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Preface

This monograph contains recent developments in the control theory of linear
discrete-time stochastic systems subject both to multiplicative white noise
and to Markovian jumping. It provides solutions for various theoretical and
practical aspects in connection with this class of stochastic systems includ-
ing: stability analysis, optimal control, robust stabilization, estimation and
filtering, specific numerical algorithms, and computational procedures.

Interest in the topics of the book was generated not only because the
considered class of stochastic systems includes as particular cases systems
with multiplicative noise and systems with Markov parameters, intensively
investigated over the last four decades, but also due to the increasing area
of applications in which such dynamic models are used. Engineering domains
including communications, fault detection and isolation, robust control, sto-
chastic filtering, navigation, and so on, finance, economics, and biology, are
only some of the major fields in which stochastic models using Markov para-
meters and multiplicative white noise naturally occur.

The monograph can be regarded as a discrete-time counterpart of the
book Mathematical Methods in Robust Control of Linear Stochastic Systems
written by the same authors a few years ago and published by Springer. In fact
the discrete-time framework raises many specific aspects both from theore-
tical and procedural points of view. Therefore when the idea of writing this
book was born the authors kept in mind to emphasize even these particu-
larities of the time-domain setting. Another intention was to provide the
reader with all prerequisites and analysis tools for a comfortable understand-
ing of the stochastic version of some results firstly derived in the deterministic
case, actually belonging to so-called modern control theory. Special attention
has been devoted to the numerical aspects determined by the application of
these results from stochastic control theory. Thus, for the theoretical results
requiring nonstandard numerical procedures, specific algorithms are proposed
and illustrated by numerical examples obtained using common commercial
software packages. In fact the book does not emphasize the whole poten-
tial of the proposed control methods for systems that simultaneously include
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multiplicative noise components and Markov parameters, but it gives all theo-
retical and numerical details necessary for the readers to develop their own
applications when this is suitable with such stochastic modeling.

The target audience of the book includes researchers in theoretical and
applied mathematics, as well as graduate students interested in stochastic
modeling and control. Because the authors’ intention was to provide a self-
contained text, some basic concepts, terminology, and some well-known results
are briefly stated in the first chapter where an outline of the book is also
presented.

The authors are deeply indebted to Professors O.L.V. Costa, Peng Shi,
and I. Yaesh for fruitful discussions on some of the theoretical results and
numerical illustrations presented in the book.

We also should like express our gratitude to Mrs. Viorica Dragan and
Mr. Catalin Dragan for their hard work and patience in writing the manuscript
of this book.

Finally, the authors are very grateful to the publishers for the constant
support and advice offered during this project.
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1

Elements of probability theory

In this introductory chapter we collect several definitions and basic results
from probability theory which are used in the developments in the next
chapters of the book. Our goal is to present in a unified way some concepts
that are presented in different ways in other bibliographic sources. Also we
want to establish the basic terminology used in this book. The known results
in the field are presented without proofs indicating only the bibliographic
source. The less-known results or those which are in less accessible biblio-
graphic sources are presented with their proofs. In the last part of the chapter
we describe the classes of stochastic systems under consideration in the book.

1.1 Probability spaces

Let Ω be a nonempty set and 2Ω be the family of its subsets.

Definition 1.1 A family F ⊆ 2Ω is called a σ-algebra if the following condi-
tions are simultaneously fulfilled.

(i) Ω ∈ F .
(ii) If A ∈ F then Ω \A ∈ F .

(iii) For all sequences {Ak}k≥1 ⊂ F ,
⋃∞

k=1 Ak ∈ F .

In this case the pair (Ω,F) is known as a measurable space.
Usually if Ω is a finite set or a countable set, then F coincides with 2Ω.
If M ⊆ 2Ω then σ[M] stands for the smallest σ-algebra that contains M.

It is called the σ-algebra generated by M.
For example, the smallest σ-algebra containing the set A ⊂ Ω is σ[A] =

{∅, A,Ω \A,Ω}.
If F ,G ⊂ 2Ω are two σ-algebras then F ∨ G stands for the smallest σ-

algebra that contains both the σ-algebra F and the σ-algebra G (i.e., F ∨ G =
σ[F ,G]). The operator ∨ may be extended in a natural way to the case of
several σ-algebras.

1

© Springer Science + Business Media, LLC 2010
Stochastic Systems, DOI 10.1007/978-1-4419-0630-4_1,

Mathematical Methods in Robust Control of Discrete-Time Linear V. Dragan et al., 



2 1 Elements of probability theory

The Borel σ-algebra B(Rn) is the σ-algebra generated by the family of the
open subsets of Rn. It can be proved that B(Rn) coincides with the σ-algebra
generated by the family

M = {(−∞, a1]× (−∞, a2] × · · · (−∞, an]|ai ∈ R, 1 ≤ i ≤ n}. (1.1)

In the case n = 1 we write B(R) for the Borel σ-algebra on R.

Definition 1.2 A collection M of subsets of Ω is called a π-system if the
following conditions are simultaneously fulfilled.

(i) ∅ ∈ M.
(ii) If A,B ∈M then A

⋂
B ∈ M.

If M is the family described in (1.1) then M
⋃
{∅} is a π-system.

The next result is often used in the following.

Theorem 1.1 Let M be a π-system and G be the smallest family of subsets
of Ω having the properties:

(i) M ⊆ G.
(ii) If A ∈ G then Ω \A ∈ G.

(iii) If {Ak}k≥1 ⊆ G is a sequence such that Ai

⋂
Aj = ∅ for all i 
= j, then⋃∞

k=1 Ak ∈ G.

Under these conditions G = σ[M].

Proof. Because σ[M] verifies (i), (ii), and (iii) in the statement, it follows
that G ⊂ σ([M]). To prove the opposite inclusion we show first that G is a
π-system. Let A ∈ G and define G(A) = {B;B ∈ G and A ∩B ∈ G}. Because
A \ B = Ω \ [(A ∩ B) ∪ (Ω \ A)], it is easy to check that G(A) verifies the
conditions (ii) and (iii) and if A ∈M then (i) is satisfied. Hence for A ∈ M
we have G(A) = G; consequently if A ∈ M and B ∈ G then A ∩ B ∈ G. But
this implies G(B) ⊃ M and therefore G(B) = G for any B ∈ G. Hence G is
a π-system and now, inasmuch as G verifies (ii) and (iii) it is easy to verify
that G is a σ-algebra and the proof is complete. �
Definition 1.3 Let (Ω,F) be a measurable space. A function P : F → [0, 1]
is called a probability measure if it has the properties:

(i) P(∅) = 0,P(Ω) = 1.
(ii) For all sequences {Ak}k≥1 ⊆ F , with Ai ∩ Aj = ∅ for all i 
= j, we have

P [
⋃∞

k=1 Ak] =
∑∞

k=1 P [Ak].

A triple (Ω,F ,P) where Ω is a nonempty set F ⊂ 2Ω is a σ-algebra
and P : F → [0, 1] is a probability measure, is called a probability space.
A set A ∈ F is called an event and P(A) is the probability of the
event A.

Definition 1.4 We say that the σ-algebras G1, . . . ,Gm,Gi ⊆ F , i = 1, . . . ,m
are mutually independent if P [

⋂m
i=1 Ai] = Πm

i=1P(Ai) for all Ai ∈ Gi,
1 ≤ i ≤ m.
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1.2 Random variables

1.2.1 Definitions and basic results

Let (Ω,F), (Ω′,F ′) be two measurable spaces.

Definition 1.5

(a) A function ξ : Ω → Ω′ is called an (F ,F ′)-measurable function if for all
A′ ∈ F ′ we have ξ−1(A′) = {ω ∈ Ω|ξ(ω) ∈ A′} ∈ F .
A function ξ, (F ,F ′)-measurable is called an (F ,F ′) random variable or
simply a random variable if no confusion is possible.

(b) A function ξ : Ω → R that is (F ,B[R])-measurable is called a real random
variable or simply a random variable (if no confusions is possible).

(c) A function ξ : Ω → Rn that is (F ,B[R])-measurable is called a random
vector.

The following results are well known.

Proposition 1.1 A function ξ : Ω → R is a random variable if and only if
for all a ∈ R the sets {ω ∈ Ω|ξ(ω) ≤ a} are in F . �

Proposition 1.2 If ξ, η, ξi, i ≥ 1 are real random variables and α, β ∈ R,
then αξ + βη, |ξ|, ξη are also random variables. If the sequence {ξi}i≥1 is
convergent then its limit is also a random variable. �

Definition 1.6 A random variable φ : Ω → R that takes a finite number of
values is called an elementary random variable or a simple random variable.

If A ⊆ Ω,χA stands for the indicator function of the set A, that is,
χA(ω) = 1 if ω ∈ A and χA(ω) = 0 if ω ∈ Ω \A.

If A ∈ F then χA is a simple random variable.

Proposition 1.3 If ϕ : Ω → R is a simple random variable taking the values
a1, a2, . . . , an then ϕ(ω) =

∑n
i=1 aiχAi(ω), ω ∈ Ω, where Ai = {ω ∈ Ω|ϕ(ω) =

ai}, Ai ∈ F , 1 ≤ i ≤ n. �

At the end of this subsection we remark that each random variable
ξ :Ω→R can be written as ξ = ξ+ − ξ−, where ξ+ = 1

2 (|ξ| + ξ), ξ− =
1
2 (|ξ| − ξ), ξ+ ≥ 0, ξ− ≥ 0.

If ξ and η are two random variables such that P{ω ∈ Ω|ξ(ω) = η(ω)} = 1
then we write ξ = η a.s. (ξ = η almost surely).

1.2.2 Integrable random variables. Expectation

Let (Ω,F ,P) be a given probability space. Firstly we recall the following.
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Theorem 1.2 If ξ : Ω → R is a nonnegative random variable then there
exists an increasing sequence of nonnegative elementary random variables
{ϕj}j≥1 such that limj→∞ ϕj(ω) = ξ(ω), ω ∈ Ω.

Proof. It follows immediately taking ϕj(ω) =
∑2jj+1

i=1 ((i−1)/2j)χAij (ω), with
Aij = {ω ∈ Ω|(i − 1/2j) ≤ ξ(ω) < i/2j}, i = 1, 2, . . . , j2j , A2jj+1,j = {ω ∈
Ω|ξ(ω) ≥ j}. �

Definition 1.7

(a) If ϕ =
∑n

i=1 aiχAi is a simple random variable then, by definition,∫
Ω ϕdP =

∑n
i=1 aiP(Ai).

(b) If ξ : Ω → R is a nonnegative random variable then, by definition,∫
Ω

ξdP = limk→∞
∫

Ω
ϕkdP where ϕk, k ≥ 1 is an increasing sequence

of nonnegative simple random variables that converge to ξ.

It can be shown that
∫

Ω ξdP is independent of the increasing sequences of
simple random variables ϕk, k ≥ 1, which converge to ξ.

Definition 1.8

(a) We say that a random variable ξ : Ω → R possesses an integral if either
∫

Ω

ξ+dP < ∞ (1.2)

or
∫

Ω

ξ−dP < ∞. (1.3)

In this case we write
∫

Ω

ξdP =
∫

Ω

ξ+dP −
∫

Ω

ξ−dP . (1.4)

(b) A random variable ξ : Ω → R is called an integrable random variable if
(1.2) and (1.3) are simultaneously true.

(c) We say that a random vector ξ : Ω → Rm, ξ = (ξ1, . . . , ξm)T is integrable
if its components {ξj}j= ¯1,m are integrable random variables.

As usual the superscript T stands for the transpose of a vector or a matrix.
Because |ξ| = ξ+ + ξ− it follows that a random variable ξ : Ω → R is

integrable iff
∫

Ω
|ξ|dP < ∞.

If ξ : Ω → R is an integrable random variable one denotes E[ξ] =
∫

Ω ξdP ;
E[ξ] is called the expectation of the random variable ξ. In the case of the
random vector ξ = (ξ1, . . . , ξm)T one sets E[ξ] = (E[ξ1], . . . , E[ξm])T . The
definition of the expectation can be extended in a natural manner to matrix-
valued random variables.

For each p ≥ 1,Lp(Ω,F ,Rm) is the set of random vectors ξ with the
property E[|ξ|p] < ∞.
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1.2.3 Independent random variables

If ξ is a random variable or a random vector then the smallest sub-σ-algebra
of F with respect to which ξ is a measurable function is denoted by σ[ξ] and
it is called the σ-algebra generated by ξ.

If {ξi}i∈I is a family of random variables or random vectors then σ[ξi, i ∈ I]
stands for the smallest σ-algebra with respect to which all ξi are measurable
functions.

Definition 1.9

(a) We say that the random variables (or random vectors) ξ1, ξ2, . . . , ξm are
independent if σ[ξ1], . . . , σ[ξm] are independent σ-algebras.

(b) We say that the random vector ξ is independent of σ-algebra G ⊂ F if the
σ-algebra σ[ξ] is independent of the σ-algebra G.

Proposition 1.4 Let x1, . . . , xm be independent integrable random variables.
Set x = x1x2 . . . xm. Then

(i) x is an integrable random variable.
(ii) E[x] = Πm

i=1E[xi]. �

1.3 Conditional expectation

Let G ⊂ F be a σ-algebra and x an integrable random variable. By the Radon–
Nicodym theorem it follows that there exists a unique (mod P) random vari-
able y with the following properties.

(a) y is measurable with respect to G.
(b) E[|y|] < ∞.
(c)
∫

A ydP =
∫

A xdP for all A ∈ G.

The random variable y with these properties is denoted by E[x|G] and is
called the conditional expectation of x with respect to the σ-algebra G.

By definition, for all A ∈ F ,

P(A|G) := E[χA|G]

and it is called the conditional probability of the event A with respect to the
σ-algebra G. By definition

E[x|y1, . . . , yn] := E[x|σ[y1, . . . , yn]].

If x is an integrable random variable and A ∈ F with P(A) > 0, then by
definition

E[x|A] :=
∫

Ω

xdPA,

where PA : F → [0, 1] by PA(B) = ((P(A∩B))/(P(A))) for all B ∈ F .
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E[x|A] is called the conditional expectation of x with respect to the event A.
Because

PA(B) =
1

P(A)

∫

B

χAdP ,

we have
E[x|A] =

1
P(A)

∫

Ω

(xχA)dP =
1

P(A)

∫

A

xdP .

By definition

P(B|A) := PA(B), A ∈ F , B ∈ F ,P(A) > 0.

Obviously, P [B|A] = E[χB|A].

Theorem 1.3 Let x, y be integrable random variables and G,H ⊂ F ,
σ-algebras; then the following assertions hold.

(i) E(E[x|G]) = E[x].
(ii) E[E[x|G]|H] = E[x|H] a.s.if G ⊃ H.

(iii) E[(αx + βy)|G] = αE[x|G] + βE[y|G] a.s. α, β ∈ R.
(iv) E[xy|G] = yE[x|G] a.s. if y is measurable with respect to G and xy is

integrable.
(v) If x is independent of G then E[x|G] = E[x] a.s.

(vi) x ≥ 0 implies E[x|G] ≥ 0 a.s.
(vii) Let x, xk, k ≥ 1 be integrable random variables. If limk→∞ xk(ω) = x(ω)

a.s. and there exists a positive and integrable random variable ψ such
that |xk(ω)| ≤ ψ(ω) a.s., k ≥ 1, then E[x|G] = limk→∞ E[xk|G] a.s. �

Remark 1.1 It is easy to verify the following.

(a) If x is an integrable random variable and y is a simple random variable
with values c1, . . . , cn then

E[x|y] =
∑

j∈M

χy=cjE[x|y = cj ]a.s.,

where M = {j ∈ {1, 2, . . . , n},P{y = cj} > 0}.
(b) If A ∈ F , GA = {∅, Ω,A,Ω \ A}, and x is an integrable random variable

then

E[x|GA] =

{
χAE[x|A] + χΩ\AE[x|Ω \A] if 0 < P (A) < 1

Ex if P(A) = 0 or P(A) = 1

Therefore E[x|GA] takes at most two values.
(c) If A1, A2, . . . , An ∈ F are such that Ai∩Aj = ∅ for all i 
= j and

⋃n
i=1 Ai =

Ω then we have

P(B) =
n∑

i=1

P(B|Ai)P(Ai) (1.5)

for all B ∈ F (with the convention that P(B|Ai) = 0 if P(Ai) = 0).
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1.4 Markov chains

1.4.1 Stochastic matrices

In this subsection we recall several issues concerning stochastic matrices.
This kind of matrices plays a crucial role in the definition and characteri-
zation of Markov chains. More details concerning stochastic matrices as well
as sequences of stochastic matrices may be found in [32].

Definition 1.10

(a) A matrix P ∈ RN×N , P = {p(i, j)}i,j∈1,N is called a stochastic matrix if
p(i, j) ≥ 0, i, j ∈ 1, N and

∑N
j=1 p(i, j) = 1, i = 1, . . . , N .

(b) A stochastic matrix P is a nondegenerate stochastic matrix if all its
columns are not identically zero.

Proposition 1.5 ([32]) If P ∈ RN×N is a stochastic matrix then the
following Cesaro-type limit limk→∞ 1/k

∑k
i=0 P i exists. Moreover if Q =

limk→∞(1/k)
∑k

i=0 P i then Q is also a stochastic matrix that satisfies PQ =
QP = Q. �

1.4.2 Markov chains

Throughout this book, D stands for the following finite set D = {1, 2, . . . , N},
where N ≥ 1 is a fixed integer. Let (Ω,F ,P) be a given probability space.

Definition 1.11 A Markov chain is a triple ({ηt}t≥0,P,D), where for each
t ≥ 0, ηt : Ω → D is a random variable, P = {Pt}t≥0 is a sequence of
stochastic matrices Pt ∈ RN×N with the property:

P{ηt+1 = j|Gt} = pt(ηt, j) a.s. (1.6)

for all t ≥ 0, and j ∈ D, where Gt = σ[η0, η1, . . . , ηt], t ≥ 0.
{Pt}t≥0 is called the sequence of transition probability matrices and D is

the set of the states of the Markov chain.
If the sequence P is constant, that is, Pt = P for all t ≥ 0, then

({ηt}t≥0, P,D) is called an homogeneous Markov chain.
The following properties of the Markov chains are repeatedly used in this

book.

Theorem 1.4 ([32]) If ({ηt}t≥0,P,D) is a Markov chain then the following
hold.

(i) P{ηs = is, ηs+1 = is+1, . . . , ηt = it}
= P{ηs = is}ps(is, is+1)ps+1(is+1, is+2) · · · pt−1(it−1, it) for all t ≥ s+1,
s ≥ 0.
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(ii) P(ηs = is, ηs+1 = is+1, . . . , ηt = it|ηs−1 = i)
= ps−1(i, is)ps(is, is+1) · · · pt−1(it−1, it) for all t ≥ s ≥ 1, i ∈ D, with the
property P(ηs−1 = i) > 0.

(iii) If ϕ is a bounded random variable that is σ[ηs, s ≥ t]-measurable, then
E[ϕ|Gt] = E[ϕ|ηt] a.s. �

For each t ≥ 0 we set πt = (πt(1), . . . , πt(N)) the distribution of the
random variable ηt; that is, πt(i) = P(ηt = i), i ∈ D. Clearly πt(i) ≥ 0, 1 ≤
i ≤ N and

∑N
i=1 πt(i) = 1, t ≥ 0.

Consider the set MN = {π = (π(1), . . . , π(N))|π(i) ≥ 0, 1 ≤ i ≤ N,
∑N

i=1 π(i) = 1}. Hence πt ∈MN for all t ∈ Z+.
Based on (i) in Theorem 1.4 for t = s + 1 we may write

πs+1(i) =
N∑

j=1

P{ηs = j, ηs+1 = i} =
N∑

j=1

πs(j)ps(j, i).

This shows that the sequence {πt}t≥0 of the distribution of random vari-
ables {ηt}t≥0 solves the linear equation:

πt+1 = πtPt, t ≥ 0. (1.7)

Hence the sequence {πt}t≥0 of the distribution of the random variables ηt,
t ≥ 0, is completely determined by the sequence P = {Pt}t≥0 of the transition
probability matrices and by the initial distribution π0 ∈MN . It is known that
in the case of a standard continuous-time Markov process, πt(i) > 0 for all
i ∈ D, t > 0 if π0(j) > 0 for all j ∈ D. From (1.7) we see that in the
discrete-time case it is possible to have πt(i) = 0 for some t ≥ 1 and i ∈ D
even if π0(j) > 0, for all j ∈ D. The consequences of such aspects specific
to the discrete-time case become clearer in Chapter 3 where the difficulties
arising in connection with characterization of exponential stability in the mean
square for discrete-time linear stochastic systems with matrix switching are
investigated.

The next obvious result can be proved by mathematical induction.

Proposition 1.6 Let ({ηt}t≥0,P,D) by a Markov chain. Then:

(i) If for each t ≥ 0, Pt is a nondegenerate stochastic matrix, then πt(j) > 0
for all t ≥ 1, 1 ≤ j ≤ N , provided that π0(i) > 0 for all 1 ≤ i ≤ N .

(ii) Conversely, if πt(i) > 0 for all t ≥ 0 and all i ∈ D then for every t ≥ 0,
Pt is a nondegenerate stochastic matrix. �

Throughout the book the following notation is often used.

Ds = {i ∈ D|πs(i) > 0}. (1.8)

With this notation the statement of Proposition 1.6 becomes: “The matrices
Pt are nondegenerate stochastic matrices for all t ≥ 0, iff Dt = D for all t ≥ 1,
if D0 = D.”
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In many control problems for discrete-time linear stochastic systems with
Markovian jumping over an infinite time horizon we are interested in knowing
if there exist limt→∞ πt(i). Also we are interested in knowing under which
conditions these limits are independent of initial distributions π0.

The next result provides an answer to this issue in the case of an homo-
geneous Markov chain. If Pt = P for all t ≥ 0 then from (1.7) we have

πt = π0P
t. (1.9)

Setting pt(i, j), 1 ≤ i ≤ N, 1 ≤ j ≤ N the elements of the matrix P t, from
(1.9) one obtains that

πt(i) =
N∑

j=1

π0(j)pt(j, i), t ≥ 1, 1 ≤ i ≤ N (1.10)

for all π0 = (π0(1), . . . , π0(N)) ∈ MN .

Theorem 1.5 If ({ηt}t≥0, P,D) is an homogeneous Markov chain then the
following are equivalent.

(i) There exists θ = (θ(1), . . . , θ(N)) ∈ MN , such that limt→∞ πt(i, π0) =
θ(i), 1 ≤ i ≤ N , for all π0 = (π0(1) · · ·π0(N)) ∈MN , where πt(i, π0) are
given by (1.10).

(ii) There exists θ = (θ(1), . . . , θ(N)) ∈MN such that limt→∞ pt(i, j) = θ(j)
for all i, j ∈ D.

(iii) There exist t0 ≥ 1, j ∈ D such that pt0(i, j) > 0 for all i ∈ D.

Proof. To prove the implication (i) → (ii) we chose

π̃i = (π̃i(1), . . . , π̃i(N)) ∈ MN , i ∈ D

defined as follows,

π̃i(i) = 1, π̃i(j) = 0, j 
= i.

From (1.10) one sees that πt(j, π̃i) = P t(i, j). This shows that (ii) holds if
(i) is true. We now prove implication (ii) → (iii). Let θ ∈ MN be such that
the equality from (ii) takes place.

Because
∑N

j=1 θ(j) = 1 we deduce that there exists j ∈ D such that θ(j) >
0. From the definition of the limit it follows that for each i ∈ D there exists
t0(i) ≥ 1 such that pt(i, j) > 0 for all t ≥ t0(i). Take t0 = maxi∈D{t0(i)}. One
obtains that pt0(i, j) > 0 for all i ∈ D. This means that (iii) is fulfilled if (ii)
holds.

It remains to prove that (iii) → (i). If (iii) holds, then from Chapter V
in ([32]) it follows that there exists θ ∈ MN , such that limt→∞ pt(i, j) =
θ(j), i, j ∈ D.
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Based on (1.10) we may write

lim
t→∞πt(j, π0) = lim

t→∞

N∑

i=1

π0(i)pt(i, j) =
N∑

i=1

π0(i)θ(j) = θ(j)

for all π0 = (π0(1), . . . , π0(N)) ∈ MN and thus the proof ends. �

At the end of this section we provide a sufficient condition that guaran-
tees the existence of a positive constant δ > 0 such that πt(i) ≥ δ for all
t ≥ 0, i ∈ D.

In Chapter 3 we show how such a condition is involved in the investigation
of the exponential stability in the mean square.

Proposition 1.7 Let {{ηt}t≥0, P,D} be an homogeneous Markov chain.
If there exists

Q = lim
t→∞P t (1.11)

and additionally

qii > 0, ∀i ∈ D, (1.12)

qii being the diagonal elements of Q, then there exists δ > 0 such that

πt(i) = P{ηt = i} ≥ δ (1.13)

for all t ≥ 0, if π0(i) > 0 for all i ∈ D.

Proof. One can see that if (1.11)–(1.12) are valid then the matrix P is a
nondegenerate stochastic matrix.

Set δ1 = 1
2 min{qii, i ∈ D}. If pt(i, j) are elements of the matrix P t, then

from (1.12) it follows that there exists t0 ≥ 0 such that pt(i, i) ≥ δ1 for all
t ≥ t0 and i ∈ D. From (1.10) one obtains that πt(i) ≥ π0(i)δ1.

Setting δ2 = min{π0(i)δ1, i ∈ D} we deduce that πt(i) ≥ δ2, for all t ≥ t0.
Because P is a nondegenerate stochastic matrix by Proposition 1.6 we have
πt(i) > 0 for all t ≥ 0 and i ∈ D. If t0 ≥ 1, set δ3 = min{πt(i); 0 ≤ t ≤
t0 − 1, i ∈ D}. Thus one obtains that (1.13) is valid for δ = min{δ2, δ3}. �

1.5 Some remarkable sequences of random variables

In the developments of this book we assume that the controlled systems under
consideration are affected by two classes of stochastic perturbations:

(a) A Markov chain ({ηt}t≥0,P,D)
(b) A sequence of independent random vectors {w(t)}t≥0, where w(t) :Ω → Rr
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Throughout this book, by a Markov chain we understand any triple
({ηt}t≥0,P,D) where P = {Pt}t≥0 is a given sequence of stochastic matrices,
D = {1, 2, . . . , N} is a fixed finite set, and {ηt}t≥0 is an arbitrary sequence of
random variables ηt : Ω → D that verifies (1.6).

Concerning the sequences {ηt}t≥0, {w(t)}t≥0 the following assumptions are
made.

H1. E[w(t)] = 0, E[|w(t)|2] < ∞, E[w(t)wT (t)] = Ir, t ≥ 0, with Ir the iden-
tity matrix of size r.

H2. For each t ≥ 0, the σ-algebra Ft is independent of the σ-algebra Gt,
where Ft = σ[w(0), . . . , w(t)], and Gt = σ[η0, η1, . . . , ηt].

Remark 1.2 If w(t) is a sequence of random vectors w(t) : Ω → Rr such
that E[w(t)] = mt ∈ Rr, and E[w(t)wT (t)] =

∑
t > 0, then the sequence

{w̃(t)}t≥0, where w̃(t) =
∑(−1/2)

t (w(t) − mt), will satisfy E[w̃(t)] = 0 and
E[w̃(t)w̃T (t)] = Ir.

This shows that without loss of generality we may assume that the
sequence of independent random vectors {w(t)}t≥0 satisfies H1.

Together with the σ-algebras Ft and Gt defined above we also introduce
the following σ-algebras generated by the stochastic processes {ηt}t≥0 and
{w(t)}t≥0.

• For each (u, v) ∈ Z+ ×Z+ we set Hu,v = σ[ηt, w(s), 0 ≤ t ≤ u, 0 ≤ s ≤ v].
Hence Hu,v is the smallest σ-algebra containing the σ-algebras Gu and Fv.
If u = v we write Hu instead of Hu,u.

• For each u ∈ Z+ we set Ǧu = σ[ηt, t ≥ u].
• If v ∈ Z+, F̌v is defined by F̌v = σ[w(s), s ≥ v + 1]. Obviously, for all

v ∈ Z+, σ-algebra F̌v is independent of the σ-algebra Fv.
• For each (u, v) ∈ Z+ × Z+ we set Ȟu,v = σ[ηt, w(s), t ≥ u, s ≥ v + 1].

Hence Ȟu,v is the smallest σ-algebra containing the σ-algebras F̌v and Ǧu.
• H̃u = σ[ηs, w(t), 0 ≤ s ≤ u, 0 ≤ t ≤ u− 1] if u ≥ 1 and H̃0 = σ[η0].

The next result plays an important role in many proofs in the next chap-
ters. More precisely in our developments the result proved in the next theorem
has the role played by property (iii) of Theorem 1.4, in the case of systems
subject only to Markov perturbations.

Theorem 1.6 Under the assumptions H1 and H2 if Ψ : Ω → R is an inte-
grable random variable that is Ȟu,v-measurable then

E[Ψ |Hu,v] = E[Ψ |ηu] a.s. (1.14)

Proof. Combining the definition of an integrable random variable, Theo-
rem 1.2, and property (vii) from Theorem 1.3 one obtains that it is suffi-
cient to prove (1.14) in the case when Ψ is a bounded random variable
Ȟu,v-measurable. The definition of conditional expectation shows that (1.14)
is equivalent to
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E[ΨχM ] = E[zχM ] (1.15)

for all M ∈ Hu,v, where z = E[Ψ |ηu]. To prove (1.15) we show that

E[Ψfg] = E[zfg] (1.16)

for all f, g bounded functions such that f is Fv-measurable and g is
Gu-measurable. As a first step we show that (1.16) holds for Ψ = Ψ1Ψ2 with
Ψ1 and Ψ2 bounded random variables such that Ψ1 is Ǧu-measurable and Ψ2 is
F̌v-measurable. Because f and Ψ2 are independent random variables and gΨ1

is independent of fΨ2 we have:

E[Ψfg] = E[Ψ1Ψ2fg] = E[Ψ2]E[f ]E[gΨ1]. (1.17)

On the other hand E[Ψ1g|Gu] = gE[Ψ1|Gu] = gE[Ψ1|ηu]. For the last equality
we have used (iii) from Theorem 1.4 for ϕ = Ψ1.

Furthermore, from (1.17) one obtains that

E[Ψ1Ψ2fg] = E[Ψ2]E[f ]E[gE[Ψ1|ηu]]. (1.18)

We have z = E[Ψ2]E[Ψ1|ηu]. This leads to

E[fgz] = E[Ψ2]E[fgE[Ψ1|ηu]] = E[Ψ2]E[f ]E[gE[Ψ1|ηu]]. (1.19)

Combining (1.18) with (1.19) one obtains that (1.16) is fulfilled for Ψ = Ψ1Ψ2.
Particularly (1.16) holds for Ψ = χU1∩U2 for any U1 ∈ Ǧu and U2 ∈ F̌v.

Applying Theorem 1.1 we conclude that (1.16) is fulfilled for Ψ = χU for
any U ∈ Ȟu,v. By a standard procedure in measure theory one obtains (via
Theorem 1.2) that (1.16) is fulfilled for Ψ -integrable and Ȟu,v-measurable.
Taking now in (1.16) f = χA, g = χB, for any A ∈ Fv, B ∈ Gu one obtains
that (1.15) is verified for χA∩B. Applying again Theorem 1.1 we deduce that
(1.15) is fulfilled and thus the proof ends. �

Taking u = v = t, Ψ =χ{ηt+1=j} we obtain the following from Theorem 1.6.

Corollary 1.1 Under the assumptions H1 and H2 we have

P{ηt+1 = j|Ht} = pt(ηt, j) a.s.

for all t ≥ 0, j ∈ D.

1.6 Discrete-time controlled stochastic linear systems

The discrete-time linear systems have been intensively considered in the con-
trol literature both in the deterministic framework and in stochastic cases.
This interest is wholly motivated by the wide area of applications includ-
ing engineering, economics, and biology. Most of the results available in
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the control of discrete-time stochastic systems consider either the case of
systems corrupted with white noise perturbations or the case of systems with
Markovian jumps.

The class of controlled stochastic linear systems considered in this book is
described by:

x(t + 1) = A0(t, ηt)x(t) + B0(t, ηt)u(t) + G0(t, ηt)v(t) (1.20)

+
r∑

k=1

[Ak(t, ηt)x(t) + Bk(t, ηt)u(t) + Gk(t, ηt)v(t)]wk(t)

y(t) = C0(t, ηt)x(t) + D0(t, ηt)v(t) (1.21)

+
r∑

k=1

[Ck(t, ηt)x(t) + Dk(t, ηt)v(t)]wk(t),

where x(t) ∈ Rn is the state vector, u(t) ∈ Rm is the vector of control
parameters, y(t) ∈ Rp is a measured signal, and while v(t) ∈ Rmv is the
exogenous perturbation.

In (1.20) and (1.21), {ηt}t≥0 and w(t) = (w1(t), . . . , wr(t))T , t ≥ 0 are
stochastic processes whose properties are given in the preceding section.

If ηt= i∈D we set Ak(t, i), Bk(t, i), Gk(t, i), Ck(t, i), Dk(t, i), k∈{0, 1, . . . , r}
for the coefficient matrices of the system (1.20)–(1.21).

If Ak(t, i) = 0, Bk(t, i) = 0, Gk(t, i) = 0, Ck(t, i) = 0, Dk(t, i) = 0, 1 ≤ k ≤
r, t ≥ 0, i ∈ D then the system (1.20)–(1.21) becomes

x(t + 1) = A0(t, ηt)x(t) + B0(t, ηt)u(t) + G0(t, ηt)v(t) (1.22)
y(t) = C0(t, ηt)x(t) + D0(t, ηt)v(t), (1.23)

t ∈ Z+. If N = 1, the system (1.20)–(1.21) is:

x(t + 1) = A0(t)x(t) + B0(t)u(t) + G0(t)v(t) (1.24)

+
r∑

k=1

[Ak(t)x(t) + Bk(t)u(t) + Gk(t)v(t)]wk(t)

y(t) = C0(t)x(t) + D0(t)v(t) +
r∑

k=1

[Ck(t)x(t) + Dk(t)v(t)]wk(t), (1.25)

t ∈ Z+, with Ak(t) = Ak(t, 1), Bk(t) = Bk(t, 1), Gk(t) = Gk(t, 1), Ck(t) =
Ck(t, 1), Dk(t) = Dk(t, 1), 0 ≤ k ≤ r, t ∈ Z+.

The equations (1.22)–(1.23) are the mathematical model of a discrete-time
time-varying controlled stochastic linear system affected by a Markov-type
perturbation, whereas (1.24)–(1.25) is the mathematical model of a discrete-
time time-varying controlled stochastic linear system affected by a sequence of
independent random perturbations (often named discrete-time white noise).

In short, a control problem associated with the system (1.20)–(1.21) asks
us to construct a control law u(t) = K(t, y(t)), t ≥ 0, with the property that
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in the absence of the exogenous perturbations v(t), the trajectories of the
closed-loop system tend towards the equilibrium x ≡ 0, when t →∞.

Additionally it is desired that in the presence of exogenous perturbations
v(t) the trajectories of the corresponding closed-loop system satisfy some pre-
scribed performances (other than stable behavior). Usually the prescribed
performances imposed on the closed-loop system are expressed in terms of
minimization of several norms of some adequately chosen outputs.

Such outputs are of the form

z(t) = Cz(t, ηt)x(t) + Dz(t, ηt)u(t) (1.26)

and are known as controlled outputs or quality outputs.
The control laws considered are in the form of dynamic controllers or static

controllers (memoryless controllers).
The class of dynamic controllers is described by

xc(t + 1) = Ac(t, ηt)xc(t) + Bc(t, ηt)uc(t) (1.27)

yc(t) = Cc(t, ηt)xc(t), t ≥ 0,

where xc(t) ∈ Rnc is the state vector of the controller, uc(t) ∈ Rp is the
input signal of the controller, and yc ∈ Rm stands for the output signal of the
controller.

The integer nc ≥ 1 is the order of the controller.
In some control problems nc is prefixed, whereas in other problems it must

be chosen together with the matrix coefficients Ac(t, i), Bc(t, i), Cc(t, i).
Let us couple a controller (1.27) to a system (1.20)–(1.21) taking uc(t) =

y(t) and u(t) = yc(t).
The corresponding closed-loop system is

xcl(t + 1) = A0cl(t, ηt)xcl(t) + G0cl(t, ηt)v(t)

+
r∑

k=1

[Akcl(t ηt)xcl(t) + Gkcl(t, ηt)v(t)]wk(t) (1.28)

zcl(t) = Ccl(t, ηt)xcl(t),

where

A0cl(t, i) =
(

A0(t, i) B0(t, i)Cc(t, i)
Bc(t, i)C0(t, i) Ac(t, i)

)

Akcl(t, i) =
(

Ak(t, i) Bk(t, i)Cc(t, i)
Bc(t, i)Ck(t, i) 0

)

, 1 ≤ k ≤ r

Gkcl(t, i) =
(

Gk(t, i)
Bc(t, i)Dk(t, i)

)

, 0 ≤ k ≤ r
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Ccl(t, i) = (Cz(t, i) Dz(t, i)Cc(t, i))

xcl = (xT (t) xT
c (t))T .

The closed-loop system (1.28) is obtained under the assumption that the
measurements yt are transferred instantaneously to the controller and the
output of yc of the controller is transmitted instantaneously to the actuators.

If on the channel from the controller to actuators a delay appears in trans-
mission of the dates then u(t) is given by u(t) = yc(t − 1). In this case the
corresponding closed-loop system is given by

x(t + 1) = A0(t, ηt)x(t) + B0(t, ηt)Cc(t− 1, ηt−1)xc(t− 1) + G0(t, ηt)v(t)

+
r∑

k=1

[Ak(t, ηt)x(t) + Bk(t, ηt)Cc(t− 1, ηt−1)xc(t− 1)

+ Gk(t, ηt)v(t)]wk(t)

xc(t + 1) = Bc(t, ηt)C0(t, ηt)x(t) + Ac(t, ηt)xc(t) + Bc(t, ηt)D0(t, ηt)v(t)

+
r∑

k=1

[Bc(t, ηt)Ck(t, ηt)x(t) + Bc(t, ηt)Dk(t, ηt)v(t)]wk(t) (1.29)

z(t) = Cz(t, ηt)x(t) + Dz(t, ηt)Cc(t− 1, ηt−1)xc(t− 1).

Setting ξc(t) = xc(t− 1) we rewrite (1.29) in a compact form as follows.

xcl(t + 1) = A0cl(t, ηt, ηt−1)xcl(t) + G0cl(t, ηt)v(t)

+
r∑

k=1

[Akcl(t, ηt, ηt−1)xcl(t) + Gk(t, ηt)v(t)]wk(t) (1.30)

zcl(t) = Ccl(t, ηt, ηt−1)xcl(t),

where

xcl(t) = (xT (t) ξT
c (t) xT

c (t))T

A0cl(t, ηt, ηt−1) =

⎛

⎜
⎝

A0(t, ηt) B0(t, ηt)Cc(t− 1, ηt−1) 0
0 0 Inc

Bc(t, ηt)C0(t, ηt) Ac(t, ηt) 0

⎞

⎟
⎠

Akcl(t, ηt, ηt−1) =

⎛

⎜
⎝

Ak(t, ηt) Bk(t, ηt)Cc(t− 1, ηt−1) 0
0 0 0

Bc(t, ηt)Ck(t, ηt) 0 0

⎞

⎟
⎠, 1 ≤ k ≤ r

Gkcl(t, ηt) =

⎛

⎜
⎝

Gk(t, ηt)
0

Bc(t, ηt)Dk(t, ηt)

⎞

⎟
⎠ , 0 ≤ k ≤ r
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Ccl(t, ηt, ηt−1) =
(
Cz(t, ηt) Dz(t, ηt)Cc(t− 1, ηt−1) 0

)

zcl(t) = z(t).

If uc(t) = y(t−1), u(t) = yc(t) the corresponding closed-loop system becomes:

x(t + 1) = A0(t, ηt)x(t) + B0(t, ηt)Cc(t, ηt)xc(t) + G0(t, ηt)v(t)

+
r∑

k=1

[Ak(t, ηt)x(t) + Bk(t, ηt)Cc(t, ηt)xc(t) + Gk(t, ηt)v(t)]wk(t)

xc(t + 1) = Bc(t, ηt)C0(t− 1, ηt−1)x(t− 1) + Ac(t, ηt)xc(t)

+ Bc(t, ηt)D0(t− 1, ηt−1)v(t− 1)

+
r∑

k=1

[Bc(t, ηt)Ck(t− 1, ηt−1)x(t− 1)

+ Bc(t, ηt)Dk(t− 1, ηt−1)v(t− 1)]wk(t− 1), t ≥ 1,

z(t) = Cz(t, ηt)x(t) + Dz(t, ηt)Cc(t, ηt)xc(t).

Setting ξ(t) = x(t − 1), v̂(t) = (vT (t) vT (t− 1))T , ŵ(t) = (ŵ1(t) . . . ŵ2r(t))T

with

ŵk(t) =

{
wk(t), 1 ≤ k ≤ r;

wk−r(t− 1), r + 1 ≤ k ≤ 2r

one obtains the following compact form of the closed-loop system,

xcl(t + 1) = A0cl(t, ηt, ηt−1)xcl(t) + G0cl(t, ηt, ηt−1)v̂(t)

+
2r∑

k=1

[Akcl(t, ηt, ηt−1)xcl(t) + Gkcl(t, ηt, ηt−1)v̂(t)]ŵk(t) (1.31)

zcl(t) = Ccl(t, ηt, ηt−1)xcl(t), t ≥ 1,

where

A0cl(t, ηt, ηt−1) =

⎛

⎜
⎝

0 In 0
0 A0(t, ηt) B0(t, ηt)Cc(t, ηt)

Bc(t, ηt)C0(t− 1, ηt−1) 0 Ac(t, ηt)

⎞

⎟
⎠

Akcl(t, ηt, ηt−1) =

⎛

⎜
⎝

0 0 0
0 Ak(t, ηt) Bk(t, ηt)Cc(t, ηt)
0 0 0

⎞

⎟
⎠ , 1 ≤ k ≤ r

Akcl(t, ηt, ηt−1) =

⎛

⎜
⎝

0 0 0
0 0 0

Bc(t, ηt)Ck−r(t− 1, ηt−1) 0 0

⎞

⎟
⎠ , r + 1 ≤ k ≤ 2r
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G0cl(t, ηt, ηt−1) =

⎛

⎜
⎝

0 0
G0(t, ηt) 0

0 Bc(t, ηt)D0(t− 1, ηt−1)

⎞

⎟
⎠

Gkcl(t, ηt, ηt−1) =

⎛

⎜
⎝

0 0
Gk(t, ηt) 0

0 0

⎞

⎟
⎠ , 1 ≤ k ≤ r

Gkcl(t, ηt, ηt−1) =

⎛

⎜
⎝

0 0
0 0
0 Bc(t, ηt)Dk−r(t− 1, ηt−1)

⎞

⎟
⎠ , r + 1 ≤ k ≤ 2r

Ccl = (t, ηt, ηt−1) =
(
0 Cz(t, ηt) Dz(t, ηt)Cc(t, ηt)

)
.

In the case when there are delays in transmission of the data both from the
sensors to the controller and from the controller to the actuators, the coupling
may be done as follows, uc(t) = y(t− 1), u(t) = yc(t− 1), t ≥ 1.

In this case the corresponding closed-loop system is of the form (1.31) with

xcl(t) =
(
xT (t− 1) xT (t) xT

c (t− 1) xT
c (t)

)T
.

The structure of the matrix coefficients of the closed-loop system may be
easily derived.

Remark 1.3 If in the system (1.20)–(1.21) either Bk(t, i) = 0, 1 ≤ k ≤ r or
Ck(t, i) = 0, 1 ≤ k ≤ r, i ∈ D then a wider class of admissible controllers can
be considered. We refer to dynamic controllers of the form:

xc(t + 1) = Ac(t, ηt)xc(t) + Bc(t, ηt)uc(t)

yc(t) = Cc(t, ηt)xc(t) + Dc(t, ηt)uc(t). (1.32)

According to the terminology used in the case of control of deterministic
linear systems the class of admissible controllers (1.27) is called strictly proper
controllers, and controllers of type (1.32) are called proper controllers.

In each control problem the class of admissible controllers is taken either
among strictly proper controllers (1.27) or among proper controllers (1.32).
The type of considered controllers depends upon the well-posedness of the
closed-loop system.

1.7 The outline of the book

The material contained in this book could be divided in two main parts. Thus
Chapters 2–5 have a strong theoretic character. In these chapters we offer
the readers the mathematical machinery necessary for a good understanding
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of the robust control problems investigated in the second part of the book.
In Chapters 6–8 we solve several problems of robust control for discrete-time
linear stochastic systems of type (1.20)–(1.21). In the remainder of this section
we briefly present the contents of each chapter.

Chapter 2 deals with discrete-time linear equations defined by positive
operators. The main goal of the developments in this chapter is to provide a
characterization of exponential stability of the equilibrium x = 0 in the case
of discrete-time linear equations defined by positive operators on an ordered
Hilbert space. The criteria for exponential stability derived in this chapter may
be viewed as an alternative approach to the problem of exponential stability
other than the one based on Lyapunov functions or by Hurwitz criteria.

The results derived in Chapter 2 are used in Chapter 3 in order to charac-
terize exponential stability in the mean square of discrete-time linear stochas-
tic systems. Also in Chapter 5 they are involved in the proof of the existence of
some special solutions of Riccati-type equations (maximal solution, stabilizing
solution, minimal solution).

Chapter 3 deals with the problem of exponential stability in the mean
square of a class of discrete-time stochastic linear systems subject both to
independent random perturbations and Markovian switching. We have in
mind discrete-time stochastic linear systems that contain as particular cases
systems of type (1.28), (1.31) with Gkcl(t, i) = 0. We show that in the case of
discrete-time stochastic linear systems subject to Markovian jumping there are
several ways to define the exponential stability in the mean square. We show
that the different types of exponential stability in the mean square are not
always equivalent. We emphasize important classes of discrete-time stochastic
linear systems with Markovian switching for which the concepts of exponential
stability in the mean square become equivalent.

In Chapter 4 we investigate several structural properties of stochastic con-
trolled systems such as stabilizability, detectability, and observability. We also
provide useful criteria that allow us to check such properties.

In Chapter 5 we consider a general class of nonlinear difference equations
containing as particular cases several types of discrete-time Riccati equations
involved in many control problems studied in the following chapters. The
results developed in Chapter 5 can also be used in the case of Riccati-type
equations arising in connection with digital control of deterministic systems
and stochastic systems.

In Chapter 6 we deal with several linear quadratic control problems.
In short, by a linear quadratic optimization problem we understand the prob-
lem of minimization of a quadratic cost functional along the trajectories of a
linear controlled system.

Chapter 7 deals with the problem of H2 optimal control for discrete-time
linear stochastic systems subject to sequences of independent random per-
turbations and Markovian switching. Several kinds of H2-type performance
criteria (often called H2 norms) are introduced and characterized via solu-
tions of some suitable linear equations on the spaces of symmetric matrices.
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The purpose of such performance criteria is to provide a measure of the effect
of additive white noise perturbation over an output of the controlled system.
The H2 optimal control is solved both in the case of full access of the measure-
ments and in the case of partial access to the measurements. Many aspects
specific to the discrete-time linear stochastic systems perturbed by a Markov
chain are emphasized. The chapter ends with an H2 optimal filtering problem.

In the first part of Chapter 8 we prove a stochastic version of the so-called
bounded real lemma. As is known, such a result provides a necessary and
sufficient condition that guarantees the norm of an input–output operator
from exogenous perturbations v(t) to the controlled output z(t) is less than a
prescribed level γ > 0. Furthermore we prove the small gain theorem and we
introduce the notion of stability radius (several estimates of stability radius
are derived). In the second part of Chapter 8 the problem of attenuation of the
exogenous perturbations under the assumption that the full state is accessible
for measurements is solved.

All theoretical developments are illustrated by numerical case studies.

1.8 Notes and references

The results stated in this chapter for which the proofs are omitted are well
known and can be found in most monographs about stochastic process theory
(see, for instance, [32]). Theorem 1.1 is proved in [114]. Interesting applications
of discrete-time linear systems corrupted by sequences of independent random
perturbations (often known as discrete-time white noise perturbations) and/or
Markovian jumping to model different real-life problems can be seen in [8–12,
27, 63, 83, 84] and their references.
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Discrete-time linear equations defined by
positive operators

In this chapter we study a class of discrete-time deterministic linear equations,
namely discrete-time equations defined by sequences of positive linear opera-
tors acting on ordered Hilbert spaces. As we show in Chapter 3 such equations
play a crucial role in the derivation of some useful criteria for exponential
stability in the mean square of the stochastic systems considered in this book.

The results proved in this chapter also provide some powerful devices that
help us to prove the existence of some global solutions, maximal solutions,
minimal solutions, and stabilizing solutions of a large class of nonlinear equa-
tions including Riccati-type equations.

We want to mention that the results of this chapter may be successfully
used to derive the solution of some control problems for deterministic posi-
tive systems with applications in economy, finances, biology, and so on. Such
applications exceed the purpose of this monograph.

2.1 Some preliminaries

In the first part of this section we recall several definitions concerning convex
cones and ordered linear spaces, and provide some basic results.

In the second part of this section we investigate the properties of the
Minkovski functional and we provide conditions under which such a functional
becomes a norm. The Minkovski norm plays a crucial role in our developments
in this chapter.

2.1.1 Convex cones

Let (X , ‖ · ‖) be a real-normed linear space. As usual, if X is a Hilbert space
we use | · |2 instead of ‖ · ‖.

Definition 2.1

(a) A subset C ⊂ X is called a cone if:
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(i) C + C ⊂ C.
(ii) αC ⊂ C for all α ∈ R, α ≥ 0.

(b) A cone C is called a pointed cone if C
⋂

(−C) = {0}.
(c) A cone C is called a solid cone if its interior IntC is not empty.

We recall that if A,B are two subsets of X and α ∈ R, then A + B =
{x + y|x ∈ A, y ∈ B} and αA = {αx|x ∈ A}.

It is easy to see that a cone C is a convex subset and thus we often say
convex cone when we refer to a cone. A cone C ⊂ X induces an ordering “≤”
on X , by x ≤ y (or equivalently y ≥ x) if and only if y− x ∈ C. If C is a solid
cone then x < y (or equivalently y > x) if and only if y − x ∈ IntC. Hence
C = {x ∈ X|x ≥ 0} and IntC = {x ∈ X|x > 0}.

Definition 2.2 If C ⊂ X is a cone then C∗ ⊂ X ∗ is called the dual cone of C
if C∗ consists of all bounded and linear functionals f ∈ X ∗ with the property
that f(x) ≥ 0 for all x ∈ C.

Based on the Ritz theorem for representation of a bounded linear func-
tional on a Hilbert space one sees that if X is a real Hilbert space then the dual
cone C∗ of a convex cone C may be defined as C∗ = {y ∈ X|〈y, x〉 ≥ 0, ∀x ∈ C},
where 〈·, ·〉 is the inner product on X .

If X is a real Hilbert space a cone C is called selfdual if C∗ = C.

Lemma 2.1 Let X be a real Banach space and C ⊂ X a solid convex cone.
Then C∗ is a closed and pointed cone.

Proof. Let ϕ ∈ C̄∗. Therefore there exists a sequence {ϕk}k≥1 ⊂ C∗ such
that limk→∞ ϕk(x) = ϕ(x) for all x ∈ X . For x ∈ C we have ϕ(x) =
limk→ ϕk(x) ≥ 0. Hence ϕ ∈ C∗ and C∗ is a closed set. To show that C∗

is a pointed cone, we choose ϕ ∈ C∗⋂(−C∗). This leads to ϕ(x) = 0 for all
x ∈ C. We have to show that ϕ(x) = 0 for all x ∈ X .

Let x0 ∈ X be arbitrary. Let ξ ∈ IntC be fixed. For ε > 0 small enough we
have that ξ + εx0 ∈ C. Hence ϕ(ξ + εx0) = 0. Because ϕ(ξ) = 0 we conclude
that ϕ(x0) = 0. Thus we obtain that C∗⋂(−C∗) = {0} and the proof is
complete. �

In the finite-dimensional case we have the following.

Proposition 2.1 Let X be a finite-dimensional real Banach space and C ⊂ X
be a closed, pointed, solid, convex cone. Then the dual cone C∗ is a closed,
pointed, and solid convex cone.

Proof. The fact that C∗ is a closed and pointed convex cone follows from
the previous lemma. It remains to show that IntC∗ is not empty. Applying
Theorem 2.1 [79] one deduces that there exists ϕ0 ∈ C∗, such that ϕ0(x) > 0
for all x ∈ C{0}. Because X is a finite-dimensional linear space it follows that
S1 = {x ∈ C|‖x‖ = 1} is a compact set. Hence there exists δ > 0, such that
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ϕ0(x) ≥ 2δ, ∀x ∈ S1. Consider the closed ball B(ϕ0, δ) = {ϕ ∈ X ∗|‖ϕ−ϕ0‖ ≤
δ}. We show that B(ϕ0, δ) ⊂ C∗. If ϕ ∈ B(ϕ0, δ) then |ϕ(x) − ϕ0(x)| ≤ δ,
∀x ∈ X , with ‖x‖ = 1. Particularly, for x ∈ S1 we have ϕ(x) − ϕ0(x) ≥ −δ.
Hence ϕ(x) = ϕ0(x) + (ϕ(x) − ϕ0(x)) ≥ 2δ − δ = δ.

Thus we have proved that ϕ(x) ≥ δ‖x‖ for all x ∈ C{0} and for all ϕ ∈
B(ϕ0, δ). Hence B(ϕ0, δ) ⊂ C∗ that means ϕ0 ∈ IntC∗ and thus the proof is
complete. �

In the last part of this subsection we recall (see [77]) the following.

Definition 2.3 A cone C ⊂ X is a regular cone if for all sequences
{xt}t≥1 ⊆ X that satisfy x1 ≥ x2 ≥ · · · ≥ xt ≥ · · · ≥ y for some y ∈ X
not depending upon t, then there exists x ∈ X such that limt→∞ ‖xt −x‖ = 0.

Example 2.1 Let X = Rn and C = Rn
+ where Rn

+ = {x = (x1, x2, . . . , xn)T ∈
Rn|xi ≥ 0, 1 ≤ i ≤ n}. In this case C is a closed, solid, pointed, selfdual,
regular convex cone. The ordering induced on Rn by this cone is known as
componentwise ordering.

The next result follows immediately from Lemma 1.8 and Theorem 1.12
in [77].

Proposition 2.2 If X is a real Banach space and C ∈ X is a closed, pointed,
and solid convex cone then the dual cone C∗ is regular.

Corollary 2.1 If X is a real Hilbert space and C ⊂ X is a closed, pointed,
solid, and selfdual convex cone then C is a regular cone.

2.1.2 Minkovski seminorms and Minkovski norms

Let X be a real normed linear space. Let C ⊂ X be a solid convex cone.
Assume that C 
= X . This means that 0 
∈ IntC. Let ξ ∈ IntC be fixed. Denote
by Bξ the set defined by Bξ = {x ∈ X| − ξ < x < ξ}. It is easy to see that

Bξ = (ξ − IntC)
⋂

(−ξ + IntC). (2.1)

From (2.1) one deduces that Bξ is an open and convex set. For each x ∈ X ,
we denote T (x) = {t ∈ R|t > 0, (1/t)x ∈ Bξ}. Because Bξ is an open set
and 0 ∈ Bξ it follows that T (x) is not empty for all x ∈ X . The Minkovski
functional associated with the set Bξ is defined by

|x|ξ = inf T (x) (2.2)

for every x ∈ X .
The next theorem collects several important properties of the Minkovski

functional.
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Theorem 2.1 The Minkovski functional introduced in (2.2) has the proper-
ties:

(i) |x|ξ ≥ 0 and |0|ξ = 0.
(ii) |αx|ξ = |α||x|ξ for all α ∈ R, x ∈ X .

(iii) |x|ξ < 1 if and only if x ∈ Bξ.
(iv) |x + y|ξ ≤ |x|ξ + |y|ξ for all x, y ∈ X .
(v) There exists β(ξ) > 0 such that |x|ξ ≤ β(ξ)‖x‖, ∀x ∈ X .

(vi) |x|ξ = 1 if and only if x ∈ ∂Bξ, ∂Bξ being the border of the set Bξ.
(vii) |x|ξ ≤ 1 iff x ∈ B̄ξ where B̄ξ = Bξ

⋃
∂Bξ.

(viii) If C is a closed, solid, convex cone then B̄ξ = {x ∈ X| − ξ ≤ x ≤ ξ}.
(ix) |ξ|ξ = 1.
(x) The set T (x) coincides with (|x|ξ,∞).

(xi) If x, y, z ∈ X are such that y ≤ x ≤ z then |x|ξ ≤ max{|y|ξ, |z|ξ}.

Proof. (i) follows immediately from the definition of | · |ξ.
(ii) Let α > 0 be fixed. It is easy to see that t ∈ T (αx) iff α−1t ∈ T (x).

This leads to T (αx) = αT (x). Taking the infimum, one concludes that |αx|ξ =
α|x|ξ = |α||x|ξ .

On the other hand x ∈ Bξ iff −x ∈ Bξ. This allows us to deduce | − x|ξ =
|x|ξ. Let α < 0 be fixed. We have |αx|ξ = | − |α|x|ξ = ||α|x|ξ = |α||x|ξ and
thus one obtains that (ii) holds.

(iii) Let x ∈ X be such that |x|ξ < 1. This means that there exists t ∈ (0, 1)
such that −tξ < x < tξ, hence, −ξ < x < ξ, therefore x ∈ Bξ. Conversely
let x ∈ Bξ. Based on the continuity at t = 1 of the function t → (1/t)x we
obtain that there exist t1 ∈ (0, 1) such that (1/t1)x ∈ Bξ. Hence, in this case
we have T (x)

⋂
(0, 1) 
= φ. This leads to |x|ξ < 1 and thus (iii) is true.

To prove (iv) it is enough to show that if τ > |x|ξ + |y|ξ then τ > |x+ y|ξ.
Let τ > |x|ξ + |y|ξ and define ε = 1

2 (τ − |x|ξ − |y|ξ). Let τ1 = ε + |x|ξ,
τ2 = ε + |y|ξ. We have

τ1 + τ2 = τ, τ1 > |x|ξ, τ2 > |y|ξ (2.3)

1
τ

(x + y) =
τ1
τ

x1 +
τ2
τ

y1, (2.4)

where x1 = (1/τ1)x, y1 = (1/τ2)y. From (2.3) and (iii) we deduce that x1, y1 ∈
Bξ. Because Bξ is a convex set and (τ1/τ) + (τ2/τ) = 1 we get, using (2.4),
that (1/τ)(x + y) ∈ Bξ.

Invoking (iii) again we have |(1/τ)(x + y)|ξ < 1. Applying (iii) we have
|x + y|ξ < τ and thus (iv) is proved.

(v) ξ ∈ IntC, thus it follows that there exists δ(ξ) > 0 such that the ball
B(ξ, δ(ξ)) ⊂ IntC, with B(ξ, δ(ξ)) = {x ∈ X|‖x− ξ‖ ≤ δ(ξ)}.

Let x ∈ X , x 
= 0. Because ξ ± δ(ξ)x/‖x‖ > 0, one obtains that
(δ(ξ)x)/‖x‖ ∈ Bξ. From (iii) we have |δ(ξ)(x/‖x‖)|ξ < 1. Using (ii) we deduce
|x|ξ < β(ξ)‖x‖ for all x ∈ X , with β(ξ) = δ−1(ξ); thus (v) is proved.
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(vi) Let x ∈ X with |x|ξ = 1. This means that there exists a sequence
{tk}k≥1 with tk > 1, limk→∞ tk = 1, and (1/tk)x ∈ Bξ. From x =
limk→∞(1/tk)x one obtains that x ∈ B̄ξ. Based on (iii) x 
∈ Bξ. It follows
that x ∈ ∂Bξ.

To prove the converse inclusion we choose x ∈ ∂Bξ and assume that
|x|ξ > 1. Set ε = |x|ξ − 1. Let V be the open ball; V = {y ∈ X|‖y − x‖ <
ε/(β(ξ))} where β(ξ) is the constant from (v). Because x ∈ ∂Bξ it follows
that there exist y ∈ Bξ

⋂
V ; this means that ‖y − x‖ < ε/(β(ξ)). From

(iii) one gets that |y|ξ < 1. Combining (ii), (iv), and (v) one obtains succes-
sively ε < |x|ξ − |y|ξ ≤ |x − y|ξ ≤ β(ξ)‖x − y‖ < ε which is a contradiction.
Hence |x|ξ ≤ 1. On the other hand, because Bξ is an open set we have that
Bξ

⋂
∂Bξ = ∅. This means that x 
∈ Bξ. Hence |x|ξ ≥ 1. Therefore |x|ξ = 1

and (vi) is proved.
(vii) It follows from (iii) and (vi).
(viii) Let x ∈ B̄ξ. From (vii) we have |x|ξ ≤ 1. If |x|ξ < 1 then x ∈ Bξ

which is equivalent to −ξ < x < ξ, implying −ξ ≤ x ≤ ξ. If |x|ξ = 1 then
there exists a sequence {tk}k≥1, tk > 1, limk→∞ tk = 1 and (1/tk)x ∈ Bξ. This
means that ξ ± (1/tk)x ∈ C.

Taking the limit for k → ∞ and taking into account that C is a closed
set we conclude that ξ ± x ∈ C; this is equivalent to −ξ ≤ x ≤ ξ. Conversely,
if x ∈ X , is such that −ξ ≤ x ≤ ξ, then for all t > 1 we have −tξ < x < tξ.

This means that (1/t)x ∈ Bξ. Taking the limit for t → 1 we get x ∈ B̄ξ.
(ix) It follows from (vi).
(x) Let t ∈ (|x|ξ,∞). This is equivalent to |(1/t)x|ξ < 1. Hence (1/t)x ∈

Bξ. This means that t ∈ T (x). Thus we have proved that (|x|ξ,∞) ⊂ T (x).
To prove the converse inclusion we choose t ∈ T (x); that is, (1/t)x ∈ Bξ.
From (ii) and (iii) we have |x|ξ < t; that is, t ∈ (|x|ξ,∞).

(xi) Let x, y, z ∈ X be such that y ≤ x ≤ z. Let us assume that
max{|y|ξ, |z|ξ} < |x|ξ. Let t be such that:

max{|y|ξ, |z|ξ} < t < |x|ξ. (2.5)

Based on (x), it follows that t ∈ T (y)
⋂
T (z). This means that −ξ<(1/t)y < ξ

and −ξ < (1/t)z < ξ. This leads to

−ξ <
1
t
y ≤ 1

t
x ≤ 1

t
z < ξ

and it follows that t ∈ T (x). Invoking (x) again one deduces that t > |x|ξ
which is a contradiction to (2.5) and thus the proof ends. �

From (i), (ii), and (iv) of the previous theorem it follows that the Minkovski
functional defined by (2.2) is a seminorm.

The next theorem provides a condition which ensures that the seminorm
(2.2) is just a norm.
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Theorem 2.2 If Bξ is a bounded set then the Minkovski seminorm |·|ξ defined
by (2.2) is a norm. Moreover there exists αξ > 0 such that ‖x‖ ≤ αξ|x|ξ for
all x ∈ X .

Proof. To prove that |·|ξ is a norm we have to prove that if |x|ξ = 0 then x = 0.
If |x|ξ = 0 then, from (x) of Theorem 2.1, we have that T (x) = (0,∞). Hence,
for all t > 0 we have (1/t)x ∈ Bξ. Because Bξ is a bounded set it follows that
‖(1/t)x‖ ≤ α, with α > 0 not depending upon x and t but possibly depending
upon ξ. This leads to ‖x‖ ≤ αt. Taking the limit for t → 0 one obtains that
‖x‖ = 0, hence x = 0. To check the last assertion in the statement we choose
x ∈ X , x 
= 0. Invoking (x) again, we obtain that for all

t ∈ (1,∞),
1
t

x

|x|ξ
∈ Bξ.

From the boundedness of Bξ one obtains that ‖x‖ ≤ α|x|ξ and thus the proof
is complete. �

Corollary 2.2 Assume that X is a finite-dimensional real Banach space.
Assume also that C ⊂ X is a solid cone, C 
= X . If ξ ∈ IntC then the fol-
lowing are equivalent.

(i) The Minkovski seminorm |x|ξ is a norm.
(ii) Bξ is a bounded set.

Proof. (ii) → (i) follows from Theorem 2.2. Suppose (i) holds. Because X is
a finite-dimensional Banach space there exists α > 0 (depending on ξ) such
that ‖x‖ ≤ α|x|ξ for all x ∈ X . Now if x ∈ Bξ then |x|ξ < 1, hence ‖x‖ < α;
that is, Bξ is a bounded set. �

In the sequel we provide a sufficient condition which guarantees that | · |ξ
is a norm for all ξ ∈ IntC.

To this end we introduce the following.

Definition 2.4 We say that the ‖ · ‖ is monotone with respect to the cone C
if from 0 ≤ x ≤ y it follows that ‖x‖ ≤ ‖y‖.

Proposition 2.3 If ‖ · ‖ is monotone with respect to the cone C then for all
ξ ∈ IntC the set Bξ is bounded.

Proof. Let ξ ∈ IntC be fixed. If x ∈ Bξ we have −ξ < x < ξ or equivalently
0 < ξ + x < 2ξ. Hence ‖x+ ξ‖ ≤ 2‖ξ‖. This leads to ‖x‖ ≤ 3‖ξ‖ and thus the
proof is complete. �

Furthermore we prove the following proposition.

Proposition 2.4 If X is a real Hilbert space and C ⊂ X is a cone then the
following are equivalent.
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(i) The norm | · |2 is monotone with respect to C.
(ii) C ⊂ C∗.

Proof. (i) → (ii). Let x ∈ C. It is easy to see that 0 ≤ x ≤ x + (1/k)y, for all
y ∈ C and k ≥ 1. If (i) is fulfilled then |x|22 ≤ |x+(1/k)y|22 which is equivalent
to 2〈x, y〉 ≥ −(1/k)|y|22.

Taking the limit for k → ∞ we obtain that 〈x, y〉 ≥ 0 for all y ∈ C. This
means that x ∈ C∗, hence C ⊂ C∗.

To prove the converse implication let x, y ∈ X be such that 0 ≤ x ≤ y. This
means that both y−x and y+x are in C. If (ii) is fulfilled then 〈y−x, y+x〉 ≥ 0.
This is equivalent to (|y|2)2 ≥ (|x|2)2 which shows that (ii) → (i) holds. Thus
the proof is complete. �

Remark 2.1 If X is a real Hilbert space such that the norm |x|2 is monotone
with respect to the cone C ⊂ X then C is a pointed cone. Indeed if both
x ∈ C and −x ∈ C then based on (i) → (ii) of Proposition 2.4 one obtains
that 〈−x, x〉 ≥ 0 which leads to 〈x, x〉 = 0. Hence x = 0. This shows that
C
⋂

(−C) = {0}.

The next two examples show that the monotonicity of the norm ‖ · ‖ is
only a sufficient condition for Bξ to be a bounded set for all ξ ∈ IntC.

Example 2.2 Let X = R2 and the cone

C = {(x, y)T ∈ R2|x ≥ 0, y ≤ x}. (2.6)

It is easy to verify that for all ξ ∈ IntC, Bξ is a bounded set. On the other
hand, the dual cone is given by C∗ = {(u, v) ∈ R2|u ≥ 0,−u ≤ v ≤ 0}.

Hence C∗ ⊂ C. From Proposition 2.4 we deduce that the Euclidian norm
on R2 is not monotone with respect to the cone C defined by (2.6).

Example 2.3 Let X = R3 and the cone C be defined by:

C = {(x, y, z)T ∈ R3|x ≥ 0, |y| ≤ x, |z| ≤ x}. (2.7)

It can be verified that for each ξ ∈ IntC, Bξ is a bounded set. On the other
hand the dual cone C∗ is described by C∗ = {(u, v, w)T ∈ R3|u ≥ 0, |v| +
|w| ≤ u}. Obviously C∗ ⊂ C. Again applying Proposition 2.4 we deduce that
the Euclidian norm on R3 is not monotone with respect to the cone (2.7).

2.2 Discrete-time equations defined by positive linear
operators on ordered Hilbert spaces

2.2.1 Positive linear operators on ordered Hilbert spaces

In this subsection as well as in the following X is a real Hilbert space ordered
by the ordering relation “≤” induced by the closed, solid, selfdual, con-
vex cone X+. Because X+ is a selfdual convex cone from Lemma 1.8 and
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Theorem 1.12 [77] it follows that X+ is a regular cone and from Remark 2.1
and Proposition 2.4 it follows that X+ is a pointed cone.

Based on Proposition 2.2 one deduces that if X is a finite-dimensional
real Hilbert space it is enough to assume that X+ is a closed, pointed, solid,
convex cone in order to be sure that it is also a regular cone.

From Proposition 2.4 one obtains that | · |2 defined by

|x|2 = (〈x, x〉)1/2 (2.8)

is a monotone with respect to X+.
An example of infinite-dimensional real Hilbert space ordered by a closed,

pointed, solid, selfdual, convex cone is given by the following.

Example 2.4 Let X = �2(Z+,R), where �2(Z+,R) = {x = (x0, x1, . . . xn, . . . )|
xi ∈ R,

∑∞
i=0 x2

i < ∞}. On X we consider the usual inner product 〈x,y〉�2 =∑∞
i=0 xiyi for all x = {xi}i≥0,y = {yi}i≥0. We set X+ = {x = {xi}i≥0|x0 ≥ 0,∑∞
i=1 x2

i ≤ x2
0}. It is easy to see that X+ is a closed, pointed, convex cone.

In the finite-dimensional case the analogue of this cone is known as a circular
cone.

The interior IntX+ = {x = {xi}i≥0|x0 > 0,
∑∞

i=1 x2
i < x2

0}. It remains to
prove that X+ is selfdual.

Let y ∈ (X+)∗. Hence

〈x,y〉�2 ≥ 0 (2.9)

for all x = {xi}i≥0 ∈ X+. In particular, taking in (2.9) x = {1, 0, 0, 0} one
obtains y ≥ 0. It is easy to verify that if y0 = 0 then yt = 0 for all t ≥ 1.
Because y0 ≥ 0 it is obvious that if yt = 0 for all t ≥ 1 we have y ∈ X+.
Suppose now

∑∞
t=1 y2

t > 0. We take x̃ = {x̃i}i≥0 defined by

x̃0 = y0, x̃i = −γyiy0 (2.10)

with γ = (
∑∞

k=1 y2
k)−1/2. Obviously x̃ ∈ X+.

Replacing (2.10) in (2.9) one gets
∑∞

k=1 y2
k ≤ y2

0 which shows that y ∈ X+.
Thus it was shown that (X+)∗ ⊂ X+.

Let now y = {yi}i≥0 ∈ X+. We have to show that (2.9) holds for all
x ∈ X+. Indeed for x ∈ X+ we have (

∑∞
k=1 xkyk)2 ≤

∑∞
k=1 x2

k

∑∞
k=1 y2

k ≤
x2

0y
2
0 which leads to |

∑∞
k=1 xkyk| ≤ x0y0. This is equivalent to −x0y0 ≤∑∞

k=1 xkyk ≤ x0y0 which shows that (2.9) is fullfiled. Thus it was proved that
X+ ⊂ (X+)∗. This shows that X+ is selfdual.

Let ξ ∈ IntX+ be fixed; we associate the Minkovski functional | · |ξ defined
by (2.2). Based on Theorem 2.2 and Proposition 2.3 it follows that | · |ξ is a
norm on X . Moreover, from Theorem 2.1(v) and Theorem (2.2) we deduce
that | · |ξ is equivalent to | · |2 defined by (2.8). Hence (X , | · |ξ) is a Banach
space. Moreover | · |ξ has the properties:
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P1. If x, y, x ∈ X are such that y ≤ x ≤ z then

|x|ξ ≤ max{|y|ξ, |z|ξ}. (2.11)

P2. For arbitrary x ∈ X with |x|ξ ≤ 1 it holds that

−ξ ≤ x ≤ ξ (2.12)

and |ξ|ξ = 1.

If Y is a Banach space, T : Y → Y is a linear bounded operator, and | · | is
a norm on Y, then ‖T ‖ = sup|x|≤1 |Tx| is the corresponding operator norm.

Remark 2.2

(a) Because |·|ξ and |·|2 are equivalent, then ‖·‖ξ and ‖·‖2 are also equivalent.
This means that there are two positive constants c1 and c2 such that
c1‖T ‖ξ ≤ ‖T ‖2 ≤ c2‖T ‖ξ for all linear bounded operators T : X → X .

(b) If T ∗ : X → X is the adjoint operator of T with respect to the inner
product on X , then ‖T ‖2 = ‖T ∗‖2. In general the equality ‖T ‖ξ = ‖T ∗‖ξ

is not true. However, based on (a) it follows that there are two positive
constants c̃1, c̃2 such that

c̃1‖T ‖ξ ≤ ‖T ∗‖ξ ≤ c̃2‖T ‖ξ. (2.13)

Definition 2.5 Let (X ,X+) and (Y,Y+) be ordered vector spaces.
An operator T : X → Y is called positive, if T (X+) ⊂ Y+. In this case
we write T ≥ 0. If T (IntX+) ⊂ IntY+ we write T > 0.

Proposition 2.5 If T : X → X is a linear bounded operator then the following
hold.

(i) T ≥ 0 if and only if T ∗ ≥ 0.
(ii) If T ≥ 0 then ‖T ‖ξ = |Tξ|ξ.

Proof.

(i) is a direct consequence of the fact that X+ is a selfdual cone.
(ii) If T ≥ 0 then from (2.12) we have −Tξ ≤ Tx ≤ Tξ. From (2.11) it follows

that |Tx|ξ ≤ |Tξ|ξ for all x ∈ X with |x|ξ ≤ 1 which leads to

sup
|x|ξ≤1

|Tx|ξ ≤ |Tξ|ξ ≤ sup
|x|ξ≤1

|Tx|ξ

hence ‖T ‖ξ = |Tξ|ξ and thus the proof is complete. �

From (ii) of the previous proposition we obtain the following.

Corollary 2.3 Let Tk : X → X , k = 1, 2 be linear bounded and positive oper-
ators. If T1 ≤ T2 then ‖T1‖ξ ≤ ‖T2‖ξ.
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Example 2.5 (i) As in Example 2.1 we take X = Rn ordered by the order
relation induced by the cone Rn

+. If T : Rn → Rn is a linear operator then
T ≥ 0 iff its corresponding matrix A with respect to the canonical basis on
Rn has nonnegative entries. For ξ = (1, 1, 1, . . . , 1)T ∈ Int(Rn

+) the norm | · |ξ
is defined by

|x|ξ = max
1≤i≤n

|xi|. (2.14)

The properties P1 and P2 are fulfilled for the norm defined by (2.14). The
ordered space (Rn,Rn

+) is considered in connection with the Perron–Frobenius
theorem.

(ii) Let X = Rm×n be the space of m×n real matrices, endowed with the
inner product

〈A,B〉 = Tr(BT A), (2.15)

∀A,B ∈ Rm×n, T r(M) denoting as usual the trace of a matrix M .
On Rm×n we consider the order relation induced by the cone X+ = Rm×n

+ ,
where

Rm×n
+ = {A ∈ Rm×n|A = {aij}, aij ≥ 0, 1 ≤ i ≤ m, 1 ≤ j ≤ n}. (2.16)

The interior of the cone Rm×n
+ is not empty. Let A be an element of the dual

cone (Rm×n
+ )∗. This means that 〈A,B〉 ≥ 0 for arbitrary B ∈ Rm×n

+ . Let
Eij ∈ Rm×n

+ be such that Eij = {eij
lk}l,k, with eij

lk = 0 if (l, k) 
= (i, j), eij
lk = 1

if (l, k) = (i, j). We have 0 ≤ 〈A,Eij〉 = aij which shows that A ∈ Rm×n
+

and it follows that the cone (2.16) is selfdual. On Rm×n we also consider the
norm | · |1ξ defined by

|A|ξ = max
i,j

|aij |. (2.17)

Properties P1 and P2 are fulfilled for norm (2.17) with

ξ =

⎛

⎝
1 1 1 . . . 1

. . . . . . . . . . . . . . .
1 1 1 . . . 1

⎞

⎠ ∈ IntRm×n
+ .

An important class of linear operators on Rm×n is that of the form
LA,B : Rm×n → Rm×n by LA,BY = AY B, for all Y ∈ Rm×n where
A ∈ Rm×m, B ∈ Rn×n are given fixed matrices. These operators are often
called “nonsymmetric Stein operators”. It can be checked that LA,B ≥ 0 iff
aijblk ≥ 0, ∀i, j ∈ {1, . . . ,m}, l, k ∈ {1, . . . , n}. Hence LA,B ≥ 0 iff the matrix
A⊗B defines a positive operator on the ordered space (Rmn,Rmn

+ ) where ⊗
is the Kronecker product.

(iii) Let Sn ⊂ Rn×n be the subspace of n × n symmetric matrices. Let
X = Sn ⊕Sn⊕· · ·⊕Sn = SN

n with N ≥ 1 fixed. On SN
n we consider the inner

product
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〈X,Y 〉 =
N∑

i=1

Tr(YiXi) (2.18)

for arbitrary X = (X1, X2, . . . , XN) and Y = (Y1, Y2, . . . , YN ) in SN
n . The

space SN
n is ordered by the convex cone

SN,+
n = {X = (X1, X2, . . . , XN )|Xi ≥ 0, 1 ≤ i ≤ N}. (2.19)

The cone SN,+
n has the interior nonempty.

IntSN,+
n = {X ∈ SN

n |Xi > 0, 1 ≤ i ≤ N}.

Here Xi ≥ 0, Xi > 0, respectively, means that Xi is a positive semidefinite
matrix, positive definite matrix. One may show that SN,+

n is a selfdual cone.
Together with the norm | · |2 induced by the inner product (2.18), on SN

n

we consider the norm | · |ξ defined by

|X |ξ = max
1≤i≤N

|Xi|, ∀X = (X1, . . . , XN) ∈ SN
n , (2.20)

where |Xi| = maxλ∈σ(Xi) |λ|, σ(Xi) being the set of eigenvalues of the matrix
Xi. For the norm defined by (2.20) the properties P1 and P2 are fulfilled with
ξ = (In, In, . . . , In) = J ∈ SN

n .
An important class of positive linear operators on SN

n is thoroughly inves-
tigated in Section 2.5. The operators considered in Section 2.5 contain as a
particular case the symmetric Stein operators.

2.2.2 Discrete-time affine equations

Let L = {Lk}k≥k0 be a sequence of linear bounded operators Lk : X → X
and f = {fk}k≥k0 be a sequence of elements fk ∈ X . These two sequences
define two affine equations on X :

xk+1 = Lkxk + fk (2.21)

which is called the “forward” affine equation or “causal affine equation”
defined by (L, f) and

xk = Lkxk+1 + fk, (2.22)

which is called the “backward affine equation” or “anticausal affine equation”
defined by (L, f). For each k ≥ l ≥ k0 let T (k, l)c : X → X be the causal
evolution operator defined by the sequence L, T (k, l)c = Lk−1Lk−2 · · · Ll if
k > l and T (k, l)c = IX if k = l, IX being the identity operator on X .

For all k0 ≤ k ≤ l, T (k, l)a : X → X stands for the anticausal evolution
operator on X defined by the sequence L; that is,

T (k, l)a = LkLk+1 · · · Ll−1

if k < l and T (k, l)a = IX if k = l.
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Often the superscripts a and c are omitted if there will be no confusion.
Let x̃k = T (k, l)cx, k ≥ l, l ≥ k0 be fixed. One obtains that {x̃k}k≥l verifies

the forward linear equation

xk+1 = Lkxk (2.23)

with initial value xl = x. Also, if yk = T (k, l)ay, k0 ≤ k ≤ l then from the
definition of T a

kl one obtains that {yk}k0≤k≤l is the solution of the backward
linear equation

yk = Lkyk+1 (2.24)

with given terminal value yl = y.
It must be remarked that, in contrast to the continuous-time case,

a solution {xk}k≥l of the forward linear equation (2.23) with given initial
values xl = x is well defined for k ≥ l whereas a solution {yk}k≤l of the
backward linear equation (2.24) with given terminal condition yl = y is well
defined for k0 ≤ k ≤ l.

If for each k, the operators Lk are invertible, then all solutions of the
equations (2.23), (2.24) are well defined for all k ≥ k0.

If (T (k, l)c)∗ is the adjoint operator of the causal evolution operator
T (k, l)c we define

zl = (T (k, l)c)∗z, ∀k0 ≤ l ≤ k.

By direct calculation one obtains that zl = L∗
l zl+1. This shows that the

adjoint of the causal evolution operator associated with the sequence L gene-
rates anticausal evolution.

Definition 2.6 We say that the sequence L = {Lk}k≥k0 defines a posi-
tive evolution if for all k ≥ l ≥ k0 the causal linear evolution operator
T (kl)c ≥ 0.

Because T (l + 1, l)c = Ll it follows that the sequence {Lk}k≥k0 generates
a positive evolution if and only if for each k ≥ k0,Lk is a positive operator.
Hence, in contrast to the continuous-time case, in the discrete-time case only
sequences of positive operators define equations that generate positive evolu-
tions (see [37]).

The following result is straightforward and is used in the next sections.

Corollary 2.4 Let L = {Li
k}k≥k0 , i = 1, 2 be two sequences of linear bounded

operators and T (k, l)i be the corresponding causal linear evolution operators.
Assume that 0 ≤ L1

k ≤ L2
k for all k ≥ k0. Under this assumption we have

T (k, l)2 ≥ T (k, l)1 for all k ≥ l ≥ k0.

At the end of this subsection we recall the representation formulae of the
solutions of affine equations (2.21), (2.22).
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Each solution of the forward affine equation (2.21) has the representation:

xk = T(k, l)cxl +
k−1∑

i=l

T (k, i + 1)cfi (2.25)

for all k ≥ l+1. Also, any solution of the backward affine equation (2.22) has
a representation

yk = T (k, l)ayl +
l−1∑

i=k

T (k, i)afi, k0 ≤ k ≤ l − 1.

2.3 Exponential stability

In this section we deal with the exponential stability of the zero solution of
a discrete-time linear equation defined by a sequence of linear bounded and
positive operators.

Definition 2.7 We say that the zero solution of the equation

xk+1 = Lkxk (2.26)

is exponentially stable, or equivalently that the sequence L = {Lk}k≥k0 gene-
rates an exponentially stable evolution (E.S. evolution) if there are β > 0, q ∈
(0, 1) such that

‖T (k, l)‖ξ ≤ βqk−l, k ≥ l ≥ k0, (2.27)

T (k, l) being the causal linear evolution operator defined by the sequence L.
Based on Remark 2.2, in (2.27) we may also consider the norm ‖ · ‖2. In the
case when Lk = L for all k, if (2.27) is satisfied we say that the operator
L generates a discrete-time exponentially stable evolution. It is well known
that L generates a discrete-time exponentially stable evolution if and only
if ρ[L] < 1, ρ[·] being the spectral radius. It must be remarked that if the
sequence {Lk}k≥k0 generates an exponentially stable evolution then it is a
bounded sequence.

In this section we derive several conditions that are equivalent to the expo-
nential stability of the zero solution of equation (2.26) in the case {Lk}k≥k0 .
Such results can be viewed as an alternative characterization of exponential
stability to the one in terms of Lyapunov functions.

Firstly from Proposition 2.5, Corollary 2.3, and Corollary 2.4 we obtain
the following result specific to the case of operators that generate positive
evolution.

Proposition 2.6 Let L = {Lk}k≥k0 , and L1 = {L1
k}k≥k0 be two sequences of

linear bounded and positive operators on X .
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(i) The following are equivalent.
(a) L(·) defines E.S. evolution.
(b) There exist β ≥ 1, q ∈ (0, 1) such that |T (k, l)ξ|ξ ≤ βqk−l for all

k ≥ l ≥ k0.
(ii) If L1

k ≤ Lk for all k ≥ k0 and L generates an E.S. evolution, then L1

generates an E.S. evolution. �

We further prove the following.

Theorem 2.3 Let {Lk}k≥0 be a sequence of linear bounded and positive
operators Lk : X → X . Then the following are equivalent.

(i) The sequence {Lk}k≥0 generates an exponentially stable evolution.
(ii) There exists δ > 0 such that

∑k
l=k0

‖Tk,l‖ξ ≤ δ for arbitrary k ≥ k0 ≥ 0.
(iii) There exists δ > 0, such that

∑k
l=k1

T (k, l)ξ ≤ δξ for arbitrary
k ≥ k1 ≥ 0, δ > 0 being independent of k, k1.

(iv) For arbitrary bounded sequence {fk}k≥0 ⊂ X the solution with zero initial
value of the forward affine equation

xk+1 = Lkxk + fk, k ≥ 0

is bounded.

Proof. The implication (iv) → (i) is the discrete-time counterpart of Perron’s
theorem (see [97].) It remains to prove the implications (i) → (ii) → (iii) →
(iv).

If (i) is true then (ii) follows immediately from (2.27) with δ = β/(1 − q).
Let us prove that

0 ≤ T (k, l)ξ ≤ ‖T (k, l)‖ξξ (2.28)

for arbitrary k ≥ l ≥ 0. If Tk,lξ = 0 then from Proposition 2.5(ii) it follows
that ||Tk,l||ξ = 0 and (2.28) is fulfilled. If T (k, l)ξ 
= 0 then from (2.12) applied
to x = (1/|T (k, l)ξ|ξ)T (k, l)ξ one gets 0 ≤ T (k, l)ξ ≤ |T (k, l)ξ|ξξ and (2.28)
follows based on Proposition 2.5(ii).

If (ii) holds then (iii) follows from (2.28). We have to prove that (iii) →
(iv). Let {fk}k≥0 ⊂ X be a bounded sequence; that is, |fk|ξ ≤ μ, k ≥ 0. Based
on (2.12) we obtain that −|fl|ξξ ≤ fl ≤ |fl|ξξ which leads to −μξ ≤ fl ≤ μξ
for all l ≥ 0.

Because for each k ≥ l + 1 ≥ 0, T (k, l + 1) is a positive operator we have:

−μT (k, l + 1)ξ ≤ T (k, l + 1)fl ≤ μT (k, l + 1)ξ

and

−μ

k−1∑

l=0

T (k, l + 1)ξ ≤
k−1∑

l=0

T (k, l + 1)fl ≤ μ

k−1∑

l=0

T (k, l + 1)ξ.
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Applying (2.11) we deduce that
∣
∣
∣
∣
∣

k−1∑

l=0

T (k, l + 1)fl

∣
∣
∣
∣
∣
ξ

≤ μ

∣
∣
∣
∣
∣

k−1∑

l=0

T (k, l + 1)ξ

∣
∣
∣
∣
∣
ξ

.

If (iii) is valid we conclude by again using (2.11) that
∣
∣
∣
∣
∣

k−1∑

l=0

T (k, l + 1)fl

∣
∣
∣
∣
∣
ξ

≤ μδ, k ≥ 1

which shows that (iv) is fulfilled using (2.25) and thus the proof ends. �

We note that the proof of the above theorem shows that in the case of a
discrete-time linear equation (2.26) defined by a sequence of linear bounded
and positive operators the exponential stability is equivalent to the bounded-
ness of the solution with the zero initial value of the forward affine equation
xk+1 = Lkxk + ξ.

We recall that in the general case of a discrete-time linear equation if
we want to use Perron’s theorem to characterize the exponential stability we
have to check the boundedness of the solution with zero initial value of the
forward affine equation xk+1 = Lkxk + fk for arbitrary bounded sequence
{fk}k≥0 ⊂ X .

Let us now introduce the concept of uniform positivity.

Definition 2.8 We say that a sequence {fk}k≥k0 ⊂ X+ is uniformly positive
if there exists c > 0 such that fk > cξ for all k ≥ k0. If {fk}k≥k0 ⊂ X+ is
uniformly positive we write fk � 0, k ≥ k0. If −fk � 0, k ≥ k0 then we write
fk � 0, k ≥ k0.

The next result provides a characterization of the exponential stability,
using solutions of some suitable backward affine equations.

Theorem 2.4 Let {Lk}k≥k0 be a sequence of linear bounded and positive
operators Lk : X → X . Then the following are equivalent.

(i) The sequence {Lk}k≥k0 generates an exponentially stable evolution.
(ii) There exist β1 > 0, q ∈ (0, 1) such that ‖T ∗(k, l)‖ξ ≤ β1q

k−l, ∀k ≥
l ≥ k0.

(iii) There exists δ > 0, independent of k, such that
∑∞

l=k T ∗(l, k)ξ ≤ δξ.
(iv) The discrete-time backward affine equation

xk = L∗
kxk+1 + ξ (2.29)

has a bounded and uniformly positive solution.
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(v) For arbitrary bounded and uniformly positive sequence {fk}k≥k0 ⊂
IntX+ the backward affine equation

xk = L∗
kxk+1 + fk, k ≥ k0 (2.30)

has a bounded and uniformly positive solution.
(vi) There exists a bounded and uniformly positive sequence {fk}k≥k0 ⊂

IntX+ such that the corresponding backward affine equation (2.30) has
a bounded solution {x̃k}k≥k0 ⊂ X+.

(vii) There exists a bounded and uniformly positive sequence {yk}k≥k0 ⊂
IntX+ that verifies

L∗
kyk+1 − yk � 0, k ≥ k0. (2.31)

Proof. The equivalence (i) ↔ (ii) follows immediately from (2.13). In a similar
way as in the proof of inequality (2.28) one obtains:

0 ≤ T ∗(l, k)ξ ≤ ‖T ∗(l, k)‖ξξ (2.32)

for all l ≥ k ≥ k0.
If (ii) holds, then (iii) follows immediately from (2.32) together with the

property that X+ is a regular cone. To show that (iii) → (iv) we define
yk =

∑∞
l=k T ∗(l, k)ξk ≥ k0. If (iii) holds it follows that {yk}k≥0 is well defined.

Because yk = ξ + L∗
k

∑∞
l=k+1 T ∗(l, k + 1)ξ one obtains that yk � 0, k ≥ k0

and {yk}k≥k0 solves (2.29) and thus (iv) is true.
Let us prove now that (iv) → (iii). Let {xk}k≥k0 ⊂ IntX+ be a bounded

and uniform positive solution of (2.29); that is,

0 < μ1ξ ≤ xk ≤ μ2ξ (2.33)

for some positive constants μi independent of k. The solution {xk}k≥k0 has
the representation formula

xk = T ∗(j, k)xj +
j−1∑

l=k

T ∗(l, k)ξ

for all j ≥ k + 1 ≥ k0. Because T ∗(l, k) ≥ 0 we obtain

j−1∑

l=k

T ∗(l, k)ξ ≤ xk. (2.34)

For each fixed k ≥ k0 we define zj =
∑j−1

l=k T ∗(l, k)ξ for all j ≥ k + 1. The
sequence {zj}j≥k+1 is monotone increasing. From (2.33) and (2.34) we obtain
that

ξ ≤ zj ≤ μ2ξ.
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Because X+ is a regular cone we may conclude that there exists

lim
j→∞

zj =
∞∑

l=k

T ∗(l, k)ξ ≤ μ2ξ

and thus (iii) is valid.
Now we prove (iii) → (v). Let {fk}k≥k0 ⊂ IntX+ be a bounded and

uniformly positive sequence. This means that there exist νi > 0 such that

ν1ξ ≤ fl ≤ ν2ξ, ∀l ≥ k0.

Because T ∗(l, k) ≥ 0 one obtains ν1T
∗(l, k)ξ ≤ T ∗(l, k)fl ≤ ν2T

∗(l, k)ξ,∀l ≥
k ≥ k0.

Furthermore we may write the inequalities: ν1ξ ≤ ν1

∑j
l=k T ∗(l, k)ξ ≤

∑j
l=k T ∗(l, k)fl ≤ ν2

∑j
l=k T ∗(l, k)ξ ≤ ν2δξ, j ≥ k ≥ k0. BecauseX+ is a regu-

lar cone one concludes that the sequence {
∑j

l=k T ∗(l, k)fl}j≥k is convergent.
We define x̃k =

∑∞
l=k T ∗(l, k)fl, k ≥ k0. One obtains that x̃k = fk +

L∗
k

∑∞
l=k+1 T ∗(l, k + 1)fl which shows that {x̃k}k≥k0 is a solution with the

desired properties of equation (2.30) and thus (v) holds.
(v) → (vi) is obvious.
We prove now (vi) → (ii). Let us assume that there exists a bounded

and uniformly positive sequence {fk}k≥k0 ⊂ IntX+ such that the discrete-
time backward affine equation (2.30) has a bounded solution {x̂k}k≥k0 ⊂ X+.
Therefore there exist positive constants γi such that

0 < γ1ξ ≤ fl ≤ γ2ξ

0 < γ1ξ ≤ x̂l ≤ γ3ξ (2.35)

for all l ≥ k0. Writing the representation formula

x̂k = T ∗(j, k)x̂j +
j−1∑

l=k

T ∗(l, k)fl

and taking into account that T ∗(j, k) ≥ 0 if j ≥ k one obtains

fk ≤
j−1∑

l=k

T ∗(l, k)fl ≤ x̂k, j − 1 ≥ k ≥ k0. (2.36)

Set yk =
∑∞

l=k T ∗(l, k)fl, k ≥ k0, X+ being a regular cone together with
(2.35), (2.36) guarantee that yk is well defined, and

γ1ξ ≤ yk ≤ γ3ξ (2.37)

for all k ≥ k0. Let k1 ≥ k0 be fixed. We define ỹk = T ∗(k, k1)yk, k ≥ k1.
Because T ∗(k, k1) ≥ 0 one obtains that

γ1T
∗(k, k1)ξ ≤ ỹk ≤ γ3T

∗(k, k1)ξ (2.38)
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for all k ≥ k1. On the other hand we have ỹk =
∑∞

l=k T ∗(l, k1)fl. This allows
us to write

ỹk+1 − ỹk = −T ∗(k, k1)fk.

From (2.35) we get
ỹk+1 − ỹk ≤ −γ1T

∗(k, k1)ξ.

Furthermore (2.38) leads to

ỹk+1 ≤
(

1 − γ1

γ3

)

ỹk, k ≥ k1.

Inductively we deduce

ỹk ≤ qk−k1 ỹk1 , ∀k ≥ k1, (2.39)

where q = 1 − (γ1/γ3), q ∈ (0, 1) (in (2.38) γ3 may be chosen large enough so
that γ3 > γ1). Again invoking (2.38) we may write

T ∗(k, k1)ξ ≤
γ3

γ1
qk−k1ξ,

which by (2.11) leads to |T ∗(k, k1)ξ|ξ ≤ (γ3/γ1)qk−k1 , k ≥ k1. Based on
Proposition 2.5(ii) we have

‖T ∗(k, k1)‖ξ ≤
γ3

γ1
qk−k1 ,

which means that (ii) is fulfilled.
The implication (iv) → (vii) follows immediately because a bounded and

uniform positive solution of (2.29) is a solution with the desired properties of
(2.31). To end the proof we show that (vii) → (vi). Let {zk}k≥k0 ⊂ IntX+ be
a bounded and uniformly positive solution of (2.31). Define f̂k = zk−L∗

kzk+1.
It follows that {f̂k}k≥k0 is bounded and uniform positive, therefore {zk}k≥0

will be a bounded and positive solution of (2.30) corresponding to {f̂k}k≥k0

and thus the proof ends. �

We remark that in the proof of Theorem 2.4 the fact that X+ is a regular
cone was used in order to guarantee the convergence of several series in X .
The result proved in Theorem 2.3 does not use that X+ is a regular cone.

The next result provides more information concerning the bounded solu-
tion of the discrete-time backward affine equations.

Theorem 2.5 Let {Lk}k≥k0 be a sequence of linear bounded operators that
generates an exponentially stable evolution on X . Then the following hold.

(i) For each bounded sequence {fk}k≥k0 ⊂ X the discrete-time backward
affine equation

xk = L∗
kxk+1 + fk (2.40)
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has an unique bounded solution that is given by

x̃k =
∞∑

l=k

T ∗(l, k)fl, k ≥ k0. (2.41)

(ii) If there exists an integer θ ≥ 1 such that Lk+θ = Lk, fk+θ = fk for all
k then the unique bounded solution of equation (2.40) is also a periodic
sequence with period θ.

(iii) If Lk = L, fk = f for all k then the unique bounded solution of
equation (2.40) is constant and it is given by

x̃ = (IX − L∗)−1f (2.42)

with IX the identity operator on X .
(iv) If Lk are positive operators and {fk}k≥k0 ⊂ X+ is a bounded sequence

then the unique bounded solution of equation (2.40) satisfies x̃k ≥ 0 for
all k ≥ k0.

Moreover if {fk}k≥k0 ⊂ IntX+ is a bounded and uniformly positive
sequence then the unique bounded solution {x̃k}k≥k0 of equation (2.40) is also
uniformly positive.

Proof. (i) Based on (i) → (ii) of Theorem 2.4 we deduce that for all k ≥ k0

the series {
∑j

l=k T ∗(l, k)fl}j≥k is absolutely convergent and there exists δ > 0
independent of k and j such that

∣
∣
∣
∣
∣

j∑

l=k

T ∗(l, k)fl

∣
∣
∣
∣
∣
ξ

≤ δ. (2.43)

Set x̃k = limj→∞
∑j

l=k T ∗
l,kfl =

∑∞
l=k T ∗(l, k)fl. Taking into account the

definition of T (l, k)∗ we obtain x̃k = fk + L∗
k

∑∞
l=k+1 T ∗(l, k + 1)fl = fk +

L∗
kx̃k+1 which shows that {x̃k}k≥k0 solves (2.40).

From (2.43) it follows that {x̃k} is a bounded solution of (2.40). Let
{x̂k}k≥k0 be another bounded solution of equation (2.40). For each 0 ≤ k < j
we may write

x̂k = T ∗(j + 1, k)x̂j+1 +
j∑

l=k

T ∗(l, k)fl. (2.44)

Because {Lk}k≥k0 generates an exponentially stable evolution and {x̂k}k≥k0

is a bounded sequence we have limj→∞ T ∗(j +1, k)x̂j+1 = 0. Taking the limit
for j →∞ in (2.44) we conclude that x̂k =

∑∞
l=k T ∗(l, k)fl = x̃k which proves

the uniqueness of the bounded solution of equation (2.40).
(ii) If {Lk}k≥k0 , {fk}k≥k0 are periodic sequences with period θ then in

a standard way using the representation formula (2.41) one shows that the
unique bounded solution of equation (2.40) is also periodic with period θ.

In this case we may take that k0 = −∞.
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(iii) If Lk = L, fk = f for all k, then they may be viewed as periodic
sequences with period θ = 1. Based on the above result of (ii) one obtains that
the unique bounded solution of equation (2.40) is also periodic with period
θ = 1, so it is constant. In this case x̃ will verify the equation x̃ = L∗x̃ + f .

The operator L generates an exponentially stable evolution therefore it
follows that ρ(L) < 1. Hence, the operator IX − L∗ is invertible and one
obtains that x̃ is given by (2.42). Finally, if Lk are positive operators the
assertions of (iv) follow immediately from the representation formula (2.41)
and thus the proof ends. �

Remark 2.3 From the representation formula (2.25) one obtains that if the
sequence {Lk}k≥k0 generates an exponentially stable evolution and {fk}k≥k0

is a bounded sequence, then all solutions of the discrete-time forward affine
equation (2.21) with given initial values at time k = k0 are bounded on the
interval [k0,∞). On the other hand from Theorem 2.5(i) it follows that
the discrete-time backward equation (2.22) has a unique bounded solution
on the interval [k0,∞) which is the solution provided by the formula (2.41).

In the case of k0 = −∞ with the same techniques as in the proof of
Theorem 2.5 we may obtain a result concerning the existence and uniqueness
of the bounded solution of a forward affine equation similar to the one proved
for the case of backward affine equations.

Theorem 2.6 Assume that {Lk}k∈Z is a sequence of linear bounded operators
which generates an exponentially stable evolution on X . Then the following
assertions hold.

(i) For each bounded sequence {fk}k∈Z the discrete-time forward affine equa-
tion

xk+1 = Lkxk + fk (2.45)

has a unique bounded solution {x̂k}k∈Z. Moreover this solution has a
representation formula

x̂k =
k−1∑

l=−∞
T (k, l + 1)fl, ∀k ∈ Z. (2.46)

(ii) If {Lk}k∈Z, {fk}k∈Z are periodic sequences with period θ then the unique
bounded solution of equation (2.45) is periodic with period θ.

(iii) If Lk = L, fk = f, k ∈ Z then the unique bounded solution of
equation (2.45) is constant and it is given by x̂ = (IX − L)−1f .

(iv) If {Lk}k∈Z are positive operators and if {fk}k∈Z ⊂ X+, then the unique
bounded solution of equation (2.45) satisfies x̂k ≥ 0 for all k ∈ Z. More-
over, if fk � 0, k ∈ Z then x̂k � 0, k ∈ Z. �



2.3 Exponential stability 41

If {Lk}k∈Z is a sequence of linear operators on X we may associate a new
sequence of linear operators {L#

k}k∈Z defined as follows.

L#
k = L∗

−k.

Lemma 2.2 Let {Lk}k∈Z be a sequence of linear bounded operators on X .
The following assertions hold.

(i) If T (k, l)# is the causal linear evolution operator on X defined by the
sequence {L#

k}k∈Z we have

T (k, l)# = T ∗(−l + 1,−k + 1),

where T (i, j) is the causal linear evolution operator defined on X by the
sequence {Lk}k∈Z.

(ii) {L#
k}k∈Z is a sequence of positive linear operators if and only if {Lk}k∈Z

is a sequence of positive linear operators.
(iii) The sequence {L#

k}k∈Z generates an exponentially stable evolution if
and only if the sequence {Lk}k∈Z generates an exponentially stable
evolution.

(iv) The sequence {xk}k∈Z is a solution of the discrete-time backward affine
equation (2.40) if and only if the sequence {yk}k∈Z defined by yk = x−k+1

is a solution of the discrete-time forward equation yk+1 = L#
k yk + f−k,

k ∈ Z.

The proof is straightforward and it is omitted. �

The next result provides a characterization of exponential stability in
terms of the existence of the bounded solution of some suitable forward affine
equation.

Theorem 2.7 Let {Lk}k∈Z be a sequence of positive linear bounded operators
on X . Then the following are equivalent.

(i) The sequence {Lk}k∈Z generates an exponentially stable evolution.
(ii) There exists δ > 0, independent of k such that

k∑

l=−∞
T (k, l)ξ ≤ δξ, ∀k ∈ Z.

(iii) The forward affine equation

xk+1 = Lkxk + ξ (2.47)

has a bounded and uniformly positive solution.
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(iv) For any bounded and uniformly positive sequence {fk}k∈Z ⊂ IntX+ the
corresponding forward affine equation

xk+1 = Lkxk + fk (2.48)

has a bounded and uniformly positive solution.
(v) There exists a bounded and uniformly positive sequence {fk}k∈Z ⊂ IntX+

such that the corresponding forward affine equation (2.48) has a bounded
solution x̃k, k ∈ Z ⊂ X+.

(vi) There exists a bounded and uniformly positive sequence {yk}k∈Z that
verifies yk+1 − Lkyk � 0.

The proof follows immediately combining the result proved in Theorem 2.4
and Lemma 2.2. �

2.4 Some robustness results

In this section we prove some results that provide a “measure” of the
robustness of the exponential stability in the case of positive linear opera-
tors. To state and prove this result some preliminary remarks are needed.

So, �∞(Z,X ) stands for the real Banach space of bounded sequences of
elements of X . If x ∈ �∞(Z,X ) we denote |x| = supk∈Z |xk|ξ.

Let �∞(Z,X+) ⊂ �∞(Z,X ) be the subset of bounded sequences {xk}k∈Z ⊂
X+. It can be checked that �∞(Z,X+) is a solid, closed, convex cone. There-
fore, �∞(Z,X ) is an ordered real Banach space for which the assumptions of
Theorem 2.11 in [30] are fulfilled.

Now we are in position to prove the following.

Theorem 2.8 Let {Lk}k∈Z, {Gk}k∈Z be sequences of positive linear bounded
operators such that {Gk}k∈Z is a bounded sequence. Under these conditions
the following are equivalent.

(i) The sequence {Lk}k∈Z generates an exponentially stable evolution and
ρ[T ] < 1 where ρ[T ] is the spectral radius of the operator T : �∞(Z,X ) →
�∞(Z,X ) by

y = T x, yk =
k−1∑

l=−∞
T (k, l + 1)Glxl, (2.49)

T (k, l) being the linear evolution operator on X defined by the sequence
{Lk}k∈Z.

(ii) The sequence {Lk + Gk}k∈Z generates an exponentially stable evolution
on X .
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Proof. (i) → (ii) If the sequence {Lk}k∈Z defines an exponentially stable
evolution, then we define the sequence {fk}k∈Z by {Lk}k∈Z,

fk =
k−1∑

l=−∞
T (k, l + 1)ξ. (2.50)

We have fk = ξ +
∑k−2

l=−∞ Tk,l+1ξ which leads to fk ≥ ξ thus fk ∈ IntX+ for
all k ∈ Z. This allows us to conclude that f = {fk}k∈Z ∈ Int�∞(Z,X+).

Applying Theorem 2.11 [30] with R = −I�∞ and P = T we deduce that
there exists x = {xk}k∈Z ∈ Int�∞(Z,X+) which verifies the equation:

(I�∞ − T )(x) = f. (2.51)

Here I�∞ stands for the identity operator on �∞(Z,X ). Partitioning (2.51)
and taking into account (2.49)–(2.50) we obtain that for each k ∈ Z we have:

xk+1 =
k∑

l=−∞
T (k + 1, l + 1)Glxl +

k∑

l=−∞
T (k + 1, l + 1)ξ.

Furthermore we may write:

xk+1 = Gkxk + ξ + Lk

k−1∑

l=−∞
T (k, l + 1)Glxl + Lk

k−1∑

l=−∞
T (k, l + 1)ξ

= Gkxk + ξ + Lkxk.

This shows that {xk}k∈Z verifies the equation

xk+1 = (Lk + Gk)xk + ξ. (2.52)

Because Lk and Gk are positive operators and x ≥ 0, (2.52) shows that xk ≥ ξ.
Thus we get that equation (2.47) associated with the sum operator Lk + Gk

has a bounded and uniform positive solution. Applying implication (iii) → (i)
of Theorem 2.7 we conclude that the sequence {Lk + Gk}k∈Z generates an
exponentially stable evolution.

Now we prove the converse implication.
If (ii) holds, then based on the implication (i) → (iii) of Theorem 2.7

we deduce that equation (2.52) has a bounded and uniform positive solution
{x̃k}k∈Z ⊂ IntX+. Equation (2.52) verified by x̃k may be rewritten as

x̃k+1 = Lkx̃k + f̃k, (2.53)

where f̃k = Gkx̃k + ξ, k ∈ Z, f̃k ≥ ξ, k ∈ Z. Using the implication (v) → (i)
of Theorem 2.7 we deduce that the sequence Lk generates an exponentially
stable evolution. Equation (2.53) has an unique bounded solution which is
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given by the representation formula (2.46), therefore we have x̃k =
∑k−1

l=−∞
T (k, l + 1)f̃l, k ∈ Z,

x̃k =
k−1∑

l=−∞
T (k, l + 1)Glx̃l +

k−1∑

l=−∞
T (k, l + 1)ξ. (2.54)

Invoking (2.49) the equality (2.54) may be written:

x̃ = T x̃ + g̃, (2.55)

where g̃ = {g̃k}k∈Z, g̃k =
∑k−1

l=−∞ T (k, l + 1)ξ. It is obvious that g̃k ≥ ξ for all
k ∈ Z. Hence g̃ ∈ Int�∞(Z,X+).

Applying implication (v) → (vi) of Theorem 2.11 in [30] for R = −I�∞

and P = T one obtains that ρ[T ] < 1 and thus the proof is complete. �

In the time-invariant case one obtains the following version of Theorem 2.8.

Theorem 2.9 Let L : X → X ,G : X → X be linear bounded and positive
operators.

Then the following are equivalent.

(i) ρ[L] < 1 and ρ[(IX − L)−1G] < 1.
(ii) ρ[L + G] < 1.

Proof. If (i) holds, then based on (iii), (iv) of Theorem 2.6 we deduce that
(IX − L)−1ξ ∈ IntX+.

Applying (vi) → (iv) in Theorem 2.11 [30] for R = −IX and P = IX −
L−1G one obtains that there exists x̃ ∈ IntX+ which verifies

x̃ = [IX − L]−1Gx̃ + [IX − L]−1ξ,

which leads to IX − Lx̃ = Gx̃ + ξ.
Therefore we obtain that the equation

xk+1 = [L + G]xk + ξ (2.56)

has a bounded and uniform positive solution {x̃k}k∈Z , namely x̃k = x̃ for all
k ∈ Z.

Applying (iii) → (i) of Theorem 2.7 one obtains that the operator L + G
generates a discrete-time exponentially stable evolution which shows that the
implication (i) → (ii) is valid. Let us prove the converse implication. If (ii)
holds then based on the implication (i) → (ii) of Theorem 2.7 we obtain
that equation (2.56) has a bounded and uniform positive solution, x̃k, k ∈ Z.
Furthermore, from (iii), (iv) of Theorem 2.6 we conclude that x̃k = x̃ ∈
IntX+, for all k ∈ Z. Hence x̃ = Lx̃ + f̃ , where f̃ = Gx̃ + ξ ∈ IntX+.

Invoking again (iii) → (i) of Theorem 2.7 one gets that L generates a
discrete-time exponentially stable evolution. We may write x̃ = (IX − L)−1f̃
which leads to

x̃ = (IX − L)−1Gx̃ + (IX − L)ξ.
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Because (IX − L)−1ξ ∈ IntX+ then from (iv) → (vi) of Theorem 2.11 in [30]
we obtain that ρ[(IX − L)−1G] < 1 which ends the proof of the implication
(ii) → (i) and the proof is complete. �

In a similar way to that of the proof of Theorem 2.8 we may prove the
following result.

Theorem 2.10 Let {Lk}k≥k0 , {Gk}k≥k0 be two sequences of linear and posi-
tive operators on X such that {Gk}k≥k0 is a bounded sequence.

Then the following are equivalent.

(i) The sequence {Lk}k≥k0 generates an exponentially stable evolution and
ρ[T a] < 1, where T a : �∞[Zk0 ,X ] → �∞[Zk0 ,X ] by y = T ax,

yk =
∞∑

l=k

T ∗(l, k)G∗
l xl, k ≥ k0, (2.57)

T (l, k) being the causal linear evolution operator defined by the sequence
{Lk}k≥k0 , Zk0 ] ⊂ Z, Zk0 = {k ∈ Z|k ≥ k0}.

(ii) The sequence {Lk + Gk}k∈Zk0
generates an exponentially stable evolution

on X .

The proof is made combining the results of the above Theorems 2.4 and
2.5, and Theorem 2.11 in [30]. �

2.5 Lyapunov-type operators

2.5.1 Sequences of Lyapunov-type operators

Consider the sequences {Ak(t, i)}t≥0, and {pt(i, j)}t≥0, where Ak(t, i) ∈ Rn×n

and pt(i, j) ≥ 0, i, j ∈ D, 0 ≤ k ≤ r. We define the following operators
on SN

n (SN
n being the linear space introduced in Example 2.5(iii)), LtS =

(LtS(1), . . . ,LtS(N)) by

LtS(i) =
r∑

k=0

N∑

j=1

pt(j, i)Ak(t, j)S(j)AT
k (t, j) (2.58)

for all i ∈ D, t ≥ 0 and ΛtS = (ΛtS(1), . . . , ΛtS(N)),

ΛtS(i) =
r∑

k=0

N∑

j=1

pt−1(j, i)S(j)AT
k (t, i), (2.59)

t ≥ 1 for all i ∈ D, S = (S(1), . . . , S(N)) ∈ SN
n . Because pt(i, j) ≥ 0 it follows

easily that Lt ≥ 0 for all t ≥ 0 and Λt ≥ 0, t ≥ 1. The operators Lt and Λt are
termed Lyapunov-type operators defined by the sequences {Ak(t, i)}t≥0 and
{Pt}t≥0 (Pt is the matrix with the entries pt(i, j), 1 ≤ i, j ≤ N).
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Remark 2.4 The results concerning exponential stability for discrete-time
linear equations defined by the operators Lt and Λt are directly derived from
the results presented in Section 2.3. To this end we need that Lt and Λt

be positive operators on SN
n . This happens if pt(i, j) ≥ 0. On the other hand

there are some results (e.g., Theorem 2.11, Corollary 2.5, Theorem 2.14) asking
for
∑N

j=1 pt(i, j) = 1. In those statements we assume that Pt are stochastic
matrices.

In a standard way one obtains that the adjoint operators with respect to
the inner product (2.18) are given by L∗

tS = (L∗
t S(1), . . . ,L∗

t S(N)) with

L∗
tS(i) =

r∑

k=0

N∑

j=1

pt(i, j)AT
k (t, i)S(j)Ak(t, i) (2.60)

for all t ≥ 0, and Λ∗
tS = (Λ∗

tS(1), . . . , Λ∗
tS(N)) with

Λ∗
tS(i) =

r∑

k=0

N∑

j=1

pt−1(i, j)AT
k (t, j)S(j)Ak(t, j) (2.61)

for all t ≥ 1, i ∈ D, S ∈ SN
n .

For each t ≥ s we define the linear operators T (t, s) : SN
n → SN

n , S(t, s) :
SN

n → SN
n by

T (t, s) =

{
Lt−1Lt−2 · · · Ls if t > s ≥ 0

ISN
n

if t = s
(2.62)

and

S(t, s) =
{

Λt−1Λt−2 · · ·Λs if t > s ≥ 1
ISN

n
if t = s

. (2.63)

The operators T (t, s) and S(t, s) are the linear evolution operators on SN
n

defined by the sequences {Lt}t≥0 and {Λt}t≥1, respectively.
We have:

T (t + 1, s) = LtT (t, s), t ≥ s ≥ 0

S(t + 1, s) = ΛtS(t, s), t ≥ s ≥ 1

T ∗(t, s) = L∗
sT

∗(t, s + 1), t ≥ s + 1 (2.64)

S∗(t, s) = Λ∗
sS

∗(t, s + 1), t ≥ s + 1.

Remark 2.5

(a) If there exists an integer θ ≥ 2 such that Ak(t+ θ, i) = Ak(t, i), 0 ≤ k ≤ r,
i ∈ D, Pt+θ = Pt, t ∈ Z, t ≥ 0 then we have

T (t + mθ, s + mθ) = T (t, s), t ≥ s ≥ 0,m ≥ 1

S(t + mθ, s + mθ) = S(t, s), t ≥ s ≥ 1,m ≥ 1.
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(b) If Ak(t, i) = Ak(i), 0 ≤ k ≤ r, i ∈ D, Pt = P, t ∈ Z, t ≥ 0 then Lt = L,
t ≥ 0, Λt = Λ, and T (t, s) = Lt−s, S(t, s) = Λt−s.

The next result establishes a relationship between the linear evolution
operators T ∗(t, s) and S∗(t, s).

Theorem 2.11 If for all t ≥ 0, Pt are stochastic matrices then the following
hold.

(i)

[S∗(t, s)J ](i) =
N∑

j=1

ps−1(i, j)[T ∗(t, s)J ](j) (2.65)

for all t ≥ s ≥ 1, i ∈ D.
(ii)

[T ∗(t, s)J ](i) =
r∑

k=0

AT
k (s, i)[S∗(t, s + 1)J ](i)Ak(s, i), (2.66)

t ≥ s + 1, s ≥ 0, i ∈ D.

Proof. (i) We prove (2.65) by induction with respect to s ∈ {t, t − 1,
t− 2, . . . , 1}. If s = t, (2.65) holds because

N∑

j=1

ps−1(i, j) = 1. (2.67)

Let us assume that (2.65) holds for s ∈ {m + 1,m + 2, . . . , t} for some m < t
and we prove that (2.65) still holds for s = m, i ∈ D. Indeed, we have

[S∗(t,m)J ](i)

= [Λ∗
mS∗(t,m + 1)J ](i)

=
r∑

k=0

N∑

j=1

pm−1(i, j)AT
k (m, j)[S∗(t,m + 1)J ](j)Ak(m, j)

=
N∑

j=1

pm−1(i, j)
r∑

k=0

AT
k (m, j)

N∑

l=1

pm(j, l)[T ∗(t,m + 1)J ](l)Ak(m, j).

Considering (2.60) and (2.64) one obtains:

[S∗(t,m)J ](i) =
N∑

j=1

pm−1(i, j)[L∗
m(T ∗(t,m + 1)J)](j)

=
N∑

j=1

pm−1(i, j)[T ∗(t,m)J ](j)

which is just (2.65) for s = m.



48 2 Discrete-time linear equations

(ii) From (2.60) and (2.64) we may write

[T ∗(t, s)J ](i) = [L∗
sT

∗(t, s + 1)J ](i)

=
r∑

k=0

AT
k (s, i)

N∑

j=1

ps(i, j)[T ∗(t, s + 1)J ](j)Ak(s, i).

Using (2.65) we deduce

[T ∗(t, s)J ](i) =
r∑

k=0

AT
k (s, i)[S∗(t, s + 1)J ](i)Ak(s, i)

and thus the proof ends. �

Corollary 2.5 If for all t ≥ 0, Pt are stochastic matrices then we have

(i)

‖S∗(t, s)‖ξ ≤ ‖T ∗(t, s)‖ξ (2.68)

∀t ≥ s, s ≥ 1.
(ii)

‖T ∗(t, s)‖ξ ≤ α(s)‖S∗(t, s + 1)‖ξ, (2.69)

∀t ≥ s + 1, s ≥ 0, where α(s) = maxi∈D{
∑r

k=0 |Ak(s, i)|2}.

Proof. We recall that for any matrix M , |M | stands for the norm defined
by |M | = [λmax(MTM)]1/2. Thus from (2.65) we have |[S∗(t, s)J ](i)| ≤
∑N

j=1 ps−1(i, j)|[T ∗(t, s)J ](j)| ≤ maxj∈D |[T ∗(t, s)J ](j)|
∑N

j=1 ps−1(i, j). Invo-
king (2.67) and (2.20) one gets:

|S∗(t, s)J |ξ ≤ |T ∗(t, s)J |ξ (2.70)

for all t ≥ s ≥ 1.
Under the considered assumptions we have that S∗(t, s) ≥ 0 and T ∗(t, s) ≥

0. Applying Proposition 2.5(ii) we conclude that (2.70) is just (2.68). To prove
(2.69) we use (2.66) and obtain |[T ∗(t, s)J ](i)| ≤ [

∑r
k=0 |Ak(s, i)|2] maxj∈D

|[S∗(t, s + 1)J ](j)|. This leads to |T ∗(t, s)J |ξ ≤ α(s)|S∗(t, s + 1)J |ξ for all
t ≥ s + 1, s ≥ 0.

The conclusion follows by again applying Proposition 2.5(ii) and thus the
proof ends. �

2.5.2 Exponential stability

Consider the discrete-time linear equations

Xt+1 = LtXt, t ≥ 0 (2.71)
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and

Xt+1 = ΛtXt, t ≥ 1. (2.72)

According to the definition given in Section 2.3 we say that the zero solution
of the equation (2.71), ((2.72), respectively) is exponentially stable if there
exist β > 0 and q ∈ (0, 1) such that

‖T (t, s)‖ξ ≤ βq(t−s) (2.73)

for all t ≥ s ≥ 0 and

‖S(t, s)‖ξ ≤ βq(t−s) (2.74)

for all t ≥ s ≥ 1, respectively.
Because SN

n is a finite-dimensional linear space in (2.73) and (2.74) any
other norm on SN

n may be used instead of ‖ · ‖ξ.
If (2.73) ((2.74), respectively) holds we say that the sequence {Lt}t≥0 (or

{Λt}t≥1, respectively) generates an exponentially stable evolution. It is well
known that in the time-invariant case, exponential stability is equivalent to
the fact that the eigenvalues of the operator L (or the eigenvalues of the
operator Λ) are located inside the unit disk |z| < 1.

This may be checked, for example, by applying the Routh–Hurwitz criteria
(see [???60]) to the polynomials

f̃(z) = fL

(
z + 1
z − 1

)

or

f̃(z) = fΛ

(
z + 1
z − 1

)

,

fL and fΛ being the characteristic polynomials of the matrices with respect to
the canonical base on SN

n associated with the operators L and Λ. The degree
of these two characteristic polynomials is (Nn(n + 1))/2.

For the time-varying case, criteria for exponential stability of the zero
solution of the equations (2.71) and (2.72) (other than Lyapunov criteria) are
obtained from Theorem 2.4 in Section 2.3. So, applying Theorem 2.4 to the
sequence {Lt}t≥0 one obtains the following.

Theorem 2.12 Under the considered assumptions the following are
equivalent.

(i) The sequence {Lt}t≥0 generates an exponentially stable evolution.
(ii) There exist β > 0, q ∈ (0, 1) such that

‖T ∗(t, s)‖ξ ≤ βqt−s

for all t ≥ s ≥ 0.



50 2 Discrete-time linear equations

(iii) There exists a bounded sequence {Xt}t≥0 ⊂ IntSN+ solving the following
system of equations,

Xt(i) =
r∑

k=0

AT
k (t, i)

N∑

j=1

pt(i, j)Xt+1(j)Ak(t, i) + In (2.75)

for all t ≥ 0, i ∈ D.
(iv) There exists a bounded sequence {Yt}t≥0 ⊂ IntSN+

n , Yt � 0 and a posi-
tive scalar α that verifies the following system of inequalities,

r∑

k=0

AT
k (t, i)

N∑

j=1

pt(i, j)Yt+1(j)Ak(t, i)− Yt(i) ≤ −αIn, (2.76)

∀i ∈ D, t ≥ 0. �

Applying Theorem 2.4 to the sequence {Λt}t≥1 one obtains the following
theorem.

Theorem 2.13 The following are equivalent.

(i) The sequence {Λt}t≥1 generates an exponentially stable evolution.
(ii) There exist β > 0, q ∈ (0, 1) such that ‖S∗(t, s)‖ξ ≤ βq(t−s), ∀t ≥ s ≥ 1.

(iii) There exists a bounded sequence {Xt}t≥1 ⊂ IntSN+
n verifying the follow-

ing system of linear equations,

Xt(i) =
r∑

k=0

N∑

j=1

AT
k (t, j)pt−1(i, j)Xt+1(j)Ak(t, j) + In, (2.77)

∀i ∈ D, t ≥ 1.
(iv) There exists a positive scalar α and a bounded sequence {Yt}t≥1 ⊂

IntSN+
n , Yt � 0 verifying the following system of linear inequalities,

r∑

k=0

N∑

j=1

AT
k (t, j)pt−1(i, j)Yt+1(j)Ak(t, j)− Yt(i) ≤ −αIn, (2.78)

t ≥ 1, i ∈ D. �

In the above results, Yt � 0 means that there exists δ > 0 such that
Yt ≥ δJ for all t. Based on Theorem 2.5 one obtains that if the sequences
{Ak(t, i)}t≥0, {pt(i, j)}t≥0 are periodic sequences with period θ then the
bounded solutions of (2.75) and (2.77), respectively, are periodic sequences
with the same period θ.

Moreover if the above sequences are constant then the bounded solutions
of (2.75) and (2.77), respectively, are constant.
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Thus we have the following.

Corollary 2.6 Assume that there exists an integer θ ≥ 2 such that

Ak(t + θ, i) = Ak(t, i), 0 ≤ k ≤ r

pt+θ(i, j) = pt(i, j) ≥ 0, i, j ∈ D, t ≥ 0.

Then the following are equivalent.

(i) The sequence {Lt}t≥0 generates an exponentially stable evolution.
(ii) There exist positive definite matrices Xt(i), 0 ≤ t ≤ θ − 1, i ∈ D that

verify the following system of linear equations,

Xt(i) =
r∑

k=0

AT
k (t, i)

N∑

j=1

pt(i, j)Xt+1(j)Ak(t, i) + In, (2.79)

0 ≤ t ≤ θ − 2,

Xθ−1(i) =
r∑

k=0

AT
k (θ − 1, i)

N∑

j=1

pθ−1(i, j)X0(j)Ak(θ − 1, i) + In.

Corollary 2.7 Under the assumptions of Corollary 2.6 the following are
equivalent.

(i) The sequence {Λt}t≥1 generates an exponentially stable evolution.
(ii) There exist positive definite matrices Xt(i), 1 ≤ t ≤ θ, 1 ≤ i ≤ N that

verify the following system of linear equations,

Xt(i) =
r∑

k=0

N∑

j=1

pt−1(i, j)AT
k (t, j)Xt+1(j)Ak(t, j) + In, (2.80)

1 ≤ t ≤ θ − 1,

Xθ(i) =
r∑

k=0

N∑

j=1

pθ−1(i, j)AT
k (0, j)X1(j)Ak(0, j) + In, i ∈ D.

Corollary 2.8 Assume that Ak(t, i) = Ak(i), 0 ≤ k ≤ r, pt(i, j) = p(i, j) ≥ 0,
i, j ∈ D, t ≥ 0; then the following are equivalent.

(i) The eigenvalues of the operator L are located in the inside of the unit disk
|z| < 1.

(ii) There exist positive definite matrices X(i), 1 ≤ i ≤ N that verify the
following system of algebraic matrix equations,

X(i) =
r∑

k=0

AT
k (i)

N∑

j=1

p(i, j)X(j)Ak(i) + In, i ∈ D. (2.81)
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Corollary 2.9 Under the assumptions of Corollary 2.8 the following are
equivalent.

(i) The eigenvalues of the operator Λ are located inside the unit disk |z| < 1.
(ii) There exist positive definite matrices X(i), 1 ≤ i ≤ N that verify the

following system of algebraic matrix equations,

X(i) =
r∑

k=0

N∑

j=1

p(i, j)AT
k (j)X(j)Ak(j) + In, i ∈ D. (2.82)

Remark 2.6

(a) It is easy to see that the systems (2.79), (2.80) contain n̂ linear scalar
equations with n̂ scalar unknowns, where n̂ = (Nθn(n + 1))/2.

(b) Each of the system (2.81), (2.82) contains ñ scalar linear equations with ñ
scalar unknowns with ñ = (Nn(n + 1))/2. The solvability of these systems
with additional condition X(i) > 0, i ∈ D may be viewed as an alternative
test (those based on Routh–Hurwitz criteria) for stability.

In the last part of this subsection we provide a result that establishes
a relationship between the property of generating an exponentially stable
evolution of the sequences {Lt}t≥0 and {Λt}t≥1.

Theorem 2.14 Assume that for each t ≥ 0, Pt is a stochastic matrix. Then
the following hold.

(i) If the sequence {Lt}t≥0 generates an exponentially stable evolution then
the sequence {Λt}t≥1 generates an exponentially stable evolution.

(ii) If in addition {Ak(t, i)}t≥0, 0 ≤ k ≤ r, i ∈ D are bounded sequences then
the sequence {Lt}t≥0 generates an exponentially stable evolution if and
only if the sequence {Λt}t≥1 generates an exponentially stable evolution.

Proof.

(i) It follows immediately from (2.68) and the equivalences (i) ⇐⇒ (ii) from
Theorem 2.12 and Theorem 2.13.

(ii) Under the assumption of (ii) it follows that the sequence {α(s)}s≥0 from
(2.69) is bounded. The equivalence from (ii) is straightforward. �

Remark 2.7

(a) If
∑N

j=1 pt(i, j) = 1, from the second part of Theorem 2.14 it follows that
assertion (ii) of Corollary 2.6 is equivalent to assertion (ii) of Corollary 2.7
and assertion (ii) of Corollary 2.7 is equivalent to assertion (ii) from
Corollary 2.9.

(b) If {Ak(t, i)}t≥0, are bounded sequences and Pt are stochastic matrices then
assertions (i)–(iv) of Theorem 2.12 are equivalent to the assertions (i)–(iv)
of Theorem 2.13.
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The next two examples show that in the absence of the assumption con-
cerning the boundedness of the sequences {Ak(t, i)}t≥0, it is possible that
the sequence {Λt}t≥1 generates an exponentially stable evolution whereas the
sequence {Lt}t≥0 does not generate an exponentially stable evolution.

Example 2.6 Consider the Lyapunov-type operators (2.58), (2.59) in the parti-
cular case

N = 2, P =
(

1 0
1 0

)

, Ak(t, 1) = 0, Ak(t, 2) = tIn.

Direct calculation shows that

(LtH)(1) =
r∑

k=0

2∑

j=1

pt(j, 1)Ak(t, j)H(j)AT
k (t, j) = t2(1 + r)H(2)

(LtH)(2) = 0,

H = (H(1), H(2)) ∈ S2
n. Also (2.59) now gives (ΛtH)(i) = 0, i = 1, 2, H =

(H(1), H(2)) ∈ S2
n. Therefore S(t, s) = 0 for all t ≥ s ≥ 1 and thus (2.74) is

fulfilled.
On the other hand we deduce that

‖T (t + 1, t)‖ξ = |T (t + 1, t)J |ξ = t2(1 + r),

which shows that limt→∞ ‖T (t + 1, t)‖ξ = +∞ and therefore the sequence
{Lt}t≥0 does not generate an exponentially stable evolution.

Example 2.7 Consider the Lyapunov-type operators (2.58), (2.59) in the parti-
cular case n = 2, N = 2, r = 1,

Pt =

(
1 − 1

2t+2
1

2t+2

1 − 1
2t+2

1
2t+2

)

,

Ak(t, 1) = 0, Ak(t, 2) = 2(t−1)/4I2. We have (ΛtH)(1) = 0,

(ΛtH)(2) = 2(2)
t−1
2

1
2(t+1)

(H(1) + H(2)) =
1

2
t+1
2

(H(1) + H(2)),

for all H = (H(1), H(2)).
It follows that [S(t, s)J ](1) = 0. Furthermore, [S(s+1, s)J ](2) = (1/

√
2)s−1

I2 and

[S(t, s)J ](2) =
(

1√
2

)s−1 ( 1√
2

)s+2+s+3+···+t

I2 = 2
(

1
2

)(t+s+1)(t−s)/4

I2

if t ≥ s + 1. Because
t + s + 1

4
≥ s + 1

2
≥ 1
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if t ≥ s + 1, s ≥ 1 one obtains

1
2((t+s+1)(t−s))/4

≤ 1
2t−s

. (2.83)

From Proposition 2.5(ii) together with (2.20) and (2.83) we obtain that
‖S(t, s)‖ξ = |S(t, s)J |ξ ≤ 2(1/2)t−s for all t ≥ s ≥ 1 which shows that
the sequence {Λt}t≥1 generates an exponentially stable evolution.

Furthermore, one gets:

(LtJ)(i) = 2(2(t−1)/2)pt(2, i)I2, i = 1, 2.

Therefore

‖T (t + 1, t)‖ξ = |T (t + 1, t)J |ξ ≥ 2(t−1)/2

(

1 − 1
2t+2

)

.

Hence limt→∞ ‖T (t + 1, t)‖ξ = ∞ and thus we conclude that the sequence
{Lt}t≥1 does not generate an exponentially stable evolution.

Remark 2.8 It is known that if the sequences {Lt}t≥0 or {Λt}t≥1

generate an exponentially stable evolution then those sequences are bounded.
Suppose now that the assumptions of Theorem 2.14 are fulfilled. From (2.60)
we have

(L∗
tJ)(i) =

r∑

k=0

Ak(t, i)T Ak(t, i) def= M(t, i). (2.84)

The boundedness of the sequence {Lt}t≥0 together with (2.13) and
Proposition 2.5(ii) lead to the inequality

λmax(M(t, i)) ≤ β1 (2.85)

with some β1 > 0 not depending upon (t, i) where λmax(·) stands for the
largest eigenvalue of a matrix. From (2.84) and (2.85) we conclude that if the
sequence {Lt}t≥0 generates an exponentially stable evolution then

{Ak(t, i)}t≥0, i ∈ D, 0 ≤ k ≤ r (2.86)

are bounded sequences. In a similar way we may deduce that if the sequence
{Λt}t≥1 generates an exponentially stable evolution then

{
√

pt−1(i, j)Ak(t, i)}t≥1, i, j ∈ D, 0 ≤ k ≤ r (2.87)

are bounded sequences.
This remark shows that the assumption from Theorem 2.14(ii) could be

replaced by a weaker one as the boundedness of the sequences (2.87).
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2.5.3 Several special cases

In the particular case N = 1, pt(1, 1) = 1, the operators (2.58) and (2.59)
reduce to

LtS =
r∑

k=0

Ak(t)SAT
k (t) (2.88)

for all S ∈ Sn, where Ak(t) = Ak(t, 1).
If Ak(t, i) = 0, 1 ≤ k ≤ r, t ≥ 0, i ∈ D the operators (2.58)–(2.59) become:

(L0
tS) = ((L0

tS)(1), . . . , (L0
tS)(N))

(L0
tS)(i) =

N∑

j=1

pt(j, i)A0(t, j)S(j)AT
0 (t, j) (2.89)

Λ0
tS = ((Λ0

tS)(1), . . . , (Λ0
tS)(N))

(Λ0
tS)(i) = A0(t, i)

N∑

j=1

pt−1(j, i)S(j)AT
0 (t, i) (2.90)

for all S = (S(1), . . . , S(N)) ∈ SN
n .

The sequence (2.88) is usually involved in the characterization of the expo-
nential stability in the mean square of discrete-time stochastic linear systems
of the form

x(t + 1) =

[

A0(t) +
r∑

k=1

Ak(t)wk(t)

]

x(t).

The operators (2.89), (2.90) are related to the problem of exponential stability
in the mean square of discrete-time stochastic linear systems with Markov
switching:

x(t + 1) = A0(t, ηt)x(t).

From (2.58) and (2.89), (2.59) and (2.90), respectively, one can see that Lt ≥
L0

t ≥ 0 for all t ≥ 0 and Λt ≥ Λ0
t ≥ 0 for all t ≥ 1.

From Corollary 2.4 one obtains that

T (t, s) ≥ T 0(t, s) ≥ 0 (2.91)

for all t ≥ s and

S(t, s) ≥ S0(t, s) ≥ 0 (2.92)

for all t ≥ s ≥ 1.
T 0(t, s) is the linear evolution operator on SN

n defined by the sequence
{L0

t}t≥0 and S0(t, s) is the linear evolution operator on SN
n defined by

{Λ0
t}t≥1.
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In Chapter 4 we use the following Lyapunov-type linear operators con-
structed based on {Ak(t, i)}t≥0 and {Pt}t≥0. Thus for each i ∈ D we consider
the operator Lit : Sn → Sn by

LitS =
r∑

k=0

pt(i, i)Ak(t, i)SAT
k (t, i) (2.93)

for all S ∈ Sn, t ≥ 0.
In Chapters 2 and 4 we show that the operators (2.93) appear in connection

with the systems with independent random perturbations

x(t + 1) =

[

A0(t, i) +
r∑

k=0

Ak(t, i)wk(t)

]

x(t).

From (2.58) and (2.93) one obtains that

LitS(i) ≤ (LtS)(i) (2.94)

for all S = (S(1), . . . , S(N)) ∈ SN
n , t ≥ 0.

If Ti(t, s) is the linear evolution operator on SN
n defined by the sequence

(2.93) and T (t, s) is the linear evolution operator on SN
n defined by the

sequence Lt one obtains from (2.94) that

Ti(t, s)S(i) ≤ (T (t, s)S)(i), (2.95)

i ∈ D, t ≥ s ≥ 0, S ∈ SN
n .

At the end of this subsection we consider the linear operator Lt : SN
n → SN

n

defined by

LtS = (Ã0(t, 1)S(1)ÃT
0 (t, 1), . . . , Ã0(t,N)S(N)ÃT

0 (t,N)) (2.96)

for all S = (S(1), . . . , S(N)) ∈ SN
n , where Ã0(t, i) =

√
pt(i, i)A0(t, i), i ∈ D,

t ≥ 0.
In the case N = 1, the operator (2.96) is just the symmetric Stein operator

defined by Ã0(t, 1).
Let TL(t, s) be the linear evolution operator on SN

n defined by the sequence
{Lt}t≥0. By direct calculation one obtains that

TL(t, s)S = (ΦÃ(t, s, 1)S(1)ΦT
Ã
(t, s, 1), . . . , ΦÃ(t, s,N)S(N)ΦT

Ã
(t, s,N)),

(2.97)

where ΦÃ(t, s, i) = Ã0(t − 1, i)Ã0(t − 2, i) · · · Ã0(s, i) if t ≥ s + 1, s ≥ 0 and
ΦÃ(t, s, i) = In if t = s.

If the L∗
t is the adjoint of the operator Lt with respect to the inner product

(2.18) then

L∗
tS = (ÃT

0 (t, 1)S(1)Ã0(t, 1), . . . , ÃT
0 (t,N)S(N)Ã0(t,N))

for all S ∈ SN
n .
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Also the adjoint of the linear evolution operator TL(t, s) is

T ∗
L(t, s)S = (ΦT

Ã
(t, s, 1)S(1)ΦÃ(t, s, 1), . . . , ΦT

Ã
(t, s,N)S(N)ΦÃ(t, s,N))

(2.98)

for all S ∈ SN
n .

From (2.89) and (2.96) together with Corollary 2.4 one obtains the
following.

Corollary 2.10 The following hold.

(i) L0
t ≥ Lt ≥ 0 for all t ≥ 0.

(ii) T 0(t, s) ≥ TL(t, s), t ≥ s ≥ 0.

2.5.4 A class of generalized Lyapunov-type operators

Consider the sequences {Ak(t, i, j)}t≥0, Ak(t, i, j) ∈ Rn×n, 0 ≤ k ≤ r, i, j ∈ D,
{Pt}t≥0, Pt = (pt(i, j)) ∈ RN×N with pt(i, j) ≥ 0. Based on these sequences
we construct the linear operators Υt : SN

n → SN
n , ΥtS = (ΥtS(1), . . . , ΥtS(N))

with

ΥtS(i) =
r∑

k=0

N∑

j=1

pt−1(j, i)Ak(t, i, j)S(j)AT
k (t, i, j), t ≥ 1, S ∈ SN

n .

(2.99)

Obviously Υt ≥ 0. By direct calculation based on the definition of the
adjoint operator with respect to the inner product (2.18) one obtains that
Υ ∗

t S = (Υ ∗
t S(1), . . . , Υ ∗

t S(N)) with

Υ ∗
t S(i) =

r∑

k=0

N∑

j=1

pt−1(i, j)AT
k (t, j, i)S(j)Ak(t, j, i), t ≥ 1, S ∈ SN

n .

(2.100)

Let R(t, s) be the linear evolution operator defined on SN
n by the sequence

{Υt}t≥1. Hence R(t, s) = Υt−1Υt−2 · · ·Υs if t ≥ s + 1 and R(t, s) = ISN
n

if
t = s ≥ 1.

The next result shows that the Lyapunov-type operators (2.58)–(2.59) can
be viewed as special cases of (2.99).

Proposition 2.7 We have the following.

(i) If Ak(t, i, j) = Ak(t, i), 0 ≤ k ≤ r, i, j ∈ D, t ≥ 1 then

ΥtS = ΛtS, S ∈ SN
n , (2.101)

R(t, s)S = S(t, s), t ≥ s ≥ 1. (2.102)
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(ii) If Ak(t, i, j) = Ak(t− 1, j), 0 ≤ k ≤ r, i, j ∈ D, t ≥ 1 then

ΥtS = Lt−1S (2.103)

R(t, s) = T (t− 1, s− 1), t ≥ s ≥ 1. (2.104)

The proof follows immediately based on (2.58), (2.99) and (2.59), (2.99),
respectively. �

Criteria for exponential stability of the zero solution of the equation
Xt+1 = ΥtXt can be derived from Theorem 2.4.

2.6 Notes and references

The Minkovski functional and the Minkovski seminorm associated with some
convex sets in topological linear spaces are widely investigated in many mono-
graphs on functional analysis (we refer to [51, 76, 100]). The assertions (i)–(iv)
and (i), (vii) in Theorem 2.1 follow from general facts in topological linear
spaces.

Positive functionals, positive, monotone, quasimonotone linear operators
on finite- or infinite-dimensional Banach spaces ordered by cones with different
properties are intensively studied in many works (see [5, 30, 79, 78, 77, 101]).
The finite-dimensional counterpart of the results in Section 2.3 was published
in [38]. The results in this chapter can be found in [46].
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Mean square exponential stability

The problem of mean square exponential stability for a class of discrete-time
linear stochastic systems subject to independent random perturbations and
Markovian switching is investigated. Four different definitions of the concept
of exponential stability in the mean square are introduced and it is shown
that they are not always equivalent. One definition of the concept of mean
square exponential stability is done in terms of the exponential stability of
the evolution defined by a sequence of linear positive operators on an ordered
Hilbert space. The other three definitions are given in terms of different types
of exponential behavior of the trajectories of the considered system. In our
approach the Markov chain is not prefixed. The only available information
about the Markov chain is the sequence of probability transition matrices and
the set of its states. In this way one obtains that if the system is affected by
Markovian jumping the property of exponential stability is independent of the
initial distribution of the Markov chain.

The definition expressed in terms of exponential stability of the evolution
generated by a sequence of linear positive operators allows us to characterize
the mean square exponential stability based on the existence of some quadratic
Lyapunov functions. Unlike the continuous-time framework, for the discrete-
time linear stochastic systems with Markovian jumping two types of Lyapunov
operators are introduced. Therefore in the case of discrete-time linear stochas-
tic systems subject to Markovian perturbations one obtains characterizations
of the mean square exponential stability that do not have an analogue in
continuous time.

The results developed in this chapter may be used to derive some proce-
dures for designing stabilizing controllers for the considered class of discrete-
time linear stochastic systems.

© Springer Science + Business Media, LLC 2010
Stochastic Systems, DOI 10.1007/978-1-4419-0630-4_3,

59Mathematical Methods in Robust Control of Discrete-Time Linear V. Dragan et al., 
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3.1 Some representation theorems

Let us consider discrete-time linear stochastic systems of the form:

x(t + 1) =

[

A0(t, ηt) +
r∑

k=1

Ak(t, ηt)wk(t)

]

x(t), (3.1)

t ≥ 0, t ∈ Z+, where x(t) ∈ Rn, {ηt}t≥0 and {wk(t)}t≥0, 1 ≤ k ≤ r
are sequences of independent random variables with the properties given in
Section 1.5.

Remark 3.1 We remark that the only available information concerning the
system (3.1) is the set D and the sequences {Pt}t∈Z+ , {Ak(t, i)}t∈Z+ , 0 ≤ k ≤
r, i ∈ D. The initial distribution of the Markov chain is not prefixed.

The concept of exponential stability in the mean square introduced in this
chapter is a property of the sequences {Pt}t≥0, {Ak(t, i)}t≥0, 0 ≤ k ≤ r, i ∈ D
and it does not depend upon the initial distribution π0 of the Markov chain.

If Ak(t, i) = 0, 1 ≤ k ≤ r, i ∈ D, t ≥ 0 the system (3.1) reduces to

x(t + 1) = A0(t, ηt)x(t). (3.2)

In the particular case N = 1, the system (3.1) takes the form

x(t + 1) =

[

A0(t) +
r∑

k=1

Ak(t)wk(t)

]

x(t), (3.3)

t ≥ 0, where Ak(t) = Ak(t, 1), 0 ≤ k ≤ r.
In the control literature linear stochastic systems of type (3.2) subject

to Markov perturbations and stochastic systems of type (3.3) subject to
sequences of independent random perturbations are usually separately investi-
gated.

In this chapter we study the problem of mean square exponential stability
for linear stochastic systems of type (3.1). The results derived here contain
as particular cases the known results concerning mean square exponential
stability for linear stochastic systems with Markov perturbations and for linear
stochastic systems with independent random perturbations, respectively.

Set A(t) = A0(t, ηt) +
∑r

k=1 Ak(t, ηt)wk(t). Then (3.1) becomes:

x(t + 1) = A(t)x(t), t ≥ 0.

For each t ≥ s ≥ 0 we define

Φ(t, s) = A(t− 1)A(t− 2) · · ·A(s), if t > s

and
Φ(t, s) = In, if t = s.
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In the sequel Φ(t, s) is called the fundamental (random) matrix solution of
(3.1). Each solution of (3.1) verifies x(t) = Φ(t, s)x(s), t ≥ s, s ≥ 0.

The next result provides a connection between the adjoint of the linear
evolution operators defined by (2.62)–(2.63) and the trajectories of the system
(3.1).

Theorem 3.1 Under the assumptions H1 and H2 the following hold.

(i) T ∗(t, s)H = (T ∗(t, s)H(1), . . . , T ∗(t, s)H(N)) with

T ∗(t, s)H(i) = E[ΦT (t, s)H(ηt)Φ(t, s)|ηs = i] (3.4)

for all t ≥ s, i ∈ Ds, s ≥ 0, H = (H(1), . . . , H(N)) ∈ SN
n , T (t, s) being

the linear evolution operator on SN
n defined by the Lyapunov operator

(2.58) corresponding to the given matrices Ak(t, i) and stochastic matrices
Pt, t ≥ 0.

(ii) S∗(t, s)H = (S∗(t, s)H(1), . . . , S∗(t, s)H(N)) with

S∗(t, s)H(i) = E[ΦT (t, s)H(ηt−1)Φ(t, s)|ηs−1 = i] (3.5)

for all t ≥ s, i ∈ Ds−1, s ≥ 1, H ∈ SN
n , S(t, s) being the linear evolution

operator on SN
n defined by the Lyapunov operator (2.59) corresponding to

the given matrices Ak(t, i) and stochastic matrices Pt, t ≥ 0, where Ds are
defined in (1.8).

Proof. (i) Consider the linear operators U(t, s) : SN
n → SN

n , t ≥ s ≥ 0
defined by

U(t, s)H = (U(t, s)H(1), . . . ,U(t, s)H(N)),

U(t, s)H(i) = E[ΦT (t, s)H(ηt)Φ(t, s)|ηs = i] if i ∈ Ds and U(t, s)H(i) =
T ∗(t, s)H(i) if i ∈ D\Ds, for arbitrary H = (H(1) . . . H(N)) ∈ SN

n . From the
definition of the fundamental matrix solution we have Φ(t+1, s) = A(t)Φ(t, s).

Because Φ(t, s) and A(t) are Ht-measurable (where Ht is the σ-algebra
introduced in Section 1.5) one obtains, based on Corollary 1.1, that

E[ΦT (t, s)AT (t)H(j)A(t)Φ(t, s)χ{ηt+1=j}|Ht]

= ΦT (t, s)AT (t)H(j)A(t)Φ(t, s)E[χ{ηt+1=j}|Ht] (3.6)

= ΦT (t, s)AT (t)H(j)A(t)Φ(t, s)pt(ηt, j) a.s.

Consider the σ-algebra H̃t = Ht−1 ∨ σ[ηt]. Because Φ(t, s) is H̃t-measurable
and H̃t ⊂ Ht we obtain from (3.6) that

E[ΦT (t, s)AT (t)H(j)A(t)Φ(t, s)χ{ηt+1=j}|H̃t]

= E[pt(ηt, j)ΦT (t, s)AT (t)H(j)A(t)Φ(t, s)|H̃t]

= pt(ηt, j)ΦT (t, s)E[AT (t)H(j)A(t)|H̃t]Φ(t, s). (3.7)

From the assumption H1 we have that the random vector w(t) is inde-
pendent of H̃t. This shows (via Theorem 1.3(v)) that E[w(t)|H̃t] = 0 and
E[wl(t)wk(t)|H̃t] = δlk with δlk = 0 for l 
= k and δlk = 1 for l = k.
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This allows us to write

E[AT (t)H(j)A(t)|H̃t] =
r∑

k=0

AT
k (t, ηt)H(j)Ak(t, ηt). (3.8)

Combining (3.7) and (3.8) we get

E[ΦT (t, s)AT (t)H(j)A(t)Φ(t, s)χ{ηt+1=j}|H̃t]

= pt(ηt, j)ΦT (t, s)

[
r∑

k=0

AT
k (t, ηt)H(j)Ak(t, ηt)

]

Φ(t, s). (3.9)

On the other hand we have

E[ΦT (t, s)AT (t)H(ηt+1)A(t)Φ(t, s)|ηs]

=
N∑

j=1

E[ΦT (t, s)AT (t)H(j)A(t)Φ(t, s)χ{ηt+1=j}|ηs]. (3.10)

For t ≥ s we have σ[ηs] ⊂ H̃t.
Thus (3.9) and (3.10) give:

E[ΦT (t, s)AT (t)H(ηt+1)A(t)Φ(t, s)|ηs]

= E[ΦT (t, s)

⎧
⎨

⎩

r∑

k=0

AT
k (t, ηt)

N∑

j=1

pt(ηt, j)H(j)Ak(t, ηt)

⎫
⎬

⎭
Φ(t, s)|ηs].

Invoking (2.60) we obtain:

E[ΦT (t, s)AT (t)H(ηt+1)Φ(t, s)|ηs]

= E[ΦT (t, s)(L∗
t H)(ηt)Φ(t, s)|ηs].

Because Φ(t + 1, s) = A(t)Φ(t, s) we obtain

E[ΦT (t + 1, s)H(ηt+1)Φ(t + 1, s)|ηs] = E[ΦT (t, s)(L∗
t H)(ηt)Φ(t, s)|ηs].

If i ∈ Ds by Remark 1.1 we may write

E[ΦT (t + 1, s)H(ηt+1)Φ(t + 1, s)|ηs = i]

= E[ΦT (t, s)(L∗
t H)(ηt)Φ(t, s)|ηs = i] (3.11)

for all H ∈ SN
n , t ≥ s ≥ 0.

Taking into account the definition of U(t, s) (3.11) may be written as

U(t + 1, s)H(i) = U(t, s)(L∗
t H)(i) (3.12)

for all t ≥ s, i ∈ Ds, s ≥ 0, H ∈ SN
n .



3.1 Some representation theorems 63

On the other hand if i ∈ D \ Ds we obtain

(U(t + 1, s)H)(i) = (T ∗(t + 1, s)H)(i) = (T ∗(t, s)L∗
t H)(i)

= (U(t, s)L∗
t H)(i).

This equality together with (3.12) shows that

(U(t + 1, s)H)(i) = (U(t, s)L∗
t H)(i)

for all i ∈ D, H ∈ SN
n , which leads to U(t + 1, s) = U(t, s)L∗

t , ∀t ≥ s ≥ 0.
Thus we obtain that the sequence of operators {U(t, s)}t≥s verifies the

same discrete-time equation as the sequence of operators {T ∗(t, s)}t≥s.
Because U(s, s)H = T ∗(s, s)H = H we conclude that U(t, s)H = T ∗(t, s)H
for arbitrary t ≥ s ≥ 0, H ∈ SN

n which shows that (3.4) is valid.
(ii) To prove (3.5) we define the operators V(t, s) : SN

n → SN
n by

V(t, s)H = (V(t, s)H(1), . . . ,V(t, s)H(N)),

V(t, s)H(i) = E[ΦT (t, s)H(ηt−1)Φ(t, s)|ηs−1 = i] (3.13)

for all t ≥ s, i ∈ Ds−1, s ≥ 1.

V(t, s)H(i) = S∗(t, s)H(i) (3.14)

if i ∈ D \ Ds−1, s ≥ 1, H ∈ SN
n .

We write

E[ΦT (t + 1, s)H(ηt)Φ(t + 1, s)|ηs−1]

= E[ΦT (t, s)AT (t)H(ηt)A(t)Φ(t, s)|ηs−1 ] (3.15)

=
N∑

j=1

E

⎡

⎣ΦT (t, s)

{

A0(t, j) +
r∑

k=1

Ak(t, j)wk(t)

}T

×H(j)

{

A0(t, j) +
r∑

l=1

Al(t, j)wl(t)

}

Φ(t, s)χ{ηt=j}|ηs−1

]

.

On the other hand as in the proof of the first assertion we may write:

E

⎡

⎣ΦT (t, s)

{

A0(t, j) +
r∑

k=1

Ak(t, j)wk(t)

}T

H(j)

×
{

A0(t, j) +
r∑

l=1

Al(t, j)wl(t)

}

Φ(t, s)χ{ηt=j}|H̃t

]
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= χ{ηt=j}ΦT (t, s)E

⎡

⎣

{

A0(t, j) +
r∑

k=1

Ak(t, j)wk(t)

}T

×H(j)

{

A0(t, j) +
r∑

l=1

Al(t, j)wl(t)

}

|H̃t

]

Φ(t, s)

= χ{ηt=j}ΦT (t, s)
r∑

k=0

AT
k (t, j)H(j)Ak(t, j)Φ(t, s).

Again applying Corollary 1.1 we obtain

E[χ{ηt=j}|Ht−1] = pt−1(ηt−1, j). (3.16)

Because σ[ηs−1] ⊂ Ht−1 ⊂ H̃t we obtain from (3.15) and (3.16) that

E[ΦT (t + 1, s)H(ηt)Φ(t, s)|ηs−1]

= E

⎡

⎣ΦT (t, s)
N∑

j=1

pt−1(ηt−1, j)

{
r∑

k=0

AT
k (t, j)H(j)Ak(t, j)

}

Φ(t, s)|ηs−1

⎤

⎦ .

Invoking (2.61), we further obtain

E[ΦT (t + 1, s)H(ηt)Φ(t + 1, s)|ηs−1] = E[ΦT (t, s)(Λ∗
tH)(ηt−1)Φ(t, s)|ηs−1].

If i ∈ Ds−1 the last equality leads to

E[ΦT (t + 1, s)H(ηt)Φ(t + 1, s)|ηs−1 = i]

= E[ΦT (t, s)(Λ∗
tH)(ηt−1Φ(t, s)|ηs−1 = i].

In view of (3.13) this may be written as

(V(t + 1, s)H)(i) = (V(t, s)Λ∗
tH)(i) (3.17)

for all i ∈ Ds−1.
As in the proof of (i) one checks that (3.17) is also valid for i ∈ D \Ds−1.

Thus we obtain that V(t + 1, s)H = V(t, s)Λ∗
tH , for all t ≥ s ≥ 1, H ∈ SN

n .
Thus we conclude that V(t, s)H = S∗(t, s)H and the proof is complete.

�

Corollary 3.1 Under the assumptions H1 and H2 the following are valid.

(i) [T ∗(t, 0)J ](i) = E[ΦT
i (t, 0)Φi(t, 0)] for all t ≥ 0, i ∈ D.

(ii) [S∗(t, 1)J ](i) = E[ΦT
i (t, 1)Φi(t, 1)] for all t ≥ 1, i ∈ D, where Φi(t, s) is

the fundamental matrix solution of the system (3.1) in the particular case
of D0 = {i}; that is, π0(j) = 0 if j 
= i and π0(j) = 1 if j = i.
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Remark 3.2

(a) From (3.4) and (3.5) we conclude that the conditional expectations

E[ΦT (t, s)H(ηt)Φ(t, s)|ηs = i], i ∈ Ds

and
E[ΦT (t, s)H(ηt−1)Φ(t, s)|ηs−1 = i], i ∈ Ds−1

do not depend upon the initial distributions π0(i) of the Markov chain.
(b) In the caseD = {1} (the case of the system of type (3.3)) the two equalities

from Theorem 3.1 reduce to

T ∗(t, s)H = E[ΦT (t, s)HΦ(t, s)]

for all t ≥ s ≥ 0, H ∈ Sn.

Now we consider the discrete-time time-varying stochastic linear system
of the form

x(t + 1) =

[

A0(t, ηt, ηt−1) +
r∑

k=1

Ak(t, ηt, ηt−1)wk(t)

]

x(t), (3.18)

t ≥ 1, where {ηt}t≥0, {wk(t)}t≥0 are as in system (3.1).
The investigation of the problem of exponential stability in the mean

square for systems of type (3.18) is motivated by the exponential stability
in the mean square of the zero state equilibrium of systems of type (1.30) or
(1.31), in the absence of exogenous perturbation v(t). Concerning the systems
(3.18) we assume that only the sequences {Ak(t, i, j)}t≥1, {Pt}t≥0, and the set
D are prefixed.

The initial distributions of the Markov chain are arbitrary. Here Ak(t, i, j)
∈ Rn×n for all i, j ∈ D, t ≥ 1 and Pt ∈ RN×N . Set A(t) = A0(t, ηt, ηt−1) +∑r

k=1 Ak(t, ηt, ηt−1)wk(t), t ≥ 1 and define Θ(t, s) as follows. Θ(t, s) =
A(t− 1)A(t− 2) . . .A(s) if t ≥ s + 1 and Θ(t, s) = In if t = s, s ≥ 1.

Any solution x(t) of (3.18) verifies

x(t) = Θ(t, s)x(s).

Θ(t, s) is called the fundamental (random) matrix solution of (3.18).

Theorem 3.2 Under the assumption H1,H2 the following equality holds.

(R∗(t, s)H)(i) = E[ΘT (t, s)H(ηt−1)Θ(t, s)|ηs−1 = i] (3.19)

for all H = (H(1), . . . , H(N)) ∈ SN
n , t ≥ s ≥ 1, i ∈ Ds−1, R(t, s) being

the linear evolution operator on SN
n generated by the sequence of generalized

Lyapunov-type operators (2.99).
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Proof. We consider the family of linear operators Ṽ(t, s) : SN
n → SN

n , t ≥
s ≥ 1 defined as follows. (Ṽ(t, s)H)(i) = E[ΘT (t, s)H(ηt−1)Θ(t, s)|ηs−1 = i]
if i ∈ Ds−1 and (Ṽ(t, s)H)(i) = (R∗(t, s)H)(i) if i ∈ D \Ds−1 for all H ∈ SN

n .
Firstly we write

ΘT (t + 1, s)H(ηt)Θ(t + 1, s)

= ΘT (t, s)AT (t)H(ηt)A(t)Θ(t, s)

=
N∑

j=1

ΘT (t, s)

(

A0(t, j, ηt−1) +
r∑

k=1

Ak(t, j, ηt−1)wk(t)

)T

H(j)

×
(

A0(t, j, ηt−1) +
r∑

l=1

Al(t, j, ηj−1)wl(t)

)

Θ(t, s)χ{ηt=j}. (3.20)

Because Θ(t, s) and χ{ηt=j} are H̃t-measurable one obtains:

E

⎡

⎣ΘT (t, s)

(

A0(t, j, ηt−1) +
r∑

k=1

Ak(t, j, ηt−1)wk(t)

)T

×H(j)

(

A0(t, j, ηt−1) +
r∑

l=1

Al(t, j, ηt−1)wl(t)

)

Θ(t, s)χ{ηt=j}|H̃t

]

= χ{ηt=j}ΘT (t, s)E

⎡

⎣

(

A0(t, j, ηt−1) + +
r∑

k=1

Ak(t, j, ηt−1)wk(t)

)T

H(j)

×
(

A0(t, j, ηt−1) +
r∑

l=1

Al(t, j, ηt−1)wl(t)

)

|H̃t

]

Θ(t, s)

= χ{ηt=j}ΘT (t, s)
r∑

k=0

AT
k (t, j, ηt−1)H(j)Ak(t, j, ηt−1)Θ(t, s).

For the last equality we take into account that ηt−1 is H̃t-measurable whereas
wk(t) are independent of the σ-algebra H̃t.

As we already saw, in this case we have

E[wk(t)|H̃t] = 0

E[wk(t)wl(t)|H̃t] = δkl,

δkl being introduced in the proof of Theorem 3.1.
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Because Ht−1 ⊂ H̃t and Θ(t, s), ηt−1 are Ht−1-measurable we may apply
Theorem 1.3(ii), (iv) to obtain

E

⎡

⎣χ{ηt=j}ΘT (t, s)

(

A0(t, j, ηt−1) +
r∑

k=1

Ak(t, j, ηt−1)wk(t)

)T

×H(j)

(

A0(t, j, ηt−1) +
r∑

l=1

Al(t, j, ηt−1)wl(t)

)

Θ(t, s)|Ht−1

]

(3.21)

= ΘT (t, s)
r∑

k=0

(AT
k (t, j, ηt−1)H(j)Ak(t, j, ηt−1))Θ(t, s)E[χ{ηt=j}|Ht−1].

Based on Corollary 1.1 one gets:

ΘT (t, s)
r∑

k=0

AT
k (t, j, ηt−1)H(j)Ak(t, j, ηt−1)Θ(t, s)E[χ{ηt=j}|Ht−1]

= pt−1(ηt−1, j)ΘT (t, s)
r∑

k=0

(AT
k (t, j, ηt−1)H(j)Ak(t, j, ηt−1))Θ(t, s).

(3.22)

Combining (3.20)–(3.22) with (2.100) we obtain:

E[ΘT (t + 1, s)H(ηt)Θ(t + 1, s)|Ht−1]

= ΘT (t, s)(Υ ∗
t H)(ηt−1)Θ(t, s) (3.23)

for all t ≥ s ≥ 1.
The inclusion σ(ηs−1) ⊆ Ht−1 together with Theorem 1.3(ii) allows us to

obtain from (3.23) that

E[ΘT (t + 1, s)H(ηt)Θ(t + 1, s)|ηs−1]

= E[ΘT (t, s)(Υ ∗
t H)(ηt−1)Θ(t, s)(ηs−1)]. (3.24)

If i ∈ Ds−1 then (3.24) leads to

E[ΘT (t + 1, s)H(ηt)Θ(t + 1, s)|ηs−1 = i]

= E[ΘT (t, s)(Υ ∗
t H)(ηt−1)Θ(t, s)|ηs−1 = i]. (3.25)

Having in mind the definition of Ṽ(t, s) we see that (3.25) may be
rewritten as

(Ṽ(t + 1, s)H)(i) = [Ṽ(t, s)(Υ ∗H)](i) (3.26)

for all i ∈ Ds−1, H ∈ SN
n .
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As in the proof of Theorem 3.1 one establishes that (3.26) still holds for
i ∈ D \ Ds−1. Thus we may conclude that

Ṽ(t + 1, s) = Ṽ(t, s)Υ ∗
t , t ≥ s ≥ 1. (3.27)

On the other hand it is easy to see that Ṽ(s, s)H = H for all H ∈ SN
n . Hence

Ṽ(s, s) = ISN
n

= R∗(s, s).
This equality together with (3.27) shows that Ṽ(t, s) = R∗(t, s) and thus

the proof ends. �

Remark 3.3 It is easy to see that in the case Ak(t, i, j) = Ak(t, i), for all
0 ≤ k ≤ r, t ≥ 1, i, j ∈ D the system (3.18) reduces to (3.1). In this case we
have Θ(t, s) = Φ(t, s). Based on (2.102) one establishes that (3.19) becomes
(3.5).

3.2 Mean square exponential stability. The general case

In this section we introduce four different definitions of the concept of
exponential stability in the mean square of the zero solution of system (3.1)
and we emphasize that in the general case of time-varying coefficients these
definitions are not always equivalent.

Definition 3.1

(a) We say that the zero state equilibrium of system (3.1) is strongly exponen-
tially stable in the mean square of the first kind (SESMS-I) if there exist
β ≥ 1, q ∈ (0, 1) such that ‖T (t, s)‖ξ ≤ βqt−s for all t ≥ s, T (t, s) being
the linear evolution operator on SN

n defined by the corresponding sequence
of Lyapunov operators {Lt}t≥0.

(b) We say that the zero state equilibrium of system (3.1) is strongly exponen-
tially stable in the mean square of the second kind (SESMS-II)if there exist
β ≥ 1, q ∈ (0, 1) such that ‖S(t, s)‖ξ ≤ βqt−s for all t ≥ s, S(t, s) being
the linear solution operator on SN

n defined by the corresponding sequence
of Lyapunov operators {Λt}t≥1, associated with system (3.1).

(c) We say that the zero state equilibrium of system (3.1) is exponentially
stable in the mean square with conditioning of type I (ESMS-CI) if there
exist β ≥ 1, q ∈ (0, 1) such that for any sequence of independent random
vectors {w(t)}t≥0 and for any Markov chain ({ηt}t≥0, {Pt}t≥0,D) that
satisfy H1,H2 we have E[|Φ(t, s)x0|2|ηs = i] ≤ βqt−s|x0|2 for all t ≥ s,
i ∈ Ds, s ≥ 0, x0 ∈ Rn.

(d) We say that the zero state equilibrium of system (3.1) is exponentially
stable in the mean square with conditioning of type II (ESMS-CII) if
there exist β ≥ 1, q ∈ (0, 1) such that for any sequence of independent
random vectors {w(t)}t≥0 and for any Markov chain that satisfy H1,H2

we have E[|Φ(t, s)x0|2|ηs−1 = i] ≤ βqt−s|x0|2 for all t ≥ s, i ∈ Ds−1,
s ≥ 1, x0 ∈ Rn.
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(e) We say that the zero state equilibrium of system (3.1) is exponentially
stable in the mean square (ESMS) if there exist β ≥ 1, q ∈ (0, 1)
such that for any sequence of independent random vectors {w(t)}t≥0 and
for any Markov chain ({ηt}t≥0, {Pt}t≥0,D) satisfying H1,H2 we have
E[|Φ(t, s)x0|2] ≤ βqt−s|x0|2 for all t ≥ s ≥ 0, x0 ∈ Rn.

If L0
t is defined as in (2.89) and T 0(t, s) is its corresponding linear evolu-

tion operator, then from (2.91) and Proposition 2.6(ii) one can conclude that
SESMS of the zero state equilibrium of system (3.1) implies SESMS of the
zero state equilibrium of system (3.2).

It can be seen that the concept of strong exponential stability in the
mean square introduced by the previous definition does not depend upon the
initial distribution of the Markov chain. It depends only on the sequences
{Ak(t, i)}t≥0, {Pt}t≥0. Also it must be remarked that in the definitions of
exponential stability in the mean square in terms of the state space trajec-
tories, the sequences {w(t)}t≥0, {ηt}t≥0 are not prefixed. We show later (see
Theorems 3.4 and 3.5) that under some additional assumptions the exponen-
tially stable behavior of the trajectories of the system (3.1) for a suitable pair
({w(t)}t≥0, {ηt}t≥0) is enough to guarantee the exponentially stable behavior
of the trajectories of the system (3.1) for all pairs ({w(t)}t≥0, {ηt}t≥0) that
verify H1,H2.

Now we have the following theorem.

Theorem 3.3 Under H1,H2 the following implications hold.

(i) If the zero state equilibrium of (3.1) is SESMS-I then it is ESMS-CI.
(ii) If the zero state equilibrium of (3.1) is ESMS-CI then it is ESMS-CII.

(iii) If the zero state equilibrium of (3.1) is ESMS-CII then it is ESMS.
(iv) If the zero state equilibrium of the system (3.1) is SESMS-I then it is

SESMS-II.
(v) If the zero state equilibrium of the system (3.1) is SESMS-II then it is

ESMS-CII.

Proof. The implication from (i) follows immediately combining Theorem 3.1(i)
and Theorem 2.12. We now prove the implication from (ii). Assume that
the zero state equilibrium of (3.1) is ESMS-CI. This means that there exist
β ≥ 1, q ∈ (0, 1) such that

E[|Φ(t, s)x0|2|ηs = i] ≤ βq(t−s)|x0|2 (3.28)

for all t ≥ s ≥ 0, i ∈ Ds, x0 ∈ Rn. Applying Theorem 1.6 for u = s, v =
s− 1, Ψ = |Φ(t, s)x0|2 we obtain

E[|Φ(t, s)x0|2|Hs,s−1] = E[|Φ(t, s)x0|2|ηs] a.s. (3.29)

for all t ≥ s, s ≥ 1, x0 ∈ Rn. From Remark 1.1 we have

E[|Φ(t, s)x0|2|ηs] ≤
∑

j∈Ds

E[|Φ(t, s)x0|2|ηs = j] a.s.
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and using (3.28) we have that

E[|Φ(t, s)x0|2|ηs] ≤ Nβqt−s|x0|2. (3.30)

Combining (3.29) and (3.30) we may conclude that if s ≥ 1, i ∈ Ds−1 we have

E[|Φ(t, s)x0|2|ηs−1 = i] ≤ Nβqt−s|x0|2

for all t ≥ s, x0 ∈ Rn which shows that the implication from (ii) holds.
Now we prove the implication from (iii). Let us assume that the zero state

equilibrium of (3.1) is ESMS-CII. That means that there exist β ≥ 1, q ∈ (0, 1)
such that

E[|Φ(t, s)x0|2|ηs−1 = i] ≤ βqt−s|x0|2 (3.31)

for all t ≥ s ≥ 1, i ∈ Ds−1, x0 ∈ Rn.
For t ≥ s ≥ 1, x0 ∈ Rn we have E[|Φ(t, s)x0|2] ≤

∑
j∈Ds−1

E[|Φ(t, s)x0|2
|ηs−1 = j]. Invoking (3.31) one gets

E[|Φ(t, s)x0|2] ≤ Nβqt−s|x0|2 (3.32)

for all t ≥ s ≥ 1, x0 ∈ Rn. Now we show that there exists β̃ ≥ 1 such that

E[|Φ(t, 0)x0|2] ≤ β̃qt|x0|2

for all t ≥ 0, x0 ∈ Rn, where q is the same as in (3.31). For t ≥ 1 we
have Φ(t, 0)x0 = Φ(t, 1)ξ, where ξ = Φ(1, 0)x0 is σ(η0, w(0))-measurable. This
allows us to write

E[|Φ(t, 0)x0|2|(η0, w(0))] ≤ E[|Φ(t, 1)|2|ξ|2|(η0, w(0))]

≤ |ξ|2
n∑

k=1

E[|Φ(t, 1)ek|2|(η0, w(0))],

where ek = (0, . . . , 0, 1, 0, . . . , 0) are vectors of canonical bases in Rn. Because
for t ≥ 2, |Φ(t, 1)ek|2 is σ(η0, η1, . . . ηt−1, w(1), . . . w(t), )-measurable and
|Φ(1, 1)ek|2 = 1 are obtained via Theorem 1.6 (for u = v = 0) that

E[|Φ(t, 1)ek|2|(η0, w(0))] = E[|Φ(t, 1)ek|2|η0] a.s. (3.33)

for all t ≥ 1. This allows us to write

E[|Φ(t, 0)x0|2|(η0, w(0))] ≤ |ξ|2
n∑

k=1

E[|Φ(t, 1)ek)2|η0]

≤ |ξ|2
n∑

k=1

∑

j∈D0

E[|Φ(t, 1)ek|2|η0 = j] ≤ nN |ξ|2βqt−1.
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Taking the expectation one obtains E[|Φ(t, 0)x0|2] ≤ β1q
tE[|ξ|2]. Having in

mind the definition of ξ we deduce that

E[|Φ(t, 0)x0|2] ≤ β̃qt|x0|2 (3.34)

for all t ≥ 0, x0 ∈ Rn. From (3.32) and (3.34) we conclude that the zero state
equilibrium of (3.1) is ESMS. The implication from (iv) follows immediately
from the Theorem 2.14(i) and the implication from (v) follows combining
Theorem 3.1(ii) and Theorem 2.13. Thus the proof ends. �

Remark 3.4

(a) In the case D = {1} the concepts introduced by Definition 3.1(c) and
(d) are the same as the concept introduced in Definition 3.1(e). Also,
in this case, the concepts of strong exponential stability introduced by
Definition 3.1(a) and (b) coincide. Therefore in the case of systems of
type (3.3) we can talk only about the concepts of SESMS and ESMS.
On the other hand the equality from Remark 3.2(b) shows that the zero
state equilibrium of (3.3) is SESMS iff it is ESMS.

(b) Examples 3.1 and 3.2 show that a part of converse implications in
Theorem 3.3 are not always true. Hence in the absence of some additional
assumptions the five types of mean square exponential stability introduced
by Definition 3.1 are not equivalent. In Theorems 3.4 and 3.5 below, one
shows that under some additional assumptions the converse implications
from (i) and (v) of Theorem 3.3 hold.

Now we prove the following.

Theorem 3.4 Assume that Pt, t ≥ 0 are nondegenerate stochastic matrices.
Then the following are equivalent.

(i) The zero state equilibrium of the system (3.1) is SESMS-I.
(ii) The zero state equilibrium of the system (3.1) is ESMS-CI.

(iii) There exist a sequence of independent random vectors {w(t)}t≥0 and a
Markov chain ({ηt}t≥0, {Pt}t≥0,D) satisfying H1,H2 and P{η0 = i} > 0
for all i ∈ D such that

E[|Φ(t, s)x0|2|ηs = i] ≤ βqt−s|x0|2 (3.35)

for all t ≥ s ≥ 0, i ∈ D, x0 ∈ Rn, where β > 0 and q ∈ (0, 1).

Proof. (i) → (ii) follows from Theorem 3.3 and (ii) → (iii) is obvious.
It remains to prove implication (iii) → (i). Applying Theorem 3.1 (i) for
H = J = (In, . . . , In), from (3.35) and Proposition 1.6 we obtain that
xT

0 [T ∗(t, s)J ](i)x0 ≤ βqt−s|x0|2 for all t ≥ s ≥ 0, i ∈ D, x0 ∈ Rn.
This allows us to conclude that |[T ∗(t, s)J ](i)| ≤ βqt−s for all t ≥ s ≥

0, i ∈ D. Based on (2.20) one gets |T ∗(t, s)J |ξ ≤ βqt−s for all t ≥ s.
Furthermore, from Proposition 2.5(ii) we have ‖T ∗(t, s)‖ξ ≤ βqt−s for all

t ≥ s ≥ 0. The conclusion follows now from (2.13). �
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Theorem 3.5 Assume that for each t ≥ 0, Pt is a nondegenerate stochastic
matrix.

Then the following are equivalent.

(i) The zero state equilibrium of the system (3.1) is SESMS-II.
(ii) The zero state equilibrium of the system (3.1) is ESMS-CII.

(iii) There exist a sequence of independent random vectors {w(t)}t≥0 and a
Markov chain ({ηt}t≥0, {Pt}t≥0,D) that satisfy H1,H2 and P{η0 = i} >
0 for all i ∈ D, such that we have E[|Φ(t, s)x0|2|ηs−1 = i] ≤ βqt−s|x0|2
for all t ≥ s, s ≥ 1, i ∈ D, x0 ∈ Rn, where β > 1, q ∈ (0, 1).

Proof. It is similar to that of Theorem 3.4 and is based on Theorems 3.3,
3.1(ii), and 2.13(ii). �

The next result follows immediately from Theorems 2.14(ii), 3.4, and 3.5.

Corollary 3.2 Assume that {Ak(t, i)}t≥0, 0 ≤ k ≤ r, i ∈ D are bounded
sequences; then

(i) The zero state equilibrium of the system (3.1) is SESMS-I iff it is
SESMS-II.

(ii) If additionally for each t ∈ Z+, Pt is a nondegenerate stochastic matrix,
then the zero state equilibrium of the system (3.1) is ESMS-CI iff it is
ESMS-CII.

Example 3.1 (i) Consider the system (3.1) in the particular case n = 2, N = 2,
r = 1,

Ak(t, 1) = 0, Ak(t, 2) = 2t−1/4I2, k ∈ {0, 1},

Pt =
(

1 − 1
2t+2

1
2t+2

1 − 1
2t+2

1
2t+2

)

, t ≥ 0. (3.36)

For each t ≥ 0, Pt is a nondegenerate matrix, thus via Theorems 3.4 and
3.5, one obtains that for the considered system the SESMS-I is equivalent to
ESMS-C I and SESMS-II is equivalent to ESMS-CII.

From Example 2.7 we deduce that the zero state equilibrium of the system
under consideration is SESMS-II but it is not SESMS-I. Hence the zero state
equilibrium of this system is ESMS-CII but it is not ESMS-CI.

(ii) The following example shows that ESMS-CII does not always imply
SESMS-II, SESMS-I, and ESMS-CI. Consider system (3.1) in the particular
case n = 1, N = 2, and having the coefficients described by

A0(t, 1) = 0∀ t ≥ 0; A0(t, 2) = 2t/2 if t is even,

A0(t, 2) = 0 if t is odd (3.37)

Ak(t, i) = 0, i ∈ {1, 2}, 1 ≤ k ≤ r, t ∈ Z+ (3.38)
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The transition probability matrix is

Pt =
(

1 0
1 0

)

, t = 2m (3.39)

Pt =

(
1 − 1

4t+1
1

4t+1

1 − α α

)

, t = 2m + 1,m ∈ Z, (3.40)

where 0 < α ≤ 1. Because Ak(t, i) = 0, 1 ≤ k ≤ r, i ∈ {1, 2}, t ≥ 0 it follows
that Φ(t, s) = A0(t− 1, ηt−1) . . . A0(s + 1, ηs+1)A0(s, ηs) if t > s ≥ 0.

Moreover if t ≥ s + 2, s ≥ 1 we deduce that Φ(t, s) = 0 a.s. because
A0(τ, ητ ) = 0, if τ is odd. Hence

E[|Φ(t, s)x|2|ηs−1 = i] = 0 (3.41)

for all t ≥ s + 2, s ≥ 1, i ∈ Ds−1. For s odd Φ(s + 1, s) = A0(s, ηs) = 0 a.s.
This shows that (3.41) holds also for t ≥ s + 1, s odd. It remains to estimate
E[|Φ(s + 1, s)x|2|ηs−1 = i] for s even, s ≥ 2. Firstly we show that if s is even
then Ds−1 = {1}. To this end, we write the equality:

P{ηt = 2} = P{ηt−1 = 1}pt−1(1, 2)

+ P{ηt−1 = 2}pt−1(2, 2), t ≥ 1, t ∈ Z. (3.42)

Writing (3.40) for t = s − 1, s even, s ≥ 2 we obtain that P{ηs−1 = 2} = 0
for all s even, s ≥ 2. Therefore Ds−1 = {1}. we have

E[|Φ(s + 1, s)x|2|ηs−1 = 1] = x2
2∑

j=1

A2
0(s, j)ps−1(1, j) = x2A2

0(s, 2)ps−1(1, 2)

= x22s 1
4s

= x2 1
2s

≤ 1
2
x2, ∀x ∈ R.

Thus we obtain

E[|Φ(s + 1, s)x|2|ηs−1 = 1] ≤ 1
2s+1−s

x2

for all s ≥ 2, even. The last inequality together with (3.39) shows that the
property of ESMS-CII takes place for system (3.1) with the coefficients given
by (3.37)–(3.38). On the other hand if s ≥ 2 is even, we have

(S(s + 1, s)J)(2) = A2
0(s, 2)

2∑

j=1

ps−1(j, 2)

= 2s[ps−1(1, 2) + ps−1(2, 2)] = 2s

(
1
4s

+ α

)

> α2s.
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Because ‖S(s + 1, s)‖ξ = |S(s + 1, s)J | ≥ |(S(s + 1, s)J)(2)| one obtains
that lims→∞ ‖S(s + 1, s)‖ξ ≥ lims→∞ 2s = +∞. Thus we conclude that the
property of SESMS-II cannot take place for system (3.1) with the coefficients
given by (3.37)–(3.38). Based on Theorem 2.14(i) we deduce that the property
SESMS-I cannot take place for this system, too.

Now we show that the zero state equilibrium of the system (3.1) with the
coefficients given by (3.37)–(3.38) cannot be ESMS-CI. First we show that if
s ≥ 2, even, then the state i = 2 is in Ds. To this end we write (3.42) for
t = s, s even, and obtain: P{ηs = 2} = ps−1(1, 2) = (1/4s) > 0. Therefore we
may compute

E[|Φ(s + 1, s)x|2|ηs = 2] = E[|A0(s, ηs)x|2|ηs = 2] = x2A2
0(s, 2).

Hence for s even, s ≥ 2, we have

E[|Φ(s + 1, s)x|2|ηs = 2] = 2s|x|2.

Thus one gets lims→∞ E[|Φ(s+1, s)x|2|ηs = 2] = ∞. This shows that the zero
state equilibrium of the system under consideration cannot be ESMS-CI.

The previous computations show that the zero state equilibrium of system
(3.1) with the coefficients given by (3.37)–(3.38) is only ESMS-CII and ESMS
and it is not SESMS-I, SESMS-II, and ESMS-CI.

The next simple example shows that even in the case of discrete-time linear
stochastic systems subject to an homogeneous Markov chain, ESMS does not
always imply SESMS.

Example 3.2 Let the system (3.1) in the particular case when {ηt}t≥0 is a
Markov chain with two states, having the transition probability matrix

P =
(

1 0
1 0

)

and the coefficients matrices be A0(t, 1) = 0, A0(t, 2) = tIn, Ak(t, i) = 0, 1 ≤
k ≤ r, i ∈ {1, 2}, t ≥ 0.

We have P{ηt = 2} = 0 a.s. for all t ≥ 1. This leads to ηt = 1 a.s,
t ≥ 1. Hence Φ(t, s) = 0 a.s. if t ≥ s + 1, s ≥ 0 for any Markov chain
({ηt}t≥0, P, {1, 2}). This shows that in this particular case the zero state equi-
librium of the considered system is both ESMS-CI and ESMS-CII, as well as
ESMS.

On the other hand we see that (T ∗(t + 1, t)J)(2) = t2In. From
Proposition 2.5(ii) and (2.20) it follows that ‖T ∗(t + 1, t)‖ξ ≥ t2. This shows
that limt→∞ ‖T ∗(t + 1, t)‖ξ = +∞. This allows us to conclude that the zero
state equilibrium of the considered system is not SESMS-I. Furthermore,
one sees that for the system under consideration we have (S(t, s)H)(i) = 0,
i ∈ {1, 2}, H = (H(1), H(2)) ∈ S2

n. hence the zero state equilibrium of the
system under consideration is SESMS-II.
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Remark 3.5 The validity of the converse implication in (iii) of Theorem 3.3
in the absence of some additional assumptions still remains an open problem.
Our conjecture is that this converse implication is not true.

The next result provides a sufficient condition which guarantees that in
the special case of system (3.2) four types of exponential stability introduced
in Definition 3.1 become equivalent.

Theorem 3.6 Assume that for a Markov chain ({η̃t}t≥0, {Pt}t≥0,D) there
exists δ > 0 such that

π̃t(i) = P{η̃t = i} ≥ δ (3.43)

for all t ≥ 0, i ∈ D. Then the following are equivalent.

(i) There exist β ≥ 0, q ∈ (0, 1) such that

E[|Φ̃(t, s)x0|2|η̃(s) = i] ≤ βqt−s|x0|2 (3.44)

for all t ≥ s ≥ 0, i ∈ D, x0 ∈ Rn, Φ̃(t, s) being the fundamental matrix
solution of the system (3.2) corresponding to the Markov chain η̃t.

(ii) The zero state equilibrium of (3.2) is SESMS-I.
(iii) The zero state equilibrium of (3.2) is ESMS-CI.
(iv) The zero state equilibrium of (3.2) is ESMS-CII.
(v) The zero state equilibrium of (3.2) is ESMS.

Proof. To prove (i) → (ii) we remark firstly that (3.43) implies that for the
Markov chain {η̃t}t≥0 we have Ds = D for all s ≥ 0. Combining Proposi-
tion 1.6(ii), Theorem 3.1(i) and the inequality (3.44) one gets

‖T ∗(t, s)‖ξ ≤ βqt−s,

for all t ≥ s ≥ 0. Now, Theorem 2.12 allows us to conclude that the zero state
equilibrium of (3.2) is SESMS-I, hence (i) → (ii) is true. The implications
(ii) → (iii) → (iv) → (v) follow from Theorem 3.3.

It remains to prove (v) → (i).
If (v) holds then there exist β ≥ 1, q ∈ (0, 1) such that

E[|Φ̃(t, s)x0|2] ≤ βqt−s|x0|2

for all t ≥ s ≥ 0, x0 ∈ Rn. From

π̃s(i)E[|Φ̃(t, s)x0|2|η̃s = i] ≤ E[|Φ̃(t, s)x0|2]

we obtain
E[|Φ̃(t, s)x0|2|η̃s = i] ≤ δ−1βqt−s|x0|2

for all t ≥ s ≥ 0, i ∈ D, x0 ∈ Rn and thus the proof ends. �

Remark 3.6 Proposition 1.7 provides a sufficient condition assuring the validity
of condition (3.43) in the case of an homogeneous Markov chain ({ηt}t≥0, P,D)
with P{η0 = i} > 0 for all i ∈ D.
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3.3 Lyapunov-type criteria

Based on Theorem 2.12, Theorem 2.13, and Definition 3.1(a) one immediately
obtains two results that allow us to characterize the SESMS-I in terms of solv-
ability of some systems of linear matrix equations or linear matrix inequalities.

We have the following.

Theorem 3.7 (Lyapunov-type criteria derived via operators Lt) The
following are equivalent.

(i) The zero state equilibrium of the system (3.1) is SESMS-I.
(ii) There exists a bounded sequence {Xt}t≥0, Xt ∈ SN , Xt > 0, t ≥ 0 solving

the following system of equations,

Xt(i) =
r∑

k=0

AT
k (t, i)

N∑

j=1

pt(i, j)Xt+1(j)Ak(t, i) + In (3.45)

for all t ≥ 0, i ∈ D.
(iii) There exists a bounded sequence {Yt}t≥0, Yt � 0, t ≥ 0 and a positive

scalar α that verify the following system of inequalities,

r∑

k=0

AT
k (t, i)

N∑

j=1

pt(i, j)Yt+1(j)Ak(t, i)− Yt(i) ≤ −αIn (3.46)

for all i ∈ D, t ≥ 0.

Theorem 3.8 (Lyapunov-type criteria derived via operators Λt) The
following are equivalent.

(i) The zero state equilibrium of (3.1) is SESMS-II.
(ii) There exists a bounded sequence {Xt}t≥1 ⊂ SN

n , Xt > 0, t ≥ 1 verifying
the following system of linear equations,

Xt(i) =
r∑

k=0

N∑

j=1

AT
k (t, j)pt−1(i, j)Xt+1(j)Ak(t, j) + In (3.47)

for all i ∈ D, t ≥ 1.
(iii) There exists a positive scalar α and a bounded sequence {Yt}t≥1 ⊂

SN
n , Yt � 0, t ≥ 1 verifying the following system of linear inequalities,

r∑

k=0

N∑

j=1

AT
k (t, j)pt−1(i, j)Yt+1(j)Ak(t, j) − Yt(i) ≤ −αIn (3.48)

t ≥ 1, i ∈ D.
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Proof. From Theorem 2.13 it follows that the assertions (ii) and (iii) are
equivalent to the fact that the sequence {Λt}t≥1 generates an exponentially
stable evolution. �

It is worth mentioning that under the assumption of the boundedness of
the sequences {Ak(t)}t≥0, 0 ≤ k ≤ r, i ∈ D, Theorem 3.8 provides criteria for
SESMS-I for the system (3.1).

Even if the criteria provided by Theorems 3.7 and 3.8 are expressed in
terms of solvability of some systems of linear equations or linear inequations
with an infinite number of unknowns, they may be useful in the derivation of
some sufficient conditions for SESMS-I and ESMS. This is illustrated by the
following simple example.

Example 3.3 Consider the system (3.1) in the particular case n = 1. That is,

x(t + 1) = (a0(t, ηt) +
r∑

k=1

ak(t, ηt)wk(t))x(t), (3.49)

t ≥ 0, x(t) ∈ R, ak(t, i) ∈ R.
If

max
i∈D

sup
t≥0

{
r∑

k=0

a2
k(t, i)

}

< 1, (3.50)

then the zero state equilibrium of (3.49) is SESMS-I. Indeed if (3.50) holds
then the system (3.46) associated with (3.49) is verified for Yt(i) = 1 for all
i ∈ D, t ≥ 0.

We remark that in the particular case of (3.49) given by x(t + 1) =
a0(ηt)x(t), the condition (3.50) reduces to |a0(i)| < 1, i ∈ D. This shows
that in the one-dimensional case the zero state equilibrium of a system with
jump Markov perturbations is SESMS-I if for each mode i the deterministic
system y(t + 1) = a0(i)y(t) is exponentially stable. We show later that for
n ≥ 2 the fact that for each mode i the deterministic system is exponentially
stable does not always imply exponential stability in the mean square of the
stochastic system.

3.4 The case of homogeneous Markov chain

The next result shows that in the case of homogeneous Markov chain strong
mean square exponential stability of the zero state equilibrium of the system
(3.2) is always equivalent with SESMS of the zero solution of a system of the
form:

x(t + 1) = A0(t, η̃t)x(t),

where {{η̃t}t≥0, P̃ , D̃} is an homogeneous Markov chain with the transition
probability matrix P̃ which is a nondegenerate stochastic matrix.
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If the stochastic matrix P has some null columns then we set D̂ = D −
{j1, j2, . . . , jp} where jl, 1 ≤ l ≤ p are such that P (i, jl) = 0 for all i ∈ D.
Let P̂ be the (N − p) × (N − p) matrix obtained by canceling the columns
j1, . . . , jp and the corresponding rows in P . Obviously, P̂ is still a stochastic
matrix. Let {{η̂t}t≥0, P̂ , D̂} be the homogeneous Markov chain, having the
state space D̂ and the transition probability matrix P̂ defined above.

We have the following.

Theorem 3.9 If the sequences {A0(t, i)}t≥0, i ∈ D are bounded and if the
matrix P has some null columns the following are equivalent.

(i) The zero state equilibrium of the system (3.2) is SESMS-I.
(ii) The zero state equilibrium of the system

y(t + 1) = Â0(t, η̂t)y(t) (3.51)

is SESMS-I, where (η̂t, P̂ , D̂) is a Markov chain defined above from the
given Markov chain {{ηt}t≥0, P,D} and Â0(t, i) = A0(t, i), i ∈ D̂, t ≥ 0.

Proof. If (i) holds then based on Definition 3.1(a) and the equivalence
(i) ⇐⇒ (ii) in Theorem 3.7 (in the particular case Ak(t, i) = 0, 1 ≤
k ≤ r, t ≥ 0, i ∈ D) one deduces that there exists the bounded sequence
{Xt}t≥0, Xt = {Xt(1), . . . , Xt(N)}, Xt(i) > 0 that solves (3.45).

It is immediate that in this particular case (3.45) may be written as

Xt(i) = AT
0 (t, i)

∑

j∈D̂
p(i, j)Xt+1(j)A0(t, i) + In, (3.52)

for all i ∈ D.
Considering (3.52) for i ∈ D̂ one obtains based on the implication

(ii) =⇒ (i) of Theorem 3.7 that the sequence of Lyapunov operators {L̂t}t≥0

associated with the system (3.41) generates an exponentially stable evolution.
This means that (ii) is fulfilled. To prove the converse implication, we remark
that if (ii) holds then based on the implication (i) =⇒ (ii) of Theorem 3.7
and Definition 3.1(a) there exist the bounded sequences {Xt(i)}t≥0, i ∈ D̂
that verify Xt(i) > 0, t ≥ 0, i ∈ D̂ and

Xt(i) = ÂT
0 (t, i)

∑

j∈D̂
p(i, j)Xt+1Â0(t, i) + In. (3.53)

Let i ∈ D and define X̂t(i) = Xt(i) if i ∈ D̂ and

X̂t(i) = AT
0 (t, i)

∑

j∈D̂
p(i, j)Xt+1(j)A0(t, i) + In

if i ∈ D \ D̂, t ≥ 0. Obviously X̂t(i) > 0, t ≥ 0, i ∈ D, {X̂t(i)}t≥0, i ∈ D are
bounded sequences and X̂t(i) verifies (3.45) for t ≥ 0, i ∈ D. Therefore by
again using implication (ii) → (i) of Theorem 3.7 one concludes that the zero
state equilibrium of system (3.2) is SESMS-I and thus the proof ends. �
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If we repeatedly apply the reduction of number of states of the Markov
chain described above we finally obtain a system of the form

x(t + 1) = Ã0(t, η̃t)x(t)

driven by a Markov chain ({η̃t}t≥0, P̃ , D̃) such that P̃ is a nondegenerate
stochastic matrix.

3.5 Some special cases

3.5.1 The periodic case

In this subsection we consider the case of systems (3.1) with periodic coeffi-
cients. For such a class of stochastic systems we prove that the five types
of mean square exponential stability introduced by Definition 3.1 are equi-
valent. First we remark that if the coefficients {Ak(t, i)}t≥0 of the system
(3.1) are periodic sequences then they are bounded sequences. Therefore from
Corollary 3.2 we deduce that in this case the two types of strong exponential
stability introduced by Definition 3.1(a) and (b) coincide.

Firstly we introduce the following definition.

Definition 3.2 We say that the zero state equilibrium of system (3.1) is
asymptotically stable in mean square (ASMS) if for any sequence of indepen-
dent random vectors {w(t)}t≥0 and for any Markov chain ({ηt}t≥0, {Pt}t≥0,D)
that satisfy H1 and H2 we have limt→∞ E[|Φ(t, 0)x0|2] = 0 for all x0 ∈ Rn.

Now we prove the following.

Theorem 3.10 Assume that there exists an integer θ ≥ 1 such that
Ak(t + θ, i) = Ak(t, i), 0 ≤ k ≤ r, i ∈ D, pt+θ(i, j) = pt(i, j), i, j ∈ D, t ≥ 0.
Under these conditions the following are equivalent.

(i) The zero state equilibrium of system (3.1) is SESMS-I.
(ii) The zero state equilibrium of system (3.1) is ESMS-CI.

(iii) The zero state equilibrium of system (3.1) is ESMS-CII.
(iv) The zero state equilibrium of system (3.4) is ESMS.
(v) The zero state equilibrium of system (3.4) is ASMS.

(vi) There exists a sequence of independent random vectors {w(t)}t≥0 and
a Markov chain ({ηt}t≥0, {Pt}t≥0,D) with P{η0 = i} > 0 for all i ∈ D
which satisfy H1 and H2 such that

lim
m→∞E[|Φ(mθ, 0)x0|2] = 0

for all x0 ∈ Rn.
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(vii) limm→∞ E[|Φi(mθ, 0)x0|2] = 0 for all i ∈ D and x0 ∈ Rn, where
Φi(t, s) is the fundamental matrix solution of the system (3.1) for a
fixed sequence of independent random vectors {w(t)}t≥0 and a Markov
chain ({ηt}t≥0, {Pt}t≥0,D) with D0 = {i} that satisfy H1 and H2.

(viii) limm→∞ E[|Φi(mθ, 1)x0|2] = 0 for all i ∈ D, x0 ∈ Rn, Φi(t, s) being as
before.

Proof. The implications (i)=⇒(ii)=⇒(iii) =⇒ (iv) follow from Theorem 3.3;
(i) =⇒ (iv) =⇒ (v) =⇒ (vii), (iii) =⇒ (viii), and (v) =⇒ (vi) are obvious.
Now we prove (vi) =⇒ (i). Because D0 = D we may write E[|Φ(mθ, 0)x0|2] =∑

i∈D P{η0 = i}E[|Φ(mθ, 0)x0|2|η0 = i].
Hence (vi) is equivalent to

lim
m→∞E[|Φ(mθ, 0)x0|2|η0 = i] = 0 (3.54)

for all i ∈ D and x0 ∈ Rn.
Based on (3.4) one obtains that

lim
m→∞xT

0 (T ∗(mθ, 0)J)(i)x0 = lim
m→∞E[|Φ(mθ, 0)x0|2|η0 = i] = 0. (3.55)

This allows us to write

lim
m→∞ |(T ∗(mθ, 0)J)(i)| = 0.

Based on (2.20) and Proposition 2.5(ii) one gets:

lim
m→∞ ‖T ∗(mθ, 0)‖ξ = 0. (3.56)

From the periodicity assumption it follows that L∗
t+θ = L∗

t for all t ≥ 0.
By induction one obtains that

T ∗(mθ, 0) = (T ∗(θ, 0))m,

for all m ≥ 0. Therefore (3.54) may be written as

lim
m→∞ ‖[T ∗(θ, 0)]m‖ξ = 0. (3.57)

Let m0 ≥ 1 be such that ‖(T ∗(θ, 0))m0‖ξ < 1
2 . It follows that

‖T ∗(lm0θ, 0)‖ξ <

(
1
2

)l

for all l ≥ 1.
In a standard way, by using Remark 2.5(a) and the equality

T ∗(t, s) = T ∗(u, s)T ∗(t, u), t ≥ u ≥ s ≥ 0 (3.58)
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one obtains that there exist β ≥ 1 and q ∈ 0, 1, (q = (1
2 )1/m0) such that

‖T ∗(t, s)‖ξ ≤ βqt−s, for all t ≥ s ≥ 0.
Invoking Theorem 2.12 we deduce that the sequence {Lt}t≥0 generates an

exponentially stable evolution and thus, in view of Definition 3.1(a) it follows
that (i) holds.

We prove now (vii) =⇒ (i). The representation formula (3.4) together with
(vii) shows that (3.55) is fulfilled for all i ∈ D and x0 ∈ Rn. The remainder of
the proof of this implication is similar to that of the implication (vi) =⇒ (i).

It remains to prove (viii) =⇒ (i). If (viii) holds then from the represen-
tation formula (3.5) one obtains that

lim
m→∞xT

0 (S∗(mθ, 1)J)(i)x0 = 0

for all i ∈ D, x0 ∈ Rn. This leads to

lim
m→∞ ‖S∗(mθ, 1)‖ξ = 0.

Based on Corollary 2.5(ii) one gets

‖T ∗(mθ, 0)‖ξ ≤ α(0)‖S∗(mθ, 1)‖ξ.

This shows that limm→∞ ‖T ∗(mθ, 0)‖ξ = 0. The conclusion is obtained now
as in the proof of the implication (vi) → (i). Thus the proof is complete. �
Remark 3.7 Part of the equivalences in the above theorem are known from
the case of discrete-time time-invariant linear systems affected by Markov
perturbations (see [52, 86, 87]). Here we have shown that these equivalences
are still valid for the periodic case without the additional assumption that P
is a nondegenerate stochastic matrix.

Based on Theorem 2.5 one obtains that if the sequences {Ak(t, i)}t≥0,
{pt(i, j)}t≥0 are periodic sequences with period θ then the bounded solu-
tions of (3.45) and (3.47), respectively, are periodic sequences with the same
period θ.

Combining Theorems 2.5, 2.7, and 2.4 we obtain the following specialized
version of Theorems 3.7 and 3.8.

Theorem 3.11 (Lyapunov-type criteria derived via operators Lt)
Under the periodicity assumption of Theorem 3.10 with θ ≥ 2, the follow-
ing are equivalent.

(i) The zero state equilibrium of (3.1) is ESMS.
(ii) There exist positive definite matrices Xt(i), 0 ≤ t ≤ θ − 1, i ∈ D that

verify the following system of linear equations,

Xt(i) =
r∑

k=0

AT
k (t, i)

N∑

j=1

pt(i, j)Xt+1(j)Ak(t, i) + In

0 ≤ t ≤ θ − 2, (3.59)
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Xθ−1(i) =
r∑

k=0

AT
k (θ − 1, i)

N∑

j=1

pθ−1(i, j)X0(j)Ak(θ − 1, i) + In.

(iii) There exist positive definite matrices Xt(i), 0 ≤ t ≤ θ − 1, i ∈ D that
solve the following system of linear equations,

Xt+1(i) =
r∑

k=0

N∑

j=1

pt(j, i)Ak(t, j)Xt(j)AT
k (t, j) + In,

0 ≤ t ≤ θ − 2

X0(i) =
r∑

k=0

N∑

j=1

pθ−1(j, i)Ak(θ − 1, j)Xθ−1(j)AT
k (θ − 1, j) + In, (3.60)

i ∈ D.

(iv) There exist positive definite matrices Yt(i), 0 ≤ t ≤ θ−1, i ∈ D that solve
the following system of LMIs,

r∑

k=0

N∑

j=1

pt(j, i)Ak(t, j)Yt(j)AT
k (t, j) − Yt+1(i) < 0,

0 ≤ t ≤ θ − 2

r∑

k=0

N∑

j=1

pθ−1(j, i)Ak(θ − 1, j)Yθ−1(j)AT
k (θ − 1, j)− Y0(i) < 0 (3.61)

i ∈ D.

Proof. The equivalence (i) ↔ (ii) follows from Theorems 2.4 and 2.5 applied
to the sequence of operators {L∗

t }t∈Z. The equivalences (i) ↔ (iii) ↔ (iv)
follow from Theorems 2.6 and 2.7 applied to the sequence {Lt}t∈Z.

In fact (i) ↔ (ii) is just the equivalence (i) ↔ (ii) of Theorem 3.7 above
specialized for the periodic case. It is worth mentioning that conditions for the
existence of a Lyapunov function expressed in terms of the sequence {Lt}t≥0

instead of the sequence {L∗
t }t≥0 can be derived if Lt are defined for all t ∈ Z.

This is the case if {Lt}t is a periodic sequence or a constant sequence. �

Theorem 3.12 (Lyapunov-type criteria derived via operators Λt)
Under the assumptions of Theorem 3.10 with θ ≥ 2 the following are equiva-
lent.

(i) The zero state equilibrium of (3.1) is ESMS.
(ii) There exist positive definite matrices Xt(i), 1 ≤ t ≤ θ, 1 ≤ i ≤ N that

verify the following system of linear equations,
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Xt(i) =
r∑

k=0

N∑

j=1

pt−1(i, j)AT
k (t, j)Xt+1(j)Ak(t, j) + In, (3.62)

1 ≤ t ≤ θ − 1,

Xθ(i) =
r∑

k=0

N∑

j=1

pθ−1(i, j)AT
k (0, j)X1(j)Ak(0, j) + In,

i ∈ D.

(iii) There exist positive definite matrices Xt(i), 1 ≤ t ≤ θ, i ∈ D that solve
the following system of linear equations,

Xt+1(i) =
r∑

k=0

Ak(t, i)
N∑

j=1

pt−1(j, i)Xt(j)AT
k (t, i) + In, (3.63)

1 ≤ t ≤ θ − 1, i ∈ D

X1(i) =
r∑

k=0

Ak(θ, i)
N∑

j=1

pθ−1(j, i)Xθ(j)AT
k (θ, i) + In,

i ∈ D.

(iv) There exist positive definite matrices Yt(i), 1 ≤ t ≤ θ, i ∈ D that solve
the following system of LMIs,

r∑

k=0

N∑

j=1

pt−1(i, j)AT
k (t, j)Yt+1(j)Ak(t, j)− Yt(i) < 0,

1 ≤ t ≤ θ − 1, i ∈ D
r∑

k=0

N∑

j=1

pθ−1(i, j)AT
k (θ, j)Y1(j)Ak(θ, j) − Yθ(i) < 0, i ∈ D.

Proof. The equivalence (i) ↔ (ii) ↔ (iv) follows from combining Theo-
rem 2.14(ii) with Theorems 2.4 and 2.5 applied to the sequence {Λ∗

t}t∈Z.
The equivalence (i) ↔ (iii) follows from Theorem 2.14(ii) together with
Theorems 2.6 and 2.7 applied to the sequence {Λt}t∈Z. �

Remark 3.8 It is easy to see that the systems (3.57), (3.58) and (3.60), (3.61),
respectively, contain n̂ linear scalar equations with n̂ scalar unknowns, where
n̂ = (Nθn(n + 1))/2.
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3.5.2 The time-invariant case

Let us consider the following version of the system (3.1),

x(t + 1) =

[

A0(ηt) +
r∑

k=1

Ak(ηt)wk(t)

]

x(t). (3.64)

It corresponds to the case Ak(t, i) = Ak(i), t ≥ 0, i ∈ D, 0 ≤ k ≤ r.

Definition 3.3 We say that the system (3.1) is in the time-invariant case if
it takes the form (3.64), and ηt, t ≥ 0 is an homogeneous Markov chain.

We note that the time-invariant case may be viewed as a periodic case with
period θ = 1. Hence the equivalences proved in Theorem 3.10 are still valid in
the time-invariant case.

The next example shows that if there exists i0 ∈ D such that P{η0 = i0} = 0
it is possible that the zero solution of the considered stochastic system is not
mean square exponentially stable even if

lim
t→∞E[|Φ(t, s)x0|2] = 0

for all x0 ∈ Rn.

Example 3.4 Consider the system (3.2) in the particular case n = 1, N = 2,
A(1) = 0, A(2) = 1, P{η0 = 2} = 0, P{η0 = 1} = 1,

P =
(

α 1 − α
0 1

)

,

α ∈ (0, 1), xt+1 = A(ηt)xt, t ≥ 0. Because η0 = 1 a.s. it follows that x1 =
A(1)x0 = 0 a.s. By induction one obtains xt = 0 a.s. for all t ≥ 1.

Therefore limt→∞ E[|x(t)|2] = 0. On the other hand (L∗
t J)(1) = (L∗)t

J(1) = 0, t ≥ 1 and (L∗
t J)(2) = ((L∗)tJ)(2) = 1, t ≥ 0 hence ‖(L∗)t‖ξ = 1,

limt→∞ ‖(L∗)t‖ξ = 1 
 =0.
Therefore in order to have exponential stability in the mean square, in (vi)

of Theorem 3.10 we asked P{η0 = i} > 0 for all i ∈ D.

In the time-invariant case, the results of Theorems 3.11 and 3.12 become
the following.

Corollary 3.3 (Lyapunov-type criteria derived via the operator L)
Assume that Ak(t, i) = Ak(i), 0 ≤ k ≤ r, pt(i, j) = p(i, j), i, j ∈ D, t ≥ 0;
then the following are equivalent.

(i) The zero state equilibrium of (3.1) is ESMS.
(ii) There exist positive definite matrices X(i), 1 ≤ i ≤ N that verify the

following system of algebraic matrix equations,

X(i) =
r∑

k=0

AT
k (i)

N∑

j=1

p(i, j)X(j)Ak(i) + In, (3.65)

i ∈ D.
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(iii) There exist positive definite matrices X(i), i ∈ D that solve the following
system of linear equations,

X(i) =
r∑

k=0

N∑

j=1

p(j, i)Ak(j)X(j)AT
k (j) + In, (3.66)

i ∈ D.
(iv) There exist positive definite matrices Y (i), i ∈ D that solve the following

system of LMIs,

r∑

k=0

N∑

j=1

p(j, i)Ak(j)Y (j)AT
k (j) − Y (i) < 0, (3.67)

i ∈ D.

Corollary 3.4 (Lyapunov-type criteria derived via the operator Λ)
Under the assumptions of Corollary 3.2 the following are equivalent.

(i) The zero state equilibrium of (3.1) is ESMS.
(ii) There exist positive definite matrices X(i), 1 ≤ i ≤ N that verify the

following system of algebraic matrix equations,

X(i) =
r∑

k=0

N∑

j=1

p(i, j)AT
k (j)X(j)Ak(j) + In, (3.68)

i ∈ D.
(iii) There exist positive definite matrices X(i), 1 ≤ i ≤ N that verify the

following system of algebraic matrix equations,

X(i) =
r∑

k=0

Ak(i)
N∑

j=1

p(j, i)X(j)AT
k (i) + In, (3.69)

i ∈ D.
(iv) There exist positive definite matrices Y (i), i ∈ D that solve the following

system of LMIs

r∑

k=0

N∑

j=1

p(i, j)AT
k (j)Y (j)Ak(j) − Y (i) < 0,

i ∈ D.

For Markovian systems (i.e., Ak(i) = 0, 1 ≤ k ≤ r) the equivalence (i) ↔
(ii) in Corollary 3.2 has been proved in [21, 22, 53, 54, 75, 86, 88]. The
equivalence (i) ↔ (ii) in Corollary 3.3 has been proved in a different way in
[52, 86].
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3.5.3 Another particular case

In this subsection we focus our attention on a particular case of system (3.1)
which may be interesting in applications. We refer to the case pt(i, j) = pt(j)
for all i, j ∈ D, t ≥ 0.

This means that P{ηt+1 = j|ηt = i} does not depend upon i. It is easy to
see that in this case the solution of the system (3.62) does not depend upon i.

This remark together with the Theorem 3.12 leads to the following.

Corollary 3.5 Assume that:

(a) There exists an integer θ ≥ 2 such that Ak(t + θ, i) = Ak(t, i), 0 ≤ k ≤
r, i ∈ D, Pt+θ = Pt, for all t ≥ 0.

(b) pt(i, j) ≡ pt(j), ∀i, j ∈ D, t ≥ 0.

Then the following are equivalent.

(i) The zero state equilibrium of the system (3.1) is ESMS.
(ii) There exist positive definite matrices Xt, 1 ≤ t ≤ θ, that satisfy

r∑

k=0

N∑

j=1

ps−1(j)AT
k (s, j)Xs+1Ak(s, j) −Xs = −In, (3.70)

1 ≤ s ≤ θ − 1,

r∑

k=0

N∑

j=1

pθ−1(j)AT
k (0, j)X1Ak(0, j)−Xθ = −In.

Also from Corollary 3.3 we obtain the following.

Corollary 3.6 Assume that:

(a) Ak(t, i) = Ak(i), 0 ≤ k ≤ r, i ∈ D, Pt = P, t ≥ 0.
(b) p(i, j) = p(j), i, j ∈ D.

Then the following are equivalent.

(i) The zero state equilibrium of system (3.1) is ESMS.
(ii) There exists a positive definite matrix X ∈ Sn that solves

X =
r∑

k=0

N∑

j=1

p(j)AT
k (j)XAk(j) + In. (3.71)

We remark that under the assumption of Corollary 3.4 to check the exponential
stability we need to solve a system of n1 scalar linear equations with n1 scalar
unknowns, with n1 = (θn(n + 1))/2.

In the case of system (3.1) which verifies the assumptions of Corollary 3.5
to check the mean square exponential stability means to solve a system of n2

scalar linear equations with n2 scalar unknowns with (n2 = n(n + 1))/2.
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Remark 3.9 In applications (see the next examples), Theorem 3.12 and
Corollaries 3.4–3.6 often are used.

These results provide characterizations of the mean square exponential
stability in terms of the operators Λt, Λ

∗
t , t ≥ 1. Such operators do not have

an analogue in the continuous-time case. We consider that the usefulness
of the aforementioned criteria for SESMS represents a good motivation to
introduce the sequences Λt, Λ

∗
t , S(t, s), S∗(t, s).

At the end of this section we present several examples that illustrate the
applicability of the criteria for exponential stability in the mean square derived
in this section.

Example 3.5 Consider the time-invariant system with n = 1, N = 2 des-
cribed by

x(t + 1) =

(

a0(ηt) +
r∑

k=1

ak(ηt)wk(t)

)

x(t), (3.72)

where the probability transition matrix is

P =
(

α 1 − α

α 1 − α

)

, α ∈ [0, 1].

Applying Corollary 3.6 we deduce that the zero state equilibrium of (3.72)
is ESMS if and only if

αδ1 + (1 − α)δ2 − 1 < 0, (3.73)

where δj =
∑r

k=0 a2
k(j), j = 1, 2. The inequality (3.71) is verified if and

only if
δ1 ≤ δ2 < 1 and α ∈ [0, 1]

or

δ1 < 1, δ2 ≥ 1, α ∈
(

δ2 − 1
δ2 − δ1

, 1
]

or

δ2 < min{1, δ1}, α < min
{

1,
1 − δ2

δ1 − δ2

}

.

Example 3.6 Consider the discrete-time time-invariant system with jump Markov
perturbations, in the particular case n = 1, N = 2,

x(t + 1) = a0(ηt)x(t) (3.74)

and the probability transition matrix

P =
(

α 1 − α

α 1 − α

)

.
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Considering the discussions from Example 3.5 in the particular case
ak(i) = 0, 1 ≤ k ≤ r, i ∈ {1, 2} we conclude that the zero state equilibrium of
(3.74) is ESMS if and only if

a2
0(1) ≤ a2

0(2) < 1, α ∈ [0, 1]

or

a2
0(1) < 1, a2

0(2) ≥ 1, α ∈
(

a2
0(2) − 1

a2
0(2) − a2

0(1)
, 1
]

or

a2
0(2) < min{1, a2

0(1)}, 0 ≤ α < min
{

1,
1 − a2

0(2)
a2
0(1)− a2

0(2)

}

.

Particularly, if a2
0(1) = 1

2 , a
2
0(2) = 2, α = 4

5 the zero state equilibrium of the
corresponding equation (3.74) is ESMS.

This example shows that it is possible for the zero state equilibrium of a
linear stochastic system with Markov perturbations to be ESMS even if for
some mode i ∈ D the deterministic system is not exponentially stable.

Example 3.7 Consider the particular case of (3.2) with

n = 2, N = 2, P =
( 1

2
1
2

1
2

1
2

)

described by

x(t + 1) = A0(ηt)x(t), (3.75)

where

A0(1) =
(

a 0
1 a

)

, A0(2) =
(

a 1
0 a

)

, a ∈ R.

Applying Corollary 3.6 we deduce that the zero state equilibrium of (3.75)
is ESMS if and only if there exists

X =
(

x y
y z

)

> 0

such that
1
2

2∑

j=1

AT
0 (j)XA0(j) −X = −I2.

One obtains

x = z =
2(1 − a2)

2a4 − 5a2 + 1
, y =

2a
2a4 − 5a2 + 1

therefore X > 0 if and only if a2 ∈ [0, (5 −
√

17/4)). We see that if
a2 ∈ [(5 −

√
17/4), 1) the spectral radii of the matrices A0(1) and A0(2) are
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less than 1, but the corresponding system (3.75) does not have a mean square
exponentially stable evolution. This shows that for n ≥ 2 it is possible that
for each mode i ∈ D the deterministic system y(t + 1) = A0(i)y(t) is expo-
nentially stable, whereas the corresponding stochastic system of type (3.2) is
not exponentially stable in the mean square.

Example 3.8 Consider the periodic case of (3.1) for r = 1, N = 2, θ = 2;
that is,

x(t + 1) = (A0(t, ηt) + A1(t, ηt)w1(t))x(t), (3.76)

where the probability transition matrices

P0 =

(
1
2

1
2

1
2

1
2

)

, P1 =

(
1
3

2
3

1
3

2
3

)

,

Ak(t, i) = ak(i)In, k ∈ {0, 1}, i ∈ D, t ≥ 0.

Applying Corollary 3.5 we deduce that the zero state equilibrium of system
(3.76) is ESMS iff there exist X1 > 0, X2 > 0 such that

1
2
[a2

0(1) + a2
0(2) + a2

1(1) + a2
1(2)]X2 −X1 = −In

1
3
[(a2

0(1) + a2
1(1)) + 2(a2

0(2) + a2
1(2))]X1 −X2 = −In.

This is equivalent to

[a2
0(1) + a2

0(2) + a2
1(1) + a2

1(2)][a2
0(1) + a2

1(1) + 2a2
0(2) + 2a2

1(2)] < 6.

3.6 The case of the systems with coefficients depending
upon ηt and ηt−1

In this section we study the problem of mean square exponential stability of
the linear stochastic systems (3.18).

As in the case of the systems of type (3.1), we define the exponential
stability in the mean square both in terms of exponential stability of the
evolution generated by the Lyapunov operators associated with the system
(3.18) as well as in terms of exponentially stable behavior of the state space
trajectories of the system.

Definition 3.4

(a) We say that the zero state equilibrium of the system (3.18) is strongly
exponentially stable in the mean square (SESMS) if there exist β ≥ 1, q ∈
(0, 1) such that ‖R(t, s)‖ξ ≤ βqt−s for all t ≥ s ≥ 1, R(t, s) being the
linear evolution operator on SN

n defined by the sequence Υt associated with
the system (3.18).
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(b) We say that the zero state equilibrium of the system (3.18) is exponen-
tially stable in the mean square with conditioning (ESMS-C) if there exist
β ≥ 1, q ∈ (0, 1) such that for any sequence of independent random vectors
{w(t)}t≥1 and for any Markov chain ({ηt}t≥0,P,D) that satisfy H1,H2

we have:
E[|Θ(t, s)x|2|ηs−1 = i] ≤ βqt−s|x|2

for all t ≥ s ≥ 1, x ∈ Rn, i ∈ Ds−1.
(c) We say that the zero state equilibrium of the system (3.18) is exponentially

stable in the mean square (ESMS) if there exist β ≥ 1, q ∈ (0, 1) such that
for any sequence of independent random vectors {w(t)}t≥1 and for any
Markov chain ({ηt}t≥0,P,D) that satisfy H1,H2 we have:

E[|Θ(t, s)x|2] ≤ βqt−s|x|2

for all t ≥ s ≥ 1, x ∈ Rn.

Remark 3.10 As we have seen in Remark 3.3 the system (3.1) may be viewed
as a special case of the system (3.18). It is natural to want to see if the
types of exponential stability in the mean square introduced by Definition 3.4
reduce to the ones introduced by Definition 3.1 if the systems (3.18) take the
particular form (3.1).

It is obvious that if the system (3.1) is regarded as a system of type
(3.18) then the concepts of ESMS introduced by Definition 3.1(e) and Defini-
tion 3.4(c) coincide. The concept of ESMS-C introduced by Definition 3.4(b)
coincides with the concept ESMS-CII introduced by Definition 3.1(d). The
concept of SESMS introduced by Definition 3.4(a) coincides with the concept
of SESMS-II introduced by Definition 3.1(b).

Concerning the relations between the concepts of exponential stability in
the mean square introduced by Definition 3.4 we have the following theorem.

Theorem 3.13 Under the assumptions H1,H2 we have:

(i) If the zero state equilibrium of the system (3.18) is SESMS then it is
ESMS-C.

(ii) If the zero state equilibrium of the system (3.18) is ESMS-C then it is
ESMS.

Proof. (i) follows immediately from (3.19); (ii) follows from the inequality

E[|Θ(t, s)x|2] ≤
∑

i∈Ds−1

E[|Θ(t, s)x|2|ηs−1 = i].

The analogue of Theorem 3.5 for the systems (3.18) is as follows. �

Theorem 3.14 If for all t ≥ 0, Pt are nondegenerate stochastic matrices then
the following are equivalent.
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(i) The zero state equilibrium of the system (3.18) is SESMS.
(ii) The zero state equilibrium of the system (3.18) is ESMS-C.

(iii) There exist a sequence of independent random vectors {w(t)}t≥1 and a
Markov chain ({ηt}t≥0,P,D) with P{(η0 = i)} > 0, i ∈ D satisfying
H1,H2 such that

E[|Θ(t, s)x|2|ηs−1 = i] ≤ βqt−s|x|2

for all t ≥ s ≥ 1, i ∈ D, x ∈ Rn, where β ≥ 1, q ∈ (0, 1).

Proof. It is similar to the proof of Theorem 3.4 and is based on Theorem 3.2.
The details are omitted. �

As in the case of the systems of type (3.1), it is expected that the types of
exponential stability in the mean square introduced for systems of type (3.18)
will not be equivalent in the absence of some additional assumptions.

In the sequel we show that under the periodicity assumption the con-
cepts of exponential stability introduced by Definition 3.4 become equi-
valent.

Firstly we introduce the following.

Definition 3.5 We say that the zero state equilibrium of the system (3.18) is
asymptotically stable in the mean square (ASMS) if for any sequence of inde-
pendent random vectors {w(t)}t≥1 and for any Markov chain ({ηt}t≥0,P,D)
that satisfy H1,H2 we have

lim
t→∞E[|Θ(t, 1)x|2] = 0, ∀x ∈ Rn.

Now we are in position to state the following.

Theorem 3.15 Assume that there exists an integer θ ≥ 1 such that Ak(t +
θ, i, j) = Ak(t, i, j), 0 ≤ k ≤ r, i, j ∈ D, Pt+θ = Pt, t ≥ 0. Under these condi-
tions the following are equivalent.

(i) The zero state equilibrium of the system (3.18) is (SESMS).
(ii) The zero state equilibrium of the system (3.18) is (ESMS-C).

(iii) The zero state equilibrium of the system (3.18) is (ESMS).
(iv) The zero state equilibrium of the system (3.18) is (ASMS).
(v) There exist a sequence of independent random vectors {w(t)}t≥1 and a

Markov chain ({ηt}t≥0, {Pt}t≥0,D) with P{(η0 = i)} > 0, i ∈ D satisfy-
ing H1,H2 such that

lim
t→∞E[|Θ(θt, 1)x|2] = 0 (3.77)

for all x ∈ Rn.
(vi) ρ[R(θ + 1, 1)] < 1 where ρ[·] is the spectral radius.
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Proof. The implications (i) → (ii) → (iii) follow from Theorem 3.13. The
implications (iii) → (iv) → (v) are straightforward. Now we prove the impli-
cation (v) → (vi).

From (3.77) together with the equality:

E[|Θ(θt, 1)x|2] =
N∑

i=1

π0(i)E[|Θ(θt, 1)x|2|η0 = i]

we deduce that

lim
t→∞E[|Θ(θt, 1)x|2|η0 = i] = 0, i ∈ D. (3.78)

Based on (3.19) and (3.78) one gets

lim
t→∞xT [(R∗(θt, 1)J)(i)]x = 0. (3.79)

If we take into account the definition of the norm | · |ξ (see (2.20)), we may
write

lim
t→∞ |R∗(θt, 1)J |ξ = 0

or equivalently

lim
t→∞ ‖R∗(θt, 1)‖ξ = 0. (3.80)

Because ‖·‖ξ, ‖·‖2 are equivalent norms on SN
n and ‖R∗(θt, 1)‖2 = ‖R(θt, 1)‖2

one obtains from (3.80) that limt→∞ ‖R(θt, 1)‖ξ = 0. Using the fact that
R(θt + 1, 1) = ΥθtR(θt, 1) = ΥθR(θt, 1) we deduce that

lim
t→∞ ‖R(θt + 1, 1)‖1 = 0. (3.81)

Based on periodicity of the coefficients, one shows inductively that
R(θt + 1, 1) = (R(θ + 1, 1))t for all t ≥ 1. Thus (3.81) may be rewritten
limt→∞ ‖(R(θ + 1), 1)t‖ξ = 0.

From the definition of the spectral radius we conclude that (3.81) is equi-
valent to ρ[R(θ + 1, 1)]ξ < 1. This shows that (vi) holds. If (vi) is true then
there exist β ≥ 1, q ∈ (0, 1) such that ‖(R(θ + 1, 1))t‖ξ ≤ βqt. Furthermore
one shows in a standard way that there exists β1 ≥ β such that ‖R(t, s)‖ξ ≤
β1q

(t−s) for all t ≥ s ≥ 1 (for more details one can see the proof of implication
(vi) → (i) in Theorem 3.10). Thus we obtain that the implication (vi) → (i)
holds and the proof is complete. �

Definition 3.6 We say that the system (3.18) is in the time-invariant case if
Ak(t, i, j) = Ak(i, j) for all t ≥ 1, i, j ∈ D, 0 ≤ k ≤ r and Pt = P for all
t ≥ 0.
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In this case we have Υt = Υ , for all t ≥ 1. One sees that the system (3.18)
is in the time-invariant case if and only if it is periodic with period θ = 1.
Hence, the equivalences from the above theorem hold in the time-invariant
case too. In this case, the statement (vi) becomes ρ(Υ ) < 1.

Based on Theorems 2.4 and 2.5 applied to the sequence (2.99) we obtain
a set of Lyapunov-type criteria based on the properties of the sequence Υ ∗

t .

Theorem 3.16 Under the assumption of Theorem 3.15 with θ ≥ 2 the fol-
lowing are equivalent.

(i) The zero state equilibrium of the system (3.18) is ESMS.
(ii) There exist the positive definite matrices Xt(i) ∈ SN

n , 1 ≤ t ≤ θ, i ∈ D
that solve the following system of linear matrix equations,

Xt(i) =
r∑

k=1

N∑

j=1

pt−1(i, j)AT
k (t, j, i)Xt+1(j)Ak(t, j, i) + In

for all 1 ≤ t ≤ θ − 1,

Xθ(i) =
r∑

k=0

N∑

j=1

pθ−1(i, j)AT
k (θ, j, i)X1(j)Ak(θ, j, i) + In

for i ∈ D.
(iii) There exist positive definite matrices Yt(i) ∈ Sn, 1 ≤ t ≤ θ, i ∈ D that

solve the following system of LMIs,

r∑

k=0

N∑

j=1

pt−1(i, j)AT
k (t, j, i)Yt+1(j)Ak(t, j, i) − Yt(i) < 0

for 1 ≤ t ≤ θ − 1,

r∑

k=0

N∑

j=1

pθ−1(i, j)AT
k (θ, j, i)Y1(j)Ak(θ, j, i) − Yθ(i) < 0

for i ∈ D.

Proof. From Theorems 2.4 and 2.5 applied to the sequence Υ ∗
t it follows that

(ii) and (iii) in the statement are equivalent to the fact that the sequence
{Υt}t≥1 generates an exponentially stable evolution. Definition 3.4(a) and
Theorem 3.15 show that this is equivalent to ESMS of the zero state equili-
brium of the system (3.18). �

The next result provides a set of Lyapunov-type criteria based on expo-
nential stability of the evolution defined by the sequence {Υt}t∈Z.

Theorem 3.17 Under the assumptions of Theorem 3.16 the following are
equivalent.
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(i) The zero state equilibrium of the system (3.18) is ESMS.
(ii) The system of linear matrix equations

Xt+1(i) =
r∑

k=0

N∑

j=1

pt−1(j, i)Ak(t, i, j)

×Xt(j)AT
k (t, i, j) + In 1 ≤ t ≤ θ − 1 (3.82)

X1(i) =
r∑

k=0

N∑

j=1

pθ−1(j, i)Ak(θ, i, j)Xθ(j)AT
k (θ, i, j) + In,

i ∈ D, has a solution Xt = (Xt(1), . . . , Xt(N)) such that Xt(i) > 0,
i ∈ D.

(iii) There exist positive definite matrices Yt(i), 1 ≤ t ≤ θ, i ∈ D, that solve
the following system of LMIs,

r∑

k=0

N∑

j=1

pt−1(j, i)Ak(t, i, j)Yt(j)AT
k (t, i, j)

− Yt+1(i) < 0 1 ≤ t ≤ θ − 1 (3.83)

r∑

k−0

N∑

j=1

pθ−1(j, i)Ak(θ, i, j)Yθ(j)AT
k (θ, i, j) − Y1(i) < 0,

i ∈ D.

In the time-invariant case the results of Theorems 3.16 and 3.17 become
as follows.

Corollary 3.7 If the system is in the time-invariant case, the following are
equivalent.

(i) The zero state equilibrium of the system (3.18) is ESMS.
(ii) The system of linear equations

X(i) =
R∑

k=0

N∑

j=1

p(i, j)AT
k (j, i)X(j)Ak(j, i) + In,

i ∈ D, has a solution X = (X(1), . . . , X(N)) with X(i) > 0, i ∈ D.
(iii) There exist positive definite matrices Y (i), i ∈ D, that solve the following

system of LMIs,

r∑

k=0

N∑

j=1

p(i, j)AT
k (j, i)Y (j)Ak(j, i)− Y (i) < 0,

i ∈ D.



3.7 Discrete-time affine systems 95

Corollary 3.8 Under the conditions of Corollary 3.6 the following are equi-
valent.

(i) The zero state equilibrium of the system (3.18) is ESMS.
(ii) The system of linear matrix equations

X(i) =
r∑

k=0

N∑

j=1

p(j, i)Ak(i, j)X(j)AT
k (i, j) + In,

i ∈ D, has a solution X = (X(1), . . . , X(N)) with X(i) > 0, i ∈ D.
(iii) There exist positive definite matrices Y (i), i ∈ D, that solve the following

system of LMIs,

r∑

k=0

N∑

j=1

p(j, i)Ak(i, j)Y (j)AT
k (i, j)− Y (i) < 0, i ∈ D.

3.7 Discrete-time affine systems

In this section we deal with discrete-time affine stochastic systems obtained
from (3.1) adding some forcing terms. More precisely, the systems under con-
sideration are of the form

x(t + 1) = A0(t, ηt)x(t) + g0(t)

+
r∑

k=1

wk(t)[Ak(t, ηt)x(t) + gk(t)], t ≥ 0, (3.84)

where {gk(t)}t≥0, 0 ≤ k ≤ r are stochastic processes with the property that
for each t ≥ 0, the vectors gk(t) are H̃t-measurable and E|gk(t)|2 < ∞, H̃t

being the σ-algebra defined in Section 1.5.
The following result is used repeatedly in the developments of the next

chapters.

Lemma 3.1 Let V (t, x, i) = xT X(t, i)x+ 2xT κ(t, i)+ μ(t, i), where X(t, i) =
XT (t, i) ∈ Rn×n, κ(t, i) ∈ Rn, μ(t, i) ∈ R, (t, i) ∈ Z+ ×D. Then we have:

E[V (t + 1, x(t + 1), ηt+1)|ηt0 ]

=
r∑

k=0

E[xT (t)AT
k (t, ηt)Eηt(t,X(t + 1))Ak(t, ηt)x(t) + 2xT (t)AT

k (t, ηt)

× Eηt(t,X(t + 1))gk(t) + gT
k (t)Eηt(t,X(t + 1))gk(t)|ηt0 ]

+ 2E[(A0(t, ηt)x(t) + g0(t))T Eηt(t, κ(t+1))|ηt0 ]

+ E[Eηt(t, μ(t + 1))|ηt0 ]
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for all t ≥ t0 ≥ 0 and any trajectories {x(t)}t≥t0 of the system (3.84) with
x(t0) H̃t0-measurable and E[|x(t0)|2] < ∞, where

Ei(t, Z) =
N∑

j=1

pt(i, j)Z(j), (3.85)

1 ≤ i ≤ N , for all Z = (Z(1), Z(2), . . . , Z(N)), where either Z(i) ∈ Rn×n,
Z(i) ∈ Rn, or Z(i) ∈ R, respectively.

Proof. Because V (t + 1, x(t + 1), j) is Ht-measurable we obtain via Corol-
lary 1.1 the equalities:

E[V (t + 1, x(t + 1), ηt+1)|Ht] =
N∑

j=1

V (t + 1, x(t + 1), j)E[χ{ηt+1=j}|Ht]

=
N∑

j=1

V (t + 1, x(t + 1), j)pt(ηt, j), a.s.

(3.86)

Taking into account that H̃t ⊂ Ht, gk(t), x(t), and ηt are H̃t-measurable and
wk(t) are independent of H̃t, we obtain from (3.86) the equality

E[V (t + 1, x(t + 1), ηt+1)|H̃t] = (A0(t, ηt)x(t) + g0(t))T Eηt(t,X(t + 1))

× (A0(t, ηt)x(t) + g0(t))

+ 2(A0(t, ηt)x(t) + g0(t))T Eηt(t,X(t + 1))

×
r∑

k=1

(Ak(t, ηt)x(t) + gk(t))E[wk(t)|H̃t]

+
r∑

k,l=1

(Ak(t, ηt)x(t)+gk(t))T Eηt(t,X(t+1))

× (Al(t, ηt)x(t) + gl(t))E[wk(t)wl(t)|H̃t]

+ (A0(t, ηt)x(t) + g0(t))T Eηt(t, κ(t + 1))

+ 2
r∑

k=1

(Ak(t, ηt)x(t)+gk(t))T Eηt(t, κ(t+1))

× E[wk(t)|H̃t] + Eηt(t, μt+1).

From assumption H1 and Theorem 1.3(v) we deduce: E[wk(t)|H̃t] =
E[wk(t)] = 0 and E[wk(t)wl(t)|H̃t] = E[wk(t)wl(t)] = δkl where as usual
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δkl =

{
0, k 
= l;
1, k = l.

This allows us to write:

E[V (t + 1, x(t + 1), ηt+1)|H̃t] =
r∑

k=0

(Ak(t, ηt)x(t) + gk(t))T

× Eηt(t,X(t + 1))(Ak(t, ηt)x(t) + gk(t))

+ 2(A0(t, ηt)x(t) + g0(t))T

× Eηt(t, κ(t + 1)) + Eηt(t, μ(t + 1)). (3.87)

Finally, taking the conditional expectation with respect to σ(ηt0 ) ⊂ H̃t in
(3.87) one obtains the equality in the statement and thus the proof ends. �

Concerning the trajectories of the affine system (3.84) we prove the
following.

Theorem 3.18 Under the assumptions H1, H2 if the zero state equilibrium
of the linear system (3.1) is SESMS-I then the trajectories x(t), t ≥ t0 of the
affine system (3.84) such that x(t0) is H̃t0-measurable and E[|x(t0)|2] < ∞
satisfy the estimates

E[|x(t)|2|ηt0 ] ≤ c

{

qt−t0E[|x(t0)|2|ηt0 ] +
r∑

k=0

t−1∑

s=t0

qt−s−1E[|gk(s)|2|ηt0 ]

}

(3.88)

for all t > t0, where c > 0, q ∈ (0, 1), are independent of t, t0 ∈ Z+.

Proof. Based on the property of SESMS-I one obtains via Theorem 3.7 that
there exists the sequence {X(t)}t≥0, X(t) = (X(t, 1), X(t, 2), . . . , X(t,N))
that satisfies

X(t, i) =
r∑

k=0

AT
k (t, i)Ei(t,X(t + 1))Ak((t, i) + In, (3.89)

t ≥ 0, i ∈ D and

In ≤ X(t, i) ≤ c̃In (3.90)

for all t ≥ 0, i ∈ D, c̃ ≥ 1 not depending upon t, i.
Applying Lemma 3.1 to the function V (t, x, i) = xT X(t, i)x and to the

system (3.84) we obtain, via (3.89) that
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E[V (t + 1, x(t + 1), ηt+1)|ηt0 ]− E[V (t, x(t), ηt)|ηt0 ] = −E[|x(t)|2|ηt0 ]

+ 2
r∑

k=0

E[xT (t)AT
k (t, ηt)Eηt(t,X(t + 1))gk(t)|ηt0 ]

+
r∑

k=0

E[gT
k (t)Eηt(t,X(t + 1))gk(t)|ηt0 ]. (3.91)

Denoting ϕ(t) the right-hand side of (3.91) we may write:

ϕ(t) = −1
2
E[|x(t)|2|ηt0 ]−

1
2

r∑

k=0

E

[∣
∣
∣
∣

1√
r + 1

x(t)

−2
√

r + 1AT
k (t, ηt)Eηt(t,X(t + 1))gk(t)

∣
∣
∣
∣

2

|ηt0

]

+
r∑

k=0

E[gT
k (t)Mk(t, ηt)gk(t)|ηt0 ], (3.92)

where Mk(t, i) = Ei(t,X(t + 1)) + 2(r + 1)Ei(t,X(t + 1))Ak(t, i)AT
k (t, i)

Ei(t,X(t + 1)).
Because the zero state equilibrium of the system (3.1) is SESMS-I it follows

that the sequences {Ak(t, i)}t≥0, 0 ≤ k ≤ r, i ∈ D are bounded. This guaran-
tees that we have

0 ≤ Mk(t, i) ≤ νIn, (3.93)

0 ≤ k ≤ r, i ∈ D, t ∈ Z+, where ν > 0 does not depend upon t, k, i. Setting
v(t) = E[V (t, x(t), ηt)|ηt0 ] we obtain from (3.93), (3.92), and (3.91) that

v(t + 1)− v(t) ≤ −1
2
E[|x(t)|2|ηt0 ] + ν

r∑

k=0

E[|gk(t)|2|ηt0 ].

Using (3.90) one gets:

v(t + 1) ≤ qv(t) + g̃(t), (3.94)

where q = 1 − c̃−1 and g̃(t) = ν
∑r

k=0 E[|gk(t)|2|ηt0 ], q ∈ (0, 1).
Let ṽ(t), t ≥ t0 be the solution of ṽ(t + 1) = qṽ(t) + g̃(t), ṽ(t0) = v(t0);

hence

ṽ(t) = qt−t0v(t0) +
t−1∑

s=t0

qt−s−1g̃(s) (3.95)

for all t > t0. Furthermore, one obtains inductively via (3.94) that v(t) ≤ ṽ(t),
t ≥ t0.
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Thus from (3.95) we deduce that v(t) ≤ qt−t0v(t0)+ ν
∑r

k=0

∑t−1
s=t0

qt−s−1

E[|gk(s)|2|ηt0 ]. Invoking again (3.90) one obtains

E[|x(t)|2|ηt0 ] ≤ v(t) ≤ c̃qt−t0E[|x(t0)|2|ηt0 ] + ν

r∑

k=0

t−1∑

s=t0

qt−s−1E[|gk(s)|2|ηt0 ].

Thus the proof is complete. �
Corollary 3.9 Under the assumptions in Theorem 3.18 the following hold.

(i) If the series
∑∞

t=0 E[|gk(t)|2|ηt0 = i], 0 ≤ k ≤ r, i ∈ Dt0 are convergent
then the series

∑∞
t=t0

E[|x(t)|2|ηt0 = i] are convergent for all i ∈ Dt0 and
for all trajectories of the system (3.84) with x(t0), H̃t0-measurable, and
E[|x(t0)|2] < ∞. Moreover, we have

∞∑

t=t0

E[|x(t)|2|ηt0 = i]

≤ c1

(

E[|x(t0)|2|ηt0 = i] +
r∑

k=0

∞∑

t=t0

E[|gk(t)|2|ηt0 = i]

)

.

(ii) If sup
t≥0

E[|gk(t)|2|ηt0 = i] < +∞, 0 ≤ k ≤ r, i ∈ Dt0 then

sup
t≥t0

E[|x(t)|2|ηt0 = i] < c < +∞

for all t ≥ 0 and all the trajectories of the affine system (3.84) with the
properties as in (i).

(iii) If limt→∞ E[|gk(t)|2|ηt0 = i] = 0, 0 ≤ k ≤ r, and i ∈ Dt0 , then
limt→∞ E[|x(t)|2|ηt0 = i] = 0 for any trajectories of the affine system
(3.84) with the additional properties as in (i).

Proof. (i) If i ∈ Dt0 , then taking the conditional expectation with respect to
the event {ηt0 = i} in (3.88) one gets

E[|x(t)|2|ηt0 = i] ≤ c

(

qt−t0E[|x(t0)|2|ηt0 = i]

+
r∑

k=0

t−1∑

s=t0

qt−s−1E[|gk(s)|2|ηt0 = i]

)

. (3.96)

This leads to
τ∑

t=t0+1

E[|x(t)|2|ηt0 = i] ≤ c

(
τ∑

t=t0+1

qt−t0E[|x(t0)|2|ηt0 = i]

+
r∑

k=0

τ∑

t=t0+1

t−1∑

s=t0

qt−s−1E[|gk(s)|2|ηt0 = i]

)

(3.97)
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for all τ > t0 ≥ 0, i ∈ Dt0 . Performing a change of the order of summation we
obtain:

τ∑

t=t0+1

t−1∑

s=t0

qt−s−1E[|gk(s)|2|ηt0 = i]
τ−1∑

s=t0

τ∑

t=s+1

qt−s−1E[|gk(s)|2|ηt0 = i].

Because q ∈ (0, 1) we deduce

τ∑

t=t0+1

t−1∑

s=t0

qt−s−1E[|gk(s)|2|ηt0 = i] ≤ 1
1 − q

τ−1∑

s=t0

E[|gk(s)|2|ηt0 = i]. (3.98)

From (3.97) and (3.98) we obtain
τ∑

t=t0+1

E[|x(t)|2|ηt0 = i]

≤ c

1 − q

(

E[|x(t0)|2|ηt0 = i] +
r∑

k=0

τ−1∑

s=t0

E[|gk(s)|2|ηt0 = i]

)

(3.99)

for all τ > t0 ≥ 0, i ∈ Dt0 .
The conclusion from (i) follows by taking the limit for τ →∞ in (3.99).
(ii) This follows immediately from (3.96).
(iii) From (3.96) it follows that we have to prove

lim
t→∞

t−1∑

t=t0

qt−s−1E[|gk(s)|2|ηt0 = i] = 0, i ∈ Dt0 , (3.100)

0 ≤ k ≤ r. To this end we use Stolz–Cesaro criteria for the convergence of a
sequence of real numbers. Denoting

ξk(t) =
t−1∑

s=t0

qt−s−1E[|gk(s)|2|ηt0 = i], t > t0 ≥ 0

one sees that ξk(t) = (ξ̃k(t))/q−t with ξ̃k(t) =
∑t−1

s=t0
q−s−1E[|gk(s)|2|ηt0 = i].

We have
ξ̃k(t + 1)− ξ̃k(t)

q−t−1 − q−t
=

q−1

q−1 − 1
E[|gk(t)|2|ηt0 = i].

Hence

lim
t→∞

ξ̃k(t + 1)− ξ̃k(t)
q−t−1 − q−t

= 0.

This implies that limt→∞ ξk(t) = 0 and thus the proof is complete. �

At the end of this section it should be noted that if x(t) is a trajec-
tory of the affine system (3.84) starting from x0 ∈ Rn at time t = t̂, then
under the assumptions H1, H2 one deduces that x(t0) is H̃t0 -measurable and
E[|x(t0)|2] < ∞ for any t0 ≥ t̂.
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3.8 Notes and references

The exponential stability in the mean square for discrete-time stochastic
systems affected by multiplicative white noise perturbations is discussed in
[7, 13, 34, 58, 65, 88, 92, 93, 96, 113].

The exponential stability in the mean square for discrete-time systems
with Markovian perturbations is studied in a great number of papers; see
[6, 15, 16, 18, 21, 22, 27, 38, 52–54, 75, 80, 84, 86–90, 95]. Theorem 3.6 is
proved in [41]. The results from Section 3.6 are proved in [38, 43] and those
from Section 3.7 can be found in [45]. Example 3.1(ii) is presented for the first
time in this work. All other results from this chapter can be found in [42].



4

Structural properties of linear stochastic
systems

In this chapter we present the stochastic version of some basic concepts
in control theory, namely stabilizability, detectability, and observability. All
these concepts are defined both in Lyapunov operator terms and in stochastic
system terms. The definitions given in this chapter extend the corresponding
definitions from the deterministic time-varying systems. Some examples show
that stochastic observability does not always imply stochastic detectability
and stochastic controllability does not necessarily imply stochastic stabiliz-
ability. As in the deterministic case the concepts of stochastic detectability
and observability are used in some criteria of exponential stability in the mean
square.

4.1 Stochastic stabilizability and stochastic detectability

4.1.1 Definitions and criteria for stochastic stabilizability and
stochastic detectability

In this subsection we introduce the stochastic version of concept of stabiliz-
ability and detectability. These two properties of controlled systems play an
important role in the developments in the next chapters of the book.

Consider the discrete-time controlled system

x(t + 1) = A0(t, ηt)x(t) + B0(t, ηt)u(t)

+
r∑

k=1

[Ak(t, ηt)x(t) + Bk(t, ηt)u(t)]wk(t), (4.1)

where u ∈ Rm is the control input, {w(t)}t≥0 is a sequence of independent
random vectors with w(t) = (w1(t), . . . , wr(t))T , and ({ηt}t≥0, {Pt}t≥0,D) is
a Markov chain such that assumptions H1 and H2 are fulfilled.

© Springer Science + Business Media, LLC 2010
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Definition 4.1 We say that the system (4.1) is stochastic stabilizable if there
exist the bounded sequences {F (t, i)}t≥0, i ∈ D, F (t, i) ∈ Rm×n such that the
zero state equilibrium of the closed-loop system

x(t + 1) =

[

A0(t, ηt) + B0(t, ηt)F (t, ηt)

+
r∑

k=1

(Ak(t, ηt) + Bk(t, ηt)F (t, ηt))wk(t)

]

x(t) (4.2)

is SESMS-I. The sequences {F (t)}t≥0, F (t) = (F (t, 1), F (t, 2), . . . , F (t,N))
involved in the above definition are called stabilizing feedback gains.

Let us consider the discrete-time system:

x(t + 1) = (A0(t, ηt) +
r∑

k=1

Ak(t, ηt)wk(t))x(t) (4.3)

y(t) = (C0(t, ηt) +
r∑

k=1

Ck(t, ηt)wk(t))x(t),

x(t) ∈ Rn and y(t) ∈ Rp.

Definition 4.2 We say that the system (4.3) is stochastic detectable if there
exist sequences {K(t, i)}t≥0, i ∈ D,K(t, i) ∈ Rn×p such that the zero state
equilibrium of the following system,

x(t + 1) =

[

A0(t, ηt) + K(t, ηt)C0(t, ηt)

+
r∑

k=1

(Ak(t, ηt) + K(t, ηt)Ck(t, ηt))wk(t)

]

x(t) (4.4)

is SESMS-I.
The sequences {K(t, i)}t≥0, involved in the previous definition, are called

stabilizing injections.
In the case of periodic coefficients in the definition of stochastic stabiliza-

bility and stochastic detectability we restrict our attention only to stabilizing
feedback gains and stabilizing injections that are periodic sequences. In the
time-invariant case in the definition of stochastic stabilizability and stochastic
detectability we consider only stabilizing feedback gains F = (F (1), . . . , F (N))
and stabilizing injections of the form K = (K(1), . . . ,K(N)). In the next
chapter we show that this can be done without loss of generality.

The following notations are often used in this chapter.

Ak(t) = (Ak(t, 1), . . . , Ak(t,N)) ∈ Rn×n ⊕ · · · ⊕Rn×n := MN
n ,

Bk(t) = (Bk(t, 1), . . . , Bk(t,N)) ∈ Rn×m ⊕ · · · ⊕Rn×m := MN
nm,
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Ck(t) = (Ck(t, 1), . . . , Ck(t, n)) ∈ Rp×n ⊕ · · · ⊕Rp×n := MN
pn,

A(t) = (A0(t), A1(t), . . . , Ar(t)) ∈ MN
n ⊕ · · · ⊕MN

n ,

B(t) = (B0(t), B1(t), . . . , Br(t)) ∈ MN
nm ⊕ · · · ⊕MN

nm,

C(t) = (C0(t), C1(t), . . . , Cr(t)) ∈ MN
pn ⊕ · · · ⊕MN

pn,

A = {A(t)}t≥0, B = {B(t)}t≥0, C = {C(t)}t≥0, P = {Pt}t≥0.

We remark that in the time-invariant case A,B,C,P are constant sequences;
that is, A = (A0, A1, . . . , Ar) ∈ MN

n ⊕ · · · ⊕ MN
n ,B = (B0, B1, . . . , Br) ∈

MN
nm⊕· · ·⊕MN

nm,C = (C0, C1, . . . , Cr) ∈MN
pn⊕· · ·⊕MN

pn,P = P ∈ Rn×n.
Now we introduce a definition of stabilizability and detectability expressed

in terms of Lyapunov operators.

Definition 4.3 Let {Lt}t≥0 be a sequence of operators of type (2.58) and
{B(t)}t≥0 and {C(t)}t≥0 be as before.

(a) We say that the pair (Lt, B(t)) is stabilizable, or equivalently the triple
(A,B,P) is stabilizable if there exists a bounded sequence {F (t)}t≥0,
F (t) = (F (t, 1), . . . , F (t,N)), F (t, i) ∈ Rm×n such that the sequence
LF,t, t ≥ 0 generates an exponentially stable evolution, where LF,t : SN

n →
SN

n , LF,tX = (LF,tX(1), . . . ,LF,tX(N)) with

LF,tX(i) =
r∑

k=0

N∑

j=1

pt(j, i)(Ak(t, j) + Bk(t, j)F (t, j))X(j)(Ak(t, j)

+ Bk(t, j)F (t, j))T (4.5)

for all X ∈ SN
n .

(b) We say that the pair (C(t),Lt) is detectable or equivalently the triple
(C,A,P) is detectable if there exists a bounded sequence {H(t)}t≥0,
where H(t) = (H(t, 1), . . . , H(t,N)), H(t, i) ∈ Rn×p such that the sequence
{LH

t }t≥0 generates an exponentially stable evolution, where LH
t is defined

by LH
t X = (LH

t X(1), . . . ,LH
t X(N)) with

(LH
t X)(i) =

r∑

k=0

N∑

j=1

pt(j, i)(Ak(t, j)

+ H(t, j)Ck(t, j))X(j)(Ak(t, j) + H(t, j)Ck(t, j))T (4.6)

for all X ∈ SN
n .

Remark 4.1 The concepts of stabilizability and detectability introduced by
Definition 4.3 do not require that pt(i, j) be necessarily the elements of a
stochastic matrix. Only the condition pt(i, j) ≥ 0, i, j ∈ D, t ≥ 0 is assumed.

The next simple result provides the relation between the concept of
stabilizability and detectability defined above.
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Corollary 4.1 Assume that the scalars pt(i, j) satisfy the additional condition
∑N

j=1 pt(i, j) = 1, i ∈ D, t ≥ 0.
Then the following two equivalences are true.

(a) The system (4.1) is stochastic stabilizable iff the pair (Lt, B(t)) is detec-
table.

(b) The system (4.3) is stochastic detectable iff the pair (C(t),Lt) is detectable.

Based on Lyapunov criteria for SESMS derived in Chapter 3, one obtains
some criteria for stochastic stabilizability and stochastic detectability as
well as for stabilizability of the pair (Lt, B(t)) and detectability of the pair
(C(t),Lt). Applying Corollary 3.3 to the time-invariant version of system (4.3)
we have the following.

Corollary 4.2 Assume that Ak(t, i) = Ak(i), Bk(t, i) = Bk(i), k ∈
{0, 1, . . . , r}, i ∈ D, Pt = P, t ∈ Z+. Then the following are equivalent.

(i) The system (4.1) is stochastic stabilizable.
(ii) There exist Y = (Y (1), . . . , Y (N)) ∈ SN

n , Z = (Z(1), . . . , Z(N)), Z(i) ∈
Rm×n, Y (i) > 0, i ∈ D, that solve the following system of LMIs,

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−Y (i) Ψ0i(Y, Z) Ψ1i(Y, Z) . . . Ψri(Y, Z)

ΨT
0i(Y, Z) −Y 0 . . . 0

ΨT
1i(Y, Z) 0 −Y . . . 0

. . . . . . . . . . . . . . .

ΨT
ri(Y, Z) 0 0 . . . −Y

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

< 0, (4.7)

where Ψki(Y, Z) = (
√

p(1, i)(Ak(1)Y (1)+Bk(1)Z(1)) . . .
√

p(N, i)(Ak(N)
Y (N) + Bk(N)Z(N))), k ∈ {0, 1, . . . , r},

Y = diag(Y (1), . . . , Y (N)).

If (4.7) is solvable then a stabilizing feedback gain is given by F (i) =
Z(i)Y −1(i), i ∈ D.

Applying Corollary 3.4 to the time-invariant case of the closed-loop system
(4.4) one obtains the following.

Corollary 4.3 Under the assumptions of Corollary 4.2 the following are
equivalent.

(i) The system (4.3) is stochastic detectable.
(ii) There exist Y = (Y (1), . . . , Y (N)) ∈ SN

n and Z = (Z(1), . . . , Z(N)), Z(i) ∈
Rn×p, Y (i) > 0, i ∈ D that solve the following system of LMIs,
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⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−Y (i) Ψ̃0i(Y, Z) Ψ̃1i(Y, Z) . . . ˜Psiri(Y, Z)

Ψ̃T
0i(Y, Z) −Y 0 . . . 0

Ψ̃T
1i(Y, Z) 0 −Y . . . 0

. . . . . . . . . . . . . . .

Ψ̃T
ri(Y, Z) 0 0 . . . −Y

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

< 0,

i ∈ D, where Ψ̃ki(Y, Z) = (
√

p(i, 1)(AT
k (1)Y (1) + CT

k (1)ZT (1)) . . .√
p(i, N)(AT

k (N)Y (N) + CT
k (N)ZT (N))), k ∈ {0, 1, . . . , r} and Y is as

before.

If the previous system of LMIs is feasible then a stabilizing injection is
given by K(i) = Y −1(i)Z(i), i ∈ D.

Similar results as in Corollary 4.2 and Corollary 4.3 can be easily derived
for the periodic case applying Theorem 3.11 and Theorem 3.12, respectively.

4.1.2 A stability criterion

In this subsection we prove a necessary and sufficient condition for the
exponential stability of the evolution generated by the operators (2.58).
That condition may not be directly derived from the result proved in
Section 2.3.

Theorem 4.1 Let {Lt}t≥0 be a sequence defined by (2.58) with the additional
property that {pt(i, j)}t≥0 and {Ak(t, i)}t≥0 are bounded sequences.

Consider the discrete-time backward affine equation

Yt = L∗
t Yt+1 + C̃(t), t ≥ 0, (4.8)

where C̃(t) = (C̃(t, 1), C̃(t, 2), . . . , C̃(t,N)), C̃(t, i) =
∑r

k=0 CT
k (t, i)Ck(t, i).

Assume that {Ck(t, i)}t≥0 are bounded sequences and the pair (C(t),Lt) is
detectable.

Under these conditions the following are equivalent.

(i) The sequence {Lt}t≥0 generates an exponentially stable evolution.
(ii) The equation (4.8) has a bounded solution {Ỹt}t≥0 ⊂ SN+

n .

Proof. The implication (i) → (ii) follows immediately from Theorem 2.5(iv).
It remains to prove the converse implication.

Let {Xt}t≥t0 be a solution of the problem with given initial values:

Xt+1 = LtXt, t ≥ t0 (4.9)

Xt0 = H, H ∈ SN+
n . (4.10)
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We show that there exists γ > 0 not depending upon t0 and H such that

∞∑

t=t0

|Xt|ξ ≤ γ|H |ξ (4.11)

for all t0 ≥ 0, H ∈ SN+
n .

Let {Ht}t≥0 be a stabilizing injection. This means that there exist β1 > 0,
q1 ∈ (0, 1) such that

‖T (t, s)H‖ξ ≤ β1q
t−s
1

for all t ≥ s ≥ 0, T (t, s)H being the causal linear evolution operator defined
on SN

n by the sequence {LH
t }t≥0 where LH

t is defined as in (4.6).
The equation (4.9) may be rewritten as

Xt+1 = LH
t Xt + GtXt, (4.12)

where GtXt = (GtXt(1), . . . ,GtXt(N)),

GtXt(i) = −
r∑

k=0

N∑

j=1

pt(j, i)[H(t, j)Ck(t, j)Xt(j)AT
k (t, j)

+ Ak(t, j)Xt(j)CT
k (t, j)HT (t, j)

+ H(t, j)Ck(t, j)Xt(j)CT
k (t, j)HT (t, j)].

Furthermore we define the perturbed operators

Lε
t = LH

t + ε2Ĝt, (4.13)

where ĜtX = (ĜtX(1), . . . , Ĝt(N)) with

ĜtX(i) =
r∑

k=0

N∑

j=1

pt(j, i)Ak(t, j)X(j)AT
k (t, j)

for all X = (X(1), . . . , X(N)) ∈ SN
n .

If q ∈ (q1, 1) one shows in a standard way using a discrete-time version of
the Belman–Gronwall lemma that there exists ε0 > 0 such that

‖T ε(t, s)‖ξ ≤ βqt−s, (4.14)

for all t ≥ s ≥ 0, 0 < ε ≤ ε0, T
ε(t, s) being the causal linear evolution operator

defined on SN
n by the sequence (Lε

t )t≥0.
Let ε ∈ (0, ε0) be fixed and {Zt}t≥t0 be the solution of the problem with

given initial condition:

Zt+1 = Lε
tZt +

1
ε2

Ψt, Zt0 = H, (4.15)
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where Ψt = (Ψt(1), . . . , Ψt(N)),

Ψt(i) =
r∑

k=0

N∑

j=1

pt(j, i)H(t, j)Ck(t, j)Xt(j)CT
k (t, j)H(t, j)T . (4.16)

If we set Z̃t = Zt −Xt then by direct calculations based on (4.12) and (4.15)
one obtains that Z̃t solves

Z̃t+1 = Lε
t Z̃t + Ψ̃t, Z̃t0 = 0, (4.17)

where Ψ̃t = (Ψ̃t(1), . . . , Ψ̃t(N)),

Ψ̃t(i) =
r∑

k=0

N∑

j=1

pt(j, i)
(

εAk(t, j) +
1
ε
H(t, j)Ck(t, j)

)

×Xt(j)
(

εAk(t, j) +
1
ε
H(t, j)Ck(t, j)

)T

+
r∑

k=0

N∑

j=1

pt(j, i)H(t, j)Ck(t, j)Xt(j)CT
k (t, j)HT (t, j).

The solution of (4.9) is in SN+
n , thus it follows that Ψ̃t(i) ≥ 0 for all t ≥ t0

and i ∈ D; that is, Ψ̃t ∈ SN+
n .

Because Lε
t are positive operators, then based on (4.17) one obtains

inductively that Z̃t ≥ 0 for all t ≥ t0, which is equivalent to Xt ≤ Zt for
all t ≥ t0.

The last inequality allows us to write

|Xt|ξ ≤ |Zt|ξ, t ≥ t0. (4.18)

From (4.15) we obtain the representation formula

Zt = T ε(t, t0)H +
1
ε

t−1∑

l=t0

T ε(t, l + 1)Ψl, t ≥ t0 + 1.

Based on (4.14) we get:

|Zt|ξ ≤ βqt−t0 |H |ξ +
β

ε2

t−1∑

l=t0

qt−l−1|Ψl|ξ. (4.19)

Taking into account the definition of the norm | · |ξ on SN
n one obtains (see

also (4.16)):

|Ψl|ξ = max
i∈D

|Ψl(i)| ≤ max
i∈D

r∑

k=0

N∑

j=1

pt(j, i)|H(l, j)Ck(l, j)Xl(j)CT
k (l, j)HT (l, j)|,
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which leads to

|Ψl|ξ ≤ ρ1ρ2

r∑

k=0

N∑

j=1

|Ck(l, j)Xl(j)Ck(l, j)T |, (4.20)

where ρ1 ≥ pt(j, i), ρ2 ≥ |H(l, j)|2 for all l ≥ 0, i, j ∈ D. Because |Ck(l, j)Xl(j)
CT

k (l, j)| = λmax[Ck(l, j)Xl(j)CT
k (l, j)] we may write

|Ψl|ξ ≤ ρ1ρ2

r∑

k=0

N∑

j=1

Tr(Ck(l, j)Xl(j)CT
k (l, j))

= ρ1ρ2

N∑

j=1

Tr
r∑

k=0

(CT
k (l, j)Ck(l, j)Xl(j)).

In view of the definition of the inner product on SN
n we get:

|Ψl|ξ ≤ ρ1ρ2〈C̃(l), Xl〉. (4.21)

Based on equation (4.8) verified by {Ỹl}l≥0 we may write

〈C̃l, Xl〉 = 〈Ỹl, Xl〉 − 〈L∗
l Ỹl+1, Xl〉 = 〈Ỹl, Xl〉 − 〈Ỹl+1, Xl+1〉. (4.22)

Because (Ỹl)l≥0 is a bounded sequence and 〈Ỹi, Xi〉 ≥ 0 for arbitrary i ≥ 0,
we obtain from (4.21) and (4.22) that

t1∑

l=t0

|Ψl|ξ ≤ ρ3|H |ξ, ∀ t1 > t0 (4.23)

with ρ3 > 0 independent of t0, t1 and H . Using (4.19) we may write:

t2∑

t=t0

|Zt|ξ ≤
(

1 + β

t2∑

t=t0+1

qt−t0

)

|H |ξ +
β

ε2

t2∑

t=t0+1

t−1∑

l=t0

qt−l−1|Ψl|ξ.

Changing the order of summation and taking into account (4.23) we obtain
finally

t2∑

t=t0

|Zt|ξ ≤ γ|H |ξ, ∀ t2 > t0

and

γ = 1 +
βq

1 − q
+

βε−2ρ3

1 − q

does not depend upon t0, t2, H . Taking the limit for t2 →∞ one gets:

∞∑

t=t0

|Zt|ξ ≤ γ|H |ξ.



4.2 Stochastic observability 111

Invoking (4.18) we conclude that (4.11) is valid. Taking H = J = (In,
In, . . . , In), (4.11) becomes

∑∞
t=t0

|T (t, t0)J |ξ ≤ γ for all t0 ≥ 0, or equiv-
alently

∞∑

t=t0

‖T (t, t0)‖ξ ≤ γ. (4.24)

Based on (2.13), (4.24) leads to
∑∞

t=t0
‖T ∗(t, t0)‖ξ ≤ γ1 for all t0 ≥ 0, γ1 > 0

being independent of t0.
Because T ∗(t, t0)J ≤ ‖T ∗(t, t0)‖ξJ one obtains 0 ≤

∑∞
t=t0

T ∗(t, t0)J ≤ δJ .
Applying now the implication (iii) → (i) of Theorem 2.4 we conclude that

the sequence Lt generates an exponentially stable evolution and thus the proof
ends. �

The result proved in the above theorem may be viewed as an alternative of
the equivalence (i) ↔ (vi) of Theorem 2.4 for the case when the forced term
of the corresponding equation (2.30) is not uniform positive.

Remark 4.2 In Theorem 4.1 we do not assume that Pt are stochastic matrices.
In this way, we may apply the result proved in Theorem 4.1 for Lyapunov-
type operators Lt constructed with PT

t instead of Pt. The transposed Pt is
not always a stochastic matrix even if Pt is a stochastic matrix.

4.2 Stochastic observability

Let us consider discrete-time linear stochastic systems of the form

x(t + 1) = [A0(t, ηt) +
r∑

k=1

Ak(t, ηt)wk(t)]x(t) (4.25)

y(t) = C(t, ηt)x(t),

t ∈ Z+, where {ηt}t≥0 and {w(t)}t≥0 are as in the case of system (4.1),
x(t) ∈ Rn, y(t) ∈ Rp.

If Ak(t, i) = 0, 1 ≤ k ≤ r, i ∈ D, t ≥ 0 (4.25) reduces to a system with
Markovian perturbations:

x(t + 1) = A0(t, ηt)x(t) (4.26)

y(t) = C(t, ηt)x(t), t ∈ Z+.

In the particular case N = 1, system (4.25) takes the form

x(t + 1) = [A0(t) +
r∑

k=1

Ak(t)wk(t)]x(t) (4.27)

y(t) = C(t)x(t),

t ≥ 0, where Ak(t) = Ak(t, 1), 0 ≤ k ≤ r, C(t) = C(t, 1).
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The time-invariant version of the systems (4.25), (4.26), and (4.27),
respectively, is described by

x(t + 1) =

[

A0(ηt) +
r∑

k=1

Ak(ηt)wk(t)

]

x(t) (4.28)

y(t) = C(ηt)x(t)

x(t + 1) = A0(ηt)x(t) (4.29)

y(t) = C(ηt)x(t)

and

x(t + 1) =

[

A0 +
r∑

k=1

Akwk(t)

]

x(t) (4.30)

y(t) = Cx(t).

In the case of systems (4.28), (4.29) {ηt}t≥0 is an homogeneous Markov chain.
It must be remarked that the coefficients of the systems (4.28)–(4.30) are not
constants as in the time-invariant case of a deterministic framework. They are
still time-dependent via the stochastic processes w(t) and ηt.

Setting C for the sequences {C(t, i)}t≥0, i ∈ D we introduce the following
definition.

Definition 4.4 We say that the system (4.25) is stochastic uniformly observ-
able or equivalently the triple (C,A,P) is uniformly observable if there exist
τ0 ∈ Z+ and γ > 0 such that

s+τ0∑

t=s

T ∗(t, s)C̃(t) ≥ γJ (4.31)

for all s ≥ 0 where C̃(t) = (C̃(t, 1), . . . , C̃(t,N)) with C̃(t, i) = CT (t, i)C(t, i)
and J = (In, In, . . . , In) ∈ SN

n , T (t, s) being the linear evolution operator
defined by the sequence of Lyapunov-type operators {Lt}t≥0 introduced in
(2.58).

In the time-invariant case we say that the system (4.28) is stochastic
observable or that (C,A, P ) is observable if (4.31) is fulfilled.

Remark 4.3

(a) In the case of the discrete-time linear stochastic systems affected only by
Markov perturbations we say that the system (4.26) is stochastic uniformly
observable or equivalently the triple (C,A0, P ) is uniformly observable if
(4.31) is satisfied with T 0(t, s) instead of T (t, s).
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(b) In the case of discrete-time linear stochastic systems subject to indepen-
dent random perturbations we say that the system (4.27) is stochastic
uniformly observable or equivalently that the pair (C,A) is uniformly
observable if

s+τ0∑

t=s

T̂ ∗(t, s)(CT (t)C(t)) ≥ γIn (4.32)

for all s ≥ 0, T̂ (t, s) being the linear evolution operator on Sn defined by
the sequence {L̂t}t≥0, L̂t being defined by (2.88).

(c) If we take into account the expression of T ∗(t, s) for N = 1 it is easy to see
that the condition (4.31) is a natural extension of the definition of uniform
observability in a deterministic framework (see [68] and [81]).

(d) We remark that the concept of stochastic observability introduced above
is completely characterized by the sequences Ak, C, and P where the
matrices Pt have only the property that pt(i, j) ≥ 0, i, j ∈ D.
The fact that Pt are stochastic matrices, that is,

∑
j pt(i, j) = 1, is used

only in Theorem 3.1 and in the results based on this theorem, namely
Theorem 4.4 below.

(e) Based on Remark 2.5(b) one obtains that in the time-invariant case the
triple (C,A, P ) is observable if and only if there exists τ0 ∈ Z+ such that

τ0∑

t=0

(L∗)tC̃ > 0, (4.33)

where C̃ = (C̃(1), . . . , C̃(N)), C̃(i) = CT (i)C(i), i ∈ D.

In the case of the system (4.30) the pair (C,A) is observable if and only
if there exists τ0 ∈ Z+ such that

τ0∑

t=0

(L̂∗)t(CT C) > 0. (4.34)

For each 0 ≤ k ≤ r we set

Ãk(t, i) =
√

pt(i, i)Ak(t, i), t ≥ 0, i ∈ D. (4.35)

Now we prove the following.

Theorem 4.2 We have:

(i) If for each 1 ≤ i ≤ N the pair (C(·, i), Ã0(·, i)) is uniformly observable
(in the deterministic sense) then the system (4.26) is stochastic uniformly
observable.

(ii) If the system (4.26) is stochastic uniformly observable then the system
(4.25) is stochastic uniformly observable,
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(iii) If for each 1 ≤ i ≤ N the discrete-time linear stochastic system with
independent random perturbations

x(t + 1) =

(

Ã0(t, i) +
r∑

k=1

Ãk(t, i)wk(t)

)

x(t)

y(t) = C(t, i)x(t) (4.36)

is stochastic uniformly observable then the system (4.25) is stochastic
uniformly observable.

(iv) If there exists k0 ∈ {0, . . . , r} such that the pair (C(·), Ak0 (·)) is uni-
formly observable (in the deterministic sense) then the system (4.27) is
stochastic uniformly observable.

Proof. (i) If (C(·, i), Ã0(·, i)) is uniformly observable then there exist τ̃0 ∈
Z+, γ̃ > 0 (depending upon i) such that

s+τ̃0∑

t=s

Φ̃T
i (t, s)CT (t, i)C(t, i)Φ̃i(t, s) ≥ γ̃In (4.37)

for all s ≥ 0 where Φ̃(t, s) = ΦÃ(t, s, i) defined by (2.97).
Consider the operators Lt : SN

n → SN
n defined by (2.96). From (4.37) we

deduce that there exist τ̃0 ∈ Z+, γ̃ > 0 such that

s+τ̃0∑

t=s

T ∗
L(t, s)C̃(t) ≥ γ̃J (4.38)

for all s ≥ 0.
Applying Corollary 2.10 one gets that T 0(t, s) ≥ TL(t, s) for all t ≥ s ≥ 0.

This inequality together with (4.38) leads to

s+τ̃0∑

t=s

(T 0)
∗
(t, s)C̃(t) ≥ γ̃J (4.39)

and thus (i) is fulfilled.
(ii) If the triple (C,A0, P ) is uniformly observable then there exist τ0 ∈ Z+

and γ > 0 such that (4.39) is fulfilled. On the other hand from (2.91) we have
that T (t, s) ≥ T 0(t, s) for all t ≥ s ≥ 0. This last inequality together with
(4.39) shows that (4.31) is fulfilled and thus (ii) is proved.

To prove (iii) we consider the operators Lit and Ti(t, s) defined in
Section 2.5.3. If the system (4.36) is uniformly observable then there exist
τi ∈ Z+, γi > 0 such that

s+τi∑

t=s

T ∗
i (t, s)(CT (t, i)C(t, i)) > γiIn (4.40)

for all s ≥ 0.
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Taking into account (4.40) and (2.95) and by using Proposition 2.5 we
obtain that (4.31) is verified and thus the proof of (iii) is complete.

It remains to prove (iv). To this end we define the operators

L̄k0tY = Ak0(t)Y AT
k0

(t) (4.41)

for all Y ∈ Sn.
Let T̄k0(t, s) be the linear evolution operator on Sn defined by the sequence

{L̄k0t}t≥0. If the pair (C(·), Ak0 (·)) is uniformly observable it follows that there
exist τ0 ≥ 0, γ > 0 such that

s+τ0∑

t=s

T̄ ∗
k0

(t, s)(CT (t)C(t)) ≥ γIn (4.42)

for all s ≥ 0.
Because L̂t ≥ L̄k0,t for all t ≥ 0 we deduce that T̂ (t, s) ≥ T̄k0(t, s) for all

t ≥ s ≥ 0. Using again Proposition 2.5 we obtain that (4.32) is verified and
thus the proof ends. �

From (i) and (iv) one obtains the following result concerning the systems
(4.29) and (4.30).

Corollary 4.4

(i) If for each i ∈ D, p(i, i) > 0 and the pair (C(i), A0(i)) is observable (in
the deterministic sense) then the system (4.29) is stochastic observable.

(ii) If there exists 0 ≤ k0 ≤ r such that the pair (C,Ak0 ) is observable (in the
deterministic sense) then the system (4.30) is stochastic observable.

Remark 4.4

(a) Theorem 4.2 and Corollary 4.4 provide a set of sufficient conditions for
stochastic observability. We show later by some examples that the con-
verse implications are not always true. This means that these sufficient
conditions are not also necessary conditions for stochastic observability.

(b) In [87, 88] the following concept of stochastic observability is introduced.
The system (2.6) is stochastic observable if for each i ∈ D, p(i, i) > 0 and
the pair (C(i), A0(i)) is observable. The result of Corollary 4.4(i) shows
that the concept of stochastic observability introduced here is more general
then the one defined in the above-cited paper.

By Remark 3.2(b) we have:

T̂ ∗(t, t0)Y = E[ΦT (t, t0)Y Φ(t, t0)], (4.43)

t ≥ t0 ≥ 0, Y ∈ Sn.
Combining (4.32) with (4.43) we obtain the following directly.
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Theorem 4.3 The following are equivalent.

(i) The pair (C,A) is uniformly observable.
(ii) There exist τ0 ∈ Z+, γ > 0, such that

s+τ0∑

t=s

E[ΦT (t, s)CT (t)C(t)Φ(t, s)] ≥ γIn (4.44)

for all s ∈ Z+.

In the case when the system is subject to Markov perturbations an addi-
tional assumption is required in order to obtain some significant results.

H3. Assume that for each t ≥ 0 the stochastic matrices Pt is nondegenerate.

The next result follows directly from Definition 4.3 and Theorem 3.1.

Theorem 4.4 Under the assumption H3 the following are equivalent.

(i) The triple (C,A, P ) is uniformly observable.
(ii) There exist τ0 ∈ Z+ and γ > 0 such that for an arbitrary sequence

of independent random vectors {w(t)}t≥0 and for an arbitrary Markov
chain ({ηt}t≥0, {Pt}t≥0,D) which verify H1 and H2 we have:

s+τ0∑

t=s

E[ΦT (t, s)CT (t, ηt)C(t, ηt)Φ(t, s)|ηs = i] ≥ γIn

for all s ≥ 0, i ∈ Ds.
(iii) There exist a sequence of independent random vectors {w̃(t)}t≥0 and a

Markov chain ({η̃t}t≥0, {Pt}t≥0,D) with P{η̃0 = i} > 0 for all i ∈ D,
that verify H1 and H2 with the property that there exist τ0 ≥ 0, γ > 0
such that

s+τ0∑

t=s

E[ΦT (t, s)CT (t, η̃t)C(t, η̃t)Φ(t, s)|η̃s = i] ≥ γIn

for all s ≥ 0, i ∈ D.

Proof. The implication (i) → (ii) follows from (4.31) and Theorem 3.1(i) and
the implication (ii) → (iii) is obvious. The implication (iii) → (i) follows by
using assumption H3, Theorem 3.1, and Proposition 1.6. �

In the time-invariant case we do not need the assumption H3 and we prove
the following.

Theorem 4.5 The following are equivalent.

(i) The system (4.28) is stochastic observable.
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(ii) There exist τ0 ∈ Z+, γ > 0 such that for an arbitrary sequence of
independent random vectors {w(t)}t≥0 and for an arbitrary homogeneous
Markov chain ({ηt}t≥0, P,D) which verify H1 and H2 we have:

τ0∑

t=0

E[|Y (t, x)|2|η0 = i] ≥ γ|x|2

for all i ∈ D0, 0 
= x ∈ Rn where Y (t, x) = C(ηt)Φ(t, 0)x.
(iii) There exist a sequence of independent random vectors {w̃(t)}t≥0 and an

homogeneous Markov chain ({η̃t}t≥0, P,D) with P{η̃0 = i} > 0 for all i ∈
D verifying H1 and H2 with the property that there exist τ0 ∈ Z+, γ > 0
such that

τ0∑

t=0

E[|Ỹ (t, x)|2|η̃0 = i] ≥ γ|x|2

for all x ∈ Rn, x 
= 0, i ∈ D, where Ỹ (t, x) = C(η̃t)Φ(t, 0)x.
(iv) There exists τ0 ∈ Z+ such that for an arbitrary sequence of indepen-

dent random vectors {w(t)}t≥0 and for an arbitrary homogeneous Markov
chain ({ηt}t≥0, P,D) which verify H1 and H2 there exists δ > 0 such that
we have

τ0∑

t=0

E[ΦT (t, 0)CT (ηt)C(ηt)Φ(t, 0)] ≥ δIn. (4.45)

(v) For each i ∈ D there exist τi ∈ Z+, γi > 0 such that

τi∑

t=0

E[Φi(t, 0)CT (ηi
t)C(ηi

t)Φi(t, 0)] ≥ γiIn,

where Φi(t, s) is the fundamental matrix solution of the system (4.28) for
a pair ({w(t)}t≥0, {ηi

t}t≥0), where {w(t)}t≥0 is a sequence of indepen-
dent random vectors and {ηi

t}t≥0 is an homogeneous Markov chain with
P{ηi

0 = i} = 1 verifying H1 and H2.

Proof. The implications (i) ⇒ (ii) ⇒ (iii) ⇒ (i) follow from Theorem 3.1 and
Remark 4.3(e). We now prove (ii) ⇒ (iv).

We write:
τ0∑

t=0

E[ΦT (t, 0)CT (ηt)C(ηt)Φ(t, 0)]

=
∑

i∈D0

τ0∑

t=0

π0(i)E[ΦT (t, 0)CT (ηt)Φ(t, 0)|η0 = i].
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If (ii) holds we obtain that
τ0∑

t=0

E[ΦT (t, 0)CT (ηt)C(ηt)Φ(t, 0)] ≥ δIn,

where δ =
∑

i∈D0
π0(i)γ and we see that δ depends upon the Markov chain.

The implication (iv) ⇒ (v) is obvious.
It remains to prove (v) → (i). To this end, let {w(t)}t≥0 be a sequence

of independent random vectors and ({ηi
t}t≥0, P,D) an homogeneous Markov

chain with P{ηi
0 = i} = 1 that verify H1 and H2. We have

E[ΦT (t, 0)CT (ηi
t)C(ηi

t)Φ(t, 0)] = E[ΦT (t, 0)CT (ηi
t)C(ηi

t)Φ(t, 0)|ηi
0 = i].

Applying Theorem 3.1 one obtains that

E[ΦT (t, 0)CT (ηi
t)C(ηi

t)Φ(t, 0)] = [T ∗(t, 0)C̃](i).

If (v) holds then for each i ∈ D we have:
τi∑

t=0

(T ∗(t, 0)C̃)(i) ≥ γiIn (4.46)

for all i ∈ D.
Taking τ0 = maxi τi, γ = mini γi, and taking into account Remark 2.5(b)

we obtain from (4.46) that
∑τ0

t=0(L∗)tC̃ > γJ which shows that the system
(4.28) is stochastic observable and thus the proof is complete. �
Remark 4.5 If (4.45) is fulfilled only for a pair ({w(t)}t≥0, {ηt}t≥0) that verifies
H1 and H2 it is not sure that the corresponding system (4.28) is stochastic
observable. This may be illustrated by the following particular case of the
system (4.28) with n = 2, N = 2, p = 1,

A0(1) = A0(2) =
(

0 1
1 0

)

,

Ak(i) = 0, k ≥ 1, i ∈ {1, 2}, C(1) = (1 0), C(2) = (0 1), {ηt}t≥0 is a homo-
geneous Markov chain with two states and the probability transition matrix

P =
(

0 1
1 0

)

and the initial distribution P{η0 = 1} = P{η0 = 2} = 1
2 . It is shown later (see

Example 4.2) that the triple (C,A0, P ) is not stochastic observable. On the
other hand we have

E[CT (η0)C(η0)] =
1
2
CT (1)C(1) +

1
2
CT (2)C(2)

1
2

[(
1 0
0 0

)

+
(

0 0
0 1

)]

=
1
2

(
1 0
0 1

)

=
1
2
I2.
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This shows that in this particular case (4.45) is fulfilled with τ0 = 0 and δ = 1
2 .

In the time-invariant case we also prove the following result which provides
some useful necessary and sufficient conditions for stochastic observability.

Theorem 4.6 The following are equivalent.

(i) The system (4.28) is stochastic observable.
(ii) There exists τ0 ∈ Z+ such that

τ0∑

t=0

(L∗)tC̃ > 0.

(iii) There exists τ0 ≥ 1 such that K̃τ0(i) > 0 for all i ∈ D, where t →
K̃t(i), i ∈ D verifies the system of affine forward equations:

Kt+1(i) =
r∑

k=0

N∑

j=1

p(i, j)AT
k (i)Kt(j)Ak(i) + CT (i)C(i), (4.47)

K̃0(i) = 0, i ∈ D.
(iv) limt→∞ detK̃t(i) > 0 for all i ∈ D, where K̃t(i) is the solution of (4.47).

Proof. (i) ⇐⇒ (ii) follows immediately from Remark 4.3(e). We now prove
the equivalence (ii) ⇐⇒ (iii). To this end, we define K̃t = (K̃t(1), . . . , K̃t(N))
by K̃0 = (0, . . . , 0), K̃t =

∑t−1
s=0(L∗)sC̃ if t ≥ 1. We have

K̃t+1 =
t∑

s=0

(L∗)sC̃ = L∗
t−1∑

s=0

(L∗)sC̃ + C̃ (4.48)

hence K̃t+1 = L∗K̃t + C̃.
The ith component of this equation is

K̃t+1(i) = (L∗K̃t)(i) + CT (i)C(i). (4.49)

If we consider the formula for L∗ we see that (4.49) is just (4.47).
If (ii) is valid then from (4.48) we deduce that there exists τ0 ≥ 1 such

that K̃τ0 > 0 and (iii) is fulfilled. The implication (iii) → (ii) follows in the
same way.

To prove (iii) → (iv) we rewrite that from (4.48) it follows that 0 ≤
K̃t(i) ≤ K̃t+1(i) for all t ≥ 0, i ∈ D. Applying Theorem 3, Chapter 7 in [4] we
obtain that detK̃t(i) ≤ detK̃t+1(i) for all t ≥ 0, i ∈ D. Hence the sequences
{detK̃t(i)}t≥0 are monotone increasing. From (iii) it follows that there exists
τ0 ≥ 1 such that detK̃τ0(i) > 0. Because limt→∞ detK̃t(i) ≥ detK̃τ0(i) we
conclude that (iv) holds.

Finally we prove (iv) → (iii). From (4.47) one sees that K̃t(i) = K̃T
t (i) ≥

0. If (iv) holds then for each i ∈ D there exist τi ≥ 1 such that detK̃τi(i) > 0
which shows that K̃τi(i) > 0. Taking τ0 = maxi τi one obtains that (iii) holds
and thus the proof is complete. �

With the same proof one obtains the following.
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Theorem 4.7 The following are equivalent.

(i) The system (4.30) is stochastic observable.
(ii) There exists τ0 ∈ Z+ such that

τ0∑

s=0

(L̂∗)s(CT C) > 0.

(iii) There exists τ0 ≥ 1 such that K̃τ0 > 0, where t → K̃t is the solution of
the following problem with initial value,

K̃t+1 =
r∑

k=0

AT
k K̃tAk + CT C

K̃0 = 0. (4.50)

(iv) limt→∞ detK̃t > 0, where K̃t is the solution of the problem (4.23).

Now we show that in a particular case the converse implication from
Corollary 4.3(ii) is true.

Proposition 4.1 The following assertions are equivalent.

(i) The system (4.30) in the particular case n = 2, r = 1, p = 1 is stochastic
observable.

(ii) There exists k0 ∈ {0, 1} such that the pair (C,Ak0 ) is observable in the
deterministic sense.

Proof. (ii) → (i) follows from Corollary 4.3(ii). It remains to prove that
(i) → (ii). Let

A0 =
(

a b

c d

)

, A1 =
(

α β

γ δ

)

, C = (c1 c2).

Assume that the pairs (C,A0), (C,A1) are not observable and we prove
that in this case detK̃t = 0 for all t ≥ 0, where K̃t is the solution of (4.50)
for the considered case. The fact that (C,A0), (C,A1) are not observable is
equivalent to the following equalities,

bc21 − cc22 + c1c2(d− a) = 0 (4.51)

βc21 − γc22 + c1c2(δ − α) = 0. (4.52)

Let

K̃t =
(

xt yt

yt zt

)

.

The equation (4.50) in this particular case becomes:
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xt+1 = (a2 + α2)xt + 2(ac + αγ)yt + (c2 + γ2)zt + c21

yt+1 = (ab + αβ)xt + (ad + bc + αδ + βγ)yt + (cd + γδ)zt + c1c2 (4.53)

zt+1 = (b2 + β2)xt + 2(bd + βδ)yt + (d2 + δ2)zt + c22,

x0 = y0 = z0 = 0. If c1 = 0 or c2 = 0 from (4.51)–(4.53) we obtain that
xt = yt = 0, t ≥ 0, or yt = zt = 0 for all t ≥ 0 hence detK̂t = 0, t ≥ 0.

Assume that c1 
= 0 and c2 
= 0. Let ỹt+1 = {(ab + αβ)(c1/c2) + 2(ad +
bc + αδ + βγ) + (cd + γδ)(c2/c1)}ỹt + c1c2, ỹ0 = 0 and let x̃t = (c1/c2)ỹt,
z̃t = (c2/c1)ỹt. Using (4.51) and (4.52) it can be verified by direct computation
that x̃t, ỹt, z̃t verify (4.53). Because x̃0 = ỹ0 = z̃0 = 0 one obtains from
uniqueness that xt = x̃t, yt = ỹt, zt = z̃t. Hence detK̃t = 0 for all t ≥ 0 and
the proof is complete. �

4.3 Some illustrative examples

The next example shows that the converse implication from Corollary 4.3(ii)
is not true if n ≥ 3.

Example 4.1 Consider the system (4.30) in the particular case n = 3,
r = 1, p = 1, described by

A0 =

⎛

⎝
1 0 0
0 −1 0
0 3 2

⎞

⎠ , A1 =

⎛

⎝
3 2 0
0 1 0
0 0 −1

⎞

⎠ , C = (1 1 1).

By direct calculations one verifies that (C,A0), (C,A1) are not observable
but the corresponding system (4.30) is stochastic observable. This is due to
the fact that

K̃2 =

⎛

⎝
11 12 0
12 14 2
0 2 6

⎞

⎠ > 0.

The next example shows that the condition p(i, i) > 0, i ∈ D is essential
for Corollary 4.3(i) in order for the assertion of that corollary to be valid.

Example 4.2 Consider the system (4.29) in the particular case n = 2,
N = 2, p = 1,

A0(1) = A0(2) =
(

0 1
1 0

)

, C(1) = (1 0),

C(2) = (0 1), P =
(

0 1
1 0

)

.
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The pairs (C(1), A0(1)), (C(2), A0(2)) are observable in the deterministic
sense. However, the corresponding system (4.29) is not stochastic observable
because by direct calculations one obtains that if

Kt+1(i) = A∗
0(i)

2∑

j=1

p(i, j)Kt(j)A0(i) + C∗(i)C(i), (4.54)

t ≥ 0,K0(i) = 0 it follows that

Kt(1) =
(

t 0
0 0

)

and Kt(2) =
(

0 0
0 t

)

, t ≥ 0.

Using Theorem 4.6 we conclude that the triple (C,A0, P ) is not observable.

The next example shows that it is possible that (C(i), A0(i)) are not
observable for each i ∈ D but the corresponding system (4.29) is stochas-
tic observable.

Example 4.3 Consider the system (4.29) in the particular case n = 2, N =
2, p = 1A0(1) = A0(2) = αI2,

C(1) = (1 0), C(2) = (0 1), P =

(
q 1 − q

1 − q q

)

, q ∈ (0, 1).

It is easy to see that the pairs (C(1), A0(1)) and (C(2), A0(2)) are not
observable. On the other hand if Kt solves (4.54) for this choice of the matrix
coefficients then

K2(1) =

(
α2q + 1 0

0 α2(1 − q)

)

, K2(2) =

(
α2(1 − q) 0

0 α2q + 1

)

.

Hence K2(1) > 0,K2(2) > 0 for all q ∈ (0, 1) and α ∈ R, α 
= 0 thus (C,A0, P )
is observable due to Theorem 4.6.

Example 4.4 Consider the following particular form of (4.29), namely n =
1, N = 2,

P =

(
q 1 − q

q 1 − q

)

,

q ∈ (0, 1), C(1) = 0, C(2) = 1, A0(1) = a1, A0(2) = a2, ai 
= 0. The equations
(4.47) lead to

K2(1) = a2
1(1 − q) > 0, K2(2) = a2

2(1 − q) + 1 > 0

hence (C,A0, P ) is observable. Because in our case p(i, j) do not depend upon
i, by using Corollary 3.5 (C,A0, P ) is detectable iff there exist δj such that
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2∑

j=1

(aj + δjcj)2p(i, j)− 1 < 0.

If i = 1 we have (a2 + δ2)2(1 − q) + a2
1q − 1 < 0. Hence (C,A0, P ) is not

detectable for a2
1q − 1 ≥ 0, q ∈ (0, 1).

Example 4.5 Consider the following scalar version of equation (4.30),

x(t + 1) = a0x(t) + a1w(t)x(t),

y(t) = cx(t), ai 
= 0, c 
= 0. (4.55)

Applying Theorem 4.7(iii) one verifies that the system (4.55) is stochastic
observable. On the other hand if we use Corollary 3.3 for D = {1} we obtain
that the system (4.55) is not stochastic detectable if 1 − a2

1 < 0.

Example 4.6 Consider again Example 4.3. Hence the triple (C,A0, P ) is
observable, but (C,A0, P ) cannot be detectable if qα2 − 1 ≥ 0. Indeed
from Corollary 3.2(ii) it follows that if (C,A0, P ) is detectable then the pair
(
√

qC(1),
√

qA(1)) is detectable. But this pair is detectable iff qα2 − 1 < 0.

4.4 A generalization of the concept of uniform
observability

In this section we show how we can extend the concept of uniform observability
to an abstract framework of ordered Hilbert spaces.

Let X be a real Hilbert space. We assume that X is ordered by a order
relation “≤” induced by a solid, closed, pointed, selfdual, and convex cone
X+. Let ξ ∈ intX+ be fixed.

Definition 4.5 Let {Lt}t≥0 be a sequence of linear bounded positive operators
on X and {gt}t≥0 ⊂ X+. We say that {gt,Lt} is uniformly observable if there
exist τ0 ∈ Z+ and γ > 0 such that

s+τ0∑

t=s

T ∗(t, s)gt ≥ γξ (4.56)

for all s ≥ 0.

Remark 4.6 If X = SN
n ,X+ = SN,+

n . The triple (C,A,P) is uniformly
observable (in the sense of the Definition 4.4) if and only if (gt,Lt) is uni-
formly observable, where

gt = C̃(t) = (CT (t, 1)C(t, 1), . . . , CT (t,N)C(t,N))

and Lt : SN
n → SN

n is the Lyapunov operator defined by (2.58).
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We need the next result.

Lemma 4.1 Let {Lt}t≥0 be a bounded sequence of linear bounded and positive
operators on X . Also let {ht}t≥0 be a bounded and uniform positive sequence.
If there exist τ0 ≥ 1, q ∈ (0, 1) such that

T ∗(t + τ0, t)ht+τ0 ≤ qht (4.57)

for all t ≥ 0, then {Lt}t≥0 generates an exponentially stable evolution.

Proof. It is obvious that

T ∗(τ, s)T ∗(t, τ) = T ∗(t, s) (4.58)

for all t ≥ τ ≥ s ≥ 0. Combining (4.58) and (4.57) we obtain inductively that

T ∗(s + mτ0, s)hs+mτ0 ≤ qmhs (4.59)

for all s ≥ 0,m ≥ 1. Because {ht}t≥0 is a bounded and uniform positive
sequence one obtains that

0 ≤ T ∗(s + mτ0, s)ξ ≤ β1q
mξ (4.60)

for all s ≥ 0,m ≥ 1, for some β1 ≥ 1. From Proposition 2.5(ii) one obtains
that (4.60) leads to

‖T ∗(s + mτ0, s)‖ξ ≤ β1q
m (4.61)

for all s ≥ 0,m ≥ 1. On the other hand from the boundedness of the sequence
{Lt}t≥0 we deduce that there exist β2 ≥ 1 such that

‖T ∗(t, s)‖ξ ≤ β
(t−s)
2 (4.62)

for all t ≥ s ≥ 0. If t ≥ s ≥ 0, we have t− s = mτ0 + n0 with 0 ≤ n0 ≤ τ0 − 1.
Invoking again (4.58) we obtain from (4.61) that

‖T ∗(t, s)‖ξ ≤ qmβ1‖T ∗(t, s + mτ0)‖ξ.

Also, using (4.62) we deduce that

‖T ∗(t, s)‖ξ ≤ β1β
τ0−1
2 qm.

Because m = (t− s/τ0) − (n0/τ0) we finally obtain

‖T ∗(t, s)‖ξ ≤ β3q
t−s
1 , (4.63)

where β3 = β1β
τ0−1
2 q−(n0/τ0) and q1 = q(1/τ0) ∈ (0, 1). Combining (2.13) with

(4.63) we conclude that ‖T (t, s)‖ξ ≤ βqt−s
1 , ∀t ≥ s ≥ 0 and thus the proof

ends. �
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The next result may be viewed as a criterion for exponential stability in
the case of sequences of linear and positive operators.

Theorem 4.8 Let {Lt}t≥0 be a bounded sequence of linear bounded and posi-
tive operators on X and {gt}t≥0 ⊂ X+ be a bounded sequence.

Assume that (gt,Lt) is uniformly observable. Under these conditions the
following are equivalent.

(i) {Lt}t≥0 defines an exponentially stable evolution.
(ii) The backward affine equation

xt = L∗
txt+1 + gt (4.64)

has a bounded solution {x̃t}t≥0 ⊂ X+.

Proof. The implication (i) → (ii) follows from Theorem 2.5. Now we prove
(ii) → (i). It is easy to see that for each 0 ≤ t ≤ m we have

x̃t = T ∗(m + 1, t)x̃m+1 +
m∑

l=t

T ∗(l, t)gl. (4.65)

Because x̃m+1 ≥ 0, T ∗(m + 1, t) ≥ 0 and {x̃t}t≥0 is a bounded sequence we
deduce from (4.65) that

0 ≤
m∑

l=t

T ∗(l, t)gl ≤ x̃t ≤ μξ (4.66)

for all 0 ≤ t ≤ m and μ > 0 not depending upon t and m. Because
X+ is a regular cone (see Proposition 2.2) we conclude that the sequence
{
∑m

l=t T
∗(l, t)gl}m≥t is convergent.

Set ht =
∑∞

l=t T
∗(l, t)gl. From (4.66) we get that

ht ≤ μξ (4.67)

for all t ≥ 0.
On the other hand from the uniform observability condition one obtains

that there exist τ0 ≥ 1, γ > 0 such that (4.56) is valid. This allows us to write

ht ≥ γξ (4.68)

for all t ≥ 0. From (4.67) and (4.68) we have that {ht}t≥0 is a bounded and
uniformly positive sequence.

For τ0 from (4.56) we may write:

T ∗(t + τ0, t)ht+τ0 =
∞∑

l=t+τ0

T ∗(l, t)gl = ht −
t+τ0−1∑

l=t

T ∗(l, t)gl.
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Based on (4.56) and (4.67) we obtain

T ∗(t + τ0, t)ht+τ0 ≤ qht

for all t ≥ 0 where q = (1 − (γ/μ)) ∈ (0, 1). The conclusion now follows from
Lemma 4.1 and the proof ends. �

Remark 4.7 From Theorem 2.5 one obtains that under the assumptions of
Theorem 4.8, if the backward affine equation (4.64) has a bounded solution
{x̃t}t≥0 ⊂ X+ then {x̃t}t≥0 is a unique bounded solution of (4.64) and x̃t �
0, t ≥ 0.

Specializing the above to X = SN
n we have the following.

Corollary 4.5 Assume that:

(a) {Ak(t, i)}t≥0, 0 ≤ k ≤ r, {C(t, i)}t≥0, i ∈ D, and {Pt}t≥0 are bounded
sequences.

(b) (C,A,P) is uniform observable.

Then the following are equivalent.

(i) The sequence {Lt}t≥0 defined by (2.58) generates an exponentially stable
evolution.

(ii) The system of linear backward equations

Xt(i) =
r∑

k=0

N∑

j=1

pt(i, j)AT
k (t, i)Xt+1(j)Ak(t, i) + CT (t, i)C(t, i) (4.69)

has a bounded solution X̃t = (X̃t(1) · · · X̃t(N)), with X̃t(i) ≥ 0, for all
t ≥ 0, i ∈ D.
Moreover the bounded solution of (4.69) if it exists is unique and uniform
positive definite.

If Pt, t ≥ 0 are stochastic matrices, then under the assumptions of
Corollary 4.5, (ii) holds iff the zero solution of the system (4.25) is SESMS-I.

4.5 The case of the systems with coefficients depending
upon ηt, ηt−1

Consider the system

x(t + 1) =

[

A0(t, ηt, ηt−1) +
r∑

k=1

wk(t)Ak(t, ηt, ηt−1)

]

x(t)

+

[

B0(t, ηt, ηt−1) +
r∑

k=1

wk(t)Bk(t, ηt, ηt−1)

]

u(t). (4.70)
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Definition 4.6 We say that the system (4.70) is stochastic stabilizable if
there exist bounded sequences {F (t, i)}t≥1, 1 ≤ i ≤ N, such that the zero
state equilibrium of the closed-loop system

x(t+1) =

[

A0(t, ηt, ηt−1) + B0(t, ηt, ηt−1)F (t, ηt−1)

+
r∑

k=1

wk(t)(Ak(t, ηt, ηt−1)+Bk(t, ηt, ηt−1)F (t, ηt−1))

]

x(t) (4.71)

t ≥ 1 is SESMS.

Let ΥF (t) : SN
n → SN

n be the Lyapunov-type operator associated with
(4.71). ΥF (t)H = (ΥF (t)H(1), ΥF (t)H(2), . . . , ΥF (t)H(N)),

ΥF (t)H(i) =
r∑

k=0

N∑

j=1

pt−1(j, i)[Ak(t, i, j) + Bk(t, i, j)F (t, j)]H(j)[Ak(t, i, j)

+ Bk(t, i, j)F (t, j)]T , ∀ H ∈ SN
n , i ∈ D. (4.72)

Using Corollary 3.7 and some Schur complement techniques one obtains the
following criteria for stochastic stabilizability of the systems (4.70) in the
time-invariant case.

Corollary 4.6 Assume that the system (4.70) is in the time-invariant case.
Under the assumptions H1 and H2 the following are equivalent.

(i) The system (4.70) is stochastic stabilizable.
(ii) There exist F = (F (1), F (2), . . . , F (N)), F (i) ∈ Rm×n, i ∈ D, X =

(X(1), X(2), . . . , X(N)) ∈ SN
n , X(i) > 0, i ∈ D that solve

ΥF X(i)−X(i) < 0, i ∈ D. (4.73)

(iii) There exist X = (X(1), X(2), . . . , X(N)) ∈ SN
n , Γ = (Γ (1), Γ (2), . . . ,

Γ (N)), Γ (i) ∈ Rm×n, i ∈ D that solve the following system of LMIs,
⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−X(i) M0(i) M1(i) . . . Mr(i)

MT
0 (i) −X 0 . . . 0

MT
1 (i) 0 −X . . . 0

. . . . . . . . . . . . . . .

MT
r (i) 0 0 . . . −X

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

< 0, (4.74)

i ∈ D, where Mk(i) = (
√

p(1, i)(Ak(i, 1)X(1)+Bk(i, 1)Γ (1))
√

p(2, i)(Ak

(i, 2)X(2)+Bk(i, 2)Γ (2)) · · ·
√

p(N, i)(Ak(i, N)X(N)+Bk(i, N)Γ (N))),
0 ≤ k ≤ r,

X = diag (X(1), X(2), . . . , X(N)) ∈ Rn×N .

Moreover, if (X,Γ ) is a solution of (4.73) then F (i) = Γ (i)X−1(i), i ∈ D
provide a stabilizing feedback gain for (4.70).



128 4 Structural properties of linear stochastic systems

4.6 A generalization of the concept of stabilizability

In this section we introduce a general definition of stabilizability that con-
tains the concepts of stabilizability introduced by Definitions 4.1 and 4.6 as
special cases. Let {Π(t)}t∈I be a sequence of linear operators and Π(t) :
SN

n → SN
n+m, I ⊂ Z is a right unbounded set of consecutive integers.

Hence Π(t)X = (Π1(t)X,Π2(t)X, . . . ,ΠNX) for all X ∈ SN
n . Let F (t) =

(F (t, 1), F (t, 2), . . . , F (t,N)), F (t, i) ∈ Rm×n be given. Then the pair
(Π(t), F (t)) defines a linear operator ΠF (t) : SN

n → SN
n as follows,

ΠF (t)X = (ΠF1(t)X,ΠF2(t)X, . . . ,ΠFN(t)X),

where

ΠFi(t)X =
(
In FT (t, i)

)
Πi(t)X

(
In FT (t, i)

)T
(4.75)

for all X ∈ SN
n . It should be remarked that ΠF (t) ≥ 0 if Π(t) ≥ 0.

Definition 4.7 We say that the sequence of linear and positive operators
{Π(t)}t∈I is stabilizable if there exist bounded sequences {F (t, i)}t∈I ⊂
Rm×n, 1 ≤ i ≤ N, such that the zero state equilibrium of the discrete-time
linear equation

X(t + 1) = (ΠF (t))∗X(t)

is exponentially stable, where (ΠF (t))∗ is the adjoint operator of ΠF (t) with
respect to the inner product (2.18), ΠF (t) being defined as in (4.75).

The sequence {F (t)}t∈I , F (t) = (F (t, 1), F (t, 2), . . . , F (t,N)) involved in
the above definition is termed the stabilizing feedback gain.

Remark 4.8

(a) In the special case of Π(t) = Π,Π : SN
n → SN

n+m being a linear operator,
we say that the operator Π is stabilizable if the conditions of the previous
definition are fulfilled for the constant sequence {F}; that is, F (t, i) =
F (i), 1 ≤ i ≤ N .

(b) If LF (t) and ΥF (t) are the linear operators defined by (4.5) and (4.72),
respectively, then the equalities

L∗
F (t) = Π̂F (t) (4.76)

and

Υ ∗
F (t) = Π̌F (t) (4.77)

show that the system (4.1) is stochastic stabilizable if and only if the
sequence {Π̂(t)}t≥0 is stabilizable, and the system (4.70) is stochastic
stabilizable if and only if the sequence {Π̌(t)}t≥1 is stabilizable. In (4.76)
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Π̂(t)X =
r∑

k=0

N∑

j=1

pt(i, j)(Ak(t, i) Bk(t, i))TX(j)(Ak(t, i) Bk(t, i))

whereas in (4.77), Π̌(t)X =
∑r

k=0

∑N
j=1 pt−1(i, j)(Ak(t, j, i) Bk(t, j, i))T

X(j)(Ak(t, j, i) Bk(t, j, i)). Therefore the operators Π̂ and Π̌ are posi-
tive.

4.7 Notes and references

Different concepts of stochastic detectability and observability for discrete-
time linear stochastic systems are defined and studied in [25–27, 38, 44, 58,
86–91, 107, 108, 113]. The results from Section 4.1.1 may be found in [42]. The
notions from Section 4.6 are in [48]. Theorem 4.1 is proved in [38]. All other
results presented in this chapter are proved in [39]. Here the loss of the uniform
positivity is compensated by the detectability property. The continuous-time
time-invariant version of the result proved in Theorem 4.1 may be found in
[57], and the continuous-time time-varying counterpart of this result may be
found in [35].

Such a result is sometimes useful to derive the existence of the stabilizing
solutions for generalized Riccati equations; see [44].



5

Discrete-time Riccati equations of stochastic
control

In this chapter a class of discrete-time backward nonlinear equations defined
on the ordered Hilbert space SN

n is considered. The problem of the existence
of some global solutions is investigated. The class of considered discrete-time
nonlinear equations contains, as special cases, a great number of difference
Riccati equations both from the deterministic and the stochastic framework.
The results proved in Sections 5.3–5.6 provide sets of necessary and sufficient
conditions that guarantee the existence of some special solutions of the con-
sidered equations such as the maximal solution, the stabilizing solution, and
the minimal positive semidefinite solution. These conditions are expressed in
terms of the feasibility of some suitable systems of linear matrix inequalities,
LMIs. One shows that in the case of the equations with periodic coefficients
to verify the conditions that guarantee the existence of the maximal or the
stabilizing solution we have to check the solvability of some systems of LMI
with a finite number of inequations. The proofs are based on some suitable
properties of discrete-time linear equations defined by positive operators on
some ordered Hilbert spaces developed in Chapter 2. In Section 5.7 an itera-
tive procedure is proposed for the computation of the maximal and stabilizing
solution of the discrete-time backward nonlinear equations under considera-
tion. In the last part of this chapter, one shows how the obtained results can
be specialized to derive useful conditions that guarantee the existence of the
maximal solution or the stabilizing solution for different classes of difference
matrix Riccati equations involved in many problems of robust control in the
stochastic framework.

5.1 An overview on discrete-time Riccati-type equations
of stochastic control

In the literature related to the topic of control of discrete-time linear stochastic
systems two types of discrete-time Riccati equations are usually involved.

© Springer Science + Business Media, LLC 2010
Stochastic Systems, DOI 10.1007/978-1-4419-0630-4_5,

131Mathematical Methods in Robust Control of Discrete-Time Linear V. Dragan et al., 
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Xt =
r∑

k=0

AT
k (t)Xt+1Ak(t) +CT (t)C(t) −

(
r∑

k=0

AT
k (t)Xt+1Bk(t) + CT (t)D(t)

)

×
(

DT (t)D(t) +
r∑

k=0

BT
k (t)Xt+1Bk(t)

)−1

×
(

r∑

k=0

BT
k (t)Xt+1Ak(t) + DT (t)C(t)

)

, t ∈ Z, t ≥ 0 (5.1)

and

X(t, i) =
N∑

j=1

pt(i, j)AT (t, i)X(t + 1, j)A(t, i) + CT (t, i)C(t, i)

−

⎛

⎝
N∑

j=1

pt(i, j)A(t, i)X(t + 1, j)B(t, i) + CT (t, i)D(t, i)

⎞

⎠

×

⎛

⎝DT (t, i)D(t, i) +
N∑

j=1

pt(i, j)B(t, i)X(t + 1, j)B(t, i)

⎞

⎠

−1

×

⎛

⎝
N∑

j=1

pt(i, j)BT (t, i)X(t + 1, j)A(t, i) + DT (t, i)C(t, i)

⎞

⎠ ,

1 ≤ i ≤ N, t ∈ Z, t ≥ 0. (5.2)

The equation (5.1) occurs in connection with the linear quadratic optimiza-
tion problem associated with a discrete-time linear system with independent
random perturbations described by

x(t + 1) =

[

A0(t) +
r∑

k=1

wk(t)Ak(t)

]

x(t) +

[

B0(t) +
r∑

k=1

wk(t)Bk(t)

]

u(t)

and the output
y(t) = C(t)x(t) + D(t)u(t),

where {wk(t)}t≥0, 1 ≤ k ≤ r, are independent random perturbations on a
given probability space (Ω,F ,P), with zero mean and finite second moments.

Systems of coupled discrete-time Riccati equations (5.2) occur in connec-
tion with the linear quadratic optimization problems associated with discrete-
time linear systems subject to Markovian switching:

x(t + 1) = A(t, ηt)x(t) + B(t, ηt)u(t)
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and the output
y(t) = C(t, ηt)x(t) + D(t, ηt)u(t),

where {ηt}t≥0 is a Markov chain with the set of states D = {1, 2, . . . , N} and
the sequence of transition probability matrix {Pt}t≥0, Pt = (pt(i, j))1≤i,j≤N .

Lately, there exists an increasing interest in considering discrete-time linear
stochastic systems subject to both independent random perturbations and
Markovian jumping.

In this case the following type of discrete-time Riccati equations is
involved.

X(t, i) =
r∑

k=0

N∑

j=1

pt(i, j)AT
k (t, i)X(t + 1, j)Ak(t, i) + CT (t, i)C(t, i)

−

⎛

⎝
r∑

k=0

N∑

j=1

pt(i, j)Ak(t, i)X(t + 1, j)Bk(t, i) + CT (t, i)D(t, i)

⎞

⎠

×

⎛

⎝DT (t, i)D(t, i) +
r∑

k=0

N∑

j=1

pt(i, j)BT
k (t, i)X(t + 1, j)Bk(t, i)

⎞

⎠

−1

×

⎛

⎝
r∑

k=0

N∑

j=1

pt(i, j)Bk(t, i)X(t + 1, j)Ak(t, i) + DT (t, i)C(t, i)

⎞

⎠ ,

t ∈ Z, t ≥ 0. (5.3)

A more general case is the one of the discrete-time linear stochastic systems
of the form:

x(t + 1) =

[

A0(t, ηt, ηt−1) +
r∑

k=1

wk(t)Ak(t, ηt, ηt−1)

]

x(t)

+

[

B0(t, ηt, ηt−1) +
r∑

k=1

wk(t)Bk(t, ηt, ηt−1)

]

u(t)

z(t) = C(t, ηt, ηt−1)x(t) + D(t, ηt, ηt−1)u(t),

where {ηt}t≥0, {wk(t)}t≥0, k ∈ {1, 2, . . . , r} are as before.
Such a system occurs when in the control process for a discrete-time linear

stochastic system subject to Markovian jumping and independent random
perturbations, some delays in the transmission of the data are possible (see
Chapter 1, Section 1.6).

To solve the LQG problem and the H2 control problem for this type of sto-
chastic system the following system of coupled discrete-time Riccati equations
is involved.
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X(t, i)

=
r∑

k=0

N∑

j=1

pt−1(i, j)AT
k (t, j, i)X(t + 1, j)Ak(t, j, i)

+
N∑

j=1

pt−1(i, j)CT (t, j, i)C(t, j, i) −

⎡

⎣
N∑

j=1

pt−1(i, j)

(

CT (t, j, i)D(t, j, i)

+
r∑

k=0

AT
k (t, j, i)X(t + 1, j)Bk(t, j, i)

)⎤

⎦

⎡

⎣
N∑

j=1

pt−1(i, j)

(

DT (t, j, i)D(t, j, i)

+
r∑

k=0

BT
k (t, j, i)X(t + 1, j)Bk(t, j, i)

)⎤

⎦

−1

×

⎡

⎣
N∑

j=1

pt−1(i, j)

(

DT (t, j, i)C(t, j, i)

+
r∑

k=0

BT
k (t, j, i)X(t + 1, j)Ak(t, j, i)

)]

(5.4)

Let us consider the following linear stochastic system with finite jumps,

dx(τ) = A0x(τ)dτ + A1x(τ)dv(τ), τ 
= th

x(th+) = A0dx(th) + B0du(t) + [A1dx(th) + B1du(t)]vd(t)

with the continuous time output z(τ) = Cx(τ) and discrete-time output
zd(t) = Cdx(th) + Ddu(t), t ∈ {0, 1, 2, . . .};h > 0 is the sampling period,
where {v(τ)}τ≥0 is a standard scalar Wiener process; and {vd(t)}t≥0 is a
sequence of independent random variables.

Such systems occur in connection with the control by piecewise constant
controls of linear stochastic systems described by Ito differential equations.
To solve the LQG problem or the H2 optimal control problem for this type of
controlled system the following system of Riccati equations with jumps

dX(τ)
dτ

= AT
0 X(τ) + X(τ)A0 + AT

1 X(τ)A1 + CT C, τ 
= th

X(th−) = AT
0dX(th)A0d + AT

1dX(th)A1d + CT
d Cd

− (AT
0dX(th)B0d + AT

1dX(th)B1d + CT
d Dd)
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× (DT
d Dd + BT

0dX(th)B0d + BT
1dX(th)B1d)−1

× (BT
0dX(th)A0d + BT

1dX(th)A1d + DT
d Cd), (5.5)

t ∈ {0, 1, 2, . . .} is used.
From the first equation of (5.5) one obtains:

X(th) = eLhX((t + 1)h−) +

h∫

0

eLsCTCds, (5.6)

where L is the perturbed Lyapunov operator, LS = AT
0 S +SA0 +AT

1 SA1 for
any symmetric matrices S, and

eLh =
∞∑

k=0

Lkhk

k!
.

We remark that in the special case A1 = 0 we have eLhS = eAT
0 hSeA0h.

By replacing (5.6) in the second equation of (5.5) one obtains a discrete-time
backward nonlinear equation for the sequence X(th−), t ≥ 0. It is shown that
this discrete-time nonlinear equation is of type (5.8) below.

Our goal is to find a large enough class of discrete-time nonlinear equations
containing as special cases all discrete-time Riccati equations described above.
For this class of discrete-time nonlinear equation which we call a discrete-time
system of generalized Riccati equations (DTSGRE) we provide necessary and
sufficient conditions for the existence of some global special solutions such as
maximal solution, stabilizing solution, minimal solution, and so on.

The results derived in that general framework can be applied to each of the
Riccati-type equations described above as well as to other Riccati equations
connected with different control problems in both a stochastic framework and
deterministic framework.

The conditions that guarantee the existence of the maximal solution, sta-
bilizing solution, and minimal solution of DTSGRE considered in this chapter
are expressed in terms of solvability of some suitable systems of LMIs.

5.2 A class of discrete-time backward nonlinear
equations

5.2.1 Several notations

Together with the notations introduced in Example 2.5(iii) in this chapter
we use new conventions of notations displayed in this subsection. For a fixed
integer N ≥ 1, MN

nm = Rn×m ⊕ Rn×m ⊕ · · · ⊕ Rn×m. Hence B ∈ MN
nm if

and only if B = (B(1), B(2), . . . , B(N)) with B(i) ∈ Rn×m, i ∈ {1, 2, . . . , N}.
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In the sequel we write MN
n instead of MN

nn. Obviously SN
n ⊂ MN

n . MN
nm is

a Hilbert space with respect to the following inner product,

〈X,Y 〉 =
N∑

i=1

Tr[Y T (i)X(i)] (5.7)

for all X = (X(1), X(2), . . . , X(N)), Y = (Y (1), Y (2), . . . , Y (N)) from MN
nm.

If m = n the inner product (5.7) induces a Hilbert space structure on MN
n

and on its subspace SN
n . The restriction of (5.7) to the subspace SN

n is just
(2.18).

Throughout this chapter we use the following calculus convention.

(α) If C = (C(1), C(2), . . . , C(N)) ∈MN
nm then CT ∈MN

mn and it is defined
by CT = (CT (1), CT (2), . . . , CT (N)).

(β) If A = (A(1), A(2), . . . , A(N)) ∈ MN
n with detA(i) 
= 0, 1 ≤ i ≤ N , then

A−1 = (A−1(1), A−1(2), . . . , A−1(N)) ∈ MN
n and detA 
= 0 means that

detA(i) 
= 0 for all 1 ≤ i ≤ N .
(γ) If B ∈ MN

nm, C ∈ MN
pn, B = (B(1), B(2), . . . , B(N)), C = (C(1),

C(2), . . . , C(N)), then D = CB ∈ MN
pm, D = (D(1), D(2), . . . , D(N)),

D(i) = C(i)B(i), 1 ≤ i ≤ N .
(δ) If C = (C(1), C(2), . . . , C(N)) ∈ MN

pn and F = (F (1), F (2), . . . , F (N)) ∈
MN

mn then

D =
(

C

F

)

∈ MN
p+m,n

is defined as D = (D(1), D(2), . . . , D(N)),

D(i) =

(
C(i)

F (i)

)

, 1 ≤ i ≤ N.

(ε) If K = (K(1),K(2), . . . ,K(N)) ∈MN
np and B = (B(1), B(2), . . . , B(N))

∈ MN
nm then Y = (K B ) ∈ MN

n,p+m is defined by Y = (Y (1), Y (2),
. . . , Y (N)), Y (i) = (K(i) B(i) ), i ∈ {1, 2, . . . , N}.

We often use the special element of SN
n , Jn = ( In In · · · In ), In being

the identity matrix. Throughout the chapter I ⊂ Z is a subset of consecutive
integers. That is, I = Z or I = {s, s + 1, . . . }. Often I is called the interval
of integers.

B(SN
n ,SN

n+m) denotes the set of linear operators Π : SN
n → SN

n+m.

5.2.2 A class of discrete-time generalized Riccati equations

In this chapter we deal with nonlinear discrete-time backward equations on
the space SN

n , of the form:
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X(t) = Π1(t)X(t + 1) + M(t) − (L(t) + Π2(t)X(t + 1))(R(t)

+ Π3(t)X(t + 1))−1(L(t) + Π2(t)X(t + 1))T , (5.8)

t ∈ I, where I ⊂ Z is a right unbounded interval of integers.
For each t ∈ I,M(t) ∈ SN

n , L(t) ∈ MN
nm, R(t) ∈ SN

m , Π1(t) : SN
n →

SN
n , Π2(t) : SN

n → MN
nm, Π3 : SN

n → SN
m are linear operators, where n,m,N

are fixed positive integers.
The equation (5.8) contains as special cases the Riccati equations (5.1)–

(5.5) that appear in stochastic control. Therefore the results proved in this
chapter concerning the properties of the solutions of equation (5.8) allow us to
obtain useful information about the solutions of a wide class of discrete-time
Riccati-type equations, involved in both deterministic and stochastic control.

Equation (5.8) can be written in a compact form as

X(t) = R(t,X(t + 1)), (5.9)

where R : DomR→ SN
n is given by

R(t,X) = Π1(t)X − (L(t) + Π2(t)X)(R(t) + Π3(t)X)−1

× (L(t) + Π2(t)X)T + M(t) (5.10)

and

DomR = {(t,X) ∈ I × SN
n | det(R(t) + Π3(t)X) 
= 0}. (5.11)

We set

Π(t)X =

(
Π1(t)X Π2(t)X

(Π2(t)X)T Π3(t)X

)

(5.12)

Q(t) =

(
M(t) L(t)

LT (t) R(t)

)

. (5.13)

We have Π(t) ∈ B(SN
n ,SN

n+m) and Q(t) ∈ SN
n . It is clear that the equa-

tions (5.8) and (5.9) are associated with the pair Σ = ({Π(t)}t∈I , {Q(t)}t∈I).
We often write Σ = (Π,Q) for simplicity.

Throughout the chapter we make the following assumption.

A.5.1

(i) The sequences {Π(t)}t∈I ⊂ B(SN
n ,SN

n+m) and {Q(t)}t∈I ⊂ SN
n+m are

bounded.
(ii) For each t ∈ I, Π(t) is a positive operator; that is, Π(t)X ≥ 0 if X ≥ 0.
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Let �∞{I,SN
n } be the set of bounded sequences X = {X(t)}t∈I ⊂ SN

n .
With a pair Σ = (Π,Q) we associate the so-called dissipation operator DΣ :
�∞(I,SN

n ) → �∞(I,SN
n+m) by

(DΣX)(t) =

(
Π1(t)X(t + 1) + M(t) −X(t) L(t) + Π2(t)X(t + 1)

(L(t) + Π2(t)X(t + 1))T R(t) + Π3(t)X(t + 1)

)

(5.14)

for arbitrary X = {X(t)}t∈I ∈ �∞(I,SN
n ).

Remark 5.1 It is easy to see that

DΣ(X(t)) =
(−X(t) 0

0 0

)

+Π(t)X(t + 1) + Q(t) for any X = {X(t)}t∈I.

The following two subsets of �∞(I,SN
n ) play an important role in our

further developments.

ΓΣ = {X = {X(t)}t∈I ∈ �∞(I,SN
n )|DΣ(X(t)) ≥ 0,

R(t) + Π3(t)X(t + 1) � 0, t ∈ I} (5.15)

Γ̃Σ = {X = {X(t)}t∈I ∈ �∞(I,SN
n )|DΣ(X(t)) � 0, t ∈ I}. (5.16)

We mention that for a sequence {X(t)}t∈I the notation X(t) � 0, t ∈ I is
equivalent to X(t, i) ≥ εIn > 0 for all t ∈ I, 1 ≤ i ≤ N . Such a sequence is
called uniformly positive.

Remark 5.2

(a) From (5.15) and (5.16) it follows that Γ̃Σ ⊂ ΓΣ .
(b) Based on the Schur complement technique, one deduces that ΓΣ contains

all global and bounded solutions {X(t)}t∈I of (5.8) that verify the addi-
tional condition R(t) + Π3(t)X(t + 1) � 0, t ∈ I.

Definition 5.1 We say that {X(t)}t∈I is a maximal solution of DTSGRE
(5.8) if X(t) ≥ X̂(t), t ∈ I for arbitrary {X̂(t)}t∈I ∈ ΓΣ.

If {X(t)}t∈I is a solution of (5.8) then R′(t,X(t + 1)) : SN
n → SN

n stands
for the Frechet derivative of the operator R given by (5.10)–(5.11).

A new kind of global solution of (5.8) that plays an important role in
different applications is introduced by the following.

Definition 5.2 A solution {Xs(t)}t∈I ⊂ SN
n is called a stabilizing solution

of DTSGRE (5.8) if the zero solution of the discrete-time linear equation
on SN

n ,
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Z(t + 1) = (R′(t,Xs(t + 1)))∗Z(t), (5.17)

is exponentially stable, where (R′(t,Xs(t + 1)))∗ is the adjoint operator of
R′(t,Xs(t + 1)) with respect to the inner product (5.7).

The next result is used repeatedly in the next developments in this chapter.

Lemma 5.1 Let {X(t)}t∈I1 be a solution of (5.8) and {W (t)}t∈I1 ⊂MN
mn be

a given sequence; I1 ⊂ I is a subinterval of integers. Under these conditions
{X(t)}t∈I1 also verifies the following modified backward affine equation,

X(t) = ΠW (t)X(t + 1) + QW (t) − (W (t) − FX(t))T

× (R(t) + Π3(t)X(t + 1))(W (t) − FX(t)),

where for each t ∈ I1, ΠW (t) : SN
n → SN

n is given by

ΠW (t)X = (Jn WT (t) )

(
Π1(t)X Π2(t)X

(Π2(t)X)T Π3(t)X

)(
Jn

W (t)

)

, ∀X∈ SN
n ,

(5.18)

QW (t) = (Jn WT (t) )

(
M(t) L(t)

LT (t) R(t)

)(
Jn

W (t)

)

, (5.19)

and

FX(t) = −(R(t) + Π3(t)X(t + 1))−1(L(t) + Π2(t)X(t + 1))T . (5.20)

Proof. It can be done by direct computations and can be a useful exercise for
the reader.

At the end of this subsection we rewrite the Frechet derivative of the
operator R in a easier form which is used in the developments of the next
sections.

If we take into account that

R′(t,X)U = lim
ε→0

1
ε
(R(t,X + εU)−R(t,X))

for arbitrary (t,X) ∈ DomR and U ∈ SN
n we obtain

R′(t,X)U = ΠF X (t)U, (5.21)

where ΠF X (t) is defined as in (5.18) with W replaced by FX and

FX = −(R(t) + Π3(t)X)−1(L(t) + Π2(t)X)T . (5.22)

Thus we see that the discrete-time linear equation (5.17) may be written as

Z(t + 1) = Π∗
F Xs (t)Z(t) (5.23)

with

FXs(t) = −(R(t) + Π3(t)Xs(t + 1))−1(L(t) + Π2(t)Xs(t + 1))T . (5.24)
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5.3 A comparison theorem and several consequences

In this section we prove a result that mainly shows the monotonicity of the
solutions of DTSGRE (5.8) with respect to Q(t). So we extend to this general
framework a similar result in [58].

Theorem 5.1 Let {Xk(t)}t∈I1 , k = 1, 2, I1 ⊂ I be the solutions of the equa-
tions

Xk(t) = Rk(t,Xk(t + 1)), (5.25)

where Rk : DomRk → SN
n are operators of the form (5.10) defined by the

pairs Σk = (Π,Qk), where Π = {Π(t)}t∈I is as in the previous section and
Qk = {Qk(t)}t∈I, where

Qk(t) =

(
Mk(t) Lk(t)

LT
k (t) Rk(t)

)

, k = 1, 2.

Assume:

(a) Q1(t) ≥ Q2(t), t ∈ I.
(b) R2(t) + Π3(t)X2(t + 1) > 0, t, t + 1 ∈ I1.
(c) There exists τ ∈ I1 such that X1(τ) ≥ X2(τ).

Under these conditions X1(t) ≥ X2(t) for all t ∈ I1, t ≤ τ .

Proof. Let Fk(t) = FXk(t), k = 1, 2 be defined as in (5.22) with Xk(t + 1)
instead of X .

Applying Lemma 5.1 to equations (5.25) with W (t) = F1(t) we obtain
that X1(t) −X2(t) verifies the discrete-time backward affine equation:

X1(t) −X2(t) = ΠF1(t)(X1(t + 1)−X2(t + 1)) + M̃(t), t ∈ I1 (5.26)

where

M̃(t) = (F1(t) − F2(t))T (R2(t) + Π3(t)X2(t + 1))(F1(t) − F2(t))

+

(
Jn

F1(t)

)T

(Q1(t) −Q2(t))

(
Jn

F1(t)

)

.

Based on assumptions (a), and (b) in the statement one obtains that M̃(t) ≥
0, t ∈ I1. Furthermore, from (5.18) and assumption A5.1(ii) we conclude that
ΠF1(t) ≥ 0 for all t ∈ I1. The conclusion now follows inductively from (5.26)
and assumption (c) in the statement. Thus the proof ends. �

Based on the above theorem we may provide a sufficient condition that
guarantees the existence of a solution of equation (5.8) with the given ter-
minal values. Before stating this result we introduce a notation. So, for
each τ ∈ I, X(t, τ,H) denotes the solution of DTSGRE (5.8) that verifies
X(τ, τ,H) = H .
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Theorem 5.2 Let {X̂(t)}t∈I ∈ ΓΣ and τ ∈ I be given. If H ≥ X̂(τ) then
X(t, τ,H) is well defined for all t ∈ I, t ≤ τ .

Proof. Suppose that τ − 1 ∈ I. From H ≥ X̂(τ) and (5.15) we obtain

R(τ − 1) + Π3(τ − 1)H ≥ R(τ − 1) + Π3(τ − 1)X̂(τ) > 0.

This shows that (τ−1, H) ∈ DomR and X(t, τ,H) is well defined for t = τ−1.
Let Iτ = {t̂, t̂ + 1, t̂ + 2, . . . , τ} ⊆ I be the maximal interval of inte-

gers where X(t, τ,H) is defined. If Iτ = (−∞; τ ] ∩ I then the proof is com-
plete. In contrast, we prove that the solution X(t, τ,H) may be computed for
t = t̂− 1.

Let M̂(t) = R(t, X̂(t + 1)) − X̂(t), t ∈ I. Using the Schur complement
technique one obtains from (5.15) that M̂(t) ≥ 0, t ∈ I. Hence X̂(t) verifies
the equation

X̂(t) = R̂(t, X̂(t + 1)), (5.27)

where R̂ : DomR̂ → SN
n is an operator of type (5.10) defined by the pair

Σ̂ = (Π, Q̂), where Π is as before and

Q̂ = {Q̂(t)}t∈I , Q̂(t) =

(
M(t) − M̂(t) L(t)

LT (t) R(t)

)

.

It is obvious that Q(t) ≥ Q̂(t), t ∈ I. Applying Theorem 5.1 to equations
(5.8) and (5.27) one obtains that X(t, τ,H) ≥ X̂(t) for all t ∈ Iτ . Hence
R(t̂−1)+Π3(t̂−1)X(t̂, τ,H) ≥ R(t̂−1)+Π3(t̂−1)X̂(t̂) > 0. This shows that
(t̂− 1, X(t̂, τ,H)) ∈ DomR. Therefore X(t, τ,H) is well defined for t = t̂− 1
and thus the proof is complete. �

Corollary 5.1 Assume that 0 ∈ ΓΣ. Then for arbitrary H ∈ SN+
n and τ ∈

I the solution X(t, τ,H) of (5.8) is defined for all t ∈ I, t ≤ τ . Moreover
X(t, τ,H) ≥ 0, t ∈ I, t ≤ τ .

5.4 The maximal solution

In this section we study the problem of the existence of the maximal solution
of equation (5.8). We also display the monotonicity of the maximal solution
with respect to Q(t). The next auxiliary result is used repeatedly in the proofs
of this section.

Lemma 5.2 Let W (t) ∈ MN
mn be given and X(t), t ∈ I1 be a solution of the

following discrete-time backward affine equation,

X(t) = ΠW (t)X(t + 1) + QW (t)
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with the additional property [R(t) + Π3(t)X(t + 1)]−1 is well defined for all
t, t+1 ∈ I1, where ΠW (t) and QW (t) are as in (5.18) and (5.19), respectively.

Under these conditions {X(t)}t∈I1 also solves the following modified equa-
tion, X(t) = ΠF X (t)X(t + 1) + QF X (t) + (FX(t) − W (t))T (R(t) + Π3(t)
X(t + 1))(FX(t) −W (t)), where FX(t) is defined as in (5.22).

Proof. It is based on standard algebraic calculations. �

The next result provides a necessary and sufficient condition for the exis-
tence of the maximal solution of the DTSGRE (5.8).

Theorem 5.3 Assume that the sequence of linear operators {Π(t)}t∈I ⊂
B(SN

n ,SN
n+m) is stabilizable. Then the following are equivalent.

(i) The set ΓΣ is not empty.
(ii) The equation (5.8) has a maximal and bounded solution {Xmax(t)}t∈I that

satisfies the condition:

R(t) + Π3(t)Xmax(t + 1) � 0.

Moreover if there exists an integer θ ≥ 1 such that Π(t + θ) = Π(t),
Q(t + θ) = Q(t) for all t ∈ I, then the maximal solution Xmax(·) is
periodic with period θ.

Proof. The implication (ii) → (i) is obvious because {Xmax(t)}t∈I , if it exists,
belongs to ΓΣ . It remains to prove the converse implication. Based on the sta-
bilizability property we may choose a bounded sequence {F0(t)}t∈I ⊂ MN

mn

such that the zero state equilibrium of the discrete-time linear equation:

X(t + 1) = Π∗
F0

(t)X(t) (5.28)

is exponentially stable.
Applying Theorem 2.5 one obtains that the discrete-time affine equation

X1(t) = ΠF0(t)X1(t + 1) + QF0(t) + εJn (5.29)

has a unique bounded solution {X1(t)}t∈I ⊂ SN
n , where ε > 0 is fixed.

Taking {X1(t)}t∈I as a first step, we iteratively construct sequences
{Xk(t)}t∈I , {Fk(t)}t∈I , k ≥ 1 as follows. At each step k, {Xk(t)}t∈I is the
unique bounded solution of the discrete-time backward affine equation:

Xk(t) = ΠFk−1(t)Xk(t + 1) + QFk−1(t) +
ε

k
Jn (5.30)

and

Fk(t) = −(R(t) + Π3(t)Xk(t + 1))−1(L(t) + Π2(t)Xk(t + 1))T . (5.31)
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The following items are proved inductively.

(ak) Xk(t) − X̂(t) ≥ μkJn for any {X̂(t)}t∈I ∈ ΓΣ, where μk > 0 do not
depend upon X̂(t).

(bk) The sequence {Lk(t)}t∈I defines an exponentially stable evolution, where
Lk(t) = (ΠFk

(t))∗.
(ck) Xk(t) ≥ Xk+1(t), ∀t ∈ I.

Let {X̂(t)}t∈I ∈ ΓΣ. Applying Lemma 5.1 to equation (5.27) verified by
X̂(t) and W (t) = F0(t) one obtains

X̂(t) = ΠF0(t)X̂(t + 1) + QF0(t) − M̂(t)

− (F0(t) − F̂ (t))T (R(t) + Π3(t)X̂(t + 1))(F0(t) − F̂ (t)), (5.32)

where

F̂ (t) = −(R(t) + Π3(t)X̂(t + 1))−1(L(t) + Π2(t)X̂(t + 1))T . (5.33)

Subtracting (5.32) from (5.29) one obtains that X1(t) − X̂(t) is a bounded
solution of the backward affine equation:

X1(t) − X̂(t) = ΠF0(t)(X1(t + 1)− X̂(t + 1)) + Δ1(t), (5.34)

where Δ1(t) = εJn+M̂(t)+(F0(t)−F̂ (t))T (R(t)+Π3(t)X̂(t+1))(F0(t)−F̂ (t)).
Because {X̂(t)}t∈I ∈ ΓΣ one gets that Δ1(t) ≥ εJn � 0, t ∈ I.

Invoking Theorem 2.5(iv), we deduce that equation (5.34) has a unique
bounded solution which is also uniformly positive. Moreover from (5.34) one
obtains that X1(t)−X̂(t) ≥ εJn, t ∈ I. This confirms the validity of item (ak)
for k = 1.

If (a1) is fulfilled, then R(t) + Π3(t)X1(t + 1) � 0 and thus F1(t) is well
defined by (5.31) for k = 1.

Applying Lemma 5.1 again to the equation (5.27) with W (t) = F1(t) we
obtain:

X̂(t) = L∗
1(t)X̂(t + 1) + QF1(t) − M̂(t) − (F1(t) − F̂ (t))T

× (R(t) + Π3(t)X̂(t + 1))(F1(t) − F̂ (t)). (5.35)

On the other hand, applying Lemma 5.2 to equation (5.29) we obtain:

X1(t) = L∗
1(t)X1(t + 1) + QF1(t) + εJn + (F1(t) − F0(t))T

× (R(t) + Π3(t)X1(t + 1))(F1(t) − F0(t)). (5.36)

Subtracting (5.35) from (5.36) we deduce that X1(t)−X̂(t) solves the following
discrete-time backward affine equation,

X1(t) − X̂(t) = L∗
1(t)(X1(t + 1) − X̂(t + 1)) + H1(t), (5.37)
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t ∈ I, where

H1(t) = εJn+M̂(t) + (F1(t) − F0(t))T (R(t)+Π3(t)X1(t + 1))(F1(t) − F0(t))

+ (F1(t) − F̂ (t))T (R(t) + Π3(t)X̂(t + 1))(F1(t) − F̂ (t)).

Because {X̂(t)}t∈I ∈ ΓΣ and (a1) is fulfilled, we may conclude that H1(t) ≥
εJn � 0, t ∈ I.

Using implication (vi) → (i) in Theorem 2.4 with equation (5.37), we
deduce that the sequence {L1(t)}t∈I generates an exponentially stable evolu-
tion and thus we obtain that item (bk) for k = 1 holds.

Furthermore, based on (b1) together with Theorem 2.5, we deduce that
{X2(t)}t∈I is well defined as a unique bounded solution of (5.30) for k = 2.

To check the validity of item (c1) we subtract equation (5.30) written for
k = 2 from equation (5.36) and obtain

X1(t) −X2(t) = L∗
1(t)(X1(t + 1)−X2(t + 1)) + H̃1(t) (5.38)

with H̃(t) = (ε/2)Jn +(F1(t)−F0(t))T (R(t)+Π3(t)X1(t+1))(F1(t)−F0(t)).
We have H̃1(t) ≥ (ε/2)Jn � 0, t ∈ I.

Using Theorem 2.5(iv) again in the case of equation (5.38), we conclude
that

X1(t) −X2(t) ≥ 0

which confirms the validity of item (ck) for k = 1.
Let us assume that the items (ai), (bi), (ci) are fulfilled for 1 ≤ i ≤ k − 1

and prove their validity for i = k.
Using Lemma 5.1 with W (t) = Fk−1(t) we rewrite equation (5.27) as

X̂(t) = ΠFk−1(t)X̂(t + 1) + QFk−1(t) − M̂(t)

− (Fk−1(t) − F̂ (t))T (R(t) + Π3(t)X̂(t + 1))(Fk−1(t) − F̂ (t)), (5.39)

t ∈ I with F̂ (t) as in (5.33).
Subtracting (5.39) from (5.30) we deduce that Xk(t) − X̂(t) solves the

discrete-time affine equation

Xk(t) − X̂(t) = ΠFk−1(t)(Xk(t) − X̂(t + 1)) + Δk(t) (5.40)

with Δk(t) = (ε/k)Jn + M̂(t) + (Fk−1(t) − F̂ (t))T (R(t) + Π3(t)X̂(t + 1))
(Fk−1(t) − F̂ (t)).

Because {X̂(t)}t∈I ∈ ΓΣ it follows that Δk(t) ≥ (ε/k)Jn � 0, t ∈ I.
Again applying Theorem 2.5(iv) we deduce that Xk(t)−X̂(t) ≥ 0; furthermore
from (5.40) we get that

Xk(t) − X̂(t) ≥ ε

k
Jn (5.41)

which confirms the validity of (ak) with μk = ε/k.
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From (5.41) it follows that R(t) + Π3(t)Xk(t + 1) � 0. This allows us to
construct Fk(t) as in (5.31).

To check the validity of (bk) we apply Lemma 5.2 to rewrite equation (5.30)
in the form:

Xk(t) = L∗
k(t)Xk(t + 1) + QFk

(t) +
ε

k
Jn

+ (Fk(t) − Fk−1(t))T (R(t) + Π3(t)Xk(t + 1))(Fk(t) − Fk−1(t)).
(5.42)

On the other hand applying Lemma 5.1 with W (t) = Fk(t) we rewrite (5.27)
in the form:

X̂(t) = L∗
k(t)X̂(t + 1) + QFk

(t) − M̂(t)

− (Fk(t) − F̂ (t))T (R(t) + Π3(t)X̂(t + 1))(Fk(t) − F̂ (t)) (5.43)

with F̂ (t) as in (5.32). Subtracting (5.43) from (5.42) and taking into account
(5.41) we obtain that Xk(t) − X̂(t), t ∈ I is a bounded and uniform positive
solution of the following discrete-time backward affine equation,

Y (t) = L∗
k(t)Y (t + 1) + Hk(t), (5.44)

where Hk(t) = (ε/k)Jn + M̂(t) + (Fk(t) − Fk−1(t))T (R(t) + Π3(t)Xk(t +
1))(Fk(t)−Fk−1(t))+(Fk(t)−F̂ (t))T (R(t)+Π3(t)X̂(t+1))(Fk(t)−F̂ (t)), t ∈ I.

Because (ak) is fulfilled it follows that Hk(t) ≥ (ε/k)Jn > 0, t ∈ I.
Applying the implication (vi) → (i) of Theorem 2.4 to equation (5.44) we
may conclude that {Lk(t)}t∈I generates an exponentially stable evolution.
This confirms the validity of (bk). To check that (ck) holds we subtract equa-
tion (5.30) (with k replaced by k + 1) from (5.42) and obtain:

Xk(t) −Xk+1(t) = L∗
k(t)(Xk(t + 1)−Xk+1(t + 1)) + H̃k(t), t ∈ I,

(5.45)

where H̃k(t) = (ε/(k(k + 1)))Jn + (Fk(t) − Fk−1(t))T (R(t) + Π3(t)Xk(t +
1))(Fk(t) − Fk−1(t)). We have H̃k(t) ≥ (ε/(k(k + 1)))Jn > 0, t ∈ I.

Applying Theorem 2.5(iv) to equation (5.45) we deduce that Xk(t) −
Xk+1(t) ≥ 0 and thus (ck) is fulfilled.

From (ak) and (ck) we conclude that for each t ∈ I the sequence
{Xk(t)}k≥1 is convergent in SN

n .
Let

Xmax(t) = lim
k→∞

Xk(t), t ∈ I. (5.46)

Taking the limit for k →∞ in (5.30) and (5.31) one obtains that {Xmax(t)}t∈I
defined by (5.46) solves (5.8).
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On the other hand from (ak) one obtains that Xmax(t) ≥ X̂(t), t ∈ I for the
arbitrary sequence {X̂(t)}t∈I ∈ ΓΣ . This shows that {Xmax(t)}t∈I defined by
(5.46) is the maximal and bounded solution of (5.8). If {Π(t)}t∈I , {Q(t)}t∈I
are periodic sequences with period θ ≥ 1, then, based on Theorem 5.7, we
may choose a stabilizing feedback gain {F0(t)}t∈I which is a periodic sequence
with the same period θ. Using Theorem 2.5(ii), we deduce that the unique
bounded solutions {Xk(t)}t∈I of (5.29), (5.30) are periodic with period θ.
Also the feedback gains {Fk(t)}t∈I defined by (5.31) will be periodic with the
same period θ.

Thus from (5.46) we conclude that {Xmax(t)}t∈I is periodic with the same
period θ and the proof is complete. �

The following result can be viewed as an extension of the comparison
theorem to the case of maximal solutions of (5.8).

Theorem 5.4 Let Σj = (Π,Qj)j≥1, Σ = (Π,Q), where for each t ∈ I,
Π(t),Q(t) are as in (5.12) and (5.13), respectively, and

Qj(t) =

(
Mj(t) Lj(t)

LT
j (t) Rj(t)

)

.

For each j ≥ 1 let X(t) = Rj(t,X(t + 1)) be the solution of the equation of
type (5.9) associated with the pair Σj = (Π,Qj). Assume that:

(a) The sequence of linear positive operators {Π(t)}t∈I is stabilizable.
(b) Qj(t) ≥ Qj+1(t) ≥ Q(t), t ∈ I, j ≥ 1.
(c) lim

j→∞
Qj(t) = Q(t), t ∈ I.

(d) ΓΣ is not empty.

Then:

(i) For each j ≥ 1 the corresponding equation (5.8) associated with the
pair Σj has a maximal and bounded solution {Xj

max(t)}t∈I that satis-
fies R(t) + Πj(t)Xj

max(t + 1) � 0, t ∈ I.
(ii) Xj

max(t) ≥ Xj+1
max(t) ≥ Xmax(t), t ∈ I, Xmax(t) being the maximal solu-

tion of (5.8).
(iii) limj→∞ Xj

max(t) = Xmax(t), t ∈ I.

Proof. Based on Remark 5.1 one obtains that ΓΣ ⊂ ΓΣj+1 ⊂ ΓΣj . Applying
(i) → (ii) in Theorem 5.3 we deduce the existence of the maximal and bounded
solutions {Xj

max(t)}t∈I , j ≥ 1. Thus (i) is proved.
For each fixed j ≥ 1, we consider the corresponding iterations {Xj

k(t)}t∈I
and {Fj,k(t)}t∈I , k ≥ 1 defined by (5.30) and (5.31) specialized for the pairs
Σj = (Π,Qj). More precisely {Xj

k(t)}t∈I is the unique and bounded solu-
tion of:

Xj
k(t) = ΠFj,k−1(t)X

j
k(t + 1) +

ε

k
Jn + Qj

Fj,k−1
(t)
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and

Fj,k(t) = −(Rj(t) + Π3(t)X
j
k(t + 1))−1(Lj(t) + Π2(t)X

j
k(t + 1))T ,

where

Qj
Fj,k−1

(t) =

(
Jn

Fj,k−1(t)

)T

Qj(t)

(
Jn

Fj,k−1(t)

)

.

From item (bk) in the proof of Theorem 5.3 we deduce that the sequences
{Lj,k(t)}t∈I generate exponentially stable evolutions, where Lj,k(t) = Π∗

Fj,k
(t).

On the other hand applying Lemma 5.1 with W (t) = Fj,k−1(t) one obtains
that {Xj

k(t) −Xj+1
max(t)}t∈I is a bounded solution of

Xj
k(t) −Xj+1

max(t) = L∗
j,k−1(t)(X

j(t+1)
k −Xj+1

max(t + 1)) + Gj
k(t), t ∈ I

(5.47)

with

Gj
k(t) =

ε

k
Jn +

(
Jn

Fj,k−1(t)

)T

(Qj(t) −Qj+1(t))

(
Jn

Fj,k−1(t)

)

+ (Fj+1(t) − Fj,k−1(t))T (Rj+1(t) + Π3(t)Xj+1
max(t + 1))

× (Fj+1(t) − Fj,k−1(t)).

We have Gj
k(t) ≥ (ε/k)Jn > 0, t ∈ I.

Invoking Theorem 2.5(iv) one deduces that (5.47) has a unique bounded
solution that is positive, hence

Xj
k(t) −Xj+1

max(t) ≥ 0, ∀ t ∈ I, k ≥ 1. (5.48)

Taking the limit for k → ∞ in (5.48) one gets that Xj
max(t) ≥ Xj+1

max(t), t ∈
I, j ≥ 1. Thus the first inequality from (ii) is confirmed.

To obtain the second inequality of (ii) in the statement one repeats the
above reasoning replacing {Xj+1

max(t)}t∈I with an arbitrary {X̂t}t∈I ∈ ΓΣ .
Thus we deduce that

Xj
max(t) ≥ X̂(t) (5.49)

for all j ≥ 1, t ∈ I.
The second inequality of (ii) follows from (5.49) because {Xmax(t)}t∈I ∈

ΓΣ . Furthermore, from (ii) one obtains that for each t ∈ I, the sequence
{Xj

max(t)}j≥1 is convergent. Set

Y (t) = lim
j→∞

Xj
max(t), t ∈ I.

Taking the limit for j →∞ in equation (5.48) verified by Xj
max(t) one obtains

that {Y (t)}t∈I is a solution of (5.8). On the other hand taking the limit for
j →∞ in (5.49) one obtains that Y (t) ≥ X̂(t), t ∈ I for arbitrary {X̂(t)}t∈I ∈
ΓΣ . This shows that Y (t) = Xmax(t) and thus the proof is complete. �
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5.5 The stabilizing solution

In this section we deal with the problem of the existence of the stabilizing
solution of DTSGRE (5.8). Also we display several useful properties of the
stabilizing solution.

First, we prove the following.

Proposition 5.1 If the set ΓΣ is not empty then the stabilizing solution of
the equation (5.8) if it exists coincides with the maximal solution of the equa-
tion (5.8).

Proof. Let Xs = {Xs(t)}t∈I be a stabilizing solution of (5.8) and Fs(t) the
stabilizing feedback gain constructed as in (5.24). Let X̂ = {X̂(t)}t∈I be an
arbitrary sequence in ΓΣ . Applying Lemma 5.1 with W (t) = Fs(t), equa-
tion (5.8) verified by Xs may be written as

Xs(t) = ΠFs(t)Xs(t + 1) + QFs(t). (5.50)

On the other hand equation (5.27) verified by X̂ may be rewritten in the form:

X̂(t) = ΠFs(t)X̂(t + 1) + QFs(t) − M̂(t) − (Fs(t) − F̂ (t))T

× (R(t) + Π3(t)Xs(t + 1))(Fs(t) − F̂ (t)), (5.51)

where M̂(t) ≥ 0 and F̂ (t) is defined as in (5.33). Subtracting (5.51) from
(5.50) we obtain that Xs(t)− X̂(t) is a bounded solution of the discrete-time
backward affine equation:

Z(t) = L∗
s(t)Z(t + 1) + Hs(t), (5.52)

where Ls(t) = Π∗
Fs

(t) and Hs(t) = (Fs(t) − F̂ (t))T (R(t) + Π3(t)
X̂(t + 1))(Fs(t) − F̂ (t)) + M̂(t).

From (5.15) one obtains that Hs(t) ≥ 0, t ∈ I.
On the other hand, the fact that Xs is a stabilizing solution guarantees that

the sequence {Ls(t)}t∈I generates an exponentially stable evolution. Applying
Theorem 2.5 we conclude that (5.52) has a unique bounded solution that
belongs to SN+

n . Hence Xs(t)− X̂(t) ≥ 0, t ∈ I for arbitrary {X̂(t)}t∈I ∈ ΓΣ .
This means that Xs is just the maximal solution of (5.8) and the proof is
complete. �

From the above proposition one obtains the following corollary.

Corollary 5.2 If ΓΣ is not empty then equation (5.8) has at most one stabi-
lizing solution.

The next result provides an interesting property of the stabilizing solution
of equation (5.8).
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Theorem 5.5 Assume:

(a) There exists an integer θ ≥ 1, such that Π(t + θ) = Π(t),Q(t + θ) = Q(t)
for all t ∈ I.

(b) The set ΓΣ is not empty.

Under these conditions the stabilizing solution of equation (5.8), if it exists,
is periodic with the same period θ.

Proof. Let Xs = {Xs(t)}t∈I be a stabilizing solution of (5.8). This means that
if Ts(t, t0) is the linear evolution operator on SN

n defined by the corresponding
equation (5.23) then

‖Ts(t, t0)‖ ≤ βqt−t0 , t ≥ t0, t, t0 ∈ I (5.53)

for some β ≥ 1, q ∈ (0, 1) independent of t and t0.
We define the sequence {X(t)θ}t∈I by X(t)θ = Xs(t + θ), t ∈ I. It is easy

to check that the sequence {X(t)θ}t∈I is a solution of (5.8). We show that
{X(t)θ}t∈I is a stabilizing solution of (5.8) too.

Let F θ(t) be defined as in (5.24) with X(t)θ instead of Xs(t). From (a) in
the statement one obtains that F θ(t) = Fs(t + θ), t ∈ I. In the same way one
can see that

ΠF θ(t) = ΠFs(t + θ), t ∈ I. (5.54)

Let Tθ(t, t0) be the linear evolution operator defined by the discrete-time linear
equation

Z(t + 1) = Π∗
F θ (t)Z(t).

This means that Tθ(t, t0) = Π∗
F θ (t − 1)Π∗

F θ (t − 2) · · ·Π∗
F θ (t0) if t > t0 and

Tθ(t, t0) = ISN
n

if t = t0, where ISN
n

is the identity operator on SN
n .

From (5.54) one gets Tθ(t, t0) = Ts(t + θ, t0 + θ) for all t ≥ t0, t, t0 ∈ I.
Hence ‖Tθ(t, t0)‖ = ‖Ts(t+θ, t0+θ)‖ ≤ βqt−t0 . This shows that {X(t)θ}t∈I is
also a stabilizing solution of (5.8). Furthermore, from Corollary 5.2 we obtain
that equation (5.8) has at most one bounded and stabilizing solution. Thus
X(t)θ = Xs(t), t ∈ I, which is equivalent to Xs(t+ θ) = Xs(t), t ∈ I and thus
the proof is complete. �

Remark 5.3 In the special case θ = 1, the coefficients of equation (5.8) are
constant sequences. This corresponds to the so-called time-invariant case. The
above theorem shows that in the time-invariant case the stabilizing solution
of (5.8), if it exists, is constant and solves the following nonlinear algebraic
equation,

X = Π1X + M − (L + Π2X)(R + Π3X)−1(L + Π2X)T . (5.55)

The main result of this section is the following.

Theorem 5.6 Under the considered assumptions the following are equi-
valent.
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(i) The sequence of linear and positive operators {Π(t)}t∈I ⊂ B(SN
n ,SN

n+m)
is stabilizable and the set Γ̃Σ is not empty.

(ii) The equation (5.8) has a bounded and stabilizing solution {Xs(t)}t∈I that
satisfies

R(t) + Π3(t)Xs(t + 1) � 0, t ∈ I. (5.56)

Proof. To prove (i) → (ii) we remark that if (i) holds then ΓΣ is not empty.
We apply the implication (i) → (ii) in Theorem 5.3 and deduce that equa-
tion (5.8) has a maximal solution {Xmax(t)}t∈I which satisfies

R(t) + Π3(t)Xmax(t + 1) � 0, t ∈ I. (5.57)

We show that {Xmax(t)}t∈I is just a stabilizing solution. Set

F (t) = −(R(t) + Π3(t)Xmax(t + 1))−1(L(t) + Π2(t)Xmax(t + 1))T . (5.58)

Let {X̂(t)}t∈I ∈ Γ̃Σ be fixed. We define M̂(t) = R(t, X̂(t+ 1))− X̂(t), t ∈ I.
Using the Schur complement technique one obtains via (5.16) that M̂(t) �
0, t ∈ I. Applying Lemma 5.1 with W (t) = F (t) to the equation of type (5.27)
verified by X̂t one obtains the following modified equation,

X̂(t) = ΠF (t)X̂(t + 1) + QF (t) − M̂(t) − (F (t) − F̂ (t))T

× (R(t) + Π3(t)X̂(t + 1))(F (t) − F̂ (t)), (5.59)

where F̂ (t) is defined as in (5.33).
On the other hand, the DTSGRE (5.8) verified by Xmax(t) can be

written as

Xmax(t) = ΠF (t)Xmax(t + 1) + QF (t). (5.60)

Subtracting (5.59) from (5.60) one obtains that Xmax(t)− X̂(t) is a bounded
and positive semidefinite solution of the following backward affine equation,

Z(t) = ΠF (t)Z(t + 1) + G̃(t), (5.61)

where G̃(t) = M̂(t)+(F (t)− F̂ (t))T (R(t)+Π3(t)X̂(t+1))(F (t)− F̂ (t)), t ∈ I.
We have G̃(t) ≥ M̂(t) � 0, t ∈ I.
Using the implication (vi) → (i) in Theorem 2.4 in the case of equa-

tion (5.61) we conclude that the sequence {Π∗
F (t)}t∈I generates an expo-

nentially stable evolution on SN
n . This shows that {Xmax(t)}t∈I is just the

stabilizing solution of (5.8) and thus we obtain the validity of the implication
(i) ⇒ (ii).

Conversely, if (ii) is fulfilled, we denote {Xs(t)}t∈I the stabilizing solution
of DTSGRE (5.8) that satisfies (5.56).
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Let {Fs(t)}t∈I be the corresponding stabilizing feedback gain associated
as in (5.24). This means that the sequence {Π∗

Fs
(t)}t∈I generates an expo-

nentially stable evolution on SN
n .

Thus we obtained that the sequence of linear and positive operators
{Π(t)}t∈I is stabilizable.

It remains to show that Γ̃Σ is not empty. To this end let us consider
�∞(I,SN

n ) equipped with the norm:

‖X‖ = sup
t∈I

|X(t)|2

for all X = {X(t)}t∈I ∈ �∞(I,SN
n ), | · |2 being the norm induced by the inner

product (2.7).
(�∞(I,SN

n ), ‖ · ‖)
is a real Banach space.

In this Banach space we consider the subset U = {X ∈ �∞(I,SN
n )|X =

{X(t)}t∈I and R(t) + Π3(t)X(t + 1) � 0, t ∈ I}.
One sees that {Xs(t)}t∈I ∈ U and U is an open subset. Let Ψ : U ×R →

�∞(I,SN
n ) be defined by

Ψ(X, δ) = Y, (5.62)

where Y = {Y (t)}t∈I , and

Y (t) = R(t,X(t + 1)) −X(t) + δJn, (5.63)

∀X ∈ U , δ ∈ R.
We apply the implicit function theorem (see [102]) to the equation

Ψ(X, δ) = 0. (5.64)

We have Ψ(Xs, 0) = 0. Let (∂Ψ/∂X) : �∞(I,SN
n ) → �∞(I,SN

n ) be the par-
tial derivative of the operator Ψ with respect to X. We have to show that
(∂Ψ/∂X)(Xs, 0) is an isomorphism. To check that (∂Ψ/∂X)(Xs, 0) is injec-
tive, we have to show that the linear equation on �∞(I,SN

n ),

∂Ψ

∂X
(Xs, 0)U = 0, (5.65)

has only the solution U = 0. The equation (5.15) may be written as

R′(t,Xs(t + 1))Ut+1 − Ut = 0, t ∈ I. (5.66)

Based on (5.21) one obtains that (5.65) becomes

Ut = ΠFs(t)Ut+1. (5.67)

The fact that Xs is the stabilizing solution and (5.8) together with Theo-
rem 2.5 allows us to conclude that equation (5.67) has only the solution
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Ut = 0, t ∈ I. Thus we have that the equation (5.65) has only the solution
U = 0 which is equivalent to the injectivity of (∂Ψ/∂X)(Xs, 0).

To show the surjectivity of the partial derivative, we have to check that
for any Z ∈ �∞(I,SN

n ) the equation

∂Ψ

∂X
(Xs, 0)U = Z (5.68)

has a solution. Based on (5.21), one obtains that (5.68) may be written as

Ut = ΠFs(t)Ut+1 − Z(t). (5.69)

Applying Theorem 2.5 one obtains that the equation (5.69) has a solution
{Ut}t∈I ∈ �∞(I,SN

n ). This confirms the surjectivity of the partial derivative
(∂Ψ/∂X)(Xs, 0). Also the continuity of (X, δ) → (∂Ψ/∂X)(X, δ) at (X, δ) =
(Xs, 0) is obvious. Thus we obtained that the assumptions of the implicit
function theorem are fulfilled for equation (5.64). Hence we deduce that there
exist δ̃ > 0 and a smooth function δ → Xδ : (−δ̃; δ̃) → U that satisfy

Ψ(Xδ, δ) = 0 (5.70)

for all δ ∈ (−δ̃, δ̃) and limδ→0 Xδ = Xs.
From (5.63) one obtains that (5.70) becomes

Xδ(t) = R(t,Xδ(t + 1)) + δJn (5.71)

for all t ∈ I, δ ∈ (−δ̃, δ̃).
Because Xδ ∈ U it follows that

R(t) + Π3(t)Xδ(t + 1) � 0, t ∈ I. (5.72)

From (5.71) and (5.72) it follows that Xδ ∈ Γ̃Σ if δ ∈ (−δ̃, 0) and thus the
proof ends. �

Furthermore we have the following.

Theorem 5.7 Let {Π(t)}t∈I ⊂ B(SN
n ,SN

n+m) be a sequence of linear and
positive operators. If there exists an integer θ ≥ 1 such that Π(t + θ) = Π(t)
for all t ∈ I, then the following are equivalent.

(i) The sequence {Π(t)}t∈I is stabilizable.
(ii) There exists a stabilizing feedback gain {F (t)}t∈I with the property

F (t + θ) = F (t), t ∈ I.

Proof. The implication (ii) → (i) is obvious. We have to prove (i) → (ii).
To this end we apply Theorem 5.6 to the DTSGRE defined by the pair Σ0 =
(Π,Q0), where

Q0(t) =

(
Jn 0

0 Jm

)

, t ∈ I.
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It is obvious that 0 ∈ Γ̃Σ0 . Thus from Theorem 5.6 we deduce that the
equation

X(t) = Π1(t)X(t + 1) + Jn − (Π2(t)X(t + 1))

× (Jm + Π3(t)X(t + 1))−1(Π2(t)X(t + 1))T (5.73)

has a bounded and stabilizing solution {Xs(t)}t∈I .
This means that the sequence of linear operators {Π∗

Fs
(t)}t∈I generates an

exponentially stable evolution on SN
n , with Fs(t) defined as in (5.24). On the

other hand from Theorem 5.5 applied to equation (5.73) we deduce that the
stabilizing solution is periodic with period θ. Therefore the stabilizing feedback
gain Fs(t) is periodic. The proof is complete. �

Remark 5.4 The result proved in the above theorem shows that in the case of
periodic sequences of linear and positive operators {Π(t)}t∈I , the definition
of the concept of stabilizability may be done using only stabilizing feedback
gains {F (t)}t∈I ⊂MN

m,s that are periodic sequences.

Finally one can conclude that from Theorem 5.5 and the proof of Theo-
rem 5.6 (see (5.71), (5.72)) the next result directly follows.

Proposition 5.2 Assume that the pair Σ = (Π,Q) that defines the DTSGRE
(5.8) satisfies the condition Π(t+θ) = Π(t) and Q(t+θ) = Q(t), t ∈ I, θ ≥ 1.

Under these assumptions the following are equivalent.

(i) The sequence {Π(t)}t∈I is stabilizable and the set Γ̃Σ is not empty.
(ii) The DTSGRE (5.8) has a bounded and stabilizing solution {Xs(t)}t∈I

that satisfies the condition R(t) + Π3(t)Xs(t + 1) � 0, t ∈ I.
(iii) The sequence {Π(t)}t∈I is stabilizable and there exists a periodic

sequence with period θ {X̂(t)}t∈I ∈ Γ̃Σ.

Remark 5.5 From the above proposition we deduce that in the periodic case,
with period θ ≥ 1, to check the fact that Γ̃Σ is not empty we have to verify
the solvability of the system of LMIs DΣ [X ](t) > 0, t0 ≤ t ≤ t0 + θ − 1
for some t0 ∈ I where DΣ is the dissipation operator introduced by (5.14).
Combining Corollary 5.2, Theorem 5.5, and Proposition 5.2 one obtains the
following time-invariant counterpart of Theorem 5.6.

Theorem 5.8 If Π(t) = Π ∈ B(SN
n ,SN

n+m),Q(t) = Q ∈ SN
n+m, t ∈ I, then

the following are equivalent.

(i) The linear and positive operator Π is stabilizable and there exist X̂ ∈
SN

n , X̂ = (X̂(1), X̂(2), . . . , X̂(N)) such that

DΣX̂ > 0. (5.74)
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(ii) The algebraic equation

X = Π1X + M − (Π2X + L)(R + Π3X)−1(Π2X + L)T (5.75)

has a stabilizing solution Xs = (Xs(1), Xs(2), . . . , Xs(N)) that satisfies
R + Π3Xs > 0.

Remark 5.6

(a) Based on (5.14) it follows that the inequality (5.74) becomes
(

Π1X̂ − X̂ + M Π2X̂ + L

(Π2X̂ + L)T R + Π3X̂

)

> 0, (5.76)

where (
M L

LT R

)

is the corresponding partition of Q.
(b) In the time-invariant case the stabilizing solution of (5.8) is a con-

stant sequence and it solves (5.75), therefore one obtains that Xs =
(Xs(1), Xs(2), . . . , Xs(N)) is a stabilizing solution of (5.75) if and only
if the eigenvalues of the operators R′(Xs) are located in the inside of the
disk |λ| < 1.

5.6 The Minimal Solution

In this section we focus our attention on the case 0 ∈ ΓΣ. From (5.15) it
follows that 0 ∈ ΓΣ if and only if

R(t) � 0, t ∈ I (5.77)

and

M(t)− L(t)R−1(t)LT (t) ≥ 0, t ∈ I. (5.78)

In this case we prove the following.

Theorem 5.9 Assume:

(a) the sequence of positive operators {Π(t)}t∈I ⊂ B(SN
n ,SN

n+m) is stabiliz-
able.

(b) 0 ∈ ΓΣ.

Under these conditions the DTSGRE defined by Σ = (Π,Q) has two global
and bounded solutions {Xmax(t)}t∈I and {Xmin(t)}t∈I with the property:

0 ≤ Xmin(t) ≤ X(t) ≤ Xmax(t), t ∈ I (5.79)

for arbitrary bounded solution {X(t)}t∈I of (5.8) with X(t) ≥ 0, t ∈ I.
Furthermore, if there exists an integer θ ≥ 1 such that Π(t + θ) = Π(t),
Q(t + θ) = Q(t), t ∈ I, then Xmax(t + θ) = Xmax(t), Xmin(t + θ) = Xmin(t),
t ∈ I.
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Proof. The assumptions (a) and (b) in the statement guarantee (via Theo-
rem 5.3) the existence of the maximal solution {Xmax(t)}t∈I with the required
properties. We have to prove the existence of the minimal solution
{Xmin(t)}t∈I . For each integer τ ∈ I, let Xτ (t) = X(t, τ, 0) be the solution of
(5.8) with the terminal value X(τ, τ, 0) = 0.

From Corollary 5.1 we deduce that Xτ (t) is well defined for all t ∈ Iτ =
(−∞; τ ]

⋂
I and

Xτ (t) ≥ 0 (5.80)

for all t ∈ Iτ .
If τ1 < τ2, τ1, τ2 ∈ I we have Xτ2(τ1) ≥ 0 = Xτ1(τ1).
Applying Theorem 5.1 we conclude that

Xτ2(t) ≥ Xτ1(t) (5.81)

for all t ∈ Iτ1 . Based on assumption (a) in the statement we deduce that there
exists a stabilizing feedback gain {F0(t)}t∈I ⊂ MN

mn such that the sequence
of linear and positive operators {Π∗

F0
(t)}t∈I generates an exponentially stable

evolution.
Applying Theorem 2.5(i) we deduce that the discrete-time backward affine

equation

Y0(t) = ΠF0(t)Y0(t + 1) + QF0(t) (5.82)

has a bounded solution {Y0(t)}t∈I ⊂ SN+
n , ΠF0(t), QF0(t) being defined as

in (5.18) and (5.19), respectively, with F0 instead of W . On the other hand,
Lemma 5.1 applied to equation (5.8) verified by Xτ (t) leads to

Xτ (t) = ΠF0(t)Xτ (t + 1) + QF0(t) − (F0(t) − Fτ (t))T

× (R(t) + Π3(t)Xτ (t + 1))(F0(t) − Fτ (t)), t ∈ I, (5.83)

where Fτ (t) = −(R(t) + Π3(t)Xτ (t + 1))−1(Π2(t)Xτ (t + 1) + L(t))T .
Subtracting (5.83) from (5.82) we obtain

Y0(t) −Xτ (t) = ΠF0(t)(Y0(t + 1)−Xτ (t + 1)) + Hτ (t), (5.84)

where Hτ (t) = (F0(t)− Fτ (t))T (R(t) + Π3(t)Xτ (t + 1))(F0(t)− Fτ (t)). From
(5.77) and (5.80) we conclude that Hτ (t) ≥ 0, t ∈ I.

Because Y0(τ) − Xτ (τ) = Y0(τ) ≥ 0 we deduce inductively from (5.84)
that

Xτ (t) ≤ Y0(t) (5.85)

for all t ∈ Iτ and all τ ∈ I. From (5.80), (5.81), and (5.85)

0 ≤ Xτ1(t) ≤ Xτ2(t) ≤ Y0(t) ≤ cJn (5.86)
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for all t ∈ Iτ1 , τ1 < τ2, τ1, τ2 ∈ I, where c > 0 is independent of t and τi. From
(5.86) one deduces that for each t ∈ I the sequence {Xτ (t)}τ≥t is convergent.

Set

Xmin(t) = lim
τ→∞Xτ (t), t ∈ I. (5.87)

Replacing X(t) by Xτ (t) in (5.8) and taking the limit for τ →∞ one obtains
that Xmin(t) solves DTSGRE (5.8).

Moreover from (5.86) and (5.87) we have Xmin(t) ≥ 0, t ∈ I. Let
{X(t)}t∈I ⊂ SN+

n be another bounded solution of DTSGRE (5.8). From
X(τ) ≥ 0 = Xτ (τ) together with Theorem 5.1 we deduce that

X(t) ≥ Xτ (t) (5.88)

for all t ∈ Iτ .
From (5.87) and (5.88) we obtain that Xmin(t) ≤ X(t) for all t ∈ I. This

confirms the validity of (5.79).
It remains to prove that if {Π(t)}t∈I and {Q(t)}t∈I are periodic sequences

with period θ ≥ 1, then {Xmin(t)}t∈I is also a periodic sequence with the same
period θ.

To this end we define

X̌τ (t) = Xτ+θ(t + θ), t ∈ Iτ . (5.89)

Based on the periodicity assumption one obtains that {X̌τ(t)}t∈Iτ is a solution
of DTSGRE (5.8).

Also we have X̌τ (τ) = 0 = Xτ (τ). This allows us to obtain inductively
that

X̌τ (t) = Xτ (t), t ∈ Iτ (5.90)

for all τ ∈ I. From (5.87) and (5.90) one obtains

lim
τ→∞ X̌τ (t) = Xmin(t), t ∈ I. (5.91)

On the other hand from (5.87) and (5.89) we deduce that

lim
τ→∞ X̌τ (t) = Xmin(t + θ). (5.92)

From (5.91) and (5.92) one concludes that Xmin(t+ θ) = Xmin(t) for all t ∈ I
and thus the proof is complete. �

The result proved in the previous theorem suggests the following definition.

Definition 5.3 We say that a solution {Xmin(t)}t∈I of DTSGRE (5.8) is
minimal in the class of positive semidefinite solutions of (5.8) if 0 ≤ Xmin(t) ≤
X(t) for any solution {X(t)}t∈I ⊂ SN+

n of DTSGRE (5.8).
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Remark 5.7 It is known (see [27, 89, 90]) that under the assumption of sto-
chastic detectability, any positive semidefinite solution of difference Riccati
equations (5.1)–(5.3) is a stabilizing solution. On the other hand from the
uniqueness of the stabilizing solution, in the presence of stochastic detectabil-
ity the discrete-time Riccati equations (5.1)–(5.3) have at most one positive
semidefinite solution. In this case Xmin(t) = Xmax(t), t ∈ I.

The following example shows that in the absence of stochastic detectability
the maximal solution does not coincide with the minimal solution.

Example 5.1 Consider equation (5.1) in the special case n = 2, r = 1:

X(t) = AT
0 X(t + 1)A0 + AT

1 X(t + 1)A1 + CT C

− (AT
0 X(t + 1)B0 + AT

1 X(t + 1)B1 + CT D)

× (DT D + BT
0 X(t + 1)B0 + BT

1 X(t + 1)B1)−1

× (BT
0 X(t + 1)A0 + BT

1 X(t + 1)A1 + DTC), (5.93)

where

A0 =

(
4
5 0

0 8
5

)

; A1 =
3
5
I2; B0 = (2 1)T ; B1 = (0 0)T ;

C =
( 4

5 0
0 0

)

; D = (0 1)T .

It can be seen that the pair (C, (A0, A1)) is not stochastic detectable. Let

Xs =

(
7+

√
2

2 −3(3 +
√

2)

−3(3 +
√

2) 3(11 + 6
√

2)

)

. (5.94)

By direct calculations one verifies that Xs is a solution of (5.93). We prove
that Xs is the stabilizing solution of (5.93). Indeed, by the special case of
Theorem 3.7 for N = 1 one obtains that Xs is the stabilizing solution of
(5.93), iff there exists X̃ > 0 such that ÃT X̃Ã + (9/25)X̃ − X̃ < 0, where

Ã =

(
4
√

2
5 − 12

5 (7 − 6
√

2)
2
5 (−1 +

√
2 2

5 (7 − 6
√

2)

)

.

The above inequality is equivalent to ÂT X̃Â − X̃ < 0, where Â = (5/4)Ã.
By the well-known discrete-time Lyapunov theorem from the deterministic
case the preceding inequality is equivalent to ρ(Â) < 1. This inequality is
verified easily by simple calculations. Thus we conclude that Xs is a stabilizing
solution of (5.93).
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Because 0 ∈ ΓΣ one obtains via Proposition 5.1 that Xs = Xmax. By direct
calculations one obtains that (5.93) has only two positive semidefinite solu-
tions, namely Xs and

X̂ =

(
1+

√
2

2 0

0 0

)

. (5.95)

Because Xs ≥ X̂ it follows that X̂ is the minimal solution of (5.93).
From (5.94) and (5.95) we conclude that in the case of equation (5.93) the

maximal solution does not coincide with the minimal solution.

5.7 An iterative procedure to compute the maximal
solution and the stabilizing solution of DTSGRE

The iterative procedure described by (5.30)–(5.31) could be used to com-
pute numerically the maximal solution of (5.8). However, at each step of
the above procedure, we have to compute the unique bounded solution of
a linear equation on SN

n . Unfortunately, in the case of discrete-time Riccati
equations, corresponding to the stochastic framework, the equations (5.30)
have a complicated structure and consequently it is not easy to solve them
efficiently. That is why it is desirable to have numerical procedures to com-
pute the maximal solution of DTSGRE (5.8), simpler than the ones based
on the Newton–Kantorovich method. Our goal is to provide such an iterative
procedure to compute the maximal (stabilizing) solution of (5.8).

Assume that {Π(t)}t∈I is a stabilizable sequence of linear operators. Let
{F̃0(t)}t∈I be a stabilizing feedback gain. This means that the zero state
equilibrium of the linear equation Z(t + 1) = Π∗

F̃0
(t)Z(t) is exponentially

stable.
Let {X0(t)}t∈I be a bounded solution of the following inequality,

X0(t) ≥ ΠF̃0
(t)X0(t + 1) + QF̃0

(t) + εJn, (5.96)

and t ∈ I, ε > 0 are fixed.
We prove the following.

Lemma 5.3 Assume:

(a) The sequence {Π(t)}t∈I is stabilizable.
(b) The set ΓΣ is not empty.

Let {F̃0(t)}t∈I be a stabilizing feedback gain. Then any bounded solution
{X0(t)}t∈I of (5.96) has the properties:



5.7 An iterative procedure 159

(i) X0(t) ≥ X̂(t) for any {X̂(t)}t∈I ∈ ΓΣ.
(ii) If F0 is defined by

F0(t) = −(R(t) + Π3(t)X0(t + 1))−1(L(t) + Π2(t)X0(t + 1))T (5.97)

then the zero state equilibrium of the linear equation Z(t + 1) = ΠF0(t)∗

Z(t) is exponentially stable.
(iii) Let {X1(t)}t∈I be defined by

X1(t) = ΠF0(t)X0(t + 1) + QF0(t) + εJn (5.98)

t ∈ I. Then we have X0(t) ≥ X1(t), t ∈ I.

Proof. At the beginning we remark that (5.96) can be written as a linear
equation:

X0(t) = ΠF̃0
(t)X0(t + 1) + QF̃0

(t) + εJn + M̌(t), (5.99)

where M̌(t) ∈ SN+
n , t ∈ I.

If {X̂(t)}t∈I ∈ ΓΣ then one obtains via the Schur complement technique
that {X̂(t)}t∈I solves

X̂(t) = R(t, X̂(t + 1))− M̂(t) (5.100)

for some M̂(t) ∈ SN+
n . Applying Lemma 5.1(i) to the operator R̂(t,X) =

R(t,X)− M̂(t) with W (t) = F̃0(t) one obtains that equation (5.100) may be
rewritten:

X̂(t) = ΠF̃0
(t)X̂(t + 1) + QF̃0

(t) − M̂(t) − (F̃0(t) − F̂ (t))T

× (R(t) + Π3(t)X̂(t + 1))(F̃0(t) − F̂ (t)), (5.101)

t ∈ I, where F̂ (t) = F X̂(t), being as in (5.20) with X̂(t) instead of X(t).
From (5.101) and (5.99) one deduces that {X0(t)− X̂(t)}t∈I is a bounded

solution of

X0(t) − X̂(t) = ΠF̃0
(t)[X0(t + 1)− X̂(t + 1)] + H0(t), (5.102)

where H0(t) = εJn + (F̃0(t) − F̂ (t))T (R(t) + Π3(t)X̂(t + 1))(F̃0(t) − F̂ (t)) +
M̌(t) + M̂(t).

Based on (5.15) we may conclude that H0(t) ≥ εJn, ∀t ∈ I. This allows us
to deduce via Theorem 2.5 that (5.102) has a unique bounded solution that
is uniformly positive. More precisely, we have

X0(t) − X̂(t) ≥ εJn, t ∈ I. (5.103)
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Thus (i) is proved. Furthermore, from (5.103) we obtain

R(t) + Π3(t)X0(t + 1) ≥ R(t) + Π3(t)X̂(t + 1) � 0, t ∈ I.

Hence F0(t) is well defined by (5.97).
To check that (ii) holds we rewrite (5.99) (via Lemma 5.2) as

X0(t) = ΠF0(t)X0(t + 1) + QF0(t) + εJn + (F0(t) − F̃0(t))T

× (R(t) + Π3(t)X0(t + 1))(F0(t) − F̃0(t)) + M̌(t). (5.104)

On the other hand, applying Lemma 5.1 with W (t) = F0(t) in the case of
equation (5.100) we obtain that {X̂(t)}t∈I verifies:

X̂(t) = ΠF0(t)X̂(t + 1) + QF0(t) − (F0(t) − F̂ (t))T

× (R(t) + Π3(t)X̂(t + 1))(F0(t) − F̂ (t)) − M̂(t). (5.105)

Subtracting (5.105) from (5.104) we deduce that {X0(t) − X̂(t)}t∈I is a
bounded and uniform positive solution of the following backward affine equa-
tion,

Y (t) = ΠF0(t)Y (t + 1) + H̃0(t), t ∈ I, (5.106)

where H̃0(t) = εJn + M̌(t) + M̂(t) + (F0(t) − F̃0(t))T (R(t) + Π3(t)
X0(t+1))(F0(t)−F̃0(t))+(F0(t)−F̂ (t))T (R(t)+Π3(t)X̂(t+1))(F0(t)−F̂ (t)).

One sees that H̃0(t) ≥ εJn, t ∈ I.
Using the implication (vi) → (i) in Theorem 2.4 together with (5.103) to

equation (5.106) we conclude that the zero state equilibrium of the equation
Z(t + 1) = Π∗

F0
(t)Z(t) is exponentially stable. This shows that (ii) is valid.

To check the validity of (iii) one subtracts (5.98) from (5.104) and we
obtain that

X0(t) −X1(t) = Δ0(t), (5.107)

where Δ0(t) = M̌(t)+ (F0(t)− F̃0(t))T (R(t)+Π3(t)X0(t+1))(F0(t)− F̃0(t)).
We have Δ0(t) ≥ M̌(t) ≥ 0, t ∈ I. Therefore (5.107) shows that X0(t) −

X1(t) ≥ 0, t ∈ I. Thus the proof is complete. �

Taking {X0(t)}t∈I , {F0(t)}t∈I as the first step we construct inductively
the sequences {Xk(t)}k≥1, {Fk(t)}k≥1, t ∈ I as follows,

Xk(t) = ΠFk−1(t)Xk−1(t + 1) + QFk−1(t) +
ε

k
Jn, t ∈ I, k ≥ 1,

(5.108)

Fk(t) = −(R(t) + Π3(t)Xk(t + 1))−1(L(t) + Π2(t)Xk(t + 1))T ,

t ∈ I, k ≥ 1. (5.109)
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Remark 5.8 Applying Theorem 5.7, we deduce that if {Π(t)}t∈I is a periodic
sequence with period θ ≥ 1, then it is stabilizable if and only if there exists a
stabilizing feedback gain {F̃0(t)}t∈I that is a periodic sequence with the same
period θ. This allows us to conclude that if the coefficients of the DTSGRE
(5.8) are periodic sequences with period θ ≥ 1, then one can find a solu-
tion {X0(t)}t∈I of (5.96) that is a periodic sequence with the same period θ.
Furthermore, from (5.108) and (5.109) it follows that at each step k,
{Xk(t)}t∈I will be periodic sequences with the same period θ.

To prove the convergence of the sequences defined above, the following
auxiliary result is helpful.

Lemma 5.4 Assume that for a k ≥ 1, the sequences {Xq(t)}t∈I, 1 ≤ q ≤ k,
are well defined via (5.108) and (t,Xq(t + 1)) ∈ Dom(R), 1 ≤ q ≤ k, t ∈ I.
Then the following equality holds.

Xk(t) = ΠFk
(t)Xk(t + 1) + ΠFk−1(t)(Xk−1(t + 1)−Xk(t + 1)) +QFk

(t)

+ (Fk(t) − Fk−1(t))T (R(t) + Π3(t)Xk(t + 1))

× (Fk(t) − Fk−1(t)) +
ε

k
Jn. (5.110)

Proof. From the assumption in the statement of the lemma it follows that
{Fq(t)}t∈I are well defined via (5.109). Applying Lemma 5.1 with W (t) =
Fk−1(t) we obtain:

R(t,Xk(t + 1)) = ΠFk−1(t)Xk(t + 1) + QFk−1(t) − (Fk(t) − Fk−1(t))T

× (R(t) + Π3(t)Xk(t + 1))(Fk(t) − Fk−1(t)), t ∈ I.
(5.111)

Furthermore, using (5.108) we have

R(t,Xk(t + 1)) = Xk(t) −ΠFk−1(t)(Xk−1(t + 1)−Xk(t + 1))

− n(Fk(t) − Fk−1(t))T (R(t) + Π3(t)Xk(t + 1))

× (Fk(t) − Fk−1(t)) −
ε

k
Jn. (5.112)

Rewriting the left-hand side of (5.112) via Lemma 5.1 with W (t) = Fk(t) one
obtains (5.110) and thus the proof ends. �

Now we are in position to prove the main result of this section.

Theorem 5.10 Assume:

(a) The sequence of linear and positive operators {Π(t)}t∈I is stabilizable.
(b) The set ΓΣ is not empty.
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Let ε > 0 be fixed and {F̃0(t)}t∈I be a stabilizing feedback gain. Then
for any bounded solution {X0(t)}t∈I of (5.96) the sequences {Xk(t)}k≥1,
{Fk(t)}k≥1, t ∈ I introduced by (5.108), and (5.109), respectively, are well
defined and convergent. Moreover, if Xmax(t) = limk→∞ Xk(t), then
{Xmax(t)}t∈I is just the maximal solution of DTSGRE (5.8) satisfying R(t)+
Π3(t)Xmax(t + 1) � 0, t ∈ I.

Proof. We prove inductively for k ≥ 1 the following items.

(ak) Xk(t) − X̂(t) ≥ μkJn for arbitrary {X̂(t)}t∈I ∈ ΓΣ, where μk > 0 do
not depend upon X̂(t).

(bk) The zero state equilibrium of the linear equation Z(t + 1) = Π∗
Fk

(t)Z(t)
is exponentially stable.

(ck) Xk(t) ≥ Xk+1(t), t ∈ I.

Subtracting (5.105) from (5.98) one obtains that {X1(t) − X̂(t)}t∈I is a
bounded solution of the discrete-time backward affine equation:

Z1(t) = ΠF0(t)Z1(t + 1) + H1(t), t ∈ I (5.113)

with H1(t) = εJn+M̂(t)+(F0(t)−F̂ (t))T (R(t)+Π3(t)X̂(t+1))(F0(t)−F̂ (t)).
It is obvious that H1(t) ≥ εJn > 0, t ∈ I.
Because {F0(t)}t∈I is a stabilizing feedback gain, one obtains, via Theo-

rem 2.5, that equation (5.113) has a unique bounded solution and that solution
is uniformly positive. Finally from (5.113) follows

X1(t) − X̂(t) ≥ εJn, t ∈ I. (5.114)

This shows that (a1) is valid with μ1 = ε > 0.
Furthermore, from (5.114) one obtains that F1(t) is well defined via (5.109)

for k = 1. To check that (b1) is fulfilled we rewrite equation (5.100) in the
form:

X̂(t) = ΠF1(t)X̂(t) +QF1(t) − M̂(t) − (F1(t) − F̂ (t))T

× (R(t) + Π3(t)X̂(t + 1))(F1(t) − F̂ (t)). (5.115)

Subtracting (5.115) from (5.110) (written for k = 1), we obtain that {X1(t)−
X̂(t)}t∈I is a bounded and uniformly positive solution of

Y1(t) = ΠF1(t)Y1(t + 1) + H̃1(t), t ∈ I, (5.116)

where H̃1(t) = ΠF0(t)[X0(t + 1) − X1(t + 1)] + εJn + M̂(t) + (F1(t) −
F̂ (t))T (R(t) + Π3(t)X̂(t + 1))(F1(t) − F̂ (t)) + (F1(t) − F0(t))T (R(t) + Π3(t)
X1(t + 1))(F1(t) − F0(t)), t ∈ I.

Based on Lemma 5.3(iii) we conclude that H̃1(t) ≥ εJn > 0, t ∈ I. Now,
the implication (vi) → (i) of Theorem 2.4 together with (5.114) applied to
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equation (5.116) leads to the exponential stability of the zero state equilibrium
of the equation

Z(t + 1) = Π∗
F1

(t)Z(t).

Thus the validity of item (b1) is confirmed.
Furthermore, subtracting (5.108) (written for k = 2) from (5.110) (written

for k = 1) we obtain:

X1(t) −X2(t) = Δ2(t), (5.117)

where Δ2(t) = (ε/2)Jn + (F0(t) − F1(t))T (R(t) + Π3(t)X1(t + 1))(F0(t) −
F1(t)) + ΠF1(t)(X0(t + 1) −X1(t + 1)).

From Lemma 5.3(iii) we conclude that Δ2(t) ≥ (ε/2)Jn > 0, t ∈ I.
Therefore (5.117) leads to X1(t) − X2(t) ≥ 0, t ∈ I, and thus the item
(c1) is fulfilled. Let us assume that (aq), (bq), (cq) are fulfilled for 1 ≤ q ≤
k − 1 and we prove that they are fulfilled for q = k. If (ak−1) holds then
R(t)+Π3(t)Xk−1(t+ 1) � 0, t ∈ I. Hence, Fk−1(t) is well defined by (5.109)
written for k − 1 instead of k. This allows us to construct Xk(t) via (5.108).

Applying Lemma 5.1 with W (t) = Fk−1(t) we rewrite equation (5.100) in
the form:

X̂(t) = ΠFk−1(t)X̂(t + 1) + QFk−1(t) − (Fk−1(t) − F̂ (t))T

× (R(t) + Π3(t)X̂(t + 1))(Fk−1(t) − F̂ (t)) − M̂(t) (5.118)

with M̂(t) ≥ 0. Subtracting (5.118) from (5.108) one obtains that {Xk(t) −
X̂(t)}t∈I verifies

Xk(t) − X̂(t) = ΠFk−1(t)(Xk−1(t + 1) − X̂(t + 1)) + Hk(t), t ∈ I,
(5.119)

where Hk(t) = (ε/k)Jn + M̂(t) + (Fk−1(t) − F̂ (t))T (R(t) + Π3(t)
X̂(t + 1))(Fk−1(t) − F̂ (t)). From (5.15) we have that Hk(t) ≥ (ε/k)Jn > 0,
t ∈ I. Invoking again (ak−1) one obtains that ΠFk−1(t)(Xk−1(t + 1) −
X̂(t + 1)) ≥ 0, t ∈ I.

Thus we obtain via (5.119) that

Xk(t) − X̂(t) ≥ ε

k
Jn (5.120)

which confirms the validity of (ak) with μk = (ε/k) > 0.
From (5.120) it follows that R(t) + Π3(t)Xk(t + 1) � 0, t ∈ I. This

shows that Fk(t) is well defined via (5.109). Moreover {Fk(t)}t∈I is a bounded
sequence.

Applying again Lemma 5.1 with W (t) = Fk(t) we obtain:

X̂(t) = ΠFk
(t)X̂(t + 1) + QFk

(t) − (Fk(t) − F̂ (t))T

× (R(t) + Π3(t)X̂(t + 1))(Fk(t) − F̂ (t)) − M̂(t), t ∈ I. (5.121)
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Subtracting (5.121) from (5.110) we obtain that {Xk(t) − X̂(t)}t∈I is a
bounded and uniformly positive solution of the discrete-time backward affine
equation:

Zk(t) = ΠFk
(t)Zk(t + 1) + H̃k(t), (5.122)

where H̃k(t) = (ε/k)Jn + M̂(t) + ΠFk−1(t)(Xk−1(t) − Xk(t + 1)) + (Fk(t) −
Fk−1(t))T (R(t) + Π3(t)Xk(t + 1))(Fk(t)− Fk−1(t)) + (Fk(t)− F̂ (t))T (R(t) +
Π3(t)X̂(t + 1))(Fk(t) − F̂ (t)).

Because (ck−1) is fulfilled we deduce that H̃k(t) ≥ (ε/k)Jn > 0, t ∈ I.
Using the implication (vi) → (i) from Theorem 2.4 with equation (5.122) we
conclude that the zero state equilibrium of the linear equation

Z(t + 1) = Π∗
Fk

(t)Z(t),

t ∈ I is exponentially stable. Thus we have shown that (bk) is true. Finally
subtracting equation (5.108), written for k + 1, from equation (5.110) we
obtain:

Xk(t) −Xk+1(t) = Δk(t), t ∈ I, (5.123)

where Δk(t) = (ε/(k(k+1)))Jn +ΠFk−1(t)(Xk−1(t+1)−Xk(t+1))+(Fk(t)−
Fk−1(t))T (R(t) + Π3(t)Xk(t + 1))(Fk(t) − Fk−1(t)).

If we take into account that (ak), (ck−1) are fulfilled, we deduce that
Δk(t) ≥ (ε/(k(k+1)))Jn. Thus from (5.123) we deduce that Xk(t)−Xk+1(t) ≥
0 which means that (ck) is true. Furthermore, from (ak) and (ck) one deduces
that the sequences {Xk(t)}k≥1, t ∈ I are convergent. From (5.109) one gets
that {Fk(t)}k≥1, t ∈ I are also convergent. Let

Xmax(t) = lim
k→∞

Xk(t), t ∈ I (5.124)

Fmax(t) = lim
k→∞

Fk(t), t ∈ I.

Taking the limit for k → ∞ in (5.108) and (5.109) one obtains that
{Xmax(t)}t∈I is a bounded solution of DTSGRE (5.8). On the other hand
taking the limit in (ak) one obtains that {Xmax(t)}t∈I is just the maximal
solution of (5.8). Thus the proof is complete. �

Remark 5.9

(a) As we have already pointed out in Remark 5.8, if {Π(t)}t∈I and {Q(t)}t∈I
are periodic sequences with period θ ≥ 1, then we may construct a periodic
solution X0(t) of (5.96). Furthermore, if X0(t) is a periodic sequence with
period θ ≥ 1, then the iterations {Xk(t)}t∈I , {Fk(t)}t∈I , k ≥ 1 are also
periodic sequences with the same period θ ≥ 1. Hence, in the periodic
case at each iteration we need to compute finite sequences {Xk(t)} and
{Fk(t)}, t0 ≤ t ≤ t0 + θ − 1 k ≥ 1, where t0 ∈ I is fixed.
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(b) In the special case θ = 1 the coefficients of DTSGRE (5.8) are constant.
In this case, the stabilizing feedback gain F̃0 will be constant and (5.96)
will become a system of LMIs. Thus X0(t) and consequently all iterations
Xk and Fk are also constant.

(c) If Γ̃Σ is not empty then the maximal solution of (5.8) coincides with
the stabilizing solution of (5.8). Thus the iterative procedure described
in Theorem 5.10 can also be used to compute the stabilizing solution of
DTSGRE (5.8).

The following result may be viewed as an alternative procedure for finding
a periodic solution of (5.96).

Proposition 5.3 Assume that the assumptions from Theorem 5.10 are ful-
filled. Let {F̃0(t)}t∈I be a stabilizing feedback gain and ε > 0 be given. Let
{Yk(t)}k≥0, t ∈ I be defined iteratively as follows,

Yk(t) = ΠF̃0
(t)Yk−1(t + 1) + QF̃0

(t) + 2εJn, (5.125)

t ∈ I, k ≥ 1, Y0(t) ≡ 0. Then we have

0 ≤ Yk(t) ≤ Yk+1(t) ≤ Ỹ (t), ∀k ≥ 1, t ∈ I, (5.126)

where Ỹ (t) is the unique bounded solution of the linear equation

Ỹ (t) = ΠF̃0
(t)Ỹ (t + 1) + QF̃0

(t) + 2εJn, t ∈ I. (5.127)

Additionally, for each t ∈ I we have limk→∞ Yk(t) = Ỹ (t).

Proof. The inequalities (5.126) can be proved inductively. Furthermore, from
(5.126) one deduces that the sequences {Yk(t)}k≥1, t ∈ I, are convergent.
Set Z(t) = limk→∞ Yk(t), t ∈ I. Taking the limit for k → ∞ in (5.125) one
obtains that {Z(t)}t∈I is a bounded solution of (5.127). Because (5.127) has a
unique bounded solution we conclude that Z(t) coincides with Ỹ (t) and thus
the proof ends. �

Corollary 5.3 Assume that the sequence of linear and positive operators
{Π(t)}t∈I and the sequence of symmetric matrices {Q(t)}t∈I are periodic
with period θ ≥ 1. Assume that the stabilizing feedback gain {F̃0(t)}t∈I is also
a periodic sequence with period θ. Then {Yk(t)}t∈I constructed by (5.125) are
also periodic sequences with the same period θ. Moreover, if k0 is such that
ΠF̃0

(t)Yk0−1(t + 1) − Yk0(t + 1) + εJn ≥ 0, t0 ≤ t ≤ t0 + θ − 1 (for a fixed
t0 ∈ I), then {Yk0(t)}t∈I is a solution of (5.96).

Proof. It follows immediately writing (5.125) in the form:

Yk0(t) = ΠF̃0
(t)Yk0(t + 1) + QF̃0

(t) + εJn

+ (ΠF̃0
(t)(Yk0−1(t + 1)− Yk0(t + 1)) + εJn).

Thus the proof is complete. �
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5.8 Discrete-time Riccati equations of stochastic control

In this section we apply the general results proved in the previous sections
to derive necessary and sufficient conditions for the existence of the stabi-
lizing solution of discrete-time Riccati-type equations arising in connection
with several kinds of linear quadratic optimization problems associated with
discrete-time stochastic systems with Markovian jumping and independent
random perturbations.

5.8.1 The maximal solution and the stabilizing solution of
DTSRE-C

Let us consider the following system of discrete-time Riccati-type equations
of stochastic control (DTSRE-C).

X(t, i) =
r∑

k=0

AT
k (t, i)Ei(t,X(t + 1))Ak(t, i) + M(t, i)

−
(

r∑

k=0

AT
k (t, i)Ei(t,X(t + 1))Bk(t, i) + L(t, i)

)

×
(

R(t, i) +
r∑

k=0

BT
k (t, i)Ei(t,X(t + 1))

)−1

×
(

r∑

k=0

BT
k (t, i)Ei(t,X(t + 1))Ak(t, i) + LT (t, i)

)

, 1 ≤ i ≤ N,

(5.128)

where Ei(t,X(t + 1)) =
∑N

j=1 pt(i, j)X(t + 1, j), M(t, i) = MT (t, i), R(t, i) =
RT (t, i) for all (t, i) ∈ Z+ ×D.

We remark that no assumption concerning the sign of the matrices M(t, i)
and R(t, i) is made.

Remark 5.10

(a) The DTSGRE-C (5.128) arises in connection with an optimization problem
described by a system of type (4.1) and a quadratic cost functional

J(u) =
∞∑

t=t0

E[xT (t)M(t, ηt)x(t) + 2xT (t)L(t, ηt)u(t) + uT (t)R(t, ηt)u(t)].

Details concerning the classes of the admissible controls are fully discussed
in the next chapter.
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(b) Motivated by the definition of Ei(t, ·) from above we may define a linear
operator X → E(t,X);SN

n → SN
n by E(t,X) = (E1(t,X), . . . , EN (t,X));

Ei(t,X) =
N∑

j=1

pt(i, j)X(j), ∀ X = (X(1), . . . , X(N)) ∈ SN
n . (5.129)

It is clear that for each t, E(t, ·) is a linear and positive operator on SN
n .

(c) In the special case M(t, i) = CT (t, i)C(t, i), L(t, i) = CT (t, i)D(t, i),
R(t, i) = DT (t, i)D(t, i) the DTSRE-C (5.128) reduces to (5.4).

Set Πl(t)X = (Πl1(t)X,Πl2(t)X, . . . ,ΠlN (t)X), l = 1, 2, 3, with

Π1i(t)X =
r∑

k=0

AT
k (t, i)Ei(t,X)Ak(t, i) (5.130)

Π2i(t)X =
r∑

k=0

AT
k (t, i)Ei(t,X)Bk(t, i)

Π3i(t)X =
r∑

k=0

BT
k (t, i)Ei(t,X)Bk(t, i),

1 ≤ i ≤ N . With these notations the DTSRE-C (5.128) takes the form of (5.8).
The analogue of the dissipation operator (5.14) is: DX(t) = (D1X(t), . . . ,
DNX(t)) with

DiX(t)

=

⎛

⎜
⎜
⎝

r∑

k=0

AT
k (t, i)Ei(t,X(t + 1))Ak(t, i)−X(t, i) + M(t, i)

r∑

k=0

BT
k (t, i)Ei(t,X(t + 1))Ak(t, i) + LT (t, i)

r∑

k=0

Ak(t, i)Ei(t,X(t + 1))Bk(t, i) + L(t, i)

r∑

k=0

BT
k (t, i)Ei(t,X(t + 1))Bk(t, i) + R(t, i)

⎞

⎟
⎟
⎠

for all X = {X(t)}t≥0 ∈ l∞(Z+,SN
n ).

Thus we can associate the sets ΓΣ and Γ̃Σ as in (5.15) and (5.16), respec-
tively.

In order to be sure that the assumption A.5.1 is fulfilled for the operators
(5.130) we make the following new assumption.

A.5.2 The sequences {Ak(t, i)}t≥0, {Bk(t, i)}t≥0, 0 ≤ k ≤ r, {M(t, i)}t≥0,
{L(t, i)}t≥0, {R(t, i)}t≥0, 1 ≤ i ≤ N , {Pt}t≥0 are bounded and pt(i, j) ≥ 0.
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It is worth mentioning that the results in this section could be derived
without the assumption that Pt is a stochastic matrix. We need only the fact
that Pt is a matrix with nonnegative elements. Thus the assumption that
{Pt}t≥0 is a bounded sequence is not redundant.

Theorem 5.3 together with Remark 4.8(b) leads to the following.

Theorem 5.11 Assume:

(a) The triple A,B,P is stabilizable.
(b) There exists a sequence X̂ = {X̂(t)}t≥0 ∈ l∞(Z+,SN

n ) with the properties
DiX̂(t) ≥ 0, R(t, i) +

∑r
k=0 BT

k (t, i)Ei(t, X̂(t + 1))Bk(t, i) ≥ νIn for all
1 ≤ i ≤ N .

Under these conditions the DTSRE-C (5.128) has a bounded and maximal
solution {Xmax(t)}t≥0 with the additional property

R(t, i) +
r∑

k=0

BT
k (t, i)Ei(t,Xmax(t, i))Bk(t, i) ≥ νIn, (5.131)

∀ t ≥ 0, 1 ≤ i ≤ N . �

Definition 5.4 We say that a solution {Xs(t)}t≥0 is a stabilizing solution of
(5.128) if the sequence of perturbed Lyapunov operators {LFs(t)}t≥0 generates
an exponentially stable evolution where LFs(t) : SN

n → SN
n is defined as in

(4.5) with Fs(t, i) instead of F (t, i), where

Fs(t, i) = −
(

R(t, i) +
r∑

k=0

Bk(t, i)Ei(t,Xs(t + 1))Bk(t, i)

)−1

×
(

r∑

k=0

BT
k (t, i)Ei(t,Xs(t + 1))Ak(t, i) + LT (t, i)

)

. (5.132)

It should be noted that any time we refer to a solution {X(t)}t≥0 of
DTSRE-C (5.128) we assume tacitly that the matrices R(t, i)+

∑r
k=0 BT

k (t, i)
Ei(t,X(t + 1))Bk(t, i) are invertible.

Remark 5.11 If Pt are stochastic matrices then one obtains via Corollary 4.1
that {Xs}t≥0 is a stabilizing solution of (5.128) if and only if the zero state
equilibrium of the closed-loop system

x(t + 1) =

[

A0(t, ηt) + B0(t, ηt)Fs(t, ηt)

+
r∑

k=1

wk(t)(Ak(t, ηt) + Bk(t, ηt)Fs(t, ηt))

]

x(t), t ≥ 0 (5.133)

is SESMS-I.



5.8 Discrete-time Riccati equations of stochastic control 169

Let {LFs(t)}t≥0 be the sequence of Lyapunov operators introduced by
(4.5) and ΠFs(t) be associated with the operators (5.130) via (5.18) with
W (t) = Fs(t), Fs(t) as in (5.132). Then the equality LFs(t) = Π∗

Fs
(t) shows

that {Xs(t)}t≥0 is a stabilizing solution of DTSRE-C (5.128) in the sense of
Definition 5.4 if and only if it is a stabilizing solution of the corresponding
equation (5.8).

Therefore from Corollary 5.2 we deduce that (5.128) has at most one
bounded and stabilizing solution.

From Theorem 5.6 one obtains the following.

Theorem 5.12 The following are equivalent.

(i) The triple A,B,P is stabilizable and there exists a sequence
X̂ = {X̂(t)}t≥0 ∈ l∞(Z+,SN

n ) that satisfies (DiX̂)(t) ≥ νIn+m, for all
t ∈ Z+, 1 ≤ i ≤ N , with ν > 0 independent of t and i.

(ii) The DTSRE-C (5.128) has a bounded and stabilizing solution {Xs(t)}t≥0

such that

R(t, i) +
r∑

k=0

BT
k (t, i)Ei(t,Xs(t + 1))Bk(t, i) ≥ νIm (5.134)

for all t ∈ Z+, 1 ≤ i ≤ N .

In the previous developments we considered the time-varying case in order
to cover the systems with periodic coefficients with period θ ≥ 1.

As we already remarked in Section 5.5 to check the validity of the condi-
tions of (i) in Theorem 5.12 we have to verify the feasability of some system
of LMIs with a finite number of inequalities.

The case θ = 1 is more frequent in applications therefore we present a
version of Theorem 5.12 for this special case. From Theorem 5.5 it follows
that in this case the stabilizing solution of DTSRE-C (5.128) if it exists, is
constant and it solves:

X(i) =
r∑

k=0

AT
k (i)Ei(X)Ak(i) + M(i)−

(
r∑

k=0

AT
k (i)Ei(X)Bk(i) + L(i)

)

×
(

R(i) +
r∑

k=0

BT
k (i)Ei(X)Bk(i)

)−1( r∑

k=0

BT
k (i)Ei(X)Ak(i) + LT (i)

)

.

(5.135)

We also set DX = (D1X, . . . ,DNX),

DiX =
⎛

⎜
⎜
⎝

r∑

k=0

AT
k (i)Ei(X)Ak(i) −X(i) + M(i)

r∑

k=0

AT
k (i)Ei(X)Bk(i) + L(i)

r∑

k=0

AT
k (i)Ei(X)Ak(i) + LT (i) R(i) +

r∑

k=0

BT
k (i)Ei(X)Bk(i)

⎞

⎟
⎟
⎠

for all X = (X(1), . . . , X(N)) ∈ SN
n .
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Applying Theorem 5.8 we have the following.

Theorem 5.13 Assume that Pt = P,Ak(t, i) = Ak(i), Bk(t, i) = Bk(i), 0 ≤
k ≤ r, M(t, i) = M(i), L(t, i) = L(i), R(t, i) = R(i), t ∈ Z, 1 ≤ i ≤ N . Then
the following are equivalent.

(i) The triple (A,B, P ) is stabilizable and there exists X̂ ∈ SN
n , such that

DiX̂ > 0, 1 ≤ i ≤ N .
(ii) DTSRE-C (5.135) has a stabilizing solution Xs = (Xs(1), . . . , Xs(N))

that satisfies

R(i) +
r∑

k=0

BT
k (i)Ei(Xs)Bk(i) > 0, 1 ≤ i ≤ N. (5.136)

5.8.2 The case of DTSRE-C with definite sign of weighting
matrices

In the developments in the previous subsection no assumptions about the
sign of the weighting matrices M(t, i), R(t, i) were made. The absence of
information about the sign of those matrices was supplied by conditions
(5.131), (5.134), and (5.136) verified by the maximal solution and the sta-
bilizing solution, respectively.

In this subsection we consider the case of DTSRE-C (5.128) for which
conditions (5.77) and (5.78) are verified.

By direct calculation one obtains that (5.128) can be rewritten as

X(t, i) =
r∑

k=0

(Ak(t, i)−Bk(t, i)R−1(t, i)LT (t, i))TEi(t,X(t + 1))

× (Ak(t, i)−Bk(t, i)R−1(t, i)L(t, i))

+ M(t, i)− L(t, i)R−1(t, i)LT (t, i)

−
(

r∑

k=0

(Ak(t, i)−Bk(t, i)R−1(t, i)LT (t, i))T

)

Ei(t,X(t +1))Bk(t, i)

×
(

R(t, i) +
r∑

k=0

BT
k (t, i)Ei(t,X(t + 1))Bk(t, i)

)−1

×
(

r∑

k=0

BT
k (t, i)Ei(t,X(t + 1))(Ak(t, i) −Bk(t, i)R−1(t, i)LT (t, i)

)

.

(5.137)

To simplify the presentation we write Ak(t, i) instead of Ak(t, i) − Bk(t, i)
R−1(t, i)LT (t, i) in (5.137). Thus we obtain:
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X(t, i) =
r∑

k=0

AT
k (t, i)Ei(t,X(t + 1))Ak(t, i) + CT (t, i)C(t, i)

−
(

r∑

k=0

AT
k (t, i)Ei(t,X(t + 1))Bk(t, i)

)

×
(

R(t, i) +
r∑

k=0

BT
k (t, i)Ei(t,X(t + 1))Bk(t, i)

)−1

×
(

r∑

k=0

BT
k (t, i)Ei(t,X(t + 1))Ak(t, i)

)

, 1 ≤ i ≤ N, (5.138)

where CT (t, i)C(t, i) = M(t, i)− L(t, i)R−1(t, i)LT (t, i) ≥ 0.
Applying Theorem 5.9 to the special case of DTSRE-C (5.138) we deduce

that under the assumption of stabilizability of the triple (A,B,P), the
DTSRE-C (5.138) has a bounded and maximal solution Xmax(t), t ≥ 0 and
a bounded and minimal solution Xmin(t), t ≥ 0. As we already remarked in
Section 5.6, these two global solutions do not always coincide.

In this section we show that under the additional assumption of detectabil-
ity these two solutions coincide.

Setting C0(t, i) = C(t, i), Ck(t, i) = 0, 1 ≤ k ≤ r, (t, i) ∈ Z+ × D, we may
define the sequences C,A,P as in Section 4.1. We prove the following lemma.

Lemma 5.5 Assume that A.5.2 is fulfilled and the triple (C,A,P) is
detectable. Under these assumptions any bounded solution X̃(t) = (X̃(t, 1), . . . ,
X̃(t,N)) of DTSRE (5.138) with X̃(t, i) ≥ 0 for all t ≥ 0, i ∈ D is a stabilizing
solution.

Proof. Let X̃(t) = (X̃(t, 1), X̃(t, 2), . . . , X̃(t,N)) be a bounded and posi-
tive semidefinite solution of (5.138). Set F̃ (t, i) = F X̃(t, i), (t, i) ∈ Z+ × D.
Applying Lemma 5.1 with W (t, i) = F̃ (t, i) one obtains that X̃(t) solves:

X̃(t, i) =
r∑

k=0

(Ak(t, i) + Bk(t, i)F̃ (t, i))T Ei(t, X̃(t + 1))

× (Ak(t, i) + Bk(t, i)F̃ (t, i)) + CT (t, i)C(t, i)

+ F̃T (t, i)R(t, i)F̃ (t, i). (5.139)

Also, (5.139) may be written in a compact form as

X̃(t) = L∗
F̃
(t)X̃(t + 1) + Ĉ(t), (5.140)

where Ĉ(t) = (Ĉ(t, 1), . . . , Ĉ(t,N)), Ĉ(t, i) =
∑r

k=0 Ĉk(t, i)T Ĉk(t, i) with
Ĉk(t, i) ∈ Rp̂×n, p̂ = p + (r + 1)m given by
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Ĉ0(t, i) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

C(t, i)

(r + 1)−(1/2)
R(t, i)1/2F̃ (t, i)

0mn

. . .

0mn

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

Ĉ1(t, i) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0p+m,m

(r + 1)−(1/2)R1/2(t, i)F̃ (t, i)

0mn

. . .

0mn

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

. . .

Ĉr(t, i) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0p+m,n

0mn

. . .

0mn

(r + 1)−(1/2)R1/2(t, i)F̃ (t, i)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Setting Ĉk(t) = (Ĉk(t, i), . . . , Ĉk(t,N)), Ĉ(t) = (Ĉ0(t), . . . , Ĉr(t)) we show
that (Ĉ(t),LF̃ (t)) is detectable. To this end, we show that there exist some
bounded sequences {K̂(t, i)}t≥0, 1 ≤ i ≤ N such that the sequence of
Lyapunov operators {L̂K̂(t)}t≥0 generates an exponentially stable evolution,
where L̂K̂(t)X = ((L̂K̂(t)X)(1), . . . , (L̂K̂(t)X)(N)) with

((L̂K̂(t))∗X)(i) =
r∑

k=0

(Ak(t, i) + Bk(t, i)F̃ (t, i) + K̂(t, i)Ĉk(t, i))T

× Ei(t,X)(Ak(t, i) + Bk(t, i)F̃ (t, i) + K̂(t, i)Ĉk(t, i)).
(5.141)

The assumption concerning the detectability of C,A,P guarantees the
existence of the bounded sequences {K(t, i)}t≥0 such that the sequence of
Lyapunov operators {LK(t)}t≥0 generates an exponentially stable evolution,
where LK(t)X = ((LK(t)X)(1), . . . , (LK(t)X)(N)) with

((LK(t))∗X)(i) = (A0(t, i) + K(t, i)C(t, i))TEi(t,X)(A0(t, i) + K(t, i)C(t, i))

+
r∑

k=1

Ak(t, i)Ei(t,X)AT
k (t, i). (5.142)
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We take K̂(t, i) = (K̂0(t, i)K̂1(t, i) . . . K̂r(t, i)) ∈ Rn×p̂ as follows.

K̂0(t, i) = (K(t, i)− (r + 1)1/2B0(t, i)R−(1/2)(t, i),

K̂k(t, i) = −(r + 1)1/2Bk(t, i)R−(1/2)(t, i), 1 ≤ k ≤ r.

By direct calculation one obtains that A0(t, i) + B0(t, i)F̃ (t, i) + K̂(t, i)
Ĉ0(t, i) = A0(t, i)+K(t, i)C(t, i) and Ak(t, i)+Bk(t, i)F̃ (t, i)+K̂(t, i)Ĉk(t, i) =
Ak(t, i), 1 ≤ k ≤ r. Thus we obtain that (5.141) is just (5.142). This allows
us to conclude that (Ĉ(t),LF̃ (t) is detectable. Now, applying Theorem 4.1 to
equation (5.140) we deduce that the sequence {LF̃ (t)}t≥0 generates an expo-
nentially stable evolution. Hence {X̃(t)}t≥0 is a stabilizing solution of (5.138)
and thus the proof is complete. �

At the end of this subsection we prove the following.

Theorem 5.14 Assume:

(a) The assumption A 5.2 is fulfilled.
(b) The triple (A,B,P) is stabilizable.
(c) The triple (C,A,P) is detectable.
(d) There exists δ ≥ 0 such that R(t, i) ≥ δIm for all (t, i) ∈ Z+ ×D.

Under these conditions DTSRE-C (5.138) has a unique bounded and posi-
tive semidefinite solution X̃(t) = (X̃(t, 1), X̃(t, 2), . . . , X̃(t,N)). This solution
is also the stabilizing solution.

Moreover if the coefficients of the DTSRE-C (5.138) are periodic sequences
with period θ ≥ 1 then X̃(t) is a periodic solution with the same period θ.

Proof. It follows immediately from Theorem 5.9, Lemma 5.5, and Corol-
lary 5.2.

5.8.3 The case of the systems with coefficients depending upon ηt

and ηt−1

Let us consider the following discrete-time system of generalized Riccati equa-
tions DTSRE-C,

X(i) =
r∑

k=0

N∑

j=1

p(i, j)AT
k (j, i)X(j)Ak(j, i) +

N∑

j=1

p(i, j)CT
z (j, i)Cz(j, i)

−

⎡

⎣
N∑

j=1

p(i, j)

(

CT
z (j, i)Dz(j, i) +

r∑

k=0

AT
k (j, i)X(j)Bk(j, i)

)⎤

⎦
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×

⎡

⎣
N∑

j=1

p(i, j)

(

DT
z (j, i)Dz(j, i) +

r∑

k=0

BT
k (j, i)X(j)Bk(j, i)

)⎤

⎦

−1

×

⎡

⎣
N∑

j=1

p(i, j)

(

DT
z (j, i)Cz(j, i) +

r∑

k=0

BT
k (j, i)X(j)Ak(j, i)

)⎤

⎦ . (5.143)

This kind of DTSRE-C arises in connection with the solution of the H2 control
problem for discrete-time linear stochastic systems of the form:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x(t + 1) =
(

A0(ηt, ηt−1) +
r∑

k=1

wk(t)Ak(ηt, ηt−1)
)

x(t)

+
(

B0(ηt, ηt−1) +
r∑

k=1

wk(t)Bk(ηt, ηt−1)
)

u(t) + Bv(ηt, ηt−1)v(t)

y(t) = x(t)

z(t) = Cz(ηt, ηt−1)x(t) + Dz(ηt, ηt−1)u(t), t ≥ 1.
(5.144)

A solution Xs = (Xs(1), Xs(2), . . . , Xs(N)) of DTSRE-C (5.143) is called a
stabilizing solution if the zero state equilibrium of the corresponding closed-
loop system

xs(t + 1) =

[

A0(ηt, ηt−1) + B0(ηt, ηt−1)Fs(ηt−1)

+
r∑

k=1

wk(t)(Ak(ηt, ηt−1) + Bk(ηt, ηt−1)Fs(ηt−1))

]

xs(t) (5.145)

is ESMS where

Fs(i) = −

⎡

⎣
N∑

j=1

p(i, j)

(

DT
z (j, i)Dz(j, i) +

r∑

k=0

BT
k (j, i)X(j)Bk(j, i)

)⎤

⎦

−1

×

⎡

⎣
N∑

j=1

p(i, j)

(

DT
z (j, i)Cz(j, i) +

r∑

k=0

BT
k (j, i)X(j)Ak(j, i)

)⎤

⎦ .

(5.146)

In this subsection we briefly show how we can use the result proved in the
previous sections of the chapter to obtain a set of conditions that guarantee
the existence of a stabilizing solution of DTSRE-C (5.143).

Let F = (F (1), F (2), . . . , F (N)), F (i) ∈ Rm×n, i ∈ D be a stabilizing
feedback gain for (5.144); this means that the zero state equilibrium of the
closed-loop system,
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x(t + 1) =

[

A0(ηt, ηt−1) + B0(ηt, ηt−1)F (ηt−1)

+
r∑

k=1

wk(t)(Ak(ηt, ηt−1) + Bk(ηt, ηt−1)F (ηt−1))

]

x(t), (5.147)

t ≥ 1 is ESMS.
Let ΥF : SN

n → SN
n be the Lyapunov-type operator associated with

(5.147). We have ΥFH = (ΥF H(1), ΥFH(2), . . . , ΥFH(N)),

ΥF H(i) =
r∑

k=0

N∑

j=1

p(j, i)[Ak(i, j) +Bk(i, j)F (j)]H(j)[Ak(i, j) +Bk(i, j)F (j)]T

(5.148)

for all H ∈ SN
n , i ∈ D.

The adjoint operator of ΥF with respect to the inner product (5.7) is given
by Υ ∗

F H = ((Υ ∗
F H)(1), (Υ ∗

F H)(2), . . . , (Υ ∗
F H)(N)),

(Υ ∗
F H)(i)

=
r∑

k=0

N∑

j=1

p(i, j)(Ak(j, i) + Bk(j, i)F (i))T H(j)(Ak(j, i) + Bk(j, i)F (i)).

(5.149)

One sees that

(Υ ∗
F H)(i) =

(
In

F (i)

)T (
(Π1H)(i) (Π2H)(i)

((Π2H)(i))T (Π3H)(i)

)(
In

F (i)

)

, (5.150)

where

(Π1H)(i) =
r∑

k=0

N∑

j=1

p(i, j)AT
k (j, i)H(j)Ak(j, i),

(Π2H)(i) =
r∑

k=0

N∑

j=1

p(i, j)AT
k (j, i)H(j)Bk(j, i)

(Π3H)(i) =
r∑

k=0

N∑

j=1

p(i, j)BT
k (j, i)H(j)Bk(j, i),

i ∈ D, H ∈ SN
n . Setting ΠkH = ((ΠkH)(1), (ΠkH)(2), . . . , (ΠkH)(N)) we

may define the operator Π : SN
n → SN

n+m by
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ΠH =

(
Π1H Π2H

(Π2H)T Π3H

)

. (5.151)

Here we use the notation convention introduced in Section 5.2.1 Using the
above operators equation (5.143) can be rewritten in a compact form as

X = Π1X + M − (Π2X + L)(R + Π3X)−1(Π2X + L)T , (5.152)

where M = (M(1),M(2), . . . ,M(N)),

M(i) =
N∑

j=1

p(i, j)CT
z (j, i)Cz(j, i),

L = (L(1), L(2), . . . , L(N)),

L(i) =
N∑

j=1

p(i, j)CT
z (j, i)Dz(j, i),

R = (R(1), R(2), . . . , R(N)),

R(i) =
N∑

j=1

p(i, j)DT
z (j, i)Dz(j, i), i ∈ D.

Also the equalities (5.150), (5.151) show that the system (5.144) is stochas-
tic stabilizable iff the linear positive operator Π is stabilizable in the sense of
Definition 4.7.

With the above notations we may introduce the so-called dissipation
operator associated with (5.152), D : SN

n → SN
n+m by

(DX)(i) =

(
(Π1X)(i) + M(i)−X(i) (Π2X)(i) + L(i)

((Π2X)(i) + L(i))T (Π3X)(i) + R(i)

)

, (5.153)

i ∈ D, X ∈ SN
n .

Applying Theorem 5.8 to equation (5.152) we obtain the following.

Theorem 5.15 Under the assumptions H1 and H2 the following are equiva-
lent.

(i) The system (5.144) is stochastic stabilizable and there exist X̂ =
(X̂(1), X̂(2), . . . , X̂(N)) ∈ SN

n such that

(DX̂)(i) > 0, i ∈ D. (5.154)

(ii) The DTSRE-C (5.143) has a stabilizing solution Xs that satisfies

N∑

j=1

p(i, j)(DT
z (j, i)Dz(j, i) +

r∑

k=1

BT
k (j, i)Xs(j)Bk(j, i)) > 0, i ∈ D.

(5.155)
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We remark that a set of conditions equivalent to the existence of a stabiliz-
ing solution of (5.143) that verify condition (5.155) consists of the solvability
of the systems of LMIs (4.74) and (5.154).

5.9 Discrete-time Riccati filtering equations

To derive the optimal controller in the H2 optimization problem, together with
the stabilizing solution of DTSRE-C (5.135) we need the stabilizing solution
of the following system of so-called discrete-time Riccati filtering equations
(DTSRE-F):

Y (i) =
N∑

j=1

p(j, i)

[
r∑

k=0

Ak(j)Y (j)AT
k (j) + εμ(j)Bv(j)BT

v (j)

−
(

r∑

k=0

Ak(j)Y (j)CT
k (j) + εμ(j)Bv(j)DT

v (j)

)

×
(

εμ(j)Dv(j)DT
v (j) +

r∑

k=0

Ck(j)Y (j)CT
k (j)

)−1

×
(

r∑

k=0

Ck(j)Y (j)AT
k (j) + εμ(j)Dv(j)BT

v (j)

)]

, (5.156)

where εμ(j) are some given nonnegative real numbers. Anytime we refer to a
solution Y of (5.156) we assume tacitly that

det[εμ(j)Dv(j)DT
v (j) +

r∑

k=0

Ck(j)Y (j)CT
k (j)] 
= 0

for all j ∈ D.
We say that a solution Ys = (Ys(1), Ys(2), . . . , Ys(N)) is a stabilizing

solution of DTSRE-F (5.156) if the zero state equilibrium of the closed-loop
system

x(t + 1) =

[

A0(ηt) + Ks(ηt)C0(ηt) +
r∑

k=1

wk(t)(Ak(ηt) + Ks(ηt)Ck(ηt))

]

x(t)

(5.157)
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is ESMS, where

Ks(i) = −
[

r∑

k=0

Ak(i)Ys(i)CT
k (i) + εμ(i)Bv(i)DT

v (i)

]

×
[

εμ(i)DT
v (i)Dv(i) +

r∑

k=0

Ck(i)Ys(i)CT
k (i)

]−1

, 1 ≤ i ≤ N.

(5.158)

One sees that (5.156) cannot be written in the form (5.152) in order to
apply the general result from Section 5.5 to obtain the existence of the
stabilizing solution Ys. Following the ideas from [27] for the special case
Ak(i) = 0, 1 ≤ k ≤ r, 1 ≤ i ≤ N , we associate a new system of discrete-time
Riccati equations, called a “dual Riccati equation.” To this dual equation one
may apply Theorem 5.8. Thus, if Y = (Y (1), Y (2), . . . , Y (N)) is a solution of
(5.156), we define

X(j) = Rj(Y (j)) =
r∑

k=0

Ak(j)Y (j)AT
k (j) + εμ(j)Bv(j)BT

v (j)

−
(

r∑

k=0

Ak(j)Y (j)CT
k (j) + εμ(j)Bv(j)DT

v (j)

)

×
(

εμ(j)Dv(j)DT
v (j) +

r∑

k=0

Ck(j)Y (j)CT
k (j)

)−1

×
(

r∑

k=0

Ck(j)Y (j)AT
k (j) + εμ(j)Dv(j)BT

v (j)

)

. (5.159)

Hence

Y (i) =
N∑

j=1

p(j, i)X(j). (5.160)

From (5.159), (5.160) one deduces that X = (X(1), X(2), . . . , X(N)) is a
solution of the following DTSRE-C,

X(i) =
r∑

k=0

Ak(i)E∗
i (X)AT

k (i) + εμ(i)Bv(i)BT
v (i)

−
(

r∑

k=0

Ak(i)E∗
i (X)CT

k (i) + εμ(i)Bv(i)DT
v (i)

)
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×
(

εμ(i)Dv(i)DT
v (i) +

r∑

k=0

Ck(i)E∗
i (X)CT

k (i)

)−1

×
(

r∑

k=0

Ck(i)E∗
i (X)AT

k (i) + εμ(i)Dv(i)BT
v (i)

)

, 1 ≤ i ≤ N, (5.161)

where

E∗
i (X) =

N∑

j=1

p(j, i)X(j), 1 ≤ i ≤ N. (5.162)

One can see that E∗ : SN
n → SN

n defined by (5.162) is the adjoint operator of
the defined (5.129). Conversely, if X = (X(1), X(2), . . . , X(N)) is a solution
of (5.161) then Y = (Y (1), Y (2), . . . , Y (N)) defined by Y (i) = E∗

i (X) is a
solution of (5.156). The system (5.161) can be written in a compact form as
a nonlinear equation on SN

n :

X = Π̃1X + M̃ − (L̃ + Π̃2X)(R̃ + Π̃3X)−1(L̃ + Π̃2X)T . (5.163)

The i-th component of (5.163) is

X(i) = Π̃1iX + M̃(i)− (L̃(i) + Π̃2iX)(R̃(i) + Π̃3i)−1(L̃(i) + Π̃2iX)T ,

where

Π̃1iX =
r∑

k=0

Ak(i)E∗
i (X)AT

k (i),

Π̃2iX =
r∑

k=0

Ak(i)E∗
i (X)CT

k (i), (5.164)

Π̃3iX =
r∑

k=0

Ck(i)E∗
i (X)CT

k (i),

(
M̃(i) L̃(i)

L̃T (i) R̃(i)

)

= εμ(i)

(
Bv(i)

Dv(i)

)(
Bv(i)

Dv(i)

)T

. (5.165)

Lemma 5.6 The following hold.

(i) The system

x(t + 1) =

(

A0(ηt) +
r∑

k=1

wk(t)Ak(ηt)

)

x(t) (5.166)

y(t) =

(

C0(ηt) +
r∑

k=1

wk(t)Ck(ηt)

)

x(t)
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is stochastic detectable if and only if the linear operator Π̃ defined by
(5.164) is stabilizable.

(ii) If Ys = (Ys(1), Ys(2), . . . , Ys(N)) is the stabilizing solution of DTSRE-
F (5.156) then Xs = (Xs(1), Xs(2), . . . , Xs(N)) defined by Xs(i) =
Ri(Ys(i)), is the stabilizing solution of DTSRE-C (5.161).

(iii) If Xs = (Xs(1), Xs(2), . . . , Xs(N)) is the stabilizing solution of DTSRE-
C (5.161) then Ys = (Ys(1), Ys(2), . . . , Ys(N))defined by Ys(i) =

∑N
j=1

p(j, i)Xs(j), 1 ≤ i ≤ N is the stabilizing solution of DTSRE-F (5.156).

Proof. (i) Let K = (K(1),K(2), . . . ,K(N)) be a stabilizing injection for the
system (5.166). Based on Theorem 2.14 and Corollary 3.3 one obtains that
the zero state equilibrium of

x(t + 1) =

[

A0(ηt) + K(ηt)C0(ηt) +
r∑

k=1

wk(t)(Ak(ηt) + K(ηt)Ck(ηt))

]

x(t)

(5.167)

is ESMS if and only if the eigenvalues of the operator ΛK : SN
n → SN

n are
located in the inside of the disk |λ| < 1, where

(ΛKX)(i)

=
r∑

k=0

(Ak(i) + K(i)Ck(i))E∗
i (X)(Ak(i) + K(i)Ck(i))T , 1 ≤ i ≤ N.

By direct calculation one sees that ΛK = Π̃F with F = (F (1), F (2), . . . ,
F (N)), F (i) = KT (i). Thus we obtained that the system (5.166) is stochastic
detectable iff there exists a feedback gain F = (F (1), F (2), . . . , F (N)), F (i) ∈
Rny×n such that the eigenvalues of the operator Π̃F are in the inside of the
disk |λ| < 1, which means that the operator Π̃ is stabilizable. Thus the proof
of (i) is complete.

(ii) Let Ys = (Ys(1), Ys(2), . . . , Ys(N)) be the stabilizing solution of
DTSRE-F (5.156). Invoking again Theorem 2.14 and Corollary 3.3, we deduce
that the zero state equilibrium of the closed-loop system (5.157) is ESMS if
and only if the eigenvalues of the linear operator ΛKs : SN

n → SN
n are located

in the inside of the disk |λ| < 1, where

ΛKsY (i)

=
r∑

k=0

(Ak(i) + Ks(i)Ck(i))E∗
i (Ys)(Ak(i) + Ks(i)Ck(i))T , 1 ≤ i ≤ N

(5.168)

for all Y ∈ SN
n . Set

Xs(i) = Ri(Ys(i)), 1 ≤ i ≤ N (5.169)



5.10 A numerical example 181

and define

Fs(i) = −(R̃(i) + Π̃3iXs)−1(L̃(i) + Π̃2iXs)T , 1 ≤ i ≤ N. (5.170)

Then Xs = (Xs(1), Xs(2), . . . , Xs(N)) is the solution of (5.161). By direct
calculation one obtains that ΛKs = Π̃Fs where Π̃Fs is defined as in (5.18) with
Π̃ instead of Π and Fs(i) instead of W (i). The equality ΛKs = Π̃Fs shows
that Xs is the stabilizing solution of (3.40) if Ys is the stabilizing solution of
(5.156). Thus (ii) holds.

The implication of (iii) can be proved in a similar manner as the one in
(ii) and it is based on the equality Π̃Fs = ΛKs .Thus the proof is complete.

�

The generalized dissipation operator corresponding to equation (5.163) is
D̃ : SN

n → SN
n+ny

:

D̃Y (i) =

(
Π̃1iY − Y (i) + M̃(i) L̃(i) + Π̃2iY

(L̃(i) + Π2iY )T R̃(i) + Π̃3iY

)

. (5.171)

Combining Theorem 5.8 and Lemma 5.6 from above, one obtains the following.

Theorem 5.16 The following are equivalent.

(i) The system (5.166) is stochastic detectable and there exists Ŷ =
(Ŷ (1), Ŷ (2), . . . , Ŷ (N)) ∈ SN

n such that (D̃Ŷ )(i) > 0, 1 ≤ i ≤ N .
(ii) The DTSRE-F (5.156) has a stabilizing solution Ys = (Ys(1), Ys(2), . . . ,

Ys(N)) with the additional property:

εμ(i)Dv(i)DT
v (i) +

r∑

k=0

Ck(i)Ys(i)CT
k (i) > 0, 1 ≤ i ≤ N. (5.172)

5.10 A numerical example

In order to illustrate the iterative procedure given by Theorem 5.10 the fol-
lowing Riccati-type system was considered,

X(i) =
r∑

k=0

AT
k (i)Ei(X)Ak(i) + CT (i)C(i) −

r∑

k=0

AT
k (i)Ei(X)Bk(i)

×
(

R(i) +
r∑

k=0

BT
k (i)Ei(X)Bk(i)

)−1

BT
k (i)Ei(X)Ak(i), i = 1, . . . , N,

(5.173)
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where R(i) ≥ 0, i = 1, . . . , N and E : SN
n → SN

n , E(X) = (E1(X), . . . , EN(X)),

Ei(X) =
N∑

j=1

p(i, j)X(j), i = 1, . . . , N. (5.174)

Such systems are used to determine the solutions of linear quadratic optimiza-
tion problems for discrete-time stochastic systems with state-dependent noise
and Markovian jumps (see Chapter 6). In this numerical example, n = 3,
N = 2, r = 1, and

A0(1) =

⎛

⎝
0.5 −0.5 1
1.5 1 −0.5
1 0.5 2

⎞

⎠ , A0(2) =

⎛

⎝
−0.25 0 0.5
0.5 −0.75 0.25
0.25 −0.25 −0.75

⎞

⎠ ,

A1(1) =

⎛

⎝
0.2 0.4 −0.2
0.4 0.2 0.6
−0.2 0.4 0.2

⎞

⎠ , A1(2) =

⎛

⎝
0.2 0.3 −0.1
0.1 0.1 0.2
−0.1 0.1 0.1

⎞

⎠ ,

B0(1) =

⎛

⎝
1
−1
2

⎞

⎠ , B0(2) =

⎛

⎝
−2
1
3

⎞

⎠ ,

B1(1) =

⎛

⎝
−0.1
0.1
0.2

⎞

⎠ , B1(2) =

⎛

⎝
−1
0.5
1.5

⎞

⎠ ,

C(1) = (1 −1 2 ), C(2) = (2 −1 1 ), R(1) = R(2) = 1,

p(1, 1) = p(2, 1) = 0.1, p(1, 2) = p(2, 2) = 0.9.

With the notations introduced in Section 5.8, one can directly see that

Π1iX :=
r∑

k=0

AT
k (i)Ei(X)Ak(i)

Π2iX :=
r∑

k=0

AT
k (i)Ei(X)Bk(i)

Π3iX :=
r∑

k=0

BT
k (i)Ei(X)Bk(i)

M(i) := CT (i)C(i), L(i) := 0, i = 1, . . . , N.

Before starting the iterative procedure one must determine the initial
values F0(i) and X0(i), ı = 1, . . . , N . A stabilizing gain F0(i), ı = 1, . . . , N
can be determined using Corollary 4.3. Thus for ε = 10−2 one obtains the
stabilizing gain
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F0(1) =
(
0.0074 0.1585 −0.8732

)
,

F0(2) =
(
−0.1432 0.1440 0.1898

)
. (5.175)

Then substituting the above values for F0 in (5.96) and solving this system
of LMIs with respect to X0 one obtains

X0(1) =

⎛

⎝
10.1414 0.0119 3.8104
0.0119 8.4770 −3.0157
3.8104 −3.0157 9.3539

⎞

⎠ ,

X0(2) =

⎛

⎝
8.1611 −3.4041 2.4325
−3.4041 4.2300 −3.4394
2.4325 −3.4394 4.5159

⎞

⎠ .

Further applying the iterative procedure given in Theorem 5.10 with the stop
condition

max (Xk(1) −Xk+1(1), Xk(2) −Xk+1(2)) < 10−4,

after 53 iterations one obtains the following stabilizing solution of the system
(5.173),

X(1) =

⎛

⎝
2.2913 −1.0861 2.6794
−1.0861 2.7089 −2.9888
2.6794 −2.9888 5.5858

⎞

⎠ ,

X(2) =

⎛

⎝
4.6750 −2.3108 2.2413
−2.3108 1.8165 −1.6733
2.2413 −1.6733 1.7533

⎞

⎠ .

5.11 Notes and references

Different aspects concerning the existence and properties of the solutions
of discrete-time Riccati-type equations arising in different stochastic control
problems are investigated in numerous works. Here we refer only to the mono-
graphs [1, 27, 84, 85, 63, 64]. Monotonicity properties of the solutions of such
equations may be found in [1, 58, 104]. The main part of the results contained
in this chapter are presented in [48]. The results from Section 5.7 were pub-
lished for the first time in [44], and the ones from Section 5.9 appear for the
first time in [50]. For the continuous-time case, similar results were proved in
[35] and [40]. Numerical aspects concerning the computation of the stabiliz-
ing solution of the systems of coupled algebraic Riccati equations arising in
connection with the linear quadratic problem for discrete-time linear systems
with Markovian jumping can be found in [72–74].
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Linear quadratic optimization problems

In this chapter several problems of the optimization of a quadratic cost func-
tional along the trajectories of a discrete-time linear stochastic system affected
by jumping Markov perturbations are independent random perturbations are
investigated. In Section 6.2 we deal with the classical problem of the linear
quadratic optimal regulator which means the minimization of a quadratic cost
functional with definite sign along the trajectories of a controlled linear sys-
tem. Also in Section 6.3 the general case of a linear quadratic optimization
problem with a cost functional without sign is treated. It is shown that in
the case of a linear quadratic optimal regulator, the optimal control is con-
structed via the minimal solution of a system of discrete-time Riccati-type
equations, whereas in the general case of the linear quadratic optimization
problem without sign, the optimal control, if it exists, is constructed based
on the stabilizing solution of a system of discrete-time Riccati-type equations.
In Section 6.4 we deal with the problem of the optimization of a quadratic
cost functional of a discrete-time affine stochastic system affected by jump-
ing Markov perturbations and independent random perturbations. Both the
case of finite time horizon as well as the infinite time horizon are considered.
Optimal control is constructed using the stabilizing solution for a system of
discrete-time Riccati-type equations. A set of necessary and sufficient con-
ditions ensuring the existence of the desired solutions of the discrete-time
Riccati equations involved in this chapter were given in Chapter 5. A tracking
problem is also solved.

6.1 Some preliminaries

6.1.1 A brief discussion on the linear quadratic optimization
problems

Let us consider the discrete-time linear controlled system with the state space
representation given by:

© Springer Science + Business Media, LLC 2010
Stochastic Systems, DOI 10.1007/978-1-4419-0630-4_6,

185Mathematical Methods in Robust Control of Discrete-Time Linear V. Dragan et al., 
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x(t + 1) =

(

A0(t, ηt) +
r∑

k=1

wk(t)Ak(t, ηt)

)

x(t)

+

(

B0(t, ηt) +
r∑

k=1

wk(t)Bk(t, ηt)

)

u(t) + Bv(t, ηt)v(t)

y(t) =

(

C0(t, ηt) +
r∑

k=1

wk(t)Ck(t, ηt)

)

x(t) + Dv(t, ηt)v(t) (6.1)

z(t) = C(t, ηt)x(t) + D(t, ηt)u(t),

where x(t) ∈ Rn is the state vector; u(t) ∈ Rm is the vector of the control
parameters; y(t) ∈ Rny is the vector of the measurements; z(t) ∈ Rnz is the
regulated output; {wk(t)}t≥0, 1 ≤ k ≤ r are sequences of random variables;
{v(t)}t≥0 is a sequence of mv-dimensional independent random vectors; and
{ηt}t≥0 is a Markov chain on a given probability space (Ω,F ,P).

The class of admissible controls consists of static or dynamic controllers,

u(t) = (Gc(η)y)(t), (6.2)

where Gc(η) is a linear and causal operator. This means that at each time t, the
control parameters u(t) are computed via the measurements y(s), 0 ≤ s ≤ t.
It should be remarked that together with the measurements y(t) it is assumed
that we have access to the current mode i of the Markov chain.

By coupling the state space realization of the controller (6.2) to (6.1) one
obtains a closed-loop system of the form:

xcl(t + 1) =

(

A0cl(t, ηt) +
r∑

k=1

wk(t)Akcl(t, ηt)

)

x(t) + Bvcl(t, ηt)v(t)

zcl(t) = Ccl(t, ηt)xcl(t). (6.3)

The coefficient matrices Akcl(t, i), Bvcl(t, i), Ccl(t, i) of the closed-loop system
(6.3) are detailed later.

If Φcl(t, t0), t ≥ t0 ≥ 0 is the fundamental matrix solution of the linear
system obtained from (6.3) by taking Bvcl(t, i) = 0, then we may write the
following representation of the trajectories of the closed-loop system,

xcl(t) = Φcl(t, t0)xcl(t0) +
t−1∑

s=t0

Φcl(t, s + 1)Bvcl(s, ηs)v(s).

This allows us to obtain the following decomposition of the output zcl(t),

zcl(t) = z1(t, t0) + z2(t, t0, v).

The component z1(t, t0) depends only upon the initial state xcl(t0) of the
closed-loop system, whereas the component z2(t, t0, v) depends upon the
additive noises v(s), 0 ≤ s ≤ t− 1.
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In short, the linear quadratic regulator problem denotes the optimization
problem that is required to find a controller in the class of the controllers of
type (6.2) minimizing a suitable norm of the component z1(t, t0) of the output
of the closed-loop system.

An optimization problem asking for the construction of a controller of type
(6.2) minimizing a suitable norm of the component z2(t, t0, v) of the output
of the closed-loop system is usually known as an H2 optimal control problem.

In the next sections of this chapter we investigate in detail the linear
quadratic regulator problem (LQRP). We show that depending upon the class
of admissible controls the optimal regulator is constructed either via the mini-
mal solution of DTSRE-C (5.128) or the maximal and stabilizing solution of
that Riccati equation, respectively.

In the developments of this chapter we consider systems with time-varying
coefficients in order to cover the case of systems with periodic coefficients.
The problem of H2 optimal control associated with a system of type (6.1) is
discussed in detail in the next chapter. The H2 control problem is addressed
to the time-invariant case of systems (6.1) because in this case there are more
possibilities to introduce the H2 performances, than in the case of systems
with time-varying coefficients.

6.1.2 A usual class of stochastic processes

In this subsection we describe a class of stochastic processes widely involved
in the construction of the class of admissible controls in the developments
of this chapter. First we recall that �2{t0,∞;Rd} stands for the space of
d-dimensional stochastic processes {u(t)}t≥t0 with the property that

∑∞
t=t0

E[|u(t)|2] < ∞.
If F̂ = {F̂t, t0 ≤ t ≤ t1} is an increasing sequence of σ-algebras F̂t ⊂ F̂t+1

⊂ F , then �2F̂{t0, t1;R
d} stands for the d-dimensional stochastic processes

f = {f(t)}t0≤t≤t1 , f(t) : Ω → Rd, E[|f(t)|2] < ∞, and f(t) is F̂t-measurable
for all t0 ≤ t ≤ t1. Also �2F̂{t0,∞;Rd} denotes the subspace of stochastic
processes f = {f(t)}t≥t0 , f(t) : Ω → Rd,

∑∞
t=t0

E[|f(t)|2] < +∞, and f(t) is
F̂t-measurable for all t ≥ t0. In the developments in this chapter an impor-
tant role is played by �2H̃{t0,∞;Rm} and �2H̃{t0, t1;R

m}, where H̃t are the
σ-algebras defined in Section 1.5.

6.1.3 Several auxiliary results

In this subsection we deduce several useful equalities used in the solu-
tion of the linear quadratic optimization problems discussed in this
chapter.
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Consider the discrete-time controlled system described by:

x(t + 1) =

[

A0(t, ηt) +
r∑

k=1

wk(t)Ak(t, ηt)

]

x(t)

+

[

B0(t, ηt) +
r∑

k=1

wk(t)Bk(t, ηt)

]

u(t)

y(t) = x(t) (6.4)

z(t) = C(t, ηt)x(t) + D(t, ηt)u(t)

obtained from (6.1) by taking Bv(t, i) = 0, C0(t, i) = In, Ck(t, i) = 0 1≤k ≤ r,
Dv(t, i) = 0, (t, i) ∈ Z+ ×D.

If 0 ≤ t0 < t1 ∈ Z, x0 ∈ Rn, i ∈ Dt0 we define J(t0, t1, x0, i, ·) : �2H̃(t0,
t1 − 1;Rm) → R by

J(t0, t1, x0, i, u) =
t1−1∑

t=t0

E

[

(xT (t) uT (t))Q(t, ηt)
(

x(t)
u(t)

)

|ηt0 = i

]

, (6.5)

where

Q(t, i) =

(
M(t, i) L(t, i)

LT (t, i) R(t, i)

)

∈ Sn+m, (t, i) ∈ Z+ ×Dt0 .

The following simple result provides the so-called “squares completion
technique” and is used repeatedly in the next developments.

Lemma 6.1 Let

Q(ξ, u) =
(
ξT uT )

(
Q1 Q2

QT
2 Q3

)(
ξ

u

)

be a quadratic form on Rn+m. If Q3 is an invertible matrix then we have:

Q(ξ, u) = ξT (Q1 −Q2Q−1
3 QT

2 )ξ + (u + Q−1
3 QT

2 ξ)T Q3(u + Q−1
3 QT

2 ξ)

for all ξ ∈ Rn, u ∈ Rm.

Proof. It consists of simple calculations and is omitted. �

Now we prove the following.

Proposition 6.1 Assume H1 and H2. Let 0 ≤ t0 < t1 ∈ Z, and X(t) =
(X(t, 1), X(t, 2), . . . , X(t,N)) be a solution of DTSRE-C (5.128) defined for
all t0 ≤ t ≤ t1. Then we have the representation:
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J(t0, t1, x0, i, u) = xT
0 X(t0, i)x0 − E[xT (t1)X(t1, ηt1)x(t1)|ηt0 = i]

+
t1−1∑

t=t0

E

[

(u(t) − FX(t, ηt)x(t))T (R(t, ηt)

+
r∑

k=0

BT
k (t, ηt)Eηt(t,X(t + 1))Bk(t, ηt))

× (u(t)− FX(t, ηt)x(t))|ηt0 = i

]

(6.6)

for all i ∈ Dt0 , u = {u(t), t0 ≤ t ≤ t1 − 1} ∈ �2H̃{t0, t1 − 1,Rm}, x(t)
being the solution of (6.4) corresponding to the input u starting from x0

at t = t0,

FX(t, i) = −
[

R(t, i) +
r∑

k=0

BT
k (t, i)Ei(t,X(t + 1))Bk(t, i)

]−1

×
[

r∑

k=0

BT
k (t, i)Ei(t,X(t + 1))Ak(t, i) + LT (t, i)

]

. (6.7)

Proof. Setting gk(t) = Bk(t, ηt)u(t), 0 ≤ k ≤ r, we obtain that gk(t) is
H̃t-measurable. Hence the system (6.4) is of type (3.84). Thus we may apply
Lemma 3.1 to system (6.4) and the function V (t, x, i) = xT X(t, i)x to
obtain:

E[V (t1, x(t1), ηt1)|ηt0 ] − V (t0, x(t0), ηt0)

=
t1−1∑

t=t0

E

⎡

⎣

(
x(t)

u(t)

)T (
Π1ηt(t)X(t + 1)−X(t, ηt) Π2ηt(t)X(t + 1)

(Π2ηt(t)X(t + 1))T Π3ηt(t)X(t + 1)

)

×
(

x(t)

u(t)

)

|ηt0

]

, (6.8)

where Πli(t) are the operators introduced in (5.130). Taking the expectation
with respect to the event {ηt0 = i}, i ∈ Dt0 , in (6.8) and adding (6.5) we
obtain:

J(t0, t1, x0, i, u)

= xT
0 X(t0, i)x0 − E[xT (t1)X(t1, ηt1)x(t1)|ηt0 = i]
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+
t1−1∑

t=t0

E

[(
x(t)
u(t)

)T

×
(

Π1ηt(t)X(t + 1)−X(t, ηt) + M(t, ηt) Π2ηt(t)X(t + 1) + L(t, ηt)

(Π2ηt(t)X(t + 1) + L(t, ηt))T R(t, ηt) + Π3ηt(t)X(t + 1)

)

×
(

x(t)
u(t)

)

|ηt0 = i

]

(6.9)

for all u ∈ �2H̃{t0, t1 − 1;Rm}, i ∈ Dt0 . Applying Lemma 6.1 with Q3 =
R(t, ηt) + Π3ηt(t)X(t + 1) and taking into account that X(t) solves the
DTSRE-C (5.128) one obtains (6.6). Thus the proof is complete. �

Let us consider the discrete-time affine controlled system of the form

x(t + 1) =

(

A0(t, ηt) +
r∑

k=1

wk(t)Ak(t, ηt)

)

x(t) +

(

B0(t, ηt) (6.10)

+
r∑

k=1

wk(t)Bk(t, ηt)

)

u(t) + f0(t, ηt) +
r∑

k=1

wk(t)fk(t, ηt)

obtained from (6.4) by adding the forcing terms fk(t, ηt). For each solution
X(t) = (X(t, 1), X(t, 2), . . . , X(t,N)) of DTSRE-C (5.128) defined for t0 ≤
t ≤ t1 we construct the following discrete-time backward affine equations on
Rn ⊕Rn ⊕ · · · ⊕Rn and RN , respectively:

κ(t, i) = [A0(t, i) + B0(t, i)FX(t, i)]T Ei(t, κ(t + 1)) + g(t, i), 1 ≤ i ≤ N
(6.11)

μ(t) = Ptμ(t + 1) + h(t) (6.12)

with the unknowns κ(t) = (κ(t, 1), . . . , κ(t,N)) ∈ Rn ⊕Rn⊕ · · ·⊕Rn, μ(t) =
(μ(t, 1), . . . , μ(t,N))T ∈ RN , where

g(t, i) =
r∑

k=0

[Ak(t, i) + Bk(t, i)FX(t, i)]TEi(t,X(t + 1))fk(t, i);

h(t) = (h(t, 1), . . . , h(t,N))T with

h(t, i) =
r∑

k=0

fT
k (t, i)Ei(t,X(t + 1))fk(t, i)− (ET

i (t, κ(t + 1))B0(t, i)

+
r∑

k=0

fT
k (t, i)Ei(t,X(t + 1))Bk(t, i))(R(t, i)
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+
r∑

k=0

BT
k (t, i)Ei(t,X(t + 1))Bk(t, i))−1(BT

0 (t, i)Ei(t, κ(t + 1))

+
r∑

k=0

BT
k (t, i)Ei(t,X(t + 1))fk(t, i)) + 2fT

0 (t, i)Ei(t, κ(t + 1)). (6.13)

If we denote Ĵ(t0, t1, x0, i, u) the value of (6.5) along the trajectories of the
affine system (6.10) we obtain the following.

Proposition 6.2 Assume H1 and H2. Let 0 ≤ t0 < t1 ∈ Z be given. Then
for any solution X(t) = (X(t, 1), . . . , X(t,N)) of DTSRE-C (5.128) defined
for t0 ≤ t ≤ t1 and for any solution κX(t) = (κX(t, 1), . . . , κX(t,N)) of (6.11)
defined for t0 ≤ t ≤ t1, we have:

Ĵ(t0, t1, x0, i, u) = xT
0 X(t0, i)x0 + 2xT

0 κX(t0, i) + μX(t0, i)

− E[xT (t1)X(t1, ηt1)x(t1) + 2xT (t1)κX(t1, ηt1)|ηt0 = i]

+
t1−1∑

t=t0

E

[

(u(t) − FX(t, ηt)x(t) − ψX(t, ηt))T

×
(

R(t, ηt) +
r∑

k=0

BT
k (t, ηt)Eηt(t,X(t + 1))Bk(t, ηt)

)

× (u(t)− FX(t, ηt)x(t) − ψX(t, ηt))|ηt0 = i

]

for all u ∈ �2H̃{t0, t1 − 1;Rm}, i ∈ Dt0 , x0 ∈ Rn, where μX(t) =
(μX(t, 1), . . . , μX(t,N))T is the solution of (6.12), with μX(t1, i) = 0, 1 ≤
i ≤ N , and

ψX(t, i) = −
(

R(t, i) +
r∑

k=0

BT
k (t, i)Ei(t,X(t + 1))Bk(t, i)

)−1

×
(

BT
0 (t, i)Ei(t, κX(t + 1))

+
r∑

k=0

BT
k (t, i)Ei(t,X(t + 1))fk(t, i)

)

. (6.14)

Proof. Applying Lemma 3.1 to the system (6.10) and the function

V (t, x, i) = xT X(t, i)x + 2xTκX(t, i) + μX(t, i),

taking the conditional expectation with respect to the event {ηt0 = i}, i ∈ Dt0 ,
and summing for t from t0 to t1 − 1, one gets:
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Ĵ(t0, t1, x0, i, u) = V (t0, x0, i) − E[V (t1, x(t1), ηt1)|ηt0 = i]

+
t1−1∑

t=t0

E

⎡

⎢
⎢
⎢
⎢
⎣

⎛

⎜
⎜
⎜
⎝

x(t)

1

1

u(t)

⎞

⎟
⎟
⎟
⎠

T

W(t, ηt)

⎛

⎜
⎜
⎜
⎝

x(t)

1

1

u(t)

⎞

⎟
⎟
⎟
⎠
|ηt0 = i

⎤

⎥
⎥
⎥
⎥
⎦

(6.15)

for all u ∈ �2H̃{t0, t1 − 1;Rm} where

W(t, i) =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

W11(t, i) W12(t, i) W13(t, i) W14(t, i)

WT
12(t, i) W22(t, i) W23(t, i) W24(t, i)

WT
13(t, i) WT

23(t, i) W33(t, i) W34(t, i)

WT
14(t, i) WT

24(t, i) WT
34(t, i) W44(t, i)

⎞

⎟
⎟
⎟
⎟
⎟
⎠

with

W11(t, i) = Π1i(t)X(t + 1)−X(t, i) + M(t, i),

W12(t, i) =
r∑

k=0

AT
k (t, i)Ei(t,X(t + 1))fk(t, i),

W13(t, i) = AT
0 (t, i)Ei(t, κX(t + 1)) − κX(t, i),

W14(t, i) = Π2i(t)X(t + 1) + L(t, i),

W22(t, i) =
r∑

k=0

fT
k (t, i)Ei(t,X(t + 1))fk(t, i),

W23(t, i) = fT
0 (t, i)Ei(t, κX(t + 1)),

W24(t, i) =
r∑

k=0

fT
k (t, i)Ei(t,X(t + 1))Bk(t, i),

W33(t, i) = Ei(t, μX(t + 1))− μX(t, i),

W34(t, i) = ET
i (t, κX(t + 1))B0(t, i),

W44(t, i) = Π3i(t)X(t + 1) + R(t, i).

Finally applying Lemma 6.1 in (6.15) with Q3 = R(t, i) +Π3i(t)X(t+ 1) and
taking into account that X(t), κX(t), μX(t) are solutions of (5.128), (6.11) and
(6.12), respectively, one obtains the equality in the statement and thus the
proof ends. �



6.2 The problem of the linear quadratic regulator 193

6.2 The problem of the linear quadratic regulator

Considering the controlled system (6.4) we associate the cost function

J1(t0, x0, u) =
∞∑

t=t0

E[|zu(t, t0, x0)|2] (6.16)

with

zu(t, t0, x0) = C(t, ηt)xu(t, t0, x0) + D(t, ηt)u(t),

xu(t, t0, x0) being the solution of (6.4) corresponding to the control u(t) and
having the initial condition xu(t0, t0, x0) = x0.

The class of admissible controls U1(t0, x0) consists of the stochastic
processes u = {u(t)}t≥t0 ∈ �2H̃{t0, t1;R

m} for all t1 > t0, with the property
that the series in (6.16) is convergent. The optimization problem we want to
solve asks us to find the control uopt ∈ U1(t0, x0) such that J1(t0, x0, uopt) ≤
J1(t0, x0, u) for any u ∈ U1(t0, x0). We solve this optimization problem under
the following assumption.

A.6.1 The coefficient matrices of the system (6.4) have the properties:

(i) {Ak(t, i)}t≥0, {Bk(t, i)}t≥0, {C(t, i)}t≥0, {D(t, i)}t≥0, (t, i) ∈ Z+ × D are
bounded sequences.

(ii) CT (t, i)D(t, i) = 0, (t, i) ∈ Z+ ×D.
(iii) There exists δ > 0, such that

R(t, i) := DT (t, i)D(t, i) ≥ δIn (6.17)

for all (t, i) ∈ Z+ ×D.

It should be noted that if (6.17) is fulfilled then the condition (ii) can be
obtained without losing generality with the following change of the control
variable u(t) = ũ(t) − R−1(t, ηt)DT (t, ηt)C(t, ηt)x(t), where ũ(t) denotes the
new input variable.

Let xX(t), t ≥ t0 be the solution of the following problem with given initial
values

x(t + 1) =

(

A0(t, ηt) + B0(t, ηt)FX(t, ηt)

+
r∑

k=1

wk(t)(Ak(t, ηt) + Bk(t, ηt)FX(t, ηt))

)

x(t) (6.18)

xX(t0) = x0,

FX being defined as in (6.7).
Let uX = FX(t, ηt)xX(t), t ≥ t0. Then we have the following useful result.
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Lemma 6.2 Under the assumptions H1, H2, and A6.1, for any bounded and
positive semidefinite solution X(t) of DTSRE-C (5.138) and for any (t0, x0) ∈
Z+ ×Rn the controls uX = {uX(t)}t≥t0 are in U1(t0, x0).

Proof. Because xX(t) is Ht−1-measurable and Ht−1 ⊂ H̃t one obtains that
uX(t) ∈ �2

H̃
{t0, t1;Rm} for arbitrary t1 > t0. Thus it remains to show that

J1(t0, x0, u
X) is well defined. Applying Proposition 6.1 in the special case

M(t, i) = CT (t, i)C(t, i), L(t, i) = 0, R(t, i) = DT (t, i)D(t, i), u(t) = uX(t),
one deduces that

τ∑

t=t0

E[|C(t, ηt)xX(t)|2 + |D(t, ηt)uX(t)|2|ηt0 = i]

= xT
0 X(t0, i)x0 − E[(xX(τ + 1))T X(τ + 1, ητ+1)xX(τ + 1)|ηt0 = i]

(6.19)

for all i ∈ Dt0 . Under the considered assumptions it follows that there exists
a positive constant c such that 0 ≤ X(t, i) ≤ cIn for all (t, i) ∈ Z+ ×D. Thus
from (6.19) it follows that

τ∑

t=t0

E[|C(t, ηt)xX(t)|2 + |D(t, ηt)uX(t)|2|ηt0 = i] ≤ xT
0 X(t0, i)x0 ≤ c|x0|2

for all τ > t0. Therefore we may conclude that

τ∑

t=t0

E[|C(t, ηt)xX(t)|2 + |D(t, ηt)uX(t)|2|ηt0 = i]

is convergent. Moreover, we have

∞∑

t=t0

E[|C(t, ηt)xX(t)|2 + |D(t, ηt)uX(t)|2|ηt0 = i]

≤ xT
0 X(t0, i)x0, i ∈ Dt0 , x0 ∈ Rn. (6.20)

Furthermore, (6.20) shows that J1(t0, x0, u
X) is well defined and

J1(t0, x0, u
X) ≤

∑

i∈Dt0

πt0(i)x
T
0 X(t0, i)x0 (6.21)

for all (t0, x0) ∈ Z+ × Rn with πt0(i) = P{ηt0 = i}; thus the proof is
complete. �

The main result of this section is given in the following theorem.

Theorem 6.1 Assume that the system (6.4) is stochastic stabilizable. Then
the optimal solution of the problem of the linear quadratic regulator described
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by the controlled system (6.4), the cost functional (6.16), and the class of
admissible controls U1(t0, x0) is given by

uopt(t) = Fopt(t, ηt)xopt(t), (6.22)

where Fopt(t, i) = FXmin(t, i) is associated by (6.7) with the minimal solu-
tion Xmin(t) = (Xmin(t, 1), . . . , Xmin(t,N)) of the DTSRE-C (5.138) and
{xopt(t)}t≥t0 is the solution of the closed-loop system (6.18) written for
Fopt(t, i) instead of FX(t, i). The minimal value of the cost functional is

J1(t0, x0, uopt) =
∑

i∈Dt0

πt0(i)x
T
0 Xmin(t0, i)x0. (6.23)

Proof. For each integer τ ≥ t0 + 1 we consider Xτ (t) = (X(t, 1), . . . , X(t,N))
the solution of DTSRE-C (5.138) with the terminal value Xτ (τ, i) = 0, 1 ≤
i ≤ N . From Corollary 5.1 it follows that Xτ (t) is well defined for 0 ≤
t ≤ τ ; we also deduce from the proof of Theorem 5.9 that Xmin(t, i) =
limτ→∞ Xτ (t, i), (t, i) ∈ Z+ × D. Further choose u = {u(t)}t≥t0 ∈ U1(t0, x0).
Applying Proposition 6.1 for X(t, i) = Xτ (t, i) one obtains

τ−1∑

t=t0

E[|C(t, ηt)x(t)|2 + |D(t, ηt)u(t)|2|ηt0 = i]

= xT
0 Xτ (t0, i)x0 +

τ−1∑

t=t0

E
[
(u(t) − Fτ (t, ηt)x(t))T

×
(

R(t, ηt) +
r∑

k=0

BT
k (t, ηt)Eηt(t,Xτ (t + 1))Bk(t, ηt)

)

× (u(t) − Fτ (t, ηt)x(t))|ηt0 = i]

for all i ∈ Dt0 , where Fτ (t, i) = FXτ (t, i) is constructed as in (6.7) with

R(t, i) = DT (t, i)D(t, i), L(t, i) = 0

and Xτ (t) instead of X(t). The fact that Xτ (t, i) ≥ 0 together with (6.17)
allows us to deduce that

τ−1∑

t=t0

E[|C(t, ηt)x(t)|2 + |D(t, ηt)u(t)|2|ηt0 = i] ≥ xT
0 Xτ (t0, i)x0 (6.24)

for all τ ≥ t0 + 1, u ∈ U1(t0, x0), (t0, x0) ∈ Z+ ×Rn. Taking the limit τ → ∞
in (6.24) it follows that

∞∑

t=t0

E[|C(t, ηt)x(t)|2 + |D(t, ηt)u(t)|2|ηt0 = i] ≥ xT
0 Xmin(t0, i)x0
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for all i ∈ Dt0 , u ∈ U1(t0, x0), (t0, x0) ∈ Z+ ×Rn. This allows us to conclude
that

J1(t0, x0, u) ≥
∑

i∈Dt0

πt0(i)x
T
0 Xmin(t0, i)x0 (6.25)

for all u ∈ U1(t0, x0). However, from (6.22) and from Lemma 6.2 it follows that
uopt = {uopt(t)}t≥0 is in U1(t0, x0). From (6.21) and (6.25) we deduce that
J1(t0, x0, uopt) =

∑
i∈Dt0

πt0(i)x
T
0 Xmin(t0, i)x0, respectively. This shows that

the equality (6.23) holds. Now (6.25) becomes J1(t0, x0, u) ≥ J1(t0, x0, uopt)
for all u ∈ U(t0, x0). This confirms the optimality of uopt and thus the proof
is complete. �

Remark 6.1 In the definition of the class of admissible controls U1(t0, x0) no
assumption about the asymptotic behavior for t → ∞ of the trajectories
xu(t, t0, x0) is made. However, from the convergence of the series in (6.16) one
deduces that

lim
t→∞E[|C(t, ηt)xu(t, t0, x0)|2] = 0.

On the other hand from (6.19) with u = uopt and taking into account (6.23)
we deduce that

lim
τ→∞

∑

i∈Dt0

πt0(i)E[xT
opt(τ)Xmin(τ, ητ )xopt(τ)|ηt0 = i] = 0,

or equivalently

lim
τ→∞E[xT

opt(τ)Xmin(τ, ητ )xopt(τ)|ηt0 = i] = 0, i ∈ Dt0 .

This is additional information concerning the asymptotic behavior for t → ∞
for the optimal trajectory xopt(t).

6.3 The linear quadratic optimization problem

In this section we deal with the optimization problem described by the system
(6.4) and the cost functional

J2(t0, x0, u) =
∞∑

t=t0

E[xT
u (t, t0, x0)M(t, ηt)xu(t, t0, x0)

+ 2xT
u (t, t0, x0)L(t, ηt)u(t) + uT (t)R(t, ηt)u(t)], (6.26)

where xu(t, t0, x0) is the solution of (6.4) corresponding to the input u having
the initial value xu(t0, t0, x0) = x0. The class of admissible controls U2(t0, x0)
consists of the stochastic processes u = {u(t)}t≥t0 ∈ �2H̃{t0, t1;R

m} for all
t1 > t0, with the property that the series (6.26) is convergent and
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lim
t→∞E[|xu(t, t0, x0)|2|ηt0 = i] = 0 (6.27)

for all i ∈ Dt0 .
Throughout this section we assume that the following hypothesis is true.

A.6.2 The sequences {Ak(t, i)}t≥0 ⊂Rn×n, {Bk(t, i)}t≥0 ⊂Rn×m, 0≤k ≤r,
{M(t, i)}t≥0 ⊂ Sn, {L(t, i)}t≥0 ⊂ Rn×m, {R(t, i)}t≥0 ⊂ Sm are bounded.

The optimization problem investigated in this section requires us to find
a control ũ = {u(t)}t≥t0 ∈ U2(t0, x0) with the property that J2(t0, x0, ũ) ≤
J2(t0, x0, u) for all u ∈ U2(t0, x0).

Remark 6.2 It can be seen that the cost functional J1(t0, x0, u) from (6.16) is a
special case of J2(t0, x0, u) from (6.26). Hence in the case of the cost functional
J1(t0, x0, ·) we may construct two classes of admissible controls U1(t0, x0) and
U2(t0, x0). We have U2(t0, x0) ⊆ U1(t0, x0). This leads to

inf
u∈U1(t0,x0)

J1(t0, x0, u) ≤ inf
u∈U2(t0,x0)

J1(t0, x0, u). (6.28)

Because in (6.26) no assumptions concerning the sign of the weighting matrices
M(·, ·), L(·, ·), and R(·, ·) were made, it is possible that u �→ J2(t0, x0, u) :
U2(t0, x0) → R is unbounded from below.

Set

V(t0, x0) = inf
u∈U2(t0,x0)

J1(t0, x0, u), (t0, x0) ∈ Z+ ×Rn (6.29)

to be the value function associated with the optimization problem under con-
sideration.

Definition 6.1 We say that the linear quadratic optimization problem des-
cribed by the controlled system (6.4), the cost functional (6.26), and the class
of admissible controls U2(t0, x0) is well posed if −∞ < V(t0, x0) < +∞ for
all (t0, x0) ∈ Z+ ×Rn.

To make the statement of the next results clearer we adopt the following
notations.

Q(t) = (Q(t, 1), . . . ,Q(t,N))

Q(t, i) =

(
M(t, i) L(t, i)

LT (t, i) R(t, i)

)

Π(t)X = ((Π(t)X)(1), . . . , (Π(t)X)(N))

(Π(t)X)(i) =

(
Π1i(t)X Π2i(t)X

(Π2i(t)X)T Π3i(t)X

)

,
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Πli(t)X being constructed as in (5.130) using the coefficients of the system
(6.4) and the elements pt(i, j) of Pt.

In the sequel, ΓΣ is the set associated with the DTSRE-C (5.128) via
(5.15).

Theorem 6.2 Assume:

(a) The system (6.4) is stochastic stabilizable.
(b) The set ΓΣ is not empty.

Under these conditions the linear quadratic optimization problem described
by the system (6.4), the cost functional (6.26), and the class of admissible
controls U2(t0, x0) is well posed. Moreover, we have

V(t0, x0) =
∑

i∈D
πt0(i)x

T
0 Xmax(t0, i)x0 (6.30)

for all (t0, x0) ∈ Z+ ×Rn, where

Xmax(t) = (Xmax(t, 1), . . . , Xmax(t,N))

is the maximal bounded solution of the DTSRE-C (5.128) that verifies (5.131).

Proof. First we remark that under the assumptions (a) and (b) in the state-
ment, the DTSRE-C (5.128) has a bounded and maximal solution Xmax(t)
that verifies (5.131). Also from assumption (a) it follows that U2(t0, x0) 
= Φ
for each t0 ≥ 0 and x0 ∈ Rn. Applying Proposition 6.1 for X(t, i) = Xmax(t, i)
we obtain

τ−1∑

t=t0

E

[(
xu(t)
u(t)

)T

Q (t, ηt)
(

xu(t)
u(t)

)

|ηt0 = i

]

= xT
0 Xmax(t0, i)x0 − E[xT

u (τ)Xmax(τ, ητ )xu(τ)|ηt0 = i]

+
τ−1∑

t=t0

E[(u(t) − F̃ (t, ηt)xu(t))T (R(t, ηt) + Π3ηt(t)Xmax(t + 1))

× (u(t) − F̃ (t, ηt)xu(t))|ηt0 = i] (6.31)

for all τ ≥ t0 + 1, i ∈ Dt0 , u ∈ U2(t0, x0), (t0, x0) ∈ Z+ × Rn, and F̃ (t, i) =
FXmax(t, i). Because {Xmax(t)}t≥0 is a bounded sequence it follows that there
exists a positive constant c1 such that |Xmax(t, i)| ≤ c1 for all (t, i) ∈ Z+ ×D
(| · | being the Euclidian norm of a matrix). This allows us to write

|E[xT
u (τ)Xmax(τ, ητ )xu(τ)|ηt0 = i]| ≤ c1E[|xu(τ)|2|ηt0 = i]

for all τ ≥ t0 + 1, i ∈ Dt0 . Taking into account (6.27) we deduce that

lim
τ→∞E[xT

u (τ)Xmax(τ, ητ )xu(τ)|ηt0 = i] = 0, ∀i ∈ Dt0 . (6.32)
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From (6.31) we get

τ−1∑

t=t0

E

[(
xu(t)
u(t)

)T

Q(t, ηt)
(

xu(t)
u(t)

)]

+ E[xT
u (τ)Xmax(τ, ητ )xu(τ)]

=
∑

i∈D
πt0(i)x

T
0 Xmax(t0, i)x0 +

τ−1∑

t=t0

E[(u(t) − F̃ (t, ηt)xu(t))T

× (R(t, ηt) + Π3ηt(t)Xmax(t + 1))(u(t) − F̃ (t, ηt)xu(t))]. (6.33)

Because the left-hand side of (6.33) converges for τ → ∞ it follows that the
right-hand side is also convergent. Taking the limit for τ → ∞ in (6.33) and
taking into account (6.32) we obtain

J2(t0, x0, u) =
∑

i∈D
πt0(i)x

T
0 Xmax(t0, i)x0 +

∞∑

t=t0

E[(u(t) − F̃ (t, ηt)xu(t))T

× (R(t, ηt) + Π3ηt(t)Xmax(t + 1))(u(t) − F̃ (t, ηt)xu(t))]
(6.34)

for all u ∈ U2(t0, x0); (t0, x0) ∈ Z+ × Rn. Furthermore, (6.34) together with
(5.131) leads to

J2(t0, x0, u) ≥
∑

i∈D
πt0(i)x

T
0 Xmax(t0, i)x0

for all u ∈ U2(t0, x0); (t0, x0) ∈ Z+ ×Rn. Hence

V(t0x0) ≥
∑

i∈D
πt0(i)x

T
0 Xmax(t0, i)x0. (6.35)

Thus we obtain that the linear quadratic optimization problem under con-
sideration is well posed. It remains to show that in (6.35) we have equality.
To this end we choose a decreasing sequence of real and positive numbers
{εj}j≥0 such that limj→∞ εj = 0. We associate the cost functionals

Jεj (t0, x0, u) = J2(t0, x0, u) + εj

∞∑

t=t0

E[|xu(t)|2] (6.36)

u ∈ Ũ2(t0, x0), where xu(t) = xu(t, t0, x0) and Ũ2(t0, x0) = {u = {u(t)}t≥t0 ∈
U2(t0, x0)|xu ∈ �2H̃(t0,∞,Rn)}.

Let Vj(t0, x0) = infu∈Ũ2(t0,x0)
Jεj (t0, x0). Because Ũ2(t0, x0) ⊂ U2(t0, x0)

and J2(t0, x0, u) ≤ Jεj (t0, x0), u ∈ Ũ2(t0, x0) we deduce that Vj(t0, x0) ≥
V(t0, x0) for all j≥0. We remark that under the assumptions (a), Ũ2(t0, x0) 
=Φ,
t0 ≥ 0, x0 ∈ Rn.
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Consider the DTSRE-C

X(t, i) = Π1i(t)X(t + 1) + M(t, i) + εjIn − [L(t, i) + Π2i(t)X(t + 1)]

× [R(t, i) + Π3i(t)X(t + 1)]−1[L(t, i) + Π2i(t)X(t + 1)]T , (6.37)

where Πli(t), l ∈ {1, 2, 3} are defined as in (5.130). The DTSRE-C (6.37) is
defined by the pair Σj = (Π(t),Qj(t)), where Π(t) is given by (5.130) and
where

Qj(t) = (Qj(t, 1), . . . ,Qj(t,N)),

Qj(t, i) =

(
M(t, i) + εjIn L(t, i)

LT (t, i) R(t, i)

)

.

For each j ≥ 0, Γ̃Σj is not empty because Γ̃Σj ⊃ ΓΣ . Applying Theorem 5.12
we deduce that for each j ≥ 0, DTSRE-C (6.37) has a bounded and stabilizing
solution Xj

s(t) = (Xj
s (t, 1), . . . , Xj

s(t,N)), t ≥ 0. Based on Corollary 5.2 it
follows that Xj

s (t) coincides with the maximal solution of (6.37). Furthermore,
from Theorem 5.4 one deduces that Xj

s(t, i) ≥ Xj+1
s (t, i) ≥ Xmax(t, i) for all

j ≥ 0 and limj→∞ Xj
s(t, i) = Xmax(t, i) for all t ≥ 0, i ∈ D. Proceeding as in

the first part of the proof we deduce that

J
εj

2 (t0, x0, u) =
∑

i∈D
πt0(i)x

T
0 Xj

s (t0, i)x0 +
∞∑

t=t0

E[(u(t) − F j
s (t, ηt)xu(t))T

× (R(t, ηt) + Π3ηt(t)X
j
s (t + 1))(u(t) − F j

s (t, ηt)xu(t))]
(6.38)

for all u ∈ Ũ2(t0, x0), where F j
s (t, i) = FXj

s (t, i) is a stabilizing feedback asso-
ciated with Xj

s (t). Take the control uj
s(t) = F j

s (t, ηt)xj
s(t), {xj

s(t)}t≥t0 being
the solution of the system (6.18) when FX(t, i) is replaced by F j

s (t, i). Because
Xj

s(t) is the stabilizing solution of (6.37) it follows that uj
s = {uj

s(t)}t≥t0 ∈
Ũ2(t0, x0). Taking u = uj

s in (6.38) we obtain

J
εj

2 (t0, x0, u
j
s) =

∑

i∈D
πt0(i)x

T
0 Xj

s (t0, i)x0.

This leads to V(t0, x0) ≤ Vj(t0, x0) ≤
∑

i∈D πt0(i)xT
0 Xj

s(t0, i)x0 for all j ≥ 0.
Taking the limit for j →∞, we obtain

V(t0, x0) ≤
∑

i∈D
πt0(i)x

T
0 Xmax(t0, i)x0, ∀(t0, x0) ∈ Zt ×Rn. (6.39)

Thus from (6.39) and (6.35) one obtains (6.30) and the proof is complete. �

The previous theorem provides a lower bound of the cost functional
J2(t0, x0, u) on U2(t0, x0). However, it cannot provide any information about
the existence of an optimal control.
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Definition 6.2 We say that a control uopt = {uopt(t)}t≥t0 ∈ U2(t0, x0)
is called the optimal control for the linear quadratic optimization problem
under consideration if V(t0, x0) = J2(t0, x0, uopt) ≤ J2(t0, x0, u) for all
u ∈ U2(t0, x0).

The following result provides a sufficient condition for the existence of an
optimal control for the optimization problem described by the cost functional
(6.26), the controlled system (6.4), and the set of admissible controls U2(t0, x0).

Proposition 6.3 If DTSRE-C (5.128) has a bounded and stabilizing solu-
tion {Xs(t)}t≥0 that satisfies (5.134) then the linear quadratic optimiza-
tion problem under consideration has an optimal control given by uopt(t) =
Fs(t, ηt)xs(t) where Fs(t, i) is defined in (5.132) and {xs(t)}t≥t0 is the solution
of the system (5.133) with the initial condition xs(t0) = x0.

Proof. Because {Xs(t)}t≥0 is the bounded and stabilizing solution of (5.128)
one obtains that the control uopt = Fs(t, ηt)xs(t) is admissible. The conclusion
follows immediately from (6.34) written for u = uopt and taking into account
(5.134). �

Now we prove a result that provides a necessary and sufficient condition
for the existence of an optimal control.

Theorem 6.3 Assume that

(a) The assumptions of Theorem 6.2 are fulfilled.
(b) For each t ≥ 0, Pt is a nondegenerate stochastic matrix.
(c) π0(i) = P{η0 = i} ≥ 0 for 1 ≤ i ≤ N .

Then the following are equivalent.

(i) For any (t0, x0) ∈ Z+ × Rn the optimization problem described by
the system (6.4), the cost functional (6.26), and the class of admissi-
ble controls U2(t0, x0) admits an optimal control ût0,x0(t), t ≥ t0; that is,
V(t0, x0) = J2(t0, x0, ût0,x0).

(ii) lim
t→∞ ‖TF̃ (t, t0)‖ξ = 0, ∀t0 ∈ Z+, (6.40)

where TF̃ (t, t0) is the linear evolution operator on SN
n defined by the

sequence of Lyapunov operators {LF̃ (t)}t≥0,LF̃ being defined by (4.5) with
F̃ (t, i) instead of F (t, i) and F̃ (t, i) = FXmax(t, i).

If (i) or (ii) are fulfilled then the optimal control of the problem under
consideration is given by uopt(t) = F̃ (t, ηt)x̂(t), where x̂(t) is the solution of
the system (6.43).

Proof. Let us assume that (i) is fulfilled. Let (t0, x0) ∈ Z+ × Rn and û =
{û(t)}t≥t0 ∈ U2(t0, x0) be such that V(t0, x0) = J2(t0, x0, û). From (6.34) one
obtains
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V(t0, x0) =
∑

i∈D
πt0(i)x

T
0 Xmax(t0, i)x0 +

∞∑

t=t0

E[(û(t) − F̃ (t, ηt)x̂(t))T

× (R(t, ηt) + Π3ηt(t)Xmax(t + 1))(û(t) − F̃ (t, ηt)x̂(t))], (6.41)

where x̂ = xû(t) is the optimal trajectory. Combining (6.30) and (6.41) we
deduce

∞∑

t=t0

E[(û(t) − F̃ (t, ηt)x̂(t))T

× (R(t, ηt) + Π3ηt(t)Xmax(t + 1))(û(t) − F̃ (t, ηt)x̂(t))] = 0. (6.42)

If we take into account (5.131) then (6.42) leads to û(t) = F̃ (t, ηt)x̂(t) a.s.
t ≥ t0. Substituting this equality in (6.4) one obtains that x̂(t) is the solution
of the following problem with given initial value,

x̂(t + 1) =
[
A0(t, ηt) + B0(t, ηt)F̃ (t, ηt)

+
r∑

k=1

wk(t)(Ak(t, ηt) + Bk(t, ηt)F̃ (t, ηt))

]

x̂(t), x̂(t0) = x0.

(6.43)

Because û ∈ U2(t0, x0) it follows from (6.27) that

lim
t→∞E[|x̂(t)|2|ηt0 = i] = 0, i ∈ D. (6.44)

If ΦF̃ (t, t0) is the fundamental matrix solution of (6.43) then (6.44) may be
rewritten

lim
t→∞E[xT

0 ΦT
F̃

(t, t0)ΦF̃ (t, t0)x0|ηt0 = i] = 0, ∀i ∈ D, (t0, x0) ∈ Z+×Rn.

Based on Theorem 3.1(i) we deduce that the last equality is equivalent to
limt→∞ xT

0 (T ∗
F̃
(t, t0)J)(i)x0 = 0, for all (t0, x0) ∈ Z+ ×Rn, i ∈ D. Recalling

that

‖T ∗
F̃
(t, t0)‖ξ = |T ∗

F̃
(t, t0)J |ξ = max

i∈D
sup

|x0|≤1

xT
0 [T ∗

F̃
(t, t0)J ](i)x0

we deduce that

lim
t→∞ ‖T ∗

F̃
(t, t0)‖ξ = 0. (6.45)

Finally invoking (2.13) we deduce that (6.45) is equivalent to (6.40). Thus we
obtain that the implication (i) ⇒ (ii) is true.

To prove the converse implication, one obtains via Theorem 3.1(i) that
if (6.40) is true then (6.44) holds. This means by (6.33) that the control
û(t) = F̃ (t, ηt)x̂(t) is admissible. Furthermore, from (6.34) and (6.30) one
obtains that û is an optimal control and thus the proof is complete. �
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Remark 6.3 Combining Definition 3.1(a) and Definition 5.4 one obtains that
the maximal solution Xmax(t) of DTSRE-C (5.128) is a stabilizing solution if
and only if there exist β ≥ 1, q ∈ (0, 1) such that

‖TF̃ (t, t0)‖ξ ≤ βqt−t0 (6.46)

for all t ≥ t0 ≥ 0.
From Theorem 6.3 we deduce that the condition verified by the maximal

solution of (5.128) which is equivalent to the existence of an optimal control
of the problem under consideration is weaker than (6.46). This can explain
why the result proved in Proposition 6.3 provides only a sufficient condition
for the existence of an optimal control.

Theorem 6.4 Assume that

(a) The coefficients of the system (6.4) and the weights of the cost functional
(6.26) are periodic sequences with the period θ ≥ 1 and Pt+θ = Pt, t ≥ 0;

(b) The assumptions of Theorem 6.2 are fulfilled.

Under these conditions the following are equivalent.

(i) For every (t0, x0) ∈ Z+ × Rn the optimization problem described by
the controlled system (6.4), the cost functional (6.26), and the class of
admissible controls U2(t0, x0) has the optimal control ût0x0 ={ut0x0(t)}t≥t0

(i.e., V(t0, x0) = J2(t0, x0, ût0x0)).
(ii) The DTSRE-C (5.128) has a bounded stabilizing solution {Xs(t)}t≥0 that

satisfies (5.134).

Proof. The implication (ii) ⇒ (i) follows from Proposition 6.3. If (i) is fulfilled,
reasoning as in the proof of Theorem 6.3 one deduces by Theorem 3.10 that
the zero state equilibrium of the closed-loop system (6.43) is SESMS. This
allows us to conclude that the maximal solution {Xmax(t)} coincides with the
stabilizing solution of (5.128). Thus the proof ends. �

Remark 6.4 As we have already seen in Remark 6.2 for the cost functional
J1(t0, x0, ·) we may consider two optimization problems. Based on Theo-
rem 6.1 one obtains that the optimal control uopt of the optimization prob-
lem described by the cost functional J1(t0, x0, ·), the controlled system (6.4),
and the class of admissible controls U1(t0, x0) is constructed via the mini-
mal solution of DTSRE-C (5.138), whereas from Theorem 6.3 we have that
the optimal control ũopt of the optimization problem described by the cost
functional J1(t0, x0, ·), the controlled system (6.4), and the class of admissi-
ble controls U2(t0, x0) is constructed via the maximal solution of DTSRE-C
(5.138) (viewed as a special form of (5.128)).

From (6.28) one obtains that

J1(t0, x0, uopt) ≤ J1(t0, x0, ũopt). (6.47)
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Invoking Theorem 5.14 one obtains that under the assumption of stochastic
detectability, the minimal solution of (5.138) coincides with its stabilizing
solution. In this case (6.47) becomes J1(t0, x0, uopt) = J1(t0, x0, ũopt). By the
next example we show that in the absence of the assumption of stochastic
detectability uopt may not coincide with ũopt and in this case J1(t0, x0, uopt) <
J1(t0, x0, ũopt).

Example 6.1 Consider the system (6.4) in the particular case N =1, n=2r=1,

x(t + 1) = (A0 + w1(t)A1)x(t) + B0u(t) (6.48)

with

A0 =
(

4
5 0
0 8

5

)

, A1 =
3
5
I2, B0 =

(
2
1

)

, x(t) =
(
x1(t)
x2(t)

)

∈R2, u(t)∈R.

The cost functional is

J1(0, x0, u) =
∞∑

t=0

E

[
4
5
x2

1(t) + u2(t)
]

. (6.49)

In this case the DTSRE-C (5.138) reduces to (5.93). Hence the maximal solu-
tion coincides with the stabilizing solution and it is given by (5.94). The
minimal solution is given by (5.95). From Theorem 6.1 we have

J1(0, x0, uopt) =
(
x10 x20

)
(

1+
√

2
2 0
0 0

)(
x10

x20

)

.

Using Theorem 6.3 or Theorem 6.4 one obtains that

J1(0, x0, ũopt) =
(
x10 x20

)
(

7+
√

2
2 −3(3 +

√
2)

−3(3 +
√

2) 3(11 + 6
√

2)

)(
x10

x20

)

for all x0 =
(
x10 x20

)T .

6.4 The linear quadratic problem. The affine case

In this section we consider the linear quadratic optimization problem asso-
ciated with the affine system (6.10). We consider both the finite time hori-
zon and infinite time horizon. The results developed in this section are used
in the next section to solve a tracking problem for discrete-time linear sto-
chastic systems subject to independent random perturbations and Markovian
jumping.
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6.4.1 The problem setting

Let us consider the controlled system (6.10) where w(t) = (w1(t), . . . , wr(t))T

and ηt are stochastic processes that verify the general assumptions H1 and
H2. Throughout this section {ηt}t≥0 is assumed to be a nonhomogeneous
Markov chain with the transition probability matrices Pt, t ≥ 0.

The following two classes of admissible controls are involved in this section.

(a) If 0 ≤ t0 < tf ∈ Z, Ut0,tf
consists of the stochastic processes u =

{u(t), t0 ≤ t ≤ tf}, where u(t) is an m-dimensional random vector with
finite second moments and H̃t-measurable; that is, Ut0,tf

= �2H̃{t0, tf −
1;Rm}

(b) If tf = ∞ and x0 ∈ Rn, Ut0,∞(x0) consists of all stochastic processes u =
u(t), t0 ≤ t < ∞ where for each t, u(t) is an m-dimensional random vector
that is H̃t-measurable, having the following two additional properties,

(α) E[|u(t)|2] < ∞, t ≥ t0

(β) sup
t≥t0

E[|xu(t, t0, x0)|2] < ∞, (6.50)

xu(·, t0, x0) being the solution of (6.10) determined by the control u and
starting from x0 at t = t0

It must be remarked that in the case tf < +∞ the initial value x0 does not
play any role in the definition of the admissible controls Ut0tf

. On the other
hand in the infinite time horizon case (tf = +∞) it is expected that the set
of admissible controls will be dependent upon the initial state x0. This could
happened due to condition (6.50).

That is why the dependence with respect to the initial state x0 is empha-
sized, writing Ut0,∞(x0).

We associate the following two cost functionals with the system (6.10):
J3(t0, tf , x0, ·) : Ut0,tf

→ R and J3(t0,∞, x0, ·) : Ut0,∞(x0) → R̄ by

J3(t0, tf , x0, u) = E

⎡

⎣xT (tf )Kf (ηtf
)x(tf ) +

tf−1∑

t=t0

|y(t)|2
⎤

⎦ (6.51)

J3(t0,∞, x0, u) = lim
T→∞

1
T − t0

T∑

t=t0

E[|y(t)|2], (6.52)

where

y(t) = C(t, ηt)xu(t, t0, x0) + D(t, ηt)u(t) (6.53)

and xu(t, t0, x0) is as before.
Now we are in position to formulate the two optimization problems that

are solved in this section.
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OP 1. Given 0 ≤ t0 < tf ∈ Z and x0 ∈ Rn, find an admissible control ũ ∈
Ut0,tf

that satisfies J3(t0, tf , x0, ũ) ≤ J3(t0, tf , x0, u) for all u ∈ Ut0,tf
.

OP 2. Given t0 ≥ 0, x0 ∈ Rn find a control ũ ∈ Ut0,∞(x0) such that
J3(t0,∞, x0, ũ) < ∞ and J3(t0,∞, x0, ũ) ≤ J(t0,∞, x0, u) for all
u ∈ Ut0,∞(x0).

In the case of the cost functional (6.52) it is not known that there exists
u ∈ Ut0,∞(x0) such that

J3(t0,∞, x0, u) < +∞. (6.54)

That is why it is natural to introduce the following definition.

Definition 6.3 We say that the optimization problem OP 2 is well posed if
for every x0 ∈ Rn and t0 ∈ Z+ there exists u ∈ Ut0,∞(x0) such that (6.54) is
fulfilled.

In the construction of the optimal control ũ in the above optimization
problems a crucial role is played by the solutions of the following system of
discrete-time stochastic generalized Riccati equations (DTSRE-C),

X(t, i) =
r∑

k=0

AT
k (t, i)Ei(t,X(t + 1))−

[
r∑

k=0

AT
k (t, i)Ei(t,X(t + 1))Bk(t, i)

+CT (t, i)D(t, i)

][

DT (t, i)D(t, i)+
r∑

k=0

BT
k (t, i)Ei(t,X(t+1))Bk(t.i)

]−1

×
[

r∑

k=0

BT
k (t, i)Ei(t,X(t+1))Ak(t, i)+DT (t, i)C(t, i)

]

+CT (t, i)C(t, i),

(6.55)

where Ei(t, Y ) =
∑N

j=1 pt(i, j)Y (j) (see also (5.129)).
For the problem OP 1 we need the solution of (6.55) with the termi-

nal condition X(tf , i) = Kf(i), whereas in the case of problem OP 2 the
bounded stabilizing solution of (6.55) is involved. It should be remarked that
the DTSRE-C (6.55) is a special case of (5.128). It follows that the existence of
the solutions of (6.55) involved in this section can be obtained via the results
derived in Chapter 5.

6.4.2 Solution of the problem OP 1

Concerning the optimization problem OP 1 we prove the following.

Theorem 6.5 Assume that in the cost functional (6.51) we have:

(a) Kf (i) ≥ 0, i ∈ D.
(b) DT (t, i)D(t, i) > 0, t0 ≤ t ≤ tf − 1, i ∈ D.
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Let X̂(t) = (X̂(t, 1), . . . , X̂(t,N)) be the solution of the system (6.55) that
verifies the terminal condition X̂(tf , i) = Kf (i), i ∈ D.

Let κ̂(t) = (κ̂(t, 1), . . . , κ̂(t,N)) be the solution of the corresponding back-
ward affine equation (6.11), with the terminal condition κ̂(tf , i) = 0, i ∈ D.
Under these conditions the optimal control in the optimization problem OP 1
is given by

û(t) = F̂ (t, ηt)x̂(t) + ψ̂(t, ηt), (6.56)

where F̂ (t, i) = F X̂(t, i) and ψ̂(t, i) is as in (6.14) with (X̂(t, i), κ̂(t, i)) instead
of (X(t, i), κ(t, i)) and x̂(t) is a solution of the problem with given initial
values:

x(t + 1) = [A0(t, ηt) + B0(t, ηt)F̂ (t, ηt)]x(t) + f̂0(t, ηt)

+
r∑

k=1

wk(t)[(Ak(t, ηt) + Bk(t, ηt)F̂ (t, ηt))x(t) + f̂k(t, ηt)], (6.57)

x(t0) = x0 and f̂k(t, i) = Bk(t, i)ψ̂(t, i) + fk(t, i), 0 ≤ k ≤ r.
The optimal value is

J3(t0, tf , x0, û) =
N∑

l=1

πt0(l){xT
0 X̂(t0, l)x0 + 2xT

0 κ̂(t0, l) + μ̂(t0, l)}, (6.58)

where πt0(l) = P{ηt0 = l} is the distribution of the Markov chain and μ̂(t) =
(μ̂(t, 1) · · · μ̂(t,N))T is the solution of (6.12) written for X̂(t, i), κ̂(t, i) and
having the terminal value μ̂(tf , i) = 0.

Proof. The assumptions (a) and (b) guarantee (via Corollary 5.1) that the
solution X̂(t) of (6.55) is well defined for t0 ≤ t ≤ tf − 1 and X̂(t, i) ≥ 0.
On the other hand κ̂(t, i) is well defined as the solution of (6.11). Applying
Proposition 6.2 for the triple (X̂(t, i), κ̂(t, i), μ̂(t, i)) and taking into account
that if α is a random integrable variable then Eα =

∑
i∈Dt0

πt0(i)E[α|ηt0 = i],
one gets:

J3(t0, tf , x0, u) = E[xT
0 X̂(t0, ηt0)x0 + 2xT

0 κ̂(t0, ηt0) + μ̂(t0, ηt0)] (6.59)

+
tf−1∑

t=t0

E[(u(t) − û(t))TRηt(t, X̂(t + 1))(u(t) − û(t))],

where û(t) is given by (6.56) and

Ri(t, X̂(t + 1)) = R(t, i) +
r∑

k=0

BT
k (t, i)Ei(t, X̂(t + 1))Bk(t, i). (6.60)
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The fact that û ∈ Ut0,tf
follows from its formula. From (6.59) we deduce that

J3(t0, tf , x0, u) ≥ J3(t0, tf , x0, û)

= E[xT
0 X̂(t0, ηt0)x0 + 2xT

0 κ̂(t0, ηt0) + μ̂(t0, ηt0)]. (6.61)

The fact that Rηt(t, X̂(t + 1)) > 0 if X̂(t, i) ≥ 0 was used. Equation (6.59)
also shows that û is the unique optimal control. Using

E[xT
0 X̂(t0, ηt0)x0 + 2xT

0 κ̂(t0, ηt0) + μ̂(t0, ηt0)]

=
N∑

l=1

πt0(l)(x
T
0 X̂(t0, l)x0 + 2xT

0 κ̂(t0, l) = μ̂(t0, l))

in (6.61) one obtains (6.58) and thus the proof ends. �

6.4.3 On the global bounded solution of (6.11)

To derive the solution of the problem OP 2 we need the global bounded
solution of the backward affine equation of type (6.11), written for Xs(t) and
Fs(t, i) instead of X(t) and FX(t, i), where Xs(t) = (Xs(t, 1), . . . , Xs(t,N))
is the stabilizing bounded solution of DTSRE-C (6.55) and Fs(t, i) is the
corresponding stabilizing feedback gain. To obtain conditions that guarantee
the existence of such a global solution we need some auxiliary results.

Let Rn·N = Rn ⊕ Rn ⊕ · · · ⊕ Rn(N times). If x ∈ Rn·N then x =
(x(1), . . . , x(N)) with x(i) ∈ Rn, x(i) = (x1(i), x2(i), . . . , xn(i))T . Rn·N is
a Hilbert space with the inner product

〈x, y〉 =
N∑

i=1

xT (i)y(i) (6.62)

for all x, y ∈ Rn·N . Together with the norm | · |2 induced on Rn·M by the
inner product (6.62) we consider also the norm

|x|1 = maxi∈D(xT (i)x(i))1/2. (6.63)

If L :Rn·N →Rn·N is a linear operator then ‖L‖k is the operator norm induced
by | · |k, k ∈{1, 2}. Based on the sequences {A0(t, i)}t≥0, {Pt}t≥0 we construct
the linear operators At : Rn·N → Rn·N by Atx = ((Atx)(1), . . . , (Atx)(N))
with

(Atx)(i) =
N∑

j=1

pt(j, i)A0(t, j)x(j). (6.64)

It is easy to see that the adjoint operator of At with respect to the inner
product (6.62) is given by A∗

tx = ((A∗
t x)(1), . . . , (A∗

t x)(N)) with
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(A∗
tx)(i) = AT

0 (t, i)Ei(t, x), (6.65)

where Ei(t, x) is defined as in (5.129) with x(i) instead of X(i). In the
sequel Ξ(t, s) stands for the linear evolution operator on Rn·N defined by At;
that is,

Ξ(t, s) =
{
At−1 . . .As if t > s ≥ 0

IRn·N if t = s,

where IRn·N is the identity operator on Rn·N .
Consider the linear system derived from (6.10)

x(t + 1) =

[

A0(t, ηt) +
r∑

k=1

wk(t)Ak(t, ηt)

]

x(t), t ≥ 0. (6.66)

We denote Φ(t, s) the fundamental matrix solution of (6.66). We have

Φ(t + 1, s) =

[

A0(t, ηt) +
r∑

k=1

wk(t)Ak(t, ηt)

]

Φ(t, s). (6.67)

The next result provides a connection between the adjoint of linear evolution
operators defined by (6.64) and the trajectories of the system (6.66). It can
be viewed as a counterpart of Theorem 3.1.

Lemma 6.3 Under the assumptions H1,H2 we have

(Ξ∗(t, s)x)(i) = E[ΦT (t, s)x(ηt)|ηs = i] (6.68)

for all i ∈ Ds, t ≥ s > 0, x = (x(1), . . . , x(N)) ∈ Rn·N .

Proof. We define the linear operators U(t, s) : Rn·N → Rn·N , t ≥ s ≥ 0 by

(U(t, s)x)(i) =

{
E[ΦT (t, s)x(ηt)|ηs = i if i ∈ Ds

(Ξ∗(t, s)x)(i) if i ∈ D −Ds,
(6.69)

where Ds is defined as in (1.8). Taking successively the conditional expectation
with respect to Ht, H̃t, and σ(ηs) and taking into account Corollary 1.1, one
obtains via (6.67) that

E[ΦT (t + 1, s)x(ηt+1)|ηs] =
N∑

j=1

E[ΦT (t, s)AT
0 (t, ηt)x(j)pt(ηt, j)|ηs]. (6.70)

We also used the fact that E[wk(t)|H̃t] = E[wk(t)] = 0, 1 ≤ k ≤ r. If i ∈ Ds

(6.70) leads to

E[ΦT (t + 1, s)x(ηt+1)|ηs = i] =
N∑

j=1

E[ΦT (t, s)AT
0 (t, ηt)x(j)pt(ηt, j)|ηs = i].



210 6 Linear quadratic optimization problems

Using (6.65) one gets

E[ΦT (t + 1, s)x(ηt+1)|ηs = i] = E[ΦT (t, s)(A∗
t x)(ηt)|ηs = i]. (6.71)

Based on (6.69), the equality (6.71) may be written:

(U(t + 1, s)x)(i) = (U(t, s)A∗
t x)(i), (6.72)

i ∈ Ds. By direct calculation one obtains that (6.72) still holds for i ∈ D\Ds.
Therefore (6.72) leads to U(t+1, s) = U(t, s)A∗

t . This shows that the sequence
{U(t, s)}t≥s solves the same equation as Ξ∗(t, s). Also we have U(s, s)x = x =
Ξ(s, s)x for all x ∈ Rn·N . This allows us to conclude that U(t, s) = Ξ∗(t, s)
for all t ≥ s ≥ 0 and thus the proof ends. �

In the sequel we use the following assumption.

A.6.3 For each t ≥ 0, Pt is a nondegenerate stochastic matrix.

From the representation formula (6.68) and Theorem 3.4 one obtains the
following.

Corollary 6.1 Under the assumptions H1, H2, and A.6.3, if the zero solu-
tion of (6.66) is exponentially stable in the mean square with conditioning of
type I (ESMS-CI) then the zero solution of the discrete-time linear equation
on Rn·N ,

xt+1 = Atxt

is exponentially stable.

Let us consider the system of backward affine equations

κ(t, i) = (A0(t, i) + B0(t, i)F̃s(t, i))T Ei(t, κ(t + 1)) + g̃(t, i), (6.73)

i ∈ D, where

g̃(t, i) =
r∑

k=0

(Ak(t, i) + Bk(t, i)Fs(t, i))TEi(t,Xs(t + 1))fk(t, i),

Fs(t, i) being the stabilizing feedback gain determined by the stabilizing
bounded solution of (6.55).

In the sequel we need the following assumption.

A.6.4

(i) {Ak(t, i)}t≥0, {Bk(t, i)}t≥0, 0 ≤ k ≤ r, {C(t, i)}t≥0, {D(t, i)}t≥0 are bounded
sequences.

(ii) {fk(t, i)}t≥0, 0 ≤ k ≤ r, i ∈ D are bounded sequences.
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(iii) (a) There exists δ0 > 0 not depending upon t such that
R(t, i) := DT (t, i)D(t, i) ≥ δ0Im, ∀(t, i) ∈ Z+ ×D.

(b) CT (t, i)D(t, i) = 0, ∀(t, i) ∈ Z+ ×D.

It should be noted that under the assumption A.6.4 the DTSRE-C (6.55)
takes the form of (5.138).

Lemma 6.4 Under the assumptions A.6.4 the system of backward affine
equations (6.73) has a unique bounded solution on
Z+, κ̃(t) = (κ̃(t, 1), . . . , κ̃(t,N)).

Proof. Let Xs(t) = (Xs(t, 1), . . . , Xs(t,N)) be the stabilizing bounded solu-
tion of (6.55) and Fs(t) = (Fs(t, 1), . . . , Fs(t,N)) be the corresponding stabi-
lizing feedback gain. Let Ãt : Rn·N → Rn·N defined by

(Ãtx)(i) =
N∑

j=1

pt(j, i)(A0(t, j) + B0(t, j)Fs(t, j))x(j)

for all x = (x(1), . . . , x(N)) ∈ Rn·N . It is easy to see that the backward affine
equation (6.73) may be written as

κ(t) = Ã∗
t κ(t + 1) + g̃(t) (6.74)

with g̃(t) = (g̃(t, 1), . . . , g̃(t,N)). Under the considered assumptions it follows
that |g̃(t)|1 ≤ μ, where μ > 0 is independent of t. From Corollary 6.1 it fol-
lows that the sequence {Ãt}t≥0 defines an exponentially stable evolution. The
conclusion of Lemma 6.4 now follows, applying Theorem 2.5(i) to equation
(6.74). �

6.4.4 The solution of the problem OP 2

In this subsection we derive the solution of the optimization problem OP 2
stated in Section 6.4.1.

Based on the stabilizing bounded solution X̃(t) of (6.55) and the unique
bounded solution κ̃(t) of (6.73) we construct the following control law,

ũ(t) = Fs(t, ηt)x̃(t) + ψ̃(t, ηt), (6.75)

where Fs(t, i) is the stabilizing feedback gain,

ψ̃(t, i) = −
(

R(t, i) +
r∑

k=0

BT
k (t, i)Ei(t,Xs(t + 1))Bk(t, i)

)−1

×
(

BT
0 (t, i)Ei(t, κ̃(t + 1))+

r∑

k=0

BT
k (t, i)Ei(t,Xs(t + 1))fk(t, i)

)

,

(6.76)
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and x̃(t) is the solution of the closed-loop system

x̃(t + 1) = [A0(t, ηt) + B0(t, ηt)Fs(t, ηt)]x̃(t) + f̃0(t, ηt)

+
r∑

k=1

wk(t)[(Ak(t, ηt) + Bk(t, ηt)Fs(t, ηt))x̃(t) + f̃k(t, ηt)] (6.77)

x̃(t0) = x0,

where f̃k(t, i) = Bk(t, i)ψ̃(t, i) + fk(t, i), 0 ≤ k ≤ r, (t, i) ∈ Z+ × D. It is easy
to see that if fk(t, i) = 0, 0 ≤ k ≤ r, i ∈ D, t ∈ Z+ then κ̃(t, i) = 0; this
leads to ψ̃(t, i) = 0, t ≥ 0, i ∈ D. In this case the control (6.75) reduces to
ũ(t) = Fs(t, ηt)x̃(t), x̃(t) being the solution of (6.77).

Lemma 6.5 Under the assumptions H1,H2,A.6.3, and A.6.4 the following
hold.

(i) For each x0 ∈ Rn, ũ ∈ Ut0∞(x0).
(ii) J3(t0,∞, x0, ũ) < +∞.

Proof. Based on Lemma 6.4 and the assumption A.6.4 we deduce that

sup
t≥0

|f̃k(t, i)| < +∞, 0 ≤ k ≤ r, 1 ≤ i ≤ N.

Applying Corollary 3.8(ii) to the system (6.77) we conclude that in the case
of the control ũ condition (6.50) is fulfilled. Because x̃(t) is Ht−1-measurable
and Ht−1 ⊂ H̃t we obtain from (6.75) that ũ(t) is H̃t-measurable. This allows
us to conclude that ũ is an admissible control. Also from (6.75) it follows
that supt≥t0 E[|ũ(t)|2] < +∞. Hence J3(t0, x0, ũ) < +∞. This completes the
proof. �

For each (t0, x0) ∈ Z+ ×Rn we introduce the sets

Ũt0,∞(x0) = {u ∈ Ut0,∞(x0)|J(t0,∞, x0, u) < +∞}.

Under the conditions of the above lemma it follows that ũ defined by
(6.75–6.77) leads in Ũt0,∞(x0).

Moreover based on Corollary 3.8(ii) one obtains that if the linear control
system (6.10) (with fk(t, i) ≡ 0, 0 ≤ k ≤ r) is stochastic stabilizable and if the
assumptions H1,H2, and A.6.4 are fulfilled then for each (t0, x0) ∈ Z+ ×Rn

the set Ũt0,∞(x0) contains the controls of the form

u(t) = F (t, ηt)x̂(t) + h(t)

for arbitrary stabilizing feedback gain {F (t, i)}t≥0, i ∈ D and for arbitrary
stochastic process {h(t)}t≥0 with the properties:

(a) For each t ∈ Z+, h(t) is H̃t-measurable.
(b) supt≥0 E[|h(t)|2] < ∞.
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x̂(t) is the solution of

x(t + 1) = [A0(t, ηt) + B0(t, ηt)F (t, ηt)]x(t) + f̌0(t)

+
r∑

k=1

wk(t)[(Ak(t, ηt)+Bk(t, ηt)F (t, ηt))x(t)+f̌k(t)], x̂(t0)=x0,

where
f̌k(t) = fk(t, ηt) + Bk(t, ηt)h(t).

Let us consider the backward affine equation on

μ(t) = Ptμ(t + 1) + h̃(t), (6.78)

where h̃(t) = (h̃(t, 1), . . . , h̃(t,N))T , h̃(t, i) being constructed as in (6.13)
replacing X(t), FX(t, i), and κX(t) by Xs(t), Fs(t, i), and κ̃(t).

Lemma 6.6 Under the assumptions of Lemma 6.5, if
μT (t) = (μT (t, 1), . . . , μT (t,N))T is the solution of (6.78) with the final value
μT (T, i) = 0, 1 ≤ i ≤ N , then, for all i ∈ D,

lim
T→∞

1
T − t0

μT (t0, i)

is finite.

Proof. We have:

μT (t0) =
T−1∑

s=t0

P(t0, s)h̃(s), (6.79)

where P(t, s) = PtPt+1 · · ·Ps−1 if s > t and P(t, s) = IN if s = t. One
can verify that P(t0, s) is also a stochastic matrix. Based on the assumptions
A.6.3 and A.6.4 we deduce that |h̃(t) ≤ ch for all t ≥ 0, where ch is a positive
constant not depending upon t. Therefore, if Pi(t0, s) is the ith row of P(t, s),
one obtains that

|Pi(t0, s)h̃(s)| ≤ ch (6.80)

for all s ≥ t0 ≥ 0. The conclusion follows combining (6.79) and (6.80). �

The main result of this section is the following.

Theorem 6.6 Assume that:

(a) The hypotheses H1,H2,A.6.3, and A.6.4, are fulfilled.
(b) The DTSRE-C (6.55) has a bounded stabilizing solution.
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Under these conditions the optimal control of the problem OP 2 is given
by (6.75)–(6.77).

The optimal value of the cost functional is given by

J3(t0,∞, x0, ũ) = lim
T→∞

1
T

N∑

l=1

π0(l)μT (0, l), (6.81)

where μT (t) = (μT (t, 1) · · ·μT (t,N))T is the solution of (6.78) with the final
value

μT (T, l) = 0.

Proof. Let X̃(t) = (X̃(t, 1), . . . , X̃(t,N)) be the bounded stabilizing solution
of DTSRE-C (6.55) and κ̃(t) = (κ̃(t, 1), . . . , κ̃(t,N)) be the unique bounded
solution of the corresponding backward affine equation (6.73). For each T > t0
let μT+1(t) = (μT+1(t, 1) · · ·μT+1(t,N)) be the solution of the backward affine
equation (6.78) with the terminal value μT+1(T + 1, i) = 0, 1 ≤ i ≤ N .
Applying Proposition 6.2, one obtains:

T∑

t=t0

E[|y(t)|2|ηt0 = i] = xT
0 X̃(t0, i)x0 + 2xT

0 κ̃(t0, i) + μT+1(t0, i)

− E[xT (T + 1)X̃(T + 1, ηT+1)x(T + 1)

+ 2xT (T + 1)κ̃(T + 1, ηT+1)|ηt0 = i]

+
T∑

t=t0

E[(u(t)− F̃ (t, ηt)x(t))T (R(t, ηt)

+
r∑

k=0

BT
k (t, ηt)Eηt(t, X̃(t + 1))Bk(t, ηt))

× (u(t) − F̃ (t, ηt)x(t))|ηt0 = i]

for all u ∈ Ut0∞(x0) and x(t) stands for the trajectory xu(t, t0, x0) of (6.10)
corresponding to the control u. Invoking (6.50) together with Lemma 6.4 we
deduce that

lim
T→∞

1
T − t0

{xT
0 X̃(t0, i)x0 + 2xT

0 κ̃(t0, i)

− E[xT (T + 1)X̃(T + 1, ηT+1)x(T + 1)

+ 2xT (T + 1)κ̃(T + 1, ηT+1)|ηt0 = i]} = 0, i ∈ Dt0 .
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So we obtain

J3(t0,∞, x0, u) = lim
t→∞

1
T − t0

{
N∑

l=1

πt0(l)μT+1(t0, l)

+
T∑

t=t0

E

[

(u(t) − F̃ (t, ηt)x(t))T

(

R(t, ηt) +
r∑

k=0

BT
k (t, ηt)

× Eηt(t, X̃(t + 1))Bk(t, ηt)

)

(u(t) − F̃ (t, ηt)x(t))

]}

≥ lim
T→∞

1
T − t0

N∑

l=1

πt0(l)μT+1(t0, l) = J3(t0,∞, x0, ũ)

for all u ∈ Ut0∞(x0). Here we used the fact that the bounded stabilizing
solution of (6.55) verifies

R(t, i) +
r∑

k=0

BT
k (t, i)Ei(t, X̃(t + 1))Bk(t, i) ≥ νIm > 0

for all (t, i) ∈ Z+ × D. Finally we remark that under the considered assump-
tions by using (1.7) and (6.79) we have

lim
T→∞

1
T − t0

N∑

l=1

πt0(l)μT+1(t0, l) = lim
T→∞

1
T

N∑

l=1

π0(l)μT (0, l).

This completes the proof. �

Remark 6.5

(a) From (6.81) it follows that under the assumptions of Theorem 6.6 the
optimal value of the problem OP 2 does not depend upon t0 and x0.

(b) In the time-invariant case we have Pt = P, h̃(t, i) = h̃(i), t ≥ 0 and there-
fore by Theorem 6.6 and Proposition 1.5 one obtains that the optimal value
of the problem OP is

∑N
�=1

∑N
j=1 q(�, j)h̃(j)π0(�); in the time-invariant

case it is not necessary to assume that P is a nondegenerate stochastic
matrix (see Theorem 3.10).

(c) If the condition (6.50) from the definition of the set of admissible controls
Ut0,∞(x0) is replaced by

lim
t→∞E[|xu(t, t0, x0)|2] = 0 (6.82)

one obtains a new class of admissible controls Ût0,∞(x0). It is obvious that
Ût0,∞(x0) ⊂ Ut0,∞(x0).
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Thus we may consider a new optimization problem asking for the mini-
mization of the cost functional (6.52) over the set of admissible controls
Ût0,∞(x0). To be sure that condition (6.82) is satisfied, the assumption
A.6.4(ii) should be replaced with a stronger one:

A.6.5 limt→∞ fk(t, i) = 0, i ∈ D, 0 ≤ k ≤ r.

One proves that the unique bounded solution of (6.73) satisfies
limt→∞ κ̃(t) = 0.

Furthermore if ψ̃(t, i) is defined by (6.76) we have limt→∞ ψ̃(t, i) = 0,
i ∈ D. Applying Corollary 3.9(iii), one obtains that the solution of (6.77)
satisfies limt→∞ E[|x̃(t)|2] = 0. This shows that the control ũ(t) defined by
(6.75)–(6.77) belongs to the new class of admissible controls Ût0,∞(x0).

Reasoning as in the proof of Theorem 6.6 one obtains that if the assump-
tion A.6.4(ii) is replaced by A.6.5 the control ũ(t) defined by (6.75)–(6.77)
achieves the optimal value of the cost functional (6.52) with respect to both
classes of admissible controls Ut0,∞(x0) as well as Ût0,∞(x0).

6.5 Tracking problems

Consider the discrete-time controlled system described by

x(t + 1) = A0(t, ηt)x(t) + B0(t, ηt)u(t)

+
r∑

k=1

[Ak(t, ηt)x(t) + Bk(t, ηt)u(t)]wk(t), (6.83)

t ≥ t0, x(t0) = x0.
Let {r(t)}t≥0, r(t) ∈ Rn be a given signal called the reference signal. The

control problem we want to solve is to find a control ũ(t) that minimizes the
deviation x(t) − r(t).

For a more rigorous setting of this problem let us introduce the following
cost functionals,

J4(t0, tf , x0, u) = E

{

(x(tf ) − r(tf ))T κf (ηt)(x(tf ) − r(tf ))

+
tf−1∑

t=t0

[(x(t) − r(t))T M(t, ηt)(x(t) − r(t))

+ uT (t)R(t, ηt)u(t)]

}

(6.84)
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in the case of a finite time horizon and

J4(t0,∞, x0, u)

= limT→∞
1

T − t0

T∑

t=t0

E[(x(t) − r(t))T M(t, ηt)(x(t) − r(t))

+ uT (t)R(t, ηt)u(t)] (6.85)

in the case of an infinite time horizon, where M(t, i) = MT (t, i) ≥ 0, Kf (i) =
KT

f (i) ≥ 0, R(t, i) = RT (t, i) > 0, and x(t) = xu(t, t0, x0).
The tracking problems considered in this section ask for finding a control

law uopt ∈ Ut0,tf
, (ũopt ∈ Ut0,∞(x0), respectively) in order to minimize the

cost (6.84) (the cost (6.85), respectively). If we set ξ(t) = x(t)− r(t) then we
obtain ξ(t+1) = A0(t, ηt)ξ(t)+B0(t, ηt)u(t)+f0(t, ηt)+

∑r
k=1[Ak(t, ηt)ξ(t)+

Bk(t, ηt)u(t) + fk(t, ηt)]wk(t) and the cost functionals

J4(t0, tf , x0, u) = E[ξT (tf )Kf (ηt)ξ(tf )

+
tf−1∑

t=t0

(ξT (t)M(t, ηt)ξ(t) + uT (t)R(t, ηt)u(t))]

and

J4(t0,∞, x0, u) = limT→∞
1

T − t0

T∑

t=t0

E[ξT (t)M(t, ηt)ξ(t)+u(t)TR(t, ηt)u(t)],

where

f0(t, i) = A0(t, i)r(t) − r(t + 1)

fk(t, i) = Ak(t, i)r(t), 1 ≤ k ≤ r, t ≥ 1. (6.86)

Let us consider the following system of Riccati type equations.

X(t, i) =
r∑

k=0

AT
k (t, i)Ei(t,X(t + 1))Ak(t, i)

−
[

r∑

k=0

AT
k (t, i)Ei(t,X(t + 1))Bk(t, i)

]

×
[

R(t, i) +
r∑

k=0

BT
k (t, i)Ei(t,X(t + 1))Bk(t, i)

]−1

×
[

r∑

k=0

BT
k (t, i)Ei(t,X(t + 1))Ak(t, i)

]

+ M(t, i), (6.87)
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where Ei(t, ·) is defined as in (5.129). It is easy to see that (6.87) is a special
case of (5.128) with L(t, i) = 0.

The solutions of the tracking problems are derived directly from
Theorem 6.5 and Theorem 6.6.

Corollary 6.2 Under the considered assumptions, the optimal control of the
tracking problem described by the system (6.83) and the cost (6.84) is given by

ûopt(t) = F̂ (t, ηt)(x̂(t) − r(t)) + ψ̂(t, ηt), (6.88)

where F̂ (t, i) = F X̂(t, i) is constructed as in (6.7) based on the solution X̂(t, i)
of the system (6.87) with the terminal condition X̂(tf , i) = Kf (i), i ∈ D,
ψ̂(t, i) is constructed as in (6.14) based on X̂(t, i); and κ̂(t) with (κ̂(t) =
(κ̂(t, 1), . . . , κ̂(t,N)) is the solution of the system of backward affine equations

κ(t, i) = (A0(t, i) + B0(t, i)F̂ (t, i))TEi(t, κ̂(t + 1)) + ĝ(t, i), (6.89)

κ̂(tf , i) = 0,

i ∈ D, where ĝ(t, i) =
∑r

k=0(Ak(t, i) + Bk(t, i)F̂ (t, i))TEi(t, X̂(t + 1)fk(t, i),
fk(t, i) given by (6.86), x̂(t) is the solution of the closed-loop system:

x̂(t + 1) =

[

A0(t, ηt) + B0(t, ηt)F̂ (t, ηt)

+
r∑

k=1

(Ak(t, ηt) + Bk(t, ηt)F̂ (t, ηt))wk(t)

]

x̂(t)

+f0(t, ηt)+B0(t, ηt)ψ̂(t, ηt)+
r∑

k=1

wk(t)(fk(t, ηt)+Bk(t, ηt)ψ̂(t, ηt)),

t ≥ t0, x̂(t0) = x0. The optimal cost is given by J4(t0, tf , x0, ûopt) =
∑N

l=1[π0(l)[(x0 − r(t0))T X̂(t0, l)(x0 − r(t0))+2(x0 − r(t0))T κ(t0, l)+ μ̂(t0, l)],
where μ̂(t, l) are as in Theorem 6.5.

For the tracking problem on the infinite time horizon, we have the
following.

Corollary 6.3 Assume:

(a) The hypotheses H1,H2,A.6.3 are fulfilled.
(b) The sequences {Ak(t, i)}t≥0, {Bk(t, i)}t≥0, 0 ≤ k ≤ r, {M(t, i)}t≥0,

{R(t, i)}t≥0, i ∈ D, {r(t)}t≥0 are bounded.
(c) R(t, i) ≥ δIn > 0 for all (t, i) ∈ Z+ ×D.
(d) The DTSRE-C (6.87) has a bounded stabilizing solution.
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Under these conditions the optimal control of the tracking problem des-
cribed by the system (6.83) and the cost (6.85) is:

ũopt(t) = F̃ (t, ηt)(x̃(t) − r(t)) + ψ̃(t, ηt), (6.90)

where F̃ (t, i) = F X̃(t, i) is constructed as in (6.7) based on the bounded stabi-
lizing solution X̃(t) = ((X̃(t, 1), . . . , X̃(t,N)) of DTSRE-C (6.87) and ψ̃(t, i)
is given by

ψ̃(t, i) = −
(

R(t, i) +
r∑

k=0

Bk(t, i)Ei(t, X̃(t + 1))Bk(t, i)

)−1

×
[

BT
0 (t, i)Ei(t, κ̃(t + 1)) +

r∑

k=0

BT
k (t, i)Ei(t, X̃(t + 1))fk(t, i)

]

,

where κ̃(t) = (κ̃(t, 1), . . . , κ̃(t,N)) is the unique bounded solution of the system
of backward affine equations

κ(t, i) = (A0(t, i) + B0(t, i)F̃ (t, i))TEi(t, κ(t + 1)) + g̃(t, i) (6.91)

with

g̃(t, i) =
r∑

k=0

(Ak(t, i) + Bk(t, i)F̃ (t, i))T Ei(t, X̃(t + 1))fk(t, i),

fk(t, i) given by (6.86); x̃(t) is the solution of the closed-loop system

x̃(t + 1) =

[

A0(t, ηt) + B0(t, ηt)F̃ (t, ηt)

+
r∑

k=1

(Ak(t, ηt) + Bk(t, ηt)F̃ (t, ηt))wk(t)

]

x̃(t) + f0(t, ηt)

+ B0(t, ηt)ψ̃(t, ηt) +
r∑

k=1

wk(t, ηt)(fk(t, ηt) + Bk(t, ηt)ψ̃(t, ηt)),

t ≥ t0, x(t0) = x0.

Remark 6.6 Necessary and sufficient conditions that guarantee the existence of
the bounded stabilizing solution of (6.87) are obtained via Theorem 5.12. The
condition R(t, i)+

∑r
k=0 BT

k (t, i)Ei(t, X̃(t+1))Bk(t, i) ≥ νIn, ∀(t, i) ∈ Z+×D
is automatically satisfied, due to assumption (c), together with M(t, i) =
MT (t, i) ≥ 0.
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Remark 6.7 The construction of the optimal control in the case of the track-
ing problem investigated in this section is based on advance knowledge of
the reference signal on the whole time interval. This is a difficulty that
is hard to overcome if the reference signal {r(t}t≥0 is a sequence without
other additional properties. In this case an infinite is required to compute
the terms Ψ̃(t, i) occurring in the optimal control. However, in some impor-
tant cases, such as the case of periodic reference signals or in the case of a
constant reference signal, we need a finite memory to compute the bounded
solution on Z+ of the backward affine equation (6.91). Let us assume that
there exists an integer θ ≥ 2 such that the coefficients of the system (6.83),
the weights of the cost functional (6.85), and the reference signal satisfy:
Ak(t + θ, i) = Ak(t, i), Bk(t + θ, i) = Bk(t, i), 0 ≤ k ≤ r,M(t + θ, i) =
M(t, i), R(t + θ, i) = R(t, i), i ∈ D, and r(t + θ) = r(t) for all t ∈ Z+. Under
these conditions one obtains, via Theorem 5.5, that the stabilizing solution of
the DTSRE-C (6.87) is a bounded sequence with the same period θ. There-
fore the corresponding stabilizing feedback gain F̃ (t, i) is also periodic with
the period θ. Applying Theorem 2.5(ii) to equation (6.91) we deduce that the
unique bounded solution κ̃(t) of (6.91) is periodic with period θ. As in the
case of the equation (6.73), equation (6.91) can be regarded as a discrete-time
backward affine equation on the space RnN :

κ̃(t) = Ã∗
t κ̃(t + 1) + g̃(t), (6.92)

where Ã∗
t is the adjoint of the operator Ãt defined in the proof of Lemma 6.4.

Setting Ξ̃(t, s) for the linear evolution operator on RnN defined by the
sequence {Ãt}t≥0 we obtain the representation

κ̃(t) = Ξ̃∗(θ, t)κ̃(θ) +
θ−1∑

s=t

Ξ̃∗(s, t)g̃(s), (6.93)

0 ≤ t ≤ θ− 1. The final value κ̃(θ) of the periodic solution is obtained solving
the following linear equation, on RnN ;

(IRnN − Ξ̃∗(θ, 0))x =
θ−1∑

s=0

Ξ̃∗(s, 0)g̃(s), (6.94)

where IRnN is the identity operator on RnN . Because the sequence {Ãt}t≥0

defines an exponentially stable evolution, it follows that λ = 1 is not in the
spectrum of the operator Ξ̃∗(θ, 0). Hence equation (6.94) has a unique solution
κ̃(θ) = (IRnN − Ξ̃∗(θ, 0))−1(

∑θ−1
s=0 Ξ̃∗(s, 0)g̃(s)). Plugging this in (6.93) we

obtain the values of the solution κ̃(t) required for the construction of the
optimal control.

In the time-invariant case (θ = 1), the bounded solution of (6.91) is con-
stant. It is given by κ̃ = (IRnN − Ã)−1g̃. In this case ψ̃(t, i)− ψ̃(i).
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6.6 Notes and references

In the discrete-time stochastic framework the linear quadratic optimization
problem was separately investigated for systems with independent random
perturbations and systems with Markov perturbations, respectively. Thus, for
the case of discrete-time stochastic systems with independent random pertur-
bations we refer to [88, 89, 113], and for discrete-time systems with Markovian
switching we mention [2, 6, 15, 16, 18, 27, 55, 59, 75, 84, 86, 87, 90, 89].

In this chapter we consider different aspects of the linear quadratic
optimization problem for a general class of discrete-time time-varying linear
stochastic systems subject to multiplicative white noise perturbations and
Markov jump perturbations. The results contained in Sections 6.2 and 6.3 are
the discrete-time counterparts of those published in Sections 5.1 and 5.2 from
[40]. They are presented in detail for the first time in this monograph. The
results included in Section 6.4 were presented firstly in [45], and the tracking
problem on the infinite time horizon was published in [44].



7

Discrete-time stochastic H2 optimal control

In this chapter the problem of H2 control of a discrete-time linear system
subject to Markovian jumping and independent random perturbations is con-
sidered. Several kinds of H2-type performance criteria (often called H2 norms)
are introduced and characterized via solutions of some suitable linear equa-
tions on the spaces of symmetric matrices. The purpose of such performance
criteria is to provide a measure of the effect of additive white noise perturba-
tion over an output of the controlled system. Different aspects specific to the
discrete-time framework are emphasized. Firstly, the problem of optimization
of H2 norms is solved under the assumption that a full state vector is available
for measurements. One shows that among all stabilizing controllers of higher
dimension, the best performance is achieved by a zero-order controller. The
corresponding feedback gain of the optimal controller is constructed based
on the stabilizing solution of a system of discrete-time generalized Riccati
equations. The case of discrete-time linear stochastic systems with coefficients
depending upon the states both at time t and at time t−1 of the Markov chain
is also considered. Secondly, the H2 optimization problem is solved under the
assumption that only an output is available for measurements. The state space
realization of the H2 optimal controller coincides with the stochastic version
of the well-known Kalman–Bucy filter. In the construction of the optimal con-
troller the stabilizing solutions of two systems of discrete-time coupled Riccati
equations are involved. Because in the case of the systems affected by multi-
plicative white noise the optimal controller is hard to implement, a procedure
for designing a suboptimal controller with the state space realization in a
state estimator form is provided. Finally a problem of H2 filtering in the case
of stochastic systems affected by multiplicative and additive white noise and
Markovian switching is solved.

© Springer Science + Business Media, LLC 2010
Stochastic Systems, DOI 10.1007/978-1-4419-0630-4_7,
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7.1 H2 norms of discrete-time linear stochastic systems

7.1.1 Model setting

Consider the discrete-time linear system (G) described by:

(G) :

⎧
⎪⎨

⎪⎩

x(t + 1) =
(

A0(ηt) +
r∑

k=1

wk(t)Ak(ηt)
)

x(t) + Bv(ηt)v(t)

z(t) = C(ηt)x(t), t ∈ Z+,

(7.1)

where x(t) ∈ Rn is the state vector, z(t) ∈ Rnz a controlled output, {w(t)}t≥0

(where w(t) = (w1(t), . . . , wr(t))T ) is a sequence of independent random vec-
tors, {v(t)}t≥0 is a sequence of mv-dimensional independent random vectors
on a given probability space (Ω,F ,P), and {ηt}t≥0 is an homogeneous Markov
chain with the set of the states D = {1, 2, . . . , N} and the transition proba-
bility matrix P . In (7.1), Ak(i) ∈ Rn×n, Bv(i) ∈ Rn×mv , and C(i) ∈ Rn×nz

are given matrices. As usually, Z+ stands for the set of nonnegative integers.
Throughout this chapter, we assume that the stochastic processes {ηt}t≥0,

{w(t)}t≥0 satisfy the hypotheses H1, and H2 introduced in Section 1.5, and
related to the sequence {v(t)}t≥0, we make the following assumptions.

A.7.1 {v(t)}t≥0 is a sequence of independent random vectors with the pro-
perties:

E[v(t)] = 0, E[v(t)vT (t)] = Imv , t ≥ 0

and {v(t)}t≥0 is independent of stochastic processes {w(t)}t≥0 and {ηt}t≥0.

Let A(t) = A0(ηt) +
r∑

k=1

wk(t)Ak(ηt), t ≥ 0. Set

Φ(t, s) =

{
A(t− 1)A(t− 2) · · ·A(s), if t ≥ s + 1

In, if t = s.

If x(t, t0, x0, v) is the solution of (7.1) with the initial value x(t0, t0,
x0, v) = x0 then we have the following representation formula,

x(t, t0, x0, v) = Φ(t, t0)x0 +
t−1∑

l=t0

Φ(t, l + 1)Bv(ηl)v(l) (7.2)

for all t ≥ t0 + 1.
Due to the linearity of (7.2), we have the decomposition:

x(t, t0, x0, v) = x(t, t0, x0, 0) + x(t, t0, 0, v) (7.3)

with x(t, t0, x0, 0) =
∑t−1

l=t0
Φ(t, l + 1)Bv(ηl)v(l). The corresponding output is

z(t, t0, x0, v) = C(ηt)x(t, t0, x0, 0) + z(t, t0, 0, v), (7.4)

where z(t, t0, 0, v) = C(ηt)x(t, t0, 0, v).
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In (7.4) C(ηt)x(t, t0, x0, 0) is the transitory component of the output signal,
whereas z(t, t0, 0, v) is the answer of the system determined by the exogenous
noise v(t).

7.1.2 H2-type norms

The linear system obtained from (7.1) is:

x(t + 1) = (A0(ηt) +
r∑

k=1

wk(t)Ak(ηt))x(t). (7.5)

Under the assumption that the zero state equilibrium of (7.5) is exponentially
stable in the mean square (ESMS), we introduce the following performance
criteria associated with the system (7.1).

‖G‖2 =

(

lim
l→∞

1
l

l∑

t=0

E[|z(t, 0, x0, v)|]
)1/2

(7.6)

‖̃G‖̃2 =

(

lim
l→∞

1
l

l∑

t=0

∑

i∈D0

E[|z(t, 0, x0, v)|2|η0 = i]

)1/2

, (7.7)

where D0 ⊆ D is the subset introduced by (1.8) for s = 0,

|||G|||2 =
(

lim
t→∞E[|z(t, 0, x0, v)|2]

)1/2

. (7.8)

Because in the deterministic framework (i.e., D = {1} and Ak(1) = 0, 1 ≤
k ≤ r) the right-hand side of (7.6)–(7.8) provides the state space characteri-
zation of the H2 norm of a linear time-invariant deterministic system, we
preserve the same terminology in this general framework of stochastic sys-
tems (7.1). That is why we call H2 norms the cost functionals introduced by
(7.6)–(7.8).

Having in mind (7.4) together with the exponential stability in the mean
square of the zero state equilibrium of (7.5) one can see that the transitory
component of the output z(t, s, x0, v) does not influence the performances
(7.6)–(7.8). Explicit formulae for the performances (7.6)–(7.8) are derived in
Section 7.2.

It is worth mentioning that in the literature which deals with the problem
of H2 optimal control for discrete-time linear stochastic systems only the H2

performances of type (7.8) are considered. In this chapter we consider also
H2 norms defined via Cesaro limits (see (7.6)–(7.7)). In the next section we
show that the H2 norms (7.6)–(7.7) can be computed under some weaker
assumptions than (7.8).
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7.1.3 Systems with coefficients depending upon ηt and ηt−1

The explicit formulae of the H2 norms (7.6)–(7.8) are derived as special cases
of some corresponding H2 norms defined for a class of discrete-time stochastic
systems with coefficients depending upon ηt and ηt−1. A motivation for the
consideration of the systems with coefficients depending upon ηt and ηt−1

can be found in Section 1.6. Here we show that regarding systems (7.1) as
special cases of systems (7.9) allows us to obtain new formulae for the H2

performances (7.6)–(7.8) that do not have an analogue in the continuous-time
case.

To redefine the H2 norms of type (7.6)–(7.8) in the case of systems with
coefficients depending upon ηt and ηt−1 we consider the uncontrolled system:

(G) :

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x(t + 1) =
(
A0(ηt, ηt−1)

+
r∑

k=1

wk(t)Ak(ηt, ηt−1)
)
x(t) + Bv(ηt, ηt−1)v(t)

z(t) = C(ηt, ηt−1)x(t), t ≥ 1.

(7.9)

As in the case of system (7.1), x(t, t0, x0, v), t ≥ t0 ≥ 1, x0 ∈ Rn stands for the
trajectory of (7.9) with the initial value x(t0, t0, x0, v) = x0 and z(t, t0, x0, v) =
C(ηt, ηt−1)x(t, t0, x0, v) is a corresponding output.

The analogues of norms (7.6)–(7.8) defined for the system (7.9) are:

‖G‖2 =

[

lim
l→∞

1
l

l∑

t=1

E[|z(t, 1, x0)|2]
]1/2

(7.10)

‖̃G‖̃2 =

[

lim
l→∞

1
l

l∑

t=1

∑

i∈D0

E[|z(t, 1, x0)|2|η0 = i]

]1/2

(7.11)

|||G|||2 =
[

lim
t→∞E[|z(t, s, x0)|2]

]1/2

. (7.12)

In the next section we show how we can express the right-hand side of (7.10)–
(7.12) in terms of the solution of some suitable linear equations. Such linear
equations extend to this framework the well-known equations of observability
Gramian and controllability Gramian from the deterministic framework.

7.2 The computation of H2-type norms

Consider the discrete-time linear system

x(t + 1) =

[

A0(ηt, ηt−1) +
r∑

k=1

wk(t)Ak(ηt, ηt−1)

]

x(t) (7.13)
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obtained from (7.9) taking Bv(i, j) = 0. Using the matrices Ak(i, j) and the
transition probability matrix P we construct the linear operator (see also
(2.99)) Υ : SN

n → SN
n as ΥH = (ΥH(1), ΥH(2), . . . , ΥH(N)) with

ΥH(i) =
r∑

k=0

N∑

j=1

p(j, i)Ak(i, j)H(j)AT
k (i, j), (7.14)

i ∈ D, H ∈ SN
n . By direct computation one obtains that the adjoint

operator Υ ∗ with respect to the inner product (2.18) is given by Υ ∗H =
(Υ ∗H(1), Υ ∗H(2), . . . , Υ ∗H(N)),

Υ ∗H(i) =
r∑

k=0

N∑

j=1

p(i, j)AT
k (j, i)H(j)Ak(j, i), i ∈ D, (7.15)

H ∈ SN
n . From Theorem 3.15 for θ = 1 one obtains that the zero state

equilibrium of (7.13) is ESMS if and only if the eigenvalues of the operator Υ
are in the inside of the disk |λ| < 1.

For the proofs of the results in this section we need the following auxiliary
results derived from Theorem 1.6. For each (t, s) ∈ Z+ × Z+, we denote

Ȟt,s = σ[ημ, w̌(ν); 0 ≤ μ ≤ t, 0 ≤ ν ≤ s],

where either w̌(ν) = w(ν) or w̌(ν) = (w(ν), v(ν)), ν ≥ 0.
In the special case t = s we write Ȟt instead of Ȟtt. It is obvious that

Ȟt = Ht if w̌(ν) = w(ν) and Ȟt = Ĥt if w̌(ν) = (w(ν), v(ν)), ν ≥ 0. The next
result is derived directly from Theorem 1.6.

Corollary 7.1 Under the assumptions H1,H2, and A.7.1 the following equa-
lity holds:

E[χ{ηt+1=j}|Ȟt] = E[χ{ηt+1=j}|ηt] = p(ηt, j) a.s.

for all j ∈ D, t ≥ 0.

It must be remarked that equality in the previous corollary extends (1.6)
to the joint process {ηt, w(t)}t≥0 or {ηt, w(t), v(t)}t≥0.

7.2.1 The computations of the norm ‖G‖2 and the norm ‖̃G‖̃2

We start with the following auxiliary result.

Lemma 7.1 Under the assumptions H1,H2, and A.7.1 we have

E[xT (t + 1)H(ηt)x(t + 1)|ηs−1]

= E[xT (t)(Υ ∗H)(ηt−1)x(t)|ηs−1]

+
N∑

j=1

E[Tr[H(j)Bv(j, ηt−1)BT
v (j, ηt−1)]p(ηt−1, j)|ηs−1],
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∀ t ≥ s ≥ 1, H ∈ SN
n , where x(t) = x(t, s, x0, v) is a trajectory of the system

(7.9) starting from x0 at t = s.

Proof. First we write

xT (t + 1)H(ηt)x(t + 1)

= xT (t)AT
0 (ηt, ηt−1)H(ηt)A0(ηt, ηt−1)x(t)

+
r∑

k,l=1

wk(t)wl(t)xT (t)AT
k (ηt, ηt−1)H(ηt)Al(ηt, ηt−1)x(t)

+ vT (t)BT
v (ηt, ηt−1)H(ηt)Bv(ηt, ηt−1)v(t)

+ 2
r∑

k=1

wk(t)xT (t)AT
0 (ηt, ηt−1)H(ηt)Ak(ηt, ηt−1)x(t)

+ 2xT (t)AT
0 (ηt, ηt−1)H(ηt)Bv(ηt, ηt−1)v(t)

+ 2
r∑

k=1

wk(t)xT (t)AT
k (ηt, ηt−1)H(ηt)Bv(ηt, ηt−1)v(t). (7.16)

If we take into account that x(t) is Ĥt−1-measurable, Ĥt−1 ⊂ H̃t, and wk(t),
v(t) are independent of H̃t one obtains

E[xT (t)AT
0 (ηt, ηt−1)H(ηt)A0(ηt, ηt−1)x(t)|H̃t]

= xT (t)AT
0 (ηt, ηt−1)H(ηt)A0(ηt, ηt−1)x(t) (7.17)

E

⎡

⎣
r∑

k,l=1

wk(t)wl(t)xT (t)AT
k (ηt, ηt−1)H(ηt)Al(ηt, ηt−1)x(t)|H̃t

⎤

⎦

=
r∑

k,l=1

xT (t)AT
k (ηt, ηt−1)H(ηt)Al(ηt, ηt−1)x(t)E[wk(t)wl(t)|H̃t]

=
r∑

k,l=1

xT (t)AT
k (ηtηt−1)H(ηt)Al(ηt, ηt−1)x(t)E[wk(t)wl(t)].

Based on H1 one gets:

E

⎡

⎣
r∑

k,l=1

wk(t)wl(t)xT (t)AT
k (ηt, ηt−1)H(ηt)Al(ηt, ηt−1)x(t)|H̃t

⎤

⎦

=
r∑

k=1

xT (t)AT
k (ηt, ηt−1)H(ηt)Ak(ηt, ηt−1)x(t) (7.18)
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E

[
r∑

k=1

wk(t)xT (t)AT
0 (ηt, ηt−1)H(ηt)A(ηt, ηt−1)x(t)|H̃t

]

=
r∑

k=1

xT (t)AT
0 (ηt, ηt−1)H(ηt)Ak(ηt, ηt−1)x(t)E[wk(t)|H̃t]

=
r∑

k=1

xT (t)AT
0 (ηt, ηt−1)H(ηt)Ak(ηt, ηt−1)x(t)E[wk(t)].

Invoking again the assumption H1 we conclude:

E

[
r∑

k=1

wk(t)xT (t)AT
0 (ηt, ηt−1)H(ηt)Ak(ηt, ηt−1)x(t)|H̃t

]

= 0 (7.19)

E

[
r∑

k=1

wk(t)xT (t)AT
k (ηt, ηt−1)H(ηt)Bv(ηt, ηt−1)v(t)|H̃t

]

=
r∑

k=1

xT (t)AT
k (ηt, ηt−1)H(ηt)Bv(ηt, ηt−1)E[wk(t)v(t)|H̃t]

=
r∑

k=1

xT (t)AT
k (ηt, ηt−1)H(ηt)Bv(ηt, ηt−1)E[wk(t)v(t)].

Based on the assumptions H1,H2, and A.7.1 we deduce:

E

[
r∑

k=1

wk(t)xT (t)AT
k (ηt, ηt−1)H(ηt)Bv(ηt, ηt−1)v(t)|H̃t

]

= 0. (7.20)

Similarly

E[xT (t)AT
0 (ηt, ηt−1)H(ηt)Bv(ηt, ηt−1)v(t)|H̃t] = 0. (7.21)

Invoking again A.7.1 we write:

E[vT (t)BT
v (ηt, ηt−1)H(ηt)Bv(ηt, ηt−1)v(t)|H̃t]

= E[Tr(BT
v (ηt, ηt−1)H(ηt)Bv(ηt, ηt−1)v(t)vT (t))|H̃t]

= Tr[BT
v (ηt, ηt−1)H(ηt)Bv(ηt, ηt−1)E[v(t)vT (t)|H̃t]]

= Tr[BT
v (ηt, ηt−1)H(ηt)Bv(ηt, ηt−1)E[v(t)vT (t)]]

= Tr[BT
v (ηt, ηt−1)H(ηt)Bv(ηt, ηt−1)]. (7.22)
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Combining (7.16)–(7.22) one obtains

E[xT (t + 1)H(ηt)x(t + 1)|H̃t]

=
r∑

k=0

xT (t)AT
k (ηt, ηt−1)H(ηt)Ak(ηt, ηt−1)x(t)

+ Tr[BT
v (ηt, ηt−1)H(ηt)Bv(ηt, ηt−1)]. (7.23)

Further taking the conditional expectation with respect to Ĥt−1 in (7.23) one
obtains:

E[xT (t + 1)H(ηt)x(t + 1)|Ĥt−1]

=
r∑

k=0

N∑

j=1

AT
k (j, ηt−1)H(j)Ak(j, ηt−1)x(t)E[χ{ηt=j}|Ĥt−1]

+ Tr

⎡

⎣
N∑

j=1

H(j)Bv(j, ηt−1)BT
v (j, ηt−1)E[χ{ηt=j}|Ĥt−1]

⎤

⎦ . (7.24)

Applying Corollary 7.1 one deduces

E[χ{ηt=j}|Ĥt−1] = E[χ{ηt=j}|ηt−1]p(ηt−1, j) a.s. (7.25)

Combining (7.24) and (7.25) and taking the conditional expectation with
respect to σ[ηs−1] ⊂ Ĥt−1 we obtain the equality in the statement and thus
the proof is complete. �

Let A(t) = A0(ηt, ηt−1) +
∑r

k=1 wk(t)Ak(ηt, ηt−1). We define Θ(t, s) =
A(t − 1)A(t − 2) · · ·A(s) if t > s ≥ 1 and Θ(t, s) = In if t = s. Θ(t, s) is the
fundamental matrix solution of the system (7.13).

The solutions of the affine system (7.9) have the representation

x(t, s, x0, v) = Θ(t, s)x0 +
t−1∑

l=s

Θ(t, l + 1)Bv(ηl, ηl−1)v(l) (7.26)

for all t ≥ s+1, s ≥ 1, x0 ∈ Rn. We often write x0(t, s, v) instead of x(t, s, 0, v).

Lemma 7.2 Under the assumptions H1,H2, and A.7.1 the following hold.

(i) E[x0(t, s, v)xT
0 (t, s, v)] =

∑t−1
l=s E[Θ(t, l + 1)Bv(ηl, ηl−1)BT

v (ηl, ηl−1)ΘT

(t, l + 1)].
(ii)

E[x0(t, s, v)xT
0 (t, s, v)χ{ηt−1=j}]

=
t−1∑

l=s

E[Θ(t, l + 1)Bv(ηl, ηl−1)BT
v (ηl, ηl−1)ΘT (t, l + 1)χ{ηt−1=j}]

for all t > s ≥ 1.
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Proof. Using (7.26) for x0 = 0 one first computes the conditional expectations

E[x0(t, s, v)xT
0 (t, s, v)|Ht−1]

and
E[x0(t, s, v)xT

0 (t, s, v)χ{ηt−1=j}|Ht−1].

To this end one takes into account that Θ(t, l + 1), Bv(ηl, ηl−1) are Ht−1-
measurable, and v(l) are independent of Ht−1. Details are omitted. �
Remark 7.1 If together with assumptions H1,H2, and A.7.1 we assume that
the zero state equilibrium of (7.13) is ESMS, then from Lemma 7.2 one obtains
that:

sup
t≥s≥1

E[|x0(t, s, v)|2] ≤ γ < ∞. (7.27)

On the other hand from the representation formula (7.26) one deduces that

E[|x(t, s, x0, v) − x0(t, s, v)|2] ≤ βqt−s|x0|2 (7.28)

for all t ≥ s ≥ 1, x0 ∈ Rn, β ≥ 1, q ∈ (0, 1). Combining (7.27) and (7.28) we
may conclude that

sup
t≥s≥1

E[|x(t, s, x0, v)|2] ≤ γ1(1 + |x0|2), ∀ x0 ∈ Rn. (7.29)

Lemma 7.3 Assume:

(a) The assumptions H1,H2, and A.7.1 are fulfilled.
(b) The zero state equilibrium of (7.13) is ESMS.

Under these conditions we have:

lim
l→∞

1
l

l∑

t=1

E[|C(ηt, ηt−1)x(t, 1, x0, v)|2|η0 = i]

=
N∑

i1,i2=1

Tr[BT
v (i1, i2)X̃(i1)Bv(i1, i2)]p(i2, i1)q(i, i2)

for all x0 ∈ Rn, i ∈ D0, x(t, 1, x0, v) is the trajectory of (7.9) starting from
x0 at t = 1, X̃ = (X̃(1), X̃(2), . . . , X̃(N)) is the unique solution of the affine
equation on SN

n

X = Υ ∗X + C̃, (7.30)

where C̃ = (C̃(1), C̃(2), . . . , C̃(N)) with

C̃(i) =
N∑

j=1

p(i, j)CT (j, i)C(j, i), (7.31)

and q(i, i2) are the entries of the matrix Q introduced by the Cesaro limit from
Proposition 1.5.



232 7 Discrete-time stochastic H2 optimal control

Proof. Under the considered assumptions the eigenvalues of the operator Υ
introduced by (7.14) are located in the inside of the disk |λ| < 1. Then
applying Theorem 2.5(iii) we deduce that the linear equation (7.30)–(7.31) has
a unique solution X̃ = (X̃(1), X̃(2), . . . , X̃(N)) ∈ SN+

n . Applying Lemma 7.1
for H(i) = X̃(i) one obtains for i ∈ D0,

E[xT (t + 1)X̃(ηt)x(t + 1)|η0 = i] = E[xT (t)(Υ ∗X̃)(ηt−1)x(t)|η0 = i)]

+
N∑

j=1

E[Tr[X̃(j)Bv(j, ηt−1)BT
v (j, ηt−1)]p(ηt−1, j)|η0 = i],

∀ x(t) = x(t, 1, x0, v) the solution of (7.9) with the initial value x0 at t = 1.
Based on (7.30) we deduce

E[xT (t + 1)X̃(ηt)x(t + 1)|η0 = i]− E[xT (t)X̃(ηt−1)x(t)|η0 = i]

= −E[xT (t)C̃(ηt−1)x(t)|η0 = i]

+
N∑

j=1

E[Tr[X̃(j)Bv(j, ηt−1)BT
v (j, ηt−1)]p(ηt−1, j)|η0 = i],

where C̃(i) is defined in (7.31).
Furthermore we have

E[xT (t + 1)X̃(ηt)x(t + 1)|η0 = i]− E[xT (t)X̃(ηt−1)x(t)|η0 = i]

= −E[xT (t)C̃(ηt−1)x(t)|η0 = i]

+
N∑

j,i2=1

Tr[X̃(j)Bv(j, i2)BT
v (j, i2)]p(i2, j)pt−1(i, i2), (7.32)

where pt−1(i, i2) is an element of P t−1. On the other hand,

E[|C(ηt, ηt−1)x(t)|2|Ĥt−1] =
N∑

j=1

E[|C(j, ηt−1)x(t)χ{ηt=j}|2|Ĥt−1]

=
N∑

j=1

|C(j, ηt−1)x(t)|2E[χ{ηt=j}|Ĥt−1]. (7.33)

Using Corollary 7.1 again, one deduces that

E[χ{ηt=j}|Ĥt−1] = p(ηt−1, j). (7.34)

Combining (7.33) and (7.34) together with (7.31) we may write

E[|C(ηt, ηt−1)x(t)|2|Ĥt−1] = xT (t)C̃(ηt−1)x(t).
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Taking the conditional expectation with respect to the event {η0 = i} in the
last equality and replacing the obtained result in (7.32) we have

E[|C(ηt, ηt−1)x(t)|2|η0 = i]

=
N∑

j,i2=1

Tr[X̃(j)Bv(j, i2)BT
v (j, i2)]p(i2, j)pt−1(i, i2)

+ E[xT (t)X̃(ηt−1)x(t)|η0 = i]− E[xT (t + 1)X̃(ηt)x(t + 1)|η0 = i].

Thus

1
l

l∑

t=1

E[|C(ηt, ηt−1)x(t)|2|η0 = i]

=
N∑

i1,i2=1

[

Tr[X̃(i1)Bv(i1, i2)BT
v (i1, i2)]p(i2, i1)

1
l

l∑

t=1

pt−1(i, i2)

]

(7.35)

+
1
l
[xT

0 X̃(i)x0 − E[xT (l + 1)X̃(ηl)x(l + 1)|η0 = i]].

Based on Remark 7.1 we obtain E[xT (l+1)X̃(ηl)x(l+1)|η0 = i] ≤ γ̂(1/π0(i))(1+
|x0|2). Therefore

lim
l→∞

1
l
[xT

0 X̃(i)x0 − E[xT (l + 1)X̃(ηl)x(l + 1)|η0 = i]] = 0. (7.36)

On the other hand from Proposition 1.5 we obtain

lim
l→∞

1
l

l∑

t=1

pt−1(i, i2) = q(i, i2). (7.37)

Taking the limit for l → ∞ in (7.35) and taking into account (7.36)–(7.37)
one obtains the equality in the statement and thus the proof is complete. �

Now we are in position to prove the result that provides the explicit for-
mulae of the H2 norms (7.10)–(7.11).

Theorem 7.1 Assume:

(a) The assumptions H1,H2, and A.7.1 are fulfilled.
(b) The zero state equilibrium of (7.13) is ESMS.

Then:
(i)

(‖G‖2)2 =
N∑

i1,i2=1

qπ0(i2)p(i2, i1)Tr[X̃(i1)Bv(i1, i2)BT
v (i1, i2)]

=
N∑

i1,i2=1

p(i1, i2)Tr[C(i2, i1)Y π0(i1)C(i2, i1)]
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(ii)

(‖̃G‖̃2)2 =
N∑

i1,i2=1

qD0(i2)p(i2, i1)Tr[X̃(i1)Bv(i1, i2)BT
v (i1, i2)]

=
N∑

i1,i2=1

p(i1, i2)Tr[C(i2, i1)Y D0(i1)C(i2, i1)],

where X̃ ∈ SN+
n is the unique solution of the linear equation (7.30)–

(7.31) and Y π0 = (Y π0(1), Y π0(2), . . . , Y π0(N)) ∈ SN+
n , and Y D0 =

(Y D0(1), Y D0(2), . . . , Y D0(N)) ∈ SN+
n , respectively, are the unique

solutions of the linear equations:

Y = ΥY + Bπ0 (7.38)

and

Y = ΥY + BD0 , (7.39)

respectively, with Bπ0 = (Bπ0(1), Bπ0(2), . . . , Bπ0(N)),

Bπ0(i) =
N∑

j=1

qπ0(j)p(j, i)Bv(i, j)BT
v (i, j), (7.40)

and BD0 = (BD0(1), BD0(2), . . . , BD0(N)),

BD0(i) =
N∑

j=1

qD0(j)p(j, i)Bv(i, j)BT
v (i, j), 1 ≤ i ≤ N, (7.41)

qπ0(i) =
∑N

j=1 π0(j)q(j, i) and qD0(i) =
∑

j∈D0
q(j, i), 1 ≤ i ≤ N .

Proof. We start with the proof of (ii). Directly from the equalities in Lemma 7.3
one obtains that

(‖̃G‖̃2)2 = lim
l→∞

1
l

l∑

t=1

∑

i∈D0

E[|z(t, 1, x0)|2|η0 = i]

=
N∑

i1,i2=1

∑

i∈D0

q(i, i2)p(i2, i1)Tr[X̃(i1)Bv(i1, i2)BT
v (i1, i2)]

=
N∑

i1,i2=1

qD0(i2)p(i2, i1)Tr[X̃(i1)Bv(i1, i2)BT
v (i1, i2)] (7.42)

which confirms the validity of the first equality of (ii).



7.2 The computation of H2-type norms 235

Furthermore (2.18) and (7.41) allow us to write

N∑

i1,i2=1

qD0(i2)p(i2, i1)Tr[X̃(i1)Bv(i1, i2)BT
v (i1, i2)]

=
N∑

i1=1

Tr[X̃(i1)BD0(i1)] = 〈X̃, BD0〉.

Using the equation verified by Y D0 and equality (7.42) we have:

(‖̃G‖̃2)2 = 〈X̃, Y D0〉 − 〈X̃, ΥY D0〉 = 〈X̃ − Υ ∗X̃, Y D0〉 = 〈C̃, Y D0〉.

Taking into account (2.18) and (7.31) we may write finally

‖̃G‖̃2)2 =
N∑

i1,i2=1

p(i1, i2)Tr[CT (i2, i1)C(i2, i1)Y D0(i1)],

which confirms the second equality of (ii).
To prove (i) we take into account that E[|z(t, 1, x0)|2] =

∑
i∈D0

π0(i)
E[|z(t, 1, x0)2|η0 = i]. Thus, multiplying by π0(i) the equalities proved in
Lemma 7.3 and proceeding as in the first part of the proof one obtains that
(i) holds and the proof is complete. �

Using Lemma 7.1 for H = X̃ one can prove the following.

Proposition 7.1 Assume:

(a) Assumptions H1,H2, and A.7.1 are fulfilled.
(b) The zero state equilibrium of (7.13) is ESMS.
(c) P is a nondegenerate stochastic matrix.
(d) π0(i) > 0, 1 ≤ i ≤ N .

Under these conditions, the following hold.

(i)

lim
l→∞

1
l

s+l−1∑

t=s

N∑

i=1

E[|C(ηt, ηt−1)x(t, s, x0)|2|ηs−1 = i]

=
N∑

i1,i2=1

q̃(i2)p(i2, i1)Tr[X̃(i1)Bv(i1, i2)BT
v (i1, i2).

(ii)

lim
l→∞

1
l

s+l−1∑

t=s

E[|C(ηt, ηt−1)x(t, s, x0)|2]

×
N∑

i1,i2=1

qπ0(i2)p(i2, i1)Tr[X̃(i1)Bv(i1, i2)BT
v (i1, i2),
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for every solution x(t, s, x0, v) of the system (7.9) starting from x0 at
t = s, qπ0(i2) is defined as in Theorem 7.1 and q̃(i2) =

∑N
i=1 q(i, i2).

To prove the equality in (ii) one uses the fact that πs−1(i) =
∑N

j=1 π0(j)
ps−1(j, i), where ps−1(j, i) are the entries of P s−1. The details are omitted.

From Theorem 7.1 one sees that the H2 norms introduced by (7.10) and
(7.11) do not depend upon the initial values x0 of the solutions x(t, 1, x0, v) of
the system (7.9). The result stated in Proposition 7.1 shows that under some
additional assumptions the norms (7.10) and (7.11) do not depend upon the
initial time t = s, too.

7.2.2 The computation of the norm |||G|||2
We start with the following.

Lemma 7.4 Under the assumptions H1,H2, and A.7.1 the following hold.

E[x0(t, s, v)xT
0 (t, s, v)χ{ηt−1=j}] =

t−1∑

l=s

(Υ t−l−1Hl)(j),

where Hl = (Hl(1), Hl(2), . . . , Hl(N)),

Hl(i) =
N∑

i1,i2=1

π0(i1)pl−1(i1, i2)p(i2, i)Bv(i, i2)BT
v (i, i2),

with pl−1(i1, i2) as in Proposition 7.1.

Proof. For each 1 ≤ j ≤ N we choose Hj = (Hj(1), Hj(2), . . . , HJ(N)) ∈ SN
n

defined as follows: Hj(i) = 0 if i 
 =j and Hj(i) = ξξT if i = j, where ξ ∈ Rn

is arbitrary but fixed. Applying Lemma 7.1 for H = Hj , one obtains

E[xT
0 (t + 1, s, v)ξξTx0(t + 1, s, v)χ{ηt=j}|ηs−1]

= E[xT
0 (t, s, v)(Υ ∗Hj)(ηt−1)x0(t, s, v)|ηs−1]

+ E[p(ηt−1, j)Tr[BT
v (j, ηt−1)ξξT Bv(j, ηt−1)]|ηs−1]. (7.43)

Using (7.15) we obtain

(Υ ∗Hj)(ηt−1) = p(ηt−1, j)
r∑

k=0

AT
k (j, ηt−1)ξξTAk(j, ηt−1).
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This leads to

xT
0 (t, s, v)(Υ ∗Hj)(ηt−1)x0(t, s, v)

= Tr

[
r∑

k=0

AT
k (j, ηt−1)ξξT Ak(j, ηt−1)x0(t, s, v)xT

0 (t, s, v)

]

p(ηt−1, j)

=
r∑

k=0

N∑

i=1

p(i, j)ξTAk(j, i)[x0(t, s, v)xT
0 (t, s, v)χ{ηt−1=i}]AT

k (j, i)ξ.

Now (7.43) becomes:

E[xT
0 (t + 1, s, v)ξξTx0(t + 1, s, v)χ{ηt=j}|ηs−1]

=
r∑

k=0

N∑

i=1

p(i, j)ξTAk(j, i)E[x0(t, s, v)xT
0 (t, s, v)χ{ηt−1=i}|ηs−1]AT

k (j, i)ξ

+
N∑

i=1

p(i, j)ξTBv(j, i)BT
v (j, i)ξE[χ{ηt−1=i}|ηs−1]. (7.44)

Taking the expectation in (7.44) and having in mind that

E[χ{ηt−1=i}] =
N∑

i1=1

π0(i1)pt−1(i1, i)

we get:

ξTE[x0(t + 1, s, v)xT
0 (t + 1, s, v)χ{ηt=j}]ξ

= ξT

(
r∑

k=0

N∑

i=1

p(i, j)Ak(j, i)E[x0(t, s, v)xT
0 (t, s, v)χ{ηt−1=i}]AT

k (j, i)

)

ξ

+ ξT

⎛

⎝
N∑

i,i1=1

π0(i1)pt−1(i1, i)p(i, j)Bv(j, i)BT
v (j, i)

⎞

⎠ ξ. (7.45)

Because ξ is arbitrarily chosen, (7.45) becomes:

E[x0(t + 1, s, v)xT
0 (t + 1, s, v)χ{ηt=j}]

=
r∑

k=0

N∑

i=1

p(i, j)Ak(j, i)E[x0(t, s, v)xT
0 (t, s, v)χ{ηt−1=i}]AT

k (j, i) + Ht(j).

(7.46)
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Let Y (t) = (Y (t, 1), Y (t, 2) . . . , Y (t,N)), where

Y (t, i) = E[x0(t, s, v)xT
0 (t, s, v)χ{ηt−1=i}], t ≥ s.

With this notation (7.46) may be rewritten in a compact form:

Y (t + 1) = ΥY (t) + Ht, t ≥ s. (7.47)

Because Y (s) = 0 one obtains via (7.47) that

Y (t) =
t−1∑

l=s

Υ t−l−1Hl. (7.48)

But the jth component of (7.48) coincides with the equality from the state-
ment. Thus the proof ends. �

Before stating the next result we introduce an additional assumption.

A.7.2 The transition probability matrix P has the following property:
liml→∞ P l exists.

Remark 7.2 Under the assumption A.7.2 if Q = liml→∞ P l then the matrix
Q is the same as the one given by the Cesaro limit in Proposition 1.5.

Lemma 7.5 Assume:

(a) The assumptions H1,H2, A.7.1 and A.7.2 are fulfilled.
(b) The zero state equilibrium of the system (7.13) is ESMS.

Under these conditions we have:

lim
t→∞E[x(t, s, x0, v)xT (t, s, x0, v)χ{ηt−1=j}]Y π0(j)

for all j ∈ D, where Y π0 = (Y π0(1), Y π0(2), . . . , Y π0(N)) ∈ SN+
n is a unique

solution of the linear equation (7.38), (7.40).

Proof. If the assumption A.7.2 is fulfilled it follows that liml→∞ Hl(i1) =
Bπ0(i1), ∀i1 ∈ D.

Using the equality proved in Lemma 7.4 we may write successively

E[x0(t, s, v)xT
0 (t, s, v)χ{ηt−1=j}]

=
t−1∑

l=s

[(Υ t−l−1Hl)(j)

=
t−1∑

l=s

[(Υ t−l−1Bπ0)(j) +
t−1∑

l=s

(Υ t−l−1(Hl −Bπ0))(j)

=
t−s−1∑

l=0

(Υ lBπ0)(j) +
t−1∑

l=s

(Υ t−l−1(Hl −Bπ0))(j). (7.49)
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From assumption (b) in the statement we deduce firstly that

lim
t→∞

t−s−1∑

l=0

(Υ lBπ0)(j) =
∞∑

l=0

(Υ lBπ0)(j) = Y π0(j). (7.50)

Also from assumption (b) we deduce that there exist β ≥ 1, q ∈ (0, 1) such
that

‖Υ l‖ξ ≤ βql, ∀l ≥ 0, (7.51)

where ‖ · ‖ξ is the Minkovsky norm of the operator Υ induced by (2.20).
If |M | is the spectral norm of a symmetric matrix then based on the

definition of (2.20) we deduce
∣
∣
∣
∣
∣

t−1∑

l=s

[Υ t−l−1(Hl −Bπ0)](j)

∣
∣
∣
∣
∣
≤
∣
∣
∣
∣
∣

t−l−1∑

l=s

Υ t−l−1(Hl −Bπ0)

∣
∣
∣
∣
∣
ξ

≤
t−1∑

l=s

‖Υ t−l−1‖ξ|Hl −Bπ0 |ξ.

Furthermore, (7.51) allows us to write
∣
∣
∣
∣
∣

t−1∑

l=s

[Υ t−l−1(Hl −Bπ0)](j)

∣
∣
∣
∣
∣
≤

t−1∑

l=s

βqt−l−1|Hl −Bπ0 |ξ. (7.52)

Because liml→∞ |Hl −Bπ0 |ξ = 0 and q ∈ (0, 1) one obtains from (7.52) that

lim
t→∞

t−1∑

l=s

[Υ t−l−1(Hl −Bπ0)](j) = 0. (7.53)

Taking the limit for t →∞ in (7.49) and using (7.50) and (7.53) one obtains

lim
t→∞E[x0(t, s, v)xT

0 (t, s, v)χ{ηt−1=j}]Y π0(j), ∀ j ∈ D, s ≥ 1. (7.54)

Furthermore, the representation formula (7.26) together with assumption
(b) in the statement allows us to write

E[|x(t, s, x0, v) − x0(t, s, v)|2] ≤ βqt−s|x0|2,

∀ t ≥ s ≥ 1, x0 ∈ Rn, where β ≥ 1, q ∈ (0, 1).
Hence

lim
t→∞E[x(t, s, x0, v)xT (t, s, x0, v)χ{ηt−1=j}]

= lim
t→∞E[x0(t, s, v)xT

0 (t, s, v)χ{ηt−1=j}] (7.55)

for all t ≥ s ≥ 1, x0 ∈ Rn. The equality in the statement now follows from
(7.54) and (7.55) and thus the proof ends. �
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The main result of this subsection is the following.

Theorem 7.2 Under the assumptions of Lemma 7.5 we have the following
formula for the H2 norm (7.12).

(|||G|||22 =
N∑

i1,i2=1

Tr[C(i1, i2)Y π0(i2)CT (i1, i2)]p(i2, i1)

=
N∑

i1,i2=1

qπ0(i2)p(i2, i1)Tr[BT
v (i1, i2)X̃(i1)Bv(i1, i2)],

where X̃ = (X̃(1), X̃(2), . . . , X̃(N)) ∈ SN+
n is the unique solution of the linear

equation (7.30) and (7.31), Y π0 = (Y π0(1), Y π0(2), . . . , Y π0(N)) ∈ SN+
n is the

unique solution of the linear equation (7.38)–(7.40), and qπ0 is defined as in
Theorem 7.1.

Proof. Set x(t) = x(t, s, x0, v) and z(t) = z(t, s, x0, v), t ≥ s ≥ 1, x0 ∈ Rn.
Because x(t) is Ĥt−1-measurable we may write successively

E[|z(t)|2|Ĥt−1]

= E[Tr(C(ηt, ηt−1)x(t)xT (t)CT (ηt, ηt−1))|Ĥt−1]

=
N∑

i1,i2=1

E[Tr(C(i1, i2)x(t)xT (t)CT (i1, i2))χ{ηt=i1}χ{ηt−1=i2}|Ĥt−1]

=
N∑

i1,i2=1

Tr[C(i1, i2)x(t)xT (t)CT (i1, i2)]χ{ηt−1=i2}E[χ{ηt=i1}|Ĥt−1].

Using Corollary 7.1 with Ĥt−1 instead of Ht we obtain E[χ{ηt=i1}|Ĥt−1] =
p(ηt−1, i1).

Thus we have

E[|z(t)|2|Ĥt−1] =
N∑

i1,i2=1

p(i2, i1)Tr[C(i1, i2)x(t)xT (t)CT (i1, i2)]χ{ηt−1=i2}.

Taking the expectation in the last equality one gets:

E[|z(t)|2] =
N∑

i1,i2=1

p(i2, i1)Tr{C(i1, i2)E[x(t)xT (t)χ{ηt−1=i2}]C
T (i1, i2)},

t ≥ s ≥ 1, x0 ∈ Rn. Based on Lemma 7.5 we may conclude

lim
t→∞E[|z(t, s, x0, v)|2]

=
N∑

i1,i2=1

p(i2, i1)Tr[C(i1, i2)Y π0(i2)CT (i1, i2)], s ≥ 1, x0 ∈ Rn.
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This confirms the validity of the first equality in the statement. The second
equality may be proved in the same way as in Theorem 7.1. Thus the proof
ends. �

7.2.3 The computation of the H2 norms for the system of type
(7.1)

The systems described by (7.1) can be regarded as systems of type (7.9) in
two ways.

First we may transform the system (7.1) as

(G̃) :

⎧
⎪⎨

⎪⎩

x̃(t + 1) =
(

Ã0(ηt, ηt−1)+
r∑

k=1

wk(t)Ãk(ηt, ηt−1)
)

x̃(t)+B̃v(ηt, ηt−1)v(t)

z̃(t) = C̃(ηt, ηt−1)x̃(t),
(7.56)

t ≥ 1, where

Ãk(i, j) = Ak(i), 0 ≤ k ≤ r, B̃v(i, j) = Bv(i),

C̃(i, j) = C(i), i, j ∈ D. (7.57)

Also, (7.1) could be viewed as a system of type (7.9) as follows:

(Ĝ) :

⎧
⎪⎨

⎪⎩

x̂(t + 1) =
[

Â0(ηt, ηt−1)+
r∑

k=1

ŵk(t)Âk(ηt, ηt−1)
]

x̂(t)+B̂v(ηt, ηt−1)v̂(t)

ẑ(t) = Ĉ(ηt, ηt−1)x̂(t), t ≥ 1,

(7.58)

where

Âk(i, j) = Ak(j), 0 ≤ k ≤ r, B̂v(i, j) = Bv(j),

Ĉ(i, j) = C(j), i, j ∈ D x̂(t) = x(t− 1),

ŵk(t) = wk(t− 1), v̂(t) = v(t− 1), t ≥ 1. (7.59)

For each s ≥ 1, x0 ∈ Rn, let x̃(t, s, x0, v), x̂(t, s, x0, v̂), x(t, s, x0, v) be the
solutions of (7.56), (7.58), and (7.1), respectively, starting from x0, at t = s.
It is easy to see that

x̃(t, s, x0, v) = x(t, s, x0, v), t ≥ s ≥ 1, x0 ∈ Rn (7.60)

x̂(t, s, x0, v̂) = x(t− 1, s− 1, x0, v), t ≥ s ≥ 1, x0 ∈ Rn. (7.61)

Furthermore, if

z̃(t, s, x0, v) = C̃(ηt, ηt−1)x̃(t, s, x0, v),
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ẑ(t, s, x0, v̂) = Ĉ(ηt, ηt−1)x̂(t, s, x0, v̂),

z(t, s, x0, v) = C(ηt)x(t, s, x0, v), t ≥ s ≥ 1,

then from (7.57) and (7.59)–(7.61) we have

z̃(t, s, x0, v) = z(t, s, x0, v), t ≥ s ≥ 1, x0 ∈ Rn (7.62)

ẑ(t, s, x0, v̂) = z(t− 1, s− 1, x0, v), t ≥ s ≥ 1, x0 ∈ Rn. (7.63)

If Υ̃ : SN
n → SN

n , Υ̂ : SN
n → SN

n are the Lyapunov operators associated with
system (7.56), (7.58), respectively, then from (7.14), (7.57), and (7.59) we
have:

(Υ̃H)(i) =
r∑

k=0

N∑

j=1

p(j, i)Ak(i)H(j)AT
k (i) = (ΛH)(i) (7.64)

(Υ̂H)(i) =
r∑

k=0

N∑

j=1

p(j, i)Ak(j)H(j)AT
k (j) = (LH)(i) (7.65)

for all i ∈ D, H ∈ SN
n where L and Λ are the Lyapunov-type operators

associated with the linear system (7.5) by (2.58) and (2.59), respectively.
Using the equality (7.63) and Theorem 7.1 specialized to the system (Ĝ)

we obtain the following.

Theorem 7.3 Assume:

(a) The assumptions H1,H2, and A.7.1 are fulfilled.
(b) The zero state equilibrium of the system (7.5) is ESMS.

Under these conditions the H2 norms of the system (7.1) defined by (7.6)
and (7.7) are given by

(i)

‖G‖2
2 =

N∑

i1,i2=1

qπ0(i2)p(i2, i1)Tr[X̃ (i1)Bv(i2)BT
v (i2)]

=
N∑

i=1

Tr[C(i)Yπ0(i)CT (i)]

(ii)

‖̃G‖̃2
2 =

N∑

i1,i2=1

qD0(i2)p(i2, i1)Tr[X̃ (i1)Bv(i2)BT
v (i2)]

=
N∑

i=1

Tr[C(i)YD0(i)CT (i)],
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where X̃ = (X̃ (1), X̃ (2), . . . , X̃ (N)) ∈ SN+
n is the unique solution of the alge-

braic equation

X = L∗X + C̃, (7.66)

where C̃ = (C̃(1), C̃(2), . . . , C̃(N)),

C̃(i) = CT (i)C(i), i ∈ D, (7.67)

Yπ0 = (Yπ0(1),Yπ0(2), . . . ,Yπ0(N)) ∈ SN+
n and YD0 = (YD0(1),YD0(2), . . . ,

YD0(N)) ∈ SN+
n are the unique solutions of the algebraic equations

Y = LY + Bπ0 (7.68)

Y = LY + BD0, (7.69)

where Bπ0 = (Bπ0(1),Bπ0(2), . . . ,Bπ0(N)),

Bπ0(i) =
N∑

j=1

qπ0(j)p(j, i)Bv(j)BT
v (j) (7.70)

and BD0 = (BD0(1),BD0(2), . . . ,BD0(N)),

BD0(i) =
N∑

j=1

qD0(j)p(j, i)Bv(j)BT
v (j), i ∈ D, (7.71)

qπ0(j) =
∑N

i=1 π0(i)q(i, j) and qD0(j) =
∑

i∈D0
q(i, j).

It must be remarked that if D0 = D then the H2 norm defined by (7.7)
does not depend upon the initial distribution of the Markov chain.

From Theorem 7.2 specialized for the system Ĝ, defined by (7.58),
we obtain the following

Theorem 7.4 Assume:

(a) Assumptions H1,H2, A.7.1, and A.7.2 are fulfilled.
(b) The zero state equilibrium of the system (7.5) is ESMS.

Under these conditions the H2 norm of the system (7.1) defined by (7.8)
is given by

|||G|||22 =
N∑

j=1

Tr[C(j)Yπ0(j)CT (j)]

×
N∑

i1,i2=1

qπ0(i2)p(i2, i1)Tr[X̃ (i1)Bv(i2)BT
v (i2)],

where Yπ0 is the unique solution of the equation (7.68), (7.70) and X̃ is the
unique solution of the equation (7.66), (7.67) and qπ0 is defined as before.
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At the end of this subsection we remark that the equality (7.62) together
with Theorems 7.1 and 7.2 lead to some expressions of the H2 norms (7.6)–
(7.8) that do not have a correspondent in the continuous time framework.

Thus we have the following.

Theorem 7.5 Under the assumptions of Theorem 7.4 the following hold.

(i)

(‖G‖2)2 = (|||G|||2)2 =
N∑

i1,i2=1

qπ0(i2)p(i2, i1)Tr[BT
v (i1)X (i1)Bv(i1)]

=
N∑

i1,i2=1

p(i1, i2)Tr[C(i2)Zπ0(i1)CT (i2)].

(ii)

(‖̃G‖̃2)2 =
N∑

i1,i2=1

qD0(i2)p(i2, i1)Tr[BT
v (i1)X (i1)Bv(i1)]

=
N∑

i1,i2=1

p(i1, i2)Tr[C(i2)ZD0(i1)CT (i2)],

where X = (X (1),X (2), . . . ,X (N)) ∈ SN+
n is the unique solution of the

algebraic equation

X = Λ∗X + C, (7.72)

where C = (C(1), C(2), . . . , C(N)),

C(i) =
N∑

j=1

p(i, j)CT (j)C(j), i ∈ D, (7.73)

and Zπ0 = (Zπ0(1),Zπ0(2), . . . ,Zπ0(N)) and ZD0 = (ZD0(1),
ZD0(2), . . . ,ZD0(N)) are the unique solutions of the algebraic equations

Z = ΛZ + Bπ0 (7.74)

Z = ΛZ + BD0, (7.75)

respectively, with Bπ0 and BD0 given by (7.70) and (7.71).

Taking into account Theorem 7.1, assertion (ii) in the above theorem holds
if the assumptions of Theorem 7.3 are fulfilled.
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7.3 Some robustness issues

As we can see from Theorems 7.1, 7.2, 7.3, and 7.4, respectively, if N ≥ 2
the H2 norms associated with the stochastic systems (7.9) and (7.1), respec-
tively, are strongly dependent upon the initial distributions π0 of the Markov
chain, or upon the subset D0 of the states i, such that P{η0 = i} > 0.
Unfortunately, the initial distributions of the Markov chain are not known
a priori. To avoid such inconvenience specific to the stochastic systems sub-
ject to Markovian jumping, one could make the additional assumption: for
each i ∈ D, limt→∞ P{ηt = i} exists and it does not depend upon the initial
distribution P{η0 = j}, j ∈ D.

One can obtain, via Theorem 1.5, that the above hypothesis is equivalent
to the fact that assumption A.7.2 is fulfilled and additionally the matrix
Q = limt→∞ P t has the property q(i, j) = q(j), i, j ∈ D.

Another idea to overcome the problems due to the presence of the initial
distribution of the Markov chain in the formula of the H2 norms is to introduce
a suitable upper bound of these norms.

Thus in the case of the system (7.9) we define

(‖̂G‖̂)22 =
N∑

i1,i2=1

q̃(i2)p(i2, i1)Tr[BT
v (i1, i2)X̃(i1)Bv(i1, i2)], (7.76)

where q̃(i2) =
∑N

i1=1 q(i1, i2). We have

qπ0(i2) ≤ q̃(i2)

qD0(i2) ≤ q̃(i2) (7.77)

for every initial distribution π0 and for all subsets D0 ⊂ D. So, under the
assumptions of Theorem 7.1 we have:

‖G‖2 ≤ ‖̂G‖̂2, ‖̃G‖̃2 ≤ ‖̂G‖̂2. (7.78)

Under the assumptions of Theorem 7.2 we also have

|||G|||2 ≤ ‖̂G‖̂2. (7.79)

Reasoning as in the proof of Theorem 7.1 we may obtain

(‖̂G‖̂2)2 =
N∑

i1,i2=1

q̃(i2)p(i2, i1)Tr[BT
v (i1, i2)X̃(i1)Bv(i1, i2)]

=
N∑

i1,i2=1

p(i1, i2)Tr[C(i2, i1)Ỹ (i1)CT (i2, i1)], (7.80)



246 7 Discrete-time stochastic H2 optimal control

where X̃ is the solution of (7.30) and (7.31), whereas Ỹ = (Ỹ (1), Ỹ (2), . . . ,
Ỹ (N)) ∈ SN+

n is the unique solution of the algebraic equation

Y = ΥY + B̃ (7.81)

with B̃ = (B̃(1), B̃(2), . . . , B̃(N)),

B̃(i) =
N∑

j=1

q̃(j)p(j, i)Bv(i, j)BT
v (i, j). (7.82)

Using Lemma 7.3 we may prove the following.

Proposition 7.2 Under the assumptions in Theorem 7.1

(‖̂G‖̂2)2 = lim
l→∞

1
l

l∑

t=1

N∑

i=1

E[|zi(t, 1, x0)|2],

where zi(t, 1, x0) = C(ηt, ηt−1), xi(t, 1, x0), xi(t, 1, x0), t ≥ 1 being the solu-
tion of the system (7.9) corresponding to the Markov chain with the initial
distribution P{η0 = i} = 1 and P{η0 = j} = 0 if j 
= i.

In the case of system (7.1) the equality (7.80) becomes

(‖̂G‖̂2)2 =
N∑

i1,i2=1

q̃(i2)p(i2, i1)Tr[BT
v (i2)X̃ (i1)Bv(i2)]

=
N∑

i=1

Tr[C(i)Ỹ(i)CT (i)], (7.83)

where X̃ = (X̃ (1), X̃ (2), . . . , X̃ (N)) is the unique solution of the equations
(7.66) and (7.67) and Ỹ = (Ỹ(1), Ỹ(2), . . . , Ỹ(N)) ∈ SN+

n is the unique solu-
tion of the algebraic equation

Y = LY + B̃, (7.84)

where B̃ = (B̃(1), B̃(2), . . . , B̃(N)),

B̃(i) =
N∑

j=1

q̃(j)p(j, i)Bv(j)BT
v (j), (7.85)

q̃(j) being as before.
In the process of designing an H2 optimal controller one may add to the

list of H2 performance criteria another one which asks the minimization of
‖̂ · ‖̂2 of the closed-loop system.
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7.4 H2 optimal controllers. The case with full access to
measurements

In this section we illustrate how the results proved in the previous sections can
be used to solve several H2 optimization problems for discrete-time linear sto-
chastic systems subject to independent random perturbations and Markovian
jumping. We consider the case of full access to the measurements. This means
that at each time t, the pair (x(t), ηt) are available and can be used to compute
the control. The general case when only an output is available for measure-
ments is considered in the next section.

7.4.1 H2 optimization

Consider the discrete-time controlled stochastic system (G) described by

(G) :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

x(t + 1) =
[

A0(ηt) +
r∑

k=1

wk(t)Ak(ηt)
]

x(t)

+
[

B0(ηt) +
r∑

k=1

wk(t)Bk(ηt)
]

u(t) + Bv(ηt)v(t)

y(t) = x(t)

z(t) = Cz(ηt)x(t) + Dz(ηt)u(t),

(7.86)

where x(t) ∈ Rn is the state vector, u(t) ∈ Rm is the control input, y(t) ∈ Rn

is the vector of the measurements, z(t) ∈ Rnz is the controlled output, and
{wk(t)}t≥0, 1 ≤ k ≤ r, {ηt}t≥0, {v(t)}t≥0 are as before and verify H1,H2, and
A.7.1. It is assumed that the whole state vector x(t) and the system mode
i are available for measurements. The coefficients Ak(i), Bk(i), 0 ≤ k ≤ r,
Bv(i), Cz(i), Dz(i), i ∈ D are constant matrices of appropriate dimensions.

To control the systems of type (7.86) we consider dynamic controllers of
the form:

(Gc) :

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

xc(t + 1) =
[

Ac0(ηt) +
r∑

k=1

wk(t)Ack(ηt)
]

xc(t)

+
(

Bc0(ηt) +
r∑

k=1

wk(t)Bck(ηt)
)

uc(t)

yc(t) = Cc(ηt)xc(t) + Fc(ηt)uc(t),

(7.87)

t ≥ 0, where xc ∈ Rnc is the vector of the states of the controller, uc(t) ∈ Rn

is the vector of the inputs of the controller, and yc(t) ∈ Rm is the output of the
controller. The integer nc, often known as the order of the controller, is not pre-
fixed. It is determined together with the matrices Ack(i), Bck(i), Cc(i), Fc(i).
If nc = 0 the controller (Gc) reduces to a feedback gain yc(t) = Fc(ηt)uc(t).

Coupling a controller (Gc) of type (7.87) to a system (G) of type (7.86)
taking uc(t) = y(t), u(t) = yc(t) one obtains the following closed-loop system.
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(Gcl) :

⎧
⎨

⎩

xcl(t + 1) =
[

A0cl(ηt) +
r∑

k=1

wk(t)Akcl(ηt)
]

xcl(t) + Bvcl(ηt)v(t)

zcl(t) = Ccl(ηt)xcl(t), t ≥ 0,
(7.88)

where xcl(t) =
(
xT (t) xT

c (t)
)T

,

Akcl(i) =

(
Ak(i) + Bk(i)Fc(i) Bk(i)Cc(i)

Bck(i) Ack(i)

)

, 0 ≤ k ≤ r,

Bvcl(i) =

(
Bv(i)

0

)

Ccl(i) =
(
Cz(i) + Dz(i)Fc(i) Dz(i)Cc(i)

)
. (7.89)

Definition 7.1 We say that a controller (Gc) of type (7.87) is a stabilizing
controller for the system G of type (7.86) if the zero state equilibrium of the
linear system

xcl(t + 1) =

(

A0cl(ηt) +
r∑

k=1

wk(t)Akcl(ηt)

)

xcl(t)

is exponentially stable in the mean square.

In the sequel we denote Ks(G) the class of stabilizing controllers for a given
system (G) of type (7.86). Now we are in position to state the optimization
problems associated with a system (7.86).

OP1. Find an admissible controller G̃c such that the corresponding closed-
loop system G̃cl satisfies

‖G̃cl‖2 = min
Gc∈Ks(G)

‖Gcl‖2.

OP2. Find an admissible controller G̃c such that the corresponding closed-
loop system G̃cl satisfies ‖̃G̃cl‖̃2 = minGc∈Ks(G) ‖̃Gcl‖̃2.

OP3. Find an admissible controller G̃c such that the corresponding closed-
loop system G̃cl satisfies |||G̃cl|||2 = minGc∈Ks(G) |||Gcl|||.

OP4. Find an admissible controller G̃c such that the corresponding closed-
loop system G̃cl satisfies ‖̂G̃cl‖̂2 = minGc∈Ks(G) ‖̂Gcl‖̂.

In the case N = 1 the norms (7.6), (7.7), and (7.83) coincide, therefore it
follows that for the system subject to independent random perturbations we
have only two H2 optimization problems, OP1 and OP3, respectively.
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To have a unified approach to the four optimization problems stated before,
we introduce the notation ‖ · ‖2.μ, μ ∈ {1, 2, 3, 4} as ‖ · ‖21 instead of ‖ · ‖2

defined by (7.6), ‖ · ‖22 instead of ‖̃ · ‖̃2, defined by (7.7), ‖ · ‖23 instead of
||| · |||2 defined by (7.8), and ‖ · ‖24 instead of ‖̂ · ‖̂2 defined by (7.83).

From Theorem 7.3, Theorem 7.4, and (7.83)–(7.85) applied to the closed-
loop system (7.88) we have

‖Gcl‖2
2,μ =

N∑

i1,i2=1

εμ(i2)p(i2, i1)Tr[BT
vcl(i2)Xcl(i1)Bvcl(i2)], (7.90)

where Xcl = (Xcl(1),Xcl(2), . . . ,Xcl(N)) ∈ SN+
n+nc

is the unique solution of the
linear equation:

Xcl(i) =
r∑

k=0

N∑

j=1

p(i, j)AT
kcl(i)Xcl(j)Akcl(i) + CT

cl(i)Ccl(i), i ∈ D (7.91)

with

εμ(i2) =

⎧
⎪⎨

⎪⎩

qπ0(i2), for μ ∈ {1, 3};
qD0(i2), for μ = 2;

q̃(i2), for μ = 4.

Consider the following system of discrete-time Riccati equations of sto-
chastic control DTSRE-C:

X(i) =
r∑

k=0

AT
k (i)Ei(X)Ak(i) + CT

z (i)Cz(i)

−
(

r∑

k=0

AT
k (i)Ei(X)Bk(i) + CT

z (i)Dz(i)

)

×
(

DT
z (i)Dz(i) +

r∑

k=0

BT
k (i)Ei(X)Bk(i)

)−1

×
(

r∑

k=0

BT
k (i)Ei(X)Ak(i) + DT

z (i)Cz(i)

)

, i ∈ D, (7.92)

where

Ei(X) =
N∑

j=1

p(i, j)X(j) (7.93)

for all X = (X(1), X(2), . . . , X(N)) ∈ SN
n .

Such systems are special cases of DTSRE-C (5.135). We recall that a solu-
tion Xs = (Xs(1), Xs(2), . . . , Xs(N)) of DTSRE-C (7.92) is called a stabilizing
solution if the zero state equilibrium of the closed-loop system
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xs(t + 1) =

[

A0(ηt) + B0(ηt)Fs(ηt)

+
r∑

k=1

wk(t)(Ak(ηt) + Bk(ηt)Fs(ηt))

]

xs(t), t ≥ 0 (7.94)

is ESMS, where

Fs(i) = −
(

DT
z (i)Dz(i) +

r∑

k=0

BT
k (i)Ei(Xs)Bk(i)

)−1

×
(

r∑

k=0

BT
k (i)Ei(Xs)Ak(i) + DT

z (i)Cz(i)

)

. (7.95)

In Theorem 5.13 a set of necessary and sufficient conditions for the exis-
tence of a stabilizing solution of (7.92) that satisfies

DT
z (i)Dz(i) +

r∑

k=0

BT
k (i)Ei(Xs)Bk(i) > 0, i ∈ D (7.96)

is given. For each stabilizing controller Gc of type (7.87) we introduce the
following performances,

Jμ(Gc) =
N∑

i1,i2=1

εμ(i2)p(i2, i1)Tr[BT
vcl(i2)Xcl(i1)Bvcl(i2)], μ ∈ {1, 2, 3, 4}.

(7.97)

Furthermore, under some additional assumptions which are as in
Theorem 7.3 and in Theorem 7.4, respectively, Jμ(Gc) is just the H2 norm
‖ · ‖2μ of the corresponding closed-loop system. In the process of designing an
H2 optimal controller we try to minimize Jμ(Gc) for some μ ∈ {1, 2, 3, 4}.

Now we are in position to prove the following.

Theorem 7.6 Assume that (7.92) has a stabilizing solution Xs = (Xs(1),
Xs(2), . . . , Xs(N)) that satisfies (7.96). Then

min
Gc∈Ks(G)

Jμ(Gc) =
N∑

i1,i2=1

εμ(i2)p(i2, i1)Tr[BT
v (i2)Xs(i1)Bv(i2)],

μ ∈ {1, 2, 3, 4}.

The optimal value is achieved for the zero-order controller

G̃ : us(t) = Fs(ηt)xs(t), (7.98)

where Fs(i), i ∈ D are as in (7.95) and xs(t) is the solution of (7.94).
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Proof. Let us remark that in the case of the zero-order controller (7.98) the
corresponding closed-loop system is:

xcl(t + 1) =

[

A0(ηt) + B0(ηt)Fs(ηt)+
r∑

k=1

wk(t)(Ak(ηt)+Bk(ηt)Fs(ηt))

]

xcl(t)

+ Bv(ηt)v(t) (7.99)
zcl(t) = (Cz(ηt) + Dz(ηt)Fs(ηt))xcl(t), t ≥ 0.

On the other hand, by direct calculation one obtains that DTSRE-C (7.92)
verified by Xs can be rewritten as

Xs(i) =
r∑

k=0

N∑

j=1

p(i, j)(Ak(i) + Bk(i)Fs(i))T Xs(j)(Ak(i) + Bk(i)Fs(i))

+ (Cz(i) + Dz(i)Fs(i))T (Cz(i) + Dz(i)Fs(i)), i ∈ D. (7.100)

One sees that the linear equation (7.91) corresponding to the closed-loop
system (7.99) is just (7.100). Therefore the value of the corresponding perfor-
mance is

Jμ(G̃c) =
N∑

i1,i2=1

εμ(i2)p(i2, i1)Tr[BT
v (i2)Xs(i1)Bv(i2)]. (7.101)

Let Gc be an arbitrary stabilizing controller of type (7.87). Let

Xcl(i) =
(

X11(i) X12(i)
XT

12(i) X22(i)

)

be a partition of the solution of (7.91) according to the partition (7.89) of the
coefficients of the closed-loop system.

Using (7.89) we obtain the following partition of (7.91).

X11(i) =
r∑

k=0

N∑

j=1

p(i, j)[(Ak(i) + Bk(i)Fc(i))TX11(j)(Ak(i) + Bk(i)Fc(i))

+ BT
ck(i)XT

12(j)(Ak(i) + Bk(i)Fc(i))

+ (Ak(i) + Bk(i)Fc(i))T X12(j)Bck(i)

+ BT
ck(i)X22(j)Bck(i)] + [Cz(i) + Dz(i)Fc(i)]T [Cz(i) + Dz(i)Fc(i)]

X12(i) =
r∑

k=0

N∑

j=1

p(i, j)[(Ak(i) + Bk(i)Fc(i))TX11(j)Bk(i)Cc(i)

+ BT
ck(i)XT

12(j)Bk(i)Cc(i) + (Ak(i) + Bk(i)Fc(i))T X12(j)Ack(i)

+ BT
ck(i)X22(j)Ack(i)] + (Cz(i) + Dz(i)Fc(i))TDz(i)Cc(i)
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X22(i) =
r∑

k=0

N∑

j=1

p(i, j)[CT
c (i)BT

k (i)X11(j)Bk(i)Cc(i)

+ AT
ck(i)XT

12(j)Bk(i)Cc(i) + CT
c (i)BT

k (i)X12(j)Ack(i)

+ AT
ck(i)X22(j)Ack(i)] + CT

c (i)DT
z (i)Dz(i)Cc(i). (7.102)

On the other hand the DTSRE-C (7.92) verified by the stabilizing solution
Xs can be rewritten as

Xs(i) =
r∑

k=0

N∑

j=1

p(i, j)[Ak(i) + Bk(i)Fc(i)]T Xs(j)[Ak(i) + Bk(i)Fc(i)]

+ [Cz(i) + Dz(i)Fc(i)]T [Cz(i) + Dz(i)Fc(i)]

− [Fs(i)− Fc(i)]T Δ(i)[Fs(i) − Fc(i)], (7.103)

where

Δ(i) = DT
z (i)Dz(i) +

r∑

k=0

N∑

j=1

p(i, j)BT
k (i)Xs(j)Bk(i) > 0. (7.104)

Set

X̂cl(i) = Xcl(i) −
(

Xs(i) 0

0 0

)

, i ∈ D.

Subtracting (7.103) from (7.102) and taking into account (7.95) and (7.104)
one obtains that X̂cl = (X̂cl(1), X̂cl(2), . . . , X̂cl(N)) is the solution of the
following linear equation,

X̂cl(i) =
r∑

k=0

N∑

j=1

p(i, j)AT
kcl(i)X̂cl(j)Akcl(i) + ΨT (i)Δ(i)Ψ(i), i ∈ D,

(7.105)

where Ψ(i) =
(
Fs(i) − Fc(i) −Cc(i)

)
. Because Gc is a stabilizing controller

and Δ(i) > 0, it follows that the unique solution of (7.105) satisfies

X̂cl(i) ≥ 0, i ∈ D. (7.106)

The value of the performance Jμ(Gc) from (7.97) can be rewritten as

Jμ(Gc) =
N∑

i1,i2=1

εμ(i2)p(i2, i1)Tr[Bv(i2)Xs(i1)Bv(i2)]

+
N∑

i1,i2=1

εμ(i2)p(i2, i1)Tr[BT
vcl(i2)X̂cl(i1)Bvcl(i2)]. (7.107)
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Based on (7.101), (7.106), and (7.107) one obtains that Jμ(Gc) ≥ Jμ(G̃c) and
thus the proof is complete. �

Remark 7.3 The result proved in the above theorem shows that in the case
of full access to the measurements of the states, the best performance with
respect to all four H2 performance criteria is provided by the same zero-order
controller. In fact it is the same state feedback that provides the optimal
control in the linear quadratic optimization problem.

7.4.2 The case of systems with coefficients depending upon ηt and
ηt−1

Let us consider the controlled system:

(G) :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

x(t + 1) =
(

A0(ηt, ηt−1)+
r∑

k=1

wk(t)Ak(ηt, ηt−1)
)

x(t)+
(

B0(ηt, ηt−1)

+
r∑

k=1

wk(t)Bk(ηt, ηt−1)
)

u(t) + Bv(ηt, ηt−1)v(t)

y(t) = x(t)

z(t) = Cz(ηt, ηt−1)x(t) + Dz(ηt, ηt−1)u(t), t ≥ 1.
(7.108)

The class of admissible controllers consists of the family of dynamic compen-
sators of the form:

(Gc)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

xc(t + 1) =
(

Ac0(ηt, ηt−1) +
r∑

k=1

wk(t)Ack(ηt, ηt−1)
)

xc(t)

+
(

Bc0(ηt, ηt−1) +
r∑

k=1

wk(t)Bck(ηt, ηt−1)
)

uc(t)

yc(t) = Cc(ηt−1)xc(t) + Fc(ηt−1)uc(t)

xc ∈ Rnc , uc ∈ Rn, yc ∈ Rm.

(7.109)

Coupling (7.109) with (7.108), taking uc(t) = y(t), u(t) = yc(t), one
obtains the following closed-loop system.

(Gcl) :

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

xcl(t + 1) =
(

A0cl(ηt, ηt−1) +
r∑

k=1

wk(t)Akcl(ηt, ηt−1)
)

xcl(t)

+Bvcl(ηt, ηt−1)v(t)

zcl(t) = Ccl(ηt, ηt−1)xcl(t), t ≥ 1,
(7.110)
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where xcl(t) =
(
xT (t) xT

c (t)
)T ∈ Rn+nc ,

Akcl(i, j) =

(
Ak(i, j) + Bk(i, j)Fc(j) Bk(i, j)Cc(j)

Bck(i, j) Ack(i, j)

)

, 0 ≤ k ≤ r,

Bvcl(i, j) =

(
Bv(i, j)

0

)

,

Ccl(i, j) =
(
Cz(i, j) + Dz(i, j)Fc(j) Dz(i, j)Cc(j)

)
, i, j ∈ D.

Let us remark that if we consider the system (7.86) with a controller of type
(7.87) and a delay occurs on the channel between controllers and actuators
(i.e., yc(t− 1) is used instead of yc(t)), then the closed-loop system is of the
form (7.110). Hence it is natural to consider an H2 control problem for the
systems with coefficients depending upon ηt, ηt−1. Such a problem is specific
to the discrete-time framework. It has no analogue in the continuous-time
case.

As in the first part of this section we denote ‖Gcl‖2μ, μ ∈ {1, 2, 3, 4} the
four types of H2 norms defined for the closed-loop system by (7.10), (7.11),
(7.12), and (7.80). Based on Theorem 7.1, Theorem 7.2, and equality (7.80)
one deduces that

‖Gcl‖2μ =
N∑

i1,i2=1

εμ(i2)p(i2, i1)Tr[BT
vcl(i1, i2)Xcl(i1)Bvcl(i1, i2),

μ ∈ {1, 2, 3, 4}, (7.111)

where εμ(i2) are defined as before and Xcl = (Xcl(1), Xcl(2), . . . , Xcl(N)) ∈
SN+

n+nc
is the unique solution of

Xcl(i) =
r∑

k=0

N∑

j=1

p(i, j)AT
kcl(j, i)Xcl(j)Akcl(j, i) +

N∑

j=1

p(i, j)CT
cl(j, i)Ccl(j, i),

i ∈ D. (7.112)

As before we introduce the performances of an admissible controller (7.109)
by

Jμ(Gc) =
N∑

i1,i2=1

εμ(i2)p(i2, i1)Tr[BT
vcl(i1, i2)Xcl(i1)Bvcl(i1, i2)]. (7.113)

It must be remarked that to be sure (7.113) is well defined we need to know
that the assumptions H1,H2, and A.7.1 are fulfilled and the zero state equi-
librium of the linear closed-loop system

xcl(t + 1) =

[

A0cl(ηt, ηt−1) +
r∑

k=1

wk(t)Akcl(ηt, ηt−1)

]

xcl(t)
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is ESMS. As we proceed in the first part of this section we minimize Jμ(Gcl)
in order to obtain the solution of the H2 optimization problem for systems of
type (7.108).

To construct the solution of the H2 optimization problems associated with
the system (7.108) we use the stabilizing solution of the DTSRE-C (5.143).

The main result of this subsection is the following theorem.

Theorem 7.7 Assume that the DTSRE-C (5.143) has a stabilizing solution
Xs = (Xs(1), Xs(2), . . . , Xs(N)) which satisfies the condition (5.155). Then

min
Gc∈Ks(G)

Jμ(Gc)
N∑

i1,i2=1

εμ(i2)p(i2, i1)Tr(BT
v (i1, i2)Xs(i1)Bv(i1, i2)).

The optimal value is achieved by the zero-order controller

G̃c : us(t) = Fs(ηt−1)xs(t),

where Fs(i), i ∈ D are constructed in (5.146) and xs(t) is the solution of the
closed-loop system (5.145).

Proof. It is similar to the one of Theorem 7.6 and is omitted. �

7.5 The H2 optimal control. The case with partial access
to measurements

7.5.1 Problem formulation

Consider a discrete-time controlled system (G) described by

(G) :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x(t + 1) =
[

A0(ηt) +
r∑

k=1

wk(t)Ak(ηt)
]

x(t) +
[

B0(ηt)

+
r∑

k=1

wk(t)Bk(ηt)
]

u(t) + Bv(ηt)v(t)

y(t) =
[

C0(ηt) +
r∑

k=1

wk(t)Ck(ηt)
]

x(t) + Dv(ηt)v(t)

z(t) = Cz(ηt)x(t) + Dz(ηt)u(t),

(7.114)

where x(t) ∈ Rn is the state vector, u(t) ∈ Rmu is the vector of control inputs,
and y(t) ∈ Rny is the measured output, whereas z(t) ∈ Rnz is the controlled
output, {wk(t)}t≥0, 1 ≤ k ≤ r are sequences of random variables, {v(t)}t≥0

is a sequence of mv-dimensional random vectors, and ({ηt}t≥0, P,D) is an
homogeneous Markov chain with the set of states D = {1, 2, . . . , N} and the
transition probability matrix P . We assume that the assumptions H1,H2,
and A.7.1 are fulfilled.
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It should be remarked that (7.114) is a hybrid system with the states
(x(t), i) where x(t) is the vector of the state parameters of the system and i is
the mode of the system, which evolves according to the Markov chain. In this
section we assume that the pair (y(t), i) is available at each time t.

In (7.114), Ak(i) ∈ Rn×n, Bk(i) ∈ Rn×mu , Ck(i) ∈ Rny×n, 0 ≤ k ≤ r,
Bv(i) ∈ Rn×mv , Cz(i) ∈ Rnz×n, Dv(i) ∈ Rny×mv , Dz(i) ∈ Rnz×mu , 1 ≤
i ≤ N are given matrices.

The family of admissible controllers consists of the dynamic compensators
(Gc) of the form:

(Gc) :

⎧
⎪⎨

⎪⎩

xc(t + 1) =
[

Ac0(ηt) +
r∑

k=1

wk(t)Ack(ηt)
]

xc(t) + Bc(ηt)uc(t)

yc(t) = Cc(ηt)xc(t),
(7.115)

where xc(t) ∈ Rnc is the state of the controller, uc(t) ∈ Rny is the input of
the controller, and yc ∈ Rmu is the output of the controller. As in the case
discussed in the previous section the order nc of the controllers (7.115) is not
prefixed. It is determined in the process of designing the optimal controller.
Thus a controller (7.115) is described by the set of parameters {nc, Ack(i), 0 ≤
k ≤ r,Bc(i), Cc(i), i ∈ D}. When coupling a controller (Gc) of type (7.115) to
the system (G) by taking uc(t) = y(t), u(t) = yc(t) one obtains the closed-loop
system (Gcl):

(Gcl) :

⎧
⎪⎨

⎪⎩

xcl(t + 1) =
[

A0cl(ηt) +
r∑

k=1

wk(t)Akcl(ηt)
]

xcl(t) + Bvcl(ηt)v(t)

zcl(t) = Ccl(ηt)xcl(t),
(7.116)

where

xcl = (xT (t)xT
c (t))T , Akcl(i) =

(
Ak(i) Bk(i)Cc(i)

Bc(i)Ck(i) Ack(i)

)

,

0 ≤ k ≤ r

Bvcl(i) =

(
Bv(i)

Bc(i)Dv(i)

)

, Ccl(i) = (Cz(i) Dz(i)Cc(i)). (7.117)

A controller (Gc) is called a stabilizing controller if the zero state equilibrium
of the linear system

xcl(t + 1) =

[

A0cl(ηt) +
r∑

k=1

wk(t)Akcl(ηt)

]

xcl(t) (7.118)

is exponentially stable in the mean square.
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In the sequel Ks(G) stands for the family of stabilizing controllers (Gc) of
type (7.115).

For a closed-loop system (Gcl), the H2 norms (7.6)–(7.8) are:

‖Gcl‖2
2,1 = lim

l→∞
1
l

l∑

t=0

E[|zcl(t)|2] (7.119)

‖Gcl‖2
2,2 = lim

l→∞
1
l

l∑

t=0

∑

i∈D0

E[|zcl(t)|2|η0 = i] (7.120)

‖Gcl‖2
2,3 = lim

t→∞E[|zcl(t)|2]. (7.121)

In (7.119)–(7.121) zcl(t), t ≥ 0 is the output of the closed-loop system (Gcl).
Also, based on (7.83) applied to the closed-loop system (7.116), one may
introduce the norm ‖(Gcl)‖24.

The aim of this section is to solve the following optimization problems.

OPμ : μ ∈ {1, 2, 3, 4}. Find a controller (G̃c(μ)) ∈ Ks(G) such that the
corresponding closed-loop system (G̃cl) satisfies

‖G̃cl‖2,μ = min
Gc∈Ks(G)

‖Gcl‖2,μ. (7.122)

7.5.2 Some preliminaries

Based on the matrix coefficients Akcl(i) of the closed-loop system and the
elements p(i, j) of the stochastic matrix P we define the linear operator Lcl :
SN

n+nc
→ SN

n+nc
by

(LclX)(i) =
r∑

k=0

N∑

j=1

p(j, i)Akcl(j)X(j)AT
kcl(j), 1 ≤ i ≤ N, (7.123)

for all X = (X(1), X(2), . . . , X(N)) ∈ SN
n+nc

.
Applying Theorems 7.3 and 7.4 to the H2 norms (7.119)–(7.121) one

obtains the following.

Corollary 7.2 Assume:

(a) The assumptions H1,H2 and A.7.1 are fulfilled.
(b) The zero state equilibrium of the system (7.118) is ESMS.

Under these conditions the H2 norms defined by (7.119) and (7.120) are
given by

(i)
‖Gcl‖2

2,1 =
N∑

i1,i2=1

qπ0(i2)p(i2, i1)Tr[X̃cl(i1)Bvcl(i2)BT
vcl(i2)]

=
N∑

i=1

Tr[Ccl(i)Yπ0
cl (i)CT

cl(i)],
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(ii)

‖Gcl‖2
2,2 =

N∑

i1,i2=1

qD0(i2)p(i2, i1)Tr[X̃cl(i1)Bvcl(i2)BT
vcl(i2)]

=
N∑

i=1

Tr[Ccl(i)YD0
cl (i)CT

cl(i)],

where X̃cl = (X̃cl(1), X̃cl(2), . . . , X̃cl(N)) ∈ SN+
n+nc

is the unique solution
of the algebraic equation

Xcl = L∗
clXcl + C̃cl, (7.124)

where C̃cl = (C̃cl(1), C̃cl(2), . . . , C̃cl(N),

C̃cl(i) = CT
cl(i)Ccl(i), i ∈ D, (7.125)

Yπ0
cl = (Yπ0

cl (1),Yπ0
cl (2), . . . ,Yπ0

cl (N)) ∈ SN+
n+nc

and YD0
cl = (YD0

cl (1),
YD0

cl (2), . . . ,YD0
cl (N)) ∈ SN+

n+nc
are the unique solutions of the algebraic

equations

Ycl = LclYcl + Bπ0
cl (7.126)

Ycl = LclYcl + BD0
cl , (7.127)

where Bπ0
cl = (Bπ0

cl (1),Bπ0
cl (2), . . . ,Bπ0

cl (N)),

Bπ0
cl (i) =

N∑

j=1

qπ0(j)p(j, i)Bvcl(j)BT
vcl(j), i ∈ D (7.128)

and BD0
cl = (BD0

cl (1),BD0
cl (2), . . . ,BD0

cl (N),

BD0
cl (i) =

N∑

j=1

qD0(j)p(j, i)Bvcl(j)BT
vcl(j), i ∈ D, (7.129)

qπ0(j) =
∑N

i=1 π0(i)q(i, j) and qD0(j) =
∑

i∈D0
q(i, j).

Corollary 7.3 Assume:

(a) Assumptions H1,H2, A.7.1 and A.7.2 are fulfilled.
(b) The zero state equilibrium of the system (7.118) is ESMS.

Under these conditions the H2 norm of the system (7.116) defined by
(7.121) is given by

‖Gcl‖2
2,3 =

N∑

j=1

Tr[Ccl(j)Yπ0
cl (j)CT

cl(j)]

×
N∑

i1,i2=1

qπ0(i2)p(i2, i1)Tr[X̃cl(i1)Bvcl(i2)BT
vcl(i2)],
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where Yπ0
cl is the unique solution of the equation (7.126), (7.128) and X̃ is the

unique solution of the equation (7.124)–(7.125) and qπ0 is defined as before.

One sees that the values of the H2 norms of the closed-loop system (7.116)
are strongly dependent either upon the initial distributions π0 of the Markov
chain or upon the subset D0 of the states i ∈ D, such that P{η0 = i} > 0.
To overcome the difficulties due to the dependence of the coefficients of the
system upon a Markov chain, we consider a new performance:

‖Gcl‖2
2,4 =

N∑

i1,i2=1

q̃(i2)p(i2, i1)Tr[BT
vcl(i2)X̃cl(i1)Bvcl(i2)], (7.130)

where

q̃(i2) =
N∑

i1=1

q(i1, i2), (7.131)

q(i1, i2) being the entries of the matrix Q introduced by the Proposition 1.5.
Because qπ0(i2) ≤ q̃(i2) and qD0(i2) ≤ q̃(i2) we deduce that ‖Gcl‖2,μ ≤

‖Gcl‖2,4, μ ∈ {1, 2, 3}. Hence the minimization of ‖Gcl‖2,4 may lead to satis-
factory suboptimal values for ‖Gcl‖2,μ, μ ∈ {1, 2, 3}. Reasoning as in the proof
of Theorem 7.1, one obtains the following new expression for ‖Gcl‖2,4 intro-
duced by (7.130),

‖Gcl‖2
2,4 =

N∑

i1,i2=1

q̃(i2)p(i2, i1)Tr[BT
vcl(i2)X̃cl(i1)Bvcl(i2)]

=
N∑

i=1

Tr[Ccl(i)Ỹcl(i)CT
cl(i)] (7.132)

with Ỹcl = (Ỹcl(1), . . . , Ỹcl(N)) ∈ SN+
n+nc

is the unique solution of the linear
equation

Y = LclY + B̃ (7.133)

with B̃ = (B̃(1), B̃(2), . . . , B̃(N)),

B̃(i) =
N∑

j=1

q̃(j)p(j, i)Bvcl(j)BT
vcl(j). (7.134)

For a controller Gc ∈ Ks(G) we introduce the performances Jμ(Gc), μ ∈
{1, 2, 3, 4}, as follows.

Jμ(Gc) =
N∑

i1,i2=1

εμ(i2)p(i2, i1)Tr[BT
vcl(i2)X̃cl(i1)Bvcl(i2)], μ ∈ {1, 2, 3, 4},

(7.135)



260 7 Discrete-time stochastic H2 optimal control

where

εμ(i) = qπ0(i), if μ ∈ {1, 3},

εμ(i) = qD0(i), if μ = 2,

εμ(i) = q̃(i), if μ = 4, (7.136)

X̃cl = (X̃cl(1), X̃cl(2), . . . , X̃cl(N)) ∈ SN+
n+nc

is the unique solution of equa-
tion (7.124)–(7.125). Based on Corollaries 7.2 and 7.3 one sees that under
some additional assumptions Jμ(Gc) coincides with the H2 norm ‖Gcl‖2

2,μ.
Therefore, to solve the H2 optimization problems stated before we design
stabilizing controllers G̃c ∈ Ks(G) that minimize the performance Jμ(Gc).
Finally it is worth pointing out the following equality that can be derived
from the above results,

N∑

i,j=1

εμ(j)p(j, i)Tr[BT
vcl(j)X̃cl(i)Bvcl(j)] =

N∑

i=1

Tr[Ccl(i)Yμ
cl(i)Ccl(i)] (7.137)

with μ ∈ {1, 2, 3, 4}, where Yμ
cl(i) = Yπ0

cl (i) for i ∈ {1, 3}, Yμ
cl(i) = YD0

cl for
μ = 2, and Yμ

cl(i) = Ỹcl(i) for μ = 4.

7.5.3 The solution of the H2 optimization problems

In this subsection we construct the state space realization of a controller
G̃c(μ) ∈ Ks(G) that minimizes the cost Jμ(Gc) in the class of stabilizing
controllers Ks(G).

In the applications, one may choose one of the performances Jμ(·), μ ∈
{1, 2, 3, 4} depending upon the available information.

To begin we prove the following.

Lemma 7.6 If Xs = (Xs(1), Xs(2), . . . , Xs(N)) is the stabilizing solution of
DTSRE-C (7.92) then for any controller Gc ∈ Ks(G) and any μ ∈ {1, 2, 3, 4}
we have:

Jμ(Gc) =
N∑

i,j=1

εμ(j)p(j, i)Tr[BT
v (j)Xs(i)Bv(j)] +

N∑

i=1

Tr[Čcl(i)Yμ
cl(i)Č

T
cl(i)],

where

Čcl(i) = V (i)(Fs(i) − Cc(i)). (7.138)

Fs(i) is the stabilizing feedback gain defined in (7.95),

V (i) =

[

DT
z (i)Dz(i) +

r∑

k=0

BT
k (i)Ei(Xs)Bk(i)

]1/2

, 1 ≤ i ≤ N ; (7.139)

Y μ
cl (i) is as in (7.138), μ ∈ {1, 2, 3, 4}.
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Proof. Let Xcl = (Xcl(1), Xcl(2), . . . , Xcl(N)) be the solution of (7.124)–
(7.125). Define

U(i) = Xcl(i)−
(

Xs(i) 0

0 0

)

. (7.140)

By direct calculations based on (7.92) and (7.95) one obtains that U =
(U(1), . . . , U(N)) solves the linear equation on SN

n+nc
:

U = L∗
clU + M̌ (7.141)

with M̌ = (M̌(1),M̌(2), . . . ,M̌(N)), M̌(i) = ČT
cl(i)Čcl(i), Čcl(i) being

defined by (7.138).
Because Gc is a stabilizing controller, one obtains, via Theorem 2.5(iii)

and (iv) that the equation (7.141) has a unique solution and that solution is
in SN+

n+nc
.

From (7.135) one gets:

Jμ(Gc) =
N∑

i,j=1

εμ(j)p(j, i)Tr[BT
v (j)Xs(i)Bv(j)]

+
N∑

i,j=1

εμ(j)p(j, i)Tr[BT
vcl(j)U(i)Bvcl(j)]. (7.142)

The conclusion now follows from (7.142) applying the equality (7.137) with
U(i) instead of Xcl(i), Čcl(i) instead of Ccl(i). Thus the proof is complete. �

The main result of this section is as follows.

Theorem 7.8 Assume that for some μ ∈ {1, 2, 3, 4} assertion (i) in
Theorem 5.13 applied to the DTSRE-C (7.92) and assertion (i) in
Theorem 5.16 hold. Let Xs = (Xs(1), Xs(2), . . . , Xs(N)) and Ys = (Ys(1),
Ys(2), . . . , Ys(N)) be the stabilizing solution of DTSRE-C (7.92) and
DTSRE-F (5.156), respectively.

We construct the controller G̃c(μ) described by

xc(t + 1) =

[

A0(ηt) + B0(ηt)Fs(ηt) + Ks(ηt)C0(ηt) +
r∑

k=1

wk(t)(Ak(ηt)

+Bk(ηt)Fs(ηt) + Ks(ηt)Ck(ηt))

]

xc(t) −Ks(ηt)uc(t) (7.143)

yc(t) = Fs(ηt)xc(t),
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where Fs(i) and Ks(i) are as in (7.95) and (5.158), respectively. Under the
considered assumptions G̃c(μ) ∈ Ks(G) and Jμ(G̃c(μ)) ≤ Jμ(Gc) for any
Gc ∈ Ks(G).

Moreover, the optimal value of the performance is:

Jμ(G̃c(μ)) =
N∑

i,j=1

εμ(j)p(j, i)Tr[BT
v (j)Xs(i)Bv(j)]

+
N∑

i=1

Tr[V (i)Fs(i)Ys(i)FT
s (i)V (i)]. (7.144)

Proof. Let us consider the closed-loop system obtained by coupling (7.114)
with (7.143) taking u(t) = yc(t), uc(t) = y(t):

xcl(t + 1) =

[

Ã0cl(ηt) +
r∑

k=1

wk(t)Ãkcl(ηt)

]

xcl(t) + B̃vcl(ηt)v(t)

zcl(t) = C̃cl(ηt)xcl(t).

To check that G̃c(μ) ∈ Ks(G) we have to show that the zero state equilibrium
of the linear system

xcl(t + 1) =

[

Ã0cl(ηt) +
r∑

k=1

wk(t)Ãkcl(ηt)

]

xcl(t) (7.145)

is ESMS. To this end, in (7.145) we make the transformation:

ζ(t) =

(
ζ1(t)

ζ2(t)

)

= T xcl(t), where T =

⎛

⎝
In 0

In −In

⎞

⎠ . (7.146)

It is easy to see that T −1 = T . By direct calculation one obtains that

Âkcl(i) = T Ãkcl(i)T −1 =

⎛

⎝
Ak(i) + Bk(i)Fs(i) −Bk(i)Fs(i)

0 Ak(i) + Ks(i)Ck(i)

⎞

⎠ ,

(7.147)

1 ≤ i ≤ N , 0 ≤ k ≤ r.
Thus (7.145) becomes:

ζ1(t + 1) =

[

A0(ηt) + B0(ηt)Fs(ηt) +
r∑

k=1

wk(t)(Ak(ηt) + Bk(ηt)Fs(ηt))

]

ζ1(t)

−
[

B0(ηt)Fs(ηt) +
r∑

k=1

wk(t)Bk(ηt)Fs(ηt)

]

ζ2(t), (7.148)
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ζ2(t) =

[

A0(ηt)+Ks(ηt)C0(ηt)+
r∑

k=1

wk(t)(Ak(ηt)+Ks(ηt)Ck(ηt))

]

ζ2(t).

Let ΦFs(t, t0) and ΦKs(t, t0) be the fundamental matrix solution of (7.94) and
(5.157), respectively. Because Xs and Ys are stabilizing solutions of (7.92) and
(5.156), respectively, it follows that there exist β ≥ 1, q ∈ (0, 1) such that

E[|ΦFs(t, 0)ζ1(0)|2] ≤ βqt|ζ1(0)|2 (7.149)

E[|ΦKs(t, 0)ζ2(0)|2] ≤ βqt|ζ2(0)|2 (7.150)

for all ζ1(0), ζ2(0) ∈ Rn, t ≥ 0.
From the second equation of (7.148) one obtains ζ2(t) = ΦKs(t, 0)ζ2(0),

t ≥ 0. Hence

E[|ζ2(t)|2] ≤ βqt|ζ2(0)|2 (7.151)

for all t ≥ 0, ζ2(0) ∈ Rn. Furthermore, using (7.149) and (7.151) one obtains
via Corollary 3.9(iii), that limt→∞ E[|ζ1(t)|2] = 0 for ζ1(0) ∈ Rn, ζ2(0) ∈ Rn.
From

xcl(t) = T −1

(
ζ1(t)

ζ2(t)

)

we deduce limt→∞ E[|xcl(t)|2] = 0. Finally invoking the implication (v) → (i)
in Theorem 3.10 in the special case θ = 1, we conclude that the zero state
equilibrium of (7.145) is ESMS. This confirms that G̃c(μ) ∈ Ks(G).

Let Yμ
cl = (Yμ

cl(1),Yμ
cl(2), . . . ,Yμ

cl(N)) be as in (7.137) corresponding to an
arbitrary controller Gc ∈ Ks(G). Set

Û(i) = Yμ
cl(i) −

(
Ys(i) 0

0 0

)

, 1 ≤ i ≤ N.

By direct calculations based on (5.156) and (5.158) together with the equa-
tions verified by Yμ

cl, one gets that Û = (Û(1), Û(2), . . . , Û(N)) solves the
following linear equation on SN

n+nc
,

Û = LclÛ + B̌μ
cl, (7.152)

where B̌μ
cl = (B̌μ

cl(1), B̌μ
cl(2), . . . , B̌μ

cl(N)) with B̌μ
cl(i) = E∗

i (Δμ
cl) and

Δμ
cl(i)

(
Ks(i)

−Bc(i)

)

V̂ 2(i)

(
Ks(i)

−Bc(i)

)T

;

V̂ (i) = (εμ(i)Dv(i)DT
v (i) +

r∑

k=0

Ck(i)Ys(i)CT
k (i))1/2.
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The eigenvalues of the operator Lcl are located in the inside of the disk |λ| < 1,
therefore we deduce that the unique solution of equation (7.152) lies in SN+

n+nc
.

Furthermore, the equality from Lemma 7.6 may be rewritten:

Jμ(Gc) =
N∑

i,j=1

εμ(j)p(j, i)Tr[BT
v (j)Xs(i)Bv(j)]

+
N∑

i=1

Tr[V (i)Fs(i)Ys(i)Fs(i)TV (i)]

+
N∑

i=1

Tr[Čcl(i)Û(i)Čcl(i)T ].

Because Û(i) ≥ 0 we deduce that

Jμ(Gc) ≥
N∑

i,j=1

εμ(j)p(j, i)Tr[BT
v (j)Xs(i)Bv(j)]

+
N∑

i=1

Tr[V (i)Fs(i)Ys(i)Fs(i)TV (i)]. (7.153)

We remark that the right-hand side of (7.153) does not depend upon the choice
of the stabilizing controller. It remains to show that for the controller G̃c with
the state space realization given by (7.143), we have equality in (7.153). To this
end we remark that in the case of the controller (7.143) we have:

Čcl(i)Û(i)ČT
cl(i) = V (i)Fs(i)( In −In )Û(i)

(
In

−In

)

FT
s (i)V (i). (7.154)

It can be remarked that

(In − In)Û(i)

(
In

−In

)

is the 2× 2 block of the matrix Z(i) = T Û(i)T T , where T is as in (7.146).
Based on (7.123) and (7.152) we obtain the following equation verified by

Z = (Z(1), Z(2), . . . , Z(N)),

Z(i) =
r∑

k=0

N∑

j=1

p(j, i)[Âkcl(j)Z(j)ÂT
kcl(j) + Bμ

cl(i)], (7.155)

where Âkcl(j) are as in (7.147), and

Bμ

cl(i) = T B̌μ
cl(i)T T =

(
E∗

i (KsV̂
2KT

s ) 0

0 0

)

.
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Setting

Z(i) =

(
Z11(i) Z12(i)

ZT
12(i) Z22(i)

)

one obtains from (7.155) the following equation,

Z22 = LKsZ22, (7.156)

where LKs is the linear Lyapunov operator associated with the system (5.157).
The eigenvalues of the operator LKs are in the inside of the disk |λ| < 1,

therefore we deduce that (7.156) has only the solution Z22 = 0. Thus we
prove that in the case of the controller (7.143) we have

∑N
i=1 Tr[Čcl(i)Û(i)

ČT
cl(i)] = 0. This shows that in the case of the controller (7.143), the inequality

(7.153) becomes equality. This also confirms the validity of (7.144). Thus the
proof is complete. �

Remark 7.4 In the special case N = 1, Ak(1) = 0, Bk(1) = 0, Ck(1) = 0, 1 ≤
k ≤ r, the controller (7.143) reduces to the well-known Kalman–Bucy filter,
which is the solution of the H2 control problem for deterministic systems.
In the stochastic framework, if N = 1 the fact that the controller (7.143) is
optimal is proved in [65].

If N ≥ 2 but Ak(i) = 0, Bk(i) = 0, Ck(i) = 0, 1 ≤ k ≤ r, i ∈ D, the
result proved in Theorem 7.8 reduces to the one derived in [26]; see also [27].
Unfortunately, if Ak(i) 
= 0, for some k ∈ {1, 2, . . . , r}, i ∈ {1, 2, . . . , N} then
the controllers of type (7.143) are hard to implement due to the presence of
white noise type perturbation in their coefficients. However, we consider that
the result proved in Theorem 7.8 is useful even if multiplicative white noise
perturbations are presented in the coefficients of the controlled system. Then
equality (7.144) provides the best H2 performance that can be achieved by a
stabilizing controller. The right-hand side of (7.144) can be used to evaluate
the performances of some suboptimal controllers with prescribed structure.
This is illustrated in the next section where we design a suboptimal controller
in the state estimator form.

7.6 H2 suboptimal controllers in a state estimator form

In this section we focus our attention on the class of stabilizing controllers of
the form:

xc(t + 1) = [A0(ηt) + B0(ηt)Fs(ηt) + L(ηt)C0(ηt)]xc(t) − L(ηt)uc(t) (7.157)

yc(t) = Fs(ηt)xc(t),

where the matrix gains L(i) ∈ Rn×ny are unknown and they have to be chosen
in order to obtain a suboptimal H2 performance; Fs(i) are given by (7.95).
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It is clear that the controllers of type (7.157) are special cases of the controllers
(7.115). Hence, for a controller (7.157) the equality given by Lemma 7.6 holds.
Our aim is to describe a procedure that allows us to choose the matrix gains
L(i), 1 ≤ i ≤ N , such that the deviation of Jμ(Gc) from the right-hand side
of (7.144) is smaller than a prescribed level γ > 0.

Throughout this section we suppose that DTSRE-C (7.92) has a stabilizing
solution Xs.

The coefficients (7.117) of the closed-loop system obtained by coupling a
controller (7.157) to the system (7.114) by taking uc(t) = y(t) and u(t) = yc(t)
are given by

A0cl(i) =

(
A0(i) B0(i)Fs(i)

−L(i)C0(i) A0(i) + B0(i)Fs(i) + L(i)C0(i)

)

Akcl(i) =

(
Ak(i) Bk(i)Fs(i)

−L(i)Ck(i) 0

)

, 1 ≤ k ≤ r, (7.158)

Bvcl(i) =

(
Bv(i)

−L(i)Dv(i)

)

.

Applying Lemma 7.6 for a stabilizing controller of type (7.157) one obtains:

Jμ(Gc) =
N∑

i,j=1

εμ(j)p(j, i)Tr[Bv(j)Xs(i)Bv(j)]

+
N∑

i=1

Tr[V (i)Fs(i)JYμ
cl(i)J

TFT
s (i)V (i)], (7.159)

where J = ( In −In ), Yμ
cl = (Yμ

cl(1),Yμ
cl(2), . . . ,Yμ

cl(N)) ∈ SN+
2n is the unique

solution of the linear equation

Yμ
cl = LclYμ

cl + Bμ
cl (7.160)

with

Bμ
cl(i) =

N∑

j=1

εμ(j)p(j, i)Bvcl(j)BT
vcl(j), 1 ≤ i ≤ N, (7.161)

Lcl being the linear operator defined by (7.123) for the coefficients Akcl(i)
given by (7.158).

Let us consider the following linear inequality on SN
2n,

LclW −W + Bμ
cl < 0. (7.162)
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Because the eigenvalues of the operator Lcl are in the inside of the disk |λ| < 1
then any solution W = (W (1),W (2), . . . ,W (N)) of (7.162) with W (i) ≥ 0
will satisfy

W (i) ≥ Yμ
cl(i), 1 ≤ i ≤ N. (7.163)

This shows that

Jμ(Gc) ≤
N∑

i,j=1

εμ(j)p(j, i)Tr[BT
v (j)Xs(i)Bv(j)]

+
N∑

i=1

Tr[V (i)Fs(i)JW (i)J T FT
s (i)V (i)]. (7.164)

Thus, to find a suboptimal controller of the form (7.157) we may proceed in
two ways.

1. Given a prescribed level

γ > Jopt
μ :=

N∑

i,j=1

εμ(j)p(j, i)Tr[BT
v (j)Xs(i)Bv(j)]

+
N∑

i=1

Tr[V (i)Fs(i)Ys(i)FT
s (i)V (i)] (7.165)

find the matrix gains L(i), 1 ≤ i ≤ N , such that the corresponding LMI
(7.162) has a solution W = (W (1),W (2), . . . ,W (N)), W (i) > 0 satisfying

N∑

i=1

Tr[V (i)Fs(i)JW (i)J T FT
s (i)V (i)]

−
N∑

i=1

Tr[V (i)Fs(i)Ys(i)FT
s (i)V (i)] < γ. (7.166)

It is worth mentioning that if the gains L(i) are such that the linear inequality
(7.162) has a solution W > 0, then one obtains via Corollary 3.3 that (7.157)
is a stabilizing controller.

2. Solve the following minimization problem,

min
L(i),W (i)

N∑

i=1

Tr[V (i)Fs(i)JW (i)J TFT
s (i)V (i)] (7.167)

subject to (7.162) and W (i) > 0, 1 ≤ i ≤ N.
Furthermore we show how we can separate the computation of the variables

W (i) and L(i) in (7.162) in connection with (7.166) and (7.167), respectively.
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To this end, let us remark that JW (i)J T = Z11(i) is the (1,1) block of the
matrix Z(i) = Ť W (i)Ť T , where

Ť =

(
In −In

0 In

)

. (7.168)

If Akcl(i), Bvcl(i) are as in (7.158) and Ǎkcl(i) = Ť Akcl(i)Ť −1, B̌vcl(i) =
Ť Bvcl, 0 ≤ k ≤ r, 1 ≤ i ≤ N , then one obtains that Z = (Z(1), Z(2), . . . , Z(N))
solves the following system of linear inequalities,

N∑

j=1

p(j, i)

{
r∑

k=0

Ǎkcl(j)Z(j)ǍT
kcl(j) + εμ(j)B̌vcl(j)B̌T

vcl(j)

}

− Z(i) < 0, 1 ≤ i ≤ N. (7.169)

Lemma 7.7 Assume that P is a nondegenerate stochastic matrix and
DTSRE-C (7.92) has a stabilizing solution Xs. Then for any matrix gains
L(i), 1 ≤ i ≤ N , the following are equivalent.

(i) The system of LMI (7.169) has a solution Z = (Z(1), Z(2), . . . , Z(N)) ∈
SN

2n, Z(i) > 0, 1 ≤ i ≤ N .
(ii) The system of LMIs on SN

2n,

r∑

k=0

Ǎkcl(i)E∗
i (R)ǍT

kcl(i) + εμ(i)B̌vcl(i)B̌T
vcl)(i) −R(i) < 0, 1 ≤ i ≤ N,

(7.170)

has a solution R = (R(1), R(2), . . . , R(N)) with R(i) > 0, 1 ≤ i ≤ N .
Moreover if R = (R(1), R(2), . . . , R(N)) is a solution of (7.170) then
Z = (Z(1), Z(2), . . . , Z(N)) with

Z(i) =
N∑

j=1

p(j, i)R(j) (7.171)

is a solution of (7.169).

Proof. Let Z = (Z(1), Z(2), . . . , Z(N)) ∈ SN
2n be a solution of (7.169) with

Z(i) > 0, 1 ≤ i ≤ N . Because P is a nondegenerate stochastic matrix there
exist δ(i) > 0, 1 ≤ i ≤ N , small enough such that we have:

Z(i) ≥
N∑

j=1

p(j, i)

{
r∑

k=0

Ǎkcl(j)Z(j)ǍT
kcl(j)

+ εμ(j)B̌vcl(j)B̌T
vcl(j) + δ(j)I2n

}

, 1 ≤ i ≤ N. (7.172)
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Let

R(j) =
r∑

k=0

Ǎkcl(j)Z(j)ǍT
kcl(j)

+ εμ(j)B̌vcl(j)B̌T
vcl(j) + δ(j)I2n, 1 ≤ j ≤ N. (7.173)

From (7.172) and (7.173) one obtains

Z(i) ≥
N∑

j=1

p(j, i)R(j), 1 ≤ i ≤ N. (7.174)

Furthermore, from (7.173) and (7.174) one gets that R = (R(1), R(2), . . . ,
R(N)) solves (7.170), R(j) ≥ δ(j)I2n and thus we have shown that the impli-
cation (i) → (ii) holds.

To check the implication (ii) → (i) one multiplies (7.170) (written with
j instead of i) by p(j, i) and taking the sum with respect to j from 1 to
N . Thus we obtain that Z = (Z(1), Z(2), . . . , Z(N)) defined by (7.171) is
a solution of (7.169). Because P is a nondegenerate stochastic matrix from
R(i) > 0, 1 ≤ i ≤ N it follows that Z(i) > 0, 1 ≤ i ≤ N . Thus the proof is
complete. �

From (7.158) and (7.168) one obtains

Ǎ0cl(i) =

(
A0(i) + L(i)C0(i) 0

−L(i)C0(i) A0(i) + B0(i)Fs(i)

)

Ǎkcl(i) =

(
Ak(i) + L(i)Ck(i) Ak(i) + Bk(i)Fs(i) + L(i)Ck(i)

−L(i)Ck(i) −L(i)Ck(i)

)

, 1≤k≤r

B̌vcl(i) =

(
Dv(i) + L(i)Dv(i)

−L(i)Dv(i)

)

, 1 ≤ i ≤ N. (7.175)

From (7.175) one obtains the decomposition:

Ǎkcl(i) = Ak(i) + BL(i)Γk(i), 0 ≤ k ≤ r

B̌vcl(i) = Bv(i) + BL(i)Dv(i), (7.176)

where

A0(i) =

(
A0(i) 0

0 A0(i) + B0(i)Fs(i)

)

Ak(i) =

(
Ak(i) Ak(i) + Bk(i)Fs(i)

0 0

)

, 1 ≤ k ≤ r
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B =

(
In

−In

)

, Γ0(i) =
(
C0(i) 0

)
, Γk(i) =

(
Ck(i) Ck(i)

)
,

1 ≤ k ≤ r, 1 ≤ i ≤ N

Bv(i) =

(
Bv(i)

0

)

.

Thus (7.170) becomes:

r∑

k=0

[Ak(i) + BL(i)Γk(i)]E∗
i (R)[Ak(i) + BL(i)Γk(i)]T

+ εμ(i)[Bv(i) + BL(i)Dv(i)][Bv(i) + BL(i)Dv(i)]T

−R(i) < 0, 1 ≤ i ≤ N. (7.177)

Lemma 7.8 The system of LMI (7.177) with the unknowns L(i), R(i), 1 ≤
i ≤ N , can be rewritten as

Z(i) + UT (i)L(i)V(i) + VT (i)LT (i)U(i) < 0, (7.178)

where

Z(i) =

(
−R(i) Z12(i)

ZT
12(i) Z22(i)

)

∈ Sñ

with ñ = 2n[N(r + 1) + 1] + mv.

Z12(i) =
(
Z0

12(i) Z1
12(i) . . . Zr

12(i)
√

εμ(i)Bv(i)
)
∈ R2n×ñ1 ,

ñ1 = 2nN(r + 1) + mv.

Zk
12(i) =

(√
p(1, i)Ak(i)R(1) . . .

√
p(N, i)Ak(i)R(N)

)
.

Z22(i) = diag{Z0
22,Z1

22, . . . ,Zr
22, Imv}.

Zk
22(i) = diag{R(1), R(2), . . . , R(N)}.

U(i) = (BT 0n×n̂ 0n×n̂ . . . 0n×mv) ∈ Rn×ñ, n̂ = 2nN(r + 1).

V(i) =
(
0ny×2n V0(i) V1(i) . . . Vr(i)

√
εμ(i)Dv(i)

)
∈ Rny×ñ.

Vk(i) =
(√

p(1, i)Γk(i)R(1)
√

p(2, i)Γk(i)R(2)

. . .
√

p(1, N)Γk(i)R(N)
)
, 0 ≤ k ≤ r.

Proof. It is standard and is based on the Schur complement technique. It is
omitted. �
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In addition (7.178) allows us to separate the computation of R(i) and L(i),
1 ≤ i ≤ N . To this end we apply the projection lemma and Finsler’s lemma.

Lemma 7.9 (The projection lemma [103]) Let Z = ZT ∈ Rn×n,U ∈
Rm×n,V ∈ Rp×n be given matrices, n ≥ max{m, p}. Let U⊥,V⊥ be full
column rank matrices such that UU⊥ = 0 and VV⊥ = 0. Then the following
are equivalent.

(i) The linear matrix inequation:

Z + UTLV + VTLTU < 0

with the unknown matrix L ∈ Rm×p is solvable.
(ii)

(U⊥)TZU⊥ < 0,

(V⊥)TZV⊥| < 0.

Lemma 7.10 (Finsler’s lemma [103]) Let Z = ZT ∈ Rn×n, C ∈ Rp×n,
n > p be given. Take C⊥ a full column rank matrix such that CC⊥ = 0. Then
the following are equivalent.

(i) There exist a scalar μ such that Z + μCTC < 0.
(ii) (C⊥)TZC⊥ < 0.

From Lemma 7.9 one deduces that for each 1 ≤ i ≤ N , there exist L(i) ∈
Rn×ny , which solve (7.178), if and only if

UT
⊥(i)Z(i)U⊥(i) < 0 (7.179)

VT
⊥(i)Z(i)V⊥(i) < 0, (7.180)

where U⊥(i) and V⊥(i) are full column rank matrices with the properties
U(i)U⊥(i) = 0 and V(i)V⊥(i) = 0, respectively.

One can see that we may choose

U⊥(i) =

(
B⊥ 0

0 Iñ1

)

where

B⊥ =

(
In

In

)

.

Thus, using the Schur complement techniques one obtains that (7.179) is
equivalent to:

BT
⊥

(
r∑

k=0

AkE∗
i (R)Ak(i) −R(i) + εμ(i)Bv(i)BT

v (i)

)

B⊥ < 0, 1 ≤ i ≤ N,

(7.181)

where E∗
i (·) is defined as in (5.162).
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On the other hand, it can be seen that we have the decomposition

V(i) = (0ny×2n V̂(i) )

(
R(i) 0

0 Z22(i)

)

,

where V̂(i) = (V̂0(i) V̂1(i) . . . V̂r(i)
√

εμ(i)Dv(i)) with

V̂k(i) = (
√

p(1, i)Γk(i) . . .
√

p(N, i)Γk(i)).

Thus one obtains that a base for the null subspace of V(i) is given by the
columns of the matrix

V⊥(i) =

(
R−1(i) 0

0 Z−1
22 (i)

)(
I2n 0

0 V̂⊥(i)

)

,

where V̂⊥(i) is a full column rank matrix such that V̂(i)V̂⊥(i) = 0.
Setting S(i) instead of R−1(i) one obtains that (7.180) is equivalent to the

following LMI,
(

−S(i) W12(i, S)V̂⊥(i)

V̂T
⊥(i)WT

12(i, S) −V̂T
⊥(i)W22(i, S)V̂⊥(i)

)

< 0, (7.182)

where

W12(i, S) = (S(i)W0
12(i) S(i)W1

12(i) . . . S(i)Wr
12(i)

√
εμ(i)S(i)Bv(i) with

Wk
12(i) =

(√
p(1, i)Ak(i)

√
p(2, i)Ak(i) . . .

√
p(N, i)Ak(i)

)
, 0 ≤ k ≤ r, 1 ≤ i ≤ N,

W22(i, S) = diag(W0
22(i, S) W1

22(i, S) . . . Wr
22(i, S) Imv ) with

Wk
22(i, S) = diag(S(1), S(2), . . . , S(N)).

From the above developments one obtains the following.

Theorem 7.9 Under the assumptions of Theorem 7.8 suppose that P is a
nondegenerate stochastic matrix. Then the following are equivalent.

(i) There exist gain matrices L(i), 1 ≤ i ≤ N , such that the corresponding
controller (Gc) of type (7.157) satisfies Jμ(Gc) < Jopt

μ +γ for a prescribed
level γ > 0.
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(ii) There exist positive definite matrices R(i) ∈ S2n, S(i) ∈ S2n, 1 ≤ i ≤ N
that solve (7.181), (7.182) together with

R(i)S(i) = I2n (7.183)

and

N∑

i=1

Tr[V (i)Fs(i)(E∗
i (R11)− Ys(i))FT

s (i)V (i)] < γ, (7.184)

where R11(i) ∈ Sn is the 1× 1 block of R(i), Fs(i) is given by (7.95), and
Jopt

μ is defined in (7.165).

To avoid the conditions (7.182) and (7.183) a sufficient criterion could be
derived via Finsler’s lemma (Lemma 7.10).

Theorem 7.10 Assume that the assumptions in Theorem 7.9 are fulfilled.
Then there exist gain matrices L(i), 1 ≤ i ≤ N such that the corresponding
controller Gc of type (7.157) satisfies Jμ(Gc) ≤ Jopt

μ + γ (for a prescribed
level γ > 0 and some μ ∈ {1, 2, 3, 4}) if there exist positive definite matrices
R(i) ∈ S2n, and the scalars ν(i) < 0, 1 ≤ i ≤ N , that solve (7.181), (7.184)
together with

(
Z(i) VT (i)

V(i) ν(i)Iny

)

< 0, 1 ≤ i ≤ N. (7.185)

Proof. Based on Finsler’s lemma (7.180) is equivalent to the existence of the
scalars ν̂(i) ∈ R, ν̂(i) 
= 0 such that

Z(i) − ν̂VT (i)V(i) < 0. (7.186)

If ν̂(i) < 0 then by the Schur complement technique (7.186) is equivalent to
(7.185) with ν(i) = ν̂−1(i). Thus the proof is complete. �

Remark 7.5 To obtain the best level of suboptimality achieved by a controller
of type (7.157) one may solve the following optimization problem,

min
R(i),ν(i)

N∑

i=1

Tr[V (i)Fs(i)

(
In

0

)

E∗
i (R)

(
In

0

)T

FT
s (i)V (i)] (7.187)

subject to (7.181), (7.185), R(i) > 0, ν(i) < 0, 1 ≤ i ≤ N . If R =
(R(1), R(2), . . . , R(N)) is obtained solving the minimization problem (7.187)
then it is introduced in (7.178) for obtaining the gain matrices L(i).
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7.7 An H2 filtering problem

Let us consider the system:

G :

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x(t + 1) =
(

A0(ηt) +
r∑

k=1

wk(t)Ak(ηt)
)

x(t) + Bv(ηt)v(t)

y(t) =
(

C0(ηt) +
r∑

k=1

wk(t)Ck(ηt)
)

x(t) + Dv(ηt)v(t), t ≥ 0,

(7.188)

where x(t) ∈ Rn is the state, y(t) ∈ Rny is the vector of the measurements,
{ηt}t≥0, {w(t)}t≥0, {v(t)}t≥0 are as in (7.1) and satisfy the assumptions
H1,H2, and A.7.1. Throughout this section we assume that the zero state
equilibrium of the linear system

x(t + 1) =

(

A0(ηt) +
r∑

k=1

wk(t)Ak(ηt)

)

x(t) (7.189)

is ESMS. Our goal is to construct a discrete-time linear system yF (t) =
(GF (η)y)(t), called a linear filter, activated by the measurements y(s), 0 ≤
s ≤ t such that the output yF (t) is a “good estimation” of the state x(t) of
the given system. Because the given system is affected by additive white noise
perturbations, we consider that a good estimation could be expressed in terms
of an H2 norm.

We remark that (7.188) is the special case of (7.114) for Bk(i) = 0, 0 ≤ k ≤
r, Cz(i) = In, Dz(i) = −In, 1 ≤ i ≤ N . It follows that the best estimation of
x(t) in terms of an H2 norm can be obtained applying the results in Section 7.5.
In this special case the DTSRE-C (7.92) reduces to

X(i) =
r∑

k=0

AT
k (i)Ei(X)Ak(i). (7.190)

Under the assumption of mean square exponential stability of the zero state
equilibrium of (7.189) it follows that the stabilizing solution of (7.190) is
Xs = (Xs(1), . . . , Xs(N)), Xs(i) = 0, 1 ≤ i ≤ N . The stabilizing feedback
gain (7.95) is Fs(i) = In, 1 ≤ i ≤ N .

Assuming that for some μ ∈ {1, 2, 3, 4} the DTSRE-F (5.156) has a stabi-
lizing solution Ys = (Ys(1), . . . , Ys(N)) then applying Theorem 7.8 one obtains
that the optimal filter has the state space realization given by

xF (t + 1) = (A0(ηt) + Ks(ηt)C0(ηt) +
r∑

k=1

wk(t)(Ak(ηt)

+ Ks(ηt)Ck(ηt)))xF (t) −Ks(ηt)y(t)

yF (t) = xF (t), t ≥ 0,

(7.191)
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where Ks(i) is the stabilizing injection constructed as in (5.158). Moreover,
the minimal value of the corresponding H2 performance is

Jopt =
N∑

i=1

Tr(Ys(i)). (7.192)

It should be noted that as in the general case investigated in Section 7.5,
the optimal filter (7.191) is hard to implement, due to the presence of the
white noise w(t), t ≥ 0 in its state space realization. To avoid this incon-
venience we try to find a filter with a simpler structure:

xL(t + 1) = (A0(ηt) + L(ηt)C0(ηt))xL(t) − L(ηt)y(t)

yL(t) = xL(t),
(7.193)

where the gain matrices L(i), 1 ≤ i ≤ N are arbitrary but have the property
that the zero state equilibrium of the system

x(t + 1) = [A0(ηt) + L(ηt)C0(ηt)]x(t) (7.194)

is ESMS. Let K̂s(G) be the set of all gains L = (L(1), . . . , L(N)), L(i) ∈
Rn×ny such that the zero state equilibrium of the corresponding system
(7.194) is ESMS.

Our aim is to provide conditions that guarantee the existence of a gain
L̃ ∈ K̂s(G) with the property that

lim
t→∞E[|x(t) − xL̃(t)|2] ≤ lim

t→∞E[|x(t) − xL(t)|2] (7.195)

for any L ∈ K̂s(G). Let eL(t) = x(t) − xL(t) be the estimation error corre-
sponding to a filter (7.193). Combining (7.188) and (7.193) one obtains

eL(t + 1) = (A0(ηt) + L(ηt)C0(ηt))eL(t)

+
r∑

k=1

wk(t)(Ak(ηt) + L(ηt)Ck(ηt))x(t) + (Bv(ηt) + L(ηt)Dv(ηt))v(t).

Setting ξL(t) = ( eT
L(t) xT (t) )T one obtains the system:

GL :

⎧
⎨

⎩

ξL(t + 1) = A0cl(ηt)ξL(t) +
r∑

k=1

wk(t)Akcl(ηt)ξL(t) + Bvcl(ηt)v(t)

zL(t) = Ccl(ηt)ξL(t),
(7.196)

where

A0cl(i) =

(
A0(i) + L(i)C0(i) 0

0 A0(i)

)

,
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Akcl =

(
0 Ak(i) + L(i)Ck(i)

0 Ak(i)

)

, 1 ≤ k ≤ N, (7.197)

Bvcl(i) =

(
Bv(i) + L(i)Dv(i)

Bv(i)

)

, Ccl(i) =
(
In 0

)
.

Specializing (7.8) to the case of the system (7.196) we may rewrite (7.195) as

‖|GL̃|||2 ≤ |||GL|||2. (7.198)

In (7.198) we choose the norm ||| · |||2 to measure the quality of the estimation
achieved by a filter of type (7.193) because this type of H2 norm is more
frequently used in the literature. It is worth mentioning that the use of the
norms || · ||2 or |̃| · |̃|2 instead of ||| · |||2 is possible without major changes. They
are pointed out at the end of this section.

Assuming that the hypotheses H1,H2,A.7.1, and A.7.2 are fulfilled, we
may obtain via Theorem 7.4 applied to the system (7.196) that:

|||GL|||22 =
N∑

i=1

Tr[Ccl(i)Y π0(i)CT
cl(i)], (7.199)

where Y π0 = (Y π0(1), . . . , Y π0(N)) is the unique solution of the following
linear equation on SN

n ,

Y π0(i) =
N∑

j=1

p(j, i)

[
r∑

k=0

Akcl(j)Y π0(j)AT
kcl(j) + qπ0(j)Bvcl(j)BT

vcl(j)

]

,

(7.200)

where qπ0(j) are defined as in Theorem 7.1.
Let (

Y1(i) Y2(i)

Y T
2 (i) Y3(i)

)

be the partition of the matrix Y π0(i) according to the partition of the coeffi-
cients of (7.196). Thus (7.199) becomes:

|||GL|||22 =
N∑

i=1

Tr[Y1(i)]. (7.201)

Using (7.197) one obtains the following partition of (7.200).
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Y1(i) =
N∑

j=1

p(j, i)

{

[A0(j) + L(j)C0(j)]Y1(j)[A0(j) + L(j)C0(j)]T

+
r∑

k=1

[Ak(j) + L(j)Ck(j)]Y3(j)[Ak(j) + L(j)Ck(j)]T

+ qπ0(j)[Bv(j) + L(j)Dv(j)][Bv(j) + L(j)Dv(j)]T
}

(7.202)

Y2(i) =
N∑

j=1

p(j, i)

{

[A0(j) + L(j)C0(j)]Y2(j)AT
0 (j)

+
r∑

k=1

[Ak(j) + L(j)Ck(j)]Y3(j)AT
k (j)

+ qπ0(j)[Bv(j) + L(j)Dv(j)]BT
v (j)

}

(7.203)

Y3(i) =
N∑

j=1

p(j, i)

[
r∑

k=0

Ak(j)Y3(j)AT
k (j) + qπ0(j)Bv(j)BT

v (j)

]

. (7.204)

Having in mind (7.201) it follows that only the equation (7.202) would be
of interest for us. However, one sees that it is dependent upon Y3(j) which
solves (7.204). Hence the equation (7.203) is not involved in our developments.
On the other hand if the zero state equilibrium of (7.189) is ESMS one obtains
that (7.204) has a unique solution Ỹ3 = (Ỹ3(1), . . . , Ỹ3(N)) ∈ SN+

n . Plugging
Ỹ (j) in (7.202) we look for the gain L̃ ∈ K̂s(G) such that the right-hand side
of (7.201) minimized.

Let us consider the following system of nonlinear equations on SN
n .

Y1(i) =
N∑

j=1

p(j, i)

[

A0(j)Y1(j)AT
0 (j) − (A0(j)Y1(j)CT

0 (j)

+
r∑

k=1

Ak(j)Ỹ3(j)CT
k (j) + qπ0(j)Bv(j)DT

v (j))(C0(j)Y1(j)CT
0 (j)

+
r∑

k=1

Ck(j)Ỹ3(j)CT
k (j) + qπ0(j)Dv(j)DT

v (j))−1(C0(j)Y1(j)AT
0 (j)

+
r∑

k=1

Ck(j)Ỹ3(j)AT
k (j) + qπ0(j)Dv(j)BT

v (j))

+
r∑

k=1

Ak(j)Ỹ3(j)AT
k (j) + qπ0(j)Bv(j)BT

v (j)

]

(7.205)
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with the unknown Y1 = (Y1(1), . . . , Y1(N)). In (7.205) Ỹ3(j) is the jth com-
ponent of the unique solution of (7.204). Let us define B(j), D(j) via the
following factorization,

(
B(j)

D(j)

)(
B(j)

D(j)

)T

=
r∑

k=1

(
Ak(j)

Ck(j)

)

Ỹ3(j)

(
Ak(j)

Ck(j)

)T

+ qπ0(j)

(
Bv(j)

Dv(j)

)(
Bv(j)

Dv(j)

)T

.

Thus, (7.205) can be rewritten:

Y1(i) =
N∑

j=1

p(j, i)[A0(j)Y1(j)AT
0 (j) − (A0(j)Y1(j)CT

0 (j)

+ B(j)D
T
(j))(C0(j)Y1(j)CT

0 (j)

+ D(j)D
T
(j))−1(C0(j)Y1(j)AT

0 (j) + D(j)B
T
(j)) + B(j)B

T
(j)].
(7.206)

Hence (7.206) is the special form of the DTSRE-F (5.156) associated with the
following system subject to Markovian switching,

x(t + 1) = A0(ηt)x(t) + B(ηt)u(t)

y(t) = C0(ηt)x(t) + D(ηt)u(t).

Based on this analogy we may introduce the concept of a stabilizing solution
of (7.205). Thus, a solution Ỹ1 = (Ỹ1(1), . . . , Ỹ1(N)) of (7.205) is a stabilizing
solution if the zero state equilibrium of the closed-loop system

x̃(t + 1) = [A0(ηt) + L̃(ηt)C0(ηt))x̃(t) (7.207)

is ESMS, where

L̃(j) = −
(

A0(j)Ỹ1(j)CT
0 (j) +

r∑

k=1

Ak(j)Ỹ3(j)CT
k (j)

+ qπ0(j)Bv(j)DT
v (j))(C0(j)Ỹ1(j)CT

0 (j)

+
r∑

k=1

Ck(j)Ỹ3(j)CT
k (j) + qπ0(j)Dv(j)DT

v (j)

)−1

. (7.208)

If we take L̃ = (L̃(1), . . . L̃(N)), then L̃ ∈ K̂s(G).
Specializing the result of Theorem 5.16 to the DTSRE-F (7.206) one

obtains the following.
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Corollary 7.4 Assume:

(a) The hypotheses H1 and H2 are fulfilled.
(b) The zero state equilibrium of (7.189) is ESMS.

Then the following are equivalent.

(i) The DTSRE-F (7.205) has a stabilizing solution Ỹ1 = (Ỹ1(1), . . . ,
Ỹ1(N)) ∈ SN+

n verifying the condition:

C0(j)Ỹ1(j)CT
0 (j) +

r∑

k=1

Ck(j)Ỹ3(j)CT
k (j) + qπ0(j)Dv(j)DT

v (j) > 0,

(7.209)

1 ≤ j ≤ N .
(ii) There exists Z = (Z(1), . . . , Z(N)) ∈ SN

n that solves the following system
of LMIs,

(
Ψ1i(Z) − Z(i) Ψ2i(Z)

ΨT
2i(Z) Ψ3i(Z)

)

> 0, (7.210)

1 ≤ i ≤ N , where

Ψ1i(Z) = A0(i)E∗
i (Z)AT

0 (i) +
r∑

k=1

Ak(i)Ỹ3(i)AT
k (i) + qπ0(i)Bv(i)BT

v (i)

Ψ2i(Z) = A0(i)E∗
i (Z)CT

0 (i) +
r∑

k=1

Ak(i)Ỹ3(i)CT
k (i) + qπ0(i)Bv(i)DT

v (i)

Ψ3i(Z) = C0(i)E∗
i (Z)CT

0 (i) +
r∑

k=1

Ck(i)Ỹ3(i)CT
k (i) + qπ0(i)Dv(i)DT

v (i).

It must be remarked that if assumption (b) in the statement is fulfilled
then the zero state equilibrium of x(t + 1) = A0(ηt)x(t) is ESMS. There-
fore, in this case, the stochastic detectability involved in Theorem 5.16 is
automatically satisfied in the case of the DTSRE-F (7.205).

The next result can be proved by direct calculations.

Lemma 7.11 The stabilizing solution Ỹ1 of the DTSRE-F (7.205) also solves
the following modified equation.

Ỹ1(i) =
N∑

j=1

p(j, i)

{

[A0(j) + L(j)C0(j)]Ỹ1(j)[A0(j) + L(j)C0(j)]T

+
r∑

k=1

[Ak(j) + L(j)Ck(j)]Ỹ3(j)[Ak(j) + L(j)Ck(j)]T
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+ qπ0(j)[Bv(j) + L(j)Dv(j)][Bv(j) + L(j)Dv(j)]T

− [L(j)− L̃(j)][C0(j)Ỹ1(j)CT
0 (j)

+
r∑

k=1

Ck(j)Ỹ3(j)CT
k (j) + qπ0(j)Dv(j)DT

v (j)][L(j) − L̃(j)]T
}

, (7.211)

where L(j) ∈ Rn×ny , 1 ≤ j ≤ N are arbitrary but fixed and L̃(j), 1 ≤ j ≤ N
are given by (7.208).

Taking in (7.211) L(j) = L̃(j) we obtain the following version of (7.205),
verified by Ỹ1.

Ỹ1(i) =
N∑

j=1

p(j, i)

{

[A0(j) + L̃(j)C0(j)]Ỹ1(j)[A0(j) + L̃(j)C0(j)]T

+
r∑

k=1

[Ak(j) + L̃(j)Ck(j)]Ỹ3(j)[Ak(j) + L̃(j)Ck(j)]T

+ qπ0(j)[Bv(j) + L̃(j)Dv(j)][Bv(j) + L̃(j)Dv(j)]T
}

. (7.212)

It is easy to see that (7.212) coincides with equation (7.202) associated with
the gains L(j) = L̃(j), 1 ≤ j ≤ N . So, (7.201) becomes in this case:

|||GL̃|||22 =
N∑

j=1

Tr[Ỹ1(j)]. (7.213)

Now we are in position to prove the main result of this section.

Theorem 7.11 Assume:

(a) The hypotheses H1,H2,A.7.1, and A.7.2 are fulfilled.
(b) The zero state equilibrium of (7.189) is ESMS.
(c) There exists Z = (Z(1), . . . , Z(N)) ∈ SN

n that solves (7.210). Under
these conditions the linear equation (7.204) has a unique solution Ỹ3 =
(Ỹ3(1), Ỹ3(2), . . . , Ỹ3(N)) ∈ SN+

n and the DTSRE-F (7.205) has a stabi-
lizing solution Ỹ1 = (Ỹ1(1), Ỹ2, . . . , Ỹ1(N)) ∈ SN

n that verifies (7.209). Let
L̃(i) be the stabilizing injection defined by (7.208) and

xL̃(t + 1) = (A0(ηt) + L̃(ηt)C0(ηt))xL̃(t) − L̃(ηt)y(t) (7.214)

yL̃(t) = xL̃(t)

be the corresponding filter of type (7.193).
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Under these conditions we have:

lim
t→∞E[|x(t) − xL̃(t)|2] ≤ lim

t→∞E[|x(t) − xL(t)|2]

for all L = (L(1), . . . , L(N)) ∈ K̂s(G).

Proof. The fact that (7.204) has a unique solution follows from assumption
(b), Theorem 2.5, and Theorem 3.10 for θ = 1. Furthermore, Corollary 7.4
guarantees the existence of the solution of (7.205) with the property (7.209).
Also, the fact that the zero state equilibrium of (7.194) is ESMS guarantees
the existence of the solution Y1 = (Y1(1), . . . , Y1(N)) of (7.202), for each
L ∈ K̂s(G).

Based on (7.201) and (7.213) it follows that it is sufficient to verify that
Y1(i) ≥ Ỹ1(i) for all 1 ≤ i ≤ N and for all L ∈ K̂s(G).

Let Δ = (Δ(1), . . . , Δ(N)) be defined by Δ(i) = (Y1(i)−Ỹ1(i)), 1 ≤ i ≤ N .
Subtracting (7.211) from (7.202) one obtains that Δ solves the equation:

Δ(i) =
N∑

j=1

p(j, i)[(A0(j) + L(j)C0(j))Δ(j)(A0(j) + L(j)C0(j))T + H(j)],

(7.215)

where H(j) = (L(j) − L̃(j))(C0(j)Ỹ1(j)CT
0 (j) +

∑r
k=1 Ck(j)Ỹ3(j)CT

k (j) +
qπ0(j)Dv(j)DT

v (j))(L(j)− L̃(j))T . Because (7.209) is fulfilled we deduce that
H(j) ≥ 0, 1 ≤ j ≤ N .

From the definition of the admissible gains it is known that the zero state
equilibrium of (7.194) is ESMS. This allows us to deduce, via Theorems 2.5
and 3.10 in the special case θ = 1, that equation (7.215) has a unique solution
Δ = (Δ(1), . . . , Δ(N)). Moreover this solution has the property Δ(i) ≥ 0, for
all 1 ≤ i ≤ N . This means that Y1(i) ≥ Ỹ1(i), 1 ≤ i ≤ N , and this completes
the proof. �
Remark 7.6

(a) The result proved in the previous theorem shows that the filter (7.214)
provides the best estimation of the states x(t) of the system (7.188) with
respect to the H2 performance |||·|||2. Based on Theorem 7.3(i) one obtains
that the filter (7.214) also provides the best estimation of the states x(t)
of (7.188) with respect to the H2 performance || · ||2 defined by (7.6).

(b) If in (7.205) and (7.209) the numbers qπ0(j) are replaced by qD0(j), 1 ≤
j ≤ N , then one can show that the filter (7.214) constructed using the
new version of the gain L̃(i) given by (7.209) provides the best estimation
of the states x(t) of (7.188) with respect to the H2 performance |̃| · |̃|2
introduced by (7.7).

(c) In light of the discussion in Section 7.3, if in (7.205) and (7.209) the num-
bers qπ0(j) and qD0(j) are replaced by q̃(j) =

∑N
i=1 qij then the corres-

ponding filter (7.214) has some robustness properties in the sense that it
does not depend upon the initial distribution π0 of the Markov chain.
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7.8 A case study

We next consider a numerical example that demonstrates the advantages
of using the new estimator derived in the present chapter, for a simplified
navigation problem where a vehicle’s attitude is estimated from its noisy
position and velocity measurements (e.g., from GPS) utilizing inaccurate
inertial sensors. The example is a modified version of the three-axis simplified
navigation model of [3].

The three axis model of [3] is given by

ẍ = βx − g(−φy), −φ̇y = ẋ/Re + (ωx + εx)φz − εy

ÿ = βy − gφx, φ̇x = ẏ/Re + (ωy + εy)φz + εx

z̈ = βz, φ̇z = εz,

where x, y, z are the components of the vehicle position, φx, φy , φz are the
tilt errors, and ωx, ωy, ωz are the angular rates. In [3] it was assumed
that the constant bias and drifts of the accelerometers and rate sensors
have been compensated via calibration and, therefore, the driving terms
βx, βy, βz and εx, εy, εz are white noise processes. In our case, we assume
low-cost noisy measurement devices for the angular rates (e.g., by differen-
tiation of angles computed from magnetometers) and we have, therefore,
added the noise terms βx to ωx and βy to ωy. Defining the state vector to
be x = (x ẋ − φy y ẏ φx z ẋ φz)T and the measurements to be
y = (x y z ẋ ẏ ż)T and considering the discrete-time version of the
above system with a sampling time of h = 0.1 sec we obtain the system of
(7.188) with [3], where

A0 ≈ I + h

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 1 0 0 0 0 0 0 0
0 0 −g 0 0 0 0 0 0
0 1/Re 0 0 0 0 0 0 ωx

0 0 0 0 1 0 0 0 0
0 0 0 0 0 −g 0 0 0
0 0 0 0 1/Re 0 0 0 ωy

0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

Bvv =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 0 0 0
1 0 0 0 0 0
0 0 0 0 −εd 0
0 0 0 0 0 0
0 1 0 0 0 0
0 0 0 εd 0 0
0 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 εd

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

βx

βy

βz

εx

εy

εz

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

,
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where we slightly abused notations when writing the discrete-time version.
We also define the terms with state-dependent noise:

A1x(t)w1(t) =

⎛

⎝
02×8 02×1

01×8 εd

06×8 06×1

⎞

⎠x(t)εx(t),

A2x(t)w2(t) =

⎛

⎝
05×8 05×1

01×8 εd

03×8 03×1

⎞

⎠x(t)εy(t)

and we note that the apparent correlation between v and w := [εx εy εz]T does
not affect the results of Theorem 7.1 above. The covariance of the measure-
ment noise is taken as DvD

T
v = diag{100, 100, 100, 0.01, 0.01, 0.01}. We took

εd = 0.0483 radian/
√

sec which amounts to 500 deg/
√

hour. Although this
level of random walk is very high and beyond commonly encountered practi-
cal values, it may represent cases where angular rates are obtained with very
cheap and noisy components or under severe environmental conditions.

We compare two estimators. One is the classical Kalman filter (KF) which
ignores the state-multiplicative noise and is derived by solving the discrete-
time recursive Riccati equation obtained from Theorem 7.11 above by nulling
A1, A2, C1, C2, and Ỹ3 and by replacing Ỹ1 in the left-hand side of (7.205) by
Ỹ3(t + 1) and by replacing Ỹ3 in the left-hand side of (7.205) by Ỹ3(t + 1).
All values in the right-hand sides of (7.205) and (7.204) correspond to the
moment t. Similarly, the new filter of the present paper, is referred to as the
state-multiplicative Kalman filter (MKF).

The vehicle maneuvers are assumed to behave according to ωx = ωy =
ωz = 0.5 sin(0.5t ·h). The results of 50 Monte Carlo simulation runs depicting
the standard deviations of the tilt errors φx, φy, φz for the KF and MKF
are given in Figures 7.1 and 7.2, respectively. The solid lines are the actual
ensemble based standard deviations whereas the dashed lines are the standard
deviations predicted by the filter, namely the square roots of elements (3,3),
(6,6), and (9,9) respectively, of Ỹ1. Clearly the prediction by the MKF is
considerably more accurate and tighter. Moreover, the standard deviations of
the tilt errors are smaller with the MKF, where the benefit of using MKF
over using KF is best observed in the estimation of φz where the errors are
smaller by a factor of two with the MKF with respect to the KF. Note also
that with both filters, the errors in φz are larger than those in φx and φy due
to the weaker observability in φz due to the lack of direct relation between φz

and the measured velocities that exists, in contrast, between ẍ and φy and ÿ
and φx.

7.9 Notes and references

The H2 optimal control problems refer to the minimization of a quadratic
cost functional in the solutions of a linear control system affected by additive
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Figure 7.1. Kalman filter, 50 Monte Carlo runs.

Figure 7.2. State-multiplicative Kalman filter, 50 Monte Carlo runs.
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white noise. As is known from the deterministic framework (see, e.g., [33]), the
value of such a performance criterion does not depend upon the initial con-
ditions of the trajectories of the controlled system and it coincides with the
H2 norm of a linear time-invariant system. That is why such criteria are often
called H2 norms. As in the case of other controlled problems for discrete-time
linear stochastic systems, the H2 optimal control problems were investigated
separately for the case of discrete-time controlled systems subject to multi-
plicative and additive white noise and for systems subject to jump Markov
perturbations and additive white noise. Thus for the case of discrete-time
linear systems subject to multiplicative and additive white noise the H2 opti-
mal control problem was considered in [63, 65]. For the case of discrete-time
linear stochastic systems with Markovian switching and additive white noise,
the H2 optimal control problem was considered in [26, 27] and their references.
In this chapter we have considered the H2 optimization problem for a gene-
ral class of discrete-time linear stochastic systems affected simultaneously by
multiplicative and additive white noise as well as Markovian switching. The
results included in this chapter may be found in [47, 49]. The results from
Section 7.6, concerning the H2 filtering problem, were published for the first
time in this book. The counterpart of this H2 filtering problem for the case
of discrete-time linear stochastic systems was considered in [106].



8

Robust stability and robust stabilization of
discrete-time linear stochastic systems

The main goal of this chapter is to investigate several aspects of the problem
of robust stability and robust stabilization for a class of discrete-time linear
stochastic systems subject to sequences of independent random perturba-
tions and Markov jump perturbations. As a measure of the robustness of
the stability of an equilibrium of a nominal system a concept of stability
radius is introduced. A crucial role in determining the lower bound of the
stability radius is played by the norm of a linear bounded operator associ-
ated with the given plant. This operator is called the input–output operator
and it is introduced in Section 8.2. In Section 8.3 a stochastic version of the
so-called bounded real lemma is proved. This result provides an estimation of
the norm of the input–output operator in terms of the feasibility of some linear
matrix inequalities (LMIs) or in terms of the existence of stabilizing solutions
of a discrete-time generalized algebraic Riccati-type equation. In Section 8.4
the stochastic version of the so-called small gain theorem is proved. Then this
result is used to derive a lower bound of robustness with respect to linear struc-
tured uncertainties. In the second part of this chapter we consider the robust
stabilization problem of systems subject to both multiplicative white noise
and Markovian jumps with respect to some classes of parametric uncertainty.
Based on the bounded real lemma we obtain a set of necessary and sufficient
conditions for the existence of a stabilizing feedback gain that ensures a pre-
scribed level of attenuation of the exogenous disturbance. We also show that
in the case of full state measurement if the disturbance attenuation problem
has a solution in a dynamic controller form then the same problem is solvable
via a control in a state feedback form. Finally a problem of H∞ filtering is
solved.

8.1 A brief motivation

In many applications the mathematical model of the controlled process is not
completely known. Even if the multiplicative white noise perturbations are

© Springer Science + Business Media, LLC 2010
Stochastic Systems, DOI 10.1007/978-1-4419-0630-4_8,

287Mathematical Methods in Robust Control of Discrete-Time Linear V. Dragan et al., 
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introduced in order to model the stochastic environmental perturbations that
are hard to quantify, it is also possible that some parametric uncertainties
occur in the coefficients of the stochastic system. Thus a robust stabilization
problem, is given asking us to construct a control law in a static or dynamic
feedback form that stabilizes all discrete-time linear stochastic systems into a
neighborhood of a given system often called the nominal system.

To be more specific, let us consider the controlled system:

x(t + 1) =

(

A0(ηt) + ΔA(t, ηt) +
r∑

k=1

wk(t)Ak(ηt)

)

x(t) + B(ηt)u(t), (8.1)

where Ak(i), 0 ≤ k ≤ r, B(i), 1 ≤ i ≤ N , are known matrices of appropriate
dimensions, and ΔA(t, i), t ≥ 0 are unknown matrices. A robust stabilization
problem, via state feedback control law, asks us to construct a control u(t) =
F (ηt)x(t) such that the zero state equilibrium of the nominal system

x(t + 1) =

(

A0(ηt) + B(ηt)F (ηt) +
r∑

k=1

wk(t)Ak(ηt)

)

x(t) (8.2)

and the zero state equilibrium of the perturbed system

x(t + 1) =

(

A0(ηt) + B(ηt)F (ηt) + ΔA(t, ηt) +
r∑

k=1

wk(t)Ak(ηt)

)

x(t) (8.3)

are exponentially stable in the mean square (ESMS) for all uncertainties
ΔA(t, i) in a neighborhood of the origin in Rn×n.

It is known that if the zero state equilibrium of the nominal system (8.2)
is ESMS then the zero state equilibrium of the perturbed system (8.3) is still
ESMS for some “small perturbations” ΔA(t, i). In a robust stability problem,
as well as in a robust stabilization problem, the goal is to preserve the stability
of the nominal system for the perturbed systems in the case of the variation
of coefficients of the system that are not necessarily small.

In this chapter we investigate different aspects of the problem of robust
stability and robust stabilization of discrete-time linear stochastic systems
(8.1) with structured parametric uncertainties of the form:

ΔA(t, ηt) =

(

G0(ηt) +
r∑

k=1

wk(t)Gk(ηt)

)

Δ(ηt)C(ηt),

where the matrices Gk(i), 0 ≤ k ≤ r, C(i), 1 ≤ i ≤ N are assumed
to be known, and Δ(i), 1 ≤ i ≤ N are unknown matrices of appropri-
ate dimensions. We show that in the definition of the set of uncertainties
Δ = (Δ(1), . . . , Δ(N)) for which the exponential stability in the mean square
is preserved, an important role is played by the norm of the linear operator
adequately chosen, named the input–output operator.
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For this reason we start with the proof of the stochastic version of the
bounded real lemma. This result allows us to obtain information about the
norm of an input–output operator.

We also prove a stochastic version of the small gain theorem which is a
powerful tool in the estimation of the stability radius of a perturbed system,
with structured parametric uncertainties.

8.2 Input–output operators

Let us consider the system (G) with the state space representation:

x(t + 1) =

(

A0(ηt) +
r∑

k=1

wk(t)Ak(ηt)

)

x(t)

+

(

B0(ηt) +
r∑

k=1

wk(t)Bk(ηt)

)

v(t)

z(t) = C(ηt)x(t) + D(ηt)v(t), (8.4)

where x(t) ∈ Rn is the state of the system; v(t) ∈ Rmv is the external input
and z(t) ∈ Rnz is the output; {w(t)}t≥0, (w(t) = (w1(t), w2(t), . . . , wr(t))T )
is a sequence of independent random vectors; and the triple ({ηt}t≥0, P,D)
is an homogeneous Markov chain, on a given probability space (Ω,F ,P)
with the set of the states D = {1, 2, . . . , N} and the transition probability
matrix P .

Throughout this chapter we assume that together with the hypotheses H1

and H2 (introduced in Section 1.5), the Markov chain verifies the following
additional assumption.

A.8.1

(i) The transition probability matrix P is a nondegenerate stochastic matrix.
(ii) π0(i) = P{η0 = i} > 0, 1 ≤ i ≤ N .

It should be remarked that in the developments of this chapter the Markov
chain is not prefixed, but it is assumed that the initial distributions π0 =
(π0(1), . . . , π0(N)) lie in the subset MN = {π0 = (π0(1), . . . , π0(N))|π0(i) >

0, 1 ≤ i ≤ N,
∑N

i=1 π0(i) = 1}.
In (8.4) Ak(i), Bk(i), 0 ≤ k ≤ r, C(i), D(i), 1 ≤ i ≤ N are given matrices

of appropriate dimensions.
In this chapter, the inputs v = {v(t)}t≥0 are stochastic processes either

in �2H̃{0, τ ;Rmv} for τ > 0 or in �2H̃{0,∞;Rmv}. Both �2H̃{0, τ ;Rmv} and
�2H̃{0,∞;Rmv} are real Hilbert spaces.
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The norms induced by the usual inner product on each of these Hilbert
spaces are:

‖v‖�2H̃{0,τ ;Rmv} =

(
τ∑

t=0

E[|v(t)|2]
)1/2

for all v ∈ �2H̃{0, τ ;Rmv} and

‖v‖�2H̃{0,∞;Rmv} =

( ∞∑

t=0

E[|v(t)|2]
)1/2

,

respectively, for all v ∈ �2H̃{0,∞;Rmv}.
Let x(t, 0, v) be the solution of the system (8.4) corresponding to the input

v = {v(t)}t≥0 with the initial condition x(0, 0, v) = 0. Let

z(t, 0, v) = C(ηt)x(t, 0, v) + D(ηt)v(t) (8.5)

be the corresponding output. One can see that if v ∈ �2H̃{0, τ ;Rmv} for some
τ ≥ 1, then x(t, 0, v) is Ht−1-measurable and E[|x(t, 0, v)|2] < ∞. Hence from
(8.5) it follows that {z(t, 0, v)}0≤t≤τ ∈ �2H̃{0, τ ;Rnz}.

We have E[|z(t, 0, v)|2] ≤ δ1E[|x(t, 0, v)|2] + δ2E[|v(t)|2], where δ1 =
2 maxi∈D |C(i)|2 and δ2 = 2 maxi∈D |D(i)|2.

Applying Corollary 3.8(i) we deduce that if the zero state equilibrium of
the system

x(t + 1) =

(

A0(ηt) +
r∑

k=1

wk(t)Ak(ηt)

)

x(t) (8.6)

is ESMS, then there exists γ > 0 such that
∞∑

t=0

E[|z(t, 0, v)|2] ≤ γ2
∞∑

t=0

E[|v(t)|2] (8.7)

for all v ∈ �2H̃{0,∞;Rmv}.
It can be remarked that in the absence of the property of exponential

stability in the mean square of the linear system (8.6) one can prove that for
each τ ≥ 1 there exists γ(τ) > 0 such that

τ∑

t=0

E[|z(t, 0, v)|2] ≤ γ2(τ)
τ∑

t=0

E[|v(t)|2] (8.8)

for all v ∈ �2H̃{0, τ ;Rmv}.
Because v → z(t, 0, v) is a linear dependence, we deduce that if the

state equilibrium of (8.6) is ESMS, we may define a linear operator T :
�2H̃{0,∞;Rmv} → �2H̃{0,∞;Rnz} by

(T v)(t) = z(t, 0, v) (8.9)

for all v ∈ �2H̃{0,∞;Rmv}.
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In the absence of the assumption of exponential stability for each τ ≥ 1, the
equality (8.9) defines a linear operator Tτ : �2H̃{0, τ ;Rmv} → �2H̃{0, τ ;Rnz}.

From (8.7) and (8.8) one obtains that T and Tτ are bounded operators.
The linear operator T introduced by (8.9) is called the input–output

operator defined by the system (8.4) and the system (8.4) is known as a state
space representation of the operator T . From the definition of the input–
output operator one sees that such an operator maps only finite-energy dis-
turbance signal v into the corresponding finite energy output signal z of the
considered system.

Concerning the product and the inversion of the input–output operators
we have the following proposition.

Proposition 8.3

(i) Let T 1
τ : �2H̃{0, τ ;Rm} → �2H̃{0, τ ;Rp} and T 2

τ : �2H̃{0, τ ;Rm1} → �2H̃
{0, τ ;Rm} be the input–output operators with the state space representa-
tions

x1(t + 1) =

(

A10(ηt) +
r∑

k=1

wk(t)A1k(ηt)

)

x(t)

+

(

B10(ηt) +
r∑

k=1

wk(t)B1k(ηt)

)

v1(t)

y1(t) = C1(ηt)x(t) + D1(ηt)v1(t)

and

x2(t + 1) =

(

A20(ηt) +
r∑

k=1

wk(t)A2k(ηt)

)

x(t)

+

(

B20(ηt) +
r∑

k=1

wk(t)B2k(ηt)

)

v2(t)

y2(t) = C2(ηt)x(t) + D2(ηt)v2(t);

then the product T 1
τ T 2

τ : �2H̃{0, τ ;Rm1} → �2H̃{0, τ ;Rp} has the state space
realization of the form (8.4) where

Ak(i) =

(
A1k(i) B1k(i)C2(i)

0 A2k(i)

)

Bk(i) =

(
B1k(i)D2(i)

B2k(i)

)

, 0 ≤ k ≤ r

C(i) =
(
C1(i) D1(i)C2(i)

)
, D(i) = D1(i)D2(i), i ∈ D.
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(ii) Assume that in (8.4) mv = nz and detD(i) 
= 0, i ∈ D. Then for every
τ > 0 the input–output operator Tτ : �2H̃{0, τ ;Rnz} → �2H̃{0, τ ;Rnz} is
invertible and its inverse T −1

τ has the state space realization

ξ(t + 1) =

(

Ã0(ηt) +
r∑

k=1

wk(t)Ãk(ηt)

)

ξ(t)

+

(

B̃0(ηt) +
r∑

k=1

wk(t)B̃k(ηt)

)

z(t)

v(t) = C̃(ηt)ξ(t) + D̃(ηt)z(t), (8.10)

where Ãk(i) = Ak(i) − Bk(i)D−1(i)C(i), B̃k(i) = Bk(i)D−1(i), C̃(i) =
−D−1(i)C(i), D̃(i) = D−1(i), i ∈ D. Moreover, if the zero state equili-
brium of the system (8.6) and the zero state equilibrium of the system
obtained from (8.10) with B̃k(i) = 0 are ESMS then the input–output
operator T associated with the system (8.4) is invertible and its inverse
T −1 has a state space representation given by (8.10).

To obtain an estimate of a robustness radius of the stabilization achieved
by a control law, an important role is played by the norm of an input–output
operator. It is well known, from the deterministic context, that the norm of
an input–output operator cannot be explicitly computed as in the case of
H2 norms. That is why we are looking for necessary and sufficient conditions
which guarantee that the norm of an input–output operator is smaller than a
prescribed level γ > 0.

Such conditions are provided by the well-known bounded real lemma. The
discrete-time stochastic version of the bounded real lemma is proved in the
next section.

In the last part of this section we present several auxiliary results useful
in the developments of the next sections.

Remark 8.7 Each stochastic process v = {v(t)}0≤t≤τ ∈ �2H̃{0, τ ;Rmv} can
be extended in a natural way to a process v = {v(t)}t≥0 ∈ �2H̃{0,∞;Rmv}
by taking v(t) = v(t) for 0 ≤ t ≤ τ and v(t) = 0 for t ≥ τ + 1.
We have ‖v‖�2H̃{0,τ ;Rmv} = ‖v̄‖�2H̃{0,∞;Rmv} and also ‖Tτv‖�2H̃{0,τ ;Rnz} ≤
‖T v‖�2H̃{0,∞;Rnz} ≤ ‖T ‖ · ‖v‖�2H̃{0,∞;Rmv} = ‖T ‖ · ‖v‖�2H̃{0,τ ;Rmv} for all
v ∈ �2H̃{0, τ ;Rmv}. Therefore this leads to

‖Tτ‖ ≤ ‖T ‖ (8.11)

for all τ ≥ 1.

Let γ > 0, 0 < τ ∈ Z ∪ {∞}, and x0 ∈ Rn be arbitrary but fixed. We
consider the following cost functionals
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Jγ(τ, x0, i, v) =
τ∑

t=0

E[|z(t, x0, v)|2 − γ2|v(t)|2|η0 = i], (8.12)

i ∈ D and

J̃γ(τ, x0, v) =
τ∑

t=0

E[|z(t, x0, v)|2 − γ2|v(t)|2] (8.13)

for all v = {v(t)}0≤t≤τ ∈ �2H̃{0, τ ;Rmv}.
It should be noted that if (8.12) and (8.13) are written for τ = +∞ we

assume tacitly that the zero state equilibrium of the system (8.6) is ESMS.
It is clear that ‖Tτ‖ ≤ γ if and only if J̃γ(τ, 0, v) ≤ 0 for all v ∈ �2H̃{0, τ ;Rmv}
and ‖T ‖ ≤ γ if and only if J̃γ(∞, 0, v) ≤ 0 for all v ∈ �2H̃{0,∞;Rmv}.

Applying Lemma 3.1 we obtain the following.

Corollary 8.5 For all τ ≥ 1, x0 ∈ Rn, and for all X(t) = (X(t, 1), . . . ,
X(t,N)) ∈ SN

n , 0 ≤ t ≤ τ + 1, we have

Jγ(τ, x0, i, v)xT
0 X(0, i)x0 − E[xT (τ + 1)X(τ + 1, ητ+1)x(τ + 1)|η0 = i]

+
τ∑

t=0

E

[(
x(t)
v(t)

)T

Q(t, ηt)
(

x(t)
v(t)

)

|η0 = i

]

for all v = {v(t)}0≤t≤τ ∈ �2H̃{0, τ ;Rmv}, i ∈ D, where x(t) = x(t, x0, v) and

Q(t, i) =

(
Π1iX(t + 1)−X(t, i) + CT (i)C(i)

(Π2iX(t + 1) + CT (i)D(i))T

Π2iX(t + 1) + CT (i)D(i)

Π3iX(t + 1) + DT (i)D(i) − γ2Imv

)

(8.14)

with
(

Π1iX(t + 1) Π2iX(t + 1)

(Π2iX(t + 1))T Π3iX(t + 1)

)

=
r∑

k=0

(
Ak(i) Bk(i)

)T Ei(X(t + 1))
(
Ak(i) Bk(i)

)
(8.15)

with Ei(X(t + 1)) =
∑N

j=1 p(i, j)X(t + 1, j), 1 ≤ i ≤ N .

Proof. One applies Lemma 3.1 to the function V (t, x, i) = xTX(t, i)x and to
the system (8.4). Details are omitted. �
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Let F (t) = (F (t, 1), . . . , F (t,N)), F (t, i) ∈ Rmv×n,0 ≤ t ≤ τ , τ ≥ 1. Let
Xγ

F (t) = (Xγ
F (t, 1), . . . , Xγ

F (t,N)) be the solution of the following problem
with the given final value

X(t, i) =
r∑

k=0

(Ak(i) + Bk(i)F (t, i))T Ei(X(t + 1))(Ak(i) + Bk(i)F (t, i))

+ (C(i) + D(i)F (t, i))T (C(i) + D(i)F (t, i)) − γ2FT (t, i)F (t, i)
(8.16)

X(τ + 1, i) = 0,

1 ≤ i ≤ N. Because (8.16) is a backward affine equation, its solution XF (t)
is well defined for all 0 ≤ t ≤ τ + 1. Let us remark that (8.16) may be
written as

(
In

F (t, i)

)T

Q(Xγ
F , i, t)

(
In

F (t, i)

)

= 0, (8.17)

0 ≤ t ≤ τ + 1, i ∈ D, where Q(Xγ
F , i, t) is obtained from (8.14) when X(t) is

replaced by Xγ
F (t). Let xF = {xF (t)}0≤t≤τ+1 be the solution of the following

problem with the initial given value,

x(t + 1) =

[

A0(ηt) + B0(ηt)F (t, ηt)

+
r∑

k=1

wk(t)(Ak(ηt) + Bk(ηt)F (t, ηt))

]

x(t)

+

[

B0(ηt) +
r∑

k=1

wk(t)Bk(ηt)

]

v(t) (8.18)

x(0) = x0.

Lemma 8.12 Let F = {F (t)}0≤t≤τ , F (t) = (F (t, 1), . . . , F (t,N)), F (t, i) ∈
Rmv×n be a sequence of gain matrices. If {Xγ

F (t)}0≤t≤τ+1 is the solution of
the problem (8.16), then we have:

Jγ(τ, x0, i, v + FxF ) = xT
0 Xγ

F (0, i)x0

+
τ∑

t=0

E[vT (t)Hγ(Xγ
F (t + 1), ηt)v(t)

+ 2vT (t)N(Xγ
F (t + 1), ηt)xF (t)|η0 = i]

for all i ∈ D, x0 ∈ Rn, v ∈ �2H̃{0, τ ;Rmv}, xF (t) being the solution of the
problem (8.18) corresponding to the input v and
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Hγ(Xγ
F (t + 1), i) = Π3iX

γ
F (t + 1) + DT (i)D(i) − γ2Imv (8.19)

N(Xγ
F (t + 1), i) = (Π2iX

γ
F (t + 1) + CT (i)D(i))T + Hγ(Xγ

F (t + 1), i)F (t, i).
(8.20)

Proof. Applying Corollary 8.1 with X(t, i) replaced by Xγ
F (t, i) and v(t)

replaced by v(t) + F (t, ηt)xF (t) we obtain

Jγ(τ, x0, i, v + FxF )

= xT
0 Xγ

F (0, i)x0 +
τ∑

k=0

E

[(
xF (t)

v(t) + F (t, ηt)xF (t)

)T

×Q(Xγ
F , ηt, t)

(
xF (t)

v(t) + F (t, ηt)xF (t)

)

|η0 = i

]

(8.21)

for all x0 ∈ Rn, i ∈ D, v ∈ �2H̃{0, τ ;Rmv}.
Furthermore, we may write

(
xF (t)

v(t) + F (t, ηt)xF (t)

)T

Q(Xγ
F , ηt, t)

(
xF (t)

v(t) + F (t, ηt)xF (t)

)

= xT
F (t)

(
In

F (t, ηt)

)T

Q(Xγ
F , ηt, t)

(
In

F (t, ηt)

)

xF (t)

+ 2xT
F (t)

(
In

F (t, ηt)

)T

Q(Xγ
F , ηt, t)

(
0

Imv

)

v(t)

+ vT (t)
(

0
Imv

)T

Q(Xγ
F , ηt, t)

(
0

Imv

)

v(t).

Using (8.17) we deduce

(
xF (t)

v(t) + F (t, ηt)xF (t)

)T

Q(Xγ
F , ηt, t)

(
xF (t)

= v(t) + F (t, ηt)xF (t)

)

2vT (t)N(Xγ
F (t + 1), ηt)xF (t) + vT (t)Hγ(Xγ

F (t + 1), ηt)v(t).

The conclusion follows plugging the last equality in (8.21). This completes
the proof. �

Now we prove the following.

Proposition 8.4 If for an integer τ ≥ 1 and a real number γ > 0, ‖Tτ‖ < γ,
then
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r∑

k=0

BT
k (i)Ei(X

γ
F (t + 1))Bk(i) + DT (i)D(i) − γ2Imv ≤ −ε0Imv (8.22)

for all 0 ≤ t ≤ τ , with ε0 ∈ (0, γ2 − ‖Tτ‖2).

Proof. Let us remark that (8.22) can be rewritten

Hγ(Xγ
F (t + 1), i) ≤ −ε0Imv , 0 ≤ t ≤ τ. (8.23)

We prove (8.23) in two steps. First we show that

Hγ(Xγ
F (t + 1), i) ≤ 0 (8.24)

for all 0 ≤ t ≤ τ , i ∈ D.
In the second step, using (8.24), we show the validity of (8.23). Let us

assume to the contrary that (8.24) is not true. This implies that there exist
0 ≤ t0 ≤ τ , i0 ∈ D, and v ∈ Rmv with |v| = 1, such that

vT Hγ(Xγ
F (t0 + 1), i0)v = ν0 > 0 (8.25)

for a ν0 > 0.
Let v̂ = {v̂(t)}0≤t≤τ be defined as follows,

v̂(t) =
{

χ{ηt0=i0}v, if t = t0
0, if t 
= t0.

It is clear that v̂ ∈ �2H̃{0, τ ;Rmv}.
Also let x̂ = {x̂(t)}0≤t≤τ+1 be the solution of the problem with zero initial

value:

x(t + 1)=

[

A0(ηt) + B0(ηt)F (t, ηt) +
r∑

k=1

wk(t)(Ak(ηt) + Bk(ηt)F (t, ηt))

]

x(t)

+

[

B0(ηt) +
r∑

k=1

wk(t)Bk(ηt)

]

v̂(t) (8.26)

x(0) = 0.

Let v̌(t) = v̂(t) + F (t, ηt)x̂(t). It is clear that v̌ = {v̌(t)}0≤t≤τ lies in
�2H̃{0, τ ;Rmv}.

Hence

J̃γ(τ, 0, v̌) = ‖Tτ v̌‖2
�2H̃{0,τ ;Rnz} − γ2‖v̌‖2

�2H̃{0,τ ;Rmv} ≤ 0. (8.27)

Because J̃γ(τ, x0, v) =
∑N

i=1 π0(i)Jγ(τ, x0, i, v) we obtain via Lemma 8.1 and
the inequality (8.27) that
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0 ≥
N∑

i=1

π0(i)Jγ(τ, 0, i, v̂) =
N∑

i=1

π0(i)

{
τ∑

t=0

E[v̂T (t)Hγ(Xγ
F (t + 1), ηt)v̂(t)

+2v̂T (t)N(Xγ
F (t + 1), ηt)x̂(t)|η0 = i]

}

=
N∑

i=1

π0(i)E[v̂(t0)Hγ(Xγ
F (t0 + 1), ηt0)v̂(t0)|η0 = i].

(8.28)

For the last equality we used the fact that v̂(t) = 0 for t 
= t0 and x̂(t) = 0 for
t ≤ t0.

On the other hand

v̂T (t0)Hγ(Xγ
F (t0 + 1), ηt0)v̂(t0) =

N∑

l=1

v̂T (t0)Hγ(Xγ
F (t0 + 1), l)v̂(t0)χ{ηt0=l}

= vT Hγ(Xγ
F (t0 + 1), i0)vχ{ηt0=i0}. (8.29)

From (8.25), (8.28), and (8.29) we deduce

0 ≥
N∑

i=1

π0(i)E[vT Hγ(Xγ
F (t0 + 1), i0)vχ{ηt0=i0}|η0 = i]

= ν0

N∑

i=1

π0(i)E[χ{ηt0=i0}|η0 = i] = ν0πt0(i0) > 0.

This is a contradiction, hence (8.24) is correct. Note that πt0(i0) > 0 is a
consequence of the assumption A.8.1.

Let 0 < ε0 < γ2 − ‖Tτ‖2. Set γ̃ = (γ2 − ε0)1/2. We have ‖Tτ‖ < γ̃. Hence
(8.24) is fulfilled for γ replaced by γ̃. This means that

Hγ̃(X γ̃
F (t + 1), i) ≤ 0, i ∈ D, 0 ≤ t ≤ τ, (8.30)

where X γ̃
F (·) is the solution of the problem with given final value

X γ̃
F (t, i) =

r∑

k=0

(Ak(i) + Bk(i)F (t, i))T Ei(X
γ̃
F (t + 1))

× (Ak(i) + Bk(i)F (t, i)) + (C(i) + D(i)F (t, i))T (C(i)

+ D(i)F (t, i)) − γ̃2FT (t, i)F (t, i)

X γ̃
F (τ + 1, i) = 0, i ∈ D. (8.31)
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Subtracting (8.16) from (8.31) one gets

X γ̃
F (t, i) −Xγ

F (t, i) =
r∑

k=0

(Ak(i) + Bk(i)F (t, i))T Ei(X
γ̃
F (t + 1)

−Xγ
F (t + 1))(Ak(i) + Bk(i)F (t, i)) + ε0F

T (t, i)F (t, i).

The last equality allows us to deduce recursively that

X γ̃
F (t, i) ≥ Xγ

F (t, i), 0 ≤ t ≤ τ, i ∈ D. (8.32)

From (8.19), (8.30), and (8.32) we deduce that

Hγ̃(Xγ
F (t + 1), i) ≤ Hγ̃(X γ̃

F (t + 1), i) ≤ 0.

Having in mind the definition of γ̃ we obtain that

Hγ(Xγ
F (t + 1), i) ≤ −ε0Imv , 0 ≤ t ≤ τ, i ∈ D

which completes the proof. �

Let Xγ(t) = (Xγ(t, 1), . . . , Xγ(t,N)) be the solution of the problem (8.16)
in the special case F (t) = 0. One obtains recursively for t ∈ {τ+1, τ, . . . , 0}, i ∈
D that Xγ(t, i) ≥ 0. Applying Proposition 8.2 for Xγ(t) instead of Xγ

F (t) one
obtains the following.

Corollary 8.6 If there exists an integer τ ≥ 1 such that ‖Tτ‖ < γ, then
γ2Imv −DT (i)D(i) > 0, i ∈ D.

8.3 Stochastic version of bounded real lemma

In the developments of this section an important role is played by the following
backward discrete-time nonlinear equation.

X(t, i) =
r∑

k=0

AT
k (i)Ei(X(t + 1))Ak(i) + CT (i)C(i)

−
(

r∑

k=0

AT
k (i)Ei(X(t + 1))Bk(i) + CT (i)D(i)

)

×
(

r∑

k=0

BT
k (i)Ei(X(t + 1))Bk(i) + DT (i)D(i) − γ2Imv

)−1

×
(

r∑

k=0

BT
k (i)Ei(X(t + 1))Ak(i) + DT (i)C(i)

)

, 1 ≤ i ≤ N.

(8.33)
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Using the notation introduced in (8.15) we may rewrite (8.33) in the following
compact form,

X(t) = Π1X(t + 1) + M − (Π2X(t + 1) + L)

× (Π3X(t + 1) + R)−1(Π2X(t + 1) + L)T , (8.34)

where

M = (M(1),M(2), . . . ,M(N)) ∈ SN
n , M(i) = CT (i)C(i),

L = (L(1), L(2), . . . , L(N)) ∈ MN
n,mv

, L(i) = CT (i)D(i),

R = (R(1), R(2), . . . , R(N)) ∈ SN
mv

, R(i) = DT (i)D(i) − γ2Imv .

We recall that as in Chapter 5, MN
n,mv

stands for Rn×mv ⊕Rn×mv ⊕· · ·⊕
Rn×mv . Hence (8.34) is a time-invariant version of (5.8). That is why often
we refer to (8.33) and (8.34) as a discrete-time stochastic generalized Riccati
equation (DTSGRE).

8.3.1 Stochastic bounded real lemma. The finite horizon time case

For each integer τ ≥ 1, let Xτ (t) = (Xτ (t, 1), . . . , Xτ (t,N)) be the solution of
DTSGRE (8.33) with the final value

Xτ (τ + 1, i) = 0, i ∈ D. (8.35)

Concerning the well-definedness of the solution Xτ (t) of (8.33)–(8.35) we prove
the following.

Lemma 8.13 If for an integer τ ≥ 1 and a real number γ > 0 we have
‖Tτ‖ < γ, then the solution Xτ (t) of the problem (8.33)–(8.35) is well defined
for all 0 ≤ t ≤ τ and it has the properties:

Xτ (t, i) ≥ 0 and

r∑

k=0

BT
k (i)Ei(Xτ (t + 1))Bk(i) + DT (i)D(i)− γ2Imv ≤ −ε0Imv (8.36)

for all 0 ≤ t ≤ τ , i ∈ D, where ε0 ∈ (0, γ2 − ‖Tτ‖2).

Proof. Based on Corollary 8.2 we deduce that Xτ (τ, i) can be computed via
(8.33) for all i ∈ {1, 2, . . . , N}. Also (8.36) is fulfilled for t = τ . Let us assume
that for an integer 0 < t0 < τ the solution Xτ (t) is well defined for t ∈
{t0, t0 + 1, . . . , τ} and has the properties in the statement. Because (8.36) is
fulfilled for t = t0 it follows that Xτ (t0, i) can be computed via (8.33) and
Xτ (t0, i) ≥ 0 for all i ∈ D. Now we show that (8.36) is fulfilled for t = t0 − 1.
For t0 ≤ t ≤ τ we define
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Fτ (t, i) = −
(

r∑

k=0

BT
k (i)Ei(Xτ (t + 1))Bk(i) + DT (i)D(i) − γ2Imv

)−1

×
(

r∑

k=0

BT
k (i)Ei(Xτ (t + 1))Ak(i) + DT (i)C(i)

)

, i ∈ D.

(8.37)

By direct calculation one obtains that Xτ (t) verifies

Xτ (t, i) =
r∑

k=0

(Ak(i) + Bk(i)Fτ (t, i))TEi(Xτ (t + 1))(Ak(i) + Bk(i)Fτ (t, i))

+ (C(i) + D(i)Fτ (t, i))T (C(i) + D(i)Fτ (t, i)) − γ2FT
τ (t, i)Fτ (t, i).

(8.38)

Let F = {F (t)}0≤t≤τ be the sequence of the gain matrices defined as follows.

F (t) = (F (t, 1), . . . , F (t,N)), F (t, i) =

{
0, if 0 ≤ t ≤ t0 − 1,

Fτ (t, i), if t0 ≤ t ≤ τ.

If Xγ
F = {Xγ

F (t)}0≤t≤τ is the solution of the problem (8.16) corresponding
to this choice of F , from the uniqueness of the solution of this problem with
given final value we conclude that Xγ

F (t) = Xτ (t), t0 ≤ t ≤ τ .
Applying Proposition 8.2 we deduce that

Hγ(Xγ
F (t + 1), i) ≤ −ε0Imv

for all 0 ≤ t ≤ τ . Particularly for t = t0 − 1 this inequality becomes:
r∑

k=0

BT
k (i)Ei(Xτ (t0))Bk(i) + DT (i)D(i) − γ2Imv ≤ −ε0Imv < 0.

This shows that (8.36) is fulfilled for t = t0 − 1. This allows us to deduce
that Xτ (t0 − 1) = (Xτ (t0 − 1, 1), Xτ(t0 − 1, 2), . . . , Xτ (t0 − 1, N)) can be
computed via (8.33). Using again (8.33) and (8.36) for t = t0 − 1 we deduce
that Xτ (t0 − 1, i) ≥ 0, i ∈ D. Thus the proof ends. �

Let us remark that if x(t) = x(t, x0, v) is a solution of the system (8.4)
determined by the input v(t), t ≥ 0 then it verifies

x(t + 1) =

[

A0(ηt) + B0(ηt)Fτ (t, ηt) +
r∑

k=1

wk(t)(Ak(ηt)

+Bk(ηt)Fτ (t, ηt))

]

x(t) +

(

B0(ηt) +
r∑

k=1

wk(t)Bk(ηt)

)

vτ (t),

(8.39)
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where vτ (t) = v(t) − Fτ (t, ηt)x(t) ∈ �2H̃{0, τ ;Rmv}. Applying Lemma 8.1 for
F (t, i) = Fτ (t, i) we obtain the following.

Corollary 8.7 Assume that for an integer τ ≥ 1, ‖Tτ‖ < γ. Then we have

Jγ(τ, x0, i, v) = xT
0 Xτ (0, i)x0 +

τ∑

t=0

E[(v(t) − Fτ (t, ηt)x(t))T Hγ

× (Xτ (t + 1), ηt)(v(t) − Fτ (t, ηt)x(t))|η0 = i]

for all x0 ∈ Rn, i ∈ D, v ∈ �2H̃{0, τ ;Rmv}, x(t) = x(t, x0, v), where Xτ =
{Xτ (t)}0≤t≤τ is a solution of the problem (8.33)–(8.35) and Fτ (t, i) is given
by (8.37).

Proof. From the previous lemma it follows that Xτ (t) is well defined for all
0 ≤ t ≤ τ and(8.36) is fulfilled. Therefore Fτ (t, i) can be constructed via
(8.37) for all t, i. The problem with given final value (8.33)–(8.35) is just
the problem with given final value (8.16) corresponding to the matrix gains
F (t, i) = Fτ (t, i). Applying Lemma 8.1 for F (t, i) = Fτ (t, i) and taking into
account that from (8.37) and (8.20) we have N(Xτ (t + 1), i) = 0 for all t, i,
we obtain the equality in the statement. Thus the proof ends. �

The next result is the finite horizon time version of the bounded real
lemma.

Theorem 8.12 Under the considered assumptions, for an integer τ ≥ 1 and
a given scalar γ > 0 the following are equivalent.

(i) ‖Tτ‖ < γ.
(ii) The solution Xτ = {Xτ (t)}0≤t≤τ of the DTSGRE (8.33) with the final

value Xτ (τ + 1, i) = 0, i ∈ D, is well defined for 0 ≤ t ≤ τ and verifies
(8.36) with ε0 ∈ (0, γ2 − ‖Tτ‖2).

Proof. The implication (i) → (ii) follows from Lemma 8.2.
We have to prove the implication (ii) → (i). Let us assume that (ii) is

fulfilled. Then the result from Corollary 8.3 allows us to write:

‖Tτv‖2
�2H̃{0,τ ;Rnz} − γ2‖v‖2

�2H̃{0,τ ;Rmv}

= J̃γ(τ, 0, v) =
τ∑

t=0

E[(v(t) − Fτ (t, ηt)x(t))T

× Hγ(Xτ (t + 1, ηt))(v(t) − Fτ (t, ηt)x(t))] ≤ 0 (8.40)

for all v ∈ �2H̃{0, τ ;Rmv}. Hence ‖Tτ‖ ≤ γ. Let us assume that ‖Tτ‖ = γ. This
means that there exists a sequence {vj}j≥1 ⊂ �2H̃{0, τ ;Rmv} such that
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‖vj‖�2H̃{0,τ ;Rmv} = 1

lim
j→∞

‖Tτvj‖�2H̃{0,τ ;Rnz} = γ. (8.41)

Let xj = {xj(t)}0≤t≤τ+1, be the solution of (8.4) corresponding to the input
vj and xj(0) = 0. Writing (8.40) for vj and taking the limit for j → ∞ one
obtains

lim
j→∞

E[|vj(t) − Fτ (t, ηt)xj(t)|2] = 0

for all 0 ≤ t ≤ τ . If we take into account that xj(t) verifies

xj(t + 1) =

[

A0(ηt) + B0(ηt)Fτ (t, ηt) +
r∑

k=1

wk(t)

×(Ak(ηt) + Bk(ηt)Fτ (t, ηt))

]

xj(t) +

[

B0(ηt) +
r∑

k=1

wk(t)Bk(ηt)

]

× (vj(t) − Fτ (t, ηt)xj(t)),

one obtains inductively that limj→∞ E[|xj(t)|2] = 0. Furthermore, one obtains

lim
j→∞

E[|vj(t)|2] ≤ 2 lim
j→∞

E[|Fτ (t, ηt)xj(t)|2]

+ 2 lim
j→∞

E[|vj(t) − Fτ (t, ηt)xj(t)|2] = 0.

This is in contradiction to (8.41) hence ‖Tτ‖ < γ. This completes the
proof. �

8.3.2 The bounded real lemma. The infinite time horizon case

First we prove the following.

Lemma 8.14 Assume:

(a) The zero state equilibrium of the system (8.6) is ESMS.
(b) The input–output operator T associated with the system (8.4) satisfies

‖T ‖ < γ. Then there exists ρ > 0 such that J̃γ(∞, x0, v) ≤ ρ|x0|2 for
all x0 ∈ Rn and v ∈ �2H̃{0,∞;Rmv}.

Proof. Let Z = (Z(1), Z(2), . . . , Z(N)) ∈ SN+
n be the unique solution of the

linear equation

Z(i) =
r∑

k=0

AT
k (i)Ei(Z)Ak(i) + CT (i)C(i), 1 ≤ i ≤ N. (8.42)
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We recall that under the assumption (a), if v ∈ �2H̃{0,∞;Rmv} then, based
on Corollary 3.8, limt→∞ E[|x(t, x0, v)|2] = 0.

Applying Corollary 8.1 in the special case X(t, i) = Z(i) and taking the
limit for τ →∞, one gets:

J̃γ(∞, x0, v) =
N∑

i=1

π0(i)xT
0 Z(i)x0

+
∞∑

t=0

E[vT (t)Hγ(Z, ηt)v(t) + 2xT (t, x0, v)NT (Z, ηt)v(t)]

(8.43)

for all v ∈ �2H̃{0,∞;Rmv} and all x0 ∈ Rn, where N(Z, i) and Hγ(Z, i) are as
in (8.19) and (8.20) with Z(i) instead of Xγ

F (t, i). Writing (8.43) for x0 = 0
one obtains:

J̃γ(∞;x0, v) − J̃γ(∞; 0, v)
N∑

i=1

π0(i)xT
0 Z(i)x0

+ 2
∞∑

t=0

E[xT (t, x0, 0)NT (Z, ηt)v(t)] (8.44)

for all v ∈ �2H̃{0,∞;Rmv}, x0 ∈ Rn.
Let ε be such that ‖T ‖2 < γ2 − ε2. Thus we may write:

J̃γ(∞, 0, v) = ‖T v‖2
�2H̃{0,∞;Rnz} − γ2‖v‖2

�2H̃{0,∞;Rmv} ≤ −ε2‖v‖2
�2H̃{0,∞;Rmv}.

Plugging the last inequality in (8.44) we deduce

J̃γ(∞;x0, v) ≤
N∑

i=1

π0(i)xT
0 Z(i)x0

+
∞∑

t=0

E[2xT (t, x0, 0)NT (Z, ηt)v(t) − ε2|v(t)|2]

or

J̃γ(∞;x0, v) ≤
N∑

i=1

λmax(Z(i))|x0|2 +
1
ε2

∞∑

t=0

E[|N(Z, ηt)x(t, x0, 0)|2]

−
∞∑

t=0

E[|εv(t) − 1
ε
N(Z, ηt)x(t, x0, 0)|2].
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Let ν > 0 such that max |N(Z, i)| ≤ ν. Thus we have

J̃γ(∞;x0, v) ≤
N∑

i=1

λmax(Z(i))|x0|2 +
ν2

ε2

∞∑

t=0

E[|x(t, x0, 0)|2]. (8.45)

From assumption (a) we deduce that there exists ρ1 > 0 not depending
upon x0 such that

∑∞
t=0 E[|x(t, x0, 0)|2] ≤ ρ1|x0|2. Introducing the last

inequality in (8.45) one obtains the inequality from the statement with
ρ =

∑N
i=1 λmaxZ(i) + ρ1(ν2/ε2). Thus the proof is complete. �

If Xτ (t), 0 ≤ t ≤ τ +1 is the solution of the problem with given final value
(8.33)–(8.35) we define K(t) = (K(t, 1), . . . ,K(t,N)) by

K(t, i) = Xτ (τ + 1 − t, i). (8.46)

We see that K(0, i) = Xτ (τ + 1, i) = 0, 1 ≤ i ≤ N . Also, by direct calcula-
tion one obtains that K = {K(t)}t≥0 solves the following forward nonlinear
equation on SN

n ,

K(t + 1, i) = Π1iK(t) + CT (i)C(i) − (Π2iK(t) + CT (i)D(i))(Π3iK(t)

+ DT (i)D(i) − γ2Imv )−1(Π2iK(t) + CT (i)D(i))T . (8.47)

Let us denote K0(t) = (K0(t, 1), . . . ,K0(t,N)) the solution of (8.47) with
given initial value K0(0, i) = 0, 1 ≤ i ≤ N .

Several properties of the solution K0(t) are summarized in the next result.

Proposition 8.5 Assume:

(a) the zero state equilibrium of (8.6) is ESMS.
(b) ‖T ‖ < γ.

Then the solution K0(t) of the forward equation (8.47) with the given initial
value K0(0, i) = 0 is defined for all t ≥ 0. It has the properties:

(i)
r∑

k=0

BT
k (i)Ei(K0(t))Bk(i) + DT (i)D(i) − γ2Imv ≤ −ε0Imv , (8.48)

where ε0 ∈ (0, γ2 − ‖T ‖2).
(ii) 0 ≤ K0(τ, i) ≤ K0(τ + 1, i) ≤ cIn, ∀ t, i ∈ Z+ × D, where c > 0 is a

constant not depending upon t, i.

Proof. Based on (8.11) we obtain that ‖Tτ‖ ≤ ‖T ‖ < γ for all τ ≥ 1. There-
fore, we deduce, via Lemma 8.2, that for any integer τ ≥ 1 the solution
Xτ (t) of the problem with given final value (8.33), (8.35) is well defined for
0 ≤ t ≤ τ + 1 and it verifies (8.36). Thus we deduce via (8.46) that K0(t) is
well defined for all t ≥ 0. If 0 < ε0 < γ2−‖T ‖2 it follows that ε0 < γ2−‖Tτ‖2

for all τ ≥ 1.
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Hence in (8.36) we may choose ε0 independent of τ . Writing (8.36) for
t = 0 and taking into account that K0(τ, i) = Xτ (1, i) we obtain that (i) is
fulfilled. Furthermore, from (8.48) and (8.47) we deduce that K0(t, i) ≥ 0 for
all (t, i) ∈ Z+ ×D.

Let Xτ (t) and Xτ+1(t) be the solutions of the DTSGRE (8.33) with the
final value Xτ (τ + 1) = 0 and Xτ+1(τ + 2) = 0 in SN

n . Under the considered
assumptions we know that these two solutions are well defined for 0 ≤ t ≤ τ+1
and 0 ≤ t ≤ τ + 2, respectively.

If Fτ (t, i) is defined as in (8.37) we rewrite the equation (8.33) verified by
Xτ+1(t) in the form

Xτ+1(t, i) =
r∑

k=0

(Ak(i) + Bk(i)Fτ (t, i))T Ei(Xτ+1(t + 1))(Ak(i))

+ Bk(i)Fτ (t, i)) + (C(i) + D(i)Fτ (t, i))T (C(i) + D(i)Fτ (t, i))

− γ2FT
τ (t, i)Fτ (t, i)− (Fτ (t, i)− Fτ+1(t, i))T Hγ

× (Xτ+1(t + 1), i)(Fτ (t, i) − Fτ+1(t, i), 1 ≤ i ≤ N, (8.49)

where Fτ+1(t, i) is constructed as in (8.37) with Xτ+1(t) instead of Xτ (t).
Let Zτ (t, i) = Xτ+1(t, i)−Xτ (t, i), 0 ≤ t ≤ τ + 1, 1 ≤ i ≤ N .
Subtracting (8.38) from (8.49) we obtain that Zτ (t) = (Zτ (t, 1), . . . ,

Zτ (t,N)) is the solution of the problem:

Zτ (t, i) =
r∑

k=0

(Ak(i) + Bk(i)Fτ (t, i))TEi(Zτ (t + 1))

× (Ak(i) + Bk(i)Fτ (t, i)) + Hτ (t, i)

Zτ (τ + 1, i) = Xτ+1(τ + 1, i) ≥ 0, (8.50)

where Hτ (t, i) = −(Fτ (t, i) − Fτ+1(t, i))T Hγ(Xτ+1(t + 1), i)(Fτ (t, i) − Fτ+1

(t, i)).
Having in mind (8.36) written for Xτ+1(t) instead of Xτ (t) we deduce that

Hτ (t, i) ≥ 0 for all 0 ≤ t ≤ τ + 1, i ∈ D. Thus (8.50) allows us to deduce
recursively that Zτ (t, i) ≥ 0 for 0 ≤ t ≤ τ + 1.

This means that Xτ (t, i) ≤ Xτ+1(t, i), 0 ≤ t ≤ τ + 1, i ∈ D. Particularly
Xτ (1, i) ≤ Xτ+1(1, i), i ∈ D.

Using (8.46) we see that the above inequality is equivalent to K0(τ, i) ≤
K0(τ + 1, i), i ∈ D, τ ≥ 1. We further consider vτ = {vτ (t)}0≤t≤τ defined by
vτ (t) = Fτ (t, ηt)xτ (t), where xτ (t) is the solution of

xτ (t + 1)=

[

A0(ηt) + B0(ηt)Fτ (t, ηt)+
r∑

k=1

wk(t)(Ak(i) + Bk(i)Fτ (t, i))

]

xτ (t)

xτ (0) = x0. (8.51)
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Let vτ = {vτ (t)}t≥0 ∈ �2H{0,∞;Rmv} be the natural extension of vτ taking
vτ (t) = 0 for t ≥ τ + 1.

Applying Corollary 8.3 and Lemma 8.3 we may write successively

π0(i)xT
0 Xτ (0, i)x0 ≤ E[xT

0 Xτ (0, η0)x0]

= J̃γ(τ, x0, vτ ) ≤ J̃γ(∞;x0, vτ ) ≤ ρ|x0|2

for all x0 ∈ Rn, i ∈ D. Hence

π0(i)xT
0 Xτ (0, i)x0 ≤ ρ|x0|2 (8.52)

for all x0 ∈ Rn, i ∈ D, and for all initial distribution π0 = (π0(1), . . . , π0(N))
with π0(i) > 0. Particularly, (8.52) is valid for the special case π0(i) = 1/N .

This leads to xT
0 Xτ (0, i)x0 ≤ Nρ|x0|2 for all i ∈ D. Thus xT

0 K0(τ +
1, i)x0 ≤ c|x0|2∀ τ ≥ 1, i ∈ D, x0 ∈ Rn, where c = Nρ. Thus the proof is
complete. �

Let us consider the following system of discrete-time coupled algebraic
Riccati equations (DTSARE),

X(i) =
r∑

k=0

AT
k (i)Ei(X)Ak(i) + CT (i)C(i)

−
(

r∑

k=0

AT
k (i)Ei(X)Bk(i) + CT (i)D(i)

)

×
(

r∑

k=0

BT
k (i)Ei(X)Bk(i) + DT (i)D(i) − γ2Imv

)−1

×
(

r∑

k=0

BT
k (i)Ei(X)Ak(i) + DT (i)C(i)

)

. (8.53)

We have the following corollary.

Corollary 8.8 Under the assumptions of Proposition 8.3 the DTSARE (8.53)
has a solution X̃ = (X̃(1), . . . , X̃(N)) ∈ SN+

n with the additional property
r∑

k=0

BT
k (i)Ei(X)Bk(i) + DT (i)D(i) − γ2Imv < 0, (8.54)

1 ≤ i ≤ N .

Proof. From Proposition 8.3 one obtains that the sequence {K0(τ, i)}τ≥1,
1 ≤ i ≤ N is convergent. Let X̃(i) = limτ→∞ K0(τ, i). Taking the limit for
t → ∞ in (8.47) one obtains that X̃ = (X̃(1), . . . , X̃(N)) is a solution of
DTSARE (8.53). Finally, taking the limit for t →∞ in (8.48) we deduce that
(8.54) is fulfilled. The proof ends. �
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We recall that a solution Xs = (Xs(1), . . . , Xs(N)) of the DTSARE (8.53)
is a stabilizing solution if the zero state equilibrium of the closed-loop system
xs(t+1) = [A0(ηt)+B0(ηt)Fs(ηt)+

∑r
k=1 wk(t)(Ak(ηt)+Bk(ηt)Fs(ηt))]xs(t)

is ESMS, where

Fs(i) = −
(

r∑

k=0

BT
k (i)Ei(Xs)Bk(i) + DT (i)D(i) − γ2Imv

)−1

×
(

r∑

k=0

BT
k (i)Ei(Xs)Ak(i) + DT (i)C(i)

)

, (8.55)

1 ≤ i ≤ N .
The main result of this section is the following.

Theorem 8.13 (Bounded real lemma) Under the considered assumptions,
for a given scalar γ > 0, the following are equivalent.

(i) The zero state equilibrium of (8.6) is ESMS and the input–output operator
T defined by the system (8.4) satisfies ‖T ‖ < γ.

(ii) There exists X = (X(1), . . . , X(N)) ∈ SN
n , X(i) > 0, 1 ≤ i ≤ N , which

solves the following systems of LMIs,
(

Π1iX −X(i) + CT (i)C(i) Π2iX + CT (i)D(i)

(Π2iX + CT (i)D(i))T Π3iX + DT (i)D(i) − γ2Imv

)

< 0,

1 ≤ i ≤ N, (8.56)

where the operators Πli are introduced by (8.15).
(iii) The DTSARE (8.53) has a stabilizing solution X̃ = (X̃(1), . . . , X̃(N)) ∈

SN+
n that satisfies (8.54).

(iv) There exists X = (X(1), . . . , X(N)) ∈ SN
n , X(i) > 0, 1 ≤ i ≤ N that

satisfies the following system of LMIs.
⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−X(i) On,mv M0i(X) M1i(X) . . . Mri(X) CT (i)

Omv ,n −γ2Imv M̃0i(X) M̃1i(X) . . . M̃ri(X) DT (i)

MT
0i(X) M̃T

0i(X) −X OnN,nN . . . OnN,nN OnN,nz

MT
1i(X) M̃T

1i(X) OnN,nN −X . . . OnN,nN OnN,nz

. . . . . . . . . . . . . . . . . . . . .

MT
ri(X) M̃T

ri(X) OnN,nN OnN,nN . . . −X OnN,nz

C(i) D(i) Onz ,nN Onz ,nN . . . Onz ,nN −Inz

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

< 0,

(8.57)
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1 ≤ i ≤ N , where

Mki(X) =
(√

p(i, 1)AT
k (i)X(1)

√
p(i, 2)AT

k (i)X(2)

. . .
√

p(i, N)AT
k (i)X(N)

)

M̃ki(X) =
(√

p(i, 1)BT
k (i)X(1)

√
p(i, 2)BT

k (i)X(2)
)

. . .
√

p(i, N)BT
k (i)X(N)

)
, 0 ≤ k ≤ r,

X = diag(X(1), . . . , X(N)) ∈ SnN .

(v) There exists Y = (Y (1), . . . , Y (N)), Y (i) > 0, 1 ≤ i ≤ N that solves the
following system of LMIs.

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−Y (i) On,mv Ψ0i(Y ) Ψ1i(Y ) . . . Ψri(Y ) Y (i)CT (i)

Omv,n −γ2Imv Ψ̃0i Ψ̃1i . . . Ψ̃ri DT (i)

ΨT
0i(Y ) Ψ̃T

0i −Y OnN,nN . . . OnN,nN OnN,nz

ΨT
1i(Y ) Ψ̃T

1i OnN,nN −Y . . . OnN,nN OnN,nz

. . . . . . . . . . . . . . . . . . . . .

ΨT
ri(Y ) Ψ̃T

ri OnN,nN OnN,nN . . . −Y OnN,nz

C(i)Y (i) D(i) Onz,nN Onz ,nN . . . Onz,nN −Inz

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

< 0,

(8.58)

1 ≤ i ≤ N , where

Ψki(Y ) =
(√

p(i, 1)Y (i)AT
k (i)

√
p(i, 2)Y (i)AT

k (i)

. . .
√

p(i, N)Y (i)AT
k (i)

)
,

Ψ̃ki =
(√

p(i, 1)BT
k (i)

√
p(i, 2)BT

k (i) . . .
√

p(i, N)BT
k (i)

)
,

0 ≤ k ≤ r, 1 ≤ i ≤ N,

Y = diag(Y (1), . . . , Y (N)) ∈ SnN

(vi) There exists Y = (Y (1), Y (2), . . . , Y (N)) ∈ SN
n , Y (i) > 0, 1 ≤ i ≤ N ,

that solves the following system of LMIs.
⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−Y (i) Ψ0i(Y ) Ψ1i(Y ) . . . Ψri(Y ) Y (i)CT (i)

ΨT
0i(Y ) G00(i)−Y G01(i) . . . G0r(i) G0r+1(i)

ΨT
1i(Y ) GT

01(i) G11(i)−Y . . . G1r(i) G1r+1(i)

. . . . . . . . . . . . . . . . . .

ΨT
ri(Y ) GT

0r(i) GT
1r(i) . . . Grr(i)−Y Grr+1(i)

C(i)Y (i) GT
0r+1(i) GT

1r+1(i) . . . GT
rr+1(i) D(i)DT (i)−γ2Inz

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

<0,

(8.59)
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where Ψli(Y ) and Y are as before, whereas

Glk(i) = IT (i)Bl(i)BT
k (i)I(i), 0 ≤ l ≤ k ≤ r,

Glr+1(i) = IT (i)Bl(i)DT (i)

and
I(i) =

(√
p(i, 1)In

√
p(i, 2)In . . .

√
p(i, N)In

)
.

Proof. Let us assume that (i) holds. If δ > 0 denotes Tδ : �2H̃{0,∞;Rmv} →
�2H̃{0,∞;Rn+nz} the linear operator defined by v → (Tδv)(t) = Cδ(ηt)
x(t, 0, v) + Dδ(ηt)v(t) where x(t, 0, v) is the zero initial value solution of (8.4)
corresponding to the input v and

Cδ(i) =
(

C(i)
δIn

)

, Dδ(i) =
(

D(i)
0

)

.

Based on (8.7) we deduce that for δ > 0 sufficiently small we have ‖Tδ‖ < γ.
Applying Corollary 8.4 we deduce that there exists Xδ = (Xδ(1), . . . , Xδ(N)),
Xδ(i) ≥ 0 solving the DTSARE:

Xδ(i) = Π1iXδ − (Π2iXδ + CT (i)D(i))(Π3iXδ + DT (i)D(i) − γ2Imv )−1

× (Π2iXδ + CT (i)D(i))T + CT (i)C(i) + δ2In, 1 ≤ 1 ≤ N,
(8.60)

with the additional property

Π3iXδ + DT (i)D(i) − γ2Imv < 0, 1 ≤ 1 ≤ N. (8.61)

Because the right-hand side of (8.60) is positive definite it follows that
Xδ(i) > 0, 1 ≤ i ≤ N . Also (8.60) implies

Π1iXδ −Xδ(i) + CT (i)C(i) − (Π2iXδ + CT (i)D(i))

× (Π3iXδ + DT (i)D(i) − γ2Imv )−1

× (Π2iXδ + CT (i)D(i))T < 0, 1 ≤ 1 ≤ N. (8.62)

By a Schur complement technique one obtains that (8.61) and (8.62) are
equivalent to (8.56) and thus the proof of the implication (i) → (ii) is com-
plete. To prove the converse implication, (ii) → (i), we remark that if (ii) is
fulfilled then the (1; 1) block of (8.56) is negative definite. Thus we obtained
that there exists X = (X(1), . . . , X(N)) ∈ SN

n with X(i) > 0, such that
X(i) >

∑r
k=0 AT

k (i)Ei(X)Ak(i), 1 ≤ i ≤ N . Applying Corollary 3.6 we deduce
that the zero state equilibrium of the system (8.6) is ESMS. Furthermore,
applying Corollary 8.1 for X(t, i) = X(i), 0 ≤ t ≤ τ , τ ≥ 1, 1 ≤ i ≤ N , and
taking the limit for τ →∞ we have:
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J̃γ(∞; 0, v) =
∞∑

t=0

E

[(
x(t, 0, v)

v(t)

)T

Q(X, ηt)
(

x(t, 0, v)
v(t)

)]

, (8.63)

where Q(X, i) is the left-hand side of (8.56). If X = (X(1), . . . , X(N)) verifies
(8.56) then for ε > 0 small enough we have

Q(X, i) ≤ −ε2In+mv , 1 ≤ 1 ≤ N. (8.64)

Combining (8.63) and (8.64) we deduce

J̃γ(∞; 0, v) ≤ −ε2
∞∑

t=0

E[|x(t, 0, v)|2] + E[|v(t)|2]

or equivalently

J̃γ̃(∞; 0, v) ≤ −ε2
∞∑

t=0

E[|x(t, 0, v)|2] < 0

for all v ∈ �2H̃{0,∞;Rmv} where γ̃ = (γ2 − ε2)1/2.
The last inequality may be written:

‖T v‖2
�2H̃{0,∞;Rnz} ≤ γ̃2‖v‖2

�2H̃{0,∞;Rmv}

for all v ∈ �2H̃{0,∞;Rmv}. This leads to ‖T ‖2 ≤ γ2 − ε2 and thus the impli-
cation (ii) → (i) is proved.

To prove the equivalence (ii) ↔ (iii) let us consider the DTSGRE:

X(t) = Π1X(t + 1)−M − (Π2X(t + 1)− L)

× (Π3X(t + 1)−R)−1(Π2X(t + 1)− L)T , (8.65)

where M,L,R are defined as in the case of (8.34). One can see that (8.65) is
a nonlinear equation of type (5.8) defined by the pair Σ = (Π,Q) with

Q =
( −M −L

−LT −R

)

∈ SN
n+mv

.

One can check that if X = (X(1), X(2), . . . , X(N)) solves (8.56) then X̂ =
(X̂(1), . . . , X̂(N)) with X̂(i) = −X(i), i ∈ D belongs to the set Γ̃Σ associated
by (5.16) with equation (8.65). Also if (ii) is fulfilled then from the (1, 1)
bolock of (8.56) one obtains that Π1iX − X(i) < 0, 1 ≤ i ≤ N . Using the
implication (vii) → (i) of Theorem 2.4 in the special case of the positive
operator Π1 we deduce that the eigenvalues of this operator are located in
the inside of the disk |λ| < 1. This means that the operator Π defined by

ΠX =
(

Π1X Π2X

(Π2X)T Π3X

)
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is stabilizable. Thus we obtain that if (ii) is fulfilled then in case of DTSGRE
(8.65) assertion (i) in Theorem 5.6 is fulfilled. Hence, (8.65) has a bounded
and stabilizing solution {Xs(t)}t≥0 that satisfies Π3Xs(t + 1) − R(i) > 0,
1 ≤ i ≤ N , t ≥ 0.

On the other hand, because the coefficients of (8.65) are constant we obtain
via Theorem 5.5, for θ = 1 that Xs(t) is constant.

A simple computation shows that X̃ = (X̃(1), . . . , X̃(N)) defined by
X̃(i) = −Xs(i) is the stabilizing solution of DTSARE (8.53) that satisfies
(8.54). The eigenvalues of the positive operator Π1 are located in the inside
of the disk |λ| < 1 from Theorem 2.5 thus it follows that X̃(i) ≥ 0, i ∈ D and
then (ii) → (iii) is true.

Conversely, if (iii) is fulfilled we deduce via Proposition 5.2 for θ = 1,
that there exists X̂ = (X̂(1), . . . , X̂(N)) ∈ Γ̃Σ. This means that the constant
sequence X̂ verifies a condition of type (5.16) associated with the special
case of DTSGRE (8.65). One obtains that X = (X(1), . . . , X(N)) defined by
X(i) = −X̂(i), i ∈ D, solves (8.56). Hence (iii) → (ii) is true.

The equivalence (ii) ↔ (iv) follows immediately by a Schur complement
technique.

If (iv) is true, then multiplying at the left and at the right of (8.57) with
diag(X−1(i), Imv ,X−1, . . . ,X−1, Inz), one obtains that (8.58) is feasible with
Y (i) = X−1(i). Conversely, if (v) is fulfilled then multiplying (8.58) at the left
and at the right by diag(Y −1(i), Imv ,Y−1,Y−1, . . . ,Y−1, Inz ) we deduce that
(8.57) is feasible with X(i) = Y −1(i). This shows that (iv) ←→ (v). If (v)
holds then taking the Schur complement of the block −γ2Imv one obtains that
(8.58) is equivalent to

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−Y (i) Ψ0i(Y ) Ψ1i(Y ) . . .

ΨT
0i(Y ) γ−2G00(i) − Y γ−2G01(i) . . .

ΨT
1i(Y ) γ−2GT

01(i) γ−2G11(i)− Y . . .

. . . . . . . . . . . .

ΨT
ri(Y ) γ−2GT

0r(i) γ−2GT
1r(i) . . .

C(i)Y (i) γ−2GT
0r+1(i) γ−2GT

1r+1(i) . . .

Ψri(Y ) Y (i)CT (i)

γ−2G0r(i) γ−2G0r+1(i)

γ−2G1r(i) γ−2G1r+1(i)

. . . . . .

γ−2Grr(i) − Y γ−2Grr+1(i)

γ−2GT
rr+1(i) γ−2D(i)DT (i)− Inz

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

< 0.
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Pre- and postmultiplying this inequality by γIñ (ñ = n[1+(r+1)N ]+nz) and
taking γ2Y (i) as new variables one obtains to (8.58) is equivalent to (8.59).
This completes the proof. �

If the system (8.4) is either in the case N = 1 or N ≥ 2, with Ak(i) = 0,
Bk(i) = 0, 1 ≤ k ≤ r, i ∈ D, the result proved in Theorem 8.2 recovers as
special cases the stochastic version of the bounded real lemma for discrete-time
linear stochastic systems perturbed by independent random perturbations
and the discrete-time linear stochastic systems with Markovian switching,
respectively.

Let us remark that if the zero state equilibrium of (8.6) is ESMS from
Theorem 8.2, it follows that

‖T ‖ = inf {γ > 0, for which exists X ∈ SN
n , X > 0,

such that (8.56) holds}

= inf {γ > 0, DTSARE (8.53) has a positive semidefinite

solution verifying (8.54)}.

8.3.3 An H∞-type filtering problem

Consider the ESMS discrete-time system with state-dependent noise

xk+1 = A0xk + A1xkξk + Buk, k = 0, 1, . . .

yk = C0xk + C1xkξk + Duk, (8.66)

where xk ∈ Rn is the state vector at moment k, yk ∈ Rp represents the
measured output and ξk ∈ R, k = 0, 1, . . . are independent random variables
with zero mean and unit covariance. It is assumed that the exogenous signals
are energy bounded, namely uk ∈ �2{0,∞;Rm}. The problem considered
in this section has the following statement. Given the ESMS system (8.66)
determine, if possible, a stable system of the form

xf,k+1 = Afxf,k + Bfyk, k = 0, 1, . . .

yf,k = Cfxk (8.67)

with the specified order nf ≥ 1, such that

Jγ :=
∞∑

k=0

E[|zk|2 − γ2|uk|2] < 0, (8.68)

where
zk := yf,k −Hxk (8.69)

denotes a quality output, H ∈ Rr×n, γ > 0 is a given level of attenuation,
and xk is the solution of (8.66) with zero initial condition.
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The solution of the above filtering problem is derived using the following
result which is a direct consequence of Theorem 8.2(i), (ii) in the particular
case when the Markovian jumps are missing.

Corollary 8.9 Assume that the system with multiplicative noise

xk+1 = A0xk + A1xkξk + Buk, k = 0, 1, . . .

yk = Cxk

is ESMS. Then
∑∞

k=0 E[|yk|2 − γ2|uk|2] < 0 for a given γ > 0, where xk is
the solution of the above system with zero initial condition, if and only if there
exists a symmetric matrix X > 0 such that

−X + AT
0 XA0 + AT

1 XA1 + AT
0 XB(γ2I −BT XB)−1BT XA0 + CT C < 0.

Remark 8.8 The filter (8.67) has a deterministic structure. A more complex
structure including state-dependent noise terms in (8.67) may provide better
filtering performance but in such a situation implementation problems occur
because these noises cannot be directly measured.

From (8.66), (8.67), and (8.69) one obtains the resulting system

x̃k+1 = A0x̃k + A1x̃kξk + Buk, k = 0, 1, . . .

zk = Cx̃k, (8.70)

where x̃k := [xT
k xT

f,k ]T and

A0 =
(

A0 0
BfC0 Af

)

, A1 =
(

A1 0
BfC1 0

)

,

B =
(

B

BfD

)

, C =
(
−H Cf

)
. (8.71)

Applying Corollary 8.5 for the resulting system (8.70) it follows that the
considered H∞-type filtering problem is feasible if and only if there exists a
symmetric matrix X ∈ R(n+nf )×(n+nf ), X > 0 such that

−X + AT
0 XA0 + AT

1 XA1

+ AT
0 XB(γ2I −BTXB)−1BTXA0 + CTC < 0. (8.72)

Based on the Schur complement formula, the above condition is equi-
valent to

⎛

⎜
⎜
⎝

−X + CTC AT
0 AT

1 AT
0 XB

A0 −X−1 0 0
A1 0 −X−1 0

BT XA0 0 0 −(γ2I −BTXB)

⎞

⎟
⎟
⎠ < 0. (8.73)
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In the above inequality the unknown variables are X,Af , Bf , and Cf . Without
reducing the generality of the problem one can chose Bf as an arbitrary full
rank matrix. Indeed if the filtering problem has a solution with Bf having not
full rank then there always exists a small enough perturbation of Bf for which
it has full rank and (8.73) is fulfilled. Therefore it remains to solve (8.73) with
respect to X,Af , and Cf .

Denoting

Ω :=
(

Af

Cf

)

, X :=
(

R M

MT S

)

, (8.74)

direct algebraic computations together with the Schur complement formula
show that condition (8.73) can be written as

Z + PTΩT Q + QTΩP < 0, (8.75)

where the following notations have been used.

Z :=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

Z11 −M Z13 Z14 Z15 Z16 Z17 0

−MT −S 0 0 0 0 0 0

ZT
13 0 −R −M 0 0 0 0

ZT
14 0 −MT −S 0 0 0 0

ZT
15 0 0 0 −R −M 0 0

ZT
16 0 0 0 −MT −S 0 0

ZT
17 0 0 0 0 0 Z77 0

0 0 0 0 0 0 0 −I

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

with

Z11 := −R + HTH

Z13 := AT
0 R + CT

0 BT
f MT

Z14 := AT
0 M + CT

0 BT
f S

Z15 := AT
1 R + CT

1 BT
f MT

Z16 := AT
1 M + CT

1 BT
f S

Z17 := (AT
0 R + CT

0 BT
f MT )B + (AT

0 M + CT
0 BT

f S)BfD

Z77 := −(γ2I −BT RB −DTBT
f MTB −BT MBfD −DTBT

f SBfD)
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and where

P :=

(
0 0 MT S 0 0 MTB + SBfD 0

−H 0 0 0 0 0 0 I

)

(8.76)

and
Q :=

(
0 I 0 0 0 0 0 0

)
. (8.77)

According to the so-called projection lemma (see, e.g., [14]), there exists Ω
satisfying (8.75) if and only if the following two conditions are
accomplished,

WT
P ZWP < 0 (8.78)

and
WT

QZWQ < 0, (8.79)

where WP and WQ denote bases of the null spaces of P and Q, respectively.
Furthermore, conditions (8.78) and (8.79) are explicit. Firstly, taking into
account (8.76) it results that a basis of the null space of P is

WP =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 0 I 0

0 I 0 0 0 0

−B 0 0 0 0 I

−BfD 0 0 0 0 −S−1MT

0 0 I 0 0 0

0 0 0 I 0 0

I 0 0 0 0 0

0 0 0 0 H 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Then direct algebraic computations together with Schur complement
arguments give that the inequality (8.78) is equivalent to

⎛

⎜
⎜
⎜
⎜
⎜
⎝

−R̂ + γ−2BBT 0 0 A0R̂

0 −R̂ −N A1R̂

0 −NT −Ŝ BfC1R̂

R̂AT
0 R̂AT

1 R̂CT
1 BT

f −R̂

⎞

⎟
⎟
⎟
⎟
⎟
⎠

< 0, (8.80)

where R̂ ∈ Rn×n, N ∈ Rn×nf , and Ŝ ∈ Rnf×nf are the block elements of
X−1, namely

X−1 :=

(
R̂ N

NT Ŝ

)

. (8.81)
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In addition, because

WQ =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

I 0 0 0 0 0 0
0 0 0 0 0 0 0
0 I 0 0 0 0 0
0 0 I 0 0 0 0
0 0 0 I 0 0 0
0 0 0 0 I 0 0
0 0 0 0 0 I 0
0 0 0 0 0 0 I

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

one obtains that condition (8.79) is equivalent to

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−R + HTH 0 AT
0 CT

0 BT
f AT

1 CT
1 BT

f

0 −γ2I BT DTBT
f 0 0

A0 B −R̂ −N 0 0

BfC0 BfD −NT −Ŝ 0 0

A1 0 0 0 −R̂ −N

BfC1 0 0 0 −NT −Ŝ

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

< 0. (8.82)

The above developments are concluded in the following result.

Theorem 8.14 The H∞-type filtering problem formulated in Section 8.2 has
an nf -order solution if and only if there exists a symmetric matrix X > 0, X ∈
R(n+nf )×(n+nf ) such that its block element R from partition (8.74) and the
block elements R̂,N , and Ŝ of X−1 defined by (8.81), verify the inequalities
(8.80) and (8.82). �

Remark 8.9 As in standard design methodology based on linear matrix
inequalities (LMIs), one firstly must solve the system (8.80), (8.82) with
respect with R, R̂,N , and Ŝ, and then determine Ω from the basic LMI
(8.75). The system (8.80), (8.82) cannot be solved using the usual semidefi-
nite programming-based methods because R and R̂,N, Ŝ are related by the
condition that X−1 is the inverse of X .

A simple method to avoid the computational problem mentioned in
Remark 8.3 is to take into account that R ≥ R̂−1. Indeed this follows us-
ing the Schur complement formula in the obvious inequality

(
X I

I X−1

)

≥ 0.
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Then one can state the following corollary.

Corollary 8.10 If the system obtained from (8.80), (8.82) replacing R from
the block (1, 1) of (8.82) by R̂−1 is feasible, then the filtering problem has an
nf -order solution. �

The inequality (8.82) in which R is replaced by R̂−1 can be pre- and
postmultiplied by diag(R̂, I, I, I, I, I) and using again a Schur complement
argument, one obtains
⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−R̂ 0 R̂AT
0 R̂CT

0 BT
f R̂AT

1 R̂CT
1 BT

f R̂HT

0 −γ2I BT DTBT
f 0 0 0

A0R̂ B −R̂ −N 0 0 0

BfC0R̂ BfD −NT −Ŝ 0 0 0

A1R̂ 0 0 0 −R̂ −N 0

BfC1R̂ 0 0 0 −NT −Ŝ 0

HR̂ 0 0 0 0 0 −I

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

< 0. (8.83)

The system (8.80), (8.83) can then be solved to respect to R̂,N , and Ŝ
such that X−1 > 0 using semidefinite programming-based algorithms.

Remark 8.10 Corollary 8.6 gives sufficient feasibility conditions for the con-
sidered H∞ filtering problem and therefore the results obtained solving the
system (8.80), (8.83) instead of (8.80), (8.82) may be conservative.

In order to illustrate some of the above developments consider a navigation
problem consisting in determining an estimation of an airplane altitude using
measurements from a barometric altimeter and from a RADAR altimeter. Due
to some inherent sources of error, the barometric altimeter indication is altered
by a bias error and by a small additive white noise ([63]). Its continuous-time
dynamics may be approximated by the following state space equations

ḣ = −1
τ
(h− v)

hbaro = h + b + η, (8.84)

where v represents the commanded altitude, h is the true altitude, b denotes
the bias, and η is a standard zero-mean white noise with known intensity R1.
On the other hand, the RADAR altimeter determines the altitude without
bias but that a measurement noise that intensity increases with the altitude
as follows,

hradar = h(1 + ξ) + ν (8.85)

with E[ν(t)ν(τ)] = R2δ(t− τ) and E[ξ(t)ξ(τ)] = R3δ(t− τ).
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If the bias b in the second equation (8.84) is approximated as the solution
of the differential stochastic equation ḃ =

√
2w̄, where w̄ is a standard white

noise independent of ξ, ν, and η, the following model is obtained.

(
ḣ

ḃ

)

=
(− 1

τ 0
0 0

)(
h

b

)

+

(
− 1

τ 0 0 0

0
√

2 0 0

)
⎛

⎜
⎜
⎝

v

w̄

η

ν

⎞

⎟
⎟
⎠

y =
(

hbaro

hradar

)

=
(

1 1
1 0

)(
h

b

)

+

(
0 0

√
R1 0

0 0 0
√

R2

)
⎛

⎜
⎜
⎝

v

w̄

η

ν

⎞

⎟
⎟
⎠

+

(
0 0

√
R3 0

)(
h

b

)

ξ. (8.86)

The estimated state is the true altitude h. Sampling the above continuous-
time system one obtains a discrete-time system of form (8.66). Because the
above system is not stable, a small negative perturbation of the zero (2, 2)
element in the state matrix has been introduced.

For a sampling period T = 0.25 sec and for the time constant τ = 30 sec,
R1 = R2 = 0.4, and R3 = 0.0016 one obtains using Corollary 8.1 with the
attenuation level γ = 1.07, an H∞ filter the response of which is depicted in
Figure 8.1.

8.4 Robust stability. An estimate of the stability radius

8.4.1 The small gain theorems

One of the important consequences of the bounded real lemma is the so-called
small gain theorem. It is known that this result is a powerful tool in the
derivation of some estimates of the stability radius with respect to several
classes of parametric uncertainties. We start with an auxiliary result which is
interesting in itself.

Theorem 8.15 Regarding the system (8.4) we assume that the following
assumptions are fulfilled.

(a) The number of inputs equals the number of outputs (i.e., mv = nz = n).
(b) The zero state equilibrium of the corresponding linear system (8.6) is

ESMS.
(c) The input–output operator T associated with the system (8.4) satisfies

‖T ‖ < 1.
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Figure 8.1. Filtered signal (black) and unfiltered (grey).

Under these assumptions we have:

(i) The matrices Im ±D(i), i ∈ {1, 2, . . . , N} are invertible.
(ii) The zero state equilibrium of the system

x(t + 1) =

(

A(ηt) +
r∑

k=1

wk(t)Ak(ηt)

)

x(t) (8.87)

is ESMS, where either Ak(i) = Ak(i)−Bk(i)(Im+D(i))−1C(i) or Ak(i) =
Ak(i) + Bk(i)(Im −D(i))−1C(i).

Proof. Based on (8.11) and assumption (c) we deduce that ‖Tτ‖ < 1 for any
integer τ ≥ 1. Thus applying Corollary 8.2 one obtains that Im−DT (i)D(i) >
0, i ∈ {1, 2, . . . , N}. Therefore for each i the eigenvalues of the matrix D(i) are
located in the inside of the disk |λ| < 1. Hence det(Im±D(i)) 
= 0, 1 ≤ i ≤ N .
Thus we obtain that (i) is true. To prove (ii) we use the implication (i) → (ii)
of Theorem 8.2. Thus if the assumptions (b) and (c) are fulfilled, then there
exist X = (X(1), . . . , X(N)) ∈ SN

n , X(i) > 0 such that
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Q1(X, i) < 0, (8.88)

1 ≤ i ≤ N , where Q1(X, i) is the left-hand side of (8.56) written for γ = 1.
Taking

F (i) = ±(Im ∓D(i))−1C(i) (8.89)

we obtain that (8.88) is equivalent to the inequalities
(

In FT (i)

0 Im

)

Q1(X, i)

(
In 0

F (i) Im

)

< 0.

Displaying the (1, 1)-block of this LMI one gets

(
In FT (i)

)
Q1(X, i)

(
In

F (i)

)

< 0.

By direct calculation one obtains via (8.15) and (8.56) that
r∑

k=0

[Ak(i) + Bk(i)F (i)]T Ei(X)[Ak(i) + Bk(i)F (i)]

−X(i) + (C(i) + D(i)F (i))T (C(i) + D(i)F (i)) − F T (i)F (i) < 0,
(8.90)

1 ≤ i ≤ N .
If we take into account (8.89) we obtain C(i) + D(i)F (i) = (Im ∓

D(i))−1C(i). Thus we have (C(i)+D(i)F (i))T (C(i)+D(i)F (i))−F T (i)F (i) =
0. Hence (8.90) becomes:

r∑

k=0

A
T

k (i)Ei(X)Ak(i) −X(i) < 0, X(i) > 0, 1 ≤ i ≤ N. (8.91)

Applying Corollary 3.6 one deduces that the zero state equilibrium of the
system (8.87) is ESMS. This completes the proof. �

Theorem 8.16 (The first small gain theorem) Assume that the assump-
tions of Theorem 8.3 are fulfilled. Then the operators I∓T : �2H̃{0,∞;Rm} →
�2H̃{0,∞;Rm} are invertible and the operators (I ∓ T )−1 : �2H̃{0,∞;Rm} →
�2H̃{0,∞;Rm} have the following state space representation,

x(t + 1) =

[

A0(ηt) +
r∑

k=1

wk(t)Ak(ηt)

]

x(t) +

[

B0(ηt)+
r∑

k=1

wk(t)Bk(ηt)

]

z(t)

u(t) = C(ηt)x(t) + D(ηt)z(t), (8.92)

Ak(i) being defined in Theorem 8.3 and Bk(i) = Bk(i)(Im∓D(i))−1, Ck(i) =
±(Im ∓D(i))−1C(i), D(i) = (Im ∓D(i))−1, 0 ≤ k ≤ r, i ∈ D.



8.4 Robust stability. An estimate of the stability radius 321

Proof. It follows immediately using Theorem 8.4 and part (ii) of Proposi-
tion 8.1. �

Let us consider the systems:

x1(t + 1) =

(

A10(ηt) +
r∑

k=1

wk(t)A1k(ηt)

)

x1(t)

+

(

B10(ηt) +
r∑

k=1

wk(t)B1k(ηt)

)

v1(t)

z1(t) = C1(ηt)x1(t), (8.93)

and

x2(t + 1) =

(

A20(ηt) +
r∑

k=1

wk(t)A2k(ηt)

)

x2(t)

+

(

B20(ηt) +
r∑

k=1

wk(t)B2k(ηt)

)

v2(t)

z2(t) = C2(ηt)x2(t) + D2(ηt)v2(t), (8.94)

where xi(t) ∈ Rni , i ∈ {1, 2}, z1(t), v2(t) ∈ Rnz , z2(t), v1(t) ∈ Rmv . When
interconnecting these two systems taking v2(t) = z1(t) and v1(t) = z2(t) one
obtains:

x1(t + 1) = (A10(ηt) + B10(ηt)D2(ηt)C1(ηt))x1(t) + B10(ηt)C2(ηt)x2(t)

+
r∑

k=1

wk(t)[(A1k(ηt) + B1k(ηt)D2(ηt)C1(ηt))x1(t)

+ B1k(ηt)C2(ηt)x2(t)]

x2(t + 1) = B20(ηt)C1(ηt)x1(t) + A20(ηt)x2(t)

+
r∑

k=1

wk(t)(B2k(ηt)C1(ηt)x1(t) + A2k(ηt)x2(t)). (8.95)

It is natural to ask if the zero state equilibrium of the system (8.95) is ESMS
in the case when the zero state equilibrium of the linear systems

xl(t + 1) =

(

Al0(ηt) +
r∑

k=1

wk(t)Alk(ηt)

)

xl(t), (8.96)

l ∈ {1, 2} are ESMS.
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An answer to this question is given by the following.

Theorem 8.17 (The second small gain theorem) Assume:

(a) the zero state equilibria of the linear systems (8.96) are ESMS.
(b) ‖T1‖ < γ and ‖T2‖ < γ−1 for γ > 0, where T1 : �2H̃{0,∞;Rmv} →

�2H̃{0,∞;Rnz}, T2 : �2H̃{0,∞;Rnz} → �2H̃{0,∞;Rmv} are the input–
output operators associated with the systems (8.93), (8.94), respectively.

Under these conditions the zero state equilibrium of the interconnected
system (8.95) is ESMS.

Proof. Setting x(t) = (xT
1 (t) xT

2 (t) )T the system (8.95) may be written in
a compact form on Rn1 ⊕Rn2 :

x(t + 1) =

(

A0(ηt) +
r∑

k=1

wk(t)Ak(ηt)

)

x(t), (8.97)

where

Ak(i) =

(
A1k(i) + B1k(i)D2(i)C1(i) B1k(i)C2(i)

B2k(i)C1(i) A2k(i)

)

,

0 ≤ k ≤ r, i ∈ D. On the other hand one obtains, via Proposition 8.1, that a
state space representation of the product operator T1T2 is:

(
x1(t + 1)
x2(t + 1)

)

=

(

Ã0(ηt) +
r∑

k=1

wk(t)Ãk(ηt)

)(
x1(t)
x2(t)

)

+

(

B̃0(ηt) +
r∑

k=1

wk(t)B̃k(ηt)

)

v2(t)

z1(t) = C̃(ηt)
(

x1(t)
x2(t)

)

, (8.98)

where

Ãk(i) =

(
A1k(i) B1k(i)C2(i)

0 A2k(i)

)

,

B̃k(i) =

(
B1k(i)D2(i)

B2k(i)

)

, C̃(i) =
(
C1(i) 0

)
.

One sees that Ak(i) = Ãk(i) + B̃k(i)C̃(i), 0 ≤ k ≤ r.
The conclusions may be obtained applying Theorem 8.4 to the system

(8.98). To this end we have to check that the assumptions of Theorem 8.4
are verified in the case of the system (8.98). First, we remark that in the case



8.4 Robust stability. An estimate of the stability radius 323

of this system the number of inputs equals the number of outputs, because
v2(t), z1(t) ∈ Rnz .

The linear system obtained from (8.98) is:

x1(t + 1) = A10(ηt)x1(t) + B10(ηt)C2(ηt)x2(t) +
r∑

k=1

wk(t)(A1k(ηt)x1(t)

+ B1k(ηt)C2(ηt)x2(t))

x2(t + 1) = A20(ηt)x2(t) +
r∑

k=1

wk(t)A2k(ηt)x2(t). (8.99)

Let Φl(t, s), l ∈ {1, 2} be the fundamental matrix solutions of the linear
systems (8.96). By assumption (a) we know that there exist β ≥ 1, q ∈ (0, 1)
such that

E[|Φl(t, s)xl|2] ≤ βqt−s|xl|2 (8.100)

for all t ≥ s ≥ 0, xl ∈ Rnl , l ∈ {1, 2}.
Proceeding as in the first part of the proof of Theorem 7.8 one obtains,

via (8.100), that

lim
t→∞E[|x1(t)|2 + |x2(t)|2] = 0 (8.101)

for any solution
(
xT

1 (t) xT
2 (t)

)T of the linear system (8.99). Invoking Theo-
rem 3.10 for θ = 1 we deduce that (8.101) is equivalent to the exponential
stability in the mean square of the zero state equilibrium of the system (8.99).
Finally, let us remark that ‖T1T2‖ ≤ ‖T1‖·‖T2‖ < 1. This completes the proof.

�

Let us consider the special case C2(i) = 0, 1 ≤ i ≤ N in (8.94). In this case
the interconnected system (8.95) is partially decoupled. Thus, the exponential
stability in the mean square of the zero state equilibrium of the intercon-
nected system is strongly dependent upon the exponential stability in the
mean square of the system:

x1(t + 1) = (A10(ηt) + B10(ηt)D2(ηt)C1(ηt))x1(t)

+
r∑

k=1

wk(t)(A1k(ηt) + B1k(ηt)D2(ηt)C1(ηt))x1(t). (8.102)

Moreover, in this special case, the input–output operator T2 defined by the
system (8.94) reduces to:

(T2v2)(t) = D2(ηt)v2(t), t ∈ Z+.
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One obtains that ‖T2v2‖2
�2H̃{0,∞;Rmv} ≤ |D2|2‖v‖2

�2H̃{0,∞;Rnz}, where

|D2|2 = max
i∈D

|D2(i)|2 = max
i∈D

λmax[DT
2 (i)D2(i)]

1/2
.

From the proof of Theorem 8.6, we obtain the following.

Corollary 8.11 Assume:

(a) The zero state equilibrium of the system (8.96) for l = 1, is ESMS.
(b) ‖T1‖ < γ where T1 : �2H̃{0,∞;Rmv} → �2H̃{0,∞;Rnz} is the input–output

operator defined by the system (8.93).
(c) |D2| < γ−1.

Under these conditions the zero state equilibrium of the system (8.102) is
ESMS.

Moreover, if the zero state equilibrium of the system (8.96) for l = 2 is
ESMS, too, then the zero state equilibrium of the interconnected system (8.95)
for C2(i) = 0, i ∈ D, is also ESMS. �

8.4.2 An estimate of the stability radius

When analyzing the robust stability of a solution of a discrete-time linear
stochastic system we refer to the preservation of the stability property when
the system is subject to some variation of the coefficients that is not necessarily
small. Such variations of the system parameters (often known as parametric
uncertainties) are due to inaccurate knowledge of the coefficients of the system
or due to some simplifications of the mathematical model. It should be taken
into consideration that a stabilizing controller designed for a simplified model
must work in the real model which is subject to uncertainties.

In this section the problem of robust stability is investigated for a class
of discrete-time linear stochastic systems subject to linear parametric
uncertainties. Let us consider the discrete-time linear stochastic system
described by

x(t + 1) =

[

A0(ηt) + B0(ηt)Δ(ηt)C(ηt) +
r∑

k=1

wk(t)

× (Ak(ηt) + Bk(ηt)Δ(ηt)C(ηt))

]

x(t), (8.103)

where Ak(i) ∈ Rn×n, Bk(i) ∈ Rn×m, 0 ≤ k ≤ r, C(i) ∈ Rp×n are assumed to
be known matrices; Δ(i) ∈ Rm×p are unknown matrices. The system (8.103)
is a perturbed model of the nominal system

x(t + 1) =

[

A0(ηt) +
r∑

k=1

wk(t)Ak(ηt)

]

x(t). (8.104)
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The matrices Bk(i), C(i) occurring in (8.103) determine the structure of the
parametric uncertainties presented in the perturbed model.

If the zero state equilibrium of the nominal system (8.104) is ESMS we
analyze whether the zero state equilibrium of the perturbed model (8.103)
remains ESMS for Δ(i) 
= 0. This would be, in short, the formulation of
the problem of robust stability. For a more precise formulation of the robust
stability problem we introduce a norm in the set of uncertainties.

If Δ = (Δ(1), Δ(2), . . . , Δ(N)) ∈MN
mp we set

|Δ| = max
i∈D

|Δ(i)| = max
i∈D

(λmax(ΔT (i)Δ(i)))1/2. (8.105)

Based on the known matrices Ak(i), Bk(i), C(i) occurring in (8.103), we
introduce the notations:

Ak = (Ak(1), Ak(2), . . . , Ak(N)) ∈MN
n ,

Bk = (Bk(1), Bk(2), . . . , Bk(N)) ∈MN
n,m

C = (C(1), C(2), . . . , C(N)) ∈ MN
pn,

A = (A0, A1, . . . , Ar) ∈MN
n ⊕MN

n ⊕ · · · ⊕MN
n ,

B = (B1, B2, . . . , Br) ∈MN
n,m ⊕MN

n,m ⊕ · · · ⊕MN
n,m.

We recall that according to the notations introduced in Chapter 5, MN
n,m

stands for Rn×m ⊕Rn×m ⊕ · · · ⊕Rn×m and MN
n stands for MN

n,n.
As a measure of the robustness of the stability we introduce the concept

of stability radius.

Definition 8.2 The stability radius of the nominal system (8.104), or equi-
valently, the stability radius of the pair (A, P ) with respect to the structured
parametric uncertainties with the structure determined by the pair (B, C) is
the number ρL[A, P |B, C] = inf{ρ > 0|(∃)Δ = (Δ(1), . . . , Δ(N)) ∈ MN

mp with
|Δ| ≤ ρ that the zero state equilibrium of the corresponding system (8.103) is
not ESMS}.

The next result provides a lower bound of the stability radius introduced
in the above definition. To this end, let us consider the fictitious system con-
structed based on the known matrices occurring in the perturbed model (8.103):

x(t + 1) =

(

A0(ηt) +
r∑

k=1

wk(t)Ak(ηt)

)

x(t)

+

(

B0(ηt) +
r∑

k=1

wk(t)Bk(ηt)

)

v(t)

z(t) = C(ηt)x(t). (8.106)
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Theorem 8.18 Assume that the zero state equilibrium of the nominal system
(8.104) is ESMS. Let T : �2H̃{0,∞;Rm} → �2H̃{0,∞;Rp} be the input–output
operator defined by the fictitious system (8.106). Then we have:

ρL[A, P |B, C] ≥ ‖T ‖−1. (8.107)

Proof. Let ρ < ‖T ‖−1 be arbitrary but fixed. We show that for any pertur-
bation Δ = (Δ(1), Δ(2), . . . , Δ(N)) ∈ MN

mp with |Δ| < ρ, the zero state
equilibrium of the perturbed system (8.103) is ESMS. Let Δ ∈ MN

mp be a
perturbation with |Δ| < ρ. Setting γ = ρ−1, we have ‖T ‖ < γ and |Δ| < γ−1.
Hence the fictitious system (8.106) and the perturbation Δ are in the condi-
tions of Corollary 8.4.

Thus applying the result stated in that corollary we deduce that the zero
state equilibrium of the corresponding system (8.103) is ESMS.

Therefore ρL[A, P |B, C] ≥ ρ for all ρ ≤ ‖T ‖−1. Thus we may conclude
that (8.107) is fulfilled and the proof is complete. �

At the end of this subsection we show that several structures of the para-
metric uncertainties frequently used in the literature are embedded in the
general form of (8.103).

First we consider the following perturbed system,

x(t + 1) =

[

A0(ηt) + B̂0(ηt)Δ0(ηt)C(ηt)

+
r∑

k=1

wk(t)(Ak(ηt) + B̂k(ηt)Δk(ηt)C(ηt))

]

x(t), (8.108)

where Ak(i) ∈ Rn×n, B̂k(i) ∈ Rn×mk , C(i) ∈ Rp×n, 0 ≤ k ≤ r, i ∈ D, are
assumed to be known matrices and Δk(i) ∈Mkp are unknown matrices.

Let us define Bk(i) ∈ Rn×m, m =
∑r

k=0 mk by

B0(i) =
(
B̂0(i) 0 . . . 0

)

Bk(i) =
(
0 . . . 0 B̂k(i) 0 . . . 0

)
. (8.109)

Set Δ = (Δ(1), Δ(2), . . . , Δ(N)) with

Δ(i) =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

Δ0(i)

Δ1(i)
...

Δr(i)

⎞

⎟
⎟
⎟
⎟
⎟
⎠

∈ Rm×p. (8.110)

With these notations one obtains that the system (8.108) is a special case
of the system (8.103). From (8.105) and (8.110) we have |Δ|2 = maxi∈D
{λmax[ΔT (i)Δ(i)]} = maxi∈D{λmax[

∑r
k=0 ΔT

k (i)Δk(i)]}.
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Another interesting case is that of the perturbed system of the form:

x(t + 1) =

[

A0(ηt) + B̂0(ηt)Δ0(ηt)Ĉ0(ηt)

+
r∑

k=1

wk(t)(Ak(ηt) + B̂k(ηt)Δk(ηt)Ĉk(ηt))

]

x(t), (8.111)

where Ak(i) ∈ Rn×n, B̂k(i) ∈ Rn×mk , Ĉk(i) ∈ Rpk×n, 0 ≤ k ≤ r, i ∈ D are
assumed known matrices and Δk(i) ∈ Mmk×pk are unknown matrices.

We define Bk(i) ∈ Rn×m, m =
∑r

k=0 mk as in (8.109) and C(i) ∈ Rp×n,
p =

∑r
k=0 pk by

C(i) =

⎛

⎜
⎜
⎜
⎜
⎝

C0(i)
C1(i)

...
Cr(i)

⎞

⎟
⎟
⎟
⎟
⎠

.

Also we set

Δ(i) = diag(Δ0(i), Δ1(i), . . . , Δr(i)) ∈ Rm×p. (8.112)

With these notations the system (8.111) can be regarded as a special case of
the system (8.103). Therefore a lower bound of the stability radius can be
obtained using Theorem 8.7.

We remark that combining (8.105) and (8.112) one may obtain:

|Δ(i)|2 = λmax[ΔT (i)Δ(i)] = max
0≤k≤r

{λmax[ΔT
k (i)Δk(i)]}.

8.5 The disturbance attenuation problem

8.5.1 The problem formulation

Let us consider the system with the following state space representation.

G :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

x(t + 1) = A0(ηt)x(t) + B0(ηt)u(t) + G0(ηt)v(t)

+
r∑

k=1

wk(t)(Ak(ηt)x(t) + Bk(ηt)u(t) + Gk(ηt)v(t))

y(t) = C0(ηt)x(t) + D(ηt)v(t)

z(t) = Cz(ηt)x(t) + Dzu(ηt)u(t) + Dzv(ηt)v(t),
(8.113)
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where x(t) ∈ Rn is a vector of the state parameters, u(t) ∈ Rmu is the vector
of control parameters, v(t) ∈ Rmv is the vector of the exogenous disturbances,
y(t) ∈ Rny is the vector of the measurements, and z(t) ∈ Rnz is the controlled
output. In the sequel, the exogenous disturbances are modeled by stochastic
processes v = {v(t)}t≥0 ∈ �2H̃{0,∞;Rmv}. The class of admissible controllers
consists of systems of the form,

Gc :

{
xc(t + 1) = Ac(ηt)xc(t) + Bc(ηt)uc(t)

yc(t) = Cc(ηt)xc(t) + Dc(ηt)uc(t),
(8.114)

xc(t) ∈ Rnc is the vector of the state parameters of the controller, uc(t) ∈ Rny

is the input of the controller, and yc(t) ∈ Rmu is the output of the controller.
When coupling a controller (Gc) of type (8.114) to the system (8.113) by
taking uc(t) = y(t) and u(t) = yc(t) one obtains the following closed-loop
system,

xcl(t + 1) =

(

A0cl(ηt) +
r∑

k=1

wk(t)Akcl(ηt)

)

xcl(t)

+

(

G0cl(ηt) +
r∑

k=1

wk(t)Gkcl(ηt)

)

v(t)

zcl(t + 1) = Ccl(ηt)xcl(t) + Dcl(ηt)v(t), (8.115)

where

A0cl(i) =

(
A0(i) + B0(i)Dc(i)C0(i) B0(i)Cc(i)

Bc(i)C0(i) Ac(i)

)

Akcl(i) =

(
Ak(i) + Bk(i)Dc(i)C0(i) Bk(i)Cc(i)

0 0

)

G0cl(i) =

(
G0(i) + B0(i)Dc(i)D(i)

Bc(i)D(i)

)

(8.116)

Gkcl(i) =

(
Gk(i) + Bk(i)Dc(i)D(i)

0

)

Ccl(i) =
(
Cz(i) + Dzu(i)Dc(i)C0(i) Dzu(i)Cc(i)

)

Dcl(i) = Dzv(i) + Dzu(i)Dc(i)D(i), xcl =
(
xT (t) xT

c (t)
)T

.
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As usual a controller Gc is a stabilizing controller if the zero state equilibrium
of the closed-loop linear system xcl(t + 1) = (A0cl(ηt) +

∑r
k=1 wk(t)Akcl(ηt))

xcl(t) is ESMS.
Because the closed-loop system (8.115) corresponding to a stabilizing con-

troller takes the form of a system of type (8.4), it follows that we may associate
a corresponding input–output operator Tcl : �2H̃{0,∞;Rmv} → �2H̃{0,∞;Rnz}
with (Tclv)(t) = Ccl(ηt)xcl(t, 0, v) + Dcl(ηt)v(t), t ∈ Z+, where xcl(t, 0, v) is
the solution of the closed-loop system (8.105) determined by the input v and
taking the initial value xcl(0, 0, v) = 0.

The disturbance attenuation problem with attenuation level γ, (DAPγ)
requires the construction of a stabilizing controller Gc of type (8.114) with
additional property: ‖Tcl‖ < γ.

Remark 8.11

(a) The disturbance attenuation problem stated before extends to this
general framework the H∞ control problem from the deterministic con-
text. Therefore, this problem is often named the stochastic H∞
problem.

(b) To implement a controller (8.114) we need to know at each time t both
the measurements y(t) as well as the system mode i.

(c) In the case nc = 0 the controller (8.114) is a memoryless one; that is,
u(t) = Dc(ηt)y(t).

(d) In the special case of the plant (8.113) with Bk(i) = 0, 0 ≤ k ≤
r, Dzu(i) = −Inz the disturbance attenuation problem stated before
becomes an H∞ filtering problem. It requires the construction of a filter
Gc of type (8.114) whose output approximates the output z(t) of the
given plant G with the accuracy given by ‖Tcl‖ of the input–output
operator.

In the sequel, the disturbance attenuation problem is solved under the
assumption that the whole state vector is accessible for measurements. This
means that in (8.113), C0(i) = In and D(i) = 0, 1 ≤ i ≤ N .

The case when only an output is available for measurements is illustrated
for an H∞ filtering problem.

8.5.2 The solution of the disturbance attenuation problem. The
case of full state measurements

In this subsection we present the solution of the disturbance attenuation prob-
lem with level of attenuation γ > 0 under the assumption that the whole state
vector x(t) and the mode i are available. In this case, the controlled system
(8.113) becomes:
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x(t + 1) = A0(ηt)x(t) + G0(ηt)v(t) + B0(ηt)u(t)

+
r∑

k=1

wk(t)[Ak(ηt)x(t) + Gk(ηt)v(t) + Bk(ηt)u(t)] (8.117)

y(t) = x(t)

z(t) = Cz(ηt)x(t) + Dzv(ηt)v(t) + Dzu(ηt)u(t).

As we have already shown in Remark 8.2(c), if nc = 0, a controller (8.114)
reduces now to u(t) = Dc(ηt)x(t), or, using a traditional notation, to

u(t) = F (ηt)x(t). (8.118)

The closed-loop system obtained when coupling (8.118) and (8.117) is:

x(t + 1) =

[

A0(ηt) + B0(ηt)F (ηt) +
r∑

k=1

wk(t)(Ak(ηt) + Bk(ηt)F (ηt))

]

x(t)

+

(

G0(ηt) +
r∑

k=1

wk(t)Gk(ηt)

)

v(t) (8.119)

z(t) = (Cz(ηt) + Dzu(ηt)F (ηt))x(t) + Dzv(ηt)v(t).

If F = (F (1), F (2), . . . , F (N)) is a stabilizing feedback gain, then the system
(8.119) defines an input–output operator, TF : �2H̃{0,∞;Rmv} → �2H̃
{0,∞;Rnz} by (TF v)(t) = (Cz(ηt) + Dzu(ηt)F (ηt))x(t, 0, v) + Dzv(ηt)v(t),
t ∈ Z+.

The disturbance attenuation problem with level of attenuation γ > 0 asks
for the construction of a stabilizing feedback gain F , such that ‖TF ‖ < γ.
Our aim is to find conditions guarantee the existence of a control in a state
feedback from (8.118) which solves this problem.

Thus we prove the following.

Theorem 8.19 For the system (8.117) and a given scalar γ > 0, the following
are equivalent.

(i) There exists a control law u(t) = F (ηt)x(t) such that the zero state
equilibrium of the linear system x(t + 1) = [A0(ηt) + B0(ηt)F (ηt) +∑r

k=1 wk(t)(Ak(ηt) + Bk(ηt)F (ηt))]x(t) is ESMS and ‖TF ‖ < γ.
(ii) There exist Y = (Y (1), Y (2), . . . , Y (N)) ∈ SN

n and Γ = (Γ (1), Γ (2), . . . ,
Γ (N)) ∈ MN

mn, Y (i) > 0, 1 ≤ i ≤ N , that solve the following system of
LMIs.
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⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−Y (i) W0i(Y, Γ ) W1i(Y, Γ ) . . .

WT
0i(Y, Γ ) G00 − Y G01(i) . . .

WT
1i(Y, Γ ) GT

01(i) G11(i) − Y . . .

. . . . . . . . . . . .

WT
ri(Y, Γ ) GT

0r(i) GT
1r(i) . . .

Cz(i)Y (i) + Dzu(i)Γ (i) GT
0r+1(i) GT

1r+1(i) . . .

Wri(Y, Γ ) Y (i)CT
z (i) + Γ T (i)DT

zu(i)

G0r(i) G0r+1(i)

G1r(i) G1r+1(i)

. . . . . .

Grr(i)− Y Grr+1(i)

GT
rr+1(i) DT

zv(i)D
T
zv(i)− γ2Inz

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

< 0, (8.120)

where Wki(Y, Γ ) = (Y (i)AT
k (i) + Γ T (i)BT

k (i))I(i), 0 ≤ k ≤ r,

I(i) =
(√

p(i, 1)In

√
p(i, 2)In . . .

√
p(i, N)In

)

Glk(i) = IT (i)Gl(i)GT
k (i)I(i), 0 ≤ l ≤ k ≤ r,

Glr+1(i) = IT (i)Gl(i)DT
zv(i), 0 ≤ l ≤ r (8.121)

Y = diag(Y (1), Y (2), . . . , Y (N)).

Moreover, if (Y, Γ ) is a solution of the above LMI (8.120), then a solution
of the disturbance attenuation problem under consideration is given by
F = (F (1), F (2), . . . , F (N)), F (i) = Γ (i)Y −1(i), 1 ≤ i ≤ N .

Proof. Applying the implication (i) → (vi) of Theorem 8.2 to the system
(8.119), we obtain that the assertion (i) in the statement is equivalent to the
existence of Y = (Y (1), Y (2), . . . , Y (N)) ∈ SN

n , with Y (i) > 0 which solves
the following system of LMIs.
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⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−Y (i) Ψ0i(Y, F ) Ψ1i(Y, F ) . . .

ΨT
0i(Y, F ) G00(i) − Y G01(i) . . .

ΨT
1i(Y, F ) GT

01(i) G11(i)− Y . . .

. . . . . . . . . . . .

ΨT
ri(Y, F ) GT

0r(i) GT
1r(i) . . .

(Cz(i) + Dzu(i)F (i))Y (i) GT
0r+1(i) GT

1r+1(i) . . .

Ψri(Y, F ) Y (i)(Cz(i) + Dzu(i)F (i))T

G0r(i) G0r+1(i)

G1r(i) G1r+1(i)

. . . . . .

Grr(i) − Y Grr+1(i)

GT
rr+1(i) Dzv(i)DT

zv(i)− γ2Inz

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

< 0, (8.122)

where Glk(i), Y are as in (8.121) and Ψki(Y, F ) = Y (i)(Ak(i)+Bk(i)F (i))T I)(i).
Setting Γ (i) = F (i)Y (i) one obtains that (8.122) is equivalent to (8.120) and
thus the proof is complete. �

Furthermore, we consider a dynamic controller of type (8.114) with nc ≥ 1
and ny = n. In this case a closed-loop system of type (8.115) obtained when
coupling a controller (8.114) to the system (8.117) has a coefficient with the
following structure.

A0cl(i) =

(
A0(i) + B0(i)Dc(i) B0(i)Cc(i)

Bc(i) Ac(i)

)

Akcl(i) =

(
Ak(i) + Bk(i)Dc(i) Bk(i)Cc(i)

0 0

)

Gkcl(i) =

(
Gk(i)

0

)

,

Ccl(i) =
(
Cz(i) + Dzu(i)Dc(i) Dzu(i)Cc(i)

)
, Dcl(i) = Dzv(i).

(8.123)

Theorem 8.20 For the system (8.117) and a given attenuation level γ > 0,
the following are equivalent.

(i) There exists a dynamic controller of order nc ≥ 1 that solves the distur-
bance attenuation problem with level of attenuation γ.
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(ii) There exists a zero-order controller u(t) = F (ηt)x(t) that solves the dis-
turbance attenuation problem with the level of attenuation γ.

Proof. If (i) is true then, applying Theorem 8.2 to the corresponding closed-
loop system one obtains that there exists Y = (Y (1), Y (2), . . . , Y (N)) ∈
SN

n+nc
, Y (i) > 0, 1 ≤ i ≤ N which solves the following system of LMIs,

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−Y (i) Ψ̂0i(Y ) Ψ̂1i(Y ) . . .

Ψ̂T
0i(Y ) Ĝ00(i) − Y Ĝ01(i) . . .

Ψ̂T
1i(Y ) ĜT

01(i) Ĝ11(i)− Y . . .

. . . . . . . . . . . .

Ψ̂T
ri(Y ) ĜT

0r(i) ĜT
1r(i) . . .

Ccl(i)Y (i) ĜT
0r+1(i) ĜT

1r+1(i) . . .

Ψ̂ri(Y ) Y (i)CT
cl(i)

Ĝ0r(i) Ĝ0r+1(i)

Ĝ1r(i) Ĝ1r+1(i)

. . . . . .

Ĝrr(i) − Y Ĝrr+1(i)

ĜT
rr+1(i) Dzv(i)DT

zv(i)− γ2Inz

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

< 0, (8.124)

where

Ψ̂ki(i) =
(√

p(i, 1)Y (i)AT
kcl(i) . . .

√
p(i, N)Y (i)AT

kcl(i)
)
,

Ĝlk(i) = ÎT (i)Glcl(i)GT
kcl(i)Î(i), 0 ≤ l ≤ k ≤ r,

Ψ̂lr+1(i) = ÎT (i)Glcl(i)DT
zv(i), 0 ≤ l ≤ r,

Î(i) =
(√

p(i, 1)In+nc . . .
√

p(i, N)In+nc

)
.

Take T ∈ Rñ×n̂, (ñ = (n + nc)[1 + (r + 1)N ] + nz, n̂ = n[1 + (r + 1)N ] + nz),

T = diag(T0,T0, . . . ,T0, Inz ), T0 =

(
In

Onc,n

)

.

One sees that T has full column rank; that is, rankT = n̂.
Pre- and postmultiplying (8.124) by TT and T, respectively, we obtain the

following LMIs,
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⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−Y11(i) V0i(Y ) V1i(Y ) . . .

VT
0i(Y ) G00 − Y11 G01(i) . . .

VT
1i(Y ) GT

01(i) G11(i) − Y11 . . .

. . . . . . . . . . . .

VT
ri(Y ) GT

0r(i) GT
1r(i) . . .

VT
r+1,i(Y ) GT

0r+1(i) GT
1r+1(i) . . .

Vri(Y ) Vr+1,i(Y )

G0r(i) G0r+1(i)

G1r(i) G1r+1(i)

. . . . . .

Grr(i)− Y11 Grr+1(i)

GT
rr+1(i) Dzv(i)DT

zv(i) − γ2Inz

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

< 0 (8.125)

where Glk(i) are as in (8.121), Vki(Y ) = TT
0 Y (i)AT

kcl(i)T0(i)I(i), 0 ≤ k ≤ r,
Vr+1,i(Y ) = TT

0 Y (i)CT
cl(i), Y11 = diag(Y11(i), Y11(2), . . . , Y11(N)), and Y11(i)

is obtained from the partition

Y (i) =

(
Y11(i) Y12(i)

Y T
12(i) Y22(i)

)

according to the partition of the coefficients of the closed-loop system.
By direct calculation one obtains that Vki(Y ) = Wki(Y11, Γ ), where Γ =
(Γ (1), Γ (2), . . . , Γ (N)),

Γ (i) = Dc(i)Y11(i) + Cc(i)Y T
12(i). (8.126)

This means that (8.125) is equivalent to (8.120) written for Y11(i) instead of
Y (i) and Γ (i) given by (8.127). Hence, the state feedback given by F (i) =
Dc(i)+Cc(i)Y T

12(i)Y
−1
11 (i) is a solution of the disturbance attenuation problem

with the level of attenuation γ > 0. Thus we proved that (i) → (ii).
If (ii) is fulfilled, then there exists a stabilizing feedback control law u(t) =

F (ηt)x(t) such that ‖TF ‖ < γ. Take nc ≥ 1 and matrices Ac(i) ∈ Rnc×nc ,
1 ≤ i ≤ N , such that the zero state equilibrium of the linear system xc(t+1) =
Ac(ηt)xc is ESMS.

Taking Bc(i) = 0, Cc(i) = 0, Dc(i) = F (i), 1 ≤ i ≤ N , we obtain a
stabilizing controller of type (8.114) of order nc ≥ 1, that stabilizes the system
(8.117). One can see that the corresponding input–output operator Tcl is just
TF . Hence ‖Tcl‖ < γ. Thus we have shown that (ii) → (i) holds and the proof
is complete. �
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8.5.3 Solution of a robust stabilization problem

We apply Theorem 8.8 in order to solve a robust stabilization problem.
Consider the system described by

x(t + 1) = [A0(ηt) + Ĝ0(ηt)Δ1(ηt)Ĉ(ηt)]x(t)

+ [B0(ηt) + B̂0(ηt)Δ2(ηt)D̂(ηt)]u(t)

+
r∑

k=1

wk(t){[Ak(ηt) + Ĝk(ηt)Δ1(ηt)Ĉ(ηt)]x(t)

+ [Bk(ηt)Δ2(ηt)D̂(ηt)]u(t)}, (8.127)

where Ak(ηt), Ĝk(i), Bk(i), Ĉ(i), D̂(i), 0 ≤ k ≤ r, i ∈ D are known matri-
ces of appropriate dimensions and Δ1 = (Δ1(1), . . . , Δ1(N)) and Δ2 =
(Δ2(1), . . . , Δ2(N)) are unknown matrices and they describe the magnitude
of the uncertainties of the system (8.127). It is assumed that the whole state
vector is accessible for measurements.

The robust stabilization problem considered here can be stated as follows.
For a given ρ > 0 find a control u(t) = F (ηt)x(t) stabilizing (8.127) for

any Δ1 and Δ2 such that max(|Δ1|, |Δ2|) < ρ.
The closed-loop system obtained with u(t) = F (ηt)x(t) is given by

x(t + 1) = {A0(ηt) + B0(ηt)F (ηt) + G0(ηt)Δ(ηt)[C(ηt) + D(ηt)F (ηt)]}x(t)

+
r∑

k=1

wk(t){Ak(ηt) + Bk(ηt)F (ηt)

+ Gk(ηt)Δ(ηt)[C(ηt) + D(ηt)F (ηt)]}x(t), (8.128)

where

Gk(i) = (Ĝk(i) B̂k(i)), C(i) =

(
Ĉ(i)

0

)

,

D(i) =

(
0

D̂(i)

)

, Δ(i) =
(

Δ1(i) 0
0 Δ2(i)

)

.

If the zero state equilibrium of the linear system obtained from (8.128)
taking Δ = 0 is ESMS, then from Theorem 8.6 it follows that the zero state
equilibrium of (8.128) is ESMS for all Δ with |Δ| < ρ, |Δ| = max(|Δ1|, |Δ2|), if
the input–output operator TF associated with the system (8.119) with z(t) =
[C(ηt) + D(ηt)F (ηt)]x(t) satisfies the condition ‖TF ‖ < 1

ρ .
Therefore, F is a robust stabilizing feedback with the robustness radius ρ

if it is a solution of the DAP with level of attenuation γ = 1/ρ for the system
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(8.117) with z(t) = C(ηt)x(t) + D(ηt)u(t), where the matrices C(i) and D(i)
were defined above.

The next result follows directly from Theorem 8.7.

Theorem 8.21 Suppose that there exist Y ∈ SN
n and Γ ∈ MN

mn, Y >
0 verifying the system of LMIs (8.120), where Cz(i) = C(i), Dzu(i) =
D(i), Dzv(i) = 0, γ = 1/ρ. Then the state feedback gain F (i) = Γ (i)Y −1(i) is
a solution of the robust stabilization problem.

8.6 Notes and references

The bounded real lemma and other H∞ control problems for discrete-time
linear systems affected by independent random perturbations were considered
in [7, 33, 34, 62–64, 93, 105, 112] and in the Markovian case in [23, 27, 69, 94,
110, 115, 116]. The proof of the bounded real lemma in this chapter follows
the ideas in [7, 94]. The small gain theorems given in Section 8.4 are proved
for the first time in this book.
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