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Preface

The purpose of this book is to provide an introduction to the theory, compu-
tation, and application of Itô stochastic differential equations. In particular, a
procedure for developing stochastic differential equation models is described
and illustrated for applications in population biology, physics, and mathe-
matical finance. The modeling procedure involves first constructing a discrete
stochastic process model. The discrete model is developed by studying changes
in the process over a small time interval. An Itô stochastic differential equation
model is then formulated from the discrete stochastic model. The procedure
is straightforward and is useful for many dynamical processes that experience
random influences.

The main topics in the theory and application of stochastic differential
equations include random variables, stochastic processes, stochastic integra-
tion, stochastic differential equations, and models. These topics are introduced
and examined in separate chapters. Many examples are described to illustrate
the concepts. The emphasis in the explanations is to provide a good under-
standing of the concepts. Results are not necessarily presented in their most
general form. Simplicity of presentation is chosen over generality. For the
first four chapters, the theory of random processes and stochastic differen-
tial equations is presented in a Hilbert space setting. A Hilbert space setting
is chosen to unify and simplify the presentation of the material. The last
chapter concentrates on explaining a model development procedure that is
useful for constructing stochastic differential equation models for many kinds
of dynamical systems experiencing random changes. The procedure produces,
in a natural manner, an Itô stochastic differential equation model, in contrast
with, for example, a Stratonovich stochastic differential equation model.

There are many excellent books available on the theory, application, and
numerical treatment of stochastic differential equations. The bibliography lists
many of these books. It is hoped that the present book will complement these
previous books in providing an introduction to the development and testing
of stochastic differential equation models.

xi



xii Preface

One of the objectives of this book is to provide a basic introduction to the
theory, approximation, and application of stochastic differential equations for
anyone who is interested in pursuing research in this area. The intent of this
book is to provide a background to stochastic differential equations so that
the reader will be in a position to understand the mathematical literature
in this area, including more advanced texts. To understand the material pre-
sented in this book, proficiency in probability theory and differential equations
is assumed. In particular, prerequisite courses for thoroughly understanding
the concepts in this book include probability theory or statistics, differential
equations, and intermediate analysis. In addition, some knowledge of scientific
computing and programming would be very helpful. Throughout the book,
approximation procedures are described. Problems involving stochastic inte-
gration and stochastic differential equations can rarely be solved exactly and
numerical procedures must be employed. In each chapter, one or two com-
puter programs are listed in the computer languages MATLAB or Fortran.
Each program is useful in solving a representative stochastic problem. The
computer programs are listed in the book for convenience and to illustrate
that the programs are generally short and straightforward. At the end of each
chapter, analytical and computational exercises are provided. Several addi-
tional computer programs are listed in these exercise sets. The exercises are
designed to complement the material in the text.

I am grateful to Texas Tech University for providing me a one-semester
faculty development leave to write much of this book and the opportunity
later to use this book in teaching a one-semester graduate course. I thank
my wife, Linda Allen, for her encouragement on the writing of this book
and for her many helpful comments and suggestions. I thank my friends and
colleagues, Robert Paige, Henri Schurz, and Zhimin Zhang for their many
positive suggestions and criticisms on the manuscript. I thank Lynn Brandon,
Springer Mathematics Publishing Editor, for her efficient assistance in the
publication process. I am grateful to the several anonymous reviewers of the
manuscript for their positive comments and their recommended revisions and
additions. Finally, I am grateful to the colleagues and graduate students who
worked with me on research projects.

Lubbock, Texas, December 2006 Edward Allen



1

Random Variables

1.1 Introduction

A random variable is a real-valued function defined on the set of outcomes of a
random experiment. Random variables are important in stochastic integration
and stochastic differential equations. Indeed, a stochastic integral is a random
variable and the solution of a stochastic differential equation at any fixed time
is a random variable. One of the main purposes of this chapter is to define
Hilbert spaces of random variables. Hilbert spaces unify the presentation of
the first four chapters of this book and are used to describe the properties
of stochastic integration and stochastic differential equations. For example, in
Chapter 3 a particular sequence of random variables in a Hilbert space will be
shown to converge to a random variable and this random variable will define
a stochastic integral. To describe a Hilbert space of random variables, it is
necessary to understand the concept of random experiment. In particular, it
is useful to understand the possible events of a random experiment and the
probabilities of these events. Furthermore, to define a metric on the Hilbert
space of random variables, expectations are needed.

In this chapter, after probability spaces, random variables, and expecta-
tion are introduced, a Hilbert space of random variables is discussed. Next,
the important concept of convergence of random variables is considered. An
advantage of using Hilbert spaces of random variables is that any Cauchy
sequence of random variables in the Hilbert space converges to a unique
random variable in the space. This completeness property of Hilbert spaces
simplifies the presentation of stochastic differential equations. Finally, for com-
putational studies involving random variables, computer generation of random
numbers is useful. In the final two sections of this chapter, random number
generation is described along with the associated Monte Carlo procedures for
using random numbers in problem solving.

A basic introduction is given in this chapter to random variables with pri-
ority given to results needed in describing stochastic differential equations.

1



2 1 Random Variables

Thorough treatments of random variables and probability theory are pre-
sented, for example, in [11, 51, 62, 63, 67, 85, 87, 89, 96, 106].

1.2 Probability Space

A process that has random outcomes is called a random experiment. The set
of all possible outcomes of a random experiment is called the sample space and
is denoted Ω. A combination of outcomes, a subset of Ω, is called an event.
The set of events is denoted A. It is assumed that the set A is a σ-algebra
which means that the following properties hold for A:

(a) Ω ∈ A

(b) Ac ∈ A if A ∈ A, where Ac is the complement of set A

(c) ∪∞
i=1Ai ∈ A if A1, A2, · · · ∈ A.

Suppose that the random experiment is repeated N times and NA is the
number of times that event A occurs. Let fA = NA/N be the relative fre-
quency of event A. The probability of an event A ∈ A is denoted as P (A).
One can regard the probability P (A) as the value that fA approaches as the
experiment is repeated an increasing number of times. The probability P is a
set function that maps A into [0, 1] and P is called a probability measure if
the following conditions hold:

(d) P (Ω) = 1

(e) P (Ac) = 1 − P (A)

(f) P (∪n
i=1Ai) =

∑n
i=1 P (Ai), if Ai ∩ Aj = φ for i �= j.

The triplet (Ω, A, P ) consisting of the sample space Ω, the σ-algebra A of
subsets of Ω, and a probability measure P defined on A is called a probability
space.

The following four examples illustrate the concept of a probability space.

Example 1.1. Flipping a coin twice; generating a σ-algebra set
Consider the random experiment of flipping a coin twice. The possible

outcomes are ω1 = HH, ω2 = HT , ω3 = TH, ω4 = TT. Thus, the sample
space is Ω = {ω1, ω2, ω3, ω4}. There are, however, many possible sets A that
satisfy the properties of a σ-algebra. The smallest is A = {φ, Ω}. If it is desired
that {ω1}, {ω2} ∈ A, then the smallest σ-algebra containing {ω1} and {ω2} is

A = {φ, {ω1}, {ω2}, {ω1, ω2}, {ω3, ω4}, {ω1, ω3, ω4}, {ω2, ω3, ω4}, Ω}.
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This set is said to be generated by the outcomes ω1 and ω2. The largest
σ-algebra is

A = {φ, {ω1}, {ω2}, {ω3}, {ω4}, {ω1, ω2}, {ω1, ω3}, {ω1, ω4}, {ω2, ω3},

{ω2, ω4}, {ω3, ω4}, {ω1, ω2, ω3}, {ω1, ω2, ω4}, {ω1, ω3, ω4}, {ω2, ω3, ω4}, Ω}.

For N different outcomes, the smallest σ-algebra will have two elements, φ
and Ω, and the largest σ-algebra will have

∑N
i=0 CN

i = 2N elements where
CN

i = N !/((N − i)!i!).
For this example, let P ({ω1}) = P ({ω2}) = P ({ω3}) = P ({ω4}) = 1

4
define the probability measure. Then using properties (d)-(f), the probability
of any event can be calculated. For example, the probability of the event {ω1
or ω3 or ω4} is P ({ω1, ω3, ω4}) = 1 − P ({ω2}) = 3

4 . The triplet (Ω, A, P ) is
the probability space for this example.

Example 1.2. Flipping a coin until a tail shows; an infinite number of outcomes
Consider again the random experiment of flipping a coin. In this experi-

ment, however, the coin is flipped until a tail turns up. In this case, Ω =
{ω1, ω2, ω3, . . . } where ωi is the outcome where i− 1 tosses are heads and the
ith toss is a tail. For example, let B be the event where the first tail occurs
after an odd number of tosses. Then, B = {ω1, ω3, ω5, . . . } which is an infinite
union of subsets of Ω. Let A = {φ, {ω1}, {ω2}, . . . , {ω1, ω2}, {ω1, ω3}, . . . , }
be a σ-algebra of Ω generated so that {ωi} ∈ A for i = 1, 2, . . . . Finally, let
P ({ωi}) = ( 1

2 )i define a probability measure on A. Then the triplet (Ω, A, P )
is a probability space. Notice, for example, that the probability of an odd
number of tosses is P (B) =

∑∞
i=1 P ({ω2i−1}) =

∑∞
i=1(

1
2 )2i−1 = 2

3 .

Example 1.3. A continuous set of outcomes; Lebesgue measure
Consider the experiment of randomly choosing a real number x from the

interval [0, 1]. Then Ω = {x : 0 ≤ x ≤ 1}. Let (a, b] be an interval in [0, 1].
Define an event A to be x ∈ (a, b]. Let the σ-algebra A be defined as the set
generated by all intervals of the form (a, b]. Therefore, all intervals of the form
(a, b], unions of such intervals, and complements of all the resulting sets are
contained in the σ-algebra A. This σ-algebra A is called the σ-algebra of Borel
sets [65, 73]. Now define the probability measure P so that P (A) = b−a for the
event A. Then P (A) is the probability that an element x ∈ [0, 1] belongs to A.
This probability measure is called Lebesgue measure for this σ-algebra A.
Notice that because countable unions and complements are allowed by prop-
erties (b)–(c), a very large number of types of sets are included in A. For
example, (a, b) ∈ A as (a, b) = ∪∞

n=1(a, b − 1
n ]. By De Morgan’s laws, count-

able intersections are also in A. In particular, the singleton {ω} = {x} is in
A as {ω} = ∩∞

n=1(x− 1
n , x]. Consider the following three particular examples.

Let B1 ∈ A where B1 = ∪∞
n=1
(
21−2n, 22−2n

)
. Then, P (B1) = 2

3 .

Let B2 =
{

n−1
n , for n = 1, 2, 3, . . .

}
. Then B2 ∈ A and P (B2) = 0.

Finally, B3 = {rational numbers on [0, 1]} ∈ A and P (B3) = 0.



4 1 Random Variables

Example 1.4. Number of observations; Poisson distributed
Consider an experiment where the number of observations of a result in

time interval [0, t] is of interest. It is supposed that the number of observa-
tions of the result in any time interval ∆t has probability λ∆t + o(∆t) and
the probability is independent of time. For example, in radioactive decay of
a long-lived isotope, the probability of a decay in a small time interval ∆t
satisfies this assumption. The probability that a car passes a certain inter-
section may satisfy this assumption. In addition, if a wire passes through an
instrument at a constant speed, the probability of a defect in time ∆t may
satisfy this assumption. Consider the number of results where t is large com-
pared with the time interval ∆t. Let ωn equal the outcome where n results
occur in the interval [0, t]. Then, it is clear that Ω = {ω0, ω1, ω2, . . . }. Let
A = {φ, {ω0}, {ω1}, . . . , Ω} be the σ-algebra of events generated by assuming
that {ωi} ∈ A for i = 0, 1, 2, . . . . It is of interest to determine a probability
measure for Ω. For notational convenience, let P ({ωn}) = Pn(t) be the prob-
ability of n results in the interval [0, t]. Using the above assumptions, it is
clear that P0(0) = 1 and Pn(0) = 0 for n ≥ 1. In addition,

P0(t + ∆t) = (1 − λ∆t)P0(t) + o(∆t)

and
Pn(t + ∆t) = (1 − λ∆t)Pn(t) + λ∆tPn−1(t) + o(∆t)

for n ≥ 1 as 1 − λ∆t is the probability of no result in time interval ∆t and
λt is the probability of one result in time interval ∆t. Letting ∆t → 0 in the
above expressions yields the differential equations

dP0(t)
dt

= −λP0(t), P0(0) = 1

and
dPn(t)

dt
= −λPn(t) + λPn−1(t), Pn(0) = 1, for n ≥ 1.

Solving this system gives P ({ωn}) = Pn(t) = exp(−λt)(λt)n/n! for n =
0, 1, 2, . . . as the probability of n results in time t. With this probability mea-
sure, (Ω, A, P ) is a probability space. To check the probability measure, notice
that

P (Ω) =
∞∑

n=0

P ({ωn}) =
∞∑

n=0

exp(−λt)
(λt)n

n!
= 1

for any time t ≥ 0. For this random experiment, the number of results is said
to be Poisson distributed.

1.3 Random Variable, Probability Distribution

A random variable X is a real-valued function that assigns the value X(ω) ∈
R to each outcome ω ∈ Ω. That is, X : Ω → R. The function FX(x) =
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P ({ω ∈ Ω : X(ω) ≤ x}) is called the distribution function or the probability
distribution of the random variable X. It is assumed that X is measurable,
specifically, X has the property that the set A(x) = {ω ∈ Ω : X(ω) ≤ x} ∈ A
for each x ∈ R. This technical condition is required so that the distribution
function can be defined. Notice that the distribution function involves P (A(x))
as FX(x) = P ({ω ∈ Ω : X(ω) ≤ x}) = P (A(x)) and cannot be determined
unless A(x) ∈ A.

A random variable can be discrete or continuous. A random variable is
called discrete if it takes values in a countable subset {x1, x2, x3, . . . } ⊂ R.
That is, X(ω) ∈ {x1, x2, x3, . . . } for each ω ∈ Ω. The probability mass func-
tion p of a discrete random variable X is the function p : {x1, x2, x3, . . . } →
[0, 1] given by p(x) = P (X = x). Notice that for a discrete random vari-
able FX(x) =

∑
xi<x p(xi). A random variable is called continuous if there

exists a piecewise continuous nonnegative function p(x) such that FX(x) =∫ x

−∞ p(s) ds. In this case, p(x) is called the probability density function of X.

Notice that P (a ≤ X ≤ b) = FX(b) − FX(a) =
∫ b

a
p(s) ds.

It is useful to notice that if X is a random variable and g : R → R is
Borel measurable, then Y = g(X) is also a random variable. Indeed, Y (ω) =
g(X(ω)) = g(x) if X(ω) = x. In addition, if p(x) is the probability mass
function for a discrete random variable X and the inverse g−1 exists, then
P (Y = y = g(x)) = P (X = x) = p(x) = p(g−1(y)). So q(y) = p(g−1(y)) is
the probability mass function for Y . In addition, if X takes on the discrete
values {x1, x2, x3, . . . }, then Y takes on the discrete values {y1, y2, y3, . . . }
where yi = g(xi).

The following examples illustrate concepts involving random variables. It
is interesting that if X is defined and FX(x) is determined, then the under-
lying probability space is not explicitly required to understand many of the
properties of the random variable.

Example 1.5. Flipping a coin once
Consider the random experiment of flipping a coin one time. Then Ω =

{H, T}. Let A = {φ, {H}, {T}, Ω} and let P ({H}) = P ({T}) = 1
2 . Define the

discrete random variable X on Ω so that X(T ) = 0 and X(H) = 5. Then
FX(x) has the form

FX(x) =

⎧
⎨

⎩

0, x < 0
1/2, 0 ≤ x < 5
1, x ≥ 5.

Example 1.6. Poisson distributed
Consider the random experiment of Example 1.4 where the probability

of a result in time interval ∆t is λ∆t + o(∆t). Let γ = λt and recall that
wn is defined to be the outcome of having n results occurring in [0, t]. Let
X(ωn) = n define the random variable X. Notice that X is a discrete random
variable and is integer-valued. For this example, the probability mass function
p(n) = P (ωn) = exp(−γ)γn/n! for n = 0, 1, 2, . . . and thus, the probability
distribution FX(x) has the form
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FX(x) = exp(−γ)
n∑

k=0

γk

k!
for n ≤ x < n + 1

for n = 0, 1, 2, . . . . The random variable X is said to be Poisson distributed
with intensity λ.

Example 1.7. Uniformly distributed on [0, 1]
Consider the random experiment of selecting a number x randomly from

the interval [0, 1] described in Example 1.3. Recall that A includes all intervals
and unions of intervals in [0, 1] and the probability measure is defined as
P (A) = d − c where the event A = {x ∈ [0, 1] : c < x ≤ d}. For this example,
define the random variables X1 and X2 as X1(x) = x and X2(x) = exp(x).
Notice that X1 and X2 are continuous random variables. In this case,

FX1(x) =
∫ x

−∞
p1(s) ds, where p1(s) =

⎧
⎨

⎩

0, s < 0
1, 0 ≤ s ≤ 1
0, s > 1

and

FX2(x) =
∫ x

−∞
p2(s) ds, where p2(s) =

⎧
⎨

⎩

0, s < 1
1/s, 1 ≤ s ≤ e
0, s > e.

Notice that if a, b ∈ [0, 1], then P (a ≤ X1 ≤ b) =
∫ b

a
p1(s) ds = b − a and

P (ea ≤ X2 ≤ eb) =
∫ eb

ea p2(s) ds = b − a. However, if c, d ∈ [1, e], then
P (c ≤ X2 ≤ d) = ln d − ln c. For this example, X1 is said to be distributed
uniformly on [0, 1] as the probability that X1(x) lies within any subinterval
of [0, 1] is proportional to the width of the subinterval. It is denoted that
X1 ∼ U [0, 1].

Example 1.8. Uniformly distributed on [u, v]
The random experiment described in Example 1.7 can be generalized to

any interval [u, v]. Specifically, numbers are randomly selected on [u, v] rather
than on [0, 1]. As in the previous example, define the random variable X(x) =
x. Then

FX(x) =
∫ x

−∞
p(s) ds, where p(s) =

{
0, s < u or s > v

1
v − u

, u ≤ s ≤ v.

Notice that if a, b ∈ [u, v], then P (a ≤ X ≤ b) =
∫ b

a
p(s) ds = (b−a)/(v−u). In

this example, X is said to be distributed uniformly on [u, v] and it is denoted
that X ∼ U [u, v].

Example 1.9. Normally distributed on (−∞, ∞)
Consider Ω = {x : −∞ < x < ∞}. Let A be a σ−algebra generated by

intervals of the form (a, b], that is, (a, b] ∈ A for any a, b ∈ R along with
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countable unions of such intervals and complements of the resulting sets. The
set A is similar to the σ-algebra described in Example 1.3 but for the interval
(−∞, ∞) rather than [0, 1]. Define the random variable X as X(x) = x. Let
A ⊂ A and let µ ∈ R and σ > 0 be constants. Define

P (A) =
∫

A

p(s) ds, where p(s) =
1√

2πσ2
exp
(−(s − µ)2

2σ2

)

.

That is,

P (a ≤ X ≤ b) =
∫ b

a

1√
2πσ2

exp
(−(s − µ)2

2σ2

)

ds.

For this example, X is said to be normally distributed with mean µ and
variance σ2 and it is denoted that X ∼ N(µ, σ2). Notice, for example, that

P (µ − σ ≤ X ≤ µ + σ) =
∫ µ+σ

µ−σ

1√
2πσ2

exp
(−(s − µ)2

2σ2

)

ds

=
∫ 1

−1

1√
2π

exp
−s2

2
ds = 0.6826.

If µ = 0 and σ = 1, then X is said to have a standard normal distribution,
i.e., X ∼ N(0, 1).

1.4 Expectation

Suppose that X is a discrete random variable, where X(ω) ∈ {x1, x2, . . . } for
ω ∈ Ω. Let p(x) be the probability mass function of X, that is, p(x) = P (X =
x). The expectation of X is defined as

µ = E(X) =
∑

i

xip(xi) =
∑

i

X(ωi)P ({ωi}).

whenever the sum is convergent. Let g be a function g : R → R. Recalling
that Y = g(X) is a random variable, the expectation of g(X) is

E(g(X)) =
∑

i

g(xi)p(xi).

In particular, the kth moment of X is

E(Xk) =
∑

i

xk
i p(xi)

and the kth central moment is defined as

E((X − µ)k) =
∑

i

(xi − µ)kp(xi) for k = 1, 2, . . . .
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The variance of X is defined as the second central moment:

Var(X) = E((X − µ)2).

It is useful to note that for constants a and b, E(ag(X)+bh(X)) = aE(g(X))+
bE(h(X)). So, for example, Var(X) = E((X − µ)2) = E(X2) − µ2. Before
considering expectations of functions of a continuous random variable, the
following example is given.

Example 1.10. Mean and variance for a Poisson distributed variable
Consider the mean and variance for the Poisson distributed variable of

Example 1.6, where γ = λt. Clearly,

E(X) =
∞∑

k=0

kp(k) =
∞∑

k=0

ke−γ γk

k!
= e−γγ

∞∑

k=1

γk−1

(k − 1)!
= γ

and

E(X2) =
∞∑

k=0

k2p(k) = e−γγ2
∞∑

k=1

(
(k − 1)γk−2

(k − 1)!
+

γk−2

(k − 1)!

)

= γ2 + γ.

Thus, E(X) = γ and Var(X) = γ.

Expectations are defined for continuous random variables in an analogous
way as for discrete random variables. Suppose that X is a continuous ran-
dom variable where X(x) = x and with probability density p(x). Notice that
p(x)∆x is the approximate probability that X takes a value in the interval
(x − ∆x/2, x + ∆x/2). It follows that the expectation of X can be approxi-
mated as E(X) ≈∑xp(x)∆x and as ∆x → 0,

E(X) =
∫ ∞

−∞
xp(x) dx.

The expectation of a function g of X is defined as

E(g(X)) =
∫ ∞

−∞
g(x)p(x) dx.

In particular, the kth moment of X is defined as

E(Xk) =
∫ ∞

−∞
xkp(x) dx.

Letting µ = E(X), the variance of X is defined as the second central moment

Var(X) = E((X − µ)2) = E(X2) − µ2.
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Example 1.11. Mean and variance for a uniformly distributed random variable
Let X ∼ U [a, b]. Then P (c ≤ X ≤ d) =

∫ d

c
p(x) dx =

∫ d

c
dx

b−a = d−c
b−a ,

assuming that a ≤ c ≤ d ≤ b. It is straightforward to see that

E(X) =
∫ b

a

x
dx

b − a
=

b + a

2

and

E(X2) =
∫ b

a

x2 dx

b − a
=

1
3
(b2 + ab + a2).

Thus, Var(X) = 1
12 (b − a)2. Also, for example, E(ex) =

∫ b

a
ex dx

b−a = eb−ea

b−a .

Indeed, E(f(X)) =
∫ b

a
f(x) dx

b−a .

Example 1.12. Central moments of a normally distributed variable
Let X ∼ N(µ, σ2). Then, one obtains for any positive integer k that

E((X − µ)2k+1) = 0 and E((X − µ)2k) = 1 · 3 · 5 · · · (2k − 1)σ2k.

1.5 Multiple Random Variables

Consider a random experiment with sample space Ω, set of events A, and
probability measure P . Let X1 and X2 be two random variables defined on
this probability space. The bivariate random variable or random vector X =
[X1, X2]T maps Ω into R

2. Notice that if A1, A2 ∈ A such that A1 = {ω ∈
Ω : X1(ω) ≤ x1} and A2 = {ω ∈ Ω : X2(ω) ≤ x2} then A1 ∩ A2 ∈ A and

P (X1 ≤ x1, X2 ≤ x2) = P (A1 ∩ A2).

The joint cumulative distribution function of X1 and X2 is denoted FX1X2(x1, x2)
and is defined as

FX1X2(x1, x2) = P (X1 ≤ x1, X2 ≤ x2) = P (A1 ∩ A2).

In addition, if A1 and A2 are independent events, then

FX1X2(x1, x2) = P (A1 ∩ A2) = P (A1)P (A2) = FX1(x1)FX2(x2).

Suppose that X1, X2 are discrete random variables that take on the values
(x1,i, x2,j) for 1 ≤ i ≤ M, 1 ≤ j ≤ N . Let

pX1X2(x1,i, x2,j) = P (X1 = x1,i, X2 = x2,j).

Then pX1X2 is called the joint probability mass function of X = [X1, X2]T

and
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FX1X2(x1, x2) =
∑

x1,i≤x1

∑

x2,j≤x2

pX1X2(x1,i, x2,j).

If X1, X2 are continuous random variables, pX1X2(x1, x2) is the joint
probability density function of the continuous bivariate random variable
X = [X1, X2]T if

FX1X2(x1, x2) =
∫ x1

−∞

∫ x2

−∞
pX1X2(s1, s2) ds2 ds1.

Furthermore, the conditional probability mass density or probability density
functions satisfy

pX1|X2(x1|x2)pX2(x2) = pX1X2(x1, x2)

and

pX2|X1(x2|x1)pX1(x1) = pX1X2(x1, x2).

The variance of X1 and X2 satisfies

Var(X1 + X2) = Var(X1) + Var(X2) + 2Cov(X1X2)

where the covariance of X1 and X2 is defined as

Cov(X1X2) = E((X1 − µ1)(X2 − µ2)) = E(X1X2) − E(X1)E(X2).

If pX1X2(x1, x2) = pX1(x1)pX2(x2) and it follows that FX1X2(x1, x2) =
FX1(x1)FX2(x2), then X1 and X2 are said to be independent random vari-
ables. Notice that if X1 and X2 are independent, then

E(f(X1)g(X2)) =
∫ ∞

−∞

∫ ∞

−∞
f(x1)g(x2)pX1X2(x1, x2) dx1 dx2

= E(f(X1))E(g(X2))

and
Var(X1 + X2) = Var(X1) + Var(X2)

where Cov(X1X2) = 0 if X1 and X2 are independent.
If X = [X1, X2, . . . , Xn]T is a vector of n random variables each defined

on sample space Ω, then µ = E(X) is the mean vector of length n and
E((X− µ)(X− µ)T ) is the n × n matrix defined to be the covariance matrix.
The probability distribution FX is related to the joint probability density
pX by

FX(x1, x2, . . . , xn) =
∫ x1

−∞

∫ x2

−∞
. . .

∫ xn

−∞
pX(s1, s2, . . . , sn) dsn . . . ds2 ds1.



1.5 Multiple Random Variables 11

Example 1.13. Correlated random variables in coin tossing
Suppose that a coin is flipped twice and the sample space is Ω =

{ω1, ω2, ω3, ω4} where ω1 = HH, ω2 = HT, ω3 = TH, and ω4 = TT . Also,
P ({ωi}) = 1

4 for i = 1, 2, 3, 4. Let X1(ωi) = number of heads in outcome ωi

and X2(ωi) = number of tails in outcome ωi. Then, it is easy to show that
the joint probability mass function has the form

pX1X2(x1, x2) =

⎧
⎨

⎩

1/4, x1 = 2, x2 = 0 or x1 = 0, x2 = 2
1/2, x1 = 1, x2 = 1
0, otherwise.

For this random experiment, E(X) = µ = [1, 1]T and the covariance matrix
is

E((X − µ)(X − µ)T )) = E

[
(X1 − µ1)2 (X1 − µ1)(X2 − µ2)

(X1 − µ1)(X2 − µ2) (X2 − µ2)2

]

=

[ 1
2 − 1

2

− 1
2

1
2

]

.

Notice that X1 and X2 are not independent and Cov(X1X2) = − 1
2 �= 0.

Example 1.14. Correlated normally distributed random variables
Let G1, G2 ∼ N(0, 1) be independent normally distributed random vari-

ables. Then E(G1G2) = E(G1)E(G2) = 0 and Var(G1 + G2) = 2. Let
X1 = h

1
2 G1 and X2 = 1

2h
3
2 (G1 + 1√

3
G2) for a constant h > 0. Then

X1 ∼ N(0, h) and X2 ∼ N(0, h3/3). However, X1 and X2 are correlated
Gaussian random variables and E(X1X2) = h2/2 �= E(X1)E(X2) = 0.

Before describing more examples, it is useful to consider functions of
several random variables. Given two random variables X1 and X2 and a
function g : R

2 → R, then X = g(X1, X2) defines a new random variable.
If pX1X2(x1, x2) is the joint probability density of X = [X1, X2]T , then the
expectation of X is

E(g(X1, X2)) =
∫ ∞

−∞

∫ ∞

−∞
g(x1, x2)pX1X2(x1, x2) dx1 dx2.

In addition, letting Dx = {(x1, x2) ∈ R
2 : g(x1, x2) ≤ x}, then FX(x) =

P (X ≤ x) = P (g(x1, x2) ≤ x) = P (Dx) is the probability distribution func-
tion of X.

Example 1.15. Mean distance between two uniformly distributed points
Let X1 and X2 be independent uniformly distributed random variables

on [0, 1], that is, X1, X2 ∼ U [0, 1]. Let g(X1, X2) = |X1 − X2| be the dis-
tance between two points. In this example, it is desired to find the mean
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distance between the points, that is, E(g(X1, X2)). Clearly, as X1 and X2 are
independent,

E(g(X1, X2)) =
∫ 1

0

∫ 1

0
|x1 − x2|pX1X2(x1, x2) dx1 dx2

=
∫ 1

0

∫ 1

0
|x1 − x2|pX1(x1)pX2(x2) dx1 dx2

=
∫ 1

0

∫ 1

0
|x1 − x2| dx1 dx2

=
∫ 1

0

(∫ x2

0
(x2 − x1) dx1 +

∫ 1

x2

(x1 − x2) dx1

)

dx2 =
1
3

and hence, the mean distance between two randomly selected points on [0, 1]
is 1/3.

Example 1.16. Sum of two uniformly distributed random variables
Let X1, X2 ∼ U [0, 1] be independent uniformly distributed random vari-

ables and notice that X1, X2 : [0, 1] → [0, 1]. Let X = X1 + X2. Then
X : [0, 1] → [0, 2]. It is of interest to find the probability density function
for X. It follows that

FX(x) =
∫ x

−∞
pX(s) ds,

where

pX(s) =

⎧
⎨

⎩

s, 0 < s < 1
2 − s, 1 ≤ s ≤ 2
0, otherwise.

It is easy, for example, to compute E((X1 + X2)2) =
∫ 1
0

∫ 1
0 (x1 + x2)2 dx1 dx2

and verify that E((X1 + X2)2) = E(X2), where

E(X2) =
∫ ∞

−∞
s2pX(s) ds =

7
6
.

Example 1.17. Sum of two Poisson distributed random variables
Let X1 and X2 be two independent Poisson variables with E(X1) = µ1 =

γ1 and E(X2) = µ2 = γ2. Let X = X1 + X2. Then X is Poisson distributed
with mean µ = γ1 + γ2. By direct calculation,

P (X = x) =
x∑

x1=0

P (X1 = x1)P (X2 = x − x1)

=
x∑

x1=0

e−γ1
γx1
1

x1!
e−γ2

γx−x1
2

(x − x1)!

=
x∑

x1=0

e−(γ1+γ2) γx1
1 γx−x1

2

x1!(x − x1)!
= e−(γ1+γ2) (γ1 + γ2)x

x!
.

This result implies that X is Poisson distributed with mean µ = γ1 + γ2.
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Example 1.18. Sum of two normally distributed random variables
Let X1 ∼ N(µ1, σ

2
1) and X2 ∼ N(µ2, σ

2
2) be two independent normally

distributed random variables. Then, X = X1 + X2 ∼ N(µ1 + µ2, σ
2
1 + σ2

2).
Therefore, X = X1 + X2 is also normally distributed but with mean µ1 + µ2
and variance σ2

1 + σ2
2 . This important result is shown for the special case of

two standard normal distributions, i.e., µ1 = µ2 = 0 and σ2
1 = σ2

2 = 1. In this
case,

FX(x) = P (X1 + X2 ≤ x) =
∫ ∞

−∞

∫ x−s1

−∞
pX1X2(s1, s2) ds2 ds1

=
∫ ∞

−∞

1√
2π

∫ x−s1

−∞

1√
2π

e
−s22
2 e

−s21
2 ds2 ds1

=
∫ ∞

−∞

1√
2π

∫ x

−∞

1√
2π

e
−(z−s1)2

2 e
−s21
2 dz ds1

=
1√
2π

∫ x

−∞
e

−z2
2

∫ ∞

−∞

1√
2π

e−s2
1+s1z ds1 dz

=
1√
2π

∫ x

−∞
e

−z2
4

∫ ∞

−∞

1√
2π

e−(s1−z/2)2 ds1 dz

=
1√
2π

∫ x

−∞
e

−z2
4

∫ ∞

−∞

1√
2π

e−u2
du dz =

1√
2

1√
2π

∫ x

−∞
e

−z2
4 dz

which implies that X ∼ N(0, 2) and thus X is normally distributed with mean
0 and variance 2.

Illustrated in the previous two examples is an interesting and important
property of Poisson and normal random variables. Specifically, the sum of two
independently distributed normal variables is also normally distributed and
the sum of two independently distributed Poisson variables is also Poisson
distributed.

1.6 A Hilbert Space of Random Variables

Some properties of Hilbert spaces are discussed in this section. Hilbert spaces
of random variables and stochastic processes unify and simplify the develop-
ment of stochastic integration and stochastic differential equations presented
in Chapters 3 and 4. A vector space with a metric or norm defined on it is
called a metric space or a normed linear space. If the metric space is com-
plete, i.e., all Cauchy sequences converge in the space, then the metric space
is called a Banach space. A complete inner product space is a special type of
Banach space. In a complete inner product space, the metric ‖ · ‖ is defined
in terms of an inner product (·, ·), specifically, ‖f‖ = (f, f)

1
2 for any f in the

space. Complete inner product spaces are very useful and are called Hilbert
spaces.
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Let H be a Hilbert space with inner product (f, g) ∈ R for f, g ∈ H and
norm ‖f‖ = (f, f)

1
2 . Two important inequalities for Hilbert spaces are the

triangle inequality and the Cauchy-Schwarz inequality:

‖f + g‖ ≤ ‖f‖ + ‖g‖
|(f, g)| ≤ ‖f‖‖g‖.

Suppose that S is an inner product space but S is not complete. A useful
result [65, 73] is that S can be completed to form a Hilbert space H by adding
elements to S. Furthermore, this can be accomplished so that S ⊂ H is dense
in H. Hence, if S is completed to form a Hilbert space H, then given any
f ∈ H and given any ε > 0, there is a g ∈ S so that ‖f − g‖ < ε.

Now let (Ω, A, P ) be a probability space. Let A ∈ A and let IA be the
indicator function for A. That is, IA is the random variable defined so that

IA(ω) =
{

1, ω ∈ A
0, otherwise.

Then, for example, E(IA) = P (A). Finite linear combinations of indicator
functions are called simple random variables. If X is a simple random variable,
then X has the form

X(ω) =
n∑

i=1

ciIAi(ω) and E(X) =
n∑

i=1

ciP (Ai).

Now let SRV be the set of simple random variables defined on the proba-
bility space. Specifically, SRV = {X : X is a simple random variable defined
on probability space (Ω, A, P )}. The set SRV is a vector space of random
variables. Now let X, Y ∈ SRV . The inner product (X, Y ) is defined on
SRV as

(X, Y ) = E(XY ) for X, Y ∈ SRV .

Notice that for X, Y ∈ SRV , then

(X, Y ) = E(XY ) = E

⎛

⎝
n∑

i=1

n∑

j=1

ciIAi
djIBj

⎞

⎠ =
n∑

i=1

n∑

j=1

cidjP (Ai ∩ Bj)

and the norm has the form

‖X‖RV = (X, X)
1
2 = (E|X|2) 1

2 .

In general, this inner product space of simple random variables is not complete.
However, it can be completed to form a Hilbert space HRV where SRV is
dense in HRV . In the act of completing SRV , many random variables may be
added to SRV to form HRV . Therefore, suppose that {Xn}∞

n=1 is a sequence
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of random variables in HRV such that given ε > 0 there is an integer N so
that ‖Xn − Xm‖RV < ε when m, n > N . Then, as HRV is complete, there
is a random variable X ∈ HRV such that ‖Xn − X‖RV → 0 as n → ∞.
Furthermore, as SRV ⊂ HRV is dense in HRV , given ε > 0 there is a simple
random variable Y ∈ SRV such that ‖X − Y ‖ < ε.

The Hilbert space HRV , which we have just constructed, will be very useful
in the next three chapters. Notice, in particular, that the inner product on
this space is (X, Y ) = E(XY ), the norm for this Hilbert space is ‖X‖RV =
(E(|X|2))1/2, the set of simple functions SRV is dense in HRV , and HRV

depends on the probability distribution through the expectation E. Some
examples are given below to illustrate the usefulness of this Hilbert space.
First, for emphasis:

HRV is a Hilbert space of Random Variables
with norm ‖X‖RV = (E(|X|2))1/2.

Example 1.19. Hilbert space L2[0, 1]
Consider Example 1.3 where the sample space is the set of points on [0, 1],

i.e., Ω = {x : 0 ≤ x ≤ 1}. The event space A for this example is the σ-algebra
of sets generated by all intervals of the form (a, b] ⊂ [0, 1]. The probability
measure P is Lebesgue measure where P (A) = b−a if A = (a, b] ∈ A. Let SRV

be all simple random variables defined on A. If X ∈ SRV , then the random
variable X has the form

X(x) =
n∑

i=1

ciIAi
(x), where Ai ∈ A for each i

and

IAi
(x) =

{
1, x ∈ Ai

0, otherwise.

Let HRV be the completion of SRV . Hilbert space HRV includes, for example,
all random variables that are continuous on [0, 1]. To see that continuous
random variables are included in HRV , let f : [0, 1] → R be a continuous
function. Let xi = (i − 1)/n for i = 1, 2, . . . , n and define

fn(x) =
n∑

i=1

f(xi)In,i(x), where In,i(x) =
{

1, (i − 1)/n ≤ x < i/n
0, otherwise.

Then it can be shown that this sequence of simple random variables {fn}∞
n=1

is a Cauchy sequence in HRV . In addition, ‖f − fn‖RV → 0 as n → ∞ so
fn → f in HRV . Thus, f is the limit of a sequence of simple random variables
in HRV and f ∈ HRV . Also notice that if X(x) = x, then X is uniformly
distributed on [0, 1], i.e., X ∼ U [0, 1].

The Hilbert space HRV for this example is the well-known space L2[0, 1],
that is, HRV = L2[0, 1] = {Lebesgue measurable functions f on [0,1] such
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that
∫ 1
0 |f(x)|2 dx < ∞ }. In particular, many of the functions needed in the

completion of HRV may be highly discontinuous. Therefore, integration in the
Riemann sense is not possible for many of these functions and integration is
defined in the Lebesgue sense. However, if the Riemann integral exists, then
the Lebesgue integral exists and the two integrals are equal. Furthermore,
as piecewise continuous functions which are square integrable are dense in
L2[0, 1], this Hilbert space can be roughly considered as the set of piecewise
continuous functions which are square integrable on [0, 1]. Notice that for
X, Y ∈ HRV then

(X, Y ) =
∫ 1

0
X(x)Y (x) dx and ‖X‖2

RV =
∫ 1

0
|X(x)|2 dx.

Example 1.20. Convergence example in Hilbert space HRV = L2[0, 1]
Let HRV be defined as in the previous example. Let Y ∼ U [0, 1] and define
the sequence of random variables {Xn}∞

n=1 by

Xn(x) =
{ 1

2Y (x), 1/n ≤ Y (x) ≤ 1
0, otherwise.

Then, it is straightforward to see that ‖Xn − Xm‖RV → 0 as m, n → ∞.
Thus, {Xn} ⊂ HRV is a Cauchy sequence in HRV . Indeed, Xn converges in
HRV to X = 1

2Y as n → ∞.

Example 1.21. A nonconvergent example
Let HRV be defined as in Example 1.20. Let Yn ∼ U [0, 1] be independent

uniformly distributed random variables for n = 1, 2, . . . . Then

‖Yn‖RV =
(∫ 1

0
x2 dx

) 1
2

=
1√
3

for each n.

Let X = 1 and define the sequence of random variables {Xn}∞
n=1 by

Xn(x) =
{

1, 1/
√

n ≤ Yn(x) ≤ 1
1 + nYn(x), otherwise.

Then

‖Xn − X‖RV =

(∫ 1/
√

n

0
n2x2 dx

) 1
2

=
(√

n

3

) 1
2

→ ∞ as n → ∞.

Indeed, the sequence {Xn}∞
n=1 is not a Cauchy sequence in Hilbert space HRV .

Example 1.22. A weighted normed Hilbert space
Consider the probability space described in Example 1.9. In particular,

the sample space is Ω = {x : −∞ < x < ∞} and the event space A is the
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σ-algebra generated by intervals of the form (a, b] on R. Let µ ∈ R and σ > 0
be given constants. Let P (A) =

∫
A

p(s) ds where

p(s) =
1√

2πσ2
exp
(−(s − µ)2

2σ2

)

.

Recall that if the random variable X is defined as X(x) = x then X is said
to be normally distributed with mean µ and variance σ2, i.e., X ∼ N(µ, σ2).
Let SRV be the inner product space of simple functions on this probability
space where the inner product is defined as

(f, g) = E(fg) =
∫ ∞

−∞
f(s)g(s)p(s) ds for f, g ∈ SRV

and, as in Example 1.19, the above integral is a Lebesgue integral. Let HRV

be the completion of SRV . Then HRV is a Hilbert space of random variables
defined on R with norm

‖f‖2
RV =

∫ ∞

−∞
|f(s)|2 1√

2πσ2
exp
(−(s − µ)2

2σ2

)

ds for f ∈ HRV .

In addition, it is useful to note that the set of piecewise continuous random
variables f such that

∫∞
−∞ |f(s)|2p(s) ds < ∞ is dense in HRV .

1.7 Convergence of Sequences of Random Variables

The convergence of sequences of random variables is important in the study
of stochastic differential equations. Consider a sequence of random variables
{Xi}∞

i=1 defined on a probability space (Ω, A, P ). Of interest is the existence
of a random variable X to which the sequence approaches as n → ∞. It is
important to clearly characterize the manner in which Xn approaches X as
n → ∞.

There are several different types of convergence criteria which are useful to
understand for random variables. An important kind of convergence is mean
square convergence which is the kind that is used throughout this book. In
mean square convergence, one wishes to show that lim

n→∞ E(Xn − X)2 = 0.

However, for {Xi}∞
i=1 ⊂ HRV , this convergence is equivalent to ‖Xn −

X‖RV → 0 as n → ∞. Furthermore, as HRV is a Hilbert space, the exis-
tence of the random variable X ∈ HRV is guaranteed if {Xi}∞

i=1 is a Cauchy
sequence in HRV , i.e., given ε > 0 there exists a positive integer N such that
‖Xn − Xm‖RV < ε whenever m, n > N . Other types of convergence criteria
are briefly discussed in this section.

Consider first strong convergence. The sequence of random variables
{Xi}∞

i=1 is said to converge strongly to X if lim
n→∞ E(|Xn − X|) = 0. It is inter-

esting that mean square convergence implies strong convergence. This result
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follows from the Cauchy-Schwarz inequality for X ∈ HRV or from the
Lyapunov inequality [51, 106]:

Lyapunov Inequality:
(
E(|X|p))1/p ≤ (E(|X|r))1/r for 0 < p < r.

In particular, for p = 1 and r = 2, Lyapunov’s inequality reduces to the
inequality E(|X|) ≤ (

E(|X|2))1/2.
A third form of convergence is convergence in probability. The sequence of

random variables {Xi}∞
i=1 is said to converge in probability to X if given any

ε > 0 then lim
n→∞ P (|Xn − X| > ε) = 0. Mean square convergence also implies

convergence in probability. This result follows from the Chebyshev-Markov
inequality [51, 106] stated below.

Chebyshev-Markov Inequality: P ({ω : |X(ω)| ≥ ε}) ≤ 1
εp

E(|X|p) for
any p, ε > 0.

The Chebyshev-Markov inequality, for p = 2, reduces to P (|X| ≥ ε) ≤
1
ε2

E(|X|2). Although mean square convergence implies convergence in prob-
ability as well as strong convergence, convergence in probability or strong
convergence does not necessarily imply mean square convergence.

Another type of convergence is convergence with probability one (w.p.1)
or almost sure convergence. The sequence of random variables {Xi}∞

i=1 is
said to converge w.p.1 to X if P

({
ω ∈ Ω : lim

n→∞ |Xn(ω) − X(ω)| = 0
})

= 1.

The following result [51] is sometimes useful in determining almost sure
convergence.

Lemma on Almost Sure Convergence: If
∑∞

n=1 P (|Xn − X| ≥ ε) < ∞
for all ε > 0, then Xn converges almost surely to X.

Almost sure convergence implies convergence in probability. However, mean
square convergence does not imply almost sure convergence and almost sure
convergence does not imply mean square convergence [51].

There are two other weaker forms of convergence which are useful. Either
of these forms of convergence is implied by almost sure convergence or by mean
square convergence. The first is convergence in distribution. The sequence of
random variables {Xi}∞

i=1 is said to converge in distribution to X if

lim
n→∞ FXn(x) = FX(x)

at all points of continuity of the distribution function FX . In the second form
of convergence, referred to as weak convergence, the sequence of random vari-
ables {Xi}∞

i=1 is said to converge weakly to X if
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lim
n→∞

∫ ∞

−∞
f(y) dFXn(y) =

∫ ∞

−∞
f(y) dFX(y)

for all smooth functions f . A sequence converges weakly if and only if it
converges in distribution [20].

Several examples are given to illustrate these forms of convergence.

Example 1.23. Almost sure and mean square convergence
Let X be a random variable uniformly distributed on [0, 1], i.e., X ∼

U [0, 1], and define the sequence of random variables {Xn}∞
n=1 by

Xn(ω) =
{

0, 0 ≤ X(ω) ≤ 1/n2

X(ω), 1/n2 < X(ω) ≤ 1

for n = 1, 2, . . . , . Then
∞∑

n=1

P (|Xn − X| ≥ ε) ≤
∞∑

n=1

1/n2 < ∞

for any ε > 0. Therefore, Xn → X almost surely. Also notice that

E(|Xn − X|2) =
∫ 1/n2

0
x2 dx =

1
3n6 → 0 as n → ∞.

Hence, Xn converges to X in the mean square sense also.

Example 1.24. Weak but not mean square convergence
As in Example 1.19 let the sample space be Ω = {x : 0 ≤ x ≤ 1} with the

event space A the σ- algebra of Borel sets generated by intervals of the form
(a, b] in [0, 1]. Let

FXn(x) =
∫ x

0
pn(s) ds,

where

pn(s) =

{ n

n − 2
, s ∈ [1/n, 1 − 1/n]

0, otherwise
for n ≥ 3.

Let

FX(x) =
∫ x

0
p(s) ds, where p(s) =

{
1, s ∈ [0, 1]
0, otherwise.

That is, X ∼ U [0, 1] and Xn ∼ U [1/n, 1 − 1/n], where X and Xn are inde-
pendent. Then for any f ∈ C[0, 1],

lim
n→∞

∫ 1−1/n

1/n

f(x)pn(x) dx =
∫ 1

0
f(x)p(x) dx

so Xn converges weakly to X. Notice, as Xn and X are independent for each
n, that

E(|X − Xn|2) = E(X2 − 2XXn + X2
n) → 1/6 as n → ∞

so Xn does not converge in the mean square sense to X.
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Two important results involving sequences of random variables are the
Law of Large Numbers and the Central Limit Theorem [51, 63, 67, 87]. These
are stated below for convenience.

Law of Large Numbers (Strong): Let X1, X2, . . . be independent and
identically distributed random variables. Let µ = E(Xn) and σ2 = Var(Xn).
Define Sn =

∑n
i=1 Xi. Then Sn/n → µ almost surely and in the mean square

sense. That is,

lim
n→∞ E

(∣
∣
∣
∣
Sn

n
− µ

∣
∣
∣
∣

2
)

= 0 and lim
n→∞

Sn

n
= µ w.p.1.

Central Limit Theorem: Define Sn as above and let Zn = (Sn −
nµ)/(σ

√
n) . Then Zn converges in distribution to Z ∼ N(0, 1). That is,

lim
n→∞ FZn

(x) = FZ(x),

where FZn is the distribution function of Zn and FZ is the standard normal
distribution function.

Example 1.25. Sum of Poisson distributed variables
Let Xi for i = 1, 2, . . . be independent Poisson distributed variables with

parameter γ. That is, E(Xi) = Var(Xi) = γ or µ = σ2 = γ. Let Sn =∑n
i=1 Xi. Then, by Example 1.17, it is known that Sn is Poisson distributed

with mean nγ and variance nγ. However, by the Central Limit Theorem,
Sn − nγ√

nγ
converges in distribution to a normally distributed random variable

with mean 0 and variance 1. Now let λ = nγ and let Rλ = Sn. Then Rλ is
Poisson distributed with parameter λ. However, by the above argument, as

λ increases then
Rλ − λ√

λ
converges in distribution to a normally distributed

random variable with mean 0 and variance 1. This implies that a Poisson
distributed variable with parameter λ converges in distribution to a normally
distributed variable with mean λ and variance λ as the value of λ increases.

1.8 Computer Generation of Random Numbers

To approximate solutions to stochastic problems using a computer, large
numbers of random numbers are required [11, 17, 35, 37, 84]. Simple deter-
ministic algorithms to generate sequences of random variables are called
pseudo-random number generators. There are many kinds of pseudo-random
number generators for producing uniformly distributed random numbers on
[0,1]. A popular type is the linear congruential generator which has the form:
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Xn+1 = (aXn + c) mod(m), for n = 0, 1, 2, . . . ,

where a, c, and m are nonnegative integers with m typically large and X0 is a
starting number. As d mod(m) is the remainder when dividing d by m, then
0 ≤ d mod(m) ≤ m − 1. The sequence Un is calculated where

Un =
Xn

m
for n = 0, 1, 2, . . .

and 0 ≤ Un ≤ 1 for each n. For certain values of the parameters a, c, and m,
this sequence of numbers may possess statistical properties for numbers that
are randomly distributed uniformly on [0, 1].

Linear congruential generators eventually repeat. If Xi+p = Xi, then the
smallest such value of p is called the cycle length or period of the generator.
For a linear congruential generator, p ≤ m. The following result [84] is useful
for determining the cycle length of certain linear congruential generators when
c �= 0.

Lemma on Period Length: The period of a linear congruential generator
is m if and only if

(i) c and m are relatively prime,
(ii) every prime factor of m divides a − 1, and
(iii) if 4 divides m, then 4 divides a − 1.

When c = 0 and m is a prime number, the longest possible period is m−1 when
a satisfies the property that ak −1 is not divisible by m for k = 1, 2, . . . , m−2.
A popular linear congruential generator that satisfies this property is [17]:

Xn+1 = 16807Xn mod(231 − 1), for n = 0, 1, 2, . . . .

Here a = 75, c = 0, and m = 231 − 1 = 2, 147, 483, 647, and the cycle length
of this generator is m − 1. Notice that m = 231 − 1 is a Mersenne prime for
this generator.

Assume now that we have generated a sequence {Un} of uniformly dis-
tributed numbers on [0, 1]. In addition, suppose that we need a sequence {Yn}
which are distributed according to a distribution FY which may not be a uni-
form distribution but is strictly monotone increasing. One way to compute
the sequence {Yn} from the sequence {Un} is to set Y = g(U) for a function
g. Now notice that g−1(Y ) = U . To find g−1, consider

FY (y) = P ({g(U) ≤ y}) = P ({U ≤ g−1(y)}) =
∫ g−1(y)

0
ds

= g−1(y) for 0 ≤ g−1(y) ≤ 1.

If FY (y) =
∫ y

−∞ py(s) ds, then
∫ Yn

−∞
py(s) ds = Un for n = 1, 2, 3, . . .
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and often this formula can be used to compute Yn given that Un for n =
1, 2, 3, . . . are U [0, 1] uniformly distributed pseudo-random numbers.

Example 1.26. Generation of exponentially distributed random numbers
Suppose that we need the sequence {Yn} to be exponentially distributed on

[0, ∞). It is assumed that we have the sequence {Un} of uniformly distributed
numbers on [0, 1]. In this case, the probability density has the form py(s) =
exp(−s) for s ≥ 0. By the previous argument, we need to find Yn such that

∫ Yn

0
exp(−s) ds = 1 − exp(−Yn) = Un for n = 1, 2, 3, . . . .

Thus, Yn is given by Yn = − ln(1 − Un) for n = 1, 2, . . . .

Example 1.27. Generation of Poisson distributed numbers
Suppose that we need the sequence {Yn} to be Poisson distributed with

parameter γ, i.e., E(Yn) = γ. It is assumed that we have the sequence {Un}
of uniformly distributed numbers on [0, 1]. By Example 1.6, we know that

FY (y) = e−γ
m∑

k=0

γk

k!
for m ≤ y < m + 1.

Therefore, to find Yn given Un, the sum is computed until m is found such
that

e−γ
m−1∑

k=0

γk

k!
< Un ≤ e−γ

m∑

k=0

γk

k!
.

Then Yn is set equal to m. In particular, notice that if γ = λ∆t and λ∆t is
much less than unity, then to o(∆t),

Yn =
{

0 if 0 < Un ≤ 1 − λ∆t
1 if 1 − λ∆t < Un ≤ 1.

For the common situation where normally distributed numbers are required,
the above procedure is computationally awkward. This is because if Un is a
U [0, 1] uniformly distributed number, then Yn is an N(0, 1) normally dis-
tributed number provided that Yn satisfies the integral

∫ Yn

−∞

1√
2π

exp(−s2/2) ds = Un.

This integral cannot be solved analytically and must be evaluated numerically.
For generation of normally distributed numbers, the Box-Muller method [26]
is effective. In this method, two independent uniformly distributed numbers
on [0, 1] are transformed into two independent standard normally distributed
numbers. The Box-Muller method uses the transformation between random
variables
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X1 =
√

−2 ln(U1) cos(2πU2)

X2 =
√

−2 ln(U1) sin(2πU2).

If U1, U2 ∼ U [0, 1], then X1, X2 ∼ N(0, 1). To see why this transformation is
valid, let R =

√−2 ln(U1) and Θ = 2πU2. Then, R and Θ are independent
and have the joint probability density

p(r, θ) =
1
2π

r exp(−r2/2) = p1(r)p2(θ) for r ∈ [0, ∞) and θ ∈ [0, 2π].

Thus,

P (R ≤ r∗, Θ ≤ θ∗) =
∫ r∗

0

∫ θ∗

0

1
2π

r exp(−r2/2) dr dθ.

Converting to polar coordinates, with R2 = X2
1 +X2

2 , sin Θ = X2/R, cos Θ =
X1/R, leads to

P (X1 ≤ x∗
1, X2 ≤ x∗

2) =
∫ x∗

1

−∞

∫ x∗
2

−∞

1
2π

exp(−(x2
1 + x2

2)/2) dx1 dx2.

But this is the joint probability distribution of independent random variables
X1, X2 ∼ N(0, 1). In addition,

X1 = R cos Θ =
√

−2 ln(U1) cos(2πU2)

and
X2 = R sin Θ =

√
−2 ln(U1) sin(2πU2).

Finally, notice that if X ∼ N(0, 1) then µ+σX ∼ N(µ, σ2). Thus, standard
normally distributed random numbers can be easily converted to normally
distributed random numbers having mean µ and variance σ2.

It is useful to point out that the Polar-Marsaglia method [70] is similar
to the Box-Muller method but avoids trigonometric function evaluations. In
this method, let V1 = 2U1 − 1, V2 = 2U2 − 1, and Z =

√
V 2

1 + V 2
2 . If Z > 1,

then U1, U2, V1, V2, and Z are recomputed. Otherwise, the independent N(0, 1)
normally distributed random numbers X1, X2 are computed as follows:

X1 =
V1

Z

√
−4 ln(Z)

X2 =
V2

Z

√
−4 ln(Z).

1.9 Monte Carlo

Monte Carlo methods [17, 35, 37, 84] are numerical methods where random
numbers are used to conduct computational experiments. Numerical solution
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of stochastic differential equations can be viewed as a type of Monte Carlo
calculation. It is useful to understand some basic properties of Monte Carlo
computation. Monte Carlo methods will be illustrated in the following
examples.

Example 1.28. Monte Carlo Estimation of an Integral
Consider the classic Monte Carlo problem of estimating the value of an

integral [35]. A one-dimensional problem is described in this example but
the method easily generalizes to multiple integrals. Consider estimating the
integral

I(f) =
∫ 1

0
f(x) dx, where f ∈ C[0, 1].

Note that

I(f) = E(f) =
∫ 1

0
f(x)p(x) dx, where p(x) =

{
1 if 0 ≤ x ≤ 1
0, otherwise.

Thus, I(f) is the expected value of random variable f in the Hilbert space
discussed in Example 1.19 where x is uniformly distributed on [0, 1]. Let

In(f) =
1
n

n∑

i=1

f(xi), where xi are uniformly distributed on [0, 1].

Then it follows that In(f) → I(f) as n → ∞. The error can be estimated
using the Central Limit Theorem. First, let

E(f) =
∫ 1

0
f(x) dx and E(f2) =

∫ 1

0
|f(x)|2 dx

so
µ = E(f) and σ2 = E(f2) − (E(f))2.

The Central Limit Theorem says that the sample mean In(f) is approximately
normally distributed with mean I(f) and variance σ2/n. This implies that

P

(

In(f) − λσ√
n

≤ I(f) ≤ In(f) +
λσ√

n

)

≈ 1√
2π

∫ λ

−λ

exp(−x2/2) dx.

Hence, for example, the probability that |I(f) − In(f)| ≤ 1.96σ√
n

is equal to

0.95. This example illustrates an important property of Monte Carlo methods.
That is, the error in a Monte Carlo calculation is statistical in nature and the
error is proportional to 1/

√
n, where n is the sample size. This property also

holds for numerical solution of stochastic differential equations.

Example 1.29. Monte Carlo Estimation of Mean Distance Between Two Points
In Example 1.15, it was determined that the mean distance between two

points randomly picked on the interval [0, 1] is exactly 1/3. In this example,
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the mean distance between two random points on the interval [0, 1] will be
estimated as well as the mean distance between two points picked on the
square [0, 1] × [0, 1]. Each of these problems can be cast in the form of an
integral. In the first case,

I =
∫ 1

0

∫ 1

0
|x1 − x2| dx1 dx2

is the mean distance between two randomly-picked points on [0, 1] whereas in
the second case,

J =
∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0

√
(x1 − x2)2 + (y1 − y2)2 dx1 dx2 dy1 dy2

is the mean distance between two randomly-picked points on [0, 1] × [0, 1].
Monte Carlo estimates of these values are calculated using the sums:

In =
1
n

n∑

i=1

|x1,i − x2,i|,

where x1,i, x2,i are uniformly distributed on [0, 1] and

Jn =
1
n

n∑

i=1

√
(x1,i − x2,i)2 + (y1,i − y2,i)2,

where x1,i, x2,i, y1,i, y2,i are uniformly distributed on [0, 1]. It is useful to notice
that multiple integrals are as easy to set up for Monte Carlo calculations as are
single integrals. A multiple integral still only involves a single sum. In addition,
it is straightforward to show that the same error estimates hold as given in the
previous example. In particular, the statistical error is proportional to 1/

√
n

for either case. A Fortran program for this example is given at the end of this
chapter. The subroutine in the program applies the linear congruential random
number generator described in the previous section. Using one million samples,
i.e., n = 106, In and Jn were calculated as In = 0.33335 and Jn = 0.52163. For
comparison, the exact values of I and J to five significant digits are 0.33333
and 0.52141, respectively.

Example 1.30. Monte Carlo Estimation of Mean Set Length
This example illustrates the flexibility of Monte Carlo techniques. Let

S = {000, 001, . . . , 999} be the set of three-digit numbers. In this experi-
ment, sets are randomly selected from S having certain properties. In par-
ticular, each set B ⊂ S is randomly selected so that all the elements of B
differ from each other in at least two positions. That is, if x, y ∈ B, then
the three-digit numbers x and y differ from each other in at least two posi-
tions. Furthermore, set B is constructed as large as possible so that for any
x ∈ Bc there is a y ∈ B so that x and y are identical in two positions. Let
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Ω = {B1, B2, B3, . . . , BN} with N = 1016 be a large collection of randomly
selected sets having the described properties. (The total number of possible
sets with the described properties exceeds 1035.) Define the random variable
X on Ω so that X(B) equals the number of elements in set B. It can be shown
[6] that X : Ω → [50, 100]. Define the probability measure P by P (Bi) = 1

N
for i = 1, 2, . . . , N. It is of interest in this example to estimate the average
number of elements in the sets B ∈ Ω, i.e., E(X) = 1

N

∑N
i=1 X(Bi). As N is

very large, all the sets of Ω cannot be computed. Therefore, E(X) must be
estimated using E(X) ≈ 1

M

∑M
i=1 X(Bi) for M < N . The sets {Bi}M

i=1 are
constructed using a random number generator. Computing M=10,000 sets,
E(X) and Var(X) are estimated as E(X) ≈ 86.13 and Var(X) ≈ 3.35. Based
on these calculational results, the average length of sets in Ω is between 86.09
and 86.17 with probability 0.95, i.e., P (86.09 ≤ E(X) ≤ 86.17) = 0.95.

Example 1.31. Method Error and Statistical Error in Monte Carlo Estimation
This example illustrates the two kinds of error involved in estimating

stochastic integrals or in approximating solutions to stochastic differential
equations. Let

IN =
N∑

i=1

i − 1
N3/2 ηi, where ηi ∼ N(0, 1) for each i.

The expression IN will be defined in Chapter 3 and is an approximation to
the stochastic integral

∫ 1
0 t dW (t) using N subintervals of [0, 1], where W (t) is

a Wiener process. Indeed, E(I2
N ) → E(I2) =

1
3

as N → ∞. However, E(I2
N )

can be calculated exactly as

E(I2
N ) =

N∑

i=1

(i − 1)2

N3 =
N(N − 1)(2N − 1)

6N3 =
1
3

− 1
2N

+
1

6N2 .

The method error in this approximation is therefore

E(I2) − E(I2
N ) =

1
2N

− 1
6N2

which goes to zero as N → ∞. The method error is due to approximating the
stochastic integral using N subintervals in the numerical procedure. However,
there is also a statistical error in approximating E(I2) by E(I2

N ) which is due
to using, for example, M samples to estimate E(I2

N ). Suppose, therefore, that
IN,m for m = 1, 2, . . . , M are M samples of IN using the random numbers
ηi,m for 1 ≤ i ≤ N, 1 ≤ m ≤ M . That is,

IN,m =
N∑

i=1

i − 1
N3/2 ηi,m,

where ηi,m are N(0, 1) normally distributed numbers. Then,
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E(I2
N ) ≈ 1

M

M∑

m=1

(IN,m)2 =
1
M

M∑

m=1

(
N∑

i=1

i − 1
N3/2 ηi,m

)2

and there is a statistical error proportional to 1/
√

M in the estimate of E(I2
N ).

Therefore, when estimating E(I2) using
∑M

m=1(IN,m)2/M , there exist two
errors. There is a statistical error proportional to 1/

√
M , where M is the

number of samples. However, even as M → ∞ the approximation may not be
satisfactory unless the error due to the method is also small, i.e., the value
of N is sufficiently large. Consider the calculational results for this problem
which are given in Table 1.1. Recall that E(I2) = 1/3 exactly. Observe that as
M increases in any column, the statistical error decreases and the total error
approaches the error resulting from the method error. For large N , the error
is due primarily to statistical error which can be high for small sample sizes,
i.e., small values of M . The first column (N=10) in the table gives values that
have large method errors. The first row (M=10) in the table gives values that
have large statistical errors. This example illustrates that to obtain accurate
results, the method error as well as the statistical error must be kept small.

Table 1.1. Calculated estimates of E(I2) for Example 1.31

Value of M N = 101 N = 102 N = 103

101 0.25880 0.34465 0.25033
102 0.30833 0.28372 0.35280
103 0.29179 0.32875 0.32994
104 0.28495 0.32399 0.32916
105 0.28545 0.32591 0.33201
106 0.28430 0.32853 0.33296

Exercises

1.1. Consider the random experiment of rolling one die.
(a) Find the sample space Ω.
(b) Carefully determine the σ-algebra, A, of sets generated by A1 = {1, 2}
and A2 = {2, 3}.
(c) Define a probability measure P on the sample space Ω.

1.2. Consider rolling one die until an odd number turns up. Find the proba-
bility that the first odd number occurs with an even number of rolls.

1.3. Let CN
i =

N !
(N − i)! i!

. Prove that
∑N

i=0 CN
i = 2N .
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1.4. Let Ω = {x : 0 ≤ x < ∞}. Let A be the σ-algebra generated by intervals
of the form (a, b] ⊂ [0, ∞), that is, (a, b] ∈ A for any 0 ≤ a ≤ b < ∞. Define
the probability measure by P (A) =

∫
A

p(s) ds where p(s) = se−s. Define the
random variable, X, by X(x) = x. Find µ = E(X) and σ2 = E((X − µ)2).
(Note that

∫∞
0 sne−s ds = n! for n = 0, 1, 2, . . . . Also, for subsequent exercises,

note that
∫

se−s ds = e−s(−s − 1) and
∫

s2e−s ds = e−s(−s2 − 2s − 2).)

1.5. Let X1, X2, X3 be independent and identically distributed with the prob-
ability measure defined in Exercise 1.4. Let Y1 = X1 + X2 and Y2 = X2 − X3.
Show that E(Y1Y2) �= E(Y1)E(Y2) and thus infer that Y1 and Y2 are not
independent.

1.6. Let X1 and X2 be independent and identically distributed with the prob-
ability measure defined in Exercise 1.4. Let X = X1 + X2. Find FX(x)

where FX(x) = P (X1 + X2 ≤ x) and find pX(x) =
dFX(x)

dx
. Is X dis-

tributed with the same probability measure as X1 and X2? (Note that

P (X1 + X2 ≤ x) =
∫ x

0

∫ x−s1

0
s2e

−s2s1e
−s1 ds2 ds1.)

1.7. Let C[−1, 1] be the vector space of real continuous functions on [−1, 1].
Defining (f, g) =

∫ 1
−1 f(x)g(x) dx and ‖f‖ = (f, f)1/2 for f, g ∈ C[−1, 1], then

C[−1, 1] becomes a normed inner product space. However, this space is not
complete. To show this, find and analyze a sequence {fn}∞

n=1 such that the
sequence is Cauchy in this normed space, but the sequence does not converge
to a function in C[−1, 1].

1.8. Suppose that a sequence of numbers {Yn} is distributed on [0, ∞) with
density pY (s) = se−s. (Refer to Exercise 1.4.) Let {Un} be uniformly dis-
tributed numbers on [0, 1].
(a) Find an algebraic expression for Un in terms of Yn.
(b) Compute Y1 given that U1 = 0.65.

1.9. Let Xn(x) = X(x)+X2(x)(1− 1
n ), for n = 0, 1, 2, . . . , where X ∼ N(0, 4).

Prove that Xn → X + X2 in the mean square sense. That is, prove that
‖Xn − (X + X2)‖RV → 0 as n → ∞.

1.10. Consider the random number generator Xn+1 = (8Xn + 9)mod(7) for
n = 0, 1, 2, . . . , with Un = Xn/7. Let X0 = 2 and calculate X1, X2, . . . , X10.
Determine the period of the generator.

1.11. Assume that the function f is integrable and maps [0, 1] into [0, 1]. Con-
sider estimating

∫ 1
0 f(x) dx using two different Monte Carlo approaches. The

standard approximation is applied in the first approach, that is,
∫ 1
0 f(x) dx =

E(f) ≈ ∑n
i=1 f(Si)/n where Si are uniformly distributed numbers on [0, 1]
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for i = 1, 2, . . . , n. In this approach, σ2
1 = E(f2) − (E(f))2. In the second

approach,
∫ 1
0 f(x) dx = p where p is the probability that a random point

chosen in [0, 1] × [0, 1] lies in the region defined by {(x, y) ∈ [0, 1] × [0, 1] :
y ≤ f(x)}. In this approach, σ2

2 = p(1 − p).
(a) Explain why σ2

2 = p(1 − p).
(b) Prove that the first approach always has a variance less than or equal to
that of the second approach, i.e., prove that σ2

1 ≤ σ2
2 .

1.12. Modify the MATLAB program given below and approximate∫ 1
0 sin(πx) dx using the two Monte Carlo procedures described in Exercise

1.11 with n = 10000 points.

% Two Monte Carlo procedures are used for approximating
% the integral of 0 < f(x) < 1 on [0,1].
% xx is used for the random number generator.
% Function randmonte is needed.
clear
xx=4830887.0;
for j=1:5
n=10000;
s1=0.0;
s2=0.0;
s3=0.0;
for i=1:n

rand=randmonte(xx);
xx=rand(2);
x=rand(1);
f=exp(-.5*x);
s1=s1+f/n;
s2=s2+f*f/n;

end;
v1=s2-s1*s1;
disp((sprintf(’ %10.4e %10.4e’, s1, v1)))
for i=1:n

rand=randmonte(xx);
xx=rand(2);
x=rand(1);
rand=randmonte(xx);
xx=rand(2);
y=rand(1);
f=exp(-.5*x);
hlp=1.0;
if (y > f)

hlp=0.0;
end;

s3=s3+hlp/n;
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end;
v3=s3-s3*s3;
disp((sprintf(’ %10.4e %10.4e’, s3, v3)))
end;
%-------------------------------------------------------------
% random number generator (uniform on [0,1])
% congruential generator xx=16807*xx mod(2ˆ31-1)
% xx=rand(2) is input to the generator
function rand = randmonte(xx)

a=16807;
b=2147483647;
d=fix(a*xx/b);
xx=a*xx-d*b;
rand(1)=xx/b;
rand(2)=xx;

Computer Programs

Program 1.1. A Monte Carlo program for computing the average
distance between two points

Listed is a Monte Carlo code in Fortran for computing the average distance
between two randomly selected points on the interval [0,1] and also for com-
puting the average distance between two randomly selected points on the
square [0, 1]× [0, 1]. In the program, the value given for xx is the initial start-
ing value for the random number generator and nrun is the number of samples.
The subroutine uses a linear congruential generator to generate uniformly dis-
tributed numbers on [0, 1]. The output of the program is listed following the
code.

real*8 xx
xx=5320859.

c A Monte Carlo code for distance between random points
nrun=1000000
arun=nrun
s1=0.0
s2=0.0
do 400 nr=1,nrun
call random(xx,x1)
call random(xx,x2)
f= abs(x1-x2)
s1=s1+f/arun
s2=s2+f*f/arun

400 continue
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sd=sqrt(s2-s1*s1)
write(6,420) nrun,s1,s2,sd

420 format(2x,i8,3(2x,f9.5))
s1=0.0
s2=0.0
do 450 nr=1,nrun
call random(xx,x1)
call random(xx,x2)
call random(xx,y1)
call random(xx,y2)
f= sqrt((x1-x2)*(x1-x2)+(y1-y2)*(y1-y2))
s1=s1+f/arun
s2=s2+f*f/arun

450 continue
sd=sqrt(s2-s1*s1)
write(6,420) nrun,s1,s2,sd
stop
end
subroutine random(xx,r)
real*8 xx,a,b,d,c

c A linear congruential generator
a=16807.
ib=2147483647
b=ib
c=0.0
id=(a*xx+c)/b
d=id
xx=(a*xx+c)-d*b
r=xx/b
return
end

1000000 0.33335 0.16659 0.23552
1000000 0.52163 0.33364 0.24808
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Stochastic Processes

2.1 Introduction

A stochastic process is a family of random variables {X(t), t ∈ τ} defined on a
probability space (Ω, A, P ) and indexed by a parameter t where t varies over
a set τ . If the set τ is discrete, the stochastic process is called discrete. If the
set τ is continuous, the stochastic process is called continuous. The parameter
t usually plays the role of time and the random variables can be discrete-
valued or continuous-valued at each value of t. For example, a continuous
stochastic process can be discrete-valued. For modeling purposes, it is useful
to understand both continuous and discrete stochastic processes and how they
are related.

Stochastic processes occur throughout the remainder of this book. Indeed,
solutions of stochastic differential equations are stochastic processes. Proper-
ties of stochastic differential equations are studied in Chapter 4 with regard
to a Hilbert space of stochastic processes. A Hilbert space setting for random
variables and stochastic processes unifies and simplifies the presentation of
stochastic integration and stochastic differential equations. Furthermore, the
procedure described in Chapter 5 for developing a stochastic differential equa-
tion model involves first constructing a discrete stochastic process model. As
time is made continuous, the probability distribution of the discrete stochastic
model approaches that of the continuous stochastic model.

In this chapter, discrete and continuous stochastic models are discussed.
Then, a Hilbert space of stochastic processes is described. The important
Wiener process is introduced and computer generation of stochastic processes
is considered. Finally, several well-known stochastic processes are described.
A basic introduction is given in this chapter to stochastic processes with pri-
ority given to results needed in describing stochastic differential equations
and modeling. Excellent and thorough treatments of stochastic processes are
presented, for example, in [11, 41, 51, 63, 67, 85, 87, 96, 106].

33
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2.2 Discrete Stochastic Processes

In this section, discrete stochastic processes are considered. For these processes,
let τ = {t0, t1, t2, . . . } be a set of discrete times. Let the sequence of random
variables X(t0), X(t1), X(t2), . . . each be defined on the sample space Ω. This
sequence may describe, for example, the evolution of a physical, biological, or
financial system over the discrete times t0, t1, t2, . . . . If only the present value
of the random variable X(tn) = Xn is needed to determine the future value
of Xn+1, the sequence {Xn} is said to be a Markov process. Throughout this
section, the discrete stochastic processes that are discussed are Markov pro-
cesses. Such processes are common and are useful in developing the stochas-
tic differential equation models described in Chapter 5. A discrete-valued
Markov process is called a Markov chain. Let P (Xn+1 = xn+1|Xn = xn)
define the one-step transition probabilities for a Markov chain. That is,
P (Xn+1 = xn+1 and Xn = xn) = P (Xn+1 = xn+1|Xn = xn)P (Xn = xn).
If the transition probabilities are independent of time tn, then the Markov
chain is said to have stationary transition probabilities and the Markov chain
is referred to as a homogeneous Markov chain. Consider the following two
examples.

Example 2.1. A continuous-valued Markov process
Let ti = i∆t and ηi ∼ N(0, 1) for i = 0, 1, . . . , N , where ∆t = 1/N . Let

Xi = X(ti) be defined by

Xi+1 = Xi + ηi

√
∆t for i = 0, 1, . . . , N − 1,

where X0 = 0. Then, {Xi}N
i=0 is a Markov process with continuous values

of Xi and discrete values of time ti. Note that XN =
∑N−1

i=0 ηi

√
1/N so

XN ∼ N(0, 1).

Example 2.2. A homogeneous Markov chain
Let Xi = X(ti) with ti = i∆t for i = 0, 1, . . . , N where ∆t = 1/N and

X0 = 0. Define the probability distribution of the discrete random variable δ
so that δ takes on the values −α, 0, α with probabilities

p(δ = −α) = γ∆t, p(δ = α) = γ∆t, and p(δ = 0) = 1 − 2γ∆t

assuming that 1 − 2γ∆t > 0. Let

Xi+1 = Xi + δi for i = 0, 1, . . . , N − 1,

where δi are independent identically distributed values with the same distribu-
tion as δ. Then, E(δi) = 0 and Var(δi) = 2α2γ∆t = 2α2γ/N . Notice that the
stochastic process Xi takes on discrete values and time is also discrete-valued.
For this example, the transition probabilities have the form

P (Xn+1 = lα|Xn = kα) =

⎧
⎨

⎩

1 − 2γ∆t, l = k
γ∆t, l = k − 1 or l = k + 1
0, otherwise.
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Furthermore, note that

XN =
N−1∑

i=0

δ̂i/
√

N, where δ̂i = δi

√
N, E(δ̂i) = 0, and Var(δ̂i) = 2α2γ.

Then, by the Central Limit Theorem,

XN ∼ N(0, 2α2γ) for large N.

In particular, if 2α2γ = 1, then XN ∼ N(0, 1) for large N . Thus, as N
increases, the distribution of XN approaches the same distribution as the
random variable in the previous example.

Before considering nonhomogeneous Markov chains, it is interesting to
briefly discuss some properties of homogeneous Markov chains. Let {Xn, n ≥
0} be a homogeneous Markov chain defined at discrete times τ = {t0, t1, t2, . . . },
where tn = n∆t so that tn+k = tn + tk. Let Xn be nonnegative and integer-
valued for each tn, n = 0, 1, . . . . That is, Xn ∈ {0, 1, 2, . . . }. Let

pi,j = P{Xn+1 = j|Xn = i}, i ≥ 0, j ≥ 0

define the transition probabilities. The transition probability matrix is defined
as P = [pi,j ] and

∑∞
j=0 pi,j = 1 for i = 0, 1, 2, . . . .

The probability distribution of Xn for n ≥ 1 can be computed using the
transition probability matrix P . Define the kth power of P as P k = [p(k)

i,j ]. As
P l+n = P lPn, then by matrix multiplication

p
(l+n)
i,j =

∞∑

m=0

p
(l)
i,mp

(n)
m,j for l, n ≥ 0,

where P 0 is defined as P 0 = I. This relation is known as the Chapman-
Kolmogorov formula for a homogeneous Markov chain. Let pi(tk) =
P (X(tk) = i) for i = 0, 1, 2, . . . be the probability distribution of Xk . Let
p(tk) = [p0(tk), p1(tk), . . . , pr(tk), . . . ]T , where (p(t0))i = P (X(t0) = i) is the
initial probability distribution of X(t0). It is straightforward to see that

(p(t1))T = (p(t0))T P

(p(t2))T = (p(t1))T P = (p(t0))T P 2

...
(p(tn))T = (p(tn−1))T P = (p(t0))T Pn.

Thus, pi(tn) =
∑∞

m=0 pm(tn−1)pm,i =
∑∞

m=0 pm(t0)p
(n)
m,i.
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Example 2.3. Approximation to a Poisson process
Consider the discrete homogeneous stochastic process defined by the tran-

sition probabilities

pi,k =

⎧
⎨

⎩

1 − λ∆t, for k = i
λ∆t, for k = i + 1
0, otherwise.

Assume that p(0) = [1, 0, 0, . . . ]T . In this example, the transition probability
matrix P is bidiagonal and the equation (p(t + ∆t))T = (p(t))T P has the
componentwise form:

p0(t + ∆t) = p0(t)(1 − λ∆t)

and
pi(t + ∆t) = pi(t)(1 − λ∆t) + pi−1(t)λ∆t for i ≥ 1.

Rearranging these expressions yields

p0(t + ∆t) − p0(t)
∆t

= −λp0(t) and

pi(t + ∆t) − pi(t)
∆t

= −λpi(t) + λpi−1(t) for i ≥ 1,

where p0(0) = 1 and pi(0) = 0 for i ≥ 1. As ∆t → 0, the above Markov chain
probabilities approach those satisfied by the Poisson process. That is,

pi(t) ≈ exp(−λt)(λt)i

i!
for ∆t small.

Now consider Markov chains which are not necessarily homogeneous. Let
τ = {t0, t1, . . . } where tn = n∆t. Let {Xn, n ≥ 0} be the Markov chain satis-
fying Xn ∈ M = {z−m, z−m+1, . . . , z0, z1, . . . zm} where m may be arbitrarily
large and where zi = i∆x for each i for a positive number ∆x. Let

p
(n)
i,j = Pn{Xn+1 = zj |Xn = zi}, −m ≤ i, j ≤ m

define the transition probabilities which now may depend on time tn. The
transition probability matrix is defined as the (2m + 1) × (2m + 1) matrix
Pn = [p(n)

i,j ] where
∑m

j=−m p
(n)
i,j = 1 for each i and n.

Similar to the homogeneous Markov chain, the probability distribution for
Xn for n ≥ 1 can be computed using the probability transition matrices Pn for
n ≥ 0. Let pi(tn) = P (Xn = zi) for i = −m, −m + 1, . . . , m define the proba-
bility distribution at time tn. Let p(tn) = [p−m(tn), p−m+1(tn), . . . , pm(tn)]T

where p(t0) = [p−m(t0), p−m+1(t0), . . . , pm(t0)]T is the initial probability dis-
tribution. Noticing that pi(t1) =

∑m
l=−m pl(t0)p

(0)
l,i for i = −m, −m+1, . . . , m,

it is straightforward to see that
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(p(t1))T = (p(t0))T P0

(p(t2))T = (p(t1))T P1 = (p(t0))T P0P1

...
(p(tn))T = (p(tn−1))T Pn−1 = (p(t0))T P0P1 · · ·Pn−1.

If the transition matrix Pn is independent of time tn, the above expressions
reduce to those derived for the homogeneous Markov chain, for example,
(p(tn))T = (p(t0))T Pn.

Consider the following important nonhomogeneous discrete stochastic pro-
cess which introduces the forward Kolmogorov equations. This process will be
of interest when developing models using stochastic differential equations.

Example 2.4. Forward Kolmogorov equations
Let ti = i∆t for i = 0, 1, . . . , N and let xj = jδ, for j = . . . ,−2, −1, 0,

1, 2, . . . . Let X0 be given. Define the transition probabilities of a discrete
stochastic process by the following:

pi,k(t) =

⎧
⎨

⎩

r(t, xi)∆t/δ2, for k = i + 1
1 − r(t, xi)∆t/δ2 − s(t, xi)∆t/δ2, for k = i,
s(t, xi)∆t/δ2, for k = i − 1

where r and s are smooth nonnegative functions. Notice that with the above
transition probabilities, if ∆X is the change in the stochastic process at time
t fixing X(t) = xi, then the mean change E(∆X) and variance in the change
Var(∆X) can be determined. Specifically, E(∆X) = (r(t, X) − s(t, X))∆t/δ
and Var(∆X) = (r(t, X) + s(t, X))∆t. It is assumed that ∆t/δ2 is small so
that 1 − r(t, xk)∆t/δ2 − s(t, xk)∆t/δ2 is positive. Let pk(t) = P (X(t) = xk)
be the probability distribution at time t. Then, pk(t + ∆t) satisfies

pk(t + ∆t) = pk(t) +
[
pk+1(t)s(t, xk+1) (2.1)

− pk(t)(r(t, xk) + s(t, xk)) + pk−1(t)r(t, xk−1)
]
∆t/δ2.

Rearranging this expression yields:

pk(t + ∆t) − pk(t)
∆t

= −
(

pk+1(t)a(t, xk+1) − pk−1(t)a(t, xk−1)
2δ2

)

+
(

pk+1(t)b(t, xk+1) − 2pk(t)b(t, xk) + pk−1(t)b(t, xk−1)
2δ2

)

,

where, for notational simplicity, a(t, x) = (r(t, x) − s(t, x))/δ and b(t, x) =
r(t, x) + s(t, x). As ∆t → 0, the discrete stochastic process approaches a
continuous-time process. Then as ∆t → 0, pk(t) satisfies the initial-value
problem:

dpk(t)
dt

= −
(

pk+1(t)a(t, xk+1) − pk−1(t)a(t, xk−1)
2δ

)

(2.2)

+
(

pk+1(t)b(t, xk+1) − 2pk(t)b(t, xk) + pk−1(t)b(t, xk−1)
2δ2

)
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for k = . . . ,−2, −1, 0, 1, 2, . . . where {pk(0)}m
k=−m are known. Equations (2.2)

with the given initial conditions are the forward Kolmogorov equations for
the continuous-time stochastic process.

Now assume that δ is small so that the stochastic process approaches a
continuous-valued process. As

F (x + δ) − F (x − δ)
2δ

= F ′(x) +
δ2

6
F ′′′(ξ1) and

F (x + δ) − 2F (x) + F (x − δ)
δ2 = F ′′(x) +

δ2

12
F ′′′′(ξ2)

for some values ξ1, ξ2 such that x − δ ≤ ξ1, ξ2 ≤ x + δ, then the above system
of differential equations approximates the partial differential equation:

∂p(t, x)
∂t

= −∂(a(t, x)p(t, x))
∂x

+
1
2

∂2(b(t, x)p(t, x))
∂x2 . (2.3)

Equation (2.2) is a central-difference approximation to (2.3). This approxi-
mation is accurate for small δ and when comparing the solutions of (2.1) and
(2.3), it can be shown [91] that

p(t, xk) = pk(t) + O(∆t) + O(δ2).

In Chapter 4, it is shown that (2.3) is the forward Kolmogorov equation
corresponding to a diffusion process having the stochastic differential equation

dX(t) = a(t, X)dt +
√

b(t, X)dW (t). (2.4)

The probability density of solutions to the stochastic differential equation (2.4)
satisfies the partial differential equation (2.3). Therefore, there exists a close
relationship between the discrete stochastic process defined by (2.1) and the
continuous process defined by (2.4). In particular, for small ∆t and δ, the prob-
ability distribution of the solutions to (2.4) will be approximately the same as
the probability distribution of solutions to the discrete stochastic process. It
is shown in Chapter 5 that this result is useful for modeling purposes. It may
be straightforward to construct a realistic discrete stochastic process model
for a dynamical system under investigation. Then, an appropriate stochastic
differential equation model is inferred from the above argument.

Finally, it is useful to note in the above argument that the coefficients at
time t of the stochastic differential equation (2.4) are related to the discrete
stochastic model (2.1) through the mean and variance in the change in the
process ∆X over a short time interval ∆t fixing X(t) = x. Specifically,

E(∆X) = a(t, X)∆t and Var(∆X) = b(t, X)∆t.

Example 2.5. Specific example of forward Kolmogorov equations
As a specific instance of Example 2.4, consider a birth-death process, where

δ = 1, xj = j for j = 0, 1, 2, . . . , b is the per capita birth rate, and d is the
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per capita death rate. It is assumed that b and d are constants. The transition
probabilities for this example have the form

pi,k(t) =

⎧
⎨

⎩

bxi∆t, for k = i + 1
1 − bxi∆t − dxi∆t, for k = i
dxi∆t, for k = i − 1.

It follows that the probability distribution in continuous time (letting ∆t → 0)
satisfies the forward Kolmogorov equations

dpk(t)
dt

= −(b − d)
(

pk+1(t)xk+1 − pk−1(t)xk−1

2

)

+
b + d

2
(
pk+1(t)xk+1 − 2pk(t)xk + pk−1(t)xk−1

)
(2.5)

with pM (0) = P (X(0) = xM ) = 1 and pk(0) = P (X(0) = xk) = 0 for k �= M
assuming an initial population of size M . Note that, fixing X(t) = xi at time
t, E(∆X) = (b−d)X∆t and Var(∆X) = (b+d)X∆t to order (∆t)2. For large
M , the above equations approximately satisfy the Fokker-Planck equation

∂p(t, x)
∂t

= −∂
(
(b − d)xp(t, x)

)

∂x
+

1
2

∂2
(
(b + d)xp(t, x)

)

∂x2 (2.6)

with p(0, x) = δ(x − M).
As will be seen in Chapter 4, the probability distribution p(t, x) is the

probability distribution of solutions to the Itô stochastic differential equation

dX(t) = (b − d)X(t)dt +
√

(b + d)X(t) dW (t) (2.7)

with X(0) = M . Thus, the above argument implies that solutions to the
stochastic differential equation (2.7) have approximately the same probabil-
ity distribution as the discrete birth-death stochastic process and a reason-
able model for the simple birth-death process is the stochastic differential
equation (2.7).

2.3 Continuous Stochastic Processes

Now consider a continuous stochastic process {X(t), t ∈ τ} defined on the
probability space (Ω, A, P ) where τ = [0, T ] is an interval in time and the
process is defined at all instants of time in the interval. A continuous-time
stochastic process is a function X : τ × Ω → R of two variables t and ω and
X may be discrete-valued or continuous-valued. In particular, X(t) = X(t, ·)
is a random variable for each value of t ∈ τ and X(·, ω) maps the interval
τ into R and is called a sample path, a realization, or a trajectory of the
stochastic process for each ω ∈ Ω. It is interesting that specific knowledge
of ω is generally unnecessary but ω is significant as each ω ∈ Ω results in a
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different trajectory. As a result, the normal convention is that the variable ω
is often suppressed, that is, X(t) represents a random variable for each value
of t and X(·) represents a trajectory over the interval τ = [0, T ]. In this book,
ω is often included for emphasis or to provide clarity that X is a function of
two variables.

The stochastic process X is a Markov process if the state of the process
at any time tn ∈ τ determines the future state of the process. Specifi-
cally, P

(
X(tn+1) ≤ xn+1|X(tn) = xn

)
= P

(
X(tn+1) ≤ xn+1|X(t1) =

x1, . . . , X(tn) = xn

)
whenever t1 < t2 < · · · < tn < tn+1. Markov

processes are common stochastic processes and most of the stochastic processes
discussed in this book are Markov stochastic processes. The following two
examples illustrate continuous Markov processes.

Example 2.6. Poisson process with intensity λ
Let X(t) equal the number of observations in time t. Assume that the

probability of one observation in time interval ∆t is equal to λ∆t + o(∆t).
Referring to Example 1.4, it is clear that this is a continuous stochastic process
and the probability of n observations in time t is

P (X(t) = n) = Pn(t) = exp(−λt)(λt)n/n!.

The process X(t) is a continuous-time stochastic process which is discrete-
valued. Specifically, X(t) is a Poisson process with intensity λ > 0. Note that
X(0) = 0 and the number of observations at any time t is Poisson-distributed
with mean λt. That is, for any s ≥ 0,

P
(
X(t + s) − X(s) = n

)
= exp(−λt)(λt)n/n!.

Indeed, the process is a Markov process and

P
(
X(t + ∆t) ≤ m + ∆m|X(t) = m

)
=

∆m∑

l=0

exp(−λ∆t)(λ∆t)l/l!

and the probability distribution at time t + ∆t only depends on the state of
the system at time t and not on the history of the system. Also, as seen in
Example 1.4,

dP0(t)
dt

= −λP0(t),

dPn(t)
dt

= −λPn(t) + λPn−1(t) for n ≥ 1,

E(X(t)) = λt, and Var(X(t)) = λt. It is readily seen that the relations
satisfied by the probabilities of the discrete stochastic process for Exam-
ple 2.3 are finite-difference approximations to the above differential equa-
tions and approach these differential equations as ∆t → 0. In addition, if
Y (t) = X(t + s) − X(s) for any s ≥ 0, then Y (t) is also Poisson-distributed
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with intensity λ and Y (0) = 0. Figure 2.1 illustrates the random behavior of
the discrete jumps in a Poisson process. The average curve given in the figure
is for 200 sample paths. Notice that the average closely follows the line λt.
The computer program that calculates and plots these two curves is listed at
the end of this chapter.
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Fig. 2.1. One sample path of the Poisson process (solid curve) and the average of
200 Poisson processes (dashed curve) for λ = 1

It is interesting to consider the transition probability density function for
transition from x at time s to y at time t for a continuous Markov process.
Analogous to discrete Markov processes, the transition probability density
function satisfies the Chapman-Kolmogorov equation:

p(y, t, x, s) =
∫

R

p(y, t, z, u)p(z, u, x, s) dz.

A Markov process X(t) is said to be homogeneous if its transition probability
satisfies p(y, t + u, x, s + u) = p(y, t, x, s). That is, the transition probability
only depends on lapsed time. In this case, it can be written as p(y, x, t − s).

Example 2.7. An approximate Wiener process
Let Xi(t) for i = 1, 2, . . . , N be N independent Poisson processes with

intensity λ as described in Example 2.6. Let YN (t) be another stochastic
process defined by

YN (t) =
N∑

i=1

Xi(t) − λt√
λN

.

By the Central Limit Theorem, as N increases, YN (t) approaches a ran-
dom variable distributed normally with mean 0 and variance t. Indeed, by



42 2 Stochastic Processes

considering Example 2.6, YN (t+s)−YN (t) approaches a normally distributed
variable with mean 0 and variance s for every s, t ∈ τ .

In the previous example, YN (t) approaches a Wiener process or Brownian
motion W (t) as N increases. A Wiener process {W (t), t ≥ 0} is a continuous
stochastic process with stationary independent increments such that

W (0) = 0 and W (t) − W (s) ∼ N(0, t − s) for all 0 ≤ s ≤ t.

So E(W (t)) = 0, Var(W (t) − W (s)) = t − s for 0 ≤ s ≤ t and, in particular,

W (t2) − W (t1) ∼ N(0, t2 − t1) and W (t4) − W (t3) ∼ N(0, t4 − t3)

are independent Gaussian random variables for 0 ≤ t1 < t2 ≤ t3 < t4. Notice
that a Wiener process is a homogeneous Markov process. Furthermore, by
convention, W (t) = W (t, ω) where ω is generally suppressed. Therefore, W (t)
represents a random variable at each value of t.

It is of practical interest as well as of conceptual value to see how easily
a sample path of a Wiener process W (t) can be generated at a finite number
of points. Suppose that a Wiener process trajectory is desired on the interval
[t0, tN ] at the points {ti}N

i=0 where t0 = 0. Then, W (t0) = 0 and a recurrence
relation that gives the values of a Wiener process trajectory at the points
t0, t1, . . . , tN is given by

W (ti) = W (ti−1) + ηi−1
√

ti − ti−1, for i = 1, 2, . . . , N, (2.8)

where ηi−1 are N(0, 1) independent normally distributed numbers for i =
1, 2, . . . , N . The values W (ti), i = 0, 1, . . . , N determine a Wiener sample
path at the points {ti}N

i=0. As discussed in later examples, using these N + 1
values, the Wiener process sample path can now be approximated everywhere
on the interval [t0, tN ].

Another interesting way to generate a Wiener process, which uses a count-
able number of normally distributed random variables is the Karhunen-Loève
expansion [69, 70]. The Karhunen-Loève expansion is derived from a Fourier
series expansion of the Wiener process and has the form

W (t) =
∞∑

n=0

2
√

2T

(2n + 1)π
ηnsin

(
(2n + 1)πt

2T

)

(2.9)

for t ∈ [0, T ], where ηn are independent identically distributed standard nor-
mal random variables, i.e., ηn ∼ N(0, 1) for n = 0, 1, . . . . Indeed, ηn in (2.9)
is given explicitly by

ηn =
(2n + 1)π
21/2T 3/2

∫ T

0
W (t)sin

(
(2n + 1)πt

2T

)

dt for n = 0, 1, 2, . . . .

This integral will be considered in Example 3.4 in the next chapter. To see
that the series (2.9) has the required properties of the Wiener process, let
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SN (t) =
N∑

n=0

2
√

2T

(2n + 1)π
ηnsin

(
(2n + 1)πt

2T

)

be the Nth partial sum of this series. It is easy to show that SN (t) ∈ HRV for
each t ∈ [0, T ] and that {SN (t)} is Cauchy in Hilbert space HRV . (Recall the
definition of Hilbert space HRV in Section 1.6.) Therefore, SN (t) → S(t) as
N → ∞ in HRV for each t ∈ [0, T ]. Indeed, as ηn ∼ N(0, 1) for each n, then
SN (t) ∼ N(0, σ2

N (t)) where

σ2
N (t) = t −

∞∑

n=N+1

8T

(2n + 1)2π2 sin2
(

(2n + 1)πt

2T

)

noting that

t =
∞∑

n=0

8T

(2n + 1)2π2 sin2
(

(2n + 1)πt

2T

)

=
∞∑

n=0

4T

(2n + 1)2π2

(

1 − cos
(

(2n + 1)2πt

2T

))

for 0 < t < T . In addition, it can be shown using the trigonometric identity

sin(at)sin(as) − sin2(at) =
1
2
cos(at − as) − 1

2
cos(at + as) − 1

2
+

1
2
cos(2at)

that
E
(
(S(s) − S(t))S(t)

)
= 0 for s ≥ t.

Notice that at each t ∈ [0, T ], W (t) ∈ HRV . In addition, W is continuous
in the mean square sense but does not possess a derivative. To see continuity
of W, consider

‖W (t + ∆t) − W (t)‖2
RV = E

(
W (t + ∆t) − W (t)

)2 = ∆t.

Thus, ‖W (t + ∆t) − W (t)‖RV =
√

∆t so given ε > 0 there is a δ > 0 such
that ‖W (t + ∆t) − W (t)‖RV < ε when ∆t < δ. However, as

∥
∥
∥
∥

W (t + ∆t) − W (t)
∆t

∥
∥
∥
∥

2

RV

=
1

∆t

there is no F (t) ∈ HRV such that
∥
∥
∥
∥

W (t + ∆t) − W (t)
∆t

− F (t)
∥
∥
∥
∥

2

RV

→ 0 as ∆t → 0.

It is useful to discuss expectations of functions of W (t) for 0 ≤ t ≤ T .
First, recall that
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p(t, x, y) =
1

(2π|t|)1/2 exp
(−(x − y)2

2|t|
)

for x, y ∈ R

is the probability density of normally distributed random variables with mean
y and variance |t|. Let W (t) be a Wiener process on [0, T ]. Clearly, for t1 ∈
[0, T ] and G : R → R,

E
(
G(W (t1))

)
=
∫ ∞

−∞
G(x1)p(t1, x1, 0) dx1.

In addition,

P
(
W (t1) ≤ z1

)
=
∫ z1

−∞
p(t1, x1, 0) dx1.

Now consider a partition of [0, T ], 0 = t0 ≤ t1 ≤ t2 ≤ · · · ≤ tk ≤ T . For
G : R

2 → R,

E
(
G(W (t1), W (t2))

)
=
∫ ∞

−∞

∫ ∞

−∞
G(x1, x2)p(t1, x1, 0)p(t2−t1, x2, x1) dx1 dx2.

Furthermore, for G : R
k → R,

E(G(W (t1), W (t2), . . . , W (tk))) =
∫ ∞

−∞
. . .

∫ ∞

−∞
G(x1, . . . , xk)p(t1, x1, 0) . . . p(tk − tk−1, xk, xk−1) dx1 . . . dxk.

The densities p(tm − tm−1, xm, xm−1) for m = 1, 2, 3, . . . , k define a set of
finite-dimensional probability measures on R

k. The probability distribution
on this partition satisfies

Ft1t2...tk
(z1, z2, . . . , zk) = P (W (t1) ≤ z1, . . . , W (tk) ≤ zk) (2.10)

=
∫ zk

−∞

∫ zk−1

−∞
. . .

∫ z1

−∞
p(t1, x1, 0) . . . p(tk − tk−1, xk, xk−1) dx1 . . . dxk.

It is interesting that this probability measure can be extended through finer
and finer partitions to all [0, T ] where the measure is identical to the finite-
dimensional measure for any partition 0 = t0 ≤ t1 ≤ t2 ≤ · · · ≤ tk ≤ T of
[0, T ]. As these finite-dimensional probability measures satisfy certain symme-
try and compatibility conditions [41, 92], Kolmogorov’s extension theorem can
be applied which says that there exists a probability space and a stochastic
process such that the finite-dimensional probability distributions are identi-
cal to those defined above. The stochastic process is the Wiener process or
Brownian motion W (t) and over any partition of [0, T ], the finite-dimensional
distributions of W (t) reduce to expression (2.10).

Finally, consider the transition probability density p(y, t, x, s) for the
Wiener process from x at time s to y at time t. In this case,
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p(y, t, x, s) =
1

(2π|t − s|)1/2 exp
(−(x − y)2

2|t − s|
)

and clearly p(y, t, x, s) = p(y, x, |t − s|) so the Wiener process is a continu-
ous homogeneous Markov process. In addition, one can directly verify the
Chapman-Kolmogorov equation for this transition probability, that is, for
s < u < t,

p(y, t, x, s) =
∫ ∞

−∞
p(z, u, x, s)p(y, t, z, u) dz.

2.4 A Hilbert Space of Stochastic Processes

It is useful to define a Hilbert space of stochastic processes. This space is
needed in Chapters 3 and 4 for discussing stochastic integrals and stochastic
differential equations. For example, demonstrating convergence of a sequence
of stochastic processes can be facilitated if the sequence is in a Hilbert space.
In particular, Cauchy sequences in the Hilbert space will converge in the space.
In this section, a metric space consisting of elementary stochastic processes
will be described first. This space will then be completed to a Hilbert space
and the set of elementary stochastic processes will be dense in the Hilbert
space.

Consider continuous stochastic processes defined on the interval [0, T ] and
probability space (Ω, A, P ). Let f(t) = f(t, ω) be an elementary stochastic
process which is a random step function defined on [0, T ] × Ω. That is, f has
the form

f(t, ω) =
N−1∑

i=0

f(ti, ω)Ii(t),

where 0 = t0 < t1 < t2 < · · · < tN = T is a partition of [0, T ] and Ii(t) is the
characteristic function

Ii(t) =
{

1 for ti ≤ t < ti+1
0, otherwise for i = 0, 1, 2, . . . , N − 1.

Recall from Section 1.6 that HRV is a Hilbert space of random variables. It
is assumed that the random variable f(ti, ·) ∈ HRV for each ti, in particular,
E(f2(ti)) < ∞ for each i. Now, the metric space SSP is defined as

SSP = {random step functions f(t, ω) defined on [0, T ] × Ω such that
∫ T

0 E(f(t))2 dt =
∑N−1

i=0 E(f2(ti))(ti+1 − ti) < ∞}.

On SSP , the inner product (·, ·)SP is defined as

(f, g)SP =
∫ T

0
E(f(t)g(t)) dt
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and the norm is defined as

‖f‖SP = (f, f)1/2
SP =

(∫ T

0
E|f(t)|2 dt

)1/2

.

The space SSP is a metric space with the metric ‖ · ‖SP . However, SSP is
not complete and it is straightforward to show that not all Cauchy sequences
converge in SSP . This space can be completed by adding to it additional
stochastic processes. The completed space is defined as HSP and SSP is dense
in HSP . That is, given f ∈ HSP and given ε > 0 there is a g ∈ SSP such that
‖f − g‖SP < ε. In the act of completing SSP , many stochastic processes may
be added to SSP to form HSP .

Suppose, for example, that a stochastic process f(t, ω) satisfies, for some
positive constants k1 and k2, the inequalities ‖f(0)‖2

RV ≤ k1 and ‖f(t2) −
f(t1)‖2

RV ≤ k2|t2 − t1| for all t1, t2 ∈ [0, T ]. Then, f ∈ HSP and fN (t, ω) =
∑N−1

i=0 f(ti, ω)Ii(t) forms a Cauchy sequence in SSP ⊂ HSP that converges to
f . Indeed,

‖f‖2
SP ≤ 2

∫ T

0
E|f(t) − f(0)|2 dt + 2

∫ T

0
E|f(0)|2 dt ≤ k2T

2 + 2k1T.

In addition, Fubini’s theorem [41, 65, 73] states that
∫ T

0
E|f(t)| dt = E

∫ T

0
|f(t)| dt and

∫ T

0
E|f(t)|2 dt = E

∫ T

0
|f(t)|2 dt.

For f ∈ HSP , the Cauchy-Schwarz inequality, |(f, g)SP | ≤ ‖f‖SP ‖g‖SP , is
very useful and written explicitly has the form

∣
∣
∣
∣
∣

∫ T

0
E(f(t)g(t)) dt

∣
∣
∣
∣
∣
≤
(∫ T

0
E|f(t)|2 dt

)1/2(∫ T

0
E|g(t)|2 dt

)1/2

.

Thus, for example, applying the Cauchy-Schwarz inequality and Fubini’s
theorem,

E

∫ T

0
|f(t)| dt =

∫ T

0
E|f(t)| dt ≤ T 1/2

(∫ T

0
E|f(t)|2 dt

)1/2

.

Furthermore, the triangle inequality, ‖f + g‖SP ≤ ‖f‖SP + ‖g‖SP , for f, g ∈
HSP is explicitly
(∫ T

0
E|f(t) + g(t)|2 dt

)1/2

≤
(∫ T

0
E|f(t)|2 dt

)1/2

+

(∫ T

0
E|g(t)|2 dt

)1/2

.

Sometimes it is useful to apply a set of stochastic processes which are even
more elementary than those in SSP . Let ŜSP ⊂ SSP be the set of simple
random step functions. That is, f ∈ ŜSP has the form
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f(t, ω) =
N−1∑

i=0

M∑

j=1

fij(ω)IAj Ii(t), where Aj ∈ A.

As simple functions are dense in HRV , ŜSP is also dense in HSP .
Several examples help to clarify Hilbert space HSP . First, for emphasis:

HSP is a Hilbert space of Stochastic Processes

with norm ‖f‖SP =
(∫ T

0 E|f(t)|2 dt
)1/2

.

Example 2.8. A converging sequence of stochastic processes
Define the stochastic process fN (t) as

fN (t) =
N−1∑

i=0

Ii(t)W (ti), where h =
T

N
and ti = ih for i = 0, 1, . . . , N.

Clearly, fN ∈ HSP for each N . Also,

‖fN − W‖2
SP =

∫ T

0
E

(
N−1∑

i=0

(W (t) − W (ti))Ii(t)

)2

dt

=
∫ T

0

N−1∑

i=0

(t − ti)Ii(t) dt =
N−1∑

i=0

∫ ti+1

ti

(t − ti) dt

=
N−1∑

i=0

h2

2
=

T 2

2N
.

Since ‖fN − W‖SP → 0 as N → ∞, the sequence of stochastic processes
{fN}∞

N=1 converges to W in HSP .

Example 2.9. Another converging sequence of stochastic processes
Let W ∈ HSP be a Wiener process on [0, T ]. Define the stochastic process

Xn(t) in the following way:

Xn(t) =
n − 1

n
W (t) for n = 1, 2, . . . .

Then

‖Xn − W‖2
SP =

∫ T

0
E(Xn(t) − W (t))2 dt =

∫ T

0
E(W (t))2

1
n2 dt =

T 2

2n2 .

Thus, Xn converges to W in HSP as n → ∞.
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Example 2.10. Integration of a function of a Poisson process
Consider J(e−X) =

∫ T

0 exp(−X(t)) dt where X is a Poisson process with
intensity λ on the interval [0, T ]. Suppose that X(t) experiences unit increases
at the times t1 < t2 < t3 < · · · < tN−1 on [0, T ] and let t0 = 0 and tN = T .
Then X(t) can be written in the form

X(t) = i for ti ≤ t < ti+1 for i = 0, 1, . . . , N − 1.

Then, it is easily seen that

J(e−X) =
∫ T

0
exp(−X(t)) dt =

N−1∑

i=0

∫ ti+1

ti

exp(−i) dt =
N−1∑

i=0

exp(−i)(ti+1−ti).

Furthermore, it is interesting that

E
(
J(e−X)

)
= E

∫ T

0
exp(−X(t)) dt =

∫ T

0

∞∑

i=0

exp(−i)
(λt)i exp(−λt)

i!
dt

=
∞∑

i=0

exp(−i)
i!

∫ T

0
(λt)i exp(−λt) dt =

∞∑

i=0

exp(−i)
i!λ

∫ λT

0
(x)i exp(−x) dx

=
∞∑

i=0

exp(−i)Bi(λT )
i!λ

where Bi(λT ) =
∫ λT

0
xi exp(−x) dx.

Also, as T → ∞, then Bi(λT ) → i! and E
( ∫∞

0 exp(−X(t)) dt
)

=
e

λ(e − 1)
.

Example 2.11. A commonly used approximation to the Wiener process
Consider the interval 0 ≤ t ≤ T and let ti = ih for i = 0, 1, 2, . . . , N where

h = T/N . Let W (t) ∼ N(0, t) be a Wiener process. Define the continuous
piecewise linear stochastic process XN (t) on this partition of [0, T ] by

XN (t) = W (ti)
ti+1 − t

h
+ W (ti+1)

t − ti
h

for ti ≤ t ≤ ti+1 and i = 0, 1, . . . , N − 1. Notice that XN (ti) = W (ti) for
i = 0, 1, . . . , N and XN (t) is continuous on [0, T ]. Also,

‖XN − W‖2
SP =

N−1∑

i=0

∫ ti+1

ti

E

(

W (ti)
ti+1 − t

h
+ W (ti+1)

t − ti
h

− W (t)
)2

dt

=
N−1∑

i=0

∫ ti+1

ti

E

(
(
W (ti) − W (t)

) ti+1 − t

h
+
(
W (ti+1) − W (t)

) t − ti
h

)2

dt

=
N−1∑

i=0

∫ ti+1

ti

2(t − ti)(ti+1 − t)
h

dt

=
N−1∑

i=0

h2

3
=

T 2

3N
.
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Thus, ‖XN − W‖2
SP → 0 as N → ∞, i.e., XN → W in HSP as N → ∞. For

a large value of N , the graph of a sample path of XN (t) is indistinguishable
from the graph of the corresponding sample path of W (t). The graph of a
Wiener process trajectory is often represented by plotting XN (t) for a large
value of N . In Fig. 2.2 two Wiener process sample paths are plotted on the
interval [0, 10]. (In this figure, two sample paths X1000(t) are actually graphed
where the recurrence relation (2.8) is used to generate the 1000 values W (ti)
for i = 1, 2, . . . , 1000 for each Wiener process trajectory.)
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Fig. 2.2. Two Wiener sample paths on [0,10]

A few additional properties of stochastic processes in Hilbert space HSP

are useful. First, if X ∈ HSP , then
∫ T

0 E|X(t)|2 dt < ∞ which implies that
X(t) ∈ HRV for almost every t ∈ [0, T ]. In addition, if {Xn}∞

n=1 ⊂ HSP

converges to a stochastic process X ∈ HSP , then ‖Xn −X‖SP → 0 as n → ∞.
Hence, E|Xn(t)−X(t)|2 → 0 for almost every t ∈ [0, T ]. That is, convergence
in Hilbert space HSP implies convergence in probability on [0, T ]. Specifically,
‖Xn − X‖SP → 0 as n → ∞ implies that for any ε > 0, P ({ω : |Xn(t, ω) −
X(t, ω)| > ε}) → 0 as n → ∞ for almost every t ∈ [0, T ].

Now, suppose that X(0) ∈ HRV and X ∈ HSP satisfies

‖X(t2) − X(t1)‖2
RV = E|X(t2) − X(t1)|2 ≤ K|t2 − t1|

for any t1, t2 ∈ [0, T ] for a constant K > 0. Then a bound on ‖X‖SP can be
found and X is continuous on [0, T ] with respect to the HRV norm. First, if
X(0) ∈ HRV , then X(0) ∈ HSP and

‖X‖SP ≤ ‖X − X(0)‖SP + ‖X(0)‖SP ≤
(

KT 2

2

)1/2

+ T 1/2‖X(0)‖RV .
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Thus, ‖X‖SP is bounded by
(

KT 2

2

)1/2

+ T 1/2‖X(0)‖RV . Also, it is easy to

see that X is continuous on [0, T ] with respect to the HRV norm. Given ε > 0,
then

‖X(t2) − X(t1)‖RV ≤ K1/2|t1 − t2|1/2 ≤ ε

whenever |t1 − t2| ≤ ε2/K.
Finally, it is useful to present some terminology used in the literature

regarding the Hilbert space HSP that is applied in Chapters 3 and 4 for
Itô stochastic integrals and differential equations. Let W (t, ω) be a Wiener
process defined on a probability space (Ω, A, P ). Let {A(t) : 0 ≤ t ≤ T}
be a family of sub-σ-algebras of A satisfying A(t1) ⊂ A(t2) if t1 < t2, W (t)
is A(t)-measurable, and W (t + s) − W (t) is independent of A(t). A(t) is the
σ−algebra of events generated by the values of the Wiener process until time t
[70]. A stochastic process f(t, ω) is said to be adapted [40, 92] to A(t) if f(t, ·)
is A(t)-measurable for almost all t ∈ [0, T ]. If f is measurable on [0, T ] × Ω,
then f is said to be nonanticipative [40, 41]. A nonanticipative function f(t)
is independent of a Wiener increment W (t+s)−W (t) for s > 0. Furthermore,
the Hilbert space HSP is the set of nonanticipative stochastic processes f such
that f satisfies

∫ T

0 E|f(t)|2 dt < ∞.

2.5 Computer Generation of Stochastic Processes

It is useful to consider how stochastic processes can be computationally sim-
ulated using pseudo-random numbers. First, consider simulation of a discrete
stochastic process, in particular, a Markov chain {Xn} on 0 = t0 < t1 <
t2 < · · · < tN = T where X0 = z0 and Xn is a discrete random variable for
each time tn, n = 0, 1, . . . , N . Specifically, Xn ∈ M = {z−m, z−m+1, . . . , zm}.
Suppose that the transition probability matrix

Pn = [p(n)
i,j ] where p

(n)
i,j = P{Xn+1 = zj |Xn = zi}

depends on time tn. Consider generation of one trajectory or sample path
{Xn, 0 ≤ n ≤ N}. At time t0, X0 = z0. To find X1, p

(0)
0,j are first computed

for j = −m, −m + 1, . . . , m. Next, a pseudo-random number η0 uniformly
distributed on [0, 1] is generated. Then, r0 is calculated so that

r0−1∑

j=−m

p
(0)
0,j < η0 ≤

r0∑

j=−m

p
(0)
0,j .

Finally, X1 is set equal to zr0 . To find X2, p
(1)
r0,j are computed for j =

−m, −m + 1, . . . , m. Then, η1 uniformly distributed on [0,1] is generated and
r1 is calculated so that
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r1−1∑

j=−m

p
(1)
r0,j < η1 ≤

r1∑

j=−m

p
(1)
r0,j .

Then X2 is set equal to zr1 . These steps are repeated N times to give one
realization {Xk}N

k=0 of the discrete stochastic process.
Now consider generating a trajectory for a continuous Markov process

{X(t), t ∈ [0, T ]}. Generally, as illustrated in the examples described in this
section, trajectories of continuous processes are determined at a discrete set
of times. Specifically, a trajectory X(t) is calculated at the times t0, t1, . . . , tN
where 0 = t0 < t1 < t2 < · · · < tN = T . Then, X(t) may be approximated
between these points using, for example, piecewise linear interpolation.

Example 2.12. Simulation of a Poisson process
Consider a Poisson process X(t) with intensity λ. Recall that the process

X(t) equals the number of observations in time t where the probability of one
observation in time ∆t is equal to λ∆t+ o((∆t)2). From Example 1.4, we saw
that

P (X(t) = n) = exp(−λt)
(λt)n

n!
.

Consider now simulating this continuous stochastic process at the discrete
times tk = kh for k = 0, 1, 2, . . . , N where h = T/N . Let

X(tk+1) = X(tk) + η̂k for k = 0, 1, . . . , N − 1, where Xt0 = 0

and the random numbers η̂k are chosen so that

P (η̂k = n) = exp(−λh)
(λh)n

n!
for n = 0, 1, 2, . . . .

Then, X(tk) are Poisson distributed with intensity λ at the discrete times
t0, t1, . . . , tN . Notice that to find η̂k given ηk uniformly distributed on [0, 1],
one uses the relation

η̂k−1∑

j=0

exp(−λh)
(λh)j

j!
< ηk ≤

η̂k∑

j=0

exp(−λh)
(λh)j

j!
.

Example 2.13. Simulation of a Wiener process sample path
Consider the Wiener process W (t) on [0, T ]. Consider simulating this con-

tinuous stochastic process at the discrete times tk = kh for k = 0, 1, 2, . . . , N
where h = T/N . Let

X(tk+1) = X(tk) + ηk for k = 0, 1, . . . , N − 1,

where Xt0 = 0 and ηk are normally distributed numbers with mean 0 and
variance h. As in the previous example, each sample path of the continu-
ous stochastic process is computed at the discrete times t0, t1, . . . , tN . Thus,
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W (tk) = X(tk) for k = 0, 1, 2, . . . , N . To estimate W (t), at a time t �= tk for
any k, a continuous linear interpolant can be used as was shown in Example
2.11. In particular,

W (t) ≈ X(tk)
tk+1 − t

h
+ X(tk+1)

t − tk
h

for tk ≤ t ≤ tk+1.

Example 2.14. Simulation of a Wiener process by a discrete process
Let tk = kh for k = 0, 1, 2, . . . , N where h = T/N . Define the discrete

stochastic process {Xn}N
n=0 on the partition 0 = t0 < t1 < · · · < tN = T

in the following way. Let X0 = 0 and let the transition probabilities pi,k =
P{Xn+1 = kδ|Xn = iδ} be

pi,k(t) =

⎧
⎨

⎩

λ∆t/2δ2, for k = i − 1
1 − λ∆t/δ2, for k = i
λ∆t/2δ2, for k = i + 1

assuming that λ∆t/δ2 < 1. Then, as explained in Section 2.2, the probability
distribution for Xk as ∆t → 0 satisfies the forward Kolmogorov equations

dpk(t)
dt

=
λ

2

(
pk+1(t) − 2pk(t) + pk−1(t)

δ2

)

,

where p0(0) = 1 and pk(0) = 0 for k �= 0. For δ small, pk(tn) = P (X(tn) = kδ)
approximately equals p(tn, kδ)δ where p(t, x) satisfies the partial differential
equation

∂p(t, x)
∂t

=
λ

2
∂2p(t, x)

∂x2 with p(0, x) = δ(x − 0).

Solving this partial differential equation gives

p(t, x) =
1

(2πλt)1/2 exp
(

− x2

2λt

)

.

In particular, for λ = 1, ∆t/δ2 < 1, and ∆t small, Xn is approximately
normally distributed with mean 0 and variance n∆t. Furthermore, Xn − Xj

is approximately normally distributed with mean 0 and variance (n − j)∆t
and is independent of Xl − Xm for j ≥ l. Indeed, {Xn}N

n=0 approximates a
Wiener process on the partition 0 = t0 < t1 < · · · < tN = T .

2.6 Examples of Stochastic Processes

Stochastic processes are common in physics, biology, meteorology, and finance.
Indeed, stochastic processes occur whenever dynamical systems experience
random influences. A classic physical stochastic process is radioactive decay
where atoms of unstable isotopes transform spontaneously to other isotopes.
Suppose that there are initially present n0 atoms of a radioactive isotope. Let
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λ be the decay constant of the isotope. This means that the probability that
an atom transforms in small time interval ∆t is equal to λ∆t+O((∆t)2). Let
N(t) be the number of atoms at time t. Consider finding the expected number
of atoms at time t, i.e., E(N(t)). Let pn(t) be the probability that there are
n atoms at time t. Then, considering the possible transitions in time interval
∆t, one obtains that

pn(t + ∆t) = pn+1(t)λ(n + 1)∆t + pn(t)(1 − λn∆t) + O((∆t)2).

Thus, letting ∆t → 0,
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

dpn0(t)
dt

= −λn0pn0(t) with pn0(0) = 1 and

dpn(t)
dt

= −λnpn(t) + λ(n + 1)pn+1(t) with pn(0) = 0 for 0 ≤ n < n0.

The expected number of atoms can now be computed as

E(N(t)) =
n0∑

n=0

npn(t) and so
dE(N(t))

dt
=

n0∑

n=0

n
dpn(t)

dt
.

This leads to

dE(N(t))
dt

=
n0∑

n=0

n
dpn(t)

dt
=

n0∑

n=0

−λn2pn(t) +
n0−1∑

n=0

λn(n + 1)pn+1(t)

=
n0∑

n=0

−λn2pn(t) +
n0∑

n=1

λ(n − 1)npn(t)

=
n0∑

n=0

−λnpn(t) = −λE(N(t)).

Hence,
dE(N(t))

dt
= −λE(N(t)) with E(N(0)) = n0.

So, E(N(t)) = n0 exp(−λt) is the expected number of atoms at time t.
Population biology is rich in stochastic processes. Mathematical models are

useful for understanding these random biological processes. The birth-death
process, in itself, is a random process. Also, variability in the environment
introduces additional random influences which are time and spatially varying.
As a result, growth of a population exhibits random behavior. This random
behavior is exhibited in the Aransas-Wood Buffalo population of whooping
cranes [27]. These cranes nest in Wood Buffalo National Park in Canada and
winter in Aransas National Wildlife Refuge in Texas. The population size is
graphed in Fig. 2.3 over the years 1939–1985. This population of whooping
cranes will be studied in more detail in Chapter 4.
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Fig. 2.3. Aransas-Wood Buffalo population of whooping cranes from 1939 to 1985

Because of the actions of many different influences, weather is highly vari-
able and climatic quantities can be considered stochastic processes. Consider,
for example, the annual precipitation in Lubbock, Texas which is plotted in
Fig. 2.4 from 1911 to 2004. This data exhibits a Wiener-like behavior. The
rainfall data will be modeled in Chapter 5.

1920 1940 1960 1980 2000
0

10

20

30

40

50

Year

P
re

ci
pi

ta
tio

n 
in

 L
ub

bo
ck

Fig. 2.4. Annual rainfall (in inches) for Lubbock from 1911 to 2004

In addition to physical and biological phenomena, human activities such
as stock trading which are quantitative and involve many uncertainties can
exhibit a random behavior. Plotted in Fig. 2.5 are stock prices of Best Buy
Company and Mattel Inc. The stock prices are graphed as a function of trading
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day from January 13, 2004 to January 12, 2005. A model for stock-price
dynamics will be presented in Chapter 5.
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Fig. 2.5. Best Buy Co. and Mattel Inc. stock prices from 1/13/2004 to 1/12/2005

Exercises

2.1. Consider rolling a die once each minute for t = 1, 2, . . . . Define Ω =
{ω1, ω2, . . . , ω6} where ωk = k and P (ωk) = 1/6 for k = 1, 2, . . . , 6. Define the
stochastic process, X, by X(t, ωk) = (k +1)/t2. Notice that X(t) is a random
variable for each t ∈ τ = {1, 2, . . . }. Calculate E(X(t)) and Var(X(t)).

2.2. Let τ = {0, 1, 2, . . . } and define the stochastic process, X, on τ by X(t+
1) = X(t) + γt for t = 0, 1, 2, . . . where γt ∼ U [0, 1] for each t and X(0) = 1.
Find E(X(t)) and Var(X(t)). Notice that X is a continuous-valued discrete
stochastic process.

2.3. Let τ = {0, ∆t, 2∆t, 3∆t, . . . } and let tn = n∆t for n = 0, 1, . . . . Let
Xn = X(tn) be a homogeneous Markov chain defined on τ . Assume that the
process X has the transition probabilities

pi,k =

⎧
⎪⎪⎨

⎪⎪⎩

1 − ∆t/2, for k = i
∆t/4, for k = i − 1
∆t/4, for k = i + 1
0, otherwise.
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(a) Let pk(t) = P (X(t) = k) be the probability distribution for X at time t.
Assume that p0(0) = 1 and pk(0) = 0 for k �= 0. Show that the probability
distribution satisfies

pk(t + ∆t) =
(

1 − ∆t

2

)

pk(t) + pk+1(t)
∆t

4
+ pk−1(t)

∆t

4

for k = . . . ,−2, −1, 0, 1, 2, . . . .
(b) Show that as ∆t → 0, then pk(t) approximately satisfies

dpk(t)
dt

=
1
4

(
pk+1(t) − 2pk(t) + pk−1(t)

12

)

for k = . . . ,−2, −1, 0, 1, 2, . . . .

(c) Show that p(t, x) =
1√
πt

exp(−x2

t ) solves

∂p(t, x)
∂t

=
1
4

∂2p(t, x)
∂x2

assuming initial condition p(0, x) = δ(x − 0).

(d) For x2

t small, p(t, x) =
1√
πt

exp(−x2

t ) ≈ 1√
πt

(
1 − x2

t

)
and thus, p(t, k) ≈

1√
πt

(
1 − k2

t

)
for k2

t small. Show that pk(t) =
1√
πt

(
1 − k2

t

)
approximately

satisfies the differential equation in part (b) for k2

t small.

2.4. Suppose that X(t) is the number of observations in time t of a ran-
domly occurring phenomenon and the probability for zero observations in
time interval ∆t is exactly equal to exp(−λ∆t) where λ is a positive con-
stant. Derive the probability of one occurrence in time t. That is, derive
P1(t) = P (X(t) = 1) = λt exp(−λt). Note that P0(t+∆t) = P0(t) exp(−λ∆t)
and P1(t + ∆t) = P1(t)P0(∆t) + P0(t)P1(∆t). (Let ∆t → 0 and find and
solve the differential equations for P0(t) and P1(t). Also note that P1(∆t) =
P1(0) + P ′

1(0)∆t + O((∆t)2).)

2.5. Let X(t) = γi+1(t − ti)/h + γi(ti+1 − t)/h for ti ≤ t ≤ ti+1 for
i = 0, 1, 2, . . . , N − 1 where h = T/N , ti = ih, and γi ∼ U [−1/2, 1/2] are
independent and identically distributed for i = 0, 1, 2, . . . , N . Notice that X
is a continuous stochastic process. For ∆t small compared with h, prove that
E((X(t + ∆t) − X(t))2) ≤ (∆t)2/h2 for any 0 ≤ t ≤ T . (Consider two cases:
ti ≤ t < t + ∆t ≤ ti+1 and ti ≤ t ≤ ti+1 < t + ∆t < ti+2 for any i.)

2.6. The Wiener process has transition probability density

p(y, t, x, s) =
1

(2π(t − s))1/2 exp
(−(x − y)2

2(t − s)

)

.
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Prove, by direct integration, that the Chapman-Kolmogorov formula

p(y, t, x, s) =
∫ ∞

−∞
p(z, u, x, s)p(y, t, z, u) dz

holds for this transition probability density.

2.7. Let

W (t) − SN (t) = EN (t) =
∞∑

n=N+1

2
√

2T

(2n + 1)π
ηnsin

(
(2n + 1)πt

2T

)

where SN (t) is the Nth partial sum of the Karhunen-Loève expansion of W (t)
on [0, T ]. Prove that ‖EN (t)‖2

RV ≤ 2T/(π2N) for 0 ≤ t ≤ T .

2.8. Define the stochastic process X on [0, T ] by the formula

X(t) =
(ti+1 − t)Ui

h
+

(t − ti)Ui+1

h
for ti ≤ t ≤ ti+1

for i = 0, 1, . . . , N − 1 where h = T/N , ti = ih, and Ui ∼ U [0, 1] are indepen-
dent random variables for i = 0, 1, . . . , N . Find ‖X‖SP .

2.9. Let τ = [0, T ], X ∈ HSP , and Xk ∈ HSP for k = 0, 1, 2, . . . . Suppose
that ‖X(t) − XN (t)‖RV ≤ t/N for 0 ≤ t ≤ T .
(a) Prove that ‖X − XN‖SP ≤ T 3/2/(N

√
3).

(b) Prove that given ε > 0, P (|X(t) − XN (t)| > ε) <
1
ε2

T 2

N2 for all 0 ≤ t ≤ T .

Thus, for example, given ε = 10−6 there is a value of N sufficiently large such
that P (|X(t) − XN (t)| > 10−6) < 10−12 for any t ∈ [0, T ].

2.10. Modify the MATLAB program given below and graph three individual
Wiener process trajectories, the average of 200 trajectories, and the variance
of 200 trajectories from t = 0 to t = 5. Use 500 points equally spaced on t = 0
to t = 5. Put all plots on one figure and hand in the figure.

% This program can be used to solve a system of SDEs.
% If a1=0, a2=0, b11=1, b12=0, b21=0, and b22=1, then
% Wiener processes are plotted.
clear
clf
xx=56430.;
n=500;
nrun=200;
tf=5.0;
h=tf/n;
hs=sqrt(h);
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x=linspace(0,tf,n);
y3=zeros(1,n);
y4=zeros(1,n);
ya=zeros(1,n);
yv=zeros(1,n);
sa=0.0;
sv=0.0;
for ii=1:nrun
for i=1:n-1

rr=random(xx);
xx=rr(3);
a1=0;
a2=0;
b11=1;
b12=0;
b21=0;
b22=1;
y3(i+1)=y3(i)+a1*h+hs*b11*rr(1)+hs*b12*rr(2);
y4(i+1)=y4(i)+a2*h+hs*b21*rr(1)+hs*b22*rr(2);
ya(i+1)=ya(i+1)+y4(i+1)/nrun;
yv(i+1)=yv(i+1)+y4(i+1)*y4(i+1)/nrun;
end
sa=sa+y4(n)/nrun;
sv=sv+y4(n)*y4(n)/nrun;
end
set(gca,’fontsize’,15,’linewidth’,1.5);
plot(x,y3,’k-’,’linewidth’,1.5)
hold on
plot(x,y4,’k-’,’linewidth’,1.5)
hold on
plot(x,ya,’k--’,’linewidth’,1.5)
hold on
plot(x,yv,’k:’,’linewidth’,1.5)
axis([0,tf,-6.0,6.0])
xlabel(’Time t’)
ylabel(’Wiener Processes, Average, and Variance’)
hold off

%--------------------------------------------------
% Function random generates random numbers using
% the congruential generator xx=16807*xx mod(2ˆ31-1).
% The Box-Muller method converts to normal random numbers.
% xx=rand(3) is input to the function rand=random(xx).

a=16807;
b=2147483647;

for i=1:2
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d=fix(a*xx/b);
xx=a*xx-d*b;
rng(i)=xx/b;

end
p=3.141592654;
u1=rng(1);
u2=rng(2);
hlp=sqrt(-2.0*log(u1));
rand(1)=hlp*cos(p*2.0*u2);
rand(2)=hlp*sin(p*2.0*u2);
rand(3)=xx;

2.11. Suppose for interval [0, T ] that f ∈ HSP and fn ∈ HSP for n = 1, 2, . . . .
Also, suppose that ‖f − fn‖2

SP < δn where δn → 0 as n → ∞. Let µn = {t ∈
[0, T ] : E(f(t) − fn(t))2 >

√
δn} and define meas(µn) =

∫
t∈µn

dt.
(a) Show that

√
δn meas(µn) ≤ ∫

t∈µn
E(f(t) − fn(t))2 dt ≤ δn and thus show

that meas(µn) ≤ √
δn → 0 as n → ∞.

(b) Show, using Chebyshev’s inequality, that P ({ω : |f(t, ω) − fn(t, ω)| >

ε}) ≤ 1
ε2

√
δn for t /∈ µn. Notice that parts (a) and (b) imply, given ε > 0 and

t ∈ [0, T ], that the likelihood decreases as n increases that the values on the
sample paths, f(t, ω) and fn(t, ω), differ by more than ε.

2.12. Let X be a stochastic process on [0, T ] and define the elementary
stochastic process XN by XN (t) =

∑N−1
i=0 X(ti)Ii(t), where

Ii(t) =
{

1, ti ≤ t < ti+1
0, otherwise

h = T/N , and ti = ih for i = 0, 1, 2 . . . , N . Suppose that XN ∈ SSP for
N = 1, 2, . . . , and suppose given ε > 0 there is an integer M such that
‖X − XN‖SP < ε for N ≥ M . Let Y = G(X) define another stochastic
process where G satisfies the Lipschitz condition |G(r) − G(s)| ≤ L|r − s| for
all r, s ∈ R. Let YN (t) =

∑N−1
i=0 G(X(ti))Ii(t). Show that ‖Y − YN‖SP < Lε

for N ≥ M . Hence, {YN} are elementary stochastic processes that converge
to Y in HSP .

Computer Programs

Program 2.1. A computer program to generate Poisson processes

Listed is a MATLAB program that makes Fig. 2.1. A sample path is plot-
ted along with the average of nrun sample paths for a Poisson process with
intensity λ.
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% MATLAB program to plot a Poisson process.
% Function file unirand.m is needed.
% Function unr=unirand(xx) returns two numbers:
% unr(1) is uniformly distributed on [0,1], and
% xx is set equal to unr(2) for the next call to unirand.m.
% The average of nrun paths and one sample path are plotted.
% The program can readily be modified to plot two paths.
clear
clf
xx=4034218;
% xx starts the random number sequence
nt=500;
nrun=200;
time=10;
lambda=1;
% nt is number of time intervals, time is total time
% nrun is the number of different paths
h=time/nt;
tt=linspace(0,time,nt+1);
sm=zeros(nt+1,1);
s2=zeros(nt+1,1);
patha=zeros(nt+1,1);
pathb=zeros(nt+1,1);
for jj=1:nrun
y=0;
% y=0 is initial value for all paths
sm(1)=y;
s2(1)=y*y;
patha(1)=y;
pathb(1)=y;
for i=1:nt
unr=unirand(xx);
xx=unr(2);

% need xx=unr(2) for next call to unirand.m
if unr(1) < lambda *h

y=y+1;
end
sm(i+1)=sm(i+1)+y/nrun;
s2(i+1)=s2(i+1)+y*y/nrun;
pathb(i+1)=patha(i+1);
patha(i+1)=y;
end
end
set(gca,’fontsize’,18,’linewidth’,1.5);
plot(tt,patha,’-’,tt,sm,’--’,’linewidth’,1.5);
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axis([0,10,0,10]);
xlabel(’Time t’)
ylabel(’Poisson Process - Unit Intensity’)
set(gca,’linewidth’, 1.5);

%---------------------------------------------
% Function file unirand.m generates random numbers using
% the congruential generator xx=16807*xx mod(2ˆ31-1).
% The random number unr(1) is uniform on [0,1].
% The value xx=unr(2) is input to the generator.
% Call using two statements: unr=unirand(xx); xx=unr(2);
function [unr] = unirand(xx)
a=16807;
b=2147483647;
d=fix(a*xx/b);
xx=a*xx-d*b;
unr(1)=xx/b;
unr(2)=xx;
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Stochastic Integration

3.1 Introduction

Integrals of the form
∫ t

a
f(s, ω) ds and

∫ t

a
g(s, ω) dW (s, ω) for a ≤ t ≤ b, where

f and g are stochastic processes on (Ω, A, P ), are studied in this chapter.
If f and g satisfy certain conditions and are stochastic processes in Hilbert
space HSP , then the integrals will also be stochastic processes in this Hilbert
space. Properties of these integrals will be useful in the next chapter where
stochastic differential equations are discussed.

As stochastic differential equations are written in the form of stochastic
integrals, stochastic integrals are important in the study of stochastic differ-
ential equations and properties of stochastic integrals determine properties
of stochastic differential equations. It is assumed in this chapter that the
integrands are elements of Hilbert space HSP . This assumption unifies and
simplifies the presentation of stochastic integrals and stochastic differential
equations. Many texts are available which present excellent introductions to
stochastic integrals such as references [20, 29, 40, 41, 42, 69, 70, 90, 92, 96].

In this chapter, Itô stochastic integrals are defined and some important
properties are examined. A method to approximate Itô stochastic integrals
is described. Stochastic differentials are described and the important Itô’s
formula is derived. Application of Itô’s formula in Chapter 4 enables cer-
tain stochastic differential equations to be solved exactly. Furthermore, Itô’s
formula can be used to derive additional important results for stochastic
differential equations. Finally, another commonly used stochastic integral, a
Stratonovich stochastic integral, is briefly discussed.

3.2 Integrals of the Form
∫ t

a
f(s, ω) ds

In this section, integrals of the forms J(f) = J(f)(ω) ≡ ∫ b

a
f(s, ω) ds and

J(f)(t) = J(f)(t, ω) ≡ ∫ t

a
f(s, ω) ds for a ≤ t ≤ b are defined and studied.

63
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These integrals are mappings from the Hilbert spaces HSP to HRV or HSP to
HSP , respectively. That is, for f ∈ HSP , the first integral is a random variable
in HRV while the second integral is a stochastic process in HSP .

In this section and the next section, three conditions are assumed on
the stochastic process f , in addition to f ∈ HSP . These conditions are the
following:

Condition (c1): f(a) ∈ HRV . Hence, ‖f(a)‖2
RV = E|f(a)|2 ≤ k1 for a posi-

tive constant k1.

Condition (c2): ‖f(t2) − f(t1)‖2
RV = E|f(t2) − f(t1)|2 ≤ k2|t2 − t1| for any

t1, t2 ∈ [a, b] for a positive constant k2.

Condition (c3): f is nonanticipating on [a,b].

Notice that if f ∈ HSP satisfies (c1) and (c2), then ‖f(t)‖RV ≤ k
1/2
2 (b −

a)1/2 + ‖f(a)‖RV for any t ∈ [a, b]. This boundedness property follows from
the triangle inequality ‖f(t)‖RV ≤ ‖f(t) − f(a)‖RV + ‖f(a)‖RV . The third
condition, that f is nonanticipating on [a, b], means essentially that f(t, ω)
does not depend on time t′ for t′ > t. Hence, E

(
f(t)(W (t′) − W (t))

)
=

E(f(t))E(W (t′) − W (t)) = 0 for all a ≤ t ≤ t′ ≤ b. For example, f1(t) =
3 cos (W 2(t)) + 4W (t) − 5t is nonanticipating while f2(t) = W ((t + b)/2) is
anticipating for a < t < b. Indeed, E

(
f1(t)(W (t′) − W (t))

)
= 0 for t′ > t

while

E
(
f2(t)(W (t′) − W (t))

)
=
{

t′ − t, for t < t′ ≤ (t + b)/2
(b − t)/2, for (t + b)/2 ≤ t′ ≤ b.

To motivate the definition of J(f) = J(f)(ω) ≡ ∫ b

a
f(s, ω) ds for f ∈ HSP ,

the integral for a step function approximation to f is considered. Recall that
the set of step functions SSP ⊂ HSP is dense in HSP . Let a = t0 < t1 < · · · <
tm−1 < tm = b be of a family of partitions of [a, b] where max

1≤i≤m
|ti − ti−1| → 0

as m → ∞ and let

Ii(t) =
{

1 for ti ≤ t < ti+1
0, otherwise

for i = 0, 1, 2, . . . , N − 1. Furthermore, let

fm(t, ω) =
m−1∑

i=0

f
(m)
i (ω)Ii(t), where, f

(m)
i ∈ HRV for each i and m

be a sequence of step functions in SSP that converges to f . That is, given
ε > 0 there is an M > 0 such that

‖f − fm‖SP < ε when m ≥ M.

Before continuing, the integral of step function fm(t, ω) is defined in a
standard way [73].
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Definition 3.1. Let fm(t, ω) =
∑m−1

i=0 f
(m)
i (ω)Ii(t) be an element of SSP .

Then the integral
∫ b

a
fm(s) ds is denoted as J(fm) and is defined as

J(fm) =
∫ b

a

fm(s) ds =
m−1∑

i=0

f
(m)
i (ti+1 − ti).

Notice that J(fm) ∈ HRV since by the Cauchy-Schwarz inequality,

‖J(fm)‖2
RV = E

∣
∣
∣
∣
∣

∫ b

a

fm(s) ds

∣
∣
∣
∣
∣

2

≤
m−1∑

i=0

(ti+1 − ti)E
m−1∑

i=0

|f (m)
i |2 (ti+1 − ti)

= (b − a)E
∫ b

a

|fm(s)|2 ds = (b − a)‖fm‖2
SP .

Also, notice that {J(fm)}∞
m=1 is a Cauchy sequence in HRV and therefore

has a limit in HRV . To see that {J(fm)}∞
m=1 is a Cauchy sequence in HRV

consider

‖J(fm) − J(fn)‖2
RV = E

∣
∣
∣
∣
∣

∫ b

a

(fm(t) − fn(t)) dt

∣
∣
∣
∣
∣

2

≤ (b − a)‖fm − fn‖2
SP .

The right-hand side can be made arbitrarily small as {fm}∞
m=1 is a Cauchy

sequence in HSP . Thus, J(fm) converges in HRV as m → ∞. This limit is
defined to be J(f). This discussion is summarized in the following definition.

Definition 3.2. Given f ∈ HSP and a sequence {fm}∞
m=1 in SSP such that

‖f − fm‖SP → 0 as m → ∞, then the integral
∫ b

a
f(s) ds is denoted as J(f)

and is defined as

J(f) =
∫ b

a

f(s)ds = lim
m→∞

∫ b

a

fm(s) ds = lim
m→∞

m−1∑

i=0

f
(m)
i (ti+1 − ti).

A useful inequality follows from this definition. By definition, if ‖f −
fm‖SP → 0, then

∫ b

a
f(s) ds = limm→∞

∫ b

a
fm(s) ds. However, by the Cauchy-

Schwarz inequality, E
(∫ b

a
fm(s) ds

)2
≤ T

∫ b

a
E|fm(s)|2 ds. Hence, for f ∈

HSP ,

E

(∫ b

a

f(s) ds

)2

≤ T

∫ b

a

E|f(s)|2 ds.

Also, notice for f ∈ HSP that satisfies inequality (c2), i.e., ‖f(t2) −
f(t1)‖2

RV = E|f(t2) − f(t1)|2 ≤ k2|t2 − t1| for any t1, t2 ∈ [a, b] for a
positive constant k2, then

∫ b

a

f(s) ds = lim
m→∞

m−1∑

i=0

f(ti)∆t,
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where ∆t = (b − a)/m, ti = i∆t + a, and the limit is in HRV . This result
follows by letting fm(t) =

∑m−1
i=0 f(ti)Ii(t) and seeing that ‖f − fm‖SP → 0

as m → ∞.
Now consider integrals of the form J(f) = J(f)(t, ω) ≡ ∫ t

a
f(s, ω) ds for

a ≤ t ≤ b where f ∈ HSP . In this case, the integral is defined as in Definition
3.2 for each value of t for a ≤ t ≤ b. This integral, however, maps a stochastic
process in HSP to another stochastic process in HSP . Indeed, ‖J(f)‖SP ≤
(b − a)‖f‖SP /

√
2. To see this, the Cauchy-Schwarz inequality and Fubini’s

theorem are applied in the following argument.

‖J(f)‖2
SP =

∫ b

a

E

∣
∣
∣
∣

∫ t

a

f(s) ds

∣
∣
∣
∣

2

dt ≤
∫ b

a

E

(∫ t

a

|f(s)|2 ds

)

(t − a) dt

≤
∫ b

a

(t − a)

(∫ b

a

E|f(s)|2 ds

)

dt =
(b − a)2

2
‖f‖2

SP .

In addition, it is useful to notice that J(f)(t) =
∫ t

a
f(s) ds is continuous in

HRV with respect to t on [a, b]. To see this, note that

‖J(f)(t1) − J(f)(t2)‖2
RV = E

(∫ t2

t1

f(s) ds

)2

≤ |t2 − t1|‖f‖2
SP .

Consider now the following two examples.

Example 3.3. Integration of a function of a Wiener process
Consider J(e−W ) =

∫ T

0 exp(−W (t)) dt where W (t) is a Wiener process on
the interval [0, T ]. For this example, it is interesting that

E
(
J(e−W )

)
= E

∫ T

0
exp(−W (t)) dt = E

∫ T

0

∞∑

k=0

(−W (t))k

k!
dt

=
∫ T

0
E

∞∑

k=0

(−W (t))k

k!
dt =

∫ T

0

∞∑

j=0

(t/2)j

j!
dt

=
∫ T

0
et/2 dt = 2(eT/2 − 1).

Example 3.4. An integral related to the Karhunen-Loève expansion
Consider the integral

ηn =
(2n + 1)π
21/2T 3/2

∫ T

0
W (t) sin

(
(2n + 1)πt

2T

)

dt,

where n is a nonnegative integer. This stochastic integral appears in the sine
series expansion (Karhunen-Loève expansion) of the Wiener process discussed
in Section 2.3. In this example, it will be verified that E(ηnηm) = 0 when
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n �= m and E(ηnηm) = 1 if n = m, i.e., E(ηnηm) = δmn where δmn is the
Kronecker delta. As E(W (t)W (s)) = min{t, s}, then

E(ηnηm) =
(

2anam

T

)∫ T

0
sin (ans)

[∫ s

0
tsin (amt) dt +

∫ T

s

ssin (amt) dt

]

ds

=
(

2anam

T

)∫ T

0

sin (ans) sin (ams)
a2

m

ds

=
2(2n + 1)
T (2m + 1)

∫ T

0
sin (ans) sin (ams) ds

= δmn,

where an =
(2n + 1)π

2T
.

3.3 Itô Stochastic Integrals

In this section, integrals of the form I(f) = I(f)(ω) =
∫ b

a
f(s, ω) dW (s, ω)

and I(f)(t) = I(f)(t, ω) =
∫ t

a
f(s, ω) dW (s, ω) for a ≤ t ≤ b are defined

and studied. These integrals, like the integrals in the previous section are
mappings from HSP to HRV or from HSP to HSP , respectively. As in the
previous section, the stochastic process f ∈ HSP is assumed to satisfy the
three conditions (c1), (c2), and (c3).

Consider the stochastic integral I(f) = I(f)(ω) =
∫ b

a
f(s, ω) dW (s, ω). As

was done for the stochastic integrals J(f) described in the previous section,
I(f) is first defined for elementary functions fm ∈ SSP ⊂ HSP . In particular,
the integral

∫ d

c
dW (t) is defined as W (d) − W (c) for a ≤ c ≤ d ≤ b. The inte-

gral
∫ b

a
fm(t) dW (t) is defined in Definition 3.5 Motivation for this definition

is given in the following argument. Notice that

I(fm) = I(fm)(ω)

=
∫ b

a

fm(t, ω) dW (t, ω) =
∫ b

a

m−1∑

i=0

f
(m)
i (ω)Ii(t) dW (t, ω)

=
m−1∑

i=0

f
(m)
i (ω)

(
W (ti+1, ω) − W (ti, ω)

)
=

m−1∑

i=0

f
(m)
i (ω)∆Wi,

where a = t0 < t1 < · · · < tm−1 < tm = b is a partition of [a, b], ∆Wi =
∆Wi(ω) = W (ti+1, ω) − W (ti, ω), and

Ii(t) =
{

1, for ti ≤ t ≤ ti+1
0, otherwise

for i = 0, 1, 2, . . . , N − 1.
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Definition 3.5. Stochastic integral for step functions For nonantici-
pating fm ∈ SSP where fm(t, ω) =

∑m−1
i=0 f

(m)
i (ω)Ii(t) and f

(m)
i ∈ HRV for

each i and m, then the integral
∫ b

a
fm(s) dW (s) is defined to be

I(fm) =
∫ b

a

fm(s) dW (s) =
m−1∑

i=0

f
(m)
i ∆Wi,

where ∆Wi = W (ti+1) − W (ti).

Notice that I(fm) ∈ HRV and

‖I(fm)‖2
RV = E

∣
∣
∣
∣
∣

m−1∑

i=0

f
(m)
i ∆Wi

∣
∣
∣
∣
∣

2

=
m−1∑

i=0

‖f
(m)
i ‖2

RV ∆ti

=
∫ b

a

E|fm(t)|2 dt = ‖fm‖2
SP ,

where ∆ti = ti+1 − ti for i = 0, 1, . . . , m − 1. So, for fm ∈ SSP , ‖I(fm)‖RV =
‖fm‖SP .

Now consider f ∈ HSP where f satisfies conditions (c1)–(c3). Define a
family of partitions of [a, b] by a = t

(m)
0 < t

(m)
1 < · · · < t

(m)
m = b where

t
(m)
i = i∆t + a for i = 0, 1, . . . , m and ∆t = (b − a)/m. Define a sequence

{fm}∞
m=0 ⊂ SSP by

fm(t, ω) =
m−1∑

i=0

f(tmi , ω)I(m)
i (t) where I

(m)
i (t) =

{
1, for t

(m)
i ≤ t < t

(m)
i+1

0, otherwise.

Notice that by condition (c2),

‖f − fm‖2
SP =

∫ b

a

E|f(t) − fm(t)|2 dt

=
m−1∑

i=0

∫ t
(m)
i+1

t
(m)
i

E|f(t) − fm(t)|2 dt ≤ k2

m−1∑

i=0

∫ t
(m)
i+1

t
(m)
i

(t − t
(m)
i ) dt

=
k2

2

m−1∑

i=0

(
b − a

m

)2

=
k2(b − a)2

2m
.

Thus, fm → f in HSP as m → ∞. The sequence {fm}∞
m=0 is a Cauchy

sequence in SSP that converges to f ∈ HSP . Consider I(fm) ∈ HRV for
m = 0, 1, 2, . . . . In particular,

‖I(fm) − I(fn)‖2
RV = E

(∫ b

a

(fm(t) − fn(t)) dW (t)

)2

= ‖fm − fn‖2
SP → 0 as m, n → ∞.
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The sequence {I(fm)}∞
m=1 is a Cauchy sequence in HRV and therefore has

a limit in HRV . The above discussion leads to the following definition of∫ b

a
f(t) dW (t) for f ∈ HSP .

Definition 3.6. Itô stochastic integral
∫ b

a
f(s) dW (s) Let f ∈ HSP

satisfy conditions (c1)–(c3). The integral
∫ b

a
f(t) dW (t) is defined to be

I(f) = lim
m→∞

∫ b

a

fm(t) dW (t) = lim
m→∞

m−1∑

i=0

f(t(m)
i )

(
W (t(m)

i+1) − W (t(m)
i )
)
,

where t
(m)
i = a + i

(
b − a

m

)

and the convergence is in HRV .

Now consider stochastic integrals of the form

I(f) = I(f)(t, ω) =
∫ t

a

f(s, ω) dW (s, ω) for a ≤ t ≤ b, where f ∈ HSP

and f satisfies conditions (c1)–(c3). As in the situation for the integral J(f),
this integral can be defined as in Definition 3.6 for each value of t in [a, b]. In
this case, I is a mapping from Hilbert space HSP to HSP , i.e., I : HSP → HSP .
Indeed, using property (d) of Table 3.1,

‖I(f)‖2
SP =

∫ b

a

E

∣
∣
∣
∣

∫ t

a

f(s) dW (s)
∣
∣
∣
∣

2

dt =
∫ b

a

∫ t

a

E|f(s)|2 ds dt ≤ (b−a)‖f‖2
SP .

In addition, I(f)(t) ∈ HRV for each t ∈ [a, b] is continuous with respect to
variable t on [a, b] in HRV . To see this, notice that by condition (c2)

‖I(f)(t2) − I(f)(t1)‖2
RV = E

∣
∣
∣
∣

∫ t2

t1

f(s) dW (s)
∣
∣
∣
∣

2

=
∫ t2

t1

E|f(s)|2 ds

≤ 2
∫ t2

t1

E|f(s) − f(t1)|2 ds + 2
∫ t2

t1

E|f(t1)|2 ds

≤ k2(t2 − t1)2 + 2|t2 − t1|‖f(t1)‖2
RV

≤ |t2 − t1|
(
5k2(b − a) + 4‖f(a)‖2

RV

)

which follows from ‖f(t)‖RV ≤ k
1/2
2 (b − a)1/2 + ‖f(a)‖RV . In summary,∫ t

a
f(s) dW (s) is defined in the following way.

Definition 3.7. Itô stochastic integral
∫ t

a
f(s) dW (s) Let f ∈ HSP

satisfy conditions (c1)–(c3). The integral
∫ t

a
f(t) dW (t) is defined to be

I(f)(t) = I(f)(t) = lim
m→∞

m−1∑

i=0

f(t(m)
i )(W (t(m)

i+1) − W (t(m)
i )),

where t
(m)
i = a + i

(
t − a

m

)

and the convergence is in HRV .
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Some important and useful properties of the integrals J(f) =
∫ b

a
f(t, ω) dt

and I(f) =
∫ b

a
f(t, ω) dW (t, ω) for f ∈ HSP are listed in Table 3.1. The

integral J(f) satisfies properties (a) and (b) but not properties (c) and (d)
while I(f) satisfies properties (a)–(d). In properties (a)–(d), it is assumed that
f, g ∈ HSP satisfy conditions (c1)–(c3) and that c is a constant.

Table 3.1. Some useful properties of Itô stochastic integrals

Property

(a) I(f + g) = I(f) + I(g)
(b) I(cf) = cI(f)
(c) E(I(f)) = 0
(d) E|I(f)|2 =

∫ b

a
E|f(t)|2 dt

Consider properties (c) and (d). To prove property (c), let

I(f) = lim
m→∞ I(fm), where fm(t) =

m−1∑

i=0

f(t(m)
i )I(m)

i (t)

and

I
(m)
i (t) =

{
1, for t

(m)
i ≤ t < t

(m)
i+1

0, otherwise.

Then, given ε > 0 there is an M such that ‖I(f) − I(fm)‖RV < ε when
m > M . By the Lyapunov inequality,

|E(I(f) − I(fm))| ≤ (E|I(f) − I(fm)|2)1/2 < ε when m > M.

In addition, it is clear that

E(I(fm)) = E

(
m−1∑

i=0

f(t(m)
i ) ∆Wi

)

= 0 for every value of m.

Summarizing the above,

|E(I(f))| ≤ |E(I(f) − I(fm))| + |E(I(fm))| < ε when m > M.

As ε is arbitrary, E(I(f)) = 0.
To prove property (d), the above argument is continued. By the triangle

inequality,

‖I(fm)‖RV −‖I(f)−I(fm)‖RV ≤ ‖I(f)‖RV ≤ ‖I(fm)‖RV +‖I(f)−I(fm)‖RV .

Thus,



3.3 Itô Stochastic Integrals 71

‖I(fm)‖RV − ε ≤ ‖I(f)‖RV ≤ ‖I(fm)‖RV + ε when m > M.

However, it is straightforward to see that

‖I(fm)‖RV =

(
m−1∑

i=0

E|f(t(m)
i )|2 b − a

m

)1/2

→
(∫ b

a

E|f(t)|2 dt

)1/2

as m → ∞.

Since ε is arbitrary,

‖I(f)‖2
RV = E

∣
∣
∣
∣
∣

∫ b

a

f(t) dW (t)

∣
∣
∣
∣
∣

2

=
∫ b

a

E|f(t)|2 dt

which completes the proof of property (d).

Example 3.8. Mean and mean square of a stochastic integral
Let I(f) =

∫ 1
0 t dW (t). Then, by the properties (c) and (d) of Itô integrals,

E(I(f)) = 0 and E(|I(f)|2) =
∫ 1

0
t2 dt =

1
3
.

Example 3.9. Mean and mean square of a stochastic integral
Let I(f) =

∫ 1
0 W (t) dW (t). Then, by the properties (c) and (d) of Itô

integrals,

E(I(f)) = 0 and E(|I(f)|2) =
∫ 1

0
E|W (t)|2 dt =

∫ 1

0
t dt =

1
2
.

Example 3.10. An important double stochastic integral
A double stochastic integral that is commonly seen in numerical methods

for solving stochastic differential equations [69, 70, 90] is the integral

I(1, 2) =
∫ t+∆t

t

∫ s

t

dW1(r) dW2(s),

where W1 and W2 are two independent Wiener processes. This double integral
cannot be evaluated exactly so approximations must be used to estimate the
integral. One approximation is [90]:

Ĩ(1, 2) =
M−1∑

i=0

∫ ti+1

ti

∫ ti

t0

dW1(r) dW2(s)

=
M−1∑

i=0

(W1(ti) − W1(t0))(W2(ti+1) − W2(ti)),
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where ti = t + i∆t/M for i = 0, 1, 2, . . . , M so t0 = t and tM = t + ∆t. The
purpose of this example is to show that

‖I(1, 2) − Ĩ(1, 2)‖2
RV = E|I(1, 2) − Ĩ(1, 2)|2 =

(∆t)2

2M

indicating that the error in the HRV norm is proportional to ∆t/
√

M . To see
this result, consider

E|I(1, 2) − Ĩ(1, 2)|2

= E

∣
∣
∣
∣
∣

M−1∑

i=0

∫ ti+1

ti

[(W1(s) − W1(t0)) − (W1(ti) − W1(t0))] dW2(s)

∣
∣
∣
∣
∣

2

=
M−1∑

i=0

E

∣
∣
∣
∣

∫ ti+1

ti

(
W1(s) − W1(ti)

)
dW2(s)

∣
∣
∣
∣

2

=
M−1∑

i=0

∫ ti+1

ti

E|W1(s) − W1(ti)|2 ds

=
M−1∑

i=0

∫ ti+1

ti

(s − ti) ds =
1
2

M−1∑

i=0

(
∆t

M

)2

=
(∆t)2

2M
.

Finally, recall that if f ∈ HSP satisfies condition (c2) on [a, b], then f(t)
is continuous in HRV for a ≤ t ≤ b. Specifically, given ε > 0, there is a
δ > 0 such that ‖f(t1) − f(t2)‖RV < ε when |t2 − t1| < δ. In addition,
I(f)(t) =

∫ t

a
f(s) dW (s) is also continuous in HRV for a ≤ t ≤ b as

‖I(f)(t2) − I(f)(t1)‖2
RV = E

(∫ t2

t1

f(s) dW (s)
)2

=
∫ t2

t1

E|f(t)|2 dt

≤ 2|t2 − t1|‖f(t1)‖2
RV + k2(t2 − t1)2.

3.4 Approximation of Stochastic Integrals

It is useful for conceptual as well as practical purposes to understand how
stochastic integrals can be approximated. Consider first an approximation of
J(f) =

∫ b

a
f(t) dt, where f ∈ HSP satisfies conditions (c1)–(c3). Let a = t0 <

t1 < · · · < tN = b be a partition of [a, b], where ti = a+ i∆t for i = 0, 1, . . . , N
and ∆t = (b − a)/N . Let JN (f) be an approximation to J(f), where

J(f) ≈ JN (f) =
N−1∑

i=0

f(ti)∆t.

Then
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‖J(f) − JN (f)‖2
RV = E

∣
∣
∣
∣
∣

∫ b

a

f(t) dt −
N−1∑

i=0

f(ti)∆t

∣
∣
∣
∣
∣

2

= E

∣
∣
∣
∣
∣

N−1∑

i=0

∫ ti+1

ti

(
f(t) − f(ti)

)
dt

∣
∣
∣
∣
∣

2

≤ (b − a)
N−1∑

i=0

∫ ti+1

ti

E|f(t) − f(ti)|2 dt

≤ k2(b − a)
N−1∑

i=0

∫ ti+1

ti

(t − ti) dt =
(b − a)3k2

2N

implying that ‖JN (f) − J(f)‖RV = O(1/
√

N).
Now consider approximation of I(f) =

∫ b

a
f(t) dW (t) for f ∈ HSP where

f satisfies conditions (c1)-(c3). Again let a = t0 < t1 < · · · < tN = b be a
partition of [a, b], where ti = a + i∆t for i = 0, 1, . . . , N . Let IN (f) be an
approximation to I(f), where

I(f) ≈ IN (f) =
N−1∑

i=0

f(ti) ηi and ηi = W (ti+1) − W (ti).

In calculating the error in this approximation,

‖I(f) − IN (f)‖2
RV = E

∣
∣
∣
∣
∣

∫ b

a

f(t) dW (t) −
N−1∑

i=0

f(ti) ηi

∣
∣
∣
∣
∣

2

= E

∣
∣
∣
∣
∣

N−1∑

i=0

∫ ti+1

ti

(
f(t) − f(ti)

)
dW (t)

∣
∣
∣
∣
∣

2

=
N−1∑

i=0

∫ ti+1

ti

E|f(t) − f(ti)|2 dt

≤ k2

N−1∑

i=0

∫ ti+1

ti

(t − ti) dt =
(b − a)2k2

2N
.

The approximation for this integral is also O(1/
√

N) in the HRV norm.
Notice that in either approximation, JN (f) or IN (f), the respective

integral is estimated for only one sample path. To approximate expecta-
tions involving stochastic integrals, many sample paths are needed. (Recall
Example 1.31.) For example, assuming that the expectation of a function g of
I(f) is to be estimated, then

E
(
g(I(f))

) ≈ 1
M

M∑

j=1

g(I(j)
N (f)),
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where I
(j)
N (f) is the jth sample-path approximation for j = 1, 2, . . . , M .

Consider the following example.

Example 3.11. Approximation of an Itô integral
In this example, the stochastic integral

∫ 1
0 t W (t) dW (t) is considered. The

expected value of the integral and the expected value of the square of the
integral are estimated using M = 1, 000, 000 sample paths. The number
of intervals used on [0, 1] is N where N = 4, 8, 16, . . . , 256. The preceding
approximate method is used, which for this problem, has the explicit form

E
(
(I(f))α

)
= E

(∫ 1

0
t W (t) dW (t)

)α

≈ 1
M

M∑

j=1

(
N−1∑

i=0

t
(N)
i W (j)(t(N)

i )
(
W (j)(t(N)

i+1) − W (j)(t(N)
i )
)
)α

for α = 1 or 2 and t
(N)
i = i/N for i = 0, 1, 2, . . . , N . Notice that (W (j)(t(N)

i+1)−
W (j)(t(N)

i )) = η
(j)
i /

√
N where η

(j)
i ∼ N(0, 1) and also that W (j)(t(N)

i ) =
W (j)(t(N)

i−1) + η
(j)
i−1/

√
N . A computer program that performs this calculation

is listed at the end of this chapter. The calculational results are given in
Table 3.2 for M = 1, 000, 000 sample paths. Notice that the results improve
as N increases. The exact values are E(I(f)) = 0 and E

(
(I(f))2

)
= 0.25.

Table 3.2. Calculated estimates of |E(I(f))| and E((I(f))2) for Example 3.11

Value of N |E(I(f))| E((I(f))2)

22 0.00107 0.14071
23 0.00012 0.19151
24 0.00069 0.21906
25 0.00038 0.23508
26 0.00007 0.24209
27 0.00001 0.24486
28 0.00002 0.24821

3.5 Stochastic Differentials and Itô’s Formula

In this section, the following stochastic process is considered:

X(t) = X(a) +
∫ t

a

f(s) ds +
∫ t

a

g(s) dW (s) for a ≤ t ≤ b, (3.1)
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where f, g ∈ HSP , X(a) ∈ HRV , and f and g satisfy conditions (c1)–(c3).
First, note that as

∫ t

a
f(s) ds ∈ HSP and

∫ t

a
g(s) dW (s) ∈ HSP , then X ∈

HSP . Second, notice that if f (or g) satisfies conditions (c1)–(c3), then

‖f(t)‖RV ≤ ‖f(t) − f(a)‖RV + ‖f(a)‖RV ≤ k
1/2
2 (b − a)1/2 + ‖f(a)‖RV

for a ≤ t ≤ b. Therefore,

E|f2(t)| ≤ 2k2(b − a) + 2‖f(a)‖2
RV for any t ∈ [a, b].

Finally, it is useful to notice that X(t) is a continuous stochastic process
in HRV for a ≤ t ≤ b. That is, given ε > 0, there is a δ > 0 such that
‖X(t1) − X(t2)‖RV < ε when |t1 − t2| < δ for t1, t2 ∈ [a, b]. To see this,
consider

‖X(t1) − X(t2)‖2
RV = E

∣
∣
∣
∣

∫ t2

t1

f(s) ds +
∫ t2

t1

g(s) dW (s)
∣
∣
∣
∣

2

≤ 2E

∣
∣
∣
∣

∫ t2

t1

f(s) ds

∣
∣
∣
∣

2

+ 2E

∣
∣
∣
∣

∫ t2

t1

(g(s) − g(t1) + g(t1)) dW (s)
∣
∣
∣
∣

2

≤ 2(t2 − t1)
∫ t2

t1

E|f(s)|2 ds + 4
∫ t2

t1

E|g(s) − g(t1)|2 ds + 4
∫ t2

t1

E|g(t1)|2 ds

≤ 2(t2 − t1)‖f‖2
SP + 2k2(t2 − t1)2 + 4(t2 − t1)E|g(t1)|2

≤ 2(t2 − t1)
(
‖f‖2

SP + 5k2(b − a) + 4‖g(a)‖2
RV

)
.

Furthermore, notice that the preceding inequality implies that P (|X(t1) −
X(t2)| ≥ ε) → 0 as |t2 − t1| → 0. That is, X has continuous sample paths on
[a, b] in probability.

If X satisfies (3.1), it is said that X satisfies the stochastic differential

dX(t) = f(t) dt + g(t) dW (t) for a < t < b. (3.2)

An important result is Itô’s formula which says that a smooth function,
F (t, X(t)), of the stochastic process X(t) also satisfies a stochastic differen-
tial. The following two conditions on a function G : [a, b] × R → R are useful
in stating and proving this theorem.

Condition (c4): For function G : [a, b] × R → R, there exists a nonneg-
ative constant k3 such that for any t1, t2 ∈ [a, b] and any X ∈ HSP then
E|G(t2, X(t2)) − G(t1, X(t1))|2 ≤ k3

(
|t2 − t1| + E|X(t2) − X(t1)|2

)
.

Condition (c5): For function G : [a, b] × R → R, then G(a, X(a)) ∈ HRV if
X(a) ∈ HRV .
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Theorem 3.12. (Itô’s Formula)
Let X ∈ HSP satisfy (3.1) for t ∈ [a, b], where f and g satisfy conditions
(c1)–(c3) and

‖f2(t)‖RV , ‖g2(t)‖RV ≤ k4 for t ∈ [a, b].

Let F be a function of t and x. Assume that F (t, x) has the continuous
derivatives

∂F (t, x)
∂t

,
∂F (t, x)

∂x
,
∂2F (t, x)

∂x2 ,
∂2F (t, x)

∂t2
,
∂2F (t, x)

∂x∂t
for t ∈ [a, b] and x ∈ R

and that F and these derivatives satisfy conditions (c4) and (c5). Suppose
also that the functions

f(t)
∂F (t, x)

∂x
,

1
2
g2(t)

∂2F (t, x)
∂x2 , g(t)

∂F (t, x)
∂x

satisfy conditions (c4) and (c5). Let

f̃(t, x) =
∂F (t, x)

∂t
+ f(t)

∂F (t, x)
∂x

+
1
2
g2(t)

∂2F (t, x)
∂x2

and

g̃(t, x) = g(t)
∂F (t, x)

∂x
.

Then, F satisfies the stochastic differential

dF (t, X(t)) = f̃(t, X(t))dt + g̃(t, X(t))dW (t). (3.3)

Proof. Let f̂(t) ≡ f̃(t, X(t)) and ĝ(t) ≡ g̃(t, X(t)) where X(t) satisfies the
stochastic differential (3.1). It is readily seen that f̂ and ĝ satisfy conditions
(c1)–(c3). Therefore, let Y (t) be the stochastic process in HSP that satisfies
the stochastic differential

dY (t) = f̂(t) dt + ĝ(t) dW (t) with Y (a) = F (a, X(a)).

Hence,

Y (t) = F (a, X(a)) +
∫ t

a

f̂(s) ds +
∫ t

a

ĝ(s) dW (s) for a ≤ t ≤ b.

Now notice that if a function G satisfies condition (c4) and X satisfies (3.1),
then there is a constant k5 > 0 such that

E|G(t2, X(t2)) − G(t1, X(t1))|2 ≤ k5|t2 − t1| for any t1, t2 ∈ [a, b].

Also, useful is the result that if G satisfies conditions (c4)–(c5) and X satisfies
(3.1), then there is a constant k6 > 0 such that
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‖G(t, X(t))‖RV ≤ k6 for any t ∈ [a, b].

Fix t ∈ [a, b] and let tk = a + k∆t, where ∆t = (t − a)/m, and ∆Wk =
W (tk+1)−W (tk) for k = 0, 1, . . . , m. By Taylor’s Theorem, there is a number
θk, 0 ≤ θk ≤ 1, such that

F (tk+1, X(tk+1)) = F (tk, X(tk)) +
∂F (tk, X(tk))

∂t
∆t +

∂F (tk, X(tk))
∂x

∆Xk

+
1
2
g2(tk)

∂2F (tk, X(tk))
∂x2 ∆t +

1
2

∂2F (tk + θk∆t, X(tk) + θk∆Xk)
∂t2

(∆t)2

+
∂2F (tk + θk∆t, X(tk) + θk∆Xk)

∂x∂t
∆t∆Xk

+
1
2
(∆Xk)2

(
∂2F (tk + θk∆t, X(tk) + θk∆Xk)

∂x2 − ∂2F (tk, X(tk))
∂x2

)

+
1
2

∂2F (tk, X(tk))
∂x2

(
(∆Xk)2 − g2(tk)∆t

)
,

where

∆Xk = X(tk+1) − X(tk) = f(tk)∆t + g(tk)∆Wk + εk,

εk =
∫ tk+1

tk

(f(t) − f(tk)) dt +
∫ tk+1

tk

(g(t) − g(tk)) dW (t),

and by condition (c2),

‖εk‖2
RV ≤ k2

(
(∆t)3 + (∆t)2)

)
.

Summing the Taylor expression from k = 0, 1, . . . , m − 1 yields

F (t, X(t)) − F (a, X(a)) −
∫ t

a

f̂(s) ds −
∫ t

a

ĝ(s) dW (s)

= E
(m)
1 (t) + E

(m)
2 (t) + · · · + E

(m)
10 (t),

where

E
(m)
1 (t) =

m−1∑

k=0

∫ tk+1

tk

(
∂F (tk, X(tk))

∂t
− ∂F (t, X(t))

∂t

)

dt

E
(m)
2 (t) =

m−1∑

k=0

∫ tk+1

tk

(
∂F (tk, X(tk))

∂x
f(tk) − ∂F (t, X(t))

∂x
f(t)
)

dt

E
(m)
3 (t) =

1
2

m−1∑

k=0

∫ tk+1

tk

(
∂2F (tk, X(tk))

∂x2 g2(tk)
(

(∆Wk)2

∆t
− 1
))

dt

E
(m)
4 (t) =

1
2

m−1∑

k=0

∫ tk+1

tk

(
∂2F (tk, X(tk))

∂x2 g2(tk) − ∂2F (t, X(t))
∂x2 g2(t)

)

dt
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E
(m)
5 (t) =

m−1∑

k=0

∫ tk+1

tk

(
∂F (tk, X(tk))

∂x
g(tk) − ∂F (t, X(t))

∂x
g(t)
)

dW (t)

E
(m)
6 (t) =

1
2

m−1∑

k=0

∂2F (tk, X(tk))
∂x2

(
(∆Xk)2 − g2(tk)(∆Wk)2

)

E
(m)
7 (t) =

1
2

m−1∑

k=0

∂2F (tk + θk∆t, X(tk) + θk∆Xk)
∂t2

(∆t)2

E
(m)
8 (t) =

m−1∑

k=0

∂2F (tk + θk∆t, X(tk) + θk∆Xk)
∂t∂x

∆t∆Xk

E
(m)
9 (t) =

1
2

m−1∑

k=0

∂2
(
F (tk + θk∆t, X(tk) + θk∆Xk) − F (tk, X(tk)

)

∂x2 (∆Xk)2

E
(m)
10 (t) =

m−1∑

k=0

∂F (tk, X(tk))
∂x

εk.

Subtracting Y (t) from the expression for F (t, X(t)) and using the triangle
inequality, it follows that

‖Y (t) − F (t, X(t))‖RV ≤
10∑

i=1

‖E
(m)
i (t)‖RV for any t ∈ [a, b].

But ‖E
(m)
i (t)‖RV → 0 as m → ∞ for each i, 1 ≤ i ≤ 10 and for each t ∈ [a, b].

Thus, F satisfies the differential (3.3).
To see that ‖E

(m)
i (t)‖RV → 0 as m → ∞ for each 1 ≤ i ≤ 10, the terms

E
(m)
1 and E

(m)
3 are considered here in more detail. The other terms can be

be analyzed in a similar manner. For E
(m)
1 , applying the Cauchy-Schwarz

inequality and condition (c3),

‖E
(m)
1 (t)‖2

RV = E

∣
∣
∣
∣
∣

m−1∑

k=0

∫ tk+1

tk

(
∂F (tk, X(tk))

∂t
− ∂F (t, X(t))

∂t

)

dt

∣
∣
∣
∣
∣

2

≤ E

∣
∣
∣
∣
∣
∣

m−1∑

k=0

(∆t)1/2

(∫ tk+1

tk

(
∂F (tk, X(tk))

∂t
− ∂F (t, X(t))

∂t

)2

dt

)1/2
∣
∣
∣
∣
∣
∣

2

≤ (b − a)
m−1∑

k=0

∫ tk+1

tk

E

∣
∣
∣
∣
∂F (tk, X(tk))

∂t
− ∂F (t, X(t))

∂t

∣
∣
∣
∣

2

dt

≤ k5(b − a)
m−1∑

k=0

∫ tk+1

tk

(t − tk) dt ≤ k5(b − a)2/(2m)

and so ‖E
(m)
1 (t)‖RV → 0 as m → ∞.
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Now consider the term E
(m)
3 (t). Applying the Cauchy-Schwarz inequality,

using the independence of
∂2F (tk, X(tk))

∂x2 g2(tk) and
(

(∆Wk)2

∆t
− 1
)

, and the

fact that E

(
(∆Wk)2

∆t
− 1
)

= 0, it follows that

‖E
(m)
3 (t)‖2

RV =
1
4
E

∣
∣
∣
∣
∣

m−1∑

k=0

∆t

(
∂2F (tk, X(tk))

∂x2 g2(tk)
)(

(∆Wk)2

∆t
− 1
)∣∣
∣
∣
∣

2

=
1
4

m−1∑

k=0

(∆t)2E
∣
∣
∣
∣
∂2F (tk, X(tk))

∂x2 g2(tk)
∣
∣
∣
∣

2

E

∣
∣
∣
∣
(∆Wk)2

∆t
− 1
∣
∣
∣
∣

2

≤ 1
2
k2
6

m−1∑

k=0

(∆t)2 =
k2
6(b − a)2

2m
,

where boundedness of processes satisfying conditions (c3) and (c4) was also
used. Thus, ‖E

(m)
3 (t)‖RV → 0 as m → ∞.

Several examples are given here that illustrate the usefulness of Itô’s formula.
Additional applications of Itô’s formula are discussed in the next chapter.

Example 3.13. Simplifying an Itô integral
Consider the stochastic integral

∫ t

0 s dW (s). Let dX(t) = dW (t) so g = 1
and f = 0. Let F (t, x) = tx. Using Itô’s formula,

∫ t

0
d(sW (s)) =

∫ t

0
W (s) ds +

∫ t

0
s dW (s).

Thus, ∫ t

0
s dW (s) = −

∫ t

0
W (s) ds + tW (t).

Example 3.14. Evaluating an Itô integral
Consider the stochastic integral

∫ t

0 W (s) dW (s). Let dX(t) = dW (t) so
g = 1 and f = 0. Let F (t, x) = 1

2x2. By Itô’s formula,

∫ t

0
d

(
1
2
W 2(s)

)

=
∫ t

0

1
2

ds +
∫ t

0
W (s) dW (s).

Thus, ∫ t

0
W (s) dW (s) =

1
2
(W 2(t) − W 2(0)) − t

2
.

Example 3.15. Simplifying a double stochastic integral
Let dX(t) = W (t)dt and X(0) = 0. Then f = W and g = 0. Let

F (t, x) = tx. Then by Itô’s formula,
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d(tX(t)) = (X(t) + tW (t)) dt.

Therefore,

tX(t) =
∫ t

0
X(s) ds +

∫ t

0
sW (s) ds.

But X(t) =
∫ t

0 W (s) ds. Therefore, using Example 3.13,

∫ t

0

∫ s

0
W (z) dz ds = t

∫ t

0
W (s) ds −

∫ t

0
sW (s) ds

= (t + 1)
∫ t

0
W (s) ds − tW (t).

3.6 Stratonovich Stochastic Integrals

Recall that the Itô stochastic integral is defined as

∫ b

a

f(t, ω) dW (t, ω) = lim
m→∞

m−1∑

i=0

f(t(m)
i , ω)

(
W (t(m)

i+1 , ω) − W (t(m)
i , ω)

)
,

where t
(m)
i = a + ( b−a

m )j for j = 0, 1, 2, . . . , m and the sum converges in HRV .
Also, as f(t(m)

i ) and ∆W
(m)
i = (W (t(m)

i+1) − W (t(m)
i )) are independent, some

useful properties are obtained such as

E

∣
∣
∣
∣
∣

∫ b

a

f(t) dW (t)

∣
∣
∣
∣
∣

2

=
∫ b

a

E|f(t)|2 dt.

However, it is important to be aware that there are alternate ways of defining
stochastic integrals. Besides the Itô stochastic integral, the most common
stochastic integral is the Stratonovich stochastic integral. The Stratonovich
integral is defined as

∫ b

a

f(t) ◦ dW (t) = lim
m→∞

m−1∑

i=0

1
2
(
f(t(m)

i ) + f(t(m)
i+1)
)(

W (t(m)
i+1) − W (t(m)

i )
)
,

where the symbol “◦” is used to denote this integral as the Stratonovich
integral. In the summation, 1

2

(
f(t(m)

i ) + f(t(m)
i+1)
)

and
(
W (t(m)

i+1) − W (t(m)
i )
)

are not likely to be independent. Consequently, Itô and Stratonovich integrals
generally have different values.

Consider, for example, the integrals
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∫ t

0
W (s) dW (s) and

∫ t

0
W (s) ◦ dW (s).

By Example 3.14, we know that the value of the Itô integral is
∫ t

0
W (s) dW (s) =

1
2
(W 2(t) − W 2(0)) − t

2
.

Now consider the Stratonovich integral. By the above definition of the
Stratonovich integral,

∫ t

0
W (s) ◦ dW (s) = lim

m→∞

m−1∑

i=0

1
2

(
W (t(m)

i+1) + W (t(m)
i )
)(

W (t(m)
i+1) − W (t(m)

i )
)

= lim
m→∞

m−1∑

i=0

1
2

(
W 2(t(m)

i+1) − W 2(t(m)
i )
)

= lim
m→∞

1
2
(
W 2(t) − W 2(0)

)

=
1
2
(
W 2(t) − W 2(0)

)
.

Hence, for this stochastic integral,
∫ t

0
W (s) dW (s) −

∫ t

0
W (s) ◦ dW (s) = − t

2
.

Throughout Chapters 4 and 5, Itô stochastic differential equations are
considered. Itô stochastic differential equations involve Itô integrals. The
modeling procedure described in Chapter 5 produces, in a natural manner, an
Itô stochastic differential equation model. However, Stratonovich stochastic
differential equations can be defined by using Stratonovich integrals rather
than Itô integrals. It is useful to be aware that Itô and Stratonovich stochastic
differential equations are closely related. In particular, if X(t) satisfies the
Stratonovich stochastic differential equation

X(t) = X(0) +
∫ t

0
f(s, X(s))) ds +

∫ t

0
g(s, X(s)) ◦ dW (s),

then X(t) satisfies the Itô stochastic differential equation

X(t) = X(0) +
∫ t

0

(

f(s, X(s)) +
1
2

∂g(s, X(s))
∂x

g(s, X(s))
)

ds

+
∫ t

0
g(s, X(s)) dW (s).

In addition, this relationship can be extended [20, 41, 69] to systems of
Stratonovich and Itô stochastic differential equations.
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3.7 Multidimensional Itô’s Formula

Considered in this section is the multidimensional stochastic differential

dX(t, ω) = f(t, ω)dt + G(t, ω)dW(t, ω) for a < t < b, (3.4)

where

X(t, ω) = [X1(t, ω), X2(t, ω), . . . , Xn(t, ω)]T ,

f(t, ω) = [f1(t, ω), f2(t, ω), . . . , fn(t, ω)]T ,

W(t, ω) = [W1(t, ω), W2(t, ω), . . . , Wm(t, ω)]T , and

(G(t, ω))ij = gij(t, ω) where G(t, ω) is an n × m matrix.

In particular, notice that W(t) is an m-dimensional Wiener process where the
elements Wi(t) and Wj(t) are independent if i �= j. Equation (3.4) can be put
in componentwise form as

dXi(t, ω) = fi(t, ω)dt +
m∑

j=1

gij(t, ω)dWj(t, ω) (3.5)

for i = 1, 2, . . . , n, and, hence,

Xi(t, ω) = Xi(a, ω) +
∫ t

a

fi(s, ω) ds +
∫ t

a

m∑

j=1

gij(s, ω) dWj(s, ω) (3.6)

for i = 1, 2, . . . , n.
Now let F (t,X) be a smooth function of t and X. That is, F : [a, b] ×

Hn
SP → R. Then, Itô’s formula can be generalized [41, 69, 70] in this multi-

dimensional setting to yield the stochastic differential for F of the form

dF (t,X) =

⎛

⎝∂F

∂t
+

n∑

i=1

∂F

∂xi
fi +

n∑

i=1

n∑

j=1

m∑

k=1

1
2

∂2F

∂xi∂xj
gikgjk

⎞

⎠ dt

+
n∑

i=1

m∑

j=1

∂F

∂xi
gij dWj(t). (3.7)

Consider the following example where n = 1 and m = 2.

Example 3.16. Itô’s formula applied to a multidimensional problem
Let dX1(t) = a dW1(t) + b dW2(t) with X1(0) = 0 and where a and b

are nonzero constants. Let F (t, X1) = X2
1 . Then, using Itô’s formula with

n = 1, m = 2, f1 = 0, g11 = a, and g12 = b,
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d(X2
1 (t)) = (a2 + b2) dt + 2aX1(t) dW1(t) + 2bX1(t) dW2(t)

with X2
1 (0) = 0. Thus, a stochastic differential for X2

1 is readily derived by
applying Itô’s formula. By continuing this example, using some of the results
obtained earlier, an interesting formula can be obtained. Hence, noting that
X1(t) = a(W1(t) − W1(0)) + b(W2(t) − W2(0)) and substituting this identity
into the integral

∫ t

0 dX2
1 (s) = X2

1 (t) − X2
1 (0) leads to

(
a(W1(t) − W1(0)) + b(W2(t) − W2(0))

)2 = (a2 + b2)t

+ 2a

∫ t

0
[a(W1(s) − W1(0)) + b(W2(s) − W2(0))] dW1(s)

+ 2b

∫ t

0
[a(W1(s) − W1(0)) + b(W2(s) − W2(0))] dW2(s).

Now using the relation
∫ t

0 W (s) dW (s) = 1
2 (W 2(t) − W 2(0)) − t

2
, which was

derived in Example 3.14, the following result is obtained that

2
(
W1(t)W2(t) − W1(0)W2(0)

)
=
∫ t

0
W1(s) dW2(s) +

∫ t

0
W2(s) dW1(s).

Exercises

3.1. Consider the stochastic integral FN =
∫ T

0 fN (t) dt where fN is the
stochastic process defined on [0, T ] by the formula

fN (t) =
(ti+1 − t)Ui

h
+

(t − ti)Ui+1

h
for ti ≤ t ≤ ti+1

for i = 0, 1, . . . , N − 1 where h = T/N , ti = ih, and Ui ∼ U [− 1
2 , 1

2 ] are
independent and identically distributed random variables for i = 0, 1, . . . , N .

(a) Show that FN =
T

2N

∑N−1
i=0 (Ui + Ui+1).

(b) Calculate E(F 2
N ).

(c) Find an F ∈ HRV such that ‖FN − F‖RV → 0 as N → ∞.

3.2. Prove that E(e−W (t)) = et/2. (Apply the Taylor expansion e−W (t) =∑∞
j=0(−W (t))j/j! and use the formulas E(W (t))2k = (1 · 3 · 5 · · · (2k − 1))tk

and E(W (t))2k+1 = 0.)

3.3. Let I(f) =
∫ 2
0 exp(−W (t)/2) dW (t). Find E(I(f)) and E((I(f))2).

(Use the relation E(exp(−W (t)) = exp(t/2).)

3.4. Approximate E((I(f))2) in Exercise 3.3 using the relation I(f) ≈ IN (f) =
∑N−1

i=0 f(ti)∆Wi where ti = 2i/N . That is, use
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E((I(f))2) ≈ 1
M

M∑

j=1

(IN,j(f))2 =
1
M

M∑

j=1

(
N−1∑

i=0

f(ti, ωj)∆Wi,j

)2

,

where ∆Wi,j = W (ti+1, ωj)−W (ti, ωj). Use N = 200 and M = 20000. Modify
the MATLAB program listed below to perform the calculations. The program
approximates expectations of

∫ 2
0 f(W (t)) dt where the function f is specified

in the program. Hand in your calculational results along with a listing of your
program.

% Expectations of a stochastic integral are approximated.
% Matrix array operations are used for efficiency.
% nvec paths are simultaneously computed.

clear
randn(’state’,3)
for icase=1:5
nvec=10000;
nint=200;
time=2;
h=time/nint;
hs=sqrt(h);
w=zeros(nvec,1);
y=zeros(nvec,1);
for i=1:nint

r=randn(nvec,1);
tt=(i-1)*h;
f=w.*cos(w);
y=y + f.*r*hs;
w=w+hs*r;

end
mean=sum(y)/nvec;
meansqr=sum(y.*y)/nvec;
check=sum(exp(-w))/nvec;
disp((sprintf(’ \%12.0f’,icase)))
disp((sprintf(’ \%12.5f \%12.5f’,mean,meansqr)))
end

3.5. Consider the Stratonovich stochastic integral

∫ b

a

f(t) ◦ dW (t) = lim
m→∞

m−1∑

i=0

1
2
(f(t(m)

i ) + f(t(m)
i+1))(W (t(m)

i+1) − W (t(m)
i )),

where t
(m)
i = a + i(b − a)/m for i = 0, 1, 2, . . . , m. Find E

(∫ b

a
f(t) ◦ dW (t)

)

and E
(∫ b

a
f(t) ◦ dW (t)

)2
when f(t) = 3tW (t). Compare these values with

the values obtained for the corresponding Itô stochastic integrals.
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3.6. Suppose that X satisfies

X(t) = 2 +
∫ t

0
(3s + exp(s2)) ds +

∫ t

0
cos(s) dW (s).

Let Y (t) = F (t, X(t)) = (2t + 3)X(t) + 4t2. Find Y (0), f̂(s) and ĝ(s) such
that

Y (t) = Y (0) +
∫ t

0
f̂(s) ds +

∫ t

0
ĝ(s) dW (s).

3.7. (a) Use Itô’s formula to show that

eW (t) − 1 =
∫ t

0

1
2

eW (s) ds +
∫ t

0
eW (s) dW (s).

(b) Let r(t) = E(eW (t)) and use part (a) to show that r(t) satisfies the initial-

value problem
dr(t)
dt

= 1
2r(t) with r(0) = 1. Thus, r(t) = E(eW (t)) = et/2.

3.8. Suppose that f ∈ C∞([a, b]×R
)
. Use a Taylor expansion in two variables

and the definition of the Stratonovich integral to prove that

E

[∫ b

a

f(t, W (t)) ◦ dW (t)

]

=
1
2

∫ b

a

E

(
∂f(t, x)

∂x

∣
∣
∣
x=W (t)

)

dt.

3.9. Let Y0(t) = 1 for t ∈ [0, 1] and define {Yn}∞
n=1 by the recurrence formula

Yn(t) = 1 +
1
2

∫ t

0
Yn−1(s) dW (s) for 0 ≤ t ≤ 1 and n = 1, 2, . . . .

(a) Prove that {Yn}∞
n=1 is a Cauchy sequence in HSP . Thus, there exists a

Y ∈ HSP such that Yn → Y as n → ∞.
(b) Use the equation Y (t) = 1 + 1

2

∫ t

0 Y (s) dW (s) to show that E(Y (t)) = 1
and E(Y 2(t)) = et/4.

3.10. Consider the stochastic differential dX(t) = − 1
8 dt + 1

2 dW (t), with
X(0) = 0. Thus, X(t) = − 1

8 t + 1
2 W (t). Let Z(t) = eX(t). Find the stochastic

differential for Z(t) using Itô’s formula. Compare your result with the differ-
ential satisfied by Y (t) in Exercise 3.9. Explain what this means about Y (t)
in Exercise 3.9.

3.11. Approximate E((I(f))2) = E
(( ∫ 2

0 eW (t)/2 dW (t)
)2) using I(f) ≈

IN (f) =
∑N−1

i=0 f(ti)∆Wi where ti = 2i/N . That is, use
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E((I(f))2) ≈ 1
M

M∑

j=1

(IN,j(f))2 =
1
M

M∑

j=1

(
N−1∑

i=0

f(ti, ωj)∆Wi,j

)2

where ∆Wi,j = W (ti+1, ωj) − W (ti, ωj). Use N = 4, 32, 256 and M =
500, 5000, 50000 for a total of nine calculations. Modify the MATLAB program
listed below to perform the calculations. In the calculational results, there
are statistical errors and method errors. Explain your calculational results in
terms of these two kinds of errors. Hand in your explanation, calculational
results, and a listing of your program.

\% A stochastic integral is computed.
\% Matrix array operations are used for efficiency.
\% nvec paths are simultaneously computed.
clear
randn(’state’,6)
nvec=50;
for i1=1:3
nvec=nvec*10;
nint=1/2;
for i2=1:3
nint=8*nint;
time=2;
h=time/nint;
hs=sqrt(h);
w=zeros(nvec,1);
y=zeros(nvec,1);
for i=1:nint

r=randn(nvec,1);
tt=(i-1)*h;
f=w.*w;
y=y + f.*r*hs;
w=w+hs*r;

end
mean=sum(y)/nvec;
meansqr=sum(y.*y)/nvec;
disp((sprintf(’ %12.0f %12.0f’,nvec,nint)))
disp((sprintf(’ %12.5f %12.5f’,mean,meansqr)))
end
end
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Computer Programs

Program 3.1. Solution of a stochastic integral
∫ b

a
f(t, W (t)) dW (t)

This Fortran program estimates the quantities E
(∫ b

a
f(t, W (t)) dW (t)

)
and

E
(∫ b

a
f(t, W (t)) dW (t)

)2
. For the code listed, the particular integral calcu-

lated is
∫ 1
0 tW (t) dW (t). In the program, the value of j is the number of sample

paths. The value of n is the number of intervals. Output of the program is
listed following the program listing.

real*8 xx
c This program estimates a stochastic integral on [a,b].

xx=9055301.
a=0.0
b=1.0
j=1000000
aj=j
n=2
do 500 nn=1,7
n=2*n
Anna=n
h=(b-a)/Anna
hs=sqrt(h)
s1=0.0
s2=0.0
do 400 k=1,j
s=0.0
t=-h
w=0.0
do 300 i=1,n
t=t+h
call random(xx,rand1,rand2)
call fcalc(t,w,f)
s=s+f*hs*rand1
w=w+rand1*hs

300 continue
s1=s1+s/aj
s2=s2+s*s/aj

400 continue
write(6,200) n,j,s1,s2

200 format(3x,i8,3x,i8,3x,f10.5,3x,f10.5)
500 continue

stop
end
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subroutine fcalc(t,w,f)
f=t*w
return
end
subroutine random(xx,rand1,rand2)
real*8 xx,a,b,d,rng(2)
a=16807.
ib=2147483647
b=ib
do 55 i=1,2
id=a*xx/b
d=id
xx=a*xx-d*b

55 rng(i)=xx/b
pi=3.141592654
u1=rng(1)
u2=rng(2)
hlp=sqrt(-2.0*alog(u1))
rand1=hlp*cos(pi*2.0*u2)
rand2=hlp*sin(pi*2.0*u2)
return
end
4 1000000 -0.00107 0.14071
8 1000000 -0.00012 0.19151
16 1000000 -0.00069 0.21906
32 1000000 0.00038 0.23508
64 1000000 -0.00007 0.24209
128 1000000 0.00001 0.24486
256 1000000 -0.00002 0.24821
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Stochastic Differential Equations

4.1 Introduction

In this chapter, Itô stochastic differential equations are studied. It is proved
under certain conditions that a unique solution to the stochastic differen-
tial equation exists in Hilbert space HSP . Hilbert spaces HRV and HSP

are used throughout this chapter to simplify the presentation of stochastic
differential equations and to unify the material in this chapter with that
of previous chapters. Several properties of stochastic differential equations
are derived. Then, applying these properties and Itô’s formula to certain
stochastic differential equations, exact solutions and moments of the solu-
tion are found. Several numerical methods for approximating solutions of
stochastic differential equations are described and computational examples
are presented. The forward Kolmogorov partial differential equation is derived.
The probability density of solutions to a stochastic differential equation sat-
isfies the forward Kolmogorov equation. In Chapter 5, a modeling proce-
dure is justified by studying the development of the forward Kolmogorov
equations as a discrete stochastic process approaches a continuous stochas-
tic process. Finally, a procedure is described for estimating parameters in a
stochastic differential equation, assuming that data are available at a dis-
crete set of times. There are many excellent texts on the theory, application,
and numerical methods for stochastic differential equations such as references
[11, 20, 29, 40, 41, 42, 60, 69, 70, 90, 92, 96, 100, 110].

An Itô stochastic differential equation on the interval [0, T ] has the form

X(t, ω) = X(0, ω) +
∫ t

0
f(s, X(s, ω)) ds +

∫ t

0
g(s, X(s, ω)) dW (s, ω) (4.1)

for 0 ≤ t ≤ T where X(0, ·) ∈ HRV or in differential form

dX(t, ω) = f(t, X(t, ω)) dt + g(t, X(t, ω)) dW (t, ω) (4.2)

89



90 4 Stochastic Differential Equations

for 0 ≤ t ≤ T with X(0, ·) ∈ HRV . The function f is often called the drift
coefficient of the stochastic differential equation while g is referred to as the
diffusion coefficient. It is assumed that the functions f and g are nonanticipat-
ing and satisfy the following conditions (c6) and (c7) for some constant k ≥ 0.

Condition (c6): |f(t, x)− f(s, y)|2 ≤ k(|t− s|+ |x− y|2) for 0 ≤ s, t ≤ T and
x, y ∈ R.

Condition (c7): |f(t, x)|2 ≤ k(1 + |x|2) for 0 ≤ t ≤ T and x ∈ R.

Before considering existence and uniqueness of solutions to (4.1), it is
useful to explore some of the properties of functions f and g that satisfy
conditions (c6) and (c7). First, let u(t) = f(t, X(t)) and notice that condition
(c7) implies that u ∈ HSP when X ∈ HSP and, of course, the same holds for
function g. Indeed, for X ∈ HSP ,

‖u‖2
SP =

∫ T

0
E|f(t, X(t)|2 dt

≤
∫ T

0
k(1 + E|X(t)|2) dt ≤ kT + k‖X‖2

SP .

Now consider condition (c6). Condition (c6) implies that given t1 ∈ [0, T ] and
ε > 0, then ‖f(t1, X) − f(t1, Y )‖SP < ε when ‖X − Y ‖SP < δ = ε/k1/2. In
addition, given X ∈ HSP and ε > 0, then ‖f(t1, X) − f(t2, X)‖SP < ε when
|t2 − t1| < δ = ε2/kT . To see the first inequality, consider

‖f(t1, X) − f(t1, Y )‖2
SP =

∫ T

0
E|f(t1, X(t)) − f(t1, Y (t))|2 dt

≤
∫ T

0
kE|X(t) − Y (t)|2 dt = k‖X − Y ‖2

SP .

Thus, if ‖X − Y ‖SP < ε/k1/2, then ‖f(t1, X) − f(t1, Y )‖SP < ε. To see the
second inequality, consider

‖f(t1, X) − f(t2, X)‖2
SP =

∫ T

0
E|f(t1, X(t)) − f(t2, X(t))|2 dt

≤
∫ T

0
kE|t2 − t1| dt = kT |t2 − t1|.

Thus, if |t2 − t1| < ε2/kT then ‖f(t1, X) − f(t2, X)‖SP < ε. Furthermore,
conditions (c6) and (c7) are useful in applying Itô’s formula to (4.2) when
X ∈ HSP .
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4.2 Existence of a Unique Solution

In this section, we prove existence and uniqueness for X ∈ HSP that satisfies
(4.1) when f and g satisfy conditions (c6) and (c7). The solution is referred to
as a strong solution and has a unique sample path. In contrast, solutions are
unique in the weak sense if they have the same probability distribution even
though their sample paths may differ [70]. To show existence and uniqueness,
a Cauchy sequence of functions in HSP will be constructed. The limit of
this sequence will be the solution of (4.1). The procedure employs a Picard
iterative sequence [41, 79].

Let the first element of this sequence be X0(t) = X(0), where X(0) ∈ HRV

is the given initial condition. Notice that X0 ∈ HSP . Define X1(t) by the
equation

X1(t) = X0(t) +
∫ t

0
f(s, X0(s)) ds +

∫ t

0
g(s, X0(s)) dW (s).

As f and g satisfy conditions (c6) and (c7) and X0 ∈ HSP , then X1 ∈ HSP

and
‖X1 − X0‖SP ≤ (k(2T 2 + 2T 3)

)1/2 (
1 + ‖X0‖2

RV

)1/2
.

This inequality follows from the following argument.

‖X1 − X0‖2
SP =

∫ T

0
E

∣
∣
∣
∣

∫ t

0
f(s, X0(s)) ds +

∫ t

0
g(s, X0(s)) dW (s)

∣
∣
∣
∣

2

dt

≤ 2
∫ T

0

(

E

∣
∣
∣
∣

∫ t

0
f(s, X0(s)) ds

∣
∣
∣
∣

2

+ E

∣
∣
∣
∣

∫ t

0
g(s, X0(s)) dW (s)

∣
∣
∣
∣

2)

dt

≤ 2
∫ T

0

(

t

∫ t

0
E|f(s, X0(s))|2 ds +

∫ t

0
E|g(s, X0(s)|2 ds

)

dt

≤ 2
∫ T

0
(T + T 2)k(1 + ‖X0‖2

RV ) dt

= k(2T 2 + 2T 3)(1 + ‖X0‖2
RV ).

Continuing this procedure, the sequence {Xn}∞
n=1 ⊂ HSP is defined recur-

sively for n ≥ 1 as

Xn(t) = X0(t) +
∫ t

0
f(s, Xn−1(s)) ds +

∫ t

0
g(s, Xn−1(s)) dW (s).

To see that this sequence is Cauchy in HSP notice that

Xn+1(t) − Xn(t) =
∫ t

0

(
f(s, Xn(s)) − f(s, Xn−1(s))

)
ds

+
∫ t

0

(
g(s, Xn(s)) − g(s, Xn−1(s))

)
dW (s).
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Therefore,

E|Xn+1(t) − Xn(t)|2 ≤ 2t

∫ t

0
E|f(s, Xn(s)) − f(s, Xn−1(s))|2 ds

+ 2
∫ t

0
E|g(s, Xn(s)) − g(s, Xn−1(s))|2 ds

≤ 2tk

∫ t

0
E|Xn(s) − Xn−1(s)|2 ds + 2k

∫ t

0
E|Xn(s) − Xn−1(s)|2 ds

≤ (2Tk + 2k)
∫ t

0
E|Xn(s) − Xn−1(s)|2 ds

≤ L

∫ t

0
E|Xn(s) − Xn−1(s)|2 ds,

where L = 2Tk + 2k. Let an(t) = E|Xn+1(t) − Xn(t)|2. Then, by the above
inequality,

an(t) ≤ L

∫ t

0
an−1(s1) ds1 ≤ L2

∫ t

0

∫ s1

0
an−2(s2) ds2 ds1

≤ · · · ≤ Ln

∫ t

0

∫ s1

0
. . .

∫ sn−1

0
a0(sn) dsn . . . ds2 ds1.

So,

an(t) ≤ Ln

∫ t

0

∫ s1

0
. . .

∫ sn−1

0
a0(sn) dsn . . . ds2 ds1.

This latter inequality implies that

an(t) ≤ Lntn−1

(n − 1)!
‖X1 − X0‖2

SP

and it follows that

‖Xn+1 − Xn‖2
SP ≤ LnTn

n!
‖X1 − X0‖2

SP .

Consider m > n. By repeated application of the triangle inequality,

‖Xm − Xn‖SP ≤ ‖Xm − Xm−1‖SP + ‖Xm−1 − Xn‖SP

≤ ‖Xm − Xm−1‖SP + ‖Xm−1 − Xm−2‖SP + · · · + ‖Xn+1 − Xn‖SP

≤
[(

LnTn

n!

)1/2

+
(

Ln+1Tn+1

(n + 1)!

)1/2

+ · · · +
(

LmTm

m!

)1/2
]

‖X1 − X0‖SP

≤
(

LnTn

n!

)1/2
[

1 + · · · +
(

Lm−nTm−n

(n + 1)(n + 2) . . . m

)1/2
]

‖X1 − X0‖SP

≤ 2
(

LnTn

n!

)1/2

‖X1 − X0‖SP assuming that n, m ≥ 4LT.
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As ‖X1 − X0‖SP is bounded, it follows from the preceding inequality that
given any ε > 0 there exists an N > 0 such that ‖Xn − Xm‖SP < ε when
n, m > N . Hence, the sequence {Xn}∞

n=1 is Cauchy in HSP and Xn converges
to a unique X ∈ HSP as n → ∞. Now let Y ∈ HSP where Y satisfies the
relation

Y (t) = −X(t) + X(0) +
∫ t

0
f(s, X(s)) ds +

∫ t

0
g(s, X(s)) dW (s).

Because

0 = −Xn(t) + X(0) +
∫ t

0
f(s, Xn−1(s)) ds +

∫ t

0
g(s, Xn−1(s)) dW (s)

and ‖X − Xn‖SP → 0 as n → ∞, it is clear that ‖Y ‖SP = 0. So X(t) is the
unique solution of (4.1) in HSP .

4.3 Properties of Solutions to Stochastic Differential
Equations

Some properties of solutions of stochastic differential equations are discussed
in this section. The first theorem implies that the solution of (4.1) satisfies
‖X‖2

SP ≤ 3T
(‖X(0)‖2

RV + kT 2 + kT
)
exp
(
3k(T + T 2)

)
. The second theorem

states that the solution of (4.1) is continuous on [0, T ] in the ‖ · ‖RV norm.
Specifically, given ε > 0, there is a δ > 0 such that ‖X(t) − X(r)‖RV < ε
when |t − r| < δ.

Theorem 4.1. (Boundedness of solutions)
Assume that f and g satisfy conditions (c6) and (c7) and X ∈ HSP is the
solution of (4.1). Then

E|X(t)|2 ≤ 3
(
E|X(0)|2 + kT 2 + kT

)
exp
(
3k(T + T 2)

)
for 0 ≤ t ≤ T.

Proof. Notice that

E|X(t)|2 ≤ E

∣
∣
∣
∣X(0) +

∫ t

0
f(s, X(s)) ds +

∫ t

0
g(s, X(s)) dW (s)

∣
∣
∣
∣

2

≤ 3E |X(0)|2 + 3E

∣
∣
∣
∣

∫ t

0
f(s, X(s)) ds

∣
∣
∣
∣

2

+ 3E

∣
∣
∣
∣

∫ t

0
g(s, X(s)) dW (s)

∣
∣
∣
∣

2

≤ 3E |X(0)|2 + 3t

∫ t

0
E|f2(s, X(s))| ds + 3

∫ t

0
E|g2(s, X(s))| ds

≤ 3E |X(0)|2 + (3t + 3)k
∫ t

0
E|1 + X2(s)| ds

≤ 3E |X(0)|2 + (3t2 + 3t)k + (3T + 3)k
∫ t

0
E|X2(s)| ds.
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Letting a(t) = E|X2(t)| and b(t) = 3E|X2(0)| + (3t2 + 3t)k, the above
inequality can be written as

a(t) ≤ b(t) + (3T + 3)k
∫ t

0
a(s) ds.

Using the Bellman-Gronwall inequality, it follows that

a(t) ≤ b(t) + (3T + 3)k
∫ t

0
exp
(
k(3T + 3)(t − s)

)
b(s) ds.

As b(t) is increasing on [0, T ],

a(t) ≤ b(t) + b(t)(3T + 3)k
∫ t

0
exp
(
k(3T + 3)(t − s)

)
ds.

Thus,

E|X(t)|2 ≤ 3
(
E|X(0)|2 + kT 2 + kT

)
exp
(
3k(T + T 2)

)
for 0 ≤ t ≤ T.

Theorem 4.2. (Continuity of solutions on [0, T ])
Assume that f and g satisfy conditions (c6) and (c7) and X ∈ HSP is the
solution of (4.1). Then, there is a constant c ≥ 0 such that

E|X(t) − X(r)|2 ≤ c|t − r| for 0 ≤ r, t ≤ T.

In particular, given ε > 0 there is a δ > 0 such that ‖X(t) − X(r)‖RV < ε
when |t − r| < δ.

Proof. Clearly,

X(t) − X(r) =
∫ t

r

f(s, X(s)) ds +
∫ t

r

g(s, X(s)) dW (s).

However, the previous theorem implies that there is an M > 0 such that
E|X(s)|2 ≤ M for 0 ≤ s ≤ T . Using this inequality and condition (c7),

E|X(t) − X(r)|2 ≤ 2|t − r|
∫ t

r

E|f(s, X(s))|2 ds + 2
∫ t

r

E|g(s, X(s))|2 ds

≤ 2|t − r|k
∫ t

r

(1 + E|X(s)|2) ds + 2k

∫ t

r

(1 + E|X(s)|2) ds

≤ |t − r|(2k|t − r|(1 + M) + 2k(1 + M)
)

≤ c|t − r| where c = 2k(T + 1)(1 + M).

Remark 4.3. The Bellman-Gronwall inequality
As seen in this section, a useful inequality is the Bellman-Gronwall

inequality which states:
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If a(t) ≤ b(t) + c

∫ t

0
a(s) ds, then a(t) ≤ b(t) + c

∫ t

0
exp(c(t − s))b(s) ds.

To see this result, suppose that

a(t) ≤ b(t) + c

∫ t

0
a(s) ds. (4.3)

Then,

a(s) − c

∫ s

0
a(z) dz ≤ b(s).

Therefore,
d

ds

(

exp(−cs)
∫ s

0
a(z) dz

)

≤ b(s) exp(−cs),

and so

exp(−ct)
∫ t

0
a(z) dz ≤

∫ t

0
b(s) exp(−cs) ds.

Hence, ∫ t

0
a(s) ds ≤

∫ t

0
b(s) exp(c(t − s)) ds.

Substituting the last inequality into (4.3) gives:

a(t) ≤ b(t) + c

∫ t

0
exp(c(t − s))b(s) ds. (4.4)

4.4 Itô’s Formula and Exact Solutions

In this section, Itô’s formula is stated for the stochastic differential equation
(4.2). Then, several examples are given to illustrate Itô’s formula. Itô’s formula
is helpful in finding exact solutions to certain stochastic differential equations.
Also, it is shown how Itô’s formula can be used to determine exact moments
of the solution for certain problems even though the exact solution may be
unknown.

Consider, therefore, the Itô stochastic differential equation in differential
form

dX(t) = f(t, X(t)) dt + g(t, X(t)) dW (t)

for 0 ≤ t ≤ T with X(0) ∈ HRV . Let F be a smooth function and assume
that the conditions of Theorem 3.12 are satisfied. Then, Itô’s formula can
be applied to F (t, X) where X satisfies the stochastic differential (4.2). This
yields the stochastic differential for F of the form

dF (t, X(t)) =
(

∂F (t, X)
∂t

+ f(t, X)
∂F (t, X)

∂x
+

1
2
g2(t, X)

∂2F (t, X)
∂x2

)

dt

+g(t, X)
∂F (t, X)

∂x
dW (t), (4.5)
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where the notation
∂F (t, X)

∂x
=

∂F (t, x)
∂x

∣
∣
∣
x=X

.
Itô’s formula allows us, for example, to determine moments of the solu-

tion for certain stochastic differential equations. To find these moments, the
following relation, derived in the previous chapter, is useful. That is,

E

(∫ t

0
G(t, X(t)) dW (t)

)

= 0.

Before considering two interesting examples, it is important to notice that care
must be taken in manipulating stochastic differential equations. For example,
applying Itô’s formula to F (t, X(t)) = X2(t) where X satisfies (4.2) yields

d(X2(t)) = [2X(t)f(t, X(t)) + g2(t, X(t))] dt + [2X(t)g(t, X(t))] dW (t).

Notice, in particular, that

d(X2(t)) �= 2X(t)dX(t) = 2X(t)[f(t, X(t)) dt + g(t, X(t)) dW (t)].

Now consider the following two examples where Itô’s formula is used to deter-
mine exact moments of the solutions for two different stochastic differential
equations.

Example 4.4. Finding exact moments for an SDE with linear coefficients
Consider the stochastic differential equation

dX(t) = dt + X(t) dW (t), X(0) = 0.

Then

X(t) = t +
∫ t

0
X(s) dW (s).

It follows that
E(X(t)) = t.

Applying Itô’s formula to F (t, X) = X2 yields

d(X2(t)) = [2X(t) + X2(t)] dt + 2X2(t) dW (t)

so that

E(X2(t)) = E

∫ t

0

(
2X(s) + X2(s)

)
ds.

This leads to a differential equation for E(X2(t)) of the form

dE(X2(t))
dt

= 2E(X(t)) + E(X2(t)) = 2t + E(X2(t))

with E(X2(0)) = 0. Solving this ordinary differential equation gives the exact
second moment for X(t),
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E(X2(t)) = −2t − 2 + 2et.

In addition, it is clear that Var(X(t)) = E(X2(t)) − (E(X(t))2 = 2et − 2 −
2t− t2. This procedure can be continued to find higher order moments for this
problem. If Itô’s formula is applied to F (t, X) = X3, then

d(X3(t)) = [3X2(t) + 3X3(t)] dt + 3X3(t) dW (t).

This leads to the differential equation for E(X3(t)) of the form

dE(X3(t))
dt

= 3E(X2(t)) + 3E(X3(t)) = −6t − 6 + 6et + 3E(X3(t))

with E(X3(0)) = 0. Solving this gives the exact third moment for X(t),

E(X3(t)) = 2t +
8
3

− 3et +
1
3
e3t.

Example 4.5. Finding exact moments for an SDE with nonlinear coefficients
Consider the stochastic differential equation

dX(t) = −1
4
X3(t) dt +

1
2
X2(t) dW (t) with X(0) =

1
2
.

In this example, E(X(t)) and E(X3(t)) are to be determined exactly. First,

dE(X(t)) = −1
4
E(X3(t)) dt with E(X(0)) =

1
2

so E(X3(t)) is needed in order to find E(X(t)). However, applying Itô’s for-
mula to the stochastic differential equation gives

dX3(t) =
[

−3
4
X5(t) +

3
4
X5(t)

]

dt +
3
2
X4(t) dW (t) =

3
2
X4(t) dW (t)

with E(X3(0)) =
1
8
. Thus, E(X3(t)) =

1
8

and it follows that E(X(t)) =
1
2

− 1
32

t.

Example 4.6. Finding exact moments for an SDE with nonlinear coefficients
Consider the stochastic differential equation

dX(t) =
[
1
3
X1/3(t) + 6X2/3(t)

]

dt + X2/3(t) dW (t) with X(0) = 1.

In this example, we wish to determine E(X(t)) and E(X2(t)) exactly. First
notice that

dE(X(t)) �=
[
1
3
(
E(X(t))

)1/3 + 6
(
E(X(t))

)2/3
]

dt
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so an appropriate change of variables is required to find the moments. Let

Yn(t) = (X(t))n/3 for n = 0, 1, 2, . . . , 6.

Next, applying Itô’s formula, the stochastic differentials are obtained

dYn(t) =
[

1
18

(n2 − n)X
n−2

3 (t) + 2nX
n−1

3 (t)
]

dt +
[n
3

X
n−1

3 (t)
]

dW (t)

with Yn(0) = 1 for n = 0, 1, 2, . . . , 6. Substituting X
n−2

3 (t) = Yn−2(t) and
X

n−1
3 (t) = Yn−1(t) gives

dYn(t) =
[

1
18

(n2 − n)Yn−2(t) + 2nYn−1(t)
]

dt +
[n
3

Yn−1(t)
]

dW (t)

for n = 0, 1, 2, . . . , 6. Finally, letting Zn(t) = E(Yn(t)) = E((X(t))n/3), one
obtains the initial-value system

dZn(t)
dt

=
1
18

(n2 − n)Zn−2(t) + 2nZn−1(t) for n = 1, 2, . . . , 6

with Zn(0) = 1 for n = 1, 2, . . . , 6 and Z0(t) = 1. Solving this system for
n = 1, 2, 3 and n = 6 produces the results

Z1(t) = E((X(t))1/3) = 2t + 1

Z2(t) = E((X(t))2/3) = 4t2 +
37
9

t + 1

Z3(t) = E((X(t)) = 8t3 +
38
3

t2 +
19
3

t + 1

Z6(t) = E((X(t))2) = 64t6 +
656
3

t5 +
2660

9
t4 +

49145
243

t3 +
665
9

t2 +
41
3

t + 1.

In particular, E(X(1)) = 28.0 and E(X2(1)) = 869.0206.

Finding exact solutions of Itô stochastic differential equations is difficult
but is facilitated by appropriately applying Itô’s formula. In the following two
examples, exact solutions are obtained by applying Itô’s formula. Additional
examples are given in the exercises at the end of this chapter.

Example 4.7. Exact solution of a stochastic differential equation
Consider the stochastic differential equation

dX(t) = −αX(t) dt + σ dW (t), X(0) = X0,

where α, σ, and X0 are constants. Let F (t, X) = eαtX(t). By Itô’s formula,

d
(
eαtX(t)

)
=
[
αeαtX(t) − αeαtX(t)

]
dt + σeαt dW (t).

Thus,
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eαtX(t) − X(0) =
∫ t

0
eαsσ dW (s).

So the exact solution is

X(t) = X(0)e−αt + e−αt

∫ t

0
eαsσ dW (s).

Example 4.8. Exact solution of a stochastic differential equation
Consider the stochastic differential equation

dX(t) = f(t)X(t) dt + g(t)X(t) dW (t), X(0) = X0,

where X0 is a constant. For this problem, the exact solution has the form

X(t) = X0 exp
(∫ t

0

(
f(s) − 1

2
g2(s)

)
ds +

∫ t

0
g(s) dW (s)

)

.

To see this, let F (t, X) = ln(X(t)). Applying Itô’s formula,

d(ln(X(t))) =
[
f(t) − 1

2
g2(t)

]
dt + g(t) dW (t).

Thus,

ln(X(t)) − ln(X0) =
∫ t

0

(
f(s) − 1

2
g2(s)

)
ds +

∫ t

0
g(s) dW (s)

which yields the solution.

4.5 Approximating Stochastic Differential Equations

As the exact solution to a stochastic differential equation is generally difficult
to obtain, it is useful to be able to approximate the solution. Euler’s (or the
Euler-Maruyama) method [41, 60, 69, 70, 72, 90, 100, 101, 110] is a simple
numerical method. When applied to (4.2), Euler’s method has the form

Xi+1(ω) = Xi(ω)+f(ti, Xi(ω))∆t+g(ti, Xi(ω))∆Wi(ω), X0(ω) = X(0, ω),

for i = 0, 1, 2, . . . , N − 1 where Xi(ω) ≈ X(ti, ω), ti = i∆t, ∆t = T/N ,
∆Wi(ω) = (W (ti+1, ω) − W (ti, ω)) ∼ N(0, ∆t), and where ω indicates a sam-
ple path. For simplicity, only equidistant time discretizations in the numerical
methods are considered in this section although variable step size selection is
an issue of current interest [69, 100]. Before describing some computational
results for Euler’s method, the error in Euler’s method is studied. To study the
error in this method, it is useful to approximate the solution for all t ∈ [0, T ]
and not just at the nodal points ti for i = 0, 1, 2, . . . , N . To accomplish this,
X̂(t) ≈ X(t) is defined as
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X̂(t) = Xi +
∫ t

ti

f(ti, Xi) ds +
∫ t

ti

g(ti, Xi) dW (s)

for ti ≤ t ≤ ti+1 and i = 0, 1, . . . , N − 1 where, for notational simplicity,
the dependence on sample path ω is dropped. Notice, in particular, that X̂
is identical to Euler’s method approximation at the nodal points, that is,
X̂(ti) = Xi for i = 0, 1, . . . , N . Also notice that on the ith subinterval X̂(t) is
the solution of the stochastic differential equation

{
dX̂(t) = f(ti, Xi) dt + g(ti, Xi) dW (t), ti ≤ t ≤ ti+1

X̂(ti) = Xi

for i = 0, 1, 2, . . . , N−1. Recall also that the solution X(t) satisfies the stochas-
tic differential equation

dX(t) = f(t, X(t)) dt + g(t, X(t)) dW (t), ti ≤ t ≤ ti+1

for i = 0, 1, 2, . . . , N − 1. Define the error as ε(t) = X(t) − X̂(t). Then the
error ε satisfies the stochastic differential equation

{
dε(t) = (f(t, X(t)) − f(ti, Xi)) dt + (g(t, X(t)) − g(ti, Xi)) dW (t),
ε(ti) = X(ti) − X̂(ti)

for ti ≤ t ≤ ti+1 and i = 0, 1, 2, . . . , N − 1. Using Itô’s formula, the stochastic
differential for ε2(t) is obtained as

d(ε2(t)) = 2
(
X(t) − X̂(t)

)(
f(t, X(t)) − f(ti, Xi)

)
dt

+
(
g(t, X(t)) − g(ti, Xi)

)2
dt + 2

(
X(t) − X̂(t)

)(
g(t, X(t)) − g(ti, Xi)

)
dW (t)

for ti ≤ t ≤ ti+1. Hence, E(ε2(ti+1)) satisfies

E(ε2(ti+1)) = E(ε2(ti)) + E

∫ ti+1

ti

(
g(t, X(t)) − g(ti, Xi)

)2
dt

+ E

∫ ti+1

ti

2
(
X(t) − X̂(t)

)(
f(t, X(t)) − f(ti, Xi)

)
dt

+ E

∫ ti+1

ti

2
(
X(t) − X̂(t)

)(
g(t, X(t)) − g(ti, Xi)

)
dW (t).

Using the inequality |2ab| ≤ a2 + b2 and properties of stochastic integrals,

E(ε2(ti+1)) ≤ E(ε2(ti)) +
∫ ti+1

ti

E(X(t) − X̂(t))2 dt

+
∫ ti+1

ti

E(f(t, X(t)) − f(ti, Xi))2 dt +
∫ ti+1

ti

E(g(t, X(t)) − g(ti, Xi))2 dt.

But
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|f(t, X(t)) − f(ti, Xi)|2 ≤ 2|f(t, X(t)) − f(ti, X(ti))|2
+2|f(ti, X(ti)) − f(ti, Xi)|2

≤ 2k|t − ti| + 2k|X(t) − X(ti)|2 + 2k|X(ti) − Xi|2

and similarly for g using property (c6). Hence,

E(ε2(ti+1)) ≤ E(ε2(ti)) +
∫ ti+1

ti

E(X(t) − X̂(t))2 dt

+4k(1 + c)
∫ ti+1

ti

(t − ti) dt + 4k

∫ ti+1

ti

E(ε2(ti)) dt

using Theorem 4.2 that E|X(t) − X(ti)|2 ≤ c|t − ti|. Therefore,

E(ε2(ti+1)) ≤ E(ε2(ti))(1 + 4k∆t) + 2k(1 + c)(∆t)2 +
∫ ti+1

ti

E(ε2(s)) ds.

By the Bellman-Gronwall inequality with b(t) = E(ε2(ti))(1+4k∆t) + 2k(1+
c)(∆t)2,

E(ε2(ti+1)) ≤ E(ε2(ti))(1 + 4k∆t) + 2k(1 + c)(∆t)2

+
∫ ti+1

ti

e(ti+1−t) [E(ε2(ti))(1 + 4k∆t) + 2k(1 + c)(∆t)2
]

dt

= e∆t
[
E(ε2(ti))(1 + 4k∆t) + 2k(1 + c)(∆t)2

]
.

Letting ai = E(ε2(ti)), R = e∆t(1 + 4k∆t), and S = e∆t2k(1 + c)(∆t)2, then

ai+1 ≤ Rai + S for i = 0, 1, 2, . . . , N − 1.

These inequalities yield

aN ≤ S
RN − 1
R − 1

with a0 = E(ε2(0)) = 0.

Hence,

E(ε2(tN )) ≤ e∆t2k(1 + c)(∆t)2eN∆te4kN∆t

e∆t − 1 + e∆t4k∆t
≤ ∆t

(1 + c)e(1+4k)T

2
.

This result holds for any nodal point and the mean square error in Euler’s
method satisfies

E|X(ti) − Xi|2 ≤ ĉ∆t

for i = 0, 1, 2, . . . , N where ĉ = 1
2 (1 + c)e(1+4k)T .

Consider briefly a continuous piecewise linear approximation to the solu-
tion X(t) which is identical to Euler’s method approximation at the nodal
points, ti for i = 0, 1, 2, . . . , N . This approximate solution is commonly
plotted. Let
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X̃(t) = Xi(ti+1 − t)/∆t + Xi+1(t − ti)/∆t

for ti ≤ t ≤ ti+1 and i = 0, 1, 2, . . . , N − 1 where {Xi}N
i=0 is the Euler

approximation to (4.2) at the N + 1 nodal points {ti}N
i=0. The function X̃(t)

is a continuous linear approximation to the solution X(t) and it is straight-
forward to show that ‖X − X̃‖SP ≤ c̃(∆t)1/2 for a constant c̃ ≥ 0 and hence
‖X − X̃‖SP → 0 as ∆t → 0. To see this, consider

‖X − X̃‖2
SP =

N−1∑

i=0

∫ ti+1

ti

E|X(t) − X̃(t)|2 dt

≤ 4
N−1∑

i=0

∫ ti+1

ti

(

E
∣
∣(X(t) − X(ti))

∣
∣2 + E

∣
∣X(ti) − X(ti+1)

∣
∣2 (t − ti)2

(∆t)2

)

dt

+ 4
N−1∑

i=0

∫ ti+1

ti

E
∣
∣X(ti) − Xi)

∣
∣2 (ti+1 − t)2

(∆t)2
dt

+ 4
N−1∑

i=0

∫ ti+1

ti

E
∣
∣X(ti+1) − Xi+1

∣
∣2 (t − ti)2

(∆t)2
dt

≤ 4
N−1∑

i=0

∫ ti+1

ti

(

c(t − ti) +
c(t − ti)2

∆t
+

ĉ(ti+1 − t)2

∆t
+

ĉ(t − ti)2

∆t

)

dt

≤ 4
N−1∑

i=0

(5c + 4ĉ)(∆t)2/6

≤ c̃2∆t where c̃2 = (10c + 8ĉ)T/3.

Higher order numerical methods can be developed for stochastic differ-
ential equations which are similar in some respects to higher order methods
for ordinary differential equations. For example, there are explicit or implicit
multistep methods and Runge-Kutta methods [1, 3, 60, 69, 70, 72, 76, 90,
99, 100, 101, 110, 111]. A popular second-order method is Milstein’s method.
Milstein’s method has mean square error proportional to (∆t)2 rather than
∆t. For one dimension, Milstein’s method has the form

Xi+1(ω) = Xi(ω) + f(ti, Xi(ω))∆t + g(ti, Xi(ω))∆Wi(ω)

+
1
2
g(ti, Xi(ω))

∂g(ti, Xi(ω))
∂x

[(∆Wi(ω))2 − ∆t]

for i = 0, 1, 2, . . . , N − 1 with X0(ω) = X(0, ω), where Xi(ω) ≈ X(ti, ω),
∆Wi(ω) = (W (ti+1, ω) − W (ti, ω)) ∼ N(0, ∆t), ti = i∆t, ∆t = T/N ,
and where ω indicates a sample path. Notice that Milstein’s method has an
additional term at each step in comparison with Euler’s method. Listed at the
end of this chapter are computer programs for solving a stochastic differential
equation using Euler’s method or using both Euler’s method and Milstein’s
method.
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Example 4.9. Approximation of an SDE using Euler’s and Milstein’s methods
Consider the stochastic differential equation

dX(t) =
[
1
3
X1/3(t) + 6X2/3(t)

]

dt + X2/3(t) dW (t), X(0) = 1.

In Example 4.6, it was proved that E(X(1)) = 28.0 and E(X2(1)) = 869.0206.
For this problem, Euler’s method has the form

Xi+1 = Xi +
[
1
3
X

1/3
i + 6X

2/3
i

]

∆t + X
2/3
i

√
∆t ηi where ηi ∼ N(0, 1)

for i = 0, 1, 2, . . . , N − 1 with X0 = 1, ti = i∆t, and ∆t = 1/N . Milstein’s
method has the form

Xi+1 = Xi +
[
1
3
X

1/3
i + 6X

2/3
i

]

∆t + X
2/3
i

√
∆t ηi +

1
3
X

1/3
i (η2

i − 1)∆t,

where ηi ∼ N(0, 1). The calculational results for the mean square error
E|X(1) − XN |2 are given in Table 4.1.

Table 4.1. Calculated errors E|X(1) − XN |2 for Euler’s and Milstein’s methods

Value of N Euler Error Milstein Error

29 2.80 × 10−2 1.61 × 10−2

210 1.04 × 10−2 4.03 × 10−3

211 4.20 × 10−3 1.01 × 10−3

212 1.89 × 10−3 2.53 × 10−4

213 8.76 × 10−4 6.24 × 10−5

214 4.12 × 10−4 1.60 × 10−5

In Table 4.1, the number of intervals N used in Euler’s method and
Milstein’s method were selected as 29, 210, 211, 212, 213, and 214 and 10,000
sample paths were calculated for each value of N . For each sample path, the
Wiener process was calculated at 215 = 32768 equally spaced points on the
interval [0, 1] and these points supplied the required values of the Wiener
process for the computations using 29 to 214 intervals. As the value of X(1)
depends on the sample path and is unknown, the value of X(1) used in the
error estimate was calculated for each sample path based on the Milstein
approximation with N = 215 intervals. In Table 4.1, the calculated values
of the errors 1

10,000

∑10,000
j=1 |X(j)(1) − X

(j)
N |2 ≈ E|X(1) − XN |2 are given for

each numerical method and for each value of N where X
(j)
N is the estimate

of X(j)(1) for the jth sample path using N intervals. Notice that the mean
square errors are approximately proportional to ∆t = 1/N for Euler’s method
and to (∆t)2 = 1/N2 for Milstein’s method.
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Table 4.2. Calculated estimates of E(X(1))

Value of N Euler Estimate Milstein Estimate

26 27.07 (0.93) 27.08 (0.92)
27 27.56 (0.44) 27.56 (0.44)
28 27.79 (0.21) 27.79 (0.21)

Table 4.3. Calculated estimates of E(X2(1))

Value of N Euler Estimate Milstein Estimate

26 810.15 (58.87) 810.18 (58.84)
27 840.89 (28.13) 840.93 (28.09)
28 855.33 (13.69) 855.31 (13.71)

Next, the calculations for this example were repeated for 100,000 sample
paths for N = 64, 128, and 256 to estimate E(X(1)) ≈∑100,000

j=1 X
(j)
N /100, 000

and E(X(1))2 ≈∑100,000
j=1 (X(j)

N )2/100, 000 where X
(j)
N is the estimate of X(1)

for the jth sample path using N intervals. The calculational results are given
in Tables 4.2 and 4.3. Adjacent to each value, the error is given in parentheses.
Recall that E(X(1)) = 28.0 and E(X2(1)) = 869.0206 are the exact values.
In addition, for this example, the mean and one sample path are plotted in
Fig. 4.1.
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Fig. 4.1. Mean solution and one sample path for Example 4.9

In Tables 4.2 and 4.3, notice that the errors in the mean values are propor-
tional to ∆t for either numerical method. In particular, the errors in Euler’s
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method when estimating mean values are proportional to ∆t rather than
(∆t)1/2. Indeed, there are two kinds of approximation commonly discussed
in computational solution of stochastic differential equations [69, 70, 100]. A
numerical method is said to be a strong approximation of order γ if

‖X(T ) − XN‖RV ≤ c(∆t)γ

for some constant c > 0 where X(T ) is the exact solution at time T and
XN is the approximate solution using step length ∆t = T/N . Euler’s method
and Milstein’s methods have strong orders 1

2 and 1, respectively. However,
if expectations of functions of a solution to a stochastic differential equation
are desired and not necessarily the pathwise approximation provided by a
strong approximation, then a weak numerical method may be sufficient. An
approximation XN is said to converge weakly with order β if there exists a
constant c > 0 such that

|E(F (X(T ))) − E(F (XN ))| ≤ c(∆t)β

for all smooth functions F , where ∆t = T/N is the step size of the numerical
method. It can be shown [69, 111] that both Euler’s method and Milstein’s
method have weak order 1.

In addition, both of these numerical methods possess another important
property. That is, their error expansions in the weak sense have the correct
form for applying Richardson extrapolation [69, 76, 110, 111]. Specifically, the
weak error for Euler’s or Milstein’s method has been shown to have the form

E(F (X(T ))) − E(F (XN )) = c1∆t + c2(∆t)2 + c3(∆t)3 + . . . ,

where ∆t = T/N and c1, c2, c3, . . . are constants independent of ∆t. This
result implies that several approximations using different values of N can be
applied to obtain a higher order approximation. Suppose that E(F (XN )),
E(F (X2N )), and E(F (X4N )) are three approximations to E(F (X(T ))) using
step lengths of T/N , T/2N , and T/4N in Euler’s method or in Milstein’s
method. To obtain an approximation to E(F (X(T ))) of order (∆t)2, let

E(F (X(T ))) − [2E(F (X2N )) − E(F (XN ))
]

= ĉ2(∆t)2 + ĉ3(∆t)3 + . . . .

To obtain an approximation to E(F (X(T ))) of order (∆t)3, let

E(F (X(T )))−[8E(F (X4N ))−6E(F (X2N ))+E(F (XN ))
]
/3 = c̃3(∆t)3 + . . . .

Example 4.10. Richardson extrapolation of Euler’s method
Referring to the values in Table 4.3 for Example 4.9, the following approx-

imations to E((X(1))2) are obtained using Euler’s method:

E((X64)2) = 810.15, E((X128)2) = 840.89, and E((X256)2) = 855.33.
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To obtain O((∆t)2) and O((∆t)3) approximations, respectively, to E((X(1))2)
we calculate

2E((X128)2) − E((X64)2) = 871.63

and
[8E((X256)2) − 6E((X128)2) + E((X64)2)]/3 = 869.15.

As E((X(1))2) = 869.02 exactly, the original Euler approximations are much
improved through extrapolation.

It is useful to note that any strong approximation is also a weak approxi-
mation. This can be seen using the Lyapunov inequality as

|E(F (X(T ))) − E(F (XN ))| ≤ (E|(F (X(T ))) − (F (XN ))|2)1/2

≤ L(E|X(T ) − XN |2)1/2 = L‖X(t) − XN‖RV

assuming that F satisfies a Lipschitz condition. However, there are weak meth-
ods which are not strong approximations. Consider the stochastic differential
equation (4.2) and consider the discrete process described in Example 2.4. For
a particular trajectory, suppose that at time ti, Xi = mδ for some integer m,
where δ > 0 is small. Define the three possibilities at time ti+1 = ti + ∆t as
⎧
⎨

⎩

Xi+1 = Xi + δ with probability r(ti, Xi)∆t/δ2,
Xi+1 = Xi with probability 1 − r(ti, Xi)∆t/δ2 − s(ti, Xi)∆t/δ2,
Xi+1 = Xi − δ with probability s(ti, Xi)∆t/δ2,

where {
r(ti, Xi) =

(
f(ti, Xi)δ + g2(ti, Xi)

)
/2

s(ti, Xi) =
(− f(ti, Xi)δ + g2(ti, Xi)

)
/2.

It was seen in Example 2.4 the probability distribution of XN approaches
that of X(T ) as ∆t, δ → 0 implying that E(F (XN )) ≈ E(F (X(T ))) for small
values of ∆t and δ.

Example 4.11. Weak but not strong approximation
Consider the weak method of Example 2.4, where a discrete stochastic

process is used to approximate expectations of the solution to a stochastic dif-
ferential equation. Apply this weak method to the problem that was described
in Example 4.6. Let ∆t = 1/N , where N = 4096, 8192, 16384, and 32768
and let δ = 0.1. In Table 4.4, the calculational results are presented using
100,000 sample paths for estimating E(X(1)) and E(X(1))2. Recalling that
E(X(1)) = 28.00 and E(X(1))2 = 869.02, the calculational results are
reasonable.

Finally, it is worthwhile to point out that rounding errors can be significant
in computational solution of stochastic differential equations just as they are in
computational solution of ordinary differential equations [18, 70]. Specifically,
as ∆t is taken smaller and smaller to reduce the method error, rounding errors,



4.6 Systems of Stochastic Differential Equations 107

Table 4.4. Calculated estimates of E(X(1)) and E(X(1))2

Value of N E(X(1)) Estimate E(X(1))2 Estimate

212 17.04 292.42
213 24.64 630.81
214 27.88 854.12
215 27.97 868.12

due to the finite number of digits used in the computer arithmetic, begin to
increase. For an important calculation or in a calculation where ∆t is very
small, the magnitude of the rounding errors can be checked (and reduced) by
performing the identical calculation on the computer using higher precision
arithmetic.

4.6 Systems of Stochastic Differential Equations

Systems of stochastic differential equations are common in applications. Itô’s
formula and numerical methods can be extended to systems. Let

X(t, ω) = [X1(t, ω), X2(t, ω), . . . , Xd(t, ω)]T

W(t, ω) = [W1(t, ω), W2(t, ω), . . . , Wm(t, ω)]T

f : [0, T ] × R
d → R

d

and
g : [0, T ] × R

d → R
d×m,

where Wi(t, ω), 1 ≤ i ≤ m are independent Wiener processes. Then a system
of stochastic differential equations has the form

dX(t, ω) = f(t,X(t, ω)) dt + g(t,X(t, ω)) dW(t, ω). (4.6)

In component form, the system is

Xi(t) = Xi(0) +
∫ t

0
fi(s,X(s)) ds +

m∑

j=1

∫ t

0
gi,j(s,X(s)) dWj(s)

for i = 1, 2, . . . , d.
Itô’s formula can be generalized to systems. Let

F : [0, T ] × R
d → R

k and let Y(t, ω) = F(t,X(t, ω)).

Then the pth component of Y(t, ω) satisfies [70]:
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dYp(t) =

⎡

⎣∂Fp

∂t
+

d∑

i=1

fi
∂Fp

∂xi
+

d∑

i=1

d∑

j=1

m∑

l=1

1
2
gi,lgj,l

∂2Fp

∂xi∂xj

⎤

⎦ dt

+
m∑

l=1

d∑

i=1

gi,l
∂Fp

∂xi
dWl(t) (4.7)

for p = 1, 2, . . . , k.

Example 4.12. Itô’s formula for a stochastic problem with d = 1 and m = 2
Consider the stochastic differential equation

{
dX(t) = t2X(t) dt + t dW1(t) + X(t) dW2(t), 0 ≤ t ≤ T
X(0) = 1,

where d = 1 and m = 2. For this problem, f1 = t2X, g1,1 = t, and g1,2 = X.
Consider using Itô’s formula to find the stochastic differential equation for
F = X2. Applying Itô’s formula, we obtain
{

d(X2(t)) =
[
2t2X2(t) + t2 + X2(t)

]
dt + 2tX(t) dW1(t) + 2X2(t) dW2(t)

X2(0) = 1.

Euler’s method and Milstein’s method can also be generalized to a system
of stochastic differential equations. Euler’s method for systems is straightfor-
ward and has the form

Xn+1(ω) = Xn(ω) + f(tn,Xn(ω))∆t + g(tn,Xn(ω))∆Wn(ω) (4.8)

for n = 0, 1, 2, . . . , N , where Xn(ω) ≈ X(tn, ω), ∆t = T/N , ∆Wn =
W(tn+1) − W(tn). In component form, Euler’s method is

Xi,n+1(ω) = Xi,n(ω)+ fi(tn,Xn(ω))∆t+
m∑

j=1

gi,j(tn,Xn(ω))∆Wj,n(ω) (4.9)

for i = 1, 2, . . . , d, where ∆Wj,n ∼ N(0, ∆t) for each j and n.
Milstein’s method for multidimensional stochastic differential equations

involves the double stochastic integral

In(j1, j2) =
∫ tn+∆t

tn

∫ s

tn

dWj1(r) dWj2(s).

Milstein’s method has the componentwise form

Xi,n+1(ω) = Xi,n(ω) + fi(tn,Xn(ω))∆t +
m∑

j=1

gi,j(tn,Xn(ω))∆Wj,n(ω)

+
m∑

j1=1

m∑

j2=1

d∑

l=1

gl,j1

∂gi,j2

∂xl
In(j1, j2) (4.10)

for i = 1, 2, . . . , d.



4.7 Forward Kolmogorov (Fokker-Planck) Equation 109

Example 4.13. Approximation of a stochastic problem with d = 1 and m = 2
Consider the stochastic differential equation

{
dX(t) = t2X(t)dt + tdW1(t) + X(t)dW2(t), 0 ≤ t ≤ T
X(0) = 1,

where d = 1 and m = 2. For this problem, Euler’s method has the form
{

Xn+1 = Xn + t2nXn∆t + tn∆W1,n + Xn∆W2,n

X0 = 1,

for n = 0, 1, 2, . . . , where ∆W1,n, ∆W2,n ∼ N(0, ∆t) and tn = n∆t. In addi-
tion, Milstein’s method has the form
{

Xn+1 = Xn + t2nXn∆t + tn∆W1,n + Xn∆W2,n + tnIn(1, 2) + XnIn(2, 2)
X0 = 1,

for n = 0, 1, 2, . . . .

It is useful to note that

In(j1, j1) =
∫ tn+∆t

tn

∫ s

tn

dWj1(r) dWj1(s) =
1
2
(
(∆Wj1,n)2 − ∆t

)

but In(j1, j2) for j1 �= j2 does not have an analytical form and must be
approximated. This multiple integral can be approximated by a Fourier series
expansion [70]. Also, note by Example 3.10, if [tn, tn+1] is divided into M
equal intervals with tj,n = tn + j∆t/M for j = 0, 1, . . . , M, then [90]:

In(j1, j2) ≈ Ĩn(j1, j2) =
M−1∑

j=0

[Wj1(tj,n) − Wj1(t0,n)][Wj2(tj+1,n) − Wj2(tj,n)].

It is shown in Example 3.10 that E|In − Ĩn|2 = (∆t)2/(2M).

4.7 Forward Kolmogorov (Fokker-Planck) Equation

In Chapter 2, it was shown that the probability distribution of solutions to
a discrete-valued continuous stochastic process satisfies a system of differen-
tial equations called the forward Kolmogorov equations. An analogous result
holds for the probability distribution of solutions to a stochastic differential
equation. A derivation of the forward Kolmogorov equation is sketched in this
section. Rigorous proofs of the forward Kolmogorov equation are presented,
for example, in [40, 42].

Consider the stochastic differential equation

dX(t) = f(t, X(t)) dt + g(t, X(t)) dW (t)
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and let F ∈ C
∞
0 (R). Applying Itô’s formula to F (X), it follows that

dF (X) =
(

f(t, X)
∂F (t, X)

∂x
+

1
2
g2(t, X)

∂2F (t, X)
∂x2

)

dt

+ g(t, X)
∂F (t, X)

∂x
dW (t).

Because

E

∫ t

0
g(s, X(s))

∂F (X(s))
∂x

dW (s) = 0,

then
dE(F )

dt
= E

[
∂F

∂x
f +

1
2
g2 ∂2F

∂x2

]

.

If p(t, x) is the probability density for solutions to the stochastic differential
equation, the above result implies that

d

dt

∫ ∞

−∞
p(t, x)F (x) dx =

∫ ∞

−∞
p(t, x)

[
∂F

∂x
f +

1
2
g2 ∂2F

∂2x

]

dx.

Integrating by parts the right-hand side of the preceding equation and assum-
ing that the integral and the derivative can be interchanged on the left-hand
side yields the relation
∫ ∞

−∞
F (x)

[
∂p(t, x)

∂t
+

∂(p(t, x)f(t, x))
∂x

− 1
2

∂2(p(t, x)g2(t, x))
∂2x

]

dx = 0

for every F ∈ C
∞
0 (R). As the above integral holds for every function F ∈

C
∞
0 (R), this implies that

∂p(t, x)
∂t

= −∂(p(t, x)f(t, x))
∂x

+
1
2

∂2(p(t, x)g2(x, t))
∂2x

(4.11)

with p(0, x) = p0(x). Equation (4.11) is the forward Kolmogorov equation or
Fokker-Planck equation for the probability distribution of solutions to stochas-
tic differential equation (4.1). This equation will be useful in the next chapter.
Furthermore, the forward Kolmogorov equation for the system of stochastic
differential equations (4.4) has the form

∂p(t,x)
∂t

= −
d∑

i=1

∂
[
p(t,x)fi(t,x)

]

∂xi
(4.12)

+
1
2

d∑

i=1

d∑

j=1

m∑

l=1

∂2

∂xi∂xj

[
gi,l(t,x)gj,l(t,x)p(t,x)

]
.

Example 4.14. Solution of a Fokker-Planck equation
Consider the stochastic differential equation
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{

dX(t) = a dt + b dW (t)
X(0) = x0.

The probability density of the solutions satisfies the forward Kolmogorov
equation ⎧

⎨

⎩

∂p(t, x)
∂t

= −∂(ap(t, x))
∂x

+
b2

2
∂2(p(t, x))

∂2x
p(0, x) = δ(x − x0).

The solution to this partial differential equation is

p(t, x) =
1√

2πb2t
exp
(−(x − at − x0)2

2b2t

)

.

4.8 Stability

In this section, stability of stochastic differential equations is introduced.
There are several kinds of stability questions and several ways to define sta-
bility for stochastic differential equations. To introduce this topic, it is useful
to first review stability concepts for ordinary differential equations. Consider
the initial-value problem:

{
dy(t)

dt
= f(y(t)), for t > 0

y(0) = a
(4.13)

where y : R → R
n and f : R

n → R
n. Suppose that z(t) satisfies the same

differential equation as y(t) but with a different initial condition, i.e.,

{
dz(t)
dt

= f(z), for t > 0

z(0) �= a.

Suppose that a = γ is a critical point of the differential equation, i.e., f(γ) =
0. Then the solution of (4.13) satisfies y(t) = γ for t ≥ 0. The initial-value
problem is said to be stable [23] at γ if given ε > 0 there is a δ > 0 such that

‖z(t) − γ‖ < ε for t ≥ 0 whenever ‖z(0) − γ‖ < δ.

That is, small changes in the initial condition do not produce large changes
in the solution for t ≥ 0.

Furthermore, in computational solution of initial-value problems for
ordinary differential equations, there are two common numerical stability
concepts. Suppose that a single-step method for solving (4.13) has the form:

{
yk+1 = yk + h φ(h,yk), for k = 0, 1, 2, . . . , N − 1
y0 = a.

(4.14)
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where h = T/N is the step length, tk = kh, and yk ≈ y(tk) for each
0 ≤ k ≤ N . The method (4.14) is numerically stable if small changes in
the initial condition do not produce large changes in the computational solu-
tion. Specifically, if zk for k = 0, 1, . . . , N satisfies (4.14) but with a different
initial condition z0 �= y0, then the numerical scheme is numerically stable
provided that there is a constant c > 0 such that

‖yk − zk‖ ≤ cε for 0 ≤ k ≤ N when ‖y0 − z0‖ < ε.

If φ satisfies an appropriate Lipschitz condition, then the numerical scheme
can be shown to be stable [28]. However, the constant c can be extremely large,
especially for stiff systems, which motivates another concept of numerical
stability. To study stability of stiff systems, the following scalar test problem
is studied: {

dy(t)
dt

= λy, for t > 0

y(0) = a
(4.15)

where λ is a constant. Clearly, if a �= 0, then y(t) → 0 as t → ∞ if and only if
Re(λ) < 0. Now consider, for example, applying Euler’s method to this test
problem. Then

{
yk+1 = (1 + hλ)yk, for k = 0, 1, 2, . . . ,
y0 = a.

and yk → 0 as k → ∞, if and only if −2 < Re(λh) < 0. The region of
absolute stability of Euler’s method is −2 < Re(λh) < 0. The region of
absolute stability gives a condition on the step length. If the method satisfies
this condition, then the numerical solution does not “blow up” but decreases
to zero behaving like the solution to the initial-value problem. For Euler’s
method to behave similarly to the solution of (4.15) for a large negative value
of λ, the step length h must be selected to be very small. However, for the
backward Euler method, which for the test problem has the form:

{
yk+1 = yk + hλyk+1, for k = 0, 1, 2, . . . ,
y0 = a,

the region of absolute stability includes the entire left-half of the complex
plane, i.e. −∞ < Re(λh) < 0, and the backward Euler method is said to
be A-stable. For the backward Euler method, the step length h need not be
chosen very small for the numerical solution to perform similarly to the actual
solution even for an initial-value problem that involves a large negative value
of λ. The concept of absolute stability is particularly useful when considering
numerical solution of systems. For the test initial-value system

{
dy(t)

dt
= Ay, for 0 ≤ t ≤ T

y(0) = a.
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where A is an n × n matrix, then y(t) → 0 as t → ∞ provided that Re(λi) <
0 for each eigenvalue λi for 1 ≤ i ≤ n. The system is said to be stiff if
min

1≤i≤n
{Re(λi)} is much less than max

1≤i≤n
{Re(λi)}. For this problem, Euler’s

method has the form
{

yk+1 = (I + Ah)yk, for k = 0, 1, 2, . . . ,
y0 = a.

The eigenvalues of I +Ah are 1+λih for i = 1, 2, . . . , n and yk → 0 as k → ∞
provided that −2 < Re(λi)h < 0 for each eigenvalue λi for 1 ≤ i ≤ n. Hence,
although the behavior of the actual solution for large time t is determined
by the eigenvalues with small negative real parts, the step length h of the
numerical method is forced for all time to satisfy a condition determined by
the eigenvalues with large negative real parts. Implicit methods with large
regions of absolute stability, such as the backward Euler method, are often
recommended for stiff systems as such methods give stable calculational results
with moderate values of step length.

Now consider stability for stochastic differential equations. First, stabil-
ity of a steady solution to a stochastic differential equation is studied then
numerical stability of an approximation is studied. Consider stability of a
steady solution for the stochastic differential equation

{
dX(t) = f(X(t)) dt + g(X(t)) dW (t), for 0 ≤ t ≤ T
X(0) = a.

(4.16)

It is supposed that f(0) = g(0) = 0 so that X(t) ≡ 0 is a steady solution
of (4.16).

There are many ways to define stochastic stability for a steady solution of
a stochastic differential equation [59, 60, 69, 79, 97, 99, 102]. Two ways will be
considered in this section, asymptotic stochastic stability (in the large) and
mean-square stability [59, 60]. It is assumed that X(0) �= 0. If lim

t→∞ |X(t)| = 0

with probability 1, then X(t) ≡ 0 is said to be asymptotically stochasti-
cally stable. If lim

t→∞ E(|X(t)|2) = 0, then X(t) ≡ 0 is said to be mean-square
stable. It is interesting that some stochastic differential equations may be
both asymptotically stochastically stable and mean-square stable while oth-
ers may be asymptotically stochastically stable but not mean-square stable.
To illustrate this behavior [59], stability is analyzed for a stochastic differen-
tial equation with linear drift and diffusion coefficients, namely, f(X) = λX
and g(X) = µX. In this case, (4.16) becomes:

{
dX(t) = λX(t) dt + µX(t) dW (t), for 0 ≤ t ≤ T
X(0) = a

(4.17)

and E(X(t)) = X(0) exp(λt). Using Itô’s formula, X2(t) satisfies the stochas-
tic differential equation
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{

d(X2(t)) =
(
2λX2(t) + µ2X2(t)

)
dt + 2µX2(t) dW (t), for t > 0

X2(0) = a2.

It follows that E(X2(t)) satisfies the differential equation
{

d(E(X2(t))) =
(
2λE(X2(t)) + µ2E(X2(t))

)
dt, for t > 0

E(X2(0)) = a2.

and the solution E(X2(t)) is found to be

E(X2(t)) = X2(0) exp((2λ + µ2)t).

This solution implies that the steady solution X(t) = 0 is mean-square stable
if and only if λ + µ2/2 < 0. Now consider Itô’s formula applied to ln(X(t)).
Then, {

d(ln(X(t)) = (λ − µ2/2) dt + µ dW (t), for t > 0
ln(X(0)) = ln(a).

Let ∆t be a given interval width and let ti = i∆t for t = 0, 1, 2, . . . . This
stochastic differential equation can be exactly integrated from ti to ti+1 to
yield:

ln(X(ti+1)) − ln(X(ti)) = (λ − µ2/2) (ti+1 − ti) + µηi

√
(ti+1 − ti)

where ηi ∼ N(0, 1) for i = 0, 1, 2, . . . . Thus,

ln
(

X(ti+1)
X(ti)

)

= (λ − µ2/2) ∆t + µηi

√
∆t

and

E

(

ln
(

X(ti+1)
X(ti)

))

= (λ − µ2/2) ∆t.

Let Sn =
∑n−1

i=0 ln
(

X(ti+1)
X(ti)

)

. By the Law of Large Numbers see Section

1.7),

Sn

n
=

1
n

n−1∑

i=0

ln
(

X(ti+1)
X(ti)

)

→ (λ − µ2/2) ∆t w.p.1 as n → ∞.

But, letting t = tn,

1
n∆t

n−1∑

i=0

ln
(

X(ti+1)
X(ti)

)

=
1

n∆t
ln
(

X(tn)
X(0)

)

=
1
t

ln
(

X(t)
X(0)

)

→ (λ − µ2/2) w.p.1 as t → ∞.
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Therefore,

X(t) → X(0) exp((λ − µ2/2)t) w.p.1 as t → ∞.

This result implies that the steady solution X(t) = 0 is asymptotically
stochastically stable if and only if λ−µ2/2 < 0. Hence, for example, if λ = µ2/4
in stochastic differential equation (4.17), then X(t) → 0 with probability 1 as
t → ∞ while E(X(t)) → ∞ and E(X2(t)) → ∞ under the same condition.

Now, numerical stability of stochastic differential equations is considered,
in particular, with respect to stiff stochastic problems with additive noise and
then, more briefly, with respect to multiplicative noise. (See, for example,
[59, 60, 69, 97, 98, 99, 102] for thorough discussions of numerical stability for
stochastic differential equations.) The test problem for additive noise has the
form {

dX(t) = λX(t) dt + µ dW (t), for t > 0
X(0) = a.

(4.18)

Two kinds of numerical stochastic stability are numerical asymptotic stochas-
tic stability and numerical mean-square stability. Let Xk and X̃k be two
approximations of (4.18) with the same numerical method but with dif-
ferent initial values. If lim

k→∞
|Xk − X̃k| = 0 with probability 1, then the

approximation is said to be asymptotically stochastically stable [59, 60]. If
lim

k→∞
E(|Xk − X̃k|2) = 0, then the approximation is said to be mean-square

stable [59, 60].
Consider first Euler’s method for solution of test problem (4.16):

{
Xk+1 = Xk + λXk h + µ ηk

√
h, for k = 0, 1, . . .

X0 = a
(4.19)

where Xk ≈ X(kh), ηk ∼ N(0, 1) for each k, and h is the step length. Fur-
thermore, let X̃k be another numerical approximation computed using (4.19)
but with a different initial approximation X̃0 = ã. Let Zk = Xk − X̃k. Then,
Zk satisfies {

Zk+1 = Zk + λh Zk, for k = 0, 1, . . .
Z0 = a − ã

and therefore,

|Xk − X̃k| = |Zk| = |1 + λh|k |Z0| for k = 0, 1, . . . .

Thus, Euler’s method is asymptotically and mean square stable for the test
problem provided that −2 < λh < 0. An analogous result holds for stability
of Euler’s method for stiff systems with additive noise. Specifically, Euler’s
method is numerically stable for a stochastic system with additive noise

{
dX(t) = AX(t) dt + µ dW(t), for t > 0
X(0) = a.
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provided that −2 < Re(λi)h < 0 for each eigenvalue λi of A.
Now consider a stochastic trapezoidal method [59, 69] that when applied

to (4.16) has the form
{

Xk+1 = Xk + 1
2f(Xk) h + 1

2f(Xk+1) h + g(Xk)ηk

√
h, for k = 0, 1, . . .

X0 = a.

When applied to test problem (4.18), this implicit method reduces to the form
{

Xk+1 = Xk + 1
2λhXk + 1

2λhXk+1 + µηk

√
h, for k = 0, 1, . . .

X0 = a.

Let Zk = Xk − X̃k where Xk and X̃k be two approximations with the trape-
zoidal method applied to the test problem (4.18). Then, Zk satisfies

Zk+1 =
1 + 1

2λh

1 − 1
2λh

Zk for k = 0, 1, . . .

and hence,

|Xk − X̃k| = |Zk| =
∣
∣
∣
∣
1 + 1

2λh

1 − 1
2λh

∣
∣
∣
∣

k

|Z0| for k = 0, 1, . . . .

It follows that the trapezoidal method is numerically mean square stable for
the test problem for any λh < 0.

Now consider stability of numerical methods applied to stochastic differ-
ential equations with multiplicative noise. Numerical mean-square stochas-
tic stability for multiplicative noise is considered here. (A good explanation
of numerical asymptotic stochastic stability is given in [59] for a family of
numerical methods.) The test problem for multiplicative noise has the form

{
dX(t) = λX(t) dt + µX(t) dW (t), for t > 0
X(0) = a.

(4.20)

Using Itô’s formula, it is straightforward to show that E(|X(t)|2) → 0 as
t → ∞ provided that µ2 + 2λ < 0 and a required condition for the steady
solution X(t) = 0 to be mean square stable is that µ2+2λ < 0. This condition
will be assumed on the values of the parameters µ and λ in studying the step
size h required for a numerical approximation to likewise approach 0. Consider
first Euler’s method for solution of test problem (4.20):

{
Xk+1 = Xk + λXk h + µXk ηk

√
h, for k = 0, 1, . . .

X0 = a,
(4.21)

where Xk ≈ X(kh), ηk ∼ N(0, 1) for each k, and h is the step length.
Furthermore, let X̃k be another numerical approximation computed using
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(4.21) but with a different initial approximation X̃0 = ã. Let Zk = Xk − X̃k.
Then, Zk satisfies

{
Zk+1 = Zk + λh Zk + µZk ηk

√
h, for k = 0, 1, . . .

Z0 = a − ã

and therefore,

E(|Xk−X̃k|2) = E(|Zk|2) = (1+2λh+λ2h2+µ2h)k E(|Z0|2) for k = 0, 1, . . . .

Thus, Euler’s method is mean square stable for the test problem provided that
µ2 + 2λ < −λ2h. Assuming fixed values for µ and λ, such that µ2 + 2λ < 0
for the steady solution X(t) = 0 to be mean square stable, the step size h in
Euler’s method can therefore be selected sufficiently small for the numerical
method to be mean square stable.

Now consider a stochastic trapezoidal method [59, 69] that when applied
to test problem (4.20) has the form

{
Xk+1 = Xk + 1

2λhXk + 1
2λhXk+1 + µXkηk

√
h, for k = 0, 1, . . .

X0 = a.

Let Zk = Xk − X̃k where Xk and X̃k be two approximations with the trape-
zoidal method applied to the test problem (4.20). Then, E(|Zk|2) satisfies

E(|Xk − X̃k|2) = E(|Zk|2) =
∣
∣
∣
∣
(1 + 1

2λh)2 + µ2h

(1 − 1
2λh)2

∣
∣
∣
∣

k

E(|Z0|2) for k = 0, 1, . . . .

It follows that the trapezoidal method is numerically mean square stable for
the test problem whenever 2λh + µ2h < 0. That is, for any positive step
size, the stochastic trapezoidal method and the stochastic differential equation
share the same stability condition on λ and µ, namely 2λ+µ2 < 0. Therefore,
assuming that µ and λ satisfy µ2 +2λ < 0 for the steady solution X(t) = 0 to
be mean square stable, any positive step size h can be selected in the stochastic
trapezoidal method so that the numerical solution behaves similarly to the
exact solution.

Lyapunov functions [41, 69, 79] are also commonly used to study stability
of differential equations (4.13) and (4.15) and are briefly considered here. The
idea is to construct a function that behaves like energy in a mechanical system.
If the system continually loses “energy,” then the system eventually reaches an
equilibrium state. Provided certain conditions hold, stability of the system can
be inferred using a Lyapunov function. Consider, for example, the determinis-
tic problem dy(t) = − 1

2 (y(t) + y3(t))dt, y(0) = a. Choose the Lyapunov func-
tion, V , as V (t) = y2(t). It follows that V satisfies dV (t) = (−V (t)−V 2(t))dt,
V (0) = a2. As dV (t) ≤ −V (t)dt, then V (t) ≤ a2e−t. Hence, y2(t) = V (t) → 0
as t → ∞ implying that 0 is a stable fixed point for this problem. Now,
consider the stochastic differential equation dX(t) = − 1

2 (X(t) + X3(t)) dt +
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µX(t) dW (t), X(0) = a. Choosing V (t) = X2(t), then by Itô’s formula, V
satisfies dV (t) = ((−1+µ2)V (t)−V 2(t)) dt+2µV (t) dW (t), V (0) = a2. It fol-
lows that d(E(V (t))) ≤ (−1+µ2)E(V (t))dt and thus, E(V (t)) ≤ a2e(−1+µ2)t.
This result implies that the steady solution X(t) = 0 is mean square stable
provided that −1 < µ < 1.

4.9 Parameter Estimation for Stochastic Differential
Equations

In this section, a stochastic differential equation of the form

dX(t) = f(t, X(t); θ) dt + g(t, X(t); θ) dW (t) (4.22)

is considered where θ ∈ R
m is a vector of parameters that are unknown. It is

assumed that
x0, x1, x2, . . . , xN

are observed values of X(t) at the respective uniformly distributed times ti =
i∆t for i = 0, 1, . . . , N where ∆t = T/N . The problem is to find an estimate
of the vector θ given these N + 1 data points. Two estimation methods are
considered in this section: a maximum likelihood estimation method and a
nonparametric estimation method.

4.9.1 A maximum likelihood estimation method

Let p(tk, xk|tk−1, xk−1; θ) be the transition probability density of (tk, xk)
starting from (tk−1, xk−1) given the vector θ. Suppose that the density of
the initial state is p0(x0|θ).

In maximum likelihood estimation of θ [36, 62, 64], the joint density

D(θ) = p0(x0|θ)
N∏

k=1

p(tk, xk|tk−1, xk−1; θ)

is maximized over θ ∈ R
m. The value of θ that maximizes D(θ) will be

denoted in this section as θ∗. However, to avoid small numbers on a computer,
it is more convenient to minimize the function L(θ) = − ln (D(θ)) which has
the form

L(θ) = − ln (p0(x0|θ)) −
N∑

k=1

ln (p(tk, xk|tk−1, xk−1; θ)).

One difficulty in finding the optimal value θ∗ is that the transition densities
are not generally known. However, by considering the Euler approximation to
(4.22) and letting X(tk−1) = xk−1 at t = tk−1, then
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X(tk) ≈ xk−1 + f(tk−1, xk−1; θ)∆t + g(tk−1, xk−1; θ)
√

∆t ηk

where ηk ∼ N(0, 1). This implies that

p(tk, xk|tk−1, xk−1; θ) ≈ 1
√

2πσ2
k

exp
(−(xk − µk)2

2σ2
k

)

where µk = xk−1 + f(tk−1, xk−1; θ)∆t and σk = g(tk−1, xk−1; θ)
√

∆t. This
transition density can be substituted into the expression for L(θ) which can
subsequently be minimized over R

m. The second difficulty is now computing
the optimal vector θ∗ by minimizing L(θ). This is a nontrivial computation.
A numerical optimization algorithm such as the Nelder-Mead method [82] can
be useful for computing the minimum of L(θ).

In the above procedure, the transition densities were approximated using
the Euler formula. Instead of using Euler’s formula to approximate the transi-
tion density p(tk, xk|tk−1, xk−1; θ), one can approximate the density through
simulation as discussed in [64]. First, for a given value of θ, one numerically
solves (4.22) starting from xk−1 at tk−1. A standard method can be used such
as Euler’s method or Milstein’s method with one or more steps. This calcula-
tion is repeated M times to obtain M estimated values y1, y2, . . . , yM for X(t)
at t = tk. (Notice that the Wiener increments, used to find y1, y2, . . . , yM , are
saved. These same Wiener increments are applied in finding y1, y2, . . . , yM at
tk for each value of θ tested. The problem of finding the optimal value θ∗

is then deterministic.) Then the transition density p(tk, xk|tk−1, xk−1; θ) is
estimated using

p(M)(tk, xk|tk−1, xk−1; θ) =
1

Mh

M∑

j=1

K

(
xk − yj

h

)

,

where K is a nonnegative kernel function and h is a bandwidth. A reasonable
kernel K and bandwidth h are [64]:

K(z) =
1√
2π

exp
(−z2

2

)

and h = 0.9sM−1/5,

where

s2 =
1

M − 1

⎡

⎢
⎣

M∑

j=1

y2
j − 1

M

⎛

⎝
M∑

j=1

yj

⎞

⎠

2
⎤

⎥
⎦

gives a formula for the sample standard deviation. Next, one minimizes

L(M)(θ) = − ln (p0(x0|θ)) −
N∑

k=1

ln (p(M)(tk, xk|tk−1, xk−1; θ))

to find an approximation to the optimal value θ∗.
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Example 4.15. Fitting population data to an SDE
Consider the Aransas-Wood Buffalo population of whooping cranes [27,

36]. The population data for the whooping cranes are given in Table 4.5.
These whooping cranes nest in Wood Buffalo National Park in Canada and
winter in Aransas National Wildlife Refuge in Texas [27, 36]. The population
size is graphed in Fig. 2.3 over the years 1939–1985. In this section, this data
is fit to the stochastic differential equation

dX(t) = θ1X(t) dt +
√

θ2X(t) dW (t), X(0) = 18,

where X(t) is population size and θ = [θ1, θ2]T is to be determined. It is
shown in the next chapter that this is a reasonable model for the population
dynamics. Time t here means time in years from year 1939, for example, 1941
corresponds to t = 2.

Table 4.5. Aransas-Wood Buffalo whooping crane population

Year Population Year Population Year Population Year Population

1939 18 1951 31 1963 32 1975 49
1940 22 1952 25 1964 33 1976 57
1941 26 1953 21 1965 42 1977 69
1942 16 1954 24 1966 44 1978 72
1943 19 1955 21 1967 43 1998 75
1944 21 1956 28 1968 48 1980 76
1945 18 1957 24 1969 50 1981 78
1946 22 1958 26 1970 56 1982 73
1947 25 1959 32 1971 57 1983 73
1948 31 1960 33 1972 59 1984 75
1949 30 1961 36 1973 51 1985 86
1950 34 1962 39 1974 49

Both calculational methods described in this section gave optimal values
of approximately θ∗

1 = 0.0361 and θ∗
2 = 0.609. The computer programs that

computed these optimal values, using the procedures described in this section,
are listed at the end of this chapter. Hence, a reasonable stochastic differential
equation based on the data for the whooping crane population size is

dX(t) = 0.0361X(t) dt +
√

0.609X(t) dW (t), X(0) = 18.

The mean population size and two different trajectories for this stochastic
differential equation are plotted in Fig. 4.2. In addition, the actual whoop-
ing crane population in plotted in the figure. The graphs indicate that the
stochastic differential equation model provides a reasonable fit to the data.
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Fig. 4.2. Actual whooping crane population, mean population (dashed line), and
two simulated crane populations using the SDE model

4.9.2 A nonparametric estimation method

Described in this section is a simple nonparametric estimation procedure con-
sidered in [109] and related to nonparametric methods described by several
previous investigators (see, e.g., [30] or [53]). The estimates are only approxi-
mately correct but the approach is simple to implement and the approxima-
tion errors are likely to be small provided that reasonably frequent data are
available [109]. Furthermore, the values estimated by this procedure may also
be used as starting values in other computational methods [30, 53, 64] for
estimating the parameters.

As in the previous section, it is assumed that

x0, x1, x2, . . . , xN

are observed values of X(t) at the respective uniformly distributed times ti =
i∆t for i = 0, 1, . . . , N where ∆t = T/N . The problem is to find an estimate
of the parameter vector θ given these N +1 data points. It is assumed in this
estimation procedure that the process can be approximately modeled by the
discrete-time process

Xi+1 − Xi = f(ti, Xi, θ)∆t + g(ti, Xi, θ)ηi

√
∆t (4.23)

for i = 0, 1, . . . , N − 1 where ηi ∼ N(0, 1) for each i. (Notice that (4.23) is
an Euler approximation to (4.22).) The method is based on the approximate
expectations, conditional on the observed value of Xi, for the discrete-time
process given by [109]:

E [(Xi+1 − Xi)/∆t − f(ti, Xi, θ)] = O(∆t) (4.24)
E
[
(Xi+1 − Xi)2/∆t − g2(ti, Xi, θ)

]
= O(∆t). (4.25)
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If θ ∈ R
2, then (4.24)–(4.25) can be used to estimate the parameter vector θ.

If θ ∈ R
m for m > 2, then (4.24)–(4.25) may be supplemented with additional

equations such as [30]:

E [(Xi+1 − Xi)Xi/∆t − f(ti, Xi, θ)Xi] = O(∆t)
E
[
(Xi+1 − Xi)2Xi/∆t − g2(ti, Xi, θ)Xi

]
= O(∆t).

The parameter vector θ is estimated using the sample counterparts of the
previous equations. For example, for θ ∈ R

2, θ may be estimated using:

N−1∑

i=0

f(ti, xi, θ) =
1

∆t

N−1∑

i=0

(xi+1 − xi) (4.26)

N−1∑

i=0

g2(ti, xi, θ) =
1

∆t

N−1∑

i=0

(xi+1 − xi)2. (4.27)

Furthermore, this nonparametric estimation method, like the maximum like-
lihood procedure described in the previous section, can be extended to esti-
mation of parameters for models that involve systems of stochastic differential
equations. For additional information about parameter estimation and using
numerical methods to study statistical properties of estimators see, for exam-
ple, references [69, 70, 71].

Example 4.16. Fitting population data to an SDE
As an example of this nonparametric estimation method, consider the

whooping crane population data described in the previous section where θ1
and θ2 are to be estimated for the stochastic differential equation model

dX(t) = θ1X(t) dt +
√

θ2X(t) dW (t), X(0) = 18,

where X(t) is population size. For this problem, population sizes are given in
Table 4.5 at 47 successive years. In particular, N = 46 and ∆t = 1. Applying
equations (4.26)-(4.27) to this model gives the estimates:

θ1 =
∑45

i=0(xi+1 − xi)
∑45

i=0 xi

= 0.0361 and θ2 =
∑45

i=0(xi+1 − xi)2
∑45

i=0 xi

= 0.579

which are close to the values obtained for θ1 and θ2 in the previous section
using a maximum likelihood procedure. The model obtained in this example
for the whooping crane population size is therefore

dX(t) = 0.0361X(t) dt +
√

0.579X(t) dW (t), X(0) = 18.
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Exercises

4.1. Assume that X(t) satisfies the stochastic differential equation

dX(t) = aX(t) dt +
√

bX(t) dW (t), X(0) = 1,

for 0 ≤ t ≤ T where a and b are positive constants. Use Itô’s formula to find
E(X(t)), E(X2(t)), and E(X3(t)) exactly.

4.2. Assume that X(t) satisfies the stochastic differential equation

dX(t) = (a + bX(t)) dt + c dW (t), X(0) = X0,

for t ≥ 0 where a, b, and c are constants. Use Itô’s formula with an appropriate
value of α to show that

d(X(t)eαt) = aeαt dt + ceαt dW (t).

Then show that the exact solution is

X(t) = X0e
−αt +

a

α
(1 − e−αt) + ce−αt

∫ t

0
eαs dW (s).

4.3. Assume that X(t) satisfies the stochastic differential equation

dX(t) =
(

2
5
X3/5(t) + 5X4/5(t)

)

dt + X4/5(t) dW (t), X(0) = 1.

Use Itô’s formula with F (t, X(t)) = (X(t))1/5 to prove that the exact solution
is

X(t) =
(

t + 1 +
1
5
W (t)

)5

.

4.4. Let X(t) be the solution of

X(t) = X(0) +
∫ t

0
f(X(s)) ds +

∫ t

0
g dW (s)

for 0 ≤ t ≤ ∆t where g is a constant and f satisfies conditions (c6) and (c7).
In particular, (f(X(s))−f(X(r))2 ≤ k(X(s)−X(r))2 and E(X(s)−X(r))2 ≤
c|s − r|. Assume that X̂(∆t) satisfies

X̂(∆t) = X̂(0) +
∫ ∆t

0
f(X̂(∆t)) ds +

∫ ∆t

0
g dW (s).

(a) Using the triangle inequality, prove that
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‖X(∆t) − X̂(∆t)‖RV ≤
∥
∥
∥

∫ ∆t

0

(
f(X(s)) − f(X(∆t))

)
ds
∥
∥
∥

RV

+‖X(0) − X̂(0)‖RV +
∥
∥
∥

∫ ∆t

0

(
f(X(∆t)) − f(X̂(∆t))

)
ds
∥
∥
∥

RV
.

(b) Next, prove that

‖X(∆t) − X̂(∆t)‖RV ≤ e2k1/2∆t
(
‖X(0) − X̂(0)‖RV + (kc/2)1/2(∆t)3/2

)

assuming that 2k1/2∆t < 1. (Note that 1/(1 − x) ≤ e2x for 0 ≤ x ≤ 1/2.)

4.5. The solution of the stochastic differential equation

dX(t) = (α + βX(t)) dt + γX(t) dW (t), X(0) = X0,

with α, β, and γ constants is [41]:

X(t) = R(t)
(

X0 + α

∫ t

0
(R(s))−1 ds

)

,

where R(t) = exp
(
(β − γ2/2)t + γW (t)

)
. Use this result to show that the

solution of

dX(t) = (aX(t) + bX2(t)) dt + cX(t) dW (t), X(0) = X0,

with a, b and c constants is

X(t) = U(t)
/(

(X0)−1 − b

∫ t

0
U(s) ds

)

,

where U(t) = exp
(
(a − c2/2)t + cW (t)

)
. To show this, let Y(t) = 1/X(t) and

use Itô’s formula with F (t, X(t)) = 1/X(t).

4.6. Consider the stochastic differential equation

dX(t) = (aX(t) + bX2(t)) dt + cX(t) dW (t), X(0) = 1/2,

for 0 ≤ t ≤ 1 where a = 1/4, b = 1/32, and c = 1/4. Use Euler’s method with
∆t = 1/200 and 50,000 sample paths to estimate E(X(1)) and E(X2(1)).
Hand in a listing of your computer program along with your calculational
results. In constructing your program, consider modifying a program listed
in Chapter 4. Also, if the estimated values of E(X(1)) and E(X2(1)) do not
agree reasonably well with the results of Exercise 4.7, your program needs to
be carefully checked.
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4.7. Consider the stochastic differential equation

dX(t) = (aX(t) + bX2(t)) dt + cX(t) dW (t), X(0) = 1/2,

for 0 ≤ t ≤ 1 where a = 1/4, b = 1/32, and c = 1/4.
(a) Let yk(t) = E(Xk(t)) for k = 1, 2, 3. Use Itô’s formula to show that y1(t)
and y2(t) satisfy the deterministic initial-value system:

{
y′
1(t) = ay1(t) + by2(t), y1(0) = 1/2

y′
2(t) = (2a + c2)y2(t) + 2by3(t), y2(0) = 1/4.

(b) Assuming that X(t) is approximately normally distributed with mean
µ(t) = y1(t) and variance σ2(t) = y2(t)−y2

1(t), show that y3(t) ≈ 3y1(t)y2(t)−
2y3

1(t). Then, modify the system in part (a) to
{

y′
1(t) ≈ ay1(t) + by2(t), y1(0) = 1/2

y′
2(t) ≈ (2a + c2)y2(t) + 6by1(t)y2(t) − 4by3

1(t), y2(0) = 1/4.

(c) Use deterministic Euler’s method with ∆t = 1/200 to numerically solve
the system in part (b). Calculate y1(1) and y2(1). Compare your calculated
results with those of Exercise 4.6. If the estimated values of E(X(1)) and
E(X2(1)) do not agree reasonably well with the results of Exercise 4.6, your
program needs to be carefully checked.

4.8. Let X(t) be the solution of

X(t) = X0 +
∫ t

0
f(X(s)) ds +

∫ t

0
g dW (s)

for 0 ≤ t ≤ T where g is a constant and f satisfies conditions (c6) and (c7).
Let ∆t = T/N where 2k1/2∆t < 1. Assume that Xi for i = 0, 1, 2 . . . , N
satisfies the implicit numerical method:

Xi+1 = Xi + f(Xi+1) ∆t + g ∆Wi for i = 0, 1, 2 . . . , N − 1,

where ∆Wi = W (ti+1) − W (ti). Using the results of Exercise 4.4, prove that

‖X(T ) − XN‖RV ≤ (∆t)1/2(c/8)1/2e4k1/2T .

Thus, the method has strong order 1/2 for this problem.

4.9. Consider the stochastic system
{

dX1(t) = X2(t) dt +
√

X1(t) dW1(t) −√X1(t) dW2(t), X1(0) = 10
dX2(t) = −X2(t) dt +

√
X2(t) dW1(t) +

√
X1(t) dW2(t), X2(0) = 50

for 0 ≤ t ≤ 1/2. Using Itô’s formula, prove that E(X2
2 (t)) = 30 + 2470e−2t.
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4.10. Use Euler’s method on the system in Exercise 4.9 to estimate E(X2
2 (1/2)).

Let RN be the estimate of E(X2
2 (1/2)) using N intervals on [0, 1/2] and

20,000 sample paths. Compute R4 and R8 and extrapolate these values, i.e.,
2R8 −R4, to obtain a better approximation to E(X2

2 (1/2)). Compare the cal-
culated values with the exact value found in Exercise 4.9. Hand in a listing of
your program along with your results.

4.11. Consider the stochastic differential equation

dX(t) = −λX(t) dt +
√

µX(t) dW (t), X(0) = X0,

for t ≥ 0 where X0 > 0 and λ and µ are positive constants. Prove that
the steady solution X(t) ≡ 0 is mean square stable. That is, show that
E(X2(t)) → 0 as t → ∞.

4.12. Consider the stochastic system
{

dX1(t) = a dW1(t) + b dW2(t), X1(0) = 0
dX2(t) = c dW1(t), X2(0) = 0.

(a) Show that the forward Kolmogorov equation for this system is:

∂p(t, x1, x2)
∂t

=
1
2
(a2 + b2)

∂2p(t, x1, x2)
∂x2

1
+ ac

∂2p(t, x1, x2)
∂x1∂x2

+
1
2
c2 ∂2p(t, x1, x2)

∂x2
2

.

(b) The probability density for this problem has the form:

p(t,x) =
1

2π(det Σ)1/2 e− 1
2xT Σ−1x =

1
2πbct

e(−c2x2
1+2acx1x2−(a2+b2)x2

2)/(2b2c2t),

where Σ is the 2 × 2 matrix:

Σ =
(

(a2 + b2)t act
act c2t

)

.

Verify that p(t,x) satisfies the forward Kolmogorov equation found in
part (a).

4.13. Consider the implicit Euler method

Xk+1 = Xk + λhXk+1 + µXk

√
h ηk, for k = 0, 1, 2, . . .

for numerically solving the stochastic differential equation

dX(t) = λX(t) dt + µX(t) dW (t), X(0) = X0,

for t ≥ 0 where λ and µ are constants and h > 0 is the step size. Recall that
the steady solution X(t) = 0 of this stochastic differential equation is mean
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square stable if and only if µ2 + 2λ < 0.
(a) Show that if µ2 + 2λ < 0, then the implicit Euler method is numerically
mean square stable for any step size h > 0.
(b) Now suppose that µ2 + 2λ > 0 so that the the stochastic differential
equation is not mean square stable at X(t) = 0. Show, in this case, however,
that if the step size, h, is sufficiently large, specifically h > c(µ2 + 2λ)/λ2 for
some constant c > 1, then the implicit Euler method is mean square stable.

4.14. Consider the stochastic differential equation

dX(t) = X(t) dt +

√
X(t)

4
dW (t), X(0) = 1,

for 0 ≤ t ≤ 1. Notice, using Itô’s formula, that E(X(t)) = et and E(X2(t)) =
5
4e2t− 1

4et. Calculate 200 sample paths using Euler’s method with 500 intervals
on [0, 1], i.e. ∆t = 1/500. Plot two sample paths and the average of 200
sample paths. In constructing your computer program, consider modifying
the MATLAB program listed in Exercise 2.10. If the sample path average
does not appear similar to the graph of the function et, then your program
needs to be carefully checked.

Computer Programs

Program 4.1. SDE Solution using Euler and Milstein methods

This Fortran program solves a scalar stochastic differential equation using
Euler’s method and Milstein’s method simultaneously with nt equally spaced
steps in time. The number of sample paths calculated is specified as nrun.
The mean and mean square values of the solution at the final time are output.
Then, the calculations are continued with the number of time steps equal to
2*nt and 4*nt each with nrun sample paths. The program is set up to solve
the stochastic differential equation in described in Example 4.6. Output of the
program is given following the program listing.

real*8 xx
c This program uses Euler and Milstein methods for an SDE.

nt=32
c nt is the number of intervals

do 500 nnt=1,3
nt=nt*2
ant=nt
xx=710781.
nrun=100000

c nrun is the number of sample paths
arun=nrun
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sm1=0.0
sq1=0.0
sm2=0.0
sq2=0.0
ant=nt
arun=nrun
do 75 jj=1,nrun

c y1 is the Euler approximation
y1=1.0
y2=1.0

c y2 is the Milstein approximation
time=1.0
h=time/ant
hs=sqrt(h)
t=0.0
do 600 i=1,nt
call random(xx,rand1,rand2)
call fts(t,y1,y2,f1,f2,g1,g21,g22)
t=t+h
y1=y1+h*f1+hs*rand1*g1
y2=y2+h*f2+hs*rand1*g21+(rand1*rand1-1.0)*g22*h

600 continue
sm1=sm1+y1/arun
sq1=sq1+y1*y1/arun
sm2=sm2+y2/arun
sq2=sq2+y2*y2/arun

75 continue
write(6,160)nt,nrun

160 format(5x,i6,5x,i6)
write(6,162) sm1,sq1,sm2,sq2

162 format(8x,4(f12.4,3x))
500 continue

stop
end
subroutine random(xx,rand1,rand2)
real*8 xx,a,b,d,rng(2)
a=16807.
ib=2147483647
b=ib
do 55 i=1,2
id=a*xx/b
d=id
xx=a*xx-d*b

55 rng(i)=xx/b
pi=3.141592654
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u1=rng(1)
u2=rng(2)
hlp=sqrt(-2.0*alog(u1))
rand1=hlp*cos(pi*2.0*u2)
rand2=hlp*sin(pi*2.0*u2)
return
end
subroutine fts(t,y1,y2,f1,f2,g1,g21,g22)
hlp=1.0/3.0
hlp1=(abs(y1))**hlp
if(y1.lt.0.0) hlp1=-hlp1
hlp2=(abs(y2))**hlp
if(y2.lt.0.0) hlp2=-hlp2
f1=hlp*hlp1+6.0*hlp1*hlp1
g1=hlp1*hlp1
f2=hlp*hlp2+6.0*hlp2*hlp2
g21=hlp2*hlp2
g22=hlp*hlp2
return
end
64 100000

27.0954 811.0140 27.0993 811.0618
128 100000

27.5339 839.3231 27.5368 839.3948
256 100000

27.7886 855.1988 27.7901 855.2540

Program 4.2. Solution of a scalar SDE using Euler’s method

This MATLAB program solves a scalar stochastic differential equation using
Euler’s method with nt equally spaced intervals in time. The number of sample
paths calculated is specified as nvec. The mean and mean square values of
the solution at the final time are the output values. Matrix array operations
are applied for efficient computation. The program is set up to solve the
stochastic differential equation in described in Example 4.6. Following the
program listing, the output of the program is given.

% Euler method for stochastic differential equation
% Matrix array operations are used for efficient computation
% nvec sample paths are simultaneously computed
% exact solution is E(y(1))= 28.00 and E(y(1))ˆ2 = 869.02
clear
%t=clock;
randn(’state’,2)
nvec=1000;
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nt=128;
time=1;
h=time/nt;
hs=sqrt(h);
y=ones(nvec,1);
for i=1:nt

r=randn(nvec,1);
tt=(i-1)*h;
hlp=y.ˆ(1/3);
f=hlp/3+6*hlp.ˆ2;
g=hlp.ˆ2;
y= y+ f*h + hs*r.*g;

end
mean=sum(y)/nvec
meansqr=sum(y.*y)/nvec
27.6437
851.4002

Program 4.3. Parameter estimation using an MLE procedure

This Fortran program estimates the parameters of stochastic differential equa-
tion using the maximum likelihood procedure described in Section 4.9.1 where
the Euler approximation is applied to Eq. (4.22). The program is applied to
the Aransas-Wood Buffalo whooping crane population data. The minimum is
found on a 1000 by 1000 mesh of [a1, a2] X [b1, b2] where the values of a1,
a2, b1, and b2 are specified. Output of the program is given following the
program listing.

real*4 x(50)
np=47
data (x(i), i=1,47)/ 18, 22, 26, 16, 19, 21, 18, 22,

* 25, 31, 30, 34, 31, 25, 21, 24, 21, 28, 24, 26, 32,
* 33, 36, 39, 32, 33, 42, 44, 43, 48, 50, 56, 57, 59,
* 51, 49, 49, 57, 69, 72, 75, 76, 78, 73, 73, 75, 86/

c This code estimates parameters of an SDE.
fmin=1000000.0

c The minimum is found on a 1000 by 1000 mesh.
a1=0.0
a2=0.1
da=(a2-a1)/1000
b1=0.0
b2=1.0
db=(b2-b1)/1000
th1=a1
do 500 ia=1,1000
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th1=th1+da
th2=b1
do 500 ib=1,1000
th2=th2+db
flog=0.0
do 600 j=1,46
call functs(x(j),th1,th2,f,g)
amu=x(j)+f
sig=g
hlp1=alog(sqrt(2.0*3.141592654*sig*sig))
hlp2= -(x(j+1)-amu)**2/(2.0*sig*sig) - hlp1
flog=flog - hlp2

600 continue
700 format(5x,3(3x,f14.5))

if(flog.gt.fmin) goto 500
fmin=flog
th1min=th1
th2min=th2

500 continue
write(6,700) th1min,th2min,fmin
stop
end
subroutine functs(x,th1,th2,f,g)
f=th1*x
g=sqrt(th2*x)
return
end
0.03610 0.60900 136.78157

Program 4.4. Parameter estimation using an MLE procedure

This Fortran program estimates the parameters of stochastic differential equa-
tion using the maximum likelihood procedure described in Section 4.9.1. For
this program, the transition densities are estimated through simulation using
Euler’s method with nt steps. The program is applied to the Aransas-Wood
Buffalo whooping crane population data. The minimum is found on a 20 by 20
mesh of [a1, a2] X [b1, b2] where the values of a1, a2, b1, and b2 are specified.
Output of the program is given following the program listing.

real*4 x(50),r(50,20000),y(20000)
real*8 xx
np=47
data (x(i), i=1,47)/ 18, 22, 26, 16, 19, 21, 18, 22,

c 25, 31, 30, 34, 31, 25, 21, 24, 21, 28, 24, 26, 32,
c 33, 36, 39, 32, 33, 42, 44, 43, 48, 50, 56, 57, 59,
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c 51, 49, 49, 57, 69, 72, 75, 76, 78, 73, 73, 75, 86/
c This code estimates parameters of an SDE.

xx=114211.0
c An MLE procedure of Hurn, Lindsay, and Martin is used.

m=5000
c m is the number of simulations.

am=m
nt=4

c nt is the number of Euler steps used in each simulation.
ant=nt

c Next, random numbers for all simulations are generated.
do 50 i=1,np
do 50 j=1,m*nt/2
call random(xx,rand1,rand2)
r(i,2*j-1)=rand1
r(i,2*j)=rand2

50 continue
c The minimum is found on a 20 by 20 mesh of [a1,a2]X[b1,b2].

a1=.030
a2=.040
da=(a2-a1)/20.
b1=.500
b2=.700
db=(b2-b1)/20.
fmin=10.**10
alp=a1
do 500 ia=1,20
alp=alp+da
bet=b1
do 500 ib=1,20
bet=bet+db
flog=0.0
do 600 j=1,46
time=1.0
h=time/ant
hs=sqrt(h)
iii=0
do 75 n=1,m
zz=x(j)
do 76 jj=1,nt
iii=iii+1
call functs(zz,alp,bet,f,g)
rrr=r(j,iii)
zz=zz+h*f+hs*rrr*g

76 continue
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75 y(n)=zz
s1=0.0
s2=0.0
do 80 i=1,m
s1=s1+y(i)
s2=s2+y(i)*y(i)

80 continue
ss=(s2-s1*s1/am)/(am-1.0)
ss=sqrt(ss)
hh=.9*ss/(am**.2)
sum=0.0
hlp=sqrt(2.0*3.141592654)*hh
do 85 i=1,m
sum=sum + exp(-(x(j+1)-y(i))**2/(2.0*hh*hh))/hlp

85 continue
sum=sum/am
flog=flog -log(sum)

600 continue
if(flog.gt.fmin) goto 500
fmin=flog
alpmin=alp
betmin=bet

500 continue
write(6,700) alpmin,betmin,fmin

700 format(3(3x,f12.5))
stop
end
subroutine random(xx,rand1,rand2)
real*8 xx,a,b,d,rng(2)
a=16807.
ib=2147483647
b=ib
do 55 i=1,2
id=a*xx/b
d=id
xx=a*xx-d*b

55 rng(i)=xx/b
pi=3.141592654
u1=rng(1)
u2=rng(2)
hlp=sqrt(-2.0*log(u1))
rand1=hlp*cos(pi*2.0*u2)
rand2=hlp*sin(pi*2.0*u2)
return
end
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subroutine functs(x,alp,bet,f,g)
f=alp*x
g=sqrt(bet*x)
return
end
0.03600 0.61000 137.85956



5

Modeling

5.1 Introduction

Most of the stochastic differential equation models described in this chapter
are developed using a procedure that is analogous to the procedure used in the
development of many ordinary differential equation models. The process under
investigation is studied for a small time interval ∆t. The resulting information
on the changes in the process then leads to the differential equation model.
For example, consider the problem of developing a deterministic model for
the temperature of an object immersed in a liquid held at a fixed tempera-
ture TL. Let T (t) be the temperature of the object at time t. Suppose that
for a small time interval ∆t, the change in the temperature of the object is
proportional to the difference between the object’s temperature T (t) and the
liquid’s temperature TL. In addition, suppose that the temperature change is
proportional to the interval length ∆t. Based on this information, it follows
that

∆T = α(TL − T (t))∆t,

where α is a constant of proportionality. Setting ∆T = T (t + ∆t) − T (t) and
letting ∆t → 0, one obtains Newton’s Law of Cooling. That is,

dT

dt
= α(TL − T ).

Therefore, the procedure used in this chapter is just a natural extension
of the procedure used for many years in modeling deterministic dynamical
processes in physics, engineering, and biology. However, in the case consid-
ered here when the process is stochastic rather than deterministic, a finite ∆t
produces a discrete stochastic model. The discrete stochastic model then leads
to a stochastic differential equation model as ∆t → 0. This model develop-
ment procedure has been applied to several interesting biological and physical
phenomena [4, 7, 8, 11, 12, 13, 39, 55, 68, 86, 105]. Furthermore, as ∆t → 0,

135
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a continuous-time stochastic model is obtained from the discrete stochastic
model and it appears that similarities between continuous-time Markov chain
models and stochastic differential equation models were first noted by Kurtz
in 1971 [78].

Based on the preceding discussion, most of the stochastic differential equa-
tion models described in this chapter are developed in the following way. First,
a discrete stochastic model is developed for the dynamical system under study
which is experiencing random influences. Specifically, for a small time interval
∆t, the possible changes with their corresponding transition probabilities are
determined. Second, the expected change and the covariance matrix for the
change are determined for this discrete stochastic process. Third, this infor-
mation leads to the stochastic differential equation model for the dynamical
system. The stochastic differential equation model is inferred by similarities
in the forward Kolmogorov equations between the discrete and continuous
stochastic processes.

There are ways to develop stochastic differential equation models other
than through using the procedure discussed in this chapter. For example,
one may hypothesize for a given stochastic dynamical system that the drift
and diffusion coefficients in the stochastic differential equation model are
linear functions of the solution. Then, assuming data are available, a sta-
tistical estimation method may yield values for the unknown parameters.
This alternate way of developing a stochastic differential equation model is
useful for many stochastic systems. One advantage of the modeling proce-
dure discussed in this section is that, as the parameters in the model are
derived from basic assumptions, a better understanding of the parameters
in the model is achieved. There are many interesting applications and mod-
els of stochastic differential equations. See, for example, the discussions in
[4, 11, 29, 32, 41, 56, 69, 70, 74, 89, 90, 92].

S
1
(t) S

2
(t)

1 2 3 4

5

6

7 8

Fig. 5.1. A diagram of a two-state dynamical system
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It is useful to begin by considering a representative two-state dynamical
process which is illustrated in Fig. 5.1. Let S1(t) and S2(t) represent the values
of two states in the system at time t. It is assumed that in a small time interval
∆t, state S1 can change by −λ1, 0, or +λ1 and state S2 can change by −λ2, 0,
or +λ2 where λ1, λ2 ≥ 0. Let ∆S = [S1, S2]T be the change in a small time
interval ∆t. As illustrated in Fig. 5.1, there are eight possible changes for the
two states in the time interval ∆t not including the case where there is no
change in the time interval. The possible changes and the probabilities of these
changes are given in Table 5.1. It is assumed that the probabilities are given to
O((∆t)2). For example, change 1 represents a loss of λ1 in S1(t) with probability
d1∆t, change 5 represents a transfer of λ1 out of state S1 with a corresponding
transfer of λ2 into state S2 with probability m12∆t, and change 7 represents a
simultaneous reduction in both states S1 and S2. The changes λi are assumed
to be nonnegative. As indicated in the table, all probabilities may depend on
S1(t), S2(t), and time t. Also notice that it is assumed that the probabilities
for the changes are proportional to the time interval ∆t.

Table 5.1. Possible changes in the representative two-state system with the corre-
sponding probabilities

Change Probability

∆S(1) = [−λ1, 0]T p1 = d1(t, S1, S2)∆t

∆S(2) = [λ1, 0]T p2 = b1(t, S1, S2)∆t

∆S(3) = [0, −λ2]T p3 = d2(t, S1, S2)∆t

∆S(4) = [0, λ2]T p4 = b2(t, S1, S2)∆t

∆S(5) = [−λ1, λ2]T p5 = m12(t, S1, S2)∆t

∆S(6) = [λ1, −λ2]T p6 = m21(t, S1, S2)∆t

∆S(7) = [−λ1, −λ2]T p7 = m11(t, S1, S2)∆t

∆S(8) = [λ1, λ2]T p8 = m22(t, S1, S2)∆t

∆S(9) = [0, 0]T p9 = 1 − ∑8
i=1 pi

It is useful to calculate the expected change and the covariance matrix for
the change ∆S = [∆S1, ∆S2]T fixing S(t) at time t. Using the above table,

E(∆S) =
9∑

j=1

pj∆S(j) =

[
(−d1 + b1 − m12 + m21 + m22 − m11)λ1

(−d2 + b2 + m12 − m21 + m22 − m11)λ2

]

∆t

and

E(∆S(∆S)T ) =
9∑

j=1

pj(∆S(j))(∆S(j))T

=

[
(d1 + b1 + ma)λ2

1 (−m12 − m21 + m22 + m11)λ1λ2

(−m12 − m21 + m22 + m11)λ1λ2 (d2 + b2 + ma)λ2
2

]

∆t,
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where ma = m12 + m21 + m22 + m11. We now define the expectation vector,
µ, and the 2 × 2 symmetric positive definite covariance matrix, V , as

µ(t, S1, S2) = E(∆S)/∆t and V (t, S1, S2) = E(∆S(∆S)T )/∆t.

Notice that as ∆t is small and E(∆S)(E(∆S))T = O((∆t)2), the covariance
matrix V is set equal to E(∆S(∆S)T )/∆t. Finally, it is useful to define the
square root of the covariance matrix V as B, specifically,

B(t, S1, S2) = (V (t, S1, S2))1/2 and thus, B2(t, S1, S2) = V (t, S1, S2).

Now, as described in Section 2.2 for a one-dimensional problem, a forward
Kolmogorov equation can be determined for the probability distribution at
time t + ∆t in terms of the distribution at time t. Letting p(t, x1, x2) be the
probability that S1 = x1, and S2 = x2 at time t, then referring to Table 5.1,

p(t + ∆t, x1, x2) = p(t, x1, x2) + ∆t

10∑

i=1

Ti, (5.1)

where

T1 = p(t, x1, x2)(−d1(t, x1, x2) − b1(t, x1, x2) − d2(t, x1, x2) − b2(t, x1, x2))
T2 = p(t, x1, x2)(−ma(t, x1, x2))
T3 = p(t, x1 + λ1, x2)d1(t, x1 + λ1, x2)
T4 = p(t, x1 − λ1, x2)b1(t, x1 − λ1, x2)
T5 = p(t, x1, x2 − λ2)b2(t, x1, x2 − λ2)
T6 = p(t, x1, x2 + λ2)d2(t, x1, x2 + λ2)
T7 = p(t, x1 + λ1, x2 − λ2)m12(t, x1 + λ1, x2 − λ2)
T8 = p(t, x1 − λ1, x2 + λ2)m21(t, x1 − λ1, x2 + λ2)
T9 = p(t, x1 + λ1, x2 + λ2)m11(t, x1 + λ1, x2 + λ2)
T10 = p(t, x1 − λ1, x2 − λ2)m22(t, x1 − λ1, x2 − λ2).

Expanding out the terms T3 through T10 in Taylor series about the point
(t, x1, x2), it follows that

T3 ≈ pd1 +
∂(pd1)
∂x1

λ1 +
1
2

∂2(pd1)
∂x2

1
λ2

1

T4 ≈ pb1 − ∂(pb1)
∂x1

λ1 +
1
2

∂2(pb1)
∂x2

1
λ2

1

T5 ≈ pb2 − ∂(pb2)
∂x2

λ2 +
1
2

∂2(pb2)
∂x2

2
λ2

2
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T6 ≈ pd2 +
∂(pd2)
∂x2

λ2 +
1
2

∂2(pd2)
∂x2

2
λ2

2

T7 ≈ pm12 +
∂(pm12)

∂x1
λ1 − ∂(pm12)

∂x2
λ2 +

1
2

2∑

i=1

2∑

j=1

(−1)i+j ∂2(pm12)
∂xi∂xj

λiλj

T8 ≈ pm21 − ∂(pm21)
∂x1

λ1 +
∂(pm21)

∂x2
λ2 +

1
2

2∑

i=1

2∑

j=1

(−1)i+j ∂2(pm21)
∂xi∂xj

λiλj

T9 ≈ pm11 +
∂(pm11)

∂x1
λ1 +

∂(pm11)
∂x2

λ2 +
1
2

2∑

i=1

2∑

j=1

∂2(pm11)
∂xi∂xj

λiλj

T10 ≈ pm22 − ∂(pm22)
∂x1

λ1 − ∂(pm22)
∂x2

λ2 +
1
2

2∑

i=1

2∑

j=1

∂2(pm22)
∂xi∂xj

λiλj .

Substituting these expressions into (5.1) and assuming that ∆t, λ1, and λ2 are
small, then it is seen that p(t, x1, x2) approximately solves the Fokker-Planck
equation

∂p(t, x1, x2)
∂t

= −
2∑

i=1

∂

∂xi
[µi(t, x1, x2)p(t, x1, x2)] (5.2)

+
1
2

2∑

i=1

2∑

j=1

∂2

∂xi∂xj

[
2∑

k=1

bi,k(t, x1, x2)bj,k(t, x1, x2)p(t, x1, x2)

]

,

where µi is the ith component of µ and bi,j = (B)i,j for 1 ≤ i, j ≤ 2. (Alterna-
tively, as in Example 2.4, it can be shown that (5.1) is a form of finite-difference
approximation to (5.2) for small ∆t, λ1, and λ2.) However, as discussed in the
previous chapter, the probability distribution p(t, x1, x2) that exactly satisfies
(5.2) is identical to the distribution of solutions to the stochastic differential
equation system

{
dS(t) = µ(t, S1, S2) dt + B(t, S1, S2) dW(t)
S(0) = S0,

(5.3)

where W(t) = [W1(t), W2(t)]T . Therefore, as also illustrated for the one-
dimensional examples in Chapter 2 (Examples 2.4 and 2.5), the discrete
stochastic model is closely related to a stochastic differential equation model.
In particular, the drift and diffusion terms, µ and B, respectively, of the
stochastic differential equation model are equal to the expected change divided
by ∆t and the square root of the covariance matrix divided by ∆t obtained
from the discrete stochastic model.

In summary, the procedure described here in deriving a stochastic differ-
ential model for a dynamical process requires three steps. First, a discrete
stochastic model for the process is developed by carefully listing the possi-
ble changes along with the corresponding probabilities for a short time step
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∆t. Second, the expected change and covariance matrix for the change is cal-
culated for the discrete stochastic process. Third, the stochastic differential
equation system is obtained by letting the expected change divided by ∆t be
the drift coefficient and the square root of the covariance matrix divided by ∆t
be the diffusion coefficient. The procedure described in this section provides,
in a natural manner, an Itô stochastic differential equation model, rather than,
for example, a Stratonovich stochastic differential equation model.

It is interesting to notice that

E

[∣
∣
∣
∣E

(
∆S
∆t

)

− µ(t, S1, S2)
∣
∣
∣
∣

2
]

→ 0 as ∆t → 0

and

E

[∣
∣
∣
∣E

(
∆S(∆S)T

∆t

)

− B(t, S1, S2)BT (t, S1, S2)
∣
∣
∣
∣

2
]

→ 0 as ∆t → 0

for fixed values S(t) = [S1(t), S2(t)]T at time t. These relations indicate that
the discrete stochastic process is weakly consistent [69] with the stochastic
differential equation (5.3). In addition, under suitable assumptions, weak con-
sistency implies the weak convergence result

E(g(S(T ))) − E(g(S∆(T ))) → 0 as ∆t → 0

for smooth functions g : R
2 → R, where S(T ) is the solution at time T to

the stochastic differential equation system (5.3) and S∆(T ) is the solution
to the discrete stochastic system [69]. Therefore, another way to regard this
modeling procedure is through weak convergence of the discrete stochastic
system to a continuous stochastic system. This convergence is also suggested
by considering the Kolmogorov equations for the two stochastic systems. In
either way of regarding the procedure, a discrete stochastic process is first
constructed and the expected change and the covariance in the change are
calculated for a small time step ∆t which leads to the stochastic differen-
tial equation model. Several examples of this approach are illustrated in the
remainder of this chapter for problems in biology, physics, engineering, and
finance. Of course, it is generally recommended, after a mathematical model
is formulated for a given process, that the model be thoroughly tested with
Monte Carlo calculations or with experimental data to verify its accuracy.

Example 5.1. A simple example with exact probability distributions
Consider development of one-state discrete and continuous stochastic mod-

els with probability distributions that can be exactly determined and com-
pared. Let ti = i∆t for i = 0, 1, . . . , N and let a discrete stochastic process
take a value from the set {xj = jδ for j = 0, 1, . . . } at each discrete time
ti where δ is a small positive constant. Define the transition probabilities of
the discrete stochastic process by the following:
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pi,k(t) =
{

r∆t/δ2, for k = i + 1
1 − r∆t/δ2, for k = i,

where r is a positive constant and the change in the process is either δ or 0
at each time step. The transition probabilities for this example are similar to
those in Example 2.4. Notice that with the above transition probabilities, if
∆X is the change in the stochastic process for time interval ∆t, then E(∆X) =
r∆t/δ and Var(∆X) = r∆t + O((∆t)2). Let pk(t) = P (X(t) = xk = kδ) be
the probability distribution at time t. Then, pk(t + ∆t) satisfies

pk(t + ∆t) = pk(t) − pk(t)r∆t/δ2 + pk−1(t)r∆t/δ2.

As ∆t → 0, the discrete stochastic process approaches a continuous-time
process and pk(t) satisfies the differential equation:

dpk(t)
dt

= − r

δ2 pk(t) +
r

δ2 pk−1(t)

for k = 0, 1, 2, . . . where p−1(t) = 0. Assuming that p0(0) = 1 and pk(0) = 0
for k ≥ 1, these equations can be solved exactly to yield

pn(t) = exp(−λt)(λt)n/n! for n = 0, 1, 2, . . . ,

where λ =
r

δ2 . That is, the discrete stochastic model is Poisson distributed as
∆t → 0. Notice that

E(X(t)) =
∞∑

n=0

nδpn(t) =
rt

δ
and Var(X(t)) =

∞∑

n=0

n2δ2pn(t) − r2t2

δ2 = rt.

Now, using the procedure described in this section, the forward Kolmogorov
equation satisfied by the corresponding continuous-valued model has the form

∂p(t, x)
∂t

= −r

δ

∂p(t, x)
∂x

+
r

2
∂2p(t, x)

∂x2

with p(0, x) = δ(x − 0). The Itô stochastic differential equation model of the
process is therefore

dX(t) =
r

δ
dt +

√
r dW (t) with X(0) = 1.

For the continuous model, p(t, x) =
1√
2πrt

exp(−(x−rt/δ)2/2rt). That is, the

continuous stochastic model is normally distributed with mean rt/δ and vari-
ance rt. However, referring to Example 1.25, the Poisson distributed variable
converges in distribution to a normally distributed variable as λt increases (as
δ decreases for fixed t > 0). Therefore, the discrete and continuous models
are closely related for small ∆t and small δ. This example illustrates that the
probability distributions of the discrete and continuous stochastic models are
very similar under certain conditions.
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Remark 5.2. Appropriateness of an Itô or a Stratonovich SDE model
There have been discussions regarding whether an Itô or a Stratonovich

stochastic differential equation provides the most appropriate model for a
given random dynamical system. (See, e.g., [41], [92], and [112].) Whether the
stochastic differential equation is regarded as Itô or Stratonovich is important.
For example, if

dX(t) = λX(t) dt + µX(t) dW (t)

is regarded as Itô, then X(t) → X(0) exp((λ − µ2/2)t) w.p.1 as t → ∞ and,
thus, X(t) → 0 with probability 1 if λ < µ2/2. (To see this, refer to the dis-
cussion following equation (4.16) in Section 4.8.) On the other hand, if this
stochastic differential equation is regarded as Stratonovich, then the equiva-
lent Itô stochastic differential equation is

dX(t) = (λ + µ2/2)X(t) dt + µX(t) dW (t).

In this case, X(t) → X(0) exp(λt) w.p.1 as t → ∞ and, thus, X(t) → 0
with probability 1 if λ < 0. It is clear from this example that specifica-
tion of the stochastic differential equation model as Itô or Stratonovich is
important. In the modeling procedure described in this chapter, a discrete
stochastic model is first developed by studying the random dynamical sys-
tem for a small time interval. An Itô stochastic differential equation model is
then inferred by the similarities between the forward Kolmogorov equations of
the discrete-time and the continuous-time stochastic models. Assuming that
the discrete stochastic model is accurate, a specific Itô stochastic differen-
tial equation model is obtained using this derivation procedure. Of course,
a Stratonovich stochastic differential equation model is simultaneously pro-
duced as the Itô model can be readily transformed into a Stratonovich model.
As previously noted [41], whether a stochastic differential equation is inter-
preted as an Itô equation or as a Stratonovich equation may often be resolved
under careful derivation. The derivation procedure described in this chapter
leads in a natural manner to a particular Itô stochastic differential equation
model which, if desired, can be immediately transformed into a Stratonovich
stochastic differential equation model.

Remark 5.3. Calculating square roots of matrices
Before studying several model derivations in the following sections, notice

that the procedure described in this section produces a term in the stochas-
tic differential equation system that involves the square root of a symmetric
positive definite matrix, that is, B = V 1/2. Solution of the stochastic sys-
tem entails computation of square roots of matrices. It is well-known (see,
e.g., [61, 80]) that a symmetric positive definite matrix has a unique symmet-
ric positive definite square root. For a 2 × 2 matrix, the square root can be
readily calculated. Indeed,

V 1/2 =

[
a b

b c

]1/2

=
1
d

[
a + w b

b c + w

]

,
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where w =
√

ac − b2 and d =
√

a + c + 2w. However, for a general n × n
symmetric positive definite matrix V with n ≥ 3, there is no explicit formula
for V 1/2 and so it must be calculated numerically. Clearly, when V is put in the
canonical form V = PT DP , where PT P = I and dii > 0 for i = 1, 2, . . . , n,
then V 1/2 = PT D1/2P . However, for a large matrix, it is computationally
intensive to accurately compute all of the eigenvalues and eigenvectors of V
which are needed to determine P and D. Fortunately, there are available many
numerical procedures for computing V 1/2 directly. (See, for example, [61, 80].)
A fast robust third-order method for symmetric positive definite matrices uses
the algorithm in [80]:

Rm+1 = Rm

( 3
8I + 3

4Sm(I − 1
6Sm)

)

Sm+1 = Sm

( 3
8I + 3

4Sm(I − 1
6Sm)

)−2
,

where R0 = I and S0 = V/||V ||. In this method,
√||V ||Rm → V 1/2 as

m → ∞.
Furthermore, given a vector c, a numerical method for directly calculating

V 1/2c without explicitly finding V 1/2 can be formulated. (Generally this is all
that is required in solving a stochastic differential equation; computing V 1/2

is not required.) This numerical method is based on solving an initial-value
system. Specifically, consider the initial-value problem

dx(t)
dt

= C(t)x(t) with x(0) = c,

where

C(t) = −1
2
(V̂ t + (1 − t)I)−1(I − V̂ ) with V̂ =

V

2||V ||∞ .

The solution to this initial-value problem at t = 1 is

x(1) = V̂ 1/2c =
V 1/2c
√

2||V ||∞
.

Thus, if this initial-value problem is solved numerically from t = 0 to t = 1
and x(1) is computed, it follows that

V 1/2c =
√

2||V ||∞ x(1).

This method is robust and efficient for computing the product of the square
root of a symmetric positive definite matrix with a vector [5].

Remark 5.4. Including additional Wiener processes as an alternative to the
matrix square root

Often, the calculation of the square root of the covariance matrix B = V 1/2

can be avoided by including additional Wiener processes in the stochastic
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system (5.3) [9, 14]. Consider a stochastic modeling problem that involves N
states S1, S2, . . . , SN with a total of M ≥ N possible random changes to these
states at each time step ∆t. Suppose that the probabilities of the changes are
pj∆t = pj(t,S)∆t for j = 1, 2, . . . , M where the jth change alters the ith
state by the amount λji for i = 1, 2, . . . , N . The ith element of vector µ for
this problem is then

µi =
M∑

j=1

pjλji for i = 1, 2, . . . , N.

The covariance matrix, V , can also be computed and the i, l entry of V has
the form

vil =
M∑

j=1

pjλjiλjl for 1 ≤ i, l ≤ N.

As explained in Remark 5.3, it is generally difficult to compute the N × N
matrix V 1/2 in the stochastic differential equation system

dS = µ dt + V 1/2 dW(t),

where W(t) is a vector consisting of N independent Wiener processes. How-
ever, it is interesting that an N ×M matrix C can be readily found such that
V = CCT and the stochastic differential equation system can be modified to
the system

dS = µ dt + C dW∗(t),

where W∗(t) is a vector consisting M independent Wiener processes. Indeed,
Itô’s formula and the forward Kolmogorov equation are identical for both
stochastic differential equation systems. The entries of matrix C have the
form:

cij = λjip
1/2
j for 1 ≤ i ≤ N, 1 ≤ j ≤ M.

To verify this formula, notice that

(CCT )il =
M∑

j=1

cijclj =
M∑

j=1

λjip
1/2
j λjlp

1/2
j = vil for 1 ≤ i, l ≤ N.

For chemically reacting systems, such as the example in Section 5.3.6, the
stochastic differential equation system with CdW∗(t) replacing V 1/2dW(t)
is referred to as the chemical Langevin equation [45]. Finally, notice that if
the number of changes, M , is much greater than the number of states, N ,
then this approach loses much of its effectiveness. More information about
alternate stochastic differential equation models is given in Section 5.6.
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5.2 Population Biology Examples

5.2.1 General model of two interacting populations

Consider first two interacting populations although it is straightforward to
extend the derivations to more than two populations. The approach will be
applicable to populations of the same species or to populations of different
species. Populations of the same species may differ, for example, by geographic
location or by status in an epidemic, e.g., infective or susceptible. In such cases,
the populations may interact, respectively, by migration or by transmitting
and recovering from a disease. Populations of different species may interact, for
example, as competitors or as predator and prey. More details about modeling
the stochastic dynamics of populations using the procedure described in this
section can be found, for example, in references [4, 7, 8, 11, 12, 39, 68, 86].

x
1
(t) x

2
(t)

b
1

d
1

b
2

d
2

m
12

m
21

Fig. 5.2. A diagram of two interacting populations

Let the sizes of the two populations at time t be denoted by x1(t)
and x2(t). Important parameters for the two populations are denoted by
b1, d1, b2, d2, m12, and m21. The parameters bi and di are per capita birth
and death rates, respectively, for population i and mij is the rate popula-
tion i is transformed to population j. For geographically isolated populations,
mij may represent the migration rate of population i to j. For a population
undergoing an epidemic, m12 may represent the rate a susceptible becomes
infected and m21 may represent the rate an infected recovers. Of course,
each parameter may depend on population sizes x1 and x2 and time t, i.e.,
bi = bi(t, x1, x2), di = di(t, x1, x2), and mij = mij(t, x1, x2) where it assumed
that each parameter is a smooth function of x1, x2, and t. For notational
simplicity, the dependence of the parameters on x1, x2, and t is often not
explicitly written.

Figure 5.2 illustrates the interactions considered here between two popula-
tions. In a small time interval ∆t, there are seven possibilities for a population
change ∆x neglecting multiple births, deaths, or transformations in time ∆t
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which have probabilities of order (∆t)2. These possibilities are listed in Table
5.2 along with their corresponding probabilities. For example, ∆x2 = [−1, 1]T

represents the movement of one individual from population x1 to population
x2 during time interval ∆t and the probability of this event is proportional
to the size of population x1 and the time interval ∆t, that is, p2 = m12x1∆t.
As a second example, ∆x4 = [0, 1]T represents a birth in population x2 with
probability p4 = b2x2∆t. It is assumed that ∆t > 0 is sufficiently small so
that p7 > 0. Notice that

∑7
i=1 pi = 1.

Table 5.2. Possible changes in the two-population system with the corresponding
probabilities

Change Probability

∆x1 = [−1, 0]T p1 = d1x1∆t
∆x2 = [−1, 1]T p2 = m12x1∆t
∆x3 = [0, −1]T p3 = d2x2∆t
∆x4 = [0, 1]T p4 = b2x2∆t
∆x5 = [1, −1]T p5 = m21x2∆t
∆x6 = [1, 0]T p6 = b1x1∆t

∆x7 = [0, 0]T p7 = 1 − ∑6
i=1 pi

It is now of interest to find the mean change E(∆x) and the covariance
matrix E(∆x(∆x)T ) for the time interval ∆t. Neglecting terms of order (∆t)2,

E(∆x) =
7∑

j=1

pj∆xj =

[
b1x1 − d1x1 − m12x1 + m21x2

b2x2 − d2x2 − m21x2 + m12x1

]

∆t

and

E(∆x(∆x)T ) =
7∑

j=1

pj∆xj(∆xj)T

=

[
b1x1 + d1x1 + m12x1 + m21x2 −m12x1 − m21x2

−m12x1 − m21x2 b2x2 + d2x2 + m12x1 + m21x2

]

∆t.

As the product E(∆x)(E(∆x))T is of order (∆t)2, the covariance matrix V is
set equal to E(∆x(∆x)T )/∆t. It is straightforward to show that V is positive
definite and hence has a positive definite square root B = V 1/2. Hence, the
vector µ and the matrix V are defined as

µ = E(∆x)/∆t =

[
b1x1 − d1x1 − m12x1 + m21x2

b2x2 − d2x2 − m21x2 + m12x1

]

(5.4)

and
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V =

[
b1x1 + d1x1 + m12x1 + m21x2 −m12x1 − m21x2

−m12x1 − m21x2 b2x2 + d2x2 + m12x1 + m21x2

]

. (5.5)

For this two-dimensional system, B = V 1/2 can be found exactly and is given
by

B = V 1/2 =
1
d

[
a + w b

b c + w

]

,

where w =
√

ac − b2 and d =
√

a + c + 2w with

a = d1x1 + m12x1 + m21x2 + b1x1,

b = −m12x1 − m21x2,

c = m12x1 + d2x2 + b2x2 + m21x2.

Based on the discussion in the introduction to this chapter, the stochastic
differential equation model for the dynamics of two interacting populations
has the form

dx = µ(t, x1, x2) dt + B(t, x1, x2) dW(t) (5.6)

with x(0) = x0 and where W(t) is the two-dimensional Wiener process, i.e.,
W(t) = [W1(t), W2(t)]T . Equation (5.6) is a stochastic differential equation
system that describes the population dynamics. Notice that if matrix B is set
equal to zero, then (5.6) reduces to a standard deterministic model for the
population dynamics. Of course, µ = µ(x1, x2, t) and B = B(x1, x2, t) as the
parameters bi, di, mij may all depend on x1, x2, and t. For a single population,
(5.6) reduces to

dx1 = (b1x1 − d1x1) dt +
√

b1x1 + d1x1 dW1(t) (5.7)

which is commonly seen in mathematical models of population dynamics
[4, 8, 11, 12, 21].

5.2.2 Epidemic model and predator-prey model

In this section two examples of two interacting populations are considered.
The first model is for an epidemic consisting of susceptible and infected sub-
populations. The second model is for a predator-prey system.

Consider an SIS epidemic model for a single species. In this model, sus-
ceptibles become infected, recover, and become susceptible again. There is no
immunity to the disease. A deterministic form of the SIS model is [10, 13, 15]:

dS

dt
= γI − αIS/N (5.8)

dI

dt
= −γI + αIS/N, (5.9)
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where S(0)+ I(0) = N and therefore S(t)+ I(t) = N for t ≥ 0. In this model,
S(t) is the susceptible population size, I(t) is the infected population size,
α > 0 is the contact rate for passing the infection, i.e., the average number
of individuals with whom an infected individual makes sufficient contact to
pass an infection, and γ > 0 is the probability that an infected individual
is removed from the infection process during a unit time interval (relative
removal rate). In terms of the parameters defined in the first subsection,

x1(t) = S(t), x2(t) = I(t), d1 = d2 = b1 = b2 = 0,

m12 = αI/(I + S) = αx2/(x1 + x2), and m21 = γ.

Referring to (5.6), the stochastic SIS model has the form

dx1 = (−m12x1 + m21x2)dt +

√
m12x1 + m21x2

2
(
dW1 − dW2

)
(5.10)

dx2 = (m12x1 − m21x2)dt +

√
m12x1 + m21x2

2
(− dW1 + dW2

)
(5.11)

and thus, for this problem,

B =

[
m12x1 + m21x2 −m12x1 − m21x2

−m12x1 − m21x2 m12x1 + m21x2

]

/
√

2(m12x1 + m21x2).

Note that the sum x1(t) + x2(t) is constant for t ≥ 0 in the stochastic model
as well as in the deterministic model. Also, to simplify model (5.10)–(5.11), a
Wiener process W (t) can be substituted for the process (W1(t) − W2(t))/

√
2.

Table 5.3. Expected population sizes and the standard deviations in population
sizes at time t = 100 for the stochastic SIS model

Estimate SDE Model Results Monte Carlo Results

E(S(100)) 561.7 562.2
E(I(100)) 438.7 437.8
σ((S(100))) 41.5 41.0
σ((I(100))) 41.5 41.0

For a computational example, let α = 0.04, γ = 0.01, with S(0) = 950,
and I(0) = 50. Let the final time be t = 100. In Table 5.3, the calcula-
tional results in solving (5.10)–(5.11) numerically are given for E(S(100)),
E(I(100)), σ((S(100))) =

√
Var(S(100)), and σ((I(100))) =

√
Var(I(100)).

In these computations, 10,000 sample paths were used to obtain the estimated
means and standard deviations. Also listed in the table are the expected val-
ues and the standard deviations using a Monte Carlo approach. In the Monte
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Carlo calculations, each individual in the population is checked after each time
step of ∆t = 1/5 day to determine whether a susceptible individual contracts
the disease or if an infected individual recovers. These calculations continue
until time t = 100 for 10,000 sample paths. As can be seen in the table, close
agreement is obtained between the two different calculational approaches.
Computer programs are listed at the end of this chapter for the two different
calculational procedures. Finally, for this example, one sample path and the
average of 100 sample paths for the SIS stochastic differential equation model
(5.10)–(5.11) are displayed in Fig. 5.3. In addition, the computer program
that produced this figure is listed at the end of this chapter.
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Fig. 5.3. Expected population sizes (dashed lines) and one sample path for suscep-
tible and infected

As a second example of two interacting populations, consider the two
species predator-prey system. A deterministic model for the predator and
prey populations takes the form

dx1(t) =
(
b1(x1, x2)x1(t) − d1(x1, x2)x1(t)

)
dt (5.12)

dx2(t) =
(
b2(x1, x2)x2(t) − d2(x1, x2)x2(t)

)
dt, (5.13)

where x1(t) is the population size of the prey and x2(t) is the population size
of the predator. For example, in the standard Lotka-Volterra model [15, 38],

b1(x1, x2) = b1, d1(x1, x2) = c1x2,

b2(x1, x2) = c2x1, and d2(x1, x2) = d2,

where b1, d2, c1, c2 > 0. In this case, equations (5.12)–(5.13) have the equilib-
rium solution x1(t) = d2/c2 and x2(t) = b1/c1 (other than x1(t) = x2(t) = 0).
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The solutions form closed curves in the x1x2-plane about the equilibrium
point (d2/c2, b1/c1). A variation of this model allows logistic prey growth
[11, 12, 15, 38, 48] with

b1(x1, x2) = max(a1(k1 − x1)/k1, 0). (5.14)

In this case, the steady-state solution is x1(t) = d2/c2 and x2(t) =
(a1c2k1 − a1d2)/c1c2k1. The solutions spiral in the x1x2-plane to the steady
state

(
d2/c2, (a1c2k1 − a1d2)/c1c2k1

)
.

Now, consider the stochastic differential equation model of the predator-
prey system (5.12) and (5.13). For this problem, as m12 = 0 = m21, the
covariance matrix V is diagonal and the square root matrix B is then also
diagonal. Based on equations (5.6), the stochastic predator-prey equations
have the form:

dx1 = (b1(x1, x2) − d1(x1, x2))x1dt +
√

(b1(x1, x2) + d1(x1, x2))x1dW1 (5.15)

dx2 = (b2(x1, x2) − d2(x1, x2))x2dt +
√

(b2(x1, x2) + d2(x1, x2))x2dW2 (5.16)

for either the Lotka-Volterra model or the Lotka-Volterra model with logistic
growth by substituting in the appropriate birth and death rates.

5.2.3 Persistence-time estimation

For a system of two interacting populations, the mean persistence time of the
system is defined in this section to be the expected time it takes for the size of
either population to reach zero. The mean persistence time of the system can
be estimated through numerical solution of (5.6) or by solving the backward
Kolmogorov differential equation to find the mean persistence time directly.

Individual populations can be simulated using (5.6) and followed until a
population fails to persist. Averaging many such calculated persistence times
yields an estimate for the mean persistence time. In computationally solving
(5.6) the iterations are continued until either x1 ≤ 0 or x2 ≤ 0. When this exit
criterion is satisfied, then the persistence time of that population is saved and
another population trajectory is simulated. After many individual population
trajectories are computed, the mean persistence time is estimated by averaging
the individual persistence times.

Besides numerically solving stochastic system (5.6), the mean persis-
tence time for system (5.6) can also be obtained by solving the backward
Kolmogorov equation. Suppose that the size of population 1 cannot exceed
K1 and the size of population 2 cannot exceed K2. The reliability function
R(t, y1, y2) is the probability that the persistence (exit) time is greater than
t assuming initial populations x1(0) = y1 and x2(0) = y2. The reliability
function is the integral of the transition probability density function over the
safe region [94]. The reliability function R(t, y1, y2) satisfies the backward
Kolmogorov equation [12, 41, 81, 94, 104]:
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∂R

∂t
=

2∑

k=1

µk(t, y1, y2)
∂R

∂yk
+

1
2

2∑

k=1

2∑

m=1

vkm(t, y1, y2)
∂2R

∂yk∂ym
(5.17)

with

R(0, y1, y2) = 1 for (y1, y2) ∈ (0, K1) × (0, K2)

R(t, 0, y2) = 0 for y2 ∈ (0, K2)

R(t, y1, 0) = 0 for y1 ∈ (0, K1)

∂R(t, K1, y2)
∂y1

= 0 for y2 ∈ (0, K2)

∂R(t, y1, K2)
∂y2

= 0 for y1 ∈ (0, K1)

and where vkm(t, y1, y2) =
2∑

j=1

bkj(t, y1, y2) bmj(t, y1, y2). The probability

density of persistence times is given by −∂R(t, y1, y2)
∂t

and T (y1, y2) =
∫ ∞

0
R(t, y1, y2) dt is the mean persistence time with initial populations x1(0) =

y1 and x2(0) = y2.
As a simple example, consider a single population with per capita birth

and death rates b(y) and d(y), respectively, for 0 ≤ y ≤ K. The corresponding
backward Kolmogorov equation is

∂R

∂t
= (yb(y) − yd(y))

∂R

∂y
+

1
2
(yb(y) + yd(y))

∂2R

∂y2 (5.18)

with R(0, y) = 1 for y ∈ (0, K), R(t, 0) = 0, and
∂R(t, K)

∂y
= 0. Integrating

(5.18) over time t from 0 to ∞ yields

−1 = (yb(y) − yd(y))
dT (y)

dy
+

1
2
(yb(y) + yd(y))

d2T (y)
dy2 (5.19)

with T (0) = 0 and T ′(K) = 0, where T (y) is the mean persistence time for
a population of initial size y. Now suppose, for a computational comparison,
that K = 20 and the birth and death rates satisfy

yb(y) − yd(y) =

{
0, for 0 ≤ y ≤ 10

−1, for 10 < y ≤ 20

and
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yb(y) + yd(y) = 1 for 0 ≤ y ≤ 20.

Then (5.19) can be solved exactly for the persistence time for an initial pop-
ulation size y to obtain that

T (y) =

{−y2 + (21 − e−20)y, for 0 ≤ y ≤ 10

y + 100 − (19e−20 + e−40e2y)/2, for 10 < y ≤ 20.

In particular, T (5) = 80.0, T (10) = 110.0, and T (15) = 115.0. For comparison
purposes, the stochastic differential equation

⎧
⎨

⎩

dx =
(
b(x)x − d(x)x

)
dt +

√
(b(x)x + d(x)x) dW (t)

x(0) = y

was computationally solved using the same birth and death rates. Calculating
10,000 sample paths, where each path was terminated when x(t) ≤ 0, resulted
in the estimates T (5) ≈ 80.07, T (10) ≈ 111.05, and T (15) ≈ 114.01. Thus,
persistence times calculated using the stochastic differential equation showed
good agreement with those obtained by the backward Kolmogorov equation.

5.2.4 A population model with a time delay

Delay equations are common in mathematical biology. For example, Cushing
[33] analyzed a predator-prey model with a delay in the response of the preda-
tor to the changing density of the prey and Gopalsamy [49] studied a system
with a developmental delay such as the delay required for insect larvae to
become adults. Models of epidemics with continuously distributed time delays
are also of interest [57]. Consider a simple SIS model where there are no births
or deaths in the system but there is a delay in the recovery rate of infected
individuals. A deterministic SIS epidemic model with a delay in recovery from
infected to susceptible has the form:

dS

dt
= −λSI + γ

∫ t

t−T

I(u)H(t − u) du

dI

dt
= λSI − γ

∫ t

t−T

I(u)H(t − u) du,

where λ is the rate of contracting the disease from an infected individual
and the time T and function H are employed to account for the delay in the
recovery of infected individuals. For example, H(z) may have the form

H(z) =

⎧
⎨

⎩

1
T

, for 0 ≤ z ≤ T

0, otherwise
or H(z) =

⎧
⎨

⎩

2z

T 2 , for 0 ≤ z ≤ T

0, otherwise,
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where H is often assumed to satisfy the condition
∫∞
0 H(z) dz = 1.

By considering the changes in a small time interval ∆t as described in the
introduction to this chapter, a stochastic system for the SIS model with delay
in recovery is obtained of the form

dS

dt
= −λSI + γ

∫ t

t−T

I(u)H(t − u) du + b11
dW1

dt
+ b12

dW2

dt

dI

dt
= λSI − γ

∫ t

t−T

I(u)H(t − u) du + b21
dW1

dt
+ b22

dW2

dt
,

where

b11 = b22 = −b21 = −b12 =
1√
2

√

λSI + γ

∫ t

t−T

I(u)H(t − u) du.

It is interesting to note that

dS(t)
dt

+
dI(t)
dt

= 0 so that S(t) + I(t) = S(0) + I(0) for t ≥ 0.

This is the same relation that the deterministic and the stochastic SIS models
satisfy without delay. Finally, it is useful to note that numerical methods have
been developed for solving stochastic integro-differential problems. (See, for
example, [46, 47].)

5.2.5 A model including environmental variability

In the previous models of population dynamics, the randomness in the births,
deaths, and interactions accounted for the nonzero terms in the covariance
matrix. However, the environment also varies which is likely to affect the
populations in another random manner. One possible way to model the envi-
ronmental effects would be to include additional variables in the mathematical
model such as rainfall, predator populations, competitor populations, and food
supply. Including additional variables, however, would quickly complicate the
model and destroy the simple nature of the model. Consider the deterministic
model for the growth of a single population of size y(t):

dy

dt
= b(t)y − d(t)y.

In a varying environment, the per capita birth and death rates, b(t) and
d(t), would be functions of these additional environmental variables and
would have the forms b(t, v1, v2, . . . , vn) and d(t, v1, v2, . . . , vn), respectively,
where v1, v2, . . . , vn represent n different environmental variables. Thus, as
v1, v2, . . . , vn vary, the per capita birth and death rates also vary. This sug-
gests that an approximate way to include environmental variability, without



154 5 Modeling

modeling additional environmental factors, would be to vary the per capita
birth and death rates in a random manner. Thus, in this section, it is
hypothesized that changes in the environment produce random changes in
a population’s per capita birth and death rates that are independent from the
changes due to demographic variability. This hypothesis may provide only
a rough approximation to the actual biological situation. However, accept-
ing this hypothesis leads to manageable mathematical models that can give
some insight into the effects of environmental variability on the dynamics of
a population [8].

Table 5.4. Possible changes in the population size and per capita birth and death
rates with the corresponding probabilities

Change Probability

∆y1 = −1 p1 = dy∆t
∆y2 = 1 p2 = by∆t
∆y3 = 0 p3 = 1 − (by + dy)∆t
∆b1 = −αb p4 = (qb − βb(be − b))∆t
∆b2 = αb p5 = (qb + βb(be − b))∆t
∆b3 = 0 p6 = 1 − 2qb∆t
∆d1 = −αd p7 = (qd − βd(de − d))∆t
∆d2 = αd p8 = (qd + βd(de − d))∆t
∆d3 = 0 p9 = 1 − 2qd∆t

First, as in the previous models, a discrete stochastic process is described
for the phenomenon. Let y(t), b(t), and d(t) be the population size, per capita
birth rate, and per capita death rate for the population at time t, respectively.
Let ∆t be a small time interval. The changes in these three variables in time
∆t can be considered to be independent under our hypothesis. The possible
changes ∆y, ∆b and ∆d are listed in Table 5.4. A special form is assumed for
the probabilities of the per capita birth rates and death rates. Consider here
the per capita birth rate as the per capita death rate can be regarded in the
same manner. It is assumed that qb∆t represents the probability associated
with random diffusion of the per capita birth rate. The term ±βb(be−b) repre-
sents the probability associated with drift toward the mean value of be. When
b(t) �= be, where be is the average per capita birth rate in the environment,
then the probability of moving closer to be is greater than the probability of
moving further away from be. In this way, unrealistic values for the per capita
birth and death rates are avoided.

The next step is to find the expected change and the covariance matrix
for the change. To order (∆t)2, the expected values satisfy
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E(∆y) = (b(t) − d(t))y(t)∆t

E((∆y)2) = (b(t) + d(t))y(t)∆t

E(∆b) = 2αbβb(be − b(t))∆t

E((∆b)2) = 2α2
bqb∆t

E(∆d) = 2αdβd(de − d(t))∆t

E((∆d)2) = 2α2
dqd∆t.

Now, for convenience, define β1, β2, α1, and α2 as

β1 = 2αbβb, β2 = 2αdβd, α2
1 = 2α2

bqb, and α2
2 = 2α2

dqd.

As the covariance matrix is diagonal for this model, the following stochastic
differential equation system is obtained:
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dy(t) =
(
b(t)y(t) − d(t)y(t)

)
dt +

√(
b(t)y(t) + d(t)y(t)

)
dW1(t)

db(t) = β1(be − b(t)) dt + α1 dW2(t)

dd(t) = β2(de − d(t)) dt + α2 dW3(t)

(5.20)

for
(
y(t), b(t), d(t)

) ∈ [0, ∞)×R
1×R

1, where Wi(t), i = 1, 2, 3 are independent
standard Wiener processes. System (5.20) represents a stochastic model of a
single population experiencing variability in the environment.

It is interesting that the stochastic differential equation for b(t) (or d(t))
can be solved exactly to yield

b(t) = be + exp(−β1t)
(

− be + b(0) +
∫ t

0
α1 exp(β1s) dW2(s)

)
.

This equation implies that, for large time t, the per capita birth rate b(t)
is approximately normally distributed with mean be and variance α2

1/(2β1).
Thus, it is inherently assumed in this stochastic model that random variations
in the environment cause the per capita birth rate to vary normally about a
mean value be. An analogous result is assumed, of course, for the per capita
death rate.

As a computational example, assume β1 = 1 = β2, α1 = 0.5 = α2, be = 1,
de = 1.4. Suppose that y(0) = 30, b(0) = be, and d(0) = de. In Fig. 5.4, the
probability distribution of the population size y(t) that satisfies stochastic
system (5.20) is plotted at time t = 1.0. Two different cases are considered,
that is, when there is environmental variability and when there is no environ-
mental variability. No environmental variability is obtained by setting β1 =
β2 = α1 = α2 = 0. It is clear for this example that the variability in the
environment tends to spread out the population size distribution.
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Fig. 5.4. Population distribution at t = 1 for an initial population of size 30
obtained through numerical solution of the SDE model (5.20) with no environ-
mental variability (a) and with environmental variability (b)

5.3 Physical Systems

Stochastic differential equation models for seven physical systems that exper-
ience random influences in their dynamical behavior will be examined. The
dynamical systems discussed include mechanical vibration, seed dispersal,
nuclear reactor dynamics, ion transport, precipitation, chemical molecular
reactions, and cotton fiber breakage.

5.3.1 Mechanical vibration

The first dynamical physical system considered is mechanical vibration, specif-
ically, a single-degree-of-freedom vibrating system. A single-degree-of-freedom
system only requires one coordinate to describe the state of the system at any
time. In mechanical vibration, the general governing equation of motion for a
single-degree-of-freedom dynamic system has the form [81, 94]:

x′′(t) + r(x) + c(x, x′) = f(t), (5.21)

where x(t) is the displacement of the mass from the rest point, r(x) repre-
sents restoring forces, c(x, x′) models damping forces, and f(t) is a stochastic
excitation process. Engineering applications of stochastic differential equation
(5.21) arise, for example, in reliability analyses of structures subject to wind,
current, or earthquake loads. We will develop a model of the form (5.21) for
the spring-mass system, illustrated in Fig. 5.5, where x(t) is the displacement
of the mass from equilibrium, v(t) = x′(t) is the velocity, m is the mass, and
M(t) = mv(t) is the momentum. Let kx(t) be the spring displacement force
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m

Fig. 5.5. A single-degree-of-freedom spring-mass system

and let bv(t) be the damping force or the force due to friction. The determin-
istic system of ordinary differential equations that describe the dynamics of
the spring-mass system has the form

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

dx(t)
dt

= v(t)

dM(t)
dt

= −kx(t) − bv(t)

(5.22)

with x(0) = x0 and v(0) = v0. Notice that for a small time interval

∆M = M(t + ∆t) − M(t) ≈ −(kx(t) + bv(t)
)
∆t.

Next assume that impulsive forces are applied randomly to the mass. Specif-
ically, in any small time interval ∆t, assume that the probability equals λ∆t
for a positive or negative change in the momentum of magnitude γ. Let ∆M
be the change in the momentum in time ∆t. There are three possible changes
in time ∆t and these are listed in Table 5.5 along with their respective prob-
abilities. Notice that for any change in momentum, the term (−kx − bv)∆t is
included.

Table 5.5. Possible changes in the momentum of the spring-mass system with the
corresponding probabilities

Change in Momentum Probability

∆M1 = γ + (−kx − bv)∆t p1 = λ∆t + o(∆t)
∆M2 = −γ + (−kx − bv)∆t p2 = λ∆t + o(∆t)
∆M3 = (−kx − bv)∆t p3 = 1 − p1 − p2

The next step involves calculating the expected change and the variance
in the change for the time interval ∆t. To order (∆t)2 it follows that

E(∆M) = (−kx − bv)∆t

and
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E((∆M)2) = 2γ2λ∆t.

These values for E(∆M) and E((∆M)2) imply that the stochastic differential
equation model for the vibrating mass under the conditions assumed in this
section for random changes in the momentum has the form:

⎧
⎨

⎩

dx(t) = v(t)dt

dM(t) =
(− kx(t) − bv(t)

)
dt +

√
2γ2λ dW (t)

(5.23)

with x(0) = x0 and v(0) = v0. For mass m constant, system (5.23) can be
written as the second-order stochastic system

m
d2x

dt2
+ b

dx

dt
+ kx =

√
2γ2λ

dW

dt
(5.24)

with x(0) = x0 and x′(0) = v0. Equations of the form (5.24) are well-known in
the study of random vibration for mechanical systems [81, 94]. Also, equation
(5.24) is a form of stochastic Liénard equation [103].

5.3.2 Seed dispersal

Consider estimating the horizontal distance that certain seeds traverse when
falling from a given height under the influence of a randomly varying wind.
It is assumed that the seeds experience a frictional force proportional to the
square of the speed of the air on the seeds.

Consider first a deterministic model where the wind speed is constant
and not randomly varying. Let vw(t) = vw(t)i be the wind velocity, v(t) =
vx(t)i+vy(t)j be the seed velocity, and va(t) = vw(t)−v(t) be the air velocity

on the seed at time t. Let Ff (t) = k|va(t)|2 va(t)
|va(t)| = k|va(t)|va(t) be the

frictional force on the seed at time t, where k is a constant of proportionality.
Let Fg(t) = −mgj be the force of gravity on the seed of mass m. Finally,
let s(t) = x(t)i + y(t)j be the position of the seed at time t. It is assumed
that v(0) = 0 = 0i + 0j and s(0) = hj where h is the initial height. It is
straightforward to check that the velocity and the position of the seed at any
time t satisfy the initial-value system

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ds(t)
dt

= v(t)

dv(t)
dt

=
1
m

(
Ff (t) + Fg(t)

)
=

k

m
|va(t)|va(t) − gj

va(t) = vw(t) − v(t) with vw(t) = vwi

s(0) = hj, v(0) = 0.

(5.25)
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Now suppose that the wind speed randomly varies about a mean speed ve.
In particular, the wind speed can experience a change of ±α during a small
time interval ∆t with the probabilities listed in Table 5.6, where it is assumed
that ∆t is sufficiently small so that p1, p2 > 0. (Notice that p1 and p2 can be
defined as pl = max{0,

(
λ + (−1)lβ(ve − vw(t))

)
∆t} for l = 1, 2 to guarantee

nonnegativity of the probabilities.) The value λ∆t represents the probability
associated with random diffusion of the wind speed and does not depend on
vw(t). The term ±β

(
ve − vw(t)

)
represents the probability associated with

drift toward the mean wind speed of ve. When vw(t) �= ve, the probability
that the wind speed moves closer to ve is greater than the probability that
the wind speed moves further from ve. Thus, ve can be regarded as a mean
wind speed.

Table 5.6. Possible changes in the wind speed with the corresponding probabilities

Change ∆vw Probability

(∆vw)1 = −α p1 =
(
λ − β(ve − vw(t))

)
∆t

(∆vw)2 = α p2 =
(
λ + β(ve − vw(t))

)
∆t

(∆vw)3 = 0 p3 = 1 − p1 − p2 = 1 − 2λ∆t

The next step is to find the mean wind speed change and the variance in
the change. It is straightforward to show that the required expectations to
order (∆t)2 are

E(∆vw) = 2αβ
(
ve − vw(t)

)
∆t

and
E((∆vw)2) = 2α2λ∆t.

Based on the arguments in the introduction to this chapter, a reasonable
stochastic differential equation model for the randomly varying wind speed is

dvw(t) = 2αβ
(
ve − vw(t)

)
dt +

√
2α2λ dW (t). (5.26)

Indeed, this stochastic differential equation can be solved exactly to yield

vw(t) = ve + exp(−2αβt)
(

− ve + vw(0) +
∫ t

0

√
2α2λ exp(2αβs) dW (s)

)
.

This solution implies, for large time t, that the wind speed vw(t) is approx-
imately normally distributed with mean ve and variance 2α2λ/(4αβ) =
αλ/(2β).

The complete model for the seed dispersal dynamics in a randomly varying
wind is now formulated as
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⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ds(t)
dt

= v(t)

dv(t)
dt

=
1
m

(
Ff (t) + Fg(t)

)
=

k

m
|va(t)|va(t) − gj

dvw(t)
dt

= 2αβ
(
ve − vw(t)

)
+

√
2α2λ

dW (t)
dt

va(t) = vw(t) − v(t)

s(0) = hj, v(0) = 0, vw(0) = vw(0)i.

(5.27)

This problem illustrates the ease with which a deterministic model can be
transformed into a stochastic differential equation model for certain physical
problems after agreeing upon a discrete stochastic model. Notice that there
are other interesting possibilities for modeling the wind speed besides the
model described here. For example, in constructing the probabilities for the
wind speed changes, consider letting pl =

(
λ + (−1)lβ(ve − vw(t))k1/k2

)
∆t

for l = 1, 2 for some positive odd integers k1 and k2. Selecting the parameter
values and the discrete stochastic process that best represents a given physical
situation may involve many computational comparisons with physical data.

5.3.3 Ion transport

In this section, another kind of procedure for developing a stochastic differ-
ential equation model is discussed. The procedure in this section is different
from the procedure described in the introduction to this chapter. In this sec-
tion, a stochastic differential equation model is formulated for a problem in
ion transport. When the system of stochastic differential equations is solved
numerically, the resulting numerical method is referred to as the random par-
ticle method [2, 54, 66, 114]. A similar procedure is applied in fluid dynamics
and is called the random vortex method. (See, for example, [31].)

Considered in this section is the motion of ions in a spatially uniform
plasma with magnetic field forces negligible. The distribution of ions in the
plasma is governed by the Vlasov-Poisson-Fokker-Planck equations:

∂fn(t,v)
∂t

=
(

∂fn

∂t

)

c

= (5.28)

= −
3∑

i=1

∂

∂vi

(
An

i (t,v)fn(t,v)
)

+
1
2

3∑

i,j=1

∂2

∂vi∂vj

(
Bn

ij(t,v)fn(t,v)
)

for n = 1, 2, . . . , N , where fn(0,v) is given for n = 1, 2, . . . , N . The function
fn(t,v) is the distribution of ions of kind n with respect to time t > 0 and
velocity v ∈ R

3. Therefore,
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∫

R3
fn(t,v) dv = 1 for t ≥ 0

and
(

∂fn

∂t

)

c

is the rate of change due to collisions. For an inverse square force

due to Coulombic interactions between ions, the coefficients have the forms

An
i (t,v) = − 1

4π

N∑

k=1

mn + mk

mk
Ln,k

∫

R3

(v − v′)i

|v − v′|3 fk(t,v′) dv′

and

Bn
ij(t,v) =

1
4π

N∑

k=1

Ln,k

∫

R3

fk(t,v′)
|v − v′|

[

δij − (v − v′)i(v − v′)j

|v − v′|2
]

dv′,

where Ln,k are physical constants [66, 114]. and mk for k = 1, 2, . . . , N are
ion masses.

From the previous chapter and the introduction to this chapter, these
Vlasov-Poisson-Fokker-Planck equations match the forward Kolmogorov
equations whose solution gives the probability distribution for a certain system
of stochastic differential equations. In particular, the solutions to the following
stochastic differential equation system have a probability distribution satisfied
by fn(t,v) of (5.28),

dvn(t) = An(t,vn) dt + Dn(t,vn) dWn(t) (5.29)

for n = 1, 2, . . . , N with vn(0) distributed according to fn(0,v). Also, Dn =
(Bn)1/2 is a 3×3 positive definite matrix and Wn(t) = [Wn

1 (t), Wn
2 (t), Wn

3 (t)]T

is a three-dimensional Wiener process. As the probability distribution of vn(t)
is fn(t,v), this suggests a numerical procedure for approximating fn(t,v). In
the random particle method, (5.29) is solved numerically to estimate fn(ti,v)
for n = 1, 2, . . . , N at a set of discrete times t1, t2, . . . , tM . More information
on the random particle method and the related random vortex method is
available, for example, in references [2, 31, 54, 66, 114].

5.3.4 Nuclear reactor kinetics

In this section, the time-dependent behavior of a nuclear reactor is modeled.
Several simplifying assumptions are made. First, it is assumed that the nuclear
reactor is large and homogeneous so that spatial effects can be ignored. Second,
it is assumed that the neutrons in the reactor have the same energy, that is,
only one neutron energy group is treated. Third, it is assumed that only one
kind of fission-product isotope decays by neutron emission.

The time-dependent behavior of a nuclear reactor is governed by the neu-
tron population n(t) [25, 58]. With the above assumptions, Fig. 5.6 illustrates



162 5 Modeling
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Fig. 5.6. Schematic diagram of a nuclear reactor dynamical system

the important dynamic processes affecting the neutron population. In the fig-
ure, an extraneous neutron source provides an average rate of Q neutrons per
second. The variable c(t) is the number of atoms at time t of a radioactive
isotope which spontaneously decay by neutron emission. The isotope c(t) is
called a fission product and is formed in fission events. To describe the dyna-
mics of a nuclear reactor, the following physical parameters are useful.

σf = probability per unit distance for a neutron to cause a fission

σc = probability per unit distance of a neutron loss by capture in an atom

ν = total number of neutrons per fission ((1−β)ν prompt and βν delayed)

λ = decay constant of fission product c(t)

βν = number of atoms of fission product c(t) produced per fission

v = neutron speed

It is important to consider the changes [∆n, ∆c]T in the neutron and fission
product levels which can occur in time interval ∆t along with their probabil-
ities. These changes and their probabilities are listed in Table 5.7. Notice, for
example, that [−1, 0]T is the loss of a neutron due to capture in an atom when
no fission occurs, and [(1 − β)ν − 1, βν]T is a fission event where βν atoms of
isotope c are produced and (1 − β)ν − 1 neutrons are immediately produced.
Notice that (1 − β)ν of these neutrons are new neutrons but one neutron is
lost in the fission event so (1−β)ν − 1 neutrons result from a fission. In addi-
tion, the extraneous neutron source is assumed to provide neutrons at the
average rate Q but the number in any interval ∆t is Poisson distributed so
the probability of one source neutron in time interval ∆t is Q∆t + O((∆t)2).
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Table 5.7. Possible changes in the neutron and fission product levels with the
corresponding probabilities

Change [∆n, ∆c]T Probability

[∆n, ∆c]T1 = [1, 0]T p1 = Q∆t
[∆n, ∆c]T2 = [−1, 0]T p2 = σcn(t)v∆t
[∆n, ∆c]T3 = [1, −1]T p3 = λc(t)∆t
[∆n, ∆c]T4 = [(1 − β)ν − 1, βν]T p4 = σfn(t)v∆t

[∆n, ∆c]T5 = [0, 0]T p5 = 1 − ∑4
i=1 pi

Applying the values in Table 5.7, we can find the expected change and the
covariance matrix for the change. Indeed,

E

[
∆n
∆c

]

=
4∑

i=1

pi

[
∆n
∆c

]

i

=
[

λc + ((1 − β)ν − 1)nσfv − nσcv + Q
βνnσfv − λc

]

∆t

and

E

([
∆n
∆c

] [
∆n, ∆c

])

=
4∑

i=1

pi

([
∆n
∆c

]

i

[
∆n, ∆c

]

i

)

= V (n, c)∆t,

where

V = V (n, c) =

[
λc + ((1 − β)ν − 1)2nσfv + nσcv + Q −λc + βν((1 − β)ν − 1)nσfv

−λc + βν((1 − β)ν − 1)nσfv λc + β2ν2nσfv

]

.

These expectations lead directly to the stochastic differential equation system

d

[
n
c

]

=
[

λc + ((1 − β)ν − 1)nσfv − nσcv + Q
βνnσfv − λc

]

dt + V 1/2 dW, (5.30)

where (V (n, c))1/2 is the square root of matrix V (n, c) and W(t) = [W1(t),
W2(t)]T is the two-dimensional Wiener process.

As a numerical example, consider the values λ = 0.077/sec, β = 0.0079,
ν = 2.432, σfv = 4111.84/sec, σcv = 5858.16/sec, and Q = 10, 000/sec
which are reasonable values for a nuclear reactor involving thermal fission
of a uranium-235 fuel [58]. (These parameter values give a neutron lifetime
of 10−4 seconds and a reactivity of 0.003.) For this example, the reaction is
self-sustaining and the neutron level, n(t), and the fission product level, c(t),
are increasing with time. A plot of the average neutron population from t = 0
to t = 0.1 seconds is shown in Fig. 5.7 for 10,000 sample paths. In the same
figure, the neutron level for one sample path is plotted. The figure illustrates
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Fig. 5.7. Mean neutron level and one sample path for a nuclear reactor system with
time in seconds

how much the neutron level can vary, for example, at reactor start-up. Fur-
thermore, in Table 5.8, the calculational results are presented for the mean
neutron level and mean fission product level with their standard deviations
at time t = 0.1 seconds. In the table, the calculational results are listed using
the stochastic differential equation model (5.30) along with those obtained
using a Monte Carlo approach. In either method, 10,000 sample paths were
calculated. In the Monte Carlo procedure, at each time step of length 10−7

seconds, the system is checked to see if a fission, decay, or capture occurs or
if a source neutron is produced. As can be seen from the values in Table 5.8,
there is good agreement between the two different calculational procedures.

Table 5.8. A comparison of mean neutron level and mean fission product level
with their standard deviations calculated using SDE model (5.30) and a Monte
Carlo method at t = 0.1 seconds

Value Estimated SDE Model (5.30) Monte Carlo

E(n(0.1)) 204.52 199.15√
Var(n(0.1)) 174.03 152.63

E(c(0.1)) 1294.0 1254.5√
Var(c(0.1)) 620.68 613.94

Finally, it is worthwhile to note that the procedure in this section was
applied to model the Godiva reactor [55] to determine the time it takes for
the neutron level to reach 4200 neutrons with an extraneous source of 90
neutrons/seconds. For this model, however, six delayed fission products were
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modeled rather than one in stochastic system (5.30). The results of 22 experi-
mental times [52] and 500 calculated times [55] using the stochastic differential
model are displayed as relative frequency histograms in Fig. 5.8. The figure
indicates that the stochastic differential equation model accurately estimates
the distribution of times for the Godiva reactor.
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Fig. 5.8. Experimental and calculated times (in seconds) to reach a level of 4200
neutrons in the Godiva reactor

5.3.5 Precipitation

As a fifth physical problem, a simple stochastic model for the rainfall at a
certain location over a period of decades is developed. In this situation, a small
time interval may be considered as one year. Let r(t) be the total rainfall at
time t where r(0) = 0 for a starting time t = 0. Consider the possible changes
in the total rainfall over a very small interval of time ∆t. The possible changes
in the rainfall for time interval ∆t are assumed to be (∆r)1 = γ and (∆r)2 = 0
with probabilities p1 = λ∆t and p2 = 1 − λ∆t, respectively. Assuming these
changes and probabilities, the mean change and the mean square change in
the total rainfall are

E(∆r) = γλ∆t and E((∆r)2) = γ2λ∆t.

Letting µ = γλ and σ =
√

γ2λ, the above expectations leads to the stochastic
differential equation model for total rainfall r(t) of the form

{
dr(t) = µdt + σdW (t)
r(0) = 0.

(5.31)
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To test this model, the annual precipitation data for Lubbock, Texas was
obtained from the National Weather Service and is plotted in Fig. 5.9. This
data was fit to the stochastic differential equation model using a maximum
likelihood estimation procedure discussed in Section 4.9. The values obtained
for the parameters µ and σ were µ = 18.57 and σ = 6.11. Now consider the
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Fig. 5.9. Actual and simulated annual rainfall (in inches) for Lubbock, Texas from
1911 to 2004

annual precipitation p. Note that by (5.31)

r(t + ∆t) − r(t) = µ∆t + σ(W (t + ∆t) − W (t)).

Letting ∆t = 1, the annual precipitation for the ith year satisfies the model

pi = µ + σηi for i = 1, 2, . . . , (5.32)

where ηi ∼ N(0, 1) for each i. A simulated precipitation using model (5.32)
is given in Fig. 5.9. The simulated yearly rainfall has a similar appearance to
the actual yearly rainfall.

5.3.6 Chemical reactions

In this section, chemical reactions between molecules are considered in a sto-
chastic manner. The problem is analogous to the problem described in investi-
gations [43, 44, 45] but it is shown in this section how a stochastic differential
equation model can be developed. It is assumed that a fixed volume contains
a uniform mixture of n different chemical species that interact through m
different chemical reactions. The reaction rates are either proportional to the
rates that the molecules collide or, if the reaction is spontaneous, the reaction
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rate is just proportional to the number of molecules of the particular chemical
species. Given the initial numbers of molecules of the n different chemical
species, we wish to find the molecular population levels at a later time.

To illustrate the modeling procedure for chemical reactions, it is useful to
consider a specific problem. Therefore, suppose that there are three chemical
species S1, S2, and S3 that interact through molecular collisions or sponta-
neously in the four ways described in Table 5.9. In Table 5.9, µ1, µ2, µ3, and

Table 5.9. Assumed chemical reactions

Reaction Probability (for small time interval ∆t)

S1 + S2 → S3 p1 = µ1X1X2∆t
S3 → S1 + S2 p2 = µ2X3∆t (spontaneous)
2S2 + S3 → 2S1 p3 = µ3X

2
2X3∆t/2

2S1 → 2S2 + S3 p4 = µ4X
2
1∆t/2

µ4 are reaction rate constants and X1, X2, and X3 are the number of molecules
of species S1, S2, and S3, respectively. The second reaction is assumed to be
spontaneous and so the probability of a reaction only depends on the number
of molecules, X3. For the first reaction, the rate depends on a collision occur-
ring between species S1 and S2 and is therefore proportional to the product of
X1 and X2. The third reaction depends on a collision involving two molecules
of S2 and one molecule of S3. As there are X2(X2 − 1)/2 ways to select two
molecules from a total of X2 molecules, the rate of this reaction depends
approximately on the product of X2

2/2 with X3. The fourth reaction depends
on two molecules of S1 interacting and is approximately proportional to X2

1/2.
For a thorough discussion of reaction rate dynamics, see [43, 44, 45].

Table 5.10. Possible molecular population changes in small time ∆t

Possible Change Probability

(∆X)1 = [−1, −1, +1]T p1 = µ1X1X2∆t
(∆X)2 = [+1, +1, −1]T p2 = µ2X3∆t
(∆X)3 = [+2, −2, −1]T p3 = µ3X

2
2X3∆t/2

(∆X)4 = [−2, +2, +1]T p4 = µ4X
2
1∆t/2

To form the stochastic differential equation model, we need E(∆X) and
E((∆X)(∆X)T ). To find these, the possible changes for the reactions given
in Table 5.9 are listed in Table 5.10 along with their associated probabilities.
Then, using the values in this table,
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E(∆X) =
4∑

i=1

pi(∆X)i

=

⎡

⎣
−µ1X1X2 + µ2X3 + µ3X

2
2X3 − µ4X

2
1

−µ1X1X2 + µ2X3 − µ3X
2
2X3 + µ4X

2
1

µ1X1X2 − µ2X3 − µ3X
2
2X3/2 + µ4X

2
1/2

⎤

⎦ = f(X1, X2, X3)∆t

and

E((∆X)(∆X)T ) =
4∑

i=1

pi(∆X)i(∆X)T
i

=

⎡

⎣
a + 4b a − 4b −a − 2b
a − 4b a + 4b −a + 2b

−a − 2b −a + 2b a + b

⎤

⎦ = g(X1, X2, X3)∆t,

where a = µ1X1X2 + µ2X3 and b = µ3X
2
2X3/2 + µ4X

2
1/2. It follows that the

stochastic differential equation model for this example problem has the form:

dX(t) = f(X1, X2, X3) dt + (g(X1, X2, X3))1/2 dW(t) (5.33)

with X(0) = [X1(0), X2(0), X3(0)]T where W(t) = [W1(t), W2(t), W3(t)]T .
Finally, it is useful to notice by Remark 5.4 and the discussion in Section 5.6
that (5.33) can be replaced by the chemical Langevin system [45]:

dX(t) = f(X1, X2, X3) dt + C(X1, X2, X3) dW∗(t)

with X(0) = [X1(0), X2(0), X3(0)]T where W∗(t) is a vector W∗(t) =
[W ∗

1 (t), W ∗
2 (t), W ∗

3 (t), W ∗
4 (t)]T of four independent Wiener processes and

3 × 4 matrix C has the form

C =

⎡

⎣
−(µ1X1X2)1/2 (µ2X3)1/2 2(µ3X

2
2X3/2)1/2 −2(µ4X

2
1/2)1/2

−(µ1X1X2)1/2 (µ2X3)1/2 −2(µ3X
2
2X3/2)1/2 2(µ4X

2
1/2)1/2

(µ1X1X2)1/2 −(µ2X3)1/2 −(µ3X
2
2X3/2)1/2 (µ4X

2
1/2)1/2

⎤

⎦ .

To test the stochastic differential equation model (5.33), calculational
results using the model were compared with those obtained using a Monte
Carlo procedure. In the Monte Carlo procedure, the process was checked at
each small time interval to see if any reaction occurred. The calculational
results are summarized in Table 5.11 and one sample path is plotted in
Fig. 5.10. In these calculations, the values of the reaction rate constants were
taken as µ1 = 0.02, µ2 = 0.4, µ3 = 0.001, and µ4 = 0.03. The initial numbers
of molecules were assumed to be X1(0) = X2(0) = X3(0) = 100 and the final
time was taken as t = 1.0. A total of 5000 sample paths were performed for
the stochastic differential equation (SDE) model (5.33) and for the Monte
Carlo (MC) procedure. The Monte Carlo computer code and the computer
code that solved stochastic differential equation system (5.33) are each listed
at the end of this chapter.



5.3 Physical Systems 169

Table 5.11. Calculated mean molecular levels and standard deviations at time
t = 1.0 for the stochastic differential equation (SDE) model and for the Monte
Carlo (MC) procedure

Chemical Species E(Xi) σ(Xi) E(Xi) σ(Xi)
(SDE) (SDE) (MC) (MC)

S1 79.31 7.62 79.21 7.28
S2 37.44 6.14 37.61 5.84
S3 131.17 6.43 131.19 5.54
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Fig. 5.10. Molecular population levels for one sample path

5.3.7 Cotton fiber breakage

In cotton thread manufacture, the cotton fiber length distribution determines
many of the characteristics of the thread. Fiber length is a good indicator of
spinning efficiency, yarn strength, and yarn uniformity. Fiber length distribu-
tion is affected by breakage during processing [77, 88]. In cotton processing,
fiber breakage occurs in ginning and carding. Breakage of the fibers in cotton
processing generally results in lower quality yarn.

The development of a stochastic differential equation (SDE) model for
fiber-length distributions provides more understanding of the fiber breakage
phenomenon and the origination of different fiber-length distributions [107].
By comparing calculations of the stochastic model with fiber-length data, fiber
breakage parameters can be estimated and distribution characteristics can be
investigated.

In the stochastic model, the fibers are grouped by length. In this manner,
the cotton fiber distribution can be considered as a population distribution.
The SDE model is derived by carefully considering the population process and
breakage possibilities over a short time interval using the stochastic modeling
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techniques described in the first section of this chapter. First, a discrete
stochastic model is derived where the breakage phenomenon is carefully stud-
ied for a short time interval. Then, a system of stochastic differential equations
is identified whose probability distribution approximates that of the discrete
stochastic model.

Comparisons of calculational results using a stochastic model for cotton
fiber breakage with Monte Carlo computational results indicate that an SDE
model can accurately estimate fiber-length distributions. In addition, the SDE
model generalizes classic deterministic integro-differential equation models for
fiber breakage described, for example, in [88]. Furthermore, the SDE model
gives information on the variability in fiber-length distributions which deter-
ministic models are unable to provide.

In developing an SDE model, m populations, {Nk(t)}m
k=1, of fibers hav-

ing different lengths are considered as functions of time t. Some terminology
associated with the stochastic model is required and is introduced as follows.

Let L = fiber length where it is assumed that 0 ≤ L ≤ Lmax.

Let Lk = kh for k = 1, 2, . . . , m where h = Lmax/m.

Let Nk(t) = number of fibers of length Lk for k = 1, 2, . . . , m.

Let qk ∆t = fraction of fibers of length k broken in time ∆t.

Let Sk,l = fraction of fragments of length Ll formed from breakage of fibers
of length Lk. (Note: that

∑k−1
l=1 Sk,l = 1 and Sk,k−l = Sk,l.)

Let pk,l(t)∆t = Nk(t)Sk,lqk∆t = probability of a fragment of length Ll being
formed from breakage of a fiber of length Lk in time t to t + ∆t.

To develop the model, the changes in the fiber populations are carefully
studied and tabulated for a small time interval ∆t. Then, the mean change
E(∆N(t)) and the covariance in the change E((∆N(t))(∆N(t))T ) for the
small time interval are calculated. For example, consider the special case where
m=8, that is, there are 8 groups of fibers. Consider a fiber in the 7th group
breaking into two fibers, one in group 5 and one in group 2. The change
produced is:
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(∆N)7,5 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0
1
0
0
1
0

−1
0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

with probability p7,5(t)∆t = N7(t)S7,5q7∆t.

The value of the expected change E(∆N(t)) for the small time interval is
calculated by summing the products of the changes with the respective prob-
abilities. In general, for any m, it can be shown that the lth component of
E(∆N(t)) has the form:

E(∆N(t))l = 2
m∑

k=l+1

pk,l(t)∆t −
l−1∑

k=1

pl,k(t)∆t

= 2
m∑

k=l+1

pk,l(t)∆t − Nl(t)ql∆t.

In addition, the covariance matrix, has the form

E
(
(∆N(t))(∆N(t))T

)
=

m∑

k=1

k−1∑

l=1

Ck,lpk,l(t)∆t

where Ck,l is the appropriate matrix that accounts for a fiber of group k
breaking into a fiber of group l and group k − l. For example, for the special
case where m = 8 and a fiber in the 7th group breaks into two fibers, one
in group 5 and one in group 2, then the corresponding term produced in the
covariance matrix is:

C7,5 = (∆N)7,5(∆N)7,5)T =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0 0 0 0 0
0 1 0 0 1 0 −1 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 1 0 0 1 0 −1 0
0 0 0 0 0 0 0 0
0 −1 0 0 −1 0 1 0
0 0 0 0 0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Now define the expected change and the covariance matrix by:

E(∆N) = β(t,N(t))∆t and E(∆N∆NT ) = V (t,N(t))∆t.

Then, as explained in Section 5.1, the probability distribution p(t,N) of
the fiber-length populations with time t approximately satisfies the forward
Kolmogorov equation:
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∂p(t,N)
∂t

= −
m∑

i=1

∂

∂Ni
[βi(t,N)p(t,N)]

+
1
2

m∑

i=1

m∑

j=1

∂2

∂Ni∂Nj

[
m∑

k=1

vi,k(t,N)vj,k(t,N)p(t,N)

]

.

The SDE system corresponding to this forward Kolmogorov equation has the
form:

dN(t) = β(t,N(t)) dt + (V (t,N(t)))1/2 dW(t) (5.34)

where N(t) = [N1(t), N2(t), . . . , Nm(t)]T are the fiber populations in each
length group and W(t) = [W1(t), . . . , Wm(t)]T is an m-dimensional Wiener
process. Equation (5.34) is a stochastic differential equation model for the
fiber-length populations as a function of time.

Finally, by using the procedure described in Remark 5.4 or in Section 5.6,
it is interesting that an equivalent stochastic differential equation model to
system (5.34) can be determined and has the form:

dN(t) = β(t,N(t)) dt +
m∑

k=1

k−1∑

l=1

(∆N)k,l(pk,l(t))1/2 dWk,l(t),

where pk,l(t) = Nk(t)Sk,lqk, Wk,l(t) for l = 1, 2, . . . , k − 1 and k = 1, 2, . . . m
are m(m − 1)/2 independent Wiener processes, and the ith element of vector
(∆N)k,l is

((∆N)k,l)i =

⎧
⎨

⎩

−1, if i = k
1, if i = l or i = k − l
0, otherwise.

In component form, this model can be written as

dNi(t) = 2
m∑

k=i+1

Nk(t)Sk,iqk − Ni(t)qi −
i−1∑

k=1

(pi,k(t))1/2 dWi,k(t)

+
m∑

k=i+1

(pk,i(t))1/2 dWk,i(t) +
m∑

k=i+1

(pk,i(t))1/2 dWk,k−i(t).

This stochastic differential equation system may be easier to solve computa-
tionally than system (5.34) and may offer certain theoretical insights.1

To test stochastic model (5.34), the model is compared computationally
with Monte Carlo calculations. In the Monte Carlo calculations, for each small
time step, each fiber is checked for breakage. If breakage occurs, the fiber
is randomly divided. Considered in these calculations is the situation where
breakage occurs randomly and the probability for breakage is proportional to
the length of the fiber. Under this breakage assumption,
1 As the number of groups m increases, it appears that a stochastic integro-

differential equation for the fiber distribution is obtained which has the form
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qkSk,j∆t = µ

(
h

Lmax

)

∆t

where µ is a constant which determines the rate of fiber breakage fraction of
fibers of length k broken in time ∆t and

Sk,j =
h

Lk−1
=

1
k − 1

for j = 1, 2, . . . , k − 1, and k = 2, 3, . . . , m

where Sk,j is the fraction of fragments of length Lj formed from breakage of
fiber of length Lk. The parameter µ was set equal to unity in the calculations
and it was assumed that there were initially 100 fibers each 1 inch in length.
The calculational results are compared in Table 5.12. The results indicate very
good agreement between the two different procedures.

Table 5.12. Monte Carlo (MC) and stochastic differential equation (SDE) calcula-
tional results on fiber lengths at time t = 1.0

Avg. Number Standard Dev. in Average Fiber Standard Dev. in
of Fibers No. of Fibers Length Fiber Length

200.5 (MC) 10.57 (MC) 0.5001 (MC) 0.0263 (MC)
197.8 (SDE) 11.47 (SDE) 0.5068 (SDE) 0.0265 (SDE)

Additional computations produce fiber-length distributions having a
bimodal structure and bimodal distributions are commonly seen in fiber-
length data [77]. Results of an example calculation are illustrated in Fig. 5.11.
For this calculation, it was assumed that the fibers initially were distributed
as Nk(0) = 2(k − 20) for k = 20, 21, . . . , 35 and Nk(0) = 2(50 − k) for
k = 36, 37, . . . , 50 where Nk(0) was the initial number of fibers of length
Lk = 0.02k.

∂N(t, L)
∂t

= −q(L)N(t, L) + 2
∫ Lmax

L

S(u, L)q(u)N(t, u) du

−
∫ L

0
p1/2(L, u)

∂3W (L, u, t)
∂L∂u∂t

du +
∫ Lmax

L

p1/2(u, L)
∂3W (u, L, t)

∂u∂L∂t
du

+
∫ Lmax

L

p1/2(u, L)
∂3W ∗(u, L, t)

∂u∂L∂t
du

where Ni(t) =
∫ Li

Li−1
N(t, L) dL, Sk,i =

∫ Li

Li−1
S(Lk, L) dL and where

W and W ∗ are correlated Brownian sheets [3, 113] with the prop-
erty that

∫ t+∆t

t

∫ Li

Li−1

∫ Lk

Lk−1
Ẇ ∗(u, L, t) du dL dt = ηk,k−ih(∆t)1/2 and that

∫ t+∆t

t

∫ Li

Li−1

∫ Lk

Lk−1
Ẇ (u, L, t) du dL dt = ηk,ih(∆t)1/2 where ηk,i ∼ N(0, 1) for

k = i + 1, i + 2, . . . , m and i = 1, 2, . . . , m − 1. Furthermore, the determinis-
tic part of this integro-differential equation model has been previously derived,
for example, in reference [88].
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Fig. 5.11. Average fiber length distribution after random breakage for time t = 1.0
(Using the SDE model)

5.4 Some Stochastic Finance Models

Models for stock prices, option pricing, and interest rates are three examples
studied in this section.

5.4.1 A stock-price model

A stock-price model is developed using the procedure described in the first sec-
tion of this chapter. It is interesting to apply this procedure to the dynamics
of stock prices to see, for example, if a standard stock-price model is obtained.
Also, derivation of a stock-price model may lead to a better understanding of
the underlying dynamics of stock prices as the parameters in the model are
derived from basic assumptions. It is important to note that certain assump-
tions are made here in the derivation of the model which involve, for example,
forms assumed for the probabilities of the possible price changes over a small
time step. There is much flexibility in choosing these probabilities and deter-
mination of accurate forms undoubtedly requires much testing with stock price
data. In addition, large jumps in stock prices caused by sudden major changes
in the financial environment are not considered in this model development.

Throughout this section, to simplify notation, two stocks are considered
along with a fixed-interest money market account. However, the results can
be readily generalized to a system of n stocks. The flow of money (or value)
assumed for these two investments is illustrated in Fig. 5.12.

A system of stochastic differential equations is now derived [75] for the
two stocks represented in Fig. 5.12. In this model development, the procedure
described in the first section of this chapter is followed. First, therefore,
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STOCK 1 STOCK 2

Individual gains

or losses

Individual gains

or losses

Simultaneous gains

and/or losses

Fig. 5.12. Two stocks illustrated as a stochastic process

changes in the stock prices are considered for a small time interval ∆t. It is
assumed that this time interval is sufficiently short such that the probability
of more than one change in the stock prices is small. Let ∆S = [∆S1, ∆S2]T be
the change in the two stock prices over a short time step ∆t. It is necessary to
find the mean and the covariance matrix for the change ∆S. Neglecting multi-
ple changes in time ∆t which have probabilities of order (∆t)2, there are nine
possibilities for ∆S in time ∆t. These possibilities are listed in Table 5.13.

Table 5.13. Possible changes in the stock prices with the corresponding probabilities

Change [∆S1, ∆S2]T Probability

[∆S1, ∆S2]T1 = [1, 0]T p1 = b1S1∆t
[∆S1, ∆S2]T2 = [−1, 0]T p2 = d1S1∆t
[∆S1, ∆S2]T3 = [0, 1]T p3 = b2S2∆t
[∆S1, ∆S2]T4 = [0, −1]T p4 = d2S2∆t
[∆S1, ∆S2]T5 = [1, 1]T p5 = m22S1S2∆t
[∆S1, ∆S2]T6 = [1, −1]T p6 = m21S1S2∆t
[∆S1, ∆S2]T7 = [−1, 1]T p7 = m12S1S2∆t
[∆S1, ∆S2]T8 = [−1, −1]T p8 = m11S1S2∆t

[∆S1, ∆S2]T9 = [0, 0]T p9 = 1 − ∑8
i=1 pi

Notice, for example, that ∆S = [1, 0]T represents a gain of one unit in the
price of stock 1. Also, ∆S = [0, −1]T represents a loss of one unit in the price
of stock 2 and ∆S = [1, −1]T represents a simultaneous gain of one unit in
the price of stock 1 and a loss of one unit in the price of stock 2. It is assumed
that the probability of a change in one stock price is proportional to the stock
price. For a simultaneous change in both stock prices, it is assumed that the
probability of the change is proportional to the product of the two stock prices.
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(To see why this is reasonable, suppose that one stock price is zero. Then the
probability of a simultaneous change must be zero.) The probabilities for these
changes are also listed in Table 5.13. It is assumed that ∆t is sufficiently small
so that p9 ≥ 0. The parameters b1, d1, b2, d2, m11, m12, m21, and m22 define
the rates at which stocks experience individual gains or losses or experience
simultaneous gains and/or losses. Each parameter may, of course, depend on
time t. Considering the above equations for pi and ∆Si their meaning becomes
clear. For example, biSi∆t is the probability stock i for i = 1 or 2 has a gain
of one unit in time interval ∆t, m22S1S2∆t is the probability both stocks
experience a gain in time interval ∆t, and m12S1S2∆t is the probability that
stock 1 has a loss and stock 2 has a gain in time interval ∆t. Notice that∑9

j=1 pj = 1.
Using the above expressions for pi and ∆Si, the expectation vector and the

covariance matrix for the change ∆S can now be derived. Neglecting terms of
order (∆t)2, it follows that

E(∆S) =
9∑

j=1

pj∆Sj =
[

(b1 − d1)S1 + (m22 + m21 − m12 − m11)S1S2
(b2 − d2)S2 + (m22 − m21 + m12 − m11)S1S2

]

∆t

= µ(t, S1, S2)∆t

and

E(∆S(∆S)T ) =
9∑

j=1

pj∆Sj(∆Sj)T =
[

c1 + c2 + c3 c2 − c3
c2 − c3 c2 + c3 + c4

]

∆t

= V (t, S1, S2)∆t,

where c1 = (b1 + d1)S1, c2 = (m22 + m11)S1S2, c3 = (m21 + m12)S1S2,
and c4 = (b2 +d2)S2. As the product E(∆S)(E(∆S))T is of order (∆t)2, the
covariance matrix V is set equal to E(∆S(∆S)T )/∆t. It is straightforward
to show that V is positive definite and hence has a positive definite square
root. Denote B = (V )1/2. As ∆t → 0, the probability distribution of the
stock prices approximates the probability distribution of solutions to the Itô
stochastic differential equation system:

dS(t) = µ(t, S1, S2) dt + B(t, S1, S2) dW(t) (5.35)

with S(0) = S0 and where W(t) is the two-dimensional Wiener process, i.e.
W(t) = [W1(t), W2(t)]T . Equation (5.35) is a system of stochastic differential
equations that describes the dynamics of the stock prices.

In equation (5.35), µ and B have the forms (for two stocks):

µ(t, S1, S2) =
[

(b1 − d1)S1 + (m22 + m21 − m12 − m11)S1S2
(b2 − d2)S2 + (m22 − m21 + m12 − m11)S1S2

]

(5.36)

and

B(t, S1, S2) =
1
d

[
c1 + c2 + c3 + w c2 − c3

c2 − c3 c2 + c3 + c4 + w

]

, (5.37)



5.4 Some Stochastic Finance Models 177

where w and d are given by w =
√

(c1 + c2 + c3)(c2 + c3 + c4) − (c2 − c3)2
and d =

√
c1 + 2c2 + 2c3 + c4 + 2w.

It is interesting that model (5.35) is similar to an affine model [32, 108] for
the stock price dynamics. In an affine model, the elements of µ and BT B are
linear functions of the stock prices. Indeed, for a single stock, model (5.35)
simplifies to

dS1 = (b1 − d1)S1 dt +
√

(b1 + d1)S1 dW1(t) (5.38)

which is an affine diffusion model for a single stock. Notice that the form
given by equation (5.38) differs from the standard geometric Brownian motion
[32, 56, 74, 95] often assumed for stock price where the drift and diffusion
coefficients are proportional to stock price S1. Specifically, stock price S1 fol-
lows geometric Brownian motion if it satisfies a stochastic differential equation
of the form:

dS1 = νS1 dt + σS1 dW1(t),

where ν is the drift and σ is the volatility.
Finally, it is supposed that the price per share of the money market is

M(t), where it is assumed that

dM

dt
= r(t)M (5.39)

and r(t) is the interest rate.

5.4.2 Option pricing

With the dynamics of the stocks and money market given by equations (5.35)
and (5.39), respectively, standard procedures [34, 37, 56, 74, 75, 89, 95] can
be applied, for example, to estimate option prices. Considered here will be
European call options but other types of options can be treated analogously.
For generality, consider a multi-asset option for a mutual fund where the fund
consists, per share, of α1 shares of stock 1 and α2 shares of stock 2. It is
assumed here that α1, α2 ≥ 0. Let α = [α1, α2]T . Define X(t) = αT S(t) as
the price per share of the mutual fund. Let U(t, S1(t), S2(t)) be the expected
value of a European call option on the asset with maturity time T . That
is, U : [0, T ] × R

+ × R
+ → R denotes the price of the option at time t

when the fund price is X(t). The initial condition is given at time T and is
U(T, S1(T ), S2(T )) = max

(
X(T )−K, 0

)
, where K > 0 is the strike price of the

option. As shown below, by applying Itô’s formula and assuming that the stock
prices satisfy an equation of the form (5.35), the following partial differential
equation, referred to as the two-dimensional Black-Scholes equation [75, 83],
can be derived for the value of the option:
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∂U(t, S1, S2)
∂t

+ r(t)
(

S1
∂U(t, S1, S2)

∂S1
+ S2

∂U(t, S1, S2)
∂S2

)

+
1
2
(b2

11 + b2
12)

∂2U

∂S2
1

+ (b11b12 + b22b12)
∂2U

∂S1∂S2
+

1
2
(b2

21 + b2
22)

∂2U

∂S2
2

= r(t)U(t, S1, S2) (5.40)

for 0 ≤ t ≤ T and 0 ≤ S1, S2 < ∞ with initial condition given at
t = T as U(T, S1(T ), S2(T )) = max(X(T ) − K, 0) and boundary condition
U(t, 0, 0) = 0. The parameters bij are the elements of matrix B and are func-
tions of S1 and S2. Notice that if α1 = 1 and α2 = 0, then this equation
reduces to the Black-Scholes partial differential equation [16, 56] for pricing
options for a single stock. This partial differential equation can be readily
solved numerically using, for example, finite-difference methods [16, 19] to
find U(0, S1(0), S2(0)).

It is interesting to derive partial differential equation (5.40). Denote
U(t, X(S1, S2)) as the value of the option where X(S1, S2) is a function of
S1 and S2. Suppose that S(t) and M(t) satisfy

{
dS(t) = µ(t) dt + B(t) dW(t)

dM(t) = r(t)M(t) dt

where (µ)i = µi and (B)ij = bij . By Itô’s formula,

dU

dt
=

∂U

∂t
+ µ1

∂U

∂S1
+ µ2

∂U

∂S2

+
1
2
(b2

11 + b2
12)

∂2U

∂S2
1

+ (b11b12 + b22b12)
∂2U

∂S1∂S2
+

1
2
(b2

21 + b2
22)

∂2U

∂S2
2

+
∂U

∂S1

(

b11
dW1

dt
+ b12

dW2

dt

)

+
∂U

∂S2

(

b21
dW1

dt
+ b22

dW2

dt

)

.

At time t, an amount x(t) of the stocks and an amount y(t) of the money
market are selected giving a total value of

G(t) = x1(t)S1(t) + x2(t)S2(t) + y(t)M(t).

The values of x(t) and y(t) are chosen so that
⎧
⎪⎨

⎪⎩

G(t) = U(t, X) = U(t, X(S1, S2))

dG(t)
dt

=
dU(t, X)

dt
=

dU(t, X(S1, S2))
dt

.

Note that

dG(t)
dt

= x1(t)
dS1(t)

dt
+ x2(t)

dS2(t)
dt

+ y(t)
dM(t)

dt
+ R(t)
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where

R(t) =
dx1(t)

dt
S1(t) +

dx2(t)
dt

S2(t) +
dy(t)
dt

M(t).

Using
dS = µ dt + B dW and dM = rM dt,

then

dG

dt
= x1

(

µ1 + b11
dW1

dt
+ b12

dW2

dt

)

+ x2

(

µ2 + b21
dW1

dt
+ b22

dW2

dt

)

+ yrM + R.

To satisfy
dG

dt
=

dU

dt
, the coefficients of

dW1

dt
and

dW2

dt
must match in the

preceding expressions. Therefore, we set

x1 =
∂U

∂S1
and x2 =

∂U

∂S2
.

Then, as G = x1S1 + x2S2 + yM = U , it follows that

y(t) =
1
M

(

U − S1
∂U

∂S1
− S2

∂U

∂S2

)

.

Substituting this expression into the equation for
dG

dt
, then

dG

dt
= r

(

U − S1
∂U

∂S1
− S2

∂U

∂S2

)

+
∂U

∂S1

(

µ1 + b11
dW1

dt
+ b12

dW2

dt

)

+
∂U

∂S2

(

µ2 + b21
dW1

dt
+ b22

dW2

dt

)

+ R.

Recalling that x(t) and y(t) are chosen so that
dG

dt
=

dU

dt
, we set

r

(

U − S1
∂U

∂S1
− S2

∂U

∂S2

)

=
∂U

∂t
+

1
2
(b2

11 + b2
12)

∂2U

∂S2
1

+ (b11b12 + b22b12)
∂2U

∂S1∂S2
+

1
2
(b2

21 + b2
22)

∂2U

∂S2
2

.

This also yields R = 0 since

R(t) = S1
dx1

dt
+ S2

dx2

dt
+ M

dy

dt

= S1
d

dt

(
∂U

∂S1

)

+ S2
d

dt

(
∂U

∂S2

)

− 1
M

dM

dt

(

U − S1
∂U

∂S1
− S2

∂U

∂S2

)

+
dU

dt
− dS1

dt

∂U

∂S1
− dS2

dt

∂U

∂S2
− S1

d

dt

(
∂U

∂S1

)

− S2
d

dt

(
∂U

∂S2

)

= −r

(

U − S1
∂U

∂S1
− S2

∂U

∂S2

)

+
dU

dt
− dS1

dt

∂U

∂S1
− dS2

dt

∂U

∂S2
= 0.
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As a result, obtained is the partial differential equation

∂U

∂t
+ r

(

S1
∂U

∂S1
+ S2

∂U

∂S2

)

+
1
2
(b2

11 + b2
12)

∂2U

∂S2
1

+ (b11b12 + b22b12)
∂2U

∂S1∂S2
+

1
2
(b2

21 + b2
22)

∂2U

∂S2
2

= rU

for 0 ≤ t ≤ T , 0 ≤ S1, S2 < ∞, where U(t, X(S1, S2)) is the value of the
option at time t. Note that the values of bij , 1 ≤ i, j ≤ 2 may depend on
S1 and S2.

Recall that X(S1, S2) = α1S1 + α2S2 and consider briefly the special case
where α1, α2, b11, b12, b21, and b22 are constants. Then

∂U

∂S1
= α1

∂U

∂X
,

∂U

∂S2
= α2

∂U

∂X
,

∂2U

∂S1∂S2
= α1α2

∂2U

∂X2 ,
∂2U

∂S2
1

= α2
1
∂2U

∂X2 ,
∂2U

∂S2
2

= α2
2
∂2U

∂X2 ,

and the above partial differential equation reduces to

rU =
∂U

∂t
+ rX

∂U

∂X

+
(1

2
α2

1(b
2
11 + b2

12) + α1α2(b11b12 + b22b12) +
1
2
α2

2(b
2
21 + b2

22)
) ∂2U

∂X2

for 0 ≤ t ≤ T , 0 ≤ X < ∞. In addition, if the option is a European call
option, for example, then the initial condition is U(T, X) = max

(
X − K, 0

)

with boundary condition U(t, 0) = 0. Notice that this equation is similar to a
no-arbitrage partial differential equation [16] for a single stock.

5.4.3 Interest rates

As another example of the application of stochastic differential equations in
finance, short-term interest rates are considered in this section. Short rates
are popular in the market and are useful in pricing derivatives [24]. Two
well-known stochastic models for the interest rate are the Vasicek model and
the Cox-Ingersoll-Ross model [24]. These two models are derived in this sec-
tion from basic assumptions on changes in the interest rate over small time
intervals.

Let r(t) be the instantaneous interest rate. In each model, it is assumed
that there are three possible changes in the interest rate in a short time interval
∆t. Specifically, (∆r)1 = −1, (∆r)2 = 1, and (∆r)1 = 0, i.e., there may be
a negative change of one unit, a positive change of one unit, or no change in
time interval ∆t. For the first model, it is supposed that the probabilities for
these changes are those listed in Table 5.14.
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Table 5.14. Possible changes in the interest rates with the corresponding probabil-
ities for the first model

Change (∆r)i Probability pi

(∆r)1 = −1 p1 =
[
σ2/2 − α(re − r)/2

]
∆t

(∆r)2 = 1 p2 =
[
σ2/2 + α(re − r)/2

]
∆t

(∆r)3 = 0 p3 = 1 − p1 − p2

The σ2/2 term in the probabilities accounts for a random change in the
interest rate of either plus or minus one unit. The ∓α(re − r)/2 term in
the probabilities models the tendency for the interest rate to move toward
an “equilibrium” value re. In mathematical finance this is referred to as
mean reversion. In particular, if r(t) > re, then the probability of a nega-
tive change in time interval ∆t is greater than the probability of a positive
change. Furthermore, if r(t) < re, then the probability of a positive change in
time interval ∆t is greater than the probability of a negative change.

Using Table 5.14, E(∆r) and E((∆r)2) can now be computed giving

E(∆r) =
3∑

i=1

pi(∆r)i = α(re − r)∆t

and

E((∆r)2) =
3∑

i=1

pi((∆r)2i ) = σ2∆t.

Applying the procedure explained in the first section of this chapter yields
the stochastic differential equation model:

dr(t) = α(re − r(t)) dt + σ dW (t) (5.41)

with r(0) = r0 > 0. The interest rate model derived here, Eq. (5.41), is the
Vasicek interest rate model. Using Itô’s formula, the mean and variance for
this model can be readily determined as:

E(r(t)) = re + (r0 − re)e−αt and Var(r(t)) =
σ2

2α

(
1 − e−2αt

)
.

Indeed, the exact solution to (5.41) can be found as:

r(t) = re + (r0 − re)e−αt + e−αt

∫ t

0
σeαs dW (s).

In the Vasicek interest rate model, the interest rate r(t) is normally distributed

and the mean and variance approach the values re and
σ2

2α
, respectively, as

t → ∞. A disadvantage of the Vasicek model is that the interest rate, r(t),
can have negative values.
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Now, a second stochastic differential equation model is developed for the
instantaneous interest rate. In this model, the possible changes in the interest
rate for small time interval ∆t are identical to those in the first model. This
model differs from the first model in the selection of the probabilities for the
changes. The probabilities selected for this model are listed in Table 5.15.

Table 5.15. Possible changes in the interest rates with the corresponding probabil-
ities for the second model

Change (∆r)i Probability pi

(∆r)1 = −1 p1 =
[
σ2r/2 − α(re − r)/2

]
∆t

(∆r)2 = 1 p2 =
[
σ2r/2 + α(re − r)/2

]
∆t

(∆r)3 = 0 p3 = 1 − p1 − p2

Notice for this model, the mean reversion term, ∓α(re −r)/2, in probabili-
ties p1 and p2 are the same as for the first model. However, for this model, the
term accounting for random changes in the interest rate is σ2r/2 rather than
σ2/2. Recall that this term in the probabilities accounts for a random change
in the interest rate of either plus or minus one unit. Thus, in the second model,
as the interest rate, r(t), decreases the random behavior also decreases.

Using Table 5.15, E(∆r) and E((∆r)2) can now be computed giving

E(∆r) =
3∑

i=1

pi(∆r)i = α(re − r)∆t

and

E((∆r)2) =
3∑

i=1

pi((∆r)2i ) = σ2r∆t.

Applying the procedure explained in the first section of this chapter yields
the stochastic differential equation model:

dr(t) = α(re − r(t)) dt + σ
√

r(t) dW (t) (5.42)

with r(0) = r0 > 0. The interest rate model derived here, Eq. (5.42), is the
Cox-Ingersoll-Ross (CIR) interest rate model. As expected from the probabil-
ities p1 and p2 in Table 5.15, the diffusion part of Eq. (5.42) decreases as r
decreases. Applying Itô’s formula, it is straightforward to find that the mean
and variance in the interest rate for this model are given by

E(r(t)) = re + (r0 − re)e−αt

and

Var(r(t)) =
σ2re

2α
+

σ2(r0 − re)
α

e−αt +
(

σ2re

2α
− σ2r0

α

)

e−2αt
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and it is clear, for the CIR model, that as t → ∞, then E(r(t)) → re and

Var(r(t)) → σ2re

2α
.

An interesting feature of the CIR model is that if
2αre

σ2 ≥ 1, then the

interest rate, r(t), is nonnegative with probability one for any t ≥ 0. Indeed,
it can be shown that the probability density of solutions to the stochastic
differential equation (5.42) has the form [64]:

p(t, r) = c
( v

u

)q/2
e−u−v Iq(2

√
uv),

where

c =
2α

σ2(1 − e−αt)
, u = cr0e

−αt, v = cr, q =
2αre

σ2 − 1,

and Iq(z) is the modified Bessel function of order q. That is,

Iq(z) =
(z

2

)q ∞∑

k=0

(
z2

4

)k

k! Γ (q + k + 1)
,

where Γ is the gamma function. Using the identity
∫∞
0 e−crrα dr = Γ (α +

1)/cα+1, it can be shown that
∫∞
0 p(t, r) dr = 1 for any t > 0 assuming that

q = 2αre

σ2 − 1 ≥ 0. That is, r(t) ≥ 0 with probability one for any time t ≥ 0

for the CIR interest rate model provided that
2αre

σ2 ≥ 1.
There are several popular interest rate models in addition to the Vasicek

and CIR models. A good discussion of interest rate models can be found, for
example, in [24].

5.5 A Goodness-of-Fit Test for an SDE Model

In this section, it is assumed that a stochastic differential equation model has
been developed for a certain stochastic process. Also, it is assumed that a
collection of data is available for the stochastic process. A simple goodness-
of-fit test is described in this section to test if there is a lack-of-fit between
the stochastic differential equation model and the data. Suppose that the
stochastic process is observed at times t0, t1, . . . , tN−1 where ti = i∆t for
a constant ∆t > 0. Let x0, x1, . . . , xN−1 denote the N observations of the
process. In addition, suppose that the stochastic differential equation model
for the process is

dX(t) = f(t, X) dt + g(t, X) dW (t). (5.43)

A goodness-of-fit procedure developed in [22] is now described.
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In this procedure, M simulations of (5.43) are calculated from time ti−1
until time ti starting at xi−1. For example, if Euler’s method is used with K
steps then

X
(m)
j+1,i = X

(m)
j,i + f

(

ti−1 +
j∆t

K
, X

(m)
j,i

)
∆t

K

+ g

(

ti−1 +
j∆t

K
, X

(m)
j,i

)√
∆t

K
η
(m)
j,i (5.44)

for j = 0, 1, . . . , K − 1 and m = 1, 2, . . . , M with X
(m)
0,i = xi−1 and where

η
(m)
j,i ∼ N(0, 1) for each i, j and m.

Let X
(m)
i = X

(m)
K,i be the mth simulated value at ti for m = 1, 2, . . . , M

and for i = 1, 2, . . . , N − 1. Now define

s
(m)
i =

{
1, if xi ≥ X

(m)
i

0, if xi < X
(m)
i

and let

ri = 1 +
M∑

m=1

s
(m)
i for i = 1, 2, . . . , N − 1.

Then, ri is the rank of value xi as compared with the M simulated values
X

(m)
i , 1 ≤ m ≤ M, for i = 1, 2, . . . , N − 1. Notice that 1 ≤ ri ≤ M + 1 for

i = 1, 2, . . . , N − 1.
The null hypothesis is that model (5.43) describes the stochastic process.

Under the null hypothesis, the ranks ri have equally likely values between 1
and M +1. A χ2 goodness-of-fit test is used to test this hypothesis. To perform
this test, the observed and expected frequencies are needed. Let

Ii,q =
{

1, if ri = q
0, if ri �= q

for i = 1, 2, . . . , N − 1 and let

Ω(q) =
N−1∑

i=1

Ii,q

for q = 1, 2, . . . , M + 1. Notice that Ω(q) is the observed frequency that the
rank equals the value q so, for example,

∑M+1
q=1 Ω(q) = N − 1. The expected

frequency under the null hypothesis is
N − 1
M + 1

. The test statistic is

QM =
M+1∑

q=1

(

Ω(q) − N − 1
M + 1

)2

(
N − 1
M + 1

) ,
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which under the null hypothesis, is approximately distributed as a chi square
random variable with M degrees of freedom. A large value of QM indi-
cates a lack-of-fit between the stochastic model and the data. Specifically,
if P (χ2(M) ≥ QM ) is smaller than a preset level of significance, then the null
hypothesis is rejected indicating a lack-of-fit of the stochastic differential equa-
tion model (5.43) with the data. The chi square approximation fails, however,
if the expected frequencies under the null hypothesis are small. Consequently,
the rule-of-thumb often applied is that the expected frequencies should be no
less than 5. Applying this rule gives (N − 1)/(M + 1) ≥ 5 which implies that
M ≤ (N − 6)/5. For example, if N = 100, then the number of simulations M
should be no more than 18.

Example 5.5. Testing two SDE models
Consider the Aransas-Wood Buffalo population of whooping cranes descri-

bed in Section 4.9. For this example, there are N = 47 values of the population
size over the years 1939-1985 which are listed in Table 4.5 and graphed in
Fig. 4.2. Goodness-of-fit tests for two different stochastic differential equation
models for this data are described in this example. The computer program
that performed the goodness-of-fit tests is listed at the end of this chapter.

First, suppose a stochastic differential equation model of the form

dX(t) =
θ1

X2(t)
dt +

θ2

X2(t)
dW (t), X(0) = 18, (5.45)

where X(t) is population size and the parameters θ = [θ1, θ2]T are deter-
mined using the maximum likelihood procedure described in Section 4.9. Using
this procedure, the values of θ1 and θ2 are estimated as 3510.0 and 13500.0,
respectively. Performing M = 8 simulations of (5.45) at each data point for
t = t1, t2, . . . , t46 and applying the goodness-of-fit test of this section, the value
Q8 = 18.6 is calculated. Since two parameters were estimated using the data,
the number of degrees of freedom is adjusted to M − 2 = 6. The probability
of having a value of χ2 with 6 degrees of freedom this large is less than 0.005,
that is, P (χ2(6) ≥ 18.6) < 0.005. This indicates a lack-of-fit of the stochastic
differential equation model (5.45) with the data.

Second, suppose a stochastic differential equation model of the form

dX(t) = θ1X(t) dt +
√

θ2X(t) dW (t), X(0) = 18, (5.46)

where X(t) is population size and the parameters θ = [θ1, θ2]T are determined
using the maximum likelihood procedure described in Section 4.9. For this
model, the values of θ1 and θ2 are estimated as 0.0361 and 0.609, respectively.
For model (5.46), the goodness-of-fit test for M = 8 simulations gives the
value Q8 = 4.09. The probability that χ2(6) has a value this large is greater
than 0.66 which indicates that the null hypothesis cannot be rejected. That
is, it cannot be rejected that the stochastic differential equation model (5.46)
describes the whooping crane population size.
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5.6 Alternate Equivalent SDE Models

Equivalent stochastic differential equation models, referred to in Remark 5.4,
are discussed in this section. In the modeling procedure described in this
chapter, a discrete stochastic model is developed by studying changes in the
process states over a small time interval. Similarities between the forward
Kolmogorov equations satisfied by the probability distributions of discrete-
and continuous-time stochastic models infer an Itô stochastic differential equa-
tion model from the discrete stochastic model. This approach is a natural
extension of the procedure used for many years in modeling deterministic
dynamical processes in physics and engineering, where changes in the system
are studied over a small interval of time and a differential equation is obtained
as the time interval approaches zero. In this procedure, the number of Wiener
processes never exceeds the number of states in the system.

In an alternate modeling procedure, the dynamical system is carefully
studied to determine all the different independent random changes that
occur in the system. Appropriate terms are determined for these changes in
developing a discrete-time stochastic model which is then approximated by
a stochastic differential equation system [43, 44, 45, 50]. In this procedure,
the number of different random changes may possibly far exceed the num-
ber of states and a stochastic differential equation model is obtained where
the number of Wiener processes may exceed the number of equations. This
procedure is straightforward and yields, for example, stochastic differential
equation systems that are generally easy to solve numerically.

In this section, it is shown that the two procedures produce stochastic
differential equation systems that are structurally different yet have identical
probability distributions [9]. Indeed, Euler’s method for solving the different
stochastic differential equation systems converge strongly in the mean-square
sense to the same solution. As the stochastic models can be interchanged,
conceptual or computational advantages possessed by either model can be
employed in any particular problem.

To study equivalence of two stochastic differential equation systems, let

X(t) = [X1(t), X2(t), . . . , Xd(t)]T ,

W(t) = [W1(t), W2(t), . . . , Wm(t)]T ,

f : [0, T ] × R
d → R

d,

and
G : [0, T ] × R

d → R
d×m,

where Wi(t), i = 1, . . . , m are independent Wiener processes and m ≥ d.
Consider the system of Itô stochastic differential equations of the form

dX(t) = f(t,X(t)) dt + G(t,X(t)) dW(t). (5.47)

In component form, system (5.47) can be expressed as
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Xi(t) = Xi(0) +
∫ t

0
fi(s,X(s)) ds +

∫ t

0

m∑

j=1

gi,j(s,X(s)) dWj(s) (5.48)

for i = 1, 2, . . . , d, where fi is the ith element of f and gi,j is the i, j entry of
the d × m matrix G.

Itô’s formula can be applied to (5.47). Let

F : [0, T ] × R
d → R

k and Y(t) = F(t,X(t)). (5.49)

For system (5.47), it follows from Itô’s formula that the pth component of
Y(t) satisfies

dYp(t) =

⎡

⎣∂Fp

∂t
+

d∑

i=1

fi
∂Fp

∂xi
+

1
2

d∑

i=1

d∑

j=1

m∑

l=1

gi,lgj,l
∂2Fp

∂xi∂xj

⎤

⎦dt

+
d∑

i=1

∂Fp

∂xi

m∑

l=1

gi,ldWl(t) (5.50)

for p = 1, 2, . . . , k where all the terms are evaluated at (t,X(t)).
Furthermore, the forward Kolmogorov equation or Fokker-Planck equa-

tion for the probability density function p(t,x) associated with the stochastic
differential system (5.47) has the form

∂p(t,x)
∂t

=
1
2

d∑

i=1

d∑

j=1

∂2

∂xi∂xj

[

p(t,x)
m∑

l=1

gi,l(t,x)gj,l(t,x)

]

−
d∑

i=1

∂
[
p(t,x)fi(t,x)

]

∂xi
, (5.51)

where, if z1, z2 ∈ R
d and z1 ≤ z2, then

P (z1 ≤ X(t) ≤ z2) =
∫ z2,d

z1,d

∫ z2,d−1

z1,d−1

. . .

∫ z2,1

z1,1

p(t,x) dx1 dx2, . . . , dxd.

Consider the Euler-Maruyama (or Euler’s) method for numerical solution
of (5.47). Euler’s method for system (5.47) has the form

Xn+1 = Xn + f(tn,Xn)∆t + G(tn,Xn)∆Wn (5.52)

for n = 0, 1, 2, . . . , N − 1, where Xn ≈ X(tn), ∆t = T/N , and ∆Wn =
W(tn+1) − W(tn). In component form, Euler’s method is

Xi,n+1 = Xi,n + fi(tn,Xn)∆t +
m∑

j=1

gi,j(tn,Xn)∆Wj,n (5.53)
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for i = 1, 2, . . . , d, where ∆Wj,n ∼ N(0, ∆t) are independent normally dis-
tributed random numbers for n = 0, 1, . . . and j = 1, . . . , d.

Now define the d × d symmetric positive semidefinite matrix V = GGT .
Matrix V has entries

vi,j(t,X) =
m∑

l=1

gi,l(t,X)gj,l(t,X). (5.54)

for i, j = 1, . . . , d. Define the d × d symmetric positive semidefinite matrix
B = (bi,j(t,X)) = V 1/2. Then Euler’s method given in (5.53) can be written
equivalently as

Xi,n+1 = Xi,n + fi(tn,Xn)∆t +
d∑

j=1

bi,j(tn,Xn)∆W ∗
j,n, (5.55)

where
∑d

j=1 bi,j(tn,Xn)∆W ∗
j,n =

∑m
j=1 gi,j(tn,Xn)∆Wj,n and ∆W ∗

j,n ∼
N(0, ∆t) are independent normally distributed random numbers for n =
0, 1, . . . and j = 1, . . . , d. That is, B∆W∗

n = G∆Wn.
To verify that B∆W∗

n = G∆Wn, an argument employing singular value
decompositions can be employed. The singular value decomposition of G is
G = PDQ where P and Q are orthogonal matrices of sizes d × d and m × m,
respectively, and D is a d × m matrix with r ≤ d positive diagonal entries. It
follows that V = GGT = PDDT PT , where B = P (DDT )1/2PT . Now, given
B, G and ∆Wn, the following computation shows that there exists ∆W∗

n, a
vector of d linearly independent normally distributed random numbers, such
that B∆W∗

n = G∆Wn. Note that PT ∆W∗
n = ((DDT )1/2)+DQ∆Wn +

∆W∗∗
n and

E(PT ∆W∗
n(∆W∗

n)T P )

= E
(
((DDT )1/2)+DQ∆Wn(∆Wn)T QT DT ((DDT )1/2)+∆W∗∗

n (∆W∗∗
n )T

)

= Id(∆t),

where Id is the d × d identity matrix, ∆W∗∗
n is a vector of length d with the

first r entries equal to 0 and the next d − r entries independent normally dis-
tributed random variables, and where ((DDT )1/2)+ is the d×d pseudoinverse
of (DDT )1/2 [93]. Conversely, given B, G, and ∆W∗

n, the following com-
putation shows that there exists ∆Wn, a vector of m linearly independent
normally distributed random numbers, such that B∆W∗

n = G∆Wn. Note
that Q∆Wn = D+(DDT )1/2PT ∆W∗

n + ∆W∗∗∗
n and

E(Q∆Wn(∆Wn)T QT )

= E
(
D+(DDT )1/2PT ∆W∗

n(∆W∗
n)T P (DDT )1/2(D+)T + ∆W∗∗∗

n (∆W∗∗∗
n )T

)

= Im(∆t),
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where ∆W∗∗∗
n is a vector of length m with the first r entries equal to 0 and

the next m−r entries independent normally distributed random variables and
where D+ is the m × d pseudoinverse of D.

Notice that system (5.55) is Euler’s method for the stochastic system

X∗
i (t) = X∗

i (0) +
∫ t

0
fi(s,X∗(s)) ds +

∫ t

0

d∑

j=1

bi,j(s,X∗(s)) dW ∗
j (s) (5.56)

for i = 1, . . . , d. Because Euler’s method converges in the mean square sense,
(5.47) and (5.56) are equivalent stochastic systems in the sense that they share
the same sample paths. Also notice that Itô’s formula for (5.56) with F and
Y defined in (5.49) satisfies

dYp(t, ω) =

⎡

⎣∂Fp

∂t
+

d∑

i=1

fi
∂Fp

∂xi
+

1
2

d∑

i=1

d∑

j=1

vi,j
∂2Fp

∂xi∂xj

⎤

⎦ dt

+
d∑

i=1

∂Fp

∂xi

d∑

j=1

bi,jdW ∗
j (t) (5.57)

for p = 1, . . . , k. In addition, the forward Kolmogorov equation corresponding
to (5.56) is

∂p(t,x)
∂t

= −
d∑

i=1

∂
[
p(t,x)fi(t,x)

]

∂xi

+
1
2

d∑

i=1

d∑

j=1

∂2

∂xi∂xj
[p(t,x)vi,j(t,x)] . (5.58)

In effect, system (5.47) with m ≥ d Wiener processes can be written as an
equivalent system with d Wiener processes

dX(t) = f(t,X(t)) dt + B(t,X(t)) dW∗(t), (5.59)

where W∗(t) = [W ∗
1 (t), W ∗

2 (t) . . . , W ∗
d (t)]T and the d × d matrix B satisfies

B2 = GGT .
Consider now a stochastic modeling problem that involves the d states

S1, S2, . . . , Sd with a total of m ≥ d possible random changes to these states
at each time step ∆t. Suppose that the probabilities of the changes are pj∆t ≡
pj(t,S)∆t for j = 1, 2, . . . , m, where the jth change alters the ith state by the
amount λj,i for i = 1, . . . , d. A standard deterministic model for this problem
is the following system of ordinary differential equations:

dS(t) = f(t,S(t)) dt, (5.60)

where the ith element of the vector f is
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fi(t,S(t)) =
m∑

j=1

pj(t,S(t))λj,i (5.61)

for i = 1, 2, . . . , d. For a small time step ∆t, problem (5.60) can be approxi-
mated using Euler’s method by the formula

Sn+1,i = Sn,i + fi(tn,Sn)∆t, (5.62)

where tn = n∆t and Sn,i ≈ Si(tn) for i = 1, . . . , d and n = 0, 1, . . . .
Assuming that ∆t is a small but fixed time interval, a discrete-time

stochastic model can be formulated by considering the random changes at
each time step. Let rj represent a random change of the jth kind to the state
vector. Then rj , to order O((∆t)2), is defined as follows:

rj =

⎧
⎨

⎩

[λj,1, λj,2, . . . , λj,d]T with probability pj∆t

[0, 0, . . . , 0]T with probability 1 − pj∆t.

For ∆t small, (rj)i has approximate mean λj,ipj∆t and variance λ2
j,ipj∆t. A

discrete stochastic model for Sn+1, given the vector Sn, is

Sn+1 = Sn +
m∑

j=1

rj (5.63)

for n = 0, 1, . . . . In component form, (5.63) becomes

Sn+1,i = Sn,i +
m∑

j=1

(rj)i (5.64)

for i = 1, . . . , d and n = 0, 1, . . . .
In the alternate modeling procedure, the random changes are approxi-

mated using m independent normal random variables and Eq. (5.64) for small
∆t takes the form

Sn+1,i = Sn,i + fi(tn,Sn)∆t +
m∑

j=1

λj,ip
1/2
j (∆t)1/2ηj (5.65)

for n = 0, 1, . . . , where fi is defined in (5.61) and ηj ∼ N(0, 1) for each j =
1, . . . , m. Notice the similarity between the deterministic equation (5.62) and
the stochastic equation (5.65). The discrete stochastic model (5.65) converges
strongly (in the mean-square sense) as ∆t → 0 to the SDE system

⎧
⎨

⎩

dS(t) = f(t,S(t)) dt + G(t,S(t)) dW(t),

S(0) = S0,
(5.66)
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where the i, j entry in the matrix G is gi,j = λj,ip
1/2
j for i = 1, 2, . . . , d,

j = 1, 2, . . . , m, and W(t) is a vector of m independent Wiener processes.
Notice that SDE system (5.66) has m Wiener processes and the d × d matrix
V = GGT has entries

(V )i,l = (GGT )i,l =
M∑

j=1

gi,jgl,j =
M∑

j=1

pjλjiλjl = vi,l (5.67)

for i, l = 1, . . . , d. The entries in G are easy to write down given the probabil-
ities of the different changes based on the discrete-time Markov chain (5.63).
It is interesting to note that there are other SDE systems equivalent to (5.66)
that can be generated from the probabilities of the changes. For example, if
matrix G is replaced by −G in (5.66), this alternate system generates the same
sample paths. In general, a matrix H can be used instead of G if HHT = V ,
where V = GGT .

In the modeling procedure discussed in this chapter, if the changes are
small and ∆t is small, then the probability distribution associated with the
discrete-time stochastic system (5.63) can be approximated by the solution to
the forward Kolmogorov equation

∂p(t,x)
∂t

= −
d∑

i=1

∂
[
p(t,x)fi(t,x)

]

∂xi

+
1
2

d∑

i=1

d∑

j=1

∂2

∂xi∂xj
[p(t,x)vi,j(t,x)] , (5.68)

where vi,j is the i, jth entry of d × d matrix V . The probability distribution
p(t, x1, x2, . . . , xd) that solves (5.68) is identical to the distribution of solutions
corresponding to the stochastic differential equation system

⎧
⎨

⎩

dS(t) = f(t,S(t)) dt + B(t,S(t)) dW∗(t)

S(0) = S0,
(5.69)

where the d × d matrix B = V 1/2 and W∗(t) is a vector of d independent
Wiener processes. Therefore, the discrete stochastic model (5.63) is closely
related to a stochastic differential equation model (5.69). Specifically, the
probability distribution of solutions to (5.63) is approximately the same as
the probability distribution of solutions to (5.69). In addition, the drift vector
and diffusion matrix, f and B, respectively, of the stochastic differential equa-
tion model are equal to the expected change divided by ∆t and the square
root of the covariance matrix of the change divided by ∆t. Specifically, letting
λj = [λj,1, λj,2, . . . , λj,n]T , then the expected change in S and the covariance
in the change are

⎧
⎨

⎩

E(∆S) =
∑m

j=1 pjλj∆t = f∆t

E(∆S(∆S)T ) =
∑m

j=1 pjλj(λj)T ∆t = V ∆t.
(5.70)
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Notice that the d × m matrix G satisfies V = GGT and the stochastic
differential equation system (5.69) can be modified to the system (5.66) by the
argument in this section. Indeed, Itô’s formula and the forward Kolmogorov
equation are identical for both stochastic differential equation systems (5.66)
and (5.69). Finally, notice that system (5.69) is generally more complicated
than (5.66) as the d × d matrix B is the square root of V even though G
is a d × m matrix. Consequently, system (5.66) is generally easier to solve
computationally. However, if the number of changes, m, is much greater than
the number of states, d, then equation (5.66) loses much of its computational
advantages.

In summary, in the alternate procedure for constructing an Itô stochas-
tic differential equation model for a dynamical system consisting of d states
with m ≥ d different independent random changes, each independent random
change is explicitly included. This procedure is in contrast to the modeling pro-
cedure described in this chapter where means and covariances of the random
changes are calculated which, in turn, determine the stochastic differential
equation model.

To illustrate the alternate modeling procedure, the chemical reaction prob-
lem described in Section 5.3.6 is modeled using the alternate procedure. As
described in this example, suppose that there are three chemical species S1, S2,
and S3 that interact through molecular collisions or spontaneously in the four
ways described in Table 5.9.

Using the alternate modeling procedure for this example gives the SDE
model:

dX(t) = f(X1, X2, X3) dt + C(X1, X2, X3) dW∗(t) (5.71)

with X(0) = [X1(0), X2(0), X3(0)]T and where W∗(t) is a vector W∗(t) =
[W ∗

1 (t), W ∗
2 (t), W ∗

3 (t), W ∗
4 (t)]T of four independent Wiener processes and 3×4

matrix C has the form

C =

⎡

⎣
−(µ1X1X2)1/2 (µ2X3)1/2 2(µ3X

2
2X3/2)1/2 −2(µ4X

2
1/2)1/2

−(µ1X1X2)1/2 (µ2X3)1/2 −2(µ3X
2
2X3/2)1/2 2(µ4X

2
1/2)1/2

(µ1X1X2)1/2 −(µ2X3)1/2 −(µ3X
2
2X3/2)1/2 (µ4X

2
1/2)1/2

⎤

⎦ .

To test the stochastic differential equation model (5.71), calculational
results using the two SDE models were compared. In these calculations, the
values of the reaction rate constants were taken as µ1 = 0.02, µ2 = 0.4, µ3 =
0.001, and µ4 = 0.03. The initial numbers of molecules were assumed to be
X1(0) = X2(0) = X3(0) = 100 and the final time was taken as t = 1.0. The
SDE models were numerically solved using the Euler-Maruyama method with
5000 sample paths. The results using these two SDE models are compared
in Table 5.16. Also, a sample path using model (5.33) is plotted in Fig. 5.10
and a sample path using model (5.71) is plotted in Fig. 5.13. Notice the good
agreement between the two different SDE models.



5.6 Alternate Equivalent SDE Models 193

Table 5.16. Calculated mean molecular levels and standard deviations at time
t = 1.0 using SDE models (5.33) and (5.71)

Chemical E(Xi) σ(Xi) E(Xi) σ(Xi)
Species (5.33) (5.33) (5.71) (5.71)

S1 79.31 7.62 79.39 7.69
S2 37.44 6.14 37.47 6.13
S3 131.17 6.43 131.09 5.85
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Fig. 5.13. Molecular population levels for one sample path of SDE (5.71)

Exercises

5.1. In the model described schematically in Fig. 5.1, suppose that m12 =
a1S1, m21 = a2S2, b1 = b2 = d1 = d2 = m22 = m11 = 0, and λ1 = λ2.
(a) Derive a stochastic differential equation model for this system.
(b) Show that d(S1(t)+S2(t)) = 0 so that S1(t)+S2(t) is constant with time.

5.2. In the model described schematically in Fig. 5.1, suppose that m12 =
a1S1, m21 = a2S2, b1 = r1S1, and b2 = d1 = d2 = m22 = m11 = 0.
(a) Find the matrix V = E(∆S(∆S)T )/∆t for this problem.
(b) Use Remark 5.4 to find a 2 × 3 matrix C such that CCT = V .

5.3. Show that the matrix
(

0 1
0 0

)

has no matrix square root while the matrix

(
1 0
0 1

)

=
(

cos(θ) sin(θ)
sin(θ) − cos(θ)

)2

has an infinite number of matrix square roots.
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5.4. Suppose that a cricket begins walking at the origin and proceeds along
the positive x-axis. At each time step ∆t, the cricket walks 3∆t units to the
right, i.e., the cricket’s speed is 3. In addition, at each time step ∆t, the cricket
jumps back one unit with probability ∆t/2.
(a) Derive a stochastic differential equation model that approximately descri-
bes the position of the cricket.
(b) For your stochastic differential equation model, show that E(X(t)) = 5t/2
and Var(X(t)) = t/2 where X(t) is the cricket’s position at time t.

5.5. Consider three populations S1, S2, and S3 that compete with each other.
For a small time interval ∆t, suppose that the probabilities of a birth in each
of the three populations are, respectively, b1S1∆t, b2S2∆t, and b3S3∆t and
the probabilities of a death in each of the three populations are, respectively,
(a1S1+u11S

2
1 +u12S1S2+u13S1S3)∆t, (a2S2+u21S1S2+u22S

2
2 +u23S2S3)∆t,

and (a3S3 + u31S1S3 + u32S2S3 + u33S
2
3)∆t. Derive a stochastic differential

equation model for the population sizes, [S1(t), S2(t), S3(t)]T , with time t.

5.6. Suppose that b = d = 1, X(0) = 100, and the maximum population size
is K = 200.
(a) Find the mean persistence time, T (100), of the population. Note that the
mean persistence time T (y) with initial population size y satisfies the second
order differential equation

y
d2T (y)

dy2 = −1 with T (0) = 0,
dT (200)

dy
= 0.

(b) Compare the mean persistence time obtained in part (a) with the per-
sistence time for the corresponding deterministic population model dX(t) =
(b − d)X(t) dt, X(0) = 100.

5.7. Consider an SIR model of an epidemic where the births and deaths are
assumed to be negligible. In this model, S(t), I(t), and R(t) are the susceptible,
infected, and removed population sizes, respectively, and N = S(t)+I(t)+R(t)
is constant. Individuals are removed after recovering from the disease and
are assumed to be immune thereafter. Suppose that the probability of one
individual becoming infected is βSI∆t/N during a small time interval ∆t
and the probability of one individual recovering is γI∆t. Derive a stochastic
differential equation for this randomly varying system.

5.8. Consider finding the mean exit time of trajectories for the stochastic
differential equation

dy(t) = −2y(t) dt +
√

4y(t) dW (t), y(0) = 10,
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where there is no maximum population size and exit occurs when the trajec-
tory reaches zero. Therefore, for N trajectories, T ≈∑N

m=1 tm/N where tm is
the time for the mth trajectory to reach zero, i.e., y(tm) = 0. The MATLAB
program listed below estimates exit times for trajectories of a stochastic dif-
ferential equation. In using the program to estimate the mean exit time, vary
the number of trajectories, the step length used in Euler’s method, the final
time, and the maximum size of y(t) to obtain the mean exit time to within
10% of the exact mean exit time. Compare your calculated result with the
exact exit time

T =
∫ 10

0

1 − e−z

2z
dz +

∫ ∞

0

(1 − e−10)e−z

2z + 20
dz.

% A program for first exit calculations
clear
nsamp=20;
% nsamp paths are calculated
% statistical error decreases as nsamp increases
t=1;
% The proportion exiting up to time t are calculated
% t must be sufficiently large to estimate mean exit time
nt=fix(.001+t/.005);
% method error decreases as nt increases
y0=10;
ymax=40;
% y0 is the initial position
% ymax is maximum position; paths reflect at y=ymax
% Exits occur at y=yexit
yexit=0;
alp=-2;
bet=4;
h=t/nt;
hs=sqrt(h);
randn(’state’,2)
for ncase=1:3
sumex=0;
te=zeros(nsamp,1);
for jj=1:nsamp
y=y0;
r=randn(nt,1);
nchk=0;
n=0;
t=0;
while (n < nt)
n=n+1;
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t=t+h;
f=alp*y;
g=sqrt(bet*y);
y=y+h*f+hs*g*r(n);

% This is Euler’s approximation to the SDE
if(y > ymax)
y=2*ymax-y;
end
if (y <= yexit)
nchk=1;
te(jj)=t;
n=nt;
end
end
sumex=sumex+nchk;
end
tp=sum(te)/sumex;
p=sumex/nsamp;

% tp is mean exit time for paths that exit
% p is proportion exiting
disp((sprintf(’ %12.0f %12.6f %12.6f’, ncase, tp, p)));
end

5.9. Consider two groups of particles revolving around a circular path. Let
S1(t) be the number of particles moving clockwise and S2(t) be the num-
ber of particles moving counterclockwise. Suppose at each time interval ∆t,
the particles scatter with the medium and one clockwise particle changes
direction with probability γS1(t)∆t. Likewise, at each time interval ∆t, one
counterclockwise particle changes direction with probability γS2(t)∆t. Find a
stochastic differential equation system for S1(t) and S2(t). (A check on your
model is that the total number of particles should be constant for all time,
i.e., d(S1(t) + S2(t)) = 0 for all t.)

5.10. Consider the particle transport system of the previous exercise. Suppose
now, however, in addition to scattering with the medium there are probabil-
ities βS1(t)∆t and βS2(t)∆t of one particle being absorbed by the medium
for the clockwise-moving group and of one particle being absorbed by the
medium for the counterclockwise-moving group, respectively, during each time
interval ∆t.
(a) Construct a stochastic differential equation model for this new system.
(b) Determine E(S1(t) + S2(t)) for t ≥ 0. (In this problem, the total number
of particles is not constant.)

5.11. Suppose that dust particles of mass m and altitude y(t) are drifting
upward with speed v(t) under the influence of a randomly varying upward air
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current of speed vc(t). The particles experience a gravitational force down-
ward, −mg, and a frictional force upward, kva(t), where k is a constant and
va(t) = vc(t) − v(t) is the air speed at the particle surface. The air current
speed vc(t) is randomly varying with mean speed ve. Assume that during any
small time interval ∆t, the probability of an increase of magnitude α in vc(t)
is (λ + β(ve − vc(t))∆t and the probability of a decrease of −α in vc(t) is
(λ−β(ve −vc(t))∆t. Derive a stochastic differential equation system for vc(t),
y(t), and v(t).

5.12. Suppose that in a certain chemically reacting system, the two chemical
species S1 and S2 are reacting in the three ways:

S1 + 3S2 → 3S1 + S2, S1 + S2 → 2S2, and S1 → S2.

Furthermore, during a small time interval ∆t, the probabilities of these three
reactions are β1X1(t)X3

2 (t)∆t/6, β2X1(t)X2(t)∆t, and β3X1(t)∆t, respec-
tively, where X1(t) and X2(t) are the number of molecules of species S1 and
S2, respectively.
(a) Construct a stochastic differential equation model for the reacting system
of the form dX = µ dt + V 1/2 dW(t) where V is a 2 × 2 symmetric positive
semidefinite matrix.
(b) Find a stochastic differential equation model for the system of the form
dX = µ dt + C dW∗(t) where C is a 2 × 3 matrix.

5.13. For a single stock whose price satisfies the stochastic differential equa-
tion dS = µS dt + σS dW (t) with interest rate r, the Black-Scholes equation
is:

∂U(t, S)
∂t

+ rS
∂U(t, S)

∂S
+

1
2
σ2S2 ∂2U(t, S)

∂S2 = rU(t, S).

For a European call option, U satisfies at time T the condition U(T, S) =
max

(
S − K, 0

)
, where K is the strike price of the option. Show that the

Black-Scholes formula:

U(t, S) = SN(x1) − Ke−r(T−t)N(x2),

where x1 =
(
ln(S/k)(T−t)−1/2+(r+σ2/2)(T−t)1/2

)
/σ, x2 = x1−σ(T−t)1/2,

and N(x) = 1√
2π

∫ x

−∞ e−y2/2 dy satisfies the Black-Scholes equation and also
satisfies the required condition at time T . Thus,

U(0, S) = S(0)N(x1(0)) − Ke−rT N(x2(0))

is the price of the option at time t = 0 where x1(0) =
(
ln(S(0)/k)T−1/2 +

(r + σ2/2)T 1/2
)
/σ, and x2(0) = x1(0) − σT 1/2. For this problem, to simplify

the verification, note that

∂N(x)
∂z

= N ′(x)
∂x

∂z
and

∂2N(x)
∂z2 = N ′(x)

∂2x

∂z2 − xN ′(x)
(

∂x

∂z

)2

.
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5.14. Consider a stock whose price is modeled by the stochastic differen-
tial equation dS(t) = µS(t) dt + σ(t)S(t) dW (t) where the volatility σ(t) is
varying randomly with time t about a mean value σe. Suppose that dur-
ing a small time interval ∆t, σ(t) changes the amount γσ(t) with probabil-
ity
(
α + β(σe − σ(t))

)
∆t and changes the amount −γσ(t) with probability(

α − β(σe − σ(t))
)
∆t. Construct a stochastic differential equation for the

volatility σ(t).

5.15. (Project) Consider two species that are in competition. The sizes of
the two populations are y1(t) and y2(t), respectively, where t is time in years.
Assume that the probability of a birth in a small time interval ∆t for the
first population is 5

6y1(t)∆t and the the probability of a birth in the second
population is 9

10y2(t)∆t. Also assume that the probability of a death in the
first population is

( 2
5y1(t) + 1

100y2
1(t) + 1

45y1(t)y2(t)
)
∆t and the probability

of a death in the second population is
( 3

4y2(t) + 1
150y2

2(t) + 1
200y1(t)y2(t)

)
∆t.

Furthermore, assume that the initial population sizes are y1(0) = y2(0) = 15.
(a) Construct a stochastic differential equation model for the population sizes
y1(t) and y2(t).
(b) Modify the computer program in Exercise 5.8 to calculate exit times for a
stochastic differential equation system so that exit occurs when either y1 ≤ 0
or y2 ≤ 0. Calculate to within 0.1 year the mean exit time for these two
competing populations. Also, calculate the proportion of population trajecto-
ries where the first population reaches zero before the second population and
the proportion of population trajectories where the second population first
reaches zero. Notice that statistical and method errors in the computations
need to be studied to ensure that the calculational results are accurate.
(c) Compare the results of the stochastic differential equation model with
the results predicted by the deterministic competition model. In particular,
computationally solve the deterministic system and determine whether one
population drives the other population to extinction.
(d) Hand in a listing of your computer program for part (b) along with expla-
nations and results for parts (a), (b), and (c). (A check on your model in parts
(a) and (c) is that an equilibrium for the population sizes in the deterministic
model occurs at y

(e)
1 = 10 and y

(e)
2 = 15. A check on your computations for

part (c) is that the calculated mean exit time should be between 14.4 and 15.4
years.)

5.16. (Project) A lifeboat was launched at position (0, 0) in the ocean and
has been drifting for 168 hours. It is necessary to estimate the lifeboat’s
position (x(t), y(t)). It is known that ocean currents are affecting the velocity
v cos(θ)i + v sin(θ)j of the lifeboat. Assume that the speed v and the angle θ
are independently randomly varying. In particular, assume that for a small
time interval ∆t, the probability of an increase in speed of .1 kilometer per
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hour is (8 + 1.5(5 − v(t)))∆t and the probability of a decrease in speed of −.1
kilometer per hour is (8 − 1.5(5 − v(t)))∆t. For a small time interval ∆t, the
probability of a change in the angle of .1 radians is (2+ .5(θe(t)−θ(t)))∆t and
the probability of a change in angle of −.1 radians is (2 − .5(θe(t) − θ(t)))∆t

where θe(t) = π
2

(
x(t)

x(t)+300

)
. Furthermore, assume that the initial values are

v(0) = θ(0) = x(0) = y(0) = 0.
(a) Construct a stochastic differential equation model for the quantities v(t),
θ(t), x(t), y(t) noting that dx

dt = v cos(θ) and dy
dt = v sin(θ).

(b) Modify, for example, the computer program in Exercise 2.10, to calcu-
late trajectories of the stochastic differential equation system. Calculate to
within 1 kilometer the mean values of the x and y coordinates of the lifeboat’s
position at 168 hours. Also, calculate the standard deviations in the x and
y coordinates at 168 hours. Notice that statistical and method errors in the
computations need to be studied to ensure that the calculational results are
accurate.
(c) Plot two lifeboat trajectories and the average trajectory. Specifically, make
two-dimensional plots of the lifeboat’s position, (x(t), y(t)), with time t for
0 ≤ t ≤ 168.
(d) Hand in a listing of your computer program for part (b) along with
explanations, results, and plots for parts (a), (b), and (c). (A check on your
model and computations is that the x coordinate of the lifeboat’s position
at 168 hours has mean value 558 kilometers and a standard deviation of 64
kilometers.)

Computer Programs

Program 5.1. Program to solve an SDE model of a SIS problem

This Fortran program solves a stochastic SIS system using Euler’s method
with nt equally spaced steps in time. The number of sample paths calculated
is specified as nrun. The mean, mean square, and standard deviation in the
solution at the final time are output. The parameter y1 is the susceptible
population size and y2 is the infected population size. The program is set up
to solve the stochastic differential equation system described in Section 5.2.2
Output of the program is given following the program listing.

real*8 xx
nt=2000
xx=981177.

c This program solves a stochastic SIS problem.
nrun=10000
arun=nrun
sm1=0.0
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sq1=0.0
sm2=0.0
sq2=0.0
ant=nt
arun=nrun
do 75 jj=1,nrun
y1=950.0
y2=50.0
time=100.0
h=time/ant
hs=sqrt(h)
t=0.0
do 600 i=1,nt
call random(xx,rand1,rand2)
call random(xx,rand3,rand4)
call fts(t,y1,y2,f1,f2,g1,g2,g3,g4)
t=t+h
y1=y1+h*f1+hs*rand1*(g1)+rand2*hs*(g2)
y2=y2+h*f2+hs*rand1*(g3)+rand2*hs*(g4)

600 continue
sm1=sm1+y1/arun
sq1=sq1+y1*y1/arun
sm2=sm2+y2/arun
sq2=sq2+y2*y2/arun

75 continue
sqr1=sqrt(sq1-sm1*sm1)
sqr2=sqrt(sq2-sm2*sm2)
write(6,162) h,time
write(6,162) sm1,sq1,sqr1
write(6,162) sm2,sq2,sqr2

162 format(5x,,3(f12.2,3x))
stop
end
subroutine random(xx,rand1,rand2)
real*8 xx,a,b,d,rng(2)
a=16807.
ib=2147483647
b=ib
do 55 i=1,2
id=a*xx/b
d=id
xx=a*xx-d*b

55 rng(i)=xx/b
pi=3.141592654
u1=rng(1)
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u2=rng(2)
hlp=sqrt(-2.0*alog(u1))
rand1=hlp*cos(pi*2.0*u2)
rand2=hlp*sin(pi*2.0*u2)
return
end
subroutine fts(t,y1,y2,f1,f2,g1,g2,g3,g4)
alp=.04
gam=.01
am12=alp*y2/(y1+y2)
am21=gam
f1=-am12*y1+am21*y2
f2=am12*y1-am21*y2
g1=sqrt((am12*y1+am21*y2)/2.0)
g2=-g1
g3=-g1
g4=g1
return
end
0.05 100.00
561.66 317186.25 41.49
438.34 193861.39 41.49

Program 5.2. Monte Carlo program of an SIS problem

This Fortran program solves a stochastic SIS system using a Monte Carlo
method. In each time step of length h, every individual in the population is
checked to determine whether recovery or infection occurs. The number of
sample paths calculated is specified as nrun. The mean, mean square, and
standard deviation of the population sizes at the final time are output. The
parameter nx1 is the susceptible population size and nx2 is the infected pop-
ulation size. The program is set up to solve the SIS problem described in
Section 5.2.2. Output of the program is given following the program listing.

real*8 xx
xx=3404658.

c This is a Monte Carlo program to simulate an SIS epidemic.
nrun=10000

c The value of nrun is the number of sample paths.
x1av=0.0
x2av=0.0
x1x1av=0.0
x2x2av=0.0
do 400 nr=1,nrun
am12=.04
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am21=.01
nx1=950
nx2=50
ntot=nx1+nx2
nt=500
ant=nt
time=100.0
h=time/ant
do 100 i=1,nt
if(nx1.lt.0) nx1=0
if(nx2.lt.0) nx2=0
mx1=0
mx2=0
do 200 j=1,nx1
call random(xx,r)
antot=ntot
anx2=nx2
am12=.04*anx2/antot
if(am12*h < r) goto 200
mx2=mx2+1
mx1=mx1-1

200 continue
do 300 j=1,nx2
call random(xx,r)
if(am21*h < r) goto 300
mx2=mx2-1
mx1=mx1+1

300 continue
nx1=nx1+mx1
nx2=nx2+mx2

100 continue
anx1=nx1
anx2=nx2
anrun=nrun
x1av=x1av+anx1/anrun
x2av=x2av+anx2/anrun
x1x1av=x1x1av+anx1*anx1/anrun
x2x2av=x2x2av+anx2*anx2/anrun

400 continue
x1sd=sqrt(x1x1av-x1av*x1av)
x2sd=sqrt(x2x2av-x2av*x2av)
write(6,550) nrun,h,time,am12,am21

550 format(2x,i5,6(2x,f8.3))
write(6,560) x1av,x1x1av,x1sd
write(6,560) x2av,x2x2av,x2sd
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560 format(2x,3(2x,f12.2))
stop
end
subroutine random(xx,r)
real*8 xx,a,b,d
a=16807.
ib=2147483647
b=ib
id=a*xx/b
d=id
xx=a*xx-d*b
r=xx/b
return
end

10000 0.200 100.000 0.017 0.010
562.28 317837.06 40.98
437.72 193279.28 40.98

Program 5.3. To plot solutions of an SDE model of an epidemic

This MATLAB program solves a stochastic SIS system using Euler’s method
with nt equally spaced steps in time. The number of sample paths calculated
is specified as nrun. The parameter ys is the susceptible population size and
yi is the infected population size. Plots are produced of individual susceptible
and infected population trajectories with time along with average population
sizes. The program is set up to solve the SIS stochastic differential equation
system described in Section 5.2.2 for producing Fig. 5.3.

% Stochastic SIS model is programmed in MATLAB
% random.m file is needed
% rand=random(xx) returns with three numbers
% rand(1), rand(2) are normally distributed
% xx is set equal to rand(3) for next call to random.m
% average of nrun paths and individual paths are plotted
clear
clf
xx =98945;
% xx starts the random number sequence
nt=400;
nrun=100;
time=200;
% nt is number of time intervals, time is total time
% nrun is the number of different paths
h=time/nt;
hs=sqrt(h);
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tt=linspace(0,time,nt+1);
for i=1:nt+1

sms(i)=0;
smi(i)=0;
paths(i)=0;

pathi(i)=0;
end
for jj=1:nrun

ys=950;
yi=50;
sms(1)=ys;
smi(1)=yi;
paths(1)=ys;
pathi(1)=yi;
t=-h;

for i=1:nt
t=t+h;
rand=random(xx);
xx=rand(3);
% need xx=rand(3) for next call to random.m
m12= .04*yi/(ys+yi);
m21=.01;
hlp1=-m12*ys+m21*yi;
hlp2=sqrt((m12*ys+m21*yi)/2);
ys=ys+h*hlp1+hlp2*hs*(rand(1)-rand(2));
yi=yi-h*hlp1+hlp2*hs*(-rand(1)+rand(2));
sms(i+1)=sms(i+1)+ys/nrun;
smi(i+1)=smi(i+1)+yi/nrun;
paths(i+1)=ys;
pathi(i+1)=yi;

end
end
set(gca,’fontsize’,18,’linewidth’,1.5);
plot(tt,paths,’k-’,’linewidth’,1.5)
axis([0,100,0,1000]);
hold on
plot(tt,pathi,’k-’,’linewidth’,1.5)
plot(tt,sms,’k--’,’linewidth’,1.5)
plot(tt,smi,’k--’,’linewidth’,1.5)
xlabel(’Time’)
ylabel(’Population Sizes’)
set(gca,’linewidth’,1.5)
hold off
% Listed next is function program random.m
% Uses congruential generator xx=16807*xx mod(2ˆ31-1)
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% Box-Muller method converts to normal random numbers
% xx=rand(3) is input to the generator
function rand = random(xx)

a=16807;
b=2147483647;

for i=1:2
d=fix(a*xx/b);
xx=a*xx-d*b;
rng(i)=xx/b;

end
p=3.141592654;
u1=rng(1);
u2=rng(2);
hlp=sqrt(-2.0*log(u1));
rand(1)=hlp*cos(p*2.0*u2);
rand(2)=hlp*sin(p*2.0*u2);
rand(3)=xx;

Program 5.4. A Monte Carlo program for molecular levels

This Fortran program solves a stochastic chemical reacting system using a
Monte Carlo method. In the Monte Carlo procedure, the process is checked
at each time interval of length h to see if any reaction occurs. The num-
ber of sample paths calculated is specified as nrun. The mean, mean square,
and standard deviation of the molecular levels at the final time are output.
The parameters nx1, nx2, and nx3 are the molecular population levels for a
reacting system that involves three different chemical species. The program is
set up to solve the reacting problem described in Section 5.3.6. Output of the
program is given following the program listing.

real*8 xx
xx=3404658.

c Monte Carlo program to calculate chemical molecular levels.
nrun=5000
x1av=0.0
x2av=0.0
x3av=0.0
x1x1av=0.0
x2x2av=0.0
x3x3av=0.0
do 400 nr=1,nrun
am1=.02
am2=.4
am3=.001
am4=.03
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nx1=100
nx2=100
nx3=100
ntot=nx1+nx2+nx3
nt=1000
ant=nt
time=1.0
h=time/ant
do 100 i=1,nt
if(nx1.lt.0) nx1=0
if(nx2.lt.0) nx2=0
if(nx3.lt.0) nx3=0
mx1=0
mx2=0
mx3=0
anx1=nx1
anx2=nx2
anx3=nx3
call random(xx,r)
p1=am1*anx1*anx2*h
if(r.gt.p1) goto 200
mx2=mx2-1
mx1=mx1-1
mx3=mx3+1

200 continue
call random(xx,r)
p2=am2*anx3*h
if(r.gt.p2) goto 300
mx3=mx3-1
mx1=mx1+1
mx2=mx2+1

300 continue
call random(xx,r)
p3=am3*anx3*anx2*anx2*h/2.0
if(r.gt.p3) goto 310
mx3=mx3-1
mx1=mx1+2
mx2=mx2-2

310 continue
call random(xx,r)
p4=am4*anx1*anx1*h/2.0
if(r.gt.p4) goto 320
mx3=mx3+1
mx1=mx1-2
mx2=mx2+2
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320 continue
nx1=nx1+mx1
nx2=nx2+mx2
nx3=nx3+mx3

100 continue
anx1=nx1
anx2=nx2
anx3=nx3
anrun=nrun
x1av=x1av+anx1/anrun
x2av=x2av+anx2/anrun
x3av=x3av+anx3/anrun
x1x1av=x1x1av+anx1*anx1/anrun
x2x2av=x2x2av+anx2*anx2/anrun
x3x3av=x3x3av+anx3*anx3/anrun

400 continue
x1sd=sqrt(x1x1av-x1av*x1av)
x2sd=sqrt(x2x2av-x2av*x2av)
x3sd=sqrt(x3x3av-x3av*x3av)
write(6,550) nrun,h,time,am1,am2,am3,am4

550 format(2x,i5,6(2x,f8.3))
write(6,560) x1av,x1x1av,x1sd
write(6,560) x2av,x2x2av,x2sd
write(6,560) x3av,x3x3av,x3sd

560 format(2x,3(2x,f12.2))
stop
end
subroutine random(xx,r)
real*8 xx,a,b,d
a=16807.
ib=2147483647
b=ib
id=a*xx/b
d=id
xx=a*xx-d*b
r=xx/b
return
end

5000 0.001 1.000 0.020 0.400 0.001 0.030
79.21 6327.89 7.28
37.61 1448.60 5.84
131.19 17240.56 5.54
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Program 5.5. Solving an SDE model for chemical molecular levels

This Fortran program solves a stochastic differential model of a chemical
reacting system using Euler’s method with nt equally spaced steps in time.
The number of sample paths calculated is specified as nrun. The mean, mean
square, and standard deviation in the solution at the final time are output.
In addition, a MATLAB plotting program is produced in file sdechem.m. The
program is set up to solve the stochastic differential equation system described
in Section 5.3.6 and is used to produce Fig. 5.10. The parameters y1, y2, and
y3 are the molecular population levels for a reacting system that involves
three different chemical species. Output of the program is given following the
program listing.

real*4 rand(10),v(10,10),pp(10),y(10),y2(10)
real*4 yy1(5001),yy2(5001),yy3(5001),f(10)
real*4 av(10),av2(10),sd(10)
real*8 xx
open(unit=9,file=’sdechem.m’,status=’unknown’)

c A MATLAB plotting program is produced in file sdechem.m.
xx=870686.

c This program solves for chemical molecular levels.
time = 1.0
nt=500

c nt is the number of time steps.
ant=nt
dt=time/ant
nrun=5000

c nrun is the number of sample paths.
anrun=nrun
nchem=3
am1=.02
am2=.4
am3=.001
am4=.03

c Initial values are input here.
do 100 j=1,nrun
y(1)=100.
y(2)=100.
y(3)=100.
yy1(1)=y(1)
yy2(1)=y(2)
yy3(i)=y(3)
tt=0.0
do 200 i = 1,nt
tt=tt+dt

c The drift term is calculated here.
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hlp1=am1*y(1)*y(2)
hlp2=am2*y(3)
hlp3=am3*y(2)*y(2)*y(3)/2.0
hlp4=am4*y(1)*y(1)/2.0
f(1) = -hlp1+hlp2+2.0*hlp3-2.0*hlp4
f(2) = -hlp1+hlp2-2.0*hlp3+2.0*hlp4
f(3) = hlp1-hlp2-hlp3+hlp4

c The covariance matrix is calculated here.
do 105 m=1,nchem
do 105 n=1,nchem

105 v(m,n)=0.0
v(1,1) = hlp1+hlp2+4.0*hlp3+4.0*hlp4
v(1,2) = hlp1+hlp2-4.0*hlp3-4.0*hlp4
v(1,3) = -hlp1-hlp2-2.0*hlp3-2.0*hlp4
v(2,1) = v(1,2)
v(2,2) = hlp1+hlp2+4.0*hlp3+4.0*hlp4
v(2,3) = -hlp1-hlp2+2.0*hlp3+2.0*hlp4
v(3,1) = v(1,3)
v(3,2) = v(2,3)
v(3,3) = hlp1+hlp2+hlp3+hlp4
call random(xx,rand)
call sqrtm(3,v,rand,pp)
dtsq=sqrt(dt)
do 87 k=1,nchem

87 y(k) = y(k)+dt*f(k)+ pp(k)*dtsq
yy1(i+1)=y(1)
yy2(i+1)=y(2)
yy3(i+1)=y(3)

200 continue
do 89 k=1,nchem
av(k)=av(k)+y(k)/anrun
av2(k)=av2(k)+y(k)*y(k)/anrun

89 continue
100 continue

do 91 k=1,nchem
91 sd(k)=sqrt(av2(k)-av(k)*av(k))

write(6,780) nrun,nt,time,am1,am2,am3,am4
780 format(2x,i5,2x,i5,6(2x,f8.2))

do 795 k=1,3
write(6,790) av(k),av2(k),sd(k)

790 format(2x,5(2x,f10.2))
795 continue

nt2=nt+1
write(9,370)

370 format(’ clear all’)
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write(9,371)
371 format(’ close’)

write(9,330) dt
330 format(’ dt = ’, f12.6)

write(9,335) time
335 format(’ time = ’,f12.6)

write(9,170)
170 format(’ y1=[’)

do 171 i=1,nt2
171 write(9,174) yy1(i)
174 format(2x,f11.6)

write(9,176)
176 format(’ ];’)

write(9,172)
172 format(’ y2=[’)

do 173 i=1,nt2
173 write(9,174) yy2(i)

write(9,176)
write(9,182)

182 format(’ y3=[’)
do 183 i=1,nt2

183 write(9,174) yy3(i)
write(9,176)
write(9,206) nt2

206 format(’ n = ’, i6)
write(9,207)

207 format(’ t=linspace(0,1,n)’)
write(9,208)

208 format(’ plot(t,y1,t,y2,t,y3)’)
stop
end
subroutine random(xx,rand)
real*8 xx,a,b,d,rng(2)
real*4 rand(10)
a=16807.
ib=2147483647
b=ib
do 56 j=1,5
do 55 i=1,2
id=a*xx/b
d=id
xx=a*xx-d*b

55 rng(i)=xx/b
pi=3.141592654
u1=rng(1)
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u2=rng(2)
hlp=sqrt(-2.0*alog(u1))
rand(2*j-1)=hlp*cos(pi*2.0*u2)
rand(2*j)=hlp*sin(pi*2.0*u2)

56 continue
return
end
subroutine sqrtm(m,b,c,p)
real*4 b(10,10),c(10),p(10),y1(10),y2(10),s
real*4 y3(10),y4(10),r(10,10),h,anh,s1,aa(10,10)
real*4 a(10,10),f(10),x(10),t

c This subroutine calculates p=sqrt(b)c by solving an IVP.
s=0.0
do 110 i=1,m
do 110 j=1,m

110 s=s + b(i,j)*b(i,j)
s=sqrt(s)
do 115 i=1,m
do 115 j=1,m
a(i,j)=b(i,j)/(s*2.0)
aa(i,j)=-a(i,j)
if(i.eq.j) aa(i,j)=1.0+aa(i,j)

115 continue
c The number of steps depends on integer nh > 1.

nh=2
do 120 i=1,m
y1(i)=c(i)
y2(i)=c(i)
y3(i)=c(i)
y4(i)=c(i)

120 continue
do 125 mh=1,4
nh=nh*2
anh=nh
h=1.0/anh
do 220 i=1,m
y1(i)=y2(i)
y2(i)=y3(i)
y3(i)=y4(i)

220 y4(i)=c(i)
t=-h
do 125 k=1,nh
t=t+h
do 135 i=1,m
s1=0.0
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do 130 j=1,m
r(i,j)=-aa(i,j)*t
if(i.eq.j) r(i,j)=1.0+r(i,j)
s1=s1-.5*aa(i,j)*y4(j)

130 continue
135 f(i)=s1

call linsys(m,f,r,x)
do 140 i=1,m

140 y4(i)=y4(i)+h*x(i)
125 continue

c A fourth-order extrapolation method is applied.
do 150 i=1,m
hlp=64.0*y4(i)-56.0*y3(i)+14.0*y2(i)-y1(i)

150 p(i)=hlp*sqrt(2.0*s)/21.0
return
end
subroutine linsys(m,f,r,x)

c This subroutine solves the linear system rx=f.
real*4 f(10),r(10,10),x(10),hlp,ff(10),rr(10,10)

c Gaussian elimination is used.
do 235 i=1,m
ff(i)=f(i)
do 235 j=1,m

235 rr(i,j)=r(i,j)
if(m.eq.1) goto 237
do 205 k=1,m-1
do 210 i=k+1,m
hlp=rr(i,k)/rr(k,k)
ff(i)=ff(i)-hlp*ff(k)
do 210 j=k,m
rr(i,j)=rr(i,j)-hlp*rr(k,j)

210 continue
205 continue
237 continue

x(m)=ff(m)/rr(m,m)
if(m.eq.1) goto 238
do 215 kk=1,m-1
k=m-kk
hlp=0.0
do 220 j=k+1,m

220 hlp=hlp+rr(k,j)*x(j)
x(k)=(ff(k)-hlp)/rr(k,k)

215 continue
238 continue

return



5.6 Alternate Equivalent SDE Models 213

end
5000 500 1.00 0.02 0.40 0.00 0.03

79.31 6348.07 7.62
37.44 1439.18 6.14
131.17 17246.00 6.43

Program 5.6. A computer program to test goodness-of-fit

This Fortran program tests goodness-of-fit between a stochastic differential
equation model and data. The method of Bak, Nielsen, and Madsen [22]
is used. The program is set up to test two different stochastic differential
equation models for the Aransas-Wood Buffalo whooping crane population
data described in Section 4.9. The program calculates QM values for the two
stochastic differential equation models. For this example, there are n = 47
values of the population size over the years 1939-1985 which are listed in
Table 4.5 and graphed in Fig. 4.2. Output of the program is given following
the program listing.

real*4 x(50),xc(50,20),omega(50)
integer ir(50)
real*8 xx

c This code tests goodness of fit.
n=47

c The method of Bak, Nielsen, and Madsen is used.
data (x(i), i=1,47)/ 18, 22, 26, 16, 19, 21, 18, 22,

* 25, 31, 30, 34, 31, 25, 21, 24, 21, 28, 24, 26, 32,
* 33, 36, 39, 32, 33, 42, 44, 43, 48, 50, 56, 57, 59,
* 51, 49, 49, 57, 69, 72, 75, 76, 78, 73, 73, 75, 86/
do 999 icase=1,2

c Parameter icase =1 or 2 denotes SDE model 1 or 2.
xx=102038.
m=8
h=1.0
do 10 j=1,m+1

10 omega(j)=0.0
kk=4
akk=kk
h=h/akk
do 202 i=2,n
xs=x(i-1)
xe=x(i)
do 202 j=1,m
xk=xs
do 252 k=1,kk
call functs(icase,xk,f,g)
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call random(xx,rand1,rand2)
252 xk=xk+h*f+sqrt(h)*g*rand1

xc(i,j)=xk
202 continue

do 402 i=2,n
irr=1
do 302 j=1,m
xe=x(i)
xcalc=xc(i,j)
if(xe.gt.xcalc) irr=irr+1

302 continue
402 ir(i)=irr

do 502 i=2,n
irr=ir(i)
omega(irr)=omega(irr)+1.0

502 continue
chi2=0.0
an=n
am=m
hlp=(an-1.0)/(am+1.0)
do 602 j=1,m+1

602 chi2=chi2+(omega(j)-hlp)**2/hlp
write(6,100) icase,chi2

100 format(5x,i7,5x,f9.2)
999 continue

stop
end
subroutine functs(icase,x,f,g)
th1=3510.0
th2=13500.0
f=th1/(x*x)
g=th2/(x*x)
if(icase.eq.1) goto 17
th1=.0361
th2=.6090
f=th1*x
g=sqrt(th2*x)

17 continue
return
end
subroutine random(xx,rand1,rand2)
real*8 xx,a,b,d,rng(2)
a=16807.
ib=2147483647
b=ib
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do 55 i=1,2
id=a*xx/b
d=id
xx=a*xx-d*b

55 rng(i)=xx/b
pi=3.141592654
u1=rng(1)
u2=rng(2)
hlp=sqrt(-2.0*alog(u1))
rand1=hlp*cos(pi*2.0*u2)
rand2=hlp*sin(pi*2.0*u2)
return
end

1 18.57
2 4.09
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Basic Notation

ω event, outcome of a random experiment

Ω sample space, set of all possible outcomes

A set of events

P probability measure

(Ω, A, P ) probability space

X or X(ω) random variable

FX(x) probability distribution of X, i.e., P ({ω ∈ Ω : X(ω) ≤ x})

X ∼ U [a, b] X is uniformly distributed on [a, b]

X ∼ N(µ, σ2) X is normally distributed with mean µ and variance σ2

E(X) Expectation of X

Var(X) Variance of X

IA(ω) indicator function

(X, Y ) inner product of X with Y

HRV Hilbert space of random variables

‖X‖RV norm in HRV , i.e., (E(|X|2))1/2

HSP Hilbert space of stochastic processes

‖f‖SP norm in HSP , i.e.,
(∫ T

0 (E(|f(t)|2) dt
)1/2
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224 Basic Notation

R
n n-dimensional real space

X a vector, e.g., [X1, X2, . . . , Xn]T

∆X incremental change [∆X1, ∆X2, . . . , ∆Xn]T

w.p.1 with probability one

p(t, x) probability density

p(y, t, x, s) transition probability density

f(t) or f(t, ω) stochastic process

W (t) or W (t, ω) Wiener process

J(f) or J(f)(ω)
∫ b

a
f(s, ω) ds

J(f)(t) or J(f)(t, ω)
∫ t

a
f(s, ω) ds

I(f) or I(f)(ω)
∫ b

a
f(s, ω) dW (s)

I(f)(t) or I(f)(t, ω)
∫ t

a
f(s, ω) dW (s)

V 1/2 matrix square root, i.e. V 1/2V 1/2 = V

MLE Maximum Likelihood Estimation

SIS Susceptible Infected Susceptible epidemic

SIR Susceptible Infected Removed epidemic

MC Monte Carlo

IVP Initial Value Problem

SDE Stochastic Differential Equation
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A-stable, 112
adapted to, 50
affine model, 177
almost sure convergence, 18, 19
alternate stochastic differential equation

models, 143, 186
Anna, 87
approximation

stochastic differential equation, 99
stochastic integral, 72

backward Kolmogorov equation, 150
Bellman-Gronwall inequality, 94, 101
Best Buy Co., 55
birth-death process, 39
Black-Scholes equation, 178, 197
Black-Scholes formula, 197
Borel set, 3
boundedness of solutions, 93
Box-Muller method, 22
Brownian motion, 42
Brownian sheet, 173

Cauchy-Schwarz inequality, 14, 46
Central Limit Theorem, 20, 35
Chapman-Kolmogorov formula, 35, 41,

45, 57
Chebyshev inequality, 18, 59
Chebyshev-Markov inequality, 18
chemical Langevin equation, 144, 166
chemical molecular model

computer program, 205, 208
chemical reactions, 166
chi-square test, 183

complete, 13, 28
completion, 14
Computer program

chemical reactions, 205, 208
Euler’s method, 127, 129
exit time, 195
goodness-of-fit, 213
integral approximation, 84, 86, 87
Milstein’s method, 127
Monte Carlo, 29, 30
parameter estimation, 130, 131
Poisson process, 59
SIS epidemic, 199, 201, 203
Wiener process trajectories, 57

continuity of solutions, 94
converge weakly, 105
convergence

almost sure, 18
in probability, 18
mean square, 17, 28
strong, 17
weak, 19
with probability one, 18

convergence in probability, 18
covariance matrix, 10

delay equation, 152
dense, 14
diffusion coefficient, 90, 140
drift coefficient, 90, 140

elementary stochastic process, 45, 59
environmental variability, 153
epidemic model, 147, 152
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equivalent models, 186
Euler’s method, 99, 108, 109, 118,

124, 127
Euler-Maruyama method, 99, 187
European call option, 177
event, 2
exact solution, 95
Example

convergence, 19
convergence in HRV , 16
correlated normal variables, 11
correlated random variables, 11
double integral, 79
Euler’s method, 109
exact solution, 98
extrapolation, 105
finding moments, 97
flipping a coin, 2, 3, 5, 11
Fokker-Planck equation, 110
forward Kolmogorov, 37, 38
generating a σ-algebra set, 2
integral approximation, 74
integration, 66
Itô integral, 79
Itô’s formula, 82, 108
Karhunen-Loève expansion, 66
Lebesgue measure, 3
Markov chain, 34
Markov process, 34
maximum likelihood estimation, 120
Milstein’s method, 109
moments, 96, 97
Monte Carlo, 24–26
nonconvergence, 16
nonparametric estimation, 122
normally distributed, 6, 9, 13
one-state model, 140
Poisson distributed, 4, 5, 8, 12, 20, 22
Poisson process, 36, 40, 48, 51
stochastic integral, 71
stochastic processes, 47
uniformly distributed, 6, 9, 12
uniformly distributed points, 11
weak approximation, 106
weak convergence, 19
weighted normed Hilbert space, 16
Wiener process, 41, 48, 51, 52

exit time, 150, 194, 198
expectation, 7

exponentially distributed, 22
extrapolation, 105

fiber breakage, 169
Fokker-Planck equation, 39, 109
forward Kolmogorov equation, 37, 52,

89, 109, 161, 189
Fubini’s theorem, 46

generated, 3
geometric Brownian motion, 177
goodness-of-fit

computer program, 213
test, 183

Hilbert space, 13, 45
HRV , 14
HSP , 46
L2[0, 1], 15
completion, 14

indicator function, 14
interest rate, 180
ion transport, 160
Itô stochastic differential equation, 89
Itô stochastic integral, 67, 69

multiple, 108
Itô stochastic model, 142
Itô’s formula, 74, 76, 82, 85, 95, 107,

108, 123, 126
multidimensional, 82

Karhunen-Loève expansion, 42, 57, 66
Karhunen-Loève expansion, 66
Kolmogorov extension theorem, 44

Law of Large Numbers, 20, 114
Lebesgue measure, 3
linear congruential generator, 20, 28
logistic growth, 150
Lotka-Volterra, 149
Lyapunov function, 117
Lyapunov inequality, 18, 106

Markov chain, 34, 56
homogeneous, 34

matrix square root, 143, 144, 194
Mattel Inc., 55
maximum likelihood estimate, 118
mean square convergence, 19
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method error, 26
Milstein’s method, 102, 108, 109
Model

alternate equivalent, 143, 172, 186
chemical reactions, 166, 192, 197
competition, 194, 198
cricket position, 194
dust particles, 197
environmental variability, 153
epidemic, 147
fiber breakage, 169
finance, 174
interest rate, 180
ion transport, 160
lifeboat position, 199
nuclear reactor dynamics, 161
one-state, 140
option prices, 177
particle transport, 196
population with time delay, 152
precipitation, 165
predator-prey, 149
seed dispersal, 158
SIR, 194
SIS, 147
stock prices, 197, 198
stock-price, 174
two interacting populations, 145
two-state system, 138
vibration, 156
whooping crane population, 122, 185

modeling procedure, 38, 135, 139, 142,
144, 172, 186

moment, 7
Monte Carlo, 23, 29, 149, 164, 173

computer program, 30, 201, 205
integral estimation, 24

Newton’s Law of Cooling, 135
nonanticipating, 50, 64
nonparametric estimate, 121
normally distributed, 7, 13
normed linear space, 13
nuclear reactor dynamics, 161

option prices, 177

parameter estimation, 118
period length, 21

persistence time, 150, 194, 198
Poisson distributed, 4, 6, 8, 12, 22
Poisson process, 36, 40, 41, 48, 51, 59
Polar-Marsaglia method, 23
population dynamics, 53, 145
precipitation, 54, 165
predator-prey model, 149
probability distribution, 5
probability density function, 5
probability mass function, 5
probability measure, 2
probability space, 2
pseudo-random number, 20, 28
pseudoinverse, 188

radioactive decay, 52
rainfall, 54, 165
random experiment, 2
random number, 20
random particle method, 160
random step functions, 46
random variable

continuous, 5
discrete, 5
multiple, 9

realization, 39
reliability function, 150
Richardson extrapolation, 105
rounding errors, 106

sample path, 39, 74, 99
sample space, 2
seed dispersal, 158
set σ-algebra, 2, 27

generated, 3
short rate, 180
simple random function, 14
single-degree-of-freedom system, 156
SIR model, 194
SIS model, 147, 152

computer program, 199, 201, 203
square root of a matrix, 143, 144
stability, 111

asymptotic stochastic stability, 113
mean-square stability, 113
numerical asymptotic stochastic

stability, 115
numerical mean-square stability, 115

standard normal distribution, 7
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statistical error, 26
step function, 68
stiff system, 113
stochastic integral

computer program, 87
stochastic differential, 74
stochastic differential equation

approximation, 99, 127
boundedness of solutions, 93
computer program, 127
continuity of solutions, 94
exact solution, 95, 98
existence, 91
moments, 96, 97
parameter estimation, 118
properties of solutions, 93
uniqueness, 91

stochastic integral, 63, 67
approximation, 26, 72
multiple, 71, 79
properties, 70

stochastic integro-differential
equation, 173

stochastic process, 33
continuous, 39, 56
discrete, 34
elementary, 45

simulation, 50
stock prices, 55, 174
Stratonovich stochastic integral, 80,

84, 85
Stratonovich stochastic model, 142
strong approximation, 105
strong convergence, 17
strong order, 105, 125

time delay, 152
trajectory, 39
triangle inequality, 14, 46

uniformly distributed, 6, 9, 11

variance, 8
vibration, 156
Vlasov-Poisson-Fokker-Planck

equation, 161

weak approximation, 105
weak convergence, 18, 19, 140
weak order, 105
weakly consistent, 140
whooping cranes, 53, 120, 122, 185
Wiener process, 42, 48, 49, 51, 66
wind speed model, 159
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