.5, 1.0, 2/3 and 1.5 are plotted as a reference.
Clearly, a more efficient method to simulate the multiple integrals I(i,j) would result
in a higher effective order. However, compared to the Euler–Maruyama scheme EM
with peff = 0.5, there is still a significantly improved convergence for the order
1.0 methods. As a result of this, the order 1.0 strong approximation methods are
superior to the order 0.5 strong Euler–Maruyama scheme, which is also confirmed
by the simulation results.

As the first example, consider for d = m = 1 the nonlinear Itô SDE

dXt = −
(

1

10

)2

sin(Xt ) cos3(Xt ) dt + 1

10
cos2(Xt ) dWt , X0 = 1 , (25)

with solution Xt = arctan( 1
10Wt + tan(X0)) in Kloeden and Platen (1999). The

results for h = 20, . . . , 2−16 are plotted on the left of Fig. 2. Scheme SRI1W1 has
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Fig. 2 Errors vs. effort for SDE (25) and SDE (26) with d = m = 1

Fig. 3 Errors vs. effort for SDE (26) and errors vs. step sizes for SDE (26) with d = m = 10

effective order 1.5 and performs better than the other schemes due to its reduced
complexity.

In order to consider also a multi-dimensional Itô SDE with d,m ≥ 1, we define
A ∈ R

d×d as a matrix with entries Aij = 1
20 if i �= j and Aii = − 3

2 for 1 ≤ i,
j ≤ d . Further, define Bk ∈ R

d×d by Bk
ij = 1

100 for i �= j and Bk
ii = 1

5 for
1 ≤ i, j ≤ d and k = 1, . . . , m. Then, we consider the Itô SDE

dXt = AXt dt +
m∑

k=1

BkXt dWk
t , X0 = (1, . . . , 1)T ∈ R

d, (26)

with solution Xt = X0 exp((A− 1
2

∑m
k=1(B

k)2) t +∑m
k=1 B

k Wk
t ). For the case of

d = m = 1 the numerical results for h = 20, . . . , 2−16 are presented on the right
of Fig. 2 where the scheme SRI1W1 has the best performance. On the other hand,
for the case of d = m = 10 the effective and the strong orders are analyzed for h =
20, . . . , 2−15 in Fig. 3. Here, the schemes MIL, SPLI, and SRI1 have strong order
1.0 while the Euler–Maruyama scheme EM has order 1/2. Further, due to the effort
for the simulation of the multiple integrals, all order 1.0 strong schemes attain the
effective order 2/3 and thus perform significantly better than the Euler–Maruyama
scheme EM with effective order 1/2. The scheme SRI1 shows the best performance,
especially compared to the Milstein scheme MIL and the scheme SPLI.
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6 Weak Approximation of SDEs

In contrast to strong approximation methods, we now consider methods which are
designed for the approximation of distributional characteristics of the solution of
SDEs. Numerical methods for the weak approximation do not need information
about the driving Wiener process, their random variables can be simulated on a
different probability space. Therefore, we can make use of random variables with
distributions which are easy to simulate. In the following, we make use of random
variables which are defined by

Î(k,l) =

⎧
⎪⎪⎨

⎪⎪⎩

1
2 (Î(k)Î(l) −

√
hnĨ(k)) if k < l,

1
2 (Î(k)Î(l) +

√
hnĨ(l)) if l < k,

1
2 (Î

2
(k) − hn) if k = l

(27)

for 1 ≤ k, l ≤ m with independent random variables Î(k), 1 ≤ k ≤ m, and random
variables Ĩ(k), 1 ≤ k ≤ m− 1, possessing the moments

E(Î q(k)) =

⎧
⎪⎨

⎪⎩

0 for q ∈ {1, 3, 5},
(q − 1)hq/2

n for q ∈ {2, 4},
O(h

q/2
n ) for q ≥ 6,

(28)

E(Ĩ q(k)) =

⎧
⎪⎨

⎪⎩

0 for q ∈ {1, 3},
hn for q = 2,

O(h
q/2
n ) for q ≥ 4.

Thus, only 2m − 1 independent random variables are needed for each step n =
0, 1, . . . , N − 1. For example, we can choose Î(k) as three point distributed random
variables with P(Î(k) = ±√3hn) = 1

6 and P(Î(k) = 0) = 2
3 . The random variables

Ĩ(k) can be defined by a two point distribution with P(Ĩ(k) = ±√hn) = 1
2 .

6.1 Order 2.0 Weak SRK Methods

We consider the class of efficient SRK methods introduced in Rößler (2009) for the
weak approximation of the solution of the Itô SDE (1) where the number of stages s
is independent of the dimension m of the driving Wiener process. A similar class of
second order SRK methods for the Stratonovich version of SDE (1) can be found in
Rößler (2007). For the Itô SDE (1) the d-dimensional SRK approximation Y with
Yn = Y(tn) for tn ∈ Ih due to Rößler (2009) is defined by Y0 = x0 and

Yn+1 = Yn +
s∑

i=1

αi a(tn + c
(0)
i hn,H

(0)
i ) hn
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+
s∑

i=1

m∑

k=1

β
(1)
i bk(tn + c

(1)
i hn,H

(k)
i )Î(k)

+
s∑

i=1

m∑

k=1

β
(2)
i bk(tn + c

(1)
i hn,H

(k)
i )

Î(k,k)√
hn

+
s∑

i=1

m∑

k=1

β
(3)
i bk(tn + c

(2)
i hn, Ĥ

(k)
i )Î(k)

+
s∑

i=1

m∑

k=1

β
(4)
i bk(tn + c

(2)
i hn, Ĥ

(k)
i )

√
hn (29)

for n = 0, 1, . . . , N − 1 with stage values

H
(0)
i = Yn +

s∑

j=1

A
(0)
ij a(tn + c

(0)
j hn,H

(0)
j ) hn

+
s∑

j=1

m∑

l=1

B
(0)
ij bl(tn + c

(1)
j hn,H

(l)
j ) Î(l),

H
(k)
i = Yn +

s∑

j=1

A
(1)
ij a(tn + c

(0)
j hn,H

(0)
j ) hn

+
s∑

j=1

B
(1)
ij bk(tn + c

(1)
j hn,H

(k)
j )

√
hn,

Ĥ
(k)
i = Yn +

s∑

j=1

A
(2)
ij a(tn + c

(0)
j hn,H

(0)
j ) hn

+
s∑

j=1

m∑

l=1
l �=k

B
(2)
ij bl(tn + c

(1)
j hn,H

(l)
j )

Î(k,l)√
hn

for i = 1, . . . , s and k = 1, . . . , m. In the case of a scalar driving Wiener process,
i.e. for m = 1, the SRK method (29) reduces to the SRK method proposed in Rößler
(2006b). The coefficients of the SRK method (29) can be represented by an extended
Butcher array:

c(0) A(0) B(0)

c(1) A(1) B(1)

c(2) A(2) B(2)

αT β(1)T β(2)T

β(3)T β(4)T
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Applying the rooted tree analysis and Theorem 2 with p = 2, we obtain order
two conditions for the SRK method (29) which were calculated in Rößler (2009).

Theorem 5. Let ai, bi,j ∈ C
2,4
P (I × R

d,R) for 1 ≤ i ≤ d , 1 ≤ j ≤ m. If the
coefficients of the stochastic Runge–Kutta method (29) fulfill the equations

1. αT e = 1 2. β(4)T e = 0 3. β(3)T e = 0

4. (β(1)T e)2 = 1 5. β(2)T e = 0 6. β(1)T B(1)e = 0

7. β(4)T A(2)e = 0 8. β(3)T B(2)e = 0 9. β(4)T (B(2)e)2 = 0

then the method attains order 1 for the weak approximation of the solution of the Itô
SDE (1). Further, if ai, bi,j ∈ C

3,6
P (I × R

d ,R) for 1 ≤ i ≤ d , 1 ≤ j ≤ m and if in
addition the equations

10. αT A(0)e = 1

2
11. αT (B(0)e)2 = 1

2

12. (β(1)T e)(αT B(0)e) = 1

2
13. (β(1)T e)(β(1)T A(1)e) = 1

2
14. β(3)T A(2)e = 0 15. β(2)T B(1)e = 1

16. β(4)T B(2)e = 1 17. (β(1)T e)(β(1)T (B(1)e)2) = 1

2
18. (β(1)T e)(β(3)T (B(2)e)2) = 1

2
19. β(1)T (B(1)(B(1)e)) = 0

20. β(3)T (B(2)(B(1)e)) = 0 21. β(3)T (B(2)(B(1)(B(1)e))) = 0

22. β(1)T (A(1)(B(0)e)) = 0 23. β(3)T (A(2)(B(0)e)) = 0

24. β(4)T (A(2)e)2 = 0 25. β(4)T (A(2)(A(0)e)) = 0

26. αT (B(0)(B(1)e)) = 0 27. β(2)T A(1)e = 0

28. β(1)T ((A(1)e)(B(1)e)) = 0 29. β(3)T ((A(2)e)(B(2)e)) = 0

30. β(4)T (A(2)(B(0)e)) = 0 31. β(2)T (A(1)(B(0)e)) = 0

32. β(4)T ((B(2)e)2(A(2)e)) = 0 33. β(4)T (A(2)(B(0)e)2) = 0

34. β(2)T (A(1)(B(0)e)2) = 0 35. β(1)T (B(1)(A(1)e)) = 0

36. β(3)T (B(2)(A(1)e)) = 0 37. β(2)T (B(1)e)2 = 0

38. β(4)T (B(2)(B(1)e)) = 0 39. β(2)T (B(1)(B(1)e)) = 0

40. β(1)T (B(1)e)3 = 0 41. β(3)T (B(2)e)3 = 0

42. β(1)T (B(1)(B(1)e)2) = 0 43. β(3)T (B(2)(B(1)e)2) = 0

44. β(4)T (B(2)e)4 = 0 45. β(4)T (B(2)(B(1)e))2 = 0

46. β(4)T ((B(2)e)(B(2)(B(1)e))) = 0 47. αT ((B(0)e)(B(0)(B(1)e))) = 0

48. β(1)T ((A(1)(B(0)e))(B(1)e)) = 0 49. β(3)T ((A(2)(B(0)e))(B(2)e)) = 0

50. β(1)T (A(1)(B(0)(B(1)e))) = 0 51. β(3)T (A(2)(B(0)(B(1)e))) = 0

52. β(4)T ((B(2)(A(1)e))(B(2)e)) = 0 53. β(1)T (B(1)(A(1)(B(0)e))) = 0

54. β(3)T (B(2)(A(1)(B(0)e))) = 0 55. β(1)T ((B(1)e)(B(1)(B(1)e))) = 0

56. β(3)T ((B(2)e)(B(2)(B(1)e))) = 0 57. β(1)T (B(1)(B(1)(B(1)e))) = 0
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58. β(4)T ((B(2)e)(B(2)(B(1)(B(1)e)))) = 0

59. β(4)T ((B(2)e)(B(2)(B(1)e)2)) = 0

are fulfilled and if c(i) = A(i)e for i = 0, 1, 2, then the stochastic Runge–Kutta
method (29) attains order 2 for the weak approximation of the solution of the Itô
SDE (1).

Proof. We only give a sketch of the proof and refer to Rößler (2009) for the detailed
proof. Calculating the order conditions by Theorem 2, it turns out that there are some
trees which restrict the class of efficient SRK methods significantly and which give
a deep insight to the necessary structure of such methods. Therefore, we concentrate
our investigation to the trees

t2,12 = [τj1 , τj2, [τj4 ]j3]γ , t2,15 = [[τj2 ]j1 , [τj4]j3 ]γ , (30)

with some j1, j2, j3, j4 ∈ {1, . . . , m}. Then, we have l(t2,12) = l(t2,15) = 5,
ρ(t2,12) = ρ(t2,15) = 2 and s(t2,12) = s(t2,15) = 4. Now, for the SRK method
(29) we choose M = {(0), (ν), (ν, 0), (ν, 1) : 1 ≤ ν ≤ m} and

z
(0),(0)
i = αi hn , z

(k),(k,0)
i = β

(1)
i Î(k) + β

(2)
i

Î(k,k)√
hn

,

z
(k),(k,1)
i = β

(3)
i Î(k) + β

(4)
i

√
hn ,

Z
(0),(0),(0)
ij = A

(0)
ij hn , Z

(k,0),(0),(0)
ij = A

(1)
ij hn , Z

(k,1),(0),(0)
ij = A

(2)
ij hn ,

Z
(0),(k),(k,0)
ij = B

(0)
ij Î(k) , Z

(k,0),(k),(k,0)
ij = B

(1)
ij

√
hn,

Z
(k,1),(l),(l,0)
ij = B

(2)
ij

Î(k,l)√
hn

,

for 1 ≤ k, l ≤ m with k �= l and with H
(k,0)
i = H

(k)
i and H

(k,1)
i = Ĥ

(k)
i for

1 ≤ i, j ≤ s. Thus, the class of SRK methods is covered by the general class (4).
Then, the coefficient function (12) yields

ΦS(t2,12) = (z(j1),(j1,0)T e + z(j1),(j1,1)T e)(z(j2),(j2,0)T e + z(j2),(j2,1)T e)

× (z(j3),(j3,0)T Z(j3,0),(j4),(j4,0)e + z(j3),(j3,1)T Z(j3,1),(j4),(j4,0)e) ,

ΦS(t2,15) = (z(j1),(j1,0)T Z(j1,0),(j2),(j2,0)e + z(j1),(j1,1)T Z(j1,1),(j2),(j2,0)e)

× (z(j3),(j3,0)T Z(j3,0),(j4),(j4,0)e + z(j3),(j3,1)T Z(j3,1),(j4),(j4,0)e) ,

(31)

for j1, j2, j3, j4 ∈ {1, . . . , m}. Further, the multiple stochastic integrals are

It2,12;t,t+h = I(j4,j3,j2,j1);t,t+h + I(j4,j3,j1,j2);t,t+h

+ I(j1,j4,j3,j2);t,t+h + I(j4,j1,j3,j2);t,t+h
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+ I(0,j3,j2);t,t+h[1{j1=j4}] + I(j4,0,j2);t,t+h[1{j1=j3}]
+ I(j4,j3,0);t,t+h[1{j1=j2}]
+ I(j4,j2,j3,j1);t,t+h + I(j4,j2,j1,j3);t,t+h + I(j1,j4,j2,j3);t,t+h

+ I(j4,j1,j2,j3);t,t+h

+ I(0,j2,j3);t,t+h[1{j1=j4}] + I(j4,0,j3);t,t+h[1{j1=j2}]
+ I(j4,j2,0);t,t+h[1{j1=j3}]
+ I(j2,j4,j3,j1);t,t+h + I(j2,j4,j1,j3);t,t+h + I(j1,j2,j4,j3);t,t+h

+ I(j2,j1,j4,j3);t,t+h

+ I(0,j4,j3);t,t+h[1{j1=j2}] + I(j2,0,j3);t,t+h[1{j1=j4}]
+ I(j2,j4,0);t,t+h[1{j1=j3}]
+ I(0,j3,j1);t,t+h[1{j2=j4}] + I(j1,0,j3);t,t+h[1{j2=j4}]
+ I(0,j1,j3);t,t+h[1{j2=j4}]
+ I(j4,0,j1);t,t+h[1{j2=j3}] + I(j1,j4,0);t,t+h[1{j2=j3}]
+ I(j4,j1,0);t,t+h[1{j2=j3}]
+ I(0,0);t,t+h[1{j2=j4}1{j1=j3}] + I(0,0);t,t+h[1{j2=j3}1{j1=j4}]

and

It2,15;t,t+h = I(j4,j3,j2,j1);t,t+h + I(j4,j2,j3,j1);t,t+h + I(j2,j4,j3,j1);t,t+h

+ I(j2,j1,j4,j3);t,t+h

+ I(0,j3,j1);t,t+h[1{j2=j4}] + I(j4,0,j1);t,t+h[1{j2=j3}]
+ I(j2,0,j3);t,t+h[1{j1=j4}]
+ I(j2,j4,j1,j3);t,t+h + I(j4,j2,j1,j3);t,t+h + I(0,0);t,t+h[1{j1=j3}1{j2=j4}]
+ I(j4,j2,0);t,t+h[1{j1=j3}] + I(j2,j4,0);t,t+h[1{j1=j3}]
+ I(0,j1,j3);t,t+h[1{j2=j4}].

If we apply Theorem 2 to t2,12 and t2,15, then we have to consider the cases jk =
jl and jk �= jl for 1 ≤ k < l ≤ 4. In the case of j1 = j2 = j3 = j4 we
obtain σ(t2,12) = 2 and E(It2,12;t,t+h) = h2. The order condition (18) yields that
E(ΦS(t2,12; t, t+h)) = h2 has to be fulfilled. Applying (31) and taking into account

the order conditions β(4)T e = 0 and β(2)T e = 0 due to the trees t0.5,1 = [τj1]γ and
t1.5,4 = [τj1, τj2, τj3 ]γ (see Rößler 2009 for details) yields

E(ΦS(t2,12)) = E

(((
β(1)T e Î(j1) + β(2)T e

Î(j1,j1)√
h

)

+ (β(3)T e Î(j1) + β(4)T e
√
h)

)2

×
(
β(1)T B(1)e Î(j1)

√
h+ β(2)T B(1)e

Î(j1,j1)√
h

√
h

))
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= (β(1)T e + β(3)T e)2(β(2)T B(1)e) E(Î 2
(j1)

Î(j1,j1)) .

Due to E(Î 2
(j1)

Î(j1,j1)) = h2, the order condition is fulfilled if for the coefficients

holds (β(1)T e + β(3)T e)2(β(2)T B(1)e) = 1. In the case of j1 = j3 �= j2 = j4 we
calculate with σ(t2,12) = 2 and E(It2,12;t,t+h) = 1

2h
2 from (18) the order condition

E(ΦS(t2,12; t, t + h)) = 1
2h

2. Then, we obtain for the SRK method (29)

E(ΦS(t2,12)) = E

(((
β(1)T e Î(j1) + β(2)T e

Î(j1,j1)√
h

)

+ (β(3)T e Î(j1) + β(4)T e
√
h)

)

×
((

β(1)T e Î(j2) + β(2)T e
Î(j2,j2)√

h

)

+ (β(3)T e Î(j2) + β(4)T e
√
h)

)

×
(
β(3)T B(2)e Î(j1)

Î(j1,j2)√
h

+ β(4)T B(2)e
√
h
Î(j1,j2)√

h

))

= (β(1)T e + β(3)T e)2(β(4)T B(2)e) E(Î(j1)Î(j2)Î(j1,j2)) .

Now, we can calculate that E(Î(j1)Î(j2)Î(j1,j2)) = 1
2h

2. Thus, the order condition is

fulfilled if (β(1)T e + β(3)T e)2(β(4)T B(2)e) = 1.
For t2,15, we calculate in the case of j1 = j2 = j3 = j4 with σ(t2,15) = 2 and

E(It2,15;t,t+h) = 1
2h

2 from (18) the order condition E(ΦS(t2,15; t, t + h)) = 1
2h

2.
Again, applying (31) results in

E(ΦS(t2,15)) = E

((
β(1)T B(1)e Î(j1)

√
h+ β(2)T B(1)e

Î(j1,j1)√
h

√
h

)2)

= (β(1)T B(1)e)2 E(Î 2
(j1)

)h+ (β(2)T B(1)e)2 E(Î 2
(j1,j1)

) .

Now, due to E(Î 2
(j1)

) = h and E(Î 2
(j1,j1)

) = 1
2h

2 the order condition is

(β(1)T B(1)e)2 + 1
2 (β

(2)T B(1)e)2 = 1
2 . On the other hand, in the case of j1 =

j3 �= j2 = j4 with σ(t2,15) = 2 and E(It2,15;t,t+h) = 1
2h

2, we get from (18)
that E(ΦS(t2,15; t, t + h)) = 1

2h
2 has to be fulfilled. Now, we obtain with (31) that

E(ΦS(t2,15)) = E

((
β(3)T B(2)e Î(j1)

Î(j1,j2)√
h

+ β(4)T B(2)e
√
h
Î(j1,j2)√

h

)2)

= (β(3)T B(2)e)2 E(Î 2
(j1)

Î 2
(j1,j2)

)h−1 + (β(4)T B(2)e)2 E(Î 2
(j1,j2)

) .
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Table 5 Weak SRK scheme RI5 of order pD = 3 and pS = 2 and RI6 of order pD = pS = 2

0

1 1 1
3

5
12

25
144

35
144 − 5

6 0

0
1
4

1
4

1
2

1
4

1
4 0 − 1

2 0

0

0 0 1

0 0 0 −1 0
1
10

3
14

24
35 1 −1 −1 0 1 −1

1
2 − 1

4 − 1
4 0 1

2 − 1
2

0

1 1 1

0 0 0 0 0

0

1 1 1

1 1 0 −1 0

0

0 0 1

0 0 0 −1 0
1
2

1
2 0 1

2
1
4

1
4 0 1

2 − 1
2

− 1
2

1
4

1
4 0 1

2 − 1
2

Due to E(Î 2
(j1)

Î 2
(j1,j2)

) = h3 and E(Î 2
(j1,j2)

) = 1
2h

2, we finally get the order condition

(β(3)T B(2)e)2 + 1
2 (β

(4)T B(2)e)2 = 1
2 .

For all remaining cases of type jk = jl or jk �= jl for 1 ≤ k < l ≤ 4, we have
E(It2,12;t,t+h) = E(It2,15;t,t+h) = 0 and we also calculate that E(ΦS(t2,12; t, t +
h)) = E(ΦS(t2,15; t, t + h)) = 0. Therefore, (18) is fulfilled in these cases without
any additional restrictions for the coefficients. Applying the rooted tree analysis
and Theorem 2 to all remaining rooted trees up to order 2.5, we can calculate the
complete order two conditions for the SRK method (29), see Rößler (2009). �

Remark 2. In the case of m = 1 and if we choose A
(2)
ij = 0 for 1 ≤ i, j ≤ s then the

59 conditions of Theorem 5 reduce to 28 conditions (see also Rößler 2006b). For
an explicit SRK method of type (29) s ≥ 3 is needed due to conditions 4., 6. and
17. Further, in the case of commutative noise significantly simplified SRK methods
have been developed in Rößler (2004b).

For example, the well known Euler-Maruyama scheme EM belongs to the intro-
duced class of SRK methods having weak order 1 with s = 1 stage and with
coefficients α1 = β

(1)
1 = 1, β

(2)
1 = β

(3)
1 = β

(4)
1 = 0, A

(0)
11 = A

(1)
11 = 0 and

B
(0)
11 = B

(1)
11 = 0. We refer to Debrabant and Rößler (2009b) for a detailed analysis

of the solution space of the order conditions in Theorem 5 and for some coefficients
which minimize the error constants of the SRK method (29). The SRK scheme RI5
presented on the left hand side of Table 5, is of order pS = 2 and pD = 3, while the
SRK scheme RI6 on the right hand side of Table 5 is of order pD = pS = 2. Con-
sidering the computational complexity of the efficient SRK schemes RI5 and RI6,
we take again the number of evaluations of the drift and diffusion functions and the
number of random numbers needed in each step as a measure for the complexity of
the schemes. Then, the SRK scheme RI5 needs 3 evaluations of the drift a while
the SRK scheme RI6 needs 2 evaluations of a. Furthermore, we have to point out
that only 5 evaluations of each diffusion function bk for k = 1, . . . , m are needed
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by both SRK schemes RI5 and RI6. This is due to the fact that the number of stages
s = 3 does not depend on the dimension m of the driving Wiener process and be-
cause of H(k)

1 = Ĥ
(k)
1 , which saves one evaluation of each bk in the case of explicit

SRK schemes. As a further feature, only 2m−1 independent random numbers have
to be generated for the new SRK schemes in each step. Thus, the scheme RI6 has
computational complexity 2d + 5md + 2m− 1 while e.g. the order 2.0 weak SRK
method PL1WM due to Platen (see Kloeden and Platen 1999 or Tocino and Vigo-
Aguiar 2002) has computational complexity 2d + (2m2 +m)d +m+ 1

2m(m− 1)
which grows quadratically with the dimension m of the Wiener process. Thus, this
is a significant reduction of complexity for the new SRK method (29) compared to
well known SRK methods.

7 Numerical Results

We compare the schemes RI5 and RI6 with the order one Euler-Maruyama scheme
EM, with the order 2.0 weak SRK scheme PL1WM due to Platen (see Kloeden
and Platen 1999 or Tocino and Vigo-Aguiar 2002) and with the extrapolated Euler-
Maruyama scheme ExEu due to Talay and Tubaro (1990) attaining order two. In
the following, we approximate E(f (XT )) for f (x1, . . . , xd) = x1 by Monte Carlo
simulation. Therefore, we estimate E(f (YT )) by the sample average of M inde-
pendently simulated realizations of the approximations f (YT,k), k = 1, . . . ,M ,
with YT,k calculated by the scheme under consideration. The obtained errors at time
T = 1.0 are plotted versus the corresponding step sizes or the corresponding com-
putational effort with double logarithmic scale in order to analyze the empirical
order of convergence and the performance of the schemes, respectively.

The first test equation is a non-linear SDE system for d = m = 2 with non-
commutative noise given by

d

(
X1

t

X2
t

)

=
(
− 1

2X
1
t + 3

2X
2
t

3
2X

1
t − 1

2X
2
t

)

dt +
(√

3
4 (X

1
t )

2 − 3
2X

1
t X

2
t + 3

4 (X
2
t )

2 + 3
20

0

)

dW 1
t

+
⎛

⎜
⎝
−
√

1
4 (X

1
t )

2 − 1
2X

1
t X

2
t + 1

4 (X
2
t )

2 + 1
20

√
(X1

t )
2 − 2X1

t X
2
t +X2

t + 1
5

⎞

⎟
⎠ dW 2

t , (32)

with initial value X0 = ( 1
10 ,

1
10 )

T . Then, we calculate the first moments as E(Xi
t ) =

1
10 exp(t) for i = 1, 2. Here, we choose M = 109 and the corresponding results are
presented in Fig. 4.

Next, we consider a non-linear SDE with non-commutative noise and some
higher dimension d = 4 which is given for λ,μ ∈ {0, 1} as
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d

⎛

⎜⎜⎜
⎝

X1
t

X2
t

X3
t

X4
t

⎞

⎟⎟⎟
⎠
=

⎛

⎜⎜⎜⎜⎜
⎝

243
154X

1
t − 27

77X
2
t + 23

154X
3
t − 65

154X
4
t

27
77X

1
t − 243

154X
2
t + 65

154X
3
t − 23

154X
4
t

5
154X

1
t − 61

154X
2
t + 162

77 X3
t − 36

77X
4
t

61
154X

1
t − 5

154X
2
t + 36

77X
3
t − 162

77 X4
t

⎞

⎟⎟⎟⎟⎟
⎠

dt

+ 1

9

√

(X2
t )

2 + (X3
t )

2 + 2

23

⎛
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⎝

1
13
1

14
1

13
1

15

⎞

⎟⎟⎟⎟
⎠

dW 1
t

+ 1

8

√

(X4
t )

2 + (X1
t )

2 + 1

11

⎛

⎜⎜⎜⎜
⎝

1
14
1

16
1

16
1

12

⎞

⎟⎟⎟⎟
⎠

dW 2
t

+ λ

12

√

(X1
t )

2 + (X2
t )

2 + 1

9

⎛

⎜⎜⎜⎜
⎝

1
6
1
5
1
5
1
6

⎞

⎟⎟⎟⎟
⎠

dW 3
t

+ λ

14

√

(X3
t )

2 + (X4
t )

2 + 3

29

⎛

⎜⎜⎜⎜
⎝

1
8
1
9
1
8
1
9

⎞

⎟⎟⎟⎟
⎠

dW 4
t

+ μ

10

√

(X1
t )

2 + (X3
t )

2 + 1
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⎛

⎜
⎜⎜⎜
⎝

1
11
1
15
1
13
1
11

⎞

⎟
⎟⎟⎟
⎠

dW 5
t

+ μ

11

√

(X2
t )

2 + (X4
t )

2 + 2
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⎛

⎜⎜⎜⎜
⎝

1
12
1
13
1
16
1
13

⎞

⎟⎟⎟⎟
⎠

dW 6
t (33)

with initial value X0 = ( 1
8 ,

1
8 , 1, 1

8 )
T . Then, we have m = 2 + 2λ + 2μ as the

dimension of the driving Wiener process. The moments of the solution can be cal-
culated as E(Xi

T ) = 1
8 exp(2T ) for i = 1, 2, 4 and E(X3

T ) = exp(2T ). We compare
the performance of the considered schemes for the cases m = 2 with λ = μ = 0,
for m = 4 with λ = 1 and μ = 0, and for m = 6 if λ = μ = 1. Here, M = 108



Strong and Weak Approximation Methods for Stochastic Differential Equations 151

Fig. 4 Computational effort vs. error for the approximation of E(X1
T ) for SDE (32) in the left and

for SDE (33) for λ = μ = 0 with m = 2 in the right figure

Fig. 5 Computational effort vs. error for the approximation of E(X1
T ) for SDE (33) for λ = 1,

μ = 0 with m = 4 in the left and for λ = μ = 1 with m = 6 in the right figure

independent trajectories are simulated and the results are presented in Figs. 4–5. On
the right hand side in Fig. 4 and in Fig. 5, we can see the performance of the con-
sidered schemes as the dimension m increases from 2 to 6. Comparing these results,
we can see the significantly reduced complexity for the new SRK schemes RI5 and
RI6 compared to the well known SRK scheme PL1WM in the case of m > 2. This
benefit becomes more and more significant if we increase the dimension m of the
driving Wiener process, which confirms our theoretical results. For the considered
examples, we obtained very good results especially for the SRK scheme RI5 having
order pD = 3 and pS = 2.

Further references relevant to the material in this paper include Burrage and Bur-
rage (1998), Burrage (1999), Clark and Cameron (1980), Debrabant and Kværnø
(2008–2009), Debrabant and Rößler (2008a, 2008b, 2009a, 2009b), Gaines and
Lyons (1994), Giles (2008), Gilsing and Shardlow (2007), Hairer et al. (1993), Kloe-
den et al. (1995), Kloeden et al. (1992), Komori (2007), Komori et al. (1997), Küp-
per et al. (2007), Lehn et al. (2002), Moon et al. (2005), Newton (1991), Rößler
(2004a), Rümelin (1982) and Talay (1990).
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On Robust Gaussian Graphical Modeling

Daniel Vogel and Roland Fried

Abstract The objective of this exposition is to give an overview of the existing
approaches to robust Gaussian graphical modeling. We start by thoroughly intro-
ducing Gaussian graphical models (also known as covariance selection models or
concentration graph models) and then review the established, likelihood-based sta-
tistical theory (estimation, testing and model selection). Afterwards we describe
robust methods and compare them to the classical approaches.

1 Introduction

Graphical modeling is the analysis of conditional associations between random vari-
ables by means of graph theoretic methods. The graphical representation of the in-
terrelation of several variables is an attractive data analytical tool. Besides allowing
parsimonious modeling of the data it facilitates the understanding and the interpre-
tation of the data generating process. The importance of considering conditional
rather than marginal associations for assessing the dependence structure of several
variables is vividly exemplified by Simpson’s paradox, see e.g. Edwards (2000),
Chap. 1.4. The statistical literature knows several different types of graphical mod-
els, differing in the type of relation coded by an edge, in the type of data and hence
in the statistical methodology. In this chapter we deal with undirected graphs only,
that is, the type of association we consider is mutual. Precisely, we are going to
define partial correlation graphs in Sect. 2.2.

Undirected models are in a sense closer to the data. A directed association sug-
gests a causal relationship. Even though it can often be justified, e.g. by chronol-
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ogy or knowledge about the physiological process, the direction of the effect is an
additional assumption. Undirected models constitute the simplest case, the under-
standing of which is crucial for the study of directed models and models with both,
directed and undirected edges.

Furthermore we restrict our attention to continuous data, which are assumed
to stem from a multivariate Gaussian distribution. Conditional independence in
the normal model is nicely expressed through its second order characteristics, cf.
Sect. 2.3. This fact, along with its general predominant role in multivariate statistics
(largely due to the Central limit theorem justification), is the reason for the almost
exclusive use of the multivariate normal distribution in graphical models for contin-
uous data.

With rapidly increasing data sizes, and on the other hand computer hardware
available to process them, the need for robust methods becomes more and more
important. The sample covariance matrix possesses good statistical properties in the
normal model and is very fast to compute, but highly non-robust, cf. Sect. 4.1. We
are going to survey robust alternatives to the classical Gaussian graphical modeling,
which is based on the sample covariance matrix.

The paper is organized as follows. Section 2 introduces Gaussian graphical mod-
els (GGMs). We start by studying partial correlations, a purely moment based re-
lation, without any distributional assumption and then examine the special case of
the normal distribution where partial uncorrelatedness coincides with conditional
independence. The better transferability of the former concept to more general data
situations is the reason for taking this route. Section 3 reviews the classical, non-
robust, likelihood-based statistical theory for Gaussian graphical models. Each step
is motivated, and important points are emphasized. Sections 2 and 3 thus serve as a
self-contained introduction to GGMs. The basis for this first part are the books Whit-
taker (1990) and Lauritzen (1996). Other standard volumes on graphical models in
statistics are Cox and Wermuth (1996) and Edwards (2000), both with a stronger
emphasis on applications. Section 4 deals with robust Gaussian graphical modeling.
We focus on the use of robust affine equivariant scatter estimators, since the robust
estimators proposed for GGMs in the past belong to this class. As an important ro-
bustness measure we consider the influence function and give the general form of
the influence functions of affine equivariant scatter estimators and derived partial
correlation estimators.

We close this section by introducing some of the mathematical notation we are
going to use. Bold letters b, μ, etc., denote vectors, capital letters X, Y , etc., indicate
(univariate) random variables and bold capital letters X, Y, etc., random vectors. We
view vectors, by default, neither as a column nor as a row, but just as an ordered
collection of elements of the same type. This makes (X,Y) again a vector and not a
two-column matrix. However, if matrix notation, such as (·)T , is applied to vectors,
they are always interpreted as n× 1 matrices.

Matrices are also denoted by non-bold capital letters, and the corresponding
small letter is used for an element of the matrix, e.g., the p × p matrix Σ is the
collection of all σi,j , i, j = 1, . . . , p. Alternatively, if matrices are denoted by more
complicated compound symbols (e.g. if they carry subscripts already) square brack-
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ets will be used to refer to individual elements, e.g. [Σ̂−1
G ]i,j . Throughout the paper

upright small Greek letters will denote index sets. Subvectors and submatrices are
referenced by subscripts, e.g. for α, β ⊆ {1, . . . , p} the |α| × |β| matrix Σα,β is
obtained from Σ by deleting all rows that are not in α and all columns that are not
in β. Similarly, the p × p matrix [Σα,β]p is obtained from Σ by putting all rows
not in α and all columns not in β to zero. We want to view this matrix operation as
two operations performed sequentially: first (·)α,β extracting the submatrix and then
[·]p writing it back on a “blank” matrix at the coordinates specified by α and β. Of
course, the latter is not well defined without the former, but this allows us e.g. to
write [(Σα,β)

−1]p.
We adopt the general convention that subscripts have stronger ties than super-

scripts, for instance, we write Σ−1
α,β for (Σα,β)

−1. Let Sp and S +
p be the sets of all

symmetric, respectively positive definite p×p matrices, and define for any A ∈ S +
p

Corr(A) = A
− 1

2
D AA

− 1
2

D , (1)

where AD denotes the diagonal matrix having the same diagonal as A. Recall the
important inversion formula for partitioned matrices. Let r ∈ {1, . . . , p − 1}, α =
{1, . . . , r} and β = {r + 1, . . . , p}. Then

(
Σα,α Σα,β

Σβ,α Σβ,β

)−1

=
(

Ω−1 −Ω−1Σα,βΣ
−1
β,β

−Σ−1
β,βΣβ,αΩ

−1 Σ−1
β,β +Σ−1

β,βΣβ,αΩ
−1Σα,βΣ

−1
β,β

)

, (2)

where the r×r matrix Ω = Σα,α−Σα,βΣ
−1
β,βΣβ,α is called the Schur complement of

Σβ,β. The inverse exists if and only if Ω and Σβ,β are both invertible. Note that, by
simultaneously re-ordering rows and columns, the formula is valid for any partition
{α, β} of {1, . . . , p}.

Finally, the Kronecker product A ⊗ B of two matrices A,B ∈ R
p×p is defined

as the p2 × p2 matrix with entry ai,j bk,l at position (i(p − 1) + k, j (p − 1) + l).
Let e1, . . . , ep be the unit vectors in R

p and 1p the p vector consisting only of ones.
Define further the following matrices:

Jp =
p∑

i=1

eie
T
i ⊗ eie

T
i , Kp =

p∑

i=1

p∑

j=1

eie
T
j ⊗ ej eTi , Mp = 1

2

(
Ip2 +Kp

)
,

where Ip2 denotes the p2 × p2 identity matrix. Kp is also called the commutation

matrix. Let vec(A) be the p2 vector obtained by stacking the columns of A ∈ R
p×p

from left to right underneath each other. More on these concepts and their properties
can be found in Magnus and Neudecker (1999).
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2 Partial Correlation Graphs and Properties of the Gaussian
Distribution

This section explains the basic concepts of Gaussian graphical models: We define
the terms partial variance and partial correlation (Sect. 2.1), review basic graph
theory terms and explain the merit of a partial correlation graph (Sect. 2.2). Gaus-
sianity enters in Sect. 2.3, where we deduce the conditional independence inter-
pretation of a partial correlation graph which is valid under normality. Statistics is
deferred to Sect. 3.

2.1 Partial Variance

Let X = (X1, . . . , Xp) be a random vector in R
p with distribution F and positive

definite variance matrix Σ = ΣX ∈ R
p×p. The inverse of Σ is called concentration

matrix (or precision matrix) of X and shall be denoted by K or KX.
Now let X be partitioned into X = (Y,Z), where Y and Z are subvectors of

lengths q and r , respectively. The corresponding index sets shall be called α and β,
i.e. α = {1, . . . , q} and β = {q + 1, . . . , q + r}.

The variance matrix of Y is ΣY = Σα,α ∈ R
q×q and its concentration matrix

KY = Σ−1
α,α = (K−1

X )−1
α,α. The covariance matrix of Y and Z is Σα,β ∈ R

q×r . The
orthogonal projection of Y onto the space of all affine linear functions of Z shall be
denoted by Ŷ(Z) and is given by

Ŷ(Z) = EY +Σα,βΣ
−1
β,β(Z − EZ). (3)

This is the best linear prediction of Y from Z, in the sense that the squared prediction
error E‖Y − h(Z)‖2 is uniquely minimized by h = Ŷ(·) among all (affine) linear
functions h. The partial variance of Y given Z is the variance of the residual Y −
Ŷ(Z). It shall be denoted by ΣY•Z, i.e.

ΣY•Z = Var
(
Y − Ŷ(Z)

) = Σα,α −Σα,βΣ
−1
β,β Σβ,α. (4)

The notation Y•Z is intended to resemble Y |Z, that is, we look at Y in dependence
on Z, but instead of conditioning Y on Z the type of connection we consider here
is a linear regression. In particular, ΣY•Z is—contrary to a conditional variance—a
fixed parameter and not random.

If Y is at least two-dimensional, we partition it further into Y = (Y1,Y2) with
corresponding index sets α1 ∪ α2 = α and lengths q1 + q2 = q, and define

ΣY1,Y2•Z = (ΣY•Z)α1,α2
= Σα1,α2

−Σα1,β
Σ−1

β,β Σβ,α2

as the partial covariance between Y1 and Y2 given Z. If ΣY1,Y2•Z = 0, we say Y1
and Y2 are partially uncorrelated given Z and write
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Y1⊥Y2 • Z.

Furthermore, if Y1 = Y1 and Y2 = Y2 are both one-dimensional, ΣY•Z is a positive
definite 2× 2 matrix. The correlation coefficient computed from this matrix, i.e. the
(1, 2) element of Corr(ΣY•Z), cf. (1), is called the partial correlation (coefficient)
of Y1 and Y2 given Z and denoted by �Y1,Y2•Z. This is nothing but the correlation
between the residuals Y1−Ŷ1(Z) and Y2−Ŷ2(Z) and may be interpreted as a measure
of the linear association between Y1 and Y2 after the linear effects of Z have been
removed. For α1 = {i} and α2 = {j}, i �= j , we use the simplified notation �i,j• for
�Xi,Xj •X\{i,j } .

The simple identity (4) is fundamental and the actual starting point for all fol-
lowing considerations. We recognize ΣY•Z as the Schur complement of ΣZ in ΣX,
cf. (2), implying that

Σ−1
Y•Z = Kα,α. (5)

In words: the concentration matrix of Y− Ŷ(Z) is the submatrix of KX correspond-
ing to Y, or—very roughly put—while marginalizing means partitioning the covari-
ance matrix, partializing means partitioning its inverse. This has some immediate
implications about the interpretation of K , which explain why K , rather than Σ , is
of interest in graphical modeling.

Proposition 1. The partial correlation �i,j • between Xi and Xj , 1 ≤ i < j ≤ p,
given all remaining variables X\{i,j} is

�i,j• = − ki,j√
ki,ikj,j

.

Another way of phrasing this assertion is to say, the matrix P = −Corr(K)

contains the partial correlations (of each pair of variables given the respective re-
mainder) as its off-diagonal elements. We call P the partial correlation matrix of X.
Proposition 1 is a direct consequence of (5) involving the inversion of a 2×2 matrix.
For a detailed derivation see Whittaker (1990), Chap. 5.

2.2 Partial Correlation Graph

The partial correlation structure of the random variable X can be coded in a graph,
which originates the term graphical model. An undirected graph G = (V ,E), where
V is the vertex set and E the edge set, is constructed the following way: the vari-
ables X1, . . . , Xp are the vertices, and an (undirected) edge is drawn between Xi

and Xj , i �= j , if and only if �i,j• �= 0. The thus obtained graph G is called the
partial correlation graph (PCG) of X. Formally we set V = {1, . . . , p} and write
the elements of E as unordered pairs {i, j}, 1 ≤ i < j ≤ p. Before we dwell on the
benefits of this graphical representation, let us briefly recall some terms from graph
theory. We only consider undirected graphs with a single type of nodes.
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If {a, b} ∈ E, the vertices a and b are called adjacent or neighbors. The set of
neighbors of the vertex a ∈ V is denoted by ne(a). An alternative notation is bd(a),
which stands for boundary, but keep in mind that in graphs containing directed
edges the set of neighbors and the boundary of a node are generally different.

A path of length k, k ≥ 1, is a sequence (a1, . . . , ak+1) of distinct vertices such
that {ai, ai+1} ∈ E, i = 1, . . . , k. If k ≥ 2 and additionally {a1, ak+1} ∈ E, then
the sequence (a1, . . . , ak+1, a1) is called a cycle of length k + 1 or a (k + 1)-cycle.
Note that the length, in both cases, refers to the number of edges.

The n-cycle (a1, . . . , an, a1) is chordless, if no other than successive vertices in
the cycle are adjacent, i.e. {ai, aj } ∈ E ⇒ |i − j | ∈ {1, n− 1}. Otherwise the cycle
possesses a chord. All cycles of length 3 are chordless.

The graph is called complete, if it contains all possible edges. Every subset α ⊂ V

induces a subgraph Gα = (α, Eα), where Eα contains those edges in E with both
endpoints in α, i.e. Eα = E ∩ (α × α). A subset α ⊂ V , for which Gα is complete,
but adding another vertex would render it incomplete, is called a clique. Thus the
cliques identify the maximal complete subgraphs.

The set γ ⊂ V is said to separate the sets α, β ⊂ V in G, if α, β, γ are mutually
disjoint and every path from a vertex in α to a vertex in β contains a node from γ.
The set γ may be empty.

Definition 1. A partition (α, β, γ) of V is a decomposition of the graph G, if

(1) α, β are both non-empty,
(2) γ separates α and β,
(3) Gγ is complete.

If such a decomposition exists, G is called reducible (otherwise irreducible). It can
then be decomposed into or reduced to the components Gα∪γ and Gβ∪γ.

Our terminology is in concordance with Whittaker (1990), Chap. 12, however, there
are different definitions around. For instance, Lauritzen (1996) calls a decompo-
sition in the above sense a “proper weak decomposition”. Also be aware that the
expression “G is decomposable”, which is defined below, denotes something dif-
ferent than “there exists a decomposition of G”, for which the term “reducible” is
used.

Definition 1 suggests a recursive application of decompositions until ultimately
the graph is fully decomposed into irreducible components, which then are viewed
as atomic building blocks of the graph. It is not at all obvious, if such atomic com-
ponents exist or are well defined, since, at least in principle, any sequence of de-
compositions may lead to different irreducible components, cf. Example 12.3.1 in
Whittaker (1990). With an additional constraint, the irreducible components of a
given graph are indeed well defined.

Definition 2. The system of subsets {α1, . . . , αk} ⊂ 2|V | is called the (set of) maxi-
mal irreducible components of G, if

(1) Gαi
is irreducible, i = 1, . . . , k,
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(2) αi and αj are mutually incomparable, i.e. αi is not a proper subset of αj and vice
versa, 1 ≤ i < j ≤ k, and

(3)
⋃k

i=1 αi = V .

The maximal irreducible components of any graph G are unique and can be obtained
by first fully decomposing the graph into irreducible components (by any sequence
of decompositions) and then deleting those that are a proper subset of another one—
the maximal irreducible components remain.

Definition 3. The graph G is decomposable, if all of its maximal irreducible com-
ponents are complete.

Decomposability also admits the following recursive definition: G is decomposable,
if it is complete or there exists a decomposition (α, β, γ) into decomposable sub-
graphs Gα∪γ and Gβ∪γ. Another characterization is to say, a decomposable graph
can be decomposed into its cliques. Figure 1 shows two reducible graphs and their
respective maximal irreducible components. The decomposability of a graph is a

Fig. 1 a a non-decomposable graph and b its maximal irreducible components, c a decomposable
graph and d its maximal irreducible components

very important property, with various implications for graphical models, and de-
composable graphs deserve and receive special attention, cf. e.g. Whittaker (1990),
Chap. 12. The most notable consequence for Gaussian graphical models is the ex-
istence of closed form maximum likelihood estimates, cf. Sect. 3.1. The recursive
nature of Definition 3 makes it hard to determine whether a given graph is decom-
posable or not. Several equivalent characterizations of decomposability are given
e.g. in Lauritzen (1996). We want to name one, which is helpful for spotting decom-
posable graphs.

Definition 4. The graph G is triangulated, if every cycle of length greater than 3
has a chord.

Proposition 2. A graph G is decomposable if and only if it is triangulated.

For a proof see Lauritzen (1996), p. 9, or Whittaker (1990), p. 390.
We close this subsection by giving a motivation for partial correlation graphs.

Clearly, the information in the graph is fully contained in Σ and can directly be
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read off its inverse K: a zero off-diagonal element at position (i, j) signifies the ab-
sence of an edge between the corresponding nodes. Of course, graphs in general are
helpful visual tools. This argument is valid for representing any type of association
between variables by means of a graph and is not the sole justification for partial
correlation graphs. The purpose of a PCG is explained by the following theorem,
which lies at the core of graphical models.

Theorem 1 (Separation Theorem for PCGs). For a random vector X with positive
definite covariance matrix Σ and partial correlation graph G the following is true:
γ separates α and β in G if and only if Xα⊥Xβ • Xγ.

This result is not trivial, but its proof can be accomplished by matrix manipu-
lation. It is also a corollary of Theorem 3.7 in Lauritzen (1996) by exploiting the
equivalence of partial uncorrelatedness and conditional independence in the normal
model, cf. Sect. 2.3. The theorem roughly tells that the association “partial uncor-
relatedness” (of two random vectors given a third one) exhibits the same properties
as the association “separation” (of two sets of vertices by a third one). Thus it links
probability theory to graph theory and allows to employ graph theoretic tools in
studying properties of multivariate probability measures. First and foremost it al-
lows the succinct formulation of Theorem 1. The theorem lets us, starting from the
pairwise partial correlations, conclude the partial uncorrelatedness Xα⊥Xβ •Xγ for
a variety of triples (Xα,Xβ,Xγ) (which do not have to form a partition of X). It is
the graph theoretic term separation that allows not only to concisely characterize
these triples, but also to readily identify them by drawing the graph.

Finally, Theorem 1 can be re-phrased, saying that in a PCG the pairwise and the
global Markov property are equivalent: We say, a random vector X = (X1, . . . , Xp)

satisfies the pairwise Markov property w.r.t. the partial correlation graph G =
({1, . . . , p}, E), if {i, j} /∈ E ⇒ Xi⊥Xj • X\{i,j}, that is, the edge set of the
PCG of X is a subset of E. X is said to satisfy the global Markov property w.r.t.
the partial correlation graph G, if, for α, β, γ ⊂ V , “γ separates α and β” implies
Xα⊥Xβ • Xγ. The graph is constructed from the pairwise Markov property, but can
be interpreted in terms of the global Markov property.

2.3 The Multivariate Normal Distribution and Conditional
Independence

We want to make further assumptions on the distribution F of X. A random vec-
tor X = (X1, . . . , Xp) is said to have a regular p-variate normal (or Gaussian)
distribution, denoted by X ∼ Np(μ,Σ), if it possesses a Lebesgue density of the
form

fX(x) = (2π)−
p
2 (detΣ)−

1
2 exp

{
−1

2
(x − μ)Σ−1(x − μ)

}
, x ∈ R

p, (6)
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for some μ ∈ R
p and Σ ∈ S +

p . Then EX = μ and Var(X) = Σ . The term
regular refers to the positive definiteness of the variance matrix. We will only deal
with regular normal distributions—which allow the density characterization given
above—without necessarily stressing the regularity.

The multivariate normal (MVN) distribution is a well studied object, it is treated
e.g. in Bilodeau and Brenner (1999) or any other book on multivariate statistics. Of
the properties of the MVN distribution the following three are of particular interest
to us. Let, as before, X be partitioned into X = (Y,Z). Then we have:

(I) The (marginal) distribution of Y is Nq(μα,Σα,α).
(II) Y and Z are independent (in notation Y⊥⊥Z) if and only if Σα,β = 0 (which is

equivalent to Kα,β = 0).
(III) The conditional distribution of Y given Z = z is

Nq

(
EY +Σα,βΣ

−1
β,β(z − EZ), ΣY•Z

)
.

These fundamental properties of the MVN distribution can be proved by directly
manipulating the density (6). We want to spare a few words about assertion (III). It
can be phrased as to say, the multivariate normal model is closed under condition-
ing—just as (I) tells that it is closed under marginalizing. Moreover, (III) gives ex-
pressions for the conditional expectation and the conditional variance:

E(Y|Z) = Ŷ(Z) and Var(Y|Z) = ΣY•Z.

In general, E(Y|Z) and Var(Y|Z) are random variables that can be expressed as
functions of the conditioning variable Z. Thus (III) tells us that in the MVN model
E(Y| ·) is a linear function, whereas Var(Y| ·) is constant. Further, E(Y|Z) is the
best prediction of Y from Z, in the sense that E‖Y− h(Z)‖2 is uniquely minimized
by h = Ŷ(·) among all measurable functions h. Here this best prediction coincides
with the best linear prediction Ŷ(Z) given in (3). Finally, Var(Y|Z) being constant
means that the accuracy gain for predicting Y that we get from knowing Z is the
same no matter what value Z takes on. It is not least this linearity of the MVN
distribution that makes it very appealing for statistical modeling.

The occupation with the conditional distribution is guided by our interest in con-
ditional independence, which is—although it has not been mentioned yet—the ac-
tual primary object of study in graphical models. Let, as in Sect. 2.1, Y = (Y1,Y2)

be further partitioned. Y1 and Y2 are conditionally independent given Z—in writing:
Y1⊥⊥Y2|Z—if the conditional distribution of (Y1,Y2) given Z = z is for (almost)
all z ∈ R

r a product measure with independent margins corresponding to Y1 and
Y2. If X possesses a density fX = f(Y1,Y2,Z) w.r.t. some σ -finite measure, condi-
tional independence admits the following characterization: Y1⊥⊥Y2|Z if and only
if there exist functions g : R

q1+r → R and h : R
q2+r → R such that

f(Y1,Y2,Z)(y1, y2, z) = g(y1, z)h(y2, z) for almost all (y1, y2, z) ∈ R
p.
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This factorization criterion ought to be compared to its analogue for (marginal) in-
dependence. It shall serve as a definition here, saving us a proper introduction of the
terms conditional distribution or conditional density.

We can construct for any random variable X in R
p a conditional independence

graph (CIG) in an analogous way as before the partial correlation graph: We put an
edge between nodes i and j unless Xi⊥⊥Xj |X\{i,j}. Then, for “nice” distributions
F—for instance, if F has a continuous, strictly positive density f (w.r.t. some σ -
finite measure)—we have in analogy to Theorem 1 a separation property for CIGs:
Xα⊥⊥Xβ|Xγ if and only if γ separates α and β in the CIG of X.

Assertions (I) to (III) are the link from conditional independence to the analysis
of the second moment characteristics in Sect. 2.1. A direct consequence is:

Proposition 3. If X = (Y1,Y2,Z) ∼ Np(μ,Σ), Σ ∈ S +
p , then

Y1⊥Y2 • Z ⇐⇒ Y1⊥⊥Y2|Z.

In other words, the PCG and the CIG of a regular normal vector coincide. It
must be emphasized that this is a particular property of the Gaussian distribution.
Conditional independence and partial uncorrelatedness are generally different, cf.
Baba et al. (2004), and so are the respective association graphs.

3 Gaussian Graphical Models

We have defined the partial correlation graph of a random vector and have recalled
some properties of the multivariate normal distribution. We have thus gathered the
ingredients we need to deal with Gaussian graphical models.

We understand a graphical model as a family of probability distributions on R
p

satisfying the pairwise zero partial correlations specified by a given (undirected)
graph G = (V ,E), i.e. for all i, j ∈ V

{i, j} /∈ E ⇒ �i,j• = 0. (7)

If the model consists of all (regular) p-variate normal distributions satisfying (7) we
call it a Gaussian graphical model (GGM). Another equivalent term is covariance
selection model, originated by Dempster (1972).

We write M (G) to denote the GGM induced by the graph G. The model M (G)

is called saturated if G is complete. It is called decomposable if the graph is de-
composable. A Gaussian graphical model is a parametric family, which may be
succinctly described as follows. Let S +

p (G) be the subset of S +
p consisting of all

positive definite matrices with zero entries at the positions specified by G, i.e.

K ∈ S +
p (G) ⇐⇒ K ∈ S +

p and ki,j = 0 for i �= j and {i, j} /∈ E.

Then
M (G) =

{
Np(μ,Σ) | μ ∈ R

p, K = Σ−1 ∈ S +
p (G)

}
. (8)



On Robust Gaussian Graphical Modeling 165

In the context of GGMs it is more convenient to parametrize the normal model
by (μ,K), which may be less common, but is quite intuitive considering that K

directly appears in the density formula (6). The GGM M (G) is also specified by its
parameter space R

p ×S +
p (G).

The term graphical modeling refers to the statistical task of deciding on a graph-
ical model for given data and the collection of the statistical methods employed to-
ward this end. Within the parametric family of Gaussian graphical models we have
the powerful maximum likelihood theory available. We continue by stating the max-
imum likelihood estimates and some of their properties (Sect. 3.1), then review the
properties of the likelihood ratio test for comparing two nested models (Sect. 3.2)
and finally describe some model selection procedures (Sect. 3.3).

3.1 Estimation

Suppose we have i.i.d. observations X1, . . . ,Xn sampled from the normal distribu-
tion Np(μ,Σ) with Σ ∈ S +

p . Let furthermore Xn = (XT
1 , . . . ,XT

n )
T be the n× p

data matrix containing the data points as rows. We will make use of the following
matrix notation. For an undirected graph G = (V ,E) and an arbitrary square matrix
A define the matrix A(G) by

[A(G)]i,j =
{
ai,j if i = j or {i, j} ∈ E,

0 if i �= j and {i, j} /∈ E.

The Saturated Model

We start with the saturated model, i.e. there is no further restriction on K . The main
quantities of interest in Gaussian graphical models are the concentration matrix K

and the partial correlation matrix P . Their computation ought to be part of any initial
explorative data analysis. Both are functions of the covariance matrix Σ , thus we
start with the latter.

Proposition 4. If n > p, the maximum likelihood estimator (MLE) of Σ in the
multivariate normal model (with unknown location μ) is

Σ̂ = 1

n

n∑

i=1

(Xi − X̄)(Xi − X̄)T = 1

n
X

T
n HnXn,

where Hn = In− 1
n

1n1T
n is an idempotent matrix of rank n−1. The MLEs of K and

P are K̂ = Σ̂−1 and P̂ = −Corr(K̂), respectively.

Apparently X
T
n HnXn has to be non-singular in order to be able to compute K̂ and

P̂ . It should be noted that this is also necessary for the MLE to exist in the sense
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that the ML equations have a unique solution. If n is strictly larger than p, this is
almost surely true, but never if n ≤ p.

We want to review some properties of these estimators. The strong law of large
numbers, the continuous mapping theorem, the central limit theorem and the delta
method yield the following asymptotic results, cf. Vogel (2009).

Proposition 5. In the MVN model Σ̂ , K̂ and P̂ are strongly consistent estimators of
Σ , K and P , respectively. Furthermore,

(1)
√
nvec(Σ̂ −Σ)

L−→ Np2(0, 2Mp(Σ ⊗Σ)),

(2)
√
nvec(K̂ −K)

L−→ Np2(0, 2Mp(K ⊗K)),

(3)
√
nvec(P̂ − P)

L−→ Np2(0, 2ΓMp(K ⊗K)Γ T ),

where Γ = (K
− 1

2
D ⊗K

− 1
2

D )+Mp(P ⊗K−1
D )Jp.

Since the normal distribution and the empirical covariance matrix are of such utter
importance, the exact distribution of the MLEs has also been the subject of study.

Proposition 6. In the MVN model, if n > p, Σ̂ has a Wishart distribution with
parameter 1

n
Σ and n − 1 degrees of freedom, for which we use the notation Σ̂ ∼

Wp(n− 1, 1
n
Σ).

For a definition and properties of the Wishart distribution see e.g. Bilodeau and
Brenner (1999), Chap. 7, or Srivastava and Khatri (1979), Chap. 3. It is also treated
in most textbook on multivariate statistics. The distribution of K̂ is then called an
inverse Wishart distribution. Of the various results on Wishart and related distribu-
tions we want to name the following three, but remark that more general results are
available.

Proposition 7. In the MVN model with n > p we have

(1) EΣ̂ = n−1
n

Σ and

(2) Var(vecΣ̂) = 2
n
Mp(Σ ⊗Σ).

(3) If furthermore �i,j• = 0, then

√
n− p

�̂i,j•√
1 − �̂2

i,j•
∼ tn−p, which implies �̂2

i,j• ∼ Beta

(
1

2
,
n− p

2

)
,

where tn−p denotes Student’s t-distribution with n − p degrees of freedom and
Beta(c, d) the beta distribution with parameters c, d > 0 and density

b(x) = Γ (c + d)

Γ (c)Γ (d)
xc−1(1 − x)d−11[0,1](x).

The last assertion (3) ought to be compared to the analogous results for the empirical
correlation coefficient �̂i,j = σ̂i,j /

√
σ̂i,j σ̂j,j : if the true correlation is zero, then
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√
n− 2

�̂i,j√
1 − �̂2

i,j

∼ tn−2 and �̂2
i,j ∼ Beta

(
1

2
,
n− 2

2

)
.

Estimation under a Given Graphical Model

We have dealt so far with unrestricted estimators of Σ , K and the partial correlation
matrix P . Small absolute values of the estimated partial correlations suggest that
the corresponding true partial correlations may be zero. However assuming a non-
saturated model, using unrestricted estimates for the remaining parameters is no
longer optimal. The estimation efficiency generally decreases with the number of
parameters to estimate. Also, for stepwise model selection procedures, as described
in Sect. 3.3, which successively compare the appropriateness of different GGMs,
estimates under model constraints are necessary.

Consider the graph G = (V ,E) with |V | = p and |E| = m, and let X1, . . . ,Xn

be an i.i.d. sample from the model M (G) given in (8). Keep in mind that K is
then an element of the (m + p)-dimensional vector space Sp(G), where m may
range from 0 to p(p− 1)/2. The matrix Σ is fully determined by the m+ p values
k1,1, . . . , kp,p and ki,j , {i, j} ∈ E (which have to meet the further restriction that K
is positive definite) and in this sense has to be regarded as an (m+ p)-dimensional
object.

Theorem 2.

(1) The ML estimate Σ̂G of Σ in the model M (G) exists if Σ̂ = 1
n
X

T
n HnXn is

positive definite, which happens with probability one if n > p.
(2) If the ML estimate Σ̂G exists, it is the unique solution of the following system of

equations
[Σ̂G]i,j = σ̂i,j , {i, j} ∈ E or i = j,

[Σ̂−1
G ]i,j = 0, {i, j} /∈ E and i �= j,

which may be succinctly formulated as

Σ̂G(G) = Σ̂(G) and K̂G = K̂G(G), (9)

where K̂G = Σ̂−1
G .

This result follows from general maximum likelihood theory for exponential mod-
els. The key is to observe that a GGM is a regular exponential model, cf. Lauritzen
(1996), p. 133. It is important to note that, contrary to the saturated case, the positive
definiteness of X

T
n HnXn is sufficient but not necessary. In a decomposable model,

for instance, it suffices that n is larger than the number of nodes of the largest clique,
cf. Proposition 8. Generally this condition is necessary but not sufficient. Details on
stricter conditions on the existence of the ML estimate in the general case can be
found in Buhl (1993) or Lauritzen (1996), p. 148.

Theorem 2 gives instructive information about the structure of Σ̂G, in particular,
that it is a function of the sample covariance matrix Σ̂ . The relation between Σ̂G
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and Σ̂G is specified by (9), and Theorem 2 states furthermore that these equations
always have a unique solution Σ̂G, if Σ̂ is positive definite. What remains unclear
is how to compute Σ̂G from Σ̂ . This is accomplished by the iterative proportional
scaling (IPS) algorithm, sometimes also referred to as iterative proportional fitting,
which is explained in the following.

Iterative Proportional Scaling

The IPS algorithm generally solves the problem of fitting a multivariate density that
obeys a given interaction structure to specified marginal densities. Another appli-
cation is the computation of the ML estimate in log-linear models, i.e. graphical
models for discrete data. In the statistical literature the IPS algorithm can be traced
back to at least Deming and Stephan (1940). In the case of multivariate normal den-
sities the IPS procedure comes down to an iterative matrix manipulation. The IPS
algorithm for GGMs, as it is described in the following, is mainly due to Speed and
Kiiveri (1986).

Suppose we are given a graph G with cliques γ1, . . . , γc and an unrestricted ML
estimate Σ̂ ∈ Sp. Then define for every clique γ the following matrix operator
Tγ : Sp → Sp:

Tγ(K) = K +
[
(Σ̂γ,γ)

−1
]p −

[
(K−1)−1

γ,γ

]p
.

The operator Tγ has the following properties:

(I) If K ∈ S +
p (G), then so is TγK .

(II) (TγK)−1
γ,γ = Σ̂γ,γ, i.e. if the updated matrix TγK is the concentration matrix of

a random vector, X say, then Xγ has covariance matrix Σ̂γ,γ.

Apparently Tγ preserves the zero pattern of G. That it also preserves the positive
definiteness and assertion (II) is not as straightforward, but both can be deduced by
applying (2) to K−1, cf. Lauritzen (1996), p. 135. The IPS algorithm then goes as
follows: choose any K0 ∈ S +

p , for instance K0 = Ip, and repeat

Kn+1 = Tγ1Tγ2 · · · TγcKn

until convergence is reached. If the ML estimate Σ̂G exists (for which Σ̂ ∈ S +
p is

sufficient but not necessary), then (Kn) converges to K̂G = Σ̂−1
G , where Σ̂G is the

solution of (9), see again Lauritzen (1996), p. 135. Thus the IPS algorithm cycles
through the cliques of G, in each step updating the concentration matrix K such that
the clique has marginal covariance Σ̂γ,γ while preserving the zero pattern specified
by G.
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Decomposable models

As mentioned before, in the case of decomposable models the ML estimate can be
given in explicit form, and we do not have to resort to iterative approximations.
As a decomposable graph can be decomposed into its cliques, the ML estimate of
a decomposable model can be composed from the (unconstrained) MLEs of the
cliques. Let G = (V ,E) be a decomposable graph with cliques γ1, . . . , γc and
c > 1. Define the sequence (δ1, . . . , δc−1) of subsets of V by

δk = (γ1 ∪ · · · ∪ γk) ∩ γk+1, k = 1, . . . , c − 1.

We assume that the numbering γ1, . . . , γc is such that for every k ∈ {1, . . . , c − 1}
there is a j ≤ k with δk ⊆ γj . It is always possible to order the cliques of a decom-
posable graph in such a way, cf. (Lauritzen 1996), p. 18. The sequence (γ1, . . . , γc)

is then said to be perfect, and it corresponds to a reversed sequence of successive
decompositions. The δk do not have to be distinct. For instance, the graph in Fig. 2
has four cliques and, for any numbering of the cliques, δi = {3}, i = 1, 2, 3.

Fig. 2 Example graph

Proposition 8.

(1) The ML estimate Σ̂G of Σ in the decomposable model M (G) exists with prob-
ability one if and only if n > maxk=1,...,c | γk|.

(2) If the ML estimate Σ̂G = K̂G exists, then it is given by

K̂G =
c∑

k=1

[
(Σ̂γk,γk

)−1
]p −

c−1∑

k=1

[
(Σ̂δk,δk )

−1
]p

.

See Lauritzen (1996), p. 146, for a proof. Results on the asymptotic distribution
of the restrained ML-estimator Σ̂G in the decomposable as well as the general case
can be found in Lauritzen (1996), Chap. 5. The exact, non-asymptotic distribution
of Σ̂G has also been studied. For decomposable G, it is known as the hyper Wishart
distribution (Dawid and Lauritzen 1993), and the distribution of K̂G as inverse hyper
Wishart distribution (Roverato 2000).
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3.2 Testing

We want to test a graphical model against a larger one, possibly but not necessarily
the saturated model. Consider two graphs G = (V ,E) and G0 = (V ,E0) with
E0 ⊂ E, or equivalently M (G0) ⊂ M (G). Then the likelihood ratio for testing
M (G0) against the larger model M (G) based on the observation Xn reduces to

LR(G0,G) =
(

det Σ̂G

det Σ̂G0

) n
2

,

small values of which suggest to dismiss M (G0) in favor of M (G). It follows by
the general theory for LR tests that the test statistic

Dn(G0,G) = −2 ln LR(G0,G) = n
(

ln det Σ̂G0 − ln det Σ̂G

)
(10)

is asymptotically χ2 distributed with |E|−|E0| degrees of freedom under the model
M (G0). The test statistic Dn may be interpreted as a measure of how much the
appropriateness of model M (G0) for the data deviates from that of M (G). It is
thus also referred to as deviance and the LR test in GGMs is called deviance test.

It has been noted that the asymptotic χ2 approximation of the distribution of
Dn is generally not very accurate for small n. Several suggestions have been made
on how to improve the finite sample approximation. One approach is to apply the
Bartlett correction to the LR test statistic (Porteous 1989). Another approximation,
which is considerably better than the asymptotic distribution, is given by the exact
distribution for decomposable models in Proposition 9 (Eriksen 1996).

Decomposable Models

Again decomposable models play a special role. We are able to give the exact dis-
tribution of the deviance if both models compared are decomposable. Thus assume
in the following that G and G0 are decomposable. Then one can find a sequence of
decomposable models G0 ⊂ G1 ⊂ · · · ⊂ Gk = G such that each successive pair
(Gi−1,Gi) differs by exactly one edge ei , i = 1, . . . , k, cf. Lauritzen (1996), p. 20.
Let ai denote the number of common neighbors of both endpoints of ei in the graph
Gi .

Proposition 9. If G0 and G are decomposable and G0 ⊂ G, then

det Σ̂G

det Σ̂G0

= exp

(
−Dn

n

)
∼ B1B2 · · ·Bk,

where the Bi are independent random variables with Bi ∼ Beta( n−ai−2
2 , 1

2 ).
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Since a complete graph and a graph with exactly one missing edge are both de-
composable, the test of conditional independence of two components of a random
vector is a special case of Proposition 9. If we let G0 be the graph with all edges but
{i, j}, some matrix calculus yields (cf. Lauritzen 1996, p. 150)

det Σ̂

det Σ̂G0

= 1 − �̂2
i,j•.

By Proposition 9 this has a Beta( n−p
2 , 1

2 ) distribution, which is in concordance with
Proposition 7 (3).

3.3 Model Selection

Contrary to estimation and statistical testing in GGMs there is no generally agreed-
upon, optimal way to select a model. Statistical theory gives a relatively precise
answer to the question if a certain model fits the data or not, but not which model
to choose among those that fit. There are many model selection procedures (MSPs),
and comparing them is rather difficult, since many aspects play a role—computing
time being just one of them. Furthermore, theoretic results are usually hard to de-
rive. For most MSPs, consistency can be shown, but distributional results are seldom
available. Selecting a graphical model means to decide, based on the data, which
partial correlations should be set to zero and which should be estimated freely. This
decision, of course, heavily depends on the nature of the problem at hand, for exam-
ple, if too few or too many edges are judged more severe. Ultimately, the choice of
the MSP is a matter of personal taste, and the model selection has to be tailored to
the specific situation. Expert knowledge should be incorporated to obtain sensible
and interpretable models, especially when it comes to choosing from several equally
adequate models.

The total number of p-dimensional GGMs is 2(
p
2), and only for very small p

an evaluation of all possible models, based on some model selection criterion like
AIC or BIC, is feasible. With respect to interpretability one might want to restrict
the search space to decomposable models, cf. e.g. Whittaker (1990), Chap. 12, or
Edwards (2000), Chap. 6. Otherwise a non-complete model search is necessary.

Model Search

The system of all possible models possesses itself a (directed) graph structure, cor-
responding to the partial ordering induced by set inclusion of the respective edge
sets. A graph G0, say, is a child of a graph G, if G has exactly one edge more than
G0. The fact that we know how to compare nested models, as described in Sect. 3.1,
suggests a search along the edges of this lattice. A classic, simple search, known
as backward elimination, is carried out as follows. Start with the saturated model,
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and in each step remove one edge. To determine which edge, compute all deviances
between the current model and all models with exactly one edge less. The edge cor-
responding to the smallest deviance difference is deleted, unless all deviances are
above the significance level, i.e. all edges are significant. Then the algorithm stops.
The search in the opposite direction, starting from the empty graph and including
significant edges, is also possible and known as forward selection. Although both
schemes have been reported to produce similar results, there is a substantial concep-
tual difference that favors backward elimination. The latter searches among models
consistent with the data, while forward selection steps through inconsistent models.
The result of an LR test has no sensible interpretation if both models compared are
actually invalid. On the other hand, forward selection is to be preferred for sparse
graphs.

Of course, many variants exist, e.g., one may remove all non-significant edges
at once, then successively include edges again, apply an alternative stopping rule
(e.g. overall deviance against the saturated model) or generally alternate between
elimination and selection steps. Another model search strategy in graphical models
is known as the Edwards-Havránek procedure (Edwards and Havránek 1985, 1987;
Smith 1992). It is a global search, but reduces the search space, similar to the branch-
and-bound principle by making use of the lattice structure.

One Step Model Selection

The simplicity of a one step MSP is, of course, very appealing. They become in-
creasingly desirable as there has been an enormous growth in the dimensionality of
data sets, and several proposals have been made in the recent past (Drton and Perl-
man 2004, 2008; Meinshausen and Bühlmann 2006; Castelo and Roverato 2006).
For instance, the SINful procedure by Drton and Perlman (2008) is a simple model
selection scheme, which consists of setting all partial correlations to zero for which
the absolute value of the sample partial correlation is below a certain threshold. This
threshold is determined in such a way that overall probability of selecting an incor-
rect edge, i.e. the probability that the estimated model is too large, is controlled.

4 Robustness

Most of what has been presented in the previous section, the classical GGM the-
ory, has been developed in the seventies and the eighties of the last century. Since
then graphical models have become popular tools of data analysis, and the statisti-
cal theory of Gaussian graphical models remains an active field of research. Many
authors have in particular addressed the n < p problem (a weak point of the ML
theory) as in recent years one often encounters huge data sets, where the number of
variables exceeds by far the number of observations. Another line of research con-
siders GGMs in the Bayesian framework. It is beyond the scope of a book chapter
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to give an exhaustive survey of the recent approaches—even if we restrict ourselves
to undirected graphical models for continuous data. We want to focus on another
weak point of the normal ML theory: its lack of robustness, which has been pointed
out, e.g., by Kuhnt and Becker (2003) and Gottard and Pacillo (2007).

Robustness denotes the property of a statistical method to yield good results also
if the assumptions for which it is designed are violated. Small deviations from the
assumed model shall have only a small effect, and robustness can be seen as a con-
tinuity property. This includes the often implied meaning of robustness as invul-
nerability against outliers. For example, any neighborhood of a normal distribution
(measured in the Kolmogorov metric) contains arbitrarily heavy-tailed distributions
(measured in kurtosis, say). Outlier generating models with a small outlier fraction
are actually very close to the pure data model.

There are two general conceptual approaches when it comes to robustifying a
statistical analysis: identify the outliers and remove them, or use robust estimators
that preferably nullify, but at least reduce the harmful impact of outliers. Graphical
modeling—as an instance of the model selection problem—is a field where the ad-
vantages of the second approach become apparent. In its most general perception an
outlier is a “very unlikely” observation under a given model, cf. Davies and Gather
(1993). Irrespective of the particular rule applied to decide whether an observation
is deemed an outlier or not, any sensible rule ought to give different answers for
different models. An outlier in a specific GGM may be a quite likely observation in
the saturated model.

This substantially complicates outlier detection in any type of graphical models,
suggesting it must at least be applied iteratively, alternating with model selection
steps. For Gaussian graphical models, however, we have the relieving fact that an
outlier w.r.t. a normal distribution basically coincides with an outlier in its literal
meaning: a point far away from the majority of the data. Hence, strongly outly-
ing points tend to be ouliers w.r.t. any Gaussian model, no matter which—if any—
conditional or marginal independences it obeys.

Our focus will therefore lie in the following on robust estimation. Note that
Gaussian graphical modeling, as presented in the previous section, exclusively re-
lies on Σ̂ . It is a promising approach to replace the initial estimate Σ̂ by a robust
substitute and hence robustify all subsequent analysis. We can make use of the well
developed robust estimation theory of multivariate scatter.

4.1 Robust Estimation of Multivariate Scatter

Robust estimation in multivariate data analysis has long been recognized as a chal-
lenging task. Over the last four decades much work has been devoted to the prob-
lem and many robust alternatives of the sample mean and the sample covariance
matrix have been proposed, e.g. M-estimators (Maronna 1976; Tyler 1987), Stahel-
Donoho estimators (Stahel 1981; Donoho 1982; Maronna and Yohai 1995; Gervini
2002), S-estimators (Davies 1987; Lopuhaä 1989; Rocke 1996), MVE and MCD
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(Rousseeuw 1985; Davies 1992; Butler et al. 1993; Croux and Haesbroeck 1999;
Rousseeuw and Van Driessen 1999), τ -estimators (Lopuhaä 1991), CM-estimators
(Kent and Tyler 1996), reweighted and data-depth based estimators (Lopuhaä 1999;
Gervini 2003; Zuo and Cui 2005). Many variants exist, and the list is far from com-
plete. For a more detailed account see e.g. the book Maronna et al. (2006) or the
review article Zuo (2006).

The asymptotics and robustness properties of the estimators are to a large extent
well understood. The computation often requires to solve challenging optimization
problems, but improved search heuristics are nowadays available. What remains
largely an open theoretical question is the exact distribution for small samples. Con-
stants of finite sample approximations usually have to be assessed numerically.

There are several measures that quantify and thus allow to compare the robust-
ness properties of estimators. We want to restrict our attention to the influence func-
tion, introduced by Hampel (1971). Toward this end we have to adopt the notion
that estimators are functionals S : F → Θ defined on a class of distributions F .
In the case of matrix-valued scatter estimators S, the image space Θ is Sp. The
specific estimate computed from a data set Xn is the functional evaluated at the cor-
responding empirical distribution function Fn = 1

n

∑n
i=1 δXi

, where δx denotes the
Dirac-measure which puts unit mass at the point x ∈ R

p. For instance, the sample
covariance matrix Σ̂ is simply the functional Var(·), which is defined on all distri-
butions with finite second moments, evaluated at Fn. The influence function of S at
the distribution F is defined as

IF (x; S, F ) = lim
ε↘0

1

ε

(
S(Fε,x)− S(F )

)
, x ∈ R

p,

where Fε,x = (1 − ε)F + εδx. In words, the influence function is the directional
derivative of the functional S at the “point” F ∈ F in the direction of δx ∈ F .
It describes the influence of an infinitesimal contamination at point x ∈ R

p on
the functional S, when the latter is evaluated at the distribution F . Of course, in
terms of robustness, the influence of any contamination is preferably small. A robust
estimator has in particular a bounded influence function, i.e. the maximal absolute
influence sup{ ‖IF (x; S, F )‖ | x ∈ R

p}, also known as gross-error sensitivity, is
finite.

The influence function is said to measure the local robustness of an estimator.
Another important robustness measure, which in contrast measures the global ro-
bustness but which we will not pursue further here, is the breakdown point (asymp-
totic breakdown point (Hampel 1971), finite-sample breakdown point (Donoho and
Huber 1983, see also Davies and Gather 2005)). Roughly, the finite-sample replace-
ment breakdown point is the minimal fraction of contaminated data points that can
drive the estimate to the boundary of the parameter space. For details on robustness
measures see e.g. Hampel et al. (1986).

It is a very desirable property of scatter estimators to transform in the same way
as the (population) covariance matrix—the quantity they aim to estimate—under
affine linear transformations. A scatter estimator Ŝ is said to be affine equivariant,
if it satisfies Ŝ(XnA

T + 1nbT ) = AŜ(Xn)A
T for any full rank matrix A ∈ R

p×p
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and vector b ∈ R
p. We want to make a notational distinction between S, the func-

tional working on distributions, and Ŝ, the corresponding estimator working on data
(strictly speaking a series of estimators indexed by n), i.e. S(Fn) = Ŝ(Xn). The
equivariance is indeed an important property, due to various reasons. For instance,
any statistical analysis based on such estimators is independent of any change of the
coordinate system, may it be re-scaling or rotations of the data. Also, affine equiv-
ariance implies that at any elliptical population distribution (such as the Gaussian
distribution) indeed a multiple of the covariance matrix is unbiasedly estimated, cf.
Proposition 10 below. Furthermore the estimate obtained is usually positive definite
with probability one, which is crucial for any subsequent analysis, e.g. we know
that the derived partial correlation matrix estimator −Corr(Ŝ−1) actually reflects a
“valid” dependence structure.

The classes of estimators listed above all possess this equivariance property—or
at least the pseudo-equivariance described below. Historically though, affine equiv-
ariance for robust estimators is not a self-evident property. Contrary to univariate
moment-based estimators (such as the sample variance), the highly robust quantile-
based univariate scale estimators (such as the median absolute deviation, MAD) do
not admit a straightforward affine equivariant generalization to higher dimensions.

In Gaussian graphical models we are interested in partial correlations and zero
entries in the inverse covariance matrix, for which we need to know Σ only up to a
constant. The knowledge of the overall scale is not relevant, and we require a slightly
weaker condition than affine equivariance in the above sense, which we want to call
affine pseudo-equivariance or proportional affine equivariance.

Condition C1. Ŝ(XnA
T + 1nbT ) = g(AAT )AŜ(Xn)A

T for b ∈ R
p, A ∈ R

p×p

with full rank, and g : R
p×p → R satisfying g(Ip) = 1.

This condition basically merges two important special cases, the proper affine equiv-
ariance described above, i.e. g ≡ 1, and the case of shape estimators in the sense of
Paindaveine (2008), which corresponds to g = 1/ det(·). The following proposition
can be found in a similar form in Bilodeau and Brenner (1999), p. 212.

Proposition 10. In the MVN model, i.e. Xn = (XT
1 , . . . ,XT

n )
T with X1, . . . ,Xn ∼

Np(μ,Σ) i.i.d., any affine pseudo-equivariant scatter estimator Ŝ = Ŝ(Xn) satisfies

(1) EŜ = anΣ and
(2) Var(vecŜ) = 2 bn Mp(Σ ⊗Σ)+ cnvecΣ(vecΣ)T ,

where (an), (bn) and (cn) are sequences of real numbers with an, bn ≥ 0 and cn ≥
−2bn/p for all n ∈ N.

Proposition 7 tells us that for Ŝ = Σ̂ we have an = n
n−1 , bn = 1

n
and cn ≡ 0. For

root-n-consistent estimators the general form of variance re-appears in the asymp-
totic variance, and they fulfill

Condition C2. There exist constants a, b > 0 and c ≥ −2b/p such that

√
nvec(Ŝ − a Σ)

L−→ Np2

(
0, 2a2bMp(Σ ⊗Σ)+ a2cvecΣ(vecΣ)T

)
.
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The continuous mapping theorem and the multivariate delta method yield the
general form of the asymptotic variance of any partial correlation estimator derived
from a scatter estimator satisfying Condition C2.

Proposition 11. If Ŝ fulfills Condition C2, the corresponding partial correlation es-
timator P̂ S = −Corr(Ŝ−1) satisfies

√
nvec(P̂ S − P)

L−→ Np2(0, 2bΓMp(K ⊗K)Γ T ), (11)

where b is the same as in Condition C2 and Γ is as in Proposition 5.

Thus the comparison of the asymptotic efficiencies of partial correlation ma-
trix estimators based on affine pseudo- equivariant scatter estimators reduces to the
comparison of the respective values of the scalar b. For Ŝ = Σ̂ we have b = 1 by
Proposition 5. Also, general results for the influence function of pseudo-equivariant
estimators can be given, cf. Hampel et al. (1986), Chap. 5.3.

Proposition 12.

(1) At the Gaussian distribution F = Np(μ,Σ) the influence function of any func-
tional S satisfying Condition C1 has, if it exists, the form

IF (x; S, F ) = g(Σ)
(
α(d(x))(x − μ)(x − μ)T − β(d(x))Σ

)
, (12)

where d(x) = √
(x − μ)T K(x − μ), g is as in Condition C1 and α and β are

suitable functions [0,∞) → R.
(2) Assuming that Ŝ is Fisher-consistent for aΣ , i.e. S(F ) = aΣ , with a > 0, cf.

Condition C2, the influence function of the corresponding partial correlation
matrix functional PS = −Corr(S−1) is

IF (x;PS, F ) = α(d(x))g (Σ)

a

×
(

1

2

(
ΠDK−1

D P + (ΠDK−1
D P )T

)
−K

− 1
2

D ΠK
− 1

2
D

)
,

where Π = K(x − μ)(x − μ)T K .

In the case of the sample covariance matrix Σ̂(Xn) = Var(Fn) we have a = 1 and
α = β ≡ 1. Thus (12) reduces to IF (x;Var, F ) = (x − μ)(x − μ)T − Σ , which
is not only unbounded, but even increases quadratically with ‖x−μ‖. We will now
give two examples of robust affine equivariant estimators, that have been proposed
in the context of GGMs.

The Minimum Covariance Determinant (MCD) Estimator

The idea behind the MCD estimator is that outliers will increase the volume of
the ellipsoid specified by the sample covariance matrix, which is proportional to
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the square root of its determinant. The MCD is defined as follows. A subset η ⊂
{1, . . . , n} of fixed size h = �sn� with 1

2 ≤ s < 1 is determined such det(Σ̂η) with

Σ̂η = 1

h

∑

i∈η

(Xi − X̄
η
)(Xi − X̄

η
)T and X̄

η = 1

h

∑

i∈η

Xi

is minimal. The mean μMCD and covariance matrix Σ̂MCD computed from this sub-
sample are called the raw MCD location, respectively scatter estimate. Based on
the raw estimate (μMCD, Σ̂MCD) a reweighted scatter estimator Σ̂RMCD is computed
from the whole sample:

Σ̂RMCD =
(

n∑

i=1

wi

)−1 n∑

i=1

wi(Xi − μMCD)(Xi − μMCD)
T ,

where wi = 1 if (Xi −μMCD)
T Σ̂−1

MCD(Xi −μMCD) < χ2
p,0.975 and zero otherwise.

Usually the estimate is multiplied by a consistency factor (corresponding to 1/a in
Condition C2) to achieve consistency for Σ at the MVN distribution. Since this is
irrelevant for applications in GGMs we omit the details. The respective values of the
constants b and c in Condition C2 as well as the function α and β in Proposition 12
are given in Croux and Haesbroeck (1999).

The reweighting step improves the efficiency and retains the high global robust-
ness (breakdown point of roughly 1 − s for s ≥ 1/2) of the raw estimate. Although
the minimization over

(
n
h

)
subsets is of non-polynomial complexity, the availability

of fast search heuristics (e.g. Rousseeuw and Van Driessen 1999) along with the
aforementioned good statistical properties have rendered the RMCD a very popu-
lar robust scatter estimator, and several authors (Becker 2005; Gottard and Pacillo
2008) have suggested its use for Gaussian graphical modeling.

The Proposal by Miyamura and Kano

Miyamura and Kano (2006) proposed another affine equivariant robust scatter es-
timator in the GGM framework. The idea is here a suitable adjustment of the ML
equations. The Miyamura-Kano estimator Σ̂MK falls into the class of M-estimators,
as considered in Huber and Ronchetti (2009), and is defined as the scatter part Σ of
the solution (μ,Σ) of

1

n

n∑

i=1

exp

(
−ξ d2(Xi )

2

)
(Xi − μ) = 0 and

1

n

n∑

i=1

exp

(
−ξ d2(Xi )

2

)(
Σ − (Xi − μ)(Xi − μ)T

)
= ξ

(ξ + 1)(p+2)/2
Σ,



178 Daniel Vogel and Roland Fried

where ξ ≥ 0 is a tuning parameter and d(x) is, as in Proposition 12, the Mahalanobis
distance of x ∈ R

p w.r.t. μ and Σ . Large values of ξ correspond to a more robust
(but less efficient) estimate, i.e. less weight is given to outlying observations. The
Gaussian likelihood equations are obtained for ξ = 0.

4.2 Robust Gaussian Graphical Modeling

The classical GGM theory is completely based on the sample covariance matrix Σ̂ :
the ML estimates in Theorem 2, the deviance test statistic Dn in (10) and model
selection procedures such as backward elimination, Edwards-Havránek or Drton-
Perlman. Thus replacing the normal MLE by a robust, affine equivariant scatter
estimator and applying the GGM methodology in analogous manner is an intuitive
way of performing robust graphical modeling, insensitive to outliers in the data.
Since the asymptotics of affine (pseudo-)equivariant estimators are well established
(at the normal distribution), and, as described in Sect. 4.1, their general common
structure is not much different from that of the sample covariance matrix, asymptotic
statistical methods can rather easily be adjusted by means of standard asymptotic
arguments.

Estimation under a Given Graphical Model

We have discussed properties of equivariant scatter estimators and indicated their
usefulness for Gaussian graphical models. However they just provide alternatives
for the unconstrained estimation. Whereas the ML paradigm dictates the solution
of (9) as an optimal way of estimating a covariance matrix with a graphical model
and exact normality, it is not quite clear what is the best way of robustly estimating
a covariance matrix that obeys a zero pattern in its covariance. Clearly, Theorem 2
suggests to simply solve equations (9) with Σ̂ replaced by any suitable robust es-
timator Ŝ. This approach has the advantage that consistency of the estimator under
the model is easily assessed. In case of a decomposable model the estimator can be
computed by the decomposition of Proposition 8, or generally by the IPS algorithm,
for which convergence has been shown and which comes at no additional computa-
tional cost. Becker (2005) has proposed to apply IPS to the reweighted MCD.

However, a thorough study of scatter estimators under graphical models is still
due, and it might be that other possibilities are more appropriate in certain situa-
tions. Many robust estimators are defined as the solution of a system of equations.
A different approach is to alter these estimation equations in a suitable way that
forces a zero pattern on the inverse. This requires a new algorithm, the convergence
of which has to be assessed individually. This route has been taken by Miyamura
and Kano (2006). Their algorithm performs an IPS approximation at each step and
is hence relatively slow.
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A problem remains with both strategies. Scatter estimators, if they have not a
structure as simple as the sample covariance, generally do not possess the “consis-
tency property” that the estimate of a margin appears as a submatrix of the estimate
of the whole vector. The ML estimate Σ̂G in the decomposable as well as the gen-
eral case is composed from the unrestricted estimates of the cliques, cf. Theorem
2 and Proposition 8, which makes it in particular possible to compute the MLE for
p ≥ n. One way to circumvent this problem is to drop the affine equivariance and
resort to robust “pairwise” estimators, such as the Gnanadesikan-Kettenring esti-
mator (Gnanadesikan and Kettenring 1972; Maronna and Zamar 2002) or marginal
sign and rank matrices (Visuri et al. 2000; Vogel et al. 2008). Besides having the
mentioned consistency property pairwise estimators are also very fast to compute.

Testing and Model Selection

The deviance test can be applied analogously with minor adjustments when based
on an affine equivariant scatter estimator. Similarly to the partial correlation esti-
mator P̂ S in Proposition 11, the asymptotic distribution of the generalized deviance
DS

n , computed from any root-n-consistent, equivariant estimate Ŝ, differs from that
of the ML-deviance (10) only by a factor, see Tyler (1983) or Bilodeau and Brenner
(1999), Chap. 13, for details. However, as noted in Sect. 3.2, the χ2 approximation
of the uncorrected deviance may be rather inaccurate for small n. Generalizations
of finite-sample approximations or the exact test in Proposition 9 are not equally
straightforward. Since the exact distribution of a robust estimator is usually un-
known, one will have to resort to Monte Carlo or bootstrap methods.

Model selection procedures that only require a covariance estimate can be robus-
tified in the same way. Besides the classical search procedures this is also true for
the SINful procedure by Drton and Perlman (2008), of which Gottard and Pacillo
(2008) studied a robustified version based on the RMCD.

4.3 Concluding Remarks

The use of robust methods is strongly advisable, particularly in multivariate analy-
sis, where the whole structure of the data is not immediately evident. Even if one
refrains from relying solely on a robust analysis, it is in any case an important di-
agnostic tool. A single gross error or even mild deviations from the assumed model
may render the results of a sample covariance based data analysis useless. The use
of alternative, robust estimators provides a feasible safeguard, which comes at the
price of a small loss in efficiency and a justifiable increase in computational costs.

Although there is an immense amount of literature on multivariate robust estima-
tion and applications thereof (robust tests, regression, principal component analysis,
discrimination analysis etc., see e.g. Zuo 2006 for references), the list of publica-
tions addressing robustness in graphical models is (still) rather short. We have de-
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scribed how GGMs can be robustified using robust, affine equivariant estimators.
An in-depth study of this application of robust scatter estimation seems to be still
open.

The main limitation of this approach is that it works well only for sufficiently
large n, and on any account only for n > p, since, as pointed out above, usually
an initial estimate of full dimension is required. Also note that, for instance, the
computation of the MCD requires h > p. The finite-sample efficiency of many
robust estimators is low, and with the exact distributions rarely accessible, methods
based on such estimators rely even more on asymptotics than likelihood methods.

The processing of very high-dimensional data (p ( n) becomes increasingly
relevant, and in such situations it is unavoidable and even, if n is sufficiently large,
dictated by computational feasibility, to assemble the estimate of Σ , restricted to a
given model, from marginal estimates. A high dimensional, robust graphical mod-
eling, combining robustness with applicability in large dimensions, remains a chal-
lenging topic of future research.
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Strong Laws of Large Numbers
and Nonparametric Estimation

Harro Walk

Abstract Elementary approaches to classic strong laws of large numbers use a
monotonicity argument or a Tauberian argument of summability theory. Together
with results on variance of sums of dependent random variables they allow to estab-
lish various strong laws of large numbers in case of dependence, especially under
mixing conditions. Strong consistency of nonparametric regression estimates of lo-
cal averaging type (kernel and nearest neighbor estimates), pointwise as well as
in L2, can be considered as a generalization of strong laws of large numbers. Both
approaches can be used to establish strong universal consistency in the case of in-
dependence and, mostly by sharpened integrability assumptions, consistency under
ρ-mixing or α-mixing. In a similar way Rosenblatt-Parzen kernel density estimates
are treated.

1 Introduction

The classic strong law of large numbers of Kolmogorov deals with independent
identically distributed integrable real random variables. An elementary approach
has been given by Etemadi (1981). He included the arithmetic means of nonnega-
tive (without loss of generality) random variables truncated at the number equal to
the index, between fractions with the first �aN+1� summands in the numerator and
the denominator aN and fractions with the first �aN� summands in the numerator
and the denominator aN+1 (a > 1, rational), investigated the almost sure (a.s.) con-
vergence behavior of the majorant sequence and the minorant sequence by use of
Chebyshev’s inequality and let then go a ↓ 1. This method was refined by Etemadi
(1983) himself, Csörgő et al. (1983) and Chandra and Goswami (1992, 1993) and
extended to the investigation of nonparametric regression and density estimates un-
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der mixing conditions by Irle (1997) and to the proof of strong universal pointwise
consistency of nearest neighbor regression estimates under independence by Walk
(2008a).

Another approach to strong laws of large numbers was proposed by Walk
(2005b). Classic elementary Tauberian theorems (Lemma 1a,b) in summmability
theory allow to conclude convergence of a sequence (sn) of real numbers from con-
vergence of their arithmetic means (C1 summability, Cesàro summability of (sn))
together with a so-called Tauberian condition on variation of the original sequence
(sn). If (sn) itself is a sequence of basic arithmetic means (a1 + · · · + an)/n, as the
realization in the strong law of large numbers, then the Tauberian condition simply
means that (an) is bounded from below. In this context the other assumption (C1-
summability of the sequence of basic arithmetic means) is usually replaced by the
more practicable, but equivalent, C2-summability of (an), see Lemma 1a. For the
sequence of nonnegative truncated random variables centered at their expectations
which are bounded by the finite expectation in Kolmogorov’s strong law of large
numbers, the simple Tauberian condition is obviously fulfilled. To show almost sure
(a.s.) C2-summability of the sequence to 0, it then suffices to show a.s. convergence
of a series of nonnegative random variables by taking expectations, see Theorem 1a.
The summmability theory approach has been extended by Walk (2005a, 2008b) to
establish strong universal L2-consistency of Nadaraya-Watson type kernel regres-
sion estimates (under independence) and strong consistency under mixing condi-
tions and sharpened moment conditions. Both described approaches have different
areas of application and will be used in this paper.

In Sect. 2 strong laws of large numbers under conditions on the covariance and
more generally under conditions on the variance of sums of random variables (The-
orem 1) and under mixing conditions (Theorem 2) are stated. For the two latter
situations proofs via the summability theory approach are given. We shall deal with
ρ-mixing and α-mixing conditions. Theorem 2a specialized to the case of indepen-
dence states Kolmogorov’s strong law of large numbers and is a consequence of
Theorem 1a, which itself is an immediate consequence of the Tauberian Lemma 1a.

Section 3 deals with strong pointwise consistency of Nadaraya-Watson kernel
regression estimates under ρ-mixing and α-mixing (Theorem 3), Devroye-Wagner
semirecursive kernel regression estimates under ρ-mixing (Theorem 4) and kn-
nearest neighbor regression estimates under independence (Theorem 5). In the proof
of Theorem 3 truncation of the response variables is justified by a monotonicity ar-
gument of Etemadi type, asymptotic unbiasedness is established by a generalized
Lebesgue density theorem of Greblicki et al. (1984), and a.s. convergence after trun-
cation and centering at expectations is shown by exponential inequalities of Peligrad
(1992) and Rhomari (2002). Theorem 4 is a result on strong universal pointwise
consistency, i.e., strong pointwise consistency for each distribution of (X, Y ) with
E|Y | < ∞ (X d-dimensional prediction random vector, Y real response random
variable); it is an extension from independence Walk (2001) to ρ-mixing due to
Frey (2007) by use of the Tauberian Lemma 2 on weighted means. Theorem 5 is a
strong universal consistency result of Walk (2008a). Its proof uses Etemadi’s mono-
tonicity argument and will be omitted. Irle (1997) uses mixing and boundedness
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assumptions (Remark 5). Section 4 first points out strong universal L2-consistency
(strong L2-consistency for all distributions of (X, Y ) with E{|Y |2} < ∞ under
independence) of kn-nearest neighbor, semirecursive Devroye-Wagner kernel and
Nadaraya-Watson type kernel estimates (Devroye et al. 1994; Györfi et al. 1998 and
Walk 2005a, respectively), see Theorem 6 (without proof). Under ρ- and α-mixing
and sharpened moment conditions, Theorem 7 (Walk 2008b) states strong L2- con-
sistency of Nadaraya-Watson regression estimates. Its proof uses the summability
theory approach and will be omitted.

The final Sect. 5 deals with Rosenblatt-Parzen kernel density estimates under
ρ- and α-mixing. L1-consistency (Theorem 8) is proven by use of a monotonicity
argument of Etemadi type.

2 Strong Laws of Large Numbers

The following lemma states elementary classical Tauberian theorems of Landau
(1910) and Schmidt (1925). They allow to conclude Cesàro summability (C1-
summability, i.e., convergence of arithmetic means) from C2-summability or to
conclude convergence from C1-summability, in each case under an additional as-
sumption (so-called Tauberian condition). A corresponding result of Szász (1929)
and Karamata (1938) concerns weighted means (Lemma 2). References for these
and related results are Hardly (1949), pp. 121, 124–126, 145, Zeller and Beekmann
(1970), pp. 101, 103, 111–113, 117, Korevaar (2004), pp. 12–16, 58, compare also
Walk (2005b, 2007).

Lemma 1. (a) Let the sequence (an)n∈N of real numbers satisfy

1
(
n+1

2

)
n∑

j=1

j∑

i=1

ai → 0, (1)

i.e., C2-summability of (an)n∈N to 0, or sharper

∞∑

n=1

1

n3

(
n∑

i=1

ai

)2

< ∞, (2)

and the Tauberian condition

inf
n

an > −∞. (3)

Then
1

n

n∑

i=1

ai → 0. (4)

(b) Let the sequence (sn)n∈N of real numbers satisfy
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1

n

n∑

k=1

sk → 0 (5)

and the Tanberian condition

lim inf (sN − sM) ≥ 0 for M →∞, M < N, N/M → 1, (6)

i.e.,
lim inf (sNn − sMn) ≥ 0

for each sequence ((Mn,Nn)) in N
2 with Mn → ∞, Mn < Nn, Nn/Mn → 1

(n →∞).
Then

sn → 0. (7)

To make the paper more self-contained we shall give direct proofs of Lemma 1a
and Lemma 1b. Remark 1b states (with proof) that Lemma 1b implies Lemma 1a.
The notations �s� and �s� for the integer part and the upper integer part of the
nonnegative real number s will be used.

Proof (of Lemma 1).

(a) (2) implies (1), because

∣∣∣∣∣∣

1

n2

n∑

j=1

j∑

i=1

ai

∣∣∣∣∣∣

2

≤ 1

n4
n

n∑

j=1

⎛

⎝
j∑

i=1

ai

⎞

⎠

2

→ 0 (n →∞)

by the Cauchy-Schwarz inequality, (2) and the Kronecker lemma. (3) means an
≥ −c, n ∈ N, for some c ∈ R+. With

tn :=
n∑

i=1

ai, wn :=
n∑

j=1

tj , n ∈ N,

for k ∈ {1, . . . , n} one obtains

wn+k − wn = tnk +
n+k∑

j=n+1

(tj − tn) ≥ ktn − k2c,

wn−k − wn = tn(−k)+
n∑

j=n−k+1

(tn − tj ) ≥ −ktn − k2c

(compare Taylor expansion), thus

wn − wn−k

nk
− kc

n
≤ tn

n
≤ wn+k − wn

nk
+ kc

n
.

(1) implies
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σn := max{|wl |; l = 1, . . . , 2n} = o(n2),

k(n) := min{1 + �√σn�, n} = o(n).

Therefore

|tn|
n

≤ 2σn
nk(n)

+ k(n)

n
c

= k(n)

n

2σn
k(n)2

+ k(n)

n
c ≤ (2 + c)

k(n)

n
→ 0 (n →∞),

i.e. (4).
(b) With

zn :=
n∑

k=1

sk, n ∈ N,

for k ∈ {1, . . . , �n2 �} we obtain as before

zn+k − zn = snk +
n+k∑

j=n+1

(sj − sn),

zn−k − zn = sn(−k)+
n∑

j=n−k+1

(sn − sj ),

thus for n ≥ 2

− 2

k/n
sup

j∈{� n
2 �,� n

2 �+1,... }
|zj |
j

+ (sn − sj (n,k))

≤ n

k

zn

n
− n− k

k

zn−k

n− k
+ min

j∈{n−k+1,...,n}(sn − sj )

≤ sn

≤ n+ k

k

zn+k

n+ k
− n

k

zn

n
− min

j∈{n+1,...,n+k}(sj − sn)

≤ 2
1 + k/n

k/n
sup

j∈{n,n+1,... }
|zj |
j

− (sj∗(n,k) − sn)

with suitable j (n, k) ∈ {n− k+ 1, . . . , n}, j∗(n, k) ∈ {n+ 1, . . . , n+ k}. Now
choose k = k(n) ∈ {1, . . . , �n2 �} such that k(n)/n → 0 so slowly that, besides

supj∈{� n
2 �,� n

2 �+1,... }
|zj |
j

→ 0 (n →∞) (by (5)), even

1
k(n)
n

sup
j∈{� n

2 �,� n
2 �+1,... }

|zj |
j

→ 0 (n →∞).

Therefore and by k(n)/n → 0 (once more) together with (6) we obtain
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0 ≤ lim inf(sn − sj (n,k(n)))

≤ lim inf sn ≤ lim sup sn

≤ − lim inf(sj∗(n,k(n)) − sn) ≤ 0,

which yields (7). �

Remark 1.

(a) Assumption (6) in Lemma 1b is fulfilled if

sn+1 − sn ≥ un + vn + wn

with un = O( 1
n
), convergence of ( 1

n

∑n
i=1 ivi),

∑∞
n=1 nw

2
n < ∞.

For ∣∣∣∣∣∣

N∑

n=M+1

un

∣∣∣∣∣∣
≤ const

N∑

n=M+1

1

n
→ 0,

∣∣∣∣
∣∣

N∑

n=M+1

vn

∣∣∣∣
∣∣
=

∣∣∣∣
∣∣

N∑

n=M+1

1

n
(nvn)

∣∣∣∣
∣∣

=
∣∣∣∣∣
∣

1

N + 1

N∑

n=1

nvn − 1

M + 1

M∑

n=1

nvn +
N∑

n=M+1

1

n(n+ 1)

n∑

i=1

ivi

∣∣∣∣∣
∣

(by partial summation)

≤ o(1)+ sup
n∈N

(
1

n+ 1

∣∣∣∣∣

n∑

i=1

ivi

∣∣∣∣∣

)
N∑

n=M+1

1

n

→ 0,

and (by the Cauchy-Schwarz inequality)
∣∣∣
∣∣∣

N∑

n=M+1

wn

∣∣∣
∣∣∣
=

∣∣∣
∣∣∣

N∑

n=M+1

n−
1
2 (n

1
2 wn)

∣∣∣
∣∣∣

≤
⎛

⎝
N∑

n=M+1

1

n

⎞

⎠

1
2 ( ∞∑

n=1

nw2
n

) 1
2

→ 0

for M →∞, M < N , N/M → 1.
(b) Lemma 1b implies Lemma 1a. For, under the assumptions of Lemma 1a, with

sn := (a1 + · · · + an)/n one has
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1

n

n∑

k=1

sk = 1

n(n+ 1)

n∑

k=1

(a1 + · · · + ak)+ 1

n

n∑

k=1

1

k(k + 1)

k∑

j=1

(a1 + · · · + aj )

(by partial summation)

→ 0 (n →∞)

by (1), i.e., (5) is fulfilled. Further, with suitable c ∈ R+,

sn+1 − sn = an+1

n
−

(
1

n
− 1

n+ 1

)
(a1 + · · · + an+1)

≥ − c

n
− 1

n
sn+1

=: un + vn

(by (3)), where un = O( 1
n
) and

1

n

n∑

i=1

ivi = −1

n

n∑

i=1

si+1 → 0 (n →∞),

by (5). Thus, by (a), (6) is fulfilled. Now Lemma 1b yields (7), i.e., (4).
(c) Analogously to (b) one shows that Lemma 1b implies the variant of Lemma 1a

where assumption (3) is replaced by an ≥ −cn, n ∈ N, for some sequence (cn)

in R+ with convergence of ( 1
n

∑n
i=1 ci).

Part (a) of the following Theorem 1 immediately follows from Lemma 1a, com-
pare Walk (2005b), see the proof below. Part (b) is due to Chandra and Goswami
(1992, 1993) and has been shown by a refinement of Etemadi’s (1981, 1983) argu-
ment. Part (c) contains the classic Rademacher-Menchoff theorem and is obtained
according to Serfling (1970b), proof of Theorem 2.1 there; its condition can be
slightly weakend (see Walk 2007). Cov+ denotes the nonnegative part of Cov, i.e.,
max{0,Cov}.
Theorem 1. Let (Yn) be a sequence of square integrable real random variables. If

(a) Yn ≥ 0, supn EYn < ∞ and

∞∑

n=1

1

n3
Var

{ n∑

i=1

Yi

}
< ∞, (8)

or
(b) Yn ≥ 0, supn

1
n

∑n
k=1 EYk < ∞ and

∞∑

n=1

1

n2

n∑

i=1

Cov+(Yi, Yn) < ∞
⎛

⎝⇔
∞∑

n=1

1

n3

n∑

j=1

j∑

i=1

Cov+(Yi, Yj ) < ∞
⎞

⎠

or
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(c)
∑∞

n=1
(log(n+1))2

n2

∑n
i=1 Cov+(Yi, Yn) < ∞,

then
1

n

n∑

i=1

(Yi − EYi) → 0 a.s. (9)

Proof (of Theorem 1a). Obviously (Yn−EYn) is bounded from below. Equation (8)
yields

∞∑

n=1

1

n3

∣
∣∣∣∣

n∑

i=1

(Yi − EYi)

∣
∣∣∣∣

2

< ∞ a.s.

Thus (9) follows by Lemma 1a. �

Remark 2. Analogously one can show that in Theorem 1a the condition
supn EYn < ∞ may be replaced by convergence of the sequence ( 1

n

∑n
i=1 EYi).

Instead of Lemma 1a one uses Remark 1c which is based on Lemma 1b.

Theorem 1a and a corresponding theorem for weighted means based on Lemma 2
below allow to apply results on the variance of sums of dependent random variables
(see Theorem 2a and Theorem 4, respectively, with proofs). In the special case of
independence, Theorem 2a is Kolmogorov’s strong law of large numbers, and its
proof by Theorem 1a is elementary.

Remark 3. If the square integrable real random variables Yn satisfy

|Cov(Yi, Yj )| ≤ r(|i − j |),
then ∞∑

n=1

1

n
r(n) < ∞

or in the case of weak stationarity the weakest possible condition

∞∑

n=3

log log n

n log n
r(n) < ∞

imply
1

n

n∑

i=1

(Yi − EYi) → 0 a.s.

(see Walk 2005b and Gaposhkin 1977, respectively).

Lemma 2 generalizes Lemma 1a and will be applied in Sect. 3.

Lemma 2. Let 0 < βn ↑ ∞ with βn+1/βn → 1 and set γn := βn − βn−1 (n ∈ N)

with β0 := 0. Let (an) be a sequence of real numbers bounded from below. If
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1

βn

n∑

k=1

γk

βk

k∑

j=1

γjaj → 0

or sharper
∞∑

n=1

γn

β3
n

(
n∑

k=1

γkak

)2

< ∞,

then
1

βn

n∑

i=1

γiai → 0.

Also Chandra and Goswami (1992, 1993) gave their result in a more general form
with 1/n and 1/j2 (and 1/n3) replaced by 1/βn and 1/β2

j (and (βn − βn−1)/β
3
n),

respectively, in Theorem 1b above, where 0 < βn ↑ ∞.
The following theorem establishes validity of the strong law of large numbers

under some mixing conditions. Part (a) comprehends Kolmogorov’s classic strong
law of large numbers for independent identically distributed integrable real random
variables and, as this law, can be generalized to the case of random variables with
values in a real separable Banach space.

We shall use the ρ-mixing and the α-mixing concept of dependence of random
variables. Let (Zn)n∈N be a sequence of random variables on a probability space
(Ω,A, P ). Fn

m denotes the σ -algebra generated by (Zm, . . . , Zn) for m ≤ n. The
ρ-mixing and α-mixing coefficients are defined by

ρn := sup
k∈N

sup{| corr(U, V )|;U ∈ L2(F
k
1), V ∈ L2(F

∞
k+n), U, V real-valued},

αn := sup
k∈N

sup{|P(A ∩ B)− P(A)P (B)|;A ∈ Fk
1, B ∈ F∞

k+n},

respectively. The sequence (Zn) is called ρ-mixing, if ρn → 0, and α-mixing,
if αn → 0 (n → ∞). It holds 4αn ≤ ρn (see, e.g., Györfi et al. 1989, p. 9,
and Doukhan 1994, p. 4). log+ below denotes the nonnegative part of log, i.e.,
max{0, log}.
Theorem 2. Let the real random variables Yn be identically distributed.

(a) If E|Y1| < ∞ and if (Yn) is independent or, more generally, ρ-mixing with

∞∑

n=1

1

n
ρn < ∞,

e.g., if ρn = O

(
1

(log n)1+δ

)
for some δ > 0,

then
1

n

n∑

i=1

Yi → EY1 a.s.
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(a1) If E{|Y1| log+ |Y1|} < ∞ and if (Yn) is ρ-mixing, then

1

n

n∑

i=1

Yi → EY1 a.s.

(b) If E{|Y1| log+ |Y1|} < ∞ and if (Yn) is α-mixing with αn = O(n−α) for some
α > 0, then

1

n

n∑

i=1

Yi → EY1 a.s.

Proof. Let Yn ≥ 0 without loss of generality. We set Y [c]
n := Yn1{Yn≤c}, c > 0.

(a) We use a well-known truncation argument. Because of EY1 < ∞, we have a.s.
Yn = Y

[n]
n for some random index on. Therefore and because of EY

[n]
n → EY ,

it suffices to show

1

n

n∑

i=1

(
Y
[i]
i − EY

[i]
i

)
→ 0 a.s.

Because of Y [n]
n ≥ 0, EY

[n]
n ≤ EY < ∞, by Theorem 1a it is enough to show

∞∑

n=1

1

n3
Var

{
n∑

i=1

Y
[i]
i

}

< ∞.

Application of Lemma 3a below for real random variables yields

Var

{
n∑

i=1

Y
[i]
i

}

≤ CnE
{(

Y [n]
n

)2
}
= CnE

{(
Y
[n]
1

)2
}

with some constant C ∈ R+. In the special case of independence one immedi-
ately obtains the inequality with C = 1. From this and the well-known relation

∞∑

n=1

1

n2
E
{(

Y
[n]
1

)2
}
=

∞∑

n=1

n∑

i=1

1

n2

∫

(i−1,i]
t2PY1(dt)

=
∞∑

i=1

∫

(i−1,i]
t2PY1(dt)

∞∑

n=i

1

n2

≤
∞∑

i=1

2

i

∫

(i−1,i]
t2PY1(dt)

≤ 2EY1 < ∞
we obtain the assertion.
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(a1) Let ε = 1
4 , κ = 1

8 . From the integrability assumption we obtain as in the first
step of the proof of Theorem 3 below (specialization to Xn = const) that

1

n

n∑

i=1

(
Yi − Y

[iκ ]
i

)
→ 0 a.s.

As in part (a) it is enough to show

∞∑

n=1

1

n3
Var

{
n∑

i=1

Y
[iκ ]
i

}

< ∞.

Application of Lemma 3a below for real random variables yields

Var

{
n∑

i=1

Y
[iκ ]
i

}

≤ C(ε)n1+εE
{(

Y [nκ ]
n

)2
}
≤ C(ε)n1+ε+2κ

for some C(ε) < ∞ and thus the assertion.
(b) Let κ = 1

4 min{1, α}. As in (a1) it is enough to show

∞∑

n=1

1

n3
Var

{
n∑

i=1

Y
[iκ ]
i

}

< ∞.

Application of Lemma 3b below for real random variables yields

Var

{
n∑

i=1

Y
[iκ ]
i

}

= O
(
n2κ+2−min{1,α} log(n+ 1)

)

and thus the assertion. �

Part (a) of the following lemma is due to Peligrad (1992), Proposition 3.7 and
Remark 3.8. Part (b) is an immediate consequence of an inequality of Dehling
and Philipp (1982), Lemma 2.2. Parts (c) and (d) are due to Liebscher (1996),
Lemma 2.1, and Rio (1993), pp. 592, 593, respectively.

Lemma 3. (a) Let (Zn) be a ρ-mixing sequence of square integrable variables with
values in a real separable Hilbert space. Then for each ε > 0

Var

{
n∑

i=1

Zi

}

≤ C(ε)n1+ε max
i=1,...,n

VarZi

for some C(ε) < ∞. If additionally

∞∑

n=1

ρ2n < ∞ or, equivalently,
∞∑

n=1

1

n
ρn < ∞,
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then

Var

{
n∑

i=1

Zi

}

≤ Cn max
i=1,...,n

VarZi

for some C < ∞.
(b) Let (Zn) be an α-mixing sequence of essentially bounded random variables with

values in a real separable Hilbert space with αn = O(n−α) for some α > 0,
then

Var

{
n∑

i=1

Zi

}

≤ Cn2−min{1,α} log(n+ 1) max
i=1,...,n

(ess sup ‖Zi‖)2

for some C < ∞. In the case α �= 1 the assertion holds without the factor
log(n+ 1).

(c) Let (Zn) be an α-mixing sequence of real random variables with αn = O(n−α)

for some α > 1 and E{|Zn|2α/(α−1)} < ∞, n ∈ N. Then

Var

{
n∑

i=1

Zi

}

≤ Cn log(n+ 1) max
i=1,...,n

(
E
{
|Zi |2α/(α−1)

}) α−1
α

for some C < ∞.
(d) Let (Zn) be a weakly stationary α-mixing sequence of identically distributed real

random variables with αn = O(δn) for some δ ∈ (0, 1) and E{Z2
1 log+ |Z1|}

< ∞, then

Var

{
n∑

i=1

Zi

}

≤ CnE
{
Z2

1 log+ |Z1|
}

for some C < ∞.

3 Pointwise Consistent Regression Estimates

In regression analysis, on the basis of an observed d-dimensional random predictor
vector X one wants to estimate the non-observed real random response variable Y

by f (X) with a suitable measurable function f : R
d → R. In case of a square

integrable Y one is often interested to minimize the L2 risk or mean squared error
E{|f (X) − Y |2}. As is well known the optimal f is then given by the regression
function m of Y on X defined by m(x) := E{Y |X = x}. This follows from

E
{|f (X)− Y |2} =

∫

Rd

|f (x)−m(x)|2 μ(dx)+ E
{|m(X)− Y |2},

where μ denotes the distribution of X. Usually the distribution P(X,Y ) of (X, Y ), es-
pecially m, is unknown. If there is the possibility to observe a training sequence
(X1, Y1), (X2, Y2), . . . of (d + 1)-dimensional random vectors distributed like
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(X, Y ) up to the index n, one now wants to estimate m by mn(x) := mn(X1, Y1, . . . ,

Xn, Yn; x) in such a way that
∫

|mn(x)−m(x)|2μ(dx) → 0 (n →∞)

almost surely (a.s.) or at least in probability. Inspired by m(x) = E(Y |X = x),
x ∈ R

d , one uses local averaging methods, where m(x) is estimated by the average
of those Yi where Xi is close to x. Inspired by the above minimum property one also
uses least squares methods, which minimize the empirical L2 risk over a general set
Fn of functions. The classic partitioning regression estimate (regressogram) is a
local averaging method as well as a least squares method where Fn consists of the
functions which are constant on each set belonging to a partition Pn of R

d .
A frequently used local averaging estimate is the regression kernel estimate of

Nadaraya and Watson. It uses a kernel function K : R
d → R+, usually with

0 <
∫
K(x)λ(dx) < ∞ (λ denoting the Lebesgue-Borel measure on Bd ), e.g.,

K = 1S0,1 (naive kernel), K(x) = (1 − ‖x‖2)1S0,1(x) (Epanechnikov kernel),

K(x) = (1 − ‖x‖2)21S0,1(x) (quartic kernel) and K(x) = e−‖x‖2/2 (Gaussian
kernel), with x ∈ R

d , and bandwidth hn ∈ (0,∞), usually satisfying hn → 0,
nhd

n → ∞ (n → ∞), e.g., hn = cn−γ (c > 0, 0 < γd < 1). (Sx,h for x ∈ R
d ,

h > 0 denotes the sphere in R
d with center x and radius h.) The estimator mn is

defined by

mn(x) :=
∑n

i=1 YiK(
x−Xi

hn
)

∑n
i=1 K(

x−Xi

hn
)

, x ∈ R
d (10)

with 0/0 := 0. The kn-nearest neighbor (kn − NN ) regression estimate mn of m is
defined by

mn(x) := 1

kn

n∑

i=1

Yi1{Xi is among the knNNs of xin (X1,...,Xn)} (11)

with kn ∈ {1, . . . , n− 1}, n ≥ 2, usually satisfying kn/n → 0, kn → ∞ (n →∞).
Ambiguities in the definition of NNs (on the basis of the Euclidean distance in R

d )
can be solved by random tie-breaking. As to references see Györfi et al. (2002).

A regression estimation sequence is called strongly universally (L2-)consistent
(usually in the case that the sequence of identically distributed (d + 1)-dimensional
random vectors (X1, Y1), (X2, Y2), . . . is independent), if

∫
|mn(x)−m(x)|2μ(dx) → 0 a.s. (12)

for all distributions of (X, Y ) with E{Y 2} < ∞. It is called strongly universally
pointwise consistent, if

mn(x) → m(x) a.s. mod μ
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for all distributions of (X, Y ) with E|Y | < ∞. (mod μ means that the assertion
holds for μ-almost all x ∈ R

d .) Correspondingly one speaks of weak consistency if
one has convergence in first mean (or in probability).

Results on strong universal pointwise or L2-consistency will be stated which
generalize Kolmogorov’s strong law of large numbers. If the independence condi-
tion there is relaxed to a mixing condition, mostly the moment condition E|Y | < ∞
or E{|Y |2} < ∞ for pointwise or L2-consistency, respectively, has to be strength-
ened to E{|Y | log+ |Y |} < ∞ or higher moment conditions. We shall use ρ-mixing
and α-mixing conditions. No continuity assumptions on the distribution of X will
be made.

This section and the next section deal with strong pointwise consistency and with
strong L2-consistency, respectively.

In this section, more precisely, strong pointwise consistency of Nadaraya-Watson
estimates (Theorem 3), strong universal pointwise consistency of semi-recursive
Devroye-Wagner estimates (Theorem 4), both under mixing conditions, and strong
universal pointwise consistency of kn-nearest neighbor estimates under indepen-
dence (Theorem 5) are stated.

Theorem 3. Let (X, Y ), (X1, Y1), (X2, Y2), . . . be identically distributed (d + 1)-
dimensional random vectors with E

{|Y | log+ |Y |} < ∞. Let K be a measurable
function on R

d satisfying c1H(‖x‖) ≤ K(x) ≤ c2H(‖x‖), x ∈ R
d , for some

0 < c1 < c2 < ∞ and a nondecreasing function H : R+ → R+ with H(+0) > 0
and tdH(t) → 0 (t →∞), e.g., naive, Epanechnikov, quartic and Gaussian kernel.
For n ∈ N, with bandwidth hn > 0, define mn by (10).

(a) If the sequence ((Xn, Yn)) is ρ-mixing with ρn = O(n−ρ) for some ρ > 0 and
if hn is chosen as hn = cn−γ with c > 0, 0 < γd < 2ρ/(1 + 2ρ), then

mn(x) → m(x) a.s. mod μ.

(b) If the sequence ((Xn, Yn)) is α-mixing with αn = O(n−α) for some α > 1 and
if hn is chosen as hn = cn−γ with c > 0, 0 < γd < (2α − 2)/(2α + 3), then

mn(x) → m(x) a.s. mod μ.

Remark 4. Theorem 3 in both versions (a) and (b) comprehends the case of inde-
pendent identically distributed random vectors with choice hn = cn−γ satisfying
0 < γd < 1 treated in Kozek et al. (1998), Theorem 2, with a somewhat more
general choice of hn, but with a somewhat stronger integrability condition such as
E{|Y | log+ |Y |(log+ log+ |Y |)1+δ} < ∞ for some δ > 1. In the proof of Theo-
rem 3 exponential inequalities of Peligrad (1992) and Rhomari (2002) together with
the above variance inequalities and a generalized Lebesgue density theorem due
to Greblicki et al. (1984) together with a covering lemma for kernels are used. In
the independence case the classic Bernstein exponential inequality, see Györfi et al.
(2002), Lemma A.2, can be used.
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Regarding Lemma 3a,c we can state the exponential inequalities of Peligrad
(1992) and Rhomari (2002) for ρ-mixing and α-mixing sequences, respectively, of
bounded real random variables in the following somewhat specialized form.

Lemma 4. Let Zn, n ∈ N, be bounded real random variables and set

Ln := max
i=1,...,n

ess sup |Zi |.

(a) Let (Zn) be ρ-mixing with ρn = O(n−ρ) for some ρ > 0. Then there are
constants c1, c2 ∈ (0,∞) such that for all n ∈ N, ε∗ > 0

P

{∣
∣∣∣∣

n∑

i=1

(Zi − EZi)

∣
∣∣∣∣
> ε∗

}

≤ c1 exp

(
− c2ε

∗

n1/2 maxi=1,...,n(E{|Zi |2})1/2 + Lnn1/(1+2ρ)

)
.

(b) Let (Zn) be α-mixing with αn = O(n−α) for some α > 1. Then there are
constants c1, c2 ∈ (0,∞) such that for all n ∈ N, ε∗ > 0, β ∈ (0, 1)

P

{∣∣∣∣∣

n∑

i=1

(Zi − EZi)

∣∣∣∣∣
> ε∗

}

≤ 4 exp

(
− c1(ε

∗)2

n log(n+ 1)maxi=1,...,n(E{|Zi |2α/(α−1)})(α−1)/α + ε∗Lnnβ

)

+ c2 max

{(
Lnn

ε∗

) 1
2

, 1

}

n1−β−βα.

The following generalized Lebesgue density theorem is due to Greblicki et al.
(1984) (see also Györfi et al. 2002, Lemma 24.8).

Lemma 5. Let K as in Theorem 3, 0 < hn → 0 (n → ∞), and let μ be a proba-
bility measure on Bd . Then for all μ-integrable functions f : R

d → R,
∫
K(x−t

hn
)f (t)μ(dt)

∫
K(x−t

hn
)μ(dt)

→ f (x) mod μ.

The next lemma is due to Devroye (1981) (see also Györfi et al. 2002, Lem-
ma 24.6).

Lemma 6. Let μ be a probability measure on Bd and 0 < hn → 0 (n →∞). Then

lim inf
μ(Sx, hn)

hd
n

> 0 mod μ.



198 Harro Walk

It follows a covering lemma. It can be proven as Lemma 23.6 in Györfi et al.
(2002) where K = K̃ is used.

Lemma 7. Let H, H̃ and K, K̃ be functions as H and K , respectively, in Theorem 3.
There exists c̃ ∈ (0,∞) depending only on K and K̃ such that for all h > 0 and
u ∈ R

d
∫

K̃( x−u
h

)
∫
K(x−t

h
)μ(dt)

μ(dx) ≤ c̃.

Proof (of Theorem 3). It suffices to show

m̄n(x) :=
∑n

i=1 YiK(x−X1
hn

)

n
∫
K(x−t

hn
)μ(dt)

→ m(x) a.s. mod μ, (13)

because this result together with its special case for Yi = const = 1 yields the
assertion. Let Yi ≥ 0, 0 ≤ K ≤ 1, without loss of generality.

In the first step, for an arbitrary fixed κ > 0 and Y ∗
i := Y

[iκ ]
i := Yi1[Yi≤iκ ], we

show ∑n
i=1(Yi − Y ∗

i )K(
x−Xi

hn
)

n
∫
K(x−t

hn
)μ(dt)

→ 0 a.s. mod μ, (14)

which together with (16) below yields the assertion. The notation Kh(x) for K(x
h
)

(x ∈ R
d , h > 0) will be used.

According to a monotonicity argument of Etemadi (1981), for (14) it suffices to
show

Vn(x) :=
∑2n+1

i=1 (Yi − Y ∗
i )Kh2n (x −Xi)

2n
∫
Kh2n+1 (x − t)μ(dt)

→ 0 a.s. mod μ.

We notice
h2n/h2n+1 = 2γ ,

thus
Kh2n = Kh2n+1

( ·
2γ

)
=: K̃h2n+1

and, because of Lemma 7,
∫

Kh2n (x − z)
∫
Kh2n+1 (x − t)μ(dt)

μ(dx)

=
∫

K̃h2n+1 (x − z)
∫
Kh2n+1 (x − t)μ(dt)

μ(dx) ≤ c̃ < ∞

for all z ∈ R
d and all n. Therefore, with suitable constants c3, c4(κ),
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E
∞∑

n=1

∫
Vn(x)μ(dx) ≤ c̃

∞∑

n=1

2−n

2n+1∑

i=1

E{Yi − Y ∗
i }

≤ c̃

∞∑

i=1

⎛

⎝
∞∑

n=max{1,�(log i)/(log 2)�−1}
2−n

⎞

⎠EYi1[Yi>iκ ]

≤ c3

∞∑

i=1

1

i

∞∑

j=�iκ�

∫

(j,j+1]
vPY (dv)

≤ c3

∞∑

j=1

⎛

⎜
⎝
�(j+1)

1
κ �∑

i=1

1

i

⎞

⎟
⎠

∫

(j,j+1]
vPY (dv)

≤ c4(κ)E
{
Y log+ Y

}
< ∞.

This yields (14). In the second step we show

∑n
i=1 E{Y ∗

i K(
x−Xi

hn
)}

n
∫
K(x−t

hn
)μ(dt)

→ m(x) mod μ. (15)

We have
∑n

i=1 E{Y ∗
i K(

x−Xi

hn
)}

n
∫
K(x−t

hn
)μ(dt)

≤ E{YK(x−X
hn

)}
∫
K(x−t

hn
)μ(dt)

=
∫
m(t)K(x−t

hn
)μ(dt)

∫
K(x−t

hn
)μ(dx)

→ m(x)

mod μ

by Lemma 5. Because of Lemma 6 we have

n

∫
K

(
x − t

hn

)
μ(dt) ≥ d∗(x)n1−γ d →∞ mod μ

(compare (18) below), thus

lim inf
n→∞

∑n
i=1 E{Y ∗

i K(
x−Xi

hn
)}

n
∫
K(x−t

hn
)μ(dt)

≥ lim
n→∞

nE{Y1[Y≤N ]K(x−X
hn

)}
n
∫
K(x−t

hn
)μ(dt)

= lim
n→∞

∫
E{Y1[Y≤N ]|X = t}K(x−t

hn
)μ(dt)

∫
K(x−t

hn
)μ(dt)

= E(Y1[Y≤N ]|X = x) mod μ (for each N ∈ N, by Lemma 5)

→ E(Y |X = x) = m(x) (N →∞),

which leads to (15). Together with (17) below we shall have
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∑n
i=1 Y

∗
i K(

x−Xi

hn
)

n
∫
K(x−t

hn
)μ(dt)

→ m(x) a.s. mod μ, (16)

which together with (14) yields (13). In the third step we show

∑n
i=1[Y ∗

i K(
x−Xi

hn
)− EY ∗

i K(
x−Xi

hn
)]

n
∫
K(x−t

hn
)μ(dt)

→ 0 a.s. mod μ (17)

distinguishing the cases of (a) ρ-mixing and (b) α-mixing.
(a) According to Lemma 6

μ

({
x ∈ R

d; lim inf
μ(Sx,hn)

hd
n

= 0

})
= 0.

Neglecting this set we have

∫
K

(
x − t

hn

)
μ(dt) ≥ c∗

∫
1S0,r∗

(
x − t

hn

)
μ(dt)

≥ d(x)hd
n = d∗(x)n−γ d (18)

for all n with suitable c∗ > 0, r∗ > 0, d∗(x) > 0. Choose an arbitrary ε > 0.
Noticing

E

{(
Y ∗
i K

(
x −Xi

hn

))2
}

≤ n2κ
∫

K

(
x − t

hn

)
μ(dt) (i = 1, . . . , n),

by Lemma 4a with ε∗ = εn
∫
K(x−t

hn
)μ(dt) we obtain for suitable c1, c2 ∈ (0,∞)

∞∑

n=1

P

{
1

n
∫
K(x−t

hn
)μ(dt)

∣∣∣∣∣

n∑

i=1

[
Y ∗
i K

(
x −Xi

hn

)
− EY ∗

i K

(
x −Xi

hn

)]∣∣∣∣∣
> ε

}

≤ c1

∞∑

n=1

exp

(

− c2εn
∫
K(x−t

hn
)μ(dt)

n1/2nκ(
∫
K(x−t

hn
)μ(dt))1/2 + nκn1/(1+2ρ)

)

≤ c1

∞∑

n=1

exp

(
−1

2
c2ε

× min

{

n
1
2−κ

(∫
K

(
x − t

hn

)
μ(dt)

)1/2

, n
1−κ− 1

1+2ρ

∫
K

(
x − t

hn

)
μ(dt)

})

≤ c1

∞∑

n=1

exp

(
−1

2
c2ε min

{
d∗(x)

1
2 n

1
2−κ− 1

2 γ d , d∗(x)n1−κ− 1
1+2ρ−γ d

})

(by 18)
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= c1

∞∑

n=1

exp

(
−1

2
c2ε min

{
d∗(x)

1
2 , d∗(x)

}
n

min{ 1
2−κ− 1

2 γ d,1−κ− 1
1+2ρ−γ d}

)

< ∞ mod μ,

if 1− γ d − 2κ > 0 and 1− 1/(1+ 2ρ)− γ d − κ > 0. Both conditions are fulfilled
under the assumptions on ρ and γ , if κ > 0 is chosen sufficiently small. Thus (17)
is obtained by the Borel-Cantelli lemma.

(b) As in (a) we have (18). Choose an arbitrary ε > 0. For suitable constants
c1, c2 by Lemma 4b with ε∗ = εn

∫
K(x−t

hn
)μ(dt) and β ∈ (0, 1) we obtain for ε

sufficiently small

∞∑

n=1

P

{
1

n
∫
K(x−t

hn
)μ(dt)

∣∣∣∣
∣

n∑

i=1

[
Y ∗
i K

(
x −Xi

hn

)
− EY ∗

i K

(
x −Xi

hn

)]∣∣∣∣
∣
> ε

}

≤ 4
∞∑

n=1

exp

( −c1ε
2n2(

∫
K(x−t

hn
)μ(dt))2

n2κ+1 log(n+ 1)(
∫
K(x−t

hn
)μ(dt))1−1/α + εn1+κ+β

∫
K(x−t

hn
)μ(dt)

)

+ c2

(
nκ

ε
∫
K(x−t

hn
)μ(dt)

) 1
2

n1−β−βα

≤ 4
∞∑

n=1

exp

(
−c1ε

2

∫
K

(
x − t

hn

)
μ(dt)

× min

{

εn1−2κ (log(n+ 1))−1
(∫

K

(
x − t

hn

)
μ (dt)

)1/α

, n1−κ−β

})

+ c2ε
− 1

2 d∗(x)−
1
2

∞∑

n=1

n
κ
2+ γ d

2 +1−(1+α)β

≤ 4
∞∑

n=1

exp

(
−c1ε

2
d∗(x)n−γ d

× min
{
εd∗(x)1/αn1−2κ−γ d/α(log(n+ 1))−1, n1−κ−β

})

+ c2ε
− 1

2 d∗(x)−
1
2

∞∑

n=1

n
κ
2+ γ d

2 +1−(1+α)β < ∞ mod μ,

if 1−γ d(α+1)/α−2κ > 0, 1−β−γ d−κ > 0 and −4+2(1+α)β−κ−γ d > 0.
These conditions are fulfilled under the assumptions on α and γ , if one chooses
β = 5/(3 + 2α) and κ > 0 sufficiently small. Thus (17) is obtained. �

If the above Nadaraya-Watson kernel regression estimate is replaced by the semi-
recursive Devroye-Wagner (1980b) kernel regression estimate, then strong univer-
sal pointwise consistency in the case of independent identically distributed random
vectors (Xn, Yn) can be stated, i.e., under the only condition E|Y1| < ∞ strong
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consistency PX1 -almost everywhere (see Walk 2001). This result has been extended
to the ρ-mixing case under the condition

∑
ρn < ∞ by Frey (2007). The case

of bounded Y was treated by Ferrario (2004) under more general α-mixing and ρ-
mixing conditions on the basis of the generalized Theorem 1b mentioned in context
of Lemma 2.

In the following the result of Frey (2007) and its proof will be given.

Theorem 4. Let (X, Y ), (X1, Y1), (X2, Y2), . . . be identically distributed (d + 1)-
dimensional random vectors with E|Y | < ∞. Let K be a symmetric measurable
function on R

d satisfying c11S0,R ≤ K ≤ c21S0,R for some 0 < R < ∞, 0 < c1 <

c2 < ∞ (so-called boxed kernel with naive kernel K = 1S0,1 as a special case).
With n ∈ N and hn > 0 set

mn(x) :=
∑n

i=1 YiK(
x−Xi

hi
)

∑n
i=1 K(

x−Xi

hi
)

, x ∈ R
d

where 0
0 := 0. If the sequence ((Xn, Yn)) is ρ-mixing with

∑
ρn < ∞ (e.g., ρn =

O(n−ρ) for some ρ > 1) and if hn is chosen as hn = cn−γ with c > 0, 0 < γd < 1
2 ,

then
mn(x) → m(x) a.s. mod μ.

Theorem 4 comprehends Kolmogorov’s strong law of large numbers (special case
that μ is a Dirac measure). The semirecursive kernel estimate has the numerical
advantage that a new observation leads only to an addition of a new summand in the
numerator and in the denominator, but the observations obtain different weights. In
the proof we give in detail only the part which differs from the proof in Walk (2001).

Proof (of Theorem 4). Without loss of generality assume Yi ≥ 0. The case of
bounded Y , also with denominator replaced by its expectation, is comprehended
by Ferrario (2004). Therefore in the case E|Y | < ∞ it is enough to show existence
of a c ∈ (0,∞) independent of the distribution of (X, Y ) with

lim sup
n→∞

∑n
i=1 YiK(

x−Xi

hi
)

1 +∑n
i=1

∫
K(x−t

hn
)μ(dt)

≤ cm(x) a.s. mod μ (19)

(compare Lemma 8 below). Let the compact support of K by covered by finitely
many closed spheres S1, . . . , SN with radius R/2. Fix k ∈ {1, . . . , N}. For all t ∈
R

d and all n ∈ N, from x ∈ t + hnSk it can be concluded

K

( · − x

hi

)
≥ c1

c2
K

( · − t

hi

)
1Sk

(
g

( · − t

hi

))
(20)

for all i = {1, . . . , n}. It suffices to show

lim sup
n→∞

∑n
i=1 YiK(

x−Xi

hi
)1Sk (

x−Xi

hi
)

1 +∑n
i=1

∫
K(x−t

hi
)μ(dt)

≤ c′m(x) a.s. mod μ (21)
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for some c′ < ∞. With

rn := rn(t) := 1

c2

∫
K

(
x − t

hn

)
1t+hnSk (x)μ(dx),

Rn := r1 + · · · + rn, n ∈ N,

for t ∈ R
d we can choose indices pi = p(t, k, i) ↑ ∞ (i →∞) such that

Rpi
≤ i + 1, (22)

∞∑

j=pi

rj

(1 + Rj )2
<

1

i
(23)

holds. For p(t, k, ·) we define the inverse function q(t, k, ·) on N by

q(t, k, n) := max{i ∈ N;p(t, k, i) ≤ n}.
Set

Zi := Yi1[Yi≤q(Xi ,k,i)], i ∈ N.

Now it will be shown
∑n

i=1[ZiK(
x−Xi

hi
)1Sk (

x−Xi

hi
)− E{ZiK(

x−Xi

hi
)1Sk (

x−Xi

hi
)}]

c1 +∑n
i=1

∫
K(x−t

hi
)μ(dt)

→ 0 a.s. mod μ

(24)
by an application of Lemma 2. We notice

∫
K(x−t

hn
)μ(dt) ≤ c2,

n∑

i=1

∫
K

(
x − t

hi

)
μ(dt) ↑ ∞ mod μ (25)

because of
∫
K(x−t

hi
)μ(dt) ≥ c1μ(x + hiS0,1) ≥ c1c(x)h

d
i by Lemma 6 with c(x)

> 0 mod μ and
∑

hd
n = ∞ by 0 < γd < 1. Further Zn ≥ 0 and

lim sup
EZnK(x−Xn

hn
)1Sk (

x−Xn

hn
)

∫
K(x−t

hn
)μ(dt)

≤ lim

∫
m(t)K(x−t

hn
)μ(dt)

∫
K(x−t

hn
)μ(dt)

= m(x) mod μ

by Lemma 5. With Wj(x) := ZjK(
x−Xj

hj
)1Sk (

x−Xj

hj
) we obtain

Var

⎧
⎨

⎩

n∑

j=1

Wj(x)

⎫
⎬

⎭

≤
n∑

j=1

Var
{
Wj(x)

}+
n∑

j=1

n∑

l=1,l �=j

ρ|j−l|
(
Var

{
Wj(x)

}) 1
2 (Var {Wl(x)}) 1

2
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≤
n∑

j=1

Var
{
Wj(x)

}+ 1

2

n∑

j=1

n∑

l=1,l �=j

ρ|j−l|
[
Var

{
Wj(x)

}+ Var {Wl(x)}
]

≤
⎛

⎝1 + 2
∞∑

j=1

ρj

⎞

⎠
n∑

j=1

Var
{
Wj(x)

}

= c∗
n∑

j=1

Var
{
Wj(x)

}

with c∗ < ∞ by the assumption on (ρn), thus

∞∑

n=1

∫
K(x−t

hn
)μ(dt)Var{∑n

j=1 Wj(x)}
(c1 +∑n

i=1

∫
K(x−t

hi
)μ(dt)})3

≤ c∗
∞∑

n=1

∫
K(x−t

hn
)μ(dt)

∑n
j=1 Var{Wj(x)}

(c1 +∑n
i=1

∫
K(x−t

hi
)μ(dt))3

= c∗
∞∑

j=1

Var
{
Wj(x)

} ∞∑

n=j

∫
K(x−t

hn
)μ(dt)

(c1 +∑n
i=1

∫
K(x−t

hi
)μ(dt))3

≤ c∗∗
∞∑

j=1

Var{Wj(x)}
(c1 +∑j

i=1

∫
K(x−t

hi
)μ(dt))2

≤ c∗∗c2

∞∑

n=1

EZ2
nK(x−Xn

hn
)1Sk (

x−Xn

hn
)

(c1 +∑n
i=1

∫
K(x−s

hi
)μ(ds))2

with suitable c∗∗ < ∞. Now, by (20),

∫ ∞∑

n=1

EZ2
nK(x−Xn

hn
)1Sk (

x−Xn

hn
)

(c1 +∑n
i=1

∫
K(x−s

hi
)μ(ds))2

μ(dx)

≤
∞∑

n=1

∫ [∫ E{Z2
n|Xn = t}K(x−t

hn
)1Sk (

x−t
hn

)

(c1 +∑n
i=1

∫
c1
c2
K(s−t

hi
)1Sk (

s−t
hi

)μ(ds))2
μ(dx)

]

μ(dt)

= 1

c2
1

∞∑

n=1

∫ [∫ ∫
v2PZn|Xn=t (dv)K(x−t

hn
)1Sk (

x−t
hn

)

(1 +∑n
i=1

1
c2

∫
K(s−t

hi
)1Sk (

s−t
hi

)μ(ds))2
μ(dx)

]

μ(dt)

= c2

c2
1

∞∑

n=1

∫
⎡

⎣
∫ ∑q(t,k,n)

i=1 (
∫
(i−1,i] v

2PZn|Xn=t (dv))
1
c2
K(x−t

hn
)1Sk (

x−t
hn

)

(1 +∑n
i=1

1
c2

∫
K(s−t

hi
)1Sk (

s−t
hi

)μ(ds))2

× μ(dx)

⎤

⎦μ(dt)
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= c2

c2
1

∞∑

n=1

∫
⎡

⎣
∫ ∑q(t,k,n)

i=1 (
∫
(i−1,i] v

2PY |X=t (dv))
1
c2
K(x−t

hn
)1Sk (

x−t
hn

)

(1 +∑n
i=1

1
c2

∫
K(s−t

hi
)1Sk (

s−t
hi

)μ(ds))2

× μ(dx)

⎤

⎦μ(dt)

= c2

c2
1

∫ [ ∞∑

i=1

∫

(i−1,i]
v2PY |X=t (dv)

×
∞∑

n=p(t,k,i)

1
c2

∫
K(x−t

hn
)1Sk (

x−t
hn

)μ(dx)

(1 +∑n
i=1

1
c2

∫
K(s−t

hi
)1Sk (

s−t
hi

)μ(ds))2

⎤

⎦μ(dt)

≤ c2

c2
1

∫ [ ∞∑

i=1

∫

(i−1,i]
v2PY |X=t (dv)

1

i

]

μ(dt)

(by 23)

≤ c2

c2
1

∫ [ ∞∑

i=1

∫

(i−1,i]
vPY |X=t (dv)

]

μ(dt)

≤ c2

c2
1

EY < ∞.

Therefore

∞∑

n=1

∫
K(x−t

hn
)μ(dt)Var{∑n

j=1 ZjK(
x−Xj

hj
)1Sk (

x−Xj

hj
)}

(c1 +∑n
i=1

∫
K(x−t

hi
)μ(dt))3

< ∞ mod μ,

and (24) follows by Lemma 2.
In the next step we notice

lim sup

∑n
i=1 EZiK(

x−Xi

hi
)1Sk (

x−Xi

hi
)

c1 +∑n
i=1

∫
K(x−t

hi
)μ(dt)

≤ lim

∑n
i=1

∫
m(t)K(x−t

hi
)μ(dt)

c1 +∑n
i=1

∫
K(x−t

hi
)μ(dt)

= m(x) mod μ

because of (25) and Lemma 5. This together with (24) yields

lim sup

∑n
i=1 ZiK(

x−Xi

hi
)1Sk (

x−Xi

hi
)

c1 +∑n
i=1

∫
K(x−t

hi
)μ(dt)

≤ m(x) a.s. mod μ. (26)

In the last step one obtains (21) from (26) and (25) by noticing

∞∑

n=1

P

[
Zn1S∩Sk

(
x −Xn

hn

)
�= Yn1S∩Sk

(
x −Xn

hn

)]
< ∞ mod μ, (27)
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where S := S0,R , together with the Borel-Cantelli lemma, and (27) follows from

∫ ∞∑

n=1

P
[
Yn > q(Xn, k, n),Xn ∈ x − hn (S ∩ Sk)

]
μ(dx)

=
∫ ∞∑

n=1

(∫
P

[
Y > q(t, k, n)|X = t

]
1x−hn(S∩Sk)(t)μ(dt)

)
μ(dx)

=
∞∑

n=1

∫
P

[
Y > q(t, k, n)|X = t

]
μ (t + hn (S ∩ Sk)) μ(dt)

≤
∫ ∞∑

i=1

P [Y ∈ (i, i + 1]|X = t]
p(t,k,i+1)∑

n=1

μ (t + hn (S ∩ Sk)) μ(dt)

≤ c2

c1

∫ ∞∑

i=1

P [Y ∈ (i, i + 1]|X = t] (i + 2)μ(dt) (by 22)

≤ 3
c2

c1
EY < ∞. �

For kn-nearest neighbor regression estimation with integrable response random vari-
able Y and d-dimensional predictor random vector X on the basis of indepen-
dent data, the following theorem states strong universal pointwise consistency, i.e.,
strong consistency PX-almost everywhere for general distribution of (X, Y ) with
E|Y | < ∞. The estimation is symmetric in the data, does not use truncated obser-
vations and contains Kolmogorov’s strong law of large numbers as the special case
that PX is a Dirac measure. It can be considered as a universal strong law of large
numbers for conditional expectations. Let for the observed copies of (X, Y ) the kn-
nearest neighbor (kn-NN) regression estimate mn(x) of m(x) := E(Y |X = x) be
defined by (11).

Theorem 5. Let (X, Y ), (X1, Y1), (X2, Y2), . . . be independent identically distrib-
uted (d+1)-dimensional random vectors with E|Y | < ∞. Choose kn ∈ min{�cnβ�,
n− 1} with c > 0, β ∈ (0, 1) for n ∈ {2, 3, . . . }. Then

mn(x) → m(x) a.s. mod μ.

As to the proof (with somewhat more general kn) and related results we refer to
Walk (2008a). The proof uses Etemadi’s (1981) monotonicity argument, a gener-
alized Lebesgue density theorem concerning Emn(x) → m(x) mod μ, a covering
lemma for nearest neighbors and Steele’s (1986) version of the Efron-Stein inequal-
ity for the variance of a function of independent identically distributed random vari-
ables.

Whether at least in the case of independence strong universal pointwise consis-
tency for Nadaraya-Watson kernel regression estimates or for classic partitioning
regression estimates holds, is an open problem.
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Remark 5. Let the situation in Theorem 5 be modified by assuming that the sequence
(X1, Y1), (X2, Y2), . . . of identically distributed (d + 1)-dimensional random vec-
tors is α-mixing with αn = O(n−α) such that 0 < 1 − β < min{α/2, α/(α + 1)}
and that Yi is bounded. Let tie-breaking be done by enlarging the dimension d of the
predictor vectors to d + 1 by use of new (independent!) random variables equidis-
tributed on [0, 1] as additional components (see Györfi et al. 2002, pp. 86, 87). Then
Theorem 2 in Irle (1997) states

mn(x) → m(x) a.s. mod μ.

Analogously, by use of Lemma 3a, one obtains the same convergence assertion un-
der ρ-mixing where 0 < 1 − β < 1.

4 L2-Consistent Regression Estimates

The pioneering paper on universal consistency of nonparametric regression esti-
mates is Stone (1977). It contains a criterion of weak universal L2-consistency of
local averaging estimates under independence. The conditions for kn-nearest neigh-
bor estimates and for Nadaraya-Watson kernel estimates were verified by Stone
(1977) and by Devroye and Wagner (1980a) and Spiegelman and Sacks (1980), re-
spectively. The following theorem concerns strong universal L2-consistency of kn-
nearest neighbor estimates Devroye et al. (1994), of semirecursive Devroye-Wagner
kernel estimates (Györfi et al. 1998) and modified Nadaraya-Watson kernel esti-
mates (Walk 2005a).

Theorem 6. Let (X, Y ), (X1, Y1), (X2, Y2), . . . be independent identically dis-
tributed (d + 1)-dimensional random vectors with E{Y 2} < ∞.

(a) Let the kn-NN regression estimates mn of m be defined by (11) with kn ∈ {1, . . . ,
n − 1}, n ≥ 2, satisfying kn/n → 0, kn/ log n → ∞ (n → ∞) and random
tie-breaking. Then (12) holds.

(b) Let the semirecursive Devroye-Wagner kernel regression estimates mn, n ≥ 2,
be defined by

mn(x) :=
Y1K(0)+∑n

i=2 YiK(
x−Xi

hi
)

K(0)+∑n
i=2 K(

x−Xi

hi
)

, x ∈ R
d ,

with symmetric λ-integrable kernel K : R
d → R+ satisfying

αH(‖x‖) ≤ K(x) ≤ βH(‖x‖), x ∈ R
d,

for some 0 < α < β < ∞ and nonincreasing H : R+ → R+ with H(+0) > 0
and with bandwidths hn > 0 satisfying
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hn ↓ 0 (n →∞),

∞∑

n=2

hd
n = ∞,

e.g., hn = cn−γ with c > 0, 0 < γd < 1. Then (12) holds.
(c) Let the Nadaraya-Watson type kernel regression estimates mn, n ∈ N, be defined

by

mn(x) :=
∑n

i=1 YiK(
x−Xi

hn
)

max{δ,∑n
i=1 K(

x−Xi

hn
)} , x ∈ R

d,

with an arbitrary fixed δ > 0, a smooth kernel K : R
d → R+ (see below) and

bandwidths hn > 0 satisfying

hn ↓ 0, nhd
n →∞ (n →∞), hn − hn+1 = O(hn/n),

e.g., hn = cn−γ with c > 0, 0 < γd < 1. Then (12) holds.

In Theorem 6c the modification of Nadaraya-Watson estimates consists of a trun-
cation of the denominator from below by an arbitrary positive constant, see Spiegel-
man and Sacks (1980). Smooth kernel means a kernel K of the form K(x) =
H(‖x‖), where H is a continuously differentiable nonincreasing function on R+
with 0 < H(0) ≤ 1,

∫
H(s)sd−1ds < ∞ such that R with R(s) := s2H ′(s)2/H(s),

s ≥ 0 (0/0 := 0), is bounded, piecewise continuous and, for s sufficiently large,
nonincreasing with

∫
R(s)sd−1ds < ∞. Examples are the quartic and the Gaussian

kernel. In the proof of Theorem 6a one shows

lim sup
n→∞

n

kn
max

i=1,...,n

∫
1{Xi is among the knnearest neighbors of xin (X1,...,Xn)}μ(dx)

≤ const < ∞ a.s.

and uses Kolmogorov’s strong law of large numbers for Y 2
1 , Y 2

2 , . . . and Lemma 8
(with p = 2, δ = 0) below. Theorem 6b is proven by martingale theory, a covering
argument and Lemmas 5, 6 and 8 (with p = 2, δ = 0). In both cases, for details and
further literature we refer to Györfi et al. (2002). In the proof of Theorem 6c strong
consistency for bounded Y (due to Devroye and Krzyżak 1989), Lemma 8 (with
p = 2, δ = 0) and summability theory (Lemma 1b), together with Lemmas 5, 6, 7
and Steele’s (1986) version of the Efron-Stein inequality for variances are used.

The following lemma (see Györfi 1991, Theorem 2 with proof, and Györfi et
al. 2002, Lemma 23.3; compare also the begin of the proof of Theorem 4) allows
to reduce problems of strong consistency of kernel or nearest neighbor regression
estimates to two simpler problems. It holds more generally for local averaging esti-
mation methods.

Lemma 8. Let p ≥ 1 and δ ≥ 0 be fixed. Denote the Nadaraya-Watson or semire-
cursive Devroye-Wagner or kn-NN regression estimates in the context of (d + 1)-
dimensional identically distributed random vectors (X, Y ), (X1, Y1), (X2, Y2), . . .

by mn. The following statement (a) is implied by statement (b):
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(a) for all Ywith E{|Y |(1+δ)p} < ∞
∫

|mn(x)−m(x)|pμ(dx) → 0 a.s.;

(b) for all bounded Y

∫
|mn(x)−m(x)|μ(dx) → 0 a.s.,

and there exists a constant c < ∞ such that for all Y ≥ 0 with E{Y 1+δ} < ∞

lim sup
∫

mn(x)μ(dx) ≤ cEY a.s. (28)

For fixed δ ≥ 0 the statement (a) for p > 1 follows from (a) for p = 1.

If we allow stronger moment conditions on Y (and X) we can relax the inde-
pendence assumption for kernel estimates. Here Nadaraya-Watson kernel estimates
mn are considered with kernels K : R

d → R+ of the form K(x) = H(‖x‖),
x ∈ R

d , where H : R+ → R+ is a Lipschitz continuous nonincreasing function
with 0 < H(0) ≤ 1 and

∫
H(s)sd−1ds < ∞ such that the function s → s|H ′(s)|

(defined λ-almost everywhere on R+) is nonincreasing for s sufficiently large (e.g.,
Epanechnikov, quartic and Gaussian kernel). The following result Walk (2008b)
concerns L2-consistency.

Theorem 7. Let (X, Y ), (X1, Y1), (X2, Y2), . . . be identically distributed (d + 1)-
dimensional random vectors with E{|Y |p} < ∞ for some p > 4, E{‖X‖q} < ∞
for some q > 0. Choose bandwidths hn = cn−γ (c > 0, 0 < γd < 1). If the
sequence ((Xn, Yn)) is ρ-mixing and 0 < γd < 1− 4

p
− 2d

pq
or if it is α-mixing with

αn = O(n−α), α > 0, with 0 < γd < min{1, α} − 4
p
− 2d

pq
, then

∫
|mn(x)−m(x)|2μ(dx) → 0 a.s.

If Y is essentially bounded, then no moment condition on X is needed and the
conditions on γ are 0 < γd < 1 in the ρ-mixing case and 0 < γd < min{1, α} in
the α-mixing case. If X is bounded, then the conditions on γ are 0 < γd < 1 − 4

p

in the ρ-mixing case and 0 < γd < min{1, α} − 4
p

in the α-mixing case. In this
context we mention that a measurable transformation of X to bounded X does not
change the L2 risk E{|Y −m(X)|2}.
In the proof of Theorem 7, by Lemma 8 we treat the corresponding L1-consistency
problem with p > 2. The integrability assumption on Y allows to truncate Yi (≥ 0)
at i1/p. Because of
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∣∣∣∣∣

∑n
i=1 Yi1[Yi≤i1/p]K(

x−Xi

hn
)

∑n
i=1 K(

x−Xi

hn
)

−
∑n

i=1 Yi1[Yi≤i1/p]K(
x−Xi

hn
)

n
∫
K(x−t

hn
)μ(dt)

∣∣∣∣∣

≤ n
1
p

∣
∣∣∣∣

∑n
i=1 K(

x−Xi

hn
)

n
∫
K(x−t

hn
)μ(dt)

− 1

∣
∣∣∣∣
,

it suffices to investigate the convergence behavior of the latter term and of the sim-
plified estimator ∑n

i=1 Yi1[Yi≤i1/p]K(
·−Xi

hn
)

n
∫
K( ·−t

hn
)μ(dt)

.

considered as a random variable with values in the real separable Hilbert space
L2(μ). This can be done by use of the Tauberian Lemma 1b, the covering Lemma 7
and Lemma 3a,b on the variance of sums of Hilbert space valued random variables
under mixing together with a result of Serfling (1970a), Corollary A3.1, on maxi-
mum cumulative sums.

5 Rosenblatt-Parzen Density Estimates under Mixing Conditions

In this section we investigate the Rosenblatt-Parzen kernel density estimates in view
of strong L1-consistency under mixing conditions, namely ρ- and α-mixing. In the
latter case the α-mixing condition in Theorem 4.2.1(iii) in Györfi et al. (1989) (see
also Györfi and Masry 1990) is weakened, essentially to that in Theorem 4.3.1 (iii)
there on the Wolverton-Wagner and Yamato recursive density estimates. In the proof
we use Etemadi’s concept and not Tauberian theory, because in the latter case a
Lipschitz condition on the kernel should be imposed.

Theorem 8. Let the d-dimensional random vectors Xn, n ∈ N, be identically
distributed with density f , and assume that (Xn) is ρ-mixing or α-mixing with
αn = O(n−α) for some α > 0. If for the Rosenblatt-Parzen density estimates

fn(x) := fn(X1, . . . , Xn; x) := 1

nhd
n

n∑

i=1

K

(
x −Xi

hn

)
, x ∈ R

d (29)

the kernel K is chosen as a square λ-integrable density on R
d with K(rx) ≥ K(x)

for 0 ≤ r ≤ 1 and the bandwidths are of the form hn = cn−γ , 0 < c < ∞, with
0 < γd < 1 in the ρ-mixing case and 0 < γd < min{1, α} in the α-mixing case,
then ∫

|fn(x)− f (x)|λ(dx) → 0 a.s. (30)

Proof. Because of the simple structure of the denominator in (29) we can use
Etemadi’s monotonicity argument. Let (Ω,A, P ) be the underlying probability
space. For rational a > 1 and n ∈ N set
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q(a, n) := min{aN ; aN > n,N ∈ N}, p(a, n) := q(a, n)/a.

Then for fn one has the majorant

g(a, n, ·) := 1

p(a, n)hd
q(a,n)

�q(a,n)�∑

i=1

K

( · −Xi

hp(a,n)

)

and a corresponding minorant b(a, n, ·). Let ‖ · ‖1 and ‖ · ‖2 denote the norms in
L1(λ) and L2(λ), respectively. In order to show

∥∥∥g(a, n, ·)− a1+γ df

∥∥∥
1
→ 0 (n →∞) a.s.,

i.e., ∥∥∥∥∥
∥

�aN+1�∑

i=1

VN,i − a1+γ df

∥∥∥∥∥
∥

1

→ 0 (N →∞) a.s.,

with

VN,i(x) := 1

aNhd
aN+1

K

(
x −Xi

haN

)
,

it suffices, according to Györfi et al. (1989), pp. 76, 77, to show
∥∥∥∥∥∥

�aN+1�∑

i=1

EVN,i − a1+γ df

∥∥∥∥∥∥
1

→ 0 (31)

and ∥∥∥∥∥∥

�aN+1�∑

i=1

(VN,i − EVN,i)

∥∥∥∥∥∥
2

→ 0 a.s. (32)

(31) follows from Theorem 1 in Chap. 2 of Devroye and Györfi (1985). Noticing

‖VN,i‖2 = 1

aNhd
aN+1

h
d
2
aN

(∫
K(s)2λ(ds)

) 1
2

,

one obtains
∞∑

N=1

E

∥∥∥∥∥∥

�aN+1�∑

i=1

(VN,i − EVN,i)

∥∥∥∥∥∥

2

2

< ∞

by Lemma 3a,b and thus (32). Analogously one has

‖b(a, n, ·)− a−1−γ df ‖1 → 0 a.s.
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Thus for P-almost all realizations b∗(a, n, ·) ≤ f ∗
n ≤ g∗(a, n, ·), one obtains that

for all rational a > 1

‖g∗(a, n, ·)− a1+γ df ‖1 → 0, ‖b∗(a, n, ·)− a−1−γ df ‖1 → 0.

Let (nk) be an arbitrary sequence of indices in N. Then a subsequence (nkl ) exists
such that for all rational a > 1 (by Cantor’s diagonal method)

g∗(a, nkl , ·) → a1+γ df, b∗(a, nkl , ·) → a−1−γ df

λ-almost everywhere, thus f ∗
nkl

→ f λ-almost everywhere and, by the Riesz-Vitali-

Scheffé lemma, ‖f ∗
nkl

−f ‖1 → 0. Therefore ‖f ∗
n −f ‖1 → 0, i.e., (30) is obtained.

�

In order to establish in the situation of Theorem 8 strong consistency λ-almost ev-
erywhere for bounded K , in the α-mixing case one needs to strengthen the condition
on γ to 0 < γd < min{α2 , α

α+1 }, according to Irle (1997). Another result, where
the freedom of choice in Theorem 8 is preserved, is given in the following corol-
lary. The proof is similar to that of Theorem 8 and will be omitted. It uses variance
inequalities of Peligrad (1992) and Rio (1993), respectively (see Lemma 3a,d).

Corollary 1. Let the density K be as in Theorem 3. Assume further the conditions
of Theorem 8 with (Xn) ρ-mixing or (Xn) weakly stationary and α-mixing with
αn = O(δn) for some δ ∈ (0, 1) and

∫
K(x)2 log+K(x)λ(dx) < ∞, further 0 <

γd < 1. Then
fn(x) → f (x) a.s. mod λ.
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Institute of Applied Mathematics at Middle East
Technical University, Ankara (Panel Discussion
Contribution)

Bülent Karasözen

Abstract The foundation and development of the Institute of Applied Mathematics
(IAM) at the Middle East Technical University (METU) Ankara is briefly outlined.
The impact of the Institute on the mathematical based interdisciplinary graduate
education and research is discussed.

1 Introduction

Mathematics and computational science are utilized in almost every discipline of
science, engineering and industry. New application areas of mathematics are being
discovered constantly and older techniques are applied in new ways and in emerg-
ing fields. Industry relies on applied mathematics and computational sciences for
the design and optimization of aircraft, automobiles, computers, communications
systems, prescription of drugs etc. Computation is now regarded as the third ap-
proach along with theory and experiment to advance the scientific knowledge and
industrial research. Simulations enable the study of complex systems that would be
too expensive or dangerous by experiment Petzold et al. (2001). Simulations based
on computation have become a crucial part of the present infrastructure of the sci-
ences, engineering and industry. The importance of mathematics in the development
of new technologies, in financial and economical sectors are well recognized by the
developed countries like USA, Europe, Japan and others and is well documented by
several reports in Glotzer et al. (2009), Wright and Chorin (1999).

Starting in 1990’s several interdisciplinary mathematical research institutes and
graduate programs emerged around the world. Examples of such institutes supported
by the governments are Institute for Mathematics and Applications (IMA), Univer-
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sity of Minnesota, Mathematical Biosciences Institute, Columbus, Ohio, DFG Re-
search Center Matheon, Berlin.

Two important aspects of contemporary research are closely connected with the
establishment of these applied mathematics research institutes and graduate pro-
grams:

• Interdisciplinary teamwork: The successful solution of complex problems in sci-
ence and in industry requires the collaboration of experts from diverse disci-
plines. It is generally recognized by industry that mathematics is the lingua franca
of science and engineering and many industries include mathematicians in in-
dustrial research teams. However, not all mathematicians have the right skills
to collaborate in an industrial environment, and not all industries appreciate the
long-term approach favored by mathematicians. Industry and academia have to
engage with each other in new ways that encourage innovation through interdis-
ciplinary teamwork.

• Transfer of Mathematical Knowledge: The mathematical research community
has developed a host of techniques that could be of significant benefit to science,
technology and thus to the society as a whole. Translating these techniques into
practical terms and implementing them in applicable paradigms are, however, not
straightforward.

The Institute of Applied Mathematics(IAM) at the Middle East Technical Uni-
versity is the first kind of an interdisciplinary Mathematics Institute in Turkey. It was
founded in 2002 with three programs; Cryptography, Financial Mathematics, Sci-
entific Computing. Actuarial Sciences was an option within Financial Mathematics
Program and became a separate one in 2009. The Cryptography, Financial Mathe-
matics, Actuarial Sciences programs offer master degrees with and without thesis
option, the Scientific Computing program only master program with thesis option.
All programs except Actuarial Sciences have PhD options.

Objectives of the Institute were stated in the foundation document as:

• Coordination of mathematics based research at METU in fostering interdisci-
plinary collaboration between the department of Mathematics and the other de-
partments.

• Training graduates from different disciplines at the Master’s level in theoretical
and practical aspects of mathematical sciences with the aim of developing their
skills in solving real life problems and applying them to science, engineering
and industry in order to address the interdisciplinary needs of both the public and
private sectors.

• Organizing and conducting international workshops, summer schools in chosen
research areas and short courses to industrial partners.

• Cultivation of the collaboration among research groups in mathematics, science
and engineering departments at METU and with other universities.

• Providing a platform for active participation of research groups from METU in
the international research community by establishing research networks and par-
ticipating in international projects.
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2 Structure of the Programs

The specific aims, main research areas and graduate courses are given below:

Scientific Computing Program:

Parallel to the emergence of Scientific Computing (SC) as an interdisciplinary re-
search area, many graduate programs were developed in recent years at the leading
universities of the world (see for an overview of the SC programs in USA, Petzold
et al. 2001 and in Schäfer 2010). The SC graduate programs are designed according
to the multidisciplinary nature of SC and include the areas of Applied Mathematics,
Numerical Analysis and Mathematical Modeling. In addition to a background in
mathematics and computer science, a SC graduate must have a thorough education
in an application area. Knowledge of computer science, and in particular numeri-
cal algorithms, software design and visualization, enable the SC graduate to make
efficient use of computers and the graduates of the Program are expected to commu-
nicate within a team of engineers, computer scientists and mathematicians to solve
difficult practical problems.

The main research fields are: Continuous optimization with emphasis on deriva-
tive free optimization, semi-infinite optimization, non-smooth optimization, robust
optimization, conic quadratic programming, optimal control of partial differential
equations, application of finite elements in fluid dynamics, metabolic and gene reg-
ulation networks.

Core courses: Scientific Computing I, II, Mathematical Modeling, Numerical
Optimization.

Elective courses: Inverse Problems, Statistical Learning and Simulation, Applied
Nonlinear Dynamics, Hybrid Systems, Advanced Continuous Optimization, Opti-
mal Control and Adaptive Finite Elements, Finite Elements: Theory and Practice,
Game Theory, Basic Algorithms and Programming.

Cryptography Program:

The Cryptography Group (CG) of IAM conducts research in areas such as de-
sign, evaluation, and implementation of cryptographic algorithms and protocols.
CG’s theoretical work on cryptographic algorithms and protocols are based on dis-
crete mathematics. The major focus of the research will be in applied and theo-
retical cryptography. CG’s research areas can be broadly categorized as follows:
Design and analysis of pseudorandom sequences, elliptic and hyperelliptic curve
cryptography, computational number theory, coding theory, computational methods
in quadratic fields, algorithms for finite Abelian groups.

Core courses: Introduction to Cryptography, Stream Ciphers, Applications of Fi-
nite Fields, Public Key Cryptography, Block Ciphers.

Elective Courses: Elliptic Curves in Cryptography, Combinatorics, Algorithmic
Graph Theory, Computer Algebra, Algebraic Aspects of Cryptography, Quantum
Cryptography, Algebraic Geometric Codes.
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Financial Mathematics Program:

The last decades witnessed the projection of sophisticated mathematical tech-
niques to the center of the finance industry. In the 80’s many investment banks hired
mathematicians, physicists and engineers to become financial engineers (see for an
overview of the development finance mathematics, Korn 2010). Gradually, the main
skills defining this professional category are being clarified and today many uni-
versities all over the world are designing programs to develop modeling and math-
ematical expertise in financial applications. In Turkey, the financial sector has en-
joyed unparalleled expansion in the last decades and more sophisticated financial
instruments are expected to be introduced into the sector in the forthcoming ones.
Already there are serious attempts to integrate derivative securities and markets into
the Turkish financial system. These developments will lead to a demand for talented
people trained in the field of financial mathematics. One of the fields connected to
Financial Mathematics is Actuarial Sciences. By analyzing uncertainty of real life
events, actuaries create and apply programs aimed at managing risks. The option of
Financial Mathematics in Life and Pension Insurance focuses on life contingencies.

Core courses are: Financial Derivatives, Financial Management, Stochastic Cal-
culus for Finance, Financial Economics, Time Series Applied to Finance, Probabil-
ity Theory, Simulation.

Elective courses: Markov Decisions Processes, Stochastic Processes, Regulation
and Supervision of Financial Risk, Interest Rate Models, Financial Economics, Risk
Management and Insurance, Energy Trade and Risk Management, Decision-Making
under Uncertainty, Financial Modeling with Jump Processes, Numerical Methods
with Financial Applications, Portfolio Optimization, Pension Fund Mathematics.

3 Development of the Institute

The number of permanent members of the Institute was kept small in order to have
an active and lively interdisciplinary research atmosphere. There are currently seven
permanent members of the Institute. Institute has 48 affiliated faculty members from
METU, 22 affiliated faculty members from other universities and from the industry
and 19 research assistants.

Cooperation agreements with the foreign universities and scientific institutions:
University of Technology, Darmstadt (Germany), Kaiserslautern University (Ger-
many), University of the Aegean (Greece), The Institute of Mathematics of The
Polish Academy of Sciences (Poland), Laboratoire de Mathématiques et Applica-
tions Université de La Rochelle (France), University of Ballarat (Australia).

Partnership with the Industry: Information and Technologies Authority (Turkey),
ValuePrice AG, Frankfurt am Main (Germany).

Number of publications increased within the years steadily. Since 2003, 83 jour-
nal articles, 14 proceedings papers were published with IAM affiliation (Table 1).
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Table 1 Publications
Year 2004 2005 2006 2007 2008 2009
Journal articles 3 8 10 10 23 29
Conference papers – 1 4 2 7 3

The number of the students in 2008–2009 among the programs totally 168; 71
of them were in Cryptography Program, 67 in Financial Mathematics, 24 in Scien-
tific Computing, 6 in Actuarial Sciences. The distribution of the registered student
over the years was given in Table 2. The big majority of the students are still from
Mathematics.

Table 2 Students according to their graduating departments

Mathematics Statistics Engineering Bus. & Econ. Other
2003 52 19 19 10 3
2004 34 11 11 11 4
2005 30 12 14 9 1
2006 28 5 11 3 1
2007 28 6 9 10 1
2008 31 7 12 8 –
2009 47 6 9 6 2

Each year, the Institute produces each year a sufficient number of graduates and
in the recent years first graduates with PhD degrees have been appeared (Table 3).

Table 3 Graduates
MSc with thesis MSc without thesis PhD

2004 10 5 –
2005 13 21 –
2006 10 11 –
2007 10 6 2
2008 17 13 3
2009 9 11 6

The Institute was very active in organizing international and national confer-
ences. Since 2003, 25 conferences and workshops were organized by the Institute.
Some of them are:

• EUROPT (Continuous Optimization Working Group of “The Association of Eu-
ropean Operational Societies”) Conferences on Continuous Optimization: 2003
in Istanbul, 2004 in Rhodes, 2005 in Pec, EURO ( ) Summer Institute 2004 in
Ankara.

• Turkish-German Summer Academy in Advanced Engineering, 2003–2006 in
Kuşadası in cooperation with TU Darmstadt, Department of Mechanical Engi-
neering.



220 Bülent Karasözen

• Annual National Cryptography Conferences since 2005.
• Advanced Mathematical Methods in Finance, 2006 in Antalya.
• Networks in Computational Biology, 2006 in Ankara.
• Workshop on Recent Developments in Financial Mathematics and Stochastic

Calculus: in Memory of Hayri Körezlioğlu, 2008 in Ankara.
• Hybrid Systems, 2008 in Istanbul.
• Workshop on Recent Developments in Applied Probability and Statistics: in

Memory of Jürgen Lehn, 2009 in Ankara.
• Complex Systems—Theory and Applications in Sciences and Engineering, with

Max Planck Institutes, Leipzig, Magdeburg, Stuttgart, 2009 in Ankara.

Within these conferences several special Issues in journals were published:

• Hybrid Systems: Modeling, Simulation, Optimization, in Journal of Process Con-
trol, Vol. 19, 2009.

• Special issue on Networks in Computational Biology, in Discrete Applied Math-
ematics Vol. 157, 2009.

• Special Issue on Challenges of continuous optimization in theory and applica-
tions, in European Journal of Operational Research, Vol: 181, 2007.

• Advances in Continuous Optimization, European Journal of Operational Re-
search, Vol. 169, 2006.

• Optimization in Data Mining, European Journal of Operational Research, Vol.
173, 2006.

One of the mechanisms of conducting research at the Institute was by estab-
lishing and participating in projects. IAM members participated in 21 different in
projects since the foundation of the Institute. International and national projects co-
ordinated by IAM members are:

• Volkswagen Foundation Project, “Optimization of Stirrer Configurations by Nu-
merical Simulation” 2003–2005, with TU Darmstadt, Department of Mechanical
Engineering.

• DAAD Project, Cooperation in the Field of Financial and Insurance Mathemat-
ics, 2003–2006, with TU Kaiserslautern and TU Darmstadt, Department of Math-
ematics.

• NSF-TÜBITAK Project, Development of Modeling and Optimization Tools for
Hybrid systems, 2005–2008.

• DAAD Project, 2007–2011, with TU Darmstadt, Department of Mathematics.
• Turkish State Planning Organization: Research and Development in Cryptogra-

phy: Design, Analysis and Implementation of Algorithms, 2004–2007.
• TÜBITAK (Turkish Research and Technical Council) Industry Project, Develop-

ments and Applications of Open Key Algorithms, 2005–2007.
• TÜBITAK Integrated PhD Program in Continuous Optimization, 2003–2007.
• TÜBITAK Research Project, Numerical Solution of Nuclear Fusion Problems by

Boundary and Finite Element Methods, 2005–2007.



Institute of Applied Mathematics at Middle East Technical University, Ankara 221

4 Conclusions

IAM is now well established within the university and within the scientific commu-
nity in and outside of Turkey. IAM has shown through its research activities, the pos-
sibility of interdisciplinary research conducted through several projects. Especially
in the areas like Cryptography and Financial Mathematics, the Institute attracted
many graduate students. Also new research areas in mathematics, like optimization,
data mining, cryptography, stochastic became popular.
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Financial Mathematics: Between Stochastic
Differential Equations and Financial Crisis
(Panel Discussion Contribution)

Ralf Korn

Abstract We survey the role, scope and subject of modern financial mathematics.
Besides its impact on scientific research in recent years and on the financial mar-
ket (including the current crisis), we will also comment on the possibility to study
financial mathematics and related areas at German universities.

1 Modern Financial Mathematics—A New Area of Mathematical
Education and Research

Modern financial mathematics is a subject that emerged in the recent 30–40 years.
We can mainly distinguish four areas (which have some overlap with each other):

• Modeling. The modeling of the dynamical evolution of various price processes
such as stock prices, goods prices, interest rates, exchange rates (just to name
a few) is a central topic of modern financial mathematics. However, it is very
important that modeling does not necessarily mean forecasting.

• Optimal Investment. The task to determine an optimal strategy for investing
a given amount of money at a financial market is maybe the first problem that
comes to one‘s mind when thinking of financial mathematics. Here, we consider
the possibility of continuously investing, consumption and rebalancing the hold-
ings. This subject is also known as portfolio optimization.

• Option pricing. Here, finding the correct price of a derivative contract which
yields a non-negative payment at some future time depending on the performance
of an underlying good is the task to solve. The most famous result of financial
mathematics, the Black-Scholes-formula for the price of European call and put
options on a stock, is the cornerstone of modern financial mathematics.
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• Risk management. As (nearly) all investments at financial markets contain some
risky part (such as market risk (price risk) or credit risk). It is therefore on one
hand necessary to know the risk of the current position (measured in terms of risk
measures such as Value at Risk (a high (typically 95 or 99%) quantile of the loss
distribution for some fixed time horizon)) and to manage it by buying insurance
against losses such as suitable option contracts.

As uncertainty is one of the main modeling ingredients in financial mathematics, it is
clear that probabilistic methods (in particular continuous-time stochastic processes,
Itô calculus and Monte Carlo methods) are central. Further, partial differential equa-
tions of parabolic type play an important role when it comes to characterize option
prices. Finally, numerical methods such as finite difference methods and methods
of statistics are needed. On top of that the use of stochastic control theory to obtain
optimal portfolios is an advanced mathematical ingredient. And last but not least
statistical methods (such as least-squares, maximum likelihood or Bayes methods)
are necessary to obtain reasonable input parameters.

2 Modern Financial Mathematics 1973–2007: A Success Story

For at least the last two decays, financial mathematics has been one of the most
popular and successful areas of mathematics, both in practise and in theory. There
have been three decisive events that helped in their ways:

• 1973: The Black-Scholes formula for pricing European call and put options was
the first advanced result of modern financial mathematics that had a big impact
on both theory and application (see Black and Scholes 1973).

• 1981: Harrison and Pliska (1981) introduced martingale methods and stochastic
calculus in a detailed way to financial mathematics. This introduction created a
lot of interest on both sides of the academic subject, finance and mathematics.

• End of the 80s: The fall of the Iron Curtain lead to the fact that a real wave
of excellent probabilists from the former communist states concentrated onto
financial mathematics which gave the subject a further boost.

The now rapidly evolving theory gained a big impact on financial markets and
the financial industry. The acceptance of the new methods by the industry were
impressively demonstrated by an enormous demand for mathematicians, a new type
of jobs—the Quants, new financial products (such as Exotic options, credit deriva-
tives, equity linked notes) that exploited the advanced mathematical theory and last
but not least by the fact that now mathematicians gained top positions in banks.

Also, there was a demand for new research with computational but also theoret-
ical aspects in areas such as Monte Carlo methods and random number generation,
parallelization and computer architecture, Malliavin calculus, copulas, to name a
few popular examples.

On the down side, there were already warning signs such as an extensive, some-
times blind believe in models which was caused by practitioners sometimes not un-
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derstanding but using them and by mathematicians only interested in the model but
not the application. On top of that, there was a tendency of arrogance towards statis-
tical and econometric problems which did not produce great mathematical theorems
but which are indispensable for a successful application of financial mathematics at
real markets.

The impact on the academic world of financial mathematics could be seen by
the creation of new study programmes such as Master in Financial Mathematics
or Master in Financial and Actuarial Mathematics. Whole research directions were
introduced such as Computational Finance, Quantitative Finance or Phynance, a
somewhat strange term describing the physicists approach to financial mathematics.
The diverse nature of the subject also required interdisciplinarity among mathemati-
cians. New theoretical problems and areas such as the valuation of exotic options
(where the market always produced new and more complicated payoff structures),
the theory of risk measures and the arbitrage theory with its many variants of the
fundamental asset pricing theorem were just some popular examples. The demand
for the new subject by students lead to the introduction of new chairs in financial
mathematics, maybe more than the subject actually needed.

Modern financial mathematics even has an impact on the political world. This
can be seen in the rules introduced with Basel II where it is in particular required
that internal risk models have to be based on recent statistical methods. Solvency II,
the currently created equivalent of Basel II for the insurance industry, has clear
relations to recent mathematical research in risk measurement and management.

3 Financial Mathematics in the Crisis: 2008–Today

The credit crisis that we are currently facing is certainly the biggest financial crisis
since the introduction of methods of modern financial mathematics. Of course, there
remains the question if the use of financial mathematics is connected or even respon-
sible for the crisis. The answer to this question is not easy, but it can definitely be
said that financial mathematics is not the main reason of the crisis. Financial math-
ematics has been a driving force behind the introduction of complex derivatives. Its
use has also very often given traders the feeling that the models they are using are
the reality.

However, wrong use of a model or a bad model can cause severe losses and
damages to a certain branch of a company. But it cannot be blamed for what we
observe now. Already the use of the term credit crisis gives a hint on what happened,
although it is not simply that a lot of credits have defaulted. It is actually the way the
credits were disguised as credit derivatives, often as so-called CDOs (collateralized
debt obligations). By this innovation, participating in the credit business became
an interesting subject for investors who usually trade in stocks and equally risky
investment opportunities.

The basic idea behind a CDO is that a package of credits granted by a bank is put
together as a bundle and form the basis of a firm, a so-called special purpose vehicle
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(SPV). Then, parts of this company are sold as if the company would have issued
shares. To make this more interesting (as otherwise the parts would only be parts of
a credit portfolio), an action called tranching was introduced. Via this procedure,
shares of different quality of the SPV could be offered:

• shares from the equity tranche which are receiving a high rate of return but which
also have to take the risk of the first defaulting credits,

• shares from the mezzanine tranche that has to take the risk of the defaulting
credits after the equity tranche is fully used up by already defaulted credits. It
therefore receives a smaller rate of return than the equity tranche but a bigger
one than

• shares from the senior tranche that should only consist of high class credits,
preferably of a AAA-rating. For the shares a comparably low rate of return is
paid.

So this repackaging and tranching of the collection of credits allowed investors of
different risk adversity to invest in their preferred tranche of the SPV. Thus, the in-
novation was that a comparably standard business, the trading of credits, had been
transformed into a new type (actually many types) of an—at least at first sight—
attractive investment. As there was an enormous demand for CDOs in 2006 and
2007, there was pressure on the banks to satisfy this demand. This translated di-
rectly into the problem of the availability of credits that are needed as underlyings
for a CDO. However, it—at least—seems that often those credits did not have the
quality that was needed to give the different tranches of a CDO the quality they
were advertised. Thus, the CDOs were overvalued and when it was first discovered
that the credit quality was inferior, the correction of the CDO values lead to serious
(liquidity) problems of their owner, one of the main reasons of the credit crisis.

So what has been the role of the financial mathematician and financial mathe-
matics in this whole affair? Let me first state that a bad model can be a cause for
serious losses but definitely not for losses that we have observed. The credit qual-
ity is the most important input parameter for valuing a CDO. If this information is
totally wrong then the mathematical model used to calculate the value of a CDO
cannot produce a reasonable number. However, the success of financial mathemat-
ics in other areas of finance gave traders the feeling that they could (maybe blindly)
trust mathematical models. They did therefore not question the figures they came
up with. It will thus be a serious future task for financial mathematicians to clarify
what a model can do and what it cannot. And definitely, the reputation of modern
methods of financial mathematics has suffered by the crisis although its contribution
to the crisis itself is surely a minor one.

However, we will need even more financial mathematics in the future to

• obtain a better understanding of risks, maybe supported by legal frameworks
such as Basel III, IV, . . . or even better World I to give the financial markets a
common legal basis.

• educate decision makers in banks and politics in financial mathematics, espe-
cially with regard to the risks and the consequences of new products and new
regulations.
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• be able to manage (and not only measure) risks in a sophisticated way.

Modern trading will not be possible without quantification and modeling of risks
by financial mathematics. Even if a consequence of the current crisis would be to
abandon some of the more exotic products that created whole branches of research
in recent years, there remains a lot to do. The impact of financial mathematics will
thus not decrease, but maybe the topics will change.

4 Financial Mathematics: How to Become a Quant?

While in former times mathematicians working in banks were more or less trained
on the job, the practical success of modern financial mathematics has lead to the
introduction of the specialist job of a quantitative analyst (for short: quant). This is
nowadays the job for mathematicians that relies most on advanced financial math-
ematics methods. It is the main reason for the success of master programmes in
financial mathematics as offered by many universities. Also, in Germany it is often
possible to study mathematics with a focus on financial mathematics. While there
are many master programmes that allow such a study programme, there are so far
only very few bachelor programmes with a specialization in financial mathematics.
The reason for this lies in the complexity of the methods needed in financial mathe-
matics and it remains doubtful that they can be introduced on a sufficient level in a
bachelor programme.

A second type of job that is closely related, but has a longer tradition than the
quant is the actuary. Actuaries are mathematicians that deal with financial and ac-
tuarial risks in insurance companies. Although, their specialization is much more
focused on insurance mathematics (such as life-insurance mathematics, risk theory,
. . . ), it contains a significant part related to financial mathematics. With the growing
complexity of financial products that are attractive for insurance companies, actu-
aries also have to be familiar with modern financial mathematics. To become an
actuary in Germany, one has to pass a post-university education (including exami-
nations) by the German actuarial society DAV.

Both types of jobs and also both the study programmes and/or focuses in finan-
cial and actuarial mathematics are currently much requested by students, a fact that
lead to the introduction of such kind of study programmes at numerous German
universities in recent years.
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Computational Science and Engineering
Education Programs in Germany (Panel
Discussion Contribution)

Michael Schäfer

Abstract In recent years a remarkable variety of study programs in the field of
Computational Science and Engineering emerged in Germany covering Bachelor,
Master, and PhD education. A review on these developments is provided. Similari-
ties and differences in curricula and formal organization issues are discussed.

1 Introduction

It is nowadays well recognized that computational science and/or engineering
(CSE/CE) can be viewed as a key technology that will play a more and more im-
portant role in the future (e.g., Glotzer et al. 2009; Oden et al. 2006). Engineering
applications are becoming increasingly complex. Consequently, the theory required
to analyse corresponding advanced technical systems is becoming more and more
complicated or even intractable. Experimental investigations are often too complex,
too dangerous, too costly, or the experimental conditions are irreproducible. Meth-
ods of CSE/CE, including computer based modeling, analysis, simulation, and opti-
mization, are a cost effective and efficient alternative to investigate engineering ap-
plications and to engineer new technical solutions. It can give insights into phenom-
ena at a level that is unobtainable with traditional scientific approaches. CSE/CE
contributes to finding optimal strategies addressing key issues in future technical
developments for the economy and society, in areas such as energy, health, safety,
and mobility.

To meet and master the corresponding challenges, it is beyond dispute that there
is a strong need of an adequate education in the field of CSE/CE. The question is,
what is the best way to do so? Thoughts on this can be found in two reports of
the SIAM Working Group on CSE Education (Petzold et al. 2001 and Turner et
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Fig. 1 Interdisciplinarity of Computational Engineering

al. 2006). It is common understanding that CSE/CE somehow is a combination of
mathematics, computer science, and engineering sciences (see Fig. 1):

• Computer Science—to handle large simulation tools and software, to deal with
large amounts of data in technical systems, visualization, virtual and augmented
reality, and high-performance computing.

• Mathematics—to develop and investigate mathematical modeling and simulation
methods for solving engineering problems as well as methods for optimization
of components, systems, and networks.

• Engineering Sciences—to specify digital models and to develop and apply algo-
rithms and software tools for use in future engineering environments for virtual
prototyping, lifecycle simulation, network simulation, and simulated reality.

In science and industry, people are needed, who are able combine these skills and
knowledge in an efficient way. There are several possibilities at different levels for
organizing education in CSE/CE, i.e., as:

• minor subject within an existing study program (e.g., Mathematics, Computer
Science, Mechanical/Civil/Electrical Engineering),

• postgraduate MSc program,
• consecutive BSc + MSc program,
• PhD study program.

All of the above options have been realized in the last years in Germany. Nowadays
there are nearly 20 corresponding programs that have been established at different
universities:

• Postgraduate MSc programs at U Bochum, TU Braunschweig, U Duisburg, TU
München (2), U Rostock, and U Stuttgart.

• Consecutive BSc/MSc programs at RWTH Aachen, TU Darmstadt, U Erlangen,
and U Hannover.

• PhD programs at RWTH Aachen, TU Darmstadt, U Erlangen, U Hannover, and
TU München.

• Further related programs: Computational Science (e.g., U Bremen), Computa-
tional Physics (e.g., U Dortmund) Computational Biology, and more.
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In particular, this illustrates that there is a strong activity in the field in Germany.
In the present contribution we will give a brief overview of these developments and
discuss several aspects of the programs.

2 Postgraduate MSc Programs

Postgraduate MSc programs provide a specialization in CSE/CE for students hav-
ing a BSc degree in a classical discipline, i.e., mathematics, computer science, or
engineering science.

Such programs that can be classified as more general ones are listed in Table 1
indicating important organizational issues and mandatory courses. It can be seen
that the programs are organized quite differently and that there also is a significant
variety concerning the content of teaching.

Table 1 More general MSc programs

TU Braunschweig TU München U Rostock
Computational Sciences Computational Science Computational
in Engineering and Engineering Engineering

Semester 4 4 4
Language 50% English English 80% English

50% German 20% German
Departments Math+CS, CivE, ME, CS, Math, CivE, ME, CS+EE, Math, CS

EE EE, Phs Chem
In charge Interdept. committee Interdept. committee CS+EE
Enrollment Participating Depts CS CS+EE

Mathematics Intro Num. PDEs Num. Analysis I, II Num. Math, Num. PDEs,
Parallel Numerics Num. Lin. Alg.

Comp. Science Algorithms+Programs Algorithms, Programming, Software concepts,
Architecture+Networks, Data Managenent,
Visualization (selectable),
OO-Programming

Engineering (selectable) Fluid Mech. Comp. Mechanics, (selectable) Robotics,
Thermodyn, EM Fields, Comp. Fluid Dynamics, Thermodyn.+Fluid Mech.
Systems Theory, . . . Parallel Architectures Circuit Design, Control

Tailored Intro Scientific Comp. Scientific Computing Computational Methods
Projects, Labs Seminar Seminar Project Seminar

Student Research Project Scientific Computing Lab Comp. Electromagnetics
Mandatory courses only

In Table 2 a summary of more specialized MSc programs is given. As can be
observed these programs are dominated by civil engineering departments what is
also reflected in the course programs. Of course, this is mainly due to the origin of
the people pushing forward the programs.
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Table 2 More specialized MSc programs

U Bochum U Duisb.-Essen U Stuttgart TU München
Computational Computational Computational Computational
Engineering Mechanics Mechanics of Mechanics

Mat.+Structures
Semester 4 4 3 4
Language English 50% English English English

50% German
Departments CivE CivE CivE, CS, ME CivE, CS, Math
In charge CivE CivE CivE CivE
Enrollment CivE CivE CivE CivE

Mathematics ODE Numerics Intro Num. Meth. Discrete Math FEM I, II
FEM FEM Num. Program.

Comp. Science Mod. Programming Comp. Lang. Software Lab I, II
Concepts in Eng. for Eng. Par. Computing

Engineering Mech. of Solids, Tensor Calculus Continuum Mech. Continuum Mech.
Fluid Mech. Continuum Mech. Theory of Mat. I, II Tensor Analysis

Test. of Met. Mat. Struc.+Dyn.Sys. I, II Theory of Plates
Thermodyn. Eng. Materials and Theory of Shells

Smart Systems I, II Struct. Dyn.
Hydromech.

Tailored Comput. Modeling Mod.+Sim. I, II, III
OO Modeling Adv. Comp. Meth.

Projects, Labs Case Studies in CE Soft Skills I, II Software Lab I, II
Project

Mandatory courses only

In summary, one can observe a rather large variety in the programs in both or-
ganizational and teaching issues. However, the combination of courses from mathe-
matics, computer science, and engineering science, possibly augmented by tailored
courses, is a common feature.

3 Consecutive BSc/MSc Programs

In Table 3 an overview of consecutive BSc/MSc programs is given together with
some organizational issues. Concerning the mandatory courses these programs are
more similar as for the postgraduate MSc programs, although they differ in the over-
all number of semesters, i.e., 6–7 for BSc and 2–4 for MSc. All four programs focus
on the engineering side of CSE/CE. They contain fundamentals of (Applied) Mathe-
matics, Computer Science, Engineering as well as tailored courses to CE/CSE needs
and characteristics. There are practical courses and several areas of application in
the 5th and 6th semesters. Three programs are connected with dedicated interde-
partmental research (and study) units for CSE/CE.

As an example, in Fig. 2 the structure of the program of the TU Darmstadt is
indicated. In the Bachelor program there is a common set of basic courses for all
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Table 3 Consecutive BSc/MSc programs

RWTH Aachen U Erlangen U Hannover TU Darmstadt
Computational Computational Computer based Computational
Engineering Engineering Engineering Sciences Engineering

Semester 7+3 6+4 6+2 6+4
Language BSc German BSc German German German

MSc English MSc English
Departments Math+CS, ME, EE CivE, ME, EE, CS, CivE, EE,

EE MatE Math ME, Math
In charge ME CS CivE Study Center
Enrollment ME CS CivE Study Center

Fig. 2 Consecutive BSc/MSc program Computational Engineering at TU Darmstadt

students in the first four semesters covering fundamentals of mathematics, computer
science, engineering, as well as interdisciplinary subjects. Afterwards the students
must select one out of five different specialization areas. The Master program con-
sists of compulsory elective courses. These cover general methodical subjects as
well as—depending on the chosen specialization area—discipline specific method-
ical and application specific subjects. The specialization areas cover classical disci-
plines (i.e., civil, mechanical, or electrical engineering or computer science) as well
as (possibly varying) interdisciplinary areas like flow and combustion or computa-
tional robotics.

4 PhD Programs

A strong impact on the field of CSE/CE originated from the recent German Excel-
lence Initiative. In this framework a variety of Graduate Schools for PhD education
in the field have been established:
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• Heidelberg Graduate School of Mathematical and Computational Methods for
the Sciences at U Heidelberg

• Aachen Institute for Advanced Study in Computational Engineering Science at
RWTH Aachen

• Graduate School of Computational Engineering at TU Darmstadt
• International Graduate School of Science and Engineering at TU München

These programs offer a structured PhD education and support of excellent PhD stu-
dents within an interdisciplinary environment. This way they provide a sound basis
for high-level research and for educating highly qualified experts in CSE/CE.

The main research areas in the Graduate Schools vary according to the strengths
in specific fields at the corresponding universities. As an example, in Fig. 3 the
research fields of the Graduate School in Darmstadt are indicated.

Fig. 3 Research areas of the Graduate School of Computational Engineering at TU Darmstadt

The Graduate Schools significantly contribute to further strengthen the field of
CSE/CE in Germany.

5 Conclusions

One can observe many activities in CSE/CE education in Germany. Quite different
approaches at different levels have been implemented. These cover general and spe-
cialized MSc programs, consecutive BSc/MSc programs, and structured PhD pro-
grams. With this, the foundations are laid for the expected future needs in the field.
However, for all concepts there appears to be still room for improvements. Thus,
further developments, taking into account feedback from science and industry, are
necessary.
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