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Basic Notations

(Ω,F , P ) probability space
R real line
C complex plane
IA indicator function of a set A
D[P ]→ convergence in distribution under the measure P
P→ convergence in probability P
a.s. [P] almost surely under the measure P
P-a.s. almost surely under the measure P
an = o(bn) an

bn
→ 0

an = O(bn) an

bn
is bounded

Xn = oP (bn) Xn

bn

P→ 0
Xn = OP (bn) Xn

bn
is stochastically bounded,

i.e., lim
A→∞

sup
n

P{|Xn

bn
| > A} = 0

end of a proof
A := B A is defined by B
A =: B B is defined by A
≡ identically equal
� absolute continuity of two measures
i.i.d. independent and identically distributed
N (a, b) normal distribution with mean a and variance b
Φ(.) standard normal distribution function
X ∼ F X has the distribution F
w.r.t. with respect to
r.h.s. right hand side
l.h.s. left hand side
a
∨

b maximum of a and b
a
∧

b minimum of a and b



1

Parametric Stochastic Differential Equations

Stochastic differential equations (SDEs) are a natural choice to model the
time evolution of dynamic systems which are subject to random influences (cf.
Arnold (1974), Van Kampen (1981)). For example, in physics the dynamics
of ions in superionic conductors are modelled via Langevin equations (cf.
Dieterich et al. (1980)), and in engineering the dynamics of mechanical devices
are described by differential equations under the influence of process noise as
errors of measurement (cf. Gelb (1974)). Other applications are in biology (cf.
Jennrich and Bright (1976)), medicine (cf. Jones (1984)), econometrics (cf.
Bergstrom (1976, 1988)), finance (cf. Black and Scholes (1973)), geophysics
(cf. Arato (1982)) and oceanography (cf. Adler et al. (1996)).

It is natural that a model contains unknown parameters. We consider the
model as the parametric Itô stochastic differential equation

dXt = μ (θ, t, Xt) dt + σ (ϑ, t, Xt) dWt, t ≥ 0, X0 = ζ

where {Wt, t ≥ 0} is a standard Wiener process, μ : Θ × [0, T ] × R → R,
called the drift coefficient, and σ : Ξ × [0, T ] × R → R

+, called the diffu-
sion coefficient, are known functions except the unknown parameters θ and
ϑ, Θ ⊂ R, Ξ ⊂ R and E(ζ2) < ∞. The drift coefficient is also called the
trend coefficient or damping coefficient or translation coefficient. The diffu-
sion coefficient is also called volatility coefficient. Under local Lipschitz and
the linear growth conditions on the coefficients μ and σ, there exists a unique
strong solution of the above Itô SDE, called the diffusion process or simply a
diffusion, which is a continuous strong Markov semimartingale. The drift and
the diffusion coefficients are respectively the instantaneous mean and instan-
taneous standard deviation of the process. Note that the diffusion coefficient is
almost surely determined by the process, i.e., it can be estimated without any
error if observed continuously throughout a time interval (see Doob (1953),
Genon-Catalot and Jacod (1994)). We assume that the unknown parameter
in the diffusion coefficient ϑ is known and for simplicity only we shall assume
that σ = 1 and our aim is to estimate the unknown parameter θ.
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First we sketch some very popular SDE models.

Bachelier Model
dXt = β dt + σdWt

Black-Scholes Model

dXt = βXt dt + σXtdWt

Ornstein-Uhlenbeck Model

dYt = βXt dt + σdWt

Feller Square root or Cox-Ingersoll-Ross Model

dXt = (α − βXt)dt + σ
√

XtdWt

Radial Ornstein-Uhlenbeck Process

dXt = (αX−1
t − Xt) dt + σdWt

Squared Radial Ornstein-Uhlenbeck Process

dXt = (1 + 2βXt) dt + 2σ
√

XtdWt

Note that Xt the square of the Ornstein-Uhlenbeck process Yt

dYt = βYt dt + σdWt

Chan-Karloyi-Logstaff-Sanders Model

dXt = κ(θ − Xt) dt + σ Xγ
t dWt

Hyperbolic Diffusion

dXt = α
Xt√

1 + X2
t

dt + σdWt

Gompertz Diffusion

dXt = (αXt − βXt log Xt) dt + σXtdWt

Here Xt is the tumor volume which is measured at discrete time, α is the
intrinsic growth rate of the tumor, β is the tumor growth acceleration factor,
and σ is the diffusion coefficient.

The knowledge of the distribution of the estimator may be applied to
evaluate the distribution of other important growing parameters used to access
tumor treatment modalities. Some of these parameters are the plateau of the
model X∞ = exp(α

β ), tumor growth decay, and the first time the growth curve
of the model reaches X∞.
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Logistic Diffusion
Consider the stochastic analogue of the logistic growth model

dXt = (αXt − βX2
t ) dt + σXtdWt

This diffusion is useful for modeling the growth of populations.
Kessler-Sørensen Model

dXt = −θ tan(Xt) dt + σdWt

By applying Itô formula, a diffusion process with some diffusion coefficient
can be reduced to one with unit diffusion coefficient.
Following are most popular short term interest rate models.

Vasicek Model
dXt = (α + βXt)dt + σdWt

Cox-Ingersoll-Ross Model

dXt = (α + βXt)dt + σ
√

XtdWt

Dothan Model
dXt = (α + βXt)dt + σXtdWt

Black-Derman-Toy Model

dXt = β(t)Xtdt + σ(t)XtdWt

Black-Karasinksi Model

d(log Xt) = (α(t) + β(t) log Xt)dt + σtdWt

Ho-Lee Model
dXt = α(t)dt + σdW H

t

Hull-White (Extended Vasicek) Model

dXt = (α(t) + β(t)Xt)dt + σtdWt

Hull-White (Extended CIR) Model

dXt = (α(t) + β(t)Xt)dt + σt

√
XtdWt

Cox-Ingersoll-Ross 1.5 model

dXt = σX
3/2
t dWt

Inverse Square Root Model or Ahn-Gao Model

dXt = β(μ − Xt)Xtdt + σX
3/2
t dWt
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Ait-Sahalia Model

dXt = (α + βXt + γX−1
t + δX2

t )dt + σXγ
t dWt

This a nonlinear interest rate model.
For existence and uniqueness of solutions of finite dimensional stochas-

tic differential equations, properties of stochastic integrals, and diffusion and
diffusion type processes see e.g., the books by McKean (1969), Gikhman and
Skorohod (1972), Itô and McKean (1974), McShane (1974), Arnold (1974),
Friedman (1975), Stroock and Varadhan (1979), Elliot (1982), Ikeda and
Watanabe (1989), Rogers and Williams (1987), Karatzas and Shreve (1987),
Liptser and Shiryayev (1977, 1989), Kunita (1990), Protter (1990), Revuz and
Yor (1991), Øksendal (1995), Krylov (1995), Mao (1997). For numerical analy-
sis and approximations of SDEs see the books by Gard (1988), Kloeden, Platen
and Schurz (1994), Kloeden and Platen (1995) and Milshtein (1995). For ex-
istence, uniqueness of solutions and other properties of infinite dimensional
SDEs see the books by Curtain and Pritchard (1978), Metivier and Pellaumail
(1980), Itô (1984), Walsh (1986) and Kallianpur and Xiong (1995).

The asymptotic approach to statistical estimation is frequently adopted
because of its general applicability and relative simplicity. In this monograph
we study the asymptotic behaviour of several estimators of the unknown para-
meter θ appearing in the drift coefficient based on observations of the diffusion
process {Xt, t ≥ 0} on a time interval [0, T ]. Note that the observation of dif-
fusion can be continuous or discrete. Continuous observation of diffusion is a
mathematical idealization and has a very rich theory, for example Itô stochas-
tic calculus, stochastic filtering, inference for continuously observed diffusions
and much more behind it. But the path of the diffusion process is very kinky
and no measuring device can follow a diffusion trajectory continuously. Hence
the observation is always discrete in practice. Research on discretely observed
diffusions is growing recently with a powerful theory of simulation schemes
and numerical analysis of SDEs behind it.

The asymptotic estimation of θ, based on continuous observation of {Xt}
on [0, T ] can be studied by different limits, for example, T →∞, σ(ϑ, t,Xt)→0,
μ(θ, t,Xt) → ∞, or any combination of these conditions that provide the in-
crease of the integrals

∫ T

0
[μ(θ, t,Xt)σ−1(ϑ, t,Xt)]2dt and

∫ T

0
[μ′(θ, t,Xt)σ−1(ϑ,

t, Xt)]2dt, where prime denotes derivative with respect to θ. Parameter esti-
mation in SDE was first studied by Arato, Kolmogorov and Sinai (1962) who
applied it to a geophysical problem. For long time asymptotics (T → ∞)
of parameter estimation in stochastic differential equations see the books by
Liptser and Shiryayev (1978), Basawa and Prakasa Rao (1980), Arato (1982),
Linkov (1993), Küchler and Sørensen (1997), Prakasa Rao (1999) and Ku-
toyants (1999). For small noise asymptotics (σ → 0) of parameter estimation
see the books by Ibragimov and Khasminskii (1981) and Kutoyants (1984a,
1994a).
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If {Xt} is observed at 0 = t0 < t1 < t2 < ... < tn = T with Δn =
max

1≤i≤n
|ti − ti−1| the asymptotic estimation of θ can be studied by different

limits, for example, Δn → 0, n → ∞ and T → ∞ (or σ → 0) or Δn = Δ
remaining fixed and n → ∞. See Genon-Catalot (1987).

In the infinite dimensional diffusion models there are even different as-
ymptotic frameworks. For example, in a stochastic partial differential equa-
tion, based on continuous observation, asymptotics can also be obtained when
the intensity of noise and the observation time length remain fixed, but the
number of Fourier coefficients in the expansion of the solution random field
increases to infinity. Based on discrete observations, asymptotics can be ob-
tained by this condition along with some sampling design conditions of discrete
observations as in the finite dimensional case.

Our asymptotic framework in this monograph is long time for continuous
observation and decreasing lag time along with increasing observation time
for discrete observations.

The monograph is broadly divided into two parts. The first part
(Chapters 2-6) deals with the estimation of the drift parameter when the diffu-
sion process is observed continuously throughout a time interval. The second
part (Chapters 7-10) is concerned with the estimation of the drift parameter
when the diffusion process is observed at a set of discrete time points.

Asymptotic properties such as weak or strong consistency, asymptotic nor-
mality, asymptotic efficiency etc. of various estimators of drift parameter of Itô
SDEs when observed continuously throughout a time interval, has been stud-
ied extensively during the last three decades. In linear homogeneous SDEs,
maximum likelihood estimation was studied by Taraskin (1974), Brown and
Hewitt (1975a), Kulinich (1975), Lee and Kozin (1977), Feigin (1976, 1979),
Le Breton (1977), Tsitovich (1977), Arato (1978), Bellach (1980, 1983), Le
Breton and Musiela (1984), Musiela (1976, 1984), Sørensen (1992), Küchler
and Sørensen (1994a,b), Jankunas and Khasminskii (1997) and Khasminskii
et al. (1999). In nonlinear homogeneous SDEs maximum likelihood estima-
tion was studied by Kutoyants (1977), Bauer (1980), Prakasa Rao and Rubin
(1981), Bose (1983a, 1986b), Bayes estimation was studied by Kutoyants
(1977), Bauer (1980), Bose (1983b, 1986b), maximum probability estimation
was studied by Prakasa Rao (1982), minimum contrast estimation was stud-
ied by Lanska (1979), M -estimation was studied by Yoshida (1988, 1990),
minimum distance estimation was studied by Dietz and Kutoyants (1997). In
nonlinear nonhomogeneous SDEs maximum likelihood estimation was studied
by Kutoyants (1978, 1984a), Borkar and Bagchi (1982), Mishra and Prakasa
Rao (1985), Dietz (1989) and Levanony, Shwartz and Zeitouni (1993, 1994),
Bayes estimation was studied by Kutoyants (1978, 1984a). For survey of work
in continuously observed diffusions, see Bergstrom (1976), Prakasa Rao (1985),
Barndorff-Neilson and Sørensen (1994) and Prakasa Rao (1999). The following
is a summary of Chapters 1-5.
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In Chapter 2 we start with the historically oldest example of stochastic dif-
ferential equation called the Langevin equation and whose solution is called
the Ornstein-Uhlenbeck (O-U) process. In this case μ(θ, t,X) = θXt. The
first order theory like consistency, asymptotic normality etc. is well known
for this case, see Le Breton (1977), Liptser and Shiryayev (1978). We study
the rate of convergence in consistency and asymptotic normality via the large
deviations probability bound and the Berry-Esseen bound for the minimum
contrast estimator (MCE) of the drift parameter when the process is observed
continuously over [0, T ]. Then we study more general nonlinear ergodic dif-
fusion model and study the Berry-Esseen bound for Bayes estimators. We
also posterior large deviations and posterior Berry-Esseen bound. Mishra and
Prakasa Rao (1985a) obtained O(T−1/5) Berry-Esseen bound and O(T−1/5)
large deviation probability bound for the MLE for the Ornstein-Uhlenbeck
model. For the MLE, Bose (1986a) improved the Berry-Esseen bound to
O(T−1/2(log T )2). (The main result in Bose (1986a) has a misprint and gives
the rate as O(T−1/2), but by following the proof given there it is clear that
the rate is O(T−1/2(log T )2).) Bose (1985) obtained the rate O(T−1/2 log T ).
Bishwal and Bose (1995) improved this rate to O(T−1/2(log T )1/2). For the
MLE, Bishwal (2000a) obtained O(T−1) bound on the large deviation prob-
ability and the Berry-Esseen bound of the order O(T−1/2) using nonrandom
norming. This bound is consistent with the classical i.i.d. situation. Next we
consider nonlinear diffusion model and obtain exponential rate of concentra-
tion of the posterior distribution, suitably normalized and centered at the
MLE, around the true value of the parameter and also O(T−1/2) rate of con-
vergence of posterior distribution to normal distribution. We then establish
o(T−1/2) bound on the equivalence of the MLE and the Bayes estimator,
thereby improving the O(T−3/20) bound in Mishra and Prakasa Rao (1991).
We obtain O(T−1/2) Berry-Esseen bound and O(T−1) bound on the large de-
viation probability of the BEs. This chapter is adapted from Bishwal (2004a)
and Bishwal (2005a).

In Chapter 3 we deal with estimation in nonlinear SDE with the parame-
ter appearing nonlinearly in the drift coefficient, based on continuous obser-
vation of the corresponding diffusion process over an interval [0, T ]. In this
case μ(θ, t,Xt) = f(θ,Xt). We obtain exponential bounds on large deviation
probability for the MLE and regular BEs. The method of proof is due to Ibrag-
imov and Khasminskii (1981). Some examples are presented. This chapter is
adapted from Bishwal (1999a).

In Chapter 4 we study the asymptotic properties of various estimators of
the parameter appearing nonlinearly in the nonhomogeneous drift coefficient
of a functional stochastic differential equation when the corresponding solution
process, called the diffusion type process, is observed over a continuous time
interval [0, T ]. We show that the maximum likelihood estimator, maximum
probability estimator and regular Bayes estimators are strongly consistent
and when suitably normalised, converge to a mixture of normal distribution
and are locally asymptotically minimax in the Hajek-Le Cam sense as T → ∞
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under some regularity conditions. Also we show that posterior distributions,
suitably normalised and centered at the maximum likelihood estimator, con-
verge to a mixture of normal distribution. Further, the maximum likelihood
estimator and the regular Bayes estimators are asymptotically equivalent as
T → ∞. We illustrate the results through the exponential memory Ornstein-
Uhlenbeck process, the nonhomogeneous Ornstein-Uhlenbeck process and the
Kalman-Bucy filter model where the limit distribution of the above estima-
tors and the posteriors is shown to be Cauchy. This chapter is adapted from
Bishwal (2004b).

In Chapter 5 we study estimation of a real valued parameter in infinite
dimensional SDEs based on continuous observation of the diffusion. This area
is relatively young and in our opinion is exciting and difficult. A few contri-
butions in the existing literature are devoted to parameter (finite or infinite
dimensional) estimation in infinite dimensional SDEs see, e.g., Aihara (1992,
1994, 1995), Aihara and Bagchi (1988, 1989, 1991), Bagchi and Borkar (1984),
Loges (1984), Koski and Loges (1985, 1986), Huebner, Khasminskii, Rozovskii
(1992), Huebner (1993), Huebner and Rozovskii (1995), Kim (1996). We con-
sider the drift coefficient as θAXt with A being the infinitesimal generator of
a strongly continuous semigroup acting on a real separable Hilbert space H
and θ real valued. We obtain the Bernstein-von Mises theorem concerning the
normal convergence of the posterior distributions and and strong consistency
and asymptotic normality of the BEs of a parameter appearing linearly in the
drift coefficient of Hilbert space valued SDE when the solution is observed con-
tinuously throughout a time interval [0, T ] and T → ∞. It is also shown that
BEs, for smooth priors and loss functions, are asymptotically equivalent to
the MLE as T → ∞. Finally, the properties of sequential maximum likelihood
estimate of θ are studied when the corresponding diffusion process is observed
until the observed Fisher information of the process exceeds a predetermined
level of precision. In particular, it is shown that the estimate is unbiased,
uniformly normally distributed and efficient. This chapter is adapted from
Bishwal (1999b) and Bishwal (2002a).

In Chapter 6 we consider non-Markovian non-semimartingale models.
Recently long memory processes or stochastic models having long range
dependence phenomena have been paid a lot of attention in view of their
applications in finance, hydrology and computer networks (see Beran (1994),
Mandelbrot (1997), Shiryaev (1999), Rogers (1997), Dhehiche and Eddahbi
(1999)). While parameter estimation in discrete time models having long-
range dependence like the autoregressive fractionally integrated moving aver-
age (ARFIMA) models have already been paid a lot of attention, this problem
for continuous time models is not well settled. Here we study estimation prob-
lem for continuous time long memory processes. This chapter is adapted from
Bishwal (2003a).

Parameter estimation in diffusion processes based on observations at dis-
crete time points is of much more practical importance due to the impossi-
bility of observing diffusions continuously throughout a time interval. Note
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that diffusion process can be observed either at deterministic or at random
sampling instants. For random sampling, e.g., from a point process, the sam-
pling process may be independent of the observation process or may be de-
pendent on it. Also in random sampling scheme, e.g., Poisson sampling (see
Duffie and Glynn (2004)) the inverse estimation problem arises i.e., the esti-
mation of the parameters of the sampling process when the parameters of the
observation process is known. For a survey of earlier works on inference in con-
tinuous time processes based on observations at random sampling schemes see
Stoyanov (1984). Jacod (1993) studied random sampling from a process with
independent increments. Later on this scheme was used by Genon-Catalot
and Jacod (1994) for the estimation of the parameter of the diffusion coeffi-
cient of a diffusion process. Duffie and Glynn (2004) studied the asymptotics
of generalized method of moments estimators for a continuous time Markov
process from observations at random sampling instants. In this monograph
we will only be dealing with deterministic sampling scheme. We assume that
the diffusion process {X(t)} is observed at {0 = t0 < t1 < . . . < tn = T} with
ti − ti−1 = T

n = h → 0, i = 1, 2, . . . , n.
Note that when one observes the process continuously throughout a time

interval the diffusion coefficient is almost surely determined by the process.
But when one has discrete observations, the problem of estimation of the dif-
fusion coefficient also arises. Estimation of the parameter in the diffusion co-
efficient from discrete observations has been studied by Penev (1985), Dohnal
(1987), Genon-Catalot and Jacod (1993), Florens-Zmirou (1993), and others.
However, we will not deal with estimation of the diffusion coefficient in this
monograph.

Drift parameter estimation in diffusion processes based on discrete obser-
vations has been studied by many authors. Le Breton (1976) and Dorogovcev
(1976) appear to be the first persons to study estimation in discretely ob-
served diffusions. While Le Breton (1976) used approximate maximum likeli-
hood estimation, Dorogovcev (1976) used conditional least squares estimation.
Robinson (1977) studied exact maximum likelihood estimation in discretely
observed Ornstein-Uhlenbeck process. Other works on approximate maximum
likelihood estimation (where the continuous likelihood is approximated), also
called the maximum contrast estimation, are Bellach (1983), Genon-Catalot
(1987, 1990), Yoshida (1992), Bishwal and Mishra (1995), Harison (1996),
Clement (1993, 1995, 1997a,b) and Kessler (1997). Dacunha-Castelle and
Florens-Zmirou (1986) studied consistency and asymptotic normality of MLE
by using an expansion of the transition density of an ergodic diffusion. While
ideally one should of course use maximum likelihood, in practice it is difficult
because only in a few cases the transition densities are available. Pedersen
(1995a,b) used numerical approximations based on iterations of the Gaussian
transition densities emanating from the Euler-Maruyama scheme and studied
approximate maximum likelihood estimation. Ait-Sahalia (2002) used Hermite
function expansion of the transition density giving an accurate theoretical ap-
proximation and studied approximate maximum likelihood estimation.



1 Parametric Stochastic Differential Equations 9

In the conditional least squares estimation method (see Hall and Heyde
(1981)) one minimizes the quadratic

Qn(θ) =
n∑

i=1

[
Xti

− Xti−1 − μ(θ, ti−1, Xti−1)Δti
]2

σ2(ti−1, Xti−1)Δti
.

For equally spaced partition 0 = t0 < t1 < . . . < tn = T with Δti =
ti − ti−1 = T

n , i = 1, 2, . . . , n, for the homogeneous stationary ergodic dif-
fusion, Dorogovcev (1976) proved the weak consistency of the CLSE θ̂n,T as
T → ∞ and T

n → 0 which we call the slowly increasing experimental design
(SIED) condition. Kasonga (1988) proved the strong consistency of θ̂n,T as
T → ∞ and T

n → 0. Prakasa Rao (1983) proved the asymptotic normality
and asymptotic efficiency of θ̂n,T as T → ∞ and T√

n
→ 0, called the rapidly

increasing experimental design (RIED) condition (see, Prakasa Rao (1988b)).
Penev (1985) studied the consistency and asymptotic normality of a multidi-
mensional parameter extending Dorogovcev (1976) and Prakasa Rao (1983).
Florens-Zmirou (1989) proved the weak consistency of the minimum contrast
estimator as T → ∞ and T

n → 0. He proved the asymptotic normality of this
estimator as T → ∞ and T

n2/3 → 0 which we call the moderately increasing
experimental design (MIED) condition. The properties of AMLE based on Itô
type approximation of the Girsanov density are studied by Yoshida (1992) by
studying the weak convergence of the approximate likelihood ratio random
field when T → ∞ and T

n2/3 → 0. Genon-Catalot (1990) studied the as-
ymptotic properties of maximum contrast estimators (using contrast function
related to an approximate likelihood) in the nonlinear SDE as the intensity
of noise becomes small and T → ∞. Genon-Catalot et al. (1998a,b) stud-
ied the asymptotic properties of minimum contrast estimator in a stochastic
volatility model that is a partially observed diffusion process. Note that the
estimation methods discussed in this paragraph through different approaches
are equivalent.

There are many other approaches to drift estimation for discretely ob-
served diffusions. Prakasa Rao (1988b, 1999) gave a survey of estimation
in discretely observed stochastic processes. Because of the difficulty in per-
forming accurate maximum likelihood, much research has focussed on finding
alternatives in the form of various estimating functions. Bibby and Sørensen
(1995a, b) allowed T → ∞ and n → ∞ letting ti − ti−1 = Δ(i = 1, 2, . . . , n)
fixed and found approximate martingale estimating functions based on ap-
proximate log-likelihood function and showed that the estimators based on
these estimating functions are consistent and asymptotically normal as n →
∞. Other estimating functions have also been proposed in the literature, e.g.,
estimating functions based on eigenvalues (see Kessler and Sørensen (1999))
and simple, explicit estimating functions (see Kessler (2000)). Sørensen, H.
(2001, 2004), Sørensen, M. (1997, 1999) and Jacobsen (2002) also studied dis-
cretely observed diffusions through estimating functions. Bibby and Sørensen
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(1995b) gave a review of martingale estimating functions based on discretely
observed diffusions. Pedersen (1994) used quasi-likelihood approach for mar-
tingale estimating functions. McLeish and Kolkiewicz (1997) proposed method
of estimation based on higher order Itô-Taylor expansion.

Lo (1988) studied the maximum likelihood estimation (both based on ex-
act likelihood function based on transition densities and also on approximate
discretized model) of a jump-diffusion process. Laredo (1990) studied the as-
ymptotic sufficiency property of incomplete observations of a diffusion process
which include discrete observations and studied consistency and asymptotic
normality of the minimum contrast estimator. Sørensen (1992) studied the
properties of estimates based on discrete observations from a linear SDE
by embedding the discrete process into the continuous one. Kloeden et al.
(1992) studied the effect of discretization on drift estimation. Gouriéroux
et al. (1993), Gouriéroux and Monfort (1994) and Broze et al. (1998) stud-
ied the properties of estimates by indirect inference method. Overbeck and
Ryden (1997) studied the asymptotics of the MLE and the CLSE in the
Cox-Ingersoll-Ross model whose solution is a Bessel process. Gallant and Long
(1997) showed the asymptotic properties of minimum chi-squared estimator
as the moment function entering the chi-squared criterion and the number of
past observations entering each moment function increase. Elerian et al. (2001)
studied Bayesian estimation in nonlinear SDEs through a MCMC method us-
ing the Euler-Maruyama discretization scheme. The following is a summary
of Chapters 7-10.

In Chapter 7 we assume μ(θ, t,Xt) = θf(Xt). If complete (continuous)
observation were available, a desirable estimate would be the maximum likeli-
hood estimate. Based on discrete observations, one approach of finding a good
estimate would to try to find an estimate which is as close as possible to the
continuous MLE. For further refinement, one should measure the loss of infor-
mation due to discretization. For the Ornstein-Uhlenbeck process, Le Breton
(1976) proposed an approximate maximum likelihood estimator (AMLE) and
showed that the difference between his AMLE and the continuous MLE is of
the order OP ((T 2

n )1/2). We obtain several AMLEs with faster rates of conver-
gence than that of Le Breton (1976). For this purpose first we obtain several
higher order discrete approximations of the Fisk-Stratonovich integral. We
use these approximations and the rectangular rule ordinary integral approx-
imation to obtain different AMLEs. Interalia we introduce a new stochastic
integral which will be of independent interest.

In Chapter 8 we return to the Ornstein-Uhlenbeck process, i.e., μ(θ, t,Xt) =
θXt and we investigate the asymptotic properties of the conditional least
squares estimator (CLSE) (see Hall and Heyde (1981)) as T → ∞ and T

n → 0.
For the homogeneous nonlinear stationary ergodic case, i.e., μ(θ, t,X) =
f(θ,Xt) under some regularity conditions Dorogovcev (1976) showed that the
weak consistency and Kasonga (1988) showed the strong consistency of the
CLSE as T → ∞ and Prakasa Rao (1983) showed that one needs T → ∞
and T√

n
→ 0 as n → ∞. This means that one needs larger number of obser-
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vations to obtain asymptotic normality of the CLSE than for consistency.
Till date no approximation results are known for this estimator. We ob-
tain Berry-Esseen bound of the order O(max(T−1/2(log T )1/2, T 2

n (log T )−1,
T 2

n (log T )−1)) for this estimator using nonrandom and parameter free ran-
dom nomings. Using parameter dependent random norming, we obtain the
rate O(T−1/2

∨
(T 2

n )1/3). We also obtain large deviation probability bound
for the CLSE. Its rate of convergence to the continuous MLE for fixed T ,
is of the order OP (T 2

n )1/2. We study another approximate MLE here whose
Berry-Esseen bound is of the order O(T−1/2(log T )1/2

∨
T 4

n2 (log T )−1) using
nonrandom and sample dependent random normings. With a random norm-
ing which is parameter dependent the Berry-Esseen bound is shown to be of
the order O(T−1/2

∨
(T

n )2/3)) and its rate of convergence to the continuous
MLE is of the order OP (T 2

n ). From the above result it is clear that one needs
T → ∞ and T

n2/3 → 0 as n → ∞ for the asymptotic normality of the AMLE
and the AMLE has a faster rate of convergence than CLSE. This chapter is
adapted from Bishwal and Bose (2001) and Bishwal (2006a).

In Chapter 9 we consider discretely observed SDE with homogeneous sta-
tionary ergodic solution where the parameter and the process appear nonlin-
early in the drift coefficient, i.e., μ(θ, t,Xt) = f(θ,Xt). Asymptotic normality
of approximate MLEs, approximate Bayes estimators and approximate max-
imum probability estimators of the drift parameter based on two different
approximate likelihoods are obtained via the study of weak convergence of
the approximate likelihood ratio random fields. Also the Bernstein-von Mises
type theorems with the two approximate likelihoods are studied. Asymptotic
properties of conditional least squares estimator are studied via the weak
convergence of the least squares random field. We relax to some extent the
regularity conditions and the RIED condition used by Prakasa Rao (1983)
who obtained asymptotic normality through the usual normal equations and
Cramer’s approach. Instead we use the moderately increasing experimental
design (MIED) condition, i.e., T → ∞ and T

n2/3 → 0 as n → ∞. This chapter
is adapted from Bishwal (1999c) and Bishwal (2005b).

In Chapter 10 we show that discretization after the application of Itô for-
mula in the Girsanov likelihood produces estimators of the drift which have
faster rates of convergence than the Euler estimator for stationary ergodic
diffusions and is free of approximating the stochastic integral. The discretiza-
tion schemes are related to the Hausdorff moment problem. We show strong
consistency, asymptotic normality and a Berry-Esseen bound for the corre-
sponding approximate maximum likelihood estimators of the drift parameter
from high frequency data observed over a long time period. This chapter is
adapted from Bishwal (2007a).
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Continuous Sampling



2

Rates of Weak Convergence of Estimators
in Homogeneous Diffusions

2.1 Introduction

Let (Ω,F , {Ft}t≥0, P ) be a complete filtered probability space where the
filtration {Ft}t≥0 satisfies the usual hypotheses:

(i) nondecreasing, i.e., Fs ⊆ Ft ⊂ F for s ≤ t;
(ii) right continuity i.e., Ft = Ft+ = ∩

u>t
Fu;

(iii) completeness, i.e., F0 contains all the P -null sets of F .

Such a complete filtered probability space satisfying the usual hypotheses
is called a stochastic basis.

On the stochastic basis (Ω,F , {Ft}t≥0, P ) define the Ornstein-Uhlenbeck
process {Xt} satisfying the stochastic differential equation

dXt = −θXtdt + dWt, X0 = 0 (1.1)

where {Wt} is a standard Wiener process with respect to the filtration
{Ft}t≥0. Here θ ∈ Θ ⊆ R

+ is the unknown parameter to be estimated on
the basis of continuous observation of the process {Xt} on the time interval
[0, T ].

Model (1.1) is historically the oldest example of SDE known as the
Langevin equation. One may think of X as being the speed of a particle of
mass m which, at time t, is subjected to a force composed of two parts, a
frictional force −mθXt and a fluctuating force, formally written as mdWt

dt , so
that equation (1.1) is, formally, nothing else but Newton’s law. Alternatively,
one may think of X as the prevailing short term interest rate in a term-
structure model. It is also known as Vasicek model in financial literature. This
is a homogeneous linear model and is the continuous version of the first order
Gaussian autoregressive process. If X0 is normally distributed or a constant,
then the solution {Xt} is a Gaussian process.
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It is well known that the maximum likelihood estimator (MLE) and Bayes
estimators (BEs) (for smooth prior and loss functions) are strongly consis-
tent and asymptotically normally distributed as T → ∞ (see Basawa and
Prakasa Rao (1980), Prakasa Rao (1999)). We obtain the rates of convergence
in asymptotic normality, i.e., Berry-Esseen bound for the pseudo MLE in
Theorem 2.5. The asymptotic normality of the posterior distribution, i.e., the
Bernstein-von Mises theorem is also well known for this model (see Basawa
and Prakasa Rao (1980)). We obtain rate of convergence in posterior con-
sistency in Theorem 4.2 and Theorem 4.3. Rate of convergence in posterior
asymptotic normality is obtained in Theorem 4.9. We obtain a bound on the
equivalence of the MLE and the Bayes estimators in Theorem 5.10. Finally
for Bayes estimators we obtain large deviation bound in Theorem 5.7 and
Berry-Esseen bound in Theorem 5.11. Our results show that the MLE and
the Bayes estimators have the same rates of convergence.

The Chapter is organized as follows: In Section 2.2 we obtain different
rates of convergence of the MCE to the normal distribution with nonrandom
norming extending the methods of Pfanzagl (1971) developed in the context of
i.i.d. situation for minimum contrast estimates. Also we obtain large deviation
bound for the MLE in this Section. In Section 2.3 we obtain the rate of conver-
gence in posterior consistency and posterior asymptotic normality extending
the methods of Strasser (1977) developed for the i.i.d. case. In Section 2.4
we obtain bounds on the large deviation probability for the Bayes estimator,
bound on the asymptotic equivalence of the MLE and the Bayes estimators
and the Berry-Esseen bound for the Bayes estimator extending the methods
of Strasser (1977) who obtained the results for the i.i.d. case.

We begin with some preliminary lemmas. Lemma 1.1 (a) is well known and
a proof of part (b) may be found in Michel and Pfanzagl (1971). Throughout
the Chapter C denotes a generic constant (perhaps depending on θ, but not
on anything else).

Lemma 1.1 Let X,Y and Z be arbitrary random variables on a probability
space and P (Z > 0) = 1. Then for all ε > 0,

(a) sup
x∈R

|P {X + Y ≤ x} − ϕ(x)| ≤ sup
x∈R

|P {X ≤ x} − Φ(x)|+P {|Y | > ε}+ε.

(b) sup
x∈R

∣∣∣∣P
(

Y

Z
≤ x

)
− Φ(x)

∣∣∣∣ ≤ sup
x∈R

|P (Y ≤ x) − Φ(x)| + P (|Z − 1| > ε) + ε.

This chapter is adapted from Bishwal (2004a) and Bishwal (2005a).

2.2 Berry-Esseen Bounds for Estimators
in the Ornstein-Uhlenbeck Process

Let us denote the realization {Xt, 0 ≤ t ≤ T} by XT
0 . Let PT

θ be the measure
generated on the space (CT , BT ) of continuous functions on [0, T ] with the
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associated Borel σ-algebra BT generated under the supremum norm by the
process XT

0 and PT
0 be the standard Wiener measure. PT

θ is absolutely con-
tinuous with respect to PT

0 and the Radon-Nikodym derivative (likelihood) of
PT

θ with respect to PT
0 based on XT

0 is given by

LT (θ) :=
dPT

θ

dPT
0

(XT
0 ) = exp

{
−θ

∫ T

0

XtdXt − θ2

2

∫ T

0

X2
t dt

}
. (2.1)

Maximizing the log-likelihood with respect to θ provides the maximum likeli-
hood estimate (MLE)

θT = −
∫ T

0
XtdXt∫ T

0
X2

t dt
. (2.2)

θT is strongly consistent and T 1/2(θT −θ) asymptotically N (0, 1
2θ ) distributed

as T → ∞ (see Le Breton (1977) and Basawa and Prakasa Rao (1980)).
Note that (

T

2θ

)1/2

(θT − θ) = −
(

2θ
T

)1/2
ZT(

2θ
T

)
IT

. (2.3)

where

ZT =
∫ T

0

XtdWt and IT =
∫ T

0

X2
t dt.

IT is called the energy of the O-U process. In (2.3), the numerator of the
normalized MLE is a normalized martingale which converges in distribution
to the standard normal variable and the denominator is its corresponding
normalized increasing process which converges to one almost surely as T → ∞.

The Berry-Esseen rate for the ratio of two processes can be split up into
two components: the Berry-Esseen rate for the numerator and, the rate of con-
vergence of the denominator to one (see Lemma 1.1 (b)). For the Berry-Esseen
bound of the MLE θT using norming given in (2.3), Mishra and Prakasa Rao
(1985a) used this approach. For the normal approximation of the numerator,
they embedded it in a Brownian motion by Kunita-Watanabe theorem and
used Lemma 3.2 of Hall and Heyde (1980) on the Berry-Esseen bound for the
Brownian motion with random time. For the convergence of the denominator
to one, they used Chebyshev’s inequality. These led to the rate O(T−1/5). One
can use Burkholder inequality for the convergence of the denominator to one
to improve this rate to O(T−1/4 + ε), ε > 0. Note that using Skorohod embed-
ding method, one can not obtain a rate better than O(T−1/4. Bose (1986a)
used characteristic function followed by Esseen’s lemma for the numerator.
The denominator was linked with the numerator via Itô formula. He obtained
the rate O(T−1/2(log T )2). (Theorem 3.4 in Bose (1986a) has a misprint and
gives the rate as O(T−1/2), but by following the proof given there it is clear
that the rate is O(T−1/2(log T )2).)

A slight improvement in this bound is possible in the following way. Bose
(1985) linked the denominator with the numerator by Itô formula and using
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Lemma 1.1 obtained the rate O(T−1/2(log T )). Bose (1986a) has shown that
the rate of convergence to normality of the numerator is O(T−1/2). For the
convergence of the denominator to one, in Bishwal and Bose (1995) we obtain
exponential bound using the moment generating function of the denominator.
Using these two together and Lemma 1.1, in Bishwal and Bose (1995) we im-
proved the rate to O(T−1/2(log T )1/2). Note that using the splitting technique,
i.e., Lemma 1.1, one can not obtain a rate better than O(T−1/2(log T )1/2) as
is evident from the i.i.d. case of Michel and Pfanzagl (1971), who obtained
the rate O(n−1/2(log n)1/2) where n is the number of observations.

Note that the norming in (2.3) depends on the unknown parameter. One
may also use random normings, for two reasons. First, this may lead to an im-
proved rate of convergence. Second, if the purpose is to obtain an approximate
confidence interval then note that the pivot (2.3) when inverted will yield a
confidence set but not necessarily a confidence interval. Bishwal (2001) the
rate of convergence with appropriate random normings. The same rate as
above is also obtained using different random normings.

Consider the score function, the derivative of the log-likelihood function,
which is given by

YT (θ) :=
∫ T

0

XtdXt − θ

∫ T

0

X2
t dt. (2.4)

A solution of YT (θ) = 0 provides the maximum likelihood estimate θT .
Strictly speaking, θT is not the maximum likelihood estimate of θ since θ̂T

may take negative values where as the parameter θ is assumed to be strictly
positive. For an exact definition of MLE, see Kutoyants (1994). Nevertheless,
we use this terminology. It is well known that θT is strongly consistent and
T 1/2(θT − θ) asymptotically N (0, 2θ) distributed as T → ∞ (see Kutoyants
(1994) and Prakasa Rao (1999)). Beyond the first order asymptotics, Bishwal
(2000a) obtained the rate of normal approximation of the order O(T−1/2) for
the MLE thereby improving O(T−1/5) rate of Mishra and Prakasa Rao (1985)
and O(T−1/2(log T )1/2) rate of Bishwal and Bose (1995). As far as the order
of T is concerned, O(T−1/2) rate is the sharpest rate one could expect since
the norming is T 1/2. Bishwal (2000b) obtained rate of normal approximation
of the order O(T−1/2) for posterior distributions and Bayes estimators, with
smooth priors and loss functions. Bishwal (2000a, b) used parameter depen-
dent nonrandom norming. Bishwal (2001) obtained normal approximation of
the order O(T−1/2) for the MLE and Bayes estimators using two different
random normings which are useful for computation of a confidence interval.

Using Itô formula (see Friedman (1975)), the score function YT (θ) can be
written as

YT (θ) = −1
2
X2

T −
∫ T

0

(θX2
t − 1

2
)dt. (2.5)
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Consider the estimating function

MT (θ) =
∫ T

0

(θX2
t − 1

2
)dt (2.6)

and the minimum contrast estimate (MCE)

θ̂T :=
T

2
∫ T

0
X2

t dt.
(2.7)

This estimator is simpler than the maximum likelihood estimator. The MCE
does not involve stochastic integral unlike the MLE. The M -estimator is re-
duced to the minimum contrast estimator. It is well known that θ̂T is strongly
consistent and asymptoticaly N (0, 2θ) distributed as T → ∞ (see Lanksa
(1979)). The large deviations of θ̂T and θ̂T were obtained in Florens-Landais
and Pham (1999). In particular, it was shown the large deviation probabilities
of θ̂T are identical to those of θ̂T for θ ≥ θ0/3 but weaker for θ < θ0/3 where
θ0 is the true value of the parameter. However, as far as the rate of normal
approximation is concerned, we show that θ̂T and θ̂T have the same normal
approximation rate of the order O(T−1/2).

Note that using the Skorohod embedding of martingale, which has, since
long, been the basic tool for normal approximation of martingales, will not
give a rate better than O(T−1/4) (see Borokov (1973)). To obtain the rate of
normal approximation of the order O(T−1/2), we adopt the Fourier method
followed by the squeezing technique of Pfanzagl (1971) and Michel (1973)
developed for the minimum contrast estimator in the i.i.d. case.

Observe that (
T

2θ

)1/2

(θ̂T − θ) =

(
2θ
T

)1/2
NT(

2θ
T

)
IT

(2.8)

where

NT := θIT − T

2
and IT :=

∫ T

0

X2
t dt.

Our aim in this Section is to obtain the rate of convergence to normality,
i.e., the bounds for sup

x∈R

|P{rT (θT − θ) ≤ x} − Φ(x)| where rT is a suitable

norming increasing to ∞ as T → ∞. Here Φ(·) is the standard normal cum-
mulative distribution function. Such bounds are called Berry-Esseen bounds.

In order to obtain the optimum rate, we use the squeezing technique de-
veloped by Pfanzagl (1971) for the minimum contrast estimators in the i.i.d.
case. Using this technique, we improve the Berry-Esseen bound for θT to
O(T−1/2). This is the sharpest rate one could hope for, since in the case of n
i.i.d. observations the rate of convergence in the usual central limit theorem
is O(n−1/2).

Let Φ(·) denote the standard normal distribution function. Throughout the
chapter, C denotes a generic constant (which does not depend on T and x).
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We start with some preliminary lemmas.

Lemma 2.1 (Bishwal (2000a)) For every δ > 0,

P

{∣∣∣∣
(

2θ

T

)
IT − 1

∣∣∣∣ ≥ δ

}
≤ CT−1δ−2.

Lemma 2.2 (Bishwal (2000a))

sup
x∈R

∣∣∣∣∣P
{(

2θ

T

)1/2

NT ≤ x

}
− Φ(x)

∣∣∣∣∣ ≤ C T−1/2.

The following lemma gives the error rate on the difference of the charac-
teristic function of the denominator of the MCE and the normal characteristic
function.

Lemma 2.3 (a) (Bishwal (2000a)) Let φT (z1) := E exp(z1IT ), z1 ∈ C. Then
φT (z1) exists for |z1| ≤ δ, for some δ > 0 and is given by

φT (z1) = exp
(

θT

2

)[
2γ

(γ − θ)e−γT + (γ + θ)eγT

]1/2

where γ = (θ2 − 2z1)1/2 and we choose the principal branch of the square
root.
(b) Let HT,x :=

(
2θ
T

)1/2
NT − ( 2θ

T IT − 1
)
x.

Then for |x| ≤ 2(log T )1/2 and for |u| ≤ εT 1/2, where ε is sufficiently small∣∣∣∣E exp(iuHT,x) − exp(
−u2

2
)
∣∣∣∣ ≤ C exp(

−u2

4
)(|u| + |u|3)T−1/2.

Proof: Note that part (a) is a Cameron-martin type formula. To prove (b),
observe that

E exp(iuHT,x)

= E exp

[
−iu

(
2θ

T

)1/2

NT − iu

(
2θ

T
IT − 1

)
x

]

= E exp

[
−iu

(
2θ

T

)1/2{
θIT − T

2

}
− iu

(
2θ

T
IT − 1

)
x

]

= E exp(z1IT + z3)
= exp(z3)φT (z1)

where z1 := −iuθδT,x, and z3 := iuT
2 δT,x with δT,x :=

(
2θ
T

)1/2
+ 2x

T .
Note that φT (z1) satisfies the conditions of (a) by choosing ε sufficiently
small. Let α1,T (u), α2,T (u), α3,T (u) and α4,T (u) be functions which are
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O(|u|T−1/2), O(|u|2T−1/2), O(|u|3T−3/2) and O(|u|3T−1/2) respectively. Note
that for the given range of values of x and u, the conditions on z1 for part (a)

of Lemma are satisfied. Further, with βT (u) := 1 + iu
δT,x

θ + u2δ2
T,x

2θ2 ,

γ = (θ2 − 2z1)1/2

= θ

[
1 − z1

θ2
− z2

1

2θ4
+

z3
1

2θ8
+ · · ·

]

= θ

[
1 + iu

δT,x

θ
+

u2δ2
T,x

2θ2
+

iu3δ3
T,x

2θ3
+ · · ·

]

= θ[1 + α1,T (u) + α2,T (u) + α3,T (u)]

= θβT (u) + α3,T (u)

= θ[1 + α1,T (u)].

Thus
γ − θ = α1,T , γ + θ = 2θ + α1,T .

Hence the above expectation equals

exp
(

z3 +
θT

2

)
[2θβT (u) + α3,T (u)]1/2

× [α1,T exp{−θTβT (u) + α4,T (u)}
+(2θ + α1,T (u)) exp{θTβT (u) + α4,T (u)}]−1/2

= [1 + α1,T (u)]1/2 [α1,T exp(χT (u)) + (1 + α1,T (u)) exp(ψT (t))]−1/2

where

χT (u) =: −θTβT (u) + α4,T (u) − 2z3 − θT

= −2θT + α1,T (u) + t2α1,T (u).

and

ψT (u) =: θTβT (u) + α4,T (u) − 2z3 − θT

= θT

[
1 + iu

δT,x

θ
+

u2δ2
T,x

2θ2

]
+ α4,T (u) − iuTδT,x − θT

=
u2T

2θ

[(
2θ

T

)1/2

+
2x

T

]2

= u2 + u2α1,T (u).

Hence, for the given range of values of u, χT (t) − ψT (u) ≤ −θT .
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Hence the above expectation equals

exp(−u2

2
)(1 + α1,T )1/2

[
α1,T exp{−2θT + α1,T + t2α1,T }

+ (1 + α1,T (t)) exp{t2α1,T (t)}]−1/2

= exp(−u2

2
)
[
1 + α1,T )(1 + α1,T (1 + α1,T ) exp{−θT + α1,T + t2α1,T }

]
exp(u2α1,T (u)).

This completes the proof of the lemma.

To obtain the rate of normal approximation for the MCE, we need the
following estimate on the tail behavior of the MCE.

Lemma 2.4

P

{
(
T

2θ
)1/2|θ̂T − θ| ≥ 2(log T )1/2

}
≤ CT−1/2.

Proof: Observe that

P

{
(
T

2θ
)1/2|θ̂T − θ| ≥ 2(log T )1/2

}

= P

{∣∣∣∣∣ (
2θ
T )1/2NT

( 2θ
T )IT

∣∣∣∣∣ ≥ 2(log T )1/2

}

≤ P

{∣∣∣∣(2θ

T
)1/2NT

∣∣∣∣ ≥ (log T )1/2

}
+ P

{∣∣∣∣2θ

T
IT

∣∣∣∣ ≤ 1
2

}

≤
∣∣∣∣P
{

(
2θ

T
)1/2|NT | ≥ (log T )1/2

}
− 2Φ(−(log T )1/2)

∣∣∣∣
+2Φ(−(log T )1/2) + P

{∣∣∣∣2θ

T
IT − 1

∣∣∣∣ ≥ 1
2

}

≤ sup
x∈R

∣∣∣∣P
{

(
2θ

T
)1/2|NT | ≥ x

}
− 2Φ(−x)

∣∣∣∣
≤ sup

x∈R

∣∣∣∣P
{

(
2θ

T
)1/2|NT | ≥ x

}
− 2Φ(−x)

∣∣∣∣
+2Φ(−(log T )1/2) + P

{∣∣∣∣(2θ

T
)IT − 1

∣∣∣∣ ≥ 1
2

}

≤ CT−1/2 + C(T log T )−1/2 + CT−1

≤ CT−1/2.
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The bounds for the first and the third terms come from Lemma 2.2 and Lemma
2.1 respectively and that for the middle term comes from Feller (1957, p. 166).

Now we are ready to obtain the uniform rate of normal approximation of the
distribution of the MCE.

Theorem 2.5

sup
x∈R

∣∣∣∣P
{

(
T

2θ
)1/2(θ̂T − θ) ≤ x

}
− Φ(x)

∣∣∣∣ ≤ CθT
−1/2.

Proof: We shall consider two possibilities (i) and (ii).
(i) |x| > 2(log T )1/2.
We shall give a proof for the case x > 2(log T )1/2. The proof for the case
x < −2(log T )1/2 runs similarly. Note that∣∣∣∣P

{
(
T

2θ
)1/2(θ̂T − θ) ≤ x

}
− Φ(x)

∣∣∣∣ ≤ P

{
(
T

2θ
)1/2(θ̂T − θ) ≥ x

}
+ Φ(−x).

But Φ(−x) ≤ Φ(−2(log T )1/2) ≤ CT−2. See Feller (1957, p. 166).
Moreover by Lemma 2.4, we have

P

{
(
T

2θ
)1/2(θ̂T − θ) ≥ 2(log T )1/2

}
≤ CT−1/2.

Hence ∣∣∣∣P
{

(
T

2θ
)1/2(θ̂T − θ) ≤ x

}
− Φ(x)

∣∣∣∣ ≤ CT−1/2.

(ii) |x| ≤ 2(log T )1/2.

Let AT :=
{

(
T

2θ
)1/2|θ̂T − θ| ≤ 2(log T )1/2

}
and BT :=

{
IT

T
> c0

}

where 0 < c0 < 1
2θ . By Lemma 2.4, we have

P (Ac
T ) ≤ CT−1/2. (2.9)

By Lemma 2.1, we have

P (Bc
T ) = P

{
2θ

T
IT − 1 < 2θc0 − 1

}
< P

{
|2θ

T
IT − 1| > 1 − 2θc0

}
≤ CT−1.

(2.10)
Let b0 be some positive number. On the set AT ∩ BT for all T > T0 with
4b0(log T0)1/2( 2θ

T0
)1/2 ≤ c0, we have

(
T

2θ
)1/2(θ̂T − θ) ≤ x
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⇒ IT + b0T (θ̂T − θ) < IT + (
T

2θ
)1/22b0θx

⇒ (
T

2θ
)1/2(θ̂T − θ)[IT + b0T (θT − θ)] < x[IT + (

T

2θ
)1/22b0θx]

⇒ (θ̂T − θ)IT + b0T (θT − θ)2 < (
2θ

T
)1/2IT x + 2b0θx

2

⇒ −NT + (θ̂T − θ)IT + b0T (θ̂T − θ)2 < −NT + (
2θ

T
)1/2IT x + 2b0θx

2

⇒ 0 < −NT + (
2θ

T
)1/2IT x + 2b0θx

2

since

IT + b0T (θT − θ)
> Tc0 + b0T (θT − θ)

> 4b0(log T )1/2(
2θ

T
)1/2 − 2b0(log T )1/2(

2θ

T
)1/2

= 2b0(log T )1/2(
2θ

T
)1/2 > 0.

On the other hand, on the set AT ∩ BT for all T > T0 with 4b0(log T0)1/2

( 2θ
T0

)1/2 ≤ c0, we have

(
T

2θ
)1/2(θT − θ) > x

⇒ IT − b0T (θ̂T − θ) < IT − (
T

2θ
)1/22b0θx

⇒ (
T

2θ
)1/2(θ̂T − θ)[IT − b0T (θT − θ)] > x[IT − (

T

2θ
)1/22b0θx]

⇒ (θ̂T − θ)IT − b0T (θ̂T − θ)2 > (
2θ

T
)1/2IT x − 2b0θx

2

⇒ −NT + (θ̂T − θ)IT − b0T (θT − θ)2 > −NT + (
2θ

T
)1/2IT x − 2b0θx

2

⇒ 0 > −NT + (
2θ

T
)1/2IT x − 2b0θx

2

since

IT − b0T (θ̂T − θ)

> Tc0 − b0T (θ̂T − θ)

> 4b0(log T )1/2(
2θ

T
)1/2 − 2b0(log T )1/2(

2θ

T
)1/2

= 2b0(log T )1/2(
2θ

T
)1/2 > 0.
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Hence

0 < −NT + (
2θ

T
)1/2IT x − 2b0θx

2 ⇒ (
T

2θ
)1/2(θT − θ) ≤ x.

Letting D±
T,x :=

{−NT + (2θ
T )1/2IT x ± 2b0θx

2 > 0
}

, we obtain

D−
T,x∩AT ∩BT ⊆ AT ∩BT∩

{
(
T

2θ
)1/2(θT − θ) ≤ x

}
⊆ D+

T,x∩AT ∩BT . (2.11)

If it is shown that ∣∣∣P {D±
T,x

}
− Φ(x)

∣∣∣ ≤ CT−1/2 (2.12)

for all T > T0 and |x| ≤ 2(log T )1/2, then the theorem would follow from (2.9)
- (2.12).

We shall prove (2.12) for D+
T,x. The proof for D−

T,x is analogous.
Observe that∣∣∣P {D+

T,x

}
− Φ(x)

∣∣∣
=
∣∣∣∣P
{

(
2θ

T
)1/2NT −

(
2θ

T
IT − 1

)
x < x + 2(

2θ

T
)1/2b0θx

2

}
− Φ(x)

∣∣∣∣
≤ sup

y∈R

∣∣∣∣P
{

(
2θ

T
)1/2NT −

(
2θ

T
IT − 1

)
x ≤ y

}
− Φ(y)

∣∣∣∣
+
∣∣Φ (x + (2θ

T )1/2b0θx
2
)− Φ(x)

∣∣
=: Δ1 + Δ2.

(2.13)

Lemma 2.3 (b) and Esseen’s lemma immediately yield

Δ1 ≤ CT−1/2. (2.14)

On the other hand, for all T > T0,

Δ2 ≤ 2(
2θ

T
)1/2b0θx

2(2π)−1/2 exp(−x2/2)

where
|x − x| ≤ 2(

2θ

T
)1/2b0θx

2.

Since |x| ≤ 2(log T )1/2, it follows that |x̄| > |x|/2 for all T > T0 and conse-
quently

Δ2 ≤ 2(
2θ

T
)1/2b0θx

2(2π)−1/2x2 exp(−x2/8)

≤ CT−1/2.
(2.15)

From (2.13) - (2.15), we obtain∣∣∣P {D+
T,x

}
− Φ(x)

∣∣∣ ≤ CT−1/2.

This completes the proof of the theorem.
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Remarks

(1) The rate in Theorem 2.5 is uniform over compact subsets of the parameter
space.

(2) The rates of normal approximation of the conditional least squares esti-
mator and an approximate maximum likelihood estimator when the O-U
process is observed at discrete time points in [0, T ] has been studied in
Bishwal and Bose (2001). The rate of normal approximation for some ap-
proximate minimum contrast estimators based on discrete observations of
the O-U process has been studied in Bishwal (2006a).

(3) It remains to investigate the nonuniform rates of convergence to normality
which are more useful.

2.3 Rates of Convergence in the Bernstein-von Mises
Theorem for Ergodic Diffusions

In this section and the next section rates of convergence in consistency and
asymptotic normality of the posterior distributions and regular Bayes estima-
tors, for smooth priors and loss functions, of the drift parameter in an ergodic
diffusion process satisfying a nonlinear Itô stochastic differential equation ob-
served continuously over [0, T ] are obtained as T → ∞ using the uniform
nondegeneracy of the Malliavin covariance which plays the analogous role as
the Cramer condition plays in the independent observation case.

First order asymptotic theory of estimation in diffusion processes is well
developed now, see Liptser and Shiryayev (1977, 1978), Basawa and Prakasa
Rao (1980), Kutoyants (1984, 1994, 1999) and Prakasa Rao (1999). Second
order theory for diffusion processes is still in its infancy.

Let (Ω,F , {Ft}t≥0, P ) be a stochastic basis satisfying the usual conditions
on which is defined a diffusion process Xt satisfying the Itô stochastic differ-
ential equation

dXt = f(θ,Xt)dt + dWt, t ≥ 0, X0 = ξ (3.1)

where {Wt} is a standard Wiener process with respect to the filtration
{Ft}t≥0,
f : Θ×R → R is a known function except θ ∈ Θ open in R the unknown para-
meter which is to be estimated on the basis of the observation {Xt, 0 ≤ t ≤ T}.

Let the realization {Xt, 0 ≤ t ≤ T} be denoted by XT
0 . Let PT

θ be the
measure generated on the space (CT , BT ) of continuous functions on [0, T ]
with the associated Borel σ-algebra BT generated under the supremum norm
by the process XT

0 and PT
0 be the standard Wiener measure. Assume that

when θ is the true value of the parameter PT
θ is absolutely continuous with

respect to PT
0 . Then the Radon-Nikodym derivative (likelihood) of PT

θ with
respect to PT

0 based on XT
0 is given by
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LT (θ) :=
dPT

θ

dPT
0

(XT
0 ) = exp

{∫ T

0

f(θ,Xt)dXt − 1
2

∫ T

0

f2(θ,Xt)dt

}
. (3.2)

(See Liptser and Shiryayev (1977)). Denote lT (θ) := log LT (θ). The maximum
likelihood estimate (MLE) is defined as

θT := arg max
θ∈Θ

lT (θ). (3.3)

Under stationarity and ergodicity of the diffusion and some regularity con-
ditions, it is well known that θT is strongly consistent and asymptotically
normally distributed as T → ∞ (see Prakasa Rao and Rubin (1981)). Beyond
the first order asymptotics, Yoshida (1997) obtained the asymptotic expan-
sion of the distribution of the normalized MLE using the Malliavin calculus
techniques. In particular, it gives a Berry-Esseen bound of the order O(T−1/2)
for the MLE.

In this chapter, we study Bayesian asymptotics beyond the first order. We
proceed as follows: Let Λ be a prior probability measure on (Θ,B) where B
is the Borel σ-algebra of subsets of Θ. We assume the following regularity
conditions on the prior:
(A1) For every δ > 0 and every compact K ⊆ Θ,

inf
θ∈K

Λ{φ ∈ Θ : |φ − θ| < δ} > 0.

(A2) For every compact K ⊆ Θ, there exists α ≥ 0 (depending on K) such
that

lim inf
T

inf
θ∈K

TαΛ{φ ∈ Θ : |φ − θ| < T−1/2} > 0.

(A3) Λ has a density λ(·) with respect to Lebesgue measure on R which is
continuous and positive on Θ and for every θ ∈ Θ there exists a neighborhood
Uθ of θ such that∣∣∣∣λ(θ1)

λ(θ2)
− 1
∣∣∣∣ ≤ C|θ1 − θ2| for all θ1, θ2 ∈ Uθ.

(A4)m Λθ possesses m-th order absolute moments in θ ∈ Θ.

The posterior probability measure of B ∈ B given XT
0 is defined as

RT (B) :=

∫
B

LT (θ)λ(θ)dθ∫
Θ

LT (θ)λ(θ)dθ
. (3.4)

In the i.i.d. case, it is well established that, for large sample size the mass of
the posterior distribution concentrates in arbitrarily small neighbourhoods of
the true parameter value (see Doob (1948), Schwarz (1965), Le Cam (1973)).
This phenomenon is known as posterior consistency. Strasser (1976) estimated
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the rate at which the posterior distribution concentrates around the true para-
meter value. Recently, rates of convergence in posterior consistency in infinite
dimensional parameter situation was studied by Ghoshal, Ghosh and Van
der Vaart (2000), Shen and Wasserman (1998) and Huang (2000) in the i.i.d.
case. We obtain rates of convergence in posterior consistency for the nonlinear
ergodic diffusion process in Theorems 2.2 and 2.3 extending Strasser (1976).

The Bernstein-von Mises theorem (rather called the Bernstein-von Mises
phenomenon in the terminology of Le Cam and Yang (1990)) or the Bayesian
central limit theorem states that for large number of observations, suitably
centered and normalized posterior distribution behaves like the normal dis-
tribution. In particular cases, the theorem was shown by Laplace, Bernstein
and von-Mises in the early period of last century. See Le Cam (1986), Le Cam
and Yang (1990) for a history. A complete proof in the i.i.d. case was given
by Le Cam (1953). Since then many authors have extended the theorem to
many dependent observations cases or refined the theorem in the i.i.d. case.
Borwanker, Kallianpur and Prakasa Rao (1973) extended the theorem to dis-
crete time stationary Markov process. Strasser (1976) and Hipp and Michel
(1976) estimated the speed of convergence in this theorem in the i.i.d. case.
Prakasa Rao (1978) obtained the rate of convergence in the Bernstein - von
Mises theorem for Markov processes extending the work of Hipp and Michel
(1976) in the i.i.d. case. Note that Bernstein-von Mises theorem fails in infinite
dimensional parameter case even in i.i.d. case, see Freedman (1999).

TheBernstein-vonMises theorem for linear homogeneous diffusionprocesses
was proved by Prakasa Rao (1980). Bose (1983) extended the work of Prakasa
Rao (1980) to nonlinear homogeneous diffusion processes and Mishra (1989)
and Harison (1992) extended the work of Bose (1983) to nonhomogeneous
diffusion processes. Prakasa Rao (1981) extended his work to linear homoge-
neous diffusion field. Bishwal (1999b) proved Bernstein-von Mises theorem for
Hilbert space valued diffusions. Bishwal (2000c) studied Bernstein-von Mises
theorem and asymptotics of Bayes estimators for parabolic stochastic partial
differential equations through the Fourier method.

Not much is known beyond the first order asymptotics of posteriors for
diffusions. For linear homogeneous diffusion processes, Mishra and Prakasa
Rao (1987) studied the rate of convergence in the Bernstein-von Mises the-
orem, i.e., they obtained bound in the approximation of suitably normalized
and centered posterior density to normal density. The posterior density of the
normalized parameter (centered at the maximum likelihood estimate) being a
ratio of two measurable functions, its difference with the normal density can
be expressed as the ratio of two measurable functions. The rate of convergence
to zero of the ratio of two processes can be decomposed as the rate of conver-
gence of the numerator to zero and the rate of convergence of the denominator
to one. Mishra and Prakasa Rao (1987) used this method to obtain the rate
of convergence of the normalized posterior density. This technique does not
give the best possible rate which is evident when their result is applied to the
Ornstein-Uhlenbeck process. Their results give O(T−1/5) order of approxima-
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tion of posterior density by normal density and O(T−1/4(log T )1/4) order for
the PT

θ probabilities of exceptional set. Bishwal (2000b) obtained O(T−1/2)
rate of convergence of normalized posterior density to normal density and
o(T−1/2) rate for the PT

θ probabilities of the exceptional set by using the
method of Strasser (1977) for the i.i.d. case. In Theorem 2.9, we obtain same
rate of convergence for posterior distributions of the drift parameter in sta-
tionary ergodic diffusion process Xt satisfying (3.1).
A B × B measurable function D : Θ × Θ → R is called a loss function if

D(θ, θ) < D(φ, θ) for all θ ∈ Θ, φ ∈ Θ, θ �= φ.

A Bayes estimator (relative to a prior distribution Λ and a loss function D)
is defined as

∼
θT := arg min

θ∈Θ

∫
Θ

D(θ, φ)RT (dφ). (3.5)

For the quadratic loss function
∼
θT is the the posterior mean

E(θ|XT
0 ) =

∫
Θ

φLT (φ)λ(φ)dφ∫
Θ

LT (φ)λ(φ)dφ
. (3.6)

For nonlinear ergodic diffusion model (3.1), Bose (1983) showed that, for
smooth priors and loss functions, Bayes estimator

∼
θT of θ is consistent and

asymptotically normally distributed as T → ∞. Bose (1983) also showed that√
T (

∼
θT − θT ) → 0 a.s. as T → ∞. In particular, it was shown that the as-

ymptotic behaviour of the Bayes estimator
∼
θT and the MLE θT is the same

as T → ∞. For linearly parametrized (but in general nonlinear) diffusion,
Mishra and Prakasa Rao (1991) obtained a bound on the convergence to zero
of the probability P{√T (

∼
θT −θT ) > r(T )} where r(T ) ↓ 0 as T → ∞, that is,

bound on the equivalence of the MLE and the BE. Their bound is not sharp
which is evident when applied to the Ornstein-Uhlenbeck process, it gives only
a bound O(T−1/5). For the Ornstein-Uhlenbeck process, Bishwal (2000b) im-
proved the bound on asymptotic equivalence of the above two estimators to
o(T−1/2) and Berry-Esseen bound of the Bayes estimator to O(T−1/2). We
generalize the result to stationary ergodic nonlinear diffusion process and ob-
tain the same bound on the asymptotic equivalence of the MLE and the BE
and same Berry-Esseen bound for the Bayes estimators as in the Ornstein-
Uhlenbeck process. Note that asymptotic expansion of distribution of the bias
corrected Bayes estimator for quadratic loss function, i.e., the posterior mean
in diffusion model when the intensity of noise decreases to zero, was studied
by Yoshida (1993) using the Malliavin calculus technique.

Let Φ(·) denote the standard normal distribution function. Throughout
the chapter C denotes a generic constant (perhaps depending on θ, but not
on anything else). Throughout the paper prime denotes derivative with respect
to θ and dot denotes derivative with respect to x.
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We assume the following conditions:

(C1) The diffusion process {Xt, t ≥ 0} is stationary and ergodic with invariant
measure ν at θ = θ0 given by

νθ(dx) =
n(θ, x)∫∞

−∞ n(θ, u)du
dx

where n(θ, x) = exp(2
∫ x

0
f(θ, v)dv).

Further, ξ obeys the stationary distribution ν = νθ0 .

(C2) (i) |f(θ, x) − f(θ, y)| ≤ C|x − y|,
(ii) |f(θ, x) − f(φ, x)| ≤ C|θ − φ|,
(iii) There exists γ > 0 such that

|f ′(θ, x) − f ′(φ, x)| ≤ C|θ − φ|γ .

(iv) There exists positive constant C > 0 such that for all u,

Eθ

[
exp

{
−u2(3T )−1

∫ T

0

inf
φ∈Θ

(f ′(φ,Xt))2dt

}]
≤ C exp(−u2C).

(v) f ′(θ, x) has polynomial majorant, i.e., |f ′(θ, x)| ≤ C(1 + |x|p), p ≥ 1, C
does not depend on θ.
(C3) f(., x) ∈ C4(R) with derivatives of at most polynomial growth order.
Further sup

x∈R

ḟ(θ0, x) < 0.

(C4) There exist constants A > 0 and γ > 0 such that for all |x| ≥ A and all
θ ∈ Θ,

sgn(x)f(θ, x) ≤ −γ.

(C5) (i) f(θ, x) is continuously differentiable with respect to θ.
(ii) f ′(θ, x) is uniformly continuous in the following sense: For any compact

K ⊂ Θ,
lim
δ→0

sup
θ0∈K

sup
|θ−θ0|<δ

Eθ0 |f ′(θ,X0) − f ′(θ0, X0)|2 = 0.

(C6) |ḟ ′(θ, x)| ≤ C(1 + |x|c) for any x ∈ R and θ ∈ Θ.
The Fisher information satisfies

0 < I(θ) :=
∫ ∞

−∞
(f ′(θ, x))2dν(x) < ∞

and for any δ > 0, for any compact K ⊂ Θ,

inf
θ0∈K

sup
|θ−θ0|>δ

Eθ0 |f ′(θ,X0) − f ′(θ0, X0)|2 > 0.

(C7) The Malliavin covariance of the process is nondegenerate.
We need the following results in the sequel.
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Theorem 3.1 Under the conditions (C1) – (C7), for every ε > 0,

Pθ0

{∣∣∣∣∣ 1T
∫ T

0

(f ′(θ0, Xt))2dt − I(θ0)

∣∣∣∣∣ > ε

}
≤ CT−1ε−2.

Proof: Let
g(θ, x) := (f ′(θ, x))2 − I(θ).

Thus Eθ0g(θ,X0) = 0. Let

h(θ, x) := G(θ)−1 exp
{

2
∫ x

0

g(θ, v)dv

}
, x ∈ R

where

G(θ) :=
∫ ∞

−∞
exp

{∫ y

0

g(θ, v)dv

}
dy < ∞.

Let
F (θ, x) :=

∫ x

0

1
g(θ, y)

∫ y

−∞
h(θ, z)g(θ, z)dzdy.

By Itô formula,

dF (θ,Xt) = g(θ,Xt)dt + F ′(θ,Xt)dWt.

Hence∫ T

0

g(θ,Xt)dt = F (θ,Xt)−F (θ,X0)−
∫ T

0

1
g(θ,Xt)

∫ Xt

−∞
h(θ, v)g(θ, v)dvdWt.

By the martingale central limit theorem

1√
T

∫ T

0

1
g(θ,Xt)

∫ Xt

−∞
h(θ, v)g(θ, v)dvdWt

D→N (0, ν(F ′2)) as T → ∞

and
1√
T

[F (θ,Xt) − F (θ,X0)]
P→ 0 as T → ∞.

Observe that

|F (θ, ξ)|
≤
∣∣∣∣
∫ x

0

1
g(θ, y)

∫ y

−∞
h(θ, z)g(θ, z)dzdy

∣∣∣∣
=
∣∣∣∣
∫ x

0

∫ ∞

y

g(θ, z) exp
{

2
∫ z

y

f(θ, v)dv

}
dy

∣∣∣∣
≤ C

∫ x

0

∫ ∞

y

|g(θ, z)| exp{−2γ(z − y)}dzdy
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≤ C

∫ x

0

∫ ∞

y

|1 + zp| exp{−2γ(z − y)}dzdy

≤ C

∫ x

0

∫ ∞

0

|1 + (y + v)p| exp{−2γv}dvdy

≤ C

∫ x

0

(1 + yp)dy.

This estimate holds for y > A. We have a similar estimate for y < −A.
Thus

Eθ|F (θ, ξ)|2 ≤ C1 + C2

∫
|y|>A

(1 + |y|p) exp{−2γ|y − A|}dy ≤ C.

Similarly it can be shown that

Eθ

∣∣∣∣g(θ, v)h(θ, v)
h(θ, ξ

dv

∣∣∣∣
2

< C.

Thus

Eθ

∣∣∣∣∣ 1T
∫ T

0

g(θ,Xt)dt

∣∣∣∣∣
2

≤ CT−2Eθ|F (θ, ξ)|2 + CT−1Eθ

∣∣∣∣∣
∫ ξ

−∞

h(θ, v)g(θ, v)
g(θ, ξ)

dv

∣∣∣∣∣
2

≤ CT−1.

Now the result follows by Chebyshev inequality.

Theorem 3.2 (Bishwal (1999a)) Under the conditions (C1) and (C2), for
every ε > 0 and every compact K ⊆ Θ,

sup
θ∈K

Pθ {|θT − θ| > ε} ≤ CK exp(−CTε2).

The following theorem is a consequence of Theorem 8 in Yoshida (1997).

Theorem 3.3 Under the conditions (C1) – (C7), for every compact K ⊆ Θ,

sup
θ∈K

sup
x∈R

∣∣∣Pθ

{
(TI(θ))1/2(θT − θ) ≤ x

}
− Φ(x)

∣∣∣ = O(T−1/2).

The rest of the chapter is organized as follows: In Section 2.4 we obtain rates
of convergence in consistency and asymptotic normality of the posterior dis-
tributions and in Section 2.5 we obtain bound on the asymptotic equivalence
of the MLE and the Bayes estimators and Berry-Esseen bounds for the Bayes
estimators.
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2.4 Rates of Convergence of the Posterior Distributions
in Ergodic Diffusions

Introduce some notations:
Let K ⊆ Θ be compact and MT,θ ∈ FT , θ ∈ K be sets satisfying

sup
θ∈K

PT
θ (M c

T,θ) = o(T−1/2). (4.1)

For every Borel set B ∈ B, define

BT (θ) :=
{

φ ∈ R
+ : (TI(θ))1/2(φ − θT ) ∈ B

}
, (4.2)

JT (θ) :=
IT (θ)
TI(θ)

− 1 (4.3)

where IT (θ) :=
∫ T

0
f ′2(θ,Xt)dt.

Let further Φm,m ∈ N be signed measures on B defined by

Φm(B) :=
1√
2π

∫
B

tm exp(− t2

2
)dt, B ∈ B. (4.4)

Define
uT (φ) := (TI(θ))1/2(φ − θT ), φ ∈ Θ, (4.5)

VT (s) :=
{

φ ∈ R
+ : (TI(θ))1/2|φ − θT | ≤ (s log T )1/2

}
(4.6)

where s > 0, θ ∈ K, and

AT (φ) :=
1√
2π

(TI(θ))1/2 LT (φ)
LT (θT )

. (4.7)

where φ ∈ Θ and θ ∈ K.

Lemma 4.1(a) For every δ > 0 and every compact K ⊆ Θ there exists εK > 0
such that

sup
θ∈K

Pθ

{
− sup

|φ−θ|≥δ

1
T

lT (φ) + Eθ [lT (θ)] ≤ εK

}
≤ CKT−1.

(b) For every ε > 0 and every compact K ⊆ Θ there exists δK > 0 such
that

sup
θ∈K

Pθ

{
− inf

|φ−θ|<δK

1
T

lT (θ) + Eθ [lT (θ)] > ε

}
≤ CKT−1.

Proof: Similar to Lemmas 1 and 2 in Strasser (1976). Details are omitted.

The next two theorems give the rates of convergence in posterior consistency.
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Theorem 4.2 Let Bδ(θ) = {φ ∈ Θ : |φ − θ| < δ}. Then for every δ > 0 and
every compact K ⊆ Θ there exists ηK > 0 such that

sup
θ∈K

Pθ{RT (Bc
δ(θ)) > exp(−ηKT )} ≤ CKT−1.

Proof: From (3.3), we have

RT (Bc
φ(θ)) =

∫
|φ−θ|≥δ

LT (φ)λ(φ)dφ∫
Θ

LT (φ)λ(φ)dφ
.

Thus
RT (Bc

δ(θ)) > exp(−ηKT )

is equivalent to
1
T

log RT (Bc
δ(θ)) > −ηK

which is further equivalent to

1
T

log
∫
|φ−θ|≥δ

LT (φ)λ(φ)dφ − 1
T

log
∫

Θ

LT (φ)λ(φ)dφ > −ηK

which implies for arbitrary δ1 > 0 and θ ∈ K

− inf
|φ−θ|<δ1

1
T

log LT (φ) + sup
|φ−θ|≥δ

1
T

log LT (φ) > −ηK +
a

T

where
a := inf

θ∈K
log Λ {φ ∈ Θ : |φ − θ| < δ1}

From Lemma 4.1(a), we obtain

sup
θ∈K

Pθ

{
Eθ [lT (θ)] − εK ≤ sup

|φ−θ|≥δ

1
T

lT (φ)

}
≤ CKT−1.

Therefore we only have to show that

sup
θ∈K

Pθ

{
− inf

|φ−θ|<δ1

1
T

lT (θ) + Eθ (lT (θ)) > εK − ηK +
a

T

}
≤ CKT−1.

But this follows from Lemma 4.1(b) choosing δ1 sufficiently small. Combina-
tion of the last two inequalities completes the proof.

The next theorem shows that a result similar to Theorem 4.2 is true when
the radius of the neighbourhoods of the MLE θT decreases of the order
T−1/2(log T )1/2.
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Theorem 4.3 For every r > 0 and every compact K ⊆ Θ, there exist sK ≥ 0
and CK ≥ 0 such that

Pθ

{
RT (V c

T (sK)) ≥ CKT−r
} ≤ CKT−1.

Proof: Using Theorem 3.2 and Theorem 4.2, we have for every δ > 0 there
exists ηK > 0 such that

sup
θ∈K

Pθ {RT {φ ∈ Θ : |φ − θT | ≥ δ} > exp(−ηKT )} ≤ CKT−1.

Hence it is sufficient to prove that for every r > 0 and every compact K ⊆ Θ
there exists sK > 0, CK and δK > 0 such that

sup
θ∈K

Pθ

[
RT

{
φ ∈ Θ : δK > |φ − θT | > T−1/2

(
sK log T

I(θ)

)1/2
}

≥ CKT−r

]

≤ CKT−1.

From Theorem 3.1, for every ε > 0,

Pθ

{∣∣∣∣IT

T
− I(θ)

∣∣∣∣ > ε

}
≤ CT−1.

Define the sets

NT (ε, θ) :=
{∣∣∣∣IT

T
− I(θ)

∣∣∣∣ > ε

}
,

Sθ
T (s) :=

{
φ ∈ Θ : δK > |φ − θT | > T−1/2

(
s log T

I(θ)

)1/2
}

,

HT :=
{

φ ∈ Θ : |φ − θT | < T−1/2
}

.

By Taylor expansion, we have

lT (φ) = lT (θT ) + (φ − θT )l′T (θT ) +
(φ − θT )2

2
l′′T (θ∗) (4.8)

where |θ∗ − θ| ≤ |θT − θ|. Since l′T (θT ) = 0, we obtain

exp [lT (φ) − lT (θT )] = exp
{
−T

2 (φ − θT )2 l′′T (θ∗)
T

}
=: GT (φ)

(4.9)

It follows that in N c
T (ε, θ), T > TK implies

RT (Sθ
T (s)) =

∫
Sθ

T
(s)

GT (φ)λ(φ)dφ∫
Θ

GT (φ)λ(φ)dφ

≤
∫

Sθ
T

(s)
exp

{−T
2 (φ − θT )2(I(θ) − ε)

}
λ(φ)dφ∫

HT
exp

{−T
2 (φ − θT )2(I(θ) + ε)

}
λ(φ)dφ

≤ exp
{− 1

2s(log T )(1 − εI−1(θ))
}

exp
{− 1

2 (I(θ) + ε)
}

Λ(HT )
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Let ρ > 0 be such that K1 := {φ ∈ Θ : dist(φ,K) ≤ ρ} is a compact subset
of Θ. Let

ÑT (ρ, θ) := {|θT − θ| > ρ} .

Then from Theorem 3.2,

sup
θ∈K

Pθ

(
ÑT (ρ, θ)

)
≤ CT−1.

Now in (ÑT (ρ, θ))c, by assumption (A2)

lim inf
T

TαΛ(HT )

= lim inf
T

Tα inf
θ∈K1

Λ
{

φ ∈ Θ : |φ − θ| < T−1/2
}

> 0
.

Thus it follows that there exists CK ≥ 0 with

Pθ

{
RT (Sθ

T (s)) > CKT (2α−s(1−εI−1(θ)))/2
}
≤ CKT−1.

It is obvious that for every r > 0, s > 0 can be chosen such that the assertion
of the Theorem holds.

Lemma 4.4 Let gθ : Θ → R̄, θ ∈ Θ, be a class of Λ-integrable functions
satisfying

sup
θ∈K

∫
Θ

|gθ(φ)|Λ(dφ) < ∞

for every compact K ⊆ Θ. Then for every δ > 0 and every compact K ⊆ Θ
there exist ηK > 0 such that

Pθ

{∫
|φ−θ|≥δ

|gθ(φ)|RT (dφ) > exp(−ηKT )

}
≤ CKT−1

Proof: Since gθ is Λ-integrable for every θ ∈ Θ it is also RT integrable. The
proof of the lemma is completely same as the proof of Theorem 4.2 if the
constant a is replaced by

ã := inf
θ∈K

{
log Λ {φ ∈ Θ : |φ − θ| < δ1} − log

∫
Θ

|gθ(φ)|Λ(dφ)
}

.

Lemma 4.5 Let s > 0. Let K ⊆ Θ be compact and choose ε > 0 such that
K̄ε ⊆ Θ where Kε = {φ ∈ R

+ : |φ − θ| < ε if θ ∈ K}. Then there exist sets
MT,θ ∈ FT , θ ∈ K satisfying (2.2) such that VT (s) ⊆ Kε on the set MT,θ.
Proof: The proof follows from Theorem 3.2 which implies that we can assume
|θT − θ| < ε/2 on the set MT,θ.



2.4 Rates of Convergence of the Posterior Distributions in Ergodic Diffusions 37

Lemma 4.6 Under (A1) and (A4)m, for K ⊆ Θ there exist MT,θ ∈ FT , θ ∈ K
satisfying (4.2) such that on the set MT,θ∣∣∣∣∣

∫
Θ

|uT (φ)|mRT (dφ) −
∫

VT (sK)

|uT (φ)|mRT (dφ)

∣∣∣∣∣ ≤ CKT−1.

Proof: Lemma 4.5 shows that we can assume θT ∈ Kε for ε > 0 on the set
MT,θ and K̄ε ⊆ Θ. From Lemma 2.4 we obtain δK > 0 and ηK > 0 such that
in MT,θ, ∫

|φ−θ|≥δ

|uT (φ)|mRT (dφ) ≤ CKTm/2 exp(−ηKT ).

Hence it follows that∫
Θ\VT (sK)

|uT (φ)|mRT (dφ) ≤ CKTm/2 exp(−ηKT ) + CKTm/2RT (V c
T (sK))

in MT,θ. Now for sufficiently large sK > 0 the assertion of the theorem follows
from Theorem 4.3.

Lemma 4.7 Under (A1) and (A4)m, for every K ⊆ Θ there exist sets
MT,θ, θ ∈ K satisfying (4.1) such that on the set MT,θ

sup
B∈B

∣∣∣∣∣
∫

BT (θ)∩Θ

[uT (φ)]mRT (dφ) −
∫

BT (θ)∩VT (sK)
[uT (φ)]mAT (φ)λ(φ)dφ∫

VT (sK)
AT (φ)λ(φ)dφ

∣∣∣∣∣
≤ CKT−1/2.

Proof: Lemma 4.5 shows that we may restrict our attention to the case
VT (sK) ⊆ Θ. Now

sup
B∈B

∣∣∣∣∣
∫

BT (θ)∩Θ

[uT (φ)]mRT (dφ) −
∫

BT (θ)∩VT (sK)
[uT (φ)]mAT (φ)λ(φ)dφ∫

VT (sK)
AT (φ)λ(φ)dφ

∣∣∣∣∣
≤
∫

Θ\VT (sK

[uT (φ)]mRT (dφ) +
|RT (VT (sK)) − 1|

RT (VT (sK))

∫
VT (sK)

[uT (φ)]mRT (dφ).

By Theorem 4.3 we have on the set MT,θ∫
VT (sK)

[uT (φ)]mRT (dφ) ≤ CK < ∞

and
RT (VT (sK)) ≥ εK > 0.

By Theorem 4.3 on the set MT,θ

|RT (VT (sK)) − 1| ≥ CKT−r.
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By Lemma 4.6 ∫
Θ\VT (sK)

|uT (φ)|mRT (dφ) ≤ CKT−1.

This completes the proof of the lemma.

Theorem 4.8 Under (A1) and (A4)m, for every compact K ⊆ Θ there exist
sets MT,θ, θ ∈ K satisfying (4.1) such that on the set MT,θ

sup
B∈B

∣∣∣∣∣
∫

BT (θ)∩VT (sK)

[uT (φ)]m AT (φ)λ(φ)dφ−λ(θT )
[
Φm(B)+

1
2
JT,θΦm+2(B)

]∣∣∣∣∣
≤ CKT−1/2.

Proof: According to Lemma 4.5 we can assume that VT (sK) ⊆ Θ on the set
MT (θ). Note that

exp [lT (φ) − lT (θT )] =
LT (φ)
LT (θT )

.

Hence from (4.7) and (4.9), we obtain

AT (φ) =
1√
2π

(TI(θ))1/2 LT (φ)
LT (θT )

=
1√
2π

(TI(θ))1/2 exp
{
−T

2
(φ − θT )2

IT

T

}

=
1√
2π

(TI(θ))1/2 exp
{
−TI(θ)

2
(φ − θT )2(1 + JT (θ))

}
(from (4.3))

Define
QT :=

{
y ∈ R : y ∈ B, y2 ≤ sK log T

}
, B ∈ B.

Then for every B ∈ B, substituting uT (φ) = y, on the set MT (θ), we have∫
BT (θ)∩VT (sK)

[uT (φ))]m AT (φ)dφ =
∫

QT

exp
(
−y2

2
JT,θ

)
Φn(dy).

Let us now use the inequality∣∣e−β − 1 + β
∣∣ ≤ β2e|β|, β ∈ R

and put β = y2

2 JT,θ.
From Theorem 3.1 it follows that on the set MT,θ

|JT,θ| ≤ CKT−1/2(log T )1/2.

Thus we obtain

sup
B∈B

∣∣∣∣∣
∫

BT (θ)∩VT (sK)

[uT (φ)]m AT (φ)dφ−
∫

QT

(
1−y2

2
JT,θ

)
Φm(dy)

∣∣∣∣∣ ≤ CKT−1/2,



2.4 Rates of Convergence of the Posterior Distributions in Ergodic Diffusions 39

i.e.,

sup
B∈B

∣∣∣∣∣
∫

BT (θ)∩VT (sK)

[uT (φ)]mAT (φ)dφ−Φm(QT )+
1
2
JT,θΦm+2(QT )

∣∣∣∣∣≤CKT−1/2.

But it is easily seen that

sup
B∈B

|Φm(B) − Φm(QT )| ≤ CKT−1/2

for sufficiently large sK > 0. Hence

sup
B∈B

∣∣∣∣∣
∫

BT (θ)∩VT (sK)

[uT (φ)]m AT (φ)dφ−Φm(B)+
1
2
JT,θΦm+2(B)

∣∣∣∣∣ ≤ CKT−1/2.

According to the uniform cover theorem for every ε > 0 satisfying K̄ε ⊆ Θ
there exists eK > 0 such that |φ−φ′| < eK implies |λ(φ)−λ(φ′)| ≤ CK |φ−φ′|
for every φ ∈ Kε. Hence on the set MT,θ we can assume that VT (sK) is
contained in an ε-neighbourhood of θ for every θ ∈ K.
Then on the set MT,θ∣∣∣∣∣sup

B∈B

∫
BT (θ)∩VT (sK)

[uT (φ)]m AT (φ)λ(φ)dφ

−λ(θT )
∫

BT (θ)∩VT (sK)

[uT (φ)]m AT (φ)dφ

∣∣∣∣∣
≤ CKλ(θT )

∫
VT (sK)

|uT (φ)|m AT (φ) |φ − θT | dφ.

Using a similar substitution argument as before we obtain on the set MT,θ∫
VT (sK)

|uT (φ)|mAT (φ)|φ − θT |dφ

≤ CKT−1/2

∫
y2≥sK log T

|y|m+1 exp
(
−y2

2
(1 − δK)

)
dy

since on the set MT,θ we may assume that JT,θ ≥ −δK if y2 ≤ sK log T . Now
using (A1) and Theorem 3.2, we obtain λ(θT ) ≤ CK < ∞ on the set MT,θ.
Hence the assertion of the theorem follows.

The next theorem gives the rate of convergence in the Bernstein-von Mises
theorem.

Theorem 4.9 Under (A1) and (A4)m, for every compact K ⊆ Θ there exist
sets MT,θ, θ ∈ K satisfying (4.1) such that on the set MT,θ
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sup
B∈B

∣∣∣∣∣
∫

BT (θ)∩Θ

[uT (φ)]m RT (φ)dφ − Φm(B) +
1
2
JT,θ [Φm(B) + Φm+2(B)]

∣∣∣∣∣
≤ CKT−1/2.

Proof: Let us consider Lemma 4.7. The following inequality holds for
(α, β, γ, δ) ∈ R

4, β, δ �= 0.∣∣∣∣αβ − γ

δ

∣∣∣∣ ≤ 1
|δ| |α − γ| +

∣∣∣∣ γ

βδ

∣∣∣∣ |β − δ|. (4.10)

For fixed B ∈ B, on the set MT,θ define

α :=
∫

BT (θ)∩VT (sK)

[uT (φ)]m AT (φ)λ(φ)dφ, β :=
∫

VT (sK)

AT (φ)λ(φ)dφ

γ := λ(θT )
[
Φm(B) − 1

2
JT,θΦm+2(B)

]
, δ := λ(θT )

[
1 − 1

2
JT,θ

]
.

Observe that

sup
B∈B

∣∣∣∣∣
∫

BT (θ)∩Θ

[uT (φ)]m RT (dφ) − Φm(B) − 1
2JT,θΦm+2(B)

1 − 1
2JT,θ

∣∣∣∣∣
≤ sup

B∈B

∣∣∣∣∣
∫

BT (θ)∩Θ

[uT (φ)]m RT (dφ) −
∫

BT (θ)∩VT (sK)
[uT (φ)]m AT (φ)λ(φ)dφ∫

VT (sK)
AT (φ)λ(φ)dφ

∣∣∣∣∣
+ sup

B∈B

∣∣∣∣∣
∫

BT (θ)∩VT (sK)
[uT (φ)]m AT (φ)λ(φ)dφ∫

VT (sK)
AT (φ)λ(φ)dφ

−λ(θT )
[
Φm(B)− 1

2JT,θΦm+2

]
λ(θT )

[
1− 1

2JT,θ

]
∣∣∣∣∣

=: H1 + H2

≤ CKT−1/2 + sup
B∈B

1
λ(θT )

[
1 − 1

2JT,θ

] ×∣∣∣∣∣
∫

BT (θ)∩VT (sK)

[uT (φ)]mAT (φ)λ(φ)dφ−λ(θT )
[
Φm(B) − 1

2
JT,θΦm+2(B)

]∣∣∣∣∣
+

|λ(θT )
[
Φm(B) − 1

2JT,θΦm+2(B)
] |

| ∫
VT (sK)

AT (φ)λ(φ)dφ||λ(θT )
[
1 − 1

2JT,θ

] | ×∣∣∣∣∣
∫

VT (sK)

AT (φ)λ(φ)dφ − λ(θT )
[
1 − 1

2
JT,θ

]∣∣∣∣∣
=: CKT−1/2 + N1 + N2

≤ CKT−1/2 (since λ(θT ) > 0 for every θT ∈ Θ).

Here the bound for H1 comes from Lemma 4.7 and the second term H2 is
split up by using the inequality (4.10). The bounds for N1 and N2 come from
Theorem 4.8.
Now we shall use the following inequality which holds for α ∈ R, |α| < 1,
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1 − α

− (1 + α)
∣∣∣∣ ≤ α2

1 − |α| (4.11)

It justifies replacing division by 1 − 1
2JT,θ with multiplying by 1 + 1

2JT,θ.
Another application of the inequality J2

T,θ ≤ CKT−1/2 on the set MT,θ proves
the assertion completely since terms containing J2

T,θ can be omitted.

2.5 Berry-Esseen Bound for the Bayes Estimator

We obtain o(T−1/2) bound for the asymptotic equivalence of the Bayes es-
timators and the maximum likelihood estimator. Using this bound and the
Berry-Esseen bound for the maximum likelihood estimator finally we obtain
O(T−1/2) Berry-Esseen bound for the normalized Bayes estimator. Thus the
maximum likelihood estimator and the Bayes estimators are asymptotically
efficient of order T−1/2.
We assume the following conditions on the loss function D.
(B1) D : Θ̄ × Θ → R is continuous.
(B2) (a) The mapping φ → D(θ, φ), θ ∈ Θ is extended Λ-integrable for all
θ ∈ Θ̄ and has finite Λ- expectation if θ ∈ Θ.

(b) For every θ ∈ Θ̄ there exists a neighbourhood Uλ
θ of θ such that

for every neighbourhood U ⊆ Uλ
θ of θ, the mapping φ → inf L(U, φ) is Λ-

integrable.
(B3) (a) For every φ ∈ Θ the mapping θ → D(θ, φ) is twice differentiable in
Θ. We denote

D10(θ, φ) :=
∂

∂θ
D(θ, φ), D20(θ, φ) :=

∂2

∂θ2
D(θ, φ).

(b) For every θ ∈ Θ, the mapping φ → D10(θ, φ) is differentiable in Θ. We
denote

D11(θ, φ) :=
∂

∂φ
D10(θ, φ).

(B4) For every compact K ⊆ Θ
(a) sup

θ∈K
|D10(θ, θ)| < ∞

(b) sup
θ∈K

|D20(θ, θ)| < ∞.

(B5) For every compact K ⊆ Θ, infθ∈K D20(θ, θ) > 0
(B6) For every compact K ⊆ Θ,

(a) sup
θ∈K

∫
|D10(θ, φ)|Λ(dφ) < ∞

(b) sup
θ∈K

∫
|D20(θ, φ)|Λ(dφ) < ∞.

(B7) (a) For every θ ∈ Θ there exists a neighbourhood
∼
V θ of θ and a constant

∼
Cθ ≥ 0 such that
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|D20(φ, φ1) − D20(φ, φ2)| ≤
∼
Cθ|φ1 − φ2| for all φ, φ1, φ2 ∈ ∼

V θ.

(b) For every θ ∈ Θ, there exist a neighbourhood
≈
V θ of θ and a constant

≈
Cθ ≥ 0 such that

|D11(φ, φ1) − D11(φ, φ2)| ≤
≈
Cθ|φ1 − φ2| for all φ, φ1, φ2 ∈ ≈

V θ.

(B8) For every θ ∈ Θ there exist a neighbourhood V λ
θ of θ and a continuous

function kθ : Θ → R such that

|D20(φ1, φ) − D20(φ2, φ)| ≤ kθ(φ)|φ1 − φ2| for all φ1, φ2 ∈ V λ
θ ,

and all θ ∈ Θ and
∫

kθ(φ)Λ(dφ) < ∞ for all θ ∈ Θ. Obviously, the loss function
D(θ, φ) = F (θ−φ) where F is a twice continuously differentiable function with
F (0) = 0, F (φ) > 0 for φ �= 0, F ′′(0) > 0 and F ′′(φ) − F ′′(φ1))| ≤ Cθ|φ − φ1|
for all φ, φ1 ∈ Γθ where Γθ is a neighbourhood of θ and Cθ ≥ 0 satisfies the
condition (B1), (B3) - (B5), (B7) and (B8). In particular, the quadratic loss
function satisfies these conditions.
To prove the main results we start with some preliminary lemmas.

Lemma 5.1 Let conditions (B3), (B4), and (B7) (b) be satisfied. Then for
every compact K ⊆ Θ there exist dK ≥ 0 such that

sup
θ∈K

sup
|φ−θ|<dK

|D10(θ, φ)| < ∞.

Proof: Similar to Lemma 2 in Strasser (1975). Details are omitted.

Lemma 5.2 Assume that the conditions (A1) – (A3), (B1) – (B4), (B6) (a),
and (B7) (b) be satisfied. Then for every compact K ⊆ Θ there exist sets
MT,θ, θ ∈ K satisfying (5.2) such that on the set MT,θ∣∣∣∣∣

∫
Θ

D10(θT , φ)RT (dφ) −
∫

VT (sK)

D10(θT , φ)RT (dφ)

∣∣∣∣∣ ≤ CKT−1.

Proof: Let η > 0 and δ > 0. Then the inequality∫
|φ−θ|≥δ

|D10(θT , φ)|RT (dφ) ≥ exp(−ηT )

yields ∫
|φ−θ|≥δ

|D10(θT , φ)|LT (φ)Λ(dφ)∫
|φ−θ|≤δ1

LT (φ)Λ(dφ)
≥ exp(−ηT ).

for arbitrary δ1 > 0. Hence
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sup|φ−θ|≥δ LT (φ)
∫
Θ
|D10(θT , φ)|Λ(dφ)

inf |φ−θ|≥δ LT (φ)Λ {φ ∈ Θ : |φ − θ| < δ1} ≥ exp(−ηT ).

Taking logarithms and dividing by T , we obtain

sup
|φ−θ|<δ1

1
T

lT (φ) − inf
|φ−θ|>δ

1
T

lT (φ) > −η +
a

T

where

a := inf
θ∈K

[
log Λ {φ ∈ Θ : |φ − θ| < δ1} − log

∫
Θ

|D10(θT , φ)|Λ(dφ)
]

.

Since there is a compact set K1 ⊂ Θ with K ⊆ K1 and θT ∈ K1 on the set
MT,θ, we may assume that a ≥ aK > −∞ on the set MT,θ. Then completely
the same proof as for Theorem 4.3 shows that on the set MT,θ∫

|φ−θ|≥δ

|D10(θT , φ)|RT (dφ) ≤ exp(−ηKT )

for sufficiently small ηK > 0 and arbitrary δ > 0.
Thus∣∣∣∣∣

∫
Θ

D10(θT , φ)RT (dφ) −
∫

VT (sK)

D10(θ, φ)RT (dφ)

∣∣∣∣∣
≤
∫
|φ−θ|≥δ

|D10(θT , φ)|RT (dφ) + sup
θ∈K1

sup
|φ−θ|<δ

|D10(θ, φ)|RT (V c
T (sK)).

Now Lemma 5.1 and Theorem 4.3 prove the theorem.

Lemma 5.3 Under (B7), for every compact K ⊆ Θ and every ε > 0 with
K̄ε ⊆ Θ there exists CK > 0 such that

|D11(φ, φ1) − D11(φ, φ)| ≤ CK |φ − φ1|

Proof: Similar to the proof of Lemma 4.7. Details are omitted.

Lemma 5.4 Under (B2), for every compact K ⊆ Θ and every δ > 0, there
exists εK > 0 such that |τ−θ| ≥ δ, θ ∈ K, τ ∈ Θ̄ implies D(θ, θ) < D(τ, θ)−εK .
Proof: Similar to Lemma 3 in Strasser (1975). Details are omitted.

Lemma 5.5 Let (A1)–(A3) be satisfied. Let gθ : Θ → R, θ ∈ Θ be a class of
continuous Λ integrable functions satisfying the following conditions:
(G1) For every compact K ⊆ Θ

sup
θ∈K

∫
Θ

|gθ(φ)|Λ(dφ) < ∞.
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(G2) For every compact K ⊆ Θ

sup
θ∈K

∫
Θ

|gθ(θ)| < ∞.

(G3) For every compact K ⊆ Θ and every ε > 0, there exists δK > 0 such
that |φ − θ| < δK , θ ∈ K implies

|gθ(φ) − gθ(θ)| < ε.

Then for every ε > 0 and every compact K ⊆ Θ

sup
θ∈K

Pθ

{∣∣∣∣
∫

Θ

gθ(φ)RT (dφ) − gθ(θ)
∣∣∣∣ > ε

}
≤ CKT−1.

Proof: Similar to the proof of Lemma 4 in Strasser (1975) by using Lemma
4.4 and Theorem 4.2. We omit the details.

Lemma 5.6 Under (A1)–(A3), for every ε > 0, τ ∈ Θ̄ there exists
∼
Uτ ⊆ Uλ

τ

such that U ⊂ ∼
Uτ implies

sup
θ∈K

Pθ

{∫
Θ

inf D(U, φ)RT (dφ) ≤ inf D(U, θ) − ε

}
≤ CKT−1.

Proof: Similar to Lemma 5 in Strasser (1975).

We need the following large deviations inequality for the Bayes estimator
∼
θT

proved in Bishwal (1999a).

Theorem 5.7 Under (C1), (C2), (B1), (B2) for every δ > 0 and every compact
K ⊆ Θ

sup
θ∈K

Pθ

{∣∣∣∼θT − θ
∣∣∣ > δ

}
≤ CK exp(−CTδ2).

Corollary 5.8 Under (C1)–(C3), (B1)–(B4), (B6)(b), (B7)(a) and (B8), we
have for every ε > 0,

sup
θ∈K

Pθ

{∣∣∣∣
∫

Θ

D20(θ∗∗T , φ)RT (dφ) − D20(θ, θ)
∣∣∣∣ ≥ ε

}
≤ CKT−1.

where θ∗∗T is defined in (5.1).

Proof: Similar to the proof of Corollary 1 of Strasser (1975).

Proposition 5.9 Under (A1)–(A3), (A4)2, (C1)–(C3), (B3), (B4), (B6) (a)
and (B6) (b), for every compact K ⊆ Θ there exist sets MT,θ, θ ∈ K satisfying
(2.1) such that on the set MT,θ∣∣∣∣

∫
Θ

D10(θT , φ)RT (dφ)
∣∣∣∣ ≤ CKT−1.
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Proof: By Lemma 5.2 on the set MT,θ∣∣∣∣∣
∫

Θ

D10(θT , φ)RT (dφ) −
∫

VT (sK)

D10(θT , φ)RT (dφ)

∣∣∣∣∣ ≤ CKT−1.

Let G̃T be the probability measure on ST := {y ∈ R : y2 ≤ sK log T}
which is induced by RT and uT . Since on the set MT,θ we have VT (sK) ⊆ Θ,
the substitution y = uT (φ) if φ ∈ VT (sK) yields on the set MT,θ

∫
VT (sK)

D10(θT , φ)RT (dφ) =
∫

ST

D10(θT , θT +
(

1
TI(θ)

)1/2

y)G̃T (dy).

By Taylor expansion on the set MT,θ

∫
VT (sK)

D10(θT , φ)RT (dφ) =
(

1
TI(θ)

)1/2 ∫
ST

yD11(θT , θ∗∗T )G̃T (dy).

where |θ∗∗T − θT | ≤ CK |y|T−1/2 if y2 ≤ log T .
The first term of the Taylor expansion is omitted since D10(θT , θT ) = 0 if

θT ∈ Θ. Let ε > 0 be such that an ε-neighbourhood Kε of K is still contained
in Θ. We may assume that on the set MT,θ, θT ∈ Kε and θ∗∗T ∈ Kε for
y2 ≤ log T .

Hence it follows from Lemma 5.3 that on the set MT,θ∣∣∣∣∫VT (sK)
D10(θT , φ)RT (dφ) −

(
1

TI(θ)

)1/2

D11(θT , θT )
∫

ST
yG̃T (dy)

∣∣∣∣
≤
(

1
TI(θ)

)1/2 ∫
ST

|y| |D11(θT , θ∗∗T ) − D11(θT , θT )| G̃T (dy)

≤ CK

(
1

TI(θ)

)1/2 ∫
ST

|y|2 |θ∗∗T − θT | G̃T (dy)

≤ CKT−1

∫
ST

y2G̃T (dy).

Thus ∣∣∣∣∣
∫

VT (sK)

D10(θT , φ)RT (dφ)

∣∣∣∣∣
≤
(

1
TI(θ)

)1/2

D11(θT , θT )
∣∣∣∣
∫

ST

yG̃T (dy)
∣∣∣∣+ CKT−1

∫
ST

y2GT (dy)

≤ CKT−1.

since from Theorem 4.9, on the set MT,θ∣∣∣∣
∫

ST

yGT (dy)
∣∣∣∣ ≤ CKT−1/2 and

∣∣∣∣
∫

ST

y2GT (dy)
∣∣∣∣ ≤ CK .
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The next theorem provides bound on the asymptotic equivalence of the
maximum likelihood and the Bayes estimators.

Theorem 5.10 Under (A1)–(A3), (A4)2, (B1)–(B8), for every compact K ⊆
Θ there exist sets MT,θ, θ ∈ K satisfying (2.1) such that on the set MT,θ∣∣∣∼θT − θT

∣∣∣ ≤ CKT−1

i.e.,
sup
θ∈K

Pθ

{∣∣∣∼θT − θT

∣∣∣ > CKT−1
}

= o(T−1/2).

Proof: From the large deviations inequality for the Bayes estimator
∼
θT (see

Theorem 5.7) we can assume that
∼
θT ∈ Θ, on the set MT,θ. Hence by Taylor

expansion∫
Θ

D10(
∼
θT , φ)RT (dφ)

=
∫

Θ

D10(θT , φ)RT (dφ) + (
∼
θT − θT )

∫
Θ

D20(θ∗∗∗T , φ)RT (dφ)
(5.1)

where
|θ∗∗∗T − θT | ≤

∣∣∣∼θT − θT

∣∣∣ .
But

∫
Θ

D10(
∼
θT , φ)RT (dφ) = 0 from the definition of the Bayes estimator

∼
θT .

Therefore,
∼
θT − θT = −

∫
Θ

D10(θT , φ)RT (dφ)∫
Θ

D20(θ∗∗∗T , φ)RT (dφ)
. (5.2)

From Proposition 5.9 ∣∣∣∣
∫

Θ

D10(θT , φ)RT (dφ)
∣∣∣∣ ≤ CKT−1. (5.3)

From Corollary 5.8, we have∣∣∣∣
∫

Θ

D20(θ∗∗∗T , φ)RT (dφ) − D20(θ, θ)
∣∣∣∣ < ε

on the set MT,θ. Therefore by condition (B6)(b), we have on the set MT,θ∣∣∣∣
∫

Θ

D20(θ∗∗∗T , φ)RT (dφ)
∣∣∣∣ ≥ εK (5.4)

for suitably chosen εK > 0.
Thus from (5.3) and (5.4), on the set MT,θ∣∣∣∼θT − θT

∣∣∣ ≤ CKT−1.
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This completes the proof of the theorem.
In the next theorem we obtain Berry-Esseen bound for the Bayes estimator
∼
θT .

Theorem 5.11 Under (A1)–(A3), (A4)2, (B1)–(B8), for every compact set
K ⊆ Θ

sup
θ∈K

sup
x∈R

∣∣∣Pθ

{
((TI(θ))1/2(

∼
θT − θ) ≤ x

}
− Φ(x)

∣∣∣ ≤ CKT−1/2.

Proof: Using Lemma 1.1 (a) we have

sup
x∈R

∣∣∣Pθ

{
(TI(θ))1/2(

∼
θT − θ) ≤ x

}
− Φ(x)

∣∣∣
= sup

x∈R

∣∣∣Pθ

{
(TI(θ))1/2(θT − θ +

∼
θT − θT ) ≤ x

}
− Φ(x)

∣∣∣
≤ sup

x∈R

∣∣∣Pθ

{
(TI(θ))1/2(θT − θ) ≤ x

}
− Φ(x)

∣∣∣
+Pθ

{
(TI(θ))1/2|∼θT − θT | > ε

}
+ ε (5.5)

By Theorem 3.3, the first term is O(T−1/2). By Theorem 5.10,

sup
θ∈K

Pθ

{
(TI(θ))1/2|∼θT − θT | > CKT−1/2

}
= o(T−1/2).

Thus choosing ε = CKT−1/2 in (5.5) it is seen that the r.h.s. of (5.5) is of the
order O(T−1/2).

2.6 Example: Hyperbolic Diffusion Model

The hyperbolic diffusion satisfies the following SDE

dXt = −θ
Xt√

1 + X2
t

dt + σdWt

where θ ∈ (α, β), α > 0. This diffusion process is ergodic with a hyperbolic
stationary distribution. It is easy to verify the conditions of Sections 2.3, 2.4
and 2.5.

Remarks:

(1) Here we obtained the rate of convergence of the posterior distribution and
the Bayes estimator when the diffusion process is stationary and ergodic.
In the nonergodic case, the posterior distributions and the Bayes estima-
tors converge to a mixture of normal distribution (see Bishwal (2004b)).
It remains open to obtain rate of convergence in this case.
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(2) Extension of the results of this chapter to multidimensional process and
multiparameter case is worth investigating.

(3) Nonuniform rates of convergence, which are more useful remains to be
investigated.

(4) Based on discrete observations of an ergodic diffusion process, Bishwal
(2005b) studied the asymptotic normality of pseudo posterior distribu-
tions and pseudo Bayes estimators, for smooth prior and loss functions,
based on approximate likelihood functions. Rates of convergence in this
case is worth investigating.

(5) The Berry-Esseen bounds obtained in this Chapter use parameter depen-
dent nonranom norming. These are useful for testing hypotheses about
the parameter. These bounds do not necessarily give confidence interval.
In Bishwal and Bose (1995), we obtained the rate O(T−1/2(log T )1/2 us-
ing two different random normings. Using the results of this Chapter,
Berry-Esseen bounds of the order O(T−1/2) for the maximum likelihood
estimator and the Bayes estimators are obtained in Bishwal (1999h) us-
ing two different random normings which are useful for computation of
confidence intervals.

(6) We have only considered the rate of convergence of the MLE, BE and the
posterior distribution when the O-U process is stable or positive recur-
rent, i.e., θ > 0. In the explosive or transient case, i.e., when θ < 0, the
MLE, suitably normalized by a nonrandom norming eθT

2θ , has asymptoti-
cally a Cauchy distribution (see Kutoyants (1994a)) and when normalized
by random norming it has asymptotically normal distribution (see Feigin
(1976)). The rate of convergence of the MLE in this case remains open.
The asymptotic distribution of Bayes estimator and the posterior dis-
tribution is Cauchy in this case (see Bishwal (1999i)). Note that in the
unstable (null recurrent or critical) case, i.e., when θ = 0, MLE when
normalised by T has a distribution of the ratio of a noncentral chi-square
to the sum of chi-squares, a distribution concentrated on a half line (see
Feigin (1979)). We conjecture that one can obtain faster than O(T−1/2)
rate of convergence in the explosive and the unstable cases.

(7) When θ > 0, the model (3.1) satisfies the local asymptotic normality
(LAN) condition (see Le Cam (1986) for a definition). When θ < 0,
the model satisfies the local asymptotic mixed normality (LAMN) con-
dition (see Jeganathan (1982), Le Cam and Yang (1990) for a definition).
When θ = 0, the model satisfies the local asymptotic Brownian func-
tional (LABF) condition (see Greenwood and Wefelmeyer (1993) for a
definition). The model satisfies the local asymptotic quadraticity (LAQ)
condition (see Le Cam and Yang (1990) or Jeganathan (1995) for a defi-
nition) for all θ ∈ R and the model is asymptotically centered (AC) for all
θ ∈ R (see Gushchin (1995)).

(8) Extension of the results of this Chapter to multiparameter case and mul-
tidimensional process is worth investigating.



3

Large Deviations of Estimators
in Homogeneous Diffusions

3.1 Introduction

In this Chapter we obtain large deviations results for the maximum likeli-
hood estimator and the Bayes estimators in non-linear stochastic differential
equations.

The weak consistency, asymptotic normality and asymptotic efficiency of
the MLE and the Bayes estimator were obtained by Kutoyants (1977) via
studying the local asymptotic normality (LAN) property of the model. Lanska
(1979) obtained the strong consistency and asymptotic normality of the more
general minimum contrast estimators which includes the MLE. Prakasa Rao
and Rubin (1981) obtained the strong consistency and asymptotic normality
of the MLE by studying the weak convergence of the least squares random
field where the families of stochastic integrals were studied by Fourier analytic
methods. Prakasa Rao (1982) studied the weak consistency, asymptotic nor-
mality and asymptotic efficiency of the maximum probability estimator. All
the above authors assumed stationarity and ergodicity of the model and the
parameter was taken as a scalar. For the multidimensional drift parameter,
Bose (1986b) obtained the strong consistency and asymptotic normality of
the MLE and the Bayes estimator under slightly weaker assumptions.

For the nonlinear nonhomogeneous equation Kutoyants (1978) obtained
weak consistency and asymptotic normality of the MLE and the BE of the
drift parameter as the intensity of noise decreases to zero. Borkar and Bagchi
(1982) obtained weak consistency of the MLE as T → ∞. Mishra and Prakasa
Rao (1985) obtained strong consistency and conditional asymptotic normality
of the MLE as T → ∞. All the above authors assumed the parameter space to
be compact. Levanony et al. (1994) under some stronger regularity conditions,
obtained strong consistency and asymptotic normality of the MLE as T → ∞
when the parameter space is open.
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In this Chapter, we obtain exponential bounds on the large deviation prob-
ability for the MLE (see Theorem 3.1) and for Bayes estimators (see Theorem
4.1) in homogeneous nonlinear SDE. For the large deviation result we fol-
low the method in Ibragimov and Hasminskii (1981). This method was used
by Prakasa Rao (1984) to obtain the large deviation probability bound for
the least squares estimator in the nonlinear regression model with Gaussian
errors.

The Chapter is organised as follows: In Section 3.2 we prepare notations,
assumptions and preliminaries. Section 3.3 contains the large deviation in-
equality for the MLE and Section 3.4 contains the large deviation results for
the Bayes estimator. Section 3.5 contains some examples.

This chapter is adapted from Bishwal (1999a).

3.2 Model, Assumptions and Preliminaries

Let (Ω,F , {Ft}t≥0P ) be a stochastic basis satisfying the usual hypotheses on
which we define a stationary ergodic diffusion process {Xt, t ≥ 0} satisfying
the Itô SDE

dXt = f(θ,Xt)dt + dWt, t ≥ 0
X0 = ξ

(2.1)

where {Wt, t ≥ 0} is a standard Wiener process, E[ξ2] < ∞, f(θ, x) is a known
real valued function continuous on Θ × R where Θ is a closed interval of the
real line and the parameter θ is unknown, which is to be estimated on the
basis of observation of the process {Xt, 0 ≤ t ≤ T} ≡ XT

0 . Let θ0 be the true
value of the parameter which lies inside the parameter space Θ.

Let PT
θ be the measure generated by the process XT

0 on the space (CT , BT )
of continuous functions on [0, T ] with the associated Borel σ-algebra BT under
the supremum norm when θ is the true value of the parameter. Let ET

θ be
the expectation with respect to the measure PT

θ . Suppose PT
θ is absolutely

continuous with respect to PT
θ0

. Then it is well known that (see Lipster and
Shiryayev (1977))

LT (θ)

:=
dPT

θ

dPT
θ0

(XT
0 )

= exp{
∫ T

0

[f(θ,Xs) − f(θ0, Xs)]dWs − 1
2

∫ T

0

[f(θ,Xs) − f(θ0, Xs)]2ds}
(2.2)

is the Radon-Nikodym derivative of PT
θ with respect to PT

θ0
. The MLE θT of

θ based on XT
0 is defined as

θT := arg max
θεΘ

LT (θ). (2.3)

If LT (θ) is continuous in θ, it can be shown that there exists a measurable
MLE by using Lemma 3.3 in Schmetterer (1974). Here after, we assume the
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existence of such a measurable MLE. We will also assume that the following
regularity conditions on f(θ, x) are satisfied. C denotes a generic constant
throughout the chapter.

(A1) (i) f(θ, x) is continuous on Θ × R.
(ii) |f(θ, x)| ≤ M(θ)(1 + |x|) ∀θ ∈ Θ, x ∈ R, sup{M(θ), θ ∈ Θ} < ∞.
(iii) |f(θ, x) − f(θ, y)| ≤ M(θ)|x − y| ∀θ ∈ Θ ∀x, y ∈ R

(iv) |f(θ, x) − f(φ, x)| ≤ J(x)|θ − φ| ∀θ, φ ∈ Θ, ∀x ∈ R

where J(·) is continuous and E[J2(ξ)] < ∞.
(v) I(θ) = E|f(θ, ξ) − f(θ0, ξ)|2 > 0 ∀θ �= θ0.

(A2) (i) The first partial derivative of f w.r.t. θ exists and is denoted by
f

(1)
θ (θ, x). The derivative evaluated at θ0 is denoted by f

(1)
θ (θ0, x).

(ii) β = E[f (1)(θ, x)]2 < ∞.
(iii) There exists α > 0 s.t.

|f (1)
θ (θ, x) − f

(1)
θ (θ, x) ≤ J(x)|θ − φ|α ∀x ∈ R

∀θ, φ ∈ Θ and J is as in (A1) (iv).
(iv) |f (1)

θ (θ, x)| ≤ N(θ)(1 + |x|) ∀θεΘ, ∀x ∈ R, sup{N(θ), θ ∈ Θ} < ∞

(A3) There exists a positive constant C such that

Eθ[exp{−u2(3T )−1

∫ T

0

inf
φ∈Θ

(f (1)
θ (φ,Xt))2dt}] ≤ C exp(−u2C) for all u.

Under the assumption (A1) and (A2), Prakasa Rao and Rubin (1981)
proved the strong consistency and asymptotic normality of θT as T → ∞.
Assumption (A3) is used to prove our large deviation result.

3.3 Large Deviations for the Maximum Likelihood
Estimator

Before we obtain bounds on the probabilities of large deviation for the MLE
θT we shall give a more general result.

Theorem 3.1 Under the assumptions (A1) - (A3), for ρ > 0, we have

sup
θ∈Θ

PT
θ {

√
T |θT − θ| ≥ ρ} ≤ B exp(−bρ2)

for some positive constants b and B independent of ρ and T .
By substituting ρ =

√
Tε in Theorem 3.1, the following Corollary is

obtained.
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Corollary 3.1 Under the conditions of Theorem 3.1, for arbitrary ε > 0 and
all T > 0, we have

sup
θ∈Θ

PT
θ {|θT − θ| > ε} ≤ B exp(−CTε2)

where B and C are positive constants independent of ε and T .
To prove Theorem 3.1 we shall use the following revised version of The-

orem 19 of Ibragimov and Has’minskii (1981, p. 372), (see Kallianpur and
Selukar (1993, p. 330)).

Lemma 3.2 Let ζ(t) be a real valued random function defined on a closed
subset F of the Euclidean space R

k. We shall assume that the random process
ζ(t) is measurable and separable. Assume that the following condition is ful-
filled: there exist numbers m ≥ r > k and a function H(x) : R

k → R
1 bounded

on compact sets such that for all x, h ∈ F, x + h ∈ F ,

E|ζ(x)|m ≤ H(x),

E|ζ(x + h) − ζ(x)|m ≤ H(x)|h|r.
Then with probability one the realizations of ζ(t) are continuous functions on
F . Moreover, set

w(δ, ζ, L) = sup
x,y∈F,|x|,|y|≤L,|x−y|≤δ

|ζ(x) − ζ(y)|,

then
E(w(h; ζ, L)) ≤ B0( sup

|x|<L

H(x))1/mLk h(r−k)/m log(h−1)

where B0 = 64k(1 − 2−(r−k)m)−1 + (2(m−r)/m − 1)−1.

Let us consider the likelihood ratio process

ZT (u) =
dPθ+uT−1/2

dPθ
(XT

0 ).

By (2.2) with gt(u) = f(θ + uT−1/2, Xt) − f(θ,Xt), we have

ZT (u) = exp{
∫ T

0

[f(θ + uT−1/2, Xt) − f(θ,Xt)]dWt

−1
2

∫ T

0

[
f(θ + uT−1/2, Xt) − f(θ,Xt)

]2
dt}

= exp{
∫ T

0

gt(u)dWt − 1
2

∫ T

0

g2
t (u)dt}.
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Lemma 3.3 Under the assumptions (A1) - (A3), we have
(a) ET

θ [Z1/2
T (u1) − Z

1/2
T (u2)]2 ≤ C(u2 − u1)2

(b) ET
θ [Z1/2

T (u)] ≤ C exp(−Cu2)

Proof. Note that

ET
θ [Z1/2

T (u1) − Z
1/2
T (u2)]2

= ET
θ [ZT (u1)] + ET

θ [ZT (u2)] − 2ET
θ [Z1/2

T (u1)Z
1/2
T (u2)]

≤ 2 − 2ET
θ [Z1/2

T (u1)Z
1/2
T (u2)].

(3.1)

From Gikhman and Skorohod (1972), for all u we have

ET
θ [ZT (u)] = ET

θ [exp{
∫ T

0

gt(u)dWt − 1
2

∫ T

0

g2
t (u)dt}] ≤ 1. (3.2)

Let
θ1 = θ + u1T

−1/2, θ2 = θ + u2T
−1/2,

δt = f(θ2, Xt) − f(θ1, Xt),
(3.3)

and

VT = exp{ 1
2

∫ T

0
δT dWt − 1

4

∫ T

0
δ2
t dt} =

(
dPT

θ2

dPT
θ1

1/2)
.

By Itô formula, VT can be represented as

VT = 1 − 1
8

∫ T

0

Vtδ
2
t dt +

1
2

∫ T

0

VtδtdWt. (3.5)

The random process {V 2
t ,Ft, P

T
θ , 0 ≤ t ≤ T} is a martingale and from the

Ft-measurability of δt for each t ∈ [0, T ],

ET
θ1

∫ T

0
V 2

t δ2
t dt = ET

θ1

∫ T

0

ET
θ1

(V 2
T |Ft)δ2

t dt

= ET
θ1

V 2
T

∫ T

0

δ2
t dt

=
∫

V 2
T (
∫ T

0

δ2
t dt)dPT

θ1

=
∫

(
∫ T

0

δ2
t dt)dPT

θ2

= ET
θ2

(
∫ T

0

δ2
t dt)

= ET
θ2

∫ T

0

|f(θ2, Xt) − f(θ1, Xt)|2dt

(3.6)

≤ ET
θ2

∫ T

0

[J2(Xt)]|θ2 − θ1|2dt (by A1))

≤ (u2 − u1)2.
1
T

∫ T

0

Eθ2 [J
2(ξ)]dt

< C(u2 − u1)2 < ∞.

(3.7)
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Hence ET
θ1

∫ T

0
VtδtdWt = 0. Therefore, using |ab| ≤ a2+b2

2 , from (3.5) we obtain

ET
θ1

(VT ) = 1 − 1
8

∫ T

0

ET
θ1

(δtVt.δt)dt

≥ 1 − 1
16

∫ T

0

ET
θ1

δ2
t dt − 1

16

∫ T

0

ET
θ1

V 2
t δ2

t dt

= 1 − 1
16

ET
θ1

∫ T

0

δ2
t dt − 1

16
ET

θ2

∫ T

0

δ2
t dt (by (3.6)).

(3.8)

Now
ET

θ [Z1/2
T (u1)Z

1/2
T (u2)]

= ET
θ

⎧⎨
⎩
[

dPT
θ+u1T−1/2

dPT
θ

]1/2 [
dPT

θ+u2T−1/2

dPT
θ

]1/2
⎫⎬
⎭

=
∫ [

dPT
θ1

dPT
θ

]1/2 [
dPT

θ2

dPT
θ

]1/2

dPT
θ

=
∫ [

dPT
θ2

dPT
θ1

]1/2

dPT
θ1

= ET
θ1

(VT ).

(3.9)

Substituting (3.9) into (3.1) and using (3.8), we obtain

Eθ[Z
1/2
T (u1) − Z

1/2
T (u2)]2

≤ 2 − 2Eθ1(VT )

≤ 1
8
Eθ1

∫ T

0

δ2
t dt +

1
8
Eθ1

∫ T

0

δ2
t dt

≤ C(u2 − u1)2(using arguments similar to (3.7)).

This completes the proof of (a). Let us now prove (b). By the Hölder inequality,

Eθ[Z
1/2
T (u)]

= Eθ

[
exp

{
1
2

∫ T

0

gt(u)dWt − 1
4

∫ T

0

g2
t (u)dt

}]

= Eθ

[
exp

{
1
2

∫ T

0

gt(u)dWt − 1
6

∫ T

0

(
gt(u))2dt

}
exp

{
− 1

12

∫ T

0

(
gt(u))2dt

}]

≤

⎧⎪⎨
⎪⎩Eθ

⎡
⎣exp

{
1
2

∫ T

0

gt(u)dWt − 1
6

∫ T

0

(
gt(u))2dt

}]4/3
⎫⎬
⎭

3/4

×

⎧⎪⎨
⎪⎩Eθ

⎡
⎣exp

{
− 1

12

∫ T

0

(
gt(u))2dt

}]4
⎫⎬
⎭

1/4
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≤
[
Eθ exp

{
2
3

∫ T

0

gt(u)dWt − 2
9

∫ T

0

(g2
t (u))dt

}]3/4

×
[
Eθ exp

{
−1

3

∫ T

0

(gt(u))2dt

}]1/4

(3.10)

Assumptions (A2) and (A3) yield

Eθ exp

{
−1

3

∫ T

0

(gt(u))2dt

}

= Eθ exp

{
−1

3

∫ T

0

[
f(θ + uT−1/2, Xt) − f(θ,Xt)

]2
dt

}

= Eθ exp

{
− u2

3T

∫ T

0

(f (1)
θ (θ,Xt))2dt

}
where |θ − θ| ≤ uT−1/2

≤ Eθ exp

{
− u2

3T

∫ T

0

inf
φ∈Θ

(f (1)
θ (φ,Xt))2dt

}

≤ C exp(−u2C).

(3.11)

On the other hand, from Gikhman and Skorohod (1972)

Eθ

[
exp

{∫ T

0

2
3
gt(u)dWt − 1

2

∫ T

0

(
2
3
gt(u)

)2

dt

}]
≤ 1. (3.12)

Combining (3.10) - (3.12) completes the proof of (b).

Proof of Theorem 3.1 Let UT =
{
u : θ + uT−1/2 ∈ Θ

}
. Then

PT
θ

{√
T |θT − θ| > ρ

}
= PT

θ

{
|θT − θ| > ρT−1/2

}
≤ PT

θ

{
sup

|u|≥ρ,u∈UT

LT (θ + uT−1/2) ≥ LT (θ)

}

= PT
θ

{
sup
|u|≥ρ

LT (θ + uT−1/2)
LT (θ)

≥ 1

}

= PT
θ

{
sup
|u|≥ρ

ZT (u) ≥ 1

}

≤
∞∑

r=0

PT
θ

{
sup
u∈Γr

ZT (u) ≥ 1
}

.

(3.13)

where Γr = [ρ + r, ρ + r + 1].
Applying Lemma 3.2 with ζ(u) = Z

1/2
T (u), we obtain from Lemma 3.3

that there exists a constant B > 0 such that
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sup
θ∈Θ

ET
θ

{
sup

|u1−u2|≤h,|u1|,|u2|≤l

∣∣∣Z1/2
T (u1) − Z

1/2
T (u2)

∣∣∣
}

≤ Bl1/2h1/2 log h−1.

(3.14)
Divide Γr into subintervals of length atmost h > 0. The number n of subin-
tervals is clearly less than or equal to [ 1

h ] + 1. Let Γ(j)
r , 1 ≤ j ≤ n be the

subintervals chosen. Choose uj ∈ Γ(j)
r . Then

PT
θ

[
sup
u∈Γr

ZT (u) ≥ 1
]

≤
n∑

j=1

PT
θ

[
Z

1/2
T (uj) ≥ 1

2

]

+PT
θ

{
sup

|u−v|≤h,|u|,|v|≤ρ+r+1

|Z1/2
T (u) − Z

1/2
T (v)| ≥ 1

2

}

≤ 2
n∑

j=1

ET
θ [Z1/2

T (uj)] + 2B(ρ + r + 1)1/2h1/2 log(h−1)

(by Markov inequality and (3.14))

≤ 2C
n∑

j=1

exp
(−Cu2

j

)
+ 2B(ρ + r + 1)1/2h1/2 log(h−1) (by Lemma 3.3)

≤ 2C

([
1
h

]
+ 1
)

exp
{−C(ρ + r)2

}
+ 2B(ρ + r + 1)1/2h1/2 log(h−1).

Let us now choose h = exp
{

−C(ρ+r)2

2

}
. Then

sup
θ∈Θ

PT
θ

{
sup
u>ρ

ZT (u) ≥ 1
}

≤ B
∞∑

r=0

(ρ + r + 1)1/2 exp
{−C(ρ + r)2

4

}
≤ B exp(−bρ2).

(3.15)

where B and b are positive generic constants independent of ρ and T .
Similarly it can be shown that

sup
θ∈Θ

PT
θ

[
sup

u<−ρ
ZT (u) ≥ 1

]
≤ B exp(−bρ2). (3.16)

Combining (3.15) and (3.16), we obtain

sup
θ∈Θ

PT
θ

[
sup
|u|>ρ

ZT (u) ≥ 1

]
≤ B exp(−bρ2). (3.17)

The theorem follows from (3.14) and (3.17).
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3.4 Large Deviations for Bayes Estimators

Let Λ be a prior probability measure on (Θ,B) where B is the σ-algebra of
Borel subsets of Θ. Suppose that Λ has a density λ(·) with respect to the
Lebesgue measure on R, which is continuous and positive on Θ and possesses
in Θ a polynomial majorant.

Let p(θ|XT
0 ) be the posterior density of θ given XT

0 . By Bayes theorem
p(θ|XT

0 ) is given by

p(θ|XT
0 ) =

LT (θ)λ(θ)∫
Θ

LT (θ)λ(θ)dθ
.

Let l(·, ·) : Θ×Θ → R be a loss function which satisfies the following properties
(C1) l(u, v) = l(u − v).
(C2) l(u) is defined and nonnegative on R, l(0) = 0 and l(u) is continuous at
u = 0 but is not identically equal to 0.
(C3) l is symmetric, i.e., l(u) = l(−u).
(C4) {u : l(u) < c} are convex sets and are bounded for all c > 0 sufficiently
small.
(C5) There exists numbers γ > 0, H0 ≥ 0 s.t. for H ≥ H0

sup{l(u) : |u| ≤ Hγ} ≤ inf{l(u) : |u| ≥ H}.
Clearly all loss functions of the form |u−v|r, r > 0 satisfy the conditions (C1)-
(C5). In particular, quadratic loss function |u − v|2 satisfies these conditions.

Then a Bayes estimator
∼
θT of θ with respect to the loss function l(θ, θ′)

and prior density λ(θ) is one which minimizes the posterior risk and is given
by

∼
θT = arg min

u∈Θ

∫
Θ

l(u, θ)p(θ|XT
0 )dθ. (4.1)

In particular, for the quadratic loss function l(u, v) = |u − v|2, the Bayes
estimator

∼
θT becomes the posterior mean given by

∼
θT =

∫
Θ

u p(u|XT
0 )du∫

Θ
p(v|XT

0 )dv
.

We now state the large deviation inequality for the Bayes estimator
∼
θT .

Theorem 4.1 Suppose (A1) - (A3) and (C1) - (C5) hold. For ρ > 0, the
Bayes estimator

∼
θT with respect to the prior λ(·) and a loss function l(·, ·)

with l(u) = l(|u|) satisfies

sup
θ∈Θ

PT
θ {

√
T |∼θT − θ| ≥ ρ} ≤ B exp(−bρ2)

for some positive constants B and b independent of ρ and T .
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Corollary 4.1 Under the conditions of Theorem 4.1, for arbitrary ε > 0 and
all T > 0, we have

sup
θ∈Θ

PT
θ {|∼θT − θ| > ε} ≤ B exp(−CTε2).

To prove Theorem 4.1 we shall use the following Theorem of Ibragimov
and Has’minskii (1981, p. 45).

Theorem 4.2 Let Zε,θ(u) be the likelihood ratio function corresponding to
the points θ + φ(ε)u and θ where φ(ε) denotes a normalizing factor such that
|φ(ε)| → 0 as ε → 0. Thus Zε,θ is defined on the set Uε = (φ(ε))−1(Θ−θ). Let
Zθ

ε,0(u) possesses the following properties : given a compact set K ⊂ Θ there
exist numbers M1 > 0 and m1 ≥ 0 and functions gK

ε (y) = gε(y) correspond
such that

(1) For some α > 0 and all θ ε K,

sup
|u1|≤R,|u2|≤R

|u2 − u1|−αE
(ε)
θ |Z1/2

ε,θ (u2) − Z
1/2
ε,θ (u1)|2 ≤ M1(1 + Rm1).

(2) For all θ ∈ K and u ∈ Uε, E
(ε)
θ Z

1/2
ε,θ (u) ≤ e−gε(u).

(3) gε(u) is a monotonically increasing to ∞ function of y

lim
y→∞,ε→0

yNe−gε(y) = 0.

Let {∼t ε} be a family of estimators, Bayesian with respect to the prior density
q, which is continuous and positive on K and possesses in Θ a polynomial
majorant and a loss function ωε(u, v) = l((φ(ε))−1(u − v)) where l satisfies
(C1) - (C5). Then for any N ,

lim
H→∞,ε→0

HN sup
θεK

P
(ε)
θ {|(φ(ε))−1(

∼
t ε − θ)| > H} = 0.

If in addition, l(u) = τ(|u|), then for all ε sufficiently small, 0 < ε < ε0,

sup
θ∈K

P
(ε)
θ {|(φ(ε))−1(

∼
t ε − θ)| > H} ≤ B0e

−b0gε(H).

Proof of Theorem 4.1. In view of Lemma 3.3, conditions (1), (2) and (3) of
Theorem 4.2 are satisfied with α = 2 and g(u) = u2. Hence the result follows
from Theorem 4.2.

As another application of Theorem 4.2, we obtain the following result.

Theorem 4.2. Under the assumptions (A1) - (A3), for any N , we have for
the Bayes estimator

∼
θT w.r.t. the prior λ(·) and loss function l(·, ·) satisfying

the conditions (C1) - (C5),

lim
H→∞,T→∞

HN sup
θ∈Θ

PT
θ {

√
T |∼θT − θ| > H} = 0.
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3.5 Examples

(a) Ornstein-Uhlenbeck Process

Consider the stationary Ornstein-Uhlenbeck model

dXt = −θXt dt + dWt

where X0 has N (0,−1/2θ) distribution. It satisfies the conditions for the large
deviations of MLE. For Bayes estimator choose, squared error loss function.

(b) Kessler-Sørensen Model

Kessler and Sørensen (1999) studied the following model

dXt = −θ tan(Xt) dt + dWt

θ ≥ 1/2. This is an ergodic diffusion with on the interval (−π/2, π/2). This
can be thought as an Ornstein-Uhlenbeck process on a finite interval.

(c) Larsen-Sørensen Model

dXt = −θ
sin( 1

2π(Xt − m)/z − ρ

cos 1
2π(Xt − m)/z

dt + σdWt

where θ > 0, ρ ∈ (−1, 1), z > 0, m ∈ R. This is a generalization of the
Kessler-Sørensen model. When γ = 0, m = 0 and z = π/2, we obtain
the Kessler-Sørensen model. The market volatility is constant, but the cen-
tral banks intervene very forcefully when the exchange rate comes near
the boundaries to try it to keep away from them. When θ ≥ 1

2σ2 and
−1 + σ2/(2θ) ≤ ρ ≤ 1 − σ2/(2θ). This model is used to model exchange
rates in a target zone, θ expresses the strength of the intervention of the cen-
tral bank and ρ measures the asymmetry between two currencies, while σ2

expresses the volatility of the market.

(d) Jacobi Diffusion Model

Consider the Jacobi diffusion

dXt = −θ[Xt − (m + γZ)] dt + σ
√

Z2 − (Xt − m)2dWt

θ > 0 and γ ∈ (−1, 1). This process reverts to the mean m + γZ with a speed
that is proportional to the deviation from this model. When θ(1 − γ) ≥ σ2

and θ(1 + γ) ≥ σ2 this process is an ergodic diffusion for which the stationary
distributionistheBetadistributionon(m−z,m+z)withparametersθ(1−γ)σ−2

and θ(1 + γ)σ−2. The parameter γ allows asymmetric stationary distribution
which is usually needed to fit observations of exchange rates in a target zone,
see Larsen and Sørensen (2003).
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Remarks

(1) Following the methods of this Chapter, bounds on the large deviation
probability for the MLE and the BE in nonlinear nonhomogeneous SDE
is investigated in Bishwal (2003b). Also a Berry-Esseen type bound for the
MLE for nonlinear nonhomogeneous diffusions is investigated in Bishwal
(2003b).

(2) For the nonlinear SDE it is known that maximum likelihood estimator
and the Bayes estimators are asymptotically equivalent as T → ∞ (see
Bose (1983b)). It remains open to obtain the bounds on the asymptotic
equivalence of these two estimators.

(3) The rate of convergence in the Bernstein-von Mises theorem and the
Berry-Esseen bound for the maximum likelihood and the Bayes estimators
in the nonlinear (both homogeneous and nonhomogeneous) SDE remain
open.



4

Local Asymptotic Mixed Normality
for Nonhomogeneous Diffusions

4.1 Introduction

We study the asymptotic properties of various estimators of the parameter ap-
pearing nonlinearly in the nonhomogeneous drift coefficient of a functional sto-
chastic differential equation when the corresponding solution process, called
the diffusion type process, is observed over a continuous time interval [0, T ].
We show that the maximum likelihood estimator, maximum probability es-
timator and regular Bayes estimators are strongly consistent and when suit-
ably normalised, converge to a mixture of normal distribution and are locally
asymptotically minimax in the Hajek-Le Cam sense as T → ∞ under some
regularity conditions. Also we show that posterior distributions, suitably nor-
malised and centered at the maximum likelihood estimator, converge to a
mixture of normal distribution. Further, the maximum likelihood estimator
and the regular Bayes estimators are asymptotically equivalent as T → ∞.
We illustrate the results through the exponential memory Ornstein-Uhlenbeck
process, the nonhomogeneous Ornstein-Uhlenbeck process and the Kalman-
Bucy filter model where the limit distribution of the above estimators and the
posteriors is shown to be Cauchy.

Time dependent diffusion models are useful for modeling term structure
dynamics, see Fan et al. (2003). Long time asymptotics and small noise as-
ymptotics of maximum likelihood estimator (MLE) and the Bayes estimators
(BEs) of the drift parameter in the linear and nonlinear Markov diffusion
processes have been paid a lot of attention during the last two decades, see
e.g., Liptser and Shiryayev (1978), Basawa and Prakasa Rao (1980), Kutoyants
(1984b, 1994), Linkov (1993) and Prakasa Rao (1999). For the nonlinear homo-
geneous stationary ergodic diffusion processes, Prakasa Rao and Rubin (1981)
and Prakasa Rao (1982) studied the long time asymptotics of the MLE and
the maximum probability estimator (MPE) respectively and Bose (1983) stud-
ied the long time asymptotics of the posterior distributions and the BEs. For
the nonlinear nonhomogeneous nonstationary nonergodic diffusion processes,
Borkar and Bagchi (1982), Mishra and Prakasa Rao (1985) and Levanony,
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Shwartz and Zeitouni (1994) studied the long time asymptotics of the MLE.
Small noise asymptotics of the MLE and the BEs for these processes were
studied by Kutoyants (1984b).

For general theory of asymptotic inference for nonergodic models, see
Jeganathan (1982) and Basawa and Scott (1983). Asymptotic study of
estimation of the drift parameter of nonlinear nonhomogeneous non-Markovian
diffusion type processes which are solutions of functional stochastic differen-
tial equations has been paid much less attention. Taraskin (1985) showed the
local asymptotic conditional normality (LACN) property for diffusion type
processes. Dietz (1989) studied the weak consistency and asymptotic mixed
normality of maximum likelihood estimator (MLE) as the intensity of noise
ε → 0 or the observation time T → ∞. Linkov (1990) also obtained the local
asymptotic mixed normality (LAMN) property of such models as observation
time T → ∞ under a different set of conditions. Dietz (1992) showed the
LAMN property for the concrete example of diffusion type process which is
an exponential memory, a non-Markovian relative to the Ornstein-Uhlenbeck
(O-U) process and showed the asymptotic properties of the MLE as the ob-
servation time T → ∞. Guttorp and Kulperger (1984) studied the asymptotic
properties of MLE in Volterra population processes in a random environment
as T → ∞. Gushchin and Kuchler (1998) studied the asymptotic behaviour of
MLE in a linear SDE with time delay whose solution is a non-Markovian diffu-
sion type process. For a two dimensional parameter they showed that MLE has
eleven types of behaviour in eleven parts of the parameter space. Functional
stochastic differential equations also include the partially observed Kalman-
Bucy filter models for which the asymptotic behaviour of MLE were studied
by Campillo and Le Gland (1989), James and Le Gland (1993), Konecky
(1991), Kallianpur and Selukar (1991), Kutoyants and Pohlman (1994) and
Kutoyants (1994). For asymptotic minimax theory of models satisfying be-
yond the LAN condition, like the LAID, LAQ, LABF, PLAMN, FLAQ etc.
see Taraskin (1985), Spokoiny (1992), Greenwood and Wefelmeyer (1993),
Gushchin (1995), Jeganathan (1995) and Shiryayev and Spokoiny (2000).

In this chapter we study the asymptotic properties of the MLE, MPE,
BEs and posterior distributions of the parameter appearing in the drift co-
efficient of nonlinear nonhomogeneous non-Markovian diffusion type process
when the length of observation time becomes large under some regularity
conditions. The chapter is organised as follows: In Section 4.2 we prepare
notations, assumptions and preliminaries. In Section 4.3 we show that the
maximum likelihood estimator is strongly consistent. In Section 4.4 we prove
the Bernstein-von Mises type theorem showing that a suitably normalised
and centered posterior distribution converges to a mixture of normal distribu-
tion. As a consequence, we show that the maximum likelihood estimator and
a regular class of Bayes estimators are asymptotically equivalent and Bayes
estimators converge to a mixture of normal distribution. In Section 4.5 we
show that the maximum probability estimator (MPE) is consistent, converge
to a mixture of normal distribution and are locally asymptotically minimax
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(in the Hajek-Le Cam sense). Finally in Section 4.6 we illustrate our results
through examples from exponential memory O-U process, nonhomogeneous
O-U process and the Kalman-Bucy filter model.

This chapter is adapted from Bishwal (2004b).

4.2 Model, Assumptions and Preliminaries

Let (Ω,F , {Ft}t≥0, P ) be a stochastic basis satisfying the usual hypotheses
on which we have a real valued diffusion type process {Xt, t ≥ 0} satisfying
the functional stochastic differential equation (FSDE)

dXt = f(θ, t,X) dt + dWt, t ≥ 0,
X0 = ξ

(2.1)

where {Wt, t ≥ 0} is a standard Wiener process, ξ is a F0-measurable
real valued random variable, θ ∈ Θ a compact subset of R is the un-
known parameter to be estimated on the basis of observation of the process
{Xt, 0 ≤ t ≤ T} =: XT

0 . The measurable function f(θ, t, x), t ≥ 0, θ ∈ Θ and
x ∈ C[0, T ] are assumed to be (for each fixed θ) nonanticipative, that is Bt-
measurable for each t ≥ 0 where C[0, T ] is the space of continuous functions
from [0, T ] to R.

Prime denotes derivative with respect to θ throughout the chapter. We
assume the following conditions:

(A1)
∫ T

0

f2(θ, t, x)dt < ∞, T < ∞, x ∈ C[0, T ], θ ∈ R,

(A2) P

(∫ ∞

0

f ′2(θ, t,X)dt = ∞
)

= 1, θ ∈ R

(A3) |f(θ, t, x) − f(θ, t, y)| ≤ M1

∫ t

0
|xs − ys|ds + M2|xt − yt|,

f2(θ, t, x) ≤ M1

∫ t

0
(1 + |xs|)ds + M2(1 + |xt|),

where xs, ys ∈ C[0, T ], θ ∈ R,M1 and M2 are constants.
Under the condition (A3), it is well known that equation (2.1) has a unique

solution (see Kutoyants (1984b), Mao (1997)).
Let PT

θ be the measure generated by the process XT
0 on the space (CT ,BT )

of continuous functions from [0, T ] → R with the associated Borel σ-algebra
BT under the supremum norm and PT

W be the measure generated by ξ + Wt

on the space (CT ,BT ). Let ET
θ denote the expectation w.r.t. measure PT

θ .
Under the assumption (A1), PT

θ � PT
θ0

and the Radon-Nikodym derivative
(likelihood function) is given by (see Liptser and Shiryayev (1977))

LT (θ) :=
dPT

θ

dPT
θ0

(XT
0 )

= exp

{∫ T

0

[f(θ, t,X) − f(θ0, t, X)]dXt−1
2

∫ T

0

[f2(θ, t,X)−f2(θ0, t, X)]dt

}
.



64 4 Local Asymptotic Mixed Normality for Nonhomogeneous Diffusions

The maximum likelihood estimate (MLE) is defined as

θT := arg sup
θ∈Θ

LT (θ).

One can show that there exists a FT measurable MLE by using Lemma 3.3
in Schemetterer (1974) since LT (θ) is continuous in θ and Θ is compact.
Hereafter we assume the existence of such a measurable MLE.

For the MLE θT , Kutoyants (1984a) proved the weak consistency, asymp-
totic normality and convergence of moments to that of a normal variable when
the model satisfies the local asymptotic normality (LAN) condition. He also
showed similar properties for a regular class of Bayes estimators.

Let lT (θ) := log LT (θ). We shall further assume the following conditions:
(A4) Pθ1 �= Pθ2 for θ1 �= θ2 in Θ.
(A5) For any θ ∈ Θ, there exists a neighbourhood Vθ of θ in Θ such that

Pθ

{∫ ∞

0

[f(θ1, t,X) − f(θ, t,X)]2dt = ∞
}

= 1 for θ1 ∈ Vθ\{θ}.

There exists a nonrandom sequence mT = mT (θ) ↑ ∞ as T ↑ ∞ satisfying
the following conditions:

(A6) θ → f(θ, t, x) ∈ C2(Θ) and for g = f or f ′or f ′′

Pθ0

{
1

mT

∫ T

0

sup
θ∈Θ

g2(θ, s,X)ds < ∞
}

= 1.

(A7) There exists a random variable ζ(θ0) with P (ζ(θ0) > 0) > 0 such
that

1
mT

∫ T

0

|f ′(θ0, s,X)|2ds → ζ(θ0) Pθ0 − a.s. as T → ∞ for all θ ∈ Θ.

(A8) For all θ ∈ Θ and u ∈ R,

Pθ − lim sup
v∈[0,1]

∫ T

0

|f ′(θ + uvm
−1/2
T , s, X) − f ′(θ, s,X)|2ds = 0.

Suppose that Λ is a prior probability on (Θ,Ξ) where Ξ is the σ-algebra
of Borel subsets of Θ. Assume that Λ has a density λ(.) with respect to
the Lebesgue measure and the density is continuous and positive in an open
neighbourhood of θ0.

The posterior density of θ given XT
0 is given by

p(θ|XT
0 ) =

LT (θ)λ(θ)∫
Θ

LT (θ)λ(θ)dθ.
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Let K be a nonnegative measurable function satisfying
(K1) There exists a number ε, Pθ0(0 < ε < ζ(θ0)) = 1, for which∫ ∞

−∞
K(t) exp(−1

2
(ζ(θ0) − ε)u2)du < ∞ Pθ0 − a.s.

(K2) For every d > 0 and every random variable η with Pθ0(0 < η <
∞) = 1

exp(−mT η)
∫
|u|≥d

K(m1/2
T u)λ(θT + u)du → 0 Pθ0 − a.s. as T → ∞.

Suppose that ω(θ1, θ2) is a loss function defined on Θ × Θ. Assume that
ω(θ1, θ2) = ω(|θ1 − θ2|) ≥ 0 and ω(t) is nondecreasing. Suppose that R is a
nonnegative function and K and G are functions satisfying

(B1) R(mT )ω(um
−1/2
T ) ≤ G(u) for all T ≥ 0.

(B2) R(mT )ω(um
−1/2
T ) → K(u) uniformly on bounded intervals of u as

T → ∞.
(B3)

∫∞
−∞ K(t + r) exp(− 1

2ζ(θ0)u2)du has a strict minimum at r = 0 Pθ0-
a.s.

(B4) The function G satisfies (K1) and (K2).
A regular Bayes estimator θ̃T based on XT

0 is defined as

θ̃T := arg inf
ψ∈Θ

BT (ψ)

where BT (ψ) =
∫
Θ

ω(θ, ψ)p(θ|XT
0 )dθ. Assume that such an estimator exists.

Define ZT (θ) :=
∫ θ+m

−1/2
T

θ−m
−1/2
T

lT (φ)dφ. The maximum probability estimator

is defined as
θ̂T := arg sup

θ∈Θ
ZT (θ).

Assume that such an estimator exists.
First we show the LAMN property of the model (2.1). Note that LAMN prop-
erty was shown for more general semimartingale models under more restricted
assumptions (see Luschgy (1992)). This result would be used to prove some
of our main results.
Theorem 2.1 Let θ = θ0 + um

−1/2
T , u ∈ R. Under the assumptions (A1)–

(A8), for all u ∈ R,

log
dPT

θ

dPT
θ0

= uΔT (θ0) − 1
2
u2ζT (θ0) + ψ(u, θ0)

where (ΔT (θ0), ζT (θ0))
D[Pθ0 ]→ (ζ1/2(θ0)η, ζ(θ0)) as T →∞ and lim

T→∞
ψT (θ0, u)=0

in Pθ0-probability as T → ∞ with η ∼ N (0, 1) independent of ζ(θ0).
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Proof. For θ = θ0 + um
−1/2
T , we have

log
dPT

θ

dPT
θ0

(XT
0 )

=
∫ T

0

[f(θ, t,X) − f(θ0, t, X)]dXt − 1
2

∫ T

0

[f2(θ, t,X) − f2(θ0, t, X)]dt

=
∫ T

0

[f(θ, t,X) − f(θ0, t, X)]dWt − 1
2

∫ T

0

[f(θ, t,X) − f(θ0, t, X)]2dt

= um
−1/2
T

∫ T

0

f ′(θ0, t,X)dWt

+um
−1/2
T

∫ T

0

[f ′(θ0 + uvm
−1/2
T , t, X) − f ′(θ0, t, X)]dWt

−1
2
u2m−1

T

∫ T

0

f ′2(θ0, t, X)dt

−1
2
u2m−1

T

∫ T

0

[f ′2(θ0 + uvm
−1/2
T , t, X) − f ′2(θ0, t, X)]dt

(where v ∈ [0, 1])

=: uΔT (θ0) − 1
2
u2ζT (θ0) + ψT (θ0, u)

where ΔT (θ0) = m
−1/2
T

∫ T

0

f ′(θ0, t, X)dWt,

ζT (θ0) = m−1
T

∫ T

0

f ′2(θ0, t, X)dt,

ψT (θ0, u) = um
−1/2
T

∫ T

0

[f ′(θ0 + uvm
−1/2
T , t, X) − f ′(θ0, t, X)]dWt

−1
2
u2m−1

T

∫ T

0

[f ′2(θ0 + uvm
−1/2
T , t, X) − f ′2(θ0, t, X)]dt.

By (A8), we have ψT (θ0, u) → 0 in Pθ0- probability as T → ∞.
Notice that m

1/2
T ΔT (θ0) is a zero mean square integrable martingale with

quadratic variation process mT ζT (θ0). By the martingale central limit theo-
rem and stability of weak convergence (see Jacod and Shiryayev (1987)) and
(A7),

(ΔT (θ0), ζT (θ0))
D[Pθ0 ]→ (N (0, ζ(θ0)), ζ(θ0)) G−stably as T → ∞.
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4.3 Asymptotics of the Maximum Likelihood Estimator

Dietz (1989) showed that θT → θ0 in Pθ0- probability as T → ∞. We
strengthen the result by proving strong consistency of the MLE.
Theorem 3.1 Under the assumptions (A1)–(A5), there exists a root of the
likelihood equation which is strongly consistent, i.e., θT → θ0 Pθ0-a.s. as
T → ∞.
Proof. Observe that, for δ > 0

lT (θ0 ± δ) − lT (θ0)

= log
dPT

θ0±δ

dPT
θ0

=
∫ T

0

[f(θ0 ± δ, t, X) − f(θ0, t, X)]dXt

−1
2

∫ T

0

[f2(θ0 ± δ, t, X) − f2(θ0, t, X)]dt

=
∫ T

0

[f(θ0 ± δ, t, X) − f(θ0, t, X)]dWt

−1
2

∫ T

0

[f(θ0 ± δ, t, X) − f(θ0, t, X)]2dt

=
∫ T

0

Aθ0
t dWt − 1

2

∫ T

0

(Aθ0
t )2dt.

where Aθ
t := f(θ ± δ, t, X) − f(θ, t,X).

Let NT :=
∫ T

0
(Aθ0

t )2dt. Then

lT (θ0 ± δ) − lT (θ0)
NT

=

∫ T

0
Aθ0

t dWt∫ T

0
(Aθ0

t )2dt
− 1

2

=
W ∗(

∫ T

0
(Aθ

t )
2dt)∫ T

0
(Aθ

t )2dt
− 1

2

=
W ∗(NT )

NT
− 1

2

(3.1)

by (A5) and the Skorohod embedding of the continuous martingale
∫ T

0
Aθ

t dWt,
where W ∗ is some other Brownian motion with respect to the enlarged filtra-
tion (Gt)t≥0 where Gt = Fτt

with τt = inf{s : Ns > t} and W ∗ independent
of NT .

Using the assumption (A5) and the strong law of large numbers for Brown-
ian motion (see Lemma 17.4 in Liptser and Shiryayev (1978, p. 210)), the first
term on the r.h.s. of (3.1) converges to zero Pθ0-a.s. as T → ∞. Hence,

lT (θ0 ± δ) − lT (θ0)
NT

→ −1
2

Pθ0 − a.s. as T → ∞.
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Furthermore, NT > 0 Pθ0−a.s. by (A4). Therefore, for almost every w ∈ Ω, δ
and θ, there exist some T0 such that for T ≥ T0

lT (θ0 ± δ) < lT (θ0). (3.2)

Since lT (θ) is continuous on the compact set [θ − δ, θ + δ], it has a local max-
imum and it is attained at a measurable θT in [θ − δ, θ + δ]. In view of (3.2),
θT ∈ (θ0 − δ, θ0 + δ) for T > T0. Since lT (θ) is differentiable with respect to
θ, it follows that l′T (θT ) = 0 for T ≥ T0 and θT → θ0 Pθ0-a.s. as T → ∞.

The LAMN property (Theorem 2.1) together with Theorem 7 in Je-
ganathan (1982) gives

Theorem 3.2 Under the assumptions (A1)–(A8),

m
1/2
T (θ̂T − θ0)

D[Pθ0 ]→ N (0, ζ−1(θ0)) as T → ∞
and the maximum likelihood estimator is locally asymptotically minimax.

4.4 The Bernstein-von Mises Type Theorem
and Asymptotics of Bayes Estimators

In this section we prove the Bernstein-von Mises type theorem concerning the
convergence of suitably normalized and centered posterior distribution to a
mixture of normal distribution.

Let u = m
1/2
T (θ − θT ). Then the posterior density of m

1/2
T (θ − θT ) given

XT
0 is given by

p∗(u|XT
0 ) = m

−1/2
T p(θT + um

−1/2
T |XT

0 ).

Let

γT (u) =
dPT

θT +um
−1/2
T

dPT
θ0

(XT
0 )/

dPT
θT

dPT
θ0

(XT
0 ),

CT =
∫ ∞

−∞
γT (u)λ(θT + um

−1/2
T )du.

Clearly, p∗(u|XT
0 ) = C−1

T γT (u)λ(θT + um
−1/2
T ).

Remarks Under the assumptions (A1)–(A3), all the stochastic integrals oc-
curring henceforth can be defined pathwise. Further it is possible to differen-
tiate (with respect to θ) within the stochastic integral (indeed outside a fixed
null set of the basic probability space). See Karandikar (1983) and Hutton
and Nelson (1984) for details.
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Lemma 4.1
(a) For all θ ∈ Θ, for g = f or f ′ or f ′′,

1
mT

∫ T

0

g(θ, s,X)dWs → 0 Pθ0 − a.s. as T → ∞.

(b) For all δ > 0,

inf
|θ−θ0|> δ

2

1
mT

∫ T

0

|f(θ, s,X) − f(θ0, s, X)|2ds → h(δ)ζ(θ0) Pθ0-a.s. as T → ∞
for some h(.) > 0.

Proof (a) By the Skorohod embedding of a continuous martingale in a Brown-
ian motion,

1
mT

∫ T

0

sup
θ∈Θ

g(θ, s,X)dWs =
W ∗(τT )

mT

where{W ∗
t , t ≥ 0} is aFT -Wienerprocess and τT = 1

mT

∫ T

0
supθ∈Θ g2(θ, s,X)ds.

Then (A6) and the fact that

lim
T→∞

W ∗
T

T
= 0 a.s. as T → ∞

imply
1

mT

∫ T

0

sup
θ∈Θ

g(θ, s,X)dWs → 0 Pθ0 − a.s. as T → ∞.

(b) Using (A7) we have the result.

Lemma 4.2
(a) For each fixed u, log γT (u) → 1

2ζ(θ0)u2 Pθ0-a.s. as T → ∞.
(b) For every ε, Pθ0(0 < ε < ζ(θ0)) = 1, there exists δ0 and T0 such that
γT (u) ≤ exp(− 1

2 (ζ(θ0) − ε)u2 Pθ0-a.s. for |u| ≤ δ0m
1/2
T and T ≥ T0.

(c) For every δ > 0, there exists a T0 such that

sup
|u|≥δm

1/2
T

γT (u) ≤ exp(−1
2
mT ζ(θ0)h(

δ

2
)) Pθ0-a.s. for all T ≥ T0.

Proof. Note that

log γT (u)

=
∫ T

0
[f(θT + um

−1/2
T , t, X) − f(θT , t, X)]dWt

− 1
2

∫ T

0
[f(θT + um

−1/2
T , t, X) − f(θ0, t, X)]2dt

+ 1
2

∫ T

0
[f(θT , t, X) − f(θ0, t, X)]2dt.

Applying the mean-value theorem and the likelihood equation it follows that

log γT (u) = I1 + I2 + I3 + I4
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with

I1 := − u2

2mT

∫ T

0

f ′2(θ0, t,X)dt,

I2 :=
u2

2mT

∫ T

0

[f ′2(θ0, t,X) − f ′2(θ∗∗T , t, X)]dt,

I3 :=
u2

2mT

∫ T

0

f ′′(θ∗T , t,X)dWt,

I4 :=
∫ T

0

[f(θT , t,X) − f(θ0, t, X)][f(θT + um
−1/2
T , t, X) − f(θT , t, X)

−um
−1/2
T f ′(θT , t,X)]dt

where max(|θ∗T − θT |, |θ∗∗T − θT |) ≤ |u|m−1/2
T .

Let us first prove (a). By (A7), I1 → − 1
2ζ(θ0)u2 Pθ0-a.s. as T → ∞.

By the mean-value theorem and Cauchy-Schwarz inequality we obtain

|I2| ≤ |u|3
m

1/2
T

{∫ T

0
supθ∈Θ f ′2(θ, t,X)dt

mT

}1/2{∫ T

0
supθ∈Θ f ′′2(θ, t,X)dt

mT

}1/2

→0

Pθ0-a.s. as T → ∞ by Lemma 4.1 and (A7).
Again by the mean-value theorem and Cauchy-Schwarz inequality we obtain

|I4|

≤ |u|2|θT − θ0|
{∫ T

0
supθ∈Θ f ′2(θ, t,X)dt

mT

}1/2{∫ T

0
supθ∈Θ f ′′2(θ, t,X)dt

mT

}1/2

→ 0 Pθ0-a.s. as T → ∞

by the strong consistency of θT , Lemma 4.1 and (A7).
Clearly, I3 → 0 Pθ0-a.s. as T → ∞ by Lemma 4.1.
Thus log γT (u) → 1

2ζ(θ0)u2 Pθ0-a.s. as T → ∞. This completes the proof of
(a).
Let us prove (b) next. Fix ε > 0. Clearly there exists a T1 such that for T ≥ T1

− 1
2
|u|2
mT

∫ T

0
f ′2(θ0, t,X)dt ≤ −1

2 (ζ(θ0) − ε)u2 Pθ0-a.s.
By Lemma 4.1 there exists a T2 such that for all T ≥ T2,
supθ∈Θ

1
mT

∫ T

0
f ′′(θ0, t,X)dWt ≤ ε

3 Pθ0-a.s. Next if |u|
m

1/2
T

≤ δ0
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|I2|

≤
(

|u|
m

1/2
T

+ |θT − θ|
)

u2

{∫ T

0
supθ∈Θ f ′2(θ, t,X)dt

mT

}1/2

×
{∫ T

0
supθ∈Θ f ′′2(θ, t,X)dt

mT

}1/2

≤ (δ0 + |θT − θ|) u2

{∫ T

0
supθ∈Θ f ′2(θ, t,X)dt

mT

}1/2

×
{∫ T

0
supθ∈Θ f ′′2(θ, t,X)dt

mT

}1/2

.

Choosing δ0 suitably and using Theorem 3.1 it follows that there exists a δ0

and T3 such that |u|
m

1/2
T

≤ δ0 and T ≥ T3 implies I2 ≤ ε
3 Pθ0-a.s. Similarly using

the mean-value theorem and arguing as above there exists a δ1 and T4 such
that |u|

m
1/2
T

≤ δ1 and T ≥ T4 implies I4 ≤ ε
3Pθ0-a.s. Now it suffices to combine

the results to obtain (b). Next we prove (c). Note that

1
mT

log γT (u)

= 1
mT

∫ T

0
[f(θT + um

−1/2
T , t, X) − f(θ0, t, X)]dWt

− 1
2mT

∫ T

0
[f(θT + um

−1/2
T , t, X) − f(θT , t, X)]2dt

+ 1
2mT

∫ T

0
[f(θT , t, X) − f(θ0, t, X)]2dt

=: J1(u, T ) + J2(u, T ) + J3(T ).

By the mean-value theorem, we obtain

J3(T ) =
1

2mT
|θT − θ0|2

∫ T

0

f ′2(θ̄T , t, X)dt

where θ̄T = θ0 + αT (θT − θ0), 0 < αT < 1 and J3(T ) → 0 Pθ0-a.s. as T → ∞
by Theorem 3.1 and Lemma 4.1.
Next by Lemma 4.1

sup
u∈R

|J1(u, T )| ≤ 2 sup
θ∈Θ

1
mT

∣∣∣∣∣
∫ T

0

f(θ, t,X)dWt

∣∣∣∣∣→ 0 Pθ0 − a.s. as T → ∞

Finally by the strong consistency of θT , for all δ > 0 there exists a T0 such that
for all T ≥ T0, |θT − θ0| ≤ δ Pθ0-a.s. Hence if |u|m−1/2

T ≥ δ and T ≥ T0, then

|θT + |u|m−1/2
T − θ0| >

δ

2
.
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Thus by Lemma 4.1

|J2(u, T )| ≤ −1
2

inf
|θ−θ0|≥ δ

2

1
mT

∫ T

0

[f(θ, t,X) − f(θ0, t, X)]2dt → −1
2
h(

δ

2
)ζ(θ0)

Pθ0-a.s. as T → ∞. Combining these estimates of J1, J2 and J3, (c) is proved.

Lemma 4.3 Under the assumptions (A1)–(A8) and (K1)–(K2),
(a) there exists δ0 such that∫
|u|≤δ0m

1/2
T

K(u)|γT (u)λ(θT +um
−1/2
T )−λ(θ0) exp(− 1

2ζ(θ0)u2)|du → 0 Pθ0-a.s.
as T → ∞,
(b) for every δ > 0∫
|u|≥δm

1/2
T

K(u)|γT (u)λ(θT +um
−1/2
T )−λ(θ0) exp(− 1

2ζ(θ0)u2)|du → 0 Pθ0-a.s.
as T → ∞.

ProofWeomit the proof since the arguments are already available inBorwanker
et al. (1971) (Lemmas 3.2 and 3.3).

With the aid of Lemma 4.1 and Lemma 4.3 we are now ready to prove a
generalized version of the Bernstein-von Mises theorem.

Theorem 4.1 Under the assumptions (A1)–(A8) and (K1)–(K2),

lim
T→∞

∫ ∞

−∞
K(u)|p∗(u|XT

0 ) −
(

ζ(θ0)
2π

)1/2

exp(−1
2
ζ(θ0)u2)|du = 0 Pθ0 − a.s.

Proof. By Lemma 4.3, we have

lim
T→∞

∫ ∞

−∞
K(u)|γT (u)λ(θT + um

−1/2
T ) − λ(θ0) exp(−1

2
ζ(θ0)u2)|du = 0

Pθ0 − a.s. (4.1)
Putting K(u) = 1 which trivially satisfies (K1) -(K2), we obtain
CT =

∫∞
−∞ γT (u)λ(θT + um

−1/2
T )du → λ(θ0)

∫∞
−∞ exp(− 1

2ζ(θ0)u2)du
Pθ0 − a.s. asT → ∞. (4.2)

Therefore,

∫ ∞

−∞
K(u)|p∗(m1/2

T (θ − θT )|XT
0 ) −

(
ζ(θ0)
2π

)1/2

exp(−1
2
ζ(θ0)u2)|du

≤
∫ ∞

−∞
K(u)|C−1

T γT (u)λ(θT + um
−1/2
T ) − C−1

T λ(θ0) exp(−1
2
ζ(θ0)u2)|du

+
∫ ∞

−∞
K(u)|C−1

T λ(θ0) exp(−1
2
ζ(θ0)u2) −

(
ζ(θ0)
2π

)1/2

exp(−1
2
ζ(θ0)u2)|du

→ 0 Pθ0-a.s. as T → ∞
by (4.1) and (4.2).
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Corollary 4.1 In additions to assumptions of Theorem 2.1, if further∫∞
−∞ |θ|nλ(θ)dθ < ∞ for n ∈ N, then

lim
T→∞

∫ ∞

−∞
|u|n|p∗(u|XT

0 ) −
(

ζ(θ0)
2π

)1/2

exp(−1
2
ζ(θ0)u2)|du = 0 Pθ0 − a.s.

Remarks

(1) The case n = 0 and conditionally on ζ(θ0), Corollary 2.1 gives a generalized
version of the classical form of Bernstein-von Mises type theorem.
Thus posterior distributions, suitably normalised and centered, converges
to a mixture of normal distribution in total variation norm a.s. as T → ∞.

(2) Note that if one verifies the condition

lim
α→∞ lim sup

T→∞
Pθ0 [

∫
|u|≥α

|u|aLT (θ0 + um
−1/2
T )du > ε] = 0

for every ε > 0 and some a ≥ 0, then by Theorem 5 in Jeganathan
(1982) along with Theorem 2.1 one obtains an in-probability version of the
Bernstein-von Mises theorem, i.e., for every 0 ≤ b ≤ a

∫ ∞

−∞
|u|b|p∗(u|XT

0 ) −
(

ζ(θ0)
2π

)1/2

exp(−1
2
ζ(θ0)u2)|du = 0

in Pθ0 − probability as T → ∞.

We have the following asymptotic properties of the Bayes estimators.

Theorem 4.2 Under the assumptions (A1)–(A8), (K1)–(K2) and (B1)–(B4),
(a) m

1/2
T (θT − θ̃T ) → 0 Pθ0-a.s. as T → ∞.

(b) R(mT )B(θT ) = R(mT )B(θ̃T ) =
(

ζ(θ0)
2π

)1/2 ∫∞
−∞ K(u) exp(− 1

2ζ(θ0)u2)du

Pθ0-a.s.

Proof. The proof is omitted as it follows the arguments in Borwanker et al.
(1973).

Thus maximum likelihood estimator and a regular class of Bayes estimators
are asymptotically equivalent as T → ∞.

Corollary 4.2 Under the assumptions (A1)–(A8), (K1)–(K2) and (B1)–(B4),
(a) θ̃T → θ0 Pθ0-a.s. as T → ∞.

(b) m
1/2
T (θ̃T − θ0)

D[Pθ0 ]→ N (0, ζ−1(θ0)) as T → ∞.
Thus Bayes estimators are strongly consistent and converge to a mixture of
normal distribution as T → ∞.
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4.5 Asymptotics of Maximum Probability Estimator

We need the following Lemma in the sequel.
Lemma 5.1 Let ΓT (θ) = d2lT (θ)

dθ2 . Then

1
mT

∫ 1

0

l′′T (θ + λτT )dλ → −ζ(θ0) Pθ0 − a.s. as T → ∞

where τT → 0 as T → ∞.

Proof. Martingale Convergence Theorem (see Dietz (1989)) and (A8) prove
the result.

We first prove the strong consistency of the MPE.

Theorem 5.1 Under the assumptions (A1)–(A5), for sufficiently large T with
Pθ0-probability approaching one, there exists an MPE which is m

1/2
T -consistent

estimate of θ,
i.e., m

1/2
T (θ̂T − θ0) = OPθ0

(1).

Proof. Consider the maximum probability equation

Z ′
T (θ) = lT (θ + m

−1/2
T ) − lT (θ − m

−1/2
T ) = 0. (5.1)

For d in a neighborhood of θ,

lT (d ± m
−1/2
T )

= lT (θ) + (d − θ ± m
−1/2
T )l′T (θ)

+
1
2
(d − θ ± m

−1/2
T )2

∫ 1

0

l′′T (θ + λ(d − θ ± m
−1/2
T )dλ

Let
D±

T := 1
mT

∫ 1

0
l′′T (θ + λ(d − θ ± m

−1/2
T ))dλ

=: FT ((d − θ ± m
−1/2
T ) + θ)

Replacing θ by d in (5.1), we have

(d − θ + m
−1/2
T )l′T (θ) + 1

2 (d − θ + m
−1/2
T )2mT D+

T

= (d − θ − m
−1/2
T )l′T (θ) + 1

2 (d − θ − m
−1/2
T )2mT D−

T ,

from which we obtain,

γT (d) := 4l′T (θ) + {m1/2
T (d − θ)}2(D+

T − D−
T ) + 2m

1/2
T (d − θ)(D+

T − D−
T )

+ (D+
T − D−

T ) = 0.
Let N > 0 be fixed. Thus

γT (θ0 + Nm
−1/2
T ) = 4l′T (θ0) + N2{FT (θ0 + (N + 1)m−1/2

T ) − FT (θ0+
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(N − 1)m−1/2
T )} + 2N{FT (θ0 + (N + 1)m−1/2

T ) + FT (θ0 + (N − 1)m−1/2
T )} +

{FT (θ0 + (N + 1)m−1/2
T ) + FT (θ0 + (N − 1)m−1/2

T )}
and γT (θ0 − Nm

−1/2
T ) = 4l′T (θ0) + N2{FT (θ0 − (N − 1)m−1/2

T ) − FT (θ0 −
(N + 1)m−1/2

T )} − 2N{FT (θ0 − (N − 1)m−1/2
T ) + FT (θ0 − (N + 1)m−1/2

T )} +
{FT (θ0 + (N + 1)m−1/2

T ) + FT (θ0 + (N − 1)m−1/2
T )}.

We have

l′T (θ0)
D[Pθ0 ]→ N (0, ζ(θ0)) as T → ∞ conditionally on ζ(θ0).

On the other hand by Lemma 5.1, FT above converges Pθ0-a.s. to −ζ(θ0) as
T → ∞. Hence for any N > 0,

γT (θ0 + Nm
−1/2
T )

D[Pθ0 ]→ N (−4Nζ(θ), 16ζ(θ0)) conditionally on ζ(θ0)

and

γT (θ0 − Nm
−1/2
T )

D[Pθ0 ]→ N (4Nζ(θ), 16ζ(θ0)) conditionally on ζ(θ0).

Since ζ(θ0) > 0 with Pθ0-probability 1 for ε > 0 and large T , Pθ0 [γT (θ0 +
Nm

−1/2
T ) < 0] > 1− ε

2 and Pθ0 [γT (θ0 + Nm
−1/2
T ) > 0] > 1− ε

2 for sufficiently
large N . However, γT (d) is continuous in d. Hence, there exists θ̂T = θ̂T (XT

0 )
such that θ̂T ∈ [θ0 −Nm

−1/2
T , θ0 + Nm

−1/2
T ] with Pθ0-probability greater than

1 − ε and γT (θ̂T ) = 0. Hence the theorem.

Theorem 2.1 and Theorem 5.1 with the aid of Theorem 4 in Jeganathan (1982)
yield the following result.

Theorem 5.2 Under the assumptions (A1)–(A8),

m
1/2
T (θ̂T − θ0)

D[Pθ0 ]→ N (0, ζ−1(θ0)) as T → ∞
and the maximum probability estimator is locally asymptotically minimax.

4.6 Examples

(a) Exponential Memory Ornstein-Uhlenbeck Process

Consider the process {Xt, t ≥ 0} satisfying the functional SDE

dXt = θα

∫ t

0

e−α(t−s)Xsdsdt + dWt, t ≥ 0, X0 = 0

Suppose α > 0 is known and the problem is to estimate θ ∈ (0,∞). Here
f(θ, t,X) = θα

∫ t

0
e−α(t−s)Xsds. The SDE here is a nonhomogeneous Volterra
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integro-differential equation with a white noise input. The solution {Xt} is a
non-Markovian process, see Dietz (1992). Note that the range of the memory
process is governed by the parameter α which is assumed to be known. As
α → ∞, Xt converges a.s. to the classical Ornstein-Uhlenbeck process, i.e.,
the process losses memory.
Note that in this case the LAMN property holds with mT (θ) = eθT√

2θ
.

θT = θ̂T =

∫ T

0

∫ t

0
e−α(t−s)XsdsdXt

α
∫ T

0
(
∫ t

0
e−α(t−s)Xsds)

2
dt

,

ζ(θ) =
(

e
1−

√
α2+4θ
2 sdWs

)2

.

(b) Nonhomogeneous Ornstein-Uhlenbeck Process

Consider the nonhomogeneous Ornstein-Uhlenbeck process satisfying the SDE

dXt = θg(t)Xtdt + dWt, t ≥ 0, X0 = 0

where g : R+ → R is measurable with
∫ t

0
g2(s)ds < ∞ for every t and

Θ = {θ ∈ R : θ
∫ T

0
g(s)ds → ∞ asT → ∞ and

∫∞
0

exp(−2θ
∫ t

0
g(s)ds)dt < ∞}.

Note that {Xt} is a nonstationary nonhomogeneous Markov process.
Here mT (θ0) =

∫ T

0
g2(s)e2a(s,θ0)ds where a(s, θ) = θ

∫ s

0
g(u)du. Note that

mT (θ0) ↑ ∞ as T ↑ ∞. Here

θT = θ̂T =

∫ T

0
g(s)XsdXs∫ T

0
g2(s)X2

s ds
,

ζ(θ) =
(∫ ∞

0

e−a(s,θ)dWs

)2

,

which is a chi-square random variable. Thus N (0, ζ(θ0)) is standard Cauchy.
Hence Theorem 3.1 becomes

lim
T→∞

∫ ∞

−∞
K(u)

∣∣∣∣p∗(u|XT
0 ) − 1

π(1 + u2)

∣∣∣∣ du = 0 Pθ0 − a.s. as T → ∞.

Thus the normalized and centered (at theMLE)posterior distribution converges
to the Cauchy distribution as T → ∞. In this case the MPE and the MLE
coincide.AsaconsequenceofCorollary3.1,Bayesestimatorshaveasymptotically
Cauchy distribution as T → ∞. As a consequence of Theorem 5.2, MPE and
hence MLE also converge to Cauchy distribution as T → ∞.

Let us obtain the normings and the parameter spaces in some special cases.
When g(s) = 1 (homogeneous case, the classical O-U process), we have
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mT (θ) = eθT√
2θ

and Θ = (0,∞). When g(s) = s, we have mT (θ) = eθT2/2

4θ

and Θ = (0,∞).
When g(s) = 1

1+s , we have mT (θ) = T θ− 1
2 and Θ = (1

2 ,∞).

(c) Kalman-Bucy Filter Model

Let {Xt, Yt, 0 ≤ t ≤ T} be the two dimensional diffusion process satisfying
the SDEs

dXt = θYtdt + dWt, X0 = 0,

dYt = βYtdt + dVt, Y0 = y0 �= 0

where {Wt} and {Vt} are independent Wiener processes, β > 0 is a known
parameter andθ ∈ (a, b), a > 0 is aunknownparameter.Here{Xt} is observable
while {Yt} is unobservable and it is required to estimate θ by the realization
{Xt, 0 ≤ t ≤ T}. This type of model in the LAN situation was studied by
Kallianpur and Selukar (1991).

This model is a particular case of the model (2.1) with f(θ, t,X) =
E(θYt|Xs, 0 ≤ s ≤ t).
Let qt := E(Yt|Xs, 0 ≤ s ≤ t). It is known that qt satisfies the filtering equation
(see Liptser and Shiryayev (1978))

dqt = βqtdt + γt(θ)θdWt, q0 = 0

where the function γt(θ) = Eθ(Yt − qt)2 satisfies the Riccati equation

∂γt(θ)
∂t

= 2βγt(θ) + γ2
t (θ)θ2 + 1, γ0(θ) = 0.

It is known that γt(θ) → γ(θ) = (β+
√

θ2+β2)

θ2 as t → ∞ (see Liptser and
Shiryayev (1978)). We assume that the system has reached the steady state,
i.e., we assume that qt satisfies the SDE

dqt = βqtdt + θγ(θ)dWt, q0 = 0.

It is easy to verify that

qt = θγ(θ)
∫ t

0

e−
√

θ2+β2(t−s)dXs.

Here the process {Xt} is a nonstationary process and the likelihood is given by

LT (θ,X) = exp{θ
∫ T

0

qtdXt − 1
2
θ2

∫ T

0

q2
t dt}

and the MLE is given by

θT =

∫ T

0
qtdXt∫ T

0
q2
t dt

.
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In this case the LAMN property holds with

mT (θ) = eθT , ζ(θ) =
(∫ ∞

0

e−
√

θ2+β2(t−s)dWs

)2

.

(d) Null Recurrent Diffusions

Consider the null recurrent diffusion

dXt = θ
Xt

1 + X2
t

dt + dWt, t ≥ 0, X0 = 0.

Let the parameter space be Θ =
(− 1

2 , 1
2

)
, the maximal open interval on which

the above diffusion is null recurrent.
Let γ(θ) := 1

2 − θ ∈ (0, 1), θ ∈ Θ. The limit distribution of the estimator a
variance mixture of normals where the mixing variable is strictly positive and
has a Mittag Leffler law of index γ(θ), i.e., the mixing variable is a level crossing
time for the stable increasing process of index γ(θ). This model satisfies LAMN
propery with local scale T−γ(θ)/2.

The MLE here is

θT =

∫ T

0
Xt

1+X2
t
dXt∫ T

0

(
Xt

1+X2
t

)2

dt

which converges to a mixed normal limit, i.e.,

T−γ(θ)/2(θT − θ) →D K(θ, f)−1/2 B(W γ(θ)
1 )

W
γ(θ)
1

where

K(θ, f) =
Γ(1 + γ)

Γ(1 − γ)γ2γ

(1 − 2θ)−
4θ

1−2θ

4

∫
(f(x))2μθ(dx)

and the invariant measure of the process X in the recurrent case is

μθ(dx) = 2
√

1 + x2
2
θdx.

See Hopfner and Kutoyants (2003) for details.

Remarks

(1) Rates of convergence (both large deviations and Berry-Esseen bounds)
for the MLE, MPE and BEs remain to be investigated. Also the rate
of convergence in the Bernstein-von Mises type theorem remains to be
investigated.

(2) The extension of the results of this chapter to vector parameter can be done
without any difficulty.
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Bayes and Sequential Estimation in Stochastic
PDEs

5.1 Long Time Asymptotics

5.1.1 Introduction

In Chapters 2-4 we were concerned with the study of asymptotic properties
of several estimators of real valued drift parameter in linear and nonlinear
Itô stochastic differential equations (SDEs) whose solutions are real valued
diffusions. In many cases the results can be generalized to multidimensional
stochastic differential equations. Parameter estimation in finite dimensional
stochastic differential equations (SDEs) has been paid a lot of attention during
the last three decades. See e.g., Liptser and Shiryayev (1978), Basawa and
Prakasa Rao (1980), Kutoyants (1984a, 1994a) and Prakasa Rao (1999). On
the other hand, this problem for infinite dimensional SDEs has received very
little attention. Loges (1984) initiated the study of asymptotic properties of
maximum likelihood estimator in Hilbert-space valued SDEs. Koski and Loges
(1985) applied the above theory to a stochastic heat flow problem. Koski and
Loges (1986) studied the consistency and asymptotic normality of minimum
contrast estimators in Hilbert space valued SDEs which include the MLE.
Kim (1996) also proved the consistency and asymptotic normality of MLE in
a Hilbert space valued SDE using Fourier expansion of the solution as the
observation time T → ∞. Mohapl (1994) obtained strong consistency and
asymptotic normality of MLE of a vector parameter in nuclear space valued
SDEs from both time continuous observations as well as spatial observations.
Huebner, Khasminskii and Rozovskii (1992) studied the asymptotic proper-
ties properties of the MLE of a parameter in the drift coefficient of parabolic
stochastic partial differential equations (SPDEs) as the amplitude of the noise
goes to zero. Huebner and Rozovskii (1995) introduced the spectral method and
studied the asymptotics of the MLE of the drift parameter in parabolic SPDEs
when the number of Fourier coefficients of the solutions of the SPDEs becomes
large, both the observation time and the intensity of the noise remaining fixed.
In the same asymptotic framework of Huebner and Rozovskii (1995), Bishwal
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(2002a) studied the Bernstein-von Mises theorem concerning the convergence
of posterior distribution to normal distribution and the strong consistency and
the asumptotic normality of regular Bayes estimators for parabolic SPDEs.
Piterbarg and Rozovskii (1995) used the last approach and studied the as-
ymptotic properties of the MLE of a parameter in the SPDE which is used
to model the upper ocean variability in physical oceanography using both
continuous and discrete time sampling. Piterbarg and Rozovskii (1996) gave
necessary and sufficient conditions for the consistency, asymptotic normality
and asymptotic efficiency of the MLE based on discrete time sampling when
the number of observable Fourier coefficients of the random field governed by
the SPDEs becomes large. Mohapl (1996) compared the least squares, optimal
estimating function and maximum likelihood estimators of a planar (spatial
and temporal) Ornstein-Uhlenbeck process satisfying an SPDE based on lattice
sampling.

The MLEs were studied in a similar setting but with space dependent
parameter by Bagchi and Borkar (1984), Aihara and Bagchi (1988, 1989, 1991),
Aihara (1992, 1994, 1995) when continuous observation are available but since
the observations were assumed to be corrupted by additional noise, i.e., only
partial observations were available, only consistency of a specified function of
the MLE under suitable conditions could be proved. All the above authors
assumed linear equations whose solutions are infinite dimensional stationary
Markov processes. So far as we know, no results are known about the properties
of Bayes estimators and sequential estimators in Hilbert space vlaued SDEs.
Our aim in the Chapter is to bridge this gap. Also we prove the Bernstein-von
Mises theorem concerning the posterior asymptotic normality for Hilbert space
valued diffusion processes.

For the previous work on Bernstein-von Mises theorem, concerning the
convergence of posterior density to normal density, and the asymptotic prop-
erties of Bayes estimators in finite dimensional SDEs, see the references in the
Chapter 1. For previous work on sequential maximum likelihood estimation in
finite dimensional SDEs, see Novikov (1972) and Liptser and Shiryayev (1978).

This section is organized as follows: Subsection 5.1.2 contains the nota-
tions, assumptions and preliminaries, Subsection 5.1.3 contains the Bernstein-
von Mises theorem. In Subsection 5.1.4 asymptotic properties of Bayes
estimators are studied and in Section 5.2 we study the properties of sequen-
tial MLE. In Section 5.2 we study spectral asymptotics of a stochastic partial
differential equation.

This Chapter is adapted from Bishwal (1999b) and Bishwal (2002a).

5.1.2 Model, Assumptions and Preliminaries

Let (Ω,F , {Ft}t≥0}, P ) be a stochastic basis satisfying the usual hypotheses
on which we define the infinite dimensional SDE

dX(t) = θAX(t)dt + dW (t), X(0) = X0, t ≥ 0 (2.1)
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where A is the infinitesimal generator of a strongly continuous semigroup acting
on a real separable Hilbert space H with scalar product < ·, · > and norm ‖ · ‖,
{W (t), t ≥ 0} is a H-valued Wiener process (see Curtain and Pritchard (1978))
and θ ∈ Θ ⊂ R, which is to be estimated on the basis of H-valued process
{X(t), 0 ≤ t ≤ T}. Let θ0 be the true value of the unknown parameter θ.

It is well known that the covariance operator Q of {W (t), t ≥ 0} is nuclear
and W (t) has zero mean (see Itô (1984)). Let also W (0) = 0 and assume that

the eigen values λi, i ≥ 1 of Q are positive. One can write W (t) =
∞∑

i=1

βi(t)ei

P -a.s. where {ei, i ≥ 1} is a complete orthonormal basis for H consisting of
eigen vectors {λi} of Q and {βi(t)}t≥0 ≡ {< W (t), ei >}t≥0 are mutually
independent real valued Wiener processes with incremental covariances λi (see
Curtain and Pritchard (1978)). For existence, uniqueness and other properties
of solutions of Hilbert space valued SDEs, and other applications see Itô (1984)
and Kallianpur and Xiong (1995).

Let us assume that there exists a unique strong solution of (2.1). Sufficient
conditions for this in terms of the operators in the SDE can be found in Curtain
and Pritchard (1978).

Let PT
θ be the measure in the space (C([0, T ], H),B) induced by the solution

X(t) = Xθ(t) of (2.1) and PT
0 corresponds to (W (t) + X0), t ∈ [0, T ]. By

C([0, T ],H) we mean the Banach space of continuous functions f : [0, T ] → H,
which is equipped with the sup-norm. By B, we denote the associated Borel
σ-algebra. Let XT

0 ≡ {X(t), 0 ≤ t ≤ T}.
We assume the following conditions:

(A1) There exist two positive constants C and D such that

E exp(D(
∞∑

i=1

1
λi

< AX(t), ei >2)) ≤ C for all t ≥ 0.

(A2)
n0∑
i=1

1
λi

∫ ∞

0

< AX(t), ei >2 dt = ∞ P - a.s. for some n0 ∈ N.

(A3) E(
∞∑

i=1

1
λi

∫ l

0

< AX(t), ei >2 dt) < ∞ for all l ∈ (0,∞).

(A4) lim
T→∞

1
T

∞∑
i=1

1
λi

∫ T

0

< AX(t), ei >2 dt = Γ in probability where Γ is a

positive constant.
Under the condition (A1), Loges (1984) showed that the measures PT

θ and
PT

0 are equivalent and the Radon-Nikodym derivative (likelihood) of PT
θ with

respect to PT
0 is given by
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LT (θ) = dP T
θ

dP T
0

(XT
0 )

= exp

{
−1

2
θ2

∞∑
i=1

1
λi

∫ T

0

< AX(t), ei >2 dt

+θ L2 − lim
n→∞

n∑
i=1

1
λi

∫ T

0

< AX(t), ei > d(< X(t), ei >)

}
.

(2.2)

The maximum likelihood estimate (MLE) is given by

θT =

L2 − lim
n→∞

n∑
i=1

1
λi

∫ T

0

< AX(t), ei > d(< X(t), ei >)

∞∑
i=1

1
λi

∫ T

0

< AX(t), ei >2 dt

(2.3)

if the denominator is greater than zero. Loges (1984) proved the following
theorem on the asymptotic behaviour of MLE.

Theorem 1.2.1 Under the assumptions (A2) - (A3), θT → θ0 a.s. [Pθ0 ] and
under the condition (A2) - (A4), θT is asymptotically normally distributed, i.e.,√

T (θT − θ0)
D→ N(0,Γ−1) as T → ∞.

5.1.3 Bernstein-von Mises Theorem

Suppose that Λ is a prior probability on (Θ,Ξ), where Ξ is the Borel σ-algebra
of Θ. Assume that Λ has a density λ(·) with respect to the Lebesgue measure
and the density is continuous and positive in an open neighbourhood of θ0. The
posterior density of θ given XT

0 is given by

p(θ|XT
0 ) =

dP T
θ

dP T
θ0

(XT
0 )λ(θ)∫

Θ

dP T
θ

dP T
θ0

(XT
0 )λ(θ)dθ

(3.1)

Let u = T 1/2(θ − θT ).
Then the posterior density of

√
T (θ − θT ) is given by

p∗(u|XT
0 ) = T−1/2p(θT + uT−1/2|XT

0 ). (3.2)

Let

γT (u) =
dPT

θT +uT−1/2

dPT
θ0

(XT
0 )/

dPT
θT

dPT
θ0

(XT
0 )

=
dPT

θT +uT−1/2

dPT
θT

(XT
0 ),

(3.3)
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CT =
∫ ∞

−∞
γT (u)λ(θT + uT−1/2)du. (3.4)

Then
p∗(u|XT

0 ) = C−1
T γT (u)λ(θT + uT−1/2). (3.5)

One can reduce equation (2.1) to

d(< X(t), ei >) = θ < AX(t), ei > dt + d(< W (t), ei >). (3.6)

Hence we can write

√
T (θT − θ) =

L2 − lim
n→∞

n∑
i=1

1
λi

T−1/2

∫ T

0

< AX(t), ei > d(< W (t), ei >)

∑∞
i=1

1
λi

T−1
∫ T

0
< AX(t), ei >2 dt

.

(3.7)
From (3.7) and (2.2), it is easy to check that

log γT (u) = −1
2
u2ΓT . (3.8)

where ΓT = 1
T

∞∑
i=1

1
λi

∫ T

0

< AX(t), ei >2 dt.

Let K(·) be a measurable function satisfying the following conditions.
(B1) There exists a number ε, 0 < ε < Γ for which∫ ∞

−∞
K(u) exp

{
−1

2
u2(Γ − ε)

}
du < ∞.

(B2) For every h > 0 and every δ > 0

exp(−Tδ)
∫
|u|>h

K(T 1/2u)λ(θT + u)du → 0 a.s. [Pθ0 ] as T → ∞.

Theorem 1.3.1. Under the assumptions (A1) - (A3) and (B1) - (B2), we have

lim
T→∞

∫ ∞

−∞
K(u)

∣∣∣∣∣p∗(u|XT
0 ) −

(
Γ
2π

)1/2

exp(−1
2
Γu2)

∣∣∣∣∣ du = 0 a.s. [Pθ0 ].

Proof: The proof of this theorem is analogous to that of Theorem 3.1 in
Borwanker, Kallianpur and Prakasa Rao (1971) once one reduces the infinite
dimensional equation (2.1) to a finite dimensional equation (3.6). Analogous
proof for one dimensional diffusion processes is given in Prakasa Rao (1980),
Bose (1983b) and Mishra (1989). We omit the details.

As a consequence of this theorem we obtain the following corollary.
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Corollary 1.3.1 If further
∫∞
−∞ |θ|mλ(θ)dθ < ∞ for some positive integer m,

then

lim
T→∞

∫ ∞

−∞
|u|m

∣∣∣∣∣p∗(u|XT
0 ) −

(
Γ
2π

)1/2

exp(−1
2
Γu2)

∣∣∣∣∣ du = 0 a.s. [Pθ0 ].

Remark: The case m = 0 gives is the classical Bernstein-von Mises theorem
for Hilbert space valued diffusions in its simplest form.

5.1.4 Asymptotics of Bayes Estimators

We will study the asymptotic properties of the Bayes estimators in this
Section.

Suppose that l(θ, φ) is a loss function defined on Θ × Θ. Assume that
l(θ, φ) = l(|θ − φ|) ≥ 0 and l(t) is non decreasing for t ≥ 0. Suppose that J(·)
is a non negative function and K(·) and G(·) are functions such that

(C1) J(T )l(uT−1/2) ≤ G(u) for all T ≥ 0.
(C2) J(T )l(uT−1/2) → K(u) uniformly on bounded intervals of u as

T → ∞.
(C3)

∫∞
−∞ K(u + v) exp(− 1

2u2Γ)du has a strict minimum at v = 0.
(C4) G satisfies (B1) and (B2).
A regular Bayes estimator

∼
θT of θ based on XT

0 is one which minimizes

BT (φ) =
∫

Θ

l(θ, φ)p(θ|XT
0 )dθ.

Assume that a measurable Bayes estimator exists. We have the following
theorem.

Theorem 1.4.1 Under the condition (A1) - (A4) and (C1) - (C4) we have
(i)

√
T (θT − ∼

θT ) → 0 a.s. [Pθ0 ] as T → ∞.

(ii) lim
T→∞

J(T )BT (θT ) = lim
T→∞

J(T )BT (
∼
θT )

=
(

Γ
2π

)1/2 ∫ ∞

−∞
K(u) exp(−1

2
Γu2)du.

Proof: The proof is similar to that of Theorem 3.1 in Borwanker, Kallianpur
and Prakasa Rao (1971).

Theorem 1.4.1 says that asymptotically Bayes and maximum likelihood
estimators are asymptotically equivalent as T → ∞. To distinguish between
these two estimators one has to investigate the second order efficiency of these
two estimators.

Combining Theorems 1.2.1 and 1.4.1 we obtain the following theorem.
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Theorem 1.4.2 Under the conditions (A1) - (A4) and (C1) - (C4), we have
(i)

∼
θT → θ0 a.s. [Pθ0 ] as T → ∞.

(ii)
√

T (
∼
θT − θ0)

D[Pθ0 ]→ N (0,Γ−1) as T → ∞.
In otherwords, Bayes estimators

∼
θT are strongly consistent and asymptoti-

cally normally distributed as T → ∞.

5.2 Sequential Estimation

5.2.1 Sequential Maximum Likelihood Estimation

We know that the MLE and the Bayes estimators have good asymptotic prop-
erties under stationarity of the process. However, in addition to asymptotic
theory which certainly play a predominant role in statistical theory, sequential
estimation has got certain advantages. In the finite dimensional linear SDEs,
Novikov (1972) (see also Liptser and Shiryayev (1978), Sørensen (1983)) studied
the properties of sequential maximum likelihood estimate (SMLE) of the drift
parameter which is the MLE based on observation on a random time interval.
He showed that SMLE is better than the ordinary MLE in the sense that the
former is unbiased, uniformly normally distributed and efficient (in the sense of
having the least variance). His plan is to observe the process until the observed
Fisher information exceeds a predetermined level of precision. Of course, this
type of sampling plan dates back to Anscombe (1952) which has been used in
many other situations, e.g., in autoregressive parameter estimation see, e.g., Lai
and Siegmund (1985), Greenwood and Shiryayev (1992). Under the assumption
that the mean duration of observation in the sequential plan and the ordinary
(fixed time) plan are the same, Novikov (1972) showed that the SMLE is more
efficient than the ordinary MLE. In this Section, our aim is to extend the
problem to Hilbert space valued SDE (2.1).

We assume that the process {X(t)} is observed until the observed Fisher
information of the process exceeds a predetermined level of precision H, i.e.,
we observe {X(t)} over the random time interval [0, τ ] where the stop time τ
is defined as

τ ≡ τH := inf

{
t ≥ 0 :

∞∑
i=1

1
λi

∫ t

0

< AX(s), ei >2 ds = H

}
, 0 < H < ∞.

(5.1)
Under the condition (A1) it is well known that the measures P τ

θ and P τ
0 are

equivalent (See Loges (1984), Liptser and Shiryayev (1977)) and the Random-
Nikodym derivative of P τ

θ with respect to P τ
0 is given by
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dP τ
θ

dP τ
0

(Xτ
0 ) = exp

{
−1

2
θ2

∞∑
i=1

1
λi

∫ τ

0

< AX(t), ei >2 dt

+ θ L2 − lim
n→∞

n∑
i=1

1
λi

∫ τ

0

< AX(t), ei > d(< X(t), ei >)

}
.

(5.2)
Maximizing (5.2) with respect to θ provides the Sequential MLE

θτ =

L2 − limn→∞
n∑

i=1

1
λi

∫ τ

0

< AX(t), ei > d < X(t), ei >

∞∑
i=1

1
λi

∫ τ

0

< AX(t), ei >2 dt.

=
1
H

L2 − lim
n→∞

n∑
i=1

1
λi

∫ τ

0

< AX(t), ei > d(< X(t), ei >).

(5.3)

We obtain the following properties of the SMLE θτ .

Theorem 2.1.1 Under the conditions (A1) - (A4), we have
(i) the sequential plan is closed, i.e., τ < ∞ with prob. one.
(ii) Eθ0(θτ ) = θ0, i.e., the SMLE is unbiased.
(iii) θτ is distributed normally with parameters θ and 1

H , for all θ ∈ Θ,
i.e.,

√
H(θτ − θ0) ∼ N (0, 1).

(iv) In the class of unbiased sequential plans (γ, θ̂γ), the plan (τ, θτ ) is optimal
in the mean square sense, i.e.,

Eθ0(θτ − θ0)2 ≤ Eθ0(θ̂γ − θ)2.

Proof: From (5.1), we have

Pθ0(τ > t) = Pθ0

{ ∞∑
i=1

1
λi

∫ t

0

< AX(s), ei >2 ds < H

}

from which, due to (A2), it follows that

Pθ0(τ = ∞) = Pθ0

{ ∞∑
i=1

1
λi

∫ ∞

0

< AX(s), ei >2 ds < H

}
= 0.

Hence Pθ0(τ < ∞) = 1.
Because of

d(< X(t), ei >) = θ0 < AX(t), ei > +d(< W (t), ei >)
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we can write

θτ = θ0 +
1
H

[
L2 − lim

n→∞

n∑
i=1

1
λi

∫ τ

0

< AX(t), ei > d(W (t), ei >)

]
.

Hence Eθ0(θτ ) = θ and
√

H(θτ −θ) has standard normal distribution for all

θ ∈ Θ since L2 − lim
n→∞

n∑
i=1

1
λi

∫ τ

0

< AX(t), ei > d(< W (t), ei >) is a standard

Wiener process (see Curtain and Pritchard (1978)).
Thus

Eθ0(θτ − θ0)2 =
1
H

for all θ ∈ Θ. (5.4)

Let (γ, θ̂γ) be any other sequential plan satisfying

Pθ0

{ ∞∑
i=1

1
λi

∫ γ

0

< AX(t), ei >2 dt < ∞
}

= 1,

Eθ0(θ̂γ)2 < ∞,

and E

( ∞∑
i=1

1
λi

∫ γ

0

< AX(t), ei >2 dt

)
≤ H.

Then from the Cramer-Rao-Wolfowitz inequality (see Liptser and Shiryayev
(1977)) it follows that

Eθ0(θ̂γ − θ0)2 ≥
[
Eθ0

( ∞∑
i=1

1
λi

∫ γ

0

< AX(t), ei >2 dt

)]−1

≥ 1
H

, (5.5)

for all θ ∈ Θ.
From (5.4) and (5.5), we obtain

E(θτ − θ0)2 ≤ Eθ0(θ̂γ − θ0)2.

Hence SMLE is efficient and the sequential plan (τ, θτ ) is optimal in the
mean square sense.

5.2.2 Example

Consider the stochastic partial differential equation (SPDE) (see Walsh (1986))

dX(t, u) = θ
∂2

∂u2
X(t, u)dt + dW (t, u)

where θ ∈ R,W (t, u) is a cylindrical Brownian motion and the Laplacian ∂2

∂u2

acts on the Hilbert space L2[0, T ] endowed with the usual scalar product with
the domain of definition
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D(A) = {h ∈ H : h′
u, h′′

uu ∈ H;h(0) = h(1) = 0}.

Selecting {−ki}i∈N where ki = (πi)2, i = 1, 2, ... as the set of eigenvalues, we
obtain the stability of the corresponding semigroup.For thismodel, assumptions
(A1) -(A4) hold. Hence the MLE θT is strongly consistent and asymptotically
normally distributed as T → ∞. Also the posterior distributions converge to
standard normal distribution and the Bayes estimators are strongly consistent
and asymptotically normally distributed as T → ∞. Further the SMLE is
unbiased and normally distributed.

Remarks

(1) It would be interesting to prove the asymptotic properties of the Bayes and
maximum likelihood estimators by showing the local asymptotic normality
property of the model as in Kutoyants (1977), (1984a).

(2) The Berry-Esseen bound and large deviation results for the Bayes and
maximum likelihood estimators and the rate of convergence of the posterior
distribution remains to be investigated.

(3) Asymptotic properties of MLE and Bayes estimators, the Bernstein-von
Mises theorem in Hilbert space valued nonlinear SDE remains to be inves-
tigated.

(4) Here we have studied the asymptotics based on continuous observation
{X(t), 0 ≤ t ≤ T} of the solution of the SDE. The study of asymp-
totic properties based on discrete observations of X(t) at time points,
{t0, t1, . . . , tn} ⊂ [0, T ] from infinite dimensional SDE has been paid least
amount of attention and it is a very fertile field to work with in our opinion.
The ideas in Chapters 5 through 8 should be helpful for this work.

(5) The SMLE definitely has certain advantages : the SMLE is unbiased but
the ordinary MLE is not so. Ordinary MLE is not asymptotic normally
distributed for all θ ∈ Θ, but the SMLE is uniformly normally distributed
for all θ ∈ Θ. Hence the variance of SMLE is a constant. Since

√
H(θT − θ)

is Gaussian N (0, 1) one can construct confidence interval for θ.
(6) Here we have studied the properties of sequential maximum likelihood

estimator. It would be interesting to study the properties of sequential
Bayes estimator.

5.3 Spectral Asymptotics

5.3.1 Introduction

In this section the Bernstein-von Mises theorem, concerning the convergence of
suitably normalized and centered posterior density to normal density, is proved
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foracertainclassof linearlyparametrizedparabolic stochasticpartialdifferential
equations (SPDEs) as the number of Fourier coefficients in the expansion of
the solution increases to infinity. As a consequence, the Bayes estimators of
the drift parameter, for smooth loss functions and priors, are shown to be
strongly consistent, asymptotically normal and locally asymptotically minimax
(in the Hajek-Le Cam sense), and asymptotically equivalent to the maximum
likelihood estimator as the number of Fourier coefficients become large. Unlike
in the classical finite dimensional SDEs, here the total observation time and
the intensity of noise remain fixed.

Recently stochastic partial differential equations (SPDEs) are being paid a
lot of attention in view of their modeling applications in neurophysiology, tur-
bulence, oceanography and finance, see Itô (1984), Walsh (1986) and Kallianpur
and Xiong (1995), Holden et al. (1996) and Carmona and Rozovskii (1999).
In view of this it becomes necessary to estimate the unknown parameters in
SPDEs.

Various methods of estimation in finite dimensional SDEs has been exten-
sively studied during the last three decades as the observation time tends to
infinity (see, Liptser and Shiryayev (1978), Basawa and Prakasa Rao (1980),
Prakasa Rao (1999) and Kutoyants (1999)) or as the intensity of noise tends to
zero (see, Ibragimov and Has’minskii (1981), Kutoyants (1984, 1994)). On the
other hand, this problem for infinite dimensional SDEs is young. Loges (1984)
initiated the study of parameter estimation in such models. When the length
of the observation time becomes large, he obtained consistency and asymptotic
normality of the maximum likelihood estimator (MLE) of a real valued drift
parameter in a Hilbert space valued SDE. Koski and Loges (1986) extended the
work of Loges (1984) to minimum contrast estimators. Koski and Loges (1985)
applied the work to a stochastic heat flow problem. Mohapl (1992) studied
the asymptotics of MLE in a in a nuclear space valued SDE. Kim (1996) also
studied the properties of MLE in a similar set up.

Huebner, Khasminskii and Rozovskii (1992) introduced spectral method
to study consistency, asymptotic normality and asymptotic efficiency of MLE
of a parameter in the drift coefficient of an SPDE. This approach allows one
to obtain asymptotics of estimators under conditions which guarantee the
singularity of the measures generated by the corresponding diffusion field for
different parameters. Unlike in the finite dimensional cases, where the total
observation time was assumed to be long (T → ∞) or intensity of the noise was
assumed to be small (ε → 0), here both are kept fixed. Here the asymptotics are
obtained when the number of Fourier coefficients (n) of the solution of SPDE
becomes large.

The spectral asymptotics or Fourier asymptotics for MLE was extended
by Huebner and Rozovskii (1995) to more general SPDEs where the partial
differential operators commute and satisfy some order conditions. Piterberg
and Rozovskii (1995) studied the properties MLE of a parameter in SPDE
which are used to model the upper ocean variability in physical oceonogoaphy.
Piterbarg and Rozovskii (1996) studied the properties of MLE based on discrete
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observations of the corresponding diffusion field. Huebner (1997) extended
the problem to the ML estimation of multidimensional parameter. Lototsky
and Rozovskii (1999) studied the same problem without the commutativity
condition.

The Bernstein-von Mises theorem, concerning the convergence of suitably
normalised and centered posterior distribution to normal distribution, plays
a fundamental role in asymptotic Bayesian inference, see Le Cam and Yang
(1990). In the i.i.d. case, the theorem was first proved Le Cam (1953). Since
then the theorem has been extended to many depended cases. Borwanker et al.
(1972) obtained the theorem for discrete time Markov processes. For the linear
homogeneous diffusion processes, the Bernstein - von Mises theorem was proved
by Prakasa Rao (1980). Prakasa Rao (1981) extended the theorem to a two
parameter diffusion field.Bose (1983) extended the theorem to the homogeneous
nonlinear diffusions and Mishra (1989) to the nonhomogeneous diffusions. As a
further refinement in Bernstein-von Mises theorem, Bishwal (2000b) obtained
sharp rates of convergence to normality of the posterior distribution and the
Bayes estimators.

All these above work on Bernstein-von Mises theorem are concerned with
finite dimensional SDEs. Recently Bishwal (1999b) proved the Bernstein-von
Mises theorem and obtained asymptotic properties of regular Bayes estimator
of the drift parameter in a Hilbert space valued SDE when the corresponding
diffusion process is observed continuously over a time interval [0, T ]. The as-
ymptotics are studied as T → ∞ under the condition of absolute continuity of
measures generated by the process. Results are illustrated for the example of
an SPDE. The situation is analogous to the finite dimensional SDEs, where the
measures are absolutely continuous.

Our aim here is to use the spectral approach to study Bernstein-von Mises
theorem and Bayes estimation in parabolic SPDE.

5.3.2 Model and Preliminaries

Let (Ω,F , P ) be a complete probability space on which is defined the parabolic
SPDE

duθ(t, x) = Aθuθ(t, x)dt + dW (t, x), 0 ≤ t ≤ T, x ∈ G (2.1)

with Dirichlet boundary conditions

u(0, x) = u0(x) (2.2)

Dγu(t, x)|∂G = 0 (2.3)

for all indices γ with |γ| ≤ m − 1.

where Aθ = θA1 +A0, A1 and A0 are partial differential operators of orders m1

and m2 respectively, Aθ has order 2m = max(m1, m0), W (t, x) is a cylindrical
Brownian motion in L2([0, T ] × G) where G is a bounded domain in R

d and
u0 ∈ L2(G). Here θ ∈ Θ ⊆ R is the unknown parameter to be estimated on the
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basis of the observations of the field uθ(t, x), t ∈ [0, T ], x ∈ G. Let θ0 be the
true value of the unknown parameter.

Hereuθ(t, x) is theobservationat time tatpointx. Inpractice, it is impossible
to observe the field uθ(t, x) at all points t and x. Hence, it is assumed that only
a finite dimensional projection un := un,θ = (uθ

1(t), . . . , u
θ
n(t)), t ∈ [0, T ] of the

solution of the equation (2.1) are available. In other words, we observe the first
n highest nodes in the Fourier expansion

uθ(t, x) =
∞∑

t=1

uθ
i (t)φi(x)

corresponding to some orthogonal basis {φi(x)}∞i=1. We consider observation
continuous in time t ∈ [0, T ]. Note that uθ

i (t), i ≥ 1 are independent one
dimensional Ornstein-Uhlenbeck processes (see Huebner and Rozovskii (1995)).

Since here the basic set up is same as in HR, for different terminology the
reader is referred to HR.

The following conditions are assumed:

(H1) m1 ≥ m − d/2.
(H2) The operators A1 and A0 are formally self-adjoint, i.e., for i = 0, 1∫

G

Aiuvdx =
∫

G

uAivdx for all u, v ∈ C∞
0 (G).

(H3) There is a compact neighbourhood Θ of θ0 so that {Aθ, θ ∈ Θ} is a
family of uniformly strongly elliptic operators.

(H4) There exists a complete orthonormal system {hi}∞i=1 in L2(G)) such
that for every i = 1, 2, . . . , hi ∈ Wm,2

0 (G) ∩ C∞(G) and

Λθhi = λi(θ)hi, and Lθhi = μi(θ)hi for all θ ∈ Θ

where Lθ is a closed self adjoint extension of Aθ, Λθ := (k(θ)I −Lθ)1/2m, k(θ)
is a constant and and the spectrum of the operator Λθ consists of eigen values
{λi(θ)}∞i=1 of finite multiplicities and μi = −λ2m

i + k(θ).
(H5) The operator A1 is uniformly strongly elliptic and has the same system

of eigen functions {hi}∞i=1 as Lθ.
For α > d/2, define the Hilbert space H−α as in Huebner and Rozovskii

(1995). Let PT
θ the measure generated by the solution {uθ(t, x), t ∈ [0, T ],

x ∈ G} totheproblem(2.1) - (2.3)onthespaceC([0, T ];H−α)withtheassociated
Borel σ-algebra BT . Note that, under (H1), for different θ the measures PT

θ are
singular.

Consider the projection of H−α on to the subspace R
n. Let PT,n

θ be the
measure generated by un,θ on C[(0, T ]; Rn) with the associated Borel σ-algebra
Bn

T .
It is a classical fact (see Liptser-Shiryayev (1977)) that for any θ ∈ Θ,

the measures PT,n
θ and PT,n

θ0
are mutually absolutely continuous with Radon-

Nikodym derivative (likelihood ratio) given by
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Zθ
n(u) := dP T,n

θ

dP T,n
θ0

(un) = exp

{
(θ − θ0)

∫ T

0

(A1u
n(s), dun(s))0

−1
2
(θ2 − θ2

0)
∫ T

0

‖A1u
n(s)‖2

0ds

−(θ − θ0)
∫ T

0

(A1u
n(s), A0u

n(s))0ds

}
.

(2.4)

Maximizing Zθ
n(u) w.r.t. θ provides the MLE given by

θ̂n :=

∫ T

0
(A1u

n(s), dun(s) − A0u
n(s)ds)0∫ T

0
‖A1un(s)‖2

0ds
. (2.5)

The Fisher information In related to dP n
θ

dP n
θ0

is given by

In := Eθ0

∫ T

0

‖A1u
n(s)‖2

0ds.

Define

ψn :=

⎧⎪⎨
⎪⎩

ζ

4β
Tn2β if m1 > m − d/2

ζ

2
T log n if m1 = m − d/2

where β = 1
d (m1 − m) + 1

2 ,

ζ := (2π)2(m1−m)

(∫
P

Aθ(x,v)<1
dxdv

)2m/d

(∫
PA1(x,v)<1

dxdv
)2m1/d

.

Note that In

ψn
→ 0 as n → ∞. Let ω be a real valued, non-negative loss

function of polynomial majorant defined on R, which are symmetric ω(0) = 0
and monotone on the positive real line.

Under the conditions (H1) - (H5), Huebner and Rozovskii (1995) showed
that θ̂n is strongly consistent, asymptotically normally distributed with
normalization ψ

1/2
n and asymptotically efficient with respect to the loss

function ω.
Suppose that Π is a prior probability measure on (Θ,D), where D is the

σ-algebra of Borel subsets of Θ. Assume that Π has a density π(·) w.r.t.
the Lebesgue measure and the density is continuous and positive in an open
neighbourhood of θ0.

The posterior density of θ given in un is given by

p(θ|un) :=
Zθ

n(u)π(θ)∫
Θ

Zθ
n(u)π(θ)dθ

. (2.6)
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Let τ = ψ
1/2
n (θ − θ̂n). Then the posterior density of ψ

1/2
n (θ − θ̂n) is given by

p∗(τ |un) := ψ−1/2
n p(θ̂n + ψ−1/2

n τ |un).

Let

νn(τ) :=
dPn

θ̂n+ψ
−1/2
n τ

/dPn
θ0

dPn
θ̂n

/dPn
θ0

=
dPn

θ̂n+ψ
−1/2
n τ

dPn
θ̂n

,

Cn :=
∫ ∞

−∞
νn(τ)π(θ̂n + ψ−1/2

n τ)dτ.

Clearly
p∗(τ |un) = C−1

n νn(τ)π(θ̂n + ψ−1/2
n τ).

5.3.3 The Bernstein-von Mises Theorem

Let K(·) be a non-negative measurable function satisfying the following two
conditions:

(K1) There exists a number η, 0 < η < 1, for which∫ ∞

−∞
K(τ) exp{−1

2
τ2(1 − η)}dτ < ∞.

(K2) For every ε > 0 and δ > 0

e−εψn

∫
|τ |>δ

K(τψ1/2
n )π(θ̂n + τ)dτ → 0 a.s. [Pθ0 ] as n → ∞.

We need the following Lemma to prove the Bernstein-von Mises theorem.
Lemma 3.3.1 Under the assumptions (H1) - (H5) and (K1) - (K2),
(i) There exists a δ0 > 0 such that

lim
n→∞

∫
|τ |≤δ0ψ

1/2
n

K(τ)
∣∣∣∣νn(τ)π(θ̂n+ψ−1/2

n τ)−π(θ0) exp(−1
2
τ2)
∣∣∣∣ dτ=0 a.s. [Pθ0 ].

(ii) For every δ > 0,

lim
n→∞

∫
|τ |≥δψ

1/2
n

K(τ)
∣∣∣∣νn(τ)π(θ̂n+ψ−1/2

n τ)−π(θ0) exp(−1
2
τ2)
∣∣∣∣ dτ=0 a.s. [Pθ0 ].

Proof. From (2.7) and (2.8), it is easy to check that

log νn(τ) = −1
2
τ2ψ−1

n

∫ T

0

‖A1u
n(s)‖2

0ds

Now (i) follows by an application of dominated convergence theorem.
For every δ > 0, there exists ε > 0 depending on δ and β such that
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|τ |≥δψ

1/2
n

K(τ)
∣∣∣∣νn(τ)π(θ̂n + ψ−1/2

n τ) − π(θ0) exp(−1
2
τ2)
∣∣∣∣ dτ

≤
∫
|τ |≥δψ

1/2
n

K(τ)νn(τ)π(θ̂n + ψ−1/2
n τ)dτ +

∫
|τ |≥δψ

1/2
n

π(θ0) exp(−1
2
τ2)dτ

≤ e−εψn

∫
|τ |≥δψ

1/2
n

K(τ)π(θ̂n + ψ−1/2
n τ)dτ + π(θ0)

∫
|τ |≥δψ

1/2
n

exp(−1
2
τ2)dτ

=: Fn + Gn

By condition (K2), it follows that Fn → 0 a.s. [Pθ0] as n → ∞ for every
δ > 0. Condition K(1) implies that Gn → 0 as n → ∞. This completes the
proof of the Lemma.

Now we are ready to prove the generalized version of the Bernstein-von
Mises theorem for parabolic SPDEs.

Theorem 3.3.1 Under the assumptions (H1) - (H5) and (K1) - (K2), we have

lim
n→∞

∫ ∞

−∞
K(τ)

∣∣∣∣p∗(τ |un) − (
1
2π

)1/2 exp(−1
2
τ2)
∣∣∣∣ dτ = 0 a.s. [Pθ0 ].

Proof. From Lemma 3.3.1, we have

lim
n→∞

∫ ∞

−∞
K(τ)

∣∣∣∣νn(τ)π(θ̂n + ψ−1/2
n τ) − π(θ0) exp(−1

2
τ2)
∣∣∣∣ dτ = 0 a.s. [Pθ0 ].

(3.1)
Putting K(τ) = 1 which trivially satisfies (K1) and (K2), we have

Cn =
∫ ∞

−∞
νn(τ)π(θ̂n + ψ−1/2

n τ)dτ → π(θ0)
∫ ∞

−∞
exp(−1

2
τ2)dτ a.s. [Pθ0 ].

(3.2)
Therefore, by (3.1) and (3.2), we have∫ ∞

−∞
K(τ)

∣∣∣∣p∗(τ |un,θ) − (
1
2π

)1/2 exp(−1
2
τ2)
∣∣∣∣ dτ

≤
∫ ∞

−∞
K(τ)

∣∣∣∣C−1
n νn(τ)π(θ̂n + ψ−1/2

n τ) − C−1
n π(θ0) exp(−1

2
τ2)
∣∣∣∣ dτ

+
∫ ∞

−∞
K(τ)

∣∣∣∣C−1
n π(θ0) exp(−1

2
τ2) − (

1
2π

)1/2 exp(−1
2
τ2)
∣∣∣∣ dτ

−→ 0 a.s. [Pθ0 ] as n → ∞.

Theorem 3.3.2 Suppose (H1)-(H5) and
∫∞
−∞ |θ|rπ(θ)dθ < ∞ for some non-

negative integer r hold. Then

lim
n→∞

∫ ∞

−∞
|τ |r

∣∣∣∣p∗(τ |un) − (
1
2π

)1/2 exp(−1
2
τ2)
∣∣∣∣ dτ = 0 a.s. [Pθ0 ].
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Proof. For r = 0, the verification of (K1) and (K2) is easy and the theorem
follows from Theorem 3.1. Suppose r ≥ 1. Let K(τ) = |τ |r, δ > 0 and ε > 0.
Using |a + b|r ≤ 2r−1(|a|r + |b|r), we have

e−εψn

∫
|τ |>δ

K(τψ1/2
n )π(θ̂n + τ)dτ

≤ ψr/2
n e−εψn

∫
|τ−θ̂n|>δ

π(τ)|τ − θ̂n|rdτ

≤ 2r−1ψr/2
n e−εψn [

∫
|τ−θ̂n|>δ

π(τ)|τ |rdτ +
∫
|τ−θ̂n|>δ

π(τ)|θ̂n|rdτ ]

≤ 2r−1ψr/2
n e−εψn [

∫ ∞

−∞
π(τ)|τ |rdτ + |θ̂n|r]

−→ 0 a.s. [Pθ0 ] as n → ∞

from the strong consistency of θ̂n and hypothesis of the theorem. Thus the
theorem follows from Theorem 3.1.1
Remark For r = 0 in Theorem 3.3.2, we have

lim
n→∞

∫ ∞

−∞

∣∣∣∣p∗(τ |un) − (
1
2π

)1/2 exp(−1
2
τ2)
∣∣∣∣ dτ = 0 a.s. [Pθ0 ].

This is the classical form of Bernstein-von Mises theorem for parabolic
SPDEs in its simplest form.

As a special case of Theorem 3.3.2, we obtain

Eθ0 [ψ
1/2
n (θ̂n − θ0)]r → E[ξr]

as n → ∞ where ξ ∼ N (0, 1).

5.3.4 Bayes Estimation

As an application of Theorem 3.3.1, we obtain the asymptotic properties of a
regular Bayes estimator of θ. Suppose l(θ, φ) is a loss function defined on Θ×Θ.
Assume that l(θ, φ) = l(|θ−φ|) ≥ 0 and l(·) is non decreasing. Suppose that J
is a non-negative function on N and K(·) and G(·) are functions on R such that

(B1) J(n)l(τψ
−1/2
n ) ≤ G(τ) for all n,

(B2) J(n)l(τψ
−1/2
n ) → K(τ) as n → ∞ uniformly on bounded subsets of R.

(B3)
∫∞
−∞ K(τ + s) exp{− 1

2τ2}dτ has a strict minimum at s = 0.
(B4) G(·) satisfies (K1) and (K2).
Let

Bn(φ) =
∫

θ

l(θ, φ)p(θ|un)dθ.

A regular Bayes estimator θ̃n based on un is defined as
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θ̃n := arg inf
φ∈Θ

Bn(φ).

Assume that such an estimator exists.
The following Theorem shows that MLE and Bayes estimators are asymp-

totically equivalent as n → ∞.

Theorem 3.4.1 Assume that (H1) - (H5), (K1) - (K2) and (B1) - (B4) hold.
Then we have

(i) ψ1/2
n (θ̃n − θ̂n) → 0 a.s.-[Pθ0 ] as n → ∞,

(ii) lim
n→∞J(n)Bn(θ̃n) = lim

n→∞ J(n)Bn(θ̂n)

= (
1
2π

)1/2

∫ ∞

−∞
K(τ) exp(−1

2
τ2)dτ a.s. [Pθ0 ].

Proof. The proof is analogous to Theorem 4.1 in Borwanker et al. (1972). We
omit the details.

Corollary 3.4.2 Under the assumptions of Theorem 4.1, we have
(i) θ̃n → θ0 a.s. [Pθ0 ] as n → ∞.

(ii) ψ1/2
n (θ̃n − θ0)

L→N (0, 1) as n → ∞.

Proof. (i) and (ii) follow easily by combining Theorem 3.4.1 and the strong
consistency and asymptotic normality results of the MLE in Huebner and
Rozovskii (1995).

The following theorem shows that Bayes estimators are locally asymptoti-
cally minimax in the Hajek-Le Cam sense, i.e., equality is achieved in Hajek-Le
Cam inequality.

Theorem 3.4.3 Under the assumptions of Theorem 3.4.1, we have

lim
δ→∞

lim
n→∞ sup

|θ−θ0|<δ

Eω
(
I1/2
n (θ̃n − θ0)

)
= Eω(ξ), L(ξ) = N (0, 1),

where ω(·) is a loss function as defined in Theorem earlier.

Proof. The Theorem follows from Theorem III.2.1 in Ibragimov-Has’minskii
(1981) since here conditions (N1) - (N4) of the said theorem are satisfied using
Lemma 3.1-3.3 and local asymptotic normality (LAN) property obtained in
Huebner and Rozovskii (1995).

5.3.5 Example: Stochastic Heat Equation

We illustrate the results of the previous sections through the following heat
equation
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du(t, x) − θΔu(t, x) = dW (t, x), t ∈ [0, T ], x ∈ (0, 1)
u(0, x) = u0(x), x ∈ (0, 1)
u(t, 0) = u(t, 1) = 0, t ∈ [0, T ]

where u0 ∈ L2(0, 1),W (t, x) is a cylindrical Brownian motion in L2(0, 1) and
θ > 0.

Here m1 = ord(Δ) = 2, m0 = 0, m = 1
2 max(m1, m0) = 1, d = 1. So

m−d/2 = 1/2 < m1.Thus(H1)issatisfied.Bystandardarguments,theoperator
−θΔwith zero boundary conditions extends to a self adjoint operator onL2(0, 1)
which we denote by −θΔ. The domain D(−θΔ) = W 2,2(0, 1)∩W 1,2

0 (0, 1). It is
readily checked that−θΔispositive, sowe can takek(θ) = 0and setΛ =

√−θΔ.
It is a standard fact that D(

√−θΔ) = W 1,2
0 (0, 1). Write hi :=

√
2 sin(iπx).

Obviously the sequence hi, i = 1, 2, · · · forms a complete orthonormal system
in L2(0, 1) and

√−θΔhi = λi(θ)hi where λi(θ) =
√

θπi. It is readily checked
that for s ∈ R, the norm

‖ u ‖s:=

⎛
⎝2

∞∑
j=1

θs(πi)2s|
∫ 1

0

u(s) sin(jπx)dx|2
⎞
⎠

1/2

is equivalent to the norm of the Sobolev space W s,2
0 (0, 1). Let us choose α = 1.

Obviously the system h−1
i,θ := λihi =

√
θπi

√
2 sin(πix), i = 1, 2, · · · is an

orthonormal basis in H−1. Hence assumptions (H2)-(H5) are satisfied.
Take squared error loss function l(θ, φ) = |θ−φ|2. Now for this heat equation

example all the results of subsections 5.3.3 and 5.3.4 on posterior convergence
and asymptotics of Bayes estimators, which are posterior mean for squared
error loss, hold.

Remarks

(1) General set of conditions of posterior convergence through theLANproperty
was given in Ghosal et al. (1994) extending methods in Ibragimov and
Khasminskii (1981). For the model here, using the LAN property of the
model along with Lemma 3.1-3.3 in Huebner and Rozovskii (1995), one
verifies the conditions in Ghosal et al. (1994) trivially and obtains the in
probability version of the Bernstein-von Mises theorem and asymptotic
equivalence in probability of the MLE and the Bayes estimators. However,
we obtained the almost sure versions of these results.

(2) Large deviations and Berry-Esseen inequality for the MLE through the
spectral approach needs to be investigated. Extension of this problem
to Bayes estimators remains to be investigated. Also to obtain rates of
convergence of theposterior distributions tonormaldistributionandbounds
on the asymptotic equivalence of the MLE and the Bayes estimators remains
to be investigated.

(3) Nonparametric estimation of the coefficients of SPDEs is studied in
Ibragimov and Khasminskii (1998).
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Maximum Likelihood Estimation in Fractional
Diffusions

6.1 Introduction

In view of recent empirical findings of long memory in finance, it becomes neces-
sary to extend the diffusion models to processes having long-range dependence.
One way is to use stochastic differential equations with fractional Brownian
motion (fBm) driving term, with Hurst index greater than 1/2, the solution
of which is called fractional diffusion. The fBm being not a Markov process
and not a semimartingale (except for the case where Hurst index is 1/2), the
classical Itô calculus is not applicable to develop its theory.

First we review the recent developments in fractional stochastic calculus:
stochastic integral with respect to fBm, fractional version of Itô formula and
fractional version of Girsanov formula. Then we study the asymptotic behavior
of the maximum likelihood estimator of the drift parameter in the SDE driven
by fBm with Hurst index greater than 1/2 when the corresponding fractional
diffusion is observed continuously in a long time interval. We study strong
consistency and asymptotic normality of maximum likelihood estimator for
both directly observed process and partially observed process. The results are
illustrated for fractional Ornstein-Uhlenbeck model.

Recently long memory processes or stochastic models having long range
dependence phenomena have been paid a lot of attention in view of their
applications in finance, hydrology and computer networks (see Beran (1994),
Mandelbrot (1997), Shiryaev (1999), Rogers (1997), Dhehiche and Eddahbi
(1999)). While parameter estimation in discrete time models having long-
range dependence like the autoregressive fractionally integrated moving average
(ARFIMA) models have already been paid a lot of attention, this problem for
continuous time models is not well settled. Here we study estimation problem
for continuous time long memory processes.

It has been empirically found recently that log share prices allow long-range
dependence between returns on different days. So modeling with fBm is an
alternative. But on the other hand, it allows arbitrage opportunities due to
the degeneracy of the fBm covariance kernel (see Rogers (1997)). A remedy
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was suggested by choosing some homogeneous covariance kernels that are non-
singular in zero and generate Gaussian processes with the same long range
dependence property as the fBm. Shiryaev (1998) considered fractional version
of Bachelier and the Black-Scholes model.

Tyurin and Phillips (1999) developed approximation of the local time of a
fBm by local times of continuous mixtures of diffusions and studied the rate of
convergenceof spatial density estimatorbasedondiscrete sample of observations
for a wide class of long-memory processes.

Statistical inference for semimartingales is now well developed, see Prakasa
Rao (1999b) for a recent survey. First we will review recent development on
fractionalstochasticcalculusandthenfocusonasymptoticbehaviorofmaximum
likelihood estimator of the drift parameter of diffusions driven by fBm. We shall
illustrate our results for fractional Ornstein-Uhlenbeck process.

This chapter is adapted from Bishwal (2003a).

6.2 Fractional Stochastic Calculus

Fractional Brownian Motion

The fractional Brownian motion (fBm, in short), which provides a suitable
generalizationof theBrownianmotion, is one of the simplest stochastic processes
exhibiting long range-dependence. It was introduced by Kolmogorov (1940) in
a Hilbert space framework and later on studied by Levy (1948) and in detail
by Mandelbrot and Van Ness (1968).

Consider a probability space (Ω,F , P) on which all random variables and
processes below are defined.

A fractionalBrownianmotion {WH
t , t ≥ 0}withHurst parameterH ∈ (0, 1)

is a centered Gaussian process with continuous sample paths whose covariance
kernel is given by

E(WH
t WH

s ) =
VH

2
(s2H + t2H − |t − s|2H), s, t ≥ 0.

where

VH := var(WH
1 ) =

1
[Γ(H + 1

2 )]2

{
1

2H
+
∫ ∞

1

[
uH− 1

2 − (u − 1)H− 1
2

]2
du

}
.

With VH = 1, fBm is called a normalized fBm.

Fractional Brownian motion has the following properties.
(1) It has stationary increments: E(WH

t − WH
s )2 = |t − s|2H , t, s ≥ 0.

(2) WH
0 = 0, E(WH

t ) = 0, E(Wt)2 = |t|2H , t ≥ 0.

(3) When H = 1
2 ,W

1
2

t is the standard Brownian motion. The increments
are independent.
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(4) The process is self similar or scale invariant, i.e.,

(WH
αt, t ≥ 0) =d (αHWH

t , t ≥ 0), α > 0.

H is also called the self similarity parameter.
(5) The increments of the fBm are negatively correlated for H < 1

2 and
positively correlated for for H > 1

2 .
(6) For H > 1

2 , fBm is a long memory process since the covariance between
far apart increments decrease to zero as a power law:

r(n) := E[WH
1 (WH

1+n − WH
n )] ∼ CHn2H−2.

∞∑
n=1

r(n) = ∞.

This property is also called long range dependence. The parameter H,
measures the intensity of the long range dependence.

For H = 1
2 , the process is a standard Brownian motion.

(7) The sample paths of WH are almost surely Holder continuous of any
order less than H, but not Holder continuous of any order greater than H,
hence continuous but nowhere differentiable.

(8) For any H, it has a a finite 1
H variation, i.e.,

0 < sup
Π

E
∑
ti∈Π

[∣∣∣WH
ti+1

− WH
ti

∣∣∣ 1
H

]
< ∞.

(9) Law of the Iterated Logarithm (Arcones (1995)):

P

(
limt→0+

WH
t

tH(log log t−1)
1
2

=
√

VH

)
= 1.

Self similarity of fBm leads to

P

(
limt→0+

WH
1
t

(log log t−1)
1
2

=
√

VH

)
= 1.

Setting u = 1
t ,

P

(
limu→∞

WH
u

uH(log log u−1)
1
2

=
√

VH

)
= 1.

Strong Law of Large Numbers for fBm follows from this.
(10) fBm can be represented as a stochastic integral with respect to standard

Brownian motion B (Mandelbrot and van Ness (1968)). For H > 1
2 ,

WH
t =

1
Γ(H + 1

2 )

{∫ 0

−∞
[(t − s)H− 1

2 − (−s)H− 1
2 ]dBs +

∫ t

0

(t − s)H− 1
2 dBs

}
.
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Standard Brownian motion can be written as a stochastic integral with
respect to WH

t (see, Igloi and Terdik (1999)):

Bt=
1

Γ( 3
2−H)

{∫ 0

−∞
[(t−s)−H+ 1

2−(−s)−H+ 1
2 ]dWH

s +
∫ t

0

(t−s)−H+ 1
2 dWH

s

}
.

(11) With topological dimension n, the fractal dimension of fBm is n+1−H.
Hausdorff dimension of one dimensional fBm is 2 − H.

(12) Existence of fBm:
(i) It can be defined by a stochastic integral w.r.t. Brownian motion.
(ii) It can be constructed by Kolmogorov extension theorem (see,

Samorodnitsky and Taqqu (1994)).
(iii) It can be defined as the weak limit of some random walks with strong

correlations (see, Taqqu (1975)).
(13) For H �= 1

2 , the fBm is not a semimartingale and not a Markov process,
but a Dirichlet process.

(14) Dirichlet Process: A process is called a Dirichlet process if it can be
decomposed as the sum of a local martingale and an adapted process of zero
quadratic variation (zero energy). Obviously is a larger class of processes than
semimartingales.

For H < 1
2 , the quadratic variation of WH is infinite. For H > 1

2 , the
quadratic variation of WH is zero. Hence for H > 1

2 , WH is a Dirichlet process.
Note that the estimation of the parameter H based on observation of

fractional Brownian motion has already been paid some attention, see, e.g.,
Peltier and Levy Vehel (1994) and the references there in. However we assume
H to be known.

Generalised Fractional Brownian Motion

As a further generalization of fractional Brownian motion we get the Hermite
process of order k with Hurst parameter H ∈ (1

2 , 1) which is defined as a
multiple Wiener-Itô integral of order k with respect to standard Brownian
motion (B(t))t∈R

ZH,k
t := c(H, k)

∫ k

R

∫ t

0

Πk
j=1(s − yi)

−( 1
2+ H−1

2 )
+ ds dB(y1)dB(y2) · · · dB(yk)

where x+ = max(x, 0).
For k = 1 the process is fractional Brownian motion WH

t with Hurst
parameter H ∈ (0, 1). For k = 2 the process is Rosenblatt process. For k ≥ 2
the process is non-Gaussian.

The covariance kernel R(t, s) is given by

R(t, s) := E[ZH,k
t ZH,k

s ]

= c(H, k)2
∫ t

0

∫ s

0

[
(u − y)−( 1

2+ H−1
2 )

+ ds(v − y)−( 1
2+ H−1

2 )
+ dy

]k
dudv.
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Let

β(p, q) =
∫ 1

0

zp−1(1 − z)q−1dz, p, q > 0

be the beta function.
Using the identity∫

R

[
(u − y)a−1

+ ds(v − y)a−1
+ dy

]
= β(a, 2a − 1)|u − v|2a−1

we have

R(t, s) = c(H, k)2β
(

1
2
− 1 − H

k
,
2H − 2

k

)k ∫ t

0

∫ s

0

(
|u − v| 2H−2

k

)k

dvdu

= c(H, k)2
β( 1

2 − 1−H
k , 2H−2

k )k

H(2H − 1)
1
2
(t2H + s2H − |t − s|2H)

In order to obtain E(Z(H,k)
t )2 = 1,

choose

c(H, k)2 =

(
β( 1

2 − 1−H
k , 2H−2

k )k

H(2H − 1)

)−1

and we have
R(t, s) =

1
2
(t2H + s2H − |t − s|2H).

Thusthecovariancestructureof theHermiteprocessandfractionalBrownian
motion are the same.

The process Z
(H,k)
t is H-self similar with stationary increments and all

moments are finite.
For any p ≥ 1,

E|Z(H,k)
t − Z(H,k)

s |p ≤ c(p, H, k)|t − s|pH .

Thus the Hermite process has Holder continuous paths of order δ < H.

Fractional Poisson Process

A fractional Poisson process {PH(t), t > 0} with Hurst parameter H ∈ (1/2, 1)
is defined as

PH(t) =
1

Γ(H − 1
2 )

∫ t

0

u
1
2−H

(
τH− 1

2 (τ − u)H− 3
2 dτ
)

dq(u)

where q(u) = N(u)√
λ

−√
λu where N(u) is a Poisson process.

The process is self-similar in the wide sense, has wide sense stationary
increments, has fat-tailed non-Gaussian distribution, and exhibits long range
dependence. The process converges to fractional Brownian motion in distrib-
ution. The process is self similar in the asymptotic sense. Strict sense, wide
sense and asymptotic sense self-similarity are equivalent for fractional Brownian
motion. Stock returns are far from being self-similar in strict sense.
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Fractional Stochastic Integral

For H �= 1
2 , the classical theory of stochastic integration with respect

to semimartingales is not applicable to stochastic integration with respect to
fBm. Since fBm is a Gaussian process, stochastic integration with respect to
Gaussian process is applicable.

For integration questions related to fractional Brownian motion, see Pipiras
and Taqqu (2000). Now there exists several approaches to stochastic integration
with respect to fBm.
(i) Classical Riemann sum approach: Lin (1995), Dai and Heyde (1996),
Kleptsyna, Kloeden and Anh (1998c)
(ii)Malliavin calculus approach:DecreusefondandUstunel (1998, 1999),Coutin
and Decreusefond (1999a), Alos, Mazet and Nualart (1999, 2000)
(iii) Wick calculus approach: Duncan, Hu and Pasik-Duncan (1999)
(iv) Pathwise calculus: Zahle (1998, 1999), Ruzmaikina (2000)
(v) Dirichlet calculus: Lyons and Zhang (1994)
(vi) Rough path analysis: Lyons (1994)

Lin (1996) introduced the stochastic integral as follows: Let φ be a left
continuous bounded Lebesgue measurable function with right limits, called
sure processes. Then∫ 1

0

ψ(t)dWH
t = l.i.m.|π|→∞

∑
ti∈π

ψ(ti−1)(WH
ti

− WH
ti−1

).

The indefinite integral is defined as∫ t

0

ψ(s)dWH
s =

∫ 1

0

ψ(t)I[0,t]dWH
t .

This integral has a continuous version and a Gaussian process. However,

E

(∫ t

0

ψ(s)dWH
s

)
�= 0.

To overcome this situation, Duncan, Hu and Pasik-Duncan (2000) introduced
an integral using Wick calculus for which

E

(∫ t

0

f(s)dWH
s

)
= 0.

They defined integrals of both Itô and Stratonovich type.
We shall discuss the Wick calculus approach here.
Wiener integral for deterministic kernel was defined by Gripenberg and

Norros (1996).
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Let φ : R+ × R → R be a Borel measurable deterministic function. Let

L2
φ(R+) :=

{
f : |f |2φ :

∫ ∞

0

∫ ∞

0

f(s)f(t)φ(s, t)dsdt < ∞
}

.

The inner product in the Hilbert space L2
φ is denoted by 〈·, ·〉φ.

If f, g ∈ L2
φ, then

∫∞
0

fsdWH
s and

∫∞
0

gsdWH
s are well defined zero mean,

Gaussian random variables with variances |f |2φ and |g|2φ respectively and co-
variance

E

(∫ ∞

0

fsdWH
s

∫ ∞

0

gsdWH
s

)
=
∫ ∞

0

∫ ∞

0

fsgsφ(s, t)dsdt =: 〈f, g〉φ.

Let (Ω,F , P ) be the probability space on which WH is defined. For f ∈ L2
φ,

define ε : L2
φ → L1(Ω,F , P ) as

ε(f) := exp
{∫ ∞

0

ftdWH
t − 1

2

∫ ∞

0

∫ ∞

0

fsftφ(s, t)dsdt

}

= exp
{∫ ∞

0

ftdWH
t − 1

2

∫ ∞

0

|f |2φ
}

which is called an exponential function.
Let E be the linear span of exponentials, i.e.,

E = {
n∑

k=1

akε(fk) : n ∈ N, ak ∈ R, fk ∈ L2
φ(R+), k = 1, n}.

The Wick product of two exponentials is defined as

ε(f) � ε(g) = ε(f + g).

For distinct f1, f2, · · · , fn ∈ L2
φ, ε(f1), ε(f2), · · · , ε(fn) are independent. It can

be extended to define the Wick product of two functionals F and G in E .

An analogue of Malliavin Derivative: Wick Derivative

The φ-derivative of a random variable F ∈ Lp in the direction of Φg where
g ∈ L2

φ is defined as

DΦgF (ω) = lim
δ→0

1
δ

[
F

(
ω + δ

∫ ·

0

(Φg)(u)du

)
− F (ω)

]

if the limit exists in Lp(Ω,F , P ).
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If there is a process (DφFs, s ≥ 0) such that

DΦgF =
∫ ∞

0

DφFsgsds a.s.

for all g ∈ L2
φ, then F is said to be φ-differentiable. Let F : [0, T ] × Ω → R

be a stochastic process. The process is said to be φ-differentiable if for each
t ∈ [0, T ], F (t, ·) is φ− differentiable and Dφ

s Ft is jointly measurable.

Chain Rule: If f : R → R is smooth and F : Ω → R is φ− differentiable,
then f(F ) is also φ− differentiable and

DΦgf(F ) = f ′(F )DφgF

and
Dφ

s f(F ) = f ′(F )Dφ
s (F ).

(1) If g ∈ L2
φ, F ∈ L2(Ω,F , P ) and DΦgF ∈ L2(Ω,F , P ), then

F �
∫ ∞

0

gsdWH
s = F

∫ ∞

0

gsdWH
s − DΦgF.

(2) If g, h ∈ L2
φ and F, G ∈ E , then

E

(
F �

∫ ∞

0

gsdWH
s G �

∫ ∞

0

hsdWH
s

)
= E [DΦgFDΦhG + FG〈g, h〉φ] .

Let πn : 0 < t1 < t2 < · · · < tn = T.
Let L[0, T ] be the family of stochastic processes on F on [0, T ] such that

E|F |2φ < ∞, F is φ− differentiable, the trace of (Dφ
s Ft, 0 ≤ s ≤ T, 0 ≤ t ≤ T )

exists and E
∫ T

0
(Dφ

s Fs)2ds < ∞ and for each sequence of partitions {πn, n ∈ N}
such that |πn| → 0

n−1∑
i=0

E

{∫ t
(n)
i+1

t
(n)
i

|Dφ
s Fπ

t
(n)
i

− Dφ
s Fs|ds

}2

→ 0

and E|Fπ − F |2φ → 0 as n → ∞.
For F ∈ L[0, T ], define

∫ T

0

FsdWH
s = l.i.m.|π|→0

n−1∑
i=0

Fti
� (WH

ti+1
− WH

ti
).

Proposition 2.1 Let F, G,∈ L[0, T ]. Then
(i) E

(∫ T

0
FsdWH

s

)
= 0.
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(ii) E
(∫ T

0
FsdWH

s

)2

= E
{(

Dφ
s Fsds

)2 +
∣∣I[0,T ]F

∣∣2
φ

}
(iii)

∫ t

o
(aFs + bGs)dWH

s = a
∫ t

0
FsdWH

s + b
∫ t

0
GsdWH

s a.s.

(iv) If E
[
sup0≤s≤T Fs

]2
< ∞ and sup0≤s≤T E|Dφ

s Fs|2 < ∞, then {∫ t

0
FsdWH

s ,
0 ≤ t ≤ T} has a continuous version.

Here it is not assumed that (Fs, s ∈ [0, T ]) is adapted to the fBm. Assume
that Dφ

s Fs = 0, s ∈ [0, T ]. Then

(v) E
(∫ T

0
FsdWH

s

)2

=
∣∣I[0,T ]F

∣∣2
φ

= E
∫ T

0

∫ T

0
FuFvφ(u, v)dudv.

Fractional version of Stratonovich Integral is defined as∫ t

0

FsδW
H
s :=

∫ t

0

FsdWH
s +

∫ t

0

Dφ
s Fsds a.s.

Fractional Itô Formula

If f : R → R is a twice continuously differentiable function with bounded
derivatives of order two, then

f(WH
T ) − f(WH

0 ) =
∫ T

0

f ′(WH
s )dWH

s + H

∫ T

0

s2H−1f ′′(WH
s )ds a.s.

For H = 1
2 , it gives the classical Itô formula for standard Brownian motion.

General Itô Formula

Let {Fu, 0 ≤ u ≤ T} and {Gu, 0 ≤ u ≤ T} be stochastic processes in L[0, T ].
Assume that there exists an α > 1 − H such that

E|Fu − Fv|2 ≤ C|u − v|2α,

lim
|u−v|→0

E{|Dφ
u(Fu − Fv)|2} = 0

and
E sup

0≤s≤T
|Gs| < ∞.

Let
dXt = Gtdt + FtdWH

t , X0 = ξ ∈ R, 0 ≤ t ≤ T,

i.e.,

Xt = ξ +
∫ t

0

Gsds +
∫ t

0

FsdWH
s .

Let f : R → R be C1
b in the first variable and C2

b in the second variable

and let
(

∂f
∂x (s, Xs), s ∈ [0, T ]

)
∈ L[0, T ]. Then
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f(t, Xt)

= f(0, ξ) +
∫ t

0

∂f

∂s
(s, Xs)ds +

∫ t

0

∂f

∂x
(s, Xs)Gsds +

∫ t

0

∂f

∂x
(s, Xs)FsdWH

s

+
∫ t

0

∂2f

∂x2
(s, Xs)FsD

φ
s Xsds.

Itô formula for Stratonovich Type integral:

Let {Ft, 0 ≤ t ≤ T} satisfy the above assumptions. Let

ηt =
∫ t

0

FsδW
H
s .

Let g ∈ C2
b and

(
∂g
∂x (s, ηs)Fs, s ∈ [0, T ]

)
∈ L[0, T ].

Then for t ∈ [0, T ],

g(t, ηt) = g(0, 0) +
∫ t

0

∂g

∂s
(s, ηs)ds +

∫ t

0

∂g

∂x
(s, ηs)FsdWH

s

i.e.,
δg(t, ηt) = gt(t, ηt)dt + gx(t, ηt)dηt.

Fractional Girsanov Formula

Decreusefond and Ustunel (1999) gave a Girsanov formula using stochastic
calculus of variation. Kleptsyna, Le Breton and Roubaud (1999) obtained the
following theorem.

Theorem 2.1 Let h be a continuous function from [0, T ] to R. Define for
0 < t ≤ T , the function kt

h = (kt
h(s), 0 < s < t) by

kt
h(s) := −ρ−1

H s
1
2−H d

ds

∫ t

s

dωω2H−1(ω−s)
1
2−H d

dω

∫ ω

0

dzz
1
2−H(ω−z)

1
2−Hh(z)

where
ρH = Γ2(

3
2
− H)Γ(2H + 1) sin πH.

Define for 0 ≤ t ≤ T ,

Nh
t :=

∫ t

0

kt
h(s)dWH

s , 〈Nh〉t :=
∫ t

0

h(s)kt
h(s)ds.

Then the process {Nh
t , 0 ≤ t ≤ T} is a Gaussian martingale with variance

function
{〈Nh〉t, 0 ≤ t ≤ T}.
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For h = 1, the function kt
h is

kt
∗(s) := τ−1

H (s(t − s))
1
2−H

where τH := 2HΓ( 3
2 − H)Γ(H + 1

2 ).
Then the corresponding Gaussian martingale is

N∗
t =

∫ t

0

kt
∗(s)dWH

s

and

〈N∗〉t =
∫ t

0

kt
∗(s)ds

= λ−1
H t2−2H

where

λH =
2HΓ(3 − 2H)Γ(H + 1

2 )
Γ( 3

2 − H)
.

6.3 Maximum Likelihood Estimation in Directly Observed
Fractional Diffusions

For directly observed diffusions, the study of asymptotic properties of several
estimators of a parameter in the drift coefficient of the Itô stochastic differ-
ential equation driven by a standard Brownian motion based on observations
of the corresponding diffusion process continuously inside a time interval or
at discrete time points is now well developed: see Kutoyants (1984, 1994),
Ait-Sahalia (2002), Bishwal (1999a) and Prakasa Rao (1999a).

As far as estimation of unknown parameter in fractional diffusions is con-
cerned, maximum likelihood estimator (MLE) of the constant drift parameter
of a fractional Brownian motion was obtained by Decreusefond and Ustunel
(1999) who developed stochastic analysis of the fBm in a Malliavin calculus
framework. Norros, Valkeila and Virtamo (1999) studied the properties of the
MLE of the constant drift parameter of fBm using martingale tools. They
showed that the MLE is unbiased and normally distributed. They also showed
that the MLE is strongly consistent and proved a law of the iterated logarithm
as T → ∞. The problem was generalized by Le Breton (1998) to a stochastic
differential equation driven by fBm with drift and the diffusion coefficient being
nonrandom functions and the unknown parameter in the drift coefficient. He
obtained the best linear unbiased estimator (BLUE) of the drift parameter
which coincides with the MLE. He also obtained the least squares estimator
(LSE) and compared the relative efficiency of the LSE and the BLUE.
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We shall study the maximum likelihood estimation of the parameter ap-
pearing in more general drift coefficient of a fractional diffusion process.

Consider the stochastic differential equation driven by the fBm WH

dXt = θf (t, Xt) dt + dWH
t (3.1)

X0 = ξ

where ξ is a P-a.s finite random variable, H ∈ ( 1
2 , 1) and θ ∈ Θ open in R is the

unknown parameter to be estimated on the basis of observation of the process
{Xt, 0 ≤ t ≤ T}.

We assume that the function f : R → R is known and it satisfies
(A1) |f(t, x)| ≤ K(1 + |x|) for all t ∈ [0, T ];
(A2)|f(t, x) − f(t, y)| ≤ K(|x − y|) for all t ∈ [0, T ].
for some constant K > 0.
Under the conditions (A1) and (A2), it is known that there exists a unique

solution of the SDE (1) (see Lin (1996)).
In order to obtain the MLE, we proceed as follows. Let τH , k(t, s) and N∗ be

as defined in Theorem 2.1. Then by Theorem 2.1, N∗ is a Gaussian martingale
whose variance function is

〈N∗〉t =
t2−2H

λH

where λH = 2HΓ(3−2H)Γ(H+ 1
2 )

Γ( 3
2−H) . N∗

t can be represented as

N∗
t =

∫ t

0

h (s) dBs

where h (s) =
√

2(1−H)
λH

s
1
2−H and Bs is a standard Brownian motion. Hence

from (3.1), we have

Yt :=
∫ t

0

k(t, s)dXs = θ

∫ t

0

k(t, s)f (s, Xs) ds +
∫ t

0

k(t, s)dWH
s

= θ

∫ t

0

k(t, s)f (s, Xs) ds +
∫ t

0

h (s) dBs (3.2)

Let consider the probability P̃ such that

dP̃

dP
= exp

(
−θ

∫ T

0

k(T, s)f (s, Xs)
h (s)

dBs − θ2

2

∫ T

0

(
k(T, s)f (s, Xs)

h (s)

)2

ds

)

Under P̃ the process

B̃t = Bt +
∫ t

0

θ
k(T, s)f (s, Xs)

h (s)
ds
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is a Brownian motion for t ∈ [0, T ] by the classical Girsanov’s theorem.
Therefore, under P̃ ,

YT =
∫ T

0

h (s) dB̃s, and YT ∼ N

(
0,

T 2−2H

λH

)
.

Hence we know the distribution of YT under P̃ and the distribution of YT

under P is absolutely continuous with respect to it and it has the density

LT (θ) = exp

(
θ

∫ T

0

k(T, s)f (s, Xs)
h (s)

dBs +
θ2

2

∫ t

0

(
k(T, s)f (s, Xs)

h (s)

)2

ds

)

= exp

(
θ

∫ T

0

k(T, s)f (Xs)
(h (s))2

dYs − θ2

2

∫ T

0

(
k(T, s)f (Xs)

h (s)

)2

ds

)
.

Let lT (θ) := log LT (θ). Then the maximum likelihood estimator based on the
observation {Xt, 0 ≤ t ≤ T} is given by

θ̂T := arg max
θ∈Θ

lT (θ)

=

∫ T

0
k(T,s)f(s,Xs)

(h(s))2
dYs∫ T

0

(
k(T,s)f(Xs)

h(s)

)2

ds
.

Note that the numerator of the MLE is a stochastic integral with respect to an
integral functional of the observation process {Xt}.

We shall prove the consistency and asymptotic normality of the MLE with
suitable normalizations.

Weneed the following exponential inequality for a type of stochastic integrals
those are not martingales.

Theorem3.1 (NualartandRovira (2000)):LetM : [0, T ]×[0, T ]×Ω → R×Rbe
aB([0, T ])⊗B([0, T ])⊗F measurable process satisfying the following conditions:
(i) M(t, s) = 0 if s > t.
(ii)M(t, s) is Fs-adapted.
(iii) There exists a positive random variable η and α ∈ (0, 2] such that for all
t, r ∈ [0, T ] ∫ r∧t

0

|M(t, s) − M(r, s)|2 ≤ η|t − r|α.

Then for any β, 0 < β ≤ 1 ∧ α, there exist positive constants K1 (depending
only on β), K2,K3, such that

P

{
sup

0≤t≤T

∣∣∣∣
∫ t

0

M(t, s)dWs

∣∣∣∣ > λ, ‖ M ‖∞≤ KM , η ≤ CM

}

≤ exp
(
− λ2

(TK2
M + TαCM )

K3

)
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for any λ > 0, CM ≥ 0 and KM ≥ 0 such that λ(Tα−βCM + T 1−βK2
M )−1/2 ≥

K1 ∨ K2(1 + T )T β/2).

Theorem 3.2 Under the conditions (A1)-(A2), θ̂T −→ θ a.s. as T → ∞, i.e.,
θ̂T is a strongly consistent estimator of θ.

Proof. Note that by (3) we have

θ̂T =

∫ T

0
k(T,s)f(s,Xs)

(h(s))2
dYs∫ T

0

(
k(T,s)f(s,Xs)

h(s)

)2

ds

= θ +

∫ T

0
k(T,s)f(s,Xs)

h(s) dBs∫ T

0

(
k(T,s)f(s,Xs)

h(s)

)2

ds

Now by using Theorem 3.1, we have

P{|θ̂T − θ| > λ}

= P

⎧⎪⎨
⎪⎩
∣∣∣∣∣∣∣
∫ T

0
k(T,s)f(s,Xs)

h(s) dBs∫ T

0

(
k(T,s)f(s,Xs)

h(s)

)2

ds

∣∣∣∣∣∣∣ > λ

⎫⎪⎬
⎪⎭

≤ P

{∣∣∣∣∣
∫ T

0

k(T, s)f (s, Xs)
h (s)

dBs

∣∣∣∣∣ > λ1,

∣∣∣∣∣
∫ T

0

(
k(T, s)f (s, Xs)

h (s)

)2

ds

∣∣∣∣∣ < λ2

}

(where λ =
λ1

λ2
)

≤ exp
(
−K3

λ2
1

TK2
M + TαCM

)

Now using Borel-Cantelli argument completes the proof.

Theorem 3.3 Under the conditions (A1)-(A2),√
IH
T (θ̂T − θ) −→ N (0, 1) in distribution as T → ∞

where

IH
T :=

∫ T

0

(
k(T, s)f (s, Xs)

h (s)

)2

ds

Proof. Note that√
IH
T (θ̂T − θ) =

∫ T

0
k(T,s)f(s,Xs)

h(s) dBs√∫ T

0

(
k(T,s)f(s,Xs)

h(s)

)2

ds

.
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It is known that the Volterra stochastic integral
∫ t

0
g(t, s, Xs)dBs is a con-

tinuous semimartingale with the following decomposition:

∫ t

0

g(t, s, Xs)dBs =
∫ t

0

g(s, s, Xs)dBs +
∫ t

0

(∫ r

0

∂g

∂r
(r, u,Xu)dBu

)
dr.

(see Tudor and Tudor (1995))
Now using Skorohod embedding for continuous semimartinagales (see

Monroe (1972)),

∫ T

0

g(T, s, Xs)dBs = B∗
(∫ T

0

g2(T, s, Xs)ds

)

where B∗ is some other Brownian motion on an enlarged probability space.
Setting g(T, s, x) = k(T,s)f(s,x)

h(s) , we have

∫ T

0
k(T,s)f(s,Xs)

h(s) dBs√∫ T

0

(
k(T,s)f(s,Xs)

h(s)

)2

ds

=
B∗(IH

T )√
IH
T

By standard argument, the last term converges in distribution to N (0, 1) as
T → ∞.

6.4 Maximum Likelihood Estimation in Partially
Observed Fractional Diffusions

In Chapters 2-5, we studied directly observed process. In practice, there could be
hidden unobserved process in the model and the process is not fully observable.
Examples of such system are a stochastic filtering model and a stochastic
volatility model. In the latter case, price is observed while volatility process is
unobserved.Asymptoticbehaviourof estimators inpartially observed stochastic
differential system was first studied by Kutoyants (1984) when the state and
the observation equations are driven by ordinary Brownian motions when the
observation timebecomes large.The problemwas generalized byKallianpur and
Selukar (1991) to multiparameter case. The problem was studied by Campillo
and Le Gland (1989), Konecky (1991), James and Le Gland (1993), Kutoyants
and Pohlman (1994) and Kutoyants (1994) when the intensity of noise becomes
small.

The problem of optimal filtering of a signal when the noise is a fractional
Brownian motion was studied by Kleptsyna, Kloeden and Anh (1998a, b), Le
Breton (1998a, b), Coutin and Decreusefond (1999b), Kleptsyna, Le Breton
and Roubaud (1998, 1999).
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We study the properties of the MLE of a parameter appearing linearly in
drift coefficient of a nonlinear stochastic differential equation driven by fBm
when the signal process is a nonlinear ordinary diffusion process.

On the probability space (Ω,F , P) consider the stochastic differential equa-
tions

dYt = θf (t, Xt) dt + g(t)dWH
t ,

dXt = a (t, Xt) dt + b (t, Xt) dVt, t ∈ [0, T ],
Y0 = ξ, X0 = η,

where WH ,H ∈ ( 1
2 , 1) is the fBm defined above and V is a standard Brownian

motion independent of WH such that the pair (η, ξ) is independent of (V,WH).
We assume that the conditional distribution of η given ξ is some fixed π0.

Here θ ∈ Θ open in R is the unknown parameter to be estimated on the
basis of observation {Yt, 0 ≤ t ≤ T}.

We assume that the functions g : [0, T ] → R
+ and f : [0, T ] × R → R is

known and it satisfies
(B1) |f(t, x)| ≤ K(1 + |x|) for all t ∈ [0, T ],
(B2)|f(t, x) − f(t, y)| ≤ K(|x − y|) for all t ∈ [0, T ],
for some constant K > 0.
We assume that the functions a : [0, T ]×R → R and b : [0, T ]×R → R are

known and satisfy
(B3) (i) |a(t, x)| ≤ K1(1 + |x|) for all t ∈ [0, T ],
(ii)|b(t, x)| ≤ K1(1 + |x|) for all t ∈ [0, T ]
for some constant K1 > 0.
(B4) (i)|a(t, x) − a(t, y)| ≤ K1(|x − y|) for all t ∈ [0, T ],
(ii) |b(t, x) − b(t, y)| ≤ K1(|x − y|) for all t ∈ [0, T ]
for some constant K1 > 0.
Under the conditions (B1) - (B4), it is known that there exists a unique

solution of the SDE (1) (see Lin (1996) and Kallianpur (1980)).
In order to obtain the MLE, we proceed as follows. Consider the canonical

space of the process (X,Y ). Let Ω = C([0, T ]; R2) be the space of continuous
functions from [0, T ] into R

2. Consider also the canonical process (X,W ∗) =
((Xt,W

∗
t ), t ∈ [0, T ]) on Ω where (Xt, W

∗
t )(x, y) = (xt, yt) for any (x, y) ∈ Ω.

The probability P̃ denotes the unique probability measure on Ω such that
defining the variable ξ by ξ = W ∗

0 and W̃ = (W̃t), t ∈ [0, T ] by W̃t = W ∗
t − W ∗

0 ,
t ∈ [0, T ], the pair (X, ξ) is independent of W̃ and the process W̃ is a fBm with
Hurst parameter H.

The canonical filtration on Ω is (Ft, t ∈ [0, T ]) where Ft = σ({(Xs, W
∗
s ),

0 ≤ s ≤ t}∨N ,N denoting the set of null sets of (Ω, P̃).
Define for all continuous functions x = (xt, t ∈ [0, T ]) the function h(θ, x)

on [0, T ] by

h(θ, x)(t) :=
θf(t, xt)

g(t)
, t ∈ [0, T ].
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Consider, for any t ∈ [0, T ], the function kt
h(θ,x) = (kt

h(θ,x)(s), 0 < s < t) defined
from Theorem 2.4.1 with h(θ, x) in place of h.

Define the processes N = (Nt, t ∈ [0, T ]) and 〈N〉 = (〈N〉t, t ∈ [0, T ]) from
Theorem 2.1 by plugging in the process h(θ, x) in place of h, i.e.,

Nt := N
h(θ,X)
t , 〈N〉t := 〈Nh(θ,X)〉t.

Notice that Nt and 〈N〉t depend only on the values of X(t) = (Xs, 0 ≤
s ≤ t).

Define the (Ft)-adapted processes 〈N, N∗〉 = (〈N, N∗〉t, t ∈ [0, T ]) and
q(θ,X) = (qt(θ,X), t ∈ [0, T ]) by

〈N, N∗〉t := 〈Nh(θ,X), N∗〉t =
∫ t

0

kt
∗(s)h(θ,X)(s)ds, t ∈ [0, T ])

and

qt(θ,X) := q
h(θ,X)
t =

d〈N, N∗〉t
d〈N∗〉t , t ∈ [0, T ].

Let q̃t(X) := qt(θ,X)
θ .

Define for 0 ≤ t ≤ T , the processes

Ñt(θ, x) :=
∫ t

0

kt
h(θ,x)(s)dW̃H

s , 〈Ñ〉t(θ, x) :=
∫ t

0

h(θ, x)(s)kt
h(s)ds.

Ñt(θ, x) is a Gaussian martingale under P̃. Define

Λt(θ, x) := exp{Ñt(θ, x) − 1
2
〈Ñ〉t(θ, x)}, t ∈ [0, T ].

Define for any t ∈ [0, T ],
Λt(θ) := Λt(θ,X).

Let P := ΛT (θ)P̃.
Let Yt := σ({Ys, 0 ≤ s ≤ t}), t ∈ [0, T ]. Define the optimal filter πt(φ) :=

E[φ(Xt)|Yt], t ∈ [0, T ] and the unnormalized filter σt(φ) := Ẽ[φ(Xt)Λt|Yt], t ∈
[0, T ].
Then the Kallianpur-Stribel formula holds: for all t ∈ [0, T ], P̃ and P almost
surely

πt(φ) =
σt(φ)
σt(1)

.

Introduce the processes Z and Z∗ defined by

Zt :=
∫ t

0

kt
h(θ,X)(s)g

−1(s)dYs, t ∈ [0, T ]
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and

Z∗
t :=

∫ t

0

kt
∗(s)g

−1(s)dYs, t ∈ [0, T ].

The processes Z and Z∗ are semimartingales with the following decomposition:

Z∗
t = 〈N, N∗〉t + N∗

t , t ∈ [0, T ],

Zt = 〈N〉t + Nt, t ∈ [0, T ].

From the above, we can write

Z∗
t =

∫ t

0

qs(θ,X)d〈N∗〉s + N∗
t , t ∈ [0, T ]),

and

Zt =
∫ t

0

q2
s(θ,X)d〈N∗〉s +

∫ t

0

qs(θ,X)dN∗
s , t ∈ [0, T ]),

Hence we get the integral representation of Z in terms of Z∗:

Zt =
∫ t

0

qs(θ,X)dZ∗
t , t ∈ [0, T ].

Introduce the process ν = (νt, t ∈ [0, T ]) defined by

νt = Z∗
t −

∫ t

0

πs(q)d〈N∗〉s, t ∈ [0, T ].

which plays the role of innovation process in the usual situation where the noises
are Brownian motions.

Recall the notation πs(q) = E[qs(θ,X)|Ys], s ∈ [0, t].
The particular case of unnormalized filter is

Λ̃t(θ) := σt(1) = Ẽ[Λt|Yt], t ∈ [0, T ].

By Proposition 5 in Kleptsyna, Le Breton and Roubaud (1999), we have

Λ̃T (θ,Yt) = exp

{
θ

∫ T

0

πs(q̃)dZ∗
s − θ2

2

∫ T

0

π2
s(q̃)d〈N∗〉s

}
.

Thus the maximum likelihood estimator (MLE) of θ is

θ̃T := arg max
θ∈Θ

Λ̃T (θ)

=

∫ T

0
πs(q̃)dZ∗

s∫ T

0
π2

s(q̃)d〈N∗〉s
.

We shall prove the strong consistency and asymptotic normality of the MLE
with random normalization.
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Theorem 4.1 Under the conditions (B1)-(B4), θ̃T −→ θ a.s. as T → ∞, i.e.,
θ̃T is a strongly consistent estimator of θ.

Moreover,

lim sup
T

A
1/2
T |θ̃T − θ|

(2 log log AT )1/2
= 1 a.s.

where AT =
∫ T

0
π2

s(q̃)d〈N∗〉s.
Proof. Note that

dZ∗
t = πt(q)d〈N∗〉t + dνt.

From Lemma 3 in Kleptsyna, Le Breton and Roubaud (1999), we have ν is a
continuous Gaussian (Yt, P) martingale such that 〈ν〉 = 〈N∗〉.

Hence

θ̃T =

∫ T

0
πs(q̃)dZ∗

s∫ T

0
π2

s(q̃)d〈N∗〉s

= θ +

∫ T

0
πs(q̃)dνs∫ T

0
π2

s(q̃)d〈N∗〉s
.

Now by the strong law of large numbers for continuous martingales (see Revuz
and Yor (1991) or Liptser and Shiryayev (1989, Theorem 2.6.10)), the second
term in r.h.s. converges to zero a.s. as T → ∞. Hence strong consistency follows.
Since the deviation θ̂T −θ is obtained from a stochastic integral with respect to a
continuous martingale, the law of the iterated logarithm follows from Corollary
1.1.12 of Revuz and Yor (1991).

Theorem 4.2 Under the conditions (B1)-(B4),√∫ T

0

π2
s(q̃)d〈N∗〉s(θ̃T − θ)

D→ N (0, 1) as T → ∞.

Proof. Note that√∫ T

0

π2
s(q̃)d〈N∗〉s(θ̃T − θ) =

∫ T

0
πs(q̃)dνs√∫ T

0
π2

s(q̃)d〈N∗〉s
.

By the central limit theorem for stochastic integrals with respect to Gaussian
martingales (see Liptser and Shiryayev (1989)), the right hand side above
converges in distribution to N (0, 1) as T → ∞.
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6.5 Examples

(a) Directly Observed Fractional Ornstein-Uhlenbeck Model

The fractional Ornstein-Uhlenbeck process, is an extension of Ornstein-
Uhlenbeck process with fractional Brownian motion (fBm) driving term. In
finance it is known as fractional Vasicek model, and is being extensively used
these days as one-factor short-term interest rate model which takes into account
the long memory effect of the interest rate. The model parameter is usually
unknown and must be estimated from data.

Define

κH := 2HΓ(3/2 − H)Γ(H + 1/2),

kH(t, s) := κ−1
H (s(t − s))

1
2−H

λH :=
2HΓ(3 − 2H)Γ(H + 1

2 )
Γ(3/2 − H)

vt ≡ vH
t := λ−1

H t2−2H

MH
t :=

∫ t

0

kH(t, s)dWH
s

From Norros et al. (199) it is well known that MH
t is a Gaussian martingale,

called the fundamental martingale whose variance function 〈MH〉t is vH
t .

Moreover, the natural filtration of the martingale MH coincides with the
natural filtration of the fBm WH since

WH
t :=

∫ t

0

K(t, s)dMH
s

holds for H ∈ (1/2, 1) where

KH(t, s) := H(2H − 1)
∫ t

s

rh− 1
2 (r − s)H− 3

2 , 0 ≤ s ≤ t

and for H = 1/2, the convention K1/2 ≡ 1 is used.

Define

Qt :=
d

dvt

∫ t

0

kH(t, s)Xsds.

It is easy to see that

Qt =
λH

2(2 − 2H)

{
t2H−1Zt +

∫ t

0

r2H−1dZs

}
.
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Define the process Z = (Zt, t ∈ [0, T ]) by

Zt :=
∫ t

0

kH(t, s)dXs.

The following facts are known from Kleptsyna and Le Breton (2002):

(i) Z is the fundamental semimartingale associated with the process X.
(ii) Z is a (Ft) -semimartingale with the decomposition

Zt = θ

∫ t

0

Qsdvs + MH
t .

(iii) X admits the representation

Xt =
∫ t

0

KH(t, s)dZs.

(iv) The natural filtration (Zt) of Z and (Xt) of X coincide.

Let (Ω,F , {Ft}t≥0, P ) be a stochastic basis on which is defined the Ornstein-
Uhlenbeck process Xt satisfying the Itô stochastic differential equation

dXt = θXtdt + dWH
t , t ≥ 0, X0 = 0

where {WH
t } is a fractional Brownian motion with H > 1/2 with the filtration

{Ft}t≥0 and θ > 0 is the unknown parameter to be estimated on the basis of
continuous observation of the process {Xt} on the time interval [0, T ].

Let the realization {Xt, 0 ≤ t ≤ T} be denoted by XT
0 . Let PT

θ be the
measure generated on the space (CT , BT ) of continuous functions on [0, T ] with
the associated Borel σ-algebra BT generated under the supremum norm by the
process XT

0 and PT
0 be the standard Wiener measure. Applying Girsanov type

formula for fBm, when θ is the true value of the parameter, PT
θ is absolutely

continuous with respect to PT
0 and the Radon-Nikodym derivative (likelihood)

of PT
θ with respect to PT

0 based on XT
0 is given by

LT (θ) :=
dPT

θ

dPT
0

(XT
0 ) = exp

{
θ

∫ T

0

QtdZt − θ2

2

∫ T

0

Q2
t dvt

}
.

Consider the score function, the derivative of the log-likelihood function, which
is given by

RT (θ) :=
∫ T

0

QtdZt − θ

∫ T

0

Q2
t dvt.

A solution of RT (θ) = 0 provides the maximum likelihood estimate (MLE)

θ̂T :=

∫ T

0
QtdZt∫ T

0
Q2

t dvt.
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Strictly speaking, θ̂T is not the maximum likelihood estimate of θ since θ̂T

may take negative values where as the parameter θ is assumed to be strictly
positive. For an exact definition of MLE, see Kutoyants (1994). Nevertheless,
we use this terminology.

Using the fractional Itô formula, the score function RT (θ) can be written as

RT (θ) =
1
2

[
λH

(2 − 2H)
ZT

∫ T

0

t2H−1dZt − T

]
− θ

∫ T

0

Q2
t dvt.

Consider the estimating function

cT (θ) = −T

2
− θ

∫ T

0

Q2
t dvt

and the minimum contrast estimate (MCE)

θ̃T :=
−T

2
∫ T

0
Q2

t dvt.

M -estimator is reduced to the minimum contrast estimator. Note that the MCE
does not involve stochastic integral unlike the MLE.

Observe that

(
T

−2θ

)1−H

(θ̃T − θ) =

(−2θ
T

)1−H
JT(

2θ
T

)2−2H
IT

where

JT := θIT − T

2
and IT :=

∫ T

0

Q2
t dvt.

Kleptsyna and Le Breton (2002) obtained the following Cameron-Martin type
formula.

Let φT (z1) := E exp(z1IT ), z1 ∈ R. Then φT (z1) exists for |z1| ≤ δ, for
some δ > 0 and is given by

φT (z1) =
{

4 sin πH
√

θ2 − 2z1e
−θT

πTDH
T (θ;

√
θ2 − 2z1

}1/2

and we choose the principal branch of the square root, where

DH
T (θ;α) := [α cosh(

α

2
T ) − θ sinh(

α

2
T )]2J−H(

α

2
T )JH−1(

α

2
T )

−[α sinh(
α

2
T ) − θ cosh(

α

2
T )]2J1−H(

α

2
T )JH(

α

2
T )

for α > 0 and Jν is the modified Bessel function of first kind of order ν.
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Now using this formula and the arguments in Chapter 17 of Liptser and
Shiryayev (1978), Kleptsyna and Le Breton (2002) showed that θ̂T is strongly
consistent estimator of θ.

(b) Partially Observed Fractional Ornstein-Uhlenbeck Process

Consider the linear stochastic system with fBm observation noise

dYt = θXtdt + dWH
t ,

dXt = −Xtdt + dVt, t ∈ [0, T ],

Y0 = 0, X0 = 0,

whereθ < 0.Note thathere thesignalprocess is theclassicalOrnstein-Uhlenbeck
process.

Let X̂t := E(Xt|Yt) and γt := E([Xt − X̂t]2|Yt).
Then X̂t satisfies the SDE

dX̂t = −X̂tdt + θγtdνt, t ∈ [0, T ], X̂0 = 0

and γt satisfies the deterministic differential equation, known as the Ricatti
equation

dγt = dt − 2γtdt − θ2γ2
t d〈N∗〉t, γ0 = 0.

As t → ∞, γt → γθ where γθ := −1+
√

1+θ2

θ2 . Now we make a simplifying
assumption commonly made in the literature (see Kutoyants (1984), p. 103).
We assume that the system has reached the steady state, i.e., we assume that
X̂t satisfies the SDE

dX̂t = −X̂tdt + θγθdνt, t ∈ [0, T ], X̂0 = 0.

Now it is easy to verify that

X̂t = θγθ

∫ t

0

exp{
√

1 + θ2(t − s)}dYs.

Thus the MLE can be now explicitly calculated and it satisfies the asymptotic
properties mentioned in Theorems 4.1 and 4.2.

(c) Hermite Ornstein-Uhlenbeck Process

Let ZH,k
t be Hermite process of order k. Consider the Hermite Ornstein-

Uhlenbeck process

dY
(H,k)
t = θY

(H,k)
t dt + σdZ

(H,k)
t , Y

(H,k)
0 = ξ
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has unique solution

Y
(H,k)
t = eθt

(
ξ + σ

∫ t

0

e−θudZ(H,k)
u

)
.

In particular if

Y
(H,k)
0 = σ

∫ 0

−∞
e−θuZ(H,k)

u ,

then

Y
(H,k)
t = eθtσ

∫ t

−∞
e−θudZ(H,k)

u .

The process Y
(H,k)
t is called the Hermite Ornstein-Uhlenbeck process of

order k. Because the covariance structure of the Hermite process is same as the
fractional Brownian motion’s one, the above integral is a Wiener integral. The
covariance of the process is

E[Y (H,k)
t Y (H,k)

s ] = σ2

∫ t

−∞

∫ s

−∞
eθ(t−u)eθ(t−v)|u − v|2H−2dvdu < ∞.

Remarks

(1) Rate of normal approximation, i.e, Berry-Esseen type results for the MLE
remains to be investigated.

(2) Asymptotic behavior of posterior distributions andBayes estimators remain
to be investigated.

(3) Approximatemaximumlikelihoodestimationbasedondiscreteobservations
(both smallΔandfixedΔcases) remain tobe investigated.For the fractional
O-U model, an approximation of the corresponding solution based on Euler
scheme with discrete observations and its convergence was shown by Comte
(1996). It remains to investigate the approximation of MLE and their
asymptotics. Also it remains to investigate approximate Bayes estimation.
AsymptoticsofapproximateMLandBayesestimatorsusingapproximations
of the continuous likelihood was studied by Bishwal (2005b) for ordinary
diffusions.

(4) Extension to fractional diffusions where the parameter occurs nonlinearly
in the drift coefficient should not pose much difficulties.

(5) It remains to investigate nonparametric estimators of drift coefficient. Non-
parametric estimator of diffusion coefficientwas studiedbyLeonandLudena
(2000) using local time.

(6) Fractional Cox-Ingersoll-Ross model remains to be investigated.
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7

Approximate Maximum Likelihood Estimation
in Nonhomogeneous Diffusions

7.1 Introduction

In Chapters 1-6, we concentrated on the situation where the diffusion process is
observedcontinuouslythroughoutatime interval [0, T ].However,oneencounters
practical difficulties to obtain a complete continuous observation of the sample
path. Discrete observations are much more likely. Hence drift estimation when
only discrete observations at times t1, t2, . . . , tn with 0 ≤ t1 < t2 < . . . tn = T
are available, has been the recent trend of investigation.

Consider the stochastic differential equation

dXt = μ(θ, t,Xt)dt + σ(t, Xt)dWt, t ≥ 0

where {Wt, t ≥ 0} is a standard Wiener process, θ ∈ Θ ⊆ R is the unknown
parameter which is to be estimated on the basis of observations of the process X
at times 0 = t0 < t1 < . . . < tn andμ : Θ×[0, T ]×R → Randσ : [0, T ]×R → R

are known smooth functions.
Ideally, parameter estimation for diffusion processes based on discrete-time

observations should be based on the likelihood function. The literature has
mainly concentrated on two approaches based on likelihood function.

Since the process {Xt} is Markov, hence if the transition densities p(s, x, t,
y; θ) of X are known, one can use the log likelihood function

ln(θ) =
n∑

i=1

log p(ti−1, Xti−1 , ti, Xti
; θ)

for estimation of θ. The corresponding maximum likelihood estimate θ̂n is
known to have usual good properties (see Billingsley (1961), Dacunha-Castelle
and Florens-Zmirou (1986)). In the case of time-equidistant observations (ti =
iΔ, i = 0, 1, 2, . . . , n for some fixed Δ > 0) Dacunha-Castelle and Florens-
Zmirou (1986)proved the consistencyandasymptotic normality of θ̂n asn → ∞,
irrespective of the value of Δ.



126 7 Approximate Maximum Likelihood Estimation

Unfortunately, the transition densities of X are usually unknown except in
some very special cases like the linear ones (see Le Breton (1976), Robinson
(1977)).

Pedersen (1995a,b) and Ait-Sahalia (2002) used approximations of the tran-
sition densities and the methods prove quite computer intensive. Pedersen used
numerical approximations based on iterations of the Gaussian transition densi-
ties emanating from the Euler scheme, while Ait-Sahalia (2002), using a specific
transformation of the diffusion, was able to obtain accurate theoretical approx-
imations based on Hermite function expansions and studied the asymptotic
behaviour of the approximate MLE. Brandt and Santa-Clara (2002) studied
approximation of transition densities using the Euler discretization scheme.
Elerian (1998) obtained a closed form approximation to the transition density
using the Milstein discretization scheme which improves an order of accuracy
in estimation as compared to the Euler scheme. Poulsen (1999) and Jensen
and Poulsen (1999) used numerical solution of partial differential equations for
transition densities and the methods prove to be quite computer intensive.

When the transition densities of X are unknown, one alternative to ap-
proximating ln(θ) is to approximate the log-likelihood function for θ based
on continuous observations of X. Recall that, under certain conditions, the
log-likelihood function for θ based on continuous observation of X in the time
interval [0, T ] is given by

lT (θ) =
∫ T

0

μ(θ, t,Xt)
σ2(t, Xt)

dXt − 1
2

∫ T

0

μ2(θ, t,Xt)
σ2(t, Xt)

dt.

(see Prakasa Rao (1999)). Thus to obtain an approximation to lT (θ) one has
to approximate the integrals in lT (θ).

In lT (θ) one can use Itô type approximation for the stochastic integral and
rectangular approximation for the ordinary integral and obtain an approximate
log-likelihood function

∼
l n(θ) =

n∑
i=1

μ(θ, ti−1, Xti−1)
σ2(ti−1, Xti−1)

(Xti
−Xti−1)−

1
2

n∑
i=1

μ2(θ, ti−1, Xti−1)
σ2(ti−1, Xti−1)

(ti−ti−1).

The maximizer of
∼
l n provides an approximate maximum likelihood estimator

(AMLE). For the homogeneous case, i.e., μ(θ, t,Xt) = f(θ,Xt), Yoshida (1992)
showed that the AMLE based on

∼
l n(θ) is weakly consistent as T → ∞ and

T
n → 0 and asymptotically normally distributed as T → ∞ and T

n2/3 → 0 when
the diffusion is homogeneous and ergodic.

In this chapter, we consider the nonhomogeneous SDE with drift function
μ(θ, t,Xt) = θf(t, Xt) for some smooth function f(t, x). A relevant question is
how close are the discrete estimators to the true continuous MLE θT . We fix
T and obtain several approximate maximum likelihood estimators (AMLEs)
using several approximations to lT (θ). We study their rates of convergence to
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θT , the maximum likelihood estimator based on lT (θ). In a sense we measure
the loss of information due to discretization.

We take the approach that better rates could be obtained for the AMLE if
we had better approximations to lT (θ). For this purpose we first obtain several
approximations of the Fisk-Stratonovich (FS) integral and study their rates of
convergence. Then we convert the Itô integral to the FS integral and apply the
newapproximations to theFSstochastic integralandrectangularapproximation
for the ordinary integrals. We thus obtain several approximate log-likelihood
functions and hence several AMLEs. In Section 7.2 we give the model and
assumptions, and introduce several new approximations of the FS integral. In
Section 7.3 we study the L2 rates of convergence of the approximants of Itô and
FS integrals. In Section 7.4 we study the in probability rates of convergence
of the approximate log-likelihood functions. In Section 7.5 we obtain the error
bounds in probability of the different AMLEs and the continuous MLE. In
Section 7.6 we study some examples.

7.2 Model, Assumptions and Definitions

Let (Ω,F , {Ft}t≥0, P ) be a stochastic basis satisfying the usual hypotheses on
which we define the real valued diffusion process {Xt, t ≥ 0} satisfying the
stochastic differential equation

dXt = θf(t, Xt)dt + dWt, t ≥ 0 (2.1)

where {Wt, t ≥ 0} is a standard Wiener process adapted to {Ft, t ≥ 0} such
that for 0 ≤ s < t, Wt − Ws is independent of Fs. Here θ ∈ Θ open in R is the
unknown parameter to be estimated on the basis of observations of the process
{Xt, t ≥ 0}. Let θ0 be the (unknown) true value of the parameter θ.

Throughout the Chapter C is a generic constant. We use the following
notations:

fx :=
∂f

∂x
, ft :=

∂f

∂t
, fxx :=

∂2f

∂x2
, ftt :=

∂2f

∂t2
, ftx :=

∂2f

∂t∂x
.

We assume the following conditions:

(A1) f(·, ·) satisfies the Lipschitz and growth condition:

|f(t, x) − f(t, y)| ≤ K|x − y|, and |f(t, x)| ≤ K(1 + |x|) for all t ∈ [0, T ].

for some constant K > 0.

(A2) fx(·, ·) satisfies the Lipschitz and growth condition:

|fx(t, x) − fx(t, y)| ≤ K1|x − y| and |fx(t, x)| ≤ K1(1 + |x|) for all t ∈ [0, T ].
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for some constant K1 > 0.

(A3) f(·, ·) is a real valued function satisfying

Eθ0

{∫ T

0

f2(t, Xt)dt

}
< ∞ for all T > 0.

(A4)j f(·, ·) is j times continuously differentiable in x for j ≥ 1 and

sup
0≤t≤T

E|fx(t, Xt)|8 < ∞, sup
0≤t≤T

E|fxx(t, Xt)|8 < ∞.

(A5)k f(·, ·) is k times continuously differentiable in t for k ≥ 1 and

sup
0≤t≤T

E|ft(t, Xt)|4 < ∞, sup
0≤t≤T

E|ftt(t, Xt)|4 < ∞.

(A6) sup
0≤t≤T

E|ftx(t, Xt)|8 < ∞.

(A7) E[X0]8 < ∞.

It is well known that equation (2.1) has a unique solution {Xt} under the
condition (A1) (see e.g., Mao (1997)).

We first review the well known definitions of the stochastic integrals and
introduce some new definitions. Let πn be the partition πn = {0 = t0 < t1 <
. . . < tn = T}, tk = kh, k = 0, 1, . . . , n such that h → 0 as n → ∞. A stochastic
integral is usually defined as theL2 limit of a partition sumand the limit depends
on the choice of time points of the integrand. From (2.2)-(2.13) lim denotes
limit in the mean square sense. For any non-anticipative square integrable f ,
(forward) Itô integral is defined as∫ T

0

f(t, Xt)dXt = lim
h→0

n∑
i=1

f(ti−1, Xti−1)(Xti
− Xti−1). (2.2)

The backward Itô integral is defined as∫ T

0

f(t, Xt)dXt = lim
h→0

n∑
i=1

f(ti, Xti
)(Xti

− Xti−1) (2.3)

(see Mckean (1969), p. 34.)
Fisk (1963) and Stratonovich (1964) introduced a symmetrized stochastic

integral known as the Fisk-Stratonovich integral (FS integral, in short) which
obeys the rules of ordinary calculus (see Ikeda-Watanabe (1989) and Protter
(1990).) On the other hand with Brownian integrator Itô integral is a martingale
and it has many interesting properties emanating from martingale which FS
integraldoesnothave.Note thatwithBrownian integrand,backward Itô integral
is a backward martingale. In order to distinguish between the two integrals we
use

∫
for Itô integral and

∮
for FS integral.
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For two continuous semimartingales {Mt} and {Nt}, Fisk (1963) defined
the FS integral as

∮ T

0

NtdMt := lim
h→0

n∑
i=1

Nti−1 + Nti

2
(Mti

− Mti−1). (2.4)

(see also Karatzas and Shreve (1988)).
For the nonhomogeneous diffusion process {Xt}, his definition may be

adopted to define the FS integral as∮ T

0

f(t, Xt)dXt = lim
h→0

S1,n

where

S1,n :=
n∑

i=1

f(ti−1, Xti−1) + f(ti, Xti
)

2
(Xti

− Xti−1). (2.5)

It is easy to show that the limit exists by following Stratonovich (1964). Note
that with Brownian integrator, FS integral is the arithmetic mean of a forward
and a backward martingale.

In general, the Itô, the McKean and the Fisk approximations can be defined
as particular cases of the following scheme: for any β ∈ [0, 1], define

SA,n :=
n∑

i=1

[βf(ti−1, Xti−1) + (1 − β)f(ti, Xti
)](Xti

− Xti−1). (2.6)

The particular cases β = 1 gives Itô approximation (2.2), β = 0 gives
McKean’s approximation (2.3) and β = 1

2 gives Fisk’s approximation (2.5).
Stratonovich (1964) defined the FS integral as

∮ T

0

f(t, Xt)dXt := lim
h→∞

n∑
i=1

f

(
ti−1,

Xti−1 + Xti

2

)
(Xti

− Xti−1). (2.7)

We adopt the following definition of Stratonovich (1964) which does not
essentially alter anything in the limit and which fits into our general definition
(2.11).

∮ T

0

f(t, Xt)dXt = lim
h→0

S2,n

where

S2,n :=
n∑

i=1

f

(
ti−1 + ti

2
,
Xti−1 + Xti

2

)
(Xti

− Xti−1). (2.8)

The idea underlying the definitions of Fisk (1963) and Stratonovich (1964,
1966) is almost same. But Stratonovich restricts his definition to a narrow class
of integrands, e.g., f satisfies (A4)1.
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In analogy with ordinary numerical integration, Itô’s definition (2.2) resem-
bles the rectangular rule, Fisk’s definition (2.5) resembles the trapezoidal rule
and Stratonovich’s definition (2.8) resembles the midpoint rule.

We introduce several approximations of the FS integral in order to improve
the accuracy of approximation. One approximation of the FS integral may
also be defined as the convex combination of S1,n and S2,n, more precisely∮ T

0
f(t, Xt)dXt = lim

h→0
SB,n where

SB,n :=
n∑

i=1

[
α

(
f(ti−1, Xti−1) + f(ti, Xti

)
2

)

+(1 − α)f
(

ti−1 + ti
2

,
Xti−1 + Xti

2

)]
(Xti

− Xti−1) (2.9)

and 0 ≤ α ≤ 1.
The cases α = 1 gives S1,n and α = 0 gives S2,n. The case α = 1

3 gives

S5,n

:=
1
6

n∑
i=1

[
f(ti−1, Xti−1) + 4f(

ti−1 + ti
2

,
Xti−1 + Xti

2
) + f(ti, Xti

)
]

(Xti
− Xti−1). (2.10)

In analogy with ordinary numerical integration (2.10) resembles the Simpson’s
rule.

For a smooth function f , we define a new stochastic integral as

BT

:=
∫ T

0

f(t, Xt)dWt

= l .i.m.n→∞
n∑

i=1

m∑
j=1

pj f ((1 − sj) ti−1 + sj ti,

(1 − sj)Xti−1 + sjXti

)
(Wti

− Wti−1) (2.11)

where and pj , j ∈ {1, 2, · · · , m} is a probability mass function of a discrete
random variable S on 0 ≤ s1 < s2 < · · · < sm ≤ 1 with P (S = sj) = pj , j ∈
{1, 2, · · · ,m}.
Denote the k-th moment of the random variable S as μk :=

∑m
j=1 sk

j pj , k =
1, 2, · · · .
The new integral and the Itô integral are connected as follows:

BT = IT + μ1

∫ T

0

fx(t, Xt)dt
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where IT =
∫ T

0
f(t, Xt)dWt is the Itô integral.

When μ1 = 0, the new integral is the Itô integral. When μ1 = 1
2 , the new

integral is the Fisk-Stratonovich integral.
This is a generalization of a proposal in Yor (1976) who a general definition

of stochastic integral as the L2-limit of the following approximant.
Let μ be a probability measure on ([0, 1],B([0, 1])) with μk =

∫ 1

0
xkdμ(x), k =

1, 2, . . . and put

SY,n :=
n∑

i=1

∫ 1

0

f(Xti−1 + s(Xti
− Xti−1))dμ(s)(Wti

− Wti−1).

Our main contribution is to construct probability distributions in order to
obtain higher order rate of convergence of the approximations to the stochastic
integral.Thisproblem is connected to the truncatedHausdorffmomentproblem.

Let conv (A) be the convex hull of a set A, i.e. the smallest set containing
all convex combinations of elements in A. Define P = conv ({δ(s)}s∈[0,1]) and

α−
n = min

P∈P

{∫ 1

0

sndP (s) :
∫ 1

0

sjdP (s) =
1

1 + j
, j = 1, 2, · · · , n − 1

}
, (1)

α+
n = max

P∈P

{∫ 1

0

sndP (s) :
∫ 1

0

sjdP (s) =
1

1 + j
, j = 1, 2, · · · , n − 1

}
. (2)

The problems (1) and (2) are special cases of the truncated Hausdorff moment
problem. It is well known that Hausdorff moment problem is ill-posed.

The above approximants (2.5) - (2.11) converge in L2 to the FS integral
as n → ∞. It will turn out that the order of approximation error in the new
integral is determined by the first k for which μk �= 1

1+k .
The order of mean square approximation error (rate of convergence) in the new
integral is n−ν where

ν := inf
{

k : μk �= 1
1 + k

, μj =
1

1 + j
, j = 0, 1, · · · , k − 1

}
.

We construct approximation schemes with rate of convergence up to ν = 6.
If one chooses the probability distribution as uniform distribution for

which the moments are a harmonic sequence (μ1, μ2, μ3, μ4, μ5, μ6, · · · ) =
(1
2 , 1

3 , 1
4 , 1

5 , 1
6 , 1

7 , · · · ) then there is no change in rate of convergence than second
order. If one can construct a probability distribution for which the harmonic
sequence is truncated at a point, then there is a rate of convergence improvement
at the point of truncation.

Putting the mass 1 at the point s = 0 we obtain the Itô approximant in
(2.2) for which μ1 = 0. Thus the rate is ν = 1 since μ1 �= 1

2 .
Puttingthemass1at thepoints = 1weobtainthebackwardItô approximant

in (2.3) for which μ1 = 1. Thus the rate is ν = 1 since μ1 �= 1
2 .
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Putting the masses 1
2 , 1

2 respectively at the points 0, 1 we obtain the ap-
proximant S1,n for which μ1 = 1

2 and μ2 = 1
4 . Thus the rate is ν = 2.

Putting the mass 1 at the point 1
2 we obtain the approximant S2,n for which

μ1 = 1
2 and μ2 = 1

2 . Thus the rate is ν = 2.
Putting the masses 1

6 , 2
3 , 1

6 respectively at the points 0, 1
2 , 1 we obtain the

approximant S5,n for which μ1 = 1
2 , μ2 = 1

3 , μ3 = 1
4 and μ4 = 5

25 . Thus the
rate is ν = 4.

Now we obtain several special cases of (2.11) and determine the first k for
which μk �= 1

1+k in order to have faster rate of convergence to the FS integral.
Putting the masses 1

4 , 3
4 respectively at the points 0, 2

3 we obtain the asym-
metric approximant

S3,n :=
1
4

n∑
i=1

[
f(ti−1, Xti−1) + 3f(

ti−1 + 2ti
3

,
Xti−1 + 2Xti

3
)
]

(Xti
− Xti−1)

(2.12)
for which μ1 = 1

2 , μ2 = 1
3 , μ3 = 2

9 . Thus the rate is ν = 3.

Putting the masses 3
4 , 1

4 respectively at the points 1
3 , 1 we obtain another

approximant

S4,n :=
1
4

n∑
i=1

[
3f(

2ti−1 + ti
3

,
2Xti−1 + Xti

3
) + f(ti, Xti

)
]

(Xti
− Xti−1)

(2.13)
for which μ1 = 1

2 , μ2 = 1
3 and μ3 = 10

36 . Thus the rate is ν = 3.
Putting the masses 1

8 , 3
8 , 3

8 , 1
8 respectively at the points 0, 1

3 , 2
3 , 1 we obtain

the symmetric approximant

S6,n :=
1
8

n∑
i=1

[
f(ti−1, Xti−1) + 3f(

2ti−1 + ti
3

,
2Xti−1 + Xti

3
)

+3f( ti−1+2ti

3 ,
Xti−1+2Xti

3 ) + f(ti, Xti
)
]
(Xti

− Xti−1) (2.14)

for which μ1 = 1
2 , μ2 = 1

3 , μ3 = 1
4 and μ4 = 11

54 . Thus the rate is ν = 4.

Putting the masses ( 1471
24192 , 6925

24192 , 1475
12096 , 2725

12096 , 5675
24192 , 1721

24192 ) respectively at
the points
(0, 1

5 , 2
5 , 3

5 , 4
5 , 1) we obtain the scheme

S7,n

:=
1

24192

n∑
i=1

[
1471f(ti−1, Xti−1) + 6925f(

ti−1 + ti
5

,
Xti−1 + Xti

5
)

+ 2950f(
2ti−1 + 2ti

5
,
2Xti−1 + 2Xti

5
) + 5450f(

3ti−1 + 3ti
5

,
3Xti−1 + 3Xti

5
)

+ 5675f(
4ti−1 + 4ti

5
,
4Xti−1 + 4Xti

5
) + 1721f(ti, Xti

)
]
(Xti

− Xti−1) (2.14a)
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for which μ1 = 1
2 , μ2 = 1

3 , μ3 = 1
4 , μ4 = 1

5 and μ5 = 841
5040 . Thus the rate is

ν = 5.
Putting the masses 7

90 , 16
45 , 2

15 , 16
45 , 7

90 respectively at the points 0, 1
4 , 1

2 , 3
4 , 1

we obtain the symmetric approximant

S8,n :=
1
90

n∑
i=1

[
7f(ti−1, Xti−1) + 32f(

3ti−1 + ti
4

,
3Xti−1 + Xti

4
)

+12f(
ti−1 + ti

2
,
Xti−1 + Xti

2
) + 32f(

ti−1 + 3ti
4

,
Xti−1 + 3Xti

4
)

+7f(ti, Xti
)] (Xti

− Xti−1) (2.15)

for which μ1 = 1
2 , μ2 = 1

3 , μ3 = 1
4 , μ4 = 1

5 , μ5 = 1
6 and μ6 = 110

768 . Thus the
rate is ν = 6.
Putting the masses 19

288 , 75
288 , 50

288 , 50
288 , 75

288 , 19
288 respectively at the points 0, 1

5 , 2
5 ,

3
5 , 4

5 , 1 we obtain another symmetric approximant

S9,n :=
1

288

n∑
i=1

[
19f(ti−1, Xti−1) + 75f(

4ti−1 + ti
5

,
4Xti−1 + Xti

5
)

+50f(
3ti−1 + 2ti

5
,
3Xti−1 + 2Xti

5
)

+50f(
2ti−1 + 3ti

5
,
2Xti−1 + 3Xti

5
) + 75f(

ti−1 + 4ti
5

,
Xti−1 + 4Xti

5
)

+19f(ti, Xti
)] (Xti

− Xti−1) (2.16)

for which μ1 = 1
2 , μ2 = 1

3 , μ3 = 1
4 , μ4 = 1

5 , μ5 = 1
6 and μ6 = 3219

22500 . Thus the
rate is ν = 6.

Now we are ready to define several approximate maximum likelihood estima-
tors (AMLEs) using the above approximation schemes of stochastic integrals.
Let Pθ be the measure generated by the process XT

0 ≡ {Xt, 0 ≤ t ≤ T} on the
measurable space (CT , BT ) of continuous functions on [0, T ] with the associ-
ated Borel σ-algebra BT under the supremum norm. Let Eθ be the expectation
with respect to the measure Pθ and PW be the standard Wiener measure on
(CT , BT ). Under assumption (A3) the measures Pθ and PW are equivalent and
the Radon-Nikodym derivative of Pθ w.r.t. PW is given by

dPθ

dPW
(XT

0 ) = exp

{
θ

∫ T

0

f(t, Xt)dXt − θ2

2

∫ T

0

f2(t, Xt)dt

}
(2.17)

along the sample path XT
0 (see Liptser and Shiryayev (1977)). Let

LT (θ) = log
dPθ

dPW
(2.18)
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be the log-likelihood function. The maximum likelihood estimate (MLE) of θ
is defined as

θT := arg max
θ∈Θ

LT (θ)

=

{∫ T

0

f(t, Xt)dXt

}{∫ T

0

f2(t, Xt)dt

}−1

(2.19)

MLE θT possesses good asymptotic properties (see Chapter 2). Since we
have discrete observations of the diffusion, we need to find good approximations
of the MLE. For that purpose, we convert the Itô integral to the FS integral
appearing in the numerator of θT . The Itô and the FS integrals are connected
by (see Ikeda and Watanabe (1989))

∮ T

0

f(t, Xt)dXt =
∫ T

0

f(t, Xt)dXt +
1
2

∫
0

fx(t, Xt)dt a.s. (2.20)

Now replacing the Itô integral with the FS integral (by using (2.20) in (2.19))

θT =

{∮ T

0

f(t, Xt)dXt − 1
2

∫ T

0

fx(t, Xt)dt

}{∫ T

0

f2(t, Xt)dt

}−1

. (2.21)

We study the approximation of the MLE θT when the process X is observed at
the points 0 = t0 < t1 < . . . < tn = T with ti = ih, i = 0, 1, 2, . . . , n such that
h → 0 as n → ∞. Itô approximation of the stochastic integral and rectangular
approximation of the ordinary integral in the log-likelihood (2.18) yields the
approximate log-likelihood function

Ln,T (θ) = θ

n∑
i=1

f(ti−1, Xti−1)(Xti
− Xti−1) −

θ2

2

n∑
i=1

f2(ti−1, Xti−1)(ti − ti−1)

(2.22)
with the corresponding approximate maximum likelihood estimator (AMLE)

θn,T =

{
n∑

i=1

f(ti−1, Xti−1)(Xti
− Xti−1)

}{
n∑

i=1

f2(ti−1, Xti−1)(ti − ti−1)

}−1

.

(2.23)
Let

Jn,T :=
n∑

i=1

f2(ti−1, Xti−1)(ti−ti−1) andDn,T :=
n∑

i=1

fx(ti−1, Xti−1)(ti−ti−1).

(2.24)
Using the transformation (2.20) in the log-likelihood (2.17) and using

approximations Sj,n, j = 1, 2, · · · , 9 for the FS stochastic integral and rec-
tangular approximation for the ordinary integral we obtain the approximate
log-likelihood functions



7.3 Accuracy of Approximations of the Itô and FS Integrals 135

Ln,T,j(θ) := θ[Sj,n − 1
2
Dn,T ] − θ2

2
Jn,T , j = 1, 2, · · · , 9. (2.25)

and the corresponding AMLEs as

θn,T,j := [Sj,n − 1
2
Dn,T ][Jn,T ]−1, j = 1, 2, · · · , 9. (2.26)

Clearly

θn,T,1 :=

[
1
2

n∑
i=1

[f(ti−1, Xti−1) + f(ti, Xti
)](Xti

− Xti−1)

−1
2

n∑
i=1

fx(ti−1, Xti−1)(ti − ti−1)

]
[

n∑
i=1

f2(ti−1, Xti−1)(ti − ti−1)

]−1

.

We shall study the properties of θn,T and θn,T,1 only.

7.3 Accuracy of Approximations of the Itô
and FS Integrals

We establish the following L2 rates of convergence of the approximants of the
Itô and the FS integral to the corresponding integrals when the integrator is
the standard Wiener process. This is an extension of Theorem 2.1 in Prakasa
Rao and Rubin (2000) to nonhomogeneous case who obtained it for stationary
homogeneous diffusions with some stronger regularity conditions.

Theorem 3.1 Under the assumptions (A1) - (A3), (A4)1, (A5)1, (A6) and
(A7), we have

(a) E

∣∣∣∣∣
n∑

i=1

f(ti−1, Xti−1)(Wti
− Wti−1) −

∫ T

0

f(t, Xt)dWt

∣∣∣∣∣
2

≤ C
T 2

n
.

Under the assumptions (A1) - (A3), (A4)2, (A5)2, (A6) and (A7), we have
(b)

E

∣∣∣∣∣
n∑

i=1

f(ti−1, Xti−1) + f(ti, Xti
)

2
(Wti

− Wti−1) −
∮ T

0

f(t, Xt)dWt

∣∣∣∣∣
2

≤ C
T 3

n2
.

Proof. We use the arguments in Prakasa Rao and Rubin (1998) to prove the
theorem. First we shall prove (b). Let πn be the partition πn := {0 = t0 < t1 <
· · · < tn = T}, ti = ih, i = 0, 1, · · · , n such that h → 0. Define F and Fπn

as:
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F :=
∮ T

0

f(t, Xt)dWt (3.1)

and

Fπn
:=

n∑
i=1

f(ti−1, Xti−1) + f(ti, Xti
)

2
(Wti

− Wti−1). (3.2)

Let π′
n be a partition, finer than πn, obtained by choosing the mid point t̃i−1

from each of the intervals ti−1 < t̃i−1 < ti, i = 1, 2, . . . , n. Let 0 = t′0 < t′1 <
. . . < t′2n = T be the points of subdivision of the refined partition π′

n. Define the
approximating sumFπ′

n
as before. We shall first obtain bounds onE|Fπn

−Fπ′
n
|2

in order to get bounds on E|Fπn
− F |2.

Let 0 ≤ t∗0 < t∗1 < t∗2 ≤ T be three equally spaced points on [0, T ] and let
us denote Xt∗

i
by Xi and Wt∗

i
by Wi, i = 0, 1, 2. Define

Z :=
f(t∗2, X2) + f(t∗0, X0)

2
(W2 − W0)

−
{

f(t∗2, X2) + f(t∗1, X1)
2

(W2 − W1) +
f(t∗1, X1) + f(t∗0, X0)

2
(W1 − W0)

}

=
(

W1 − W0

2

)
(f(t∗2, X2) − f(t∗1, X1))

+
(

W2 − W1

2

)
(f(t∗0, X0) − f(t∗1, X1)). (3.3)

Let

I1 :=
∫ t∗1

t∗0

f(t, Xt)dt, I2 :=
∫ t∗2

t∗1

f(t, Xt)dt. (3.4)

Clearly by Taylor expansion

f(t∗2, X2) − f(t∗1, X1)

= (X2 − X1)fx(t∗1, X1) + (t∗2 − t∗1)ft(t∗1, X1) +
1
2
(X2 − X1)2fxx(τ1, ν1)

+
1
2
(t∗2 − t∗1)

2ftt(τ1, ν1) + (t∗2 − t∗1)(X2 − X1)ftx(τ1, ν1)

= (W2 − W1 + I2)fx(t∗1, X1) + (t∗2 − t∗1)ft(t∗1, X1) +
1
2
(X2 − X1)2fxx(τ1, ν1)

+
1
2
(t∗2 − t∗1)

2ftt(τ1, ν1) + (t∗2 − t∗1)(X2 − X1)ftx(τ1, ν1)

(3.5)
where |X1 − ν1| < |X2 − X1|, |t∗1 − τ1| ≤ |t∗2 − t∗1|,
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and

f(t∗0, X0) − f(t∗1, X1)

= (X0 − X1)fx(t∗1, X1) + (t∗0 − t∗1)ft(t∗1, X1) +
1
2
(X0 − X1)2fxx(τ2, ν2)

+
1
2
(t∗0 − t∗1)

2ftt(τ2, ν2) + (t∗0 − t∗1)(X0 − X1)ftx(τ2, ν2)

= − (W1 − W0 + I1)fx(t∗1, X1) + (t∗0 − t∗1)ft(t∗1, X1)+
1
2
(X0 −X1)2fxx(τ2, ν2)

+
1
2
(t∗0 − t∗1)

2ftt(τ2, ν2) + (t∗0 − t∗1)(X0 − X1)ftx(τ2, ν2)

(3.6)
where |X1 − ν2| < |X0 − X1|, |t∗1 − τ2| < |t∗0 − t∗1|.

Relations (3.3) to (3.6) show that

Z =
(

W1 − W0

2

)
I2fx(t∗1, X1) +

(
W1 − W0

2

)
(t∗2 − t∗1)ft(t∗1, X1)

+
(

W1 − W0

4

)
(X2 − X1)2fxx(τ1, ν1) +

(
W1 − W0

4

)
(t∗2 − t∗1)

2ftt(τ1, ν1)

+
(

W1 − W0

2

)
(X2 − X1)(t∗2 − t∗1)ftx(τ1, ν1) −

(
W2 − W1

2

)
I1fx(t∗1, X1)

+
(

W2 − W1

2

)
(t∗0 − t∗1)ft(t∗1, X1) +

(
W2 − W1

4

)
(X0 − X1)2fxx(τ2, ν2)

+
(

W2 − W1

4

)
(t∗0 − t∗1)

2ftt(τ2, ν2)

+
(

W2 − W1

2

)
(X0 − X1)(t∗0 − t∗1)ftx(τ2, ν2)

=: M1 + M2 (3.7)

where

M1 :=

(W1 − W0)
{

I2

2
fx(t∗1, X1) +

(t∗2 − t∗1)
2

ft(t∗1, X1) +
(X2 − X1)2

4
fxx(τ1, ν1)

+
(t∗2 − t∗1)

2

4
ftt(τ1, X1) +

1
2
(X2 − X1)(t∗2 − t∗1)ftx(τ1, ν1)

}
, (3.8)

M2 :=

(W2 − W1)
{
−I1

2
fx(t∗1, X1) +

(t∗0 − t∗1)
2

ft(t∗1, X1) +
(X1 − X0)2

4
fxx(τ2, ν2)

+
(t∗0 − t∗1)

2

4
ftt(τ2, X2) +

1
2
(X0 − X1)(t∗0 − t∗1)ftx(τ2, ν2)

}
. (3.9)
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Clearly,
E(Z2) ≤ 2

[
E(M2

1 ) + E(M2
2 )
]
.

Notice that M2’s corresponding to different subintervals of [0, T ]-generated by
πn form a martingale difference sequence and M1’s corresponding to different
subintervals of [0, T ] generated by πn form a reverse martingale difference
sequence.

Observe that

E|M2|2

= E(W2 − W1)2E
{
−I1

2
fx(t∗1, X1) +

(t∗0 − t∗1)
2

ft(t∗1, X1) +
(X1 − X0)2

4
× fxx(τ2, ν2)

+
(t∗0 − t∗1)

2

4
ftt(τ2, ν2) +

1
2
(X0 − X1)(t∗0 − t∗1)ftx(τ2, ν2)

}2

≤ 4(t∗2 − t∗1)
{

E(−I1

2
fx(t∗1, X1))2 +

(t∗0 − t∗1)
2

4
E(ft(t∗1, X1))2

+E

{
(X1 − X0)4

16
(fxx(τ2, ν2))2

}
+

(t∗0 − t∗1)
2

16
E(ftt(τ2, ν2))2

+
1
4
(t∗0 − t∗1)

2E{(X0 − X1)ftx(τ2, ν2)}2

}

≤ 4(t∗2 − t∗1)
{

E(I1)4

16
E(fx(t∗1, X1))4

}1/2

+
(t∗0 − t∗1)

2

4
E(ft(t∗1, X1))2

+
{

E(X1 − X0)8

256
E(fxx(τ2, ν2))2

}1/2

+
(t∗0 − t∗1)

2

16
E(ftt(τ2, ν2))2

+
1
4
(t∗0 − t∗1)

2E(X0 − X1)4E(ftx(τ2, ν2))4
}1/2

≤ C (t∗2 − t∗1)
[
{E(I1)4}1/2 + {E(X1 − X0)8}1/2

]
(3.10)

by (A4)2.
By Theorem 4 of Gikhman and Skorohod (1972, p. 48) there exists C > 0

such that for 0 ≤ s < t ≤ T ,

E(Xt − Xs)2m ≤ C(E(X2m
0 ) + 1)(t − s)m, m ≥ 1 (3.11)

Hence
E(X1 − X0)8 ≤ C(E(X8

0 ) + 1)(t∗1 − t∗0)
4.

Further by (A4)2

E(I4
1 ) = E

(∫ t∗1

t∗0

f(t, Xt)dt

)4
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≤ K4E

(∫ t∗1

t∗0

(1 + |Xt|)dt

)4

≤ 4K4(t∗1 − t∗0)
4 sup

0≤t≤T
E(1 + |Xt|)4)

≤ C(t∗1 − t∗0)
4. (3.12)

Relations (3.10) - (3.12) prove that

E(M2
2 ) ≤ C(t∗2 − t∗1)(t

∗
1 − t∗0)

2 (3.13)

for some constant C > 0 independent of t∗0, t
∗
1 and t∗2. Let us estimate E(M2

1 ).
Observe that

E(M2
1 )

= E

[
(W1 − W0)

{
I2

2
fx(t∗1, X1) +

(t∗2 − t∗1)
2

ft(t∗1, X1)

+
(X2 − X1)2

4
fxx(τ1, ν1) +

(t∗2 − t∗1)
2

4
ftt(τ1, X1)

+
1
2
(X2 − X1)(t∗2 − t∗1)ftx(τ1, ν1)

}]2

≤ E

[
(W1 − W0)4E

{
I2

2
fx(t∗1, X1) +

(t∗2 − t∗1)
2

ft(t∗1, X1)

+
(X2 − X1)2

4
fxx(τ1, ν1) +

(t∗2 − t∗1)
2

4
ftt(τ1, X1)

+
1
2
(X2 − X1)(t∗2 − t∗1)ftx(τ1, ν1)

}4
]1/2

(by the Cauchy-Schwarz inequality)

≤ C(t∗1 − t∗0)
2

{
E(I2fx(t∗1, X1)4

16
+

(t∗2 − t∗1)
4

16
E(ft(t∗1, X1))4

+
E((X2 − X1)fxx(τ1, ν1))4

256
+

(t∗2 − t∗1)
8

256
E(ftt(τ1, X1))4

+
1
16

(t∗2 − t∗1)E((X2 − X1)ftx(τ1, ν1))4
}1/2

(by Cr - inequality and the fact that E(W1 − W0)4 = 3(t∗1 − t∗0)
2 )

≤ C(t∗1 − t∗0)
2

{
E(I2fx(t∗1, X1))4

16
+

(t∗2 − t∗1)
4

16
E(ft(t∗1, X1))4

+
E((X2 − X1)fxx(τ1, ν1))4

256
+

(t∗2 − t∗1)
8

256
E(ftt(τ1, X1))4

+
1
16

(t∗2 − t∗1)
4E((X2 − X1)ftx(τ1, ν1))4

}1/2

(3.14)
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≤ C(t∗1 − t∗0)
2

{{E(I2)8E(fx(t∗1, X1))8}1/2

16
+

(t∗2 − t∗1)
4

16
E(ft(t∗1, X1))4

+
{E(X2 − X1))8E(fxx(τ1, ν1))8}1/2

256
+

(t∗2 − t∗1)
8

256
E(ftt(τ1, X1))4

+
1
16

(t∗2 − t∗1)
4{E((X2 − X1)8E(ftx(τ1, ν1))8}1/2

}1/2

(by the Cauchy-Schwartz inequality)

From (3.11) it follows that there exists a constant C > 0 such that

E(X2 − X1)8 ≤ C(t∗2 − t∗1)
4 (3.15)

Furthermore, by (A5)1

E(I2)8 = E

[∫ t∗2

t∗1

f(t, Xt)dt

]8

≤ CE

[∫ t∗2

t∗1

(1 + |Xt|)dt

]8

by (A1)

≤ CE

⎡
⎣{∫ t∗2

t∗1

(1 + |Xt|)dt

}2
⎤
⎦

4

≤ CE

[
(t∗2 − t∗1)

{∫ t∗2

t∗1

(1 + |Xt|)2dt

}]4

(3.16)

≤ C(t∗2 − t∗1)
4E

[∫ t∗2

t∗1

(1 + |Xt|2)dt

]4

≤ C(t∗2 − t∗1)
7

∫ t∗2

t∗1

E(1 + |Xt|8)dt

= C(t∗2 − t∗1)
8 (by (A4)2)

Relations (3.14) - (3.16) prove that

E(M2
1 ) ≤ C(t∗1 − t∗0)(t

∗
2 − t∗1)

2 (3.17)

for some constant C > 0 independent of t∗0, t
∗
1 and t∗2. Inequalities (3.13) and

(3.17) prove that there exists a constant C > 0, independent of t∗0, t
∗
1 and t∗2

such that
E(M2

i ) ≤ C(t∗2 − t∗1)
3, i = 1, 2. (3.18)

Using the property that M2 corresponding to different subintervals form a
martingale difference sequence and M1 form a reverse martingale difference
sequence, it follows that
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E|Fπn
− Fπ′

n
|2 ≤ C

T 3

n2
(3.19)

for some constant C > 0.
Let {π(p)

n , p ≥ 0}be the sequence of partitions such thatπ
(i+1)
n is a refinement

of π
(i)
n by choosing the midpoints of the subintervals generated by π

(i)
n . Note

that π
(0)
n = πn and π

(1)
n = π′

n. The analysis given above proves that

E|Fπn
(p) − Fπn

(p + 1)|2 ≤ C
T 3

2pn2
, p ≥ 0 (3.20)

where Fπn
(p) is the approximant corresponding to π

(p)
n and Fπn

(0) = Fπn
.

Therefore,

E|Fπn
− Fπn

(p + 1)|2 = E

{
p∑

k=0

[Fπn
(k) − Fπn

(k + 1)]

}2

≤
{

p∑
k=0

(
E|Fπn

(k) − Fπn
(k + 1)|2) 1

2

}2

≤
{

p∑
k=0

(
CT 3

2kn2

)1/2
}2

≤ C
T 3

n2

for all p ≥ 0. Let p → ∞. Since the integral F exists, Fπn
(p + 1) converges in

L2 to F as p → ∞. Note that {πn(p + 1), p ≥ 0} is a sequence of partitions
such that the mesh of the partition tends to zero as p → ∞ for any fixed n.
Therefore,

E|Fπn
− F |2 ≤ C

T 3

n2
(3.21)

where

F = lim
n→∞Fπn

=
∮ T

0

f(t, Xt)dWt.

This proves (b). To prove (a), let πn be the partition as defined previously, and
let Iπn

and I be defined by

Iπn
:=

n∑
i=1

f(ti−1, Xti−1)(Wti
− Wti−1), I :=

∫ T

0

f(t, Xt)dWt.

By arguments used to establish (3.21) and by noting that {Iπn
, n ≥ 1} is a

martingale, it can be easily shown that (in this case we need the existence and
finite moments conditions for first derivative of f only)

E|Iπn
− I|2 ≤ C

T 2

n
. (3.22)

Note that while computing Z after Taylor expansion, in the Itô case the first
order terms remain which contribute lower order rate but in the FS case, due to
symmetry, the first order term cancels and the second order terms contribute
higher order rate This completes the proof of the theorem.
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7.4 Accuracy of Approximations of the Log-likelihood
Function

In this Section we obtain rate of convergence of the approximate log-likelihood
functions Ln,T (θ) and Ln,T,1(θ) to the continuous log-likelihood function LT (θ)
as n → ∞. Let L

(i)
n,T , L

(i)
n,T,1 and L

(i)
T denote the derivative of order i w.r.t. θ

of Ln,T , Ln,T,1 and LT respectively. First we obtain the following L2-bound on
the approximation of ordinary integral.

Theorem 4.1 Under (A1)-(A3), (A4)2 and (A5)2, for g = f, f2 or fx, we
have

E

∣∣∣∣∣
n∑

i=1

g(ti−1, Xti−1)(ti − ti−1) −
∫ T

0

g(t, Xt)dt

∣∣∣∣∣
2

≤ C
T 4

n2
.

Proof: By Itô formula, we have

g(t, Xt) − g(ti−1, Xti−1)

=
∫ t

ti−1

gx(u,Xu)dWu

+
∫ t

ti−1

[gu(u,Xu) θf(u,Xu)gx(u,Xu) +
1
2
gxx(u,Xu)

]
du

=:
∫ t

ti−1

gx(u,Xu)dWu +
∫ t

ti−1

G(u,Xu)du.

On substitution

E

∣∣∣∣∣
n∑

i=1

g(ti−1, Xti−1)(ti − ti−1) −
∫ T

0

g(t, Xt)dt

∣∣∣∣∣
2

= E

∣∣∣∣∣
n∑

i=1

∫ ti

ti−1

[
g(ti−1, Xti−1) − g(t, Xt)

]
dt

∣∣∣∣∣
2

= E

∣∣∣∣∣
n∑

i=1

∫ ti

ti−1

[∫ t

ti−1

gx(u,Xu)dWu +
∫ t

ti−1

G(u,Xu)du

]
dt

∣∣∣∣∣
2

≤ 2E

∣∣∣∣∣
n∑

i=1

∫ ti

ti−1

∫ t

ti−1

gx(u,Xu)dWudt

∣∣∣∣∣
2

+ 2E

∣∣∣∣∣
n∑

i=1

∫ ti

ti−1

∫ t

ti−1

G(u,Xu)dudt

∣∣∣∣∣
2

=: 2H1 + 2H2.

With

Bi,t :=
∫ t

ti−1

gx(u,Xu)dWu, ti−1 ≤ t < ti
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and

Bj,s :=
∫ s

tj−1

gx(u,Xu)dWu, tj−1 ≤ s < tj , j �= i, 1 ≤ i < j ≤ n,

we have

H1 = E

∣∣∣∣∣
n∑

i=1

∫ ti

ti−1

Bi,tdt

∣∣∣∣∣
2

≤ E

n∑
i=1

(∫ ti

ti−1

Bi,tdt

)2

+
n∑

j �=i=1

E

(∫ ti

ti−1

Bi,tdt

)(∫ tj

tj−1

Bj,sds

)

≤
n∑

i=1

(ti − ti−1)
∫ ti

ti−1

E(Bi,t)2dt

(the last term being zero due to orthogonality ofBi,t and Bj,s)

≤
n∑

i=1

(ti − ti−1)
∫ ti

ti−1

∫ t

ti−1

E[gx(u,Xu)]2dudt

≤ C

n∑
i=1

(ti − ti−1)
∫ ti

ti−1

(t − ti−1)dt by(A4)2

≤ C
T

n

n∑
i=1

(ti − ti−1)2

≤ C
T 3

n2
.

With

ψi,t :=
∫ t

ti−1

G(u,Xu)du, ti−1 ≤ t < ti

and

ψj,s :=
∫ s

tj−1

G(u,Xu)du, tj−1 ≤ s < tj , j �= i, 1 ≤ i < j ≤ n,

we have

H2 = E

∣∣∣∣∣
n∑

i=1

∫ ti

ti−1

ψi,tdt

∣∣∣∣∣
2

≤ E

n∑
i=1

(∫ ti

ti−1

ψi,tdt

)2

+
n∑

j �=i=1

E

(∫ ti

ti−1

ψi,tdt

)(∫ tj

tj−1

ψj,sds

)

≤
n∑

i=1

(ti − ti−1)3/2

∫ ti

ti−1

E(ψi,t)2dt
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+
n∑

j �=i=1

⎧⎨
⎩E

(∫ ti

ti−1

ψi,tdt

)2

E

(∫ tj

tj−1

ψj,sds

)2
⎫⎬
⎭

1/2

≤
n∑

i=1

(ti − ti−1)3/2

∫ ti

ti−1

E(ψi,t)2dt

+
n∑

j �=i=1

{(
(ti − ti−1)

∫ ti

ti−1

E[ψi,t]2dt

)(
(tj − tj−1)

∫ tj

tj−1

E[ψj,s]2ds

)}1/2

≤ C

n∑
i=1

(ti − ti−1)3 + C

n∑
j �=i=1

(ti − ti−1)2(tj − tj−1)2

(since E[ψi,t]2 ≤ C(ti − ti−1)2by (A4)2 and (A5)2)

≤ Cn
T 3

n3
+ Cn(n − 1)

T 4

n2

≤ C
T 4

n2
.

Combining bounds for H1 and H2, completes the proof of the theorem.

Theorem 4.2 For some constant K > 0 and for i = 0, 1, 2 there exist two se-
quence {Hi

n(K), n ≥ 1} and {Gi
n(K), n ≥ 1} of positive random variables which

are bounded in Pθ0-probability for all θ ∈ Θ such that under the assumptions
(A1) - (A3), (A4)1, (A5)1, (A6) and (A7), we have

(a) sup
{θ∈Θ:|θ|≤K}

|L(i)
n,T (θ) − L

(i)
T (θ)| ≤ T

n1/2
Hi

n(K),

and under the assumptions (A1) - (A3), (A4)2, (A5)1, (A6) and (A7), we have

(b) sup
{θ∈Θ:|θ|≤K}

|L(i)
n,T,1(θ) − L

(i)
T (θ)| ≤ T 2

n
Gi

n(K).

Proof: By using the arguments to prove Theorem 4.1, it can be shown that

E

∣∣∣∣∣
n∑

i=1

∫ ti

ti−1

f(t, Xt)[f(ti−1, Xti−1) − f(t, Xt)]dt

∣∣∣∣∣
2

≤ C
T 4

n2
. (4.1)

Note that

|Ln,T (θ) − LT (θ)|

=

∣∣∣∣∣θ
[

n∑
i=1

f(ti−1, Xti−1)(Xti
− Xti−1) −

∫ T

0

f(t, Xt)dXt

]

− θ2

2

[
n∑

i=1

f2(ti−1, Xti−1)(ti − ti−1) −
∫ T

0

f2(t, Xt)dt

]∣∣∣∣∣
≤ |θ||

n∑
i=1

f(ti−1, Xti−1)(Wti
− Wti−1) −

∫ T

0

f(t, Xt)dWt|
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+ |θ||
n∑

i=1

∫ ti

ti−1

f(t, Xt)[f(ti−1, Xti−1) − f(t, Xt)]dt|

+
θ2

2
|

n∑
i=1

f2(ti−1, Xti−1)(ti − ti−1) −
∫ T

0

f2(t, Xt)dt|

≤ K
T

n1/2
Vn + K

T 2

n
An +

K2

2
T 2

n
Dn

(by Theorem 4.3.1 (a) and Theorem 4.4.1 and (4.1)).

=
T

n1/2
H0

n(K)

where H0
n(K) := KVn + K T

n1/2 An + K2

2
T

n1/2 Dn.
Next,

|L(1)
n,T (θ) − L

(1)
T (θ)|

=

∣∣∣∣∣
n∑

i=1

f(ti−1, Xti−1)(Wti
− Wti−1) −

∫ T

0

f(t, Xt)dWt

+ θ
n∑

i=1

∫ ti

ti−1

f(t, Xt)[f(ti−1, Xti−1) − f(t, Xt)]dt

− θ

[
n∑

i=1

f2(t, Xti−1)(ti − ti−1) −
∫ T

0

f2(t, Xt)dt

]∣∣∣∣∣
≤ T

n1/2
Vn +

T 2

n
An + K

T 2

n
Dn

(by Theorem 3.1(a) and Theorem 4.4.1 and (4.1))

=
T

n1/2
H1

n(K)

where H1
n(K) := Vn + An + K T

n1/2 Dn.
Further

|L(2)
n,T (θ) − L

(2)
T (θ)|

≤ |θ||
n∑

i=1

f2(ti−1, Xti−1)(ti − ti−1) −
∫ T

0

f2(t, Xt)dt|

≤ K
T 2

n
Dn

=
T 2

n
H(2)

n (K) (by Theorem 4.1)
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where H
(2)
n (K) := KDn. Similarly,

|Ln,T,1(θ) − LT (θ)|

≤ K
T 3/2

n
Un +

K

2
T 2

n
Rn +

K2

2
T 2

n
Dn (by Theorems 3.1 (b) and 4.1)

=
T 2

n
G0

n(K)

where G0
n(K) = KUn + K

2 T 1/2Rn + K2

2 T 1/2Dn. Next

|L(1)
n,T,1(θ) − L

(1)
T (θ)|

≤ T 2

n
Un +

1
2

T 2

n
Rn + K

T 2

n
Dn (by Theorem 3.1 (b) and 4.4.1)

=
T 2

n
G1

n(K)

where G1
n(K) := Un + 1

2Rn + KDn.
Finally

|L(2)
n,T,1(θ) − L

(2)
T (θ)|

≤ T 2

n
Dn (by Theorem 4.1)

=
T 2

n
G2

n(K)

where G2
n(K) := Dn. This completes the proof of the theorem.

7.5 Accuracy of Approximations of the Maximum
Likelihood Estimate

In this Section we obtain the rate of convergence of the AMLEs θn,T and θn,T,1 to
the continuous MLE θT as h → 0 and n → ∞. To obtain the rate of convergence
of the AMLEs we need the following general theorem on approximate maximum
likelihood estimation.

Theorem 5.1 (Le Breton (1976, page 138)). Let (Ω,A, {Pθ; θ ∈ R}) be a
statistical structure dominated by P , with a log-likelihood function L(θ, ·). Let
{An, n ≥ 1} be a sequence of sub-σ-algebras of A and, for all n ≥ 1, Ln(θ, ·) be
the log-likelihood function on the statistical structure (Ω,An, {Pθ|An

; θ ∈ R})
or any An - measurable function. Let us suppose that the following assumptions
are satisfied.

(C1) L and Ln are twice continuously differentiable with derivatives L(i) and
L

(i)
n respectively, i = 0, 1, 2.
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(C2) L(2) does not depend on θ and P -almost surely strictly negative.
(C3) L(1)(θ, ·) = 0 admits P almost surely a unique solution θ̂.
(C4) There exists a sequence {γn, n ≥ 1} of positive numbers converging to

zero and for i = 0, 1, 2 and all K > 0 there exists a sequence {∇i
n(K), n ≥ 1}

of positive random variables such that θ ∈ R,
(a) {∇i

n(K), n ≥ 1} is bounded in Pθ probability,
(b) sup

|θ|≤K

|L(i)
n (θ, ·) − L(i)(θ, ·)| ≤ γn∇i

n(K)Pθ almost surely.

Then there exists a sequence {θn, n ≥ 1} of random variables satisfying
(i) θn is An-measurable,

and for all θ ∈ R

(ii) lim
n→∞Pθ[L(1)

n (θn) = 0] = 1

(iii) Pθ − lim
n→∞ θn = θ̂, where θ̂ is the MLE based on L.

Furthermore if {θ′n, n ≥ 1} is another sequence of random variables satisfying
(i), (ii) and (iii), then for all θ ∈ R

lim
n→∞Pθ[θn = θ′n] = 1.

Lastly if {θn, n ≥ 1} is a sequence satisfying (i), (ii) and (iii) then for all θ ∈ R,
the sequence {γ−1

n (θn − θ̂), n ≥ 1} is bounded in Pθ probability.

We establish the following probability bounds on the accuracy of different
approximations of the MLE.

Theorem 5.2 Under the assumptions (A1)-(A3), (A4)1, (A5)1, (A6) and (A7)
(i) Pθ0 − lim

n→∞ θn,T = θT .

(ii) |θn,T − θT | = OPθ0
( T

n1/2 ).
Under the assumptions (A1) - (A3), (A4)2, (A5)2, (A6) and (A7)
(iii) Pθ0 − lim

n→∞ θn,T,1 = θT .

(iv) |θn,T,1 − θT | = OPθ0
(T 2

n ).
Proof: We use Theorem 5.1 to prove these results. It is easily seen that the as-
sumptions(C1)-(C3)aresatisfiedfor{LT , Ln,T ;n ≥ 1}and{LT , Ln,T,1;n ≥ 1}.
By Theorem 5.1 assumption (C4) is satisfied for {LT , Ln,T ; n ≥ 1} with
γn = ( T

n1/2 ),∇i
n(K) = Hi

n(K) and for {LT , Ln,T,1;n ≥ 1} with γn =
T 2

n ,∇i
n(K) = Gi

n(K). Hence all the results of Theorem 5.2 follow immedi-
ately from Theorem 5.1.

Remarks

(1) Theorem 5.2 (i) and (iii) were shown by Le Breton (1976) for the particular
case f(t, x) = x, i.e., the Ornstein-Uhlenbeck process. However his proofs
have some technical errors.
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(2) Extension of results of this Chapter to general nonlinear SDE, i.e., with
drift b(θ, t,Xt) remains open. It seems impossible by the present method
because to apply Theorem 4.1, assumption (C2), that the second derivative
of the log likelihood is independent θ, may not be satisfied in general. Some
other methods are needed.

(3) So far as the rate of convergence to the MLE is concerned, the AMLE θn,T,1

is the best because eventhough there is scope for improving the order of
approximation of the FS integral, there is no scope of improving the order
of approximation of the ordinary integrals. We conjecture that one can not
find an AMLE having faster rate of convergence θn,T,1.

(4) Since theFS integral obeys the rules of ordinary calculus hencewe conjecture
that the approximant in (2.7) will converge to the FS integral at the same
rate as in (2.7) i.e., of the order O(h2) in L2. We also conjecture that the
approximant in (2.9) will converge to the FS integral faster than those in
(2.6) and (2.7). The rate of convergence of the approximants in (2.8)-(2.16)
to the FS integral remains open.

(5) It would be interesting to obtain limit distributions of the approximant of
the Itô integral and the different approximants of the FS integral centered
at the corresponding integral with suitable normalizations. Also it remains
to investigate the limit distributions of θn,T and θn,T,j , j = 1, 2, 3, . . . , 8
centered at the MLE θT with suitable normalizations. To obtain rates of
convergence of the estimators θn,T and θn,T,j , j = 1, 2, 3, . . . , 8 to θ remains
open.

(6) Extension of the results of this Chapter to multidimensional process and
multidimensional parameter remains to be investigated.

7.6 Example: Chan-Karloyi-Longstaff-Sanders Model

The Chan-Karloyi-Longstaff-Sanders (CKLS) model is used as an short rate
model in term structure of interest rates. The general one factor interest rate
model comprises of a linear drift with constant elasticity of variance.

CKLS process {Xt} satisfies the Itô stochastic differential equation

dXt = θ(κ − Xt) dt + σ Xγ
t dWt, t ≥ 0, X0 = x0.

The unknown parameters are θ which is the speed of mean reversion, θ is central
tendency parameter or the level of mean reversion, σ is the standard deviation
of volatility and γ is the elasticity of variance.

Sometimes γ is called the elasticity of volatility. The case γ = 0 gives Vasicek,
γ = 1 gives Black-Scholes and γ = 1/2 gives Cox-Ingersoll-Ross model. CKLS
demonstrated that γ should be in fact 1.5. We assume γ to know known and
obtain estimators of θ and κ.

Let the continuous realization {Xt, 0 ≤ t ≤ T} be denoted by XT
0 . Let PT

θ

be the measure generated on the space (CT , BT ) of continuous functions on
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[0, T ] with the associated Borel σ-algebra BT generated under the supremum
norm by the process XT

0 and let PT
0 be the standard Wiener measure. It is

well known that when κ is the true value of the parameter PT
θ is absolutely

continuous with respect to PT
0 and the Radon-Nikodym derivative (likelihood)

of PT
θ,κ with respect to PT

0 based on XT
0 is given by

LT (θ, κ) :=
dPT

θ,κ

dPT
0

(XT
0 )

= exp

{∫ T

0

θ(κ − Xt)σ−2X1−2γ
t dXt − 1

2

∫ T

0

θ(κ − Xt)2σ−2X−2γ
t dt

}
.

Consider the score function, the derivative of the log-likelihood function, which
is given by

lT (θ, κ) := σ−2

{∫ T

0

θ(κ − Xt)X
1−2γ
t dXt − 1

2

∫ T

0

θ(κ − Xt)2X
−2γ
t dt

}
.

A solution of the estimating equation lT (θ, κ) = 0 provides the conditional
maximum likelihood estimate (MLEs)

θ̂T :=

∫ T

0
X−2γ

t dXt

∫ T

0
X1−2γ

t dt − ∫ T

0
X1−2γ

t dXt

∫ T

0
X−2γ

t dt∫ T

0
X−2γ

t dt
∫ T

0
X2−2γ

t dt − ∫ T

0
X1−2γ

t dt
∫ T

0
X1−2γ

t dt
.

and

κ̂T :=

∫ T

0
X−2γ

t dXt

∫ T

0
X2−2γ

t dt − ∫ T

0
X1−2γ

t dXt

∫ T

0
X1−2γ

t dt∫ T

0
X−2γ

t dXt

∫ T

0
X1−2γ

t dt − ∫ T

0
X1−2γ

t dXt

∫ T

0
X−2γ

t dt
.

We transform the Itô integrals
∫

to the Stratonovich integrals
∮

as follows:
For a smooth function f(·) we have

∫ T

0

f(Xt)dXt =
∮ T

0

f(Xt)dXt − σ2

2

∫ T

0

f ′(Xt)X
2γ
t dt.

For simplicity we assume σ = 1.
Thus ∫ T

0

X−2γ
t dXt =

∮ T

0

X−2γ
t dXt + γ

∫ T

0

X−1
t dt.

∫ T

0

X1−2γ
t dXt =

∮ T

0

X1−2γ
t dXt − 1 − 2γ

2
T.

∫ T

0

X2−2γ
t dXt =

∮ T

0

X2−2γ
t dXt − (1 − γ)

∫ T

0

Xtdt.
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Thus Stratonovich integral based MLEs are

θ̂T :=

[(∮ T

0

X−2γ
t dXt + γ

∫ T

0

X−1
t dt

)∫ T

0

X1−2γ
t dt

−
(∮ T

0

X1−2γ
t dXt − 1 − 2γ

2
T

)∫ T

0

X−2γ
t dt

]
[∫ T

0

X−2γ
t dt

∫ T

0

X2−2γ
t dt −

∫ T

0

X1−2γ
t dt

∫ T

0

X1−2γ
t dt

]−1

and

κ̂T :=

[(∮ T

0

X−2γ
t dXt + γ

∫ T

0

X−1
t dt

)∫ T

0

X2−2γ
t dt

−
(∮ T

0

X1−2γ
t dXt − 1 − 2γ

2
T

)∫ T

0

X1−2γ
t dt

]
[(∮ T

0

X−2γ
t dXt + γ

∫ T

0

X−1
t dt

)∫ T

0

X1−2γ
t dt

−
(∮ T

0

X1−2γ
t dXt − 1 − 2γ

2
T

)∫ T

0

X−2γ
t dt

]−1

.

For a weight function wti
≥ 0, define weighted AMLEs

θ̃n,T :=

([{
n∑

i=1

wti
X−2γ

ti−1
+

n+1∑
i=2

wti
X−2γ

ti−1

}
(Xti

− Xti−1)

+ γ

{
n∑

i=1

wti
X−1

ti−1
+

n+1∑
i=2

wti
X−1

ti−1

}
(ti − ti−1)

]
[{

n∑
i=1

wti
X1−2γ

ti−1
+

n+1∑
i=2

wti
X1−2γ

ti−1

}
(ti − ti−1)

−
{

n∑
i=1

wti
X1−2γ

ti−1
+

n+1∑
i=2

wti
X1−2γ

ti−1

}
(Xti

− Xti−1) −
1 − 2γ

2
T

]
[{

n∑
i=1

wti
X2−2γ

ti−1
+

n+1∑
i=2

wti
X2−2γ

ti−1

}
(ti − ti−1)

])
([{

n∑
i=1

wti
X−2γ

ti−1
+

n+1∑
i=2

wti
X−2γ

ti−1

}
(ti − ti−1)

]
[{

n∑
i=1

wti
X2−2γ

ti−1
+

n+1∑
i=2

wti
X2−2γ

ti−1

}
(ti − ti−1)
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−
{

n∑
i=1

wti
X1−2γ

ti−1
+

n+1∑
i=2

wti
X1−2γ

ti−1

}
(ti − ti−1)

]
[{

n∑
i=1

wti
X1−2γ

ti−1
+

n+1∑
i=2

wti
X1−2γ

ti−1

}
(ti − ti−1)

])−1

.

κ̃n,T :=

([{
n∑

i=1

wti
X−2γ

ti−1
+

n+1∑
i=2

wti
X−2γ

ti−1

}
(Xti

− Xti−1)

+γ

{
n∑

i=1

wti
X−1

ti−1
+

n+1∑
i=2

wti
X−1

ti−1

}
(ti − ti−1)

]
[{

n∑
i=1

wti
X2−2γ

ti−1
+

n+1∑
i=2

wti
X2−2γ

ti−1

}
(ti − ti−1)

−
{

n∑
i=1

wti
X1−2γ

ti−1
+

n+1∑
i=2

wti
X1−2γ

ti−1

}
(Xti

− Xti−1) −
1 − 2γ

2
T

]
[{

n∑
i=1

wti
X1−2γ

ti−1
+

n+1∑
i=2

wti
X1−2γ

ti−1

}
(ti − ti−1)

])
([{

n∑
i=1

wti
X−2γ

ti−1
+

n+1∑
i=2

wti
X−2γ

ti−1

}
(Xti

− Xti−1)

]
[{

n∑
i=1

wti
X1−2γ

ti−1
+

n+1∑
i=2

wti
X1−2γ

ti−1

}
(ti − ti−1)

−
{

n∑
i=1

wti
X1−2γ

ti−1
+

n+1∑
i=2

wti
X1−2γ

ti−1

}
(Xti

− Xti−1)

]

[{
n∑

i=1

wti
X−2γ

ti−1
+

n+1∑
i=2

wti
X−2γ

ti−1

}
(ti − ti−1)

])−1

.

With wti
= 1, we obtain the forward AMLE as

θ̃n,T,F :=

[
n∑

i=1

X1−2γ
ti−1

(Xti
− Xti−1) −

1 − γ

2

n∑
i=1

Xγ
ti−1

(ti − ti−1)

]
[

n∑
i=1

X2−2γ
ti−1

(ti − ti−1)

]−1

.
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κ̃n,T,F :=

[
n∑

i=1

X1−2γ
ti−1

(Xti
− Xti−1) −

1 − γ

2

n∑
i=1

Xγ
ti−1

(ti − ti−1)

]
[

n∑
i=1

X2−2γ
ti−1

(ti − ti−1)

]−1

.

With wti
= 0, we obtain the backward AMLE as

θ̃n,T,B :=

[
n∑

i=1

X1−2γ
ti

(Xti
− Xti−1) −

1 − γ

2

n∑
i=1

Xγ
ti

(ti − ti−1)

]
[

n∑
i=1

X2−2γ
ti

(ti − ti−1)

]−1

.

κ̃n,T,B :=

[
n∑

i=1

X1−2γ
ti

(Xti
− Xti−1) −

1 − γ

2

n∑
i=1

Xγ
ti

(ti − ti−1)

]
[

n∑
i=1

X2−2γ
ti

(ti − ti−1)

]−1

.

Analogous to the estimators for the discrete AR (1) model, we define the simple
symmetric and weighted symmetric estimators (see Fuller (1996)):

With wti
= 1/2, the simple symmetric AMLE is defined as

θ̃n,T,z :=

[{
n∑

i=2

X1−2γ
ti−1

+
1
2
(X1−2γ

t0 + X1−2γ
tn

)

}
(Xti

− Xti−1)

−1 − γ

2

{
n∑

i=2

Xγ
ti−1

+ 0.5(Xγ
t0 + Xγ

tn
)

}
(ti − ti−1)

]
[{

n∑
i=2

X2−2γ
ti−1

+ 0.5(X2−2γ
t0 + X2−2γ

tn
)

}
(ti − ti−1)

]−1

κ̃n,T,z :=

[{
n∑

i=2

X1−2γ
ti−1

+
1
2
(X1−2γ

t0 + X1−2γ
tn

)

}
(Xti

− Xti−1)

−1 − γ

2

{
n∑

i=2

Xγ
ti−1

+ 0.5(Xγ
t0 + Xγ

tn
)

}
(ti − ti−1)

]
[{

n∑
i=2

X2−2γ
ti−1

+ 0.5(X2−2γ
t0 + X2−2γ

tn
)

}
(ti − ti−1)

]−1
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With the weight function

wti
=

⎧⎨
⎩

0 : i = 1
i−1
n : i = 2, 3, · · · , n
1 : i = n + 1

the weighted symmetric AMLE is defined as

θ̃n,T,w :=

[{
n∑

i=2

X1−2γ
ti−1

+
n∑

i=1

X1−2γ
ti−1

}
(Xti

− Xti−1)

−1 − γ

2

{
n∑

i=2

Xγ
ti−1

+
n∑

i=1

Xγ
ti−1

}
(ti − ti−1)

]

[{
n∑

i=2

X2−2γ
ti−1

+
n∑

i=1

X2−2γ
ti−1

}
(ti − ti−1)

]−1

.

κ̃n,T,w :=

[{
n∑

i=2

X1−2γ
ti−1

+
n∑

i=1

X1−2γ
ti−1

}
(Xti

− Xti−1)

−1 − γ

2

{
n∑

i=2

Xγ
ti−1

+
n∑

i=1

Xγ
ti−1

}
(ti − ti−1)

]

[{
n∑

i=2

X2−2γ
ti−1

+
n∑

i=1

X2−2γ
ti−1

}
(ti − ti−1)

]−1

.

Note that estimator (1.13) is analogous to the trapezoidal rule in numerical
analysis. One can instead use the midpoint rule to define another estimator

θ̃n,T,A :=

[
n∑

i=1

(
Xti−1 + Xti

2

)1−2γ

(Xti
− Xti−1)

−1 − γ

2

n∑
i=1

(
Xti−1 + Xti

2

)γ

(ti − ti−1)

]

[
n∑

i=1

(
Xti−1 + Xti

2

)2−2γ

(ti − ti−1)

]−1

.
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κ̃n,T,A :=

[
n∑

i=1

(
Xti−1 + Xti

2

)1−2γ

(Xti
− Xti−1)

−1 − γ

2

n∑
i=1

(
Xti−1 + Xti

2

)γ

(ti − ti−1)

]
[

n∑
i=1

(
Xti−1 + Xti

2

)2−2γ

(ti − ti−1)

]−1

.

One can use the Simpson’s rule to define another estimator where the denom-
inator is a convex combination of the denominators in (1.11) and (1.12)

θ̃n,T,S :=[
1
3

n∑
i=1

{
X1−2γ

ti−1
+ 4

(
Xti−1 + Xti

2

)1−2γ

+ X1−2γ
ti

}
(Xti

− Xti−1)

−1 − γ

6

n∑
i=1

{
Xγ

ti−1
+ 4

(
Xti−1 + Xti

2

)γ

+ X−1
ti

}
(ti − ti−1)

]
[

1
3

n∑
i=1

{
X2−2γ

ti−1
+ 4

(
Xti−1 + Xti

2

)2−2γ

+ X2−2γ
ti

}
(ti − ti−1)

]−1

.

κ̃n,T,S :=[
1
3

n∑
i=1

{
X1−2γ

ti−1
+ 4

(
Xti−1 + Xti

2

)1−2γ

+ X1−2γ
ti

}
(Xti

− Xti−1)

−1 − γ

6

n∑
i=1

{
Xγ

ti−1
+ 4

(
Xti−1 + Xti

2

)γ

+ X−1
ti

}
(ti − ti−1)

]
[

1
3

n∑
i=1

{
X2−2γ

ti−1
+ 4

(
Xti−1 + Xti

2

)2−2γ

+ X2−2γ
ti

}
(ti − ti−1)

]−1

.

In general, one can generalize Simpson’s rule for any 0 ≤ α ≤ 1 as

θ̃n,T,GS :=[
n∑

i=1

{
α

X1−2γ
ti−1

+ X1−2γ
ti

2
+ (1 − α)

(
Xti−1 + Xti

2

)1−2γ
}

(Xti
− Xti−1)

−1 − γ

2

n∑
i=1

{
α

X−1
ti−1

+ Xγ
ti

2
+ (1 − α)

(
Xti−1 + Xti

2

)γ
}

(ti − ti−1)

]
[

n∑
i=1

{
α

X2−2γ
ti−1

+ X2−2γ
ti

2
+ (1 − α)

(
Xti−1 + Xti

2

)2−2γ
}

(ti − ti−1)

]−1
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κ̃n,T,GS :=[
n∑

i=1

{
α

X1−2γ
ti−1

+ X1−2γ
ti

2
+ (1 − α)

(
Xti−1 + Xti

2

)1−2γ
}

(Xti
− Xti−1)

−1 − γ

2

n∑
i=1

{
α

Xγ
ti−1

+ Xγ
ti

2
+ (1 − α)

(
Xti−1 + Xti

2

)γ
}

(ti − ti−1)

]
[

n∑
i=1

{
α

X2−2γ
ti−1

+ X2−2γ
ti

2
+ (1 − α)

(
Xti−1 + Xti

2

)2−2γ
}

(ti − ti−1)

]−1

The case α = 0 produces the estimator (1.18). The case α = 1 produces the
estimator (1.17). The case α = 1

3 produces the estimator (1.19).
We propose a very general form of the quadrature based estimator as

κ̃n,T,Q :=

⎡
⎣ n∑

i=1

m∑
j=1

[
(1 − sj)Xti−1 + sjXti

]1−2γ
pj (Xti

− Xti−1)

−1 − γ

2

⎧⎨
⎩

n∑
i=1

m∑
j=1

[
(1 − sj)Xti−1 + sjXti

]γ
pj

⎫⎬
⎭ (ti − ti−1)

⎤
⎦

⎡
⎣
⎧⎨
⎩

n∑
i=1

m∑
j=1

[
(1 − sj)Xti−1 + sjXti

]1−2γ
pj

⎫⎬
⎭ (ti − ti−1)

⎤
⎦
−1

where pj , j ∈ {1, 2, · · · ,m} is a probability mass function of a discrete random
variable S on 0 ≤ s1 < s2 < · · · < sm ≤ 1 with P (S = sj) := pj , j ∈
{1, 2, · · · ,m}. Denote the k-th moment of the random variable S as μk :=∑m

j=1 sk
j pj , k = 1, 2, · · · .

Now using the distributions in section 7.2, one can obtain several higher
order estimators.

7.7 Summary of Truncated Distributions

Itô’s Distribution
Support: s1 = 0
Probability: p1 = 1
Moment: μ1 = 0
Rate: ν = 1

McKean’s Distribution
Support: s1 = 1
Probability: p1 = 1
Moment: μ1 = 1
Rate: ν = 1
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Distribution 1
Support: (s1, s2) = (0, 1)
Probability: (p1, p2) = (1

2 , 1
2 )

Moment: (μ1, μ2) = (1
2 , 1

4 )
Rate: ν = 2

Distribution 2
Support: s1 = 1

2
Probability: p1 = 1
Moment: (μ1, μ2) = (1

2 , 1
2 )

Rate: ν = 2

Distribution 3
Support: (s1, s2) = (0, 2

3 )
Probability: (p1, p2) = (1

4 , 3
4 )

Moment: (μ1, μ2, μ3) = (1
2 , 1

3 , 2
9 )

Rate: ν = 3

Distribution 4
Support: (s1, s2) = (1

3 , 1)
Probability: (p1, p2) = 3

4 , 1
4

Moment: (μ1, μ2, μ3) = (1
2 , 1

3 , 10
36 )

Rate: ν = 3

Distribution 5
Support: (s1, s2, s3) = (0, 1

2 , 1)
Probability: (p1, p2, p3) = (1

6 , 2
3 , 1

6 )
Moment: (μ1, μ2, μ3, μ4) = (1

2 , 1
3 , 1

4 , 5
24 )

Rate: ν = 4

Distribution 6
Support: (s1, s2, s3, s4) = (0, 1

3 , 2
3 , 1)

Probability: (p1, p2, p3, p4) = (1
8 , 3

8 , 3
8 , 1

8 )
Moment: (μ1, μ2, μ3, μ4) = (1

2 , 1
3 , 1

4 , 11
54 )

Rate: ν = 4

Distribution 7
Support: (s1, s2, s3, s4, s5) = (0, 1

5 , 2
5 , 3

5 , 4
5 , 1)

Probability: (p1, p2, p3, p4, p5) = ( 1471
24192 , 6925

24192 , 1475
12096 , 2725

12096 , 5675
24192 , 1721

24192 )
Moment: (μ1, μ2, μ3, μ4, μ5, μ6) = (1

2 , 1
3 , 1

4 , 1
5 , 841

5040 ).
Rate: ν = 5
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Distribution 8
Support: (s1, s2, s3, s4, s5) = (0, 1

4 , 1
2 , 3

4 , 1)
Probability: (p1, p2, p3, p4, p5) = ( 7

90 , 16
45 , 2

15 , 16
45 , 7

90 )
Moment: (μ1, μ2, μ3, μ4, μ5, μ6) = (1

2 , 1
3 , 1

4 , 1
5 , 1

6 , 110
768 )

Rate: ν = 6

Distribution 9
Support: (s1, s2, s3, s4, s5) = (0, 1

5 , 2
5 , 3

5 , 4
5 , 1)

Probability: (p1, p2, p3, p4, p5) = ( 19
288 , 75

288 , 50
288 , 50

288 , 75
288 , 19

288 )
Moment: (μ1, μ2, μ3, μ4, μ5, μ6) = (1

2 , 1
3 , 1

4 , 1
5 , 1

6 , 3219
22500 )

Rate: ν = 6
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Rates of Weak Convergence of Estimators
in the Ornstein-Uhlenbeck Process

8.1 Introduction

In Chapter 7 we studied the rates of convergence of two approximate maximum
likelihood estimators (AMLEs) to the continuous MLE of the parameter ap-
pearing linearly in the drift coefficient of Itô SDE when T remains fixed, T being
the length of the observation time interval [0, T ]. As far as we know no results
are known about the rate of convergence of AMLEs to the true value of the
parameter as T → ∞. In this Chapter for the Ornstein-Uhlenbeck process, we
obtain Berry-Esseen type bounds using both random and nonrandom normings
of the two AMLEs θn,T and θn,T,1 defined in (2.23) and (2.26) of Chapter 7. First
we identify one AMLE θn,T as the conditional least squares estimator (CLSE).
We show that the other AMLE θn,T,1 has sharper Berry-Esseen bound than
than that for θn,T . The Berry-Esseen bounds of the AMLEs θn,T and θn,T,1 show
that the rapidly increasing experimental design (RIED) condition i.e. T → ∞
and T

n1/2 → 0 is not essential for its asymptotic normality AMLEs. Then we
study the Berry-Esseen bounds for approximate minimum contrast estimators
(AMCEs) and approximate Bayes estimators (ABEs) under the same sampling
desing conditions.

The Chapter is organised as follows: In Section 8.2 we prepare notations and
preliminaries. Section 8.3 contains Berry-Esseen type bounds for one AMLE.
Section 8.4 contains Berry-Esseen type bounds for another AMLE. Section 8.5
contains Berry-Esseen type bounds for another AMCEs. Section 8.6 contains
Berry-Esseen type bounds for another ABEs. We use purely non-random and
various random normings (both sample dependent and parameter dependent)in
order to obtain Berry-Esseen bounds. We find probabilistic bound on the
difference between the discrete and the corresponding continuous estimators.

This Chapter is adapted from Bishwal and Bose (2001), Bishwal (2006a)
and Bishwal (2006).
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8.2 Notations and Preliminaries

Let {Xt, t ≥ 0} be the Ornstein-Uhlenbeck process satisfying the stochastic
differential equation

dXt = θXtdt + dWt, t ≥ 0, X0 = 0 (2.1)

where {Wt, t ≥ 0} is a standard Wiener process and let θ ∈ (−∞, 0) be
the unknown parameter to be estimated from the observations of the process
{Xt, t ≥ 0}.

Recall that based on continuous observation of {Xt} on [0, T ] the log-
likelihood function and the maximum likelihood estimator (MLE) are given
respectively by

LT = θ

∫ T

0

XtdXt − θ2

2

∫ T

0

X2
t dt (2.2)

and

θT =

∫ T

0
XtdXt∫ T

0
X2

t dt.
(2.3)

Large deviation probability bound and Berry-Esseen bounds for θT using dif-
ferent normings are obtained in Chapter 1.

We assume that the process {Xt} is observed at the points 0 ≤ t0 < t1 <
. . . < tn = T with Δti = ti − ti−1 = T

n , i = 1, 2, . . . , n. For simplicity only we
assume equidistant time points.

The conditional least squares estimator (CLSE) based on Xt0 , . . . , Xtn
is

defined as

θn,T := arg inf
θ

n∑
i=1

[Xti
− Xti−1 − θXti−1Δti]2

Δti
(2.4)

and is given by

θn,T =

n∑
i=1

Xti−1(Xti
− Xti−1)

n∑
i=1

X2
ti−1

Δti

. (2.5)

Note that the estimator θn,T may be viewed as an approximate maximum
likelihood estimator (AMLE1) which maximizes the approximate log-likelihood
given by

Ln,T (θ) = θ
n∑

i=1

Xti−1(Xti
− Xti−1) −

θ2

2

n∑
i=1

X2
ti−1

Δti. (2.6)

Ln,T is obtained by an Itô approximation of the stochastic integral and rectan-
gular rule approximation of the ordinary integral in LT .
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Le Breton (1976) studied the convergence of the estimator θn,T to θT as
n → ∞ and T remains fixed. In particular, he showed that |θn,T − θT | =
0P (T 2

n )1/2. Dorogovcev (1976) and Kasonga (1988) respectively proved the
weak and strong consistency of the estimator θn,T as T → ∞ and T

n → 0.
Under the more restrictive conditions T → ∞ and T

n1/2 → 0, called the rapidly
increasing experimental design (RIED) condition, Prakasa Rao (1983) proved
the asymptotic normality and asymptotic efficiency of the estimator θn,T .

Using Itô formula for the stochastic integral and rectangular rule approxi-
mation for the ordinary integral in (2.2) we obtain the approximate likelihood

Ln,T,1(θ) =
θ

2
(X2

T − T ) − θ2

2

n∑
i=1

X2
ti−1

Δti (2.7)

Note that if we transform the Itô integral to the FS integral in LT using
(2.20) of Chapter 4 and then apply FS type approximation for the FS integral
and rectangale rule approximation for the ordinary in LT , then also we obtain
the approximate likelihood Ln,T,1.

Maximizing Ln,T,1 provides another approximate maximum likelihood es-
timate (AMLE2) θn,T,1 given by

θn,T,1 =
1
2 (X2

T − T )
n∑

i=1

X2
ti−1

Δti

. (2.8)

In this Chapter, we obtain the Berry-Esseen bounds, i.e., rates of convergence
to normality of the two estimators given in (2.5) and (2.8).

In Section 8.3 we obtain the Berry-Esseen bounds the estimator θn,T . Using
purely non-random and various random normings (both sample dependent
and parameter dependent) we obtain different Berry-Esseen bounds for the
estimator θn,T . Then we obtain probabilistic bounds on |θn,T − θT |.

In Section 8.4 we derive Berry-Esseen bounds for the estimators θn,T,1 using
purely random and various random normings (both sample dependent and
parameter dependent). Then we find probabilistic bounds on |θn,T,1 − θT |.

We use the following notations: Φ(·) denotes the standard normal distrib-
ution function. C is a generic constant (which may depend on the parameter)
throughout the Chapter. P and E denote probability and expectation under
the true value of the parameter.

Introduce the following notations:

Yn,T :=
n∑

i=1

X(ti−1) [Wti
− W (ti−1)] , YT :=

∫ T

0

XtdWt,

Zn,T :=
n∑

i=1

X(ti−1) [Xti
− X(ti−1)] , ZT :=

∫ T

0

XtdXt,

In,T :=
n∑

i=1

X2(ti−1)(ti − ti−1), IT :=
∫ T

0

X2
t dt,
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Vn,T :=
n∑

i=1

∫ ti

ti−1

Xti−1

[
Xt − Xti−1

]
dt.

We shall use the following lemma in the sequel whose proof is elementary.

Lemma 2.1 Let Qn, Rn, Q and R be random variables on the same prob. space
(Ω,F , P ) with P (R > 0) > 0. Suppose |Qn − Q| = OP (δ1n) and |Rn − R| =
OP (δ1n) where δ1n, δ2n → 0 as n → ∞. Then∣∣∣∣Qn

Q
− Rn

R

∣∣∣∣ = OP (δ1n

∨
δ2n).

8.3 Berry-Esseen Type Bounds for AMLE1

We will use the following preliminary lemma in the sequel.
Lemma 3.1 (Wick’s Lemma)
Let (ξ1, ξ2, ξ3, ξ4) be a Gaussian random vector with zero mean. Then

E(ξ1ξ2ξ3ξ4) = E(ξ1ξ2)E(ξ3ξ4) + E(ξ1ξ3)E(ξ2ξ4) + E(ξ1ξ4)E(ξ2ξ3).

Lemma 3.2

(a) E |Yn,T − YT |2 = O(
T 2

n
),

(b) E |Zn,T − ZT |2 = O(
T 2

n
),

(c) E |In,T − IT |2 = O(
T 4

n2
).

Proof. Let gi(t) = Xti−1 − Xt for ti−1 ≤ t < ti, i = 1, 2, . . . , n. Since
E|Xti−1 − Xt|2k ≤ C(ti−1 − t)k, k = 1, 2, . . . (3.1)
(by (3.11) of Chapter 4), hence

E|Yn,T − YT |2

= E|
n∑

i=1

Xti−1 [Wti
− Wti−1 ] −

∫ T

0

XtdWt|2

= E|
∫ T

0

gi(t)dWt|2

=
∫ T

0

E(g2
i (t))dt

≤ C

n∑
i=1

∫ ti

ti−1

|ti−1 − t|dt
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= Cn
(ti − ti−1)2

2
= C

T 2

n
.

This completes the proof of (a).
Note that (b) and (c) are given in Le Breton (1976, Lemma 6). However,

we give a complete proof since Le Breton’s proofs have some technical errors.
Using (2.1) and the fact that

Xti
− Xti−1 =

∫ ti

ti−1

θXtdt + Wti
− Wti−1

we obtain

E|Zn,T − ZT |2

= E|
n∑

i=1

Xti−1 [Xti
− Xti−1 ] −

∫ T

0

XtdWt|2

= E|
n∑

i=1

∫ ti

ti−1

θXtXti−1dt +
n∑

i=1

Xti−1 [Wti
− Wti−1 ]

−
∫ T

0

θX2
t dt −

∫ T

0

XtdWt|2

≤ 2E|
n∑

i=1

Xti−1 [Wti
− Wti−1 ] −

∫ T

0

XtdWt|2

+2θ2E|
n∑

i=1

∫ ti

ti−1

Xt[Xti−1 − Xt]dt|2.

=: N1 + N2.

N1 is O(T 2

n ) by Lemma 3.2(a). To estimate N2 let ψi(t) := Xt[Xti−1 − Xt] for
ti−1 ≤ t < ti, i = 1, 2, . . . , n. Then

E|
n∑

i=1

∫ ti

ti−1

ψi(t)dt|2

=
n∑

i=1

E|
∫ ti

ti−1

ψi(t)dt|2 + 2
n∑

i,j=1,i<j

E

[∫ ti

ti−1

ψi(t)dt

∫ ti

ti−1

ψj(s)ds

]

=: M1 + M2.

By the boundedness of E(X4
t ) and (2.1) we have

E(ψ2
i (t))

= E{X2
t [Xti−1 − Xt]2}

≤ {E(X4
t )}1/2{E[Xti−1 − Xt]4}1/2

≤ C(ti−1 − t). (3.2)
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Note that

M1 =
n∑

i=1

E|
∫ ti

ti−1

ψi(t)dt|2

≤
n∑

i=1

(ti − ti−1)
∫ ti

ti−1

E(ψ2(t))dt

≤ C
T

n

n∑
i=1

∫ ti

ti−1

(t − ti−1)dt

≤ C
T

n

n∑
i=1

(ti − ti−1)2 = C
T 3

n2

and

M2 = 2
n∑

i,j=1,i<j

E

∫ ti

ti−1

∫ ti

tj−1

[ψi(t)ψj(s)]dtds

= 2
n∑

i,j=1,i<j

∫ ti

ti−1

∫ tj

tj−1

E[ψi(t)ψj(s)]dtds.

By Lemma 3.1, we have

E[ψi(t)ψj(s)]

= E[Xt(Xti−1 − Xt)Xs(Xtj−1 − Xs)]

= E[Xt(Xti−1 − Xt)]E[Xs(Xtj−1 − Xs)]

+E[XtXs]E[(Xti−1 − Xt)(Xtj−1 − Xs)]

+E[Xt(X(tj−1) − Xs)]E[Xs(Xti−1 − Xt)]

=: A1 + A2 + A3.

Note that

Xt =
∫ t

0

eθ(t−u)dWu, t ≥ 0.

Let a := eθ. For s ≥ t, we have

E(XtXs)

= E(
∫ t

0

eθ(t−u)dWu)(
∫ s

0

eθ(s−u)dWu)

=
∫ t

0

eθ(t+s−2u)du

=
1
2θ

[as+t − as−t]
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Observe that

E(Xt − Xti−1)(Xs − Xtj−1)
= E(XtXs) − E(XtXtj−1) − E(Xti−1Xs) + E(Xti−1Xtj−1)

=
1
2θ

(as − atj−1)[(at − ati−1) + (a−ti−1 − a−t)]

=
1
2θ

(s − tj−1)at∗ [(t − ti−1a
t∗∗ + (t − ti−1)a−t∗∗∗ ]

(where tj−1 < t∗ < s, ti−1 < t∗∗, t∗∗∗ < t)

≤ 1
2θ

(s − tj−1)at(t − ti−1)ati−1 + (s − tj−1)at(t − ti−1)a−t]

≤ C(s − tj−1)(t − ti−1).

Thus A2 ≤ C(s − tj−1)(t − ti−1) since |E(XtXs)| is bounded. Next

|E[Xt(Xti−1 − Xt)]|
=

1
2|θ| [a

t+ti−1 − at−ti−1 − a2t + 1]

=
1

2|θ|a
t[ati−1 − a−ti−1 − at + a−t]

≤ 1
2|θ|a

t(t − ti−1)[ati−1 + a−t]

≤ C(t − ti−1)

and

|E[Xs(Xs − Xtj−1 ]|
=

1
2|θ| [a

2s − 1 − as+tj−1 + as+tj−1 ]

=
1

2|θ|a
s[as − a−s − atj−1 + a−tj−1 ]

≤ 1
2|θ|a

s(s − tj−1)[atj−1 + a−s]

≤ C(s − tj−1).

Thus A1 ≤ C(s − tj−1)(t − ti−1).
Next

|E[Xt(Xs − Xtj−1 ]|
=

1
2|θ| [a

s+t − as−t − at+tj−1 + atj−1−t]

=
1

2|θ|a
t(as − atj−1)
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≤ 1
2|θ|a

t(1 − a−2t)(s − tj−1)at

≤ (a2t − 1)(s − tj−1)
≤ C(s − tj−1)

and

|E[Xs(Xt − Xti−1 ]|
=

1
2|θ| [a

t+s − as−t − as+ti−1 + as−ti−1 ]

=
1

2|θ|a
s[at − a−t − ati−1 + a−ti−1 ]

≤ 1
2|θ|a

s(t − ti−1)[ati−1 + a−t]

≤ C(t − ti−1).

Thus A3 ≤ C(s − tj−1)(t − ti−1).
Hence E[fi(t)fj(s)] ≤ C(s − tj−1)(t − ti−1).
Thus

M2 = 2
n∑

i,j=1,i<j

∫ ti

ti−1

∫ tj

tj−1

E[fi(t)fj(s)]dtds

≤ C
n∑

i,j=1,i<j

∫ ti

ti−1

∫ tj

tj−1

(t − ti−1)(s − tj−1)dtds

= C
n∑

i,j=1,i<j

(ti−1 − ti)2(tj−1 − ti)2

= Cn2(
T

n
)4 = C

T 4

n2
.

Hence, N2 is O(T 3

n2 ). Combining N1 and N2 completes the proof of (b). We next
prove (c). Let χi(t) := X2

ti−1
− X2

t , ti−1 ≤ t < ti, i = 1, 2, . . . , n. Then

E|In,T − It|2

= E|
n∑

i=1

X2
ti−1

(ti − ti−1) −
∫ T

0

X2
t dt|2

= E|
n∑

i=1

∫ ti

ti−1

[X2
ti−1

− X2
t ]dt|2

= E|
n∑

i=1

∫ ti

ti−1

χi(t)dt|2

=
n∑

i=1

E|
∫ ti

ti−1

χi(t)dt|2 + 2
n∑

i,j=1,i<j

E

∫ ti

ti−1

∫ tj

tj−1

χi(t)χj(s)dtds
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=: B1 + B2.

Eχ2
i (t) = E[X2

ti−1
− X2

t ]2

= E[Xti−1 − Xt]2[Xti−1 + Xt]2

≤ {E[Xti−1 − Xt]4}1/2{{E[Xti−1 + Xt]4}1/2

≤ C(t − ti−1)

(by (3.1) and the boundedness of the second term)

B1 =
n∑

i=1

E|
∫ ti

ti−1

χi(t)dt|2

≤
n∑

i=1

(ti − ti−1)
∫ ti

ti−1

E(χ2
i (t))dt

≤ C
T

n

n∑
i=1

∫ ti

ti−1

(t − ti−1)dt

= C
T 3

n2
.

Note that

E[χi(t)χj(s)]
= E(X2

ti−1
− X2

t )(X2
tj−1

− X2
s )

= E(Xti−1 − Xt)(Xti−1 + Xt)(Xtj−1 − Xs)(Xtj−1 + Xs).

Now using Lemma 3.1 and proceeding similar to the estimation of M2 it is easy
to see that

B2 ≤ C
T 4

n2
.

Combining B1 and B2, (c) follows.

Theorem 3.3 Let αn,T := max(T−1/2(log T )1/2, T 2

n (log T )−1, T 4

n2 (log T )−1).
We have,

(a) sup
x∈R

∣∣∣∣∣P
{(

T

−2θ

)1/2

(θn,T − θ) ≤ x

}
− Φ(x)

∣∣∣∣∣ = O(αn,T ).

(b) sup
x∈R

∣∣∣P {I
1/2
n,T (θn,T − θ) ≤ x

}
− Φ(x)

∣∣∣ = O(αn,T ).

(c) sup
x∈R

∣∣∣∣∣P
{(

T

|2θn,T |
)1/2

(θn,T − θ) ≤ x

}
− Φ(x)

∣∣∣∣∣ = O(αn,T ).
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Proof: (a) It is easy to see that

θn,T − θ =
Yn,T

In,T
+ θ

Vn,T

In,T
(3.3)

Hence

sup
x∈R

∣∣∣∣∣P
{(

T

−2θ

)1/2

(θn,T − θ) ≤ x

}
− Φ(x)

∣∣∣∣∣
= sup

x∈R

∣∣∣∣∣P
{(

T

−2θ

)1/2
Yn,T

In,T
+
(

T

−2θ

)1/2

θ
Vn,T

In,T
≤ x

}
− Φ(x)

∣∣∣∣∣
≤ sup

x∈R

∣∣∣∣∣P
{(

T

−2θ

)1/2
Yn,T

In,T
≤ x

}
− Φ(x)

∣∣∣∣∣
+P

{∣∣∣∣∣
(

T

−2θ

)1/2
Vn,T

In,T

∣∣∣∣∣ > ε

}
+ ε.

=: K1 + K2 + ε. (3.4)

Note that by Lemma 2.1.1 (b)

K1 = sup
x∈R

∣∣∣∣∣P
{(

T

−2θ

)1/2
Yn,T

In,T
≤ x

}
− Φ(x)

∣∣∣∣∣
= sup

x∈R

∣∣∣∣∣P
{(− 2θ

T

)1/2
Yn,T(−2θ

T

)
In,T

≤ x

}
− Φ(x)

∣∣∣∣∣
≤ sup

x∈R

∣∣∣∣∣P
{(−2θ

T

)1/2

Yn,T ≤ x

}
− Φ(x)

∣∣∣∣∣
+P

{(−2θ
T

)
In,T − 1 > ε

}
+ ε

=: J1 + J2 + ε.

(3.5)

J1 = sup
x∈R

∣∣∣∣∣P
{(−2θ

T

)1/2

(Yn,T − YT + YT ) ≤ x

}
− Φ(x)

∣∣∣∣∣
≤ sup

x∈R

∣∣∣∣∣P
{(−2θ

T

)1/2

YT ≤ x

}
− Φ(x)

∣∣∣∣∣
+P

{(−2θ

T

)1/2

|Yn,T − YT | > ε

}
+ ε

≤ CT−1/2 +
(−2θ

T

)
E|Yn,T − YT |2

ε2
+ ε

≤ CT−1/2 + C
T/n

ε2
+ ε. (by Corollary 1.2.3(a) and Lemma 3.2(a).)

(3.6)
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J2 = P

{∣∣∣∣
(−2θ

T

)
(In,T − IT + IT ) − 1

∣∣∣∣ > ε

}

≤ P

{∣∣∣∣
(−2θ

T

)
IT − 1

∣∣∣∣ > ε

2

}
+ P

{(
−2θ

2

)
|In,T − IT | >

ε

2

}

≤ C exp
(

Tθ

16
ε2
)

+
16θ2

T 2

E|In,T − IT |2
ε2

≤ C exp
(

Tθ

16
ε2
)

+ C
T 2/n2

ε2
. (3.8)

Here the bound for the first term in (3.8) comes from Lemma 2.2.4(a) and that
for the second term from Lemma 3.2(c). From the proof of Lemma 3.2(b) we
have

E|Vn,T |2 ≤ C
T 4

n2
(3.9)

Next

K2 = P

{∣∣∣∣∣
(

T

−2θ

)1/2

θ
Vn,T

In,T

∣∣∣∣∣ > ε

}

= P

{∣∣∣∣∣
(−2θ

T

)1/2
θVn,T(− 2θ

T

)
In,T

∣∣∣∣∣ > ε

}

= P

{∣∣∣∣∣
(−2θ

T

)1/2

θVn,T

∣∣∣∣∣ > δ

}
+ P

{(
−2θ

T

)
In,T <

δ

ε

}
(where we choose δ = ε − Cε2)

≤ P

{∣∣∣∣∣
(−2θ

T

)1/2

θVn,T

∣∣∣∣∣ > δ

}
+ P

{∣∣∣∣
(
−2θ

T

)
In,T − 1

∣∣∣∣ > δ1

}

(where δ1 =
ε − δ

δ
= Cε)

≤ −2θ

T
θ2 E|Vn,T |2

δ2
+ C exp

(
Tθ

16
δ2
1

)
+ C

T 2/n2

δ2
1

≤ C
T 3/n2

δ2
+ C exp

(
Tθ

16
δ2
1

)
+ C

T 2/n2

δ2
1

(by (3.9) and (3.8)).

(3.10)

Now combining bounds from J1, J2, K1 and K2, we have since T/n → 0

sup
x∈R

∣∣∣∣∣P
{(

T

−2θ

)1/2

(θn,T − θ) ≤ x

}
− Φ(x)

∣∣∣∣∣
≤ CT−1/2 + C exp

(
Tθ

16
ε2
)

+ C
T/n

ε2
+ C

T 2/n2

ε2
+ C

T 3/n2

δ2

+C exp(
Tθ

16
δ2
1) + C(

T 2/n2

δ2
1

) + ε. (3.11)

Choosing ε = CT−1/2(log T )1/2, C large, the terms of (3.11) are of the order
O(max(T−1/2(log T )1/2, T 2

n (log T )−1, T 4

n2 (log T )−1)). This proves (a).
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(b) Using the expression (3.3), we have

sup
x∈R

∣∣∣P {I
1/2
n,T (θn,T − θ) ≤ x

}
− Φ(x)

∣∣∣
= sup

x∈R

∣∣∣∣∣P
{

Yn,T

I
1/2
n,T

+ θ
Vn,T

I
1/2
n,T

≤ x

}
− Φ(x)

∣∣∣∣∣
≤ sup

x∈R

∣∣∣∣∣P
{

Yn,T

I
1/2
n,T

≤ x

}
− Φ(x)

∣∣∣∣∣+ P

{∣∣∣∣∣θVn,T

I
1/2
n,T

∣∣∣∣∣ > ε

}
+ ε.

=: H1 + H2 + ε.

(3.12)

Note that

H1 = sup
x∈R

∣∣∣∣∣P
{

Yn,T − YT + YT

I
1/2
n,T

≤ x

}
− Φ(x)

∣∣∣∣∣
= sup

x∈R

∣∣∣∣∣P
{

YT

I
1/2
n,T

≤ x

}
− Φ(x)

∣∣∣∣∣+ P

{
|Yn,T − YT |

I
1/2
n,T

> ε

}
+ ε.

=: F1 + F2 + ε.

(3.13)

Now

F1 = sup
x∈R

∣∣∣∣∣P
{

YT

I
1/2
n,T

≤ x

}
− Φ(x)

∣∣∣∣∣
≤ sup

x∈R

∣∣∣∣∣P
{(−2θ

T

)1/2

YT ≤ x

}
− Φ(x)

∣∣∣∣∣
+P

{∣∣∣∣∣
(−2θ

T

)1/2

I
1/2
n,T − 1

∣∣∣∣∣ > ε

}
+ ε (by Lemma 1.2.1(b))

≤ C
−1/2
T + P

{∣∣∣∣
(−2θ

T

)
In,T − 1

∣∣∣∣ > ε

}
+ ε (byCorollary 1.2.3(a))

≤ CT−1/2 + C exp
(−Tθ

16 ε2
)

+ C T 2/n2

ε2 + ε. (by (3.8))
(3.14)

On the other hand,

F2 = P

{
|Yn,T − YT |

I
1/2
n,T

> ε

}

≤ P

{(−2θ

T

)1/2

|Yn,T − YT | > δ

}
+ P

{∣∣∣∣∣
(−2θ

T

)1/2

I
1/2
n,T − 1

∣∣∣∣∣ > δ1

}

(where δ = ε − Cε2 and δ1 = (ε − δ)/ε > 0)

≤
(−2θ

T

)
E|Yn,T − YT |2

δ2
+ P

{∣∣∣∣
(−2θ

T

)
In,T − 1

∣∣∣∣ > δ1

}

≤ C
T/n

δ2
+ C exp

(
Tθ

16
δ2
1

)
+ C

T 2/n2

δ2
1

(from Lemma 3.2(a) and (3.8).)

(3.15)



8.3 Berry-Esseen Type Bounds for AMLE1 171

Using (3.15) and (3.14) in (3.13), we obtain

H1 = sup
x∈R

∣∣∣∣∣P
{

YT

I
1/2
n,T

≤ x

}
− Φ(x)

∣∣∣∣∣
≤ CT−1/2 + C exp

(
Tθ

16
ε2
)

+ C
T/n

δ2
+ C

T 2/n2

δ2
1

+C exp(
Tθ

16
δ2
1) + C

T 2/n2

ε2
+ ε.

(3.16)

H2 = P

{∣∣∣∣∣θVn,T

I
1/2
n,T

∣∣∣∣∣ > ε

}

= P

⎧⎨
⎩
∣∣∣(−2θ

T

)1/2
θVn,T

∣∣∣∣∣∣(−2θ
T

)1/2
I
1/2
n,T

∣∣∣ > ε

⎫⎬
⎭

≤ P

{∣∣∣∣∣
(−2θ

T

)1/2

θVn,T

∣∣∣∣∣ > δ

}
+ P

{∣∣∣∣∣
(−2θ

T

)1/2

I
1/2
n,T

∣∣∣∣∣ < δ/ε

}

≤
(
−2θ

T

)
θ2 E|Vn,T |2

δ2
+ P

{∣∣∣∣
(
−2θ

T

)
In,T − 1

∣∣∣∣ > δ1

}
(where 0 < δ < ε and δ1 = (ε − δ)/ε = Cε > 0)

≤ C
T 3/n2

δ2
+ C exp

(
Tθ

16
δ2
1

)
+ C

T 2/n2

δ2
1

. (from (3.9) and (3.8))

(3.17)

Using (3.17) and (3.16) in (3.12) and choosing ε = CT−1/2(log T )1/2, C large,
the terms of (3.12) are of the order O(max(T−1/2(log T )1/2, T 2

n (log T )−1,
T 4

n2 (log T )−1)). This proves (b).
(c) Let DT = {|θn,T − θ| ≤ dT } and dT = CT−1/2(log T )1/2.

On the set DT , expanding (2|θn,T |)−1/2, we obtain

(−2θn,T )−1/2 = (−2θ)−1/2

[
1 − θ − θn,T

θ

]−1/2

= (−2θ)−1/2

[
1 +

1
2

(
θ − θn,T

θ

)
+ O(d2

T )
]

.

Then

sup
x∈R

∣∣∣∣∣P
{(

T

2|θn,T |
)1/2

(θn,T − θ) ≤ x

}
− Φ(x)

∣∣∣∣∣
≤ sup

x∈R

∣∣∣∣∣P
{(

T

2|θn,T |
)1/2

(θn,T − θ) ≤ x,DT

}
− Φ(x)

∣∣∣∣∣+ P (Dc
T ).

(3.18)
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P (Dc
T )

= P
{
|θn,T − θ| > CT−1/2(log T )1/2

}
= P

{(
T

−2θ

)1/2

|θn,T − θ| > C(log T )1/2(−2θ)−1/2

}

≤ C(max(T−1/2(log T )1/2,
T 2

n
(log T )−1,

T 4

n2
(log T )−1)

+2(1 − Φ
(
(log T )1/2(−2θ)−1/2

)
(by Theorem 3.3(a))

≤ C(max(T−1/2(log T )1/2,
T 2

n
(log T )−1,

T 4

n2
(log T )−1)).

On the set DT , ∣∣∣∣∣
(

θn,T

θ

)1/2

− 1

∣∣∣∣∣ ≤ CT−1/2(log T )1/2.

Hence upon choosing ε = CT−1/2(log T )1/2, C large we obtain∣∣∣∣∣P
{(

T

−2θn,T

)1/2

(θn,T − θ) ≤ x,DT

}
− Φ(x)

∣∣∣∣∣
≤
∣∣∣∣∣P
{(

T

−2θ

)1/2

(θn,T − θ) ≤ x,DT

}
− Φ(x)

∣∣∣∣∣
+P

{∣∣∣∣( θn,T

θ

)1/2

− 1
∣∣∣∣ > ε,DT

}
+ ε

(by Lemma 1.2.1(b))
≤ C(max(T−1/2(log T )1/2, T 2

n (log T )−1, T 4

n2 (log T )−1))
(by Theorem 3.3(a)).

(3.20)

(c) follows from (3.18) - (3.20).

Theorem 3.4

sup
x∈R

∣∣∣∣∣P
{

In,T

(
−2θ

T

)1/2

(θn,T − θ) ≤ x

}
− Φ(x)

∣∣∣∣∣ = O

(
T−1/2

∨(
T

n

)1/3
)

.

Proof: Let an,T := Zn,T − ZT , bn,T := In,T − IT .

By Lemma 3.2 E|an,T |2 = O

(
T 2

n

)
and E|bn,T |2 = O

(
T 4

n2

)
. (3.21)

From (3.5), we have

In,T θn,T =
n∑

i=1

Xti−1

[
Xti

− Xti−1

]
=
∫ T

0

XtdXt + an,T

=
∫ T

0

XtdWt + θ

∫ T

0

X2
t dt + an,T .
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Hence In,T (θn,T − θ) = −θbn,T + an,T .

Thus

sup
x∈R

∣∣∣∣∣P
{

In,T

(
−2θ

T

)1/2

(θn,T − θ) ≤ x

}
− Φ(x)

∣∣∣∣∣
= sup

x∈R

∣∣∣∣∣P
{(

−2θ

T

)1/2

[YT − θbn,T + an,T ] ≤ x

}
− Φ(x)

∣∣∣∣∣
≤ sup

x∈R

∣∣∣∣∣P
{(

−2θ

T

)1/2

YT ≤ x

}
− Φ(x)

∣∣∣∣∣
+P

{∣∣∣∣∣
(
−2θ

T

)1/2

[−θbn,T + an,T ]

∣∣∣∣∣ > ε

}
+ ε

≤ CT−1/2 +
(
−2θ

T

)
E| − θbn,T + an,T |2

ε2
+ ε

≤ CT−1/2 + C
T/n

ε2
+ ε (by Corollary 1.2.3(a) and (3.21)).

Choosing ε =
(

T
n

)1/3
, the rate is O

(
T−1/2

∨(
T
n

)1/3
)
.

Theorem 3.5

|θn,T − θT | = OP (
T 2

n
)1/2.

Proof: Note that θn,T − θT = Zn,T

In,T
− ZT

IT
.

From Lemma 3.2 it follows that |Zn,T −ZT | = OP (
T 2

n
)1/2 and |In,T − IT | =

OP (
T 4

n2
)1/2. Now the theorem follows easily from the from the Lemma 2.1.

8.4 Berry-Esseen Type Bounds for AMLE2

Theorem 4.1 Let βn,T = O

(
T−1/2(log T )1/2

∨ T 4

n2
(log T )−1

)
.

(a) sup
x∈R

∣∣∣∣∣P
{(

− T

2θ

)1/2

(θn,T,1 − θ) ≤ x

}
− Φ(x)

∣∣∣∣∣ = O(βn,T ),

(b) sup
x∈R

∣∣∣P {I
1/2
n,T (θn,T,1 − θ) ≤ x

}
− Φ(x)

∣∣∣ = O(βn,T ),

(c) sup
x∈R

∣∣∣∣∣P
{(

T

2|θn,T,1|
)1/2

(θn,T,1 − θ) ≤ x

}
− Φ(x)

∣∣∣∣∣ = O(βn,T ).
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Proof. (a) From (1.8), we have

In,T θn,T,1 =
1
2
(X2

T − T )

=
∫ T

0

XtdXt

=
∫ T

0

XtdWt + θ

∫ T

0

X2
t dt

= YT + θIT .

Thus (− T
2θ

)1/2
(θn,T,1 − θ)

=
(− T

2θ )1/2YT + θ(− T
2θ )1/2(IT − In,T )

In,T

=
(− 2θ

T )1/2YT + (− 2θ
T )1/2(IT − In,T )

(− 2θ
T )In,T

.

(4.1)

Now

sup
x∈R

∣∣∣∣∣P
{(

− T

2θ

)1/2

(θn,T,1 − θ) ≤ x

}
− Φ(x)

∣∣∣∣∣
= sup

x∈R

∣∣∣∣∣P
{

(− 2θ
T )1/2YT + (− 2θ

T )1/2(IT − In,T )
(− 2θ

T )In,T

≤ x

}
− Φ(x)

∣∣∣∣∣
≤ sup

x∈R

∣∣∣∣P
{

(−2θ

T
)1/2YT ≤ x

}
− Φ(x)

∣∣∣∣+ P

{∣∣∣∣θ(−2θ

T
)1/2(In,T − IT )

∣∣∣∣ > ε

}

+P

{∣∣∣∣
(
−2θ

T

)
In,T − 1

∣∣∣∣ > ε

}
+ 2ε

≤ CT−1/2 + θ2 (− 2θ
T )E |In,T − IT |2

ε2
+ C exp(

Tθ

4
ε2) + C

T 2

n2ε2
+ 2ε (4.2)

≤ CT−1/2 + C
T 3

n2ε2
+ C exp(

Tθ

4
ε2) + C

T 2

n2ε2
+ ε. (4.3)

(by Lemma 3.2 (c))

Here the bound for the 3rd term in the r.h.s. of (4.2) is from (3.8).
Choosing ε = CT−1/2(log T )1/2, the terms in the r.h.s. of (4.3) are of the

order
O(T−1/2(log T )1/2

∨
T 4

n2 (log T )−1).

(b) From (4.1), we have

I
1/2
n,T (θn,T,1 − θ) =

YT + θ(IT − In,T )

I
1/2
n,T

.
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Now

sup
x∈R

∣∣∣P {I
1/2
n,T (θn,T,1 − θ) ≤ x

}
− Φ(x)

∣∣∣
= sup

x∈R

∣∣∣∣∣P
{

YT

I
1/2
n,T

+ θ
IT − In,T

I
1/2
n,T

≤ x

}
− Φ(x)

∣∣∣∣∣
≤ sup

x∈R

∣∣∣∣∣P
{

YT

I
1/2
n,T

≤ x

}
− Φ(x)

∣∣∣∣∣+ P

{∣∣∣∣∣θ(IT − In,T )

I
1/2
n,T

∣∣∣∣∣ > ε

}
+ ε

=: U1 + U2 + ε.

(4.4)

We have from (3.8),

U1 ≤ CT−1/2 + C exp(
Tθ

16
ε2) + C

T 2

n2ε2
+ ε. (4.5)

Now

U2 = P

{
|θ|
∣∣∣∣∣In,T − IT

I
1/2
n,T

∣∣∣∣∣ > ε

}

= P

⎧⎨
⎩|θ|

∣∣(− 2θ
T )1/2(In,T − IT )

∣∣∣∣∣(− 2θ
T )1/2I

1/2
n,T

∣∣∣ > ε

⎫⎬
⎭

≤ P

{∣∣∣∣(−2θ

T
)1/2

∣∣∣∣ |In,T − IT | > δ

}
+ P

{∣∣∣∣(−2θ

T
)1/2I

1/2
n,T − 1

∣∣∣∣ > δ1

}
(where δ = ε − Cε2 and δ1 = (ε − δ)/ε > 0)

≤ (−2θ

T
)
E|In,T − IT |2

δ2
+ P

{∣∣∣∣(−2θ

T
)In,T − 1

∣∣∣∣ > δ1

}
(4.6)

≤ C
T 3

n2δ2
+ C exp(

Tθ

16
δ2
1) + C

T 2/n2

δ2
1

. (4.7)

Here the bound for the first term in the r.h.s. of (4.6) comes from Lemma
3.2(c) and that for the second term is from J2 in (3.8).

Now using the bounds (4.5) and (4.7) in (4.4) with ε = CT−1/2(log T )1/2, we
obtain that the terms in (4.4) is of the order O(T−1/2(log T )1/2

∨
T 4

n2 (log T )−1).

(c) Let GT = {|θn,T,1 − θ| ≤ dT } and dT = CT−1/2(log T )1/2. On the set
GT , expanding (2|θn,T,1|)1/2, we obtain,

(−2θn,T,1)−1/2 = (−2θ)1/2

[
1 − θ − θn,T,1

θ

]−1/2

= (−2θ)1/2[1 +
1
2
(
θ − θn,T,1

θ
) + O(d2

T ).
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Then

sup
x∈R

∣∣∣∣P
{

(
T

2|θn,T,1| )
1/2(θn,T,1 − θ) ≤ x

}
− Φ(x)

∣∣∣∣
≤ sup

x∈R

{
P (

T

2|θn,T,1| )
1/2(θn,T,1 − θ) ≤ x, GT

}
+ P (Gc

T ).

Now

P (Gc
T )

= P
{
|θn,T,1 − θ| > CT−1/2(log T )1/2

}
= P

{(
− T

2θ

)1/2

|θn,T,1 − θ| > C(log T )1/2(−2θ)−1/2

}

≤ C

(
T−1/2(log T )1/2

∨ T 4

n2
(log T )−1) + 2(1 − Φ log T 1/2(−2θ)−1/2

)
(by Theorem 4.1(a))

≤ C(T−1/2(log T )1/2
∨ T 4

n2
(log T )−1).

On the set GT , ∣∣∣∣∣
(

θn,T,1

θ

)1/2

− 1

∣∣∣∣∣ ≤ CT−1/2(log T )1/2

Hence upon choosing ε = CT−1/2(log T )1/2, C large

∣∣∣∣∣P
{(

T

−2θn,T,1

)1/2

(θn,T,1 − θ) ≤ x,GT

}
− Φ(x)

∣∣∣∣∣
≤
∣∣∣∣∣P
{(

T

−2θ

)1/2

(θn,T,1 − θ) ≤ x,GT

}

+P

{∣∣∣∣∣
(

θn,T

θ

)1/2

− 1

∣∣∣∣∣ > ε,GT

}
+ ε

(by Lemma 1.2.1 (b))

≤ C(T−1/2(log T )1/2
∨ T 4

n2
(log T )−1) (by Theorem 4.1(a)).

Theorem 4.2

sup
x∈R

|P
{

In,T (−2θ

T
)1/2(θn,T,1 − θ) ≤ x

}
− Φ(x)| = O(T−1/2

∨
(
T 3

n2
)1/3).

Proof: From (4.1) we have

In,T

(
−2θ

T

)1/2

(θn,T,1 − θ) = (−2θ

T
)1/2YT + θ(−2θ

T
)1/2(IT − In,T ).
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Hence by Corollary 1.2.3(a) and Lemma 3.2(c)

sup
x∈R

|P
{

In,T (−2θ

T
)1/2(θn,T,1 − θ) ≤ x

}
− Φ(x)|

= sup
x∈R

|P
{

(−2θ

T
)1/2YT + θ(−2θ

T
)1/2(IT − In,T ) ≤ x

}
− Φ(x)|

≤ sup
x∈R

|P
{

(−2θ

T
)1/2YT ≤ x

}
− Φ(x)|+P

{
|θ(−2θ

T
)1/2(IT − In,T )| > ε

}
+ε

≤ CT−1/2 + C
E|IT − In,T |2

Tε2
+ ε

≤ CT−1/2+C
T 3

n2ε2
+ ε

.

Choosing ε = (T 3

n2 )1/3, the theorem follows.

Theorem 4.3 |θn,T,1 − θT | = OP (T 2

n ).

Proof. We have from (2.3) θT = ZT /IT . By Itô formula it is easy to see that

θn,T,1 = ZT /In,T

Hence applying Lemma 3.7 with the aid of Lemma 3.2(c) the theorem follows.

Remarks

(1) The bounds in Theorem 3.3, 3.4, 4.1, 4.2 are uniform over compact subsets
of the parameter space.

(2) Theorems 3.3 and 3.4 are useful for testing hypothesis about θ. They do
not necessarily give confidence intervals. Theorems 3.3(b) and 3.3(c) are
useful for computation of a confidence interval.

(3) It may appear from Theorem 3.3 (a) that T
n1/2 → 0 is essential for the

asymptotic normality of θn,T . However it is not the case. Consider the
bound given in (3.11). For this to converge to 0, it is necessary that T

n → 0.
Let γn = T

n . It is easy to see from this bound that if there exists an εn

such that nγnε2n → ∞ and γ−1ε2n → ∞, then normal convergence holds
and a rate may also be found out. Consider in particular, T = nτ , τ > 0.
Then, γn = nτ−1. Hence we require nτ ε2n → ∞ and n1−τ ε2n → ∞. This is
possible for any τ > 1. Thus if T ≈ nτ , τ > 1, then normal convergence in
Theorem 3.3 (a) holds. Similar comment also holds for Theorem 3.3 (b),
(c) and Theorem 4.1.

(4) If T
n1/2 → 0 and T → ∞, then to obtain bound of the order T−1/2(log T )1/2

in Theorem 3.3 one needs n > T 5/2(log T )−3/2. To obtain bound of the
order T−1/2(log T )1/2 in Theorem 4.1 one needs n > T 9/4(log T )−3/4. To
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obtain bound of the order T−1/2 in Theorem 3.4 one needs n ≥ T 10. To
obtain bound of the order T−1/2 in Theorem 4.2 one needs n > T 9/4. To
obtain bound of the order 1

T in Theorem 3.5 one needs n ≥ T .
(5) The norming in Theorem 3.4 and 4.2 are random which also con-

tains the unknown parameter. It would be interesting to find the order
(T−1/2

∨
(T/n)1/3) and (T−1/2

∨
(T 3

n2 )1/3) respectively for the estimators
θn,T and θn,T,1 with completely random or completely non-random norm-
ing. The problem of obtaining rates of convergence of the CLSE in the
case of non-linear drift remains open.

(6) The bounds in Theorem 3.5 and Theorem 4.3 are identical with the bounds
obtained in Theorem 7.5.2 (ii) and Theorem 7.5.2 (iv) respectively.

(7) TheBerry-Esseen bounds for the estimator θn,T,1 inTheorem4.1 is sharper
than the corresponding bound for θn,T in Theorem 3.3. The Berry-Esseen
bounds for the estimator θn,T,1 in Theorem 4.2 is sharper than the cor-
responding bound for θn,T in Theorem 3.4. Also θn,T,1 converges to θT

at a faster rate than the rate at which θn,T converges to θT for fixed
T when n → ∞. This shows that θn,T,1 is a better estimator of θ than
θn,T . Extension of this problem to nonlinear drift case now remains open.
Berry-Esseen bounds in Theorems 3.4 and 4.2 show that rapidly increasing
experimental design condition (T → ∞ and T√

n
→ 0) is not essential for

the asymptotic normality of the estimators.
(8) In this Chapter we have only studied the rates of convergence of AMLEs in

the stable case i.e., when θ < 0. It would be interesting to investigate the
rates of convergence of AMLEs in the explosive case i.e., when θ > 0 and
the unstable (critical) case, i.e., when θ = 0. Note that in the explosive
case with nonrandom norming the limit distribution is Cauchy but with
random norming the limit distribution is normal.

(9) Here we have obtained uniform rates of convergence to normality. It would
be interesting to obtain nonuniform rates of convergence to normality
which are more useful.

(10) Levy driven Ornstein-Uhlenbeck process is the building block in stochastic
volatility modelling, see Barndorff-Neilsen and Shephard (2001). Lot of
work needs to be done in this direction.

8.5 Berry-Esseen Type Bounds for Approximate
Minimum Contrast Estimators

This section introduces some new approximate minimum contrast estimators
of the drift parameter in the Ornstein-Uhlenbeck process based on discretely
sampled data and obtains rates of weak convergence of the distributions of the
estimators to the standard normal distribution using random, nonrandom and
mixed normings.

The process {Xt} is observed at times 0 = t0 < t1 < · · · tn = T with
ti − ti−1 = T

n , i = 1, 2 · · · , n. We assume two types of high frequency data with
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long observation time:
1) T → ∞, n → ∞, T√

n
→ 0, 2) T → ∞, n → ∞, T

n2/3 → 0.
Let the continuous realization {Xt, 0 ≤ t ≤ T} be denoted by XT

0 . Let PT
θ

be the measure generated on the space (CT , BT ) of continuous functions on
[0, T ] with the associated Borel σ-algebra BT generated under the supremum
norm by the process XT

0 and let PT
0 be the standard Wiener measure. It is

well known that when θ is the true value of the parameter PT
θ is absolutely

continuous with respect to PT
0 and the Radon-Nikodym derivative (likelihood)

of PT
θ with respect to PT

0 based on XT
0 is given by

LT (θ) :=
dPT

θ

dPT
0

(XT
0 ) = exp

{
θ

∫ T

0

XtdXt − θ2

2

∫ T

0

X2
t dt

}
. (5.1)

Consider the score function, the derivative of the log-likelihood function, which
is given by

γT (θ) :=
∫ T

0

XtdXt − θ

∫ T

0

X2
t dt. (5.2)

A solution of the estimating equation

γT (θ) = 0 (5.3)

provides the conditional maximum likelihood estimate (MLE)

θ̂T :=

∫ T

0
XtdXt∫ T

0
X2

t dt.
(5.4)

Strictly speaking, θ̂T is not the maximum likelihood estimate of θ since θ̂T

may take positive values whereas the parameter θ is assumed to be strictly
negative. For an exact definition of MLE, see Kutoyants (1994). Nevertheless,
this definition of MLE is widely used. It is well known that θ̂T is strongly
consistent and T 1/2(θ̂T − θ) asymptotically N (0,−2θ) distributed as T → ∞
(see Kutoyants (1984)). Bishwal (2000a) obtained weak convergence bound of
the order O(T−1/2) for the MLE. Bishwal (2000b) obtained weak convergence
bound of the order O(T−1/2) for the Bayes estimators, with smooth priors and
loss functions.Thesetwopapersusedparameterdependentnonrandomnorming.
Bishwal (2001) obtained weak convergence bound of the order O(T−1/2) for
the MLE and Bayes estimators using two different random normings which
are useful for computation of a confidence interval. Bishwal and Bose (2001)
obtained weak convergence bound for two approximate maximum likelihood
estimators (AMLEs).

Note that in the stationary case where X0 has N (0,−1/2θ) distribution,
the exact log-likelihood function is given by

lT (θ) :=
1
2

log
(
− θ

π

)
− θ2

2

∫ T

0

X2
t dt +

(
θ

2

)
[X2

T + X2
0 ] +

θT

2
. (5.4)
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In this case the likelihood equation has two solutions:

θ̌T,1 =
[X2

T + X2
0 − T ] + {[X2

T + X2
0 ]2 − π

∫ T

0
X2

t dt}1/2

4
∫ T

0
X2

t dt
, (5.5)

θ̌T,2 =
[X2

T + X2
0 − T ] − {[X2

T + X2
0 ]2 − π

∫ T

0
X2

t dt}1/2

4
∫ T

0
X2

t dt
. (5.6)

As an alternative to maximum likelihood method and to obtain estimators with
higher order accuracy our aim is to use contrast functions. Using Itô formula,
the score function γT (θ) can be written as

γT (θ) =
1
2
X2

T −
∫ T

0

(θX2
t +

1
2
)dt. (5.7)

Consider the estimating function

MT (θ) = −
∫ T

0

(θX2
t +

1
2
)dt (5.8)

and the minimum contrast estimate (MCE)

θ̃T := −T

2

{∫ T

0

X2
t dt

}−1

. (5.9)

M -estimator is reduced to the minimum contrast estimator. It is well known
that θ̃T is strongly consistent and asymptotically N (0, −2θ) distributed as
T → ∞ (see Lanksa (1979)). The large deviations of θ̂T and θ̃T were obtained
in Florens-Landais and Pham (1999). In particular, it was shown the large
deviation probabilities of θ̂T are identical to those of θ̃T for θ ≤ θ0/3 but weaker
for θ > θ0/3 where θ0 is the true value of the parameter. However, as far as the
rate of convergence to normality is concerned, Bishwal (2004a) showed that θ̂T

and θ̃T have the same Berry-Esseen bound of the order O(T−1/2).
In this section we obtain weak convergence bounds for several approximate

minimum contrast estimators (AMCEs) which are simpler and robust. In order
to define the approximate minimum contrast estimators (AMCEs), we use
various discrete approximations of the integral in the definition (5.9) of MCE.

Define a weighted sum of squares

Mn,T :=
T

n

{
n∑

i=1

wti
X2

ti−1
+

n+1∑
i=2

wti
X2

ti−1

}
. (5.10)

where wti
≥ 0 is a weight function.

Denote the discrete increasing functions
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In,T :=
T

n

n∑
i=1

X2
ti−1

, (5.11)

Jn,T :=
T

n

n+1∑
i=2

X2
ti−1

=
T

n

n∑
i=1

X2
ti

. (5.12)

General weighted AMCE is defined as

θ̃n,T := −
{

2
n

Mn,T

}−1

. (5.13)

With wti
= 1, we obtain the forward AMCE as

θ̃n,T,F := −
{

2
n

In,T

}−1

. (5.14)

With wti
= 0, we obtain the backward AMCE as

θ̃n,T,B := −
{

2
n

Jn,T

}−1

. (5.15)

Analogous to the estimators for the discrete AR (1) model, we define the
simple symmetric and weighted symmetric estimators (see Fuller (1996)):

With wti
= 0.5, the simple symmetric AMCE is defined as

θ̃n,T,z := −
{

1
n

[In,T + Jn,T ]
}−1

= −
{

2
n

n∑
i=2

X2
ti−1

+ 0.5(X2
t0 + X2

tn
)

}−1

.

(5.16)
With the weight function

wti
=

⎧⎨
⎩

0 : i = 1
i−1
n : i = 2, 3, · · · , n
1 : i = n + 1

the weighted symmetric AMCE is defined as

θ̃n,T,w := −
{

2
n

n∑
i=2

X2
ti−1

+
1
n

n∑
i=1

X2
ti−1

}−1

. (5.17)

Note that estimator (1.13) is analogous to the trapezoidal rule in numerical
analysis. One can instead use the midpoint rule to define another estimator

θ̃n,T,A := −
{

2
n

n∑
i=1

(
Xti−1 + Xti

2

)2
}−1

. (5.18)
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One can use the Simpson’s rule to define another estimator where the denom-
inator is a convex combination of the denominators in (1.11) and (1.12)

θ̃n,T,S := −
{

1
3n

n∑
i=1

{
X2

ti−1
+ 4

(
Xti−1 + Xti

2

)2

+ X2
ti

}}−1

. (5.19)

In general, one can generalize Simpson’s rule as

θ̃n,T,GS := −
{

2
n

n∑
i=1

{
α

X2
ti−1

+ X2
ti

2
+ (1 − α)

(
Xti−1 + Xti

2

)2
}}−1

(5.20)
for any 0 ≤ α ≤ 1. The case α = 0 produces the estimator (5.18). The case
α = 1 produces the estimator (5.17). The case α = 1

3 produces the estimator
(5.19).

We propose a very general form of the quadrature based estimator as

θ̃n,T,w := −
⎧⎨
⎩ 2

n

n∑
i=1

m∑
j=1

[
(1 − sj)Xti−1 + sjXti

]2
pj

⎫⎬
⎭

−1

(5.21)

where pj , j ∈ {1, 2, · · · ,m} is a probability mass function of a discrete random
variable S on 0 ≤ s1 < s2 < · · · < sm ≤ 1 with P (S = sj) := pj , j ∈
{1, 2, · · · ,m}.
Denote the k-th moment of the random variable S as μk :=

∑m
j=1 sk

j pj , k =
1, 2, · · · .

If one chooses the probability distribution as uniform distribution for
which the moments are a harmonic sequence (μ1, μ2, μ3, μ4, μ5, μ6, · · · ) =
(1
2 , 1

3 , 1
4 , 1

5 , 1
7 , · · · ) then there is no change in rate of convergence than second

order. If one can construct a probability distribution for which the harmonic
sequence is truncated at a point, then there is a rate of convergence improvement
at the point of truncation.

Given a positive integer m, construct a probability mass function pj , j ∈
{1, 2, · · · ,m} on 0 ≤ s1 < s2 < · · · < sm ≤ 1 such that

m∑
j=1

sr
jpj =

1
r + 1

, r ∈ {0, · · · , m − 2} (5.22)

m∑
j=1

sm−1
j pj �= 1

m
. (5.23)

Neither the probabilities pj nor the atoms, sj, of the distribution are specified
in advance.

This problem is related to the truncated Hausdorff moment problem. I
obtain examples of such probability distributions and use them to get higher
order accurate (up to sixth order) AMCEs.



8.5 Berry-EsseenTypeBoundsforApproximateMinimumContrastEstimators 183

The order of approximation error (rate of convergence) of an estimator is
n−ν where

ν := inf
{

k : μk �= 1
1 + k

, μj =
1

1 + j
, j = 1, 2, · · · , k − 1

}
. (5.24)

We construct probability distributions satisfying these moment conditions and
obtain estimators of the rate of convergence up to order 6.

Probability p1 = 1 at the point s1 = 0 gives the estimator (5.11) for which
μ1 = 0. Note that μ1 �= 1

2 . Thus ν = 1.
Probability p1 = 1 at the point s1 = 1 gives the estimator (5.12) for which

μ1 = 1. Note that μ1 �= 1
2 . Thus ν = 1.

Probabilities (p1, p2) = (1
2 , 1

2 ) at the respective points (s1, s2) = (0, 1)
produces the estimator θ̃n,T,Z for which (μ1, μ2) = (1

2 , 1
4 ). Thus ν = 2.

Probability pj = 1 at the point sj = 1
2 produce the estimator θ̃n,T,A for

which (μ1, μ2) = (1
2 , 1

2 ). Thus ν = 2.
Probabilities (p1, p2) = (1

4 , 3
4 ) at the respective points (s1, s2) = (0, 2

3 )
produce the asymmetric estimator

θ̃n,T,3 := −
{

2
n

1
4

∑n
i=1

[
(Xti−1)

2 + 3(
Xti−1+2Xti

3 )2
]}−1

(5.25)

for which (μ1, μ2, μ3) = (1
2 , 1

3 , 2
9 ) . Thus ν = 3.

Probabilities (p1, p2) = 3
4 , 1

4 at therespectivepoints (s1, s2) = (1
3 , 1)produce

asymmetric estimator

θ̃n,T,4 := −
{

2
n

1
4

∑n
i=1

[
3(

2Xti−1+Xti

3 )2 + (Xti
)2
]}−1

(5.26)

for which (μ1, μ2, μ3) = (1
2 , 1

3 , 10
36 ). Thus ν = 3.

Probabilities (p1, p2, p3) = (1
6 , 2

3 , 1
6 ) at the respective points (s1, s2, s3) =

(0, 1
2 , 1) produce the estimator θ̃n,T,5 for which (μ1, μ2, μ3, μ4) = (1

2 , 1
3 , 1

4 , 5
25 ).

Thus ν = 4.
Probabilities (p1, p2, p3, p4) = (1

8 , 3
8 , 3

8 , 1
8 ) at the respective points (s1, s2, s3,

s4) = (0, 1
3 , 2

3 , 1) produce the symmetric estimator

θ̃n,T,5 :=

−
{

2
n

1
8

n∑
i=1

[
(Xti−1)

2 + 3(
2Xti−1 + Xti

3
)2 + 3(

Xti−1 + 2Xti

3
)2 + (Xti

)2
]}−1

(5.27)

for which (μ1, μ2, μ3, μ4) = (1
2 , 1

3 , 1
4 , 11

54 ). Thus ν = 4.
Probabilities (p1, p2, p3, p4, p5) = ( 1471

24192 , 6925
24192 , 1475

12096 , 2725
12096 , 5675

24192 , 1721
24192 ) at

the respective points (s1, s2, s3, s4, s5) = (0, 1
5 , 2

5 , 3
5 , 4

5 , 1) produce the asym-
metric estimator



184 8 Ornstein-Uhlenbeck Process

θ̃n,T,7 := −
{

2
n

1
24192

n∑
i=1

[
1471(Xti−1)

2 + 6925(
Xti−1 + Xti

5
)2

+2950(
2Xti−1 + 2Xti

5
)2 + 5450(

3Xti−1 + 3Xti

5
)2

+5675(
4Xti−1 + 4Xti

5
)2 + 1721(Xti

)2
]}−1

(5.28)

for which (μ1, μ2, μ3, μ4, μ5, μ6) = (1
2 , 1

3 , 1
4 , 1

5 , 841
5040 ). Thus ν = 5.

Probabilities (p1, p2, p3, p4, p5) = ( 7
90 , 16

45 , 2
15 , 16

45 , 7
90 ) at the respective points

(s1, s2, s3, s4, s5) = (0, 1
4 , 1

2 , 3
4 , 1) produce the symmetric estimator θ̃n,T,8 given

by

θ̃n,T,8 := −
{

2
n

1
90

n∑
i=1

[
7(Xti−1)

2 + 32(
3Xti−1 + Xti

4
)2 + 12(

Xti−1 + Xti

2
)2

+ 32(
Xti−1 + 3Xti

4
)2 +7(ti, Xti

)2
]}−1

(5.29)

for which (μ1, μ2, μ3, μ4, μ5, μ6) = (1
2 , 1

3 , 1
4 , 1

5 , 1
6 , 110

768 ). Thus ν = 6.

Probabilities (p1, p2, p3, p4, p5) = ( 19
288 , 75

288 , 50
288 , 50

288 , 75
288 , 19

288 ) at the respec-
tive points
(s1, s2, s3, s4, s5) = (0, 1

5 , 2
5 , 3

5 , 4
5 , 1) produce symmetric estimator

θ̃n,T,9 := −
{

2
n

1
288

n∑
i=1

[
19(Xti−1)

2 + 75(
4Xti−1 + Xti

5
)2 + 50(

3Xti−1 + 2Xti

5
)2

+ 50(
2Xti−1 + 3Xti

5
)2 + 75(

Xti−1 + 4Xti

5
)2 + 19(Xti

)2
]}

(5.30)

for which (μ1, μ2, μ3, μ4, μ5, μ6) = (1
2 , 1

3 , 1
4 , 1

5 , 1
6 , 3219

22500 ). Thus ν = 6.
The estimator θ̃n,T,S is based on the arithmetic mean of In,T and Jn,T . One

can use geometric mean and harmonic mean instead. The geometric mean based
symmetric AMCE (which is based on the ideas of partial autocorrelation) is
defined as

θ̃n,T,G :=
−T/2√
In,T Jn,T

(5.31)

The harmonic mean based symmetric AMCE is defined as

θ̃n,T,H :=
−T

1
In,T

+ 1
Jn,T

(5.32)

Note that
θ̃n,T,H ≤ θ̃n,T,G ≤ θ̃n,T,S . (5.33)
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It is a desirable property of an estimator to lie inside the parameter space. The
estimators θ̃n,T,H and θ̃n,T,G may lie inside the parameter space even if the
estimator θ̃n,T,F or θ̃n,T,B may not.

Note that the symmetric estimators use both the end points of observations.
These estimators are sufficient statistics. So one can take advantage of Rao-
Blackwell theorem. If one excludes the end points of observations (as in the
forward and the backward estimators), then the estimators will not be sufficient
statistics.

From a time series viewpoint, a discretely observed stationary Ornstein-
Uhlenbeck model is a nonlinear (in the parameter) autoregressive model given
by

Xti
= exp(θ(ti − ti−1)) + εi, i ≥ 1 (5.34)

where

εi :=
∫ ti

ti−1

exp{θ(ti − u)}dWu (5.36)

which are independent N
(
0, e2θ(ti−ti−1)−1

2θ

)
random variables. The errors are

heteroscedastic if the data points are unequally spaced, but aswe assume equally
spaced data points, the errors are homoscedastic and i.i.d. N (0, Vn,T (θ)) where

Vn,T (θ) :=
e2θ T

n − 1
2θ

. (5.37)

The log-likelihood is

ln,T (θ) := −n

2
log 2π − n

2
Vn,T (θ) − 1

2Vn,T (θ)

n∑
i=1

(
Xti

− e
T
n θXti−1

)2

. (5.38)

The exact maximum likelihood estimator based on equally spaced discrete
observations is explicit and is given by

θ̂n,T :=
n

T
log

∑n
i=1 X2

ti−1∑n
i=1 Xti

Xti−1

. (5.39)

Note that
θ̌n,T = 1 − n

T
exp{T

n
θ̂n,T }.

As far as the rate of convergence of this estimator to the continuous conditional
MLE is concerned, it is of first order.

The Euler estimator which is the conditional least squares estimator is given
by

θ̌n,T :=
n

T

∑n
i=1 Xti−1(Xti

− Xti−1)∑
i=1 X2

ti−1

. (5.40)



186 8 Ornstein-Uhlenbeck Process

Another contrast function, which is the least squares quadratic, is

κn,T (θ) :=
2θ

e2θ T
n − 1

n∑
i=1

(
Xti

− e
T
n θXti−1

)2

. (5.41)

The solution of κ′
n,T (θ) = 0 provides an AMCE but does not have an explicit

form.
The simple symmetric approximate MLE was introduced and studied in

MishraandBishwal (1995) foramoregeneraldiffusionprocess.Stochasticbound
between the difference the AMLE and the continuous MLE was obtained.

In this section, we obtain rate of weak convergence to normal distribution
of some AMCEs using different normings. We also obtain stochastic bound on
the difference of the AMCEs and their continuous counterpart MCE when T
is fixed.

We need the following lemmas in the sequel.

Lemma 5.1 (Bishwal (2000a)) For every δ > 0,

P

{∣∣∣∣2θ

T
IT − 1

∣∣∣∣ ≥ δ

}
≤ CT−1δ−2.

Lemma 5.2 (Bishwal (2000a))

sup
x∈R

∣∣∣∣∣P
{(

−2θ

T

)1/2(
θIT − T

2

)
≤ x

}
− Φ(x)

∣∣∣∣∣ ≤ CT−1/2.

Lemma 5.3

(a) E|In,T − IT |2 = O

(
T 4

n2

)
.

(b) E|In,T + Jn,T

2
− IT |2 = O

(
T 4

n2

)
.

Part (a) is from Bishwal and Bose (2001). The proof of part (b) is analogous
to part (a). We omit the details.

The following theorem gives the bound on the error of normal approxima-
tion of the AMCEs. Note that part (a) uses parameter dependent nonrandom
norming. While this is useful for testing hypotheses about θ, it may not neces-
sarily give a confidence interval. The normings in parts (b) and (c) are sample
dependent which can be used for obtaining a confidence interval. Following the-
orem shows that asymptotic normality of theAMCEsneedT → ∞ and T√

n
→ 0.

Theorem 5.1 Denote bn,T := O(max(T−1/2(log T )1/2, (T 4

n2 )(log T )−1)).

(a) sup
x∈R

∣∣∣∣∣P
{(

− T

2θ

)1/2

(θ̃n,T,F − θ) ≤ x

}
− Φ(x)

∣∣∣∣∣ = O(bn,T ),
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(b) sup
x∈R

∣∣∣P {I
1/2
n,T (θ̃n,T,F − θ) ≤ x

}
− Φ(x)

∣∣∣ = O(bn,T ),

(c) sup
x∈R

∣∣∣∣∣∣P
⎧⎨
⎩
(

T

2|θ̃n,T,F |

)1/2

(θ̃n,T,F − θ) ≤ x

⎫⎬
⎭− Φ(x)

∣∣∣∣∣∣ = O(bn,T ).

Proof (a) Observe that

(
− T

2θ

)1/2

(θ̃T − θ) =

(− 2θ
T

)1/2
YT(− 2θ

T

)
IT

(5.42)

where

YT := −θIT − T

2
and IT :=

∫ T

0

X2
t dt.

Thus, we have

In,T θ̃n,T,F = −T

2
= YT + θIT .

Hence,(
− T

2θ

)1/2

(θ̃n,T,F − θ)

=

(− T
2θ

)1/2
YT + θ

(− T
2θ

)1/2
(IT − In,T )

In,T

=

(− 2θ
T

)1/2
YT +

(− 2θ
T

)1/2
(IT − In,T )(− 2θ

T

)
In,T

(5.43)

Further,

P

{∣∣∣∣
(−2θ

T

)
(In,T − 1)

∣∣∣∣ > ε

}

=
{∣∣∣∣
(−2θ

T

)
(In,T − IT + IT ) − 1

∣∣∣∣ > ε

}

≤ P

{∣∣∣∣
(−2θ

T

)
IT − 1

∣∣∣∣ > ε

2

}
+ P

{(
−2θ

T

)
|In,T − IT | >

ε

2

}

≤ C exp
(

Tθ

16
ε2
)

+
16θ2

T 2

E|In,T − IT |2
ε2

≤ C exp
(

Tθ

16
ε2
)

+ C
T 2/n2

ε2
. (5.44)

Next, observe that

sup
x∈R

∣∣∣∣∣P
{(

− T

2θ

)1/2

(θ̃n,T,F − θ) ≤ x

}
− Φ(x)

∣∣∣∣∣
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= sup
x∈R

∣∣∣∣∣P
{(− 2θ

T

)1/2
YT +

(− 2θ
T

)1/2
(IT − In,T )(− 2θ

T

)
In,T

≤ x

}
− Φ(x)

∣∣∣∣∣
≤ sup

x∈R

∣∣∣∣∣P
{(

−2θ

T

)1/2

YT ≤ x

}
− Φ(x)

∣∣∣∣∣
+P

{∣∣∣∣∣θ
(
−2θ

T

)1/2

(In,T − IT )

∣∣∣∣∣ > ε

}
+ P

{∣∣∣∣
(
−2θ

T

)
In,T − 1

∣∣∣∣ > ε

}
+ 2ε

≤ CT−1/2 + θ2

(− 2θ
T

)
E|In,T − IT |2

ε2
+ C exp

(
Tθ

4
ε2
)

+C
T 2

n2ε2
+ 2ε, (5.45)

(the bound for the 3rd term in the right hand side of (2.4) is obtained
from (5.44))

≤ CT−1/2 + C
T 2

n2ε2
+ C exp

(
Tθ

4
ε2
)

+ C
T

n2ε2
+ ε (5.46)

(by Lemma 3.2(c)).

Choosing ε = CT−1/2(log T )1/2, the terms in the right hand side of (5.46) are
of the order O(max(T−1/2(log T )1/2, (T 4

n2 )(log T )−1)).

(b) From (5.42), we have

I
1/2
n,T (θ̃n,T,F − θ) =

YT + θ(IT − In,T )

I
1/2
n,T

.

Then,

sup
x∈R

∣∣∣P {I
1/2
n,T (θ̃n,T,F − θ) ≤ x

}
− Φ(x)

∣∣∣
= sup

x∈R

∣∣∣∣∣P
{

YT

I
1/2
n,T

+ θ
IT − In,T

I
1/2
n,T

≤ x

}
− Φ(x)

∣∣∣∣∣
≤ sup

x∈R

∣∣∣∣∣P
{

YT

I
1/2
n,T

≤ x

}
− Φ(x)

∣∣∣∣∣+ P

{∣∣∣∣∣θ(IT − In,T )

I
1/2
n,T

∣∣∣∣∣ > ε

}
+ ε

=: U1 + U2 + ε. (5.47)

We have from (5.44),

U1 ≤ CT−1/2 + C exp
(

Tθ

16
ε2
)

+ C
T 2

n2ε2
+ ε. (5.48)

Now,

U2 = P

{
|θ|
∣∣∣∣∣In,T − IT

I
1/2
n,T

∣∣∣∣∣ > ε

}
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= P

⎧⎨
⎩|θ|

∣∣∣(− 2θ
T

)1/2
(In,T − IT )

∣∣∣∣∣∣(− 2θ
T

)1/2
I
1/2
n,T

∣∣∣ > ε

⎫⎬
⎭

≤ P

{∣∣∣∣∣
(
−2θ

T

)1/2
∣∣∣∣∣ |In,T − IT | > δ

}

+P

{∣∣∣∣∣
(
−2θ

T

)1/2

I
1/2
n,T − 1

∣∣∣∣∣ > δ1

}
(5.49)

(where δ = ε − Cε2 and δ1 = (ε − δ)/ε > 0)

≤
(
−2θ

T

)
E|In,T − IT |2

δ2
+ P

{∣∣∣∣
(
−2θ

T

)
In,T − 1

∣∣∣∣ > δ1

}

≤ C
T 3

n2δ2
+ C exp

(
Tθ

16
δ2
1

)
+ C

T 2

n2δ2
1

. (5.50)

Here, the bound for the first term in the right hand side of (5.48) comes from
Lemma 3.2(c) and that for the second term is obtained from (5.44).

Now,using thebounds (5.48)and(5.50) in (5.47)with ε = CT−1/2(log T )1/2,
we obtain that the terms in (5.47) are of the order O(max(T−1/2(log T )1/2,

(T 4

n2 )(log T )−1)).

(c) Let

GT :=
{
|θ̃n,T,F − θ| ≤ dT

}
, and dT := CT−1/2(log T )1/2.

On the set GT , expanding (2|θ̃n,T |)1/2, we obtain

(−2θ̃n,T )−1/2

= (−2θ)1/2

[
1 − θ − θ̃n,T,F

θ

]−1/2

= (−2θ)1/2

[
1 +

1
2

(
θ − θ̃n,T,F

θ

)]
+ O(d2

T ).

Then,

sup
x∈R

∣∣∣∣∣∣P
⎧⎨
⎩
(

T

2|θ̃n,T,F |

)1/2

(θ̃n,T,F − θ) ≤ x

⎫⎬
⎭− Φ(x)

∣∣∣∣∣∣
≤ sup

x∈R

⎧⎨
⎩P

(
T

2|θ̃n,T |

)1/2

(θ̃n,T,F − θ) ≤ x,GT

⎫⎬
⎭+ P (Gc

T ).

Now,
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P (Gc
T ) = P

{
|θ̃n,T,F − θ| > CT−1/2(log T )1/2

}

= P

{(
− T

2θ

)1/2

|θ̃n,T,F − θ| > C(log T )1/2(−2θ)−1/2

}

≤ C max
(

T−1/2(log T )1/2,
T 3

n2
(log T )−1

)
+2(1 − Φ log T 1/2(−2θ)−1/2)
(by Theorem 5.1(a))

≤ C max
(

T−1/2(log T )1/2,
T 3

n2
(log T )−1

)
.

On the set GT , ∣∣∣∣∣∣
(

θ̃n,T,F

θ

)1/2

− 1

∣∣∣∣∣∣ ≤ CT−1/2(log T )1/2.

Hence, upon choosing ε = CT−1/2(log T )1/2, C large, we obtain∣∣∣∣∣∣P
⎧⎨
⎩
(

T

−2θ̃n,T,F

)1/2

(θ̃n,T,F − θ) ≤ x,GT

⎫⎬
⎭− Φ(x)

∣∣∣∣∣∣
≤
∣∣∣∣∣P
{(

T

−2θ

)1/2

(θ̃n,T,F − θ) ≤ x,GT

}∣∣∣∣∣
+P

⎧⎨
⎩
∣∣∣∣∣∣
(

θ̃n,T,F

θ

)1/2

− 1

∣∣∣∣∣∣ > ε,GT

⎫⎬
⎭+ ε

(by Lemma 1.1(b))

≤ C max
(

T−1/2(log T )1/2,
T 4

n2
(log T )−1

)
(by Theorem 2.1(a)).

In the following theorem, we improve the bound on the error of normal approxi-
mation using a mixture of random and nonrandom normings. Thus asymptotic
normality of the AMCEs need T → ∞ and T

n2/3 → 0 which are sharper than
the bound in Theorem 5.1.

Theorem 5.2 Let ρn,T = O

(
max

(
T−1/2,

(
T 3

n2

)1/3
))

.

sup
x∈R

∣∣∣∣∣P
{

In,T

(
−2θ

T

)1/2

(θ̃n,T,F − θ) ≤ x

}
− Φ(x)

∣∣∣∣∣ = O(ρn,T ).
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Proof From (2.2), we have

In,T

(
−2θ

T

)1/2

(θ̃n,T,F − θ) =
(
−2θ

T

)1/2

YT + θ

(
−2θ

T

)1/2

(IT − In,T ).

Hence, by Lemma 5.1–5.3

sup
x∈R

∣∣∣∣∣P
{

In,T

(
−2θ

T

)1/2

(θ̃n,T,F − θ) ≤ x

}
− Φ(x)

∣∣∣∣∣
= sup

x∈R

∣∣∣∣∣P
{(

−2θ

T

)1/2

YT + θ

(
−2θ

T

)1/2

(IT − In,T ) ≤ x

}
− Φ(x)

∣∣∣∣∣
≤ sup

x∈R

∣∣∣∣∣P
{(

−2θ

T

)1/2

YT ≤ x

}
− Φ(x)

∣∣∣∣∣
+P

{∣∣∣∣∣θ
(
−2θ

T

)1/2

(IT − In,T )

∣∣∣∣∣ > ε

}
+ ε

≤ CT−1/2 + C
E|IT − In,T |2

Tε2
+ ε ≤ CT−1/2 + C

T 3

n2ε2
+ ε.

Choosing ε = (T 3

n2 )1/3, the theorem follows.

The following theorem gives stochastic bound on the error of approximation
of the continuous MCE by AMCEs.

Theorem 5.3

(a) |θ̃n,T − θ̃T | = OP

(
T

n

)1/2

.

(b) |θ̃n,T,z − θ̃T | = OP

(
T 2

n2

)1/2

.

Proof From (5.9) and (5.14), we have

θ̃T = − T

2IT
, θ̃n,T = − T

2In,T
.

Hence, applying Lemma 2.1 with the aid of Lemma 5.3(a) and noting that
| In,T

T | = OP (1) and | IT

T | = OP (1) the part (a) of theorem follows.
From (5.9) and (5.16), we have

θ̃T = − T

2IT
, θ̃n,T,z = − T

In,t + Jn,T
.

Applying Lemma 2.1 with the aid of Lemma 5.3(b) and noting that
|Jn,T

T | = OP (1) and | IT

T | = OP (1) the part (b) of theorem follows.
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Remarks

(1) The bounds in Theorems 5.1 and 5.2 are uniform over compact subsets of
the parameter space.

(2) It remains to investigate the nonuniform rates of convergence to normality
which are more useful.

(3) Weak convergence rate for AMCE remains open when T → ∞ and T
n → 0.

(4) Weighted estimators converge faster than the unweighted estimators if the
weights are chosen according to (5.22) and (5.23).

8.6 Berry-Esseen Bounds for Approximate Bayes
Estimators

Using random, nonrandom and mixed normings, this section obtains uniform
rates ofweak convergence to the standardnormal distribution of the distribution
of several approximateBayes estimators andapproximatemaximumaposteriori
estimators of the drift parameter in the discretely observed Ornstein-Uhlenbeck
process from high frequency data.

TheOrnstein-Uhlenbeckprocess, also knownas theVasicekmodel infinance,
is widely used in modeling short term interest rates. Also this process is the
building block in stochastic volatility modelling, see Barndorff-Neilsen and
Shephard (2001). In view of this, it becomes necessary to estimate the unknown
parameters in the model from discrete data. In this section, we assume constant
volatility and without loss of generality assume it to be one. To estimate the drift
parameter, we adopt approximate Bayes estimation method and approximate
maximum a posteriori method. We study the accuracy of the distributional
approximation of the estimators from high frequency data.

We are motivated by the advent of complete record of quotes or transaction
prices for many financial assets. Although market microstructure effects (e.g.,
discreteness of prices, bid/ask bounce, irregular trading, etc.) means that there
is a mismatch between asset pricing theory based on semimartingales and the
data at every time intervals, it does suggest the desirability of establishing an
asymptotic distribution theory of estimation as we use more and more high
frequencyobservationswherewehave returns over increasinglyfiner timepoints.
We concentrate on refined central limit theorem, i.e., Berry-Esseen theorem.

This section deals with computational Bayesian method for parameter es-
timation. In computational Bayesian method, one seeks approximation the
posterior distribution. Ogunyemi, Hutton and Nelson (1993) studied approxi-
mate Bayes estimation for discrete stochastic processes which include birth and
death process and branching process, where they used normal approximation
of posterior, which is implied from the Bernstein-von Mises phenomenon. Our
approximate Bayesian estimation method for diffusions uses Riemann type
approximation of posterior distribution. An alternative way is to use particle
filtering where the approximation of posterior distribution is done by sequential
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monte-carlo method. More precisely, in the particle filtering method, which
is a sequential Bayes method, the posterior distribution is approximated by
a large set of Dirac-delta masses (samples/particles) that evolve randomly in
time according to the dynamics of the model and observations. Since particles
are interacting, classical i.i.d. limit results are not applicable. See Doucet et al.
(2001)for this exciting area of particle filtering.

Let the continuous realization {Xt, 0 ≤ t ≤ T} be denoted by XT
0 . Let PT

θ

be the measure generated on the space (CT , BT ) of continuous functions on
[0, T ] with the associated Borel σ-algebra BT under the supremum norm by
the process XT

0 and let PT
0 be the standard Wiener measure. It is well known

by Girsanov theorem that when θ is the true value of the parameter PT
θ is

absolutely continuous with respect to PT
0 and the Radon-Nikodym derivative

(conditional likelihood) of PT
θ with respect to PT

0 based on XT
0 is given by

dPT
θ

dPT
0

(XT
0 ) = exp

{
θ

∫ T

0

XtdXt − θ2

2

∫ T

0

X2
t dt

}
. (6.1)

Consider the score function, the derivative of the conditional log-likelihood
function, which is given by

LT,1(θ) :=
∫ T

0

XtdXt − θ

∫ T

0

X2
t dt. (6.2)

A solution of the conditional likelihood equation LT,1(θ) = 0 provides the
(conditional) maximum likelihood estimate (MLE)

θT,1 :=

∫ T

0
XtdXt∫ T

0
X2

t dt
. (6.3)

Using Itô formula, the score function LT,1(θ) can be written as

LT,2(θ) :=
1
2
X2

T −
∫ T

0

(θX2
t +

1
2
)dt. (6.4)

θT,2 :=
X2

T − T

2
∫ T

0
X2

t dt
. (6.5)

Consider the estimating function

LT,3(θ) := −
∫ T

0

(θX2
t +

1
2
)dt (6.6)

and the minimum contrast estimate (MCE)

θT,2 := − T

2
∫ T

0
X2

t dt.
(6.6)
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Let us introduce the Bayes procedure. Let λ(·) be the prior density which
is continuous and positive on the parameter space Θ.

The posterior density is given by

λT (θ|XT
0 ) :=

λ(θ)LT (θ)∫
Θ

λ(θ)LT (θ)dθ
.

For squared error loss, the Bayes estimator, which is the posterior mean, is
given by

˜̃
θT =

∫
Θ

θλT (θ|XT
0 )dθ.

The maximum a posteriori (MAP) estimator, which is the posterior mode, is
given by

ˆ̂
θT := arg max λT (θ|XT

0 ).

The maximum probability estimator (MPE) in the sense of Wolfowitz (1975)
is defined as

θ̄T = arg max
θ∈Θ

∫ θ+T−1/2

θ−T−1/2
λT (φ|XT

0 )dφ.

As it is a regular case, the Bernstein-von Mises theorem applies and the
posterior is asymptotically normal (see Bishwal (2000b)). Bishwal (2000b)
obtained weak convergence bound of the order O(T−1/2) for the posterior
distribution and Bayes estimator using nonrandom norming. Bishwal (2001)
obtained weak convergence bound of the order O(T−1/2) for the MLE and
Bayes estimators using two different random normings which are useful for
computation of a confidence interval.

Based one discrete observations, we consider the following three contrast
functions which are discretizations of LT,1, LT,2, LT,3 respectively:

Ln,T,1(θ) := θ

n∑
i=1

Xti−1(Xti
− Xti−1) −

θ2

2

n∑
i=1

X2
ti−1

(ti − ti−1),

Ln,T,2(θ) :=
θ

2
(X2

T − T ) − θ2

2

n∑
i=1

X2
ti−1

(ti − ti−1),

Ln,T,3(θ) := −θ2

2

n∑
i=1

X2
ti−1

(ti − ti−1).

Define the estimators

θn,T,i := arg max
θ

Ln,T,i, i = 1, 2, 3
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which are given by

θn,T,1 =
∑n

i=1 Xti−1(Xti
− Xti−1)∑n

i=1 X2
ti−1

(ti − ti−1)
,

θn,T,2 =
X2

T − T

2
∑n

i=1 X2
ti−1

(ti − ti−1)
,

θn,T,3 =
−T

2
∑n

i=1 X2
ti−1

(ti − ti−1)
.

Bishwal andBose (2001) obtainedweak convergencebounds for the approximate
maximum likelihood estimators (AMLEs) θn,T,1 and θn,T,2 where the later one
is shown to have sharper bound than the former. The weak convergence bound
for the approximate minimum contrast estimator θn,T,3 was obtained in Bishwal
(2006a) where it is shown that it has the same error bound as the estimator
θn,T,2, and moreover this estimator is robust and simple.

First order asymptotic theory of approximate Bayes estimators (ABEs) for
discretelyobservednonlineardiffusionprocesseswasfirst introducedandstudied
in Bishwal (1999c, 2005a). In this section, beyond the first order asymptotic
theory, we obtain the Berry-Esseen bounds of the ABEs for the Ornstein-
Uhlenbeck process.

We also study approximate maximum a posteriori estimators (AMAPEs).
The AML estimate can be seen as an approximate Bayes estimate when the loss
function is not specified. The AMAP estimate incorporates prior information.
The difference between AMAP and AML estimation lies in the assumption of
an appropriate prior distribution of the parameters to be estimated.

The approximate posterior densities are defined as

λn,T,i(θ|Xn,T
0 ) :=

λ(θ)Ln,T,i(θ)∫
Θ

λ(θ)Ln,T,i(θ)dθ
, i = 1, 2, 3.

We consider squared error loss function. The approximate Bayes estimators
(ABEs), which are the approximate posterior means, are given by

˜̃
θn,T,i :=

∫
Θ

θλn,T,i(θ|Xn,T
0 )dθ, i = 1, 2, 3.

The AMAPEi estimators are defined as

ˆ̂
θn,T,i := arg max

θ
λn,T,i(θ|Xn,T

0 ), i = 1, 2, 3.

If the parameter is assumed to be fixed but unknown, then there is no knowledge
abouttheparameter,whichisequivalenttoassuminganon-informativeimproper
prior. The above case then reduces to the familiar ML formulation.

We obtain Berry-Esseen bounds for the estimators ABEi := ˜̃
θn,T,i and

AMAPEi := ˆ̂
θn,T,i, i = 1, 2, 3.
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Note that θn,T,3 is not an approximateBayes estimator in the true sense since
Ln,T,3 is not an approximate likelihood, it is a pseudo likelihood. Nevertheless
we keep the terminology. It is an approximate generalised Bayes estimator in
the terminology in Strasser (1976).

We obtain various rates of convergence to normality of the ABEs and
AMAPEs using several normings. We also obtain stochastic bound on the
differencebetween theABEsandAMAPEs fromtheir corresponding continuous
counterparts.

Throughout the section ˜̃
θ refers to posterior mean and ˆ̂

θ refers to posterior
mode.

The following theorem gives the bound on the error of normal approximation
of theABEs andAMAPEs.Note that parts (a) and (d) use parameter dependent
nonrandom norming. While this is useful for testing hypotheses about θ, it may
not necessarily give a confidence interval. The normings in parts (b) (c), (e),
and (f) are sample dependent which can be used for obtaining a confidence
interval.

Theorem 6.1 Denote αn,T := O(max(T−1/2(log T )1/2, (T 3

n2 )(log T )−1)).

(a) sup
x∈R

∣∣∣∣∣P
{(

− T

2θ

)1/2

(˜̃θn,T,1 − θ) ≤ x

}
− Φ(x)

∣∣∣∣∣ = O(αn,T ),

(b) sup
x∈R

∣∣∣P {I
1/2
n,T (˜̃θn,T,1 − θ) ≤ x

}
− Φ(x)

∣∣∣ = O(αn,T ),

(c) sup
x∈R

∣∣∣∣∣∣P
⎧⎨
⎩
(

T

2| ˜̃θn,T,1|

)1/2

(˜̃θn,T,1 − θ) ≤ x

⎫⎬
⎭− Φ(x)

∣∣∣∣∣∣ = O(αn,T ),

(d) sup
x∈R

∣∣∣∣∣P
{(

− T

2θ

)1/2

(ˆ̂θn,T,1 − θ) ≤ x

}
− Φ(x)

∣∣∣∣∣ = O(αn,T ),

(e) sup
x∈R

∣∣∣P {I
1/2
n,T (ˆ̂θn,T,1 − θ) ≤ x

}
− Φ(x)

∣∣∣ = O(αn,T ),

(f) sup
x∈R

∣∣∣∣∣∣P
⎧⎨
⎩
(

T

2| ˆ̂θn,T,1|

)1/2

(ˆ̂θn,T,1 − θ) ≤ x

⎫⎬
⎭− Φ(x)

∣∣∣∣∣∣ = O(αn,T ).

The following theorem improves the Berry-Esseen bound in Theorem 2.1
using mixed norming.

Theorem 6.2 Let ρn,T = O

(
max

(
T−1/2,

(
T 3

n2

)1/3
))

.
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(a) sup
x∈R

∣∣∣∣∣P
{

In,T

(
−2θ

T

)1/2

(˜̃θn,T,1 − θ) ≤ x

}
− Φ(x)

∣∣∣∣∣ = O(ρn,T ),

(b) sup
x∈R

∣∣∣∣∣P
{

In,T

(
−2θ

T

)1/2

(ˆ̂θn,T,1 − θ) ≤ x

}
− Φ(x)

∣∣∣∣∣ = O(ρn,T ).

The following theorem shows that ABE2 and AMAPE2 have sharper Berry-
Esseen bounds than ABE1 and AMAPE1.

Theorem 6.3 Denote βn,T := O(max(T−1/2(log T )1/2, (T 4

n2 )(log T )−1)).

(a) sup
x∈R

∣∣∣∣∣P
{(

− T

2θ

)1/2

(˜̃θn,T,2 − θ) ≤ x

}
− Φ(x)

∣∣∣∣∣ = O(βn,T ),

(b) sup
x∈R

∣∣∣P {I
1/2
n,T (˜̃θn,T,2 − θ) ≤ x

}
− Φ(x)

∣∣∣ = O(βn,T ),

(c) sup
x∈R

∣∣∣∣∣∣P
⎧⎨
⎩
(

T

2|θ̃n,T,2|

)1/2

(˜̃θn,T,2 − θ) ≤ x

⎫⎬
⎭− Φ(x)

∣∣∣∣∣∣ = O(βn,T ).

(d) sup
x∈R

∣∣∣∣∣P
{(

− T

2θ

)1/2

(ˆ̂θn,T,2 − θ) ≤ x

}
− Φ(x)

∣∣∣∣∣ = O(βn,T ),

(e) sup
x∈R

∣∣∣P {I
1/2
n,T (ˆ̂θn,T,2 − θ) ≤ x

}
− Φ(x)

∣∣∣ = O(βn,T ),

(f) sup
x∈R

∣∣∣∣∣∣P
⎧⎨
⎩
(

T

2|θ̂n,T,2|

)1/2

(θ̂n,T,2 − θ) ≤ x

⎫⎬
⎭− Φ(x)

∣∣∣∣∣∣ = O(βn,T ).

The following theorem improves the Berry-Esseen bound in Theorem 3.1 using
mixed norming.

Theorem 6.4 Let ρn,T = O

(
max

(
T−1/2,

(
T 3

n2

)1/3
))

.

(a) sup
x∈R

∣∣∣∣∣P
{

In,T

(
−2θ

T

)1/2

(˜̃θn,T,2 − θ) ≤ x

}
− Φ(x)

∣∣∣∣∣ = O(ρn,T ).

(b) sup
x∈R

∣∣∣∣∣P
{

In,T

(
−2θ

T

)1/2

(ˆ̂θn,T,2 − θ) ≤ x

}
− Φ(x)

∣∣∣∣∣ = O(ρn,T ).

The following theorem shows that ABE3 has a sharper Berry-Esseen bound
than ABE1.
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Theorem 6.5 Denote γn,T := O(max(T−1/2(log T )1/2, (T 4

n2 )(log T )−1)).

(a) sup
x∈R

∣∣∣∣∣P
{(

− T

2θ

)1/2

(˜̃θn,T,3 − θ) ≤ x

}
− Φ(x)

∣∣∣∣∣ = O(γn,T ),

(b) sup
x∈R

∣∣∣P {I
1/2
n,T (˜̃θn,T,3 − θ) ≤ x

}
− Φ(x)

∣∣∣ = O(γn,T ),

(c) sup
x∈R

∣∣∣∣∣∣P
⎧⎨
⎩
(

T

2| ˜̃θn,T,3|

)1/2

(θ̃n,T,3 − θ) ≤ x

⎫⎬
⎭− Φ(x)

∣∣∣∣∣∣ = O(γn,T ).

(d) sup
x∈R

∣∣∣∣∣P
{(

− T

2θ

)1/2

(ˆ̂θn,T,3 − θ) ≤ x

}
− Φ(x)

∣∣∣∣∣ = O(γn,T ),

(e) sup
x∈R

∣∣∣P {I
1/2
n,T (ˆ̂θn,T,3 − θ) ≤ x

}
− Φ(x)

∣∣∣ = O(γn,T ),

(f) sup
x∈R

∣∣∣∣∣∣P
⎧⎨
⎩
(

T

2| ˆ̂θn,T,3|

)1/2

(θ̂n,T,3 − θ) ≤ x

⎫⎬
⎭− Φ(x)

∣∣∣∣∣∣ = O(γn,T ).

In the following theorem, we improve the bound on the error of normal approxi-
mation using a mixture of random and nonrandom normings. Thus asymptotic
normality of the ABE needs T → ∞ and T

n2/3 → 0 which are sharper than the
bound in Theorem 4.1.

The following theorem improves the Berry-Esseen bounds in Theorem 6.5
using mixed norming.

Theorem 6.6 Let ρn,T = O

(
max

(
T−1/2,

(
T 3

n2

)1/3
))

.

(a) sup
x∈R

∣∣∣∣∣P
{

In,T

(
−2θ

T

)1/2

(˜̃θn,T,3 − θ) ≤ x

}
− Φ(x)

∣∣∣∣∣ = O(ρn,T ).

(b) sup
x∈R

∣∣∣∣∣P
{

In,T

(
−2θ

T

)1/2

(ˆ̂θn,T,3 − θ) ≤ x

}
− Φ(x)

∣∣∣∣∣ = O(ρn,T ).

The following theorem gives bound on the error of approximation of the con-
tinuous BE by the discrete ABEs when T is fixed.

Theorem 6.7

(a) | ˜̃θn,T,1 − ˜̃
θT | = OP

(
T 2

n

)1/2

,

(b) | ˜̃θn,T,2 − ˜̃
θT | = OP

(
T 3

n2

)1/2

,
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(c) | ˜̃θn,T,3 − ˜̃
θT | = OP

(
T 4

n2

)1/2

.

Proof For i = 1, 2, 3, we have

˜̃
θn,T,i − ˜̃

θT

=
∫

Θ

θλn,T,i(θ|Xn,T
0 )dθ −

∫
Θ

θλ(θ|XT
0 )dθ

=
∫

Θ

θ
[
λn,T,i(θ|Xn,T

0 ) − λ(θ|XT
0 )
]
dθ

=
∫

Θ

θ

[
λ(θ)Ln,T,i(θ)∫

Θ
λ(θ)Ln,T,i(θ)dθ

− λ(θ)LT (θ)∫
Θ

λ(θ)LT (θ)dθ

]
dθ

=
∫

Θ

θλ(θ)
[

Ln,T,i(θ)∫
Θ

λ(θ)Ln,T,i(θ)dθ
− LT (θ)∫

Θ
λ(θ)LT (θ)dθ

]
dθ.

We have

|Ln,T,1(θ) − LT (θ)| = O

(
T 2

n

)1/2

,

|Ln,T,2(θ) − LT (θ)| = O

(
T 3

n2

)
,

|Ln,T,3(θ) − LT (θ)| = O

(
T 4

n2

)1/2

,

and hence∣∣∣∣
∫

Θ

θλ(θ)Ln,T,1(θ)dθ −
∫

Θ

θλ(θ)LT (θ)dθ

∣∣∣∣ = O

(
T 2

n

)1/2

,

∣∣∣∣
∫

Θ

θλ(θ)Ln,T,2(θ)dθ −
∫

Θ

θλ(θ)LT (θ)dθ

∣∣∣∣ = O

(
T 3

n2

)1/2

,

∣∣∣∣
∫

Θ

θλ(θ)Ln,T,3(θ)dθ −
∫

Θ

θλ(θ)LT (θ)dθ

∣∣∣∣ = O

(
T 4

n2

)1/2

.

An application of Lemma 2.1 gives the result.

Theorem 6.8

(a) | ˆ̂θn,T,1 − ˆ̂
θT | = OP

(
T 2

n

)1/2

,

(b) | ˆ̂θn,T,2 − ˆ̂
θT | = OP

(
T 3

n2

)1/2

,
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(c) | ˆ̂θn,T,3 − ˆ̂
θT | = OP

(
T 4

n2

)1/2

.

Proof. For i = 1, 2, 3, we have

ˆ̂
θn,T,i − ˆ̂

θT

= min
θ∈Θ

λn,T,i(θ|Xn,T
0 ) − min

θ∈Θ
λ(θ|XT

0 )

= min
θ∈Θ

[
λn,T,i(θ|Xn,T

0 ) − λ(θ|XT
0 )
]

= min
θ∈Θ

[
λ(θ)Ln,T,i(θ)∫

Θ
λ(θ)Ln,T,i(θ)dθ

− λ(θ)LT (θ)∫
Θ

λ(θ)LT (θ)dθ

]

= min
θ∈Θ

λ(θ)
[

Ln,T,i(θ)∫
Θ

λ(θ)Ln,T,i(θ)dθ
− LT (θ)∫

Θ
λ(θ)LT (θ)dθ

]
.

We have

|Ln,T,1(θ) − LT (θ)| = O

(
T 2

n

)1/2

,

|Ln,T,2(θ) − LT (θ)| = O

(
T 3

n2

)
,

|Ln,T,3(θ) − LT (θ)| = O

(
T 4

n2

)1/2

,

and hence ∣∣∣∣
∫

Θ

λ(θ)Ln,T,1(θ)dθ −
∫

Θ

λ(θ)LT (θ)
∣∣∣∣ = O

(
T 2

n

)1/2

,

∣∣∣∣
∫

Θ

λ(θ)Ln,T,2(θ)dθ −
∫

Θ

λ(θ)LT (θ)dθ

∣∣∣∣ = O

(
T 3

n2

)1/2

,

∣∣∣∣
∫

Θ

λ(θ)Ln,T,3(θ)dθ −
∫

Θ

λ(θ)LT (θ)dθ

∣∣∣∣ = O

(
T 4

n2

)1/2

.

An application of Lemma 2.1 gives the result.
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Local Asymptotic Normality for Discretely
Observed Homogeneous Diffusions

9.1 Introduction

InChapters7and8westudied the ratesof convergenceofapproximatemaximum
likelihood estimators (AMLEs) of the drift parameter appearing linearly in the
drift coefficient of linearly parametrized diffusion processes. In this Chapter we
consider the nonlinear homogeneous SDE

dXt = f(θ,Xt)dt + dWt, t ≥ 0
X0 = xo

where {Wt, t ≥ 0} is a one dimensional standard Wiener process, θ ∈ Θ, Θ
is a closed interval in R, f is a known real valued function defined on Θ × R,
the unknown parameter θ is to be estimated on the basis of observation of
the process {Xt, t ≥ 0}. Let θ0 be the true value of the parameter which is
in the interior of Θ. As in Chapters 4 and 5, we assume that the process
{Xt, t ≥ 0} is observed at 0 = t0 < t1 < . . . < tn = T with ti − ti−1 = T

n = h.
We estimate θ from the observations {Xt0 , Xt1 , . . . , Xtn

} ≡ Xn,h
0 . This model

was first studied by Dorogovcev (1976) who obtained weak consistency of the
conditional least squares estimator (CLSE) under some assumptions as T → ∞
and T

n → 0. We call it the slowly increasing experimental design (SIED)
condition. Kasonga (1988) obtained the strong consistency of the CLSE under
the SIED condition. Under some stronger regularity conditions Prakasa Rao
(1983) obtained theasymptotic normality andasymptotic efficiencyof theCLSE
as T → ∞ and T√

n
→ 0. This condition, i.e., T → ∞ and T√

n
→ 0 is called

the rapidly increasing experimental design (RIED) condition (see Prakasa Rao
(1988)). Florens-Zmirou (1989) studied minimum contrast estimator, based
on an Euler-Maruyama type first order approximate discrete time scheme of
the SDE. She showed L2-consistency of the estimator as T → ∞ and T

n → 0
and asymptotic normality of the estimator as T → ∞ and T

n2/3 → 0. We call
the last condition as the moderately increasing experimental design (MIED)
condition. Kessler (1997) studied the minimum contrast estimator based on
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the Euler scheme. He proved weak consistency of the estimator as T → ∞ and
T
n → 0 and asymptotic normality of the estimator as T → ∞ and T p

np−1 → 0
where p is an arbitrary integer which stands for the order of differentiability of
the drift function with respect to x. We call the last condition as the generally
increasing experimental design (GIED) condition. Stronger design condition
for asymptotic normality than for consistency implies that one needs larger
number of observations for asymptotic normality than for consistency. The
likelihood based estimators and the posterior densities are based on two types
of approximations of the continuous likelihood of the process {Xt} on an interval
[0, T ]. One approximate likelihood is based on the Itô type approximation of the
stochastic integral and the rectangular rule type approximation of the ordinary
integral in the continuous likelihood LT . Using this approximate likelihood,
Yoshida (1992) proved the consistency of an approximate maximum likelihood
estimator (AMLE) as T → ∞ and T

n → 0 and asymptotic normality of the
estimator asT → ∞ and T

n2/3 → 0.Our other approximate likelihood is based on
the Fisk-Stratonovich approximation of the stochastic integral and rectangular
rule type of approximation of the ordinary integrals in LT . We study the
asymptotic properties of approximate posterior density (APD), approximate
Bayes estimator (ABE), approximate maximum probability estimator (AMPE)
based on the two approximate likelihoods. The method used for the study of
asymptotic behaviour of estimators here are through the weak convergence of
the approximate likelihood ratio random field. We obtain asymptotic normality
of the conditional least squares estimator (CLSE) under weaker regularity
conditionsandweakerdesignconditions than inPrakasaRao(1983).Under some
regularity conditions, all the above estimators are shown to be asymptotically
normal and asymptotically efficient under the MIED condition. We also prove
the in probability versions of Bernstein-von Mises type theorems concerning the
convergence of suitably normalized approximate posterior densities to normal
density under the MIED condition.

The organization of the Chapter is as follows: In Section 9.2 we prepare
notations, assumptions and preliminaries. In Section 9.3 we study the weak
convergence of the approximate likelihood ratio random field. In Section 9.4 we
study the Bernstein-von Mises type theorems and the asymptotic behaviour of
different estimators.

This Chapter is adapted from Bishwal (2005b).

9.2 Model, Assumptions and Preliminaries

Recall that our observation process {Xt} satisfies the SDE

dXt = f(θ,Xt)dt + dWt, t ≥ 0
X0 = x0

(2.1)

We will use the following notations throughout the Chapter: ΔXi = Xti
−

Xti−1 , ΔWi = Wti
− Wti−1 , C is a generic constant independent of h, n and
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other variables (perhaps it may depend on θ). Prime denotes derivative w.r.t.
θ and dot denotes derivative w.r.t. x. Suppose that θ0 denote the true value of
the parameter and θ0 ∈ Θ.

If continuous observation of {Xt} on the interval [0, T ] were given, then the
likelihood function of θ would be (see Chapter 2)

LT (θ) = exp{
∫ T

0

f(θ,Xt)dXt − 1
2

∫ T

0

f2(θ,Xt)dt}, (2.2)

and the maximum likelihood estimate (MLE) would be

θT := arg max
θ∈Θ

LT (θ).

In our case we have discrete data and we have to approximate the likelihood
to compute the MLE. First, we take Itô type approximation of the stochastic
integral and rectangle rule approximation of the ordinary integral in (2.2) and
obtain the approximate likelihood function

Ln,T (θ) := exp

{
n∑

i=1

f(θ,Xti−1)(Xti
− Xti−1) −

h

2

n∑
i=1

f2(θ,Xti−1)

}
. (2.3)

Next, transforming the Itô integral in (2.2) toFisk-Stratonovich (FS) integral
(using (2.20) in Chapter 7), gives the continuous likelihood as

LT (θ) = exp{
∮ T

0

f(θ,Xt)dXt− 1
2

∫ T

0

.

f (θ,Xt)dt− 1
2

∫ T

0

f2(θ,Xt)dt}, (2.4)

We apply RFS type approximation of the stochastic integral and rectangular
approximation of the ordinary integrals in (2.4) and obtain the approximate
likelihood

∼
Ln,T (θ) := exp

{
1
2

∑n
i=1

[
f(θ,Xti−1) + f(θ,Xti

)
]
(Xti

− Xti−1)
−h

2

∑n
i=1

.

f (θ,Xti−1) − h
2

∑n
i=1 f2(θ,Xti−1)

}
.

(2.5)

The approximate maximum likelihood estimate (AMLE1) based on Ln,T is
defined as

θ̂n,T := arg max
θ∈Θ

Ln,T (θ).

The approximate maximum likelihood estimator (AMLE2) based on
∼
Ln,T is

defined as
ˆ̂
θn,T := arg max

θ∈Θ

∼
Ln,T (θ).

Consider the interval (θ − T−1/2, θ + T−1/2) for sufficiently large T and
define the integrated approximate likelihoods
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Dn,T (θ) =
∫ θ+T−1/2

θ−T−1/2
Ln,T (φ)dφ,

∼
Dn,T (θ) =

∫ θ+T−1/2

θ−T−1/2

∼
Ln,T (φ)dφ.

The approximate maximum probability estimator (AMPE1) based on Ln,T is
defined as

θ̄n,T := arg max
θ∈Θ

Dn,T (θ).

The approximate maximum probability estimator (AMPE2) based on
∼
Ln,T is

defined as
=

θn,T := arg max
θ∈Θ

∼
Dn,T (θ).

Supppose that Λ is a prior probability measure on (Θ,B) where B is the
σ-algebra of Borel subsets of Θ. Suppose that Λ has a density λ(·) with respect
to Lebesgue measure which is continuous and positive.

Let Mn,T : Θ × Θ → R, n ≥ 1, T ≥ 0 be loss functions with Mn,T (θ, φ) =
| θ − φ|α, α ≥ 1. An approximate posterior density (APD1) or pseudo-posterior
density of θ given the observations Xn,h

0 with respect to the approximate
likelihood Ln,T and the prior density λ(·) is given by

pn,T (θ|Xn,h
0 ) =

λ(θ)Ln,T (θ)∫
Θ

λ(θ)Ln,T (θ)dθ

Let t = T 1/2(θ − θ̂n,T ). Then the approximate posterior density (APD1) of
T 1/2(θ − θ̂n,T ) given Xn,h

0 is given by

p∗n,T (t|Xn,h
0 ) = T−1/2pn,T (θ̂n,T + T−1/2t|Xn,h

0 ).

This is the normalized pseudo-posterior density centered at the AMLE1.
Similarlyanotherapproximateposteriordensity (APD2)orpseudo-posterior

density based on
∼
Ln,T and the prior density λ(·) is given by

∼
pn,T (θ|Xn,h

0 ) =
λ(θ)

∼
Ln,T (θ)∫

Θ
λ(θ)

∼
Ln,T (θ)dθ

.

Let s = T 1/2(θ − ˆ̂
θn,T ). Then the approximate posterior density (APD2) of

T 1/2(θ − ˆ̂
θn,T ) given Xn,h

0 is given by

∼
p
∗
n,T (s|Xn,h

0 ) = T−1/2p∗n,T (ˆ̂θn,T + T−1/2s|Xn,h
0 ).

This is the normalized pseudo-posterior density centered at the AMLE2. Note
that APD1 and APD2 are not the posterior densities given discrete data Xn,h

0

since these are based on approximate likelihoods.
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An approximate Bayes estimator (ABE1) or pseudo-Bayes estimator with
respect to the loss function Mn,T and the prior density λ(·) is defined as

∼
θn,T := arg min

φ∈Θ
Bn,T (φ)

where Bn,T (φ) =
∫
Θ

Mn,T (θ, φ)pn,T (θ|Xn,h
0 )dθ is an pseudo-posterior risk.

Another approximate Bayes estimator (ABE2) or pseudo-Bayes estimator
is defined as ≈

θn,T := arg min
φ∈Θ

∼
Bn,T (φ)

where
∼
Bn,T (φ) =

∫
Θ

Mn,T (θ, φ)
∼
pn,T (θ|Xn,h

0 )dθ. The above six estimators

θ̂n,T ,
ˆ̂
θn,T , θ̄n,T ,

=

θn,T ,
∼
θn,T and

≈
θn,T are based on approximate likelihood func-

tions.
Consider the conditional least squares estimator (CLSE) (see Dorogocev

(1976), Kasonga (1989)) of θ as

θn,T := arg min
θ∈Θ

Qn,T (θ)

where

Qn,T (θ) :=
n∑

i=1

[
Xti

− Xti−1 − f(θ,Xti−1)h
]2

.

Consider the minimum contrast estimator (see Florens-Zmirou (1989) or the so
called Euler-Maruyama estimator (EME) (see Shoji (1997)) where the contrast
is constructed by using the Euler-Maruyama discretization scheme (see Kloeden
and Platen (1995)). Recall that the Euler-Maruyama discretization scheme for
the SDE (2.1) is given by

Yti
− Yti−1 = f(θ, Yti−1)h + Wti

− Wti−1 , i ≥ 1, Y0 = x0. (2.5)

The log-likelihood function of {Yti
, 0 ≤ i ≤ n} is given by

−1
2

n∑
i=1

{[
Yti

− Yti−1 − f(θ, Yti−1)h
]2

h
+ log(2πh)

}
. (2.6)

A contrast is derived from (2.6) by substituting {Yti
, 0 ≤ i ≤ n} with {Xti

, 0 ≤
i ≤ n}. The resulting contrast is given by

κn,T := −1
2

n∑
i=1

{[
Xti

− Xti−1 − f(θ,Xti−1)h
]2

h
+ log(2πh)

}
. (2.7)

Note that the AMLE1, CLSE and the EME are the same estimators as seen
from the following simple relationship:

AMLE1 = arg max
θ∈Θ

Ln,T (θ)
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= arg max
θ∈Θ

Ln,T (θ)h

= arg max
θ∈Θ

{
Ln,T (θ)h − 1

2

n∑
i=1

[
Xti

− Xti−1

]2}

= arg max
θ∈Θ

{
−1

2
Qn,T (θ)

}
= arg min

θ∈Θ
Qn,T (θ)

= CLSE.

On the otherhand,

CLSE = arg min
θ∈Θ

Qn,T (θ)

= arg max
θ∈Θ

{
−1

2
Qn,T (θ)

}

= arg max
θ∈Θ

−
{

1
2h

Qn,T (θ) − n

2
log

2π

h

}
= EME.

We assume that measurable versions of the above estimators exist. We
assume that the following conditions are satisfied:
(A1) There exists a constant K such that

|f(θ, x)| ≤ K(1 + |x|),
|f(θ, x) − f(θ, y)| ≤ K|x − y|.

(A2) The diffusion process X is ergodic with invariant measure ν, i.e., for any
g with E[g(·)] < ∞

1
n

n∑
i=1

g(Xti
)

P→
∫

R

g(x)ν(dx) as T → ∞ and h → 0.

(A3) For each p > 0, sup
t

E|Xt|p < ∞.

(A4) f(θ, x) is twice differentiable in θ ∈ Θ and

|f ′(θ, x)| + |f ′′(θ, x)| ≤ C(1 + |x|c),

|f ′(θ, x) − f ′(θ, y)| ≤ C|x − y|.
(A5)The functionf andf ′ are smooth inxandtheirderivativesareofpolynomial
growth order in x uniformly in θ.

(A6) Γ ≡ Γ(θ0) :=
∫

R

f ′2(θ0, x)ν(dx) > 0.

(A7) l(θ) has its unique maximum at θ = θ0 in Θ
where l(θ) =

∫
R

f(θ, x){f(θ0, x) − 1
2f(θ, x)}ν(dx).

(A8) f is twice continuously differentiable function in x with
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sup
t

E|
.

f (Xt)|2 < ∞, sup
t

E|f̈(Xt)|2 < ∞.

We shall use the following lemma in the sequel.

Lemma 2.1 (Yoshida (1990)): Let {ST (θ), θ ∈ Θ}, T ≥ 0 be a family of random
fields on Θ, a convex compact in R

k. Suppose that there exists constants p and
l such that p ≥ l > k, and for any θ, θ1, θ2,
(1) E|ST (θ2) − ST (θ1)|p ≤ C|θ2 − θ1|l,
(2) E|ST (θ)|p ≤ C,
(3) ST (θ) → 0 in probability,
where C is independent of θ, θ1, θ2 and T . Then

sup
θ∈Θ

|ST (θ)| → 0 in probability.

9.3 Weak Convergence of the Approximate Likelihood
Ratio Random Fields

Let θ = θ0 + T−1/2u, u ∈ R. Consider the approximate likelihood ratio (ALR)
random fields

Zn,T (u) =
Ln,T (θ)
Ln,T (θ0)

,
∼
Zn,T (u) =

∼
Ln,T (θ)
∼
Ln,T (θ0)

. (3.1)

Let
Aα,T := {u ∈ R : |u| ≤ α, θ0 + T−1/2u ∈ Θ}, α > 0,

ln,T (θ) :=
1
T

log Ln,T (θ),
∼
l n,T (θ) =

1
T

log
∼
Ln,T (θ),

and

Df(θ0, Xti−1 , u) := f(θ,Xti−1) − f(θ0, Xti−1) − T−1/2uf ′(θ0, Xti−1)

Yoshida (1992) proved the weak convergence of the ALR random field
Zn,T (u) through the following four lemmas. The proofs can be obtained from
from Yoshida (1992) when the diffusion coefficient is known. Lemma 3.2 is an
analogue of local asymptotic normality (LAN) for ergodic models.

Lemma 3.1 Under the assumptions (A1) - (A7), we have

sup
θ∈Θ

|ln,T (θ) − l(θ)| P→0 as T → ∞, n → ∞ and
T

n
→ 0.

Lemma 3.2 Under the assumptions (A1) - (A7), for all u ∈ R, we have

log Zn,T (u) = uΔn,T − 1
2
u2Γ + rn,T (u)
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where Δn,T
D→Δ, Δ ∼ N (0,Γ)and rn,T (u)

P→0 as T → ∞ and T
n2/3 → 0.

Lemma 3.3 Under the assumptions (A1) - (A7), for each ε > 0, we have

lim
δ→0

lim sup
T→∞, T

n2/3 →0

P

{
sup

u1,u2∈Aα,T ,|u2−u1|≤δ

| log Zn,T (u2) − log Zn,T (u1)| > ε

}
= 0.

Lemma 3.4 Under the assumption (A1) - (A7), for each ε > 0, we have

lim
α→∞ lim sup

T→∞, T

n2/3 →0

P

{
sup
|u|≥α

Zn,T (u) > ε

}
= 0.

We prove the weak convergence of the ALR random field
∼
Zn,T (u) through the

following lemmas.
Lemma 3.5 Under the assumptions (A1) - (A8),

sup
θ∈Θ

|∼l n,T (θ) − l(θ)| P→0 as T → ∞ and
T

n
→ 0.

Proof: We have

∼
l n,T (θ) = T−1

n∑
i=1

f(θ,Xti−1) + f(θ,Xti
)

2
(Xti

− Xti−1)

− 1
2
T−1h

n∑
i=1

.

f (θ,Xti−1) −
1
2
T−1h

n∑
i=1

f2(θ,Xti−1)

=

{
T−1

n∑
i=1

f(θ,Xti−1) + f(θ,Xti
)

2
ΔWi − 1

2
T−1h

n∑
i=1

.

f (θ,Xti−1)

}

+
1
2
T−1

n∑
i=1

∫ ti

ti−1

[
f(θ,Xti−1) + f(θ,Xti

)
]
f(θ,Xt)dt

− 1
2
T−1h

n∑
i=1

f2(θ,Xti−1)

=: F1 + F2 + F3.

Note that

F1 =

[{
T−1

n∑
i=1

f(θ,Xti−1) + f(θ,Xti
)

2
ΔWi − 1

2
T−1h

n∑
i=1

f(θ,Xti−1)

}

−T−1
n∑

i=1

f(θ,Xti−1)ΔWi

]
+ T−1

n∑
i=1

f(θ,Xti−1)ΔWi

=: G1 + G2.
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Further note that

G1 = T−1

{
n∑

i=1

f(θ,Xti−1) + f(θ,Xti
)

2
ΔWi −

∮ T

0

f(θ,Xt)dWt

}

− 1
2
T−1

{
h

n∑
i=1

.

f (θ,Xti−1) −
∫ T

0

.

f (θ,Xt)dt

}

−T−1

{
n∑

i=1

f(θ,Xti−1)ΔWi −
∫ T

0

f(θ,Xt)dWt

}

+T−1

{∮ T

0

f(θ,Xt)dWt − 1
2

∫ T

0

.

f (θ,Xt)dt −
∫ T

0

f(θ,Xt)dWt

}

=: J1 + J2 + J3 + 0.

The last term here is zero from the relation of Itô and RFS integrals (see (2.20)
of Chapter 7). By Theorem 7.3.1 (b), we have E|J1|2 ≤ C T

n2 . By Theorem 7.3.1
(a), we have E|J3|2 ≤ C

n . By Theorem 7.4.1, we have E|J2|2 ≤ C(T
n )2. Thus

E|G1|2 ≤ C(T
n )2.By Burkholder-Davis-Guindy inequality

E|G2|2 ≤ CT−1, E|F2|2 ≤ C, E|F3|2 ≤ C.

Thus E|∼l n,T (θ)|2 ≤ C. By (A5) we have, E|∼l n,T (θ2)−
∼
l n,T (θ1)|2 ≤ C|θ2−θ1|

for θ, θ1, θ2 ∈ Θ. Now use Lemma 2.1. The family of distributions of
∼
l n,T (·) on

the Banach space C(Θ) with sup-norm is tight. Since l(·) is a point of C(Θ)

and since by the ergodic property
∼
l n,T (θ)

P→l(θ) as T → ∞ and T
n → 0, hence

this completes the proof of the lemma.

The next lemma is an analogue of local asymptotic normality (LAN) for ergodic
models for the ALR random field

∼
Zn,T (u).

Lemma 3.6 Under the assumptions (A1) - (A8), for all u ∈ R,

log
∼
Zn,T (u) = u

∼
Δn,T − 1

2
u2Γ +

∼
γn,T (u)

where
∼
Δn,T

D→Δ, Δ ∼ N (0,Γ) and
∼
γn,T (u)

P→0 as T → ∞ and T
n2/3 → 0.

Proof: We have for θ = θ0 + T−1/2u,

log
∼
Zn,T (u) = log

∼
Ln,T (θ)
∼
Ln,T (θ0)

=
n∑

i=1

[
f(θ,Xti

) + f(θ,Xti−1)
2

− f(θ0, Xti
) + f(θ0, Xti−1)

2

]
ΔXi
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−h

2

n∑
i=1

[ .

f (θ,Xti−1)−
.

f (θ0, Xti−1)
]

−h

2

n∑
i=1

[
f2(θ,Xti−1) − f2(θ0, Xti−1)

]

=
1
2

n∑
i=1

[{f(θ,Xti
) − f(θ0, Xti

)} +
{
f(θ,Xti−1) − f(θ0, Xti−1)

}]
ΔWi

+
1
2

n∑
i=1

∫ ti

ti−1

[{f(θ,Xti
) − f(θ0, Xti

)}

+
{
f(θ,Xti−1) − f(θ0, Xti−1)

}]
f(θ0, Xt)dt

−h

2

n∑
i=1

[ .

f (θ,Xti−1)−
.

f (θ0, Xti−1)
]
− h

2

n∑
i=1

[
f2(θ,Xti−1) − f2(θ0, Xti−1)

]

= T−1/2u

n∑
i=1

f(θ0, Xti−1) + f(θ0, Xti
)

2
ΔWi

+
1
2

n∑
i=1

[
Df(θ0, Xti−1 , u) + Df(θ0, Xti

, u)
]
ΔWi

−h

2
T−1/2u

n∑
i=1

.

f ′ (θ0, Xti−1) −
h

2

n∑
i=1

D
.

f (θ0, Xti−1 , u)

+
1
2

n∑
i=1

∫ ti

ti−1

[{f(θ,Xti
) − f(θ0, Xti

)}

+
{
f(θ,Xti−1) − f(θ0, Xti−1)

}]
f(θ0, Xt)dt

−h

2

n∑
i=1

[
f(θ,Xti−1) − f(θ0, Xti−1)

]2

−
n∑

i=1

∫ ti

ti−1

[
f(θ,Xti−1) − f(θ0, Xti−1)

]
f(θ0, Xti−1)dt

=: u
∼
Δn,T − 1

2
Γn,T +

∼
ρn,T (u)

where

∼
Δn,T = T−1/2

[
n∑

i=1

f ′(θ0, Xti−1) + f ′(θ0, Xti
)

2
ΔWi − h

2

n∑
i=1

.

f ′ (θ0, Xti−1)

]
,

Γn,T = h

n∑
i=1

[
f(θ,Xti−1) − f(θ0, Xti−1)

]2
,

and
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∼
ρn,T (u)

=

{
n∑

i=1

D
.

f (θ0, Xti−1 , u) + Df(θ0, Xti
, u)

2
ΔWi − h

2

n∑
i=1

Df(θ0, Xti−1 , u)

}

+T−1/2u

n∑
i=1

∫ ti

ti−1

f ′(θ0, Xti−1)
[
f(θ0, Xt) − f(θ0, Xti−1)

]
dt

+
n∑

i=1

∫ ti

ti−1

Df(θ0, Xti−1 , u)
[
f(θ0, Xt) − f(θ0, Xti−1)

]
dt

+
1
2

n∑
i=1

∫ ti

ti−1

{[f(θ,Xti
) − f(θ0, Xti

)]

− [f(θ,Xti−1) − f(θ0, Xti−1)
]}

f(θ0, Xt)dt

=: S1(u) + S2(u) + S3(u) + S4(u).

Thus

log
∼
Zn,T (u) = u

∼
Δn,T − 1

2
Γn,T +

∼
ρn,T (u)

= u
∼
Δn,T − 1

2
u2Γ − 1

2
(Γn,T − u2Γ) +

∼
ρn,T (u)

=: u
∼
Δn,T − 1

2
u2Γ +

∼
γn,T (u).

Observe that

Γn,T − u2Γ

= h

n∑
i=1

[f(θ,Xti−1) − f(θ0, Xti−1)]
2 − u2Γ

= h

n∑
i=1

[T−1/2uf ′(θ0, Xti−1) + hDf(θ0, Xti−1 , u)]2 − u2Γ

=

{
hT−1u2

n∑
i=1

f ′2(θ0, Xti−1) − u2Γ

}

+h
n∑

i=1

[Df(θ0, Xti−1 , u]2 + 2hT−1u
n∑

i=1

f ′(θ0, Xti−1)Df(θ0, Xti−1 , u)

=: I1 + I2 + I3.

By ergodicity, we have I1 → 0 as T → ∞ and T
n → 0.

Note that by (3.10)

hE|
n∑

i=1

[Df(θ0, Xti−1 ]
2| ≤ CnhT−2u4 = CT−1u4 → 0 as T → 0.
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Hence I2
P→0 as T → ∞.

Further,

E|hT−1/2u

n∑
i=1

f ′(θ0, Xti−1)Df(θ0, Xti−1 , u)|

≤ hT−1/2u

n∑
i=1

E|f ′(θ0, Xti−1)Df(θ0, Xti−1 , u)|

≤ hT−1/2u

n∑
i=1

{
E[f ′(θ0, Xti−1)]

2E[Df(θ0, Xti−1 , u)]2
}1/2

≤ hT−1/2u
n∑

i=1

{
E[1 + |Xti−1 |c]2CT−2u4

}1/2
(by (A4))

≤ CnhT−3/2u3

= CT−1/2u3.

Hence I3
P→0 as T → ∞.

Now combining I1, I2 and I3, we have

Γn,T − u2Γ
P→0 as T → ∞ and

T

n
→ 0.

Next
∼
Δn,T

=

{
T−1/2

[
n∑

i=1

f ′(θ0, Xti−1) + f ′(θ0, Xti
)

2
ΔWi − h

2

n∑
i=1

.

f ′ (θ0, Xti−1)

]

−T−1/2
n∑

i=1

f ′(θ0, Xti−1)ΔWi

}
+ T−1/2

n∑
i=1

f ′(θ0, Xti−1)ΔWi

=: H3 + Δn,T .

Using arguments similar to obtain bounds for G1, we have H3
P→0 as T

n2/3 → 0.
Notice that with gi(t) := f ′(θ0, Xti−1) − f ′(θ0, Xt) for ti−1 ≤ t < ti, i =
1, 2, . . . , n,

E|T−1/2
n∑

i=1

f ′(θ0, Xti−1)ΔWi − T−1/2

∫ T

0

f ′(θ0, Xt)dWt|

= T−1/2E|
n∑

i=1

∫ ti

ti−1

f ′(θ0, Xti−1)dWt −
n∑

i=1

∫ ti

ti−1

f ′(θ0, Xt)dWt|

= T−1/2E|
n∑

i=1

∫ ti

ti−1

[
f ′(θ0, Xti−1) − f ′(θ0, Xt)

]
dWt|
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= T−1/2E|
∫ T

0

gi(t)dWt|

≤ T−1/2

{
E|
∫ T

0

gi(t)dWt|2
}1/2

= T−1/2

{∫ T

0

E|gi(t)|2dt

}1/2

≤ T−1/2

{∫ T

0

CE|Xti−1 − Xt|2dt

}1/2

(by (A4))

≤ CT−1/2

{
n∑

i=1

∫ ti

ti−1

(t − ti−1)dt

}1/2

(by (3.11) of Chapter 7)

≤ CT−1/2

{
n

(
T

n

)2
}1/2

≤ C

(
T

n

)1/2

.

Thus

T−1/2
n∑

i=1

f ′(θ0, Xti−1)ΔWi − T−1/2

∫ T

0

f ′(θ0, Xt)dWt
P→0 as

T

n
→ 0.

On the other hand, using the condition (A2), by the central limit theorem
for stochastic integrals (see Basawa and Prakasa Rao (1980, Theorem 2.1,
Appendix 2)),

T−1/2

∫ T

0

f ′(θ0, Xt)dWt
D→N (0,Γ) as T → ∞.

Hence Δn,T = T−1/2
n∑

i=1

f ′(θ0, Xti−1)ΔWi
D→N (0,Γ) as T → ∞ and

T

n
→ 0.

Thus to complete the proof of the lemma we have to show that
∼
ρn,T (u)

P→0.
Let us first estimate S1(u). Observe that

S1(u)

=

{[
n∑

i=1

Df(θ0, Xti−1 , u) + Df(θ0, Xti
, u)

2
ΔWi − h

2

n∑
i=1

D
.

f (θ0, Xti−1 , u)

]

−
n∑

i=1

Df(θ0, Xti−1 , u)ΔWi

}
+

n∑
i=1

Df(θ0, Xti−1 , u)ΔWi
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=: H4 + r1(u).

UsingargumentssimilartoobtainboundsforG1,wehaveH4
P→0 as T

n2/3 → 0.
Next

E(r2
1(u))

= E

[
n∑

i=1

Df(θ0, Xti−1 , u)ΔWi

]2

=
n∑

i=1

E|Df(θ0, Xti−1 , u)|2E|ΔWi|2

= h

n∑
i=1

E|Df(θ0, Xti−1 , u)|2

(3.9)

But
Df(θ0, Xt, u) = (θ − θ0)f ′(θ∗, Xt) − T−1/2uf ′(θ0, Xti−1)

(where |θ∗ − θ0| < T−1/2u)
= T−1/2u [f ′(θ∗, Xt) − f ′(θ0, Xt)] .

Hence
E|Df(θ0, Xti−1 , u)|2

= T−1u2E|f ′(θ∗, Xti−1) − f ′(θ0, Xti−1)|2
≤ T−1u2E|J(Xtj−1)(θ

∗ − θ0)|2
≤ T−2u4E[J2(X0)]
≤ CT−2u4.

(3.10)

Substituting (3.10) into (3.9), we obtain

E(r2
1(u)) ≤ CT−2u4nh

≤ CT−1.

Thus r1(u)
P→0 as T → ∞. Hence S1(u)

P→0 as T → ∞ and T
n2/3 → 0.

Next let us estimate S2(u). We have by Itô formula,

f(θ0, Xt) − f(θ0, Xti−1)

=
∫ t

ti−1

.

f (θ0, Xu)dXu +
1
2

∫ t

ti−1

f̈(θ0, Xu)du

=
∫ t

ti−1

.

f (θ0, Xu)dWu +
∫ t

ti−1

[f(θ0, Xu)
.

f (θ0, Xu) +
1
2
f̈(θ0, Xu)]du

=:
∫ t

ti−1

.

f (θ0, Xu)dWu +
∫ t

ti−1

F (θ0, Xu)du.

Thus

E|S2(u)|2

E|T−1/2u
n∑

i=1

∫ ti

ti−1

f ′(θ0, Xti−1)
[
f(θ0, Xt) − f(θ0, Xti−1)

]
dt|2
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= E|T−1/2u

n∑
i=1

∫ ti

ti−1

[
f ′(θ0, Xti−1)

.

f (θ0, Xu)dWu

+
∫ t

ti−1

f ′(θ0, Xti−1)F (θ0, Xu)du

]
dt|2

≤ 2T−1u2

{
E|

n∑
i=1

∫ ti

ti−1

∫ t

ti−1

f ′(θ0, Xti−1)
.

f (θ0, Xu)dWudt|2

+E|
n∑

i=1

∫ ti

ti−1

∫ t

ti−1

f ′(θ0, Xti−1)F (θ0, Xu)dudt|2
}

=: 2T−1u2(M1 + M2).

Observe that with Bi,t :=
∫ t

ti−1
f ′(θ0, Xti−1)

.

f (θ0, Xu)dWu, ti−1 ≤ t < ti,

and Bj,s :=
∫ s

tj−1
f ′(θ0, Xtj−1)

.

f (θ0, Xu)dWu, tj−1 ≤ s < tj , 1 ≤ i < j ≤ n,
we have

M1 =
n∑

i=1

E

(∫ ti

ti−1

Bi,tdt

)2

+
n∑

j �=i=1

E

(∫ ti

ti−1

Bi,tdt

)(∫ tj

tj−1

Bj,sds

)

≤
n∑

i=1

(ti − ti−1)
∫ ti

ti−1

E(B2
i,t)dt

(the second term is zero due to orthogonality of the integrals Bi,t and Bj,s)

≤
n∑

i=1

(ti − ti−1)
∫ ti

ti−1

{∫ t

ti−1

E
[
f ′(θ0, Xti−1)

.

f (θ0, Xu)
]2

du

}
dt

≤ C
T

n

n∑
i=1

∫ ti

ti−1

(t − ti−1)dt (by (A4) and (A3))

≤ C
T

n

n∑
i=1

(ti − ti−1)2

= C
T 3

n2
.

On the other hand, with Ni,t :=
∫ t

ti−1
f ′(θ0, Xti−1)F (θ0, Xu)du, ti−1 ≤ t < ti,

and Nj,s :=
∫ s

tj−1
f ′(θ0, Xti−1)F (θ0, Xu)du, tj−1 ≤ s < tj , 1 ≤ i < j ≤ n, we

have

M2 = E|
n∑

i=1

∫ ti

ti−1

∫ t

ti−1

f ′(θ0, Xti−1)F (θ0, Xu)dudt|2

= E|
n∑

i=1

∫ ti

ti−1

Ni,tdt|2
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=
n∑

i=1

E

(∫ ti

ti−1

Ni,tdt

)2

+
n∑

j �=i=1

E

(∫ ti

ti−1

Ni,tdt

)(∫ tj

tj−1

Nj,sds

)

≤
n∑

i=1

(ti − ti−1)E

(∫ ti

ti−1

Ni,tdt

)2

+
n∑

j �=i=1

{
E(
∫ ti

ti−1

Ni,tdt)2E(
∫ tj

tj−1

Nj,sds)2
}1/2

≤
n∑

i=1

(ti − ti−1)3/2

(∫ ti

ti−1

E(N2
i,t)dt

)1/2

+
n∑

j �=i=1

{
(ti − ti−1)

∫ ti

ti−1

E(N2
i,t)dt (tj − tj−1)

∫ tj

tj−1

E(N2
j,s)ds

}1/2

But E(N2
i,t) ≤ C(t − ti−1)2, 1 ≤ i ≤ n using (A4) and (A3). On substitution,

the last term is bounded by

C

n∑
i=1

(ti − ti−1)3 + C

n∑
j �=i=1

(ti − ti−1)2(tj − tj−1)2

= C
T 3

n2
+ C

n(n − 1)T 4

2n4
≤ C

T 4

n2

Hence

E|S2(u)|2 ≤ CT−1u2 T 4

n2
≤ C(

T

n2/3
)3u2.

Combining bounds for M1 and M2, we have S2(u)
P→0 as T

n2/3 → 0. Next let us
estimate S3(u). Note that

E|S3(u)|

= E|
n∑

i=1

∫ ti

ti−1

Df(θ0, Xti−1 , u)
[
f(θ0, Xt) − f(θ0, Xti−1)

]
dt|

≤
n∑

i=1

∫ ti

ti−1

E|Df(θ0, Xti−1 , u)||f(θ0, Xt) − f(θ0, Xti−1)|dt

≤
n∑

i=1

∫ ti

ti−1

{
E|Df(θ0, Xti−1 , u)|2E|f(θ0, Xt) − f(θ0, Xti−1)|2

}1/2
dt

≤
n∑

i=1

∫ ti

ti−1

{
CT−2u4E|Xt − Xti−1 |2

}1/2
dt (by (3.10) and (A1))

≤ CT−1u2
n∑

i=1

∫ ti

ti−1

(t − ti−1)1/2dt (by (3.11) of Chapter 7)
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≤ CT−1u2
n∑

i=1

∫ ti

ti−1

(ti − ti−1)1/2dt

≤ CT−1u2n

(
T

n

)3/2

≤ C

(
T

n

)1/2

u2.

Thus S3(u)
P→0 as T

n → 0. Next let us estimate S4(u). Note that

2S4(u)

=

n∑
i=1

∫ ti

ti−1

{
[f(θ, Xti) − f(θ0, Xti)] −

[
f(θ, Xti−1) − f(θ0, Xti−1)

]}
f(θ0, Xt)dt

= T−1/2u

n∑
i=1

∫ ti

ti−1

[
f ′(θ∗, Xti) − f ′(θ∗∗, Xti−1)

]
f(θ0, Xt)dt

where |θ∗ − θ0| < T−1/2u, |θ∗∗ − θ0| < T−1/2u.

Now proceeding similarly as in the proof of convergence of S2(u) to zero in

probability, it can be shown that S4(u)
P→0 as T

n2/3 → 0. This completes the
proof of the lemma.

Lemma 3.7 Under the assumptions (A1) - (A8), for each ε > 0,

lim
δ→0

lim sup
T→∞, T

n2/3 →0

P

{
sup

u1,u2∈Aα,T ,|u2−u1|≤δ
| log

∼
Zn,T (u2)− log

∼
Zn,T (u1)| > ε

}
=0.

Proof: From Lemma 3.6, we have∣∣∣log
∼
Zn,T (u2) − log

∼
Zn,T (u1)

∣∣∣
=
∣∣∣∣(u2 − u1)

∼
Δn,T − 1

2
(u2

2 − u2
1)Γ +

∼
γn,T (u2) −

∼
γn,T (u1)

∣∣∣∣
≤ |u2 − u1||

∼
Δn,T | + K|u2 − u1| + |∼γn,T (u2)| + |∼γn,T (u1)|

where K is a positive constant. Therefore

P

{
sup

u1,u2,∈Aα,T ,|u2−u1|≤δ

| log
∼
Zn,T (u2) − log

∼
Zn,T (u1)| > ε

}

≤ P
{
|∼Δn,T | + K >

ε

3δ

}
+ 2P

{
sup

u∈Aα,T

|∼γn,T (u1)| >
ε

3

}

Note that

P

{
sup

u∈Aα,T

|∼γn,T (u)| >
ε

3

}
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= P

{
sup
|u|≤α

|S1(u) + S2(u) + S3(u) + S4(u)| >
ε

6

}

+P

{
sup

u∈Aα,T

|Γn,T − u2Γ| >
ε

6

}

≤ P

{
sup
|u|≤α

|S1(u)| >
ε

24

}
+ P

{
sup
|u|≤α

|S2(u)| >
ε

24

}

+P

{
sup
|u|≤α

|S3(u)| >
ε

24

}
+ P

{
sup
|u|≤α

|S4(u)| >
ε

24

}

+P

{
sup

u∈Aα,T

|Γn,T − u2Γ| >
ε

6

}
.

By Burkholder-Davis-Gundy inequality and Novikov’s moment inequality it
can be proved that

E|Si(u)|2p ≤ C,

E|Si(u2) − Si(u1)|2p ≤ C|u2 − u1|2p, p > 1, i = 1, 2, 3, 4.

Since Si(u) →P 0 as T → ∞ and T
n2/3 → 0, i = 1, 2, 3, 4 from the proof of

Lemma 3.6, hence upon using Lemma 2.1, we have for i = 1, 2, 3, 4

sup
u∈Aα,T

|Si(u)| →P 0 as T → ∞ and
T

n2/3
→ 0.

Similarly it can be shown that

sup
u∈Aα,T

|Γn,T − u2Γ| →P 0 as T → ∞ and
T

n
→ 0.

Since
∼
Δn,T converges in distribution to N (0,Γ), hence

lim
δ→0

lim
T→∞, T

n2/3 →0
P

{
sup

u1,u2∈Aα,T ,|u2−u1|≤δ
| log

∼
Zn,T (u2)− log

∼
Zn,T (u1)| > ε

}
=0.

Lemma 3.8. Under the assumptions (A1) - (A8), we have for each ε > 0,

lim
α→∞ lim sup

T→∞, T

n2/3 →0

P

{
sup
|u|≥α

∼
Zn,T (u) > ε

}
= 0.

Proof: Since Γ is positive, there exists a number η such that ηu2 ≤ 1
4Γu2,

u ∈ R. By Lemma 3.6 log
∼
Zn,T (u) = u

∼
Δn,T − 1

2u2Γ +
∼
γn,T (u). Let S̄i(u) :=

1
1+u2 Si(u), i = 1, 2, 3, 4.
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and U1 :=
{
u : |u| ≤ δT 1/2

}
for any δ > 0. For p > 1,

E|S̄1(u)|2p ≤ CT−p,
E|S̄1(u2) − S̄1(u1)|2p ≤ CT−p|u2 − u1|2p.

Therefore, using Lemma 2.1, sup
u∈U1

|S̄1(u)| P→0 as T → ∞. Similarly it can be

shown that sup
u∈U1

|S̄3(u)| P→0 as
T

n
→ 0. Next

S2(u) = T−1/2u

n∑
i=1

∫ ti

ti−1

f ′(θ0, Xti−1)
[
f(θ0, Xt) − f(θ0, Xti−1)

]
dt

= T−1/2u

n∑
i=1

f ′(θ0, Xti−1)
∫ ti

ti−1

(∫ t

ti−1

.

f (θ0, Xu)dWu

)
dt

+T−1/2u

n∑
i=1

f ′(θ0, Xti−1)
∫ ti

ti−1

(∫ t

ti−1

[f(θ0, Xu)
.

f (θ0, Xu)

+ 1
2 f̈(θ0, Xu)]du

)
dt

(by Itô formula)
=: S21(u) + S22(u).

Define S̄2j(u) := 1
1+u2 S2j(u), j = 1, 2. It is easy to show that supu∈U1

|S̄22(u)

| P→0 as T
n2/3 → 0. As in the estimation of S̄1, we can show that for p ≥ 1,

E|S̄21(u)|2p ≤ C(
T

n
)p,

E|S̄21(u2) − S̄21(u1)|2p ≤ C(
T

n
)2p|u2 − u1|2p

Hence using Lemma 2.1, sup
u∈U1

|S̄21(u)| P→0 as
T

n
→ 0.

Thus sup
u∈U1

|∼ρn,T (u)|
1 + u2

P→0 as T → ∞ and
T

n2/3
→ 0.

On the other hand, for any ε > 0, if δ > 0 is small enough, by (A2) we have

lim
T→∞, T

n →0
P

{
sup
u∈U1

1
1 + u2

|u2Γ − Γn,T | < ε

}
= 1.

Note that
∼
γn,T :=

∼
ρn,T − 1

2
(Γn,T − u2Γ).

Hence, for any ε > 0, for small δ > 0, lim
T→∞, T

n →0
P{V c

n,T } = 0

where Vn,T := { sup
u∈U1

1
1 + u2

|∼γn,T (u)| < ε}.
Let ε < η. On the event Vn,T , if |u| ≤ δT 1/2, then



220 9 Local Asymptotic Normality

log
∼
Zn,T (u) ≤ |u||∼Δn,T | − 1

2
u2Γ + |∼γn,T (u)|

≤ |u||∼Δn,T | − 1
2
u2Γ + ε(1 + u2)

≤ |u||∼Δn,T | − 1
2
u2Γ + ηu2 + ε

≤ |u||∼Δn,T | − ηu2 + ε.

Let U2 := {u : q ≤ |u| ≤ δT 1/2} where q is a positive number. Then

P

{
sup
u∈U2

∼
Zn,T (u) ≥ exp(−ηq2

2
)
}

≤ P (V c
n,T ) + P

{
sup
u∈U2

(
|u||∼Δn,T | − ηu2

)
+ ε ≥ −ηq2

2

}

≤ o(1) + P

{
q|∼Δn,T | − ηq2 + ε ≥ −ηq2

2

}
+ P

{
|∼Δn,T | > 2ηq

}

≤ 2P

{
|∼Δn,T | >

ηq

2
− ε

q

}
+ o(1).

Let χ and τ be arbitrary positive numbers. For large q, exp(−ηq2

2 ) < τ and

lim sup
T→∞, T

n2/3 →0

P

{
|∼Δn,T | >

ηq

2
− ε

q

}
<

χ

3
.

Then lim sup
T→∞, T

n2/3 →0

P

{
sup
u∈U2

∼
Zn,T (u) ≥ τ

}
≤ χ.

Define U3 :=
{
u : |u| ≥ δT 1/2

}
and H1 := {y : |y| ≥ δ} . Then for v > 0, we

have

lim sup
T→∞, T

n2/3 →0

P

{
sup
u∈U3

∼
Zn,T (u) ≥ τ

}

= lim sup
T→∞, T

n2/3 →0

P

{
sup

y∈H1

[∼
l n,T (θ0 + y) − ∼

l n,T (θ0)
]
≥ T−1 log τ

}

≤ lim sup
T→∞, T

n2/3 →0

P

{
sup

y∈H1

[
∼
l n,T (θ0 + y) − l(θ0 + y) +

∼
l n,T (θ0) − l(θ0)] ≥ v

}

+ lim sup
T→∞, T

n2/3 →0

P

{
sup

y∈H1

[l(θ0 + y) − l(θ0)] ≥ T−1 log τ − v

}

If v is small the second term in the r.h.s. is zero. The first term tends to zero
from Lemma 3.5. Therefore, for τ > 0 and χ > 0, if q is large

lim sup
T→∞, T

n2/3 →0

P

{
sup
|u|≥q

∼
Zn,T (u) > τ

}
≤ χ.
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9.4 Asymptotics of Approximate Estimators
and Bernstein-von Mises Type Theorems

LetC0(R)be theBanachspaceof realvaluedcontinuous functionsonRvanishing
at the infinity with sup-norm. Let

Un,T =
{

u : θ0 + T−1/2u ∈ Θ
}

.

For u ∈ Un,T , Zn,T (u) and
∼
Zn,T (u) have been defined and extend it to an

element of C0(R) whose maximal points are contained in Un,T . Using the weak
convergence of the random field Zn,T (u) (Lemma 3.2, Lemma 3.3 and Lemma
3.4),weobtain the followingresults.BelowΔ ∼ N (0,Γ)asdefined inLemma3.2.

Theorem 4.1 Under the conditions (A1) - (A7), we have

Zn,T (·) D→Z(·) in C0(R) as T → ∞ and
T

n2/3
→ 0

where Z(·) = exp(uΔ − 1
2
u2Γ),

i.e., for any continuous functional g on C0(R)

E [g(Zn,T (·))] → E[g(Z(·))] as T → ∞ and
T

n2/3
→ 0.

In particular for the AMLE1, AMPE1, ABE1 and APD1, as T → ∞ and
T

n2/3 → 0,

(a) T 1/2(θ̂n,T − θ0)
D→Γ−1Δ ∼ N (0,Γ−1)

(b) T 1/2(θ̄n,T − θ0)
D→Γ−1Δ,

(c) T 1/2(
∼
θn,T − θ0)

D→Γ−1Δ,

(d)
∫ ∞

−∞

∣∣∣∣p∗n,T (t|Xn,h
0 ) − (

Γ
2π

)1/2 exp(−1
2
Γt2)

∣∣∣∣ dt
P→0.

Proof: We use Lemma 3.2, Lemma 3.3 and Lemma 3.4 to prove the theorem.
With the aid of these lemmas, following the arguments in the proof of Theorem
III.1.1 of Ibragimov and Hasminskii (1981) or Theorem 3.4.1 of Kutoyants
(1984a), (a) follows. Following the arguments in the proof of Theorem III.2.1
of Ibragimov and Hasminskii (1981) or Theorem 3.4.2 of Kutoyants (1984a) (c)
follows. Folowing the arguments in of Wolfowitz (1975), (b) follows. Following
thearguments inTheorem1 inGhosal,GhoshandSamanta (1995), (d) follows.
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Corollary 4.2 Under the assumptions of Theorem 4.1, we have
T 1/2(

∼
θn,T − θ̂n,T )

P→0 as T → ∞ and T
n2/3 → 0,

i.e., AMLE1 and ABE1 are asymptotically equivalent.

Proof Using Lemmas 3.2, Lemma 3.3 and Lemma 3.4, all the conditions of
Corollary 1 in Ghosal, Ghosh and Samanta (1995) are satisfied. Hence the result
follows from the said Corollary.

Theorem 4.3 Under the conditions (A1) - (A8), we have

∼
Zn,T (·) D→Z(·) in C0(R) as T → ∞ and

T

n2/3
→ 0

where Z(u) = exp(uΔ − 1
2
u2Γ),

i.e, for any continuous functional g on C0(R),

E
[
g(

∼
Zn,T (·))

]
→ E [g(Z(·))] as T → ∞ and

T

n2/3
→ 0.

In particular for the AMLE2, AMPE2, ABE2 and APD2, as T → ∞ and
T

n2/3 → 0,

(a) T 1/2(ˆ̂θn,T − θ0)
D→Γ−1Δ ∼ N (0,Γ−1)

(b) T 1/2(
=

θn,T − θ0)
D→Γ−1Δ,

(c) T 1/2(
≈
θn,T − θ0)

D→Γ−1Δ,

(d)
∫ ∞

−∞

∣∣∣∣∼p∗
n,T (s|Xn,h

0 ) − (
Γ
2π

)1/2 exp(−1
2
Γs2)

∣∣∣∣ ds
P→0

Proof: Using the weak convergence of the random field
∼
Zn,T (u) (Lemma 3.6,

Lemma 3.7 and Lemma 3.8) arguments are same as those for the proof of
Theorem 6.4.1.

Corollary 4.4 Under the assumptions of Theorem 4.2, we have

T 1/2(ˆ̂θn,T − ≈
θn,T )

P→0 as T → ∞ and T
n2/3 → 0,

i.e., AMLE2 and ABE2 are asymptotically equivalent.

Proof Using Lemma 3.6, Lemma 3.7 and Lemma 3.8 all the conditions
Corollary 1 in Ghosal, Ghosh and Samanta (1995). Hence the result follows
from the said Corollary.
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9.5 Example: Logistic Diffusion

Consider the stochastic analogue of the logistic growth model:

dXt = αXt(1 − Xt/β)dt + σXtdWt, X0 = x0 > 0, t ∈ [0, T ]

for positive parameters α, β and σ. This diffusion is useful for modeling the
growth of populations. The instantaneous population of some species Xt grows,
in the absence of any restraints, exponentially fast in t with growth rate per
individual equal to α. The actual evolution of the population is cut back by the
saturation inducing the term (1−Xt/β). The constant β is called the carrying
capacity of the environment and usually represents the maximum population
that can be supported by the resources of the environment. The parameter σ
represents the effect of the noise on the dynamics of X.

After setting Yt = − log(Xt)/σ, we obtain the SDE

dYt =
{

σ

2
− α

σ
+

α

σβ
exp(−σXt)

}
dt + dWt, Y0 = − log(x0)

σ
, t ∈ [0, T ].

The original process X does not hit 0 in finite time for any values of the
parameters with probability 1.

Remarks

(1) Theorem 4.1 (d) and Theorem 4.3 (d) give two versions of the Bernstein-von
Mises type theorem for discretely observed diffusions.

(2) For the conditional least squares estimator, Prakasa Rao (1983) using the
Cramer’s approach assumed stronger conditions on the drift function for
obtaining asymptotic normality, e.g., existence of third derivative of drift
function with respect to the parameter. Here we assume existence of only
second derivative through the Hajek-Le Cam approach. We also relax the
RIED condition by using the MIED condition.

(3) The problem of obtaining the rates of convergence to normality of the
AMLEs, the AMPEs, the ABEs and the CLSE now remain open.
The rates of convergence of approximate posterior densities to normal
density also remain open. Note that in the linear case we have shown in
Chapters 4 and 5 that AMLE2 has a faster rate of convergence than AMLE1.
We conjecture that the estimators and the posterior based on the second
type of approximate likelihood would have faster rates of convergence than
those based on the first type of approximate likelihood.

(4) Generalization of the results of this Chapter to multiparameter case is worth
investigating.

(5) It remains open if one can relax the MIED condition to obtain the limit
distributions of different estimators.
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Estimating Function for Discretely Observed
Homogeneous Diffusions

10.1 Introduction

This chapter shows that discretization after the application of Itô formula in the
Girsanov likelihood produces estimators of the drift which have faster rates of
convergence than theEuler estimator for stationary ergodic diffusions and is free
of approximating the stochastic integral. The discretization schemes are related
to the Hausdorff moment problem. Interalia we use a new stochastic integral
which will be of independent interest. We show strong consistency, asymptotic
normality and a Berry-Esseen bound for the corresponding approximate max-
imum likelihood estimators of the drift parameter from high frequency data
observed over a long time period.

Parameter estimation in diffusion processes based on discrete observations
is one of the hottest topic in finance in recent days, see Ait-Sahalia (2002),
Ait-Sahalia and Mykland (2003, 2004), Elerian et al. (2001), Duffie and Glynn
(2004), Bibby and Sorensen (1995), Kessler (1997), Clement (1997), Brandt and
Santa-Clara (2002), Genon-Catalot (1990). Here our aim is to study estimators
with higher order accuracy.

This chapter is adapted from Bishwal (2007a).
Suppose the diffusion process satisfies the Itô stochastic differential equation

dXt = f(θ,Xt)dt + dWt, t ≥ 0
X0 = ξ

(1.1)

where {Wt, t ≥ 0} is a one dimensional standard Wiener process, θ ∈ Θ, Θ is a
compact subset of R, f is a known real valued function defined on Θ × R, the
unknown parameter θ is to be estimated on the basis of discrete observations
of the process {Xt, t ≥ 0}. Let θ0 be the true value of the parameter which
is in the interior of Θ. We assume that the process {Xt, t ≥ 0} is observed
at 0 = t0 < t1 < . . . < tn = T with Δti := ti − ti−1 = T

n = h for some
fixed real number d > 0. We estimate θ from the high frequency (h → 0) data
{Xt0 , Xt1 , . . . , Xtn

}.
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We start with least squares method. The conditional least squares estimator
(CLSE) of θ is defined as

θn,T := arg min
θ∈Θ

Qn,T (θ)

where Qn,T (θ) :=
n∑

i=1

[
Xti

− Xti−1 − f(θ,Xti−1)h
]2

Δti
.

This estimator was first studied by Dorogovcev (1976) who obtained its weak
consistency under some regularity conditions as T → ∞ and T

n → 0. Kasonga
(1988) obtained the strong consistency of the CLSE under some regularity
conditions as n → ∞ assuming that T = dn1/2 for some fixed real number
d > 0. Bishwal (2002b) obtained strong consistency and conditional asymptotic
normality of the CLSE for nonlinear nonhomegeneous diffusions.

Florens-Zmirou (1989) studied minimum contrast estimator, based on an
Euler-Maruyama type first order approximate discrete time scheme of the SDE
(1.1) which is given by

Zti
− Zti−1 = f(θ, Zti−1)(ti − ti−1) + Wti

− Wti−1 , i ≥ 1, Z0 = X0.

The log-likelihood function of {Zti
, 0 ≤ i ≤ n} is given by

Ln,T (θ) := C
n∑

i=1

[
Zti

− Zti−1 − f(θ, Zti−1)h
]2

Δti

where C is a constant independent of θ. A contrast for the estimation of θ is
derived from the above log-likelihood by substituting {Zti

, 0 ≤ i ≤ n} with
{Xti

, 0 ≤ i ≤ n}. The resulting contrast is

Hn,T (θ) := C

n∑
i=1

[
Xti

− Xti−1 − f(θ,Xti−1)h
]2

Δti

and the resulting minimum contrast estimator, called the Euler-Maruyama
estimator, is given by

θ̄n,T := arg min
θ∈Θ

Hn,T (θ)

Florens-Zmirou (1989) showed consistency of this estimator as T → ∞ and
T
n → 0 and asymptotic normality as T → ∞ and T

n2/3 → 0. Yoshida (1992)
extended Florens-Zmirou (1989) to multidimensional case.

If continuous observation of {Xt} on the interval [0, T ] were available, then
the likelihood function of θ would be

LT (θ) := exp

{∫ T

0

f(θ,Xt)dXt − 1
2

∫ T

0

f2(θ,Xt)dt

}
(1.2)
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Since we have discrete data, we have to approximate the likelihood to obtain the
MLE.Taking Itô typeapproximationof the stochastic integral and rectangle rule
approximation of the ordinary integral in (1.2) we obtain the approximate
likelihood function

L̂n,T (θ) := exp

{
n∑

i=1

f(θ,Xti−1)(Xti
− Xti−1) −

h

2

n∑
i=1

f2(θ,Xti−1)

}
. (1.3)

Itô-Euler approximatemaximum likelihood estimator (IEAMLE)based on L̂n,T

is defined as
θ̂n,T := arg max

θ∈Θ
L̂n,T (θ).

Weak consistency and asymptotic normality of this estimator were obtained
by Yoshida (1992) as T → ∞ and T

n2/3 → 0.
Note that the CLSE, the Euler-Maruyama estimator and the IEAMLE are

the same estimator (see Shoji (1997)).
Prime denotes derivative with respect to θ and dot denotes derivative with

respect to x. Let Φ(x) denote standard normal distribution function.
In order to obtain better estimators, in terms of having faster rates of

convergence, first we discuss the algorithm proposed in Mishra and Bishwal
(1995). Note that the Itô and the Fisk-Stratonovich (FS, hence forth) integrals
are connected by∫ T

0

f(θ,Xt)dXt =
∫ T

0

f(θ,Xt) o dXt − 1
2

∫ T

0

ḟ(θ,Xt)dt. (1.4)

where o is the Itô’s circle put for FS integral (see Ikeda and Watanabe (1989)).
We transform the Itô integral in (1.2) to FS integral and apply FS type approx-
imation of the stochastic integral and rectangular rule type approximation of
the Lebesgue integrals and obtain the approximate likelihood

∼
Ln,T (θ) := exp

{
1
2

n∑
i=1

[f(θ,Xti−1) + f(θ,Xti
)](Xti

− Xti−1)

−h

2

n∑
i=1

ḟ(θ,Xti−1) −
h

2

n∑
i=1

f2(θ,Xti−1)

}
(1.5)

The Fisk-Stratonovich approximate maximum likelihood estimator (FSAMLE)
based on

∼
Ln,T is defined as

θ̃n,T := arg max
θ∈Θ

∼
Ln,T (θ).

FSAMLEwasproposedinMishraandBishwal(1995)anditswickconsistency
and rate of convergence were studied. Bishwal (2006b) studied local asymptotic
normality (LAN) property of the model.
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We propose a new algorithm to obtain several approximate likelihoods.
Using Itô formula, we can write

LT (θ) := exp

{
A(θ,XT ) − A(θ,X0) − 1

2

∫ T

0

[f2(θ,Xt) + ḟ(θ,Xt)]dt

}
(1.6)

where
A(θ, x) :=

∫ x

f(θ, y)dy.

Observe that this form of likelihood is free of any stochastic integral. Taking
a rectangular approximation of the Lebesgue integral in (1.6), we obtain another
approximate likelihood

L̄n,T (θ) := exp

{
A(θ,XT ) − A(θ,X0) − h

2

n∑
i=1

[f2(θ,Xti−1) + ḟ(θ,Xti−1)]

}
.

(1.7)
The corresponding Itô-Lebesgue approximate maximum likelihood estimator
(ILAMLE) is given by

θ̄n,T := arg max
θ∈Θ

L̄n,T (θ).

The advantage of this estimator is its faster rate of convergence over the Euler
estimator.Note that the rate of convergence is pulleddownbyapproximating the
stochastic integral.Butthisestimatoris freeofstochastic integralapproximation.
Denote

g(θ,Xt) := f2(θ,Xt) + ḟ(θ,Xt). (1.8)

Thus

LT (θ) = exp

{
A(θ,XT ) − A(θ,X0) − 1

2

∫ T

0

g(θ,Xt)dt

}
(1.9)

We obtain several discrete approximations of the Lebesgue integral in the
definition (1.9).

Define a weighted sum of squares

Mn,T :=
T

n

{
n∑

i=1

wti
g(θ,Xti−1) +

n+1∑
i=2

wti
g(θ,Xti−1)

}
. (1.10)

where wti
≥ 0 is a weight function.

Denote

In,T :=
T

n

n∑
i=1

g(θ,Xti−1), (1.11)

Jn,T :=
T

n

n+1∑
i=2

g(θ,Xti−1) =
T

n

n∑
i=1

g(θ,Xti
). (1.12)
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General weighted approximate log-likelihood (WALL) is defined as

l̃n,T,G := A(θ,XT ) − A(θ,X0) − 1
2
Mn,T . (1.13)

With wti
= 1, we obtain the forward WALL as

l̃n,T,F := A(θ,XT ) − A(θ,X0) − 1
2
In,T . (1.14)

With wti
= 0, we obtain the backward WALL as

l̃n,T,B := A(θ,XT ) − A(θ,X0) − 1
2
Jn,T . (1.15)

With wti
= 0.5, the simple symmetric WALL is defined as

l̃n,T,z := A(θ,XT ) − A(θ,X0) − 1
4
[In,T + Jn,T ] (1.16)

which in turn is equal to

A(θ,XT ) − A(θ,X0) − T

4n

n∑
i=2

g(θ,Xti−1) +
T

2n
(g(θ,Xt0) + g(θ,Xtn

)).

With the weight function

wti
=

⎧⎨
⎩

0 : i = 1
i−1
n : i = 2, 3, · · · , n
1 : i = n + 1

the weighted symmetric WALL defined as

l̃n,T,w := A(θ,XT )−A(θ,X0)− T

4n

n∑
i=2

g(θ,Xti−1)+
T

4n

n∑
i=1

g(θ,Xti−1). (1.17)

Note that estimator (1.13) is analogous to the trapezoidal rule in numerical
analysis. One can instead use the midpoint rule to define another WALL

l̃n,T,M := A(θ,XT ) − A(θ,X0) − T

2n

n∑
i=1

g

(
θ,

Xti−1 + Xti

2

)
. (1.18)

One can use the Simpson’s rule to define another WALL where the approx-
imant is a convex combination of the approximants in (1.16) and (1.18)

l̃n,T,S := A(θ,XT ) − A(θ,X0)

− T

12n

n∑
i=1

{
g(θ,Xti−1) + 4g

(
Xti−1 + Xti

2

)
+ g(θ,Xti

)
}

. (1.19)



230 10 Estimating Function for Discretely Observed Homogeneous Diffusions

In general, one can generalize Simpson’s rule as

l̃n,T,GS := A(θ,XT ) − A(θ,X0)

− T

6n

n∑
i=1

{
α

g(θ,Xti−1) + g(θ,Xti
)

2
+ (1 − α)g

(
Xti−1 + Xti

)
2

)}
(1.20)

for any 0 ≤ α ≤ 1.
The case α = 0 produces the WALL (1.18). The case α = 1 produces the

WALL (1.17). The case α = 1
3 produces the WALL (1.19).

We propose a very general form of the quadrature based WALL as

l̃n,T,w := A(θ,XT )−A(θ,X0)− T

2n

n∑
i=1

m∑
j=1

[
(1 − sj)g(θ,Xti−1) + sjg(θ,Xti

)
]
pj

(1.21)
where pj , j ∈ {1, 2, · · · ,m} is a probability mass function of a discrete random
variable S on 0 ≤ s1 < s2 < · · · < sm ≤ 1 with P (S = sj) := pj , j ∈
{1, 2, · · · ,m}.
Denote the k-th moment of the random variable S as μk :=

∑m
j=1 sk

j pj , k =
1, 2, · · · .

If one chooses the probability distribution as uniform distribution for
which the moments are a harmonic sequence (μ1, μ2, μ3, μ4, μ5, μ6, · · · ) =
(1
2 , 1

3 , 1
4 , 1

5 , 1
6 , 1

7 · · · ) then there is no change in rate of convergence than the
second order. If one can construct a probability distribution for which the
harmonic sequence is truncated at a point, then there is an improvement of
rate of convergence at the point of truncation.

Conjecture: Given a positive integer m, construct a probability mass function
pj , j ∈ {1, 2, · · · ,m} on 0 ≤ s1 < s2 < · · · < sm ≤ 1 such that

m∑
j=1

sr
jpj =

1
r + 1

, r ∈ {0, · · · , m − 2} (1.22)

m∑
j=1

sm−1
j pj �= 1

m
. (1.23)

Neither the probabilities pj nor the atoms, sj, of the distribution are specified
in advance.

This problem is related to the truncated Hausdorff moment problem. I
obtain examples of such probability distributions and use them to get higher
order accurate (up to sixth order) WALLs.

The order of approximation error (rate of convergence) of an estimator is
n−ν where

ν := inf
{

k : μk �= 1
1 + k

, μj =
1

1 + j
, j = 1, 2, · · · , k − 1

}
. (1.24)
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We construct probability distributions satisfying these moment conditions
and obtain estimators of the rate of convergence up to order 6.

Probability p1 = 1 at the point s1 = 0 gives the WALL (1.11) for which
μ1 = 0. Note that μ1 �= 1

2 . Thus ν = 1.
Probability p1 = 1 at the point s1 = 1 gives the WALL (1.12) for which

μ1 = 1. Note that μ1 �= 1
2 . Thus ν = 1.

Probabilities (p1, p2) = (1
2 , 1

2 ) at the respective points (s1, s2) = (0, 1)
produces the WALL l̃n,T,Z for which (μ1, μ2) = (1

2 , 1
4 ). Thus ν = 2.

Probability pj = 1 at the point sj = 1
2 produce the WALL l̃n,T,M for which

(μ1, μ2) = (1
2 , 1

2 ). Thus ν = 2.
Probabilities (p1, p2) = (1

4 , 3
4 ) at the respective points (s1, s2) = (0, 2

3 )
produce the asymmetric WALL

l̃n,T,3 := A(θ,XT ) − A(θ,X0)

− T

4n

n∑
i=1

[
g(θ,Xti−1) + 3g(θ,

Xti−1 + 2Xti
)

3
)
]

(1.25)

for which (μ1, μ2, μ3) = (1
2 , 1

3 , 2
9 ) . Thus ν = 3.

Probabilities (p1, p2) = (3
4 , 1

4 ) at the respective points (s1, s2) = (1
3 , 1)

produce asymmetric WALL

l̃n,T,4 := A(θ,XT ) − A(θ,X0) − T
4n

n∑
i=1

[
3g(θ,

2Xti−1+Xti

3 ) + g(θ,Xti
)
]

(1.26)

for which (μ1, μ2, μ3) = (1
2 , 1

3 , 10
36 ). Thus ν = 3.

Probabilities (p1, p2, p3) = (1
6 , 2

3 , 1
6 ) at the respective points (s1, s2, s3) =

(0, 1
2 , 1) produce the estimator l̃n,T,5 for which (μ1, μ2, μ3, μ4) = (1

2 , 1
3 , 1

4 , 5
25 ).

Thus ν = 4.
Probabilities (p1, p2, p3, p4) = (1

8 , 3
8 , 3

8 , 1
8 ) at the respective points

(s1, s2, s3, s4) = (0, 1
3 , 2

3 , 1) produce the symmetric WALL

l̃n,T,5 := A(θ,XT ) − A(θ,X0) − T

8n

n∑
i=1

[
g(θ,Xti−1))

+3g(θ,
2Xti−1 + Xti

)
3

) + 3g(θ,
Xti−1 + 2Xti

)
3

) + g(θ,Xti
)
]

s

(1.27)

for which (μ1, μ2, μ3, μ4) = (1
2 , 1

3 , 1
4 , 11

54 ). Thus ν = 4.

Probabilities (p1, p2, p3, p4, p5) = ( 1471
24192 , 6925

24192 , 1475
12096 , 2725

12096 , 5675
24192 , 1721

24192 ) at
the respective points (s1, s2, s3, s4, s5) = (0, 1

5 , 2
5 , 3

5 , 4
5 , 1) produce the asym-

metric WALL
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l̃n,T,7 := A(θ,XT ) − A(θ,X0)

− T
24192n

n∑
i=1

[
1471g(θ,Xti−1) + 6925g(θ,

Xti−1+Xti

5 ) + 2950g(θ,
2Xti−1+2Xti

5 )

+ 5450g(θ,
3Xti−1+3Xti

)

5 ) + 5675g(θ,
4Xti−1+4Xti

5 ) + 1721g(θ,Xti
)
]

(1.28)

for which (μ1, μ2, μ3, μ4, μ5, μ6) = (1
2 , 1

3 , 1
4 , 1

5 , 841
5040 ). Thus ν = 5.

Probabilities (p1, p2, p3, p4, p5) = ( 7
90 , 16

45 , 2
15 , 16

45 , 7
90 ) at the respective points

(s1, s2, s3, s4, s5) = (0, 1
4 , 1

2 , 3
4 , 1) produce the symmetric WALL l̃n,T,8 given by

l̃n,T,8 := A(θ,XT ) − A(θ,X0)

− T

90n

n∑
i=1

[
7g(θ,Xti−1 + 32g(θ,

3Xti−1 + Xti

4
) + 12g(θ,

Xti−1 + Xti
)

2
)

+32g(θ,
Xti−1 + 3Xti

)
4

) + 7g(θ,Xti
)
]

(1.29)

for which (μ1, μ2, μ3, μ4, μ5, μ6) = (1
2 , 1

3 , 1
4 , 1

5 , 1
6 , 110

768 ). Thus ν = 6.
Probabilities (p1, p2, p3, p4, p5) = ( 19

288 , 75
288 , 50

288 , 50
288 , 75

288 , 19
288 ) at the respec-

tive points
(s1, s2, s3, s4, s5) = (0, 1

5 , 2
5 , 3

5 , 4
5 , 1) produce symmetric WALL

l̃n,T,9 := A(θ,XT ) − A(θ,X0)

− T
288n

n∑
i=1

[
19g(θ,Xti−1 + 75g(θ,

4Xti−1+Xti

5 ) + 50(θ,
3Xti−1+2Xti

5 )

+50g(θ,
2Xti−1+3Xti

5 ) + 75g(θ,
Xti−1+4Xti

5 ) + 19g(θ,Xti
)
]
. (1.30)

for which (μ1, μ2, μ3, μ4, μ5, μ6) = (1
2 , 1

3 , 1
4 , 1

5 , 1
6 , 3219

22500 ). Thus ν = 6.
Define the estimators

θ̃n,T,r := arg max
θ∈Θ

l̃n,T,r(θ), r = 1, 2, · · · , 9.

The WALL l̃n,T,Z is based on the arithmetic mean of In,T and Jn,T . One can
use geometric mean and harmonic mean instead. The geometric mean based
symmetric WALL (which is based on the ideas of partial autocorrelation) is
defined as

l̃n,T,G := A(θ,XT ) − A(θ,X0) − T

2n

√
In,T Jn,T (1.31)

The harmonic mean based symmetric WALL is defined as

l̃n,T,H := A(θ,XT ) − A(θ,X0) − T/n
1

In,T
+ 1

Jn,T

(1.32)

Note that
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l̃n,T,H ≤ l̃n,T,G ≤ l̃n,T,Z . (1.33)

We shall use the following notations : ΔXi := Xti
−Xti−1 , ΔWi := Wti

−Wti−1 ,
C is a generic constant independent of h, n and other variables (it may depend
on θ). We assume the following conditions:

(A1) |f(θ, x)| ≤ K(θ)(1 + |x|),
|f(θ, x) − f(θ, y)| ≤ K(θ)|x − y|.

(A2) |f(θ, x) − f(φ, y)| ≤ J(x)|θ − φ| for all θ, φ ∈ Θ, x, y ∈ R where

sup
θ∈Θ

|K(θ)| = K < ∞, E|J(X0)|m < ∞ for some m > 16.

(A3)ThediffusionprocessX is stationaryandergodicwith invariantmeasure
ν, i.e., for any ψ with E[ψ(·)] < ∞

1
n

n∑
i=1

ψ(Xti
) → Eν [ψ(X0)] a.s. as n → ∞, T → ∞ and h → 0.

(A4)E|ξ|m < ∞ for some m > 16.
(A5) E|f(θ, ξ) − f(θ0, ξ)|2 = 0 iff θ = θ0.
(A6) f is twice continuously differentiable function in x with

E sup
t

|ḟ(Xt)|2 < ∞, E sup
t

|f̈(Xt)|2 < ∞.

(A7) |ḟ ′(θ, x)| ≤ C(1 + |x|c) for any x ∈ R and θ ∈ Θ.
The Fisher information

0 < I(θ) :=
∫ ∞

−∞
(f ′(θ, x))2dν(x) < ∞

and for any δ > 0, or any compact Ξ ⊂ Θ,

inf
θ0∈Ξ

sup
|θ−θ0|>δ

Eθ0 |f ′(θ,X0) − f ′(θ0, X0)|2 > 0.

(A8) The Malliavin covariance of the process is nondegenerate.
In this chapter, we study strong consistency, asymptotic normality, and a

Berry-Esseen type bound for the AMLEs.

10.2 Rate of Consistency

To obtain the strong consistency of the AMLE, we need the following two
lemmas. The proof of the first lemma is standard.

Lemma 2.1. Suppose the random function Dn satisfy the following conditions:
(C1) With probability one, Dn(θ) → D(θ) uniformly in θ ∈ Θ as n → ∞.
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(C2) The limiting nonrandom function D is such that

D(θ0) ≥ D(θ) for all θ ∈ Θ.

(C3) D(θ) = D(θ0) iff θ = θ0.
Then θn → θ0 a.s. as n → ∞, where

θn = sup
θ∈Θ

Dn(θ).

Lemma 2.2 Under for any m ≥ 1,

E

∣∣∣∣∣
n∑

i=1

f(θ0, Xti−1)Δti −
∫ T

0

f(θ0, Xt)dt

∣∣∣∣∣
2m

≤ C

(
T 2

n

)2m

.

Proof. By Itô formula, we have

f(θ0, Xt) − f(θ0, Xti−1)

=
∫ t

ti−1

ḟ(θ0, Xu)dXu +
1
2

∫ t

ti−1

f̈(θ0, Xu)du

=
∫ t

ti−1

ḟ(θ0, Xu)dWu +
∫ t

ti−1

[ḟ(θ0, Xu)f(θ0, Xu) +
1
2
f̈(θ0, Xu)]du

=:
∫ t

ti−1

ḟ(θ0, Xu)dWu +
∫ t

ti−1

B(θ0, Xu)du.

Thus

E

∣∣∣∣∣
n∑

i=1

f(θ0, Xti−1)Δti −
∫ T

0

f(θ0, Xt)dt

∣∣∣∣∣
2m

≤ E|
n∑

i=1

∫ ti

ti−1

[
f(θ0, Xt) − f(θ0, Xti−1)

]
dt|2m

= E|
n∑

i=1

∫ ti

ti−1

[
ḟ(θ0, Xu)dWu

+
∫ t

ti−1

f ′(θ0, Xti−1)B(θ0, Xu)du

]
dt|2m

≤ 2m

{
E|

n∑
i=1

∫ ti

ti−1

∫ t

ti−1

ḟ(θ0, Xu)dWudt|2m

+E|
n∑

i=1

∫ ti

ti−1

∫ t

ti−1

f ′(θ0, Xti−1)B(θ0, Xu)dudt|2m

}

=: 2m(M1 + M2)m
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where

M1 := E |
n∑

i=1

∫ ti

ti−1

∫ t

ti−1

ḟ(θ0, Xu)dWudt|2

and

M2 := |
n∑

i=1

∫ ti

ti−1

∫ t

ti−1

f ′(θ0, Xti−1)A(θ0, Xu)dudt|2.

Observe that with Si,t :=
∫ t

ti−1
f ′(θ0, Xti−1)ḟ(θ0, Xu)dWu, 1 ≤ i ≤ n,

M1 =
n∑

i=1

E

(∫ ti

ti−1

Si,tdt

)2

+
n∑

j �=i=1

E

(∫ ti

ti−1

Si,tdt

)(∫ tj

tj−1

Sj,tdt

)

≤
n∑

i=1

(ti − ti−1)
∫ ti

ti−1

E(S2
i,t)dt

(the last term being zero due to orthogonality of the integrals)

≤
n∑

i=1

(ti − ti−1)
∫ ti

ti−1

{∫ t

ti−1

E
[
f ′(θ0, Xti−1)ḟ(θ0, Xu)

]2
du

}
dt

≤ C
T

n

n∑
i=1

∫ ti

ti−1

(t − ti−1)dt (by (A4) and (A3))

≤ C
T

n

n∑
i=1

(ti − ti−1)2

= C
T 3

n2
.

On the other hand, with Ui,t :=
∫ t

ti−1
f ′(θ0, Xti−1)A(θ0, Xu)du, 1 ≤ i ≤ n,

M2 = E|
n∑

i=1

∫ ti

ti−1

∫ t

ti−1

f ′(θ0, Xti−1)A(θ0, Xu)dudt|2

= E|
n∑

i=1

∫ ti

ti−1

Ui,tdt|2

=
n∑

i=1

(
∫ ti

ti−1

Ui,tdt)2 +
n∑

j �=i=1

E

(∫ ti

ti−1

Ui,tdt

)(∫ tj

tj−1

Ui,tdt

)

≤
n∑

i=1

(ti − ti−1)E

(∫ ti

ti−1

Ui,tdt

)2

+
n∑

j �=i=1

⎧⎨
⎩E

(∫ ti

ti−1

Ui,td

)2

×E

(∫ tj

tj−1

Uj,tdt

)2
⎫⎬
⎭

1/2



236 10 Estimating Function for Discretely Observed Homogeneous Diffusions

≤
n∑

i=1

(ti − ti−1)
∫ ti

ti−1

E(U2
i,t)dt

+
n∑

j �=i=1

{
(ti − ti−1)

∫ ti

ti−1

E(U2
i,t)dt (tj − tj−1)

∫ tj

tj−1

E(U2
j,t)dt

}1/2

But E(U2
i,t) ≤ C(t− ti−1)2 using (A4) and (A3). On substitution, the last term

is dominated by

C

n∑
i=1

(ti − ti−1)4 + C

n∑
j �=i=1

(ti − ti−1)2(tj − tj−1)2

= C
T 4

n3
+ C

n(n − 1)T 4

2n4
≤ C

T 4

n2
.

Thus

E

∣∣∣∣∣
n∑

i=1

f(θ,Xti−1)Δti −
∫ T

0

f(θ,Xt)dt

∣∣∣∣∣
2

≤ 2m(M1 + M2)m

≤ Cm

(
T 2

n

)m

.

Lemma 2.3 As T → 0 and T/n → 0

sup
θ∈Θ

[
1
n

n∑
i=1

f(θ,Xti−1) −
1
T

∫ T

0

f(θ,Xt)dt

]
−→ 0 a.s.

Proof Use of Lemma 2.2, ergodicity, Arzella-Ascoli theorem, and Borel-
Cantelli theorem proves the lemma.

With the aid of Lemma 2.3 and Lemma 2.1 we obtain the strong consistency
result.

Proposition 2.3
θ̄n,T → θ0 a.s.

as T → 0 and T/n → 0.
The following is a general theorem on approximate maximum likelihood esti-
mation.

Theorem 2.4 (Huzak (2001): Let Θ be an open subset of the Euclidean
space R

d, let (ω,F , P) be a probability space, and let (Fn, n ∈ N) be a family
of sub-σ-algebras of F . Moreover, let (γn;n ∈ N) be a sequence of positive
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numbers such that limn γn = 0, and let L,Ln : Ω×Θ → R, n ∈ N, be functions
satisfying the following assumptions:

(A1): For all θ ∈ Θ, L(ω, θ) isF-measurable and Ln(ω, θ) isFn-measurable,
n ∈ N is.Forallω ∈ Ω, L(ω, θ) andLn(ω, θ) are twice continuouslydifferentiable
in θ.

(A2): For all ω ∈ Ω, L(ω, θ) has a unique point of global maximum θ̂ ≡ θ̂(ω)
in θ and D2L(θ̂) < 0.

(A3): For any relatively compact set K ⊂ Θ,

sup
θ∈K

|DlLn(θ) − DlL(θ)| = OP(γn), n ∈ N, l = 1, 2.

Then there exists a sequence (θ̂n, n ∈ N)of Θ-valued random variables such
that
(i) limn P{DLn(θ̂n) = 0} = 1.

(ii) θ̂n →P θ̂ as n → ∞.
(iii) If θ̃n;n ∈ N is any other sequence of random variables which satisfy (i) and
(ii), then limn P{θ̃n = θ̂n} = 1;
(iv) The sequence γ−1

n (θ̂n − θ̃), n ∈ N is bounded in probability.
An application of the Theorem 2.4 to our WALLs provide the following sto-

chastic bound on the difference between the discrete AMLEs and the continuous
MLE. Details are omitted.
Euler Estimator has the following rate:

Proposition 2.5 For fixed T ,

∣∣∣θ̂n,T − θT

∣∣∣ = OP

(
1√
n

)
.

The new estimators have the following rates:

Proposition 2.6 For fixed T ,

(a)
∣∣θ̄n,T − θT

∣∣ = OP

(
1
n

)
.

(b)
∣∣∣θ̃n,T,M − θT

∣∣∣ = OP

(
1
n2

)
.

(c)
∣∣∣θ̃n,T,Z − θT

∣∣∣ = OP

(
1
n2

)
.

(d)
∣∣∣θ̃n,T,3 − θT

∣∣∣ = OP

(
1
n3

)
.

(e)
∣∣∣θ̃n,T,4 − θT

∣∣∣ = OP

(
1
n3

)
.
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(f)
∣∣∣θ̃n,T,5 − θT

∣∣∣ = OP

(
1
n4

)
.

(g)
∣∣∣θ̃n,T,7 − θT

∣∣∣ = OP

(
1
n5

)
.

(h)
∣∣∣θ̃n,T,8 − θT

∣∣∣ = OP

(
1
n6

)
.

(i)
∣∣∣θ̃n,T,9 − θT

∣∣∣ = OP

(
1
n6

)
.

10.3 Berry-Esseen Bound

We will use Lemma 2.1.1 and the following lemma in obtaining the Berry-Esseen
bound.

The following lemma which is an immediate consequence of Theorem 7 in
Yoshida (1997).

Lemma 3.1 We have

sup
x∈R

∣∣∣∣∣Pθ0

{
1√

TI(θ0)

∫ T

0

f(θ0, Xt)dWt ≤ x

}
− Φ(x)

∣∣∣∣∣ ≤ CT−1/2.

Proposition 3.2
√

T (θ̄n,T − θ0) →D N (0, I−1(θ0)).

Theorem 3.3

sup
x∈R

∣∣∣Pθ

{√
TI(θ0)(θ̄n,T − θ0) ≤ x

}
− Φ(x)

∣∣∣ = O

(
T−1/2

∨ T 4

n2

)
.

Proof Let ln,T (θ) := log L̄n,T (θ).
By Taylor expansion, we have

l′n,T (θ̄n,T ) = l′n,T (θ0) + (θ̄n,T − θ0)l′′n,T (θ∗n,T )

where
∣∣θ∗n,T − θ

∣∣ ≤ ∣∣θ̄n,T − θ0

∣∣.
Since l′n,T (θ̄n,T ) = 0, hence we have
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TI(θ0)(θ̄n,T − θ0)

= −
1√

TI(θ0)
l′n,T (θ0)

1
TI(θ0)

l′′n,T (θ∗n,T )

=

[
1√

TI(θ0)

{
(A′(θ,XT ) − A′(θ,X0)) − h

2

n∑
i=1

[2f(θ,Xti−1)f
′(θ,Xti−1)

+ḟ ′(θ,Xti−1)]
}][ 1

TI(θ0)

n∑
i=1

f ′′(θ∗n,T , Xti−1)

]−1

=: [Zn,T ] [Vn,T ]−1
.

Note that

Vn,T =
1

TI(θ0)

n∑
i=1

f ′′(θ∗n,T , Xti−1)Δti =
1

TI(θ0)

n∑
i=1

f ′(θ∗n,T , Xti−1)
2Δti.

But E(IT − 1)2 ≤ CT−1 from Theorem 2.3.1
Hence E(Vn,T − 1)2 = E[(Vn,T − IT ) + (IT − 1)]2 ≤ C(T−1

∨
T 2

n2 )
since

sup
θ∈Θ

E[Vn,T − IT ]2 ≤ C
T 2

n2
.

Thus

sup
x∈R

∣∣∣Pθ

{√
TI(θ)(θ̄n,T − θ) ≤ x

}
− Φ(x)

∣∣∣
= sup

x∈R

∣∣∣∣Pθ

{
Zn,T

Vn,T
≤ x

}
− Φ(x)

∣∣∣∣
= sup

x∈R

|Pθ {Zn,T ≤ x} − Φ(x)| + Pθ {|Vn,T − 1| ≥ ε} + ε

≤ C(T−1/2
∨ T 2

n
) + ε−2C(T−1

∨ T 2

n2
) + ε.

since

sup
x∈R

|Pθ {Zn,T ≤ x} − Φ(x)|
≤ sup

x∈R

|Pθ {ZT ≤ x} − Φ(x)| + Pθ {|Zn,T − ZT | ≥ ε} + ε

≤ C(T−1/2
∨ T 2

n
) + ε−2E |Zn,T − ZT |2 + ε

≤ (T−1/2
∨ T 2

n
) + ε−2C(T−1

∨ T 3

n2
) + ε.

Choosing ε = T−1/2, we have the result.
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For the Euler estimator we obtain the following Berry-Esseen bound.

Proposition 3.4

sup
x∈R

∣∣∣Pθ

{√
TI(θ)(θ̂n,T − θ) ≤ x

}
− Φ(x)

∣∣∣ = O

(
max

(
T−1/2,

T 2

n
,
T 3

n2

))
.

10.4 Examples

(a) Ornstein-Uhlenbeck Process

The Ornstein-Uhlenbeck process satisfies the Itô stochastic differential equation

dXt = θ Xt dt + dWt, t ≥ 0, (1.1)

where {Wt} is a standard Wiener process with the filtration {Ft}t≥0, X0 has
stationary distribution N (0, −1/2θ) and θ < 0 is the unknown parameter.

Here

A(θ,XT ) − A(θ,X0) = θ

∫ XT

ydy − θ

∫ X0

ydy =
θ

2
[X2

T − X2
0 ].

h

2

n∑
i=1

[f2(θ,Xti−1) + ḟ(θ,Xti−1)] =
h

2

n∑
i=1

θ2X2
ti−1

+
T

2
θ.

Hence

l′n,T =
1
2
[X2

T − X2
0 ] − hθ

n∑
i=1

X2
ti−1

− T

2
.

Thus

θ̄n,T =
1
2 [X2

T − X2
0 ] − T

2

h
∑n

i=1 X2
ti−1

.

This is a better estimator than Euler estimator as shown in Chapter 8.

(b) Gompertz Diffusions

Gomtertzdiffusionmodeldescribesthe invivotumorgrowth.Thedriftparameter
describes the intrinsic growth rate (mitosis rate) of the tumor. We introduce
some new approximate maximum likelihood estimators of the drift parameter
in the Gompertz diffusion model based on discretely sampled data and study
their properties.

The Gompertz process has been recently used in tumor growth modeling.
In view of this, it becomes necessary to estimate the unknown parameters in the
model from discrete data. The knowledge of distribution of the estimator may
be applied to evaluate the distribution of other important growing parameters
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used to assess the tumor treatment modalities. Some of these parameters are
the platue of deterministic Gomperzian model, X∞ = exp(α/β), tumor growth
delay, and the first time the growth curve of the Gompertz diffusion reaches
X∞.

Let (Ω,F , {Ft}t≥0, P ) be a stochastic basis onwhich is defined theGompertz
diffusion model {Xt} satisfying the Itô stochastic differential equation

dXt = (αXt − βXt log Xt) dt + σXtdWt, t ≥ 0, X0 = x0 (4.1)

where {Wt} is a standard Wiener process with the filtration {Ft}t≥0 and
θ < 0 is the unknown parameter to be estimated on the basis of discrete
observations of the process {Xt} at times 0 = t0 < t1 < · · · tn = T with
ti − ti−1 = T

n , i = 1, 2 · · · , n. We assume two types of high frequency data with
long observation time:
1) T → ∞, n → ∞, T√

n
→ 0, 2) T → ∞, n → ∞, T

n2/3 → 0.
Here Xt is the tumor volume which is measured at discrete time, α is the

intrinsic growth rate of the tumor, β is the tumor growth acceleration factor,
and σ is the diffusion coefficient.

Theknowledgeof thedistributionof the estimatormaybeapplied to evaluate
the distribution of other important growing parameters used to access tumor
treatment madalities. Some of these parameters are the plateau of the model
X∞ = exp(α

β ), tumor growth decay, and the first time the growth curve of the
model reaches X∞. We assume that the growth deceleration factor β does not
change, while the variability of environmental conditions induces fluctuations
in the intrinsic growth rate (mitosis rate) α.

Let the continuous realization {Xt, 0 ≤ t ≤ T} be denoted by XT
0 . Let PT

θ

be the measure generated on the space (CT , BT ) of continuous functions on
[0, T ] with the associated Borel σ-algebra BT generated under the supremum
norm by the process XT

0 and let PT
0 be the standard Wiener measure. It is

well known that when θ is the true value of the parameter PT
θ is absolutely

continuous with respect to PT
0 and the Radon-Nikodym derivative (likelihood)

of PT
θ with respect to PT

0 based on XT
0 is given by

LT (θ) :=
dPT

α,β

dPT
0

(XT
0 ) = exp

{
1
σ2

∫ T

0

(α − β log Xt)X−1
t dXt

− 1
2σ2

∫ T

0

(α − β log Xt)2dt

}
. (4.2)

Consider the log-likelihood function, which is given by

γT (α, β, σ) :=
1
σ2

{∫ T

0

(α − β ln Xt)X−1
t dXt − 1

2

∫ T

0

(α − β ln Xt)2dt

}
.

(4.3)
A solution of the estimating equation γ′

T (α, β) = 0 provides the conditional
maximum likelihood estimate (MLE)
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α̂T :=
(
∫ T

0
X−1

t dXt)(
∫ T

0
ln2 Xtdt) − (

∫ T

0
X−1

t lnXtdXt)(
∫ T

0
ln Xtdt)

T
∫ T

0
ln2 Xtdt − (

∫ T

0
ln Xtdt)2.

(4.4)

β̂T :=
(
∫ T

0
X−1

t dXt)(
∫ T

0
ln Xtdt) − T (

∫ T

0
X−1

t ln XtdXt)

T
∫ T

0
ln2 Xtdt − (

∫ T

0
lnXtdt)2.

(4.5)

σ̂2
T :=

∑n
i=1(Xti

− Xti−1)
2∑n

i=1 X2
ti−1

(ti − ti−1)
. (4.6)

As an alternative to maximum likelihood method and to obtain estimators with
higher order accuracy our aim is to use contrast functions. Using Itô formula,
the score function γT (θ) can be written as

γT (α) =
1
2

ln XT +
∫ T

0

(β ln Xt +
σ2

2
)dt. (4.7)

Consider the estimating function

MT (α) =
∫ T

0

(α ln Xt +
1
2
)dt (4.8)

and the minimum contrast estimate (MCE)

α̃T :=
β

T

{∫ T

0

ln Xtdt

}
. (4.9)

Define a weighted sum of squares

Mn,T :=
T

n

{
n∑

i=1

wti
ln Xti−1 +

n+1∑
i=2

wti
ln Xti−1

}
. (4.10)

where wti
≥ 0 is a weight function.

Denote the discrete increasing functions

In,T :=
T

n

n∑
i=1

ln Xti−1 , (4.11)

Jn,T :=
T

n

n+1∑
i=2

ln Xti−1 =
T

n

n∑
i=1

ln Xti
. (4.12)

General weighted AMCE is defined as

α̃n,T :=
{

2
n

Mn,T

}
. (4.13)

With wti
= 1, we obtain the forward AMCE as
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α̃n,T,F :=
{

2
n

In,T

}−1

. (4.14)

With wti
= 0, we obtain the backward AMCE as

α̃n,T,B :=
{

2
n

Jn,T

}−1

. (4.15)

Analogous to the estimators for the discrete AR (1) model, we define the simple
symmetric and weighted symmetric estimators (see Fuller (1996)):

With wti
= 0.5, the simple symmetric AMCE is defined as

α̃n,T,z :=
{

1
n

[In,T + Jn,T ]
}−1

=

{
2
n

n∑
i=2

ln Xti−1 + 0.5(ln Xt0 + lnXtn
)

}
.

(4.16)
With the weight function

wti
=

⎧⎨
⎩

0 : i = 1
i−1
n : i = 2, 3, · · · , n
1 : i = n + 1

the weighted symmetric AMCE is defined as

α̃n,T,w := −
{

2
n

n∑
i=2

ln Xti−1 +
1
n

n∑
i=1

ln Xti−1

}
. (4.17)

Note that estimator (4.13) is analogous to the trapezoidal rule in numerical
analysis. One can instead use the midpoint rule to define another estimator

α̃n,T,A :=

{
2
n

n∑
i=1

ln
(

Xti−1 + Xti

2

)}
. (4.18)

One can use the Simpson’s rule to define another estimator where the denom-
inator is a convex combination of the denominators in (4.11) and (4.12)

α̃n,T,S :=

{
1
3n

n∑
i=1

{
ln Xti−1 + 4 ln

(
Xti−1 + Xti

2

)
+ ln Xti

}}
. (4.19)

In general, one can generalize Simpson’s rule as

α̃n,T,GS := −
{

2
n

n∑
i=1

{
α

ln Xti−1 + ln Xti

2
+ (1 − α) ln

(
Xti−1 + Xti

2

)}}

(4.20)
for any 0 ≤ α ≤ 1.

The case α = 0 produces the estimator (4.18). The case α = 1 produces the
estimator (4.17). The case α = 1

3 produces the estimator (4.19).
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We propose a very general form of the quadrature based estimator as

α̃n,T,w :=

⎧⎨
⎩ 2

n

n∑
i=1

m∑
j=1

ln
[
(1 − sj)Xti−1 + sjXti

]
pj

⎫⎬
⎭ (4.21)

where pj , j ∈ {1, 2, · · · ,m} is a probability mass function of a discrete random
variable S on 0 ≤ s1 < s2 < · · · < sm ≤ 1 with P (S = sj) := pj , j ∈
{1, 2, · · · ,m}.

Denote the k-th moment of the random variable S as μk :=
∑m

j=1 sk
j pj , k =

1, 2, · · · .
If one chooses the probability distribution as uniform distribution for

which the moments are a harmonic sequence (μ1, μ2, μ3, μ4, μ5, μ6, · · · ) =
(1
2 , 1

3 , 1
4 , 1

5 , 1
6 , 1

7 , · · · ) then there is no change in rate of convergence than second
order. If one can construct a probability distribution for which the harmonic
sequence is truncated at a point, then there is a rate of convergence improvement
at the point of truncation.
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82. Dai, W. and Heyde, C.C. (1996): Itô formula with respect to fractional Brownian
motion and its applications, J. Appl. Maths. Stoch. Anal. 9, 439-448.

83. Decreusefond, L. and Ustunel, A.S. (1998): Fractional Brownian motion: theory
and applications, In: Fractional Differential Systems: Models, Methods and
Applications, ESAIM Proceedings 5, 75-86.

84. Decreusefond, L. and Ustunel, A.S. (1999): Stochastic analysis of the fractional
Brownian motion, Potential Analysis 10, 177-214.

85. Djehiche, B. and Eddahbi, M. (1999): Hedging options with market models mod-
ulated by fractional Brownian motion, Preprint, Royal Institute of Technology,
Sweden.

86. Duncan, T.E., Hu, Y. and Pasik-Duncan, B. (2000): Stochastic calculus for
fractional Brownian motion I. Theory, SIAM J. Control. Optim.

87. Dieterich, W., Fulde, P. and Peschel, I. (1980): Theoretical models for superionic
conductors, Adv. Physics 29, 527-605.

88. Dietz, H.M. (1989): Asymptotic properties of maximum likelihood estimators
in diffusion type models, Preprint No. 228, Humboldt-Universitat Zu Berlin,
Sektion Mathematik.

89. Dietz, H.M. (1992):Anon-Markovian relative to theOrnstein-Uhlenbeck process
and some of its local statistical properties, Scand. J. Statist. 19, 363-379.

90. Dietz, H.M. and Kutoyants, Yu. A. (1997): A class of minimum-distance esti-
mators for diffusion processes with with ergodic properties, Statist. Decisions
15, 211-227.

91. Dohnal, G. (1987): On estimating the diffusion coefficient, J. Appl. Prob. 24,
105-114.

92. Doob, J.L. (1948):Applicationof the theoryofmartingales,Coll. Int. duC.N.R.S.
Paris, 22-28.

93. Doob, J.L. (1953): Stochastic Processes, John Wiley, New York.
94. Dorogovcev, A. Ja. (1976): The consistency of an estimate of a parameter of a

stochastic differential equation, Theory Prob. Math. Statist. 10, 73-82.
95. Duffie, J.D. (1996): Dynamic Asset Pricing Theory, Princeton University Press,

Princeton, NJ.
96. Duffie, J.D. and Glynn, P. (2004): Estimation of Continuous time Markov

processes samples at random time intervals, Econometrica, 72, 1773-1808.
97. Duncan, T.E., Hu, Y. and Pasik-Duncan, B. (2000): Stochastic calculus for

fractional Brownian motion I. Theory, SIAM J. Control. Optim.
98. Dupuis, P. and Kushner, H.J. (1989): Stochastic approximations and large

deviations : upper bounds and w.p.1 convergence, SIAM J. Control Optim. 27,
1108-1135.

99. Elerian, O. (1998): A note on the existence of a closed form conditional transition
density for the Milstein scheme, Economics Discussion Paper, Nuffield College,
Oxford.



250 References

100. Elerian, O., Chib, S. and Shephard, N. (2001): Likelihood inference for discretely
observed nonlinear diffusions, Econometrica, 69, 959-993.

101. Elliot, R.J. (1982): Stochastic Calculus and Applications, Springer-Verlag, New
York.

102. Fan, J, Jiang, J., Zhang, C. and Zhou, Z. (2003): Time-dependent diffucion
models for term structure dynamics, Statistica Sinica, 13, 965-992.

103. Feigin, P.D. (1976): Maximum likelihood estimation for continuous time sto-
chastic processes, Adv. Appl. Prob. 8, 712-736.

104. Feigin, P.D. (1979): Some comments concerning curious singularity, J. Appl.
Prob. 16, 440-444.

105. Feller, W. (1957): An Introduction to Probability Theory and its Applications,
Vol. I, Wiley, New York.

106. Fisk, D.L. (1963): Quasimartingales and stochastic integrals, Technical Report
No. 1, Dept. of Mathematics, Michigan State University, East Lansing.

107. Florens-Landais, D. and Pham, H. (1999): Large deviations in estimation of an
Ornstein-Uhlenbeck model, J. Appl. Probab. 36, 60-77.

108. Friedman, A. (1975): Stochastic Differential Equations, Vol. I, Academic Press,
New York.

109. Florens-Zmirou, D. (1989): Approximate discrete-time schemes for statistics of
diffusion processes, Statistics, 20, 547-557.

110. Florens-Zmirou, D. (1991): Statistics on crossings of discretized diffusions and
local time, Stoch. Proc. Appl. 39, 139-151.

111. Florens-Zmirou, D. (1993): On estimating the diffusion coefficient from discrete
observations, J. Appl. Probab. 30, 790-804.

112. Freedman, D. (1999): On the Bernstein-von Mises theorem with infinite dimen-
sional parameters, Ann. Statist. 27, 1119-1140.

113. Fuller, W.A. (1996): Introduction to Statistical Time Series, Second Edition,
Wiley, New York.

114. Gallant, A.R. and Long, J.R. (1997): Estimating stochastic differential equations
efficiently by minimum chi-squared, Biometrika 84, 125-141.

115. Gard, T.C. (1988): An Introduction to Stochastic Differential Equations, Marcel
Dekker.

116. Gelb, A. (ed.) (1974): Applied Optimal Estimation, MIT Press, Cambridge, MA.
117. Genon-Catalot, V. (1987): Observations Partielles de Diffusions: Traitement

Statistique dans L’ Asymptotique de la variance, Thesis, Universite Paris Sud,
Orsay, Cedex.

118. Genon-Catelot, V. (1990): Maximum contrast estimation for diffusion processes
from discrete observations, Statistics 21, 99-116.

119. Genon-Catalot, V. and Jacod, J. (1993): On the estimation of the diffusion
coefficient for multidimensional diffusion processes, Ann. Inst. Henri Poincaré,
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Sankhyā, Ser A 47, 392-398.

255. Mishra, M.N. and Prakasa Rao, B.L.S. (1985b): Asymptotic study of maximum
likelihood estmation for nonhomogeneous diffusion processes, Statist. Decisions
3, 193-203.

256. Mishra, M.N. and Prakasa Rao, B.L.S. (1987): Rate of convergence in the
Bernstein-von Mises theorem for a class of diffusion processes, Stochastics 22,
59-75.

257. Mishra, M.N. and Prakasa Rao, B.L.S. (1991): Bounds on the equivalence of
Bayes and maximum likelihood estimators for a class of diffusion processes,
Statistics 22, 613-625.

258. Mohapl, J. (1994): Maximum likelihood estimation in linear infinite dimensional
models, Commun. Statist. - Stoch. Models 10, 781-794.

259. Mohapl,J. (1996):Onestimation inplanarOrnstein-Uhlenbeckprocess,Preprint,
Dept. of Statistics and Actuarial Sciences, University of Waterloo, Canada.

260. Monroe (1972): Processes that can be embedded in Bownian motion, Ann. Math.
Statist.

261. Musiela, M. (1976): Risks of maximum likelihood estimators of parameters of
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