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Preface

Stochastic analysis is currently undergoing a period of intensive research and
various new developments, motivated in part by the need to model, understand,
forecast, and control the behavior of many natural phenomena that evolve in time in
arandom way. Such phenomena appear in the fields of finance, telecommunications,
economics, biology, geology, demography, physics, chemistry, signal processing,
and modern control theory, to mention just a few.

Often, it is very convenient to use stochastic differential equations and stochastic
processes to study stochastic dynamics. In such cases, research needs the guarantee
of some theoretical properties, such as the existence and uniqueness of the stochastic
equation solution. Without a deep understanding of the nature of the stochastic pro-
cess this is seldom possible. The theoretical background of both stochastic processes
and stochastic differential equations are therefore very important.

Nowadays, quite a few stochastic differential equations can be solved by means
of exact methods. Even if this solution exists, it cannot necessarily be used for
computer simulations, in which the continuous model is replaced by a discrete one.
The problems of “ill-posed” tasks, the “stiffness” or “stability” of the system limit
numerical approximations of the stochastic differential equation. As a result, new
approaches for the numerical solution and, consequently, new numerical algorithms
are also very important.

This volume contains 8 refereed papers dealing with these topics, chosen from
among the contributions presented at the international conference on Stochastic
Analysis and Applied Probability (SAAP 2010), which was held at Yasmine-
Hammamet, Tunisia, from 7 to 9 October 2010. This conference was organized by
the “Applied Mathematics & Mathematical Physics” research unit of the preparatory
institute to the military academies of Sousse, Tunisia. It brought together some 60
researchers and PhD students, from 14 countries and 5 continents. Through lectures,
communications, and posters, these researchers reported on theoretical, numerical,
or application work as well as on significant results obtained for several topics
within the field of stochastic analysis and probability, particularly for “Stochastic
processes and stochastic differential equations.” The conference program was
planned by an international committee chaired by Mounir Zili (Preparatory Institute
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to the Military Academies of Sousse, Tunisia) and consisted of Darya Filatova (Jan
Kochanowski University in Kielce, Poland), Ibtissem Hdhiri (Faculty of Sciences of
Gabes, Tunisia), Ciprian A. Tudor (University of Lille, France), and Mouna Ayachi
(Faculty of Sciences of Monastir, Tunisia).

As this book emphasizes the importance of numerical and theoretical studies
of the stochastic differential equations and stochastic processes, it will be useful
for a wide spectrum of researchers in applied probability, stochastic numerical and
theoretical analysis and statistics, as well as for graduate students.

To make it more complete and accessible for graduate students, practitioners,
and researchers, we have included a survey dedicated to the basic concepts of
numerical analysis of the stochastic differential equations, written by Henri Schurz.
This survey is valuable not only due to its excellent theoretical conception with
respect to modern tendencies, but also with regard to its comprehensive concept
of the dynamic consistency of numerical methods for the stochastic differential
equations. In a second paper, motivated by its applications in econometrics, Ciprian
Tudor develops an asymptotic theory for some regression models involving standard
Brownian motion and the standard Brownian sheet. The result proved in this paper is
an impressive example of convergence in distribution to a non-Gaussian limit. The
paper “General shot noise processes and functional convergence to stable processes”
by Wissem Jedidi, Jalal Almhana, Vartan Choulakian, and Robert McGorman also
addresses the topic of stochastic processes, and the authors consider a model appro-
priate for the network traffic consisting of an infinite number of sources linked to a
unique server. This model is based on a general Poisson shot noise representation,
which is a generalization of a compound Poisson process. In the fourth paper of
this volume, Charles El-Nouty deals with the lower classes of the sub-fractional
Brownian motion, which has been introduced to model some self-similar Gaussian
processes, with non-stationary increments. Then, in a paper by Mohamed Erraoui
and Youssef Ouknine, the bounded variation of the flow of a stochastic differential
equation driven by a fractional Brownian motion and with non-Lipschitz coefficients
is studied. In the sixth paper, Antoine Ayache and Qidi Peng develop an extension of
several probabilistic and statistical results for stochastic volatility models satisfying
some stochastic differential equations for cases in which the fractional Brownian
motion is replaced by the multifractional Brownian motion. The advantage of the
multifractional stochastic volatility models is that they allow account variations
with respect to time of volatility local roughness. The seventh paper was written
by Archil Gulisashvili and Josep Vives and addresses two-sided estimates for the
distribution density of standard models, perturbed by a double exponential law. The
results obtained in this paper can especially be used in the study of distribution
densities arising in some stochastic stock price models. And in the last paper in the
volume, Mario Lefebvre explicitly solves the problem of maximizing a function of
the time spent by a stochastic process by arriving at solutions of some particular
stochastic differential equations.

All the papers presented in this book were carefully reviewed by the members of
the SAAP 2010 Scientific Committee, a list of which is presented in the appendix.
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Chapter 1

Basic Concepts of Numerical Analysis

of Stochastic Differential Equations Explained
by Balanced Implicit Theta Methods

Henri Schurz

Abstract We present the comprehensive concept of dynamic consistency of
numerical methods for (ordinary) stochastic differential equations. The concept
is illustrated by the well-known class of balanced drift-implicit stochastic Theta
methods and relies on several well-known concepts of numerical analysis to
replicate the qualitative behaviour of underlying continuous time systems under
adequate discretization. This involves the concepts of consistency, stability,
convergence, positivity, boundedness, oscillations, contractivity and energy
behaviour. Numerous results from literature are reviewed in this context.

1.1 Introduction

Numerous monographs and research papers on numerical methods of stochastic
differential equations are available. Most of them concentrate on the construction
and properties of consistency. A few deal with stability and longterm properties.
However, as commonly known, the replication of qualitative properties of numerical
methods in its whole is the most important issue for modeling and real-world
applications. To evaluate numerical methods in a more comprehensive manner,
we shall discuss the concept of dynamic consistency of numerical methods for
stochastic differential equations. For the sake of precise illustration, we will treat the
example class of balanced implicit outer Theta methods. This class is defined by

H. Schurz (°<)
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2 H. Schurz

m

X+ [Ona(tnrt. Xup 1)+ =O)alty, X) hat Y b (1. X)) AW,
Xn-l—l = m /= (11)

+ 3¢ (. Xa) (X = X )| AW/ |
j=0

with appropriate (bounded) matrices ¢/ with continuous entries, where I is the unit
matrix in R?*? and

AW = hyo AW] = W (ty1) = W (1)
along partitions
O=t<h<...<thy <tgy1<...<ty, =T <400

of finite time-intervals [0, T']. These methods are discretizations of d-dimensional
ordinary stochastic differential equations (SDEs), [3, 14,32,33,81,86, 102, 108]

dX()=a(t. X(1))dt+ Y b/ e, X@)dW/ ()| =D b/ (1. X@)dW/ (1) | (1.2)

J=1 =0

(with b®=a, WO(t)=t), driven by i.i.d. Wiener processes W/ and started at
adapted initial values X(0) = xo € R. The vector fields ¢ and b/ are supposed
to be sufficiently smooth throughout this survey. All stochastic processes are
constructed on the complete probability basis (£2, %, (Z;)i>0, P ).

The aforementioned Theta methods (1.1) represent a first natural generalization
of explicit and implicit Euler methods. Indeed, they are formed by a convex
linear combinations of explicit and implicit Euler increment functions of the
drift part, whereas the diffusion part is explicitly treated due to the problem of
adequate integration within one and the same stochastic calculus. The balanced
terms ¢/ are appropriate matrices and useful to control the pathwise (i.e. almost
sure) behaviour and uniform boundedness of those approximations. The parameter
matrices (0,),N € R9*¢ determine the degree of implicitness and simplective
behaviour (energy- and area-preserving character) of related approximations. Most
popular representatives are those with simple scalar choices &, = 6,1 where [
denotes the unit matrix in R?*? and 6, € R'. Originally, without balanced terms
¢/, they were invented by Talay [138] in stochastics, who proposed ®, = 61 with
autonomous scalar choices 8 € [0, 1]. This family with matrix-valued parameters
© € RY* has been introduced by Ryashko and Schurz [116] who also proved
their mean square convergence with an estimate of worst case convergence rate 0.5.
If & = 0 then its scheme reduces to the classical (forward) Euler method (see
Maruyama [90], Golec et al. [35-38], Guo [39, 40], Gyongy [41, 42], Protter and
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Talay [109], Romisch & Wakolbinger [115], Tudor & Tudor [143] among others),
if & = 1 to the backward Euler method which is also called (drift-)implicit Euler
method (Hu [55]), and if & = 0.5 to the (drift-implicit) trapezoidal method,
reducing to the scheme

1 A :
Xn-l—l =X, + E [a(tn—i-ly Xn+1) + a(tn, Xn)] hy, + Zbl (Zn, Xn)AVan (1.3)
j=1

without balanced terms ¢/. A detailed study of the qualitative dynamic behaviour of
these methods can be found in Stuart and Peplow [136] in deterministic numerical
analysis (in the sense of spurious solutions), and in Schurz [120] in stochastic
numerical analysis.

A slightly different class of numerical methods is given by the balanced implicit
inner Theta methods

m
Xn+a (tn+0nhnv @an+l+(I_@n)Xn) hn + ij (t117 Xn) AVan
Xyp1= J=1 (1.4)

m
+ 3¢ (. Xa) (X = X )| AW |
j=0

where 0, € R, ©, € R**? such that local algebraic resolution can be guaranteed
always. The most known representative of this class (1.4) with ®, = 0.5
and without balanced terms ¢/ is known as the drift-implicit midpoint method
governed by

Xn+1 = X, +a

Iny1 + 1y Xn+1 + Xn
2 ’ 2

) Ay + Y b (6, Xo) AW/ (15)

j=1

This method is superior for the integration of conservation laws and Hamiltonian
systems. Their usage seems to be very promising for the control of numerical
stability, area-preservation and boundary laws in stochastics as well. The drawback
for their practical implementation can be seen in the local resolution of nonlinear
algebraic equations which is needed in addition to explicit methods. However, this
fact can be circumvented by its practical implementation through predictor-corrector
methods (PCMs), their linear- (LIMs) or partial-implicit (PIMs) derivates (versions).
In passing, note that the partitioned Euler methods (cf. Strommen—Melbo and
Higham [135]) are also a member of stochastic Theta methods (1.1) with the special
choice of constant implicitness-matrix

00
o= ().
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In passing, note that stochastic Theta methods (1.1) represent the simplest class of
stochastic Runge-Kutta methods. Despite their simplicity, they are rich enough to
cover many aspects of numerical approximations in an adequate manner.

The purpose of this survey is to compile some of the most important facts
on representatives of classes (1.1) and (1.4). Furthermore, we shall reveal the
goodness of these approximation techniques in view of their dynamic consistency.
In the following sections we present and discuss several important key concepts
of stochastic numerical analysis explained by Theta methods. At the end we
finalize our presentation with a summary leading to the governing concept of
dynamic consistency unifying the concepts presented before in a complex fashion.
The paper is organized in 12 sections. The remaining part of our introduction
reports on auxiliary tools to construct, derive, improve and justify consistency of
related numerical methods for SDEs. Topics as consistency in Sect. 1.2, asymptotic
stability in Sect. 1.3, convergence in Sect. 1.4, positivity in Sect. 1.5, boundedness
in Sect. 1.6, oscillations in Sect. 1.7, energy in Sect. 1.8, order bounds in Sect. 1.9,
contractivity in Sect. 1.10 and dynamic consistency in Sect. 1.11 are treated. Finally,
the related references are listed alphabetically, without claiming to refer to all
relevant citations in the overwhelming literature on those subjects. We recommend
also to read the surveys of Artemiev and Averina [5], Kanagawa and Ogawa [66],
Pardoux and Talay [106], S. [125] and Talay [140] in addition to our paper. A good
introduction to related basic elements is found in Allen [1] and [73] too.

1.1.1 Auxiliary tool: It6 Formula (Ito Lemma)
with Operators £/

Define linear partial differential operators

82
dxy 0x;

m d
a 1 i i
0 _ J J
L= —+ <a(t,x),Vy >4 +§ E E by (t,x)b; (¢, x) (1.6)

ot —
j=lik=1

and /= < b/ (t,x),V, >4 where j=1,2,...,m. Then, thanks to the fundamen-
tal contribution of Itd [56] and [57], we have the following lemma.

Lemma 1.1.1 (Stopped It6 Formula in Integral Operator Form). Assume that
the given deterministic mapping V€ C%2([0, T] x RY,R*). Let T be a finite .F,-
adapted stopping time with0 <t <t < T.

Then, we have

VL X@) = V(. X0)+ Y / ‘g Vs, X(s)) d W/ (s). (1.7)
j=0""
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1.1.2 Auxiliary Tool: Derivation of Stochastic Ito-Taylor
Expansions

By iterative application of Itd formula we gain the family of stochastic Taylor
expansions. This idea is due to Wagner and Platen [144]. Suppose we have enough
smoothness of V and of coefficients a, b/ of the It6 SDE. Remember, thanks to It6’s
formula, for ¢t > ¢,

V(e X(1) = V(to. X(10))+ / 2, X(s)ds+) LTV, X () AW (s)

j=1710

Now, take V (¢, x) = x at the first step, and set b°(¢, x) = a(t, x), W°(t) = t. Then
one derives

X(1) = X(t0) + /

fo

t a(s. X(s)ds + Y / [ b (s, X(s)) d W (s)
j=17r

V =b/
= X(to) + / |:a(t0,X(t0)) +y kaa(u, X(u))de(u)] ds
to k=0 to
+Y / t [bf(to, X))+ ' L*a(u, X(u))d Wk(u)j| dW(s)
j=17r k=010
' =a

= X(w) + Y00 X ) [ W)

=0

Euler Increment

+ Z [ t /t ' L5b7 (u, X (u)) dW*u)d W (s)

Jk=0

Remainder Term R;
V= 2%
= X(t)
m ¢ m t ps
+ )b (19, X (t0)) / AW/ ()4 > .Z5b7 (19, X (1)) / / d Wk (u)dWi(s)
to to J1o

Jj=0 Jk=1

Increment of Milstein Method
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m t s . .
+y / / L7 (u, X(u)) dud W (s)
j=1 to Jio

. m t kaa(u,X(l/l))de(u)ds
XL

+ Z /t: /tos /tol‘ glfkbf(z’ X(Z))dWl(Z)de(u)de(s)

jk=1,=0

Remainder Term R,
vV = kb
= X(t)
m t m t N
+ be(zo, X(t)) / dw’ (s)+2 LEbI (1, X (10)) / / dW* (w)d W (s)
j:0 1o o Yo

k=0

Increment of 2nd order Taylor Method

+ Z /tot /: /t;” Pl pkpi (z. X(Z))dWl(z)de(u)de' )

jk =0

Remainder Term R,
V=24
= X(to)
m t m tops
+ 3000 X [ W6+ Y2 0 X)) [ [ aw aw )
=0 to o J1o

k=0

Increment of 3rd order Taylor Method

+ Z LT LRI (10, X(10)) / t / / udW"(v)de(u)de'(s)

k=0

Increment of 3rd order Taylor Method

m t ps pu vglg"gkbj X dWl AW’ de W
+J,k.%:=o/to /fO/to f (@ X(@)dW () d W' (v)dW" (w)d W' (s)

Remainder Term R;,;
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This process can be continued under appropriate assumptions of smoothness and
boundedness of the involved expressions. Thus, this is the place from which most
numerical methods systematically originate, and where the main tool for consis-
tency analysis is coming from. One has to expand the functionals in a hierarchical
way, otherwise one would loose important order terms, and the implementation
would be inefficient. Of course, for qualitative, smoothness and efficiency reasons
we do not have to expand all terms in the Taylor expansions at the same time (e.g.
cf. Milstein increment versus 2nd order Taylor increments). The Taylor method can
be read down straight forward by truncation of stochastic Taylor expansion. Explicit
and implicit methods, Runge-Kutta methods, inner and outer Theta methods, linear-
implicit or partially implicit methods are considered as modifications of Taylor
methods by substitution of derivatives by corresponding difference quotients,
explicit expressions by implicit ones, respectively. However, it necessitates finding a
more efficient form for representing stochastic Taylor expansions and hence Taylor-
type methods. For this aim, we shall report on hierarchical sets, coefficient functions
and multiple integrals in the subsection below.

In general, Taylor-type expansions are good to understand the systematic con-
struction of numerical methods with certain orders. Moreover, they are useful to
prove certain rates of local consistency of numerical methods. However, the rates
of convergence (global consistency) of them are also determined by other complex
dynamical features of numerical approximations, and “order bounds” and “practical
modeling / simulation issues” may decisively limit their usage in practice. To fully
understand this statement, we refer to the concept of “dynamic consistency” as
developed in the following sections in this paper.

1.1.3 Auxiliaries: Hierarchical Sets, Coefficient Functions,
Multiple Integrals

Kloeden and Platen [72] based on the original work of Wagner and Platen [144] have
introduced a more compact, efficient formulation of stochastic Taylor expansions.
For its statement, we have to formulate what is meant by multiple indices,
hierarchical sets, remainder sets, coefficient functions and multiple integrals in the
1t6 sense.

Definition 1.1.1. A multiple index has the form o = (o, 00,..., ;@) Where
l() € N is called the length of the multiple index «, and n(«) is the total number
of zero entries of @. The symbol v denotes the empty multiple index with [(v) = 0.
The operations a— = (a1, ..., 0g)—1) and —a = (@, ..., @) are called right-
and left-subtraction, respectively (in particular, (o;)— = —(a;) = v). The set of all
multiple indices is defined to be

Mem={a=(1, 2, ..., 01w) i €lk k+1,... m},i=1,2,....l(a),[(@)€N}.
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A hierarchical set Q C .y, is any set of multiple indices o € .#{,, such that
v e Q and @ € Q implies —a € Q. The hierarchical set Q; denotes the set of all
multiple indices « € .#;,, with length smaller than k € N, i.e.

Ov={a e Myy:la) <k}.

The set
R(Q) ={a € Mom\Q:a—€ Q}

is called the remainder set R(Q) of the hierarchical set Q. A multiple (1t6) integral
Iy 5[V (.,.)] is defined to be

J L salVC D) AW (@) if I(@) > 1
Los V()] = ot ' o .

Jo Vi, X,) dW®e (u)  otherwise
for a given process V (¢, X(t)) where V € C%° and fixed o € .#,, \{v}. A multiple
(1t6) coefficient function V,, € C°° for a given mapping V = V(¢,x) € C'®-2@
is defined to be

() :
V(. x) = LIV, _(t, x) if . (@) >O.
V(t, x) otherwise
Similar notions can be introduced with respect to Stratonovich calculus (in fact, in
general with respect to any stochastic calculus), see [72] for 1t6 and Stratonovich
calculus.

1.1.4 Auxiliary Tool: Compact Formulation of Wagner-Platen
Expansions

Now we are able to state a general form of [t6-Taylor expansions. Stochastic Taylor-
type expansions for It6 diffusion processes have been introduced and studied by
Wagner and Platen [144] (cf. also expansions in Sussmann [137], Arous [4], and
Hu [54]). Stratonovich Taylor-type expansions can be found in Kloeden and Platen
[72]. We will follow the original main idea of Wagner and Platen [144].

An It6-Taylor expansion for an [t6 SDE (1.2) is of the form

VI, X(t) = D Vals, XD ass + Y TasilVal., )] (1.8)
a€Q ®€R(Q)

for a given mapping V = V(¢,x) : [0, T] x R — R¥ which is smooth enough,
where I, ;; without the argument [-] is understood to be 1, 5, = Io5,[1]. Sometimes
this formula is also referred to as Wagner-Platen expansion. Now, for completeness,
let us restate the Theorem 5.1 of Kloeden and Platen [72].
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Theorem 1.1.1 (Wagner-Platen Expansion). Let p and t be two %;-adapted
stopping times withty < p <t < T < 400 (a.s.). Assume V : [0, T] xIRY — IR*.
Take any hierarchical set Q € M .

Then, each It6 SDE with coefficients a, b’ possesses a It6-Taylor expansion (1.8)
with respect to the hierarchical set Q, provided that all derivatives of V,a,b’
(related to Q) exist.

A proofis carried out in using the It6 formula and induction on the maximum length
Supgep /() € IN. A similar expansion holds for Stratonovich SDEs.

1.1.5 Auxiliary Tool: Relations Between Multiple Integrals

The following lemma connects different multiple integrals. In particular, its formula
can be used to express multiple integrals by other ones and to reduce the compu-
tational effort of their generation. The following lemma is a slightly generalized
version of an auxiliary lemma taken from Kloeden and Platen [72], see proposition
5.2.3,p. 170.

Lemma 1.1.2 (Fundamental Lemma of Multiple Integrals). Lero = (ji, j2,...,
j/(a)) [S <//0’m \{U} with [(«) € IN.
Then, Vk € {0,1,...,m} Vt,5: 0 <s <t < T we have

I(a)

(Wk(t) - Wk(s))la,S,l = ZI(j],jz,...,ji,k,ji+],...,j[(a)),s,t (19)
i=0

I()
i=0

= I(k,jlquq---qu(a))q&t + I(jlqk,qu---,jl(a)),sql + I(jl,quk,j3q---~,j1(a))~,sql +..F
I(@)

i=0

where ¢, denotes the characteristic function of the subscribed set.

Hence, it obviously suffices to generate “minimal basis sets” of multiple integrals.
In order to have a more complete picture on the structure of multiple integrals, we
note the following assertion.

Lemma 1.1.3 (Hermite Polynomial Recursion of Multiple Integrals). Assume
that the multiple index o is of the form

Ol=(j],jz,...,j](a))EQ//()_mWiﬂ’lj] =j2=...=j[(a)=j60,1,...,”’1
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and its length I () > 2.
Then, for all t witht > s > 0 we have

(t—s)@ .
R /=0

Iyt = Wi . W (M ; (1.10)
WI(@t) =W () g—s0 — (t =) (@)1 i1

[(x)! T

This lemma corresponds to a slightly generalized version of Corollary 5.2.4
(p. 171) in [72]. It is also interesting to note that this recursion formula for
multiple It6 integrals coincides with the recursion formula for hermite polynomials.
Let us conclude with a list of relations between multiple integrals which exhibit
some consequences of Lemmas 1.1.2 and 1.1.3. For more details, see [72]. Take
Jokef{0,1,....om}and0 <s <t <T.

Ly = W) — W (s)

1
](J'J)-SJ = 5 (](j)st ))
1
Ljjyse = 31 (I(/)st 3( _S)I(/)st)
1
LGjgass = 35 (]u)u =), + 30 - 5)2)
1 3 2
Lijiiise = 5 (I(Jm 100t = )1 ()5, + 15 —5) 1(j>,s,r)

(¢ =) (jysa = 1o + Loj)sa
(¢ =) jhyse = Lk 0rsa + 1Gok) s + L0k
Iijysidjyse = 20 j.)se + 1G.0j)se + 1j.0)51
LGysadGoyse = Lojrse + 1Gogysa + 20,0150

Some attempts has been made to approximate multiple stochastic integrals. For
example, [72] use the technique of Karhunen-Loeve expansion (i.e. the Fourier
series expansion of the Wiener process) or [30] exploit Box counting methods and
related levy areas. A minimal basis set for multiple integrals is known, see [28, 29].
However, computationally more efficient approximation procedures of multiple
stochastic integrals are still a challenge to be constructed and verified (especially
in higher dimensions).
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1.2 Local Consistency

Throughout this section, fix the time interval [0, 7] with finite and nonrandom
terminal time 7. Let |.||; be the Euclidean vector norm on IR? and ./, »([s,1]) the
Banach space of (#,)s<u<;-adapted, continuous, R?-valued stochastic processes
X with finite norm [|X|.», = (supsfustlEHX(s)HS)l/p < 400 where p > 1,
([0, s]) the space of (%, ZA(R?))-measurable stochastic processes and Z(S)
the o-algebra of Borel sets of inscribed set S.

Recall that every (one-step) numerical method Y (difference scheme) defined by

Yig1 =Y, + @u(Y)
with increment functional @, has an associated continuous one-step representation
Yix(@) = x + @(t]s,x)
along partitions
O=t<ti<...<thy <thy1<...<t, =T < 4o00.

The continuity modulus of this one-step representation is the main subject of related
consistency analysis. For this analysis, the auxiliary tools we presented in the intro-
duction such as Itd formula and relations between multiple integrals are essential in
deriving estimates of the one-step representation. For example, the continuous time
one-step representation of stochastic Theta methods (1.1) is given by

Yx(t) := x4+ [Oa(t, Y () + (I — O)a(s,x)] (t — )

+Zb/(s,x)(W/(t) (1.11)

=1

—WI(s)) + D¢l (5, 3)(x = Yo )W (1) = W (s)]
Jj=0
driven by stochastic processes WY, forall t > s > 0 and started at x € ID at time s.

Definition 1.2.1. A numerical method Y with one-step representation Y , () is
said to be mean consistent with rate r, on [0, 7] iff 3 Borel-measurable function
V :D — ]Rh_ and 3 real constants Kg > 0,89 > 0 such that V(%,, Z(ID))-
measurable random variables Z(s) with Z € .Z ([0, s]) and Vs,¢ : 0 <t —s5 < &

II]E[XS,Z(S)(I) - Ys,Z(s)(t)|jY]||d < Kg V(Z(S)) (t - S)ro- (112)
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Remark 1.2.1. In the subsections below, we shall show that the balanced Theta
methods (1.1) with uniformly bounded weights ¢/ and uniformly bounded param-
eters ®, are mean consistent with worst case rate ry > 1.5 and moment control
function V(x) = (1 + ||x||§)1/ 2 for SDEs (1.2) with global Holder-continuous and
linear growth-bounded coefficients b/ € F ¢ C'2([0, T]xID) (j = 0,1,2,...,m).

Definition 1.2.2. A numerical method Y with one-step representation Y , () is
said to be p-th mean consistent with rate r, on [0, 7] iff 3 Borel-measurable
function V : D — ]Rl+ and 3 real constants KPC > 0,80 > 0 such that
Y (%, #(ID))-measurable random variables Z(s) with Z € .#,([0, s]) and Vs, :
0<t—s<36

1/
(ElIX, 260 (0) = Yoz @IEIF]) = KSVEZE) =97 (1L13)

If p = 2 then we also speak of mean square consistency with local mean square
rate ;.

Remark 1.2.2. Below, we shall prove that the balanced Theta methods (1.1) are
mean square consistent with worst case rate r, > 1.0 and moment control function

Vix)y =010+ ||x||2)(1/ % for SDEs (1.2) with global Lipschitz-continuous and linear
growth-bounded coefficients 5/ € F c C'([0,T]xID) (j =0,1,2,...,m).

In the proofs of consistency of balanced Theta methods (1.1) below, it is crucial
that one exploits the explicit identity

Ys,x (t) - X
= M; 1) [Oa(t, Yy () — (I — O)a(s, x)] (t —5)

+ M) b (s, ) (W (1) =W (s))

j=1

= M1 (0)® [a(t, Vs (1)) — als, x)] / du+ M) > b (s.x) / AW (W)

Jj=0

where [ is the d xd unit matrix in R?*?, b%(s, x) = a(s, x), Wo(t) =1, WO(s) = s
and

Mo () =1+ ¢ (s.0)|[W/ (1) = W (s)].
j=0

1.2.1 Main Assumptions for Consistency Proofs

Let ||.||¢xs denote a matrix norm on IRY*? which is compatible to the Euclidean
vector norm |||l on R?, and (.,.); the Euclidean scalar product on R.
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Furthermore we have to assume that the coefficients a and b/ are Caratheodory
functions such that a strong, unique solution X = (X(¢))o</<r exists. Recall
that D € RY is supposed to be a nonrandom set. Let ID be simply connected.
To guarantee certain rates of consistency of the BTMs (and also its rates of
convergence) the following conditions have to be satisfied:

(AO) Vs,t € [0,T] : s <t = P ({X(¢) € D|X(s) € D})=P ({Y,,(¢)eD|
yebD})=1
(A1) Jconstants Kg = Kg(T), Ky = Ky(T) > 0 such that

Vie[0.T]VxeD: Y |[b/(t.0)|; < (Kp)* [V (1.14)
j=0

sup E[V(X(0)) < (Kv)’E[V(X(O)] < +00 (1.15)

0<r<T
with appropriate Borel-measurable function V : D — ]R'Jr satisfying
VxeD:|lxlls = V(x)
(A2) Holder continuity of (a, b/), i.e. 3 real constants L, and L; such that
Vs,t:0<t—s<8,Vx,y eD:|la(t,y)—a(s,x)||la < La(Jt —s|"/?

+ly —xlla) (1.16)

DoUB y) = b (s, 05 < (o) (r=s|+]ly=xII7)  (1.17)
j=1

(A3) dreal constants Ky = K (T) > 0 such that, for the chosen weight matrices
¢/ € R¥*? of balanced Theta methods (1.1), we have

Vst 0<t—s<8, YxeD : IM ! (t) with ||M, ! (t)||axa <Ku (1.18)

(A4) dreal constants K., = K.,(T) > 0 and K., = K.,(T) > 0 such that, for
the chosen weight matrices ¢/ € R%*¢ of BTMs (1.1), we have

Vs €[0.T)¥x €D : Y |l (s.x)a(s. 0)|la < KeaV(x)  (1.19)
j=0

m m

DO ek (s )b (5. 0) 1< KZ, [V ()] (1.20)

k=0=0
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(AS) |O)laxa < Ko, |[I — Ollaxa < K-, and all step sizes h, < § are
uniformly bounded by nonrandom quantity § such that

KMKBK(_.)S() < 1.

Remark 1.2.3. Condition (A3) with uniform estimate (1.18) is guaranteed with the
choice of positive semi-definite weight matrices ¢/ (j = 0,1,...,m) in BTMs
(1.1). In this case, we have Kj; < 1. To control boundedness of moments and an
appropriate constant K, for invertible matrices M , it also suffices to take uniformly
bounded weights ¢ and vanishing ¢/ for j = 1,2, ..., m together with sufficiently
small step sizes i. Assumption (A5) ensures that the implicit expressions of Y are
well-defined, together with the finiteness of some moments and Holder-continuity
(i.p. a guarantee of local resolution).

1.2.2 Rate of Mean Consistency

For simplicity, consider BTMs (1.1) with autonomous implicitness matrices ®@ €
RY*d (i.e. ® is independent of time-variable n).

Theorem 1.2.1 (Mean Consistency of BTMs with Rate r¢ > 1.5). Assume that
the assumptions (A0)—(A5) are satisfied.

Then, the BTMs (1.1) with autonomous implicitness matrices ©® € R and
nonrandom step sizes h, < 8y < 1 are mean consistent with worst case rate
ro > 1.5.

Remark 1.2.4. The proof is based on auxiliary Lemmas 1.2.1 and 1.2.2 as stated
and proved below.

Proof. First, rewrite the one-step representations of X and Y in integral form to

Xox() =x+ ) b, X@)dW ()

j=0""*

Yoi(t) = x + M (0)[Oa(t, Y, (1) + (I — O)a(s, x)] /t du
+Ms;1 ()b’ (s, x) /t AW/ (u).
Notice that

Yo (1)

i /t b7 (s, x)d W/ (u)

j=1""

:x+/ta(s’x)du+(quxl(t)_l)/ta(s’x)du—‘_

+ Mo / [a(t. Yor () — als, Oldu+ > (M7 0)-1) / b7 (5, x)d W),

j=1
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Second, subtracting both representations gives
Xs,x (t) - Ys,x (t)

= /t[a(u, X)) —a(s,x)]du + Z /t[bj (u, X (u)) — b7 (s, x)]d W (u)

j=1""

+ M) = 1) /t a(s,x)du+ M;}(1)© /t[a(t, Y. (1)) —a(s,x)]du

s w0 [ penawi.

j=1
Recall that the above involved stochastic integrals driven by W/ form martingales
with vanishing first moment.
Third, pulling the expectation IE over the latter identity and applying triangle
inequality imply that

||E[Xs,x([) - Ys.x(t)]”d

< [Ena(u, X () — als, v)lladu+ B M (0) — 1]l [ua(s,x)nddu
+E(M ol [ (e, Yo @)) — ats, 9)llad]
+ ilE[IIMS_x‘(t)—III : ||[bf(s,x>de'<u>||d]
e
<L, [tnu—sv/z (Bl X2 0 — xIB) )

K =) Y [ 6. 0aG0 | E] [ dW @]
j=0 §

+ K (t = )OI Lallt = "> + (Bl Ysx (1) = x[[7)"/].

Note that we used the facts that

M) -1 = —M;J(Z)ch(s,x) /tde(u)
k=0 s
and
E| S S M0k 5, 0b (5, ) / "Wt ) / Wit | = o

k=0 =1
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since all W* are independent and symmetric about O (i.e. odd moments of them are
vanishing to zero).
Fourth, we apply Lemma 1.2.2 in order to arrive at

E[X;(0) = YoxD]lla < Lall + K5 V()] [t(u —5)"2du

m ¢ 1/2
+ Ky (t=5)Y_lle? (s, x)als, )lla (E[| / de<u>|2])
Jj=0 y

+ Ky KoLa[l + KXVt —5)*?

A

(5 Lo+ Kur(Keq + KoL+ KIYV ()~ 5

o((t —5)"?)

under the assumptions (A0)—(AS). Consequently, this confirms the estimate of local
rate ro > 1.5 of mean consistency of BTMs (1.1) with autonomous implicitness
matrices @ € R?* along any nonrandom partitions of fixed time-intervals [0, T']
with step sizes & < 1, and hence the conclusion of Theorem 1.2.1 is verified. >

Remark 1.2.5. Moreover, returning to the proof and extracted from its final estima-
tion process, the leading mean error constant K, OC can be estimated by

2
KOC < [gLa + KM(Kca + K@La)](l + K)I;I)

where K is as in (1.23) (see also Remark 1.2.7). For uniformly Lipschitz-
continuous coefficients b/ ( j = 0,1,...,m), the functional V' of consistency is
taken as

V(x) = (1+|x])"?

which represents the functional of linear polynomial growth (as it is common in the
case with globally Holder-continuous coefficients b/).

Lemma 1.2.1 (Local uniform boundedness of L>-norms of X and Y).
Assume that

VxeD: x| < VP < 1+]x|3,

the assumptions (Al) and (A3) are satisfied, and both X and Y are ID-invariant for
deterministic set D C R? (i.e. assumption (A0)). Furthermore, for well-definedness
of Y, let (AS) hold, i.e.

KMKBK(_.)S() <1



1 Basic Concepts of Numerical Analysis Stochastic Differential Equations Explained 17

with ||O|laxa < Ko and ||l — Ol|axa < Ki-6.
Then E!Kf, Kf (constants) Vx e DT >t > s> 0with |t —s| < §p < 1

E[| X« ()]2] < (K22 [V ()] (1.21)
E[||Y,.(0)]]2] < (KE)’[V(x)], (1.22)

i.e. we may take V(x) = (1+]||x| |421)1/2 in the estimates of local uniform boundedness
of 2nd moments.

Proof of Lemma 1.2.1. Let 7,5 > O such that [t —s| < landx € ID C R? for
ID-invariant stochastic processes X and Y (IP -a.s.).

First, consider the estimate for X . Recall the property of Itd isometry of stochastic
integrals and independence of all processes W/ . We arrive at (by CBS- or Holder-
inequality)

E||X,.(1)][3
2

=E|x+ /t a(u, Xw)du+y /t b7 (u, X (u))d W (u)

Jj=1 § d
) 2
t m t
< 3||x||3 + 3E /a(u,X(u))du +3E Z/ b7 (u, X (u))d W (u)
s d j=1 s 4

m ¢

53||x||3,+3(t—s>lﬁ[/ llaGue, X @) | B | +3E | 3 [ 1157 e, X ()|
s J =173

i om
< 3lhrlF 4 38 [ | 318 e X | d
N =0

< 31| + 3(K5)? / E[V(X(w)du

< 3[|x|I7 + 3(Kp)*(Ky)’ [V ()P (t —s)
<31+ (Kp)*(Ky)* (1 — )]V (x)]?
whenever 0 < s < ¢ < T are nonrandom and |t — s| < 1. Hence, the uniform

boundedness of second moments of X could be established.
Second, consider a similar estimation for Y. We obtain (apply CBS-inequality)

E||Y,. (0|3

—E|x + M;;(@a(z, Yo (1) + (I — @)a(s, x)) (t —s)
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2

w3 M0 (5, 0)d W )
—1Vs

d

< 4||x|3+4K3, KSEa(t, Y )3 —5)?

+AKY KT plla(s. 0|5 — ) + 4K3, > |67 (s.0)|[5 = 5)
ji=1

< 4[V(xX)] + 4K3, K3 (Kp) E[V (Y, < (1))t — 5)

+AKE (1+K7_ )Y (167 (. )5t —9)
ji=1

<4V + 4K 3 K5 (Kp) E[V (Yo ()t — 5)°
+4K5, (14 K7 o) (Kp)’ V()P (t — 5)
1+ K2,(Kp)?K2(t —s)> + 1+ K?2_,(t — )
1 — K%,(Kp)2K2 (80)?
41 + K3, (Kp)*K3(80)> + 1 + K7_ 480
- 1— K,ZM(K,_r;)ZK?,)(SO)2

<4 V(0P

V(0P

where [V(x)]* < 1 + ||x||> and K3,(K5)*K2(80)> < 1 are additionally supposed
in the latter estimation. Therefore, the uniform boundedness of second moments of
Y is verified. o

Remark 1.2.6. Indeed, while returning to the proof of Lemma 1.2.1, under the
assumptions (A0)—(A1), (A3) and (AS) with V(x) = (1 + ||x||621)1/2 we find that
K fg can be estimated by

KY <301+ (Kp) (Kv)]
as long as [t — s| < 1. Similarly, K£ is bounded by

1+ K3,(Kp)*K2(80)* + 1+ K7_58
1— K3, (Kp)?K3(80)?

Ky <4

whenever K3, (Kp)*K3(80)*> < land |t —s| <8 < L, ||x]]Z < [V(x)]* < 1+
[|x]|3 for all x € D.

Lemma 1.2.2 (Local mean square Holder continuity of X and Y). Assume that

VxeD: x| < VP < 1+]x|3,
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the assumptions (Al)—(A3) and (AS) are satisfied, and both X and Y are
ID-invariant for deterministic set ID C R? (i.e. assumption (A0)).
Then EK)IZ, K{;{ (constants) VT >t > s > 0with |t —s| < 1
E[|| X (1) — x|3] < (K¢’ V()P — ) (1.23)
E[||Y,.(t) — x||7] < (Ky)’ V()P (2 —5) (1.24)
for all nonrandom x € D C RY, i.e. we may take V(x) < (1 + ||x||621)'/2 in the
estimates of Holder-continuity modulus of 2nd moments.

Proof of Lemma 1.2.2. Let t,s > 0 such that |t —s| < 1 and x € D € R? for
ID-invariant stochastic processes X and Y (IP -a.s.).

First, consider the estimate for X . Recall the property of It6 isometry of stochastic
integrals and independence of all processes W/. We arrive at

2

El|X, (1) - x| = E / 'l X)du+ Y / b (. X)d W )
j=17%

s

< / E | (t = 9)llat, X@)I + Y16 (e X))} | du

J=1

d

/ alu, X (u))du

s

+ Z]EH / b7 (u, X (u))d W/ (u)

j=1

/ Zubf(u X@)I3 | du < (Kp)? / E[V(X(u)ldu

=0
< (Kp)*(Kv) B[V (Xs < ()P |t=s|=(K ) (Kv)*[V ()] (1)

whenever 0 < s <t < T are nonrandom and |t —s| < 1.
Second, consider a similar estimation for Y. We obtain (apply CBS-inequality)

]E”st(t) - x”i’

= E| M (@a(t, Yo (1) + (I — @)a(s,x))(t —5)

2

+ Z / )b (s, x)d W (u)

d
< 3K§4K§)1E||a(z, Yo (O3t —5)* + 3K K7 _plla(s, )|zt - 5)?
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+3K5, Y 116 (5. 0|13 — 5)

j=1
< 3K3 (Kp) (KGE[V (Y, ()]
+K7_ o[V (1—5)*+3K3 (Kp)*[V (X)) (t—5)
< 3Ky (Kp)[KG(KP) + Kj_o + 1V (t —5)
whenever 0 < s <t < T are nonrandom and |t — s| < 1. This completes the proof
of Lemma 1.2.2. <o

Remark 1.2.7. Indeed, while returning to the proof of Lemma 1.2.2, under the
assumptions (A0)-(A5) with V(x) = (1 + ||x||§)1/2 we find that K can be
estimated by

Ky < (Kp)*(Ky)®.
Similarly, K ;’ is bounded by

Ky < 3K (Kp)[K(KP) + Ki_o + 1].

1.2.3 Mean Square Consistency

For simplicity, consider BTMs (1.1) with autonomous implicitness matrices ®@ €
]Rd xd .

Theorem 1.2.2 (Mean Square Consistency of BTMs with Rate r;>1.0). Assume
that the assumptions (A0) - (AS5) are satisfied, together with

VxeD:V(x) = (14 |x]?)"%

Then, the BTMs (1.1) with autonomous implicitness matrices ® € R and
nonrandom step sizes h, < 8y < 1 are mean square consistent with worst case
rater, > 1.0 along V on D C R

Remark 1.2.8. The proof is based on auxiliary Lemmas 1.2.1 and 1.2.2 as stated in
previous subsection.

Proof. First, from the proof of Theorem 1.2.1, recall the difference of one-step
representations of X and Y in integral form is given by

Xs,x(t) - Ys,x(t)

> [ B xw) -5 6.0l

j=1

=[ l[a(u, X(u)) —a(s,x)]du +
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+ (M (t)—I)/ a(s,x)du+ Mg, (t)()/ la(t, Yo (t)) —a(s, x)]du
+ Z(M;x' (t)—1) /t b/ (s, x)d W (u).
j=1 s

Second, take the square norm and apply Holder-inequality (CBS-inequality) in order
to encounter the estimation

]E| |Xs,x(l) - Ys,x(t)llfl

/ [a(u, X(u)) —a(s,x)]du + Z/ [b7 (u, X (u)) — b’ (s, x)|d W/ (u)
j=1
—F(Ms;1 t)y—1) /t a(s,x)du + Msfxl ((31C) /t[a(t, Y;x(t)) —a(s, x)]du
2

+Z(M (1) — 1)/ bI (s, x)d W (u)

d

<S5E H/t[a(u, X(w))—a(s,x)]|du

+SZ]EH / [b7 (u, X (u))—b (s, x)]dW/(u)

j=1

2

+5E

(M, "(1)— I)/a(s x)du

+5]EHM (t)O/[a(t,Y,.,x(t))—a(s,x)]du

d

+5§:]EH( (z)—z)/ b s, x)de(u)
j=1

Third, recall Itd isometry and the facts that

M) — 1 =M 0 Y (s, %) / "W )
k=0 s
and
DO M) (5. x)b (5. x) / AWt / Wi | =0

k=0 j=1

since all W* are independent and symmetric about O (i.e. odd moments of them are
vanishing to zero). Therefore, we may simplify our latter estimation to
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E|[| X, (1) — Y, ()3

<5(t —s)E |:/ [la(u, X(u)) — a(s,x)||§dui|

53k [ xw) -4 60l ]
j=1 '

+5]E|: /tde(u)i|(t—s)

+SE [IIMS,,J(I)@IIfzxd/ IIa(t,Ys,x(l))—a(s,X)Ilfzdu}(l — )

[dwk(u)

SIOLﬁ(Z—S)/[(M—S) +1E||Xs.x(u)—XIIledu+5L§/[(M—S)+1E|IXs,x(u)—XIlledu

2
d

M;Yl (I)ch (s, x)a(s, x)
k=0

m m 2

+SZZ]E'

j=1k=0

M) / tck (s, x)b7 (s, x)d W (u)

s

d

+5K3 (Koo [V (2 = 5)
+10K3, K5 L; / [=5) + BIIY,(0) — 2 31dutc - 5)
+5K3 (ch)z[vs(xﬂza —s)
<10L5(1 — ) / [+ YV PIms)du + 5L / [+ K VORI — s)du
+5K 3 (Kea)*[VOP (2 — )
+10K3, K512 / t[z + KA VOOP) (= s)du(t — s)
+5K}, (ch)z[vs(xﬂza —s)’
<SL21+ K VP —s)’ + ngn + K{ VPl —s)?

+5K12l/[(Kca)2[V(x)]2(t - S)2
+10K3, KALA[1 + KZ V() —s)°
+5K3 (Kep)* [V (£ — 5)?

ss[(Li+%Li)(l+K§)+Ki4[(Kw>2+2KéLi(1+K§’>+(ch>2]][V(x>]2<z—s>2

whenever |1 — s| < 8y < 1 and [V(x)]* = 1 + ||x||3. Thus, the rate of mean square
consistency of BTMs (1.1) can be estimated by r, > 1.0. This completes the proof
of Theorem 1.2.2. <o
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Remark 1.2.9. Indeed, while returning to the proof of Theorem 1.2.2, we may
extract an estimate for the leading mean square consistency coefficient ch by
setting

KS = \/5[(L3 L0+ K + KR [(Ke? +2K3L20 + Kf) + (K]

along functional V(x) = (1 + ||x||3)"/? under the assumptions (A0)—(A5).

1.2.4 P-th Mean Consistency

Similarly, to the previous proof of mean square consistency, one can verify estimates
on the rates r,, of p-th mean consistency with p > 1.

Theorem 1.2.3 (p-th mean consistency rater, > 1.0 of BTMs (1.1)). Assume that
the assumptions

(AO)—(AS) with V(x) = (1 + ||x||5)1/'” on D C R? are satisfied with general
exponent p > 1 instead of p = 2.

Then, the BTMs (1.1) with autonomous implicitness matrices © € R and
nonrandom step sizes h, < 8y < 1 are p-th mean consistent with worst case rate
r, = 1.0.

The details of the proof are left to the reader (just apply analogous steps as
in proof of Theorem 1.2.2, exploiting Holder-type and Burkholder inequalities
together with Itd isometry relation and the symmetry of Gaussian moments. For
the subcase 1 < p < 2, one may also apply Lyapunov inequality (see Shiryaev
[134]) to conclude r, = 1.0. For p-th mean consistency of Euler methods, see also
Kanagawa [61-65]. In fact, the error distribution caused by Euler approximations
is studied in Bally et al. [6-9], in Jacod & Protter [58, 59] and in Kohatsu-Higa &
Protter [77].

1.3 Asymptotic Stability

Asymptotic stability and long-term behavior of numerical methods has been
investigated by numerous authors, see [1,2, 10, 16-19,45-47,53,73,78-80, 87, 88,
97,107,110,111,113,114,117].

For the sake of simplicity, we will mostly separate our stability analysis applied
to purely drift-implicit BTMs

Yot = Yut[0at i1, Yoy )+(1=0)alt, Y)lha+ Y b7 (tn, V) AW,/ (1.25)
j=l1

with nonrandom scalar implicitness 6 € [0, 1] and linear-implicit BIMs
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Yarr = Yo+ Db/t YDAW] + ¢/ (1. ) (Yo = Yo )| AW/ | (1.26)
j=0 j=0

with appropriate weight matrices ¢/ .

1.3.1 Weak V -Stability of Numerical Methods

Definition 1.3.1. A numerical method Y with one-step representation Y ,(¢) is
said to be weakly V-stable with real constant Ks = Kg(T) on [0, T] iff V:IR?
—>]R£r is Borel-measurable and 3 real constant §, > 0 such that V(.%,, Z(R%))-
measurable random variables Z(s) and Vs,7 : 0 <t —s < §p < 1

E[V (Y, z¢))]F] < exp(Ks(t —5)) V(Z(s)). (L.27)

A weakly V-stable numerical method Y is called weakly exponential 1 -stable iff
Ks < 0. A numerical method Y is exponential p-th mean stable iff Y is weakly
exponential V-stable with V(x) = ||x||5 and Kg < 0. In the case p = 2, we speak
of exponential mean square stability.

Remark 1.3.1. Exponential stability is understood with respect to the trivial solution
(equilibrium or fixed point 0) throughout this paper.

Theorem 1.3.1. Assume that the numerical method Y started at a (Fy, B(R?))-
measurable Yy and constructed along any (%,)-adapted time-discretization of [0, T

with maximum step size hy, < 8¢ is weakly V -stable with 8, and stability constant
Ks on[0,T). Then

A

Ve e[0,.T]: E[V(Yox )] = exp(Ks)E[V(Yo)l. (1.28)
sup E[V(Yoy,(1)] = exp([Ks]4+ T)E[V(Y))] (1.29)

0<t<T

where [.]+ denotes the positive part of the inscribed expression.

Proof. Suppose that t; <t < ty41 with iy < §o. If IE[V(Y))] = +00 then nothing
is to prove. Now, suppose that IE[V(Yy)] < +o00. Using elementary properties of
conditional expectations, we estimate

E[V(Yox, ()] = E[E[V (Y, (0)]-#,]]

< exp(Ks(t — 1)) - E[V(Yy)]
=exp(Ks(t — &) - BV (Y, _ v, (&)] = ...
< exp(Kst) - E[V(Yo)] < exp([Ks]+1) - E[V(Yo)]
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< exp([Ks]+T) - E[V(Y))]

by induction. Hence, taking the supremum confirms the claim of Theorem 1.3.1. ¢

Remark. Usually V plays the role of a Lyapunov functional for controlling the
stability of the numerical method Y.

Theorem 1.3.2. Assume that (A1) and (A3) with V(x) = p* + [|x]|3 (p € R'
some real constant) hold. Then the BIMs (1.26) with hy, < 8o < min(1,T) are
weakly V -stable with stability constant

Ks < Ky -Kg- Q2+ Ky - Kp) (1.30)

and they satisfy global weak V -stability estimates (1.28) and (1.29).

Proof. Suppose that (A1) and (A3) hold with V(x) = p? + ||x||>. Recall that
0<t—s <68 < 1. Let Z(s) be any (F,, Z(R?))-measurable random variable.
Then

E[p” + ||, 2|13 7:] = Bl + | Z(s) + M. (1) Y b (s. Z(s) (W (1)
j=0
— W/ ()I[F17]
= E[p* + ||Z(s) + M}, (D)a(s. Z())(t —5)
M0 (0 D b (5. Z(s) W (1) = W ()| [71-7]
ji=1

=+ %Elllz + M (Dals, (=)

M0 YD s =W DI,
j=1

+%]E[| |z + Msle ®)a(s,2)(t —s)

z=Z(s)

—M (1) )b (s W () = W ()]
j=l1
= ,02 + IE[HZ + MSTZI (t)a(s, Z)(t - 5)||31]‘Z=Z(S)

(1M, (0) Y b (5. (W (1) = W (s)) 11|

j=1

= PHIZO)IR+2[E<z M (Da(s. 9>al] _ ) (—5)

+E[IM, ) (Da(s. 3] f1 -9

=Z(s)
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+ Y ElM Ob . IG W (0= W ()] _ )
j=1

(1+ 2Ky Kp + K3 K31t —5)) - (0> + | Z(s)13)
< exp(2KuKp + K3 K31t — ) - (0> + 1 Z()][3).

IA

A

hence the BIMs (1.26) are weakly V -stable with V(x) = p? + ||x||§. It obviously
remains to apply Theorem 1.3.1 in order to complete the proof. o

Remark 1.3.2. Interestingly, by setting p = 0, we gain also a result on numerical
mean square stability. However, for results on asymptotic mean square stability of
BTMs and BIMs, see below or [120].

1.3.2 Asymptotic Mean Square Stability for Bilinear Test
Equations

Consider (autonomous) linear systems of [t6 SDEs with stationary solution Xo, = 0

dX(t) = AX(t)dt + Y B/ X(@)dW (1) (1.31)
j=l1

started in (%o, Z(IR?))-measurable initial data X(0) at time r = 0. Let p €
(0, +00) be a nonrandom constant.

Definition 1.3.2. Assume X = 0 is an equilibrium (fixed point, steady state). The
trivial solution X = 0 of SDE (1.2) is called globally (asymptotically) p-th mean
stable iff VX, : E[|X(0)]|) < +00 = lim; 400 E[| X (1)[|} = 0. In the case
p = 2 we speak of global (asymptotic) mean square stability. Moreover, the
trivial solution X = 0 of SDE (1.2) is said to be locally (asymptotically) p-th
mean stable iff Ve > 035 : VX, : E[|[X(0)|] <8 = Vr > 0: E[|X(®)|] <e.
In the case p = 2 we speak of local (asymptotic) mean square stability.

Remark 1.3.3. To recall some well-known facts from general stability theory, an
exponentially p-th mean stable process is also asymptotically p-th mean stable.
However, not vice versa in general. Furthermore, a globally (asymptotically) p-th
mean stable trivial solution is also locally (asymptotically) p-th mean stable. For
nonlinear systems of SDEs (1.2), the concepts of local and global stability do not
coincide. For linear autonomous systems, these concepts coincide.

Let Y, be (%, B(R“))-measurable in all statements in what follows.

Definition 1.3.3. Assume Y = 0 is an equilibrium (fixed point, steady state). The
trivial solution Y = 0 of BTMs (1.1) is called globally (asymptotically) p-th mean
stable iff VY : ]E||Y0||§ < 400 = limn%Jroo]EHYan = 0. In the case p = 2
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we speak of global (asymptotic) mean square stability of Y. Moreover, the trivial
solution ¥ = 0 of BTMs (1.1) is said to be locally (asymptotically) p-th mean
stable iff Ve > 035 : VY : ]E||Y0||5 <§ = Vn>0: ]E||Yn||5 < ¢. In the case
p = 2 we speak of local (asymptotic) mean square stability of Y.

Now, consider the family of drift-implicit Theta methods

Yorr =Yy + (0AY,p1 + (1 — ) AY)h, + Y B/ Y, AW/ (1.32)
j=1

applied to autonomous systems of SDEs (1.31) with scalar implicitness parameter
6 eR' (i.e. ® = 0I,all ¢/ = 0in(1.1)).

Theorem 1.3.3 (Asymptotic m.s. stability of BTMs for linear SDEs
[118,120]). For all equidistant approximations with h > 0, the following (global
and local) asymptotic properties hold:

(1) For @ = 0.5, X = 0 mean square stable <= Y = 0 mean square stable.

(2) X = 0 mean square stable and 0 > 0.5 =—> Y = 0 mean square stable.

(3) X = 0 mean square unstable and 0 < 0.5 = Y = 0 mean square unstable.

(4) YO = 0 mean square stable with 6, < 6, => Y% = 0mean square stable
with 0,.

Proof. Use spectral theory of monotone positive operators .Z and some knowledge
on Lyapunov equation

AM + MAT + ZBJMBJT =_C
j=1

(see concept of mean square operators . as introduced by S. [118,120], cf. remarks
below). o

Remark 1.3.4. (i) Systematic stability analysis of systems of discrete random map-
pings is possible by the study of sequences of positive operators (mean square
operators) related to each numerical method. For example, the family of mean
square stability operators .%), related to drift-implicit Theta-Euler methods (1.32)
is given by the mappings.

S €SP > 2,8 = (Lo = Oh A7 (Lo + (1= Ohy Sy + (1= )y )
+hy Y BIS(B)T) (L = 0 AT
j=1

where I; represents the d x d unit matrix, and, for n € IN and nonrandom step
sizes h,, we have
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IE[KI-HY;IY-‘H] = ”%l (IE[YH YnT]) = l_[ "E’ﬂk (]E[YOYOT])
k=0

for the related evolution of all 2nd moments (similar for random step sizes).

(i) The system formulation in terms of positive operators is needed since the
problem of stochastic test equation is not solved and one cannot reduce
the general case of SDEs to simple one-dimensional test equations within
non-anticipating stochastic calculus in sharp contrast to the situation in
deterministic calculus (due to the presence of non-commutative operators
in general). One-dimensional test equations are only relevant for stability
of systems with complete commutative structure (This truly striking fact is
commonly not recognized in the literature correctly).

(iii) Stochastic A-, AN-stability and monotone nesting of stability domains can be
established, see [118, 120].

(iv) More general, there is a systematic study of stochastic dissipative and mono-
tone systems to carry over ideas for linear systems to nonlinear systems ones
(cf. [120, 123, 124]). One needs to distinguish between systems with additive
and multiplicative noise in related stability analysis.

An interesting, illustrative and simple complex-valued test equation is given by
the stochastic Kubo oscillator perturbed by multiplicative white noise in Stratono-
vich sense

dX(t) = iX(t)dt + ipX(t) o dW(1) (1.33)

where p € R!,i> = —1. This equation describes rotations on the circle with
radius || X(0)||c = [Xo|. S. [118] has studied this example and shown that the
corresponding discretization of drift-implicit Milstein methods explodes for any step
size selection, whereas the lower order drift-implicit trapezoidal method with the
same implicitness parameter 6 or appropriately balanced implicit methods (BIMs)
could stay very close to the circle of the exact solution even for large integration
times! This is a test equation which manifests that “stochastically coherent” (i.e.
asymptotically exact) numerical methods are needed and the search for efficient
higher order convergent methods is somehow restricted even under linear bound-
edness and infinitely smooth assumptions on drift and diffusion coefficients. So
Dahlquist barriers for consistent and stable linear multi-step methods are bounded
by order 1.0 in stochastic settings.

In passing, note that Stratonovich-type equations (1.33) are equivalent to Ito-type
SDE

dx@t) = (i — %pz)X(l)dl +ipX(t)dW(t),
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thereby SDEs (1.33) belong to following subclass (1.34). A more general bilinear
test equation is studied in the following example.

Example of one-dimensional complex-valued test SDE. Many authors (e.g.
Mitsui and Saito [98] or Schurz [118]) have studied the SDE

dX(t) = AX(t)dt + yX (1) dW (), (1.34)

with X(0) = xo, A,y € €', representing a test equation for the class of completely
commutative systems of linear SDEs with multiplicative white noise. This stochastic
process has the unique exact solution X (¢) = X(0)-exp((A —y?/2)t +yW(t)) with
second moment

E[X(1)X*(t)] = E|X(1)]> = Eexp(2(A — y*/2),t + 2y, W (1)) - |x0|?
= [xol” - exp(2(A, — ¥ /2 + ¥} /2)t + 2¥71)
= |xo|* - exp((2A, + |y|D)1)

where xo € €' is nonrandom (z, is the real part, z; the imaginary part of z € C")
and * denotes the complex conjugate value. The trivial solution X = 0 of (1.34)
is mean square stable for the process {X(¢) : t > 0} iff 24, + |y|> < 0. Now, let
us compare the numerical approximations of families of (drift-)implicit Theta and
Milstein methods. Applied to (1.34), the drift-implicit Milstein and drift-implicit
Theta methods are given by

14+ (1 —-0)Ah vy 22— 1)h/2
y () = + (L= ) + y&Nh + v (€ — Dh/ YO (1.35)
' 1 —6Ah
and
y® _ L+ (1 -0)Ah+ véNh (&) 136
n1 1= 6rh RO (1.36)
respectively. Their second moments P,I(E/ M) — ]E[Y,l(E/ M)Y,l(E/ M) satisfy

1+ (1—0)Ah + yEvh yiE - 1)
pM _ E 2R n 2. p2/4 ). pon
o ( | Y e S VAL AR

_ pon_ (L4 (L= OMP + |yl + y[*h2/2)"
— o TEVE

o (114 (1= O+ [yPr\" ™! £
> Fo )'( 1= 6a? = AN (=012

provided that Py*" = E[Y," v\ 1= E[Y," Y"1 = Py, and
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n+1
pn _ piy (1L (L= O + [y Ph + y|h/2)"
n+1 n+1 |1 +(1_9)Ah|2+|y|2h
n+1
—p® (14 lyI*h*/2
ntl [T+ (1 —0)AR|2+ |y|2h ’
while assuming identical initial values PO(M) = PO(E). Hence, if the drift-implicit

Milstein method (1.35) possesses a mean square stable null solution then the
corresponding drift-implicit Theta method (1.36) possesses it too. The mean square
stability domain of (1.35) is smaller than that of (1.36) for any implicitness 6 €
[0, 1]. Besides, the drift-implicit Theta method (1.36) has a mean square stable null
solution if 6 > % and 21, + |y|? < 0. The latter condition coincides with the nec-
essary and sufficient condition for the mean square stability of the null solution of
SDE (1.34). Thus, the drift-implicit Theta method (1.36) with implicitness 6 = 0.5
is useful to indicate mean square stability of the equilibrium solution of (1.34). More
general theorems concerning the latter observations can be found in S. [118], [120].

1.3.3 Mean Square A-Stability of Drift-Implicit Theta Methods

A-stability is one of the most desired properties of numerical algorithms. We
could distinguish between the linear A-stability and nonlinear A-stability concepts,
depending on the corresponding linear and nonlinear test classes of dissipative
SDEs. However, one may find a unified treatment of the classical AN- and A-
stability concepts in moment sense. Following S. [118, 120,124, 125], one can intro-
duce the following meaningful definitions, motivated basically by the fundamental
works of Dahlquist [23] in deterministic numerical analysis. Fix p € [1, +00).

Definition 1.3.4. The numerical sequence ¥ = (Y,), N (method, approximation,
etc.) is called p-th mean A-stable iff it has an asymptotically (numerically) p-th
mean stable equilibrium solution ¥ = 0 for all autonomous SDEs (1.34) with
asymptotically p-th mean stable equilibrium solution X = 0, while using any
admissible step size sequence h,, with

0 < inf h, < hy < sup h, < 4o0.
nelN nelN

The numerical sequence ¥ = (Y,), N (method, approximation, etc.) is said to be
p-th mean AN-stable iff it has an asymptotically (numerically) p-th mean stable
equilibrium solution Y = 0 for all SDEs (1.2) with asymptotically p-th mean stable
equilibrium solution X = 0, while using any admissible step size sequence %, with

0 < inf h, < hy < sup h, < 4o0.
nelN nelN
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In case of p = 2, we speak of mean square A- and mean square AN-stability.

Remark 1.3.5. Recall, from literature, that the bilinear real-valued test SDE (1.34)
possesses an asymptotically mean square stable trivial solution X = 0 iff

24 + |y* <.

Theorem 1.3.4 (M.s. A-stability of drift-implicit Theta methods [120]). Assume
that Yy = Xy is independent of all o-algebras o(W/ (t) 1 t > 0) and IE[X,]> < 0.
Then the drift-implicit Theta method (1.25) applied to SDEs (1.34) with 6 > 0.5
provides mean square A-stable numerical approximations (i.e. when p = 2).

Proof. For simplicity, let A,y € R'. Suppose that (1), N is nonrandom and
admissible with

0 < inf h, < hy < sup h, < 4o0.
nelN nelN

First, note that the drift-implicit Theta methods (1.25) applied to SDEs (1.34) with
scalar 6 € [0, 1] is governed by the scheme (with i.i.d. &, with IE[§,] = 0 and
]E[En]z =1

Yo _ 1+(1_9)/\hn+)’gﬂ\/h—n.yg
G 1 — 6Ah,

Second, its temporal second moment evolution P? = IE[Y,Y]? can be rewritten to as

S+ (1= 0) AR + |y )Phi
P9 — PG . I
n+1 0 klj[() |1 —9},hk|2

- 24 + |y )? + (1 —20)|A|*hy
=pl. 1 h
0 kl:[)( * TV ¢

n

20 + |y
< pl. 1+ 227
= %o 1_[( T YA
k=0
" 20 + |y ?
< pl. 1 h
=70 l_[( +|1—9)ksup,6]Nhl|2 k

k=0

where P¢ = E[Yy]%, 6 > 0.5 and 24 + |y|> < 0. Third, one shows that there are
real constants ¢; and ¢, such that

exp (C]th) P(f = exp(cltn+1)P09 < P,fJrl < exp(czt,lJH)P(;9
k=0
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= exp (C2Z hk) P(f (1.37)

k=0

for all n € IN. Fourth, it remains to verify that ¢, < 0 whenever 21 4+ y?> < 0 and
6 > 0.5. In fact, one finds that

n

21+ |y)?
Pne §P0 €X ( hk
+1 =70 kll P\ T =0xsup, o 112

24 + |y)? .
= pl. h
0 exp(“_eksuplen\]hllzkg; k

20 + |y |?
=pl. t .
0 exp(|1 —on SUp, N h1|2 n+1

hence
24 +y?

<
== 0xsup, N hm)?

since 24 4+ ¥ < 0 and # > 0.5. Consequently, lim, s 1 oo Pno = 0 for all Py with
adapted Yy € L*(w, %y, P ) and for all admissible step sizes h, if 24 + y*> < 0
and 6 > 0.5. This fact establishes mean square A-stability of drift-implicit Theta
methods (1.25) with 8 > 0.5, hence the proof is complete. o

A warning. The drift-implicit Theta methods with 6 > 0.5 such as backward
Euler methods are on the “sure numerically stable” side. However, we must notice
that they provide so-called “superstable” numerical approximations. Superstability
is a property which may lead to undesired stabilization effects of numerical
dynamics whereas the underlying SDE does not have stable behaviour. Of course, it
would be better to make use of asymptotically exact numerical methods such as
midpoint-type or trapezoidal methods (cf. explanations in sections below).

Remark 1.3.6. Artemiev and Averina [5], Mitsui and Saito [98], and Higham
[47], [48] have also established mean square A-stability, however exclusively for
equidistant partitions only. They analyze the more standard concept of stability
function which is only adequate for equidistant discretizations and test classes of
linear SDEs (for stability regions for 1D linear test SDEs, see also [15]). There is
also an approach using the concept of weak A-stability, i.e. the A-stability of related
deterministic parts of numerical dynamics discretizing linear SDEs. However, this
concept does not lead to new insights into the effects of stochasticity with respect to
stability (cf. [95] or [72]).
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1.3.4 Asymptotic Mean Square Stability for Nonlinear Test
Equations

Let X, (¢) denote the value of the stochastic process X at time ¢ > s, provided that
it has started at the value X; (s) = x at prior time s. x and y are supposed to be
adapted initial values. Let IT denote an ordered time-scale (discrete (/7 = IN) or
continuous (IT = [0, +00))) and p # 0 be a nonrandom constant.

Definition 1.3.5. A stochastic process X =(X(¢));e;  withbasis (2, Z, (% ),em,
IP) is said to be uniformly p-th mean (forward) dissipative on R iff 3K g S
RVt >sell Vx e R

E[1X.0)115| 7] < exp (pKE @ =) 121l (1.38)

with p-th mean dissipativity constant K g. X is said to be a process with p-th
mean non-expansive norms iff Vi > s € [1 Vx € RY

E[I1X 115 7] < 115 (1.39)

If p = 2 then we speak of mean square dissipativity and mean square non-
expansive norms, resp.

For dissipative processes with adapted initial data, one can re-normalize p-th
power norms to be uniformly bounded and find uniformly bounded p-th moment
Lyapunov exponents by K g . Hence, its p-th mean longterm dynamic behaviour is
under some control. Processes with non-expansive p-th mean norms have uniformly
bounded L”-norms even without renormalization along the entire time-scale I1.
These concepts are important for the uniform boundedness and stability of values
of numerical methods. They are also meaningful to test numerical methods while
applying to SDEs with uniformly p-th norm bounded coefficient systems.

Let p > 0 be a nonrandom constant.

Definition 1.3.6. A coefficient system (a, b/) of SDEs (1.2) and its SDE are said to

be strictly uniformly p-th mean bounded on R? iff 3K € RVt € RVx € R?

p—2 i <bi(t,x),x >
2 |11

1 m )
<a(t.x).x >a +5 > |Ib (0l + < Kos ||x][7.
j=1 j=1

(1.40)

If p = 2 then we speak of mean square boundedness.

Lemma 1.3.1 (Dissipativity of SDE (1.2), S.[120,124]). Assume that X satisfies
SDE (1.2) with p-th mean bounded coefficient system (a,b’).
Then X is p-th mean dissipative for all p > 2 and its p-th mean dissipativity
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constant K f)( can be estimated by
Kg < Kopp.

This lemma can be proved by Dynkin’s formula (averaged Itd formula). Let us
discuss the possible “worst case effects” on the temporal evolution of p-th mean
norms related to numerical methods under condition (1.40) with p = 2. It turns out
that the drift-implicit backward Euler methods are mean square dissipative under
this condition and mean square stable if additionally Kop < 0.

Theorem 1.3.5 (Dissipativity + expo. m.s. stability of backward EM[120, 124]).
Assume that

(i) 6, = 1.
(ii) 0 < inf, v by < sup,epy hn < +00, all h, nonrandom (i.e. only admissible
step sizes).
(iii) 3K, <0Vx € R ¥t = 0 : < a(t,x),x >=< K,||x||>.
(iv) 3KpVx € RY Ve =0 = Y7 (|7 (6, )15 < Kpllx]]].
Then, the drift-implicit Euler methods (1.1) with scalar implicitness 8, = 1 and

vanishing ¢/ = 0 are mean square dissipative when applied to SDEs (1.2) with
mean square bounded coefficients (a, b’) with dissipativity constant

2K, + K
KX = sup 2ot X (1.41)
v 1 =21, K,

If additionally 2K, + K}, < 0 then they are mean square non-expansive and

2K, + Kp

- 1—-2K, sup h,
nelN

Ky (1.42)

and hence exponentially mean square stable if 2K, + K, < 0

Proof. Rearrange the scheme (1.1) for the drift-implicit Theta methods with
nonrandom scalar implicitness (&,) = 6,1 to separate implicit from explicit part
such that

X"‘H - e’lh’la([’l'i‘l’ Xn-i-l) =X, + (1 - en)hna(ln, Xn)
+ Db (6, X ) AW (1.43)
j=1

Recall that X denotes the value of the iteration scheme (1.1) started at values X, €
L?*(82, %y, P ). Now, take the square of Euclidean norms on both sides. By taking
the expectation on both sides we arrive at
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]E||Xn+1||62[ - 29;1/’1;1]1'3 < Xn+17a(tn+l, Xn—i—l) >d +9,12h,211E”a(tn+l, Xn—i—l)”fj
= E||X,[|5 +2(1 = 0, E < Xy, a(ty, X») >a +(1 — 6,)*h2E||a(ty, Xu)|[3

+hy Y E|D (tn, X)) [3-
j=1

Under the assumption (i i7) we have
=20,y < a(t,x),x >q = =26,h, Ko||x|[; = 0
forall x € R and t > 0. Consequently, under (iii) and (iv), we may estimate

(1 = 26,1, K)E[| X, 11117
< [1+ Q1 = 6,) Ky + Kp)ha |+ E[| X, |2 4 (1 — 6,)2h2E||a(t,, X,)| |

for all n € IN. This leads to the estimate

[1+ 20 —0.)Ka + Kp)hal+

E||X,s1]]? < E||X, |3
II +1||d — 1_29nhnKa || Ild

(2K, + Kyp)h, (1 —6,)*h?

= (1 m E|| X5 + mﬁﬂa(%n)ﬂfz

(2Ka + Kb)hn 2 (1 - Qiz)zhz

e T BTN ENX T ) B

- ( 1—26,h,K, [1Xalla + 1—26,h,K,

Ella(ty. X,)|17 (1.44)

since 1 4+ z < exp(z) for z > —1. Now, set all parameters 6, = 1 in the above
inequality. In this case one encounters

2K, + K,
E||X,+1])5 < 2 h, ) E| X3
e e ) L L

Therefore, the drift-implicit backward Euler methods are mean square dissipative
with dissipativity constant

2K, + K,
sup —————
nelN 1— Zh”Ka

2K, + K
= fRat M ok 4K, <.
1—2sup h,K,

nelN

Kp

If additionally 2K, 4+ K, < 0, then their norms are mean square non-expansive.
Exponential mean square stability follows from estimate (1.44) with setting 6, =
1.0 under the hypothesis 2K, + Kj; < 0. This completes the proof. o
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Theorem 1.3.6 (Local m.s. stability of drift-implicit BTMs for dissipative
SDEs). Assume that:

(i) 6, >0.5.

(ii) 0 < inf,cpyhn < sup,epyhn < +o00, all h, nonrandom (i.e. only admissible
step sizes), (0,hn), N is non-increasing in n.

(iii) 3K, <0Vx € RV >0 : <a(t,x),x >< K,||x|[>.

(iv) 3KpVx € RT V1 =0 Y 7_ |6 (t, )17 < Kbl|x|[}-

(V) 2Ka + Kb <0.

(vi) a(0,0) = 0 and a(0,-) € C°(N(0),R?) for a neighborhood N(0) around
0e R’

Then, the drift-implicit BTMs (1.25) with scalar implicitness 6, > 0.5 (and
vanishing ¢/ = 0) are locally (asymptotically) mean square stable when applied
to SDEs (1.2) with mean square bounded coefficients (a, b’).

Proof. As before, rearrange the scheme (1.1) for the drift-implicit Theta methods
with nonrandom scalar implicitness (©,) = 6,1 to separate implicit from explicit
part such that

X"‘H - e’lh’la([’l'i‘l’ Xn-i-l) =X, + (1 - en)hna(ln, Xn)
+ Db (6, X)) AW (1.45)
j=1

Recall that X denotes the value of the iteration scheme (1.1) started at values X, €
L?(2,.%,P ). Now, take the square of Euclidean norms on both sides. By taking
the expectation on both sides we arrive at

E|| Xy+1]|5 — 20,1 < Xop1,a(tut1, Xot1) >a +O2R2E||a(tutr, Xot1)| 3
= ]E”Xn”i' +2(1 - en)hn]E < X, a(tnv X,) >a +(1 - en)zhilEHa(lm Xn)”fl

+hy Y E[b (1, X1

j=1
Under the assumption (i i7) we have
—20,h, < a(t,x),x >4 > —20,h, K,||x||5 > 0

for all x € R? and ¢ > 0. Consequently, under the requirements (i )—(iv), we may
estimate

(1 = 26,1, K)E|| X, 41|13 + 212 |a(tyr1, Xut1)]]?

n

< [1+ Q1 =60.)K, + Kp)h )+ E|| X, |12 + (1 = 6,)* 12 Ella(ty. X3
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= [1+ Q21 — 0.) K, + Kp)ha] + E|| X,| 5 + (1 = 20,)h2E||a(ty, Xa)||3
+02h2E||a(ty, X)|[3
< [1+ Q1 = 0,)K, + Kp)h )+ E|| X, |13 + 02 h2_Ella(ty, X3

for all n» € IN. This leads to the estimate

02h2
E|[ X113 + — 22— B||a(tys1, Xat1)|3

1- ZenhnKa
[1 + (2(1 - en)Ka + Kb)hn]+
1-26,h,K,
< [1 + (2(1 - en)Ka + Kb)hn]+
- 1—-26,h,K,
(ZKa + Kb)hn
=11 -
( + 1—-26,h,K,
(2Ka + Kb)hn
1- 2enhn Ka

2
L_Ella(t,, X,)|[3

B+ =500 K,

E|[| X5 + S Ella(ty, X,)II3
n a n» n
4 =260, 1hy-1 K, d

EIXIE + —om it g, x|
nllg 1—20,_h, K, ns An)llqd

E|[| X5 + S Ella(ty, X,)II3
n a n» n
4 =260, 1hy—1 K, d

E|| X, |5 + il Ella(t,, Xl
n ally, Ap
d 1 _29n—1hn—1Ka d

IA

since 1 4+ z < exp(z) forz > —1, K, <0, 6, > 0.5, 6,h, > 0 non-increasing in
n and (v). Now, it remains to apply the principle of complete induction in order to
conclude that

272
E||X,+1117 + %Ella(%ﬂ, XurDII;
< E||Xo|l7 + LEIIWO, Xo)lI
1—-20_1h K,
— IR + B0, X0
1 —26phoK,
for all n € IN (recall the convention tg = 0, h—y := ho and 6—; = 60).

Eventually, the continuity hypothesis (vi) on a w.r.t. x in the neighborhood of
0 together with a(0,0) = 0 guarantees that the drift-implicit BTMs (1.25) are
locally (asymptotically) mean square stable for nonlinear SDEs (1.2) with p-th
mean bounded coefficient systems (a, b/), provided that (i)—(v). This conclusion
completes the proof. o

In contrast to backward Euler methods and drift-implicit Theta methods with
6 > 0.5, we may establish expansivity of p-th norms for norm-expansive nonlinear
SDEs. To see this fact, consider the concept of expansive norms in what follows.
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Definition 1.3.7. A stochastic process X =(X(¢));ey with basis (2, %, (F)ren,
IP) is said to be p-th mean (forward) expansive on R iff V¢ > s € IT Vx € R?
(adapted)

E[1X. 0I5 7] = 1x115. (1.46)

X is said to be a process with strictly p-th mean expansive norms iff V¢ > s €
IT Vx € RY(x # 0) (adapted)

E[1X 0115 | 7] > 11115 (1.47)

If p=2 then we speak of mean square expansivity and strict mean square
expansivity, respectively.

For expansive processes, p-th mean norms of the initial data may significantly
enlarge as time ¢ advances. The L”-norms of adapted initial data of strict expansive
processes may even show an non-controllable or exponential growth, hence explo-
sions as ¢ tends to +00. These concepts are important for testing and control of the
temporal evolution of L”-norms through numerical methods applied to SDEs with
expansive coefficient systems.

Let p > 0 be a nonrandom constant.

Definition 1.3.8. A coefficient system (a, b/) of SDEs (1.2) and its SDE are said to
be (uniformly) p-th mean expansive on RY iff 3K o >0eRVtre RVx e RY
1< . 2 < bi(t, x), x >2
<a(t,x),x >q +—Z||bf(z,x)||3,+p > ( )2 £

2 & 2~ g

> Kog ||x]13. (1.48)

If Kop > 0 in (1.48) then the coefficient system (a, b/) is said to be strictly p-th
mean expansive and its SDE has p-th mean expansive norms. Moreover, if p = 2
then we speak of mean square expansivity and strictly mean square expansive
norms and systems, respectively.

Lemma 1.3.2. Assume that X satisfies SDE (1.2) with p-th mean expansive
coefficient system (a, b’).

Then X has p-th mean expansive norms for all p > 2. If additionally Kop > 0 in
(1.48) then X possesses strict p-th mean expansive norms.

This lemma can be proved by Dynkin’s formula (averaged It6 formula). Let
us discuss the possible “worst case effects” on L”-norms of numerical methods
under condition (1.48) with p = 2. It turns out that the drift-implicit forward Euler
methods have mean square expansive norms under this condition and may even
possess strict mean square expansive norms.
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Theorem 1.3.7 (Mean square expansivity of forward Euler methods). Assume
that

(i) 0, = 0.
(ii) 0 < inf,cpyhn < sup,epyhn < +o00, all h, nonrandom (i.e. only admissible
step sizes).
(iii) AK,Vx € RE V1 >0 : <a(t,x),x >4 > K,l||x|[?.
(iv) 3K, Vx € R Ve =0 = Y7 [|b7 (1, 0] = Kbl|x|[}-

Then, the drift-implicit (forward) Euler methods (1.1) with scalar implicitness 6, =0
(and vanishing ¢/ = 0) have mean square expansive norms when applied to SDEs
(1.2) with mean square expansive coefficients (a, b’) satisfying 2K, + Kj, > 0. If
additionally 2K, + K > 0 then their norms are strictly mean square expansive.

Proof. Consider the scheme (1.1) for the drift-implicit Theta methods with nonran-
dom scalar implicitness (®,) = 6, and separate implicit from explicit part such
that

X"‘H - e’lh’la([’l'i‘l’ Xn-i-l) =X, + (1 - en)hna(ln, Xn)
+ Db (6, X)) AW (1.49)
j=1

Recall that X denote the value of the scheme (1.1) started at values X, €
L?(R2,.%,P ). Now, take the square of Euclidean norms on both sides. By taking
the expectation on both sides we arrive at

IE”Xn—i-l”z[ - 29;1/’1;1]1'3 < Xn—i—l,a(tn—i-h Xn-H) >d +92h2]E||a([n+17 Xn+1)||421

n-n

:]EHXILHZ + 2(1 - en)hn]E < Xnv a(tn, Xn) >d +(1 - 9}1)211,211[5”“(%, Xn)”fl

—|—hnZ IEIij(tm Xn)”i’

j=1
Under the assumption (ii7) and 6, < 1 we have
m )
21— O)hy < a(t.x).x >4 +hy Y_|[B7 @05 = 201 = 6,) Ko + Kplhal|x][3
j=I

forallx € R? andt > 0. Consequently, under (i7)—(iv), 0, < land2K,+ K, > 0,
we may estimate

(1 - 29nhnKa)]E”Xn+l”51 + thZ]E”a(tn-H’ Xn-H)”gl

n'n

> [1+ (1 = 0)Ka + Kp)haJE[| X, |5 + (1 = 6,)°hrEl|a (b, X)|[3-
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for all n € IN. Now, set 6, = 0. This leads to the estimate
El| X, 4112 > [1 + @K, + Kp)haJE| X% > E||X,]|2.

Therefore, the forward Euler methods have mean square expansive norms under the
condition 2K, + Kj; > 0. After returning to the latter inequality above, one clearly
recognizes that, if additionally 2K, + K; > 0, then their norms are strictly mean
square expansive. o

1.3.5 Asymptotic Almost Sure Stability for Bilinear
Systems in IR*

In the following two subsections we discuss the almost sure stability behavior of
numerical methods (and sequences of random variables) with both constant # and
variable step sizes /1, with respect to the trivial equilibrium 0 € IR?. Let ||.||; be a
vector norm of RY which is compatible with the matrix norm ||.||¢xq of RY*¢,

Definition 1.3.9. A random sequence ¥ = (Y;), N of real-valued random
variables Y, : (2,.%,.IP ) — (R%, Z(R?)) is called (globally) asymptotically
stable with probability one (or (globally) asymptotically a.s. stable) iff

lim ||[Y,|la = 0 (a.s.)
n—>+o0o

forall Yo = yo € R?\{0}, where y, € R? is nonrandom, otherwise asymptotically
a.s. unstable.

Remark 1.3.7. One may introduce a similar definition of local asymptotic stability
with probability one (i.e. a.s.). However, we omit this here, and we leave this and
related investigations to the interested reader. We shall follow the concept of global
asymptotic a.s. stability in what follows.

Throughout this subsection, consider the real-valued system of bilinear stochastic
Theta methods

Yn+1 = Yn + <9nAn+1Yn+l + (1 - en)AnYn>hn

m
+vVhy Y BjaY,E] e R .neN (1.50)
j=1

driven by independent random variables &, with centered first moments [E[§,] = 0
and finite second moments o> = E[§,]* < +o0c. Here, A, and B, are nonrandom
matrices in R?*¢ . Recall that h, = t,41 —t, > O represents the current step size of
numerical integration. We suppose that the initial value ¥y € IR? is independent of
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all E,{ . Let parameter 6,, € [0, 1] (which controls the degree of local implicitness).
These schemes serve as discretizations of (non-autonomous) Ito-type SDEs

dX(1) = A(W)X(0)dt + Y B/ ()X (1)dW (1) (1.51)
j=l1

driven by standard i.i.d. Wiener processes W/, where 4, = A(t,) and B = B/ (t,)
along time-partitions (f,), c[N-

We are interested in studying the almost sure stability and almost sure conver-
gence behaviour of these methods as #,, tends to infinity (i.e. as n — +400) in R? (d
any dimension). So the main attention is drawn to the study of limits lim,— 40 Y»
(a.s.) and whether its value is equal to 0. In passing, we note that the case of
dimension d = 1 has been considered in [112].

Less is known about almost sure stability of multi-dimensional stochastic
systems without a tedious calculation of related top Lyapunov exponents. We shall
exploit a “semi-martingale convergence approach” by appropriate decompositions
in order to investigate almost sure asymptotic convergence and stability of linear
systems of stochastic Theta methods (1.50) in any dimension d € IN.

For our further analysis and the sake of abbreviation, consider the equivalent
real-valued system of linear stochastic difference equations

Xopr = Xy + A Xohy + Vhy Y Bju X&) e RO neN  (1.52)
j=1

driven by independent random variables Sn with centered first moments ]E[En] =0
and finite second moments 0> = [/ ]2 < +oc0. Here, A, and B}, are nonrandom
matrices in R?*?, defined by

A= (=m0 A ™ (B Arsr + (1= 6)4,), (1.53)
]n = (I _h enAer) B]n (1.54)

Throughout the presentation, we assume that /1,0, are chosen such that the inverses
of I —h,0,A,+ exists forall n € IN (indeed, this is not very restrictive since always
possible for small /,,6,). It is obvious that the explicit system (1.52) is equivalent to
the implicit system (1.50) under the aforementioned assumption.

The following theorem shall represent our major tool to establish almost sure
stability of the trivial solution of stochastic Theta methods (1.50) and is proved
below for the sake of relative self-contained character of this paper. Recall that %
denotes the o-algebra of all Borel subsets of IR!.

Theorem 1.3.8 (Semi-martingale Convergence Theorem). Let Z = (Z,), v
be an a.s. non-negative stochastic sequence of (%,, $B)-measurable random vari-
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ables Z, on probability space (2, F ,(F,),cN, P ). Assume that Z permits the
decomposition

Zy < Zo+ Ay — A2+ M,,neN (1.55)

where A' = (A}),cqv and A*> = (A2),cv are two non-decreasing, predictable
processes with Ay = 0 (i = 1,2), M = (M,),¢y is a local (%,),cy-martingale
with My = 0 on (2,7, (Fn), N> P ). Then, the requirement of 31im,_, 400 A} <
400 (P -a.s.) implies that

Jlimsup Z, < 400, 3 lim A2 < +oo (P —a.s.). (1.56)

n—-+o00 n—+00

If additionally the inequality (1.55) renders to be an equation for alln € IN, then the
finite existence of limit lim,, _ 4 o A,11 < +00 (P -a.s.) guarantees the finite existence
of
3 lim Z, < +o0 (P —a.s.).
n—>+00

Proof. Suppose that the random variables Z, : (2,.%,,P ) — (R! ,%L) are
governed by the inequality (1.55) with non-decreasing, predictable processes A’
with Af) = 0 and M forms a local (%#,), N-martingale with M, = 0. Without
loss of generality, we may suppose that M is a L’-integrable martingale (due to
well-known localization procedures). First, note that:

(a) Vn > 0 : ]E[AZJrl — A;|%1] > 0(i = 1,2), hence the processes A' must be
predictable (%), cN-sub-martingales.
(b) A’ (i = 1,2) are non-negative since by telescoping

Al = A{)+iAA" = Xn:AA;; >0
k=1 k=1

with A) = 0and A4, = A4, — A} _,.
(c) M is also a generalized (%, ), cN-martingale with IE[M,, | — M,,|.%,] = 0 and
E[|M,+1]||%,] < +oo foralln > 0.

(d) The process Zg + M = (Zy + M,), N is a local (.%,), N-martingale too.

ne

Second, we may estimate

Zo+M,>Z,—A +A2> — sup Al=—limsupA'=— lim A!>—o0o (1.57)

nelN n—>+oo nee

since the limit lim,—, 1 oo 4} exists and is finite (a.s.) by the hypothesis of Theorem
1.3.8, and the non-decreasing A’ are non-negative. Therefore, the process Zy + M
represents a bounded (%, ), cy-martingale. From the well-known Doob’s martin-
gale convergence theorem, we know that every bounded martingale has a finite
almost sure limit. Hence, it follows that
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3 lim Zy+ M, < +oo(P —a.s.)

n——+00

and
AMy ;= lim M, < +oo(P —a.s.)

n——+00

with IE[| M |] < +oo. Consequently, the sequence ¥ = (¥;), N of bounded,
non-negative random variables Y,, satisfying

0<Y,:=2Z,+A><Zy+ A + M, (1.58)

for all n € IN must have a finite limit Y4 := limsup,_, , ., ¥, which is bounded
by

limsup Y, <ZO+11msupA + limsup M, = Zy + lim A1

n—+00 n—+00 n—>+00 n—+00

+ lim M, < 400 (1.59)
n—-+o00o

(IP -a.s.) (just pull the limit lim sup as n — 400 over the inequality (1.58) and use
the fact that the limits of both A' and M exist, and are finite a.s.). Furthermore, note
that

OSZnSYna OSA,%SY;I, n € IN.
This fact implies that the non-decreasing process A> must have a finite limit and

0 <limsupZ, <limsupY, < 400,0 < lim Ai <limsup?Y, < +o0
n—>+00 n—>—+00 n—>+o00 n——+00

by applying the Bounded Monotone Sequence Theorem from calculus. Eventually,
the identity
Z,=Zo+ A — A2+ M,

for all n € IN yields that
Yo =Z,+A2=Zy+ A + M,
for all n € IN. Hence, the process Z = (¥, — At%)nelN satisfies

0<11m1ann—ZO+11m1an + liminf M, —ZO+ 11m A + lim M,

n—-4o00 n—-+o00 n—-+o00

= Zo+A+oo+M+oo =limsup Y, < 400

n—>=00

in view of the identity in (1.59), Consequently, the process Z = (Y, — A2), (N
converges (a.s.) too since the finite limits of ¥ and A? exist (a.s.) from previous
argumentation. This completes the proof of Theorem 1.3.8. ¢
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Remark 1.3.8. Recall that all semi-martingales Z can be decomposed into
Zy=Zo+ BV, + M,

where BV is a process of bounded variation with BV, = 0 and M alocal martingale
(c.f. Doob-Meyer decomposition) with My = 0. Moreover, each process BV of
bounded variation possesses the representation

BV, = A, — A,

where A’ are non-decreasing processes. Therefore, Theorem 1.3.8 represents a
theorem on the almost sure asymptotic behaviour (existence of limits) of non-
negative semi-martingales.

Now we are in the position to state and verify our major findings. Let A(S) denote
the eigenvalue of the inscribed matrix S and S” be the transpose of matrix S.

Theorem 1.3.9 (Existence of a.s. Limits). Assume that:

(i) Yo=Xo € R? is independent of all & ' ‘
(ii) All & are independent random variables with E[]] = 0 and E[§]]? =
sz(n) < 4o00.
(iii) All eigenvalues A(S,) < 0 with

m
S, = Al + 4, + Zo}(n)éfn B, + h,AT 4,.
j=1

Then, for system (1.52), the following limits exist and are finite (P — a.s.)

lim X,,

n—4oo
+o00 m
- Z X AT + 4, + ZU}(n)B;n By +h, AT A, | X,hy = A%y and
n=0 j=1

“+o0 m
S ox! Z(éjT_nJr Bty BT, A th, AL B ,) & Vi

n=0 j=1
m
+ Y Bl BiEjEF —E[E]EDR, | Xo.
jk=1

Proof. Suppose that (X,), N satisfies (1.52) under (i) — —(i7). Define the
functional process Z = (Z,), N by the square of the Euclidean norm

Z, = ”Xn”cz[ = XZXn
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for all n € IN. Calculate

T
Znt1 = X, 1 Xut1
T

m m

= | U+h A+ Y BjagE)) X, (1 + hnAn VI Y E’k,mg,’;> X
j=1 k=1

= XT I+hy, A n TV "Z Bj n‘gn. +h"‘i’l+hﬁ“i‘g"‘i‘"+h2/22 BJ nA"E;{

+\/_ZBkn k +hg/2ZATBkngk +h Z B]an,ﬂE){Et]: X”

jk=1
=X/ Xy + X | A + A, + Y B, BeaEE]E] + ha AL A, | Xohy
jk=1

+x7 ZB]”EJ +ZBkng"+ZB A,E] hn+ZATBkn N (X B

j=l1

+ > XT BT, BenX(5]6F — E[E] 65D,

jk=1

=X/ X, + X! | A + 4, + ) B, B, EE + h,A} A, | X,h,
j=1

m

+XnT Z(BT +B n +hngjz:nfin +hn/i;§fv”) X”\/h_”g’{

j.an
J=1

+ 37 X7 BT, BuaXa(E] & — EIE]EDh,

jk=1

=Z, + AAL — AAZ + AM, (1.60)

where AA = AZH AL, and we set A,ll = 0 (foralln € IN), My = 0, A(Z) =0
and

n—1 m n—1
_ZXIT x‘i‘[T‘i‘/‘i‘l+Zaf(l)l§}:[l§11+hlz‘ff/‘il Xih; IZAAIZ
— j=1 —
(1.61)
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n—1 m

My = XS (B + B+ Bl + 47 Bumi)l Vi
=0

+ > B B & — EE £ Dhi | X, (1.62)
jk=1

for all n > 1. Recall the definitions of differences AAj = A/, — Aj and AM, =
M,+1 — M, for all n € IN. Next, telescoping and summing up over n in (1.60)
implies that

Zy=Zo+ A — A2+ M,

with A' = 0. Now, recall the assumption (iii). This guarantees that A2 > 0 for
all values of x; and A2 is non-decreasing in n. Consequently, all assumptions of
Theorem 1.3.8 with A' = 0 are fulfilled. Hence, a direct application of Theorem
1.3.8 to the non-negative sequence Z = (Z,), N Yields that

3 lim Z, = lim ||X,]|3 <+4+oc0 (P —a.s.).
n—-+o00

n—-+00

From the continuity of the Euclidean norm ||.||;, we conclude that

—o0o<3d lim X, <400 (P —a.s.)
n—>+o00

— a fact which confirms the main assertion of Theorem 1.3.9 together with the
bounded martingale inequality Zo + M, > 0 (a.s.) forall n € IN. 3

Theorem 1.3.10 (A.s. Stability). Assume that:

(i) xo € Rd is independent of all & ' ‘
(ii) All & are independent random variables with E[§;] = 0, E[£]]> = sz.(n) <
+o0.
(iii) Jc > 0 constant such that Vn € IN we have all eigenvalues )L(ﬁ,l) <—-<0
with
m
Sn = /IZ + ILIn + Zajz'(n)éfnéj,n + hnf[zl‘f[n hn~
j=1
Then, lim,— 100 X, = 0, i.e. the trivial solution x = 0 of the system (1.52) is

globally a.s. asymptotically stable.

Proof. First, apply previous Theorem 1.3.9 to get the a.s. convergence and existence
of the limit lim,_, 4 o, X, since all eigenvalues also satisfy A(S,) < 0 under (iii).
From the proof of Theorem 1.3.9 based on Theorem 1.3.8, we also know that
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+o0 m +o00
HETOOAZ = _ZXIT /IZT—F/L-F ZO’?(Z)E}?ZEN-FI’U/IZT%L X[h[ZZAAIZ.
=0 j=1 1=0

From calculus of series, the convergence of a series requires that each series member
A A? must converge to zero (IP -a.s.). Therefore, we arrive at the estimation
!

. 2 . . _ A 2 — . A 2
0= cn—]:r—il-loo Xaully < n—lir-ll-]oomm ASIXally n_lir_ll_]oomaXA(Sn)”Xn”d
< lim AA2=0. (1.63)
n—+00

Consequently, squeezing yields that

lim || X,]5=0 (P —a.s.).
n—+00

This leads us to the conclusion that

Iim X, =0 (P —a.s.),
n—-+o0o

thanks to the continuity and definiteness of the Euclidean norm in RY. 3

Note that above (see (1.63)) we have used the known facts from linear algebra
that all symmetric matrices S € R?*? have real eigenvalues, a complete set of
eigenvalues which form an orthogonal basis in R¢ and, for such matrices, we have
the uniform estimation

min A(S)|Ix][2 < x7 Sx < max A(S)|lx|[3
where A(S) are the eigenvalues of inscribed matrix S.

A two-dimensional example (Systems with diagonal-noise terms). Consider the
two-dimensional system of stochastic difference equations

Xn1 = Xp+[0n(@nt1Xn41 + Dpg1ynt1)+(1 = 00)(@nxy + by yn)lhn (1.64)
+ 0, Vhxa
Vnt1 = Yu + [On(Cnp1Xn+1 + dut1Ynt 1)+ (1 — ) (CnXn+dnyn)lhn (1.65)
+ Uz% Rnynkn
where a,, by, ¢y, 0}, are real constants and &, are independent standardized random
variables with moments IE[§,] = 0 and IE[§,]?> = 1 for all n € IN. (e.g. take i.i.d.

&, € A4(0,1), but the property of being Gaussian is not essential for the validity
of our findings, however the fact of independence and properties of finite first two
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moments does). Obviously, system (1.64)—(1.65) has the form (1.50) with d = 2,

m = 1, and matrices
an, b ol 0
A, = Y B, = . 1.66
(Cn dn) ( 0 G;%) ( )

To apply Theorem 1.3.9, we need to calculate S, = AT + A, + B B, +h, AT 4,,.
For this purpose, we study the equivalent system (1.52) with matrices

/In _ (Pn Qn)’
rn Sﬂ

-1+ eilhndiz+l)0,: thnbn-l-lod,%

B — det, det,
b= enhncn+10;11 (—1 + enhnan+1)o'3 : (1.67)
det, det,
where
dety, = 1=6,hydysy — Ophyanr+0 by ans1dns1—0 by ricasr, (1.68)
— _(—1+9 Ry 1) (On @nt 1+ (1=0,) an) + Oy Rybug 1 (On cpg 1+ (1=0, )Cn)
n = — Oy hydyg 1 — 6y hyang s + 02020y dyy ) — 202Dy Cogs
Gn = - (_1+9 h dn+]) (Qn bn+1+ (1 9 )bn) +9n hnbn-i-] (Qn dn_,’_] + (1_9’1) d )

1 — 6y hydpsy 1 — Op hnanyy + 02h2ans 1 dyy s — 0220y Coy

n-n n-n

O, h Cn+1 6y any1+ (1-6,) ay) — (=146, hya,+1) (0, cpyr1+ (1 — 6, )Cn)
— Oy hydyg 1 — 6y hyay 1 +602h2a4 1 dyg — 020204 g Coy s
0, hncn+1 (Qn bn+1+ (l_en) bn) - (_1+9 hnan—i-]) (en dn+1+ (1 - 911) dn)
1 — 0, hydyy1 — 6y hyanyr + 02h2a,s 1 dnyy — 02h2byy g Cogs '

ry, =

Sp =

Thus, one obtains

S, = (” W") (1.69)
Wn Vn
with
-1 9/1 hndn Qn n 1-6 n
= 2 (-1+ +1) Oy anyr + (1= 6,) ay) (1.70)

16, hpdyy =0, hyany; + thnan+]dn+1 02h2 but1Cnt1

n''n

0, hnbn+1 (Qn Cnt1 + (1 - 911) Cn)

2
* I- 9}1 hndn+] - 9}1 hnan+1 + 02 hnan+1 dn+] - 02 h%bn+1 Cn+1
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(—1+ 6, hydyy 1)’ (0,)?
(1 =6, hudpy1 — Op hyany s + 02h2any  dyy ) — 02h2byy Cn+1)2
er%hﬁcg+l(0r:)2
(1= 6y hudyss — O hyanyy + 02h2an 4 dpys — O2h2byy Cn+1)2
+h (P2 +17)
W, = On hncnt1 (On ang1 + (1 —6,) ay)
1 — 6y hydpy 1 — Op hnanyy + 02h2ans 1 dyy s — 02h2byy g Coy
B (=14 60y hpany 1) Oy cogr + (1 = 6,) cp)
1 =0, hydys1 — On hyanys + 02h2ayq g dyy s — 02h2byy g Cops
_ (=14 60y hydyt1) 0y bpys + (1 = 6,) by)
1 — 0, hydyy1 — 6y hyany s + O2h2any dyy s — 02h2byy g Cogs
N On hubuyi (On dpyr + (1 —6,)dy)
1 — 0y hydyys — Op hpany g + 02h2any 1 dyy s — 02h2by g Coy
(=1 + 6, hydyy1) 0,) Oy hy—byy; 07
- (1= 6y hudyss — Op hyansy + 02h2an 4 dpys — O2h2byy Cn+])2
Op huCnyi10) (=1 4 0, hyany 1) o2
- (1= 6y hudyss — On hyans + 02h2an 4 dpys — O2h2byy Cn+])2
+ hn (PnGn + TnSn)
9 On hycnt1 (0n bpt1 + (1 —6,) by)
! 1 =0, hydys1 — Op hyan s + 02h2ayq ) dy ) — 02h2byy; Cogs
5 (=1 + 6y hnang 1) (On dnyr + (1 — 6,) dy)
1 — 0y hydyys — Op hpany g + 02h2any 1 dyy s — 0220y Coy
Ophaby1(07)
(1= 6, byt s — O hnuy s + O202a0 11 dyi s — 0212bts Cuv 1)’
(=1 + 6, huany))* (07)?
(1= 6 huds s — O hypses + 0212ans s dus s — 02h2b,s s Cutr)’
+ha (g7 +s7) (1.71)

where py, ¢n, rn and s, as in (1.68) above. It is hard to evaluate the eigenvalues

A of this matrix S, analytically (i.e. depending on all possible parameters 6,,

hy, etc.). Packages such as MAPLE return several pages of long expressions for
all eigenvalues in terms of all parameters. However, it is fairly easy to check

the sign of all eigenvalues with the help of symbolic packages such as MAPLE,
MATHEMATICA, MATLAB, etc. for given fixed sets of parameters. For example,

for the constant parameter set (i.e. the trapezoidal and midpoint methods)
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a, =—1,b, =1,¢, = =5,d, = —5,0! = 0> = 0.01,6, = 0.5, h, = 0.01,
the eigenvalues are both negative, namely
Ay = —.342381027965132034 ..., —11.0035987828310819...

which guarantees us almost sure asymptotic stability and convergence to 0.

A convenient way to evaluate the eigenvalues of symmetric matrices is to apply
the following lemma. Notice that the entries u,, v, and w, of S, depend on all
system-parameters, above all on /, and 6,. This dependence-relation is important
in order to control the qualitative behaviour of numerical discretizations (1.50) of
SDEs (1.51). For a simplification of its practical evaluation, we present Lemma
1.3.3.

Lemma 1.3.3. The eigenvalues of 2D matrices

= (“ W”) (1.72)
Wn Vn

can be easily computed by

— 2
A]/Z(Sn) _ Uy ‘Zi‘Vn + (%) + szz (173)
and estimated by
Al/Z(Sn) =< max{un, Vn} + |Wn| (174)

where uy,, v,, w, are as in (1.70) forn € IN.

Proof. Note that the characteristic polynomial of S, is

p() = det (S, = A1) = (uy = M) (v — 1) —w;,

with roots
up + v, Uy — v\
Aija(Sy) = ———+ ( - 1) +w;
2 2
< ;v” + [4n ;v"| + [wy|  (while using v/x2 + y2 < |x| + |y])

= max{u,, v,} + [wy|.

This confirms the assertion of Lemma 1.3.3.
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Therefore, the direct evaluation of these eigenvalues by Lemma 1.3.3 and an
application of Theorem 1.3.9 provide the following immediate consequence under
the assumptions of this subsection.

Corollary 1.3.1 (Corollary to Theorem 1.3.9). Assume that, for all n € IN, we
have

max{u,, vy} + [wy| <0

where u,, v, and w, are defined as in (1.70).
Then, for all adapted initial values (x0y0)T, the following limits for system
(1.64)-(1.65)with A, B, defined by (1.67) exist and are finite (P -a.s.)

lim sup x,,, lim sup y,,, liminf x,, liminf y,,
n— 400 n——+00 n—+00 n—+00

lim (xy ya)[AT + A, + BT B, + h, AT 4, (x) -0,

n—>+00 Yn

lim (xn J’n)[(gf'i‘l;)n + hy, é{“fn + hn“fgén)gn V hy

n—-+o00

+BT B, (&2 — l)hn] (xn) —o.
y

n

Note that the main assumption of Corollary 1.3.1 requires that at least u, +v,, < 0
for all n € IN, where u, and v, are defined by (1.70). As an immediate consequence
of Theorem 1.3.10 applied to SAn = S,h, and Lemma 1.3.3, we are able to find the
following corollary on a.s. asymptotic stability.

Corollary 1.3.2 (Corollary to Theorem 1.3.10). Assume that 3¢ = constant > 0
such that Vn € IN

(max{un, Vn} + |Wn|)hn <—-c<0

where u,, v, and w, are defined by (1.70).
Then, for all adapted initial values (xoyo)T, the limits satisfy

li =0, 1 n=0 (P —a.s.),
e

i.e. global almost sure asymptotic stability of the trivial solution for system (1.64)-
(1.65) is observed.

Remark 1.3.9. Moreover, the conditions of Corollaries 1.3.1 and 1.3.2 need to be
fulfilled only for alln > ny where ny € IN is sufficiently large (due to the asymptotic
character of main assertion).

Remark 1.3.10. To summarize our findings, an evaluation of eigenvalues A in our
example shows a strong dependence of A on the determinants det, determined



52 H. Schurz

by (1.68). Stabilizing effects of these determinants on the fluctuation of A can be
observed and maximized whenever

di‘l E 07 ai’l S 07 ann E O (1'75)

for all n > ng. In this case, one can show that det, > 1 for all n > ng and
“fluctuations of eigenvalues” A are also under some control and the choice of step
sizes h, is not very sensitive for qualitative behavior of Theta methods. Moreover,
an increase of implicitness 6 > 0 leads to stabilization of numerical dynamics under
(1.75).

Remark 1.3.11. In order to avoid “unwanted spurious” oscillations through Theta-
methods in our example we recommend to use only step sizes &, and implicitness
6, which guarantee that

0,h, max{d,+1,a,+1} <1

for all n € IN. There are some hints to prefer the choice 6, = 0.5 to circumvent the
problem of over- or under-stabilization through Theta-methods (cf. [118,120-122]).

This subsection has shown how to exploit semi-martingale convergence theorems
(cf. Theorem 1.3.8) to discuss the existence of finite almost sure limits and global
asymptotic stability for stochastic Theta methods applied to systems of stochastic
differential equations. Sufficient conditions (cf. Theorems 1.3.9, 1.3.10) for almost
sure stability and convergence of their solutions could be verified in terms of all
parameters of non-autonomous systems such as variable step sizes /, and variable
implicitness 6,. These conditions are applicable (see Sect. 1.3.5) and can be easily
evaluated by computer packages such as MAPLE, MATHEMATICA, MATLAB,
etc. It would be interesting to extend the main results to other type of noise
sources (i.e. non-martingale-type or noise with infinite moments). Our conditions
on the noise are fairly general (since we only asked for existence of first and
second moments). However, a key assumption is the complete independence of
all noise terms £ . The relaxation of this major assumption is a potential subject
for further research. It is also possible to extend the presented results to other
numerical methods or to systems of nonlinear stochastic differential equations
under appropriate conditions (recall that balanced Theta methods (1.1) represent
the simplest parametric family of stochastic Runge-Kutta methods), thanks to the
generality of Semimartingale Convergence Theorem 1.3.8).

1.3.6 Asymptotic Almost Sure Stability for Pure Diffusion
Processes

This subsection is devoted to the analysis of discretizations of pure diffusion
processes as the simplest class of stochastic test equations in R!.
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Theorem 1.3.11. Let V = (V(n)),cv be a sequence of non-negative random
variables V(n) : (2, %,,P) — Rﬂr with V(0) > 0 satisfying the recursive scheme

Vin+1) = V(in)G(n) (1.76)

where G(n) : (2, %,,P ) — RL_ are i.i.d. random variables with the moment
property E|In[G(n)]| < +o00. Then

V (globally) asymptotically a.s. stable iff EIn[G(0)]<0.

Proof. This result is already found in [48] and in [125]. The main idea is to use
the strong law of large numbers (SLLN) in conjunction with the law of iterated
logarithm (LIL). Note that V' possesses the explicit representation

Vin+1) = (]_[ G(k)) V(0) (1.77)
k=0

for all n € IN. Now, suppose that G (k) are i.i.d. random variables and define

n—I
po = E[n(GO)]. Sy := ) InGk),
k=0

hence V(n+1) = exp(S,+1)V(0) and E[S,] = nu forn € IN. By SLLN, conclude
that s
lim == = po (a.s)

n—+oo n
thanks to the IP -integrability of G (k). This fact implies that if iy < O then S, —
—o0, i.e. V(n) — 0 as n tends to 400 and if & > 0 then S, — +o00, i.e. V(n) —
400 as n tends to +00. Moreover, in the case o = 0, we may use LIL (at first,
under 6> = Var(InG(k)) = E[ln G(k) — Eln G(k)]*> < 400, later we may drop
02 < 400 by localization procedures) to get

S,
liminf ———— = —|o|, limsup ——— = |0,
n—>+o0 /2nInlnn o] n—>+o§ 2nlnlnn o]

hence S, oscillates with growing amplitude and lim,— 4+ S, does not exist.
Therefore
lim V(n) = lim exp(S,)V(0)
n—-+o00

n—-+o00

does not exist either (a.s.). Thus, lim,_, V(1) # 0 and the proof is complete. ¢

Now, consider the one-dimensional test class of pure diffusion equations
(a Girsanov SDE of Itd-type)

dX(t) = oX(t) dW(7) (1.78)
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discretized by BIMs
Yot = Y, + oY, AW, + (c’hy + ' | AW ) (Y — Yog) (1.79)

as suggested by Milstein, Platen and Schurz [96]. Then, the following result
provides a mathematical evidence that their numerical experiments for BIMs (1.79)
led to the correct observation of numerical stability due to its asymptotic a.s.
stability. It extends results which are found in [48, 120] and [125].

Theorem 1.3.12 (A.s. asymptotic stability of BIMs with constant #,
[1271). The BIMs (1.79) with scalar weights c® = 0 and ¢' = |o| applied to
martingale test (1.78) for any parameter o € R\ {0} with any equidistant step size
h provide (globally) asymptotically a.s. stable sequences Y = (Y,,), V-

Proof. Suppose |o| > 0. Then, the proof is an application of Theorem 1.3.11. For
this purpose, consider the sequence V = (V (1)), N = (|Yx|),,cN- Note that V(n+
1) = G(n)V(n), E|InG(n)| < +o0 and E[ln G(n)] < 0 since

E[|InG(n)|] < (ElnGm)]*)"? < In2) + |0|«/Z and
1+ |[cAW,| + c AW, :| _ ]E|:ln’1 N o AW,

E[nG(n)] = E [m ]

1 oAW, \* 1 loAW,| \?
_E ln‘l— _ 92 ’ ——g| (225 ) oo
2 1+ [0AW,] 2| \T+ oA,

with independently identically Gaussian distributed increments AW, € A47(0, h)
(In fact, note that, for all o # 0 and Gaussian AW,, we have

cAW, 1\’
0<1l—|—m— <1
1+ |cAW,|

1+ [cAW,| 1+ |cAW,]|
1 o AW, 1 o AW,
~_E 1n‘1+— +-E 1n’1——
2 1+ [0AW,] 2 1+ [cAW,]

with probability one, hence, that AW, has a non-degenerate probability distribution
with nontrivial support is essential here!). Therefore, the assumptions of Theorem
1.3.11 are satisfied and an application of Theorem 1.3.11 yields the claim of
Theorem 1.3.12. Thus, the proof is complete. o

Remark 1.3.12. The increments AW, € 4°(0, h,) can also be replaced by multi-

point discrete probability distributions such as

]P{AW,,:i h”} =%

2 1
or P{AW, =0} = . P {Aani 3/4”} = -
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as commonly met in weak approximations. In this case, the almost sure stability
of the BIMs as chosen by Theorem 1.3.12 is still guaranteed, as seen by our proof
above (due to the inherent symmetry of AW, with respect to 0).

For variable step sizes, we can also formulate and prove a general assertion with
respect to asymptotic a.s. stability. Let Var(Z) denote the variance of the inscribed
random variable Z.

Theorem 1.3.13 (A.s. asymptotic stability of linear recursions, S. [127]). Let V=
(V(n)), v be a sequence of non-negative random variables V(n) : (2, %,,IP ) —
R1+ with V(0) > 0 satisfying the recursive scheme

Vin+1) = V(n)Gn), (1.80)

where G(n) : (2, %,,P) — R1+ are independent random variables such that 3
nonrandom sequence b = (b,), <y with b, — +00 asn — 400

+Z°°Varan(c(k))) o lim 1o EIn(G(k))

0. 1.81
b]% n—+o0 b, = ( )

k=0

Then V. = (V(n))n—+oo is (globally) asymptotically a.s. stable sequence, i.e. we
have lim,_ 4+ o0 V(n) = 0(a.s.).
Moreover, if

+00, lim
blz n——+00 b,

+o0 n—1
yo Yartn@Gl) - im  2k=0 EINGR) - o)

k=0

then V.= (V(n))n—>+oo is (globally) asymptotically a.s. unstable sequence, i.e. we
have lim,_, ;o0 V(n) = +o0 (a.s.) for all nonrandom yo # 0.

Proof. The main idea is to apply Kolmogorov’s SLLN, see Shiryaev [134] (p. 389).
Recall that V' possesses the explicit representation (1.77). Now, define

n—1

Sp= Y InG(k).
k=0

hence V(n + 1) = exp(S,+1)V(0) for n € IN. By Kolmogorov’s SLLN we may
conclude that

Sy ES, "1 En(G(k
im 1y ESe o 2u=EIGK)
n—>+00 Dy n—>+o00 by, n—+00 bn

0(a.s.)

thanks to the assumptions (1.81) of P -integrability of G (k). This fact together
with b, — +oc0 implies that S, — —oo (a.s.), i.e. V(n) — 0 as n tends to +o0.
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The reverse direction under (1.82) is proved analogously to previous proof-steps.
Thus, the proof is complete. o

Now, let us apply this result to BIMs (1.79) applied to test (1.78). For k =
0,1,...,nr, define

1+ [cAW| + o AW

G(k) =
(k) 1+ |cAW]

(1.83)

Theorem 1.3.14 (A.s. asymptotic stability I of BIMs with variable /,, [127]).
Assume that 3 nonrandom sequence b = (b,), cpy with b, — +00 asn — o0 for
a fixed choice of step sizes h, > 0 such that

+00, lim 0.

b} n—+o00 b,

JioVar(ln(G(k))) 3 . 1_L EIn(G(k)) -

k=0

Then the BIMs (1.79) with scalar weights c® = 0 and ¢' = |o| applied to martingale
test (1.78) with parameter o € R" \ {0} with the fixed sequence of variable step sizes
hy, provide (globally) asymptotically a.s. stable sequences Y = (Yy), ¢ N-

Proof. We may apply Theorem 1.3.13 with V(n) = |Y,| since the assumptions are
satisfied for the BIMs (1.26) with scalar weights ¢® = 0 and ¢! = |o| applied to
martingale test (1.78). Hence, the proof is complete. o

Theorem 1.3.15 (A.s. asymptotic stability IT of BIMs with variable /,,, S.[127]).
The BIMs (1.79) with scalar weights ¢ = 0 and ¢' = |o| applied to martingale
test (1.78) with parameter o € R' \ {0} with any nonrandom variable step sizes
hy satisfying 0 < hyin < hi < hpay provide (globally) asymptotically a.s. stable
sequences Y = (Y,),cIN-

Proof. We may again apply Theorem 1.3.13 with V(n) = |Y,|. For this purpose,
we check the assumptions. Define b, :=n. Note that the variance Var(In(G(k)))
is uniformly bounded since AW, € A4°(0,h,) and 0 < hpip < hx < hyax. More
precisely, we have

Var(In(G(k)))
< E[In(G(k)* = E[I{aw, >0 IN(G (k) + E[I aw, <o) In(G (k)]
< paln))* + E[ln(1 + [cAW, D> < pa[In(2)]* + E[ln(exp(lc AW, )]
< punQ@F + EfpAW,]* = p[n@)F +0°hy < paln@)] + 0 hax

for G(k) as defined in (1.83), where I;¢, denotes the indicator function of the

inscribed set Q and p, = /P {AW, > 0}. Note that 0<p,=+/2/2<1 if AW,
is Gaussian distributed. Therefore, there is a finite real constant K < (In(2))* +
02h,,4x such that
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+o0

Var(n(G(k))) <X K¢
I

2
= KG— < 400.
k=1

It remains to check whether

i The ENG®R)

n—-+o00 n

For this purpose, we only note that IEIn(G(k)) is decreasing for increasing «//y
for all k € IN (see the proof of Theorem 1.3.12). Therefore, we can estimate this
expression by

2
1 hmin

Eln(G(k)) < ~E |In|1— [ —ZYmins Vhning =K% <0
2 1+ |0V hming|

where £ € 47(0, 1) is a standard Gaussian distributed random variable and K 1G the
negative real constant as defined above. Thus,

lim 2=t EGE) 6

n—+o00 n

Hence, thanks to Theorem 1.3.13 (or Theorem 1.3.14), the proof is completed. ¢

Remark 1.3.13. One may also estimate stability exponents of numerical methods,
i.e. estimates of the rate of exponential decay or growth. For more details, see [123,
127].

1.3.7 Nonlinear Weak V -Stability in General

So far we discussed stability along “stability-controlling” functions V (or
Lyaponuv-type function) which are governed by linear inequalities (or linear
difference inclusions). Now, in what follows, we shall investigate fully nonlinear
relations. For this purpose, define v, := IEV(n) and Av, = v, — v, foralln € N
and V' as given below.

Theorem 1.3.16 (Discrete Bihari inequality for moments, S. [127]). Let V:IN
— R'Jr be a sequence of random variables V(n) : (2, %, P ) — (R! ,%’(ﬂ?ﬂr))
satisfying

vait1 = E[V(n + D] < E[V(n)] + ¢(n)g(E[V(n)]) (1.84)
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with nonrandom c(n) € R' for all n € IN, where g : RL — RL is a Borel-
measurable, non-decreasing function satisfying the integrability-condition

—00 < G(u) :=/u£<+oo (1.85)

Sforallu > 0and (v,),cy is non-decreasing. Assume that EV(0) < +o0. Then, for
all n € IN, we have

i = sup EVR) < G (GEVOD + Y c)  (186)
k=0,1,....n k=0

where G~ is the inverse function belonging to G.

Proof (S. [127]). Suppose that vy > 0 at first. Then, inequality (1.84) implies that

Avy,
gy =<0

Therefore, by simple integration under (1.85), we obtain

Vet dy Vit dy Avy
G —G(wy) = 4y - k
1) = GOx) / 50 = / s gl ~ W

for all k € IN. Summing up these inequalities leads to

n

Gus1) —=G(o) = Y Gis1) —G(w) < Y c(k)

k=0 k=0
for all n € IN, which is equivalent to
n
G(vat1) < G(vo) + Y _ c(k).
k=0

Note that the inverse G~! of G exists and both G and G~ are increasing since G
satisfying (1.85) is increasing. Hence, we arrive at

Vap1 <G (G(Vo) + Zc(k)).
k=0

Note also that ¢(k) > 0 due to the assumption v is non-decreasing. If vg = 0 then
one can repeat the above calculations for all vp = & > 0. It just remains to take



1 Basic Concepts of Numerical Analysis Stochastic Differential Equations Explained 59

the limit as ¢ tends to zero in the obtained estimates. Thus, the proof of (1.86) is
complete. o

Remark 1.3.14. Theorem 1.3.16 can be understood as a discrete version of the
continuous time Lemma of Bihari [12] and is due to S. [127].

1.3.8 Girsanov’s Equation to Test Moments and Positivity

The simplest test equation for asymptotic stability, boundedness of moments,
monotonicity and positivity of numerical methods is the one-dimensional Girsanov
SDE (originating from Girsanov [34]) of Itd type

dX(t) = o((X()]+)* dW () (1.87)

with X(0) = Xy > 0 (a.s.) in view of its solutions and strong uniqueness. Without
loss of generality, we may suppose that ¢ > 0. If « € [0, 1] and ]EX& < 400
we obtain continuous time solutions which are martingales with respect to the o-
algebra generated by the driving Wiener process W = (W(t));>0. lf « = O0ora €
[1/2,1] these (non-anticipating) martingale-solutions are unique with probability
one (by the help of Osgood-Yamada-Watanabe results, cf. Karatzas and Shreve
[70]). Due to the pathwise continuity, the non-negative cone R, = {x € R! :
x > 0} is left invariant (a.s.). A nontrivial question is whether related numerical
approximations are stable, converge to the underlying analytic solution and have the
same invariance property. We are able to answer these problems. Here, we are only
interested in stability and invariance of “appropriately balanced discretizations” (for
convergence, see also in Sect. 1.4 below). For this purpose, consider the balanced
implicit methods (BIMs)

Yn+l = Yn + o-([yn]-l-)aAWn + o-([yn]-l-)a_] |AWn|(Yn - Yn+1) (188)

as a linear-implicit member of the more general class of BTMs (1.1).

Theorem 1.3.17 (Stability of 2nd Moments of BIMs, S.[127]). The BIMs (1.88)
applied to Girsanov’s SDE (1.87) with 0 < a < 1 leave the non-negative cone
R+ invariant (a.s.) and provide polynomially stable numerical sequences. More
precisely, if o > 0, 0 < ]EYO2 < 400 and Yy is independent of the o-algebra . =
o{W(t):t > 0} then their second moments are strictly increasing as n increases
and they are governed by

E] < (EF) ™ + (-0’ —0) (189)
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Proof. Suppose that 0 < o < 1. At first we rewrite (1.88) as the explicit scheme

L+ o ([Ya]+)* " AW, + o ([Ya] 1) AW,

Y,+1 =Y,
A 1+ o (Y1) " | AW,

(1.90)

which immediately gives the a.s. invariance with respect to the non-negative cone
R4, provided that Yy > 0 (a.s.). Therefore, we may drop the taking of positive part
by [.]+ in the above form. Now, rewrite (1.90) as

Y _ Y + O—(YH)(XAVI/H (] 91)
T T e () AW '
Taking the square and expectation yields
oY) AW, T
= E[Y,, ] = E[Y,]’ + E . 1.92
Vn+1 Y4l [Ya]” + |:1 + o (V)| AW, ( )

Thus, due to the positivity of all summands at the right hand side, we may conclude
that the second moments (v,), [N are non-decreasing and, in fact if o > 0, v, is
strictly increasing. It remains to apply Theorem 1.3.16. For this purpose, estimate
(1.92) by Jensen’s inequality for concave functions in order to obtain

IA

va + PE[(Y,)* AW,] = v, + o’ E[(Y,)™E[AW,|#,]] (1.93)
Vo + 0P E[(Y) ™ E[AW,]] < vy + 07 (). (1.94)

Vn+1

Therefore, we may take V(x) = x?, g(z) = 2%, ¢(n) = o*h, and apply Theorem
1.3.16 with the conclusion (1.86) in order to get to (1.89). Note also that

u dZ udZ Zlfa
G(u):/ _=/ dz _
Vo g(Z) Vo b l—«a

Gil(z) = (Z(l —a) + v(l)*a)]/(]_a).

=u ulfa _ (Vo)lfa

=Vp l—«a

’

If vo = 0 then one can repeat the above calculations for vp = ¢ > 0. It just remains
to take the limit as ¢ tends to zero in the obtained estimates. Thus, the proof is
complete. o

One could also compare the moment evolutions of the explicit Euler method
YE=(YF),oN with that of BIMs Y%= (Y,?), N governed by (1.26). Then,
it is fairly easy to recognize that E(Y,®)* <E(Y,F)* for all integers k €N,
provided that E(Y?)* <IE(Yf)*:. It is also interesting to note that the explicit
Euler methods cannot preserve the a.s. invariance property with respect to the
non-negative cone Ry. In fact, they exit that cone with positive probability,
independently of the choice of any nonrandom step sizes A4,. Summarizing,
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the underlying explicit solution to (1.87) has very similar analytic properties as
BIMs (1.88). Numerical experiments for Girsanov SDEs are conducted in S. [127].

1.4 Finite Convergence and Orders (Rates of Global
Consistency)

1.4.1 Mean Square Convergence

The concept of global mean square convergence is understood as follows (similar
for p-th mean convergence).

Definition 1.4.1. A numerical method Y with one-step representation Y ,(¢) is
said to be (globally) mean square convergent to X with rate r, on [0, 7] iff
3 Borel-measurable function V:ID —R), and 3 real constants K, = K (T) >
0, K¥ = KX(57),0 < hyar < 8o < 1 such that ¥ (F, Z(ID))-measurable random
variables Z(0) with E[| Z(0)[|3] < +coand Vi :0 <t <T

(E1Xo 20/ (1) = Yoz 0IF170]) " = Ky exp (K0 )V(ZOw:  (195)

along any nonrandom partitions 0 =ty < #; < ... <¢t,, =T.

Using the results of the previous section, the following theorem is rather obvious
in conjunction with standard L?-convergence theorems following stochastic Lax-
Richtmeyer principles as presented and proven in [125,129]. Recall the assumptions
(A0)—(AS) from subsection 1.2.1.

Theorem 1.4.1 (Mean Square Convergence of BTMs (1.1)). Assume that (AO)—
(AS)with V(x) = (1 + ||x||621)'/2 onD C R? are satisfied.

Then, the BTMs (1.1) with autonomous implicitness © € R*>? are mean square
convergent with rate rg = 0.5.

Proof. Recall that, under assumptions (A0)—(AS), we have verified the local rates
ro > 1.5 of mean consistency and r, > 1.0 of mean square consistency with V(x) =
(1 + ||x]|3)"/2. Furthermore, the Holder-continuity of (a, /) implies that the exact
solution X of SDEs (1.2) is mean square contractive and Holder-continuous with
mean square Holder exponent r,, = 0.5. Moreover, the BTMs (1.1) are weakly V -
stable along V. Hence, an application of the general Kantorovich-Lax-Richtmeyer
approximation principle (cf. subsection 1.4.2) proved in [129] yields that

rg =ry+rgy; —1.0>10+05-10=0.5,

hence the mean square rate r, > 0.5 is confirmed. o
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Remark 1.4.1. In the case ID = RY and uniformly Lipschitz-continuous coeffi-
cients (a,b’), one can also apply convergence Theorem 1.1 from Milstein [95]
(originating from [94]) in order to establish the rate 7, = 0.5 of mean square
convergence for BTMs (1.1).

1.4.2 Mean Square Convergence Along Functionals
(KLR-Principle [81])

Let X, z(t), Y, z(t) be the one-step representations of stochastic processes X, Y
evaluated at time ¢ > s, started from Z € H,([0, s], u, H) (i.e., more precisely, we
have X, z(u) = Z, = Y5 z(u) for 0 < u < s and X, z(¢), Y, z(¢) are interpreted
as the values of the stochastic processes X and Y in H at time ¢ > s, respectively,
with fixed history (memory) given by Z up to time s > 0). They are supposed to
be constructable along any (.%;)-adapted discretization of the given time-interval
[0, T'] and could depend on a certain maximum mesh size /,,,,. Assume that there
are deterministic real constants rg, g, 72 > 0,0 < 89 < 1 such that we have:

(H1) Strong (ID,)-invariance of X, Y, i.e. 3(.%,)-adapted, closed subsets
D, € Hy([0,1], u, H)
such that, forall 0 < s < T, we have
P {( X5, x(5) (@) s<u=<ts Ysv(s)(@))s<u<s € ID; 1 s<t<T|X(s), Y(s)€Ds}=1,
(H2) V-Stability of Y, i.e. 3 functional V' : H,([0,¢], u, H) — Ry forall 0 <
t < Tsuchthat VY(¢) € D, : EV(Y(2)) < +o0, V(Y(2)) is (% )-adapted
and Jreal constant K V1,h:0<h<8,0<t,t+h<T
E[V(Y.yo)(t + h)|.F] < expQK{h)- V(Y (1)),
(H3) Mean square contractivity of X, i.e. 3 real constant K g such that
V X(t),Y(t) € D, (where X(t),Y(t) are (%;)-adapted) Vi,h : 0 < h <
§0,0<t,t+h<T

E[|| X, x()(t+h) — Xeyot + D51 X0). Y(©)] < expQKER)|| X, x0) ()
_Xt,Y(t)([)H%-],

(H4) Mean consistency of (X, Y) with rate o > 0, i.e. 3 real constant KOC such
that V Z(¢) € D, (where (Z,(¢))o<u<: is (F, B(H))-measurable) V¢, h :
0<h=<d,0=<t,t+h=T

NE[X: 24 (t + MIZO)] = E[Yiz00(t + WIZOllu < K5 -V(Z(@)) - k™,
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(H5) Mean square consistency of (X, Y) with rate r, > 0, i.e. 3 real constant
K¢ suchthatVZ(1) e D, Vi,h:0<h<8),0<t,0+h<T

1/2
< K5 -V(Z@))-h"

(B[, 200 + ) = Yoz ¢ + W, 1Z0)])
(H6) Mean square Holder-type smoothness of diffusive (martingale) part of X
with rate ry,, € [0, %] i.e. dreal constant Kgy; > 0 such that
V X(t),Y(t) € D, (where X(¢),Y(t) are (% )-adapted) V¢,h:0<h <4,
0<t,t+h<T

E|| M, x)(t +h) = My (t + Wy < (Ksw) - EIIX (@) = Y(@)|[5; - B>

where M, (t+h) = X,.(t+h)—E[X,.(t+h)|.Z,] for z = X(1), Y (1),

(H7) Interplay between consistency rates given by ro > r, 4 rg, > 1.0,
(H8) Initial moment V' -boundedness IE[V(X,)] + E[V(Yy)] < +o0.

Stochastic approximation problems satisfying the assumptions (H1)—(H8) on H;
are called well-posed. In the classical case of stochastic dynamics with Lipschitz-
continuous vector coefficients like that of SDEs driven by Wiener processes one
often takes the function V((X(s))o<s</) = (1 + || X(2)|[3)?/? or || X(¢)||5; as the
required functional V. Then, V' plays the role of a Lyapunov function controlling
the stability behavior of considered stochastic process and the smoothness condition
(A6) of the martingale part with ry, = 0.5 is obviously satisfied. Of course, if
V(X) = 0 is chosen, then X and Y must be identical and any derived convergence
assertions based on above assumptions are meaningless.

The following fairly general approximation principle [129] can be established.
Define the point-wise L>-error

&) = VE<X(0)—Y(),X(1)-Y() >u

for the processes X,Y € H,, and the deterministic bounds 4,,;, = inf, (N h; <
hy < hpax = sup,; N hi on the mesh sizes i, on which (at least one of) X, Y are
usually based.

Theorem 1.4.2 (Axiomatic Approach of S. [129]). Assume that the conditions
(H1) — —(HSB) are satisfied and that E|[|X(0) — Y(0)||3, < Kinithyiax. Then the
stochastic processes X,Y € H,([0, T], u, H) converge to each another on H, with
respect to the naturally induced metric m(X,Y) = (< X =Y, X =Y >p,)"/? with
convergence rate rq = 1 + ryy — 1.0. More precisely, for any p # 0 and for any
choice of deterministic step sizes h; (variable or constant) with 0 < h; < hyqy < 80,
we have the universal error estimates

e2(1) < exp((KZ + p)(t = 5))ea(s)

expR(KY + p2 — K)(t —s)) — 1

hg 1.96

+K;(p) eXp(Ksyt)\/
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forall0 <s <t <T, where s, t are deterministic, and

sup (1) < exp([K¢ + p*]+T)e2(0) (1.97)

0<t<T

exp2(KE + p2 — K)T) — 1
2(KE + p* = K§)

Tg
hmax

+K;(p) eXP([Ksy]+T)\/

with appropriate constant

VK + (K 2o+ (Ko )
P
Kpax = CXP(([Kg]— + [Kg]—)hmax)

K (:0) = Kipax

-E[V(Y(0))], (1.98)

Remark 1.4.2. The complete proof broken down in a series of auxiliary lemmas
is found in S. [129]. This Theorem 1.4.2 forms the main fundament of the
approximation principle which our entire paper is based on (cf. its table of contents)
and is an extension of ideas due to Kantorovich, Lax and Richtmeyer as they are
well-known in deterministic analysis.

1.4.3 Strong Mean Square Convergence

Definition 1.4.2. A numerical method Y with continuous one-step representation is
said to be (globally) strongly mean square convergent to X with rate r; on [0, T]
iff 3 Borel-measurable function V : ID — ]Rh_ and 3 real constants K, = K,(T) >
0, Kg = K§ (b7),0 < hpax < 8o < 1 such that V(.%,, 4(ID))-measurable random
variables Z(0) with E[|| Z(0)]|2] < 400 we have

1/2 X
_ 21 o Y rd
(]E[orsnflsxT [| Xo0.z(0)(?) Yo,Z(O)(l)IIdVo]) =< Ky exp (st) V(Z(0))hax
(1.99)

along any nonrandom partitions 0 = 7o <, < ... <¢,, =T.

Remark 1.4.3. Of course, strong mean square convergence represents a stronger
requirement than just the “simple” mean square convergence given by definition
1.4.1. In fact, the rates of strong mean convergence carry over to that of “simple”
mean square convergence. No proofs for strong mean square convergence are known
to us other than that under standard uniform Lipschitz-continuity and presuming the
existence and uniform boundedness of higher order moments.
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The proof of following theorem is left to interested reader, but it can be carried
out in a similar fashion as previous convergence proofs by applying a theorem due
to Milstein [94, 95].

Theorem 1.4.3. Assume that all coefficients a and b’ are uniformly Lipschitz
continuous and assumptions (A0)—(A5) hold with V(x) = (1 + ||x||fl)1/4.

Then, the BTMs (1.1) with equidistant step sizes h < 8y < 1 are strongly mean
square convergent with rate r; = 0.5.

This theorem is proved by Milstein’s Theorem stated as follows. We leave the
work out of related details to the interest of our readership.

Theorem 1.4.4 (Milstein’s strong mean square convergence theorem [95]).
Assume that all coefficients a and b’ are uniformly Lipschitz continuous on [0, T] x
R? and the local rates of consistency ro and r» satisfy

> 3 > _|_1
r -, o = 1 —.
2 = 4 0 2 2
Moreover, let AK,Nt € [0, T|Vh:0 < h < 8§y Vz € R?

E (Xt 1) =Yoot + 1) = (Ko + lzllg)h* "

Then, equidistant numerical methods Y with nonrandom initial values X (0) =
Yy = xo € R? permit estimates

Fundamental Strong Mean Square Convergence Relation

0<t<T

1/2
* ra—1
(1) = (IE sup ||Xo,x0(t)—Yo,xo(t)||§> < K5C(1+ ||xoll%) /2

SC . _ 1
where K3 is a real constant, and h < 1, i.e. y;‘ 2)=r— 3

1.4.4 Milstein’s Weak Convergence Theorem

Sometimes one is only interested in moments of solutions of SDEs. This concept
rather corresponds to the concept of weak convergence from functional analysis.
A numerical version of that concept is introduced and studied independently by
Milstein [93] and Talay [139]. Let F' denote a nonempty class of sufficiently smooth
test functions f : RY — R (or functionals) and ID € R?.

Definition 1.4.3. A numerical method Y with one-step representation Y ,(¢) is
said to be (globally) weakly convergent to X with rate r,, € (0, +00) on [0, T|xID
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(with respect to the test class F) iff 3 Borel-measurable function V : ID — ]R'Jr and
J real constants K,, = K,,(F, T, b/) > 0and 8y with 0 < /,,4x < 8o < 1 such that

VxeD: sup sup |E f (Xo_,x(t))—]Ef(YO’fx(t)) < K, V(x)-h™ (1.100)
fEFO0<t<T

where Y is constructed along any nonrandom partitions 0 =ty < t; < ... < t,, =
T with maximum step size /1 based on scheme-values (Y,), N at discrete instants
ty.

Usually one investigates weak convergence with respect to continuous functions
f € F.However, step functions (elementary functions) such as indicator functions
I's of certain sets S or convex functions are also common to guarantee convergence
of related probabilities. However, the main result on weak convergence is borrowed
from Milstein [95] and reads as follows. Let &G (r) be the set of functions
f:RY — R which does not possess polynomial growth more than power r € IN.

Theorem 1.4.5 (Milstein’s weak convergence theorem [95]). Assume that a,b’
are uniformly Lipschitz continuous on [0, T] x R, f : R? — R and a,b’ together
with their derivatives up to degree 2r + 2 are polynomially bounded of degree 2 p,
r € IN, X is governed by SDE (1.2) and:
(i) Xo.x(0)=x0€R? independent of F/ =c (W (s), s>0) with E[|| xo||3’]< +oc.
.. hn 2
(i) Sup(h”)neﬂ\’:hnﬁb’oﬁl SuanW]E“YO(,xo)(t”)”dp = Kp < Fo0.

m
(iii) AKo V1 € [0.T] Vx € R: [la(t. x)|2+ > 16/ (0. 07 < (Kp)*(1+]|x[7)-
j=l

(iv) 3K, Vi € [0.T] Vx.y € R : |a(t.x) —a(t. |2 + Y |p/(t.x) -
j=1
by = (KoPlx =yl
(v) 3g = gx) € F € PGQ2p) Yh < hpax Y[t,t +h] C [0,T] VI =

1,2,....2r+1
/ /
|1E (H(X,.x(z +h) =) = [[(Vint + h) - x)"k) < g()h™*!
k=1 k=1
2r+2
E [] [Yoxl + 1) — x|* < g™
k=1

Then, weak convergence of Y to X with rate r,, = r with respect to the test class
f €F CP2G2p)NCAURY) with V(x) = (1+||x|[¥ on D = R? is established,
i.e. more precisely

eo(T) = sup supTlllE[f(Xo,xo(t))] — E[f (Yo, (D]l 4

feF0<t<
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< K(T.a.b')(1+El| x|},

max

where all K represent real constants (only depending on T, a, bj), and hye < 1.

The proof is found in Milstein [95]. Forward and backward Euler, stochastic
Theta methods with vanishing weight matrices ¢/ (j = 1,2,...,m) as well as
families of implicit Milstein and Theta-Milstein methods have weak convergence
order r, = 1.0. There are other methods such as Talay-Tubaro’s extrapolation
method which can achieve weak order 2.0 or even higher order of weak convergence
for moments of functions of solutions of SDEs at fixed deterministic terminal time
T'. The situation is more complicated for approximation of functionals depending on
the past or even whole memory of trajectories. Then it may happen that the orders
(rates) shrink to much lower orders. A similar reduction of orders can happen if
functions are not very smooth or a control at all times 7" up to infinity is necessary.
For some analysis of convex functionals, see S. [133]. In this case and when non-
smoothness is given, one can exploit the more robust L”-convergence analysis to
justify a minimum rate of convergence (an at least guaranteed order).

1.4.5 Weak Convergence of BTMs (1.1) with Nonrandom Weights

For simplicity, set FF = C },Z(K)(]Rd, R') and consider the subclass of linear-implicit
BTMs (by putting @ = 01in (1.1))

Yepr = Ye+ Y b (. YOAW] + > ¢/ (4. Yo) | AW/ |(Ye = Yieyr) (1.101)
j=0 j=0

which we also abbreviate by BIMs.

For approximations in the weak sense w.r.t. test class F', one should rather take
the weights ¢/ = O for j = 1,2,...,m to guarantee the maximum rate of weak
convergence. More degree of freedom is in the choice of ¢”. A preferable choice is
c(t,x) = 0.5Va(t, x) due to a reasonable replication of the p-th moment stability
behavior of such BIMs compared to the underlying SDEs. This choice would also
coincide with linearly drift-implicit midpoint and trapezoidal methods for bilinear

SDEs. Let le(K)(]Rd,]Rl) denote the set of all /-times (! € IN) continuously

differentiable functions f : RY — R' with uniformly bounded derivatives up to
[-th order such that

max{| f (). [IV Sl IV fOllaxa- -~} = Kp- (1 + [x[)

for all x € R?, where K # and k are appropriate real constants.
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Theorem 1.4.6 (Weak Convergence of BIMs, S.[128]). Assume that (A1)—(A4)
with V- € Cp (R, RY) with V(x) < (1 + [|x||7)"/* hold, E||Yo||* < +o0 for
an integer k > 1, all coefficients a, b’ € CbZ(K)([O, T] x Rd,Rd) of SDE (1.2) are

uniformly Lipschitz-continuous with Lipschitz constants K{ with respect to x and

Ve [0.7T]Vx e RY ) ||t x0)b’ (1. 0)ly = (Kao)*(1+ 2] ). (1.102)
j=0

Then the subclass of BIMs (1.101) with weights ¢/ (t,x) = O for j = 1,2,...,m
(i.e. BIMs with nonrandom weights) is weakly converging with rate r,, = 1.0 with
respect to the test class [ € Cbz(K)(Rd,Rl). More precisely, for all test functions

fecC b2(,() (R, R") for which the standard Euler method weakly converges with rate

rf = 1.0, there is a real constant K,, = K,,(T, K r, b’) (for its estimate, see at the
end of following proof) such that

ESX(T) —Ef (o) = Ky (_max EQ+ [Yel5)) - hnar (1103)

~~~~~~~

where the maximum step size hp, satisfies the condition

2k(4k — )m K@(Kg(z))%m <1 (1.104)

with constants KZ(Z) chosen asin (1.107) forall j =1,2,...,m (i.e. for b/ instead
of f).

Proof. Recall that the forward Euler methods weakly converge with worst case
global rate £ = 1.0 and error-constants KX = KE(T) > 0 under the given
assumptions (see Milstein [95] and Talay [140]). Let f € Cbz(K)(]Rd,]R') have
uniformly bounded derivatives satisfying

max (If(X)I, IVF)llas ||V2f(x)”dXd) < Kp(U+ X" < Kp(+x])
with constant K y. Moreover, for such functions f', one can find an appropriate real

constant KE = KE(T, f,b7) such that it satisfies the conditional estimates of the
local weak error

B (a0 = FOE O] = KE-Q+ a0 - (= 9)?
for sufficiently small 0 <t —s5 < A4y < 8pand x € RY, and the global weak error

B (Xou(T) = FOEM] = KE -+ XI5 T+ B,
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for sufficiently small %, < 8o < min(1, T'). Now, define the auxiliary functions
u:[0, 7] x RY - R by

u(s,x) = Ef(Xsx(tet1)
for 0 < s < t;4+. Suppose that 0 < hy < §y < min(1, T'). For simplicity, assume
that X and Y are constructed on one and the same complete probability space (which
does not exhibit a real restriction due to Kolmogorov’s extension theorem). Then,

by following similar ideas as in Milstein [95] extended to the variable step size case,
we arrive at

eo(ti1) : = [ELS (Yo (1)) = f (Yo 1))
k-1
= ’ Z (E[”(tiﬂ, Xy (tiv)] — Elu(tiv1. Yy y,; (fi+1))])
i=0

+ ELf (X1, (1)) = ELF (Vg )|

k—1
< Z]E‘]E[M(fiﬂ, Xy, (tig1) —ultivr, Yoy, (tip1)| F4 ]

i=0

+ [ B (X, () = S Ky ()| 7]

k—1
< Z]E’]E[M(fiﬂ, Xoy, (i) —ultivr, Yoy (4 0)|F]

i=0

k—1
+ ZE‘E[M(GH, YEy (ti11) — utiv1. Yy, (ti01)) |7,

i=0

+ E[EL (X (10) = FOLEy () 7]

+E[EL (Y () = f Yo, ()] )

IA

k

KE. L+ EYilg) - ) ki

b i=0T_2_l_),(k+l( + ” l”d) ; i
k—1

+ ZE‘E[M(GH, YEy (ti11) — ultivr. Yiy, (ti40))| 7]
i=0

+E[ELAfy, () = f (i ()| )

= Ky _max (LB -t hmax +mi (k) + mak).

w

=V, L.
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k—1

where my(k) = ZIE‘IE[M([,’+1, Ylin (ti+1)) — ulti+1, Yiv (tH»l))Ithi] s
i=0

my(k) = E’E Sy (@) = F Yy e ) F ]|

Next, we analyze the remaining terms m; and m,. For this purpose, suppose that
geC (K)(]Rd R'). Then, the expressions m; and m, have only terms of the form

E|E[g( tk v, tk+1)) — (Y v, (le+1))[-F, ]| Thus, it remains to estimate them by
Ky hi with constants K. Note also that M, . (t) = I;+c°(s, x)(t —s) is nonrandom
and invertible, Y}, y, (tk+1) = Yi+1 by definition, and

dyo(0) 7= YE(0) = Yoult) = M0 (s, 007 (s, )W = W (5)(t —5).

J=0

Now, we obtain

m(k) : = B|E[g(Y," ), (r+1) — 8YVi v (k1)) F,]

= E|E[< Vg(Y). Y.}y (tir1) = Yy v, (41) >a |7

+E[< Ve (1) — VEX0)). Y.y, (ti1) = Yoy (tr1) >a |17 ]

= E| < Vg(Yx). Eldy v, (tk+1)|Fy] >a

+ E[< V2g(na(te+ 1)) (k1) — Yi), diy v (k1) >a |- F]

= E| < Vg(Yx). Eldy v, (tk+1)|Fy] >a

+E[6; < V2gm2(tk+1)dy v, (k1) dy v, (k1) >a | F,]

=B < Vgo). M,y (s ), Yi)alte, Ye) >a hy

+E[0} < V2gma(tis))dy v, (k1) diy v (k1) >a |- F]

IA

1/2 1/2
Ko (ENVEV0 ) (Bl Yot YolI3) 2

/ /
+ (BIV g 0 D)) (Elldy i sl3])

IA

/ /
Koy (]E[IIVg(Yk)llixd])l 4(]E[||c°(tk, Yi)a(t, Yk)||3)1 4/1%

/ /
+(EIVgntts)g]) (Elldy v e l)
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12
< 22K Ky Ko (EIL+ 1Y) 0 +

3/4
+V/32 2 + 12K K K2 (I + Yl $) A

.....

where 7(¢) is an intermediate value between th Y (t)and Yy, y, (¢),ie. n(t) = Yi +
Oy (th y, (1) — Yy v, (1)) with scalar 6 € [0, 1]. Therefore, we may conclude that

m (k)

k—1
< 22K s Ky Kae (1443 (m+1)2 Ky K. ('_r(r)llax JELL A+ [[Yis 14 ) > n?

.....

i=

< 22K Ky Ky, (1+\/§(m + 1)3/2KMK4C) ( max k]E[1+||Y,-+1 |14 )zkhmax,
=0,

and
my (k)

< 232K 1 Ky Kae (143 (m + 1)Ky Ky ( max k]E[1+||Y,-+1||f," ) hichmax.-
1=V,

Consequently, forallk =0, 1,...,ny — 1, the weak error gy of BIM s (1.101) with
nonrandom weights c® must satisfy

.....

where
Ku(t) < (KE + 22K Ky Koo (143 (m+1)* 2Ky Kyo)t.

The p = 4k-moments of the BIMs (1.101) with vanishing weights ¢/ (j =
1,2,...,m) and sufficiently small step sizes hy < h,4y are uniformly bounded.
Thus, weak convergence with worst case rate r,, > 1.0 can be established under the
given assumptions of Theorem 1.4.6, hence the proof is complete. o

Remark 1.4.4. Theorem 1.4.6 says that the BIMs with nonrandom weights and
BTMs with ® = 0 have the same rate of weak convergence as the forward Euler
methods have. For further details and more general classes of functionals F, see
Talay [140]. One can also find estimates of K,, which are monotonically increasing
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in K 7, thanks to Theorem 1.4.6. Therefore, we obtain uniform weak convergence
with respect to all test functions f € Cbz(,()(]Rd, R!) which have boundedness
constants bounded by Ky < ¢ < +o0.

BIMs are implementable very easily while gaining numerical stability compared
to explicit methods (as that of Euler-Maruyama) and maintaining the same conver-
gence rates as their explicit counterparts. Thus, we can justify them as a useful and
remarkable alternative to the most used numerical methods for SDEs.

Remark 1.4.5. An expansion of the global error process for BIMs or BTMs as in
[141] is not known so far. Such an expansion could give the possibility to exploit
extrapolation procedures to increase the order of weak accuracy of those methods.
This is still an open problem.

1.4.6 Supplement: Linear-Polynomial Boundedness of [ € C gip

In the proof above, we used the fact that linear-polynomial boundedness of Lipschitz
continuous functions can be established too. To see this, let C I?(K)([O, Tl x R4, R

denote the set of all continuous functions f : [0, T]xR¢ — IR’ which are uniformly
polynomially bounded such that

[f@ 0l < Kp- (14 [Ix]7)

forall x € ]Rd, where Ky > 0 and « > 0 are appropriate real constants.

Lemma 1.4.1. Assume that [ € CbO(K)([O, T] x R¢, R") with constants k > 0 and
K ¢ is uniformly Lipschitz continuous with constant Ky, i.e.

Vie[0,T]Vx,y e RT | f(t,x) = [ )l < Kilx =yl (1.105)

Then, there exist constants Kppy = Kpp(p.T.Ky, K1) such that NVt €
[0,T] Vx € R?

/@0l = 277Ky - (U ) < Ky - (1 1D (1.106)
forall p > 1, where the real constants Ky can be estimated by
0 < Kpp < 207V/7 . max{K; K.} (1.107)
Proof of Lemma 1.4.1. Estimate

0 =<l )l = ILf @O + 1/ x) = f(2.0l = Ky + K x];
< max{K s, Kp}(1 + ||xll;) < 272 max{K s, Kp}(1 + [lx]|))"7.

Therefore, constant Kj(,) can be chosen as in (1.107). Thus, the proof is complete. ¢
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Remark 1.4.6. In fact, it suffices that supy., <7 || f(Z, x)[l; < +oo for some xx €
RY and f is Lipschitz continuous in x € R? with Lipschitz constant K () which
is uniformly bounded with respect to t € [0, T']. However, K, may depend on
k too. Now, we can apply Lemma 1.4.1 in order to recognize that the requirement
(A2) of Holder continuity of system (a, b/) yields linear-polynomial boundedness
of both a and all b/ coefficients of diffusion processes X .

Remark 1.4.7. Weak approximations and weak rates of convergence of Euler-type
methods are also studied in Kohatsu-Higa et al. [75,76], in Kannan et al. [67,68], in
Kushner et al. [84, 85], in Ogawa [103-105], or in Talay [140].

Remark 1.4.8. Strong convergence under nonclassical conditions has been inves-
tigated in Deelstra & Delbaen [24], Gyongy [42], Higham et al. [49], Hu [55],
Ogawa [104], Tudor [142]. Moreover, asymptotic efficiency of classes of Runge-
Kutta methods is considered in Newton [101].

1.5 Positivity

It is well-known that the geometric Brownian motion X satisfying the It6 SDE
dX(t) =AX@)dt + y X(@t)dW(t) (1.108)

driven by the Wiener process W possesses the exact solution (with constants A,
1
y €R)

X(t) = exp((A — y?/2)t + yW(1)) - X(0) (1.109)

for .%y-adapted initial data X(0) € R'. Remarkable facts are that X remains non-
negative for non-negative initial values X(0) = x¢, X remains strictly positive for
strictly positive initial values, and X with X(0) < 0 or X(0) > 0 does not change
its sign as time ¢ advances. Let us investigate the behaviour of representatives of
Theta methods (1.1) with respect to this observation of sign-preservation. For this
purpose, we suppose y > 0 for the further consideration.

1.5.1 Non-Positivity of Standard Euler Methods
Jor Linear ODEs

In deterministic numerical analysis a very simple example is well-known. Consider
the equation (ODE)

X =Ax with x(0) =x0>0
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and its non-negative exact solution x () = exp(At)-x¢. Then the Euler scheme (1.1)
gives

n
Yn+1 = Yn + lynhn = (1 + lI’ln)yn =)o l—[(l + Ahl) (1110)
i=0

Obviously, started at yo > 0, this solution is always positive if L > 0 or |A|h; < 1
foralli = 0, 1,...,n. Thus negative values may occur under the assumption yy >
0, A < 0 and h; large enough (indeed infinitely often). This step size restriction even
gets worse for large values of A and a uniform restriction of / is not possible for all
parameters A < 0 in order to guarantee (strict) positivity (or sign-preservation).

1.5.2 Positivity of Balanced Theta Methods for Linear ODEs

In contrast to the standard Euler scheme, in the case yp > 0 and A < 0, we can
always prevent negative outcomes or even “explosions” in numerical methods with
arbitrary step sizes h; for linear differential equations. For this purpose we introduce
the family of implicit Euler-type schemes (1.1) with

Yn+1 = Yn + (9)’;1+1 + (1 - e)yn))"hn

1+ (- Q)Ahn 1+ (1 —0)Ah;

_ , 1111
1 —OAh, OH 1 — Orh; (LD
hence it gives exclusively positive values under yy > 0if 14 (1—0)Ah; > 0 forall

i € IN. A generalization of these schemes is presented by the deterministic balanced
methods

Yn+1 = Yn + Aynhn + Chn(yn - yn+l)

1+ G4 b l'—’[1+(/\+c)hf

- 1.112
1+ ch, 1+ ch; ( )

i=0

for an appropriate constant ¢ > 0. Consequently, numerical solutions generated by
(1.112) with ¢ > |A| or by (1.111) with 6 = 1 are positive and monotonically
decreasing for all y9 > 0, A < 0 and arbitrary step sizes #; > 0. They do not
have any explosions, and do not vanish for positive start values as well. Indeed
they provide sign-preserving approximations. All these properties are features of
the underlying SDE. Hence, BIMs possess adequate realizations.

1.5.3 Negativity of Drift-Implicit Theta Methods for Linear SDEs

After previous elementary illustrations with ODEs, we return to the stochastic
case. For the sake of simplicity, we confine ourselves to equidistant partitions with
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uniform step size £ (a similar result can be formulated for partitions with variable,
nonrandom step sizes A;, but with “some care”).

Theorem 1.5.1 (Non-adequate Negativity of BTMs without Balanced Terms).
Suppose X satisfies (1.108) with X(0) > 0 (a.s.), y # 0 and (1 — OAh) > 0. Then
the drift-implicit Theta approximation (1.1) applied to the linear SDE (1.108) and
started in YO‘9 = X(0) with nonrandom equidistant step size h > 0, non-autonomous
nonrandom implicitness 0 € R' and without balanced terms ¢/ = 0 has negative
values with positive probability, i.e. there is a stopping time T = t(w) : 2 — IN
such that

P(weR:Y () <0})>0.

Proof. The family of drift-implicit Theta schemes (1.1) applied to (1.108) with
¢/ = 0 and autonomous scalar implicitness § = 0, is governed by

Yo =Y+ 00V b+ (L= OAY h+ yY,) AW,

B 1+(1—9))Lh+yAWnY0_Y0ﬁ 1+ (1—60)Ah + yvVhé
B 1 —6Ah oo 1—6Ah '

Define the events E; C 2 on (£2,.%,IP ) (fori € IN) by
Ei:={we Q:1+(1—0)rh+yVhé(w) <0}
forii.d. & € A47(0, 1) (standard Gaussian distributed). Then the event
E:={weQ:3t(w) < +00.1(w) e N: Y[, <0}

can be substituted by the events F;.

::p

P (E) =P <{w €21 6() < —w})

y~h

Notice that

P (Eo) = P ({w €2 ko) < —w}) -

lyIvh

as & is symmetric about 0 (recall the assumption of Gaussian distribution of &).
Thus, one obtains

P (E) =P (E N (Eg U Ep)) =P (E|Eo)P (Eo) + P (E|Eo)P (Eo)
=p+(1—pP(E|E)=p+ (1—p)P(EN(E UE))|Eo)
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=p+ (1 —p)(P(E|Eo, E\)P (E\) + P (E|Eo, E\)P (E}))
=p+p(l—p)+1—p)°P(E|Ey E))

=p+pd—p)+p(l—p)*+(1—p)P(E|Ey. E\. Er)

— ) = 1 P _
Z(l ?) p( - p)) 8

p

Note that 0 < p < 1. Thus it must exist (a.s.) a finite stopping time t, = n(w)h
such that Y¥(z,) = ¥,/ < 0.

Alternatively, with the help of the well-known Lemma of Borel-Cantelli (or
Kolmogorov’s 0—1-law, see Shiryaev [134]) one also finds a short proof of Theorem
1.5.1 (see original idea with & = 0 in S. [119]). For this purpose, we define

Ay ={weR:3i<n:Y’ <0}
for n € INT. Then it follows that

E_ﬁ°°1Uk Ak= ﬂ°° Ag .

=n k=n

Because of P (Zn) = (1—-1P (Ep)" (n=1,2,...), we obtain

Z P (4,) =

n=0 )

< +00

where

1>P(E) =P ({weR:1+(1—0)rh+|y|vVh& @) <0})

1+0— G)Ah)

\/_/ e exp(—x2/2)dx
— 9 (—Hﬂ%) =0 Vhe (0,00
14

and @ denotes the probability distribution function of the standard Gaussian
distribution .#'(0, 1), hence the assertion IP (f) = 0 is true. Thus, drift-implicit
Theta schemes with any & € R! and without balanced terms always possess a
trajectory with negative outcome under the assumptions of Theorem 1.5.1.
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1.5.4 Positivity of Balanced Theta Methods for Linear SDEs

In contrast to the Euler methods, we find numerical methods which only have non-
negative values and are sign-preserving. A corresponding assertion is formulated by
Theorem 1.5.2.

Theorem 1.5.2 (A.s. Positivity of Balanced Methods, S.[119]). Assume that pro-
cess X satisfies (1.108) and X (0) > 0 (a.s.).

Then the balanced methods with non-negative constants c® and c' exclusively have
positive outcomes at all instants n € IN, provided that

1+ +0)h>0 and c' > |y|. (1.113)

Proof. This claim follows immediately from the structure of the balanced methods
(1.1) applied to the (1.108) with ® = 0, appropriate weights ¢ and ¢! satisfying
(1.113). One encounters

Yo, =Y+ avPh+yY P AW, + (h + aw (P -5,

1+ (c® + M)h + yAW, + ' |AW,]| vE
14+ cOh + 1| AW, "

Thereby, Yiil > 0iff
14 (® 4+ V)h + yAW; + ' AW;| >0

for all i € IN. Obviously, this is true under (1.113). >

Remark 1.5.1. An optimal choice of weights ¢/ to maintain positivity under A < 0
is given by ¢! = |y| and ¢ = [-A]. where [z]. is the positive part of inscribed
expression z (for optimality, see also exact contraction-monotone and energy-exact
methods below). Numerical methods with variable step sizes could also prevent
negativity, however this may lead to inefficient implementations in random settings
and throws out the nontrivial question of convergence of random instants ¢, to 7" as
n — —+o00. Moreover, the predictable measurability of instants 7, is given up (i.e.
one deals with another category of stochastic approximations!).

1.5.5 Positivity of Balanced Theta Methods for Nonlinear SDEs

Consider nonlinear autonomous SDEs (1.2) of the form

dX(t) = | f(X(0)dt + Y g (X@)dW (1) | X(1) (1.114)

J=1
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with a(t,x) = xf(x) and b/ (¢,x) = xg;j(x) where f and g; are nonrandom
matrices in IR*?. Such (1.114) are met in biology and ecology (see Lotka-Volterra
equations or logistic Pearl-Verhulst models). There X approximates the number
of populations of certain species such as fish, flies, rabbits, fox, mice and owls or
the dynamic evolution of offspring-to-parents ratios. Naturally, X must have only
positive outcomes for its practical meaningful modeling character.

Let us discretize SDEs (1.114) by the balanced methods (1.1) of the form

m

Xopr = [ I+ fX)ha + > g;(X) AW, | X,
j=1

m
+ IIf(Xn)IIInaxhn+Z||gj(Xn)||maXIAVan| (Xn_Xn+1) (1~115)
j=1

where ||.||nqx 1S the maximum norm of all entries of inscribed matrices and / is the
unit matrix in R?*?,

Theorem 1.5.3 (Positivity of BIMs for Nonlinear SDE). The balanced implicit
methods (1.115) applied to SDEs (1.114) with same initial value X (0) > 0 and any
step sizes h, maintain the positivity at all instants n € IN.

Proof. Rewrite scheme (1.115) to equivalent expression

Can+1 = |:I + (f(Xn) + ||f(Xn)||max1)hn

+ Z(gj (Xn)AI’an + ||gj(Xn)||max|A%j |):| Xn (1.] ]6)
j=1

where C, represents the invertible d x d diagonal matrix

m
Co= |1+ ||f(Xn)||maxhn + Z ”gj(Xn)IImaX|AI’an| I
j=1

Now, apply complete induction on n € IN and exploit the positivity of both the right
hand side of (1.116) and the matrix C, to conclude the assertion of Theorem 1.5.3.
It is worth noting that the choice of step sizes /,, > 0 does not play a role in keeping
positivity as n advances in our previous argumentation. o

Remark 1.5.2. A slightly more general theorem on positivity of convergent multi-
dimensional BIMs is found in S. [119, 120].
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1.5.6 Positivity of Balanced Milstein Methods

The lack of preservation of positivity can not be removed by the use of “higher
order methods” such as standard Milstein or Taylor-type methods (while noting that
the probabilities of negative outcomes can be reduced by using them). However,
by appropriate introduction of further balancing terms in them, one may achieve
the goal of positivity (and sign-preservation) and higher order of convergence
(and consistency as well). This fact is demonstrated by the following discussion
which is related to higher order numerical methods applied to SDEs driven
exclusively by diagonal noise (for the sake of simplicity). Recall that systems
with diagonal noise are characterized by .#'b/(t,x) = 0 for all i # j where
i,j = 1,...,m. In this case the balanced Milstein methods (BMMs) with
diagonal noise follow the scheme

Yn-‘rl = Yn + ij (tnv Yn)l(j),t,,.t,,H + Zgjbj (tnv Kz)](j,j).t,,.t,,+1
j=0 j=1

+ | d°tn, Y) L0y 40041 + Zdj(ln, Y)IGjyanans: | Yo —Yot1).
j=1
(1.117)

This class has been introduced and studied in Kahl and S. [60] in a more general

form referring to multiple It6 integrals 7o, 1, -

Theorem 1.5.4 (Positivity of Balanced Milstein Methods [60]). The one-dimen-
sional BMMs (1.117) applied to one-dimensional SDEs (1.2) with diagonal noise
along partitions

h<h<..<Li <41 <...

and applied to SDEs (1.2) with diagonal noise maintain positivity of initial
conditions X (0) € R4 if the following conditions hold

(A6) Vi €[0,T] Vx € Ry : d°(t, x)— 3% Y1 d1(t, x) is positive semi-definite.
(A7) Yj =1,2,....mVt €[0,T] Vx € Ry : d/(t,x) is positive semi-definite.
(A8) Yj =1,....m Vi, € [0,T] and Vx € Ro.

. J . .
b/(tn,x)a—b/(tn,x)—i—d/(tn,x)x > 0, (1.118)
x
(A9) Vt, €[0,T]andVx € R+.

N (b7 (tn, x))?
= S Ib 2di
=2 (tn, X) 507 (1, x) + (s, x)x

> 0, (1.119)
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1< . q . 1< .
(A10) If D(ty. x) = a(ty. x) ~ 5 ;lbf (1. X) 5= (1. 2) +d (1. x)x = ;df
(ty, x)x<O0 for a value x € IR at time-instant t,, € [0, T'] then the current

step size h,, is chosen such that Vt, € [0,T], Vx € R4.

x + N(ty, x)
< 1.12
T (1120

where

Nz ) i (bj(tmx))z
nyX) = — X - - - .
= 2bJ (t,l,x)%b/ (th,x) +2d7(t,,x)x

Remark 1.5.3. The assumption (A8) guarantees that the BMMs inherit the posi-
tivity preserving structure of the underlying Milstein method. Condition (A9) is
more technical, but in many applications this is valid without the use of the weight
function d'. (A10) is only necessary if D(t,,x) < 0, otherwise we can drop this
restriction for positivity. So, we obtain a first idea to apply BMMs as advanced
Milstein-type methods to preserve positivity by choosing d° and d' in such a way
that D(t,, x) is greater than zero and we do not have to restrict the step size through
(1.120) in this case. Furthermore, for global mean square convergence of BMMs
with worst case rate 1.0 and positivity at the same time, we need to require that
D(t,x) > 0. Note that the adapted, but random step size selection depending on
current random outcomes Y, by condition (A10) in the case of D(¢,x) < 0 would
contradict to the exclusive use of nonrandom step sizes as exploited in standard
convergence proofs. Moreover, a restricted step size selection as given by (A10)
throws out the problem of proving that any terminal time 7" can be reached in a
finite time with probability one. So it is advantageous to require D (¢, x) > 0 for all
x >0and 0 <t < T for meaningful and practically relevant approximations.

Proof. Set x = Y,. Using the one-step representation of the BMM (1.117) we
obtain

1 m ) )
1+ x) + Egduzn,x) (AW =) | Y

= (x + a(tn,x)hn + Zb] (tn, X)AVan

j=1

| R o ,
= b (t,, x)—b’ (1, AW — b,
+2,§ (s X) 5 b (2, ) ((AW])? = )

+ do(tlﬁ -x)-th + % Z d](tm -x)x ((AWn])Z - hn))

Jj=1
= R(tn, Y,).
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The expression (.. .) in-front of Y, at the left hand side of this equation is positive
due to (A6) and (A7). Rewriting the right hand side leads to

1 m ) 8 ) o

R(t,,x) = x +|a(t,, x) — Egb/ (tn,x)ab/ (ty, x) +d°(t,, x)x

1 m )

D d) (. x)x | b + (AW, AW
j=1

2
with

gAW,) .. AW =D b (1. x) AW,/
j=1

1< . 9 . . .
N / ns —b/ ns / ns A J 2-
+2;(b (. X) 5= (10.3) +d (¢ x)x)( W)

The function g : R” — IR! possesses a global minimum due to (A8). More
precisely, an obvious calculation shows that

. “ (bj tnv X 2
min g(z) = — Z : 3 ,( ) . .
zeR o2 (b9 (tn, x) 52 b7 (1, x) + dJ (1, X)X)

(1.121)

This enables us to estimate R from below by replacing the value of g(AW,!, ...,
AW, by its minimum. So we arrive at

1 m ) a )
R(ty, x) = X+ | alty. x) = 5 3 b7 (4, ) 5D (10, ) + d (0. x)x
j=1

Iy RS (b7 (12, x))?
2 Zd (n, X)X | An Z Z(bj (tn,x)%bf(tn,x) + dj(t”’x)x)

j=1 j=1

= x+N(,, x)+D(t,, x)h,

We can clearly see that (A9)—(A10) under (A8) are needed to get positive values
Y,+1 > 0 whenever Y,, > 0 for all n € IN. More precisely, if

1 m ) 8 )
Dy, x) = a(tn, x) = 5 Zb/(t,,,x)abf (tn, x)
j=l

1 m )
+d°(t,, x)x — 3 Zd/(tn,x)x >0
j=1



82 H. Schurz

then R(z,, x) > 0 and we do not need any restriction of the step size &, by (A10) at
all. If D(t,, x) < Othen x+ N (t,, x)+ D(t,, x)h, > 0 guarantees that R(¢,, x) > 0,
hence condition (A10) is needed in this case. Therefore, assumptions (A8)-(A10)
imply the property of positivity of BMMs (1.117). o

Remark 1.5.4. The proof of Theorem 1.5.4 shows that the condition (A9) can be
relaxed to

j 2
—Z (b (tn, X)) >0 (1.122)
2b7 (1, x) L a=bI (ty. x) +2d7 (t,, x)x

under the assumption D(z,, x) > 0.

Moreover, in some cases it is more efficient to verify the following conditions
instead of restrictions (A9) and (A10) known from Theorem 1.5.4.

Corollary 1.5.1 (Kahl and S. [60]). The one-dimensional BMM (1.117) satisfying
(A6)—(A8) along partitions

fo <t <o <ty <lygyp <---

maintains positivity if additionally

(All) Yj=1,....mVt, €[0,T)andVx € R+ : x+ N(t,,x)+ D(t,, x)h, > 0,
where the functions N and D are defined in Theorem 1.5.4.

Example 6.1. Consider the one-dimensional geometric Brownian motion
dX(t) =Y o;X@)dW/ (),  X(0)=x0>0 (1.123)
j=1
without any drift which is a standard example for stability analysis for numerical
integration schemes for SDEs (e.g. see [120, 127]) where the standard numerical

methods possess serious step size restrictions or even fail to preserve stability and
positivity. Using any BMM with

m
0 m 2
d (tmx) 2 3‘20—'7
j=1
Vi=1,....m  d'(t,,x) = (m—1)o}

can solve this problem with higher order of accuracy very easily since

D(t,,x) = ——Zo X +d0(tn,x)x——20 X

j=1
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m m
m 2 m 2. _
Z_EZUJX+EZUJX = 0 and

j=1 j=1
m O'2~X2

Npx) ==Y 5 — =2 <0
j=120jx+2(m—1)6jx 2

for x € R4 = (0, 4+00). Hence, the restriction (A10) on the step size &, is not
relevant here. However, notice that a restriction of the form D(z,,x) > —K =
constant is important for the finiteness of related numerical algorithm (i.e. in
particular in order to reach any desired terminal time 7" > O with probability one).
Moreover, all assumptions (A6)—(A9) are satisfied. Consequently, the related BMMs
provide positive-invariant numerical approximations to test SDE (1.123) with any
choice of step sizes h, and any .%p-adapted initial data X (0). Moreover, one can
show that they are consistent, convergent and stable (i.e. dynamically consistent).

Example 6.2. Consider the mean-reverting process (ECIRM)
dR(t) = k(0 — R(t))dt + o[R(®)]"dW(t) (1.124)

with 6, k, 0 > 0 which is of great importance in financial mathematics as well as in
other areas of applied science. Focusing on the financial meaning of this equation
we obtain the well known Cox-Ingersoll-Ross model with exponent p = 0.5,
describing the short-rate R in the interest rate market. Furthermore this SDE can
be used to model stochastic volatility. As commonly known, these dynamics must
be positive for practically meaningful models. Indeed one can show that for the
above process X with exponents p € [0.5, 1) and positive initial data R(0) (e.g. by
using Fellers classification of boundary values). Then Kahl and S. [60] have shown
that the BMM (1.117) satisfying (A6)-(A7) with 02>0 along partitions

fo <t <o+ <ty <lygyp <---

has exclusively positive outcomes when applied to the mean-reverting process
(1.124) with diffusion exponent p € (0.5, 1] with the following choice of the weight
functions

1
d’(x) = ak + 502p|x|<2P*2>, d'(x) = 0. (1.125)

with relaxation parameter o € [0, 1] such that

2p—1

n

Here, the relaxation parameter « is similar to the implicitness parameter 6 in the
class of Theta methods (1.1) and gives some flexibility to adjust the BMM to specific
problem issues. The fully implicit case @ = 1 is a safe choice as we do not have to
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restrict the step size in that case. On the other hand, numerical tests have indicated
that a reduced level of implicitness leads to better approximation results. Therefore,
we would recommend to use ¢ = 0.5 whenever the parameter configuration allows
this choice, also supported by results from [120]. Similarly, but with some care, one
may circumvent the problem of negative outcomes by BMMs in the critical case
p = 0.5 of model (1.124). For more details, see [60].

Remark 1.5.5. An alternative numerical method to prevent inadequate negativity is
given by splitting techniques of Moro and Schurz [99].

1.5.7 Non-positivity of Standard Euler Methods
for Nonlinear SDE

Again, for simplicity, we confine ourselves to equidistant partitions of Euler
approximations with step size & (e.g. h = T/ N) and possibly state-dependent noise
term

Xos1 = X, 4+ ha(X,) + Vhb(X,)Ep1, n=12,.... X(0)=xy>0,
(1.127)
where {£,} N are independent identically distributed (i.i.d.) random variables on
(£2,.%,,,IP ). Then one is able to prove the following Theorem (see [2]) which
extends the results from [119, 120] to nonlinear equations (1.127). As usual, let

(2. 7.(F,)heN-P)

be a complete filtered probability space and the filtration (%)
generated, namely that %, = o{&, &1,...&,}.

N be naturally

ne

Theorem 1.5.5 (Non-positivity of Euler Methods for Nonlinear SDEs in 1D).
Assume that:

(0) h >, xg > 0 are nonrandom and fixed
(i) a:IR— Randb : R — R are continuous, nonrandom functions with

a(0) = b(0) =0, (1.128)
(ii) G is well-defined by

Gu) = u+ ha(u)

- "7 1.129
Vhlb(u)| (129

for all u # 0 and satisfies

inf {~G(u)} > —oc. (1.130)

iii) diffusion function b is positive-definite on R\, i.e.
p +
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Vx>0 : b(x)>0, (1.131)

(iv) (§1),ev are iid. Gaussian A (0,1)-distributed random variables on the
filtered probability space (82, F,(F1,) eN- P )-

Then, for the standard Euler method (1.127) with equidistant step size h and positive
initial value X(0) = xo > 0, there exists an a.s. finite stopping time T : 2 — IN
such that

X;<0. (as.)

Remark 1.5.6. In fact, our main results are also valid when all &, are i.i.d. random
variables with symmetric continuous probability distribution F satisfying

VneN : F; = F_g,,supp(F;,) = R". (1.132)
Proof. In the proof we use a technique which was suggested by [119] and which is

based on the Borel-Cantelli Lemma (for latter, see, e.g. [134]). For this purpose and
fixed step size h, introduce the nonrandom real constant M by setting

Ll;n(“) {-G(u)} = thl;g —%§ =M > —o0. (1.133)
Furthermore, define
E,={weR:Xi(w)>0Vi<n}, (1.134)
then
E,={we$2:3i <n:Xi(w) <0}. (1.135)

From the Borel-Cantelli Lemma we conclude that the solution X to equation (1.127)
becomes non-positive with probability one if

Z]P (E,) < oo. (1.136)
n=0

To prove (1.136) we estimate IP (E,) from above. Set X (0) = X,. Since
P(E,) =P {weR:X(w)>0Vi<n}

=[[Piwe:X;@) >0X;-1>0..... X >0}
j=1

we need to estimate IP {w € £2 : X;(w) > 0|X;_; > 0,..., Xo > 0}. We have for
j>1
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P {C!)E.QIXJ’(G))>O’XJ_1 >O,...,X0>0}
=P o€ 2: X;m +ha(X;m) + Vhb(X;-)§; (@) > 0| B}

=P {a) c2: \/Eb(Xj—l)Ej(a)) > _Xj—l —ha(Xj_])’Ej_]}

=P loec:§w)>-

X1+ ha(X;-
J 1+ a( J l) Xj71>0
Vhb(X;-))
SPlweR:§w>MX;1>00=P {we:§w>M}
under b(u) > 0 for u > 0. The last equality in the above estimation holds since
Xy is defined by &, &,...,&;—1 and &; is independent of &, &;,...,&;_1, and

therefore £; is independent of X ; ;.
Now, put

P {a)e.Q:Sj(a))>M}=qM,
and note that gj; does not depend on j and gy < 1. The former statement is

true since M > —oo and &, are all .4#7(0, 1)—distributed, and therefore all &, are
continuously distributed with support (—oo, +00). Therefore,

]P(En) = (QM)nv Z]P(En) =

n=0

< 00.
l—qum

Furthermore, define
T(w) = inf{i e N: X;(w) <0}, (1.137)

and note that, by the above argumentation, the random variable 7y is a.s. finite and
all events {t = n} are (.%;,, & (IN))-measurable, where .Z(IN) is the power set of
all natural numbers IN (i.e. {t = n} € %, forall n € IN and 7 is a finite Markov
time). We also note that we actually have X; < 0 (a.s.). This last statement is correct
since X, has a continuous probability distribution and, therefore, it cannot take on
the value 0 with positive probability. o

Remark 1.5.7. Condition (1.131) is not so essential for the validity of the above
proof. Indeed, one can proceed without imposing condition (1.131), but this is not
in the scope of this survey.

Remark 1.5.8. Condition (1.130) is fulfilled in particular if, for some K,, K, > 0
and all u € IR, we have

a(w) > Kguifu <0, a(u) < Kpuifu>0 and |b(u)|> Kplu|if u € R.
(1.138)
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Moreover, for example thanks to Theorem 1.5.5, if there are constants p>0, K,>0
and K, > 0 such that

a(u) = —K,|u|’u and b(u) = Kpu, forall ueRR, (1.139)

then every solution X of (1.127) started at X(0) = xo > 0 will eventually possess
negative values as the integration time #, advances.

Remark 1.5.9. In passing, we note that the fact of non-positivity of numerical
methods is not so a bad property for some classes of SDEs. For example, systems
with additive noise (see e.g. discretizations of Ornstein-Uhlenbeck processes) must
have that feature of changing signs infinitely. This stems from the inherent property
of underlying Wiener processes to cross zero levels after some finite time always
(cf. the law of iterated logarithm of Wiener processes). All in all, we recommend
some care with requiring positivity in only adequate situations.

1.6 Boundedness (Finite Stability)

In this section, we shall study the topic of uniform boundedness of numerical
approximations which is mostly omitted in the literature. The property of bounded-
ness can be interpreted as stability on finite intervals or the absence of “inadequate
explosions”. This is also an important requirement in view of meaningful modeling
under the absence of blow-ups. We can only indicate some results on the fairly
complex property of boundedness.

1.6.1 Almost Sure Boundedness for Logistic Equations

Meaningful stochastic generalizations of logistic equations lead to the nonlinear
SDE:s of It6-type

dX(t) = [(p+AX())(K—X(t))—puX (@) dt +0X ()| K—X@)|PdW(t) (1.140)

driven by a standard Wiener process (W(¢) : t > 0), started at Xy € ID = [0, K] C
R!, where p, A, K, i, o are positive and «, B non-negative real parameters. There
p can be understood as coefficient of transition (self-innovation), A as coefficient of
imitation depending on the contact intensity with its environment, K as a somewhat
“optimal” environmental carrying capacity and p as natural death rate. However,
in view of issues of practical meaningfulness, model (1.140) makes only sense
within deterministic algebraic constraints, either given by extra boundary conditions
or self-inherent properties resulting into natural barriers at 0 at least. This fact
is supported by the limited availability of natural resources as known from the
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evolution of species in population ecology. In what follows we study almost sure
regularity (boundedness on ID) of both exact and numerical solutions of (1.140).

Theorem 1.6.1 ([120,130]). Let X(0) € D = [0, K] be independent of o-algebra
o(W(t),t > 0). Then, under the conditions thatae > 1, 8 >1, K>1,p>0, A >
0, u > 0, the stochastic process {X(t),t > 0} governed by equation (1.140) is
regular on D = [0, K], i.e. we have P (X(¢t) € [0,K]) = 1forallt > 0.
Moreover, regularity on ID implies boundedness, uniqueness, continuity and Markov
property of the strong solution process {X(t),t > 0} of SDE (1.140) whenever
X(0) =0¢(a.s.), X(0) = K (a.s.) or

E[In(X(0)(K — X(0)))] > —cc.

Remark 1.6.1. The proof of Theorem 1.6.1 is found in S. [130]. To avoid technical
complications, define the diffusion coefficient b(x) to be zero outside [0, K]. Note
that the requirement & > 1 is a reasonable one in ecology, marketing and finance.
This can be seen from the fact that modeling in population models is motivated by
modeling per-capita-growth rates (cf. S. [130]). Similar argumentation applies to
models in finance (asset pricing) and marketing (innovation diffusion).

Proof. Define the drift function
a(x) = (p+ Ax)(K — x) — px

and diffusion function
b(x) = ox*(K — x)P

for x € [0, K]. Take the sequence of open domains
D, := (exp(—n), K —exp(—n)),n € IN.

Then, equation (1.140) is well-defined, has unique, bounded and Markovian
solution up to random time t**(ID,), due to Lipschitz continuity and (linear)
boundedness of drift a(x) and diffusion b(x) on ID,,. Now, use Lyapunov function
V e C?*(ID) defined on D = (0, K) via

V(ix) = K—In(x(K —x)).

Note that V(x) = K —In(x(K —x)) = x —In(x) + K—x —In(K —x) > 2
for x € D = (0, K). Now, fix initial time s > 0, introduce a new Lyapunov
function W € C'2([s, +00)xID) by W(t,x) = exp(—c(t—s))V(x)forall (t,x) €
[s, +00) x ID, where

o PHAK + oKX 4
> :
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Then V € C%(ID) and W € C'2([s, +00) xID,,). Define . = .#° as infinitesimal
generator as in (1.6). Calculate

-1 1 2 1 1
.,%V(x)=((p+M)(K—x)—MX) [7 + E} +%XZQ(K_X)2/3 [;+ (K—x)Z}

for x € D = (0, K). An elementary calculus-based estimate leads to £V (x) <
¢ - V(x) on D. Consequently, we have

Vix) > 2, inf V(y)>14n, ZLV(x)<c-V(x) Vx € D.
yeD\D,

Therefore one may conclude that ZW(t,x) < 0, since LV(x) < ¢ - V(x).
Introduce t, := min(z**(ID,), 7). After applying Dynkin’s formula (averaged Itd
formula), one finds that EW(z,, X,) < V(x) (X(s) = x is deterministic!), hence

E[ exp(c(t = m)V(X,,)] < exple(t = s)V(x).
Using this fact, x € D, (n large enough), one estimates

0<P (Ts‘x((o, K))<1) <P (Ts‘x(]Dn) <t)=P(r, <1) = ]E”r,,<t
V(X rsx(y,)) ' :|

infyep\o, V() "

V(x) V(x) —

< t—s) —m8F—— < t—ys))- ,
< exp(c(t =) infyep\p, V(y) ~ exp(c(t =) 1+n n— +4o0

-E [exp(c(z —n))-

for all fixed ¢ € [s, +-00), where I/ represents the indicator function of subscribed
random set. Consequently

PED) <) = In PEEDI <0 =0,

for x € (0, K). After discussion of the trivial invariance behavior of X () when
Xo = 0or Xy = K, (almost sure) regularity of X(¢) on [0, K] follows immediately.
Eventually, uniqueness, continuity and Markov property is obtained by a result from
Khas minskil [71] (see Theorem 4.1, p. 84). o

Numerical regularization (the preservation of invariance of certain subsets under
discretization while keeping convergence orders of related standard methods) is
generally aiming at the construction of convergent and appropriately bounded
numerical approximations for SDEs. First, we introduce the notion of regular
discrete time processes.

Definition 1.6.1. A random sequence (Z;), .\ is called regular on (or invariant
with respect to given domain) D ¢ R? iff P (Z;, € D) = 1 foralli € N,
otherwise non-regular (not invariant with respect to D).
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The following BIM solves the problem of numerical regularization on bounded
domain D = [0, K], at least in the case of « > 1, 8 > 1. Take

Yo+ (0 + MY (K = Y,) = 1, Yy + 0¥ (K = Y,)P AW,

(1.141)
+ (1 + COOYEN (K = Y)P 0 AW, ) (Y = Vi),

Yiy1 =

where C = C(K) is an appropriate positive constant and Yy € D = [0, K] (a.s.).
Then one finds the following assertion.

Theorem 1.6.2. Assume that the initial value Yy € [0, K] (a.s.) is independent of
o-algebrac(W(t),t > 0)and K >0, p > 0, A > 0, u > 0. The numerical solution
(Yn), v governed by (1.141) is regular on ID = [0, K] if additionally

4o00>C(K)>K>0,a>1,>1,0<h, < (Yn e N).

p+ AK

Remark 1.6.2. Tt is rather obvious that standard Euler methods or Theta methods
without using balancing terms can not provide almost surely bounded numerical
approximations on ID = [0, K] for the logistic (1.140). (One can even estimate
their positive local probability of exiting ID — an exercise we leave to the interested
reader).

Proof. Use induction on n € IN. Then, after explicit rewriting of (1.141), one finds

[(P + kYn)hn + O'Yna(K - Yn)ﬁ_] AI/Vn](K - Yn) - I'LYnhn

Yn = Yn
H= e I+ iy + CR)YE (K — Y, 1o AW,]

IA

Yn+5n‘(K_Yn) =< K

where

_ (pHAY )Ry + oYK — Y,)PT AW,
4 phy + C(K)YEHK = Y,)P o AW, |

since §, < 1if Y, € [0,K], C(K) > K and h, < 1/(p + AK). Otherwise, non-
negativity of Y, 4+ follows from the identity

n

_Yn+(,0+Ayn)(K_Yn)hn+Y;:X(K_Yn)ﬁ_]((K_Yn)UAWn + C(K)|0AVVn|)

Y,

! L+ phy + 0 C(K)Y e (K—Y,)P~1 [ AW,]
if C = C(K) > K. Consequently, we have P (0 < Y, < K) = 1 forall
n €N o

Note, a stochastic adaptation of step sizes would form an alternative to deter-
ministic step size selection as above. For example, for regularity, it suffices to
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require h, < 1/[p + AY, — p]+ for all n € IN. However, then one has to
find a truncation procedure to guarantee finiteness of corresponding algorithms to
reach given terminal times 7'! This is particularly important for adequate long term
simulations on computers.

The sequence Y = (Y,), N following (1.141) is also regular on ID under other
conditions than those of Theorem 1.6.2. For example, if the condition ¢ > 1 is
replaced by « € [0, 1), the weights c(x) = |o|C(K)x*""(K — x)?~! of BIMs
(1.141) guarantee the a.s. invariance of ID = [0, K]. However, they are unbounded in
this case. One even obtains regularity and boundedness of all numerical increments
Y,+1—7Y, here, but we may suspect to loose convergence speed with such methods.
So the open question arises how to maintain standard convergence rates and almost
sure regularity of numerical methods on ID when « € [0, 1). Who knows the right
answer? (At least, the case 0.5 < « < 1 would be physically relevant.)

Remark 1.6.3. The rates of mean square consistency and convergence of BIMs
(1.141) to the strong solutions of logistic SDE (1.140) is studied in S. [120, 130].

1.6.2 P-th Mean Boundedness of Theta Methods for Monotone
Systems

Consider nonlinear SDEs (1.2) discretized by drift-implicit Theta methods (1.1)
with slightly modified class of schemes

Xn+1 = Xn + [ena(t:+1v Xn+1) + (1 - en)a(t:’ Xn)]hn

m
+) b X)) AW, (1.142)
j=1

where 6, € R! and Ly 4 € [t;, t,+1] are nonrandom. Let IT be a time-scale (i.e.
discrete (IT = IN) or continuous (IT = [0, T'))) and p € R! \ {0}.

Definition 1.6.2. A stochastic process X = (X(¢));er7 is said to be (uncondition-
ally) uniformly p-th mean bounded along I7 iff

sup || X(1)]|” < +o0.
tell

If p = 2 we also speak of (uniform) mean square boundedness along /7.

SDEs (1.2) with p-th monotone coefficient systems (a,b’/) have uniformly
bounded solutions X (see S. [120]). Let us investigate this aspect for numerical
approximations. For technical reasons, set 6_; = 6y, h—y = ho, t*, = 0. |||
denotes the Euclidean norm in R? and < ., . > the Euclidean scalar product.
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Theorem 1.6.3 (Uniform M.S. Boundedness of Theta Methods with 6, > 0.5).
Assume that p = 2 and 3K, <0, K}, (constants) Vt > 0 Vx € R?

<a(t,x),x > < K,||x||* (1.143)
m
Y {167 (1. 0)|1P < K. (1.144)
j=1
2K, + K, <0, (1.145)
VnelN : 0,h, < 6,_ih,_;. (1.146)

Then the drift-implicit Theta methods with non-increasing, nonrandom sequence
(0nhn), v and non-increasing, nonrandom step sizes h, are uniformly mean square
bounded along Il = IN and

Vn+l = (1 - 29,1/’1,1 Ka)]E||Xn+1||2 + 92/’12]E[||a(l‘:+1, Xn+1)||2]

n-n

< E||Xo|* + o (1 — 6)E[[|a(ry. Xo)|[] = Vo < 400 (1.147)

for all n € IN, whenever E[||a(0, Xo)||?] < +oo and started at Xy € L*(£2,
Zo,P).

Proof. First, separate the terms with indices n + 1 and n to obtain
m
Xn+1 - ena(t:+1a Xn+1)hn = Xn + (1 - ell)a(t:7 Xn)hn + ij (t];kv Xn)Al/an .
j=I
Second, one takes the square of the Euclidean norm on both sides, leading to

m
”Xn+1_6ﬂa(t;+l ’ Xﬂ+1)hn | |2=| |Xn+(1_9n)a(t;’ Xﬂ)h" +Z bj (t:’ X”)AVan | |2'
j=1

Third, taking the expectation on both sides and using the independence of all A W,/
from X, yield that

IE||Xn+1||2 - Zellhn]E < Xn+1’ a(t:_H 5 Xn+1) > +92h21E||a(t:+1’ Xn+1)||2

n'n

= E||X,|* + {2(1 — 0)E < X,.a(ty. X,) > +E Y _[[b/ (). X,,)llz}hn
j=1

+12[ (1 = 20.)Ella(}, X,)IP + 67Ella(;, X,)I ]

< (1 + hy[2(1 = 0,) Ky + Kp)E|| X4 |1> + 6,0, Ella (), X,)|*

n-'n
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for all n € IN, provided that 6,, > 0.5. Notice that both 6,, and %, are supposed to be
nonrandom. Fourth, the assumption of non-increasing products 6,4, is equivalent
to

_29nhn Ka =< _2911—1hn—l Ka

forall n € IN, since K, < 0. This gives the estimation
1-— 2911/’1;1 Ka + Kbhn = 1- 2ert—lhn—ll(a + Kbhn—l,

hence (recall the assumptions K, < 0, h,, > 0)

1+ [2(1 - en)Ka + Kb]hn =< 1- 29”71]’!”71]{“ + Kbhnfl-

Fifth, applying this latter estimation to the final estimation in step “Third” implies
that

(1 - 2911 Kahn)]E||Xn+1||2 + 92h2]E||a(t,:‘+1, Xn-i-l)”z

< (1= 1 Kahu)E|| X, * + 67 12 Ella(t. X,)|*.

n—1"n—1

Sixth, define the functional V' by

Vii=(01- en—lKahn—l)IE”XnHZ + 072

n—1"n—1

Ella(y, X,)|I?
for all n € IN. By complete induction on n € IN while using the estimate from
“Fifth” step, we find that

Vo < Vo = (1 — 0_1 K.h—1)E[| Xol|* + 02,12 Ella(t*,. Xo)||*
= (1 — 6K,ho)E|| Xo||* + 62h3E||a(0, Xo)||* < +oo

for all n € IN. Recall the conventions 0_; = 6y and i_; := hy. This concludes the
proof of Theorem 1.6.3 for 6, € [0.5, 1]. o

A similar theorem for the estimation from below can be found for 6, € [0, 0.5].
So Theta methods have uniformly bounded moments. This justifies also to study
the longterm convergence of all moments || X,||” for 0 < p < 2 as n advances to
+00 (e.g. as a consequence, liminf, 1 and limsup,_, , ., of those expressions
must exist). Moreover, one has some reason for the preference of Theta methods
with all parameters 6, = 0.5 and midpoints ¢, = (t,41 — 1,)/2 (i.e. trapezoidal in
space, midpoint in time, cf. also exact norm-monotone methods below). For linear
systems and constant 6,,, some of the above estimates are exact. For example, take
a(t,x) = —||x||?2x with K, = —1 and b(z, x) = o||x||?~?/?>x with K, = o2
for p = 2, and consider the drift-implicit Theta methods with all 8, = 0.5 and
equidistant step sizes h, = h > 0.



94 H. Schurz

1.6.3 Preservation of Boundary Conditions Through Implicit
Methods

For simple illustration, consider Brownian Bridges (pinned Brownian motion).
They can be generated by the one-dimensional SDE

dx(t) = %dr + dW(1) (1.148)

started at Xo = «, pinned to X7 = b and defined on ¢ € [0, T'], where a and b are
some fixed real numbers. According to the Corollary 6.10 of Karatzas and Shreve
(1991), the process

L dW
a(l—%)—l—b%-i-(T—t)/ T(Ss)if 0<t<T
o T —

b if =T

X(t) = (1.149)

is the pathwise unique solution of (1.148) with the properties of having Gaussian
distribution, continuous paths (a.s.) and expectation function

m(t) =E[X(t)] =a (1 — %) + b% on[0, 7] (1.150)

Here problems are caused by unboundedness of drift

— X
T—1t

a(t,x) =

What happens now with approximations when we are taking the limit toward
terminal time 7'? Can we achieve a preservation of the boundary condition X (7)) =
b in approximations Y under non-boundedness of the drift part of the underlying
SDE at all?

A partial answer is given as follows. Consider the behavior of numerical solutions
by the family of drift-implicit Theta methods

_vy#®

b-Y? b—-7Y,
Yo, =vi 4+ 0—" 1 (1-06) "\ h, 4+ AW, (1.151)
T_[n-l-l T—1,

where 8 € Ry = [0,400),Yy =aandn = 0,1,...,n7 — 1. Obviously, in the
case 6 = 0, it holds that

YOT):=Y,) = nlggr YO =b+ AW,,_,. (1.152)

n
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Thus, the explicit Euler method ends in random terminal values, which is a
contradiction to the behavior of exact solution (1.149)! Otherwise, in the case 8 > 0,
rewrite (1.151)as Y,/ | =

T -1, 1 =0T —t,41)hy, T —1,
L yo (1—-6)( +1) Yo + A
T_[n-l-l + th (T_Zn)(T_tn-H +9hn) T_[n-l-l +9hn

(1 - 9)(T - Z‘n+1)hn + ehn
(T - tn)(T - tn+1 + ehn) T — tn+1 + ehn

b (1.153)

which implies
Y4T) == Y! = lim Y = b. (1.154)
n—nr
Thus, the drift-implicit Theta methods with positive implicitness 6 > 0 can preserve
(a.s.) the boundary conditions!

Theorem 1.6.4 (S.[119]). For any choice of step sizes h, > 0,n =0,1,...,n7—_4,
we have

[1]. EY/ = b if6>0

nr

[2] ]E(Yner _b)z = hnr—l lf@ =0
BLPY, =b) = 0 if0=0
[4. P, =b) = 1 if6>0

where the random sequence (Yne Yn=0.1...ny is generated by drift-implicit Theta
method (1.151) with step size AW, € A (0,h,) where A (0,h,) denotes the
Gaussian distribution with mean 0 and variance h, (supposing deterministic step
size).

Remark 1.6.4. The proof of Theorem 1.6.4 is carried out in [119].

Remark 1.6.5. As we clearly recognize, discontinuities in the drift part of SDEs
may destroy rates of convergence. A guarantee of algebraic constraints at the ends
of time-intervals through implicit stochastic numerical methods can be observed.
The example of Brownian Bridges supports the preference of implicit techniques,
not only in so-called stiff problems as often argued with in literature.

Remark 1.6.6. A practical and efficient alternative to preserve boundary conditions
is given by the splitting-step algorithm of Moro and Schurz [99].

1.7 Oscillations

Unfortunately, there is not much known on oscillatory behaviour of stochastic
numerical methods so far. So this section gives a first excursion into this important,
but very complex field. For this purpose, consider the following definitions.
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Definition 1.7.1. A numerical method Z with values (Z,), N at instants (¢,), <IN
of partitions of [0, T'] is called strictly oscillatory about ¢ iff

Zpt1—c¢
Z,—c

VneN: <0. (1.155)

A numerical method Z with values (Z,), N at instants (¢,),N of partitions of
[0, T'] is called quasi-oscillatory about ¢ iff

Zn -

Lt 7C (1.156)
Z,—c

for infinitely many » € IN.

Moreover, a numerical method Z with values (Z,),cN at instants (1,),cN of

partitions of [0, 7'] is called (asymptotically) oscillatory about ¢ in the wide sense

iff

Zn—i—l —C Zn—i—l —C

Vn € IN : liminf <0 and limsup
n—>+too Z, —c n—+o00 n—C

>0. (1.157)

If none of above conditions is true then we say Z is non-oscillatory.

We shall study the most important case of oscillation about ¢ = 0 throughout
this section. Oscillations in the wide sense and quasi-oscillations mean that the
numerical method has outcomes infinitely often above and below the level c. Oscil-
lations in the wide sense can not belong to asymptotically stable approximations at
equilibrium 0, whereas quasi-oscillations can be a feature of asymptotically stable
ones.

Definition 1.7.2. A method Z is said to have spurious oscillations iff it has (quasi-
) oscillations of any kind from above and the underlying SDE (1.2) does not show
any oscillatory behaviour at all.

It is well-known that the geometric Brownian motion X satisfying the 1t6 SDE
(1.108) does not show any oscillations for all .%y-adapted initial data X(0) € R'.
In fact, this process preserves the sign of .%y-adapted initial data X(0) (a.s) as
integration time advances. Now, let us study the oscillatory behaviour of related
numerical methods applied to this simple test (1.108) and some further nonlinear
equations. For this purpose, we suppose that y > 0 for the further consideration.

1.7.1 Spurious Oscillations of Standard Euler Methods
for Linear ODE

In deterministic numerical analysis a very simple example is well-known. Consider
the equations (ODEs)
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X =Aix with x(0)=x e R! (1.158)

and its sign-preserving exact solution x (¢) = exp(At) - xo. Then the standard Euler
scheme (1.1) gives

Ykt = Yo A Ayahn = (L4 M) yw = yo [ [(1 4+ 2hi). (1.159)
i=0

Obviously, started at yo # 0, we have that y, # 0 for all n € IN provided that
Ah; # —1 foralli € IN and

P Ay
Yn
This expression is always positive if Ah; > —1 foralli = 0,1,...,n. However,

negative values may occur under the assumption that A < 0 and /; large enough
(indeed always), i.e. we observe no sign changes whenever Ah; < —1. This step
size restriction for oscillations about 0 even gets less restrictive for large negative
values of A < 0 and a uniform restriction of /; is not possible for all possible
parameters A < 0 in order to guarantee (strict) positivity of ratios y,+/y, and
hence no strict oscillations at all. In contrast to that, the underlying exact solution X
(as exponentials do not either) does not show any oscillatory behaviour at all. This
argumentation proves the following theorem on existence of spurious oscillations
through Euler-type discretizations.

Theorem 1.7.1 (Spurious Strict Oscillations of Euler Methods in 1D). Assume
that

VnelN:Ah, <—1. (1.160)

Then the forward Euler method applied to linear ODEs (1.158) with step sizes hy,
possesses strict spurious oscillations for any initial data x (0) = yy.
Assume that, for infinitely many n € IN, we have

Ay, < —1. (1.161)

Then the forward Euler method applied to linear ODEs (1.158) with step sizes h,
possesses spurious quasi-oscillations for any initial data x (0) = y.

Remark 1.7.1. If Ah, > —1 for all n € IN then the Euler method has no oscillations
at all. However, this might be very restrictive for long-term simulations with
negative values of A << —1. At least, for nonlinear equations, the situation becomes
even worse (here thresholds imposed on /,, for the absence of spurious oscillations
are not known in general).
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1.7.2 Non-oscillations of (Balanced) Theta Methods
Jor Linear ODEs

In contrast to the standard Euler scheme, in the case A < 0, we can always prevent
oscillations in numerical methods with arbitrary step sizes h; for linear differential
equations in 1D. For this purpose we return to the deterministic family of Euler-type
Theta schemes (1.1) with implicitness 6, € R!

Yn+1 = Yn + (enyn-l-l + (1 - Qiz)yn)khn

1+1—9nkhn 14+ (1 —6;)Ah;
_ 14016 01—[ (1-6)

1—6,Ah, 1 —6;Ah; (1.162)

Thus, we find that

Yn+1 _ 1 + (1 - en)khn
Yoo 1—6,Ah,

whenever 0,Ah, # 1. Hence, when A < 0 and all 6;Ah; < 1, these schemes
possess strict oscillations if 1 4 (1 — 6;)Ah; < 0 for all i € IN and quasi-oscillations
if 1 + (1 — 6,)Ah, < O for infinitely many n € IN.

A generalization of these schemes is presented by the deterministic balanced
methods (as a subclass of (1.1))

Ynt1 = Y + AVahy + cohy(Yn — Ynt1)

L+ Gt 14+ (A + co)hs
= 1+ @t coh 01—[

1.163
1 + coh,, 1 + coh; ( )

for an appropriate constant ¢y > 0. This leads to the identity

Yn+1 — 1 + (A + CO)hn
Yn 1 + COhn

for all n € IN. Consequently, as a summary, we gain the following theorem.

Theorem 1.7.2. Numerical approximations generated by balanced methods
(1.163) with ¢y > [—A)+ or by drift-implicit Theta methods (1.162) with parameters
satisfying 6, = 1 or (1 — 6,)Ah, > 0 are non-oscillatory for all test (1.158) with
any A < 0 along any choice of arbitrary step sizes h,, > 0. Therefore, they possess
adequate realizations without spurious oscillations along any partition.

Remark 1.7.2. Suppose that A < 0. Then, the balanced methods (1.163) with the
weight ¢g = [—A]+ coincide with drift-implicit backward Euler methods (1.1) with
0, = 1 for all n € N while applying to ODEs. Hence, there are drift-implicit
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Theta methods (1.1) without any spurious oscillations for any choice of step sizes
h,. However, the situation changes in stochastic settings where nontrivial weights
¢/ are needed in order to limit the possibility of inadequate oscillations (see below).

1.7.3 Spurious Oscillations of Theta Methods for Linear SDEs

After previous elementary illustrations with ODEs, we return to the stochastic case.
For the sake of simplicity, we confine ourselves to partitions with nonrandom step
sizes h,. Note that

X(t
Vi>s>0:1P ({weQ:M<O}) =0
X(s)(@)
for the stochastic process X satisfying (1.110).

Theorem 1.7.3. Assume that X satisfies (1.108) with X(0) # 0 (a.s.), y # 0 and
VYnelN : 1+# 0,Ah,, &, € 4(0,1).
Then the drift-implicit Theta methods (1.1) applied to the linear SDE (1.108) and

started in Y09 = X(0) with nonrandom step sizes h,, nonrandom parameters 6,, €
R' and values (Yno)new have oscillations about O with positive probability, i.e.

VnelN: P
" ( Y ()

%
wEQ:M<O}) > 0. (1.164)

Proof. The family of drift-implicit Euler-Theta schemes (1.1) applied to one-
dimensional linear SDE (1.108) with ¢/ = 0 and implicitness 6, is governed by

Y =Y+ 0,07 by + (1= 0)AY R, + yY! AW,

L+ (1= 0)Ahy +yAWy o oy (1 + (1= 0)Ah; + yVhi&
= Yn = YO l—[ .
1— 6,Ah,, i 1 — 0;Ah;

Therefore we have

Ve _ LA A= 002 £y vhnby _ 1 (=003 |y,
Y/? 1—06,Ah, 1—6,Ah, 1—6,Ah, "

for all N € IN. Recall that 1 — 6,Ah, # 0, y # 0 and &, are Gaussian .47(0, 1)-
distributed. That means that

Ye 1+ (1=6,)Ah »?
n+1 n n
LT e N , h, ).
Yo © ( 1= Ourh, (1= 0,Ahy)2 )

n
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Consequently, under y # 0 and 1 — 6,Ah, # 0, this fact implies that (1.164). ¢

Remark 1.7.3. After, returning to the proof above, one may extract the probability
of local sign changes of Theta methods Y ? and obtains

Yne—i-l _ 1 + (1 - ell)hn
’P( Y_,?<O})_]P({S”<_—|Wh7 )

_ 1 (=b)hy
which tends to 0 as i, — 0 since §, is Gaussian distributed, provided that

1 1/ x2
= — exp| —— ) dx
21 ) o 2

inf (1 —6,)vVh, > —o0.
lN( )

ne

1.7.4 Non-oscillatory Behaviour by Balanced Methods
for Linear SDE

Consider the balanced methods
Yo=Y+ AV, Phy + yY,E AW, + (cohn + | AW, D(Y,E = Y.E D). (1.165)

Theorem 1.7.4. Suppose X satisfies (1.108) with adapted initial values X (0) > 0.
Then the balanced methods (1.165) with constants c°, ¢! > 0 and step sizes hy,
started at YOB = X(0) do not allow any sign changes as n advances, provided that

L+ (®+X)h, >0 and c'>|y|. (1.166)

for all n € IN. Therefore, they do not possess any spurious oscillations in contrast

to all solutions X of linear SDEs (1.108).

Proof. This claim follows immediately from the construction of the balanced

methods (1.165) applied to the linear equation (1.108). One receives then
Yo=Y+ A by + y Y AW, 4 (PR + AW (Y, =V,

1+ (c® 4 Mh, + yAW, + c1|AWﬂ|YB
14+ O, + cl|AW,| "

Thereby, YfH > (O foralli € INiff
14 (c® + Dhy + yAW; + ' |AW;| = 0

for all i € IN. Obviously, this is the case under (1.166). o
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Remark 1.7.4. The standard Euler methods and drift-implicit Theta methods with-
out any balancing terms ¢/ have spurious oscillations. This fact can be concluded
from the following two subsections.

1.7.5 Non-oscillatory Behaviour by Balanced Methods
Jor Nonlinear SDE

Spurious oscillations about 0 can be also excluded for balanced methods applied to
nonlinear SDEs of the form (1.114).

Theorem 1.7.5 (Non-oscillations of BIMs for Nonlinear SDE in IR?). The bal-
anced implicit methods (1.115) applied to SDEs (1.114) with same adapted initial
value X(0) and any step sizes h,, do not possess any spurious oscillations about 0.

Proof. This fact follows immediately from Theorem 1.5.3 on the positivity of BIMs
(1.115) applied to SDEs (1.114). The related proof shows the sign-preservation
of them during the entire course of numerical integration. Hence, the assertion of
Theorem 1.7.5 is verified. <o

1.7.6 Oscillatory Behaviour of Euler Methods
for Nonlinear SDE

Almost surely oscillatory behaviour of Euler methods applied to certain nonlinear
SDE can be established. For this purpose, let

u+ ha(u)
_Gu) = B SO QS 1.167
i‘i‘g{ )} b Vh|b(u)| § = (167
and
b(x) =0= x = 0. (1.168)

First, we will prove an auxiliary lemma that X has never the value 0 (a.s.).

Lemma 1.7.1 ([2]). Assume that conditions (1.128), (1.133), (1.167) and (1.168)
hold. Then the solution X to (1.127) with arbitrary nonrandom initial value X (0) =
xo # 0 obeys

P{X, #0 foralln € N} = 1.

Proof of Lemma 1.7.1. We shall use complete induction on n € IN. First, note
that X1 =x9 + a(xo) + b(x0)&1, so as xo # 0, and supp & =R, X; is a
continuous random variable and takes the value O with probability zero. Second,
as the induction assumption at level n, suppose that X, is a continuous random
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variable. This is true at level n = 1. To proceed in general, we note that because
X, is a continuous random variable, and ¢ and b are continuous, a(X,) and
b(X,) are continuous random variables. Moreover, as b(x) =0 only when x =0,
and X, being continuous is non-zero (a.s.), the random variable b(X,) # 0 a.s.
Since &,4+; is normal, and therefore also a continuous random variable, X, +; =
X, +ha(X,)+ Vhb (X,)&,+1 is a continuous random variable. Hence, by induction
on n, X, is a continuous random variable for all n € IN.

This fact implies that IP {X,, = 0} =0 for each n € IN. Thus IP (Uzcz)il{X” = O})
= 0. This implies that

P (N224X, # 0}) = P (U, (X, = 0}) = 1,

as stated in conclusion of Lemma 1.7.1. <o
Now, one is able to prove the following Theorem (cf. [2]). As usual, let

(£2.7 . (F1,)eN-P)

be a complete filtered probability space and the filtration (%,,), N be naturally
generated, namely that .%;, = o{&, &1,...&,}.

Theorem 1.7.6 (Oscillations of Euler Methods for Nonlinear SDEs in 1D).
Assume that

(0) h >, xg > 0 are nonrandom and fixed.
(i) a: R— Randb : R — R are continuous, nonrandom functions vanishing

at0 (i.e. (1.128)).

(ii) G is well-defined by (1.129) for all u # 0 and satisfies both (1.167) and
(1.133).

(iii) diffusion function b vanishes only at 0 on R, i.e. (1.168) holds.

(iv) (§1),ev are iid. Gaussian A (0,1)-distributed random variables on the
filtered probability space (82, F,(F1,) eN- P )-

Then, the standard Euler method (1.127) with equidistant step size h and any
adapted initial value X (0) = x¢ # 0 is oscillating (a.s.) about zero.

Remark 1.7.5. In fact, Theorem 1.7.6 remains valid when all &, are i.i.d. random
variables with symmetric continuous probability distribution F satisfying (1.132).

Proof. We note at the outset that by (1.168) and the continuity of b, we either have
b(x) < Oforall x <0orb(x) > 0forall x <O0.

Suppose that xo > 0. Theorem 1.5.5 proves that X; < 0 for some a.s. finite
stopping time T € IN. We define

pr=P{weR:t(w)<L}, (1.169)
where ¢ is a .#(0, 1)—distributed random variable. For each n € IN, define

E,={weR:Xi(w) <0,Vi=1t().t1(@)+1,....t1(w) +n}.  (1.170)
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Since

E, = {w € £ : 3i among the integers t(w) + 1,...,7(w) +n: X;(w) > 0},

(1.171)
we can conclude from the Borel-Cantelli Lemma that solutions X to equation
(1.127) become non—negative with probability 1 on the set {r,7 + 1,...,}if

o0
> P (E,) < 0. (1.172)

n=0
To see this, with py = po(N) := IP {r = N}, we estimate IP (E,) from above by
P(E)=P{weR:X(w)<0,Vie{t(w)+1,...,t1(w) +n}}

P{we Q:Xi(w) <0,Vi € {t(w) + 1,...,t(w)+n}|[t=N}po

o

N=1
o] N—+n
=Y | J] Ploc2:X;(@)<0|X;-1<0..... Xy<0.T = N} | po
N=1\j=N+1
n+N

Z( {Xj_l+/’la(Xj_1)+\/Zb(Xj—l)Ej <O’Xj_1 <0, TZN})pO.
N=

P
1\j=N+1

To analyze this probability, we write (a.s.)

{X,_, Fhf(X,-1) + VEb(X;)E; < o}
Xj_] +ha(Xj_])
Vhb(X;-1)

_Xj71+ha(Xj,1)
—Vhb(X;-1)

U {Ej< ,b(Xj_])<O§.

It is not necessary to condition on (X ;_;) = 0, because by (1.168) this implies
X;_; = 0,1in which case X, _; + ha(X;_1) + v/hb(X,;—1)&; = 0. Therefore

P {XH +ha(X;-1) + Vhb(X;-1)& <0|X;; < 0,7 = N}

_Xjfl + ha(Xj,l)
Vhb(X;_1)

:]P%Ej< ,b(Xj_1)>O’Xj_1<O,‘E=N}
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Xj—l + /’la(Xj_])
—Vhb(X(j = 1))’

_|_]p{gj<_ b(Xj1)<O‘Xj1<0,r=N}.

We now consider the sign of b on (—o0, 0). If b(x) > 0 for x < 0, then

P {XJ'_1 + /’la(Xj—]) + \/}_lb(Xj_])éj < O}Xj_1 <0,t= N}

e %Sj - X1+ ha(X;-) X, <07 = N}
Vhb(X ;1)

e %Sj - X1+ ha(X;-) X, <07 = N}.
VhIb(X ;1)

If, on the other hand when b(x) < 0 for x < 0, then

P {X,-,l +ha(X;—1) + Vhb(X;_1)E; < 0|X;_; < 0,7 = N}
Xj—1+ha(X;—1)
—Vhb(X; 1)
Xj—1(@) +ha(X;—1(w))
Vh|b(Xj-1())|

:IP{EJ'<—

XJ'_1<O,‘L':N}

=]P{we[2:§j(a))<— Xj1<0,r=N}.

Therefore, irrespective of the sign of b on (—o0, 0), we have

P {XH +ha(X;—1) + VEb(X;_1)E; < O)Xj,1 <07 = N}

X1+ ha(X;-
=]P%§j<— j—1+ a( J 1) Xj1<0,t=N}.
Vhb(X ;1)
Now, as &; is independent of X ; ; (since &; is independent of &, §1,...,§;-1), and

&, is also independent of events {t = N} which belong to the o-algebra .y with
N < j, we have

P{X;-1 + ha(X;1) + VEb(X;-)E < 0|X;— < 0.7 = N|

Xi1+ha(X;_
_ple. _M}z —G(X
_]P%S’< VRb(X 1) P <60}
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where ¢ is a standard normal random variable. Hence
P {X;1 + ha(X;—) + VEb(X;-1)E; < 0|X;o < 0,7 = N} <P {¢<L}=pu.

Thus

n+N
[T P {Xj-1 + ha(x; ) + VAb(X;-)E < 0|X;-1 < 0.7 = N| < pi.
J=N+1

Therefore, we have

o) n+N o)
PE)<Y | [[ PU<LyPle=Ni<p] ) Pir=N}=p].
N=1 \j=N+1 N=1
Thus,
— . = 1
Y P(E) < < oo,
n=0 1- Pr
and we conclude that there exists an a.s. finite stopping time 7; > 79 := t such

that X;; > 0 a.s. But by Lemma 1.7.1, it follows that we must have X;, > 0
(a.s.). By repeating the same approach while requiring (1.133) and (1.167), and
using mathematical induction, we obtain that X,, changes its sign infinitely often
and with probability 1. Similarly, we verify the assertion for the case X (0) < 0 (just
start with the event {7y = 0} of negative initial values and proceed as above). Thus,
the proof of Theorem 1.7.6 is complete. o

Example 8.1. Consider Itd SDE
dX(t) = —[X()Pdt + X()dW(t)
with initial value X (0) = xo > 0 and its Euler discretization
Vi =Y ARV P + AW

started at the same value YOE = X(0) = x¢ > 0, where AW, are independent and
identically distributed increments. It can be shown that the exact solution X is a.s.
positive for all times ¢ > 0 and never oscillates. However, an application of Theorem
1.7.6 gives that the related standard Euler method is quasi-oscillatory (a.s.), hence
it shows spurious oscillations. However, an application of balanced methods with
c’(x) = x? and ¢! (x) = 1 governed by

YA, = YEA =R PP+ AW + (VPR + AW, -1
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yp (14 T A
" L+ [VPPh + |AW,]

g L+ AW, + |AW,]
"1+ VPR A+ | AW,

leads to an adequate absence of oscillations since their values stay positive (a.s.) for
all positive initial values (apply Theorem 1.5.3 for the verification of the latter fact
or analyze the chain of equations above).

1.8 Energy-Exact Methods

Consider stochastic differential equations (stochastic oscillator with additive Gaus-
sian noise)

¥4+ o’x = ok(1) (1.173)

driven by white noise &, with real eigenfrequency @ > 0 and real noise intensity
o # 0 (we suppose that the initial data x(0) and x(0) are (.%,, #')-measurable
and have finite second moments). This equation for a stochastic oscillator can be
rewritten to the equivalent two-dimensional test system of SDEs

dX(t) = Y(1)dt (1.174)
dY(t) = —*X(t)dt + cdW(t) (1.175)

driven by the standard Wiener process W (i.e. W(t) = fot £(s)ds) and started at
(Zo, B(R?))-measurable initial data X (0) = X, = xo, Y(0) = Yy = yo.

The energy E(¢) of this system (1.173) is well-known and given by the following
lemma. Let

PXOP+YOP _ o’xOF + bOP

&) = 2 2

(1.176)

where v(¢) = x(t) is the velocity of displacement x (¢) at time ¢ > 0.

Lemma 1.8.1 (Trace Formula of Expected Energy). The total energy (as the sum
of potential and kinetic energy) E(t) of system (1.173) defined by (1.176) follows
the linear relation (i.e., a perturbed conservation law)

e(t) = E[&(1)] = e(0) + %zz (1.177)

forallt > 0.
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Let us test numerical methods whether they can follow this perturbed conserva-
tion law for its discretized energy functional. In particular, for the sake of simplicity,
consider the drift-implicit 8-methods applied to the system (1.174)—(1.175) and
governed by the scheme

Xn+1 = Xn + (enYn+1 + (1 - en)Yn)hn
Yoi1 =Y, — 0?6, X1 + (1 — 0,)X)h, + AW, (1.178)

with nonrandom parameter-sequence (8,),, [N, Where
0, € R by = tyi1 — ty, AW, = W(tyy1) — W(ty) € A (0, hy)
along nonrandom partitions (or adapted partitions) of [0, T'] of the form
O=t<tH<..<t,<...<ty, =T

Definition 1.8.1. A numerical method Z based on instants (Z,), N is called
energy-exact for the SDE (1.173) iff its expected energy e = e(t) satisfies the
perturbed conservation law (1.177) at all instants (t,), N along any nonrandom
partition of non-random time-intervals [0, 7']. Otherwise, Z is said to be non-
energy-exact.

1.8.1 Non-energy-Exact Methods

The following theorem shows that the simplest choice of stochastic Runge-Kutta
methods such as forward and backward Euler methods as well as trapezoidal
methods fail to preserve simple energy laws (despite of their asymptotically
consistent behaviour).

Theorem 1.8.1. Assume that initial data X(0) = xo, Y(0) = Xx¢ are
L*(2, %, P )-integrable. Then the drift-implicit 0-methods (1.178) applied
to (1.173) are not energy-exact for any sequence of nonrandom implicitness
parameters (0,),cqy and any nonrandom step-sizes (hy,),epy. More precisely,
their expected energy e(t) = IE[&(t,)] is finite for all n € N, e can be
uniformly estimated by linear functions in t from below and above, and it satisfies
Yw,0 € R' VX,,Yy € L*(2, %, P)

0,2 !
0 < E[£(0 DX T2/
< E[£0)] + 2 ”k=01,1111.1j1,1171 1 +a)2h/%/4
o n—1

w
= El&(t)l+—- > (=260 [Yi X1 — Vi1 Xi e
k=0
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7 n—l1
o /’lk
= EEO))+—Y ——F
[EO+5 FT
k=0
(72 (72
< E[£(0 —1y ——— < E[&(0 —1y
= E[EO]+ k=0r,111,2.1.§n—11+a)2hi/4 [£0)] + —-tn < +00

which renders to be a chain of equations for equidistant partitions (i.e. we may
replace < by = signs above).

Proof. Define the statistical average values

X.n _ Xn+l +Xn, )—,n _ Yn+l +Yn.

= 1.179
5 7 (1.179)

First, rewrite the system (1.178) of equations for (X, Y) to as

Xn—i—l = Xn + (2911)711 + (1 - 29;1)Yn)hn
Y1 =Y, — 0?26, X, + (1 = 26,)X,)h, + cAW,.

Second, multiply the components of these equations by w?X, and Y, (resp.) to
arrive at

Ca— 2 2% ¥ 2y v

T(X”“ - X)) =20,0°Y, X, + (1 -20)0°Y,X,)h,

% (Y,,Z_H _Ynz) = _w2 (ZenYan + (1_2911)Y11Xn) hn +O—YHAM/II'

Third, adding both equations leads to
by = E — 0 (1 =20)[Yu X, — YV Xy hy + 0¥, AW,.  (1.180)

Fourth, note that

1
[Yan - Yan] = E[YnXIrH - Yn+1Xn]7

v = 2Y, — a)z(Xn +0,(1 =26,)Y,h,)h, + 0AW,
! 2(1 + w?62h2 ’

0_2

E[oY, AW, = ———————h,.

lo I= oo
Fifth, pulling over expectations and summing over n in equation (1.180) for the
pathwise evolution of related energy yield that
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0_2 n—1 hk
EIS ()] = BEON+ 53 1

k=0

2 n—l

w
—72(1 —200)E[Y; Xiy1 — Yir1 XiJhie < +o0.
k=0

Now, it remains to set 6,, = 0.5 for all n € IN. Thus, one obtains

0_2 n—1 hk
E[£(1)] = E[£(0)] + > ;) Trwi/a "

+o00

since the expected initial energy is finite under (ii). Consequently, by estimating
the series with minimum and maximum in a standard fashion, the conclusion of
Theorem 1.8.1 is confirmed. o

Remark 1.8.1. The energy behaviour of midpoint methods (1.5) has been studied in
Hong, Scherer and Wang [52] along equidistant partitions and in S. [131] along any
variable, but nonrandom partitions. The previous Theorem 1.8.1 is an extension of
their results to the more general class of stochastic Theta methods.

Remark 1.8.2. Theorem 1.8.1 remains true if all AW, are independent quantities
with IE[AW,] = 0 and E[(AW,)?] = h, (So Gaussian property is not essential
for its validity). Theorem 1.8.1 says also that midpoint methods with their expected
energy e™ underestimate the exact mean energy

Vi>0 Vw,0eR':

y B 0;2 n—1 hk
e (1) = B[ ©0)] + g—l o < E[&()]

2
=Hﬂm+%t (1.181)

of underlying continuous SDE (1.173) (however they are consistent as maximum
step size tends to zero). The proof of Theorem 1.8.1 also shows that the situation
of inadequate replication of expected energy is not improving with the use of
more general drift-implicit #-methods (including forward Euler and backward Euler
methods as well).

Extracting results from the previous proof of Theorem 1.8.1 gives the following
immediate consequence.

Corollary 1.8.1 (Expected Energy Identity for Midpoint Methods). Under the
same assumptions as in Theorem 1.8.1, we have the expected energy identity

n—1
ES()] = EEO) + 2y

—_— 1.182
2 21+ 0G0 (1182
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along any nonrandom partition (t,), N for the drift-implicit 6-methods (1.178)
with all implicitness parameters 0y = 0.5, any nonrandom constants ©,o € IR'
and any random initial data X,, Yy € L*(2, %, P).

Remark 1.8.3. Tt is obvious that the standard midpoint methods (1.178) with
6, = 0.5 do not possess an exact evolution of the energy. In fact, they underestimate
the exact mean energy functional for any choice of parameters and any adapted
initial conditions. This is in strong contrast to the deterministic situation witho = 0
where midpoint methods are known to be exact-energy integrators (see simplectic
methods) obeying the law of conservation of energy.

1.8.2 Existence of Energy-Exact Methods

Indeed, there exist numerical methods which can exactly preserve energy and
conservation laws. These are nonstandard numerical methods. In stochastics, this
was firstly noted and proved by S. [131]. The observed bias in the energy-evolution
under discretization can be even removed by the energy-exact improved midpoint
methods

Xot1 = Xy + Vihyo Yoy =Y, — 0’ X,hy + 04/1 4+ 02h2/4AW, (1.183)

where the involved quantities are defined as in (1.179). In passing, we note that
this numerical method is fairly new to the best of our knowledge. Moreover, it is a
consistent one with an exact replication of the temporal evolution of underlying
continuous time energy and represents a stochastic correction of widely known
standard midpoint methods.

Theorem 1.8.2 (Exact Energy Identity for Improved Midpoint Methods).
Under the same assumptions as in Theorem 1.8.1, we have the exact energy identity
(also called trace formula in a more general context, see S. [132])

EL6G,)] = BIEO)] + 50% (1.184)

along any nonrandom partition (t,), ¢y for the methods (1.183) with any nonran-
dom constants w,0 € R" and any random initial data X, Y, € LZ(.Q, Fo, P).

Proof. More general, consider the improved implicit  -methods

Xn+1 =X, + (911Yn+1 + (1 - ell)Yll)hn
Yn+1 = Yn - w2(911X11+1 + (1 - en)Xn)hn + GnAI/Vn (1185)
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with nonrandom implicitness-parameters 6,, where

On=04/ 1+ 0)29,,2]7%7 0, € Rlvhn=[n+1_lnv AW, = W(ty1)=W(tn) € A (0, hy).

First, rewrite this system of equations for (X, Y) to as

Xot1 = Xy + 26,Y, + (1 —26,)Y,)h,
Yn+1 = Yn - (1)2(29,1)2,, + (1 - 29n)Xn)hn + 0'11AI’V11-

Second, multiply the components of these equations by w?X,, and Y, (resp.) to get

602

3 (X7 — X7) = (26,0°Y, X, + (1 —26,)0°Y, X))y

1

5 (Yn2+1_Yn2) = _0)2(2911Y11Xn + (1 - 29n)Yan)hn +0, YnAWm

Third, adding both equations leads to
S = & — 0 (1 =20,)[Y, X, — YV, Xuhy + 0, Y, AW,
Fourth, note that
Yo Xy — YaXu] = %[Ynxn+l = Yo Xal,

P @*(Xy + 0,(1 = 20,) Y, h)hy + 0, AW,
" 2(1 + w?62h2 ’

_ o2
Ef0,Y,AW,] = Th"'

Fifth, pulling over expectations and summing over 7 yield that

2 n—1

2
E[£(,)] = E[£(0)] + %zn . % 3 (1 = 200 E[Yi X1 — Yot Xilhe < +oc.
k=0

Recall that all step sizes h,,, parameters w, o and 6, are supposed to be nonrandom.
It remains to set 6, = 0.5 to verify the energy-identity (1.184). o
Extracting results from the previous proof of Theorem 1.8.2 yields the following.

Corollary 1.8.2 (Expected Energy Identity for #-Methods (1.185)). Under the
same assumptions as in Theorem 1.8.1, we have the expected energy identity

2 n—l1

2
L& (6)]=E[ (0))+ 71, — 5 Y (1=200E[Y Xip1 = Y1 Xl (1.186)
k=0
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along any nonrandom partition (t,),cpy for the improved implicit 0-methods
(1.185) with any nonrandom parameters 0y € R', any nonrandom constants
w,0 € R and any random initial data Xy, Yo L*(£2, F, P).

Remark. Notice that relations (1.181) for continuous energy of SDE (1.173) and
(1.184) for discrete energy of numerical methods (1.183) are indeed identical
at the partition-instants 7, for all parameters @, o and initial values Xy, Yy €
L?*(82, %y,P )! Thus we answer the question that such numerical methods indeed
exist (which are consistent too). The conclusions of Theorems 1.8.1, 1.8.2 and
Corollaries 1.8.1, 1.8.2 are still valid if all AW, are independent random variables
with E[AW,] = 0 and E[(AW,)?] = h,,.

1.8.3 General Energy Identity of Numerical Methods
and Monotonicity

One is able to establish a general energy balance identity for numerical methods.
This will show that midpoint-type methods are designed to adequately replicate the
increasing or decreasing evolution of energy balance for random initial data. Recall
that any difference method for the approximation of any differential equation is
constructed from general scheme-structure

Xn+l = Xn + d)n(X) (1187)

where @,(X) represents the increment functional of related numerical method.
Recall X, = (X,41 + X,)/2 and let ||.|| be the Euclidean norm in RY, < ., . > the
Euclidean scalar product.

Theorem 1.8.3 (General Energy Identity). For all numerical methods in R®
satisfying (1.187) with increment functional ®,, we have

X1l = [1Xal” +2 < X, @0(X) > (1.188)
where ||.|| is the Euclidean norm in R and < .,. > the Euclidean scalar product.
Proof. First, for the Euclidean norm ||.|| and scalar product < .,. >, recall the
identity

e+ I[P = [lul* +2 < u,v > +[]]?

for all vectors u, v € RY. Now, set
u .= Xnv Vv = q)n(X)
Note that, for numerical methods (1.187) with increment functional @,,, we have

V= Xn+1 - X,
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Second, after returning to the norm-identity (1.189), we get to

2 < X ®u(X) > = || Xy + @0 (O = [1X]” = 110 (X)]]?
= [1X + Xo1 = Xall? = [1Xull” = [ X1 — Xal?
IXall? +2 < Xy Xo1 — X >+ X1 — Xl = 1 X,
—|[Xn+1 = Xl
= < Xps1 + Xo, Xop1 = Xo > = [ Xt = |1 X0l

This is equivalent to the energy identity (1.188). o

Remark 1.8.4. For stochastic numerical methods, the energy identity (1.188) holds
almost surely too since their increment functional @, is random. This identity
(1.188) also explains why midpoint-type numerical integrators with @, = @, (X,)
form a preferable base for adequate construction of numerical methods from a
dynamical point of view. They may preserve the monotone character of norms along
scalar products.

Definition 1.8.2. A numerical method Z is called exact norm-monotone iff
the following implications while discretizing ODEs dx/dt = f(t,x) with
Caratheodory functions f can be established

Vx e Rt e R i< f(t,x),x ><0

= Vn e N:[[Xo|| = [[Xi]| = ... Z [IXull = [[Xnal| = ..
and

VxeRY reR':< f(t.x),x >>0

= Vn e N: [[Xol| = [[Xill = ... /I Xl < [ Xnpall = ...

for all adapted random initial values X, € R?.

Theorem 1.8.4 (Exact Monotonicity of Midpoint Methods). All midpoint-type
methods X with increments ®(X,) = f@r, X,)h, and any sample time-points
S R! are exact norm-monotone for all ODEs with adapted random initial values
Xo and any choice of step sizes h,,.

Proof. Apply the energy identity (1.188) to midpoint methods with increments
&(X,) = f(t*, X,)h, and any sample time-points z* € IR'. For them, this identity
reads as

||Xn+1||2 = ||Xn||2 +2< Xm f(t:’)?n) > hy.

Obviously, by taking the square root, this relation is equivalent to

1Xutll = V1Kl P42 < Koo £03Ka) > D
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Now, the uniform monotonicity of Euclidean scalar product < x, f(¢,x) > with
respect to x and positivity of %, imply the exact norm-monotonicity of related
midpoint methods X . For example, if < x, f(¢, x) >< 0 then we have

X1l = 11Xl

for all n € IN. Complete induction on n € IN yields the non-increasing evolution
of Euclidean norms || X,|| in n. Similarly, we can verify the monotonicity for <
x, f(t,x) >> 0. Thus, the proof of Theorem 1.8.4 is completed. o

Remark 1.8.5. The situation with fully random increment functionals @, (e.g. with
®,(X) = a(ty,, X,)h, + b(t,, X,)AW, for Euler methods) is somewhat more
complicated (due to the non-monotone character of Wiener processes W) and
requires further research.

1.8.4 Asymptotically Exact Methods

To relax the requirement of being exact at finite times, we may only require that
numerical methods provide exact values as the integration time ¢, tends to infinity or
step sizes h, tend to 0. In view of S. [118,120-122], midpoint and trapezoidal meth-
ods are good candidates. Consider (for brevity, autonomous) linear system of SDEs

dX(1) = AX()dt + ) b/ dW (1) (1.189)
j=1

with additive noise and constant drift matrix A € R?*¢ Assume that there is a
stationary solution X, of (1.189). Then, for stationarity of autonomous systems
(1.189) with additive white noise, it is a necessary and sufficient requirement that
all eigenvalues Re(1;(A)) < 0. Under this condition, we also find the almost sure
limit lim;— 400 X(f) = Xco-

Definition 1.8.3. The random sequence (Y,), <]\ is said to be asymptotically p-th
mean preserving iff
lim E[Y,|” = E[|Xx|”.
n—-+o00

(asymptotically) mean preserving iff

lim EY, = EXe,

n—-+o00
(asymptotically) in-law preserving iff

Law(Ys) = Law(Xso),
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(asymptotically) variance-preserving iff

lim E|Y, — E[Y]* = E[Xoo — E[Xoo]|I?

n——+

with respect to systems (1.189).

This definition has been originally introduced by S. [120, 121] (actually first time in
WIAS Report No. 112, WIAS, Berlin, 1994).
Now, consider the family of drift-implicit Theta methods

Yop1 = Yot (0AYup1 + (1= 0)AY,) by + Y bI AW/ (1.190)
j=1

with independently Gaussian distributed increments AW, = W/ (t,41) — W/ (i,)
and implicitness parameter 6 € [0, 1] C R'.

Theorem 1.8.5 (Asymptotic preservation by trapezoidal BTMs [120]-[122]).
Assume that:

(i) VA(eigenvalue (A)) Re(A(A)) <O.

(ii) (X, Yo) independent of F2o = a{W/(s) :0 <s < 400}
(iii) E[|Xol|” + E|Yol|” < +o0 for p = 2.
(iv) A € R™ bJ e RY are deterministic.

Then, the trapezoidal method (i.e. (1.3) with 6 = 0.5) applied to system (1.189)
with any equidistant step size h = h,, is asymptotically mean, p-th mean, variance-
and in-law preserving. Moreover, it is the only method from the entire family
of drift-implicit Theta methods (1.790) with that behavior (i.e., —> asymptotic
equivalence for systems with additive noise).

Proof (Only main ideas with diagonalizable matrix A). First, the limit distribution
of Y, governed by (1.190) exists (for all implicitness parameters & > 0.5) (since
one may apply standard fixed point principles of contractive mappings). Second,
the limit as linear transformation of Gaussian random variables is Gaussian for all
6 € [0.5,400). Third, IEY,, —> 0 as n tends to 400 (as in deterministics if 6 >
0.5). Fourth, due to uniqueness of Gaussian laws, it remains to to study the second
moments for all constant step sizes & > 0. We arrive at

b! b/
lim E([Y,Y,]), :
, i (I ik Z Ai + A+ (1 =20)hA; Ax

and
Zm b/b/
E ([X Xs ] Ai 4+ Ak

j=l1
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Then
lim E([Y,Y,]),, = E(XoXy]),, < 6=05

n——+o00

Thus, the stationarity with exact stationary Gaussian probability law including the
preservation of all moments and variance under discretization is obvious. o

Remark 1.8.6. For the proof with non-diagonalizable matrices A, one may apply
fixed point principles to verify the same conclusion of Theorem 1.8.5. Note that,
for linear autonomous systems of SDEs (1.189), the schemes of trapezoidal and
midpoint methods coincide. Thus, midpoint methods possess the same preserving
character of asymptotic exactness under discretization.

1.9 Order Bounds: Why Not Higher Order Methods?

As commonly known from deterministic numerical analysis, there are order bounds
for convergence of numerical methods. Sometimes they are also called Dahlquist
barriers.

1.9.1 Order Bounds of Clark-Cameron

Clark and Cameron [22] could prove the following very remarkable result on
maximum order bounds of partition .7 -measurable approximations.

Definition 1.9.1. The stochastic process Y = (Y(7))o<:<7 is called partition .7 -
measurable iff all values Y (¢,) (t, € [0,T],0 <n < N) are %iv -measurable with

FV = o{W/(zk):kzo,l,...,n;j =1,2,...,m}

n

foralln =0,1,..., N, along a given ﬁtfxv -measurable discretization 0 = 15 < 1 <
. <ty =T for the fixed deterministic time-interval [0, T'].

Remark 1.9.1. The conditional expectations [E[X (tn+1)|ftfxv | provide the partition
f}v -measurable stochastic approximations with the minimal mean square error due
to their inherent projection property in Hilbert spaces L?(£2,.%,IP ). Thus it is
natural to study their error and practical implementation at first.

Theorem 1.9.1 (Clark-Cameron Order-Bound Theorem). Assume that X =(X
(t))o <t < T satisfies the one-dimensional autonomous SDE

dX(@t) =a(X(@)dt + dW(r) (1.191)

where a € C3(IR) and all derivatives of a are uniformly bounded. Then
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E[(X(T) — E[X(T)|ZN]?] = jv—Tz +o (%)

where
T3 (T ’
=T [E [exp (z / a’(x<u>>du) [a/(x(s))ﬂ ds.
12 Jo s

Thus, for systems with additive noise, we obtain the general mean square order
bound 1.0 for numerical approximations using only the increments of underlying
Wiener process. A similar result holds also for diffusions with variable diffusion
coefficients b(x) when

c(x) :=a(x)— %b(x)b’(x) # Kb(x)

for any real constant K, see Clark and Cameron [22]. They also provide a
constructive example with multiplicative noise. Consider the two-dimensional SDE

dXV (@) =dW' (@)
dX® @) = XD @) dW?(r)

driven by two independent scalar Wiener processes W, W?2. This system obviously
has the solutions X V(1) = W(¢) and

X(z)(t)z/OIW'(s)sz(s)=/0t/0SdW1(u)dW2(s)

(in fact it is an one-dimensional example with multi-dimensional “Wiener process
differentials” (i.e. m = 2)). Then they compute the best convergence rate y, = 0.5
(in mean square sense) for partition 9‘# -measurable approximations using any set

of N equidistant, gﬂfxv -measurable time-instants ¢, = n% and the mean square
minimally attainable approximation error
N\ Tl
(]E |:’X(2)(T) —]E[X(Z’(T)|£5}V]‘ D - E[W]z'

It is worth noting that X represents the simplest nontrivial multiple integral with
length /() > 1. Liske [89] has studied its joint distribution with (W !(z), W2(¢)). In
this case the error order bound for ﬁ}v -measurable approximations of X % is already
attained with 0.5, since X2 cannot be expanded in a linear combination of wt we.
This system also exhibits an interesting test equation for the qualitative behavior of
numerical methods (e.g. compare the numerically estimated distribution with that of
the exact solution derived by Liske [89]). Since in the L? sense one cannot provide
better partition ﬂ}v -measurable approximations than that of the projection done
by conditional expectations, there are natural (convergence) order restrictions for
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f}v -measurable approximations. Thus we cannot exceed the order 1 in L?-sense
for f}v -measurable approximations. On the other hand, if one wants higher order
of convergence in general, one has to enlarge the condition o-field substantially
(actually done by higher order multiple integrals and Levy areas). Note also this
is not always necessary for approximations of functionals V' (¢, X(¢)) of diffusion
processes X with V' -commutativity, see S. [126]. In fact, for example for pure one-
dimensional diffusions X (i.e. when drift a is zero), the x-commutativity condition
(i.e. V(x) = x), which is then identical with the condition of commutative noise (in
short: noise-commutativity) under the absence of drift terms

dbk(x)

dx

dbJ (x)

b () e

=b"(x)
forall j,k=0,1,2,...,m. This requirement, together with b/ € C®(IR), effects
that b/(x) = K;xb*(x) with some deterministic real constants K. In this
trivial case one could even obtain any order of p-th mean convergence (p < 1).
(This is no surprise after one has carefully analyzed the observation of Clark and
Cameron [22] which implies the approximation error O by the projection operator
of conditional expectation under a/(x) = 0 and the noise-commutativity assumption
in the situation d = 1). Unfortunately, the situation in view of convergence order
bounds is much more complicated in the fully multi-dimensional framework and
needs more care in the near future.

1.9.2 Exact Mean Square Order Bounds of Cambanis and Hu

Cambanis and Hu [20] have established the following result concerning exact mean
square convergence error bounds (i.e. for the asymptotic behavior of leading error
coefficients of numerical schemes with respect to mean square convergence criteria).
For the statement, we introduce the following definition of partition density.

Definition 1.9.2. A strictly positive, differentiable function & € C°([0, T]>,IR4)
with uniformly bounded derivatives is said to be a regular partition density of the
time-interval [0, T'] iff

N(t)

tn+] h d 1
/,Nm 945 =§@

forn=0,1,...,N(t) — 1, tp = 0, where N = N(¢) denotes the number of sub-

intervals [t,fv(t) , tlivfl)] for a total time interval [0, ¢] with terminal times ¢t < T .

n

Regular partition densities possess the property that

1

lim N(z)(z””—z,f“(”):h(t 3
S

N(t)—>4o00,t,—>s ntl

Therefore they describe the distribution of time-instants in discretizations of
intervals [0, 7] in a fancy manner. Since the conditional approximation provides
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the mean square .% " -measurable approximation (with N = N(¢)) with minimal
mean square error, one arrives at

Theorem 1.9.2. Assume that X satisfies an one-dimensional SDE (1.2) with
coefficients a,b € C3*(R,R) possessing bounded derivatives up to third order,
E|X(0)]* < 400, and all time-discretizations are exclusively done along a given
regular partition density h on [0, T]?.
Then, there exists a Gaussian process 1 = (N(t))o<i<r on (2, F, (% )o<i<r,IP)
such that

lim  N@)(X(0) - EX0)17) = n()

N(t)—>~+00

with mean 0 and covariance matrix C(t) =

/ [(L'a — fob)(X(S))]z

O exp ( / Qar(X,) — X @)]P)du

+2 / t br(X(u))d W(u))ds

which is the unique solution of dC(t) =

[(fla—«iﬂob)(X(t))]z) J

((artxon +proxoncar+ >

+2b1(X(2))C(t)dW(t)
with ny = 0 and has the property

H(z, S)
i) ©

Ny TP _
o Jim NOE[X() — EX(0).7")] = En() =

where H(t,s) =
ém[[wla — L)X exp ( [ Cartxn ~ rxwnriau

12 / t br(X (u))d W(u)):|.

The optimal double mean square approximation error satisfies a similar relation.
For more details, see Cambanis and Hu [20]. Also their results can be generalized to
multidimensional diffusions with some care. This result is fundamental with respect
to asymptotically optimal mean square discretizations. This fact can be seen from
the fact that the function h1* € C°([0, 7], R+) established by

[H(.5)]'

h*(t,s) = —fot[H(t,s)]st
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minimizes the functional | [Zt(ts’;])z

densities & with A(¢,s) > 0 and fot h(t,s)ds = 1. Therefore, any asymptotically
mean square optimal approximation has to use a discretization following that
optimal partition law. However, the practical value is still in doubt, since it will
be hard to evaluate those expressions in the fully multidimensional framework or
has any reader another suggestion in the case m,d > 1?

ds where H(t,s) > 0 among all regular partition

1.9.3 Lower Order Bounds of Hofmann-Gronbach-Ritter

Hofmann, Miiller-Gronbach and Ritter [50] have noticed in one dimension (i.e.
d =m =1) that, for continuously differentiable » and fixed terminal time 7 =1,
there are efficient estimates for the lower bounds of order of strong (mean square)
convergence for all 3@{:’ -measurable approximations ¥4 for SDEs in R! with
additive noise. More precisely, for the error e, of mean square convergence and
partitions with maximum step size A and N + 1 time-instants, we have

lim v/N infey(Y2,a,b, Xo.T) = K||b]|| 11
A—0 Y4

with constants K, = \/LE and T = 1. Therefore, the standard forward Euler method

with an adaptive strategy of step size selection already produces asymptotically
mean square optimal ftfxv -measurable numerical approximations. Note that the
number N of observations of the underlying driving noise W may be determined
by any measurable termination criterion. Moreover, one can carry the qualitative
assertion on lower order bounds over to d-dimensional SDEs with additive noise
and L?-integrable b as well (i.e. p > 1). It is worth noting that that step size selection
suggested originally by Hofmann, Miiller-Gronbach and Ritter [50] is only designed
to control large diffusion fluctuations, and it does not seem to be very appropriate as
one takes the limit as b goes to zero (i.e. incomplete adaptability is obtained in the
presence of significant drift parts - an approach which leads to inconsistent results
in view of deterministic limit equations, however a procedure which indeed might
be appropriate for pure diffusion processes with very large diffusion coefficients
b(t) >> 1). Furthermore, they did not study the dependence of the order and error
bounds on variable terminal times 7" or as 7" tends to +o00. Such as study would be
important for adequate asymptotic analysis through numerical dynamical systems
as discretizations.

In the paper [51], the authors Hofmann, Miiller-Gronbach and Ritter analyze
the double L2([0, 1])-error associated to the approximation of a scalar stochastic
differential equation by numerical methods based on multiple It6 integrals as
suggested in Kloeden and Platen [72]. Namely, for a scalar diffusion process X X,
they consider approximations of the type X = SUw 51005+ Loy 5p,) Where
f : RF — L2([0,1]) is assumed to be measurable and /,, denotes the multiple
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Itd integral corresponding to a zero-one-multi-index « and an interval [s,¢] C
[0, 1]. They are interested in controlling ]E[fo1 |X(s) — X (5)]*ds]"/? in terms of a
function of the number N of observations for different integrals in the approximated
process. It is shown that the double L2([0, 1])-error for linear interpolated Itd-Taylor
approximations is at most of order 1/2 with respect to 1/N. For some special
discretization grids and multi-indices sets, the authors provide an equivalent of the
error. This result is in sharp contrast with the well known fact that high orders can
be achieved by these methods with respect to the error at the discretization points
[see, e.g. as claimed in Chap. 10 in Kloeden and Platen [72].

In Miiller-Gronbach and Ritter [100], the authors give a survey on minimal
errors for strong and weak approximation of stochastic differential equations. They
investigate asymptotic optimality of numerical methods for integrating systems of
stochastic differential equations (with Lipschitz continuous coefficients) in both the
weak and strong sense, restricted to finite time-intervals [0, 1]. The main emphasis
is on algorithms with point evaluations of the driving Brownian motion at N time-
instants. The number N of observations may be determined by any measurable
termination criterion. Some (optimal) algorithms with variable step sizes (i.e. with
varying cardinality) may have superior behaviour with respect to convergence
and related costs. In some cases one even obtains an exponential speed-up by
using (optimal) methods of varying cardinality compared to methods with fixed
cardinality N. As an example, the same authors have studied the linear equation

dX(t) = bX(t)dW(t)

with a constant b. Then the cost of optimal methods is linear in » while the cost
of optimal methods with fixed cardinality N is exponential in b. If b = 3 then the
speed-up is already of factor 900. All in all, estimates on lower order bounds exist
and are very important contributions which show that the “run for higher order” or
any order higher than 0.5 can be a “run into the vain” (following famous words of
D. Hilbert). That is also why we concentrate rather on the qualitative analysis of
lower order methods and their qualitative improvements with constant and variable
step sizes.

1.9.4 Convergence is an Asymptotic Property

It is clear that convergence is an asymptotic property. Such asymptotic proper-
ties can be never achieved in a finite time. This requirement represents only a
quantitative assertion of asymptotic nature. Other qualitative properties such as
longterm stability, monotonicity, boundedness, stationarity, energy and / or oscil-
latory behaviour seem to be of more interest than raising hypothetical convergence
rates under non-realistic or non-practical assumptions in a real world scenario since
we live in a finite-time constrained world.
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1.10 Contractivity and Two-Point Behaviour

For simplicity, we shall exclusively illustrate the concepts of contractivity and non-
expansivity by the drift-implicit Theta methods (1.1) without balancing terms ¢/,
i.e. all weight matrices ¢/ = 0.

1.10.1 Two-Point Motion Process and General
Contraction-Identity

One is able to establish a general contraction identity for numerical methods. This
will show that midpoint-type methods are designed to adequately replicate the
increasing or decreasing evolution of perturbations for random initial data. Recall
that any difference method for the approximation of any differential equation is
constructed from general scheme-structure (1.187) (i.e. X,,4+1 = X,, + &,(X)) with
@, (X) representing the increment functional of related numerical method. Recall
X, = (X,41+X,)/2. Let X and Y denote the stochastic processes belonging to the
same numerical scheme (1.187) and started at X, € RY and ¥, € R?, respectively.
We shall study the dynamic behaviour of the two-point motion process (X, Y)
along the same numerical method governed by the schemes

Xn—i—l =X, + d)n(X)
Yn—i—l = Yn + gDn(y)
with one and the same increment functional @, along one and the same partition

(1), cIN- Recall that ||.|| denotes the Euclidean vector norm in R? and < .,. > the
Euclidean scalar product.

Theorem 1.10.1 (General Contraction Identity). For all numerical methods in
R? satisfying (1.187) with increment functional ®,, we have

NXps1 = Yot = |1 X0 = YulP+2 < X, — Y, @,(X) — @, (Y) > (1.192)

where ||.|| is the Euclidean norm in R and < . ,. > the Euclidean scalar product.

Proof. First, for the Euclidean norm ||.|| and scalar product < .,. >, recall the
identity ||u 4+ v||> = ||u||* + 2 < u,v > +]||v||? for all vectors u, v € R?. Note that,
for numerical methods (1.187) with increment functional @,,, we have

¢;1(X) = Xn-i-l - X,.

Second, analyzing the Euclidean norm of the two-point motion process gives the
identities
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X1 = Yagtll? = 1|1 X0 = Yo + D4(X) — &, (V)]

=X, = Y|P +2< X, — Y, D, (X) — D, (Y) >
+|@0(X) = (V)

=X, = Vo4 < Xp = Yy, @y(X) — D, (Y) >
+ < Xut1=Pp(X) = Yyt 1+Pu(Y), @ (X) =Dy (Y) >
+|2,(X) — D, (V)|

= |1Xy = Yol P4+ < Xop1+ X — Vo1 =Yy, ©0(X)—D, (Y) >
— < Du(X) =Dy (Y), Pu(X) = Dy (Y)>+]| D (X) =D, (V)]

=X, - VP +2<X, -7, ®,(X)— D, (Y) >

which confirm the validity of contraction identity (1.192). ¢

Remark 1.10.1. For stochastic numerical methods, the contraction identity (1.192)
holds almost surely too (with their increment functional @, which is random).
This identity (1.192) also explains why midpoint-type numerical integrators with
&, = ®,(X,) form a preferable base for adequate construction of numerical
methods from a dynamical point of view. They may preserve the monotone character
of contractions (perturbations) of two-point motion process along scalar products.

Definition 1.10.1. A numerical method Z is called exact contraction-monotone
iff the following implications while discretizing ODEs dx/dt = f(t, x) with Cara-
theodory functions f can be established

Vx,y e R, 1 e R' i< f(t,x)— f(t,y),x —y ><0
=Vn € N:||Xo=Yo||>||X1=Y1||= ... 2| X0 =Yol| = [|Xp1 = Yasal| = ...

and
Vx,ye R reR i< f(t.x)— f(t,y),x—y >> 0

== VnelN: ||X0—Y0||§||X1—Y1||§SHXn _Yn” < ||Xn+1 - Yn—i—l“ =...

for all adapted random initial values Xy, Yy € RY.

Theorem 1.10.2 (Exact Contraction-Property of Midpoint Methods). All mid-
point-type methods X with increments ®(X,,) = f@r, X,)h, and any sample time-
pointst} € R U are exact contraction-monotone for all ODEs with adapted random
initial values Xy and any choice of step sizes h,,.

Proof. Apply the contraction identity (1.192) to midpoint methods with increment
functional @(X,) = f(¢;, X,)h, and any sample time-points ¢, € R'. For them,
this identity reads as

IIXn+1 - Yn+1||2 = IIXn - Yn”z +2 < Xn - an f(t,;ka Xn)_ f(t,;kv ?n > hn~
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Obviously, by taking the square root, this relation is equivalent to

i1 = Yol = VI1Xy = Vol P2 < Xy = Ty 05 K) = FG3.T) > .
Now, the uniform monotonicity of Euclidean scalar product

<x—-y, f@t.x)— f(@t,y) >

with respect to x,y € IR? and positivity of h, imply the exact contraction-
monotonicity of related midpoint methods X . For example, if < x — y, f(¢,x) —
f(t,y) ><Oforall x,y € RY then we have

”Xn—H - Yn+1|| = ||Xn - Yn”

for all n € IN. Complete induction on n € IN yields the non-increasing evolution
of Euclidean norms || X,, — Y,|| in n. Similarly, we can verify the monotonicity for
< x—y, f(t,x) — f(t,y) >> 0 forall x,y € R?. Thus, the proof of Theorem
1.10.2 is completed. o

Remark 1.10.2. The situation with fully random increment functionals @, (e.g.
with @,(X) = a(t,, X,)h, + b(t,, X,) AW, for Euler methods) is somewhat
more complicated (due to the non-monotone character of Wiener processes W)
and requires further research. However, an extension to p-th mean contractions
(appropriate for the concept of B-stability) gives some more insight for stochastic
Theta methods (see next subsections).

1.10.2 P-th Mean Contractivity and Non-expansivity
of Backward Euler Methods

Let X, . (¢) denote the value of the stochastic process X at time ¢ > s, provided that
it has started at the value X; (s) = x at prior time s. x and y are supposed to be
adapted initial values. Let IT denote an ordered time-scale (discrete (/T = IN) or
continuous (IT = [0, +00))) and p # 0 be a nonrandom constant.

Definition 1.10.2. A stochastic process X = (X (¢));eg withbasis (2, %, (Z)rem,
P ) is said to be uniformly p-th mean (forward) contractive on R? iff
kg eRVt>sell Vx,y e RY

E[|1X00 () = X, 01| 7] = exp (pKE@=9))[lx=yIIP (1.193)

with p-th mean contractivity constant K. In the case KX < 0, we speak of
strict p-th mean contractivity. Moreover, X is said to be a process with p-th
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mean non-expansive perturbations iff V¢ > s € IT Vx,y € R?
E[1X0 ) = Xo, N7 7] = 11x = y117. (1.194)

If p = 2 then we speak of mean square contractivity and mean square non-
expansivity.

For strictly contractive processes, adapted perturbations in the initial data have
no significant impact on its longterm dynamic behaviour. Adapted perturbations of
non-expansive processes are under control along the entire time-scale I7. These
concepts are important for the control of error propagation through numerical
methods. They are meaningful to test numerical methods while applying to SDEs
with monotone coefficient systems.

Let p > 0 be a nonrandom constant.

Definition 1.10.3. A coefficient system (a,b/) of SDEs (1.2) and its SDE
are said to be strictly uniformly p-th mean monotone on R? iff Ky €
R Ve RVx, yeR?

1 m ) )
<a(t.x)—alt,y),x =y >a +5 ) |6/ (.x0) = b/ (1 )P
j=1

p—2~<bi(t,x)—bi(t,y),x —y >

+22

o Ix = yIP

2
4 < Kyellx —y|2. (1.195)

If p = 2 then we speak of mean square monotonicity.

Lemma 1.10.1. Assume that X satisfies SDE (1.2) with p-th mean monotone
coefficient system (a, b’).

Then X is p-th mean contractive for all p > 2 and its p-th mean contractivity
constant K g can be estimated by

K < Kyc.

This lemma can be proved by Dynkin’s formula (averaged Itd formula). Let us
discuss the possible “worst case effects” on perturbations of numerical methods
under condition (1.195) with p = 2. It turns out that the drift-implicit backward
Euler methods are mean square contractive.

Theorem 1.10.3. Assume that

(i) 0, = L.
(ii) 0 < inf, cpyh, < sup,cpyhn < +00, all h, nonrandom (i.e. only admissible
step sizes).
(iii) 3K, <0¥x,y € RVt >0 : <a(t.x)—a(t,y).x —y >< K,||x — y||*
(iv) AKVx,y € R4Vt >0 : S Bt x) = b (@, P < Kpllx =y~
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Then, the drift-implicit Euler methods (1.1) with scalar implicitness 8, = 1 and
vanishing ¢/ = 0 have mean square contractive perturbations when applied to SDEs
(1.2) with mean square monotone coefficients (a, b’ ) with contractivity constant

2K, + K
KX = sup « T2

ZRa T RD (1.196)
nelN 1— Zh” K,

If additionally 2K, + K}, < 0 then they are mean square non-expansive and

2K, + K,

T 12K, sup hy’
nEW

K¢ (1.197)

Proof. Rearrange the scheme (1.1) for the drift-implicit Theta methods with
nonrandom scalar implicitness (&,) = 6,1 to separate implicit from explicit part
such that

Xn—i—l - enhna([n+1, Xn—i—l) =X, + (1 - en)hna([n, Xn)

+ Y b (6. X)) AW (1.198)
j=l

Recall that X and Y denote the values of the same scheme (1.1) started at values
Xo and Y, respectively. Now, take the square of Euclidean norms on both sides. By
taking the expectation on both sides we arrive at

E[| X, 41 = Va1 | = 20,1, < Xo1 = Yor1, a(tutr, Xot) = (a1, Yogr) >
+O2R2E||a(tut1, Xot1) — altus1, Yor1)|*
= ]EHXn - Yn||2 + 2(1 - ell)hﬂ]E < Xn - Y117 a(t)’H Xn) - a(t)’H Yn) >
m )
+(1_9n)2h,21]E||a(tm Xn)_a(tnv Yn)||2+hn ZIEIIbJ (tm Xn) - bJ (t117 Yn)||2
j=I
Under the assumption (i7i) we have
—20,h, <a(t,x)—a(t,y).x —y > > =20,h,K.||x —y|> = 0
forall x,y € R? and ¢t > 0. Consequently, under (ii7) and (i v), we may estimate
(1 - 2enhnKa)IE||Xn+l - Yn+1||2

< [14+Q(1-6,) Ko+ Kp)hy |+ E|| X, —Y, |
+(1=6,)’R2El|a(ty, X,)—a(ty, Y,)|*.
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for all n € IN. This leads to the estimate
E|[X,41 — Yo

< [1 + (2(1 - Qn)Ka + Kb)hn]-‘r

E||X, — Y|
= 1= 20,h,K, [1Xn = Yall
2K+ Kp)h, ,  (1=6,)%h2 5
=1+——— | E||X,—Y, — " E ty, X,) —a(t,,Y,
( T 26, K, ) DI g, I e Xo) =t Xl
(2Ka+Kb)hn 2 (1_9n)2h2 2
=< —FF | E||X,—-Y, —— = FE||a(t,, X,)—a(t,. Y,
=ep (T2 p e FI Tl gt e Elat X a1
since 1 4+ z < exp(z) for z > —1. Now, set all parameters 6, = 1 in the above

inequality. In this case one encounters

2K, + K,

E Xn _Yn 2< T AL o
[ Xn+1 +1ll _CXP(I_M”KQ

hn) ]EHXn - Yn||2~

Therefore, the drift-implicit backward Euler methods have mean square contractive
perturbations with contractivity constant

2K, + Kp
sup —————
nelN 1 _Zh”Ka
2Ka + Kb .
= — —— if 2K Ky <0.
l—Zsuph,,Ka1 at Ry =
nelN

K&

If additionally 2K, + K, < 0, then the perturbations are mean square non-
expansive. o

1.10.3 P-th Mean Non-contractivity and Expansivity
of Euler Methods

Let X . (¢) denote the value of the stochastic process X at time ¢ > s, provided that
it has started at the value X, ,(s) = x at prior time s. x and y are supposed to be
adapted initial values. Let IT denote an ordered time-scale (discrete (/1 = IN) or
continuous (I7 = [0, +00))) and p > 0 be a nonrandom constant.

Definition 1.10.4. A stochastic process X =(X(¢));er with basis (2, %, (% )en,
IP) is said to be p-th mean (forward) non-contractive (in the strict sense) on R
iff Vi > s € IT Vx,y € R? (adapted)

E [||Xox (1) = Xoy O |F] =[x = yII7. (1.199)
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X is said to be a process with p-th mean expansive perturbations iff V¢ > s €
ITVx,y € RY(x # y) (adapted)

E[I1X0x(0) = Xoy O117| 7,] > 1x = 11" (1.200)

If p = 2 then we speak of mean square non-contractivity and mean square
expansivity, respectively.

For non-contractive processes, perturbations in the initial data may have signifi-
cant impact on its longterm dynamic behaviour. Adapted perturbations of expansive
processes lead to chaotic, sensitive dynamic behaviour along the entire time-
scale I1. These concepts are important for the control of error propagation through
numerical methods. They are meaningful to test numerical methods while applying
to SDEs with non-contractive coefficient systems.

Let p > 0 be a nonrandom constant.

Definition 1.10.5. A coefficient system (a, b/) of SDEs (1.2) and its SDE are said
to be strictly uniformly p-th mean non-decreasing on RY iff 3Ky > 0 €
RV:eRVx,yeR?

1 m ‘ ' 5
<a(t,x)—a(t.y),x —y >q +52|Ib’(Z,X) = b7, y)ll

j=1
+p—2i <bi(t.x)=bl(t.y),x —y >3
2~ lx = yIP
> Kyc ||Ix — y|- (1.201)

If Kye > 01in (1.201) then the coefficient system (a, b/) is said to be p-th mean
expansive and its SDE has p-th mean expansive perturbations. Moreover, if p =
2 then we speak of mean square non-decreasing and mean square expansive
perturbations and systems, respectively.

Lemma 1.10.2. Assume that X satisfies SDE (1.2) with p-th mean non-decreasing
coefficient system (a, b’).

Then X has p-th mean non-decreasing perturbations for all p > 2. If additionally
Kvyc > 0in (1.201) then X possesses p-th mean expansive perturbations.

This lemma can be proved by Dynkin’s formula (averaged Itd formula). Let us
discuss the possible “worst case effects” on perturbations of numerical methods
under condition (1.201) with p = 2. It turns out that the drift-implicit forward
Euler methods are mean square non-contractive under this condition and may have
even mean square expansive perturbations.



1 Basic Concepts of Numerical Analysis Stochastic Differential Equations Explained 129

Theorem 1.10.4. Assume that:

(i) 0, = 0.
(ii) 0 < inf,cpyhn < sup,epyhn < +o00, all h, nonrandom (i.e. only admissible
step sizes).

(iii) AK,Vx,y € RIVt > 0:<a(t,x) —a(t,y).x —y >> K,||x — y||-
(iv) 3K Vx,y € RT Ve >0 YT_ |[b/(t,x) = b/ (1, »)II* = Kpllx—y|”
Then, the drift-implicit (forward) Euler methods (1.1) with scalar implicitness
0, = 0 and vanishing ¢/ = 0 have mean square non-contractive perturbations
when applied to SDEs (1.2) with coefficients (a,b’) satisfying 2K, + Kj, > 0. If
additionally 2K, + K > 0 then they are mean square expansive.

Proof. Consider the scheme (1.1) for the drift-implicit Theta methods with nonran-
dom scalar implicitness (®,) = 6, and separate implicit from explicit part such
that

Xn-i-l - enhna([n-l-l, Xn—i—l) =X, + (1 — en)hna(ln, Xn)
m
+ Db (6, X)) AW (1.202)
=

Recall that X and Y denote the values of the same scheme (1.1) started at values
Xo and Yy, respectively. Now, take the square of Euclidean norms on both sides. By
taking the expectation on both sides we arrive at

E||Xot1 — Yos1]> = 26,0, < Xyg1 — Yog1, (g1, Xog1) — altusr, Yag1) >
+ 0212 E||a(tyt1, Xnt1) — altusr, Yoi1)|?
= IEIIXn - Yn||2 + 2(1 - en)hnIE < Xn - Yna a(t)’H Xn) _a(tny Yn) >
+ (1=6,)"hyE||a (b, Xn)—a(tn, Y| *+ha Y Bl (0, Xa)—=b (ta, V)|
j=1
Under the assumption (iii) and 6, < 1 we have

2(1— 6,k < a(t.x) —a(t.y).x —y > +hy Y |67 (t.x) = b (1. )|
j=1

> [2(1 = 6) K + Kplhal|x — ylI?

forallx,y € R% and? > 0. Consequently, under (ii)—(iv), 0, < land2K,+ K} >
0, we may estimate
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(1 =20,h, K)E[| Xy 41— Vit ||2 + 9;12h;21]E||a(Zn+1’ Xnt1) —a(tn+1, Yn-i-l)”2
Z [1+(2(1_9n)Ka+Kb)hn]]E||Xn_Yn||2+(1_9n)2h;21]E||a(tnv Xn) - a(ti’la Yn)||2~

for all n € IN. Now, set 6, = 0. This leads to the estimate
]E||Xn+1 - Yn+1||2 > [1 + (2Ka + Kb)hn]]EHXn - Yn”2 = ]E”Xn - Ynllz-

Therefore, the forward Euler methods have mean square non-contractive perturba-
tions under the condition 2K, + K; > 0. After returning to the latter inequality
above, one clearly recognizes that, if additionally 2K, + K, > 0, then the
perturbations are mean square expansive. o

1.10.4 Mean Square BN- and B-stability of Backward
Euler Methods

It is natural to ask for transferring the deterministic concept of B-stability to the
stochastic case. This can be done in the p-th mean moment sense fairly straight—
forward, and it has been studied by S. [120] at first.

Definition 1.10.6. A numerical sequence Z = (Z,), N (method, scheme,
approximation, etc.) is called p-th mean B-stable iff it is p-th mean contractive for
all autonomous SDEs (1.2) with p-th mean monotone coefficient systems (a, b/)
and for all admissible step sizes. It is said to be p-th mean BN-stable iff it is p-th
mean contractive for all non-autonomous SDEs (1.2) with p-th mean monotone
coefficient systems (a, b/) for all admissible step sizes. If p = 2 then we also speak
of mean square B- and BN-stability.

Indeed, the drift-implicit backward Euler methods are appropriate to control
the growth of its perturbations as long as the underlying SDE does. This fact
is documented by the mean square B-stability of these methods in the following
Theorem.

Theorem 1.10.5 (Mean Square BN-, B-Stability of Backward Euler Methods).
Assume that

VnelN:©,=6,1, Vj=12,....m:c/ =0.

Then, the drift-implicit backward Euler method (1.1) applied to Ito SDEs (1.2) with
scalar implicitness parameters 6, = 1 and nonrandom step sizes h, is mean square
BN-stable and B-stable.

Proof. Combine the main assertions of Lemma 1.10.1 and Theorem 1.10.3 3
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1.11 On a First Definition of Dynamic Consistency
in Stochastics

The previous course of sections presenting several concepts is unified in the
following concept of dynamic consistency.

1.11.1 The Definition of Dynamic Consistency

Definition 1.11.1. A class of numerical methods Y discretizing SDEs (1.2) is
said to be dynamically consistent iff the following properties hold for their
representatives:

(1) Y is p-th mean consistent.

(2) Y is p-th mean stable for all nonrandom step sizes %, whenever the underlying
SDE has a p-th mean stable fixed point.

(3) Y is p-th mean contractive for all nonrandom step sizes &, whenever the
underlying SDE is p-th mean contractive.

(4) The limit lim,— 400 Y, = lim;— 4o X(¢) whenever the latter limit exist (in
the sense of moments or in the sense of probability law).

(5) Y has positive outcomes for all nonrandom step sizes h, whenever the
underlying SDE has positive solutions (a.s.).

(6) Y is p-th mean convergent to the unique solution of underlying SDE with
Lipschitz-continuous coefficients.

(7) Y is an energy-exact numerical method for all nonrandom step sizes /4, and
all adapted initial data.

(8) Y is exact norm-monotone for all nonrandom step sizes %, and all adapted
initial data.

(9) Y is exact contraction-monotone for all nonrandom step sizes h, and all
adapted initial data.

(10) Y does not admit spurious solutions of any kind.

Remark 1.11.1. This list of requirements for dynamic consistency can be easily
extended, hence it can be considered as incomplete at this stage. These requirements
act like those requirements in statistical hypothesis testing which leads to an
acceptance or non-acceptance of test objects (here numerical methods). These
requirements should be understood as a sort of minimum fair requirements for
“qualitative goodness of numerical approximations”.

The concept of dynamic consistency leads to the problem of construction and
verification of nonstandard numerical methods (as initiated in Mickens [92] in
deterministic analysis).
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1.11.2 Class of Balanced Theta Methods is Dynamically
Consistent

As we could recognize from previous sections, the class of balanced (improved)
Theta methods provides us dynamically consistent numerical approximations of
SDEs. In fact, it is rich enough to replicate qualitatively the dynamic behaviour
of underlying SDEs. We gain control on stability (cf. Sect. 1.3), positivity (cf.
Sect. 1.5), boundedness (cf. Sect. 1.6), oscillations (cf. Sect.1.7), contractivity
(cf. Sect. 1.10), consistency (cf. Sect. 1.2) and convergence (cf. Sect. 1.4) through
their representatives. The balanced terms ¢’ with j > 1 are needed to control
the pathwise behaviour of Theta methods (1.1) (e.g. for almost sure positivity,
boundedness and absence of oscillations). The parameters @ or balanced terms ¢
in them are used to control the moment behaviour of Theta methods (1.1) (e.g. for
moment contractivity, moment stability, moment boundedness, etc.). In the previous
sections we have reported numerous facts supporting the preference of midpoint-
type numerical methods (or trapezoidal methods) since they avoid spurious
solutions, are simplectic, exact norm-monotone, exact contraction-monotone and
a stochastically improved version of them are energy- and asymptotically exact.
They can practically be implemented by predictor-corrector procedures, linear-
or partial-implicit versions to avoid the time-consuming resolution of implicit
algebraic equations at each integration step. Dynamically consistent methods of
higher order of convergence than midpoint-type methods are not known so far. This
is a challenging subject for further research.

1.11.3 Remarks and Practical Guideline on Optimal Choice
of 0,c’

The optimal choice of implicitness parameters @ and weights ¢/ is a fairly
complex problem. Its choice depends on the qualitative properties which one
is aiming at to be guaranteed by numerical approximations. Here a shortlist of
main recommendations and conclusion on its choice is given, based on the prior
observations in previous sections:

1. 8 = 0.5 is optimal for linear systems (see S. [121, 122]) with respect to stability
(cf. Sect. 1.3), contractivity (cf. Sect. 1.10), monotonicity, energy-exactness (cf.
Sect. 1.8), etc.

2. Equivalent choices with appropriate c® are possible (see S. [120]).

3. Positive semi-definite matrices ¢/ are preferrable since they imply no additional
step size restrictions (guaranteeing the inverses of “stabilizers” M (matrices) in
local one step representation).
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. 6 > 0 and positive negative-definite part ¢ = l[—%].l’_ of Jacobian matrix

2
% are recommendable choices to achieve “optimal numerical stabilization”
based on standard linearization techniques.

. ¢/ =0(j =1,2,...,m) suffices to control p-th moments (stability, bounded-
ness of moments).

. ¢/ £ 0(j = 1,2,...,m) is needed to control pathwise behaviour such as a.s.
stability, a.s. boundedness or a.s. positivity (cf. Sect. 1.5).

. ¢/ = bi(t,x)/x (componentwise) is recommended to be chosen for systems
with b/ (t,x) = B/(t, x)x as commonly met in population models in ecology,

biology, finance, marketing.

Of course, this represents an incomplete list of observations and further studies are
needed. As commonly known, optimal choices must depend on the specific structure
of drift and diffusion coefficients, and, above all, on the goal one is aiming at by the
approximation. This clearly depends on the knowledge on qualitative behaviour of
underlying class of SDEs.
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Chapter 2
Kernel Density Estimation and Local Time

Ciprian A. Tudor

Abstract In this paper we develop an asymptotic theory for some regression
models involving standard Brownian motion and standard Brownian sheet.

2.1 Introduction

The motivation of our work comes from the econometric theory. Consider a
regression model of the form

yi=f(xi)+u, >0 2.1

where (u;);>0 is the “error” and (x;);>o is the regressor. The purpose is to estimate
the function f based on the observation of the random variables y;, i > 0. The
conventional kernel estimate of f(x) is

p _ Z?:o Ky (x; —x)y;
SO =S5 =)

where K is a nonnegative real kernel function satisfying [ K*(y)dy = 1 and

Jz yK(y)dy = 0 and Kj(s) = %K(%). The bandwidth parameter 1 = h,, satisfies

h, — 0asn — oo. We will choose in our work 4, = n% with 0 < a < %

The asymptotic behavior of the estimator f is usually related to the behavior of the
sequence

Vn = Z Kh(x,' —x)uf.

i=1
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The limit in distribution as n — oo of the sequence V,, has been widely studied in
the literature in various situations. We refer, among others, to [5] and [6] for the case
where x; is a recurrent Markov chain, to [12] for the case where x; is a partial sum of
a general linear process, and [13] for a more general situation. See also [9] or [10].
An important assumption in the main part of the above references is the fact that
u; is a martingale difference sequence. In our work we will consider the following
situation: first the error u; is chosen to be u; = W41 — W; for every i > 0, where
(W;)r>0 denotes a standard Wiener process and x; = W; fori > 0. Note that in this
case, although for every i the random variables u; and x; are independent, there is
not global independence between the regressor (x;);>0 and (u;);>0. However, this
case has been already treated in previous works (see e.g. [12, 13]). See also [2]
for models related with fractional Brownian motion. In this case, the sequence V,
reduces to (we will also restrict to the case x = 0 because the estimation part is not
addressed in this paper)

n—1

Su = K@ W) (Wi = Wi). (2.2)
i=0

The second case we consider concerns a two-parameter model:

yij=f(xij)+ej. i,j=0 (2.3)
where ¢; ; = Wi(i)l, i1 Wi(i)l, i Wl(j)ﬂ + W,(j) are the rectangular increments

of a Wiener sheet W@ (see Sect. 2 for the definition of the Wiener sheet). This case
seems to be new in the literature. But in this situation, because of the complexity
of the stochastic calculus for two-parameter processes, we will restrict ourselves to
case when the regressor x; ; is independent by the error u; ;. That is, we assume that
Xij = W,(Jl) where W is a Wiener sheet independent by W The model (2.3)
leads to the study of the sequence

n—l1
(1 2) 2) ) )
T, = Z K (naI/Vi.j ) (Wi+1,j+1 Wi, = Wiinm T W )
ij=0

We will assume that the kernel K is the standard Gaussian kernel

2

1 )
K(x) = \/E[T' 2.4

The limits in distribution of S, and 7,, will be cl,BLw(,‘O) and Cz.BLwU)

(Lo) Fespec-

tively, where L" and L"" denote the local time of W and W respectively,
is a Brownian motion independent by W and W and ¢, ¢, are explicit positive
constants.
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2.2 The One Parameter Case

Let (W;);>0 be a standard Brownian motion on a standard probability space
(£2, #, P) and let us consider the sequence S, given by (2.2) with 0 < o < %
and the kernel function K given by (2.4). Denote by .%; the filtration generated

by W. Our first step is to estimate the 1> mean of S,,.

Lemma 2.1. As n — oo it holds that

n* IES? > C =

S

Proof. Recall that, if Z is a standard normal random variable, and if 1 4+ 2¢ > 0

E (e—czz) - \/%_ZC (2.5)

Since the increments of the Brownian motion are independent and W;4; — W; is
independent by .%; for every i, it holds that (here Z denotes a standard normal
random variable)

n—1 n—1
ES; =E) Kn“W;) Wip1 = W)’ =E Y _ K*(n"W)

i=0 i=0
1 n—1 - 1 n—1 )

- E ) VAR 1 2 200:\7 2

5 2B 5 Z( + 2n*i)
i=0 i=0
and this behaves as ‘z/—fn*“Jr% when 7 tends to infinity. O

. . _lye .
In the following our aim is to prove that the sequence n~#% 2§, converges in
distribution to a non-trivial limit. Note that the sequence S, can be written as

n—1 n—l a4
Sp =Y K@"W)(Wig1 = W)= | KetW)dw,
i=0 i=0

n=l aj4 n
=Y [ kwewipaw. = [ keewgaw,
=01 0
where [s] denotes the integer part of the real number s. Define, for every ¢ > 0,

t
S = / K@ Wid W, (2.6)
0
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Then for every n > 1 the process (S]');>o is a .%; martingale (recall that .%,
denotes the sigma algebra generated by the Wiener process W). The bracket of
the martingale (S;),>¢ will be given by, for every t > 0

t
S™Y, =/ Kz(n“W[S])ds.
0

This bracket plays a key role in order to understand the behavior of S,,. Let us first
understand the limit of the sequence (S"),. Its asymptotic behavior is related to the
local time of the Brownian motion. We recall its definition. For any # > O and x € R
we define LY (¢, x) as the density of the occupation measure (see [1,21])

Ja(A) = /0 LWods, A B®).

The local time L" (¢, x) satisfies the occupation time formula

/ FWyds = / LY (1. x) f(x)dx 27
0 R

for any measurable function f. The local time is Holder continuous with respect to
t and with respect to x. Moreover, it admits a bicontinuous version with respect to

(t,x).

We will denote by p, the Gaussian kernel with variance ¢ > 0 given by p.(x) =

2
1 _xZ
me 2 . Note that

B TW) = = p, (W)

Zf
and by the scaling property of the Brownian motion

n—1

%+a(Sn>n — n*%‘ka ZKZ(HQI/V,‘)

i=0
n—1 ln 1 1
=N 2+QZK2( a+2W) szp;n_m 1<W’z7)
i=0

where =(;) means the equality in distribution. A key point of our paper is the
following result which gives the convergence of the “bracket.”

Lemma 2.2. The sequence % Z?;(l) Py —a) (Wy) converges in L*(2), asn — oo
in n

to LV (1,0).
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Proof. Let us recall that fol pe(Wy)ds converges as ¢ — 0 to LV (1,0) in L2(£2)
and almost surely (see e.g. [8]). Using this fact, it suffices to show that the quantity

I, =E (/01 (pa"(M) — Da, (Wu)) ars)2 (2.8)

gl
converges to zero as n — oo, where we denoted by o, = %n *~2. We have

I, = E/O1 /01 dsdt (pan(Ws) = Pa, (Wu)) (pa,,(I’Vt) = Pa, (Wu))
=25 [t [ s (a0~ o (W) (90— s (Was)).

Notice that for every s, € [0, 1], s < ¢,

By the independence of W, — W, and .Z)" we get
E[p:(W, = Wy + W)|.F] = Bpe(W, = Wy + X))o, = Peti—s(W).
We will obtain

Eps(I/Vs)ps(VVt) = Epa(st‘)pH»tfs(I/Vs)

1

1 s 1
Z\/E(85+8(Z—S+8)+s(t_s+8)) . 2.9)

This sequence converges to ﬁ as ¢ — 0. If we replace s or ¢ by [”S—S] or %

respectively, we get the same limit.
As a consequence of the Lemma 2.2 we obtain

" _1 e
Proposition 1. The sequence n=27%(S"), converges in distribution, as n — o0, to

2 w _; 14
(/RK(y)dy)L (1,0)_2ﬁL (1,0)

where LY denotes the local time of the Brownian motion W .
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Proof. The conclusion follows because

n—1 n—1
n*%+a<5n>n — n*%‘ka ZKZ(naI/Vi) =) n*%+a ZKZ(na+%WL)
i=0 i=0

and this converges to L" (1,0) in L?(£2) from Lemma 2.2.

Remark 2.1. Intuitively, the result in Proposition 1 follows because

n—1 !
w2t KA W) =y n T Y K2t W)
i=0 =0

1
Nn%+a\/ [(2(”“+%I/I/S)ds=/Kz(n“Jr%x)LW(l,x)dx
0 R

:/dsz(y)LW (1, Y 1)
R na+§

where we used the occupation time formula (2.7). The bicontinuity of the local time
implies that this last expression converges to the limit in Proposition 1.

We state the main result of this part.

Theorem 2.1. Let S, be given by (2.2). Then as n — 00, the sequence n%fiSn
converges in distribution to

((/ K2(y)dy) LW(I,O))Z Z
R

where Z is a standard normal random variable independent by LY (1,0).

Proof. A similar argument has already been used in [4]. Obviously,
lya ! 1
Sy =@ nith / K (n"‘+2WM) AW, :=T,.
0 n

Let .
T"=n%+%/ K(n‘”%WM)dWS.
0 n

t

Then T is a martingale with respect to the filtration of W. We can show that
(T", W) converges to zero in probability as n — oo. Indeed,

t
(", W), =n%+%/ K(n‘”%Wm)ds
0 n
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and this clearly goes to zero using formula (2.5). It is not difficult to see that the
convergence is uniform on compact sets. On the other hand (7"); converges to
(fR Kz(y)dy) L% (1,0) in L*(£2) from Lemma 2. The result follows immediately
from the asymptotic Knight theorem (see [11], Theorem 2.3 page 524, see also [4]).

O

2.3 The Multiparameter Settings

This part concerns the two-parameter model (2.3) defined in the introduction.
Let W1 and W® denote two independent Wiener sheets on a probability space
(£2,.7, P). Recall that a Brownian sheet (W,,),.,>0 is defined as a centered two-
parameter Gaussian process with covariance function

E (I/Vs,t Wu,v) = (S A ”)(t A V)

for every s,t,u,v > 0. The model (2.3) leads to the study of the sequence

n—1

T= 3 K () (W, - W Wl +w2). @10
i.j=0

As in the previous section, we will first give the renormalization of the L? norm
of T, asn — oo.

Proposition 2. We have

E(n*'T;)" —1oe v2

Proof. By the independence of W) and W® and by the independence of the
increments of the Brownian sheet W® we have, using (2.5)

n—1 n—1 n—1

1 20 (D2
2_ 20 apy (DY) — —n“*(W; /")
ET;= ) E(K (n Wi’j))—zn » E(e J ) 2 1—}—21120‘1]

i,j=0 i.j=0

and the conclusion follows because Zl —0 f behaves, when n — oo as 2.4/n.
O
We will first study the “bracket” (T'), = Z?,T:o K?*(n” W,(Jl)) which is in some
sense the analogous of the bracket of S, defined in the one-dimensional model.
For simplicity, we will still use the notation (7'), even if it is not anymore a true

martingale bracket (the stochastic calculus for two parameter martingales is more
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complex, see e.g. [7]). By the scaling property of the Brownian sheet, the sequence
n®"(T), has the same distribution as

n—l1
no! Z K? (n"‘“Wi(li-).

i,j=0 n’n

Note that for every u, v > 0 we can write

1
at+l g2 (ot — - 1)
Van T K2 (n* D) 5P iz Wa)-

As a consequence n®~!'(T'), has the same law as

1 1 n—1 @
27 n? .ZO” FeE] (W;vf;) '
i,j=

In the limit of the above sequence, the local time of the Brownian sheet WO will
be involved. This local time can be defined as in the one-dimensional case. More
precisely, for any 5,7 > 0 and x € R the local time LW(I)((S, 1), x) is defined as the
density of the occupation measure (see [1,21])

Ui (A) = /Ot /Os 1aW,,)dudv, A e BR).

and it satisfies the occupation time formula: for any measurable function f

t N
/ / S D) dudv = / LY ((s.1), %) f(x)dx. (2.11)
o Jo ’ R
The following lemma is the two-dimensional counterpart of Lemma 2.2.

Lemma 2.3. The sequence nLZ Zf’;'zo p2;12;t+2 (Wl(li) converges in L*(2) an

n — oo to LW“)(L 0) where LW“)(L 0) denotes the local time of the Brownian
sheet WO where 1 = (1, 1).

Proof. This proof follows the lines of the proof of Lemma 2.2. Since fol fol

pe(W,.,)duv converges to L"(1,0) as ¢ — 0 (in L2(£2) and almost surely, it
suffices to check that

Jn=E (/01 /01 (pa,,(Wu,v) — Pa, (Wuu)) dudV)

2
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converges to zero as 1 — oo with i, = 377272, This follows from the formula,

foreverya > uand b > v

E (ps(Wa,b - Wu,v)ps(Wu,v)) =E (ps(Wu,v)p«H»abfuv(Wu,v))

and relation (2.9). O
Let us now state our main result of this section.
Theorem 2.2. As n — 00, the sequence n%féTn converges in distribution to
1
(COLW(U(L O)) " Z where LY (1,0) is the local time of the Brownian sheet W1,

co = ﬁ; and Z is a standard normal random variable independent by W1,

Proof. We will compute the characteristic function of the T,,. Let A € R. Since the
conditional law of 7, given W) is Gaussian with variance Z:’;;O K? (n“ Wl(jl))

we can write

E (eikngéTn) —E (E (eikngéTn IW(I)))

_E (e‘f""‘“ ¥l Kz(n‘*wﬁy)) _E (e*f"““”") .

By the scaling property of the Brownian sheet, the sequence
n—1 1 1 n—1
a—1 _ a—1 2 [ jatip, (D) - ()
n N Ty =ayn*" Y K (” W;,;;) REW, TS > P (W;;,;)'
i.j=0 i,j=0

The result follows from Lemma 2.3. O

Remark 2.2. A similar remark as Remark 1 is available in the two-parameter
settings. Indeed, the basic idea of the result is that

n—1 1 1
n® ', = (d)na_] Z K? (n‘”‘lW.(li-) ~ ! / / K? (n“HWM("v)) dudv
0o Jo

e
i,j=0 n’n

= potl / K? (n“+1x) LW“)(L x)dx
R

— [ KoL (125)dy saem [ K20)LY01.0)
R notl R

by using (2.11) and the bicontinuity of the local time.
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As a final remark, let us mention that above result (and) the model (2.3) can
be relatively easily extended to the case of N-parameter Brownian motion, with
N > 2.
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Chapter 3
General Shot Noise Processes and Functional
Convergence to Stable Processes

Wissem Jedidi, Jalal Almhana, Vartan Choulakian, and Robert McGorman

Abstract In traffic modeling theory, many authors present models based on partic-
ular shot noise representations. We propose here a model based on a general Poisson
shot noise representation. Under minimal assumptions, we obtain an approximation
of the cumulative input process by a stable Lévy motion via a functional limit
theorem.

3.1 Introduction

In the present paper, we consider a unique server dealing with an infinite sized
source. The source sends data to the server over independent transmissions and
according to a Poisson process. Our aim is to study the traffic generated by the
transmissions over an interval of time [0, ¢] and denoted by A4,. The cumulative input
process A = (A;):>o has a structure of a Poisson shot noise (see [3] and [13]) that
is a natural generalization of the compound Poisson process when the summands
are stochastic processes starting at the points of the underlying Poisson process.
This has become popular in modeling traffic, computer failure times, geophysical
phenomena and finance. Here, we do not assume any particular mechanism of
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evolution in time of this process (i.e. on the summands). In Sect.3.5, we will
compare with the specialized literature where some mechanisms are assumed : Kaj
[11], Konstantopoulos and Lin [14] Maulik et al. [15], Maulik and Resnick [16],
Mikosch et al. [18], Resnick and Van den Berg [20]. Of course, when specifying
the mechanism, some random quantities take a particular importance. We will show
later that only two data are relevant for us, namely:

1. The size of each transmission (denoted X, in the sequel).
2. The length (i.e. the duration) of each transmission (denoted 7 in the sequel).

in order to show that the cumulative process A is approximated in a strong sense
by a stable process. The strong sense means that the process A, when adequately
drifted, rescaled in time and normalized, functionally converges in law to a stable
(non-Gaussian) process (see Sect. 3.2 below) for the precise definition of functional
convergence in law for stochastic processes). This convergence is obtained under
two crucial assumptions: (1) the size of each transmission has a distribution tail
regularly varying and (2) an assumption very close (and sometimes weaker) to what
is called, in the literature cited below, a slow connection rate or slow input rate
condition on the length of the transmission. Notice that if condition (3) is substituted
by (4) a fast connection rate (resp. intermediate connection rate), the limit is no
longer stable but selfsimilar Gaussian (resp. non-Gaussian and non-stable stochastic
process with stationary increments). See Caglar [4], Kaj [11], Kaj and Taqqu [12],
Maulik and Resnick [16], K. Maulik and Resnick [17], Mikosch et al. [18] for non-
Stable limits. Some extensions in the context of cluster Poisson point processes
are studied in Fasen and Samorodnitsky [7] and Fasen [6] (with superpositions of
input processes) and analogous results are shown. A generalization of the popular
ON/OFF model can be found in [19] and also analogous results are shown.

We stress, here, that we are only interested by a simple formalism leading to
stable limits. The main idea of the paper is simple and is stated in theorem 5: we
observe that if the total traffic of sessions which have been active up to time ¢ is
taken into account, then the cumulative input process would be compound Poisson.
In the scaling we consider, we prove that the difference goes to 0 and the compound
Poisson is approximated by a stable process totally skewed to the right with index
of stability in @ € (0, 2).

To the best of our knowledge, apart the model of Resnick and Van Den Berg [20],
all the results available in the literature only treat the finite-dimensional part of the
attraction (expressed in 3.21 below) by a stable process totally skewed to the right
with index of stability o € (1, 2).

The model proposed by Kliippelberg et al. [13] deals with the Poisson shot noise
process B in (3.2) below. Their main result says that the convergence of the finite-
dimensional distributions of a (rescaled) Poisson shot noise process to a stable
process S with index in & € [1,2) is equivalent to what they call a condition of
regular variation in the mean. The limiting stable process S is not necessarily a
stable Lévy motion (we relax the independence of the increments in S) and one
has to describe it according to the mechanism of B. We consider that our approach
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intercepts the one of [13], but only on the finite-dimensional point of view. Then we
reinforce the result of [13] when S is a stable Lévy motion.

As already announced, the main result is stated in theorem 5. Surprisingly,
the assumptions required in theorem 5 are weaker than those required in the
literature (see Sect. 3.5 for a comparison), but they provide a stronger conclusion:
the functional convergence to a stable process totally skewed to the right with index
of stability « € (0, 2).

3.2 The Topology

All the convergence of processes shown in this paper hold in the functional (or weak)
mode i.e. in the space D = D(R+, R) of cadlag functions equipped with the M-
Skorohod topology. We will not get into details about Skorohod topologies, we just
say that, according to 3.20 p.350 [8], a sequence Z" of stochastic processes is said
to functionally (or weakly) converge in law to a process Z (we denote Z" —> Z)
if and only if we have the two statements: (1) the limit process Z is well identified
via finite-dimensional convergence, i.e. for all d > 1 and t;,t,---,t; > 0, we
have convergence of the d-dimensional random variable (Zn. 25, Z; ) —
(2.2, Z,,;) and (2) the sequence of processes Z” is tight which is a technical
condition (strongly related to the modulus of continuity of the topology) ensuring
the existence of the limit. This paper mostly uses the powerful tools on the M,
topology presented in the book of Jacod and Shiryaev [8]. Another important
reference on the topic is the book of Whitt [22]. Notice that many natural and
important functionals on D (like the supremum functional) are continuous in M,
and for the other stronger Skorohod topology namely J; (see Billingsley [1]). Our
choice to use M; topology relies on this fact that it is desirable to use as weak
topology as possible, since it requires weak conditions for tightness. We are going to
make some significant discontinuous element of (ID, M) (namely, the processes &'
and &2 introduced in (3.6) and (3.7) below) converge to 0. See also remark 6 below.

Observe that finite-dimensional convergence of a sequence Z” to 0 is equivalent
to the unidimensional convergence (Zt” — 0, V¢ > 0). In the following, this
simple constatation will be useful.

3.3 The Model

Through all the following, we assume that a unique server deals with an infinite
number of sources. Following Resnick’s formalism [20], the transmissions arrive to
the server according to an homogeneous Poisson process on R labeled by its points
(Ty)rez sothat---T_y < Ty < 0 < T --- and hence {—Ty, T\, (Tx+1— Tk, k # 0)}
are i.i.d. exponential random variables with parameter A.

Ty is considered as the time of initiation of the k-th transmission.
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Let the counting measure N(du) = ), o, 7, (du) and define the Poisson process
N by
N, = NJ[0,¢] if t >0 and N, = N[t,0) if t <O.

The quantity N, represents the number of transmissions started between time s = 0
and time § = 7.

We are interested in the cumulative input of work to the server (also called total
accumulated work) over an interval of time [0, ] and denoted by A;. It corresponds
to the size of the files transmitted by the source. There are many ways to model it
(from the most trivial way to the most sophisticated). Specification of the source
behavior could be taken into account adding more and more parameters. In order to
avoid this intricacy, most authors (Kaj [11], Konstantopoulos and Lin [14] Maulik
et al. [15], Maulik and Resnick [16], Maulik and Resnick [17], Mikosch et al. [18],
Resnick and Van den Berg [20]) have a macroscopic approach strongly connected
with times of initiation of the transmissions, their duration and their rate. As we
will see, this paper confirms the pertinence of this approach, and we show that it is
sufficient for having the required control on the cumulative input process.

Our aim is to describe, in the more general setting, the cumulative input process
and to give an approximation of its law. Notice that the cumulative input process
describes the work generated over the interval [0,¢]. Time s = 0 is when our
“observation starts” and s = ¢ is when our “observation finishes.” Observe that
times of initiation of transmissions are either negative or positive (before or
after our observation starts, respectively). The k-th transmission starts at time
Ty and continues over the interval of time [T, +00). Suppose we observed the
transmissions for all times and until time s and we want to calculate the work
generated by the k-th transmission. This work occurs over the random interval
(—o00, 5] N [T}, +00). The length of this interval is the r.v.

(s = Tr)+ = Max{0,s — Ty }.

We deduce that the work generated by the k-th transmission is given by a quantity
which depends on the length (s — T} ). We will denote this work

X (s — Tx)

where (X k(r))rer is a stochastic process, the random variable X*(r) is an increas-
ing function of r, vanishing if r < 0 and describing the quantity of work potentially
generated by the k-th transmission over an interval of time of length » > 0.

If we had observed only over the interval (s’,s] (instead of (—o0, s]), the work
potentially generated by the k-th transmission should be written as the difference

X (s = Te) — X5(s' = To).

Notice that t > Tj > Ty = 0 > T; > T; is equivalent to N; > [ > k>0>;>i.
Because of the above considerations, we propose the following general model
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Fig. 3.1 The quantity A, is formed by the four slanted segments between 0 and ¢ while B, is
formed by the two slanted segments on the right between 0 and ¢

describing the cumulative input over [0, ¢] by a “moving average” type (Fig.3.1):

N, e’}
A=Y XN -To-X"Tol= ) [X*(—T)— X" (~T)llz<).t > 0.
k=—o00 k=—o00

3.1

The processes (X*)icyz describe the evolution in time of the job completion of the
transmissions. They are assumed to form an i.i.d. sequence independent from the arrival
process (Ty)uez. For each k € 7, the process X* is cadlag (right continuous with left
limits), vanishing on the negative real axis and increasing to a finite r.v. X*(00).

We will see in the sequel that the distributional behavior of the process (4;);>0 at
large times scales is the same as the one of its “finite memory” part B which is a
Poisson shot noise (see Bremaud [3] and Kliippelberg [13]):

N
B, = Z Xkt -Tv)., t=>0. (3.2)
k=1

Observe that the process A has stationary increments, while B has not, nevertheless
B is of special interest because it only takes into account the transmissions started
after time s = 0. The special structure of the process B merits some other
comments. The problem is that at any fixed time ¢ we can not “see” if the k-th
transmission has finished or not and moreover we are unable to calculate during the
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time ¢ — T the accumulated work X* (¢ — T}). The only available information is the
quantity

X*(o00) which is the total work required by the k-th transmission.

It is then natural to introduce the process
N
Ci=) X'e0). 120, (3.3)
k=1

which characterizes the total work required by all the transmissions started within
the interval [0, 7]. This process enjoys a very special property: it is a Lévy process,
i.e. it has independent and stationary increments and, more precisely, is a compound
Poisson process (see the book of Sato [21] for an account of Lévy processes or
appendix 3.7). This process turns out to be the principal component of the processes
A and B, a component which will give the right approximation by a stable process,
as stated in theorem 5 below.

Observe that the processes B and C defined in (3.2) and (8.5) are very well
defined because they are finite sums while the process A introduces in (3.1) may
have problems of definition, since the r.v. A;, ¢ > 0, could be infinite. We will see
in lemma 2 that they are actually finite under our assumptions. There are many ways
to represent these processes. Recall the random Poisson measure N (du) associated
with the sequence (7% )rez and define the integer random measure M on (R x D,
B R V) by

M (du.dy) == € xr)(du.dy). (3.4)
keZ

which is actually a marked Poisson measure. Then, the process A has a Poisson
integral representation of the moving average type

Ar = / [y((t —w)+) = y(—u)4) ] M(du, dy).
(—o0,t]xD

Notice also that the process A is increasing and, as shown later on, is locally
integrable if 1 < o < 2. Then, the process A may have the structure of a special
semimartingale (see definition 4.21 p. 43 [8]). We will only invoke some more
familiar aspects in the structure of the process A, namely, it is represented as follows:

N
A=) [X'¢-T)—X"-T)] =B, +¢ (3.5)

k=—00
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where
N; 0
Bi=) X'a-To. =) [X'(-T)-XCTHl. (6
k=1 k=—00

We can also decompose B in B = C — €2 with

N; N:
C=Y XKoo) =) [XK(oo)—X*(t—THI. (3.7)
k=1 k=1

All the processes presented above are closely connected to the load of the transmis-
sions, this is the reason why we will call them load processes. The lemma 2 below
unveils some of their properties.

3.4 The Results

We will show that the process Z = A, B or C, after being correctly drifted rescaled
and normalized, satisfy a limit theorem and share a common limiting process, a strict
stable Lévy motion totally skewed to the right (see appendix 3.7 for more on stable
Lévy motions).

3.4.1 Assumptions and Notations

Through all the following we adopt the following notations for all real numbers a, b
anb = min{a,b}, avb = max{a,b} and (a—b)y = (a—b)V0 = a—(anb).
Recall the processes X* are i.i.d. Let

(X)iz0 := (X'(1))i0. Xoo:= lim X, (3.8)

—>00

and assume the stopping time
t:=inf{t : X; = Xeo} s finite. 3.9)

Notice that the event (Xoo > X,,), u > 0, is given by (t > u). Then, the behavior
of the r.v. T describes the way the cumulative process of each transmission reaches
its maximum, or in other words the way each transmission is completed. The r.v.
X and t are actually versions of the size and of the length of any transmissions.
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3.4.1.1 Assumption on the Size of the Transmissions

The r.v. X is finite and has a distribution with regularly varying tail of order —c,
with & € (0,2) i.e. there exists a deterministic increasing function r such that for
each x > 0,

1
lim u P(Xoo > r(u)x) = — (3.10)
u—>00 X«
which is equivalent to r(u) = uzl (u) for some slowly varying function / i.e.

satisfying lim,— ool (u x)/ (1) = 1, for all x > 0. It is commonly said that X, has
heavy tails. The reader is referred to the book of Bingham et al. [2] or to appendix
3.7 for more details on regular variation theory.

3.4.1.2 Assumption on the Arrivals

Notice that the intensity parameter A of the arrival process N is not necessarily
constant,

it may depend on a scale ¢ and A = A. may depend on a parameter ¢ > 0 as studied in
Mikosch et al. [17] and Kaj [11]. Through all the following, we consider the case where
A¢ increases to a value Moo € (0,00] as ¢ goes to infinity. Of course, the constant case
Ae = Aoo is included in the latter. Sometimes, we will simply write A instead of A..

3.4.1.3 Technical Assumptions on the Length of the Transmissions:
Connection with the Intensity and with the Size

At large scales, we will need one of these four assumptions expressed with a
function r : (0, 00) — (0, 0co0) such that:

Xoo
CILIEOACE[(IAC) (r(dc) A 1)] =0 (3.11)
or
lim A, E Xoo Al)|=0 (3.12)
oo T\ enn) = :
or A .
E[Xo] <00 and lim < / E[Xoo — X, ]du =0 (3.13)
c=>oor(chc) Jo
or

: Ae
E[Xs] < o0 and c]_l)nolo rc)

ct
/ E[Xoo — X, Jdu =0, V¢ > 0. (3.14)
0
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Remark 1. (a) The technical lemma 3.32 below is the key of the proof of theorem
5 and works under the assumptions (3.10), (3.11),(3.12),(3.13). We stress that
apart assertions (2) and (3)(iii), the function r used in lemma 3.32 needs not
to be the one introduced in (3.10). Trivially, assumption (3.12) implies (3.11)
and assumption (3.14) implies (3.13). We will see in the proof of lemma 3.32
below, that assumption (3.10), with & € (1,2), together with (3.13) implies
(3.14). Assume that lim sup,_, ,, 7 (cT)/r(c) < oo, YT > 0, which is the case
if the function r is the one of (3.10), and assume we are in the case of finite
intensity (A, = c¢st or 0 < Ao < 00), then it is also obvious that each of
the conditions (3.11), (3.12), (3.13) and (3.14) is equivalently expressed with
Ac = 1. Finally, notice that if (3.10) is satisfied and 7 has finite expectation,
then (3.12) or (3.14) are satisfied by many simple conditions on the distribution
of 7. For more details, the reader is invited to see the comments 1 and 3 of
Sect. 3.6. Another point is that (3.10) with & € (1, 2) implies E[X ] < 00.

(b) Assumption (3.12), when coupled with (3.10), is the one that makes the
functional convergence work for A, B,C in theorem 5 below. There are
two simple conditions implying (3.12). The first one is 7 regularly varying
distribution tail with index —f > 0 such that é + % > 1. The second condition
is called in the literature a slow connection rate or slow input rate condition,
precisely

Clirgoc AcP(r >¢) =0,

See the discussion right after (3.22).

The following lemma treats the problem of existence and infinite divisibility of the
different load process involved in the cumulative input process A.

Lemma 2. Infinite divisibility of the load processes. For all t > 0 we have:

(i) The process C is a a compound Poisson process with Lévy exponent given for

all 8 € C, Re(0) > 0, by

W,(0) :=1logE[e?C ] = At / (7" —1)P(Xoo €dx).  (3.15)
R4

(ii) The rv. B; and etz are finite and infinitely divisible.

(iii) Assume E[t (Xoo A 1)] < oo, then the r.v. A, and € are finite and infinitely
divisible.

(iv) Assume E[Xso] < 00, then the r.v. A, and etl are finite, infinitely divisible and
all the load quantities have finite expectations given by

E[4;] = E[Ci] = A1 E[Xoo],

E[B,] = A /0, E[X,] du

Ele!] = E[¢] = A /t E[Xoo — X.] du.
0
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When proving our main result (theorem 5 below), we will see that the central point
is that the processes Z = A, B or C we are dealing with,

share a principal common Lévy component which is the Lévy process C

and functional limit theorems for Lévy processes are quite easy to check. Proposi-
tion 3 gives a taste on the kind of controls we obtain, and theorem 5 will extend it
on the processes A and B. All these processes will share the same limit, a stable
motion totally skewed to the right.

Proposition 3. Independently from the behavior of the intensity of the arrivals,
the process C is functionally attracted in law by a stable process. Assume (3.10).
Let C¢ be the process defined for eacht > 0 by

Cct —t d(CAc)

ce = ,
! r(cAe)

(3.16)

where the function r is given by (3.10) and the function d is defined by

X 0 if0<ax<l
d(u)zur(u)EI:h(TjS)} and h(x) = q{sinxifa=1 (3.17)

X ifl <a<2.

Let S be a strict a-stable Lévy motion totally skewed to the right. Letting ¢ 1 oo,
we get the functional convergence

(CH)iz0 = (St)i>o0. (3.18)

Now, we propose a lemma which will be the central key for proving that the
cumulative process is attracted by a stable process. Lemma 4 below says that the
residual processes €' and €>¢ go to 0 functionally in law when ¢ goes to infinity.
The latter can be interpreted as follows: at large time scales (1) the contribution of
the past (before time 0) in the cumulative process is negligible and (2) within the
interval of observation the difference between the total requirement of work and the
accumulated work is also negligible.

Lemma 4. Technical controls on the residual processes.

i
ect

Leti = 1,2, ¢ > 0 and the processes €' defined by € = )
r(cAc)

1. If assumption (3.14) holds, then €' converge to 0 in the finite-dimensional sense.
2. If assumption (3.10) with o € (1,2) holds together with (3.13), then €' converge
to 0 in the finite-dimensional sense.

3. Furthermore, assume lim sup,_, "fz'CT))

< 00, YT > 0. Then €' satisfies
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VT,7n>0, limP <supe;'-c > r/) =0 (3.19)
c—>00 th

(which certainly implies the € functionally converges in law to the null process) in
any of the following situations:

(i) i = 1, and assumption (3.13) holds;
(ii) i = 1 and assumption (3.12) holds;
(iii) i = 2 and assumption (3.10) holds together with (3.11) (recall (3.11) is
implied by (3. 12)).

After the previous preliminaries, we tackle our main result dealing with the
attraction of the load processes by a stable process.

Theorem 5. The processes A, B, C are attracted functionally in law by a common
stable process. Assume (3.10). Let Z = A, B or C and define for eacht > 0

Zy —td(chc)
Zi= ———=, 3.20
! r(ce) (3:20)
where r(cA.) is given by (3.10) and d(cA.) is defined in (3.17). Let S be a strict a-
stable Lévy motion totally skewed to the right. Letting ¢ 1 0o, we get the functional
convergence

(Z7)i=0 = (St)i>o0, (3.21)
in any of the following situations:

(a) Z =C;

(b) Z = B and (3.11) holds;

(¢) Z = Aand (3.12) holds;

(d) Z=A,B, o€ (1,2)and(3.13)holds. Then, the convergence (3.21) is true in
the finite-dimensional sense, and the drift “t d(cA;) = ¢ A  t E[Xo0]” in (3.20)
can be replaced by the expectation E[B,].

Remark 6. Our main result stated in the las theorem merits some comments:

(i) We would like to call the attention of the reader that we had allowed the
intensity of the arrival process A, to increase to infinity with the time scale.
The condition @ € (1,2) in the statement d) of theorem 5 is connected to the
finiteness of the moments E[Z,], ¢ > 0.

(ii) The reader should also notice that in the case that the intensity A, — Ao €
(0,00) and t has a finite expectation then the functional convergence in
theorem 5 simply holds under condition (3.10) (See the details in Sect. 3.6-3
below).

(iii) As already noticed in Sect.3.2, the mode of convergence (functional in
(D, My)) is extremely useful because it implies that some special functionals of
the sequence of processes in D converge to the functionals of the limit process.
For instance, consider the inverse in time of Z
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(Z)y=inf{t >0:,Z, >a}, a=>0.

It corresponds to the first time the cumulative input crosses the critical barrier
a. Correctly normalized, and with convergence (3.21), it is easy to show that
the distribution of the process 7(Z) can be approximated by z(S) which
is well studied in probability literature. Functionals such as supremum and
reflection maps are treated similarly. See the monograph of Whitt [23] for these
considerations.

3.5 Opverview of Some Related Work

We will describe the different infinite source Poisson models we encountered in the
literature according to their chronological order of appearance. Of course, our list
is not exhaustive. We will see that all the models we present are particular forms
of (3.1) or (3.2) when the processes X ks specified. In what follows, we denote by
7 = inf{t : X*(t) = X*(0c0)} the length (or duration) of the k-th transmission and
Ry, its rate (Ry could be interpreted as the size of the transmission per time unit,
ie. Ry = X*(c0)/w). In all the following models, the sequence (tx, Ry)iez is
assumed to be i.i.d. and independent from the arrival process N . As done previously,
we denote (7, R) = (71, R;) and X = X'. The assumptions used in the works cited
below imply (3.10) and (3.11) according to the discussions in Sect.3.6 below. At
the end of each model presented, we explain why the last claim is true by referring
to the corresponding argument in Sect. 3.6.

1. Konstantopoulos et Lin [14]:The intensity A is constant. The model is in the form
(3.1) with
XE(r) = E(r A )

where £(.) is a deterministic regularly varying function with index ¢ > 0 and
has regularly varying tails with index —f where § € (1,2) and 8 > a, so that
E[tr] < oo and X = £&(7) has a regularly varying tail of index « = B/a €
(1,2). The authors assumed many other constraints on the indexes ¢ and  and
on the increments of the function &. They also conjectured that the convergence
might hold with the M, topology for their model. See Sect. 3.6-3 below.

2. Resnick and Van Den Berg [20]: The intensity A is constant. The model
of Konstantopoulos et al. [14] is revisited under the form (3.2) by keeping
some identical assumptions cited in [14] and relaxing the extraneous ones. The
convergence (3.21) is shown to hold in the weak Skorohod sense, i.e. in (D, M;).
See Sect. 3.6-3 below.

3. Mikosch et al. [18]: The intensity A is constant. Assuming that t has a regularly
varying tail with index —«, « € (1, 2), the authors proposed a model in the form
(3.2) with

XE(r) = (r4 A w).

Then Xoo = 7 and E[7] < oco. See Sect. 3.6-3 below.
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4. Maulik et al. [15]: The intensity A is constant. The model is of the form (3.2)
with
X5(r) = (ry A ) Ree.

The authors imposed a kind of asymptotic independence with a bivariate regu-
larly varying nature on the tails of the pair (t, R): T and R have both regularly
varying distribution tail with indexes —a®, —aR, 1 < a?, a® < 2. There exists
two regularly varying function r*(c), r®(c) with indexes 1/a%,1/a® and a
probability measure G on R4 with o*-th finite moment such that the following
vague convergence holds: if «® < ¥, then

dx
cP ((rttﬁ R) € ) — T X G(.) on (0,00] x [0, 00],

and

8

giir%) licrging [(% R) 1(,<,r(c)€):| =0 forsomed > 0.
If o > af the same convergence hold when exchanging r by R Mutatis
Mutandis. It is shown in this paper that these assumptions imply: Xoo = T R
has a regularly varying distribution tail with index —a, @ = a® A a® € (1,2)
and because t has a regularly varying distribution tail with index —«, o > 1 we
have E[t] < co. See Sect. 3.6-3 below.

5. Maulik and Resnick [16]: The intensity A is constant. The model has the form
(3.2) with X¥ () = Y¥(t) AX*(00) and (Y}, Xx (00))x independent form N . The
authors assumed a kind of asymptotic independence type between the processes
Y* and the r.v. X¥(oco) with regularly varying nature on the tails: denoting
Y., = Y[, the authors assumed the existence of a regularly varying function
o(c) with index H > 1 and a process y in D with stationary increments such
that E[(y1)™®] < oo for some a € (1,2) and for each ¢ > 0, the following
convergence of finite measures is true

1 ( Xeo Y.

. 1
P(Xo > o(c)) o(c) -6 o(c) € ) — e_“P(X €

and foreach y > 0

lim li ! p(Xe o T 0
im lim's €, — =0.
20 el P(Xoo > 0(0) \o() — ¢ 7

It is shown in this paper that these assumptions imply: y is self-similar, X
has regularly varying distribution tail with index —« and t has regularly varying
distribution tail with index —f, 8 = Ha > 1 which implies E[t] < oo. See
Sect. 3.6-3 below.
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6. Maulik and Resnick [17]: The model partly extends [16] by A, — oo by letting
A = A, — oo but Y is H-self-similar. The authors studied two rates of growth:
a slow connection growth condition (lim,—, ¢ A, P(t > ¢) = 0 giving a stable
limit process) and a fast connection growth condition (lim.—, ¢ A. P(7>¢)=00)
giving a self-similar Gaussian limit process). We compare only with the slow
connection setting. The authors assumed (3.10) with & € (1,2), E[(Y,')™*] < oo,
E[(Y,')**37*] < oo forsome § > O and B = Ha > 1 satisfies 1 +% > ey,
It is shown in this paper that these assumptions imply: 7 has a regularly varying
distribution tail with index . See Sect. 3.6—4 below.

7. Kaj [11]: The intensity A = A, — oo. The model is expressed with the processes
B in (3.2) with

Xk =ri A

and the cumulative process A is expressed as the sum A = B + €' where ¢!
is build in order to have a stationary version of the process A. Namely, ¢/ =
224;1 t ATk, where M, is a Poisson r.v with intensity parameter v = E|[t]
independent from (tx )x>1, the sequence (Ty)x> is i.i.d., independent from M,
and (tx )k >1 and 7| has the equilibrium distribution P(T} < u) = %fou P(r>z)dz.
Trivial calculations show that the process €' introduced by the author has the
same law as the process €' defined in (3.6) by

0
th = Z t—T) ANt — (—Tx) A 1.

k=—00

The author assumed that the right tail of X, = t is regularly varying with
index —a, @ € (1,2), and connection rate holds: there exists a function a(c)
such that a(c) A, P(t > a(c)) — K € [0,00]. The slow (resp. intermediate,
resp. fast) connection rate is for K = 0 (resp. > 0, resp = o0), In the
intermediate case, when, replacing the functions r(c A, ) and d(c A, ) in (3.20)
by a(c), the author show that (3.21) holds but the limit is a non-Gaussian and
non-stable stochastic process with stationary increments Y . The limit process is a
H -fractional Brownian motion (resp. stable Lévy motion) in the fast (resp.slow)
connection rates and can be recovered from the new intermediate regime limit
process by applying two different (extreme) rescaling options: taking ¥Y¢ =
c 1 Y(ct) (resp. Y = c¢~V/*Y(ct)), then Y¢ converges functionally to the H -
fractional Brownian motion when ¢ — 0 (resp. finite-dimensionally to a totally
skewed to the right stable motion when ¢ — 00).

3.6 Comments on Our Assumptions

The regular variation condition (3.10) is familiar in probability theory and will be the
main argument for approximating the Lévy measure of the processes Z = A, B, C.
It is explicitly assumed in this section. For more details on regular variation theory
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we refer to [2] or to appendix 3.7. Actually, the conditions leading to assumptions
(3.11), (3.12) and (3.13) are simple and numerous. Some of them are presented
here:

1. Assumptions (3.11) or (3.12) simply hold if we take any function ¢ +— f(¢)
which is strictly increasing, less than 1 for all t, has limit 1 and

X; = f(t)Xo0o, With Xoo satisfying (3.10).

Furthermore, since o € (1,2), we have E[Xo] < oo and assumption (3.13)

works if
A

r(c

™ /0 [1 — f(u)]du = 0.

2. In the finite intensity case (A, = c¢st = A or Ase € (0, 00)), assumptions
(3.11) and (3.12) are also simply implied by E[r] < oco. Recall we have chosen
an increasing version of the regularly varying function r(u), then applying the
monotone convergence theorem (decreasing version) we have

lim
c—>00

In the infinite intensity case (Ao = 00), and in order to have (3.12) it suffices
that  is a bounded r.v or even if there exists B € (1, ¢y),

o
cq = +ool<r) + aTll(o»l),

such that E[z#] < oo and A, /c#~! — 0. Indeed, the Holder inequality and (3.42)
in appendix 3.7 yield

_ B-1)/8
Xoo 18 Xoo B/(B—1)
E 1 E p cE 1
* [T(r(cmA )}5 ] [(r(cm) "

1o E[t#]/8 Ao (eAe) =P/ =E[cF]VE (A, feP~1) /P 0.

3. Assume the length 7 has also a regularly varying distribution tail with index —f
such that é + % > 1. Assume also the slow connection rate condition

lim cA.P(z > ¢) =0, (3.22)
c—>00

then, assumption (3.11) is satisfied. Indeed, using the Holder inequality with p >
B,q > a, we have

oo ()| = (e (5 n]) (rs] (225 ) an ] )
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Now, using (3.42,3.43, appendix 3.7), we have:

(B [(2) A 1)’ (m [((X;)) A 1)})‘?
= (o) (%)

4. Assume we have a fixed intensity A (the case A = A, — A € (0, 00) being
treated similarly). Recall that 1 < o < 2 implies E[X ] < 0o. Then necessarily

1 1
lim - / E[Xoo — Xu]du =0
0

t—>o0 f
which this is weaker than assumption (3.13). Condition (3.13) is easily checked
if the length t satisfies E[t?] < oo for some y > 1 (of course the right tail of
the distribution of t can also be regularly varying with index —f, 8 > y). In this
case, necessarily y — y” P(t > y) is a bounded function (by some bound K).
Indeed, choose

y <q < ya/(a—1) (whichimplies 1 — 1/a < y/q < 1)

and take p = ¢/(q — 1). By the Holder inequality, we have

0 < /t E[Xoo — X,|du = E[/W(Xoo — X)du] < E[(t A ) Xoo]
0 0
< E[X2]7 E[(x A1)7]1.
Now, write

e yYayy P(r > 1 y'/9) d
yy/q y

1
El(z A1)?] = tq/IP’(r > yl/4ydy = t‘FV/
0 0

1
< K47 Ldu: K/tq_l’,
o Y/

and finally because r, = /% (1), we get for some constant K” > 0

t1=1/e=y/q

1 t
0<— / EXeo — X, Jdu < K ——— —
re Jo (1)
Assumption (3.13) is also obviously implied by E[t X] < c0.
5. Example of a non trivial candidate for the process X describing the evolution in
time of the job completion of the transmissions
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Take any positive r.v. Xoo satisfying (3.10) and an independent increasing H -
self-similar process Y such that E[Yl_p ] < oo when p is in the neighborhood of
«. Then form the process

Xi =Y N Xoo.

We know according to (3.44, appendix 3.7) that P(t > u) e E[Y, ]
P(Xo > u'l). Then, going through the preceding situations for example, the
adequate choice of H leads to our assumptions (3.11), (3.12) or (3.13). In the
finite intensity case (A, = cst or Aeo € (0,00)), a candidate for ¥ could be a
strict H—stable subordinator S/ with0 < H < aAl. See appendix 3.7 below for
a precise definition of stable subordinators, and for their distributional properties,
the reader is referred to the to the book of Zolotarev [24] or to Jedidi [9, 10]. For
self-similar processes, we suggest the book of Embrecht and Maejima [5].

3.7 Proofs of the Results

We start by proving lemma 2 justifying the existence of the load processes.
Proof of lemma 2. Recall the integer Poisson measure M defined in (3.4). For any
positive measurable function f defined in R4 x R x D, the process (Z;),>( defined
by
Zi= [ Sy M@udy) = Y £ x5
(.y) ERXD et

admits a Lévy-Khintchine representation: for all 6 € R, Re(f) > 0 we have

logE[e™"%] = A / E[e=? /4% _ 1] du. (3.23)
R

Due to the Poisson representation of the load processes, we deduce that if Z =
A, B,C, e e thenforallt > 0and # € R, Re(§) > 0 we have a Lévy-Khintchine
representation

logE[e™"%] = A / (e7?* —1)vZ(dx), (3.24)
(0,00)

where
S P(Xyu— Xy €dx)du if Z=A

t
/ P(X, € dx) du ifZ=8
0
V7 (dx) = ) 1P(Xoo € ) ifZ=cC
o0
/ P(X,1,— X, €dx)duif Z = €'
0

t

/ P(Xoo — X, €dx)du if Z = €2
0




168 W. Jedidi et al.

We recall the following useful and easily checkable inequality
le ™ —1] < 2Al0]x) < 2VI]8])(xAl), Vx>0, 0eC, Re() >0. (3.25)

Since x2 A 1 < x A 1, then proving that v (dx) integrates x A 1 will insure that it
is a Lévy measure and the r.v. Z, is finite and infinitely divisible. For more account
on infinite divisibility and Lévy processes, the reader is referred to appendix 3.7 or
to the book of Sato [21].

(i) and (ii):If Z = B, C, €%, the result is obvious since in these cases
/ (x A D7 (dx) < tE[Xeo A 1].
(0,00)

‘We make a special emphasis on the r.v. C;. The process (C; ), >0 has stationary
and independent increments. This is easily seen from its Poisson integral
representation: V0 < s < ¢, we have

C—C = / ¥(00) M(du.dy)
(s,t]xD

- / Y Ze(Tk,Xk(oo))(du,dy)
(s.t]XR

k>0

and because the sequence (T}, X (c0))x >0 forms a marked Poisson process.
(iii): Since v(dx) = vE(dx) + vf] (dx), it suffices to check when vf] (dx) is a
Lévy measure, but this is easy since

/ x ALy (dx) = /OOE[(XM—XM) A1]du
( 0

0,00)

o0
=/ Elliesu (Xitu—X)Al]du < E[t (Xoo A 1)]<00.
0

(iv): The assumption E[X] < oo implies f(oyoo)xvtz(dx) < oo for Z =
B, C,€? and allows to differentiate the Lévy-Khintchine formula (3.24).
Then,

E[B,] = /0 tIE[X,,]du, E[C/]=tE[Xe] and E[e}]= /0 t]E[XOO—XM]du.

Now, we tackle the processes A and el Noticing that X2Al<xAl<x, we
will show the stronger result: f(o. 00 X vA(dx) < oo. This result will provide in the

same time two results: (1) finiteness and then infinite divisibility of A4;, etl and (2)
the equality E[A;] = At E[Xso]. Write
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—t

o0 t o0
/ xvi(dx) = / E[X, 1y — X,] du = / E[X,]du + / E[X, 1y — X,] du.
(0,00) 0 0

Denote the Stieljes function E[X,] by f(u). We have f(c0) := lim,—c f(u) =
E[Xs] < o0. It is then obvious that

lim l /t(f(oo)—f(u))duzo.
0

t—oo

Applying the Tonelli-Fubini result, we get

/Ooo(f(t +u) — f(u)du = /Ooo /[Wﬂ] df(r)du = /(O,oo)(r ADAF(r)

— 1170~ 0]+ [ raso)
(0.]
Then, integrating by parts the last integral, we get
| esw—raya= [ oo raya 626

and the last quantity is finite. We conclude by saying that the infinitely divisible r.v.
A, has finite expectation if its Lévy measure v, (x) integrates x in the neighborhood
on oo (see theorem 25.3 [21]). Then, V¢ > 0,

E[4,]=A X (dx) = A{ /0 t f(u)du+ /0 ( ft+u)— f(w)du} = ME[Xo].

(0,00)

Notice that this is an expected result since A; has stationary increments, and then,
its expectation is linear in 7. We have also proved that

t o0
El[e?] = A/ E[Xeo — X, ]du = )L/ E[X 4. — X, du =E[e]].  (3.27)
0 0

|
Proof of proposition 3. Proving the convergence functional in law (3.18) is an easy
problem since the process C and then C¢ are Lévy processes. Due to corollary 3.6
p.415 [8], it is enough to show that
. Ce—d(cA,
the rv. C{ = # converges in distribution to S|
r(cAe)
a strict totally skewed to the right «-stable variable. Thanks to (3.15), for all 6 > 0,
the Laplace exponent of C, is defined by
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v (9) = logE[e_ecf] = / (e =1+ 0 h(x)) v°(dx).

R4
where
0 fO<a<l1
h(x) = ¢ sinx ifa =1
X ifl <a<?2.
and

vi(dx) =cA. P (r()c(o/\oc) € dx).

Now notice two things, the measure v°(dx ) integrates x, then integration by parts

gives

we(h) = Q/R (B (x)—e %) v°((x, 00)) dx.
+

Due to assumption (3.10) and then using property (3.40, appendix 3.7), we know
that

1 L(r(cA.)) L(r(cAc)x) 1

VE((x,00)) = Ae ¢ P(Xoo > r(cAe) x) = o ICr)* Lo@h) — p

and

L(r(c A))/ l(cAo)® — 1.

Using the contribution of the function (4’ (x) — e~%)/x%, it remains to show that
L(r(cA.)x)/L(r(cA.)) is appropriately dominated. This is due to Potter’s bounds
(3.41, appendix 3.7). Depending on the values of & € (0, 2), and using the flexible
dominations (3.41), we conclude that
lim ¥°(0) =6 (I (x)—e"¥) iadx,
c—>00 R+ X

and notice that the latter is the Laplace exponent of a strict c-stable random variable

totally skewed to the right (see appendix 3.7). O
Proof of lemma 4. (1) Assume (3.14). For t > 0, use the expression given by
lemma 2:

Ele]  Elg€]
r(che)  r(che)

A’C ct
E[Xs — X,]d 0.
r@b)A [ Jdu =

The claimed result is a simple application of Markov inequality and the end of
Sect. 3.2.
(2) We claim that (3.10), with @ € (1, 2) and (3.13) together imply (3.14), i.e.
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ct
lim / E[Xoo — X,]Jdu=0, Vt>D0. (3.28)
c—>00 r(c Ac)
Indeed, (3.28) is immediate for ¢ < 1. For ¢t > 1, we have %; < 1( is

increasing). Now, choose p < 1 — é and use Potter’s bounds (3.41, appendix
3.7) in order to write

Ac < c r(Ctkct)
96 - EXoo — Xu d = U,
CZ Tengy Jy Fee T Xddue=Oer S

1

Ae \1opel
s K(pu™a (35)70

ct

IA

< 0 K(;O)fp—|ré — 0, asc— oo,

then, conclude by 1).

(3) Observe that €€ is an increasing process while €2¢ is not. In order to control
the quantities P(sup, .7 €, > 1) fori = 1,2and T > 0, observe also that
» . €l rcA.T €l

supe;“ = sup = sup —L5_ = (A1) cls

— su . (329
(=T e P ~ e e

Since li r(cA.T)
ince nmsup ————
sy Feho)

lL

<00, YT > 0, it is enough to show that

P(supe;© > n)—0.

s<l1

(3)(i): The control of €' is easier than the one of €2 because it is increasing
and then
supes' = 51 = /r(cx\ ).

s<lI

It is enough to reproduce the argument of (1).

(3)(ii) and (2)(iii): Recall i is the length of the k-th transmission: 7z =
inf{t : X*(t) = X*(oc0)}. Due to the Lévy-Khintchine representation
(3.24), the following stochastic inequality holds:

1

€. d & ‘ o
r(c /\C) - r(c /\C) ];(X (c+T)—X (Tk)) I(Tkitk)

<8 = X*(00) Iz <x)- 30
<4, r(ck Zl (00) 7y <a) (3.30)
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For the process €2¢, we use the more tractable Poisson integral
representation. Let

y“(o0) =influ : y(u) = y(c0)}

the first time an increasing function y on DD reaches its maximum. We

have
1
= —y(es —u)) M(du.d
€ r(cAc) /(("SJ’&(OO))JF,”]XD (J’(OO) y(cs u)) (du,dy)
= : y(00) M(du, dy)

V(C A’L) ((csfy‘*(oo))Jr,cs]X]D)

=82 :=C - D¢ (3.31)

where the process C¢ is same as the one defined in (3.16),

c __ 1 _
¢ =t oY OO M@ ) sdc o))
and
pe— 1 {/ y(00) M(du,dy) — sd(cA.))}.
: I‘(C /\c) [0, (cs—y<(00))+ [XD

To resume, we have: for all n > 0,

P! > n) ifi =1

3.32
P(sup,, 82, > n) if i = 2. (3:32)

IP’(supef.’C > 7)) < %

s<l1

We will give the proof of (2)(i7) and (2)(iii) through the following 5 steps:

Step (1) As ¢ — oo, prove the convergence of 8, this will complete the assertion
(3)(ii) for €"¢ and the finite-dimensional convergence of the processes
(Sfy)se[0,1] to the null process.

Step (2) Prove tightness of the family {(82,)sefo.1], ¢ > 0}.

Step (3) Immediately deduce from steps (1) and (2) the convergence functionally
in law of (Sfy)se[0,1] to the null process.

Step (4) Apply proposition 2.4 p. 339 [8] that shows the continuity of the functions

Y, :D— R4

7 —> sup |z
s<a

at each point z such that z is continuous in a.
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Step (5) Knowing step (3), deduce from step (4) that P(sup,, 82| > 7n) — 0,
and then from (3.32) and (3.29) that IP( sup, <7 le7| > r;) — 0.

It is now clear why we only need to check steps (1) and (2).

Step (1) Convergence of § Cl to 0 under the assumption (3.12) and finite-dimensional
convergence to 0 of (535) sefo,1] under the assumptions (3.11).

Actually, as noticed at the the end of Sect. 3.2, we only need to show that the r.v.
83 — 0 in distribution as ¢ — oo. For this purpose, we use the Lévy-Khintchine
formula (3.23) and get: for all 8 € R, Re(d) > 0,

_ log E[e’%g] _

J / E [(1 — €70X°°/r(ch))1(05u51)] du =E [1’(] — efexoo/r(é'kc))] .
¢ R

(3.33)

oo
The laplace exponent of §2 = Z X*(00) L((c—u) 4 <Ti <) 18 calculated similarly:
k=1

_ log Ele~%%]

— / E [(1 _e—@Xoo/r(C/\p))1((C_T)+SMSC)] du
Ac R

= E[(c A1)(1 — e Xeo/r(ch)y], (3.34)

We will also use the following: for any positive r.v. Y and any n > 0, there exists a
number K, > 0 such that:

P(Y >n) < K,E[l —e™"]. (3.35)

The latter is true since

0 n
nE[l —e Y/ = / e MP(Y > x)dx > r)/ e /MP(Y > n)dx
0 0
= (1= e HPY > 7).

Then, since forall y > 0, 1 —e™ < 1 A y, we deduce that the Laplace exponent
of §! satisfies

0 < —logEle™] = A E[(t lizi) + T A climy) (1 — e~ ¥oo/r2e))]

Xoo
< p¢ = AE [ (‘L’l(,’=1) +TAC 1(,'=2)) (1 A (e AC)) :| s (3.36)

Finally, (3.35) and (3.36) imply

P8 > n) < KE[l —e %] < K,(1—e ") < K,p. (3.37)
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and the claim p, —> 0, being the conditions (3.11) fori = 1 and (3.12) fori = 2,
is the key of the trick.

Step (2) Tightness of the family {(52,)sejo.1], ¢ > 0} under the assumptions (3.10)
and (3.11).

Recall the representation (3.31) where the processes D¢are introduced. A simpli-
fied version of lemma 3.32 p.352 [8] insures tightness of the family {(§2), ¢ > 0}
if the following holds: both families {C¢, ¢ > 0} and {D¢, ¢ > 0} are tight and for
allp >0

lim P(sup ACS > n) = 0.

c—>00 s<l1
In proposition 3, we have already shown tightness of the family {C¢, ¢ > 0}
since C¢ converges functionally in law. That was due to its Lévy character (i.e.
independent and stationary increments). Moreover, because the arrival process N
that jumps with size equal to 1, C¢ satisfies:

1
ACE =C8—CE = XNt (00) Ian, =1)-
s s s— r(c Ac) (OO) (AN =1)

Then, using the independence between (X k )kez and N, we have for all n > 0:

P(sup ACS >n) =P@Es <1 : AC, > 1)

s<l1

=P@Ate[0,c] : AN, =1, XY (c0) > nr(ci.))

=Y P@Are0.c] : i =1, X¥(00) > nr(cAc))
k=1

=P(Xoo > nr(cA)) D PAL€[0.c] : Tx =1)
k=1
= P(Xoo > nr(cAc)) P(sup AN, = 1)

t<c

< P(Xoo > nr(ci;)) — 0.

The process D¢ is not Lévy but has independent increments. It only remains to
show its tightness, and actually we will prove a stronger result: the process D¢
also converge functionally in law to the same stable process S as C¢. This is an
application of corollary 4.43 p. 440 [8] that says that convergence functionally in
law of processes with independent increments is equivalent to convergence of their
characteristic functions locally uniformly in time : for each # € R and each finite
interval [T, T'] C [0, 1]

E[e"?5] — E[¢"%], uniformlyin s € [T, T"]. (3.38)
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Lévy-Khintchine representation (3.23) and then (3.17) imply

d(chc)
r(cAc)

log E[e™?5] = A / E[(e™ ¥/ %) — 1) lyc(es—r), Jdu — ius
R

= AcE[(cs — 1)y (e Xoo/7€r) )] —iucA.sE|h
r(cAc)
=1ogE[e"S ] + A E[(x A cs) (1 — et ¥oo/r(c Ry,

Denoting z.; = A. E[(z A c¢s) (¢!*Xoo/7(¢A) _ 1) ] and using (3.25) we have

|zes] < 2V |ul) A E [(z AcC) (r()c(j) A 1)} .

Using assumption (3.11) or (3.12), we see that z. ; go 0 uniformly in 5. Now, write
E[eiuDg] _ E[eiuss] — (E[eiucs"] _ E[eiuss] )eZ” + (eZ“ _ 1) E[eiuss]

’E[eiuDS‘] _ E[eiu&] ’ < ’E[eiuC;] _ E[eiuss] elzm| + |Zc,s| e\Zm|.

Since C* has independent increments and using again corollary 4.43 p. 440 8], we
get that the quantity ‘ E[e“P5] — E[e™Ss] | goes to 0 with the required uniformity.
We conclude that (3.38) is true. O

Proof of theorem 5. We have all the ingredients for this proof. Recall A¢ =
C¢ + €' —e>¢ and B¢ = C¢ — €>°. The process C¢ converges functionally in
law to a stable process and the processes €'©, €2 satisfy lemma 4. Assertion a) in
theorem 5 has already been proved in proposition 3. Assertions b) and ¢) are a direct
application of lemma 3.31 p.352 [8] (which is kind of Slutzy theorem). The weaker
assertion d) is proved using Slutzky theorem. O
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Appendix : Regular Variation

In this appendix, the r.v U has a regularly varying distribution tail with index
—o, o > 0 and could play the rule of the r.v. X and also of the r.v 7: there exists
a deterministic function r such that for each x > 0,

1
lim uP(U > r(u) x) = —. (3.39)
u—00 XY
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Condition (3.39) is equivalent to one of the the definitions: (1) existence of a
slowly varying function L (i.e. for all x > 0,lim,—ooL(ux)/L(u) = 1) such
that P(U>x) = L(x)x~%; (2) dilation of the right tail of U gives lim, .o P(U >
ux)/P(U > u) = x7%. It also implies the existence of moments of any order
0 <€ <afortherv. U: E[U€] < co. When « € (0, 2), it is said in the literature
that U has a heavy tail.

In regular variation theory, the function r () is the asymptotic inverse of the function
x%/L(x) and necessarily r(u) is regularly varying with index 1/«, i.e

L(r(u))

w00 ()

= land r(u) = u"®(u) (3.40)

for some slowly varying function /. Furthermore, it is known that there exits an
increasing function r'(u) which is equivalent to r(u) when u — oo. This is the
reason why we can take an increasing version for the function r (). A useful result
for dominating slowly varying functions is known as Potter’s bounds and is given
by theorem 1.5.6 [2]: If L is a slowly varying function bounded away from 0 and co
on each interval [4, oo), then for all p, p’ > 0, there exits K(p) < 1 < K(p’) such
that

K(p)(x/y)" < L(x)/L(y) < K(p)(x/9) 7", (0 < x < ). (3.41)

Proposition 3.1. Assume (3.39) and let u — oo, then

a 1
E[ (L) A1)t frangsa (3.42)
r(u) q—a u

4 P(U > u) forall ¢ >«

q qg—o
E [ (2) A 1} T (3.43)
u E[UY]

forall g < «.

u4

Proof. Equivalence (3.42) is a direct application of (3.43) and (3.39). For (3.43),
q > «a just write

U\ 1 U o0 - d
()] Lo ) [ oo

. U,y o u_dv

For ¢ < «, write IE[ (—) A 1] =gq v 11y P(U > —) —. Then apply
u 0 v

ARANDELOVIC’s theorem 4.1.6 [2]. O

Proposition 3.2. Assume (3.39). Let U a r.v. with regularly varying distribution tail
of order —a < 0 and Y be an increasing H—self-similar process independent from
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U andt = inf{t : Y, > U}. Assume that Y\ admits a density f and E[Y, "] < 0o
if p is in the neighborhood of o. Then t regularly varying distribution tail of order
—aH and, more precisely, as u — oo,

P(r > u) ¥ E[Y7 P(U > u™). (3.44)

Proof. The result is obvious since

P(t>u)=PY, <U)=PY,u" <U) = / P(Y; u” < v)PU € dv)
(0,00)
1 [ v ®r oy v dv
Then apply again ARANDELOVIC’s theorem 4.1.6. O

Appendix : Lévy Processes and Stable Lévy Motions

Let (£2,F,(Fi);=0.P) be a stochastic basis. We say that a process X on this
basis is a Lévy process, if it has independent and stationary increments. It is
entirely characterized by its Lévy-Khintchine exponent: for all u € R, ¢(u) =
logE[e'“X1 ] =iud — # + [[e"* —1—iug(x)]v(dx) whered € R,b >0
and the Lévy measure v is a positive measure giving no mass to 0, integrating
x2 A 1. The truncation function g could be any real bounded function such that
lim, ¢ (g(x) — x)/x> = 0. A process S is called stable process with index
a € (0,2], if it is a Lévy process and (i) « = 2 and v = 0 (drifted and scaled
Brownian motion) or (ii)b = 0and 0 < o < 2and v(dx) = (c4+1x > 0)+c_1x <
0))x~*"'dx), cy,c— > 0. A standard totally skewed to the right stable process
(0 <o <2)hasd = ¢c- = 0,c4+ = 1 with the truncation function equal to
g(x) = sin x. A standard stable subordinator (0 < @ < 1)hasd = c_- =0,c4 =1
with the truncation function equal g(x) = 0.
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Chapter 4
The Lower Classes of the Sub-Fractional
Brownian Motion

Charles El-Nouty

Abstract Let {By(t),t € R} be a fractional Brownian motion with Hurst index
0 < H < 1. Consider the sub-fractional Brownian motion X g defined as follows :

Bu()+ Bu(=0)
iz

We characterize the lower classes of the sup-norm statistic of Xz by an integral test.

Xu(t) =

4.1 Introduction and Main Results

Let {By(t),t € R} be a fractional Brownian motion (fBm) with Hurst index
0 < H < 1,i.e. a centered Gaussian process with stationary increments satisfying
By (0) = 0, with probability 1, and E(By (1))> = |t [*",t € R.

Consider the sub-fractional Brownian motion (sfBm)

By (s) + B (—s) >0

Xu(s) = NG .S >

and define its sup-norm statistic

Y(t) = sup | Xg(s) |t = 0.

0<s<t

We have for any ¢ > s
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cov(XH (t)XH(s)) = s2H 4 2 _ %((s 04— s)ZH)

and therefore
VarX g (1) = (2 - 2”“) 2

The sfBm was introduced by [1]. This process is an interesting one on its own.
Indeed, when H > 1/2, it arises from occupation time fluctuations of branching
particle systems. Roughly speaking, the sfBm has some of the main properties of
the fBm, but it has non-stationary increments. Note also that, when H = 1/2, Xy
is the famous Brownian motion. We refer to [1,2,4, 11, 12] for further information.

Let us recall some basic properties of the stBm which we will also use.

Proposition 4.1. The sfBm is a self-similar process with index H, i.e. Xy (at) and
a® Xy (t) have the same distribution for all a > 0.

Proposition 4.2. We have for anyt > s

E(Xy(0) - )(H(s))2 = 2271 (M 2H) (14 52 4 (= 9).
Moreover,
Ly (t =) <EXpt)— Xu(s)* < Ly (t — )", 4.1
where Ly = min (1,2 —2*#~1) and L, = max (1,2 —22#71).
Proposition 4.3. The sfBm can be represented as a random integral, i.e.:

Xu@t) = /R G(t, s)dW(s), 4.2)

where {W(s),s € R} is a Wiener process,

G(t,s) = kypy (max(t —5,0) 712 + max(~t —s5,0)~"/2 — 2 max(—s, 0) /%)

1/2
Koy = (2(/_0 ((1 _S)H“Z—(—s)”—'/z)ds + ﬁ)) .

Proposition 4.1 implies that, for all € > 0,

and

PY(t) <et)y=P(Y(1) <€) :=¢(e).

The behavior of the small ball function ¢ is given in the following lemma.
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Lemma 4.1. There exists a constant Ky,0 < Ky < 1, depending on H only, such
that for0 < e < 1

1 Ko
eXp<_—Koel/H) =¢(e) = exp(——el/H)-

Let {Z(¢),t > 0} be a stochastic process defined on the basic probability space
(82, o7, IP). We recall now two definitions of the Lévy classes, stated in [9].

Definition 4.1. The function f(¢),¢ > 0, belongs to the lower-lower class of the
process Z, (f € LLC(Z)), if for almost all w € £2 there exists fyp = fo(w) such that
Z(t) > f(t) forevery t > to.

Definition 4.2. The function f(¢),¢ > 0, belongs to the lower-upper class of the
process Z, (f € LUC(Z)), if for almost all w € £2 there exists a sequence 0 <
Hh =tH(w) <th =h(w)<...witht, - 400, as n — +00, such that Z(z,) <

f(ty).n € N*.

The study of the lower classes of the fBm was initiated by [10] and extended in
[5,6]. The aim of this paper is to characterize the lower classes of Y(.). Our main
result is given in the following theorem.

Theorem 4.1. Let f(t) be a function of t > 0 such that f(t) > 1. Then we have,
with probability 1,
feLLC(Y)

if and only if

& is boundedand/+oof(t)UHd)(%)dl < +o00.
0

tH

Let us make some comments on the above theorem. Theorem 4.1 is similar to
theorem 1.2 of ([10], p. 193) when the author studied the lower classes of the
sup-norm statistic of the fBm and to theorem 1.1 of [7] when it was studied the
lower classes of the sup-norm statistic of the Riemann-Liouville process. This is not
really surprising. Indeed these three processes are quite close: they have an integral
representation of the following type (up to a constant)

t 0
/ (t —$)*dW(s) + / h(t,s)dW(s),
0 —00

where « is suitably chosen and h(z,.) € L2(R_). However, the proof of the
necessity part of theorem 4.1 requires a precise expression of the function #. When
h = 0 (i.e. the Riemann-Liouville process), just few changes in the proofs of [5, 6]
were necessary. But, when the function / is more complex (the sfBM case), we have
to establish some technical results. This is the flavor of this paper. Finally the sfBm
is a second example that the non-stationarity property of the increments has no role
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in the study in the lower classes, as soon as the methodology introduced by [10]
works. The first example was given in [7].
Although theorem 4.1 depends on an unknown function ¢, it is sharp. Indeed, set

H

f(t)y=2 £ >3,1>0.

(loglog )™

Combining lemma 4.1 with a careful computation, we get that, if A < K({" then
f €LLC(Y),elseif A > K;¥ then f € LUC(Y).

In Sect.4.2, we prove lemma 4.1 and state some basic results on ¢. The
main steps of the sufficiency are given in Sect.4.3. The proof of the necessity is
postponed to Sects.4.4 and 4.5. Section 4.4 consists in constructing some well-
chosen sequences and a suitable set whereas we end the proof of the necessity in
Sect. 4.5 by establishing some key small ball estimates. The proofs which are similar
to those in [5—7] will consequently be omitted.

In the sequel, there is no loss of generality to assume H # 1/2.

For notational convenience, we define a, = % and b, = ¢p(a;) = ¢ (%)

4.2 Proof of Lemma 4.1 and Preliminary Results

Before stating some preliminary results, we have to prove lemma 4.1.

Proof of Lemma 4.1. By using (4.1), we have for any 4 > 0
2
VaI(XH(t +h)— Xy (z)) - E(XH (t+h)—Xn (z)) <L, kM <212 (43)
Moreover, we deduce from (4.2) that
Var (Xg(t +h) | Xu(s), 0 <s <1)
t+h 1
> Var(k;;, / (t+h—s)=12 dW(s)) =k Vi . (4.4)
t

Since (4.3) and (4.4) hold, we can apply theorem 2.1 of [8]. The proof of
lemma 4.1 is therefore complete. O

Set ¥ = —log¢. Thus, ¢ is positive and nonincreasing. A straight consequence of
lemma 4.1 is given in the following lemma.

Lemma 4.2. We have for0 < e < 1

1
m <Y(e) < CUH

where K1 > 1/ K.
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Lemma 4.3.  is convex.

Lemma 4.3 (see [3]) implies the existence of the right derivative 1{/ of . Thus,
¥’ <0and |y | is nonincreasing.

Lemma 4.4. There exists a constant K, > sup (21+1/HK1, Z(ZKIZ)HKl), such
that we have for 0 < e < 1/K;

’ 2
%, v = V@1 =

Lemma 4.5. We have fore; > ¢/2
| €1 —¢€ | P (€1) | €1 —¢€ |
exp (—K3 pEy < 5 <exp K3W , 4.5)

where K3 > K, 21T1/H

Lemma 4.6. There exists B = (H/K>)" > 0, such that for ¢ < B, the function
e V" ¢ (€) increases.

4.3 Sufficiency

—1/H dt
t bt T

Suppose here that a; is bounded and f0+°° a -

that f(¢) < Y(¢) for ¢ large enough.

< 4o00. We want to prove

Lemmad4.7. lim a, =0.
t—>+00

In order to prove the sufficiency, we need to construct some special sequences
{t,,n > 1},{u,,n > 1} and {v,, n > 1}. This will be done by recursion as follows,
where L is a parameter depending on H only, such that L —2H > 0. We start with
t; = 1. Having constructed ¢,, we set

Up+1 = Z‘n(l +at1,,/H),

Va4l = inf{u > 1y, f(l/t) z f(tn)(l + Latln/H)}’

and
Lyt = Min(Uy 41, Vyt1).

Lemma4.8. lim ¢, = +oc.
n—+o00

The key part of the proof of the sufficiency is stated in the following lemma.
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Lemmad4.9. If Y(t,) > f(t.)(1 + La/™), forn > no, then f(t) < Y(1) for

[ > Iy,

We have also P(Y(tn) < ft,) 1+ L atln/H)) = ¢(a,” (1+L a,ln/H)).
Hence, the proof of the sufficiency will be achieved if we can show that this later
series converges. By applying (4.5) with € = a,, and €; = €(1 + L €'/#), it suffices

to prove that
o0
Z by, < +o00.
n=1

Lemma 4.10. (i) Ifn is large enough and t,+| = u,+1, then we have

In41 _ dt
btn S K/ a[ I/Hbt75
In

where K = 2"/ exp(HK3).
(ii) If n is large enough and t,+\ =Vv,+1, then we can choose the parameter L
depending on H only such that

1

L >2H and b, < /\bt"“’

where A = exp((L - 2H)/21+1/”K2) > 1.

To end the proof of the sufficiency, we consider the set J = {n; e N*, k> 1,
Ing+1 = Un,+1}. We deduce from the first part of lemma 4.10 that

Ig+1 dt Too o dt
Shsk Y [ <k [ a S < v
nge€lJ np€J In 4 0 t

Let nx—; and ny be two consecutive terms of J. If there exists an integer n such
that ng_; < n < ny, then set p = ny —n. Sincen € N* — J, we have t,,41 = v, 41.
The second part of lemma 4.10 implies that

by, <A77 by, .

n

Thus, we obtain by setting np = 0

> bﬁZ( > brn)sAK—fl/Omat”Hb,%<+oo.

nEN*—J k=1 \np—1<n<ng
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4.4 Necessity 1

Suppose here that, with probability 1, f(¢) < Y(¢) for all ¢ large enough. We want

to prove that a, is bounded and f0°° afl/Hb,% < 4o00.

In the sequel, there is no loss of generality to assume that f is a continuous
function of t > 0.

Lemma 4.11. a, is bounded and lim a, = 0.
t—+00

To prove the necessity, we will show that f € LUC(Y) when fooo afl/H b, %= +
oo and lim; s +o0 a@; = 0. The first step consists in constructing a suitable sequence.

Lemma 4.12. When fooo at_l/H b, % = 400 and lim,s 1o a; = 0, we can find
a sequence {t,,n > 1} with the three following properties

to1 = t,(1+a’™),

ag,
For n large enough, m >n = —[:l" <2 R
m n

and

Z b, = +o0.

n=1
To continue the proof of the necessity, we need the following definition.

Definition 4.3. Consider the interval 4, = 2%, 25T1[, k € N.1fa, /" € 4, i €
IN*, then we note u(i) = k.

Set Iy = {i,u(i) = k} which is finite by lemma 4.11 and N; = exp(K, 2K7"),
where Ky was defined in lemma 4.1 and depends on H only.

Lemma 4.13. There exist a constant K4 depending on H only and a set J with the
following properties

Z b, = +o0.

neJ

Givenn € J,m € J,n < m and an integer k such that k > min(u(n), u(m)) and
card(lx N [n,m]) > Ni, we have

tﬂ’l .
— > exp (exp(K4 2mm(u(n),u(m)))) .

n
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4.5 Necessity 2

Consider now the events E, = {Y(t,) < f(t,)}. We have directly P(E,) = b;,,
and therefore Z b, = +o0.

neJ
Givenn € J, J can be rewritten as follows J = J' U (Ukew Jk) U J", where
J ={meJ ity <tw<2t,}, J ={m e J N Ity > 2ty card(ly N [n,m]) <
Niyand J" = J = (7' U (Uenv %)).

Lemma 4.14. ZmEJ/ P(EnnEm) = K/btn and Zme(ukjk) P(EnmEm) =< K> btn’
where K’ and K> are numbers.

The key step of the proof of lemma 4.14 consists in determining a general upper
bound of P(E, N E,;). This is the aim of the following lemma.

Lemma 4.15. Consider 0 < t < u, and 0,v > 0. Then, we have P({Y(t) <
017 N (Y (1) < v})

(4.6)

< exp(Ks) P (Y(t) < 9tH) exp (—%),

where K5 depends on H only.
Proof. Set Fy = {Y(t) <0t} and F, = {Y(u) < v}. We have

P(F]ﬁFz)fﬂD(Flﬁ{ sup | Xg(s) | < v})

t<s<u

Denote by [x] the integer part of a real x. We consider the sequence 7,k €
{0, ..,n}, where zo = t,zx41 = z + 6 and n = [(u — t)/8]. Let G be the event
defined by

szFlﬂ{ sup | Xg(s) | < v}.

<5<z

We have Fi; N F, C Gi. Moreover, we have Gy4+1 C G N{| Z |< 2v}, where

Z = Xy (zk+1) — Xu(zk)-
By (4.2), Z can be rewritten as follows Z = Z; + Z,, where

Zk+1

Zy =kiy / (1 — w1 2dW(w).
Zk

Note also that Z; and Z, are independent.

Since P(l Zi+x|< v) is maximum at x = 0 and Z; and Gy are independent,

we have
P(Gi1) = PGOP(1 Z1 | = 20).
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The integral representation of Z; implies that [E(Z;) = 0 and
41

1
VarZ =k72/ —u) gy = ——— 824
1 2H . (Zk+1 M) u ZHkgH

So,wehave P(| Z, |<2v) =@ (2‘/?#), where @ denotes the distribution

function of the absolute value of a standard Gaussian random variable. Then, we
obtain
2+/2Hkogyv
P(Gy41) < P(G)® (Tw)
n
and therefore P(Fy N F,) < IP(F,)® (@#) i
Choosing § = v!'/# we get K5 = —log & (2 ~2H kZH). (4.6)is proved. O

To prove lemma 4.14, just apply inequality (4.6) by setting u = t,,,,t = t,,,6 =
a,, and v = f(ty).

Lemma 4.16. There exists an integer p such that, if n > sup,_,, (sup I;) , then, for
m e J ,m>n, givene >0, we have P(E, N E,) < (1 +¢€) by, by,

The proof of lemma 4.16 is based on the two following lemmas. The first one
is a general result on Gaussian processes, whereas the second one gives a specific
property on some probabilities of the sfBm.

Lemma 4.17. Let {X(t),0 <t <1} be a separable, centered, real-valued Gaussian
process such that X(0) = 0 with probability 1, and satisfying

1/2
(E(X(t T h)— X(t))z) <y(h) <cy P B> 0.

Then, we have for 6;18 > 1

1
P ( sup | X(s) [= 8) <— exp(—C(q;IS)z),

0<s<I C
where C is a positive constant independent of cy and §.

Lemma 4.18. Let « be a real number suchthat1/2 < a < 1. Setr = min (ﬂ,

3
W) . Then, we have for u > 2t

P(Y(t) < 0" Y(u) < WH)
N 1 1 6 C Jusr
<¢0)p(v) CXP(Z(;) K3(W+m)) +E exp(—ﬁ(;) ) ;
4.7)

where K > 0 depends on H only, K3 was defined in lemma 4.5 and C in lemma
4.17.
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Proof. Set Q = P (Y (1) <0t",Y(u) <vu®).
Setv = Jut. If t = o(u) thent = o(v) and v = o(u). Xy (s) can be split as
follows
Xnu(s) = Ri(s) + Ra(s),

where R (s) = f‘x‘q G(s,x) dW(x).
Note that R;(s) and R,(s) are independent. Then, given § > 0, we have

0 < ¢(0 + 28)(v + 26) (4.8)
+3P( sup | Rals) |> 5z”) n 3P< sup | Ri(s) |> au”). (4.9)
0<s<t 0<s=<u

First, we get by (4.5)

1 1
PO+ 28)p(v +28) < p(0)p(v) exp<25K3(91+1/H + v1+1/H))'

If we choose § = (%) , then we get the first term of the RHS of (4.7).
Next, we want to obtain an upper bound for

P( sup |R2(s)|>81H)=P( sup |R2(s)|>8).

0<s<t 0=<s=<1

‘We have

—v/t
Ry(s + h) — Ry(s) = é (/ ((s +h— x)H—l/z (s — x)H—l/z) dW(x)

—v/t
+/ ((—s Ch—x)H2 (s x)H*I/Z) dW(x) |.
—oo
Let us introduce the following notation. Set

gi(s,x,h):=(s +h—x)H*1/2—(s—x)Hfl/2 (4.10)

and
g(s,x,h) = (—s—h— x)H_'/2 —(—s— x)H_l/z. 4.11)

We can establish

1
| gi(s. ) [SIH =5 || —x 772 (.12)
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and similarily
1 H—-3/2
|g2(s,x,h)|§|H—§|h | —s —h—x | . (4.13)

Hence, since (a + b)? < 2(a® + b?) forany a, b > 0, we get by using (4.12) and
(4.13)

E(Rz(s +h)— Rz(s))2

2 —v/t —v/t
< 2 / | g1(s.x, h) 2 dx+/ | @a(sox ) P dx

(o¢) —0o0

szH | Hz—_%zz h2 <(;)2H—2 N (—s s ;)21-1—2)

2 | H _% |2 hZ (2)2H72 n (K _ 1)2H72
K2, 2-2H ‘ ‘ '

Since we suppose # > 2¢ in lemma 4.18, we get > V2. By choosing 0 < y <

1— ﬁ, we have ? —1> yf. Hence

IA

IA

E(Ras + 1)~ Ra(s)) < k% %(1 +y2) (;)ZH—Z p
2H

e ()"

~1<
~—
T
R
)
=
o
o)
S|
o
\%
—

An application of lemma 4.17 with 8 = 1, ¢y = K (
implies that

0<s<lI

1 C
P( sup | Ra(s) | > 5) =c exp(——H_l 52).

,
Set§ = (L’—l) .Since v2 = ut and r < 1= we have

1
P( sup | Ra(s) |> 8) < Eexp

0<s<l
< é exp (— [(2E£)r ) 4.14)
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Finally, we want to establish a similar result for R, (s).
First, we remark that

P( sup | Ri(s) | >8uH) =P( sup | Ri(s) | >3).

0<s<u 0<s<1
To obtain a suitable upper bound for the above probability, we need to establish
a technical lemma which we shall prove later.

Lemma 4.19. Let 1/2 < o < 1. Then there exists a constant K > 0 such that

v )ZHfZaH

E(Rl(s +h)— Rl(s))z < K? (; 2t (4.15)

H—aH
Combining lemma 4.19 with lemma 4.17 (B=aH, ¢y =K(£) and c;' 8 >
1), we get

1 C
P( sup | R](S) |> 5) < — exp T 2H—2aH 82
0<s<l C K2<2)
Set§ = (L’—l) .Since V2 = ut and r < W, we have
C
P( sup | Ri(s) |> 8) < —exp|— T
0<s<l1 C KZ(L) o ¥
1 C
< —exp|— - (4.16)
el

Combining (4.14) and (4.16) with (4.8), we get the last term of the RHS of (4.7)
and achieve the proof of lemma 4.18. O

Proof of Lemma 4.19. We deduce from (4.2) and the definition of R; that the
representation of Ry(s 4+ &) — R (s), as a random integral, is given by

Ri(s 4+ h) — Ri(s)

1 min(s+h,v/u) Hel)
= // (s +h—x)1"12dw(x)

min(s,v/u)
—/ (s =) V2 aw(x)

—v/u
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max(—s—h,—v/u)
+/ (=s —h—x)T7V2 aw(x)

—v/u

max(—s,—v/u)
—/ (—s —x)T7V2 aw(x)

—v/u

— L(/max(—s—h.—v/u) (gl(s,x,h) + gz(s,x,h)) dW(x)

B kZH —v/u

max(—s,—v/u)
+/ (gl(s, x,h) —(—s — x)H_l/z) dW(x)

max(—s—h,—v/u)

min(s,v/u) min(s+h,v/u)
+f i) awe + (s +h =" dW(x)

max(—s,—v/u) min(s,v/u)

1
=—(V+n+v+n).
kZH

Recall that the functions g; and g, were defined in (4.10) and (4.11). Since
2 1 & 5
E(Ris+h)=Ri(s)) = D EV2,
ksn i=l1

it suffices to prove (4.15) for any EViz, 1<i<4.
Consider EV} first. Since
min(s+h,v/u)
EV} = / (s+h—x)*"dx,

min(s,v/u)

we have to investigate the three following cases.
Case 1.v/u < s < s + h. Obviously EV? = 0.
Case 2. s < v/u < s + h. Standard computations imply

pri = (1= (-2

_ W22 (2H ((v/u) —s) v/u) —s
T oH h M '

Then there exists a constant C; > 0 such that

EVf < C12 (2 _ s) p2H-1 C12 (2 _ s) jy20H j2H—2aH—1
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Recall that 1/2 <« < 1. Since H —aH — § = 1(2H —20H — 1) < 0, we get

2H—2aH 2H—20H
EV42 S C]2 (Z —S) o hZaH S C12 (Z) o hZOtH.
u u
Case 3. s < s + h < v/u. Since we have
B2H B2t 2H—=2aH
EVl}=—=——"——,
2H 2H
there exists a constant C, > 0 such that
2H—2aH 2H—20H
EV42 S C22 (Z —S) o hZaH S CZZ (Z) o hZOtH.
u u

(4.15) is therefore established for IE V42.
Consider EV;> now. We have

min(s,v/u)
EV32 = / g1 (s,)c,h)2 dx,

max(—s,—v/u)

where the function g; was defined in (4.10).

Since H —aH — 1 = 1QH —2a0H — 1) <0, y —» (y —x)H12i5a

decreasing function. Then, we have

1 —aH— s+h oH—
ey [ = | H =3 16— [ =0y |

—ati—12 8 +h— ) — (s —x)*
aH '

1 H
=|H—-— —
[H =316

Note that the function x — (s + & — x)“ —(s — x)*" is positive and increasing.
Then, we have (s + h — x)*" — (s — x)* < h*"  Hence, we have

| H— 5|

| g1(x,s,h) |< (s — x)—eH=1/2 pat (4.17)

Let us investigate the two following cases.
Case 1. —s < —v/u. We have by (4.17)

v/u

EV32 = / gl(s,x,h)2 dx

—v/u

1\ 2 2H—2aH 2H—2aH
H — 5 hZaH
< — —
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H-1 ? h2eH v v ?
< 2 sHIZ2H oo —20H) — +o|[— ] |.
oaH 2H —2aH us us

Then there exists a constant C3 > 0 such that

oy VA 2H—2aH
EV32 < C32 ploH Q2H=20H-1V _ -2 (_) p2oH
u u

Case 2. —v/u < —s. We have

2
H-—1 s 2H—2aH—1
EV] < <—H2> hz"‘H/ (s —x) dx
o

—S

2
(H — %) h2H (2S)2H—2aH

IA

754 2H —20aH

and consequently (4.15).
(4.15) is therefore established for IE V32.
Let us turn to EV}. Since (a — b)* < 2(a®> + b?) forany a, b > 0, we get

max(—s,—v/u) max(—s,—v/u)
EV22 <2 / gl(s,x,h)2 dx +/ (—s —)c)ZH_1 dx|.

max(—s—h,—v/u) max(—s—h,—v/u)

(4.18)
max(—s,—v/u)
Set I} := / (—s —x)*7! dx and

max(—s—h,—v/u)

max(—s,—v/u)
I = / gl(s,x,h)2 dx
—v/u

max(—s—h,—v/u) max(—s.,—v/u)
= / g1(s,x, h)* dx +/ g1(s, x, h)? dx.

—v/u max(—s—h,—v/u)

To prove (4.15) for [EV?, it suffices by (4.18) to show it for I, and I>.
Consider [, first. We have to investigate the two following cases.
Case 1. —v/u < —s — h < —s. We have

I, = (—s—)c)”{*1 dx = —

—s hZH hZaH hZH*ZaH
/,S,h 2H 2H

1 1
< ﬁ (v/u_s)2H72aH hZaH < ﬁ (V/M)ZH?Z“H hZaH.
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Case 2. —s —h < —v/u. When —s < —v/u, I; = 0. So assume —v/u < —s. We
have

s |
I, = / (—s —x)* 1 dx = 35 (v/u—s)*"

—v/u

— % (v/u_s)Z(xH (V/M _S)2H—201H

% hZaH (V/I/l _ S)ZH*ZO(H < KZ (V/M)ZH7204H hZaH.

IA

Consider I, now. We have by (4.17)

(H _ 1/2)2 ol /max(—s,—v/u) S H 1
I < ——— h™* — “ dx. 4.19
2 S oy » (s —x) x (4.19)
Let us investigate the two following cases.
Case 1. —s < —v/u. Obviously I, = 0.
Case 2. —v/u < —s. We deduce from (4.19)
(H—1/2)*  h>H 2H-2aH
= (s v70)
2= T GH)Y  2H —2am STV
_ 2 2H—2aH 2H—2aH
< (H—1/2)" 2 (v/u) h*H
(xH)? 2H —2aH

that proves (4.15) for I,.
Finally let us consider EV2. We have

max(—s—h,—v/u) max(—s—h,—v/u)
EVI2 <2 / gl(s,x,h)2 dx +/ gz(s,x,h)2 dx

—v/u —v/u

max(—s—h,—v/u)
<2+ [ ga(s.x 1) dx ).

—v/u

where the function g, was defined in (4.11).
To establish (4.15) for EV?2, it suffices to show it for

max(—s—h,—v/u)
/ g2(s5-x5h)2 d‘x'
—v/u

When max(—s — h, —v/u) = —v/u, the above integral equals 0. So let us assume
—v/u < —s — h. We have

—s—h
| g2(s.x.h) | = | (H —1/2) (v — )24y |

—S
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—s—h
=|H-1/2]] (y =)= =12 (y — )= dy |
h— xyH—el=12 (—=s —x)H —(—s —h — x)°H

<|H-1/2] (-s—
<|H=1/2] (= o

Note that the function x — (—s — x)* —(—s —h — x)*" is positive and
increasing. Then, since —v/u < x < —s—h, we get (—s — x)*7 —(—s —h — x)* <
h*" Hence, we have

H-1L
2(x. 8, h) |< =31 (—s —h — x)I—efA=1/2 patl (4.20)
& H
o
We get by (4.20)
—s—h (H _ 1/2)2 h2ozH
h 2d < —s—h 2H—20H
/v/u gZ(vav ) v = (Oll"[)2 2H —2aH ( s + V/I/L)
< KZ (v/u)2H72aH hZaH.

The proof of lemma 4.19 is now complete. a

Let us end the proof of theorem 4.1. Combining lemma 4.14 with lemma 4.16,
we show that, given € > 0, there exists a real number K > 0 and an integer p such
that

Vnel nzp= Y P(E,,ﬂEm)fbt"(K+(1+e) > b,,,,).

meJm>n meJm>n

Since (4.6) holds, an application of corollary (2.3) of ([10], p. 198) yields

. +12€ <P (U E) =P (U {Y(t,) < f(tn)}) :

neJ neJ

and consequently f € LUC(Y). The proof of theorem 4.1 is now complete. O
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Chapter 5
On the Bounded Variation of the Flow
of Stochastic Differential Equation

Mohamed Erraoui and Youssef Ouknine

Abstract We consider a stochastic differential equation, driven by a Brownian
motion, with non Lipschitz coefficients. We consider the class BV which is larger
than Sobolev space and got a sufficient condition for a solution of stochastic
differential equation to belong to the class BV. As a consequence we prove that the
corresponding flow is, almost surely, almost every where derivable with respect to
initial data. The result is a partial extension of the result of N. Bouleau and F. Hirsch
on the derivability, with respect to the initial data, of the solution of a stochastic
differential equation with Lipschitz coefficients.

5.1 Introduction

Let us consider the 1-dimensional stochastic differential equation

t

X() = Xo +/0 o(X(s))dB(s) +/0 b(X(s))ds, 5.1)

where o and b are R-valued measurables functions, { B(¢), ¢ > 0} is a 1-dimensional
Brownian motion on the filtered space (£2,.%, (% )i<0, P) and X, is the initial
condition independent of B. We assume that:
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A.1 o and b are continuous on R with linear growth condition
lo ()] +[b(x)| = L + |x]).

for every x € R, where L is a positive constant.

A.2 The equation (5.1) has pathwise uniqueness in the sense that if whenever
(X, B) and (X', B’) are two solutions defined on the same filtered space with
B = B’ and X, = X a.s., then X and X' are indistinguishable.

In the sequel we will abbreviate “stochastic differential equation” to SDE. Fur-
thermore, we use the notation X, (-) if we impose the condition Xy = x a.s. on
the solution. It is well-known that assumption (A.1) ensures the existence of weak
solution { X, (), t > 0}, for every x € R, which becomes strong under assumption
(A.2), cf. [6].

For x < y fixed, we define stopping time,

S =inf{r > 0: X, (t) > X,(®)}.

It is well known that on the set [S < +oo] the process {B(f) = B(S + ) —
B(S), t > 0} is again a Brownian motion. Moreover the processes { X, (S +1¢) ,t >
0} and {X,(S + ).t > 0} satisty the following SDEs:

t

X (S 4+ 1) = X (S) +/ o(X.(S + 5))d B(s) +/ b(X(S + 5))ds,
0 0
and
X, (S +1) = X, (S) + /t o (X, (S + s))d B(s) + /t b(X,(S + s))ds.
0 0

Since X, (S) = X,(S) a.s. on [S < 4o0] then thanks to pathwise uniqueness, we
have
P[Xx(S + t)l[S<+oo] = Xy(S + t)l[S<+oo]7 Vi> O] =1.

It follows that
PIX.(t) <X,(t),Vt=>0]=1.

We conclude that P-almost all w, for any ¢ > 0 the Borel function x — X, (¢)(w) is
increasing and consequently is differentiable a.e. with respect to Lebesgue measure
in the sense of classical differentiation. It should be noted that this result is obtained
without assuming the Lipschitz condition on the coefficients. The main tool used is
the comparison theorem which is no longer valid in higher dimensions. A question
arises: What remains of the above conclusion for SDE in R"?

The main result of this note provides a partial answer to this question. First,
it is important to recall the differentiability result for SDE in R” with Lipschitz
coefficients due to Bouleau and Hirsch [1]. Precisely they have shown that the
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corresponding flow is, almost surely, almost everywhere derivable with respect to
the initial data for any time. Their proof is based on the fact that the solution
lives in a subspace, which is a Dirichlet space, of the Sobolev space Hllo (R").
Unfortunately when the diffusion coefficient is not necessary Lipschitz the solutions
would not belong to Sobolev space in general. Indeed we give sufficient conditions
for solutions of stochastic differential equations to belong a larger class which is
merely the class of functions of bounded variation which we denote by BV. We
note that this idea was recently used by Kusuoka in [5] to show the existence of
density for SDE with non Lipschitz coefficients. Finally we use the relation between
differentiability and the class BV to prove differentiability of the solutions with
respect to the initial data.

5.2 Class BY

For d > 1, we denote by (£2,.%,(%)i>0, P, (B:):;>0) the standard Brownian
motion in RY starting from 0. That is £2 = Cy([0, +00), R¢) is the Banach space
of continuous functions, null at time 0, equipped with the Borel o-field .%#. The
canonical process B = {B; : t > 0} is defined by B,(w) = w(t), the probability
measure P on (§2, %) is the Wiener measure and .%; is the o-field 6{B;,0 < s < t}.
Let h be a fixed continuous positive function on R" such that

/ h(x)dx = land/ |x|2h(x)dx < 4o00.
Rﬂ R'l

Let §2 be the produgt space R" x ;Q’ which is also a Fréchet space. We gndow Q
with the measure (%, P) where .# denotes the Borel o-field on §2 and P denotes
the product measure h(x) dx x P. For simplicity we choose h the form of

1

h(x) = h(x,...,x,) = (m)n

e_Z?=] X,'z/z = l_lh(xl)

i=1

where h(x;) = —x/2,

e
g
Now we give the definition of class BV as follows

Definition 5.1. We define BV(R" x §2) the total set of Borel functions F on
(£2, #, P) such that there exists a Borel function F on (£2,.%, P) satisfying that:

(i) F=F Pas.
(i) Yw € £2,x — F(x,w) is a function of bounded variation on each compact
in R".

Now we give a criterion that a Borel function belongs to the class V(R” x §2).
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Theorem 5.1. Let p > 1 and assume that there exists a sequence {F IRAS N} in
LP(£2, Z, 13) such that:

B.1 F; converges to F almost surely.

B.2 {FJ i j € N} are uniformly bounded in L/’(Q, Z, }3)

B.3 Forall (x,w) € Qi€ {1,....,n}and j € N, t — F;(x+te;,w) is absolutely
continuous with respect to the one-dimensional Lebesgue measure on any finite
interval.

Fi(x + tei. w) — F(x,
B.4 {ViF,- = lim nf j (e, w) — Fi(xw)

t

j € N} are uniformly bounded
in L' (.Q P)
Then F € BV(R" x £2).

Proof. We will give the proof in several steps using the same approach and keeping
the same notations as in [5].

First we identify x as (x;, X) and P as h(x))dx; x I;(fc)dfc x P where ﬁ(fc) =
[17(x;). Since the family {F; : j € N} is uniformly bounded in L? (82, , P),

i=2
with p > 1, thenitis umform]y integrable. Moreover it satisfies the condition (B.1)

then by Vitali’s theorem F € L! (.Q Z, P) and F; convergesto I in L' (.Q Z, P)
Let M > 0 and define a function ¢ € C*°(R) such that

Lif |yl=M
((H0<¢ =<1, ({i)0<¢ <1, (iii)p(y) = (5.2)
0if |y|>M +1.

For x; € R and m € N*, we set

Y(x1, X, w) = F(xi, X, w)g(x1),

and

]/2"1
v, (x1,X,w) = 2’”/ (x4 u, X,w)du.
0

It is easy to see that:

e X1 = Y, (x,X,w) is absolutely continuous and has its support in [—(M +
2),M +2].
* There exists aconstant C > 0, which depend only on M, such that sup 1) || <
m
CE|y]|.
xi+1/2m
o Uu(xy,X,w) = 2’”/ v(u, X,w) du, x; = ¥, (x1, X, w) is differentiable

X1
a.e and

Vi, (x1, X, w) = 2" [y (x; + 1/2", %, w) — ¥ (x1, X, w)] dxa.e.
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The first step is to show that / | Viv,,(x1, X, w) | dx; is increasing in m. Indeed
R

/ | Vi, (1, &, w) | dox, = z'"/ ¥ (e 4 1/27, %, w) = Yr(x1, &, )| dxy
R R
< 2'"/ Y+ 1727 %w) = Yl + 172" % w)| dxy
R
+2’”/ (e + 17274 % ow) = gy, 5ow) | doxy
R

=2m+1/ |'¢/-(xl —|—1/27n+1’£’w)_1//(xl,)‘2',W)|dXI
R

:/ | ViF™  (xy + u, X, w) | dxy.

R

The second step is to prove that for (h~ (X)dx x P)-almost all (X, w)
sup/ | Viv, (x1, X, w) | dx; < +o0. (5.3)
m R

To this end we need the following estimate
E |y (xr +6,%,w) =y (x1 + 5, %,w)| < Cy |t — 5], (5.4)
where C)y is a positive constant which depend on M . In what follows we establish

the proof of (5.4).
For x; e Rand j € N, we set

1/fj(x1,32,w) = Fj(xl,i,w)(p(xl).

Let us remark that v; has support in [-(M + 1), M + 1] and converge to ¥
in Ll([}, Z, P ) which follows from the convergence of F; to F. Moreover, as
a consequence of assertions (i) and (ii) of condition (5.2) we have, for all x; €
[-(M + 1), M + 1], that

|V1¢fj(x1,)2,w)| < |Fj(X1,)Z',W)| + |V1Fj(x1,)2,w)|. (5.5

Then, for t, s € R, we obtain

By + 6, %w) — ¥ (x) + 5. %w)]

=HmE |y (x; +1,%,w) — ¥ (x1 + 5, %, w)|
J

1 2 ~
lim E x4+ Fow) — U (x4 5, B w)| e 2dx h(F)dF
Nk /RH/RIWI ) = ¥ (x1 )| 1h(3)



202 M. Erraoui and Y. Ouknine

=

t ~
/ Viyj(x1 + u, X, wydu| dx h(X)d X
N

1
lim inf IE/ /
N2 R JR

1
V2

1 2 N
(M+2)%/2 . - ) =
< ——|t—ys|e sup E(|F;(x1,x,w) |[+| V1 Fi(x1,x,w)|),
e | | jP (| ' (x ) [+ Vi Fj(x )|)

=

t ~
lim'ianE/ / / |Vivj (x1 + u X, w)| dxih(X)d ¥du
J s JRi—LJR

where the last inequality is a consequence of (5.5). Now using (B.2) and (B.4) we
obtain .
Ely(xr +1,%,w) —¢(x1 +5,X,w)| < Cuy [t =],

1 2 N
where Cy; = eMAD 2 qup B(|F; (x1, %, w) |+| Vi F; (x1, %, w) ).
\/E ; ‘ J | I J ’

Now we are able to make out (5.3). By monotone convergence theorem we have

E/ sup/ IV, (x1, %, w)| dxih(%)d %
R R

n—1 m

= supE/ / IV W, (x1, %, w)| dxih(%)d X
m ]Rn—l R
Since ¥, has support in [—(M + 2), M + 2] then

E sup/ IViW (x1, %, w)| dx1(F)dF < 21 e M2 [ |V W, (x1, %, )
R

Rr—1 m

< V27 eMFAD 2 qup 2 B |y (xy + 1/2, %, w) — ¥ (x1. X, w)| .
Now using (5.4) we obtain

]E/ Sup/ Vi W (x1, %, w)| dxih(R)dE < V21 M 20y, (5.6)
R R

n—1 m

Therefore, for (ﬁ(fc)d X x P)-almost all (x,w),
sup/ Vi, (x1, X, w)| dx; < +o00.
m JR

Qn the other hand, by the definition of ¥,,, for all (X, w) there exists a function
Fi(-, X, w) so that

lim ¥, (x1, ¥, w) = Fi(x1, %, w)$(x1)

Fi(.,%,w) = F(,%,w), dx —a.e.
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Hence, by Corollary 5.3.4 of [7], we have Fi(. %, w()isa _function of bounded
variation on R for (h(x)d X x P)-almost all (X, w). So, for (h(x)dx X P)-almost
all (¥,w), and for all M > 0, F,(.,%,w) is a function of bounded variation on
[-M, M] such that

Vieww Fi (L, %, w) < sup/ Vi (x1, X, w)| dxy,
m R

where Vi_u u(f) denotes the total variation of the function f on [-M, M]. It
follows from (5.6) that

E/ Viewan Fi (L %, wh(R)d % < E/ sup/ IV, (x1, %, w)| dxih(%)d %
Rn*l R

Rnfl m

< V2m eM+V'2Cy,

Thus for P-almost all w and for each rectangular cell Z of the form [][-M, M]
i=2
we have

/ Vieman Fi (L, %, w)d % < +oo. (5.7)
R

Now for 2 < i < n, we write X as (x;, ¥) where X € R"7L, Then using the same
procedure as that used above we obtain that there exists a function F; (-, X, w) so that

I*:i(.,)?,w) = F(,Xx,w), dx; —a.e.

Moreover for P-almost all w and for each rectangular cell Z in R"~! we have
/ V[_M,M]I:‘,'(x,',i,w)di < 4o0. (5.8)
%

Therefore, we conclude by Theorem 5.3.5 of [7] that F € BV(R" x £2).
Let F is in BV(R" x §2) and F its associated according to the above definition.
Then for each 1 < i < n the function t — F(x + te;, w) is a function of bounded

variation on any finite interval. Consequently it is differentiable a.e and for all w €
k94

A F te;, —F ,
Vi F(x.w) = lim inf (x+re v:) W)

We can prove as in Bouleau-Hirsch [2] that V; F is well deﬁned P-as. and this
definition does not depend on the representative F, up to P-as. equality. This is
given in the following proposition

Proposition 5.1. If F € BV(R" x §2) then for P-almost all w € §2 and for all
ie{l,...... ,n} we have:
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(i) t > F(x+ te;,w) is a function of bounded variation on any finite interval.

ad R
(ii) E)_F(X’ w) = V; F(x,w) dx-a.e.
Xi

5.3 Applications to Stochastic Differential Equations

Now we consider if the corresponding flow of the following stochastic differential
equation whose coefficients are not Lipschitz continuous

dXE() = Y02, 05 (e, XE()dBI (1) + bk (1. Xx(0)dt k =1.2,....n

Xx(0) = x,
5.9
is almost surely almost everywhere derivable or not. Let

b= (b"),c., € Co([0, +00) x R" — R"),

We assume the following
H.1 mkaxibk(t,x) —bk(t,x’)| < K|x—X|g.,forall t >0, x, x' € R".
H.2 The n-dimensional stochastic differential equation (5.9) has pathwise unique-

ness.

It is well-known that, under assumption H.1, V; b* exists for each i,k € {1,---,n}
almost everywhere and satisfies

|(Vib")(t,x)| < K, ¥t >0. (5.10)

Let B,(x,w) = B, (W), ¢ € [0,+00) and %, the least o-field containing the P-
negligible sets of % for which all By, 0 <s < 1, are measurable.

Then (Q, Z, (ﬁ,),e[o‘_wo), P, (B,),e[o‘_%oo)) is a Brownian motion in R? start-

ing from O.
Let us consider the following SDE

dX*(t) = Y4_ ok (. X5 )d B/ (1) + b*(t. X(1)dt k=1.2,....n

X(0) = x,
(5.11)
Now, we state a result which is due to Bouleau and Hirsch. It highlights the
relationship between the solutions of SDE (5.9) and (5.11).
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Proposition 5.2. There exists a ﬁ—negligible set N such that
V(x,w) € N Vi >0 X(1)(x,w) = Xy(£)(w)

For the first, we will show a lemma which makes the most important role in this
paper.

.....

[0, +00) % .Q and g be a measurablefunctlon on [0, +-00) x 2. We assume that a
1-dimensional #,-adapted continuous process Y = (Y (1)) on (.Q P) satisfies
the stochastic differential equation

Y(t)=y +Z/ fi(s,y,w)Y (s)d B/ +/ g(s, v, w)ds, (5.12)
j=1
where y € R. Moreover, we assume that

max sup ]fj(t,y,w)] < 00, (5.13)
J o tyw

and there exists a constant L satisfying that

lg(t,y,w)| < L|¥ for all (¢, (y,w)) € [0, +00) x £2. (5.14)

Then, for each T > 0 there exists a constant C which depends on only T, L such
that o

sup E’Y(t)‘ <cC.

t€l0,T]

Proof. For (¢, (y,w)) € [0, +00) X £2, define:

g(t.y.w)

o if Y1) #0,

g, y,w) =
0 if Y (1) =0.

Then it follows from (5.14) that
18(s, v, w)| < L, for all(t,(y,w)) € [0, +00) x £2.

Moreover it is easy to see that Y satisfies the following Linear stochastic differential
equation

d t t
Y (1) =y+2/ £ (s, y,w)Y (s)d B/ +/ g(s,y.w)Y (s)ds.  (5.15)
=170 0
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Thus we have

d t t
V(1) = yexp Z/ £ (s, y,w)d B +/ &(s. v, w)ds
=170 0

1<
_EZ/O £iGs,y,w)2ds |. (5.16)
j=1

Since ¢ is bounded by L we deduce the following estimate

d t d t
~ N 1
Y () < eLTeX E / i(s,y,w)ydB! — = E / (S, Yy, st

forallt € [0, T].
Using condition (5.13), yields that the exponential

exp Z/ fj(syw)dB/——X:I/ f](syw)zds
=

isa (j‘, — ﬁ)-martingale. Therefore, for all ¢ € [0, T'], we obtain

LT
<|yle™".

This establishes the lemma.

The next lemma is a version of the above lemma about derivative of a stochastic
differential equation.

Lemma 5.2. We assume that

o= (U;?)k_l . , € Cp([0, +00) xR > R" ® RY),

G;? (t,) € C*®(R), t € [0,+00) and axaj/.‘ (+,-) is bounded on compact subsets of
[0, +00) x R,
b= (b"),_
b(t,)) € C®°R" - R")), t € [0, +00),

. € Go([0, +00) x R" — R"),

and assumptlons (H.1)—(H.2) hold. Then, for each T > 0, the solution X on
(.Q P ) of the stochastic differential equation (5.11) satisfies
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sup I@I‘V,-)fk(t)‘ <C  forallk=1,2,....n. (5.17)
tel0,7]

Proof. A consequence of the continuity of the coefficients the SDE (5.11) has a
weak solution. Under assumption (H.2) this solution becomes strong. Furthermore
foreach T > 0 we have

max sup IAE|)2/‘(I)|2 < 400,
k  teo0,1]

which implies that the sequence of stopping times
S, := inf{t € [0, +00) : |X(1)| > n} (inf(@) = +o0)

converges to +00. Since o and b are sufficiently smooth it follows from [K] that for
eachk € {1,...,n}

d t
ViXE() =8u+ ) / 00K (5. X* () Vi X¥ (s)d B/ (5)
=1 0

+ [ 269 0,

where 8;; denotes the Kronecker’s delta. By the Lipschitz condition of b, we have
’(V,»b")(t, )?(t))’ <K, Vi>0.

Moreover if we set

fi(s.x.w) = 0.0k (s, XE(sAS)). g(s.x.w) = (VibF)(s. X (sAS))Vi X (sAS,)

then it is simple to see that the conditions (5.13) and (5.14) are satisfied. We then get
that V; X¥(s A S,) is solution of SDE (5.12). Hence, we obtain (5.17) for V; X* (s A
Sy,) from the previous lemma. Letting n tend to +o00, we arrive at the desired result.

Now we will show a sufficient condition for solutions of stochastic differential
equations to belong to the class BV(R" x §2). The advantage is that we assume
only bounded on the diffusion coefficient 0.

Theorem 5.2. Assume that (H.1)—(H.2) hold. Then, the solution Xk (t) is in
BV(R" x 2) forallt € [0, +00) and eachk = 1,2, ... ,n.

Proof. The regularization procedure enables the existence of a sequences
{om;m € N} and {b,,; m € N} such that
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bE(t,:) € C®(R" = R")), t € [0, +00),
sup [(Vib})(t.x)| < K, V1 >0, xeR"
m

lim sup sup |0, (t,x) —0(t,X)|pigrd + |Dm(t,x) —b(t, X)|gn =0
m tef0,T] xex

for each compact o7 in R”. Let {Z];n € N} be the strong solutions of the SDE
(5.9) with coefficients o, and b, and the Brownian motion B. Then, by a standard
method of stochastic differential equations and (5.17) of Lemma 5.2 we have for all
i €{l,---,n}andt € [0, +00)

supE | Z (1) |2, < o0 and sup E|V; (Z7(1)|gn < o0. (5.18)
m m

On the other hand we have from [3] that

lim  sup E (max |Z"(t) — Xx(¢)|3:) = 0. (5.19)
t€[0,T]

n—>+00 e

Let M > 0 and @ be a fixed function in C *°(R") satisfying

d(x) =1lifx e ﬁ[—MM]

i=1

d(x) =0ifx ¢ ﬁ[—M—!—l,M—Fl],

i=1
|V;®@(x)| < C (constant) for all x € R”,

Let {Z "m e N} be the strong solution of the SDE (5.11) with coefficients o, and

by, and the Brownian motion B. It follows from (5.18-5.19) and Proposition 5.2
that

Al A 2 a ~
supE ’Zm(t) @(x)’Rn < ooand supE |V;(Z™(t) &(x)) . < 00, (5.20)

and
lim E( max |Z"(1)®(x) — X ()P (x)|3.) = 0. (5.21)
t€l0,

m—-400



5 On the Bounded Variation of the Flow of Stochastic Differential Equation 209

It is easy to see that (5.20) means that the family {Z ™ @, m € N} satisfies condition
(B.2) and (B.4) of Theorem 7.1. Furthermore, for each m € N, 7™ @ satisfies the
smoothness property (B.3), cf. Kunita [4]. It follows from (5.21) that there exists
a subsequence of {Z’” &, m € N} which converges P-almost surely to X®. For
simplicity, we also denote the subsequence by {Z’” &, m € N} again. Thus, we
can use Theorem 2.2, and we have )2(1)(15()() is in BV(R” x £2) and consequently
X(t) e BV(R" x ) forall € [0, +00).

Now as a consequence of the foregoing we obtain the following result

Theorem 5.3. Assume that (H.1)—(H.2) hold. Then, for almost all w the flow X +—>
Xx(t,w) is a function of bounded variation on each compact in R".
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Chapter 6
Stochastic Volatility and Multifractional
Brownian Motion

Antoine Ayache and Qidi Peng

Abstract In order to make stochastic volatility models more realistic some authors
(see for example Comte and Renault J. Econom. 73:101-150, 1996; Comte and
Renault Math. Financ. 8:291-323, 1998; Gloter, A., Hoffmann, M.: Stochastic
volatility and fractional Brownian motion Stoch. Proc. Appl. 113:143-172, 2004;
Rosenbaum Stoch. Proc. Appl. 118:1434-1462, 2008) have proposed to replace the
Brownian motion governing the volatility by a more flexible stochastic process.
This is why, we introduce multifractional stochastic volatility models; their main
advantage is that they allow to account variations with respect to time of volatility
local roughness. Our definition of multifractional stochastic volatility models is
inspired by that of the fractional stochastic volatility models previously introduced
by Gloter and Hoffmann (Gloter, A., Hoffmann, M.: Stochastic volatility and frac-
tional Brownian motion, Stoch. Proc. 502 Appl. 113:143-172,2004). The main goal
of our article is to extend to these new models some theoretical results concerning
statistical inference which were obtained in (Gloter, A., Hoffmann, M.: Stochastic
volatility and fractional Brownian motion, Stoch. Proc. Appl. 113:143-172, 2004).
More precisely, assuming that the functional parameter H(-) of multifractional
Brownian motion is known, we construct, in a general framework, an estimator of
integrated functional of the volatility, and we derive from it, in the linear case, an
estimator of a parameter 6 related to the volatility.
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6.1 Introduction and Motivation

Stochastic volatility models are extensions of the well-known Black and Scholes
model. Hull and White [22] and other authors in mathematical finance (see for
instance [30] and [25]) introduced them in the eighties in order to account the
volatility effects of exogenous arrivals of information. Our article is inspired from
a work of Gloter and Hoffmann [21, 22] which concerns statistical inference in a
parametric stochastic volatility model driven by a fractional Brownian motion (fBm
for short). Namely, the model considered in [21,22] can be expressed as:

Z(t) =20 + [y o(s) dW(s) 6.
o(s) = 00 + D(0, Bu(s)), '

where:

e Z(t) denotes logarithm of the price of the underlying asset, the original price z
is supposed to be deterministic and known.

e {W(s)}sepo.1 denotes a standard Brownian motion (Bm for short).

* {0(s)}sep0,1] denotes the volatility process (op is real-valued and known); the
deterministic function x — @(0, x), through which it is defined, is known up
to a real-valued parameter 6. For the sake of convenience, one sets for every
x € R,

f(x) == (09 + D(6, x))* (6.2)

and throughout this article one assumes that the function f belongs to the set
C ;ol (R). Obser.ve that for. every ipteger [ Z.O, C ,ioz (R) denote§ the ve.ctor space
of /-times continuously differentiable functions over the real line, which slowly
increase at infinity as well as their derivative of any order, more formally,

I
Cly(R) = {h €C!®): 3. K>0.YxeR Y M9 <c(1+ |x|K)}.
k=0

(6.3)

* {By(5)}sep0.1) denotes a fractional Brownian motion (fBm for short) with Hurst

parameter o (see e.g. [15,16,29]), which is assumed to be independent on the Bm

{W(s)}sefo.17; one makes the latter independence assumption for the stochastic

integral fot o (s) dW(s) to be well-defined. Note that the idea of replacing the Bm

governing the volatility by a fBm is due to Comte and Renault (see [13,14]), who
have proposed to do so in order to account some long memory effects.

In order to clearly explain the main goal of our article, we need to briefly
present some of the main results obtained in [21, 22]. In the latter articles, it is
assumed that one observes a discretized trajectory of the process {Z(¢)}/c0,1],
namely the high frequency data Z(j/n), j = 0,...,n. Also, it is assumed that
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the fBm B, governing the volatility is hidden; however one knows the value of its
Hurst parameter «, moreover « € (1/2,1). Though, the hypothesis that the Hurst
parameter is known may seem to be restrictive from a practical point of view, it has
already been made by other authors (see for example [35]), in some settings more
or less related to that of the model (6.1). Under additional technical assumptions,
we will not give here for the sake of simplicity, Gloter and Hoffmann [21, 22] have
obtained the following results (1) and (2):

1. By using the notion of generalized quadratic variation, one can con-
struct estimators of integrated functional of the volatility of the form:
fol f(By(5))*h(0%(s)) ds, where f” is the derivative of f and h € Cplol (R)
is arbitrary and fixed. Note that the problem of the estimation of such quantities
is of some importance in its own right, since more or less similar integrals appear
in some option pricing formulas (see for instance [22]).

2. Thanks to the result (1), it is possible to build a minimax optimal estimator of
the unknown parameter 6. Also, it is worth noticing that, it has been shown in
[21,22] that the minimax rate of convergence for estimating 6, in the setting of
the model (6.1), is not the usual rate n~1/2 but the slower rate n_'/(4"‘+2), which
deteriorates when the Hurst parameter « increases; basically, the reason for this
unusual phenomenon is that the volatility is hidden and the Brownian motion W
makes the approximation of the volatility more noisy.

Let us now present the main motivation behind the introduction of multifractional
stochastic volatility models. To this end, first we need to introduce the notion
of pointwise Holder exponent. Let {X(s)}sep,1] be a stochastic process whose
trajectories are with probability 1, continuous and nowhere differentiable functions
(this is the case of fBm and of multifractional Brownian motion which will soon be
introduced), px (¢) the pointwise Holder exponent of the process { X (s)}se0,1] at an
arbitrary time 7, is defined as,

px () = sup {p € [0,1] : lim supM = 0}.
=0 |z]°

The quantity of py(f) provides a measure of {X(s)}secp,1] roughness (i.e. of the
maximum of the fluctuations amplitudes of {X(s)}se(0,1)) in a neighborhood of #;
the smaller py () is the rougher (i.e. the more fluctuating) is {X(s)}sepo,1) in ¢
neighborhood. In [1] numerical evidences have shown that for a better understand-
ing of stock price dynamics, it is important to analyze volatility local roughness.
With this respect, fractional stochastic volatility model has a serious limitation: its
volatility local roughness cannot evolve with time; more precisely, when @(6, -)
is a continuously differentiable function with a nowhere vanishing derivative, then
one has, almost surely, at any time ¢, p,(¢) = «, where « is the constant Hurst
parameter of the fBm { B (s)}sejo,1] and p,(¢) the pointwise Holder exponent at 7,
of the volatility process {0(s)}se[o,1] defined in (6.1). The latter limitation is due to
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the fact that the local roughness of { B¢ (s)}seo,1) itself cannot change from time to
time, namely one has almost surely, for all ¢, pp,(f) = o (see e.g. [23]). In order
to overcome this drawback, we propose to replace in (6.1), the fBm { B, (s)}seo.1]
by a multifractional Brownian motion (mBm for short), denoted in all the sequel
by {X(s)}seo,1, which is independent on {W(s)}scp,1]. Thus, we obtain a new
stochastic volatility model we call multifractional stochastic volatility model. Its
precise definition is the following:

Z(t) = 20+ [y o(s) dW(s) 6.4)

o(s) = oo+ P(0, X(s)), '
where zo, 09, 0, @(0,) and {W(s)}sepo,1] satisfy the same assumptions as before;
note that the stochastic integral fot o(s)dW(s) is well-defined since the mBm
{X(5)}sep0,1] is assumed to be independent on the Bm {W(s)}scpo,1. In order to
clearly explain the reason why multifractional stochastic volatility model allows
to overcome the limitation of fractional volatility model we have already pointed
out we need to make some brief recalls concerning mBm. The latter non stationary
increments centered Gaussian process was introduced independently in [8] and [26],
in order to avoid some drawbacks coming from the fact that the Hurst parameter of
fBm cannot evolve with time. The mBm { X (s)}e[0,1] can be obtained by substituting
to the constant Hurst parameter « in the harmonizable representation of fBm:

~

isE _ 1
5w = [ o 4B, (65)

a function H(-) depending continuously on time and with values in (0, 1). The
process { X (s)}seo,1] can therefore be expressed as,

et 1

Throughout our article not only we assume that H(-) is continuous but also that it
is a C2-function, actually we need to impose this condition in order to be able to
estimate the correlations between the generalized increments of local averages of
mBm (see Proposition 6.3.6). Moreover, to obtain Part (ii) of Lemma 6.3.2, we
need to assume that H(-) is with valuesin (1/2,1).

For the sake of clarity, notice that dB is defined as the unique complex-valued
stochastic Wiener measure which satisfies for all f € L?(R),

/ £(s) dB(s) = / 76 dB (@), 6.7)
R R
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where { B(s)}ser denotes a real-valued Wiener process and }"\ the Fourier transform
of f. Observe that it follows from (6.7) that, one has up to a negligible deterministic
smooth real-valued multiplicative function (see [12,34]), for all s € [0, 1],

is€ _ 1
H(s)—1/2 _ | . 1H(s)—1/2 _ e )
[ {is+x 1 s = [ 4B,

which implies that the process { X (s)}se(o,1] is real-valued.

Since several years, there is an increasing interest in the study of mBm and
related processes (see for instance [2-7,9-11, 17-19, 31-34]). The usefulness of
such processes as models in financial frame has been emphasized by several authors
(see for example [9-11,23,24]). Generally speaking, mBm offers a larger spectrum
of applications than fBm, mainly because its local roughness can be prescribed
via its functional parameter H(-) and thus is allowed to change with time; more
precisely, one has almost surely, for all ¢, px (t) = H(t), where px (¢) denotes the
pointwise Holder exponent at ¢ of the mBm {X(s)}sefo,17- It is worth noticing that
the latter result, in turn, implies that in the model (6.4) the volatility local roughness
can evolve with time, namely when @ (6, -) is a continuously differentiable function
with a nowhere vanishing derivative, then one has, almost surely, at any time 7,
ps(t) = H(t), where p,(t) is the pointwise Holder exponent at ¢, of the volatility
process {o(s) }sefo,1] defined in (6.4).

Having given the main motivation behind multifractional stochastic volatility
models, let us now clearly explain the goal of our article. Our aim is to study
to which extent it is possible to extend to the setting of these new models Gloter
and Hoffmann results (1) and (2) stated above. Basically, we use some techniques
which are reminiscent to those in [21, 22]; however new difficulties appear in our
multifractional setting. These new difficulties are essentially due to the fact that
local properties of mBm change from one time to another.

Throughout our article we assume that the functional parameter H(-) of the
mBm {X(s5)}sep0,1] is known. We show that the result (1) can be stated in a more
general form and can be extended to multifractional stochastic volatility models.
The challenging problem of extending the result (2) to these models remains open;
the major difficulty in it, consists in precisely determining the minimax rate of
convergence for estimating 6. Yet, in the linear case, that is for a model of the form:

Z(t) =20+ [ o(s) dW(s)

(6.8)
o(s) = oy + 0X(s),

assuming that there exists #, € (0, 1) such that H(f)) = min;ep 1) H(¢), we give

a partial solution to this problem; namely, we show that by localizing Gloter and

Hoffmann estimator in a well-chosen neighborhood of 7y, it is possible to obtain

an estimator of 6% whose rate of convergence can be bounded in probability by

nfl/(4H(zo)+2)(10gn)1/4.
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6.2 Statement of the Main Results

Let us consider an integrated functional of the volatility of the form:

i
| (recenynron s, 69)
0
where, { X (5)}se[0,1] denotes the mBm, {Y (s)}ejo,1] is the process defined as

Y(s) := f(X(5)) := 07(s) := (00 + P(b, X(s)))z, (6.10)

and & an arbitrary function of Cp'o ;(R). An important difficulty in the problem of the
nonparametric estimation of the integral (6.9) comes from the fact that the process
{Y(5)}sefo.1) is hidden; as we have mentioned before, we only observe the sample
(Z(0), Z(1/n),..., Z(1)), where { Z(f)};e[o.1] is the process defined in (6.4). Let

us first explain how to overcome this difficulty. 7,; N,i =0,...,N — 1, the local
average values of the process {Y (s)}se[0.1) overa grid {0,1/N, ..., 1}, N > 1 being
an arbitrary integer, are defined, foralli = 0,..., N — 1, as
i+1
N
Yin —N/ Y(s)ds. (6.11)

N

Let us now assume that N is a well chosen integer depending on 7 (this choice will
be made more precise in the statements of Theorems 6.2.2 and 6.2.3 given below),
such an N is denoted by N,;; moreover, we set

= [n/N,] and foreveryi = 0,..., N,,j; := [in/N,], (6.12)

with the convention that [-] is the integer part function. The key idea to overcome
the difficulty, we have already pointed out, consists in using the fact that for n big
enough, Y; n, can be approximated by

/1+l —Jji— . 2
i +k+1 P+ k
Vit = Ny Z ( (—] T ) Z(—] ha )) (6.13)
n

The rigorous proof of the latter approximation result relies on It6 formula, it is given
in [22] page 157 in the case of fBm and it can be easily extended to the case of mBm.
This is why we will only give here a short heuristic proof. Using (6.13), (6.4), the
fact that n is big enough, and (6.10), one has



6 Stochastic Volatility and Multifractional Brownian Motion 217

2

Ji+1—Ji—1 Jitk+l1
Yin=Ni > ( [ . o(s)dW(s)>
k=0 In
Ji+1—Ji—1 ji tk+1 2 .
~ ! 2 Ji tk
([ ) (1)
=0 n

Ji+1—Jji—1 . . 2 .
i+ k+1 i+ k i +k
_ N, Z (W(j+ +)_W(j+ ))Y(j—i- )
=0 n n n

Ji+1—Ji—1 .
ok
~ N (ot Y Y(J + ) , (6.14)

n
k=0

where the latter approximation follows from the fact that (W (”‘:ﬁ) —

. 2
w (%)) ,k=0,...,ji+1—ji — 1 are i.i.d random variables whose expectation
— .. _ ji1—Jji—1 ji . . .
equals n~!. Then noticing that n=' Y /5,77 ¥ (%) is a Riemann sum which,
i+1

in view of (6.12), converges to the integral f,i’” Y (s) ds; it follows from (6.11) and
Nn
(6.14) that

Yi,N,,,n ~ 7i,N,,-
The main goal of Sect. 6.3 is to construct estimators of the integrated functional of
the volatility

VN

1
Vit o) = [ (OB E. 615)
n

N

where (uy)n and (vy)y are two arbitrary sequences satisfying: for every N, 0 <
uy <vy < landlimy— oo N(vy — pn) = +o00.

Observe that when we take for every N, uy = 0 and vy = 1, then the integral
in (6.15) is equal to the integral in (6.9).

In order to be able to state the main two results of Sect. 6.3, one needs to introduce
some additional notations. Throughout this article one denotes by a = (ao, ..., a,)
a finite sequence of p + 1 arbitrary fixed real numbers whose M (a) first moments
vanish i.e. one has

V4
Y Klap =0, foralll =0,....M(a)—1
k=0

and one always assumes that M(a) > 3 (observe that one has necessarily p >
M (a)). Foreachinteger N > p+ landanyi =0,...,N — p—1, A,Y,; y is the
generalized increment of local average values of Y, defined as
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P
AYiy = Zak7i+k,1v (6.16)
k=0

and AQYZ‘, ~ 1s the generalized increment of local average values of mBm X, defined
as

P
AXin =) aXitin. (6.17)

k=0

where
i+

X,n:=N / X(s) ds. (6.18)

Iﬁ
At last, for each integer n big enough and anyi = 0, ..., N, — p — 1, one denotes

by Aa?i, N,.n the generalized increment defined as

p
AdYingn =Y ar¥itin,n (6.19)
k=0

One is now in position to state the two main results of Sect. 6.3. The following theo-
rem provides an estimator of the integrated functional of the volatility V(/; un, vn)
starting from 7,; N, Uy < i/N < vy, the local average values of the process
{Y($)}sepo.1) over the grid {0,1/N, ..., 1} N [un,vy]. It also provides an upper
bound of the rate of convergence.

Theorem 6.2.1. For every integer N > p + 1 and for every function h € C;ol (R)
one sets

k72 1 (AaYi N)2 %2
V(h; un, = — ———h(Y;y), (6.20
(h:pn.vw) Ny —iw) iej(zww) C(i/N)N—2HG/N) (Yin), (6.20)

where:

* 7 (un,vn) denotes the set of indices,
F(un,vy) = {i €{0,....,.N—p—1}: uy <i/N < UN}; (6.21)

e Foralls € [0,1],

e — 112 -7 axe™|?
C(s) :=/ Inlz”(k”f-* dn. (6.22)
R

Then there exists a constant ¢ > 0, such that one has for each integer N > p + 1,

_ —-1/2
E{[V s sy, ow) = Vi o)} < e(Now =) (623)
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Recall that the integrated functional of the volatility V (h; uy , vy) has been defined
in(6.15).

In view of the previous theorem, in order to construct an estimator of
V(h; i, , vn,) starting from the observed data Z(j/n), j = 0,...,n, a natural
idea consists in replacing in (6.20), the Y. ~,’s by their approximations ?,-, Ny
However (this has already been noticed in [21,22] in the case where X is the fBm,
un, = 0and vy, = 1),

1 (Aa/Y\i N, n)2 =
oo =y 2 = h(Y iy, ) = V(B vy . v,
Nu(vN, = iw,) i€ (imyv) C(i/N,)N, 2H(i/Ny) 1 Nns1 N

does not converge to zero in the L'(£2) norm; one needs therefore to add the
correction term:

1 3 ANalb¥imn) o
Nn(UN,, - MN,,) i€ 2 Gomp ) C(l-/Nn)NI:ZH(l/Nn)mn Ny.n)s

where |ja|, = ,/Z,’;O a,% denotes the Euclidian norm of a. More precisely, the
following theorem holds.

Theorem 6.2.2. For every integer n big enough and h € C;lol (R), one sets

1

I,7(117 l'LNn’ UNn) = Z
Nu(VN, — IN,) e % o)
A¥ima? _ 2MalbFima) ), 5
— [ — i L,.Np.n)»
C@i /NN, TN iy NN,
(6.24)
where m,, is as in (6.12). Then assuming that
2 maxge W H(s
supmy N, S T o (6.25)
n

it follows that there exists a constant ¢ > 0, such that one has for all n big enough,

B[P0 s o) = VO g o[} = e(Natow, =) 626)

Remark 6.2.1. When the mBm X is a fBm with Hurst parameter & € (1/2, 1), one
can take in Theorems 6.2.1 and 6.2.2, H(:) = o, uy, = 0 and vy, = 1; then one
recovers Theorem 3 in [22] and Proposition 1 in [20].
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Let us now turn to Sect. 6.4. The goal of this section is to construct an estimator
of 02 in the setting of a linear stochastic volatility model driven by a mBm, that is a
model of the type (6.8); and also to give an evaluation of the rate of convergence of
this estimator in terms of min,ep 1) H (¢). Notice that, in Sect. 6.4, we assume that
6 # 0 and there exists 7y € (0, 1) such that

H(ty) = min H(t). (6.27)
t€0,1]

In order to be able to state the main result of this section, we need to introduce some
additional notations. For n big enough, we set,

. I
EMIn (1) = fo— ——o | (6.28
w0 = :
EN(tg) = 1o + ! (6.29)

N” 0 0 V log(Nﬂ) '

and
Tns - = (E1(10), E1 (1))

i €{0,....N 1 ‘z Lo (6.30)

=i oo N, —p—1}): - < —}, .

P 0 Nn \/IOg Nn

where _# has been introduced in (6.21).

Let (a,), and (b,), be two arbitrary sequences of positive real numbers. The
notation a, < b, means there exist two constants 0 < ¢; < c¢,, such that for all n,
one has c1a, < b, < ca,.

We are now in position to state the main result of Sect. 6.4.

Theorem 6.2.3. Consider a linear stochastic volatility model driven by a mBm. For
n big enough, let,

V(1 607 (10), S (10))

02, = & . 6.31)
4(2(]0g(Nn))_1/2Nn) ZiEVN,,_xO Yi,N,,,n
where V has been introduced in (6.24). Assume that
N, = n'/GH@0+D), (6.32)

Then the sequence of random variables

(nl/(4H(to)+2)(log ”)71/4(/9\510 _ 92)) ’
n
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is bounded in probability i.e. one has

lim lim supP{nl/“f’(fo)“)(logn)*1/4|’§2 — 92> /\} - 0. (6.33)

n.ty
A=>+00 400

Remark 6.2.2. Theorem 6.2.3 is an extension of Proposition 2 in [20].
In fact, Theorem 6.2.3 is a straightforward consequence of the following result.

Theorem 6.2.4. Consider a linear stochastic volatility model driven by a mBm. For
n big enough, we set,

V(; e, vn,)

02(in, . vy,) = - (6.34)
! 4(Nn(an - /"LNH))_I Zie/(;uv” VN, ) Yiansn
Assume that (Wy, ), and (Vy, ), are two convergent sequences and also that
N, = pl/ Cmaxsepy, vy, HE+D) (6.35)

Then the sequence of random variables

(nl/mmaxse[lw"’w"] Dy, — ) (’9\3 (N, VN, ) — 92)) ’

n

is bounded in probability.

6.3 Estimation of Integrated Functionals of the Volatility

6.3.1 Proof of Theorem 6.2.1 When Y is the mBm

The goal of this subsection is to show that Theorem 6.2.1 holds in the particular case
where the process Y (see (6.10)) is the mBm X itself i.e. the function f is equal to
the identity. Namely, we will prove the following theorem.

Theorem 6.3.1. For every integer N > p + 1 and every function h € C;ol (R) one
sets

1
Q(h; pn,vn) = R h(X(s))ds (6.36)
Y
and
- 1 (Aayi N)2 Y
h; , =— : —h(X;n). (637
Q(h:pn.vN) Now — i) ,-Ej%,:v,w) C(/N)N 2N (Xin). (6.37)

Then there is a constant ¢ > 0, such that one has for each N > p + 1,
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E {)@(h;;m, vy) — Q(hi pn, VN)‘} < c(N(vN - ;LN))H/Z. (6.38)

Remark 6.3.1. This theorem generalizes Proposition 1 in [22].

Let us explain the main intuitive ideas which lead to the estimator O (h; ity , vy ).

« First one approximates the integral (vy — iy )" f://: h(X(s)) ds by the Riemann
sum

(Noy =)™ D h(XG/N));
i€ _Z(UN.VN)

e Then one approximates the latter quantity by

(Aayi,N)2

—Var(AaY,,N)h(X(i/N));

(Noy —pn)) ™ D

i€ 7 (1N .vN)
* Finally, one approximates the latter quantity by O(h; ., vy) since X(i/N) ~
X, v and Var(A,X; y) ~ C(i/N)N2H0/N),

Upper bounds of the L!-norms of the successive approximation errors are given in
the following lemma.

Lemma 6.3.2. Leth € C 101 (R), then there exist four constants ci, ¢y, c3,¢4 > 0,
such that the following inequalities hold for every N > p + 1.

(i)

VN

! 1
heh 'N(vN—uN),.E A MG = [ norsnas

—1/2
< (N(VN - HN)) ; (6.39)
(ii)

1 { (AuXin)?

Fy = E '— iy
Ny — pun) Var(AaXin)

- 1}h(X(i/N))‘
i€ 7 (UN.VN)

—1/2
< Cz(N(vN - MN)) ; (6.40)

1 (AuXin)?

E;:=E )— A T
Ny — uy) Var(A, X n)

(h(Xiw) - h(X(i/N)))‘
i€ 7 (uN.VN)

—1/2
< a(Noy-pw) (6.41)
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(v)
_ ~ —-1/2
E, I=E{‘Q(h;/iN,UN)—Q(h;,bLN,UN)’} §C4(N(UN—,LLN)) , (6.42)

where

oG ) 1 DAy PO RTe)
TN,V e e ———— E— i, . .
NN Ny — uy) o Var(A.X i n) N

Proof of Theorem 6.3.1: This theorem is a straightforward consequence of Lemma
6.3.2 and the triangle inequality. Indeed, one has that

E{‘@(h:MN,UN)—Q(h:MN,VN)‘} < E+E+E3+Es < C(N(VN—MN))_1/2

where ¢ > 0 is a constant. O

Parts (i) and (iii) of Lemma 6.3.2 are not very difficult to obtain, this is why
we will not give their proofs. Part (iv) of the latter lemma is a consequence of the
following lemma proved in [29].

Lemma 6.3.3. There is a constant ¢ > 0 such that for everyi € {0,...,N—p—1}
one has,

Var(AuX;n) — C(i/N)N 2HUN| < clog(N)N~I72HE/N), (6.44)

Let us now focus on the proof of Part (ii) of Lemma 6.3.2; this proof relies on some
techniques which are more or less similar to those in [21,22]. First we need to give
some preliminary results. The following lemma is a classical result on centered 2-
dimensional Gaussian vectors, this is why we have omitted its proof.

Lemma 6.3.4. Let (Z,Z') be a centered 2-dimensional Gaussian vector and let us
assume that the variances of Z and Z' are both equal to the same quantity denoted
by v. Then, one has,

E {(Z2—v)(Z” —v)} =2 (Cov(Z,Z)))". (6.45)

Lemma 6.3.5. For every N > p + 1, let py : [un,vn] = R be an arbitrary
deterministic bounded function and let Xy (py) be the quantity defined as,

(Aan,N)2 .
In(pn) = — 2 1lon(j/N), (6.46)
NN je/%_VN){Var(AaX,,N) } N
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where 7 (jun,vN) is the set introduced in (6.21). Then, there is a constant ¢ > 0,
non depending on N and py, such that the inequality,

E{(Zx(on)’} = cllon 2N oy — ),

where |[pn |loo := SUPye(yy vy |ON (X)| holds for every N > p + 1.

In order to prove Lemma 6.3.5, we need the following technical proposition
which concerns the estimation of the correlation between the generalized increments
A X jn and A, X jr n; we refer to [27] for its proof.

Proposition 6.3.6. Assume that H(-) is a C*-function and M(a) > 3 (recall that
M(a) is the number of the vanishing moments of the sequence a). Then there is a
constant ¢ > 0 such that one has for any integer N > p + 1 big enough and each

J,j' €{0,....N—p—13},
— — 1
)COVV{AQXJ',N5 Aan’,N}) <c (m) s (647)

where

AdX N AdX N
\/Var{Aan,N} \/Var{AaYﬂ,N}

Proof of Lemma 6.3.5: One clearly has that

Corr{Aan,N, Aan/,N} =K

E{(Zn(on)’} = Y. onG/N)ov('/N)E

Ji'€ 7 (un wN)

(AQYJ'_N)Z _1 (Aayj’,N)z _1
Val‘(AQYj_N) Val‘(Aan/,N) .

Next it follows from Lemma 6.3.4 and Proposition 6.3.6 that

E{Eveon) =2 Y ovG/Npn (/N (Com(AK v AK i)
J5J'€ Z (un.vN)

! 2
< 261||PN||?)0 Z (m)

Jii'€ F (un vN)

e’} 1 2
<dalovll Y Z(1+|l|)

J€Z (un.vN) I=—00

<alpnllZNwy — pwn), (6.48)

where ¢; and ¢, are two constants which do not depend on N. O
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Lemma 6.3.7. For every N > p + 1, let py : [un,vn] — R be an arbitrary
bounded deterministic function that vanishes outside a dyadic interval of the form
[k2770 Ly 4y k'2790 Ly + jun], where Ly = vy — iy and where the integers
Jo, k and k' are arbitrary and satisfy jo > 0 and 0 < k < k' < 2J0. Then there
exists a constant ¢ > 0 which does not depend on N, k, k" and jo, such that for all
integers N > p + 1, and j, satisfying 2/0 < 2t < N Ly < 217 one has

E{(Zn(pn))*} < cllow 13K = k)2/1 7%, (6.49)
Proof of Lemma 6.3.7. Let . (k, k', jo, N) be the set of indices defined as,
Sk, k', jo, N)
- {i € F(un.vy) i € [(k20Ly + uy)N, (kK20 2y + uN)N]}.
One has,
Card(S (k. k', jo.N)) < N(k'— k)27 %y + 1 < 4(k' — k)27, (6.50)

where the last inequality follows from the fact that N.%y < 2/1*!. Using
the method which allowed us to obtain (6.48) and replacing _Z (un,vy) by
S (k,k', jo, N), one can show that,

E{(Zv(pon))*}

. . ~ ~ 2
=2 Y onG/Nen('/N) (Corr(AX iy, AuX jr )
Jj' €I (kK jo,N)

< cllon 13 (k" — k)27, (6.51)

where ¢ > 0 is a constant which does not depend on k, k', jo, N. O
We are now in position to prove Part (ii) of Lemma 6.3.2.

Proof of Part (ii) of Lemma 6.3.2: Let N > p + 1 be fixed. Observe that, with

probability 1, the function ¢ — h(X(¢)) belongs to C([uN, UN]), the space of

continuous functions over [y, vy]. By expanding it in the Schauder basis of this

space, one obtains that

oo 2/

h(X (1)) = Aogo(®) + 111 (1) + Y > Xjadpjx(0), (6.52)

j=0k=1

where 1o = h(X(un)), 21 = h(X(vy)), ¢ot) = (vy — )Ly, ¢i(t) = (t —
[/LN).,%_I, with &y = vy — UN,
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hu =275{on(x (2§ O+ ) - h(X(;]fr]fN + )

(G 2+ )

and

t
dixr(t) = 231/231?1/ (]1[<2k 22N 4 G0N ](S)

LN 2/ F1 2j 1
—1 s) | ds
EANEEIN D)
(6.53)

Observe that the series in (6.52) is, with probability 1, uniformly convergent in
[, vy]. Now let us show that there is a constant ¢ > 0 such that

E{A2+ A2} <c. (6.54)
and
E{X%,} < co7/UHmineion 1 HO) - for every j, k. (6.55)

By using the fact that b € C! (R) as well as the fact that all the moments of the
random variable || X [|oc := sup,¢[o 1 | X (s)] are finite, one gets,

Ehof* = E (kX)) <E (e(l 4+ 1X[0)¥) < 400, (656
Similarly, one can show that

E|A > < +o0. (6.57)

Combining (6.56) and (6.57), one obtains (6.54). Let us now show that (6.55) holds.

Using, the expression of A 4, the inequality (a + b)? < 2a* + 2b* foralla,b € R
and the triangle inequality one gets,

2k 2k
2% — ?
—h|l X ES f/\/ + UN

E|X;xl?

N\\

=E||2
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2k 2
h<X(2+1 fN"‘MN)) h(X( J+l$N+MN))
2k — 1 Zk 2

Thus, in view of (6.58), for proving (6.55), it suffices to show that there is a constant
¢ > 0 (which does not depend on N, j and k) such that one has,

2
2E

2
+2E } . (6.58)

¢ ’h( (2§ A MN)) h(X( /+1$N + MN))’2 < 2% minsequy wy) H(s)

(6.59)
and

B i (X (S +un ) ) = (X (G 2w )| < cartmmcin 10
(6.60)

We will only prove that (6.59) holds since (6.60) can be obtained in the same way.
By using the fact that i € Cllo ;(IR), the Mean Value Theorem and Cauchy-Schwarz
inequality, one has

2% — k 2
E | (X( T $N+uw)) h(X (2j+1$N+uN)))
<E (( | ( )|) ‘X (Zk Ly + )
< sup N N T KN
S€l=1X oo X o] 2+
)2
M 1/2 2k — 1
< (E (1 + 1X 1)) (E ‘X ( XL+ MN)

o’ N 172
—X( $N+MN) ) .

2j+1
On the other hand, standard computations (see e.g. [6]) allow to show that, there is
a constant ¢ > 0 (non depending on N) such that for all z, 7' € [y, vy], one has

2k
—-X (2j+1$1v + MN)

6.61)

E|X(t) — X(t)* < |t — t/|*™nscluy oy HE),
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Then the latter inequality, the equivalence of the Gaussian moments and (6.61)
implies that (6.59) holds; recall that (6.60) can be obtained in the same way. Next
combining (6.58) with (6.59) and (6.60) one gets (6.55).

Now observe that (6.52) and (6.46), entail that

- .
> AaXin)” U yxvy
i€ 7 (un.vN) Var(AaXi,N)
co 2
= 20ZN(po) + L EN(B1) + D) A En (i) (6.62)
j=0k=1

Also observe that by using the triangle inequality, Cauchy-Schwarz inequality,
Lemma 6.3.5, (6.54) and the fact that ||¢o|lcc = ||P1llcc = 1, one gets that there
is a constant ¢ > 0 such that for all N,

E |20 Zn(d0) + 211 Zn (@) < E|AoZy(¢0)| + E |21 Zw (¢1)]
< (E ’A0‘2)1/2(E ’EN(QSO)‘Z)
+(E ’A,] ’2)1/2(E ’EN(¢1)’2)

< c(Nwy — ). (6.63)

1/2

1/2

Thus in view of (6.62) and (6.63), in order to finish our proof, it remains to show
that there exists a constant ¢ > 0 such that for all N > p 4+ 1, one has,

oo 2/

E‘ Z Z/\j,kEN (@j0)| < c(N(wy — pun)) (6.64)

j=0k=1
Let j; > 1 be the unique integer such that
2N < Ngy <2/t

It follows from the triangle inequality, Cauchy-Schwarz inequality, (6.55), the fact
that for all j, k,

1 k
supp @k < [2—]$N + Un, EXN + MN], (6.65)

and Lemma 6.3.7 in which one takes jo = j, that
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g1 27

E } > Zf\j,kzzv(fi’j,k)‘

j=0k=1

12/

<33 (Eru?) (B 1m@0P)

j=0k=1

1/2

Un i i N2
<c Z Z 9 —j(I+2minsepy vy H(s))/z(”ﬁbj.k”go(k — (k- 1))211*1)

j=0k=1

g1 2
=c Z Z gt minsepy oyl HEDH1/2 g o (6.66)
j=0k=1

where ¢ > 0 is a constant. Then using (6.66), the fact that [|¢;«|lcc < 27/2, the
inequalities mingepyy vy] H () > mingejo1; H(s) > 1/2 and 2/1 < N %y, one gets
that

j1o 27 j1o27

E ‘ DBP BRIV (¢j.k)) ¢ Y oz mincyy ) HOI /2

j=0k=1 j=0k=1

IA

+o00
C2jl/2 Z 2](]/2_min56[/tN.vN] H(s))
j=0

cit(N(vy — pun))'/2, (6.67)

IA

IA

where ¢; = ¢ Zj:é 2/(1/2=minscio) H$) < 400, Let us now show that there is a
constant ¢, > 0 non depending on j; and N, such that

00 2/

El 3 D 2uEv@i)] = 2Ny — uy)2 (6.68)

J=ji+1 k=1

First observe that, for every fixed (j, k), (6.65) and the inequalities =) <2l <
(N%y)"" imply that there is at most one index i € _#(uy,vy) such that
¢k (i/N) # 0. Therefore, in view of (6.46), one has

(Aayi.N)2 1>2

SN2 12 v .
E1Zn (0" = ll¢jxllsE (Var(AaYi,N)

(6.69)
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- 2
s . /2 (AXin)? ) _ 2 _1)2
Then noticing that ||¢; x|lcc < 2//* and that E (Var(AaY,;N) 1) =E (Z 1) ,

where Z is a standard Gaussian random variable. It follows that
E|Zy($x)|* < c2/, (6.70)

where ¢ > 0 is a constant non depending on N, j and k. Now, for every fixed
J = ji + 1, let us denote by .%; y the set of indices k € {0, ...,2/} defined as

%,Nz{ke{l,...,zf}:aie/(uN,vN) such that ¢>,»,k(i/N)7éo}.

Observe that when k ¢ % y then foreveryi € # (uuy,vy),onehas ¢;x(i/N) =
0 and as a consequence,

En(pjx) = 0. (6.71)

On the other hand, by using (6.65) and the fact that for all k and k' satisfying k # k’,
one has

k—1 k k' —1 k'
(2j $N+MN,i$N+MN)ﬂ( 5 $N+MN,E$N+MN)=@,

it follows that
Card(%; y) < Card 7 (un,vn) < 2N(vy — un). (6.72)

Next it follows from, (6.71), the triangle inequality, Cauchy-Schwarz inequal-
ity, (6.55), (6.70), (6.72), and the inequalities mingejo.1] H(s) > 1/2, 270 <
2(N Zy)7!, that

+oo 2/

El 3 Y husv@in)|

j=h+lk=1

=3 Y ®@nr) (EBimee0r)”

J=h+1kedt)y

+o00
<c Y Y arsHzmincpy ) HO)29)02
J=h+1lkeXx;n
+o00
<2cN(y — un) Z 9—J minsepo.1 H(s)
J=h

2 —Jjimingejo.1] H(s)

= ZCN(UN - //LN) 1— 2*minse[o,1] H(s)
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< C/(NXN)lfminsE[O.l] H(s)

< (Nwy —pun)"?, (6.73)

where the constant ¢/ = 4c(1 — 2 Minsepo.y H(S))fl and thus we obtain (6.68).
Moreover combining (6.68) with (6.67) one gets (6.64).

Finally, Part (ii) of Lemma 6.3.2 results from (6.62), (6.63) and (6.64). O

6.3.2 Proof of Theorem 6.2.1 When Y is Arbitrary

We need the following lemmas.

Lemma 6.3.8. Forall N > p+1landj €{0,...,N — p — 1}, one sets
ejn =AY v — [/(X;jN)AuX jn and €y = h(Y jn) — h(f(X ;).

Then for all real k > 1 there exists a constant ¢ = c(k) > 0, such that the
inequalities,

E{lejn[*} < cNTHUNK and B¢/, ¥} < ¢ NTHUINK,

hold for every N > p+1land j €{0,...,N — p —1}.

Proof of Lemma 6.3.8: The first inequality can be obtained similarly to Relation
(34) in [22], by using a second order Taylor expansion for f. The second inequality
follows from the regularity properties of f and 4 and its proof is very close to that
of Relation (35) in [22]. O

Lemma 6.3.9. Forall N > p + 1, one sets

(ef,zv + ZAan,Nf/(Yj,N)equ)
C(j/NIN=HG

h(Y jn)

1
(1) § :
eN = ———----
Ny = pv) JE€Z (un.vN)

and 5
(Aan,N f’(Yj,N)) /

@ _ 1 .
C(j/NYN =AU =2

N Ny — )

JE€Z (N vN)

Then there is a constant ¢ > 0, such that the inequality
E {lefl} +E {lefl} < eN72,

holds for every N > p + 1.
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Proof of Lemma 6.3.9. The lemma can be obtained by using Lemmas 6.3.8, 6.3.3
and standard computations. O

Lemma 6.3.10. For every function h € Cp]()l (R) one has

V(h: v vw) = Q((f)? x ho frpn.vw).

Moreover, for each N > p + 1 one has

V(hi gy vw) = O((f)2 x ho fipun. o) + el + e

Proof of Lemma 6.3.10: The lemma can be obtained by using standard

computations. O
We are now in position to prove Theorem 6.2.1.

Proof of Theorem 6.2.1: We use Lemmas 6.3.8, 6.3.9 and 6.3.10 as well as Theorem

6.3.1 and we follow the same lines as in the proof of Theorem 3 in [22]. |

6.3.3 Proof of Theorem 6.2.2

Theorem 6.2.2 is a straightforward consequence of Theorem 6.2.1 and the following
proposition which allows to control the L'(£2) norm of the error one makes when
one replaces the estimator V (h; uy, , va,) by the estimator V (h; iy, , vy, )-

Proposition 6.3.11. For any n big enough one sets

2maxs€[p.N’ N, | H(s)

V(Ny.my) = (N7V2 4 m112) (1 +m;'N, * )

Recall that m, has been defined in (6.12). Let us assume that (6.25) is satisfied.
Then there exists a constant ¢ > 0 such that for any n big enough, one has

E ”17(}1; wn,»v,) — V (hi iy, . v,)

} < cv(Nyomy) = 6NV (6.74)

The proposition can be obtained similarly to Proposition 2 in [22]. O

6.4 Estimation of the Unknown Parameter in the Linear Case

The goal of this section is to prove Theorem 6.2.4. One needs the following two
lemmas. We will not give the proof of the first lemma since it is not difficult.
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Lemma 6.4.1. Assume that (in,)n and (vn,), are two convergent sequences.
Then, when n goes to infinity, the random variable Ty, := (vN,—tn,)” va" Y(s)ds
almost surely converges to an almost surely strictly positive random varlab eT.

Lemma 6.4.2. Assume that (6.25) holds. Then the sequence

VNn

1 ~ 1
- - Yin, _—/ Y(s)ds
Nn(an - I’LNH) Z o VN, = KN, Jpu ( )

i€ 7 (1N, VNy) N "

converges to 0 in L' (2, .F,P) with the rate (N, (vy, — jtn,)) /> when n goes to
infinity. Note that in this lemma we do not necessarily suppose that @ is of the form

d(x,0) = Ox.
Proof of Lemma 6.4.2: It follows from (6.11) that for any n big enough one has

VN,

]E ‘(Nn (an - /"LNH))_I Z ?ilelv’I - (an - /"LNH)_] Y(S) ds‘
i€_Z (N, VN, Hen
< M, + O((Ny(vx, — i) 7"). (6.75)
where .
Mn = Z E ‘?i,N,,,n —7,3/\/" ‘ (676)

Nn(an - I’LN") i€_7 (LN, VN,

Next Cauchy-Schwarz inequality, a result similar to Part (ii) of Lemma 7 in [20],
(6.25), the inequalities 0 < vy, — un, < 1 and the fact that H(-) is with values in
(1/2, 1), imply that for all n big enough,

Mnf— Z\/E(IYZN" _Yan|)

Ny(vy, — “N" e/(/uvn )
_ — maxye vy, | H(s) _
= O(m,'?) = o(N, ") = G((Nu(w, = un,)) ™). 677)
Finally putting together (6.75), (6.76) and (6.77), one obtains the lemma. O

We are now in position to prove Theorem 6.2.4.
Proof of Theorem 6.2.4: Let us set

VNn
Ty, = (v, — iin,) " / Y(s)ds, (6.78)
KNy
Ty= Ny, =)™ Y Yina (6.79)
iej(MN)z‘VN)z)

uy = V(L. vn,) — V(L ey, . vw, ), (6.80)
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and o
o =T, —1n,. (6.81)

Moreover, observe that (6.2), (6.15), the fact that @(x,0) = 6x, and (6.78) imply
that

VN,
V(1; pn, . vy,) = 40*(vy, — in,) " / Y(s)ds = 46°Ty, . (6.82)

KN

Then it follows from (6.34), (6.78), (6.79), (6.80), (6.81) and (6.82) that

~ u, — 4602y,
GZ(MN,,, vy, ) — 0> = = i

= - (6.83)
4Tn, + 4v,

Therefore, one has for any real A > 1 and any integer n big enough

P (Vo (v, = 1y, ) 2182, v,) = 0] > 1)

< p (| Ralon = )" 2y — 467,
- 4Ty, + 4v,

> )L} n {TN” > /1_'/2}

N v < 4—'/\—'/2})
—HP(TN” < 1—1/2) + P(|v,,| > 4—11—1/2)
= P((Na (v, = )ty — 4620, > 3272
+IP<TN" < )rl/z) n ]P’(|v,1| > 4*11*1/2).
Next the latter inequality, (6.78), (6.79), (6.80), (6.81), Theorem 6.2.2, Lemma 6.4.2

and Markov inequality, imply that there is a constant ¢ > 0 such that for all real
A > 1, one has

lim sup IP((N” (v, — Un, ))]/2

n—-+o00

02w, o)) — 0% > 2)
<37 lep302 —i—P(T < /171/2), 6.3

where T := lim,— 4o Tn,. Thus, it follows from (6.35), (6.84), (6.78) and Lemma
6.4.1, that Theorem 6.2.4 holds. O

6.5 Histograms of the Estimated Values

We have tested our estimator of 62 on simulated data and our numerical results are
summarized in the following two histograms:
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Histogram of estimator of theta®=100
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Histogram of estimator of theta®=0.01
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To obtain the first histogram, we have proceeded as follows: we assume that
6 = 10 and H(s) = (s — 0.5)> + 0.6 for all s € [0, 1], then we simulate 1000
discretized trajectories of the process { Z()};c[o.1], finally we apply our estimator to
each trajectory which gives us 1000 estimations of #2. The second histogram has
been obtained by using a similar method; H(-) is defined in the same way, yet in
this case we assume that 8 = 0.1.

Acknowledgements The authors are thankful to the anonymous referee for valuable comments
which have helped them to improve the earlier version of their paper.
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Chapter 7
Two-Sided Estimates for Distribution Densities
in Models with Jumps

Archil Gulisashvili and Josep Vives*

Abstract The present paper is devoted to applications of mathematical analysis
to the study of distribution densities arising in stochastic stock price models.
We consider uncorrelated Stein-Stein, Heston, and Hull-White models and their
perturbations by compound Poisson processes with jump amplitudes distributed
according to a double exponential law. Similar perturbations of the Black-Scholes
model were studied by S. Kou. For perturbed models, we obtain two-sided estimates
for the stock price distribution density and compare the rate of decay of this density
in the original and the perturbed model. It is shown that if the value of the parameter,
characterizing the rate of decay of the right tail of the double exponential law, is
small, then the stock price density in the perturbed model decays slower than the
density in the original model. On the other hand, if the value of this parameter
is large, then there are no significant changes in the behavior of the stock price
distribution density.

7.1 Introduction

In this paper, we use methods of mathematical analysis to find two-sided estimates
for the distribution density of the stock price in stochastic models with jumps. We
consider perturbations of the Hull-White, the Stein-Stein, and the Heston models
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by compound Poisson processes. In these models, the volatility processes are a
geometric Brownian motion, the absolute value of an Ornstein-Uhlenbeck process,
and a Cox-Ingersoll-Ross process, respectively. For more information on stochastic
volatility models, see [S] and [7].

A stock price model with stochastic volatility is called uncorrelated if standard
Brownian motions driving the stock price equation and the volatility equation are
independent. In [8, 10], and [11], sharp asymptotic formulas were found for the
distribution density of the stock price in uncorrelated Hull-White, Stein-Stein, and
Heston models. Various applications of these formulas were given in [9] and [12].
The results obtained in [10] and [11] will be used in the present paper.

It is known that the stock price distribution density in an uncorrelated stochastic
volatility model possesses a certain structural symmetry (see formula (7.14) below).
This implies a similar symmetry in the Black-Scholes implied volatility, which does
not explain the volatility skew observed in practice. To improve the performance
of an uncorrelated model, one can either assume that the stock price process and
the volatility process are correlated, or add a jump component to the stock price
equation or to the volatility equation. The stock price distribution in the resulting
model fits the empirical stock price distribution better than in the uncorrelated
case. However, passing to a correlated model or adding a jump component may
sometimes lead to similar effects or may have different consequences (see e.g. [1]
and [2]). Examples of stock price models with jumps can be found in [3, 17], and
[18]. We refer the reader to [4] for more information about stock price models with
jumps. An interesting discussion of the effect of adding jumps to the Heston model
in contained in [16].

An important jump-diffusion model was introduced and studied by Kou in [17]
and by Kou and Wang in [18]. This model can be described as a perturbation of
the Black-Scholes model by a compound Poisson process with double-exponential
law for the jump amplitudes. In the present paper, we consider similar perturbations
of stochastic volatility models. Our main goal is to determine whether significant
changes may occur in the tail behavior of the stock price distribution after such
a perturbation. We show that the answer depends on the relations between the
parameters defining the original model and the characteristics of the jump process.
For instance, no significant changes occur in the behavior of the distribution density
of the stock price in a perturbed Heston or Stein-Stein model if the value of the
parameter characterizing the right tail of the double exponential law is large. On the
other hand, if this value is small, then the distribution density of the stock price in
the perturbed model decreases slower than in the original model. For the Hull-White
model, there are no significant changes in the tail behavior of the stock price density,
since this density decays extremely slowly.

We will next briefly overview the structure of the present paper. In Sect. 7.2, we
describe classical stochastic volatility models and their perturbations by a compound
Poisson process. In Sect. 7.3 we formulate the main results of the paper and discuss
what follows from them. Finally, in Sect. 7.4, we prove the theorems formulated in
Sect.7.3.
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7.2 Preliminaries

In the present paper, we consider perturbations of uncorrelated Stein-Stein, Heston,
and Hull-White models by compound Poisson processes. Our goal is to determine
whether the behavior of the stock price distribution density in the original models
changes after such a perturbation.

The stock price process X and the volatility process Y in the Stein-Stein model
satisfy the following system of stochastic differential equations:

dX; = uX,dt + |Y;| X, d W, 7.1)
dY,=q(m-Y,)dt +o0dZ,. '
This model was introduced and studied in [20]. The process Y, solving the second
equation in (7.1), is called an Ornstein-Uhlenbeck process. We assume that ¢ € R,
q>0,m>0,ando > 0.
The Heston model was developed in [14]. In this model, the processes X and Y
satisfy
dX, = pX,dt + JY, X, dW,

2
dY, =q(m—Y,)dt + ¢JY,dZ;, (-2

where © € R, ¢ > 0, m > 0, and ¢ > 0. The volatility equation in (7.2) is uniquely
solvable in the strong sense, and the solution Y is a non-negative stochastic process.
This process is called a Cox-Ingersoll-Ross process.

The stock price process X and the volatility process Y in the Hull-White model
are determined from the following system of stochastic differential equations:

dX; = puX.dt + Y, X,dW, (7.3)

dY; =vYidt + £Y,dZ;. '
In (7.3), 0 € R, v € R, and § > 0. The Hull-White model was introduced in [15].
The volatility process in this model is a geometric Brownian motion.

It will be assumed throughout the paper that standard Brownian motions W and
Z in (7.1), (7.2), and (7.3) are independent. The initial conditions for the processes
X and Y will be denoted by xy and yy, respectively.

We will next discuss perturbations of the models defined above by a compound
Poisson process with jump amplitudes distributed according to a double exponential
law. Perturbations of the Black-Scholes model by such jump processes were studied
by Kou in [17] and by Kou and Wang in [18]. Some of the methods developed in
[17] will be used in the present paper.

Let N be a standard Poisson process with intensity A > 0, and consider a
compound Poisson process defined by

N
Ji=) (Vi—=1), =0, (7.4)

i=1
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where V; are positive identically distributed random variables such that the distribu-
tion density f of U; = log V; is double exponential, that is,

fu) = pnie” " g0y + gnae™ Ny, oy, (7.5)

where n; > 1, 7, > 0, and p and ¢ are positive numbers such that p + g = 1.
Recall that condition 1; > 1 is necessary and sufficient to guarantee that J has
finite expectation.

Consider the following stochastic volatility models with jumps:

dX, = puX,_dt + Y| X,—dW, + X,_dJ,
(7.6)
dY,=qm-Y,)dt +odZ,
(the perturbed Stein-Stein model),
dY; = /.LY[_dZ + \/Ttyt_du/[ + Y[-d.][
(71.7)
dY, = q(m—Y)dt +c/Y,dZ,
(the perturbed Heston model), and
dYt = VY[dt + SY[dZ[ '

(the perturbed Hull-White model). It is assumed in (7.6), (7.7), and (7.8) that the
compound Poisson process J is independent of standard Brownian motions W
and Z.

We will next formulate several results of Gulisashvili and Stein.

Let D, be the distribution density of the stock price price X, for a fixed¢ > 0. For
the uncorrelated Heston model, there exist constants A > 0, 4, > 0, and A3 > 2
such that

D,(x) = A (log x) it gAa/loew y—3 (1 10 ((1ogx)—%)) (1.9)

as x — oo (see [11]). For the uncorrelated Stein-Stein model, there exist constants
By > 0, B, > 0, and B3 > 2 such that

D, (x) = B (log x)~ 2 eB2v/oev =B (1 +0 ((1ogx)—%)) (7.10)

as x — oo (see [11]). Finally, in the case of the uncorrelated Hull-White model,
there exist constants b; > 0, b, and b3 such that following formula holds (see [10]
and also Theorem 4.1 in [11]):
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2 b1 b3
D;(x) = bjx “(logx) 7 (loglogx)™
2
1 ) 1 [2logx +11 ) 1 [2logx
expy—=—— | log | —4/ —loglog | —
P 2[52 & Yo t 2 8108 Yo t

(1 ) ((1oglogx)—%)) (7.11)

as x — o0o. The constants in formulas (7.9), (7.10), and (7.11) depend on ¢ and on
the model parameters. Explicit expressions for these constants can be found in [10]
and [11]. The constants A3 and Bj, appearing in (7.9) and (7.10), describe the rate
of the power-type decay of the stock price distribution density in the Heston and
the Stein-Stein model, respectively. The explicit formulas for these constants are as
follows:

3 J8C +t¢ t 4
Ay==—4+—~—"— with C=—(¢*>+—=r2), 7.12
ot M 2¢2 (q +t2r"z) 712
and
3 J8G +1 | t (., 1,
33:§+2—\/; with Gzﬁ(q +t—2rq, . (7.13)

In (7.12) and (7.13), ry denotes the smallest positive root of the entire function

ZH> zcosz + ssinz.

Formulas (7.12) and (7.13) can be found in [11].
It is known that the distribution density D; in uncorrelated stochastic volatility
models satisfies the following symmetry condition:

3 2
(Xoew) D, ((XOeW) ) =D,(x), x>0, (7.14)
X X

(see Sect. 2 in [11]). This condition shows that the asymptotic behavior of the stock
price distribution density near zero is completely determined by its behavior near
infinity.

7.3 Main Results

The following theorems concern the tail behavior of the stock price distribution
density in perturbed uncorrelated Stein-Stein, Heston, and Hull-White models:

Theorem 7.1. Let & > 0. Then there exist ¢y > 0, c > 0,and x; > 1 such that the
following estimates hold for the distribution density Dt of the stock price X ¢ in the
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perturbed Heston model:

1 1 ~ 1 1
€1 (E + x1+’“) =Dix) = (xA3s + x1+ms) (7.15)

for all x > x;. The constants ¢, and x| in formula (7.15) depend on &, while the
constant c¢; does not. The constant Az in (7.15) is given by (7.12). It depends on t
and the model parameters.

Theorem 7.2. Let & > 0. Then there exist ¢z > 0, ¢4 > 0, and x5 € (0, 1) such that
the following estimates hold for the distribution density D, of the stock price X, in
the perturbed Heston model:

ey (xB7 4 X7l < D, (x) < ¢4 (xB737F 4 xmI7E) (7.16)

forall0 < x < x,. Here Ajs is the same as in Theorem 7.1. The constants ¢4 and X,
in (7.16) depend on ¢, while the constant c3 does not.

Theorem 7.3. Let ¢ > 0. Then there exist cs5 > 0, Co > 0,and x3 > 1 such that the
following estimates hold for the distribution density Dt of the stock price X ¢ in the
perturbed Stein-Stein model:

1 1 1 1
Cs (X& + m) < D (x) < C6( - + W) (7.17)

for all x > x3. The constant Bz in (7.17) depends on t and the model parameters
and is given by (7.13). The constants c¢ and x3 in (7.17) depend on &, while the
constant c5 does not.

Theorem 7.4. Let ¢ > 0. Then there exist c; > 0, cg > %and x4 €(0,1) suclLthat
the following estimates hold for the distribution density D, of the stock price X; in
the perturbed Stein-Stein model:

c7 (xB77 4 xm7l) < D,(x) <3 B (7.18)

forall 0 < x < x4. Here Bj is the same as in Theorem 7.3. The constants cg and x4
in (7.18) depend on ¢, while the constant c7 does not.

Remark 7.1. Theorem 7.1 is also true for the stock price distribution density in a
perturbed correlated Heston model (see [13]). This generalization of Theorem 1 is
used in [13] to characterize the asymptotic behavior of the implied volatility for
large and small strikes in the case of a perturbed Heston model.

We will prove Theorems 7.1-7.4 in Sect. 7.4. In the remaining part of the present
section, we compare the tail behavior of the stock price distribution density before
and after perturbation of the model by a compound Poisson process.

Let us begin with the Heston model. It follows from Theorem 7.1 thatif 1 +n; <
Az, then
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C1 = 2
puE= < Di(x) = P Em—
for large enough values of x. Therefore, formula (7.9) shows that that if the
condition 1 + n; < Aj holds, then the tail of the distribution of the stock price
in the perturbed Heston model is heavier than in the original model.
On the other hand, if 1 + n; > Aj, then Theorem 7.1 implies the following
estimate:

¢ ~
— < <
P D;(x) <

xA37£

for large enough values of x. Now formula (7.9) shows that if 1 + n; > Aj, then
there are no significant changes in the tail behavior of the distribution density of
the stock price after perturbation. Similar assertions hold for the Stein-Stein model.
This can be established using Theorem 7.3 and formula (7.10).

Next, suppose x — 0. Then we can compare the behavior of the distribution
density of the stock price in unperturbed and perturbed models, taking into account
Theorem 7.2, Theorem 7.4, formula (7.9), formula (7.10), and the symmetry
condition (7.14). For instance, if 1, < A3 — 2 in the perturbed Heston model, then

Gxml < 5,()6) < GqxMTl=E
for small enough values of x. On the other hand if 17, > A3 — 2, then
Gx B3 < 5,(}6) < Gyx3e

for small enough values of x. Similar results hold for the Stein-Stein model.

Remark 7.2. For the Hull-White model, there are no significant changes in the tail
behavior of the stock price distribution after perturbation. This statement follows
from the assumption 7; > 1 and from the fact that the stock price density in the
unperturbed Hull-White model decays like x 72 (see formula (7.11)).

7.4 Proofs of the Main Results

The proofs of Theorems 7.1-7.4 are based on an explicit formula for the distribution
density D, of the stock price X, in perturbed Heston, Stein-Stein, and Hull-White
models (see formula (7.22) below). Note that the stock price process X in the
perturbed Stein-Stein and Hull-White models is given by

1 [ s ! Ni
ut—E/Osts-l—/ostWs+ZU,-

i=1

X, = xpexp , (7.19)
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while for the perturbed for Heston model we have

(7.20)

~ 1 ?
thxoexpgut—zfo sts+/ \/_dW+ZU

i=1

Formulas (7.19) and (7.20) can be established using the Doléans-Dade formula (see,
for example, [19]). Put 7; = ZIN;I U; and denote by p, its probability distribution.
Clearly, we have:

o(A) = modul ) + 3, | rrodn (721)

n=1

where 1y = e, 7, = e M (n!)"'(A1)" forn > 1, A is a Borel subset of R, and
f is given by (7.5). The star in (7.21) denotes the convolution.

The distribution density D, of the stock price X, in uncorrelated models of our
interest is related to the law of the following random variable:

1 :
o = {—/ Ys.zds}
t)y !

for the Stein-Stein and the Hull-White model, and

R
o = {—/ YSdS}
t Jo

for the Heston model (see [10] and [11]). The distribution density of the random
variable ¢, is called the mixing distribution density and is denoted by m,. We refer
the reader to [10, 11], and [20] for more information on the mixing distribution
density.

The next lemma establishes a relation between the mixing distribution density
m, in the uncorrelated model and the distribution density D ¢ of the stock price X ¢
in the corresponding perturbed model.

Lemma 7.1. The density ’5, in perturbed Stein-Stein, Heston and Hull-White
models is given by the following formula:

2

1 *® o0 (log ﬁ + tyT —u)? dy

< CXpy— - du) | m iy
2mwtx /o [OO p 21y2 we(du) ((y) )

Di(x) =

where m; is the mixing distribution density and |, is defined by (7.21).

Proof. We will prove Lemma 7.1 for the Heston model. The proof for the Stein-
Stein and the Hull-White model is similar. For the latter models, we use formula
(7.19) instead of formula (7.20).
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For any n > 0, formula (7.20) gives

t
P(ern)ﬂ”[/ \/stWs—FTtS]ngn +Zi}

2
(z—u)?
= - du)dz,
N r e P

7] ra? x ra?

where z, = log -+ 7 Making the substitution z = log P + - we
obtain

(log 5 + 4 — dx

P X < exp | — e du)—

t ’) //oo\/ wtoy P 2ta? H( )x

2

B /n/OO/‘X’ exp _(log —xoim + tyT —u)? o (du) m,(y) dx
0 Jo J-o 2ty? A2 ty X
It is clear that the previous equality implies Lemma 7.1. O

Remark 7.3. It follows from Lemma 7.1 that

_ oo log X — u)?
Bi(x) = W%/ emdu)/ mi(y) pg_w_ﬁ}@_

2ty? 8
(7.22)
This representation will be used below to obtain two-sided estimates for the
distribution density of the stock price in perturbed stochastic volatility models.

The next lemma will be needed in the proof of Theorem 7.1.
Lemma 7.2. Let f be the density of the double exponential law (see formula (7.5)).
Then for every n > 1, the following formula holds:

Y T
f*(n)(u) =e M Z Pn,knlf (k — 1)'uk ]H{LlZO}
k=1

n 1 -
+ ey Ol = (—)* <oy (7.23)
k=1 :

where

P, = S n—k—1 n ( m )ik ( 2 )”i i n—i
n'k_l.:k i—k i) \m+m m+m P
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foralll <k <n-—1,and

n’k_l,=k i—k i N+ m N+ n2 P

forall1 <k <n—1.Inaddition, P,,, = p" and Qn,, = q".

Lemma 7.2 can be established using Proposition B.1 in [17] and taking into
account simple properties of the exponential distribution.
The next statement follows from Lemma 7.2 and formula (7.21):

Lemma 7.3. For every Borel set A C R,

we(A) = nOSO(A)+/ Gl(u)e*”‘“du—k/ Gyr(w)e™ du, (7.24)
AN[0,00) AN(—00,0)
where
[} k+1 [}
Gi(u) = Z[ > nkH} : (7.25)
k=0 ! n=k-+1
and

00 k+1 00
Gz(u)=Z|: - anml] w". (7.26)

k=0 n=k+1
Our next goal is to estimate the rate of growth of the functions G, and G, defined
by (7.25) and (7.26).

Lemma 7.4. For every ¢ > 0 the function G| grows slower than the function u
e as u — oo. Similarly, the function G, grows slower than the function u +— e™*"
asu — —oo.

Proof. We will prove the lemma by comparing the Taylor coefficients

k 1
+ E Tty nk-l—l, k>0,
n=k+1

of the function G and the Taylor coefficients by = %sk .k > 0, of the function e®.
We have a; < by for k > k. The previous inequality can be established using the

estimate
o0
k+1 k+1
Z Ty nk+1 =n Z Ty,

n=k+1 n=k+1

and taking into account the fast decay of the complementary distribution function
of the Poisson distribution.

This completes the proof of Lemma 7.4 for the function G;. The proof for the
function G, is similar. O
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The following lemma was obtained in [11] (formula (54)):

Lemma 7.5. Let m, be the mixing distribution density in the Heston model. Then
there exist constants Hy > 0 and H, > 0, depending on the model parameters, such

that
00 2 t
/ ml‘(y) eXp _ w + y dy
0 y 2Zy2 8
= Hla)_%"’%quz‘/aexp _VsCxt ta)
2Vt

(1+0( )

as w — o0o. The constant C in the previous formula is given by (7.12).

In the following subsections we present the detailed proofs of Theorems 7.1 and
7.2. We do not include the proofs of Theorems 7.3 and 7.4, because these theorems
can be established exactly as Theorems 7.1 and 7.2.

7.4.1 Proof of the Estimate from Below in Theorem 7.1

We will use formula (7.22) in the proof. Put z =

D) = VW;/ euz(du)/ el p{—(z_”)z—ﬁ}dy.

2ty? 8
(7.27)
Note that for the uncorrelated Heston model the following formula holds:
I 2 t 2
Di(x) = Y06 / m(y) pl- L DLy, (7.28)
V2rix? 2ty 8

(see [11]).
Let p be any increasing function of z such that p(z) < z and z — p(z) — oo as
z — 00. Assume 7 is large enough. Then (7.27) gives

D,(x) = I + b, (7.29)
where
ut p(2) ; [} _ 2 2
/= «/xoe 2/ eiut(du)/ mr_(y)exp{_u_L} dy (1.30)
2 0 y 2ty? 8
and
Yoel? z+1 u © m Z—u 2 ¢ 2
I — —VZOI/ ezut(du)/ %exp{—(m} —%} dy. (131)
AVLTIX2 Jz 0
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Throughout the remaining part of the section, we will denote by « a positive
constant which may differ from line to line. Since the function G, is increasing on
(0, 00) and (7.24) and (7.25) hold, we have

o, o0 1 ty?
I, > le_%/ eie_’“”du/ mi(y) exp{— > dy, x> xi.
2 o ¥ 2ty 8

1
It is known that / y~'m;(y)dy < oo (see [11]). Therefore, the second integral in
0

the previous estimate converges. It follows that
3 2+l u
L >ax" 2 / ere Midy = gx~ ™M
Z

for x > x. It is not hard to see using the inequality D, (x) > I, that the estimate
from below in (7.15) holds in the case where 1 4+ n; < As3.

It remains to prove the estimate from below under the assumption 1 + n; > Aj.
We will use the inequality D;(x) > I, in the proof. To estimate I; we notice that
z—u > z—p(z) = oo as x — o0o. Therefore, Lemma 7.5 can be applied to estimate
the second integral on the right-hand side of (7.30). This gives

O 3 qm «/8C
1

Plw

I > ax™

Since the function G; is increasing on (0, co) and the function

34 gm
y > y_Z"‘fz'e/‘bﬁ

is eventually increasing, the previous inequality gives

_3 p(z) u \/8C+t
Iy > ax™ 2 e2e Mlexpq ———
1

i (Z—u)} du

p(2)
=ax / exp{(As —1—mny)u}du.
1

Here we used the equality A3 = 3 + = 8C+ (see (7.12)). Since A3 < 1 + n; we get

Iy > ax~, x > x;. This establlshes the estimate from below in Theorem 7.1 in
the case where A3 < 1 + 7.
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7.4.2 Proof of the Estimate from Above in Theorem 7.1

Let ¢ be a sufficiently small positive number. Denote by A, (z,u) the following
integral:

/Wmmo { c-w’ 1
exp 4y — dy,
0

y 202 8

Then formula (7.27) can be rewritten as follows:
~ Vv xpett /
D,(x eZA U du)=J1+ J» + J3, 7.32
((x) = Wt (zwpu(du) =J1 + 2+ J3 (7.32)

where

Ji =

V“”l/ e Ay (dw).

J>

=V””l/ et At (du),

and

t o0
Jy = X 8 Ay ().
x/2_7TZX7 sz
The number s in the previous equalities satisfies 0 < s < 1. The value of s will be
chosen below.
To estimate J,, we notice that if x is large, then z — u in the expression for J; is
also large. Using Lemma 7.3 and Lemma 7.5, we see that

sz m
s 2 a0+ e [ elGie e - E o
0
. s/SC—i—Z( W oa
Xpy————F—@&@—u u
p NG

_3yam .
Since the functions G(y) and y + y it a2 ey grow slower than the function

y = exp {% y} (see Lemma 7.4), the previous inequality and formula (7.9) imply

that
Sz 1
J2 Sozx*/““—i—ax*%/ exp{(——m + f) u}
0 2 2

exp{ (—% + %) (Z—M)} du
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X z
<oax BT gyt / exp{(As —1—n)uldu
0

1 1
<a (xAs_g + —x1+m—€) (7.33)

for x > xj.
The function A; is bounded (this has already been established in the previous
part of the proof). Therefore,

o0
Jy <ax": / Gy (we ""du. (7.34)
Sz

Since the function G;(u) grows slower than the function y + exp {Cu} for any
¢ > 0 (see Lemma 7.4), estimate (7.34) implies that

J3 < ozx_%"”(%ﬂ_’“), X > Xj.

Now using the fact that ¢ can be any close to 0 and s any close to 1, we see that

1
J3 <

_am, X > Xi. (735)

We will next estimate J;. It follows from Lemma 7.3 that

0_
Ji=ax”? / e? A(z, u)Gr(w)e™ d u.

—00

Since u < 0, we see that z — u is large if x is large. Using Lemma 7.5, we obtain

07
3 _349m
_]1 <ax 2 / 6%(2— u) 4+62 eHz«/Z*u

—00

(z—u)

/8
exp { - Sl Ga(u)e™ du. (7.36)

2Vt

_34am . . . .
The function y + y RN VAT eventually increasing. Moreover, it grows

slower than e3”. Since z — u > zin (7.36), we have

5 (7 V8C +t e
Ji <ax 2 ele —_ + = — Gr(u)e™d
- /—oo Xp{ ( 24/t 1) A
(7 V8 t
<ax BT / e2 exp§ <2C—; — %) up Go(u)e™du
oo t
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e [ 1 V8C 4t
=ozx_A3+i/ exp{(——— 2— * —l—f)u
0

TP L T G (—u)du.(1.37)

If ¢ is sufficiently small, then the integral in (7.37) converges (use Lemma 7.4). It

follows from (7.37) that
1

xAj;*S

Finally, combining (7.32), (7.33), (7.35), and (7.38), we establish the estimate
from above in Theorem 7.1.

JI<a

., X > Xy, (7.38)

7.4.3 Proof of Theorem 7.2
The following formula can be obtained from (7.22):

(xoe’”)3 5 ((xoe’”)2> xoett

X X B \/mex%

u © (10 - l + u)z t 2
/e%(du)/ W) o TR U 0y, (7.39)
R 0 y 2ty 8

It follows from (7.39) and (7.24) that

(xoe’”)3 5 ((xoe’“)z) N

= 3
X X 2mwtx?

o0 " oo ]0 L{ —Uu 2 t 2
/ €§/1r(du)/ mi(y) exp _M _ dy, (7.40)
—o0 0 y 2ty 8

where

e (4) = mo8o(A) + /

Go(—u)e™ "tV gy + / Gi (e du
AN(0,00)

AN(=00,0)
(7.41)
for all Borel sets A C R. In (7.41), G| and G, are defined by (7.25) and (7.26),
respectively. Now it is clear that we can use the proof of Theorem 7.1 with the pairs
(m., p) and (72, q) replaced by the pairs (172 + 1,¢) and (1 — 1, p), respectively. It
is not hard to see using (7.39) that for every ¢ > 0, there exist constants ¢; > 0,
¢ > 0, and X > 0 such that the following estimates hold:

~ 1 1 3N (Xoe’”)z
“ (E+xn2+2)§x Dt( X

IA

~ 1 1
C) (xA35 + W) (7.42)
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for all x > X. The constants ¢, and X depend on &. Now it is clear that (7.16) follows
from (7.42).

This completes the proof of Theorem 7.2.
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Chapter 8
Maximizing a Function of the Survival Time
of a Wiener Process in an Interval

Mario Lefebvre

Abstract Let X(¢) be a controlled one-dimensional Wiener process with positive
drift. The problem of maximizing a function of the time spent by X(¢) in a given
interval is solved explicitly. The process is controlled at most until a fixed time #;.
The same type of problem is considered for a two-dimensional degenerate diffusion
process (X(t), Y (¢)).

8.1 Introduction

We consider the one-dimensional controlled Wiener process {X(¢),7 > 0} defined
by the stochastic differential equation

dX(t) = pdt +bu(t)dt + o dB(t), (8.1)

where {B(t),t > 0} is a standard Brownian motion, u(¢) is the control variable, and
W, b and o are positive constants.
Assume that the process starts from X(0) = x < d (> 0), and define

T(x;d)=inf{t >0: X)) =d | X(0) = x}.
That is, T'(x; d) is the first time the controlled process X (¢) takes on the value d.

Next, let
Ti(x;d) = min{T (x;d), t,},
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256 M. Lefebvre

where f; > 0 is a constant. Our aim is to find the control u* that minimizes the
expected value of the cost criterion

Ti(xid)
J(x) = / Equz(t)dt + k In[Ty(x;d)], (8.2)
0

where ¢ > 0 and k < 0. Notice that the optimizer seeks to maximize the time spent
by {X(¢),t > 0} in (—o0, d), taking the control costs into account. Whittle ([7],
p- 289) has termed this type of problem LQG homing. Actually, the termination cost
is positive if 77 (x; d) < 1, whereas it becomes a reward if 77(x;d) > 1.

A number of papers have been published on LQG homing problems; see, for
instance, Kuhn [1], Lefebvre [2] and Makasu [5]. In [1] and [5], as well as in Whittle
([8], p- 222), a risk-sensitive cost criterion was used.

LQG homing problems can be considered in n dimensions. Then, the random
variable T} is the moment of first entry of (X (¢), ?) into a stopping set D C R" x
(0, 00). In practice, though, explicit solutions were only obtained so far in special
cases when n > 2, and with 7 defined only in terms of X (¢).

In the next section, the optimal control problem will be solved in a particular
case. In Sect. 3, the same type of problem will be studied for a two-dimensional
degenerate diffusion process (X(¢), Y(¢)) for which the derivative of X(¢) is a
deterministic function of X(¢) and Y(¢). Finally, a few concluding remarks will
be made in Sect. 4.

8.2 Optimal Control in One Dimension

First, the uncontrolled process {£(¢),t > 0} that corresponds to the process { X (¢),
t > 0} in (8.1) is defined by

d&(t) = ndt + odB(t).
Because the drift u is strictly positive, we can write (see [3], for instance) that
Plt(x;d) < o] =1,

where

t(x;d)=inf{t >0:£(t) =d | £(0) = x}.

It follows that, even if {; = oo, we have:
Plti(x;d) < o0] =1,
where 71 (x; d) is the random variable defined by

71(x;d) = min{t(x;d), t, }.
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Moreover, because the quantities b, o and ¢ in the problem formulation above are
all positive constants, we can state that there exists a positive constant « such that

a0’ = —. (8.3)

Then, we may appeal to a theorem in Whittle [7] to assert that the optimal control
u* (= u*(0)) can be expressed in terms of the mathematical expectation

bZ
G(x):=E [exp { ———k In[r1 (x; d)]}i| . (8.4)
qo
Namely, we can write that
. 0% G'(x)
b G(x)'

Thus, making use of the theorem in [7], the stochastic optimal control problem set
up above is reduced to the computation of the function G(x).

Assume next that we choose the constant k = —¢q o> /b?. Then, the mathematical
expectation G(x) simplifies to

G(x) = E [exp{ln[t)(x;d)]}] = E [t1(x;d)].
Now, if we assume further that the constant #; is such that
E[ti(x;d)] = c E[t(x;d)], (8.5)

where ¢ € (0, 1), then (see [3], p. 220)

G(x) =cd x.
n

Hence, the optimal control follows at once.

Proposition 8.1. Under the hypotheses above, the optimal control u* is given by

2
1
ﬁ:%x_d forx <d. (8.6)

Remarks. (i) Let {X*(¢),t > 0} denote the optimally controlled process. We deduce
from the proposition that

" o? 1
wO= o —a
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(i)

(iii)

(iv)

M. Lefebvre

where { X *(¢),t > 0} satisfies the stochastic differential equation

2

o
dX*(t) = pdt + ————
(1) = pdt + X0 —d

dt + odB(t).

An application of the model considered in this paper is the following: suppose
that X (¢) is the wear of a machine at time 7, and that this machine is assumed
to be worn out when X () reaches the value d > 0. Then, the optimizer tries to
maximize the lifetime of the machine, taking the control costs into account. By
choosing to stop controlling the process at most at time ¢;, with #; being such
that (8.5) holds, it is understood that the aim is to use the machine for a certain
percentage of its expected lifetime, in the case when no control is used at all.
A reason for doing so is the fact that a machine can become obsolete before it
is actually worn out. Also, when it is old, the maintenance costs can increase
rapidly.

Notice that the optimal solution (8.6) depends neither on the constant ¢, nor on
the drift . However, if we modify the cost criterion (8.2) to

Ti(x:d)
J1(x) ::/ Equz(t)dt+kln[l+T1(x;d)],
0

so that the termination cost is always negative, then we find that

0'2 c

¢ d,
b nted—x F°

*

which implies that

gy — o? c
) = a0

If { = o0, so that ¢ = 1, we obtain that
o? 1

= X

The probability density function of the first passage time 7(x;d) is given by
(see [3], p. 219)

d—x . (d —x —pt)?
_G T ) MR
V2mo?t3 P 202t

When #; < oo, we have:

fort > 0.

fr(x;d)(l) =
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E[ti(x:d)] = E[ui(x:d) [ 1(x) = 0] P[r(x) = 1]
+ E[t(x:d) | ©(x) > 0] Plr(x) > 1]

51 o0
=/ tfr(x;d)(t)dt+t1/ Jreeay () dt.
0 t

1

From the previous formula, we can compute the value of ¢ for any choice of #;:
c= LE[‘Q(X; d)].
d—x

If we look for the value of #; that corresponds to a given proportion ¢, then we can
use a mathematical software package to estimate the value of #; from the above
formula.

8.3 Optimal Control in Two Dimensions

We mentioned in Remark (ii) above that a possible application of the model
considered in Sect. 2 is obtained by assuming that X (¢) is the wear of a machine at
time . However, because wear should always increase with time, a better model is
obtained by defining the two-dimensional controlled diffusion process (X (¢), Y (¢)),
starting from (X (0), Y(0)) = (x, y), by the system (see Rishel [6])

dX(r) = f[X(@).Y(@)]dt,
dY(t) = m[X(t), Y()]dt + b(t)u(t)dt + ([X (@), YO)}/* dB(t), (8.7)
where f (> 0), b (£ 0), m and v (> 0) are real functions, and the random variable

Y(¢) is a variable that is closely correlated with the wear.
Let

Tx,y)=inf{t >0:Y(t)=0]| X(0)=x>0,Y(0) =y >0}
and define, as in Sect. 2, the random variable

Ti(x,y) = min{T (x, y), 1},

where #; > 0 is a constant.
We want to find the control ™ that minimizes the expected value of the cost
criterion

Ti(x.y) 1 5
J(x,y) = / Equ (t)dt + k In[Ty(x, y)],
0

where ¢ is a positive function, and k is a negative constant.
Assume next that

FGey) =m(x,y) =
y
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and that
v(x,y) =2xy.

Moreover, let us choose

b(t) = by (#0) and q=j—;,

where go > 0 is a constant. Then, there exists a positive constant ¢ for which the

relation ) 5
b b

av(x,y) = — <= a=_-—>

q 2qo

holds. Furthermore, at least when #; is finite, we can write that

(8.8)

Plti(x,y) <oo] =1,

where 7 (x, y) is the same as 77 (x, y), but for the uncontrolled process obtained by
setting u(¢) = 0 in (8.7). Similarly for the first passage time 7(x, y).
Then, making use of the theorem in [7], we deduce that

u* — 2Xy Gy(va’)

—_ 8.9
bO G(-x’ y) ( )

where
G(x,y) := E [exp{—ak In[t;(x, y)]}]] = E [1’1 (x, y)_“k].

Remark. Let H(x,y) = G,(x, y). We can write that

“(1) 2X*()Y* (@) H[X* (1), Y*(1)]
u = ,

bo G[X*(1), Y*(1)]
where (X™*(¢), Y *(¢)) is the optimally controlled process defined by

X*(@)
Y*(r)

dX*(t) = m[X*(t), Y*(1)] dt,

H[X*(1). Y*(1)]

dY*(1) = mIX* (). Y (O)dt +2X*OY*0) G o

+ RX*O YO dB().

Now, it can be shown (see [4]) that the probability density function of the random
variable 7(x, y) is given by

y y
Jraen (@) = ) exp {—;} fort > 0.
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We find that t=!(x, y) ~ Exp(y/x). Moreover, we have:
Plt(x,y) <oo] = 1.

Therefore, even when ¢, is infinite, the condition P[t;(x, y) < oco] = 1 is fulfilled.
Because we deduce from the density of 7(x, y) that

E[r(x, y)] = oo,
we cannot set E[t;(x, y)] = ¢ E[t(x, y)], as in Sect. 2. Nevertheless, we find that

E[t"(x,y)] = (nx_y)'/z for y/x > 0,

which yields the following proposition.

Proposition 8.2. Under the hypotheses above, if we choose

1
20’

then the optimal control is given by (8.9), in which

1/2 12
o=t =) oo () )
+12 (1= eIy

Proof. We obtain the formula for £ [rl (x, )Y 2] by conditioning on t(x, y), and
by making use of the formula

b __(H 12 (1)‘/2
/xt3/2e dt = e ) erf P

for x, y > 0. |

Remarks. (i) If t; = oo, we find that the optimal control simplifies to

(i1) In this problem, the relation between the constants #; and c is the following:

y 2
c=1-—erf |:(—) :| +1? (1— /)
X1
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8.4 Concluding Remarks

We solved explicitly two optimal control problems involving diffusion processes,
making use of a theorem that enables us to reduce them to purely probabilistic
problems. In each case, in order to obtain an exact and explicit expression for
the optimal control, we needed the probability density function of a first passage
time for the corresponding uncontrolled process. In Sect. 2, we used the well known
density function of the time it takes a one-dimensional Wiener process to hit a given
boundary. In Sect. 3, we made use of the density function computed in [4] of a first
passage time defined in terms of a degenerate two-dimensional diffusion process.
There are few such explicit expressions in the case of n-dimensional processes, with
n>2.

As mentioned above, the models considered in this note can be applied to
reliability theory. The model presented in Sect. 3 is such that the wear of a certain
device always increases with time, as it should. We could try to generalize the model
by incorporating a compound Poisson process in (8.7). However, then we could
no longer appeal to the theorem in [7] to transform the stochastic optimal control
problem into a probability problem. Similarly, we could consider discrete processes,
instead of diffusion processes. Again, we would have to solve the optimal control
problems differently.

Finally, here we solved problems for which the optimizer tries to maximize a
function of the survival time of a diffusion process in a given continuation region.
In the application presented, we assumed that a machine is used at most until a fixed
time ;. We could also assume that there is a warranty period, so that it will be used
at least during a given period of time.

Acknowledgements The author is grateful to the reviewers for their constructive comments.
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