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To the working group STAPH



Preface

This work is the fruit of recent advances concerning both nonparametric sta-
tistical modelling and functional variables and is based on various publica-
tions in international statistical reviews, several post-graduate courses and
international conferences, which are the result of several years of research.
In addition, all these developments have their roots in the recent infatuation
for functional statistics. In particular, the synergy around the activities of the
working group STAPH is a permanent source of inspiration in these statistical
functional fields.

This book presents in a original way new nonparametric statistical meth-
ods for functional data analysis. Because we support the idea that statistics
should take advantage of interactions between applied and theoretical aspects,
we deliberately decided not to privilege one over the other. So, this work pro-
poses two levels of reading. Recent theoretical advances, as far as possible,
are presented in self-contained sections while statistical methodology, practi-
cal aspects, and elementary mathematics are accessible to a very large public.
But, in any case, each part of this book starts with the presentation of general
ideas concerning theoretical as well as applied issues.

This book could be useful as well for practitioners as for researchers and
students. Non expert researchers and students will find detailed proofs and
mathematical tools for theoretical advances presented in this book. For expe-
rienced researchers, these advances have been selected to balance the trade-
off between comprehensive reading and up-to-date results. Because nonpara-
metric functional statistics is a recent field of research, we discuss the exist-
ing bibliography by emphasizing open problems. This could be the starting
point for further statistical developments. Practitioners will find short descrip-
tions on how to implement the proposed methods while the companion web-
site (http://www.lsp.ups-tlse.fr/staph/npfda) includes large details for codes,
guidelines, and examples of use. So, the use of such nonparametric functional
procedures will be easy for any users. In this way, we can say that this book
is really intended for a large public: practitioners, theoreticians and anybody
else who is interested in both aspects.



VIII  Preface

The novelty of nonparametric functional statistics obliges us to start by
clarifying the terminology, by presenting the various statistical problems and
by describing the kinds of data (mainly curves). Part I is devoted to these
generalities. The remaining parts consist in describing the nonparametric sta-
tistical methods for functional data, each of them being basically split into
theoretical, applied, and bibliographical issues. Part II focuses on prediction
problems involving functional explanatory variables and scalar response. We
study regression, conditional mode and conditional quantiles and their ker-
nel nonparametric estimates. Part III concerns the classification of functional
data. We focus successively on curve discrimination (prediction of a categorical
response corresponding to the class membership) and unsupervised classifica-
tion (i.e., the class membership is unobserved). Because time series can be
viewed as a particular case of functional dataset, we propose in Part IV to
extend most of the previous developments to dependent samples of functional
data. The dependance structure will be taken into account through some mix-
ing notion. In order to keep the main body of the text clear, theoretical tools
are put at the end of this monograph in the appendix.

All the routines are implemented in the R and S+ languages and are
available on the companion website (http://www.lsp.ups-tise.fr/staph/npfda).
S+ is an object-oriented language intensively used in engineering and applied
mathematical sciences. Many universities, intitutions and firms use such a
software which proposes just as well a very large number of standard statistical
methods as a programming language for implementing and popularizing new
ones. In addition, all subroutines are translated into R because many other
people work with such software, which is a free-version of S+ developed by
academic researchers.

Science finds its source in the collective knowledge which is based on ex-
changes, collaborations and communications. So, as with any scientific pro-
duction, this book has taken many benefits from contacts we had along the last
few years. We had the opportunity to collaborate with various people including
A. Ait-Saidi, G. Aneiros, J. Boularan, C. Camlong, H. Cardot, V. Couallier,
S. Dabo-Niang, G. Estévez, W. Gonzalez-Manteiga, L. Gyorfi, A. Goia, W.
Hérdle, J. Hart, I. Horova, R. Kassa, A. Laksaci, A. Mas, S. Montcaup, V.
Nuniez-Antén, L. Pélégrina, A. Quintela del Rio, M. Rachdi, J. Rodriguez-
Poo, P. Sarda, S. Sperlicht and E. Youndjé, and all of them have in some
sense indirectly participated to this work. Many other statisticians including
J. Antoch, D. Bosq, A. Cuevas, A. Kneip, E. Kontoghiorghes, E. Mammen,
J.S. Marron, J. Ramsay and D. Tjostheim have also been useful and fruitful
supports for us.

Of course, this book would not have became reality without the permanent
encouragements of our colleagues in the working group STAPH in Toulouse.
This group acting on functional and operatorial statistics is a source of in-
spiration and in this sense, A. Boudou, H. Cardot, Y. Romain, P. Sarda and
S. Viguier-Pla are also indirectly involved in this monograph. We would also
like to express our gratitude to the numerous participants in the activities of



Preface IX

STAPH, with special thanks to J. Barrientos-Marin and L. Delsol for their
previous reading of this manuscript and their constructive comments.
Gérard Collomb (1950-1985) was a precursor on nonparametric statistics.
His international contribution has been determinant for the development of
this discipline, and this is particularly true in Toulouse. Undoubtly, his stamp
is on this book and we wish to take this opportunity for honoring his memory.

Frédéric Ferraty
Philippe Vieu
Toulouse, France
January, 2006



Contents

Preface VII
List of Abbreviations and Symbols XVII
List of Figures XIX

Part I Statistical Background for Nonparametric Statistics and
Functional Data

1

Introduction to Functional Nonparametric Statistics....... 5
1.1 What is a Functional Variable?............ ... .. ... ... ... 5
1.2 What are Functional Datasets?............. ... ... ... .... 6
1.3 What are Nonparametric Statistics for Functional Data ... ... 7
1.4 Some Notation ............iiiiiiiii .. 9
1.5 Scopeofthe Book ....... .. ... .. .. . . 10
Some Functional Datasets and Associated Statistical
Problematics ......... ... . . 11
2.1 Functional Chemometric Data ............................ 11
2.1.1 Description of Spectrometric Data ................... 12
2.1.2  First Study and Statistical Problems................. 13
2.2 Speech Recognition Data ......... ... .. ... o .. 15
2.2.1 What are Speech Recognition Data? ................. 15
2.2.2  First Study and Problematics ....................... 15
2.3 Electricity Consumption Data............ ... ... .. ... ... 17
2.3.1 TheData .......c.o i 17
2.3.2 The Forecasting Problematic.................. ... ... 18
What is a Well-Adapted Space for Functional Data? ....... 21

3.1 Closeness NOtIONS ..o .vv it 21



XII

Contents

3.2 Semi-Metrics as Explanatory Tool ........... ... ... ... ... 22
3.3 What about the Curse of Dimensionality? .................. 25
3.4 Semi-Metrics in Practice ........... ... ... . . ... 28
3.4.1 Functional PCA: a Tool to Build Semi-Metrics ........ 28
3.4.2 PLS: a New Way to Build Semi-Metrics .............. 30
3.4.3 Semi-metrics Based on Derivatives................... 32
3.5 R and S+ Implementations ........... ... ... i, 33
3.6 What About Unbalanced Functional Data? ................. 33
3.7 Semi-Metric Space: a Well-Adapted Framework ............. 35
Local Weighting of Functional Variables ................... 37
4.1 Why Use Kernel Methods for Functional Data? ............. 37
4.1.1 Real Case ... e 38
4.1.2 Multivariate Case ..........c..iiiiiii i, 39
4.1.3 Functional Case ..., 41
4.2 Local Weighting and Small Ball Probabilities ............... 42
4.3 A Few Basic Theoretical Advances......................... 43

Part II Nonparametric Prediction from Functional Data

5

Functional Nonparametric Prediction Methodologies ... ... 49
5.1 Introduction .......... ... 49
5.2 Various Approaches to the Prediction Problem .............. 50
5.3 Functional Nonparametric Modelling for Prediction .......... 52
5.4 Kernel Estimators ........ .. .. . . 55
Some Selected Asymptotics.............. ... ... ... ... ..., 61
6.1 Introduction .......... ... . . i 61
6.2 Almost Complete Convergence ...............cooouiienoo... 62
6.2.1 Regression Estimation ............... .. .. ... ..., 62
6.2.2 Conditional Median Estimation ..................... 66
6.2.3 Conditional Mode Estimation ....................... 70
6.2.4 Conditional Quantile Estimation .................... 76
6.2.5 Complements ......... .. . .. .. i 76
6.3 Rates of Convergence ............ ..o, 79
6.3.1 Regression Estimation ............... .. .. .. .. ..., 79
6.3.2 Conditional Median Estimation ..................... 80
6.3.3 Conditional Mode Estimation ....................... 87
6.3.4 Conditional Quantile Estimation .................... 90
6.3.5 Complements ......... .. .. . i 92
6.4 Discussion, Bibliography and Open Problems ............... 93
6.4.1 Bibliography ........ ... .. 93
6.4.2 Going Back to Finite Dimensional Setting ............ 94

6.4.3 Some Tracks for the Future ......................... 95



Contents  XIII

Computational Issues............ .. . ... . ... ... ... 99
7.1 Computing Estimators ............ ... .. i, 99
7.1.1 Prediction via Regression..................... ... ... 100
7.1.2 Prediction via Functional Conditional Quantiles .. ... .. 103
7.1.3 Prediction via Functional Conditional Mode .......... 104
7.2 Predicting Fat Content From Spectrometric Curves .......... 105
7.2.1 Chemometric Data and the Aim of the Problem . ...... 105
7.2.2 Functional Prediction in Action ..................... 106
7.3 ConcluSion . ........ouiiii i 107

Part III Nonparametric Classification of Functional Data

8

Functional Nonparametric Supervised Classification ....... 113
8.1 Introduction and Problematic .............. ... ... .. ... ... 113
8.2 Method ... ... 114
8.3 Computational Issues ........ ... .. .. . .. . 116
8.3.1 kNN Estimator ............ .. ... ... 116
8.3.2 Automatic Selection of the kNN Parameter ........... 117
8.3.3 Implementation: R/S+ Routines .................... 118
8.4 Functional Nonparametric Discrimination in Action.......... 119
8.4.1 Speech Recognition Problem ........................ 119
8.4.2 Chemometric Data ........... .. ... ... ... ..., 122
8.5 Asymptotic Advances . ........... i 122
8.6 Additional Bibliography and Comments .................... 123
Functional Nonparametric Unsupervised Classification. . ... 125
9.1 Introduction and Problematic ............ .. ... .. ... ..... 125
9.2 Centrality Notions for Functional Variables ................. 127
9.2.1 Mean . ..o 127
9.2.2 Median ....... .. 129
9.2.3 Mode ..o 130
9.3 Measuring Heterogeneity ........... .. . .. ... ... ..., 131
9.4 A General Descending Hierarchical Method .............. ... 131
9.4.1 How to Build a Partitioning Heterogeneity Index? .. ... 132
9.4.2 How to Build a Partition? .......................... 132
9.4.3 Classification Algorithm ............. ... ... ......... 134
9.4.4 Implementation: R/S+ Routines .................... 135
9.5 Nonparametric Unsupervised Classification in Action ........ 135
9.6 Theoretical Advances on the Functional Mode. .............. 137
9.6.1 Hypotheses on the Distribution ..................... 138
9.7 The Kernel Functional Mode Estimator .................... 140
9.7.1 Construction of the Estimates....................... 140
9.7.2 Density Pseudo-Estimator: a.co. Convergence ......... 141

9.7.3 Mode Estimator: a.co. Convergence .................. 144



X1V Contents

9.7.4 Comments and Bibliography ........................ 145
9.8 ConcClusSionNS . . .ottt 146

Part IV Nonparametric Methods for Dependent Functional Data

10 Mixing, Nonparametric and Functional Statistics .......... 153
10.1 Mixing: a Short Introduction. ........... ... .. ... ... ... 153
10.2 The Finite-Dimensional Setting: a Short Overview ........... 154
10.3 Mixing in Functional Context ........ ... ... ... .. ... ... 155
10.4 Mixing and Nonparametric Functional Statistics............. 156

11 Some Selected Asymptotics.................. .. ... ........ 159
11.1 Introduction . .......outir ittt e 159
11.2 Prediction with Kernel Regression Estimator................ 160

11.2.1 Introduction and Notation.................. ... ..... 160
11.2.2 Complete Convergence Properties ................... 161
11.2.3 An Application to the Geometrically Mixing Case . . ... 163
11.2.4 An Application to the Arithmetically Mixing Case. . ... 166
11.3 Prediction with Functional Conditional Quantiles............ 167
11.3.1 Introduction and Notation.......................... 167
11.3.2 Complete Convergence Properties ................... 168
11.3.3 Application to the Geometrically Mixing Case ........ 171
11.3.4 Application to the Arithmetically Mixing Case ........ 175
11.4 Prediction with Conditional Mode . ........... .. ... ... ... 177
11.4.1 Introduction and Notation.......................... 177
11.4.2 Complete Convergence Properties ................... 178
11.4.3 Application to the Geometrically Mixing Case ........ 183
11.4.4 Application to the Arithmetically Mixing Case ........ 184
11.5 Complements on Conditional Distribution Estimation ........ 185
11.5.1 Convergence Results ......... .. ... .. .. .. ... 185
11.5.2 Rates of Convergence ............. .. .. . ..., 187
11.6 Nonparametric Discrimination of Dependent Curves ......... 189
11.6.1 Introduction and Notation....................... ... 189
11.6.2 Complete Convergence Properties ................... 190
11.7 DISCUSSION « v v vttt e e e 192
11.7.1 Bibliography . ... ..o 192
11.7.2 Back to Finite Dimensional Setting .................. 192
11.7.3 Some Open Problems .................. ... ........ 193

12 Application to Continuous Time Processes Prediction ... .. 195
12.1 Time Series and Nonparametric Statistics .................. 195
12.2 Functional Approach to Time Series Prediction.............. 197
12.3 Computational Issues ... ...... ... .. .. 198

12.4 Forecasting Electricity Consumption ............ ... ... ..... 198



Contents XV

12.4.1 Presentation of the Study .......................... 198
12.4.2 The Forecasted Electrical Consumption .............. 200
12.4.3 Conclusions. . ..ot e 201

Part V Conclusions

13 Small Ball Probabilities and Semi-metrics ............... .. 205
13.1 Introduction . ..... ...t 205
13.2 The Role of Small Ball Probabilities ....................... 206
13.3 Some Special Infinite Dimensional Processes ................ 207

13.3.1 Fractal-type Processes .......... .. .. ... .. . ... .. 207
13.3.2 Exponential-type Processes .. .......... .. .. .. ... .. 209
13.3.3 Links with Semi-metric Choice . ..................... 212
13.4 Back to the One-dimensional Setting . ...................... 214
13.5 Back to the Multi- (but Finite) -Dimensional Setting......... 219
13.6 The Semi-metric: a Crucial Parameter .................. ... 223

14 Some Perspectives ........ .. ... ... . 225

Appendix: Some Probabilistic Tools............................ 227
A.1 Almost Complete Convergence ..............covvuvenaon.. 228
A.2 Exponential Inequalities for Independent r.r.v. .............. 233
A.3 Inequalities for Mixing rrov. ..o i 235

References ... ... ... ... . . 239



List of Abbreviations and Symbols

Diam(A)

FEorF

(E,d)

E(Y) or EY
E(Y|X = x)

fr.v.

f

F¥(x,y) or F¥(y)

F(xy) or f5(y)

closed interval of R

open interval of R

semi-open intervals of R

almost complete (convergence) for sequence of r.r.v.

open ball of center x and radius h, in the space (F,d)
cumulative distribution function

generic finite real positive constants

set of real-valued continuous functions defined on G
semi-metric on some functional space FE

diameter of some subset A of (E,d)

generic functional spaces

generic functional space and its semi-metric

expectation of some r.r.v. Y

conditional expectation of some r.r.v. Y given the f.r.v. X
functional random variable

marginal density of the fr.v. X

conditional distribution of some r.r.v. Y given the fr.v. X
conditional density of some r.r.v. Y given the fr.v. X
measure of B(,h) respect to the probability law of X
indicator function on some set I

generic notation for a bandwidth h = h(n)

generic notation for an integrated kernel function

generic notation for an asymetrical kernel function
generic notation for a standard symetrical kernel function
set of real-valued Hélder continuous functions defined on GG
generic notation for a measure on some infinite dimensional space
set of positive integers with (respectively without) 0



XVIII List of Abbreviations

rate of almost complete convergence

rate of almost sure convergence

rate of convergence in probability

probability space on which all the r.v. are defined
conditional (on the f.r.v. X) probability measure on {2
nonlinear regression operator

generic compact subset of R

the statistical functional sample S = {X1,..., X, }
generic random real variable

generic (unrandom) real number

sample of r.r.v.

statistical observations of the r.r.v. X;

generic multivariate random variable

generic (unrandom) multivariate vector
X;,i=1...n sample of random vectors

x;, 1 = 1...n statistical observations of the random vectors X;
X generic functional random variable

X generic (unrandom) functional element
X;,i=1...n sample of f.r.v.

Xi, © = 1...n statistical observations of the f.r.v. &X;

e
Q
®

S0 0
8

=

=%
BEa
>

SERSIACR
l Il

' 3
N

RS
\‘N

I
—

S

I.I.V. real random variable

R, R, set of real numbers with (respectively without) 0

R*, R set of positive real numbers with (respectively without) 0
r.au. random variable

7, L set of integers with (respectively without) 0



List of Figures

2.1
2.2
2.3
24

2.5
2.6
2.7
2.8
2.9

3.1
3.2
3.3
3.4
3.5

4.1
4.2

5.1

7.1
7.2
8.1
8.2
8.3

9.1

Original Chemometric Data Concerning 15 Subjects .......... 12
The Spectrometric Curves .. ...t .. 13
Standard PCA: Spectrometric Data......................... 14
A Sample of 10 Log-Periodograms (Curves Data) for each of

the Five Phoneme Classes . ......... ... oo, 16
Standard PCA: Phoneme Data................ .. .. ...... 17
The Electricity Consumption Data ......................... 18
Electricity Consumption: Differenciated Log Data ............ 19
Electricity Consumption: Yearly Differenciated Log Curves .... 19
Standard PCA: Electricity Consumption Data ............... 20
PCA with Lo-metric; Axes 2and 3 ......... ... ... ... ... 23
PCA Based on Semi-Metric; Axes land 2 ................... 24
Shape of the Derivatives of the Spectrometric Curves ......... 25
N(P) VEISUS P oottt e 27
N(P) VEIrSUS D oo oo e 28
Usual Symmetrical Kernels ......... ... .. ... ... ..., 39
Asymmetrical Kernels. .. ........ ... ... ... .. .. ... ... ..., 40
Various Examples of Integrated Kernels ..................... 57

Performance of the Three Functional Prediction Methods on
Spectrometric Data . ......... ... .. 106
Comparison Between the Three Functional Prediction

Methods and the Multimethod One for Spectrometric Data . ... 107

Speech Recognition Data Discrimination: One Run ........... 120
Speech Recognition Data Discrimination: 50 runs............. 121
Spectrometric Data Discrimination: 50 runs.................. 122

Speech Recognition Data: Mean Curves (Global and by Group) 128



XX

9.2
9.3
9.4
9.5
9.6

List of Figures

Spectrometric Data: Mean Curves (Global and by Group) ... .. 128
Spectrometric Data: the Probability Curves.................. 133
Classification Tree for the Spectrometric Curves.............. 136
Spectrometric Curves, 2nd Derivatives, and Modes ........... 137

Behaviour of the Splitting Score for the Spectrometric Data ...138

12.1 Electricity Consumption: the Forecasting Methods in Action . .. 200



Part 1

Statistical Background for Nonparametric
Statistics and Functional Data



Part I 3

Our main goal is to propose a new methodology combining both non-
parametric modelling and functional data. Because of the obvious theoretical
difficulties, despite its practical and theoretical interests, such a blend of topics
was still considered unrealistic just a few years ago. This is well summarized
by two citations coming from authors well-known for their statistical contri-
butions in particular concerning functional data (parametric) modelling. The
first is due to [B91] in a paper dealing with autoregressive hilbertian processes:
“These being nonparametric by themselves, it seems rather heavy to introduce
a nonparametric model for observation lying in functional space ...”. The sec-
ond one can be found in the book of [RS97] Functional Data Analysis in the
section entitled “Challenges for the future”: “theoretical aspects of Functional
Data Analysis have not been researched in sufficient depth, and it is hoped
that appropriate theoretical developments will feed back into advances in prac-
tical methodology.” Our aim is to take up these challenges, by giving both
theoretical and practical supports for attacking functional data analysis and
modelling in a free-parameter fashion.

Because of the novelty of this field, it is necessary to start by clarifying the
vocabulary linking functional and nonparametrical statistics (what are func-
tional data/variables? what is a nonparametric model for such a dataset?...).
This is done in Chapter 1. Chapter 2 presents various statistical problems to-
gether with several functional data chosen in order to cover different fields of
applied statistics. Chapter 3 highlightes the usefulness of the introduction of
semi-metrics for modelling functional data. This turns out to be a sufficiently
general theoretical framework without being “too heavy” in terms of compu-
tational issues. Basic statistical ideas on local weighting methods and their
extension to the functional case are exposed in Chapter 4. Special attention
is paid to kernel weighting.

Finally, note that all the chapters in this part are accessible to a large
public. However, Chapter 2 is rather oriented towards practitioners whereas
Chapter 4 focuses on preliminary technical support. Chapter 3 gives some
basic considerations which are really at the interface between applied and
mathematical statistics, and therefore should interest a large public.



1

Introduction to Functional
Nonparametric Statistics

The main goal of this chapter is to familiarize the reader with both functional
and nonparametric statistical notions. First and because of the novelty of this
field of research, we propose some basic definitions in order to clarify the
vocabulary on both functional data/variables and nonparametric modelling.
Second, we fix some notations to unify the remaining of the book.

1.1 What is a Functional Variable?

There is actually an increasing number of situations coming from different
fields of applied sciences (environmetrics, chemometrics, biometrics, medicine,
econometrics, . . .) in which the collected data are curves. Indeed, the progress
of the computing tools, both in terms of memory and computational capac-
ities, allows us to deal with large sets of data. In particular, for a single
phenomenon, we can observe a very large set of variables. For instance, look
at the following usual situation where some random variable can be observed
at several different times in the range (fmin,tmaz). An observation can be
expressed by the random family {X(tj)}jzlw"]. In modern statistics, the
grid becomes finer and finer meaning that consecutive instants are closer and
closer. One way to take this into account is to consider the data as an obser-
vation of the continuous family X = {X (¢); t € (tmin, tmaz)}- This is exactly
the case of the speech recognition dataset that we will treat deeply later in
this monograph (see Section 2.2). Of course, other situations can be viewed
similarly such as for instance the spectrometric curves presented in Section
2.1, for which the measurements concern different wavelengths instead of time
points. Moreover, a new literature is emerging which deals with sparse func-
tional data. In this situation, the number of measurements is small but the
data are clearly of functional nature (see for instance the electrical consump-
tion curves described in Section 2.3). To fix the ideas, we give the following
general definition of a functional variable/data.



6 1 Introduction to Functional Nonparametric Statistics

Definition 1.1. A random variable X is called functional variable (f.v.) if
it takes values in an infinite dimensional space (or functional space). An
observation x of X is called a functional data.

Note that, when X' (resp. x) denotes a random curve (resp. its observation),
we implicitly make the following identification X = {X(¢); t € T} (resp.
x = {x(t); t € T}). In this situation, the functional feature comes directly
from the observations. The situation when the variable is a curve is associated
with an unidimensional set 7" C R. Here, it is important to remark that the
notion of functional variable covers a larger area than curves analysis. In
particular, a functional variable can be a random surface, like for instance
the grey levels of an image or a vector of curves (and in these cases T is a
bidimensional set T C R?), or any other more complicated infinite dimensional
mathematical object. Even if the real data used as supports throughout this
book are all curves datasets (i.e., a set of curves data), all the methodology
and theoretical advances to be presented later are potentially applicable to
any other kind of functional data.

1.2 What are Functional Datasets?

Since the middle of the nineties, the increasing number of situations when
functional variables can be observed has motivated different statistical devel-
opments, that we could quickly name as Statistics for Functional Variables
(or Data). We are determinedly part of this statistical area since we will pro-
pose several methods involving statistical functional sample Xy,..., &),. Let
us start with a precise definition of a functional dataset.

Definition 1.2. A functional dataset x1,...,xn @S the observation of n
functional variables Xy, ..., X, identically distributed as X .

This definition covers many situations, the most popular being curves
datasets. We will not investigate the question of how these functional data
have been collected, which is linked with the discretization problems. Accord-
ing to the kind of the data, a preliminary stage consists in presenting them
in a way which is well adapted to functional processing. As we will see, if
the grid of the measurements is fine enough, this first important stage in-
volves usual numerical approximation techniques (see for instance the case of
spectrometric data presented in Chapter 3). In other standard cases, classical
smoothing methods can be invoked (see for instance the phonemes data and
the electrical consumption curves discussed in Chapter 3). There exist some
other situations which need more sophisticated smoothing techniques, for in-
stance when the repeated measures per subjects are very few (sparse data)
and/or with irregular grid. This is obviously a parallel and complementary
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field of research but this is far from our main purpose which is nonparametric
statistical treatments of functional data. From now on, we will assume that
we have at hand a sample of functional data.

1.3 What are Nonparametric Statistics for
Functional Data?

Traditional statistical methods fail as soon as we deal with functional data.
Indeed, if for instance we consider a sample of finely discretized curves, two
crucial statistical problems appear. The first comes from the ratio between the
size of the sample and the number of variables (each real variable correspond-
ing to one discretized point). The second, is due to the existence of strong
correlations between the variables and becomes an ill-conditioned problem in
the context of multivariate linear model. So, there is a real necessity to de-
velop statistical methods/models in order to take into account the functional
structure of this kind of data. Most of existing statistical methods dealing
with functional data use linear modelling for the object to be estimated. Key
references on methodological aspects are those by [RS97] and [RS05], while
applied issues are discussed by [RS02] and implementations are provided by
[CFGRO5]. Note also that, for some more specific problem, some theoretical
support can be found in [B0O].

On the other hand, nonparametric statistics have been developped inten-
sively. Indeed, since the beginning of the sixties, a lot of attention has been
paid to free-modelling (both in a free-distribution and in a free-parameter
meaning) statistical models and/or methods. The functional feature of these
methods comes from the nature of the object to be estimated (such as for in-
stance a density function, a regression function, ...) which is not assumed to be
parametrizable by a finite number of real quantities. In this setting, one is usu-
ally speaking of Nonparametric Statistics for which there is an abundant
literature. For instance, the reader will find in [H90] a previous monograph for
applied nonparametric regression, while [S00] and [APO03] present the state of
the art in these fields. It appears clearly that these techniques concern only
classical framework, namely real or multidimensional data.

However, recent advances are mixing nonparametric free-modelling ideas
with functional data throughout a double infinite dimensional framework (see
[FVO03b] for bibliography). The main aim of this book is to describe both
theoretical and practical issues of these recent methods through various sta-
tistical problems involving prediction, time series and classification. Before
to go on, and in order to clarify the sense of our purpose, it is necessary to
state precisely the meanings of the expressions parametric and nonparametric
models.

There are many (different) ways for defining what is a nonparametric sta-
tistical model in finite dimensional context, and the border between nonpara-
metric and parametric models may sometimes appear to be unclear (see the
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introduction in [BL87] for more discussion). Here, we decided to start from
the following definition of nonparametric model in finite dimensional context.

Definition 1.3. Let X be a random wvector valued in RP and let ¢ be a
function defined on RP and depending on the distribution of X. A model
for the estimation of ¢ consists in introducing some constraint of the form

peC.

The model is called a parametric model for the estimation of ¢ if C is in-
dexed by a finite number of elements of R. Otherwise, the model is called a
nonparametric model.

Our decision for choosing this definition was motivated by the fact that
it makes definitively clear the border between parametric and nonparamet-
ric models, and also because this definition can be easily extended to the
functional framework.

Definition 1.4. Let Z be a random variable valued in some infinite dimen-
stonal space F' and let ¢ be a mapping defined on F and depending on the
distribution of Z. A model for the estimation of ¢ consists in introducing
some constraint of the form

peC.

The model is called a functional parametric model for the estimation of ¢
if C is indexed by a finite number of elements of F. Otherwise, the model is
called a functional nonparametric model.

The appellation Functional Nonparametric Statistics covers all sta-
tistical backgrounds involving a nonparametric functional model. In the ter-
minology Functional Nonparametric Statistics, the adjective nonpara-
metric refers to the form of the set of constraints whereas the word func-
tional is linked with the nature of the data. In other words, nonparametric
aspects come from the infinite dimensional feature of the object to be esti-
mated and functional designation is due to the infinite dimensional feature
of the data. That is the reason why we may identify this framework to a
double infinite dimensional context. Indeed, ¢ can be viewed as a nonlinear
operator and one could use the terminology model for operatorial estimation
by analogy with the multivariate terminology model for functional estimation.

To illustrate our purpose concerning these modelling aspects, we focus on
the regression models
Y =r(X) + error, (1.1)
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where Y is a real random variable by considering various situations: linear
(parametric) or nonparametric regression models with curves (i.e. X = X =
{X(t); t € (0,1)}) or multivariate (i.e. X = X = (X1!,..., XP)) data:

MODELS
LINEAR | NONPARAMETRIC
Ezxample 1 Ezample 2
D|MULTIVARIATE X eRpP X eRpP
A C = {r linear} C = {r continuous}
T Ezample 3 Ezxzample /
A| FUNCTIONAL XeF=1L},, XeF=L},,
C={x+ fol p(t)x(t)dt € R, p € F}|C = {r continuous}

Example 1 corresponds to the so-called multivariate linear regression model

P
Y =ag+ Zaj X7 + error,
j=1

which is obviously a parametric model (with p + 1 unknown real parame-
ters ag, . .., ap). Example 2 refers to the classical multivariate nonparametric
regression model

Y =r(X', ..., XP) + error.

Now, Example 3 is exactly what [RS97] call functional linear regression model
for scalar response namely

1
Y = / p() X (t)dt + error
0

which can be reformulated as (1.1) with r being a continuous linear operator
from F to R (by using the Riesz representation theorem). According to our
definition, this is a functional parametric regression model, where p(.) is the
only one (functional) parameter. The last model (Example 4) can be written
as (1.1) where r is just a continuous operator from F' to R. Example 4 is a
functional nonparametric regression model according to Definition 1.4. This
model will be treated with details in Chapter 5.

1.4 Some Notation

In the remaining of this book, x will denote any non-random element of some
infinite dimensional space F and X a functional random variable valued in FE.
Similarly, {x;}i=1,....» Will denote the n observations of a sample {X;}i=1,.. »
of f.r.v. Even if this monograph is devoted to the study of the nonparametric
method for functional data, we will still need to introduce real or multivariate
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variables. Instead of x, X, x; and X;, we will use boldfaced letters for vectors
(z, X, x; and X;) and standard letters for the real case (x, X, x;, X;).

In addition, any random variable considered in this book is defined on the
same probability space ({2, 4, P). Finally, except in Part IV, any statistical
sample is implicitly assumed to be independent.

1.5 Scope of the Book

Once the general framework for nonparametric modelling of functional vari-
able is given (see Part I), the book focuses on various statistical topics: pre-
dicting from a functional variable (see Part II), classifying a sample of func-
tional data (see Part III) and statistics for dependent functional variables
(see Part IV). All these statistical methods are developed in a free-parameter
way (which includes free-distribution modelling). In this sense, this book is
both completely different and complementary to the few other books existing
on functional data ([RS97], [RS02] and [RS05]). Rather than set application
against theory, this book is really an interface of these two features of statistics
and each statistical topic is investigated from its deep theoretic foundations
up to computational issues. For more details on practical aspects, the reader
can refer to the companion website http://www.lsp.ups-tise.fr/staph/npfda).
This site contains functional datasets, case studies and routines written in two
popular statistical languages: R (see [RDCT]) and S+ (see the comprehen-
sive manual of [BCW88], as well as more recent literature in [C98], [KOO05] or
[VROO]).
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Some Functional Datasets and Associated
Statistical Problematics

This chapter could have been entitled “Some statistical problematics and as-
sociated functional data”. In fact, there are many nonparametrical statistical
problems which occur in the functional setting. Sometimes, they appear purely
in terms of statistical modelling or, on the contrary, they can be drawn directly
from some specific functional datasets. But, in any case, the proposed solutions
should look at both points of view. This chapter describes various functional
data with their associated statistical problems. Of course, some statistical
processing (such for instance unsupervised classification) concerns all the fol-
lowing datasets but additional informative data (such for instance the knowl-
edge of some response variable) can lead to particular problems. As we will
see, these data have been choosen to cover different applied statistics fields,
different shapes of curves (smooth, unsmooth), various grids of discretization
(fine, sparse) and also different types of statistical problems (regression, dis-
crimination, prediction and classification). Obviously, the methods presented
later on will concern many other functional datasets while at the same time,
these datasets can motivate other statistical problems not investigated here.
Although these functional datasets are available on various websites, we give
them in the companion website (http://www.lsp.ups-tise.fr/staph/npfda) in
which they are presented in a appropriate format, directly usable by readers
both for familiarizing themselves (by reproducing the examples) with the func-
tional nonparametric methods described in this monograph and eventually to
compare them with their own alternative approaches.

2.1 Functional Chemometric Data

Spectrometry is a modern and useful tool for analyzing the chemical compo-
sition of any substance. As pointed out by [FF93], in order to analyze such
kind of data, “chemometricians have invented their own techniques based on
heuristic reasoning and intuitive ideas”. The two most popular methods are
partial least squares (see [W75] and [MNa89] for more details), and principal
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component regression ([M65]). As chemometrics was a starting point for de-
veloping the functional nonparametric methodology, they play a major role
in this book, and it is natural to begin by the presentation of such dataset.

2.1.1 Description of Spectrometric Data

The original data come from a quality control problem in the food industry
and can be found at http://lib.stat.cmu.edu/datasets/tecator. Note that they
were first studied by [BT92] using a neural networks approach. This dataset
concerns a sample of finely chopped meat. Figure 2.1 displays some units
among the original spectrometric data.
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850 900 950 1000 1050
Wavelenghts

Fig. 2.1. Original Chemometric Data Concerning 15 Subjects

This figure plots absorbance versus wavelength for 15 randomly selected pieces
of meat. More precisely, for each meat sample the data consists of a 100 chan-
nel spectrum of absorbances. Absorbance is the —logig of the transmittance
measured by the spectrometer, and the data were recorded on a Tecator In-
fractec Food and Feed Analyzer working in the wavelength range 850-1050 nm
by the near-infrared (NIR) transmission principle. One unit appears clearly
as a discretized curve. Because of the fineness of the grid (spaning the dis-
cretization), we can consider each subject as a continuous curve. This was
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pointed out by [LMS93] who said of such chemometric data that “the spectra
observed are to all intents and purposes functional observations”. Thus, each
spectrometric analysis can be summarized by some continuous curve giving
the observed absorbance as function of the wavelength. The curves dataset,
that is the whole set of (continuous) data, is presented in Figure 2.2 below.

Absorbances

850 900 950 1000 1050
wavelengths

Fig. 2.2. The Spectrometric Curves

As we can see in Figure 2.2, the shape of these spectrometric curves is very
smooth and looks very similar except for an obvious vertical shift.

2.1.2 First Study and Statistical Problems

Considering these data, many questions can appear. In particular, the first
natural one would be to know whether the vertical shift observed in Figure
2.2 is really informative or not. In other words, does the shift come from the
chemical components of the meat or is it only due to some extra phenomenon?
This question is fundamental because the shift can hide other important fea-
tures and act as a trompe-l'oeil. We will see in Chapter 3 that the functional
modelization of these data allows us to take care of this shift effect and finally
to furnish some arguments to answer these questions. But let us first explore
the data by means of classical Principal Component Analysis (PCA) which is
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a very popular and useful tool in terms of multivariate factor analysis. Fig-
ures 2.3 displays both the 100 variables and the 215 units on the principal
eigenspace.
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0.0 0.1 0.2 0.3 -5 0 5 10
Factor 1 Component 1

Fig. 2.3. Standard PCA: Spectrometric Data

From the variables displayed, it appears that there is a clear scale factor, and
this could be probably be linked with the vertical shift. Concerning the in-
dividuals, we just note some potential outliers but no strong structure seems
to appear. Obviously, pertinent information can be found by looking at the
remaining dimensions (axes 3, 4,. .., 100). But here, we see some limits of this
traditional statistical technique due to the high dimensionality of the data.

After this explanatory stage, and since the role of the shift effect seems
to be identified, many statistical questions may arise. For instance, one could
wish to know whether the curves are similar or not. This is an important
problem because the sample of curves may hide several different subsamples.
This is typically an unsupervised curve classification problem, for which we
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will see the usefulness of a functional nonparametric approach as detailed
in Chapter 9. Another question comes from the fact that the main goal of
spectrometric analysis is to allow for the discovery of the proportion of some
specific chemical content whereas the analytic chemistry processing would take
more time and be much more expensive. For instance, if Y is the proportion of
some component (in our dataset, Y is the percentage of fat content in the piece
of meat), one would like to use the spectrometric curves to predict Y. This is
typically a functional regression problem with scalar response and Chapter 5
will show how the nonparametric approach provides some nice tools for that.

2.2 Speech Recognition Data

2.2.1 What are Speech Recognition Data?

In speech recognition, the observed data are clearly of a functional nature.
For instance, look at the following data set, previously introduced by a joint
collaboration between Andreas Buja, Werner Stuetzle and Martin Maechler,
and used as illustration by [HBT95] (data and description are available at
http:www-stat.stanford. edu/ElemStatLearn, which is the website of [HBF01]).
The data are log-periodograms corresponding to recordings of speakers of 32
ms duration. Here also, even if we have to deal with discretized data, the
number of observed points is quite large enough to allow for considering the
observations to be continuous (as they are, indeed). The study concerns (see
Figure 2.4) five speech frames corresponding to five phonemes transcribed as
follows:

“sh” as in “she” (group 1);

“iy” as in “she” (group 2);

“dcl” as in “dark” (group 3);

“aa” as the vowel in “dark” (group 4);

“ao0” as the first vowel in “water” (group 5).

Precisely, our dataset is extracted from the original one in such a way that
each speech frame is represented by 400 samples at a 16-kHz sampling rate;
only the first 150 frequencies from each subject are retained, and the data
consist of 2000 log-periodograms of length 150, with known class phoneme
memberships. Indeed, Figure 2.4 displays only 10 log-periodogram curves for
each class phoneme.

2.2.2 First Study and Problematics

We can start the study of these data with an exploratory stage. Once again, we
use the classical PCA in order to discover some structure. Figure 2.5 displays
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Fig. 2.4. A Sample of 10 Log-Periodograms (Curves Data) for each of the Five
Phoneme Classes

both the 150 variables and the 2000 units on different eigenspaces. Following
the results of this factorial analysis, eigenspaces (1,2) and (1, 3) exhibit just
one group which corresponds to the sound “dcl”. One can remark too that axis
2 seems to draw a “fuzzy” border between the groups “sh/iy” and “aa/ao”.
After this first analysis, one can pursue this exploratory step in order to
extract more pertinent information. Some interesting questions are: is there
a common structure? Can we split the log-periodograms into several classes?
One way to answer is to consider an unsupervised classification problem. But
here, we have important additional information since we have the knowledge
of the classes for the sample of log-periodograms. Thus, we can give answers
to the previous questions by solving a curve discrimination problem or a su-
pervised curve classification problem. That is the aim of Chapter 8. As we will
see, nonparametric methods are well adapted to this kind of situation because
we have no idea about the relationship between log-periodograms and sounds.
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Fig. 2.5. Standard PCA: Phoneme Data

2.3 Electricity Consumption Data

2.3.1 The Data

This section focuses on an economic time series: the US monthly electric-
ity consumed by the residential and commercial sectors from January 1973
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to February 2001 (338 months). The data are available on the web site
http: //www.economagic.com. Figure 2.6 displays this time series which obvi-
ously exhibits some linear trend, as well as some heterogeneity in the variance
structure.

Electrical <- Consumption
500 600 700 800

400

300

[0} 100 200 300
Index

Fig. 2.6. The Electricity Consumption Data

In order to clean these effects, we eliminated the heteroscedasticity and the lin-
ear trend by differenciating the log-data. Figure 2.7 displays the transformed
time series.

2.3.2 The Forecasting Problematic

One of the main specific problems in these situations is to predict future
consumption, and usual statistical models (either parametric or nonparamet-
ric) achieve that by taking into consideration a finite number of past data.
However, one could think that it is more reasonable to take into account as
explanatory variable the continuous time series over some period (see Chapter
12 for more details). For our example, we decided to choose the whole past
year as explanatory period. That means that the set of explanatory variables
to be included in our statistical method is composed with 28 curves data which
are the 28 yearly continuous time series. These functional data are presented
in Figure 2.8.
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Fig. 2.7. Electricity Consumption: Differenciated Log Data
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Fig. 2.8. Electricity Consumption: Yearly Differenciated Log Curves

A first study consists in achieving a factorial analysis on these 28 curves.
Figure 2.9 displays the first eigenspace both for variables and units. It is clear
here that there is no visible structure. This fact confirms that the past of
our time series cannot be summarized by a small number of parameters. In
other words, the whole past year should be incorporated for predicting future
values.

If we look at this as matrix data coming from 12 variables and 28 subjects,
there is an obvious problem due to low ratio units/variables. So, even if the
measurements per period are few in comparison with the previous spectro-
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metric and phonetic datasets, we will see in Chapter 11 that functional non-
parametric approaches work well.

Of course, there are many other interesting problems to solve with this
kind of data. For instance, we can wish to classify the 28 trajectories in an
unsupervised way in order to answer the question: can we split the year into
several groups? If, in addition, we take into account a categorical variable
(for instance, the supremum of a path is greater than a fixed threshold), the
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Fig. 2.9. Standard PCA: Electricity Consumption Data

classification aim becomes a curve discrimination problem.
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What is a Well-Adapted Space for
Functional Data?

Using functional data asks crucial statistical questions. Indeed, the larger is
the space F in which the variable takes its values, the sparser are the data.
In the case of functional data, we know (by the nature itself of the data) that
F is an infinite dimensional space. So, this chapter focuses on this essential
problem of high (i.e., infinite) dimensional data. Obviously, the sparseness
notion is strongly linked with the way used to measure closeness between
data, and we propose an original way to approach this question by mean of
semi-metric considerations.

3.1 Closeness Notions

Proximities measures between mathematical objects play a major role in all
statistical methods. In many situations, a classical norm can be used to mea-
sure the closeness between two objects. Because in a finite dimensional eu-
clidean space (typically RP) there is an equivalence between all norms, the
choice in the mathematical sense of this kind of measure is not crucial apart
from some practical constraints (as, for instance, computational ease). Once a
preliminary norm is fixed, it is clear that we can deduce a family of norms and
from a statistical point of view, there remains one essential question: namely
the choice among these different metrics. For instance, one of the most popu-
lar in RP is the usual euclidean norm ||.|| which is based on the sum of squares
of the components of any vector. More precisely, let & ='(z1,...,z,) be a
vector of R? ; then, the classical euclidean norm is defined by

P

lz)|* =) (2)* ="z w.

Jj=1

Of course, we can deduce a family of norms based on the euclidean norm by
using different definite positive matrices M, in the following way
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lz|3; ='x M .

The choice of the norm comes to the same as the choice of M.

Now, considering an infinite dimensional space, the equivalence between
norms fails and the problem has to be attacked in a different way. In other
words, in the functional context, the choice of the preliminary norm becomes
crucial. Even more, considering normed or metric spaces can become too re-
strictive. In some situations and this is the case for our datasets, it appears
that semi-metric spaces are better adapted than metric spaces. As we will see
later, the shape of data and eventually exogene informations or the goal of the
statistical study can help to drive the semi-metric selection. The aim of the
next section is to show the benefit of considering semi-metrics as a closeness
measure. Before going on, let us just recall some basic definitions.

Definition 3.1. ||.|| is a semi-norm on some space F' as soon as:
D)V(Ax) € RxF, |[Ax| = [Al ]|
2)V(x,y) € FxF, |z +yl <] + [yl

Note that in fact, a semi-norm ||.|| is a norm except that ||z|]| =0 % = = 0.
Similarly, a semi-metric d can be defined to be a metric but such that

dla,y) =05z =y.

Definition 3.2. d is a semi-metric on some space F' as soon as:
1)Vx € F, d(z,z) =0,
2)V(x,y,2) € F X F X F,d(z,y) <d(z,z)+d(z,y).

3.2 Semi-Metrics as Explanatory Tool

A large part of explanatory tools consists in displaying data in low-dimensional
spaces. It is clear that the shape of such graphics depends strongly on the
proximity measure. Look at the chemometric dataset. As was shown in Section
2.1, one can start the study by usual Principal Component Analysis (PCA),
the proximity between subjects (spectrometric curves) being computed by
means of the classical Lo-metric, which is defined for all observed curves y;

and v by
\/ (f a0 = xotwy? ar).

Because the first axis has been interpreted as a factor scale (see Figure 2.3),
it is pertinent to see the eigenspace spanned by axes 2 and 3 (see Figure 3.1).
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Fig. 3.1. PCA with Lo-metric; Axes 2 and 3

However, one can propose other measures of proximity. For instance, con-
sider the following closeness measure based on the second derivative:

\/ [(P0-Pw) a

Note that this is not a metric but only a semi-metric according to Definition
3.2. Now, we can achieve again a Principal Component Analysis by using this
semi-metric as a measure of proximity (see Figure 3.2). It is interesting to
compare this graphical display with the previous one coming from the Princi-
pal Component Analysis using the Ly-metric (see Figure 2.3). There are large
differences: the semi-metric approach allows us to see much more structure
in the variables. Even if we display an additional axis (see Figure 3.1), the
Lo-metric PCA does not reveal strong structure in the variable.

Clearly, mathematical objects for computing proximities between curves play
a major role. So the question is: how to decide what is the best graphical
display concerning spectrometric curves? Or equivalently: which analysis re-
veals the more pertinent information? One way to give a reasonable answer is
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Fig. 3.2. PCA Based on Semi-Metric; Axes 1 and 2

to allow a choice inside a large family of semi-metrics. A family will be built
according to each specified statistical problem and dataset. For instance, in
the context of chemometric data we will focus on the family of semi-metrics.

\// (X§m>(t) - X§7")(t))2 dt, m=0,1,2, ..., (3.1)

where, for any m-times differentiable real function y, x™ denotes the mth
derivative of x (with x(©) = x). To give an idea of the interest of this approach
for the spectrometric curves, in Figure 3.3 we propose to display their suc-
cessive derivatives. The main effect produced by the differentiating operator
is to highlight some ranges of wavelengths with large variations. Finally, one
can say that the semi-metrics act as a filter and a “good semi-metric” will
be a priori the one which can select all the pertinent information. For the
spectrometric data, we will discuss later in Section 7.2 how we can get an
“optimal” semi-metric inside of the above-mentioned family.
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Fig. 3.3. Shape of the Derivatives of the Spectrometric Curves

3.3 What about the Curse of Dimensionality?

The curse of dimensionality is a well-known concept for nonparametricians.
This notion is strongly linked with the sparseness of data in a high-dimensional
space. An interesting question is: what about the curse of dimensionality when
we work with functional data? If we have n observations lying into RP, one
way to illustrate the curse of dimensionality is to count the number N(p) of
units falling into a subset (of fixed size) of RP when p takes successive values
(1,2,...). In particular, this situation corresponds to functional data viewed
through their discretized version. Following the same idea, if we have n func-
tional observations lying into a semi-metric space (E,d), we will count the
number Ny of units falling into a subset (of fixed size) of E.
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Let {xi = {xi(t); t € (tmin,tmaz)}};—1_, be a functional dataset and
consider its discretized version {&; ="(x;(t1), xi(t2), .., xi(ts))};—, _,, which
can be viewed as a classical data matrix. The following array

xa(t) [xa(t2))- - - [xa(ts)
Xz (t1) [x2(t2)|- - - |x2(ts)

Xn(t1)[X2(t2)]- - [Xn ()

can be viewed as J measurements at t1,...,t; of n observed curves (for
instance, for the spectrometric curves, J = 100, n = 215, t,,;, = 850,
tmaz = 1050 and for the speech recognition data, J = 150, n = 2000, t,,;,, = 0,
tmaz = 150). From this dataset, let us extract an equispaced subsequence
tj,,---,tj, of the discretized points 1,...,¢; and consider only the data cor-
responding to this subsequence:

Gl Dralin)

Now, we can compute for ¢ = 1,...,n the following euclidean metric

517(171'7 0) = Z(Xi(tjk))z

k=1

and let N(p) be defined as

n
N =2 N e con
Figure 3.4 displays the quantities N (p) versus p for the centered spectrometric
data. In addition, we replace each column of the subdataset by p independent
and identically distributed standard gaussian variables and we also compute
the corresponding quantities N (p). The curse of dimensionality appears clearly
for the datasets built with i.i.d. gaussians (the data are sparse for dimension
higher than three and the sparseness increases exponentially with p) whereas
the spectrometric data seem not affected by the dimension. In fact, the spec-
trometric data have a strong covariance structure. More precisely, because the
data have been centered, a good correlation index is given by the average over
i, 7, and k of the quantities x;(t;)x:(tx), which equals to 0.986. This strong
correlation is linked with the very smooth shape of the spectrometric curves.
In other words, these data can be viewed as a one-dimensional data! Similarly,
Figure 3.5 produces the same plot for the phoneme dataset. Contrary to the
spectrometric case, the average of the correlations equals to 0.259 which is not
surprising with regard to the roughness of the Phoneme curves. So, these data
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Spectrometric curves: correlation index = 0.986
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are strongly affected by the curse of dimensionality; their sparseness looks like
the one of i.i.d. variables!

Now, if we take into account the functional feature of the data, namely if

we replace €T; = (Xl(t1)7 cee aXz(tJ)) by Xi = {Xl(t)7t € (tnw’nvtmaz)}, we can
compute the quantity Ny defined as

Nd*21 _dx,0) <0.1}’

max; d(x;,0)

where d denotes a functional measure of closeness. For instance, if we con-
sider the spectrometric curves with d = d4¢" as defined in Section 3.4, we
obtain Ny = 24 and if we look at the phoneme data with d = d§“4 (as de-
fined in Section 3.4), we get Ny = 16. Comparing with Figure 3.5, it appears
that such a functional approach (pending of course to a right choice of the d)
may override the curse of dimensionality that was observed for phoneme data.

Finally, it appears that the curse of dimensionality does not affect func-
tional data with high correlation like the spectrometric data but is dramatic
for the uncorrelated ones like the phoneme data. Nevertheless, by considering
functional features, even if the data are not correlated, we partially cancel
the curse of dimensionality. Of course, a crucial challenge is pointed out here:
the choice of the measure of closeness d. This depends obviously on practical
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Phoneme curves: correlation index = 0.259
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considerations (and not only on this sparseness effect) which will be discussed
later, according both to the specific statistical problem and to the set of curves.

3.4 Semi-Metrics in Practice

Because most available functional datasets are curves, we describe here semi-
metrics well adapted for this kind of data. Consider a sample of curves
X1,..., X, identically distributed as the functional random variable (f.r.v.)
X = {X(t);t € T}. The user has to choose among different kinds of semi-
metrics which can be drawn by the shape of the curve (for instance, smooth
curves could have to be treated with semi-metrics other than rough ones). We
present here three families of semi-metrics but of course, many others can be
built. The first two are well adapted for rough curves whereas the third one
concerns quite smooth data.

3.4.1 Functional PCA: a Tool to Build Semi-Metrics

In many multivariate situations, the classical Principal Components Analysis
(PCA) is considered as a useful tool for displaying data in a reduced dimen-
sional space. More recently, the PCA methods were extended to functional
data and used for many different statistical purposes. It is out of the scope
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of this book to make an exhaustive survey of functional PCA (FPCA) and
the reader can refer, for instance, to [060], [DPR&2], [CLS86], [S96], [AOV99],
[LMSTZC99], [BF00], and [EAV05]. Here, we will see that the FPCA is also a
good tool for computing proximities between curves in a reduced dimensional
space. As long as E [ &X?(t)dt is finite, the FPCA ([DPR82]) of the fr.v. X
allows us to obtain the followmg expansion of X

_ g( / X(t)vk(t)dt) Vs

V1, Va,..., being the orthonormal eigenfunctions of the covariance operator
Ix(s,t) = E(X(s)X(t))

associated with the eigenvalues \; > Ay > .... Now, let

X (Q) (/ X Uk dt) Vg

be a truncated version of the previous expansion of X. The main inter-
est of such a decomposition is that this truncated version is minimizing
E ([(X(t) — P;X(t))%dt) over all projections P, of X into g-dimensional
spaces. Thus, we can define a parametrized class of semi-norms from the
classical L?-norm in the following way:

izt = owya = > x(t)vku)dt)z.

k=1

This leads to the following parametrized family of semi-metrics:

LK, ) = Z( / [&(t)x(tﬂvk(t)dtf

k=1

Here, q is not really a smoothing parameter but rather a tuning parameter
indicating the resolution level at which the problem is considered. Note that
in practice, Iy is unknown and then, the v} s too, but the covariance operator
can be well approximated by its empirical version

I (s,t) = 1/nZXi(s)Xi(t),

and the eigenfunctions of I'y are consistent estimators of those of I'x (see
[CFS99]). Indeed we never observe exactly {x; = {xi(t);t € T}},_; , but

.....

only a discretized version {z; = *(xi(t1), ..., xi(ts))};—1. , (note that this
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is implicitly assuming that the data are balanced, which means that all units
are measured at the same points). So, from a practical point of view, according
to [CLS86], we can approximate the integral in the following way

J
10 - xOnar = 3w (Xule) - x)uny).

where wy, ..., w; are quadrature weights which define the approximate inte-

gration. To fix ideas, note that a standard choice could be w; = t; — ¢;_;. If
we have two discretized curves x; and x;/, the quantity df;CA(XZ-, Xir) will be
approximated by its empirical version :

2
q

7
dyMNa, @) = Z z;wj'(xz'(tj)*xzv(tj))[vk]j ,

k=1 =

where v1, vo,..., are the W-orthonormal eigenvectors of the covariance ma-
trix (W = diag(wy,...,wy))

I'"W = 1/”2% e, W,
i=1

associated with the eigenvalues A\;, > A2, > .... Note of course that
d;DCA(a:i, x;/) is close to df;CA(Xi, Xi’) as soon as the grid (¢1,...,ts) is suffi-
ciently fine.

As a conclusion, it is important to discuss what is concerning the design
points. Indeed, this semi-metric can be used only if the data are balanced (the
curves are observed at the same points) and the grid of the measurements
sufficiently fine (see, however, Section 3.6). This could appear as a drawback
for using such kind of semi-metrics, but on the other hand they have as a
main advantage that they are usable even if the curves are rough. This type
of semi-metrics will be adapted to such rough and balanced datasets, as for
instance the phonetic data set described above.

3.4.2 PLS: a New Way to Build Semi-Metrics

The main goal is to build a new family of semi-metrics for situations when
we observe an additional response, by adapting the multivariate partial least-
squares regression (MPLSR) approach. Before going on, we give a brief bib-
liography on PLS and we recall the main idea behind the MPLSR (but it is
out of our scope here to give a deep description of the PLS methods). The
MPLSR is a statistical method for regressing a multivariate response (i.e., p
scalar responses) on a multivariate predictor (i.e., p predictors). Partial least-
squares techniques were originally developed in economical sciences ([W66]),
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intensively used in the chemometrician community (see [GK86]) and became
popular in image processing (see [MBHG96]). The MPLSR was developed
in order to predict a multivariate response from independent variables when
there is a high degree of collinearity among the predictors and/or when the
number of predictors is very large in comparison with the number of obser-
vations (which is the case with discretized functional data). [FF93] presents
the MPLSR method as a good alternative to the ridge regression ([HK70]) or
the principal components regression ([M65]). The reader can find recent works
and more details in [H90], [H88] and [PT01]. MPLSR computes a simultaneous
decomposition of the set of predictors and the set of responses in such a way
that the performed components maximize the covariance between both sets of
variables. In particular, MPLSR provides p components, each corresponding
to a response, where the computed components depend on a parameter called
number of factors: the larger this parameter, the better the fitting of the data.
However, taking a too large number of factors can lead to components with
very large variability (i.e. the noise is partially contained in the components).
We can say that the number of factors performs the trade-off between accu-
racy and variability. In this sense, the number of factors plays similar role
than the number of dimensions retained in a Principal Component Analysis
(PCA). But the main difference with PCA comes from the fact that the com-
ponents performed with PCA explain only the predictors whereas in the PLS
approach, the components are also relevant for the multivariate response.

As for PCA, the ideas of PLS method can be useful for different pur-
poses involving functional data (see, for instance, [PS05], and [PS05b]). In
particular, we will see how PLS allows us to build a class of semi-metrics. Let
vl .. ., v} be the vectors of R’ performed by MPLSR where g denotes the
number of the factors and p the number of scalar responses. Then we define
the semi-metric based on the MPLSR as follows:

2

P J
dy S (@i me) = DY wiCalty) — xo () f; |

k=1 \j=2

where the quadrature weights ws, ..., w; are those discussed in Section 3.4.1.
When we consider only one scalar response (p = 1), the proximity between two
discretized curves is due to only one direction, which seems inadequate with
regard to the complexity of functional data. However, as soon as we consider
multivariate response, such a family of semi-metrics allows to obtain very
good results, which is the case in the curves discrimination (i.e. supervised
classification) context (see Chapter 8). As with the semi-metrics based on the
PCA, note that PLS type semi-metrics can be only applied on balanced data
(see however Section 3.6) with a grid of the measurements sufficiently fine and
are also usable even if the curves are rough like the phonetic dataset described
before.
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3.4.3 Semi-metrics Based on Derivatives

Another way to build a parametrized family of semi-metrics between curves
is to consider a distance between one among their derivatives. More precisely,
given two observed curves x; and x;/, we consider the following semi-metric :

‘ 2
dze""“) (X“ Xl/)2 = / (X'Eq) (t) - X’E?) (t)) dt

where x(?) denotes the gqth derivative of y. Note that df¢""(x,0) is the clas-
sical L2-norm of y. The computation of successive derivatives is very sen-
sitive numerically. In order to override this numerical stability problem, we
can use a B-spline ([deB78] or [S81]) approximation for the curves. Once we
have obtained an analytical B-spline expansion for each curve, the successive
derivatives are directly computed by differentiating several times their analytic
form. More precisely, let {B1,...,Bg} be a B-spline basis. We approximate
the discretized curve ; = Yx;(t1),...,xi(ts)) as follows :

P

B 2
Bi = (Bir,-..,Bip) = arg inf S xilty) =D awBu(ty) | dt.
(a1,...,ap)ERB = b1

This produces a good approximation of the solution of the minimization prob-

lem
B 2
ar inf i(t) — ap By (t dt,
g, | <x<> > ulh >>

as soon as the grid is sufficiently fine. Hence, we have the following approxi-
mation for @; = Yx;(t1), ..., xi(ts)):

As stated above, because the analytic expression of the By’s is well-known,
the successive derivatives can be exactly computed (see again [deB78] or [S81])
and we can differentiate easily the approximated curves :

B
200 = Y BB,
b=1

where the analytic expression of Béq)(.) is known too. Now, given two dis-

cretized curves x; and x;/, we have to compute the following quantities :

) 2
aienen) = | [ (R0 -30) a

f(@)
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It remains to compute the integral which can be done by using the Gauss
method (see [L56]). This method can be applied if we are able to evaluate
the integrand f at any points, and that is the case here. In fact, the Gauss
method proposes to do the following approximation:

b b—aK b—a b—a
/af(t)dtw 5 ;wkf< 5t 5k)

where the weights wy and the reals J; (“gauss points”) are tabulated (see
[H75]). The accuracy of this numerical method comes from the fact that this
method is exact for any polynom of degree < 2K — 1.

To conclude, let us make some remarks about the design points. Because
the curves are replaced by their B-spline expansion, the measure dge”” (X, Xi7)
does not depend on the grids of discretization (instants of measure), and finally
we can use this semi-metric even in the context of unbalanced datasets (i.e.,
when the curves are not necessarily observed at the same points), as long of
course as the grid is fine enough. This looks an appealing point for this kind
of semi-metric but in counterpart their use supposes that the f.r.v. are not too
rough. Therefore, in practice, this class of semi-metrics will be well adapted
and used in the presence of smooth curves, such as the spectrometric ones
described before.

3.5 R and S+ Implementations

We have written R and S+ routines for computing the three previously dis-
cussed classes of semi-metrics respectively called semimetric.pca,
semimetric.mplsr and semimetric.deriv. For more details concerning the
sources (code) and guidelines for practical use please see the companion web-
site.! Of course, this website can be updated in order to include other semi-
metrics not discussed in this book (in particular, the website proposes the
routine semimetric.fourier based on Fourier expansion).

3.6 What About Unbalanced Functional Data?

There are many situations where we can get unbalanced design points (the
location and/or the number of the measurement points can change from one
unit to another one). To illustrate, we can consider the following observed
sample of curves

Xi(ti1), Xi(ti2), .- Xi(ti,,),
Y http:/ /www.lsp.ups-tise. fr/staph/npfda
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for + = 1,...,n. This notation indicates clearly that we have at hand n dif-
ferent design points T; = {¢;,, }j:17~~<7Ji (i.e., one design per unit). Such a sit-
uation can be encountered when the starting point of the measurements can
differ from a unit to another one (see the Pinch force data in Section 1.4.2 of
[RS97], the fda handwriting data in [KLMRO0O0], or [AOV99b]). Missing data
can also lead to irregularly spaced design. An extreme case of unbalanced
functional data is the so-called functional sparse data context: the individuals
are observed at a sparse set of time points (see the Spinal bone mineral density
or Globular filtration rate examples in [JHO1] and [JS03]). According to the
unbalanced data setting, specific preliminary processing before any statistical
studies have been developed (see [S95] for estimating a shift parameter acting
on the design points, [KG92], [GK95] and [KLMRO0] for time-warping method
in a curve registration context, [JHS00] and [YMWO05] for sparse functional
data and [B03] for automatic landmark registration).

Here, we consider that we have at hand standard unbalanced sampled
functional data in the sense that curve registration and sparse data are out of
the scope of this book. Of course, unbalanced functional data can be obtained
throughout a preliminary curve registration procedure if it is necessary (see
again [RS97] for methodological aspects and [RS02] for case studies). So, we
consider an unbalanced functional dataset

Gty g=1,..., Ji}i:L...,n
such that:

e the n design points {7;}i=1...» (one design by individual) are sufficiently
fine (i.e., max; j|t; ; — t; j+1| is small enough), which avoids the setting of
sparse data,

e locations and/or number of the design points differ from an individual to
another one, recalling that this situation does not correspond to a curve
registration problem. For instance, if the log-periodograms of the phoneme
data described in Section 2.2 were not all sampled at the same frequencies,
we would obtain such unbalanced functional data.

J

It is important to remark that it is always possible to transform an unbalanced
functional dataset

{xi(tiz): 7=1,..., Ji}i:17,,,,n
into an equally spaced balanced one in a very simple way:

ty—t
J—-1"

Gty g=1,...,J -, ., witht; =t +(j —1)

In the companion website?, we include the R/S+ routine unbal2equabal
which achieves such a transformation by using a linear interpolation via the
R/S+ routine approx.

2 hitp://www.lsp.ups-tlse.fr/staph/npfda
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3.7 Semi-Metric Space: a Well-Adapted Framework

To conclude this chapter one could say that the semi-metric modelization,
despite its rather terrifying theoretical look, could be a reasonable way to
model functional data. We will see throughout the remainder of the book that
such a modelling will allow us both to provide interesting theoretical advances
and to give quite appealing results on several functional real datasets. At this
stage, one could say that the dataset itself should be a prominent element
for choosing which will be the semi-metric to be used. Each of the three
families discussed above is adapted to some special kind of data: pca-type
semi-metrics are expected to give interesting results for rough datasets, pls-
type ones are recommended when one has at hand a multivariate response
while derivatives-type ones are adapted to smooth datasets. These ideas will
be confirmed throughout the rest of this book. In order to simplify our purpose
this monograph deals mainly with balanced and uniformly discretized curves
data, but any unbalanced curves data can be treated after some preliminary
processing (as indicated in Section 3.6).
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Local Weighting of Functional Variables

In the finite dimensional case, the local weighting techniques are very popular
in the community of nonparametricians because they are very well adapted
to nonparametric models. The aim of this chapter is to explain how the con-
cept of local smoothing can be extended to the functional data case. Clearly,
local approaches need to have at hand some topological ways for measuring
proximity between functional data, and therefore this chapter will be directly
linked with the semi-metric modelling discussed in Chapter 3.

In the finite dimensional case, one of the most common approaches among
these local weighting methods is certainly the kernel one. It is impossible
to give an exhaustive bibliography about nonparametric methods for finite
dimensional variables, but the state of art in this field is well summarized in
[S00] and [APO03] while a large number of references can be found in [SV0O0]
concerning the kernel methods especially. We will see in this chapter how
kernel smoothing ideas can be adapted to infinite dimensional variables.

The chapter is organized as follows. In Section 4.1 we give a basic discussion
on kernel method, explaining how (and why) what is classically done for finite
dimensional variables can be adapted to functional setting. The second aim
(Section 4.2) consists in seeing how the local weighting is in relation to the
notion of small ball probabilities. As we will see, small ball probabilities can
be viewed as a tool for describing some local behaviours of functional data
and the kernel approach allows us to take into account these kinds of local
properties. Section 4.3 proposes some general theoretical aspects concerning
kernel weighting. Finally, note that Sections 4.1 and 4.2 is of interest to a large
public whereas Section 4.3 is meant for statisticians interested in theoretical
aspects.

4.1 Why Use Kernel Methods for Functional Data?

Kernel methods are well-known and intensively used by the community of non-
parametricians because they are a useful way to do local weighting. We start
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by recalling shortly what is kernel local weighting in the real and multivariate
cases before extending it to the functional context.

4.1.1 Real Case

As it is well known, kernel local weighting is based on a kernel function (classi-
cally denoted by K) and on a smoothing parameter, which is called bandwidth
and usually denoted by h. If x is a fixed real number, the kernel local weighting
transforms n r.r.v. Xy, Xo,..., X, into Ay, Ao, ..., A, such that:

A; = Ay(a,hK) :%K (x_hX>

The main idea of the local weighting around z is to attribute at each r.r.v.
X; a weight taking into account the distance between x and X;; the more X;
is distant from z, the smaller is the weighting.

Before going on, let us recall what is a kernel function exactly in this
simplest situation. In fact, there exists a large variety of kernels. Any density
function can be considered as a kernel, but even unnecessary positive functions
can be used ([GMS84]). A large literature exists on this field (see [MN89] and
[B93] for interesting advances and [HVZ] for a presentation of the state of
art). To simplify our purpose, we consider at this stage only positive and
symmetrical kernels which are the most classical ones. Figure 4.1 displays
various kernel functions which are analytically defined as follows:

(a) Bozx kernel: K (u) = %1[_1,+1] (u),
(b) Triangle kernel: K (u) = (u 4 1)1j_q g)(u) + (1 —u)1p 41y (u),
(¢) Quadratic kernel: K(u) = %(1 - u2)1[,1,+1] (u),

1 u?
d) Gaussian kernel: K(u) = e ——1
(@) (1) = —=exp{=T5}

To precise the notion of kernel local weighting, let us consider the Box
kernel and rewrite the A;’s as follows:

A = %1[x7h,m+h} (Xi).
In this situation, the local feature of the weighting appears obvious since the
r.r.v. outside the range [z —h, x+h] are ignored. In addition, the normalization
1/h is proportional to the size of the set [x — h,x + h] on which the X;’s are
taken into account. These points are not only true for the Box kernel, but are
shared by any compactly supported kernels.
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a: Box kernel b: Triangle kernel
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c: Quadratic kernel d: Gaussian kernel

Fig. 4.1. Usual Symmetrical Kernels

4.1.2 Multivariate Case

In multivariate situations one is observing n random vectors X1, Xo,..., X,
valued in RP. The previous kernel local weighting can be extended easily to
this situation. To that end, it suffices to consider a multivariate kernel K*
which will be a function from R? into R. The first (natural) way to do that is

to define K* as a product of p real kernel functions K, ..., Kp:

Yu = t(ul,.. .,up) S RP,K*(U) = Kl(ul) X KQ(UQ) X e X Kp(up)

As pointed out in [HMO0], a second way consists in combining a real kernel
function H with a norm (denoted by ||.||) in RP as follows:

Vu € R?, K*(u) = K(||lul)).

Note that if K1 = Ko = --- = K, = 1j_1 ) and if ||.|| is the supremum
norm, both approaches coincide by taking K = 19 ;. Moreover, because ||lu|
is always a positive quantity, the real kernel K should have a positive support
(i.e., {v € R such that K(v) > 0} C RT). This leads to use asymmetrical
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functions for the kernel K. The few examples reported in Figure 4.2 are the
asymmetrical versions of the ones displayed in Figure 4.1.

0.0 05 1.0 15 20
0.0 05 1.0 1.5 20

83 2 -1 0 1 2 3 3 2 -1 0 1 2 3
a: Asymmetrical box kernel b: Asymmetrical triangle kernel

B N

0.0 05 1.0 15 2.0
0.0 05 1.0 1.5 2.0

3 2 1 0 1 2 3 3 2 1 0 1 2 3
c: Asymmetrical quadratic kernel d: Asymmetrical Gaussian kernel

Fig. 4.2. Asymmetrical Kernels

Now, let us discuss how this can be interpreted in terms of local weighting.
Indeed, what happens is very similar to the real case. Let x be a fixed vector
of RP. The multivariate kernel local weighting consists in transforming the n
random vectors X1, Xo,..., X, into the n variables Ay, Ag,..., Ay:

1 x—X;
A = —K* [ Z2—22).
hp ( h >

If we consider compactly supported kernels, it appears clearly that the A; are
locally weighted transformations of the variables X;, since A; = 0 as long
as the corresponding X; is out of some neighborhood of x. Moreover, the
normalization 1/h? is proportional to the volume of the set on which the X;’s
are taken into account.
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4.1.3 Functional Case

The background presented above is sufficient to introduce the kernel local
weighting in the functional case. Let X7, Xs,..., X, be n fr.v. valued in F
and let x be a fixed element of E. A naive functional extension of multivariate
kernel local weighting ideas would be to transform the n fr.v. X7, Xy, ..., &,

into the n quantities

v<h>K< B

where d is a semi-metric on E, K is a real (asymmetrical) kernel. In this
expression V' (h) would be the volume of

B(x,h) = {X' € E, d(x,x') < h}

which is the ball, with respect to the topology induced by d, centered at
and of radius h. However, this naive approach requests to define V(h). In
other words, this needs to have at hand a measure on F. This is the main
difference with real and multivariate cases for which the Lebesgue measure
is implicitly used whereas in the functional space E we do not have such
a universally accepted reference measure (see [D02] for deeper discussion).
Therefore, in order to free oneself of a choice of a particular measure, we
build the normalization by using directly the probability distribution of the
f.r.v. The functional kernel local weighted variables are defined by:

e (152
(s ()

If we go back quickly to the multivariate case we have, for some constant C'
depending on K and on the norm ||.|| used in R?,

A =

(4.1)

EK (|lz = Xil[/h) ~ Cf(x)h? (4.2)

as long as X; has a density f with respect to Lebesgue measure which is con-
tinuous and such that f(z) > 0 (this kind of result is known in the literature
as the Bochner’s type theorem and [C76] gives a large scope on such results).
So, it is clear now that (4.1) is an extension of the multivariate kernel local
weighting in the functional framework.

Note that the kernel functions K to be used here are necessarily the asym-
metrical ones described in Section 4.1.2 above. For the sake of simplicity, in
the remainder of this book, we will consider only two kinds of kernels for
weighting functional variables.
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Definition 4.1. i) A function K from R into RY such that [K =1 is
called a kernel of type I if there exist two real constants 0 < Cp < Cy < 00
such that:

Cilppq) < K < Caolyg -

i) A function K from R into RY such that [ K =1 is called a kernel of type
IT if its support is [0,1] and if its derivative K' exists on [0,1] and satisfies
for two real constants —oo < Cy < Cq < 0:

Cy <K' <.

The first kernel family contains the usual discontinuous kernels such as the
asymmetrical box one while the second family contains the standard asym-
metrical continuous ones (as the triangle, quadratic, . . .). Finally, to be in
harmony with this definition and simplify our purpose, for local weighting of
real random variables we just consider the following kernel-type.

Definition 4.2. A function K from R into Rt such that fK = 1 with
compact support [—1,1] and such that Yu € (0,1), K(u) > 0 is called a
kernel of type 0.

4.2 Local Weighting and Small Ball Probabilities

We can now build the bridge between local weighting and the notion of small
ball probabilities. To fix the ideas, consider the simplest kernel among those
of type I namely the asymmetrical box kernel. Let X be a f.r.v. valued in F
and x be again a fixed element of E. We can write:

E <1[0’1] (d(X;LX)>> =K (lB(X,h)(X)) =P (X (S B(X, h)) . (43)

Keeping in mind the functional kernel local weighted variables (4.1), the prob-
ability of the ball B(x, h) appears clearly in the normalization. At this stage
it is worth telling why we are saying small ball probabilities. In fact, as we will
see later on, the smoothing parameter h (also called the bandwidth) decreases
with the size of the sample of the functional variables (more precisely, h tends
to zero when n tends to oo). Thus, when we take n very large, h is close to
zero and then B(x,h) is considered as a small ball and P (X € B(x,h)) as a
small ball probability.

From now on, for all x in £ and for all positive real h, we will use the
notation:
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px(h) = P(X € B(x,h)). (4.4)

This notion of small ball probabilities will play a major role both from the-
oretical and practical points of view. Because the notion of ball is strongly
linked with the semi-metric d, the choice of this semi-metric will become an
important stage. This will be seen from a theoretical point of view through-
out the book, since the rates of convergence of our nonparametric functional
estimates will be systematically linked with d through the behaviour, around
0, of the small ball probability function ¢,. In addition, let us recall that
the discussion in Chapter 3 has emphasized the fact that the choice of the
semi-metric is also expected to be a crucial point as long as we focus on the
applied aspects.

4.3 A Few Basic Theoretical Advances

Because the functional kernel local weighting ideas will be at the heart of
all the functional nonparametric statistical methods to be studied later in
this book, we decided to put together here some short common results. We
will state two results, according to the fact that the kernel is of type I or
II, that can be seen as functional versions of what is known as the Bochner
theorem in the usual nonparametric finite dimensional literature (see (4.2)
and discussion). Naturally, as the Bochner theorem does in finite dimension,
both of the following lemmas will be used very often throughout the rest of
this book. Before going on, let X be a f.r.v. taking its values in the semi-metric
space (E,d), let x be a fixed element of F, let h be a real positive number
and let K be a kernel function.

Lemma 4.3. If K is a kernel of type I, then there exist nonnegative finite
real constants C and C' such that:

Conty <EK (M) <0 m) (45)

Proof. Because K is a kernel of type I, we have by Definition 4.1i,
Ciljp,) £ K < Colyg 1y,

which implies directly that
d(x, X
Crtan (@) < K (T4 < ot (1)

Tt suffices to apply (4.3) in order to obtain the claimed result with C = C4
and Cl = 02 .4
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Lemma 4.4. If K is a kernel of type II and if ¢, (.) satisfies
3C5 > 0, Jeg, Ve < 60,/ oy (u)du > Csepy (€), (4.6)
0

then there exist nonnegative finite real constants C and C’ such that, for h
small enough:

Conth) <EK () <) (47)

Proof. We start by writing
d(x, X ! x.
EK <(Xh)> = [ K(@t)dP 5 (1),
0

and because K’ exists, we have K(t) = K(0) + fo K'(u) du, which implies

that
- [ ([ wws)aroi

EK<d(Xf;X)> _ 01 K(0)
=),

— K(0) oy () + / ( / K)o (1) ) 4P

= K(0) ¢y (h) + OlK'(u)P <u < @ < 1> du,

the last equation being obtained by applying Fubini’s Theorem. Using the
fact that K(1) = 0 allows us to write

EK(d( ) / K (u) oy () s (4.8)

It suffices to use (4.6) to show that, for h < ¢y and with C = —C5 Cy,
d(x, X
EK((X}’L>> > Coy(h).

Concerning the upper bound, it suffices to remark that K is bounded with
support [0,1] and the same arguments as for Lemma 4.3 can be used by
putting C’ = sup,¢(o,1) K (t). O

Hypothesis (4.6) allows us to control more precisely the behaviour of the small
ball probability function ¢, (.) around zero. We will see in the final steps of
this book (see Remark 13.3 and Lemma 13.6), that it is always possible to
choose a semi-metric d(.,.) for which this condition is fulfilled.



Part 11

Nonparametric Prediction from
Functional Data
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A well-known statistical problem consists in studying the link between two
variables in order to predict one of them (the response variable) given a new
value for the other one (the explanatory variable). This problem has been
widely studied for real or multivariate variables, but it also obviously occurs
with functional variables. This part of the book is devoted to this problem
when the response variable is real and the explanatory variable is functional.
This problem is called prediction of scalar response from functional variable.
We describe some recent statistical ideas, based on an independent statistical
sample (dependent extensions are discussed in Part IV).

There are several ways to approach the prediction setting, and one of
the most popular is certainly the regression method which is based on con-
ditional expectation. For robustness purposes (according to the behavior of
the conditional distribution) two alternative techniques are conditional me-
dian and conditional mode. These three predictors have been widely stud-
ied in multivariate situations, and our aim is to adapt them to the situation
where the explanatory variables are possibly of infinite dimension. In the func-
tional framework, each of these three functional prediction approaches leads to
the estimation of some (non-linear) operator: the conditional expectation (for
functional regression), the conditional cumulative distribution function (for
functional median) and the conditional density (for functional mode). In or-
der to keep the “free-modelling” feature and to avoid too restrictive modelling
assumptions, we attack these problems by means of nonparametric models for
these (non-linear) operators. As discussed in Chapter 4, kernel local weighting
is well adapted for this purpose, and all our nonparametric estimates will be
based on these kernel ideas. The main goal of this part is to propose a sys-
tematic study of each previous functional nonparametric prediction method
by developing both practical and theoretical aspects.

This part is organized as follows: Chapter 5 describes the three prediction
methods and the three associated nonlinear functional operators, with special
attention to the statement of the associated statistical models and estimators.
Chapter 6 gives mathematical support by giving consistency results for each
nonparametric functional estimate. The rates of convergence will be linked
both with the nonparametric model and with the semi-metric and this last
point is directly connected with the small ball probabilities of the functional
variable. In this sense, Chapter 6 gives theoretical support to some empirical
ideas pointed out before in Chapter 3. Then, Chapter 7 highlightes the practi-
cal issues, including as well application to the spectrometric dataset discussed
in Chapter 2 as computational features. For each prediction method some R
and S+ routines are given.

This field of research is quite new, and both theoretical and practical ad-
vances give appealing results. So, we are definitively supporting the idea that
many interesting further developments on functional nonparametric predic-
tion should (and will) born in the future, and we leave an important place in
our presentation for to the statement of open problems.



5

Functional Nonparametric
Prediction Methodologies

This chapter describes several approaches concerning the nonparametric pre-
diction of some scalar response. The functional setting appears through the
explanatory functional variable. We focus on three complementary prediction
methods, namely the conditional expectation, the conditional median and the
conditional mode. Conditional expectation refers to the well-known regres-
sion method whereas both the conditional median and conditional mode are
strongly linked with the estimation of the conditional distribution. After in-
troducing some bibliographical aspects (Section 5.1), we present in Section 5.2
the three functional nonparametric prediction methods. Section 5.3 presents
the nonparametric models associated with these prediction problems, while
Section 5.4 focuses on the construction of the estimators.

5.1 Introduction

There are many situations in which one may wish to study the link between
two variables, with the main goal to be able to predict new values of one of
them given the other one. This prediction problem has been widely studied
in the literature when both variables are of finite dimensions. Of course the
same problem can occur when some of the variables are functional. Our wish
is to investigate this problem when the explanatory variable is functional and
the response one is still real. Both to fix the ideas and to emphasize the great
interest and usefulness of this problem in many fields of applied sciences, let
us quickly come back to the chemometric data presented in Chapter 2.

As discussed in Section 2.1, recall that the statistical sample (of size
n = 215) is composed of spectrometric curves xi, ..., xn (these are the func-
tional data) corresponding to the spectra observed for 215 pieces of finely
chopped meat. In addition, by an analytic chemical process we have mea-
sured the fat content of each piece y1,...,y, (these are the scalar responses).
Thus, we collect the observations of a scalar response (the fat content) and an
explanatory functional variable (spectra). One question is: given an observed
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spectrum of a piece of meat, can we predict its corresponding fat content? This
is typically a functional prediction problem. To answer the question, we have
to estimate the link between the fat content and the spectra. Unfortunately,
there is neither a way to display this relationship nor is there structural in-
formation about it. Therefore, it becomes natural to introduce nonparametric
models in order to make as few assumptions as possible on the shape of the
link. The functional aspect of the problem is very important too, and we have
to attack it in such a way as to use the whole spectrometric curve. In partic-
ular, continuity and other functional features of the spectra have to be taken
into account. There is therefore real need for developing methods combining
both nonparametric concepts and functional variable modelling.

Of course, there is a consistent literature both around nonparametric pre-
diction and functional data. But, until now, functional variables have been
studied essentially in a parametric setting. This has been popularized by
[RS97] (mainly for practical points of view) and previous theoretical develop-
ments can be found in [B00] in the specific context of dependent functional
variables. Recent practical advances can be found for instance in [CGS04]
whereas some asymptotic studies are detailed in [CFS03] and [CFF02].

In another direction of statistical research, nonparametric prediction prob-
lems have been investigated intensively both in real and multivariate cases.
It is impossible to give an exhaustive description of the related bibliography,
but to fix the ideas the reader could look at the precursor works by [W64]
and [N64], at the intermediary survey by [C85] and at [S00] or [AP03] for a
description of the state of the art.

The aim of this book is to marry advantages of free-modelling together
with a fully functional methodology in order to answer to functional predic-
tion problem such as the spectrometric one. In this chapter, we present three
functional nonparametric statistical approaches for the prediction problem.
The reader has to keep in mind Defintion 1.4 and the fact that in the desig-
nation functional nonparametric prediction method, the word functional refers
to the concept of functional variable (implicitly “we have to take into account
the functional feature of the variable”) while the word nonparametric means
that we use a free-parameter modelling for the nonlinear operators to be esti-
mated. In addition, it is important to note that our methodology is also based
on free-distribution modelling since no parametric assumption is necessary for
the distribution of the random variables.

5.2 Various Approaches to the Prediction Problem

Let us start by recalling some notation. Let (X;,Y;)i=1....» be n independent
pairs, identically distributed as (X,Y") and valued in E x R, where (E,d) is
a semi-metric space (i.e. X is a f.r.v. and d a semi-metric). Let x (resp. y) be
a fixed element of E (resp. R), let N, C E) be a neighboorhood of x and S
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be a fixed compact subset of R. Given ¥, let us denote by ¥ a predicted value
for the scalar response.

We propose to predict the scalar response Y from the functional predictor
X by using various methods all based on the conditional distribution of Y
given X. This leads naturally to focus on some conditional features such as
conditional expectation, median and mode. The regression (nonlinear) oper-
ator 7 of Y on X is defined by

r(x) = E(Y]X = X), (5.1)

and the conditional cumulative distribution function (c.d.f.) of Y given X is
defined by:
Yy € R, FF(xy) = PV < ylX =), (5:2)

In addition, if the probability distribution of Y given X is absolutely contin-
uous with respect to the Lebesgue measure, we note f;f (x,y) the value of the
corresponding density function at (x,y). Note that under a differentiability
assumption on Fy¥ (y,.), this functional conditional density can be written as

W R fF00w) = 5 B (ov) (5.3
For these two last definitions, we are implicitly assuming that there exists a
regular version of this conditional probability. In the remainder of this book,
this assumption will be done implicitly as long as we will need to introduce
this conditional cdf F{¥ (x,y) or the conditional density fi¥. It is out of the
scope of this book to discuss probabilistic conditions insuring such an exis-
tence. Let us just recall that if d is a metric, such an existence is insured under
quite general separability assumptions (see for instance [J84], or [T63]) while
for more general space this is still a field of actual probabilistic researches
(see for instance [F85], [M85] or [LFR04] for recent advances and references).
This point occurs also in other fields of statistics, such as for instance inverse
problems (see [L89]).

It is clear that each of these nonlinear operators gives information about
the link between X and Y and thus can be useful for predicting y given Y.
Indeed, each of them will lead to some specific prediction method. The first
way to construct such a prediction is obtained directly from the regression
operator by putting:

7= 700, (5.4)

7 being an estimator of r. The second one consists of considering the median
m(x) of the conditional c.d.f. F{¥:

m(x) = inf {y € R, F{¥(x,y) > 1/2}, (5.5)

and to use as predictor:
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y =m(x), (5.6)

where () is an estimator of this functional conditional median m(x). Note
that such a conditional median estimate will obviously depend on some pre-
vious estimation of the nonlinear operator F5¥. Finally, the third predictor is
based directly on the mode 6(x) of the conditional density of Y given X:

0(x) = argsup f{¥ (x, y). (5.7)
yes

This definition assumes implicitly that 6(x) exists on S. The predictor is
defined by:

~

y=0(x), (5.8)

where 6(x) is an estimator of this functional conditional modef(x). Once again
note that this conditional mode estimate will directly depend on some previ-
ous estimation of the nonlinear operator fi¥.

What about predictive confidence band? Indeed, the three methods pre-
sented before are concerning pointwise prediction. Nevertheless, it is worth to
note that the second method can also be used for prediction confidence band
construction, since it can be used for estimating any quantile of the conditional
c.d.f. F§¥. Precisely, these quantiles are defined for o € (0,1) by:

to(x) = inf {y e R, Ff(%y) > a} . (5.9)
Thus, from an estimate Z,(x) of to(x), the following interval

[ta(X), f1-a(X)] (5.10)

is one way to build, for a € (0,1/2), a (1 — 2a) predictive confidence band.

5.3 Functional Nonparametric Modelling for Prediction

At this stage, it remains to construct explicitly some estimates of the theo-
retical predictors which have been introduced (that is, regression, conditional
median, conditional mode and conditional quantiles). However, this cannot be
done before having precisely the kind of statistical model we wish to introduce.
That is the aim of this section.

Each of the three predictors is based on the estimation of some (nonlinear)
operator: the regression operator r, the conditional c.d.f. F{,Y or its density
function f;¥. Therefore, the first stage of the statistical modelling consists
of introducing some sets of constraints acting either on r, F{¥ or f{¥. Keep-
ing in mind that we wish to find free-parameter models, this leads to the
introduction of nonparametric models (according to Definition 1.4). In the
following, we only consider two kinds of nonparametric models: models based
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on a continuity-type condition and models based on Lipschitz-type condition.
To fix the ideas, we decided to put all the nonparametric models together in
this section.

Prediction via conditional expectation. This method referes to the re-
gression operator r (which is a nonlinear operator from F to R) and we will
consider the following models:

r e 0%, (5.11)

where
Y = {f tE—R, lim f(x)= f(x)}7
d(x:x")—=0
or 38 > 0 such that
r € Lipgg, (5.12)

where
LipE,ﬂ = {f B — Ra iC e R:—7VX/ € E7 ‘f(X) - f(X/)‘ < Cd(XaX/)ﬂ} .

Prediction via functional conditional median. This method referes to
the operator Fy¥ (which is a nonlinear operator from E x R to R). Before
writing the model, in order to simplify the presentation and to not mask our
main purpose, we decided to assume that the conditional median operator is
lying in the following set

Sy ={f ExR =R, f(x,.) is astrictly increasing c.d.f.} . (5.13)

Indeed, Fy¥ € Sz‘df insures the existence and unicity of the conditional median
which can be defined as follows:

R — [0,1]

m = FX7Y(1/2) where FX = 5.14
b = B (1/2) Y {yHFé(y)F{f(X,y) (5-14)
Now, consider the following set of constraints:
fExR=R VY €N,,
lim "y) = ,
Chxr = d(x,x’)HOf(X v)=fc) ) (5.15)

and Vy' e R, lim f(x,¥") = f(x,v)
ly’ —y|—0

or
f:ExR—>R,

Lippxr,p = Y(x1,x2) € N2, V(y1,42) € S,

|f(x1,91) — F(x2,92)| < C (d(x1,x2)" + |y1 — ya?)
(5.16)
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Two functional nonparametric models for the conditional c.d.f. operator can
be defined as follows:
F)i( € C%meszcdfa (5'17)

or, it exists § > 0 such that
FY € Lippxrs NSy (5.18)

Prediction via functional conditional mode. This method refers to the
operator fi¥ (which is a nonlinear operator from E x R to R). Recall that
S is a fixed compact S € R. We start by introducing the following set of
constraints:

fEXR =R,
Srne =% 3>0,3yg €S, f(x,.) is strictly increasing on (yo — &, yo)
and strictly decreasing on (yo,yo + &).
(5.19)
It is clear that if f{¥ lies to SY, ., the problem of maximizing f¥ (x,y) over

S has a unique solution which is exactly yo. Therefore, under this restriction,
the conditional mode () can be alternatively defined to be such that

0(x) = argsup f{¥(x,y)- (5.20)
yeSs
The set of constraints Sy, is a way for insuring the unicity of the conditional

mode 6(x). Now, we define two functional nonparametric models for prediction
via conditional mode as follows:

f?f € C%XR N S?i(ens’ (521)
or, it exists § > 0 such that
¥ € Lippxrs NSy, (5.22)

Functional nonparametric models (5.11), (5.17) and (5.21) will be called
continuity-type functional nonparametric models because the continuity prop-
erty is their main common functional feature. Functional nonparametric mod-
els (5.12), (5.18) and (5.22) will be called Lipschitz-type functional nonpara-
metric models for the same reason. In fact, we will see that the continuity-type
models allow us to obtain convergence results for the nonparametric estimates,
whereas the Lipschitz-type ones allows the precise rate of convergence to be
found. These theoretical considerations are not surprising because they obey
the following general statistical principle: the more the model is restrictive
the more the asymptotic behavior can be described precisely. In other words,
there is a trade-off between the size of the set of constraints (which produces
the model) and the accuracy of the rate of convergence that we can expect.

Another important point about such functional nonparametric models is
that two main difficulties appear: the infinite dimensional space of constraints
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(i.e., the nonparametric model) and the infinite dimensional space of E (i.e.,
the functional feature of the explanatory variable). Therefore, a great theo-
retical challenge consists in providing asymptotic properties in such a double
infinite dimensional context, and this will be done in Chapter 6. Before that,
we need to discuss how to construct functional nonparametric estimates well
adapted to such kinds of statistical models.

5.4 Kernel Estimators

Once the nonparametric modelling has been introduced, we have to find ways
to estimate the various mathematical objects exhibited in the previous models,
namely the (nonlinear) operators r , F{¥ and fi¥. According to the discus-
sion in Chapter 4, kernel estimators are good candidates for achieving a local
weighting approach in the functional setting. As we will see, they combine
both of the following advantages: simple expression and ease of implementa-
tion.

Estimating the regression. We propose for the nonlinear operator r the
following functional kernel regression estimator:

o) = T VK (G, )
2 K (htd(x, Xy))

where K is an asymmetrical kernel and h (depending on n) is a strictly pos-
itive real. It is a functional extension of the familiar Nadaraya-Watson es-
timate ([N64] and [W64]) which was previously introduced for finite dimen-
sional nonparametric regression (see [H90] for extensive discussion). The main
change comes from the semi-metric d which measures the proximity between
functional objects. To see how such an estimator works, let us consider the
following quantities:

(5.23)

_ K(h_l d(X, Xz))
Yim K (bt d(x, X4))

Thus, it is easy to rewrite the kernel estimator (5.23) as follows:

w; h(X)

00 = D win(x) i, (5.24)
i=1
which is really a weighted average because:
Zwi’h(x) =1.
i=1

The behavior of the w; 5,(x)’s can be deduced from the shape of the asymmet-
rical kernel function K (see for instance Figure 4.2 in Chapter 4).
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To fix the ideas, let us consider positive kernels supported on [0, 1]. In
this case, it is clear that the smaller d(y, X;), the larger K (h‘l d(x, XZ)) In
other words, the closer X; is to x, the larger is the weight assigned to Y;. The
local aspect of such a method appears through local behavior of the weights
around Y, the point of F at which the estimator is valued. Note also that, as
soon as d(x, X;) > h, we have w; ,(x) = 0. That means that the estimator
7(x) is only taken into account among Y;’s those for which the corresponding
X ;’s are distant from x of at most h. So, the parameter h plays a major role
because it controls the number of terms in the weighted average. Indeed, the
smaller A is, the smaller the number of Y;’s taken into account in the average.
In other words, the smaller h is, the more 7(x) is sensitive to small variations
of the Y;’s. In the opposite case, the larger h is, the larger the number of
terms in the sum and the less sensitive 7(x) is with respect to small variations
of the Y;’s. We can say that h has a smoothing effect, and in this sense h
is a smoothing parameter. Because h allows us to select the number of the
terms contained in the expression of the estimator, this smoothing parameter
is also called bandwidth, which is the usual designation in the classical (real
or multivariate) nonparametric context.

Estimating the conditional c.d.f.. We focus now on the estimator ﬁ;‘f
of the conditional c.d.f. F§¥, but let us first explain how we can extend the
idea previously used for the construction of the kernel regression estimator.
Clearly, F{¥ (x,y) = P(Y < y|X = x) can be expressed in terms of conditional
expectation:
FY?'((XJJ) =E (1(7oo7y] (Y)‘X = X) >

and by analogy with the functional regression context, a naive kernel condi-
tional c.d.f. estimator could be defined as follows:

= _ E?:l K(lf1 d(X»Xi)) L(—oo,y)(Y3)
W) = =55 rhtanox))

By following the ideas previously developed by [Ro69] and [S89] in the finite
dimensional case, it is easy to construct a smooth version of this naive estima-
tor. To do so, it suffices to change the basic indicator function into a smooth
c.d.f. Let Ky be an usual symmetrical kernel (see examples in Section 4.1),
let H be defined as:

VueR,  H(u) = / " Ko(v) do, (5.25)

and define the kernel conditional c.d.f. estimator as follows:

F¥(y.y) = i K Td00) H (g™ (y—Yi) (5.26)

v Yoy K (W1 d(x, X)) ’
where g is a strictly positive real number (depending on n). Figure 5.1 gives
various examples of integrated kernels built from standard symmetrical ones.
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0.00.20406081.0
0.0020406081.0

83 2 -1 0 1 2 3 3 2 -1 0 1 2 3
a: From Box kernel b: From Triangle kernel

0.00.204060.81.0
0.00.20.40.60.81.0

3 2 1 0 1 2 3 3 2 1 0 1 2 3
c: From Quadratic kernel d: From Gaussian kernel

Fig. 5.1. Various Examples of Integrated Kernels

To fix the ideas, let us consider K as a kernel of type 0 (see Definition 4.2).
In this case, H is a c.d.f. and the quantity H (¢~' (y — Y;)) acts as a local
weighting: when Y; is less than y the quantity H (¢! (y — Y;)) is large and
the more Y; is above y, the smaller the quantity H (g*1 (y — Y,)) Moreover,

we can write:
_ 0Oesy<Y, —g
1 = 1 9
H (g (y—Yi))={1@y>Yé+g.

It is clear that the parameter g acts as the bandwidth h. The smoothness
of the function Fy¥(y,.) is controled both by the smoothing parameter g
and by the regularity of the c.d.f. H. The idea to build such a smooth c.d.f.
estimate was introduced by [A81] and [R81] (see Section 6.4.2 for a wider
bibliographical discussion). The roles of the other parameters involved in this
functional kernel c.d.f. estimate (i.e., the roles of K and h) are the same as in
the regression setting.

From this conditional c.d.f. estimate (5.26), one can attack the prediction
problem by defining a kernel estimator of the functional conditional median
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m(x) as follows:

it = int {y R B > 5 ). (5.27)

More generally, we can also define from (5.26) a kernel estimator of the func-
tional conditional quantiles t,(x), for any « in [0,1/2], as follows:

fal) = inf{y R, F¥(xp) = af. (5.28)

Estimating the conditional density. It is known that, under some dif-
ferentiability assumption, the conditional density function can be obtained by
derivating the conditional c.d.f. (see 5.3). Since we have now at hand some
estimator F?ﬁ of Fy¥, it is natural to propose the following estimate:

~

Row) = 2Ry (5.29)

ay

Assuming the differentiability of H, we have

9 ~ Yimy K (R d(x, X3)) E%H (7" (y =)

oy Y Yoy K (h=td(x, X)) ’

and this is motivating the following expression for the kernel functional con-
ditional density estimate:

Sy K (B d(x, X2)) tH' (97 (y - Y2)
e K (htd(x, X4)) '

More generally, we can state for any kernel Ky the following definition:

ooy =

J/(‘\X( ) o Z?:l K (h_l d(X,XL)) éHKO (g—l (y _ }/1))
I Sy K (h=Yd(x, X))

This kind of estimate has been widely studied in the un-functional setting,
that is, in the setting when X is changed into a finite dimensional variable
(see the bibliographical discussion at the end of Section 6.4.2). Concerning the
parameters involved in the definition of this estimate, let us just note that the
roles of those involved in the functional part of the estimate (namely, the roles
of K and h) are the same as in the regression setting discussed just before
while those involved in the un-functional part (namely, Ky and g) are acting
exactly as K and h, respectively as a weight function and as a smoothing
factor.

(5.30)
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To end, note that we can easily get the following kernel functional condi-
tional mode estimator of 8(x):

0(x) = argsup f{¥(x,v). (5.31)
yeS
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Some Selected Asymptotics

This chapter states a few asymptotic results, all related to the problem of pre-
dicting some real random response variable given some explanatory variable
which is allowed to be of infinite dimension. We have arbitrarily decided to
organize the presentation around the problems of estimating the three func-
tional predictors defined in Chapter 5: the regression, the conditional median
and the conditional mode. Additional results on conditional quantiles, on con-
ditional functional c.d.f. and on conditional density estimation problems will
also be given. Even if this field of statistics is quite new, it was impossible to
present all the results which are actually available in the literature. The neces-
sary selection was done according to two wishes: providing self-contained and
detailed proofs of some key results without hiding the main features of func-
tional problems with too much technicality. This is the reason why some of the
results are not presented under the most sophisticated sets of assumptions. A
final section will complete these results by discussing the relevant bibliography
and by giving a prominent place to the statements of open problems.

6.1 Introduction

The aim of this chapter is to present some asymptotic results linked with
nonparametric estimation of the three functional predictors already defined
in Section 5.2: conditional expectation, conditional median and conditional
mode. The nonparametric predictors to be used are based on kernel smoothing
ideas and are those defined before in Section 5.4. All the results are presented
in terms of almost complete convergence. This stochastic mode of convergence
may appear quite unusual for some people, but it has been selected because
it has two important advantages. First it is stronger than almost sure con-
vergence and convergence in probability, and second it is easier to prove than
the almost sure consistency itself. To help the reader who is not very familiar
with this kind of asymptotics, Appendix A recalls the basic definitions coming
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with almost complete convergence and shows its links with other usual modes
of convergence.

The asymptotic results are divided into two parts: convergence results are
first stated in Section 6.2 and the rates of convergence are stated precisely later
on Section 6.3. Of course, the treatment of each of the three functional pre-
dictors (conditional expectation, conditional median and conditional mode)
involves necessarily the study of its associated nonlinear operator: the regres-
sion, the conditional c.d.f. and the conditional density function. Therefore,
each of these sections is divided in five parts: one for each of the three func-
tional nonparametric predictors, one for the extension of conditional median
results to conditional quantiles, and a last one for summarizing and com-
pleting different results concerning the estimation of the nonlinear operators
associated with the conditional distribution of the process. As it is basically
the case in un-functional (i.e., finite dimensional) situations, the statement of
consistency results relies on continuity assumptions on the predictor or on the
nonlinear operator to be estimated, and naturally the results of Section 6.2
will be stated on continuity-type models like those described in Section 5.3.
As in finite dimensional settings, the specification of the rates of convergence
relies on additional smoothness conditions and the results of Section 6.3 will
be stated under Lipschitz-type conditions under the functional parts of the
nonlinear operators to be considered. Rather then looking for the most so-
phisticated technicalities, we decided to emphasize on results for which the
specificities of the infinite dimensionality of the explanatory variables can be
highlighted. Each of the results presented is accompanied by a complete proof.

A final Section 6.4 is devoted to the discussion of all the results given
in this chapter. This discussion is organized around three ideas. First, we
present an up-to-date survey of the quite few bibliography existing in this new
setting of nonparametric statistics for functional prediction problems. Second,
to emphasize the specificity of the functional feature of the problem, we will
show how the results behave in finite dimensional setting. All the results of
this chapter lead us to think that large parts of the nonparametric knowledges
for finite dimensional statistics could be transplanted to infinite dimensional
settings (depending, of course, on suitable functional adaptations). Therefore,
to share this hope with the statisticians community and to encourage further
investigation in this direction, the third and last (but not least) thread of
these comments will be to release several theoretical open problems.

6.2 Almost Complete Convergence

6.2.1 Regression Estimation

We focus on the pointwise almost complete convergence of the functional
kernel estimator of the regression r(X) = E (Y|X), which was defined in
5.23. Note that we can write
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Y = r(X)+¢e with E (¢|]X) = 0. (6.1)

Before giving the main asymptotic result, we need to make some assumptions.
The first one is about the small ball probabilities of the functional variable
X, and it means that the probability of observing the f.r.v. around x (the
functional element at which we evaluate the regression operator) is nonnull:

Ve >0, P(X € B(x.€) = oy(€) > 0. (6.2)

It is classical in the multivariate nonparametric setting to assume that the
density of the multivariate explanatory variable is strictly positive, and the
hypothesis (6.2) is an extension of such a notion (see Sections 13.4 and 13.5
for more discussion). In addition, the parameters involved in the estimator,
that is the bandwidth and the kernel function, have to satisfy:

h is a positive sequence such that
lim h=0and lim —28" o,
n—00 n—00 My (h)
(6.3)
K is a kernel of type I
or

K is a kernel of type II and (4.6) holds.

Finally, we will consider a scalar response variable Y such that:
Ym >2, E(JY™"||X = x) < om(x) < 0o with 0,,(.) continuous at x. (6.4)

This assumption allows us to deal with unbounded variables. The following
theorem gives the pointwise almost complete convergence for the kernel esti-
mator of the nonlinear regression operator.

Theorem 6.1. Under the continuity-type model (5.11) with the probability
condition (6.2), if the estimator verifies (6.3) and if the response variable
Y satisfies (6.4), then we have:

lim 7(x) = r(x), a.co. (6.5)
n—oo
Proof. Using the notation introduced in Section 4.1, for¢ = 1,...,n, we recall

that 4A; is the quantity defined as

_ K (h_ld(X7 Xz))
" EK(hld(x, X))

Note that Lemma 4.3 and Lemma 4.4, together with (6.2), ensure that
EK (h='d(x,X1)) > 0. Let 71 (x) and 7(x) be the following quantities:
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A0 = 23 A (6.6)

and .
. > VA
n '7
We have clearly that 7(x) = 72(x)/71(x). Our proof is based on the decom-
position
~ 1 ~ ~ ~
() —r(x) = 00 {7200 — Er2(x)) = (r(x) — Er2(x))}
r() -
——= —1}. 6.7
™ (X) {7"1 (X) } ( )

The numerators in this decomposition will be treated directly by using Lemma
6.2 and Lemma 6.3 below, while the denominators are treated directly by using
again part ii) of Lemma 6.3 together with part i) of Proposition A.6. Finally
the proof of Theorem 6.1 is finished, at least as long as both of the following
lemmas will be checked. [J

Lemma 6.2. Under (5.11) and (6.3) we have:
Jim Ers(x) = r(x)-
Proof. The model (6.1) allows us directly to write:
r(x) = Erz(x) = r(x) — E(Y141),
(xX) —E(EY14:]X1)),
=7r(x) — E(r(X1)A1),
=E((r(x) —r(X1)) A1)

Because the support of the kernel function K is [0, 1], we have:

r(x) —r(X1)[Ar < sup [r(x) —r(X)]As,
X' €B(x;h)

|
5

and the continuity assumption on r allows to get the claimed result. [J.

Lemma 6.3. We have:

i) Under assumptions (6.2), (6.3) and (6.4), we have:

N N 1
Pa(y) — ERa(x) = 0< osn )

n oy (h)
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it) Under assumptions (6.2) and (6.3), it holds:

. _ logn
Tl(X) -1 = Oa,co. < TL(PX(h)) .

Proof. i) We denote, for i = 1,...,n, K; = K (h_1 d(X,XZ-)). The demon-
stration of this result is based on the utilization of a Bernstein-type expo-

nential inequality. Indeed,
> e) s
and we have to show that it exists ¢y > 0 such that:
logn
Z P > € < 00.
neN*

npy(h)
So, we apply the exponential inequality given by Corollary A.8-ii in Ap-
pendix A with Z; = Y;A; — EY1A;. To do that, we first have to show
that:

n

Y (VA —E(Y;4)))

i=1

P (70 — BRa(x)] > ) = p<i

zn: YiA; — E(Y;A))

30 >0, Ym=2,3,..., [EMA; —EY14)"| < Cyp,(h)"™ . (6.8)
e First, we prove that for m > 2:
E[Y1["AT" = O (g (h)™"). (6.9)

For that, we write:

1

EMI"AY = Gy (EMI™ KT,
(E;) {E B(M[™2) KT}
(EI;) {Eom(X) KT}
_ ﬁ (E (0 (%) — 0 CVET) + om () EEY

which implies that:

[E[Y1]™ A" < Elom (X) — om (X) AT + om(x) EAT,

< osup Jom(X) —om(X)] | EAT + om(x)EAT".
X'€B(x,h)
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The last point consists of applying Corollary A.8-ii with a? = ¢, (h)
Then, we have u,, = (a?logn)/n = logn/(n¢,(h)) and it is clear that
u, tends to zero with n by using Hypothesis (6.3). This ends the proof of
Lemma 6.3-i.

6 Some Selected Asymptotics

Because 0 < | K™ < o0, if K is of type I (resp. II) then Km//Km

is also of type I (resp. II). So, by applying Lemma 4.3 and Lemma 4.4

we get:
Cioy(h) SEKT < Cy oy (h). (6.10)

Using (6.10) and Lemma 4.3 or Lemma 4.4, we can write that for
m=2,3,...:

Cl C12

—— < EAT" < ————— (6.11)
Py (R)™—1 ! ox(h)mt
which implies that
EWi|™ A7 = O (px(h)™").
Moreover, we have:
(V141 —EV1A)™ = Y cpm (Vi A (EVL A F (=)™,
k=0

where ¢y, = m!/(k!(m — k)!), which implies that

E Y14, — EY1A1|m <C ch,mE|Y1A1|k |7'(X)‘mik

k=0
<C, max E|Y1 A" |
=0,1,...,m
<C  max @, (h)F
k=0,1,....,m

the last inequality is using (6.9) for & > 2 while for k¥ = 1 we can show
that E|Y1]4A; = O(1) just by following the same steps as those of the
proof of Lemma 6.2. Because ¢, (h) tends to zero with n, it becomes
that

E|Y1A; —EYiA™ = O ((py(h))"™1).
-1

i) This result can be derived directly from (i) by taking ¥; = 1.
The proof of Lemma 6.3 is now finished. (]

6.2.2 Conditional Median Estimation

We will now give the same kind of consistency result, but for the functional
conditional median m(x) and its kernel estimate m(x), which are respectively
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defined in (5.5) and (5.27). Recall that the conditional c.d.f. estimate ﬁ{}'
was defined in (5.26). Because the asymptotic results will be given at a fixed
x € E, we simplify some notation as follows:

Vx € B, F¥() © F¥(x,.) and BX() € F¥(x. ). (6.12)

For convenience, we will use also the notation:

Yx €E, FX() ¥ F¥x,.). (6.13)

Note that the functional part of 1/7\35" is the same as in regression setting.
Therefore, it is natural to expect the asumptions necessary to deal with this
functional part to be the same as in Section 6.2.1. Concerning the scalar
part of Fy¥ the following restrictions on the kernel function Ky = H' and its
associated bandwidth ¢ are introduced:

{g is a positive sequence such that lim,_,. g =0, (6.14)

K is of type 0.

Note this is a quite weak condition on the kernel. It insures, according to
Definition 4.2, that the function H is continuous and strictly increasing over
the set {u, 0 < K(u) < 1}. This has the main advantage that the kernel
conditional median estimate can be defined to be the unique solution of the
equation R

i) = B (1/2). (6.15)

Theorem 6.4. Under the continuity-type model defined by (5.17) and (6.2),
and if the kernel estimate satisfies (6.3) and (6.14), we have

lim m(x) = m(x), a.co. (6.16)

n—oQ

Proof. The condition (6.14) insures that the estimated conditional c.d.f. ﬁé()
is continuous and strictly increasing. So, the function Fé_l(.) exists and is

continuous. The continuity property of FX(.) at point F¥(m(x)) can be
written as:

Ye >0, 35(e) > 0, Yy, [FF(y) = F¥(m(x))| < 8(e) = |y —m(x)| < e
In the special case when y = m(x), we have

Ve >0, 35(e) > 0, [FX(M(x)) — F(m(x)] < 6(e) = |i(x) —m(x)| < e,

in such a way that we arrive finally at:
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Ve > 0, 36(e) > 0, P(l(x) — m()| > ¢)
< PR () = B m(0)| > 8(e))
= P([F¥(m(x)) — F¥(m(x))] > 6(e)),

the last inequality following from the simple observation that

F¥(m(x)) = F¥(m(x)) = 1/2.

The pointwise almost complete convergence of the kernel conditional c.d.f.
estimate Fy¥ (see Lemma 6.5 below) leads directly to

Ve >0, ) P(ln(x) — m(x)| > €) < e,

and the claimed consistency result (6.16) is now checked. O

Lemma 6.5. Under the conditions of Theorem 6.4, we have for any fixved real
point y:

lim FX(y) = FX(y), a.co. (6.17)

n—oo

Proof. When necessary, the same notation as that introduced in Theorem 6.1
and its proof will be used.

We can write

FX(y) - FX(y) = {(s(xy) — E?S(Xﬂ;i(;)(F});(y) —Ers(x,9))}

{ri(x) — 1}, (6.18)

Fy(y)
(%)

where 77 is defined by (6.6), and where

P36 y) = 0 FX(y) =

with
Iiy)=H (97" (y - i)

Look at the right-hand side of (6.18). Note first that the denominators are
directly treated by using Lemma 6.3-ii together with Proposition A.6-i.
Note also that the last term is treated by using Lemma 6.3-ii. Finally the
claimed result (6.17) will be proved as soon as it is shown that:

: = — X
nh—>Holo Ers(x,y) = Fy(y), (6.19)

and
lim 75(x,y) — Ers(x,y) = 0, a.co. (6.20)

n—0o0
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About the bias term, the fact that Erj(x) = 1 and the fact that K is
compactly supported lead directly to

Ers(x,y) — Fy(y) = EAL(y) — F¥(y)
E(A(E(I(y)]|X) — F¥(y)))
E(A1154n) (X)(E(1(y)|X) — F¥(y))).  (6.21)

This last expectation can be easily computed by means of the Fubini the-
orem and by using the fact that H' = K:

E(N(y)|%) = / Hg™ (y - u))dP(ulX)

v)dv dP(u]X)

/R/RKo(vn[v,m](g*l(y—u))dudp(um
/ / Ko(0) 1y so0y (9 (y — 0))dP(u] X) do
R JR

/]R Ko(v)F5¥ (y — vg)dv. (6.22)

Because Ky integrates up to 1, we get :

BT W)12) ~ R = | Ko(w) (¥ = vg) = F (). (629
Moreover, we have:

[F (y—vg) = F¥(y)| < [F (y—vg) = F¥(y—vg) |+ F¥(y —vg) — F¥(y)l.

Because K is supported on [—1,+1] and because g and h tend to zero,
the continuity property of Fi¥ allows us to write that

lim  sup 1pgn (X) [ (y — vg) — F¥(y — vg)| =0,
=0 ye[—1,+1]

and
lim  sup |F¥(y—vg) — Fy(y)| =0,

n—oo UE[—1,+1]

in such a way that we arrive finally at

m 1p(m (X) [E(I(y)|X) — F¥y)| =0. (6.24)

n—roo

This last result, together with (6.21) and the fact that EA; = 1 is enough
to prove (6.19).
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e It just remains now to prove (6.20). For that, we have to decompose the
dispersion term as a sum of zero mean i.i.d. r.r.v. as follows:

- 1 &
s y) —Ers(x.y) = ~ > (Ti —ET)) (6.25)
=1
where
T, = Aili(y).

Using either Lemma 4.3 or Lemma 4.4 according to the fact that K is of
type I or II, and because I;(y) is bounded, we have:

T; < C/oy(h). (6.26)
On the other hand, by applying the result (6.9) with m = 2, we have
ET? < C EA? < C/py(h). (6.27)

Because the variables T; are bounded, the results (6.26) and (6.27) are
enough to treat the term 7;. Precisely, we are now in position to apply
the Bernstein-type exponential inequality given by Corollary A.9-ii (see
Appendix A), and we get:

~ . logn \3
rs(x,y) — Ers(x.y) = Oa.w,(i) . 6.28
o) = Erbes) N (6.22)
which is a stronger result than the claimed one (6.20).

This proof is now finished. [J

6.2.3 Conditional Mode Estimation

We will now give the same kind of consistency result, but for the conditional
mode 6(x) and its kernel estimate 6(x), which are respectively defined in
(5.20) and (5.31). Because we focus on pointwise convergence at a fixed x
lying in E, we consider the following simplified notation:

Yy € B, f3()E [F () and fE() E FE(x, ). (6.29)

For convenience, we will use also the notation:

vx € B, [F()E ). (6.30)

The assumptions needed for the kernel conditional density estimate ]?{/v
defined by (5.29) are closed to those introduced in Section 6.2.2 for estimating
the conditional c.d.f. F{¥. The following unrestrictive assumptions have to be
added:
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AC < o0, V(z,2") € R x R, |Ko(x) — Ko(2')| < Clz — 2|,

. log (6.31)
lim

——=___ —=0and 3¢ >0, lim gn® = oo,
n—oo n g (px(h) n— 00

Theorem 6.6. Under the continuity-type model defined by (5.21) and (6.2),
and if the kernel estimate satisfies (6.3), (6.14) and (6.31), we have

~

lim 6(x) = 6(x), a-co. (6.32)

n—roo

Proof. The condition (5.21) insures that the true conditional density f3(.) is
continuous and strictly increasing on (8(x) — £, 0(x)). So, the function £ '(.)
exists and is continuous . The continuity property of fX"(.) at point f¥(8(x))
can be written for any € > 0 as:

301(e) > 0, Vy € (B(x) =&, 0(x))s [f5(y) = f£(0(x)] < d1(e) = [y—0(x)| <e.

Because f?ﬁ() is continuous and strictly decreasing on (6(x),0(x) + x), the
same kind of argument can be invoked to arrive at:

302(€) > 0, Yy € (0(x), 0(x) +8); [f5(y) = [£(0(x))] < da(e) = [y—0(x)| < e.

By combining both results, we arrive at:

30(e) > 0, Vy € (0(x)—E,0(x)+E), |f3 ()£ (0(x)| < d(e) = |[y—0(x)| <e.

~

Because by construction 6(x) € (6(x) — &,0(x) + &), we have:

~

36(e) > 0, [/F(0(x)) — [F O < () = Jy — ()] <¢,

so that we arrive finally at:

() > 0, P(I6(x) = 0(x)| > €) < P(F000)) = [E O] > (€)).

~

On the other hand, it follows directly from the definitions of () and 6(x)
that:

~ -~

[RE00) = RO = £E0)) — KOK)
= (R000) = RO0D) + (RO00) - REK))
< (B600) - FO0D) + (RE00) - RO
<2 s ¥w) — Rl (6.33)

ye(0(x)—¢&,0(x)+£)
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The uniform complete convergence of the kernel conditional density estimate
over the compact set [0(x) — &, 0(x) + £] (see Lemma 6.7 below) can be used,
leading directly from both previous inequalities to:

Ve > 0, iP (\é(x) —0(x)| > e) < .

n=1

Finally, the claimed consistency result (6.32) will be proved as long as the
following lemma could be checked. [

Lemma 6.7. Under the conditions of Theorem 6.6, we have for any compact
subset S C R:

lim sup |fy(y) — f{ﬁ(yﬂ = 0, a.co. (6.34)

n—oo ’l/ES
Proof. The proof is based on the following decomposition

{7206 y) —Era(x,y) — (f5F () —Era(x, y)}

R) — fEly) =

r1(x)
KW
- = r -1}, 6.35
where 71 is defined by (6.6), and where
ra(x,y) = T1(x J?ff ZAQ

with
2(y) =9 'Ko (97 (y - Y¥3)) .

Look at the right-hand side of (6.35). Note first that the denominators are
directly treated by using Lemma 6.3-ii together with Proposition A.6-i. Note
also that the last term is treated by using also Lemma 6.3-ii and that f{(.)
is uniformly bounded over y € S (since it is continuous on the compact set
S). Therefore, the result (6.34) will be a direct consequence of both following
ones:

1
lim ———sup |Ers(x,y) — [ = 0, a.co., 6.36
i sy (B3 ) — R0 (6.36)

and

1
lim ———sup |[Ta(x,y) — Era(x, = 0, a.co. 6.37
A, = S P y) 206 v) (6.37)

e Let us show the result (6.36). Because EA; = 1 and because K| is inte-
grating up to one, we have, after integration by substitution:
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EA(y) — f¥()
B( A1 (B (5)1%) - £()

(4 / Ko (97 (y — ) S (w)du — ()
(40 [ 0780 (57 ) UF @) — S0
— (4 [ K0 - v) — RH0)a0)
(IBXh) Al/KO

X(fF (y = vg) = R)dv). (6.38)

Ers(x,y) — f¥(y)

E

|
=

E

In addition, we can write:

|AF (y—vg) — KW < |5 (y—vg) =[5y —vg) |+ 5y —vg) — fEW)].

Because S is compact, the function f3 is uniformly continuous over y € S.
Since in addition K is compactly supported (because it is of type 0), and
because the continuity-type model (5.21), we have

lim sup supl FX(y —vg) — FX(y — vg)| = 0,
"0 pe[-1,41]y€S B (X) 7 (y ) — f¥( )
and

lim  sup sup|f¥(y —vg) — [ ()] =
N0 ye[—1,41] y€S

which implies that

lim sup supl X (y —vg) — fX(y)] = 0. 6.39
Jm s s (DI~ )= F50) (6.39)

By combining (6.38) and (6.39), together with the positiveness of A; and

Ky, we get:
sup (74 (x:9) — ()] = = of1), (6.40)
yeS
This, combined with Lemma 6.3-ii and with Proposition A.6-i, is enough
to prove (6.36) and to finish the treatment of this bias term.
It remains to check that (6.37) is true. Using the compactness of S, we
can write that S C (J;~, Sk where S, = (tx — I, tx + 1) and where [,
and z,, can be chosen such that:

l,=Cz;' ~Cn™%. (6.41)

Taking ¢, = argminyey, .., 1|y — t|, we have
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1 — ~
——sup [Ta(x,y) — Era(x,y)] = A1 + Az + A3, (6.42)
71(x) yes
where

1
A = ——sup|ra(x,y) —Talx, ty),
00 ! 2

1
A2 = = sup |?4(X,t ) - E?ﬁl(th )| )
71(X) yes Y Y

1 R R
= ———sup|Era(x,? )—Em(x,y) .
R0 SR BT ty |

The Holder continuity condition (6.31) allows us directly to write:

_ N 1 &
[Pa(x;y) —Talxo ty)| = 5ZAilﬁi(y)—9i(ty)l
=1

IN

1 & _ _

ngAi|K0(g Yy —Y2) — Ko(g~ ' (ty, — 7))l
=1

C oy ly—ty

- A

ng; g

Cr1(x)ln 972.

Using (6.41), it holds that A; < C/(gn®)? and (6.31) implies that:

IN

IN

lim A; = 0. (6.43)

n—oo
Following similar arguments, we can write:

C

A3 < —r 6.44
' = R00 (P (044

and according to Lemma 6.3-ii and Proposition A.6-i, we get:
lim A3 =0, a.co. (6.45)

n—oo

Looking now at the term As we can write for any € > 0:

P(sup [ra(x, ty) — Era(x.ty)| > €) =
yeS

= P max [ri(x.t;) —Era(x. 1)l > ¢

=1...,z,

IN

1 n
z, max P <|n Z(Ui —EU;)

=1....z
J o i=1

2 max  P(Fa(x, 1) — ERa(x. ty)] > )

IN

> e) , (6.46)
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where
Using either Lemma 4.3 or Lemma 4.4 according to the fact that K is of
type I or II, and because £2;(y) < C/g, we have:

Uil < C/(geox(h)). (6.47)
On the other hand, we have, after integrating by substitution, and using
(6.39):

3

~g(a? / 972 K3 (97 (t; — ) £ (w)du)
=1E A?g’lfRKS(z)f?(tjﬂng)dZ)
<cB(aty [ KR ).

Because fy is bounded (since it is continuous over the compact set S) and
by applying the result (6.9) with m = 2, one get:

EU} < C/(gox(h)). (6.48)

Because the variables U; are bounded, one is therefore in position to apply
the Bernstein-type exponential inequality given by Corollary A.9-i (seeAp-
pendix A). This inequality together with (6.46), (6.47) and (6.48) gives
directly:

EU? = (AZIE 2|X = x))

P(sug|?4(x,ty) —Eru(x, ty)| > €) < 2z exp{—Cne2gg0X(h)}.
ye

By using (6.41), one gets:

P(sup|r4(x, v) —Era(x, ty)| > €) < C’n2cexp{70ne2g<px(h)}.
yes

Because logn/(n g ¢y (h)) tends to zero, one gets directly:

Ve > 0, ZPsup|r4(X7 y) —Ef(x,ty) > €) < co.  (6.49)

n=1
The denominator of As is treated directly by using again Lemma 6.3-ii
together with Proposition A.6-i. This is enough to get
lim As =0, a.co. (6.50)

n—oo

Finally, the claimed result (6.37) follows from (6.42), (6.43), (6.45) and
(6.50).

The combination of (6.35), (6.36) and (6.37) allows us to finish the proof of
this lemma. O
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6.2.4 Conditional Quantile Estimation

This section is devoted to the generalization of the results given in Section
6.2.2 to the estimation of conditional functional quantiles. The conditional
quantile of order «, denoted by t,(x), and its kernel estimate fa(x) are re-
spectively defined by (5.9) and (5.28). As pointed out in Section 6.2.2, under
the condition (6.14), the kernel conditional quantile estimate can be defined
to be the unique solution of the equation

ta(x) = F¥ (). (6.51)

Theorem 6.8. Let o € (0,1). Under the continuity-type model defined by
(5.17) and (6.2), and if the kernel estimate satisfies (6.3) and (6.14), we
have

lim to(x) = ta(x), a.co. (6.52)

n—roo

Proof. This proof being closely related to the proof of Theorem 6.16, it will be
more briefly presented. Let € > 0 be fixed. The continuity property of F}’f_l(.)

at point F}¥(t(x)) can be written as:
35(€e) > 0, Vy, [F¥(y) — F¥(ta(X))| < d(e) = |y —ta(X)| < e
By taking y = ta (x), one arrives finally at the following result

35(€) > 0, P([ta(x) — ta(X)| > €) < P(IFE(ta(x)) — F¥(ta(x))| > d(€))
= P(|Fy(ta(x)) — F¥(ta(x))] > d(e)),

which, combined with the pointwise almost complete convergence of the kernel
c.d.f. estimate (see Lemma 6.5), leads to (6.52). O

~

6.2.5 Complements on Conditional Distribution Estimation

The results stated before, as well for quantiles as for mode estimation, are
based on some previous auxiliary results about the estimation of the condi-
tional probability distribution of Y given X. Because both functional condi-
tional c.d.f. and functional conditional density nonlinear operators can also be
interesting by themselves (and not only because of their possible applications
for mode or quantile settings), this section is devoted to a general presentation
of several results in these settings. Precisely, complete convergence results for
kernel estimates of the functional conditional c.d.f. Fy¢ (see Proposition 6.9)
and of the conditional density fy (see Proposition 6.10) are stated. Some of
the results to be presented below were already stated while some other ones
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can be proved by following quite closed arguments. For these reasons, some
steps of the proofs will be given in a short fashion.

The first proposition is stating complete convergence, both pointwisely and
uniformly over some compact set, of the kernel functional conditional c.d.f.
estimate F}* under a continuity type model for the true conditional c.d.f. F¥.

Proposition 6.9. i) Under the conditions (5.17), (6.2), (6.3) and (6.14),
we have for any fixed real point y:

lim Fy(y) = A?(y), a.co. (6.53)

n—oo

it) If in addition the bandwidth g satisfies for some ¢ > 0 the condition
lim,, o0 gn¢ = 00, then for any compact subset S C R we have:

lim sup |Fy(y) — ﬁ)’f(y)| = 0, a.co. (6.54)

n— o0 yes

Proof. The proof uses the same notation as for Lemma 6.5 above. Because
result i) was proved in Lemma 6.5, it only remains to prove part ii). Use (6.18)
again, and note that because the term 7 (x) does not depend on y € S it can
be treated exactly as in the proof of Lemma 6.5. Finally, the only things to
be proved are both following results:

lim sup [EFs(x,y) — Fy(y)| = 0, (6.55)

n— oo yes
and

Jim supyes|ra(x,y) — Ers(x,y)| = 0, a.co. (6.56)

Because K is supported on [—1, +1] and because g tends to zero, the uniform
continuity property of Fy over the compact set .S, allows us to write that:

lim sup sup lpgy, X) |F¥¥ (y — vg) — F¥(y)| = 0.
n=0 yesS ve[—1,41] P h)( v ( Y( |

This last result, combined with (6.21) and (6.23), is enough to prove (6.55).

It just remains now to check the result (6.56). Using the compactness of
S, we can write that S C |J{~, Sk where S = (tx, —l,,, ti +1,,) and where [,,
and z, can be chosen such that:

l,=Cz;' ~Cn™¢. (6.57)

Taking ¢, = argminycy, ... |y — t|, we have

1 i A
——sup |r3(x,y) — Ers(x,y)| = D1 + D2 + Ds, (6.58)
1 (X) yeS
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where

1
D, = — sup |[T3(x,y) — r3(x, ¢
1 Tl(X)y€S| 3( ) ) 3( ) y)|v

Dy = ——sup|r3(x, Ers(x, )
2 = 500 yes\ 73(X: ty) — Er3(x; ty)|
1
D3 = sup |E73(x, E7s(x, y)|.
5 = A0 Uegl m3(x, ty) — Er3(x, y)|

Because Ky = HW is assumed to be of type 0, the kernel H is differen-
tiable with a bounded derivative. This implies in particular that H is Holder
continuous with order 1, and allows us to write directly:

Falow) =Tt = 30 AlH(G™ = Y) — Hlg™ (ty = ¥0)

Cxm o ly—ty
< 23 a0
< n; p
ln
< Oﬂ(X)E’ (6.59)

and the condition imposed on g, together with (6.57), lead directly to:

lim D; = 0. (6.60)

n—oo

With similar arguments, we can show that

[Ers(x, ty) — Ers(x, y)| < C*

Once more time, the successive use of Lemma 6.3-ii and Proposition A.6-i

allow us to get:
lim D3 = 0, a.co. (6.61)

n—oo

Looking now at the term Dy we can write for any € > 0:

P(zlelg\Ts(X’ y) —ETs(ty)| > € = P(jlnax 73(x: t5) — Ers(x,t;)| > )

< znjirllax P(|73(x,t;) — Ers(x,t;)] > €).

=1l...z2p

By using the result (6.28), one gets directly for any y € S:

logn —Ceo
<|T3(X, ) ET3(X7 )‘ > € W) = O(Znn © )7

and, (6.57) with € large enough, leads us to:



6.3 Rates of Convergence 79

logn
Z (Suplr?) X7 ) ]E’I"3(X7 )‘ > €o g) < oo.

yeSs ney (h)

The denominator can be treated by using Lemma 6.3-ii together with Propo-
sition A.6-ii, and so the term D5 is such that:

. logn
lim Dy = Og.co. .
i Dz = Oa. ( WX(h))

Finally, the proof is finished by using (6.58), (6.60), (6.61) and (6.62), since
one arrives at

1 . logn
— sup |r3(x,y) — Ers(x, = Oq.co. . 6.62
=1 S Fs00m) — R () ( Wx(h)> (6.62)

which is a stronger result than the claimed one (6.56). O

The next proposition states complete convergence, both pointwisely and
uniformly over some compact set, of the kernel functional conditional density
estimate f{ under a continuity-type model.

Proposition 6.10. i) Under the conditions (5.21), (6.2), (6.8) and (6.14),

we have for any fixed real number y:

lim f¥(y) = f;’f(y), a.co. (6.63)

n—r oo

it) If in addition (6.31) holds, then we have for any compact S C R:

lim sup [fX(y) — fX(y)| = 0, a.co. (6.64)

n—oo GS

Proof. It suffices to note that fy = Fé(l) to see that the result (6.63) is a
special case of Lemma 6.15 to be stated later on (apply (6.80) with I = 1). On
the other hand, the result (6.64) was exactly the one given by Lemma 6.7. O

6.3 Rates of Convergence

6.3.1 Regression Estimation

To complete the consistency property (see Theorem 6.1) stated for the func-
tional kernel regression estimate 7(y) defined in (5.23), this section states the
rate of pointwise almost complete convergence. To do that, we will consider a
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Lipschitz-type model for r. As we will see, this will allow us to state precisely
the behaviour of the bias and then to derive the rate of convergence.

Theorem 6.11. Under the Lipschitz-type model (5.12) with the probability
condition (6.2), if the estimator verifies (6.3) and if the response variable
Y satisfies (6.4), then we have:

n Yy (h)

r(x)—r(x) = O(hﬁ)+0a.co.< log n ) (6.65)

Proof. The demonstration of this result follows step by step the proof of The-
orem 6.1, by using Lemma 6.3 together with Lemma 6.12 below.[d

Lemma 6.12. Under (5.12) and (6.3) we have:
r(x) —Er(x) = O(h7).
Proof. Following the begining of the proof of Lemma 6.2, we have:
r(x) —Era(x) = E((r(x) —r(&X1)) A1).
Using the Lipschitz’s property of r, it becomes:
r(0) —Efr2(x)| < CE (d(x, X1)°Ay),

Now, because the support of the kernel function K is [0, 1] and since EA; = 1,
we have

Ir(x) —Er(x)| < Cr’.0

6.3.2 Conditional Median Estimation

In Theorem 6.4 it was been shown that the kernel estimate m(x) of the condi-
tional functional median m(x) was consistent as long as the underlying non-
parametric functional model for the conditional c.d.f. Fy¥ was of continuity-
type. The aim of this section is to show how an additional smoothness as-
sumption on the function Fy¥ will allow us to state precisely the rates of con-
vergence. As in regression setting (see Section 6.3.1), it will be seen in Lemma
6.14 below that a Lipschitz-type model is enough to state precisely the rate
of convergence of the kernel conditional c.d.f. estimate Fyf. However, the be-
haviour of the median estimation depends on the flatness of the conditional
c.d.f. Fy¥ around the point m(x), and this can be controlled in a standard way
by means of the number of derivatives of Fy¥ vanishing at point m(x). This
is done by assuming that F{$(.) is j-times continuously differentiable around
m(x) with:
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FYm)=0vl=1,...5—1,
and (6.66)
X9 (m(x)) > 0.

Note that throughout this section, all the derivatives are taken with respect
to the real variable y. Because this approach needs to have at hand estimates
of higher order derivatives of Fy¥(.) (see Lemma 6.15 below), the following
additional assumption on the unfunctional component of the estimate is nec-
essary:

1
h_)m n92joglz (h) = 0,
n o0 X
and (6.67)

H is j-times continuously differentiable.

Theorem 6.13. Under the Lipschitz-type model defined by (5.18) and
(6.66), if the functional variable X satisfies (6.2), and if the kernel esti-
mate satisfies (6.3), (6.14) and (6.67), then we have

m(x) —m(x) = O <(h5+g )1> + Ou.co. ((ni)f&));) (6.68)

Proof. Taylor expansion of the function ﬁé leads to the existence of some m*
between m(x) and m(x) such that:

Because of (6.66), this can be rewritten as:

Ju

j—

o~ l ~
F¥(m() - = 3 OB (0 ) — 7 ()

=

) = OOV
T ).

=

Because Fy¥(i(x)) = FX(m(x)) = 1/2, we have

(m(0) — @00) RO ) = 0(Fim(x) ~ Fm(x)))

|
—

+ O Xm0 = m00)) (B (m(x) = BV m(0)) )

=1



82 6 Some Selected Asymptotics

By combining the results of Lemma 6.15 and Theorem 6.4, together with the
fact that m* is lying between m(x) and m(x), it follows that

lim ﬁ;f(j)(m*) = Fé(j)(m(x)), a.co.

n—oo

Because the second part of assumption (6.66) insures that this limit is not 0,
it follows by using Proposition A.6-ii that:

(m(0) = 700) = O (Bm(x) ~ F¥(m(x)))

+ Ouco. (3o (mx) = MO (FEY (m(x)) = RV (m(x)))).

=1

Because of (6.66), for all I in {0,1,...,5} and for all y in a neighborhood of
m(x), it exists m* between y and m such that:

X,y _ x(® _ =m0 s
Fyi(y) — By (m(x)) G0 FE (m”).

which implies that Fé(l) is Lipschitz continuous around m(x) with order j—1.
So, by using now Lemma 6.14 together with Lemma 6.15, one get:

(00 =00 = Ouco, (0 + %) + Ouo <( = >>

ney (h)
j—1 i—1
+Oa.co. (Z An,l) +Oa.co. (Z Bn,l) ) (669)
=1 =1
where 1
logn 2
Ay = - () | =
¢ = =m0 ()
and

Bny = (m(x) —m(x)'g".
J
Now, we compare the quantities A, ; or B, ; with (m(x) — ﬁ@(x)> .

e If we suppose that there exists [ € {1,...,j—1} such that (m(x) — m(x))’ =
Owco. (An,l), we can write:

m(x) — )l < Clm(x) — m(x)[ (M) K

- logn H
= 7=l < g
=m0 - AP <€ (i)

. log n e
—m J < I = S
= |m(x) —m)[ <C (ngzllwx(h)) :
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Therefore, due to (6.67), we have proved that for any I, 1 <[ < j, the
following implication holds:

(m(X) - 7’/7\1()())] = Oa.co. (An,l)
\ (6.70)

~ i logn
(m(X) - m(X)) - Oa‘co. ( ntpx(h)> .

e In the same way, if we suppose that there exists [ € {1,...,5 — 1} such

~

that (m(x) — m(x))’ = Oa.co. (Bn,1), we can write:
im0 = AOOF < Clmlx) — A0l g7,
= m(x) =)l < Cg’.

So, we have proved that for any I, 1 < I < j, the following implication
holds:

(m(X) - T/ﬁ(X))J = Oq.co. (Bn,l)
\ (6.71)
(m(x) —m(x))’ = 0(g%).
Finally, by again using (6.69) together with (6.70) and (6.71), it follows that

() ~00)" = Ouco (W +0°) + O (( log )) (6.72)

noy (h)

This proof is now finished, at least as soon as the following lemmas are
proved.[]

Lemma 6.14. Under the conditions of Theorem 6.13, we have:

X o B 5. logn )5)

F¥w) — B¥w) = 01 +9°) + O ((WX ) ) e
Proof. The structure of the proof is the same as the one of Lemma 6.5, and the
same notation is used. The proof is based on the decomposition (6.18). Note
first that the denominators involved in this decomposition are directly treated
by using Lemma 6.3-ii together with Proposition A.6-ii. So, the claimed result
will be obtained as soon as the three following ones have been checked:

F(x) = 1 = Oaeo <<n1:f(71));)’ (6.74)
Efs(x.y) — FX) = 0(g”) + 0(r?). (6.75)

and
R - B = 0w ((RE5)'). 610
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e By taking

logn \z
= € s

O(mpx(h))

inside of (6.28), one get
- . logn \3 o2
P(r3(x,y) — Ers(x, y) > eo(w (h)) ) < n0s, (6.77)
X

and it follows that for ¢y large enough:

1

logn )2) < 0o, (6.78)

npy(h)

This is enough to obtain (6.76). It remains just to check that (6.75) is true.
The Lipschitz condition (5.18) allows to write that

" Palxy) ~ ERa(x.9) > eof

lim  sup 1o (X) [FF (y — vg) - F¥(w)| = () + O(n7),

N0 ye—1,+1]

which can be combined together with (6.23) to lead to:
i Lo (XIE(D (1)) — F¥ ()l =0(g”) +0(#7). (6:79)

This, together with (6.21) and the fact that EA; = 1, is enough to prove
(6.75).

Because the result (6.74) has been already obtained through regression study
(see Lemma 6.3-ii), the proof of Lemma 6.14 is finished. O

Lemma 6.15. Let | be an integer | € {1,...,5}. Under the conditions of
Theorem 6.13, we have:

lim ﬁé(l)(y) = F;/((l)(y)7 a.co. (6.80)

n—roo

If in addition the function Fff(l)(.) is Lipschitz continuous of order By, that is

if
3C € (0,4+00),¥(y,y') € R |FXV(y) - KO (y) < Cly — /|, (6.81)
then we have

~ logn 3
Fé(l)(y) — Fé(l)(y) = O(hﬁ —|—gﬁ°> + Oq.co. <(”92[1<P(h)> ) . (6.82)
X

Proof. The same notation as in the proof of Lemma 6.5 is used.
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Consider the following decomposition:

Sx (1 l 1
RO - R) = 5

71(x)
<A 0en - B (6w) = (R0 - B (6y) |+
¥ (y) P

By following the same arguments as those invoked in the proof of Lemma
6.5, all we have to prove is that:

lim |7 (x,y) — Ry (x,9)| = 0, a.co. (6.84)

n—oo

holds, and either
lim B (x,y) = FE ), (6.85)

n—o0

when F;f(l) is continuous, or
B oy) — BV ) = 0(g™) +0(n?), (6.86)
when Fé(l) is Lipschitz continuous, also holds.

The proof of (6.84) is similar to the proof of of (6.20), so it is presented in
a shorter way. Indeed, similar to (6.25), it is easy to write

1 n
H00y) — B (y) = — Y (S —ES)) (6.87)
=1

3

where S; are i.i.d. r.r.v. having zero mean and satisfying

1Si| < C/(g'px(h)). (6.88)

This last inequality comes from the boundedness properties of K and of
all the derivatives of H. The second moment of the variables S; can be
computed in a standard way by integrating by substitution:

1 2
2 _ 2 @ _
ESP = E (AiE(Fi X = x))

1 2,y —
= (a2 [ 0 A i)

1 2
E (A% [ - gv)dv)
1 2
< Cigzl—l IEAZ»

IN

1
O — 6.89
— g le(h) (6.89)
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the last inequality coming directly from (6.27). Note that, along these
calculous, the existence of the conditional density f;¥ is insured because
of the differentiability assumptions made on the conditional c.d.f. F{¥. We
are now in position to apply the Bernstein-type exponential inequality
given by Corollary A.9-ii (see Appendix A), and we get:

logn 3
;’\gl)( y) — ]E’\( )(va) = Oa.co. (m) . (6.90)
X

The proof of (6.84) follows.

The proofs of (6.85) and (6.86) are also very close to those of (6.19) and
(6.75), and they are therefore presented in a shorter fashion. By doing [ —1
successive integrations by parts, and then by integrating by substitution,

we arrive at:
1 y—u
= [ O R
= /H(l) X(l)( )du
/Ko y gv)du.

Note that the compact support of the kernels allows us to write that

F¥ (y) = F¥(y) + O(h?)

E(I (y)| X =)

where the quantity O(h?) is uniform over y. So one has

ET’:(Sl)( y) — FX(Z)(

= & (a0 [ KO - vg) - RO )
= & (a1 ([ 50 - v0) - ) )

+0(h?). (6.91)

Because K and K are compactly supported and because g and h tend to

)

zero, the continuity-type model for Fé( allows one to write:

im  sup |y —vg) - FEO () =0, (6.92)
n—00 UE[—l,-‘rl]

and the result (6.85) follows directly by combining (6.91), (6.92) and the
fact that EA; = 1. Similarly, the result (6.86) follows by noting that the

O]

Lipschitz-type model for Fy*" allows to write that

sup  |FED(y —vg) — FXO(y )\—o(gﬁo)+0(hﬂ). (6.93)

ve[—1,+1]

The proof of Lemma 6.15 is now complete. [
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6.3.3 Conditional Mode Estimation

o~

In Theorem 6.6 it was shown that the kernel estimate 6() of the conditional
functional mode 6(x) was consistent as long as the underlying nonparamet-
ric functional model for the conditional density function fy was of continuity
type. The aim of this section is to show how an additional smoothness assump-
tion on the function f3* will allow us to state precisely the rates of convergence.
As in regression setting (see Section 6.3.1) or for conditional c.d.f. estimation
(see Section 6.3.2), it will be seen below that a Lipschitz-type model is enough
to state precisely the rate of convergence of the kernel estimate f;} of the op-
erator fy. However, the behaviour of the mode estimation depends on the
flatness of fy around the true mode 6(x), and this can be controlled in a
standard way by means of the number of derivatives of f vanishing at point
6(x). This is done by assuming that f3(.) is j-times continuously differentiable
around 6(x) with:

D) =0 vi=1,...5—1,
and (6.94)

D 0(x)) # 0.

Once again, note that throughout this Section all the derivatives will be taken
with respect to the real variable y.

Theorem 6.16. Under the Lipschitz-type model defined by (5.22) and
(6.94), if the functional variable X satisfies (6.2), and if the kernel esti-
mate satisfies (6.3), (6.14), (6.31) and (6.67), then we have:

300000 = 0 (17+4°)") + 0o ((205)7 ). (699

Proof. Writing a Taylor expansion of order j of the function f3 at point 6(x)
and using the first part of condition (6.94), leads to the existence of some 6*

~

between 6(x) and 6(x) such that:

o~ ~

) = f§(9(x))+%f§(j)(9*)(9(x)— ()

This result, combined with (6.33), allows one to write that:

~ . -~

f%‘(j)(@*)(@(x) —0(y)) = 0( col )su£p9( ) |fy(s) — f}>§($)|) (6.96)
s X)—&:0(X
x(7)

On the other hand, the continuity of the function fy>*’ can be written as:
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Ve > 0,35, > 0, |0(x) — 07| < 6. = |59 00x)) — £9(6%)] < e,
leading directly to:
Ve > 0,30 > 0, P( XV (000) — 7(07)] > ) < P(0(x) — 07| > o).

Because the consistency result provided by Theorem 6.6 insures that 6* tends
almost completely to 0(y), one gets directly that:

lim 267 = 90) # 0. (6.97)

n—oo
By using (6.96), (6.97) together with Proposition A.6-ii, one arrives at:
000 =000 = Ouco(  swp  |R¥s) = F3)),  (6.98)
ye(0(x)—§,0(x)+¢)

which is enough, after application of the Lemma 6.17 below with [ = 1 and
S =(0(x) — & 0(x) + &), to complete the proof of (6.95). O

Lemma 6.17. Under the conditions of Theorem 6.16, we have for any com-
pact S CR and for anyl=1,...,j:

supyes|FF0w) — BO@w)| = 0(n" +9%) +

logn
Oa.ca ( ng2l_1<px(h)> . (699)

Proof. Use the same notation as in the proof of Lemma 6.15.

e Using the decomposition (6.83) and invoking the same arguments as for
the proof of Lemma 6.15, it turns out that all we have to prove is that
both of the following results hold:

1 (1) (1) < logn %>
= su T s — Er y = O .co. — T s
00 yegl 3 (GY) 3 (0GY) a.co (ng%—hpx(h))
(6.100)
and
sup (B (xv.9) — BVl = 0(¢%) +0(n?). (601
ye

e The proof of (6.101) is quite direct. For that, note first that the the limit
appearing in (6.93) is uniform over y (since S is compact), and one can
write:

supsup [0y = vg) - V)| = 0(9%) +0(r7), (6.102)
vE[—1,+1] y€S

and the result (6.101) follows directly by combining (6.91), (6.102) and
the fact that EA; = 1.
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It remains to check that (6.100) holds. Using the compactness of S, we
can write that S C |J;, S, where Sy, = (tx, — ln, t + ;) and where [,
and z,, can be chosen such that:

l,=Cz;t ~ Cn~HDEL/2, (6.103)

Taking ¢, = argminyey, ... 1|y — t|, we have

sup| "vy) — BR(x,y)| = By + By + Bs, (6.104)

m1(x) yes
where
Bl Sup X,Y)— ?{(),l) (X7 ty) )
7‘1 yES
1 (1)
B, = sup X>ty) — Ers’ (x, ty)|,
? m1(x) yeS 3 ( y)
1 ~() ~(D)
Bs = sup |Er ,ty) — Er: X7y’.
s = apg S B o)~ 00 w)
The Holder continuity condition on the kernel H allows us to write directly:
CUCHE ?&”(x,m\
1 _ _
= g ZAiIH(”(g Yy —Ya) - HY (g7 (t, — 7))
i=1
n
< Qz Z A, ly — ty|
" g
< Cri(x)lng (6.105)
Together with (6.103), the second part of condition (6.31) leads directly
to:
logn
By =0 — | . 6.106
: < ngﬂlmh)) (6:100)
Following similar steps for Bs and using Proposition A.6-ii in addition, it
holds that
logn
Bs = Og.co — . 6.107
3 .CO. ( ng2l1¢X(h)> ( )

Looking now at the term Bs, we can write for any € > 0:

P(sup‘r3 (X ty) — ]E?é)( X, )| > 6)
yes

= P<max
J

1=1...z2,

l l
%)(Xatj) 7E7”\(3)(Xat])’ > 6)

< 20 max P (|7 00t) — B (1) > €).

Jj=1l...2n
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By using the Bernstein exponential inequality for bounded variables (see
Corollary A.9-i) together with the bounds obtained in (6.88) and (6.89),
we get directly for any j:

ng?=1py(h)

€2 logn
<cen{-ort i}

=0 <n_C€g) .

By using (6.103), one gets for ¢q large enough:

logn
P(‘A()(X, )= E )] > o g)

yes g%~y (h)

Because its denominator is directly treated by using Lemma 6.3-ii together
with Proposition A.6-ii, the term Bs satisfies:

logn
B, = o e = L 1
2 Oa.c . < ’I’Lg2llg0x(h)> (6 08)

Finally, the claimed result (6.100) follows from (6.104), (6.106), (6.107)
and (6.108).

1
ZP(sup ?g)(x, ty) — E?g)(, )‘>eo nOgn><oo.

This completes the proof of this lemma. [J

6.3.4 Conditional Quantile Estimation

This section is devoted to the generalization of the results given in Section
6.3.2 to the estimation of conditional functional quantiles. In other words, this
section will state precisely the rate of convergence appearing in the results of
Section 6.2.4. Recall that the conditional quantile of order «, denoted by ¢, (x),
and its kernel estimate 7, (x) are respectively defined by (5.9) and (5.28). As
pointed out in Section 6.2.2, under the condition (6.14), the kernel conditional
quantile estimate can be defined to be the unique solution of the equation

ta(X) = B o). (6.109)

Analogously with median estimation, the following assumption is needed to
control the flatness of the conditional c.d.f. around the quantile to be esti-
mated.

Fé(l)(ta(X)) = O7Vl = 17 . .7 - ]-v
and (6.110)
Y (ta(x)) > 0.
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Theorem 6.18. Let « € (0,1). Under the Lipschitz-type model defined by
(5.17) and (6.110), if the functional variable X satisfies (6.2), and if the
kernel estimate satisfies (6.3), (6.14), (6.67) and (6.110), then we have

800~ 100 = 0((#+6°) ) 4 Onen ((HB2)7) (111

Proof. The proof is similar to the proof of Theorem 6.13 , and therefore it
will be presented more briefly. Taylor expansion of the function Fy¥ leads to
the existence of some t* between 1,(x) and t,(x) such that:

(fal0) ~2a00)) BE) = O(R¥(tal) ~ F¥(talx)
+ 0D (tal) = %)) (P (1) = B (ta(0))))-
=1

By combining the results of LemmAa 6.15 and Theorem 6.4, together with the
fact that t* is between t,(x) and t,(x), it follows that

lim FXD () = FX9(t,(x)), a.co.

n— oo

Because the second part of assumption (6.110) insures that this limit is not
0, it follows by using Proposition A.6-ii that:

(tal) — 70)” = O (Bi(taln0) ~ B (1)

+ Ouco (Y- (ta00) = () (B (ta(0) = BV (ta(0)) ).

=1

Using now the results of Lemma 6.14 and Lemma 6.15, one get:

(ta0 = 7a(00) = Ono, (4" + 4°) + Ot <( P ) é)

npy (h)
Jj—1 j—1
+04.co. (Z A,n) + Ouco. (Z B;l) . (6.112)
=1 =1

where

= (a0 — Ta(0)! (nglgg(h))
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and R ‘
ni = (tal) —ta00)'g "
This, combined with the results (6.70) and (6.71) by replacing m(x) (resp.

~

m(x)) with to(x) (resp. to(x)), allows us to complete this proof. [J

6.3.5 Complements on Conditional Distribution Estimation

This short section is devoted to a general presentation of several results con-
cerning the rate of convergence for kernel estimates of the functional condi-
tional c.d.f. Fyf (see Proposition 6.19) and of the conditional density f;, when
it exists (see Proposition 6.20). Most (but not all) of these results have already
been proved when dealing with conditional mode or quantile estimation.

Proposition 6.19. i) Under the conditions (5.18), (6.66), (6.2), (6.3) and
(6.14), we have for any fixed real number y:

B =B = ok +0) 0w ((2E55)").

it) If in any adddition the bandwidth g satisfies for some a > 0 the condition
lim,, 00 gn® = 00, then for any compact subset S C R we have:

R logn \z
. X(y) — FX — B4 gf : :
222|Fy(y) Fy(y)| O(h +g ) + Oa4co. <<nSDX(h)> )

Proof. The result i) was already stated by Lemma 6.14. It remains just to
prove ii). For that use (6.18) again. Because the term 73 (x) does not depend
on y € S it can be treated exactly as in the proof of Lemma 6.5. Finally, the
only things to be proved are the following results:

sup |[EF3(x,y) — Fy(y)| = O(h"+gﬁ), (6.113)
yes

and

1 . " logn 5)
—— sup |r3(x,y) — Ers(x, = Og.co. .
700 sk Fsboy) = Eis(ou) ((Wx(h))

Indeed, the last result was already stated in (6.62), and it just remains to
show that (6.113) holds. Because Kj is supported on [—1,+1], the Lipschitz
continuity property of Fy* allows us to write that:

sup  sup Ly (X) [FE¥ (y — vg) = R = O(W" + 7).
yES ve[—1,+1]

This last result, combined with (6.21) and (6.23), is enough to prove (6.113).00
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Proposition 6.20. i) Under the conditions (5.22), (6.2), (6.3) and (6.14),
we have for any fixed real number y:

B = B = 00 +4) + 0w (127",

it) If in addition (6.31) holds, then we have for any compact subset S C R:

N - logn \2
zlelglfﬁ(y) - W)l = O<h6+9ﬂ) + Oa.co. <<n990x(h)> )

Proof. This proposition is just a special case (with [ = 1 and § = () of
results that have already been proved along the previous calculations (see the
second part of Lemma 6.15 and Lemma 6.17). O

6.4 Discussion, Bibliography and Open Problems

6.4.1 Bibliography on Nonparametric Functional Prediction

The aim of this short subsection is to place the results presented above in
their bibliographic context. Moreover, because nonparametric statistics for
functional variables is a quite recent field of statistics, the existing literature
is not really large and we make an up-to-date bibliographic survey of theoret-
ical knowledge about prediction problems from infinite-dimensional indepen-
dent sample variables. A complementary survey, but for dependent functional
samples, will be discussed in Part IV.

The literature concerning regression from functional variables started with
the paper by [FV00], in which previous formulations of the asymptotic results
presented before were proposed under less general assumptions than here.
This result has been extended in several directions (see [FV02] and [FV04]).
Indeed, Theorem 6.1 and Theorem 6.11 can be found in [FV04] (under slightly
weaker conditions that were not introduced here in order to avoid masking
the main purpose of this book). Similarly, concerning the other functional es-
timation problems (namely, estimating conditional c.d.f., conditional density,
conditional quantiles and conditional mode), the results presented earlier in
this chapter were given in [FLV05] under slightly more general forms.

There is not much additional theoretical work in these fields, and as far as
we know the complementary bibliography only concerns regression setting. At
this point, let us mention the recent contributions by [FMV04] and [RV05b]
investigating asymptotic expansions for quadratic errors of the kernel func-
tional regression estimate, the paper by [FPV03] in which a similar regression
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model/estimate based on a single functional index approach has been pro-
posed and the one by [AV04] in which an additional partial linear component
is added to the functional nonparametric regression model.

To conclude this discussion, note that the functional nonparametric re-
gression method can be easily extended to the case of a multivariate response
just by working component by component. This opens the way for new kind
of application as, for instance, land use prediction problems as described in
[CFGO03]. Finally, note the paper by [D02] which is the only one (at least as
far as we know) to deal with nonparametric modelling in the case when both
the explanatory and the response variables are functional.

6.4.2 Going Back to Finite Dimensional Setting

In the setting of finite dimensional explanatory variable, the nonparametric
prediction problems investigated in this chapter have been extensively stud-
ied by many authors during the last few decades. From one side the results
presented in this chapter can be seen as functional adaptations of some part
of this bibliography. However, from another side, the methodology developed
in this book may directly be applied for finite dimensional purposes even if
the main goal is not this one. (See Chapter 13 for details). Therefore, the
results presented in this chapter can be also be used as new versions of some
parts of the existing finite dimensional literature. What should be absolutely
noted is that all throughout this chapter there is no need to assume the exis-
tence of the density function of the explanatory variable, in such a way that
a direct application of this functional methodology allows us to obtain results
in unfunctional setting under weaker assumptions on the distribution of the
explanatory variable than those usually introduced in the classical literature.

Concerning regression estimation in the finite dimensional setting, the lit-
erature is absolutely huge and is outside the scope of this book. However the
reader could look at the synthetic presentation provided by [SV00] and to the
references therein to have some finite dimensional versions of Theorem 6.1
and Theorem 6.11. One could see that, apart from the work [C84], the bib-
liography concerning finite dimensional kernel regression estimation always
assumed a density function for the covariable.

Concerning conditional c.d.f. estimation and its application for conditional
quantiles, the literature in finite dimensional setting is also quite important
(even if less so than in regression setting). Key references concerning the
study of the unfunctional version of the kernel conditional c.d.f. estimate
are [Ro69], [S89], [C97], [BGMO1], [ABHO03] and [MMO03] while nice synthetic
presentations can be found in [KB78], [PT98] or [G02]. The more general
literature concerning the kernel estimation of conditional probabilities (see for
instance [C80]) has also obvious applications in conditional c.d.f. estimation.
The functional results presented above again have unfunctional applications
(see Chapter 13 for details) and, from this point of view, complete the classical
finite dimensional literature.
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There is also a wide variety of literature about estimation of conditional
density and conditional mode when the explanatory variable is of finite di-
mension. Key references concerning the study of the un-functional versions
of the kernel conditional density and mode estimates can be found in [ZL85],
[SM90], [YSV94], [Y96] [BHO1], [GZ03] and [deGZ03] (an additional bibliog-
raphy in the setting of dependent samples will be discussed later on Chapter
11). Note that the functional results presented above again have direct un-
functional applications (see again concluding chapter for details). From this
point of view, the results presented earlier in this chapter complete this clas-
sical finite dimensional literature (with the main interest being not to have to
assume any density for the explanatory variable).

6.4.3 Some Tracks for the Future

One thing to keep in mind at the end of this chapter is that several classi-
cal nonparametric methods, which are quite well-known in finite dimensional
settings, can be adapted with nice asymptotic properties to the functional set-
ting. The aim of this last subsection is to highlight interesting open problems
which appear from the results presented before and from the related existing
bibliography. Of course there are so many open questions in these fields that
we have to make some arbitary selection, and we have chosen to focus on
problems for which we have in mind at least some (even if small) idea on how
to attack them.

On smoothing parameter selection. Naturally, as is always the case in
nonparametric estimation, the role of the smoothing parameter(s) (i.e., the
bandwidth(s)), becomes prominent. From a theoretical point of view, this can
be easily seen from the rates of convergence of the estimators. Looking at any
of the asymptotic expansions stated in Section 6.3, one see that the rates of
convergence are divided into two parts: a bias component which is increas-
ing with the bandwidths, and a dispersion component which is decreasing as
the bandwidths are growing. So, there is a real need to use bandwidths that
are able to balance this trade-off between bias and dispersion, or said differ-
ently, that balance the trade-off between over, and under, smoothing of the
functional operator to be estimated. Answering the following question(s) will
certainly be a real challenge for the future.

Open question 1: Bandwidth choice. How can automatic bandwidth
selection procedures be developed in regression? In conditional cdf? In con-
ditional density?

We support the idea that most of the knowledge available in finite dimensional
setting could be, after suitable adaptation, of interest in functional statistics.
As far as we know, this question has only been attacked in regression by [RV05]



96 6 Some Selected Asymptotics

and [RV05b] in which the usual cross-validation bandwidth procedure studied
by [HMS85] has been transplanted to functional variables, and by [FMV04] in
which the Wild Bootstrap ideas (see [M93], [HM91] and [M00]) are discussed
for functional purpose. Of course, even in regression, many other techniques
existing for finite dimensional variables (see [V93] for survey) could be consid-
ered for functional purposes. Even if nothing seems to have been developed for
other functional predictions settings than regression, it seems to us that possi-
ble functional extensions of the existing finite dimensional literature could be
thought. For conditional density and mode, it could be possible, for instance,
to adapt the techniques/results given by [YSV94] or [BHO1] to functional set-
tings.

On other modes of consistency. Most of the results available in nonpara-
metric functional prediction are stated in terms of complete convergence. This
has the main interest of making them valid as well almost surely (see Appendix
A) as in probability (see also concluding chapter for more details on this mode
of convergence). However, as it appears clearly from any among the results
presented earlier in this chapter, one drawback of this mode of convergence
is to state only upper bounds for the rates of convergence without being able
to specify the constants involved in the asymptotic expansions. This is not
linked with the functional feature of the problem (since the same thing is well-
known in finite dimensional nonparametric statistics) but is directly related
to such modes of convergence. In finite dimensional frameworks, this problem
is usually attacked by considering some quadratic loss function (for instance,
Mean Squared Error). The specification of the constants being very helpful
for many purposes, the following question is a real challenge for the future.

Open question 2: Quadratic loss. How can Mean Squared Errors (or
other quaratic loss) expansions be obtained? In functional regression? In
functional conditional cdf? In functional conditional density?

As far as we know, the only work in this direction was provided by [FMV04]
in regression setting and the interesting potential of such kinds of results have
been pointed out by the authors, for bandwidth selection as well as for con-
fidence bands construction. To complete the discussion, let us mention some
recent works which provide asymptotic normality for functional conditional
mode ([EOO05]) and functional conditional quantile ([EO05b]).

Links with other functional models. At least in the regression setting,
there is a quite important literature on parametric (mainly linear) modelling
for functional regression. These functional linear regression models have been
popularized by [RS97] and recent developments have been proposed in [FLIS§],
[CFS99], [FZ00], [RS02], [CFF02], [CFS03], [CFMS03], [CGS04], [CFF04], and
[JS05] while recent synthetic presentations and wider bibliographical discus-
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sions can be found in [MRO03], [F03], [C04] and [RS05]. One important question
that was never attacked until now is the one of testing the linearity assump-
tion for a functional model. One way to formulate this question could be the
following one:

Open question 3: Testing the functional linear regression model.
How can the nonparametric functional regression estimate be used to check
the validity of a linear (or more generally of a parametric) functional re-
gression model?

Based on the extensive bibliography existing in finite dimensional settings
it turns out that the nonparametric estimators can be helpful for testing
parametric shapes. So, we guess that such an idea could be used in further
developments on functional context to propose some answer to this question.
Precisely, one could reasonably expect to be able to extend to functional
setting the ideas proposed by [HM93] and which have been widely picked
up again for finite dimensional problems. Of course this point is also of great
interest for other prediction methods than regression, but unfortunately para-
metric/linear functional methodologies had only received attention for regres-
sion and nothing exists on other problems (apart from the precursor work on
conditional functional linear quantiles by [CCS04]).

Still keeping in mind what exists in finite dimensional setting, there is
an abundant literature studying statistical models as being intermediary be-
tween parametric and purely nonparametric models. The main purpose of
these models is for dimension reduction. The literature is too wide to make
an exhaustive presentation here, and we just mention the key previous ref-
erence by [S85] and the general recent monograph by [HMSWO04]. Our hope
is that some of these ideas developed for finite dimensional settings could be
helpful in the near future for answering the following question:

Open question 4: Other functional regression models. How can the
dimensionality reduction models be adapted to infinite dimensional setting?

As far as we know, there are just two theoretical advances in this direction:
a functional version of the single index model presented in [FPV03] and a
functional version of the partial linear model presented in [AV04] (see also
[ACEVO04] for an applied motivation of a additive functional model).

Alternative to kernel techniques. In the finite dimensional setting, there
exist many alternative nonparametric smoothers that could be proposed in
place of the kernel smoothers. This is true for any prediction problem, in-
cluding regression, conditional c.d.f., conditional density, conditional mode,
and conditional quantiles, etc. These alternative approaches involve Splines,
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local polynomial smoothing, wavelets, and d-sequence methods. It is impos-
sible, and out of scope, to discuss here the bibliography on these alternative
approaches but it seems to us that, once again thinking about how extend
these ideas to infinite dimensional setting, local polynomial smoothing should
receive special attention.

Open question 5: On functional local polynomial alternatives to
kernel. How can the local polynomial ideas be adapted to infinite dimen-
sional settings?

As far as we know, there is no advance in this direction. However we have the
feeling that as in regression (see [FG96] and [FGO0O] for general presentations),
as in conditional density (see [FY'T96]), as in conditional cdf and quantiles (see
[MO00] or [DMO01]), some ideas could be extended to the functional context.
The same way, the Splines smoothing techniques (see, for instance, [W90])
and more generally the reproducing kernel Hilbert spaces ideas (see [BT04])
have been recently used with functional data (see [P06]) and one can expect
many further developments in this direction.

Links with small ball probabilities The connection between the asymp-
totic results and the concept of small ball probabilites is obvious. Indeed, the
quantity P (X € B(x,h)) appears systematically in the rates of convergence
through the function ¢, (h), and these are small ball probabilities since h tends
to zero when the sample size n increases. This is obviously strongly linked with
the choice of the semi-metric d, in such a way that from a statistical point of
view the question should be stated as follows:

Open question 6: Semi-metric choice. How can we choose the semi-
metric in practice?

In fact, as we will see later, this concerns all the problems treated in this
book (and not only the prediction ones). So, these notions of small ball prob-
abilities and semi-metric choice will deserve the general and deep discussion
that the reader will find in Chapter 13. Several examples of variables X and of
semi-metric d for which the small ball probability function ¢, (h) can be cal-
culated (or at least asymptotically evaluated when h tends to 0) will be seen
there. Some earlier general guidelines for answering the semi-metric selection
problem will be also presented.
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Computational Issues

This chapter is devoted to the implementation of the functional nonparamet-
ric prediction methods based on regression, conditional quantiles and condi-
tional mode with special attention to the regression ones. It concerns mainly
users/practitioners wishing to test such functional statistical techniques on
their datasets. The main goal consists in presenting several routines written
in S+ or R in order to make any user familiar with such statistical methods.
In particular, we build procedures with automatic choice of the smoothing pa-
rameters (bandwidths), which is especially interesting for practitioners. This
chapter is written to be self-contained. However, in order to make this chap-
ter easier to understand, we recommend the reading of the “nontheoretical”
Chapters 2, 3, 4 and 5. After the description of the various routines, we propose
a short case study which allows one to understand how work such procedures
and how they can be easily implemented. Finally, the source codes, func-
tional datasets, descriptions of the R/S+ routines and guidelines for use are
given with much more detail in the companion website http://www.lsp.ups-

tlse.fr/staph/npfda.

7.1 Computing Estimators

We focus on the various functional nonparametric prediction methods. For
each of them, we present the kernel estimator and its corresponding imple-
mentations through R/S+ subroutine. Most of the programs propose an au-
tomatic method for selecting the smoothing parameter (i.e., for choosing the
bandwidths), which makes these procedures particularly attractive for practi-
tioners. Concerning the functional nonparametric regression method, special
attention is paid because it was the first one developed from an historical
point of view and because it is the most popular from a general statistical
point of view. Therefore, in this regression context we propose several kernel
estimators with various automatic selections of the smoothing parameter.
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Note that we consider only two families of semi-metrics (computed via
semimetric.pca or semimetric.deriv) described in Chapter 3, two basic
kernel functions (see routines triangle or quadratic in the companion web-
site!) described in Chapter 4 and the corresponding integrated ones (see rou-
tines integrated.quadratic and integrated.triangle in the website!) de-
scribed in Chapter 5. However, the following package of subroutines can be
viewed as a basic library; any user, according to his statistical and program-
mer’s level, can increase this library by adding his own kernels, integrated
kernels or semi-metrics routines.

We recall that we focus on the prediction problem which corresponds to the
situation when we observe n pairs (;, y;)i=1,... » independently and identically
distributed: &; = {x;(t1),...,x:(ts)} is the discretized version of the curve
Xi = {xi(t); t € T} measured at J points t1,...,t; whereas the y;’s are
scalar responses. In addition, d,(x;,z;) denotes any semi-metric (index of
proximity) between the observed curves @; and x;/. So, the statistical problem
consists in predicting the responses from the curves.

7.1.1 Prediction via Regression

First, we consider the kernel estimators defined previously in (5.23). It achieves
the prediction at an observed curve x;; by building a weighted average of
the y;’s for which the corresponding x; is such that the quantity dg(x;, z; )
is smaller than a positive real parameter h called bandwidth. In a second
attempt, we will consider a slightly modified version in which we replace the
bandwidth h by the number k of x;’s that are taken into account to compute
the weighted average; such methods use the terminology k-Nearest Neighbours
. For both kernel and k-NN estimators, we propose various procedures, the
most basic one being the case when the user fixes himself the smoothing
parameter h or k. Any other routine achieves an automatic selection of the
smoothing parameter. So, if the practitioner wishes to test several different
bandwidths, the basic routines can be used, or, in the opposite case, let the
other routines automatically choose them.

e Functional kernel estimator without bandwidth selection

The main goal is to compute the quantity:

Yoy YK (dg(i, ) /h)
>oicy K (dy(zi, ) /h)

where (x;,y;)i=1,....n are the observed pairs and x is an observed curve
at which the regression is estimated. The user has to fix the bandwidth
h, the semi-metric dg(.,.) and the kernel function K(.). The routine
funopare.kernel computes the quantities

Rkernel (ZL') _

! http://www.lsp.ups-tlse.fr/staph/npfda
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kernel kernel kernel
R erne. (z1)7 R erne. (ZQ)’ . .’R erne (zn,)’
where z1,..., 2z, is either a new set of discretized curves or the original
one (x1,...,&pn).

Functional kernel estimator with automatic bandwidth selection

The main goal is to compute the quantity:
Rkernel( ) _ Z:’L:I yi K (dq($i7w)/h0pt)
Yoot K (dg(zi, ) /hopt)

where (2;,y;)i=1,.. » are the observed pairs and h,p; is the data-driven
bandwidth obtained by a cross-validation procedure:

hopt = arg mhin CV(h)

where
n 2
m =3 (v - BE )
i=1
with

n

Z y; K (dyg(j, ) /h)

Rkernel( ) _ j_l’jil

> K (dyfwm)/)

J=1,j#i
The user has to fix the semi-metric d,(.,.) and the kernel function K(.).
The routine funopare.kernel.cv computes the quantities

kernel kernel kernel
R&V" (z1), REV"“(22), .., REV" (zw),
where z1,...,2z, is either a new set of discretized curves or the original
one (1,...,%y,).

Functional kernel estimator with fixed number of neighbours

The main goal is to compute the quantity:

Yoo Uil (dy(zi, @) /hi())

>i1 K (dy(i, ) /()

where (@;,¥;)i=1,..n are the observed pairs and where hi(x) is a band-
width for which there are exactly k curves among the x;’s such that
dg(z;, ) < hi(x). The user has to fix the semi-metric dg(.,.), the ker-
nel function K(.) and the number k. The routine funopare.knn computes
the quantities

RkNN(IB) —

RkNN(zl)a RkNN(ZQ)v BERE) RkNN(zn’)7

where z1,..., 2z, is either a new set of discretized curves or the original
one (x1,...,Tn).
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Kernel estimator with global choice of the number of neighbours

The main goal is to compute the quantity:

Sy YK (dy(zi, ) /I, (2))
Z?=1 K (dq(wia m)/hkopt (‘E)) ’
where (x4, ¥;)i=1,...n are the observed pairs and hy,,, () is the bandwidth

corresponding to the optimal number of neighbours obtained by a cross-
validation procedure:

R&y (x) =

kopt = argmkin GCV (k)
where
n 2
Gev (k) =3 (v~ RN (@)
with

Z y; K (dy(x;, )/ hi())

J=1,j#1
RN () =

Y K(dy(xj,@)/hi(x))

j=1,j7#i

The term global selection means that we use the same number of neighbours
at any curve: hy, , () depends clearly on  (the bandwidth hg,,, (x) is such
that only the k,pi-nearest neighbours of @ are taken into account) but ko,
is the same for any curve @. So, the user has to fix the semi-metric dy(.,.)
and the kernel function K(.). The routine funopare.knn.gcv computes
the quantities

ENN ENN
Récy (z1), RGCV(Z2) s Réovy (zn),
where z1,...,2z, is either a new set of discretized curves or the original

one (L1,...,Ty,).
Kernel estimator with local choice of the number of neighbours

The main goal is to compute the quantity:

S K (dy(@i @) /By,
2?21 K (dq(wi’x)/hkopt(mio)> 7

RiEV (x) =

where (z;,y;)i=1,...n are the observed pairs, iy = argmin;— ., d,(z, z;)
and Ay, ,(x,;,) is the bandwidth corresponding to the optimal number of
neighbours at x;, obtained by:
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n
Z yi K (dq(wi’ wio)/hk(wio))
i=1,iio

znj K(dq(wi,wz-o)/hmio))

i=1,izig

kopt(wio) = arg mkin Yig —

The main difference from the previous estimator appears in the local aspect
of the bandwidth. More precisely, the optimal number of neighbours can
change from one curve to another one. This is the reason why we use
the term local selection. The user has to fix the semi-metric d,(.,.) and
the kernel function K(.). The routine funopare.knn.lcv computes the

quantities

Rlz](\?]']&](zl)a R]Eg]x\/[(@), R R]Zg]\\/[(zn'),
where z1,...,2z, is either a new set of discretized curves or the original
one (L1,...,Ty,).

7.1.2 Prediction via Functional Conditional Quantiles

This section deals with the prediction method via the kernel estimation of
the functional conditional quantile. Unlike the previous regression techniques,
this kind of method introduces a smoothing parameter for the response in
addition to the one needed for the curves. We have only developed the most
sophisticated procedure, that is the one involving local automatic bandwidths
choices. In order to reduce the computational cost, we prefer a data-driven
procedure for selecting these parameters based on two learning subsamples
(instead of a standard cross-validation method). Finally, the smoothing pa-
rameters are expressed in terms of k-Nearest Neighbours in a local way (i.e.,
the number % can differ from one unit to another).

The main goal is to compute the quantity:

vae (0,1/2), tiNN(@) = inf {F,fNA; (@,y) >1— a},
ye opt Kopt

with

FkNN(w ) = ZielK(dq(wi’ﬂf)/hk) H((y—vyi)/gx)
ke Y= ier K (dg(@i, ) /1)

The (;,y;)ics are observed pairs, hy, is defined as before in regression and g,
is the bandwidth for which there are exactly x among the responses y;’s such
that |y; —y| < gk-

In order to obtain the optimal numbers of neighbours (kop () and Kope (v)),
we randomly split our learning sample into two learning subsamples:

(@iy, Yir Jivens> (@ig, Yis)isers, 11NI2 = ¢, [1UI; = I and card(ly) = [card(I)/2],
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e .
and we define for each x, i* = arg min;, ez, dy(, x;,). Then, we compute kop
and Kopt as follows:

. : ENN
(Kopt, Kopt) = arg min 1y - inf {FEN Y (i, u) > 1 — a}l.
The optimal numbers of neighbours (kyp: and #4p¢) can change from one curve
to another one. This is the reason why we use the term local selection. So, the
user has to fix the semi-metric d,(.,.), the kernel function K(.) and «. The
routine funopare.quantile.lcv computes the quantities

t];NN(zl)v tlchN(ZQ)v s 7tZNN(zn')a

where z1,..., 2, is either a new set of discretized curves or the original one
(1,...,Tn).

7.1.3 Prediction via Functional Conditional Mode

We focus now on the prediction method via the kernel estimation of the func-
tional conditional mode. As previously, the computed estimator needs the
selection of two smoothing parameters in terms of k-Nearest Neighbours in
a local way (the number k can differ from one unit to another one). The
data-driven procedure for choosing these parameters also involves two learn-
ing subsamples; one for building the kernel estimator, one for selecting the
smoothing parameters.

The main goal is to compute the quantity:
okNN (513) = arg Slelg -fl?o]:t]?[nopt (33, y)a
Y

with

kNN(:I: y) = Zie] K (dy(zi,x)/hi) Ko ((y — Yi)/9x)

o ’ 9k Zie[ K (dq (xi,x)/hx)
The (@;,y:)ics are observed pairs, hx and g, are defined as before in Sec-
tion 7.1.2. Following the same steps as in Section 7.1.2, we split our sam-
ple into two learning subsamples I; and I, and we define for each x,
i* = argmin;, ey, dy(x, ;,). Then, we compute kope and Kope as follows:

(kopta Hopt) = arg min Yix — argsup f]l:]}\{/'N (ml* y U) .
(k,k) ues
The optimal numbers of neighbours (kyp: and #4p¢) can change form one curve
to another. This is the reason why we use the term local selection. So, the user
has to fix the semi-metric dy(.,.) and the kernel function K(.). The routine
funopare.mode.lcv computes the quantities

ekNN(zl)7 ekNN(22)7 BRI ekNN(z"’)7

where z1,..., 2, is either a new set of discretized curves or the original one
(1,...,Tn).
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7.2 Predicting Fat Content From Spectrometric Curves

7.2.1 Chemometric Data and the Aim of the Problem

This section focuses on the spectrometric curves described in Section 2.1 and
partially displayed in Figure 2.1. We recall that for each unit ¢ (among 215
pieces of finely chopped meat), we observe one spectrometric discretized curve
(z;) which corresponds to the absorbance measured at a grid of 100 wave-
lengths (i.e. ; = (xi(A1),--.,Xi(A100)). Moreover, for each unit 7, we have
at hand its fat content y; obtained by analytical chemical processing. The
file “spectrometric.dat” contains the pairs («;,¥;)i=1,.. 215 and is organized
as follows:

Coll |---| Colyj |---] Col 100 ||Col 101
Row 1 | x1(A1) |--- X1(>\j) -+ | x1(Aoo) U1
Row i | xi(A1) |- xia(Aj) |-+ | xi(A1oo) Yi
Row 215|x215(A1)|- - - [x215(A)|- - [x215(A100)|| Y215

The first 100 columns correspond to the 100 channel spectrum whereas the last
column contains the responses. Given a new spectrometric curve &, our main
task is to predict the corresponding fat content 7. In fact, obtaining a spec-
trometric curve is less expensive (in terms of time and cost) than the analytic
chemistry needed for determining the percentage of fat. So, it is an important
economic challenge to predict the fat content from the spectrometric curve.

In order to highlight the performance of our functional nonparametric pre-
diction methods, we split our original sample into two subsamples. The first
one, called learning sample, contains the first 160 units ((«;, yi)i=1....160)- The
second one, called testing sample, contains the last 55 units ((@;, ¥;)i=161,... 215)-
The learning sample allows us to build the functional kernel estimators with
optimal smoothing parameter(s); both the x;’s and the corresponding y;’s
are used at this stage. The testing sample is useful for achieving predictions
and measuring their quality; we evaluate the functional kernel estimator (ob-
tained with the learning sample) at ®i61,...,T215 (Y161,---,Y215 being ig-
nored) which allows us to get the predicted responses ¥i61, - - - , U215

To measure the performance of each functional prediction method, we
consider

i) the distribution of the Square Errors: se; = (y; — 1;)%, i = 161,...,215,

and
215

ii) the Empirical Mean Square Errors: MSE = 5 Z s€;.
i=161
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7.2.2 Functional Prediction in Action

We have run the three routines funopare.knn.lcv, funopare.mode.lcv and
funopare.quantile.lcv on the spectrometric dataset, corresponding to the
three prediction methods: the conditional expectation (i.e. regression) method,
the functional conditional mode one and the functional conditional median
one. The R/S+ commandlines and their corresponding explanations enabling
one to load the dataset, to run the subroutines and to display the results
are available on the website?. We end this analysis by comparing these meth-
ods through the empirical Mean Square Errors (MSE) and by suggesting a
substantial improvement.

The smoothness of the curves allow us to use the semi-metrics based on the
derivatives. After trying some of them, it turns out that the best one is based
on the second order derivatives. The results are summarized in Figure 7.1.
Conditional mode and conditional median give very similar results whereas
the conditional expectation seems sensitive to high values of the response.
Nevertheless, the three methods give good predictions.

Cond. Expect.: MSE= 3.5 Cond. Mode: MSE=3.61

Fig. 7.1. Performance of the Three Functional Prediction Methods on Spectrometric

Data

2 http://www.lsp.ups-tlse.fr/staph/npfda
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Because there are some differences from one method to another, one way
to improve the results is to produce predictions by averaging those obtained
with each method; the corresponding methodology is called Multimethods. As
shown in Figure 7.2, the result is very interesting. There is a significant gain
both in terms of mean square error and concerning the dispersion of the square
error.

Square Error

20 30 40 50 60

10

| Bl

m

| Sl
I

Cond. Exp. Cond. Mod. Cond. Med. Multimethod
MSE=3.5 MSE=3.61 MSE=3.44 MSE=2.21

Fig. 7.2. Comparison Between the Three Functional Prediction Methods and the
Multimethod One for Spectrometric Data

Note finally that the goal of this application was not a comparison study
with other competitive methods but just to implement the three functional
nonparametric prediction methods. Of course, the reader can download the
spectrometric dataset on our website® and compare these functional statistical
methods with alternative ones.

7.3 Conclusion

According to the previous results, one can say that our functional prediction
methods are easy to implement and they work well for predicting fat content
given spectrometric curves. In addition, subtantial improvements in terms of
errors of prediction can be achieved by using the three predictive functional

3 http://www.lsp.ups-tlse.fr/staph/npfda
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techniques (for instance through the average of the three predictions). We
will see later on that such functional methods still gives good results in the
forecasting setting (i.e., time series, see Chapter 11) with another functional
dataset (i.e., electricity consumption data, see Section 2.3). To conclude, let
us emphasize with slight contributions, any user may easily incorporate his
own semi-metrics, kernels, . . . still using the main bodies of our programs.
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Nonparametric Classification of
Functional Data
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Classification problems motivate a large number of works in statistics. The
guideline of such an area of research is to split a large collection of objects
into homogeneous groups. The classification domain can be divided into two
main subcategories: supervised classification and unsupervised. The super-
vised classification means that we have at hand a learning sample for which
we know the class membership. Thus, the class structure is known a priori
(i.e., observed) and the aim is to carry out a rule which allocates each object at
one group. In this case, most statisticians speak about discrimination analysis
whereas “supervised classification” is a terminology coming from computer
science. Unsupervised classification (or cluster analysis) means that we do
not observe the class membership of the considered collection of objects. This
statistical problem is much more difficult because we have to define classes of
objects. In such a situation, the main goal is to decide how many classes there
are and how to assign each object to classes. Both supervised and unsuper-
vised classification have been intensively studied in the multivariate case (the
objects belong to a multidimensional space) and the reader can find many
references in the monographs of [Go99] and [H97] whereas recent papers can
be found for instance in the Journal of Classification. Note that functional
discrimination is a prediction problem because the aim is to predict a cate-
gorical variable from a functional one. In this sense, functional discrimination
could have been included in Part II. However, in the statistical literature, dis-
crimination is generally identified with a classification problem. Therefore we
voluntarily put discrimination and unsupervised classification into the same
part.

Because functional data and nonparametric modelling are the guideline
of our book, we propose in this part new methodologies for classifying func-
tional data in a nonparametric way. This part is split into two chapters su-
pervised/unsupervised classification rather than a dividing Theory/Practice
as Part II. Chapter 8 focuses on the supervised classification problem. We
emphasize the discriminant power of such a functional nonparametric method
throughout applications to curves discrimination. Theoretical properties are
easily deduced from the ones stated in Chapter 6 and so they will be pre-
sented quite briefly. Chapter 9 deals with the unsupervised classification topic.
An original splitting method is developed which is based on both heuristics
and theoretical advances. In addition, the splitting process is automatically
stopped by a new kind of criterion and a rule classification is derived. It is
worth noting that the particularity of classification makes statistical develop-
ments much more difficult in the functional framework. So, this chapter has
to be seen mainly as an incitement to further investigations.

According to the spirit of this book, theoretical developments are given
in self contained sections. In this way, methodological and practical aspects
can be read independently of the theoretical part, which makes the reading
easier both for users and for anybody else who is interested in an asymptotical
outlook. Once again, one will find illustrations explaining how the methods
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work and how to use the corresponding R/S+ routines which are available on
the companion website http://www.lsp.ups-tlse.fr/staph/npfda.



8

Functional Nonparametric
Supervised Classification

This chapter presents a nonparametric kernel method for discriminating func-
tional data. Because theoretical advances are easily derived from those ob-
tained in the regression setting (see Section 8.5), this chapter emphasizes
applied features. The method is described in Section 8.2, the computational
issues are discussed in Section 8.3 and two case studies are reported in Section
8.4. This chapter ends with some comments and bibliographical notes.

8.1 Introduction and Problematic

Supervised classification or discrimination of functional data corresponds to
the situation when we observe a f.r.v. X and a categorical response Y which
gives the class membership of each functional object. As illustration, you can
refer to the speech recognition data in Section 2.2. The log-periodograms are
the observations of the f.r.v. and the class membership is defined by their
corresponding phonemes. The main aim in such a setting is to give reason-
able answers to the following questions: given a new functional data, can we
predict its class membership? Are we able to provide a consistent rule for
assigning each functional object to some homogeneous group? What do we
mean by a homogeneous group? How can we measure the performance of
such a classification rule?

Before going on, is the classical linear discriminant analysis operational in
such a setting? The answer is no because it is well known that a large number
of predictors relative to the sample size and/or highly correlated predictors
(which is the case when we consider functional data) lead to a degenerated
within-class covariance matrix. In this functional context, the linear discrim-
ination analysis fails. Therefore, alternative methods have been developed.

The next Section describes an alternative methodology for building a non-
parametric classification rule. This is done through a proximity measure be-
tween the functional objects and a kernel estimator of the posterior proba-
bilities derived from the one introduced in the functional nonparametric pre-
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diction context. Section 8.3 focuses on practical aspects by giving a simple
way to automatically choose both the smoothing parameter introduced in the
kernel estimator and the one needed for the proximity measure. To illustrate,
Section 8.4 proposes applications of such a functional nonparametric method
to curves discrimination; our procedure is applied to the chemometric and
speech recognition data. Section 8.5 gives some theoretical properties of our
kernel estimator which are easily deduced from the asymptotic behaviour of
the kernel estimator in the functional nonparametric regression setting (see
for more details Sections 6.2.1 and 6.3.1). The last Section is devoted to the
state of the art in this area and the bibliography therein.

8.2 Method

Let (X;,Y;)i=1,..,n be asample of n independent pairs, identically distributed
as (X,Y) and valued in E x G = {1,...,G}, where (E,d) is a semi-metric
vector space (i.e. X is a fr.v. and d a semi-metric). In practical situations,
we will use the notation (x;,y;) for the observation of the pair (X;,Y;), for
all 7 varying form 1 to n. To clarify the situation, you can keep in mind the
speech recognition example (Section 2.2): the X';’s are the log-periodograms
whereas the y;’s are the corresponding classes of phoneme (G = 5).

General classification rule (Bayes rule). Given a functional object x in F,
the purpose is to estimate the G posterior probabilities

pe(x) = P(Y =g|lX=x), geG.

Once the G probabilities are estimated (p1(x),...,Pa(X)), the classification
rule consists of assigning an incoming functional observation x to the class
with highest estimated posterior probability:

y(x) = argmaxpg(x).
geG

This classification rule is also called Bayes rule. In order to make precise our
functional discriminant method, what remains is to build a suitable kernel
estimator.

Kernel estimator of posterior probabilities. Before defining our kernel-type
estimator of the posterior probabilities, we remark that

pe(x) = E(ly—glX =x),

with 1jy—g equals to 1if Y = g and 0 elsewhere. In this way, it is clear that the
posterior probabilities can be expressed in terms of conditional expectations.
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Therefore we can use the kernel-type estimator introduced for the prediction
via conditional expectation (see Section 5.4):

L e Y=g K (W d(x, X))
Pe(x) = Pgn(x) = Z:z:lK(h_l d(x, X1)) )

where K is an asymmetrical kernel (see Section 4.1.2 and Definition 4.1) and
h is the bandwidth (a strictly positive smoothing parameter). This really cor-
responds to the regression of a dichotomous variable (1jy—_g) on a functional
one (X). This kernel posterior probability estimate can be rewritten as

(8.1)

_ K (hThd(x, X))
C i K (X, X))

Pg.n(x) = Z w;,p(x) with w; p(x)
{i: Yi=g}

and follows the same ideas as those introduced in the context of regression.
More precisely, for computing the quantity p,n(x), we use only the X;’s
belonging to both the class g and the ball centered at x and of radius h:

Pon(X) = > _win(x) where T={i: Y;=g}n{i: d(x,X;) <h}. (82)
i€z

The closer X; is to x the larger the quantity K (h='d(x, X;)). Hence, the
closer X; is to x the larger the weight w; 5 (x). So, among the X;’s lying to the
gth class, the closer X; is to x and the larger is its effect on the gth estimated
posterior probability.

Before going on let us remark that, as soon as K is nonnegative, the kernel
estimator has the following interesting properties

Z) 0 Sﬁg,h(X) < 17

i) > Pon(x) = 1,
geG
which ensure that the estimated probabilities are forming a discrete distribu-

tion. Note that the first property is obvious whereas the second one comes
from the fact that >° 7 1y,=g = 1.

Choosing the bandwidth. According to the shape of our kernel estimator, it is
clear that we have to choose the smoothing parameter h. To do that, a usual
way for an automatic choice of h consists in minimizing a loss function Loss
as:

Nioss = arg i%f Loss(h),

where the function Loss can be built from py ,(xi)’s and y;’s. We use the
notation hr,ss because the automatic choice of the tuning parameter h is
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strongly linked with the loss function Loss. Even if the methodology works
with any loss function, a natural choice would be the misclassification rate.
That is what will do through applications in Section 8.4. We can now give the
main steps of our functional discriminant procedure. Let H C R be a set of
reasonable values for h and K be a given asymmetrical kernel:

Learning step

forheH
fori=1,2,...,n
forg:L ’...7G
1/)\ h(X) - Z{i/; yi,:g}K(h_l d(XZ?Xl'))
’ >y K (b=t d(xi, xir))
enddo
enddo
enddo

Rioss — inf L h
L arg inf oss(h)

Predicting class membership
Let x be a new functional object and 3(x) its estimated class
number:

GO0 — argmax {Byns..., (00}

8.3 Computational Issues

We have to choose the bandwidth h and the semi-metric d(.,.) which play a
major role in the behaviour of the kernel estimator defined in (8.1). However,
because h is a continuous real parameter, from a computational point of view,
it can be more efficient to replace a choice of a real parameter among an
infinite number of values with an integer parameter k (among a finite subset).
A simple way to do that is to consider a k Nearest Neighbours (kNN) version
of our kernel estimator. This is the aim of the next section. Section 8.3.2
defines a loss function which allows a local automatic selection of the number
of neighbours, and hence of the bandwidth. Section 8.3.3 gives a detailed
description of the use of the discrimination routine.

In the remaining of this section, let (x;,¥y;)i=1,...n» be n observed pairs
identically and independently distributed; the x;’s denote the discretized func-
tional data whereas the y;’s are the categorical responses (class numbers). In
addition, as discussed in Chapter 3, we use semi-metrics denoted by d well
adapted to discretized curves.

8.3.1 kNN Estimator

The kNN estimator is one way to override the problem of selecting A among an
infinite subset of positive values. Indeed, the main idea of the kNN estimator
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is to replace the parameter h with hj which is the bandwidth allowing us to
take into account k terms in the weighted average (8.2). More precisely, if one
wishes to estimate p, at x, one may use

Z?z Yyi=g} K (hlzl d(w’ w"))
Sy K (bt d(x, )

where hy, is a bandwidth such that

]7971@(:1:) =

card{i: d(z,z;) < hi} = k.

It is clear that we replace the minimization problem on h over a subset of R
with a minimization on k over a finite subset {1,2,...,x}:

kLoss +— i Loss(k
I argke{ml}ﬂﬁ} oss(k)

hLoss — hkLDSS )

where the loss function Loss is now built from py x(x;)’s and y;’s. From now
on, we consider in practice only the kNN estimator py j of p, which is easy to
implement.

8.3.2 Automatic Selection of the kNN Parameter

For choosing the tuning parameter k it remains to introduce a loss func-
tion Loss. Among the kNN estimators defined in Section 7.1 we retain the
loss function allowing us to build a local version of our kNN estimator (see
Section 7.1 for kNN versions of the kernel estimator in the prediction setting).

The main goal is to compute the quantity:

pLCV( ) _ Z?’i: ;L;izg} K (d(m’w x)/thV(iBiO)) 7
I >ic1 K (d(zi, ) /hrov(®i,))
where 49 = argmin;—1__, d(x, ;) and hrcv(x;,) is the bandwidth corre-

sponding to the optimal number of neighbours at x;, obtained by the following
cross-validation procedure:

krov(xi,) = argmkin LCV (k,1p),

where

MQ

LCV (k,ig) (1[y,0 —] (,k‘”(win)) ;

g=1

and



118 8 Functional Nonparametric Supervised Classification

n

Z K (d(wi,wio)/hk(wzo))
o {i: yi=g,i#io}
Py.k (mio) - n

S K (dlwowi) b))

i=1,i#ig

The main feature of such an estimator concerns the local behaviour of the
bandwidth. More precisely, the optimal number of neighbours depends on the
functional point at which the kNN estimator is evaluated. This is the reason
why we use the term local selection. Note that many other loss functions can
be built as in the prediction setting (see for instance the automatic choice by
GCV in Section 7.1). Now, the estimation procedure is entirely determinated
as soon as a semi-metric d(.,.) and a kernel function K(.) are fixed.

In order to give an idea of the performance of the procedure, we include the
computation of the misclassification rate for the learning sample (&;, ¥i)i=1,...n
(i.e. the sample of curves for which the class numbers are observed):

for: € {1,2,...,n}
yFoV — arg maxge(1,..,G} Pécv(fﬂi)
enddo

. 1
Misclas <— -~ ; 1[yi¢ylpcv].

8.3.3 Implementation: R/S+ Routines

We recall that we focus on the curves discrimination problem which corre-
sponds to the situation when we observe n pairs (€;, ¥;)i=1,....» independently
and identically distributed: &; = {x;(¢t1),...,xi(ts)} is the discretized ver-
sion of the curve x; = {xi(t); t € T} measured at a grid of J points t1,...,t;
whereas the y;’s are the categorical responses (class membership valued into
{1,2,...,G}). So, the statistical problem consists in predicting the class mem-
bership of observed curves. The routine funopadi.knn.lcv computes the pos-
terior probalities

LCV LCV LCV
P1 (Zl)a 12 <z2)7"'7pG (zn')7
where z1,..., 2z, is either a new set of discretized curves or the original one
(x1,...,x,). Thereafter, the procedure assigns each incoming curve to the

class with highest estimated posterior probability. The details of the procedure
(codes and guidelines for users) are available on the website!.

! http://www.lsp.ups-tlse.fr/staph/npfda
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8.4 Functional Nonparametric Discrimination in Action

This section proposes examples of the use of functional nonparametric discrim-
ination which emphasize its good behaviour. To do that, we consider two func-
tional datasets: the chemometric data (spectrometric curves) and the speech
recognition data. As discussed in detail in Sections 2.1 and 2.2, these func-
tional datasets are quite different: one contains quite smooth curves whereas
the second ones are particularly rough. We will see that the nonparametric
methodology works well on both of them. Both datasets and commandlines
for obtaining the presented results are available with details on the companion
websitel.

8.4.1 Speech Recognition Problem

We recall that we observe n = 2000 pairs (z;, y;)i=1,... » Where the x;’s corre-
spond to the discretized log-periodogram (x; = (x(f1), x(f2),. .., x(f150)) is
the ith discretized functional data) whereas the y;’s give the class membership
(five phonemes):

1 +— “sh”
2 +— “y”
yi € {1,2,3,4,5} with 3 «— “dcl”
4 +— “aa”
5 «— “ao”

The dataset contains the pairs (@;,y;)i=1,... 2000 and is organized as follows:

Coll |-+ Colj |---] Col 150 |Col 151
Row 1 | x1(f1) |---| xa(f5) |--| x1(fis0) Y1
Row i | xi(f1) || xa(f5) |--| xi(fis0) Yi
Row 2000|x2000(f1)|" - - |x2000(f;)|- - |x2000(f150)|| #2000

The first 150 columns correspond to the 150 frequencies whereas the last
column contains the categorical responses (class number). Given a new log-
periodogram «, our main task is to predict the corresponding class of phoneme
yLCV.

To measure the performance of our functional nonparametric discrimina-
tion method, we build two samples from the original dataset. The first one, the
learning sample, contains the 5 x 50 units ((x;, ¥;)icc, each group containing
50 observations). The second one is the testing sample and contains 5x 50 units
((x4r,yi )eirT with 50 observations by group). The learning sample allows us
to estimate the posterior probabilities with optimal smoothing parameter (i.e.,
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pEEV (), ..., pE€V(.)); both the @;’s and the corresponding y;’s are used at
this stage. The testing sample is useful for measuring the discriminant power
of such a method; we evaluate the estimators p£V(.),...,pE¢V(.) (obtained
with the learning sample) at {@x; }ie7 ({yi }sre7 being ignored) which allows
us to get the predicted class membership {y5°" }; c7. It remains to compute
the misclassification rate

Misclasess — % Z 1[yi,¢y5cv].
V€T
We repeat 50 times this procedure by building randomly 50 learning samples
L1,...,Ls50 and 50 testing samples 71, ..., T50. Finally, we get 50 misclassifi-
cation rates Misclay,..., Miscalssg and the distribution of these quantities
gives a good idea of the discriminant power of such a functional nonparamet-
ric supervised classification. This procedure is entirely repeated, by running
the routine funopadi.knn.lcv described previously, for various semi-metrics
in order to highlight the importance of such a proximity measure:

e pca-type semi-metrics (routine semimetric.pca) with a number of dimen-
sion taking its values in 4, 5, 6, 7 and 8 successively,

e pls-type semi-metrics (routine semimetric.mplsr) with a number of factors
taking its values in 5, 6, 7, 8 and 9 successively,

e derivative-type semi-metrics (routine semimetric.deriv) with a number of
derivatives equals to zero (classical Ly norm).

The Figure 8.1 displays the results obtained for one splitting of the sample
into learning and testing subsamples.
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Fig. 8.1. Speech Recognition Data Discrimination: One Run
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The PLS-type semi-metrics are well adapted for such a speech recognition
problem.

In order to obtain more robust results, it is easy to repeat this sample
splitting (for instance by using a loop) for obtaining 50 misclassification rates
for each semi-metric. In this case, boxplots can be displayed as in Figure 8.2.
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Fig. 8.2. Speech Recognition Data Discrimination: 50 runs

Note that the PLS-type semi-metrics use additional information about the
categorical reponse for measuring the proximity between curves which is not
the case for the PCA-type ones. Moreover, for the semi-metrics based on the
derivatives, the results are given for only the Lo metric (derivative of order
zero) because they were even worse for higher order derivatives. This bad
behaviour is not surprising because of the roughness of the curves. Finally, it
is clear that the semi-metrics based on the multivariate PLS regression allow
to obtain a good discrimination (in particular with 6 factors).
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8.4.2 Chemometric Data

The used spectrometric data are described Section 7.2.1 but in a slightly mod-
ified version. Indeed, in such a discrimination setting, we have to consider a
categorical response instead of a scalar one. Therefore, the observed responses
Y1, - -, Y215 (column 101) are replaced with v, ..., y5;5 where

Vi=1,...,215, y' = {;lefl;g_<20
The curves in the group labeled “1” (resp. “2”) correspond to a fat content
smaller (larger) than 20 %.

To measure the performance of the functional discrimination procedure,
we follow the same methodology as the one used in the speech recognition
problem. More precisely, we built 50 learning and testing samples (the ratio
between groups being preserved) which allow us to get 50 misclassification
rates. As pointed out in the regression setting (see Section 7.2.2), the smooth
shape of the curves allows us to use semi-metrics based on the derivatives. We
give here directly the results with the semi-metric d2°"* (see Section 3.4.3).
Figure 8.3 summarizes the results. The semi-metric d3¢"* leads clearly to
good discrimination (the mean of the misclassification rates equals to 2 %).

0.03 0.04 0.05

Misclassification rates
0.02

0.01

0.0

Fig. 8.3. Spectrometric Data Discrimination: 50 runs

8.5 Asymptotic Advances

As explained in introduction to Part III, the discrimination problem can be
viewed as a prediction problem since it comes to estimate the conditional



8.6 Additional Bibliography and Comments 123

expectation of indicator variables (one by class). So, all asymptotic results
stated in the functional context remain valid in the discrimination setting.
Using the same notation as in Chapter 6, we can get the following theorems;
the first one gives the pointwise almost complete convergence of the estimator
of the posterior probabilities whereas the second one gives their precise rate

of convergence.

Theorem 8.1. Under the continuity-type model (i.e. p, € C%) with the
probability condition (6.2) and if the estimator verifies (6.3), then we have,
forg=1,...,G:

lim pyn(x) = pg(x), a.co.

n—oo

Proof. This result is derived directly from the proof of Theorem 6.1 where
the regression r is replaced with p, and for the particular response variable
Ijy—g)- To see that, it suffices to remark that the response variable 1y_g
satisfies condition (6.4). Indeed, we have

E( E?:g]lé\f:x) = P(Y =g|X =x) = py(x).

Note that the continuity assumption insures that the hypothesis (6.4) is ver-
ified (where py(.) plays the role of ¢,,(.)). O

Theorem 8.2. Under the Lipschitz-type model (i.e. p, € Lipg g) with the
probability condition (6.2) and if the estimator verifies (6.3), then we have,

forg=1,...,G:

n gy (h)

ﬁq,h(X) _p‘](X) = O (hﬁ) + Oa.co. ( 10gn> .

Proof. As before, it suffices to remark that condition (6.4) is still satisfied. So,
the use of the proof of Theorem 6.11 when the regression r is replaced with
the posterior probability p, and for the particular response variable 1y _g
allows us to get the result. [

8.6 Additional Bibliography and Comments

As explained in the introduction to this chapter, the linear discrimination
analysis fails in the functional context. Therefore, for about a decade, several
statisticians investigated alternative approaches. [HBT95] proposed a regular-
ized version of the linear discrimination analysis called penalized discriminant
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analysis whereas [ME99] developed a generalized linear regression approach
taking into account the functional feature of the data. In order to capture
nonlinear decision boundaries, [HBT94] built a flexible discriminant analysis.
But all these methods correspond to functional parametric models according
to our definitions (see definitions in Section 1.3). More recently, a nonpara-
metric approach for curves discrimination based on a kernel density estimator
of random vectors has been introduced by [HPPO1], where the curves are
considered as random vectors after a projection step. It is easy to see that
this work corresponds to the particular case of our nonparametric functional
methodology when we consider the semi-metric based on the functional prin-
cipal component analysis.

Finite dimensional nonparametric discrimination was widely investigated
in the last few years (see for instance [N76], [G81], [K86], [P88], [K91], [LP94],
[GCO04] for a non-exhaustive list of references). It is worth noting that the func-
tional nonparametric discrimination method can be applied directly to finite
dimensional context (see the general discussion in Section 13.5). Theoreti-
cal results given before can also be seen as a slight extension of similar ones
already existing in the above-mentioned literature.

The method presented in this chapter comes from [FV03]. Concerning the-
oretical functional framework, we did not investigate the interesting problem
of consistency of our Bayes classification rule based on the kernel-type estima-
tor of the posterior probability. However, [ABCO05| studied recently the con-
sistency of a simplified version of this classifier when the kernel K is replaced
with the indicator function. More details about the notion of consistency of
classification rules and universal consistency can be found in [DGL96] and we
hope that further works will concern such properties. There are many other
open problems which are similar to those existing in the functional regression
context. In particular, the bandwidth choice (see open question 1) should be
developed in the near future to provide complete theoretical support for the
automatic procedure presented before. From a practical point of view, Section
8.4 gave examples of the use of our functional nonparametric approach and
showed the relevance of such a discrimination method. However, in order to
define precisely what “relevance” means, the previous practical cases should
be completed by comparative studies with several competitive methods and
datasets. However, the main goal of this book consists in proposing alterna-
tive statistical methods in a functional and nonparametric way. Note that
comparative studies on the datasets presented in this book, can be found in
[FV03]. Note also that the proposed method has been used in [NCA04] for a
polymer discrimination problem, and it gave appealing results. But, it is clear
that in the near future, other alternative methods will be proposed and new
works could consist in investigating deep comparisons.

Finally, for both applied and theoretical purposes, a crucial point concerns
the choice of the semi-metric. Because this is the key in any nonparametric
functional problem, this will be a subject of the general discussion in Chapter
13.



9

Functional Nonparametric
Unsupervised Classification

Most of the sections presented in this chapter are readable by a very large
public. Methodological, practical and computational aspects take a large share
whereas theoretical developments are presented in a self-contained section.
In fact, the spirit of this chapter is close to the spirit of exploratory data
analysis. More precisely, when an unsupervised classification is performed,
the statistician or more generally the user does not know how to validate
the obtained partition. Only some additional information collected after the
analysis can confirm or refute the results. So, according to their experience,
the statistician will try to propose more pertinent answers to the classification
problem. This is exactly what we try to do here but in a new field which
concerns functional data. Heuristics and theoretical aspects are developed in
a complementary way which produces an original nonparametric classification
method for functional data. Note that this chapter is quite different from
the other ones. From a theoretical point of view, we propose a classification
method which involves the mode of the distribution of a functional random
variable. This leads us to deal with the density of functional random variables
and new problems emerge as soon as we focus on the asymptotic behaviour
of the estimator of the “functional” mode. First results allow us to point out
difficulties linked with the infinite dimensional setting. From a practical point
of view, it is much more simple to solve the prediction problem than the
unsupervised classification one. For all these reasons, this chapter is certainly
more open than the other ones and will certainly deserve future investigation.

9.1 Introduction and Problematic

Unsupervised classification is an important domain of statistics with many
applications in various fields. The aim of this chapter is to propose a nonpara-
metric way to classify a sample of functional data into homogeneous groups.
The main difference with discrimination problems (see Chapter 8) is that the
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group structure is unknown (we do not have any observations of some cate-
gorical response), and this makes such a statistical study more delicate. The
general idea is to build a descending hierarchical method which combines func-
tional features of the data with a nonparametric approach. More precisely, the
proposed methodology performs iteratively splitting into less and less hetero-
geneous groups. This forces us to define what means heterogeneity for a class
of functional objects. To this end, we measure the closeness between some
centrality features of the distribution. The great interest of the nonparamet-
ric modelling consists in estimating such characteristics without specifying
the probability distribution of the functional variable. This is a required point
because the distribution generating the sample of functional data is suppos-
edly unknown (free-distribution modelling) and even if one would specify the
distribution, it would be impossible to check it. Concerning the way to split
the functional data, we make a feedback between practical aspects and recent
theoretical advances, which allows us to introduce a partitioning based on
small ball probabilities considerations.

Concerning the organization of this chapter, we voluntary insist on method-
ological and practical aspects as in the discrimination chapter because most of
the expectations in this domain are oriented towards the applications. How-
ever, some first asymptotical advances are given in a self-contained section in
order to point out open problems in relation to the infinite dimensional fea-
ture, especially when uniform consistency is required. In addition, a feedback
practice/theory will be emphasized in the proposed methodology. We start
with Section 9.2 which presents functional versions of the usual notions like
mean, median and mode. After that, Section 9.3 proposes a simple way to
measure the heterogeneity of a sample of functional data by comparing the
previous indices throughout a semi-metric. Once the heterogeneity index is
defined, Section 9.4 describes a general descending hierarchical method based
on a notion of gain or loss when a sample of functional data is partitioned.
In particular, if we have to fix some smoothing parameters (which can appear
in the estimator of the mode), an automatic selection procedure based on the
maximization of the entropy is proposed. Section 9.5 presents a short case
study which illustrates the easiness of both implementation and use of such a
nonparametric functional classification whereas its good behaviour is empha-
sized. Section 9.6 studies the asymptotical behavior of the kernel estimator
of the mode. These theoretical developments are quite different from those
detailed in Chapter 6 because a uniform-type consistency of the density esti-
mator is necessary. Finally, this chapter ends with a bibliographical overview
which places this work in the recent literature.

Before going on, we recall that the same notation are used as before.
Thus, X denotes a generic functional variable taking its values in the infinite
dimensional semi-metric space (E,d). In addition, let S = {X1,...,X,} bea
sample of n variables identically and independently distributed as X, let x be
a fixed element of E and let x1,...,Xxn be the functional dataset associated
with the functional sample X1,..., X,.
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9.2 Centrality Notions for Functional Variables

We start by describing very standard features as mean, median and mode but
for a distribution of a functional variable X. We will see that these usual no-
tions in the multivariate case can be extended easily to the infinite dimensional
context.

9.2.1 Mean

The simplest one and the most popular is the mean. Formally, the mean of
X is defined by

E(X) = /Q X () dP(w),

where (£2, 4, P) is the probability space. Once the mathematical definition
is given, a “universally” and always computable well-known estimator of the
mean is its empirical version:

1 n
Xmean,S = - Z Xi~
s 1
1=

For instance, if F is a standard real functional space, we have the usual notion
of mean curve:

1 n
VEER, Xmeans(t) = — > &)
i=1

However, one has to use it carefully according to the shape of the data. In par-
ticular, the mean can be often non-informative when the data are rough. For
instance, if one is considering any log-periodogram classes of the speech recog-
nition dataset (see Section 8.4.1) and their corresponding functional mean
displayed in Figure 9.1, it seems obvious that the global mean curve (mean
over the whole sample) is oversmoothing such rough data (in comparison with
the mean curves obtained for each class).

Other situations when the notion of mean curve fails, are the ones which ap-
pear when there is horizontal shift or unbalanced data due to the apparatus.
Horizontal shift occurs when one considers wave forms collected by the satel-
lite Topex/Poseidon (see [DFV04]). In such a situation, the mean makes no
sense and specific analyses are needed (see discussion in Section 3.6). The
case of unbalanced data can be solved by performing approximations at same
measurements as soon as the design for each unit is sufficiently fine enough
(see again Section 3.6). In return, spectrometric data (see Section 8.4.2) seems
to be well adapted for using the mean as one can see in Figure 9.2. Except for
a vertical shift, the shape of the global mean is very close to those computed
for each group.
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Finally, let us note that a robust version of the mean curve (called trimmed
mean) is defined in [FMO1]. It is built by using a functional version of the depth
notion.

9.2.2 Median

Another way to define the mean of a r.r.v X is to consider it as the solution
(under existence and uniqueness) of the following minimization problem:

inf E (z — X)>.

zeR
In the same way, one can define the median of a r.r.v. X as the solution (under
existence and uniqueness) of the minimization problem:

inf E (Jo - X1).

One of the main properties of the median is to be more robust than the mean.
Indeed, it is well known that outliers can dramatically deteriorate the mean
without significant consequence on the median.

It is easy to extend such ideas to the functional case (under existence) by
replacing R with E and |z — X| with d(x, X). This leads us to introduce the
following definition.

Definition 9.1. A solution (under existence assumption) of the following
minimization problem

inf E (d(x, X

Inf B (d(x, X))

will be called functional median associated to the semi-metric d.

In the following, because d is fixed, we will call it simply functional median.

Theoretical aspects of median in Banach space have been studied by [K87]
(see also [CO1] for recent advances). An empirical estimator of the (functional)
median is given by:

Xme = inf d 7Xi7
a ;gE; (x. X3)

and a computable and simplest one can be obtained as follows:
n
Xmed,s = igg;d(x7xi),
=

where we recall that § = {X1,...,X,}. Contrary to X,,eqn,s, the semi-
metric d will play a major role in computing the median. Rather than a
drawback, the possibility of using various semi-metrics d can be seen as a
tuning tool.
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9.2.3 Mode

In finite dimensional setting, the mode is very popular in classification be-
cause it is a useful tool for depicting groups and also more robust than the
mean (like the median, the mode is less sensitive to outliers than the mean).
The functional extension of this notion requests that the distribution of the
functional variable X has a density f with respect to some abstract measure
i defined on the infinite dimensional space E. This assumption is implicitly
made in all the remaining. Formally, a mode 8 of the probability distribution
of X is a value that locally maximizes its density f. So, we propose the fol-
lowing definition:

Definition 9.2. A solution (under eristence assumption) of the following
mazximization problem

sup f (x) ,

x€C

where C is a subset of mon-empty interior of E, will be called functional
mode (implicitly associated to the semi-metric d and to the measure ).

In order to make the mode computable, f has to be estimated and the
supremum has to be taken over a finite subset of E.

Estimating the density. We consider a pseudo kernel-type functional density
estimator defined by:

n

Ve B 00 = greg K (7 d020)

where Q(K, h) is a positive quantity which does not depend on . f is not ex-
actly an estimator because as we will see in Section 9.6, the quantity Q(K, h)
is unknown. However, for mode purpose, this not a real problem since in order
to maximize f we just have to compute 31| K (Rt d(x, X;)), which is very
easy to implement.

Estimating the mode. According to this density estimator, for estimating the
mode it remains to maximize it over C. But, from a practical point of view,
it is impossible to optimize f over so large a subset of E. Following the same
ideas as in [ABCO03], a simple way to override this problem consists in replac-
ing C with the sample S and the empirical functional version #,, of the mode
0 is defined by:

Xo = f .
d,S arg r?eaé{ f(€)

Clearly, the maximization acts over a finite set (i.e., the sample) which makes
this estimation very easy to compute.
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9.3 Measuring Heterogeneity

When one has at hand two features of centrality (as mean, median or mode) of
a distribution of a functional variable denoted by M s and Ms s, it is quite
natural to measure the heterogeneity of the given sample S by comparing
M s with Mgy s. More precisely, we will call Heterogeneity Index of a sample
S, denoted HI(S), any quantity which can be expressed as follows:

dMi,s,Mas)
(MLs, 0) + d(./\/lg"s7 0) '

HI(S) = -

It is important to remark that the mode will play a major role in exhibiting
heterogeneity. One will always take (Mi s, Mo s) = (Xmean,s, Xmod,s) OF
eventually (Mi.s, Ma2.s) = (Xmed,s, Xmod,s) if the mean seems to be not
very well adapted to the considered situation. Thus, we expect that the larger
HI(S) is and the more heterogeneous is the sample S. In addition, according
to the importance of the mode in this problem, first theoretical advances
will be focused on it (see Section 9.6). It is obvious that this criterion plays a
crucial role in the classification procedure. This is the reason why we introduce
a subsampled version of HI(S) in order to make it more robust. To do that,
consider L randomly generated subsamples S (C S) of same size and let
the Subsampling Heterogeneity Index of S be defined as:

L
SHI(S) = %ZHI(S(”).
=1

Actually, the quantity SHI(S) can be viewed as an approximation of the
expectation of HI(S).

9.4 A General Descending Hierarchical Method

This section describes a general descending hierarchical method for classifying
functional data. Starting from the whole sample, if we decide to split it, we
build a partition and we repeat this procedure for each performed group. So,
we have to answer both important questions: is the obtained partition more
pertinent /informative than the previous one? How to build the partition?
One way to answer the first question consists in proposing a criterion able to
compute a heterogeneity index of a partition. After that, it suffices to compare
it with the heterogeneity index of the father sample and to deduce a splitting
score in terms of gain or loss of heterogeneity. Of course, a gain large enough
implies that the partition is accepted; in the opposite case, the father sample
is a terminal leaf of the classification procedure. The next section deals with
such a partitioning heterogeneity index and splitting score. Concerning the
second question, as we will see in Section 9.4.2, small ball probability gives a
useful tool for building a partition of a given sample.



132 9 Functional Nonparametric Unsupervised Classification

9.4.1 How to Build a Partitioning Heterogeneity Index?

One has to decide if a current group (and the whole sample itself) deserves
to be split or not. To arrive at such a decision, we build a stop criterion
of the splitting process based on a partitioning heterogeneity index. So, let
S1,...,S8Kk be a partition of S and define a Partitioning Heterogeneity Index
as a weighted average of the SHI of each component:

K
1
PHI(S;S,,...,S8k) = chard(Sk)xSHI(Sk).
k=1

Once PHI(S;Ss,...,Sk) is introduced, it is easy to deduce the following
Splitting Score:

SHI(S)
If this quantity is positive, the splitting score can be expressed in terms of
a loss of heterogeneity (i.e., a global gain of homogeneity) and the splitting
is considered pertinent as soon as the splitting score is greater than a fixed

threshold. If the score is negative (i.e., a global loss of homogeneity), S is not
split.

SC(S;8,...,Sk) =

9.4.2 How to Build a Partition?

A central question in the classification concerns the building of the partition.
On the other hand, according to the simple kernel estimator of the density,
we have to choose the bandwidth h. So, we propose here an original way to
perform both the partition and choose an optimal bandwidth.

Small ball probability and probability curves. To do that, we introduce the
quantity P(X € B(x,h)) which plays a major role in the rates of conver-
gence in most of the asymptotic results in the functional setting (see Chapter
13 for general discussion). From a theoretical point of view, recall that h is
a positive sequence which tends to zero with the size of the sample n and
B(x,h) ={x' € E, d(x,X’) < h}. Therefore the terminology small ball prob-
ability is used for P(X € B(x, h)) (see Section 4.2 for more details). It is easy
to estimate such a small ball probability by:

~

Bilh) = P(X € Bxi,h) = =+ card{# Jd(xi, xv) < h}.

For each ¢, we can display p;(h) versus h and hence we obtain n probability
curves. For instance, if we consider the sample of spectrometric data, we get
the left graphic of Figure 9.3 which displays the probability curves p;(.), i =
1,...,n = 215. The right part of this graphic shows the estimated density ]?5,94
of the points {p;(5.94)},_, 415 (and it will be discussed later). It appears

clearly that the behaviour of these probability curves is quite heterogeneous.



9.4 A General Descending Hierarchical Method 133

Fig. 9.3. Spectrometric Data: the Probability Curves

More generally, we propose to use such probability curves both for building a
partition of our sample and choosing a bandwidth h. In fact, we are interested
by the bandwidth which reveals the largest heterogeneity of the considered
sample, which is a way to define homogeneous classes and thus a partition.
More precisely, for a fixed bandwidth h, we have at hand n probability points
{pi(h)},—, _,, for which it is easy to estimate its real density f(.) via any
standard estimator.

Splitting the probability points and partitioning the sample. Instead of split-
ting the functional observations x1,..., X, themselves, we propose to split
the set of points {ﬁl(h)}lzln In particular, partitioning is all the easier as
fr(.) has several modes. Indeed, suppose that f;,(.) has K modes and denote
by fn(mi,s),... fn(mix_1s) the corresponding K — 1 local minima of f,(.).
Assume that m; s < -+ < mg,s. Then, we can build the following subsets
forj=1,...,K:

Ij = {Z S {1, e ,TL}, m;_1,8 < ]/)\z(h) < mjﬁg},

where mps = 0 and mg s = 1. In other words, Z; is the set of the i’s for
which the corresponding probability points admit M}, s as the closest mode
and we have:

1,....,n} = UK. T, and VE £ K, T N Ty = ¢.
k=1



134 9 Functional Nonparametric Unsupervised Classification
Now, it is clear that we get a partition of the sample S just by defining;:

Sk={xni€},k=1,....K.

Selecting the bandwidth h. This the reason why we would like that f5,(.)
has several modes and why we select a bandwidth A for which the set
{pi(h)};—; ., reveals the largest heterogeneity (i.e., several modes) as possi-

ble. This can be done by minimizing the entropy of fx(.) over a set of band-
widths H:

1
howt = axg jnf, | u(®) log fu (1) dt
0

the support of fi,(.) being (0, 1) since the probability points belong to [0, 1].
It is well known that the smaller the entropy the larger the heterogeneity of
the set {pi(h)};_, _, (i-e., we can expect that f,(.) has several modes when
its entropy is small) From a practical pomt of view, it suffices to replace fh( )
with any standard density estimator fh( ) and H with a suitable finite set H.
Finally, we are able to compute

~

hopt = argmin / Fu(t) log fu(t) dt

heH

Figure 9.3 points out the resulting bandwidth of such an automatic procedure
(hopt = 5.94) for the spectrometric curves whereas the right part displays
‘]?5‘94. In this application, we have used the familiar Parzen-Rosenblatt unidi-
mensional kernel density estimate:

= bZKO t_pz(h))y

Ky being a standard symmetrical kernel (for instance a kernel of type 0).
Of course, it could be the case on other situations that one gets a unimodal
structure for the estimated density fﬁopt’ and in this case the sample would
not have to be split. Moreover, if the partitioning is possible, we perform it
only if the splitting score is greater than the fixed threshold. So, we have at
hand two ways to stop the splitting procedure.

9.4.3 Classification Algorithm

It is time to describe the iterative classification algorithm which is a summary
of the previously detailed stages:

STEP 1 Computing ﬁopt:
if f7 . admits several modes
op
then goto STEP 2
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else goto STEP 3

STEP 2 Splitting the sample and compute SC':
if SC >r
then achieve STEP 1 for each subclass
else goto STEP 3

STEP 3 Stop.

As one can see, this algorithm is very simple as soon as we are able to compute
hopt and fﬁom for any sample. Note that, as with any classification procedure,
the final partition obtained by this algorithm is very sensitive to the choice
of the threshold 7. In addition, another source of variability of the method
comes from the random subsampling step used to compute the heterogeneity
index SHI.

9.4.4 Implementation: R/S+ Routines

Because such analyses use a recursive algorithm, the programming is more
complicated than for previous problems (prediction and discrimination). We
refer the reader to the companion website! for loading routines, detailed
descriptions of the data as well as commandlines for achieving case stud-
ies and plots. The automatic routine for classifying functional data is called
classif.automatic. As in any other routine described earlier the user has
to fix a semi-metric and a kernel function. Moreover, the practitioner may
control the threshold splitting score 7 as well as the number of subsamples
involved in the computation of the heterogeneity index SHI.

9.5 Nonparametric Unsupervised Classification in Action

We propose to classify the spectrometric curves described in Section 7.2.1
where the response variable (i.e., Col 101) is ignored in order to respect the
unsupervised setting. According to our experience (see Sections 7.2 and 8.4.2),
we know that the semi-metric based on the second derivative is well adapted
for these data. So, we keep this semi-metric, recalling that it is defined by

dgerz‘v (ng) — \// (X(Q) (t) - 5(2) (t))Z dt

and refering to Section 3.4.3 for more details. Of course, the reader can select
another semi-metric and see the behaviour of the classification procedure. In
addition, the following heterogeneity index is considered:

L hitp: / fwww.lsp.ups-tise.fr/staph/npfda
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deri
dQCTw (Xmod,37 Xmean,S)

HIS) = . . .
( ) erierw(Xmod’S7 O) + dgeTW(Xmean,S, 0)

Of course, this heterogeneity index could have been defined by replacing the
mean with the median. Here, the functional mean is used because it makes
sense for such a dataset. (See discussion in Section 9.2.1). Figure 9.4 draws
our classification tree and precises the splitting scores for each partitioning
and the subsampling heterogeneity indices for each group. Figure 9.5 displays
the spectrompetric curves corresponding to the three terminal leaves of our
classification tree (GROUP 1, GROUP 21 and GROUP 22). Concerning the
size of the classes, GROUP 1 (resp. GROUP 21 and GROUP 22) contains 135
(resp. 30 and 50) curves.

Full sample
SHI =0.259

GROUP 1 GROUP 2

SHI = 0.040 SHI =0.099

- \\
’¢’+3.5% ~
—4----' —--h-l

: GROUPII 1 : GROUP I2 1

1 SHI=0.024: : SH1=0.084: GROUP 21 GROUP 22

SHI = 0.073 SHI = 0.082

’l \\
" +3.8%  ~
s ~
-— o - -9 - -1
1 1
|GROUP211: 1 GROUPZIZ:

SHI = 0.0761

Fig. 9.4. Classification Tree for the Spectrometric Curves

It is clear that the selected semi-metric emphasizes features of the second
derivatives instead of the spectrometric curves themselves. The differences
between groups come essentially from the shape of the second derivatives
at the two valleys around the wavelengths 930 and 960 and the two peaks
around 910 and 950. The classification of the spectrometric curves is drawn
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by the amplitude of their second derivatives at these wavelengths. Note that
our bandwidth choice procedure allows us to give a good estimation of the
functional modes in the sense that they appear as a good summary of each
computed class. In addition, Figure 9.6 focuses on the behaviour of the split-
ting score along the classification procedure. This last plot is very helpful for
stopping the splitting procedure. Indeed, it appears that the gain that one
would obtain by splitting GROUP 1 (resp. GROUP 21) would be 3.5% (resp.
3.8%) and these small gains motivate that these two groups appear as termi-
nal leaves of the classification tree. Note that GROUP 22 is not split because
the corresponding estimated density fﬁom turns out to be unimodal.

GROUP 1 GROUP 1: secon. d derivatives GROUP 1: modal curve
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Fig. 9.5. Spectrometric Curves, 2nd Derivatives, and Modes

9.6 Theoretical Advances on the Functional Mode

As explained at the begining of this chapter, we focus here only on the esti-
mation of the mode 6 of the probability distribution of a functional random
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Fig. 9.6. Behaviour of the Splitting Score for the Spectrometric Data

variable X. The reason comes from the fact that the mode appears as a cen-
tral notion of our functional classification method. We recall that we define an
estimator 6,, of the mode 6 as the supremum of a pseudo kernel-type estimator
f of the density f of X with respect to a measure 1 o-finite, diffuse and such
that 0 < u(B) < oo for all open ball B of E. The theoretical advances in this
field are quite developed. Therefore we will state only the almost complete
convergence (without rate) of 6,,. To this end, we will first show asymptotic
results for f in a uniform way. Because of the uniformity aspect, we have
to introduce an assumption driving the uniform behaviour of the probability
distribution of the f.r.v. X.

9.6.1 Hypotheses on the Distribution

The main difference with asymptotics developed in the previous chapters
comes from the fact that we have to control in some uniform way the be-
haviour of the small ball probability function:

px(-) = P(X € B(x,.))-

To do that, we introduce a strictly positive and increasing function ¢ (.) which
does not depend on x and will play a similar role as ¢, (.). In order to take
into account the uniformity aspect, we suppose that



9.6 Theoretical Advances on the Functional Mode 139

o P(X € B(x,t)) ‘ _
Loi‘é@ — fx)| =0, o
with 9.1

tli_r}r(l) P(t) =0 and 3C > 0, Jeg, Ve < 607/ Y(u)du > Cep(e),
0
where C is a subset of E and B(x,t) is the ball of center x and radius ¢. This
is clearly a hypothesis acting on the shape of small ball probabilities which is

more restrictive than Hypothesis (6.2) introduced in Section 6.2.1. Following
the ideas developed by [ABCO03], let us consider the subset

Ce = {X€C7 f(e)_f(X)<e}a

where 6 denotes the mode which is defined as follows:

¢ = argsup f(x).
x€C

Then, we suppose that f satisfies the following conditions:

lirrtl] Diam(C.) = 0. (9.2)

€E—>

It is worth noting that Hypothesis (9.1) is a mixture of conditions on the
size of the subset C, on the behaviour of small ball probability and on the
smoothness property of f. In order to come back to a formulation which is
close to the standard condition made in finite dimensional setting (see Section
9.7.4 for references), let us look at the following special case.

Remark 9.3. If f is uniformly continuous on C and p is asymptotically invari-
able on C in the sense that for ¢ small enough

Vi, W(B(x, 1)) = p(B(0,1))(1 + o(1)),
then (9.1) is checked with ¢ (t) = p(B(0,1)).

Indeed, it suffices to write that

P(B(x,t)) = f(X)M(B(Xat))‘f’/ (f() = F(X)) d (),

B(xt)

which allows us to get for ¢ small enough that

P(B(x,1)) S (F(C) = F(X)) dp(C)
1(B(0,t)) u(B(0, 1)) '

Because of the uniform continuity of f on C, it holds that

Ve > 0,3, Vx € C,d(x,C) < e, [f(x) = f()] <,

- fx) ~
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which implies that for ¢ small enough:

P(B(x.1))
XEC L B0.1)

which achieves the proof of this remark. [

- f(x)

Concerning Hypothesis (9.2), to fix the ideas we come back to the one-
dimensional case by recalling a result coming from [Ca02]. In fact, in the one-
dimensional setting, this hypothesis appears clearly as a flatness condition on

f around 6 (see references in Section 9.7.4).

Remark 9.4. If E =R and d(., .) is the usual metric in R, if f is k-times (k > 2)
continuously differentiable around @ with fU)(8) = 0,Vj =1,...,k — 1 and

|£)(0)] > 0, then Diam(C.) = O (e*/*).
It suffices to write the Taylor expansion of f
f(z) = f(0) = (x—0)*(C+o(1)),
where C' does not depend on z. Thus, we have
V(z,2') € Cey o — 2| < |z — 0] + |0 — ',

which implies that
Diam(C.) = O (61/k> .

This achieves the proof of this remark. O]

9.7 The Kernel Functional Mode Estimator

9.7.1 Construction of the Estimates

Let us now state precisely the pseudo-estimator f of f as follows:

V€. 0 = e 2K (7 X0)

where

QUEh) = — / K (typ(ht) dt,

K being a kernel function. This is not exactly an estimator because the con-
stant of normalization Q(K, h) is unknown but it is important to remark that
it does not depend on y. Thus, for estimating the mode, it comes to the same
thing to maximize f(.) or 31, K (h='d(., &;)). Finally, the estimator 6, of

the mode 0 is defined as:
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0, = argsup f(x) = argsupZK “d(x, X))
xX€C X€C ;=

In order to control the size of the set in which we look for the mode, we
suppose that it verifies the following assumption:

Ja>0,8>0, CC U Blek, )
(9.3)
with d, = n® and r,, = o (he(h)Y/7).

We first study the uniform almost complete convergence of f. To do that, the
estimator has to check the following conditions:

h is a positive sequence such that

1
lim h=0and lim —8" —, (9-4)
n— oo n— oo n'(/)(h)
and
K is a kernel of type II such that (9.5)
3C < o0, Y(z,2') € R?, |K(x) — K(2')| < Clx — 2'|°. :

The conditions acting on h are standard except that (h) plays the role of
the usual small ball probability function ¢, (h) (see Hypothesis (6.3)). As is
usual in the multivariate case, the Lipschitz-type condition for the kernel K
is necessary for obtaining asymptotical results in a uniform way. This is the
reason why Hypothesis (9.5) is more restrictive than Hypothesis (6.3) because
in particular the kernels of type I have to be excluded. We are ready for giving
the main results.

9.7.2 Density Pseudo-Estimator: a.co. Convergence

Theorem 9.5. Under the probability condition (9.1), if C satisfies (9.3) and
if the pseudo kernel-type estimator verifies (9.4) and (9.5), then we have:

lim sup ’f(x) — f(x)‘ = 0, a.co. (9.6)

n—oo XEC

Proof. First, let us remark that

sup |00 = £0)| < sup |70 = EF ()| +sup| EF 00 = 7).
x€C x€C x€C

So, Theorem 9.5 will be proved as soon as Lemmas 9.6 and 9.7 below will be
stated.[d
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Lemma 9.6. Under conditions of Theorem 9.5, we have

lim sup | Ef(x) = f(x)| = 0.

n—oo x€C

Proof. 1t is easy to see that
FOO=Ef(x) = f(x) Ra(), (9.7)

where
Rl = QUENI00 K (1710 X)
" QK h) f(x)
Now, let us focus on the quantity R,(x). According to the proof of Lemma
4.4 (see (4.8)), condition (9.5) implies that

Bx (i) = - [ /) (PEERD — 50) g au

+Q(K, h) £ () (9-8)

Then, we have
1 ' P (B(x, hu))
R
HnCOL = =gm Jo | 50
On the other hand, from (9.7) we deduce

sup [E00) = 700| < sup 00 [Ra(X)]

Xx€C x€C

and (9.1) leads us to the claimed result.(]

_ f(x)‘ () o

Lemma 9.7. Under conditions of Theorem 9.5, we have

lim sup |f(x) — Ef(x)| = 0, a.co.
n—>OOX€C

Proof. Because C C Ui’;lB(ck, ), we have

P (sup IF(x) —Ef()| > n) <P (sup [EF(x) = Ef(croo)l > g)

x€C x€eC

T

w7 (suplf0 - flew)l > )

xeC

T>

+d, max P (|f(a) —Ef(c) > 7).

T3
where cj(,) denotes the closest center to x among {ci,...,cq,}. To simplify

notations, let K; , denotes K (hild(x, Xi)) for any y € E.
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Concerning T and T5:

5 1

Jx) — f(ck(x)) < m Zz:; |Ki,x - Ki,ck(x)

< C’rﬁ
~ WPQ(K,h)

the last inequality coming from (9.5). Now, it suffices to remark that the
second part of (9.1) implies that

1/Q(K, h) = O(1/¢(h)). (9-9)
Now just combine (9.3) with (9.9) in order to state that for n large enough,

Th =T =0.
Concerning T3: it is easy to see that

fle) =Efe@) = = Zicun,

with Z; c,n = (Kie, —EKi1,,) /Q(K, ). Using (9.5) and (9.9) allows us
to write

‘Zi,cz,n| < C/’(/)(h)

Let us now focus on the variance of Z; ¢, »:

Var (Zie,n) = (EK}, — (EK1.,)%) /Q(K,h)*.
Taking K(.) = K?(.)/Ck with O = fol K?(u) du, the last equation be-
comes
Ck >
VU,T’ (ZLClJL) = W (EICLCZ — (]EKLCZ) ) .

Because K is also a kernel of type II, we can apply (9.8) with K and it
comes out that
EICLCL S Cl Q(IC7 h)

In addition, we can check easily that

On the other hand, because of (9.8) we have

and using (9.9), we have

Var (Zl,cl,n) < 04/11)(}1’)
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Then by using Bernstein-type exponential inequality (see Corollary A.9-ii) we
get

T3 < Cn® exp{—C'n’ni(h)}

<Cn® exp{—C"772 logn (nlﬁ(h))}
logn

Because of (9.4), we have
Vb > 0, 3Inp, Vn > np, ni(h)/logn > b,

which implies that
T3 < Cno=C"on*,

Then, Vn > 0, we can take b large enough such that o — C’ bn? < —1, which
implies that lim,, o753 =0, a.co. (I

9.7.3 Mode Estimator: a.co. Convergence

Once the asymptotic property stated for the kernel pseudo-estimator of the
density, we are ready to give the almost complete convergence of the estimator
#,, of the mode 6.

Theorem 9.8. Under the conditions (9.1), (9.2), (9.3), (9.4) and (9.5), we
have:
lim d(0,6,) = 0, a.co. (9.10)

n—oo

Proof. Because of the condition (9.2), we have:
Vn >0, 3>0, Vx €C, d8,x) >n = |f(0) — f(x)| > e
In particular, by taking x = ,,, we have
P (d(0,0n) >n) < P([f(0) = f(0n)] > €).

So, Theorem 9.8 will be proved as soon as we will be able to show that
lim f(6,) = f(9), a.co.
n—oo

To do that, let us remark that

50) = £(0)] < |1(0) - ) — 1(60)|.
< [sup f(x) = sup f(x ‘+sup‘f ()|
x€C x€C x€C
< 2 sup| (0 = £
x€eC

It suffices now to apply Theorem 9.5 in order to achieve the proof. [
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9.7.4 Comments and Bibliography

Main differences with the other results presented in this book come from
one side from the uniform convergence needed for the density estimator of
a functional random variable (see Theorem 9.5), and from the other side
from the existence of the density function itself. Because of these technical
difficulties, the results are quite less developed than in other parts of the book
and many interesting open problems remain to be studied. In addition we will
see in Part III of this book that while all other functional methods presented
before can be extended to non-necessarily independent functional samples,
such an extension is still unknown in functional mode estimation setting. We
will just discuss here two interesting open questions which are really specific
to the functional mode estimation setting and for which we can propose some
track for answering.

Open question 7: Rates of convergence. Is it possible to get rates of
convergence?

As discussed in Remark 9.3, Hypothesis (9.1) is linked with a continuity-type
functional nonparametric model, and it is in accordance with the remainder
of this book to obtain only the almost complete convergence (without rates).
In return, rates of convergence could be reached by imposing more restrictive
smoothness conditions on the density operator f. Indeed, a first approach
could consist in introducing a Lipschitz-type nonparametric model for the
density f and in combining it with a new small ball probability condition
such as for some v > 0:

P(XeB
o s | P € BOG1)

50 vee Ql)(t) - f(X) = O(t’y)v

in other to get rates of convergence. Another way could be to consider more
restrictive regularity properties on the density (such as differentiability for
instance) but from a technical point of view this could be more difficult than
in the multivariate setting (see however [DFV06] for first advances in this
direction).

Open question 8: Extension to other sets. Is it possible to get conver-
gence over wider sets C? over random sets?

To see the problem concerning the first question, let us focus on the technical
condition (9.3) acting on the set C. This hypothesis is crucial for controling
the size of C in order to get uniform convergence of the density estimate itself.
Therefore, the asymptotic result given in Theorem 9.5 is proved only on such
sets. One track for a further theoretical investigation would be to extend the
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results to more general sets because the size of C depends on the knowledge
we have a priori on the location of the mode, since by construction the mode
is assumed to belong to such a set. In order to give an idea with regard to the
second part of this question, recall that in practice a simple mode estimate is
obtained by maximizing the density over the sample (see Section 9.2.3) and
so over a random set. One possible way to solve this problem could follow
the idea in [ABCO03]. Intermediate approaches toward this question would be
to look for the mode in a smooth functional space like Sobolev spaces or to
regularize directly the simple mode estimation obtained over the sample.

To conclude these comments, we will give now a short overview on the liter-
ature from the finite dimensional case to the infinite one. Starting with [P62],
kernel mode estimation has been widely studied (key references are including
[E80], [E82] and [V96]) while most recent advances are in [ABCO03], [ABC04]
and [HZ04]. Theorem 9.8 can be seen as an infinite dimensional version of
some of the results presented in these references, but of course the state of the
art in finite dimensional setting is quite a bit more developed. In particular,
the links between the smoothing parameter (i.e., the bandwidth) and possible
multimodalities have been widely studied (see for instance [S92], [M95] and
[JMVS95]). Such studies remain a challenge for infinite dimensional variables.
In fact, for functional variables, few authors have studied the mode because of
the under-development of the statistical knowledge on the density estimation
itself. Apart from an earlier work by [G74], the literature on this last topic
seems limited to the recent contributions by [JO97], [D04] and [D04b] (see
also [D02] for more discussion). So, the amount of statistical works about the
infinite dimensional mode is even more restricted since as far as we know it
just involves [DFV06] for theoretical advances and [GHP98] and [DFV04] for
practical ones.

9.8 Conclusions

From a practical point of view, the functional classification methodology pro-
vides good results with respect to our spectrometric dataset. Of course, it
can be improved by producing other more sophisticated semi-metrics or esti-
mations of various features of the functional distribution. With regard to the
semi-metric choice problem, the building of adaptative indices of proximity is
a general and crucial problem which concerns all the methods developed in
this book (see the general discussion in Chapter 13).

It is worth noting that there exist various ways to classify curves but almost
all the methods in the literature come down to standard multivariate tech-
niques. For instance, one can think to classify directly the discretized curves
or their coordinates in some basis expansion. In this way, all standard classifi-
cation methods are usable in the functional data setting (see for instance the
monographs [Go99] and [H97] and the references therein). In particular, other



9.8 Conclusions 147

clustering algorithms such as the k-means one (see e.g. [H75] and [HW79]) can
be used (see [ACMMO3] and [TKO03] for examples of the k-means algorithm
acting on respectively B-spline Fourier expansions of the curves).

Alternatively, in this chapter we presented “pure” functional nonparamet-
ric methods in the sense that we always developed tools especially for tak-
ing into account functional aspects. This unsupervised classification technique
completes the standard curves classification methods. Of course, as it has been
pointed out throughout this chapter, we are fully aware that this chapter is
just a starting point for a new field of functional statistics in which many
aspects deserve further investigation. In particular, one might be interested
in the following question:

Open question 9: What about a fully functional k-means proce-
dure?

The proximity notions discussed in Chapter 13 could be a first step in this
direction. In this spirit, one can mention the recent work by [CF06] which
uses proximities based on the trimmed mean notion for classifying functional
data through k-means algorithm.



Part IV

Nonparametric Methods for Dependent
Functional Data
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An important field of application of functional statistical methods concerns
the analysis of continuous time stochastic processes. Splitting such a process
in several different periods of time allows us to construct a functional data set:
each period of the process being considered as a functional data. The main
feature of such type of dataset is linked with the dependence structure existing
between the statistical units (that is, between the periods). This prevents us
from using directly any satistical method developed for i.i.d. samples in such
a situation. So there is a real interest in looking at how each nonparametric
functional method developed earlier in this book is behaving, both theoret-
ically and from a practical point of view, for dependent data. Because the
guideline of this book is concerning nonparametric models, we focus on well-
adapted dependence structures based on mixing type conditions (alternative
functional parametric dependence structures can be found in [B00]).

This part is organized as follows: In Chapter 10 we will discuss some de-
pendence structure based on mixing processes modelizations, for which the
probabilistic backround is sufficiently developed to allow for theoretical ad-
vances on nonparametric dependent functional data analysis. Not to mask
our main purpose, this probabilistic backround will not be presented in the
main body of the book but quickly recalled and discussed in Appendix A. In
Chapter 11 most of the theoretical results presented earlier for i.i.d. functional
variables are extended to mixing ones. From one part, these extensions are
concerning the prediction results of Part II, and asymptotic results for mixing
variables will be given about kernel estimates of regression, conditional density
and conditional c.d.f. (including their applications to functional conditional
mean, median, mode and quantiles). From a second part, these extensions will
concern the kernel based curves classification method discussed along Part III.
Finally, we will return in Chapter 12 to continuous time processes. It will be
discussed how these advances on functional nonparametric dependent statis-
tics can be applied in forecasting future values of some time series. Through a
quick application to the economic dataset presented before in Section 2.3, it
will also be seen in Chapter 12 how the R and S+ routines presented before
for i.i.d. functional datasets can be useful in this new time series context.

Our main goal in this part is to show how the dependence is acting on
the behaviour of nonparametric functional methods. Therefore, not to mask
this main objective, we have decided to present all the following chapters in
a synthetic way which emphasizes what is changing in the mixing situation
in comparison with the i.i.d. case. In other words, everything which behaves
as in the independent setting will not be discussed in detail but we will make
abundant references to previous parts of this book. This will concern the the-
oretical advances presented in Chapter 11, as well as the applied issues and
the R and S+ routines presented in Chapter 12. Of course, such synthetic pre-
sentations have the drawback of obliging the reader to keep in mind previous
chapters of our book. However, it has the great advantage of highlighting the
influence of the dependence structure, and also to avoid unuseful repetition.
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Mixing, Nonparametric and Functional
Statistics

Modelling dependence is of great interest in statistics. This comes mainly from
the fact that it opens the door for application involving time series. Naturally,
this question should be attacked in the nonparametric functional data con-
text of this book. These statistical motivations will not be discussed in this
chapter but later on in Chapter 12. The aim of this chapter is to recall some
basic definitions, to discuss briefly the existing literature in finite dimensional
setting and to introduce notations and general advances in the functional set-
ting. This will prepare the way for the theoretical advances in nonparametric
functional statistics for dependent samples that will be presented in Chapter
11.

10.1 Mixing: a Short Introduction

Mixing conditions are usual structures for modelling dependence for a se-
quence of random variables. It is out of our scope to present an exhaustive
discussion on this point. A good overview of probabilistic knowledges on this
notion can be found for instance in [Y92] (other references could be [B86] or
[D95]). The reader may be interested also in the monographs by [GHSV89],
[Y94], or [B98] which are centered both on the mixing structures themselves
and on their interest for nonparametric statistics. The monographs [Y93a]
and [Y93b] discuss the interest of mixing for statistical settings other than
nonparametric estimation. Before going into the use of mixing notions in non-
parametric statistics let us first recall some definitions and fix some notations.
In our book we focus on the a-mixing (or strong mixing) notion, which is one
of the most general among the different mixing structures introduced in the
literature (see for instance [RI87] or Chapter 1 in [Y94] for definitions of var-
ious other mixing structures and links between them). This strong mixing
notion is defined in the following way.

Let (&n),,cz be a sequence of random variables defined on some probabilis-
tic space ({2, .4, P) and taking values in some space (§2', A"). Let us denote, for
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—o0 < j<k< 400, by A? the o-algebra generated by the random variables
(&s,J < s < k). The strong mixing coefficients are defined to be the following
quantities:

a(n) = sup sup sup |P(ANB) — P(A)P(B)|.

k- AeAk  BeAl,

The following definition of mixing processes was originally introduced by
[R56].

Definition 10.1. The sequence (§,),,c is said to be a-mizing (or strongly
mizing), if

nhﬁngo a(n) =0.

In the remainder of this book, in order to simplify the presentation of the
results and not to mask our main purpose, we will mainly consider both of
the following subclasses of mixing sequences:

Definition 10.2. The sequence (£n), oy is said to be arithmetically (or
equivalently algebraically) a-mizing with rate a > 0 if

3C >0, a(n) < Cn™"
It is called geometrically a-mizing if

C >0, I € (0,1), a(n) < Ct™

10.2 The Finite-Dimensional Setting: a Short Overview

Since a long time ago, and starting with earlier advances provided for instance
by [R69] or [Ro69], mixing assumptions have been widely used in nonpara-
metric statistics involving finite dimensional random variables. It is really out
of purpose to make here a presentation of the very plentiful literature existing
in this field, but one could reasonably say that almost all the results stated
in finite dimensional nonparametric statistics for i.i.d. variables have been
extended to mixing data. Key previous papers in this direction were those
concerning regression estimation from mixing samples (see for instance [R83]
and [C84]), but now extensions of nonparametric methods for mixing variables
are available in most problems involving density, hazard, conditional density,
conditional c.d.f., spectral density, etc. The reader who would be interested
in having a good overview of all the literature should look at some among
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the following (un-exhaustive) list of works [GHSV89], [T94], [Y94], [B98] or
[FY04].

We will see in Chapter 11 that these general ideas remain true in the setting
of functional dependent samples, since almost all the results stated in previous
parts of this book will be extended to strong mixing infinite dimensional
variables.

10.3 Mixing in Functional Context: Some General
Considerations

Even if the above-discussed nonparametric literature quite often concerns only
finite dimensional variables, it is worth being noted that the general defini-
tions presented in Section 10.1 are available for infinite dimensional variables.
For the purpose of this book we have to deal with random variables taking
values in some semi-metric space. The aim of this section is to present some
general results that will be used throughout this book (this is more specifi-
cally true for Proposition 10.4). These results allow us (at least in our kernel
framework) to treat mixing sequences of f.r.v. by using (mainly) probabilistic
results for mixing sequences of r.r.v. Because these results could be useful for
other purposes than our kernel nonparametric framework and because we did
not find them published elsewhere (at least in a simple enough form directly
applicable for statistical purposes), we have decided to spend some space to
present short proofs of them even if they are clearly going beyond the scope of
our book. The first result concerns the case when (2’ is a semi-normed space
whereas the second one is an extension to semi-metric space. Note that the
second proposition will be intensively used throughout the remainder of the
book.

Proposition 10.3. Assume that {2 is a semi-normed space with semi-norm
[I.Il, and that A’ is the o-algebra spanned by the open balls for this semi-
norm. Then we have:

i) (&n)neg is a-mizing = (|[€nl]), ez is a-mizing;

i4) In addition, if the coefficients of (§n),,cq are geometric (resp. arithmetic)
then those of (|[&nl]),cz are also geometric (resp. arithmetic with the
same order).

Proof. Let & = (&j,,...&j,), with —oo < j1 < ... < j; < 400, be some fixed
subfamily of (£,),,cz - Denote by [|€|[ = (|[&;,]],- .- 11§;]]). Let S (resp. S”) be
the o-algebra on {2 spanned by the family of f.r.v. £ (resp. spanned by the

family of r.r.v. |[¢]]). We will first show that S’ C S.
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Let A € S'. Note first that the function g(.) defined from (£, 4)*" to
(RF, BR+)®l by ¢g(&) = ||¢€]| is measurable. The measurability of the variable
g(&) allows us to write that

IBe B, A= (908 '(B)=¢"og (B),
On the other hand, the measurability of g allows us to write that, for this B:
3C € A% C =g 1(B).
In such a way that A € S, since we have proved that:
3C € A% A=¢71(0).

So we have now proved that S’ C S. This result implies that, if ae(n) (resp.
ag(¢e)(n)) denotes the coefficients of the sequence (&), o, (resp. of the sequence

(11€nl1)pez), we have:
Vn, ag(n) = age)(n),

which is enough to prove all the assertions of this proposition. [J

Proposition 10.4. Assume that £’ is a semi-metric space with semi-metric
d, and that A’ is the o-algebra spanned by the open balls for this semi-metric.
Let x be a fized element of 2 and put X; = d(&;,x). Then we have:

i) (§n)peyz is a-mizing = (d(&n, 1)), cq s a-mizing;

i) In addition, if the coefficients of (§,),,cq are geometric (resp. arithmetic)
then those of (d(§n, %)),y are also geometric (resp. arithmetic with the
same order).

Proof. Use the same notation as in the proof of Proposition 10.3, with the
only change that ¢ is now defined by ¢(&) = (d(&j,,x),...d(&;,,x)). This
being again a measurable function, all the arguments developed before in the
proof of Proposition 10.3 remain valid. [

10.4 Mixing and Nonparametric Functional Statistics

The aim of Part IV of our book is to show how the mixing ideas can be com-
bined with the nonparametric kernel functional statistical methods presented
in Parts II and III. Theoretical advances will be developed in Chapter 11 while
computational issues will be discussed in Chapter 12. Before doing that, let
us recall or fix some notations and give a specific formulation of Proposition
10.4 that will be useful throughout the remainder of our book.



10.4 Mixing and Nonparametric Functional Statistics 157

As before in this book, we will consider a statistical functional sample
X1q,..., X, composed of functional variables each having the same distri-
bution as a generic functional variable X'. This functional variable X takes
values in some semi-metric space (F,d). In addition x (resp. y) is a fixed el-
ement of E (resp. of R), N, (C E) is a neighbourhood of x and S is a fixed
compact subset of R. The main novelty in the rest of Part IV is that the data
X1,..., X, will not be assumed to be independent but to be n consecutive
terms of a sequence satisfying the strong mixing condition presented in Defi-
nition 10.1. In all the following, we will denote by a(n) the mixing coefficients
associated with this functional mixing sequence.

As before, K being some kernel function, h being some real positive
smoothing parameter, one will have to consider the following locally weighted
variables (see general discussion in Chapter 4):

K (d(X;LLXf,))
A; = . (10.1)

(x5

By applying directly Proposition 10.4, we get the following result that will
be used throughout the following chapters.

Lemma 10.5.

i) (Ai)i:L“_H are n consecutive terms of some a-miring sequence of r.1.v.;

it) In addition, if the coefficients of the fr.v. (X;),_, , are geometric
(resp. arithmetic) then those of (A4;) are also geometric (resp.
arithmetic with the same order).

1=1,...n
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Some Selected Asymptotics

The aim of this chapter is to give extensions to dependent data of several
asymptotic results presented in Parts II and IIT of this book. This chapter
is exclusively theoretical, while statistical applications in time series analysis
and computational issues are reported in Chapter 12. Sections 11.2, 11.3 and
11.4 will concern the question of predicting some real-valued random response
given a functional explanatory variable. Along these previous sections, some
auxiliary results about conditional distribution estimation are stated. Section
11.5 is specially devoted to the presentation of these results. Then, Section
11.6 will be concerned with the discrimination problem. Our main goal in this
chapter is to show how the dependence is acting on the asymptotic behaviour
of the nonparametric functional methods. So, we have decided to present the
results by emphasizing (on the hypothesis, as well as on the statement or on
the proofs of the results) what is new with a-mixing variables compared with
the standard i.i.d. case.

11.1 Introduction

There are always great motivations for studying the behaviour of any statisti-
cal method when the usual independence condition on the statistical sample
is relaxed. The main reason for this comes from the wish to consider sta-
tistical problems involving time series. Of course, this question also occurs
with nonparametric functional methods. The aim of this chapter is to provide
some theoretical supports about the behaviour on dependent samples of the
methods proposed in previous parts of this book. This will be done by means
of some almost complete convergence results under mixing dependence mod-
elling that will show the good theoretical behavior of the kernel methods for
functional dependent statistical samples. A similar idea, but from a practical
point of view, will be supported in Chapter 12.

The chapter is organized as follows: Sections 11.2, 11.3 and 11.4 will cover
the question of predicting some real valued random response given a functional
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explanatory variable. Each of these three sections will attack this problem by
means respectively of regression estimation, of functional conditional mode
estimation and of functional conditional quantile estimation. Nonparametric
estimation is carried out by means of kernel methods, and complete conver-
gence type results will be stated under some strong mixing assumption on
the statistical sample. Section 11.5 will present asymptotic results for kernel
estimation of conditional density and c.d.f. under mixing assumption. In other
words, these four sections will show how the results stated in Chapter 6 for
i.i.d. variables remain true in dependent situations. In the same spirit, Sec-
tion 11.6 is concerned with the discrimination problem. By means of almost
complete type results, it will be shown how the kernel supervised classifica-
tion method behaves asymptotically for discriminating a sample of mixing
curves. In other words, Section 11.6 will extend to mixing samples the results
stated in Chapter 8 for i.i.d. variables. As for the independent case, the con-
vergence properties are obtained under continuity-type models whereas rates
of convergence need Lipschitz-type models.

Our main goal in this chapter is to show how the dependence is acting
on the asymptotic behaviour of the nonparametric functional methods. So,
we have decided to present our results by emphasizing what is new with
mixing variables compared with the standard i.i.d. case. This concerns the
presentation of the hypothesis and the statements of the main results. We
will highlight how the mixing coefficients are changing (or not) the rates of
convergence of the estimates. In the same spirit, our proofs will be rather
short (but complete), since we only have to pay attention to the parts for
which the dependence structure has some effect (basically the covariance terms
in our asymptotic expansions). The other parts (basically bias and variance
terms) are behaving as for i.i.d. variables and they will be quickly treated
just by refering to previous parts of this book. Of course, such a synthetic
presentation has the drawback of obliging the reader to keep in mind previous
chapters. However, it has the great advantage of highlighting the influence
of the dependence structure on the rates of convergence. It also helps avoid
useless repetitions of tedious calculous and notations.

11.2 Prediction with Kernel Regression Estimator

11.2.1 Introduction and Notation

We wish to attack the same problem as described in Chapter 5 but under
some dependence assumption on the statistical variables. Precisely, we have
to predict a scalar response Y from a functional predictor X and we will use
the nonlinear regression operator r defined by:

r(x) =EY|X = x). (11.1)

Recall that X is a functional random variable valued in some semi-metric
space (E,d), Y is a real random variable, and x is a fixed element of FE.
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Let (X;,Y;)i=1,...n be n pairs being identically distributed as (X,Y) and
satisfying the strong mixing condition introduced in Definition 10.1.

As motivated in Section 5.4 for independent variables, the following kernel
estimator of the nonlinear operator r can be proposed:

i Yi K (h~1d(x, X))
Yim K (Rt d(x, X4))

where K is an asymmetrical kernel and h (depending on n) is a strictly positive
real.

r(x) = (11.2)

11.2.2 Complete Convergence Properties

The first result of this section is Theorem 11.1 below which is stated in a
quite general fashion. This result extends both Theorems 6.1 and 6.11 to
mixing variables. The only change, in comparison with what hapens in i.i.d.
setting, is appearing through a modification of the second part in the rates of
convergence. This comes from the fact that under dependence modelling this
second term is now including covariance terms, while the first term (which
corresponds to bias effects) is not stochastic and therefore is not affected by
the suppression of the independence assumption between the variables. Our
Theorem 11.1 is presented in a general way in which the influence of the
mixing structure is controled by the following quantities:

sn2 =Y cou(YiA;,Y;4), (11.3)

i=1 j=1

Sp,1 = ii cov(A;, Aj) (11.4)

where
K (hild()ﬁ Xz))
E K (h=td(x, X1))

In the following, s, will denote some sequence of positive integers. This se-
quence will differ according to each result presented below and it will be
explicitly specified in each situation, but to fix the ideas let us just say here
it will be one among the s, ; defined just before. In comparison with the
i.i.d. results given in Theorems 6.1 and 6.11 some additional assumptions are
needed in order to control the covariance effects. They consist in assuming
either that

4; =

(X;,Y:)i=1,...n are strongly mixing
with arithmetic coefficients of order a > 1, and (11.5)
30 > 2,5, = o(n=?),

or that
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(X;,Y:)i=1,.. n are strongly mixing
with geometric coefficients, and (11.6)
30 > 1,5, = o(n7Y).

) 9n

From a technical point of view it is worth noting that, because of Lemma
10.5, the variables A; (as well as the variables Y;4;) are mixing real random
variables. This will be used implicitly throughout the remainder of the chapter.
In particular, this fact makes it possible to apply any among the probabilistic
inequalities for real variables described in Section A.3 of Appendix A.

Theorem 11.1. Put s, = max{sy 2, Sn,1} and assume that either (11.5) or
(11.6) is satisfied, then:
i) Under the conditions of Theorem 6.1 we have:

lim 7(x) = r(x), a.co.,

n—oo

it) Under the conditions of Theorem 6.11 we have:

«/s%logn)

n

?(X) - T(X) =0 (hﬁ) + Ou.co. (

Proof. Let us use the notation introduced in the decomposition (6.7). Because
we can write

- RN
ra(x) = EZYiAi,
i=1

the condition (11.5) (resp. the condition (11.6)) allows to apply a Fuk-Nagaev
exponential inequality . More precisely, Corollary A.12-i (resp. Corollary A.13-

i) leads directly to:
\ /53172 logn
. (11.7)

?Q(X) _E?Q(X) = Oa.co‘ n

By the same arguments, since

_ 1<
nx) =~ A (11.8)
i=1
we have
E?l (X) = ]-7
and

\/52 1 logn 1o

?I(X) -1 = Oa.co. n
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Finally the proof of Theorem 11.1-i (resp. of Theorem 11.1-ii) follows directly
from (6.7), (11.7), (11.9) and from Lemma 6.2 (resp. from Lemma 6.12). O

The general results given in Theorem 11.1 before can be formulated in
several different specific ways, according to the information we have about the
covariance term s2. This term depends directly on the properties of the joint
distribution of two distinct pairs (X;,Y;) and (X;,Y;) and on the behaviour
of the mixing coefficients. To fix the ideas and to stay with simple formulations
of the results, we will just give below two specific sets of conditions (one for
geometric and one for arithmetic coefficients) under which this covariance term
has the same behavior as in i.i.d. setting. These results on the covariance term
s2 are stated in Lemmas 11.3 and 11.5 below, and their application to the
rates of convergence of the nonparametric functional kernel regression estimate
are stated in Corollaries 11.4 and 11.6. Other formulations of these corollaries,
more general but more complicated in their writing, can be obviously obtained
but they are not presented here in order not to mask our main purpose. Some
of them can be found in [FV04].

11.2.3 An Application to the Geometrically Mixing Case

We need the following additional assumptions on the distribution of two dis-
tinct pairs (X;,Y;) and (X;,Y;) and on the bandwidth h. We will assume
that

Vi # 4, E(Y;Y;|(X;, X)) < C < oo, (11.10)

and that the joint distribution functions
Yij(h) = P((Xi, X;) € B(x,h) x B(x,h)),

satisfy
Je1 € (0,1], 0 < ¥y (h) = O (py(h)' 1), (11.11)

where
Px(h) = max; ;(h).
i#]

Before going ahead it is worth spending a short moment to discuss the con-
dition (11.11) which may appear quite restrictive but which is indeed much
more general than what is usually introduced in finite dimensional setting.
This is precisely explicited in the next remark, which is just a special case of
Lemma 13.13 that will be stated later on this book.

Remark 11.2. In the special case when the space E = R¥_ the condition (11.11)
is satisfied with e = 1 as soon as each pair (X;, X;) as a density f; ; with
respect to the Lebesgues measure on R?* such that sup; ; fij (x,x) <C < oo.
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We also need the following additional condition on the bandwidth:

Jez € (0,1), ¢y (h) =0 (n=). (11.12)

Lemma 11.3. Assume that the conditions of Theorem 6.11 hold. Assume
also that (X;,Y;)i=1,....n is a geometrically mizing sequence satisfying (11.10),
(11.11) and (11.12). We have forl =1 or 2:

Proof. e 1In a first attempt, note that the conditions (11.10) and (11.11)
allow to write for any i # j:

E(Y;AiY;4;) = E (A AE(YY; (X, X;))) < CEAA;

C
< ——EK (h7Hd(y, X)) K (b d(x, X)),

oy (h)
the last inequality coming from the definition of the A;’s and from the
result (6.10) applied with m = 1. Because K is bounded with compact
support, we have directly from the definition of the function v, (.):

E(AY;4A)) < f)g (X0, ;) € By, h) x B(x. 1))
. O )

(h)?

ox(
By using now the result (6.9) with m = 1 and by introducing the notation,

¥(h) = max{ ;/}:(ZL))Z , 1},

we arrive at:
lcov(Y; A, Y;4;)] < [E(Y;A:Y;4;)] + [E(Y; 4:) [[E(Y; 4;)|
<O (W(h)). (11.13)

e Let us treat now the term 8%)2, and write the following decomposition:

33172 = ivar(Y;A Z Z cov(Y;A;,Y; Aj)

i=1 0<i~ j|<vn

+) 0> con(YiALY;A)), (11.14)

li—j [>vn
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where v,, can be any sequence of positive real numbers. The first term in
right-hand side of (11.14) can be treated by means of (6.8). The second one
can be treated by means of (11.13). The third one can be treated by using
the covariance inequality given in Proposition A.10-ii. We arrive finally at:

25=0 <%;h)> + O(nvnW(h))

+ 0 [ (E@PA))EXPAND D3 alj —il)! 77 | (11.15)

li=j [>vn

By using (6.9) now together with the geometric assumption on the mixing
coefficients, we have for some 0 < ¢ < 1:

25=0 (%:Zh)) + O(nvnW(h))

+0 (12Mn2t“n(1—i>> . (11.16)
ox(h)~ 7

Note that, because the kernel K is bounded and because Y satisfies the
moment condition (6.4), the last result is available for any p > 2. Choosing
now v, = @, (h)~ allows us to treat the second term in the right-hand
side of (11.16) and to get:

322 :O( " ) + O #thm)i(ﬁfﬁl
b ox(h) NONE

n n 1 7%
—O<<px(h)) + O (wx(h) (cpx(h)}?z)ne NO) )7

for some b > 0. So, for any 1 > 0, we have:

=0 (5) + 0 (G Cetm)
=0 (<an(h)> . (11.17)

The last result coming directly from the condition (11.12) and by taking
7n large enough.
By applying this result to the special case when ¥ = 1, we get

$2, = 0<%:Eh)>. (11.18)

So, Lemma 11.3 is proved. [J
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Corollary 11.4. Assume that the sequence (X;,Y;)i=1,..n is geometrically
mixing. Assume that the conditions of Theorem 6.11 hold together with
(11.10), (11.11) and (11.12). Then we have:

") —r(x) = O(h[")+0a.w.< n;of&)) (11.19)

Proof. 1t suffices to combine Theorem 11.1 with Lemma 11.3. To do that it
is necessary to check that condition (11.6) holds, but this follows obviously
from (11.12) and Lemma 11.3. O

11.2.4 An Application to the Arithmetically Mixing Case

Let us give now some similar result for arithmetic mixing variables.

Lemma 11.5. Assume that the conditions of Theorem 6.11 hold, and that the
sequence (X;,Y;)i=1,... n is arithmetically mizing with rate satisfying

1+€2
€162

If in addition the conditions (11.10), (11.11) and (11.12) are satisfied, we
have forl =1 or 2:
2, =0 (n)
! ox(h)

Proof. We can follow the same steps as for proving Lemma 11.3 before, and
so this proof will be presented in a shorter way. Note that the result (11.15)
is still valid. So, by using (6.9) together with the arithmetic condition on the
mixing coefficients, we get directly from (11.15) that, for any p > 2:

2,=0 (Saxn(h)) + O(m}nu'/(h))

+0 <12p—2n2vna(1’“ )
oy (h)"7

Choosing again v, = ¢, (h)~ allows us to treat the second term in the
right-hand side of (11.21) and to get:

1 2
Sn2 =0 (”) + O [ ——g=n?ey(h)* %)
2 ‘Px(h) @X(h)pT X

So(2) o (e =)

a > (11.20)
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Because of condition (11.20), it is always possible to choose p such that

62(”_2)2%_1) > 1. So, by choosing such a value for p and by using the condi-

tion (11.12), we arrive at:

e =0 <‘f’xréh)> v (%:Eh) (nl_QW))
- <<P>;h)> '

By applying this result to the special case when Y = 1 we get directly

The proof of Lemma 11.5 is finished.[]

Corollary 11.6. Assume that the sequence (X;,Y;)i=1,... n is arithmetically
mizing with order a. Assume that the conditions of Theorem 6.11 hold to-
gether with (11.10), (11.11), (11.12) and (11.20). Then we have:

) —r(x) = O(hﬁ)+0a.co.< %). (11.21)

Proof. Tt suffices to combine Theorem 11.1 with Lemma 11.5. To do that it
is necessary to check that condition (11.5) holds, but this follows obviously
from (11.12) and Lemma 11.5. O

11.3 Prediction with Functional Conditional Quantiles

11.3.1 Introduction and Notation

We will now attack the prediction problem of the scalar response Y given the
functional predictor X by mean of functional conditional quantiles. Our aim is
to show how the asymptotic results stated in Chapter 6 about conditional c.d.f.
and conditional quantiles can be extended to a-mixing functional samples.
Before doing that, let us recall some general notations and definitions (see
Section 5.2 for details). The nonlinear conditional c.d.f. operator is defined
by:

Yy €R, F{¥(x,y) = P(Y <y|X = x), (11.22)

while the conditional median, and more generally the conditional quantile of
order o € (0,1) are respectively defined by
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m(x) = inf {y € R, F{¥(x,y) > 1/2}, (11.23)

and
ta(x) =inf {y € R, F¥(x,y) > a}. (11.24)

As discussed in Section 5.4, kernel smoothing ideas can be used to estimate
nonparametrically these nonlinear operators. Precisely, kernel estimates of
F¥, to(x) and m(x) are respectively defined by:

= - -t i y-Yv
FY (x.y) = e K(Zhald?’(,ff)dg (ii))(y Y))’ (11.25)

ta(x) = inf{y eR, F¥(x,y) > a}, (11.26)
and R
m(x) = t1(x)- (11.27)

In these definitions K is an asymmetrical kernel, H is some integrated ker-
nel, while h and g are nonnegative smoothing parameters (depending on the
sample size n).

11.3.2 Complete Convergence Properties

The presentation of the results will follow the same lines as in Section 11.2.2
for regression estimation. To save space, we will present directly the results
for the estimation of any conditional quantile ¢, (), without stating explicitly
results for the conditional median. Of course, they can be directly obtained
by taking o = 1/2. A previous general result is stated in Theorem 11.7 below,
in order to extend both Theorems 6.8 and 6.18 to mixing variables. For the
same reasons as in Section 11.2.2, the influence of the mixing structure on the
rates of convergence will be seen through the following quantities:

sn30 =YY cou(Li(y)Ai, I;(y)4;), (11.28)

i=1 j=1

n

snai =y coo(T () A, IV (y)Ay), (11.29)

i=1j=1
and .
Sp1 = Z Z cov(A4;, 4;j), (11.30)
i=1 j=1
where

K (hild()ﬁ Xz))

Y= ER (g, 20)

and
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Liy)=H(9 ' (y—Yi)).
In the following s,, will denote some sequence of positive integers. This se-
quence will differ according to each result presented below and it will be
explicitly specified in each situation, but to fix the ideas let us just say here it
will be one among {s,,.1,8p,3,,{ =0...j}. In comparison with the i.i.d. results
some additional assumptions are needed in order to control these covariance
effects. They consist in assuming either that

(Xi,Y:)iz1,..n are strongly mixing
with arithmetic coefficients of order a > 1, and (11.31)
30> 2,5, = o(n),

or that
(X;,Y;)i=1,. n are strongly mixing
with geometric coefficients, and (11.32)
30 > 1,5, = o(n?).
Theorem 11.7. i) Put s, = max{s,1,5n30}, and assume that either

(11.81) or (11.32) is satisfied together with the conditions of Theorem 6.8.
Then we have: R
lim t,(x) = ta(x), a.co.

n—o0

it) Put sp, = max{sn.1,5n,31,l =0...7}, and assume that either (11.31) or
(11.32) is satisfied together with the conditions of Theorem 6.18. Then we
have:

ta(x) = talx) = O ((hﬁ+gﬁ);) + Oug.co. <(5%10gn>23) |

n2

Proof. This proof is based on previous results concerning the estimation of
conditional c.d.f. nonlinear operator Fy¥ by the kernel estimate F}¥ (see
Lemmas 11.8, 11.9 and 11.10 below).

i) Apart from Lemma 6.5, the proof of Theorem 6.8 was performing along
analytic deterministic arguments and is therefore not affected by the suppres-
sion of the independence condition between the variables. In other words, the
proof of Theorem 11.7-i follows directly along the same lines as the proof of
Theorem 6.8, but using Lemma 11.8 below in place of Lemma 6.5.

ii) Similarly, the proof of Theorem 11.7-ii follows directly along the same lines
as the proof of Theorem 6.18, but using Lemmas 11.9 and 11.10 below in place
of Lemmas 6.14 and 6.15.00

Lemma 11.8. Under the conditions of Theorem 11.7-i, we have for any fixed
real point y: R
lim F¥(y) = Fy(y), a.co.

n—oo
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Proof. This proof is performed over the same steps as the proof of Lemma
6.5, and when necessary, the same notation will be used. Because the kernels
K and H are supposed to be bounded, the term 73(x) can be written as a
sum of bounded mixing variables

So, the condition (11.31) (resp. the condition (11.32)) allows to apply Corol-
lary A.12-ii (resp. Corollary A.13-ii) and to get directly that

v o o8 (11.33)

?3(X) _E?Z’)(X) = Oa.co. n

Finally the proof of Lemma 11.8 follows directly from (6.18), (6.19), (11.9)
and (11.33). O

Lemma 11.9. Under the conditions of Theorem 11.7-ii, we have for any fixed
real point y:

e n »on 21
FX(y) — FX(y) = 0<h5+gﬁ) 4 Ouco. (‘/(max{s ’3’2 Sn.1}) Ogn) .

Proof. This result follows directly from (6.18), (6.75), (11.9) and (11.33). O

Lemma 11.10. Let | be an integer l € {1,...,j} and y a fized real number.
Under the conditions of Theorem 11.7-1i, we have:

lim ﬁ;ﬁ(l)(y) = F;f(l)(y)7 a.co.

n—oo

If in addition the condition (6.81) is satisfied, then we have

(max{sy 3, Sn,1})%log n)

X0y XD~ O BBy b v
FY (y) - FY (y) - O(h +g 0) + Oa.co. < nng*l
Proof. This proof is similar to the proof of Lemma 6.15, and we will use the
same notation as those introduced in the decompositions (6.83) and (6.87). It
follows from (6.87), (6.88) and (6.89), and by using the Fuk-Nagaev exponen-
tial inequality given in Corollary A.13-ii, that

\/82 5 logn
Odacco. | —— | - (11.34)

(1)
73 ( "

) — B (x,y) =

The first assertion of Lemma 11.10 follows directly from (6.83), (6.85), (11.9)
and (11.34). Similarly, the second assertion of Lemma 11.10 follows from
(6.83), (6.86), (11.9) and (11.34).0
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The general result given in Theorem 11.7-ii can be formulated in several
different specific ways, according to the knowledge we have about the covari-
ance terms s2. As before in regression (see discussion in Section 11.2), we will
only present below two special cases (those for which the covariance terms
have the same behaviour as in i.i.d. setting). More general formulations can
be found in [FRV05]. These results on the covariance term s2 are stated in
Lemmas 11.11 and 11.13 below, and their application to the rates of conver-
gence of the nonparametric kernel conditional quantile estimate are stated in
Corollaries 11.12 and 11.14. The conditions are similar to those appearing in

regression (see Remark 11.2). Precisely, we will assume that
Je1 € (0,1), 0 < thy (k) = O (py(h)' ), (11.35)
Ses € (0.1), gy (h) = O (n™2), (11.36)
and that for any i # j:

The conditional density f; ; of (Y;,Y;)
given (X;, X ;) exists and is bounded. (11.37)

11.3.3 Application to the Geometrically Mixing Case

We will show in this section that the rates of convergence of the nonparametric
kernel conditional quantile for geometrically mixing variables can be the same
as for i.i.d. ones.

Lemma 11.11. Assume that the conditions of Theorem 6.18 hold. Assume
also that (X;,Y:)i=1,... n is a geometrically mizing sequence satisfying (11.35),
(11.36) and (11.37). We have

n
X

N ) L—
Sn,3,1 g(2l_1)g@x(h)

Proof. e This proof is performed over the same lines as the proof of Lemma
11.3 above. Some details will be therefore omitted. It is based on the
following decomposition, which is valid for any [ =0, ... j.

Sl = ivarwﬂ)(ymi) 303 o (TP, 1 ()4,

0<|i— j|<vn,

+3°Y cov (r“ )AL Ty )AJ) : (11.38)

l[i—j |>vn

and for anyl=1,...5:

where v,, can be any sequence of positive real numbers.
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e Let us first prove the result of Lemma 11.11 for [ = 0. Because H is
bounded, we can apply directly the result (11.13) to get:

cov (I (y) A, T () A;) = O ((h)) , (11.39)

where

¥(h) = max{ ;/):((hh))z , 1}

The first term on the right-hand side of (11.38) can be treated by means
of (6.85) and (6.89). The second one can be treated by means of (11.39).
The third one can be treated by using the covariance inequality given in
Proposition A.10-ii. We arrive finally at:

240 = o( h) + O(m}n ()
( mp nQa(vn)l—i>
O(sox(h)> ’ O<nv” (h))

1 2
+0 (2,1,_271204(11”)1_19) , (11.40)
ox(h

p

the last inequality following directly from the boundedness property of H
and for the result (6.9) on higher moments of A;. It suffices now to take
Un, = @y (h) ™! to treat the second term on the right-hand side of (11.15)
and to use the geometric condition on the mixing coefficients to get, for
some 0 <t <1

1 _p=2
§n3,0 = 0< T > + O | ———gmgntr ™
,3,0 (Px(h) @X(h) pp
= O (n> + O %Hn%_*’x(# 5
ex(h) ox(h) 7

for some b > 0. This is enough, because of condition (11.12), to show that

s250=0 ( o ) .
30 oy (h)

e Let us now prove the result of Lemma 11.11 for I € {1,...5}. Using the
same arguments as those invoked to prove (6.89), and using the condition
(11.37) on the joint conditional distribution, we have for any i # j:

EFi(l)(y)AiFj(l)(y)Aj =
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1

ZFE (AiAj . H(l)( p )H(l)(gz)fi,j(UhUz)dulChQ)

= gzl—QE <AiAj 2 H(l)(vl)H(l)(Uz)fz‘,j (y —gv1,Yy — 902)dv1dvz>

1
g

1 1
g2l72 QD(h)Q

i,j(h
oty .

By the same kind of aguments, we have for any p > 0:

O par — L p 0] X )
Brray = i (A [ O e
1

= rE (A’; [ O - v)dv)

P((X“XJ) € B(X7h) X B(X>h))

~0 (gplll(p(h;pJ , (11.42)

where the last bound comes directly from the inequality (6.11). Finally,
we get directly from (11.41) and (11.42):

cov (I (1) Ai, TV (y) Aj) = O <§2§hl) : (11.43)

On the other hand, the result (11.42) together with the covariance inequal-
ity given in Proposition A.10-ii, leads directly for any p > 0 to:

cov(r' O i) = —1 alt — )
(I () A T (y) 4y) O(]E(Fl(“(y)Al)% (It —40) )

1 1
- O( FIIED) s=ralli— i) ) (11.44)
g 7 ex(h)r

Recall that the variance term is the same as in the i.i.d. setting, and so
we have directly from (6.85) and (6.89) that:

0 1
var(I; 7 (y)4;) =0 () . (11.45)
97Ty (h)
The first term in the right-hand side of (11.38) can be treated by (11.45).
The second one can be treated by means of and (11.43), while the third
one can be treated by using (11.44). We arrive finally at:
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> _of_n w(h)
Snau =0 (92’190x(h)) ’ O<m”92”)

1 1 s
+0 ( 2(pl—1) 2p—2 71205(1}n)1 p) . (1146)
g

P Py h)~»

By choosing v, = g7 ¢, (k)™ and according to (11.35) the second term
on the right-hand side of (11.46) becomes of lower order than the first one,
and because the mixing coefficients are geometrically decaying we arrive,
for some 0 < ¢t < 1 and for some b > 0, at:

2 n 1 7‘
o =0\ =i, + o 2(pl—1 n tpy«px(h) 1
,3,1 (921190)((]1)) < 2(pl—1) z ) (h) pr 5 )
n 1 o
=0 <g2l_1<,0x(h)> + O < EIFIE) ) T n-e TN )

n b
=0 <> + O p > ne T (T .
g Tox(h) ( “hex() \ (ggn () ))

So we have for any n > 0:

P — _n i ! n n
naa =0 <921_1‘Px(h)> o (g”—lwx(h) <(g<px(h))p;2 (geox(h)) ))

which is enough, because of condition (11.36), to show that

230=0 (i ) + O e~ ).
573,3,0 1o (h) + 921—1(’0)((;1)” ?

Taking 1 large enough, we arrive at:

2 - n
St =0 <921‘1¢X(h)> '

Corollary 11.12. Assume that the sequence (X;,Y;)i=1,.. n is geometri-
cally mizing. Assume that the conditions of Theorem 6.18 hold together
with (11.35, (11.36) and (11.37). Then we have:

() = ta(x) = O<(h5+gﬁ)§> * Onee <<m)>
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Proof. By combining the results of Lemma 11.9, Lemma 11.10 and Lemma
11.11, we arrive directly at both of the following results which can be seen
as extensions to arithmetically mixing variables of the Lemmas 6.14 and 6.15
stated before in the i.i.d. setting:

RY0) = B0 = O( +4%) + Oves ((H205)).

and
! ~x( ) logn 3
FEO(y) - ROy = O(hﬁ+gﬁ) + Oq.co. ((ngzllcpx(h)) )

So, the proof of Corollary 11.12 follows exactly along the same lines as the
proof of Theorem 6.8, but using these two previous results in place of Lemmas
6.14 and 6.15.0

11.3.4 Application to the Arithmetically Mixing Case

We will give now similar results but for variables satisfying the arithmetic
mixing condition.

Lemma 11.13. Assume that the conditions of Theorem 6.18 hold. Assume
also that (11.35), (11.36) and (11.37) are satisfied and that (X;,Y;)i=1,... n iS
an arithmetically mixing sequence with order such that:

146
€1€2 .

o = 0(5m).
ox(h)

1 n
far = 0y ).
SRRV PN

Proof. This proof is performed over the same steps as for proving Lemma
11.11 before, and is based on the decomposition (11.38).

a >

We have

and for anyl=1,...5:

e Let us first prove the result of Lemma 11.13 for [ = 0. Note that the result
(11.40) is still valid in the arithmetic mixing setting, since its statement
did not need any specific form for the mixing coefficients. It suffices to take
Un, = @y (h) 7" to treat the second term on the right-hand side of (11.15)
and to use the arithmetic condition on the mixing coeflicients, to get:
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$p30=0 (@;(Lh)) +0 ((W"zwx(h)ael(l_§)>
=0 ( ) + o (S (me ™))

-o(Gm) + o (Gm 077 ).

This result being true for any p and because of condition (11.47), it is
always possible to choose p such that EQW > 1, and so we have

the claimed result
9 n
Sis0=0—=—=].
30 (‘Px(h))

e Let us now prove the result of Lemma 11.13 for [ € {1,...;j}. Note that
the result (11.46) is still valid. By choosing v, = g~y (h) ™' we can treat
the second term on the right-hand side of (11.46), and because the mixing
coefficients are arithmetically decreasing with order a, we arrive at:

2 —
1
+ =z

n
Py (
1 2 erya(l—2)
2(pl—1) 2p—2 IV (gwx(h) ) P
g oy (h)

P

@)

p

=0 (rem)

n 1 n ael(p;Q)
o0 (9”‘1%«(’0 <<gsax<h>>”f o) ))

This result is true for any p. In the other hand, because of condition
(11.47), it is always possible to choose p such that

G2 Aea -1

p

So, by choosing such a value for p and by using condition (11.36), we have
the claimed result

2 n n l—e (<p—2)(’aq—1))>
5,31 =0 5——~~| + O (n 2 »
! (gmlsox(h)) 97 Loy (h)

=0 ()
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Corollary 11.14. Assume that the sequence (X;,Y;)i=1,.. n s arithmeti-
cally mizing with rates satisfying (11.47). Assume that the conditions of
Theorem 6.18 hold together with (11.35), (11.36) and (11.87). Then we

have:
a0 i) = 0((1+0%)’) + 0 ((255)")

Proof. By combining the results of Lemma 11.9, Lemma 11.10 and Lemma
11.13, we arrive directly at both of the following results which can be seen
as extensions to arithmetically mixing variables of the Lemmas 6.14 and 6.15
stated before in the i.i.d. setting:

RY0) = B ) = 01+ ") + Onen ( (20507,

and

~ logn 3
PW@—@W@=%WMM+QWQWM@@))
X

So, the proof of Corollary 11.14 follows exactly along the same lines as the
proof of Theorem 6.8, but using these two previous results in place of Lemmas
6.14 and 6.15.0J

11.4 Prediction with Conditional Mode

11.4.1 Introduction and Notation

We will now attack the prediction problem of the scalar response Y given
the functional predictor X by means of functional conditional mode, and we
will see how the asymptotic results stated in Chapter 6 about conditional
density and conditional modes behave for a-mixing functional samples. Let
us recall some general notations and definitions (see Section 5.2 for details).
The nonlinear conditional density operator is defined to be the density of the
conditional c.d.f. F§¥ defined in (11.22). Under differentiability assumption,
it can be written as:

0

The conditional mode, which is assumed to exist on some subset S C R, is
defined by:

0(x) = argsup fi¥ (x,y). (11.49)
yeS
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As discussed in Section 5.4, kernel smoothing ideas can be used to estimate
these operators nonparametrically. Kernel estimates of f;¥ and 6(x) are re-
spectively defined by:

~ g Y K (N X)) Ko (97! (y - Ya)
ew = S K (T d(y, X)) |

(11.50)

and R R
0(x) = argsup fi¥ (x,y)- (11.51)
yeSs
In these defnitions K is an asymmetrical kernel, K, is a symmetrical ker-
nel, while h and g are nonnegative smoothing parameters (depending on the
sample size n).

11.4.2 Complete Convergence Properties

The presentation of the results will follow the same lines as in Section 11.2.2
for regression and in Section 11.3.2 for quantile estimation. A previous general
result is stated in Theorem 11.15 below, in order to extend both Theorems 6.6
and 6.16 to mixing variables. As before, the influence of the mixing structure
on the rates of convergence will be seen through the following quantities:

Sp4 = ZZ cov($2;(y) Ai, £2;(y)4;), (11.52)

i=1 j=1
and o
Sn1 =YY cov(di, Ay), (11.53)
i=1 j=1
where
" EK (hmld(x, X1))’
and

In comparison with the i.i.d. results we need some additional assumptions. In
the following, s,, denotes some sequence of positive integers. This sequence
will differ according to each result presented below and it will be explicitly
specified in each situation, but to fix the ideas let us just say here that it will
be one among the s, ; defined just before. Recall that { was defined along the
condition (6.31). Firstly, we will assume either that

(X;,Y;)i=1,... n are strongly mixing
with arithmetic coefficients of order a > 1, and (11.54)
30 > 2(1+¢), 50T = o(n?),
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or that
(X;,Y;)i=1,... n are strongly mixing
with geometric coefficients, and (11.55)
30 > 1,5, = o(n?).
Theorem 11.15. i) Put s, = max{s,1,Sn4}, and assume that either

(11.54) or (11.55) is satisfied together with the conditions of Theorem 6.6.
Then we have:

~

lim 6(x) = 0(x), a.co.

n—oo

it) Put sp, = max{sn 1,5n,31,l =0...75}, and assume that either (11.54) or
(11.55) 1is satisfied together with the conditions of Theorem 6.16. Then we

have:
300 =000 = 0 ((#+%)" ) + 0w ((22E2) 7).

Proof. This proof is based on previous results concerning the kernel estimate
[+ of the nonlinear conditional density operator (see Lemmas 11.16 and 11.17
below).

i) Apart from Lemma 6.7, the proof of Theorem 6.6 was performed only
along analytic deterministic arguments and is therefore not affected by the
suppression of the independence condition between the variables. So, the only
thing to do is to prove that the result of Lemma 6.7 remains true in mixing
situations. This will be done in Lemma 11.16 below. In other words, the proof
of Theorem 11.15-1 follows directly from (6.33) and Lemma 11.16.

ii) Similarly, the proof of Theorem 11.15-ii needs an extension of Lemma
6.17 to dependent variables. This will be done in Lemma 11.17 below. Said
differently, the result of Theorem 11.15-ii follows directly from (6.98) and by
applying Lemma 11.17 below with I = 1 and S = (8(x) — &,0(x) + £). Note
that this is valid since 5,4 = s,,3,1.0

Lemma 11.16. Under the conditions of Theorem 11.15-i, we have for any
compact subset S C R:

Jim. sup 1) — fF)] = 0, a.co.

Proof. e This proof follows the same lines as the proof of Lemma 6.7, and we
wil present it in a rather brief way. Indeed, we will emphasize those among
the steps of the proof which are affected by the new dependence situation.
Let us use the same notation as in Lemma 6.7. Because the decomposition
(6.35) remains valid, our proof will be complete as long as both of the
following properties can be checked:
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1
lim ——sup [E7y(x,y) — f& = 0, a.co., 11.56
A Sup Era(x,y) — f¥ ()] (11.56)

and

nh_{rgo @ Zlelg [Fa(x,y) — Era(x,y)| = 0, a.co. (11.57)
e Because the bias terms are not affected with the new dependent situation,
the result (6.40) remains true. So, the result (11.56) is obtained directly
by combining (6.40), (11.9) and Proposition A.5-i.
e To check (11.57), we can write that S C (J{"; Sk, where S = (tx —ln, th+
l,) and where [, = Cz,;! = n=2¢ We will use the decomposition

1 - N
——sup [Fu(x,y) — Efa(x,y)| = A1 + A2 + A3, (11.58)

T1(X) yes
where )
= ———sup[ru(x,y) — T ty)l s
T1(X) yes Y
A2 = =< Sup |?4(X7t ) - E?4(X7t )| )
71(X) yes Y Y
1
Az = ——sup [Ery(x, ty) — Era(x,y)|.
71(X) yes Y
- The treatment of A; is not affected by the dependence, and so (6.43)
is valid.

- The treatment of A3z, can be done by using (6.44) together with (11.9)
and Proposition A.5-i, and finally (6.45) is still true.

- To treat the term As, we use the decomposition (6.46), and because
the r.r.v. U; still satisfy the boundedness condition (6.47), we are in
position to apply the Proposition A.11-ii. Putting either b = a under
the arithmetic condition (11.54) or b = 400 under the geometric one
(11.55), and applying Proposition A.11-ii with » = (logn)?, we have:

P <sup [Ta(x,ty) — Era(x, ty)| > ev/n~2s2 log n)

yeS
_(logn)2 b+1
2 2 /1 +
< COn* <1+ < ) + n(logn) ™2 (ogn>
logn €Sp
<

O {6_6102371. n n(logn)_2+17+bsr—lb—1€—b—1}

C {nQC*é +n* s b= 1(log n)’2+1TH} .

IN

The condition on s, (see either (11.54) or (11.55)), allows us to see
that for e large enough there exists some n > 0 such that:
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g (S“p 7aOc ty) = EFa (o ty)] > m) —0 ('),
S

ye

which is a stronger result than the following one:

lim sup |74(x,ty) — Era(x,ty)| =0, a.co.

n—oo yES

By combining this result together with (11.9) and Proposition A.5-i,
we get
lim A =0, a.co. (11.59)
n—oo

Finally, the claimed result (11.57) follows from (11.58), (6.43), (6.45) and
(11.59).0

Lemma 11.17. Under the conditions of Theorem 11.15-ii, we have for any
compact S C R and for anyl=1,...,5:

supyes FE0 ) — BEOw) = o(n +¢%) +

2
S5,.31logn

Oa.co. 2

n

Proof. e This proof follows the same lines as when the data are indepen-
dent (see Lemma 6.17 before). Moreover, most of the steps of the proof of
Lemma 6.17 are not affected by the dependence of the data. Precisely, the
results (6.83) and (6.101) remain true. In an other hand, the denominators
appearing in (6.83) can be treated directly by mean of (11.9) and Propo-
sition A.5-i. Finally, this proof will be complete as long as the following
result can be checked:

1 () (1) < Sn.3logn é)
— _sup [P0 1) — B (x,9)] = Ouco. <7 : ) . (11.60
00 yegl 3 (GY) 5 (0GY) a.co 3 ( )

e Let us now prove that (11.60) holds. Using the same decomposition as
in the proof of Lemma 6.17 we can write that S C U;’;l Sy where S =
(tr, —ln, tx+1,) and where I,, and z,, can be chosen such that [,, = Cz; ! ~
Cn~(H1C=1/2 Taking t, = argmingeqy, 4. 3|y — t], we have:

.....

1
——sup [ (x,y) — Efy’(x,»)| = Bi + B2 + Bs, (11.61)
71(x) yeS

\\Y here
Bl -~ Sup A(,‘j ) X? y A(ﬁ ) X? ty bl
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By = =

To treat the term Bj, note that the proof of (6.105) only uses deter-
ministic arguments, and is therefore not affected by the dependence.
We get from (6.105), together with the last part of (6.31) and with the
condition on s, 3; (see either (11.54) or (11.55)) that:

1 s2 4, logn
B, = O<\/ﬁ> =0 % . (11.62)

Similarly, we can treat the term B3 by combining (6.105) together with
(11.9) and Proposition A.5-i. We see directly that

2
Sp.3. logn

B3 = Oa.co. 2
n

(11.63)

It remains to treat the term Bs, that will indeed be the only one to
be affected by the dependence on the variables. Note that we have for
any € > 0:

P(sup‘r3 (X;ty) — E?(?))( X, )| > 6)
yeS

< #n mex P (‘A( ' t) —E?:(al)(x,tj)‘ > 6) :
Because the bounds obtained in (6.88) and (6.89) are not affected by
the dependence structure, we are in position to apply the Fuk-Nagaev
exponential inequality for bounded mixing variables (see Proposition
A.11-ii). Applying this inequality with » = (logn)? and either b = a
under the arithmetic condition (11.54) or b = 0 under the geometric
one (11.55), we get for any t;:

w3 )
<‘ i “)(x,tj)) > € 53120?;">

n
A Jlogm\ "+

< C (1+ > + n(logn)*2 <g )
logn €5n,3,1

log n

< e 4 nlogn) 1)

&2 1
<C {n_7 +ns;, % (log n)_2+%b} .
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Both of these last results lead directly, for € large enough, to:

I ! Sn,3,1logn
P(sup’?g)(x,ty) — B (x,t,)| > e "2>
yes n

IN

62
C {nQC_7 + n1+cs;l;ll(log n)_2+%b }
=0 (nfl*") ,

where 7 is some real number n > 0. Note that the last inequality
has been obtained from the condition on s, 3, (see either (11.54) or
(11.55)). We arrive finally at:

2
S5,.3.108n

BS = Oa.co. (1164)

n2

This proof can be finished just by combining (11.61), (6.106), (6.107) and
(11.64).

The general result given in Theorem 11.15-ii can be formulated in several
different specific ways, according the knowledge we have about the covariance
term s2. We will only present in Corollaries 11.18 and 11.19 below two special
cases for which the covariance terms have the same behavior as in i.i.d. set-
ting. More general formulations can be found in [FLV05b]. The conditions are
similar to those appearing in regression and quantile estimation (see Remark
11.2). Precisely, we will assume that

Jer € (0,1), 0 < Yy (h) = O (py(h)'F) (11.65)

262 € (0,1), gy (h) = O (), (11.66)
and that for any i # j:

The conditional density f; ; of (¥;,Y;)
given (X;, X ;) exists and is bounded. (11.67)

11.4.3 Application to the Geometrically Mixing Case

The next result will be a direct consequence of the properties obtained for the
covariance sums in Lemma 11.11 above. This result states that, under quite
unrestrictive additional assumptions, the rates of convergence for the func-
tional kernel conditional mode estimate are the same for geometric mixing
variables as for i.i.d. ones.
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Corollary 11.18. Assume that the sequence (X;,Y;)i=1,..n @S geometri-
cally mizing. Assume that the conditions of Theorem 6.16 hold together
with (11.65), (11.66) and (11.67). Then we have:

0(x) - 0(x) = O ((hﬁ +gﬁ)}> + Ou.co. ((%);j) (11.68)

Proof. By combining the results of Lemma 11.17 and Lemma 11.11, we arrive
directly at the following result:

supyesl XV () = BXOW) = o(n+g%) +

o (%))

The proof of Corollary 11.18 follows directly from this last result (applied
with I =1 and S = (6(x) — &, 0(x) +&)) together with (6.98).0]

11.4.4 Application to the Arithmetically Mixing Case

In the following, we will show that the same rates of convergence can be

achieved under an arithmetic mixing condition of sufficiently high order. Re-

call that €; and ey are defined by (11.65) and (11.66), and assume that
1+¢€

> : 11.69
“>- (11.69)

Corollary 11.19. Assume that the sequence (X;,Y;)i=1,.. n s arithmeti-
cally mizing with order a satisfying (11.69). Assume that the conditions
of Theorem 6.16 hold together with (11.65), (11.66) and (11.67). Then we
have:

(x)—0(x) = O <(hﬁ +g");> + Oa.co. ((%);’). (11.70)

)

Proof. By combining the results of Lemma 11.17 and Lemma 11.13, we arrive
directly at the following result which is an extension to arithmetically mixing
variables of the Lemma 6.17 stated above in the i.i.d. setting:

supyes RO () = BV = 0(nf +g%) +

O ().

The proof of Corollary 11.18 follows directly from this last result (applied
with i =1and S = (0(x) — &, 0(x) + &)) together with (6.98).0
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11.5 Complements on Conditional Distribution
Estimation

11.5.1 Convergence Results

Throughout previous sections, when dealing with conditional quantile and
conditional mode, several auxilliary lemmas have been proved. These lemmas
concerned asymptotic properties of the kernel conditional c.d.f. and kernel
conditional density estimates. Because they could be useful by themselves and
not only for quantile or mode estimation, we have decided to devote this short
section to a synthetic presentation of these results. Proposition 11.20 presents
almost complete convergence results of the kernel conditional cd.f. estimate
(both pointwisely and uniformly over a compact set), while Proposition 11.21
will do the same for the kernel conditional density estimate. In Section 11.5.2
the rates of convergence will be specified.

Proposition 11.20. i) Under the conditions of Theorem 11.7-i, we have
for any fixed real point y:

lim FX(y) = FX(y), a.co.
n— oo

it) If in addition the bandwidth g satisfies for some ( > 0 the condition
lim,, o0 gn¢ = 00, then for any compact subset S C R we have:

lim sup |F¥(y) — FX(y)| = 0, a.co.

n—oo yES

Proof. Let us use the same notation as those used before in the proof of
Proposition 6.53 or along the proof of Lemma 11.8.

i) This result has already been proved in Lemma 11.8 before.

ii) By using the same steps as to prove Proposition 6.53-ii, and by noting that
the result (6.55) is still true (since it concerns deterministic terms that are
not affected by the new dependence structure), it turns out that the only
thing to prove is that:

lim supyes|rs(x,y) — Ers(x,y)| = 0, a.co.,
n—oo

Using the compactness of S, we can write that S C |J{~, Sk where S}, =
(tx — ln, tr + 1) and where [,, and z, can be chosen such that:

ln=Czt ~Cn=¢. (11.71)

Taking t, = argmingeyy,,...¢. ) [y —t[, we have

1 I N
= sup |T3(X7y) - ]ET:’)(X?y)' = Dl + D2 + D3a
71(x) yeS
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where 1
Dy = ——sup|r3(x,y) —T3(x,t
1 Tl(X) yes| 3( ) 3( ) y)|3
1
Dy = ———sup[r3(x,ty) — ET3(x, ty)l,
71(X) yes Y Y

Dy = = EX) sup [EFS (1) ~ ERy(x. )]

- The treatment of D; is not affected by the dependence structure. So,
the result (6.60) remains true.

- The treatment of D3 can be done by using (6.59) together with (11.9)
and Proposition A.5-i, and finally (6.61) is still true.

- To treat the term Dy, we use the decomposition (6.46), and because
the r.r.v. I;(y) and A; are bounded (since the kernels H and K are
bounded), we are in position to apply Proposition A.11-ii. Putting
either b = a under the arithmetic condition (11.54) or b = 400 under
the geometric one (11.55), and applying Proposition A.11-ii with r =
(logn)?, we have:

P(sugl?s(x,ty) —E3(x. ty)| > €/n72s] 3 logn)
ye

_ (logn)? b+1
2 2 /1
< Cn® (1+1€ ) + n(logn)2< 0gn>
ogn €5n,3,0

IN

—clogn —241E _p1 b1
Cn {e >~ 4 n(logn) 2 8,30€

e2
< C {nc_7 + n<+1s;gjol(log n)_2+1T+b} .

The condition on s, 3,0 (see either (11.31) or (11.32)), allows us to see
that for € large enough there exists some 7 > 0 such that:

P (sup Fa(x.t) = Ba(xoty)] > g/ logn)
yeS 7

=0 (n '), (11.72)

which is a stronger result than the following one:

lim sup |73(x,ty) — Ers(x,ty)| =0, a.co.

n—oo yes

By combining this result, together with (11.9) and Proposition A.5-i,
we get

lim A =0, a.co.
n—roo

This is enough to complete our proof.[]
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Proposition 11.21. i) Under the conditions of Theorem 11.15-i we have
for any fixed real number y:

lim f¥(y) = Ky), aco.

it) If in addition (6.31) holds, then we have for any compact S C R:

lim sup|fy(y) — f¥ ()] = 0, a.co.

n—oo yES

Proof. 1) This result is a special case, with [ = 1, of Lemma 11.10 above.
ii) This result was already stated before in Lemma 11.16.

11.5.2 Rates of Convergence

The rates of convergence are stated precisely in both of the next propositions.
We start with rates of almost complete convergence for the functional kernel
c.d.f. estimate. In Proposition 11.22 below we just present a general result in
which the rate of convergence is expressed as a function of the covariance terms
of the estimate. By combining Proposition 11.22 together with the asymptotic
bounds given for these covariance terms in Section 11.3.3 (resp. in Section
11.3.4) we will directly provide much more explicit rates of convergence for
geometrically (resp. for arithmetically) mixing processes.

Proposition 11.22. i) Under the conditions of Theorem 11.7-ii, we have
for any fixed real number y:

F¥(y) — F¥(y) = O(h6+gﬁ)
+Oa.co, <\/(max{8n»37075n71})2 10gn) .

n

it) If in any adddition the bandwidth g satisfies for some a > 0 the condition
lim,, 00 gn® = 00, then for any compact subset S C R we have:

sup [F¥(y) — F¥w) = O(n” +4)

yeS
+0 ( \/(max{sn,&o’ Sp,1}1)%log n)

n
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Proof. The result i) was already stated by Lemma 11.9. It remains just to
prove ii). The proof is performed over the same step as for Proposition 6.19-ii.
Note that the result (6.113) is not stochastic, and so it remains valid under
the new dependent setting. Moreover, it follows from (11.9), Proposition A.5-i

and (11.72) that:
1 R R \ /53,17370 logn
= ) sup |7’3 (Xv y) - ETB(X? y)| = Oa.co. -

T1 (X yeSs n

This last result together with (6.113), (6.18), (11.9) and Proposition A.5-i is
enough to prove our result.[]

Now we present the rate of convergence of the functional kernel density
estimate. The rate is expressed in a general way. Note that the results of
Proposition 11.23 below can be combined with the asymptotic bounds given in
Section 11.4.3 (resp. in Section 11.4.4) to get directly much more explicit rates
of convergence for geometrically (resp. for arithmetically) mixing processes.

Proposition 11.23. i) Under the conditions of Theorem 11.15-ii we have
for any fixed real number y:

¥ y) — ffﬁ(y) = O(hﬁ+gﬁ)
+Oa.co. <\/(Inax{8”14’3n,1})2 logn> .

n

it) If in addition (6.31) holds, then we have for any compact subset S C R:
sup | ¥ (w) — Rl = o(W +4°)

yeSs
+0 (\/(max{sn,4;8n,1})2 10gn>

n

Proof. This proposition is just a special case (with [ = 1 and 8 = fy) of
results that have already been proved along the previous calculations (see the
second part of Lemma 11.10 and Lemma 11.17). O



11.6 Nonparametric Discrimination of Dependent Curves 189

11.6 Nonparametric Discrimination of
Dependent Curves

11.6.1 Introduction and Notation

In this section we will show how the kernel nonparametric methodology de-
veloped in Chapter 8 to discriminate a set of independant functional data
behaves for dependent ones. We will concentrate on theoretical supports for
this functional curves discrimination problem, equivalently known as a super-
vised curves classification problem. More precisely, we will state extensions to
mixing functional variables of the theorems stated in Section 8.5. As described
before in Chapter 8 for i.i.d. variables, functional kernel discrimination can be
seen as a rather direct application of the functional kernel regression method-
ology. This will also be the case here, and we will see that our proofs will be
obtained by quite direct applications of the results obtained in Section 11.2
for kernel regression with mixing functional variables.

As presented before (see Section 8.2 for more details), the discrimi-
nation (or supervised classification) statistical problem involves a sample
(X;,Y;)i=1,... n of n pairs, each having the same distribution as a pair (X,Y).
In the functional setting X is a f.r.v. (more precisely, it takes values into some
semi-metric vector space (F,d)), and Y is a categorical response taking val-
ues into some finite set G = {1,...,G}. Let x denotes a fixed element in E.
The discimination problem consists in predicting in which class, among the G
ones, belongs this new functional element x. The way to do that consists in
estimating all the G posterior probabilities:

ps(x) = P(Y =g|X=x), V9@,

and to assign x to the class §(x) having the highest estimated posterior prob-
ability:
g(x) = argmaxpgy(x).
geqG
As motivated in Section 8.2, the estimation of p, can be carried out by means
of functional kernel ideas. Precisely, we define

~ N _ Z:‘L:I 1[Yi:g]K(h71 d(Xa Xz))
Do) = PoalX) = =5 G )

where K is an asymmetrical kernel (see Section 4.1.2 and Definition 4.1) and
h is the bandwidth (a strictly positive smoothing parameter). The aim is
to state theoretical properties for this kernel functional posterior probability
estimate in the situation where the data (X;,Y;)i=1,..., are not independent
but assumed to satisfy some strong mixing condition.

(11.73)



190 11 Some Selected Asymptotics

11.6.2 Complete Convergence Properties

In the next theorem we will state the almost complete convergence properties
of the estimate p, without (resp. with) rate under a continuity-type model
(resp. under a Lipschitz-type model) for the posterior probability nonlinear
operator pg(.). This theorem is an extension of the results presented in Section
8.5, in the sense that we do not assume now that the data (X;,Y;)i=1,..,
independent. One can expect the behaviour of the estimate to be linked with
the dependence between the sample pairs. This will be seen clearly in the next
results through the role played by the following covariance parameters on the
rate of convergence. These covariance parameters are defined by:

n n

susg =D D cov(ly,=g A, Ly, =g 4)), (11.74)

i=1 j=1

n n
Sna1 = cov(;, Ay), (11.75)

i=1 j=1
Sn,g = max{sn,h 5n,5,g}7 (1176)

where

K (hfld(x,Xi))

EK (h=1d(x, X1))

In comparison with the i.i.d. results given in Theorems 8.1 and 8.2 some
assumptions are needed to control the covariance effects. Precisely, we will
assume either that:

A; =

(X;,Y:)i=1,. n are strongly mixing
with arithmetic coefficients of order a > 1, and (11.77)
30> 2,5,5 ") = o(n?),

or that
(X,Y:)i=1,.. n are strongly mixing
with geometric coefficients, and (11.78)
30 > 1,5, =o(n™?).
Theorem 11.24. Put s,,, = maz{sn,1,5n5,4}, and assume that either

(11.77) or (11.78) is satisfied. Let g be fized in {1,...,G}. Then :
i) Under the conditions of Theorem 8.1 we have:

hm ﬁg,h(X) = pg(X)a a.co.,

n— oo
it) Under the conditions of Theorem 8.2 we have:

\/silogn>

n

ﬁg,h(X) _pg(X) =0 (hﬁ) + Oa.co. (
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Proof. Both results i) and ii) can be obtained by noting that we have:

E (gl =x) = P =glx =) < py(0), (11.79)

in such a way that, for each g, the estimation of the operator p, can be seen
as a special case of the estimation of the regression operator of the variable
ly—g) given X. The boundedness of the variable 1[y_g insures that the con-
dition (6.4) is satisfied, and so we are in position to apply Theorem 11.1. This
is enough to complete this proof.l]

The rate of convergence in Theorem 11.24-ii is stated in a general way as
a function of the covariance term s2. Under some specific assumptions on the
mixing coefficients we can get much more explicit results. To fix the ideas, we
present below two corollaries for which this rate of convergence can be shown
to be the same as in Theorem 8.2 for i.i.d. variables.

Corollary 11.25. Assume that the sequence (X;,Y;)i=1,..n is geometri-
cally mizing. Assume that the conditions of Theorem 8.2 hold together with
(11.11) and (11.12). Then we have:

noy(h)

Pon(X) —pg(x) = O(hﬁ)+0a.w.< bg”).

Proof. Once again, because of (11.79) the estimation of p, is a regression
estimation problem. Note that the condition (11.10) is obviously satisfied by
the response variable 1jy—, in such a way that Lemma 11.3 can be applied

to get:
2 = O( o ) 11.80
9 ox(h) ( )

This last result, combined with the result of Theorem 11.24-ii is enough to
get the claimed result. O

Corollary 11.26. Assume that the sequence (X;,Y;)i=1,.. n s arithmeti-
cally mizing with order a satisfying (11.20). Assume that the conditions of
Theorem 8.2 hold together with (11.11) and (11.12). Then we have:

~ logn
pg,h(X) _pQ(X) = 0 (hﬁ) + Oa.co. ( ngpx(h)> .
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Proof. The proof follows exactly the same steps as for Corollary 11.25 before,
except that the result (11.80) is obtained by using Lemma 11.5 rather than
Lemma 11.3. O

11.7 Discussion

11.7.1 Bibliography

The nonparametric modelling of functional dependent data is a very recent
field of research, and it turns out that there is only a little literature on
the topic. As far as we know, the first paper in this direction was provided
by [FGV02] in regression setting. The literature in nonparametric prediction
from functional dependent variables involves only [FV04] and [MO05] for re-
gression methods, [FRV05] for conditional quantile methods and [FLV05b]
for conditional mode methods. Concerning nonparametric classification for
dependent functional variables, the only paper attacking the supervised clas-
sification problem can be found in [FV04]. Hovewer, in spite of this very small
existing bibliography, we support the idea that most of the nonparametric
methodologies developed for i.i.d. functional variables can be extended to de-
pendent functional samples, pending of course some suitable adaptations. We
hope that the contents of this book will help in convincing people to share
with us this point of view, since (except for the unsupervised classification
problem) all the results presented in Parts II and III of the book have been
extended to dependent situations.

11.7.2 Back to Finite Dimensional Setting

In finite dimensional setting, nonparametric statistics for dependent variables
have been extensively studied. Even restricting the purpose to kernel estima-
tion and to mixing dependent processes, the list is too wide to make an exhaus-
tive bibliographical survey here (and this is particularly true concerning re-
gression problems). In order to have a chronological view of how the knowledge
on kernel regression estimation for mixing processes grew up, some arbitrarily
selected set of references would be [R83], [C84], [CH86], [GHSV89], [Ro90],
[V91], [Y94b], [BF95b], [L96], [BIS], [L99], [KD02], [KSK04]. Of course, most
of the results presented in these papers can be directly aplied to derive analo-
gous results in nonparametric kernel discrimination of dependent variables. In
conditional kernel c.d.f. and quantiles estimation a sample of references would
be [ZL85], [G90], [VI1], [Y93c], [WZ99], [C02] and [GSY03], while in kernel
conditional density and mode it would be [CHH87], [M89], [V91], [C91], [X94],
[097], [QV97], [LO99], [IM02], [GSY03] and [deGZ03].

Exactly as was the case for i.i.d. problems (see the discussion in Section
6.4.2), even if the main goal of this book was to discuss recent advances in
functional settings it is worth noting that all the results presented in this
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chapter are written in the general setting when the explanatory variable takes
value in some abstract semi-metric space (F,d). That means that all the re-
sults presented before can be directly applied to the classical un-functional
setting by taking £ = RP and by chosing d to be the usual euclidian metric.
Therefore, as by-products of the infinite dimensional methodologies, we also
get interesting new contributions in the classical un-functional setting. This is
particularly true for the nonparametric discrimination which did not receive
much theoretical attention in the past for dependent data, even in the finite
dimensional setting. As discussed in Section 6.4.2 for i.i.d. variables, the most
important point here is to note that the direction followed in this book is
based on considerations on small ball probabilities of the explanatory vari-
ables, without any need for introducing the density function of this variable.
On the other hand, all the usual literature presented above assumes the exis-
tence (and smoothness) of such a density function. In other words, as direct
consequences of the infinite dimensional results we get new contributions in
classical un-functional nonparametric kernel regression, conditional quantiles
and conditional mode estimation from mixing samples. The reader will find in
Section 13.4 (respectively in Section 13.5) general considerations presenting
how such a one-dimensional (respectively a p-dimensional) application of our
infinite dimensional results can be easily carried out with interesting effects.

11.7.3 Some Open Problems

Of course, the same open questions as those discussed in Section 6.4.3 remain
open in the dependent situation. Among all the open questions proposed in
Section 6.4.3, we wish however to emphasize both of the following which are
evidently the most determinant:

Open question 10: Bandwidth choice. How can automatical bandwidth
selection procedures for dependent data be developed?

and

Open question 11: Semi-metric choice. How can we choose the semi-
metric in practice?

Until now, none of them have been theoretically attacked in the literature?
Concerning bandwidth selection, the dependence among the data will play
an important role, and possible answers should rest on suitable adapation of
what exists in the finite dimensional nonparametric literature on this point
(see [HV90], [HV92], [V93], [C94], [BF95], [HLP95], [C95], [HI6], [RT97] and
[SO01] for a non-exhaustive list of references). Our guess is that the cross-
validation procedure (see [HV92]) could be the easiest one to be adapted
to the functional setting. Concerning the semi-metric selection problem, this
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turns to be not specific to dependent data but it is rather a common feature of
all the functional methodologies developped all along the book. This question
is investigated specifically in Chapter 13.

We will not take space here again for the other open questions discussed
in Section 6.4.3, because they can be attacked by following the same general
ideas as proposed in Section 6.4.3. Let us just mention two recent works, both
on dependent functional regression, which state some first advances on some of
these problems. The first one is the contribution by [M05] which, by following
the same kind of proofs as those of this book, completes the asymptotic study
by stating a limit gaussian distribution. The second one is by [AFK05] and
studies a single index model for functional dependent regression problems.

Finally, let us emphasize a new open problem which is peculiar to the de-
pendent setting, and which is linked with the dependence sructure itself. The
question would be to introduce other kinds of dependence structures in order
to cover wider situations than those that are allowed with mixing processes.
In particular, there are some advances in finite dimensional settings (see for
instance [HH090] or [EV03]) in which long memory dependence structures
are introduced, still keeping a completely nonparametric framework (that is,
without any distribution assumption such as gaussianity for instance). Clearly,
such an approach in our functional context would be greatly interesting, and
we hope that the ideas developed in these two papers could be adapted to
the infinite dimension in order to bring some contribution to the following
question:

Open question 12: On the long memory assumption. Is it possible to
include long dependence structures in the nonparametric functional context?
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Application to Continuous Time Processes
Prediction

In Chapter 11, the functional nonparametric methodology was shown to have
appealing theoretical supports for dependent statistical samples. The aim of
this chapter is to show how this methodology can be used in practical situa-
tions for analysing time series. After a short discussion in Section 12.1 on how
nonparametric finite dimensional statistics are used in the standard literature
to treat time series, Section 12.2 explains how time series analysis can be
viewed as specific functional nonparametric problems for dependent data for
which all the methodology described in Chapter 11 will apply directly. Then
we will see in Section 12.3 that, despite their rather technical look, these
nonparametric functional methods are easy to implement. To emphasize this
point, a real dataset will be quickly treated in Section 12.4. Finally, the source
codes, functional datasets, descriptions of the R/S+ routines, guidelines and
examples of use are detailed in the companion website http://www.lsp.ups-

tise.fr/staph/npfda.

12.1 Time Series and Nonparametric Statistics

The statistical analysis of some time series {Z;,t € R} is always linked with
models and methods involving dependent data. Let us look for instance at
the standard case when the process has been observed until time 7" and when
the problem is to predict some future value Zr, s of the process. Usually, the
process is observed at a grid of N discretized times, and the observations are
denoted by {Z1, ... Zn}. The first step for predicting future values is to decide
how much information has to be taken into account from the past?

The simpler situation consists in predicting the future just by taking into
account one single past value. This is usually done by constructing some two-
dimensional statistical sample of size n = N — s:

X;=Z; andY; = Z;y, i=1,...,N —s, (12.1)
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in such a way that the problem turns to be a standard prediction problem
of a real valued response Y given some real explanatory variable X. The
only additional difficulty comes from the obvious necessity for allowing de-
pendence structure in the statistical sample (X;,Y;). This approach can be
used for many different statistical purposes and with various nonparametric
estimates. It can lead to appealing results in practical situations as shown in
several different real data studies that have been performed in the statistical
literature (see for instance [HV92], [CD93], [H96], [R97], [GSY03], or [Co04]
for the treatment of several time series coming from various fields of applied
statistics).

Of course, this univariate modelling of the explanatory variable can be too
restrictive to take into account sufficient information in the past of the series.
To bypass this problem one could think in terms of constructing some (p+1)-
dimensional statistical sample (of size n = N —s —p + 1) in the following
manner:

Xi = (Ziprrl,- . ,ZZ) and Y; = Z¢+S, ) =D,.. .,N — S, (122)

in such a way that the problem turns to be a standard prediction problem of
a real valued response Y given some p-dimensional explanatory variable X.
Once again, as before when p = 1, it is necessary to attack this regression
problem by allowing some dependence into the statistical sample (Xj,Y;). In-
deed, nonparametric approach to such a multidimensional prediction problem
suffers from the curse of dimensionality (see discussions and references in Sec-
tions 3 and 13.5). Because of this curse of dimensionality the question of the
choice of the order p turns to be a crucial one (see for instance [V95], [V02],
[GQV802], [TA94] and [AT90] for an unexhaustive list of recent approaches to
this question and for more references). From a practical point of view, most
people prefer the use of semi-parametric modelling in order to reduce the ef-
fects of the dimension. It is out of the scope of this book to discuss in detail
these semi-parametric and/or reduction dimension modelling approaches. For
that, and to stay inside within the most recent references, we could encourage
the reader to look at the advances provided by [GT04], [G99], [AR99], [G98],
as well as at the general discussions presented by [HMSWO04], [FY03], [HLGO0O]
and [Gh99].

Finally, if one wishes to minimize the modelling errors by staying in pure
nonparametric framework, it seems that there is a trade-off to balance between
taking too many explanatory past values of the series (but with bad influence
on the statistical performance of the estimates) and insuring good behaviour
of the estimates (but by reducing the information from the past). We will see
in the next section that the functional methodology is one way to answer this
question.
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12.2 Functional Approach to Time Series Prediction

The functional approach to time series forecasting consists in taking as past
explanatory values a whole continuous path of the process. To simplify the
notation assume that N = nr for some n € N* and some 7 > 0. We can build
a new statistical sample of size n — 1 in the following way:

X, ={Z(t),(i—-)r<t<ir)}tandV;=Z(ir+s), i=1,....,n—1, (12.3)

in such a way that the forecasting question turns to be a prediction problem
of the scalar response Y given a functional variable X. Such a problem has
to be attacked without necessarily assuming independence between the sta-
tistical pairs (X;,Y;). Starting with [B91] such a functional approach of time
series forecasting has been widely attacked when a parametric (linear) shape
is assumed for the link between past and future values of the process (see
[BOO] for an extensive discussion, [G02], [B03], and [DGO05] for the most re-
cent advances, [DG02] for an environmental application, and [B05] for a basic
course in this field).

Until the last few years, except for an early paper by [BD85], this problem
was never investigated in a nonparametric way. The recent kernel functional
dependent methodology studied in Chapter 11 allows for doing that. Indeed,
the kernel methods based on the functional modelling (12.3) are really taking
into account a wide part of the past of the process, and avoid by this way the
drawbacks of the standard univariate modelling (12.1). On the other hand, the
asymptotic results stated in Chapter 11 are showing their relative unsensitivity
to the dimensionality of the problem, and this avoids the drawbacks of the
standard multivariate modelling (12.2). This last point is obtained depending
on a suitable semi-metric choice as discussed in detail in Chapter 13.

Note that all these considerations are independent of the statistical method
that will be used. The aim of this chapter is to complete the theoretical
advances provided before by some computational issues, concerning regression,
as well as conditional quantile and mode approaches to the prediction problem.
The ease of implementation of all the methods will be seen in Section 12.3
through the presentation of some R/S+ procedures. Then, a short case study
based on the economic time series presented in Section 2.3 will show the good
behaviour of these nonparameric functional approaches of forecasting for finite
real statistical samples.

The last point to be noted is that this functional approach to time series
could be easily extended by allowing for more general response values of the
form:

X, ={Z@#),(i—-Dr<t<in)tandY;=g(Xiy1), i=1,...n—1, (124)

where g is a real valued known function corresponding to the specific statistical
problem one wishes to address. A typical example of function g is the following
one:



198 12 Application to Continuous Time Processes Prediction

9(Xip1) = omax Z(t),

which is particularly interesting in environmetrics (see for instance [AV04] for
an application to ozone peak forecasting). Of course many other choices of g
are possible. When ¢ takes continuous real values the user will have to de-
velop standard prediction tools like regression (see Section 11.2), conditional
quantile (see Section 11.3) or conditional mode (see Section 11.4). In counter-
part, when g is only taking a finite number of values the curves discrimination
technique (see Section 11.6) will be more accurate.

12.3 Computational Issues

The statistical forecasting techniques presented before in Chapter 11 (as well
as regression, conditional quantile or conditional mode) are defined exactly by
the same expressions as for independent statistical samples (see Chapter 6).
The same thing applies for the functional curves discrimination methodology
(compare Chapter 8 and Section 11.6). The asymptotic studies performed
in Chapter 11 show that the behaviour of such functional methods remains
good in time series context, with (sometimes) some changes in the rates of
convergence and depending (sometimes) on additional assumptions on the
smoothing parameters. However, this could be completely transparent for the
user. Indeed all the routines presented before for independent samples can
be directly applied in time series analysis, as soon as the data have been
reorganized as indicated in (12.3) or (12.4). This will be precisely explained
in the forthcoming section through some real time series data applications.
The reader will find more details on all the methods available for analyzing
time series by going back to previous parts of this book (see Chapter 7 and
Section 8.3.3).

12.4 Forecasting Electricity Consumption

12.4.1 Presentation of the Study

This section focuses on an application to data coming from econometrics.
These discretized data are the economic time series described in Section 2.3.
Not to mask the main of purpose of this book, we will directly work with the
differenciated log data. The data are recorded as a sequence of real numbers.
Here, the dataset is composed of N = 336 real values {z;,i = 1,...,336} as
displayed in Figure 2.7. First, one has to decide which past values have to be
taken into account for prediction. In order to apply the functional methodol-
ogy, one has to cut the original time series in a set of functional data. Here
we have decided to predict future electrical consumption by using the con-
sumption data for the whole last year. That means that, with the notation
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of Section 12.2, we have choosen 7 = 12. This way, we have constructed the
functional data presented in Figure 2.8. Precisely, to apply our R/S+ rou-
tines, the data have to be put into a new matrix file of size 28 x 12, which is
organized as follows:

Coll |---] Colj |---|Col 12
Row 1 Z1 e Zj s Z12
Row i |z1412¢i-1)| - |Zj+126-1)| | 2124
Row 28| 2325 |--| 232445 | **| %336

Here, in order to illustrate our purpose, we will not use the 28" year and
we will predict it by means of the data corresponding to the 27 previous
ones. To use the nonparametric functional methods, one has first to decide
what is the horizon of prediction that is desired (that is, with the notation
introduced before, what is s). Then, for fixed s, the data will be reorganized
into a functional explanatory sample {x;,% = 1,...,26} which will be loaded
in the following 26 x 12 matrix:

Zl .. Z] ... 212
R1412(6—=1) | " |Fj+12(G—1)| " " |*12i
2301 ccc | 230045 |0t |R312

and a response real sample {y;,i = 1,...,26}, which will be loaded in the
following 26-dimensional vector:

’212-‘,-5" " \2’12i+s\' s ‘Z3l2+s‘

For fixed horizon s, we can predict the value 232445 by using any technique
among the three ones which are described in Chapter 11. Our goal is not to
make a full analysis of this economic dataset, and to make things clearer we
will just present the results obtained with R/S+ routines involving automatic
bandwidth choices. More precisely, each among the three R/S+ routines

funopare.knn.lcv, funopare.mode.lcv and funopare.quantile.lcv have
been used to compute the predicted value Z3244 s obtained respectively by the
kernel functional estimate of the regression operator (see Section 11.2.1), by
the kernel functional conditional mode estimate (see Section 11.4.1) and by the
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kernel functional conditional median estimation technique (see Section 11.3.1).
These routines were already introduced in Chapter 7. Concerning the semi-
metric chosen for the nonparametric forecasting procedures, the small number
of discretization points for each curve (exactly 12) suggested the use of a semi-
metric based on functional principal components ideas. Precisely, we used the
PCA semi-metric df; ©4 defined in Section 3.4.1, and we took the parameter
¢ which allows us to get the best empirical mean square errors as defined in
Section 7.2.1 (¢ = 5 for funopare.knn.lcv, ¢ = 2 for funopare.mode.lcv
and funopare.quantile.lcv).

12.4.2 The Forecasted Electrical Consumption

We recall that the R/S+ commandlines for obtaining the presented predic-
tions and their corresponding explanations allowing us to load the dataset
and to run the subroutine are available in the companion website! of this
book. The predictions have been achieved for any value of s € {1,...12}. The
results of the three forecasting procedures are presented in Figure 12.1.

Regression: MSE=0.0024 Median: MSE=0.0017
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28th year 28th year

Mode: MSE=0.0016 Average: MSE=0.0018

015

005
1
005
|

010 005 000
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Fig. 12.1. Electricity Consumption: the Forecasting Methods in Action

! http//www.lsp.ups-tlse.fr/staph/npfda
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In Figure 12.1 each of the three previous plots is concerning one among the
different forecasting methods (regression, median or mode), and the dotted
line (respectively the solid line) corresponds to the true observed electrical
consumption (respectively to the forecasted ones) for the 28" year. The fourth
plot corresponds to the forecasting that one would do by averaging the three
previous ones. What could be said from these results is that each among the
three functional approaches for time series forecasting gives appealing results
on this dataset, with some slight advantage for the conditional median and
mode forecasting methods which seem less sensitive to the high variability
appearing around February (see Figure 2.8). This example was selected to
show what happens when the number of discretizations for each curve is small
(here it is 12) and when the statistical sample is also small (here it is n = 26).
Of course one can expect much more precise results for larger sample sizes
(see for instance [FRV05] for an application to the larger climatic El Nino
time series including the construction of confidence bands). Anyway, it is
worth noting that neither the dependence between the curves nor the small
numbers of data obstructs the nice behaviour of the nonparametric functional
methods.

12.4.3 Conclusions

Of course, this is just an example of what can be done. Readers interested in
familiarizing themselves with the functional technology for time series analysis
could look at how the methods behave when some parameters are changed
(for instance the smoothing parameters, the order of the pca semi-metric, the
kind of semi-metric, . ..), or when some other problems are attacked (such as
discrimination or unsupervised classification of the yearly curves, ...). Indeed,
any of the routines previously run for independendent samples in Chapters 7
and 8 of this book remain valid in the same way for dependent samples.

On the other hand, any user could use these procedures to analyze his or
her own time series. Of course, to insure the good behaviour of the procedures
one will have to choose carefully the semi-metric (see discussions in Chapters 3
and 13). Several different kinds of semi-metric have already been programmed
(see again Chapter 3). Moreover, the user who would need to program a
new one for its own time series could incorporate it easily in the functional
nonparametric procedures.
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Conclusions
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Small Ball Probabilities and Semi-metrics

13.1 Introduction

All the theoretical advances in nonparametric statistics for functional vari-
ables presented above show powerfully the key role played by the small ball
probability function, both on the several different hypothesess made through-
out this book and on the rates of convergence. Clearly, this function depends
on the topological structure existing on the functional semi-metric space and
which is induced by the semi-metric itself.

The main aim of this chapter is to describe precisely all the theoretical links
existing between the small ball probability functions and the semi-metrics. In
particular, we will present some examples of usual processes for which the
small ball probability function can be evaluated explicitely. Purely functional
examples are presented in Section 13.3, while Sections 13.4 and 13.5 will go
back to standard finite dimensional ones. All these theoretical considerations
will complete the empirical ideas discussed in Chapter 3 as well as the different
case studies presented throughout the book which indicated that functional
nonparametric methods could have quite interesting effect on real data sit-
uations if (and only if) one has selected a suitable semi-metric. Finally, we
will see that in functional nonparametric statistics the semi-metric modelling
turns to be the key point both for practical and theoretical issues.

As a by-product, we will see that even if infinite dimensional setting is the
main purpose of this book, the general approach that we have followed here
can be of interest in finite dimensional nonparametric problems. We will see
in Section 13.4 how this approach allows us to extend several results existing
in usual one-dimensional nonparametric statistical problems. We will also see
in Section 13.5 how the approach can provide a new way to attack the curse
of dimensionality in multivariate nonparametric problems.
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13.2 The Role of Small Ball Probabilities

Recall that X is a random variable taking values into some metric-space
(E,d), and that x is a fixed (deterministic) element of E. For any of the vari-
ous nonparametric problems treated earlier, each asymptotic result is directly
linked with the measure (with respect to the probability distribution of X') of
a ball of center x. It turns that the following function:

¢x(.) = P(X € B(x,.)),

plays a crucial role. More precisely, the key point is the behaviour of the
function ¢(.) when the radius of the ball tends to zero, and this is the reason
why it is called small ball probability function or equivalently concentration
function.

To fix the ideas, look for instance at the result provided in Theorem 6.11
for kernel functional regression estimation (but keep in mind that everything
said here will concern equivalently all other rates of convergence given earlier
in this book). Theorem 6.11 stated that, under suitable conditions, the kernel
nonparametric estimate 7 constructed with a bandwidth h was converging
to the true nonlinear regression operator r with a rate of convergence of the

form:
8 logn
O(h)+0< Wx(h))‘

While the first component comes from the bias of the estimate and depends
only on the smoothness of the operator r, the second one comes from the
variablity of the estimate and is therefore highly linked with the concentration
of the data. The Lipschitz parameter 3 as defined in condition (5.12) is linked
with the smoothness of r, while the small ball probability function ¢, (h)
directly measures the concentration of the functional variable X. The less
dispersed are the functional data X;,... X, the more efficient will be the
estimator. With other words, the more concentrated the random variable A,
the higher will be the small ball probability function ¢, and the faster will be
the rate of convergence of the functional nonparametric estimate to the true
target operator.

At this stage, it is natural to wish the small ball probability function to be
as high as possible to avoid possible overdispersion effects. This probabilistic
point of view can be however balanced by some considerations of the topo-
logical structure of the functional space. Indeed, the notion of concentration
(and therefore the function ¢, itself) is directly linked with the structure of
the space F, in such a way that what could appear to be a purely probabilistic
question turns to be primarily a topological one. Therefore, one could expect
to be able to reduce the possible overdispersion effects just by changing the
topological structure on the space FE, that is by changing the semi-metric d.

Finally, it should be emphasized that the roles of the probability distri-
bution of the functional variable X and of the semi-metric d are completely
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indissociable in the nonparametric functional statistical framework. In the
various examples presented in the three next sections we will give explicit
evaluations of the concentration function ¢,, and we will discuss how the
general results presented all through the book are behaving. The main point
of the statistical methodology described in this book is to allow for a wide
scope of possible topological structures, since the space E is only assumed to
be of semi-metric type, and we will see (specifically in Section 13.3) all the
advantages of this general modelling compared with what one would get with
more popular (but too much restrictive) Banach or Hilbert type structures.

13.3 Some Special Infinite Dimensional Processes

To highlight our purpose, we will focus on two special classes of functional
variables as defined below in Definitions 13.1 and 13.4. We will see in Sec-
tion 13.3.1 that all the methology developed earlier in this book applies for
fractal-type processes. Then, we will look in Section 13.3.2 to an other class
which is known to contain main continuous time processes and for which the
overdispersed form of the small ball probability function does not allow us
to expect good results (at least directly) from our nonparametric functional
methodology. Finally in Section 13.3.3 we will come back to the role of the
semi-metric and to its links with the small probability function. In particular
we will show how we can construct in any situation a new semi-metric for
which the process is always of fractal-type and this allows us to expect good
results of the functional nonparametric method (depending, of course, on this
topological structural change), in any case (including the overdispersed ones
discussed in Section 13.3.2).

13.3.1 Fractal-type Processes

Recall that y is fixed and note that in the following definition the constants 7
and C may be depending on x. From a chronological point of view, the notion
of fractal dimension is closely related with some other ones widely used in the
physical sciences. The following definition was previously introduced in [FV00]
for functional nonparametric purposes (see also [BLO1] for a finite dimensional
interest of this notion).

Definition 13.1. The variable X is said to be of fractal order T, with respect
to the semi-metric d, if there exists some finite constant C' > 0 such that
the associated concentration function ¢, is of the form

oy (€) ~ Ce™ as e = 0.
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The reader will find in [P93] a general presentation of various other notions
of dimension useful in physics, and the gap between these notions and Defini-
tion 13.1 below is described in Section 4 of [FV00]. This notion is of particular
interest since for fractal processes all the functional nonparametric estimates
discussed before in this book can be shown to reach the same kind of rates
of convergence as for finite dimensional setting. This is formalized in Propo-
sition 13.2 below. To avoid tedious repetitions we just show how the results
obtained with i.i.d. variables on functional kernel regression, functional ker-
nel conditional mode and functional kernel conditional quantile behave in the
fractal case. The reader will see easily that the same kind of results could be
obtained from Proposition 6.19 in conditional c.d.f. estimation, or from Propo-
sition 6.20 in conditional density estimation, or from Theorem 8.2 in curves
discrimination problems. Similarly, one could do the same kind of things by
using the results obtained in Part IV of this book for a-mixing situations.

Proposition 13.2. Assume that X is of fractal order T.

i) Regression. Under the conditions of Theorem 6.11, the functional kernel
regression estimate can reach the rate of convergence:

700 = 7r(x) = Ouvco. ((10571)251) .

it) Mode. Under the conditions of Theorem 6.16, the functional kernel mode
estimate can reach the rate of convergence:

0(x) = 0(x) = Oua.co. ((loin)szﬂ> .

i11) Quantile. Under the conditions of Theorem 6.18, the functional kernel
quantile estimate can reach the rate of convergence:

ta(X) = ta(X) = Ou.co. ((k)in)%)

Proof. Tt suffices to combine the result of each among the mentioned theorems
together with the expression of the small ball probability function ¢, (.) and:

i) for regression estimation, choose the bandwidth in the following way:

1
logn \ 2°+7
n )

e~

ii) for mode estimation, choose the bandwidths in the following way:
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1
logn \ Z7F+71
" )

hKNhHNC(

iii) for quantile estimation, choose the bandwidths in the following way:

1
1og n\ 2i8+7
n .

hKNhHNC(

This is enough to complete this proof. [

It is worth noting that the rates of convergence presented in Proposition
13.2 are similar to those already existing in finite dimensional setting (see
details in Section 13.5 below). This appealing feature will be strenghtened in
Section 13.3.3 where it will be seen that a good choice of the semi-metric d
can always insure that the variable X is of fractal-type.

Remark 13.3. Note that the condition (4.6), which plays a key role in applying
our methodology with continuous kernels of type II, is obviously satisfied for
fractal-type processes.

13.3.2 Exponential-type Processes

In the recent probabilistic literature, many works have been devoted to the
statement of asymptotic evaluation of small ball probabilities for various fa-
mous continuous time stochastic processes. It turns out that, staying with
standard metric spaces, many usual processes are of the following exponential-
type. Recall that x is fixed and note that in the following definition the con-
stants 71, 72, and C' may be depending on Y.

Definition 13.4. The variable X is said to be of exponential-type with or-
ders (71,T2), with respect to the semi-metric d, if there exists some finite
constant C' > 0 such that the associated concentration function o, is of the
form

oy (€) ~ Ce o 108()™ 45 ¢ — 0.

To highlight the interest of this definition, let us look at two classes of
examples both being concerned with the space of the real-valued continuous
functions C([0, 1]) endowed with the metric d associated with the supremum
norm:

Vo € C([0,1]), [|2|[sup = sup [z(t)].
te[0,1]
It is out of the scope of this book to provide details about these examples.
Our main wish is to emphasize their exponential small ball probabilities forms
and on their impacts in the statistical framework. The first class of examples
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concern diffusion processes. The reader will find complementary discussions
in [B78], [LS72], [B99], [D02] and [FLVO05]. According to the results in [B99],
the usual Ornstein-Uhlenbeck diffusion process satisfies the Definition 13.4
with orders 71 = 2 and 75 = 0. This author shows firstly this result when
X = 0 (see page 187 in [B99]), and extension to any other x in the associated
Cameron-Martin space is available (see Chapter 2 in [B99]). The same kind
of result can be extended to many diffusion processes being absolutely contin-
uous with respect to the Wiener measure (see [LS72] for characterizations of
such absolutely continuous diffusion processes). The second class of examples
concern Gaussian processes, and the reader will find more complete informa-
tions in [B99], [LS01], and [FLVO05]. Let us just mention that the exponential
form as given in Definition 13.4 has been obtained by [LS01] for fractional
Brownian motion(with orders 7; depending on the parameter of the Brown-
ian motion). This standard result was extended for processes in C([0, 1]¢), for
some ¢ € N* (see Corollary 4.10.7 in [B99] and Theorem 4.6 in [LS01]). It con-
cerns for instance Lévy fractional motions and fractional Brownian sheets (see
[LS01] and [BLO02]) and fractional Ornstein-Uhlenbeck processes (see Example
4.10.9 in [B99]). To conlude this short survey of examples of exponential-type
processes, let us just say that it is a current field of investigation in modern
probability theory, and in the last few years many other processes have been
concerned with the statement of their small ball probability functions. All of
them have been shown to be of the exponential-type described in Definition
13.4. A nice overview of the recent infatuation for this kind of problem in the
probability literature can be found in [NNO04], [GLP04], [GHLT04], [GHT03],
[S03], [D03], [CL03], [DFMS03], [BL02] and references therein.

It should be noted that this common exponential feature for the small ball
probabilities of time continuous processes is not linked with the choice of the
supremum norm introduced before. Indeed, the same kind of results can be
obtained under different topological structures. For instance, by changing the
supremum norm into the Lgs-norm defined for some s > o by

1
b= (swletl’)

similar results are derived by [NN04], [GHLT04], [GHTO03]. The case of Hélder
norms H, defined for some o > 0

1E4

|z(t) — =(t)]

||zlla = =

and more generally the case of f-norm defined from some real-valued function

T (t) — 2(0)
z(t) — x(t
||l = sup ;
T Fe=)
are investigated in [B99] (see Theorem 4.10.6). As far as we know, there is no
result of this kind in semi-metric spaces.
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The functional nonparametric methodology works without specifying any
form for the small ball probability function ¢, (.), and so it concerns the case
of exponential-type processes such as those described earlier. The next propo-
sition shows how the rates of convergence of the functional kernel estimates
behave for such processes. As in Proposition 13.2 for fractal processes, we just
discuss the results for i.i.d. variables and for kernel regression, conditional
mode and conditional quantile estimates. The reader will see easily that the
same kind of results could be obtained from Proposition 6.19 in conditional
c.d.f. estimation, from Proposition 6.20 in conditional density estimation, from
Theorem 8.2 in discrimination problems, or for a-mixing variables from the
results obtained in Part IV of this book.

Proposition 13.5. Assume that X is of exponential-type.

i) Regression. Under the conditions of Theorem 6.11, the functional kernel
regression estimate can reach a rate of convergence of the form:

7(x) —r(x) = Oa.co. ((log n)fvl) , for some v > 0.

it) Mode. Under the conditions of Theorem 6.16, the functional kernel mode
estimate can reach a rate of convergence of the form:

5()() —0(x) = Ou.co. ((10g n)_”"‘) , for some vy > 0.

i11) Quantile. Under the conditions of Theorem 6.18, the functional kernel
quantile estimate can reach a rate of convergence of the form:

~

ta(X) —ta(X) = Oa.co. ((log n)*”“") , for some vz > 0.

Proof. Tt suffices to combine the result of each among the mentioned theorems
together with the expression of the small ball probability function ¢, (.) and
to choose bandwidths of the form:

hx ~ hg ~ C (logn)", for some u < 0.

Note that the exponent w is different for the three different assertions of the
theorem. [J

Even if the optimality of the rates of convergence obtained in Proposition
13.5 is still to be proved, as pointed out by [D02] in a related framework, one
may reasonably hope this to be true. This guess is based on the fact that for
p-dimensional problems and for §-Lipschitz models the optimal rates of con-
vergence are known to be of order (logn/n)?/(?5+P) (see [S82]). This supports
the idea that in infinite dimensional framework the rate of convergence can-
not be a power of n. This is known as the curse of the infinite dimension (see
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[F'V03b] for more extensive discussion). This question could be formulated as
follows:

Open question 13 For nonparametric problems involving exponential-
type processes, are the optimal rates of convergence of the form (logn)"
for some u < 0?

Of course, this open problem is of interest for deeper understanding of the
probabilistic phenomena. Anyway, one can immediately draw some interesting
statistical conclusions. In a first attempt, Proposition 13.5 could look quite
disappointing because rates of convergence as powers of logn are not satisfac-
tory from a statistical point of view. Indeed, we will see in the next section
that looking more deeply at the statistical significance of the results, one could
quickly change their mind.

13.3.3 Links with Semi-metric Choice

Indeed, the small ball probabilities functions are directly linked with the con-
centration properties of the functional variable X'. Similar to what happens
in p-dimensional problems with the curse of dimensionality, the poor rates of
convergence derived in Proposition 13.5 can be explained by an overdispersion
phenomenon of exponential-type processes linked with the dramatically fast
decaying of the ball probability function ¢, around 0. On the other hand,
the more appealing rates stated in Proposition 13.2 for fractal processes are
linked with the slower decaying of the ball probability function ¢, around 0.
These facts agree completely with the empirical ideas developed in Section
3.3.

Because the topological structure controls the concentration properties,
the natural answer that comes to mind is to try to change the topology.
At first, looking at the current probabilistic information on exponential-type
processes discussed before, the small ball probability function is always of
exponential form, as well for the topology associated with the supremum norm
as for those associated with Lg, H, or f norms. This highlights powerfully
the idea that, to be efficient in terms of higher concentration of the variable
X, a new topological structure should not be driven by the standard metric
procedures. This is a strong theoretical motivation for developing (as far as
possible) the functional nonparametric methodology in semi-metric spaces.
Once again, this agrees strongly with the empirical arguments developed in
Chapter 3. To show that a topological structure based on a suitable semi-
metric is effectively efficient for increasing the concentration properties of the
variable X, we will now indicate a general procedure allowing us to construct
a semi-metric for which the process X is necessarily of fractal-type (according
to this new topology).
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Lemma 13.6. Let H be a separable Hilbert space with inner product < .,. >
and let {e;, j = 1,...00} an orthonormal basis. Let k € N* be fized. Let
X = ;o 2’ej be a fived element in H.

i) The function defined by

VX' x") € H X H, dip (X' X") \/ZJ 1 <X =X e >

is a semi-metric on the space H.

it) Let X = Z;’;l XJe; be a squared integrable random element of H. If
the random variable X = (X',..., X%) is absolutely continuous with
respect to the Lebesques measure on RF with a density function f being
continuous at point x = (z',...2%) and such that f(x) > 0, then the
process X is of fractal order k with respect to the semi-metric dy, in the
sense of Definition 13.1.

Proof. i). For any (x',x”,x"") € H x H x H let us denote by (X', X", X"")
the associated k-dimensional real vectors X' = (< x/,e1 >,... < X', ex >),
X" =(<x"e1>,...<x",er>)and X" = (< x",e1 >,... < X" er >).
If we denote by deq; the euclidian metric on R*, we can write:

dk(Xla XH) = deucl(Xla XH)'

So, using the properties of the metric dgy., we have both of the following
results:

X/ :X// = X/ _X//
= deucl( )
= dp(x', X’ ) 0, (13.1)

and

dy, (Xl7 X//) = eucl( XN)
S eucl( XI/I) + deucl (Xl/lv XH)
/

= (X', X") + de (X", X"). (13.2)

According to Definition 3.2, these are both conditions needed to insure that
dj, 18 a semi-metric.

ii). Let us compute the small ball probability function associated with the
process X and the semi-metric di. For € > 0 we have:
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ox(€) = P (dp(X,x) <€)

=P Z<X—X,ej>2§e

k
=P ZXJ—x12<e
Jj=1

=P([X —z|[<e),
where ||.|| is the usual euclidian norm on R*. By using now the continuity

condition on f, and by using the notation V (k) for the volume of the unit ball
in R¥, we arrive at:

ox(€) = /B R

— [ (@) + 0(e)
B(z,e€)
="V(k)f(x) + o(eh).
: f(z) + o(e").

kT
50(3)

This enough to show that, for the semi-metric dy, the fractal property intro-
duced in Definition 13.1 holds.[]

Note that dj, is not a metric since the reverse of the property (13.1) is obvi-
ously false. This result is particularly appealing for answering the semi-metric
choice question,because it shows that in any case we can construct some semi-
metric for which the process could be considered of fractal-type, and so for
which the nonparametric methodology exhibits the rates of convergence spec-
ified in Proposition 13.2. In particular, even for the overdispersed exponential
processes, the unappealing rates obtained in Proposition 13.5 can be easily
surpassed by the topological structure induced by such a new semi-metric.

The semi-metrics described in Lemma 13.6 are usually known as projec-
tions type semi-metrics. They can be constructed in various different ways
according to the space H and to its selected orthonormal basis. For instance
it concerns Fourier basis, as various wavelet bases, as well as the Functional
PCA projection semi-metric described in Section 3.4.1 and which has been
applied succesfully to the phoneme data in Section 8.4.

13.4 Back to the One-dimensional Setting

Even if the scope of this book is to develop modelling and statistical methods
for infinite dimensional problems, the methodology concerns variables taking
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values in any abstract semi-metric space. So, all the results presented before
can be applied in the one-dimensional setting when F = R. Let us for instance
choose d to be the usual euclidian metric on the real line. In the following,
according to the general notations presented in Chapter 1.4, we will use the
notation X (in place of &) for the real random variable and we will use = (in
place of x) to denote a fixed deterministic element of R.

In a first attempt, let us look at the situation when X is absolutely con-
tinuous with respect to Lebesgue measure, and with a density f satisfying:

f is continuous and f(x) > 0. (13.3)

We will see that such a situation corresponds to a fractal process of order 1
in the sense of Definition 13.1.

Lemma 13.7. If X satisfies (13.3) then its small ball probability function is
such that for some C > 0:
wz(e) = Ce+o(e).
Proof. The small ball probability function is defined as
x+e
el =P(X~al 9= [ iy

and the continuity of f allows us to conclude directly by taking C = 2f(x).

From this result, one can find again many results already stated in the classical
one-dimensional nonparametric literature. For instance, by combining this
lemma with Proposition 13.2 we get the following results.
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Proposition 13.8. Assume that X satisfies (13.3).

i) Regression. Under the conditions of Theorem 6.11, the functional kernel
regression estimate can reach the rate of convergence:

7(x) —r(x) = Oa.co. ((10571)25[11) .

it) Mode. Under the conditions of Theorem 6.16, the functional kernel mode
estimate can reach the rate of convergence:

0(z) — 0(z) = Oqco. ((f”)) .

i11) Quantile. Under the conditions of Theorem 6.18, the functional kernel
quantile estimate can reach the rate of convergence:

falw) = ta(#) = Ouco ((1571))

Proof. 1t is a direct consequence of Proposition 13.2 and Lemma 13.7.0J

Note for instance that, for the nonparametric kernel regression estimate, the
usual rate of convergence of order (logn/n)?/(28+1) has been shown to be
optimal by [S82]. Similar conclusions can be drawn for the other problems
studied in this book, for density or c.d.f. estimation, as well as for classification
problems and for a-mixing variables, just by plugging the expression of the
small ball probability function given by Lemma 13.7 into each of the rates of
convergence stated earlier in the book.

The last (but not least) point is to see that the application of the general
methodology to one-dimensional setting may be drawn even for r.r.v. vari-
ables which do not satisfy the conditions of Lemma 13.7. Curiously, almost
all the dramatically abundant literature in the finite-dimensional nonpara-
metric literature works only with variables like those in Lemma 13.7. In both
lemmas below we will describe two situations which are not concerned with
the standard one-dimensional literature but for which the general functional
methodology will apply directly. Let us first look at the case where the distri-
bution of X is not absolutely continuous but such that

P(X=1)=0>0. (13.4)
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Lemma 13.9. If X satisfies (13.4) then its small ball probability function is
such that there exists some C > 0 such that for any € > 0:
Pa(e) = C.

Proof. This result is true with C = §. It suffices to write:

pa(€) = P(IX — 2| <¢)
>P(X=1x)=6>0 0

For many of the problems studied in this book, including conditional quantile,
mode, density or c.d.f. estimation as well as discrimination problems, we can
get from this lemma rates of convergence for kernel estimates of discontinuous
real variable X whose c.d.f. has jumps. Some of these results are reported in
the next proposition.

Proposition 13.10. Assume that X satisfies (13.4).

i) Regression. Under the conditions of Theorem 6.11, the functional kernel
regression estimate can reach the rate of convergence:

n

() —r(z) = o(hﬁ)maw.( 1°g”>.

it) Mode. Under the conditions of Theorem 6.16, the functional kernel mode
estimate can reach the rate of convergence:

oot = 0((1457)") + 0um (557

i11) Quantile. Under the conditions of Theorem 6.18, the functional kernel
quantile estimate can reach the rate of convergence:

Tulz) — talz) = O ((hﬁ—i-gﬁ)}) + Ouco. ((%”))

Proof. Each assertion follows by plugging the small ball probability expression
given in Lemma 13.9 into the corresponding theorem.[

Of course, any other result presented before in the book could be re-expressed
similarly for a real random variable with jumps. Indeed, there are only two
kinds of results which cannot be applied to discontinuous variables. The first
one concerns unsupervised classification, and since the method described in
Chapter 9 is completely based on the existence of some density function there
is no wish (nor interest) to expect such application to be possible. The second
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exception concerns the dependent situations studied throughout Part IV of
this book but here the reason is purely of technical order and comes from the
additional conditions (see for instance (11.12)) which are excluding discontin-
uous situations. One could reasonably hope to improve the way we derived
our calculus in Part IV in order to allow for variables of the kind described
in Lemma 13.9. Anyway, excepting these two special caes, a direct use of the
functional methodology to the specific one-dimensional framework allows us to
extend many classical results to variables X being not necessarily absolutely
continuous with respect to Lebesgue measure.

Let us now present another kind of real random variable, which is not
covered in the usual one-dimensional nonparametric literature, but for which
the functional methodology applies directly. This case concerns variables X
having a distribution function F' such that:

Ir>0,30 < g, <00, F(z+¢€)— F(x —¢€) = gge” +0(€"). (13.5)

Lemma 13.11. If X satisfies (13.5) then its small ball probability function is
such that:
wz(€) = Ce™ + o(e7).

Proof. This result is obvious since:
o) =P(| X —z|<e)=F(x+¢€)— Flx —¢).0

Once again note that any of the various results of this book can be applied
directly, just by plugging in the expression of the small ball probability func-
tion given by Lemma 13.11. The next proposition states some of these results.
These results are particularly interesting because the usual one-dimensional
statistical literature is only concerned with the special case when 7 = 1, which
corresponds exactly to the standard situation described in Lemma 13.7. For
instance, the case when 7 < 1 allows for variables X having a distribution
function which is not differentiable at point x while, conversely, the case when
7 > 1 allows for variables X having a density function which is vanishing at
point x.
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Proposition 13.12. Assume that X statisfies (13.5).

i) Regression. Under the conditions of Theorem 6.11, the functional kernel
regression estimate can reach the rate of convergence:

7(@) = 7(2) = Oueo ((f”)) .

it) Mode. Under the conditions of Theorem 6.16, the functional kernel mode
estimate can reach the rate of convergence:

0() —0(x) = Ouco <(15”)> |

i11) Quantile. Under the conditions of Theorem 6.18, the functional kernel
quantile estimate can reach the rate of convergence:

10(2) — ta(z) = Ouco ((loin>2jgﬁ>.

Proof. Tt is a direct consequence of Proposition 13.2 and Lemma 13.11. [J

13.5 Back to the Multi- (but Finite) -Dimensional
Setting

Let us look now at how the results presented before can be applied in the multi-
dimensional nonparametric setting when £ = RP. In the following, according
to the general notations presented in Chapter 1.4, we will use the notation
X (in place of X) for the multivariate random variable and we will use x (in
place of x) to denote a fixed deterministic element of RP.

In a first attempt, let us look at the situation when d is the usual euclidian
metric on £ = RP and when X is absolutely continuous with respect to
Lebesgue measure with density f satisfying:

f is continuous and such that f(x) > 0. (13.6)

We will see that such a situation corresponds to a fractal process of order p
in the sense of Definition 13.1.

Lemma 13.13. If X satisfies (13.6) then its small ball probability function
s such that for some C > 0:
vx(e) = CeP + oeP).
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Proof. The proof is easily obtained with

P
T2

)’

C:

(NS

according to the following steps:
el = [ syt
B(x,€)

[ @) + o)
B(x,€)
= V) f(@) + ole?).

=eP T o(e®).
= g o) + o)

Here, we denoted by V' (p) the volume of the unit ball in R? (for the topology
associated with the euclidian metric).0J

From this result, as we did in Section 13.4 when p = 1, one can find again
many results of the classical p-dimensional nonparametric literature. The next
proposition will summarize some of these possible results.

Proposition 13.14. Assume that X satisfies (13.6).

i) Regression. Under the conditions of Theorem 6.11, the functional kernel
regression estimate can reach the rate of convergence:

F(@) = 1(2) = Oueo ((f")) .

it) Mode. Under the conditions of Theorem 6.16, the functional kernel mode
estimate can reach the rate of convergence:

0(@) —0(z) = Ouco ((1"5”) ) |

i11) Quantile. Under the conditions of Theorem 6.18, the functional kernel
quantile estimate can reach the rate of convergence:

@) — ta(@) = Ouo <<loin>§+>

Proof. Tt is a direct consequence of Proposition 13.2 and Lemma 13.13.00
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Note for instance that, for the nonparametric kernel regression estimate,
the usual rate of convergence of order (logn/n)?%/(2%+P) has been shown to
be optimal by [S82]. Similar conclusions can be drawn for the other problems
studied in this book, for kernel conditional density or c.d.f. estimation, for
discrimination or classification problems, as well as for a-mixing variables,
just by plugging the expression of the small ball probability function given
by Lemma 13.13 into each of the rates of convergence stated earlier in the
book. Of course, as in Section 13.4 when p = 1, we could derive results in
less standard situations (for instance like those described in Lemma 13.11)
and show that the functional methodology would allow the extension of the
usual nonparametric literature to less restrictive conditions on the probability
distribution of X. We will not discuss this in detail here, both because the
discussion would be a tedious repetition of Section 13.4 and also because there
is much more to win in the p-dimensional framework than a simple reduction
of the hypothesis.

Indeed, the general functional methodology allows us to attack the curse
of dimensionality from a new point of view. This is what we will discuss now
through the following result:

Lemma 13.15. Let {e;, j = 1,...p} be an orthonormal basis of RP. Let
ke {l,...p— 1} be fized, and write x = Zle rle;.
i) The function defined for (y,z) = ((y',...yP), (z},...2P)) € RP x RP by
k . .
di(y,z) = /225107 — 27)%,
is a semi-metric on RP.
ii) Let X = Z§:1 Xe; be a squared integrable random variable in RP,
such that (X*,...,X%) is absolutely continuous with respect to the
Lebesques measure on RF with a density function f being continuous

and such that f(z',...2%) > 0. Then, the process x is of fractal order k
with respect to the semi-metric dj.

Proof. This result is just a special case of Lemma 13.6.00

This result is particularly appealing for the semi-metric choice problem be-
cause it shows that we can construct some semi-metric for which the process
could be considered of fractal-type with order & < p. We will see that, if we use
such a semi-metric, the nonparametric methodology exhibits rates of conver-
gence faster than with the usual euclidian metric. Of course, this does not con-
tradict the results in [S82] about the optimality of the rate (logn/n)3/(26+r)
since changing the semi-metric has changed the model (because the smooth-
ness Lipschitz model on the regression function r does not have the same
meaning from one topology to the other). The next proposition will summa-
rize some results of this type that can be obtained by combining our general
functional methodology with Lemma 13.15.



222 13 Small Ball Probabilities and Semi-metrics

Proposition 13.16. If X satisfies the condition ii) of Lemma 13.15:

i) Regression. Under the conditions of Theorem 6.11, the functional kernel
regression estimate can reach the rate of convergence:

@) = (@) = Ouco ((f”)) |

it) Mode. Under the conditions of Theorem 6.16, the functional kernel mode
estimate can reach the rate of convergence:

0(x) ~0(x) = Ouco ((f”)) .

i11) Quantile. Under the conditions of Theorem 6.18, the functional kernel
quantile estimate can reach the rate of convergence:

F(@) — to(@) = Oues ((loin>é+k>

Proof. Tt is a direct consequence of Proposition 13.2 and Lemma 13.15.00

For instance, staying only in regression setting to make discussion shorter
and clearer, the nonparametric estimate has a rate of convergence of order
(logn/n)B/2B+E) which is evidently better than the order (logn/n)?/(28+p)
obtained before with the euclidian metric. Note that in the extreme case,
with & = 1, we can reach a rate of convergence which is the same as in the
univariate case, and which is therefore independent of the dimensionality p
of the problem. So, there is real evidence for saying that such an approach
is a good candidate for constructing new models for dimension reduction in
multivariate nonparametric framework.

Finally, to fix the ideas let us mention that a typical example of such a
semi-metric would be obtained by using as basis {e;, j = 1,...p} the one
obtained by some standard multivariate Principal Component Analysis. Of
course, many other choices are possible. Each choice of the basis will lead to
a different projection semi-metric and then to a new model. In other words,
this supports the idea that many new models for dimension reduction can be
constructed just by changing the topological structure (that is, by introducing
some projection type semi-metric such as is defined in Lemma 13.15). It is ev-
idently out of the scope of this book to enter more deeply into this discussion,
but we share the point of view that some interesting further advances could
be obtained this way for reducing dimensional effects in multi- (but finite)
-dimensional nonparametric problems.
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13.6 The Semi-metric: a Crucial Parameter

Without any doubt, the semi-metric appears to be a key parameter for insur-
ing the good behaviour of any nonparametric statistical method on functional
data. The empirical ideas developed in Chapter 3 gave forewarning of this
point, and this is evidently confirmed with all the theoretical developments
presented in this chapter. Because of Proposition 13.6, we have now at hand
for any functional variable X a way to construct one (or more than one)
semi-metric for which the small ball probability function is of fractal-type
(see Definition 13.1), and we know (see Proposition 13.2) that in such a case
the functional nonparametric methods have rates of convergence of the same
kind as in finite-dimensional problems. This approach will be interesting when
X is of an exponential form (see Definition 13.4) or of some related ones, since
in this case the usual metric modelling is not efficient (see Proposition 13.5).

At this stage, theoretical advances for choosing the semi-metric in practical
situations have not yet been developed. Because of the difficulty of the problem
(linked in particular with the wide set of possible semi-metrics), we support
the idea that this choice has absolutely to be driven by taking into account
some non-statistical information about the process X. This general guideline
was followed all through the case studies presented before. For instance, going
back to the spectrometric data presented in Section 2.1, their quite smooth
feature suggests a semi-metric based on the derivatives of the curves. This
choice gave nice results in prediction (see Chapter 7) as well as in classification
problems (see Chapter 8). The quite different unsmooth shape of the phoneme
data presented in Section 2.2 evidently supported the idea that such a semi-
metric based on derivatives of the curves was not competitive, and has oriented
through the use of some projection-type semi-metric. This gave nice results
on these data (see Chapters 8 and 9). In the same spirit, but for other reasons
linked with the few numbers of discretized points, the electrical consumption
data presented in Section 2.3 have been treated by a projection approach and
the results were pretty appealing (see Chapter 12).

Finally, one would give the following practical general advice for users. For
smooth curves, the semi-metric based on higher order derivatives could be a
good one, while for unsmooth or for sparsely observed curves an approach
based on a projection type semi-metric will be more efficient. In some specific
problems one could have additional information that can be incorporated into
the construction of the semi-metric. This was the case in discrimination, for
which the knowledge of the group membership of each curve had led to a new
semi-metric based on PLS ideas (see Chapter 8). Of course, depending on the
kind of data to be treated and on the statistical problem investigated, the
user can construct his or her own semi-metric. Such a new semi-metric could
be easily integrated in the general software which goes with this book!.

! http://www.lsp.ups-tlse.fr/staph/npfda
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Some Perspectives

The large quantity of recent international publications on statistical meth-
ods and models for functional data emphasizes the great interest in this field
shared by statisticians and other users. Therefore this monograph has been
written in order to present the main ideas by discussing both their practical
impacts and their theoretical senses. This is particularly the case with the
“semi-metrics”, “local functional weighting” and “nonparametric modelling”
which play major roles in the new nonparametric methodology for functional
data developed all through this book. The feedback practice/theory strength-
ens the bridge between practitioners and theoreticians, which is at the heart
of any applied mathematical activities, and it is a key point for ensuring de-
velopment of the knowledge on functional statistics. As a good illustration of
this double objective, this book is strongly linked with the companion website
(http://www.lsp.ups-tlse.fr/staph /npfda) which proposes easy implementa-
tion of the functional nonparametric methods.

Because of the novelty of such a statistical area, it is clear that one can
expect many further advances in the next few years. Beyond practical aspects
(increase of the R/S+ current library and /or translation into other languages)
and technical theoretical open questions pointed out throughout the book,
a great challenge for the future will be to extend the functional statistical
methods to functional data more complex than curves (surfaces, arrays of
functional data, images, . . .). The mathematical background described in
this book allows for nonparametric analyses of such objects whereas practical
aspects remain to be developed (in particular the building of semi-metrics
adapted to this kind of data will certainly play a key role in the future). Of
course, other new questions will emerge from such intricate functional data
(in particular, spatial notions are often involved for analyzing images and a
great field of new investigations will concern spatial functional data).

Finally, we hope that this book will contribute to the dissemination of
recent knowledge on nonparametric functional statistics, will motivate further
advances in this field and will popularize these new methods in many scientific
communities having to deal with real functional datasets.
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Some Probabilistic Tools

In order to give the complete mathematical background, we decided to present
briefly some probabilistic tools. Some of these tools have been formulated in
new ways to make them easily applicable for the functional nonparametric
aims of this book. We are convinced that these new formulations will also be
helpful for anybody interested in developing further asymptotic advances on
functional nonparametric statistics. The guidelines of this book consist in pre-
senting recent advances for functional variables. However, obtaining asymp-
totic results needs the use of basic probabilistic tools for real random variables,
and many results presented below will concern real random variables.

Section A.1 deals with the notion of almost complete convergence and
focuses on the links between this kind of convergence and other more standard
ones (such as almost sure convergence or convergence in probability). The
statement of almost complete convergence properties relies mainly on some
exponential inequality for sums of random variables, and Section A.2 recalls
some of these inequalities. Because there are too many in the literature, we
concentrate our purpose on those inequalities having a form adapted to the
kind of theoretical developments made earlier throughout this book. The last
part of this appendix is only useful for people interested in Part IV of this
book since focuses on mixing sequences of random variables (either real or
functional). More precisely, Section A.3 presents some inequalities for sum of
mixing real random variables. Again, as in Section A.2, we have chosen from
among the wide literature those inequalities having a form adapted to the
framework of this book. Even further, some of these inequalities have been
reformulated in new ways, to make their application easier.

It is out of the scope of this book to give the proofs of all these proba-
bilistic tools, and we will mainly refer to the existing literature. However, we
will give short proofs for those tools whose proof is not easily accessible in the
literature (this is particularly the case in Section A.1 about complete conver-
gence, mainly because the literature on this stochastic mode of convergence is
not quite as important). All through this appendix, (X,,),, ¢y and (Yy), oy are
sequences of real random variables, while (uy,), oy is a deterministic sequence
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of positive real numbers. We will denote also by (£,,),,c5 a double sequence of
random variables (not necessarily real variables), and by (7},),,c, a double se-
quence of stationary real random variables. We will use the notation (Z,),,cy
for a sequence of independent and centered r.r.v., and (W) for a double
sequence of stationary dependent and centered r.r.v.

neE”Z

A.1 Almost Complete Convergence

As the reader can see through the proofs presented in this book, the almost
complete convergence is in some sense easier to state than the almost sure
one. Moreover, as we will see below, this mode of convergence implies other
standard modes of convergence. Therefore, because of this double advantage
and starting with [C84], it became quite usual for many nonparametricians to
express their asymptotic results in terms of complete convergence. Curiously,
even though the complete convergence notion was introduced quite a long time
ago by [HR47], this notion is not very popular in other statistical communities
than nonparametricians. In particular, it is much less popular than the almost
sure and the probability stochastic modes of convergence.

We decided to recall some basic definitions and properties about this no-
tion. Because the probabilistic literature about almost complete convergence
is not very wide, and because several key properties can be stated in a short
and easy way, we decided to give briefly all the proofs of the results stated in
this section. We hope that this will be helpful for other purposes than those
of this book.

Definition A.1. One says that (X, ),y converges almost completely to
some r.r.v. X, if and only if

Ve>0, > P(X,-X|>e¢) < o,
neN

and the almost complete convergence of (Xy), oy to X is denoted by

lim X, = X, a.co.
n—roo

This notion, which can sometimes be called more simply complete conver-
gence is linked with other stochastic modes of convergence. The first part of
Proposition A.2 below will study the link between the almost complete con-
vergence and the convergence in probability. This last mode of convergence
will be referred to from now on as convergence p and it is defined by the
following property:
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lim X, =X, p &Ve>0, lim P(X,—X|>¢ = 0.
n—oo n—oo

The second part of Proposition A.2 does the same thing but with the almost

sure convergence. This last mode of convergence is defined by the following

property:

lim X, = X, a.s. @P(lim Xn:X> -1,

n—oo n—oo

and it will be referred to from now on as a.s. convergence. The reader will
find in any elementary probability book a more general presentation of the
various links existing between these stochastic modes of convergence and other
usual ones (for instance, one can look at [BL87]). The proof of the following
property can also be found in [BL87].

Proposition A.2. Iflim, ., X, = X, a.co., then we have:

it) lim, 00 Xn = X, a.s.

Proof. Without loss of generality, we show the result for X = 0.

i) This point is obvious.
ii) For all ¢ > 0, we have ) .y
Cantelli’s lemma, it holds that

P(|X,] >€) < oo. According to Borel-

P (limy oo {|Xn| > €}) = 0,
which can be rewritten as P (A(e)) = 1 where
A(e) = {3n, Ym > n, |Xn| <€}

)). is a sequence of embedded events, and so the property

Note that (A(e
€)) = 1 implies directly the almost sure convergence, namely:

Ve > 0, P (A(

P (Ve, In, Ym >n, |X,| <e) = 1. O

In the classical literature, the rate of almost sure convergence to 0 for a
sequence of r.r.v. is defined by the condition

Xn—X = Ous.(up) & P(X,— X = O(uy)) = 1, (A1)
< P(3C < 00,3In,Vm > n, | X,, — X| < Cuy) = 1,

while the rate of convergence in probability is defined by
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Xn—X = 0p(un) & lim lim,, oo P (| X, — X| < mu,) = 1.
m

As far as we know, there does not exist such a universally accepted equivalent
notion for the complete convergence. The aim of the next definition is to make
this notion precise.

Definition A.3. One says that the rate of almost complete convergence of
(Xn)nen to X is of order uy, if and only if

Jeo >0, Y P(Xp—X|>eun) < oo,
neN

and we write
Xn—X = Ogco (up).

The reader can find other points of view concerning the way to quantify
such kind of rates of convergence (see for instance [HSV98] and [HV02]). The
interest of our new definition is double. First, it has the merit of providing a
precise and formal definition which is interesting from a probabilistic point of
view since (see Proposition A.4 below) it implies both previous usual notions
of O, and O, .. Second, it is interesting for statistical purposes since it turns
out to be easier to prove than some Op or O,.s. property (at least in many
situations, including all those treated before in this book).

Proposition A.4. Assume that X,, — X = Oy co. (up,). We have:

i) Xp—X =0, (uy),
ii) X — X = Oqs. (un).

Proof. Without loss of generality, we show the results for X = 0.

i) The O, co. definition allows us to write that:

HmU7Vm>mO7ZP(|Xn\ > muy) < 00,

n

and Borel-Cantelli’s lemma allows us to get
Img, Ym > mg, P (mn_ﬂxﬂXﬂ > mun}) = 0.
By applying now Fatou’s lemma, one gets
Imo, ¥Ym > mog, lim, oo P (| X,| > muy,) = 0.

This is the same as
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Img, Vm > mg, lim,, , P (| X,| < mu,) = 1,
which implies directly that X,, = O,(u,).
ii) As before, by applying Borel-Cantelli’s lemma it holds that
P (mn_moﬂXﬂ > eoun}) = 0.
This can also be written as
deg, P (In, Vm > n, |Xp| < eoum) = 1,

and it comes directly that X,, = O, 5. (uy). O

Now, we give in Proposition A.5 some elementary calculus rules concerning
this stochastic mode of convergence. These elementary rules were used im-
plicitly earlier throughout this book. To conclude this presentation, we will
present in Proposition A.6 some more specific results that were also used sev-
eral times before in this book.

Proposition A.5. Assume that lim, . u, = 0, lim,,_, X,, = lx, a.co.
and lim, .Y, = ly, a.co., where lx and ly are two deterministic real
numbers.
i) We have:
a) lim, oo Xp + Y, =Ilx +ly, a.co.;
b) limy, oo Y X, = lylx, a.co.;
1

1
c) nh_)rrgo?n = 7 G.co. as long as ly #0.

Y
it) If X, — lx = Oq.co. (un) and Y, —ly = Oq.co. (un), we have:
0,) (Xn + Yn) - (lX + ZY) = Oa.co. (Un)7
b) XnYn - leY - Oa.co. (un)}

— — — = 0Oq.co. (Un l l 0.
c Y. iy co. (Un) as long as ly #

Proof. i.a). This proof is obvious since we have

P(IXo+ Yo~ (x + 1)l > €) £ P (X0~ Ix| > %) + P (Yo —ty] > %) .
it.a). Applying the last inequality with e = ¢gu,, allows us to conclude.

i.b). We can, without loss of generality, only consider the case when lx =0

(otherwise, just write the decomposition Y, X,, = ¥,,(X,, — lx) + Yalx). So,
assume that Ix = 0. For € < 1/2 we can write
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€ €
P(YXal > €) £ P ([¥n =yl |Xal > 5) + P (llyXal > 5)

€ € €
<P (Yn — ly| > \/g> + P <|Xn| > \/;) + P <|lan| > 5)

<P(Va—iv]>5) + P (1%l > 5) + P (v Xal > 5).

The almost complete convergence of Y, X,, to 0 follows by using the almost
complete convergence properties of X,, and Y,,.

i.b). Applying the last inequality with ¢ = egu,, allows us to conclude directly
by using the rates of convergence of X,, —Ix and Y,, — ly.

i.c). The almost complete convergence of Y;, to ly # 0 implies that there
exists some d > 0 (choose for instance § = ly-/2) such that

> P (Y] <6) < co.
neN
The proof is performed according to the following steps:

p( 11

o e) = P(|Y, —ly| > €llyYa))

>
< P(JY, —ly| > ¢lyY,| and |Y,,| > d) + P(|Y.| <9)
< PV —ly| > edliy]) + P(|Ya| <),

and the result follows from the almost complete convergence of Y,, to ly.

ii.c). This proof follows directly from the last inequality. O

Proposition A.6. Assume that lim, 0o un, = 0, X;, = Og.co.(un) and

lim,, o Y, = ly, a.co., where ly is a deterministic real number.
i) We have X,,Y;, = Oq.co. (Un);

Xn
it) We have v = Oa.co. (uy) as long as ly # 0.

n

Proof. i.). The almost complete convergence of Y, to ly implies that there
exists some & > 0 such that

> P(|Ya] > 6) < 0.

neN

Now, the proof is performed as follows:
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P(|Y, X,| > eupn) = P(|YnX,| > eu, and |Y,| <9)
+ P(|Y,X,| > eu, and |Y,| > 9)
< P(|X,| > e tuy,) + P(JY,| > 6).

So, both of the previous inequalities together with the hypothesis that
X = Og.co (uy) are enough to show that X,,Y,, = O, co.(ur).

Proof of ii.). Tt is a direct consequence of part i) of this proposition together
with part i.c) of Proposition A.5. O

A.2 Exponential Inequalities for Independent r.r.v.

In all this section Z1, ..., Z, will be independent r.r.v. with zero mean. As can
be seen throughout this book, the statement of almost complete convergence
properties needs to find an upper bound for some probabilities involving sum

of r.r.v such as
n
P <| Z Zil > €> s
i=1

where, eventually, the positive real € decreases with n. In this context, there
exist powerful probabilistic tools, generically called Ezponential Inequalities.
The literature contains various versions of exponential inequalities. These in-
equalities differ according to the various hypotheses checked by the variables
Z;’s. We focus here on the so-called Bernstein’s inequality. This choice was
made because the form of Bernstein’s inequality is the easiest for the theoret-
ical developments on functional statistics that have been stated throughout
our book. Other forms of such exponential inequality can be found in [FN71]
(see also [N97] and [N98]).

Proposition A.7. Assume that

Vm > 2,|EZ™| < (m!/2)(a;)*b™ 2,
and let (Ay)? = (a1)* + -+ + (an)?. Then, we have:
n

PR

i=1

62

2(1+§—?’)

Such a result being standard, the proof is not given here. Previous proofs
of Proposition A.7 below are given in [U37] or [B46]. The reader will also
find the proof of some more general results in [Y76] (as well as in many other
probability books).

VeEO,P(

>€An> < 2expl —
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Note that this inequality is stated for non-identically distributed r.r.v.
Note also that each variable Z; may depend on n. Indeed, for our statistical
purpose, the next Corollary A.8 is used more often than the previous general
proposition.

Corollary A.8. i) If Ym > 2, 3C,, > 0, E|Z| < Cp, *™ V| we have

€2TL
>€en S 26Xp 7m .

it) Assume that the variables depend on n (that is, assume that Z; = Z; ).
Ifvm >2,3C,, >0, E|Z7"| < Cp, a2V and if up, = n"ta2 logn verifies
lim,, o0 uy, =0, we have:

n

32

=1

Ve > 0, P(

1 n
EZZz = Oa.co.(\/un)~
=1

Proof. i) It suffices to apply Proposition A.7 with A,, = ay/n and b = a?.
i) Taking € = €p4/u, in the result i), and because the sequence u, tends to

zero, we obtain for some C’ > 0:

1| ) 2

P - Zil > eo/un | < 2exp ————-—7—— 5 < 2n~C¢ <o,
(n ; ) 2(1+60,/un)

and ii) follows directly by choosing €, large enough. OJ

e2logn

Note also that all previous inequalities are given for unbounded random vari-
ables, which is useful for functional nonparametric regression (see Section 6.2.1
and Section 6.3.1). Of course, they apply directly for bounded variables, such
as those appearing along functional conditional density or c.d.f. studies (see
Chapter 6). This is the reason why we decided to conclude this presentation
with a new version of Corolary A.8 which is directly adapted to bounded vari-
ables.
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Corollary A.9. i) If IM < oo, |Z1| < M, and denoting 0® = EZ?, we have

> < 9 GZTL
eEN ex e —— v .
= TP 22 (14 )

it) Assume that the variables depend on n (that is, Z; = Z; ) and are such
that IM = M,, < 00,|Z1| < M and define 02 = EZ}. If u, = n~'o2 logn
verifies lim,, oo u, = 0, and if M/o% < C' < oo, then we have:

n

32

=1

Ve > 0, P(

1 n
EZZZ = Oa.co.(\/un)~
=1

Proof. i) Tt suffices to apply Proposition A.7 with a? = 02, A2 = no? and
b= M.
ii) Because the sequence v, = 1‘/{'2" tends to zero, by choosing € = €y,/u,, in

the result i) we obtain directl};
€3 logn _or e
> €0\/Un | < 2expl ————— 7 < 2n 0.

1 n
P<n 2% 3 (1 + oy

and ii) follows directly by choosing ¢y large enough. OJ

A.3 Inequalities for Mixing r.r.v.

Nonparametric statistics for real-valued mixing processes have received a lot
of attention during the last few decades (see Part IV of this book for a wide
scope of references), and it turns out that these statistical advances have
been linked with developments of probabilistic tools for mixing sequences.
Basically, there are two main kinds of tools that are used for nonparametric
purposes: covariance inequalities and exponential inequalities. The aim of this
section is to recall some inequalities of these two kinds for real valued a-mixing
processes. It is worth noticing that, because of Proposition 10.4 above, these
inequalities for real variables will be useful for variables valued in semi-metric
spaces. This was done systematically all through Part IV of the book.

Let us first start with some covariance inequality. There is a wide litera-
ture concerning covariance inequalities for mixing variables. These inequalities
differ both from the kind of mixing condition which is introduced and from
the kind of assumptions checked by the variables. The reader will find nice
overviews on such results in [RI87] or [Y92]. Shorter reviews are also pro-
vided by Chapter 1 of [Y94] and Chapter 1 of [R00]. Such inequalities are
also called moment inequalities (see for instance [K94], [CK95] or [EQV02]



236 Appendix: Some Probabilistic Tools

for recent extensions to higher order moment inequalities useful in nonpara-
metric statistics). We will stay here with a-mixing dependence structures and
we just give in the next proposition two covariance inequalities: for bounded
and unbounded random variables. As far as we know, the first result below
was originally given by [I62] while the second one was previously stated in
[D68]. Recall that (7,),,c; is a stationary sequence of real random variables.

Proposition A.10. Assume that (T,), e, is a-miving. Let us, for some

k € Z, consider a real variable T (resp. T') which is A* . -measurable
(resp. Aj{_‘ﬁ—measumble).

i) If T and T' are bounded, then:
3C,0 < C < 400, cov(T,T') < Ca(n).
ii) If, for some positive numbers p, q, r such that p~t +q~ 1t +r~
have ETP < oo and ET'? < oo, then:
1

3C,0 < C < +00, coo(T,T") < C(ETP)¥ (ET'?)7 a(n)*

L=1, we

Let us now present some exponential inequalities for partial sums of a
sequence (W), ), of stationary and centered mixing real random variables.
In some sense, even if the forms are not completely comparable, the results
presented below are dependent extensions of those described in Section A.2.
During the twenty past years, the literature on exponential probabilistic in-
equalities for mixing sequences was directly linked with the advances on non-
parametric statistics for dependent data. This connexion started with the
previous Bernstein’s type inequalities provided by [B75] and [C84] in a quite
more restrictive mixing dependence structure than the a-mixing one. As far
as we know, the first exponential inequality for a-mixing variables is due to
[C83]. This previous result has been improved in several further works and
the reader will find in [B93] and [R096] a wide discussion on the bibliography
at this point. For our nonparametric functional purpose, we decided to use
a dependent version of the Fuk-Nagaev’s inequality which was previously in-
troduced by [FNT71] for independent variables and refined in [N97] and [N98].
This inequality is recalled in Proposition A.11. For the reasons discussed in
Section A.2, we give a result for bounded and one for unbounded variables. To
save space, we will state the result without specifying the exact expressions
of the constant terms involved in the bounds. Let us introduce the notation:

8721 = i i |COV(VVZ‘7 Wj)l .

i=1j=1
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Proposition A.11. Assume that (W), cn- are identically distributed and
are arithmetically a-mizing with rate a > 1 .

i) If there exist p > 2 and M > 0 such that ¥t > M, P(|Wy| > t) < ¢7P,
then we have for any r > 1 and € > 0 and for some C < oco:

2\ 77/2 (a+1)p/(a+p)
P( >e> SC’{<1+62> Jrnr*l(f) : ’ .
— r sz €

>_Wi
=1
it) If there exist M < oo such that |[Wi| < M, then we have for any r > 1
and for some C < co:

2 —r/2 a+1
P( >e> SC{<1+62> +nr*1(i) }
— rs2 €

n

W,

=1
The result of Proposition A.11 is stated and proved in [R00] in a more general
framework than ours. To make the use of such a probabilistic result easier,
both for us in this book and for anybody else who could be interested in de-
veloping further advances, we propose new formulations of this inequality (see
Corollary A.12 and Corollary A.13) which are directly adapted to nonpara-
metric statistics applications. Both corollaries differ with the kind of mixing
coefficients: arithmetic or geometric.

Corollary A.12. Assume that the variables depend on n (that is, W; =
Win), and that Wy,... W, are n successive terms of a mizing sequence
with arithmetic coefficients of order a > 1. Let us consider the determin-
istic sequence u, = n~2s2 logn. Assume also that one among both sets of
assumptions is satisfied:

i) dp>2,30 >2,3IM = M,, < oo, such that
_(a+1)p

Vt > M, P(|Wy| >t) <tP and s, “™7 =o(n~Y),

or
ii) IM = M,, < 00,30 > 2 such that

W1 < M, and sp @) = o(nY).

Then we have

Proof. Note first that the conditions on s, insure that lim, .., u, = 0. We
will prove both assertions at once by using the notation:
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_ [ (a+1)p/(a+ p) under the conditions of 1)
" | a+ 1 under the conditions of ii).
Take r = (logn)? and apply Proposition A.11, to get for any ey > 0:

1 n
P(

W

i=1

> 60\/1Tn>

2,2 — Gogn)? 1 q
€GN Uy, _2 ogn
< 1+ ——— 1 e
<o(ivgupg)  entos ()
<cli+ e\ Viogn\?
- logn ’

€05n
Using the fact that log(1 + z) = 2 — 2/2 + o(x?) when x — 0, we get:

1n
P(
n

(log n)2

+ n (logn) 2 (

5[2) log n

>60\/un> <Ce "7 + n(logn)_2+%8;q65q.

7ZWi

i=1

Finally, the condition on s,, allows us to get directly that there exist some ¢
and some 79 > 0 such that

1 n
Pz

and this proof is complete. [

> em/un> < Cn~t7m, (A.-13)

Corollary A.13. Assume that the variables depend on n (that is, W; =
Wi n), and that W1, ... W, aren successive terms of a mizing sequence with
geometrical coefficients. Let us consider the deterministic sequence u, =
n~2s2 logn. Assume that one of these two sets of assumptions is satisfied:

i) Ip>2,30 > %,HM = M, < oo, such that

Yt > M, P(|Wy| > t) <t7P and s;' = o(n™%),
or
it) AIM = M,, < 00,30 > 2 such that
|W1| < M, and s, = o(n™%).

Then we have

1 n
EZWz - Oa.co.(\/un)-
=1

Proof. This proof is obvious since the geometrical decaying of the coefficients
allows us to apply Corollary A.12 for any value of a. [J
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