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Prefaces

Preface to the Second Edition

In preparing the second edition we have tried to improve and clarify the
presentation, guided in part by the many comments we have received,
and also to make the various arguments more precise, as far as we could
while keeping this book short and introductory.

There are many dozens of small changes and corrections. The more
substantial changes from the first edition include: a completely rewrit-
ten discussion of renormalization, and significant revisions of the sec-
tions on prediction for stationary processes, Markov chain Monte Carlo,
turbulence, and branching random motion. We have added a discussion
of Feynman diagrams to the section on Wiener integrals, a discussion
of fixed points to the section on the central limit theorem, a discussion
of perfect gases and the equivalence of ensembles to the section on en-
tropy and equilibrium. There are new figures, new exercises, and new
references.

We are grateful to the many people who have talked with us or
written to us with comments and suggestions for improvement. We
are also grateful to Valerie Heatlie for her patient help in putting the
revised manuscript together.

Alexandre J. Chorin
Ole H. Hald
Berkeley, California
March, 2009
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vi PREFACES

Preface to the First Edition

This book started out as a set of lecture notes for a first-year gradu-
ate course on the “stochastic methods of applied mathematics” at the
Department of Mathematics of the University of California at Berke-
ley. The course was started when the department asked a group of its
former students who had gone into nonacademic jobs, in national labs
and industry, what they actually did in their jobs, and found that most
of them did stochastic things that had not appeared anywhere in our
graduate course lineup; over the years the course changed as a result
of the comments and requests of the students, who have turned out to
be a mix of mathematics students and students from the sciences and
engineering. The course has not endeavored to present a full, rigorous
theory of probability and its applications, but rather to provide math-
ematics students with some inkling of the many beautiful applications
of probability, as well as introduce the nonmathematical students to
the general ideas behind methods and tools they already use. We hope
that the book too can accomplish these tasks.

We have simplified the mathematical explanations as much as we
could everywhere we could. On the other hand, we have not tried to
present applications in any detail either. The book is meant to be an
introduction, hopefully an easily accessible one, to the topics on which
it touches.

The chapters in the book cover some background material on least
squares and Fourier series, basic probability (with Monte Carlo meth-
ods, Bayes’ theorem, and some ideas about estimation), some ap-
plications of Brownian motion, stationary stochastic processes (the
Khinchin theorem, an application to turbulence, prediction for time se-
ries and data assimilation), equilibrium statistical mechanics (including
Markov chain Monte Carlo), and time-dependent statistical mechanics
(including optimal prediction). The leitmotif of the book is conditional
expectation (introduced in a drastically simplified way) and its uses in
approximation, prediction, and renormalization. All topics touched
upon come with immediate applications; there is an unusual emphasis
on time-dependent statistical mechanics and the Mori-Zwanzig formal-
ism, in accordance with our interests and as well as our convictions.
Each chapter is followed by references; it is, of course, hopeless to try
to provide a full bibliography of all the topics included here; the bib-
liographies are simply lists of books and papers we have actually used
in preparing notes and should be seen as acknowledgments as well as
suggestions for further reading in the spirit of the text.
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We thank Dr. David Bernstein, Dr. Maria Kourkina-Cameron, and
Professor Panagiotis Stinis, who wrote down and corrected the notes
on which this book is based and then edited the result; the book would
not have existed without them. We are profoundly indebted to many
wonderful collaborators on the topics covered in this book, in particu-
lar Professor G.I. Barenblatt, Dr. Anton Kast, Professor Raz Kupfer-
man, and Professor Panagiotis Stinis, as well as Dr. John Barber, Dr.
Alexander Gottlieb, Dr. Peter Graf, Dr. Eugene Ingerman, Dr. Paul
Krause, Professor Doron Levy, Professor Kevin Lin, Dr. Paul Okunev,
Dr. Benjamin Seibold, and Professor Mayya Tokman; we have learned
from all of them (but obviously not enough) and greatly enjoyed their
friendly collaboration. We also thank the students in the Math 220
classes at the University of California, Berkeley, and Math 280 at the
University of California, Davis, for their comments, corrections, and
patience, and in particular Ms. K. Schwarz, who corrected errors and
obscurities. We are deeply grateful to Ms. Valerie Heatlie, who per-
formed the nearly-Sisyphean task of preparing the various typescripts
with unflagging attention and good will. Finally, we are thankful to
the US Department of Energy and the National Science Foundation for
their generous support of our endeavors over the years.

Alexandre J. Chorin
Ole H. Hald
Berkeley, California
September, 2005
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CHAPTER 1

Preliminaries

1.1. Least Squares Approximation

Let V be a vector space with vectors u, v, w, . . . and scalars α, β, . . . .
The space V is an inner product space if one has defined a function
(·, ·) from V × V to the reals (if the vector space is real) or to the
complex (if V is complex) such that for all u, v ∈ V and all scalars α,
the following conditions hold:

(u, v) = (v, u),

(u+ v, w) = (u,w) + (v, w),

(αu, v) = α(u, v), (1.1)

(v, v) ≥ 0,

(v, v) = 0⇔ v = 0,

where the overbar denotes the complex conjugate. Two elements u, v
such that (u, v) = 0 are said to be orthogonal.

The most familiar inner product space is Rn with the Euclidean
inner product. If u = (u1, u2, . . . , un) and v = (v1, v2, . . . , vn), then

(u, v) =
n∑
i=1

uivi.

Another inner product space is C[0, 1], the space of continuous func-

tions on [0, 1], with (f, g) =
∫ 1

0
f(x)g(x) dx.

When you have an inner product, you can define a norm, the “L2

norm”, by

‖v‖ =
√

(v, v).

©  Springer Science + Business Media, LLC 2009
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2 1. PRELIMINARIES

This has the following properties, which can be deduced from the prop-
erties of the inner product:

‖αv‖ = |α|‖v‖,
‖v‖ ≥ 0,

‖v‖ = 0⇔ v = 0,

‖u+ v‖ ≤ ‖u‖+ ‖v‖.

equality

|(u, v)| ≤ ‖u‖‖v‖.
In addition to these three properties, common to all norms, the L2 norm
has the “parallelogram property” (so called because it is a property of
parallelograms in plane geometry)

‖u+ v‖2 + ‖u− v‖2 = 2(‖u‖2 + ‖v‖2),

which can be verified by expanding the inner products.
Let {un} be a sequence in V .

Definition. A sequence {un} is said to converge to û ∈ V if ‖un−
û‖ → 0 as n → ∞ (i.e., for any ε > 0, there exists some N ∈ N such
that n > N implies ‖un − û‖ < ε).

Definition. A sequence {un} is a Cauchy sequence if given ε > 0,
there exists N ∈ N such that for all m,n > N ‖un − um‖ < ε.

A sequence that converges is a Cauchy sequence, although the con-
verse is not necessarily true. If the converse is true for all Cauchy
sequences in a given inner product space, then the space is called com-
plete. All of the spaces we work with from now on are complete. Ex-
amples are Rn, Cn, L2.

A few more definitions from real analysis:

Definition. An open ball centered at x with radius r > 0 is the
set Br(x) = {u : ‖u− x‖ < r}.

Definition. A set S is open if for all x ∈ S, there exists an open
ball Br(x) such that Br(x) ⊂ S.

Definition. A set S is closed if every convergent sequence {un}
such that un ∈ S for all n converges to an element of S.

An example of a closed set is the closed interval [0, 1] ⊂ R. An
example of an open set is the open interval (0, 1) ⊂ R. The complement
of an open set is closed, and the complement of a closed set is open.
The empty set is both open and closed and so is Rn.

The last, called the triangle inequality, follows from the Schwarz in-
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Given a set S and some point b outside of S, we want to determine
under what conditions there is a point b̂ ∈ S closest to b. Let d(b, S) =
infx∈S ‖x−b‖ be the distance from b to S. The quantity on the right of
this definition is the greatest lower bound of the set of numbers ‖x−b‖,
and its existence is guaranteed by the properties of the real number
system. What is not guaranteed in advance, and must be proved here,
is the existence of an element b̂ that satisfies ‖b̂− b‖ = d(b, S). To see
the issue, take S = (0, 1) ⊂ R and b = 2; then d(b, S) = 1, yet there is

no point b̂ ∈ (0, 1) such that ‖b̂− 2‖ = 1.

Theorem 1.1. If S is a closed linear subspace of V and b is an
element of V, then there exists b̂ ∈ S such that ‖b̂− b‖ = d(b, S).

Proof. There exists a sequence of elements {un} ⊂ S such that
‖b− un‖ → d(b, S) by definition of the greatest lower bound. We now
show that this sequence is a Cauchy sequence.

From the parallelogram law we have∥∥∥∥1

2
(b− um)

∥∥∥∥2

+

∥∥∥∥1

2
(b− un)

∥∥∥∥2

=
1

2

∥∥∥∥b− 1

2
(un + um)

∥∥∥∥2

+
1

8
‖un − um‖2.

(1.2)

S is a vector space; therefore,

1

2
(un + um) ∈ S ⇒

∥∥∥∥b− 1

2
(un + um)

∥∥∥∥2

≥ d2(b, S).

Then since ‖b− un‖ → d(b, S), we have∥∥∥∥1

2
(b− un)

∥∥∥∥2

→ 1

4
d2(b, S).

From (1.2),

‖un − um‖ → 0,

and thus {un} is a Cauchy sequence by definition; our space is complete

and therefore this sequence converges to an element b̂ in this space. b̂
is in V because V is closed. Consequently

‖b̂− b‖ = lim ‖un − b‖ = d(b, S).

�

We now wish to describe further the relation between b and b̂.
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Theorem 1.2. Let S be a closed linear subspace of V , let x be any
element of S, b any element of V , and b̂ an element of S closest to b.
Then

(x− b̂, b− b̂) = 0.

Proof. If x = b̂ we are done. Else set

θ(x− b̂)− (b− b̂) = θx+ (1− θ)b̂− b = y − b.

Since y is in S and ‖y − b‖ ≥ ‖b̂− b‖, we have

‖θ(x− b̂)− (b− b̂)‖2 = θ2‖x− b̂‖2 − 2θ(x− b̂, b− b̂) + ‖b− b̂‖2

≥ ‖b− b̂‖2.

Thus θ2‖x − b̂‖2 − 2θ(x − b̂, b − b̂) ≥ 0 for all θ. The left hand side

attains its minimum value when θ = (x−b̂, b−b̂)/‖x−b̂‖2 in which case

−(x− b̂, b− b̂)2/‖x− b̂‖2 ≥ 0. This implies that (x− b̂, b− b̂) = 0. �

Theorem 1.3. (b− b̂) is orthogonal to x for all x ∈ S.

Proof. By Theorem 1.2, (x − b̂, b − b̂) = 0 for all x ∈ S. When

x = 0 we have (b̂, b− b̂) = 0. Thus (x, b− b̂) = 0 for all x in S. �

Corollary 1.4. If S is a closed linear subspace, then b̂ is unique.

Proof. Let b = b̂+n = b̂1 +n1, where n is orthogonal to b̂ and n1

is orthogonal to b̂1. Therefore,

b̂− b̂1 ∈ S ⇒ (b̂− b̂1, n1 − n) = 0

⇒ (b̂− b̂1, b̂− b̂1) = 0

⇒ b̂ = b̂1.

�

One can think of b̂ as the orthogonal projection of b on S and write
b̂ = Pb, where the projection P is defined by the foregoing discussion.

We will now give a few applications of the above results.

Example. Consider a matrix equation Ax = b, where A is an m×n
matrix and m > n. This kind of problem arises when one tries to fit
a large set of data by a simple model. Assume that the columns of A
are linearly independent. Under what conditions does the system have
a solution? To clarify ideas, consider the 3× 2 case:a11 a12

a21 a22

a31 a32

[x1

x2

]
=

b1

b2

b3

 .
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Let A1 denote the first column vector of A, A2 the second column
vector, etc. In this case,

A1 =

a11

a21

a31

 , A2 =

a12

a22

a32

 .
If Ax = b has a solution, then one can express b as a linear combina-

tion of A1, A2, . . . Am; for example, in the 3× 2 case, x1A1 + x2A2 = b.
If b does not lie in the column space of A (the set of all linear com-
binations of the columns of A), then the problem has no solution. It
is often reasonable to replace the unsolvable problem by the solvable
problem Ax̂ = b̂, where b̂ is as close as possible to b and yet does lie
in the column space of A. We know from the foregoing that the “best
b̂” is such that b − b̂ is orthogonal to the column space of A. This is
enforced by the m equations

(A1, b̂− b) = 0, (A2, b̂− b) = 0, . . . , (Am, b̂− b) = 0.

Since b̂ = Ax̂, we obtain the equation

AT (Ax̂− b) = 0 ⇒ x̂ = (ATA)−1AT b.

One application of the above is to “fit” a line to a set of points on
the Euclidean plane. Given a set of points, (x1, y1), (x2, y2), . . . , (xn, yn)
that come from some experiment and that we believe would lie on a
straight line if it were not for experimental error, what is the line that
“best approximates” these points? We hope that if it were not for the
errors, we would have yi = axi + b for all i and for some fixed a and b;
so we seek to solve a system of equationsx1 1

...
...

xn 1

[a
b

]
=

y1
...
yn

 .
Example. Consider the system of equations given by Ax = b,

where A is an n × m matrix and n < m (there are more unknowns
than equations). The system has infinitely many solutions. Suppose
you want the solution of smallest norm; this problem arises when one
tries to find the most likely solution to an underdetermined problem.

Before solving this problem, we need some preliminaries.

Definition. S ⊂ V is an affine subspace if S = {y : y = x+ c, c 6=
0, x ∈ X}, where X is a closed linear subspace of V . Note that S is
not a linear subspace.
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Lemma 1.5. If S is an affine subspace and b′ /∈ S, then there exists
x̂ ∈ X such that d(b′, S) = ‖x̂ + c − b′‖. Furthermore, x̂ − (b′ − c) is
orthogonal to x for all x ∈ X. (Note that here we use b′ instead of b,
to avoid confusion with the system’s right-hand side.)

Proof. We have S = {y : y = x + c, c 6= 0, x ∈ X}, where X is a
closed linear subspace of V . Now,

d(b′, S) = inf
y∈S
‖y − b′‖ = inf

x∈X
‖x+ c− b′‖

= inf
x∈X
‖x− (b′ − c)‖ = d(b′ − c,X)

= ‖x̂− (b′ − c)‖ = ‖x̂+ c− b′‖.
The point x̂ ∈ X exists since X is a closed linear subspace. It follows
from Theorem 1.3 that x̂− (b′ − c) is orthogonal to X. Note that the
distance between S and b′ is the same as that between X and b′−c. �
From the proof above, we see that x̂ + c is the element of S closest to
b′. For the case b′ = 0, we find that x̂+ c is orthogonal to X.

Now we return to the problem of finding the “smallest” solution of
an underdetermined problem. Assume A has “maximal rank”; that is,
m of the column vectors ofA are linearly independent. We can write the
solutions of the system as x = x0 + z, where x0 is a particular solution
and z is a solution of the homogeneous system Az = 0. So the solutions
of the system Ax = b form an affine subspace. As a result, if we want to
find the solution with the smallest norm (i.e., closest to the origin) we
need to find the element of this affine subspace closest to b′ = 0. From
the above, we see that such an element must satisfy two properties.
First, it has to be an element of the affine subspace (i.e., a solution
to the system Ax = b) and second, it has to be orthogonal to the
linear subspace X, which is the null space of A (the set of solutions of
Az = 0). Now consider x′ = AT (AAT )−1b; this vector lies in the affine
subspace of the solutions of Ax = b, as one can check by multiplying
it by A. Furthermore, it is orthogonal to every vector in the space of
solutions of Az = 0 because (AT (AAT )−1b, z) = ((AAT )−1b, Az) = 0.
This is enough to make x′ the unique solution of our problem.

1.2. Orthonormal Bases

The problem presented in the previous section, of finding an ele-
ment in a closed linear space that is closest to a vector outside the
space, lies in the framework of approximation theory, where we are
given a function (or a vector) and try to find an approximation to it
as a linear combination of given functions (or vectors). This is done
by requiring that the norm of the error (difference between the given
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function and the approximation) be minimized. In what follows, we
shall find coefficients for this optimal linear combination.

Definition. Let S be a linear vector space. A collection of m
vectors {ui}mi=1 belonging to S are linearly independent if and only if
λ1u1 + · · ·+ λmum = 0 implies λ1 = λ2 = · · · = λm = 0.

Definition. Let S be a linear vector space. A collection {ui}mi=1

of vectors belonging to S is called a basis of S if {ui} are linearly
independent and any vector in S can be written as a linear combination
of them.

Note that the number of elements of a basis can be finite or infinite
depending on the space.

Theorem 1.6. Let S be an m-dimensional linear inner-product
space with m finite. Then any collection of m linearly independent
vectors of S is a basis.

Definition. A set of vectors {ei}mi=1 is orthonormal if the vectors
are mutually orthogonal and each has unit length (i.e., (ei, ej) = δij,
where δij = 1 if i = j and δij = 0 otherwise).

The set of all the linear combinations of the vectors {ui} is called
the span of {ui} and is written as Span{u1, u2, . . . , um}.

Suppose we are given a set of vectors {ei}mi=1 that are an orthonor-
mal basis for a subspace S of a real vector space. If b is an element out-
side the space, we want to find the element b̂ ∈ S, where b̂ =

∑m
i=1 ciei

such that ‖b−
∑m

i=1 ciei‖ is minimized. Specifically, we have∥∥∥∥b− m∑
i=1

ciei

∥∥∥∥2

=

(
b−

m∑
i=1

ciei , b−
m∑
j=1

cjej

)

= (b, b)− 2
m∑
i=1

ci(b, ei) +

(
m∑
i=1

ciei ,
m∑
j=1

cjej

)

= (b, b)− 2
m∑
i=1

ci(b, ei) +
m∑

i,j=1

cicj(ei, ej)

= (b, b)− 2
m∑
i=1

ci(b, ei) +
m∑
i=1

c2
i

= ‖b‖2 −
m∑
i=1

(b, ei)
2 +

m∑
i=1

(ci − (b, ei))
2,

where we have used the orthonormality of the ei to simplify the ex-
pression. As is readily seen, the norm of the error is a minimum when
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ci = (b, ei), i = 1 . . .m, so that b̂ is the projection of b onto S. It is

easy to check that b − b̂ is orthogonal to any element in S. Also, we
see that the following inequality, called Bessel’s inequality, holds:

m∑
i=1

(b, ei)
2 ≤ ‖b‖2.

When the basis is not orthonormal, steps similar to the above yield∥∥∥∥∥b−
m∑
i=1

cigi

∥∥∥∥∥
2

=

(
b−

m∑
i=1

cigi, b−
m∑
j=1

cjgj

)

= (b, b)− 2
m∑
i=1

ci(b, gi) +

(
m∑
i=1

cigi,

m∑
j=1

cjgj

)

= (b, b)− 2
m∑
i=1

ci(b, gi) +
m∑

i,j=1

cicj(gi, gj).

If we differentiate the last expression with respect to ci and set the
derivatives equal to zero, we get

Gc = r,

where G is the matrix with entries gij = (gi, gj), c = (c1, . . . , cm)T , and
r = ((g1, b), . . . , (gm, b))

T . This system can be ill-conditioned so that
its numerical solution presents a problem. The question that arises is
how to find, given a set of vectors, a new set that is orthonormal. This
is done through the Gram-Schmidt process, which we now describe.

Let {ui}mi=1 be a basis of a linear subspace. The following algo-
rithm will give an orthonormal set of vectors e1, e2, . . . , em such that
Span{e1, e2, . . . , em} = Span{u1, u2, . . . , um}.

1. Normalize u1 (i.e., let e1 = u1/‖u1‖).
2. We want a vector e2 that is orthonormal to e1. In other words

we look for a vector e2 satisfying (e2, e1) = 0 and ‖e2‖ = 1. Take
e2 = u2 − (u2, e1)e1 and then normalize.

3. In general, ej is found recursively by taking

ej = uj −
j−1∑
i=1

(uj, ei)ei

and normalizing.

The Gram-Schmidt process can be implemented numerically very
efficiently. The solution of the recursion above is equivalent to finding
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e1, e2, . . . , em, such that the following holds:

u1 = b11e1,

u2 = b12e1 + b22e2,

...

um = b1me1 + b2me2 + · · ·+ bmmem;

that is, what we want to do is decompose the matrix U with columns
u1, u2, . . . , um into a product of two matrices Q and R, where Q has
as columns the orthonormal vectors e1, e2, . . . , em and R is the matrix

R =


b11 b12 . . . b1m

0 b22 . . . b2m

. . . . . . . . . . . .
0 0 . . . bmm

 .
This is the well-known QR decomposition, for which there exist very
efficient implementations.

1.3. Fourier Series

Let L2[0, 2π] be the space of square integrable functions in [0, 2π]

(i.e., such that
∫ 2π

0
f 2dx < ∞). Define the inner product of two func-

tions f and g belonging to this space as (f, g) =
∫ 2π

0
fg dx and the

corresponding norm ‖f‖ =
√

(f, f). The Fourier series of a function
f(x) in this space is defined as

f(x) = a0 +
∞∑
n=1

an cos(nx) +
∞∑
n=1

bn sin(nx), (1.3)

where

a0 =
1

2π

∫ 2π

0

f(x) dx,

an =
1

π

∫ 2π

0

cos(nx)f(x) dx,

bn =
1

π

∫ 2π

0

sin(nx)f(x) dx.

Alternatively, consider the set of functions{
1√
2π
,

1√
π

cos(nx),
1√
π

sin(nx), . . .

}
, n = 1, 2, . . . .
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This set is orthonormal in [0, 2π] and the Fourier series (1.3) can be
rewritten as

f(x) =
ã0√
2π

+
∞∑
n=1

ãn√
π

cos(nx) +
∞∑
n=1

b̃n√
π

sin(nx). (1.4)

with

ã0 =
1√
2π

∫ 2π

0

f(x) dx,

ãn =
1√
π

∫ 2π

0

cos(nx)f(x) dx,

b̃n =
1√
π

∫ 2π

0

sin(nx)f(x) dx.

For any function in L2[0, 2π] (the set of square integrable functions on
[0, 2π]) the series (1.4) converges to f in the L2 norm; i.e., let

S0 =
ã0√
2π
, Sn =

ã0√
2π

+
n∑

m=1

ãm√
π

cosmx+
n∑

m=1

b̃m√
π

sinmx (for n ≥ 1)

Then we have ‖Sn − f‖ → 0 as n→∞.
For any finite truncation of the series (1.4), we have

ã2
0 +

n∑
i=1

(
ã2
i + b̃2

i

)
≤ ‖f‖2. (1.5)

This is the Bessel inequality, which becomes an equality (Parseval
equality) as n→∞.

The above series (1.4) can be rewritten in complex notation. Recall
that

cos(kx) =
eikx + e−ikx

2
, sin(kx) =

eikx − e−ikx

2i
. (1.6)

After substitution of (1.6) into (1.4) and collection of terms, the Fourier
series becomes

f(x) =
∞∑

k=−∞

ck√
2π
eikx,

where f is now complex. (Note that f will be real if for k ≥ 0, we
have c−k = ck.) Consider a vector space with complex scalars and
introduce an inner product that satisfy axioms (1.1) and define the
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norm ‖u‖ =
√

(u, u). For the special case where the inner product is
given by

(u, v) =

∫ 2π

0

u(x)v̄(x) dx,

the functions (2π)−1/2 eikx with k = 0,±1,±2, . . . form an orthonormal
set with respect to this inner product. Then the complex Fourier series
of a complex function f(x) is written as

f(x) =
∞∑

k=−∞

ck
1√
2π
eikx, ck =

(
f(x),

eikx√
2π

)
.

Let f(x) and g(x) be two functions with Fourier series given respec-
tively by

f(x) =
∞∑

k=−∞

ak√
2π
eikx,

g(x) =
∞∑

k=−∞

bk√
2π
eikx.

Then for their inner product, we have

(f, g) =

∫ 2π

0

f(x)ḡ(x)dx =

∫ 2π

0

∞∑
k=−∞

∞∑
l=−∞

akb̄l
2π

ei(k−l)x =
∞∑

k=−∞

akb̄k

(this is known as Parseval’s identity), and for their ordinary product,
we have

f(x)g(x) =
∞∑

k=−∞

ck√
2π
eikx,

where

ck =

∫ 2π

0

(
∞∑

n=−∞

∞∑
m=−∞

anbm
2π

ei(n+m)x

)
e−ikx√

2π
dx

=
1√
2π

∞∑
n=−∞

∞∑
m=−∞

anbmδ(n+m− k)

=
1√
2π

∞∑
n=−∞

anbk−n =
1√
2π

∞∑
n=−∞

ak−nbn.
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1.4. Fourier Transform

Consider the space of periodic functions defined on the interval
[−τ/2, τ/2]. The functions τ−1/2 exp(2πikx/τ) are an orthonormal ba-
sis for this space. For a function f(x) in this space we have

f(x) =
∞∑

k=−∞

ckek(x), ck = (f, ek(x)),

where

ek(x) =
exp(2πikx/τ)√

τ

and

ck = (f, ek) =

∫ τ
2

− τ
2

f(x)ek(x) dx.

Substituting the expression for the coefficient in the series, we find

f(x) =
∞∑

k=−∞

(∫ τ
2

− τ
2

f(s)
exp(−2πiks/τ)√

τ
ds

)
exp(2πikx/τ)√

τ

=
∞∑

k=−∞

1

τ

(∫ τ
2

− τ
2

f(s) exp(−2πiks/τ) ds

)
exp(2πikx/τ).

Define

f̂(l) =

∫ τ
2

− τ
2

f(s)e−ils ds.

Then the quantity in parentheses above becomes f̂(l = 2πk/τ) and we
have

f(x) =
∞∑

k=−∞

1

τ
f̂(2πk/τ) exp(2πikx/τ). (1.7)

Pick τ large and assume that the function f tends to zero at ±∞ fast
enough so that f̂ is well defined and that the limit τ → ∞ is well
defined. Write ∆ = 1/τ . From (1.7) we have

f(x) =
∞∑

k=−∞

∆f̂(2πk∆) exp(2πik∆x).

As ∆→ 0, this becomes

f(x) =

∫ ∞
−∞

f̂(2πt) exp(2πitx) dt,
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where we have replaced k∆ by the continuous variable t. By the change
of variables 2πt = l, this becomes

f(x) =
1

2π

∫ ∞
−∞

f̂(l)eilx dl.

Collecting results, we have

f̂(l) =

∫ ∞
−∞

f(s)e−ils ds,

f(x) =
1

2π

∫ ∞
−∞

f̂(l)eilx dl.

The last two expressions are the Fourier transform and the inverse
Fourier transform, respectively. There is no universal agreement on
where the quantity 2π that accompanies the Fourier transform should
be. It can be split between the Fourier transform and its inverse as
long as the product remains 2π. In what follows, we use the splitting

f̂(l) =
1√
2π

∫ ∞
−∞

f(s)e−ils ds,

f(x) =
1√
2π

∫ ∞
−∞

f̂(l)eilx dl.

Instead of L2[0, 2π], now our space of functions is L2(R) (i.e., the space
of square integrable functions on the real line).

Consider two functions u(x) and v(x) with Fourier series given re-
spectively by

∑
ak exp(ikx)/

√
2π and

∑
bk exp(ikx)/

√
2π. Then, as

we saw above the Fourier coefficients for their product are

ck =
1√
2π

∞∑
k′=−∞

ak′bk−k′ .

We now consider what this formula becomes as we go to the Fourier
transform; for two functions f and g with Fourier transforms f̂ and ĝ,
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we have

f̂g(k) =
1√
2π

∫ ∞
−∞

f(x)g(x)e−ikxdx

=
1√
2π

∫ ∞
−∞

1√
2π

∫ ∞
−∞

f̂(k′)eik
′xdk′ g(x) e−ikxdx

=
1√
2π

∫ ∞
−∞

f̂(k′)
1√
2π

∫ ∞
−∞

g(x)e−i(k−k
′)xdx dk′

=
1√
2π

∫ ∞
−∞

f̂(k′)ĝ(k − k′)dk′

=
1√
2π

(f̂ ∗ ĝ)(k),

where ∗ stands for “convolution.” This means that up to a constant, the
Fourier transform of a product of two functions equals the convolution
of the Fourier transforms of the two functions.

Another useful property of the Fourier transform concerns the
transform of the convolution of two functions. Assuming f and g are
bounded, continuous, and integrable, the following result holds for their
convolution h(x) = (f ∗ g)(x):

̂(f ∗ g)(k) =
1√
2π

∫ ∞
−∞

(∫ ∞
−∞

f(ξ)g(x− ξ)dξ
)
e−ikx dx

=
1√
2π

∫ ∞
−∞

∫ ∞
−∞

f(ξ)e−iξxg(x− ξ)e−ik(x−ξ)dx dξ

=
√

2π
1√
2π

∫ ∞
−∞

f(ξ)e−ikξ
1√
2π

∫ ∞
−∞

g(y)e−ikydy dξ

=
√

2πf̂(k)ĝ(k).

We have proved that, up to a constant, the Fourier transform of a
convolution of two functions is the product of the Fourier transforms
of the functions.

In addition, Parseval’s equality carries over to the Fourier transform
and we have ‖f‖2 = ‖f̂‖2, where ‖ · ‖ is the L2 norm on R. This is a
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special case (f = g) of the following identity

(f, g) =

∫ ∞
−∞

f(x)g(x) dx

=

∫ ∞
−∞

1√
2π

∫ ∞
−∞

f̂(ξ)eiξxdξ g(x) dx

=

∫ ∞
−∞

f̂(ξ)
1√
2π

∫ ∞
−∞

g(x) e−iξxdx dξ

=

∫ ∞
−∞

f̂(ξ)ĝ(ξ)dξ = (f̂ , ĝ).

Futhermore, consider a function f and its Fourier transform f̂ .
Then for the transform of the function f(x/a), we have

̂

f
(x
a

)
(k) =

1√
2π

∫ ∞
−∞

f
(x
a

)
e−ikx dx.

By the change of variables y = x/a, we find

̂

f
(x
a

)
(k) =

a√
2π

∫ ∞
−∞

f(y)e−iaky dy

= af̂(ak).

Finally, consider the function f(x) = exp(−x2/2t), where t > 0 is
a parameter. For its Fourier transform we have

f̂(k) =
1√
2π

∫ ∞
−∞

exp

(
−x

2

2t

)
e−ikx dx

=
1√
2π

∫ ∞
−∞

exp

[
−
(
x2

2t
+ ikx

)]
dx.

By completing the square in the exponent we get

f̂(k) =
1√
2π

∫ ∞
−∞

exp

−( x√
2t

+ ik

√
t

2

)2

− tk2

2

 dx
=

1√
2π
e−tk

2/2

∫ ∞
−∞

exp

−( x√
2t

+ ik

√
t

2

)2
 dx. (1.8)

The integral in the last expression can be evaluated by a change of
variables, but we have to justify that such a change of variables is
legitimate. To do that, we quote a result from complex analysis.
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Lemma 1.7. Let φ(z) be an analytic function in the strip |y| < b
and suppose that φ(z) satisfies the inequality |φ(x+ iy)| ≤ Φ(x) in the
strip where Φ(x) ≥ 0 is a function such that lim|x|→∞Φ(x) = 0 and∫∞
−∞Φ(x) dx < ∞. Then the value of the integral

∫∞
−∞ φ(x + iy) dx is

independent of the point y ∈ (−b, b).

The integrand in (1.8) satisfies the hypotheses of the lemma and so
we are allowed to perform the change of variables

y =
x√
2t

+ ik

√
t

2
.

Thus, (1.8) becomes

f̂(k) =
1√
2π
e−tk

2/2

∫ ∞
−∞

exp(−y2)
√

2t dy

=
1√
2π
e−tk

2/2
√

2tπ

=
√
t e−tk

2/2.

By setting t = 1, we see in particular that the function f(x) =
exp(−x2/2) is invariant under the Fourier transform.

1.5. Exercises

1. Find the polynomial of degree less than or equal to 2 that best
approximates the function f(x) = e−x in the interval [0, 1] in the L2

sense.

2. Find the Fourier coefficients ûk of the function u(x) defined by

u(x) =

{
x, 0 ≤ x < π

x− 2π, π ≤ x ≤ 2π.

Check that |kû(k)| → a constant as |k| → ∞.

3. Find the Fourier transform of the function e−|x|.

4. Find the point in the plane x + y + z = 1 closest to (0, 0, 0). Note
that this plane is not a linear space, and explain how our standard
theorem applies.
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6. Denote the Fourier transform by F , so that the Fourier transform
of a function g is Fg. A function g is an eigenvector of F with an
eigenvalue λ if Fg = λg (we have seen that e−x

2/2 is such an eigen-
function with eigenvalue 1). Show that F can have no eigenvalues
other than ±1,±i. (Hint: what do you get when you calculate F 4g?
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with respect to λ, and treating λ, λ̄ as independent.differentiation



CHAPTER 2

Probability

2.1. Definitions

In weather forecasts, one often hears a sentence such as “the prob-
ability of rain tomorrow is 50 percent.” What does this mean? Some-
thing like: “If we look at all possible tomorrows, in half of them there
will be rain” or “if we make the experiment of observing tomorrow,
there is a quantifiable chance of having rain tomorrow, and somehow
or other this chance was quantified as being 1/2.” To make sense of
this, we formalize the notions of experimental outcome, event, and
probability.

Suppose that you make an experiment and imagine all possible
outcomes.

Definition. A sample space Ω is the space of all possible outcomes
of an experiment.

For example, if the experiment is “waiting until tomorrow, and then
observing the weather,” Ω is the set of all possible weathers tomorrow.
There can be many weathers, some differing only in details we cannot
observe and with many features we cannot describe precisely.

Suppose you set up a thermometer in downtown Berkeley and de-
cide you will measure the temperature tomorrow at noon. The set of
possible weathers for which the temperature is between 65 and 70 de-
grees is an “event,” an outcome which is specified precisely and about
which we can think mathematically. An event is subset of Ω, a set of
outcomes, a subset of all possible outcomes Ω, that corresponds to a
well-defined property that can be measured.

Definition. An event is a subset of Ω.

The set of events we are able to consider is denoted by B; it is a
set of subsets of Ω. We require that B (the collection of events) be a
σ-algebra; that is, B must satisfy the following axioms:

1. ∅ ∈ B and Ω ∈ B (∅ is the empty set).
2. If B ∈ B, then CB ∈ B (CB is the complement of B in Ω).
3. If A = {A1, A2, . . . , An, . . . } is a finite or countable collection in
B, then any union of the elements of A is in B.
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It follows from these axioms that any intersection of a countable num-
ber of elements of B also belongs to B.

Consider the tosses of a die. In this case, Ω = {1, 2, 3, 4, 5, 6}.
1. If we are only interested in whether something happened or not,

we may consider a set of events

B = {{1, 2, 3, 4, 5, 6}, ∅}.

The event {1, 2, 3, 4, 5, 6} means “something happened,” while
the event ∅ means “nothing happened.”

2. If we are interested in whether the outcome is odd or even, then
we may choose

B = {{1, 3, 5}, {2, 4, 6}, {1, 2, 3, 4, 5, 6}, ∅}.
3. If we are interested in which particular number appears, then B

is the set of all subsets of Ω; B is generated by {{1}, {2}, {3}, {4} ,
{5}, {6}}.

Observe that B in case (1) is the smallest σ-algebra on the sample
space (in the sense of having fewest elements), while B in case (3) is
the largest.

Definition. A probability measure P (A) is a function P : B → R

defined on the sets A ∈ B such that:

1. P (Ω) = 1.
2. 0 ≤ P ≤ 1.
3. If {A1, A2, . . . , An, . . . } is a finite or countable collection of

events such that Ai ∈ B and Ai ∩ Aj = ∅ for i 6= j, then
P (
⋃∞
i=1 Ai) =

∑∞
i=1 P (Ai) (the probability of the simultaneous

occurrence of incompatible events is the sum of the probabilities
of the individual events).

Definition. The triple (Ω,B, P ) is called a probability space.

In brief, the σ-algebra B defines the objects to which we assign
probabilities and P assigns probabilities to the elements of B.

Definition. A random variable η : Ω → R is a B-measurable
function defined on Ω, where “B-measurable” means that the subset of
elements ω in Ω for which η(ω) ≤ x is an element of B for every x. In
other words, it is possible to assign a probability to the occurrence of
the inequality η ≤ x for every x.

Loosely speaking, a random variable is a real variable whose numer-
ical values are determined by experiment, with the proviso that it is
possible to assign probabilities to the occurrence of the various values.
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1

F

2 3 4 5 6 7
x

Figure 2.1. Probability distribution for a fair six-sided die.

Given a probability measure P (A), the probability distribution
function of a random variable η is defined by

Fη(x) = P ({ω ∈ Ω | η(ω) ≤ x}) = P (η ≤ x).

The existence of such a function is guaranteed by the definition of a
random variable.

Now consider several examples.

Example. Let B = {A1, A2, A1 ∪ A2, ∅}. Let P (A1) = P (A2) =
1/2. Define a random variable

η(ω) =

{
−1, ω ∈ A1

+1, ω ∈ A2.

Then

Fη(x) =


0, x < −1

1/2, −1 ≤ x < 1

1, x ≥ 1.

Example. Suppose that we are tossing a die. Ω = {1, 2, 3, 4, 5, 6}
and η(ω) = ω. Take B to be the set of all subsets of Ω. The probability
distribution function of η is the one shown in Figure 2.1.

Suppose that Ω is the real line and the range of a random variable
η also is the real line (e.g., η(ω) = ω). In this case, one should be sure
that the σ-algebra B is large enough to include all of the sets of the form
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{ω ∈ Ω | η(ω) ≤ x}. The minimal σ-algebra satisfying this condition
is the σ-algebra of the “Borel sets” formed by taking all the possible
countable unions and complements of all of the half-open intervals in
R of the form (a, b].

Suppose that F ′η(x) exists. Then fη(x) = F ′η(x) is the probability
density of η. Since Fη(x) is nondecreasing, fη(x) ≥ 0. Obviously,∫ ∞

−∞
fη(x)dx = Fη(∞)− Fη(−∞) = 1.

If F ′η(x) exists and is continuous, then

P (x < η ≤ x+ dx) = Fη(x+ dx)− Fη(x) = fη(x) dx.

The following probability density functions (pdfs) are often encoun-
tered:

1. Equidistribution density

f(x) =

{
1, 0 ≤ x ≤ 1

0, otherwise.

2. Gaussian density

f(x) =
1√

2πσ2
exp

(
−(x−m)2

2σ2

)
, (2.1)

where m and σ are constants.
3. Exponential density

f(x) =

{
e−x, x ≥ 0

0, x < 0.

2.2. Expected Values and Moments

Definition. Let (Ω,B, P ) be a probability space and η be a ran-
dom variable. Then the expected value, or mean, of the random vari-
able η is defined as the integral of η over Ω with respect to the measure
P :

E[η] =

∫
Ω

η(ω) dP.

In this notation, the symbol dP is a reminder of the measure with
respect to which the integral is taken; when there is a need for more
specificity, we shall also sometimes write P (dω) instead of dP . When
Ω is a discrete set, this integral is just the sum of the products of the
values of η with the probabilities that η assumes these values.
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This definition can be rewritten in another way involving the Stielt-
jes integral. Let F be a nondecreasing and bounded function. Define
the Stieltjes integral of a function g(x) on an interval [a, b] as follows.
Let a = x0 < x1 < · · · < xn−1 < xn = b, ∆i = xi+1 − xi, and
x∗i ∈ [xi, xi+1]. Then∫ b

a

g(x) dF (x) = lim
∆i→0

n−1∑
i=0

g(x∗i )(F (xi+1)− F (xi))

(where we have written F instead of Fη for short). Let x∗i = xi =
−k + i/2k for i = 0, 1, . . . , n = k · 2k+1, when k is an integer, so that
−k ≤ xi ≤ k. Define the indicator function χB of a set B by χB(x) = 1
if x ∈ B, χB(x) = 0 if x /∈ B. Set ∆i = 1/2k. The expected value of η
is ∫

Ω

η(dω)P (dω) =

∫
Ω

lim
n→∞

n−1∑
i=0

xiχ{ω|xi<η≤xi+1}P (dω)

= lim
n→∞

n−1∑
i=0

xi P ({ω|xi < η(ω) ≤ xi+1})

= lim
n→∞

n−1∑
i=0

x∗i (F (xi+1)− F (xi))

= lim
k→∞

∫ k

−k
x dF (x) +O

(
1

2k

)
=

∫ ∞
−∞

x dF (x).

If η is a random variable, then so is aη, where a is a constant. If η
is a random variable and g(x) is a continuous function defined on the
range of η, then g(η) is also a random variable, and

E[g(η)] =

∫ ∞
−∞

g(x) dF (x).

The special cases

E[ηn] =

∫ ∞
−∞

xn dF (x)

and

E[(η − E[η])n] =

∫ ∞
−∞

(x− E[η])n dF (x)
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are called the nth moment and the nth centered moment of η, respec-
tively. (Of course, these integrals may fail to converge for some random
variables.) The second centered moment is the variance of η.

Definition. The variance Var(η) of the random variable η is

Var(η) = E[(η − E[η])2]

and the standard deviation of η is

σ =
√

Var(η).

Example. The Gaussian pdf (2.1) has E[η] = m and Var(η) = σ2.

Definition. Two events A and B are independent if P (A∩B) =
P (A)P (B). Two random variables η1 and η2 are independent if the
events {ω ∈ Ω | η1(ω) ≤ x} and {ω ∈ Ω | η2(ω) ≤ y} are independent
for all x and y.

Definition. If η1 and η2 are random variables, then the joint dis-
tribution function of η1 and η2 is defined by

Fη1η2(x, y) = P ({ω ∈ Ω | η1(ω) ≤ x, η2(ω) ≤ y}) = P (η1 ≤ x, η2 ≤ y).

If the second mixed derivative ∂2Fη1η2(x, y)/∂x ∂y exists, it is called
the joint probability density of η1 and η2 and is denoted by fη1η2 . In
this case,

Fη1η2(x, y) =

∫ x

−∞

∫ y

−∞
fη1η2(s, t) dt ds.

Clearly, if η1 and η2 are independent, then

Fη1η2(x, y) = Fη1(x)Fη2(y)

and

fη1η2(x, y) = fη1(x)fη2(y).

We can view two random variables η1 and η2 as a single vector-
valued random variable η = (η1, η2) = η(ω) for ω ∈ Ω. We say that η
is measurable if the event η ∈ S with S ⊂ R2 is measurable for a suit-
able family of S’s (i.e., the event Z = {ω ∈ Ω : η(ω) ∈ S} ∈ B,
where B is a σ-algebra on Ω). Suppose that the joint probability
distribution function of the two random variables exists and is de-
noted by Fη1η2(x, y) = P (η1 ≤ x, η2 ≤ y). Note that Fη1η2(x, y) =
Fη2η1(y, x) and Fη1η2(∞, y) = Fη2(y). If the joint density exists, then∫∞
−∞ fη1η2(x, y) dx = fη2(y).
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Definition. The covariance of two random variables η1 and η2 is

Cov(η1, η2) = E[(η1 − E[η1])(η2 − E[η2])].

If Cov(η1, η2) = 0, then the random variables are uncorrelated. It
is in general not true that uncorrelated variables are independent.

Example. Let η1 and η2 be two random variables with joint prob-
ability distribution

(η1, η2) =


(1

2
, 1

4
) with probability 1

4

(1
2
,−1

4
) with probability 1

4

(−1
2
, 0) with probability 1

2
.

Then we have E[η1] = 0, E[η2] = 0, and E[η1η2] = 0. However, the
random variables are not independent because P

(
η1 = −1

2
, η2 = 1

4

)
6=

P
(
η1 = −1

2

)
P
(
η2 = 1

4

)
.

Finally, a vector-valued random variable is Gaussian (or, equiva-
lently, a sequence of random variables is jointly Gaussian) if

P (x1 ≤ η1 ≤ x1 + dx1, . . . , xn ≤ ηn ≤ xn + dxn)

=
1

Z
e−

1
2

(x−m)TA−1(x−m) dx,

where x = (x1, x2, . . . , xn), m = (m1,m2, . . . ,mn), dx = dx1 · · · dxn,
and A is a symmetric, positive definite n×n matrix. The normalization
constant Z can be shown to be Z = (2π)n/2|A|1/2, where |A| is the
determinant of A. In the case of jointly Gaussian random variables,
the covariance matrix C with entries Cij = E[(ηi − E[ηi])(ηj − E[ηj])]
equals the matrix A. If Cij = 0, then ηi and ηj are uncorrelated.
Furthermore, two Gaussian variables that are uncorrelated are also
independent.

We now discuss several useful properties of the mathematical ex-
pectation E.

Lemma 2.1. E[η1 + η2] = E[η1] + E[η2].

Proof. We assume for simplicity that the joint density fη1η2(x, y)
exists. Then the density fη1(x) of η1 is given by

fη1(x) =

∫ ∞
−∞

fη1η2(x, y) dy

and the density fη2(y) of η2 is given by

fη2(y) =

∫ ∞
−∞

fη1η2(x, y) dx;
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therefore

E[η1 + η2] =

∫
(x+ y)fη1η2(x, y) dx dy

=

∫
xfη1η2(x, y) dx dy +

∫
yfη1η2(x, y) dx dy

=

∫
x dx

∫
fη1η2(x, y) dy +

∫
y dy

∫
fη1η2(x, y) dx

=

∫
xfη1(x) dx+

∫
yfη2(y) dy = E[η1] + E[η2].

�

Lemma 2.2. If η1 and η2 are independent random variables, then

Var[η1 + η2] = Var[η1] + Var[η2].

Proof. For simplicity, we assume that η1 and η2 have densities
with mean zero. Then

Var[η1 + η2] = E[(η1 + η2 − E[η1 + η2])2] = E[(η1 + η2)2]

=

∫
(x+ y)2fη1η2(x, y) dx dy

=

∫
x2fη1η2(x, y) dx dy +

∫
y2fη1η2(x, y) dx dy

+ 2

∫
xyfη1η2(x, y) dx dy.

The first two integrals are equal to Var(η1) and Var(η2), respectively.
The third integral is zero. Indeed, because η1 and η2 are independent,
fη1η2(x, y) = fη1(x)fη2(y) and

∫
xyfη1η2(x, y) dx dy =

∫
xfη1(x) dx

∫
yfη2(y) dy = E[η1]E[η2] = 0.

�
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Another simple property of the variance is that Var(aη) = a2Var(η),
where a is a constant. Indeed,

Var(aη) =

∫
(ax− E[aη])2fη(x) dx

=

∫
(ax− aE[η])2fη(x) dx

= a2

∫
(x− E[η])2fη(x) dx

= a2Var(η).

We now prove a very useful estimate due to Chebyshev.

Lemma 2.3. Let η be a random variable. Suppose g(x) is a non-
negative, nondecreasing function (i.e., g(x) ≥ 0 and a < b ⇒ g(a) ≤
g(b)). Then, for any a,

P (η ≥ a) ≤ E[g(η)]

g(a)
.

Proof.

E[g(η)] =

∫ ∞
−∞

g(x)f(x) dx ≥
∫ ∞
a

g(x)f(x) dx

≥ g(a)

∫ ∞
a

f(x) dx = g(a)P (η ≥ a).

�

Suppose η is a non-negative random variable. We define g(x) to be 0
when x ≤ 0 and x2 when x ≥ 0. Let a be any positive number. Then

P (η ≥ a) ≤ E[g(η)]

g(a)
=
E[η2]

a2
.

Consider now a special case. Let η be a random variable and define
ξ = |η − E[η]|. Then we obtain the following inequality:

P (|η − E[η]| ≥ a) ≤ Var(η)

a2

for any a > 0. Now take a = σk, where k is an integer. Then

P (|η − E[η]| ≥ σk) ≤ Var(η)

(σk)2
=

1

k2
.

In other words, it is very unlikely that η differs from its expected value
by more than a few standard deviations.
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Suppose η1, η2, . . . , ηn are independent, identically distributed ran-
dom variables. Let

η =
1

n

n∑
i=1

ηi.

Then

E[η] = E[η1], Var(η) =
1

n
Var(η1), σ(η) =

σ(η1)√
n
.

Therefore,

P
(
|η − E[η]| ≥ kn−1/2σ(η1)

)
≤ 1

k2
.

This tells us that if we use the average of n independent samples of a
given distribution to estimate the mean of the distribution, then the
error in our estimates decreases as 1/

√
n. This discussion brings the

notion of expected value closer to the intuitive, every-day notion of
“average.”

2.3. Monte Carlo Methods

With Monte Carlo methods, one evaluates a nonrandom quantity
as an expected value of a random variable.

A pseudo-random sequence is a computer-generated sequence that
cannot be distinguished by simple tests from a random sequence with
independent entries, yet is the same each time one runs the appropriate
program. For the equidistribution density, number theory allows us to
construct the appropriate pseudo-random sequence. Suppose that we
want to generate a sequence of This can be done in the following way.
Let F (η) = ξ, where η is the random variable we want to sample and
ξ is equidistributed in [0, 1]. Take η such that η = F−1(ξ) holds (if
there are multiple solutions, pick one arbitrarily). Then η will have the
desired distribution. To see this, consider the following example. Let
η be a random variable with

η =


α1 with probability p1

α2 with probability p2

α3 with probability p3,

where
∑3

i=1 pi = 1 and pi ≥ 0 for i = 1, 2, 3. Then F (η) = ξ implies

η =


α1 if ξ∈[0, p1]

α2 if ξ∈(p1, p1 + p2]

α3 if ξ∈(p1 + p2, 1].
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This can be generalized to any countable number of discrete values in
the range of η, and since any function can be approximated by a step
function, the results hold for any probability distribution function F .

Example. Let η be a random variable with the exponential pdf.
Then F (η) = ξ gives∫ η

0

e−s ds = ξ =⇒ η = − log(1− ξ).

Example. If f exists, then by differentiating
∫ η
−∞ f(s) ds = ξ, we

get f(η)dη = dξ. The following algorithm (the “Box-Muller” algo-
rithm) allows us to sample pairs of independent variables with Gaussian
densities with zero mean and variance σ2. Let

η1 =
√
−2σ2log ξ1 cos(2πξ2),

η2 =
√
−2σ2log ξ1 sin(2πξ2),

where ξ1 and ξ2 are equidistributed in [0, 1]; then η1, η2 are Gaussian
variables with means zero and variances σ2, as one can see from

|

∣∣∣∣∣∣∣
∂η1

∂ξ1

∂η1

∂ξ2
∂η2

∂ξ1

∂η2

∂ξ2

∣∣∣∣∣∣∣
−1

|dη1 dη2 = dξ1 dξ2

(the outer vertical lines denote an absolute value) which becomes, with
the equations above,

1

2πσ2
exp

(
−η

2
1 + η2

2

2σ2

)
dη1 dη2 = dξ1 dξ2.

Now we present the Monte Carlo method. Consider the problem

of evaluating the integral I =
∫ b
a
g(x)f(x) dx, where f(x) ≥ 0 and∫ b

a
f(x) dx = 1. We have

I =

∫ b

a

g(x)f(x) dx = E[g(η)],

where η is a random variable with pdf f(x). Suppose that we can
sample η; that is, make n independent experiments with outcomes
η1, . . . , ηn. Then, as can be seen from the Chebyshev inequality, we
can approximate E[g(η)] by

E[g(η)] ∼ 1

n

n∑
i=1

g(ηi).
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The error in this approximation will be of the order of σ(g(η))/
√
n,

where σ(g(η)) is the standard deviation of the variable g(η). The in-
tegral I is the estimand, g(η) is the estimator, and n−1

∑n
i=1 g(ηi) is

the estimate. The estimator is unbiased if its expected value is the
estimand.

Example. Let

I =
1√
2π

∫ ∞
−∞

g(x)e−x
2/2 dx.

If η is a Gaussian random variable with mean 0 and variance 1, then

I = E[g(η)] ∼ 1

n

n∑
i=1

g(ηi).

There are two ways to reduce the error of a Monte Carlo method, as
can be seen from the error estimate. One way is to take a larger number
of samples. The other way is to reduce the variance of the function g(η).
One way to reduce the variance is “importance sampling.”

We start with an extreme case. Suppose we want to evaluate the

integral I =
∫ b
a
g(x)f(x) dx as above. Suppose that the function g is

non-negative; then the quantity q(x) given by q(x) = f(x)g(x)/I has
the following properties:

q(x) ≥ 0,

∫ b

a

q(x) dx = 1.

Further, suppose we can generate a pseudo-random sequence with pdf
q(x). Then we have∫ b

a

g(x)f(x) dx = I

∫ b

a

g(x)f(x)

I
dx = I

∫ b

a

q(x) dx = IE[1],

where 1 is the function that takes the value 1 for all samples. Then,
the Monte Carlo method has zero error. However we need to know the
value of I, which is exactly what we want to compute. If we know the
value of the quantity that we want to compute, Monte Carlo can give
us the exact result with no error.

However, it is possible to reduce the error of the Monte Carlo
method along similar lines without knowing the result we want to com-
pute. Suppose that we can find a function h(x) with the following
properties:

1. The integral I1 =
∫ b
a
f(x)h(x) dx is easily evaluated.

2. h(x) ≥ 0.
3. We can sample a variable with pdf f(x)h(x)/I1 easily.
4. g(x)/h(x) varies little.
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Then we have

I =

∫ b

a

g(x)f(x) dx =

∫ b

a

g(x)

h(x)
f(x)h(x) dx = I1

∫ b

a

g(x)

h(x)

f(x)h(x)

I1

dx

= I1E
[g
h

(η)
]
∼ I1

n

n∑
i=1

g(ηi)

h(ηi)
, (2.2)

where η has pdf f(x)h(x)/I1. Since g(η)/h(η) varies little, its variation
and the error will be smaller. The new random variable puts more
points where g is large, hence the name of the method “importance
sampling”; one puts more samples where g is large, or “important.”

Example. Suppose that we want to compute via Monte Carlo the
integral I =

∫ 1

0
cos(x/5)e−5x dx. We can do that by applying the basic

Monte Carlo formula without any attempt at importance sampling.
That would mean sampling n times an equipartitioned variable ξ and
then approximating I by

I ≈ 1

n

n∑
i=1

cos(ξi/5)e−5ξi ,

where the ξi are the successive independent samples of ξ. However, due
to the large variation of the function cos(x/5)e−5x, the corresponding
error would be large (the large variation of the function is due to the
presence of the factor e−5x). Alternatively, we can perform the Monte
Carlo integration using importance sampling. There are different ways
of doing that and one of them is as follows. Let I1 =

∫ 1

0
e−5x dx =

(1− e−5)/5. Then we have

I =

∫ 1

0

cos(x/5)e−5x dx = I1

∫ 1

0

cos(x/5)
e−5x

I1

dx.

Let η be a random variable with pdf

f(x) =


e−5x

I1

, 0 ≤ x ≤ 1

0, elsewhere,

then I can be written as I = I1E[cos(η/5)]. As can be readily seen,
the function cos(x/5) has smaller variation in the range of integration
[0, 1] than the previous integrand. In order to perform the Monte Carlo
integration, we need to sample the variable η. As shown above, this
can be done by solving the equation

∫ η
0
e−5x/I1 dx = ξ, where ξ is

equidistributed in [0, 1]. An easy calculation gives η = −1
5

log(1−5I1ξ).
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We can use this formula to sample η n times and, thus, the Monte Carlo
approximation to I will read

I ≈ I1

n

n∑
i=1

cos(ηi/5).

2.4. Parametric Estimation

Suppose η is a random variable that someone has sampled and given
you the sample (x1, x2, . . . , xn). Now try to guess the pdf. Suppose
you know the type of distribution you have, but not the parameters in
the distribution. For example, suppose you know that the distribution
is Gaussian, but you do not know the mean and the variance.

Definition. Any function of a sample is called a “statistic.”

Suppose you want to estimate a parameter θ of the pdf by a statistic
θ̂(x1, x2, . . . , xn).

Definition. The estimate is unbiased if

E[θ̂(η1, η2, . . . , ηn)] = θ

(i.e., if, on the average, the estimate is exact).

For example, the sample mean defined by

x̄ =
1

n

n∑
i=1

xi

is an unbiased estimate of the mean, whereas the sample variance

1

n

n∑
i=1

(xi − x̄)2

is not an unbiased estimate of the variance (see the exercises). However,
one can check that

1

n− 1

n∑
i=1

(xi − x̄)2

is an unbiased estimate of the variance. It is of course desirable that
one use unbiased estimators.

We now present a useful method for finding estimators. Suppose
you know that the pdf of η that gave you the independent sample
x̂ = (x1, x2, . . . , xn) is f(x|θ) (a function of x and of the parameter θ).
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What is a good estimate of θ given the sample x̂? Suppose you know
θ. Then the probability of getting the given sample is proportional to

L =
n∏
i=1

f(xi | θ).

L is called a likelihood function. It is plausible that a good estimate
of θ is the one that maximizes L (i.e., which makes the outcome you
see as likely as possible). This is the “maximum likelihood estimate.”
In general, it is easier to maximize logL, which has a maximum at the
same value of the argument.

Example. Suppose you think that x1, x2, . . . , xn are independent
samples of a Gaussian distribution with mean m and variance σ2. Then

L =
n∏
i=1

e−(xi−m)2/2σ2

√
2πσ2

.

Find the maximum of logL:

logL =
n∑
i=1

(
−(xi −m)2

2σ2
− 1

2
log 2π − log σ

)
,

∂logL

∂m
=

n∑
i=1

xi −m
σ2

= 0.

Hence,
n∑
i=1

xi − nm = 0,

Similarly,

∂logL

∂σ
= −n

σ
+

n∑
i=1

(xi −m)2

σ3
= 0;

hence, the maximum likelihood estimate of the variance of a Gaussian
variable is the sample variance (which, as we know, is not unbiased):

σ̂2 =
1

n

n∑
i=1

(xi − m̂)2.

and we get the sample mean as the maximum likelihood estimate of m:

=
1

n

n∑
i=1

xi.m̂
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2.5. The Central Limit Theorem

Suppose that η1, η2, . . . , ηn are independent, identically distributed
random variables. We can assume without loss of generality that they
have mean 0 and variance 1. Suppose the ηi’s have a pdf f . Define a
new random variable

Sn =
1√
n

n∑
i=1

ηi.

What can we say about the pdf of Sn? The answer for this question is
given by the following:

Theorem 2.4 (The Central Limit Theorem). Let η1, η2, . . . , ηn be
independent and identically distributed random variables with finite
variance and zero mean. Let us also assume for simplicity that
Var(ηi) = 1. Then

Sn =
1√
n

n∑
i=1

ηi

converges weakly to a Gaussian variable with mean 0 and variance 1.

Proof. We will assume that the ηi have pdf f and that f (n) is the
pdf of Sn. We want to show that

lim
n→∞

∫ b

a

f (n)(x) dx =

∫ b

a

e−x
2/2

√
2π

dx

for any a, b. Note that n−1
∑
ηi = n−1/2(n−1/2

∑
ηi), where n−1/2

∑
ηi

tends to a Gaussian; thus, the central limit theorem contains in-
formation as to how n−1

∑
ηi → 0 (i.e., for large n, n−1

∑
ηi ≈

Gaussian/
√
n). Suppose η1 and η2 are random variables with respective

pdfs f1 and f2. What is the density of η1 + η2? We know that

P (η1 + η2 ≤ x) = Fη1+η2(x) =

∫ ∫
x1+x2≤x

f1(x1)f2(x2) dx1 dx2.

With the change of variables x1 = t and x1 + x2 = y (note that the
Jacobian is 1), we obtain,

Fη1+η2(x) =

∫ x

−∞
dy

∫ ∞
−∞

f1(t)f2(y − t) dt.

Thus, the density of η1 + η2 = fη1+η2 is just
∫
f1(t)f2(y− t) dt = f1 ∗ f2

and, hence, f̂η1+η2 =
√

2π f̂1f̂2.
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Hence, if we assume that the random variables ηi have the same
density function for all i, then

∑n
i=1 ηi has density f (n) = f ∗ f ∗ · · · ∗ f

(f appears n times), where ∗ is the convolution. Furthermore,

P (a < Sn ≤ b) = P

(
a <

1√
n

∑
ηi ≤ b

)
= P (

√
na <

∑
ηi ≤

√
nb)

=

∫ √nb
√
na

f (n)(x) dx =

∫ b

a

√
nf (n)(y

√
n) dy. (2.3)

The last step involves the change of variables y = x/
√
n.

What we want to show is that
∫ b
a

√
nf (n)(y

√
n) dy converges to∫ b

a

e−x
2/2

√
2π

dx.

Pick some nice function φ and consider

I =

∫ ∞
−∞

√
nf (n)(x

√
n)φ(x) dx.

Let φ̌(k) = φ̂(−k) be the inverse Fourier transform of φ; that is,

φ(x) =
1√
2π

∫ ∞
−∞

φ̌(k)e−ikx dk.

Then

I =

∫ ∞
−∞

√
nf (n)(x

√
n)φ(x) dx

=

∫ ∞
−∞

√
nf (n)(x

√
n)

1√
2π

∫ ∞
−∞

φ̌(k) e−ikx dk dx

=

∫ ∞
−∞

(
1√
2π

∫ ∞
−∞

√
nf (n)(x

√
n)e−ikxdx

)
φ̌(k) dk

=

∫ ∞
∞

f̂ (n)
(
k/
√
n
)
φ̌(k) dk

=
1√
2π

∫ ∞
−∞

[√
2π f̂

(
k√
n

)]n
φ̌(k) dk.

Here

f̂

(
k√
n

)
=

1√
2π

∫ ∞
−∞

f(x) e−ikx/
√
n dx,

and we used that f̂ ∗ g =
√

2πf̂ · ĝ. Expand e−ikx/
√
n in a Taylor series:

e−ikx/
√
n = 1− ixk√

n
− x2k2

2n
+O

(
1

n3/2

)
.
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Recall that∫
f(x) dx = 1,

∫
xf(x) dx = 0,

∫
x2f(x) dx = 1.

Hence,

f̂

(
k√
n

)
=

1√
2π

∫ ∞
−∞

(
1− k2x2

2n
+ · · ·

)
f(x) dx

=
1√
2π

(
1− k2

2n

)
+ small terms.

Remember that

lim
n→∞

(
1− a

n

)n
= e−a.

The contribution of the small terms in the expansion can be shown to
be negligible, and we get

lim
n→∞

[√
2π f̂

(
k√
n

)]n
= lim

n→∞

(
1− k2

2n
+ small

)n
= e−k

2/2.

Returning to the integral I, we obtain

I → 1√
2π

∫ ∞
−∞

e−k
2/2 φ̌(k) dk

=
1√
2π

∫ ∞
−∞

e−k
2/2

(
1√
2π

∫ ∞
−∞

φ(x)eikxdx

)
dk

=
1√
2π

∫ ∞
−∞

φ(x) dx

(
1√
2π

∫ ∞
−∞

e−k
2/2eikx dk

)
=

1√
2π

∫ ∞
−∞

φ(x)e−x
2/2 dx.

Now, taking φ to be a smooth function that approximates

Φ(x) =

{
1, a ≤ x ≤ b

0, otherwise,

we get the desired result. �

It will be useful later to consider the central limit theorem in a
slightly different form. Let the random variables ηi for i = 1, 2, . . . be
independent and have each the pdf f , with mean 0 and variance 1 as
above, and construct the following sequence of random variables:

T0,1 = η1, T0,2 = η2, T0,3 = η2, . . . (2.4)

T1,1 =
1√
2

(η1 + η2), T1,2 =
1√
2

(η3 + η4), T1,3 =
1√
2

(η5 + η6), . . . (2.5)
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and

Tn+1,1 =
1√
2

(Tn,1 + Tn,2), Tn+1,2 =
1√
2

(Tn,3 + Tn,4), . . . (2.6)

for n ≥ 1, where Tn,1, Tn,2 are disjoint sums of 2n variables in the set.
It is easy to see that Tn = S2n , where S2n are the sums of 2n of the
random variables that appeared in the statement of the central limit
theorem. Let the pdf of Tn be fn with f0 = f ; if the pdf of Sn converge
to a limit as n tends to infinity, so do the fn. We have a formula for the
pdf of a sum of two variables, and we know that if a variable ξ has the
pdf g(x) and a is a a positive constant, then ξ/a has the pdf ag(ax);
this yields:

fn+1(x) =
√

2

∫ +∞

−∞
fn(t)fn(

√
2x− t)dt. (2.7)

If the fn converge to a limit f∞, this equation becomes

f∞(x) =
√

2

∫ +∞

−∞
f∞(t)f∞(

√
2x− t)dt. (2.8)

The central limit theorem says that if the variance of the ηi is finite,
this last equation has a solution, which is Gaussian. The iteration (2.6)
converges to that solution, and its limit is independent of the starting
point f , just like a convergent iterative solution of algebraic equation
converges to a limit independent of the starting point.

2.6. Conditional Probability and Conditional Expectation

Suppose we make an experiment and observe that event A has hap-
pened, with P (A) 6= 0. How does this knowledge affect the probability
that another event B also happens? We define the probability of B
given A to be

P (B|A) =
P (A ∩B)

P (A)
.

If A and B are independent, then P (A ∩B) = P (A)P (B) and so

P (B|A) =
P (A ∩B)

P (A)
=
P (A)P (B)

P (A)
= P (B).

If A is fixed and B is any member of B (i.e., any event), then P (B|A)
defines a perfectly good probability measure on B; this is the probabil-
ity conditional on A:

(Ω,B, P )→ (Ω,B, P (B|A)).
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Suppose η is a random variable on Ω. Then the average of η given A is

E[η|A] =

∫
η(ω)P (dω|A).

Thus if η =
∑
ciχBi then

E[η|A] =

∫ ∑
ciχBi(ω)P (dω|A) =

∑
ci P (Bi|A).

Example. Suppose we throw a die. Let η be the value on top.
Then

E[η] =
1

6

6∑
i=1

i = 3.5.

Suppose we know that the outcome is odd. Then the probability that
the outcome is 1, given this information, is

P ({1}|outcome is odd] =
P ({1} ∩ {1, 3, 5})

P ({1, 3, 5})
=

1/6

1/2
=

1

3
;

and the average of η given A = {1, 3, 5} is

E[η|outcome is odd] =
1

3
(1 + 3 + 5) = 3.

The probability of a particular even outcome given A is

P (2|A) = P (4|A) = P (6|A) = 0,

whereas the total probability of an odd outcome given A is

P (1|A) + P (3|A) + P (5|A) = 1.

Suppose Z = {Zi} is an at most countable disjoint measurable
partition of Ω. This means that the number of Zi’s is finite or countable,
each Zi is an element of B, Ω =

⋃
i Zi, and Zi ∩ Zj = ∅ if i 6= j.

Example. Z = {A,CA}, where A is a measurable subset of Ω and
CA is the complement of A.

Definition. Suppose B is an event. Then χB(ω) is a random
variable equal to 1 when ω ∈ B and 0 when ω /∈ B.

Observe that E[χB(ω)] = P (B) and E[χB|A] = P (B|A).

Definition. Let Z = {Zi} be a partition of Ω as above. Let η be a
random variable and construct the random variable E[η|Z] as follows:

E[η|Z] =
∑
i

E[η|Zi]χZi .
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This is a function of ω, whose definition depends on the choice
of partition Z. In words, we average η over each element Zi of the
partition and then we assign this average to be the value of the variable
E[η|Z] for all ω in Zi. If one could think of the elements of ω as people
and the values of η as those people’s heights, one could then partition
the people by ethnic origin and assign an average height to each ethnic
group. Given a person, the new variable would assign to that person
not his or her real height but the average height of his or her ethnic
group.

Note that Z generates a σ-algebra. It is a coarser σ-algebra than
B (i.e., it is contained in B). The variable E[η|Z] is the best estimate
of the original random variable when the instruments you use to mea-
sure the outcomes (which define the σ-algebra generated by Z) are too
coarse.

Example. Return to the example of the die. Let η be the number
on top. Let A be the event that outcome is odd. Let Z = {A,CA}.
Then

E[η|A] =
1

3
(1 + 3 + 5) = 3,

E[η|CA] =
1

3
(2 + 4 + 6) = 4,

and, finally,

E[η|Z] = 3χA + 4χCA,

where χA, χCA are the indicator functions of the sets A,CA.

We now want to define the notion of conditional expectation of one
random variable η given another random variable ξ. For simplicity, we
assume at first that ξ takes only finitely many values ξ1, ξ2, . . . , ξn. Let
Zi be the inverse image of ξi (the set of ω such that η(ω) = ξi). Then
Z = {Z1, Z2, . . . , Zn} is a finite disjoint partition of Ω. Thus, we can
construct E[η|Z] as defined above.

Definition. We define E[η|ξ] to be the random variable E[η|Z].

We observe that E[η|ξ] is a random variable and, at the same time,
a function of ξ. Indeed, when ξ has value ξi, then E[η|ξ] = E[η|Zi];
thus, E[η|ξ] is a function of ξ. We now show that E[η|ξ] is actually the
best least square approximation of η by a function of ξ. This property
can serve as an alternative definition of conditional expectation.

Theorem 2.5. Let g(ξ) be any function of ξ. Then

E[(η − E[η|ξ])2] ≤ E[(η − g(ξ))2].
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Proof. We remind the reader that∫ 1

0

(f(x)− c)2 dx

is minimized when c is the average of f(x) on [0, 1] (i.e., when c =∫ 1

0
f(x) dx). Similarly, we want to minimize

E[(η − g(ξ))2] =

∫
Ω

(η − g(ξ(ω))2P (dω)

=
∑
i

P (Zi)

∫
Zi

(η − g(ξ(ω))2P (dω)

P (Zi)
.

Since g(ξ(ω)) = g(ξi) for all ω in Zi, each of the integrals∫
Zi

(η − g(ξ(ω)))2P (dω)/P (Zi)

is minimized when g(ξi) = E[η|Zi] (i.e., when g(ξ(ω)) is the average of
η on Zi). Thus, E[η|ξ] is the best least squares approximation of η by
a function of ξ. �

Let h(ξ) be a function of ξ. Then

E [(η − E[η|ξ])h(ξ)] = 0.

To see this, assume α = E [(η − E[η|ξ])h(ξ)] 6= 0 for some function
h(ξ) and set ε = α/E[(h(ξ))2]. Then

E
[
(η − E[η|ξ]− εh(ξ))2

]
= E

[
(η − E[η|ξ])2

]
+ ε2E[(h(ξ))2]− 2εE [(η − E[η|ξ])h(ξ)]

= E
[
(η − E[η|ξ])2

]
− α2/E[(h(ξ))2].

But this contradicts Theorem 2.5, so α = 0 for all h(ξ). We can give
this result a geometric interpretation.

Consider the space of all square integrable random variables. It is
a vector space and the functions of ξ form a linear subspace. Let η1

and η2 be random variables and define the inner product by

(η1, η2) = E[η1η2].

Since E [(η − E[η|ξ])h(ξ)] vanishes for all h(ξ), we see that η − E[η|ξ]
is perpendicular to all functions h(ξ). Set Pη = E[η|ξ]. Then η =
Pη + (η − Pη) with (η − Pη, Pη) = 0, and we can interpret Pη as the
orthogonal projection of η onto the subspace of random variables that
are functions of ξ and have finite variance.
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We now consider the special case where η and ξ are random vari-
ables whose joint density fηξ is known:

P (s < η ≤ s+ ds, t < ξ ≤ t+ dt) = fηξ(s, t) ds dt.

We want to calculate E[h(η, ξ)|ξ], where g(η, ξ) is some function of η
and ξ. E[g(η, ξ)|ξ] is a random variable and a function of ξ. What is
this function? Specifically, what is the value of this random variable
when ξ = a?

To answer this question, we first define a discrete approximation ξ̂
to ξ that takes the value ξ̂ = (i + 1/2)h when ξ ∈ (ih, (i + 1)h]. This

happens with probability
∫ (i+1)h

ih
fξ(t) dt, where fξ(t) is given by

fξ(t) =

∫ ∞
−∞

fηξ(s, t) ds.

Now, we replace E[g(η, ξ)|ξ] by E[g(η, ξ)|ξ̂]. (We are committing many
mathematical sins here, but sin should be enjoyed.) Suppose we fix an

a and pick a value ai = (i + 1/2)h of ξ̂ such that a ∈ [ih, (i + 1)h].
Then, dropping the subscripts η, ξ of f , we find

E[g(η, ξ)|ξ]ξ=a ≈ E
[
g(η, ξ)|ξ̂

]
ξ̂=ai

≈
∫∞
−∞ ds

∫ (i+1)h

ih
g(s, t)f(s, t)dt∫∞

−∞ hf(s, (i+ 1/2)h) ds

→
∫∞
−∞ g(s, a)f(s, a) ds∫∞
−∞ f(s, a) ds

as h→ 0. Thus,

E[g(η, ξ)|ξ]ξ=a =

∫∞
−∞ g(s, a)f(s, a) ds∫∞
−∞ f(s, a) ds

, (2.9)

and

E[g(η, ξ)|ξ] =

∫∞
−∞ g(s, ξ)f(s, ξ) ds∫∞
−∞ f(s, ξ) ds

. (2.10)

This is just what one would expect: E[g(η, ξ)|ξ] is the mean of g(η, ξ)
when we keep the value of ξ fixed but allow η to take any value it
wants.

2.7. Bayes’ Theorem

Recall the definition of conditional probability:
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Definition. Let A and B be two events with P (A) 6= 0 and
P (B) 6= 0. The conditional probability of B given A, P (B|A), is

P (B|A) =
P (A ∩B)

P (A)
. (2.11)

Similarly, the conditional probability of A given B is

P (A|B) =
P (A ∩B)

P (B)
. (2.12)

Combining (2.11) and (2.12), we get Bayes’ theorem:

Theorem 2.6. Let A and B be two events with P (A) 6= 0 and
P (B) 6= 0. Then

P (A|B) =
P (B|A)P (A)

P (B)
. (2.13)

Suppose Z = {Zj}, j = 1, 2, . . . , is a finite or countable partition of
the sample space Ω as above; then for the probability P (A) of an event
A, we have

P (A) =
∑
j

P (A ∩ Zj) =
∑
j

P (A ∩ Zj)
P (A)

P (A) =
∑
j

P (Zj|A)P (A).

Suppose that P (Zj) 6= 0 for all j. Then we can also rewrite P (A) as

P (A) =
∑
j

P (A ∩ Zj) =
∑
j

P (A ∩ Zj)
P (Zj)

P (Zj) =
∑
j

P (A|Zj)P (Zj).

(2.14)

Using Bayes’ theorem (2.13) for the events A and Zj and expressing
P (A) by (2.14), we get

P (Zj|A) =
P (A|Zj)P (Zj)∑
i P (A|Zi)P (Zi)

. (2.15)

This is the second form of Bayes’ theorem. We can use the second
form to address the following question: Suppose we have an experi-
mental sample and we know that we have sampled some probability
distribution that depends on a parameter θ. We do not know what
value θ takes in the case at hand, but we have an idea a priori (i.e.,
a “prior” idea) that the set of possible values of θ can be viewed as
a random variable with a density gold (the “prior” distribution). Now
that we have made an experiment and obtained data, we should be able
to learn from these data how to improve the prior ideas and obtain a



2.8. EXERCISES 43

new density gnew, the “posterior” density, which improves the “prior”
density in light of the data. We show how to do it in an example.

Example. Let η1 and η2 be two independent and identically dis-
tributed random variables with

η1, η2 =

{
1 with probability p

0 with probability 1− p.

For the sum η1 + η2, we can deduce

η1 + η2 =


2 with probability p2

1 with probability 2p(1− p)
0 with probability (1− p)2.

Suppose that before the experiment we thought that the parameter p
had the value p = 1/4 with probability 1/4 and the value p = 1/2
with probability 3/4. This is the “prior distribution.” Now, we make
an experiment and find η1 + η2 = 1. We want to use the second form
of Bayes’ theorem (2.15) to see how the experiment affects our beliefs
about the distribution of the parameter p. To do that, let A be the
event that η1 + η2 = 1, let Z1 be the event that p = 1/4, and let Z2 be
the event that p = 1/2 (note that Z1 ∪ Z2 = Ω). Then we have

P (Z1|A) =
P (A|Z1)P (Z1)∑
j P (A|Zj)P (Zj)

=

(
2× 1

4
× 3

4

)
× 1

4(
2× 1

4
× 3

4

)
× 1

4
+
(
2× 1

2
× 1

2

)
× 3

4

=
1

5
,

as opposed to 1/4 a priori. In words, the probability that p = 1/4 now
that we know the outcome of the experiment equals the ratio of the
product of the probability that the outcome is what it is when p = 1/4
and the prior probability that p = 1/4, normalized by the sum of the
probabilities of the outcome we have for the various prior probabilities.

Of course, the taint of possible error in the prior ideas has not
completely disappeared.

2.8. Exercises
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1. Write a Monte Carlo program to evaluate∫ 1

0

e−
√

1−x2

√
x

dx

(you may have to do importance sampling to get anything at all).
As you sum the samples, estimate the variance and the error; by
making several runs with different sample sizes, check that your error
estimates are realistic. Estimate the number of samples needed to
get an error ≤ ε, where ε > 0 is a tolerance. Find the value of the
integral with an error ≤ 1%.

2. Let H0, H1, H2, . . . be Hermite polynomials: Hn is a polynomial of
degree n with ∫ +∞

−∞

HmHne
−x2

√
π

dx = δnm.

Suppose you want to evaluate I = π−1/2
∫ +∞
−∞ g(x)e−x

2
dx, where g

is a given function; let ξ be a Gaussian variable with mean 0 and
variance 1/2. Show that for all a, b, I = E[g(ξ) + aH1(ξ) + bH2(ξ)].
However, the variance of the estimator is not independent of a, b.
What values should a, b take to yield an estimator of least variance?

3. Let η be a random variable that takes the value 1/2 with prob-
ability 1/2 and the value −1/2 also with probability 1/2. Let
Ξn = (

∑n
1 ηi)/

√
n, where the ηi are independent variables with the

same distribution as η. Find the values that Ξn can take and their
probabilities for n = 3, 6, 9, and plot their histograms together with
the pdf of the limit of Ξn as n→∞.

4. Let η be again a random variable that takes the value 1/2 with
probability 1/2 and the value −1/2 with probability 1/2, and form
the variable Ξα

n = (
∑n

1 ηi)/n
α, where α ≥ 0. What can you say

about the limit of the pdf of Ξα
n as n → ∞? What equation does

this limit satisfy?

5. Check the derivation of Box-Muller sampling scheme.

6. An exponential variable with parameter λ has the density f =
λe−λx, λ > 0. If you are given n independent samples of such a
variable, how do you find the maximum likelihood estimate of λ?

7. Suppose you have n independent samples x1, ..., xn of a random vari-
able η; show that if m = n−1

∑n
i=1 xi, then n−1

∑
(xi−m)2 is not an

unbiased estimate of the variance of η, whereas (n−1)−1
∑

(xi−m)2



2.9. BIBLIOGRAPHY 45

is an unbiased estimate. Suggestion: To see what is going on, try
first the case n = 2. Note: These calculations are independent of
any assumed form for the density.

8. Consider a vector-valued Gaussian random variable ξ1, ξ2, with pdf

f(x1, x2) = f(x) =
α

2π
exp(−(x−m,A(x−m)/2)),

where A is a symmetric positive definite matrix. Show that α =√
detA and A = C−1, where C is the covariance matrix.

9. Let (Ω,B, P ) be a probability space, A an event with P (A) > 0,
and PA(B) = P (B|A) for every event B in B. Show that (Ω,B, PA)
satisfies all the axioms for a probability space.

10. let η1, η2 be two random variables with joint pdf

Z−1 exp(−x2
1 − x2

2 − x2
1x

2
2),

where Z is a normalization constant. Evaluate E[η1η
2
2|η1].

11. Let η be the number that comes up when you throw a die. Evaluate
E[η|(η− 3)2] (you may want to present it as a table of its values for
different values of (η − 3)2).

12. Suppose η is a random variable such that η = 0 with probability p
and η = 1 with probability 1 − p. Suppose your prior distribution
of p is P (p = 1/2) = 0.5 and P (p = 3/4) = 0.5. Now, you make
an experiment and find η = 1. What is the posterior distribution of
p? Suppose you make another, independent, experiment, and find,
again, η = 1. What happens to the posterior distribution? Suppose
you keep on making experiments and keep on finding η = 1. What
happens to the posterior distributions? Why does this make sense?
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CHAPTER 3

Brownian Motion

3.1. Definition of Brownian Motion

In the chapter that follows we will provide a reasonably systematic
introduction to stochastic processes; we start, however, here by consid-
ering a particular stochastic process that is of particular importance
both in the theory and in the applications.

Definition. A stochastic process (in the strict sense) is a function
v(ω, t) of two arguments where (Ω,B, P ) is a probability space, ω ∈ Ω,
and t ∈ R, such that for each ω, v(ω, t) is a function of t and for each
t, v(ω, t) is a random variable.

If t is a space variable, the stochastic process is also often called a
random field.

Definition. “Brownian motion” (in mathematical terminology)
is a stochastic process w(ω, t), ω ∈ Ω, 0 < t < 1, that satisfies the
following four axioms:

1. w(ω, 0) = 0 for all ω.
2. For each ω, w(ω, t) is a continuous function of t.
3. For each 0 ≤ s ≤ t, w(ω, t)−w(ω, s) is a Gaussian variable with

mean zero and variance t− s.
4. w(ω, t) has independent increments; i.e., 0 ≤ t1 < t2 < · · · < tn

then w(ω, ti)− w(ω, ti−1) for i = 1, 2, . . . , n are independent.

Note that what is called in mathematics Brownian motion (BM)
is called in physics the Wiener process. Also what is called in physics
BM is a different process which is called in mathematics the Ornstein-
Uhlenbeck process, which we shall discuss later.

First, one must show that a process that satisfies all of these con-
ditions exists. This is not a trivial issue; we shall see shortly that if
the second condition is replaced by the requirement that w be differ-
entiable, then there is no way to satisfy the conditions. The original
proof of Wiener consisted of showing that the Fourier series

π

2
√

2

∞∑
k=1

ak
k

sin(πkt/2),
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where the ak are independent Gaussian variables with mean 0 and
variance 1, converges, and its sum satisfies the above conditions for
0 ≤ t ≤ 1. Each coefficient is a random function defined on some
probability space (Ω,B, P ) and the resulting BM is also a function on
the very same Ω. For longer times, one can construct the process by
stringing the processes constructed by this series end to end. We refer
the reader to the literature.

Next, we derive some consequences of the definition of BM.

1. The correlation function of BM is E[w(t1)w(t2)] = min{t1, t2}.
Indeed, assuming t1 < t2, we get

E[w(t1)w(t2)] = E[w(t1)(w(t1) + (w(t2)− w(t1))]

= E[w(t1)w(t1)] + E[w(t1)(w(t2)− w(t1))] = t1.

In this equation, the variables w(t1) and w(t2)− w(t1) are inde-
pendent and each has mean 0.

2. Consider the variable

w(ω, t+ ∆t)− w(ω, t)

∆t
.

It is Gaussian with mean 0 and variance (∆t)−1, which tends to
infinity as ∆t tends to zero. Therefore, one can guess that the de-
rivative of w(ω, t) for any fixed ω exists nowhere with probability
1.

Nondifferentiable functions may have derivatives in the sense of
distributions. The derivative in the sense of distributions v(ω, s) of a
BM w(ω, t) is called “white noise” and is defined by the property:∫ t2

t1

v(ω, s) ds = w(ω, t2)− w(ω, t1).

The origin of the name will be clarified in the next chapter.
Two-dimensional BM is (w1(ω, t), w2(ω, t)), where w1, w2 are inde-

pendent BMs, and similarly for n-dimensional BM.
We also consider random walks Wn(t) that approximate BM, con-

structed as follows: Consider the time interval [0, 1] and divide it
into n pieces of equal lengths; define Wn(0) = 0 and Wn(i/n) =
Wn((i−1)/n)+Wi, where the Wi without an argument are independent
Gaussian variables with means 0 and variances 1/n and i is a positive
integer. Then define Wn(t) for intermediate values of t by linear inter-
polation. Clearly, Wn(t) for large n resembles BM: for all t, Wn(t) is
a Gaussian random variable with mean 0; For large n, its variance is
at least approximately equal to t. Furthermore, if t1, t2, t3, and t4 in
[0, t] are such that t4 > t3 > t2 > t1 and, furthermore, t3 ≥ (t2 + 1/n),
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then the variables Wn(t4)−Wn(t3) and Wn(t2)−Wn(t1) are indepen-
dent. The discussion of the precise relation between Wn(t) and BM is
outside the scope of this volume, but we shall take for granted that the
convergence of Wn(t) to BM is good enough for the limiting arguments
presented below to be valid.

3.2. Brownian Motion and the Heat Equation

We first solve the heat equation

vt =
1

2
vxx, v(x, 0) = φ(x) (3.1)

on −∞ < x <∞, t > 0, by Fourier transforms. Let

v(x, t) =
1√
2π

∫ ∞
−∞

eikxv̂(k, t)dk.

Then

vx(x, t) =
1√
2π

∫ ∞
−∞

ikeikxv̂(k, t)dk

vxx(x, t) =
1√
2π

∫ ∞
−∞

(ik)2eikxv̂(k, t)dk

vt(x, t) =
1√
2π

∫ ∞
−∞

eikx∂tv̂(k, t)dk.

Inserting in (3.1) we obtain

∂tv̂(k, t) = −1

2
k2v̂(k, t)

v̂(k, 0) = φ̂(k).

The solution of this ordinary differential equation is

v̂(k, t) = e−
1
2
k2tφ̂(k).
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Using the expression for v̂ in the formula for v and completing the
square we get

v(x, t) =
1√
2π

∫ ∞
−∞

eikxe−
1
2
k2t 1√

2π

∫ ∞
−∞

e−ikx
′
φ(x′)dx′dk

=

∫ ∞
−∞

e−
(x−x′)2

2t

√
2πt

φ(x′)

∫ ∞
−∞

e
− 1

2

(
k
√
t−i
(
x−x′√

t

))2

√
2π

dk
√
t dx′

=

∫ ∞
−∞

e−
(x−x′)2

2t

√
2πt

φ(x′)dx′

=

∫ ∞
−∞

e−
(x′)2

2t

√
2πt

φ(x+ x′)dx′ (3.2)

The function

G(x) =
e−x

2/2t

√
2πt

is the Green function of the heat equation and we have shown that the
solution of the heat equation is the convolution of the initial data with
the Green function.

Since the Green function G is also the probability density function
for a random variable η with mean zero and variance t we can rewrite
(3.2) as

v(x, t) = E[φ(x+ η(ω))].

Remember that if w(ω, t) is BM, then for a fixed t, w(ω, t) is a Gaussian
variable with mean 0 and variance t, hence,

v(x, t) = E[φ(x+ w(ω, t))]. (3.3)

This result has a geometrical interpretation: consider the point (x, t)
at which we want to evaluate w. Start BMs going backwards in time
from (x, t); they intersect the x-axis at time t at the points x+w(ω, t).
Find the initial values of v at the points of intersection, and average
them over all BMs. This average is v(x, t).

3.3. Solution of the Heat Equation by Random Walks

We now rederive the result above in a more instructive way that
will be useful in the analysis of a more general situation. We construct
a grid on which to approximate the heat equation (3.1), solve the re-
sulting discrete equations by a random walk, and take a limit that will
reproduce the result of the previous section. To construct the grid,
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draw horizontal and vertical lines in the (x, t) plane. The distance be-
tween the horizontal lines is k (not the Fourier variable!), and between
the vertical lines is h. The points at which these lines intersect will
carry values of an approximation V of the solution v(x, t) of the heat
equation. That is, each gridpoint (ih, nk) carries a value of the grid
function V n

i ∼ v(ih, nk) = vni . Construct a difference approximation
of the derivatives in (3.1):

vt ∼
vn+1
i − vni

k
∼ V n+1

i − V n
i

k
(3.4)

vxx ∼
vni+1 + vni−1 − 2vni

h2
∼
V n
i+1 + V n

i−1 − 2V n
i

h2
. (3.5)

Substituting (3.4) and (3.5) into (3.1), we obtain an equation for the
V n
i :

V n+1
i − V n

i

k
=

1

2

V n
i+1 + V n

i−1 − 2V n
i

h2
. (3.6)

Starting from the initial data V 0
i = φ(ih), we can find a solution of (3.6)

at time t = nk for any n by the recurrence formula

V n+1
i = V n

i + λ(V n
i+1 + V n

i−1 − 2V n
i ) = (1− 2λ)V n

i + λV n
i+1 + λV n

i−1,
(3.7)

where

λ =
1

2

k

h2
.

Define the local “truncation error”

τni =
vn+1
i − vni

k
− 1

2

vni+1 + vni−1 − 2vni
h2

,

where v is a smooth solution of the differential equation (3.1). Using
Taylor’s formula one finds that

τni = O(k) +O(h2).

In numerical analysis the fact that τni tends to zero as h → 0, k →
0 is called “consistency.” Thus the exact solution of the differential
equation satisfies the difference equations, up to a small error.

Now we show that for λ ≤ 1/2, the approximate solution V con-
verges to the exact solution v as h and k tend to zero. It is easy to
check that the error eni = vni − V n

i satisfies the equation

en+1
i = (1− 2λ)eni + λeni+1 + λeni−1 + kτni .

Taking the absolute value of both sides we get

|en+1
i | ≤ (1− 2λ)|eni |+ λ|eni+1|+ λ|eni−1|+ k|τni |,
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where we have assumed that 1− 2λ ≥ 0 (or λ ≤ 1/2). Define

En = max
i
|eni | (3.8)

and let

τn = max
i
|τni |, τ = max

nk≤t
|τn|. (3.9)

Then,

En+1 ≤ En + kτn ≤ En + kτ ;

thus,

En+1 ≤ En + kτ ≤ En−1 + 2kτ ≤ · · · ≤ E0 + (n+ 1)kτ.

If we start from the exact solution, then E0 = 0 and, hence,

En ≤ nkτ = tτ.

Recall that the local truncation error tends to zero as h, k → 0 and
consider the solution of the heat equation on a finite t interval 0 ≤ t ≤ T
for some finite T ; then En tends to zero as h and k tend to zero
provided λ = k/(2h2) is less than or equal to 1/2. That means that
the approximate solution converges to the exact solution for λ ≤ 1/2.

Choose λ = 1/2. Then (3.7) becomes

V n+1
i =

1

2
(V n

i+1 + V n
i−1). (3.10)

Using (3.10) and iterating backward in time, we can write V n
i in terms

V 0
i = φ(ih):

V n
i =

1

2
V n−1
i+1 +

1

2
V n−1
i−1

=
1

4
V n−2
i−2 +

2

4
V n−2
i +

1

4
V n−2
i+2

...

=
n∑
j=0

Cj,nφ((−n+ 2j + i)h).

It is easy to see that the numbers Cj,n are the binomial coefficients
divided by 2n:

Cj,n =
1

2n

(
n

j

)
. (3.11)
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Figure 3.1. Backward walk for the heat equation.

Thus,

V n
i =

n∑
j=0

1

2n

(
n

j

)
φ((−n+ 2j + i)h). (3.12)

We can interpret the numbers Cj,n as follows: Imagine that a drunk-
ard makes a step h to the left with probability 1/2 or a step h to the
right with probability 1/2 starting from the point (ih, nk) (see Fig-
ure 3.1). Assume that her successive steps are independent. The prob-
ability that she will reach the point ((−n+ 2j + i)h, 0) after n steps is
exactly Cj,n. We can represent this drunken walk as a sum of n random
variables

ηk =

{
h probability 1

2

−h probability 1
2
,

with k = 1, 2, . . . , n. This representation gives us another expression
for Cj,n:

Cj,n = P

(
n∑
k=1

ηk = (−n+ 2j)h

)
. (3.13)

According to the central limit theorem, the sum
∑n

k=1 ηk tends to a
Gaussian variable with mean 0 and variance nh2 as n→∞. Recall that
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λ = k/(2h2) = 1/2; consequently, h2 = k and, hence, nh2 = nk = t.
So,

∑n
k=1 ηk tends to a Gaussian variable with mean 0 and variance t

as n→∞, h→ 0 and nh2 = t. Hence,

P

(
n∑
k=1

ηk = (−n+ 2j)h

)
∼ e−(x′)2/2t

√
2πt

· 2h,

where x′ = (−n+ 2j)h. Therefore,

V n
i =

n∑
j=0

Cj,nφ((−n+ 2j + i)h)→
∫ ∞
−∞

e−(x−x′)2/2t

√
2πt

φ(x′) dx′ (3.14)

as n → ∞. We have used the central limit theorem to derive the
solution formula for the heat equation.

3.4. The Wiener Measure

Having described the properties of Brownian motion, the goal in
the present section is to construct a probability measure on the space
of continuous functions in such a way that the set of Brownian motions
(the samples of BM, the functions w(ω, t) for various values of ω) have
probability 1. In other words, we are trying to define a measure on
a space of functions in such a way that the only functions that count
are the BMs. To this end, consider the space of continuous functions
u(t) such that u(0) = 0. This collection is now our sample space Ω. Ω
is the space of experimental outcomes and our experiment consists of
creating an instance of a continuous function with u(0) = 0.

Next we need to define a σ-algebra. Pick an instant in time, say
t1, and associate with this instant a window of values (a1, b1 ], where
−∞ ≤ a1, b1 ≤ ∞. Consider the subset of all the continuous functions
that pass through this window and denote it as C1. This subset is called
a cylinder set. For every instant and every window, we can define
a corresponding cylinder set; i.e., Ci is the subset of all continuous
functions that pass through the window (ai, bi ] at the instant ti. Next,
consider two cylinder sets C1 and C2. Then C1 ∩ C2 is the set of
functions that pass through both windows. Similarly, C1∪C2 is the set
of functions that pass through either C1 or C2. It can be shown that
the class of finite disjoint unions of intersections of cylinders is closed
under finite unions, intersections and complements, i.e., they form an
algebra on the space of continuous functions u in [0, 1] with u(0) = 0.

The next step in our construction is to define a measure (i.e., a
rule by which to attach probabilities to the cylinder sets). We want to
define the measure in such a way that is appropriate for BMs. Take
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the cylinder set C1. If the functions that belong to this cylinder set are
Brownian motions, the probability of the cylinder set is

P (C1) =

∫ b1

a1

e−s
2
1/2t1

√
2πt1

ds1.

Assign this P to this set, and similarly for other cylinder sets con-
structed in the same way at different values of t.

Next, consider the intersection C1 ∩C2 of two cylinder sets C1 and
C2 with t2 > t1. By the property of Brownian motion that nonover-
lapping increments are independent random variables with Gaussian
distributions, we conclude that the probability we should assign to
C1 ∩ C2 is

P (C1 ∩ C2) =

∫ b1

a1

e−s
2
1/2t1

√
2πt1

ds1

∫ b2

a2

e−(s2−s1)2/2(t2−t1)√
2π(t2 − t1)

ds2.

Similarly, we can define a probability for the intersection any finite
number of cylinder sets. The cylinder sets can be embedded in a variety
of σ-algebras. These are not equivalent, but we choose a σ-algebra that
contains the set of all continuous functions with u(0) = 0.

It can be shown that the measure defined in this way can be ex-
tended to a probability measure on the σ-algebra. We shall not give
the details but refer the reader to the literature. The identity P (Ω) = 1
can be seen from the evaluation of the Gaussian integrals in the interval
(−∞,+∞). The measure we defined was introduced by Wiener and
carries his name.

Suppose that F is a number attached to a continuous function. For
example, if u(s) is a continuous function with u(0) = 0 and 0 ≤ s ≤ 1,

then we could define F =
∫ 1

0
u2(s) ds. Any mapping that attaches a

number to a function is, for historical reasons, called a functional. Also
for historical reasons, a functional acting on a function u(·) is written
as F [u(·)]. F is a function on Ω, the space of continuous functions that
start from the origin.

If one has a measure, one has an integral. Denote the integral
with respect to the Wiener measure by

∫
dW . In particular, if χC

is the indicator function of the set C (χC = 1 if ω is in C, χC = 0
otherwise), then

∫
χC dW = P (C). If we attach to each BM w a

number F [w(·)] (the number is attached to the BM viewed as a whole,
not to particular point values), then the integral

∫
F [w(·)] dW is, by

definition, the expected value of F as w runs over all the possible BMs.

Example. Suppose F [w(·)] = w2(1); that is, we take a BM w,
look at the value of w when t = 1, and square that number. This
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is a number attached to w. w(1) is by definition a Gaussian random
variable with mean 0 and variance 1. Then∫

F dW =

∫ +∞

−∞
u2 e

−u2/2

√
2π

du = 1.

Example. Fubini’s theorem can be extended to integrals more ab-
stract than the elementary finite-dimensional integral and, in particu-
lar, we can show that it is legitimate, under appropriate conditions, to
interchange the order of integration with respect to the Wiener mea-
sure and ordinary integration. For instance, if F [w(·)] =

∫ 1

0
w2(s) ds

(a perfectly reasonable way to attach a number to the function w(t)),
then∫

dW

∫ 1

0

w2(s) ds =

∫ 1

0

ds

∫
dWw2(s) =

∫ 1

0

s ds =
1

2

because w(s) is a Gaussian variable with variance s and mean 0.

3.5. Heat Equation with Potential

Now consider the initial value problem

vt =
1

2
vxx + U(x)v, v(x, 0) = φ(x). (3.15)

(Note that with the addition of the imaginary i in front of the time
derivative, this would be a Schroedinger equation and U would be a
potential.) Generalizing what has been done before, approximate this
equation by

V n+1
i − V n

i

k
=

1

2

V n
i−1 + V n

i+1 − 2V n
i

h2
+

1

2

(
Ui−1V

n
i−1 + Ui+1V

n
i+1

)
,

(3.16)

where Ui = U(ih) and V n
i is, as before, a function defined on the

nodes (ih, nk) of a grid. Note the clever split of the term Uv into two
halves; we now show that the addition of these terms does not destroy
the convergence of the approximation to the solution of the differen-
tial equation. To check consistency we let vni be the exact solution
evaluated at the gridpoints (ih, nk). As before,

vn+1
i − vni

k
= vt +O(k),

vni+1 + vni−1 − 2vni
h2

= vxx +O(h2).

For the potential term we find

1

2

(
Ui+1v

n
i+1 + Ui−1v

n
i−1

)
=

1

2

(
2Uiv

n
i + h2(Uv)xx + h2O(h2)

)
= Uiv

n
i +O(h2).
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We can therefore define the truncation error by

τni =
vn+1
i − vni

k
− 1

2

vni+1 + vni−1 − 2vni
h2

− 1

2

(
Ui+1v

n
i+1 + Ui−1v

n
i−1

)
= vt −

1

2
vxx − U(x)v +O(k) +O(h2)

= O(k) +O(h2).

Thus the truncation error is small.
Now we show that the approximate solution converges to the exact

solution as k and h tend to zero. Let λ = k/(2h2), as before. The exact
solution of (3.15) satisfies

vn+1
i = (1− 2λ)vni + λvni+1 + λvni−1 +

k

2

(
Ui+1v

n
i+1 + Ui−1v

n
i−1

)
+ kτni ,

while the approximate solution satisfies

V n+1
i = (1− 2λ)V n

i + λV n
i+1 + λV n

i−1 +
k

2

(
Ui+1V

n
i+1 + Ui−1V

n
i−1

)
.

Thus the error eni = vni − V n
i satisfies

en+1
i = (1− 2λ)eni + λeni+1 + λeni−1 +

k

2
(Ui+1e

n
i+1 + Ui−1e

n
i−1) + kτni .

Taking the absolute value of both sides and choosing λ ≤ 1/2, we get

|en+1
i | ≤ (1− 2λ)|eni |+ λ|eni+1|+ λ|eni−1|+

+
k

2
(|Ui+1||eni+1|+ |Ui−1||eni−1|) + k|τni |.

Assume that the potential is bounded,

|U(x)| ≤M,

and recall the definitions of En (3.8) and τn (3.9). It follows that

En+1 ≤ En +MkEn + kτn ≤ En(1 +Mk) + kτ

and hence

En+1 ≤ ekMEn + kτ.
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Then,

En+1 ≤ ekMEn + kτ

≤ ekM(ekMEn−1 + kτ) + kτ

= e2kMEn−1 + kτ(1 + ekM)

≤ · · ·
≤ e(n+1)kME0 + kτ

(
1 + ekM + e2kM + · · ·+ enkM

)
= e(n+1)kME0 + kτ

e(n+1)kM − 1

ekM − 1
.

Since we start to compute the approximate solution from the given ini-
tial condition v(x, 0) = φ(x), we may assume that E0 = 0. Therefore,
at time t = nk, En is bounded by

En ≤ kτ
etM − 1

ekM − 1
≤ τ

M
(etM − 1).

We see that En tends to zero as k and h tend to zero with λ ≤ 1/2.
Thus, the approximation is convergent.

Now set λ = 1/2. Then for the approximate solution, we have

V n+1
i =

1

2
(V n

i−1 + V n
i+1) +

k

2
(Ui+1V

n
i+1 + Ui−1V

n
i−1)

=
1

2
(1 + kUi+1)V n

i+1 +
1

2
(1 + kUi−1)V n

i−1.

By induction the approximate solution V can be expressed as

V n
i =

∑
`1=±1,... ,`n=±1

1

2n
(1 + kUi+`1) · · · (1 + kUi+`1+···+`n)V 0

i+`1+···+`n .

Here, unlike in the case U = 0, each movement to the right or to the
left brings in not just a factor 1

2
but a factor of 1

2
(1 + kU(x)). Each

choice of `1, . . . , `n corresponds to a path. We simply connect the
points (ih, nk), (ih + `1h, (n − 1)k), . . . , (ih + `1h + · · · + `nh, 0), see
Figure 3.2

We will interpret the approximate solution probabilistically. Let
{ηm} be a collection of independent random variables with P (ηm =
h) = P (ηm = −h) = 1

2
. Since P (η1 = `1h, . . . , ηn = `nh) = 1

2n
we see

that

V n
i = Eall paths

{
n∏

m=1

(1 + kU(ih+ η1 + · · ·+ ηm))φ(ih+ η1 + · · ·+ ηn)

}
.
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To describe the random paths we use linear interpolation. Let tn = nk
and sm = mk. If sm−1 ≤ s ≤ sm set

w̃(s) = η1 + · · ·+ ηm−1 +
s− sm−1

k
ηm.

Each path starting at (x, t) = (ih, nk) is then of the form (x+w̃(s), t−s)
for 0 ≤ s ≤ t and

V n
i = Eall broken

line paths

{
n∏

m=1

(1 + kU(x+ w̃(sm)))φ(x+ w̃(t))

}
.

If k|U | < 1/2 then (1 + kU) = exp(kU + ε) where |ε| ≤ Ck2, so we can
write the product as

n∏
m=1

(1 + kU(x+ w̃(sm))) = exp

(
k

n∑
m=1

U(x+ w̃(sm)) + ε′

)
where |ε′| ≤ nCk2 = Ctk. Since k

∑n
m=1 U(x + w̃(sm)) is a Riemann

sum for the integral
∫ t

0
U(x+ w̃(s)) ds it follows that

V n
i = Eall broken

line paths

{
e
∫ t
0 U(x+w̃(s))dsφ(x+ w̃(t))

}
+ small terms.

As h, k tend to zero the broken line paths x+ w̃(s) look more and more
like Brownian motion paths x+ w(s) so in the limit

v(x, t) = Eall Brownian
motion paths

{
e
∫ t
0 U(x+w(s))dsφ(x+ w(t))

}
=

∫
dWe

∫ t
0 U(x+w(s))dsφ(x+ w(t)). (3.17)

This is the Feynman-Kac formula. It reduces to the solution formula
for the heat equation when U = 0. This result is useful in quantum
mechanics and in other fields.

We now use the path integral representation to derive a time-
dependent perturbation scheme, together with extremely useful graph-
ical representations of the various terms, known as “Feynman dia-
grams”. To introduce the ideas, consider first the ordinary differential
equation

du

dt
= au+ f(t), (3.18)

where u = u(t) is the unknown function, u(0) = u0 is an initial value,
a is a constant, and f = f(t) is a given function. As is easily shown,
the solution is

u(t) = u0e
at +

∫ t

0

f(s)ea(t−s)ds. (3.19)
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Figure 3.2. Backward walk for the heat equation with potential.

The function eat, which solves the equation when u0 = 1 and f(t) =
0, is a “propagator”, or “vacuum propagator”, in the language that

s f(s)

U0eat

U0
(i) (ii)

0

t

Figure 3.3. Diagrams for du
dt

= au+ f(t).
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will soon be introduced. The first term in the solution, u0e
at, can

be picturesquely described as a propagation in time, via the vacuum
propagator, of the initial value u0, and can be graphically represented
as in part (i) of Figure 3.3.

The second term in the expression for u(t) can be understood by
considering what the solution would be like if the function f(t) were
to vanish except in a small interval [s, s+ ds] with 0 < s < t. Before s
the solution would have only the first term. The presence of f would
change the solution at s by an amount f(s)ds, that variation would be
added to the first term, and then would also propagate by the vacuum
propagator. The effect of the “outside force” f would be a sum of such
perturbations, all propagating with the same vacuum propagator but
starting at different times. This can be described by the picture (ii) in
Figure 3.3; the wavy line represents an interaction with the “external
force ” f , which then propagates as just described, it being understood
that the interaction and its aftereffect must be summed over all times
s between 0 and t. The fact that the graph starts at s and not at the
initial line represents the fact that the second term is independent of
the initial value u0.

We now generalize this representation to the heat equation per-
turbed by a potential. One should expect some kind of averaging
to be necessary not only in time but also in space. First introduce
an ε in front of the potential U in the equation, so that it reads
vt = 1

2
vxx + εU(x)u, with the Feynman-Kac formula acquiring an ε

in the obvious place; the presence of this ε suggests that our calcula-
tions are more likely to be useful when ε is small, but more important,
it will allow us to label the various terms by the power of ε that precedes

them. Next, expand exp
(∫ t

0
εU(x+ w(s))ds

)
in Taylor series:

exp

(∫ t

0

εU(x+ w(s))ds

)
=1 + ε

∫ t

0

U (x+ w(s))ds)

+
1

2
ε2(

∫ t

0

U(x+ w(s))ds))2 + .... (3.20)

and substitute the series into the Wiener integral representation of
u(x, y). Write

K(z, s) =
1√
2πs

e−z
2/2s, (3.21)



62 3. BROWNIAN MOTION

so that the first term in the series, which would be the whole solution
in the absence of U , becomes:

T0 =

∫ ∞
−∞

e−y
2/2t

√
2πt

φ(x+ y)dy (3.22)

=

∫ +∞

−∞
K(x− z, t)φ(z)dz. (3.23)

K is the “vacuum propagator”; indeed, one can think of the BM’s that
define the solution as propagating in space, with a motion modified by
the potential U along their paths; if U = 0 as in this first term, one
can think of them propagating in a “vacuum”. T0 can be represented
graphically as in the “Feynman diagram” (i) of Figure 3.4: the straight
line represents vacuum propagation, which starts from (x, t) and goes
to (z, 0) in the plane, it being understood that an integration over z is
to be performed.

The second term T1 in the expansion has a coefficient ε multiplying
the integral ∫

dW

∫ t

0

U(x+ w(s))φ(x+ w(t))ds =∫ t

0

ds

∫
dW U(x+ w(s))φ(x+ w(t)). (3.24)

The variables x + w(s), x + w(t) are both Gaussian, but they are not
independent, so that in order to average one has to find their joint pdf.
It is easier to express the integrand as a function of two independent
variables; clearly s ≤ t so that w(t) = w(s) + (w(t) − w(s)), and
w(s), w(t)−w(s) are independent, by the definition of BM. Now x+w(s)
is a Gaussian variable with mean x and variance s, w(t) − w(s) is a
Gaussian variable with mean 0 and variance t− s, so T1 becomes

T1 =ε

∫ t

0

ds

∫ +∞

−∞
dz1

∫ +∞

−∞
dz2K(z1 − x, s) ·

·U(z1)K(z2, t− s)φ(z1 + z2). (3.25)

This term can be represented graphically as in Figure 3.4 (ii): vacuum
propagation from (x, t) to (z1, t− s), interaction with the potential U
at z1 (represented by a wavy line), followed by a vacuum propagation
from (z1, t− s) to (z1 + z2, 0), it being understood that one integrates
over all intermediate quantities, s, z1, z2.



3.5. HEAT EQUATION WITH POTENTIAL 63

K

(z1, 0)
(i)

t

x

(x, t)

(x, t)

K

K

K

K

K

(z1, t – s)

(z1+ z2, 0)

(ii)

t

x

(x, t)

(z1, t t– 1)

(z1+ z2, t t– 2)

(z1+ z2+ z3, 0)

(iii)

t

x

Figure 3.4. Feynman diagrams.
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To evaluate the second term, we need the identity(∫ t

0

f(s)ds

)2

= 2

∫ t

0

dτ2

∫ τ2

0

dτ1f(τ1)f(τ2), (3.26)

which is easily proved by differentiating both sides; note that in this
formula t ≥ τ2 ≥ τ1. The second term T2 then becomes ε2 multiplying∫

dW

∫ t

0

dτ2

∫ τ2

0

dτ1U(x+ w(τ1))U(x+ w(τ2))φ(x+ w(t)). (3.27)

As before, write x + w(τ2) = x + w(τ1) + w(τ2) − w(τ1), and x +
w(t) = x+w(τ1) +w(τ2)−w(τ1) +w(t)−w(τ2) to create independent
variables, and note that x+w(τ1) is Gaussian with mean x and variance
τ1, w(τ2) − w(τ1) is Gaussian with mean 0 and variance τ2 − τ1, and
w(t) − w(τ2) is Gaussian with mean 0 and variance t − τ2. T2 then
becomes:

T2 =ε2
∫ t

0

dτ2

∫ τ2

0

dτ1

∫ ∞
−∞

dz1

∫ ∞
−∞

dz2

∫ ∞
−∞

dz3 ·

·K(z1 − x, τ1)U(z1)K(z2, τ2 − τ1)U(z1 + z2)·
·K(z3, t− τ2)φ(z1 + z2 + z3). (3.28)

This can be represented by the diagram (iii) of Figure 3.4. The higher
order terms follow the same pattern. The point of the diagrams is that
they are much easier to generate and visualize than the corresponding
integral expressions.

3.6. Physicists’ Notation for Wiener Measure

Physicists use an interesting notation for the Wiener measure that
can be useful when one uses Wiener integrals in problems of mechan-
ics and quantum mechanics. There are no new ideas here, just new
notation. Before proceeding, we recall a number of results already es-
tablished. In the construction of cylinder sets for the Wiener measure,
pick an event C =

⋂
Ci, where Ci is associated with the interval (ai, bi]

and ti = ih. Additionally, assume that the windows are of small width
(i.e., bi − ai = dui). The probability attached to such a set is

P =

∫ b1

a1

e−u
2
1/2h

√
2πh

du1

∫ b2

a2

e−(u2−u1)2/2h

√
2πh

du2 · · ·
∫ bn

an

e−(un−un−1)2/2h

√
2πh

dun.

(3.29)
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For sufficiently narrow windows, each integral in (3.29) can be approx-
imated by ∫ bi

ai

e−(ui−ui−1)2/2h

√
2πh

dui ≈
e−(u∗i−u∗i−1)2/2h

√
2πh

dui,

where u∗i ∈ [ai, bi]. Therefore, P can be approximated by

P ≈ 1

Z
exp

(
−

n∑
i=1

(u∗i − u∗i−1)2h

2h2

)
[du],

where [du] = du1du2 · · · dun and Z is an appropriate normalization
constant. Thus, formally (this means “not rigorously” or “not really”),

dW =
1

Z
e−

1
2

∫ t
0 ( duds )

2
ds[du], Z = (2πh)n/2.

This expression is formal in the sense that neither the integral in the
exponent, nor the limiting Z, nor the product of du’s hidden in [du]
exists. As mentioned previously, it can be shown that Brownian motion
is not differentiable. However, this expression turns out to be useful.

Recall that, given the equation vt = 1
2
vxx + U(x)v with the initial

data v(x, 0) = φ(x), we have

v(x, t) =

∫
e
∫ t
0 U(x+w(s)) dsφ(x+ w(t)) dW.

In the new notation, this last integral can be written as

v(x, t) =
1

Z

∫
e
−
∫ t
0

[
1
2( dwds )

2
−U(x+w(s))

]
ds
φ(x+ w(t))[dw]. (3.30)

By definition, (3.30) is a “sum over paths.” In principle, one can
evaluate it by taking many Brownian motion paths, evaluating the
integrals for each path, and then averaging the results. The formal (i.e.,
meaningless if one looks too closely) expression [dw] is often written as
“dpath” (or something similar). Note, and this is an important point,
that the exponent is an integral of what we will see is a Lagrangian.
Similar integrals appear in quantum mechanics (with an additional
imaginary factor i in the exponent).

If one is given an expression for a measure in the form (3.30), one
can interpret it properly by retracing the steps that led to that form.
The integral of the squared derivative denotes the Wiener measure,
the other part of the integral can be discretized, and the terms in the
resulting sums become the probabilities of a “path” belonging to a
cylinder set.
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Figure 3.5. W (x, t) for Brownian motion.

3.7. Another Connection Between Brownian Motion and the
Heat Equation

We now examine a relationship between BM going forward in time
and related stochastic processes on one hand, and parabolic equations,
including the heat equation, on the other hand. This relationship will
be generalized in the following section and will make it possible to
use stochastic processes related to BM to solve yet broader classes of
equations. Consider the random variables w(ω, t) as functions of ω
(i.e., as random variables) for several values of t. Define the function
W = W (x, t) by

W (x, t) dx = P (x < w(t) ≤ x+ dx), (3.31)

where w(t) is a Brownian motion. W (x, t) is the probability density
function of the Brownian motion w(t) at the fixed moment t. As we
know,

W (x, t) =
e−x

2/2t

√
2πt

.

The graphs of W (x, t) for several values of t are shown in Figure 3.5.
We see that the graphs become lower and wider as t increases.

A direct calculation shows that ∂tW = 1
2
∂2
xW . The increments of

Brownian motion are independent. This means that if we know that
at time t w(t) is at x, then where it is at t + ∆t does not depend on
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where it was prior to the moment t. The relation between W (x, t) and
W (x, t+ ∆t) is given by the Chapman-Kolmogorov equation

W (x, t+ ∆t) =

∫ ∞
−∞

W (x+ y, t)Ψ(x, y,∆t) dy, (3.32)

where

Ψ(x, y,∆t) =
e−y

2/2∆t

√
2π∆t

(3.33)

is the “transition kernel.” This equation states that the probability of
reaching x at time t + ∆t is the sum of the probabilities of reaching
x + y at time t multiplied by the probability of going from x + y to x
during the time interval ∆t.

Expand W (x+ y, t) in a Taylor series in y:

W (x+ y) = W (x) + yWx(x) +
y2

2
Wxx(x) +

y3

6
Wxxx(x) +O(y4)

and substitute it into (3.32):∫ ∞
−∞

W (x+ y, t)
e−y

2/2∆t

√
2π∆t

dy =

∫ ∞
−∞

W (x, t)
e−y

2/2∆t

√
2π∆t

dy

+

∫ ∞
−∞

yWx(x, t)
e−y

2/2∆t

√
2π∆t

dy

+
1

2

∫ ∞
−∞

y2Wxx(x, t)
e−y

2/2∆t

√
2π∆t

dy

+
1

6

∫ ∞
−∞

y3Wxxx(x, t)
e−y

2/2∆t

√
2π∆t

dy

+

∫ ∞
−∞

O(y4)
e−y

2/2∆t

√
2π∆t

dy;

thus,∫ ∞
−∞

W (x+ y, t)
e−y

2/2∆t

√
2π∆t

dy = W (x) + 0 +
Wxx(x)∆t

2
+ 0 +O(∆t2).

Hence, we have

W (x, t+ ∆t) = W (x, t) +
∆t

2
Wxx(x, t) +O(∆t2).

Dividing by ∆t, we obtain

W (x, t+ ∆t)−W (x, t)

∆t
=

1

2
Wxx(x, t) +O(∆t).
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Letting ∆t→ 0, we find

∂W

∂t
=

1

2

∂2W

∂x2
.

This is a “Fokker-Planck equation”—an equation that describes the
time evolution of a one-time probability density for a stochastic process.
We see that the Fokker-Planck equation for BM is the heat equation.
This observation provides another relation between BM and the heat
equation.

A stochastic process is called a Markov process if what happens
after time t is independent of what happened before time t; that is, if
t′ > t, then

E[u(ω, t′)|u(ω, t)] = E[u(ω, t′)|u(ω, s), s ≤ t].

In other words, if we know u(ω, t), then knowing in addition u(ω, s) for
s < t does not help us to predict u(ω, t′) for t′ > t.

As discussed above, if P (x < u(t) ≤ x+ dx) = W (x, t) dx, then
W (x, t) satisfies the Chapman-Kolmogorov equation

W (x, t+ ∆t) =

∫
W (x+ y, t)Ψ(x, y,∆t) dy,

where Ψ is the “transition probability” from a state x+ y at time t to
the state x at time t+ ∆t. For a Markov process, the transition prob-
ability does not depend on W (x, s) for s < t. Brownian motion is by
construction a Markov process because it has independent increments.

3.8. First Discussion of the Langevin Equation

Let u(t, ω) be a stochastic process defined by the following (formal)
equation:

du

dt
= −au+

dw

dt

where a is a positive constant and dw/dt is white noise, the derivative
of a Brownian motion w. We know that this derivative does not exist
in the classical sense; thus, the equation makes sense only formally (or
else in the sense of distributions). A more sensible way to write the
Langevin equation is

du = −au dt+ dw, (3.34)
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where dw is the increment of Brownian motion. The meaning of (3.34)
is defined by integrating from 0 to t:

u(t)− u(0) = −a
∫ t

0

u dt+

∫ t

0

dw = −a
∫ t

0

u dt+ w(t).

This is the Langevin equation (also known in some mathematical circles
as the Ornstein-Uhlenbeck equation). It is an instance of a stochastic
differential equation. The equation contains a term that is a random
function of t, and the solution u = u(ω, t) should also be a random
function of t that satisfies the equation for every ω in the probability
space on which the equation is defined. The solution of this equation
is known to mathematicians as the Ornstein-Uhlenbeck process.

If we omit the noise term in this equation and retain only the
“damping” term −au, the solution is the initial datum times e−at,
a pure decay. If, on the other hand, we keep the noise term but set
a = 0, the solution of the equation is Brownian motion. In physics,
this equation is used to model the motion of a heavy particle under
bombardment by lighter particles; the collisions with the lighter par-
ticles provide random instantaneous bursts of added momentum while
the mean effect of the collisions is to slow the heavy particle down. We
will see in Section 6.1 that when this equation is used as a physical
model, the coefficient a, as well as the coefficient of the noise term that
we have, rather arbitrarily, set equal to 1, acquire a direct physical
meaning. The solution of this equation, with the coefficients inter-
preted correctly, is what physicists call Brownian motion.

Similarly to what we did in the case of Brownian motion, we want
to find the equation satisfied by the probability density function of u
(i.e., the Fokker-Planck equation for this problem, also know to math-
ematicians as the Kolmogorov equation). We choose an approximation
for (3.34): Integrating from nk to (n + 1)k, where k is the time step,
we find

un+1 − un = −akun + wn+1 − wn. (3.35)

We choose k small enough so that ak < 1. The choice to evaluate
the term −aku at time nk is not just an arbitrary choice of approx-
imation scheme but is dictated by the desire to a obtain a solution
that constitutes a Markov process; as we are constructing the solution
step-by-step in time, what we have to work with when we go from time
t = nk to time t = (n + 1)k is the value of u we have previously cal-
culated and the sample of BM in that time interval, and this is all we
can use. The quantity wn+1−wn in (3.35) is an increment of Brownian
motion, therefore, it is a Gaussian variable with mean 0 and variance k.
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Equation (3.35) says that un+1−un +akun is a Gaussian variable with
mean 0 and variance k. If un is known, then P (x < un+1 ≤ x+ dx) is

P (x < un+1 ≤ x+ dx) =
exp
(
− (x−un+akun)2

2k

)
√

2πk
dx. (3.36)

Since un is known, this is exactly the transition probability from the
point un at time nk to the point x at time (n + 1)k. If we write
un = x+ y, then the Chapman-Kolmogorov equation is

W (x, (n+ 1)k) =

∫ +∞

−∞
W (x+ y, nk)Ψ(x, y, k) dy.

Replacing Ψ by the expression we have just derived gives

W (x, (n+ 1)k) =

∫ +∞

−∞
W (x+ y, nk)

exp
(
− (−y+ak(x+y))2

2k

)
√

2πk
dy.

After rearranging the exponent in the above, we have

W (x, t+ k) =

∫ +∞

−∞
W (x+ y, t)

exp
(
− ((1−ak)y−akx)2

2k

)
√

2πk
dy (3.37)

where t = nk. The next step is to expand W (x + y, t) around x. Up
to fourth order we have

W (x+ y, t) = W (x, t) + yWx(x, t) +
y2

2
Wxx(x, t) +

y3

6
Wxxx(x, t) +O(y4).

(3.38)

The expansion of W (x + y, t) is substituted in (3.37) and we evaluate
the different integrals that appear. Consider

I1 =

∫ +∞

−∞
W (x, t)

exp
(
− ((1−ak)y−akx)2

2k

)
√

2πk
dy.



3.8. FIRST DISCUSSION OF THE LANGEVIN EQUATION 71

To evaluate I1 we make the change of variables z = (1− ak)y and find

I1 = W (x, t)

∫ +∞

−∞

exp
(
− (z−akx)2

2k

)
√

2πk

dz

1− ak

=
W (x, t)

1− ak

∫ +∞

−∞

exp
(
− (z−akx)2

2k

)
√

2πk
dz

=
W (x, t)

1− ak
= W (x, t)(1 + ak +O(k2))

= W (x, t)(1 + ak) +O(k2). (3.39)

The second integral is

I2 =

∫ +∞

−∞
yWx(x, t)

exp
(
− ((1−ak)y−akx)2

2k

)
√

2πk
dy.

With the same change of variables we get

I2 = Wx(x, t)

∫ +∞

−∞

z

1− ak

exp
(
− (z−akx)2

2k

)
√

2πk

dz

1− ak

=
Wx(x, t)

(1− ak)2
akx

= Wx(x, t)(1 + 2ak +O(k2))akx

= Wx(x, t)akx+O(k2). (3.40)

The third integral is

I3 =

∫ +∞

−∞

y2

2
Wxx(x, t)

exp
(
− ((1−ak)y−akx)2

2k

)
√

2πk
dy. (3.41)

The same change of variables gives

I3 = Wxx(x, t)

∫ +∞

−∞

z2

2(1− ak)2

exp
(
− (z−akx)2

2k

)
√

2πk

dz

1− ak

= Wxx(x, t)
1

2(1− ak)3
(k + (akx)2)

= Wxx(x, t)
k

2
+O(k2). (3.42)
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The fourth integral is

I4 =

∫ +∞

−∞

y3

6
Wxxx(x, t)

exp
(
− ((1−ak)y−akx)2

2k

)
√

2πk
dy, (3.43)

which becomes

I4 = Wxxx(x, t)

∫ +∞

−∞

z3

6(1− ak)3

exp
(
− (z−akx)2

2k

)
√

2πk

dz

1− ak

= Wxxx(x, t)
1

6(1− ak)4
(3axk2 + (akx)3)

= Wxxx(x, t)O(k2). (3.44)

The fourth integral contributes only terms of order O(k2) and higher;
the same is true of the next terms in the expansion, which have been
omitted. Collecting (3.37), (3.38), (3.39), (3.40), (3.42), and (3.44), we
find

W (x, t+ k) = W (x, t) +W (x, t)ak +Wx(x, t)akx+
k

2
Wxx(x, t) +O(k2),

and

W (x, t+ k)−W (x, t)

k
= W (x, t)a+Wx(x, t)ax+

1

2
Wxx(x, t) +O(k),

and, finally, as we make k → 0,

Wt(x, t) = (axW (x, t))x +
1

2
Wxx(x, t).

This is the Fokker-Planck equation corresponding to the solution of the
Langevin equation (3.34). One can readily see that the first term on
the right tends to concentrate W on ever smaller sets near the origin,
corresponding to the effect of the damping in the Langevin equation;
the second term spreads the support of W , as the diffusion by BM
should do. A balance between concentration and spreading is reached
when ∂W/∂t = 0; the corresponding stationary solution for W is a
Gaussian function, a fact that will be significant in chapter 6.

Given a Markovian stochastic process, we can construct its Fokker-
Planck equation and vice versa. An interesting pair of a stochastic ordi-
nary differential equation and the corresponding Fokker-Planck equa-
tion arises in two-dimensional incompressible fluid mechanics. If we
consider a fluid having velocity u = (u, v) and vorticity ξ = vx − uy,



3.9. BRANCHING BROWNIAN MOTION 73

where (x, y) represents a point in physical space, then the equation for
the evolution of the vorticity is

∂ξ

∂t
+ (u · ∇)ξ =

1

Re
∆ξ, (3.45)

where Re is the Reynolds number of the flow (1/Re is a dimensionless
measure of the viscosity, i.e., of the friction). If we assume that ξ ≥ 0
and

∫
ξ dx dy = 1, then (3.45) is the Fokker Planck equation of the

following system of stochastic ordinary differential equations:

dx = u dt+

√
2

Re
dW.

Here, x is the position of the point where the vorticity is ξ, and W
is a two-dimensional Brownian motion. Each of these particles carries
a fixed amount of vorticity the corresponding evolution of the density
solves the vorticity partial differential equation. There is one equation
per point in the support of ξ (i.e., for every point (x, y) such that
ξ(x, y) 6= 0). The velocity u depends on the whole vorticity field at
each instant t, so this equation is nonlinear and couples the BMs that
correspond to different points in physical space, as one should expect
given that the original equation of motion is nonlinear.

3.9. Solution of a Nonlinear Differential Equation by
Branching Brownian Motion

So far, with the exception of the short comments at the end of
the previous section, all the equations we have been solving have been
linear. Now we give an example of how a variant of BM can be used to
solve a nonlinear partial differential equation. The equation we work
with is the Kolmogorov-Petrovskii-Piskunov (KPP) equation,

vt − 1
2vxx = v2 − v,

for which we prescribe initial data v(x, t = 0) = φ(x). This equation
is an important model in combustion theory and in biology. We are
looking for a representation of the solution v at a point (x, t) that relies
on BM, as in earlier sections.

Start a BM w going backward in time from (x, t) and let it run until
a time t − t1, with t1 drawn at random from the exponential density,
P (y < t1 ≤ y+dy) = exp(−y) dy. Start two independent BMs running
backward from (x+w(t1), t−t1), until new times t−t1−t11 and t−t1−t12

with t11 and t12 drawn independently from the exponential density. At
each stopping time, split the branch of the BM into two independent
BMs. If the time becomes negative for any branch, stop. The result is a
backward tree with roots that cross the x-axis. Let the intersections of
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Figure 3.6. Branching Brownian motion.

the tree with the x-axis be x1, x2, . . . , xn, n ≥ 1, and associate with the
tree the product of initial values Ξ = φ(x1)φ(x2) · · ·φ(xn); the claim is
that the expected value of this product is the solution we want:

v(x, t) = E[Ξ] = E[φ(x1) · · ·φ(xn)]

(see Figure 3.6).
We take this opportunity to introduce a notation that will be widely

used in chapter 6. Let ∆ be the second derivative operator in the space
variable x: ∆f = fxx for a smooth function f . Just as the solution
of the equation v′ − av = 0, v(0) = v0, a = constant, is eatv0, we
will symbolically write the solution of the heat equation vt− 1

2∆v = 0,
v(x, 0) = φ, as v(t) = e

1
2 t∆φ (this is the “semigroup” notation). For

v(x, t), which is the function v(t) evaluated at x, we write v(x, t) =
(e

1
2 t∆φ)(x). We know that (e

1
2 t∆φ)(x) = E[φ(x + w(t))], where, as

before, w is BM. One can readily understand the identity e
1
2 (t+s)∆ =

e
1
2 t∆e

1
2 s∆ and check its validity (this is the “semigroup property”).

We first check that the function E[Ξ] = E[φ(x1) · · ·φ(xn)] satisfies
the KPP equation. Write V (x, t) = E[Ξ] with the backward branching
walk starting at x, t. The probability that the first branching occurs at
a time t1 larger than t (so there is only one branch) is

∫∞
t
e−s ds = e−t
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by definition; if this happens, the number Ξ attached to the tree is
φ(x+ w(t)), whose expected value is (e

1
2 t∆φ)(x).

Suppose to the contrary that t1 occurs in a time interval (s, s+ ds)
earlier than t (this happens with probability e−s ds by construction).
Two branches of the tree start then at the point (x + w(t1), t − t1).
The two branches are independent by construction, and if we treat the
point (x + w(t1), t − t1) as fixed, the mean value of the product E[Ξ]
attached to each branch is V (x+w(t1), t− t1), so that the mean value
of E[Ξ] at (x + w(t1), t − t1) is V 2((x + w(t1), t − t1). Now average
V 2((x+w(t1), t− t1) over w(t1), remembering the solution of the heat
equation. This yields e

1
2 s∆V 2(t − s). Multiply this expression by the

probability that the branching occurs at the time assumed, and sum
over all first branching times between 0 and t.

Collecting all terms, we find

V = E[Ξ] = e−te
1
2 t∆φ+

∫ t

0

e−se
1
2 s∆V 2(t− s) ds

= e−te
1
2 t∆φ+

∫ t

0

es−te
1
2 (t−s)∆V 2(s) ds,

where the last identity is obtained by making the change of variables
s′ = t−s and then dropping the prime on s. All that remains to be done
is differentiate this expression for V = E[Ξ] with respect to t, noting
that ∆e−t = e−t∆ (differentiation with respect to x and multiplication
by a function of t commute), then calculate ∆E[Ξ] using the fact that
e

1
2 t∆φ and e

1
2 (t−s)∆V 2(s) are solutions of the heat equation; the equation

we wish to solve appears. It is obvious that at t = 0 E[Ξ] = φ(x), and
therefore v(x, t) = V = E[Ξ] provided the solution of the KPP equation
with given initial data is unique (and it is).

Figure 3.6 can be interpreted as a Feynman diagram (see Section
3.5): in picturesque language, one can say that an interaction with the
nonlinear potential u2−u has the effect of destroying an old particle and
creating two new ones in its stead. Such interpretations are commonly
encountered in physics.

3.10. A Brief Introduction to Stochastic ODEs

In Section 3.8 we solved a particular stochastic differential
equation–the Langevin equation; we now make some comments about
more general stochastic ordinary differential equations (SODEs) of the
form

du = a(t, u(t)) dt+ b(t, u(t)) dw, (3.46)
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where w is Brownian motion. The meaning of this equation is defined
by

u(t)− u(0) =

∫ t

0

a(s, u(s)) ds+

∫ t

0

b(s, u(s)) dw.

The first integral is well defined, whereas, as we shall now see, the sec-
ond is not. Integrals of the second form are called stochastic integrals.
Let us figure out in what sense we can understand them.

Let f(t) be a function defined on an interval [a, b]. A partition of
[a, b] is a set of points {ti}ni=0 such that

a = t0 < t1 < t2 < · · · < tn = b.

Definition. The variation of f(t) on [a, b] is defined by

Variation(f(t)) = sup
all partitions

n−1∑
i=0

|f(ti+1)− f(ti)|. (3.47)

If the sup is finite f is said to have bounded variation; Brown-
ian motion does not have bounded variation. Stieltjes integrals of the
form

∫
g(t) df(t) make sense only when the increment function f has

bounded variation and, therefore,∫ t

0

b(s, u(s)) dw

is not well defined as a Stieltjes integral.
The way to make sense of the stochastic integrals is to approximate

b(t, u(s)) by a piecewise constant function; i.e.,∫ t

0

b(s, u(s)) dw ≈
n−1∑
i=0

bi dwi =
n−1∑
i=0

bi(w(ti+1)− w(ti)),

where {ti}ni=0 is a partition of [0, t], and then consider the limits of
the sum as one makes the largest interval ti − ti−1 in the partition go
to zero. Now one has to decide how to pick the bi’s. There are two
common choices:

1. The bi’s are evaluated at the left ends of the intervals; i.e.,

bi = b(ti, u(ti)).

2. The bi’s are the average of the endpoints

bi =
1

2
[b(ti, u(ti)) + b(ti+1, u(ti+1))] .

Choice 1 defines the Ito stochastic integral, whereas choice 2 defines
the Stratonovich stochastic integral.
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Example. Suppose b(t, u(t)) = w(t). Then, in the Ito case,

I1 =

∫ t

0

w dw ≈
n−1∑
i=0

w(ti)(w(ti+1)− w(ti)).

This is, of course, a random variable; the expected value of this random
variable is zero, as one can see from the properties of BM:

E[I1] = 0.

In the Stratonovich case, we find for the stochastic integral,

I2 =

∫ t

0

w dw ≈
n−1∑
i=0

1

2
(w(ti+1) + w(ti))(w(ti+1)− w(ti))

=
n−1∑
i=0

1

2
(w2(ti+1)− w2(ti))

=
1

2

[
w2(t1)− w2(t0) + w2(t2)− w2(t1) + · · ·+ w2(tn)− w2(tn−1)

]
=

1

2

[
w2(tn)− w2(t0)

]
=

1

2
w2(t),

and the expected value of this integral is

E[I2] =
t

2
.

The fact that the expected values of the two integrals are so different
is, of course, enough to show that the integrals themselves are different.
This is very different from the situation in ordinary calculus, where
the value of an integral is independent of the choice of points in the
Riemann sums. How the stochastic integral is defined makes a big
difference to the meaning of a stochastic differential equation. For
the sake of definiteness, we will assume henceforth, when this makes a
difference, that we are dealing with stochastic differential equations in
the sense of Ito. When b in (3.46) is a constant (as has been the case
so far in this volume), there is no ambiguity.

3.11. Exercises

1. Consider the partial differential equation ut = ux, with initial data
u(x, 0) = φ(x). Solve it approximately as follows: Put a grid on
the (x, t) plane, with mesh length h in the x-direction and k in the

t-direction. Set u0
i = φ(ih). To calculate u

(n+1/2)k
(i+1/2)h (halfway between
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mesh points and halfway up the time interval k), proceed as follows:
Pick a random number θ from the equidistribution density, one such
choice for the whole half-step. Set

u
(n+1/2)k
(i+1/2)h =

{
uni , θ ≤ 1

2 −
k
2h

uni+1, otherwise.

The half-step from time (n+1/2)k to (n+1)k is similar. Show that
if k/h ≤ 1, the solution of this scheme converges to the solution
of the differential equation as h → 0. (This is a special case of
the Glimm or random choice scheme). Hint: The solution of the
differential equation is φ(x + t) (i.e., initial values propagate along
the lines t = −x + constant). Examine how the scheme propagates
initial values: Show that an initial value u0

i moves in a time t by an
amount η, where η is a random variable whose mean tends to −t
and whose variance tends to zero.

2. Consider the heat equation vt = (1/2)vxx with initial data v(x, 0) =
φ(x) for 0 ≤ x ≤ 1 and boundary conditions v(0, t) = a and v(1, t) =
b. Show that the solution at the point (x, t) can be obtained by
starting BMs from (x, t) backward in time, attaching to each BM a
number F as follows: If the BM first hits the portion of the x-axis
between the boundaries x = 0 and x = 1, then F = φ(x+ w(ω, t));
if it first hits the boundary x = 0, then F = a, and similarly at
x = 1; finally, v(x, t) = E[F ]. Hint: One way is to go through a
finite-difference argument and then assume that the random walks
converge to a BM.

3. Evaluate exactly
∫
F dW for the following functionals F : (i)

F [w(·)] =
∫ 1

0
w4(s) ds; (ii) F = sin(w3(1)), (iii) F =

sin(w2(1/2)) cos(w(1)), (iv) F =
∫ 1/2

0
w2(s)w2(0.5 + s)ds.

4. Show that∫
dW (

∫ t

0

wn(s)ds) =

∫ +∞

−∞
du

∫ t

0

ds(
√
su)n exp(−u2/2)/

√
(2π)

for all non-negative integers n.

5. Write the solution of the partial differential equation

vt = (1/2)vxx − xv,

with data v(x, 0) = sin x, as a Wiener integral.
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6. Evaluate
∫
F dW , where

F [w(·)] = e−
∫ 1
0 w

2(s) ds cos(w(1))

by Monte Carlo, along the following lines: Divide the time interval
[0, 1] into n pieces and construct random walks wn as follows: For
t a multiple of 1/n, set wn((i + 1)h) = wn(ih) + q, where q is a
Gaussian variable with mean 0 and variance 1/n (and, of course,
wn(0) = 0). For t between the multiples of 1/n, construct wn by
linear interpolation. For each such wn evaluate F and average over
many walks, until the error (as measured by the difference between
runs) is less than 1%. Do this for n = 5 and n = 10. Note that this
integral is the solution at (0, 1) of some initial value problem for a
differential equation. What is this problem?

7. In the previous problem, we discretized a Wiener integral by approx-
imating the BMs by walks with n Gaussian increments. Write the
solution of this discretized problem as an n-fold ordinary integral.
(We shall see in chapter 5 how to evaluate such n-fold integrals, even
for n large, by efficient Monte Carlo algorithms.)

8. Find the Fokker-Planck equation for the process that satisfies the
equation du = −dt + dw, where w is Brownian motion. Does the
pdf ever settle to a steady state?

9. Find a stochastic equation whose Fokker-Planck equation is Wt =
5W + 5xWx + 16Wxx.

10. Consider particles moving in the plane, with coordinates that satisfy
the pair of stochastic equations

dx1 = a1 dt+ dw1, dx2 = a2 dt+ dw2,

where a1, a2 are constants and dw1, dw2 independent BMs. The
density function W = W (x, y, t) is the joint density of x1 and x2;
find the partial differential equation (Fokker-Planck equation) that
it satisfies.

11. Consider the tree in Figure 3.6. Let n be the (random) number of its
intersections with the x−axis. Consider the function u(t) = E[an],
where a > 0 is a given constant. Show that u satisfies the equation
du/dt = u2 − u with initial datum u(0) = a.

12. Consider again the tree in Figure 3.6. The set of branching points
plus the set of intersections with the x–axis is the set of nodes of
the tree. Associate with each intersection with the x-axis the given
number a > 0. Each branching point X is attached to two nodes
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below it, say Y and Z. If the number associated with Y is A and
the number associated with Z is B, associate with X the number
AB+A (it is immaterial which point is Y and which is Z). Let D be
the number associated with the first (from the top) branching point.
Define u(t) = E[D]. Show that u satisfies the equation du/dt = u2

with u(0) = a.

13. Prove that es∆et∆ = e(s+t)∆, where ∆ = ∂2/∂x2. (You first have to
figure out what this means and then check by means of formulas.)

14. Evaluate et ∂/∂xf for f = sin x , at the point x = 1, t = 1.

15. Show that the solution of (3.34) is given by u(ω, t) = e−atu(0) +

w(ω, t)− a
∫ t

0
e−a(t−τ)w(ω, τ) dτ .

16. Show that the solution of (3.35) is given by un = (1−ak)nu0 +wn−
ak (wn+1 + (1− ak)wn−2 + · · ·+ (1− ak)n−2w1).
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CHAPTER 4

Stationary Stochastic Processes

4.1. Weak Definition of a Stochastic Process

This chapter is devoted to further topics in the theory of stochastic
processes and of their applications. We start with a different, weaker,
definition of a stochastic process, useful in the study of stationary pro-
cesses.

Consider a collection of random variables u(t, ω) ∈ C parametrized
by t.

Definition. We say that u(t, ω) is a weakly defined real valued
stochastic process if for every finite set of points t1, . . . , tn, the joint
distribution of u(t1, ω), . . . , u(tn, ω) is known:

Ft1,... ,tn(y1, . . . , yn) = P (u(t1) ≤ y1, . . . , u(tn) ≤ yn).

The family of functions Ft1,... ,tn(y1, . . . , yn) must satisfy some nat-
ural requirements:

1. F ≥ 0.
2. F (∞, . . . ,∞) = 1 and F (−∞, . . . ,−∞) = 0.
3. Ft1,... ,tn(y1, . . . , ym,∞, . . . ,∞) = Ft1,... ,tm(y1, . . . , ym).
4. If (i1, . . . , in) is a permutation of (1, . . . , n), then

Fti1 ,... ,tin (yi1 , . . . , yin) = Ft1,... ,tn(y1, . . . , yn).

This definition has a natural extension to complex-valued processes.
A moment of u(t, ω) of order q is an object of the form

Mi1,... ,in = E[ui1(t1) · · ·uin(tn)],
n∑
j=1

ij = q.

If a stochastic process has finite moments of order q, it is a process of
order q. The moment

E[u(t, ω)] = m(t)

is the mean of u at t. The function

E
[
(u(t1, ω)−m(t1))(u(t2, ω)−m(t2))

]
= R(t1, t2)

is the covariance of u. Let us list the properties of the covariance of u:
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1. R(t1, t2) = R(t2, t1).
2. R(t1, t1) ≥ 0.

3. |R(t1, t2)| ≤
√
R(t1, t1)R(t2, t2).

4. For all t1, . . . , tn and all z1, . . . , zn ∈ C,

n∑
i=1

n∑
j=1

R(ti, tj)zizj ≥ 0.

The first three properties are easy to establish; the fourth is proved as
follows: For any choice of complex numbers zj, the sum

n∑
i=1

n∑
j=1

R(ti, tj)zizj

is by definition equal to

E

∣∣∣∣∣
n∑
j=1

(u(tj)−m(tj)) zj

∣∣∣∣∣
2
 ≥ 0

(i.e., to the expected value of a non-negative quantity).

Definition. A weakly defined stochastic process is stationary in
the strict sense if for every t1, . . . , tn and for any T ∈ R,

Ft1,... ,tn(y1, . . . , yn) = Ft1+T,... ,tn+T (y1, . . . , yn).

For a stochastic process that is stationary in this sense, all moments
are constant in time and, in particular, m(t) = m and R(t1, t2) =
R(t1+T, t2+T ) for all T . Choose T = −t2; then R(t1, t2) = R(t1−t2, 0),
and it becomes reasonable to define

R(t2 − t1) = R(t2, t1),

where the function R on the left side, which has only one argument,
is also called R with the hope that there is no ambiguity. Note that
R(T ) = R(t+ T, t).

The above properties become, for the new function R,

1. R(t) = R(−t).
2. R(0) ≥ 0.
3. |R(t)| ≤ R(0).
4. For all t1, . . . , tn and all z1, . . . , zn ∈ C,

n∑
i

n∑
j

R(tj − ti)zizj ≥ 0. (4.1)
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Definition. A stochastic process is stationary in the wide sense if
it has a constant mean and its covariance depends only on the difference
between the arguments; i.e.,

1. m(t) = m.
2. R(t2, t1) = R(t2 − t1).

If a stochastic process is stationary in the weak sense and Gaussian,
then it is stationary in the strict sense (because a Gaussian process is
fully determined by its mean and covariances). Brownian motion is not
stationary. White noise is stationary (but ill-defined without appeal to
distributions).

We now consider some instances of processes that are stationary
in the weak sense. Pick ξ ∈ C to be a random variable and h(t) a
nonrandom function of time, and consider the process u(t, ω) = ξh(t).
Assume for simplicity that h(t) is differentiable, and determine when
a process of this type is stationary in the wide sense. Its mean is

m(t) = E[ξh(t)] = h(t)E[ξ],

which is constant if and only if h(t) is constant or E[ξ] = 0. Suppose
E[ξ] = 0. The covariance

R(t2, t1) = E[ξh(t2)ξ h(t1)] = E[ξξ]h(t2)h(t1)

must depend only on the difference t2 − t1. Consider the special case
t1 = t2 = t. In this case, the covariance E[ξξ]h(t)h(t) must be R(0);

hence, h(t)h(t) must be constant. Therefore, h(t) is of the form

h(t) = Aeiφ(t).

Now we narrow the possibilities some more. Suppose h has the form
Aeiφ(t) with A 6= 0. Then

R(t2 − t1) = |A|2E[ξξ]eiφ(t2)−iφ(t1).

Set t2 − t1 = T and t1 = t. Then

R(T ) = |A|2E[ξξ]ei[φ(t+T )−φ(t)]

for all t, T . Since R(T ) = R(−T ) we see that

φ(t+ T )− 2φ(t) + φ(t− T )

T 2
= 0.

Letting T → 0 gives φ′′(t) = 0 for all t so φ(t) = αt + β. We have
therefore shown that the process u(t, ω) = ξh(t) is stationary in the
wide sense if h(t) = Ceiαt and E[ξ] = 0 or if h(t) is constant.
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4.2. Covariance and Spectrum

In the last section, we presented an example of a stationary sto-
chastic process in the wide sense, given by u(t, ω) = ξeiλt, where ξ is a
random variable with mean 0. This stochastic process has a covariance
of the form

R(T ) = R(t2, t1) = R(t2 − t1) = E[|ξ|2]eiλT ,

where T = t2 − t1. Now we want to generalize this example. First, we
try to construct a process of the form

u(t, ω) = ξ1e
iλ1t + ξ2e

iλ2t,

with λ1 6= λ2. Then E[u] = E[ξ1]eiλ1t+E[ξ2]eiλ2t, which is independent
of t if E[ξ1] = E[ξ2] = 0. The covariance is

E
[
(ξ1e

iλ1t2 + ξ2e
iλ2t2)(ξ1e

−iλ1t1 + ξ2e
−iλ2t1)

]
= E

[
|ξ1|2eiλ1T + |ξ2|2eiλ2T + ξ1ξ2e

iλ1t2−iλ2t1 + ξ1ξ2e
iλ2t2−iλ1t1

]
,

which can be stationary only if E[ξ1ξ2] = 0. Then u(t, ω) is stationary
and

R(T ) = E[|ξ1|2]eiλ1T + E[|ξ2|2]eiλ2T .

More generally, a process u =
∑

j ξje
iλjt is wide sense stationary if

E[ξjξk] = 0 when j 6= k and E[ξi] = 0. In this case,

R(T ) =
∑

E
[
|ξj|2

]
eiλjT .

This expression can be rewritten in a more useful form as a Stieltjes
integral. Recall that when g is a nondecreasing function of x, the
Stieltjes integral of a function f with respect to g is defined to be∫

f dg = lim
max{xi+1−xi}→0

∑
f(x∗i )[g(xi+1)− g(xi)],

where xi ≤ x∗i ≤ xi+1. If g is differentiable, then∫ b

a

f dg =

∫ b

a

fg′ dx.

Suppose g(x) is the step function

g(x) =

{
0, x < c

q, x ≥ c.
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with a ≤ c ≤ b. Then
∫ b
a
fdg = f(c)q if f is continuous at c. We define

the function F = F (k) by

F (k) =
∑

{j|λj≤k}

E[|ξj|2];

i.e., F (k) is the sum of the expected values of the squares of the ampli-
tudes of the complex exponentials with frequencies less than or equal
to k. R(T ) becomes

R(T ) =

∫ +∞

−∞
eikTdF (k).

We shall now see that under some technical assumptions, this re-
lation holds for all wide sense stationary stochastic processes. Indeed,
we have the following:

Theorem 4.1 (Khinchin).

1. If R(T ) is the covariance of a weakly defined wide sense station-
ary stochastic process such that

lim
h→0

E
[
|u(t+ h)− u(t)|2

]
= 0,

then R(T ) =
∫
eikTdF (k) for some nondecreasing function F (k).

2. If a function R(T ) can be written as
∫
eikTdF (k) for some non-

decreasing function F , then there exists a weakly defined wide
sense stationary stochastic process, satisfying the condition in
part 1 of the theorem, that has R(T ) as its covariance.

Khinchin’s theorem follows from the inequalities we have proved
for R; indeed, one can show (and we will not do so here) that a
function that satisfies these inequalities is the Fourier transform of
a non-negative function. If it so happens that dF (k) = φ(k) dk, then
R(T ) =

∫
eikTφ(k) dk and φ(k) is called the spectral density of the

process. Thus, Khinchin’s theorem states that the covariance function
is a Fourier transform of the spectral density. Hence, if we know R(T ),
we can compute the spectral density by

φ(k) =
1

2π

∫ +∞

−∞
e−ikTR(T ) dT.

Example. In the case of white noise we have R(T ) = δ(T ). Its
spectral density (interpreted carefully) is φ(k) = 1/2π; thus, all fre-
quencies have the same amplitude. The adjective “white” comes from
the fact that in white light, all frequencies are present with the same
amplitude. Any random signal that is not white noise is called colored
noise.
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4.3. Scaling and the Inertial Spectrum of Turbulence

To illustrate these constructions, we now derive the “inertial range”
spectrum of fully developed turbulence. The equations of motion will
not be written down because they will not be used directly.

Consider turbulence far from walls, with the Reynolds number
Re = U`0/ν very large, where U is a typical velocity difference in
the flow, `0 is a length scale for the flow, and ν is the viscosity; the
dimensionless number Re measures the amount by which the “inertial”
(i.e., nonlinear) terms in the equations of motion dominate the viscous
dissipation and is large in fully developed turbulence. The movement of
energy from scale to scale (i.e., from one wave number k to another),
is described by the nonlinear terms in the equation of motion. The
flow is driven by large-scale forcing (e.g., in the case of meteorology,
by the rotation of the Earth around its axis and around the Sun); one
assumes that as the energy moves to large wave numbers k (i.e., small
wavelengths), the geometry of the forcing is forgotten and the flow can
be viewed as approximately homogeneous (translation invariant) and
isotropic (rotation invariant) on the small scales, and its spectral prop-
erties at large k are universal (i.e., independent of specific geometry
and forcing).

The velocity field in three space dimensions is a vector quantity:
u = (u1, u2, u3). One can define a covariance tensor

Rij(r) = E[ui(x)uj(x + r)],

where r is a three-component vector; then

Rii(r) =

∫ ∞
−∞

eik·r dFii(k),

where k = (k1, k2, k3) and k · r is the ordinary Euclidean inner
product. Without loss of generality in what follows, one can write
dFii(k) = Ψii(k) dk1 dk2 dk3 (this is so because all we will care about is
the dimensions of the various quantities, which is not affected by their
possible lack of smoothness). Finally, one can define

E(k) =

∫
k2

1+k2
2+k2

3=k2

(Ψ11 + Ψ22 + Ψ33) dS(k).

E(k) is the average of the Ψii(k) over the sphere of radius k in wave

number space and is a function of only k =
√
k2

1 + k2
2 + k2

3. One can
see from the identities in the previous section that E[u2] =

∫∞
0
E(k) dk,

where u2 = u2
1 + u2

2 + u2
3; u2 is the kinetic energy of the flow and E(k)

is, by definition, the spectrum of the flow.
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The kinetic energy of the flow is proportional to the square of the
velocity, whereas energy dissipation, modeled in the equations of mo-
tion by the Laplace operator acting on the velocity, is proportional to
the square of the derivatives of the velocity; in spectral variables (i.e.,
after Fourier transformation), the kinetic energy is proportional to the
square of û(k), whereas the dissipation is proportional to the square
of kû(k), where û is the (random) Fourier transform of the velocity
u = u(x). It is plausible that when Re is large, the kinetic energy
resides in a range of k’s disjoint from the range of k’s where the dis-
sipation is taking place, and, indeed, experimental data show it to be
so; specifically, there exist wave numbers k1 and k2 such that∫ k1

0

E(k) dk ∼
∫ ∞

0

E(k) dk,

∫ ∞
k2

k2E(k) dk ∼
∫ ∞

0

k2E(k) dk,

with k1 � k2. The range of k’s such that k1 < k < k2 is the “inertial
range” of wave numbers; the name is a bit of a misnomer because it
implies that in that range, the mechanics is purely “inertial,” free of
viscosity effects; but we shall see that this is not so. This is the range
of wave numbers k we now focus on.

We will be relying on dimensional analysis. Suppose a variable a
is a function of variables a1, a2, . . . , am, b1, b2, . . . , bk, where a1, . . . , am
have independent units (for example a1 could be a length and a2 could
be a time), while the units of b1, . . . , bk, can be formed from the units
of a1, a2, . . . , am; in the example just used, b1 could be a velocity. Then
there exist dimensionless variables

Π =
a

aα1
1 · · · aαmm

, Πi =
bi

aαi11 · · · a
αim
m

, i = 1, . . . , k,

where the αi, αij are simple fractions, such that Π is a function of the
Πi:

Π = Φ(Π1, . . . ,Πk).

This is just a consequence of the requirement that a physical relation-
ship be independent of the magnitude of the units of measurement.
At this stage, nothing can be said about the function Φ. Suppose
the variables Πi are small or large (the two cases are indistinguish-
able, because an unknown function of x is also an unknown function
of 1/x) and assume that the function Φ has a nonzero finite limit as
its arguments tend to zero or to infinity; then Π ∼ constant, and one
finds a power monomial relation between a and the ai: a = aα1

1 · · · aαmm .
This is a “complete similarity” relation. If the function Φ does not
have the assumed limit, it may happen that for Π1 small or large,
Φ(Π1) = Πα

1 Φ1(Π1) + · · · , where the dots denote lower-order terms,
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α is a constant, the other arguments of Φ have been omitted and, Φ1

has a finite nonzero limit. One can then obtain a monomial expression
for a in terms of the ai and bi, with undetermined powers that must
be found by means other than dimensional analysis. The resulting
power relation is an ‘incomplete” similarity relation. The exponent α
is known in the physics literature as an anomalous scaling exponent;
in physics, incomplete similarity is usually discussed in the context of
the renormalization group; see chapter 5. Of course, one may well have
functions Φ with neither kind of similarity.

We now apply these scaling ideas to the spectrum. The spectrum
in the inertial range E(k) is a function of k, of the viscosity ν, of the
length scale `0, of the amplitude U of the typical velocity in the flow,
and of the rate of energy dissipation ε. That last variable belongs
here because energy is transferred from the low k domain through the
inertial range into the large k domain where it is dissipated; the fact
that ε belongs in the list was the brilliant insight of Kolmogorov.

Our basic units are the units of length L and of time T . The units
of the viscosity are L2/T , those of ε are L2/T 3, those of k are 1/L,
and the equation E[u2] =

∫
E(k) dk shows that the units of E are

L3/T 2. Dimensional analysis yields E(k)(ε−2/3k5/3) = Φ(Re, `0k) for
some unknown function Φ of the two large arguments Re and `0k; Re
is large because this is the condition for fully developed turbulence to
appear and `0k is large in the inertial range of scales. If the function
Φ has a finite nonzero limit C as its arguments grow (an assumption
of complete similarity), one can deduce E(k) = Cε2/3k−5/3—the fa-
mous Kolmogorov-Obukhov scaling law for the inertial range of fully
developed turbulence, the cornerstone of turbulence theory.

This law is not fully satisfactory for various reasons, and a number
of correction schemes have been proposed over the years. In recent
years, it has been argued that the unknown function Φ behaves, as its
arguments tend to infinity, as C(Re)(`0k)−d/ log(Re)Φ0(`0k,Re), where it
is Φ0 that tends to a non-zero constant as its arguments grow, C(Re) is
a function of Re, and d is a positive constant; the exponent −d/ log(Re)
is an anomalous exponent. This is an assumption of incomplete simi-
larity, which leads, for large Re and `0k, to the relation

E(k) = C(Re)ε2/3k−5/3(`0k)−d/ log(Re).
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4.4. Random Measures and Random Fourier Transforms

We now show that arbitrary wide sense stationary processes can
be represented as convolutions of nonrandom functions with certain
simple processes (often Brownian motion). An important special case
of this representation is the stochastic Fourier transform, which exists
whenever the covariance function exists and does not require that the
process itself have samples to which the standard Fourier transform
can be applied; this is a key building block in the study of turbulence,
signal processing, and quantum theory.

Given a probability space (Ω,B, P ), consider the set of random
variables f(ω), where ω is in Ω, such that E[ff̄ ] < ∞. We refer
to this set as L2(Ω,B, P ). We now construct a one-to-one mapping
L2(Ω,B, P ) → L2(A, µ), where A is a subset of the t-axis and µ is a
measure on A. Consider A, an algebra of subsets of A, i.e, a collection
of sets with the property that if the sets Ai are in A, then so are their
complements, and their finite unions and intersections; an algebra is
much like a σ-algebra, with the exception that we do not require that
the union of a countably infinite family of subsets belong to the algebra,
a detail which is important in a rigorous analysis, but which we will
disregard here.

Consider the triple (A,A, µ), where µ is a rule which to each subset
Ai ∈ A assigns a number such that

1. µ(Ai) ≥ 0.
2. µ(Ai) is finite.
3. µ(∅) = 0.
4. Ai ∩ Aj = ∅ ⇒ µ(Ai ∪ Aj) = µ(Ai) + µ(Aj).

(Again, note that we are concerned only with finitely many Ai.) Next,
construct a random variable ρ = ρ(Ai, ω), where Ai ∈ A and ω ∈ Ω
(remember that a random variable is a function defined on Ω) that has
the following properties:

1. Ai ∩ Aj = ∅ ⇒ ρ(Ai ∪ Aj, ω) = ρ(Ai, ω) + ρ(Aj, ω).
2. ρ(Ai, ω) is square integrable; i.e., E[ρ(Ai, ω)ρ̄(Ai, ω)] <∞.
3. ρ(∅, ω) = 0.
4. Ai, Aj ⊂ A⇒ E[ρ(Ai, ω)ρ̄(Aj, ω)] = µ(Ai ∩ Aj).

The properties listed above imply that µ(Ai) ≥ 0 for all AiεA, since

µ(Ai) = µ(Ai ∩ Ai) = E[ρ(Ai, ω)ρ̄(Ai, ω)] ≥ 0.

µ is called the structure function of ρ. Just as a stochastic process is a
function of both ω and t, so is a random measure a function of both ω
and the subsets Ai of A.
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Now define χAi = χAi(t), the characteristic function of the subset
Ai of the t-axis, to be

χAi =

{
1, t ∈ Ai
0, otherwise,

and consider a function q(t) of the form

q(t) =
∑

ciχAi(t).

We consider the case where {Ai} is a finite partition of A; i.e., there are
only finitely many Ai, Ai ∩Aj = ∅ for i 6= j, and

⋃
Ai = A. Thus, q(t)

takes on only a finite number of values. To this function q(t) assign
the random variable

f(ω) =
∑

ciρ(Ai, ω).

Hence, each characteristic function of a subset is replaced by the ran-
dom variable that the random measure assigns to the same subset;
thus, this substitution transforms a function of t into a function of ω
(i.e., into a random variable).

Now consider the product q1(t)q2(t) of two functions of the form

q1 =
n∑
j=1

cjχAj(t), q2 =
m∑
k=1

dkχBk(t),

where the {Bi} is another finite partition of A. It is not necessary for
n and m to be equal. There is a finite number of intersections of the
Aj’s and Bk’s, and on each of these subsets, the product

q1q2 =

(
n∑
j=1

cjχAj

)(
m∑
k=1

dkχBk

)

=
n∑
j=1

m∑
k=1

cjdkχAj∩Bk ,

takes on a constant value cjdk. Thus, the same construction allows us

to assign a random variable f1f2 to the product q1q2. Since

f1(ω) =
∑

cjρ(Aj, ω), f2(ω) =
∑

dkρ(Bk, ω),
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we conclude that

E[f1f2] = E

[
n∑
j=1

m∑
k=1

cjdkρ(Aj, ω)ρ̄(Bk, ω)

]

=
n∑
j=1

m∑
k=1

cjdkE [ρ(Aj, ω)ρ̄(Bk, ω)]

=
n∑
j=1

m∑
k=1

cjdkµ(Aj ∩Bk)

=

∫
q1q2µ(dt). (4.2)

Thus we have established a mapping between random variables with
finite mean squares and functions of time with finite square integrals
(i.e., between the random variables f(ω) and functions q(t) such that∫
q1(t)q2(t)µ(dt) is finite). Although we have defined the mapping only

for functions q(t) =
∑
ciχAi(t), an argument that we omit enables us

to extend the mapping to all random variables and functions of t with
the square integrability properties listed above.

Example. We now show in detail how this construction works for
a very special case. Say we are given a probability space (Ω,B , P ) and
three subsets of the t-axis: A1 = [0, 1), A2 = [1, 3), and A3 = [3, 31

2
].

Each Ai is assigned a real valued random variable ρi(ω) = ρ(Ai, ω) that
has mean 0 and variance equal to the length of Ai. For example, ρ1(ω)
has mean 0 and variance 1, and so forth. The variables ρ1, ρ2, and ρ3

are independent, and E[ρiρj] = 0 for i 6= j, where E[ρ2
i ] is the length

of the ith interval. Moreover,

χ1 =

{
1, 0 ≤ t < 1

0, elsewhere,

χ2 =

{
1, 1 ≤ t < 3

0, elsewhere,

χ3 =

{
1, 3 ≤ t ≤ 31

2

0, elsewhere,

where
∫
χiχj dt = 0 for i 6= j and

∫
χ2
i dt is the length of the ith interval.
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Now take a function of the form q1(t) =
∑

i ciχi(t), where the ci’s
are constants. Then

q1(t)→ f1(ω) =
3∑
i=1

ciρi(ω).

Suppose we have another function q2(t) on the same partition:

q2(t) =
3∑
j=1

djχj(t)→ f2(ω) =
3∑
j=1

djρj(ω).

Then

E[f1f2] = E

[
3∑
i=1

3∑
j=1

cidjρiρj

]

=
3∑
j=1

cjdjE
[
ρ2
j

]
=

3∑
j=1

cjdjµ(Aj),

where µ(Aj) is the length of Aj. Notice also that∫ 3 1
2

0

q1(t)q2(t) dt =

∫ 3 1
2

0

3∑
i=1

3∑
j=1

cidjχi(t)χj(t) dt

=
∑
j

cjdjµ(Aj),

which verifies that q(t) → f(ω), so E[f1f2] =
∫
q1(t)q2(t)µ(dt) as

in (4.2).

Now approximate every square integrable function q on A (i.e., such
that

∫
A
qq̄ dµ is finite) by a step function, construct the corresponding

random variable, and take the limit, as the approximation improves, of
the sequence of random variables obtained in this way. This makes for
a mapping of square integrable functions on A onto random variables
with finite mean squares. This mapping can be written as

f(ω) =

∫
q(s)ρ(ds, ω)

(the right-hand side is an integral with respect to the measure ρ), where
the variable t has been replaced by s for convenience. Now view a
stochastic process u as a family of random variables labeled by the
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parameter t (i.e., there is a random variable u for every value of t) and
apply the representation just derived at each value of t; so,

u(t, ω) =

∫
q(t, s)ρ(ds, ω).

Assume u(t, ω) is wide sense stationary. Then the covariance of u is

R(t1 − t2) = E[u(t1, ω)u(t2, ω)]

= E

[∫
q(t1, s1)ρ(ds1)

∫
q̄(t2, s2)ρ̄(ds2)

]
= E

[∫
q(t1, s1)q̄(t2, s2)ρ(ds1)ρ̄(ds2)

]
=

∫
q(t1, s1)q̄(t2, s2)E[ρ(ds1)ρ̄(ds2)]

=

∫
q(t1, s)q̄(t2, s)µ(ds).

One can show that the converse is also true: If the last equation holds,
then u(t, ω) =

∫
q(t, s)ρ(ds, ω) with E[ρ(ds)ρ̄(ds)] = µ(ds). Note that

in all of the above, the equality holds in a mean square (L2) sense and
little can be said about the higher moments.

Example. If u = u(t, ω) is a wide sense stochastic process, then it
follows from Khinchin’s theorem that

R(T ) = E[u(t+ T, ω)u(t, ω)] (4.3)

=

∫
eikTdF (k). (4.4)

Conversely, if E[ρ(dk)ρ(dk)] = dF (k), we see that if

u(t, ω) =

∫
eiktρ(dk, ω),

then

E[u(t+ T, ω)u(t, ω)] =

∫
eik(t+T−t)E[ρ(dk)ρ(dk)]

=

∫
eikTdF (k).

We have just shown that dF (k) is the energy density in the interval dk.
This ρ(k) is the stochastic Fourier transform of u. The inverse Fourier
transform does not exist in the usual sense (i.e.,

∫
u(t, ω)e−ikt dt for each

ω does not exist), but for (4.4) to hold, it is sufficient for E[|u(t)|2] to
exist for each t.
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One can summarize the construction of the stochastic Fourier trans-
form as follows: For the ordinary Fourier transform, the Parseval iden-
tity is a consequence of the definitions. To generalize the Fourier trans-
form, we started from a general form of the Parseval identity and found
a generalized version of the Fourier transform that satisfies it.

Example. Suppose dF (k) = φ(k) dk. Then∫
eik(t2−t1)dF (k) =

∫
eikt2

√
φ(k)e−ikt1

√
φ(k) dk.

Recall that φ(k) ≥ 0. Write
√
φ(k) = ĥ(k) = ĥ(t)(k), where h(t) is

the inverse Fourier transform of ĥ(k), ĥ(k) = 1√
2π

∫
h(t)e−iktdt; then

e−ikt2
√
φ(k) = e−ikt2

1√
2π

∫
h(t)e−iktdt

=
1√
2π

∫
h(t)e−ik(t+t2)dt

=
1√
2π

∫
h(t− t2)e−iktdt

= ̂h(t− t2)(k),

where the last parenthesis is there to remind you that ̂h(t− t2) is a
function of k. Since the Fourier transform preserves inner products, we
find that

R(t1, t2) =

∫
h̄(t− t1)h(t− t2) dt,

and by changing t to s, we obtain

R(t1, t2) =

∫
h̄(s− t1)h(s− t2)µ(ds),

where µ(ds) = ds. Applying our representation, we get u(t, ω) =∫
h̄(s − t)ρ(ds), where E[|ρ(ds)|2] = ds. The random measure con-

structed as increments of Brownian motion at instants ds apart has
this property. Thus, any wide sense stationary stochastic process with
dF (k) = φ(k) dk can be approximated as a sum of translates (in time)
of a fixed function, each translate multiplied by independent Gaussian
random variables. This is the “moving average” representation.

4.5. Prediction for Stationary Stochastic Processes

Suppose we are observing a stochastic process u(t, ω), have been
observing it long enough to know it is stationary and to determine its
temporal covariances, and suppose we are given observed values of U(s)
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of u(t, ω) for for s ≤ t (we denote observed values by capital letters.)
The question we address in this section is how to predict a value for
u(t+ T, ω) based on the information we have. For simplicity, we shall
do so only for a stationary random sequence.

Definition. A stationary random sequence is a collection u(t, ω)
of random variables for t = 0, 1, 2, 3, . . . as well as for t =
−1,−2,−3, . . . such that the joint distribution of any subset is known,
subject to the obvious compatibility conditions, and such that all the
distributions are invariant under the transformation t → t+ T for T
integer. Such sequences are also known as ”time series”.

Assume E[u(t)] = 0. The covariance

R(T ) = E[u(t+ T )u(t)],

where T ∈ Z satisfies, as before:

1. R(0) ≥ 0.
2. |R(T )| ≤ R(0).

3. R(−T ) = R(T ).
4.
∑

i,j R(i− j)zizj ≥ 0.

If u(t, ω) = ξ(ω)h(t) is stationary we can repeat the arguments in
Section 4.1. Since R(0) = E[|u|2] = E[|ξ|2]|h(t)|2 we see that h(t) =

Aeiφ(t) for t = 0,±1, . . . . Since R(1) = R(−1) we obtain

φ(t+ 1)− φ(t) = −(φ(t− 1)− φ(t)) mod 2π

for t = 0,±1, . . . . Setting φ(0) = α and φ(0) − φ(−1) = λ we find by
induction that φ(t) = α+λt mod 2π. Consequently h(t) = Aei(α+λt) =
Ceiλt for all integers t.

Define a periodic function f of the argument k by

f(k) =
1

2π

+∞∑
T=−∞

R(T )e−iTk,

where T takes on integer values. Note that if R(T ) does not converge
rapidly enough to 0 as |T | increases, f may not be smooth. Then
R(T ) =

∫ π
−π e

iTkf(k)dk. (The factor 2π of Fourier theory is broken up
here differently than before.)

One can show that if R(T ) is a covariance for a time series, then
f ≥ 0. In particular, there exists a non-decreasing function F (k) such
that R(T ) =

∫ π
−π e

iTkdF (k). Conversely, if R(T ) is given for all integers

T , and if 1
2π

∑
T R(T )e−iTk ≥ 0, then there exists a time series for which

R(T ) is the covariance.
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Consider the problem of finding a good estimate for u(t + m,ω)
when we have values u(t− n), u(t− (n− 1)), . . . , u(t− 1). We would
like to find a random variable û(t + m,ω) with m = 0, 1, 2, . . . such
that

E
[
|u(t+m,ω)− û(t+m,ω)|2

]
is as small as possible. We know from earlier work that

û(t+m,ω) = E[u(t+m,ω)|u(t− 1), u(t− 2), . . . , u(t− n)].

The way to evaluate û is to find a basis {φi} in the space of functions
of {u(t− n), . . . , u(t− 1)}, expand û in this basis, i.e.,

û =
n∑
j=1

ajφj(u(t− 1), . . . , u(t− n)),

and calculate the coefficients aj of the expansion. This is hard in
general. We simplify the problem by looking only for the best approxi-
mation in the span of {u(t−1), . . . , u(t−n)} i.e., we look for a random
variable

û(t+m,ω) =

n∑
j=1

aju(t− j, ω).

This is called linear prediction. The span L of the u(t−j, ω) is a closed
linear space; therefore, the best linear prediction minimizes

E
[
|u(t+m,ω)− û(t+m,ω)|2

]
for û in L. What we have to do is to find {aj}nj=1, such that

E

∣∣∣∣∣u(t+m,ω)−
n∑
j=1

aju(t− j, ω)

∣∣∣∣∣
2

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is as small as possible. We have

E[|u− û|2]

= E

(u(t+m)−
∑
j

aju(t− j)

)(
u(t+m)−

∑
l

alu(t− l)

)
= E

[
u(t+m)u(t+m)−

∑
l

alu(t+m)u(t− l)

−
∑
j

aju(t+m)u(t− j) +
∑
j

∑
l

ajalu(t− j)u(t− l)

]

= R(0)− 2Re

(∑
j

ajR(m+ j)

)
+
∑
j

∑
l

ajalR(l − j),

which is minimized when

1

2

∂E [|u− û|2]

∂aj
= −R(m+ j) +

n∑
l=1

alR(j − l) = 0 (4.5)

for j = 1, . . . , n. Here we use the fact that if f(x, y) =
F (x+ iy, x− iy) = F (z, z̄) is real, then fx = fy = 0 if and only if
Fz̄ = 0 or Fz = 0 (see also exercise 5, chapter 1). The uniqueness of
the solution of the system (4.5) and the fact that this procedure gives
a minimum are guaranteed by the orthogonal projection theorem for
closed linear spaces (see Section 1.1).

Rewrite (4.5) in terms of the Fourier transform. The spectral rep-
resentation of R(T ) is

R(T ) =

∫ π

−π
eikTdF (k).

Assume that dF (k) = f(k) dk. Then (4.5) becomes∫ π

−π

(
−ei(j+m)k +

n∑
l=1

ale
i(j−l)k

)
f(k) dk = 0.

Putting eijk outside the parentheses, we get∫ π

−π
eijk

(
eimk −

n∑
l=1

ale
−ilk

)
f(k) dk = 0. (4.6)

So far (4.6) is just a reformulation of (4.5). To continue we need an
explicit representation of f(k). Consider the example where R(T ) =
Ca|T | for T = 0,±1,±2, . . . where C > 0 and 0 < a < 1. Is R the
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covariance of a stationary process? It certainly satisfies conditions (1),
(2), (3). To check (4) we compute

f(k) =
1

2π

∞∑
n=−∞

R(n)e−ink

=
C

2π

[
∞∑
n=1

(ae−ik)n + 1 +
∞∑
n=1

(aeik)n

]

=
C

2π

[
ae−ik

1− ae−ik
+ 1 +

aeik

1− aeik

]
=

C

2π

1− a2

(1− ae−ik)(1− aeik)
> 0.

This shows that R(T ) is the Fourier transform of a non-negative func-
tion, and consequently the covariance of a stationary process.

Assume for simplicity that C(1−a2)/(2π) = 1. We solve (4.6) using
complex variables. Let eik = z. Then z̄ = z−1, dk = dz/(iz) and (4.6)
becomes:

1

2π

∫
|z|=1

zj

(
zm −

n∑
`=1

a`z
−`

)
1

(z − a)
(

1
z
− a
) dz
iz

= 0

for j = 1, 2, . . . , n. We must therefore determine a1 . . . an such that
n∑
`=1

a`
1

2πi

∫
|z|=1

zj−`(1− az)−1

z − a
dz =

1

2πi

∫
|z|=1

zj+m(1− az)−1

z − a
dz.

We find the coefficients recursively by comparing two consecutive values
of j, starting from the back. Let j = n and j = n − 1. Using residue
theory we get

n∑
`=1

a`a
n−`

1− a2
=

an+m

1− a2
,

n−1∑
`=1

a`a
n−1−`

1− a2
+ an

[
a−1

1− a2
+

(1− a · 0)−1

0− a

]
=
an−1+m

1− a2
.

Multiplying the last equation by a and subtracting we get an = 0. This
simplifies the next step with j = n−1 and j = n−2 substantially, and
using similar arguments we obtain an−1 = 0. In the last step

a1

2πi

∫
|z|=1

z

z

(1− az)−1

z − a
dz =

1

2πi

∫
|z|=1

z1+m(1− az)−1

z − a
dz
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which yields: a1(1 − a2)−1 = a1+m(1 − a2)−1 or a1 = a1+m. We have
therefore shown that if R(T ) = Ca|T | with 0 < a < 1 then the best
approximation of u(t+m,ω) for m = 0, 1, . . . is a1+mu(t− 1, ω).

4.6. Data Assimilation

We now turn to the topic of data assimilation, which could have
been discussed at the end of chapter 3 but which has been set here so
that the presentation can be read along with the related discussion of
prediction for stationary processes in the previous section. As in the
section on prediction, 4.5, we are given data and are trying to use them
to make a prediction, but the setting is different.

There are many situations where one wants to draw conclusions
on the basis of models that are not accurate enough, but that can be
supplemented by current data. The canonical example is meteorology,
where, at any one time, one has an incomplete description of the current
weather, the equations of motion provide an incomplete description of
the atmosphere, but data are coming in all the time. The use of data
together with a model to assess the current state of a system and/or
to make predictions is called “data assimilation,” and the algorithms
for doing that are called “filters.” The availability of the model frees
us from the restriction to stationary processes; if the data are accurate
while the model is noisy we should be paying more attention to the
data, and vice-versa if the model is less noisy. The question is how to
best use the available information.

A useful model of a situation where data assimilation is needed
consists of a stochastic differential equation

dx = f(x, t) dt+ g(x, t) dw, (4.7)

where x = (x1, x2, . . . , xn) is an n-dimensional vector, dw is an n-
dimensional BM, f is an n-dimensional vector function, and g is a
scalar (i.e., an n by n diagonal matrix of the form gI, where g is a
scalar and I is the identity matrix). The BM encapsulates all that is
not known in this model. The initial state x(0) is assumed given and
may be random as well.

As the experiment unfolds, it is observed, and the values yi of a
“measurement process” are recorded at times ti = iδ, where δ is a
fixed time interval; they are related to the evolving “state” x(t) by

yi = h(xi, ti) +GWi, (4.8)

where yi is a k-dimensional vector, with in principle k ≤ n (but in
what follows we assume k = n), h is a nonlinear vector function, G
is a diagonal matrix with nonzero diagonal terms, xi = x(iδ), and Wi
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is a vector whose components are independent Gaussian variables of
mean 0 and variance 1, independent also of the BMs in the equation.
Equation (4.8) says that the observations are noisy, with Gaussian
noise. Now, the problem is to estimate x on the basis of (4.7) and
the observations yi. We are interested in cases where simply rerunning
the problem with a different sample of BM will not do because the
different samples differ more than we can tolerate; the observations
should narrow down the range of possible x(t). The solution of the
problem is, of course, the process x̂ = E[x(t)|ȳ(t)], where ȳ(t) is the
sequence y1, y2, . . . for indices j such that jδ ≤ t. This, as we know, is
the best approximation of x(t) given ȳ.

If the system (4.7) is linear and the data are Gaussian (or, as a spe-
cial case, not random), then the solution of the problem is a Gaussian
process. Its means and covariances can be calculated from those of the
various functions that appear in the equation. This is the “Kalman
filter” or “Kalman-Bucy filter,” a mainstay of engineering. It provides
a nonrandom solution of a random problem. This is not the place to
present the algebra involved in deriving the full Kalman filter proce-
dure, and we are content with a simple example as an illustration.

Suppose (4.7) is scalar and has the particularly simple form dx = 0
(i.e., the initial state x(0), which we take as Gaussian with mean 0
and variance σ2, does not change in time, x(t) = x(0)). Suppose the
observation process is yi = xi+gWi, with the Wi independent Gaussian
variables of mean 0 and variance 1. The variance of y1 is σ2 + g2, and
the conditional expectation of x1 given y1 (i.e, the projection of x1

on y1), is y1σ
2/(σ2 + g2) = x̂, the filtered estimate. If the variance

g2 of the observation noise is large, the observation adds little to the
accuracy of the simplest estimate unaided by observations in which
the variable x1 is estimated by its mean; on the other hand, if the
variance of the observation noise is small, the observation is accurate
and the estimate reduces to equating the estimate to the observation.
Thus, the filter neatly blends in the information from the “equation”
and the information from the observation, weighing their reliability as
measured by the variances of the noises.

Now, consider the general nonlinear case of (4.7). We have to esti-
mate the variables x(t), and the natural thing to do is try to evaluate
their probability density as it evolves in time. The initial state x is
known and so is its probability density; all we have to do is evaluate
sequentially the density of xi+1 assuming that we know the density of
xi.

Let Pi be the probability density of x at time iδ (taking into ac-
count the observations before that time and at that time). To find
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the probability density of x at times iδ < t < (i + 1)δ (before any
more observations come in), one can sample the density Pi, evolve the
samples independently by (4.7), and, whenever needed, reconstruct a
density by, for example, parametric estimation (see Section 2.4). The
challenge is to modify the density at time (i+ 1)δ when new data must
be taken into account. This can be done by Bayesian estimation (see
Section 2.7).

Bayes’ theorem says that

P (x|ȳi+1) =
P (yi+1|x(t))P (x|ȳi)∫
P (yi+1|x)P (x|ȳi) dx

, (4.9)

where P (x|ȳi) is the probability density determined from (4.7) taking
into account the data up to and including time iδ but not the data
at (i + 1)δ, P (yi+1|x(t)) is the probability of finding the data if one
knows the value x((i+ 1)δ) of the unknown vector x, and the integral
in the denominator is what is needed to normalize the probabilities.
The connection with Bayesian estimation is made by viewing P (x|ȳi),
the density in which the new data have not yet been taken into account,
as the prior density, and then taking the density after the data have
been used as the posterior density.

In words, (4.9) says that the new density given the new data is the
product of the probability of getting the data if the values of the sam-
ples of the distribution were known, multiplied by the prior probability
for samples of the distribution, the whole thing properly normalized.
The probability of getting the data if the values of the samples were
known can be obtained from the observation equation (4.8):

P (sj ≤ xj < sj + dsj) =
1√

2πg2
jj

exp

(
−(sj − hj(x, t))2

2g2
jj

)
dsj,

(4.10)

where gjj is a diagonal entry of the matrix G. Formula (4.9) can be
evaluated as follows: We can find n samples of Pi and evolve them
by (4.7). The density that one can, in principle, reconstruct from the
positions of these samples after evolution does not take into account
the new information at time (i + 1)δ, and we will use it as the prior
density at the new time. The new information (i.e., the observation) at
the time (i+ 1)δ makes it possible to assign a probability to each new
sample position; if a sample is at the position x and the observation yi
is available, then its probability is given by (4.10).
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Before taking the data into account, assign to each sample a weight,
say the weight 1. Take the data into account by replacing these uni-
form weights by Z−1pnew

i , where the pnew
i come from (4.10)—they take

into account the fact that the new observations make some sample po-
sitions, far from the observation, unlikely, and those that are near the
observation more likely. Choose Z so that the sum of the new weights
is 1. The sample positions in x-space are unchanged. We now have
samples whose positions have been determined by the prior density
and that have weights that take the new observation into account. We
can now estimate the new posterior density at time (i + 1)δ from this
information. One can estimate from these positions and weights the
most likely state of the system given the observations.

One cannot use the same samples over and over, and at the begin-
ning of each step one has to resample the new density Pi+1 or else the
algorithm goes haywire. This should be obvious: Some of the samples
get very low weights after the new data have been taken into account;
if the new densities are not resampled, then after a few steps one is
dealing with samples all of which have weights near zero. Resampling
is a key feature of many Monte Carlo schemes.

This is the Bayesian filter. The samples are often called “particles”
and this filter is also known as a “particle filter.”

4.7. Exercises

1. Find some way to show nonrigorously that the correlation function
of white noise is a delta function. Suggestion: Approximate BM by
a random walk with Gaussian increments of nonzero length, find the
time series of the derivative of this walk, calculate the correlations,
and take a (formal) limit.

2. Consider the stochastic process u = ξ cos(t), where ξ is a random
variable with mean 0 and variance 1. Find the mean and the covari-
ance functions. Obviously, this is not a stationary process. However,
cos(t) = (eit + e−it)/2. How do you reconcile this with the construc-
tion we have of stationary processes as sums of exponentials?

3. Consider the differential equation (u2)x = εuxx on the real line,
with the boundary conditions u(−∞) = u0, u(+∞) = −u0, where ε
and u0 are constants. Assume that u is a velocity, with units L/T ,
where L is a unit of length and T a unit of time. Find the units of ε.
Because of the boundary conditions, u does not have a usual Fourier
transform, but one can define one by taking the Fourier transform
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of u′ and dividing it by ik. Let û(k) be this Fourier transform of
u. Define the energy spectrum by E(k) = |û(k)|2. Find the units
of E(k); show that the dimensionless quantity E(k)k2/u2

0 must be
a function of the variable kε/u0. Deduce that as you take the limit
ε→ 0, the spectrum converges to E(k) ∼ 1/k2.

4. Extend BM to (−∞,+∞) by starting another BM from the origin

backward in time. Consider the integral
∫ +∞
−∞ ψ(s− t) dw(s), where

w is the extended BM and ψ some nice smooth function that decays
quickly to zero at infinity. Check that the integral makes sense and
has the same value in the Stratonovich and Ito calculi. It defines
a stochastic process u(t). Calculate its mean and covariance. Is it
stationary in the wide sense? The narrow sense?

5. Consider the wide sense stationary stochastic process u = ξeit,
where ξ is a Gaussian variable with mean 0 and variance 1. What
is its stochastic Fourier transform? What is the measure ρ(dk)?

6. Consider a stochastic process of the form u(ω, t) =
∑

j ξje
iλjt, where

the sum is finite and the ξj are independent random variables with
means 0 and variances vj. Calculate the limit as T → ∞ of the

random variable (1/T )
∫ T
−T |u(ω, s)|2 ds. How is it related to the

spectrum as we have defined it? What is the limit of (1/T )
∫ T
−T u ds?

7. Suppose you have to construct on the computer (for example, for the
purpose of modeling the random transport of pollutants) a Gaussian
stationary stochastic process with mean 0 and a given covariance
function R(t2 − t1). Propose a construction.

8. Show that there is no stationary (wide sense) stochastic process u =
u(ω, t) that satisfies (for each ω) the differential equation y′′+4y = 0
as well as the initial condition y(t = 0) = 1.

9. Let η be a random variable. Its characteristic function is defined
as φ(λ) = E[eiλη]. Show that φ(0) = 1 and that |φ(λ)| ≤ 1 for
all λ. Show that if φ1, φ2, . . . , φn are the characteristic functions
of independent random variables η1, . . . , ηn, then the characteristic
function of the sum of these variables is the product of the φi.

10. Show that if φ(λ) is the characteristic function of η, then

E[ηn] = (−i)n d
n

dλn
φ(0)

provided both sides of the equation make sense. Use this fact to
show that if ξi, i = 1, ..., n, are Gaussian variables with means 0,
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not necessarily independent, then

E[ξ1ξ2 · · · ξn] =

{
ΣΠE[ξikξjk ], n even

0, n odd.

On the right-hand side, ik and jk are two of the indices, the product
is over a partition of the n indices into disjoint groups of two, and
the sum is over all such partitions (this is “Wick’s theorem”). Hints:
Consider the variable Σλjξj; its moments can be calculated from
the derivatives of its characteristic function. By assumption, this
variable is Gaussian and its characteristic function, i.e., the Fourier
transform of its density, is given by a formula we have derived.

11. Consider the random differential equation

d

dt
q(t) = −ibq(t), q(0) = 1,

where b is a random variable and i =
√
−1. Define Q(t) = E[q(t)].

Show that |Q(t)| ≤ Q(0). Suppose the distribution of b is not known
but you know the moments of b; that is, you know E[bj] for all
j ≤ N . Solve the equation by iteration: q0 = 1 and qj+1 = 1 −
ib
∫ t

0
qj(s) ds for j ≥ 0, and then define Qj = E[qj] for j ≤ N ,

thus using the information you have. Show that however large N
may be, as long as it is finite, the approximation Qj will violate the
inequality |Q(t)| ≤ Q(0) for t large and any j > 1.

12. Continue the example of data assimilation: Suppose x(t) = x(0) is
a scalar and you have observations yi = xi + gWi, where g is a fixed
constant. What is x̂i = E[xi|ȳ] for i > 1?

13. Consider the following functionsR(T ); which ones are the covariance
functions of some stationary stochastic process, and why? (T =
t2 − t1 as usual).

1. R(T ) = e−T
2
.

2. R = Te−T
2
.

3. R = e−T
2/2(T 2 − 1).

4. R = e−T
2/2(1− T 2).
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CHAPTER 5

Statistical Mechanics

5.1. Mechanics

We begin the discussion of statistical mechanics by a quick review of
standard mechanics. Suppose we are given N particles whose position
coordinates are given by a set of scalar quantities q1, . . . , qn. In a d-
dimensional space, one needs d numbers to specify a location, so that
n = Nd. The rate of change of the position is

d

dt
qi = q̇i.

(This dot notation for the time derivative goes back to Newton and
makes some of the formulas below look less cluttered.) A good way to
write down the laws of motion is to specify a Lagrangian L = L(qi, q̇i, t)
and follow the steps that will now be described; this procedure can be
used for laws other than those of Newtonian mechanics as well. For
any path q(s), t0 ≤ s ≤ t, that could take the particles from their
locations at time t0 to their locations at time t, we define an “action”
by

A =

∫ t

t0

L(q(s), q̇(s), s) ds,

and we require that the motion (according to the mechanics embodied
in the Lagrangian) that takes us from q(t0) to q(t) be along a path that
is an extremal of the action. In other words, for the motion described
by the functions q(t) to obey the physics in the Lagrangian, it has to
be such that perturbing it a little, say from q(t) to q(t)+δq(t), changes

the action A =
∫ t
t0
L ds very little. We simplify the analysis here by

assuming that L does not explicitly depend on t. Then

δA = δ

∫ t

t0

L(q, q̇) ds =

∫ t

t0

(L(q + δq, q̇ + δq̇)− L(q, q̇)) ds

= 0 +O(δq2, δq̇2),
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where

L(q + δq, q̇ + δq̇) = L(qi, q̇i) +
∑

δqi
∂L
∂qi

+
∑

δq̇i
∂L
∂q̇i

+O(δq2, δq̇2).

By integration by parts, we find

δ

∫ t

t0

L ds =

∫ t

t0

(∑
δqi

∂L
∂qi

+
∑

δq̇i
∂L
∂q̇i

+O(δq2, δq̇2)

)
ds

=

∫ t

t0

(∑
δqi

(
∂L
∂qi
− d

dt

∂L
∂q̇i

)
+O(δq2, δq̇2)

)
ds.

For the path q(t) to be extremal, the first term has to vanish, and we
conclude that

∂L
∂qi
− d

dt

∂L
∂q̇i

= 0,

for all i = 1, . . . , n. These are the Lagrange equations of motion.

Example. Change notation so that x = q, ẋ = q̇, and think of
x as a coordinate in a one-dimensional space. Assume that a particle
of mass m at x is acted on by a force F of the form F = −gradV ,
where V = V (x) is a potential. Specify the laws of motion by setting
L = 1

2
mẋ2 − V (x). The Lagrange equation of motion is

∂L
∂x
− d

dt

∂L
∂ẋ

= 0

or, equivalently,

−∂V
∂x
− d

dt
(mẋ) = 0,

which is Newton’s second law, F = mẍ.

This formalism is also useful in quantum mechanics, where, in the
notations of Section 3.6, the probability density of going from q(t0) to
q(t) is the square of the path integral

v(x, t) =
1

Z

∫
e
− i
h

∫ t
0

[
1
2( dwds )

2
−U(x+w(s))

]
ds
φ(x+ w(t))[dw].

where the integration is over all paths that lead from q(t0) to q(t); this
expression is analogous to equation (3.30) of Section 3.6, except for the

additional factor i/h in front of the integral, where i is
√

(−1) and h
is Planck’s constant. One can see the action appear in the exponent.
On scales where h cannot be viewed as very small, this is an oscillatory
integral which produces wave-like motion; on scales where the h can
be viewed as very small, the main contribution to this integral comes
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from trajectories for which the exponent is stationary, leading back to
the action formulation above.

We shall use the equations of motion mostly in their Hamiltonian
form: Define a momentum pi conjugate to qi by pi = ∂L/∂q̇i. The
Hamiltonian function is

H =
∑

piq̇i − L.

By differentiating H with respect to q̇i one sees that H is not a function
of q̇i, and therefore it is a function of only the qi, pi; the equations of
motion can be written as

q̇i =
∂H

∂pi
, ṗi = −∂H

∂qi
. (5.1)

The proof that these equations are equivalent to the Lagrangian equa-
tions, under appropriate smoothness conditions, is just a manipulation
of differentials, which we leave to the reader.

Example. Let L = 1
2
mẋ2 − V (x) as before, with q = x. Then

p = mẋ and

H = pq̇ − L = (mẋ)ẋ−
(

1

2
mẋ2 − V (x)

)
=

1

2

(mẋ)2

m
+ V.

The Hamiltonian equations of motion are

ẋ =
∂H

∂p
=

p

m

and

ṗ = m
d2x

dt2
= −∂H

∂q
= −∂V

∂x
= F.

If the Hamiltonian does not depend explicitly on time, then it is a
constant during the motion; indeed,

dH

dt
=

n∑
i=1

∂H

∂pi

dpi
dt

+
n∑
i=1

∂H

∂qi

dqi
dt

=
n∑
i=1

∂H

∂pi

(
−∂H
∂qi

)
+
∂H

∂qi

∂H

∂pi

= 0.

The constant value of the Hamiltonian is the energy E of the system. A
system of equations that can be put into the form (5.1) is a Hamiltonian
system.

As an illustration, consider the harmonic oscillator, which is a parti-
cle of mass m that can move on the line, with a rubber band anchoring
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it to the origin. The force on the particle is F = −Kx, where K
measures the elasticity of the band and x is the position of the par-
ticle. The momentum of the particle is p = mẋ, and the equation
of motion is ṗ = −Kx. These equations are reproduced if one sets
H = 1

2m
p2 + 1

2
Kq2, where the variable x has been renamed q to con-

form with the general notation above. (Quite often the energy, i.e., the
value of the function H, is the sum of a contribution that is quadratic in
the momenta p (the “kinetic energy”) and a second contribution that is
a function of the positions q (the “potential energy”). The Lagrangian
L is then the kinetic energy minus the potential energy.)

The equations of motion for the harmonic oscillation can be solved
explicitly. Set ω =

√
K/m (not to be confused with a point in prob-

ability space); the solution is q(t) = A cos(ωt) + B sin(ωt); p(t) =
−Amω sin(ωt) + Bmω cos(ωt), where the coefficients A,B are deter-
mined by the initial values of q, p. With a suitable change of units
one make K,m have the numerical values 1, 1, and then ω = 1 and
H = q2/2 + p2/2.

5.2. Statistical Mechanics

Consider a Hamiltonian system with n degrees of freedom (q1, p1),
. . . ,(qn, pn), where H does not depend explicitly on the time t. From
now on, we will denote the vector of positions by q and the vector of
momenta by p so that H = H(q, p). A microscopic state of the system
(a “microstate” for short) is a set of values of the q1, . . . qn, p1, . . . , pn.
The system evolves in a 2n-dimensional space, which is denoted by Γ
and is often called the phase space. The sequence of points in Γ (mi-
crostates) that the system visits as it evolves from an initial condition
is called a trajectory.

If the system has many degrees of freedom, it is impossible to follow
its exact evolution in time, since specification of all the initial condi-
tions is impossible and the numerical solution of the very large systems
that arise in practice is also out of reach. So we settle for a more mod-
est approach. We assume that the initial data q(0) and p(0) are drawn
from a probability density W . Then, instead of considering single tra-
jectories, we look at the collection, or “ensemble,” of trajectories that
are initially distributed according to W .

As the trajectories evolve individually, the probability density nat-
urally changes; let the density of microstates at time t be W (t), where
each microstate is the location of a trajectory at that time. W (t) de-
scribes the ensemble at time t; it is the “macrostate” of the ensemble.
Thus, the microstate is a list of numbers, or a vector in Γ, and the
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macrostate is a probability density in Γ. The set of all macrostates
corresponds to Ω, the sample space of our earlier discussion.

We now derive an equation of motion for W (t) = W (q, p, t). Con-
sider the vector u = (q̇1, . . . , ṗn). First, note that its divergence is
zero:

divu =
n∑
i=1

∂

∂qi

(
dqi
dt

)
+

n∑
i=1

∂

∂pi

(
dpi
dt

)

=
n∑
i=1

∂

∂qi

(
∂H

∂pi

)
+

n∑
i=1

∂

∂pi

(
−∂H
∂qi

)
= 0.

This vector field can be said to be “incompressible,” in analogy with
fluid dynamics.

Consider a volume V in Γ-space and a density of systems W . The
number of microstates in V at a given time t is, on average,

∫
V
W dV ,

where dV is the element of volume in Γ; when the position variables
q are cartesian coordinates dV = dqdp (where dq = dq1 · · · dqn and
similarly for dp). If microstates neither appear nor disappear, then
the only change in the number of systems in V can come from the
inflow/outflow of systems across the boundary of V . Therefore, as in
fluid mechanics,

d

dt

∫
V

Wdq dp = −
∫
∂V

Wu · n dS = −
∫
V

div(Wu) dV,

where n is the outer normal to the boundary ∂V of V . If we assume
that the density is smooth, we can deduce from the above that

∂W

∂t
+ div(Wu) = 0, (5.2)

and, using the incompressibility of u,

∂W

∂t
+ u · gradW = 0. (5.3)

This last equation is known as the Liouville equation. One can
define a linear differential operator (the Liouville operator)

L =
n∑
i=1

∂H

∂pi

∂

∂qi
− ∂H

∂qi

∂

∂pi

and then (5.3) becomes

∂W

∂t
= −LW. (5.4)
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This equation is linear even when the original system is not. Inasmuch
as it is an equation for the evolution of a probability density function,
it is analogous to the Fokker-Planck equation; this analogy will be
pursued in the next chapter.

Once we have the density W (t), we can define physical observables
for the ensemble, which are averages of physical quantities over the
ensemble. The energy of each microstate is the value of the Hamiltonian
H for that microstate; the energy of the ensemble is

E(t) = E[H(t)] =

∫
Γ

H(q, p)W (q, p, t) dV,

where dV is an element of volume in the phase space Γ. Similarly, if
Φ = Φ(q, p) is a property of a microstate,

Φ̄ = E[Φ] =

∫
Γ

Φ(q, p)W (q, p, t) dV.

A probability density W is invariant in time if it is a stationary
solution of (5.2); that is, if we draw the initial data from W , solve the
equations for each initial datum, and look at the density of solutions
at some later time t, it is still the same W . In other words, sampling
the density and evolving the microstates commute. We now give two
examples of time invariant densities for a Hamiltonian system.

Suppose that initially W is zero outside a region V and suppose
that the system has no way of leaving V . Further suppose that W is
constant inside V . Then from (5.3), we conclude that W is invariant.
We apply this in the following construction. Consider in Γ-space a
surface H = E0 as well as the surface H = E0 + ∆E0, where E0,∆E0

are a constants. The volume enclosed between these two surfaces is
called an energy shell. Consider the following initial density:

W (q, p) =

{
(volume of shell)−1, (q, p) ∈ shell

0, otherwise.

Since no systems can leave the energy shell (because the energy is a
constant of the motion), this density is invariant in time. If we let the
thickness ∆E0 of the energy shell go to zero, we get a “microcanonical”
density. The resulting surface density on the energy surface H = E0

need not be constant.
Suppose φ(H) is a function of H such that

∫
Γ
φ(H) dq dp = 1 and

φ(H) ≥ 0. Then W (q, p) = φ(H) is invariant in time. Note first that
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u · gradW vanishes. Indeed,

u · gradW =
n∑
i=1

dqi
dt

∂W

∂qi
+

n∑
i=1

dpi
dt

∂W

∂pi

=
∂φ

∂H

(
n∑
i=1

dqi
dt

∂H

∂qi
+

n∑
i=1

dpi
dt

∂H

∂pi

)
= 0.

Therefore, from (5.3), ∂W/∂t = 0. In particular, one can choose as
an invariant density W (q, p) = Z−1 exp(−βH(q, p)), where β > 0 is a
constant and Z =

∫
Γ

exp(−βH) dq dp. A density of this form is called
canonical.

A property of the Liouville operator that will be used later is the
following: Let E[·] is the expectation with respect to a canonical den-
sity; we have seen that if u, v are two functions defined on the relevant
probability space, then E[uv] defines an inner product, (u, v) = E[uv],
and then

(Lu, v) = E[(Lu)v] = −E[u(Lv)] = −(u, Lv)

(i.e., L is skew-symmetric). This can be checked by writing down the
definitions and integrating by parts.

5.3. Entropy and Equilibrium

Consider a probability space where Ω consists of a finite number
of points ω1, ω2, . . . , ωn with probabilities P1, P2, . . . , Pn (whose sum
must be 1) (note that P , a probability, is not related to the p of the
preceding sections). We now want to define a quantity called “entropy”
on that space, to be denoted by S. S will be a function of the Pi:
S = S(P1, . . . , Pn) and we will consider the case where n may vary. We
want S to be a measure of the uncertainty in the probability density
and, to that end, satisfy the following axioms:

1. For each n, S is a continuous function of all its arguments.
2. If all of the Pi are equal (Pi = 1/n for all i), one can define
Sn = S(1/n, . . . , 1/n) and require that Sn be a monotonically
increasing function of n (the more points in Ω, the more uncer-
tainty if all points are equally likely).

3. Let 1 ≤ k1 < k2 < k2 < · · · < kM = n be a partition of [1, n]
and let Qj = Pkj−1+1 + · · · + Pkj (i.e., Q1 = P1 + · · · + Pk1 with
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k0 = 0, Q2 = Pk1+1 + · · ·+ Pk2 , etc). Then

S(P1, . . . , Pn) = S(Q1, . . . , QM) +
M∑
j=1

QjS

(
Pkj−1+1

Qj

, . . . ,
Pkj
Qj

)
.

In other words, the uncertainty is the sum of the uncertainties
inherent in any grouping of points plus the average of the uncer-
tainties within each grouping.

A function S with these properties should be small if all the proba-
bility is concentrated at a few points and should become ever larger as
there is more doubt as to where an arbitrary point would lie. One can
prove that a function S that satisfies these requirements is determined
uniquely up to a multiplicative constant and is

S = −
∑
i

Pi logPi.

This is the entropy associated with the probability space we started
from. In physics, one multiplies this expression for S by the constant
k (Boltzmann’s constant). The entropy associated with a pdf (prob-
ability density function) f is, similarly, S = −

∫
f(x) log f(x) dx. The

entropy is a number attached to the pdf that measures, in the way
described above, the uncertainty implicit in the pdf. If S = 0 and one
makes the experiment that defines the density f , one knows in advance
what the result will be; the larger S, the less one knows in advance.

Now consider a set of microstates (or, equivalently, the sample
space for an evolving statistical mechanics system), with some rea-
sonable σ-algebra of events. Suppose we have measured some phys-
ical, macroscopic, quantities, say Φ̄1, Φ̄2, . . . , Φ̄m, for some finite m.
These are averages with respect to a density W of a set of microscopic
(i.e., relating to each microstate) quantities Φi. We now ask the ques-
tion: What pdf W compatible with these measurements (i.e., such that
Φ̄i =

∫
Φi(q, p)W (q, p) dV ) has maximum entropy? We now show the

following: If there exists a vector β = (β1, . . . , βn) and a number Z > 0
such that

Wβ = Z−1 exp
(
−
∑

βiΦi(q, p)
)

is a probability density compatible with the measurements (“admissi-
ble” for short), then Wβ is the admissible density that has the largest
entropy among all admissible densities.

We now prove that Wβ maximizes the entropy. It is an exercise
in calculus to show that ψ(x) = x log x − x + 1 ≥ 0 for x ≥ 0, with
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equality only for x = 1. Put x = W/Wβ in this inequality, where W is
an arbitrary admissible density. Then

−W logW +W logWβ ≤ Wβ −W.

Integrate this inequality over Γ and use the fact that both W and Wβ

are densities; this gives

−
∫

Γ

W logW dV ≤ −
∫

Γ

W logWβ dV.

However, from the definition of Wβ, we find that − logWβ = logZ +∑
βiΦi, and since both W and Wβ are compatible with the measure-

ments Φ̄i, it follows that

−
∫

Γ

W logWβ dV = logZ +
∑

βiΦ̄i = −
∫

Γ

Wβ logWβ dV,

because the integral of any density is 1; therefore the entropies of all
the W ’s are less than the entropy of Wβ:

S(W ) ≤ S(Wβ),

where S(W ) is the entropy associated with a density W . Furthermore,
the inequality is strict unless W = Wβ.

As an example, suppose one has a single measurement, that of E,
the energy of the ensemble, E = E[H]; then Wβ = Z−1e−βH , where
the β in the exponent is a scalar, and Z =

∫
Γ
e−βH dV . The parameter

β is determined from the equation

E = E[H] =

∫
Γ

Z−1He−βH dV = − ∂

∂β
logZ.

With this density, the entropy is S = βE+logZ. A similar calculation,
which we omit, produces the microcanonical density in the absence of
any measurements.

It is a physical principle that the entropy of a physical system al-
ways increases, so it is reasonable to assume that any density for a
physical system will evolve in time into one that maximizes the en-
tropy. We already know that a canonical density is time invariant, so
the canonical density is a good candidate for an asymptotic, invariant
density, which is called in physics a “thermal equilibrium.” This is
particularly satisfying from the point of view of statistics as well: One
can show that estimates based on partial measurements are unbiased
if one assumes that the density that gives rise to them maximizes the
entropy.
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The temperature T of a system is defined by the equation

T−1 =
∂S

∂E
;

one can check that if the density is the canonical density above, then
T = 1/β (in physics, there is an additional factor of k from the physi-
cists’ definition of entropy). Then the canonical density can be written
as W = Z−1 exp(−H/T ). For a system of N non-interacting particles,
T/m can be seen to be the variance of the velocity of each particle (m
is the mass of each particle). The canonical density has T as a fixed
parameter and is the right density to use when the system under study
allows no exchange of mass through its walls and has walls kept at a
fixed temperature T . For the sake of simplicity, in this volume we shall
always place ourselves in this case.

One can now proceed to derive all of thermodynamics from our
definitions but we forbear to do so. We merely pause to note that the
normalization constant Z varies when T varies, and is known in physics
as the “partition function.”

We now perform some useful calculations for a system of non-
interacting particles. Consider N particles of mass m in a cube of
side L (and volume V = L3). Make the system periodic in space,
so that if there is a particle at the point x1, x2, x3, 0 ≤ xi < L,
there are particles with the same mass and momenta at the points
xi + kiL for any integers ki (and we use the letter x rather than q
to denote location). If a particle leaves the box another particle en-

ters from the opposite side. The Hamiltonian is H = 1
2m

∑3N
1 p2

i ,
where the momenta p have been relabeled consecutively regardless
of the particle to which they belong. The partition function Z is
Z =

∫ ∫
· · ·
∫
dx1dx2 · · · dx3N

∫
· · ·
∫
dp1 · · · dp3Ne

−βH ; the x integra-
tions are trivial and yield V N ; the p integrals can be factored into
a product of the 3N integrals

∫
dpe−βp

2/2m =
√

2πm/β, so that

Z = V N(2πm/β)3N/2 and E = E[H] = − ∂
∂β

log(Z) = 3N
2
T . In a sys-

tem of non-interacting particles, the energy is the number of degrees
of freedom (i.e., the number of parameters required to specify the spa-
tial configuration) times T/2 ( in physics conventions, the Boltzmann
constant k appears as an added factor). This is the “equipartition
theorem”.

Consider next the pdf fH of the energy H. H is a constant on each
trajectory but it is a random variable because the initial values are
random; we have just calculated its mean. To see what is going on,
consider three independent Gaussian variables ξ1, ξ2, ξ3, each of mean 0
and variance 1; what is the pdf of h = 1

2
(ξ2

1 + ξ2
2 + ξ2

3)? The probability
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f(ε)dε that ε < h ≤ ε + dε is the probability that the point (ξ1, ξ2, ξ3)
lie in the shell between the sphere of radius

√
2ε and the sphere of

radius
√

2(ε+ dε), and is (2/
√
π)
√
ε e−εdε. The geometric factor

√
ε

increases because the annular becomes larger, while the exponential
factor decreases.

Similarly, let xi and pi be as in the calculation of E = E[H] above.

The pdf fH of H = 1
2m

∑3N
1 p2

i is C(N, β)e−βHH3N/2−1V N/Z, where
C(N, β) is independent of H, and can be determined from the fact
that the integral of the density is 1.

If one plots fH/E[H] as a function of H for various values of N one
finds that the graphs become increasingly concentrated around H = E,
so that for large N the microcanonical and the canonical densities
become indistinguishable. This remark is known as the “equivalence
of ensembles”.

If one plots the trajectory of a system in Γ-space one often notices
that it wanders all over the surface of H = E in a seemingly random
fashion, and it is plausible that the average of a smooth function of
the q, p on that surface with respect to the microcanonical density
equals the average of the function along any trajectory ( with a similar
statement for the canonical density as a result of the equivalence of
ensembles). If such a statement can be proved (it very occasionally
can) it is called an “ergodic theorem”, otherwise it is an “ergodicity
assumption”; either one greatly simplifies computations. An example
of an ergodic system is the system where Γ is the interval [0, 1), and the
equation of motion is xn = (xn−1 + γ) mod1 , with x0 given. One can
readily check that if γ is irrational, then the average of any continuous
function F on [0, 1) equals its average over the trajectory that starts
at any x0.

5.4. The Ising Model

We now introduce the Ising model in two space dimensions, which
is widely used as a model problem in statistical mechanics. Consider
an N × N regular lattice in the plane with lattice spacing 1, and at
each node (i, j), set a variable si,j (a “spin”) that can take only one
of two values: si,j = 1 (“spin up”) or si,j = −1 (“spin down”). Make
the problem periodic, so that si+N,j = si,j and si,j+N = si,j. Associate
with this problem the Hamiltonian

H = −1

2

∑
si,j(si+1,j + si−1,j + si,j+1 + si,j−1)

(i.e., minus the sum of the products of each spin with its four nearest
neighbors). This “Hamiltonian” does not include any momenta, and
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the variables take integer values only, so there is no time evolution, and
“thermal equilibrium” here is meaningful only in the sense that the
probability density we use maximizes the entropy. This is a reasonable
generalization of the previous discussion, because once equilibrium has
been reached the dynamics are no longer important.

The microstates of the system are the 2N
2

ways of arranging the
up and down spins. We assign to each microstate the probability
Z−1 exp(−H/T ), where, as above, T is the temperature and Z is a
normalization factor. A function of the microstates that is of interest
is the “magnetization”

µ =
1

N2

∑
i,j

si,j.

Clearly, if all the spins are aligned, µ = +1 or µ = −1. With the above
definitions, E[µ] = 0 because a microstate with a given set of values
for the spins and a microstate with exactly the opposite values have
equal probabilities.

The covariance function is

Cov(i′, j′) = E [(si,j − E[µ])(si+i′,j+j′ − E[µ])] ,

where the expected value of µ has been taken into account in prepara-
tion for the possibility, soon to be discussed, that it may be nonzero.

The correlation length is a number ξ such that for
√
i′2 + j′2 > ξ, the

covariance is not significant (and we do not explain further how large
“significant” is).

One can show, and check numerically as explained below, that the
Ising model has the following properties:

1. For T very large or very small, ξ is small, of the order of 1. There
is an intermediate value Tc of T for which ξ is very large.

2. The behavior of the magnetization µ is very different when T <
Tc and when T > Tc. In the former case, the likely values of µ
hover around two nonzero values ±µ∗; if one adds dynamics to
this problem (as we shall do with Monte Carlo sampling in the
next section), one sees that the system is very unlikely to move
from +µ∗ to −µ∗ or vice versa. For very large values of N , the
phase space Γ separates into two mutually inaccessible regions
that correspond to µ positive and µ negative. The averages of µ
over each region then have one sign. On the other hand, when
T > Tc, this separation does not occur. The value T = Tc
is a “critical value” of T and the parameter E[µ] is an “order
parameter” that can be used to detect the partial order in which
spins are aligned in each of the two mutually inaccessible regions
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of Γ. As T passes from above this value Tc to below the critical
value Tc, one has a “phase transition” in which the system goes
from a disordered “phase” to a partially ordered phase. If one
averages µ for T < Tc only over the appropriate part of the phase
space, one finds that, when |T −Tc| is small, E[µ] is proportional
to |Tc−T |α, where α = 1/6 is an instance of a “critical exponent.”

Some explanation for the splitting of the phase space into two mutually
exclusive parts in two (and higher) dimensions is provided by a com-
parison of the Ising models in one space dimension and in two space
dimensions. A one dimensional Ising models is just the obvious one-
dimensional analog of what we have just discussed—a periodic chain of
spins indexed by a single integer variable with a Hamiltonian involving
near-neighbor interactions. In either dimension the microstates where
all the spins point in the same directions are minima of the energy.
Suppose β is large (T is small); suppose you are in one dimension and
all the spins point up; how much energy do you have to invest to flip
all the spins from up to down? Clearly, to flip one spin you must add
to the system the energy 2β; once you have flipped one of the spins,
you can flip its neighbors one after the other without a cost, until there
is only one pointing up; then you flip that last holdout and recover
your energy investment. The conclusion is that in one dimension these
energy minima are not very deep.

By contrast, to flip all the spins in two dimensions on an N by N
lattice you have to invest at least 2Nβ units of energy; thus the energy
minima in two dimension are deep and get deeper as N increases, to
the point of mutual unreachability as N →∞.

5.5. Markov Chain Monte Carlo

Let φ(q, p) be a scalar function of the q’s and p’s (i.e., φ : Γ→ R).
We want to compute the expectation value of φ with respect to the
canonical density:

E[φ] =

∫
Γ

φ(q, p)
e−H(q,p)/T

Z
dq dp.

The estimation of such integrals is difficult because the number of vari-
ables is typically huge, and e−βH(q,p) is usually very small except on a
very small part of Γ, which sampling at random will rarely find. The
computation can become exceedingly long.

Indeed, consider a one-dimensional Ising model. The spins now live
on a one-dimensional lattice. The Hamiltonian H associated with a
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microstate is

H = −
n∑
i=1

sisi+1,

where, as before, the domain is periodic so that si+n = si. Take the
case n = 4. There are 24 = 16 possible microstates of the chain; for
instance, one possible microstate is S = (+1,−1,−1,+1). The possible
values of the Hamiltonian are −4, 0, and 4. There are 2 microstates
with H = −4 (these are the microstates for which all si’s are of the
same sign), 12 microstates with H = 0, and 2 microstates with H = 4
(the microstates with alternating signs). Suppose the temperature is
T = 1; then, using (5.5), the two microstates with all si’s of the same
sign have probability of about 0.45. Together they have probability 0.9
of appearing. The next most likely microstate has a probability of only
0.008. The situation becomes even more dramatic as the number of
sites in the Ising lattice increases. In general, there will be a very small
number of microstates with significant probabilities and a very large
number of microstates with probabilities near zero. Thus, if we want to
compute the average of some random variable φ(S), it would not make
sense to sample each site with equal frequency. It would be good to
construct a chain that visits the sites with probability approximately
equal to

πi =
1

Z
e−Hi/T .

This is what we called importance sampling in chapter 2.
An excellent method for doing this is “Markov chain Monte Carlo”

or “metropolis sampling” or “rejection sampling,” which will now be
explained. The idea is to walk among the microstates and learn along
the way how to reach the probable microstates. Consider a system with
a finite number of microstates S1, S2, . . . , Sn (as in the Ising case). Each
microstate consists of a list of +1s and −1s. To each such microstate
we assign a value Hi = H(Si) of a Hamiltonian H and a probability

Pi = P (Si) =
e−Hi/T

Z
, (5.5)

where

Z =
n∑
i=1

e−Hi/T .
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Suppose φ = φ(S) is a function on the space Γ = {S1, . . . , Sn}. We
have

E[φ] =
n∑
i=1

φ(Si)Pi =
n∑
i=1

φ(Si)
e−Hi/T

Z
.

Definition. Consider a space Γ containing the microstates S1,
S2, . . . , Sn. A random chain on Γ is a discrete time stochastic process
(see chapter 4) such that for each instant t, Xt = Sj for some j such
that 1 ≤ j ≤ n.

Definition. The probability

P (Xt = Sj|Xt−1 = Sj1 , Xt−2 = Sj2 , . . . )

is called the transition probability of the chain. The chain is a Markov
chain if

P (Xt = Sj|Xt−1 = Si, Xt−2 = Si2 , . . . ) = P (Xt = Sj|Xt−1 = Si).

For a Markov chain, we write

P (Xt = Sj|Xt−1 = Si) = pij = P (Si → Sj),

where
∑

j pij = 1 and pij ≥ 0. The matrix M with elements pij is

called the transition (or Markov) matrix.

Suppose that we know P (Si → Sj) = pij. We have

P (Xt = Sj|Xt−2 = Si) =
∑
k

P (Si → Sk)P (Sk → Sj)

=
∑
k

pikpkj,

which are the entries of the matrix M2. If M (2) is the matrix whose
entries are the probabilities that we go from Si to Sj in two steps, then
M (2) = M2.

Definition. A Markov chain is ergodic in Γ if if given any two
microstates Si and Sj in Γ (where we may have i = j), there is a
nonzero probability of the chain going from Si to Sj in n steps for
some n.

In other words, a chain is ergodic if the ij element of Mn is, for
every pair i, j, non-zero for some n.

The following theorem holds, but we provide no proof here.

Theorem 5.1. If a Markov chain is ergodic in Γ, then there exist
numbers πi such that πi > 0,

∑
i πi = 1, and πj =

∑
i πipij.
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It is easy to check that if the probability of the microstate Si is πi,
this probability is unchanged by a step in the chain. This probability
density is also attractive, so that as N increases, the fraction of times
that the chain visits Si converges to πi. The condition πj =

∑
i πipij

may be hard to check, but it is implied by the simpler sufficient condi-
tion πipij = πjpji, known as the “detailed balance condition,” which is
usually quite easy to check. The set of probabilities {πi} is the analog,
for a Markov chain, of an invariant density for a Hamiltonian system.
Consider now the expression 1

N

∑N
t=1 φ(St), where φ is a function we

are trying to average and the sequence of St belongs to the ergodic ran-
dom chain we are constructing. As N → ∞ this expression converges
to the sum

∑n
i=1 φ(Si)πi, i.e. the average over the chain converges to

the average over the equilibrium density. This conclusion resembles an
ergodic theorem, as such theorems were presented at the end of Section
5.3; the reason we can assert the theorem here, while in that previous
section we could in general only assume it, is that here we have asserted
as fact that the chain was ergodic.

All we have to do now is figure out transition probabilities for which
the invariant weights πi are the given weights e−βH/Z. The resulting
algorithm would be an almost perfect instance of importance sampling,
because every microstate would eventually be visited with a frequency
equal to its probability. The construction has two steps.

Step 1. Construct an arbitrary ergodic symmetric Markov chain (a
Markov chain is symmetric if pij = pji). For example, in the
Ising case, start with an arbitrary microstate, and at each time
step, pick a number i between 1 and n with equal probability
and change the value si associated with the site i to the oppo-
site value: si → −si. By definition,

∑
j pij = 1 for all i; this

first Markov chain is designed to sample all the microstates but
can be very inefficient (i.e., spend a lot of time in unimportant
microstates). It has an invariant set of πi, but not the one we
want.

Step 2. Let the Markov process defined above have transition probabil-
ities pij. Construct a modified Markov chain by defining new
transition probabilities p∗ij as follows:

If i 6= j:

p∗ij =

{
pij
πj
πi , if

πj
πi < 1

pij, if
πj
πi ≥ 1.
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If i = j:

p∗ii = pii +
∑

pik

(
1− πk

πi

)
,

where the sum is over all k such that πk/πi < 1.

We claim that on the average the modified process will visit the mi-
crostate Sj 100πj percentage of the time. This is a consequence of the
equilibrium condition

πj =
∑
i

πip
∗
ij,

which is a consequence of the detailed balance equation πip
∗
ij = πjp

∗
ji

How to apply this result: Let M be the transition matrix of an
ergodic Markov process on the microstates {Sj}. Suppose that we are
currently in the microstate Si. We use M to pick the next microstate
Sj; the transition probability of this is pij. Having picked Sj in this
way, we calculate the ratio πj/πi. If πj/πi ≥ 1, we accept Sj as the
new microstate. On the other hand, if πj/πi < 1, then, with proba-
bility πj/πi, we accept Sj as the new microstate, and with probability
1−πj/πi, we take the old microstate Si to be the new microstate. This
procedure gives the transition probabilities p∗ij defined above.

Two things should be noted. First, for an Ising model,

πj
πi

= exp

(
−H(Sj)

T
+
H(Si)

T

)
= exp

(
−∆H

T

)
,

where ∆H is the difference in energy between the microstates Si and
Sj, so that the value of Z is never needed. Second, the change ∆H can
be computed if one knows the values of the neighboring spins and is
therefore very inexpensive to find.

This construction is easy to program and quite efficient in general.
The exception is in more than one space dimension for T near the
critical value Tc. We have seen that the error in Monte Carlo meth-
ods depends on the number of samples used, and estimated it on the
assumption that these samples were independent. However, the succes-
sive microstates generated by the Markov chain are not independent.
This is OK if the covariances between the successive microstates die out
quickly, and they usually do. However, near Tc in two or more dimen-
sions, the spatial correlation length is very large and so is the temporal
correlation time of the Monte Carlo samples—more and more metrop-
olis moves are needed to obtain a spin microstate independent of the
previous one, and the cost of the calculation diverges (this is known as
“critical slowing down”). A cure will be described in the next section.
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5.6. Renormalization

As we have just seen, Monte Carlo methods fail when T is near
Tc for the Ising model in two or more dimensions. We now sketch
a methodology that makes it possible to study the neighborhood of
Tc. The idea is to construct a sequence of auxiliary problems, each
with fewer variables than the one before, while preserving the pdfs of
the variables that remain. The properties of the neighborhood of the
critical point will emerge from the examination of the relations between
these auxiliary problems. We begin by a definition:

Definition. Suppose you have a set of random variables,
ξ1, ξ2, . . . , ξn. Let their pdf (probability density function) be
f(x1, . . . , xn). Pick a subset of the variables, say ξ1, . . . , ξm, with
m < n. Call this subset ŝ. The pdf of ŝ is

∫
fdxm+1 · · · dxn. This

pdf, the pdf of a subset of variables, is called a marginal of f . In
the case of discrete variables the integral is replaced by a sum in the
obvious way.

We now set out to calculate marginals for subsets of spins in Ising
models. Assume from now on that n, the number of spins, is a power
of 2, and that the array of spins is continued to the whole line by peri-
odicity, si+n = si. Consider again the one-dimensional case, with spins
indexed by the integer i, and let ŝ be the set of spins with odd indices,
i.e., s1, s3, ...; let the set of spins not in ŝ be called s̃. The computation
of the marginal for ŝ requires in principle a huge summation, but it
can in fact be performed easily and exactly. It is convenient at this
point to introduce a new notation. Let W = −βH, where H is the
Hamiltonian; (this W is not to be confused with the probability den-
sity in the discussion of the Fokker-Planck equation in chapter 3). The
introduction of W frees us of the need to keep track of β and of stray
minus signs in the calculations to come. We shall also refer to W as a
Hamiltonian. First, note that one can add a constant to the Hamilton-
ian with impunity: let A be a constant; eW+A = eW eA, but Z is also
multiplied by eA and in computing the probability of a microstate the
factors eA cancel. Then add such a harmless constant to W , call it nA0,
and give β the new name K0. Now W = W (0) = nA0 + K0

∑
i sisi+1,

where a superscript (0) has been added to W . Write the marginal for

ŝ in the form as eW
(1)

(this can be done because in the Ising model

the pdf is always positive). When eW
(1)

is a marginal of eW
(0)

the
Hamiltonian W (1) is said to be renormalized from W (0). Assume that
W (1) also involves products of spins with their new neighbors (spins
two locations away in the original problem), so that the probability of
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a state of ŝ is expW (1) = exp
(
n
2
A1 +K1

∑
i sisi+2

)
/Z1, where W (1) is

the new Hamiltonian, A1, K1 are constants, the sum in the exponen-
tials is over next-nearest neighbors (which are the nearest members of
ŝ), and Z1 is the new normalization factor. The assumption is correct
if the constants A1, K1 satisfy

e(n/2)A1+K1
∑
sisi+2/Z1 =

∑
s̃

enA0+K0
∑
sisi+1/Z, (5.6)

where
∑

s̃ is the sum over s2 = −1,+1, s4 = −1,+1, . . . . This last
equation is satisfied if the following equations hold for all values of
s1, s3:

eA1+K1s1s3 =
∑
s2=±1

eA0+K0(s1s2+s2s3) (5.7)

and if Z1 = Z as well. This gives four equations for the two parameters
A1, K1, one for each pair of values of s1, s3, but miraculously one gets
the same equation for both cases where s1s3 = 1, and again for the
cases where s1s3 = −1. These equations yield:

K1 =
1

2
log cosh(2K0), (5.8)

A1 = log 2 +
1

2
A0 +K1. (5.9)

The marginal has been computed with little pain. It is important to ob-
serve that to make the iteration work one had to introduce a seemingly
redundant constant A0, whose value was zero, but that the successive
renormalized Hamiltonians acquired non-zero, but still harmless, values
of the constant.

The process can be repeated an arbitrary number of times, with the
parameters An, Kn after n iterations computable from An−1, Kn−1. One
obtains a nested sequence of smaller subsystems, with the probabilities
of the configurations in each equal to their marginals in the original
spin system. The calculus inequality log cosh x − x < 0 for x > 0
shows that the Kn decrease as n increases, so that the variables in the
subsystems become more and more independent, until, in the limit,
Kn → 0 and the variables are completely independent. If initially
β = 0 the successive Hamiltonians are all zero, and if initially T = 0
the successive Hamiltonians have Kn = ∞; these values of β or T are
invariant under marginalization or renormalization.

Suppose ξ is the correlation length in any one of these systems,
defined as the distance such that the covariance of si, sj is negligible
if |i − j| > ξ but not if |i − j| < ξ. Each time we marginalize, the
correlation length in units of interspin separation decreases by a factor
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of 2. Indeed, one can start from the original spin problem, marginalize
once, and then move the 3d spin to location 2 — no harm is done,
because spin 2 is out of the game- then move spin 5 to location 3, etc.
Now one has a smaller system, identical to the marginalized system
apart from the labeling of the spins, whose the correlation length is
obviously half of the original one. As the correlation length shrinks
to zero, the system approaches a system of independent spins, as we
already know.

The preceding construction makes it possible to sample the one-
dimensional Ising model effectively without Markov chains. Indeed,
decimate until the reduced system has 2 spins per period. This reduced
problem has four states with probabilities p1, p2, p3, p4 which add up to
1. It is easy to set up a sampling scheme which samples each one of
these states with a frequency equal to its probability. Once this is done,
go to the subset with 4 spins; 2 of these have been sampled, each of
the remaining 2 has known neighbors and only 2 possible states, which
again can be sampled with a frequency equal to their probability; keep
on filling the system in. The result is a sample of the original system,
each state is sampled with a frequency equal to its probability, and two
successive samples are independent. There is no Markov chain and no
memory.

Unfortunately, in more than one dimension marginalization is not
so trivial to achieve, but it can still be done approximately quite well.
For example, in two dimensions, choose ŝ, the set of variables to keep,
to be the spins with indices i, j both of which are even. The pdf we start
with is eW/Z = eW

(0)
/Z; try to find a marginal of the form eW

(1)
/Z

(same Z). If we try a W (1) as simple as before we will fail, but a slightly
more complicated W (1), with extra terms that contain products of non-
neighboring spins, with additional coefficients, say, L,M, . . . , will do
quite well as long as one is happy with approximations; for example
one can try

W (1) = K1

∑
si,j(si+2,j + si,j+2) + L1

∑
si,j(si+2,j+2 + si+2,j−2)

+M1

∑
si,j(si+2,j + si−2,j + si,j+2 + si,j−2)2; (5.10)

one can view W (0) as having the same form with K0 = β and
L0 = M0 = 0. The operation can be repeated. The numerical values
of the constants K,L... are determined by requiring, as least approxi-
mately, that eW

(1)
be a marginal of eW

(0)
; we omit the details, which are

messy but not hard in principle. The operation can be repeated. The
successive Hamiltonians are described by the values of a finite number
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of constants, say Kn = (Kn, Ln,Mn) for the n-th member of the se-
quence; in the ”parameter space”, where the coordinates are L,M...,
the parameters evolve and undergo a “parameter flow”, along trajec-
tories that can be labeled by the value of T (and of possibly other
parameters) at their starting point.

Definition. The mapping from one pdf to the next is a marginal-
ization, the mapping from one Hamiltonian to the next (i.e., from the
parameters K that describe one Hamiltonian to the parameters that
describe the next) is a renormalization, the set of renormalization trans-
formations is called the renormalization group, RNG for short.

Denote the transformation of the parameters K (and therefore of
the Hamiltonian W ) via a marginalization/renormalization by R, so
that W (1) = RW (0),W (2) = RW (1) etc.

The moral is that marginals for subsets of variables that form some
regular pattern in the plane (or in space) can be computed quite ef-
fectively by guessing a suitable form for the corresponding Hamiltoni-
ans. Just as in one dimension, each successive Hamiltonian describes
a system with a smaller correlation length. The (parameters in the)
successive Hamiltonians can be thought of as ”flowing” in the space
of Hamiltonians. At this point is not clear what this has to do with
critical points.

Before proceeding, some remarks: the main point about marginal-
ization/renormalization is that it produces a system with a shorter
correlation length while preserving the pdf of the variables that re-
main. This can be generalized in various ways. For example, one can
divide the set of spins into 2 by 2 or 3 by 3 blocks and devise some
rule for attaching a new spin (a variable that takes on only the values
±1) to each block; one can then guess a Hamiltonian that describes
the pdf of the new variables along the lines just sketched. This is what
is usually meant by renormalization in the literature. What has been
described above is the special case where the value of the spin attached
to a block is just the value of one of the spins in the block. This is
often called a decimation.

The reader is invited to note the resemblance of renormalization,
as it was just generalized, the the second construction of the central
limit theorem in Section 2.5. Indeed, one can view renormalization
as a generalization of the central limit theorem to certain sets of non-
independent variables.

We now turn to a description of the critical point at Tc in, say,
two space dimensions, where the mean value m of the magnetization
goes from being non-zero (for T < Tc) to zero. In the limit of very



130 5. STATISTICAL MECHANICS

large array size, the properties of the system of spins are described by
“critical exponents”; for example, for T smaller than Tc but close to it,
m is proportional to |T − Tc|b, where b = 1/6; b is a critical exponent.
One can have such exponents only if the correlation length ξ is infinite;
if ξ is finite, one can calculate m by adding up a finite number of
exponential functions; such sums are analytic functions and no non-
integer power can appear. Indeed, one can show that ξ is proportional
to |T − Tc|−ν , where ν is another exponent. These exponents cannot
be effectively calculated by Markov chain Monte Carlo; one needs a
very large array of spins to approximate a system of spins with long
correlations, and in addition, near Tc, Markov chain Monte Carlo has
very long correlation times which make the computations extremely
expensive. The exponents are of great interest, and we now sketch how
they can be found from the RNG.

The fact that at Tc the correlation length is infinite means that the
renormalization flow has a fixed point at T = Tc (because a fraction
of infinity is still infinity). This does not mean that the point K0 =
1/Tc, L0 = 0,M0 = 0 is invariant, only that if one starts from that
point one converges to a fixed point. This fixed point is unstable under
the renormalization flow, because if one starts a flow off that point the
correlation length is in general finite and each RNG transformation will
make it smaller, i.e., take one further away.

Let W ∗ be the Hamiltonian evaluated at the fixed point, so that
W ∗ = R(W ∗); Let W (0) be close to the W ∗; one can write W (0) =
W ∗ + δW (what varies are of course the coefficients K; δW is a vector
of increments δK, δL....) Apply the RNG: W (1) = R(W ∗ + δW ) =
R(W ∗) +AδW , where the matrix A is the matrix of the derivatives of
the coefficients in W (1) with respect to the coefficients of W (0), evalu-
ated at W ∗; it is a fixed matrix, a property of the RNG. The claim is
that the critical exponents can be found if A is known.

We demonstrate this in the special case of the exponent ν in the
relation ξ = constant · |T − Tc|−ν . Suppose you find yourself near the
unstable fixed point on some trajectory that started from a system
with T near Tc but not equal to Tc. Your correlation length is some
finite number ξ. Start renormalizing. At each step ξ is reduced by a
factor d (defined by your choice of grouping in the RNG); you leave
the neighborhood of the fixed point when ξ/dn = u, where u is a
number of order 1 (the eventual formula will be such that the exact
value of u does not matter). Now find the eigenvalues and eigenvectors
of the matrix A. A calculation we do not reproduce reveals that λ, the
largest eigenvalue in absolute value, is real and larger than one; let e
be the corresponding eigenvector of length one. Write the coefficients
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of δW that you started from in a basis where e is one of the basis
vectors, W = W ∗ + AδW = W ∗ + A∆e + ... = W ∗ + λ∆e + . . . ,
where ∆ is the component of δW along e, and the dots denote terms
that will be relatively small in what follows. Apply R; the new W is
R(W ∗ +A∆e) = W ∗ + λ2∆e; after n steps you will be at W ∗ + λn∆e,
and you if you leave the neighborhood after n steps, the quantity λn∆
should be of order one.

The coefficient ∆ depends on the trajectory on which you are, and
therefore depends on the temperature T at its starting point, ∆ =
∆(T ); if you start at Tc the trajectory enters the fixed point and has
no component along the vector that leaves the fixed point, ∆(Tc) = 0.
Assuming some smoothness in ∆(T ), we can write ∆ = c(T−Tc), where
one can view c as constant as long as one stays in the neighborhood of
the fixed point. Taking logs of the two equations that characterize n
(one in terms of ξ and the other in terms of ∆), and assuming that the
the analysis is the same just above Tc and just below Tc so that ∆ =
c|T −Tc|, we find that ξ = constant · |T −Tc|−ν , where ν = log d/ log λ,
an expression that depends only on the matrix A.

Finally, try to obtain ξ, the correlation length for the Ising model,
by dimensional analysis. ξ can depend on `, the interspin distance, s,
the magnitude of the spins (which so far has always been 1), and the
temperature T (or T −Tc for convenience). In dimensionless variables,
we find ξ/` = Φ(|T − Tc|/s2), where Φ is an unknown dimensionless
function, and we assumed again that the relationship is symmetric
about Tc. Note that we find again that ξ should be measured in units
of interspin distance.

Make now the complete similarity assumption Φ(0) = B, where B
is a non-zero finite constant (see Section 4.3). The result is ξ/` = B
at Tc, which we know is not true. Try then an incomplete similarity
assumption, Φ(|T − Tc|/s2) = (|T − Tc|/s2)γΦ1(|T − Tc|/s2), where
Φ1(0) is a non-zero constant and γ is an anomalous exponent. We
find that this fits the previous analysis, with γ = −ν. Thus the expo-
nents revealed by the RNG are anomalous exponents in the sense of
dimensional analysis.

5.7. Exercises

1. Consider complex variables uj = qj + ipj (j is an index, i is
√
−1) at

the points jh, where j takes the values ...,−1, 0, 1, 2, ..., h = 2π/n,
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n is an integer, and uj+n = uj. Consider the Hamiltonian

H =
1

2

n∑
j=1

[(
qj+1 − qj

h

)2

+

(
pj+1 − pj

h

)2

+
1

2
(q4
j + p4

j)

]
.

Treat the q, p as conjugate variables (i.e. pj is the momentum as-
sociated with the position variable qj) and derive the equations of
motion. Check formally that as h→ 0, these equations converge to
the nonlinear Schroedinger equation iut = −uxx + q3 + ip3. Sup-
pose the initial data for the equation are picked from the density
Z−1e−H/T for some T > 0. By comparing the Hamiltonian with
the Feynman-Kac formula in the physicists’ notation, deduce that
a typical solution of the equation with this kind of data has no
derivatives in x (and is therefore a “weak” solution). Check that as
h→ 0, the Hamiltonian times h converges to the integral

1

2

∫ 2π

0

(
q2
x + p2

x +
1

2
(q4 + p4)

)
dx.

You may notice that as the mesh size h → 0, the temperature T
must also tend to zero.

2. Compute the magnetization m in the Ising model in 2 dimensions by
Markov chain Monte Carlo, on a 30 by 30 lattice, for β = 1 and β =
0.2, and compare with the exact answer: m = [1−sinh(2β)−4]1/8 for
β larger than the critical value 1/Tc = .4408 and m = 0 otherwise.

3. Write a program that generates all 2n
2

microstates of a two-
dimensional periodic Ising model. Define the magnetization µ as the
sum of all the spins divided by n2. For n = 3 and β = 1, β = 0.01,
make a histogram of the probabilities of the various values of µ;
note the different qualitative behavior at low β and at high β. Esti-
mate the fraction of microstates which have probabilities less than
10−6. Observe that it is difficult to estimate the histogram above
by a Monte Carlo program where microstates are sampled at ran-
dom rather than examined one after the other. Note that the large
probabilities of extreme values at high β (small T ) come from the
fact that the probabilities of the extreme microstates are very high;
at low β each microstate with small |µ| is still less likely than a
microstate with an extreme value, but the small values of |µ| win
because there are many such microstates. Programming notes: A
relatively easy way to generate all microstates of the Ising model is
to write the integers in a base 2 representation and then map the
0, 1 coefficients onto −1,+1. You have to be careful because you
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may generate high values of e−βH even when n = 3 — one way out
is to use double precision. To find the fraction of microstates with
very low probabilities you need the partition function, which has to
be computed; you may therefore need to run your program twice.

4. Calculate the entropy of the pdf f(x) = e−x
2
/
√
π. Do the same

for the microcanonical density for the Hamiltonian H =
∑

i p
2
i /2m,

where m is a (constant) mass (the second part is not trivial)..

5. Consider a particle with position q, momentum p, and Hamiltonian
H = (1/2)(q2+p2). Derive the equations of motion and the Liouville
equation. Then derive a Fokker-Planck equation for the equations
of motion by the methods of chapter 3 and check that it coincides
with the Liouville equation.

6. Verify the identity (Lu, v) = −(u, Lv) at the end of Section 5.2.

7. Consider two particles moving on the line with positions q1, q2 and
momenta p1, p2. The Hamiltonian is H = (1/2)(q2

1 +q2
2 +q2

1q
2
2 +p2

1 +
p2

2). Write down the equations of motion. Suppose the inital data
are drawn at random from the pdf (probability density function)
Z−1e−H/T ; check that this density is invariant in time.

8. Consider again the Hamiltonian (1/2)(q2
1 +q2

2 +p2
1 +p2

2 +q2
1q

2
2). Sup-

pose you are unable to solve the equations for q2, p2 (maybe because
you don’t have initial data). The equations for q1, p1 have the form
dq1/dt = R1(q1, q2, p1, p2), and similarly dp1/dt = R2. At time t you
don’t have values of q2, p2 to substitute into R1, R2. The best you
can do is replace R1, R2 by their best approximation by a function of
q1, p1 only, i.e., replace R1 by E[R1|q1, p1], and the same for R2, us-
ing the invariant probability density (this amounts to averaging the
equations over the uncomputable parameters, as is often done in var-
ious contexts). Show that the new system you got is also Hamilton-

ian, with Hamiltonian Ĥ = −T log
∫
e−H(q1,q2,p1,p2)/Tdq2dp2. (Note:

This construction is very useful in some contexts, but should be
treated with caution. One has to consider carefully what the so-
lution q1(t), p1(t) represents. It is obviously not the same as the
q1(t), p1(t) of the original four-by-four system. In the next chap-
ter we shall see that it is not the best estimate of q1(t), p1(t) in
the original system either. Averaging over unknown quantities is
dangerous.)
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CHAPTER 6

Time-Dependent Statistical Mechanics

6.1. More on the Langevin Equation

We now turn to the statistical mechanics of systems not in equi-
librium. The first few sections are devoted to special cases, which will
be used to build up experience with the questions one can reasonably
ask and the kinds of answer one may expect. A general formalism will
follow, with applications.

Consider first the Langevin equation, already discussed in Sec-
tion 3.8, which we now write as

du = −au dt+
√

2Ddw, (6.1)

where w is a Brownian motion, as before. A constant factor
√

2D has
been inserted in front of the noise. Equation (6.1) models the dynamics
of a heavy particle bombarded by light particles. This equation will
now be fully solved. (See Section 3.8 for an earlier solution.)

After multiplication of (6.1) by eat, we get

d(ueat) =
√

2Deat dw. (6.2)

Integrating both sides from 0 to t gives∫ t

0

d(ueas) =
√

2D

∫ t

0

eas dw.

Let u(0) = b. Then

u(t)eat − b =
√

2D

∫ t

0

eas dw.

After multiplying both sides by e−at, we obtain

u(t)− be−at =
√

2D

∫ t

0

ea(s−t)dw.

The last integral may be rewritten in the form∫ t

0

ea(s−t)dw = lim
∆→0

n−1∑
j=0

ea(j∆−t)(w((j + 1)∆)− w(j∆))
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(where one does not have to worry about the Ito/Stratonovich di-
chotomy because the coefficient is non-random, and the two formalisms
are equivalent). The summands of the last sum are independent Gauss-
ian variables with mean 0. The variance of the sum is the sum of
variances of its summands; i.e.,

Var

(
n−1∑
j=0

ea(j∆−t)(w((j + 1)∆)− w(j∆))

)
=

n−1∑
j=0

∆e2a(j∆−t);

taking the limit ∆→ 0 we find

Var

(∫ t

0

ea(s−t)dw

)
=

∫ t

0

e2a(s−t)ds =
1

2a
− 1

2a
e−2at.

As t→∞, this variance tends to 1/(2a). Also, as t→∞, be−at tends
to zero. Therefore, the solution u(t) of the Langevin equation (6.1)
tends to a Gaussian variable with mean 0 and variance D/a.

If the particle we are observing has mass m and if we interpret u
as its velocity, then its energy is 1

2
mu2. According to what we found in

chapter 5, the probability that the particle has velocity u is proportional
to exp(−mu2/2T ). Thus, we must have

a =
Dm

T
.

The coefficient a is a friction coefficient, and the relation between the
friction and the temperature is an instance of a “fluctuation-dissipation
theorem”; it is a consequence of the requirement that the system tend
to equilibrium for long times and it relates the rate of dissipation of
energy to the amplitude T of the “thermal fluctuations.”

Note that we have not provided an explanation of the conditions for
the validity of our modeling of the motion of a heavy particle under the
influence of many others, in particular for the validity of the modeling
of the interactions as white noise. This looks plausible, but should be
discussed further.

The discussion of the fluctuation-dissipation theorem can be also
presented in terms of the Fokker-Planck equation associated with the
problem. We do that in a slightly more general case. Consider a particle
of mass m subjected to noise, with the following equations of motion:

q̇ =
∂H

∂p
,

ṗ = −∂H
∂q
− a∂H

∂p
+
√

2D
dw(t)

dt
,
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where H = p2/2m + Kq2/2 is the Hamiltonian (making the system
a harmonic oscillator), a and D are constants as above, and w(t) is
Brownian motion (BM). Substitution of the specific Hamiltonian into
this equation yields

q̇ =
p

m
, (6.3)

ṗ = −qK − a p
m

+
√

2D
dw

dt
. (6.4)

Note that we still have offered no motivation for the use of white noise.
The presence of an extra term in addition to the usual derivatives of H
and to the noise is motivated by the discussion earlier in this section,
where a dissipation term appeared, and will be fully explained by the
result below.

A slight generalization of the argument in Section 3.8 yields the
following Fokker-Planck equation for the probability density W (p, q, t)
of p, q:

∂W

∂t
=
∂J1

∂q
+
∂J2

∂p
,

where (J1, J2) is the probability flux vector

J1 = −pW
m
, J2 = KqW + ap

W

m
+D

∂W

∂p
.

This equation allows W = Z−1e−H/T as a stationary density provided
a = D/T , in agreement with the result above (in (6.4), the coefficient
a has already been divided by m).

The interpretation of the fluctuation-dissipation theorem in this
case is straightforward. The higher the driving force on the particles,
the higher the temperature at the eventual equilibrium; the bigger the
friction, the lower the temperature. In the present case, the friction and
the dissipation come from a single cause—the interaction between the
particle we are considering in detail and other, unexamined, particles,
just as a runner who runs into a group of milling people will be di-
verted from his straight path and also slowed down by a single cause—
the collisions with those people. The two effects of the single cause
at equilibrium are related to each other by the fluctuation-dissipation
relation.
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6.2. A Coupled System of Harmonic Oscillators

In the previous section, we considered a particle acted upon by
noise; the noise presumably represents an interaction with other par-
ticles, but the properties of the interaction and the validity of its de-
scription as noise were not considered. In this section, we consider, in
a simple case, the interaction of a singled-out particle, the “tagged” or
“resolved” particle, with other particles in the framework of a Hamil-
tonian description of the entire system.

The particles are all in a one-dimensional space; the resolved par-
ticle is located at x, has velocity v and unit mass, and is acted on by
a potential U(x). It interacts with n other particles, located at qj and
having momenta pj, with j = 1, ..., n. The Hamiltonian is

H =
1

2
v2 + U(x) +

1

2

∑
j

p2
j +

1

2

∑
j

f 2
j

(
qj −

γj
f 2
j

x

)2

, (6.5)

where the fj and γj are constants. The γj are “coupling constants,”
and one can check that in the absence of interaction (i.e., if one sets the
coupling constants to zero), the fj would be the frequencies of oscil-
lation of the various particles. This Hamiltonian is quadratic (except
for the term in U) so that the equations of motion for the nonresolved
particles are linear; this is what makes the problem solvable explicitly.
The particles with linear equations of motion of the form implied in
this Hamiltonian for the unresolved particles are linear oscillators.

The equations of motion are

ẋ = v,

v̇ = −dU
dx

+
∑
j

γj

(
qj −

γj
f 2
j

x

)
,

q̇j = pj,

ṗj = −f 2
j qj + γjx.

The equations of motion for the unresolved particles can be solved
explicitly by the method of variation of constants:

qj(t) = qj(0) cos(fjt) + pj(0)
sin(fjt)

fj
+
γj
fj

∫ t

0

x(s) sin(fj(t− s)) ds,

where qj(0) and pj(0) are initial conditions (about which nothing has
been said as yet). The integral term in this equation can be rewritten
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after integration by parts as

γj
f 2
j

(x(t)− x(0) cos(fjt))− γj
∫ t

0

v(s)
cos(fj(t− s))

f 2
j

ds.

Collecting terms and inserting them into the equations for x and v,
one finds

ẋ(t) = v(t), v̇(t) = −U ′(x) +

∫ t

0

Kn(t− s)v(s) ds+ Fn(t), (6.6)

where

Kn(t) = −
∑
j

γ2
j

f 2
j

cos(fjt)

and

Fn(t) =
∑
j

γj

(
qj(0)− γj

f 2
j

x(0)

)
cos(fjt) +

∑
j

γjpj(0)
sin(fjt)

fj
.

Suppose that the goal is to follow the motion of the resolved par-
ticle (the one at x with velocity v) without following the motion of all
of the others. Specific initial values qj(0), pj(0) cannot be taken into
account. The best one can do is sample these initial values for the un-
resolved particles from some acceptable density, which makes the whole
evolution stochastic. The first term on the right-hand side of (6.6) is
the effect of a potential that acts on the resolved particle alone at the
time t, and it has no analog in the Langevin equations of the previous
section. The second term on the right-hand side of (6.6) is analogous
to the dissipation term −au in the the previous Langevin equation and
represents not only dissipation but also a memory, inasmuch as through
this term, the velocity at previous times impacts the current velocity.
That a reduced description of the motion of the resolved variable in-
volves a memory should be intuitively obvious: Suppose you have n > 3
billiard balls moving about on top of a table and are trying to describe
the motion of just three; the second ball may strike the seventh ball at
time t1 and the seventh ball may then strike the third ball at a later
time. The third ball then “remembers” the state of the system at time
t1, and if this memory is not encoded in the explicit knowledge of where
the seventh ball is at all times, then it has to be encoded in some other
way. The analog of this term in the following sections will be called a
“memory” term, to emphasize the possibly unfamiliar memory effect.
The kernel of this integral term, Kn, does not depend on the initial
data and, therefore, this term is not random.

The last term involves the random initial data and is a random
function, analogous to the white noise in the Langevin equation of
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Section 6.1. Equation (6.6) generalizes the Langevin equation and we
shall call the last term the noise term; in general, it is not white noise.
White noise can be expanded in terms of sines and cosines, but except
under very special conditions, the coefficients in this expansion will not
be the ones in the above expression for Fn.

Finally, suppose the initial density W is W = Z−1e−H/T , with
H given by (6.5). One can readily check that with this choice,
E [pj(0)pk(0)] = Tδjk, where δjk is the Kronecker δ symbol. Also,

E

[(
qj(0)− γj

f 2
j

x(0)

)(
qk(0)− γk

f 2
k

x(0)

)]
=
Tδjk
f 2
j

,

where x(0) is the nonrandom initial value of x(t). With this choice of
initial W , one can also check that

E[Fn(t)Fn(t− t′)] = −TKn(t′).

This is the fluctuation-dissipation theorem relevant to the present prob-
lem. It emerges simply as a consequence of the equations of motion
combined with the canonical choice of initial density.

It should be noted that the problem in this section is not an equi-
librium problem because the Hamiltonian depends on the variable x
and changes in time. As time advances, the values of the variable x
become increasingly uncertain and the system “decays” to equilibrium;
this decay is accomplished by the memory and the noise.

6.3. Mathematical Addenda

A pattern has emerged in the questions asked so far in the present
chapter: We consider problems with many variables where thermal
equilibrium has not been established (i.e., where there is no probability
density invariant in time). Such a density may be established in the fu-
ture of the systems under study, this fact has present consequences, but
there is no universal recipe for the evolution of the probability density
and no analog of an ergodic hypothesis to simplify calculations. What
one strives for is a reduced, practical description of key variables—the
analog of what was called renormalization in the equilibrium case. The
reduced equations we have derived replace those parts of the system
that are not fully described by a pair of matched terms, a stochastic
term that can be called “noise” and a damping, or “memory,” term;
they have to be matched to preserve the possibility of future equi-
librium. The matching conditions are called “fluctuation-dissipation
theorems.” We now propose to derive these results in some generality;
however, before we can embark on this analysis, some mathematical
addenda are needed.
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6.3.1. How to write a nonlinear system of ordinary differ-
ential equations as a linear partial differential equation. Con-
sider a system of ordinary differential equations

d

dt
φ(x, t) = R(φ(x, t)), φ(x, 0) = x, (6.7)

where R, φ, and x are (possibly infinite dimensional) vectors with com-
ponents Ri, φi, and xi, respectively.

We claim that this nonlinear system can be rewritten as a linear
partial differential equation. This is not an approximation, but an
exact representation; the cost of getting a linear system is the greater
conceptual and practical complexity of having to deal with a partial
differential equation.

Define the Liouville operator (as in Section 5.2):

L =
∑
i

Ri(x)
∂

∂xi
.

It is not assumed here that the system (6.7) is Hamiltonian, so that
the coefficient functions in L are not derivatives of some H, as in Sec-
tion 5.2. The variables in the coefficients and in the differentiations
belong to a space with as many dimensions as the space of initial data
for (6.7). Now form the differential equation

ut = Lu, (6.8)

with initial data u(x, 0) = g(x). This is called a Liouville equation,
although the sign of the right-hand side is the opposite of the one in
front of the right-hand side of the Liouville equation for the probability
density in chapter 5. The claim is that the solution of this equation
is u(x, t) = g(φ(x, t)), where φ(x, t) is the solution of the system (6.7)
with initial data x. If this is true, one can clearly solve the partial
differential equation (6.8) if one can solve the system of ordinary dif-
ferential equations. Conversely, if one can solve (6.8) for every g, one
can set g(x) = xj and obtain the j-th component of φ, for every j.

To prove this claim, we first prove the following useful identity:

R(φ(x, t)) = Dxφ(x, t)R(x). (6.9)

In this formula, Dxφ(x, t) is the Jacobian of φ(x, t):

Dxjφi(x, t) =
∂φi
∂xj

,
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and the multiplication on the right-hand side is a matrix vector multi-
plication; the left-hand side is the vector R evaluated when the argu-
ment is φ, while on the right the argument of R is x, the initial datum
of φ; φ is assumed to satisfy (6.7).

Define F (x, t) to be the difference of the left-hand side and the
right-hand side of (6.9):

F (x, t) = R(φ(x, t))−Dxφ(x, t)R(x).

Then, at t = 0, we have

F (x, 0) = R(φ(x, 0))−Dxφ(x, 0)R(x)

= R(x)−Dx(x)R(x)

= R(x)− IR(x)

= 0. (6.10)

Differentiating F with respect to t, and using the chain rule repeatedly,
we get

∂

∂t
F (x, t) =

∂

∂t
R(φ(x, t))− ∂

∂t
(Dxφ(x, t)R(x))

= (DxR)(φ(x, t))
∂

∂t
φ(x, t)−Dx

(
∂

∂t
φ(x, t)

)
R(x)

= (DxR)(φ(x, t))
∂

∂t
φ(x, t)−Dx(R(φ(x, t)))R(x)

= (DxR)(φ(x, t))R(φ(x, t))− (DxR)(φ(x, t))Dxφ(x, t)R(x)

= (DxR)(φ(x, t)) (R(φ(x, t))−Dxφ(x, t)R(x))

= (DxR)(φ(x, t))F (x, t). (6.11)

From (6.10) and (6.11) one can conclude that F (x, t) ≡ 0. Indeed, the
initial value problem defined by (6.10) and (6.11) has a unique solution
given that R and φ are smooth. Since F (x, t) = 0 solves this problem,
we have proved (6.9).

Take an arbitrary smooth function g(x) on Γ and form the function

u(x, t) = g(φ(x, t)).

Clearly, u(x, 0) = g(x). Differentiate this function with respect to t
using the chain rule:

∂u

∂t
=
∑
i

∂g(φ(x, t))

∂xi

∂φi(x, t)

∂t
=
∑
i

Ri(φ(x, t))
∂g(φ(x, t))

∂xi
.
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Using (6.9), this last expression becomes∑
i

(∑
j

∂φi(x, t)

∂xj
Rj(x)

)
∂g(φ(x, t))

∂xi

=
∑
j

Rj(x)

(∑
i

∂g(φ(x, t))

∂xi

)
∂φi(x, t)

∂xj

=
∑
j

Rj(x)
∂g(φ(x, t))

∂xj

= Lu. (6.12)

Hence, u(x, t) = g(φ(x, t)) is the (unique) solution of the equation

ut = Lu, u(x, 0) = g(x). (6.13)

Clearly, if one can solve the system (6.7) for all x, one can solve the
Liouville equation (6.13) for any initial datum g. Conversely, suppose
one can solve the Liouville equation for all initial data g and pick
g(x) = xj; the solution of the Liouville equation is then φj(x, t), the
jth component of the solution of the system of ordinary differential
equations (6.7).

If L is skew-symmetric, the Liouville equation for the probability
density in chapter 5 and the Liouville equation here, which is equiv-
alent to the original system, differ by a sign, i.e., the system and its
probability density move in opposite directions. By judicious insertions
of factors of complex i, one can get these two Liouville equations to
be adjoint; the two equations are then related like the Schrödinger and
Heisenberg representations in quantum mechanics.

More on the semigroup
introduced the semigroup notation, according to which the solution
of (6.13) is denoted by etL

tLg(x). With
this notation, the formula for the solution u(x, t) = g(φ(x, t)) of (6.13)
becomes

etLg(x) = g(etLx). (6.14)

Note that etLx is not etL evaluated at x but etL acting on the vec-
tor whose components are the functions xi; the time propagation of a
function g commutes with the time propagation of the initial conditions
xi. This equality has an obvious interpretation: If g is a fixed, time-
invariant function of the variables that describe a mechanical system,

and the value of this solution at a point x is denoted by e

6.3.2. notation. In Section 3.9 we

g; the time dependence is explicitly marked,
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it changes in time only inasmuch as these variables change. Equa-
tion (6.12) becomes, in the semigroup notation, simply

LetL = etLL. (6.15)

The analogous formula for matrices is, of course, well known.
Let A,B be two operators; the following formula holds for their

exponentiations, as defined above via the corresponding equations:

et(A+B) = etA +

∫ t

0

e(t−s)(A+B)BesA ds. (6.16)

The best way to see that this identity holds is to form the difference
z(t) between the right-hand side and the left-hand side:

z(t) = et(A+B) − etA +

∫ t

0

e(t−s)(A+B)BesA ds (6.17)

and check that z(0) = 0 and z′(t) = (A + B)z(t); by the uniqueness
of the solution of the ordinary differential equation, z(t) = 0 for all t.
This formula is often called the “Duhamel formula” or, in physics, the
“Dyson formula.”

6.3.3. Hermite polynomials and projections. The polynomi-
als orthonormal with respect to the inner product

(u, v) =

∫ +∞

−∞

e−x
2/2

√
2π

u(x)v(x) dx

are called the Hermite polynomials. One can generalize them to spaces
with more dimensions: If one defines the inner product

(u, v) =

∫ +∞

−∞

∫ +∞

−∞
· · ·
∫ +∞

−∞
(2π)−n/2 e−(

∑
x2
i )/2u(x)v(x) dx1 · · · dxn,

then one finds that the following polynomials form an orthonormal
family: First the constant polynomial 1; then the n linear monomials
x1, x2, . . . , xn; then the polynomials of degree 2: pij = xixj for i 6= j,
etc. More generally, if H(q, p) is a Hamiltonian, one can define a family
of polynomials in the variables q, p that are orthonormal with respect
to the canonical density Z−1e−H/T . We shall still call these polynomi-
als “Hermite polynomials,” and we shall do the same for polynomials
orthonormal with respect to an inner product with a weight W .

Consider an n-dimensional space Γ with a probability density W .
Divide the coordinates into two groups: x̂ and x̃. Let g be a function
of x; then Pg = E[g|x̂] is an orthogonal projection onto the subspace
of functions of x̂. One can perform this projection by spanning that
subspace by those Hermite polynomials that are functions of x̂ and
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using them as in Section 1.2 (see also Exercise 2.2). One can then ap-
proximate the “conditional expectation” projection by a “finite-rank”
projection in which one uses only a fixed set of Hermite polynomials.
A particular finite-rank projection widely used in physics is the one in
which only the Hermite polynomials of degree 1 are used; this is also
known as the “linear” projection (as if other projections were not lin-
ear). We have already used a linear projection implicitly in the “linear”
prediction method in Section 4.5.

6.4. The Mori-Zwanzig Formalism

Return now to the system

dφi(x, t)

dt
= R(φ(x, t)), φi(x, 0) = xi, 1 ≤ i ≤ n. (6.18)

Suppose one is interested only in the first m variables φ1, . . . , φm, with
m < n; partition the vector φ as in Section 5.6 into “resolved” variables
φ̂ and “unresolved” variables φ̃ so that

φ = (φ̂, φ̃), φ̂ = (φ1, . . . , φm), φ̃ = (φm+1, . . . , φn),

and similarly x = (x̂, x̃) and R = (R̂, R̃). We now look for equations for

the components φ̂(t) with the initial conditions φ̂(0) = x̂. We further
assume that at time t = 0 we know the joint pdf of all the variables
x; once the initial data x̂ are given, the pdf of the variables in x̃ is
the joint pdf of all the x variables conditioned by x̂. Something has
to be assumed about the missing variables x̃ lest the problem become
meaningless; the assumptions here are often realistic, but one should
be careful not to use what is now coming when these assumptions do
not hold.

This is the third time in this book that we are trying to make a
prediction or draw a conclusion on the basis of uncertain or statistical
information. In Section 4.5 we made predictions on the assumption that
we had some observations for a process which we knew to be stationary
and whose covariances were known. In Section 4.6 we made predictions
or drew conclusions for a process for which we had a noisy model and a
stream of noisy observations. Now we want to make prediction from a
model which we can implement only in part, and/or for which we have
only partial initial data.

Form the Liouville equation ut = Lu as above in Section 6.3; the
components φ̂ are φ̂j(x, t) = etLxj (note that φ̂j depends on all the

data x when the system is not linear; if x̃ is random, φ̂ is random as
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well). By definition,

∂

∂t
etLxj = LetLxj = etLLxj, (6.19)

where the last equality is the commutation rule (6.15). Let P be the
conditional expectation projection Pg(x) = E[g|x̂], where the proba-
bility density is the assumed density for the initial conditions. We shall
use the same notation even when we later approximate the conditional
expectation by a finite-rank projection. Note that the P here is a pro-
jection on a space of functions of a fixed set of variables and is, there-
fore, time independent. Furthermore, objects such as Pφ̂(t) = E[φ̂(t)|x̂]
are of great interest: they are the best estimates of the future values
of a reduced system of variables given partial information about the
present. This is the kind of thing a meteorologist, for example, wants
to calculate: a best prediction of a set of interesting features of the
future weather given our limited information about the present state
of the atmosphere.

Define, furthermore, Q = I−P and keep in mind that P2 = P, Q2 =
Q, and PQ = 0, as must be true for any projection. Equation (6.19)
can be rewritten as

∂

∂t
etLxj = etLPLxj + etLQLxj. (6.20)

Consider the first term. We have

Lxj =
∑
i

Ri(∂/∂xi)xj = Rj(x);

so PLxj = E[Rj(x)|x̂] = R̄j(x̂) is a function of the reduced set of
variables x̂, the average of right-hand-sides of the jth equation at
the initial time, conditioned by the partial knowledge embodied in x̂;
etLPLxj = R̄j(φ̂(x, t)) by the commutation rule (6.14). If one replaces
the projection used here by the projection of Section 5.6, one finds that
equation (6.20) coincides with the equation we used to renormalize in

Section 5.6 provided Q = 0; however, Q 6= 0 unless φ̂ coincides with
φ, which explains why the “equilibrium” renormalization of chapter 5
has to be reformulated here before one can deal with time-dependent
statistics.

We now split the second term in (6.20) using Dyson’s formula with
A = QL and B = PL (the reasons for the split will emerge soon):

etL = etQL +

∫ t

0

e(t−s)L
PLesQL ds. (6.21)

Here, the linearity of the Liouville equation is being used—this step
is the reason for the introduction of that equation into the analysis.
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Using (6.21), (6.20) becomes

∂

∂t
etLxj = etLPLxj + etQLQLxj +

∫ t

0

e(t−s)L
PLesQLQLxj ds. (6.22)

This is the Mori-Zwanzig equation. This equation is exact and is an
alternative way of writing the original system (6.18). It is an equation
for each one of the φj(x, t) = etLxj, j = 1, . . . ,m.

Now examine the different terms that appear on the right-hand side
of (6.22). The first term is a function only of φ̂(x, t) and represents
the self-interaction of the resolved variables; it is a Markovian term,
inasmuch as it is evaluated at the same time t as the left-hand side of
the equation.

To decode the second term, write

etQLQLxj = wj.

The function wj(x, t) satisfies, by definition, the equations

∂

∂t
wj(x, t) = QLwj(x, t),

wj(x, 0) = QLxj = (I − P)Rj(x) = Rj(x)− R̄j(x̂).
(6.23)

If one identifies PLxj as the “average of the initial data,” then wj(x, 0)
is a “fluctuating part of the initial data” (according to the often used
terminology in which a “fluctuating part” of a random variable η is
η − E[η]). Obviously, Pwj(x, 0) = 0. If one took this initial function
and applied the operator etL to it (i.e., solved the Liouville equation
starting from this initial function), the result would, in general, have
a nontrivial mean part (one not in the null space of P); the evolution
equation for wj removes the “mean part” at each instant of time. As
a result, Pwj(x, t) = 0 for all time t.

Call the space of functions of x̂ the “resolved subspace” and its
orthogonal complement (with respect to the inner product defined by
the initial density) the “noise subspace.” P applied to any element of
the noise subspace gives zero, and, similarly, Q applied to any element
of the resolved subspace gives zero. The functions wj(x, t) = etQLQLxj
are in the noise space; we shall call the vector of which they are the
components the “noise” for short. The noise is determined by the initial
data and by the system (6.18) and does not have to be white noise.
Equation (6.23) is the “orthogonal dynamics” equation.

The third term in (6.22) is the “memory” term because it involves
integration of quantities that depend on the state of the system at ear-
lier times. To see what this term does, approximate the projection P by
a finite-rank projection in terms of Hermite polynomials (H1, . . . , Hp)
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(whose arguments belong to x̂). We have

PLesQLQLxj = PL(P+Q)esQLQLxj

= PLQesQLQLxj

∼
p∑

k=1

(LQesQLQLxj, Hk(x̂))Hk(x̂).

To simplify the analysis, assume that L is skew-symmetric, (u, Lv) =
−(Lu, v); we have seen that this includes the case where the sys-
tem (6.18) we started from was Hamiltonian. Then we find

(LQesQLQLxj, Hk(x̂)) = −(QesQLQLxj, LHk)

= −(esQLQLxj,QLHk).

Both QLxj and QLHk are in the noise subspace, and esQLQLxj is a
solution at time s of the orthogonal dynamics equation with data in
the noise subspace; PLesQLQLxj is then a sum of temporal covariances
of “noises” (i.e., of functions in the noise subspace). The operator
e(t−s)L commutes with each (LQesQLQLxj, Hk(x̂)) because the latter
expression is an inner product that does not evolve in time, and by
the rule (6.14), one finds e(t−s)LHk(x̂) = Hk(φ̂(t− s)); if one makes the
change of variables t′ = t − s and drops the prime, one finds that the
memory integral has an integrand which is a sum of terms; each one of
them is the product of a temporal covariance of a noise (i.e., a variable
that lives in the null space of P), evaluated at the time difference (t−s),
multiplied by a variable that depends on the state of the system at the
time s. Such terms of course represent a memory. The split (6.21) has

divided the non-Markovian term in the equation of motion for the φ̂
into a noise and a memory that depends on the temporal covariances
of the noise.

One can bring in an apparent simplification by multiplying (6.22) by

the projection P; remember that P is time invariant, so that P(∂/∂t)φ̂

becomes (∂/∂t)E[φ̂|x̂]—the best estimates of the future values of the
variables we are following, given the data; these quantities are often of
interest. Using the fact that P operating on the noise term is zero, one
finds

∂

∂t
PetLxj = PetLPLxj +

∫ t

0

Pe(t−s)L
PLesQLQLxj ds, (6.24)

where PetLxj = E[φ̂(x, t)|x̂] by definition. However, the Markovian
term is now more complicated: we have seen that etLPLxj is, in general,
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a nonlinear function R̄(φ̂(t)); therefore, PR̄(φ̂(t)) is, in general, not

equal to R̄(Pφ̂(t)) and some approximation scheme must be devised.
To make contact with the literature, one has to make some drastic

simplifications. Assume that the “linear” projection will do the job
(this is generally true if the processes φ have small amplitude). Suppose
that the initial probability density W is such that E[xixj] = (xi, xj) =
δij. Assume that the noise etQLQLxj is white noise (occasionally this
is a good assumption; see the next few sections). Then the correlations
that appear in the integrand of the memory term are delta functions,
and in this case, the integral in the memory term becomes a simple
function evaluation. With some further assumptions about the original
equations (6.18), explained in the next two sections, one recovers as
special cases the systems of the first two sections of this chapter. Thus
equations (6.22) are general Langevin equations, generalizing what we
have earlier called the Langevin equation.

The Mori-Zwanzig equations (6.22) are exact. If one has a system
of equations for φ, a pdf for the initial data, specific initial data for
φ̂(t = 0) and one wants to find φ̂(t), one can either sample the whole
vector of initial data, solve for φ(t), and throw away all that is not

φ̂, or one can try to solve (6.22). One can average in either case.
Equations (6.22) are fewer in number, but this advantage is outweighed
by the need to find the noise and its temporal covariances. What
equations (6.22) do provide is a starting point for approximation.

What are such approximations needed for? There are two settings
in which they can be useful:

(1) The analysis of how large mechanical systems converge to the
kind of equilibrium discussed in the previous chapter. If one sets
the values of some initial data to fixed values but lets the other
initial values be picked at random from a canonical density, one
in fact takes the mechanical system out of equilibrium at time
t = 0. An ergodic Hamiltonian system will then see its entropy
increase and it will tend toward equilibrium; it is often of interest
to see how this happens and this can, in principle, be done by
approximating equations (6.22).

(2) Suppose one wants to make predictions on the basis of partial
data (as, for example, in weather forecasting). One can assume
something reasonable about the statistics of missing information
(e.g., on the basis of previous experience), and turn to (6.22).
Prediction methods based on the Mori-Zwanzig formalism also
go under the name “optimal prediction.”
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Finally, some words on the long-time behavior of the solutions
of (6.22). Suppose the system (6.18) is Hamiltonian and ergodic. If
the initial data are nonequilibrium data (not sampled from a canonical
density, for example, some of them are given numbers x̂), then as time
unfolds, the system will approach equilibrium (i.e., the joint density of
the φ(t) will approach a canonical density as the entropy increases).
The averages Pφ(t) = E[φ|x̂] will converge to the averages of φ with
respect to the canonical density—the predictive power of initial data
decays to zero with time (for example, one can make decent one-day
weather forecasts on the basis of today’s observations, but very poor
one-year forecasts). The solutions of the equation for Pφ̂(t) tend to
constants (often zero) independent of the data. The Markovian term
in (6.22) tends to zero as well, and one is left with an equation that
merely balances noise and memory.

6.5. More on Fluctuation-Dissipation Theorems

We have established a relation between kernels in the memory term
and the noise (the former is made up of covariances of the latter).
This is the mathematical content of some of the “fluctuation-dissipation
theorems” in physics. However, under some specific restricted circum-
stances, the relation between noise and memory takes on more intu-
itively appealing forms, which we now briefly describe. As has already
been mentioned, physicists often take a restricted basis in the range of
P consisting of the coordinate functions x1, ..., xm (the components of
x̂). The resulting projection is the linear projection. The use of this

projection is appropriate when the amplitude of the functions φ̂(t) is
small. One then has Hk(x̂) = xk for k ≤ m. The correlations in (6.22)
are then simply the temporal covariances of the fluctuations in the
same quantities as the ones that are being solved for. This is known as
the fluctuation-dissipation theorem of the second kind. If the noise can
be viewed as white, the covariances are delta functions, the memory
is instantaneous, and the equations look like the Langevin equation of
Section 6.1.

Specialize further to a situation where there is a single resolved
variable, say φ1, so that m = 1 and φ̂ has a single component. The
Mori-Zwanzig equation becomes

∂

∂t
etLx1 = etLPLx1 + etQLQLx1 +

∫ t

0

e(t−s)LPLesQLQLx1ds,
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or

∂

∂t
φ1(x, t) = (Lx1, x1)φ1(x, t) + etQLQLx1

+

∫ t

0

(LQesQLQLx1, x1)φ1(x, t− s) ds

= (Lx1, x1)φ1(x, t) + etQLQLx1

−
∫ t

0

(esQLQLx1, QLx1)φ1(x, t− s) ds, (6.25)

where we have again inserted a harmless factor Q in front of eQL,
assumed that L was skew-symmetric as above, and for the sake of
simplicity also assumed (x1, x1) = 1 (if the last statement is not true,
the formulas can be adjusted by the insertion of a suitable constant).
Taking the inner product of (6.25) with x1, you find

∂

∂t
(φ1(x, t), x1) = (Lx1, x1)(φ1(x, t), x1) + (etQLQLx1, x1)

−
∫ t

0

(esQLQLx1, QLx1)(φ1(x, t− s), x1) ds

= (Lx1, x1)(φ1(x, t), x1)

−
∫ t

0

(esQLQLx1, QLx1)(φ1(x, t− s), x1) ds, (6.26)

because PetQLQLx1 = (etQLQLx1, x1)x1 = 0 and, hence,
(etQLQLx1, x1) vanishes as well. Multiply equation (6.26) by x1, and
remember that Pφ1(x, t) = (φ1(x, t), x1)x1. You find

∂

∂t
Pφ1(x, t) = (Lx1, x1)Pφ1(x, t)

−
∫ t

0

(esQLQLx1, QLx1)Pφ1(x, t− s) ds. (6.27)

You observe that the covariance (φt(x, t), x1) and the projection of φ1

on x1 obey the same homogeneous linear integral equation. This is
a ”fluctuation-dissipation theorem of the first kind”, which embodies
the Onsager principle, according to which spontaneous fluctuations in
a system decay at the same rate as perturbations imposed by external
means when both are small (so that the linear projection is adequate).
This reasoning can be extended to cases where there are multiple re-
solved variables, and this is often done with the added simplifying
assumption that (xi, xj) = 0 when i 6= j. We omit the details.
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6.6. Scale Separation and Weak Coupling

There are situations where one knows that the noise term in the
Mori-Zwanzig equations can be approximated by white noise, and then
the memory term becomes local in time and everything is simpler. This
happens in particular when there is scale separation between the re-
solved and unresolved variables. This means that there is a significant
gap between the frequencies of the resolved components φ̂ and the fre-
quencies of the unresolved components φ̃. The heuristic reason is clear:
If the resolved variables take a time ∆t to vary significantly, during this
time interval the unresolved variables make many uncorrelated contri-
butions to the motion of the resolved variables, whose effect can be
described by a sum of independent Gaussian variables (by the central
limit theorem) and, hence, summarized as the effect of a white noise.
A closely related situation is that of “weak coupling,” where the varia-
tions of φ̃ affect φ̂ by a small amount; it takes many of them to have a
significant effect and their cumulative effect is that of a large number of
independent contributions. The detailed description of these situations
requires asymptotic solutions of a singular perturbation problems, as
we illustrate by an example.

Consider a particle at a point x whose velocity v can be either +1
or −1; it jumps from one value to the other in every short time interval
dt with a probability dt, with independent probabilities for a jump on
two disjoint intervals. Let the position x of the particle be given by

ẋ = εv(t),

or

x(t) = ε

∫ t

0

v(s) ds.

The presence of the parameter ε, which will soon be made small, em-
bodies a weak coupling assumption. The variable x is analogous to a
resolved variable; for simplicity, we present a model in which the unre-
solved, “fast,” variable v is not determined by an equation but rather
by fiat.

The probability density function W (x,±1, t) is the probability that
the particle be between x and x + dx while v is either +1 or −1. It
can be thought of as a vector W = (W+,W−), where W+(x, t) is the
probability that the particle be between x and x+dx with v = +1 with
a similar definition forW−. W+(x, t+δt) equals (1−δt) (the probability
that there is no change in velocity) times W (x− εδt) (because particles
moving at speed ε go from x − εδt to x in a time δt), plus δtW−(x, t)
(because of jumps from the minus state). Collecting terms, expanding
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W (x− εδt), dividing by δt, and letting δt→ 0, as in Section 3.9, yields

W+
t = −εW+

x +W− −W+,

and, similarly,

W−
t = εW−

x +W+ −W−,

where the subscripts x and t denote differentiation. Define

U = W+ −W−, V = W+ +W−;

one finds

Ut = −εVx − 2U, Vt = −εUx,
and, hence,

Utt = ε2Uxx − 2Ut.

Once U is found, V , W+, and W− follow immediately.
One does not expect, with the weak coupling when ε is small, to

have a significant displacement x of a particle when t is of order 1. We
therefore introduce a slow timescale such that, when a unit time has
passed on this slower scale, one can expect a significant displacement
to have occurred; we do this by setting τ = ε2t. The equation for
U = U(x, τ) becomes

ε2Uττ = Uxx − 2Uτ ,

and, in the limit ε → 0, we obtain Uτ = 1
2
Uxx, a heat equation that

can be solved by examining particles undergoing BMs, as promised.
This is of course just a reflection of the fact that by the central limit
theorem, the sum of the independent contributions to x due to the
assumed velocity adds up over time to a Gaussian variable.

Similarly, one can see that a heavy particle bombarded by lighter
particles undergoes a displacement that, over the proper time scales,
satisfies the Langevin equation as written in the first section of this
chapter. The ratio of masses provides the needed ε.

6.7. Long Memory and the t-Model

In the previous section we considered situations where the memory
could be viewed as having zero range (i.e., where the covariances that
appear in the Mori-Zwanzig identity can be viewed as delta functions).
We saw that this happened when there was separation of scale, i.e.,
when the variables omitted were much faster than the ones resolved.
We now consider the opposite situation, where the unresolved variables
are in fact slow. This corresponds in particular to the situation in
hydrodynamics, where persistent shocks and vortices on all scales slow
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down the decay of temporal correlations. If the unresolved variables
are slow one can expect the memory to be long and the integrand in the
memory term to vary slowly; under these conditions the Mori-Zwanzig
formula may simplify again, in a way different from what happens in
the short-memory case, leading to what is known as the “t-model”.

The easiest derivation of the t-model is as follows. If the integrand
in the memory term varies slowly (in s, the variable of integration in
that term), one can expand the integrand in powers of s and keep only
the first, constant term. This leads to∫ t

0

e(t−s)L
PLesQLQLxj ds ∼=

∫ t

0

etLPLQLxj ds = tetLPLQLxj. (6.28)

The integral has disappeared, all that remains is the coefficient t. The
origin of the time t is of course the time where the partial data were
known; we have always assumed that such a privileged time existed.
Note also that higher order approximations, all without an integral
term, can be obtained by keeping terms beyond the first in the expan-
sion of the memory integrand. Another derivation of the same result
starts from the approximation

etQL ∼= etL, (6.29)

in the memory term. The rationale for this approximation is that,
if the “noise” varies slowly, it cannot be much influenced on a short
time scale by the variation of the resolved variables; if that is the case
etQL ∼= etL when applied to vectors in the noise space. A little algebra
then recovers the expression (6.28) for the memory term.

The replacement of the memory integral by a Markovian term is a
major simplification, but not the end of all difficulties. In particular,
one still has to derive and sample the noise term, with or without
the assumption (6.29). We now make the further assumption that the
noise is small enough so that, for reasonable functions F (φ), one has
approximately

PF (φ) = F (Pφ). (6.30)

(remember that P denotes averaging with respect to partial initial
data.) This assumption has to be checked in each application of the
resulting formulas; in physics this kind of approximation is called a
“mean-field approximation”.

With these assumptions, and after multiplication by P, the Mori-
Zwanzig equations reduce to:

d

dt
PetLx̂ = PetLPLx̂+ tPetLPLQLx̂. (6.31)
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This is the “t-model”, which is deterministic (no random term) and
Markovian.

As an example, consider a model consisting of two linear oscillators
with a nonlinear coupling, whose Hamiltonian is

H(φ) =
1

2

(
φ2

1 + φ2
2 + φ2

3 + φ2
4 + φ2

1φ
2
3

)
,

with (φ1, φ2) and (φ3, φ4) canonical pairs of coordinates. We encoun-
tered this model in exercises with the notations φ1 = q1, φ2 = p1, φ3 =
q2, φ4 = p2. The resulting equations of motion are

d

dt
φ1 = φ2,

d

dt
φ2 = −φ1(1 + φ2

3),

d

dt
φ3 = φ4,

d

dt
φ4 = −φ3(1 + φ2

1).

Suppose one wants to solve only for φ̂ = (φ1, φ2), with initial data
x̂ = (x1, x2). Assume the initial data (x3, x4) are sampled from a
canonical density with temperature T = 1. A quick calculation yields

E[x2
3|x1, x2] =

1

1 + x2
1

.

The advance in time described by the multiplication by etL requires
just the substitution x̂ → φ̂. If one commutes the nonlinear func-
tion evaluation and the conditional averaging as suggested above, and
writes,

Φ(t) = Pφ̂ = E[φ̂|x̂],

one finds

PetLPLx1 = PetLx2 = Φ2,

PetLPLx2 = PetLR̄2(x̂) = PR̄2(φ̂(x̂, t)) ∼ −Φ1

(
1 +

1

1 + Φ2
1

)
,

where R̄(x̂) = E[R(x)|x̂], so that

d

dt
Φ1 = Φ2,

d

dt
Φ2 = −Φ1

(
1 +

1

1 + Φ2
1

)
− 2t

Φ2
1Φ2

(1 + Φ2
1)2
. (6.32)
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For the sake of completeness, we present intermediate steps in this
calculation for the second equation:

Lx2 = −x1(1 + x2
3),

PLx2 = −x1

(
1 +

1

1 + x2
1

)
,

QLx2 = −x1(1 + x2
3) + x1

(
1 +

1

1 + x2
1

)
,

LQLx2 = x2

[
−(1 + x2

3) +

(
1 +

1

1 + x2
1

)
+

2x2
1

(1 + x2
1)2

]
− 2x1x3x4,

PLQLx2 = − 2x2
1x2

(1 + x2
1)2
.

The last term in (6.32) represents the damping due to the loss of pre-
dictive power of partial data; the coefficient of the last term increases in
time and one may worry that this last term eventually overpowers the
equations and leads to some odd behavior. This does not happen. In-
deed, one can prove the following: If the system (6.18) one starts from
is Hamiltonian with Hamiltonian H, if the initial data are sampled from

an initial canonical density conditioned by partial data x̂, and if Ĥ is
the “renormalized’ Hamiltonian Ĥ = −T log

∫
e−H(φ1,φ2,φ3,φ4)/Tdφ3dφ4

(see problem 5.9), then with the t-model (d/dt)Ĥ ≤ 0, showing that

the components of φ̂ decay as they should. The proof requires a mi-
nor technical assumption (that the Hamiltonian H can be written as
the sum of a function of p and a function of q, a condition commonly
satisfied) and we omit it.

There are other, more sophisticated and more complicated, ways of
improving predictions when memory is short, long, or neither. Their
analysis is beyond the scope of this volume.

6.8. Exercises

1. Find the Fokker-Planck equation that corresponds to the Langevin
equations as it is written in Section 6.1, and then show that the
canonical density is a stationary solution of the Fokker-Planck equa-
tion only if the fluctuation-dissipation relation holds.

2. Derive the Fokker-Planck equation at the end of Section 6.1, and
then derive the fluctuation-dissipation relation as sketched in the
text.
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3. Check the relationships

E

[(
qj(0)− γjx(0)

f 2
j

)(
qk(0)− γkx(0)

f 2
k

)]
=
δjkT

f 2
j

,

E[pj(0)pk(0)] = Tδjk,

E[Fn(t)Fn(t− t′)] = −TKn(t′)

at the end of Section 6.2.

4. Consider the ordinary differential equation dφ(x, t)/dt = 1, φ(x, 0) =
x, construct the corresponding Liouville equation, solve this Liou-
ville equation explicitly when the initial datum is u(x, 0) = x, and
verify that u(x, t) = φ(x, t). Suppose the density of the initial values
x is f(x). Find the density f(φ, t) of φ(x, t) at time t, and verify
the remark at the end of Section 6.3.1.

5. Check the derivation of the approximation of the model in Sec-
tion 6.7.

6. For the previous problem, determine Φ1,2(t) for 0 ≤ t ≤ 2 in the
following two ways: (i) approximately by solving the approximat-
ing two-by-two system of ordinary differential equations, and (ii)
by repeatedly sampling x3, x4 given x1, x2, solving the four-by-four
system and averaging. Compare the two solutions.
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