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Preface

Modelling based on finite mixture distributions is a rapidly developing area
with the range of applications exploding. Finite mixture models are nowadays
applied in such diverse areas as biometrics, genetics, medicine, and marketing
whereas Markov switching models are applied especially in economics and
finance. There exist various features of finite mixture distributions that render
them useful in statistical modelling. First, finite mixture distributions arise in
a natural way as marginal distribution for statistical models involving discrete
latent variables such as clustering or latent class models. On the other hand,
we find that statistical models which are based on finite mixture distributions
capture many specific properties of real data such as multimodality, skewness,
kurtosis, and unobserved heterogeneity. Their extension to Markov mixture
models is able to deal with many features of practical time series, for example,
spurious long-range dependence and conditional heteroscedasticity.

Finite mixture models provide a straightforward, but very flexible exten-
sion of classical statistical models. The price paid for this flexibility is that
inference for these models is somewhat of a challenge. Although the specific
models discussed in this book are very different, they share common features
as far as inference is concerned, namely a discrete latent structure that causes
certain fundamental difficulties in estimation, the need to decide on the un-
known number of groups, states, and clusters, and great similarities in the
algorithms used for practical estimation.

In the beginning, my intention was to write the book entirely from a
Bayesian viewpoint, which has been the only way of statistical thinking that
was to able to satisfy my own intellectual needs. I was introduced into the
Bayesian approach as a student during a course on reliability theory read by
Reinhold Viertl in the winter term 1981/82 at the University of Technology.
I became a practical Bayesian a few months later when I had the incredible
luck to start my scientific career on a project using Bayesian methods for flood
design in hydrology (Kirnbauer et al., 1987).

However, the more this book project progressed, the clearer it became
that a lot would be said about finite mixture and Markov switching models,



VIII Preface

about their mathematical formulation, their properties, and their applications,
that would have been said with the very same words by any non-Bayesian.
Therefore I decided to put the whole project on a broader basis as far as
statistical inference is concerned.

I hope that by reading this book many frequent users of statistical models
will become familiar with the finite mixture and Markov switching modelling
approach, and by using the software developed especially for this book may
succeed in pursuing this approach also in practice.

I am grateful to several researchers who raised my interest in the mod-
els and methods discussed in the book. Dieter Gutknecht introduced me to
Kalman filtering and the application of (switching) state space models in
hydrology in 1984 and the wonderful hours we spent discussing our ideas en-
couraged me to follow a scientific career. Sylvia Kaufmann drew my attention
to Markov switching models and their usefulness in empirical economics and
finance in 1994, which was the starting point for a rewarding friendship and
cooperation. In 1995 Thomas Otter introduced me to the world of Bayesian
methods in marketing research and I owe him and my former PhD student
Regina Tüchler wonderful and exciting experiences with using finite mixture
models for this line of research.

This book project was started when I was a member of the Statistics
Department of the Vienna University of Economics and Business Adminis-
tration and I would like to thank Helmut Strasser for his continuous support
and encouragement. I am indebted to colleagues at the Department of Ap-
plied Statistics of the Johannes Kepler University in Linz for their enduring
patience with my difficulty reconciling my duties as department head and
bringing this project to an end. I am particularly grateful to Helga Wagner,
who provided useful comments and help with proofreading the book. I am
grateful to several anonymous publisher’s referees for many helpful sugges-
tions for improving the presentation of the material and to John Kimmel of
Springer for his support.

Finally, I am greatly indebted to my husband Rudi Frühwirth for his
love and his continuous understanding and support for my research activi-
ties throughout the years.

Linz and Vienna, Austria Sylvia Frühwirth-Schnatter
February 2005
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1

Finite Mixture Modeling

1.1 Introduction

Many statistical models involve finite mixture distribution in some way or
other. The following illuminating statistical problem where a finite mixture
distribution arises in a natural way was first noted by Feller (1943). Consider
a population made up of K subgroups, mixed at random in proportion to the
relative group sizes η1, . . . , ηK . Assume that interest lies in some random fea-
ture Y which is heterogeneous across and homogeneous within the subgroups.
Due to heterogeneity, Y has a different probability distribution in each group,
usually assumed to arise from the same parametric family p(y|θ), however,
with the parameter θ differing across the groups. The groups may be labeled
through a discrete indicator variable S taking values in the set {1, . . . , K}.

When sampling randomly from such a population, we may record not only
Y , but also the group indicator S. The probability of sampling from the group
labeled S is equal to ηS , whereas conditional on knowing S, Y is a random
variable following the distribution p(y|θS) with θS being the parameter in
group S. The joint density p(y, S) is given by

p(y, S) = p(y|S)p(S) = p(y|θS)ηS .

A finite mixture distribution arises if it is not possible to record the group
indicator S; what we observe is only the random variable Y . The marginal
density p(y) is obviously given by the following mixture density,

p(y) =
K∑

S=1

p(y, S) = η1p(y|θ1) + · · · + ηKp(y|θK). (1.1)

The Fishery Data analyzed in Titterington et al. (1985), a data set of
the length of 256 snappers, is an interesting example from biology, showing
how a mixture distribution arises when unobserved heterogeneity is present in
a population for which a particular random characteristic is observed. Similar
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Fig. 1.1. Fishery Data, empirical distribution of the observations

data are found in several other areas such as marketing (Rossi et al., 2005,
Chapter 5) or public health (Spiegelhalter et al., 2003). The histogram of the
Fishery Data displayed in Figure 1.1 shows various modes, a possible ex-
planation being that the fish belong to different age groups, and thus have
different expected length. As age is hard to measure, no observations concern-
ing the age group a fish belongs to are available, and one has to cope with
unobserved heterogeneity.

More generally, heterogeneity in a sample occurs whenever the mean of a
random characteristic Y is different among the observed subjects. A common
way to deal with heterogeneity is to assume that Y follows a normal distri-
bution with subject specific mean µs

i , Y ∼ N
(
µs

i , σ
2
)
. If the deviation of µs

i

from a common mean µ could be explained by an observed factor zi,

µs
i = β1 + ziβ2,

then observed heterogeneity is present, and the unknown parameters could be
estimated from a regression type model:

Y = β1 + ziβ2 + εi, εi ∼ N
(
0, σ2) . (1.2)

If the factor zi, however, is unobserved, then we have to cope with unobserved
heterogeneity. For the Fishery Data, for instance, the unobserved factor zi

could be the age of a fish. If the differences in the mean are caused by an
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unobserved categorical variable zi with K categories, then the distribution
p(µs

i ) of µs
i will be discrete:

µs
i =

⎧⎪⎨⎪⎩
µ1, Si = 1,
...

...
µK , Si = K.

(1.3)

Here we coded the categorical variable zi through an indicator Si taking the
values 1, . . . , K. Let η1, . . . , ηK denote the discrete distribution of zi in the
population. If the data are a random sample from the population under inves-
tigation, then the marginal distribution of Y given in (1.2) is a finite mixture
of K normal distributions with equal variances:

Y ∼ η1N
(
µ1, σ

2
)

+ · · · + ηKN
(
µK , σ2

)
. (1.4)

Thus a finite mixture model captures unobserved heterogeneity caused by an
unobserved categorical variable.

Many other statistical issues have a similar finite mixture structure in
the sense that the marginal distribution of a random variable of interest has a
mixture density as in (1.1). Such applied finite mixture problems were studied
in rather different scientific communities, such as unsupervised clustering in
neural network applications, latent class analysis in the social sciences, and
regime switching models in economics, just to mention a few. One of the
major goals of this book is to alert the reader to the many different statistical
problems where such finite mixture distributions arise. A second goal of the
book is to show that many common features are shared by these methods.
Some of these topics have a vast literature of their own, such as unsupervised
clustering or latent class analysis, with a host of applications in many areas.

1.2 Finite Mixture Distributions

1.2.1 Basic Definitions

Consider a random variable or random vector Y, taking values in a sample
space Y ⊂ �r, which may be discrete or continuous, univariate or multivari-
ate. In what follows, the probability distribution of a random variable Y is
generally characterized by its probability density function. It is understood
that probability density functions are defined with respect to an appropriate
measure on �r which is either the Lebesgue measure, or a counting measure,
or a combination of the two, depending on the context.

Y is said to arise from a finite mixture distribution, if the probability
density function p(y) of this distribution takes the form of a mixture density
for all y ∈ Y:

p(y) = η1p1(y) + · · · + ηKpK(y),
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where pk(y) is a probability density function for all k = 1, . . . , K. A single
density pk(y) is referred to as the component density. K is called the number
of components. The parameters η1, . . . , ηK are called the weights; the vector
η = (η1, . . . , ηK) is called the weight distribution. η takes a value in the unit
simplex EK which is a subspace of (�+)K , defined by following constraint,

ηk ≥ 0, η1 + · · · + ηK = 1. (1.5)

In most applications one assumes that all component densities arise from the
same parametric distribution family T (θ) with density p(y|θ), indexed by a
parameter θ ∈ Θ, although this need not be the case:

p(y|ϑ) = η1p(y|θ1) + · · · + ηKp(y|θK). (1.6)

The mixture density function p(y|ϑ) is indexed by the parameter ϑ =
(θ1, . . . ,θK , η) taking values in the parameter space ΘK = ΘK × EK . Un-
less stated otherwise, we assume that the finite mixture distribution is un-
constrained in the sense that no constraints are imposed on the component
parameters θ1, . . . ,θK and that the weight distribution η is unconstrained
apart from the natural constraint (1.5).

A random variable Y with density (1.6) is said to arise from a finite mix-
ture of T (θ) distributions, abbreviated by

Y ∼ η1T (θ1) + · · · + ηKT (θK).

This book is mainly concerned with finite mixtures from well-known distri-
bution families, an important example being finite mixtures of multivariate
normal distributions Nr (µ,Σ) with density fN (y; µ,Σ), where the mixture
density is given by

p(y|ϑ) = η1fN (y; µ1,Σ1) + · · · + ηKfN (y; µK ,ΣK), (1.7)

which reduces for r = 1 to a mixture of univariate normal distributions
N

(
µ, σ2

)
:

p(y|ϑ) = η1fN (y; µ1, σ
2
1) + · · · + ηKfN (y; µK , σ2

K). (1.8)

Historically seen, a mixture of two univariate normal densities with differ-
ent means and different variances is the oldest known application of a finite
mixture distribution (Pearson, 1894).

Another popular example is a mixture of Poisson distributions P (µ) with
density fP (y; µ), where the following mixture density results,

p(y|ϑ) = η1fP (y; µ1) + · · · + ηKfP (y; µK); (1.9)

see Feller (1943) for an early treatment of this distribution. Yet another ex-
ample is a finite mixture of exponential distributions E (λ) with the mixture
density being given as
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p(y|ϑ) = η1fE(y; λ1) + · · · + ηKfE(y; λK), (1.10)

where fE(y; λk) is the density of an exponential distribution parameterized
as in Appendix A.1.4.

These examples are special cases of mixtures from the general exponential
family (Barndorff-Nielsen, 1978), where the component densities in (1.6) take
the following form,

p(y|θk) = exp
{

φ(θk)
′
u(y) + c(y) − g(θk)

}
, (1.11)

where φ : Θ → Θ, u : Y → Θ, c : Y → �, and g(θk) defines the normalizing
constant:

exp{g(θk)} =
∫

exp
{

φ(θk)
′
u(y) + c(y)

}
dy.

Shaked (1980) gives a general mathematical treatment of mixtures from the
exponential family.

1.2.2 Some Descriptive Features of Finite Mixture Distributions
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Fig. 1.2. Densities of various two-component mixtures of univariate normal distri-
butions, with equal variance σ2

1 = σ2
2 = 1, but different weights and different means

(left-hand side: µ1 = −1, µ2 = 1, η1 = 0.5; middle: µ1 = −3, µ2 = 1, η1 = 0.6;
right-hand side: µ1 = −2, µ2 = 1, η1 = 0.85)

The most striking property of a mixture density is that the shape of the
density is extremely flexible. Figure 1.2, showing the density of various two-
component mixtures of univariate normal distributions, demonstrates that a
mixture density may be multimodal, or even if it is unimodal, may exhibit
considerable skewness or additional humps. For this reason, finite mixture
distributions offer a flexible way to describe rather unsmooth data structures
such as the Fishery Data studied in Subsection 1.1, by summarizing the
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characteristics of the data in terms of the number, the location, and the spread
of the mixture components.

Finite mixture models are often used for the purpose of clustering, meaning
that one wants to find homogeneous groups among the data. This approach
assumes the existence of K hidden groups as in Subsection 1.1 and hopes
to reconstruct them from fitting a K component mixture density. If hetero-
geneity among the groups is large, the within-group distribution is normal
and the groups are balanced, then in fact all groups will generate clusters
of data around a mode corresponding to the mean of the hidden group; see,
for instance, the middle plot in Figure 1.2. The other examples in Figure 1.2
show that mixture densities are not necessarily multimodal, and that a two-
component mixture may generate only a single cluster

Some families, such as mixtures of exponential distributions, always gen-
erate unimodal densities, as is easily verified from the mixture density (1.10),
because the mode of this density lies at zero and the derivative of p(y|ϑ) with
respect to y is negative on �+:

∂p(y|ϑ)
∂y

= −η1λ1fE(y; λ1) − · · · − ηKλKfE(y; λK) < 0.

For mixtures of normal distributions the situation is much more complex, but
in particular for applications in clustering it is important to understand how
many modes exist in the mixture density. This does not really answer the
question of whether a population with a unimodal normal mixture density
should be described as being a homogeneous one arising from a nonnormal
distribution or as consisting of two homogeneous normal groups that are not
well separated.

Conditions for the number of modes in a mixture of univariate and multi-
variate normal densities have been derived recently in Ray and Lindsay (2005),
generalizing several earlier works on univariate (Robertson and Fryer, 1969;
Behboodian, 1970; see also Titterington et al., 1985, pp.160), and multivari-
ate mixtures (Carreira-Perpiñán and Williams, 2003). Ray and Lindsay (2005)
show that the number of modes in a K-component normal mixture density
reduces to studying the mixture density along a (K −1)-dimensional manifold
of �r which they call the ridgeline surface. For K = 2 this manifold reduces
to the following path from µ1 to µ2, indexed by α ∈ [0, 1],

y�(α) = ((1 − α)Σ−1
1 + αΣ−1

2 )−1((1 − α)Σ−1
1 µ1 + αΣ−1

2 µ2),

which depends on the component parameters, but is independent of the
weights (η1, η2). The values of the two-component mixture density along this
path,

h(α) = η1fN (y�(α); µ1,Σ1) + η2fN (y�(α); µ2,Σ2),

is called the elevation plot. Ray and Lindsay (2005, Theorems 1 and 2 which
are formulated for general K), give a rigorous proof that for K = 2 all critical
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points of the mixture density p(y|ϑ) lie on y�(α) and that every critical point
of h(α) gives rise to a local maximum of p(y|ϑ), iif it is a local maximum of
h(α). Thus the number of local maxima of h(α) over the unit interval is equal
to the number of modes of the mixture density.

It is easy to verify that every critical point of h(α) satisfies the following
equation,

Φ(α) =
(1 − α)fN (y�(α); µ2,Σ2)

αfN (y�(α); µ1,Σ1) + (1 − α)fN (y�(α); µ2,Σ2)
= η1.

Because Φ(0) = 1, Φ(1) = 0, and Φ(α) ∈ [0, 1], the function Φ(α) which de-
pends only on the component parameters, but not on the weight distribution,
is oscillating between 0 and 1. For any η1, there will be an uneven number
2M −1 ≥ 1 of intersections of Φ(α) with η1, and M defines the actual number
of modes of p(y|ϑ). Independent of η1, there exists a maximum number L� of
such intersections, and M� = (L�+1)/2 defines an upper limit for the number
of modes of p(y|ϑ) for a certain set of component parameters µ1, µ2,Σ1, and
Σ2. The actual number of modes could be smaller for extreme values of η1
being close to 0 or 1. M� = L/2 + 1, where L is the number of sign changes
of Φ(α) on [0, 1], or equivalently, the number of local minima and maxima
of Φ(α) on [0, 1]. Ray and Lindsay (2005, Theorem 3) show that the critical
points of Φ(α) are located at the zeros of the following function q(α),

q(α) = 1 − α(1 − α)(µ2 − µ1)
′
D(α)(µ2 − µ1), (1.12)

where

D(α) = Σ−1
1 C(α)−1Σ−1

2 C(α)−1Σ−1
2 C(α)−1Σ−1

1 ,

C(α) = (1 − α)Σ−1
1 + αΣ−1

2 .

Because q(0) = q(1) = 1, the number L of sign changes is even. If (1.12) does
not have any zeros in [0,1] for a specific component parameter, then L = 0
and the corresponding mixture density is unimodal, independent of η1.

Modes in a Homoscedastic Mixture of Two Normals

This leads to an explicit solution for homoscedastic mixtures with Σ1 = Σ2 =
Σ. In this case q(α) reduces to

q(α) = 1 − α(1 − α)dM (µ2; µ1,Σ)2, (1.13)

where dM (µ2; µ1,Σ) is the Mahalanobis distance of the component mean µ2
from the component given by (µ1,Σ) which is defined in (1.17).

It follows that any two-component homoscedastic mixture of normal dis-
tributions, irrespective of the dimension r and the weights η1 and η2, has at
most two modes, because q(α) is quadratic. A two-component homoscedastic
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mixture of normal distributions is unimodal, iff q(α), defined in (1.13), does
not have any zeros in [0, 1] which is the case, iff the Mahalanobis distance is
smaller than 2: dM (µ2; µ1,Σ) < 2. If dM (µ2; µ1,Σ) ≥ 2, then two modes are
possible, depending on the intersection of Φ(α) with η1. The zeros of (1.13)
are given by

α1,2 =
1 ±

√
dM (µ2; µ1,Σ)2 − 4

2
, (1.14)

thus the mixture density is bimodal if η1 lies in the interior of [Φ(α1), Φ(α2)].
Straightforward calculations show that the boundaries of this interval are
entirely determined by the Mahalanobis distance and are given by

Φ(αi) =
1 − αi

1 − αi + αi exp(−dM (µ2; µ1,Σ)2(αi − 1
2 ))

.

The larger the Mahalanobis distance between the means, the closer η1 may
move toward 0 or 1 without losing bimodality. The closer the Mahalanobis
distance moves toward 2, the closer to 1/2 the weight η1 must be to obtain a
bimodal density. If η1 = η2 = 1/2, then bimodality holds for dM (µ2; µ1,Σ) >
2.

Modes in Heteroscedastic Mixtures of Two Normals

Furthermore, Ray and Lindsay (2005) give explicit results for scaled mixtures
of normals, where Σ2 = ωΣ1, which reduces to a heteroscedastic mixture in
the univariate case. In this case q(α) reduces to

q(α) = 1 − dM (µ2; µ1,Σ1)2
ωα(1 − α)

((1 − α)ω + α)3
, (1.15)

where dM (µ2; µ1,Σ1) is the Mahalanobis distance of the component mean
µ2 from the component given by (µ1,Σ1) which is defined in (1.17). Ray and
Lindsay (2005) show that q(α) does not have any zeros, and the corresponding
mixture is unimodal, iff

dM (µ2; µ1,Σ1) ≤
(

2(ω2 − ω + 1)3/2 − (2ω3 − 3ω2 − 3ω + 2)
ω

)1/2

.(1.16)

This reduces to the same conditions as given by Robertson and Fryer (1969) for
univariate heteroscedastic mixtures of normals. If the Mahalanobis distance
dM (µ2; µ1,Σ1) is larger than this bound, then q(α) has two zeros α1,2 in [0,1],
and the mixture is bimodal if η1 lies in the interior of [Φ(α1), Φ(α2)].

For more general mixtures, Ray and Lindsay (2005) suggest plotting the
function Φ(α) over α, which they call the Φ-plot, and determining the number
M of modes from the number 2M − 1 of intersections of this plot with η1.
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1.2.3 Diagnosing Similarity of Mixture Components

It is often of interest to diagnose similarity of mixture components and to see
how much they overlap. Leisch (2004) uses the Kullback–Leibler distance,

I(p(y|θk), p(y|θl)) =
∫

p(y|θk)log(p(y|θk)/p(y|θl))dy

to diagnose which components overlap in a mixture model. This distance is
not symmetric and may be substituted by the symmetrized Kullback–Leibler
distance

J(p(y|θk), p(y|θl)) = I(p(y|θk), p(y|θl)) + I(p(y|θl), p(y|θk)).

For multivariate mixtures of normals this is equal to

J(p(y|θk), p(y|θl))

=
1
2
(µk − µl)

′
(Σ−1

k + Σ−1
l )(µk − µl) +

1
2
tr

(
(ΣkΣ−1

l + Σ−1
k Σl)

)
− r,

where r = dim(y). For Σk = Σl = Σ this is related to the squared Maha-
lanobis distance

dM (µk; µl,Σ)2 = (µk − µl)
′
Σ−1(µk − µl),

which is defined for an arbitrary y ∈ �r as

dM (y; µk,Σk) = ((y − µk)
′
Σ−1

k (y − µk))1/2. (1.17)

Scott and Szewczyk (2001) introduced a symmetric similarity measure that
lies between 0 and 1:

S(p(y|θk), p(y|θl)) =
∫

p(y|θk)p(y|θl)dy
(
∫

p(y|θk)2dy)1/2(
∫

p(y|θl)2dy)1/2 , (1.18)

which is equal to 1, iff p(y|θk) = p(y|θl) almost surely. Note that

S(p(y|θk), p(y|θl)) ≤ 1

by the Cauchy–Schwarz inequality. For multivariate mixtures of normals this
reduces to

S(p(y|θk), p(y|θl))

= exp
(

−1
2
(µk − µl)

′
(Σk + Σl)−1(µk − µl)

) 2r/2 4

√
|Σ−1

k ||Σ−1
l |√

|Σ−1
k + Σ−1

l |
.

Ray and Lindsay (2005) suggest applying the methods they developed for
diagnosing the number of modes for a two-component mixture to any pair
of components in a mixture of multivariate normal distributions to study
how close they are, and if they constitute a unimodal cluster in the data.
The weight distribution for this analysis is obtained from the relative weights
ηk/(ηk + ηl) and ηl/(ηk + ηl).
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The Point Processes Representation
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Fig. 1.3. Point process representation of various mixtures of three univariate nor-
mal densities with the size of the point being proportional to the weight of the
corresponding component

For fixed K, and a fixed parametric family, any finite mixture distribution
has a representation as a marked point process, a viewpoint introduced by
Stephens (2000a). A finite mixture distribution may be seen as a distribution
of the points {θ1, . . . ,θK} over the space Θ, with each point θk having an
associated mark ηk, with the marks being constrained to sum to unity; see
Figure 1.3 for the point process representation of various mixtures of three
univariate normal distributions. The point process representation is a graphi-
cal summary of the components of the mixture distributions and turns out to
be rather useful when dealing with the issue of identification in Section 1.3.

1.2.4 Moments of a Finite Mixture Distribution

A nice feature of mixture distributions is that moments are quite easily
available. To determine the expectation E(H(Y)|ϑ) of a function H(Y) of
Y with respect to the mixture density (1.6), consider first the expectation
E(H(Y)|θk) of H(Y) with respect to the component density p(y|θk):

E(H(Y)|θk) =
∫

Y
H(y)p(y|θk) dy.

If E(H(Y)|θk) exists for all k = 1, . . . , K, then E(H(Y)|ϑ) is obviously given
by

E(H(Y)|ϑ) =
K∑

k=1

E(H(Y)|θk)ηk. (1.19)

For a univariate random variable Y , for instance, the mean µ and the variance
σ2 of the distribution generated by p(y|ϑ) are obtained with H(Y ) = Y and
H(Y ) = (Y − µ)2, respectively:
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µ = E(Y |ϑ) =
K∑

k=1

µkηk, (1.20)

σ2 = Var(Y |ϑ) =
K∑

k=1

(µ2
k + σ2

k)ηk − µ2, (1.21)

provided that the component moments µk = E(Y |θk) and σ2
k = Var(Y |θk)

exist. Higher-order moments around zero are easily obtained from the corre-
sponding higher-order moments of the component densities:

E(Y m|ϑ) =
K∑

k=1

E(Y m|θk)ηk.

Higher-order moments around the mean result with H(Y ) = (Y − µ)m and
the help of the binomial formula:

E((Y − µ)m|ϑ) =
K∑

k=1

E((Y − µk + µk − µ)m|θk)ηk

=
K∑

k=1

m∑
n=0

(
m
n

)
(µk − µ)m−nE((Y − µk)n|θk)ηk. (1.22)

Teicher (1960) proves that a finite mixture of nonempty, distinct normal dis-
tributions cannot be normal. Therefore finite mixtures of normal distributions
are apt to capture skewness and excess kurtosis. The following higher-order
moments of a mixture of normal distributions follow immediately from (1.22).

E((Y − µ)3|ϑ) =
K∑

k=1

ηk

(
(µk − µ)2 + 3σ2

k

)
(µk − µ),

E((Y − µ)4|ϑ) =
K∑

k=1

ηk

(
(µk − µ)4 + 6(µk − µ)2σ2

k + 3σ4
k

)
.

It is evident that skewness is present, iff at least two component means are
different.

1.2.5 Statistical Modeling Based on Finite Mixture Distributions

Mixture modeling is a rapidly developing area, with the range of applications
exploding. There exist various features of finite mixture distributions that
render them useful in statistical modeling. First, as shown in Subsection 1.1
finite mixture distributions arise in a natural way as marginal distributions
for statistical models involving discrete latent variables. On the other hand,
from the data-oriented perspective, it turns out that statistical models that
are based on finite mixture distributions are able to capture many specific
features of real data, such as multimodality, skewness, and kurtosis.



12 1 Finite Mixture Modeling

The Standard Finite Mixture Model and Extension Discussed in
the Book

If the empirical distribution of data y1, . . . ,yN exhibits multimodality, skew-
ness, or excess kurtosis, it may be assumed that they are independent realiza-
tions of a random variable Y from a finite mixture distribution. This is the
standard finite mixture model considered in the monographs by Everitt and
Hand (1981), Titterington et al. (1985), McLachlan and Basford (1988), and
McLachlan and Peel (2000).

Finite mixture models provide a straightforward, but very flexible exten-
sion of classical statistical models. Although the extension appears quite sim-
ple, their estimation results in complex computational problems. The price to
be paid for the high flexibility of finite mixture models is that their inference
is somewhat of a challenge, as discussed in great length throughout Chapter 2
to Chapter 5.

A particularly important special case, discussed in much detail in Chap-
ter 6, is mixtures of normal distribution. Chapter 7 demonstrates that this
model is helpful for practical data analysis both of univariate and multivari-
ate data, for instance, for unsupervised clustering and density estimation.
Chapter 9 is devoted to a thorough discussion of finite mixture modeling of
non-Gaussian data.

As in Subsection 1.1, any standard finite mixture model may be regarded
as a hierarchical latent variable model, where the distribution of the ob-
servations y = (y1, . . . ,yN ) depends on hidden discrete indicator variables
S = (S1, . . . , SN ). On a first layer of the model, the joint sampling distri-
bution of y = (y1, . . . ,yN ) is specified conditional on the whole sequence of
indicators S = (S1, . . . , SN ):

p(y|S,ϑ) =
N∏

i=1

p(yi|Si, ϑ) =
N∏

i=1

p(yi|θSi). (1.23)

A second layer of the model specifies the joint distribution p(S|ϑ) of the
indicators which is a discrete distribution over the lattice

SK = {(S1, . . . , SN ) : Si ∈ {1, . . . , K}, i = 1, . . . , N}.

In the standard finite mixture model it is assumed that the indicators
S1, . . . , SN are independent, and their joint distribution reads:

p(S|η) =
N∏

i=1

p(Si|η), (1.24)

where Pr(Si = k|η) = ηk. Because Si ∼ MulNom (1, η), Titterington (1990)
proposed the name “hidden multinomial model” for the standard finite mix-
ture model.
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One modification of p(S|η) is to assume a uniform distribution over SK ,

p(S|η) =
1

KN
,

which is a prior often used in classification, as discussed in Chapter 7. This
model is equivalent to a hidden multinomial model where the weights in the
underlying mixture distribution are equal to ηk = 1/K.

This hierarchical formulation provides the basis for the formulation of
more complex finite mixture models. These extensions concern both the joint
distribution p(S|ϑ) of the indicators as well as the joint distribution p(y|S,ϑ).

To include covariates in finite mixture modeling, the mean of the density
p(yi|θk), which is equal to µk for a standard finite mixture model, may be
replaced by xiβk, where xi is a row vector of exogenous regressors, and βk is
a vector of unknown parameters. This leads to the switching regression model
discussed in Chapter 8.

To deal with time series data, finite mixture models are needed that are
able to capture autocorrelation. One may allow for autocorrelation through
appropriate specification of the distribution of p(y|S,ϑ). Additional flexibility
is achieved by assuming that Si follow a Markov chain. The resulting extension
is called the finite Markov mixture model and is discussed in detail in Chap-
ter 10. Estimation of the Markov mixture model in Chapter 11 reveals many
similarities with the standard finite mixture model. Chapter 12 demonstrates
that this model class is rather useful in nonlinear time series analysis, because
it is able to deal with many stylized features of practical time series such as
spurious long-range dependence and conditional heteroscedasticity. Various
monographs deal with specific aspects of time series analysis based on finite
Markov mixture models, such as hidden Markov models for discrete-valued
time series (MacDonald and Zucchini, 1997) and Markov switching vector
autoregressive time series (Krolzig, 1997). Application of Markov switching
models in bioinformatics is reviewed in Koski (2001) and applications in fi-
nancial economics in Bhar and Hamori (2004).

The monograph on state space models with regime switching by Kim and
Nelson (1999) shows that state space models may be successfully combined
with Markov switching models in analyzing time series in finance and eco-
nomics; actually this model is much older and goes back to engineering appli-
cations in the 1970s. Such switching state space models are the last extension
of the standard finite mixture model that is discussed in this book in Chap-
ter 13.

Extensions Not Discussed in the Book

There many extensions that would deserve investigation, but are beyond the
scope of this book. These concern in particular more flexible approaches for
modeling the distribution p(S) of the indicators S = (S1, . . . , SN ), especially



14 1 Finite Mixture Modeling

finite mixture modeling of spatial data, where the domain of S is a two-
dimensional lattice. If a Markov random field model (Besag, 1974) is assumed
as a generating mechanism for S, the hidden Markov random field model re-
sults. This model is popular in statistical image analysis, where the elements
of S are colors or levels of gray, and yi is an observed, noise-corrupted image;
see the monograph of Li and Gray (2000) for a review. We refer to Qian and
Titterington (1991) and Rydén and Titterington (1998) for a Bayesian anal-
ysis of these models, and to Green and Richardson (2002) for an interesting
application in disease mapping.

A further extension is nonparametric mixture modeling, where it is first
assumed that yi is drawn from a parametric distribution family T (θs

i ) with
density p(yi|θs

i ), indexed by a random parameter θs
i ∈ Θ drawn from a dis-

tribution W (θ). Marginally, the distribution of yi is a mixture distribution
over densities p(yi|θ):

p(yi) =
∫

Θ

p(yi|θ)W (dθ).

If W (θ) were a continuous distribution, perhaps depending on an unknown
hyperparameter, the standard random-effects model results, which does not
allow for any grouping of the observations. Grouping of the data is achieved
by introducing discreteness into the distribution W (θ).

The nonparametric mixture approach which is outlined in the monograph
by Böhning (2000) assumes that W (θ) is a discrete distribution over K ≤ N
atoms {θ1, . . . ,θK}, with the position of the atoms, their probability mass
and their number being unknown. In the nonparametric ML approach these
quantities are estimated from the data.

In the Bayesian nonparametric mixture approach W (θ) is modeled as a
random distribution being drawn from a Dirichlet process DP (α, W0); see
Ferguson (1973) for the definition and properties of this process. This Dirich-
let process prior gives positive probability to ties, and as noted by Green
and Richardson (2001), specifies implicitly a joint distribution p(S|α, W0)
on the set of allocations S = (S1, . . . , SN ). Green and Richardson (2001)
relate this approach to the more explicit hidden multinomial model, where
Si ∼ MulNom (1, η), and the following priors are used in a Bayesian analysis,
η follows a Dirichlet distribution, η ∼ D (e0, . . . , e0), and θk ∼ W0. They
show convergence of the multinomial approach to the Dirichlet process prior
approach, if with increasing K the parameter e0 of the Dirichlet prior on the
weight distribution η goes to 0 in such a way that Ke0 goes to α.

1.3 Identifiability of a Finite Mixture Distribution

Statistical models based on finite mixture distributions have mathematical
features that make them an interesting objective for a rigorous mathematical
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treatment as exemplified in Lindsay (1995). The present monograph deals
mostly with the practical aspects of finite mixture models, in particular with
describing the features they imply on the data and how they are estimated.
Nevertheless we have to touch upon the more formal issue of identifiability of
a mixture distribution, which is essential for parameter estimation, whenever
a mixture distribution appears as part of a statistical model.

A parametric family of distributions, indexed by a parameter ϑ ∈ Θ,
which is defined over a sample space Y, is said to be identifiable if any two
parameters ϑ and ϑ� in Θ define the same probability law on Y, iff ϑ and
ϑ� are identical (see, e.g., Rothenberg, 1971). In terms of the corresponding
probability densities p(y|ϑ) and p(y|ϑ�) this means that if the densities are
identical for almost every y ∈ Y, then the parameters ϑ and ϑ� need to be
identical:

p(y|ϑ) = p(y|ϑ�) for almost all y ∈ Y → ϑ = ϑ�. (1.25)

If for any two parameters ϑ and ϑ� in Θ, which are distinct, the densities
p(y|ϑ) and p(y|ϑ�) are identical for almost every y ∈ Y, then this family of
distributions is not identifiable. Any subset U(ϑ) of Θ, defined as

U(ϑ) = {ϑ� ∈ Θ : p(y|ϑ�) = p(y|ϑ), for almost every y ∈ Y} ,

which contains more than one point in Θ is called a nonidentifiability set.
A single normal distribution, indexed by ϑ = (µ, σ2), for instance, is clearly

identifiable, whereas for mixtures of probability distributions, the issue of
identifiability is considerably more involved. Identifiability problems for finite
mixture distributions are studied in Teicher (1963), Yakowitz and Spragins
(1968), Chandra (1977), Redner and Walker (1984), and Crawford (1994).

In general, for a finite mixture distribution one has to distinguish among
three types of nonidentifiability. Nonidentifiability due to invariance to rela-
beling the components of the mixture distribution and nonidentifiability due
to potential overfitting, discussed in Subsection 1.3.1 and Subsection 1.3.2,
respectively, may be ruled out through formal identifiability constraints, as
explained in Subsection 1.3.3. The last type of nonidentifiability is a generic
property of a certain class of mixture distributions and is investigated in Sub-
section 1.3.4.

1.3.1 Nonidentifiability Due to Invariance to Relabeling
the Components

First of all, nonidentifiability of a finite mixture distribution is caused by the
invariance of a mixture distribution to relabeling the components, as first
noted by Redner and Walker (1984).

Consider a mixture of two normal distributions, p(y|ϑ) = η1fN (y; µ1, σ
2
1) +

η2fN (y; µ2, σ
2
2), where θk = (µk, σ2

k) ∈ Θ = � × �+ and ϑ = (θ1, θ2, η1, η2) ∈
Θ2 = Θ2 × E2. Take an arbitrary parameter ϑ ∈ Θ2 with θ1 �= θ2, and define
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the parameter ϑ� = (θ2, θ1, η2, η1), which is obtained by interchanging the
order of the components. Then the distribution induced by ϑ and ϑ� is the
same although evidently the two parameters are distinct:

p(y|ϑ�) = η2fN (y; µ2, σ
2
2) + η1fN (y; µ1, σ

2
1) = (1.26)

η1fN (y; µ1, σ
2
1) + η2fN (y; µ2, σ

2
2) = p(y|ϑ).

Because of this invariance, a mixture of two normal distributions is not iden-
tifiable in the strict sense defined above.

For the general finite mixture distribution with K components defined
in (1.6), there exist s = 1, . . . , K! equivalent ways of arranging the compo-
nents. Each of them may be described by a permutation ρs : {1, . . . , K} →
{1, . . . , K}, where the value ρs(k) is assigned to each value k ∈ {1, . . . , K}.
Let ϑ = (θ1, . . . ,θK , η1, . . . , ηK) be an arbitrary point in the parameter space
ΘK = ΘK × EK , and define the following subset UP (ϑ) ⊂ ΘK .

UP (ϑ) =
K!⋃
s=1

{ϑ� ∈ ΘK : (1.27)

ϑ� = (θρs(1), . . . ,θρs(K), ηρs(1), . . . , ηρs(K))}.

Any point ϑ� ∈ UP (ϑ) generates the same mixture distribution as ϑ, which
is easily seen by rearranging the components of the mixture density (1.6)
according to the permutation ρs used in the definition of ϑ�:

p(y|ϑ) = η1p(y|θ1) + · · · + ηKp(y|θK)
= ηρs(1)p(y|θρs(1)) + · · · + ηρs(K)p(y|θρs(K)) = p(y|ϑ�).

The set UP (ϑ) contains K! distinct parameters ϑ�, iff all K component param-
eters θ1, . . . ,θK are distinct points in Θ. The set contains only K!/L! distinct
parameters ϑ�, if L among the K component parameters θ1, . . . ,θK of ϑ are
identical. Thus for each ϑ ∈ ΘK , where at least two component parameters
θk and θl differ in at least one element, the set UP (ϑ) is a nonidentifiability
set in ΘK .

In a certain sense, this is not a severe identifiability problem, as all param-
eters ϑ� ∈ UP (ϑ) are related to each other, and in fact only differ in the way
the components are arranged. Nevertheless this identifiability plays a certain
role in later chapters that deal with parameter estimation.

In the point process representation of a finite mixture distribution, con-
sidered earlier in Subsection 1.2.3, we find that all parameters ϑ� ∈ UP (ϑ)
are matched into the same points. Thus the point process representation of
a finite mixture distribution provides a way of looking at the component pa-
rameters of a finite mixture distribution, which is insensitive to the precise
labeling of the components.
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1.3.2 Nonidentifiability Due to Potential Overfitting

A further identifiability problem, noted by Crawford (1994), is nonidentifiabil-
ity due to potential overfitting. Consider a finite mixture distribution with K
components, defined as in (1.6), where ϑ = (θ1, . . . ,θK , η1, . . . , ηK) ∈ ΘK =
ΘK ×EK . Next consider a finite mixture distribution from the same paramet-
ric family, however, with K − 1 rather than K components. Crawford (1994)
showed that any mixture with K − 1 components defines a nonidentifiability
subset in the larger parameter space ΘK , which corresponds to mixtures with
K components, where either one component is empty or two components are
equal.

Consider, for instance, a mixture of two normal distributions with arbi-
trary parameter ϑ2 = (µ1, σ

2
1 , µ2, σ

2
2 , η1, η2) ∈ Θ2. Any mixture of two normal

distributions may be written as a mixture of three normal distributions by
adding a third component with weight η3 = 0:

p(y|ϑ) = η1fN (y; µ1, σ
2
1) + η2fN (y; µ2, σ

2
2)

= η1fN (y; µ1, σ
2
1) + η2fN (y; µ2, σ

2
2) + 0 × fN (y; µ3, σ

2
3).

In the parameter space Θ3, the parameter ϑ = (µ1, σ
2
1 , µ2, σ

2
2 , µ3, σ

2
3 , η1, η2, 0)

corresponding to this mixture lies in a nonidentifiability set, as the density
p(y|ϑ) is the same for arbitrary values µ3 and σ2

3 . The same nonidentifiability
set results if a mixture of three normal distributions is generated by splitting
one component of a mixture of two normal distributions:

p(y|ϑ) = η1fN (y; µ1, σ
2
1) + η2fN (y; µ2, σ

2
2)

= η1fN (y; µ1, σ
2
1) + (η2 − η3)fN (y; µ2, σ

2
2) + η3fN (y; µ2, σ

2
2).

Again in Θ3, the parameter ϑ = (µ1, σ
2
1 , µ2, σ

2
2 , µ2, σ

2
2 , η1, η2 − η3, η3) lies in

a nonidentifiability set, as the density p(y|ϑ) is the same for arbitrary values
of η3 with 0 ≤ η3 ≤ η2. Furthermore this is the same nonidentifiability set as
above.

In general, let a mixture with K − 1 components be generated by an
arbitrary parameter ϑK−1 ∈ ΘK−1 = ΘK−1 × EK−1, given by

ϑK−1 = (θK−1
1 , . . . ,θK−1

K−1, η
K−1
1 , . . . , ηK−1

K−1).

Define the following subset UZ(ϑK−1) of ΘK = ΘK × EK :

UZ(ϑK−1) =
K⋃

k=1

(K−1)!⋃
s=1

{ϑ ∈ ΘK : ηk = 0, θk ∈ Θ, (1.28)

(θ1, . . . ,θk−1, θk+1, . . . ,θK) = (θK−1
ρs(1), . . . ,θ

K−1
ρs(K−1)),

(η1, . . . , ηk−1, ηk+1, . . . , ηK) = (ηK−1
ρs(1), . . . , η

K−1
ρs(K−1))

}
,

which contains mixtures with K components, where one component is empty,
whereas the remaining K − 1 components are defined by ϑK−1. The set
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UZ(ϑK−1) is a nonidentifiability set in the parameter space ΘK because it
contains infinitely many parameters ϑ, each generating the same mixture dis-
tribution:

p(y|ϑ) =
K∑

j=1,j �=k

ηjp(y|θj) =
K−1∑
j=1

ηK−1
j p(y|θK−1

j ). (1.29)

The set UZ(ϑK−1) is part of an even larger nonidentifiability set. Define the
following subset UE(ϑK−1) of ΘK .

UE(ϑK−1) =
K−1⋃
k=1

(K−1)!⋃
s=1

{
ϑ ∈ ΘK : θK = θK−1

ρs(k), ηk + ηK = ηK−1
ρs(k),

(θ1, . . . ,θK−1) = (θK−1
ρs(1), . . . ,θ

K−1
ρs(K−1)), (η1, . . . , ηk−1, ηk+1, . . . , ηK−1)

= (ηK−1
ρs(1), . . . , η

K−1
ρs(k−1), η

K−1
ρs(k+1), . . . , η

K−1
ρs(K−1))

}
, (1.30)

which contains mixtures with K components, where two component densities
are equal and are obtained from the mixture defined by ϑK−1 by splitting one
component into two identical ones. Again, UE(ϑK−1) is a nonidentifiability set
in ΘK , which contains infinitely many parameters ϑ, inducing the following
mixture distribution,

p(y|ϑ) =
K−1∑

j=1,j �=k

ηjp(y|θj) + (ηk + ηK)p(y|θk) =
K−1∑
j=1

ηK−1
j p(y|θK−1

j ).

As this mixture distribution is the same as for all parameters in UZ(ϑK−1),
the union UZ(ϑK−1) ∪ UE(ϑK−1) is an even larger nonidentifiability subset
of ΘK . Note that all parameters in subset UZ(ϑK−1) ∪ UE(ϑK−1) are related
by relabeling, however, there are no longer K!, but only (K−1)! different ways
of relabeling.

The subset UZ(ϑK−1) ∪ UE(ϑK−1) plays a prominent role in Chapter 4,
dealing with mixtures with an unknown number of components, because they
correspond to that part of the parameter space ΘK which deals with the case
that a mixture with K components is overfitting the number of components.
Therefore this kind of nonidentifiability is called nonidentifiability due to po-
tential overfitting.

Again, it is interesting to study this kind of nonidentifiability in the point
process representation of the finite mixture distribution. All parameters in
UE(ϑK−1) are mapped into the K−1 points {θK−1

k , k = 1, . . . , K−1}. For all
parameters in UZ(ϑK−1), the component with ηk = 0 disappears by definition,
whereas the remaining components are mapped again into the K − 1 points
{θK−1

k , k = 1, . . . , K −1}. Thus all points in UZ(ϑK−1)∪UE(ϑK−1) have the
same point process representation as the underlying (K −1)-component finite
mixture distribution.
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Provided that K > 2, nonidentifiability due to potential overfitting may
become even more complicated. For each L = 2, . . . , K − 1, we may consider
a finite mixture distribution with K − L components, defined by an arbitrary
parameter ϑK−L = (θK−L

1 , . . . ,θK−L
K−L, ηK−L

1 , . . . , ηK−L
K−L) ∈ ΘK−L. For each

L = 2, . . . , K − 1, the parameter ϑK−L ∈ ΘK−L defines a nonidentifiability
subset in ΘK , which corresponds to mixtures of K components where either
L components are empty or L + 1 component densities are equal. The corre-
sponding nonidentifiability sets are obtained by modifying the definitions in
(1.28) and (1.30), that were given for L = 1, in an obvious way.

1.3.3 Formal Identifiability Constraints

Identifiability may be achieved in a formal manner by imposing constraints
on the parameter space in such a way that no different parameters generate
the same distribution and condition (1.25) is fulfilled. Loosely speaking, for
finite mixture distributions formal identifiability is achieved by constraining
the parameter space ΘK is such a way that the density (1.6) is assumed to be
a mixture of K distinct, nonempty components.

First of all, a positivity constraint on the weights avoids nonidentifiability
due to empty components. If the parameter space ΘK is restricted to that
subset of ΘK × EK where the condition

ηk > 0, k = 1, . . . , K (1.31)

is fulfilled, then the nonidentifiability set UE(ϑK−1) defined in (1.28) is empty.
Second, an inequality condition on the component parameters avoids non-

identifiability due to equal components. For mixtures with a univariate com-
ponent parameter θk this condition evidently reads: θk �= θk′ , ∀k �= k′, k, k′ =
1, . . . , K. For mixtures with a multivariate component parameter one could
require that all elements of θk differ from those of θk′ :

θk,j �= θk′,j , ∀j = 1, . . . , d, (1.32)

∀k, k′ = 1, . . . , K, k �= k′. This strong constraint rules out many interesting
mixtures with multivariate component parameters that might occur in prac-
tice; consider, for instance, a mixture of three normal distributions, where
σ2

1 �= σ2
2 , but σ2

2 = σ2
3 . For a mixture of multivariate normal distributions it is

even more unrealistic to assume that all elements of the variance–covariance
matrices Σ1, . . . ,ΣK are different in all components.

Finite mixtures are identifiable under a much weaker inequality constraint
requiring only that any two parameters θk and θ′

k differ in at least one element
which need not be the same for all components or, more formally, ∀k, k′ =
1, . . . , K, k �= k′,

∃j(k, k′) ∈ {1, . . . , d} : θk,j(k,k′) �= θl,j(k,k′). (1.33)
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In the point process representation this condition simply means that the points
corresponding to the K component parameters are distinct. If the parameter
space ΘK is restricted to that subset of ΘK × EK , where condition (1.33) is
fulfilled, then the nonidentifiability set UZ(ϑK−1) defined in (1.30) is empty.

Furthermore, both constraints (1.32) or (1.33) force a unique labeling. The
stronger constraint (1.32) imposes a strict order constraint on any of the d
elements θk,j , j = 1, . . . , d:

θ1,j < · · · < θK,j . (1.34)

Under constraint (1.34) invariance to relabeling disappears, because in the
restricted parameter space the set UP (ϑ) defined in (1.27) contains just the
point ϑ, and is no longer an nonidentifiability set.

Consider now mixtures with multivariate component parameters, where
only the weaker constraint (1.33) holds. If the same element θk,j of θk is
different for all components, then this particular element could be used to
force a unique labeling as in (1.34). It easy to verify in the point process
representation, if such an element exists at all, by considering the projection
of the points onto the various axes θj of θ.

The situation is more complicated if such an element does not exist. Con-
sider, for instance, a mixture of three normal distributions, where µ1 = µ2,
σ2

1 �= σ2
2 , µ2 �= µ3, σ2

2 = σ2
3 , where neither µk nor σ2

k fulfills constraint (1.34).
Note that a strict order constraint on a single element θk,j of θk corresponds
to K − 1 strict inequalities which have to be fulfilled by the pairs θk,j and
θk+1,j for all k = 1, . . . , K − 1. It is possible to substitute some of these in-
equalities by a constraint on a different element of θ. For the mixture of three
normal distributions mentioned above, one could use one inequality involving
(µ2, µ3) and another involving (σ2

1 , σ2
2) to describe the differences between the

component parameters.
Assume that such a constraint has been formulated, defining a certain

subset R of the unconstrained space ΘK ×EK . This constraint forces a unique
labeling, iff the set UP (ϑ) defined in (1.27) contains just the single point ϑ
for all ϑ ∈ R. Naturally, the identification of a valid constraint in higher
dimensions may be somewhat of a challenge.

Difficulties with Commonly Used Constraints

Various formal identifiability constraints used in the literature actually fail
to achieve identifiability, an example being the following constraint on the
weights,

0 < η1 < · · · < ηK , (1.35)

which is applied, for example, in Aitkin and Rubin (1985) and Lenk and
DeSarbo (2000). This constraint rules out empty components and induces a
unique labeling, if the weights are actually different, but does not rule out
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nonidentifiability due to potentially equal parameters. Assume the parameter
space ΘK is restricted to that subset of ΘK × EK , where condition (1.35)
is fulfilled. Then the nonidentifiability set UE(ϑK−1) defined in (1.30) still
contains infinitely many parameters.

For finite mixtures with multivariate parameters, it is common prac-
tice to put an order constraint as in (1.34) on an arbitrary element θk,j

of θk without checking if this constraint actually holds. However, invari-
ance to relabeling is not ruled out if (1.34) is violated for any two com-
ponents, say θk,j = θk+1,j for some k between 1 and K − 1 for a cer-
tain way of arranging the components. If θk is distinct from θk+1 for any
other element, then the set UP (ϑ) defined in (1.27) contains the point
ϑ = (θ1, . . . ,θk, θk+1, . . . ,θK , η1, . . . , ηk, ηk+1, . . . , ηK) as well as the point
ϑ� = (θ1, . . . ,θk+1, θk, . . . ,θK , η1, . . . , ηk+1, ηk, . . . , ηK), causing UP (ϑ) to
be a nonidentifiability set. Therefore order constraints have to be selected
carefully to rule out invariance to relabeling the components.

1.3.4 Generic Identifiability

Finite mixture distributions may remain unidentifiable, even if a formal iden-
tifiability constraint rules out any of the nonidentifiability problems described
above. A well-known example of a nonidentifiable family, mentioned already
in Teicher (1961), is finite mixtures of uniform distributions. Consider, for
instance, the following mixture distributions taken from Everitt and Hand
(1981).

Y ∼ 1
2
U [−2, 1] +

1
2
U [−1, 2] ,

Y ∼ 1
3
U [−1, 1] +

2
3
U [−2, 2] ,

which both have density:

p(y) =

⎧⎨⎩1/6, −2 ≤ y < −1,
1/3, −1 ≤ y ≤ 1,
1/6, 1 < y < 2.

A second example is finite mixtures of binomial distributions (Teicher, 1961);
consider, for instance, a mixture of two binomial distributions as in Tittering-
ton et al. (1985, p.35):

Y ∼ η1BiNom (2, π1) + (1 − η1)BiNom (2, π2) .

The density of the corresponding mixture distribution is different from zero
only for y = 0, 1, 2 and takes the values

Pr(Y = 0|ϑ) = η1(1 − π1)2 + (1 − η1)(1 − π2)2,
Pr(Y = 1|ϑ) = 2η1π1(1 − π1) + 2(1 − η1)π2(1 − π2),
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and Pr(Y = 2|ϑ) = 1 − Pr(Y = 0|ϑ) − Pr(Y = 1|ϑ). Evidently the mixture
distribution is the same for any parameter ϑ = (π1, π2, η1) fulfilling these two
equations and therefore unidentifiable.

Generic identifiability of a certain family of finite mixtures of distributions
T (θ) with density p(y|θ) indexed by a parameter θ ∈ Θ is a class property
that has been defined in Yakowitz and Spragins (1968) in the following way.
Consider two arbitrary members of this class,

Y1 ∼ η1T (θ1) + · · · + ηKT (θK), Y2 ∼ η�
1T (θ�

1) + · · · + η�
K�T (θ�

K�).

Assume that all weights are positive and that for each mixture the component
parameters are distinct in the weak sense defined in (1.33). The class of finite
mixtures of distributions T (θ) is said to be generically identifiable, if equality
of the corresponding mixture density functions,

K∑
k=1

ηkp(y|θk) =
K�∑
l=1

η�
l p(y|θ�

l ),

for almost every y ∈ Y, implies that K = K� and that the two mixtures
are equivalent apart from arranging the components. Yakowitz and Spragins
(1968, p.210) prove that a family of finite mixture distributions is identifi-
able, iff the members T (θ) of the underlying distribution family are linearly
independent over the field of real numbers.

Utilizing Titterington et al. (1985, Corollary 3.11) it is often easier to
verify identifiability by showing that some transform G(z; θ) of T (θ) such
as the characteristic function or the moment-generating function is linearly
independent. Consider, as an example, a mixture of normal distributions with
homoscedastic variance:

Y ∼ η1N
(
µ1, σ

2) + · · · + ηKN
(
µK , σ2) .

Identifiability follows from Titterington et al. (1985, Corollary 3.11) with
G(z; θ) being equal to the characteristic function:

G(z; θ) = eizµke−σ2z2/2,

because for arbitrary K

K∑
k=1

ηkG(z; θk) =

(
K∑

k=1

ηkeizµk

)
e−σ2z2/2 = 0,

is possible for all z ∈ �, iff η1 = · · · = ηK = 0.
Using a slightly different sufficient condition on transforms G(z; θ) of T (θ),

Teicher (1963) proves that many mixtures of univariate continuous densi-
ties, especially univariate mixtures of normals, mixtures of exponential and
Gamma distributions are generically identifiable. These results are extended
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by Yakowitz and Spragins (1968) to various multivariate families such as mul-
tivariate mixtures of normals. Discrete mixtures need not be identifiable, as
demonstrated for a mixture of two binomial distributions. Whereas mixtures
of Poisson distributions (Feller, 1943; Teicher, 1960) as well as mixtures of
negative binomial distributions (Yakowitz and Spragins, 1968) are identifi-
able, mixtures of BiNom (n, π)-distributions are not identifiable, if n < 2K−1
(Teicher, 1963).

Another useful result on the identifiability of mixtures appears in Teicher
(1967) where it is shown that mixtures of r-fold product densities defined for
y ∈ Yr as

p(y|θ) =
r∏

j=1

p(yj |θj),

with θ = (θ1, . . . ,θr) ∈ Θr are identifiable if the chosen parametric family of
densities p(y|θ), θ ∈ Θ, defined on Y, is identifiable.



2

Statistical Inference for a Finite Mixture
Model with Known Number of Components

2.1 Introduction

Assume that N observations y = (y1, . . . ,yN ), drawn randomly from a finite
mixture of T (θ) distributions with density p(y|θ) indexed by a parameter
θ ∈ Θ, are available, which should be used to make inferences about the
underlying mixture structure. For the resulting finite mixture model that reads

p(yi|ϑ) =
K∑

k=1

ηkp(yi|θk), (2.1)

three kinds of statistical inference problem have to be considered. First, mod-
eling of data by a finite mixture model requires some specification of K, the
number of components. Statistical inference for finite mixtures with an un-
known number of components is a very delicate issue that is postponed until
Chapter 4. For the rest of this and the next chapter it is assumed that the num-
ber of components is known. Second, the component parameters θ1, . . . ,θK

and the weight distribution η = (η1, . . . , ηK) may be unknown and should be
estimated from the data. In what follows, we denote all distinct parameters
appearing in the mixture model (2.1) by ϑ = (θ1, . . . ,θK , η). In order to ob-
tain a vector of distinct parameters one of the redundant weights η1, . . . , ηK

has to be omitted, because each ηk is completely determined given the re-
maining weights. It is, however, usually not necessary to be explicit about
which parameter this should be. The final problem is allocation, by assigning
each observation yi to a certain component and by making inference on the
hidden discrete indicators S = (S1, . . . , SN ).

As an introduction to statistical inference problems for finite mixtures, we
start in Section 2.2 with allocation of each observation under the assumption
that the component parameters and the weight distribution are known, a
problem that allows us to recall Bayes’ rule. Section 2.3 deals with estimating
the parameter ϑ, when the allocations are known, and provides complete-data
maximum likelihood estimation as well as an introduction into complete-data
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Bayesian inference. Section 2.4 deals with parameter estimation when the
allocations are unknown, using methods of moments and maximum likelihood
estimation. The Bayesian approach to this most interesting inference problem
is briefly introduced; a full discussion is given in Chapter 3.

2.2 Classification for Known Component Parameters

Assume that the finite mixture distribution (2.1) is known exactly, with precise
values assigned the number K of components, the component parameters
θ1, . . . ,θK , and the weight distribution η, and the only challenge is to classify
a set of N observations {y1, . . . ,yN} into each component. This classification
problem is a common and very old problem in statistics; for a review see
Cormack (1971), McLachlan and Basford (1988), Everitt et al. (2001), and
Press (2003, Chapter 10) for a discussion from a Bayesian point of view.

2.2.1 Bayes’ Rule for Classifying a Single Observation

Exact knowledge of the component parameters leads to an inference problem,
which is easily solved by Bayes’ rule (Bayes, 1763). Introduce, as in Subsec-
tion 1.2.5, a discrete indicator Si, taking values in {1, . . . , K}, which associates
each observation yi with a certain component in (2.1). Classification of a single
observation yi aims at deriving the conditional probability Pr(Si = k|yi, ϑ)
of the event {Si = k}, having observed the event {Y = yi}. Bayes’ rule shows
how to compute this probability for each k = 1, . . . , K for observations from
a discrete mixture distribution:

Pr(Si = k|yi, ϑ) = Pr(Y = yi|Si = k,ϑ)Pr(Si = k|ϑ)
K∑

j=1

Pr(Y = yi|Si = j,ϑ)Pr(Si = j|ϑ)

. (2.2)

Pr(Si = k|ϑ) is the prior probability that observation yi falls into class k,
which is equal to the class size: Pr(Si = k|ϑ) = ηk. For a discrete mixture,
Pr(Y = yi|Si = k,ϑ) is easily obtained from the component-specific proba-
bility density function: p(yi|θk).

It is convenient to rewrite Bayes’ rule (2.2) in the following way,

Pr(Si = k|yi, ϑ) = p(yi|θk)ηk
K∑

j=1

p(yi|θj)ηj

, (2.3)

as this result also holds if we are dealing with observations from continuous
rather than a discrete mixture distribution.

The denominator in (2.3) remains the same, whatever the value of k, and
is equal to the sum of the numerators over all k. For this reason, Bayes’ rule
is usually formulated up to proportionality:
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Pr(Si = k|yi, ϑ) ∝ p(yi|θk)ηk. (2.4)

The right-hand side is evaluated for each k = 1, . . . , K, with the resulting
values being normalized, to obtain a proper posterior distribution.

Table 2.1. Data from a mixture of two Poisson distributions with η1 = η2 = 0.5,
µ1 = 1, and two different values of µ2; probability Pr(Si = 1|yi, η1, η2, µ1, µ2) of
correct classification of data from the first component

yi = 0 yi = 1 yi = 2 yi = 3 yi = 4

µ2 = 5 0.9820 0.9161 0.6859 0.3040 0.0803

µ2 = 25 1.0000 1.0000 1.0000 1.0000 1.0000

A common classification rule, also called the näıve Bayes’ classifier, assigns
each observation to the class with the highest posterior probability (Ander-
son, 1984, Chapter 6), because this minimizes the expected misclassification
risk, see also Subsection 7.1.7. How well this classifier works depends on the
difference between the parameters in the various mixture components, as the
following example exemplifies.

Consider count data, assumed to arise from a mixture of two Poisson
distributions with µ1, µ2, η1, and η2 being known. Because Bayes’ rule (2.4)
yields

Pr(Si = k|yi, µ1, µ2, η1, η2) ∝ ηkµyi

k e−µk ,

for k = 1 and k = 2, yi is assigned to class 1, iff

yi <
µ2 − µ1 + log η1 − log(1 − η1)

log µ2 − log µ1
.

The difference between µ1 and µ2 will strongly influence the discriminative
power of this classification rule. Consider, for instance, η1 = η2 = 0.5 and
µ1 = 1. Observations from the first component take, with probability 0.9963,
values between 0 and 4. As demonstrated in Table 2.1, the misclassification
risk is rather high for a mixture with µ2 = 5, as observations between 2 and
4 are likely to arise from both components, whereas the misclassification risk
is zero for a mixture with µ2 = 25.

2.2.2 The Bayes’ Classifier for a Whole Data Set

What difference does it make to classify all observations y = (y1, . . . ,yN )
jointly, rather than individually as in Subsection 2.2.1? Joint classification is
identical to individual classification if all component parameters are known;
the situation, however, is different under unknown component parameters,
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which is known as the clustering problem (Everitt et al., 2001) and is studied
in detail in Section 7.1.

Let S = (S1, . . . , SN ) be the sequence of all allocations. Joint classification
aims at deriving the probability of the event {S1 = k1, . . . , SN = kN} for all
possible allocations (k1, . . . , kN ) of the N observations into K classes, hav-
ing observed y = (y1, . . . ,yN ). The density p(S|ϑ,y) of this distribution is
obtained from Bayes’ rule as in Subsection 2.2.1,

p(S|ϑ,y) ∝ p(y|S,ϑ)p(S|ϑ). (2.5)

In (2.5), p(y|S,ϑ) is the density of the sampling distribution of the whole
sequence (y1, . . . ,yN ), if the allocations S are known. Under the assumption
that the data are sampled independently, this density reads:

p(y|S,ϑ) = p(y|S,θ1, . . . ,θK) =
N∏

i=1

p(yi|θSi). (2.6)

In (2.5), p(S|ϑ) is the probability density of the joint distribution of the se-
quence S = (S1, . . . , SN ) of all unobserved allocations, before having observed
the data. To specify this prior distribution, it is common to assume that the
allocations, like the data, are independent a priori:

p(S|ϑ) =
N∏

i=1

p(Si|ϑ).

It is important to note that Bayes’ rule (2.5) combines the information con-
tained in the likelihood p(y|S,ϑ) with the prior distribution p(S|ϑ), in order
to derive the posterior distribution p(S|ϑ,y).

For known component parameters ϑ the joint posterior density p(S|ϑ,y)
simplifies in the following way.

p(S|ϑ,y) =
N∏

i=1

p(Si|ϑ,yi),

where p(Si|ϑ,yi) is the density of the individual posterior classification distri-
bution Pr(Si = k|ϑ,yi), given in (2.4). As mentioned above, joint allocation
of all observations may be carried out independently for each individual ob-
servation yi, if the component parameters are known.

A general way of assessing the quality of the classification rule based on
Bayes’ rule (2.4) is to consider the entropy EN(ϑ|y) of p(S|y, ϑ) (Celeux and
Soromenho, 1996) which is defined as

EN(ϑ|y) = E(−
N∑

i=1

K∑
k=1

I{Si=k}log Pr(Si = k|yi, ϑ)),
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where the expectation is with respect to the classification distribution p(S|y, ϑ);
therefore:

EN(ϑ|y) = −
N∑

i=1

K∑
k=1

Pr(Si = k|yi, ϑ) log Pr(Si = k|yi, ϑ) ≥ 0. (2.7)

For a fixed value of ϑ, the entropy is a measure of how well the data
y = (y1, . . . ,yN ) are classified given a mixture distribution defined by
ϑ. The entropy is 0 for a perfect classification, where for all observations
Pr(Si = ki|yi, ϑ) = 1 for a certain value of ki, otherwise the entropy may be
considerably larger. It is equal to N log K for a uniform distribution, where
Pr(Si = ki|yi, ϑ) = 1/K.

In the Poisson example considered above, EN(ϑ|y)/(N log 2) is, for large
N , equal to 0.38 for µ2 = 5 and equal to 0 for µ2 = 25.

2.3 Parameter Estimation for Known Allocation

In this section, attention is shifted toward estimating the component param-
eters θ1, . . . ,θK and the weight distribution η from data y = (y1, . . . ,yN )
drawn randomly from the finite mixture distribution (2.1), under the assump-
tion that the allocations S = (S1, . . . , SN ) are observed as well. There exist
K! different ways of connecting the data with the various components of the
mixture distribution, but once the labeling scheme has been fixed, parameter
estimation could be based on the complete or “fully categorized” (Tittering-
ton et al., 1985) data (y,S) using standard methods of statistical inference,
such as maximum likelihood estimation or Bayesian estimation, which is the
preferred approach throughout this book. Subsequently, ϑ = (θ1, . . . ,θK , η)
denotes all unknown parameters.

2.3.1 The Complete-Data Likelihood Function

For known allocations, both maximum likelihood as well as Bayesian esti-
mation are based on the complete-data likelihood function which is equal to
the sampling distribution p(y,S|ϑ) of the complete data (y,S), regarded as
a function of the unknown parameter ϑ.

To specify p(y,S|ϑ) we exploit the hierarchical latent variable representa-
tion of a finite mixture model given in Subsection 1.2.5 in (1.23) and (1.24):

p(y,S|ϑ) = p(y|S,ϑ)p(S|ϑ) =
N∏

i=1

p(yi|Si, ϑ)p(Si|ϑ).

Because p(yi|Si = k,ϑ) = p(yi|θk) and Pr(Si = k|ϑ) = ηk the complete-data
likelihood function reads:
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p(y,S|ϑ) =
N∏

i=1

K∏
k=1

(
p(yi|θk)ηk

)I{Si=k} (2.8)

=
K∏

k=1

( ∏
i:Si=k

p(yi|θk)

) (
K∏

k=1

η
Nk(S)
k

)
,

with Nk(S) = #{Si = k} counting the number of observations allocated
to component k. When regarded as a function of ϑ = (θ1, . . . ,θK , η), the
complete-data likelihood function exhibits a rather convenient structure that
highly facilitates parameter estimation. It reduces to the product of K+1 fac-
tors, with the first K factors corresponding to a certain component parameter
θk, whereas the last factor depends only on the weight distribution η.

2.3.2 Complete-Data Maximum Likelihood Estimation

In complete-data maximum likelihood (ML) estimation, the logarithm of the
complete-data likelihood function, log p(y,S|ϑ), is maximized with respect to
ϑ. Due to the factorization discussed earlier, estimation reduces to K+1 inde-
pendent estimation problems. Each component parameter θk is estimated for
all k = 1, . . . , K from the observations in group k (Si = k), only, whereas es-
timation of η is based on the number N1(S), . . . , NK(S) of allocations to each
group. Elementary analysis yields the following complete-data ML estimator
for the weights for k = 1, . . . , K,

η̂k =
Nk(S)

N
=

# {Si = k}
N

. (2.9)

The precise estimator θ̂k of θk depends on the parametric family chosen as
the component density. For univariate mixtures of normals, defined in (1.8),
for instance, the complete-data ML estimators of µk and σ2

k are equal to the
sample mean yk(S) and the sample variance s2

y,k(S) in group k:

µ̂k = yk(S) =
1

Nk(S)

∑
i:Si=k

yi,

σ̂2
k = s2

y,k(S) =
1

Nk(S)

∑
i:Si=k

(yi − yk(S))2. (2.10)

It is known that the ML estimator θ̂k is consistent and asymptotically normal,
provided that certain regularity conditions hold (Lehmann, 1983; Casella and
Berger, 2002): √

Nk(S)(θ̂k − θtrue
k ) →d N

(
0, I(θtrue

k )−1) , (2.11)

where I(θk) is the expected Fisher information matrix defined as
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I(θk) = −
∫

Y

∂2

∂θ2
k

log p(yi|θk)p(yi|θk)dyi, (2.12)

with p(yi|θk) being the density of component k. Approximate confidence in-
tervals for the unknown parameter θk are derived from (2.11), after substi-
tuting θtrue

k by θ̂k. For a full discussion of ML estimation we refer to standard
textbooks such as Lehmann (1983) and Casella and Berger (2002).

Although complete-data ML estimation is straightforward for most mix-
tures from the exponential family, it may fail if some of the group sizes Nk(S)
are too small, in which case the complete-data ML estimator may not exist,
may be degenerate, or may lie on the boundary of the parameter space. If, for
instance, a certain group k is empty, the ML estimator η̂k lies on the bound-
ary of the parameter space, violating an important regularity condition for
ML estimation. The ML estimator θ̂k may lie on the boundary of the param-
eter space, even if the group size Nk(S) is positive. Consider, for instance,
the complete-data ML estimator σ̂2

k for a univariate mixture of normal dis-
tributions given in (2.10) if the group k contains only one or two identical
observations. Finally, even if all group sizes Nk(S) are large enough to obtain
an ML estimator in the interior of the parameter space, standard errors and
confidence intervals based on the asymptotic normal distribution (2.11) may
be inaccurate, unless Nk(S) is quite large.

Complete-Data ML Estimation for a Mixture of
Poisson Distributions

For a mixture of Poisson distributions, defined earlier in (1.9), it is easy to
verify that the complete-data ML estimator of µk is equal to the sample mean
in group k, µ̂k = yk(S). The complete-data ML estimator lies in the interior
of the parameter space, iff each group is nonempty (Nk(S) > 0) and contains
at least one nonzero observation. The expected Fisher information is equal to
I(µk) = 1/µk. Asymptotic 95% confidence intervals for µk, based on (2.11),
are equal to yk(S) ± 1.96

√
yk(S)/Nk(S), where the expected Fisher informa-

tion has been evaluated at µk = yk(S). The effective coverage probability
may be considerably smaller, if the sample size N and the true values of µk

and ηk are very small; see Table 2.2 below, where asymptotic 95% confidence
intervals are compared with Bayesian confidence intervals.

2.3.3 Complete-Data Bayesian Estimation of the
Component Parameters

In Bayesian estimation the complete-data likelihood p(y,S|ϑ), regarded as a
function of ϑ as for maximum likelihood estimation, is combined with a prior
distribution p(ϑ) on the parameter ϑ to obtain the complete-data posterior
distribution p(ϑ|y,S) using Bayes’ theorem. The elements of Bayesian infer-
ence are laid out in many excellent texts such as the classical monographs
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by Zellner (1971) and Box and Tiao (1973). Further introductions useful for
the Bayesian inference problems considered in this book are Antelman (1997),
Koop (2003), and Press (2003).

To give a very short introduction to Bayes’ theorem, consider a mixture
of two Poisson distributions, where ϑ = (µ1, µ2, η1) takes just the two values
ϑ = (1, 2, .5) and ϑ = (1, 3, .2). Given the complete data (S,y), Bayes’ rule,
which was discussed in Subsection 2.2.1 in the context of classification, yields
the following posterior probabilities for the two values of ϑ,

Pr(ϑ = (1, 2, .5)|S,y) ∝ p(y,S|ϑ = (1, 2, .5))Pr(ϑ = (1, 2, .5)),
Pr(ϑ = (1, 3, .2)|S,y) ∝ p(y,S|ϑ = (1, 3, .2))Pr(ϑ = (1, 3, .2)).

Using probability densities rather than probabilities of events, Bayes’ rule may
be rewritten as

p(ϑ|S,y) ∝ p(y,S|ϑ)p(ϑ). (2.13)

If ϑ takes values in a continuous parameter space, rather than in a discrete
one, formula (2.13), which is now called Bayes’ theorem, still holds and yields
the complete-data posterior density p(ϑ|S,y). Bayes’ theorem (2.13) combines
the information about ϑ, contained in the complete-data likelihood p(y,S|ϑ),
with the prior information contained in the prior distribution p(ϑ).

The complete-data likelihood function factors into K + 1 products, and a
similar structure is assumed for the prior density p(ϑ):

p(ϑ) = p(η)
K∏

k=1

p(θk). (2.14)

Under this prior, the complete-data posterior density p(ϑ|S,y) of a finite
mixture model factors in the same convenient way:

p(ϑ|S,y) =
K∏

k=1

p(θk|y,S)p(η|S), (2.15)

where

p(θk|y,S) ∝
∏

i:Si=k

p(yi|θk)p(θk) (2.16)

p(η|S) ∝
K∏

k=1

η
Nk(S)
k p(η). (2.17)

Hence, complete-data Bayesian estimation may be carried independently for
each component parameter θk and for the weight distribution η. The structure
of the complete-data posterior p(η|S) is discussed in much detail in Subsec-
tion 2.3.4; we focus for the rest of this subsection on the component parameter
θk.



2.3 Parameter Estimation for Known Allocation 33

Table 2.2. Complete-data estimation of µk for a mixture of Poisson distributions
comparing confidence intervals for µk obtained from the Bayesian and the ML ap-
proach

95% Confidence Interval (data set of size N = 100)
ηtrue

k = 0.05, µtrue
k = 0.5 ηtrue

k = 0.1, µtrue
k = 1 ηtrue

k = 0.5, µtrue
k = 1

ML [−0.110, 0.682] [0.444, 1.422] [0.826, 1.419]
Bayes [0.059, 0.917] [0.535, 1.524] [0.854, 1.450]

Coverage rate for replications over 1000 data sets
ηtrue

k = 0.05, µtrue
k = 0.5 ηtrue

k = 0.1, µtrue
k = 1 ηtrue

k = 0.5, µtrue
k = 1

ML 0.813 0.925 0.949
Bayes 0.959 0.949 0.952

Complete-Data Estimation of the Component Parameters

A closed solution for the complete-data posterior distribution p(θk|y,S) of the
component parameters θk results for many finite mixture distributions, such
as univariate and multivariate mixtures of normals, mixtures of exponentials
and mixtures of binomial distributions, if the prior is chosen appropriately.

For a mixture of Poisson distributions, for instance, the complete-data like-
lihood p(y,S|ϑ), after dropping factors independent of ϑ = (µ1, . . . , µK , η),
reads:

p(y,S|µ1, . . . , µK , η) ∝
K∏

k=1

µ
Nk(S)yk(S)
k e−Nk(S)µk

(
K∏

k=1

η
Nk(S)
k

)
,

where Nk(S) = #{Si = k}. Regarded as a function of µk, the kth factor is the
density of a Gamma distribution; see Subsection A.1.6. Under the flat prior
p(ϑ) ∝ constant, the complete-data posterior density takes the form:

p(µ1, . . . , µK , η|S,y) =
K∏

k=1

p(µk|S,y)p(η|S),

where p(µk|S,y) is the density of the G (Nk(S)yk(S) + 1, Nk(S))-distribution.
The inclusion of an arbitrary prior p(ϑ) would destroy this closed solution
with the exceptions of a specific family of prior distributions, called natu-
ral conjugate priors (Press, 2003, Chapter 5) which exist for many problems
in Bayesian statistics involving exponential families (Diaconis and Ylvisaker,
1979).

For complete data from a mixture of Poisson distributions, for instance,
the natural conjugate prior distribution for µk is a G (a0,k, b0,k)-distribution.
It is easy to verify that the complete-data posterior p(µk|S,y) is equal to the
G (ak(S), bk(S))-distribution, where

ak(S) = a0,k + Nk(S)yk(S), bk(S) = b0,k + Nk(S). (2.18)
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The Normalizing Constant

In (2.16), the right-hand side is equal to the nonnormalized complete-data pos-
terior, from which the complete-data posterior density p(θk|y,S) is obtained
by dividing by the normalizing constant:

p(θk|y,S) =

∏
i:Si=k p(yi|θk)p(θk)∫ ∏

i:Si=k p(yi|θk)p(θk)dθk
.

For conjugate problems, the normalizing constant is not really needed for
Bayesian estimation, but it sometimes appears in a different context, in which
case it is easily evaluated by dividing the nonnormalized by the normalized
posterior for arbitrary θk:∫ ∏

i:Si=k

p(yi|θk)p(θk)dθk =

∏
i:Si=k p(yi|θk)p(θk)

p(θk|y,S)
. (2.19)

Comparing the Bayesian and the ML Approach
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Fig. 2.1. Complete-data posterior density of the component mean µk for 100 ob-
servations arising from a mixture of Poisson distributions, where ηtrue

k = 0.05 and
µtrue

k = 0.5 (left-hand side); ηtrue
k = 0.1 and µtrue

k = 1 (middle) ; ηtrue
k = 0.5 and

µtrue
k = 1 (right-hand side)

The complete-data posterior distribution p(θk|S,y) could be used to draw
inferences on the unknown parameter θk. For illustration, we return to the
component mean µk in a mixture of Poisson distributions. The posterior den-
sity is given by µk|y,S ∼ G (ak(S), bk(S)), with ak(S) and bk(S) being defined
by (2.18). The posterior density is plotted in Figure 2.1 for three artificial data
sets. As it turns out, the posterior density centers around the true value of µk,
and the mode or any other location parameter of the posterior density could
be used as an estimator of µk; see Press (2003, Chapter 8) for more details on
Bayesian point estimation.
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Depending on the shape parameter ak(S), the posterior p(µk|y,S) is rather
skewed for the first data set whereas it is close to a normal distribution
for the third one. As the posterior shape parameter ak(S) increases, the
G (ak(S), bk(S))-distribution converges to a normal distribution with mean
and variance given by

ak(S)
bk(S)

=
a0,k + Nk(S)yk(S)

b0,k + Nk(S)
≈ yk(S) + o(1/Nk(S)), (2.20)

ak(S)
bk(S)2

=
a0,k + Nk(S)yk(S)
(b0,k + Nk(S))2

≈ yk(S)
Nk(S)

+ o(1/Nk(S)), (2.21)

where o(1/Nk(S)) → 0 as Nk(S) → ∞. Such asymptotic normality of the
posterior distribution holds for many problems in Bayesian inference; see, for
example, Press (2003, Chapter 7).

To compare the Bayesian approach with the ML approach discussed in
Subsection 2.3.2, we consider the problem of interval estimation for µk. Within
a Bayesian approach, a 95% credibility interval for µk is obtained from the
0.025 and 0.975 percentile of the G (ak(S), bk(S)) posterior distribution. Ta-
ble 2.2 compares this credibility interval with the approximate 95% confidence
interval obtained by ML estimation for artificial data sets of size N = 100 for
different values of µtrue

k and ηtrue
k . Partly these intervals agree; partly they are

substantially different. As the shape parameter ak(S) increases, the posterior
moments given in (2.20) and (2.21) converge to the ML estimator and the in-
verse of the expected Fisher information evaluated at the ML estimator, and
the difference between the Bayesian and the ML interval estimator disappears.

The expected value of ak(S) = Nk(S)yk(S)+a0,k is equal to Nηkµk +a0,k.
Thus there is little difference between the Bayesian and the ML interval esti-
mator, whenever N is large. The smaller N , ηk, or µk, the larger the difference
is between the ML and the Bayesian approach. Whenever ak(S) is small, the
Gamma posterior density of µk automatically accounts for departure from
asymptotic normality (see again Figure 2.1), whereas asymptotic ML theory
is not able to do so. Table 2.2, which compares the effective coverage prob-
ability of 95% Bayesian and ML intervals over 1000 data sets simulated for
the three different parameter settings, shows that in cases where ak(S) is too
small for asymptotic theory to hold, the effective coverage probability of the
Bayesian credibility interval is much closer to the nominal value than the ef-
fective coverage probability of asymptotic confidence intervals based on ML
estimation.

2.3.4 Complete-Data Bayesian Estimation of the Weights

For complete-data Bayesian estimation of the weights η = (η1, . . . , ηK), the
complete-data likelihood p(S|η) is combined with a prior distribution p(η),
to obtain the posterior
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p(η|S) ∝
K∏

k=1

η
Nk(S)
k p(η),

where Nk(S) = #{Si = k} counts the number of observations in group k.
Due to the constraint

∑
k ηk = 1 the group sizes are not independent. The

complete-data likelihood, when regarded as a function of η = (η1, . . . , ηK), is
the density of a Dirichlet distribution; see Subsection A.1.3 for more details
on this distribution family. The conjugate prior distribution family is again
the Dirichlet distribution (Bernardo and Girón, 1988), η ∼ D (e0,1, . . . , e0,K),
where

p(η) ∝
K∏

k=1

η
e0,k−1
k ,

leading to the following posterior distribution,

p(η|S) ∝
K∏

k=1

η
Nk(S)+e0,k−1
k .

This is the density of a Dirichlet distribution, η|S ∼ D (e1(S), . . . , eK(S)),
where:

ek(S) = e0,k + Nk(S), k = 1, . . . , K. (2.22)

The posterior mean of the unknown weight distribution is given by

E(ηk|S) =
e0,k + Nk(S)∑K

j=1 e0,j + N
, k = 1, . . . , K, (2.23)

whereas the posterior mode is equal to:

η�
k =

e0,k + Nk(S) − 1∑K
j=1 e0,j + N − K

, k = 1, . . . , K.

Choosing the Prior Distribution

When dealing with data from a mixture distribution, considerably more atten-
tion must be addressed to choosing the prior than is necessary in a Bayesian
analysis of more conventional statistical models. Complete-data estimation
of the weight distribution η is closely related to Bayesian analysis of ob-
served binary or multinomial data (Congdon, 2005). For K = 2, for instance,
where the Dirichlet distribution reduces to a Beta distribution, one of the
weights, say η1, is estimated from the “binary” data S = (S1, . . . , SN ). Prior
distributions, that are common for a Bayesian analysis of observed binary
data, may be applied, such as the uniform prior η1 ∼ B (1, 1), Jeffreys’ prior
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Fig. 2.2. Synthetic data of size N = 100 from a mixture with three components;
contours of the posterior density p(η1, η2|y) for two different priors; e0,k ≡ 0.5 (left-
hand side) and e0,k ≡ 4 (right-hand side)

η1 ∼ B
( 1

2 , 1
2

)
(Box and Tiao, 1973, p.59), or a prior that is uniform in the

natural parameter of the exponential family representation (Gelman et al.,
2004); that is, η1/η2 ∝ constant, which corresponds to the improper prior
η1 ∼ B (0, 0). Dealing with “multinomial” data for K > 2, one could use
the prior η ∼ D (1, . . . , 1), which is uniform over the unit simplex EK , the
prior η ∼ D

( 1
2 , . . . , 1

2

)
, or the improper prior η ∼ D (0, . . . , 0) (Bernardo and

Girón, 1988).
Bayesian analysis of observed binary or multinomial data is insensitive to

choosing the prior only if none of the observed categories is rare. Consider,
for illustration, 100 observations from a finite mixture distribution with three
components where N1(S) = 20, N2(S) = 30, and N3(S) = 50. For K = 3
there are two free parameters, for instance η1 and η2. Figure 2.2 shows the
posterior density p(η1, η2|y) under two different priors, which hardly have an
effect on the posterior.

Bayesian analysis of observed binary or multinomial data, however, tends
to be sensitive to specific prior choices, if some of the observed categories are
rare. An improper prior should be avoided for data drawn from a finite mixture
distribution, as the posterior distribution p(η|S) obtained from such a prior
need not be proper. When drawing data from a finite mixture distribution it
easily happens that one of the categories, say k, is not observed in the sample,
in particular if the corresponding weight ηk is close to zero (rare categories).
This event will occur in a sample of size N with probability (1−ηk)N , which is
in fact rather likely for small weights ηk. For N = 50, for instance, categories
with probabilities ηk = 0.01/0.02/0.03 will not be observed with probabilities
as high as 0.605/0.364/0.218, respectively. If one of the categories, say k, is
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not observed in the sample, then ek = e0,k and an improper prior leads to an
improper posterior distribution. On the other hand, any proper prior will be
highly influential for small groups, as the following discussion demonstrates.

Estimation for Empty Components

If a category k is not observed in the sample, then Nk(S) = 0, and a nonregular
problem results for ML estimation. If ηk is among the free parameters, then the
mode of the likelihood function will lie on the boundary of the parameter space
as the maximum is attained at η̂k = 0. If ηk is not among the free parameters,
then

∑
j �=k η̂j = 1 and the ML estimator lies in the nonidentifiability set

corresponding to a reduced mixture with K − 1 categories. In both cases the
likelihood function is nonregular, and asymptotic confidence intervals for ηk

are not available from standard asymptotic theory.
In a Bayesian context, under the D (e0,1, . . . , e0,K)-prior, the marginal pos-

terior of ηk is easily obtained from the joint posterior (2.22) (see Subsec-
tion A.1.3):

ηk|S ∼ B

⎛⎝e0,k,

K∑
j=1,j �=k

e0,j + N

⎞⎠ . (2.24)

The variance of this distribution is approximately equal to

Var(ηk|S) ≈ e0,k/(
K∑

j=1

e0,j + N)2.

Thus even if category k is not directly observed, the total number of ob-
servations in the other categories is highly informative about ηk. Confidence
intervals for ηk are available from density (2.24). They are shrunken toward
the posterior mean E(ηk|S), given by (2.23) with rate o(1/N) rather than the
regular rate o(1/

√
N).

As for other Bayesian inference problems based on nonregular likelihoods,
the prior parameter e0,k will have a substantial effect on the shape of the
posterior density if category k is not observed. For illustration we consider two
synthetic data sets of N = 100 observations from a two-component mixture
distribution with unknown weights. Assume N1(S) = 40, N2(S) = 60 for data
set 1, and N1(S) = 0, N2(S) = 100 for data set 2, with category 1 being never
observed. Figure 2.3 shows the posterior density of η1 for both data sets for
various prior parameters e0,k. Whereas for data set 1 the posterior density of
η1 is hardly affected by the prior, for data set 2, where category 1 is never
observed, the posterior density of η1 is extremely influenced by the prior. The
posterior of η1 is strongly pulled toward 0 and unbounded at 0 for e0,k = 0.5,
or more generally for any prior with 0 < e0,k < 1. The posterior is bounded
with the mode lying at 0 for e0,k = 1. If e0,k > 1, then the posterior has
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Fig. 2.3. Synthetic data 1 and 2: posterior densities for η1 under different priors
with e0,k ≡ e0; e0 = 0.5 (full line), e0 = 1 (dashed line), e0 = 2 (dotted line), e0 = 4
(dash dotted line); data set 1 (left-hand side), data set 2 (right-hand side)

a mode inside the unit interval, and is completely bounded away from 0 for
e0,k = 4.

The influence of the prior is also evident from Table 2.3 reporting 95%-
confidence regions for η1 for both data sets.

Table 2.3. Synthetic data set 1 and 2: 95% confidence region for η1 based on various
priors under K = 2

Prior Parameter 95% Confidence Region for η1

e0,k ≡ e0 Data Set 1 Data Set 2
Lower Upper Lower Upper

0.5 0.313 0.493 0 0.019
1 0.312 0.493 0 0.029
2 0.317 0.498 0.0007 0.044
4 0.324 0.493 0.0063 0.071

The influence of the prior on the posterior density of the weight distribu-
tion under an unobserved category is even more striking in higher dimensions.
For illustration we reconsider data set 1 introduced above, however, this time
we assume that the data arise from a mixture distribution with three com-
ponents, therefore N1(S) = 40, N2(S) = 60, and N3(S) = 0. There are two
free parameters, and one may choose parameterizations excluding or including
the weight of the unobserved category, such as (η1, η2) and (η2, η3), respec-
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tively. Figure 2.4 shows the contours of the corresponding bivariate posterior
densities p(η1, η2|y) and p(η2, η3|y) for two different priors. In contrast to Fig-
ure 2.2, these are highly nonregular posterior densities. To study the influence
of the prior, it is helpful to distinguish the following cases when estimating
the weight ηk of an unobserved category.
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Fig. 2.4. Synthetic data, K = 3, contours of the posterior densities of the bivariate
posterior distribution p(η1, η2|y) (left-hand side) and p(η2, η3|y) (right-hand side)
for various priors; e0,k ≡ 0.5 (top) and e0,k ≡ 4 (bottom)

If 0 < e0,k < 1, then if ηk is among the free parameters, the posterior
is unbounded in ηk = 0, because of the term 1/(η1−e0,k

k ) appearing in the
joint posterior. If ηk is not among the free parameters, ηk measures how far
the free parameters are from perfect linear dependence: ηk = 1 −

∑
j �=k ηj .

As the marginal density of p(ηk|S), given in (2.24), is unbounded at ηk = 0
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with most of the mass close to 0, the free parameters are nearly linearly
dependent and the posterior p(η|S) concentrates over the unit simplex EK−1,
which corresponds to the reduced mixture, where only K − 1 categories are
present; see the top of Figure 2.4.

If e0,k > 1, then the mode of the posterior p(η|S) lies inside the parameter
space whatever choice is made for the free parameters. If ηk is among the free
parameters, then the posterior p(η|S) is pulled away from the boundary of
the parameter space, where ηk = 0. If ηk is not among the free parameters,
then the posterior p(η|S) is pulled away from the subspace corresponding to
the reduced model.

The bottom of Figure 2.4 illustrates for e0,k = 4 how the posterior of the
weight distribution is forced away from the reduced model. What looks like
an undue influence, is in fact a big blessing when testing for the number of
components in a finite mixture model. When allowing the posterior density of
a model with K components to concentrate over the subspace corresponding
to a model with K − 1 components when one of the categories is unobserved,
then there is no way to distinguish between the two models, because their
predictive power in terms of the complete-data likelihood will be the same.
Only by bounding the posterior away from a model with K − 1 components
by putting an appropriate prior on ηk, will it be possible to distinguish the
models.

2.4 Parameter Estimation When the Allocations
Are Unknown

In this section we assume that in the mixture distribution (2.1) the true
number K of distinct components and the parametric distribution family the
component densities arise from, are known, whereas the component parame-
ters θ1, . . . ,θK , the weight distribution η and the allocations S are unknown.
In this case estimation of the parameters of the mixture distribution is not
straightforward. Even for mixtures of standard distribution such as the uni-
variate normal distribution no explicit estimation method exists and in general
some numerical method is required for practical estimation.

In the early days of mixture modeling (Pearson, 1894), the method of
moments was the most widely applied estimation technique; it is briefly re-
viewed in Subsection 2.4.1. With the advent of modern computer technology
attention turned to methods based on the mixture likelihood function, which
is defined in Subsection 2.4.2, namely maximum likelihood estimation (see
Subsection 2.4.4), and Bayesian estimation which is briefly summarized in
Subsection 2.4.5, whereas a full account appears in Chapter 3. For a thor-
ough discussion of non-Bayesian parameter estimation for finite mixtures we
refer the reader to the excellent monographs by Everitt and Hand (1981) and
Titterington et al. (1985), and, published more recently with emphasis on
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maximum likelihood estimation based on the EM algorithm, by McLachlan
and Peel (2000).

2.4.1 Method of Moments

The basic idea of the method of moment estimator is to select a set of moments
E(Hj(Y)|ϑ) of the random variable Y, and to determine the parameters ϑ of
the mixture model in such a way that the theoretical moments E(Hj(Y)|ϑ)
match the empirical counterpart Hj , given by the sample average of Hj(·)
over the observed values y1, . . . ,yN :

Hj =
1
N

N∑
i=1

Hj(yi).

Matching the sample moments Hj to the corresponding theoretical moments
of the finite mixture distribution derived in Subsection 1.2.4 yields:

K∑
k=1

ηkE(Hj(Y)|θk) = Hj . (2.25)

This typically is a nonlinear equation in the unknown parameter ϑ =
(θ1, . . . ,θK , η1, . . . , ηK), even if the component-specific moments E(Hj(Y)|θk)
are available in closed form. The system of equations generated by (2.25) may
be solved with respect to ϑ, if the number of functions Hj(Y) is equal to
the number of distinct parameters in ϑ, and linear dependence among the
equations is avoided. The method of moments estimator is a (not necessar-
ily unique) solution to this system of equations. The larger the number of
components K, however, the more equations will be needed.

For univariate data, the method of moments is typically applied by consid-
ering Hj(Y ) = Y j for j = 1, . . . ,dim(ϑ); another suggestion has been made
by Lindsay (1989) for univariate mixtures of normals. Quandt and Ramsey
(1978) use the moment-generating function Hj(Y ) = exp(jY ) with different
values j for fitting univariate mixtures of normals and switching regression
models.

Although the method of moments is the oldest estimation method known
for mixtures, dating back to the problem of estimating the five parameters of
a mixture of two normal distributions (Pearson, 1894), some potential pitfalls
have to be mentioned, in particular numerical problems with solving (2.25)
and loss of efficiency in comparison to other estimators; see the small simula-
tion experiment in Subsection 2.4.7, where different estimators are compared,
and Day (1969) who shows by means of a simulation study that the method of
moments estimator may be inefficient compared to maximum likelihood esti-
mation for bivariate mixtures of two normal distributions. Lindsay and Basak
(1993) illustrate for multivariate mixtures of normals that a computationally
attractive estimator may result if the moment equations (2.25) are designed
carefully.
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Methods of Moments for a Poisson Mixture Distribution

As discussed by Everitt (1985), the method of moments for data from a Pois-
son mixture distribution could be based on the factorial moments Hj(Y ) =
Y !/(Y − j)! for j = 1, . . . , 2K − 1. Because E(Hj(Y )|µk) = µj

k, the corre-
sponding system of equations reads:

K∑
k=1

ηkµj
k = vj ,

where vj are the sample factorial moments:

vj =
1
N

∑
i:yi≥j

yi(yi − 1) · · · (yi − (j − 1)).

Note that v1 = y. For a mixture of two Poisson distributions, the following
set of equations results.

η1(µ1 − µ2) + µ2 = y,

η1(µ2
1 − µ2

2) + µ2
2 = v2,

η1(µ3
1 − µ3

2) + µ3
2 = v3.

The method of moments estimator µ̂MM
1 and µ̂MM

2 is given as the roots of
the equation µ2 − bµ + c = 0, where

b =
v3 − yv2

v2 − y2 , c = yb − v2,

whereas the moment estimator η̂MM
1 reads:

η̂MM
1 =

µ̂MM
2 − y

µ̂MM
2 − µ̂MM

1
.

2.4.2 The Mixture Likelihood Function

In this subsection we derive the mixture likelihood p(y|ϑ) of ϑ given N ran-
dom observations y = (y1, . . . ,yN ) from the mixture distribution (2.1). We
assume that no information concerning the allocation of yi to a certain com-
ponent is available, and define the mixture likelihood function p(y|ϑ) as the
joint distribution of y1, . . . ,yN under ϑ. The mixture likelihood function takes
the form:

p(y|ϑ) =
N∏

i=1

p(yi|ϑ) =
N∏

i=1

(
K∑

k=1

ηkp(yi|θk)

)
, (2.26)
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which may be expanded into a sum of KN individual terms. For Poisson
mixtures with K components, for instance, the mixture likelihood reads:

p(y|ϑ) =
N∏

i=1

1
Γ (yi + 1)

(
K∑

k=1

ηkµyi

k e−µk

)
. (2.27)

Titterington et al. (1985) called p(y|ϑ) the uncategorized likelihood, as no
information concerning the component to which observation yi belongs is
incorporated, in contrast to the complete-data likelihood function p(y,S|ϑ)
defined earlier in (2.8).

The mixture likelihood function is the basis both for maximum likelihood
estimation as well as Bayesian estimation. An important difference between
the mixture likelihood and the complete-data likelihood function defined ear-
lier in (2.8) lies in the mathematical structure of these functions. Whereas the
complete-data likelihood may be decomposed into K +1 independent factors,
no such decomposition is possible for the mixture likelihood making parameter
estimation much more difficult.

Hathaway (1986) noted that the mixture likelihood and the complete-data
likelihood are related. The contribution p(yi|ϑ) of the ith observation to the
mixture likelihood in (2.26) is equal to the normalizing constant in the Bayes’
classifier for this observation; see (2.3). By rewriting the Bayes’ classifier as
p(yi|θk)ηk = Pr(Si = k|yi, ϑ)p(yi|ϑ), and substituting this into (2.8) the
following results,

p(y,S|ϑ) =
N∏

i=1

p(yi|ϑ)
K∏

k=1

Pr(Si = k|yi, ϑ)I{Si=k} .

Taking the log of both sides yields:

log p(y|ϑ) = log p(y,S|ϑ) −
N∑

i=1

K∑
k=1

I{Si=k}log Pr(Si = k|yi, ϑ). (2.28)

The second term is a measure of loss of information in the mixture likelihood
function compared to the complete-data likelihood function which is zero when
the mixture model enables perfect classification; see Subsection 2.2.2.

Finally, the mixture likelihood, when considered as a function of the un-
known parameters ϑ, is quite different from the regular likelihood functions
common to many statistical models; see Subsection 2.4.3 for some illustration.

2.4.3 A Helicopter Tour of the Mixture Likelihood Surface for
Two Examples

As a consequence of invariance to relabeling the components of a mixture
model, the mixture likelihood function usually has K! different, but equivalent
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Fig. 2.5. Hidden age groups — Synthetic Data Set 1; top: contours of the
complete-data likelihood under labeling 1 (left-hand side) and labeling 2 (right-hand
side); bottom: contours and surface of the mixture likelihood

modes corresponding to all different ways of labeling. For illustration, we
study the surface of the likelihood function in more detail for synthetic data.
Assume that data come from a population with two unobserved categories.
We may, for instance, observe a random feature Y in a population with two
age groups. Depending on the unobserved age, the expected value of Y is
equal to µy for the younger and µe for the elder age group. Consider now, as
a model for these data, a mixture of two normal distributions, where to keep
the discussion simple, we assume that both components have equal weights,
η1 = η2 = 0.5, and equal variances, σ2

1 = σ2
2 = 1:

p(y) = 0.5fN (y; µ1, 1) + 0.5fN (y; µ2, 1). (2.29)

One of these components will model the distribution of Y for the younger
age group, whereas the other component will model the distribution of Y for
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Fig. 2.6. Hidden age groups — Synthetic Data Set 2; top: contours of the
complete-data likelihood under labeling 1 (left-hand side) and labeling 2 (right-hand
side); bottom: contours and surface of the mixture likelihood

the elder age group. Note, however, that the model is indifferent as to what
component corresponds to what age group.

To interpret the parameters of the components correctly, we have to assign
a labeling that associates a certain age group with a certain component. Let
Si be equal to the component indicator. For two categories, there are two
ways to assign a labeling:

Younger Age Group Elder Age Group
Labeling 1 Si = 1 Si = 2
Labeling 2 Si = 2 Si = 1

For labeling 1, the younger age group is associated with the first compo-
nent, thus the expected value of Y in this group is equal to µ1, whereas for
labeling 2, the younger age group is associated with the second component,
thus the expected value of Y in this group is equal to µ2.



2.4 Parameter Estimation When the Allocations Are Unknown 47

For illustration we consider two synthetic data sets of N = 100 observa-
tions simulated from (2.29). For both data sets the expected value of Y for
the younger age group is equal to µy = 1, whereas the expected value of Y
for the elder age group varies over the two data sets. For synthetic data set
1 with µe = 3 the expected value of Y differs significantly between the age
groups; for synthetic data set 2 with µe = 1.5 the difference is small compared
to the variance.

First we assume that the data are categorized. If for each observation yi the
age category were observed, we may select one of the two possible labelings,
and determine the complete-data likelihood p(y|S, µ1, µ2). Note, however, that
depending on the labeling we selected, the complete-data likelihood would
be concentrated over different regions of the parameter space. The tops of
Figure 2.5 and Figure 2.6 show the contours of the complete-data likelihood
defined in (2.8) for the various synthetic data sets under the two ways of
labeling. For synthetic data set 1, labeling 1 leads to a likelihood concentrated
over the region µ1 < µ2, whereas for labeling 2, the likelihood is concentrated
over the region µ1 > µ2. For this data set, parameters fulfilling the constraint
µ1 < µ2 may be clearly associated with labeling 1. For the other data set,
however, parameters fulfilling the constraint µ1 < µ2 may not be associated
uniquely with labeling 1, as also under labeling 2 parameters fulfilling this
constraint have considerable likelihood.

If the data are uncategorized, one would consider the mixture likelihood
p(y|ϑ) defined in (2.26) for parameter estimation which, however, reflects the
arbitrariness of the labeling of the hidden categories. Any two parameters
ϑ = (µ1, µ2) and ϑ� = (µ2, µ1) generate the same functional value for the
likelihood. This may, but need not, cause multimodality of the likelihood
function. The bottoms of Figure 2.5 and Figure 2.6 show the contours and
the surfaces of the mixture likelihood p(y|ϑ) for both synthetic data sets.
For synthetic data set 1, the mixture likelihood function in Figure 2.5 has
two well-separated modes, one concentrated over the region µ1 < µ2, the
other concentrated over the region µ1 > µ2. In comparison to the complete-
data likelihood displayed in the top of the same figure, it is clear that the two
modes correspond to the two ways of labeling the hidden groups. For synthetic
data set 2, the mixture likelihood function in Figure 2.6 again has two modes,
which are, however, not well separated. Again, in comparison to the complete-
data likelihood it becomes clear that this lack of separation reflects the fact
that parameter values around the unidentifiability set UE(µ), µ ∈ �, which
corresponds to the line µ1 = µ2 in this particular example, have considerable
likelihood under both ways of labeling.

Formal Identifiability Versus Unique Labeling in the Mixture
Likelihood Function

Formal identifiability constraints were introduced in Subsection 1.3.3. It is a
common misunderstanding that an arbitrary formal identifiability constraint
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Fig. 2.7. Hidden age groups — Synthetic Data Set 3; complete-data likeli-
hood p(y|µ1, µ2, η1,S) under labeling 1 (left-hand side) and labeling 2 (right-hand
side); top: contours of p(y|µ1, µ2, η1,S) for (arbitrary) η1 fixed; bottom: profile of
p(y|µ1, µ2, η1,S) for (arbitrary) µ1 and µ2 fixed

leads to a unique labeling. As pointed out by Celeux (1998), Celeux et al.
(2000), Stephens (2000b), and Frühwirth-Schnatter (2001b), this is not nec-
essarily the case.

Consider, for illustration, the mixture likelihood function of synthetic data
set 3, generated from the following mixture model,

p(y) = η1fN (y; µ1, 1) + (1 − η1)fN (y; µ2, 1), (2.30)

where µ1 = 1, µ2 = 3, and η1 = 0.45. Thus the first group is slightly smaller
than the second group. For this model, one could use the constraint η1 < η2,
which is equivalent to η1 < 0.5, or the constraint µ1 < µ2 to achieve formal
identifiability, but only the second constraint will induce a unique labeling.

Figure 2.7 shows contours of the complete-data likelihood p(y|µ1, µ2, η1,S)
over (µ1, µ2) for (arbitrary) η1 fixed and a profile over η1 for (arbitrary)
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(µ1, µ2) fixed. Under labeling 1, the complete-data likelihood is concentrated
over the region µ1 < µ2. Although the complete-data likelihood has a lot of
mass over η1 < 0.5, considerable likelihood is also given to the region η1 > 0.5.
Under labeling 2, the complete-data likelihood is concentrated over µ1 > µ2.
This time the likelihood has a lot of mass over η1 > 0.5, however, considerable
likelihood is also given to η1 < 0.5. As a consequence, parameters fulfilling
the constraint µ1 < µ2 are very likely to occur only under labeling 1, whereas
parameters fulfilling the constraint η1 < 0.5 may occur under both ways of
labeling.

This has consequences for the ability of any of the two constraints to
force a unique labeling. As the constraint µ1 < µ2 is likely to occur only
under labeling 1, the constraint µ1 < µ2 is able to identify parameters from a
single modal region of the mixture likelihood as demonstrated by Figure 2.8.
Parameters fulfilling the constraint η1 < 0.5, however, are likely under both
ways of labeling. Therefore, if we consider the mixture likelihood under the
constraint η1 < 0.5, we obtain a function with two modes, and parameters
with high likelihood may come from both modal regions.

2.4.4 Maximum Likelihood Estimation

With the availability of powerful computers and elaborate numerical algo-
rithms, maximum likelihood (ML) estimation became the preferred approach
to parameter estimation for finite mixture models for many decades. Redner
and Walker (1984) provide a concise and excellent review of ML estimation
for finite mixture models. ML estimation was used for a univariate mixture of
two normal distributions with σ2

1 = σ2
2 as early as Rao (1948). Further pio-

neering work for ML estimation was done by Hasselblad (1966) for univariate
mixtures of normals, Hasselblad (1969) for general mixtures from the expo-
nential family, and Day (1969) and Wolfe (1970) for multivariate mixtures of
normals.

In these early papers, the ML estimator ϑ̂ is obtained by maximizing
the mixture likelihood p(y|ϑ) with respect to ϑ using some direct method
such as Newton’s method (Hasselblad, 1966) or a gradient method (Quandt,
1972). An iterative scheme for maximizing the likelihood function, developed
by Hasselblad (1966, 1969), is nothing but an early variant of the EM algo-
rithm, introduced later by Dempster et al. (1977) which is the most commonly
applied method to find the ML estimator for a finite mixture model nowadays.

The EM Algorithm

The expectation-maximization (EM) algorithm was introduced for general
latent variable models in the seminal paper by Dempster et al. (1977), who
also mentioned applications to finite mixture models. The use of the EM
algorithm for the estimation of mixture models has been studied in detail in
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Fig. 2.8. Hidden age groups — Synthetic Data Set 3; marginalized mixture
likelihood p(y|µ1, µ2); top: unconstrained; middle: under the constraint µ1 < µ2;
bottom: under the constraint η1 < η2
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Redner and Walker (1984). Meng (1997) provides a very inspiring general-
level tutorial on the EM algorithm in the context of finite mixtures of Poisson
distributions, whereas the monograph of McLachlan and Peel (2000) gives full
details for a wide range of finite mixture models.

To implement the EM algorithm for a finite mixture model, the log of
complete-data likelihood function p(y,S|ϑ), defined earlier in (2.8), is written
as

log p(y,S|ϑ) =
N∑

i=1

K∑
k=1

Diklog(ηkp(yi|θk)), (2.31)

where Dik is a 0/1 coding of the allocations Si: Dik = 1, iff Si = k. Starting
from ϑ̂(0), the EM algorithm iterates between two steps: an E-step, where
the conditional expectation of log p(y,S|ϑ), given the current data and given
the current parameter is computed, and an M-step in which parameters that
maximize the expected complete-data log likelihood function, obtained from
the E-step are determined. Under fairly mild regularity conditions, the EM
algorithm converges to a local maximum of the mixture likelihood function
(Dempster et al., 1977; Wu, 1983). For mixture models, the E-step leads for
m ≥ 1 to the following estimator of Dik,

D̂
(m)
ik =

η̂
(m−1)
k p(yi|θ̂

(m−1)
k )

K∑
j=1

η̂
(m−1)
j p(yi|θ̂

(m−1)
j )

, (2.32)

and the M-step involves maximizing

N∑
i=1

K∑
k=1

D̂
(m)
ik log(ηkp(yi|θk))

with respect to all unknown components in ϑ = (θ1, . . . ,θK , η), leading to a
new estimate ϑ̂(m). It is easy to verify that for an arbitrary mixture

η̂
(m)
k =

nk

N
, nk =

N∑
i=1

D̂
(m)
ik , (2.33)

whereas the estimator of the component parameters θk of course depends
on the distribution family underlying the mixture. For mixtures of Poisson
distributions, for instance, the estimator of the component mean µk reads:

µ̂
(m)
k =

1
nk

N∑
i=1

D̂
(m)
ik yi.

A disadvantage of the EM algorithm compared to direct maximization of
the likelihood function is much slower convergence. Following Redner and
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Walker (1984), who recommended combining the EM algorithm with Newton’s
method, several authors used hybrid algorithms for mixture estimation; see
Aitkin and Aitkin (1996) for a review.

Asymptotic Properties of the ML estimator

In simulation studies the ML estimator generally leads to smaller mean
squared errors than moment estimators; see, for instance, Tan and Chang
(1972) and the small simulation study in Subsection 2.4.7.

A theoretical underpinning for the ML estimator is provided by asymptotic
theory. Consider the likelihood equation

∂

∂ϑ
log p(y|ϑ) = 0, (2.34)

where ϑ denotes the parameter (θ1, . . . ,θK , η1, . . . , ηK−1) with the redundant
weight ηK being omitted. Let ϑtrue be the true value of ϑ. Define for an
arbitrary parameter ϑ the expected Fisher information matrix as

I(ϑ) =
∫

Y

∂

∂ϑ
log p(y|ϑ)(

∂

∂ϑ
log p(y|ϑ))

′
p(y|ϑ)dy, (2.35)

and assume that I(ϑtrue) is well defined and positive definite. Then Redner
and Walker (1984, p.211) prove under certain boundedness conditions on the
partial derivatives of p(y|ϑ) with respect to the components of ϑ, that in any
sufficiently small neighborhood of ϑtrue for a sufficiently large sample size N
there exists a unique solution ϑ̂ of the likelihood equation (2.34) in that neigh-
borhood, which locally maximizes the log likelihood function. Furthermore,
this ML estimator is consistent, efficient, and asymptotically normal:

√
N(ϑ̂ − ϑtrue) →d N

(
0, I(ϑtrue)−1) .

Practical Difficulties with ML Estimation

ML estimation may encounter various practical difficulties. First, it may be
difficult to find the global maximum of the likelihood numerically. Several
studies report convergence failures particularly when the sample size is small
or the components are not well separated; see, for instance, Finch et al. (1989).
Recently, more attention has been paid to choosing starting values that in-
crease the chance of convergence (Karlis and Xekalaki, 2003; Biernacki et al.,
2003).

Second, for the important special case of mixtures of normal distributions,
the mixture likelihood is unbounded, as discussed later in Subsection 6.1.2. In
this case the ML estimator as a global maximizer of the likelihood function
does not exist, however, it usually exists as a local maximizer. The practical
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difficulty is to identify this local maximum and avoid spurious modes in the
course of maximizing the log likelihood function; see McLachlan and Peel
(2000, Section 3.10).

Third, as for any incomplete data problems, the provision of standard er-
rors is not straightforward within ML estimation of finite mixture models,
in particular when using the EM algorithm, although various papers (Louis,
1982; Meng and Rubin, 1991) show how to obtain approximate standard er-
rors from the EM algorithm. A further problem noted in several papers is
singularity of the matrix of second partial derivatives of the log likelihood
function.

Finally, as McLachlan and Peel (2000, p.68) warn, “In particular for mix-
ture models, it is well known that the sample size N has to be very large,
before asymptotic theory of maximum likelihood applies.” The regularity con-
ditions are often violated, including cases of great practical concern, among
them small data sets, mixtures with small component weights, and overfitting
mixtures with too many components.

2.4.5 Bayesian Parameter Estimation

Let y = {y1, . . . ,yN} be N randomly selected, uncategorized observations
from the mixture distribution (2.1). Let ϑ = (θ1, . . . ,θK , η) denote all un-
known parameters appearing in the mixture model. As in Subsection 2.3.3,
where Bayesian parameter estimation for known allocations has been dis-
cussed, one has to assume that a prior distribution p(ϑ) on ϑ is available.
Using Bayes’ theorem, the mixture likelihood p(y|ϑ) defined in (2.26) is com-
bined with the prior p(ϑ) in a similar way as was done for the complete-data
likelihood function in Subsection 2.3.3 to obtain the posterior density p(ϑ|y):

p(ϑ|y) ∝ p(y|ϑ)p(ϑ). (2.36)

There are various reasons why one might be interested in adopting a Bayesian
approach for finite mixture models. The inclusion of a proper prior within a
Bayesian approach will generally introduce a smoothing effect on the mixture
likelihood function and reduce the risk of obtaining spurious modes in cases
where the EM algorithm leads to degenerate solutions. This is shown in par-
ticular in Section 6.1 for finite mixtures of normal distributions. Second, as
the whole posterior distribution p(ϑ|y) is available, it is much easier to ad-
dress the issue of parameter uncertainty. Finally, Bayesian estimation does not
rely on asymptotic normality, and yields valid inference also in cases where
regularity conditions are violated, such as small data sets and mixtures with
small component weights; see again Subsection 2.3.3.

In contrast to Subsection 2.3.3, however, where the allocations were as-
sumed to be known, practical Bayesian estimation is more involved when the
allocations are unknown. Unfortunately, for the mixture likelihood (2.26) no
natural conjugate prior is available, meaning that whatever prior p(ϑ) one
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chooses, the posterior density obtained from (2.36) does not belong to any
tractable distribution family. For this reason, Bayesian estimation of even
simple mixture problems proved to be extremely difficult prior to the advent
of Markov chain Monte Carlo methods. An illuminating insight into the dif-
ficulties one had to face appears in Bernardo and Girón (1988) for a mixture
model where only the weights distribution η is unknown.

This situation changed only rather recently in the early 1990s with the
widespread availability of Markov chain Monte Carlo (MCMC) methods and
their application to Bayesian estimation of finite mixture models. Like the
EM algorithm, practical Bayesian estimation using MCMC methods is based
on the work of Dempster et al. (1977) who realized that a finite mixture
model may always be expressed in terms of an incomplete data problem by
introducing the allocations as missing data. As shown by several pioneering
papers (West, 1992; Smith and Roberts, 1993; Diebolt and Robert, 1994;
Escobar and West, 1995; Mengersen and Robert, 1996; Raftery, 1996b), it
is surprisingly straightforward to sample from the posterior density (2.36)
using MCMC techniques such as data augmentation (Tanner and Wong, 1987)
and Gibbs sampling (Gelfand and Smith, 1990). A very detailed account of
Bayesian inference for finite mixture models is given in Chapter 3.

2.4.6 Distance-Based Methods

Distance-based methods consider that value ϑ as an estimator for an unknown
parameter that minimizes a suitably defined distance δ(F̂N , Fϑ) between the
empirical distribution F̂N and the distribution function Fϑ of the mixture
distribution p(y|ϑ). Titterington et al. (1985, Section 4.5) provides a compre-
hensive review of properties of minimum distance estimators for finite mixture
models under a wide range of distance functions. The ML estimator results
if δ(·) is equal to the Kullback–Leibler distance (Kullback and Leibler, 1951).
Another commonly used distance is the Hellinger distance (Beran, 1977) which
is applied to finite mixture models by Lindsay (1994), Cutler and Cordero-
Braña (1996), and, in the context of mixtures of Poisson distributions, by
Karlis and Xekalaki (1998, 2001).

Further variants of distance-based methods in finite mixture modeling are
penalized minimum distance estimation (Chen and Kalbfleisch, 1996) and
Bayesian distance-based estimation (Mengersen and Robert, 1996; Celeux
et al., 2000; Sahu and Cheng, 2003; Hurn et al., 2003).

2.4.7 Comparing Various Estimation Methods

For illustration, a simulation experiment is carried out in order to compare
various estimation methods for different sample sizes ranging from small (N =
20) over medium (N = 200) to large (N = 2000). 100 data sets each consisting
of N observations were simulated from a two-component Poisson mixture
model with ηtrue

1 = 0.3, µtrue
1 = 1, and µtrue

2 = 5. The unknown parameter ϑ =
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Table 2.4. Performance of different estimation methods, namely method of mo-
ments (MM), maximum likelihood (ML), and Bayesian estimation (Bayes), for 100
data sets simulated from a mixture of two Poisson distributions with ηtrue

1 = 0.3,
µtrue

1 = 1, and µtrue
2 = 5 for different sample sizes N

Bias MSE
N=20 µ1 µ2 η1 µ1 µ2 η1

MM –0.85773 –0.2835 –0.12096 1.6361 0.39866 0.04378
ML –0.055929 –0.07033 0.0010964 0.18881 0.29199 0.0085535
Bayes 0.31284 –0.14187 0.082573 0.14742 0.24411 0.0070211

Bias MSE
N=200 µ1 µ2 η1 µ1 µ2 η1

MM –0.13395 –0.026314 –0.026936 0.12128 0.058986 0.0035519
ML –0.017062 0.015664 –0.0032702 0.035213 0.031482 0.0017613
Bayes 0.051202 0.068292 0.019925 0.033 0.035072 0.0014094

Bias MSE
N=2000 µ1 µ2 η1 µ1 µ2 η1

MM –0.018328 –0.017891 –0.001898 0.014131 0.0062658 0.0005169
ML –0.003916 –0.0084198 –0.0017287 0.0031607 0.0038663 0.00019152
Bayes 0.0077498 –0.0063272 0.00052239 0.0032099 0.0040859 0.00018001
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Fig. 2.9. Distribution of the estimator µ̂1 for N observations arising from a mixture
of two Poisson distributions with ηtrue

1 = 0.3, µtrue
1 = 1, and µtrue

2 = 5 (1 . . .MM,
2 . . .ML, 3 . . . Bayes); N = 20 (left-hand side), N = 200 (middle), N = 2000
(right-hand side)

(µ1, µ2, η1) is estimated for each of the 100 data sets based on the method of
moments, the ML estimator using the EM algorithm, and Bayesian estimation,
using the priors µk ∼ G (0.5, 0.5/y) and η ∼ D (4, 4). For N = 20, the EM
algorithm fails three times whereas the method of moments fails once. For each
of the 100 data sets, Bayesian estimation is carried out using 2000 draws from
a random permutation Gibbs sampler (Frühwirth-Schnatter, 2001b), after a
burn-in of 500 draws. The mean of the posterior draws is used as an estimator
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of ϑ, after the model has been identified using unsupervised clustering. These
computational issues are explained in full detail in Chapter 3.

Table 2.4 evaluates the estimation error through the average bias µ̂k −
µtrue

k for k = 1, 2 and η̂1 − ηtrue
1 and the average mean squared error (MSE)

(µ̂k −µtrue
k )2 for k = 1, 2 and (η̂1 −ηtrue

1 )2 over all replications. The method of
moments has the largest bias and the largest MSE for all samples sizes N . For
N = 20, the Bayes estimator has a larger bias, but is more efficient in terms
of the MSE than the ML estimator. As expected, there is little difference
between ML estimation and Bayesian estimation for N = 2000. For further
illustration, Figure 2.9 shows the distribution of the various estimators µ̂1
over all replications for the different sample sizes.



3

Practical Bayesian Inference for a Finite
Mixture Model with Known Number of
Components

3.1 Introduction

Assume as in Chapter 2 that N observations y = (y1, . . . ,yN ), drawn ran-
domly from a finite mixture of T (θ) distributions with density p(y|θ) indexed
by a parameter θ ∈ Θ, are available, which should be used to make inferences
about the underlying mixture structure. In this chapter we outline in detail
Bayesian inference for the standard finite mixture model,

p(yi|ϑ) =
K∑

k=1

ηkp(yi|θk), (3.1)

when the number of components is known.
If ϑ = (θ1, . . . ,θK , η) are unknown parameters that need to be estimated

from the data then, as noted earlier, from a Bayesian perspective all informa-
tion contained in the data y about ϑ is summarized in terms of the posterior
density p(ϑ|y), which is derived using Bayes’ theorem:

p(ϑ|y) ∝ p(y|ϑ)p(ϑ). (3.2)

By Bayes’ theorem, the data-dependent mixture likelihood function p(y|ϑ),
defined earlier, is combined with a prior density p(ϑ) in order to obtain the
mixture posterior density p(ϑ|y). For Bayesian estimation, we have to assume
that such a prior distribution p(ϑ) is available. For finite mixture models it
is not possible to choose an improper prior such as p(ϑ) ∝ constant, because
this leads to an improper mixture posterior density p(ϑ|y). This problem and
choosing proper priors are discussed in Section 3.2.

Within a Bayesian analysis of a finite mixture model we are interested in
the entire mixture posterior density p(ϑ|y), which to a large extent is dom-
inated by the mixture likelihood function p(y|ϑ), and, as discussed in Sec-
tion 3.3, inherits all of its properties, in particular the invariance to relabeling
the mixture components.
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In Section 3.4 we discuss inference for the group indicators S without
parameter estimation which is interesting in its own right and provides an
opportunity to introduce recent concepts of computational Bayesian statistics
such as Gibbs sampling and the Metropolis–Hastings algorithm. Gibbs sam-
pling, together with data augmentation, is also useful for drawing Bayesian
inference about the parameters of a mixture model (reviewed in detail in Sec-
tion 3.5) and is the most commonly used approach for obtaining draws from
the mixture posterior p(ϑ|y); other sampling-based approaches such as the
Metropolis–Hastings algorithm are briefly discussed in Section 3.6. Finally,
it is discussed in Section 3.7 how draws from the mixture posterior density
p(ϑ|y) could be used within a Bayesian approach to obtain inference on quan-
tities of interest such as the unknown component parameters.

3.2 Choosing the Prior for the Parameters of a
Mixture Model

3.2.1 Objective and Subjective Priors

For Bayesian estimation of a finite mixture model a prior p(ϑ) has to be
selected for the unknown parameters ϑ = (θ1, . . . ,θK , η). As in Press (2003,
Chapter 5), one may distinguish between objective and subjective priors.

Objective priors should reflect the notion of having no prior information,
however, there exists no general agreement about how knowing little about
a parameter ϑ should be expressed in terms of a probability distribution
p(ϑ). Very often improper priors, which are not integrable over the parame-
ter space, are used to express complete ignorance, in the hope that the data
are informative enough to turn the improper prior p(ϑ) into a proper poste-
rior distribution p(ϑ|y). The choice of objective priors is particularly difficult
for finite mixture models, as common improper priors will lead to improper
posteriors; see Subsection 3.2.2.

Subjective priors bring prior knowledge into the analysis, and offer the
advantage of being proper. For finite mixture models, such priors are usu-
ally obtained by choosing priors that are conjugate for the complete-data
likelihood function; see Subsection 3.2.3. It is common to assume that the
parameters θ1, . . . ,θK are independent of the weight distribution η:

p(ϑ) = p(θ1, . . . ,θK)p(η). (3.3)

For finite mixture models, the standard prior for the weight distribution η is
the D (e0, . . . , e0)-distribution, which arises from the same prior distribution
family as for complete-data Bayesian inference considered in Subsection 2.3.4,
however, the hyperparameters of the prior are assumed to be the same, in
order to obtain an invariant prior. The precise prior on the component param-
eters θ1, . . . ,θK depends on the distribution family underlying the mixture
distribution.



3.2 Choosing the Prior for the Parameters of a Mixture Model 59

It is not always easy to assess the parameters of a subjective prior, also
called hyperparameters. Results from a Bayesian analysis of finite mixture
models using subjective prior information is often highly dependent on par-
ticular choices of hyperparameters. To reduce this sensitivity, it is common
practice in the context of finite mixture modeling to use hierarchical priors
where the hyperparameter is equipped with a prior of its own; see Subsec-
tions 3.2.4.

In any case, for a Bayesian analysis of finite mixture models the prior
distribution has to be selected with some care.

3.2.2 Improper Priors May Cause Improper Mixture Posteriors

Assume that in (3.3), complete ignorance about θ1, . . . ,θK is expressed in
terms of the product of independent improper priors:

p(θ1, . . . ,θK) ∝
K∏

k=1

p�(θk), (3.4)

with
∫

p�(θk)dθk = ∞. Roeder and Wasserman (1997b) show that the mix-
ture posterior p(ϑ|y) is improper under prior (3.4), by rewriting the mixture
likelihood p(y|ϑ) as a sum over complete-data likelihoods:

p(y|ϑ) =
∑

S∈SK

p(y|S,θ1, . . . ,θK)p(S|η), (3.5)

where summation runs over all KN possible classifications S. Under prior
(3.4), the mixture posterior is proportional to

p(ϑ|y) ∝
∑

S∈SK

p(y|S,θ1, . . . ,θK)
K∏

k=1

p�(θk)p(S|η)p(η), (3.6)

and is proper, if the integral over the right-hand side is finite. The normalizing
constant turns out to be∑

S∈SK

c1(S)c2(S), (3.7)

c1(S) =
K∏

k=1

∫ ( ∏
i:Si=k

p(yi|θk)

)
p�(θk)dθk,

c2(S) =
∫

p(S|η)p(η)dη.

To obtain a proper posterior distribution, c1(S) and c2(S) have to be finite
for all classifications S. Note that the hidden multinomial prior on S assigns
positive probability to partitions S, where one component, say j, is empty.



60 3 Practical Bayesian Inference for a Finite Mixture Model

In this case, the complete-data likelihood does not contain any information
about θj and c1(S) is not finite under the improper prior (3.4) because

∫ ⎛⎝ ∏
i:Si=j

p(yi|θj)

⎞⎠ p�(θj)dθj =
∫

p�(θj)dθj = ∞.

To obtain proper posterior distributions under the prior (3.4), Wasserman
(2000) modifies the prior distribution p(S) of the allocations S, by restricting
SK to allocations with nonempty components.

3.2.3 Conditionally Conjugate Priors

Whereas it is not possible to choose simple conjugate priors for the mixture
likelihood p(y|ϑ), a conjugate analysis is possible for the complete-data like-
lihood p(y,S|ϑ), if the component densities in the mixture come from the
exponential family as in (1.11),

p(yi|θk) = exp
{

φ(θk)
′
u(yi) − g(θk) + c(yi)

}
;

see also Subsection 2.3.3. To formulate a joint prior for θ1, . . . ,θK , the com-
ponent parameters are assumed to be independent a priori, given a hyperpa-
rameter δ:

p(θ1, . . . ,θK |δ) =
K∏

k=1

p(θk|δ). (3.8)

If for each component the prior p(θk|δ) takes the form

p(θk|δ) ∝ exp
{

φ(θk)
′
a0 − g(θk)b0

}
, (3.9)

with hyperparameter δ = (a0, b0), then the conditional posterior p(θk|S,y) is
given by:

p(θk|S,y) ∝ exp
{

φ(θk)
′
ak − g(θk)bk

}
, (3.10)

which is again a density from the chosen exponential family with

ak = a0 +
∑

i:Si=k

u(yi), bk = b0 + Nk(S),

where Nk(S) = #{Si = k}. For mixtures of Poisson distributions, for instance,
Bayesian inference for the complete data problem, already studied in Subsec-
tion 2.3.3, leads to the conditionally conjugate prior µk ∼ G (a0, b0), where a0
as well as b0 have to be positive to obtain a proper posterior distribution.
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3.2.4 Hierarchical Priors and Partially Proper Priors

For practical Bayesian inference, prior (3.8) is assessed by choosing the hy-
perparameter δ. Prior (3.8) acts as a kind of shrinkage prior, pulling all com-
ponent parameters θk toward a common center defined by E(θk|δ), where
both the center of the prior as well as the amount of shrinkage may crucially
depend on δ. For illustration, consider a mixture of Poisson distributions,
and rewrite the conditionally conjugate G (a0, b0)-prior introduced in Subsec-
tion 3.2.3 as µk ∼ (a0/b0)Wk, Wk ∼ G (a0, a0). Evidently, this prior induces
shrinkage of µk toward the prior mean E(µk) = a0/b0,, with shrinkage being
more pronounced the larger a0.

In particular for mixtures with small components, the posterior distribu-
tion may be sensitive to specific choices of δ. To reduce sensitivity to specific
choices of δ, it is common practice to use hierarchical priors, which treat δ as
an unknown quantity with a prior p(δ):

p(θ1, . . . ,θK , δ) = p(δ)
K∏

k=1

p(θk|δ). (3.11)

As a result, θ1, . . . ,θK are dependent a priori:

p(θ1, . . . ,θK) =
∫

p(θ1, . . . ,θK |δ)p(δ)dδ �=
K∏

k=1

p(θk).

Such priors have been applied to finite mixtures of normal distributions in
Mengersen and Robert (1996), Richardson and Green (1997), and Roeder
and Wasserman (1997b).

Partially proper priors (Roeder and Wasserman, 1997b) are hierarchical
priors where the prior p(δ) of the hyperparameter δ is improper. Although,
marginally, the prior p(θk) is improper, the posterior distribution is proper.

A Hierarchical Prior for Poisson Mixtures

For a mixture of Poisson distributions, a hierarchical prior is obtained by
assuming that b0 is a random parameter with a prior of its own:

µk|b0 ∼ G (a0, b0) , b0 ∼ G (g0, G0) . (3.12)

Then the component means µ1, . . . , µK are dependent a priori, and the joint
prior p(µ1, . . . , µK), where b0 is integrated out, is available in closed form, if
the G (g0, G0)-prior is proper:
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p(µ1, . . . , µK) =
∫

p(µ1, . . . , µK |b0)p(b0)db0 (3.13)

=

Gg0
0 Γ (g0 + Ka0)

(
K∏

k=1

µk

)a0−1

Γ (a0)KΓ (g0)

(
G0 +

K∑
k=1

µk

)g0+Ka0
.

A partially proper prior results if the G (g0, G0)-prior is improper, for example,
if g0 = 0.5 and G0 = 0.

3.2.5 Other Priors

Reference priors were suggested by Bernardo (1979) as prior distributions hav-
ing a minimal effect on the final inference, relative to the data. The derivation
of such a reference prior, however, is less than obvious for mixture models.
Reference priors depend on the asymptotic behavior of the relevant posterior
distributions. Although several papers have established the limiting proper-
ties of maximum likelihood estimators in finite mixture models (see Subsec-
tion 2.4.4), the derivation of reference priors for general finite mixture models
still seems infeasible.

Some investigations appear in Bernardo and Girón (1988) for a mixture
model where only the weight distribution η is unknown. For a mixture of two
known densities, the reference prior for η1 is virtually Jeffrey’s B

( 1
2 , 1

2

)
-prior,

when the two densities are well separated, whereas the uniform B (1, 1) would
approximate the reference prior when the two densities are very close. For a
mixture of more than two known densities Bernardo and Girón (1988) suggest
that a Dirichlet distribution with parameters ranging in the interval [12 , 1] is
a reasonable approximation to the reference prior.

3.2.6 Invariant Prior Distributions

Because the components in a mixture density may be arbitrarily arranged, it
is usual to choose priors that reflect this information, by being invariant to
relabeling the components. Consider all s = 1, . . . , K! different permutations
ρs:{1, . . . , K} → {1, . . . , K}, where the value ρs(k) is assigned to each value
k ∈ {1, . . . , K}. Let ϑ = (θ1, . . . ,θK , η1, . . . , ηK) be an arbitrary parameter
in ΘK = ΘK × EK , and define for each permutation ρs the parameter ϑ̃s by

ϑ̃s = (θρs(1), . . . ,θρs(K), ηρs(1), . . . , ηρs(K)). (3.14)

A prior density p(ϑ) is invariant to relabeling the components of the mixture
model, if the following identity holds for all ϑ ∈ ΘK , for any of the K!
permutations ρs(·);
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p(ϑ̃s) = p(ϑ). (3.15)

Any of the prior distributions discussed so far in this section is invariant by
construction.

Nonsymmetric priors have been applied in the hope that this eliminates
all modes of the mixture likelihood function but one and Bayesian inference
leads to a unimodal posterior distribution. Because this is not necessarily the
case (see, for instance, Chib, 1995), the recommendation is to use an invariant
prior unless there is a structural asymmetry in the mixture distribution. One
example is Bayesian outlier modeling based on finite mixture, where it is
sensible to choose priors that are not invariant, because the outlier component
is much smaller than the other components by definition; see Section 7.2 for
more detail.

3.3 Some Properties of the Mixture Posterior Density

3.3.1 Invariance of the Posterior Distribution

The mixture posterior density p(ϑ|y) defined in (3.2) is to a large extent
dominated by the mixture likelihood function p(y|ϑ), which is invariant to
relabeling the components of the mixture distribution. Under an invariant
prior, the mixture posterior distribution inherits the invariance of the mixture
likelihood to relabeling the components of the mixture, and the following
identity holds for all ϑ ∈ ΘK , for any of the K! permutations ρs(·);

p(ϑ̃s|y) = p(ϑ|y). (3.16)

It is quite illuminating to study the behavior of the posterior density as N
increases. The following considerations are purely heuristic, without providing
a formal proof.

Let ϑtrue = (θtrue
1 , . . . ,θtrue

K , ηtrue
1 , . . . , ηtrue

K ) denote the true value of ϑ.
Assume that ϑtrue fulfills the formal identifiability constraints of Subsec-
tion 1.3.3, with ηtrue

k > 0, and θtrue
k �= θtrue

l , for all k �= l, where in a multi-
parameter setting not all components of all parameters need to be different.
Let UP (ϑtrue) be the set defined in (1.27). Due to the formal identifiability
constraints the mixture model is not overfitting and the set UP (ϑtrue) contains
K! distinct points, obtained from relabeling all components of ϑtrue through
all possible permutations of {1, . . . , K}.

Then with increasing number of observations, the posterior density has
K! equivalent modes and becomes proportional to an invariant mixture of
asymptotic normal distributions, with the modes lying in the set UP (ϑtrue):

p(ϑ|y) ≈ 1
K!

K!∑
s=1

fN (ϑ̃s; ϑtrue, I(ϑtrue)).
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3.3.2 Invariance of Seemingly Component-Specific Functionals

The invariance property of the mixture posterior density p(ϑ|y), discussed
in the previous subsection, causes state independence of many functionals de-
rived from the posterior distribution, which are seemingly component specific,
like the posterior mean E(θk|y).

Marginal Distributions of Component-Specific Parameters

Consider, as an example the marginal distribution of the component param-
eter θk, which is defined in the usual way as

p(θk|y) =
∫

ΘK−1×EK

p(ϑ|y)d(θ1, . . . ,θk−1, θk+1, . . . ,θK , η1, . . . , ηK).

Consider an arbitrary permutation ρs(1), . . . , ρs(K) of {1, . . . , K}, which is
different from the identity, to transform the parameter in this integration.
The Jacobian of the transformation being 1, the area of integration being
unchanged, one obtains:

p(θk|y) =
∫

ΘK−1×EK

p(ϑ̃s|y)

d(θρs(1), . . . ,θρs(k−1), θρs(k+1), . . . ,θρs(K), ηρs(1), . . . , ηρs(K)).

By the invariance property (3.16) this is equal to:

p(θk|y) =
∫

ΘK−1×EK

p(ϑ|y)

d(θρs(1), . . . ,θρs(k−1), θρs(k+1), . . . ,θρs(K), ηρs(1), . . . , ηρs(K)).

Marginalization is with respect to all unknown parameters except θρs(k),
therefore p(θk|y) = p(θρs(k)|y). Because this holds all permutations s =
1, . . . , K!, the seemingly component-specific marginal posterior densities p(θk|y)
are actually state-independent and the same for all k �= k′:

p(θk|y) = p(θk′ |y). (3.17)

It could be proven in a similar way that the marginal posterior density of the
component weight ηk is state-independent:

p(ηk|y) = p(ηk′ |y), (3.18)

for all k �= k′. State independence holds for other marginal densities, such as
the marginal distribution of any two parameters from different components
where k �= k′ and ρs arbitrary:

p(θk, θk′ |y) = p(θρs(k), θρs(k′)|y). (3.19)



3.3 Some Properties of the Mixture Posterior Density 65

As this relation holds in particular for ρs(k) = k′ and ρs(k′) = k, the posterior
in (3.19) is symmetric:

p(θk, θk′ |y) = p(θk′ , θk|y). (3.20)

For a mixture of univariate normal distributions, for instance, we obtain
∀k, k′ = 1, . . . , K, k �= k′:

p(µk|y) = p(µk′ |y), p(σ2
k|y) = p(σ2

k′ |y),
p(µk, σ2

k|y) = p(µk′ , σ2
k′ |y),

p(µk, µk′ |y) = p(µ1, µ2|y) = p(µ2, µ1|y),
p(σ2

k, σ2
k′ |y) = p(σ2

1 , σ2
2 |y) = p(σ2

2 , σ2
1 |y).

The Posterior Mean

The posterior mean is a commonly used point estimator, which is optimal
with respect to a quadratic loss function; see, for instance, Zellner (1971) and
Berger (1985). From the mixture posterior distribution, the following result
may be derived,

E(ϑ̃s|y) = E(ϑ|y), (3.21)

where the parameter ϑ̃s has been defined for each permutation ρs in (3.14).
Identity (3.21) follows from the invariance property (3.16).

As (3.21) holds for all permutations, it follows that the seemingly compo-
nent-specific posterior mean of θk and ηk is actually state-independent:

E(θk|y) = E(θk′ |y), E(ηk|y) = E(ηk′ |y),

for any k �= k′. Consequently, the mean E(ϑ|y) of the mixture posterior is
not a sensible point estimator for the component parameters and the weight
distribution. More sensible point estimators are discussed in Subsection 3.7.6.

3.3.3 The Marginal Posterior Distribution of the Allocations

We now turn to the posterior density p(S|y) of the allocations S, which is of
importance when dealing with Bayesian clustering in Section 7.1. p(S|y) is a
discrete distribution over the lattice

SK = {(S1, . . . , SN ) : Si ∈ {1, . . . , K}, i = 1, . . . , N}. (3.22)

As noted by Chen and Liu (1996) and Casella et al. (2000), for many mixture
models it is possible to derive an explicit form for the marginal posterior p(S|y)
of the indicators S, where dependence on the parameter ϑ is integrated out.
By Bayes’ theorem, the marginal posterior p(S|y) is given by
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p(S|y) ∝ p(y|S)p(S), (3.23)

where the integrated likelihood p(y|S) and the integrated prior p(S) are equal
to

p(y|S) =
∫

p(y|S,θ1, . . . ,θK)p(θ1, . . . ,θK)d(θ1, . . . ,θK),

p(S) =
∫

p(S|η)p(η)dη.

Assume that the prior p(ϑ) takes exactly the same form as (3.3) and (3.8).
Then:

p(y|S) =
K∏

k=1

∫ ∏
i:Si=k

p(yi|θk)p(θk)dθk,

p(S) =
∫

p(S|η)p(η)dη.

Under the conditionally conjugate prior η ∼ D (e0, . . . , e0) we obtain:

p(S) =
Γ (Ke0)

∏K
k=1 Γ (Nk(S) + e0)

Γ (N + Ke0)Γ (e0)K
, (3.24)

where Nk(S) = #{Si = k}. If the component densities in the mixture come
from the exponential family as in (1.11), then under a conditionally conjugate
prior p(θk), the integrated likelihood p(y|S) is the product of the normalizing
constants of each nonnormalized complete-data posterior, which are easily
derived from (2.19):

p(y|S) =
K∏

k=1

(
p(θk)

p(θk|y,S)

∏
i:Si=k

p(yi|θk)

)
. (3.25)

For a mixture of Poisson distributions, for instance, this yields:

p(y|S) =
N∏

i=1

1
Γ (yi + 1)

bKa0
0

Γ (a0,k)K

K∏
k=1

Γ (ak(S))
bk(S)ak(S) ,

where ak(S) and bk(S) are the posterior moments of the complete-data pos-
terior densities given in (2.18):

ak(S) = a0 + Nk(S)yk(S),
bk(S) = b0 + Nk(S).
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3.3.4 Invariance of the Posterior Distribution of the Allocations

State invariance occurs also for the seemingly component dependent allo-
cations S. p(S|y) is a marginal density obtained from integrating the joint
posterior p(S, ϑ|y) with respect to ϑ:

p(S|y) =
∫

ΘK

p(S, ϑ|y)dϑ.

Because this holds for any S, it also holds for S̃s = (ρs(S1), . . . , ρs(SN )) for
an arbitrary permutation. When using the same permutation for transforming
the parameter ϑ in this integration, we obtain:

p(S̃s|y) =
∫

ΘK

p(S̃s, ϑ̃s|y)dϑ̃s =
∫

ΘK

p(S, ϑ|y)dϑ̃s = p(S|y),

because the joint posterior is invariant to relabeling, and the order of integra-
tion may be rearranged arbitrarily. Therefore, for an arbitrary permutation
ρs(·) of {1, . . . , K}, the posterior density p(S|y) is invariant to relabeling:

p(S1, . . . , SN |y) = p(ρs(S1), . . . , ρs(SN )|y). (3.26)

It follows that any two sequences S and S′ that imply the same partition of
the data obtain the same posterior probability. Consider, as a simple example,
N = 3 and K = 2; then there are only four different partitions, each of which
has the same posterior probability:

p(1, 1, 1|y) = p(2, 2, 2|y), p(2, 1, 1|y) = p(1, 2, 2|y),
p(1, 2, 1|y) = p(2, 1, 2|y), p(1, 1, 2|y) = p(2, 2, 1|y).

The Marginal Posterior of a Single Allocation

When a finite mixture model is fitted to data with the aim of performing
posterior clustering, one would hope to infer how likely the event {Si = k} is
in light of the data. A natural candidate appears to be the posterior probability
Pr(Si = k|y). Somewhat surprisingly, it turns out that this marginal posterior
probability is state-independent and equal to 1/K, regardless of the data:

Pr(Si = k|y) =
1
K

. (3.27)

This follows from (3.26), by integrating both sides with respect to the indica-
tors (S1, . . . , Si−1, Si+1, . . . , SN ), which yields that the seemingly component-
specific posterior probability Pr(Si = k|y) is actually state invariant:

Pr(Si = k|y) = Pr(ρs(Si) = k|y) = Pr(Si = ρ−1
s (k)|y).

As this holds for all permutations, (3.27) follows immediately.
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3.4 Classification Without Parameter Estimation

One of the most the challenging inference problems in finite mixture modeling,
commonly known as the clustering problem, is classifying observations from a
mixture distribution into K groups without knowing the component param-
eters. This interesting issue is studied in detail in Section 7.1; some aspects,
however, are addressed at this point because they provide a good opportu-
nity to introduce two important MCMC technique, namely Gibbs sampling
and the Metropolis–Hastings algorithm, which are of relevance not only for
classification, but also for Bayesian parameter estimation.

Bayesian clustering without parameter estimation is based on the marginal
posterior distribution p(S|y) of the hidden allocation vector S, where the
mixture parameter ϑ is integrated out, which is known up to a normalizing
constant explicitly for mixtures from the exponential family; see again Sub-
section 3.3.3. p(S|y) is a discrete distribution over the lattice SK , defined in
(3.22), which increases rapidly with the number of observations and the num-
ber of components. For N = 10 and K = 3, for instance, there are 59,049
different allocations S, whereas for N = 100 and K = 3 the number of dif-
ferent allocations is of the order 5 · 1047. For a very small data set from a
mixture with very few components it would be possible to determine p(S|y)
for all KN possible allocations, and to find the allocation with the highest pos-
terior probability p(S|y). With increasing sample size and increasing number
of components, however, this is infeasible, and some search strategy has to be
implemented to find an optimal allocation. Exploring the space SK , however,
is in general quite a challenge.

Common search strategies that are applied in a Bayesian context are based
on sampling allocations S(1), . . . ,S(M) from the marginal posterior distribu-
tion p(S|y), which are then used for further inference, as explained in Subsec-
tion 7.1.7. Direct sampling of S from p(S|y) is not simple, as unconditionally
the allocations S1, . . . , SN are correlated. Chen and Liu (1996) showed how
sampling of the allocation through Markov chain Monte Carlo methods is
feasible. An MCMC sampler starts from some preliminary classification S(0).
During sweep m, m ≥ 1, of the MCMC sampler, the allocation Si of each ob-
servation yi is resampled in an appropriate manner, and the updated alloca-
tions are then stored as S(m). Two common methods to implement an MCMC
sampler are single-move Gibbs sampling and the Metropolis–Hastings algo-
rithm. Both methods are described in Subsection 3.4.1 and Subsection 3.4.2,
respectively.

For a detailed account we refer to the relevant literature on Markov chain
Monte Carlo methods, in particular Gamerman (1997), Liu (2001), and Robert
and Casella (1999).
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3.4.1 Single-Move Gibbs Sampling

In this subsection we briefly introduce Gibbs sampling in the context of clas-
sification without parameter estimation, following Chen and Liu (1996) who
used single-move Gibbs sampling to sample allocations S from the posterior
distribution p(S|y) given in Subsection 3.3.3.

The single-move Gibbs sampler starts from some preliminary classification
S(0). Within each sweep m, m ≥ 1, of the Gibbs sampler, the old allocations
S = S(m−1) are updated for each observation yi, for i = 1, . . . , N . Starting
with i = 1, a new classification Snew

i is sampled, while holding the classifi-
cations S−i = (Snew

1 , . . . , Snew
i−1 , Si+1, . . . , SN ) of all other observations fixed.

As not only y, but also S−i are assumed to be known, the appropriate pos-
terior distribution for sampling Snew

i is the conditional posterior distribution
p(Snew

i |S−i,y). Well-known properties of conditional distributions yield:

p(Snew
i |S−i,y) =

p(Snew
i ,S−i|y)
p(S−i|y)

∝ p(y|Snew
i ,S−i)p(Snew

i ,S−i)

∝ p(yi|Snew
i ,S−i)p(Snew

i |S−i),

where constants independent of Snew
i were dropped. This is a univariate dis-

crete density with K categories, which is easily sampled. Once Snew
i has been

simulated, the Gibbs sampler proceeds with sampling the next indicator Snew
i

after increasing i by 1, until i = N . Then the new allocations are stored as
S(m) = (Snew

1 , . . . , Snew
N ), m is increased by 1, and the whole procedure is

repeated.
This sampling algorithm generates a sequence S(m), m = 1, 2, . . . of clas-

sifications, which are obviously a Markov chain, as the distribution of S(m)

depends on S(m−1), only:

p(S(m)|S(m−1),y) =
N∏

i=1

p(S(m)
i |S(m)

1:i−1,S
(m−1)
i+1:N ,y),

where Si:j denotes the whole sequence Si, Si+1, . . . , Sj . Well-known results
from Markov chain theory guarantee that in the long run, as m → ∞, the
distribution of S(m) converges to a stationary distribution, which could be
shown to be equal to the desired marginal posterior p(S|y). When starting
from an arbitrary allocation, the Markov chain will not be in equilibrium at
the beginning, but will reach the stationary distribution after a suitable burn-
in phase. Thus the first M0 simulations are discarded before the simulated
allocations may be used for posterior inference.

Algorithm 3.1: Single-Move Gibbs Sampling of the Allocations Start with
some classification S and repeat the following steps for m = 1, . . . , M0, . . . , M+
M0.

(a) Choose a certain observation yi, i ∈ {1, . . . , N}, hold the most recent
allocation of all observations but yi fixed, and let S−i be the sequence
containing these allocations.
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(b) Find a new allocation Snew
i for the observation yi in the following way.

Determine the univariate discrete distribution

p(Snew
i |S−i,y) ∝ p(yi|Snew

i ,S−i)p(Snew
i |S−i), (3.28)

for all possible values Snew
i = 1, . . . , K. Sample Snew

i from this distribu-
tion, and substitute the old allocation Si by the new allocation Snew

i .

Repeat these steps until the allocations of all observations are updated. Store
the actual values of all allocations as S(m), increase m by one, and return to
step (a).

Assume the current allocation of yi is equal to k : Si = k. Before sampling
Snew

i from the posterior given in (3.28), the likelihood p(y|S−i, S
new
i ), given

by (3.25), and the prior p(Snew
i |S−i), given by (3.24), have to be evaluated for

all values Snew
i = l, l = 1, . . . , K. This is straightforward for Snew

i = Si = k.
Whenever the allocation changes (i.e., Snew

i = l with l �= k), the number
of observations attached to component k and l need to be updated before
applying (3.24):

Nk(Snew
i ,S−i) = Nk(S) − 1, Nl(Snew

i ,S−i) = Nl(S) + 1.

In a similar way, the statistics of the complete-data likelihood have to be up-
dated before evaluating the likelihood p(y|S−i, S

new
i ) from (3.25) for Snew

i = l,
where l �= k. For mixtures of Poisson distributions, for instance, this reads:

bk(Snew
i ,S−i) = bk(S) − 1, bl(Snew

i ,S−i) = bl(S) + 1,
ak(Snew

i ,S−i) = ak(S) − yi, al(Snew
i ,S−i) = al(S) + yi.

Similar simple updates are available for many other standard finite mixture
models. For various other more complex mixture models, such as mixtures of
regression models, Chen and Liu (1996) developed an efficient algorithm to
compute the likelihood p(y|S−i, S

new
i ) recursively from p(y|S−i, Si).

Why Single-Move Gibbs Sampling Works

It is instructive to verify that single-move Gibbs sampling works, by showing
that sampling S(m) from p(S(m)|S(m−1)) yields a sample from p(S|y), once
the chain reaches equilibrium, and S(m−1) is drawn from p(S|y). Let f(S(m))
denote the density of the distribution of S(m), which is given by

f(S(m)) =
∑

S(m−1)∈SK

p(S(m)|S(m−1),y)p(S(m−1)|y) =

=
K∑

S
(m−1)
N =1

· · ·
K∑

S
(m−1)
2 =1

N∏
i=1

p(S(m)
i |S(m)

1:i−1,S
(m−1)
i+1:N ,y)

N∏
i=2

p(S(m−1)
i |S(m−1)

i+1:N ,y)

·

⎛⎜⎝ K∑
S

(m−1)
1 =1

p(S(m−1)
1 |S(m−1)

2:N ,y)

⎞⎟⎠ ,
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where the innermost term is obviously equal to 1. Therefore

f(S(m)) =
K∑

S
(m−1)
N =1

· · ·
K∑

S
(m−1)
3 =1

N∏
i=2

p(S(m)
i |S(m)

1:i−1,S
(m−1)
i+1:N ,y)

·
N∏

i=3

p(S(m−1)
i |S(m−1)

i+1:N ,y)

⎛⎜⎝ K∑
S

(m−1)
2 =1

p(S(m−1)
2 |S(m−1)

3:N ,y)p(S(m)
1 |S(m−1)

2:N ,y)

⎞⎟⎠ .

The innermost term is equal to p(S(m)
1 |S(m−1)

3:N ,y), therefore

f(S(m)) =
K∑

S
(m−1)
N =1

· · ·
K∑

S
(m−1)
4 =1

N∏
i=3

p(S(m)
i |S(m)

1:i−1,S
(m−1)
i+1:N ,y)

·
N∏

i=4

p(S(m−1)
i |S(m−1)

i+1:N ,y)

⎛⎜⎝ K∑
S

(m−1)
3 =1

p(S(m−1)
3 |S(m−1)

4:N ,y)p(S(m)
1:2 |S(m−1)

3:N ,y)

⎞⎟⎠ .

The innermost term is equal to p(S(m)
1:2 |S(m−1)

4:N ,y), therefore:

f(S(m)) =
K∑

S
(m−1)
N =1

· · ·
K∑

S
(m−1)
5 =1

N∏
i=4

p(S(m)
i |S(m)

1:i−1,S
(m−1)
i+1:N ,y)

·
N∏

i=5

p(S(m−1)
i |S(m−1)

i+1:N ,y) ·

⎛⎜⎝ K∑
S

(m−1)
4 =1

p(S(m−1)
4 |S(m−1)

5:N ,y)p(S(m)
1:3 |S(m−1)

4:N ,y)

⎞⎟⎠ ,

where the innermost term is equal to p(S(m)
1:3 |S(m−1)

5:N ,y). This is repeated until
we obtain:

f(S(m)) =
K∑

S
(m−1)
N =1

p(S(m)
N−1|S

(m)
1:N−2, S

(m−1)
N ,y)p(S(m)

N |S(m)
1:N−1,y)p(S(m−1)

N |y)

·

⎛⎜⎝ K∑
S

(m−1)
N−1 =1

p(S(m−1)
N−1 |S(m−1)

N ,y)p(S(m)
1:N−2|S

(m−1)
N−1:N ,y)

⎞⎟⎠ ,

which yields the desired result:

f(S(m)) = p(S(m)
N |S(m)

1:N−1,y)
K∑

S
(m−1)
N =1

p(S(m)
1:N−1|S

(m−1)
N ,y)p(S(m−1)

N |y)

= p(S(m)|y).
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3.4.2 The Metropolis–Hastings Algorithm

Alternatively to the Gibbs sampler described in Algorithm 3.1, the Metropolis–
Hastings algorithm may be applied to draw from the density p(S|y). Running
a Gibbs sampler may be impractical if K is large, as in (3.28) the probability
p(Snew

i |S−i,y) needs to be evaluated for all Snew
i = 1, . . . , K.

Whereas the Gibbs sampler used the density p(Snew
i |S−i,y) for proposing

Snew
i , the Metropolis–Hastings algorithm uses an arbitrary discrete density

q(Snew
i |Si), where Si is the current allocation, to propose Snew

i . Without mod-
ifications, the resulting Markov chain S(m) would not draw from the desired
posterior distribution p(S|y). To obtain draws from the desired distribution,
the proposed allocation Snew

i is not accepted in any case, but only with a cer-
tain probability α(Snew

i |Si). If the new value is accepted, then S
(m)
i = Snew

i ,
otherwise Snew

i is rejected and the chain does not move: S
(m)
i = Si.

As pointed out by Chib and Greenberg (1995), the accept–reject step is
necessary as q(Snew

i |Si) is not likely to fulfill the detailed balance condition.
For instance, it may happen that

p(Si|S−i,y)q(Snew
i |Si) > p(Snew

i |S−i,y)q(Si|Snew
i ), (3.29)

meaning that too many moves from Si to Snew
i , and too few moves from

Snew
i to Si are made. The probability α(Snew

i |Si) of accepting a move from
Si to Snew

i is introduced, in order to ensure detailed balance. The acceptance
probability α(Snew

i |Si) is chosen precisely to ensure that the Markov chain
S

(m)
i is reversible with respect to p(Si|S−i,y). Following Chib and Greenberg

(1995), α(Si|Snew
i ) should be set to 1, if (3.29) holds, as moves from Snew

i

to Si are too rare. The reverse probability α(Snew
i |Si) is then determined by

forcing a detailed balance in (3.29),

p(Si|S−i,y)q(Snew
i |Si)α(Snew

i |Si) = p(Snew
i |S−i,y)q(Si|Snew

i ). (3.30)

Thus α(Snew
i |Si) which could not be larger than 1, is given by

α(Snew
i |Si) = min

(
1,

p(Snew
i |S−i,y)q(Si|Snew

i )
p(Si|S−i,y)q(Snew

i |Si)

)
, (3.31)

if p(Si|S−i,y)q(Snew
i |Si) > 0. Interestingly, other acceptance rules are possi-

ble (see Liu, 2001, Section 5), however, Peskun (1973) proves superiority of
(3.31) in terms of statistical efficiency.

Algorithm 3.2: Sampling the Allocations Through a Metropolis–Hastings Al-
gorithm Start with some classification S and repeat the following steps for
m = 1, . . . , M0, . . . , M + M0.

(a) Choose a certain observation yi, i ∈ {1, . . . , N}, hold the most recent
allocations of all observations but yi fixed, and let S−i be the sequence
containing these allocations.
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(b) Find a new allocation Snew
i for the observation yi in the following way.

Sample Snew
i from a proposal density q(Snew

i |Si) and substitute the old
allocation Si by the new allocation Snew

i with probability min(1, ri), where

ri =
p(y|S−i, S

new
i )p(Snew

i |S−i)q(Si|Snew
i )

p(y|S−i, Si)p(Si|S−i)q(Snew
i |Si)

. (3.32)

If Ui < min(1, ri), where Ui is random number from the U [0, 1]-distribution,
then Si is substituted by Snew

i , otherwise leave Si unchanged.

Repeat these steps until the allocations of all observations are updated. Store
the actual values of all allocations as S(m), increase m by one, and return to
step (a).

If q(Snew
i |Si) = p(Snew

i |S−i,y), then ri = 1, and the Metropolis–Hastings
algorithm reduces to the Gibbs sampler described in Algorithm 3.1. To avoid
the functional evaluations that are necessary to sample from this specific pro-
posal density, much simpler proposal densities are used for the Metropolis–
Hastings algorithm.

Some simplifications are possible when evaluating ri. If Snew
i = Si, the

likelihood and the prior cancel, and ri is equal to the proposal ratio. If Snew
i = l

while Si = k with k �= l, the acceptance ratio ri simplifies to

ri =
p(y|S−i, S

new
i )(Nl(S) + 1 + e0,l)q(Si|Snew

i )
p(y|S−i, Si)(Nk(S) + e0,k)q(Snew

i |Si)
,

where Nk(S) and Nl(S) are the current numbers of allocations. For mixtures
of Poisson distributions the likelihood ratio reduces to:

p(y|S−i, S
new
i )

p(y|S−i, Si)
=

Γ (ak(S) − yi)Γ (al(S) + yi)bk(S)ak(S)bl(S)al(S)

Γ (ak(S))Γ (al(S))(bk(S) − 1)ak(S)−yi(bl(S) + 1)al(S)+yi
.

3.5 Parameter Estimation Through Data Augmentation
and MCMC

Markov chain Monte Carlo sampling is not only useful for the purpose of
sampling allocations, but also for parameter estimation.

3.5.1 Treating Mixture Models as a Missing Data Problem

As already discussed in Subsection 2.3.3, for mixture models from exponen-
tial families such as mixtures of Poisson distributions or mixtures of normal
distributions, a conjugate analysis is feasible for the complete-data likelihood
function (2.8) when the allocations S = (S1, . . . , SN ) are observed. For un-
known allocations, however, this is not the case.
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Following the seminal paper by Dempster et al. (1977), a mixture model
may be seen as an incomplete data problem by introducing the allocations S
as missing data. The benefit of this data augmentation (Tanner and Wong,
1987) is that conditional on S we are back in the conjugate setting of complete-
data Bayesian estimation considered in Subsection 2.3.3. On the other hand,
conditional on knowing the parameter ϑ, we are back to the classification
problem studied in Section 2.2, where the posterior distribution of the allo-
cations takes a very simple form. It is then rather straightforward to sample
from the posterior (3.2) using Markov chain Monte Carlo methods, in par-
ticular Gibbs sampling. Early papers realizing the importance of Gibbs sam-
pling for Bayesian estimation of mixture models are Evans et al. (1992), West
(1992), Smith and Roberts (1993), Diebolt and Robert (1994), Escobar and
West (1995), Mengersen and Robert (1996), and Raftery (1996b). We first
give specific results for a mixture of Poisson distributions in Subsection 3.5.2
and then proceed with a discussion for more general finite mixture models in
Subsection 3.5.3.

3.5.2 Data Augmentation and MCMC for a Mixture of
Poisson Distributions

For N observations y = (y1, . . . , yN ), assumed to arise from a finite mixture
of K Poisson distributions, the mixture likelihood function p(y|ϑ) is given by

p(y|ϑ) =
N∏

i=1

p(yi|ϑ) =
N∏

i=1

(
K∑

k=1

ηkfP (yi; µk)

)
, (3.33)

where fP (yi; µk) is the density of a Poisson distribution with mean µk. Al-
though direct sampling from (3.33) is not easy, a straightforward method of
sampling from (3.33) based on data augmentation is possible.

For each observation yi, i = 1, . . . , N , the group indicator Si taking a value
in {1, . . . , K} is introduced as a missing observation. Conditional on knowing
the group indicator Si, the observation model for observation yi is a Poisson
distribution with mean µSi

:

yi|µ1, . . . , µK , Si ∼ P (µSi
) . (3.34)

All observations with the same group indicator Si equal to k, say, arise
from the same P (µk)-distribution. Therefore the complete-data likelihood
p(y,S|ϑ), which has been defined in (2.8), reads:

p(y,S|ϑ) =
K∏

k=1

( ∏
i:Si=k

fP (yi; µk)

) (
K∏

k=1

η
Nk(S)
k

)
,

where Nk(S) = #{Si = k}. p(y,S|ϑ), considered as a function of ϑ, is the
product of K + 1 independent factors. Each of the first K factors depends
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only on µk, whereas the last factor depends on η. Assuming independence
a priori, the parameters µ1, . . . , µK , η are independent a posteriori given the
complete data (y,S):

p(µ1, . . . , µK , η|S,y) =
K∏

k=1

p(µk|S,y)p(η|S).

Each of the conditional posteriors can be handled within the conjugate set-
ting discussed in Subsection 2.3.3. We express prior knowledge about µk as a
G (a0, b0)-distribution. Then from Bayes’ theorem:

p(µk|S,y) ∝
( ∏

i:Si=k

fP (yi; µk)

)
p(µk). (3.35)

The posterior distribution p(µk|S,y) is a G (ak(S), bk(S))-distribution, where

ak(S) = a0 + Nk(S)yk(S), bk(S) = b0 + Nk(S), (3.36)

and Nk(S) = #{Si = k} and yk(S) are the number of observations and the
mean in group k.

Based on assuming a Dirichlet D (e0, . . . , e0)-distribution for η, the poste-
rior distribution of the weight distribution η given S is a D (e1(S), . . . , eK(S))-
distribution, where

ek(S) = e0 + Nk(S), k = 1, . . . , K. (3.37)

MCMC Estimation Using Gibbs Sampling

MCMC estimation of a mixture of Poisson distributions under fixed hyperpa-
rameters a0 and b0 consists of the following steps.

Algorithm 3.3: Gibbs Sampling for a Poisson Mixture Start with some clas-
sification S(0) and repeat the following steps for m = 1, . . . , M0, . . . , M + M0.

(a) Parameter simulation conditional on the classification S(m−1):
(a1) Sample η1, . . . , ηK from a D

(
e1(S(m−1)), . . . , eK(S(m−1))

)
-distribution,

where ek(S(m−1)) is given by (3.37).
(a2) For each k = 1, . . . , K, sample µk from a G

(
ak(S(m−1)), bk(S(m−1))

)
-

distribution, where ak(S(m−1)) and bk(S(m−1)) are given by (3.36).
Store the actual values of all parameters as ϑ(m) = (µ(m)

1 , . . . , µ
(m)
K , η(m)).

(b) Classification of each observation yi conditional on knowing ϑ(m): sample
Si independently for each i = 1, . . . , N from the conditional posterior
distribution p(Si|ϑ(m), yi), which by the results of Subsection 2.2.1 is given
by

p(Si = k|ϑ(m), yi) ∝ (µ(m)
k )yie−µ

(m)
k η

(m)
k .

Store the actual values of all allocations as S(m), increase m by one, and return
to step (a). Finally, the first M0 draws are discarded.
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Hierarchical Priors

Under the hierarchical prior (3.12), an additional block has to be added in
Algorithm 3.3, where b0 is sampled from the conditional posterior distribution
p(b0|µ1, . . . , µK ,S,y), given by Bayes’ theorem:

p(b0|µ1, . . . , µK ,S,y) ∝
K∏

k=1

p(µk|b0)p(b0) (3.38)

∝
K∏

k=1

ba0
0 exp(−µkb0) p(b0) ∝ bg0+Ka0−1

0 exp

(
−(G0 +

K∑
k=1

µk)b0

)
.

Under a conjugate G (g0, G0)-prior for b0, this posterior is a Gamma distribu-
tion, depending on the data only indirectly through the component means.

Gibbs sampling requires the following modification of Algorithm 3.3. Select
a starting value b0

(0) and run step (a2) conditional on b0
(m−1). A third step

is added to sample the hyperparameter b0
(m):

(c) Sample b
(m)
0 from p(b0|µ(m)

1 , . . . , µ
(m)
K ) given by (3.38):

b0|µ(m)
1 , . . . , µ

(m)
K ∼ G

(
g0 + Ka0, G0 +

K∑
k=1

µ
(m)
k

)
. (3.39)

3.5.3 Data Augmentation and MCMC for General Mixtures

As for the Poisson mixture, Bayesian estimation of a general mixture model
through data augmentation estimates the augmented parameter (S, ϑ) by
sampling from the complete-data posterior distribution p(S, ϑ|y). This pos-
terior is given by Bayes’ theorem,

p(S, ϑ|y) ∝ p(y|S,ϑ)p(S|ϑ)p(ϑ), (3.40)

thus the complete-data posterior is proportional to the complete-data likeli-
hood likelihood p(y,S|ϑ) defined in (2.8) times the prior p(ϑ) on ϑ; see again
Subsection 2.3.3 for more details. Sampling from the posterior (3.40) is most
commonly carried out by the following MCMC sampling scheme, where ϑ is
sampled conditional on knowing S, and S is sampled conditional on knowing
ϑ. This scheme is formulated for the general case, where the observations yi

may be multivariate.

Algorithm 3.4: Unconstrained MCMC for a Mixture Model Start with some
classification S(0) and repeat the following steps for m = 1, . . . , M0, . . . , M +
M0.

(a) Parameter simulation conditional on the classification S(m−1):
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(a1) Sample η from the D
(
e1(S(m−1)), . . . , eK(S(m−1))

)
-distribution, where

ek(S(m−1)) is given by (3.37).
(a2) Sample the component parameters θ1, . . . ,θK from the complete-data

posterior p(θ1, . . . ,θK |S(m−1),y).
Store the actual values of all parameters as ϑ(m) = (θ(m)

1 , . . . ,θ
(m)
K , η(m)).

(b) Classification of each observation yi conditional on knowing ϑ(m): sample
Si independently for each i = 1, . . . , N from the conditional posterior
distribution p(Si|ϑ(m),yi), which by the results of Subsection 2.2.1 is given
by

p(Si = k|ϑ(m),yi) ∝ p(yi|θ(m)
k )η(m)

k . (3.41)

Store the actual values of all allocations as S(m), increase m by one, and return
to step (a). Finally, the first M0 draws are discarded.

The structure of the posterior p(θ1, . . . ,θK |S,y) depends on the specific
distribution families appearing in the components of the mixture model and
on the chosen priors. If the components come from an exponential family, the
results of Subsection 3.2.3 will be helpful. Under the conditionally conjugate
prior (3.9), the component parameters θ1, . . . ,θK are independent given S
and may be sampled from the conditional posterior p(θk|S,y) given by (3.10)
for each k = 1, . . . , K.

The MCMC sampler described in Algorithm 3.4 starts with sampling the
parameter ϑ based on allocations S(0) defined by the investigator. Theoret-
ically, it does not make any difference if the sampling steps (a) and (b) are
interchanged, in which case the algorithm starts with sampling the allocations
S based on a parameter ϑ(0). Practical MCMC convergence diagnostics for
finite mixture models is considered by Robert et al. (1999).

Hierarchical Priors

Under the hierarchical prior discussed in Subsection 3.2.4, an additional block
has to be added in Algorithm 3.4 to sample the hyperparameter δ conditional
on knowing θ1, . . . ,θK from

p(δ|θ1, . . . ,θK) ∝
K∏

k=1

p(θk|δ)p(δ). (3.42)

In many cases, this density will be of closed form. This leads to the following
modification of Algorithm 3.4. Select a starting value δ(0) and run step (a2)
conditional on δ(m−1). A third step is added to sample the hyperparameter
δ(m) from p(δ|θ(m)

1 , . . . ,θ
(m)
K ), given by (3.42).
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3.5.4 MCMC Sampling Under Improper Priors

MCMC sampling under improper priors is possible as long as the conditional
posterior p(ϑ|S,y) is proper for all possible allocations. What happens, if un-
intentionally MCMC sampling is carried out under a prior like the improper
product prior (3.4), where the posterior is improper (Natarajan and McCul-
loch, 1998)?

For a mixture of Poisson distributions, for instance, an improper product
prior based on µk ∼ G (0, 0) or µk ∼ G (0.5, 0) leads to an improper posterior
distribution by the results of Subsection 3.2.2. If Nk(S(m−1)) = 0 for a certain
draw, then the conditional posterior p(µk|S(m−1),y) given by (3.36) is equal
to the improper prior and the MCMC sampler breaks down when drawing
µ

(m)
k , warning us that something is not in order.

In other cases, it is possible to obtain sensible looking results when running
data augmentation and MCMC under the product prior (3.4). Consider, for
instance, a synthetic data set of size N = 500, simulated from a mixture of
two Poisson distributions, where µ1 = 1, µ2 = 5, and η1 = 0.4. We estimated
(µ1, µ2, η1, η2) under the uniform D (1, 1) prior on (η1, η2), with an improper
G (0.5, 0) as well as a proper G (0.01, 0.01) prior on µ1 and µ2, running MCMC
for 1 million iterations without problems. Furthermore, for both priors the re-
sulting density estimates were indistinguishable. To understand this, consider
the following representation of the posterior p(ϑ|y),

p(ϑ|y) =
∑

S∈SK

p(ϑ|S,y)p(S|y),

where the complete-data posterior p(ϑ|S,y) is weighted by the posterior prob-
ability of the corresponding partition S. If partitions S, where the correspond-
ing complete-data posterior is improper, have very low posterior probability,
then it is very unlikely (though possible) that such a classification is selected
during MCMC sampling. Therefore the estimated posterior

p̂(ϑ|y) =
1
M

M∑
m=1

p(ϑ|S(m),y)

will be proper. Nevertheless, is not recommended to sample from improper
posterior distributions in this way, as statistical inference drawn from such a
posterior distribution lacks any theoretical justification.

3.5.5 Label Switching

The term label switching has been introduced into the literature on mixture
models by Redner and Walker (1984) to describe the invariance of the mix-
ture likelihood function under relabeling the components of a mixture model
described in Subsection 2.4.2. Label switching is of no concern for maximum
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likelihood estimation, where the goal is to find one of the equivalent modes
of the likelihood function. In the context of Bayesian estimation, however,
label switching has to be addressed explicitly because in the course of sam-
pling from the mixture posterior distribution, the labeling of the unobserved
categories changes. Interestingly, the label switching problem was totally ne-
glected in the early papers on MCMC estimation of finite mixture models and
was addressed only later on by Celeux (1998), Celeux et al. (2000), Stephens
(2000a, 2000b), Casella et al. (2000), and Frühwirth-Schnatter (2001b).
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Fig. 3.1. Hidden age groups — Synthetic Data Set 1; MCMC draws of µ1 and µ2

(left-hand side) and estimated marginal posterior densities of µ1 and µ2 (right-hand
side)

Some Illustration

For illustration, we reconsider the example of Subsection 2.4.3, where we sim-
ulated artificial data sets of length N = 100 from the following mixture of
normals,

p(y) = 0.5fN (y; µy, 1) + 0.5fN (y; µo, 1),

where µy and µo are the mean of a random variable Y in a younger and in
an older subgroup in the population. For MCMC estimation of µ1 and µ2,
we apply data augmentation as in Subsection 3.5.3 under the prior p(µk) ∼
N (0, 100). The details of step (a2) for the specific example of a mixture of
normal distributions appear later in Subsection 6.2.4. The MCMC draws of µk

as well as the estimated marginal densities p(µk|y) are plotted in Figure 3.1
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and Figure 3.2 for two artificial data sets, where µy = 1 and µo = 3 for the
first, and µy = 1 and µo = 1.5 for the second data set.
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Fig. 3.2. Hidden age groups — Synthetic Data Set 2; MCMC draws of µ1 and µ2

(left-hand side) and estimated marginal posterior densities of µ1 and µ2 (right-hand
side)

For each data set we started at µ1 = µy and µ2 = µo, which corresponds
to labeling 1. For synthetic data set 1 the sampler stays within the modal
region corresponding to this labeling, as this region is well separated from the
region where the other labeling is valid; see again Figure 2.5. Note that the
estimated marginal posterior densities in Figure 3.1 are unimodal and that
Gibbs sampling leads implicitly to a unique labeling.

For synthetic data set 2, however, the marginal posterior densities are
bimodal and the MCMC draws suffer from label switching. For this data
set parameters around the nonidentifiability set UE(µ̂), where µ̂ = y, have
considerable likelihood under both labelings; consider again Figure 2.6. Even
if we start in the modal region corresponding to labeling 1, where µ1 < µ2, the
sampler is likely to move into the area where µ1 > µ2. In this area, however,
the parameter (µ1, µ2) has higher likelihood if µ1 is associated with the older
subgroup, rather than with the younger one. Therefore, when sampling the
group indicators S, there is a certain risk that the labeling changes and now µ1
is associated with the older subgroup. After such a label switching takes place,
the sampler remains in the second modal region for a while until it returns
to the area where µ1 < µ2. Then there exists considerable likelihood that
the sampler switches back to labeling 1. This occasional change of labeling is
obvious from the MCMC draws in Figure 3.2.
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3.5.6 Permutation MCMC Sampling
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Fig. 3.3. Hidden age groups — Synthetic Data Set 1 and 2; marginal posterior
densities of µ1 and µ2 estimated from two different runs of Gibbs sampling under
the same prior for Data Set 1 (left-hand side) and Data Set 2 (right-hand side)

The examples of the previous subsection demonstrated that the behavior
of the Gibbs sampler described in Algorithm 3.4 is somewhat unpredictable.
For synthetic data set 1 it is trapped at one modal region, whereas it jumps
from time to time to the other modal region for data set 2. In both cases the
sampler did not explore the full mixture posterior distribution.

This matters especially when estimating marginal densities. Assume that
we want to assess the influence of the prior p(ϑ) on the posterior distribution
p(ϑ|y). To do so, we usually compare the marginal posterior densities p(θk|y)
obtained under different prior distributions p(θk). There, the marginal density
is estimated from the MCMC draws by some kernel smoothing method.

For a mixture model it turns out that estimating the marginal density
from the MCMC draws may lead to a poor estimate when unbalanced label
switching takes place. It may even happen that although we assume the same
prior distribution p(θk), the marginal posterior densities p(θk|y) estimated
from different runs of the MCMC sampler, are very different. For illustra-
tion, Figure 3.3 compares estimates of the marginal density obtained from
two different runs of full conditional Gibbs sampling for M = 2000 under the
same prior for the two synthetic data sets considered earlier. The estimated
marginal densities are nearly identical for data set 1, where no label switching
took place. We observe a substantial difference in these densities for data set
2, the reason being that sampler did not explore the whole mixture poste-
rior distribution as label switching took place only from time to time in an
unbalanced manner.
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densities of µ1 and µ2 estimated from random permutation Gibbs sampling under
the same prior for Data Set 1 (left-hand side) and Data Set 2 (right-hand side)

A simple, but efficient solution to obtain a sampler that explores the full
mixture posterior distribution is to force balanced label switching by con-
cluding each MCMC draw by a randomly selected permutation of the label-
ing. This method is called random permutation MCMC sampling (Frühwirth-
Schnatter, 2001b).

Algorithm 3.5: Random Permutation MCMC Sampling for a Finite Mixture
Model Start as described in Algorithm 3.4.

(a) and (b) are the same steps as in Algorithm 3.4.
(c) Conclude each draw by selecting randomly one of the K! possible per-

mutations ρs(1), . . . , ρs(K) of the current labeling. This permutation is
applied to η(m), the component parameters θ

(m)
1 , . . . ,θ

(m)
K , and the allo-

cations S(m):
(c1) The group weights η

(m)
1 , . . . , η

(m)
K are substituted by η

(m)
ρs(1), . . . , η

(m)
ρs(K).

(c2) The component parameters θ
(m)
1 , . . . ,θ

(m)
K are substituted by θ

(m)
ρs(1),

. . . , θ
(m)
ρs(K).

(c3) The allocations S
(m)
i , i = 1, . . . , N, are substituted by ρs(S

(m)
i ), i =

1, . . . , N .

For illustration we consider once more the synthetic data sets 1 and 2. Let
(µ(m)

1 , µ
(m)
2 ,S(m)) denote a draw obtained from Gibbs sampling as in Algo-

rithm 3.4. To implement the random permutation Gibbs sampler, we perform
a random permutation of the labels after each draw. For K = 2, there are only
two permutations, namely the identity ρ1(1) = 1, ρ1(2) = 2, and interchang-
ing the labels: ρ2(1) = 2, ρ2(2) = 1. Thus with a probability of 0.5 the draws
remain unchanged, whereas with probability 0.5 the labels are interchanged
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by substituting (µ1, µ2) by (µ2, µ1), and switching the allocations, which take
the value 1, if they are 2, and take the value 2, if they are 1. Figure 3.4
shows the marginal posterior densities p(µk|y) estimated from random per-
mutation MCMC sampling for both synthetic data sets. As expected from the
theoretical considerations in Subsection 3.3.2, these densities are identical.

3.6 Other Monte Carlo Methods Useful for
Mixture Models

In the previous section we focused on data augmentation and MCMC meth-
ods, but other Monte Carlo methods have been found to be useful for finite
mixture models.

3.6.1 A Metropolis–Hastings Algorithm for the Parameters

Several authors (Celeux et al., 2000; Brooks, 2001; Viallefont et al., 2002) use
a Metropolis–Hastings algorithm to generate a sample from the mixture pos-
terior distribution p(ϑ|y). This is feasible, because the Metropolis–Hastings
algorithm requires knowledge of the mixture posterior density p(ϑ|y) only up
to a normalizing constant. The Metropolis–Hastings algorithm, introduced
in Subsection 3.4.2 in the context of sampling allocations S from the poste-
rior p(S|y), is implemented in the following manner to simulate ϑ from the
mixture posterior p(ϑ|y).

Algorithm 3.6: Sampling the Parameters of a Finite Mixture Through a Metro-
polis–Hastings Algorithm Start with some parameter ϑ(0) and repeat the
following steps for m = 1, . . . , M0, . . . , M + M0.

(a) Propose a new parameter ϑnew by sampling from a proposal density
q(ϑ|ϑ(m−1)).

(b) Move the sampler to ϑnew with probability min(1, A), where

A =
p(y|ϑnew)p(ϑnew)q(ϑ(m−1)|ϑnew)

p(y|ϑ(m−1))p(ϑ(m−1))q(ϑnew|ϑ(m−1))
. (3.43)

If U < min(1, A), where U is a random number from the U [0, 1]-
distribution, then accept ϑnew and set ϑ(m) = ϑnew, otherwise reject
ϑnew and set ϑ(m) = ϑ(m−1).

Increase m by one, and return to step (a).

Hurn et al. (2003) use the following multivariate random walk proposal
on a suitably transformed parameter φ(ϑ), which is obtained from a log-
transform on variance parameters and a logit transform on the weights,

φ(ϑnew|ϑ(m−1)) = φ(ϑ(m−1)) + Cε,
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where ε follows a multivariate Cauchy distribution. C is calibrated during a
pilot-run to lead to an acceptance rate of about 40%.

An advantage of this method compared to data augmentation and MCMC
is that sampling of the indicators is avoided. A disadvantage is that tuning
the proposal density may require several pilot runs.

3.6.2 Importance Sampling for the Allocations

An alternative attempt at sampling from p(S|y) has been investigated in
Casella et al. (2000). Rather than drawing from p(S|y), they draw a sequence
S(1), . . . ,S(L) from an importance density q(S). One way to construct the
importance density is to ignore posterior correlation among the indicators,
which is actually only introduced through the prior p(S), and to use a density
with independent components:

q(S) =
N∏

i=1

q(Si|yi), q(Si|yi) ∝ p(yi|Si)p(Si). (3.44)

Under the conjugate Dirichlet prior η ∼ D (e0, . . . , e0), we obtain the following
marginal prior for a single indicator Si,

p(Si) ∝ Γ (1 + e0)Γ (e0)K−1, (3.45)

and the marginal likelihood of yi given Si = k results from (3.25),

p(yi|Si = k) =
p(yi|θk)p(θk)

p(θk|yi)
, (3.46)

where p(θk|yi) is the posterior density from the single observation yi. The
right-hand side of (3.46) may be evaluated for arbitrary θk, in particular
for the posterior mode of p(θk|yi). (3.46) is likely to be unstable for high-
dimensional parameter θk, where the posterior p(θk|yi) is not well defined
from a single observation.

To improve the efficiency of importance sampling, Casella et al. (2000)
use stratified importance sampling by decomposing the space of all possible
allocations into all partition sets with identical allocation size Nk(S). Casella
et al. (2000) argue that among these partition sets only a few carry most of
the weights.

Casella et al. (2000) use draws from the importance density to approximate
the posterior expectation of any function h(ϑ) as explained, for instance, in
Geweke (1989):

E(h(ϑ)|y) ≈ 1
L

L∑
l=1

E(h(ϑ)|y,S(l))
p(S(l)|y)
q(S(l))

. (3.47)

A certain objection to this approach is that the ergodic average (3.47) may
be biased due to undetected label switching.
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3.6.3 Perfect Sampling

Like MCMC, perfect sampling is based on the idea of constructing a Markov
chain where the stationary distribution is equal to an untractable posterior
distribution. Whereas MCMC exploits the fact that for an ergodic Markov
chain the stationary distribution is also the limiting distribution, perfect sam-
pling is an algorithm for generating independent draws from precisely the
exact stationary distribution; see Casella et al. (2001) for an introduction.

The construction of a perfect sampler for mixture models is a delicate
issue as the first attempt of Hobert et al. (1999) demonstrates where they
applied perfect sampling to two- and three-component mixtures where the
component parameters are known. Casella et al. (2002) extend these results
to finite mixtures with an arbitrary number of components and unknown
component parameters where the marginal posterior p(S|y) of the allocations
is available explicitly up to a constant; see also Subsection 3.3.3.

3.7 Bayesian Inference for Finite Mixture Models Using
Posterior Draws

From a Bayesian perspective, the posterior density p(ϑ|y) contains all in-
formation provided by the data, and is the basis for drawing inference on
any quantity of interest. If a sampling-based approach as described in Sec-
tions 3.5 and 3.6 is pursued for practical estimation, a sequence of draws
{ϑ(m), m = 1, . . . , M} from the posterior distribution p(ϑ|y) is available,
which could be used to approximate all quantities of interest. In what fol-
lows, it is assumed that an appropriate amount of initial draws M0 has been
removed, if the draws were produced by an MCMC sampler.

3.7.1 Sampling Representations of the Mixture Posterior Density

It is sometimes helpful to visualize the mixture posterior density p(ϑ|y), but
producing a simple density plot is feasible only for very simple problems, where
the unknown parameter ϑ is at most bivariate. If the dimension of ϑ exceeds
two, other tools have been developed for visualizing the mixture posterior
density p(ϑ|y). Draws from the posterior density p(ϑ|y) have been used as a
sampling representation of the mixture posterior distribution, which is then
visualized in an appropriate manner (Celeux et al., 2000; Frühwirth-Schnatter,
2001b; Hurn et al., 2003).

To illustrate the equivalence of a density plot and the sampling repre-
sentation, Figure 3.5 compares the contours of the mixture posterior density
p(µ1, µ2|y) with MCMC draws µ

(m)
1 and µ

(m)
2 from p(µ1, µ2|y) obtained from

random permutation Gibbs sampling using Algorithm 3.5 for the synthetic
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Fig. 3.5. Hidden age groups — Synthetic Data Set 1 (left-hand side) and Data
Set 2 (right-hand side); top: contours of the mixture posterior density p(µ1, µ2|y),
bottom: MCMC draws from the mixture posterior density p(µ1, µ2|y) obtained from
random permutation sampling)

data sets 1 and 2 discussed earlier in Subsection 3.5.6. By using the ran-
dom permutation Gibbs sampler, rather than standard Gibbs sampling, the
exploration of both modes of the posterior distribution is forced.

In particular, for higher-dimensional problems sampling representations
are a very useful tool for visualizing the mixture posterior distribution. One
interesting view is the bivariate marginal density p(θk,j , θk′,j |y), where k �= k′,
visualized for each j = 1, . . . , d, through scatter plots of the MCMC draws
(θ(m)

k,j , θ
(m)
k′,j ). By the results of Subsection 3.3.2, this density is the same for all

pairs of (k, k′), thus k = 1 and k′ = 2, or any other pair, may be selected, pro-
vided that the random permutation Gibbs sampler has been used. These fig-
ures allow us to study how much the jth element θk,j of the component param-
eter θk differs among the various components. If this element is significantly
different among all components, then this plot shows K2 − K = K(K − 1)
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Fig. 3.6. Synthetic data of size N = 500 simulated from a mixture of three uni-
variate normal distributions with η1 = 0.3, η2 = 0.5, µ1 = −3, µ2 = 0, µ3 = 2,
σ2

1 = 1, σ2
2 = 0.5, σ2

3 = 0.8; sampling representation of p(µk, µk′ |y) (left-hand side)
and p(σ2

k, σ2
k′ |y) (right-hand side) based on random permutation Gibbs sampling

simulation clusters. If this element is nearly the same in all components, then
this plot shows a single simulation cluster; see Figure 3.6 for illustration.

Another useful view is the bivariate marginal density p(θk,j , θk,j′ |y), which
is visualized separately for each pair j, j′ = 1, . . . , d, j �= j′ through scatter
plots of the MCMC draws (θ(m)

k,j , θ
(m)
k,j′ ). By the results of Subsection 3.3.2,

this density is the same for all k = 1, . . . , K, thus k = 1 or any other value
may be selected. If the dimension of θk is equal to two, this scatter plot is
closely related to the point process representation of the underlying mixture
distribution, discussed in Subsection 1.2.2. The MCMC draws will scatter
around the points corresponding to the true point process representation, with
the spread of the clouds representing the uncertainty of estimating the points;
see Figure 3.7 for illustration. This is also true for multivariate component
parameters, where the plots correspond to projections of the point process
representation onto bivariate subspaces.

These figures allow us to study the component parameters in relation to
each other without having to worry about label switching. In Figure 3.7,
for instance, it becomes evident that the components differ mainly in the
mean, that two components have nearly the same variance, whereas the third
component has a variance which is slightly smaller.

For a mixture with a univariate component parameter θk a bivariate plot
is not available. In this case θ

(m)
k may be plotted against η

(m)
k or an auxiliary

parameter ψ(m) which is drawn from a standard normal distribution.

3.7.2 Using Posterior Draws for Bayesian Inference

On the basis of the posterior density p(ϑ|y), inference is drawn on quantities
of interest such as the posterior mean E(ϑ|y), which commonly is used as a
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Fig. 3.7. Synthetic data of size N = 500 simulated from a mixture of three univari-
ate normal distributions with η1 = 0.3, η2 = 0.5, µ1 = −3, µ2 = 0, µ3 = 2, σ2

1 = 1,
σ2

2 = 0.5, σ2
3 = 0.8; point process representation of the finite mixture distribution

(left hand side) and point process representation of draws from p(µk, σ2
k|y) based

on random permutation Gibbs sampling (right-hand side)

point estimator of ϑ, or the predictive density p(yf |y), which is a pointwise
estimator of the density of the marginal distribution of the observed random
variable Y.

For finite mixture models, as for many other interesting and complex sta-
tistical models, no explicit expression is available for most quantities of inter-
est, and draws {ϑ(m), m = 1, . . . , M} from the posterior density are used to
approximate all quantities of interest. Consider, as an example, the posterior
expectation

E(h(ϑ)|y) =
∫

h(ϑ)p(ϑ|y)dϑ

of a function h(ϑ), which is approximated by averaging over the draws from
the posterior distribution in the following way,

hM =
1
M

M∑
m=1

h(ϑ(m)). (3.48)

Under mild conditions, hM converges to E(h(ϑ)|y) by the law of large num-
bers, even if the draws were generated by a Markov chain Monte Carlo method
(Tierney, 1994). There are several questions associated with Bayesian inference
based on posterior draws, in particular convergence diagnostics and choosing
appropriate values of M , which are beyond the scope of this book, and are
addressed, for example, in the excellent books by Robert and Casella (1999)
and Liu (2001).

For finite mixture models, a specific issue arises that is related to the
invariance of the posterior distribution discussed in Subsection 3.3.2 and the
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label switching problem discussed in Subsection 3.5.5. Bayesian inference for
finite mixture models using posterior draws may be, but need not, be sensitive
to label switching.

Label switching does not matter whenever the function h(ϑ) is invariant
to relabeling the components of the mixture:

h(ϑ) = h(ϑ̃s), (3.49)

where ϑ̃s is the permuted parameter defined in (3.14). In such a case, av-
eraging over the draws h(ϑ(m)) as in (3.48) is evidently insensitive to label
switching, and any of the methods discussed in Section 3.5 such as data aug-
mentation and Gibbs sampling (Algorithm 3.4) or data augmentation and
random permutation Gibbs sampling (Algorithm 3.5) may be used.

It is not always easy to identify functionals that are invariant to relabeling,
in particular, if inference concerns the component parameters (θk, ηk). Obvi-
ous estimators turn out to be sensitive to label switching, in which case it is
necessary to identify the model before making an inference, as explained in
detail in Subsection 3.7.7. Clustering of a single object yi, based on the poste-
rior probability distribution Pr(Si = k|y), into one of the K hidden groups, is
a further example of an inference problem where any kind of label switching
matters; see Subsection 7.1.7 for more detail.

3.7.3 Predictive Density Estimation

A quantity that often is of interest when fitting a finite mixture model, is the
posterior predictive density p(yf |y) of a future realization yf , given the data
y, which is given by

p(yf |y) =
∫

p(yf |ϑ)p(ϑ|y)dϑ.

This density is the posterior expectation of following function h(ϑ) = p(yf |ϑ),

p(yf |ϑ) =
K∑

k=1

ηkp(yf |θk), (3.50)

which is invariant to relabeling the components of the mixture. Therefore, the
density estimated from the MCMC draws,

p̂(yf |y) =
1
M

M∑
m=1

(
K∑

k=1

η
(m)
k p(yf |θ(m)

k )

)
, (3.51)

is robust against label switching. For illustration, consider Figure 3.8 which
compares a histogram of the synthetic data sets 1 and 2 discussed earlier in
Subsection 3.5.5 with the predictive density estimate p̂(yf |y).



90 3 Practical Bayesian Inference for a Finite Mixture Model

−3 −2 −1 0 1 2 3 4 5 6 7
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

−3 −2 −1 0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Fig. 3.8. Hidden age groups — Synthetic Data Set 1 (left-hand side) and
Synthetic Data Set 2 (right-hand side); predictive density estimate obtained from
fitting a two-component normal mixture with µ1, µ2, and η1 unknown (variance
σ2

1 = σ2
2 = 1 fixed) in comparison to a histogram of the data

For univariate mixtures of normals, Richardson and Green (1997) studied
MCMC estimation under various constraints, and observed that the predictive
density estimator p̂(yf |y) differed significantly across the constraints, which is
not surprising as a poor constraint introduces a bias; see again the discussion
in Subsection 3.5.6. For this reason it is recommended to use draws from the
unconstrained posterior when the mixture model is used for practical density
estimation or as a smoothing device. Due to the invariance to relabeling,
the estimator p̂(yf |y) could be based on Gibbs sampling (Algorithm 3.4) or
random permutation Gibbs sampling (Algorithm 3.5).

The Posterior Predictive Distribution of a Sequence

It is possible to predict a whole sequence yf = (yf,1, . . . ,yf,H) of length
H ≥ 1, given the data y. The posterior predictive density p(yf |y) of yf ,
conditional on the observations y is given by

p(yf |y) =
∫ H∏

h=1

p(yf,h|ϑ)p(ϑ|y)dϑ. (3.52)

Analytical integration is not possible, but one could easily draw a sample from
(3.52) if a sequence of draws from the posterior density p(ϑ|y) is available,
using the following algorithm.

Algorithm 3.7: Sampling from the Posterior Predictive Distribution Assume
that a sequence of draws ϑ(1), . . . ,ϑ(M) from the posterior density p(ϑ|y) is
available. Perform the following two steps for m = 1, . . . , M .
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(a) Draw H component indicators S1, . . . , SH independently from the discrete
distribution (η(m)

1 , . . . , η
(m)
K ).

(b) For each h = 1, . . . , H, sample y(m)
f,h from the component density p(y|θh),

where θh = θ
(m)
Sh

. Define y(m)
f = (y(m)

f,1 , . . . ,y(m)
f,H).

The sample y(1)
f , . . . ,y(M)

f produced by this algorithm is a sample from the
posterior predictive distribution p(yf |y).

3.7.4 Individual Parameter Inference
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Fig. 3.9. Hidden age groups — Synthetic Data Set 1 (left-hand side) and Syn-
thetic Data Set 2 (right-hand side); reconstruction of the individual means µs

i for the
two age groups obtained from fitting a two-component normal mixture with µ1, µ2,
and η1 unknown (variance σ2

1 = σ2
2 = 1 fixed); box plots of the posterior draws of

µs
i

Often it is of interest to make an inference about the individual parameters
θs

i , which are defined for each subject i, i = 1, . . . , N , by

θs
i =

K∑
k=1

θkI{Si=k}. (3.53)

Obviously, θs
i is invariant to relabeling the components of the mixture. Con-

sequently, the sequence {(θs,(m)
1 , . . . ,θ

s,(m)
N ), m = 1, . . . , M}, which is deter-

mined from the posterior draws {ϑ(m)}, m = 1, . . . , M through the transfor-
mation (3.53),

θ
s,(m)
i = θ

(m)
km

, km = S
(m)
i ,
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contains M draws from the joint posterior distribution p(θs
1, . . . ,θ

s
N |y), which

are insensitive to label switching. It is possible to visualize the individ-
ual parameters θs

i through box-plots of {θ
s,(m)
i , m = 1, . . . , M} for each

i = 1, . . . , N , which estimate the marginal distribution p(θs
i |y). To obtain

a point estimator of θs
i , the expected value E(θs

i |y) is estimated from the
posterior draws in an obvious way:

θ̂
s

i =
1
M

M∑
m=1

θ
s,(m)
i .

An Illustrative Example

For illustration we consider the synthetic data sets 1 and 2, discussed earlier
in Subsection 3.5.5. The true value of µs

i is equal to µy for the younger age
group and equal to µo for the older age group. In Figure 3.9, box plots of
µ

s,(m)
i are shown for both data sets, based on data augmentation and random

permutation Gibbs sampling (Algorithm 3.5). Reconstruction of µs
i is rather

precise for data set 1, whereas the lack of separation between the two groups
leads to rather imprecise reconstructions for data set 2. This is, however,
not due to any deficiencies of the sampling method, but due to a lack of
information in the data.

3.7.5 Inference on the Hyperparameter of a Hierarchical Prior

Note that the hyperparameter δ is invariant by definition, and may be eas-
ily estimated from the MCMC output by taking ergodic averages over the
posterior draws δ(1), . . . , δ(M).

3.7.6 Inference on Component Parameters

When making an inference about the component parameters θ1, . . . ,θK , one
is actually interested in an inference on the corresponding hidden groups in
the population. Only under a unique labeling, does a fixed link exist between
a hidden group with group-specific parameter θG and a certain component in
the mixture with component parameter θk. If this labeling remains the same
throughout MCMC sampling, then the draws {θ

(m)
k , m = 1, . . . , M} may be

regarded as posterior draws for the parameter θG, and it is possible to average
over these draws to obtain a point estimator of the group-specific parameter
θG:

θ̂G =
1
M

M∑
m=1

θ
(m)
k . (3.54)
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However, if label switching took place during sampling, then the hidden group
parameter θG no longer has to be associated with θk, but with another com-
ponent parameter θk′ . When averaging over the draws of θk as in (3.54), a
biased point estimator of the group-specific parameter θG results, which is
pulled toward the overall mean E(θk|y) of the unconstrained posterior.

To draw an inference about hidden groups by averaging over posterior
draws, it is essential that these draws arise from a single labeling subspace
L. We denote such draws as ϑL,(m) = (θL,(m)

1 , . . . ,θ
L,(m)
K , η

L,(m)
1 , . . . , η

L,(m)
K ).

These draws could be used to estimate the parameters in the hidden groups
by

θ̂k =
1
M

M∑
m=1

θ
L,(m)
k , (3.55)

as well as the group sizes by

η̂k =
1
M

M∑
m=1

η
L,(m)
k . (3.56)

It is discussed in detail in Subsection 3.7.7 how to obtain posterior draws from
a unique labeling subspace.

Choosing Invariant Loss Functions

It should be noted that not all point estimators of ϑ are sensitive to label
switching. Whether this is the case depends on the underlying loss function.
Within a decision-theoretic framework any point estimator ϑ� is derived as
that value which minimizes the expected posterior loss under a certain loss
function R(ϑ̂, ϑ):

ϑ� = arg min
ϑ̂

E(R(ϑ̂, ϑ)|y) =
∫

Θ

R(ϑ̂,ϑ)p(ϑ|y)dϑ;

see Berger (1985) for a full account. If this framework is applied to finite
mixture models, sensible estimators are obtained only if the loss function
R(ϑ̂, ϑ), which corresponds to h(ϑ) in (3.48), is invariant to relabeling the
components of the mixture.

This leads immediately to problems with the quadratic loss-function
R(ϑ̂, ϑ) = (ϑ̂ − ϑ)

′
(ϑ̂ − ϑ), which yields the posterior mean E(ϑ|y) as opti-

mal estimator, and is for many other statistical models the most commonly
used loss function. Evidently, the functional value of R(ϑ̂, ϑ) changes when
the components of the mixture are relabeled, leading to an ambiguous defini-
tion of the expected risk. Interestingly enough, it was realized earlier that the
posterior mean E(ϑ|y) is not a sensible point estimator as it does not contain
any component-specific information; see again (3.21).
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The 0/1 loss function, for which the posterior mode turns out to be the
optimal estimator (see, for instance, Zellner, 1971), is easily adapted to finite
mixture models by defining that R(ϑ̂, ϑ) = 0 iff ϑ̂ and ϑ are identical up to
permutations, otherwise R(ϑ̂, ϑ) is equal to 1. This loss function is invariant
to relabeling, and the mode of the mixture posterior may be used for esti-
mation. The posterior mode may be approximated from the posterior draws
{ϑ(m), m = 1, . . . , M} through that value which maximizes the nonnormalized
mixture posterior density p�(ϑ|y) = p(y|ϑ)p(ϑ).

Various alternative loss functions have been considered for parameter es-
timation in mixture models. Celeux et al. (2000) consider loss functions that
are based on the predictive density p(yf |ϑ) which is invariant to relabeling
the components; see again (3.50). Examples include the integrated squared
difference

R(ϑ̂, ϑ) =
∫

Y
(p(yf |ϑ) − p(yf |ϑ̂))2dyf ,

and the symmetrized Kullback–Leibler distance

R(ϑ̂, ϑ) =
∫

Y

(
p(yf |ϑ)log

p(yf |ϑ)

p(yf |ϑ̂)
+ p(yf |ϑ̂)log

p(yf |ϑ̂)
p(yf |ϑ)

)
dyf ,

where in both cases integration reduces to summation for a discrete sample
space Y. In both cases the expected loss is given by an expression that contains
expectations of terms such as p(yf |ϑ), p(yf |ϑ)2, or log p(yf |ϑ), with respect
to the posterior density p(ϑ|y). The practical evaluation of these estimators
is rather involved and Celeux et al. (2000) follow the two-step procedure of
Rue (1995). In a first step, expectations with respect to the posterior density
are evaluated using posterior draws and integration with respect to yf is
carried out using some numerical technique. In a second step, the minimization
problem for the estimator ϑ� is solved using simulated annealing. We refer to
Celeux et al. (2000) for further computational details.

Dias and Wedel (2004) provide an empirical comparison of EM and MCMC
performance, which includes different prior specifications and various proce-
dures to deal with the label switching problem.

3.7.7 Model Identification

The parameter estimation problem discussed in Subsection 3.7.6 illustrated
that care must be exercised when using draws from the mixture posterior den-
sity p(ϑ|y) to estimate functionals of ϑ, which are not invariant to relabeling
the components of the finite mixture. Inference on such functionals is sensi-
ble only if the posterior draws come from a unique labeling subspace of the
unconstrained parameter space. The discussion of this subsection is devoted
to the difficult task of identifying such draws.
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Gibbs sampling as described in Algorithm 3.4 may lead to implicit model
identification if the K! modal parts of the mixture posterior density are very
well separated, and the sampler is trapped in one of modal regions; see again
the discussion in Subsection 3.5.6. In this case the posterior draws obtained
by Algorithm 3.4 may be treated as coming from a unique labeling subspace,
ϑL,(m) = ϑ(m), m = 1, . . . , M , as was done for instance in Chib (1996). It is,
however, not recommended to rely blindly on this implicit model identifica-
tion, as the behavior of Gibbs sampling is unpredictable in this respect.

One strategy is to relabel the posterior draws {ϑ(m), m = 1, . . . , M} in
such a way that draws {ϑL,(m), m = 1, . . . , M} from a unique labeling sub-
space result. This may be achieved by isolating a sensible identifiability con-
straint through exploring the posterior draws (Frühwirth-Schnatter, 2001b)
or by unsupervised clustering of the posterior draws (Celeux, 1998).

Model Identification Through Identifiability Constraint

Fig. 3.10. Hidden age groups — Synthetic Data Set 3; draws from the bivariate
marginal distributions p(µk, ηk|y) (left-hand side); posterior draws of (µ1, η1) under
the constraint µ1 < µ2 (right-hand side)

A common reaction to the label switching problem is to impose some
formal identifiability constraint as in Subsection 1.3.3 within sampling-based
Bayesian estimation (Albert and Chib, 1993; Richardson and Green, 1997).
It has been realized only rather recently that an arbitrary formal identifia-
bility constraint does not necessarily generate a unique labeling and that a
poorly chosen constraint introduces a bias (Celeux, 1998; Celeux et al., 2000;
Stephens, 2000b; Frühwirth-Schnatter, 2001b); recall also the discussion at
the end of Subsection 2.4.3.

To identify sensible identifiability constraints, Frühwirth-Schnatter (2001b)
explored the point process representation of the MCMC draws, introduced
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earlier in Subsection 3.7.1. Note that the constraint is only an indirect device
to describe the differences between the components, and therefore is not nec-
essarily unique. Various case studies where it is useful to explore the point
process representation of the MCMC draws in this way may be found through-
out the book; see also Frühwirth-Schnatter (2001a, 2001b), Kaufmann and
Frühwirth-Schnatter (2002), and Frühwirth-Schnatter et al. (2004).

A straightforward method to impose a constraint on the posterior draws
is to postprocess the MCMC draws that were generated from the mixture
posterior. Whenever a draw does not satisfy the constraint, one permutes the
labeling of the components such that the constraint is fulfilled (Richardson
and Green, 1997; Stephens, 1997b; Frühwirth-Schnatter, 2001b). Frühwirth-
Schnatter (2001b) also provides a formal proof that this method actually
delivers a sample from the constrained posterior.

For illustration, we return to the synthetic data set 3 introduced at the
end of Subsection 2.4.3. Figure 3.10 shows a sampling representation of the
bivariate marginal distribution p(µk, ηk|y) for these data. From this scatter
plot it is obvious that the component parameters differ mainly in the mean,
whereas the weights are rather equal. The constraint µ1 < µ2 is actually able
to impose a unique labeling.

Model Identification Through Unsupervised Clustering of the
Posterior Draws

For higher-dimensional problems, in particular for multivariate mixtures, it is
possible, but somewhat time-consuming to search for identifiability constraints
in the MCMC output (Frühwirth-Schnatter et al., 2004). As a more automatic
procedure, Celeux (1998) suggested permuting the MCMC draws obtained
from unconstrained sampling by using a clustering procedure. His algorithm is
an on-line k-means type algorithm with K! clusters, which is initialized from
the first 100 draws after reaching burn-in, by defining K! reference centers
from these draws. For each MCMC draw ϑ(m) the distance to each of these
K! centers is computed, which is then used to permute the labels.

Model Identification Through Clustering in the Point
Process Representation

A related method is to search for clusters in the point process representation of
the MCMC draws, introduced earlier in Subsection 3.7.1, which additionally
provides some control over the important question of whether the model is
overfitting the number of components.

Each of the MCMC simulations θ
(m)
1 , . . . ,θ

(m)
K corresponds to a certain

point process representation that will cluster around the point process repre-
sentation of the underlying true finite mixture distribution. If the heterogene-
ity between the underlying points is large enough, K simulation clusters will
be present in the point process representation of the MCMC draws.
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Permuting the labels of θ
(m)
1 , . . . ,θ

(m)
K does not change the point represen-

tation; it only changes the one-to-one correspondence between the component-
specific draws and the simulation clusters. A unique labeling is achieved
if all draws θ

(m)
k are associated with the same simulation cluster for all

m = 1, . . . , M . This is achieved by applying a standard k-means cluster-
ing algorithm with K clusters to a sample of size MK, formed from the
MCMC draws {(θ(m)

1 , . . . ,θ
(m)
K ), m = 1, . . . , M}, with the posterior mode esti-

mator (θ�
1, . . . ,θ

�
K) serving as a starting value for the cluster means. The clus-

tering algorithm delivers a classification sequence {(ρm(1), . . . , ρm(K)), m =
1, . . . , M}, where ρm(k) determines to which simulation cluster the MCMC
draw θ

(m)
k belongs.

If the simulation clusters are well separated, then the classification se-
quence {ρm(1), . . . , ρm(K)} is a permutation of {1, . . . , K}; that is,

K∑
k=1

ρm(k) =
K(K + 1)

2
. (3.57)

In this case it is possible to relabel the MCMC draw ϑ(m) through the per-
mutation {ρm(1), . . . , ρm(K)}; that is

ϑL,(m) = (θL,(m)
ρm(1), . . . ,θ

L,(m)
ρm(K), η

L,(m)
ρm(1) , . . . , η

L,(m)
ρm(K)) (3.58)

defined by:

θ
L,(m)
ρm(k) = θ

(m)
k , η

L,(m)
ρm(k) = η

(m)
k , k = 1, . . . , K.

As all component-specific draws are associated with the same simulation clus-
ter, the draws defined in (3.58) may be regarded as coming from an identified
mixture model.

If in addition to ϑ(m), allocation variables S(m) = (S(m)
1 , . . . , S

(m)
N ) have

been stored, then the same permutation could be used on them to define
allocation under a unique labeling for each i = 1, . . . , N :

S
L,(m)
i = ρm(S(m)

i ). (3.59)

If {ρm(1), . . . , ρm(K)} is not a permutation of {1, . . . , K} (i.e., if (3.57) is
violated for a considerable fraction of the MCMC draws), this is an indication
that the mixture is overfitting the number of components, a problem that is
discussed in Subsection 4.2.2.

Further Approaches Toward Relabeling the MCMC Draws

Various authors found other ways of relabeling the MCMC draws useful.
Stephens (1997b) suggested relabeling the MCMC output so that the esti-
mated marginal posterior distributions of the parameters of interest are as



98 3 Practical Bayesian Inference for a Finite Mixture Model

close to unimodality as possible. Stephens (2000b) tackles the whole relabel-
ing problem from a decision-theoretic viewpoint and shows that the relabeling
strategies studied in Stephens (1997b) and Celeux (1998) may be viewed as
an attempt to minimize the posterior expectation of a certain loss function.



4

Statistical Inference for Finite Mixture Models
Under Model Specification Uncertainty

4.1 Introduction

The decision to fit a finite mixture model to data will often result from careful
consideration; sometimes, however, alternative models will be available, which
then should be compared with models based on the selected finite mixture
distribution.

Even if we stay within a certain family of mixture distributions, we may
face model specification problems, the most important being the choice of K,
the number of components. If it is impossible to assign a value to K a priori
with complete certainty, we are faced with the problem of estimating K from
the data. In many applications it is of substantial interest to test hypotheses
about K, most important, to test heterogeneity (K > 1) against homogeneity
against (K = 1). Testing for the number of components in a mixture model is
known to be a difficult problem, because it involves inference for an overfitting
mixture model where the true number of components is less than the number
of components in the fitted mixture model. Parameter estimation in this case
represent a nonregular problem, with the true parameter lying in a nondenti-
fiable subset of the larger parameter space, as discussed in Section 4.2.

Many approaches have been put forward to deal with model specification
uncertainty. Several informal methods for diagnosing mixtures such as diag-
nosing goodness-of-fit through implied moments or the predictive performance
are reviewed in Section 4.3. Likelihood-based methods, in particular the like-
lihood ratio statistics and AIB and BIC are discussed in Section 4.4. Finally,
Section 4.5 provides an introduction to Bayesian inference under model un-
certainty. Its application to finite mixture models is, however, discussed in full
detail in Chapter 5.
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4.2 Parameter Estimation Under Model
Specification Uncertainty

When a finite mixture distribution with K components is used as part of a
statistical model for real data, it may happen that the mixture distribution is
misspecified.

4.2.1 Maximum Likelihood Estimation Under Model
Specification Uncertainty

Consider two models MK and MR where MR is a constrained version of
MK , meaning that the parameter space ΘR ⊂ ΘK . For finite mixture models,
for instance, a constrained version of a univariate mixture of normal distribu-
tions could be a mixture where µk = 0 in all groups, that is,

ΘR = {(µ1, σ
2
1 , . . . , µK , σ2

K , η) ∈ ΘK : µ1 = · · · = µK = 0}, (4.1)

or a homoscedastic mixture with σ2
1 = · · · = σ2

K , that is,

ΘR = {(µ1, σ
2
1 , . . . , µK , σ2

K , η) ∈ ΘK : σ2
1 = · · · = σ2

K}. (4.2)

Under uncertainty whether MK or MR holds, one could fit the larger model,
and provided that certain regularity conditions hold, standard ML theory still
applies, meaning the ML estimator of model MK is asymptotically normal
around the true parameter ϑtrue, regardless of whether MK or MR is true.
These regularity conditions state that all points in MR lie in the interior
of the parameter space ΘK , and that the true value ϑtrue does not lie in a
nonidentifiability set of ΘK .

For finite mixture models, these regularity conditions are usually fulfilled
when both MK and MR assume the correct number of components, and
MR is obtained by putting constraints on θ1, . . . ,θK as in (4.1) or (4.2). In
such a case all points in ΘR are interior points of the larger space ΘK and
the mixture is generically identifiable for all points in ΘR if it is generically
identifiable for all points in ΘK . Consequently, as in Subsection 2.4.4, the mix-
ture likelihood function is asymptotically normal around the true parameter
ϑtrue = (θtrue

1 , . . . ,θtrue
K , ηtrue) (and all K! permutations).

The standard regularity conditions, however, are violated when model un-
certainty concerns the number of components. A finite mixture is said to be
overfitting the number of components when the true data-generating mixture
distribution contains only Ktrue < K distinct, nonempty components. The
difference K − Ktrue between the assumed and the actual number of compo-
nents defines the degree of overfitting.

Consider an overfitting mixture model where the data y = (y1, . . . ,yN ) are
generated by a mixture with Ktrue = K−1 distinct, nonempty components de-
fined by parameter ϑtrue

K−1, and a mixture with K components with parameter
ϑK has been fitted. It follows immediately from Subsection 1.3.2 that the true
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value of ϑK lies in the nonidentifiability set UZ(ϑtrue
K−1) ∪ UE(ϑtrue

K−1), defined
in (1.28) and (1.30), which violates one of the regularity conditions mentioned
above. Furthermore, one of these sets, namely UE(ϑtrue

K−1), contains points that
lie on the boundary of the parameter space, namely all points where ηk = 0,
which violates the other regularity condition. Consequently, standard ML the-
ory no longer applies, and the surface of the mixture likelihood function of
a model that is overfitting the number of components does not converge to
an approximate normal distribution with full rank asymptotic covariance ma-
trix, when considered as a function of ϑK = (θ1, . . . ,θK , η1, . . . , ηK−1) (Li and
Sedransk, 1988). This may lead to mixture likelihood functions that behave
rather irregularly.

Nevertheless Feng and McCulloch (1996) proved convergence of the ML
estimator ϑ̂K to the true value in the following sense. There exists a point
ϑ0(ϑ̂K) ∈ UZ(ϑtrue

K−1) ∪ UE(ϑtrue
K−1), such that the difference ϑ̂K − ϑ0(ϑ̂k)

converges to 0. In the limit, as N → ∞, the ML estimator is not unique, but
equal to any point in UZ(ϑtrue

K−1) ∪ UE(ϑtrue
K−1). Thus in the limit, the estimated

mixture either has an empty component or two components are identical.
As mentioned earlier, all parameters in subset UZ(ϑtrue

K−1) ∪ UE(ϑtrue
K−1) are

related by (K − 1)! different ways of relabeling. As the likelihood function of
an overfitting model of degree 1 converges to this set, the likelihood function
will exhibit Ktrue! = (K − 1)! modes with increasing number of observations.
Similar results hold for mixtures with a higher degree of overfitting. In the
limit, as N → ∞, the ML estimator is not unique, but equal to any point
in UZ(ϑtrue

K−L) ∪ UE(ϑtrue
K−L). Therefore the likelihood function will exhibit

Ktrue! = (K − L)! modes with increasing number of observations.

A Helicopter Tour of the Mixture Likelihood Surface for an
Overfitting Mixture

For illustration, consider a synthetic data set of N = 100 observations sim-
ulated from a single normal distribution with µ = 1. Assume that the two-
component normal mixture model

p(y) = η1fN (y; µ1, 1) + η2fN (y; µ2, 1)

is fitted. First, consider the mixture likelihood function of a two-component
mixture model with µ1 and µ2 unknown, but equal weights (η1 = η2 = 0.5
fixed). The mixture likelihood function in Figure 4.1 is not roughly normal
around two separated modes, which is typical for a mixture model that is
overfitting. Next assume that η1 and η2 are unknown as well. Figure 4.2 shows
the surface and the contours of the integrated likelihood p(y|µ1, µ2) where η2
is integrated out:

p(y|µ1, µ2) =
∫ 1

0
p(y|µ1, µ2, η2)dη2.
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Fig. 4.1. Surface and contours of the mixture likelihood when fitting a mixture of
two normal distributions with σ2

1 = σ2
2 = 1 and equal weights to 100 observations

from the N (1, 1) distribution

Fig. 4.2. Surface and contours of the integrated mixture likelihood when fitting a
mixture of two normal distributions with σ2

1 = σ2
2 = 1 and unknown weights to 100

observations from the N (1, 1) distribution

In a Bayesian context, p(y|µ1, µ2) is the marginal likelihood of (µ1, µ2) un-
der a uniform prior on η2. We find that the assumption of unknown weights
exercises a considerable influence on the integrated mixture likelihood in com-
parison to the mixture likelihood with known weights appearing in Figure 4.1.
The inclusion of the unknown weights helps the likelihood function to concen-
trate over the reduced model, which is the correct one for this data set. The
integrated likelihood function has considerable mass along the axis µ1 = y, µ2
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arbitrary, and µ1 arbitrary, µ2 = y, which correspond to the nonidentifiability
set UZ(µ̂), where µ̂ = y is the ML estimator, when fitting a single normal
distribution.

4.2.2 Practical Bayesian Parameter Estimation for Overfitting
Finite Mixture Models

Assume that practical Bayesian parameter estimation as discussed in Chap-
ter 3 is applied to a finite model MK with ϑK = (θ1, . . . ,θK , η), which
is overfitting the number of components. What happens if Bayesian estima-
tion through Gibbs sampling and MCMC as described in Algorithm 3.4 or
Algorithm 3.5 is applied? Most important, the resulting draws still form a
Markov chain, with the posterior distribution p(ϑK |y,MK) of the overfitting
model serving as stationary distribution. Like the mixture likelihood function
discussed in Subsection 4.2.1, the mixture posterior distribution will center
around the nonidentifiability sets UE(ϑtrue

K−1) ∪ UZ(ϑtrue
K−1) defined in Subsec-

tion 1.3.2 unless a prior is applied that is informative enough to bound the
posterior away from these sets. Therefore by exploring these draws, hypothe-
ses about the true model structure may be deduced; see Subsection 4.3.1 for
a more detailed discussion.
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Fig. 4.3. Contours of the complete-data likelihood function for 100 observations
simulated from a mixture of two normal distributions with σ2

1 = σ2
2 = 1, equal

weights and µ1 = µ2 = 1; under labeling 1 (left-hand side) and under labeling 2
(right-hand side)

Some care must be exercised when the posterior draws are used for
Bayesian inference as described in Subsection 3.7, because label switching
may be present in the posterior draws. Unfortunately, label switching is un-
avoidable for a model that is overfitting the number of components. For il-
lustration, consider a synthetic data set of N = 100 observations, simulated
from the two-component normal mixture model
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Fig. 4.4. Fitting a mixture of two normal distributions with σ2
1 = σ2

2 = 1 and equal
weights to 100 observations simulated from a N (1, 1)-distribution; MCMC draws
obtained by full conditional Gibbs sampling (left-hand side) and estimated marginal
posterior densities (right-hand side) of µ1 (top) and µ2 (bottom)

p(y) = 0.5fN (y; µ1, 1) + 0.5fN (y; µ2, 1),

where µ1 = µ2 = 1. Figure 4.3 shows the contours of the complete-data like-
lihood function of these data under the two possible ways of labeling. As
the likelihood functions are nearly identical for both ways of labeling, label
switching is likely to occur frequently, even when running straightforward
Gibbs sampling as is evident from Figure 4.4. Hence, label switching is nat-
ural for an overfitting model and could be regarded as an indicator that the
assumed model is overfitting.

For a mixture model that is overfitting the number of components, formal
identification as in Subsection 1.3.3 no longer is possible, as either one of
the weights is zero, violating identifiability constraint (1.31), or as two of the
component parameters are equal, violating identifiability constraint (1.33).
Consequently, it is not sensible to try model identification for an overfitting
mixture with K components from the MCMC draws as in Subsection 3.7.7.

Choosing Priors That Bound the Posterior Away from the
Unidentifiability Sets

It may be desirable to bound the mixture posterior density p(ϑK |y,MK) of
a finite mixture model with K components away from the nonidentifiability
sets UZ(ϑK−1) and UE(ϑK−1) defined in Subsection 1.3.2.

Under model specification uncertainty with respect to K, it is in general
sensible to bound the mixture posterior away from the nonidentifiability set
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UZ(ϑK−1) corresponding to a K-component mixture with one empty com-
ponent by choosing a D (e0, . . . , e0)-prior for the weight distribution η with
e0 > 1 (e.g., e0 = 4); see also Subsection 2.3.4. If the mixture model is overfit-
ting, this will avoid sampling mixtures with empty components. Consequently,
two of the component parameters will be pulled together to capture overfit-
ting and observations are then allocated more or less randomly between these
components. Therefore sampling of component parameters from the prior is
avoided, which will increase stability of the sampler.

In some cases model selection may point to a finite mixture model, where
the posterior density is not sufficiently bounded away from the nonidentifiabil-
ity set UE(ϑK−1) corresponding to a K-component mixture with two identical
components to achieve satisfactory model identification. Then it often helps to
modify the prior on the component parameters by increasing prior shrinkage
for elements of the component parameter θk that are not extremely distinc-
tive between the components. These elements could be identified from the
point process representation of the MCMC draws, discussed earlier in Subsec-
tion 3.7.1. Simultaneously, too strong shrinkage for elements of the component
parameter θk that differ between the components should be avoided, because
the invariant prior is centered at the nonidentifiability set UE(ϑK−1), and
one may unintentionally force label switching by choosing a prior that is too
informative for these elements of θk.

It is necessary to end these remarks with the warning that there is a
price to be paid for avoiding nonidentifiability through the prior. If the finite
mixture model is actually overfitting, the possibility of reducing this mixture
to the true model is lost. In particular, for a mixture model that is overfitting
the number of components, informative priors tend to force too many distinct
components. Therefore these priors are mainly applied in a model specification
context, where more than one mixture model is fitted to the data, and these
priors should help to increase the discrimination between these models.

4.2.3 Potential Overfitting

It has been discussed in detail in Subsection 1.3.2 that a certain region of the
parameter space ΘK of a mixture distribution with K components, which is
centered around the nonidentifiability set UZ(ϑ̂K−1) ∪ UE(ϑ̂K−1), is reserved
for coping with data for which this mixture model is overfitting the number
of components. We call this the region of potential overfitting. If the mix-
ture is actually overfitting, then as discussed in Subsection 4.2.1, the mixture
likelihood will become more and more concentrated over this region.

If we fit a mixture model with the correct number of components, then
one would hope that the region of potential overfitting is bounded away from
the main modal regions of the mixture likelihood function. This is true in
the limit, as N → ∞, because the ML estimator will converge to the true
parameter, but for finite observations this need not be the case, even when
the true number of components has been selected. If one of the true weights
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is rather small or two components are rather close to each other, then a more
parsimonious mixture with less than the true number of components may
explain the data equally well, in particular for small data sets. In this case
the mixture likelihood function will exhibit additional modes over the regions
of potential overfitting.

Fig. 4.5. Hidden age groups — Synthetic Data Set 1; surface and contours of the
integrated mixture likelihood p(y|µ1, µ2) for a two-component mixture model with
unknown weights

For illustration, we reconsider synthetic data 1 and 2, simulated from
(2.29). This time we fit a mixture of two normal distributions with µ1, µ2,
and η2 unknown. Adding the weights as unknown parameters may cause ad-
ditional modes, especially if the data have a high likelihood also under the
reduced model. These modes lie around parameters in the nonidentifiability
set UZ(µ̂, σ̂2) ∪ UE(µ̂, σ̂2), where (µ̂, σ̂2) is the ML estimator obtained when
fitting a single normal distribution.

If the data are rather likely under the reduced model, then additional
modal regions with considerable likelihood are present in the parameter space.
For illustration, Figure 4.5 and Figure 4.6 show the surface and the contours
of the mixture likelihood p(y|µ1, µ2) where η2 is integrated out. For data set
1, the integrated mixture likelihood is not much different from the mixture
likelihood appearing in Figure 2.5 where η2 was assumed to be known, as
parameters in the nonidentifiability set UZ(µ̂, σ̂2) ∪ UE(µ̂, σ̂2) are extremely
unlikely. For data set 2, however, we find, in comparison to the mixture like-
lihood in Figure 2.6, additional local modes, making inference with regard to
the component parameters rather difficult. Synthetic data set 2 demonstrates
that the reduced model may be likely even if the data were generated from
the more complex model.



4.3 Informal Methods for Identifying the Number of Components 107

Fig. 4.6. Hidden age groups — Synthetic Data Set 2; surface and contours of the
integrated mixture likelihood p(y|µ1, µ2) for a two-component mixture model with
unknown weights

Bayesian Estimation

Under potential overfitting, MCMC draws from the mixture posterior density
will come from different modal regions, part of them corresponding to the
restricted model and part of them corresponding to the unrestricted model.
This may cause label switching, even if the mixture is actually not overfit-
ting (K = Ktrue). For synthetic data set 2, for instance, the two means are
rather similar compared to the variance, and the two modes of the mixture
likelihood functions are not well separated, causing label switching. Here label
switching is a sign that the simpler model might also explain the data. If we
are sure that we want to fit a model with two components, the only solution
to avoid label switching is to choose a prior that helps to bound the mixture
posterior away from the nonidentifiability set UE(µ) as has been explained in
Subsection 4.2.2.

4.3 Informal Methods for Identifying the Number
of Components

In this section various informal approaches for detecting the presence of mix-
tures and for identifying the number of components in a finite mixture are
discussed. Most of these approaches are data oriented such as mode hunting
in the sample histogram (Subsection 4.3.2) or comparing empirical properties
of the data such as skewness or kurtosis with the corresponding quantities
implied by the mixture (Subsection 4.3.3 and 4.3.4) whereas the approach
discussed in Subsection 4.3.1 is parameter oriented and tries to learn about
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the presence of mixtures and the number of mixture components from the
mixture posterior density.

4.3.1 Mode Hunting in the Mixture Posterior

One informal method for diagnosing mixtures is mode hunting in the mixture
posterior density (Frühwirth-Schnatter, 2001b). It is based on the observation
that with an increasing number of observations, the mixture likelihood func-
tion has K! dominant modes if the data actually arise from a finite mixture
distribution with K components, and that less than K! dominant modes are
present if the finite mixture model is overfitting the number of components;
see also Subsection 4.2.1.

Practically, mode hunting is carried out by exploring the sampling rep-
resentations of the mixture posterior density, discussed earlier in Subsec-
tion 3.7.1. It is based on drawing from the mixture posterior using the random
permutation Gibbs sampler described in Algorithm 3.5, rather than standard
Gibbs sampling, to force the exploration of all modes of the mixture posterior
density.

Fig. 4.7. Sampling representation of the posterior density p(µk, µk′ |y, MK) for
K = 3 (left-hand side), K = 4 (middle), and K = 5 (right-hand side)

For illustration, a data set of size N = 500 is simulated from a mixture of
three Poisson distributions with µ1 = 0.1, µ2 = 2, µ3 = 5, η1 = 0.3, η2 = 0.4,
and η3 = 0.3. Poisson mixtures with K = 3 , K = 4, and K = 5 components
are fitted and Bayesian estimation running random permutation Gibbs sam-
pling for 2500 iterations is carried out under the priors η ∼ D (4, . . . , 4) and
µk ∼ G (0.5, 0.5/y), where y is the mean of the observations.

Figure 4.7 shows the sampling representation of the bivariate marginal
density p(µk, µk′ |y,MK) for K = 3, K = 4, and K = 5. For K = 3 the finite
mixture is not overfitting and the corresponding plot shows K(K − 1) = 6
simulation clusters as expected. For K = 4 the finite mixture is overfitting
and less than K(K − 1) = 12 simulation clusters are visible. Under the prior
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D (4, . . . , 4) on the weight distribution, empty components are rather unlikely,
and the draws of the component parameters are pulled toward the nonidenti-
fiability set UZ(ϑtrue) where two component means lie close to the diagonal
µk = µk′ , whereas the other component means are close to the modes of the
three-component mixture posterior. The same is true for K = 5 although the
figure is more fuzzy.

Fig. 4.8. Point process representation of the posterior density p(µk|y, MK) for
K = 3 (left-hand side), K = 4 (middle), and K = 5 (right-hand side)

Another useful plot for mode hunting in the mixture posterior distribu-
tion is the point process representation of the MCMC draws, explained earlier
in Subsection 3.7.1. Note the point process representation of the overfitting
and the true mixture distribution are identical. Therefore the point process
representation of the MCMC draws will cluster around the point process rep-
resentation of the true model even if the mixture is overfitting, as is evident
from Figure 4.8. The number of simulation clusters in these figures clearly
indicates that mixtures with K = 4 and K = 5 are overfitting, although the
spread of these simulation clusters increases for K = 4 and K = 5. Therefore
the point process representation is particularly useful for mode hunting.

4.3.2 Mode Hunting in the Sample Histogram

Historically seen, informal techniques for the detection of mixtures focused
on hunting for modes in the sample histogram; see Titterington et al. (1985,
Section 5.6) for some review. This might be appropriate for certain data sets,
such as the Fishery Data that have been discussed in Subsection 1.1, where
evidently several modes are present in the histogram. However, as stated by
Everitt and Hand (1981, p.208), “Examination of the sample histogram is
unlikely to be of much help in detecting the presence of a mixture — indeed,
it might prove positively misleading.”

Most important, as discussed in Subsection 1.2.2, many finite mixture dis-
tributions are unimodal, and the presence of a mixture distribution will remain
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Fig. 4.9. Empirical componentwise marginal distribution of 50 observations gener-
ated from a standard multivariate normal distribution of dimension 10

undetected from the empirical histogram. In other cases mode hunting may
be misleading as it tends to detect spurious clusters in the sample histogram
(McLachlan and Peel, 2000, Section 1.8). Consider, as an example, 50 obser-
vations yi generated from the ten-dimensional standard multivariate normal
distribution N10 (0, I10) where the marginal distribution of each component
of yi displays a considerable amount of spurious multimodality in Figure 4.9.

4.3.3 Diagnosing Mixtures Through the Method of Moments

The method of moments is not only used for estimating the unknown param-
eter in a finite mixture model, as discussed in Subsection 2.4.1, but it has also
been applied for diagnosing finite mixture models with respect to the num-
ber K of components (Heckman et al., 1990; Dacunha-Castelle and Gassiat,
1997).

As in Subsection 2.4.1, several theoretical moments E(Hj(Y)|ϑK), j =
1, 2, . . . , implied by a mixture model MK with K components, are compared
with the corresponding sample moments Hj . Mixtures with different numbers
of components are evaluated by the impact increasing K has on reducing the
discrepancy between the theoretical moment E(Hj(Y)|ϑK) and the sample
moment Hj . To evaluate this discrepancy, ϑK is substituted by an estimator,
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before the effect of adding another component is studied. The difficulty with
diagnosing a mixture in this way is to decide whether the effect of adding
another component is significant.
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Fig. 4.10. Diagnosing mixtures of varying numbers of components for 500 obser-
vations simulated from a mixture of three Poisson distributions with µ1 = 0.1,
µ2 = 2, µ3 = 5, η1 = 0.3, η2 = 0.4, and η3 = 0.3; the posterior distribution of the
overdispersion (top left), the second (top right), the third (bottom left), and the
fourth (bottom right) factorial moment in comparison to the observed value (black
horizontal line) for K = 1, . . . , 5

The rest of this subsection seeks to pursue a Bayesian variant of this
approach, which provides an informal way of assessing this significance. As
hj(ϑK) = E(Hj(Y)|ϑK) is a function of ϑK , we consider the posterior density
p(hj(ϑK)|y,MK) of hj(ϑK) under model MK , rather than simply a point
estimator hj(ϑ̂K) as in Heckman et al. (1990) and Dacunha-Castelle and Gas-
siat (1997). We compare this density with the sample moment Hj for each j



112 4 Statistical Inference Under Model Specification Uncertainty

and for each K. If the observed value Hj is very unlikely under the posterior
density p(hj(ϑK)|y,MK), then the number of components is considered to be
too small. If the effect of increasing K on the corresponding posterior density
p(hj(ϑK)|y,MK) is negligible, then K provides a sufficient number of com-
ponents to fit the moment E(Hj(Y)|ϑK). Higher-order moments will typically
require more components than lower-order moments. We may also consider the
joint posterior distribution of two moments (E(Hj(Y)|ϑK), E(Hm(Y)|ϑK)),
for instance, a skewness coefficient and excess kurtosis for univariate metric
data, or the posterior distribution of some cumulative measure of discrepancy
such as

∑
j(E(Hj(Y)|ϑK) − Hj)2.

Any posterior density of interest is easily available when fitting a mix-
ture model using Markov chain Monte Carlo or any other simulation-based
method that yields a sequence of draws ϑ

(1)
K , . . . ,ϑ

(M)
K from the posterior

density p(ϑK |y,MK). The posterior distribution of hj(ϑK) = E(Hj(Y)|ϑK)
is approximated by the empirical distribution of the transformed draws
hj(ϑ

(1)
K ), . . . , hj(ϑ

(M)
K ). There is no need to identify the mixture model, as

E(Hj(Y)|ϑK) is invariant to relabeling by definition. To study the effect of K

it is useful to consider Box plots of hj(ϑ
(1)
K ), . . . , hj(ϑ

(M)
K ) for each j, whereas

bivariate distributions are explored through scatter plots.
For illustration, we return to the illustrative example of Subsection 4.3.1.

Figure 4.10 shows the posterior distribution of the overdispersion B(ϑ) =∑K
k=1(µk −µ(ϑ))2ηk, where µ(ϑ) = E(Y |ϑ), which is discussed in more detail

in Subsection 9.2.2, and the second to the fourth factorial moment of the
Poisson mixture in comparison to the observed values for an increasing number
of components (K = 1, . . . , 5). This figure indicates that three components
are sufficient to capture the moments under investigation, because adding a
fourth or a fifth component hardly changes the posterior distribution of these
moments.

We end by noting that the same method could be applied to other data
transformations such as the moment-generating function or the probability-
generating function. For univariate continuous data, one could study the pos-
terior distribution of ht(ϑK) = E(exp(tY )|ϑK) − Ht, where

Ht =
1
N

N∑
i=1

exp(tyi),

as a function of t and K. Finally the Kullback–Leibler distance, or any other
distance between the empirical distribution function of the data and a mixture
model with K components could be analyzed in a similar way, by evaluating
the effect of increasing K on the posterior distribution of these statistics.

4.3.4 Diagnosing Mixtures Through Predictive Methods

A further method for diagnosing mixtures is Bayesian posterior predictive
model checking (Gelfand et al., 1992; Gelman et al., 1996) which is related to
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Fig. 4.11. Model checking for 500 observations simulated from a mixture of three
Poisson distributions with µ1 = 0.1, µ2 = 2, µ3 = 5, η1 = 0.3, η2 = 0.4, and η3 = 0.3
using the posterior distribution of the overdispersion statistic T (y) = s2

y − y under
a single Poisson distribution (left-hand side) and under a mixture of three Poisson
distributions (right-hand side)

standard procedures of model checking, by considering one or several diagnos-
tic statistics T (y) of the observations y = (y1, . . . ,yN ), such as the skewness,
that are likely to be extreme under certain misspecifications of the sampling
distribution. The observed value T (y) is compared with the posterior pre-
dictive distribution p(T (yf )|y,MK), where the statistic T (·) is evaluated at
a sample yf = (yf,1, . . . ,yf,N ) of size N , predicted from the model under
consideration. If the observed value T (y) lies far out in the tails of the poste-
rior predictive distribution p(T (yf )|y,MK), the data are diagnosed as being
inconsistent with the model.

The posterior predictive distribution p(T (yf )|y,MK) is not available
in closed form. It is approximated by a histogram of T (y(1)

f ), . . . , T (y(M)
f ),

with y(1)
f , . . . ,y(M)

f being a sample from the posterior predictive distribution
p(yf |y,MK), obtained by Algorithm 3.7 with H = N .

For illustration, we return once more to the illustrative example of Sub-
section 4.3.1 and 4.3.3, and show in Figure 4.11 the posterior predictive dis-
tribution of the overdispersion statistic T (y) = s2

y − y in comparison to the
observed value. Model checking clearly reveals that a single Poisson distribu-
tion is misspecified, whereas a Poisson mixture with three components does
not lead to any discrepancy.

A more formal method is based on the so-called Bayes p-value (Rubin,
1981, 1984; Meng, 1994), defined for a one-sided statistic T (y) as the tail-
area probability Pr(T (yf ) > T (y)|y,MK) which is estimated from posterior
draws as
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Pr(T (yf ) > T (y)|y,MK) = E(I{T (yf )>T (y)}|y,MK)

≈ 1
M

M∑
m=1

I{T (y(m)
f )>T (y)}.

A Bayesian predictive approach that is slightly different from this approach
is considered by Dey et al. (1995).

4.3.5 Further Approaches

Graphical tools for diagnosing mixtures such as quantile–quantile plots and
normal probability plots are discussed in Fowlkes (1979). More recently, Lind-
say and Roeder (1992) considered residual diagnostics for mixtures.

4.4 Likelihood-Based Methods

This section provides a short review of various likelihood-based methods that
have been used to deal with model uncertainty in finite mixture models.

4.4.1 The Likelihood Ratio Statistic

Likelihood-based methods play a central role in testing parametric models
and among these likelihood ratio tests is usually the preferred one, however,
its application to finite mixture models creates some difficulty. Consider two
nested finite mixture models MK and MK+1, with MK being the simpler
model. A standard approach for testing between nested models is to apply a
likelihood ratio test. First, the ML estimators ϑ̂K and ϑ̂K+1, as well as the
corresponding likelihood functions p(y|ϑ̂K ,MK) and p(y|ϑ̂K+1,MK+1) are
determined for both models. Then the likelihood ratio statistic is defined as

LR = −2
(
log p(y|ϑ̂K+1,MK+1) − log p(y|ϑ̂K ,MK)

)
.

Under regularity conditions established by Wilks (1938), the likelihood ra-
tio statistic asymptotically follows a χ2

r-distribution, if model MK is true,
with r being equal to the number of constraints imposed on MK+1 to obtain
MK . If the two finite mixture models differ only in the parameter structure,
but both assume the correct number of components, these regularity condi-
tions typically hold, and the LR statistic may be applied in a straightforward
manner.

However, if MK and MK+1 are finite mixture models with K and K + 1
components, respectively, testing the number of components of a mixture
model through the likelihood ratio statistic (Wolfe, 1970; Hartigan, 1985)
immediately leads to ambiguity because model MK is obtained from model
MK+1 in more than one way. The number of constraints is equal to 1, when
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imposing the constraint ηK+1
K+1 = 0 on MK+1, and equal to dim(θk), when

imposing the constraint θK+1
K = θK+1

K+1.
The main reason behind the difficulties with applying the likelihood ratio

statistic to testing the number of components is the failure of the standard
regularity conditions, on which the asymptotic χ2-distribution relies, if model
MK is actually true (Gosh and Sen, 1985; Hartigan, 1985). A lot of work
has been done to establish the exact asymptotic distribution of LR under
the null hypothesis, when testing homogeneity (K = 1) against heterogeneity
(K > 1); see Titterington et al. (1985, Section 5.4) and McLachlan and Peel
(2000, Section 6.4 and 6.5) for more details and a review of the relevant
literature.

Various suggestions have been made to modify the likelihood ratio statistic
in an appropriate manner. Aitkin and Rubin (1985) place a prior distribution
on η, and apply the LR test to the integrated likelihood p(y|θ1, . . . ,θK), how-
ever, the asymptotic distribution of this test statistic under the null hypothesis
is not necessarily a χ2-distribution. Chen et al. (2001) consider for mixtures
with a univariate component parameter a modified likelihood ratio for testing
homogeneity (K = 1) against heterogeneity (K > 1) which is based on using
for K > 1 the following penalized likelihood function,

log p�(y|ϑK ,MK) = log p(y|ϑK ,MK) + C

K∑
k=1

log(2ηk). (4.3)

From a Bayesian viewpoint, the penalty term in (4.3) is nothing but the log of
a Dirichlet prior D (C + 1, . . . , C + 1), which is known from Subsection 2.3.4
to bound the weights away from zero for appropriate choices of C, and the
penalized likelihood is, up to a constant, in fact equal to the log of the mixture
posterior log p(ϑK |y,MK). Chen et al. (2001) define the modified LR statistic
by

LR� = −2
(
log p�(y|ϑ̂K ,MK) − log p(y|ϑ̂1,M1)

)
,

where ϑ̂K is the penalized ML estimator maximizing (4.3), and show that the
asymptotic distribution of LR� under the null hypothesis of homogeneity is
equal to a mixture of a χ2

1-distribution and a degenerate χ2
0-distribution with

all its mass at 0:

LR� →d
1
2
χ2

0 +
1
2
χ2

1.

The same asymptotic distribution results for the original LR statistic for mix-
tures when the component parameters are considered to be known (Tittering-
ton et al., 1985; Hartigan, 1985).

Chen et al. (2004) extend LR testing based on the penalized likelihood
function to testing the null hypothesis of K = 2 against K > 2 and show that
the asymptotic distribution of this modified LR statistic is equal to a mixture
of χ2

0, χ2
1, and χ2

2 distributions.
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4.4.2 AIC, BIC, and the Schwarz Criterion

Using heuristic arguments on how to account for model complexity, Akaike
(1974) proposed a general criterion for model choice which is equivalent to
choosing the model that maximizes

log p(y|ϑ̂K ,MK) − dK , (4.4)

where ϑ̂K is equal to the ML estimator of model MK . dK = dim(ϑK) is equal
to the dimension of the model and acts as a correction term without which
one would choose the model that maximizes the likelihood function. In (4.4),
dK introduces a severe penalty for high-dimensional models that provide little
additional fit in terms of increasing the likelihood function in comparison to
simpler models. Akaike’s model choice procedure is commonly implemented
by minimizing AIC defined by

AICK = −2 log p(y|ϑ̂K ,MK) + 2dK . (4.5)

Using asymptotic expansions rather than heuristics as did Akaike, Schwarz
(1978) arrived at the conclusion to choose that model for which

SCK = log p(y|ϑ̂K ,MK) − log N

2
dK (4.6)

is largest, where again dK = dim(ϑK). Like Akaike’s criterion, Schwarz’s
criterion (4.6) is often formulated in terms of minus twice the log likelihood
function, also called BIC, which is commonly defined as

BICK = −2 log p(y|ϑ̂K ,MK) + (log N)dK , (4.7)

although other definitions are in use. Evidently SCK = −1/2BICK .
As the first term in AICK and BICK measures the goodness-of-fit, whereas

the second term penalizes model complexity, one selects the model that min-
imizes either AICK or BICK . Quantitatively, AICK and BICK differ only by
the factor by which dK is multiplied. Qualitatively, both criteria provide a
mathematical formulation of the principle of parsimony in model building,
although for large data sets their behavior is rather different.

For log N > 2, Akaike’s criterion favors more complex models than
Schwarz’s criterion and has been shown to be inconsistent, choosing too-
complex models even asymptotically (Bozdogan, 1987). Nevertheless, several
authors (Bozdogan and Sclove, 1984; Solka et al., 1998; Liang et al., 1992) used
AIC for finite mixture models to select the number K of components and to
choose among various constrained and unconstrained parameter structures.

Schwarz’s criterion and BIC are consistent under certain regularity con-
ditions, in particular for i.i.d. observations from exponential families; see the
excellent review of Kass and Raftery (1995). In the context of choosing the
number of components, it is not evident that the regularity conditions for
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deriving Schwarz’s criterion through asymptotic expansions (Schwarz, 1978)
actually hold. As discussed earlier in Subsection 4.2.1, asymptotic normality
does not hold for a finite mixture model which is overfitting the number of
components. Nevertheless, BIC has been applied by many authors to finite
mixture models, among them Roeder and Wasserman (1997b), Fraley and
Raftery (1998), and Dasgupta and Raftery (1998).

Leroux (1992a) proved that, asymptotically, choosing the number of com-
ponents K as to minimize AICK and BICK will not underestimate the true
number of components. Simulation studies comparing various model choice
criteria including AIC and BIC are found in Windham and Cutler (1992),
Biernacki et al. (2000), McLachlan and Peel (2000, Section 6.11), Hawkins
et al. (2001), and Hettmansperger and Thomas (2000). In general, BIC was
found to be consistent under correct specification of the family of the com-
ponent densities (Keribin, 2000), whereas BIC selected too many components
when one of the true, normally distributed components was substituted by a
different distribution, such as the uniform distribution. AIC tends to select
too many components even for a correctly specified mixture.

4.4.3 Further Approaches

Several classification-based information criteria for choosing the number of
components, such as the integrated classification likelihood (ICL) criterion
(Biernacki et al., 2000), have been developed in the context of applying finite
mixture models to clustering data, and are reviewed in Subsection 7.1.4.

Other methods are based on exploring the smallest eigenvalue of the in-
formation ratio matrix I−1

C (ϑ)I(ϑ), which is zero for an overfitting mixture
model (Windham and Cutler, 1992) or minimizing the Kullback–Leibler or
the L2-distance between the true density and the fitted model (Miloslavsky
and van der Laan, 2003).

4.5 Bayesian Inference Under Model Uncertainty

The rest of this section as well as Chapter 5 discusses how Bayesian inference
is carried out under model uncertainty. This section is meant as a short intro-
duction to Bayesian model selection; the issue of how to apply this approach
to model uncertainty in finite mixture models is outlined in great detail in
Chapter 5. Several recent reviews (Godsill, 2001; Green, 2003; Kadane and
Lazar, 2004) deal with various aspects of the Bayesian approach to model se-
lection; classical references are Zellner (1971), Jeffreys (1948), and Bernardo
and Smith (1994).

4.5.1 Trans-Dimensional Bayesian Inference

Assume that Kmax alternative models M1, . . . ,MKmax should be compared,
given data y = (y1, . . . ,yN ). In the Bayesian approach it is assumed that
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each model MK is specified in terms of a sampling distribution p(y|ϑK ,MK)
and a prior distribution p(ϑK |MK), where ϑK ∈ ΘK denotes the collection
of all unknown model parameters appearing in the specification of model
MK . Because the dimension of ϑK changes across the models, consider, for
instance, finite mixture models that differ in the number of components, such
problems have been termed trans-dimensional problem, where “The number
of things you do not know is one of the things you do not know”(Roeder and
Wasserman, 1997a).

Following Jeffreys (1948), a categorical model indicator may be introduced,
which lives on the model space Ω = {M1, . . . ,MKmax}. The Bayesian ap-
proach requires the choice of a prior distribution over Ω in terms of prior
model probabilities p(MK) for all MK ∈ Ω. Bayesian inference then is con-
sidered as a matter of joint inference about the model indicator and all model
parameters ϑ1, . . . ,ϑKmax , given the data y.

This is achieved by deriving the posterior density p(MK , ϑ1, . . . ,ϑKmax |y)
using Bayes’ theorem:

p(MK , ϑ1, . . . ,ϑKmax |y) ∝ (4.8)
p(y|MK , ϑ1, . . . ,ϑKmax)p(ϑ1, . . . ,ϑKmax |MK)p(MK),

where, as usual, the normalizing constant has been dropped. This posterior
distribution is rather complex, and there is little hope to obtain any analytical
results for Bayesian inference.

A very useful approach for dealing with this posterior are trans-dimensional
Markov chain Monte Carlo methods, which use a Markov chain to obtain
draws from the joint posterior density p(MK , ϑ1, . . . ,ϑKmax |y). These meth-
ods move through the model space Ω = {M1, . . . ,MKmax} during sam-
pling and, marginally, provide draws from the discrete posterior distribution
p(MK |y). Many different trans-dimensional MCMC methods have been pro-
posed in the literature and their application to finite mixture models is dis-
cussed in much detail in Section 5.2.

4.5.2 Marginal Likelihoods

One should keep in mind that it is in general not really the joint density
p(MK , ϑ1, . . . ,ϑKmax |y), defined earlier in (4.8), which is the primary ob-
ject of interest under model uncertainty, but more often this is the marginal
posterior density p(MK |y) that provides the posterior probability of the var-
ious models given the data. These probabilities are obtained from Bayes’ rule
(Bernardo and Smith, 1994) as

p(MK |y) ∝ p(y|MK)p(MK), (4.9)

where the so-called marginal likelihood p(y|MK) is given by

p(y|MK) =
∫

ΘK

p(y|MK , ϑK)p(ϑK |MK)dϑK .
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Evidently, Bayes’ rule adapts for each model the prior probability p(MK)
in light of the data y. The posterior distribution p(MK |y) is available from
Bayes’ rule (4.9) only up to proportionality, and needs to be normalized over
all models under consideration. To do so, it is necessary to derive the marginal
likelihood p(y|MK) separately for each model MK for K = 1, . . . , Kmax.

For finite mixture models with more than one component the marginal
likelihood p(y|MK) is not available in closed form, and obtaining a good
numerical approximation to p(y|MK) is quite a challenging computational
problem. Unfortunately, MCMC estimation as in Section 3.5 yields no direct
information about the model indicator, and the marginal likelihood p(y|MK)
has to be determined in a postprocessing manner. Various numerical approx-
imation methods have been proposed in the literature, which are discussed in
much detail in Sections 5.4 and 5.5.

4.5.3 Bayes Factors for Model Comparison

A useful way to compare two models M1 and M2 is the Bayes factor; see
Kass and Raftery (1995) for an authoritative and comprehensive review. The
odds ratio in favor of one of the models, say model M1, reads

p(M1|y)
p(M2|y)

=
p(y|M1)
p(y|M2)

p(M1)
p(M2)

,

and turns out to be the product of the prior odds and the ratio of the marginal
likelihood, B12 = p(y|M1)/p(y|M2), which is also called the Bayes factor.

Table 4.1. Relations among the log Bayes factor and the posterior probability for
two models under comparison (assuming equal prior probability)

log B12 Pr(M1|y) Pr(M2|y)

–7 0.001 0.999
–6 0.002 0.998
–5 0.007 0.993
–4 0.018 0.982
–3 0.047 0.953
–2 0.119 0.881
–1 0.269 0.731
0 0.5 0.5

log B12 Pr(M1|y) Pr(M2|y)

7 0.999 0.001
6 0.998 0.002
5 0.993 0.007
4 0.982 0.018
3 0.953 0.047
2 0.881 0.119
1 0.731 0.269
0 0.5 0.5

The Bayes factor provides a measure of whether the data y increased or
decreased the odds on M1, relative to M2. Hence, B12 > 1 means that M1 is
relatively more plausible than M2 in the light of the observed data, whereas
the opposite is true if B12 < 1. In practice, it is usual to consider log B12,
being the difference between the log of the marginal likelihoods.
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Table 4.1 translates log B12 into the posterior probabilities of the two
models under equal prior probability. If log B12 lies between −1 and 1, either of
the two models has considerable posterior probability. log B12 around 3 gives
a probability of around 95% for model M1, whereas log B12 lying around −3
gives the same probability for model M2. If log B12 goes to minus infinity,
the posterior probability of hypothesis M2 goes to 1 and we may “reject”
hypothesis M1 in favor of “accepting” hypothesis M2. If log B12 goes to plus
infinity, the posterior probability of hypothesis M1 goes to 1, and we may
“reject” hypothesis M2 in favor of “accepting” hypothesis M1.

This symmetry between the two hypotheses, which is also clearly visible
in Table 4.1, is in sharp contrast to classical hypothesis testing such as the
likelihood ratio test considered in Subsection 4.4.1, where the simpler model
is considered to be the “null” hypothesis, which may be rejected, but never
accepted. For a fundamental discussion of this remarkable difference between
the Bayesian and the classical approach to hypothesis testing, see, for instance,
Berger and Sellke (1987) and Berger and Delampady (1987), and the references
therein.

The Bayes factor is in general a consistent tool of model selection. Assume
that the Bayes factor is applied to nested models M1 and M2, with M2
being the more complex one. The following result on the asymptotic behavior
of the Bayes factor is due to Kass and Vaidyanathan (1992) and holds under
Laplace regularity in the sense of Kass et al. (1990). Crawford (1994, Theorem
3.1) verified that Laplace regularity holds for identifiable mixtures from the
exponential family.

If model M1 is true, then with increasing N the Bayes factor approaches
infinity at a rate that depends on the difference in model complexity,

B12 = O(N (d2−d1)/2), (4.10)

and the posterior probability Pr(M1|y) converges to 1. If model M2 is true,
then for any fixed model parameter ϑ2 the Bayes factor approaches minus
infinity exponentially fast,

B12 = exp{−O(N)} ,

and the posterior probability Pr(M2|y) converges to 1.
It turns out that the Bayes factor implicitly penalizes model complexity if

two nested models M1 and M2 provide a comparable fit for the data. More
precisely, if the distance between the two models approaches 0 at the rate
1/

√
N , then (4.10) holds even if model M2 is true (Kass and Vaidyanathan,

1992) and the Bayes factor prefers the simpler model M1 over the more com-
plex model if M2 is close enough to M1. In this respect, Bayesian model se-
lection is related to model choice criteria such as AIC, BIC, and the Schwarz
criterion, which introduce an explicit penalty term for model complexity; see
again Subsection 4.4.2. Under Laplace regularity, Schwarz’s criterion may be
derived as an asymptotic approximation to the marginal likelihood:



4.5 Bayesian Inference Under Model Uncertainty 121

log p(y|MK) = SCK + O(1); (4.11)

see Gelfand and Dey (1994) for more details.

4.5.4 Formal Bayesian Model Selection

Model selection through Bayes factors is easily extended to deal with more
than two models. If the number Kmax of alternative models M1, . . . ,MKmax

is not too large, the standard approach is to compare all possible models
under consideration by computing the posterior probabilities p(MK |y) for
each model. Based on these posterior probabilities, the framework of Bayesian
decision theory is used for model selection which is reviewed, for instance, in
Bernardo and Smith (1994).

A basic requirement for applying a decision-theoretic approach to Bayesian
model selection is the feasibility to quantify the loss made by a wrong decision.
Let R(MK̂ ,MK) denote the loss made by selecting model MK̂ , if model MK

is true. The loss of selecting model MK̂ is a random quantity, which depends
on the unknown true model MK . By quantifying posterior evidence in favor
of each model by the posterior probability p(MK |y), one could determine the
expected loss associated with selecting model MK̂ , for each K = 1, . . . , Kmax:

E(MK̂) =
Kmax∑
K=1

R(MK̂ ,MK)p(MK |y).

The best strategy is then to select the model with the lowest expected loss.
If one model, say MK̂ , dominates the others in the sense that p(MK̂ |y) = 1,
choosing this model will be optimal, regardless of the loss function. In all other
cases, the decision of course depends on the loss function. In the absence of
specific information about the actual loss, it is usual to consider the 0/1 loss
function:

R(MK̂ ,MK) =
{

0, K̂ = K,

1, K̂ �= K.
,

which implies the following expected risk,

E(MK̂) =
Kmax∑

K=1,K �=K̂

p(MK |y) = 1 − p(MK̂ |y).

Thus choosing the model MK̂ with the highest posterior probability p(MK̂ |y)
will minimize the risk under the 0/1 loss function. If all models have the same
prior probability p(MK), this strategy results in selecting the model with the
highest marginal likelihood p(y|MK). The risk of this decision is equal to
1 − p(MK̂ |y), which is small only if p(MK̂ |y) is close to 1.
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4.5.5 Choosing Priors for Model Selection

Model selection is far more sensitive to choosing appropriate priors than is
parameter estimation. This concerns in particular parameters that are un-
known only in certain models. Consider, as above, two nested models M1
and M2, with M2 being the more complex one. Assume that the models are
parameterized such that ϑ2 splits as ϑ2 = (ϑ1, ψ), with ϑ1 being a parameter
common to both models, whereas ψ is unconstrained under model M2 and
constrained to ψ = ψ0 under model M1. Verdinelli and Wasserman (1995)
showed that in this case the Bayes factor in favor of model M1 is equal to:

B12 =
p(ψ0|y,M2)
p(ψ0|M2)

E
(

p(ϑ1|M1)
p(ϑ1|ψ0,M2)

)
, (4.12)

where the expectation is with respect to the posterior p(ϑ1|ψ0,y,M2). The
first ratio is commonly called the Savage–Dickey density ratio (Dickey, 1971).

Formula (4.12) allows us to study the effect of changing the spread of
the prior p(ψ|M2) which is assumed to be centered at ψ0. Increasing the
spread will hardly affect the posterior ordinate p(ψ0|M2,y), whereas the prior
ordinate p(ψ0|M2) decreases, which in turn will increase evidence in favor of
model M1. For the extreme case, where the prior p(ψ|M2) is becoming more
and more vague, log B12 goes to infinity, and the simpler model will be chosen
with probability 1, regardless of the data y, the sample size N , and the true
value of ψ. This problem became known as Lindley’s paradox (Lindley, 1957).

Such spurious evidence in favor of too-simple models is reported in Atkin-
son (1978) and Smith and Spiegelhalter (1980) in the context of compar-
ing regression models. A simple example illustrates that comparable difficul-
ties exist in the context of mixture models. Suppose that under model M1,
Y ∼ N (0, 1), whereas under M2, Y ∼ 0.5N (−µ, 1) + 0.5N (µ, 1), with prior
p(µ|M2) ∼ N (0, δ). Then given N observations y1, . . . , yN the Bayes factor
of model M1 versus model M2 reads:

B12 =
√

2πδ/

∫
e−(N+1/δ)µ2/2

N∏
i=1

1
2
(eyiµ + e−yiµ)dµ.

By increasing the variance δ of the prior p(µ|M2), 1/δ goes to zero and the
denominator becomes independent of δ, whereas the numerator increases with
δ. Evidence in favor of model M1 increases, regardless of the true value of
µ and the number N of observations, and consequently Pr(M1|y) → 1, as
δ → ∞, provided that the prior probability Pr(M1) remains fixed.

It is possible to detect spurious evidence in favor of the restricted model
by exploring the marginal posterior p(ψ|M2,y) of ψ under model M2. If this
posterior is clearly bounded away from ψ0 and the Bayes factor strongly favors
model M1, this points at Lindley’s paradox. A pragmatic way of reacting to
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Lindley’s paradox is to decrease the spread of the prior, however, if the spread
is too small, a bias toward the restricted model might be introduced once more.

This suggests the existence of an optimal prior, which gives maximal ev-
idence in favor of the more complex model, which was actually proven by
Edwards et al. (1963) for the case where no unknown parameters appear in
the simple model. For the more general case where unknown parameters are
present and ψ is multivariate, Kass and Vaidyanathan (1992) gave an asymp-
totic approximation to this prior for null-orthogonal models.

For finite mixture models the issue of choosing sensible priors under model
uncertainty is by far less understood, and we try to shed some light on this
in Subsection 5.3.2.

4.5.6 Further Approaches

A Bayesian testing method for the number of components based on the
Kullback–Leibler distance was proposed by Mengersen and Robert (1996);
an extension was considered by Sahu and Cheng (2003). In Sahu and Cheng
(2003), a stepwise procedure is proposed that starts with a mixture distri-
bution with enough components to be overfitting with high probability. A
collapsing approach based on the Kullback–Leibler distance between a mix-
ture with K and K −1 components is proposed that does not require refitting
of the model at each time.



5

Computational Tools for Bayesian Inference for
Finite Mixtures Models Under Model
Specification Uncertainty

5.1 Introduction

In this chapter it is assumed that Kmax finite mixture models M1, . . . , MKmax

should be compared given data y = (y1, . . . ,yN ). Typically MK is a model
based on a finite mixture distribution from a certain family with K com-
ponents, however, more general model choice problems may arise such as
choosing the parameter structure.

There are basically two Bayesian approaches to deal with model specifica-
tion uncertainty for a finite mixture model. One approach, which is reviewed
in Section 5.2, is to apply trans-dimensional Markov chain Monte Carlo to
obtain draws from the joint posterior density p(MK , ϑ1, . . . ,ϑKmax |y). The
second approach is to compute for all possible models the marginal likelihood
p(y|MK), which is defined for a finite mixture model in Section 5.3, and to
apply Bayes’ rule to quantify posterior evidence in favor of each model. The
computation of the marginal likelihood for a finite mixture model is quite a
challenge. Section 5.4 discusses several simulation-based approaches, whereas
Section 5.5 deals with approximations based on density ratios. Finally, it is dis-
cussed in Section 5.6, that from a theoretical point of view, both approaches
are equivalent, and they are nothing but different computational tools de-
signed to estimate exactly the same quantity, namely the marginal posterior
distribution over the model space Ω = {M1, . . . ,MKmax}.

5.2 Trans-Dimensional Markov Chain Monte
Carlo Methods

In this section it is assumed that Kmax models M1, . . . , MKmax should be
compared given the data y = (y1, . . . ,yN ), where MK is a model based on a
finite mixture distribution from a certain family with K components, and the
data are possibly vector-valued. During the past decade, trans-dimensional
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MCMC methods emerged as a popular method of dealing with mixtures with
an unknown number of components. Many such methods were suggested; see
Green (2003) for an excellent review of these methods, and Godsill (2001) for a
discussion of the relationship between MCMC methods for model uncertainty.

One early development appears in Carlin and Chib (1995), who applied
product-space MCMC methods to a normal mixture model with an unknown
number of components; see Subsection 5.2.1 for more details. The most influ-
ential work on trans-dimensional MCMC methods for finite mixture models
has been the seminal paper by Richardson and Green (1997), who suggest
applying the reversible jump Metropolis–Hastings algorithm, introduced by
Green (1995), to the problem of choosing the number of components. Re-
versible jump MCMC is reviewed in Subsection 5.2.2. Phillips and Smith
(1996) discuss a jump diffusion approach for selecting the number of compo-
nents in a mixture model which is then applied to univariate mixtures of nor-
mal distributions. Stephens (2000a) applied birth and death MCMC methods
to select the number of components in a mixture model; see Subsection 5.2.3
for more detail.

5.2.1 Product-Space MCMC

Product-space Markov chain Monte Carlo methods are based on Markov
chains that sample the joint vector (M, ϑ1, . . . ,ϑKmax) from the posterior
p(M, ϑ1, . . . ,ϑKmax |y), which is derived by Bayes’ theorem as

p(M, ϑ1, . . . ,ϑKmax |y)
∝ p(y|M,ϑ1, . . . ,ϑKmax)p(ϑ1, . . . ,ϑKmax |M)p(M). (5.1)

This is the density of a distribution over the product space:

Ω ×
Kmax⊗
K=1

ΘK . (5.2)

Full product-space MCMC methods live on this complex state space, and use
Gibbsian-type transition kernels by iteratively sampling the model indicator
M and the model parameters (ϑ1, . . . ,ϑKmax) from the appropriate condi-
tional densities. This method was first discussed in full generality by Carlin
and Chib (1995); various modifications were suggested later, for instance a re-
duced Gibbs sampler that resamples only the model parameter corresponding
to the most recent model indicator (Green and O’Hagan, 2000) and prod-
uct space MCMC based on a Metropolis–Hastings kernel (Dellaportas et al.,
2002).

Carlin and Chib (1995) realized the need of specifying a joint prior
p(ϑ1, . . . ,ϑKmax |M) of all model parameters for all possible models M, in
order to obtain the joint posterior p(M, ϑ1, . . . ,ϑKmax |y) in (5.1). This is
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in sharp contrast to methods that directly determine the marginal poste-
rior probabilities Pr(MK |y) based on marginal likelihoods, and require only
the specification of the marginal prior density p(ϑK |MK). To simplify the
specification of this prior, they assume conditional independence among the
model-specific parameters (ϑ1, . . . ,ϑKmax). In this case the joint prior may
be rewritten for a certain realization of the model indicator, for instance,
M = MK , as

p(ϑ1, . . . ,ϑKmax |MK) = p(ϑK |MK)
Kmax∏

j=1,j �=K

p(ϑj |MK). (5.3)

Even under prior independence we need a prior for ϑK not only under the
assumption that the corresponding model MK is true, but also for any other
model parameter ϑj , j �= K, for which MK is not true, in order to obtain the
joint posterior p(MK , ϑ1, . . . ,ϑKmax |y). Under this prior the joint posterior
density reads:

p(MK , ϑ1, . . . ,ϑKmax |y) ∝ p(y|MK , ϑK)p(ϑK |MK)p(MK)

·
Kmax∏

j=1,j �=K

p(ϑj |MK). (5.4)

Carlin and Chib (1995) call the densities p(ϑK |M �= MK) pseudo-priors,
as they actually have no influence on the marginal posterior probabilities
Pr(MK |y).

To sample from (5.4) Carlin and Chib (1995) implement a two-block
Gibbs sampler by iteratively sampling the model indicator M from the con-
ditional densities p(M|ϑ1, . . . ,ϑKmax ,y) and sampling all model parameters
ϑ1, . . . ,ϑKmax from p(ϑ1, . . . ,ϑKmax |M,y). The relevant conditional densi-
ties are obtained immediately from the joint distribution given in (5.4). The
probability p(MK |ϑ1, . . . ,ϑKmax ,y), for instance, reads:

p(MK |ϑ1, . . . ,ϑKmax ,y) ∝ (5.5)

p(y|ϑK ,MK)p(ϑK |MK)
Kmax∏

j=1,j �=K

p(ϑj |MK)p(MK).

It is, however, not necessary to update all model-specific parameters at each
sweep. Green and O’Hagan (2000) prove that it is a valid strategy to run a
reduced sampler which updates the model indicator M and only the corre-
sponding model parameter ϑM, whereas the remaining model parameters ϑj

for j �= M are held fixed. This sampler is described in the following Algo-
rithm 5.1.

Algorithm 5.1: Product-Space MCMC Specify starting values ϑ
(0)
1 , . . . ,ϑ

(0)
Kmax

and select pseudo-priors p(ϑK |M �= MK) for each K = 1, . . . , Kmax. For
m = 1, . . . , M iterate the following steps.
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(a) Sample M(m) from the discrete posterior p(M|ϑ(m−1)
1 , . . . ,ϑ

(m−1)
Kmax

,y)
given in (5.5).

(b) If M(m) = K, sample ϑ
(m)
K from p(ϑK |MK ,y) given by

p(ϑK |MK ,y) ∝ p(y|ϑK ,MK)p(ϑK |MK), (5.6)

whereas all other model-specific parameters remain unchanged, ϑ
(m)
j =

ϑ
(m−1)
j , for j �= K.

Choosing the Pseudo-Priors

The most difficult point in applying product-space MCMC methods are sen-
sible choices of the pseudo-priors p(ϑK |M �= MK). The pseudo-priors do not
appear when updating the model parameters in Algorithm 5.1, but are rele-
vant for sampling the model indicators from (5.5). The pseudo-priors may be
chosen in any convenient way to improve the mixing of the resulting MCMC
sampler.

Chib (2001) recommends choosing pseudo-priors p(ϑK |M �= MK) that
closely mimic the model-specific posterior p(ϑK |MK ,y). Although this con-
tradicts intuition, it is the optimal choice with respect to the mixing properties
of the sampler, as shown by Chib (2001, p.3634). If these two densities were
identical, then the right-hand side of (5.5) would be equal to

p(y|ϑK ,MK)p(ϑK |MK)p(MK)
Kmax∏

j=1,j �=K

p(ϑj |Mj ,y)

= p(y|MK)p(MK)
Kmax∏
j=1

p(ϑj |Mj ,y) ∝ p(y|MK)p(MK).

Under this specific choice of priors, one would actually sample the model
indicators from the true marginal posterior p(MK |y), and the Gibbs sampler
reduces to i.i.d. sampling.

To avoid the specification of any pseudo-prior, Green and O’Hagan (2000)
suggest choosing the same prior over all models, p(ϑK |Mj) = p(ϑK |MK)
for all j �= K . In this case the pseudo-prior cancels from (5.5), and we
are left with a sampler that works without having to specify any pseudo-
priors. Green and O’Hagan (2000) report that the practical performance of
this sampler is not very encouraging, which is not surprising in the light of the
convincing recommendation of Chib (2001, p.3634) to select the model-specific
posterior p(ϑK |MK ,y) rather than the model-specific prior p(ϑK |MK) as
pseudo-prior.
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Product-Space MCMC for Mixture Models

To implement Algorithm 5.1 for mixture models it necessary to sample from
the posterior p(ϑK |MK ,y) given in (5.6), which does not belong to a well-
known distribution family. Following Dellaportas et al. (2002), the sampler
may be modified by first sampling Mnew from a proposal m(Mnew|Mold)
that is independent of any model-specific parameters, with Mold being the
current model indicator.

Conditional on Mold = MK and Mnew = Mj , one samples ϑj from a
nondegenerate proposal density q(ϑj |MK , ϑK ,Mj) which does not depend on
ϑold

j . As shown by Dellaportas et al. (2002), this leads to a valid Metropolis–
Hastings algorithm with the acceptance probability given by min(1, A), where

A =
p(y|ϑj ,Mj)p(ϑj |Mj)p(Mj)q(ϑK |Mj , ϑj ,MK)m(MK |Mj)

p(y|ϑK ,MK)p(ϑK |MK)p(MK)q(ϑj |MK , ϑK ,Mj)m(Mj |MK)
.

5.2.2 Reversible Jump MCMC

Green (1995) introduced the reversible jump Metropolis–Hastings algorithm
to sample from the posterior distribution p(M, ϑ1, . . . ,ϑKmax |y) given by (5.1)
for rather general model specification problems. A pedagogical description of
the reversible jump formalism is found in Waagepetersen and Sorensen (2001).
Reversible jump MCMC was applied in Richardson and Green (1997) to select
the number of components for univariate mixtures of normal distributions,
and since then found application to many other mixture distributions, such as
mixtures of exponential distributions (Gruet et al., 1999), mixtures of Poisson
distributions (Viallefont et al., 2002; Dellaportas et al., 2002), mixtures of
spherical multivariate normal distributions (Marrs, 1998), and mixtures of
arbitrary multivariate normal distributions (Dellaportas and Papageorgiou,
2006). Further recent applications are by Nobile and Green (2000), Green and
Richardson (2001), Fernández and Green (2002), and Bottolo et al. (2003).
Robert et al. (2000) consider selecting the number of states in a hidden Markov
model.

Reversible jump MCMC is based on creating a Markov chain that lives on
the state space

X =
Kmax⋃
K=1

(MK × Θk) , (5.7)

which is of smaller dimension than the product space defined in (5.2). The
sampler “jumps” between the different models, by making moves from a cur-
rent model, say (MK , ϑK) to a new model (Mj , ϑj), while retaining detailed
balance that ensures the correct limiting distribution, provided that the chain
is irreducible and aperiodic. Although this resembles the Metropolis–Hastings
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algorithm of Dellaportas et al. (2002), which was briefly described at the end
of Subsection 5.2.1, the transition kernels used in reversible jump MCMC are
far more general, allowing in particular moves with carefully selected degen-
erate proposal densities q(ϑj |MK , ϑK ,Mj).

Degenerate proposals arise in a natural way when jumping between nested
models, as it is likely that the model parameters have some common features,
and certain parameters of the new model may even be a deterministic function
of some parameters of the old one. To capture potential relations between
ϑK and ϑj , the Metropolis–Hastings algorithm proposes values for ϑj via
a mapping ϑj = g(ϑK ,u) that depends on ϑK and some random variable
u. In the standard Metropolis–Hastings algorithm all components of ϑj have
to be stochastic, given ϑK . The reversible jump MCMC Metropolis–Hastings
algorithm is more flexible in this respect, as ϑj may be completely or partially
deterministic, given ϑK . We are, however, not completely free in our choice
of g(ϑK ,u), as the following move from a mixture with K components with
model parameter ϑK = (θ1, . . . ,θK , η1, . . . , ηK) to a mixture with j = K + 1
components illustrates.

To obtain ϑK+1 = (θ1, . . . ,θK+1, η1, . . . , ηK+1), leave all components but
component k� in the original mixture unchanged. Component k� is duplicated
(index these new components by k1 and k2) by adding a component with the
same component parameter θk� ,

θk1 = θk� , θk2 = θk� , (5.8)

whereas the weight ηk� is split between components k1 and k2:

ηk1 = u1ηk� , ηk2 = (1 − u1)ηk� . (5.9)

u1 is a random variable with a nondegenerate proposal density q(u1) defined
on [0,1]. As it turns out, this is not a valid move. When we consider the reverse
move from an arbitrary mixture with K + 1 components defined by ϑK+1 to
a mixture with K components, it is possible to merge the component weights
ηk1 and ηk2 as in (5.9) to obtain ηk� . However, there is no way to obtain θk�

from θk1 and θk2 in such a way that the deterministic relation (5.8) is fulfilled,
as the probability that θk1 and θk2 are identical is zero.

Most ingeniously, Green (1995) realized that a solution to the problem is
simply adding noise to match dimensions. Consider, for instance, the following
way of splitting component k�,

θk1 = θk� − u2, θk2 = θk� + u2,

where u2 is a random vector of the same dimension as θk� with a non-
degenerate proposal density q(u2), centered at 0. Then in the reverse move,
θk� is defined as the mean of θk1 and θk2 .

As a general rule, when moving to the higher model space, as many ran-
dom variables u need to be drawn from a nondegenerate proposal q(u) as
correspond to the number of additional parameters:
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dim(ϑK+1) = dim(ϑK) + dim(u).

These random variables are then used to construct ϑK+1 from ϑK through
a function gK,K+1(ϑK ,u), which has to be invertible in order to guarantee
reversibility.

Reversible Jump MCMC for Finite Mixture Models

For finite mixture models reversible jump MCMC typically operates on the
augmented parameter space, where the allocation variables S are included as
unknown model parameters.

To implement reversible jump MCMC a first step is to design a strategy
for moving between mixture models with different numbers of components.
If the current model is a mixture with K > 1 components, then it is usual
to reduce the searching strategy to moves that either preserve the number of
components, or lead to a mixture with K − 1 or K + 1 components, respec-
tively. It is possible to design more than one type of move to jump from K to
K + 1 or K − 1 components. Jumps are achieved by adding new components,
deleting existing components, and splitting or merging existing components.
The various moves could be scanned systematically or could be selected ran-
domly. Reversible jump MCMC is implemented through the following algo-
rithm which extends the algorithm suggested by Richardson and Green (1997)
to general finite mixture models.

Algorithm 5.2: Reversible Jump MCMC for a Finite Mixture Model Start
with a certain mixture model with K components and select classifications S
and a hyperparameter δ for the prior p(ϑK |δ). Repeat the following steps for
m = 1, . . . , M .

(a) Perform the following dimension-preserving move.
(a1) Update the model-specific parameter ϑK = (θK

1 , . . . ,θK
K , ηK) as de-

scribed in step (a) of Algorithm 3.4.
(a2) Update the current allocation S as described in step (b) of Algo-

rithm 3.4.
(a3) Update the hyperparameter δ of the prior p(ϑK |δ) if it is random.

(b) Perform the following dimension-changing move.
(b1) Split one mixture component into two components or merge two com-

ponents into one.
(b2) Birth or death of an empty component.

In step (b1), the choice between splitting and merging is random in
Richardson and Green (1997), as is the choice between birth and death in
step (b2). Alternatively, Dellaportas and Papageorgiou (2006), in the context
of multivariate mixtures, sweep through all steps randomly. In the latter case,
no rejection step is needed as long as the probability of selecting a dimension-
preserving move is independent of the current state of the Markov chain.
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Ideally, the dimension-changing moves are designed to have a high prob-
ability of acceptance, so that the sampler explores the different models ade-
quately. Although invariance will hold for arbitrary moves, the efficiency of
the algorithm may depend crucially on the particular choice. As emphasized
by Green (1995, p.715), intuition can be used to choose moves that possibly
induce good mixing behavior. An important contribution to reversible jump
MCMC is the work by Brooks et al. (2003) on the efficient construction of
moves.

For practical implementation in the context of finite mixture models, it
is sufficient to choose a matching function ϑK+1 = gK,K+1(ϑK ,u) together
with a proposal density qK,K+1(u) to perform moves from MK to MK+1,
and the reverse move

(ϑK ,u) = g−1
K,K+1(ϑK+1),

could be used to move from MK+1 to MK . Such moves form a reversible pair
with acceptance probability min(1, A) and min(1, 1/A), respectively.

Algorithm 5.3: Moving to a Mixture with K + 1 Components in Reversible
Jump MCMC Assume that the current model MK is a mixture with K
components, the model parameter being equal to ϑK . Choose a move of type
h with probability mh(MK , ϑK) which is allowed to depend on the current
number K of components and on ϑK . If this move suggests jumping to a
mixture model MK+1 with K + 1 components, proceed in the following way.

(a) Match the dimensions between the models: propose u from a proposal
density qK,K+1(u), and determine ϑK+1 from

ϑK+1 = gK,K+1(ϑK ,u), (5.10)

where gK,K+1(·) may depend on the move type h.
(b) Reallocate the observations according to a proposal q(Snew|S,ϑK+1).
(c) Move to the finite mixture model MK+1 with component parameter ϑK+1

and allocations Snew with probability min(1, A), where A depends on ϑK ,
ϑK+1, S and Snew, and is equal to

A = (likelihood ratio) × (prior ratio) × (proposal ratio) × |Jacobian|,
with

likelihood ratio =
∏

i:Snew
i �=Si

p(yi|θSnew
i

)
p(yi|θSi

)

prior ratio =
p(Snew|ϑK+1,MK+1)p(ϑK+1|MK+1)Pr(MK+1)

p(S|ϑK ,MK)p(ϑK |MK)Pr(MK)

proposal ratio =
mh(ϑK+1,MK+1)

q(Snew|S,ϑK+1)qK,K+1(u)mh(ϑK ,MK)

|Jacobian| =
∣∣∣∣∂gK,K+1(ϑK ,u)

∂(ϑK ,u)

∣∣∣∣ .
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Designing Split and Merge Moves

Split and merge moves typically are reversible pairs, that usually are con-
structed by first formulating how components are merged. Then random noise
is added to achieve dimension matching. This random noise is used to define a
split move that reduces to the original mixture when the split move is reversed.

Merging starts by choosing a pair k1 and k2 of components that are com-
bined to form a component labeled k�, reducing the current number of compo-
nents by one. In Richardson and Green (1997), this is a deterministic move,
once k1 and k2 have been chosen. Whereas it appears natural to add the
weights ηk1 and ηk2 to define ηk� ,

ηk� = ηk1 + ηk2 , (5.11)

there exists much more freedom in constructing the component parameter θk�

from θk1 and θk2 . Richardson and Green (1997) show how moment matching
could be used to construct θk� . The idea is that any move that leaves certain
aspects of the implied marginal distribution unchanged is likely to be accepted.
For a mixture of univariate normal distributions, for instance, Richardson
and Green (1997) suggest a move that preserves the first two moments of the
marginal density; see Subsection 6.4.2 for more detail.

In general, θk� is defined in such a way that for a set of suitable functions
hj :Y → �, the expectation of hj(Y) with respect to the marginal distribution
p(y|ϑK), as given by (1.19), is unchanged, when moving to ϑK−1:

E(hj(Y)|ϑK) = E(hj(Y)|ϑK−1).

When merging two components k1 and k2, while leaving all other components
unchanged, this leads to the following set of equations,

E(hj(Y)|θk�)ηk� = E(hj(Y)|θk1)ηk1 + E(hj(Y)|θk2)ηk2 . (5.12)

The functions hj(Y) could be selected in such a way that important features
of the component densities are not allowed to change arbitrarily. Typically,
dim(θk) linearly independent functions will be needed to achieve reversibility.
For univariate mixtures with a one-dimensional component parameter θk, only
a single function h(Y ), in most cases h(Y ) = Y , is needed:

ηk�E(Y |θk�) = ηk1E(Y |θk1) + ηk2E(Y |θk2).

Next consider a split move, where a component k� with parameters (θk� , ηk�)
is chosen at random and split into two components with parameters (θk1 , ηk1)
and (θk2 , ηk2), respectively. When reversing the split move, the conditions
(5.11) and (5.12) need to be fulfilled, thus there are dim(θk) + 1 degrees of
freedom to match the dimension. One degree of freedom is used to split the
weights as in Richardson and Green (1997):

ηk1 = ηk�u1, ηk2 = ηk�(1 − u1), (5.13)
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where u1 is a random variable with density q1(u1) defined on [0,1], for instance,
u1 ∼ B (2, 2).

To satisfy the remaining degrees of freedom, a random vector u2 of dimen-
sion dim(θk) with nondegenerate density q2(u2) is chosen. u2 is then used to
construct θk1 and θk2 from θk� in such a way that (5.12) is fulfilled:

θk1 = g1(ηk� , u1, θk� ,u2),
θk2 = g2(ηk� , u1, θk� ,u2). (5.14)

This is in general not as easy as it appears. The choice of the distribution of the
random vector u2 is not totally free, in particular if some elements of θk are
subject to nonnegativity constraints, or even more complex constraints such
as positive definiteness for covariance matrices Σk in a multivariate mixture
of normals have to be respected; see Subsection 6.4.2 for more details. In this
case the distribution of the random vector u2 must be chosen in such a way
that θk1 and θk2 do not violate these constraints.

The split move is completed by splitting the allocations. For all i �= k�, the
allocation remains unchanged, thus Snew

i = Si. Allocation of all observations
in component k� is done according to the standard classification rule:

Pr(Snew
i = k1|Si = k�, ϑK+1) =

ηk1p(yi|θk1)
ηk1p(yi|θk1) + ηk2p(yi|θk2)

.

For a mixture with K components, a split move is selected with probability
bK , whereas a merge move is selected with probability dK = 1 − bK . Usually,
an upper bound Kmax has to be specified. Obviously, d1 = 0 and bKmax = 0,
and typically dK = bK = 0.5 for 1 < K < Kmax. There is a random choice
between splitting and combining, for 2 ≤ K ≤ Kmax − 1, and of course no
combining for K = 1, and no splitting for K = Kmax. It should be noted that
this split move itself is independent of the actual number K of components.

It is possible to simplify the acceptance probability, defined in (5.11), for
a split move. The functions defined in (5.13) and (5.14) are sufficient to de-
termine the determinant of the Jacobian appearing in (5.11), which reduces
to

|Jacobian| =
∣∣∣∣∂(ηk1 , ηk2 , θk1 , θk2)

∂(ηk� , u1, θk� ,u2)

∣∣∣∣ .

A bit of algebra is necessary to work out that the acceptance probability for
a split move reduces to the following quantity,

A =
∏

i:Si=k�

ηk1/ηk�p(yi|θk1) + ηk2/ηk�p(yi|θk2)
p(yi|θk�)

(5.15)

×
(

ηk1ηk2

ηk�

)e0−1
p(θk1 |δ)p(θk2 |δ)Pr(MK+1)
B(e0, Ke0)p(θk� |δ)Pr(MK)

× dK+1

bKq1(u1)q2(u2)

∣∣∣∣∂(ηk1 , ηk2 , θk1 , θk2)
∂(ηk� , u1, θk� ,u2)

∣∣∣∣ ,



5.2 Trans-Dimensional Markov Chain Monte Carlo Methods 135

where e0 is the parameter appearing in the D (e0, . . . , e0) prior on the weight
distribution η.

The merge move is easily obtained from the split move. Whereas the
weights are added as in (5.11), the moment matching condition in (5.12) is
used to define θk� . To compute the acceptance rate, u1 and u2 have to be
reconstructed. From (5.13) we obtain:

u1 =
ηk1

ηk�

.

u2 is obtained by inverting the functions g1 and g2 defined in (5.14). The
acceptance probability for a combine move reads: min(1, A−1), where A is the
acceptance probability for a split move.

Split and Merge Moves for Poisson Mixtures

For a mixture of Poisson distributions only a single function h(Y ) is needed
to define the combine move, because θk = µk is one-dimensional. Matching
h(Y ) = Y as in (5.12) yields:

ηk�µk� = ηk1µk1 + ηk2µk2 . (5.16)

Only a univariate random variable u2 is needed to match dimensions. When
splitting a component with mean µk� , the means µk1 and µk2 must satisfy
(5.16), and both of them need to be positive. This implies the following con-
straint on µk1 ,

0 ≤ µk1 ≤ ηk�

ηk1

µk� .

To construct µk1 , Viallefont et al. (2002) consider three different types of
moves; one of them makes use of a univariate random variable u2 with non-
degenerate density defined on [0,1]; for example, u2 ∼ B (2, 2),

µk1 = u2
ηk�

ηk1

µk� =
u2

u1
µk� . (5.17)

Substitute in (5.16) to obtain µk2 :

µk2 = (1 − u2)
ηk�

ηk2

µk� =
1 − u2

1 − u1
µk� . (5.18)

The acceptance probability is computed as in (5.15). The three equations
(5.13), (5.17), and (5.18) define the matching function needed to evaluate the
Jacobian:

|Jacobian| =
ηk�µk�

u1(1 − u1)
.
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Solving (5.17) and (5.18) yields the following reverse move,

µk� =
ηk1µk1 + ηk2µk2

ηk�

, u2 =
µk1

µk�

ηk1

ηk�

.

We refer to Viallefont et al. (2002) for alternative ways of defining the split
and merge move.

Birth and Death Moves

Richardson and Green (1997) design birth and death moves for univariate
mixtures of normals, which are easily extended to more general finite mixture
models.

For a birth move, a nearly empty component is added. From Section 1.3.2
it is known that an empty component with an arbitrary component param-
eter may be added without changing the likelihood. Adding a component
k� with ηk� = 0 and sampling θk� from some proposal density, however,
is not a valid move. Dimension matching within a reversible move requires
dim(ϑK+1) = dim(ϑK) + dim(u) for some random variable u of dimension
dim(θk)+1. Evidently θk� plays in principle the role of u, but one additional
random variable is needed to match dimension. Richardson and Green (1997)
suggested using this random variable to design component k� as a component
with a small weight, by sampling ηk� from a proposal density q(ηk�) giving
small weights, for instance, ηk� ∼ B (1, K). To obtain a place for the new
component, the existing weights are rescaled,

ηnew
k =

⎧⎨⎩ ηk(1 − ηk�), k < k�,
ηk� , k = k�,

ηk−1(1 − ηk�), k > k�,

but no other changes are made; in particular no observations are allocated to
this component.

If θk� is sampled from the prior p(θk� |MK+1), the acceptance rate for a
birth move is min(1, A), where

A =
Pr(MK+1)
Pr(MK)

ηe0−1
k� (1 − ηk�)N+Ke0−K

q(ηk� |MK)B(e0, Ke0)
(K + 1)dK+1

(K0 + 1)bK
(1 − ηk�)K , (5.19)

because the likelihood ratio is 1, and the prior and the proposal for θk� cancel.
dK+1 is the probability of choosing a death move if the current number of
components is equal to K + 1, bK is the probability of choosing a birth move
if the current number of components is equal to K, and K0 is the number of
empty components before birth.

For a death move, a random choice is made between any empty component.
A component k is empty if no observations are allocated to that component
within data augmentation (Nk(S) = #{Si = k} = 0). No change occurs
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if none of the components is empty. The selected component k� is deleted
from the mixture and the remaining weights are readjusted to account for the
deleted weight ηk� :

ηnew
k =

ηk

1 − ηk�

, k �= k�.

As birth and death form a reversible pair, the acceptance rate for a death move
is min(1, A−1), with A being the acceptance probability for a birth given in
(5.19).

5.2.3 Birth and Death MCMC Methods

Birth and death MCMC is a rather general simulation method, and was ap-
plied to univariate and multivariate mixtures of normal and t-distributions by
Stephens (1997a) and Stephens (2000a). Hurn et al. (2003) deal with mixtures
of regressions. Cappé et al. (2003) consider selecting the number of states in
a hidden Markov model.

As mentioned already in Subsection 1.2.3, Stephens (2000a) noted that a
finite mixture model may be viewed, in an abstract sense, as a marked point
process in a general space. To sample from the posterior distribution of a finite
mixture model with an unknown number of components, Stephens (2000a)
modified simulation methods that were developed to simulate realizations of
marked point processes. These methods regard a spatial point process as the
invariant distribution of a continuous time spatial birth and death Markov
process and are discussed, for instance, in Ripley (1977) and Geyer and Møller
(1994).

Let K be the current number of components of the finite mixture model
and let ϑK = (θ1, . . . ,θK , η1, . . . , ηK) be the corresponding parameters.
Births and deaths occur in continuous time. A birth corresponds to increasing
the number of components by one, and a death means decreasing the number
of components by one. A birth occurs at a constant rate λb. If a birth occurs,
a point (ηK+1, θK+1) is added, and the weights η1, . . . , ηK are adjusted. For
each point θk, k = 1, . . . , K, a death occurs at a rate d(θk), which is low for
components that are important for explaining the data, but high for compo-
nents that do not help to explain the data. This relevance is measured in terms
of the mixture likelihood p(y|ϑK) of the current mixture model in relation to
the mixture likelihood of a mixture model without the component correspond-
ing to (θk, ηk). If a death occurs at θk, then the corresponding component is
deleted, and the weights of the remaining components are adjusted.

Algorithm 5.4: Birth and Death MCMC for a Mixture Model Repeat the
following steps.

(a) Simulate (K, η, θ1, . . . ,θK) by running a birth and death process for fixed
time t0. Set t = 0.
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(a1) Let the birth rate be equal to b(t) ≡ λb. Determine the actual death
rate for each component:

d(θk) =
p(y|MK−1, ϑ−k

)
p(y|MK , ϑK)

λb

K

p(MK−1)
p(MK)

, (5.20)

and determine the overall death rate d(t) =
∑K

k=1 d(θk).
(a2) Simulate the arrival time to the next jump,

tnew = t + E (1) /(b(t) + d(t)),

and proceed with step (b), if tnew > t0. Otherwise simulate the type
of jump with the appropriate probabilities,

Pr(birth) =
b(t)

b(t) + d(t)
, Pr(death of θk) =

d(θk)
b(t) + d(t)

.

(a3) Adjust the mixture model to reflect birth or death. For a death of
component k jump to ϑK−1 given by

ϑK−1 = (θ1, . . . ,θk−1, θk+1, . . . ,θK , ηnew
1 , . . . , ηnew

K−1),

where

ηnew
j =

⎧⎪⎨⎪⎩
ηj

(1 − ηk)
, j < k,

ηj+1

(1 − ηk)
, j = k, . . . , K − 1.

(5.21)

For a birth of a new component jump to ϑK+1 given by

ϑK+1 = (θ1, . . . ,θK , θK+1, η
new
1 , . . . , ηnew

K+1),

where

ηnew
j =

{
ηj(1 − ηK+1), j ≤ K,
ηK+1, j = K + 1.

(5.22)

The position of the new point θK+1 is proposed according to the prior
p(θ|δ), whereas the mark is simulated from a beta distribution with
prior mean equal to 1/K, ηK+1 ∼ B (γ, Kγ). Set t = tnew and return
to step (a1).

(b)Run several steps of full conditional Gibbs sampling for the current number
of components.

(b1) Update the allocations S, and, if necessary, parameters that are not
component specific and the hyperparameters δ of the component-
specific priors.

(b2) Update η and θ1, . . . ,θK .
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Doubling the birth rate λb is equivalent to doubling t0, thus one is free to
choose t0 = 1. Larger values of λb will result in better mixing, but will need
more computation time. For a Poisson prior K ∼ P (λn) with prior mean λn,
Stephens (2000a) chooses λb = λn, in which case the ratio (5.20) reduces to
the likelihood ratio. If necessary, sampling in step (b1) may be partitioned
into several blocks. Step (b2) is not necessary, but recommended by Stephens
(2000a) in order improve mixing. Hurn et al. (2003) substitute in step (b) full
conditional Gibbs sampling by a marginal Metropolis–Hastings step which
avoids sampling the allocations. The adjustment of the weights in (5.21) has
been suggested by Stephens (1997a), but alternative strategies to adjust the
weights, in order to satisfy the constraint, are sensible, for instance, adjusting
the weights proportional to the distance.

To a certain degree, birth and death methods appear to be more natu-
ral and elegant than reversible jump methods, because they avoid calculating
the Jacobian and sampling the allocation variables S. To apply this simula-
tion method to mixture models, however, a key feature is that the mixture
likelihood p(y|ϑK ,MK) is available in closed form.

5.3 Marginal Likelihoods for Finite Mixture Models

Using marginal likelihoods to select the number of components in a finite
mixture model was considered by several authors; see, for instance, Bensmail
et al. (1997) and Frühwirth-Schnatter (2004) for univariate and multivariate
normal mixture models, Otter et al. (2002) for mixtures of multivariate re-
gression models, and Lenk and DeSarbo (2000) and Frühwirth-Schnatter et al.
(2004) for mixtures of random effects models.

5.3.1 Defining the Marginal Likelihood

As explained earlier in Subsection 4.5.2, the marginal posterior probability
p(MK |y) of a finite mixture model may be derived from the joint posterior
density p(MK , ϑ1, . . . ,ϑKmax |y) by marginalization with respect to all un-
known model parameters:

p(MK |y) ∝ p(y|MK)p(MK), (5.23)

with p(y|MK) being the so-called marginal likelihood. If the joint prior
p(ϑ1, . . . ,ϑKmax |MK) is identical with prior (5.3), applied in Subsection 5.2.1
in the context of product space MCMC methods, then the marginal likelihood
p(y|MK) is immediately available from (5.4):

p(y|MK) =
∫

ΘK

p(y|MK , ϑK)p(ϑK |MK)dϑK . (5.24)
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This definition of the marginal likelihood, which involves the mixture likeli-
hood function p(y|ϑK) and operates on a level where the unknown allocations
S are integrated out, is not the only one available for a finite mixture model.

The same expression may be derived from the complete-data likelihood
p(y|S,ϑK ,MK)p(S|η,MK) under a proper prior p(ϑK), without making spe-
cific assumptions about the joint prior p(ϑ1, . . . ,ϑKmax |MK):

p(y|MK) =
∫

SK×ΘK

p(y|S,ϑK)p(S|η)p(ϑK)d(S, ϑK). (5.25)

For many finite mixture models, the dimensionality of (5.25) can be reduced
by solving the integration with respect to the indicators S analytically which
leads exactly to the definition given in (5.24). Marginalizing over S is possible
for many finite mixture models, such as univariate and multivariate normal
mixture models or mixtures of random effects models; see Frühwirth-Schnatter
(2004). The drastic reduction of dimensionality in (5.24) compared to (5.25)
will facilitate estimation of the marginal likelihood p(y|MK) using numerical
methods.

For conditionally conjugate models, where∫
ΘK

p(y|S,θ1, . . . ,θK)p(θ1, . . . ,θK)d(θ1, . . . ,θK)

may be solved analytically, one could alternatively marginalize over the pa-
rameters ϑK as suggested by Nobile (2004). This yields the following definition
of the marginal likelihood as the normalizing constant of the nonnormalized
joint marginal posterior distribution of the indicators, studied earlier in Sub-
section 3.3.3;

p(y|MK) =
∑

S∈SK

p(y|S,MK)p(S|MK), (5.26)

where p(S|MK) and p(y|S,MK) are the prior and the likelihood defined in
(3.24) and (3.25). Note that (5.26) is a summation over all partitions, and
could be evaluated exactly for very small data sets with very few numbers of
components.

Representation (5.26) has been exploited by Nobile (2004) to show that
the marginal likelihood of two finite mixture models from the same parametric
family, differing only in the number of components may be expressed in the
following way,

p(y|MK) =
Γ (Ke0)Γ ((K − 1)e0 + N)
Γ ((K − 1)e0)Γ (Ke0 + N)

p(y|MK−1) + p(y|M�
K),(5.27)

where e0 is the parameter appearing in the D (e0, . . . , e0)-prior of the weight
distribution η. p(y|M�

K) is that fraction of the marginal likelihood which
accounts for partitions, where no component is left empty:
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p(y|M�
K) =

∑
S∈S�

K

p(y|S,MK)p(S|MK). (5.28)

S�
K is that subspace of SK which allocates at least one observation to each

component:
S�

K = {S ∈ SK : Nk(S) > 0, k = 1, . . . , K}.

(5.27) is a very important result, as it shows that the marginal likelihoods
of finite mixture models with K − 1 and K components may be strongly
linked together. To a certain extent, p(y|MK) reflects the probability mass
associated with membership vectors S that allocate observations to fewer than
K components. In particular, if MK is overfitting of degree 1, much of the
marginal likelihood p(y|MK−1) of model MK−1 will carry over to p(y|MK).

Consequently, Nobile (2004) doubted the usefulness of the marginal like-
lihood and the corresponding posterior distribution p(K|y) ∝ p(y|MK)p(K)
for deciding how many components in a finite mixture model are needed to
explain the data well. As a remedy, he suggests deriving the posterior distri-
bution of the number of nonempty components; see Nobile (2004) for more
details. Alternatively, it seems possible to control this link through selecting
sensible prior distributions; see Subsection 5.3.2.

5.3.2 Choosing Priors for Selecting the Number of Components

Table 5.1. Artificial data of size N generated from a mixture of two Poisson dis-
tributions with η1 = 0.3, µ1 = 1, and µ2 = 5; average posterior probabilities for
the true model, for too many and too few components under various D (e0, . . . , e0)
priors on the weight distribution η, and various priors on K = 1, . . . , 5: uniform
prior (prior 1), truncated P (1) (prior 2), truncated P (2) (prior 3)

E(Pr(M2|y)) E(Pr(M3, M4, M5|y)) E(Pr(M1|y))
N = 20 prior 1 prior 2 prior 3 prior 1 prior 2 prior 3 prior 1 prior 2 prior 3

e0 = 1 0.090 0.416 0.237 0.905 0.484 0.740 0.004 0.057 0.014
e0 = 4 0.394 0.665 0.543 0.498 0.158 0.324 0.037 0.134 0.056

E(Pr(M2|y)) E(Pr(M3, M4, M5|y)) E(Pr(M1|y))
N = 200 prior 1 prior 2 prior 3 prior 1 prior 2 prior 3 prior 1 prior 2 prior 3

e0 = 1 0.280 0.622 0.420 0.720 0.378 0.580 0 0 0
e0 = 4 0.708 0.893 0.800 0.292 0.107 0.200 0 0 0

E(Pr(M2|y)) E(Pr(M3, M4, M5|y)) E(Pr(M1|y))
N = 2000 prior 1 prior 2 prior 3 prior 1 prior 2 prior 3 prior 1 prior 2 prior 3

e0 = 4 0.929 0.976 0.952 0.0708 0.024 0.048 0 0 0

Nobile (2004) showed that the Dirichlet prior on the weight distribution η
will exercise considerable influence on the posterior distribution p(K|y). Be-
cause the Dirichlet prior determines how likely empty components are (recall
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also the investigations in Subsection 2.3.4), this prior will exercise consider-
able influence on the link between p(y|MK) and p(y|MK−1), given by (5.27),
with the link decreasing when increasing e0.

For illustration, Table 5.1 evaluates a simulation experiment where data
sets of various sizes N are simulated from a mixture of two Poisson distri-
butions with η1 = 0.3, µ1 = 1, and µ2 = 5. It turns out that the posterior
probability of the true model is much smaller under e0 = 1 than under e0 = 4.
Furthermore, the risk of choosing too many components is much higher for
e0 = 1.

This result holds for different prior distributions p(K) on K = 1, . . . , 5,
which themselves have considerable influence on the posterior distribution
p(K|y). This is not surprising, because Nobile (2004) proved that a proper
prior p(K) over the number of components has to be chosen to obtain a proper
posterior distribution p(K|y), otherwise the posterior is improper.

In the context of choosing the number of components of a mixture model,
it is common to choose the prior K ∼ P (λn), truncated to {1, . . . , Kmax}
(Richardson and Green, 1997; Stephens, 2000a), which penalizes more com-
ponents. A special case of this prior results if λn = 1, in which case the prior
is simply proportional to

p(K) ∝ 1
K!

. (5.29)

Nobile (2004) restricts the number of possible components to {1, . . . , Kmax},
and assumes that all values within this set have equal prior probability. Such
an assumption also implicitly underlies any approach that directly uses the
marginal likelihood for selecting K, such as Bensmail et al. (1997), Lenk and
DeSarbo (2000), and Frühwirth-Schnatter et al. (2004). In more standard
model selection problems such a choice is driven by the hope of assuming prior
information that is “objective” between competing models; see, for example,
Berger (1985).

Table 5.1 demonstrates that combining the uniform D (1, . . . , 1)-prior on
the weight distribution with a uniform prior on the number of components
leads to an extremely high risk of choosing too many components, even for
quite large data sets. The P (1) prior, which is proportional to (5.29), in
combination with the D (4, . . . , 4) outperforms for this simulation study all
other priors if the major objective is to avoid overfitting. For the smallest data
set, however, this prior has some risk of underfitting, which is the smallest for
the uniform/uniform prior. Thus to a certain degree the optimal prior depends
on the loss function associated with a wrong decision.

The simulation study was carried out under the hierarchical prior (3.12)
with g0 = 0.5 and G0 = 0.5, to reduce sensitivity of the marginal likelihood
to the prior distribution p(θk|δ) of the component parameters. Prior sensi-
tivity of Bayes factors to p(θk|δ) was noted by several authors, for instance,
Richardson and Green (1997), Stephens (2000a, Section 5), and Berkhof et al.
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(2003), who demonstrated improvement by using a hierarchical prior, where
δ is treated as an unknown hyperparameter with a prior p(δ).

Stephens (2000a, Section 5), for instance, studied the influence of the prior
distribution p(θk|δ) on posterior model probabilities Pr(MK |y) for mixtures
of normal distributions, and found that “priors that appear only weakly in-
formative for the components of the mixture may be highly informative for
the number of components of the mixture.” This influence is evident from
(4.12) which shows that for finite mixture models with different numbers of
components the prior p(θk|δ) put on the component parameters will strongly
influence the ratio of any two marginal likelihoods.

5.3.3 Computation of the Marginal Likelihood for Mixture Models

In general, the computation of the marginal likelihood for complex statis-
tical models is a nontrivial integration problem. Marginal likelihoods have
been estimated using methods such as Chib’s estimator (Chib, 1995; Chib
and Jeliazkov, 2001), importance sampling-based on mixture approximations
(Frühwirth-Schnatter, 1995, 2004), combining MCMC simulations and asymp-
totic approximation (DiCiccio et al., 1997), and bridge sampling (Meng and
Wong, 1996; Meng and Schilling, 2002). Han and Carlin (2001) provide a com-
parative review of MCMC methods for computing Bayes factors and marginal
likelihoods for model selection. Although these methods proved to be useful
for a wide range of statistical models, some of them are apt to fail for mod-
els involving a finite mixture distribution (Neal, 1998; Frühwirth-Schnatter,
2004).

5.4 Simulation-Based Approximations of the
Marginal Likelihood

In this section we study various simulation-based approximations to the inte-
gral defining the marginal likelihood of a mixture model:

p(y|MK) =
∫

p(y|ϑK)p(ϑK)dϑK . (5.30)

Simulation-based approximations to marginal likelihoods were considered by
many authors, an early reference being Gelfand et al. (1992).

5.4.1 Some Background on Monte Carlo Integration

This subsection presents as much background on Monte Carlo integration as
is needed later on. For a thorough discussion we refer to Geweke (1999) or
Robert and Casella (1999).
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Any integral that may be regarded as an expectation of a function h(ϑK)
with respect to a probability density f(ϑK),

Ef (h) =
∫

h(ϑK)f(ϑK)dϑK , (5.31)

could be approximated by the sample average of h(ϑ(l)
K ) over random draws

ϑ
(1)
K , . . . ,ϑ

(L)
K from f(ϑK):

hf =
1
L

L∑
l=1

h(ϑ(l)
K ). (5.32)

Under very weak conditions on h(ϑK), hf will converge to Ef (h) by the law
of large numbers.

The variance Var(hf ) of the estimator hf depends on three influence fac-
tors: First on the number L of draws, second on the dependence among the
draws, and finally on Varf (h), the variance of h(ϑK) with respect to the
density f(ϑK), which is defined in the usual way:

Varf (h) =
∫

(h(ϑK) − Ef (h))2f(ϑK)dϑK . (5.33)

The precise dependence of Var(hf ) on these factors reads:

Var(hf ) =
ρh(0)

L
Varf (h). (5.34)

ρh(0) is the normalized spectral density of the process {h(ϑ(l)
K ), l = 1, . . . , L}

at the frequency 0; see, for instance, Geweke (1992). ρh(0) takes the value 1
for i.i.d. draws from f(ϑK), and may be considerably larger than 1, if the
draws were simulated by a Markov chain. If the autocorrelations in this chain
turn out to be very high, ρh(0) may be influenced by the investigator only by
choosing a different Markov chain for simulation.

Varf (h) crucially depends on the variation of h(ϑK) over regions with
relatively high density f(ϑK). If Varf (h) is too large, it may be reduced
by choosing a different set of functions h(ϑK) and f(ϑK), as is done for
importance sampling; see Subsection 5.4.3. Finally, L is the number of draws,
and is under control of the investigator. If Varf (h) is finite, then increasing L
will decrease the estimation error associated with estimating Ef (h) through
hf .

5.4.2 Sampling-Based Approximations for Mixture Models

Frühwirth-Schnatter (2004) argued that sampling-based techniques are par-
ticularly useful for estimating the marginal likelihood of finite mixture models.
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If a sampling-based estimator relies on MCMC draws, it is essential to use
an MCMC technique that explores all modes of the unconstrained posterior,
such as random permutation Gibbs sampling introduced in Algorithm 3.5.
One should avoid samplers that are not well mixing over all possible modes of
the posterior distribution, as most estimators of the marginal likelihood are
prone to be biased when based on draws of a poorly mixing sampler.

For various sampling-based techniques discussed in this subsection, one
has to select an importance density q(ϑK) = q(θ1, . . . ,θK , η), from which it
is easy to sample and that provides a rough approximation to the mixture
posterior density p(ϑK |y,MK). As manual tuning of the importance density
for each model under consideration is rather tedious, a method for choosing
sensible importance densities in an unsupervised manner is needed.

Various suggestions for constructing an unsupervised importance density
from the MCMC output have been put forward in the literature. DiCiccio
et al. (1997), for instance, suggest constructing a normal importance density
from the MCMC output, however, this will work only for well-behaved, regular
problems with unimodal posterior densities. The multimodality of the mixture
posterior density evidently rules out this method. Lenk and DeSarbo (2000) fit
a nonnormal importance density to the MCMC draw of a constrained sampler,
however, as shown by Frühwirth-Schnatter (2004) this method is sensitive to
a poorly chosen constraint.

Frühwirth-Schnatter (2004) extends the unsupervised importance density
suggested in Frühwirth-Schnatter (1995) for Gaussian state space models to
finite mixture and Markov switching models. For finite mixture models, where
the posterior p(ϑK |y,MK) is multimodal, a multimodal importance density
arises in quite a natural way within the data augmentation algorithm consid-
ered in Subsection 3.5.3. Evidently, the posterior density p(ϑK |y,MK) may
be expressed in the following way,

p(ϑK |y,MK) =
∑

S∈SK

K∏
k=1

p(θk|y,S)p(η|S)p(S|MK ,y), (5.35)

where p(θk|y,S) and p(η|S) are the complete-data posterior densities. Thus,
if the complete-data posterior p(θk|y,S) is available in closed form, a random
subsequence S(s), s = 1, . . . , S of the MCMC draws S(m), m = 1, . . . , M , of
the allocation vector S could be used to construct an importance density:

q(ϑK) =
1
S

S∑
s=1

p(η|S(s))
K∏

k=1

p(θk|S(s),y). (5.36)

Typically S << M , as (5.36) needs to be only a rough approximation to
(5.35). Construction of the importance density (5.36) is fully automatic and
may be easily incorporated into MCMC sampling; see Frühwirth-Schnatter
(2001a, p.39) for further details.
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As the construction is based on averaging over the conditional densities,
where the allocations S are sampled from the unconstrained posterior with
balanced label switching, the mixture importance density (5.36) will be multi-
modal. In order to reproduce all modes of the posterior it is essential to
base the construction of the importance density on an MCMC method with
balanced label switching.

A simplified version of (5.36) is available if the random sequence S(s), s =
1, . . . , S is substituted by a deterministic sequence, which is derived from
some optimal classification S� by considering all permutations of S�, thus
S = K!. Sampling from (5.36) reduces then to sampling from the complete-
data density

∏K
k=1 p(θk|S�,y,MK)p(η|S�), however the functional evaluation

of q(ϑK) still requires the evaluation of K! complete-data densities for all
permutations of the labels of ϑK .

5.4.3 Importance Sampling

Approximations of the marginal likelihood based on importance sampling have
been considered by several authors, for instance, Geweke (1989), Frühwirth-
Schnatter (1995), and Geweke (1999). Applications to finite mixture models
appear in Frühwirth-Schnatter (2004).

A simple Monte Carlo approximation of the marginal likelihood (5.30) is
obtained by:

p̂MC(y|MK) =
1
L

L∑
l=1

p(y|ϑ(l)
K ), (5.37)

where ϑ
(1)
K , . . . ,ϑ

(L)
K is a sample from the prior p(ϑK). The resulting estimator

is rather inefficient if the likelihood is informative compared to the prior; see
McCulloch and Rossi (1992). Importance sampling (Geweke, 1989) may be
used to obtain a better approximation to the marginal likelihood by rewriting
(5.30) as

p(y|MK) =
∫

p(y|ϑK)p(ϑK)
q(ϑK)

q(ϑK)dϑK , (5.38)

where q(ϑK) is a suitably chosen importance density; see Subsection 5.4.2. If
a sample from q(ϑK) is available,

ϑ
(l)
K ∼ q(ϑK), l = 1, . . . , L,

then the marginal likelihood is estimated by

p̂IS(y|MK) =
1
L

L∑
l=1

p(y|ϑ(l)
K )p(ϑ(l)

K )

q(ϑ(l)
K )

. (5.39)
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The variance of this estimator is given by (5.34):

Var(p̂IS(y|MK)) =
p(y|MK)2

L
Varq

(
p

q

)
, (5.40)

as the draws are independent. Because

Varq

(
p

q

)
= Eq

((
p

q

)2
)

− 1 = Ep

(
p

q

)
− 1,

the estimator p̂IS(y|MK) has finite variance only, if

Ep

(
p

q

)
=

∫
p(ϑK |y)2

q(ϑK)
dϑK < ∞. (5.41)

A sufficient, but not necessary, condition for this is that the ratio

p(y|ϑK)p(ϑK)
q(ϑK)

is bounded, which implies that the tails of q(ϑK) should be fat in comparison
to the posterior density p(ϑK |y). Otherwise the ratio of the nonnormalized
posterior density over the importance density may be unbounded for a poorly
chosen importance density, which highly increases the variance of the resulting
estimator.

5.4.4 Reciprocal Importance Sampling

The marginal likelihood p(y|MK), defined in (5.30), is not directly available
as an expectation with respect to the posterior density, thus straightforward
approximations to the marginal likelihood from the MCMC output are not
available.

A tricky method that expresses the marginal likelihood as the expectation
with respect to the posterior has been introduced by Gelfand and Dey (1994).
Rewrite Bayes’ theorem, which is given by

p(ϑK |y,MK) =
p(y|ϑK)p(ϑK)

p(y|MK)
, (5.42)

as

p(ϑK |y,MK)
p(y|ϑK)p(ϑK)

=
1

p(y|MK)
.

Multiply both sides with an arbitrary density q(ϑK), and integrate with re-
spect to ϑK ; then one obtains the following identity.

1
p(y|MK)

=
∫

q(ϑK)
p(y|ϑK)p(ϑK)

p(ϑK |y,MK)dϑK .
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Therefore the inverse of the marginal likelihood is equal to the posterior expec-
tation of the ratio of an arbitrary importance density q(ϑK) and the nonnor-
malized posterior density. This yields the following estimator of the marginal
likelihood,

p̂RI(y|MK) =

(
1
M

M∑
m=1

q(ϑ(m)
K )

p(y|ϑ(m)
K )p(ϑ(m)

K )

)−1

, (5.43)

where ϑ
(1)
K , . . . ,ϑ

(M)
K are simulations from the posterior p(ϑK |y,MK). Note

that the importance density q(ϑK) is only evaluated at the MCMC draws,
but no draws from the importance density are required.

Because the draws are dependent, the variance of this estimator is given
by (5.34):

Var(p̂RI(y|MK)−1) =
ρh(0)

L
Varp

(
q

p�

)
=

ρh(0)
Lp(y|MK)2

Varp

(
q

p

)
,(5.44)

where in (5.34) h(ϑK |y) = q(ϑK)/p(y|ϑK)p(ϑK). Because

Varp

(
q

p

)
= Ep

((
q

p

)2
)

− 1 = Eq

(
q

p

)
− 1,

the estimator p̂RI(y|MK)−1 has finite variance only, if

Eq

(
q

p

)
=

∫
q(ϑK)2

p(ϑK |y)
dϑK < ∞. (5.45)

A sufficient but not necessary condition for this is that the ratio

q(ϑK)
p(y|ϑK)p(ϑK)

is bounded, which implies that the tails of q(ϑK) should be thin in comparison
to the tails of the posterior density p(ϑK |y,MK).

Approximations of the marginal likelihood of mixture models based on
reciprocal importance sampling were considered by Lenk and DeSarbo (2000)
and Frühwirth-Schnatter (2004).

5.4.5 Harmonic Mean Estimator

Another estimator of the marginal likelihood (5.30) that uses only samples
from the posterior density is the harmonic mean estimator, introduced by
Newton and Raftery (1994). Bayes’ theorem (5.42) may be rewritten as

p(ϑK |y,MK)
p(y|ϑK)

=
p(ϑK)

p(y|MK)
. (5.46)
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If both sides are integrated with respect to ϑ, then following identity results,∫
p(ϑK |y,MK)

p(y|ϑK)
dϑK =

1
p(y|MK)

, (5.47)

which again expresses the marginal likelihood as expectation with respect
to the mixture posterior density. Thus if a sample ϑ

(1)
K , . . . ,ϑ

(M)
K from the

mixture posterior p(ϑK |y,MK) is available, the harmonic mean estimator is
given by

p̂HM (y|MK) =

(
1
M

M∑
m=1

1

p(y|ϑ(m)
K )

)−1

. (5.48)

The harmonic mean estimator is a very convenient estimator, as it only in-
volves evaluating the mixture likelihood function p(y|ϑ(m)

K ) for each posterior
draw, which results as a byproduct from sampling S(m) conditional on know-
ing ϑ

(m)
K in the data augmentation algorithm Algorithm 3.4.

Nevertheless it is generally known to be unstable, and the simulation study
in Subsection 5.4.7 shows that the harmonic mean estimator performs partic-
ularly poorly for finite mixture models. The harmonic mean estimator may
be viewed as that special case of reciprocal importance sampling where the
importance function in (5.43) is equal to the prior, q(ϑK) = p(ϑK). From
(5.45) we obtain that the variance of p̂HM (y|MK)−1 is finite, if and only if∫

p(ϑK)
p(y|ϑK)

dϑK < ∞. (5.49)

Condition (5.49) is often violated, as the ratio of the prior over the likelihood
function often is unbounded; see also the very interesting work of Satagopan
et al. (2000).

A Harmonic Mean Estimator Based on the Integrated
Classification Likelihood

If the integrated classification likelihood p(y|S) is available in closed form
as discussed in Subsection 3.3.3, then the harmonic mean estimator could
be applied to the posterior distribution p(S|y,MK). Bayes’ theorem may be
rewritten as

p(S|y,MK)
p(y|S)

=
p(S)

p(y|MK)
.

If both sides are integrated with respect to S, then one obtains the identity∑
S∈SK

p(S|y,MK)
p(y|S)

=
1

p(y|MK)
,
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which expresses the marginal likelihood as expectation with respect to the
posterior p(S|y,MK). This yields the following modified harmonic mean es-
timator,

p̂HM,2(y|MK) =

(
1
M

M∑
m=1

1
p(y|S(m))

)−1

, (5.50)

where {S(m), m = 1, . . . , M} is a sequence of posterior draws for the alloca-
tions S, which are obtained either by sampling from the marginal posterior
p(S|y,MK) as in Algorithm 3.1 or Algorithm 3.2, or by data augmentation
as in Algorithm 3.4.

5.4.6 Bridge Sampling Technique

Bridge sampling was introduced into statistics by Meng and Wong (1996) as
a simulation-based technique for computing ratios of normalizing constants.
DiCiccio et al. (1997) suggested, for rather simple model selection problems,
applying bridge sampling to the problem of computing a marginal likelihood.
Frühwirth-Schnatter (2004) investigated the application of bridge sampling to
compute the marginal likelihood of a finite mixture model in full detail.

Bridge sampling generalizes the method of importance sampling discussed
in Subsection 5.4.3. Like importance sampling, bridge sampling is based on
an i.i.d. sample from an importance density, however, this sample is combined
with the MCMC draws from the posterior density in an appropriate way. One
might wonder why this extension is sensible. Importance sampling may be un-
stable if the ratio of the nonnormalized posterior density over the importance
density is unbounded; see again Subsection 5.4.3. An important advantage of
bridge sampling is that the variance of the resulting estimator depends on
a ratio that is bounded regardless of the tail behavior of the underlying im-
portance density. This allows far more flexibility in the construction of the
importance density.

The Method

Let q(ϑK) be a probability density function with known normalizing constant,
which has been called the importance density as for the simulation-based
approximations discussed earlier. Let α(ϑK) be an arbitrary function such
that

Cα =
∫

α(ϑK)p(ϑK |y,MK)q(ϑK)dϑK > 0. (5.51)

Bridge sampling is based on the following result,

1 =
∫

α(ϑK)p(ϑK |y,MK)q(ϑK)dϑK∫
α(ϑK)q(ϑK)p(ϑK |y,MK)dϑK

=
Eq(α(ϑK)p(ϑK |y,MK))

Ep(α(ϑK)q(ϑK))
,
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where Ef (h(ϑK)) is the expectation of h(ϑK) with respect to the den-
sity f(ϑK). Substituting p(ϑK |y,MK) = p�(ϑK |y,MK)/p(y|MK), where
p�(ϑK |y,MK) = p(y|ϑK)p(ϑK) is the nonnormalized posterior, yields the
key identity for bridge sampling:

p(y|MK) =
Eq(α(ϑK)p�(ϑK |y,MK))

Ep(α(ϑK)q(ϑK))
. (5.52)

To estimate the marginal likelihood for a given function α(ϑK), the expec-
tations on the right-hand side of (5.52) are substituted by sample averages.
The denominator, which is an expectation with respect to the importance
density q(ϑK), is approximated using i.i.d. draws {ϑ̃

(l)
K , l = 1, . . . , L} from

q(ϑK), whereas the numerator, which is an expectation with respect to the
mixture posterior density p(ϑK |y,MK) is approximated using Markov chain
Monte Carlo draws {ϑ

(m)
K , m = 1, . . . , M} from p(ϑK |y,MK). The resulting

estimator p̂(y|MK) is called the general bridge sampling estimator:

p̂(y|MK) =
L−1 ∑L

l=1 α(ϑ̃
(l)
K )p�(ϑ̃

(l)
K |y,MK)

M−1
∑M

m=1 α(ϑ(m)
K )q(ϑ(m)

K )
. (5.53)

Various simulation-based methods discussed earlier result as special cases by
appropriate choices of α(ϑK), namely the importance sampling estimator
(5.39) with α(ϑK) = 1/q(ϑK) and the reciprocal importance sampling es-
timator (5.43) with α(ϑK) = 1/p�(ϑK |y,MK). The general bridge sampling
estimator is more general than these methods insofar as it makes use of sam-
ples from the importance density q(ϑK) and MCMC draws from the posterior
density p(ϑK |y,MK).

Meng and Wong (1996) discuss an asymptotically optimal choice of α(ϑK),
which minimizes the expected relative error of the estimator p̂(y|MK) for i.i.d.
draws from p(ϑK |y,MK) and q(ϑK):

α(ϑK) ∝ 1
Lq(ϑK) + Mp(ϑK |y,MK)

. (5.54)

We refer to the corresponding estimator as the bridge sampling estimator
p̂BS(y|MK).

Practical Computation

It turns out that the optimal choice of α(ϑK), given by (5.54), depends on the
normalized mixture posterior p(ϑK |MK ,y), thus to estimate the normalizing
constant, we need to know the normalizing constant. To solve this problem,
Meng and Wong (1996) apply an iterative procedure to obtain p̂BS(y|MK)
as the limit of a sequence p̂BS,t as t → ∞. Based on the most recent estimate
p̂BS,t−1 of the normalizing constant, the posterior is normalized, and a new
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estimate p̂BS,t is computed from (5.53). This leads to the recursion given
below in Algorithm 5.5.

Algorithm 5.5: Bridge Sampling Estimator of the Marginal Likelihood of a
Mixture Model

(a) Simulation step. Run an MCMC sampler to obtain draws {ϑ
(m)
K , m =

1, . . . , M} from the mixture posterior p(ϑK |y,MK). Choose an impor-

tance density q(ϑK), and draw ϑ̃
(l)
K , l = 1, . . . , L independently from the

importance density q(ϑK).
(b) Functional Evaluation. Evaluate both the nonnormalized mixture poste-

rior p�(ϑK |y,MK) and the importance density q(ϑK) at all draws from
the posterior as well as at all draws from the importance density.

(c) Iteration. Use the functional values to determine a starting value for p̂BS,0.
Run the following recursion until convergence.

p̂BS,t =

L−1
L∑

l=1

p�(ϑ̃
(l)
K |y,MK)

Lq(ϑ̃
(l)
K ) + Mp�(ϑ̃

(l)
K |y,MK)/p̂BS,t−1

M−1
M∑

m=1

q(ϑ(m)
K )

Lq(ϑ(m)
K ) + Mp�(ϑ(m)

K |y,MK)/p̂BS,t−1

. (5.55)

Note that the functional values appearing in (5.55) are fixed for all it-
erations, apart from rescaling the functional evaluations of the nonnormal-
ized posterior p�(ϑK |y,MK) in the nominator with the most recent estimate
p̂BS,t−1 of the normalizing constant. Iteration (5.55) is typically very fast in
practice. Either the importance sampling estimator (5.39) or the reciprocal
importance sampling estimator (5.43) may be used as starting values for p̂BS,0.
As both estimators use the same functional values as the bridge sampling es-
timator, the computation of these two estimators is possible with practically
no additional computational effort.

Relative Mean-Squared Errors

The performance of the various estimators described in the previous section
may be measured in terms of the expected relative mean-squared error (RE2)
as in Chen et al. (2000):

RE2(p̂(y|MK)) =
E((p̂(y|MK) − p(y|MK))2)

p(y|MK)2
. (5.56)

In (5.56) the data y are considered to be fixed, whereas p̂(y|MK) is a

random variable, depending on the random sequences ϑ̃
(1)
K , . . . , ϑ̃

(L)
K and

ϑ
(1)
K , . . . ,ϑ

(M)
K . The expectation in (5.56) is taken with respect to the joint dis-

tribution of these random sequences. Chen et al. (2000) derived approximate
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relative mean-squared errors by the δ-method under the assumption that both
random sequences are i.i.d. draws from the densities q(ϑK) and p(ϑK |y,MK),
respectively. In Frühwirth-Schnatter (2004), the results of Chen et al. (2000)
are extended to account explicitly for the autocorrelation in the MCMC draws.
For the general bridge sampling estimator p̂(y|MK) defined in (5.53), the fol-
lowing holds,

R̂E
2
(p̂(y|MK)) =

1
L

Varq(αp)
C2

α

+
ρh(0)
M

Varp(αq)
C2

α

, (5.57)

where ρh(0) is the normalized spectral density at frequency 0 of the process
hm = α(ϑ(m)

K )q(ϑ(m)
K ). For the special choices of α(·) discussed above, (5.57)

simplifies to:

R̂E
2
(p̂IS(y|MK)) =

1
L

Varq

(
p

q

)
(5.58)

R̂E
2
(p̂RI(y|MK)) =

ρh1(0)
M

Varp

(
q

p

)

R̂E
2
(p̂BS(y|MK)) =

1
L

Varq

(
p

wqq+wpp

)
E2

q

(
p

wqq+wpp

) +
ρh2(0)

M

Varp

(
q

wqq+wpp

)
E2

p

(
q

wqq+wpp

) ,

where wq = L/(L + M), wp = M/(L + M), h1(ϑK) = q(ϑK)/p(ϑK |y,MK),
and h2(ϑK) = q(ϑK)/(wqq(ϑK) + wpp(ϑK |y,MK)).

The expected relative mean-squared error (RE2) is a useful approximation
to the expected absolute mean-squared error of log p̂(y|MK); see Chen et al.
(2000):

E (log p̂(y|MK) − log p(y|MK))2 ≈ RE2(p̂(y|MK)). (5.59)

In order to assess the accuracy of the various estimators of the marginal likeli-
hood in practice, it is necessary to estimate unknown quantities appearing in
(5.58) such as the spectral density at 0 or various variances. In our case studies

we use the sample variance of hl = h(ϑ̃
(l)
K ), l = 1, . . . , L to estimate the vari-

ance Varq(h(ϑK)) with respect to q(ϑK), whereas we use the sample variance
of hm = h(ϑ(m)

K ), m = 1, . . . , M to estimate the variance Varp(h(ϑK)) with
respect to p(ϑK |y,MK). Note that hl, l = 1, . . . , L and hm, m = 1, . . . , M
are exactly the functional evaluations available from computing the various
estimators. To estimate ρh(0) we use:

ρ̂h(0) = 1 + 2 ·
S∑

s=1

(
1 − s

q + 1

)
rs,

rs = M−1
M∑

m=s+1

(hm − h)(hm−s − h)
s2

h

,
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where h and s2
h are the sample mean and the sample variance of hm; see Chib

(1995) for details.

5.4.7 Comparison of Different Simulation-Based Estimators

The results of Subsection 5.4.6 allow a deeper understanding of the circum-
stances under which the various estimators will be stable or unstable. If the
tails of the importance function q(ϑK) are thinner than the tails of the pos-
terior p(ϑK |y,MK) in some direction, then in (5.58):

p

q
→ ∞,

q

p
→ 0,

p

wpp + wqq
→ 1

wp
,

q

wpp + wqq
→ 0.

As the ratio p/q is unbounded, the importance sampling estimator is expected
to be unstable and to exhibit high standard errors compared to the two other
estimators for which the relevant ratios are bounded.

If, on the other hand, the tails of the importance function q(ϑK) are fatter
than the tails of the posterior p(ϑK |y,MK) in some direction, then:

p

q
→ 0,

q

p
→ ∞,

p

wpp + wqq
→ 0,

q

wpp + wqq
→ 1

wq
.

As this time the ratio q/p is unbounded; the reciprocal importance sampling
estimator is expected to be unstable and to exhibit high standard errors com-
pared to the two other estimators for which the relevant ratios are bounded.

To sum up, both importance sampling as well as reciprocal importance
sampling are sensitive to the tail behavior of the importance density q(ϑK)
relative to the posterior p(ϑK |y,MK). The bridge sampling estimator p̂BS ,
however, is much more robust in this respect. Even for importance functions
having fat tails in one direction and thin tails in the other, the ratios appearing
in (5.58) are bounded. This robustness of the “optimal” bridge sampling esti-
mator against the tail behavior of the importance density is crucial especially
for unsupervised choices of q(ϑK).

Final comments on the harmonic mean estimator (5.48) which is commonly
known to be unstable are added. The harmonic mean estimator is that special
case of the reciprocal importance sampling estimator (5.43) where q(ϑK) is
equal to the prior p(ϑK). Consequently, whenever the prior is likely to have
fatter tails than the posterior, we may rule out the harmonic mean estimator
(5.48) as a reliable device for estimating marginal likelihoods.

Performance in a Simulation Experiment

To compare the various estimators of the marginal likelihood, a simulation
experiment is performed. One hundred data sets each consisting of 20 obser-
vations were simulated from the two-component Poisson mixture model
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Fig. 5.1. Top: randomly selected data set used in the simulation experiment with
µ2 = 5 (left) and µ2 = 25 (right); bottom: corresponding marginal mixture posterior
p(µk, µk′ |y)

Y ∼ η1P (µ1) + η2P (µ2) . (5.60)

Choosing the sample size as small as N = 20 allows exact computation of
the marginal likelihood p(y|M2) through (5.26) for each simulated data set
y = (y1, . . . , y20). This provides a “gold standard” against which the various
methods of estimating the marginal likelihood p(y|M2) could be compared.

For all simulation experiments, the same values η1 = 0.3, η2 = 0.7, and
µ1 = 1 were used to simulate the data from (5.60), whereas µ2 took three dif-
ferent values. In the first simulation experiment µ2 = 5, leading to data that
do not show well-separated clusters, whereas in the second simulation exper-
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Fig. 5.2. Simulation experiment to evaluate different estimators of the marginal
likelihood p(y|M2) for data simulated from a mixture of two Poisson distributions
with η1 = 0.3, µ1 = 1, and µ2 = 5 (top), µ2 = 25 (middle), and µ2 = 1 (bottom); the
box plots show the distribution of the estimation error log p̂(y|M2) − log p(y|M2)
over 100 simulated data sets (1 . . . p̂BS(y|M2), 2 . . . p̂IS(y|M2), 3 . . . p̂RI(y|M2),
4 . . . p̂HM (y|M2), 5 . . . p̂HM,2(y|M2), 6 . . . p̂�

CH(y|M2), 7 . . . p̂CH(y|M2))
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iment µ2 = 25 generates well-separated clusters in the data; see Figure 5.1.
For the third simulation experiment µ2 = 1, thus the mixture is overfitting
the number of components, with the true number being equal to 1.

For all three simulation experiments, ϑ2 = (µ1, µ2, η1, η2) is estimated for
each of the 100 data sets based on the priors µk ∼ G (1, 1) and η ∼ D (4, 4),
using the random permutation Gibbs sampler described in Algorithm 3.5. For
the first simulation experiment the two modes of the mixture posterior density
p(µ1, µ2|y) are not extremely well separated, which is, however, the case for
the second simulation experiment; see again Figure 5.1.

Table 5.2. Performance of different estimators of the marginal likelihood p(y|M2)
for data simulated from a mixture of two Poisson distributions with η1 = 0.3, µ1 = 1,
and µ2 = 5

Estimator Average Bias Average MSE

log p̂BS(y|M2) −0.0077148 0.00081305

log p̂IS(y|M2) +0.0068868 0.030403

log p̂RI(y|M2) −0.014403 0.0017834

log p̂HM,2(y|M2) +0.5845 2.0435

log p̂HM (y|M2) +2.3598 6.0528

log p̂CH(y|M2) −0.30264 0.31126

log p̂CH(y|M2) + log 2 +0.3905 0.5819

log p̂�
CH(y|M2) −5.6487e-005 0.0035683

Table 5.3. Performance of different estimators of the marginal likelihood p(y|M2)
for data simulated from a mixture of two Poisson distributions with η1 = 0.3, µ1 = 1,
and µ2 = 25

Estimator Average Bias Average MSE

log p̂BS(y|M2) −0.00068049 3.3692e-005

log p̂IS(y|M2) −0.0011205 0.00011117

log p̂RI(y|M2) −0.00058584 3.2195e-005

log p̂HM,2(y|M2) +12.184 153.36

log p̂HM (y|M2) +3.2745 11.268

log p̂CH(y|M2) −0.69304 0.4803

log p̂CH(y|M2) + log 2 +0.00010925 1.559e-006

log p̂�
CH(y|M2) +0.00049045 0.00028114

First we computed the importance sampling estimator p̂IS(y|M2), defined
in (5.39), and the reciprocal importance sampling estimator p̂RI(y|M2), de-
fined in (5.43). Starting from the importance sampling estimator, we derived
the bridge sampling estimator p̂BS(y|M2) as the limit of p̂BS,t, defined in
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Table 5.4. Performance of different estimators of the marginal likelihood p(y|M2)
for data simulated from a single Poisson distribution with µ1 = 1

Estimator Average Bias Average MSE

log p̂BS(y|M2) −0.0015064 0.00022875

log p̂IS(y|M2) −0.0025096 0.0098332

log p̂RI(y|M2) −0.0049795 0.00057365

log p̂HM,2(y|M2) −0.00027147 0.0015687

log p̂HM (y|M2) +0.22928 0.15127

log p̂CH(y|M2) −0.00051896 0.0066741

log p̂CH(y|M2) + log 2 +0.69263 0.48641

log p̂�
CH(y|M2) −0.0038621 0.0032436

(5.55), as t → ∞. Each of these estimators is computed with M = L = 2000,
after a burn-in of 500, and is based on the importance density (5.36), con-
structed from S = 10 randomly selected draws of the random permutation
Gibbs sampler. The tail behavior of the importance density in relation to the
mixture posterior density will be quite different for the various simulation
experiments. The two groups in the data are not well separated for the first
simulation experiment, hence there will be quite a large uncertainty in pos-
terior classification. The importance density (5.36) will provide a poor fit to
the mixture posterior p(ϑ2|y,M2) in particular in the tails of both densities.
For the second simulation experiment the groups are very well separated, and
the importance density will be a good approximation to the mixture poste-
rior. Finally, we consider the two harmonic mean estimators p̂HM (y|M2) and
p̂HM,2(y|M2), defined in (5.48) and (5.50), respectively, where M is the same
as before.

For each simulation experiment, the various estimators p̂(y|M2) are
compared in Figure 5.2 through the distribution of the estimation error
log p̂(y|M2) − log p(y|M2) over the 100 replications, and in Tables 5.2 to
5.4 through two numerical measures of performance: first, the average rela-
tive bias measured by the average estimation error log p̂(y|M2)−log p(y|M2),
and second, the relative mean-squared error measured by the average of the
squared estimation error (log p̂(y|M2) − log p(y|M2))2.

The two harmonic mean estimators are the worst among the estimators
considered. p̂HM,2(y|M2) is biased in favor of a Poisson mixture model with
two components for all simulation experiments. p̂HM (y|M2) shows extreme
bias in favor of a Poisson mixture model with two components for µ2 = 25,
which disappears for the overfitting mixture. The box plot of the estima-
tion error in Figure 5.2 shows that the other simulation-based estimators are
much more reliable than the two harmonic mean estimators. Among these es-
timators, the bridge sampling estimator p̂BS(y|M2) is the most reliable one in
terms of the MSE. The MSE of the importance sampling estimator p̂IS(y|M2)
is considerably higher in particular for the first simulation experiment, reflect-
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ing the poor fit of the importance density in the tails. The reciprocal impor-
tance sampling estimator p̂RI(y|M2) is better than the importance sampling
estimator, but in most cases worse than the bridge sampling estimator.1

5.4.8 Dealing with Hierarchical Priors

Simulation-based approximations of the marginal likelihood are easily ex-
tended to deal with hierarchical priors; see Frühwirth-Schnatter (2004). Be-
cause both the complete-data likelihood p(y|S,θ1, . . . ,θK)p(S|η) as well as
the mixture likelihood p(y|ϑK) are independent of δ given ϑK , no modifica-
tions are necessary, if an analytical expression for the marginal prior

p(θ1, . . . ,θK) =
∫ K∏

k=1

p(θk|δ)p(δ)dδ

is available. Otherwise the hyperparameter δ could be added to the set of
unknown parameters before applying the bridge sampling technique to ϑ =
(θ1, . . . ,θK , η, δ). As δ is independent of S given θ1, . . . ,θK , the importance
density may be chosen as q(θ1, . . . ,θK , η, δ) = q(θ1, . . . ,θK , η)q(δ), where
q(θ1, . . . ,θK , η) is equal to the mixture importance density (5.36) and q(δ) is
obtained by fitting a unimodal importance density to the MCMC draws δ(m).

5.5 Approximations to the Marginal Likelihood Based
on Density Ratios

5.5.1 The Posterior Density Ratio

The posterior density ratio provides a strikingly simple way to compute the
marginal likelihood p(y|MK) of a model MK , defined through a likelihood
function p(y|ϑK) and a prior p(ϑK). It exploits a formal equivalence between
the marginal likelihood p(y|MK) and the normalizing constant appearing
in the definition of the posterior distribution p(ϑK |y,MK) through Bayes’
theorem:

p(ϑK |y,MK) =
p(y|ϑK)p(ϑK)∫

p(y|ϑK)p(ϑK)dϑK
.

Therefore the following identity, also known as the candidate’s formula (Besag,
1989), holds for arbitrary ϑK ,

p(y|MK) =
p(y|ϑK)p(ϑK)
p(ϑK |y,MK)

=
p�(ϑK |y,MK)
p(ϑK |y,MK)

. (5.61)

1 The figure as well as the tables contains further estimators of the marginal like-
lihood, which is explained later on.
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Note that the density ratio on the right-hand side may be computed for an
arbitrary value of ϑK , each of which yields the same marginal likelihood.
With the help of (5.61), computation of the marginal likelihood as the ratio
of the nonnormalized posterior over the normalized posterior p(ϑK |y,MK),
is straightforward in cases where the posterior density p(ϑK |y,MK) belongs
to a well-known distribution family. For mixture models this is only the case
for mixtures from the exponential family with one component. To give an ex-
ample, consider N observations from a single P (µ)-distribution (model M1),
with prior µ ∼ G (a0, b0), where the posterior reads µ|y ∼ G (aN , bN ) with
aN = a0 +

∑N
i=1 yi and bN = N + b0. The posterior density ratio yields:

p(y|M1) =
ba0
0 Γ (aN )

baN

N Γ (a0)
∏N

i=1 Γ (yi + 1)
. (5.62)

For finite mixture models with more than one component, the posterior or-
dinate p(ϑK |y,MK) is no longer available in closed form, and the posterior
density ratio formula is not directly applicable. Various approximations, how-
ever, have been suggested, which are based on approximating the posterior
ordinate. Due to the multimodality of the posterior distribution this is a rather
challenging problem.

5.5.2 Chib’s Estimator

Chib (1995) suggested an approximation to (5.61) which is based on substi-
tuting the unknown posterior ordinate p(ϑ�

K |y,MK) by a suitable estimate:

p̂CH(y|MK) ≈ p(y|ϑ�
K)p(ϑ�

K)
p̂(ϑ�

K |y,MK)
. (5.63)

Various estimators are available, depending on whether the conditional den-
sities appearing in the transition kernel of the Markov chain have a known
normalizing constant (Chib, 1995) or not (Chib and Jeliazkov, 2001).

For mixture models, an approximation to p(ϑ�
K |y,MK) arises in quite a

natural way within the data augmentation algorithm considered in Subsec-
tion 3.5.3, as the posterior density may be expressed as

p(ϑ�
K |y,MK) =

∑
S∈SK

K∏
k=1

p(θ�
k|y,S)p(η�|S)p(S|MK ,y),

where p(θk|y,S) and p(η|S) are the complete-data posterior densities. If the
complete-data posterior p(θk|y,S) is available in closed form, MCMC draws
S(m), m = 1, . . . , M , of S could be used to estimate the posterior ordinate
p(ϑ�

K |y,MK) by

p̂(ϑ�
K |y,MK) =

1
M

M∑
m=1

K∏
k=1

p(θ�
k|S(m),y)p(η�|S(m)). (5.64)
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This estimator is simulation-consistent, as the density p̂(ϑ�
K |y,MK) converges

to p(ϑ�
K |y,MK) by the strong law of large numbers as M goes to infinity.

The estimator (5.64) could be applied immediately for practically all stan-
dard mixtures from the exponential family with conditionally conjugate priors
with fixed hyperparameters. For random hyperparameter δ ∼ p(δ), a minor
modification is necessary. First the joint posterior of (ϑK , δ) is decomposed
as p(ϑK , δ|y,MK) = p(ϑK |y, δ,MK)p(δ|ϑK). If the posterior p(δ|ϑK) is of
closed form, then the posterior density ratio formula reads:

p̂CH(y|MK) ≈ p(y|ϑ�
K)p(ϑ�

K , δ�)
p(δ�|ϑ�

K)p̂(ϑ�
K |y, δ,MK)

,

where p(ϑ�
K , δ�) is equal to the hierarchical prior (3.11) and

p̂(ϑ�
K |y,MK) =

1
M

M∑
m=1

K∏
k=1

p(θ�
k|S(m), δ(m),y)p(η�|S(m)).

Chib’s estimator has to be modified in cases where the elements of θk are
sampled in different blocks, as will be the case for mixtures with normal com-
ponents under independence priors; see Chib (1995) for computational details.
Finally, these estimators cannot be applied to models where the complete-data
posterior p(θk|S,y) is nonstandard. This is rarely the case for standard mix-
ture models, but happens, for instance, for mixtures of nonnormal regression
models; see Section 9.4. In this case, the estimator of Chib and Jeliazkov
(2001) may be implemented.

Chib’s Estimators for Poisson Mixtures

For Poisson mixtures with K components, where ϑ�
K = (µ�

1, . . . , µ
�
K , η�), the

function p(y|ϑ�
K) appearing in the estimator (5.63) is the mixture likelihood

of a Poisson mixture with K components, defined earlier in (2.27), whereas
the other quantities are given by

p(ϑ�
K) = fD(η�; e0, . . . , e0)

K∏
k=1

fG(µ�
k; a0, b0),

p̂(ϑ�
K |y,MK) =

1
M

M∑
m=1

fD(η�; e0 + N
(m)
1 , . . . , e0 + N

(m)
K )

×
K∏

k=1

fG(µ�
k; a0 + N

(m)
k y

(m)
k , b0 + N

(m)
k ).

Thus to evaluate the posterior density ratio we need to store only the group
sizes N

(m)
k = Nk(S(m)) and the group means y

(m)
k = yk(S(m)) for k = 1, . . . , K

for each classification S(m) during MCMC sampling.
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Fig. 5.3. Behavior of the Gibbs sampler for a single data set used in the simulation
experiment with µ2 = 5; MCMC draws for µ
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1 (left), MCMC draws for µ
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(middle), and functional evaluation p(ϑ�
2|S(m),y) in Chib’s estimator of the marginal

likelihood (right)

Problems with Chib’s Estimator for Mixture Models

Chib’s estimator of the marginal likelihood proved to be very useful for a wide
range of statistical and econometric models, and consequently the method was
applied in Chib (1995) and Chib (1996) to estimate the marginal likelihood
also for finite mixture models, in particular for Markov switching models. In
these early applications, it was not yet evident that Chib’s estimator is apt to
fail when being applied to finite mixture models, as the posterior density of
such a model is highly irregular due to lack of identification for these models.
This problem was first noted by Neal (1998), and explained later on in much
detail in Frühwirth-Schnatter (2004).

What is the problem with Chib’s estimator? The estimator (5.64) is based
on estimating marginal densities from averaging conditional densities. Thus
it is essential to make sure that S mixes well over the whole parameter space.
For the estimator (5.64) to be correct, the Markov chain (S(m), ϑ

(m)
K ) used

for simulation, has to explore all K! modal regions that exist because of the
nonidentifiability of the mixture components. The applications that appeared
both in Chib (1995) and Chib (1996) were based on the Gibbs output, which
in general does not visit all modes. This introduces a bias when estimating
the marginal likelihood.

For illustration we apply Chib’s estimator to the synthetic data discussed
earlier in Subsection 5.4.7. Despite the simplicity of the model (the whole
parameter ϑ2 may be sampled within one block), the resulting estimator
p̂CH(y|M2) shows considerable bias for the simulation experiments with
µ2 = 5 and µ2 = 25 over 100 replications; see Tables 5.2 and 5.3.

From where does the bias come? Integration in the definition of the
marginal likelihood is over the unconstrained parameter space ΘK which is
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the union of K! subspaces Ls, s = 1, . . . , K!, differing only in the labeling of
the K states of Si. Therefore the marginal likelihood may be expressed as

p(y|MK) =
K!∑
s=1

∫
Ls

p(y|ϑK ,S)p(ϑK ,S)d(ϑK ,S) =

K!
∫

Ls0

p(y|ϑK ,S)p(ϑK ,S)d(ϑK ,S),

where s0 is an arbitrary value between 1 and K!. Thus to compute the
marginal likelihood simulations from all labeling subspaces are required. Alter-
natively, if simulations from a unique labeling subspace are used, the marginal
likelihood results only after multiplying with the factor K!.

If the modes of the mixture posterior density are extremely well separated
and the Gibbs sampler sticks at one of the labeling subspaces Ls0 instead of
exploring all labeling subspaces, p̂CH(y|MK) estimates∫

Ls0

p(y|ϑK ,S)p(ϑK ,S)d(ϑK ,S)

instead of p(y|MK), and consequently the expected bias is equal to:

E(log p̂CH(y|MK) − log p(y|MK)) = − log K!. (5.65)

As expected from (5.65), the bias of Chib’s estimator log p̂CH(y|M2) for µ2 =
25, given in Table 5.3, turns out to be practically equal to − log K! = − log 2 =
−0.69315.

For this simulation experiment there was hardly any misclassification risk,
as the groups are very well separated. After convergence, the posterior parti-
tion of the data is extremely stable. In this case the mixture posterior density
is close to the product of complete-data posteriors and the posterior density
ratio is, apart from the bias, very precise. If we correct for this bias, we obtain
the estimator log p̂CH(y|M2)+log 2, which gives an extremely precise answer;
see Table 5.3.

The problem with this bias-corrected estimator is that in cases where
occasional label switching occurs, as for the simulation experiment with µ2 =
5, it is more difficult to quantify the bias and to correct for it. Label switching
is evident for this simulation experiment from Figure 5.3, which shows the
simulated paths of µ1 and µ2 for a randomly selected data set, as well as
occasional switching in the functional values p(ϑ�

2|S(m),y), which causes an
unpredictable bias of log p̂CH(y|M2). From Table 5.2 we find that the bias is
smaller than − log 2, thus the bias-corrected estimator log p̂CH(y|M2)+ log 2
overrates the bias.

Finally, the bias of log p̂CH(y|M2) disappears for the overfitting model
with µ2 = 1 (see Table 5.4), and adding the bias correction log 2 would be
totally inappropriate.
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Variants of Chib’s Estimator That Account for Nonidentifiability

Various authors suggested modifications of Chib’s estimator that account for
nonidentifiability, and lead to a simulation-consistent estimator of the poste-
rior ordinate under the unconstrained model.

Given a sequence (S(m), ϑ
(m)
K ) of draws from a sampler, where label switch-

ing is not encouraged, a simulation-consistent estimator is given by considering
all permutations of the posterior draws (Berkhof et al., 2003):

p̂(ϑ�
K |y,MK) =

1
M

M∑
m=1

1
K!

K!∑
s=1

p(ϑ�
K |ρs(S(m)),y).

A simplified version of this results, if for each m, not all, but only a single
permutation s(m) is selected:

p̂(ϑ�
K |y,MK) =

1
M

M∑
m=1

p(ϑ�
K |ρs(m)(S(m)),y). (5.66)

One such estimator appears in Neal (1998), where the permutation s(m) is
determined in a deterministic manner by s(m) = m mod K!. Thus for K = 2,
s(m) = 1, iff m is odd, and s(m) = 2, iff m is even.

A further modified Chib’s estimator, denoted by p̂�
CH(y|MK), results

when the density estimate (5.66) is based on the output of the random permu-
tation sampler introduced in Algorithm 3.5, where s(m) is selected randomly
from 1, . . . , K!. For this estimator the bias automatically disappears due to
balanced label switching; see for illustration the evaluation of this estimator
for the simulation experiments in Figure 5.2 and Tables 5.2 to 5.4. The inaccu-
racy of this estimator, however, measured in terms of the MSE, is considerably
larger than for bridge sampling or importance sampling.

5.5.3 Laplace Approximation

Laplace approximation is a widely used method of approximating the marginal
likelihood, applied in Kass et al. (1988), Tierney et al. (1989), and Kass
and Vaidyanathan (1992); see also the reviews in Kass and Raftery (1995)
and Raftery (1996a). It may be viewed as a numerical approximation to the
marginal likelihood, obtained by substituting the mixture posterior density
p(ϑK |y,MK) in the density ratio formula (5.61) by the local normal density

p(ϑK |y,MK) ≈ fN (ϑK ; ϑ�
K ,Σ). (5.67)

In (5.67), ϑ�
K is the posterior mode, whereas Σ−1 is minus the Hessian matrix

of the log posterior, evaluated at ϑ�
K :

Σ−1 = −∂2log(p(y|ϑK)p(ϑK))
∂ϑ2

K

∣∣∣∣
ϑK=ϑ�

K

. (5.68)
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Thus the log of the marginal likelihood is approximated by the following
expression,

log p̂L(y|MK) ≈ (5.69)

log p(y|ϑ�
K) + log p(ϑ�

K) +
dK

2
log(2π) + 0.5 · log |Σ|,

where dK = dim(ϑ�
K). The approximation error of (5.69) is not under control,

as it depends on the accuracy of the local normal approximation, but an
asymptotic justification is obtained under the same regularity conditions that
guarantee asymptotic normality of the posterior density. For mixture models
where the number of components is overfitting and asymptotic normality does
not hold, there is a certain lack of justifying the use of (5.69) in this case.

A practical limitation is that the Hessian of the log of the mixture poste-
rior, required in (5.68) to define Σ−1, is often not available. Raftery (1996b)
and Lewis and Raftery (1997) use posterior simulations to estimate poste-
rior mode and posterior curvature, by using robust estimators of location and
scale. They call this procedure the Laplace–Metropolis estimator.

5.6 Reversible Jump MCMC Versus
Marginal Likelihoods?

Is Bayes’ rule in combination with a good method for computing marginal
likelihoods or is trans-dimensional MCMC a better way of dealing with
model specification problems such as selecting the number of components?
From a theoretical point of view, both approaches are equivalent, as they
are nothing but different computational tools for obtaining an estimator of
the posterior model probability for each model under investigation. If both
methods use the same model space Ω = {M1, . . . ,MKmax}, the same prior
model probabilities p(M1), . . . , p(MKmax), and the same collection of priors
p(ϑ1|M1), . . . , p(ϑKmax |MKmax), then both approaches are approximating the
same posterior model probabilities p(M1|y), . . . , p(MKmax |y).

To this aim, trans-dimensional MCMC methods use draws from the dis-
crete posterior distribution p(M|y) over M ∈ Ω, which are obtained by run-
ning a Markov chain on a much larger space than Ω. Provided that this
Markov chain mixes sufficiently well, the posterior probability p(MK |y) of
model MK may be estimated from the Markov chain draws M(1), . . . ,M(M)

as

p̂RJ(MK |y) =
1
M

M∑
m=1

I{M(m)=MK}. (5.70)

By the law of large numbers, p̂RJ(MK |y) will converge to p(MK |y), if M
increases to infinity. On the other hand, Bayes’ rule (4.9) yields:
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p̂ML(MK |y) =
p(MK)p̂ML(y|MK)∑Kmax
j=1 p(Mj)p̂ML(y|Mj)

, (5.71)

where p̂ML(y|MK) is one of the many estimators of the marginal likelihood
p(y|MK) that have been discussed in this chapter. Most of these estimators
are based on Monte Carlo simulation methods, and converge to the true value
p(y|MK), as the number of draws increases. Therefore p̂ML(MK |y) will con-
verge to p(MK |y) if the number of draws increases to infinity.

In practice, limited computing resources will limit the maximum number
of possible draws for both approaches, and the estimated posterior model
probabilities p̂RJ(MK |y) and p̂ML(MK |y) will be different. Computational
accuracy of each computational method in terms of the simulation error
p̂(MK |y) − p(MK |y) will then become important.

If the number of alternative models is large, then the computation of
the marginal likelihood for each model is prohibitive, and trans-dimensional
MCMC methods are the only way to cope with model specification uncer-
tainty. Think, for instance, of an r-variate mixture of K normal distributions
with component variance–covariance matrices Σk, k = 1 . . . , K that have
r(r + 1)/2 distinct elements if Σk is unconstrained. For reason of parsimony
one might want to restrict some of elements of Σk (or Σ−1

k ) to zero. For each
k = 1, . . . , K, there are r(r − 1)/2 ways of choosing zero elements in Σ−1

k ,
without losing positive definiteness. If r is large, it is not possible to com-
pare all possible models through marginal likelihoods; for instance, for r = 15
105K different marginal likelihoods would have to be computed.

A Simulation Experiment

For illustration we return to the synthetic data discussed in Subsection 5.4.7,
and assume Kmax = 2 and Pr(M1) = Pr(M2). As both marginal likelihoods
p(y|M1) and p(y|M2) are available in closed form, the exact posterior prob-
abilities p(M1|y) and p(M2|y) may be computed for each synthetic data
set, and may be compared to the reversible jump estimators p̂RJ(M1|y) and
p̂RJ(M2|y) defined in (5.70) and the bridge sampling estimator p̂BS(M2|y)
defined in (5.71).

The reversible jump estimators are based on 4000 MCMC draws, after
a burn-in of 2000, whereas the bridge sampling estimator is based on 2000
MCMC draws from the posterior of model M2, using a burn-in of 500 draws,
and 2000 draws from the importance density.

In Figure 5.4, the estimators are compared through the distribution of the
estimation error p̂(MKtrue |y)−p(MKtrue |y) over 100 replications from a simu-
lation experiment, where 20 observations are simulated from a mixture of two
Poisson distributions with µ1 = 1 and µ2 = 25, and for a simulation experi-
ment, where 20 observations are simulated from a single Poisson distribution
with µ = 1. Choosing the sample size N as small as 20 allows the exact com-
putation of the posterior probabilities; see Subsection 5.4.7. Both estimators
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Fig. 5.4. Simulation experiment in computing the model posterior probabilities
p(M1|y) and p(M2|y) for 20 observations simulated from a mixture of two Pois-
son distributions with η1 = 0.3, µ1 = 1, and µ2 = 25 (left-hand side) and
20 observations simulated from a single Poisson distribution with µ = 1 (right-
hand side); the box plots show the distribution of the absolute estimation error
p̂(MKtrue |y) − p(MKtrue |y) over 100 simulated data sets (1 . . . p̂BS(MKtrue |y), 2
. . . p̂RJ(MKtrue |y))

are accurate with the estimation error in the probability being in most cases
less than 0.01. In a relative comparison, however, it turns out that bridge sam-
pling is considerably more efficient than reversible jump MCMC, with MSE
being equal to 0.0014 and 0.0085, given an inefficiency factor of about 6 for
reversible jump MCMC, when both methods are based on roughly the same
number of draws.
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Finite Mixture Models with Normal
Components

6.1 Finite Mixtures of Normal Distributions

Data for which two or more normal distributions are mixed occur frequently
in many areas of applied statistics such as biology, economics, marketing,
medicine, or physics.

6.1.1 Model Formulation

A frequently used finite mixture model for univariate continuous data y1, . . . ,
yN is to assume that the observations are i.i.d. realizations from a random
variable Y , following a mixture of K univariate normal distributions. The
density of this distribution is given by

p(y|ϑ) = η1fN (y; µ1, σ
2
1) + · · · + ηKfN (y; µK , σ2

K), (6.1)

with fN (y; µk, σ2
k) being the density of a univariate normal distribution. Fi-

nite mixtures of univariate normal distributions are generically identifiable
(Teicher, 1963). In its most general form, the model is parameterized in terms
of 3K − 1 distinct model parameters ϑ = (θ1, . . . ,θK , η1, . . . , ηK), where
θk = (µk, σ2

k). More specific finite mixture models are obtained by putting
constraints either on µ1, . . . , µK or σ2

1 , . . . , σ2
K ; see also Subsection 6.4.1.

Mixtures of normals are easily extended to deal with multivariate contin-
uous observations y1, . . . ,yN , where yi is an r-dimensional vector. Typically
the various elements yi1, . . . , yir of yi measure r features for a unit i drawn
from a population. A frequently used finite mixture model for multivariate
data y = (y1, . . . ,yN ) is to assume that the observations are i.i.d. realiza-
tions from a multivariate random variable Y of dimension r, arising from a
mixture of K multivariate normal distributions. The density of the distribu-
tion of Y is given by

p(y|ϑ) = η1fN (y; µ1,Σ1) + · · · + ηKfN (y; µK ,ΣK), (6.2)
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with fN (y; µk,Σk) being the density of a multivariate normal distribution
with mean µk and variance–covariance matrix Σk. Finite mixtures of multi-
variate normal distributions are generically identifiable (Yakowitz and Spra-
gins, 1968).

A multivariate mixture of normal distributions with general variance–
covariance matrices Σ1, . . . ,ΣK is highly parameterized in terms of K(r +
r(r + 1)/2 + 1) − 1 distinct model parameters. When fitting a mixture of 3
multivariate normal distributions to a data set containing 10-dimensional ob-
servations yi, one has to estimate as many as 198 distinct parameters! Thus
an unconstrained multivariate mixture may turn out to be too general in
various situations. Other interesting multivariate finite mixture models are
obtained by putting certain constraints on the variance–covariance matrices
Σ1, . . . ,ΣK . Such finite mixture models are discussed in Subsection 6.4.1.

Capturing Between- and Within-Group Heterogeneity

For a multivariate mixture, the expected value E(Y|ϑ) =
∑K

k=1 ηkµk defines
the overall center of the distribution of Y, whereas the spread of the distri-
bution is measured by the variance–covariance matrix of Y, which may be
written as

Var(Y|ϑ) = E(Var(Y|S,ϑ)) + Var(E(Y|S,ϑ)) (6.3)

=
K∑

k=1

ηkΣk +
K∑

k=1

ηk(µk − E(Y|ϑ))(µk − E(Y|ϑ))
′
.

Thus the total variance Var(Y|ϑ) arises from two sources of variability, namely
within-group heterogeneity and between-group heterogeneity. The measure of
within-group heterogeneity is a weighted average of within-group variability
Σk. The measure of between-group heterogeneity is based on a weighted dis-
tance of the group mean µk from the overall mean E(Y|ϑ). In both cases the
weights are equal to group sizes.

For a mixture, where
∑K

k=1 ηkΣk is much smaller than Var(Y|ϑ) in a
suitable matrix norm, most of the variability of Y results from unobserved
between-group heterogeneity. Common measures of how much variability may
be addressed to unobserved between-group heterogeneity, are the following
two coefficients of determination, derived from (6.3),

R2
t (ϑ) = 1 − tr

(∑K
k=1 ηkΣk

)
/tr (Var(Y|ϑ)) , (6.4)

R2
d(ϑ) = 1 −

∣∣∣∑K
k=1 ηkΣk

∣∣∣ /|Var(Y|ϑ)|. (6.5)

For the limiting case of equal means, µ1 = · · · = µK , these coefficients are
equal to 0, whereas these coefficients are close to one for well-separated groups;
see Figure 6.1 for an illustration.
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Fig. 6.1. 1000 observations simulated from a spherical mixture of three bivariate
normal distributions with η1 = η2 = η3 = 1/3, (σ2

1 , σ2
2 , σ2

3) = (1, 0.4, 0.04); with
different locations for the means; R2

t and R2
d are coefficients of unobserved hetero-

geneity explained by the mixture, defined in (6.4) and (6.5)

6.1.2 Parameter Estimation for Mixtures of Normals

Suppose that a data set y is available, which consists of N i.i.d. observations of
a random variable distributed according to a mixture of normal distributions,
thus for univariate data y = {y1, . . . , yN}, whereas for multivariate data y =
{y1, . . . ,yN}.

This subsection is concerned with the estimation of the component pa-
rameters and the weight distribution η = (η1, . . . , ηK) of the underlying
mixture distribution for fixed K, based on the data y. For univariate mix-
tures the component means µ = (µ1, . . . , µK) and the component vari-
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ances σ2 = (σ2
1 , . . . , σ2

K); for multivariate mixtures the component mean
vectors µ = (µ1, . . . ,µK) and the component variance–covariance matrices
Σ = (Σ1, . . . ,ΣK) have to be estimated.

Pioneering work on the estimation of mixtures of normals is based on
the method of moments (Pearson, 1894; Charlier and Wicksell, 1924). The
method of moments estimator suggested by Day (1969) turned out to be
inefficient compared to maximum likelihood estimation, both for univariate
as well as multivariate mixtures of normals. A more attractive method of
moments estimator was suggested by Lindsay (1989) for univariate and by
Lindsay and Basak (1993) for multivariate mixtures of normals.

Maximum likelihood (ML) estimation was used for a mixture of two uni-
variate normal distributions with σ2

1 = σ2
2 as early as Rao (1948); further

pioneering work was done by Hasselblad (1966). Wolfe (1970) suggested an
iterative scheme for practical ML estimation of multivariate mixtures of nor-
mals that is essentially an early variant of the EM algorithm.

EM Algorithm

Nowadays, the EM algorithm, which was introduced in Subsection 2.4.4, is the
preferred method for practical ML estimation of univariate and multivariate
mixtures. For univariate mixtures of normals the M-step reads:

µ
(m)
k =

1
nk

N∑
i=1

D̂
(m)
ik yi,

(σ2
k)(m) =

1
nk

N∑
i=1

D̂
(m)
ik

(
yi − µ

(m)
k

)2
,

where D̂ik
(m) and nk have been defined in (2.32) and (2.33), respectively. For

multivariate mixtures the M-step reads:

µ
(m)
k =

1
nk

N∑
i=1

D̂
(m)
ik yi,

Σ(m)
k =

1
nk

N∑
i=1

D̂
(m)
ik

(
yi − µ

(m)
k

)(
yi − µ

(m)
k

)′

.

A certain difficulty with ML estimation is that the EM algorithm breaks down,
whenever (σ2

k)(m) is (numerically) zero or Σk
(m) is singular or nearly singular,

which happens when D̂ik
(m) is close to zero for too many observations. Then

at the next iteration the computation of D̂ik
(m+1) through (2.32) is no longer

possible. Such difficulties arise in particular if the EM algorithm is applied to
a finite mixture of normals overfitting the number of components.
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Unboundedness of the Mixture Likelihood Function

A further difficulty with ML estimation, first noted by Kiefer and Wolfowitz
(1956) for univariate mixtures of normals, is that the mixture likelihood func-
tion

p(y|µ,σ2, η) =
N∏

i=1

(
K∑

k=1

ηkfN (yi; µk, σ2
k)

)
(6.6)

is unbounded and has many local spurious modes; see Subsection 6.1.3 for an
illustration. As first noted by Day (1969), the unboundedness of the mixture
likelihood function is also relevant for the multivariate mixtures of normals,
as each observation yi gives rise to a singularity on the boundary of the
parameter space.

Thus the ML estimator as global maximizer of the mixture likelihood func-
tion does not exist. Nevertheless, statistical theory outlined in Kiefer (1978)
guarantees that a particular local maximizer of the mixture likelihood func-
tion is consistent, efficient, and asymptotically normal if the mixture is not
overfitting. Several local maximizers may exist for a given sample, and a ma-
jor difficulty with the ML approach is to identify if the correct one has been
found. Titterington et al. (1985, pp.97), for instance, refer to various empiri-
cal studies that report convergence to singularities and spurious local modes
using the EM algorithm, even if the true parameter was used as the starting
value.

To avoid these problems, Hathaway (1985) considers constrained ML esti-
mation of univariate mixtures of normals based on the inequality constraint

min
k,j

σk

σj
≥ c > 0, (6.7)

and proves strong consistency of the resulting estimator. For multivariate
mixtures of normals, Hathaway (1985) suggests constraining all eigenvalues
of ΣkΣ−1

j to be greater than a positive constraint.

Bayesian Parameter Estimation

Geisser and Cornfield (1963), Geisser (1964), and Binder (1978) give pioneer-
ing papers discussing a Bayesian approach to classification, clustering, and
discrimination analysis based on multivariate mixtures, however, practical ap-
plication was in general infeasible at that time. Lavine and West (1992) discuss
practical Bayesian estimation of multivariate mixtures using data augmenta-
tion and Gibbs sampling. This approach is described in detail in Section 6.3.

The main difference between the ML approach and the Bayesian approach
lies in the use of a proper prior distribution on the component parameter, in
particular on the component variances, which usually takes the form of an
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inverted Gamma prior, σ2
k ∼ G−1 (c0, C0), for univariate mixtures and an in-

verted Wishart prior, Σ−1
k ∼ Wr (c0,C0) with c0 > (r+1)/2, for multivariate

mixtures. This has two desirable effects in comparison to ML estimation.
First, within Gibbs sampling, which may be seen as a kind of Bayesian

version of the EM algorithm, the conditional posterior distribution of σ2
k or

Σk is always proper, and sampling yields a well-defined variance even if the
corresponding group is empty or contains too few observations to obtain a
well-defined sample variance or variance–covariance matrix.

Second, as mentioned above, it is complete ignorance about the variance
ratio that causes the unboundedness of the mixture likelihood function, and
again the Bayesian approach is helpful in this respect, as it allows us to include
some prior information on this ratio, however vague this might be. In com-
parison to the mixture likelihood function the posterior density is much more
regular. It is shown in Subsection 6.2.2 that for univariate mixtures of nor-
mals the ratio σ2

kσ−2
j is bounded away from 0 under suitable inverted Gamma

priors. For multivariate mixtures of normals the introduction of the inverted
Wishart prior has a smoothing effect on the eigenvalues of ΣkΣ−1

j , which will
be bounded away from 0. Hence the introduction of a proper prior on the
component variances is related to the constraints introduced by Hathaway
(1985).

6.1.3 The Kiefer–Wolfowitz Example

Fig. 6.2. Kiefer–Wolfowitz Example — simulated data set (N = 20); surface
plot of the mixture likelihood function log p(y|µ, σ2) (left-hand side) in comparison
to the posterior density p(µ, σ2|y) under a G (1, 4)-prior (right-hand side)

We reconsider the following mixture of two normal distributions,

Y ∼ (1 − η2)N (µ, 1) + η2N
(
µ, σ2

2
)
, (6.8)



6.1 Finite Mixtures of Normal Distributions 175

Fig. 6.3. Kiefer–Wolfowitz Example — simulated data set (N = 20); various
detailed views of the log mixture likelihood function log p(y|µ, σ2); top left: zoom
of surface plot for very small value of σ2 (the vertical line indicates the position of
the true parameters); top right: profile over σ2 for µ fixed (full line: µ = µtrue = 0,
dashed line: µ = y10 = −0.26627; bottom: profile over µ for σ2 fixed (dashed line:
σ2 = σtrue

2 = 2, full line: σ2 = 10−7 (left-hand side) and σ2 = 0.05 (right-hand
side)); the bar diagram at the bottom of both figures shows the position of the data

where η2 is fixed, whereas µ and σ2
2 are unknown, which was used by Kiefer

and Wolfowitz (1956) to show that each observation in an arbitrary data set
y = (y1, . . . , yN ), of arbitrary size N , generates a singularity in the mixture
likelihood function (6.6). Whenever µ = yi, then as σ2

2 → 0, the mixture
likelihood p(y|µ = yi, σ

2
2) is dominated by a term proportional to a constant

times 1/σ2
2 . Therefore:

lim
σ2
2→0

p(y|µ = yi, σ
2
2) = ∞.

For illustration, we simulated N = 20 observation from model (6.8), with
η2 = 0.2, µ = 0, and σ2

2 = 4. The observations, ordered by size are:
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–2.541 –1.664 –1.6636 –1.4242 –1.3335
–1.029 –0.70355 –0.54121 –0.27467 –0.26627

–0.26401 –0.24944 –0.011286 –0.00081703 0.2189
0.26166 0.56176 0.79315 1.0727 2.4269

The left-hand side plot in Figure 6.2 shows the surface of the mixture
likelihood function p(y|µ, σ2), regarded as a function of µ and σ2 (rather than
σ2

2). There is a local mode around the true value (µ, σ2) = (0, 2), however,
the mixture likelihood is unbounded over a region corresponding to very small
values of σ2. Figure 6.3 zooms on this part of the parameter space, where we
find many spurious local modes in the surface plot of log p(y|µ, σ2). The profile
over σ2, for µ fixed at observation y10 = −0.26627, demonstrates that the log
mixture likelihood is unbounded as σ2 goes to 0, whereas for µ = µtrue = 0
(and any other value µ �= yi), the log mixture likelihood is bounded as σ2 goes
to 0. The profile over µ for σ2 fixed at the very small value 10−7 shows that
the mixture likelihood surface has a spike whenever µ is close to one of the
observations. For σ2 fixed at the slightly larger value 0.05, which is still far
from the true value, the profile over µ shows that any subset of observations
which are sufficiently close to each other generate a local mode in the mixture
likelihood. The local mode around µ equal to the average of the three similar
observations y9, y10, y11 has a likelihood value that is even bigger than the
local mode around the true parameter value (µ, σ2) = (0, 2).

This pathological part of the parameter corresponds to mixtures that fit
one component to a small group of similar observations, whereas all other
observations are assumed to belong the second component. The surface plot
in Figure 6.2 shows that for this small data set the region corresponding to this
pathological part of the likelihood is not well separated from the modal region
around the true value. Thus the EM algorithm, or any other numerical method
for maximizing this likelihood, certainly has a high risk of being trapped at
one of the spurious local modes, or of diverging to 0, even if started at the
true value.

Let us now assume that the mixture likelihood p(y|µ, σ2) is combined
with the prior p(µ, σ2

2) ∝ p(σ2
2), where σ2

2 ∼ G−1 (1, 4). We stay noninforma-
tive about µ, which is a parameter common to both groups. The right-hand
side of Figure 6.2 shows the posterior density p(µ, σ2|y) under this prior for
the simulated data set with N = 20. As shown in Subsection 6.2.2, the in-
verted Gamma prior introduces a constraint comparable to (6.7), and keeps
the variance sufficiently bounded away from 0 to cut out all singularities and
local modes, which were apparent for the comparable surface of the mixture
likelihood p(y|µ, σ2) in Figure 6.2.

6.1.4 Applications of Mixture of Normal Distributions

Statistical modeling based on finite mixtures of normal distributions has a
long history dating back to the application for outlier detection in Newcomb
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(1886) and modeling unobserved discrete factors in a biological sample in
Pearson (1894). Finite mixtures of normal distributions found widespread
application in many areas of applied statistics such as biology, marketing,
medicine, physics, and economics. More recently, mixture models are applied
in bioinformatics and genetics, see, for instance, Delmar et al. (2005) and
Tadesse et al. (2005).

Given such a tremendous amount of applied work, it seems impossible to
provide an exhaustive list of important references. A comprehensive review
of applications of univariate normal mixture models until the mid-eighties
appears in Titterington et al. (1985, Chapter 2). More recent references are
to be found in the comprehensive bibliography of McLachlan and Peel (2000).
Additional useful references appear in Böhning (2000) and in a special issue
of the journal Computational Statistics and Data Analysis (2003) publishing
selected papers from a 2001 Workshop on finite mixture modeling in Hamburg.

Chapter 7 discusses several statistical applications of mixtures of normal
distributions in such diverse areas as cluster analysis, outlier detection, dis-
criminant analysis, and density estimation.

6.2 Bayesian Estimation of Univariate Mixtures
of Normals

6.2.1 Bayesian Inference When the Allocations Are Known

This subsection derives the posterior distribution of µk, σ2
k given the complete

data S,y, by combining the information from all observations in group k.
The derivation is based on a standard result in Bayesian inference outlined,
for instance, in Antelman (1997) and Box and Tiao (1973).

Relevant group-specific quantities are the number Nk(S) of observations
in group k, the group mean yk(S), and the within-group variance s2

y,k(S):

Nk(S) = #{i : Si = k}, (6.9)

yk(S) =
1

Nk(S)

∑
i:Si=k

yi, (6.10)

s2
y,k(S) =

1
Nk(S)

∑
i:Si=k

(yi − yk(S))2. (6.11)

Note that any of these quantities depends on the classification S.
Assume that for observation yi the allocation Si is equal to k. Then the

observational model for observation yi is a normal distribution with mean µk

and variance σ2
k, and the contribution of yi to the complete-data likelihood

function p(y|µ,σ2,S) is equal to:

1√
2πσ2

k

exp
(

− 1
2σ2

k

(yi − µk)2
)

.



178 6 Finite Mixture Models with Normal Components

After combining the information from all observations, we obtain a complete-
data likelihood function with K independent factors, each carrying all infor-
mation about the parameters in a certain group:

p(y|µ,σ2,S) = (6.12)
K∏

k=1

∏
i:Si=k

(
1

2πσ2
k

)Nk(S)/2

exp

(
−1

2

∑
i:Si=k

(yi − µk)2

σ2
k

)
.

In a Bayesian analysis each of these factors is combined with a prior. When
holding the variance σ2

k fixed, the complete-data likelihood function, regarded
as a function of µk, is the kernel of a univariate normal distribution. Under
the conjugate prior µk ∼ N (b0, B0), the posterior density of µk given σ2

k and
Nk(S) observations assigned to this group, is again a density from the normal
distribution, µk|σ2

k,S,y ∼ N (bk(S), Bk(S)), where

Bk(S)−1 = B−1
0 + σ−2

k Nk(S), (6.13)
bk(S) = Bk(S)(σ−2

k Nk(S)yk(S) + B−1
0 b0), (6.14)

with Nk(S)yk(S) being defined as zero for an empty group with Nk(S) = 0.
When holding the mean µk fixed, the complete-data likelihood function,

regarded as a function in σ2
k, is the kernel of an inverted Gamma density;

see Appendix A.1.6 for more details on this distribution family. Under the
conjugate inverted Gamma prior σ2

k ∼ G−1 (c0, C0), the posterior density of σ2
k

given µk and Nk(S) observations assigned to this group is again a density from
an inverted Gamma distribution, σ2

k|µk,S,y ∼ G−1 (ck(S), Ck(S)), where

ck(S) = c0 +
1
2
Nk(S), (6.15)

Ck(S) = C0 +
1
2

∑
i:Si=k

(yi − µk)2. (6.16)

If both µk and σ2
k are unknown, a closed-form solution for the joint posterior

p(µk, σ2
k|S,y) exists only if the prior variance of µk depends on σ2

k through
B0,k = σ2

k/N0. Then the joint posterior p(µ, σ2|S,y) factors as

p(µ, σ2|S,y) =
K∏

k=1

p(µk|σ2
k,y,S)p(σ2

k|y,S), (6.17)

where the posterior density of µk given σ2
k arises from an N (bk(S), Bk(S))

distribution with

Bk(S) =
1

Nk(S) + N0
σ2

k, (6.18)

bk(S) =
N0

Nk(S) + N0
b0 +

Nk(S)
Nk(S) + N0

yk(S), (6.19)
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whereas the marginal posterior of σ2
k is the inverted Gamma distribution

G−1 (ck(S), Ck(S)), where ck(S) is the same as in (6.15), however,

Ck(S) = C0 +
1
2

(
Nk(S)s2

y,k(S) +
Nk(S)N0

Nk(S) + N0
(yk(S) − b0)2

)
. (6.20)

6.2.2 Standard Prior Distributions

Diebolt and Robert (1994), Raftery (1996b), and Bensmail et al. (1997),
among many others, consider the conditionally conjugate prior

p(µ1, . . . , µK , σ2
1 , . . . , σ2

K) =
K∏

k=1

p(µk|σ2
k)p(σ2

k), (6.21)

where µk|σ2
k ∼ N

(
b0, σ

2
k/N0

)
and σ2

k ∼ G−1 (c0, C0). This prior implies that
a priori the component parameters θk = (µk, σ2

k) are pairwise independent
across the groups, whereas within each group µk and σ2

k are dependent. As
explained in Subsection 6.2.1, this prior offers the advantage of being con-
ditionally conjugate with respect to the complete-data likelihood function,
leading to a closed-form posterior p(µ, σ2|S,y).

For practical Bayesian estimation the hyperparameters δ = (b0, N0, c0, C0)
have to be selected carefully, as they may exercise considerable influence on
the posterior distribution. A proper prior results if N0 > 0 and c0 > 0.
Raftery (1996b) uses the following data-dependent hyperparameters: b0 = y,
N0 = 2.6/(ymax − ymin), c0 = 1.28, and C0 = 0.36s2

y, whereas Bensmail et al.
(1997) use b0 = y, N0 = 1, c0 = 2.5, and C0 = 0.5s2

y.
Another commonly used prior, called the independence prior, assumes that

µk and σ2
k are independent a priori:

p(µ1, . . . , µK , σ2
1 , . . . , σ2

K) =
K∏

k=1

p(µk)
K∏

k=1

p(σ2
k), (6.22)

where µk ∼ N (b0, B0) and σ2
k ∼ G−1 (c0, C0). This prior, where the posterior

p(µ, σ2|S,y) is no longer of closed form, has been applied, for instance, in
Escobar and West (1995) and Richardson and Green (1997). More general
priors, where some prior dependence among the component parameters θk =
(µk, σ2

k) is introduced, are discussed in Subsection 6.2.6.

6.2.3 The Influence of the Prior on the Variance Ratio

It is a definite advantage of the Bayesian approach in the context of normal
mixture models, that selecting a prior on σ2

1 , . . . , σ2
K corresponds to imposing

a structure on the variances, which keeps them sufficiently away from 0 to
overrule spurious local modes and the unboundedness of the mixture likelihood
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function. Under the inverted Gamma prior σ2
k ∼ G−1 (c0, C0), the ratio of any

two variances σ2
k and σ2

l with k �= l follows an F (2c0, 2c0)-distribution:

σ2
k

σ2
l

∼ F (2c0, 2c0) ,

which is obtained using result (A.10) in Appendix A.1.5, after rewriting the
inverted Gamma prior as σ2

k ∼ (2c0)C0/Wk, Wk ∼ χ2
2c0

. As the prior is
invariant, the ratio σ2

k/σ2
l has the same distribution for any combination of k

and l with k �= l.
The choice of c0 has considerable influence on the ratio of any two variances

and could be chosen under the aspect of keeping this ratio within certain
limits. It is now relevant, how close this ratio is allowed to be to zero for two
variances σ2

k and σ2
l , where σ2

k < σ2
l . From the properties of the F (2c0, 2c0)-

distribution discussed in Appendix A.1.5, this density behaves as(
σ2

k

σ2
l

)c0−1

as σ2
k/σ2

l → 0. The density is unbounded at 0 for c0 < 1 and the ratio may
be arbitrarily close to 0. The density is bounded at 0 for c0 = 1 and is equal
to 0 for c0 > 1. For 1 ≤ c0 < 2, the first derivative of the density is infinite
at 0, and the ratio may be rather close to 0. For c0 = 2, the first derivative is
bounded, whereas for c0 > 2 the first derivative is equal to 0 and the ratio is
bounded away from 0. Furthermore the ratio has a finite variance if c0 > 2.

Thus the F (2c0, 2c0)-distribution is a stochastic version of the determin-
istic constraint (6.7) introduced by Hathaway (1985). In Table 6.1 we derive
a c for which a constraint comparable to (6.7) holds with high probability,
say 95% for K = 2. Note that c is simply given by the 95%-percentile of
the F (2c0, 2c0)-distribution. For c0 = 2.5, for instance, this ratio is roughly
bounded by 0.1.

Table 6.1. Lower bound for the ratio of two variances depending on the hyperpa-
rameter c0 of the inverted Gamma prior

c0 0.5 1 1.5 2 2.5 3 4 5

c 0.00025 0.010 0.034 0.063 0.091 0.118 0.166 0.206

6.2.4 Bayesian Estimation Using MCMC

Many authors, in particular Diebolt and Robert (1994) and Raftery (1996b),
have considered Gibbs sampling based on data augmentation, as described
for general mixtures in Section 3.5, to estimate the parameters of a univariate
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mixture of normals. Full conditional Gibbs sampling proceeds along the lines
indicated by Algorithm 3.4, where the results of Subsection 6.2.1 are used to
sample the mean µk and variance σ2

k in each group, conditional upon a given
allocation vector S.

Algorithm 6.1: Two-Block Gibbs Sampling for a Univariate Gaussian Mixture

(a) Parameter simulation conditional on the classification S = (S1, . . . , SN ):
(a1) Sample η from the conditional Dirichlet posterior p(η|S) as in Algo-

rithm 3.4.
(a2) Sample σ2

k in each group k from a G−1 (ck(S), Ck(S))-distribution.
(a3) Sample µk in each group k from an N (bk(S), Bk(S))-distribution.

(b) Classification of each observation yi, for i = 1, . . . , N , conditional on
knowing µ, σ2, and η:

Pr(Si = k|µ,σ2, η, yi) ∝ 1√
2πσ2

k

exp
{

− (yi − µk)2

2σ2
k

}
ηk. (6.23)

The precise form of bk(S), Bk(S), ck(S), and Ck(S) in steps (a2) and (a3)
depends upon the chosen prior distribution family. For the independence prior
bk(S) and Bk(S) are given by (6.13) and (6.14), whereas ck(S) and Ck(S) are
available from (6.15) and (6.16). Under the conditionally conjugate prior, µk

and σ2
k are sampled jointly, as the marginal density σ2

k|S,y is available in
closed form. bk(S) and Bk(S) are given by (6.18) and (6.19), whereas ck(S)
and Ck(S) are available from (6.15) and (6.20).

Algorithm 6.1 is started with parameter estimation based on some prelimi-
nary classification, which may be obtained from partitioning the ordered data
into K groups. The sampling order may be reversed, by starting with a classi-
fication based on the starting values ηk = 1/K, µk = Qk/K+1, where Qα is the
empirical α-percentile of the data, and σ2

k = R2, where R is a robust estimator
of the scale, such as the median absolute deviation, R = med |yi − med y|, or
the interquartile range, R = Q0.75 −Q0.25. Alternatively, one could adopt ran-
dom starting values as in McLachlan and Peel (2000, Section 2.12.2), where
µk is sampled from N

(
y, s2

y

)
and σ2

k = s2
y.

Classification Without Parameter Estimation

As already discussed in Subsection 3.3.3, Chen and Liu (1996) showed that
for many mixture models Bayesian clustering is possible without explicit pa-
rameter estimation, using directly the marginal posterior p(S|y) given by
p(S|y) ∝ p(y|S)p(S). For a mixture of univariate normal distributions, p(y|S)
is given by

p(y|S) ∝
K∏

k=1

Γ (ck(S))
(Ck(S))ck(S)

√
Nk(S) + N0

, (6.24)

where ck(S), and Ck(S) are the posterior moments of the full conditional
posterior density p(σ2

k|y,S) under the conditionally conjugate prior.
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6.2.5 MCMC Estimation Under Standard Improper Priors
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Fig. 6.4. Kiefer–Wolfowitz Example — simulated data set (N = 20); MCMC
draws of µ and σ2 from the posterior p(µ, σ2|y) based on different priors; top: im-
proper prior p(µ, σ2

2) ∝ 1/σ2
2 ; bottom: p(µ) ∝ constant, σ2

2 ∼ G−1 (1, 4); the hori-
zontal line indicates the true values

One has to be very careful when running MCMC under an improper prior,
because such a prior may cause an improper mixture posterior distribution,
as discussed in Subsection 3.2.2. We also refer to Hobert and Casella (1998)
for a general discussion of MCMC simulations from improper posterior distri-
butions.

Nevertheless, Diebolt and Robert (1994) suggested using improper priors
and to reject classifications S which lead to problems. Under the improper
prior p(µk, σ2

k) ∝ 1/σ2
k, for instance, the posterior moments in steps (a2)

and (a3) of Algorithm 6.1 are given by bk(S) = yk(S), Bk(S) = 1/Nk(S),
ck(S) = (Nk(S) − 1)/2, and Ck(S) = Nk(S)/2s2

y,k(S). Thus classifications
are rejected whenever one group is empty (Nk(S) = 0), or whenever the
within-group variance s2

y,k(S) is 0, either because the group contains only a
single observation or two observations with identical value, as may happen for
rounded data.
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Fig. 6.5. Kiefer–Wolfowitz Example — simulated data set (N = 20); posterior
classification of the observations for the improper prior p(µ, σ2

2) ∝ 1/σ2
2

Whereas these classifications are easily detected, it is hard to identify
classifications that assign a few similar observations into one group, and act as
trapping states for the sampler around a local mode of the mixture likelihood
function. As these spurious local modes disappear, when choosing a proper
prior on the variances, the problem of trapping states of the MCMC sampler
is easy to circumvent, and the use of an improper prior in combination with
MCMC estimation of finite mixtures is generally not recommended.

MCMC Estimation of the Kiefer–Wolfowitz Example

For further illustration, we discuss MCMC estimation for the data simulated
for the Kiefer–Wolfowitz example, discussed earlier in Subsection 6.1.3, under
the improper prior p(µ, σ2

2) ∝ 1/σ2
2 . As recommended by Diebolt and Robert

(1994), classifications S leading to empty and zero-variance groups are re-
jected, nevertheless the MCMC draws in Figure 6.4 clearly indicate that the
sampler is trapped at one of the local modes of the mixture likelihood func-
tion found earlier in Figure 6.3. The posterior classifications in Figure 6.5 show
that the sampler with high probability forms one group from three observa-
tions that are extremely close to each other. Including a G−1 (1, 4)-prior on σ2

2
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Fig. 6.6. Kiefer–Wolfowitz Example — simulated data; surface of the nonnor-
malized posterior p(µ, σ2|y) under the improper prior p(µ, σ2

2) ∝ 1/σ2
2 for N = 100
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Fig. 6.7. Kiefer–Wolfowitz Example — simulated data set (N = 100); poste-
rior densities p(µ|y) and p(σ2|y) estimated from the MCMC draws for the improper
prior (dashed line) and the G (1, 4)-prior (full line)
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improves the performance of the MCMC sampler considerably. The bottom
of Figure 6.4 indicates that we now obtain draws from the modal region close
to the true value.

For a larger data set with N = 100 rather than N = 20, it is possi-
ble to run an MCMC sampler without being trapped even for the improper
prior. The risk of jumping into the critical area is very small for this data
set; see Figure 6.6. When comparing the marginal posterior densities p(µ|y)
and p(σ2|y) estimated from the MCMC draws in Figure 6.7, we find little
difference between the improper posterior based on a noninformative prior
and the proper posterior based on the G−1 (1, 4)-prior. As discussed earlier
in Subsection 3.5.4, MCMC sampling under an improper prior may lead to a
proper posterior density estimate if the sampler avoids the critical part of the
parameter space, simply because it is well separated from the modal region
around the true value. However, it is not recommended to rely on this, as an
unaccountable risk remains that the sampler jumps to this critical part when
the MCMC sampler is run long enough.

6.2.6 Introducing Prior Dependence Among the Components

Rather than assuming fixed hyperparameters δ, an alternative method is to
treat δ as an unknown hyperparameter with a prior p(δ) of its own. As men-
tioned in Subsection 3.2.4, this introduces prior dependence among the com-
ponent parameters. Such priors have been applied to finite mixtures of uni-
variate normal distributions in particular by Richardson and Green (1997)
and Roeder and Wasserman (1997b).

In Richardson and Green (1997) the hyperparameter C0 is treated as an
unknown hyperparameter with a prior of its own, whereas the other hyperpa-
rameters remain fixed. The joint prior p(µ1, . . . , µK , σ2

1 , . . . , σ2
K , C0) takes the

form of a hierarchical independence prior:

p(µ1, . . . , µK , σ2
1 , . . . , σ2

K , C0) =
K∏

k=1

p(µk)
K∏

k=1

p(σ2
k|C0)p(C0), (6.25)

where µk ∼ N (b0, B0), σ2
k ∼ G−1 (c0, C0), and C0 ∼ G (g0, G0). For their case

studies, Richardson and Green (1997) select c0 = 2, g0 = 0.2, G0 = 10/R2,
b0 = m, and B0 = R2, where m and R are the midpoint and the length of the
observation interval.

Roeder and Wasserman (1997b) extend this concept further by using hi-
erarchical priors with improper priors for the hyperparameters. They suggest
a partly proper prior for the variances that is equal to the hierarchical prior
(6.25), with p(C0) ∝ C−1

0 being the standard improper prior for the scale
parameter. Roeder and Wasserman (1997b) prove that the marginal prior dis-
tribution of each σ2

k has the usual improper reference prior, p(σ2
k) ∝ σ−2

k , nev-
ertheless the posterior distribution is proper. Roeder and Wasserman (1997b)
suggest also a hierarchical prior for the means. They assume that the mean
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b0 appearing in the normal prior on the group mean µk is an unknown hyper-
parameter with improper prior: p(b0) ∝ constant.

Concerning MCMC estimation, under any hierarchical prior an additional
step has to be added to sample the random hyperparameters δ. For the hi-
erarchical prior (6.25), for instance, the marginal prior p(σ2

1 , . . . , σ2
K), where

C0 is integrated out, is not conjugate for the complete-data likelihood, and
an additional step has to be added in Algorithm 6.1, to sample C0 from
p(C0|S,µ, σ2,y), which is given by Bayes’ theorem as

p(C0|S,µ, σ2,y) ∝
K∏

k=1

p(σ2
k|C0)p(C0) ∝

K∏
k=1

(
Cc0

0 exp
{

−C0

σ2
k

})
Cg0−1

0 exp{−G0C0} .

Obviously this is the kernel of a G (gN , GN )- density with:

gN = g0 + Kc0, GN = G0 +
K∑

k=1

1
σ2

k

.

If b0 is an unknown hyperparameter with improper prior p(b0) ∝ constant,
then b0 is sampled in an additional step from p(b0|S,µ, σ2,y), given by

b0|µ,σ2,y,S ∼ N
(

1
K

K∑
k=1

µk, B−1
0 /K

)
.

Finally, under a hierarchical prior some starting value for the random hyper-
parameter δ has to be provided.

Prior Dependence Through Reparameterization

Mengersen and Robert (1996) suggest reparameterizing a mixture of two nor-
mal distributions in terms of a perturbation of a global normal distribution
N

(
µ, τ2

)
:

Y ∼ pN
(
µ, τ2) + (1 − p)N

(
µ + τδ, τ2ω2) .

Robert and Mengersen (1999) extend this idea to the general K-component
normal mixture. They introduce a sequential parameterization, where for k >
1 the kth component is expressed as a local perturbation of component k − 1:

Y ∼ pN
(
µ, τ2) +

K−2∑
k=1

(1 − p)(1 − q1) · · · (1 − qk−1)qkN (µ + τδ1 + (6.26)

· · · + τ · · ·ωk−1δk, τ2ω1 · · ·ωk) + (1 − p)(1 − q1) · · · (1 − qK−2)N (µ +
τδ1 + · · · + τ · · ·ωK−2δK−1, τ

2ω1 · · ·ωK−1),
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with the convention ω0 = 1 and q0 = 0. This parameterization allows us to
choose partly proper priors. The prior on µ and τ is improper, p(µ, τ) ∝ 1/τ ,
the prior on p and q1, . . . , qK−2 is uniform, and the prior on δk is slightly
informative assuming δk ∼ N

(
0, δ2

)
for k = 1, . . . , K − 1. The prior on ωk is

either uniform, ωk ∼ U [0, 1], to force the component variance to be decreasing
in k, or equal to ωk ∼ 0.5U [0, 1] + 0.5Pa(1, 2), where Pa(1, 2) is uniform on
1/ω2

k. Note that δ2, the prior variance of δk, is the only parameter that remains
for tuning. Robert and Titterington (1998) express this prior in terms of a
prior on µ1, . . . , µK and σ2

1 , . . . , σ2
K in the standard parameterization:

p(µ1, . . . , µK , σ2
1 , . . . , σ2

K) ∝ σ2
K

σ3
1

K∏
k=2

1
σ2

k

exp{−1/2
(µk − µk−1)2

2δ2σ2
k−1

},

and show that this partly proper prior leads to a proper posterior distribution.
Concerning MCMC estimation, Mengersen and Robert (1996) show how

full conditional Gibbs sampling may be applied for K = 2. For general K,
Robert and Mengersen (1999) use a hybrid MCMC method combining Gibbs
steps for p, q1, . . . , qK−2, µ, δ1, . . . , δK−1, and ω2

K−1 with Metropolis–Hastings
steps based on tailor-made proposals for ω2

1 , . . . , ω2
K−2 and τ . Robert and Tit-

terington (1998) show for the more general setting of hidden Markov models,
of which mixture models are a special case, that full conditional Gibbs sam-
pling may be applied for all parameters in this model.

A Markov Prior Based on Ordered Means

Roeder and Wasserman (1997b) suggest a Markov prior based on the ordered
means. Under the assumption that µ1 < · · · < µK , they assume that p(µ1) ∝
constant, whereas each µk with k > 1 has a normal prior with mean µk−1
that is truncated at µk−1:

µk|µk−1, σ
2
k, σ2

k−1 ∼ N
(
µk−1, φ

2(σ−2
k−1 + σ−2

k )/2
)
I{µk>µk−1},

where φ = 5 is a default value in their applications. MCMC sampling under
this prior may be carried out by running a single-move Gibbs sampler. For
more details on the corresponding conditional densities we refer to Roeder
and Wasserman (1997b). As pointed out by Roeder and Wasserman (1997b),
this prior makes it difficult to handle mixtures, where two components have
the same mean.

6.2.7 Further Sampling-Based Approaches

MCMC methods are not practicable in a dynamic setting when a sequence of
posterior densities p(ϑ|yt), based on a set of observations yt = (y1, . . . ,yt)
which increases with t is involved, because MCMC methods require rerunning
a new chain for each p(ϑ|yt) without using draws from p(ϑ|yt−1). In such a
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setting, sequential importance sampling schemes, usually referred to as a “par-
ticle filter method” are used which are reviewed, for instance, in Doucet et al.
(2001). Recently, Chopin (2002) showed that sequential importance sampling
can be useful also for estimation in a static scenario and demonstrates this
through an application to a mixture of normal distributions.

Other flexible sampling-based approaches that were applied to parame-
ter estimation for univariate mixtures of normals for the purpose of illustra-
tion include adaptive radial-based direction sampling (Bauwens et al., 2006)
and hit-and-run sampling in combination with the ratio-of-uniform method
(Karawatzki et al., 2005).

6.2.8 Application to the Fishery Data

For the Fishery Data, Titterington et al. (1985) assume that for a certain
age group indexed by k, the length of a fish follows a normal distribution
N

(
µk, σ2

k

)
, however, age is unobserved. Assuming that a randomly selected

fish belongs to age group k with probability ηk, the marginal distribution of
the length follows a finite mixture of normal distributions with different means
and different variances:

Yi ∼ η1N
(
µ1, σ

2
1
)

+ · · · + ηKN
(
µK , σ2

K

)
. (6.27)

For illustration, we fit finite mixtures of K normal distributions with increas-
ing number K of potential groups to the Fishery Data introduced in Sub-
section 1.1. We assume a D (4, . . . , 4)-prior for η, and apply the hierarchical
independence prior introduced by Richardson and Green (1997); see Subsec-
tion 6.2.6.

Table 6.2. Fishery Data, normal mixtures with K = 4 (hierarchical independence
prior)

Parameter Posterior Mean SD 95% Confidence Region
Lower Upper

µ1 3.30 0.119 3.11 3.58
µ2 5.23 0.081 5.06 5.39
µ3 7.29 0.244 6.64 7.63
µ4 8.78 0.771 7.36 10.21

σ2
1 0.159 0.096 0.063 0.416

σ2
2 0.312 0.081 0.181 0.498

σ2
3 0.488 0.327 0.122 1.406

σ2
4 2.82 1.128 1.022 5.229

η1 0.115 0.023 0.076 0.164
η2 0.469 0.059 0.336 0.569
η3 0.222 0.068 0.102 0.377
η4 0.195 0.074 0.084 0.368
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Fig. 6.8. Fishery Data, normal mixtures with K = 3 (left-hand side) and K =
4 (right-hand side) components (hierarchical independence prior); MCMC draws
obtained from the random permutation sampler; top: µk plotted against σ2

k; bottom:
µk plotted against µk′

For estimation, we use Algorithm 6.1 and store 5000 MCMC draws after a
burn-in phase of 2000 draws. We estimate unidentified mixtures with K = 3
and K = 4 components, respectively. MCMC estimation for an unidentified
mixture is carried out with the help of the random permutation Gibbs sampler.
The top of Figure 6.8 shows two-dimensional scatter plots of the MCMC draws
(µ(m)

k , σ
(2,m)
k ) for an arbitrary k for K = 3 and K = 4. For K = 3 and K = 4

there are, respectively, three and four clearly separated clusters visible in the
MCMC draws. As expected, the mean of the height is different between the
groups. The variances are nearly identical for the groups with smaller fish,
but rather large for the group with the largest fish. For K = 4, group 1 and
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group 2 remained roughly where they have been for a mixture with K = 3,
whereas the third group has been split into two separate groups. Interestingly,
the variance of the third group is now comparable with the variance of groups
1 and 2; only the variance of the fourth group is considerably larger.

The MCMC draws from the marginal bivariate density p(µk, µk′ |y), with
k and k′ arbitrary, but different, shown in the bottom of Figure 6.8, indi-
cate that for K = 3 the K(K − 1) = 6 modes are all bounded away from the
line µk = µk′ which corresponds to a model where two components have equal
means. Therefore the constraint µ1 < µ2 < µ3 induces a unique labeling. After
reordering the MCMC draws according to this constraint by the permutation
sampler, we obtain MCMC draws which could be used for category-specific
inference. For K = 4, the MCMC draws from the marginal bivariate density
p(µk, µk′ |y) in Figure 6.8, however, indicate that K(K − 1) = 12 possible
modes are not all bounded away from the line µk = µk′ which corresponds
to a model where two components have equal means. Thus the constraint
µ1 < · · · < µ4 does not induce a unique labeling. Postprocessing the MCMC
draws through unsupervised clustering as explained in Subsection 3.7.7, how-
ever, leads to an identified mixture model. These MCMC draws were used for
category-specific inference, in particular for parameter estimation for K = 4
given in Table 6.2.

The prior exercises considerable influence for these data. For the condi-
tionally conjugate prior introduced by Bensmail et al. (1997) (see Subsec-
tion 6.2.2), for instance, shrinkage is much stronger, whereas the prior of
Raftery (1996b) completely failed.

6.3 Bayesian Estimation of Multivariate Mixtures
of Normals

6.3.1 Bayesian Inference When the Allocations Are Known

In this subsection the conditional posterior distribution of µk,Σk|S,y is de-
rived by combining the information from all observations in group k. Relevant
group-specific quantities are the number Nk(S) of observations in group k, the
group mean yk(S), and the unexplained within-group variability W k(S):

Nk(S) = #{i : Si = k}, (6.28)

yk(S) =
1

Nk(S)

∑
i:Si=k

yi, (6.29)

W k(S) =
∑

i:Si=k

(yi − yk(S))(yi − yk(S))
′
. (6.30)

Assume that for observation yi, the allocation is equal to k, Si = k. Then
the contribution of yi to the complete-data likelihood function p(y|µ,Σ,S) is
equal to
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p(yi|µk,Σk) = c|Σk|−1/2exp
(

−1
2
(yi − µk)

′
Σ−1

k (yi − µk)
)

,

where c = (2π)−r/2, and the complete-data likelihood function has K in-
dependent factors, each carrying all information about the parameters in a
certain group:

p(y|µ,Σ,S) = (6.31)

cN
K∏

k=1

|Σk|−Nk(S)/2exp

(
−1

2

∑
i:Si=k

(yi − µk)
′
Σ−1

k (yi − µk)

)
.

In a Bayesian analysis each of these factors is combined with a prior. When
holding the variance–covariance matrix Σk fixed, then the complete-data
likelihood function, regarded as a function of µk, is the kernel of a multi-
variate normal distribution. Under the conjugate prior µk ∼ Nr (b0,B0),
the posterior density of µk given Σk and Nk(S) observations assigned to
this group, is again a density from the multivariate normal distribution,
µk|Σk,S,y ∼ Nr (bk(S),Bk(S)), where

Bk(S) = (B−1
0 + Nk(S)Σ−1

k )−1, (6.32)
bk(S) = Bk(S)(B−1

0 b0 + Σ−1
k Nk(S)yk(S)). (6.33)

When holding the mean µk fixed, the complete-data likelihood function, re-
garded as a function in Σ−1

k , is the kernel of a Wishart density; see Ap-
pendix A.1.14 for more detail on this distribution family. Under the conjugate
Wishart prior Σ−1

k ∼ Wr (c0,C0), the posterior density of Σk given µk and
Nk(S) observations assigned to this group, is again a density from the Wishart
distribution, Σ−1

k |µk,S,y ∼ Wr (ck(S),Ck(S)), where

ck(S) = c0 +
Nk(S)

2
, (6.34)

Ck(S) = C0 +
1
2

∑
i:Si=k

(yi − µk)(yi − µk)
′
. (6.35)

If both µk and Σk are unknown, a closed-form solution for the joint posterior
p(µk,Σk|S,y) exists only if the prior of µk is restricted by assuming that
the prior covariance matrix depends on Σk through B0,k = Σk/N0. Then the
joint posterior factors as p(µk|Σk,y,S)p(Σk|y,S), where the density of µk

given Σk arises from a Nr (bk(S),Bk(S)) distribution with

Bk(S) =
1

Nk(S) + N0
Σk, (6.36)

bk(S) =
N0

Nk(S) + N0
b0 +

Nk(S)
Nk(S) + N0

yk(S), (6.37)

whereas the marginal posterior of Σ−1
k is a Wr (ck(S),Ck(S))-distribution,

where ck(S) is the same as in (6.34), however,
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Ck(S) = C0 +
1
2

(
Nk(S)N0

Nk(S) + N0
(yk(S) − b0)(yk(S) − b0)

′
)

+
1
2
W k(S). (6.38)

6.3.2 Prior Distributions

Standard Prior Distributions

Binder (1978), Lavine and West (1992), Robert (1996), and Bensmail et al.
(1997) consider the conditionally conjugate prior

p(µ1, . . . ,µK ,Σ1, . . . ,ΣK) =
K∏

k=1

p(µk|Σk)p(Σk), (6.39)

where µk|Σk ∼ Nr (b0,Σk/N0) , and Σ−1
k ∼ Wr (c0,C0). As explained

in Subsection 6.3.1, this prior has the advantage that the joint posterior
p(µ,Σ|S,y) is available in closed form, conditional on knowing the alloca-
tions S. This prior is proper if N0 > 1 and c0 > (r − 1)/2. Binder (1978)
and Lavine and West (1992) choose hyperparameters N0 and c0 that result
in an improper prior, which is not recommended both for the theoretical and
practical reasons discussed earlier. Robert (1996) chooses b0 = y, N0 = 1,
c0 = 3, and C0 = 0.75Sy, where y and Sy are the sample mean and the sam-
ple variance–covariance matrix, respectively. Bensmail et al. (1997) choose the
same prior on µk, but a slightly different prior on the covariance matrices,
namely c0 = 2.5 and C0 = 0.5Sy.

Understanding the Hyperparameters

c0 will influence the prior distribution of the eigenvalues of ΣkΣ−1
j which

are given by λk,l/λj,m, where λk,l and λj,m are the eigenvalues of Σk and
Σj . These eigenvalues are bounded away from 0, if c0 > 2 + (r − 1)/2. This
suggests choosing c0 as a function of r.

If C0 = φSy as in Robert (1996) and Bensmail et al. (1997), then φ
influences the prior expectation of the amount of heterogeneity E(R2

t (ϑ)),
explained by differences in the group means:

E(R2
t (ϑ)) = 1 − φ

c0 − (r + 1)/2
. (6.40)

If for instance c0 = 2.5 + (r − 1)/2, then choosing φ = 0.75 corresponds to a
prior expectation of 50 percent of explained heterogeneity, whereas choosing
φ = 0.5 leads to prior expectation of 2/3 explained heterogeneity.
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Prior Dependence Between the Components

Stephens (1997a) considers an extension of the hierarchical independence prior
introduced by Richardson and Green (1997) for univariate mixtures of nor-
mals, by generalizing (6.25) in the following way to multivariate mixtures:

p(µ1, . . . ,µK ,Σ1, . . . ,ΣK) =
K∏

k=1

p(µk)
K∏

k=1

p(Σk|C0), (6.41)

where µk ∼ Nr (b0,B0), and Σ−1
k ∼ Wr (c0,C0). If C0 is a fixed hyper-

parameter, the independence prior results, where all component parameters
µ1, . . . ,µK ,Σ1, . . . ,ΣK are pairwise independent a priori. For the hierarchical
independence prior, prior dependence between Σ1, . . . ,ΣK is introduced by
assuming that the scale matrix C0 of the inverted Wishart prior is a random
hyperparameter with a prior of its own, C0 ∼ Wr (g0,G0). As emphasized by
Stephens (1997a), the posterior distribution will be proper, even if the prior
on the scale matrix C0 is improper.

Note that the marginal prior p(Σ1, . . . ,ΣK), where C0 is integrated out,
takes the form:

p(Σ1, . . . ,ΣK) = (6.42)

|G0|g0 Γr(gK)
Γr(g0)Γr(c0)K

∣∣∣∣∣G0 +
K∑

k=1

Σ−1
k

∣∣∣∣∣
−gK (

K∏
k=1

|Σ−1
k |

)c0+(r+1)/2

,

where gK = g0 + Kc0 and Γr(α) is the generalized Gamma function defined
in Appendix A.1, formula (A.26).

Concerning the hyperparameters, Stephens (1997a) considered robust es-
timators of location and scale and chose the midpoint and the length of the
observation interval for the different components of yi to define location and
spread. For bivariate mixtures this prior reads c0 = 3, g0 = 0.3, and b0, B0
and G0 defined by:

b0 =
(

m1
m2

)
, B0 =

(
R2

1 0
0 R2

2

)
, G0 =

( 100g0
c0R2

1
0

0 100g0
c0R2

2

)
,

where ml and Rl are the midpoint and the length of the observation interval
of the lth component of yi. This prior is easily extended to higher-dimensional
mixtures.

6.3.3 Bayesian Parameter Estimation Using MCMC

Several authors, in particular Lavine and West (1992), Bensmail et al. (1997),
Stephens (1997a), and Frühwirth-Schnatter et al. (2004), have considered
Gibbs sampling, based on data augmentation, as described for general mix-
tures in Section 3.5, to estimate the parameters of a multivariate mixture of
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normals. Full conditional Gibbs sampling proceeds along the lines indicated
by Algorithm 3.4, where the results of Subsection 6.3.1 are used to sample the
mean µk and variance–covariance matrix Σk in each group, conditional upon
a given allocation vector S.

Algorithm 6.2: Two-Block Gibbs Sampling for a Multivariate Gaussian Mix-
ture

(a) Parameter simulation conditional on the classification S = (S1, . . . , SN ):
(a1) Sample η from the conditional Dirichlet posterior p(η|S) as in Algo-

rithm 3.4.
(a2) Sample Σ−1

k in each group k from a Wr (ck(S),Ck(S))-distribution.
(a3) Sample µk in each group k from an Nr (bk(S),Bk(S))-distribution.

(b) Classification of each observation yi, for i = 1, . . . , N , conditional on
knowing µ,Σ, and η:

Pr(Si = k|µ,Σ,η,yi) ∝ fN (yi; µk,Σk)ηk. (6.43)

The precise form of bk(S), Bk(S), ck(S), and Ck(S) in steps (a2) and (a3)
depends upon the chosen prior distribution family. For the independence prior
and the hierarchical independence prior bk(S) and Bk(S) are given by (6.32)
and (6.33), whereas ck(S) and Ck(S) are available from (6.34) and (6.35).
Under the conditionally conjugate prior and the hierarchical conditionally
conjugate prior, µk and Σk may be sampled jointly, as the marginal density
Σ−1

k |S,y is available in closed form. bk(S) and Bk(S) are given by (6.36) and
(6.37), whereas ck(S) and Ck(S) are available from (6.34) and (6.38).

Note that the sampling order in Algorithm 6.2 could be reversed, by start-
ing with classification based on starting values for µ, Σ, and η. Whereas
choosing starting values is not a problem for univariate mixtures, for multi-
variate mixtures it is essential to use some carefully selected starting value, in
particular when r is large. As shown, for instance, in Justel and Peña (1996),
Gibbs sampling may be trapped at a suboptimal solution when starting with
poor parameter estimates and may never converge.

In general, it is easier to find a rough classification of the data than good
starting values for rather high-dimensional variance–covariance matrices. One
solution, dating back at least to Friedman and Rubin (1967) is to utilize
repeated random partitioning of the observations into K groups. Another
useful solution, suggested by Everitt and Hand (1981) is to run a pilot analysis
and to use some simple clustering technique to obtain a starting value for S.

Under any hierarchical prior an additional step has to be added to Al-
gorithm 6.2, to sample the scale matrix C0 of the hierarchical prior from
the conditional posterior p(C0|Σ1, . . . ,ΣK ,y), which takes the form of the
following Wishart distribution,

C0 ∼ Wr

(
g0 + Kc0,G0 +

K∑
k=1

Σ−1
k

)
. (6.44)
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Classification Without Parameter Estimation

As already discussed in Subsection 3.3.3, Chen and Liu (1996) showed that
for many mixture models Bayesian clustering is possible without explicit pa-
rameter estimation, using directly the marginal posterior p(S|y) given by
p(S|y) ∝ p(y|S)p(S). For a mixture of multivariate normal distributions,
p(y|S) is given by

p(y|S) ∝
K∏

k=1

Γd(ck(S))
|Ck(S)|ck(S) , (6.45)

where ck(S), and Ck(S) are the posterior moments of the full conditional
posterior density p(Σk|y,S) under the conditionally conjugate prior, and Γd(·)
is the generalized Gamma function, defined in (A.26).

6.3.4 Application to Fisher’s Iris Data

This example involves a data set well known in multivariate analysis, namely
Fisher’s Iris Data. This data set consists of 150 four-dimensional observa-
tions of three species of iris (iris setosa, iris versicolour, iris virginica). The
measurements taken for each plant are sepal length, sepal width, petal length
and petal width.1 ML estimation of these data has been considered by many
authors, for instance, by Everitt and Hand (1981). Everitt and Hand (1981,
p.43), when fitting a three-component mixture with unconstrained component
variance-covariances matrices to Fisher’s Iris Data, report convergence to
the singularities of the likelihood surface for certain starting values.

We reanalyze these data using a Bayesian approach, based on the hier-
archical independence prior, and fit a three-component multivariate normal
mixture with unconstrained component variance–covariance matrices to these
data. The posterior draws of µk,1 versus µk,2 and µk,3 versus µk,4 in Figure 6.9
show three clear simulation clusters. Thus identification could be achieved
using unsupervised clustering of the MCMC draws of (µk,1, µk,2, µk,3, µk,4)
as explained in Subsection 3.7.7. The corresponding estimates are shown in
Table 6.3, whereas Figure 6.10 shows the position of the estimated mixture
components relative to the data.

6.4 Further Issues

6.4.1 Parsimonious Finite Normal Mixtures

If the number of observations N is small compared to the number r of fea-
tures, measured for each yi, efficient estimation of unconstrained variance–
1 Data from ftp://ftp.ics.uci.edu/pub/machine-learning-databases/iris/iris.names.

These data differ from the data presented in Fisher’s article; errors in the 35th
sample in the fourth feature and in the 38th sample in the second and third
features were identified by Steve Chadwick (spchadwick@espeedaz.net).
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Fig. 6.9. Fisher’s Iris Data, multivariate normal mixture with K = 3 compo-
nents (hierarchical independence prior); MCMC draws obtained from the random
permutation sampler; left-hand side: µk,1 plotted against µk,2; right-hand side: µk,3

plotted against µk,4

Table 6.3. Fisher’s Iris Data, multivariate normal mixture with K = 3 compo-
nents (hierarchical independence prior); posterior expectation of certain character-
istics of the covariance matrices Σk, identification achieved through unsupervised
clustering

Group k E(Eigenvalues of Σk|y) E(tr (Σk) |y) E(detΣk|y)

1 0.179 0.0361 0.0218 0.00731 0.244 2.84e-006
2 0.381 0.0526 0.0325 0.00686 0.473 1.26e-005
3 0.512 0.0818 0.0436 0.0236 0.661 0.00012

Fig. 6.10. Fisher’s Iris Data, multivariate normal mixture with K = 3 compo-
nents (hierarchical independence prior); fitted mixture model in relation to the data,
identification achieved through unsupervised clustering
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covariance matrices Σk is not possible, and the performance of the corre-
sponding classification rules will be disappointing (see, e.g., McLachlan and
Basford, 1988). Gain in efficiency may be achieved as in Friedman (1989) by
shrinking each Σk toward a common variance–covariance matrix Σ, through
a hierarchical prior with large degrees of freedom c0.

Various authors studied models for component variance–covariance ma-
trices that are more parsimonious than unconstrained variance–covariance
matrices in terms of the number of parameters, and the most useful ones are
briefly reviewed here.

Constrained Mixtures

The easiest way to achieve parsimony is to put simple constraints on the
variance–covariance matrices. For a homoscedastic mixture, the variance–
covariance matrices are restricted to be the same in each component, Σk ≡ Σ.
A spherical mixture is one where Σk ≡ σ2

kIr. In the isotropic case all
variance–covariance matrices are restricted to the same scaled identity ma-
trix, Σk ≡ σ2Ir. For an illustration of these various types of multivariate
normal mixtures see the simulated data sets in Figure 6.11.

For MCMC estimation of constrained mixtures, step (a2) in Algorithm 6.2
has to be modified in an appropriate way. The following results hold for condi-
tionally conjugate priors; modifications for independence priors are straight-
forward. For a homoscedastic mixture with prior Σ−1 ∼ Wr (c0,C0), step
(a2) reduces to sampling Σ−1 from a Wr (cN ,CN (S)), where cN = c0 + N/2,
and

CN (S) = C0 +
1
2

K∑
k=1

(
W k(S) +

N0Nk(S)
N0 + Nk(S)

(yk(S) − b0)(yk(S) − b0)
′
)

.

For r = 1 the Wishart distribution reduces to the Gamma distribution; see
Subsection A.1.14. For a spherical mixture under prior σ2

k ∼ G−1 (c0, C0) step
(a2) reduces to sampling σ2

k in each group k as σ2
k ∼ G−1 (ck(S), Ck(S)), where

ck(S) = c0 + Nk(S)r/2 and

Ck(S) = C0 +
1
2

(
tr (W k(S)) +

N0Nk(S)
N0 + Nk(S)

(yk(S) − b0)
′
(yk(S) − b0)

)
.

For an isotropic mixture with prior σ2 ∼ G−1 (c0, C0), step (a2) reduces to
sampling of σ2 as σ2 ∼ G−1 (cN , CN (S)), where cN = c0 + Nr/2, and

CN (S) = C0 +
1
2

K∑
k=1

(
tr (W k(S)) +

N0Nk(S)
N0 + Nk(S)

(yk(S) − b0)
′
(yk(S) − b0)

)
.
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Fig. 6.11. 1000 observations simulated from a mixture of three bivariate normal
distributions with η1 = η2 = η3 = 1/3, means located at (−1, 1), (0, −2), and (2, 2),
and different covariance structures: unrestricted covariances (top, left-hand side),
homoscedastic covariances (top, right-hand side), spherical mixture (bottom, left-
hand side), isotropic mixture (bottom, right-hand side); full line: 95%-confidence
region for each component

Parsimony Based on the Eigenvalue Decomposition

Banfield and Raftery (1993) suggested parsimonious modeling of the variance–
covariance matrices Σk, based on the spectral decomposition of Σk:

Σk = λkDkAkD
′
k, (6.46)

where λk is the largest eigenvalue of Σk, Ak is a diagonal matrix containing
the decreasing eigenvalues of Σk, divided by the largest eigenvalue λk, and
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Dk is an orthogonal matrix with the columns corresponding to the normalized
eigenvectors of Σk. A slightly different parameterization has been considered
by Bensmail and Celeux (1996), where λk = |Σk|1/r and Ak contains the
normalized eigenvalues in decreasing order. In (6.46), λk controls the volume
occupied by the cluster in the sample space. The elements of Ak control the
shape with Ak = Diag (1 · · · 1) corresponding to spherical clusters, whereas a
cluster with Ak = Diag (1Ak2 · · ·Akr), where Akj << 1, will be concentrated
around a line in the sample. Finally, Dk determines the orientation with re-
spect to the coordinate axes, with Dk = Ir corresponding to the case where
the principal components are parallel to the coordinate axes. Therefore when
clusters share certain parameters λk, Ak, and Dk, they share certain geomet-
ric properties, and parsimony is achieved through imposing constraints on λk,
Ak, and Dk. Bensmail and Celeux (1996) discuss in total 14 different models.
ML estimation of these models, where all relevant matrices are estimated from
the data is discussed in Celeux and Govaert (1995), whereas a fully Bayesian
analysis using MCMC estimation is discussed in Bensmail et al. (1997).

These models were applied to clustering multivariate data (Banfield and
Raftery, 1993; Celeux and Govaert, 1995; Bensmail et al., 1997) and discrim-
inant analysis (Bensmail and Celeux, 1996); see also Chapter 7.

6.4.2 Model Selection Problems for Mixtures of Normals

The most common model selection problem is naturally selecting the number
K of components. But also choosing an appropriate structure of the compo-
nent variance–covariance matrices is important.

Model Selection Based on Marginal Likelihoods

Bensmail et al. (1997) used the marginal likelihood p(y|MK), which has been
defined in Section 5.3, to treat the problem of choosing the number of com-
ponents and selecting between different variance–covariance models for Σk si-
multaneously. They illustrate for various simulated data sets that the marginal
likelihood is able to find the true number of components, when no misspecifi-
cations are present. For numerical approximation, Bensmail et al. (1997) use
the Laplace–Metropolis estimator (Lewis and Raftery, 1997); see also Subsec-
tion 5.5.3 for more detail on this estimator.

Frühwirth-Schnatter (2004) compared various estimators of the marginal
likelihood for bivariate mixtures of normals, and found that the bridge sam-
pling estimator, which has been described in Subsection 5.4.6, gave accurate
estimates of the marginal likelihood, if K is not too large. The bridge sampling
estimator may be applied to univariate and multivariate mixtures of normals
in a rather straightforward manner. We give more details for a multivariate
mixture. The importance density, defined in (5.36) takes the form of a mixture
of normal inverted Wishart densities:
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q(µ,Σ,η) =
1
S

S∑
s=1

p(η|S(s))
K∏

k=1

p(µk|Σk,S(s),y)q(Σk|S(s),y),

where p(µk|Σk,S(s),y) is the full conditional multivariate normal distribution
appearing in step (a3) in Algorithm 6.2. Under the conditionally conjugate
prior it is possible to choose q(Σk|S(s),y) = p(Σk|S(s),y), with p(Σk|S(s),y)
being the marginal inverted Wishart density appearing in step (a2). For the
independence prior, we choose q(Σk|S(s),y) = p(Σk|µ(s−1),S(s),y), with
p(Σk|µ(s−1),S(s),y) being the inverted Wishart density appearing in step (a2)
in Algorithm 6.2. Under a hierarchical prior, the marginal prior p(Σ1, . . . ,ΣK)
given in (6.42) has to be used in evaluating the bridge sampling estimator.

AIC and BIC

AIC and BIC, defined earlier in Subsection 4.4.2, are frequently used for model
choice, especially in the context of multivariate normal mixtures; see in par-
ticular Fraley and Raftery (1998), Dasgupta and Raftery (1998), Yeung et al.
(2001), and Fraley and Raftery (2002) for an application of BIC and Bozdogan
and Sclove (1984) for an application of AIC. For an unconstrained mixture
with K components, one chooses the model MK which minimizes

AICK = −2 log p(y|ϑ̂K ,MK) + 2(K(r + 1)(r/2 + 1) − 1),

BICK = −2 log p(y|ϑ̂K ,MK) + log(N)(K(r + 1)(r/2 + 1) − 1).

To obtain the ML estimator ϑ̂K one could run the EM algorithm; see Sub-
section 6.1.2.

Model Choice Based on Model Space MCMC

Model space MCMC methods are usually applied to selecting the num-
ber of components for unconstrained mixture of normals, whereas variance–
covariance selection using model space MCMC methods is still an open issue.
Stephens (1997a, 2000a) applied birth and death MCMC methods, reviewed in
Subsection 5.2.3, to univariate and multivariate mixtures of normals. The im-
plementation of Algorithm 5.4 for mixtures of normals is in principle straight-
forward.

The most popular model space MCMC method for mixtures of normals,
however, is reversible jump MCMC, reviewed in Subsection 5.2.2, and has
been applied by Richardson and Green (1997), Marrs (1998), and Dellaportas
and Papageorgiou (2006).

To apply Algorithm 5.2 to univariate mixtures of normals, it is necessary
to design a suitable split/merge move along the lines discussed in Subsec-
tion 5.2.2. Using the functions h1(Y ) = Y and h2(Y ) = Y 2, when matching
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the moments in (5.12), leaves the mean and the variance of the marginal dis-
tribution of Y unchanged. For a univariate mixture of normals, (5.12) reduces
to

ηk�µk� = ηk1µk1 + ηk2µk2 , (6.47)
ηk�(µ2

k� + σ2
k�) = ηk1(µ

2
k1

+ σ2
k1

) + ηk2(µ
2
k2

+ σ2
k2

). (6.48)

For the reverse split move, there are three degrees of freedom, and a random
variable u = (u1, u2, u3) of dimension 3 is introduced, to specify the new
pairs. There are various ways in which a split move may be implemented. In
Richardson and Green (1997), u1 ∼ B (2, 2), u2 ∼ B (2, 2), and u3 ∼ B (1, 1),
and splitting is made according to the following rule, which fulfills (6.47) and
(6.48) and leads to positive variances,

ηk1 = ηk�u1, ηk2 = ηk�(1 − u1), (6.49)

µk1 = µk� − u2σk�

√
ηk2

ηk1

, µk2 = µk� + u2σk�

√
ηk1

ηk2

, (6.50)

σ2
k1

= u3(1 − u2
2)σ

2
k�

ηk�

ηk1

, σ2
k2

= (1 − u3)(1 − u2
2)σ

2
k�

ηk�

ηk2

. (6.51)

The determinant of the Jacobian for this split move is given by

ηk� |µk1 − µk2 |σ2
k1

σ2
k2

u3(1 − u3)u2(1 − u2
2)σ

2
k�

.

Marrs (1998) extended the reversible jump MCMC algorithm to multivariate
spherical Gaussian mixtures, where Σk = σ2

kIr, which reduced for r = 1
to a merge/split move for univariate mixtures of normal distributions, that
is different from the one described above. When merging two components,
Marrs (1998) uses the following rule,

ηk�µk� = ηk1µk1
+ ηk2µk2

, (6.52)

to merge the component means, which reduces to (6.47) for r = 1, but the
rule

ηk�σ2
k� = ηk1σ

2
k1

+ ηk2σ
2
k2

,

rather than (6.48) to define the variance of the new component. The split
move reads:

µk1
= µk� − u2σk�

√
ηk2

ηk1

, µk2
= µk� + u2σk�

√
ηk1

ηk2

,

σ2
k1

= u3σ
2
k�

ηk�

ηk1

, σ2
k2

= (1 − u3)σ2
k�

ηk�

ηk2

,

where u1, u2 = (u21, . . . , u2r), and u3 all are drawn from a B (2, 2) distribution,
and the components of u2 have a probability of 0.5 of being negative. The
determinant of the Jacobian for this split move is given by
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ηk�σr+1
k�

2(u1(1 − u1))(r+1)/2
√

u3(1 − u3)
.

The acceptance rate of a combine move will be strongly influenced by
combining similar components rather than different ones. For mixtures of
normal distributions, Richardson and Green (1997) choose at random a pair
(k1, k2) among all components that are adjacent in terms of their means µk1

and µk2 . This is possible, as Richardson and Green (1997) do not sample from
the unconstrained posterior, but impose an order constraint on the means. In
an unconstrained setting, the procedure of Marrs (1998) is useful, which first
selects one component k1 randomly among all components, and then computes
a distance r(θk1 ; θk) between k1 and any other component k �= k1. The second
component k2 is then chosen with probability proportional to 1/r(θk1 ; θk2).

Dellaportas and Papageorgiou (2006) adopt the reversible jump MCMC
to general multivariate mixtures and construct split and merge moves, in
a manner similar to Richardson and Green (1997). As the dimension of yi

increases, the difference in the number of parameters between a mixture with
K and K+1 components, which is equal to (r+1)(r/2+1), increases with order
r2. The main challenge is to split the covariance matrix in such a way that the
overall dispersion remains relatively constant, whereas the new matrices are
positive definite. To solve this problem, Dellaportas and Papageorgiou (2006)
operate in the space of the r eigenvectors and eigenvalues of the covariance
matrix, and propose permuting the current eigenvectors through randomly
chosen permutation matrices.

To avoid the complicated splitting of µk and Σk in a split move, Tadesse
et al. (2005) marginalize with respect to µ = (µ1, . . . ,µK) and Σ =
(Σ1, . . . ,ΣK) which is possible under the conjugate prior (6.39) and oper-
ate only on the space of all allocations S = (S1, . . . , SN ), using the marginal
likelihood p(y|S) given in (6.45). Split and merge moves are defined directly
through the allocations Si. The resulting model space MCMC sampler is
closely related to the Markov chain Monte Carlo model comparison (MC3) al-
gorithm of Madigan and York (1995). Because this algorithm involves rather
simple acceptance rates, it is a promising alternative to the full reversible
jump method described above.
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Data Analysis Based on Finite Mixtures

This chapter lays out the more practical side of mixtures of normal distri-
butions and discusses several statistical topics from the viewpoint of finite
mixture modeling, such as cluster analysis in Section 7.1, outlier detection in
Section 7.2, robust modeling based on mixture of Student-t distributions in
Section 7.3, and discriminant analysis and density estimation in Section 7.4.

7.1 Model-Based Clustering

7.1.1 Some Background on Cluster Analysis

The main purpose of cluster analysis is to group previously unstructured data
{y1, . . . ,yN}, where yi is an r-dimensional vector, into groups containing
data that are similar in some sense (Kaufman and Rousseeuw, 1990; Everitt
et al., 2001). In applying cluster analysis one expects that meaningful groups
exist among the data, however, there are no external criteria by which to
define them. Rather cluster analysis relies on an internal criterion defined
solely from the data that evaluates each partition S of the N observations
into K groups through some numerical function c(S), measuring adequacy of
this particular partition. By searching for that partition which minimizes (or
maximizes) c(S), the data themselves suggest sensible groupings.

The choice of an appropriate clustering criterion, however, has been the
subject of much controversy; see Everitt et al. (2001, Chapter 5) for an ex-
tensive review. Clustering criteria are often based on decomposing the total
variance T of the data around the overall mean y,

T =
N∑

i=1

(yi − y)(yi − y)
′
,

into the total within-group variance W (S) and the total between-group vari-
ance B(S):
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T = W (S) + B(S), (7.1)

where

W (S) =
K∑

k=1

W k(S), (7.2)

B(S) =
K∑

k=1

Nk(S)(yk(S) − y)(yk(S) − y)
′
, (7.3)

and Nk(S), yk(S), and W k(S) are the group sizes, the group means, and the
within-group variance for partition S, defined earlier in (6.28) to (6.30).

A natural criterion for the evaluation of a certain partition S is the amount
of heterogeneity explained by this particular partition, measured in terms of
an empirical coefficient of determination such as

1 − tr (W (S))
tr (T)

or 1 − |W (S)|
|T| .

In the first case, one would search for the partition S that minimizes tr (W (S)),
which is perhaps the most commonly used criterion in cluster analysis. In the
second case one would search for the partition S that minimizes |W (S)|, a
criterion suggested by Friedman and Rubin (1967).

Although these criteria seem to be heuristic, we note already at this point
that the variance decomposition in (7.1) is closely related to the variance de-
composition of a multivariate mixture of normal distributions, given earlier
in (6.3), if the parameters ηk, µk, and Σk are substituted by the complete-
data ML estimator Nk(S)/N , yk(S), and W k(S)/Nk(S). This close relation-
ship between heuristic clustering criteria and mixture modeling indicates that
clustering may be directly based on finite mixture models.

7.1.2 Model-Based Clustering Using Finite Mixture Models

Many authors prefer probabilistic models for clustering multivariate data to
cluster analysis based on ad hoc criteria; see McLachlan and Basford (1988),
Bock (1996), and Fraley and Raftery (2002) for a comprehensive review. In
model-based clustering it is assumed that a collection of multivariate observa-
tions y1, . . . ,yN , where yi is an r-dimensional vector, arises from a population
with K subgroups (clusters) each of relative size ηk. Within each cluster the
data are generated by a multivariate distribution p(yi|θk) with group spe-
cific parameter θk. As group membership is unknown, yi is regarded as the
realization of a random variable Y from a multivariate mixture distribution:

p(yi|ϑ) =
K∑

k=1

ηkp(yi|θk).
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In this case each of the K components of the mixture corresponds to one the
K clusters. In a clustering context little information about the parameters
of the component densities is available, and classification has to be carried
out simultaneously with parameter estimation by jointly quantifying informa-
tion about (θ1, . . . ,θK) and the allocation variables S, which provide a basis
for posterior classification of the observations {y1, . . . ,yN} into the different
components.

When observing a random variable with metric features commonly a mul-
tivariate mixture of normal distributions is applied for clustering (Wolfe, 1970;
Scott and Symons, 1971; Binder, 1978; Symons, 1981; Banfield and Raftery,
1993). Scott and Symons (1971) showed that many heuristic data-based clus-
tering criteria are equivalent to finding the optimal classification for a certain
mixture of normal distributions; see Subsection 7.1.3.

Practical application of model-based clustering using Gaussian mixtures
include character recognition (Murtagh and Raftery, 1984), tissue segmen-
tation (Banfield and Raftery, 1993), minefield and seismic fault detection
(Dasgupta and Raftery, 1998), clustering gene expression data (Yeung et al.,
2001), and classification of astronomical data (Celeux and Govaert, 1995). The
model-based clustering framework is, however, more general than that and
has been applied to clustering under outliers and noise (see Subsection 7.2.4),
to clustering discrete multivariate data (see Subsection 9.5.1), as well as to
mixed-mode data (see Subsection 9.6.1).

Several decades ago, Everitt (1979) addressed some nagging problems in
practical cluster analysis that were unresolved at that time. These problems
are selecting a suitable clustering criterion, selecting the number of clusters,
and computational issues such as identifying a sensible search strategy for
finding the optimal partition of the data and choosing sensible starting values.
It has to be admitted that partly these problems are still relevant today. In
particular the problem of choosing the number of clusters is still unsolved
despite tremendous work done in this area; see Subsection 7.1.4 and Gordon
(1999) for a recent review.

Practical cluster analysis through mixtures of normals is often based on the
EM algorithm (Wolfe, 1970). Variants of the EM algorithm that were found to
be useful for clustering based on finite mixture models include the stochastic
EM (SEM) algorithm (Celeux and Diebolt, 1985), where the indicators in the
E-step are simulated rather than estimated, and the classification EM (CEM)
algorithm (Celeux and Govaert, 1992), which performs classification based on
the estimated indicators prior to the M-step.

Scott and Symons (1971), Binder (1978), and Symons (1981) studied clus-
tering based on a multivariate mixture of normal distributions from a Bayesian
point of view, however, the practicability was limited in these days and approx-
imations had to be applied (Binder, 1981). With the availability of powerful
MCMC methods, interest in the Bayesian approach to model-based cluster-
ing has been renewed (Chen and Liu, 1996; Bensmail et al., 1997; Stephens,
2000b; Frühwirth-Schnatter and Kaufmann, 2006b). There are various reasons
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why one might be interested in adopting a Bayesian approach to model-based
clustering using finite mixtures. First, as discussed in Subsection 6.1.2, using
the EM algorithm for ML maximization may lead to degenerate solutions,
which are less likely under Bayesian estimation using proper priors. Second,
there exists a more principled way of posterior classification of the objects
into the different clusters, as explained in Subsection 7.1.7.

Finally, for practical Bayesian cluster analysis, powerful Markov chain
Monte Carlo methods may be applied, such as sampling the allocation without
sampling the parameters (see Algorithm 3.1 and Algorithm 3.2), or data aug-
mentation and Gibbs sampling, which deliver draws of both the unknown pa-
rameters and the allocations (see Algorithm 3.4 and Algorithm 3.5). These are
stochastic search algorithms, based on ergodic Markov chains, which converge
theoretically to the desired posterior distribution, regardless of the starting
partition. Consider, for instance, Algorithm 3.2 with a symmetric proposal,
where q(Snew

i |Si) = q(Si|Snew
i ); the ratio is equivalent to the ratio of the two

classification probabilities:

ri =
p(S−i, S

new
i |y)

p(S−i, Si|y)
.

In this case, any proposed classification that increases the joint marginal pos-
terior probability will be accepted with probability one. If we proposed a clas-
sification with lower marginal posterior probability, then it will be accpeted
with a probability that is equal to the posterior odds of the new versus the
old classification. Thus the Metropolis–Hastings algorithm may be regarded
as a stochastic version of hill climbing methods that are commonly applied in
optimizing clustering criteria.

Sensible starting values for S(0) may be obtained using common heuristic
clustering methods such as K means or hierarchical clustering. Nevertheless,
dependence on the initial partition S(0) is not an unlikely occurrence.

A certain challenge for both Bayesian and ML approaches is clustering
large data sets because for each sweep of the MCMC sampler or for each
iteration of the EM algorithm one needs to evaluate the likelihood of yi for
all i = 1, . . . , N under K different assumptions concerning Si. This may be
rather time consuming for large data sets. Banfield and Raftery (1993) suggest
applying model-based clustering only to a small subset of the data and to use
the resulting mixture approximation to classify the remaining observations.
Problems arise here with small clusters because these may not be represented
in the chosen subset. To reduce complexity while involving all observations,
Roeder and Wasserman (1997b, p.897) suggest applying data augmentation
and Gibbs sampling and updating only a small fraction of randomly selected
allocations, for instance, five percent, rather than sampling all indicators S
at each sweep of the sampler. Posse (2001) discusses hierarchical model-based
clustering for large data sets.

A final challenge is clustering of high-dimensional data which is addressed
in Subsection 7.4.1.
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7.1.3 The Classification Likelihood and the Bayesian
MAP Approach

In the classification likelihood approach (Scott and Symons, 1971; Symons,
1981), the likelihood function p(y,S|ϑ) = p(y|S,ϑ)p(S|ϑ) of the complete
data, which has been defined as

p(y|S,ϑ)p(S|ϑ) =
N∏

i=1

p(yi|θSi)
K∏

k=1

η
Nk(S)
k , (7.4)

is regarded as a function of both the unknown allocations S and the unknown
parameters ϑ, which are then estimated by maximizing p(y,S|ϑ) jointly with
respect to S and ϑ. The classification likelihood approach is often applied
under the assumption that the weight distribution is equal to the uniform
distribution, in which case ηk = 1/K, p(S|η) reduces to

p(S) ∝
K∏

k=1

(
1
K

)Nk(S)

=
(

1
K

)N

∝ constant,

and the classification likelihood function is equal to the sampling distribution
p(y|S,ϑ).

The classification likelihood approach is generally known to yield incon-
sistent estimates of the component parameters θ1, . . . ,θK and the weight
distribution η (Bryant and Williamson, 1978) which is not the case when
maximizing the mixture likelihood function p(y|ϑ), where S is integrated out.
Celeux and Govaert (1993) compared the two approaches and found that the
classification likelihood approach tends to be better for small samples, whereas
the mixture likelihood approach is clearly preferable for large samples.

Despite these practical shortcomings, the classification likelihood approach
is very useful for a theoretical understanding of the mixture model structure
underlying heuristic clustering criteria which are formulated without reference
to a probabilistic model, as exemplified by Scott and Symons (1971), Symons
(1981), and Celeux and Govaert (1991).

Relation to Common Clustering Criteria

Scott and Symons (1971) realized that maximizing the classification likeli-
hood function of a multivariate mixture of normal distributions with uniform
weight distribution under different assumptions about component variance–
covariance matrices is related to common clustering criteria such as the
tr (W (S)) or the |W (S)| criteria. For a mixture of normal distributions, the
log of the sampling distribution reads:

log p(y|S,µ,Σ) =

−1
2

K∑
k=1

(
Nklog |Σk| +

∑
i:Si=k

(yi − µk)
′
Σ−1

k (yi − µk)

)
+ constant.
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Maximizing p(y|S,µ,Σ) reduces to maximizing p(y|S, µ̂(S),Σ), where µ̂k(S) =
yk(S), or equivalently:

−1
2

K∑
k=1

(
Nk(S)log |Σk| + tr

(
W k(S)Σ−1

k

))
+ constant, (7.5)

where W k(S) is the measure of within-group variability defined earlier in
(6.30).

Different optimal solutions are obtained for different assumptions about
Σk. For a homogeneous mixture of normals (Σk = Σ) with Σ unknown, (7.5)
reduces to

−1
2

(
N log |Σ| + tr

(
Σ−1

K∑
k=1

W k(S)

))
+ constant,

which is maximized for a fixed allocation S for Σ̂(S) = W (S)/N , where
W (S) =

∑K
k=1 W k(S). Finding the optimal allocation reduces to maximizing

c(S) = −N

2
log |W (S)| + constant, (7.6)

with respect to S, or equivalently minimizing |W (S)|, which is the clustering
criterion suggested by Friedman and Rubin (1967). For an isotropic mixture
of normals (Σk = σ2I) with σ2 unknown, (7.5) reduces to

−1
2

(
rN log σ2 + tr (W (S)) /σ2) + constant,

which is maximized for a fixed allocation S for σ̂2(S) = tr (W (S)) /N . Finding
the optimal allocation reduces to maximizing

c(S) = −rN

2
log tr (W (S)) + constant, (7.7)

with respect to S, or equivalently minimizing tr (W (S)), which is the most
commonly used clustering criterion.

It has been noted in several empirical studies, that the tr (W (S)) criterion
imposes a spherical structure on the grouping even if the true groups are
of different shape, whereas the |W (S)| criterion allows for elliptical clusters.
This is not surprising in light of the results derived above.

For a heterogeneous mixture with an unconstrained variance–covariance
matrix, (7.5) is maximized for a fixed allocation S for Σ̂k(S) = W k(S)/Nk(S).
Finding the optimal allocation reduces to maximizing

c(S) = −1
2

K∑
k=1

Nk(S)log
∣∣∣∣W k(S)

Nk(S)

∣∣∣∣ + constant, (7.8)
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with respect to S, or equivalently minimizing

K∏
k=1

∣∣∣∣W k(S)
Nk(S)

∣∣∣∣Nk(S)

, (7.9)

which is a criterion related to the one suggested by Scott and Symons (1971).1

For spherical mixtures of normals (Σk = σ2
kI) with σ2

1 , . . . , σ2
K unknown,

(7.5) reduces to

−1
2

K∑
k=1

(
Nk(S)log σ2

k + tr
(
W k(S)/σ2

k

))
+ constant,

which is maximized for a fixed allocation S for σ̂2
k(S) = tr (W k(S)) /Nk(S).

Finding the optimal allocation reduces to maximizing

c(S) = −1
2

K∑
k=1

Nk(S)log tr
(

W k(S)
Nk(S)

)
+ constant, (7.10)

with respect to S, or equivalently minimizing

K∏
k=1

tr
(

W k(S)
Nk(S)

)Nk(S)

, (7.11)

which is the clustering criterion suggested by Banfield and Raftery (1993). It
has been noted by several authors (Binder, 1978; Scott and Symons, 1971)
that both the tr (W (S)) as well as the |W (S)| criterion tend to give clusters of
equal size, which is not surprising because they are based on the classification
likelihood of a mixture with uniform weight distribution.

In later work, Symons (1981) considered maximizing the classification like-
lihood (7.4) for a multivariate mixture of normals for an unconstrained weight
distribution with respect to ϑ and S. Maximizing (7.4) for a fixed classifica-
tion S leads to η̂k(S) = Nk(S)/N , regardless of Σk, whereas the estimators
µ̂k(S) and Σ̂k(S) are the same as for a uniform weight distribution. It is ev-
ident that the presence of p(S|η) changes the clustering criterion which now
requires maximizing

c(S) +
K∑

k=1

Nk(S)log Nk(S), (7.12)

where c(S) is one of the clustering criteria defined in (7.6) to (7.10) and
the second term results from maximizing log p(S|η) with respect to η for a

1 The criterion suggested by Scott and Symons (1971) reads
∏K

k=1 |W k(S)|Nk(S),
however, as noted by Banfield and Raftery (1993) this is not obtained when
maximizing (7.8).
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given classification S. For homogeneous mixtures, for instance, this leads to
minimizing

N log |W (S)| − 2
K∑

k=1

Nk(S) log Nk(S),

which is a criterion suggested by Symons (1981). Similar criteria are obtained
for the other model assumptions concerning the covariances.

Bayesian Maximum A Posteriori (MAP) Classification

Bayesian maximum a posteriori (MAP) classification has been suggested by
Symons (1981) and is based on maximizing the joint posterior

p(ϑ,S|y) ∝ p(y|ϑ,S)p(S|ϑ)p(ϑ), (7.13)

simultaneously with respect to ϑ and S, where p(y|ϑ,S)p(S|ϑ) is equal to
the classification likelihood. Bayesian MAP classification is equivalent to the
classification likelihood under the flat prior p(ϑ) ∝ constant and is related
to, but different from the classification likelihood approaches for any other
prior. If p(ϑ) is a proper prior, the resulting clustering criteria show a certain
robustness under small and nearly empty groups.

Due to the close relationship between model-based clustering and mixture
modeling, an approximation to the Bayesian MAP classifier is available when
estimating the underlying mixture model using data augmentation and Gibbs
sampling as described in Algorithm 3.4 and Algorithm 3.5, because it is possi-
ble to evaluate the nonnormalized posterior p(ϑ(m),S(m)|y) for each MCMC
draw, and to keep track of the classification that gave the highest posterior
density. Most conveniently, the Bayesian MAP classifier is invariant to label
switching.

7.1.4 Choosing Clustering Criteria and the Number
of Components

Two basic model selection problems arising in practical cluster analysis are
the selection of an appropriate cluster criterion and the determination of the
number of clusters. Symons (1981, p.41), when comparing various criteria
for simulated and real data, comes to the conclusion that “There seems to
be no simple recommendation to guide the use of these criteria [. . . ]. The
most appropriate criterion or approach depends upon the knowledge of the
structure of the data set. [. . . ] the only reasonable a priori suggestion is to
compare results obtained from several approaches.”

Model-based clustering is rather helpful in this respect, as common heuris-
tic clustering criteria are substituted by assumptions about the component
parameters, such as Σk in a multivariate Gaussian mixture, and about the
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distribution of the allocations. Hence comparing clustering criteria is cast into
the problem of selecting among different statistical models.

It is generally recommended to select the clustering criterion and the num-
ber of clusters simultaneously (Fraley and Raftery, 1998). If the structure of
the component parameters is misspecified, there will be a certain trade-off be-
tween the number of components and the clustering method. If model selection
is carried out, for instance, for a multivariate mixture of normals where the
covariance structures are too simple, more clusters will be needed to represent
the distribution of the data.

Diagnosing the Within- and Between-Cluster Variance

Many authors tried to diagnose the number of clusters using some method
based on the within- and between-cluster sum of squares W (K) and B(K)
resulting from fitting a K component mixture. In various simulation studies
(Milligan and Cooper, 1985; Tibshirani et al., 2001; Sugar and James, 2003)
two simple methods were among those performing best, namely maximizing
over K an analysis of variance type statistic (Calinski and Harabasz, 1974):

CH(K) =
B(K)/(K − 1)

W (K)/(N − K)
,

and maximizing over K a statistic measuring the rate of change in distortion
(Krzanowski and Lai, 1985):

KL(K) =
∣∣∣∣ DIFF(K)
DIFF(K + 1)

∣∣∣∣ ,

DIFF(K) = (K − 1)2/rW (K − 1) − K2/rW (K).

A recent approach along these lines is the gap statistic (Tibshirani et al., 2001)
which is based on the idea of standardizing log(W (K)) with its expected value
under an appropriate reference distribution. M data sets are simulated from
a uniform distribution over the range of the original data and the gap statistic
is defined as

Gap(K) =
1
M

M∑
m=1

log(W �
m(K)) − log(W (K)),

with W �
m(K) being the within-cluster sum of squares for the mth simulated

data set. To avoid unnecessary clusters, an estimate of the standard deviation
sK of log(W �

m(K)) is produced, and the smallest value such that Gap(K) >
Gap(K + 1) − sK is chosen as the number of clusters.

Sugar and James (2003) suggest a method based on the minimum achiev-
able distortion associated with fitting K centers µ1, . . . ,µK to the data:

dK =
1
r

min
µ1,...,µK

E
(
(Y − µk)

′
Σ−1(Y − µk)

)
,
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which is a measure of within-cluster dispersion based on the average distance,
per dimension, between each observation and its closest cluster center. The
minimum achievable distortion dK is monotone decreasing in K with the de-
crease being relatively small when unnecessary clusters are added. A simple
approach would plot dK against K and look for that K where an elbow in the
curve occurs. Sugar and James (2003) show, both theoretically and empiri-
cally, that this distortion curve, when transformed to the power 2/r, exhibits
a sharp jump at the true number of clusters. In practice, dK is estimated us-
ing d̂K , the minimum distortion obtained by applying the k-means clustering
algorithm (Hartigan, 1975). Therefore K is selected such that

JK = d̂
2/r
K − d̂

2/r
K−1,

with d̂
2/r
0 ≡ 0 is largest.

The simulation studies in Tibshirani et al. (2001) and Sugar and James
(2003) demonstrate that both the gap statistic as well as the jump statistic
work very well provided that the clusters do not overlap too severely.

Model Selection Based on Marginal Likelihoods

As each combination of a certain number K of components and a certain
clustering method corresponds to a different statistical model, the machinery
of Bayesian model selection as described in Section 4.5 could be used to select
jointly the clustering criterion and the number of components in the mixture
(Bensmail et al., 1997).

The Bayesian approach requires the choice of a prior distribution p(ϑK) for
all unknown parameters ϑK appearing in each model MK and the choice of
prior probabilities for each model MK as well as a loss function quantifying the
consequences of making a wrong decision. For the matter of convenience, often
default values are chosen, in particular a uniform prior over all models and
a 0/1 loss function, leading to choosing that model MK that maximizes the
marginal likelihood p(y|MK). As discussed in great length in Subsection 4.5.5,
any of these assumptions may exercise considerable influence on the model
selection procedure, even if the true data-generating mechanism is among the
models under investigation.

A numerical challenge with applying the Bayesian approach is the evalua-
tion of the marginal likelihood p(y|MK). Approximations were based on the
Laplace–Metropolis estimator (Bensmail et al., 1997; see also Subsection 5.5.3)
and bridge sampling (Frühwirth-Schnatter, 2004; Frühwirth-Schnatter et al.,
2004; Frühwirth-Schnatter and Kaufmann, 2006b; see Subsection 5.4.6). To
avoid these numerical issues, often a rough approximation to the marginal like-
lihood p(y|MK) based on BICK is used (Fraley and Raftery, 1998; Dasgupta
and Raftery, 1998; see also Subsection 4.4.2).
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Classification-Based Information Criteria

AIC and BIC do not take into account that in a clustering context a finite
mixture model is fitted with the hope of finding a good partition of the data.
Several specific criteria that involve the quality of the resulting partition have
been developed with the specific aim of selecting the number of components
of a finite mixture model in model-based clustering.

Let Dik be the 0/1 coding of the allocation Si, introduced in (2.31), let
D̂ik be the EM estimator of Dik, derived in (2.32), and let D̂ = (D̂ik) be the
corresponding (N × K) fuzzy classification matrix. By (2.28) the log of the
complete-data likelihood p(y, D̂|ϑK) where the unknown allocations S, coded
through D, are substituted by D̂, is equal to the log of the mixture likelihood
function p(y|ϑK) penalized by the entropy EN(ϑK), defined in (2.7):

log p(y, D̂|ϑK) = log p(y|ϑK) − EN(ϑK). (7.14)

Evaluating this relationship at the ML estimator ϑ̂K yields the classification
likelihood information criterion CLCK (Biernacki and Govaert, 1997):

CLCK = −2 log p(y|ϑ̂K) + 2EN(ϑ̂K), (7.15)

where the entropy EN(ϑ̂K) defined by

EN(ϑ̂K) = −
N∑

i=1

K∑
k=1

Pr(Si = k|yi, ϑ̂K)log Pr(Si = k|yi, ϑ̂K), (7.16)

is used as a penalty rather than model complexity as in AICK or BICK .
EN(ϑ̂K) measures the inability of the fitted K-component mixture model to
provide a good partition of the data. It is close to 0 if the resulting clusters
are well separated and will have a large value if this is not the case. Celeux
and Soromenho (1996) use EN(ϑ̂K) directly, normalized by log p(y|ϑ̂K) −
log p(y|ϑ̂1), however, this criterion fails to test K = 1 against K > 1, because
EN(ϑ̂K) = 0 for K = 1.

Biernacki and Govaert (1997) consider minimizing CLCK as a criterion
for selecting the number K of clusters. They conclude that this works only
for well-separated clusters with a fixed weight distribution. If the weight dis-
tribution is unknown, CLCK tends to overestimate the correct number of
clusters, because the complete-data likelihood function does not account for
model complexity.

To overcome these shortcomings, Biernacki et al. (2000) introduced the
integrated classification likelihood (ICL) criterion. They started with the log
of the marginal likelihood under the assumption that the allocations S, coded
through the dummy variables D, are known:

log p(y,D|MK) = log p(y|D,MK) + log p(D|MK), (7.17)
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which they call the integrated classification likelihood, because the component
parameters and the weight distribution are integrated out. Both quantities
on the right-hand side of (7.17) may be computed explicitly for conjugate
priors on p(ϑK); see Subsection 3.3.3. Under the conditionally conjugate prior
η ∼ D (e0, . . . , e0), for instance, p(D|MK) is given by

p(D|MK) =
Γ (Ke0)

∏K
k=1 Γ (Nk(D) + e0)

Γ (N + Ke0)Γ (e0)K
, (7.18)

where Nk(D) = Nk(S) may be written in the following way,

Nk(D) =
N∑

i=1

Dik.

A similar closed form is available for p(y|D,MK), which involves the hyper-
parameters of the prior p(θk|MK) and group-specific data summaries such as
yk(D) = yk(S) which may be written as

yk(D) =
N∑

i=1

Dikyi.

The first basic assumption made by Biernacki et al. (2000) is that the in-
tegrated classification likelihood log p(y,D|MK) could be used for selecting
the number of components, even if unknown allocations S, coded through
D, are substituted by an estimate D� which need not necessarily be equal
to the fuzzy classification matrix D̂ = (D̂ik). To evaluate this criterion,
they choose e0 = 0.5 to compute p(D�|MK) exactly from (7.18), whereas
−2 log p(y|D�,MK), which is the marginal likelihood of a complete-data prob-
lem, where regularity conditions hold, is approximated by BIC:

−2 log p(y|D�,MK) ≈ −2 log p(y|D�, θ�
1, . . . ,θ

�
K ,MK) + dC

K log N,

with θ�
1, . . . ,θ

�
K being the complete-data estimator based on D�, and dC

K be-
ing the number of distinct elements in θ1, . . . ,θK . If D� = D̂, then θ�

k = θ̂k is
equal to the ML estimator of θk in model MK . By using the BIC approxima-
tion, Biernacki et al. (2000) avoid having to choose an explicit hyperparameter
for the prior on θk. The BIC approximation will be accurate as long as the
estimated number of allocations Nk(D�) is not too small. The resulting inte-
grated classification likelihood (ICL) criterion reads:

ICLK = −2 log p(y|D�, θ�
1, . . . ,θ

�
K ,MK) + dC

K log N (7.19)

−2 log

(
Γ (K/2)

∏K
k=1 Γ (Nk(D�) + 0.5)

Γ (N + K/2)Γ (0.5)K

)
.

McLachlan and Peel (2000, p.216) analyze this criterion for the special case
where D� = D̂ and θ�

k = θ̂k. Based on evaluating (7.14) at these estimates:
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log p(y, D̂|ϑ̂K) = log p(y|D̂, ϑ̂K) + log p(D̂|ϑ̂K) = log p(y|ϑ̂K) − EN(ϑ̂K),

they obtain

ICLK = −2 log p(y|ϑ̂K ,MK) + 2EN(ϑ̂K) + dC
K log N − 2 log p(D̂|ϑ̂K)

−2 log

(
Γ (K/2)

∏K
k=1 Γ (Nk(D̂) + 0.5)

Γ (N + K/2)Γ (0.5)K

)
.

Using Stirling’s formula to evaluate Γ (Nk(D̂) + 0.5) and Γ (N + K/2) and
ignoring terms that are O(1), McLachlan and Peel (2000, p.216) are able to
show that for Nk(D̂) large enough, ICLK is approximately equal to

ICL-BICK = −2 log p(y|ϑ̂K ,MK) + dK log N + 2EN(ϑ̂K)

= BICK + 2EN(ϑ̂K). (7.20)

Therefore, the integrated classification likelihood and its asymptotic variant
penalize not only model complexity, but also the failure of the mixture model
to provide a classification in well-separated clusters.

Misspecifying the Component Densities for
Well-Separated Clusters

When fitting a finite mixture model to data forming K well-separated clus-
ters, due to the consistency mentioned earlier, the number of components in
the mixture selected by the marginal likelihood will be equal to the number of
clusters if the component densities are correctly specified. It is, however, im-
portant to distinguish between clusters in the data and the components in the
mixture model, if the component densities are misspecified. If the distribution
in the groups is not perfectly Gaussian, then two or even more components in
the normal mixture will be needed to capture skewness or fat tails in this par-
ticular group. Consequently, the number of components in the fitted mixture
need not be the number of hidden groups or segments.

Simulation studies reported in (Biernacki and Govaert, 1997), Biernacki
et al. (2000), and McLachlan and Peel (2000, Section 6.11) show that BICK

will overrate the number of clusters under misspecification of the component
density, whereas the ICLK criterion defined in (7.19), respectively, its large
cluster approximation ICL-BICK defined in (7.20), is able to identify the
correct number of clusters even when the component densities are misspecified.

Overlapping Clusters

One of the main problems in choosing the numbers of clusters seems to be
that there is no clear definition of a “cluster”. In most applications of cluster
analysis the primary goal is to identify distinct clusters that split an otherwise
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heterogeneous sample into groups of “homogeneous” objects. Dissection of
a homogeneous sample into two or more groups is not the primary goal of
cluster analysis. Ideally, one would hope to learn from the data that they do
not contain any distinct cluster.

Most methods for identifying the number of clusters tend to fail for overlap-
ping clusters; see, for instance, Tibshirani et al. (2001). For a small simulation
study, where 50 observations were simulated from each of two bivariate normal
distributions with means µ1 = (0 0), µ2 = (δ 0), and Σ1 = Σ2 = I2, Tibshi-
rani et al. (2001) found that the probability of selecting one cluster is roughly
equal to the overlap, defined by the expected proportion of data points that
were closer to the wrong component means, which is given by 1 − Φ(δ/2).

Leisch (2004) tries to find well-separated clusters in the data by identifying
data points that are grouped into one of a collection of similar components.

7.1.5 Model Choice for the Fishery Data

Fig. 7.1. Fishery Data modeled by a heterogeneous mixture of normal distribu-
tion; box-plots representing the posterior distribution of the within-group variance∑K

k=1 ηkσ2
k for increasing number K of components (left-hand side); scatter plot of

the MCMC draws σ
(2,m)
k versus σ

(2,m)
k′ for K = 4 (right-hand side)

We continue with the Fishery Data, already studied in Subsection 6.2.8,
and use a Bayesian approach for selecting the number of components and for
variance selection.

We start with exploratory Bayesian posterior analysis. First we study the
influence of increasing K on the posterior distribution p(W (ϑK)|y) of the
within-group variance W (ϑK) =

∑K
k=1 ηkσ2

k, which is based on diagnosing
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mixtures through the posterior distribution of implied moments as discussed
in Subsection 4.3.3. Figure 7.1 shows that increasing K up to 4 reduces within-
group variance considerably, which is not the case when adding a fifth or more
components. This suggests choosing K = 4. To diagnose the assumption that
the variances are heterogeneous, we explore the scatter plot of the MCMC
draws σ

(2,m)
k versus σ

(2,m)
k′ in Figure 7.1 for K = 4. If the variances were the

same in all groups, this scatter plot would show just a single simulation cluster.
As we find three simulation clusters we may conclude that the variances are
different in at least two groups.

Table 7.1. Fishery Data, marginal likelihood p(y|K, Vl) for K = 1 to K = 5
number of components for normal mixtures with unequal (V1) and equal variances
(V2)

p(y|K, V1) K = 1 K = 2 K = 3 K = 4 K = 5

Unconstrained variances
log p̂BS(y|K, V1) –535.11 –525.66 –521.44 –518.74 –521.06
log p̂IS(y|K, V1) –535.11 –525.72 –522.04 –519.19 –520.18
log p̂RI(y|K, V1) –535.11 –525.70 –521.46 –519.99 –527.60

Constrained variances
log p̂BS(y|K, V2) –535.11 –529.03 –528.92 –529.41 –526.69
log p̂IS(y|K, V2) –535.11 –529.03 –530.24 –530.15 –526.61
log p̂RI(y|K, V2) –535.11 –529.04 –529.07 –530.25 –529.16

Table 7.2. Fishery Data, posterior probabilities Pr(K, Vl|y) based on the trun-
cated Poisson prior p(K, Vl) ∝ fP (K; 1), AIC and BIC for K = 1 to K = 5 number
of components for normal mixtures with unequal (V1) and equal variances (V2)

Pr(K, Vl|y) K = 1 K = 2 K = 3 K = 4 K = 5

Unconstrained variances 0 0.01 0.21 0.77 0.01
Constrained variances 0 0 0 0 0

AIC K = 1 K = 2 K = 3 K = 4 K = 5

Unconstrained variances –529.19 –518.65 –515.31 –499.59 –499.86
Constrained variances –529.19 –519.64 –518.01 –513.72 –503.49

BIC K = 1 K = 2 K = 3 K = 4 K = 5

Unconstrained variances –532.74 –527.51 –529.49 –519.08 –524.67
Constrained variances –532.74 –526.73 –528.65 –527.90 –521.22

This exploratory result is supported by formal model selection. Table 7.1
shows the log of the marginal likelihood p(y|K, Vl) for various numbers of
components, each in combination with unequal variances (V1) and equal vari-
ances (V2). Estimation is based on various simulation-based approximations of
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the marginal likelihood that were discussed in Section 5.4, namely bridge sam-
pling, importance sampling, and reciprocal importance sampling. The impor-
tance density is constructed from the MCMC draws with S = M0K!, where
M0 = 100 for K ≤ 2 and M0 = 5 otherwise. The estimators are based on
M = 5000 MCMC draws and L = 5000 draws from the importance density.
Table 7.2, showing the posterior probabilities Pr(K, Vl|y) based on the trun-
cated Poisson prior p(K, Vl) ∝ fP (K; 1), suggests choosing a four-component
mixture with unequal variances. The same table shows that AIC and BIC lead
to the same conclusion.

7.1.6 Model Choice for Fisher’s Iris Data

Fig. 7.2. Fisher’s Iris Data modeled by a heterogeneous mixture of multivari-
ate normal distributions; box-plots representing the posterior distribution of the
within-group variance–covariance matrix W (ϑK) = | ∑K

k=1 ηkΣk| under heteroge-
neous variance–covariance matrices for increasing number K of components (left-

hand side); scatter plot of the MCMC draws Σ
(m)
k,11 and Σ

(m)
k,22 obtained from a het-

erogeneous normal mixture with three components (right-hand side)

We continue with Fisher’s Iris Data, already studied in Subsection 6.3.4,
and use a Bayesian approach for selecting the number of components as well
as for covariance selection in a multivariate mixture of normal distributions
with heterogeneous or homogeneous covariance matrices.

We start with exploratory Bayesian posterior analysis. First we study the
influence of increasing K on the posterior distribution of the within-group
variance, which is based on diagnosing mixtures through the posterior dis-
tribution of implied moments as discussed in Subsection 4.3.3. Figure 7.1
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shows that increasing K up to 3 reduces within-group variance, but adding
a further component does not reduce unexplained heterogeneity. This would
suggest choosing K = 3. To explore the covariance matrices with respect to
heterogeneity, we consider the scatter plot of Σ

(m)
k,11 versus Σ

(m)
k,22 in Figure 7.2

for a mixture with K = 3 components. Because we find two simulation clus-
ters we may conclude that the covariance matrices are not identical in the
various components.

Table 7.3. Fisher’s Iris Data, various estimators of the marginal likelihood
p(y|K, Vl) for K = 1 to K = 5 number of components and heteroscedastic (V1)
and homoscedastic covariance matrices (V2)

p(y|K, V1) K = 1 K = 2 K = 3 K = 4 K = 5

Heteroscedastic covariance matrices
log p̂BS(y|K, V1) –430.11 –302.27 –294.46 –297.87 –307.65
log p̂IS(y|K, V1) –430.11 –302.27 –294.63 –299.22 –306.53
log p̂RI(y|K, V1) –430.11 –302.28 –294.56 –308.32 –320.52

Homoscedastic covariance matrices
log p̂BS(y|K, V2) –430.11 –360.30 –335.37 –319.65 –323.92
log p̂IS(y|K, V2) –430.11 –360.30 –335.40 –319.54 –323.50
log p̂RI(y|K, V2) –430.11 –360.31 –335.35 –320.00 –329.15

Table 7.4. Fisher’s Iris Data, posterior probabilities Pr(K, Vl|y) based on the
prior p(K, Vl) ∝ fP (K; 1), AIC and BIC for K = 1 to K = 5 number of components,
and heteroscedastic (V1) and homoscedastic covariance matrices (V2)

Pr(K, Vl|y) K = 1 K = 2 K = 3 K = 4 K = 5

Heteroscedastic covariance matrices 0 0.001 0.991 0.008 0.01
Homoscedastic covariance matrices 0 0 0 0 0

AIC K = 1 K = 2 K = 3 K = 4 K = 5

Unconstrained variances –393.91 –243.35 –224.19 –221.17 –219.02
Constrained variances –393.91 –315.45 –280.35 –279.33 –251.28

BIC K = 1 K = 2 K = 3 K = 4 K = 5

Unconstrained variances –414.99 –287.01 –290.42 –309.98 –330.42
Constrained variances –414.99 –344.05 –316.48 –322.99 –302.46

Again this exploratory result is supported by formal model selection. Ta-
ble 7.3 shows the log of the marginal likelihood for various numbers of compo-
nents, each in combination with heterogeneous and homogeneous covariance
matrices. Estimation is based on various simulation-based approximations of
the marginal likelihood that were discussed in Section 5.4, namely bridge sam-
pling, importance sampling, and reciprocal importance sampling. The impor-
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tance density is constructed from the MCMC draws with S = M0K!, where
M0 = 100 for K ≤ 2 and M0 = 5 otherwise. The estimators are based on
M = 5000 MCMC draws and L = 5000 draws from the importance density.

Table 7.4, showing the posterior probabilities Pr(K, Vl|y) based on the
truncated Poisson prior p(K, Vl) ∝ fP (K; 1), suggests choosing a three-
component heterogeneous mixture. The same table shows that this time AIC
and BIC lead to different conclusions. Whereas AIC overrates the number of
components by choosing K = 5, BIC underrates the number of components
by choosing K = 2.

7.1.7 Bayesian Clustering Based on Loss Functions

As for any cluster analysis, the goal of Bayesian cluster analysis is to find an
optimal partition of the data by estimating a sensible allocation Ŝi for each
observation yi. In pioneering work, Binder (1978) cast this problem into a
decision-theoretic framework, by formulating a loss function R(Ŝ,S) which
quantifies the loss made by choosing the allocations Ŝ = (Ŝ1, . . . , ŜN ) for
observations with true allocation S. The optimal allocation Ŝ is chosen in
such a way that the expected loss E(R(Ŝ,S)|y) is minimized. However, Binder
(1978) realized that the choice of a sensible loss function in a clustering context
is nontrivial due to the relabeling problem.

The 0/1 Loss Function

The simple 0/1-loss function considered by Binder (1978) assigns zero loss, iff
the estimated classification is perfect up to relabeling the groups, otherwise
this loss function is indifferent to any form of misclassification. More formally,
R(Ŝ,S) = 0, iff there exists a permutation ρs(·) of the labels of Ŝi, such that
Si = ρs(Ŝi) for all i = 1, . . . , N , otherwise R(Ŝ,S) = 1. The expected loss is
given by

E(R(Ŝ,S)|y) = 1 − Pr(S1 = ρs(Ŝ1), . . . , SN = ρs(ŜN )|y),

which is minimized by the mode of the marginal posterior probability dis-
tribution p(S|y). As shown in Subsection 3.3.4, this posterior is invariant to
relabeling, p(S1, . . . , SN |y) = p(ρs(Ŝ1), . . . , ρs(ŜN )|y), for all s = 1, . . . , K!
permutations, thus there exist at least K! equivalent allocations, which are
all optimal with respect to the 0/1-loss function.

The practical computation of the optimal allocation is possible for mixture
models from the exponential family under conditionally conjugate priors, as
for these finite mixture models the posterior ordinate p(S|y) is available (up
to a normalizing constant) in closed form; see again Subsection 3.3.3. Sev-
eral sampling strategies to draw from this posterior have been discussed in
Subsections 3.4.1 and 3.4.2.
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Loss Functions Based on the Misclassification Rate

Binder (1978) considered a further loss function, based on the misclassification
rate, which has become the most commonly applied in finite mixture modeling;
see, for instance, McLachlan and Basford (1988) and Richardson and Green
(1997).

Misclassification occurs whenever an observation is assigned to the kth
group, although it arises from the lth group. Evidently the notion misclassi-
fication is sensitive to group labeling. An allocation Ŝ with misclassification
rate 0, meaning that Si = Ŝi for all i = 1, . . . , N , obtains a misclassification
rate of 100 percent simply by relabeling S1, . . . , SN through some permuta-
tion ρs(·). Thus Bayesian classification based on the misclassification rate is
sensible only if Si is an indicator with unique labeling, which is denoted by
SL

i .
For any pair (k, l) with k �= l, let ckl be the loss occurring whenever an

observation is assigned to the kth group, when it actually arises from the lth
group, and let nkl(Ŝ,S) be the corresponding number of misclassifications:

nkl(Ŝ,S) =
N∑

i=1

I{Ŝi=k,SL
i =l}.

Then the corresponding loss function is given by

R(Ŝ,S) =
∑
k �=l

ckl

N∑
i=1

I{Ŝi=k,SL
i =l}.

If ckl = cI{k �=l}, then this loss function is proportional to the total misclassi-
fication rate. The expected loss is given by

E(R(Ŝ,S)|y) =
N∑

i=1

K∑
l=1,l �=Ŝi

cŜi,l
Pr(SL

i = l|y),

and is minimized by choosing the allocations Ŝi, i = 1, . . . , N independently
for each observation such that

K∑
l=1,l �=k

cklPr(SL
i = l|y)

is minimized at Ŝi = k. If ckl = cI{k �=l}, then this is equivalent with choosing
Ŝi = k, where k maximizes the individual posterior classification probabilities
Pr(SL

i = k|y).
In this case the misclassification risk is equal to 1 − maxk Pr(SL

i = k|y).
For a perfect classification of yi into one of the K groups, this value is zero,
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otherwise it measures the difficulty of assigning a certain subject yi into a
single group. As

max
k

Pr(SL
i = k|y) ≥ 1

K
,

the risk is limited by (K − 1)/K.
It remains to discuss how to estimate the individual posterior classification

probabilities Pr(SL
i = k|y), k = 1, . . . , K for i = 1, . . . , N . When sampling

from the mixture posterior distribution using data augmentation and MCMC
or marginal sampling, it is quite tempting to estimate the classification prob-
ability Pr(SL

i = k|y) from the MCMC draws S
(m)
i by the relative frequency

of the event {S
(m)
i = k}:

Pr(SL
i = k|y) ≈ 1

M

M∑
m=1

I{S
(m)
i =k}. (7.21)

However, as the sampler draws from the unconstrained posterior, the right-
hand side of (7.21) converges to the probability Pr(Si = k|y), which by the
results of Subsection 3.3.4 is equal to 1/K for all observations and all k =
1, . . . , K:

lim
M→∞

1
M

M∑
m=1

I{S
(m)
i =k} = Pr(Si = k|y) =

1
K

.

Thus for a well-mixing sampler, the estimator (7.21) yields useless results, as
the observations are assigned randomly to the K groups. Binder (1978) seems
to be the first who realized that any assignment rule based on Pr(Si = k|y)
fails to classify the objects.

As mentioned in Subsection 3.7.7, Gibbs sampling as described in Algo-
rithm 3.4 may lead to an implicit labeling if trapped at a single modal region
of the posterior density, in which case estimator (7.21) will be sensible. This
is, however, not necessarily the case, and in general estimator (7.21) runs the
risk of yielding useless results.

In general, it is necessary to identify the mixture model to obtain draws
S

L,(m)
i , m = 1, . . . , M with a unique labeling. As outlined in Subsection 3.7.7,

it is possible to derive draws S
L,(m)
i with a unique labeling by relabeling S

(m)
i

jointly with ϑ(m). For such draws it is possible to estimate Pr(SL
i = k|y) by

the corresponding relative frequency:

Pr(SL
i = k|y) ≈ 1

M

M∑
m=1

I{S
L,(m)
i =k}.

If for storage reasons only parameter draws ϑL,(m) from a unique labeling
subspace are available, an alternative estimator of the marginal classification
probability Pr(Si = k|y) is given by
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Pr(SL
i = k|y) ≈ 1

M

M∑
m=1

η
L,(m)
k p(yi|θL,(m)

k ).

Loss Functions Based on the Posterior Similarity Matrix

Binder (1978) and Hurn et al. (2003) considered loss functions based on the
posterior similarity matrix Pr(Si = Sj |y). The posterior similarity matrix is
an (N ×N) matrix, defined from the joint posterior p(S|y) for all observations
as the probability that any two observations belong to the same component.
Pr(Si = Sj |y) may be expressed as

Pr(Si = Sj |y) =
K∑

k=1

Pr(Si = k, Sj = k|y),

and has the advantage of being invariant to relabeling the groups. Therefore
this probability may be estimated from the MCMC draws without bothering
about identification as

Pr(Si = Sj |y) ≈ 1
M

M∑
m=1

I{S
(m)
i =S

(m)
j }. (7.22)

For clustering, Binder (1978) considers the following loss function,

R(Ŝ,S) =
∑
i<j

l1I{Ŝi �=Ŝj}I{Si=Sj} + l2I{Ŝi=Ŝj}I{Si �=Sj},

with l1 being the loss associated with assigning two observations to different
groups, although they belong to the same group, and l2 being the loss associ-
ated with assigning two observations to the same group, although they belong
to different groups. As noted by Binder (1978), this loss function evaluates
allocations Ŝ with respect to their ability to achieve the two main goals of
cluster analysis, stated in Cormack (1971). Whereas l1 penalizes the lack of
internal cohesion, l2 penalizes lack of external isolation, and the ratio l1/l2
may be chosen with regard to the relative importance of these goals. The same
loss function as in (7.23) with l1 = l2 = 1 is applied in Hurn et al. (2003) in
the context of switching regression models.

The optimal allocation Ŝ is chosen such that the expected loss,

E(R(Ŝ,S)|y) =
∑
i<j

I{Ŝi=Ŝj} (l2 − Pr(Si = Sj |y)(l1 + l2)) , (7.23)

is minimized. There exists no explicit solution to this minimization problem,
and neither Binder (1978) nor Hurn et al. (2003) mention how numerical
optimization may be carried out in an efficient manner. Note that the posterior
similarity matrix Pr(Si = Sj |y) may be estimated from (7.22) and that (7.23)
may be evaluated for all MCMC draws to identify (nearly) optimal allocations.
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7.1.8 Clustering for Fisher’s Iris Data

We continue with Fisher’s Iris Data, already studied in Subsections 6.3.4
and 7.1.6. As for these data the species of each observation is known, it is
illuminating to study the misclassification risk of using a mixture of three
normal distributions with an unrestricted variance–covariance matrix. The
finite mixture model is fitted exactly as described in Subsection 6.3.4.

We compare various Bayesian clustering strategies, namely minimizing the
misclassification rate, which is derived from the model identified in Subsec-
tion 6.3.4, Bayesian classification based on the posterior similarity matrix,
and the classification obtained from Bayesian MAP classification under the
hierarchical independence prior. The resulting estimators are denoted by Ŝi,L,
Ŝi,SM , and Ŝi,MAP , respectively.

The first two methods give exactly the same result, whereas the third
method leads to a different classification only for a single observation. Ta-
ble 7.5 shows all observations that are misclassified for at least one of these
classifications. Classification is perfect for the iris setosa and the iris virginica
group. Four plants out of the iris versicolour group are misclassified into the
iris virginica group for Ŝi,L and Ŝi,SM ; an additional misclassification of the
same nature occurs for Ŝi,MAP .

Table 7.5. Fisher’s Iris Data, normal mixtures with K = 3 (hierarchical in-
dependence prior), observations misclassified through different Bayesian clustering
strategies (Strue

i = 2 for all observations), all other observations are correctly classi-
fied

i 69 71 73 78 84

Ŝi,L 3 3 3 2 3
Ŝi,SM 3 3 3 2 3

Ŝi,MAP 3 3 3 3 3

7.2 Outlier Modeling

Numerous suggestions have been made how to deal with outliers. Peña and
Guttman (1993) provide a review article of finite mixtures and other proba-
bilistic methods of outlier detection.

7.2.1 Outlier Modeling Using Finite Mixtures

Newcomb (1886), which is one of the earliest statistical applications of mixture
models, used a normal mixture to model aberrant observations in astronomical
data of transits of Mercury. Another famous univariate data set containing
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outliers that has been analyzed by mixtures of normals is Darwin’s Data
on the differences in heights between pairs of self-fertilized and cross-fertilized
plants grown in the same conditions. The observations, ordered by size, are
given by:

–67, –48, 6, 8, 14, 16, 23, 24, 28, 29, 41, 49, 56, 60, 75.

The general idea of the finite mixture approach to outlier modeling is nicely
described by Box and Tiao (1968, p.119): “There is a small probability η2 that
any given observation was not generated by the central stochastic model as
well as a complementary prior probability (1−η2) that it was so generated.”2

One early example is the variance inflation model introduced by Tukey
(1960):

Y ∼ (1 − η2)N
(
µ, σ2) + η2N

(
µ, kσ2) , (7.24)

where it is assumed that the data come from a central N
(
µ, σ2

)
-distribution

with high probability (1−η2), and with low probability η2 from a contaminated
distribution, N

(
µ, kσ2

)
, where k >> 1. Probability η2 typically is a small

proportion of outliers in the sample. Guttman (1973) introduced the location
shift model, with additive, rather than multiplicative, contamination:

Y ∼ (1 − η2)N
(
µ, σ2) + η2N

(
µ + k, σ2) . (7.25)

Both models are evidently special cases of the univariate mixtures of normals
and may be extended to handle multiple outliers that tend to clump (Aitkin
and Wilson, 1980) and to deal with outliers in a linear regression model (Box
and Tiao, 1968; Abraham and Box, 1978); see also Subsection 8.2.4.

7.2.2 Bayesian Inference for Outlier Models Based on
Finite Mixtures

Approximate Bayesian estimation of outlier models based on finite mixture
distributions without using MCMC methods has been discussed in many pa-
pers (Box and Tiao, 1968; Guttman, 1973; Abraham and Box, 1978; Guttman
et al., 1978; Peña and Tiao, 1992). In most of these papers the parameters of
the contaminated component, η2 and k, are assumed to be known because of
the computational burden associated with making η2 and k unknown outside
the framework of MCMC.

Verdinelli and Wasserman (1991) were the first who applied data augmen-
tation and Gibbs sampling for univariate normal observations with outliers
with η2 being random, while holding k fixed. Justel and Peña (1996) show
that this works well for an isolated outlier in a univariate sample, however,
under the existence of outliers that mask or swamp other observations the
sampler tends to be trapped at some local mode and turns out to be sensitive
2 Notation changed.
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to choosing appropriate starting values. Evans et al. (1992) implement a fully
Bayesian analysis of outlier models including both η2 and k as unknown pa-
rameters for univariate mixtures of normals as in described in Algorithm 6.1.

Choosing Nonsymmetric Priors

Table 7.6. Choosing the prior η ∼ D (a, 1) in an outlier model such that the
proportion of outliers (in percent) is less than or equal to α with a priori probability
equal to 95%

a α

5 45.1
6 39.3
7 34.8
8 31.2

a α

9 28.3
10 25.9
11 23.8
12 22.1

a α

13 20.6
15 18.1
18 15.3
20 13.9

a α

24 11.7
28 10.1
35 8.2
41 7.05

a α

57 5.12
71 4.13
100 2.95
200 1.49

When finite mixture models are applied to dealing with outliers, the com-
ponents are typically not symmetric, because η2 << η1, and it is sensible to
use nonsymmetric priors rather than invariant priors (Verdinelli and Wasser-
man, 1991). The prior constraint η2 < η1 is forced by choosing a D (a, b)-prior
on η = (η1, η2), with a >> b. For a fixed small value of b, say b = 1, a may
be elicited from knowing a priori with high probability, say 95%, that at most
100α% outliers are present. Because for b = 1 the prior mode lies at 0, a
may be chosen in such a way that α is the upper limit of the 95% credibility
interval [0, α] obtained for η2 from the D (a, 1)-prior:

a =
log(1 − 0.95)
log(1 − α)

.

Table 7.6 shows various values of a with the corresponding upper limit α for
the proportion of outliers.

7.2.3 Outlier Modeling of Darwin’s Data

Abraham and Box (1978) analyzed Darwin’s Data using the location shift
model (7.25). Bayesian estimation was carried out under the assumption that
the proportion of outliers η2 is known. We reanalyze the data by the location
shift model with η2 being unknown. We combine a D (15, 1)-prior on η =
(η1, η2) with a noninformative independent prior p(µ, k, σ2) ∝ 1/σ2, and reject
classifications where one group is left empty. Figure 7.3 shows paths of 3000
MCMC draws as well as posterior densities of µ and µ + k estimated from
the last 2000 draws, whereas Figure 7.4 shows the posterior densities of σ2

and η2, with the posterior of η2 being compared to the prior. Finally, outlier
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Fig. 7.3. Darwin’s Data, location shift model; MCMC paths and posterior densi-
ties for µ and µ + k under a D (15, 1)-prior on η

classification in the left-hand side of Figure 7.5 shows that the smallest two
observations are classified as outliers.

We compare the results of the fully Bayesian analysis with the result ob-
tained by assuming that η2 is fixed as in Abraham and Box (1978). We select
η2 = 0.18 which corresponds to the upper limit of the 95%-H.P.D. interval
obtained from the D (15, 1)-prior. Figure 7.6 compares the posterior distribu-
tion of µ, conditional on η2 fixed, with the posterior obtained from the fully
Bayesian analysis based on the D (15, 1)-prior. Interestingly for this data set,
there is little difference between these posterior densities, as well as between
the classification probabilities; see Figure 7.5.

For illustration, we compare the nonsymmetric D (15, 1)-prior with the in-
variant D (1, 1)-prior. For Darwin’s Data, the invariant prior fails to identify
the outliers. Label switching between µ and µ + k occurs frequently, causing
classification probabilities that are extremely biased toward 0.5; see Figure 7.5.

7.2.4 Clustering Under Outliers and Noise

Clustering based on mixtures of multivariate normal distributions tends to
suffer from sensitivity with respect to outlying values and misspecification of
the component densities. Estimates of the component means and, even more,
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Fig. 7.6. Darwin’s Data, comparing the posterior density of µ; full line: D (15, 1)-
prior on η, dashed line: η2 fixed at 0.18

estimates of the component variance–covariance matrices, may be strongly
affected by observations that are outlying with respect to the tails of the
component-specific normal distribution.

Various suggestions have been made to achieve robustness of model-based
clustering including distance-based estimation (Scott, 2004) which is less sen-
sitive to outliers or clustering based on mixtures of multivariate Student-t dis-
tribution (Peel and McLachlan, 2000); see also Subsection 7.3. A simple but
efficient way to handle the presence of atypical observations or background
noise is to add a noise component to the mixture (Banfield and Raftery, 1993):

p(yi|ϑ) = (1 − w)
K∑

k=1

ηkfN (yi; µk,Σk) + wpo(yi). (7.26)

po(yi) is an additional component that could have a uniform density over the
support of the data (Peel and McLachlan, 2000).

For a Bayesian estimation of (7.26), a discrete latent indicator Ji is intro-
duced for each observation yi, taking the value 1 for an observation from the
noise component po(yi). The MCMC scheme introduced in Algorithm 6.2 is
extended by an additional step of data augmentation. Conditional on knowing
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J = (J1, . . . , JN ), the data are grouped into noisy data, if Ji = 1, and into
data from the multivariate normal mixture, if Ji = 0:

p(yi|ϑ, Ji = 0) =
K∑

k=1

ηkfN (yi; µk,Σk).

For all data that are not noise, steps (a) and (b) are carried out exactly as in
Algorithm 6.2 to update the component parameters µk and Σk, the weight
distribution η, and the allocations Si. The allocations Si are not updated for
observations that are currently considered to be noise.

An additional step is added at each sweep of the MCMC sampler, which
performs classification of each observation either into the noise component or
into the remaining components, according to the following classification rule,

Pr(Ji = 1|y, µ,Σ,η) =
wpo(yi)

wpo(yi) + (1 − w)
K∑

k=1

ηkfN (yi; µk,Σk)

.

7.3 Robust Finite Mixtures Based on the
Student-t Distribution

An important alternative to mixtures of normals is choosing the component
densities from the family of tν (µ,Σ)-distribution with ν degrees of freedom:

Y ∼ η1tν1 (µ1,Σ1) + · · · + ηKtνK
(µK ,ΣK) , (7.27)

where Y is an r-dimensional random vector; see Appendix A.1.12 for a defi-
nition of the density of the tν (µ,Σ)-distribution.

7.3.1 Parameter Estimation

Mixtures of Student-t distributions have been estimated using the EM algo-
rithm (Peel and McLachlan, 2000) and a Bayesian approach (Stephens, 1997a;
Scott et al., 2005).

Bayesian estimation of multivariate mixtures of Student-t distributions is
based on the representation of the tν (µ,Σ)-distribution as an infinite scale
mixture of multivariate normal distributions, with the distribution of the scal-
ing parameter being a Gamma distribution:

Yi|ωi ∼ Nr (µ,Σ/ωi) , ωi ∼ G (ν/2, ν/2) .

For a mixture of Student-t distributions, a similar representation exists:

Yi|Si = k, ωi ∼ Nr (µk,Σk/ωi) , ωi ∼ G (νk/2, νk/2) .
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Thus a mixture of Student-t distributions may be regarded as a mixture of
normal distributions, where all group members have the same expectation µk,
however, within each group there exists variance heterogeneity, captured by
the scaling factor ωi, with smaller values of ωi causing larger variances.

MCMC estimation of multivariate mixtures of Student-t distributions is
implemented through an additional step of data augmentation, which intro-
duces for each observation yi the scaling parameter ωi as missing data. Con-
ditional on knowing the scaling parameters ω = (ω1, . . . , ωN ) and the group
indicators S, the conditional posterior distribution of the location vector µk

and the scale matrix Σk are of a closed form similar to that of a mixture of
Gaussian distributions, however, the relevant group-specific quantities Nk(S),
yk(S), and W k(S) in Algorithm 6.2 have to be substituted by the quantities
Nk(S,ω), yk(S,ω), and W k(S,ω), which are adjusted by the scaling factor
ωi:

Nk(S,ω) =
∑

i:Si=k

ωi,

yk(S,ω) =
1

Nk(S,ω)

∑
i:Si=k

ωiyi, (7.28)

W k(S,ω) =
∑

i:Si=k

ωi(yi − yk(S,ω))(yi − yk(S,ω))
′
. (7.29)

Any of these quantities reduces to Nk(S), yk(S), and W k(S), when the
Student-t distribution approaches the normal distribution. In this case νk →
∞ and ωi ≡ 1 for all observations.

It is worth noting from (7.28) and (7.29) how robustness is achieved by
introducing the Student-t distribution. Observations with small scaling factors
ωi, and consequently large individual variance, are down-weighted compared
to observations with larger scaling factors and smaller individual variance.

The following algorithm demonstrates how MCMC estimation is carried
out through Gibbs sampling if the degrees of freedom are known in each group
and the same priors on µk and Σk are adopted as used in Subsection 6.3.2
for multivariate mixtures of normals.

Algorithm 7.1: Three-Block Gibbs Sampling for a Multivariate Mixture of
Student-t Distributions

(a) Parameter simulation conditional on the classification S = (S1, . . . , SN ):
(a1) Sample η from the conditional Dirichlet posterior p(η|S) as in Algo-

rithm 3.4.
(a2) Sample Σ−1

k in each group k from a Wr (ck(S),Ck(S,ω))-distribution,
where:
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ck(S) = c0 +
Nk(S)

2
,

Ck(S,ω) = C0 +
1
2
W k(S,ω)

+
1
2

(
Nk(S,ω)N0

Nk(S,ω) + N0
(yk(S,ω) − b0)(yk(S,ω) − b0)

′
)

.

(a3) Sample µk in each group k from an Nr (bk(S,ω),Bk(S,ω))-distribution,
where:

Bk(S,ω) =
1

Nk(S,ω) + N0
Σk,

bk(S,ω) =
1

Nk(S,ω) + N0
(N0b0 + Nk(S,ω)yk(S,ω)) .

(b) Classification of each observation yi, for i = 1, . . . , N , conditional on
knowing µ,Σ, and η:

p(Si = k|µk,Σk, ηk,yi) ∝ ηkftνk
(yi; µk,Σk).

(c) Sample ωi independently for each observation yi for i = 1, . . . , N from the
following Gamma posterior,

ωi|µSi
,ΣSi , νSi ,y ∼ G

(
1
2
(νSi + r),

1
2
(νSi + dM (yi; µSi

,ΣSi)
2)

)
,

where dM (yi; µSi
,ΣSi) is the Mahalanobis distance, defined in (1.17),

between yi and the cluster given by µSi
and ΣSi

.

When sampling the indicators Si in step (b), a partially marginalized sam-
pler has been used, where the unknown scaling factors are integrated out.
Alternatively, full conditional Gibbs sampling would sample the indicators
conditional on knowing the scaling parameters, by using the classification
rule:

p(Si = k|µk,Σk, ηk, ωi,yi) ∝ ηkfN (yi; µk,Σk/ωi).

Due to the results of Liu (1994), the partially marginalized sampler is likely
to have better mixing properties than this full conditional Gibbs sampler.

Dealing with Unknown Degrees of Freedom

An attractive alternative to fixing νk beforehand is estimating the degrees of
freedom νk along with all other unknown quantities. For Bayesian estimation
of the degrees of freedom νk, the prior p(νk) has to be selected carefully, in
order to avoid improper posteriors; see the discussion in Geweke (1993) and
Bauwens and Lubrano (1998, Section 2). Proper priors that have been used
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for unknown degrees of freedom are the exponential prior (Geweke, 1993),
uniform priors truncated to [0, νmax] (Hoek et al., 1995; Chib et al., 2002),
and the uniform shrinkage prior (Scott et al., 2005):

p(νk) =
ν̄k

(ν̄k + νk)2
. (7.30)

Prior (7.30) is a density with median ν̄k but with no moments because of its
heavy polynomial tail.

For sampling the degrees of freedom νk with an MCMC scheme, there
are basically two ways to proceed. First, one could sample νk conditional on
knowing the scaling parameters, by drawing from the full conditional posterior
p(νk|ω,S,y) given by

p(νk|ω,S,y) ∝ p(νk)
(νk

2 )νkNk(S)/2

Γ (νk

2 )Nk(S)

∏
i:Si=k

ω
νk/2−1
i exp{−νk

2
(

∑
i:Si=k

ωi)},

by means of a Metropolis–Hastings algorithm. Alternatively, a partially mar-
ginalized sampler could be used, by drawing νk by means of a Metropolis–
Hastings algorithm from the marginal distribution p(νk|S,y),

p(νk|S,y) ∝ p(νk)
∏

i:Si=k

ftνk
(yi; µk,Σk),

where the scaling factors are integrated out. Again it is to be expected that the
partially marginalized sampler is more efficient than full conditional sampling.

7.3.2 Dealing with Unknown Number of Components

Stephens (1997a, 2000a) applied birth and death MCMC methods to se-
lect the number of components for univariate and multivariate mixtures of
t-distributions. Frühwirth-Schnatter et al. (2005) applied the bridge sampling
estimator of the marginal likelihood to select the number of components in the
more general framework of mixtures of regression models with errors from the
Student-t distributions, which encompass a multivariate mixture of Student-t
distributions as a special case.

7.4 Further Issues

7.4.1 Clustering High-Dimensional Data

When the data are of very high dimension relative to the sample size N , such
as DNA micro-array data sets, some kind of reduction has to take place to
enable clustering.



234 7 Data Analysis Based on Finite Mixtures

Clustering Through Parsimonious Covariances

One successful strategy for model-based clustering of such data is to use parsi-
monious variance–covariance matrices. Yeung et al. (2001), for instance, use a
high-dimensional but parsimonious normal mixture with Σk ≡ σ2

kIr for clus-
tering gene expression data. To deal in a more flexible way with correlations
within a cluster while remaining parsimonious, several authors (Banfield and
Raftery, 1993; Celeux and Govaert, 1995; Bensmail et al., 1997) use parsimo-
nious variance–covariance matrices derived from the eigenvalue decomposition
already described in Subsection 6.4.1. Dasgupta and Raftery (1998) discuss
an interesting application of these models for finding clusters that are highly
concentrated around lines in a two-dimensional space such as mine fields or
seismic faults.

Another approach of reducing the number of parameters of the component
variance–covariance matrix Σk is to adopt the mixture of factor analyzer
models suggested by McLachlan and Peel (2000, Chapter 8):

Yi = µSi
+ BSizi + εi, εi ∼ Nr (0,QSi) ,

where Si is the group indicator, QSi = Diag
(
σ2

Si,1, . . . , σ
2
Si,r

)
, and zi ∼

Nq (0, Iq) with q < r are latent factors, which are assumed to be independent
of εi. BSi is an unknown (r × q)-matrix of factor loadings. A related model
called mixtures of probabilistic component analyzers (Tipping and Bishop,
1999) assumes the isotropic structure QSi = σ2

Si
Ir.

For both models unconditionally, with zi being integrated out, a parsimo-
nious mixture of normals results:

Yi|Si = k ∼ Nr (µk,Σk) , Σk = BkB
′
k + Qk.

Estimations may be based on the EM algorithm (McLachlan et al., 2003) or
a Bayesian approach (Fokoué and Titterington, 2003; Utsugi and Kumagai,
2001). Applications include analyzing handwritten digits (Hinton et al., 1997)
and clustering of gene-expression data (McLachlan et al., 2003).

Finally, a time series covariance structure for Σk based on ARMA models is
a very parsimonious and appropriate approach for handling high-dimensional
data with a sequential nature, such as repeated measurements or panel data;
see Frühwirth-Schnatter and Kaufmann (2006b) for applications in economics.

Clustering and Variable Selection

In high-dimensional data sets the cluster structure is often confined to a
small subset of variables. Because the inclusion of unnecessary variables may
complicate or even hinder the recovery of the clusters (Fowlkes et al., 1988;
Gnanadesikan et al., 1995; Brusco and Cradit, 2001) joint clustering and vari-
able selection has become an important issue. Several approaches separate
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the two tasks and apply some dimension-reducing technique prior to apply-
ing a clustering procedure such as selecting variables based on preclustering
of each variable separately using univariate mixtures of normals (McLachlan
et al., 2002) or keeping only the leading components in a principal compo-
nent analysis (Ghosh and Chinnaiyan, 2002). A related approach has been
applied by Liu et al. (2003) within a Bayesian variable selection and clus-
tering approach, by multiplying the original data by a dimension-reducing
projection matrix obtained from a principal component analysis. However, as
shown by Chang (1983), the leading principal components are not necessarily
informative about the cluster structure; see also Yeung and Ruzzo (2001).
Other approaches perform simultaneously clustering and variable selection
using some heuristic criteria (Fowlkes et al., 1988; Brusco and Cradit, 2001).

Tadesse et al. (2005) use a more principled and promising approach by
combining clustering of high-dimensional data via multivariate Gaussian mix-
tures with an unknown number of components with Bayesian variable se-
lection (George and McCulloch, 1997). For each feature Yj of the observed
random variable Y = (Y1, . . . , Yr) a binary indicator γj is introduced, which
takes the value 1, iff for that particular feature unobserved heterogeneity is
present. This defines a partition of the data into the discriminating variables
YD

γ = {Yj : γj = 1} and the nondiscriminating variables YC
γ = {Yj : γj = 0}.

Conditional on γ = (γ1, . . . , γr), YD
γ and YC

γ are assumed to be independently
and normally distributed:

YD
γ ∼

K∑
k=1

ηkNd

(
µk,γ ,Σk,γ

)
,

YC
γ ∼ Nr−d

(
βγ ,Rγ

)
,

where d = #{γj = 1}. For MCMC estimation, first the allocations S =
(S1, . . . , SN ) are introduced as missing data. Joint variable selection and
clustering are carried out using a three-block Gibbs sampling scheme by
drawing, respectively, the allocations S, the variable selection indicators γ,
and the weight distribution η from the appropriate conditional distributions.
Marginalizing over the component parameters is feasible under a conjugate
prior, because it is possible to derive p(y|S,γ) explicitly, up to a normalizing
constant.

7.4.2 Discriminant Analysis

In discriminant analysis, classified observations, the so-called training sample
(S(T ),y(T )), are used to derive a classification rule, whereby additional unclas-
sified observations yi could be assigned to one of K classes, with the number
of classes being known. This problem is also known as supervised classifica-
tion. Discriminant analysis methods are often probabilistic, being based on
the assumption that in the kth class the observations are generated by the
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class-specific probability distribution p(yi|θk), most commonly assumed to
arise from a multivariate normal distribution. Although it is not really neces-
sary, it is helpful to keep in mind that marginally yi arises from a multivariate
finite mixture distribution.

Standard discriminant analysis assigns an observation yi with unknown
group membership Si to one of the groups based on the parameter estimates
ϑ obtained from the training sample (S(T ),y(T )), using the following classifi-
cation rule,

Pr(Si = k|ϑ,yi) ∝ ηkp(yi|θk), (7.31)

where ηk are the proportions of observations in the training sample that belong
to class k. This choice will minimize the expected missclassification rate.

In discriminant analysis it is usual to study the classification rule (7.31)
as a function of yi, in order to derive a discrimination rule. As discussed in
Bensmail and Celeux (1996), classification based on Gaussian mixtures with
homogeneous variance–covariance matrices corresponds to linear discriminant
analysis, whereas Gaussian mixtures with heterogeneous variance–covariance
matrices correspond to quadratic discriminant analysis.

Various suggestions have been made to achieve more flexibility concerning
the classification boundaries. Bensmail and Celeux (1996) discuss eigenvalue
discriminant analysis, based on parsimonious variance–covariance matrices de-
rived from the eigenvalue decomposition as in Subsection 6.4.1. This approach
is more flexible than linear discriminant analysis, while being more structured
and parsimonious than quadratic discriminant analysis. Hastie and Tibshirani
(1996) study mixture discriminant analysis by assuming that the components
themselves are mixtures of normals:

p(yi|θk) =
Gk∑
j=1

ηkjfN (yi; µkj ,Σkj),

where
∑Gk

j=1 ηkj = 1. This extension allows for nonlinear and nonmonotonic
classification boundaries. For further details see the excellent review by Fraley
and Raftery (2002, Section 6).

7.4.3 Combining Classified and Unclassified Observations

Hosmer (1973) showed that efficiency of joint parameter estimation and clas-
sification considerably improves if one has an additional small sample which is
known to come from specific components. Lavine and West (1992) studied the
problem of combining perfectly classified data (S(T ),y(T )) with unclassified
observations y using a fully Bayesian viewpoint.

The Bayesian approach deals with this type of data by introducing the
unknown class indicators S as missing data, and estimating S jointly with
the component parameters θ1, . . . ,θK and the weight distribution η from
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the data (S(T ),y(T ),y). For such data, data augmentation and MCMC as
described in Algorithm 6.2 are extended in an obvious way. In step (b), the
unknown allocations S are sampled conditional on the most recent parameter
ϑ = (θ1, . . . ,θK , η). In step (a), the parameter ϑ is sampled conditional on
knowing the complete sample (S(T ),y(T ),S,y).

Lavine and West (1992) emphasize that the assignment of yi according
to the classification rule (7.31) should account for the parameter uncertainty
associated with estimating ϑ from the data (y(T ),S(T ),y) and suggest the
following classification rule.

Pr(Si = k|y(T ),S(T ),y) =
∫

Pr(Si = k|ϑ,yi)p(ϑ|y(T ),S(T ),y)dϑ.

Based on the MCMC sample ϑ(1), . . . ,ϑ(M), which draws from the posterior
p(ϑ|y(T ),S(T ),y), they approximate this integral by

Pr(Si = k|y(T ),S(T ),y) ≈ 1
M

M∑
m=1

Pr(Si = k|ϑ(m),yi). (7.32)

Lavine and West (1992) run a straightforward Gibbs sampler in the hope of
achieving implicit labeling. Nevertheless, it is not guaranteed that the classi-
fication rule (7.32) is actually free from label switching.

7.4.4 Density Estimation Using Finite Mixtures

Consider the problem of estimating the density of an unknown probability dis-
tribution p(y), given N draws y1, . . . ,yN from this distribution. Finite mix-
ture distributions can be used to derive arbitrarily accurate approximations
to practically any given probability distribution, provided that the number
of components is not limited (Ferguson, 1973). Practically, density estimation
has been based on univariate mixtures of normal distributions (Escobar and
West, 1995; Roeder and Wasserman, 1997b; Scott and Szewczyk, 2001) and
multivariate mixtures of normals (Scott, 1992; West, 1993; Li and Barron,
2000; Fraley and Raftery, 2002).

Finite mixtures of Gaussian distributions provide a (semi-)parametric al-
ternative to nonparametric methods of density estimation, such as kernel
density estimation. The usual nonparametric kernel density estimator re-
sults when fitting a mixture with K = N components with ηk = 1/N ,
µk = yk, k = 1, . . . , N , and Σ = hW :

p(y|h) ≈ 1
N

N∑
i=1

fN (y;yi, hW ), (7.33)

with W being an estimate of the variance–covariance matrix Σ, for instance,
the sample variance–covariance matrix. Note that in (7.33) the parameter
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h, also known as the bandwidth, is the only unknown quantity. Bayesian
inference on the parameter h (West, 1993) is analogous to bandwidth selection
in kernel density estimation (Silverman, 1999), where h is chosen as a slowly
decreasing function of the number of observations; for instance,

h =
(

4
(1 + 2r)N

)1/(1+r)

,

with r being the dimension of yi.
The number K of components in density approximation has no physical

meaning, but is arbitrary in the sense that the choice of K is guided by the
desired degree of smoothness of the density estimate. Roeder and Wasserman
(1997b) and Fraley and Raftery (2002) use BIC to select the number of com-
ponents in mixture density approximation. Roeder and Wasserman (1997b)
show that the density estimate based on BIC is a consistent estimator of the
true density. Solka et al. (1998) use AIC-based pruning of the mixture density
estimator. Scott and Szewczyk (2001) start from the standard kernel density
estimate, which is then simplified by merging components that are similar in
the sense of definition (1.18).

7.4.5 Finite Mixtures as an Auxiliary Computational Tool in
Bayesian Analysis

Finite mixture distributions have been used in Bayesian analysis not only as
a device of modeling certain nonstandard features of the data, but also as
a useful computational tool to facilitate the necessary computations. Some
work deals with approximating priors by mixtures of conjugate priors in a
standard nonconjugate Bayesian analysis (Dalal and Hall, 1983). Other papers
deal with approximating posterior distribution by mixtures. An early example
is Alspach and Sorenson (1972), who used a multivariate Gaussian mixture
in adaptive filtering of non-Gaussian data; see also West (1993) for further
applications.

Several authors found it useful to approximate some nonnormal density
appearing in the model definition by a mixture of normals, in order to facil-
itate Bayesian analysis. A prominent example is representing the Student-t
distribution as a scale mixture of normals, which reduces the handling of the
somehow circumstantial Student-t distribution to dealing with the more con-
venient normal distribution; see, for instance, Zellner (1971), Geweke (1993),
and Shephard (1994).

Also in cases where a convenient theoretical mixture representation of a
density, which is difficult to handle, does not exist, normal mixtures are help-
ful simply by approximating this density by a mixture of normals. Shephard
(1994), Kim et al. (1998), and Chib et al. (2002) use a normal mixture ap-
proximation for the distribution of the log of a χ2

1-variable in the context
of stochastic volatility models. Frühwirth-Schnatter and Wagner (2006) and
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Frühwirth-Schnatter and Frühwirth (2006) use a normal mixture approxima-
tion for the distribution of the negative logarithm of an E (1)-variable in the
context of parameter-driven models for count, binary, and categorical data.
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Finite Mixtures of Regression Models

8.1 Introduction

In applied statistics as well as in econometrics a tremendous amount of ap-
plications deal with relating a random variable Yi, which is observed on
several occasions i = 1, . . . , N , to a set of explanatory variables or co-
variates (zi1, . . . , zi,d−1) through a regression-type model, where the condi-
tional mean of Yi is assumed to depend on xi =

(
zi1 · · · zi,d−1 1

)
through

E(Yi|β,xi) = xiβ, where β is a vector of unknown regression coefficients of
dimension d.

In many circumstances, however, the assumption that the regression co-
efficient is fixed over all possible realizations of Y1, . . . , YN is inadequate, and
models where the regression coefficient changes are of great practical impor-
tance. The most general alternative is to assume a different regression coef-
ficient βs

i for each realization Yi, E(Yi|β,xi) = xiβ
s
i , however, only in rare

cases will it be possible to estimate βs
i without imposing further structure,

and modeling βs = (βs
1, . . . ,β

s
N ) becomes an important issue.

For identifying a sensible model for βs, it is helpful to understand why the
regression coefficients are different. For sequential observations the regression
coefficient may change over time, whereas for cross-sectional data the regres-
sion coefficient may change between subgroups of observations. In both cases
the model may be misspecified because of omitted variables and nonlinearities
or the sample may contain outliers. Whatever information is available about
the nature of heterogeneity for the problem at hand should be incorporated
in an appropriate manner. Within a Bayesian approach, this information is
included by choosing a specific probabilistic model for βs which is specified in
terms of the density p(βs) of the joint distribution of βs = (βs

1, . . . ,β
s
N ). p(βs)

plays the role of a prior distribution, imposing some model structure on the
individual regression coefficients that may be overruled by the information in
the data. Different such prior distributions defining different model structures
may be compared in a principled way by Bayesian model comparison.
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This chapter focuses on capturing parameter heterogeneity for cross-
sectional data through finite mixtures of regression models where changes
in βs

i are driven by a hidden discrete indicator Si, which is allowed to take
one out of K values for each observation Yi. This model is formulated in
Section 8.2, whereas statistical inference is discussed in Section 8.3.

Several useful extensions of this model are discussed in this chapter, such
as mixed-effects finite mixtures of regression models in Section 8.4, which com-
bine regression coefficients that are fixed across all realizations with regression
coefficients that are allowed to change, and finite mixtures of random-effects
models in Section 8.5, which are useful for longitudinal data and repeated
measurements.

8.2 Finite Mixture of Multiple Regression Models

In this section focus lies on extending the standard multiple regression model
with normally distributed errors by introducing a regression coefficient that
changes between groups of otherwise homogeneous observations.

8.2.1 Model Definition

Let (Yi, zi) be a pair of a random variable Yi and a set of explanatory variables
zi = (zi1, . . . , zi,d−1). Suppose that dependence of Yi on zi is modeled by a
multiple regression model:

Yi = xiβ + εi, εi ∼ N
(
0, σ2

ε

)
, (8.1)

where xi =
(
zi1 · · · zi,d−1 1

)
is a design point, and β and σ2

ε are unknown
parameters. Assume that background information suggests that the regression
coefficient β and the error variance σ2

ε are not homogeneous over all possible
pairs (Yi, zi). One way to capture such changes in the parameter of a regression
model is finite mixtures of regression models. A finite mixture regression model
assumes that a set of K regression models characterized by the parameters
(β1, σ

2
ε,1), . . . , (βK , σ2

ε,K) exists, and that for each observation pair (Yi, zi) a
hidden random indicator Si chooses one among these models to generate Yi:

Yi = xiβSi
+ εi, εi ∼ N

(
0, σ2

ε,Si

)
. (8.2)

β1, . . . ,βK as well as σ2
ε,1, . . . , σ

2
ε,K are unknown parameters that need to

be estimated from the data. The statistician applying a finite mixture of
regression models has to specify how the random mechanism Si works. In the
absence of any additional information it is usual to assume that Si and Si′

are pairwise independent, and each Si is distributed according to an unknown
probability distribution η = (η1, . . . , ηK). In what follows, ϑ summarizes all
unknown model parameters, including the parameters η appearing in the
definition of the distribution law of S = (S1, . . . , SN ).
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It is easy to verify that the marginal distribution of Yi, when holding the
design point xi as well as ϑ fixed, reads:

p(yi|xi, ϑ) =
K∑

k=1

p(yi|xi, Si, ϑ)Pr(Si = k|ϑ) =
K∑

k=1

ηkfN (yi;xiβk, σ2
ε,k).

Thus for each value of the design point xi, the marginal distribution of Yi is a
finite mixture of univariate normal distributions with mean µk,i = xiβk and
variance σ2

ε,k. Therefore a finite mixture of regression models may be seen as
an extension of a finite mixture of univariate normal distributions where the
mean in the mixture distribution depends on explanatory variables. On the
other hand, a finite mixture of univariate normal distributions may be seen
as that special case of finite mixtures of regression models where βk = µk and
xi = 1 for all i = 1, . . . , N .

Various extensions of model (8.2) are useful. The mixture regression model
defined in (8.2) is heteroscedastic because the variance of the error term εi

changes across the realizations. If the variance of the error term is unaffected
by Si, a homoscedastic finite mixture of regression models results:

Yi = xiβSi
+ εi, εi ∼ N

(
0, σ2

ε

)
. (8.3)

The distributional law of S may be substituted by other structures, if more
information about the nature of heterogeneity is available. As discussed in
Subsection 8.6.2, the probability of belonging to a certain state may depend
on a covariate. For random covariates, the covariate distribution may differ
between the clusters, in which case a multivariate finite normal mixture model
as discussed in Chapter 6 may be appropriate. Whenever data are collected se-
quentially, alternative probability structures on the hidden indicator turn out
to be useful. Goldfeld and Quandt (1973) introduced a hidden Markov chain
into a mixture regression model, in order to deal with time series data that
depend on exogenous variables. This issue is discussed in Subsection 10.3.2.

8.2.2 Identifiability

Like any finite mixture model, finite mixtures of regression models suffer from
nonidentifiability due to label switching and potential overfitting; see Sec-
tion 1.3 for a general discussion of these issues. More importantly, generic
identifiability of finite mixtures of regression models does not in general fol-
low from the generic identifiability of Gaussian mixtures as falsely claimed, for
instance, in DeSarbo and Cron (1988), despite the close relationship between
these two model classes.

A necessary condition for identifiability of a standard regression model is
that the matrix X

′
X, where

X =

⎛⎜⎝ x1
...

xN

⎞⎟⎠ ,



244 8 Finite Mixtures of Regression Models

is of full rank. For finite mixtures of regression models nonidentifiability may
occur, even if this condition is fulfilled. This was first noticed by Hennig
(2000) who showed that the regression parameters are identifiable, iff the
number K of clusters is smaller than the number of distinct (d−1)-dimensional
hyperplanes generated by the covariates (excluding the constant). Loosely
speaking, identifiability problems occur for finite mixtures of regression models
with covariates that show too little variability. Problems are to be expected,
in particular, if covariates are dummy variables or reflect a few categories as in
marketing research. In this section we provide more details on this important
issue.

Consider the set of different covariates {x1, . . . ,xp}. Assume that for each
covariate xi that the identity

K∑
k=1

ηkfN (y; µk,i, σ
2
ε,k) =

K∑
k=1

η�
kfN (y; µ�

k,i, σ
2,�
ε,k), (8.4)

where µk,i = xiβk and µ�
k,i = xiβ

�
k, holds for all y ∈ �. If the model param-

eters (β1, . . . ,βK , σ2
ε,1, . . . , σ

2
ε,K , η1, . . . , ηK) and (β�

1, . . . ,β
�
K , σ2,�

ε,1 , . . . , σ2,�
ε,K ,

η�
1 , . . . , η�

K) are related to each other by relabeling, then the finite mixture
regression model is generically identifiable.

For a fixed covariate xi, (8.4) reduces to a Gaussian mixture, and generic
identifiability of Gaussian mixtures implies the existence of a permutation
ρi(·) of {1, . . . , K} such that for all k = 1, . . . , K:

η�
k = ηρi(k), xiβ

�
k = xiβρi(k), σ2,�

ε,k = σ2
ε,ρi(k). (8.5)

A major cause for generic nonidentifiability is that the different permutations
ρi(·) appearing in (8.5) are not necessarily the same for all design points xi,
i = 1, . . . , p.

Nevertheless, let us assume for the moment that actually the same permu-
tation ρs(·) has been applied for all design points xi, i = 1, . . . , p. Then (8.5)
implies xiβ

�
k = xiβρs(k) for all i = 1, . . . , p and:

Xβ�
k = Xβρs(k),

where the rows of the design matrix X are equal to x1, . . . ,xp. If X
′
X has

full rank, then it follows immediately that the regression coefficients are de-
termined up to relabeling:

β�
k = βρs(k), (8.6)

ensuring generic identifiability. The problem with this derivation is, that with-
out further assumptions, the different permutations ρi(·) appearing in (8.5)
are not necessarily the same for all i = 1, . . . , p.

It is possible to show that these permutations are necessarily the same, if
any two regression models in the mixture differ at least in ηk or σ2

ε,k. Assume
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that (8.5) holds for two different permutations ρs(·) and ρt(·). Then ηk1 = ηk2

and σ2
ε,k1

= σ2
ε,k2

for regression model k1 = ρs(k) and k2 = ρt(k), which
contradicts the assumption made above.

If ηk and σ2
ε,k are the same for at least two regression models, then it

is possible that (8.5) holds for two different permutations ρs(·) and ρt(·).
Assume that ηk1 = ηk2 and σ2

ε,k1
= σ2

ε,k2
. Then any two permutations where

ρs(k1) = ρt(k2), ρs(k2) = ρt(k1), and ρs(l) = ρt(l), for l �= k1, k2, fulfill (8.5).
In this case generic nonidentifiability may occur, even if the matrix X

′
X has

full rank.
Consider, for instance, a mixture of two regression models, where η1 = η2

and σ2
ε,1 = σ2

ε,2. For each i = 1, . . . , p, the permutation ρi(·) appearing in
(8.5) is equal to one of the two possible permutations, namely the identity,
ρ1(1) = 1 and ρ1(2) = 2, or the permutation ρ2(1) = 2 and ρ2(2) = 1, which
interchanges the labeling. Reorder, for a given sequence of permutations, the
equations in (8.5) according to the permutation applied to k = 1. Then:

X1β
�
1 = X1β1, (8.7)

X2β
�
1 = X2β2, (8.8)

where the rows of the design matrix X1 are built from all design points xi,
where ρi(1) = 1, and the rows of the design matrix X2 are built from all
design points xi, where ρi(1) = 2. If in (8.7) and (8.8) either rg(X

′
1X1) = d

or rg(X
′
2X2) = d (or both), then (8.6) follows immediately.

Thus generic identifiability up to relabeling follows, if rg(X
′
1X1) = d

or rg(X
′
2X2) = d holds for any partition of the set of different covariates

{x1, . . . ,xp} into two sets. This is essentially the same condition as the one
given by Hennig (2000). Any partition that violates this condition defines an
alternative solution. It follows that for K = 2 the minimum number of different
design points is equal to 2 dim(βk)+1, which is sufficient to achieve identifia-
bility, iff all subsets of size dim(βk) define a design matrix of full rank. To give
an example, consider a mixture of two regression models where dim(βk) = 2
where there are only two linear independent design points x1 = (z1 1) and
x2 = (z2 1). A similar example appears in Hennig (2000). Evidently the par-
tition {x1} ∪ {x2} violates the rank condition. Only if the two permutations
in (8.5) are the same, do we obtain (8.6). However, if the two permutations
in (8.5) are different, then another solution exists, which is given by

X� =
(

x1
x2

)
, β�

1 = (X�)−1
(

x1β1
x2β2

)
, β�

2 = (X�)−1
(

x1β2
x2β1

)
.

Consequently, this finite mixture regression model is generically unidentifiable.
Whereas a single regression line is determined from two covariate points, for
a mixture of two regressions this is not the case. Identifiability is achieved by
adding a third design point x3 = (z3 1), with z3 �= z1, z2. Then any partition
of the design points into two groups contains at least two different design
points and the identifiability condition is fulfilled.
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Identifiability of Finite Mixtures of Regression Models

Consider a mixture of K regression models, where ηk and σ2
ε,k are the same

in all groups. For each k = 1, . . . , K, reorder the equations in (8.5) according
to the permutation applied to the label k. Then:

X1β
�
k = X1β1, (8.9)

X2β
�
k = X2β2,

...
XKβ�

k = XKβK , (8.10)

where the rows of the design matrix Xj are built from all design points xi,
where ρi(k) = j. If in (8.9) to (8.10) rg(X

′
jXj) = d for at least one j =

1, . . . , K, then (8.6) follows immediately. Thus generic identifiability up to
relabeling follows, if rg(X

′
jXj) = d holds for any partition of the set of different

covariates {x1, . . . ,xp} into K subsets. This is essentially the same condition
as the one given by Hennig (2000).

Any partition that violates this condition defines an alternative solution.
It follows that the minimum number of different design points is equal to
K(dim(βk) − 1) + 1. If p ≤ K(dim(βk) − 1), then evidently there exists a
partition of the different design points into K groups, where each set con-
tains at most dim(βk)− 1 design points and violates the rank condition. This
minimum number of design points is sufficient to achieve identifiability, iff all
subsets of size dim(βk) define a design matrix of full rank.

Grün and Leisch (2004) use bootstrap methods as a diagnostic tool for
revealing identifiability problems in finite mixtures of normal and nonnormal
regression models.

8.2.3 Statistical Modeling Based on Finite Mixture of
Regression Models

In statistical modeling finite mixtures of regression models are also known as
switching regression models in economics (Quandt, 1972), as latent class re-
gression models in marketing (DeSarbo and Cron, 1988), as mixture-of-expert
models in the machine-learning literature (Jacobs et al., 1991), and as mixed
models in biology (Wang et al., 1996).

The Switching Regression Model

For sequentially observed data, one source of heterogeneity is sudden changes
in regression coefficients due to a structural break. A simple model to capture
a sudden parameter change at a known breakpoint τ within the standard
multiple regression model is the following,
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Yi =
{

xiβ1 + εi, εi ∼ N
(
0, σ2

ε,1
)
, i < τ,

xiβ2 + εi, εi ∼ N
(
0, σ2

ε,2
)
, i ≥ τ.

(8.11)

It is useful to reparameterize model (8.11) as

Yi = xi(1 − Di)β1 + xiDiβ2 + εi, εi ∼ N
(
0, σ2

i

)
, (8.12)

where σ2
i = σ2

ε,1(1 − Di) + σ2
ε,2Di. Di is a dummy variable, taking the value

0 for i < τ and 1 otherwise. If the breakpoint τ is known, then Di is ex-
ogenous, and (8.12) is a regression model with heteroscedastic errors. If the
exact position of the break point τ is unknown, Di is not observable, but
a latent, discrete random variable, taking the values 0 and 1 according to
some unknown probability law, and (8.11) turns out to be a finite mixture of
regression models, also called a switching regression model.

An early example of a switching regression model with unknown break-
point is considered in Quandt (1958) who studies the consumption function
Y = βX + α, where X is the income and Y is the consumption, and as-
sumes that other factors, that are difficult to identify, affect the parameters
of the consumption function. If this critical factor is below a threshold, then
Y = β1X +α1, otherwise Y = β2X +α2. In general we are not able to identify
the critical variable, and what we observe is a mixture of these two regres-
sion lines. Quandt (1958) considers a single shift between the two regimes
at an unknown break point, mainly to make estimation feasible under the
computational limitations of the 1950s.

A particularly important extension of this work is Quandt (1972), where
for the first time a probability model is introduced, to model “that na-
ture chooses between regimes with probability η1 and 1 − η1”(Quandt, 1972,
p.306).1 Quandt (1972) starts directly from specifying the conditional density
p(yi|xi, β1, β2, σ

2
ε,1, σ

2
ε,2, η1) as a mixture of two normal distributions:

Yi ∼ η1N
(
xiβ1, σ

2
ε,1

)
+ (1 − η1)N

(
xiβ2, σ

2
ε,2

)
. (8.13)

In his summarizing remarks, Quandt (1972, p.310) concludes that “A notable
disadvantage of the method is that it does not allow individual observations
to be identified with particular regimes.” The latent variable interpretation of
his important contribution, which allows clustering observations into regimes,
was discovered only later.

Further applications of switching regression models in econometrics are
found in Fair and Jaffee (1972) and Quandt and Ramsey (1978), who consider
the relation between wage bargains and unemployment rate through a Phillips
curve which is expected to switch according to low and high changes on the
consumer price index.
1 Original notation of Quandt (1972) changed.
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Omitted Categorical Predictors

Mixtures of regression models arise whenever a categorical or dummy regressor
is omitted. Hosmer (1974), which is an early reference in this area, considered
a mixture of two regression lines with a nice application from fishery research.
In commercial catches of halibut only age and length are measured, whereas
the gender of the fish is unknown. For any particular age, the mean length of
female fish exceeds that of male fish, and this difference increases with age. If
gender were observed, length may be modeled in terms of gender gi and age
ai in the following way.

Yi = β1 + aiβ2 + giβ3 + giaiβ4 + εi, εi ∼ N
(
0, σ2

ε

)
.

When coding gender as a 0/1 variable, this model may be written as

Yi = βgi,1 + aiβgi,2 + εi, (8.14)

where βgi,1 = β1 + giβ3 and βgi,2 = β2 + giβ4. If gender is unobserved, then
(8.14) is equal to a mixture of two regression models. In a scatter plot of ai

versus the observed length yi, the observations cluster around two regression
lines, one corresponding to males, the other to females. When a switching
regression model is fitted to the data, then both unknown regression lines
have to be reconstructed from the data.

Note that the switching slope in (8.14) is caused by interaction between
the observed and the omitted categorical variable. If such an interaction is
not present, then β4 = 0 and (8.14) reduces to a regression model with a shift
in the intercept only:

Yi = βgi,1 + aiβ2 + εi.

Unknown Segments in the Population

Finite mixtures of regression models, introduced into marketing by DeSarbo
and Cron (1988), found numerous applications in marketing research; see
Wedel and DeSarbo (1993b) and Rossi et al. (2005) for a review. In mar-
keting, consumers rate the quality of products or events. A regression model
is built to describe the relation between the rating Yi of consumer i and cer-
tain features of the product summarized in the design matrix xi. If unknown
segments in the population are present, then the part-worths βs

i of a certain
consumer i depend on membership in a certain segment. If we introduce a
segment indicator Si, then the market segmentation regression model reads:

Yi = xiβSi
+ εi, εi ∼ N

(
0, σ2

ε

)
. (8.15)

Apart from estimating the regression coefficients in the different segments,
the indicator Si itself is of interest, as it allows us to assign each consumer to
a certain segment k.
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8.2.4 Outliers in a Regression Model

The finite mixture model discussed in Section 7.2 for dealing with outliers in
univariate data sets has been extended in several ways to deal with outliers in
a linear regression model; see the review article by Peña and Guttman (1993).

Box and Tiao (1968), for instance, extend the variance inflation model
(7.24) in the following way.

Yi ∼ (1 − η2)N
(
xiβ, σ2

ε

)
+ η2N

(
xiβ, kσ2

ε

)
. (8.16)

Model (8.16) is a regression model with switching variances, but a constant
regression parameter β. Abraham and Box (1978) extended the location shift
model (7.25) to allow for outliers in a linear regression model:

Yi ∼ (1 − η2)N
(
xiβ, σ2

ε

)
+ η2N

(
xiβ + k, σ2

ε

)
. (8.17)

Model (8.17) allows for a switching intercept, while holding the variance fixed.
Peña and Guttman (1993) show that these models are more effective in iden-
tifying outliers than methods which postulate a null model for the generation
of the data with no alternative to the null model being entertained.

Various extensions to models (8.16) and (8.17) are worth mentioning.
Guttman et al. (1978) combine a mixture of a normal regression models with
a random-effects model to allow for a different shift for each outlier. Out-
lier modeling in nonnormal mixture regression models is considered in Pregi-
bon (1981), Copas (1988), and Verdinelli and Wasserman (1991). West (1984,
1985) also studies more general scale mixtures of GLMs to deal with outliers.

8.3 Statistical Inference for Finite Mixtures of Multiple
Regression Models

Parameter estimation for finite mixtures of regression models is usually based
on ML estimation or Bayesian estimation, an exception being Quandt and
Ramsey (1978) who used a method of moments estimator based on the
moment-generating function.

8.3.1 Maximum Likelihood Estimation

Assume that N observation pairs (x1, y1), . . . , (xN , yN ) are available. The
appropriate likelihood function for parameter estimation for a finite mixture
of an arbitrary number K of regression models was derived for the first time
by Quandt (1972). This function turns out to be the following extension of
the mixture likelihood of a standard finite mixture model,

p(y|ϑ) =
N∏

i=1

(
K∑

k=1

fN (yi;xiβk, σ2
ε,k)ηk

)
, (8.18)
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where ϑ = (β1, . . . ,βK , σ2
ε,1, . . . , σ

2
ε,K , η). In contrast to this, Fair and Jaffee

(1972) consider maximization of the classification likelihood p(y|ϑ,S) with
respect to ϑ and S for jointly solving the problem of parameter estimation
and estimating the unknown allocations. However, Oberhofer (1980) showed
that this approach leads in general to inconsistent estimators of β1, . . . ,βK .

In Quandt (1972), the mixture regression likelihood function p(y|ϑ) is
maximized numerically, and considerable convergence failures are reported
for repeated experiments on artificially generated data. A mixture of two
regression models, for instance, where β1 = (1, 1), β2 = (0.5, 1.5), σ2

ε,1 = 2,
σ2

ε,2 = 2.5, η1 = η2 = 0.5, N = 60, and xi = (1xi), where xi ∼ U [0, 40], leads
to a failure rates of 53 percent in 30 replications, where xi was kept fixed over
the repetitions.

Later on, Hosmer (1974) realized that the problem of dealing with an
unbounded likelihood function is of relevance not only for finite mixtures of
normal distributions (see again Subsection 6.1.2), but also for heterogeneous
mixtures of regression models, which include heterogeneous mixtures of nor-
mal distributions as a special case. Hosmer (1974) noted that any observation
yi generates a singularity in the likelihood function if βk is chosen such that
yi = xiβk, and σ2

ε,k goes to 0. More generally, each subgroup of d observations
generates a singularity in the likelihood function if βk is chosen such that the
regression plane provides a perfect fit to this subgroup.

Thus if the variances of a finite mixture of regression models are uncon-
strained, a global maximizer of the likelihood function does not exist. Never-
theless, Kiefer (1978) shows that a root of the log likelihood equations cor-
responding to a local maximizer in the interior of the parameter space is
consistent, asymptotically normal, and efficient. In practice, however, it may
be difficult to find the ML estimator numerically. An EM-type algorithm for
finding the ML estimator was suggested by Hartigan (1977), whereas DeSarbo
and Cron (1988) use the EM algorithm directly for this purpose.

As for mixtures of normal distributions, it is complete ignorance about
the variance ratio σ2

ε,k/σ2
ε,l that causes problems with maximum likelihood

estimation, and again the Bayesian approach, discussed in the remaining sub-
sections, is helpful in this respect, as it allows us to bound this ratio through
choosing proper priors on σ2

ε,k, k = 1, . . . , K.

8.3.2 Bayesian Inference When the Allocations Are Known

If the allocations S are known, then Bayesian inference reduces to Bayesian
analysis of the standard regression model as discussed first in Zellner (1971);
see also Raftery et al. (1997) for a more recent review.

For each group, a separate regression model with parameters βk and σ2
ε,k

has to be estimated from all observations that fall into that group. In matrix
notation, in each group the regression model reads:

yk = Xkβk + εk, εk ∼ NNk

(
0, σ2

ε,kINk

)
, (8.19)
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where Nk = #{i : Si = k} is equal to the number of observations in group
k, yk is a vector containing all observations yi with Si = k, and Xk is the
corresponding design matrix, where each line contains the regressors xi cor-
responding to yi. The relevant group-specific data summaries are well known
from the normal equations leading to the standard OLS estimator in econo-
metrics:

X
′
kyk =

∑
i:Si=k

x
′
iyi,

X
′
kXk =

∑
i:Si=k

x
′
ixi.

Note that Nk as well as both group-specific data summaries depend on S,
however, as opposed to earlier chapters this dependence is not made explicit
in this chapter.

Assume that observation yi is assigned to group k, Si = k. Then the
contribution of yi to the complete-data likelihood function p(y|β, σ2,S) is
equal to

p(yi|βk, σ2
ε,k, Si) =

(
1

2πσ2
ε,k

)1/2

exp

(
− 1

2σ2
ε,k

(yi − xiβk)2
)

.

The complete-data likelihood function p(y|β, σ2,S) has K independent fac-
tors, each carrying all information about the parameters in a certain group:

p(y|β, σ2,S) =
K∏

k=1

(
1

2πσ2
ε,k

)Nk/2

(8.20)

× exp

(
− 1

2σ2
ε,k

∑
i:Si=k

(yi − xiβk)2
)

.

In a Bayesian analysis each of these factors is combined with a prior. When
holding the variance σ2

ε,k fixed, the complete-data likelihood function, re-
garded as a function of βk, is the kernel of a multivariate normal distribution.
Under the conjugate prior βk ∼ Nd (b0,B0), the posterior density of βk given
σ2

ε,k and all observations assigned to group k, is again a density from the nor-
mal distribution, βk|σ2

ε,k,S,y ∼ Nd (bk,Bk), where

Bk = (B−1
0 +

1
σ2

ε,k

X
′
kXk)−1, (8.21)

bk = Bk(B−1
0 b0 +

1
σ2

ε,k

X
′
kyk). (8.22)

When holding the regression parameter βk fixed, the complete-data likelihood
function, regarded as a function of σ2

ε,k, is the kernel of an inverted Gamma
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density. Under the conjugate inverted Gamma prior σ2
ε,k ∼ G−1 (c0, C0), the

posterior density of σ2
ε,k given βk and all observations assigned to this group,

is again a density from the inverted Gamma distribution, σ2
ε,k|βk,S,y ∼

G−1 (ck, Ck), where

ck = c0 +
Nk

2
, Ck = C0 +

1
2
ε

′
kεk, (8.23)

where εk = yk − Xkβk.
If both βk and σ2

ε,k are unknown, a closed-form solution for the joint
posterior p(βk, σ2

ε,k|S,y) exists only if the prior of βk is restricted by assuming
that the prior covariance matrix depends on σ2

ε,k through B0,k = σ2
ε,kB̃0. Then

the joint posterior factors as p(βk|σ2
ε,k,y,S)p(σ2

ε,k|y,S), where density of βk

given σ2
ε,k arises from an Nd (bk,Bk) distribution with

Bk = σ2
ε,kB̃k, B̃k = (B̃−1

0 + X
′
kXk)−1, (8.24)

bk = B̃k(B̃−1
0 b0 + X

′
kyk), (8.25)

whereas the marginal posterior of σ2
ε,k is a G−1 (ck, Ck)-distribution, where ck

is the same as in (8.23), however,

Ck = C0 +
1
2

(
y

′
kyk + b

′
0B̃

−1
0 b0 − b

′
kB̃

−1
k bk

)
. (8.26)

8.3.3 Choosing Prior Distributions

The investigations of the previous subsection suggest choosing the following
prior distributions for finite mixtures of regression models when the allocations
are unknown, which were applied, for instance, in Hurn et al. (2003).

As a prior for the regression coefficient βk one may use a conditionally
conjugate prior:

βk|σ2
ε,k ∼ Nd

(
b0, σ

2
ε,kB̃0

)
, (8.27)

which introduced prior dependence between βk and σ2
ε,k. Alternatively, a prior

may be used, where βk and σ2
ε,k are independent a priori:

βk ∼ Nd (b0,B0) . (8.28)

In both cases, the prior on σ2
ε,k is inverse Gamma, σ2

ε,k ∼ G−1 (c0, C0). As
with for finite mixtures of normal distributions, C0 may be considered as an
unknown hyperparameter with a prior of its own, C0 ∼ G (g0, G0), in which
case the resulting prior is called a hierarchical prior. The prior on the group
sizes is the standard Dirichlet prior, η ∼ D (e0, . . . , e0).
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8.3.4 Bayesian Inference When the Allocations Are Unknown

MCMC estimation is usually carried out using data augmentation and Gibbs
sampling, exceptions being Chen and Liu (1996) who discuss MCMC estima-
tion of the allocations S without parameter estimation and Hurn et al. (2003)
who discuss direct parameter estimation without data augmentation using the
Metropolis–Hastings algorithm.

Albert and Chib (1993) consider Bayesian estimation using data augmen-
tation and Gibbs sampling for the more general Markov mixture of regression
model, however, their algorithm is also relevant for finite mixtures of regres-
sion models. They show that MCMC estimation along the lines indicated by
Algorithm 3.4 is feasible after introducing the group indicator Si for each ob-
servation pair (xi, yi) as missing data. Justel and Peña (1996) use a similar
method and show that a false convergence of the Gibbs sampler may occur
when one of the groups has a much smaller variance than the other. Otter
et al. (2002) consider a Bayesian approach for more general finite mixtures
of multivariate regression models and discuss an application in marketing.
The following algorithm provides details for finite mixtures of heteroscedastic
regression models.

Algorithm 8.1: Unconstrained MCMC for a Multiple Normal Mixture Regres-
sion Model Full conditional Gibbs sampling is carried out in two steps.

(a) Parameter simulation conditional on the allocations S:
(a1) Sample η from the conditional Dirichlet posterior p(η|S) as in Algo-

rithm 3.4.
(a2) Sample each regression coefficient βk, k = 1, . . . , K, from the posterior

distribution βk|σ2
ε,k,S,y ∼ Nd (bk,Bk).

(a3) Sample each variance σ2
ε,k, k = 1, . . . , K, from the posterior distribu-

tion σ2
ε,k|βk,S,y ∼ G−1 (ck, Ck).

(b) Classification of each observation pair (yi,xi) conditional on ϑ: sample
each element Si of S from the conditional posterior p(Si|ϑ,y) given by

Pr(Si = k|ϑ,y) ∝ ηkfN (yi;xiβk, σ2
ε,k). (8.29)

In step (a2), the posterior moments bk and Bk are given by (8.21) and
(8.22), whereas in step (a3) the posterior moments ck and Ck are available
from (8.23). These formulae could be applied for any prior. Under the con-
ditionally conjugate prior or the hierarchical conditionally conjugate prior,
computation of bk and Bk may be simplified as in (8.24) and (8.25). Further-
more, under this prior, sampling of σ2

ε,k is possible from the marginal inverted
Gamma posterior distribution p(σ2

ε,k|S,y), where ck is the same as in (8.23)
and Ck is given by (8.26).

Under a hierarchical prior, where C0 is a random hyperparameter with
a prior of its own, C0 ∼ G (g0, G0), an additional step has to be added in



254 8 Finite Mixtures of Regression Models

Algorithm 8.1 to sample C0 from p(C0|S,β, σ2,y), which is given by Bayes’
theorem as C0|S,β, σ2,y ∼ G (gN , GN ), where:

gN = g0 + Kc0, GN = G0 +
K∑

k=1

1
σ2

ε,k

.

MCMC for Homoscedastic Mixtures of Regression Models

Algorithm 8.1 could be applied for Bayesian estimation of a homoscedas-
tic finite mixture regression model, where σ2

ε,1 = · · · = σ2
ε,K = σ2

ε , how-
ever, step (a3) has to be modified by sampling σ2

ε from the appropri-
ate posterior distribution. Under the inverted Gamma prior distribution
σ2

ε ∼ G−1 (c0, C0), the posterior distribution is again inverted Gamma,
σ2

ε |β, σ2,S,y ∼ G−1 (cN , CN ), where

cN = c0 +
N

2
, CN = C0 +

1
2

N∑
i=1

(yi − xiβSi
)2. (8.30)

Under the conditionally conjugate prior (8.27) on β, it is possible to sample
σ2

ε from the marginal posterior p(σ2
ε |σ2,S,y), where β is integrated out, as

this density is available in closed form: σ2
ε |σ2,S,y ∼ G (cN , CN ), with cN

being the same as in (8.30), whereas CN is given by

CN = C0 +
1
2
b

′
0B̃

−1
0 b0 +

1
2

K∑
k=1

(
y

′
kyk − b

′
kB̃

−1
k bk

)
.

Starting Values

Justel and Peña (1996) realized that for a finite mixture of regression models
Gibbs sampling may be sensitive to choosing an appropriate initial classi-
fication. In particular under the presence of outliers that mask or swamp
other observations, an erroneous initial classification of the observations will
lead the algorithm to a wrong solution for thousands of iterations. As a rem-
edy, Justel and Peña (2001) avoid random initial classification and search for
a more sensible classification. They use an estimate of the covariance ma-
trix of the allocations S and show that the eigenvectors associated with the
nonzero eigenvalues provide information about which observations are pos-
sible outliers. The examples in Justel and Peña (2001) indicate considerable
improvement of the Gibbs sampler based on these elaborated starting values.

8.3.5 Bayesian Inference Using Posterior Draws

As for a standard finite mixture model, label switching as discussed in detail
in Subsection 3.5.5 is also an issue for finite mixtures of regression models.



8.3 Statistical Inference for Finite Mixtures of Multiple Regression Models 255

Hurn et al. (2003) use the approach of Celeux et al. (2000) to deal with the
labeling problem, by choosing that parameter for estimation which minimizes
the symmetrized Kullback–Leibler distance measure, which is invariant to
relabeling.

As noted by Hurn et al. (2003), a functional that is invariant to relabeling
is the estimated regression hyperplane,

E(Yi|xi) =
K∑

k=1

ηkxiβk,

which reduces to the regression line

E(Yi|xi) =
K∑

k=1

ηk(xiβk,1 + βk,2)

for simple regression problems. In the latter case, the regression line may be
visualized by showing for each MCMC draw several points from this regres-
sion line for selected values of xi (either sampled randomly from [xmin, xmax]
for continuous covariates, or sampled randomly from the set of observed co-
variates).

Finding identifiability constraints is not trivial, particularly in higher di-
mensions, however, producing scatter plots of βk,j against βk′,j′ for all pairs of
coefficients of β may be helpful, as shown, for instance, in Frühwirth-Schnatter
and Kaufmann (2006a). The predicted points on the regression line could
also help to identify groups. If for a certain xi, all simulated points obey
xiβ1 < · · · < xiβK , then this constraint could be used for identification.
Thus for a switching regression model constraints need not be simple order
constraints on the regression parameter, but could also be linear constraints
as applied, for instance, in Otter et al. (2002).

8.3.6 Dealing with Model Specification Uncertainty

Testing for the presence of switching regression parameters was already con-
sidered by Quandt (1958), who performed an F-Test involving the ratio of
variances under a switching and a nonswitching regression model, and by
Quandt (1960) who considered a likelihood ratio test.

Bayes factors for testing a switching regression model with K = 2 against
homogeneity are considered by Peña and Tiao (1992) who investigate the
relation between the Bayes factor and the Chow test introduced by Chow
(1960). Otter et al. (2002) and Frühwirth-Schnatter et al. (2004) use the bridge
sampling estimator of the marginal likelihoods (see also Subsection 5.4.6 for
more detail on this estimator) to select the number of groups in mixtures of
regression models.

Hurn et al. (2003) use the birth and death process method of Stephens
(2000a), discussed in Subsection 5.2.3 in detail, to select the number of groups
in a finite mixture regression model.
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8.4 Mixed-Effects Finite Mixtures of Regression Models

A mixed-effects model allows us to combine regression coefficients that are
fixed across all realizations (Yi,xi) with regression coefficients that are allowed
to change.

8.4.1 Model Definition

A mixed-effects finite mixture of regression models results if only some regres-
sion coefficients are different among the hidden groups:

Yi = xf
i α + xr

i βSi
+ εi, εi ∼ N

(
0, σ2

ε,Si

)
, (8.31)

where xf
i are the fixed effects, whereas xr

i are the random effects. A necessary
condition for identifiability is that the columns of the design matrix defined
by

X =

⎛⎜⎝ xf
1 xr

1
...

...
xf

N xr
N

⎞⎟⎠
are linearly independent.

Considering certain effects as being fixed may help to avoid generic identi-
fiability, in particular for categorical covariates. For a regression model, where
only the intercept is switching,

Yi = xiα + βSi + εi, εi ∼ N
(
0, σ2

ε,Si

)
, (8.32)

generic identifiability follows immediately from pointwise identifiability, given
by (8.5):

η�
k = ηρi(k), β�

k + xiα = βρi(k) + xiα, σ2,�
ε,k = σ2

ε,ρi(k),

hence β�
k = βρi(k). For the general mixed-effects model defined in (8.31) point-

wise identifiability, given by (8.5),

η�
k = ηρi(k), xf

i α + xr
i βk = xf

i α + xr
i βρi(k), σ2,�

ε,k = σ2
ε,ρi(k),(8.33)

implies xr
i βk = xr

i βρi(k), and generic identifiability holds if the identifiability
condition discussed in Section 8.2.2 is applied to the design points defining
only the random effects xr

i .

8.4.2 Choosing Priors for Bayesian Estimation

It is assumed that the priors of all parameters but α are the same as in
Subsection 8.3.3, whereas α ∼ Nr (a0,A0). If α and βk are pairwise inde-
pendent a priori, then the joint prior on α∗ = (α,β1, . . . ,βK) is a normal
prior, α∗ ∼ Nr∗ (a∗

0,A
∗
0), where r∗ = r +Kd and a∗

0 and A∗
0 are derived from

a0,A0, b0, and B0 in an obvious way.
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8.4.3 Bayesian Parameter Estimation When the Allocations
Are Known

In matrix notation, in each group the regression model reads:

yk = Xf
kα + Xr

kβk + εk, εk ∼ NNk

(
0, σ2

ε,kINk

)
,

where Nk = #{i : Si = k} is equal to the number of observations in group k,
yk is a vector containing all observations yi with Si = k, and Xf

k and Xr
k are

the corresponding design matrices, where each line contains the regressors xf
i

and xr
i corresponding to yi.

Due to the presence of the common regression parameter α in each group,
conditional independence across the groups as in Subsection 8.3.2 is lost, even
conditional on known allocations S, and inference is carried out simultaneously
for all regression coefficients α∗ = (α,β1, . . . ,βK). This inference problem is
closely related to Bayesian inference for a single regression model. By intro-
ducing a dummy coding for Si through K binary variables Dik, k = 1, . . . , K,
where Dik = 1, iff Si = k, and 0 otherwise, model (8.31) is written as a
heteroscedastic regression model with regression parameter α∗:

yi = xf
i α + xr

i Di1β1 + · · · + xr
i DiKβK + εi, (8.34)

εi ∼ N
(
0, σ2

i

)
, σ2

i = Di1σ
2
ε,1 + · · · + DiKσ2

ε,K .

Normalization yields a regression model with homoscedastic errors:

yi

σi
=

1
σi

xf
i α +

1
σi

xr
i Di1β1 + · · · +

1
σi

xr
i DiKβK + ε̃i, (8.35)

where ε̃i ∼ N (0, 1). Under a normal prior on the regression coefficients
α∗, α∗ ∼ Nr∗ (a∗

0,A
∗
0), the joint posterior of α∗, conditional on know-

ing the variance parameters σ2
ε,1, . . . , σ

2
ε,K , is again a normal distribution:

α∗|σ2
ε,1, . . . , σ

2
ε,K ,y,S ∼ Nr∗ (a∗

N ,A∗
N ). a∗

N and A∗
N are given by:

(A∗
N )−1 = (A∗

0)
−1 +

N∑
i=1

1
σ2

ε,Si

Z
′
iZi, (8.36)

a∗
N = A∗

N

(
(A∗

0)
−1a∗

0 +
N∑

i=1

1
σ2

ε,Si

Z
′
iyi

)
, (8.37)

where Zi = (xf
i xr

i Di1 · · · xr
i DiK). If N is not too large, these moments

could be determined from a single matrix manipulation:

(A∗
N )−1 = (A∗

0)
−1 + X

′
X

a∗
N = A∗

N

(
(A∗

0)
−1a∗

0 + X
′
ỹ
)

,

where
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X =

⎛⎜⎝ Z1/σε,S1

...
ZN/σε,SN

⎞⎟⎠ , ỹ =

⎛⎜⎝ y1/σε,S1

...
yN/σε,SN

⎞⎟⎠ .

In contrast to the regression parameters, the variance parameters σ2
ε,1, . . . , σ

2
ε,K

are independent, conditional on knowing α,β1, . . . ,βK . Under the conjugate
inverted Gamma prior σ2

ε,k ∼ G−1 (c0, C0), the posterior density of σ2
ε,k given

α, βk, and all observations assigned to this group, is again a density from the
inverted Gamma distribution, σ2

ε,k|α,βk,S,y ∼ G−1 (ck, Ck), where

ck = c0 +
Nk

2
, Ck = C0 +

1
2
ε

′
kεk, (8.38)

where εk = yk − Xf
kα − Xr

kβk.

8.4.4 Bayesian Parameter Estimation When the Allocations
Are Unknown

Bayesian parameter estimation using data augmentation and MCMC as in
Algorithm 8.1 is easily adapted to deal with mixed-effects finite mixtures of
regression models.

Algorithm 8.2: Unconstrained MCMC for a Mixed-Effects Normal Mixture
Regression Model Full conditional Gibbs sampling is carried out in two steps.

(a) Parameter simulation conditional on the allocations S:
(a1) Sample η from the conditional Dirichlet posterior p(η|S) as in Algo-

rithm 3.4.
(a2) Sample all regression coefficients α∗ = (α,β1, . . . ,βK) jointly from

the posterior distribution α∗|σ2
ε,1, . . . , σ

2
ε,K ,y,S ∼ Nr� (a∗

N ,A∗
N ).

(a3) Sample each variance σ2
ε,k, k = 1, . . . , K, from the posterior distribu-

tion σ2
ε,k|α,βk,S,y ∼ G−1 (ck, Ck).

(b) Classification of each observation (yi,xi) conditional on ϑ: sample each
element Si of S from the conditional posterior p(Si|ϑ,y) given by

Pr(Si = k|ϑ,y) ∝ ηkfN (yi;x
f
i α + xr

i βk, σ2
ε,k). (8.39)

In step (a3), the posterior moments ck and Ck are available from (8.38). In
step (a2), joint sampling of all regression parameters (α,β1, . . . ,βK) is easily
carried out from the conditional posterior Nr� (a∗

N ,A∗
N ), where the moments

are given by (8.36) and (8.37). With increasing number K of groups joint
sampling may be rather timeconsuming, especially for regression models with
high-dimensional parameter vectors. Then one of the following variants may
be useful.
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Variants of Sampling the Regression Parameters for a
Mixed-Effects Model

As β1, . . . ,βK are independent conditional on α, sampling in step (a2) of
Algorithm 8.2 may be carried out in two subblocks as in Albert and Chib
(1993):

(a2-1) Conditional on α, sample β1, . . . ,βK independently for each group
from the regression model:

yk − Xf
kα = Xr

kβk + εk, εk ∼ NNk

(
0, σ2

ε,kINk

)
,

where only observations with Si = k are considered. This is exactly the
same situation as in Subsection 8.3.2, with a slight modification of the
left-hand side variable.
(a2-2) Conditional on β1, . . . ,βK , sample α from the posterior obtained
from the regression model:

yi − xr
i βSi

= xf
i α + εi, εi ∼ N

(
0, σ2

ε,Si

)
,

where i = 1, . . . , N .

This sampler may be less efficient than joint sampling of all regression coeffi-
cients as in step (a2) of Algorithm 8.2, in particular if posterior correlations
are high among parameters appearing in different blocks.

The following variant which has been suggested by Frühwirth-Schnatter
et al. (2004) is equivalent to joint sampling of all parameters as in step (a2)
of Algorithm 8.2 and is based on decomposing the joint posterior as

p(β1, . . . ,βK , α|S, σ2
ε,1, . . . , σ

2
ε,K ,y) =

K∏
k=1

p(βk|S, σ2
ε,k,y)p(α|S, σ2

ε,1, . . . , σ
2
ε,K ,y).

The group-specific parameters β1, . . . ,βK are sampled conditional on α as
in step (a2-1) above. To sample α, however, the marginal posterior density
p(α|S, σ2

ε,1, . . . , σ
2
ε,K ,y) is considered. The moments of this density are derived

in Frühwirth-Schnatter et al. (2004).

8.5 Finite Mixture Models for Repeated Measurements

An often occurring problem in applied statistics is simultaneous inference on a
set of parameters for similar units such as schools from a certain region, firms
from the same branch, or consumers in a market. In economics, for instance,
data may be available for many countries for several years, whereas in mar-
keting the purchase behavior of many consumers may be observed on several
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occasions. In econometrics such data are referred to as panel data (Baltagi,
1995), whereas in statistics they are more commonly called longitudinal data
(Verbeke and Molenberghs, 2000) or repeated measurements (Crowder and
Hand, 1990; Davidian and Giltinan, 1998). In this section we discuss some
finite mixture models that are useful for such data.

8.5.1 Pooling Information Across Similar Units

Assume that for N units i, i = 1, . . . , N , outcomes yit are observed on several
occasions t = 1, . . . Ti where Ti may vary between units. In each unit i, the
outcomes yit are assumed to be generated by a probability law p(yit|βs

i ) that is
governed by a unit-specific parameter βs

i of dimension d. It is to be expected
that the parameters βs

1, . . . ,β
s
N albeit being different across the units are

related to each other. One way to model such a relation is to assume that βs
i

is drawn from some distribution p(βs
i |ϑ) which may depend on some unknown

hyperparameter ϑ. Note, however, that the distribution p(βs
i |ϑ) is unknown

and needs to be estimated from the data. This problem is known as unobserved
heterogeneity in marketing and economics, as residual heterogeneity in the
social sciences, and as frailty in medical statistics.

One way to capture unobserved heterogeneity is to assume the existence
of K subpopulations of size η1, . . . , ηK with βs

i being equal to a group-
specific parameter βk within subpopulation k. The distribution p(βs

i |ϑ) is
a discrete distribution with K unknown support points β1, . . . ,βK , where
Pr(βs

i = βk) = ηk. Alternatively, it is common to assume random deviation of
βs

i from a population mean β following a normal distribution, βs
i ∼ Nd (β,Q),

with β and Q being unknown parameters. Without much thought the normal-
ity assumption is almost automatically taken for granted, however, as shown
by Heckman and Singer (1984), the distribution of heterogeneity is rather
influential and quite small changes may lead to substantial changes in the
estimated parameters. The effect of misspecifying the distribution of hetero-
geneity is also discussed in Verbeke and Lesaffre (1997).

To achieve some robustness against the misspecification of this distribu-
tion, West (1985) chooses Student-t distributions of heterogeneity instead of
normal ones, whereas Verbeke and Lesaffre (1996) choose a mixture of multi-
variate normal distributions to capture unobserved heterogeneity:

βs
i ∼

K∑
k=1

ηkNd (βk,Qk) .

This distribution of heterogeneity has been called shrinkage within clusters
by Frühwirth-Schnatter and Kaufmann (2006b).

8.5.2 Finite Mixtures of Random-Effects Models

The linear mixed-effects model for modeling longitudinal data was introduced
by Laird and Ware (1982) and reads for each unit i:
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yit = xf
itα + xr

itβ
s
i + εit, εit ∼ N

(
0, σ2

ε

)
, (8.40)

for t = 1, . . . , Ti. x
f
it is the (1×r) design matrix for the unknown coefficient α,

where r = dim(α). xr
it is a (1 × d) design matrix for the unknown coefficient

βs
i , where d = dim(βs

i ). xf
it are called the fixed effects, because changing xf

it

by the same (1 × r) vector ∆ changes the mean of yit by the same constant
∆α for all units i. xr

it are called the random effects, because changing xr
it by

the same (1 × d) vector ∆ changes the mean of yit by ∆βs
i , which is different

across units. Textbooks dealing with this model are Baltagi (1995), Verbeke
and Molenberghs (2000), and Diggle et al. (2002).

In the standard mixed-effects model the errors εit are assumed to be ho-
mogeneous across the units. To deal with unit-specific variance heterogeneity,
model (8.40) has been extended in the following way,

yit = xf
itα + xr

itβ
s
i + εit, εit ∼ N

(
0, σ2

ε/ωi

)
, (8.41)

which reduces to (8.40), if ωi ≡ 1 for all i = 1, . . . , N . Unit-specific scaling fac-
tors ωi different from 1 are included to capture variance heterogeneity across
the units. Like the unit-specific regression coefficients βs

i , the scaling factors
are also assumed to arise from some distribution of variance heterogeneity, a
common choice being a Gamma distribution:

ωi ∼ G (ν/2, ν/2) . (8.42)

For a fixed unit i, model (8.41) could be written as a multivariate regression
model,

yi = Xf
i α + Xr

i β
s
i + εi, εi ∼ NTi

(
0, σ2

ε/ωiITi

)
, (8.43)

with regression parameter (α,βs
i ) using the matrix notation

yi =

⎛⎜⎝ yi1
...

yi,Ti

⎞⎟⎠ , Xf
i =

⎛⎜⎝ xf
i1
...

xf
i,Ti

⎞⎟⎠ , Xr
i =

⎛⎜⎝ xr
i1
...

xr
i,Ti

⎞⎟⎠ .

Note that unit-specific variances introduced through the variance model (8.42)
imply the following marginal distribution for yi,

yi = Xf
i α + Xr

i β
s
i + εi, εi ∼ tν

(
0, σ2

εITi

)
. (8.44)

Unobserved heterogeneity caused by omitted variables may be summarized
by a regression intercept αi that varies between the units:

yi = 1Tiαi + Xiβ + εi, εi ∼ NTi

(
0, σ2

ε/ωiITi

)
;

in other cases it will make sense to assume that all effects are random, in
which case the random coefficient model results:
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yi = Xiβ
s
i + εi, εi ∼ NTi

(
0, σ2

ε/ωiITi

)
.

If Ti ≥ d and
∑

Ti ≥ r+Kd, then it would be possible to combine the informa-
tion from all units to estimate one large regression vector α,βs

1, . . . ,β
s
N with-

out imposing further assumptions. This so-called fixed-effects approach es-
timates α,βs

1, . . . ,β
s
N from the complete-data likelihood p(y|α,βs

1, . . . ,β
s
N ),

which reduces to estimating βs
i separately for each unit, if no common co-

efficient α is present. The fixed-effects approach leads to estimates that are
more dispersed than the set of parameters one is estimating. Think, for in-
stance, of the extreme case that all βs

i s are actually equal. Nevertheless the
individual ML estimators of βs

1, . . . ,β
s
N will be dispersed, with the dispersion

disappearing only for Ti going to infinity.
Thus even for a likelihood-based approach it has been long recommended

to consider the so-called random-effects approach where it is assumed that
βs

1, . . . ,β
s
N are drawn independently from an underlying distribution p(βs

i |ϑ),
which may depend on some hyperparameter ϑ, therefore:

p(βs
1, . . . ,β

s
N |ϑ) =

N∏
i=1

p(βs
i |ϑ).

By combining model (8.43) with one the distributions p(βs
i |ϑ) discussed earlier

in Subsection 8.5.1 different useful models emerge. An early reference that
shows how pooling helps in problems of simultaneous inference on a set of
related parameters βs

1, . . . ,β
s
N is Rao (1975); see also Efron and Morris (1977)

for some enlightening discussion.
In a Bayesian approach, the distribution p(βs

1, . . . ,β
s
N |ϑ) takes the role of

a prior distribution which is combined with observations arising from model
(8.43) through Bayes’ theorem; see Lindley and Smith (1972).

The Hierarchical Bayes Model

The standard mixed-effects model introduced in Laird and Ware (1982), and
applied in many subsequent papers, results from combining model (8.43) with
the normal distribution of heterogeneity

βs
i ∼ Nd (β,Q) , (8.45)

where β and Q are unknown parameters. Morris (1983) discusses that such a
prior allows borrowing strength from the ensemble, when estimating βs

i which
is shrunken toward the population mean β. In marketing research this model
is also known as the hierarchical Bayes model; see, for instance, Rossi et al.
(2005, Chapter 5). If we rewrite (8.45) as βs

i = β + wi, wi ∼ Nd (0,Q), and
substitute into (8.43), we obtain:

yi = Xf
i α + Xr

i β + Xr
i wi + εi.
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Under the common assumption that wi and εi are independent, the hierarchi-
cal Bayes model corresponds to the following multivariate regression model,

yi = Xf
i α + Xr

i β + ε̃i, ε̃i ∼ NTi
(0,Vi) , (8.46)

with constrained error variance–covariance matrix

Vi = Xr
i Q(Xr

i )
′
+ σ2

ε/ωiITi
.

Subsequently, model (8.46) is referred to as the marginal model, because the
random coefficients βs

i no longer appear in this specification. The marginal
model clearly indicates that despite allowing for heterogeneity the hierarchical
Bayes model implies the rather inflexible normal distribution as a marginal
distribution for yi. Further issues, in particular estimation of this widely used
model, are well discussed in the many excellent monographs mentioned at the
beginning of this section.

Verbeke and Lesaffre (1997) study the effect of misspecifying the random
effect distribution in the linear mixed-effects model. They show that the nor-
mal shrinkage prior (8.45) yields consistent estimates of α,β,Q, and σ2

ε even
if the random effects are not normal, however, standard errors need to be
corrected.

The Latent Class Regression Model

More flexibility in the marginal distribution of yi is achieved by assuming
that the distribution p(βs

i |ϑ) is a discrete distribution with K unknown sup-
port points β1, . . . ,βK with Pr(βs

i = βk) = ηk. In this case, the marginal
distribution of yi is the following finite mixture distribution,

p(yi|ωi, ϑ) =
K∑

k=1

ηkfN (yi;X
f
i α + Xr

i βk, σ2
ε/ωiITi).

By introducing the hidden allocation variable Si, which takes the value k,
iff βs

i = βk, the model may be written as the following finite mixture of
multivariate mixed-effects regression models,

yi = Xf
i α + Xr

i βSi
+ εi, εi ∼ NTi

(
0, σ2

ε/ωiITi

)
, (8.47)

which is an extension of the finite mixture regression model discussed in Sec-
tion 8.4 to multivariate observations yi. This model is also called the latent
class regression model, as conditional on knowing Si and ωi the observations
yi1, . . . , yi,Tt are independent.

Many interesting applications of this model are found in marketing re-
search; see, for instance, DeSarbo et al. (1992) for metric conjoint analysis,
Ramaswamy et al. (1993) for latent pooling of marketing mix elasticities, as
well as Wedel and Steenkamp (1991) and the review in Wedel and DeSarbo
(1993b).
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The Heterogeneity Model

A very general model results if the observation model (8.43) is combined with
a heterogeneity distribution assumed to be a mixture of multivariate normal
distributions:

βs
i ∼

K∑
k=1

ηkNd (βk,Qk) , (8.48)

with unknown component means β1, . . . ,βK , unknown component variance–
covariance matrices Q1, . . . , QK , and unknown weight distribution η =
(η1, . . . , ηK). A constrained version of this model with Q1, . . . ,QK being the
same for all components was introduced by Verbeke and Lesaffre (1996) for
homogeneous error variances. A similar model is discussed in Allenby et al.
(1998), however, without considering fixed effects. Lenk and DeSarbo (2000)
extend this model to observations from distributions from general exponential
families; see also Section 9.6.2. Verbeke and Molenberghs (2000) introduced
the terminology heterogeneity model for this model.

The heterogeneity model encompasses the other models discussed above. If
Qk is equal to a null matrix in all groups, the latent class regression model re-
sults, whereas the hierarchical Bayes model results as that special case where
K = 1. After introducing the allocation variable Si in the finite mixture dis-
tribution (8.48), the following distribution of heterogeneity results conditional
on holding Si fixed,

βs
i |Si ∼ Nd

(
βSi

,QSi

)
.

Because the N units form K groups, where within each group heterogeneity
is described by a group-specific normal distribution, the heterogeneity model
may be regarded as a mixture of random-effects models.

The marginal model where the random effects are integrated out, while
still conditioning on Si and ωi, reads:

yi = Xf
i α + Xr

i βSi
+ ε̃i, ε̃i ∼ NTi (0,Vi) , (8.49)

where
Vi = Xr

i QSi
(Xr

i )
′
+ σ2

ε/ωiITi
. (8.50)

Therefore the heterogeneity model may also be regarded as a finite mixture
of multivariate mixed-effects regression models, where the errors within each
unit are correlated, as opposed to the latent class regression model, where
these errors are uncorrelated.

The model found applications in marketing to deal with preference hetero-
geneity of consumers (Allenby et al., 1998; Otter et al., 2004), in economics to
analyze individual records of work and life history data (Oskrochi and Davies,
1997) and to find convergence clubs in a macroeconomic panel (Canova, 2004;
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Frühwirth-Schnatter and Kaufmann, 2006b), and in biology to analyze micro-
array data (Lopes et al., 2003). An extension of this model which includes a
dynamic linear trend model is studied in Gamerman and Smith (1996). Nobile
and Green (2000) apply a modification of this model with separate random
effects, each following a mixture of normal distributions, to estimate main and
interaction effects in a factorial experiment.

8.5.3 Choosing the Prior for Bayesian Estimation

For Bayesian estimation, a prior on ϑ = (β1, . . . ,βK ,Q1, . . . ,QK , η, α, σ2
ε)

has to be chosen. Because (β1, . . . ,βK ,Q1, . . . ,QK , η) are unknown param-
eters in a finite mixture of multivariate normal distributions, the same priors
as in Subsection 6.3.2 may be applied.

One could choose a conditionally conjugate prior for βk where the prior
variance depends on Qk, B0,k = Qk/N0. On the other hand, in the marginal
model (8.49), where the random effects are integrated out, βk appears as
a regression coefficient in a finite mixture of regression models, where no
conditionally conjugate prior variance exists due to the correlation in the
errors. This suggests choosing B0 independent of Qk.

α and σ2
ε have a similar meaning as for a finite mixture of mixed-effects

regression models, therefore the prior is chosen as in Subsection 8.4.2. The
joint prior reads:

βk ∼ Nd (b0,B0) , Q−1
k ∼ Wd

(
cQ
0 ,CQ

0

)
,

α ∼ Nr (a0,A0) , σ2
ε ∼ G−1 (cε

0, C
ε
0) ,

η ∼ D (e0, . . . , e0) . (8.51)

8.5.4 Bayesian Parameter Estimation When the Allocations
Are Known

For a general Bayesian analysis of the heterogeneity model it is helpful to start
with parameter estimation, when the allocations S = (S1, . . . , SN ) as well as
the variance parameters Q1, . . . ,QK , σ2

ε and ω are known.
Then the joint posterior of the regression parameters α∗ = (α,β1, . . . ,βK)

and the random coefficients βs = (βs
1, . . . ,β

s
N ) partitions as follows,

p(α∗, βs|y,Q1, . . . ,QK , σ2
ε , ω,S)

= p(α∗|y,Q1, . . . ,QK , σ2
ε , ω,S)

N∏
i=1

p(βs
i |yi, α,βSi

,QSi , ωi) .

Conditional on knowing the fixed effects, the random coefficients βs
i are inde-

pendent. Because the allocations S are known, the prior of βs
i is normal,

βs
i ∼ Nd

(
βSi

,QSi

)
,



266 8 Finite Mixtures of Regression Models

whereas the complete-data likelihood results from:

yi − Xf
i α = Xr

i β
s
i + εi, εi ∼ NTi

(
0, σ2

ε/ωiITi

)
.

Combining these two sources of information yields the following posterior of
βs

i ,

βs
i |yi, α,βSi

,QSi
, ωi ∼ Nd (bs

i ,B
s
i ) ,

where the moments are given in terms of an information filter:

Bs
i = (Q−1

Si
+ (Xr

i )
′
Xr

i ωi/σ2
ε)−1, (8.52)

bs
i = Bs

i (Q
−1
Si

βSi
+ (Xr

i )
′
(yi − Xf

i α)ωi/σ2
ε).

If Ti < d, it is more efficient to work with the following filter form which is
derived in Subsection 13.3.2,

bs
i = βSi

+ Ki(yi − Xf
i α − Xr

i βSi
), (8.53)

Bs
i = (ITi − KiXr

i )QSi ,

Ki = QSi
(Xr

i )
′
V−1

i ,

with Vi being the error variance–covariance matrix of the marginal model
defined in (8.50).

The posterior p(α∗|y,Q1, . . . ,QK , σ2
ε , ω,S) is a conditional distribution,

where the allocations are known, whereas the random coefficients βs
1, . . . ,β

s
N

are unknown. The prior of α∗ is a normal distribution, α∗ ∼ Nr∗ (a∗
0,A

∗
0),

where r∗ = r + Kd and a∗
0 and A∗

0 are derived in an obvious way from the
parameters a0,A0, b0, and B0 of the prior defined in (8.51). This prior is
combined with the likelihood function p(y|α∗,y,Q1, . . . ,QK , σ2

ε , ω,S) of the
marginal model (8.49), where the random effects are integrated out.

The posterior distribution p(α∗|y,Q1, . . . ,QK , σ2
ε , ω,S) is derived in a

similar way as in Subsection 8.4.3, which concerned finite mixtures of multi-
ple mixed-effects models, whereas in the present case we are dealing with a
multivariate one. By introducing a dummy coding for Si through K binary
variables Dik, k = 1, . . . , K, where Dik = 1, iff Si = k, and 0 otherwise, we
rewrite the marginal model (8.49) as

yi = Z∗
i α

∗ + ε̃i, ε̃i ∼ NTi (0,Vi) , (8.54)

where the design matrix Z∗
i is defined as

Z∗
i =

(
Xf

i Xr
i Di1 . . . Xr

i DiK

)
.

Because model (8.54) is a multivariate regression model, the posterior of α∗

arises from a normal distribution:

α∗|y,Q1, . . . ,QK , σ2
ε , ω,S ∼ Nr∗ (a∗

N ,A∗
N ) ,
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where

(A∗
N )−1 =

N∑
i=1

(Z∗
i )

′
V −1

i Z∗
i + (A∗

0)
−1,

a∗
N = (A∗

N )−1

(
N∑

i=1

(Z∗
i )

′
V −1

i yi + (A∗
0)

−1a∗
0

)
.

8.5.5 Practical Bayesian Estimation Using MCMC

Empirical Bayesian estimation of the heterogeneity model, including classifi-
cation, is discussed in Verbeke and Lesaffre (1996). A fully Bayesian analysis
of the heterogeneity model for a fixed number K of groups via MCMC meth-
ods is discussed by Allenby et al. (1998), Lenk and DeSarbo (2000), and
Frühwirth-Schnatter et al. (2004).

Let y = (y1, . . . ,yN ) denote all observations. MCMC estimation of the
most general model is based on three levels of data augmentation. First, one
introduces the discrete latent group indicators S = (S1, . . . , SN ), with Si

taking values in {1, . . . , K} and thereby indicating to which group unit i
belongs. Second, the vector of unknowns is augmented by the random effects
βs = (βs

1, . . . ,β
s
N ). And finally, under heterogeneous error variances the scale

factors ω = (ω1, . . . , ωN ) are added in a third data augmentation step. The
joint posterior distribution of all unknowns reads:

p(ϑ, βs,S, ω|y) ∝ p(y|ω, βs, α, σ2
ε)p(ω)p(α, σ2

ε)
×p(βs|S,β1, . . . ,βK ,Q1, . . . ,QK)p(β1, . . . ,βK ,Q1, . . . ,QK)p(S|η)p(η).

A straightforward way of Bayesian estimation of the heterogeneity model via
MCMC methods is Gibbs sampling from full conditional distributions. The
sampler is discussed in Allenby et al. (1998) and Lenk and DeSarbo (2000) for
a heterogeneity model with homogeneous error variances and draws in turn
α, σ2

ε , η, βk, and Qk for k = 1, . . . , K, and Si and βs
i for i = 1, . . . , N , from

the appropriate full conditional distributions given the remaining parameters
and the data y.

It has been demonstrated in Frühwirth-Schnatter et al. (2004) that the
full conditional Gibbs sampler is sensitive to the way model (8.43) is parame-
terized, depending on whether Xf

i and Xr
i have common columns. Sensitivity

of Gibbs sampling with respect to parameterizing the standard mixed-effects
model was noted earlier by Gelfand et al. (1995), and several papers show that
marginalization helps in improving the performance of the Gibbs sampler; see,
for instance, Meng and Van Dyk (1997, 1999), Chib and Carlin (1999), and
van Dyk and Meng (2001).

The partly marginalized Gibbs sampler suggested in Frühwirth-Schnatter
et al. (2004) for homogeneous error variances draws S, α, and β1, . . . ,βK from
conditional distributions where the random effects βs are integrated out. This
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sampler is shown to be less sensitive to the parameterization and has been
extended in Frühwirth-Schnatter et al. (2005) to deal with heterogeneous error
variances. It is summarized in the following algorithm.

Algorithm 8.3: MCMC Estimation of the Heterogeneity Model

(a) Parameter simulation conditional on the allocations S, the random effects
βs and the scaling factors ω.

(a1) Sample η from the conditional Dirichlet posterior p(η|S) as in Algo-
rithm 3.4.

(a2) Sample all regression coefficients α∗ = (α,β1, . . . ,βK) jointly from
the posterior distribution α∗ ∼ Nr� (a∗

N ,A∗
N ), derived conditional on

y,S, Q1, . . . ,QK , σ2
ε , and ω.

(a3) Sample each variance–covariance matrix Qk, k = 1, . . . , K, from the
posterior distribution Q−1

k ∼ Wd

(
cQ
k ,CQ

k

)
, derived conditional on

β1, . . . ,βK , βs, and S.
(a4) Sample σ2

ε from G−1 (cε
N , Cε

N ), derived conditional on y, α,βs, and ω.
(b) Classification of each unit based on yi, ω, and ϑ: sample each element Si

of S from the conditional posterior p(Si|ϑ,yi, ωi) given by

Pr(Si = k|ϑ,yi, ωi) ∝ ηkfN (yi;X
f
i α + Xr

i βk,Vi), (8.55)

where Vi has been defined in (8.50).
(c) Dealing with parameter heterogeneity: sample each random coefficient βs

i

for i = 1, . . . , N from the Nd (bs
i ,B

s
i )-distribution, derived conditional on

y, α,β1, . . . ,βK ,S, Q1, . . . ,QK , σ2
ε , and ω.

(d) Dealing with variance heterogeneity: sample each scaling factor ωi from
the G (cω

i , Cω
i ) distribution, derived conditional on y, α,βs, and σ2

ε .

Estimation of the regression coefficients α∗ = (α,β1, . . . ,βK) in step (a2)
is based on the marginal model (8.49) where the random effects are integrated
out in order to improve the mixing properties of the sampler. The appropriate
moments were derived in Subsection 8.5.4.

Sampling of the covariance matrices Q1, . . . ,QK in step (a3) follows im-
mediately from Algorithm 6.2, dealing with mixtures of normal distributions,
because the random effects βs

i are assumed to be known in this step. The
precise form of cQ

k and CQ
k depends upon the chosen prior covariance matrix

B0. If B0 is independent of Qk, then

cQ
k = cQ

0 +
Nk

2
,

CQ
k = CQ

0 +
1
2

∑
i:Si=k

(βs
i − βk)(βs

i − βk)
′
,

where Nk = #{Si = k}.
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The appropriate posterior distribution in step (a4) is easily derived from
the complete-data likelihood function, which reads:

p(y|α,βs, ω) =
N∏

i=1

(
ωi

2πσ2
ε

)Ti/2

(8.56)

× exp

(
− 1

2σ2
ε

N∑
i=1

ωi‖yi − Xf
i α − Xr

i β
s
i ‖2

2

)
.

Therefore:

cε
N = cε

0 +
1
2

(
N∑

i=1

Ti

)
,

Cε
N = Cε

0 +
1
2

(
N∑

i=1

ωi‖yi − Xf
i α − Xr

i β
s
i ‖2

2

)
.

In step (b), the indicators S1, . . . , SN are conditionally independent given
y, ω, and ϑ, as it is assumed that the units are drawn randomly from the
underlying population. The classification rule (8.55) is based on the marginal
model (8.49), where the random effects are integrated out, in order to improve
the mixing properties of the sampler.

In step (c), the moments of the Nd (bs
i ,B

s
i ) distribution to sample the

random effects are given by (8.52) or (8.53).
Finally, the posterior in step (d) follows immediately from the complete-

data likelihood given in (8.56) in combination with the prior (8.42):

cω
i =

ν

2
+

Ti

2
, Cω

i =
ν

2
+

1
2σ2

ε

‖yi − Xf
i α − Xr

i β
s
i ‖2

2.

8.5.6 Dealing with Model Specification Uncertainty

BIC or Schwarz criterion is quite popular for model selection in random-effect
models, however, problems are reported in Stone (1974) and McCulloch and
Rossi (1992) for few repeated measurements with large heterogeneity, where
the number of parameters actually grows with N .

Watier et al. (1999) and Nobile and Green (2000) extend the reversible
jump MCMC method of Richardson and Green (1997) to select the unknown
number of components in a finite mixture of random-effects models.

Marginal likelihoods for selecting between the different models were con-
sidered by Lenk and DeSarbo (2000) and Frühwirth-Schnatter et al. (2004,
2005). Marginal likelihoods allow not only choosing the number of compo-
nents, but also a comparison between the different types of heterogeneity
distributions; see also the case study in Subsection 8.5.7.
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Table 8.1. Marketing Data, logarithm of marginal likelihoods p(y|K, ν) (from
Frühwirth-Schnatter et al. (2005) with permission granted by Springer-Verlag, Wien)

log p(y|K, ν = ∞) log p(y|K, ν = 4)

K Qk �= O Qk = O Qk �= O Qk = O
1 –9222.36 –10077.31 –9101.52 –9980.21

2 –9165.66 –9881.49 –9028.81 –9727.13

3 –9161.27 –9733.98 –9043.96 –9576.97

4 –9165.73 –9669.98 –9045.86 –9522.18

5 — –9596.61 — –9453.22
...

12 — — — –9332.96

13 — — — –9329.49

14 — — — –9326.26
15 — — — –9327.27

16 — –9464.77 — —

17 — –9460.61 — —

18 — –9465.79 — —

8.5.7 Application to the Marketing Data

This application concerns conjoint analysis in marketing, a procedure that is
focused on obtaining the importance of certain product attributes and their
significance in motivating a consumer toward purchase from a holistic ap-
praisal of attribute combinations.

The Marketing Data come from a brand–price trade-off study in the
mineral water market. Each of 213 Austrian consumers evaluated their likeli-
hood of purchasing 15 different product-profiles offering five different brands
of mineral water at different prices on 20-point rating scales. The goal of
the modeling exercise is to find a model describing consumers’ heterogeneous
preferences toward the different brands of mineral water and their brand–
price trade-offs. These data were analyzed in several studies based on homo-
geneous errors using a random coefficient model (Frühwirth-Schnatter and
Otter, 1999), the latent class regression model (Otter et al., 2002), and the
heterogeneity model (Otter et al., 2004). The material in this subsection is
based on Frühwirth-Schnatter et al. (2005), where these models are compared
to models based on unit-specific variance heterogeneity.

The design matrix consists of 15 columns corresponding to the con-
stant, the four brands Römerquelle (RQ), Vöslauer (VOE), Juvina (JU), and
Waldquelle (WA), a linear and a quadratic price effect, and four brand by
linear price and four brand by quadratic price interaction effects. A dummy
coding is used for the brands, hence the fifth brand Kronsteiner (KR) was
chosen as the baseline. The smallest price is subtracted from the linear price
column; the quadratic price is a contrast from the centered linear price. There-



8.5 Finite Mixture Models for Repeated Measurements 271

fore, the constant corresponds to the purchase likelihood of Kronsteiner at the
lowest price level, if quadratic price effects are not present. The investigations
of these data in Otter et al. (2002) indicated that a specification with fixed
brand by quadratic price interactions is preferable, therefore the dimension of
βk is equal to d = 11, whereas the dimension of α is equal to r = 4.

The prior is chosen as in Subsection 8.5.3. a0 and b0 are equal to the popu-
lation mean of the random coefficient model reported in Frühwirth-Schnatter
and Otter (1999), whereas A−1

0 = 0.04 × I4 and B−1
0 = 0.04 × I11. In the

prior of Qk, cQ
0 = 10 whereas CQ

0 is derived by matching the prior mean,
E(Qk) = (cQ

0 − (d + 1)/2)−1CQ
0 , to a sample estimate computed from indi-

vidual OLS estimation. In the prior of σ2
ε , cε

0 = Cε
0 = 0, whereas the prior on

η is a D (1, . . . , 1) distribution.
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Fig. 8.1. Marketing Data; heterogeneity model with K = 2 and heterogeneous
variances with ν = 4, scatter plot of price against brand RQ (left-hand side) and pos-
terior distribution of individual variances σ2

ε/ωi for 15 randomly selected consumers
(from Frühwirth-Schnatter et al. (2005) with permission granted by Springer-Verlag,
Wien)

The following finite mixture models with K > 1 were fitted to these data
with varying the number K of groups: the general heterogeneity model, where
Qk �= O for all k = 1, . . . , K and the latent class regression model, where
Qk = O for all k = 1, . . . , K. These models were compared to the hierarchical
Bayes model, which formally corresponds to a heterogeneity model with K = 1
and Q1 �= O. Each of these models was fitted with heterogeneous variances
with ν = 4 as well as with homogeneous variances that correspond to ν = ∞.
Estimation was carried through 30,000 MCMC iterations, with the last 6000
draws being kept for inference.

Table 8.1 shows estimates of the logarithm of the marginal likelihood
p(y|K, ν) for various models obtained by bridge sampling. The hierarchical
Bayes model (column Qk �= O, line K = 1) is clearly preferred to all la-
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tent class regression models (column Qk = O), but is outperformed by the
heterogeneity model (column Qk �= O, lines with K > 1), regardless of the
assumption made concerning the variances.

The specification chosen for the variance exercises a considerable influence
on the number of optimal classes. Under the assumption of homogeneous vari-
ances the optimal latent class regression model has seventeen classes, whereas
the number reduces to fourteen under heterogeneous errors. Also the hetero-
geneity model has a different number of optimal classes, namely two under
heterogeneous errors and three under homogeneous errors. The optimal model
of all models under consideration is a heterogeneity model with heterogeneous
error variances and K = 2 classes. The preference of a model with heteroge-
neous variances is also supported by Figure 8.1, which shows considerable
differences in the posterior distribution of the individual variances σ2

ε/ωi for
15 randomly selected consumers.

Table 8.2. Marketing Data, heterogeneity model with K = 2 and heterogeneous
variances with ν = 4; posterior expectation of the group-specific parameters βk and
the group-specific weights ηk; posterior standard deviations in parentheses (from
Frühwirth-Schnatter et al. (2005) with permission granted by Springer-Verlag, Wien)

βk,j βk,j

k = 1 k = 2 k = 1 k = 2

const 14.78 12.43 RQ × p –0.71 –0.04
(0.67) (0.75) (0.16) (0.15)

RQ 5.44 5.65 V OE × p –0.85 –0.02
(0.65) (0.84) (0.16) (0.16)

V OE 5.30 5.17 JU × p –0.38 0.07
(0.65) (0.97) (0.16) (0.16)

JU 1.28 0.38 WA × p –0.58 –0.10
(0.66) (0.97) (0.15) (0.13)

WA 2.24 1.10
(0.68) (0.78)

p –2.72 –0.82 ηk

(0.15) (0.15) k = 1 k = 2

p2 –0.03 0 0.58 0.42
(0.07) (0.06) (0.04) (0.04)

We proceed with estimating the group-specific parameters for this model.
The posterior draws in Figure 8.1 are the point process representation of
the projection onto the coefficients βk,2 and βk,6 which correspond to the
effect of the brand RQ and the price effect. We find two clearly separated
simulation clusters, with one group collecting very price-sensitive consumers
whereas the consumers of the other group are less price sensitive. Therefore
it is possible to identify the model through putting the constraint β1,6 < β2,6
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on the group-specific price coefficient. Table 8.2 gives the resulting estimates
for the group-specific parameters and the group weights.

8.6 Further Issues

8.6.1 Regression Modeling Based on Multivariate Mixtures
of Normals

Müller et al. (1996) show that for stochastic regressor variables finite mix-
tures of multivariate normal distributions could be used as an alternative tool
for flexible regression modeling. Consider, for example, a bivariate random
variable (X, Y ), modeled by a mixture of bivariate normal distributions with
component means µk, component covariance matrices Σk, and weight distri-
bution η = (η1, . . . , ηK).

The conditional density p(y|X = xi, ϑ) of Y given X = xi is easily found
to be equal to the following univariate mixture of normal distributions,

p(y|X = xi, ϑ) = (8.57)
K∑

k=1

wk(xi, ϑ)fN (y; βk,1xi + βk,2, Σk,22(1 − ρ2
k)),

where

βk,1 = ρk

√
Σk,11

Σk,22
, βk,2 = µk,2 − βk,1µk,1,

with ρk being the group-specific correlation coefficient

ρk =
Σk,12√

Σk,11Σk,22
,

and

wk(xi, ϑ) ∝ ηkfN (xi; µk,1, Σk,11).

Density (8.57) is closely related to the density of a finite mixture of regression
models, where the slope, the intercept, and the error variance of the regres-
sion model switch among the different components. The component weights
wk(xi, ϑ), however, are not fixed, but vary with xi, and will be higher for
components that are closer to xi than others.

The dependence of the weights on observations is implicit in this appli-
cation of a multivariate mixture distribution to a regression type analysis.
Several extensions of standard finite mixture models and finite mixtures of a
regression model that are based on explicitly modeling such a dependence of
the weights on observations are discussed in Subsections 8.6.2 and 8.6.3.
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8.6.2 Modeling the Weight Distribution

For a standard finite mixture regression model the joint distribution p(yi, Si|ϑ)
factors as p(yi, Si|ϑ) = p(yi|Si, β1, . . . ,βK)p(Si|η), where the prior classifi-
cation probabilities Pr(Si = k|η) = ηk are modeled as being independent of
any data. In the marginal mixture distribution of yi this leads to mixture
density with fixed weight distribution η = (η1, . . . , ηK).

Various authors suggested modeling the prior classification probabilities
Pr(Si = k|η) in terms of covariates zi; see Fair and Jaffee (1972) for an early
application. This is sensible whenever the span of the covariates is different
between the different clusters. A typical example is a change-point regression,
where the covariate zi = i is likely to determine cluster membership.

To include covariate information, Pr(Si = k|η) is first reparameterized for
k = 1, . . . , K − 1 in terms of an unconstrained parameter α = (α1, . . . , αK−1)
using the logistic transformation:

log
Pr(Si = k|α)
Pr(Si = K|α)

= log
ηk

1 −
∑K−1

j=1 ηj

= αk. (8.58)

If for each unit i a subject-specific variable zi is observed additionally to
yi, that might help to classify the subjects, then this information could be
included through a multinomial logistic regression model:

log
Pr(Si = k|α,γ)
Pr(Si = K|α,γ)

= αk + ziγk, (8.59)

where γ = (γ1, . . . ,γK−1) is an unknown regression parameter. If zi fails to
improve the resulting classification, then all components of γ are zero and
model (8.59) reduces to (8.58). Frühwirth-Schnatter and Kaufmann (2006b)
assume dependence of Pr(Si = k|α) on the initial income in an economic study
involving panels of income data and use marginal likelihoods to test the more
general model against a model where ηk is fixed. Scaccia and Green (2003)
use time and age in a growth curve analysis to model the weight distribution
in a mixture of normal distributions.

8.6.3 Mixtures-of-Experts Models

Mixtures-of-experts models have been proposed in the neural network litera-
ture by Jacobs et al. (1991), and have found widespread application for mod-
eling relationships among variables. They are defined as the following mixture
distribution,

p(yi) =
K∑

k=1

ηk,ifN (yi;xiβk, σ2
ε,k),

where
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logit ηk,i = αk + xiγk.

From a statistical point of view, such a model is a finite mixture of regres-
sion model with observation-dependent weight distribution; see again Subsec-
tion 8.6.2. Note that the mixture weights may depend on the same covariates
as the mean of the regression model. This may lead to identifiability problems
(Jiang and Tanner, 1999).

Jacobs et al. (1996) and Peng et al. (1996) consider Bayesian parameter
estimation using MCMC. Jacobs et al. (1997) discuss Bayesian methods for
model selection in mixtures-of-experts models.

Hierarchical mixtures-of-experts result if the component densities them-
selves are mixtures-of-experts models; see Jordan and Jacobs (1994) for es-
timation based on the EM algorithm and Peng et al. (1996) for a Bayesian
approach.



9

Finite Mixture Models with Nonnormal
Components

9.1 Finite Mixtures of Exponential Distributions

9.1.1 Model Formulation and Parameter Estimation

It is often assumed that nonnegative observations are realizations of a random
variable Y arising from a finite mixture of exponential distributions:

Y ∼ η1E (λ1) + · · · + ηKE (λK) , (9.1)

where E (λk) is parameterized as in Appendix A.1.4. This mixture distribution
is parameterized in terms of ϑ = (λ1, . . . , λK , η). Teicher (1963) showed that
mixtures of exponential distributions are identifiable.

Following Farewell (1982), various mixture survival models, based on the
exponential or more general distributions, were suggested and studied by many
authors; see, for instance, Morbiducci et al. (2003), who studied such models
with special focus on cure-rate models, to estimate the unknown rate of cured
patients and the survival function of uncured patients in a clinical trial. The
popularity of these models in duration or survival analysis is explained by
their ability to explain the frequently observed fact that hazards decline with
the length of spells (Heckman et al., 1990). Another interesting application of
mixtures of exponential distributions appears in failure analysis, where failure
often occurs for more than one reason (Everitt and Hand, 1981; Taylor, 1995).
Slud (1997) proposes a two-component exponential mixture model to test
imperfect debugging in software reliability.

Heckman et al. (1990) consider a consistent method of moments estimator
and present Bayesian and classical tests for testing the hypothesis of dealing
with mixtures of exponential distributions. Taylor (1995) uses the EM algo-
rithm. Gruet et al. (1999) use MCMC methods for Bayesian estimation and
apply reversible jump MCMC to select the number of components.
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9.1.2 Bayesian Inference

Bayesian estimation using data augmentation and MCMC as in Algorithm 3.4
is easily implemented for a mixture of exponential distributions. Based on
the prior λk ∼ G (a0, b0), the complete-data posterior p(λk|y,S) is given by
λk|y,S ∼ G (ak(S), bk(S)), where:

ak(S) = a0 + Nk(S),

bk(S) = b0 +
∑

i:Si=k

yi.

Gruet et al. (1999) show how a reparameterization of the exponential mixture
model (9.1) can allow for noninformative priors. They count the mixture com-
ponents starting from k = 0, rather than k = 1. They leave λ0 and η0 = ω0
unchanged, whereas each λk and ηk is expressed for k = 1, . . . , K − 1 as

λk = λ0

k∏
j=1

τj ,

ηk = (1 − ω0) · · · (1 − ωk−1)ωk.

This parameterization allows us to select a partially proper prior distribution,
based on the improper G (0, 0)-prior for λ0, whereas τ1, . . . , τK−1 are assumed
to be uniform on [0,1]. As λ0 appears as a common parameter in all component
densities, this leads to a proper posterior density, as shown in the appendix of
Gruet et al. (1999). This prior implies the order constraint λ0 > · · · > λK−1
on the component parameters, leading to an automatic identification of the
model.

Casella et al. (2002) illustrate how perfect slice sampling may be imple-
mented for mixtures of exponential distributions.

Reversible Jump MCMC

Gruet et al. (1999) apply reversible jump MCMC to select the number of
components for an exponential mixture. Their parameterization introduces
quite a natural strategy for carrying out split and merge moves, because in
a mixture with K − 1 components, the last component E (λ0τ1 · · · τK−2) is
replaced by a two-component exponential mixture:

ωK−2E (λ0τ1 · · · τK−2) + (1 − ωK−2)E (λ0τ1 · · · τK−1)

to obtain a mixture with K components.
To perform a split move in a mixture with K components, first a compo-

nent k is chosen randomly. The index of all components from k +1, . . . , K −1
is shifted by one. To split the old component k into the two new components
k and k + 1, the new parameters τnew

k and τnew
k+1 satisfy:
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τnew
k τnew

k+1 = τk,

whereas the weights satisfy:

(1 − ωnew
k )(1 − ωnew

k+1) = (1 − ωk).

To perform the split move, two random numbers u1 and u2 are introduced:

τnew
k = u1 + τk(1 − u1),

τnew
k+1 =

τk

τnew
k

=
τk

u1 + τk(1 − u1)
,

ωnew
k = u2ωk,

ωnew
k+1 =

ωk(1 − u2)
1 − ωku2

.

If k > 0, then u1, u2 ∼ U [0, 1], whereas u1 ∼ U [0, .5] for k = 0, in which case

λnew
0 = λ0/u1, τnew

1 = u1.

The determinant of the Jacobian is given by

|Jacobian| =

⎧⎪⎨⎪⎩
ω0(1 − τk)

(1 − ωnew
k )(τnew

k )2
, if k > 0,

ω0

(1 − ωnew
0 )u1

, if k = 0.

Gruet et al. (1999) report no improvement in refining reversible jumps by
adding a move that introduces empty components.

9.2 Finite Mixtures of Poisson Distributions

9.2.1 Model Formulation and Estimation

A popular model for describing the distribution of count data is the Poisson
mixture model, where it is assumed that y1, . . . , yN are independent realiza-
tion of a random variable Y arising from a mixture of Poisson distributions:

Y ∼ η1P (µ1) + · · · + ηKP (µK) ,

with P (µk) being a Poisson distribution with mean µk; see Appendix A.1.11.
This distribution is parameterized in terms of 2K − 1 distinct model param-
eters ϑ = (µ1, . . . , µK , η). Mixtures of Poisson distributions are identifiable;
see Feller (1943) and Teicher (1960).

Applications of mixtures of Poisson distributions appear in particular in
biology and medicine; see, for example, Farewell and Sprott (1988) and Pauler
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et al. (1996). Applications to disease mapping are briefly discussed in Sub-
section 9.4.1. Karlis and Xekalaki (2005) provide a recent review of Poisson
mixtures.

Mixtures of Poisson distributions served to illustrate statistical inference
for finite mixtures throughout Chapter 2 to Chapter 5. Reversible jump
MCMC has been used for finite mixtures of Poisson distributions by Del-
laportas et al. (2002) and Viallefont et al. (2002); see also Subsection 5.2.2.

For Bayesian estimation, we add only comments on choosing the hyperpa-
rameters a0 and b0 of the prior of the group means, µk ∼ G (a0, b0). Viallefont
et al. (2002) suggest fixing a0 around 1 and choosing b0 in such a way that
the prior mean E(Y |ϑ) = a0/b0 is matched to the midrange of the data, for
example, the mean:

b0 =
a0

y
. (9.2)

For data where overdispersion is actually present, meaning that s2
y−y > 0, it is

possible to choose a0 in such a way that the expectation of the second factorial
moment with respect to the G (a0, b0)-prior, which is by E(Y (Y − 1)|ϑ) =
a0/b2

0(1 + 1/a0), is matched to the second factorial moment of the data, v2,
defined earlier in (2.26):

a0 =
y2

v2 − y2 , (9.3)

where due to (9.6) v2 − y2 could be substituted by s2
y − y. Thus the larger the

overdispersion in the data is, the smaller a0 should be chosen.
If overdispersion is small, then a0 is large and µk is strongly shrunken

toward a0/b0. In this case it useful to assume a hierarchical prior as defined
in Subsection 3.2.4, where b0 ∼ G (g0, G0). Estimation and model selection
are rather insensitive to the parameter g0 and could be chosen as g0 = 0.5,
whereas matching E(b0) = g0/G0 to a0/y yields:

G0 =
g0y

a0
.

9.2.2 Capturing Overdispersion in Count Data

Overdispersion occurs for a random variable Y , if the variance is bigger than
the mean, whereas mean and variance are identical for a Poisson distribution.
Overdispersion is present in many data sets involving counts. For illustration,
consider the Eye Tracking Data counting eye anomalies in 101 schizophre-
nic patients studied by Pauler et al. (1996) and Escobar and West (1998),
where the sample variance s2

y = 35.89 shows overdispersion in comparison to
the sample mean y = 3.5248; see also the histogram of the data in Figure 9.1.
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Fig. 9.1. Eye Tracking Data, empirical distribution of the observations

Many authors have studied the effect of overdispersion; see Wang et al.
(1996) for some review. One possible reason for overdispersion is unobserved
heterogeneity in the sample, causing the mean to be different among the
observed subjects. A model commonly used in this context and discussed
already in Feller (1943), is the Poisson–Gamma model which is a continuous
mixture of Poisson distributions:

Y ∼ P (µs
i ) , µs

i ∼ G (α, α/µ) . (9.4)

Marginally, Y arises from the NegBin (α, α/µ)-distribution, with E(Y |ϑ) = µ
and

Var(Y |ϑ) = E(Y |ϑ)
α + E(Y |ϑ)

α
≥ E(Y |ϑ),

where ϑ = (α, µ). As long as α is not too large, this distribution actually
captures overdispersion.

Overdispersion of a random variable Y drawn from a Poisson mixture is
evident from the first two moments of this mixture given by (1.19):

E(Y |ϑ) =
K∑

k=1

µkηk,

Var(Y |ϑ) =
K∑

k=1

µk(1 + µk)ηk − E(Y |ϑ)2 = E(Y |ϑ) + B(ϑ),
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where B(ϑ) is the between-group heterogeneity:

B(ϑ) =
K∑

k=1

(µk − µ(ϑ))2ηk, (9.5)

with µ(ϑ) = E(Y |ϑ). As Var(Y |ϑ) − E(Y |ϑ) = B(ϑ), finite mixtures of
Poisson distributions explain overdispersion through unobserved heterogene-
ity in the sample, causing the mean to be different among the observed
subjects. For K = 2, for instance, B(ϑ) = 2η1η2(µ2 − µ1)2. Overdisper-
sion occurs as long as the means of at least two components are different.
Overdispersion could also be determined from the difference of the second
factorial moment of the Poisson mixture, E(Y (Y − 1)|ϑ), and E(Y |ϑ)2, as
E(Y (Y − 1)|ϑ) = E(Y 2|ϑ) − E(Y |ϑ), and therefore:

E(Y (Y − 1)|ϑ) − E(Y |ϑ)2 = B(ϑ). (9.6)

The use of finite mixtures of Poisson distributions, rather than the more
commonly used Poisson–Gamma model, to account for overdispersion has at-
tracted several researchers, among them Simar (1976), Manton et al. (1981),
Lawless (1987), Leroux (1992a), Leroux and Puterman (1992), Wang et al.
(1996), and Viallefont et al. (2002).

It is possible to include observed covariates to explain part of the unob-
served heterogeneity as discussed in Subsection 9.4.1, dealing with mixtures
of Poisson regression models.

9.2.3 Modeling Excess Zeros

Count data often contain more zeros than expected under the Poisson distribu-
tion. In medical data excess zeros occur if the zero-class is inflated by the inclu-
sion of observations that belong to a noninfected group. The Eye Tracking
Data, for instance, contain 46 zeros, whereas under the P (µ)-distribution, the
number of zeros in a sample of size N follows a BiNom (N, e−µ)-distribution.
For N = 101 and µ = y = 3.5248, the expected number of zero counts is
roughly equal to 3, whereas the probability to observe at least 46 zero counts
in a sample from the P (3.5248)-distribution is as small as 1.9 · 10−14, clearly
indicating the presence of excess zeros.

Analyzing count data with excess zeros, sometimes also called inflated ze-
ros, has a long tradition in applied statistics; see Meng (1997) for an interesting
review. Feller (1943) proves that the number of zeros in a Poisson mixture is
always larger than the number of zeros in a single Poisson distribution P (µ)
with the same mean µ = E(Y |ϑ) as the mixture distribution. This follows
immediately from:
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Pr(Y = 0|ϑ) =
K∑

k=1

ηke−µk = e−µ
K∑

k=1

ηkeµ−µk (9.7)

≥ e−µ
K∑

k=1

ηk(1 + µ − µk) ≥ e−µ.

Cohen (1966) considers the following two-component mixture:

Y ∼ η1I{0}(yi) + η2P (µ2) , (9.8)

where I{0}(yi) is 1 iff yi = 0. A limitation of (9.8) is that the second group
is assumed to be homogeneous. To capture overdispersion among nonzero
individuals, it is sensible to substitute the Poisson distribution by a more
general distribution, such as a finite mixture of K −1 Poisson distributions as
in Cohen (1960) or a negative binomial distribution as in Cohen (1966). Such
models are known as hurdle models; see, for instance, Cameron and Trivedi
(1998) and Dalrymple et al. (2003) for an application to sudden infant death
syndrome.

9.2.4 Application to the Eye Tracking Data

For illustration, consider the count data on eye tracking anomalies in 101
schizophrenic patients studied by Escobar and West (1998). To capture
overdispersion and excess zeros for this data set, diagnosed in Subsection 9.2.2,
we model the data by a finite mixture of K Poisson distributions as in Congdon
(2001), with increasing number K of potential groups. We use the hierarchical
prior (3.12) with a0 = 0.1, g0 = 0.5, and G0 = g0y/a0, and a D (4, . . . , 4)-prior
for η. We use Algorithm 3.3 for MCMC estimation, and store 8000 MCMC
draws after a burn-in-phase of 3000.

Figure 9.2 shows, for an increasing number of components K = 1, . . . , 7,
the posterior distribution of the probability p0(ϑ) to observe 0, which is given
by (9.7), of the overdispersion B(ϑ) defined in (9.5), and of the lth factorial
moment,

∑K
k=1 ηkµl

k for l = 3 and l = 4. A comparison of these posterior
distributions to the corresponding sample moments indicates that either four
or five components are sufficient to capture the moments under investigation.
Adding additional components hardly changes the posterior distribution of
these moments.

Formal model selection, either using marginal likelihoods or reversible
jump MCMC, is not really conclusive. Table 9.1 shows the log of the marginal
likelihood for an increasing number of components, estimated through various
simulation-based approximations, that were discussed in Section 5.4, namely
bridge sampling, importance sampling, and reciprocal importance sampling.
The importance density is constructed from the MCMC draws as in (5.36)
with S = min(50K!, 5000), and the estimators are based on M = 5000 MCMC
draws and L = 5000 draws from the importance density. Up to K = 4, these
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Fig. 9.2. Eye Tracking Data, finite Poisson mixtures with increasing numbers
K of potential groups; posterior distribution of the probability p0(ϑ) to observe 0
(top left), of the overdispersion B(ϑ) (top right), the third (bottom left), and the
fourth (bottom right) factorial moment in comparison to the corresponding sample
moments (black horizontal line) for K = 1, . . . , 7

Table 9.1. Eye Tracking Data, various estimators of the marginal likelihood
p(y|K) for finite mixtures of Poisson distributions with K = 1 to K = 7 components

p(y|K) K = 1 K = 2 K = 3 K = 4 K = 5 K = 6 K = 7

log p̂BS(y|K) –472.02 –252.61 –237.29 –232.81 –232.55 –234.07 –235.68
log p̂IS(y|K) –472.02 –252.62 –237.28 –232.67 –231.08 –230.37 –231.53
log p̂RI(y|K) –472.02 –252.61 –237.32 –233.40 –234.44 –236.74 –238.28
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estimators are rather similar, but from K = 5 onwards, the estimators tend
to be rather unstable. This leads to quite different estimators for the model
posterior probabilities Pr(K|y), displayed in Table 9.2, which were computed
under the truncated Poisson prior p(K) ∝ fP (K; 1). Although all estima-
tors suggest choosing K = 4, the estimated posterior probabilities are quite
different, and differ substantially from the posterior probabilities obtained
from reversible jump MCMC, which are given in the same table. By consider-
ing a different importance density, namely a full permutation of single draw
S�, we obtained estimators of the model probabilities that are rather close
to the estimators obtained from reversible jump MCMC. This suggests that
simulation-based approximations to the marginal likelihood are sensitive for
K larger than 3 or 4, and reversible jump MCMC is preferable for mixtures
with a medium to large number of components.

The same table shows that AIC and BIC also lead to the conclusion to
choose K = 4, however, again evidence in favor of this model is very fragile,
as AIC for K = 4 is only slightly larger than AIC for K = 5, whereas BIC for
K = 4 is only slightly larger than BIC for K = 3.

Table 9.2. Eye Tracking Data, posterior probabilities Pr(K|y) based on the
prior p(K) ∝ fP (K; 1), obtained from log p̂BS(y|K) and reversible jump MCMC
(RJMCM), AIC and BIC for K = 1 to K = 7 number of components

Pr(K|y) K = 1 K = 2 K = 3 K = 4 K = 5 K = 6 K = 7

Based on p̂BS(y|K) 0.00 0.00 0.03 0.76 0.20 0.01 0.00

Based on p̂IS(y|K) 0.00 0.00 0.02 0.42 0.41 0.14 0.01

Based on p̂RI(y|K) 0.00 0.00 0.07 0.87 0.06 0.00 0.00

RJMCMC 0.00 0.00 0.01 0.33 0.40 0.20 0.06

Based on p̂BS,2(y|K) 0.00 0.00 0.02 0.36 0.32 0.22 0.09

AIC –472.02 –247.48 –230.22 –227.60 –227.94 –229.94 –231.94

BIC –472.02 –251.40 –236.76 –236.76 –239.71 –244.32 –248.94

To obtain estimates of the group means and group sizes for a mixture
of K = 4 groups, we need to identify a unique labeling among the MCMC
draws. We first ran Gibbs sampling for an unconstrained mixture model with
K = 4, and found that label switching took place between the two groups
with the smallest means. For this data set, we could not achieve a unique
labeling through unsupervised clustering. Next we imposed the constraint
µ1 < · · · < µK using the permutation sampler. Whenever the constraint was
violated, we reordered the MCMC output in such a way that the constraint is
fulfilled. Imposing the constraint eliminated label switching. Table 9.3 sum-
marizes estimates of all group means and group sizes for K = 4, respectively.
Evidently, the first group is practically a zero-movement group.
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Table 9.3. Eye Tracking Data, posterior inference based on a Poisson mixture
with K = 4 groups (hierarchical prior with a0 = 0.1, g0 = 0.5, and G0 = g0y/a0);
identification obtained through imposing the constraint µ1 < · · · < µ4

k E(µk|y) (95% Confidence Region) E(ηk|y) (95% Confidence Region)

1 0.09 (0.00,0.38) 0.36 (0.19,0.55)
2 1.38 (0.61,2.89) 0.33 (0.17,0.49)
3 7.95 (5.07,10.83) 0.20 (0.12,0.30)
4 20.17 (15.16,27.55) 0.10 (0.04,0.18)

9.3 Finite Mixture Models for Binary and
Categorical Data

9.3.1 Finite Mixtures of Binomial Distributions

For binomial mixtures the component densities arise from BiNom (T, π)-
distributions, where T is commonly assumed to be known, whereas the
component-specific probabilities π are unknown and heterogeneous:

Y ∼ η1BiNom (T, π1) + · · · + ηKBiNom (T, πK) .

The density of this mixture is given by

p(y|ϑ) =
K∑

k=1

ηk

(
T
y

)
πy

k(1 − πk)T−y, (9.9)

with ϑ = (π1, . . . , πK , η1, . . . , ηK). Binomial mixtures are not necessarily iden-
tifiable, as discussed already in Subsection 1.3.4. A necessary and sufficient
condition is T ≥ 2K − 1; see Teicher (1961).

Ever since Pearson (1915) employed a mixture of two binomial distribu-
tions to model yeast cell count data, discrete as well as continuous binomial
mixtures have been suggested as overdispersed alternatives to the binomial
distribution. Farewell and Sprott (1988), for instance, discuss an application
in medicine to model the effect of a drug on patients who experience fre-
quent premature ventricular contraction, whereas Brooks et al. (1997) and
Brooks (2001) apply finite mixtures of binomials to dominant-lethal testing
in a biological experiment.

Finite mixtures of binomial distributions may be extended to the case
where Ti varies between the realizations y1, . . . , yN :

p(yi|ϑ) =
K∑

k=1

ηk

(
Ti

yi

)
πyi

k (1 − πk)Ti−yi .

For identifiability of the corresponding mixture we refer to Teicher (1963,
p.1268). Böhning et al. (1998) discuss an application of this model to a preva-
lence study in veterinary science.



9.3 Finite Mixture Models for Binary and Categorical Data 287

Unobserved Heterogeneity in Occurrence Probabilities

Assume that K hidden groups are present in a population with heterogeneity
in the occurrence probability of a certain event, such as the choice probability
for a certain product. Let π1, . . . , πK denote the different probabilities. As-
sume that for N randomly selected subjects it is observed if the event under
investigation has occurred or not, with Yi = 1 indicating occurrence.

The identifiability condition discussed above becomes essential if we want
to use this information to estimate the unknown probabilities π1, . . . , πK as
well as the unknown group sizes η1, . . . , ηK . Evidently Pr(Yi = 1|ϑ) = πk,
if subject i belongs to class k. As we observed for each subject only once
whether the event has occurred, the marginal distribution of Yi is a mixture
of binomial distributions with T = 1, which is not identified. Hence it is not
possible to estimate ϑ.

To this aim, it is necessary to observe the event under investigation more
than once, thus we need repeated measurements Yit, t = 1, . . . , T for each sub-
ject. In this case, the distribution of the number of successes, Yi =

∑T
t=1 Yit,

is a realization from a mixture of binomial distributions BiNom (T, πk), which
is identifiable only if T ≥ 2K − 1. Thus even two repeated measurements are
not sufficient to estimate the unknown parameter ϑ. For K = 2, for instance,
the identifiability condition implies that we need for each subject i at least
T = 3 repeated measurements on occurrence/nonoccurrence of the event in
order to identify the group sizes and the probabilities. With increasing number
of hidden groups, the number of repeated measurement increases.

It is possible to include observed covariates to explain part of the het-
erogeneity in the occurrence probabilities π1, . . . , πK , as discussed in Subsec-
tion 9.4.2.

Extra-Binomial Variation

Extra-binomial variation, meaning that Var(Y |ϑ) > E(Y |ϑ)(1 − E(Y |ϑ)/T ),
is present in many data sets involving binary data. Extra-binomial variation
is often due to unobserved heterogeneity in the population, for example, if an
important covariate is omitted.

A common way of dealing with extra-binomial variation is the Beta-
binomial model, which is a continuous mixture of binomial distributions,
where Y ∼ BiNom (T, πs

i ) and πs
i ∼ B (α, β). Marginally, this leads to the

Beta-binomial distribution:

p(y|ϑ) =
(

T
y

)
B(α + y, β + T − y)

B(α, β)
,

with ϑ = (α, β). The first two moments of this distribution read with π = α/β:

E(Y |ϑ) = Tπ,

Var(Y |ϑ) = Tπ(1 − π) + (T − 1)T
π(1 − π)
α + β + 1

.
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A finite mixture of binomial distributions is an interesting alternative to the
Beta-binomial distribution. Overdispersion of a random variable Y , drawn
from the binomial mixture (9.9) is evident from the first two moments of this
mixture, which are easily derived from (1.19):

E(Y |ϑ) = Tπ, π =
K∑

k=1

ηkπk,

Var(Y |ϑ) = Tπ(1 − π) + (T − 1)T

(
K∑

k=1

ηkπ2
k − π2

)
. (9.10)

For T > 1 extra variation due to the second term in (9.10) is present for any
mixture with at least two different occurrence probabilities.

Bayesian Estimation of Binomial Finite Mixture Models

Bayesian inference for mixtures of binomial distributions is considered in
Brooks (2001), who applied a Metropolis–Hastings algorithm. Bayesian es-
timation using data augmentation and MCMC as in Algorithm 3.4 is easily
implemented for a mixture of binomial distributions; see again Brooks (2001).
Based on the conjugate Beta prior πk ∼ B (a0, b0), the posterior p(πk|y,S) is
again a Beta distribution, πk|y,S ∼ B (ak(S), bk(S)), where:

ak(S) = a0 +
∑

i:Si=k

yi,

bk(S) = b0 +
∑

i:Si=k

(T − yi).

Brooks (2001) applies the reversible jump MCMC method to jump between
mixtures with different number of components and between mixtures of bi-
nomial distributions and mixtures of Beta-binomial distributions, where the
number of components is left unchanged.

9.3.2 Finite Mixtures of Multinomial Distributions

Consider a categorical variable of more than two categories {1, . . . , D}. Let
Yl, for l = 1, . . . , D, be the number of occurrences of category l among T
trials. If the occurrence probability distribution π = (π1, . . . , πD) of each cat-
egory is homogeneous among the observed subjects, then Y = (Y1, . . . , YD) ∼
MulNom (T, π); see also Appendix A.1.8 for a definition of the multinomial
distribution.

To deal with unobserved heterogeneity in the occurrence probability of the
various categories, Y = (Y1, . . . , YD) is assumed to follow a finite mixture of
multinomial distributions,
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Y ∼ η1MulNom (T, π1) + · · · + ηKMulNom (T, πK) ,

with πk = (πk,1, . . . , πk,D) being the unknown occurrence probability in group
k. The density is given by

p(y|ϑ) =
K∑

k=1

ηk

(
T

y1 . . . yD

) D∏
l=1

πyl

k,l, (9.11)

where ϑ = (π1, . . . ,πK , η),
Morel and Nagaraj (1993) use such a model for capturing multinomial

extra variation. In this respect, the finite mixture distribution (9.11) is an
interesting alternative to the more commonly applied Dirichlet-multinomial
distribution, where Y ∼ MulNom (T, πs) and πs ∼ D (α1, . . . , αD); see, for
instance, Paul et al. (1989) and Kim and Margolin (1992).

Further applications are found in clustering Internet traffic (Jorgensen,
2004) and developmental psychology (Cruz-Medina et al., 2004). Banjeree and
Paul (1999) extend (9.11) to deal with multinomial clustered data. Further
extensions are finite mixtures of multinomial logit models that are discussed
in Subsection 9.4.1.

Bayesian Estimation of Multinomial Finite Mixture Models

Let yi = (yi1, . . . , yiD), i = 1, . . . , N , be N observations, where each yil, l =
1, . . . , D, counts the number of occurrences of category l in a series of T
independent Bernoulli trials. Assume that a finite mixture of multinomial
distributions should be fitted to these data.

Bayesian estimation using data augmentation and MCMC as in Algo-
rithm 3.4 is easily implemented for a mixture of multinomial distributions.
Let πk = (πk,1, . . . , πk,D) be the unknown discrete probability distribution in
group k. Based on the Dirichlet prior πk ∼ D (a0,1, . . . , a0,D), the posterior
p(πk|y,S) is again a Dirichlet distribution πk|y,S ∼ D (ak,1(S), . . . , ak,D(S)),
where:

ak,l(S) = a0,l +
∑

i:Si=k

yil, l = 1, . . . , D.

9.4 Finite Mixtures of Generalized Linear Models

Any of the finite mixture models discussed earlier in this chapter may be ex-
tended by assuming that in each group the underlying discrete distribution
depends on some covariates. A common way to accommodate dependence of
a nonnormal distribution on covariates is the generalized linear model (Nelder
and Wedderburn, 1972; McCullagh and Nelder, 1999). Finite mixtures of gen-
eralized linear models extend the finite mixture of regression models discussed
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in Chapter 8 to nonnormal data and find numerous applications in particu-
lar in biology, medicine, and marketing. A very useful taxonomical review of
numerous applications of mixture regression models for various types of data
may be found in Wedel and DeSarbo (1993b, Table 10.1), which includes a
lot of additional references.

After reviewing in Subsections 9.4.1 and 9.4.2 some specific examples for
count, binary, and multinomial data, estimation of such models is discussed
in detail in Subsection 9.4.3.

9.4.1 Finite Mixture Regression Models for Count Data

Finite mixture regression models for count data are either based on the Poisson
or the negative binomial distribution.

Finite Mixtures of Poisson Regression Models

Let Yi denote the ith response variable, observed in reaction to a covariate xi,
where the last element of xi is 1, corresponding to an intercept. It is assumed
that the marginal distribution of Yi follows a mixture of Poisson distributions,

Yi ∼
K∑

k=1

ηkP (µk,i) , (9.12)

where µk,i = exp(xiβk). If exposure data ei are available for each subject,
then µk,i = ei exp(xiβk). If xi = 1, a finite mixture of Poisson distributions
with µk = exp(βk) results; if K = 1, the standard Poisson regression model
results.

For a standard Poisson regression model, conditional on a given covari-
ate, the data often exhibit overdispersion. Wang et al. (1996) showed that a
mixture of Poisson regression models is able to capture overdispersion. For a
fixed covariate, the mean and variance of Yi are easily obtained as in Subsec-
tion 9.2.2:

E(Yi|ϑ) =
K∑

k=1

ηkµk,i,

Var(Yi|ϑ) = E(Yi|ϑ) +

(
K∑

k=1

ηkµ2
k,i − E(Yi|ϑ)2

)
.

Wang et al. (1996) falsely claim that a mixture of Poisson regression models
is identifiable if the regressor matrix is of full rank. However, as discussed in
Subsection 8.2.2 for mixtures of normal regression models, this condition is in
general not sufficient.

Pointwise identifiability for a fixed covariate xi follows from the generic
identifiability of Poisson mixtures. Thus
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K∑
k=1

ηkfP (y; µk,i) =
K∑

k=1

η�
kfP (y; µ�

k,i),

where log µk,i = xiβk and log µ�
k,i = xiβ

�
k, implies that the condition

η�
k = ηρi(k), xiβ

�
k = xiβρi(k), (9.13)

holds for some permutation ρi(·). This is exactly what resulted for finite mix-
tures of the standard regression model studied earlier in Section 8.2.2. It
follows immediately that a mixture of Poisson regressions, where only the
intercept is switching, is identifiable. In all other cases, evidently the same
conditions as for a Gaussian mixture of regression models hold.

Many applications of this model appear in medicine such as modeling
epileptic seizure frequency data in a clinical trial (Wang et al., 1996; Wang
and Puterman, 1999) or modeling the length of hospital stay (Lu et al., 2003).
Wedel et al. (1993) and Wedel and DeSarbo (1995) discuss applications in
marketing, such as modeling the number of coupons used by a household and
evaluating direct marketing strategies. Applications in road safety appear in
Viallefont et al. (2002) and Hurn et al. (2003), who relate the number of
accidents to covariates.

Disease Mapping

An area where mixtures of Poisson regression models are applied frequently
is the study of disease distributions. The analysis of the geographic variation
of disease and the representation of a disease distribution on a map is one
of the oldest applications of statistics in epidemiology; see Schlattmann and
Böhning (1993) for a review. Simple probabilistic models are based on the
assumption that the number Yi of cases observed in region i follows a P (λei)-
distribution, where λ is the relative risk and ei are the exposures. Rather than
assuming that the risk is the same in all areas, Schlattmann and Böhning
(1993) consider the case where the relative risk differs among the different
areas, and takes one out of K values λ1, . . . , λK ; see also Viallefont et al.
(2002). This model is extended in Schlattmann et al. (1996) to accommodate
dependence of covariates xi =

(
zi1 · · · zi,d

)
measured in each area:

Yi|Si ∼ P (λSi
exp(xiβ)ei) ,

whereas Viallefont et al. (2002) also consider heterogeneous covariate effects
βSi

. Marginally, these models are finite mixtures of regression models that
allow the detection of disease clusters, that is, areas of high or low risk. It
provides an alternative to hierarchical Bayesian models for disease mapping;
see, for instance, Bernardinelli et al. (1995).

Extensions of these models which substitute the unrealistic independence
assumption among the indicators S1, . . . , SN by a spatial dependence model
are discussed, among others, by Fernández and Green (2002) and Green and
Richardson (2002).
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Zero-Inflated Poisson Regressions

Lambert (1992) proposed the zero-inflated Poisson mixture regression model
for dealing with zero-inflated count data with covariates and discussed an ap-
plication where a production system switches between a perfect state where
defects are extremely rare and an imperfect state where defects are possible.
Both η1, the probability of the perfect state as well as µ2, the mean of the
imperfect state depend on covariates through a logit-type model. Further ap-
plications are disease mapping (Böhning, 1998) and the analysis of sudden
infant death syndrome in relation to climate (Dalrymple et al., 2003).

Finite Mixtures of Negative Binomial Regression Models

Ramaswamy et al. (1994) apply a finite mixture of negative binomial regres-
sion models in marketing research to model the purchase behavior of con-
sumers.

9.4.2 Finite Mixtures of Logit and Probit Regression Models

Finite Mixture Regression Models for Binary Data

Let Yi,t denote a binary variable, observed for Ti times in reaction to a covari-
ate xi, where the last element of xi is 1 corresponding to an intercept. Define
Yi =

∑Ti

t=1 Yi,t. It is assumed that the marginal distribution of Yi follows a
mixture of binomial distributions,

Yi ∼
K∑

k=1

ηkBiNom (Ti, πk,i) , (9.14)

where logit πk,i = xiβk in finite mixtures of logit regression models, whereas
πk,i = Φ(xiβk) in finite mixtures of probit regression models.

Both models capture extra-binomial variation due to unobserved hetero-
geneity in the population, for example, if an important covariate is omitted.
It follows

E(Yi|ϑ) = πi =
K∑

k=1

ηkπk,i,

Var(Yi|ϑ) = Tiπi(1 − πi) +
(Ti − 1)T 2

i

Ti

(
K∑

k=1

ηkπ2
k,i − π2

i

)
. (9.15)

For Ti > 1, extra-binomial variation due to the second term in (9.15) is
present.

Identifiability is rather evolved for mixtures of logistic and probit regres-
sion models, the reason being that for xi = 1 such a mixture reduces to a
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finite mixture of binomial distributions, which is not necessarily identifiable;
see Subsection 9.3.1.

Pointwise identifiability for a fixed covariate xi follows from the identifia-
bility of a binomial mixture only, if Ti ≥ 2K − 1. In this case

K∑
k=1

ηkfBN (y; Ti, πk,i) =
K∑

k=1

η�
kfBN (y; Ti, π

�
k,i),

where logit πk,i = xiβk and logit π�
k,i = xiβ

�
k, implies

η�
k = ηρi(k), xiβ

�
k = xiβρi(k), (9.16)

which is exactly what resulted for a Gaussian mixture of regression models.
It follows immediately that a mixture of logistic regressions where only the
intercept is switching is identifiable, if Ti ≥ 2K − 1 for at least one covariate
xi; see also Follmann and Lambert (1991).

Applications of finite mixtures of logistic regression models appear in bi-
ology to analyze the effect of a drug on the death rate of a protozoan try-
panosome and to study the effect of salinity and temperature on the hatch
rate of English sole eggs (Follmann and Lambert, 1989), in medicine to deter-
mine the risk factors of preterm delivery (Zhu and Zhang, 2004), in genetics
to detect inheritance patterns of a binary trait such as alcoholism (Zhang
and Merikangas, 2000), in marketing research to deal with the analysis of
paired comparison choice data (Wedel and DeSarbo, 1993a), and in agricul-
ture (Wang and Puterman, 1998).

Finite mixtures of probit regression models are applied in medical research
to analyze the resistance to treatment of parasites in sheep (Lwin and Mar-
tin, 1989), in marketing research to analyze pick and/N data (De Soete and
DeSarbo, 1991), and in the economics of labor markets (Geweke and Keane,
1999).

Finite Mixture Regression Models for Categorical Data

Extensions to multinomial mixtures are considered by Paul et al. (1989), Kim
and Margolin (1992), and Morel and Nagaraj (1993). Kamakura and Rus-
sell (1989) applied a multinomial logit mixture regression model in marketing
research to model consumers’ choices among a set of brands and identified
segments of consumers that differ in price sensitivity. Kamakura (1991) pro-
posed a multinomial probit finite mixture regression model. Identifiability for
multinomial mixture regression models is investigated in Grün (2002).

9.4.3 Parameter Estimation for Finite Mixtures of GLMs

ML estimation for finite mixtures of generalized linear models is considered,
for instance, by Jansen (1993), Wedel and DeSarbo (1995), and Aitkin (1996).
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Wedel et al. (1993), Lambert (1992), and Wang et al. (1996) use the EM
algorithm for the estimation of mixtures of Poisson regression models, whereas
Wedel and DeSarbo (1995) consider more general mixtures of GLMs.

For Bayesian estimation of mixtures of GLMs, Hurn et al. (2003) use
the same prior as for a normal regression model, namely βk ∼ Nd (b0,B0).
Various suggestions have been put forward of how to estimate mixtures of
nonnormal regression models using MCMC. Viallefont et al. (2002) use a
single-move random walk Metropolis–Hastings algorithm, whereas Hurn et al.
(2003) use a multivariate random walk Metropolis–Hastings algorithm for
sampling directly from the marginal posterior distribution p(ϑ|y) for mixtures
of logistic and Poisson regressions; see also Algorithm 3.6. This is feasible, as
the likelihood p(y|ϑ) is available in closed form.

Alternatively, one could use data augmentation by introducing a group
indicator Si for each observation pair (xi,yi) as missing data to obtain a
sampling scheme comparable to Algorithm 8.1, which was derived in the con-
text of finite mixtures of standard regression models. The resulting scheme,
however, is not a Gibbs sampling scheme. Difficulties arise when drawing the
group-specific parameters βk in group k, because the conditional posterior
distribution p(βk|y,S) has to be derived from a nonnormal regression model
and does not belong to a well-known distribution family. To sample from this
distribution, usually a Metropolis–Hastings step is applied; alternatively Hurn
et al. (2003) mention the possibility of using the slice sampler (Damien et al.,
1999). Classification, however, does not cause any problem, as it is sufficient
to know the conditional distribution p(yi|βk) for each k = 1, . . . , K for each
observation yi.

9.4.4 Model Selection for Finite Mixtures of GLMs

Wang et al. (1996) use AIC and BIC for model selection of the number of
mixture regressions, while including all possible covariates. Covariates are
selected in a second step, after having chosen the number of components. In
their simulation study BIC always selected the correct model.

Viallefont et al. (2002) use the reversible jump MCMC for mixtures of Pois-
son regression models to determine the number of mixture regressions, whereas
Hurn et al. (2003) use the birth and death MCMC of Stephens (2000a). Both
papers illustrate that the prior on K, which is usually assumed to be P (λ0),
is not without effects on the resulting inference.

9.5 Finite Mixture Models for Multivariate Binary and
Categorical Data

In this section we consider finite mixture modeling of multivariate binary or
categorical data {y1, . . . ,yN}, where yi = (yi1, . . . , yir) is the realization of
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an r-dimensional discrete random variable Y = (Y1, . . . , Yr). Mixture mod-
els for multivariate discrete data, usually called latent class models, or latent
structure analysis, have long been recognized as a useful tool in the behav-
ioral and biomedical sciences, as exemplified by Lazarsfeld and Henry (1968),
Goodman (1974b, 1978), Clogg and Goodman (1984), among many others;
see Formann and Kohlmann (1996) and Clogg (1995) for a review.

In latent structure analysis the correlation between the elements Y1, . . . , Yr

of Y is assumed to be caused by a discrete latent variable Si, also called the
latent class. It is then assumed that the variables Y1, . . . , Yr, which are also
called manifest variables, are stochastically independent conditional on the la-
tent variable. Latent structure analysis is closely related to multivariate mix-
ture modeling, as marginally the distribution of Y is a multivariate discrete
mixture with density:

p(yi|ϑ) =
K∑

k=1

ηk

r∏
j=1

p(yij |πk,j),

where πk,j is a parameter modeling the discrete probability distribution of Yj

in class k.

9.5.1 The Basic Latent Class Model

In this section we consider a collection of multivariate binary observations
y1, . . . ,yN , where yi = (yi1, . . . , yir)

′
is an r-dimensional vector of 0s and

1s, assumed to be the realization of a binary multivariate random variable
Y = (Y1, . . . , Yr). The latent class model assumes that associations between
the manifest variables Yj are caused by the presence of “latent classes” within
which the features are independent. These latent classes may be seen as aris-
ing from an unobserved categorical variable Si, which causes differences in
occurrence probabilities πk,j = Pr(Yj = 1|Si = k) of the manifest variable Yj

in the different classes k.
The marginal distribution of Y is equal to a mixture of r independent

Bernoulli distributions, with density:

p(yi|ϑ) =
K∑

k=1

ηk

r∏
j=1

π
yij

k,j (1 − πk,j)1−yij , (9.17)

where the K components of the mixture correspond to the K latent classes.
It is possible to verify that differences in the occurrence probabilities πk,j

between the latent classes cause associations between the components of Y
in the corresponding cell with respect to the marginal distribution, where the
latent class is integrated out. For K = 2 and r = 2, for instance, Gilula (1979)
shows that the marginal probability Pr(Y1 = 1, Y2 = 1|ϑ) may be expressed
as
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Pr(Y1 = 1, Y2 = 1|ϑ) =
Pr(Y1 = 1|ϑ)Pr(Y2 = 1|ϑ) + η1(1 − η1)(π1,1 − π2,1)(π1,2 − π2,2).

Thus associations between the components of Y will be observed, whenever
both occurrence probabilities are different. Bartholomew (1980) regards the
latent class models as factor analysis for categorical data.

Historically seen, model (9.17) was originated by psychometricians and
sociologists, and goes back to Lazarsfeld (1950). The main purpose was to
study hypothetical constructs such as “intelligence” or “attitude.” There is a
large body of literature with many applications of these models to problems in
behavioral, medical, and social sciences, such as finding associations between
teaching style and pupil performance (Aitkin et al., 1981), tumor diagnostics
based on a sequence of binary test results (Albert and Dodd, 2004), analyzing
historical household data (Liao, 2004), and texture analysis (Grim and Haindl,
2003), just to mention a few.

Celeux and Govaert (1991) discuss the application of latent class models
for clustering discrete data and, using the classification likelihood approach
discussed earlier in Subsection 7.1.3, show that clustering based on the latent
class model is closely related to clustering based on minimizing entropy-type
criteria.

9.5.2 Identification and Parameter Estimation

A difficult problem with the latent class model is verifying if the model is
identifiable for a given number of classes, given a certain collection of the
data; see Goodman (1974b) and Clogg (1995). If πk,1 = · · · = πk,r = πk,
then a binomial finite mixture with component density BiNom (r, πk) results;
consequently the more general latent class models could be applied only to at
least three manifest variables (r ≥ 3). As outlined by Formann and Kohlmann
(1996, p.194), “In general it is not possible to say a priori whether these models
may be identifiable or not.” Statements about identifiability are usually made
after having estimated the parameters under a certain model by considering
the rank of the observed information matrix evaluated at the ML estimator
as in Catchpole and Morgan (1997) to prove local identifiability (Rothenberg,
1971); see also Carreira-Perpiñán and Renals (2000).

In (9.17), the Kr unknown probabilities (π1,1, . . . , πK,r) as well as the
weight distribution η are unknown parameters that need to be estimated
from the data. Pioneering work on ML estimation for the latent class model
is found in Wolfe (1970). The basic latent class model is usually formulated as
a generalized linear model and fitted by some iterative method, for instance,
the proportional fitting algorithm of Goodman (1974a, 1974b), which later on
turned out to be a variant of the EM algorithm.

An early reference on Bayesian estimation of latent class models is Evans
et al. (1989), where the practical implementation was carried out using adap-
tive importance sampling. Again it is surprising to see how easily the marginal
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posterior density p(π1,1, . . . , πK,r, η|y), which is quite complicated, is ob-
tained, using data augmentation and MCMC as in Algorithm 3.4. Assume that
all probabilities πk,j are independent a priori, with πk,j ∼ B (a0,j , b0,j). Con-
ditional on the class indicator Si, the conditional posterior p(π1, . . . ,πK |S,y)
is the product of Kr independent Beta distributions with

πk,j |S,y ∼ B (a0,j + Nk,j(S), b0,j + Nk(S) − Nk,j(S)) ,

where Nk,j(S) is the number of ones observed for feature Yj in latent class k,
and Nk(S) is the total number of observations in latent class k:

Nk,j(S) =
∑

i:Si=k

yij , Nk(S) = #{i : Si = k}.

9.5.3 Extensions of the Basic Latent Class Model

Over the years, many variants and extensions of the basic latent class model
have been considered. One particularly useful extension deals with multivari-
ate categorical data y1, . . . ,yN , where yi = (yi1, . . . , yir) is the realization of
an r-dimensional categorical random variable Y = (Y1, . . . , Yr), with each el-
ement Yj taking one value out of Dj categories {1, . . . , Dj}. Again, a mixture
density results:

p(yi|ϑ) =
K∑

k=1

ηk

r∏
j=1

Dj∏
l=1

π
I{yij=l}
k,jl , (9.18)

where πk,jl = Pr(Yj = l|Si = k) is the probability of category l for feature Yj

in class k.
The unknown parameter ϑ appearing in (9.18) contains the unknown

weight distribution η as well as the Kr unknown probability distributions
πk,j = (πk,j1, · · · , πk,jDj ) of feature Yj in class k. Again Bayesian estima-
tion is easy implemented, by sampling from the marginal posterior density
p(π1,1, . . . ,πK,r|y), using data augmentation and MCMC as in Algorithm 3.4.
Assume that all probability distributions πk,j are independent a priori, with
πk,j ∼ D (e0,j , . . . , e0,j). Conditional on the class indicator Si, the conditional
posterior p(π1,1, . . . ,πK,r|S,y) is the product of Kr independent Dirichlet
distributions with

πk,j |S,y ∼ D
(
e0,j + Nk,j1(S), . . . , e0,j + Nk,jDj (S)

)
,

where, for each class k, Nk,jl(S) counts how often category l is observed for
feature j:

Nk,jl(S) =
∑

i:Si=k

I{yij=l}.
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In a series of papers, Formann (1982, 1992, 1993, 1994a, 1994b) considered
further extensions of (9.18) such as linear logistic latent class analysis, where
both ηk as well as the probabilities πk,jl depend on some covariates through
a linear logistic model; see also Formann and Kohlmann (1996) for a review.

Clogg and Goodman (1984) consider simultaneously a latent structure
analysis of a whole set of multinomial contingency tables and discuss methods
for testing complete or partial homogeneity across tables.

9.6 Further Issues

9.6.1 Finite Mixture Modeling of Mixed-Mode Data

Often data are realizations of a mixed random variable Y = (YC ,YD) with
YC containing metric features and YD containing categorical features. Within
a latent class analysis of such mixed-mode data, it is assumed that the dis-
tribution of Y depends on a latent unknown variable, which again leads to a
finite mixture model.

Everitt (1988) and Everitt and Merette (1990) deal with mixed-mode data
by incorporating the use of thresholds for the categorical data, however, the
resulting model is difficult to estimate. Muthén and Shedden (1999) sug-
gest combining features of Gaussian multivariate mixtures with a latent class
model. The density of this mixture model reads:

p(yi|ϑ) =
K∑

k=1

ηkfN (yC
i ; µk,Σk)p(yD

i |θD
k ), (9.19)

p(yD
i |θD

k ) =
r∏

j=1

Dj∏
l=1

π
I{yD

ij
=l}

k,jl .

Bacher (2000) discusses an application of this model in sociology. Clustering
multivariate data through probabilistic models based on finite mixtures is
particularly useful for mixed continuous and categorical data; see Bock (1996)
for some review.

Muthén and Shedden (1999) use the EM algorithm for estimation. Bayesian
estimation of model (9.19) using data augmentation and MCMC as in Algo-
rithm 3.4 is easily implemented, as conditionally on a known classification we
only need to combine the sampling step for multivariate mixtures of normals
discussed in Subsection 6.3.3 with those obtained for the latent class model
in Subsection 9.5.3.

A disadvantage of model (9.19) is stochastic independence of the categor-
ical and the continuous variables within each class; more refined models, that
allow for association between both types of variables are discussed in Lawrence
and Krzanowski (1996). The idea is to replace the multivariate categorical
variable YD = (Y D

1 , . . . , Y D
r ), each of which is assumed to have Dj different
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categories by a single multinomial variable YM , which has DM =
∏r

j=1 Dj

different cells, corresponding to the number of distinct patterns produced by
YD. Furthermore the group-specific mean µk,l of the continuous variable is
allowed to be different for all patterns l = 1, . . . , DM .

Willse and Boik (1999) show that the model in its unrestricted form is not
identifiable. There exist (K!)DM −1 distinct parameters that define the same
mixture distribution. Identifiability is achieved by imposing the restrictions
µk,l = µk + βl on the group-specific mean of the continuous variable.

Hunt and Jorgensen (2003) extended model (9.19) to mixed-mode data
with missing observations. The modeling of mixed-mode data in a time series
context is discussed in Cosslett and Lee (1985).

9.6.2 Finite Mixtures of GLMs with Random Effects

As discussed in Section 9.4, finite mixtures of GLMs are able to deal with
overdispersion and extra-binomial or multinomial variation in regression mod-
els for discrete valued data. An alternative popular approach is based on GLMs
with random-effects models (Schall, 1991; Breslow and Clayton, 1993; Aitkin,
1996), which regard overdispersion and extra-binomial or multinomial varia-
tion as a nuisance factor that needs to be accounted for in order to obtain
consistent estimates of the other parameters. GLMs with random effects are
also applied to pool information across similar units as in Section 8.5 for re-
peated measurements where the dependent variable is a discrete rather than
a normally distributed random variable.

Usually the distribution of the random effects is chosen to be normal.
Neuhaus et al. (1992) studied the effect of misspecifying the distribution of
the random effects for logistic mixed-effects models and found cases of in-
consistency both for the fixed and the random effects. Much more flexibility
is achieved by assuming that the random effects follow a mixture of normal
distributions as in Section 8.5, in which case a finite mixture of GLMs with
random effects results. Such a model has been applied by Lenk and DeSarbo
(2000) in marketing research, who discuss Bayesian estimation using data aug-
mentation and MCMC. Yau et al. (2003) apply a two-component mixture of
binary logit models with random effects to the analysis of hospital length of
stay. Bottolo et al. (2003) apply a mixture of Poisson models with random
effects to modeling extreme values in a data set of large insurance claims,
using reversible jump MCMC.
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Finite Markov Mixture Modeling

10.1 Introduction

In this and the following chapters, finite mixture models are extended to deal
with time series data that exhibit dependence over time. Broadly speaking,
this is achieved by substituting the discrete latent indicator Si introduced
as an allocation variable for finite mixture models by a hidden Markov chain.
This leads to a surprisingly rich class of nonlinear time series models that solve
a variety of interesting problems in applied time series analysis, as demon-
strated in Chapter 12.

Section 10.2 starts with the definition of a finite Markov mixture distribu-
tion, whose properties are studied in some detail. Section 10.3 introduces the
basic Markov switching model and deals with its extensions. The problem of
econometric estimation of a Markov switching model from an observed time
series is then discussed in Chapter 11.

10.2 Finite Markov Mixture Distributions

Let {yt, t = 1, . . . , T} denote a time series of T univariate observations taking
values in a sampling space Y which may be either discrete or continuous.
As common in time series analysis, {yt, t = 1, . . . , T} is considered to be the
realization of a stochastic process {Yt}T

t=1. Modeling is based on special cases
from the class of doubly stochastic time series models (Tjøstheim, 1986) that
have been found to be very useful for applied time series analysis.

It is assumed that the probability distribution of the stochastic process
Yt depends on the realizations of a hidden discrete stochastic process St. The
stochastic process Yt is directly observable, whereas St is a latent random
process that is observable only indirectly through the effect it has on the
realizations of Yt. A simple example is the hidden Markov chain model Yt =
µSt + εt, where εt is a zero-mean white noise process with variance σ2.
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10.2.1 Basic Definitions

We start with specifying the properties of the hidden process {St}T
t=0, which

is assumed to be a discrete-time process with finite state space {1, . . . , K}
that obeys the following condition S4.

S4 St is an irreducible, aperiodic Markov chain starting from its ergodic dis-
tribution η = (η1, . . . , ηK):

Pr(S0 = k|ξ) = ηk.

The stochastic properties of St are sufficiently described by the (K × K)
transition matrix ξ, where each element ξjk of ξ is equal to the transition
probability from state j to state k:

ξjk = Pr(St = k|St−1 = j), ∀j, k ∈ {1, . . . , K}.

Evidently, the jth row of the transition matrix ξ defines, for all t = 1, . . . , T ,
the conditional distribution of St given the information that St−1 is in state
j. We sometimes use the notation ξj· to refer to row j. All elements of ξ are
nonnegative and the elements of each row sum to 1:

ξjk ≥ 0, ∀j, k ∈ {1, . . . , K},

K∑
k=1

ξjk = 1, ∀j = 1, . . . , K. (10.1)

ξ = (ξ1·, . . . , ξK·) takes values in the product space (EK)K , where EK is the
unit simplex defined in Subsection 1.2.1. Further assumptions about ξ are
necessary to fulfill condition S4; see Subsection 10.2.2 for more details.

We continue with describing how the distribution of Yt depends on St. Let
T (θ) be a parametric distribution family, defined over a sampling space Y
which may be either discrete or continuous, with density p(y|θ), indexed by a
parameter θ ∈ Θ. Let {Yt}T

t=1 be a sequence of random variables that depend
on {St}T

t=0 in the following way.

Y4 Conditional on knowing S = (S0, . . . , ST ), the random variables Y1, . . . , YT

are stochastically independent. For each t ≥ 1, the distribution of Yt arises
from one out of K distributions T (θ1), . . . , T (θK), depending on the state
of St:

Yt|St = k ∼ T (θk).

Hidden indicators comparable to St have been introduced also for a finite
mixture model, using the symbol Si. The original definition of a mixture
distribution in Section 1.2, however, started with the marginal distribution of
Yi without introducing the latent indicator Si right from the beginning.
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For the doubly stochastic process {St, Yt}T
t=1 obeying conditions S4 and

Y4 it is rather easy to derive the marginal distribution of Yt:

p(yt|ϑ) =
K∑

k=1

p(yt|St = k,ϑ)Pr(St = k|ϑ).

Because St is a stationary Markov chain and the conditional distribution of
Yt given St = k has density p(yt|θk), one obtains that the unconditional
distribution of Yt is a finite mixture of T (θ) distribution with the ergodic
probabilities η = (η1, . . . , ηK) acting as weight distribution (Baum et al.,
1970):

p(yt|ϑ) =
K∑

k=1

p(yt|θk)ηk. (10.2)

Hence the process Yt is said to be generated by a finite Markov mixture
of T (θ) distributions. Stationarity of Yt is evident from (10.2). Furthermore
such a process is autocorrelated (see Subsection 10.2.4), which is an important
difference to a (standard) finite mixture of T (θ) distributions, which produces
sequences of independent random variables.

One early example of a finite Markov mixture distribution is the hidden
Markov chain model (Baum and Petrie, 1966), where Yt is a discrete random
signal taking one out of D values {1, . . . , D} according to a discrete probability
distribution, which depends on the state of St:

Pr(Yt = l|St = k) = πk,l,

for k = 1, . . . , K and l = 1, . . . , D. The transition matrix ξ as well as the
matrix Π = (πk,l) is assumed to be unknown and has to be recovered from
observations y = (y1, . . . , yT ) of the process {Yt}T

t=1, whereas St is unobserved.
Another early example is a Markov mixture of normal distributions (Baum

et al., 1970), where Yt is a discrete signal observed with noise:

Yt =

⎧⎪⎨⎪⎩
µ1 + εt, εt ∼ N

(
0, σ2

1
)
, St = 1,

...
µK + εt, εt ∼ N

(
0, σ2

K

)
, St = K.

Many more examples appear throughout the remaining chapters.
The mathematical properties of a process generated by a finite Markov

mixture distribution have been studied for specific processes obeying con-
ditions Y4 and S4 such as hidden Markov chain models (Blackwell and
Koopmans, 1957; Heller, 1965), white noise driven by a hidden Markov chain
(Francq and Roussignol, 1997), discrete-valued time series generated by a
hidden Markov chain (MacDonald and Zucchini, 1997), Markov mixtures of
normal distributions (Krolzig, 1997), and Markov mixtures of more general
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location-scale families, where Yt = µSt
+ σSt

εt, with εt being an i.i.d. process
(Timmermann, 2000).

After a short introduction into irreducible, aperiodic Markov chains in
Subsection 10.2.2 these results are summarized for arbitrary processes Yt being
generated by a Markov mixture obeying conditions Y4 and S4.

10.2.2 Irreducible Aperiodic Markov Chains

In this subsection we briefly review properties of irreducible aperiodic Markov
chains, focusing on results that are needed later on. For a more detailed survey
we refer to Karlin and Taylor (1975).

Let St be a homogeneous first-order Markov chain with transition matrix
ξ, where the elements of ξ are unconstrained apart from the natural con-
straints defined in (10.1). The transition matrix ξ plays a prominent role in
understanding the properties of the corresponding Markov chain.

Any probability distribution η = (η1, . . . , ηK) that fulfills the invariance
property

ξ
′
η = η, (10.3)

is called an invariant distribution of St. The practical importance of the in-
variant distribution for the Markov chain St is the following. Assume that at
time t − 1 the states of St−1 are drawn from an invariant distribution of ξ.
Then the following holds ∀k = 1, . . . , K,

Pr(St = k|ξ) =
K∑

j=1

Pr(St = k|St−1 = j, ξ)Pr(St−1 = j|ξ)

=
K∑

j=1

ξjkηj = ηk.

Therefore the states of St are again drawn from η, and so on for St+1, . . ..
It is possible to show that such an invariant distribution exists for any

finite Markov chain. By rewriting the constraint (10.1) as

ξj·1K×1 = 1, ∀j = 1, . . . , K,

where ξj· refers to row j of ξ, and 1K×1 is a column vector of ones, it becomes
apparent, that for any transition matrix ξ one of the eigenvalues is equal to
1:

ξ1K×1 = 1 × 1K×1.

By rewriting (10.3) as

η
′
ξ = η

′ × 1,
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it becomes apparent that, formally, η is the (suitably normalized) left-hand
eigenvector of ξ, associated with the eigenvalue 1.

The invariant distribution, however, is not unique for arbitrary transition
matrices ξ ∈ (EK)K ; consider, for instance, the transition matrix ξ = IK , for
which any arbitrary probability distribution will be invariant. An outstanding
subset in the class (EK)K contains transition matrices for which this invariant
distribution is unique and, additionally, the distribution of St converges to
this invariant distribution, regardless of the state of S0. Such a Markov chain
is called an ergodic Markov chain, and the invariant distribution η is called
the ergodic distribution of the Markov chain.

Necessary restrictions on ξ to achieve ergodicity may be defined in terms
of properties of ξh = ξ · · · ξ, the hth power of the transition matrix ξ. ξh

determines the long-run behavior of the Markov chain in terms of the h-step
ahead predictive distribution Pr(St+h = l|St = k, ξ) of St+h given St = k:

Pr(St+h = l|St = k, ξ) = (ξh)kl, (10.4)

where (ξh)kl is the element (k, l) of ξh. (10.4) is obvious for h = 1 from the
definition of ξ. For h > 1, (10.4) is easily derived by induction:

Pr(St+h = l|St = k, ξ)

=
K∑

j=1

Pr(St+h = l|St+h−1 = j, ξ)Pr(St+h−1 = j|St = k, ξ)

=
K∑

j=1

ξjl(ξh−1)kj = (ξh)kl.

Uniqueness of the invariant distribution follows for any transition matrix that
leads to an irreducible Markov chain. Irreducibility means that starting St

from an arbitrary state k ∈ {1, . . . , K} any state l ∈ {1, . . . , K} must be
reachable in finite time, or in terms of (ξh)kl:

∀(k, l) ∈ {1, . . . , K} ⇒ ∃h(k, l) : (ξh(k,l))kl > 0. (10.5)

It follows that any transition matrix ξ where all elements ξjk are positive leads
to irreducibility and uniqueness of the invariant distribution. More generally,
irreducibility follows if (ξh)kl > 0 for some h ≥ 1, independent of k, l. If any
element (ξh)kl is 0 for all h ≥ 1, then the Markov chain is reducible; consider,
for instance, the following transition matrix

ξ =
(

ξ11 1 − ξ11
0 1

)
, (10.6)

which reappears in Subsection 10.3.3 in the context of change-point modeling.
It is easily verified that this transition matrix leads to a reducible Markov
chain, in as much as for all h ≥ 1:
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ξh =
(

ξh
11 1 − ξh

11
0 1

)
.

Solving (10.3) for K = 2 leads to the following invariant probabilities,

η1 =
1 − ξ22

(1 − ξ11) + (1 − ξ22)
=

ξ21

ξ12 + ξ21
, (10.7)

η2 =
1 − ξ11

(1 − ξ11) + (1 − ξ22)
=

ξ12

ξ12 + ξ21
.

For a Markov chain with ξ11 = ξ22, the invariant probability distribution is
uniform: η1 = η2 = 0.5; ξ11 > ξ22 favors state 1: η1 > η2, whereas ξ11 < ξ22
favors state 2: η1 < η2.

For K > 2, some numerical method has to be used for solving (10.3). A
closed-form expression for the invariant probability distribution η in terms of
the transition matrix ξ is derived in Hamilton (1994b, Section 22.2). Define a
matrix A as

A =
(

IK − ξ
′

11×K

)
, (10.8)

with IK being the identity matrix with K rows and 11×K being a row vector
of ones. Then η is given as the (K + 1)th column of the matrix (A

′
A)−1A

′
:

η =
(
(A

′
A)−1A

′)
·,K+1

. (10.9)

Now let us turn to the distribution Pr(St|ξ) of a Markov chain St, starting
with S0 being drawn from a certain probability distribution. If the states of
S0 are drawn from the invariant distribution η of ξ, then by the invariance
property Pr(St|ξ) is equal η for all t ≥ 1, but what happens if S0 is drawn from
a different distribution or is assumed to be a fixed starting value? Consider,
for instance, the following irreducible transition matrix

ξ =

⎛⎝0 1 0
0 0 1
1 0 0

⎞⎠ . (10.10)

This matrix is an example of a doubly stochastic matrix where both the row
and the column sums are equal to 1:

K∑
k=1

ξjk = 1,

K∑
j=1

ξjk = 1.

For such matrices the uniform distribution, ηk = 1/K, is an invariant distri-
bution:
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K∑
j=1

ξjkηj =
1
K

K∑
j=1

ξjk =
1
K

, ∀k = 1, . . . , K.

Because (10.10) is irreducible, the uniform distribution is the unique in-
variant distribution; the distribution Pr(St|ξ), however, does not converge to
the invariant distribution if S0 is started with a different distribution, such as
the degenerate distribution Pr(S0 = 1) = 1, because

Pr(St = 1|S0 = 1, ξ) = 1, iff t = 3m + 1, m ∈ {1, 2, 3, . . .},

Pr(St = 2|S0 = 1, ξ) = 1, iff t = 3m + 2, m ∈ {1, 2, 3, . . .},

Pr(St = 3|S0 = 1, ξ) = 1, iff t = 3m, m ∈ {1, 2, 3, . . .}.

The main reason for this failure of convergence is that the transition matrix
(10.10) is periodic and captures a kind of seasonal pattern.

Ergodicity of a Markov chain with transition matrix ξ holds, if the Markov
chain is aperiodic. Aperiodicity is defined as the absence of periodicity such as
the one observed in the transition matrix (10.10). Consider, for each state k, all
periods n for which the transition probability Pr(St+n = k|St = k, ξ) = (ξn)kk

is positive. The period of a state is the greatest common divisor (GCD) of all
periods n. A Markov chain is aperiodic, if the period of each state is equal to
one:

GCD{n ≥ 1 : (ξn)kk > 0} = 1, ∀k ∈ {1, . . . , K}.

A Markov chain is aperiodic if all diagonal elements of ξ are positive.
Ergodicity of a Markov chain implies that the distribution Pr(St|ξ, S0 = k)

which is equal to the kth row (ξh)k· of ξh converges to the ergodic distribution,
regardless of the state k of S0:

lim
h→∞

(ξh)k· = η
′
.

For understanding Markov mixture models it is helpful to know if this conver-
gence is fast or if the Markov chain St is persistent, meaning that the state of
St is mainly defined by the state of St−1. It turns out that the second largest
eigenvalues of ξ play a crucial role in this respect.

Consider, for instance, a two-state Markov chain, where

ξ =
(

ξ11 1 − ξ11
1 − ξ22 ξ22

)
.

A two-state Markov chain is ergodic if 0 < ξ11 + ξ22 < 2. The eigenvalues are
obtained from∣∣∣∣ ξ11 − λ 1 − ξ11

1 − ξ22 ξ22 − λ

∣∣∣∣ = (λ − 1)(λ − (ξ11 + ξ22 − 1)) = 0.

Apart from λ = 1, the other eigenvalue is equal to:
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λ = ξ11 + ξ22 − 1 = ξ11 − ξ21. (10.11)

For K = 2 a simple representation of ξh in terms of the ergodic probability
distribution is possible (Hamilton, 1994a, p.683):

ξh =
(

η1 η2
η1 η2

)
+ λh

(
η2 −η2

−η1 η1

)
, (10.12)

with λ being the second eigenvalue derived in (10.11) which demonstrates that
persistence of St is higher, the closer λ is to 1.

Persistence is also related to the issue of duration of a certain state. Given
that the Markov chain St is currently in state j, the duration Dj of that state
is a random variable following a geometric distribution with parameter 1−ξjj

(see Appendix A.1.7),

Pr(Dj = l|St = j) = Pr(St+1 = j, . . . , St+l−1 = j, St+l �= j|St = j)

=
l−1∏
m=1

Pr(St+m = j|St+m−1 = j)Pr(St+l �= j|St+l−1 = j)

= ξl−1
jj (1 − ξjj).

Therefore the expected duration of state j is given by

E(Dj) =
1

1 − ξjj
. (10.13)

Two interesting conclusions may be drawn from (10.13). First, the expected
duration of state j is longer the closer the persistence probability ξjj is to
1. Second, if the persistence probabilities differ in the various states, then
also the expected duration of the state differs across states. Therefore Markov
mixture distributions are able to capture asymmetry over time as observed
for economic time series such as unemployment (Neftçi, 1984) and GDP, in-
vestment, and industrial production (Falk, 1986) over the business cycle.

10.2.3 Moments of a Markov Mixture Distribution

Because the unconditional distribution of a random process Yt, being gener-
ated by a Markov mixture of T (θ)-distribution is a standard finite mixture of
T (θ)-distribution with the ergodic probabilities acting as weights, the expec-
tation of any function h(Yt) of Yt is given by the results of Subsection 1.2.4,
where η is substituted by the ergodic distribution of St.

From Subsection 1.2.4 it is known that standard finite mixture distri-
butions are able to generate probability distributions with asymmetry and
fat tails. Timmermann (2000) studied finite Markov mixture distributions
taken from a location-scale family and demonstrated that the introduction of
Markovian dependence into the hidden indicator St even increases the scope
for asymmetry and fat tails in the generated process.
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Moments of a Markov Mixture of Two Normal Distributions

More explicit results are given for a Markov mixture of two normal distribu-
tions:

Yt =
{

µ1 + εt, εt ∼ N
(
0, σ2

1
)
, St = 1,

µ2 + εt, εt ∼ N
(
0, σ2

2
)
, St = 2.

The unconditional distribution of Yt is given by a mixture of two normal
distributions:

p(yt|ϑ) = η1fN (yt; µ1, σ
2
1) + η2fN (yt; µ2, σ

2
2), (10.14)

where the ergodic probabilities η1 and η2 are given by (10.7). The marginal
distribution (10.14) exhibits nonnormality as long as either µ1 �= µ2 or σ2

1 �=
σ2

2 . Multimodality of the marginal distribution is possible for appropriate
choices of (µ1, µ2, σ

2
1 , σ2

2 , ξ11, ξ21) and could be checked for a given parameter
using the results of Subsection 1.2.2.

From Subsection 1.2.4 the following coefficient of skewness results,

E((Yt − µ)3|ϑ)
E((Yt − µ)2|ϑ)3/2 = η1η2(µ1 − µ2)

3(σ2
2 − σ2

1)2 + (η2 − η1)(µ2 − µ1)2

σ3 ,

with µ = E(Yt|ϑ) and σ2 = Var(Yt|ϑ) being the mean and variance of the
mixture distribution (10.14):

µ = η1µ1 + η2µ2,

σ2 = η1σ
2
1 + η2σ

2
2 + η1η2(µ2 − µ1)2.

Skewness in the marginal distribution will be present whenever both the means
and the variances are different. For a model where the means are the same, no
skewness is present. If the variances are the same and the means are different,
skewness is possible only iff η1 �= η2. Thus, for a Markov mixture model
with different means but equal variances, asymmetry is introduced into the
marginal distribution only through asymmetry in the persistence probabilities,
namely ξ11 �= ξ22.

From Subsection 1.2.4, excess kurtosis is given by

E((Yt − µ)4|ϑ)
E((Yt − µ)2|ϑ)2

− 3 = η1η2
3(σ2

2 − σ2
1)2 + c(µ1, µ2)

σ4 , (10.15)

where c(µ1, µ2) = 6(η1 − η2)(σ2
2 − σ2

1)(µ2 − µ1)2 + (µ2 − µ1)4(1 − 6η1η2); see
also Timmermann (2000, Corollary 1). Therefore if µ1 = µ2, the marginal
distribution has fatter tails than a normal distribution as long as σ2

1 �= σ2
2 .
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10.2.4 The Autocorrelation Function of a Process Generated by a
Markov Mixture Distribution

A finite Markov mixture distribution generates an autocorrelated process Yt

where the autocorrelation strongly depends on the persistence of St. The
autocorrelation function of Yt is defined in the usual way as

ρYt(h|ϑ) =
E(YtYt+h|ϑ) − µ2

σ2 , (10.16)

with µ = E(Yt|ϑ) and σ2 = Var(Yt|ϑ) being the unconditional moments and

E(YtYt+h|ϑ) =
∫

ytyt+hp(yt, yt+h|ϑ)dytdyt+h.

MacDonald and Zucchini (1997) derive the autocorrelation function for hid-
den Markov chain models for time series of counts, whereas Krolzig (1997),
Rydén et al. (1998), and Timmermann (2000) consider continuous data. In
the following we provide results for arbitrary processes obeying conditions S4
and Y4.

To this aim it is useful to give an explicit form for the density p(yt, yt+h|ϑ)
of the joint unconditional distribution of Yt and Yt+h:

p(yt, yt+h|ϑ) =
K∑

k,l=1

p(yt|St = k,ϑ)p(yt+h|St+h = l, ϑ)

× Pr(St+h = l|St = k, ξ)Pr(St = k|ξ). (10.17)

The predictive distribution Pr(St+h = l|St = k, ξ) is given by (10.4), and
(10.17) reduces to

p(yt, yt+h|ϑ) =
K∑

k=1

p(yt|θk)ηk

K∑
l=1

p(yt+h|θl)(ξh)kl, (10.18)

where (ξh)kl is the element (k, l) of the hth power of the transition matrix ξ.
Therefore E(YtYt+h|ϑ) is given by

E(YtYt+h|ϑ) =
K∑

k=1

ηkµk

K∑
l=1

(ξh)klµl, (10.19)

and the autocorrelation function results from (10.16):

ρYt(h|ϑ) =

K∑
k=1

µkηk

K∑
l=1

µl(ξh)kl − µ2

σ2 .

Because the process Yt is uncorrelated conditional on knowing St, the auto-
correlation function depends on h only through ξh, and autocorrelation in the
marginal process Yt, where St is unknown, enters through persistence in St,
only. Note that Yt, in contrast to St, is no longer a Markov process of first
order.
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Autocorrelation for a Two-State Model

From the specific form of ξh given in (10.12), the following autocorrelation
function results for any two-state finite Markov mixture model,

ρYt
(h|ϑ) =

η1η2(µ1 − µ2)2

σ2 λh, (10.20)

with λ = ξ11 − ξ21 being the second eigenvalue of ξ.
No autocorrelation in Yt is present if µ1 = µ2. Otherwise, autocorrelation

of Yt is caused through the hidden Markov chain St, whenever ξ11 �= ξ21. The
process Yt exhibits positive autocorrelation provided that ξ11 > ξ21, otherwise
negative autocorrelation results. An equivalent criterion is to check if ξ11 +ξ22
is larger or smaller than 1.

Relation to ARMA Models

There exists a close relationship between Markov mixture models and nonnor-
mal ARMA models. For a two-state Markov mixture model, for instance, the
autocorrelation function of Yt given in (10.20) fulfills, for h > 1, the following
recursion,

ρYt(h|ϑ) = λρYt(h − 1|ϑ),

and corresponds to the autocorrelation function of an ARMA(1, 1) process,
whereas the nonnormality of the unconditional distribution of Yt is preserved
through the mixture distribution. In general, Poskitt and Chung (1996) proved
for a univariate K-state hidden Markov chain Yt = µSt

+ ut the existence of
an ARMA(K −1, K −1) representation with a homogeneous zero-mean white
noise process.

10.2.5 The Autocorrelation Function of the Squared Process

An interesting feature of any finite Markov mixture model is that it generates
processes Yt, with Y 2

t being autocorrelated. This is of particular interest when
Markov mixture models are applied to financial time series; see Section 12.5.
Timmermann (2000, Proposition 5) derived the autocorrelation function for
a Markov mixture based on the continuous location-scale family. It is quite
easy to generalize these results to any process obeying conditions Y4 and S4.

The autocorrelation function of Y 2
t is defined as

ρY 2
t
(h|ϑ) =

E(Y 2
t Y 2

t+h|ϑ) − E(Y 2
t |ϑ)2

E(Y 4
t |ϑ) − E(Y 2

t |ϑ)2
, (10.21)

where E(Y 2
t |ϑ) =

∑K
k=1 E(Y 2

t |θk)ηk, and E(Y 4
t |ϑ) =

∑K
k=1 E(Y 4

t |θk)ηk, and
E(Y 2

t Y 2
t+h|ϑ) is obtained from (10.18) as
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E(Y 2
t Y 2

t+h|ϑ) =
K∑

k=1

ηkE(Y 2
t |θk)

K∑
l=1

E(Y 2
t+h|θl)(ξh)kl, (10.22)

with (ξh)kl being the element (k, l) of the hth power of the transition ma-
trix ξ. Although the process Y 2

t is uncorrelated conditional on knowing St,
autocorrelation in Y 2

t enters through persistence in St.

Autocorrelation in the Squared Process for a Two-State Model

We provide here further details for a Markov mixture of two normal distri-
butions. From the general autocorrelation function of Y 2

t given by (10.21),
together with the representation of the transition matrix ξ of a two-state
Markov model as in (10.12), one obtains:

E(Y 2
t Y 2

t+h|ϑ) = E(Y 2
t |ϑ) + η1η2(µ2

1 − µ2
2 + σ2

1 − σ2
2)2λh, (10.23)

with λ = ξ11 − ξ21 being the second eigenvalue of ξ. Therefore:

ρY 2
t
(h|ϑ) =

η1η2(µ2
1 − µ2

2 + σ2
1 − σ2

2)2

E(Y 4
t |ϑ) − E(Y 2

t |ϑ)2
λh. (10.24)

The squared process exhibits positive autocorrelation provided that ξ11 >
ξ21, otherwise if ξ11 < ξ21 negative autocorrelation will result. An equivalent
criterion is to check if ξ11 + ξ22 is larger or smaller than 1. Interestingly, state
dependent variances are neither necessary nor sufficient for autocorrelation in
the squared process. Even if σ2

1 = σ2
2 , the marginal process shows conditional

heteroscedasticity, as long as St does not degenerate to an i.i.d. process. On
the other hand, if ξ11 = ξ21, no autocorrelation in the squared returns is
present, even if σ2

1 �= σ2
2 .

By comparing the autocorrelation of Y 2
t , given by (10.24), with the au-

tocorrelation of Yt, given by (10.20), we find that a Markov mixture of two
normal distributions with µ1 = µ2 will produce an uncorrelated process with-
out skewness in the marginal distribution, whereas Y 2

t is correlated and the
marginal distribution has fat tails, as long as σ2

1 �= σ2
2 . As for other mod-

els that capture autocorrelation in the squared process, such as the GARCH
model (Bollerslev, 1986), differences in the variances alone are insufficient to
capture asymmetry in the marginal distribution.

10.2.6 The Standard Finite Mixture Distribution as a
Limiting Case

Any standard finite mixture of T (θ)-distributions defined in Chapter 1 may be
thought of as that limiting case of a finite Markov mixture of T (θ)-distribution
where St is an i.i.d. random sequence, in which case the transition probabilities
from state j to state k are equal to Pr(St = k|St−1 = j) = Pr(St = k) = ηk.
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Thus a random variable Yt drawn from a standard finite mixture of T (θ)-
distribution with weight distribution η is observationally equivalent with a
process Yt generated by a finite Markov mixture of T (θ)-distributions where
all rows of the transition matrix of St are identical to η:

ξ =

⎛⎜⎝ η1 · · · ηK

...
...

η1 · · · ηK

⎞⎟⎠ .

In this case the transition matrix ξ is idempotent, ξh = ξ for all h ≥ 1, and
(10.19) reduces to

E(YtYt+h|ϑ) =
K∑

k=1

ηkµk

K∑
l=1

ξklµl = µ2.

Thus the autocorrelation ρYt
(h|ϑ) of Yt, given by (10.16), is equal to 0 for

h > 1. Similarly, (10.22) reduces to

E(Y 2
t Y 2

t+h|ϑ) =
K∑

k=1

ηkE(Y 2
t |θk)

K∑
l=1

E(Y 2
t+h|θl)ξkl = E(Y 2

t |ϑ)2,

and the autocorrelation ρY 2
t
(h|ϑ) of Y 2

t , given by (10.21), is equal to 0 for
h > 1.

10.2.7 Identifiability of a Finite Markov Mixture Distribution

For a finite Markov mixture distribution one has to distinguish between the
same three types of nonidentifiability that have been discussed for a standard
finite mixture distribution in Section 1.3. There exists nonidentifiability due
to invariance to relabeling the states of the hidden Markov chain as well as
generic nonidentifiability.

Consider all s = 1, . . . , K! different permutations ρs : {1, . . . , K} →
{1, . . . , K}, where the value ρs(k) is assigned to each value k ∈ {1, . . . , K}.
Let ϑ = (θ1, . . . ,θK , ξ) be an arbitrary point in the parameter space
ΘK = ΘK × (EK)K , and define a subset UP (ϑ) ⊂ ΘK by

UP (ϑ) =
K!⋃
s=1

{ϑ� ∈ ΘK : ϑ� = (θρs(1), . . . ,θρs(K), ξ
ρs)}, (10.25)

where ξρs is related to ξ by permuting the rows and the column in the same
fashion:

ξρs

jk = ξρs(j),ρs(k), ∀j, k ∈ {1, . . . , K}. (10.26)
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Then evidently, all points in UP (ϑ) generate the same Markov mixture distri-
bution, however, with a different labeling of the states of the hidden Markov
chain.

A weak inequality constraint, similar to the one discussed for finite mix-
tures in Subsection 1.3.3 requiring that the state-specific parameters θk and
θl differ in at least one element, which need not be the same for all states,
will rule out these identifiability problems.

Blackwell and Koopmans (1957) is an early reference addressing generic
identifiability problems for some special hidden Markov chain models, where
Yt is a discrete signal. Petrie (1969) proved generic identifiability for hidden
Markov chain models, where the observed process Yt takes values in a finite
set. Identifiability for rather general finite Markov mixtures is addressed in
Leroux (1992b).

One necessary condition for generic identifiability of a Markov mixture of
T (θ)-distributions is that a standard finite mixture of T (θ)-distributions is
generically identifiable; see again Subsection 1.3.4. A second necessary con-
dition is that the hidden Markov chain is irreducible and aperiodic; it is,
however, not necessary to assume that S0 started from the invariant distribu-
tion.

10.3 Statistical Modeling Based on Finite Markov
Mixture Distributions

Researchers have found Markov mixture models increasingly useful in applied
time series analysis.

10.3.1 The Basic Markov Switching Model

Assume that a time series {y1, . . . , yT } is observed as a single realization of
a stochastic process {Y1, . . . , YT }. In the basic Markov switching model the
time series {y1, . . . , yT } is assumed to be a realization of a stochastic process
Yt generated by a finite Markov mixture from a specific distribution family:

Yt|St ∼ T (θSt
),

where St is an unobservable (hidden) K state ergodic Markov chain, and Yt

fulfills assumption Y4.
The basic Markov switching model found widespread applications in many

practical areas including bioinformatics, biology, economics, finance, hydrol-
ogy, marketing, medicine, and speech recognition. Various terminology became
usual to denote models based on hidden Markov chains. The term Markov mix-
ture models is preferred by biologists (Albert, 1991). Markov mixture models
are usually called hidden Markov models in engineering applications (Zuc-
chini and Guttorp, 1991; Thyer and Kuczera, 2000) and in speech recognition
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(Levison et al., 1983; Rabiner, 1989). The terms Markov switching models or
regime-switching models are preferred by economists who used Markov switch-
ing models to analyze stock market returns (Pagan and Schwert, 1990; Engel
and Hamilton, 1990), interest rates (Ang and Bekaert, 2002) and asymmetries
over the business cycle (Neftçi, 1984; Hamilton, 1989); see the monographs
by Bhar and Hamori (2004), Krolzig (1997) and Kim and Nelson (1999) and
Chapter 12 for further references and more details.

An interesting special case of the basic Markov switching model arises if
{y1, . . . , yT } is a discrete-valued time series (MacDonald and Zucchini, 1997).
Because one may choose Markov mixtures of any discrete distribution, it is
possible to model many different types of discrete valued time series data, for
example, binary time series by

Pr(Yt = 1|St) = πSt , (10.27)

time series of bounded counts by a Markov mixture of binomial distributions,

Yt|St ∼ BiNom (nt, πSt) , (10.28)

or time series of unbounded counts by a Markov mixture of Poisson distribu-
tions,

Yt|St ∼ P (µSt) ; (10.29)

see also Section 11.7. An important feature of applying Markov mixture mod-
els to discrete-valued time series is the ease with which autocorrelation is
introduced, and the properties of the marginal distribution are easily ana-
lyzed.

Similarly, the basic Markov switching model could be applied to deal with
autoregression in positive-valued time series (Lawrance and Lewis, 1985) sim-
ply by choosing the observation density p(yt|θ) from any density on �+, such
as the exponential, the Gamma, or the Weibull distribution.

The basic Markov switching model has been generalized in several ways
as outlined in the following subsections as well as in Chapter 12.

10.3.2 The Markov Switching Regression Model

An early attempt at introducing Markov switching models into econometrics
in order to deal with time series data that depends on exogenous variables is
the switching regression model of Goldfeld and Quandt (1973), which extends
the switching regression model (Quandt, 1972) described earlier in Section 8.2.
Whereas Quandt (1972) assumes that St is an i.i.d. random sequence, Goldfeld
and Quandt (1973) allow explicitly for dependence between the states by
modeling St as a two-state hidden Markov chain.

The general Markov switching regression model reads,

Yt = xtβSt
+ εt, εt ∼ N

(
0, σ2

ε,St

)
, (10.30)
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where St is a hidden Markov chain and xt is a row vector of explanatory
variables including the constant (Lindgren, 1978; Cosslett and Lee, 1985). For
discrete-valued explanatory variables, the Markov switching regression model
will suffer from the same identifiability problems as the standard finite mixture
of regression models studied in Subsection 8.2.2, a fact that has remained
unnoted in the literature.

10.3.3 Nonergodic Markov Chains

In certain applications it makes sense to consider Markov switching models
driven by a nonergodic Markov chain. An important example is a model driven
by a Markov chain with transition matrix ξ defined in (10.6) which captures a
single structural break or change-point. Assume that the Markov chain starts
in S0 = 1. The Markov chain will stay in state 1 for h periods; that is,
S1 = · · · = Sh = 1 with probability ξh

11. Once state 2 is reached for the first
time, the process remains there. An important aspect of this model is that
the time of change-point occurrence is random.

A multiple change-point model with K change-points may be modeled
through a Markov switching model with the following transition matrix (Chib,
1998),

ξ =

⎛⎜⎜⎜⎜⎜⎝
ξ11 1 − ξ11 0 · · · 0
0 ξ22 1 − ξ22 · · · 0

. . . . . . . . .
0 ξK−1,K−1 1 − ξK−1,K−1

0 1

⎞⎟⎟⎟⎟⎟⎠ . (10.31)

A more general Bayesian time series model of multiple structural changes in
level, trend, and variance is studied in Wang and Zivot (2000). For a review of
other methods of testing for the presence of unknown breakpoints in normal
linear regression see Ploberger et al. (1989) and Andrews et al. (1996).

10.3.4 Relaxing the Assumptions of the Basic Markov
Switching Model

The basic Markov switching model has been extended by many authors with
the aim of formulating even more flexible models for a wide range of time
series data.

Let {St}T
t=0 be a finite-state Markov process with state space {1, . . . , K},

and let {Yt}T
t=1 be a sequence of random variables with sampling space Y.

A general Markov switching model is obtained by specifying the density
p(S,y|ϑ) of the joint distribution of S = {St}T

t=0 and Y = {Yt}T
t=1, which is

equal to:

p(S,y|ϑ) = p(S0|ϑ)
T∏

t=1

p(yt|yt−1,St, ϑ)p(St|St−1,yt−1, ϑ). (10.32)
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p(yt|yt−1,St, ϑ) is the one-step ahead predictive density of the conditional
distribution of Yt, knowing the past realizations yt−1 = (y1, . . . , yt−1) of
Yt−1 and knowing the states St = (S0, . . . , St). p(St|yt−1,St−1, ϑ) is the
density of the conditional distribution of St, knowing all past states St−1 =
(S0, . . . , St−1) and the past realizations yt−1. The parameter ϑ contains un-
known model parameters such as the transition matrix ξ, and other parame-
ters indexing the densities p(yt|yt−1,St, ϑ) and p(St|St−1, ϑ).

The basic Markov switching model, formulated in Subsection 10.2.1, re-
sults under rather strong assumptions concerning the densities p(yt|yt−1,St, ϑ)
and p(St|St−1,yt−1, ϑ). Under assumption Y4, the density p(yt|yt−1,St, ϑ)
is not allowed to depend on past realizations yt−1 nor on the previous states
of St−1: p(yt|yt−1,St, ϑ) = p(yt|θSt

). Assumption S4 implies that the condi-
tional distribution p(St|St−1,yt−1, ϑ) is influenced by the state of St−1, only,
and is independent of t. More general Markov switching models result by con-
sidering more general observation densities p(yt|yt−1,St, ϑ) or more general
probability models of the hidden Markov chain.

More General Observation Densities

First of all, the conditional distribution of Yt given St may be allowed to
depend on past realizations yt−1 = (y1, . . . , yt−1) of Y1, . . . , Yt−1, leading to
assumption

Y3 Only the present value of St influences the density p(yt|yt−1,St, ϑ) and
dependence on past values of St is not allowed:

p(yt|yt−1,St, ϑ) = p(yt|yt−1, St, ϑ), (10.33)

for t = 1, . . . , T . Furthermore, p(yt|yt−1, St, ϑ) is allowed to depend on
exogenous variables zt.

The Markov switching regression model discussed in Subsection 10.3.2 results
as that special case where p(yt|St, ϑ) is independent of yt−1 while depend-
ing on exogenous variables zt. Further examples are the Markov switching
autoregressive model suggested by McCulloch and Tsay (1994b), which is dis-
cussed in Section 12.2, and the Markov switching dynamic regression model,
discussed in Section 12.3.

Assumption Y3 is not fulfilled by the original Markov switching autore-
gressive model suggested by Hamilton (1989), which fulfills the more general
condition

Y2 The present value of St, as well as a limited number of past values
St−1, . . . , St−p influences the observation density p(yt|yt−1,St, ϑ):

p(yt|yt−1,St, ϑ) = p(yt|yt−1, St, . . . , St−p, ϑ). (10.34)

Assumption Y2 is still too restrictive for switching ARMA models (Billio and
Monfort, 1998) and switching GARCH models (Francq et al., 2001); see also
Subsection 12.5.5. These models fulfill only the most general assumption
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Y1 The observation density p(yt|yt−1,St, ϑ) depends on yt−1 and all past
states of St.

More General Models for the Hidden Markov Chain

The change-point model discussed in Subsection 10.3.3 shows that sensible
Markov switching models result, when assumption S4 is relaxed in the fol-
lowing way.

S3 St is a first-order homogeneous Markov chain with arbitrary transition
matrix ξ, which need not be irreducible or aperiodic, and starts from an
arbitrary distribution p0 = (p0,1, . . . , p0,K), where

p0,k = Pr(S0 = k). (10.35)

Furthermore it is possible to relax the assumption of homogeneity of the
hidden Markov chain St as done in Subsection 12.6.1 for models with time-
varying transition probabilities:

S2 St is a first-order inhomogeneous Markov chain, with the conditional dis-
tribution of St being independent of yt−1 and depending on the most
recent value St−1 and on some exogenous variables zt:

Pr(St = k|St−1,yt−1) = Pr(St = k|St−1, zt), ∀k ∈ {1, . . . , K}.

Some Markov switching models with time-varying transition matrices also
allow for dependence of the transition matrix on previous realizations yt−1.

S1 St is a first-order Markov chain, and the conditional distribution of St

depends on the history yt−1 of Yt:

Pr(St = k|St−1,yt−1) = Pr(St = k|St−1,yt−1), ∀k ∈ {1, . . . , K},

for t = 1, . . . , T .

The Initial Distribution of S0

To complete the model specification for the process St, the distribution p0
needs to be specified. Under assumption S4, St starts from the ergodic prob-
ability distribution, hence p0 = η. This assumption could be relaxed by as-
suming that St starts from an arbitrary discrete probability distribution p0,
independent of ξ. Note that the resulting Markov chain is no longer stationary.

The initial distribution p0 could either be a uniform distribution over
{1, . . . , K} (Frühwirth-Schnatter, 2001b), or could be treated as an unknown
parameter to be estimated from the data (Goldfeld and Quandt, 1973; Leroux
and Puterman, 1992).

For certain reducible Markov chains it is sensible to assume that the start-
ing value S0 is a known value. Consider, for instance, the transition matrix
(10.31), which captures structural breaks at unknown time points when start-
ing with S0 = 1.
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Statistical Inference for Markov Switching
Models

11.1 Introduction

For a Markov switching model there are three key problems of statistical
inference that must be solved to render them useful for applied time series
analysis. First, modeling a time series by a Markov switching model requires
some specification of K, the number of states of the hidden Markov chain.
Second, the state-specific parameters and the transition matrix of the hidden
Markov chain are unknown and need to be estimated from the data. Finally,
estimates of the hidden Markov chain S = (S1, . . . , ST ) are of interest.

We start in Section 11.2 with state estimation for known state parameters
and introduce the filtering and the smoothing problem. In Section 11.3 pa-
rameter estimation when the states of the hidden Markov chains are known is
discussed. Section 11.4 deals with parameter estimation when the states are
unknown and the Markov mixture likelihood function is derived. Practical
Bayesian parameter estimation for a known number of states is discussed in
Section 11.5, making use of the principle of data augmentation, by introducing
the latent Markov chain as missing data, and running a Gibbs sampler. Sec-
tion 11.6 deals with model specification uncertainty for finite Markov mixture
models. Finally, Section 11.7 applies the methods of this chapter to modeling
overdispersion and autocorrelation in a time series of count data.

11.2 State Estimation for Known Parameters

In this section, statistical inference on the states of the hidden Markov chain S
for fixed state parameters and a known transition matrix, that is, inference on
ϑ = (θ1, . . . ,θK , ξ), is considered. In many applications statistical inference
about the hidden Markov chain is of interest in its own right, because the states
or regimes, as economists prefer to call them, may be given some substantive
meaning such as being the state of the economy in terms of boom and recession
(Hamilton, 1989) or being a climatic state (Zucchini and Guttorp, 1991).
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11.2.1 Statistical Inference About the States

Inference about the state of St at time t, given information yτ = (y1, . . . , yτ )
about the observable process Yt for all t ≤ τ , is expressed in terms of the
probability distribution Pr(St = l|yτ , ϑ), l = 1, . . . , K. The precise meaning
of these probabilities depends on the relation between t and τ . The prob-
abilities Pr(St = l|yτ , ϑ) with t > τ are the predictive state probabilities,
with the one-step ahead predictive probabilities Pr(St = l|yt−1, ϑ) being the
most important ones. The probabilities Pr(St = l|yt, ϑ) with t = τ are the
filtered state probabilities, and their derivation is also known as the filtering
problem. The probabilities Pr(St = l|yτ , ϑ) with t < τ are the smoothed state
probabilities with the full-sample smoothed probabilities Pr(St = l|y, ϑ), with
τ = T being the most important ones. Related estimation problems known
as Kalman filtering and Kalman smoothing occur for state space models with
continuous state space (see Chapter 13). Filter and smoother formulae devel-
oped for a hidden Markov chain may be regarded as a discrete state space
version of Kalman filtering because a hidden Markov chain model may be
thought of as being a state space model with discrete state space (Hamilton,
1994a; Cappé et al., 2005).

Many researchers have contributed to the development of efficient methods
for filtering and smoothing the unknown states of St for specific finite Markov
switching models such as hidden Markov chain models for discrete-valued pro-
cesses (Baum and Petrie, 1966), Markov mixtures of more general distribution
families (Baum et al., 1970), Markov switching regression models (Lindgren,
1978), Markov switching autoregressive models (Hamilton, 1989; Chib, 1996),
and for the more general switching state space model; see Section 13.5.

There exists a unifying algorithm for filtering and smoothing of all Markov
switching models fulfilling at least assumption Y3, whereas St only needs to
be a first-order Markov chain fulfilling at least assumption S1; see Subsec-
tions 11.2.2 and 11.2.4. Subsection 11.2.5 briefly treats the case of Markov
switching models violating assumption Y3.

11.2.2 Filtered State Probabilities

Speaking in general, the filtering problem for a state space model means sta-
tistical inference about the state variable given observations up to t. The
discreteness of the support of the state variable St allows us to derive the
complete filtering distribution Pr(St = l|yt, ϑ) for all possible realizations
l ∈ {1, . . . , K} of St.

Algorithm 11.1: Filtering the States The following steps are carried out re-
cursively for t = 1, 2, . . . , T .

(a) One-step ahead prediction of St:

Pr(St = l|yt−1, ϑ) =
K∑

k=1

ξ�
kl(t − 1)Pr(St−1 = k|yt−1, ϑ), (11.1)
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for l = 1, . . . , K, where ξ�
kl(t−1) = Pr(St = l|St−1 = k,yt−1, ϑ) simplifies

to the transition probability ξkl for homogeneous Markov chains.
(b) Filtering for St:

Pr(St = l|yt, ϑ) =
p(yt|St = l,yt−1, ϑ)Pr(St = l|yt−1, ϑ)

p(yt|yt−1, ϑ)
, (11.2)

where

p(yt|yt−1, ϑ) =
K∑

k=1

p(yt|St = k,yt−1, ϑ)Pr(St = k|yt−1, ϑ). (11.3)

At t = 1, the filter is started with the initial distribution Pr(S0 = k|ξ);
see Subsection 10.3.4 for various choices of this distribution. Therefore:

Pr(S1 = l|y0, ϑ) =
K∑

k=1

ξ�
kl(0)Pr(S0 = k|ξ), (11.4)

where ξ�
kl(0) = Pr(S1 = l|S0 = k,ϑ) simplifies to the transition probability

ξkl for homogeneous Markov chains.
As is typical for any filter, the discrete filter described in Algorithm 11.1 is

an adaptive inference tool. At time t − 1, the filtered probabilities Pr(St−1 =
l|yt−1, ϑ) summarize, for a fixed value of ϑ, all information the observations
y1, . . . , yt−1 contain about St−1. To obtain inference about St at time t in
terms of the “posterior” distribution Pr(St = l|yt, ϑ), knowledge of the pos-
terior distribution Pr(St−1 = l|yt−1, ϑ) at time t−1 and only the actual value
of yt are sufficient; see also Figure 11.1. Formula (11.1) delivers the “prior”
distribution of St given information up to t−1, whereas formula (11.2) corrects
the prediction through the information contained in the actual observation yt.

Filter at t − 1: Pr(St−1 = l|yt−1, ϑ)

⇓

Prediction for t: Pr(St = l|yt−1, ϑ)
Data at t: yt

⇓ ⇓

Filter at t: Pr(St = l|yt, ϑ)

Fig. 11.1. Filtering the states

For each run of the discrete filter conditional on a fixed value of ϑ, the one-
step ahead predictive densities p(yt|ϑ,yt−1) are available from (11.3) as the
normalizing constant of the nonnormalized discrete posterior. These densities
are useful for computing the likelihood function in Subsection 11.4.1.
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Numerical Stabilization

A straightforward implementation of (11.2) may lead to numerical problems if
yt is very unlikely compared to the prediction from the model. Then p(yt|St =
l,yt−1, ϑ) may be (numerically) 0 for all l ∈ {1, . . . , K} and the filter breaks
down as the denominator in (11.2) is 0. To avoid numerical problems, it is
usually better to work on the logarithmic scale. To be more specific, compute
first log p(yt|St = l,yt−1, ϑ) for all l = 1, . . . , K by taking the analytical
logarithm of the predictive density. For a basic Markov mixture of Poisson
distributions, for instance, this reads:

log p(yt|St = l,yt−1, ϑ) = log fP (yt; µl) = ytlog µl − log Γ (yt + 1) − µl.

Next define

Lt,max = max
l∈{1,...,K}

log p(yt|St = l,yt−1, ϑ),

and compute for each l = 1, . . . , K:

p�(yt|St = l,yt−1, ϑ) = exp(log p(yt|St = l,yt−1, ϑ) − Lt,max),

as well as the following sum,

p�(yt|yt−1, ϑ) =
K∑

k=1

p�(yt|St = k,yt−1, ϑ)Pr(St = k|yt−1, ϑ).

Then the filtered state probabilities are given by

Pr(St = l|yt, ϑ) =
p�(yt|St = l,yt−1, ϑ)Pr(St = l|yt−1, ϑ)

p�(yt|yt−1, ϑ)
.

If log p(yt|yt−1, ϑ) is also needed as part of evaluating the Markov mixture
likelihood function p(y|ϑ), then this numerical value is obtained from:

log p(yt|yt−1, ϑ) = Lt,max + log p�(yt|yt−1, ϑ).

Derivation of the Filtered State Probabilities

It is instructive to verify that the formulae given in Algorithm 11.1 actually
hold. The filter distribution is most conveniently derived by the help of Bayes’
theorem, however, other derivations are possible. By Bayes’ theorem:

Pr(St = l|yt, ϑ) = Pr(St = l|yt,yt−1, ϑ)

=
p(yt|St = l,yt−1, ϑ)Pr(St = l|yt−1, ϑ)

p(yt|yt−1, ϑ)
,
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where p(yt|yt−1, ϑ) is the normalizing constant of the nonnormalized filter
probability distribution:

p(yt|yt−1, ϑ) =
K∑

k=1

p(yt|St = k,yt−1, ϑ)Pr(St = k|yt−1, ϑ).

p(yt|St = l,yt−1, ϑ) is the sampling density of Yt assuming that St takes
the value l, whereas Pr(St = l|yt−1, ϑ) are the one-step ahead predictive or
“prior” probabilities of St given information about Ys for s ≤ t−1. These one-
step ahead predictive probabilities may be derived as marginal probabilities
in the following way.

Pr(St = l|yt−1, ϑ) =
K∑

k=1

Pr(St = l, St−1 = k|yt−1, ϑ)

=
K∑

k=1

Pr(St = l|St−1 = k,yt−1, ϑ)Pr(St−1 = k|yt−1, ϑ),

=
K∑

k=1

ξ�
kl(t − 1)Pr(St−1 = k|yt−1, ϑ).

11.2.3 Filtering for Special Cases

It is illustrative to apply Algorithm 11.2 to a model where St is a hidden i.i.d.
process with marginal distribution Pr(St = k) = ηk, rather than a hidden
Markov chain. Because a hidden i.i.d. process is observationally equivalent
with a hidden Markov chain with a transition matrix ξkl = ηl,∀k, l (see Sub-
section 10.2.6), one-step ahead prediction through (11.1) yields:

Pr(St = l|yt−1, ϑ) = ηl

K∑
k=1

Pr(St−1 = k|yt−1, ϑ) = ηl.

As expected, the predictive distribution of an i.i.d. process is independent of
the past, and the filter distribution in (11.2) depends on yt only:

Pr(St = l|yt, ϑ) = Pr(St = l|yt, ϑ).

Thus for an i.i.d. process only yt is informative about St.
How much the filtered state probabilities depend for a general hidden

Markov chain model on the past observations is strongly influenced by the
persistence of the transition matrix ξ. This should be made more explicit
for a homogeneous two-state hidden Markov chain. For a two-state Markov
chain, one-step ahead prediction through (11.1) yields the following predictive
probability for St = 1,
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Pr(St = 1|yt−1, ϑ)
= η1 + λη2Pr(St−1 = 1|yt−1, ϑ) − λη1Pr(St−1 = 2|yt−1, ϑ),

where the relationship between the transition matrix ξ and the ergodic prob-
abilities η given in (10.12) have been exploited for h = 1 and λ = ξ11 − ξ12
is equal to the second eigenvalue of ξ. The predictive probability may be ex-
pressed as a weighted mean of the ergodic probability η1 and filtered state
probability Pr(St−1 = 1|yt−1, ϑ) at t − 1:

Pr(St = 1|yt−1, ϑ) = (1 − λ)η1 + λPr(St−1 = 1|yt−1, ϑ), (11.5)

with the weights being equal to (1 − λ) and λ. For chains that are not very
persistent (λ close to 0), the predictive distribution for St will be dominated
by the ergodic probabilities, and the filter distribution in (11.2) will barely
depend on the past observations yt−1 of the time series. For highly persistent
chains (λ close to 1), the predictive distribution for St will be dominated by
the filtered state probability Pr(St−1 = k|yt−1, ϑ) obtained for t − 1, and the
filter distribution in (11.2) will strongly depend on all observations yt.

11.2.4 Smoothing the States

The filter described in Subsection 11.2.2 yields the probability distribution of
St given information yt up to t. When analyzing a time series in a post-
processing manner, probability statements about St that incorporate the
whole information y = (y1, . . . , yT ) may be preferable. Such probability state-
ments are given by the full-sample smoothed probabilities Pr(St = l|y, ϑ).
Different approaches have been suggested to derive these probabilities.

The smoother suggested in Hamilton (1988, 1989) expresses these prob-
abilities as marginal probabilities from the joint distribution of St and ST

conditional on y:

Pr(St = l|y, ϑ) =
K∑

k=1

Pr(St = l, ST = k|y, ϑ),

where Pr(St = l, ST = k|y, ϑ) may be obtained recursively from the filter
probabilities. A more efficient smoother, described in Algorithm 11.2, operates
as a backward smoothing algorithm, running for t = T, T − 1, . . . , 0, after
having carried out filtering using Algorithm 11.1. This smoother has been
derived independently by Chib (1996) for Markov switching models and by
Shephard (1994) and Kim (1994) for the more general dynamic linear model
with switching.

Algorithm 11.2: Smoothing the States The smoother is implemented in a
forward-filtering-backward-smoothing manner.

(a) First the filter described in Algorithm 11.1 is carried out to obtain the
filtered probabilities Pr(St = l|yt, ϑ), l = 1, . . . , K, for each t = 1, . . . , T .
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(b) Then the smoother operates as a backward algorithm, starting from t = T
and running backwards in time. The recursions are initialized at t = T
with the distribution Pr(ST = l|y, ϑ) which is equal to the filter distribu-
tion at t = T .

(c) For each t = T − 1, T − 2, . . . , t0 the smoothed probability distribution
Pr(St = l|y, ϑ), l = 1, . . . , K, is derived from

Pr(St = l|y, ϑ) =
K∑

k=1

ξ�
lk(t)Pr(St = l|yt, ϑ)Pr(St+1 = k|y, ϑ)

K∑
j=1

ξ�
jk(t)Pr(St = j|yt, ϑ)

, (11.6)

where ξ�
lk(t) = Pr(St+1 = k|St = l,yt, ϑ) simplifies to the transition

probability ξlk for homogeneous Markov chains.

To obtain the smoothed probability distribution Pr(St = l|y, ϑ) for a cer-
tain time point t from (11.6), one only needs to know the filtered probabilities
Pr(St = l|yt, ϑ), and the smoothed probability distribution Pr(St+1 = l|y, ϑ)
at time point t + 1. The recursions of Algorithm 11.2 can be nicely expressed
in terms of matrix operations; see Scott (2002).

The smoother stops at t0 = 1 if S0 is deterministic. For a random initial
value S0, the smoother stops at t0 = 0 and delivers updated probability
statements Pr(S0 = l|y, ϑ) about the starting value in the light of the observed
time series. For this final step, (11.6) reduces to

Pr(S0 = l|y, ϑ) =
K∑

k=1

ξ�
lk(0)Pr(S0 = l|ξ)

K∑
j=1

ξ�
jk(0)Pr(S0 = j|ξ)

,

with Pr(S0 = l|ξ) being the initial distribution; see Subsection 10.3.4 for
various choices of this distribution. ξ�

lk(0) = Pr(S1 = k|S0 = l, ϑ) simplifies
to the transition probability ξkl for homogeneous Markov chains.

Derivation of Forward-Filtering-Backward-Smoothing

To derive the smoother in Algorithm 11.2, the full-sample smoothed probabil-
ities Pr(St = l|y, ϑ) are expressed as marginal probabilities in the following
way,

Pr(St = l|y, ϑ) =
K∑

k=1

Pr(St = l, St+1 = k|y, ϑ) =

K∑
k=1

Pr(St = l|St+1 = k,y, ϑ)Pr(St+1 = k|y, ϑ). (11.7)
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Therefore the smoothed probabilities Pr(St = l|y, ϑ) may be obtained re-
cursively from the smoothed probabilities Pr(St+1 = k|y, ϑ) at t + 1, if the
probabilities Pr(St = l|St+1 = k,y, ϑ) were available. These are the smoothed
probabilities for St obtained under the assumption that the state of St+1 is
known to be equal to k. Bayes’ theorem could be applied to obtain these
probabilities:

Pr(St = l|St+1 = k,y, ϑ) ∝ p(yt+1, . . . , yT |St = l, St+1 = k,yt, ϑ)
× Pr(St = l|St+1 = k,yt, ϑ). (11.8)

As Yt+1, . . . , YT are independent of St, given St+1, the term p(yt+1, . . . ,
yT |St = l, St+1 = k,yt, ϑ) is independent of St and cancels from (11.8):

Pr(St = l|St+1 = k,y, ϑ) ∝ Pr(St = l|St+1 = k,yt, ϑ).

To derive Pr(St = l|St+1 = k,yt, ϑ), Bayes’ theorem is applied once more:

Pr(St = l|St+1 = k,yt, ϑ) (11.9)
∝ Pr(St+1 = k|St = l,yt, ϑ)Pr(St = l|yt, ϑ) = ξ�

lk(t)Pr(St = l|yt, ϑ).

The right-hand side of (11.9) has to be normalized to obtain the desired full-
sample smoothing probability from (11.7):

Pr(St = l|St+1 = k,y, ϑ) =
ξ�
lk(t)Pr(St = l|yt, ϑ)

K∑
j=1

ξ�
jk(t)Pr(St = j|yt, ϑ)

. (11.10)

11.2.5 Filtering and Smoothing for More General Models

Filtering and smoothing may be extended to Markov switching models vio-
lating assumption Y3.

Models with Longer Memory of the Indicators

For various Markov switching models the conditional density p(yt|yt−1,St, ϑ)
depends on p ≥ 1 past values of St, formulated as condition Y2. Examples are
certain Markov switching AR models (Hamilton, 1989; see Subsection 12.2.2),
and the switching ARCH model (Hamilton and Susmel, 1994; see Subsec-
tion 12.5.3). A complication for models of this kind is that no simple filter for
deriving the probabilities Pr(St = k|yt, ϑ) is available. A filter, however, may
be derived for the multivariate state vector St, defined as

St =

⎛⎜⎝ St

...
St−p

⎞⎟⎠ .
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We refer to Hamilton (1994a) for more details on how to implement the multi-
variate filter. As discussed in Chapter 12, the need to implement a multivariate
filter may often be avoided by introducing the hidden Markov model into an
alternative parameterization of the model.

Models with Infinite Memory of the Indicators

For some Markov switching models the conditional density p(yt|yt−1,St, ϑ)
depends on the whole history of St, formulated as condition Y1. Examples are
the switching ARMA model (Billio and Monfort, 1998; Billio et al., 1999) and
the switching GARCH model (Francq et al., 2001); see also Subsection 12.5.5.
No exact finite-dimensional filter is available for this type of model, an excep-
tion to this rule being a GARCH model based on the tν-distribution, where
only the degree of freedom changes according to a Markov switching model
(Dueker, 1997). Various approximate filters have been derived (Lam, 1990;
Kim, 1994; Gray, 1996; Klaasen, 2002) based on writing such models as switch-
ing state space models; see Chapter 13.

11.3 Parameter Estimation for Known States

Assume that a single realization y = (y1, . . . , yT ) from a finite Markov mixture
distribution with K states has been observed. In this section, attention is
shifted toward estimating the state-specific parameters θ1, . . . ,θK and the
transition matrix ξ of a hidden Markov chain under the assumption that
the states S = (S0, S1, . . . , ST ) of the hidden Markov chain are observed
as well. Although this is rarely the situation in practice, it is an inference
problem that occurs as part of the more general problem of joint parameter
and state estimation for hidden Markov models discussed in Section 11.4.
Once we condition on the state of the hidden Markov chain St, there is a close
relationship between the present inference problem and parameter estimation
for a standard finite mixture model considered in Section 2.3. Indeed, it turns
out that estimation of the state-specific parameters θ1, . . . ,θK is essentially
the same problem as in Section 2.3; the only new challenge is estimating the
transition matrix ξ of the hidden Markov chain.

11.3.1 The Complete-Data Likelihood Function

Let ϑ be a vector containing all different elements in the state-specific param-
eters θ1, . . . ,θK , and in the transition matrix ξ. The complete-data likelihood
function is equal to the joint sampling distribution p(y,S|ϑ) for the complete-
data (S,y) given ϑ, which is then regarded as a function of ϑ in order to esti-
mate the unknown parameters ϑ. The joint sampling distribution p(y,S|ϑ) is
immediately available from the model definitions, given in Subsection 10.3.4:
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p(S,y|ϑ) = p(y|S,ϑ)p(S|ϑ), (11.11)

where p(y|S,ϑ) is the density of the sampling distribution of the time series
y given S and p(S|ϑ) is the density of the sampling distribution on the state
process S. Under model assumptions S3 or S4, the density p(S|ϑ) depends
on ξ only, and reads:

p(S|ξ) =
T∏

t=1

p(St|St−1, ξ)p(S0|ξ) =
T∏

t=1

ξSt−1,St
p(S0|ξ)

= p(S0|ξ)
K∏

j=1

K∏
k=1

ξ
Njk(S)
jk , (11.12)

where Njk(S) counts the numbers of transitions from j to k:

Njk(S) = # {St−1 = j, St = k} , ∀j, k ∈ {1, . . . , K}. (11.13)

For the derivation of this density it is not necessary to assume that St starts
from the ergodic distribution.

Under assumption Y3 or Y4, the complete-data likelihood p(y|S,ϑ) is the
product of the one-step ahead predictive densities p(yt|St,yt−1, ϑ) given St:

p(y|S,ϑ) =
T∏

t=1

p(yt|St,yt−1, ϑ).

For many Markov mixture models, in particular for the basic Markov switch-
ing model, the complete-data likelihood function, when regarded as a function
of ϑ, has a rather convenient structure that highly facilitates parameter es-
timation. It is usually the product of K + 1 factors, where each of the first
K factors depends on a single state-specific parameter θk, whereas the last
factor depends only on the transition matrix ξ:

p(y,S|ϑ) =
K∏

k=1

( ∏
t:St=k

p(yt|θk,yt−1)

)
K∏

j=1

K∏
k=1

ξ
Njk(S)
jk p(S0|ξ). (11.14)

For a Markov mixture of Poisson distributions with unknown state-specific
means µ1, . . . , µK and unknown transition matrix ξ, for instance, the complete-
data likelihood p(y,S|ϑ), after dropping factors independent of ϑ = (µ1, . . . ,
µK , ξ), reads:

p(y,S|µ1, . . . , µK , ξ) ∝
K∏

k=1

µ
Nk(S)yk(S)
k e−Nk(S)µkp(S|ξ),

where Nk(S) = #{St = k} and yk(S) is the mean of all observations, where
St = k. Apart from the factor p(S|ξ), this is exactly the same complete-data
likelihood function as occurred for finite mixtures of Poisson distributions in
Subsection 2.3.3.
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11.3.2 Complete-Data Bayesian Parameter Estimation

As in Subsection 2.3.3, the complete-data likelihood p(y,S|ϑ), regarded as a
function of ϑ, is combined through Bayes’ theorem with a prior distribution
p(ϑ) on the parameter ϑ, to obtain the complete-data posterior distribution
p(ϑ|y,S):

p(ϑ|y,S) ∝ p(y,S|ϑ)p(ϑ).

If the prior were improper, p(ϑ) ∝ constant, the complete-data posterior
distribution p(ϑ|y,S) would factor in the same ways as the complete-data
likelihood p(y,S|ϑ) factors in (11.14). This convenient structure is preserved
by choosing the prior

p(ϑ) =
K∏

k=1

p(θk)p(ξ),

in which case the posterior reads:

p(ϑ|S,y) =
K∏

k=1

p(θk|y,S)p(ξ|S),

where

p(θk|y,S) ∝
∏

t:St=k

p(yt|θk,yt−1)p(θk),

p(ξ|S) ∝ p(S0|ξ)
K∏

j=1

K∏
k=1

ξ
Njk(S)
jk p(ξ).

11.3.3 Complete-Data Bayesian Estimation of the
Transition Matrix

Each row ξj· of the transition matrix ξ of the hidden Markov chain is an
unknown probability distribution that has to be estimated from the data.
This inference problem is discussed, for instance, in Chib (1996). We consider
in this subsection complete-data estimation, when a realization S of the hidden
chain is available; the more general case where both S and ξ are unknown is
treated in Section 11.4. Furthermore we assume that S0 is independent of ξ.

The complete-data likelihood p(S|ξ), given in (11.12), factors in the fol-
lowing way,

p(S|ξ) =
K∏

j=1

K∏
k=1

ξ
Njk(S)
jk , (11.15)
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where Njk(S) counts the number of transitions from j to k; see also (11.13).
The right-hand side of (11.15), when regarded as a function of the unknown
transition matrix, is the product of K factors that are proportional to densities
from the Dirichlet distribution. Each factor involves just one row ξj· of the
transition matrix. This convenient structure of the complete-data posterior
distribution of ξ is preserved under a prior distribution with similar structure.
In particular, if it is assumed that the rows of ξ are independent a priori, each
following a Dirichlet distribution,

ξj· ∼ D (ej1, . . . , ejK) , j = 1, . . . , K,

then the rows ξj· of ξ remain independent also a posteriori, each following
again a Dirichlet distribution:

ξj·|S ∼ D (ej1 + Nj1(S), . . . , ejK + NjK(S)) , j = 1, . . . , K,

where Njk(S) counts the number of transitions from j to k. For K = 2, the
transition matrix ξ consists only of two distinct elements, for instance, the
persistence probabilities ξ11 and ξ22. Given S, ξ11 and ξ22 are independent,
each following a Beta distribution:

ξ11 ∼ B (e11 + N11(S), e12 + N12(S)) ,

ξ22 ∼ B (e21 + N21(S), e22 + N22(S)) .

Chib (1996) realized that these densities generalize to the Dirichlet distribu-
tion for K > 2.

11.4 Parameter Estimation When the States
are Unknown

In this section we consider estimation of the unknown parameters ϑ of a
Markov switching model for given time series data y = (y1, . . . , yT ) for mod-
els where the observation density p(yt|yt−1, St, ϑ) is allowed to depend on
past values of Yt (assumption Y3 or Y4) and St fulfills assumption S3
or S4. ϑ summarizes all unknown parameters of the observation density
p(yt|yt−1, St, ϑ), such as location and scale parameters for the normal dis-
tributions, and all distinct parameters appearing in the unknown transition
matrix ξ.

The most commonly applied estimation methods are maximum likelihood
estimation and Bayesian estimation based on the Markov mixture likelihood
function p(y|ϑ).

11.4.1 The Markov Mixture Likelihood Function

The derivation of the likelihood function is much more involved for finite
Markov mixture models than it has been for standard finite mixture models.



11.4 Parameter Estimation When the States are Unknown 331

Consider the following representation of the Markov mixture likelihood
function as a mixture over the complete-data likelihood (11.11),

p(y|ϑ) =
∑

S∈SK

p(y|S,θ1, . . . ,θK)p(S|ξ)

=
∑

S∈SK

T∏
t=p+1

p(yt|yt−1, θSt)
K∏

j=1

K∏
k=1

ξ
Njk(S)
jk p(S0|ξ), (11.16)

where SK = {1, . . . K}T+1 is the space of all possible realizations of S, whereas
Njk(S) counts the number of transitions from j to k; see also (11.13). The sum
in (11.16) is over KT+1 elements and quickly becomes infeasible for practical
evaluation of the Markov mixture likelihood function.

An early solution to the problem of computing the likelihood function of
a Markov mixture model is provided by the forward–backward recursions of
Baum et al. (1970) which were designed for reconstructing a hidden Markov
chain from a discrete signal observed with noise. It took quite a while before
it became common knowledge that the work of Baum et al. (1970) is easily
extended to more general Markov mixture models such as Markov switching
regression models (Lindgren, 1978; Cosslett and Lee, 1985), Markov switching
autoregressive models (Hamilton, 1989), and discrete Markov mixture models
(Le et al., 1992).

To understand some of the difficulties associated with deriving the likeli-
hood function of a finite Markov mixture model, it is illuminating to study
once more the likelihood function of the standard finite mixture regression
model introduced by Quandt (1972):

p(y|ϑ) =
T∏

t=1

(
K∑

k=1

p(yt|ϑ, St = k)Pr(St = k|ϑ)

)
. (11.17)

Because this model corresponds to a model with St being independent over
time, Pr(St = k|ϑ) = ηk and the standard mixture likelihood results.

Goldfeld and Quandt (1973), although allowing for Markov dependence
between the states of St, maximize the same objective function, with Pr(St =
k|ϑ) being computed as the prior probability pt,k of being in state k at time
t, when S0 is distributed according to the probability distribution p0 defined
in (10.35). The vector pt = (pt,1 · · · pt,K)

′
containing these probabilities is

given by

pt = (ξ
′
)tp0.

Although this method yields consistent parameter estimates, (11.17) is not
the likelihood function of this model, as noted by Cosslett and Lee (1985). In
order to obtain the correct Markov mixture likelihood function p(y|ϑ), the
prior probabilities Pr(St = k|ϑ) have to be substituted by the one-step ahead
predictive probabilities Pr(St = k|yt−1, ϑ):
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p(y|ϑ) =
T∏

t=1

(
K∑

k=1

p(yt|St = k,ϑ)Pr(St = k|yt−1, ϑ)

)
. (11.18)

The easiest way to derive this likelihood function is through the product of
the one-step ahead predictive densities, a method commonly applied for time
series models; see, for instance, Hamilton (1994b):

p(y|ϑ) =
T∏

t=1

p(yt|yt−1, ϑ).

For a Markov mixture model the predictive density p(yt|yt−1, ϑ) is, for each
t = 1, . . . , T , the normalizing constant of the filtered probability distribution
Pr(St = k|yt, ϑ) (see again (11.3)), and therefore directly available as a by-
product of running Algorithm 11.1 conditional on ϑ. Hence (11.18) follows
immediately. Computational complexity is of order O(TK2).

An alternative evaluation of the Markov mixture likelihood function is
based on the following likelihood recursion (Cosslett and Lee, 1985; MacDon-
ald and Zucchini, 1997; Rydén et al., 1998),

p(yt, St = k|ϑ) =
K∑

j=1

p(yt,yt−1, St = k, St−1 = j|ϑ)

= p(yt|yt−1, St = k,ϑ)
K∑

j=1

ξjkp(yt−1, St−1 = j|ϑ).

This leads to the following iteration for t = 1, . . . , T , starting with l0 = p0,

lt = Diag
(
p(yt|yt−1, θ1) · · · p(yt|yt−1, θK)

)
ξ

′
lt−1, (11.19)

which finally yields the Markov mixture likelihood function:

p(y|ϑ) =
K∑

k=1

p(yT , ST = k|ϑ) = 11×K lT ,

where 11×K is a row vector of ones. Computational complexity is of order
O(TK2), however, recursion (11.19) is sensitive to numerical underflow; see
Scott (2002) for how it may be stabilized.

A certain complication arises with the definition of the Markov mixture
likelihood function for Markov switching models, which do not obey condi-
tion Y4, as the predictive density p(yt|yt−1, ϑ, St) depends on the past values
yt−1, . . . , yt−p. As for the standard AR model (Hamilton, 1994b), there ex-
ist two likelihood functions, namely the conditional and the unconditional
Markov mixture likelihood function. The conditional Markov mixture likeli-
hood function is obtained by conditioning on the first p observations, therefore
filtering and evaluating of the likelihood function starts at t = p + 1:
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p(y|ϑ) ≈ p(yp+1, . . . , yT |ϑ,yp) =
T∏

t=p+1

p(yt|yt−1, ϑ).

Most papers use this likelihood function for parameter estimation, a no-
table exception being Albert and Chib (1993) who consider the unconditional
Markov mixture likelihood for a Markov switching autoregressive model with
state-independent autoregressive parameters.

Finally, like the mixture likelihood function studied in Subsection 2.4.2,
the Markov mixture likelihood function usually has K! different, but equiv-
alent modes corresponding to all different ways of labeling the states of the
hidden Markov chain. Consider again the representation of the Markov mix-
ture likelihood function as a mixture over the complete-data likelihood as in
(11.16). By relabeling the states of St according to an arbitrary permutation
ρs(·), one finds that the parameter ϑ� = (θρs(1), . . . ,θρs(K), ξ

ρs), where the
elements of ξρs have been defined in (10.26), yields the same Markov mixture
likelihood as ϑ for all possible observations y:

p(y|ϑ�) =
∑

S∈SK

T∏
t=p+1

p(yt|yt−1, θρs(St))

×
K∏

j=1

K∏
k=1

ξ
Nρs(j),ρs(k)(S)
ρs(j),ρs(k) p(ρs(S0)|ξρs) = p(y|ϑ).

11.4.2 Maximum Likelihood Estimation

Maximization of the likelihood function may be carried out numerically
(Hamilton, 1989; Rydén et al., 1998), through the EM algorithm (Baum et al.,
1970; Hamilton, 1990), or may be considered as an optimization problem un-
der K linear constraints, as the rows of ξ have to sum up to 1 (Levison et al.,
1983).

An excellent review of the asymptotic properties of ML estimators for hid-
den Markov models appears in Cappé et al. (2005, Chapter 12); we mention
here only some seminal papers. Consistency and asymptotic normality of the
maximum likelihood for hidden Markov chain models, where Yt is a discrete
signal, are established in Baum and Petrie (1966) and, with a more careful
discussion of identifiability issues, in Petrie (1969). Lindgren (1978) estab-
lished similar results for Markov switching regression models. Leroux (1992b)
proved consistency of the ML estimator for rather general hidden Markov
models under certain regularity condition. Bickel et al. (1998) verified that
the ML estimator is asymptotically normal with the observed information
matrix being a consistent estimator of the expected information matrix under
certain regularity conditions.

For Markov mixtures of normal distributions with switching variances the
likelihood function is unbounded (Lindgren, 1978; Hamilton, 1988) as it is for
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finite mixtures of normal distributions with heterogeneous variances; see again
Subsection 6.1.2. This is easily seen by choosing the unknown parameter is
such a way that under state 1 µt,1 = yt for an arbitrary observation yt. Then
as σ1 approaches 0, the Markov mixture likelihood function goes to infinity.
This problem may be avoided by bounding σ2

k away from 0 (Lindgren, 1978)
or choosing proper priors (Hamilton, 1988).

11.4.3 Bayesian Estimation

Within the Bayesian framework, the Markov mixture likelihood p(y|ϑ) is com-
bined with a prior p(ϑ) using Bayes’ theorem:

p(ϑ|y) ∝ p(y|ϑ)p(ϑ). (11.20)

As for the standard finite mixture model, various comments on this posterior
are in order. First, the prior has to be proper to obtain a proper posterior
distribution. Second, for the Markov mixture likelihood appearing in (11.20)
no conjugate analysis is possible, meaning that whatever (proper) prior p(ϑ)
one chooses, the posterior density obtained from (11.20) does not belong to
any tractable distribution family. Finally, through Bayes’ theorem (11.20),
the posterior distribution of a Markov switching model inherits the invariance
properties of the Markov mixture likelihood function discussed above.

For practical Bayesian estimation of Markov switching models it is nowa-
days common to use MCMC methods for Bayesian estimation, following the
pioneering work by Robert et al. (1993), Albert and Chib (1993), and McCul-
loch and Tsay (1994b). For the most part, practical MCMC estimation makes
use of the principle of data augmentation by choosing the latent Markov
chain as missing data. The gain of introducing the latent Markov chain as
missing data is evident: with regard to the complete-data posterior distribu-
tion p(ϑ|S,y) we are often back in the conjugate setting of Section 11.3. Then
it is rather straightforward to sample from the posterior (11.20) using Gibbs
sampling. Practical Bayesian estimation is described in detail in Section 11.5.

11.4.4 Alternative Estimation Methods

Alternative estimation methods for Markov mixture models include the method
of moments (Quandt and Ramsey, 1978), a classification likelihood approach
based on maximizing the complete-data likelihood function p(y|S,ϑ)p(S|ϑ)
jointly with respect to (S, ϑ) (Sclove, 1983) and dynamic programming (Kim,
1993c). Recently, Francq and Zakoian (1999) considered the so-called linear-
representation-based estimator, where the parameters of the model are esti-
mated from minimizing the weighted mean-squared prediction error obtained
from the linear ARMA representation of powers of Yt.
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11.5 Bayesian Parameter Estimation with Known
Number of States

11.5.1 Choosing the Prior for the Parameters of a Markov
Mixture Model

A standard prior assumption is that the state-specific parameters θ1, . . . ,θK

are a priori independent of the transition matrix ξ:

p(ϑ) = p(ξ)p(θ1, . . . ,θK). (11.21)

It is convenient to choose a prior p(θ1, . . . ,θK |δ) that is conjugate with re-
spect to the complete-data likelihood p(y|S,θ1, . . . ,θK), especially if Bayesian
parameter estimation is based on data augmentation. This usually leads to
choosing the following prior,

p(θ1, . . . ,θK |δ) =
K∏

k=1

p(θk|δ),

where p(θk|δ) is the density of some distribution family with some fixed hy-
perparameter δ. This prior is obviously invariant to relabeling the states of
the hidden Markov chain. When working with this prior, choosing improper
priors p(θk|δ) should be avoided, as it may be shown in a similar way as was
done for finite mixture models in Subsection 3.2.2 that the Markov mixture
posterior density p(θ1, . . . ,θK , ξ|y) is improper in this case.

As discussed for finite mixture models in Subsection 3.2.4, it is also possible
for Markov switching models to treat δ as an unknown hyperparameter with
prior p(δ):

p(θ1, . . . ,θK , δ) = p(δ)
K∏

k=1

p(θk|δ).

To choose the prior of the transition matrix ξ, we recall that each row of this
matrix is a discrete probability distribution. As in Subsection 11.3, where we
treated the case of an observed state process St, rather than a hidden one, we
assume that the rows of ξ are independent a priori, each following a Dirichlet
distribution:

ξk· ∼ D (ek1, . . . , ekK) , k = 1, . . . , K. (11.22)

To obtain a prior that is invariant to relabeling, Frühwirth-Schnatter (2001b)
suggested choosing ekk = eP and ekk′ = eT , if k �= k′. By choosing eP > eT ,
the Markov switching model is bounded away from a finite mixture model.
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11.5.2 Some Properties of the Posterior Distribution of a Markov
Switching Model

The posterior density p(ϑ|y) of a Markov switching model has similar prop-
erties as the posterior density of a finite mixture model, discussed in depth in
Section 3.3. Most important, the posterior is invariant to relabeling the states
of the hidden Markov chain if the same is true for the prior:

p(θ1, . . . ,θK , ξ|y) = p(θρs(1), . . . ,θρs(K), ξ
ρs |y), (11.23)

where ξρs is related to ξ by permuting the rows and the columns; see also defi-
nition (10.26). This causes multimodality of the posterior of a Markov switch-
ing model, and potential label switching when sampling from this density.
Furthermore many functionals derived from the posterior, which are seem-
ingly state dependent, are actually state invariant.

Marginal Distributions of State-Specific Parameters

As in Section 3.3, it is possible to show that the marginal posterior p(θk|y)
of any state-specific parameter is actually state invariant:

p(θk|y) = p(θk′ |y), ∀k, k′ = 1, . . . , K, k �= k′.

It could be proven that the bivariate marginal distribution of the parameters
θk and θk′ of different states k and k′ is the same for all possible pairs k and
k′, and therefore symmetric:

p(θk, θk′ |y) = p(θρs(k), θρs(k′)|y) = p(θk′ , θk|y), ∀k, k′ = 1, . . . , K, k �= k′.

The marginal posterior of each persistence probability is state invariant,

p(ξkk|y) = p(ξk′,k′ |y), ∀k, k′ = 1, . . . , K, k �= k′,

as is the posterior of each transition probability:

p(ξkk′ |y) = p(ξρs(k),ρs(k′)|y), ∀k, k′ = 1, . . . , K, k �= k′.

The Joint Posterior of the Hidden Markov Chain

For any arbitrary permutation ρs(·) of {1, . . . , K}, the conditional posterior
p(S|ϑ,y) is invariant to relabeling the states,

p(S1, . . . , ST |ϑ,y) = p(ρs(S1), . . . , ρs(ST )|ϑ�,y),

with ϑ� = (θρs(1), . . . ,θρs(K), ξ
ρs), where the elements of ξρs have been de-

fined in (10.26). The proof of this invariance property is exactly the same as
the proof for finite mixture models appearing in Subsection 3.3.4. It follows
that any two sequences S and S′ that imply the same partition of the observed
time series obtain the same posterior probability.
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The Marginal Posterior of a Single State

When a Markov mixture model is fitted to a time series with the aim of
performing joint posterior parameter and state estimation, one would hope to
infer how likely the event {St = k} is in light of the data. A natural candidate
appears to be the posterior probability Pr(St = k|y). However, as already
observed for finite mixture models in Subsection 3.3.4, this marginal posterior
probability does not contain any information if it is derived from the Markov
mixture posterior distribution but is equal to 1/K regardless of the observed
time series:

Pr(St = k|y) =
1
K

. (11.24)

The proof is the same as for finite mixture models.

11.5.3 Parameter Estimation Through Data Augmentation
and MCMC

Early papers realizing the importance of Gibbs sampling for the Bayesian
analysis of Markov switching models are Robert et al. (1993), Albert and Chib
(1993), and McCulloch and Tsay (1994b). Improvements and modifications
suggested later on concern multi-move sampling of the hidden Markov chain
S rather than single-move sampling (Shephard, 1994; Chib, 1996), improving
MCMC performance through reparameterization (Robert and Titterington,
1998), and dealing with the label switching problem (Frühwirth-Schnatter,
2001b).

MCMC Estimation for a Markov Mixture of Poisson Distributions

Consider a Markov mixture of Poisson distributions, defined as Yt ∼ P (µSt),
with St being a K-state hidden Markov chain with transition matrix ξ. As-
sume that a realization y = (y1, . . . , yT ) of the process Yt is available, which
should be used for inference on the parameter ϑ = (µ1, . . . , µK , ξ) and the
hidden states S = (S0, S1, . . . , ST ). For a Bayesian analysis, choose the con-
ditional conjugate Gamma priors µk ∼ G (a0, b0) for µk, and assume prior
independence of the means.

If for each observation yt, t = 1, . . . , T , the state St of the hidden Markov
chain is introduced as missing datum, data augmentation and MCMC esti-
mation may be carried out for Markov mixtures of Poisson distribution in a
similar way as discussed for finite mixtures of Poisson distributions in Sub-
section 3.5.2, by iterating between state estimation for known parameters and
parameter estimation for known states. Part of this algorithm is closely related
to the one developed in Algorithm 3.3; part of it is essentially different.

We start with parameter estimation conditional on knowing the states of
S = (S0, S1, . . . , ST ). The complete-data posterior is given by the results of
Subsection 11.3.2 as
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p(µ1, . . . , µK , ξ|S,y) =
K∏

k=1

p(µk|y,S)p(ξ|S),

where p(ξ|S) ∝ p(S|ξ)p(ξ). Each of the first K factors depends only on µk,
whereas the last factor depends only on ξ. Under the G (a0, b0)-prior, the
posterior distribution of p(µk|S,y) is a G (ak(S), bk(S))-distribution, where:

ak(S) = a0 + Nk(S)yk(S), bk(S) = b0 + Nk(S), (11.25)

and Nk(S) = #{St = k} is the number of observations in state k. Sampling
of the parameters µ1, . . . , µK is straightforward, as µ1, . . . , µK are condition-
ally independent, and we simply have to draw µk from the G (ak(S), bk(S))
posterior.

It is important to realize that this is exactly the same sampling step as for a
standard finite mixture of Poisson distributions, because for state parameter
estimation only the number of observations in state k are relevant but not
the number of transitions. The number of transitions are relevant only for
sampling of the transition matrix ξ, as discussed in Subsection 11.5.5.

The second step in this MCMC procedure, namely sampling S, is much
more involved for a Markov mixture than is the corresponding step for a
standard finite mixture model. The main reason is that S is a path of a
stochastic process with dependence among successive values of St, even if the
parameters are known, whereas for a finite mixture model the indicators are
independent conditional on y and ϑ. Efficient methods for sampling a path
of S are developed in Subsection 11.5.6.

MCMC Estimation for General Markov Switching Models

Bayesian estimation of a general Markov mixture model through data aug-
mentation estimates the augmented parameter (S, ϑ) by sampling from the
posterior distribution p(S, ϑ|y),

p(S, ϑ|y) ∝ p(y|S,ϑ)p(S|ϑ)p(ϑ). (11.26)

Sampling from the posterior (11.26) is most commonly carried out by the
Markov chain Monte Carlo sampling scheme described below in Algorithm 11.3,
where ϑ is sampled conditional on knowing S, whereas S is sampled condi-
tional on knowing ϑ.

Algorithm 11.3: Unconstrained MCMC for a Markov Switching Model Start
with some state process S(0) and repeat the following steps for m = 1, . . . , M0,
. . . , M + M0.

(a) Parameter simulation conditional on the states S(m−1):
(a1) Sample the transition matrix ξ from the complete-data posterior dis-

tribution p(ξ|S(m−1)).
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(a2) Sample the model parameter θ1, . . . ,θK from the complete-data pos-
terior p(θ1, . . . ,θK |y,S(m−1)).

Store the actual values of all parameters as ϑ(m) = (θ(m)
1 , . . . ,θ

(m)
K , ξ(m)).

(b) State simulation conditional on knowing ϑ(m) by sampling a path S of the
hidden Markov chain from the conditional posterior p(S|ϑ(m),y) using
Algorithm 11.5, discussed below.

Store the actual values of all states as S(m), increase m by one, and return to
step (a). Finally, the first M0 draws are discarded.

More details on how to sample the unknown transition matrix ξ in step
(a1) are provided in Subsection 11.5.5. For many important Markov switching
models, sampling of the state parameters in step (a2) is straightforward, as
the relevant posterior densities are of closed form. For other models, further
blocking of the elements of θk will lead to closed-form conditional densities.
In cases where this is not feasible, a Metropolis–Hastings algorithm may be
implemented, as demonstrated in Subsection 12.5.4 for a switching ARCH
model.

The precise form of the posterior p(θ1, . . . ,θK |S,y) appearing in step
(a2) crucially depends on the chosen parametric family, but also on the prior
p(θ1, . . . ,θK). It is important to emphasize that the structure of the condi-
tional posterior p(θ1, . . . ,θK |S,y) where S is a Markov chain, is usually the
same as for a standard finite mixture model, where S is an i.i.d. sequence, be-
cause the complete-data posterior p(θ1, . . . ,θK |S,y) factors in the following
way,

p(ϑ|S,y) = p(ξ|S)
K∏

k=1

p(θk|y,S),

under the conditionally conjugate prior discussed in Subsection 11.5.1. As only
the observations yt in a certain state k are relevant to draw the state-specific
parameters, step (a2) reduces to exactly the same procedure as would be
applied for a finite mixture model. Thus many results on MCMC estimation
of finite mixtures derived in earlier chapters, in particular MCMC estimation
of finite mixtures of regression models discussed in Subsection 8.3.4, are useful
for Markov mixture models.

Step (b), however, is much more involved for a Markov switching model
than the corresponding step of sampling the hidden indicator S in a standard
mixture model, the main reason being that S is a path of a stochastic process
with dependence among successive values of St, whereas for a mixture model
the indicators are independent conditional on y and ϑ. Subsection 11.5.6 is
devoted to a detailed discussion of various algorithms for implementing step
(b).



340 11 Statistical Inference for Markov Switching Models

11.5.4 Permutation MCMC Sampling

As for finite mixture models, the behavior of the sampler described in Al-
gorithm 11.3 is somewhat unpredictable, and may be trapped at one modal
region of the Markov mixture posterior distribution or may jump occasion-
ally between different modal regions causing label switching. In most cases
the sampler does not explore the full Markov mixture posterior distribution
which matters in particular when estimating marginal densities. A simple
but efficient solution to obtain a sampler that explores the full Markov mix-
ture posterior distribution is to extend random permutation MCMC sampling
(Frühwirth-Schnatter, 2001b), discussed for finite mixture models in Algo-
rithm 3.5, to Markov switching models.

Algorithm 11.4: Random Permutation MCMC Sampling for a Markov Switch-
ing Model Start as described in Algorithm 11.3.

(a) and (b) are the same steps as in Algorithm 11.3.
(c)Conclude each draw by selecting randomly one of the K! possible permuta-

tions ρs(1), . . . , ρs(K) of the current labeling. This permutation is applied
to ξ(m), the state-specific parameters θ

(m)
1 , . . . ,θ

(m)
K , and the states S(m):

(c1) Each element ξ
(m)
jk of the simulated transition matrix is substituted

by ξ
(m)
ρs(j),ρs(k) for j, k = 1, . . . , K.

(c2) The state-specific parameter θ
(m)
k is substituted by θ

(m)
ρs(k) for k =

1, . . . , K.
(c3) The states S

(m)
t are substituted by ρs(S

(m)
t ) for t = 0, . . . , T .

11.5.5 Sampling the Unknown Transition Matrix

The precise algorithm for sampling the transition matrix ξ from the condi-
tional posterior p(ξ|S) for a given trajectory S of the hidden Markov chain
depends on the assumptions made concerning the distribution p0 of the ini-
tial value S0; see Subsection 10.3.4 for various choices of p0. As in Subsec-
tion 11.5.1, it is assumed that the rows of ξ are independent a priori, each
following a Dirichlet distribution, ξj· ∼ D (ej1, . . . , ejK), j = 1, . . . , K.

Gibbs Sampling for Nonstationary Markov Chains

If the initial distribution p0 is independent of ξ, Gibbs sampling from the
conditional posterior p(ξ|S) is feasible, as shown by Chib (1995), as the prob-
lem reduces to the classical Bayesian inference problem discussed in Subsec-
tion 11.3.3. The rows ξj· of ξ are independent a posteriori, and are drawn
from the following Dirichlet distribution,

ξj· ∼ D (ej1 + Nj1(S), . . . , ejK + NjK(S)) , j = 1, . . . , K, (11.27)
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where Njk(S) = # {St−1 = j, St = k} counts the numbers of transitions from
j to k for the actual draw of S.

Interestingly, the usefulness of the Dirichlet distribution for handling the
case K > 2 has not been recognized by all authors implementing the Gibbs
sampler for more than two states. For K = 3, for instance, Kim and Nelson
(1998, 1999), sample for each row the two distinct transition probabilities in a
two-step procedure by first sampling the persistence probability ξjj from the
appropriate marginal distribution, namely

ξjj ∼ B

⎛⎝ejj + Njj(S),
∑
k �=j

ejk + Njk(S)

⎞⎠ .

Then ξ̃jk = Pr(St = k|St−1 = j, St �= j), with k �= j, is sampled from another
Beta distribution. A generalization of this somewhat circumstantial scheme
to arbitrary K > 3 is discussed in Krolzig (1997, p.156).

Metropolis–Hastings Algorithm for Stationary Markov Chains

For a stationary Markov chain, the initial distribution is equal to the ergodic
distribution, p0 = η, and depends on the transition matrix ξ through formula
(10.9), discussed in Subsection 10.2.2. Gibbs sampling from the conditional
posterior p(ξ|S) is no longer feasible, as due to the presence of p0 the rows
of ξ are no longer independent a posteriori. The joint posterior p(ξ|S) of all
rows takes the form:

p(ξ|S) ∝
K∏

j=1

gj(ξj·)ηS0 ,

where gj(ξj·) is equal to the density of the Dirichlet distribution given in
(11.27). To sample the rows of ξ one could use a Metropolis–Hastings algo-
rithm, with gj(ξj·) being the proposal density for the jth row. Starting from
the old transition matrix ξold, a new transition matrix ξnew is proposed by
drawing some or all rows of ξold from the Dirichlet proposal density gj(ξj·),
given in (11.27). The acceptance rate for the Metropolis–Hastings algorithm
is equal to min(1, A), where

A =
p(ξnew|S)

∏K
j=1 gj(ξold

j· )

p(ξold|S)
∏K

j=1 gj(ξnew
j· )

=
ηnew

S0

ηold
S0

.

Therefore ξnew is accepted, if

U ≤
ηnew

S0

ηold
S0

,

where U is a random draw from U [0, 1].
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11.5.6 Sampling Posterior Paths of the Hidden Markov Chain

In this section, sampling a path of the hidden Markov chain S = (S0, . . . , ST )
from the conditional posterior distribution p(S|y, ϑ) is discussed in full detail;
see also Scott (2002) for a recent review.

Multi-Move Sampling

Many of the early papers on Gibbs sampling for Markov switching models
(Robert et al., 1993; Albert and Chib, 1993; McCulloch and Tsay, 1994b)
use single-move Gibbs sampling, meaning that the state of St is sampled
conditional on all other states of the hidden Markov chain. A more efficient
way to sample S, however, is multi-move sampling, meaning joint sampling
of the states of the whole path S from the conditional posterior distribution
p(S|y, ϑ), discussed earlier in Section 11.2. Multi-move sampling of the hidden
Markov chain has been suggested independently for the Markov switching
autoregressive model (Chib, 1996; Krolzig, 1997) and switching state space
models (Carter and Kohn, 1994; Shephard, 1994). There exists a unifying
algorithm for any Markov switching model that fulfills at least assumption
Y3, whereas St only needs to fulfill the most general assumption S1.

Multi-move sampling is based on writing the joint posterior p(S|y, ϑ) as

p(S|y, ϑ) =

[
T−1∏
t=0

p(St|St+1, . . . , ST , ϑ,y)

]
p(ST |y, ϑ).

p(ST |y, ϑ) is the filtered probability distribution at t = T . The conditional
probability distribution p(St|St+1, . . . , ST , ϑ,y) has been found in Subsec-
tion 11.2.4 to be proportional to:

p(St|St+1, . . . , ST , ϑ,y) ∝ ξ�
St,St+1

(t)p(St|yt, ϑ),

where p(St|yt, ϑ) is the filtered probability distribution at t and ξ�
St,St+1

(t) =
p(St+1|St, ϑ,yt) reduces to ξSt,St+1 for a homogeneous Markov chain St.

It is therefore rather clear how to carry out a forward-filtering-backward-
sampling algorithm which is summarized in Algorithm 11.5. A similar forward-
filtering-backward-sampling algorithm has been derived for Gibbs sampling
for normal Gaussian state space models (Frühwirth-Schnatter, 1994; Carter
and Kohn, 1994; De Jong and Shephard, 1995); see also Subsection 13.5.2.

Algorithm 11.5: Multi-Move Sampling of the States To sample a path S(m) of
the hidden Markov chain, while holding ϑ fixed, perform the following steps.

(a) Run the filter described in Algorithm 11.1 conditional on ϑ and store the
filtered state probability distribution Pr(St = j|yt, ϑ), j = 1, . . . , K, for
t = 1, . . . , T .
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(b) Sample S
(m)
T from the filtered state probability distribution Pr(ST =

j|yT , ϑ).
(c) For t = T − 1, T − 2, . . . , 0 sample S

(m)
t from the conditional distribution

Pr(St = j|S(m)
t+1 ,yt, ϑ) given by

Pr(St = j|S(m)
t+1 ,yt, ϑ) =

ξ�
j,lm

(t)Pr(St = j|yt, ϑ)
K∑

k=1

ξ�
k,lm(t)Pr(St = k|yt, ϑ)

,

where ξ�
j,lm

(t) = Pr(St+1 = lm|St = j,ϑ,yt) reduces to ξj,lm for a homo-

geneous Markov chain St and lm is equal to the state of S
(m)
t+1 .

For each t, Pr(St = j|S(m)
t+1 ,yt, ϑ) needs to be evaluated for all j =

1, . . . , K. This requires knowledge of the filtered state probabilities Pr(St =
j|yt, ϑ), which were stored in step (a) of the algorithm.

Single-Move Sampling

An alternative method of sampling a path S from the conditional posterior
distribution p(S|y, ϑ) is single-move sampling of the state of St conditional
on all other states of the hidden Markov chain from the conditional posterior
probability distribution Pr(St = j|S−t,y, ϑ) as discussed in Robert et al.
(1993), Albert and Chib (1993), and McCulloch and Tsay (1994b). Here S−t

is a commonly used abbreviation to denote the whole path of S but the element
St.

A computational advantage of single-move sampling over multi-move sam-
pling is that running a time-consuming filter is avoided, because the latter
method is O(TK), whereas the former was O(TK2). Furthermore, single-
move sampling is also possible for any Markov switching models, even if the
predictive density p(yt|St,yt−1, ϑ) depends on the whole history of St (as-
sumption Y1). A theoretical disadvantage of single-move sampling, however,
is that the autocovariance function of any complete-data sufficient statistics
drawn is equal to the autocovariance function of the same statistics under
multi-move sampling plus a penalty term that increases with the posterior
covariance of the hidden states (Scott, 2002). Hence the single-move sampler
may be poorly mixing for highly correlated hidden Markov chains (Albert and
Chib, 1993; McCulloch and Tsay, 1994b).

The precise form of the conditional posterior probability distribution
Pr(St = j|S−t,y, ϑ) is obtained from Bayes’ theorem:

p(St|S−t,y, ϑ) ∝ p(y|S,ϑ)p(S|ξ) ∝
T∏

t=1

p(yt|yt−1,St, ϑ)
T∏

t=1

p(St|St−1, ϑ,yt−1)p(S0|ξ).
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After dropping from the right-hand side all factors that are independent of
St, we obtain for 1 ≤ t ≤ T − 1:

Pr(St = j|S−t,y, ϑ) ∝ p(yt|yt−1,St−1, St = j,ϑ)ξ�
St−1,j(t − 1)ξ�

j,St+1
(t).

Obvious modifications for t = 0 and t = T are:

Pr(S0 = j|S1, . . . , ST ,y, ϑ) ∝ ξ�
j,S1

(0)Pr(S0 = j|ξ),

Pr(ST = j|ST−1,y, ϑ) ∝ p(yT |yT−1,ST−1, ST = j,ϑ)ξ�
ST −1,j(T − 1).

The states of St are then sampled for each t = 0, 1, . . . , T from these discrete
probability distributions with the most recent draw for all other states of S
being used in the conditioning argument. In any of these formulae

ξ�
St−1,St

(t − 1) = p(St|St−1, ϑ,yt−1)

reduces to ξSt−1,St
for a homogeneous Markov chain.

Blocked Sampling

To improve mixing, Albert and Chib (1993) mention the possibility of using
blocked sampling by updating b consecutive elements {St, . . . , St+b−1} of S at
a time by sampling from the appropriate conditional density

p(St, . . . , St+b−1|S0, . . . , St−1, St+b, . . . , ST ,y, ϑ),

however, without providing any details. Slightly more details on sampling
from this posterior were provided by McCulloch and Tsay (1994b) for K =
2, who consider evaluating the posterior over all 2b possible realizations of
{St, . . . , St+b−1}.

A more efficient sampling method for sampling {St, . . . , St+b−1} that easily
is applied to models with more than two states is to apply the multi-move
sampler as in Algorithm 11.5 with deterministic starting value S̃0 = St−1
and b observations ỹ = {yt, . . . , yt+b−1}. One could follow Shephard (1994) in
choosing the blocks.

Marginal Single-Move Sampling

Chen and Liu (1996) demonstrated that it is possible to marginalize over
the parameters of a Markov mixture model, if the observation density comes
from the exponential family as in (1.11) and the complete-data likelihood is
combined with a conditionally conjugate prior p(θk).

This allows state estimation without parameter estimation. A related ap-
proach has been discussed in detail in Section 3.4 for a standard finite mixture
model, and is easily modified to deal with Markov switching models. The ap-
plication of the Gibbs sampling algorithm described in Subsection 3.4.1 or the
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Metropolis–Hastings algorithm described in Subsection 3.4.2 to sample from
p(S|y) only requires marginalizing the prior p(S|ξ) of a hidden Markov chain
with respect to the prior on ξ:

p(S) =
∫

p(S|ξ)p(ξ)dξ;

all other steps are similar. A closed form of this prior is available under the
Dirichlet prior (11.22), if p(S0) is independent of the transition matrix ξ:

p(S) ∝ p(S0)
K∏

j=1

∏K
k=1 Γ (Njk(S) + ejk)

Γ (
∑K

k=1(Njk(S) + ejk))
,

where Njk(S) = # {St−1 = j, St = k} and ejk are the prior parameters.

11.5.7 Other Sampling-Based Approaches

Reparameterization techniques that were discussed for finite mixture models
in Subsection 6.2.6 have been extended to Markov mixtures by Robert and
Titterington (1998). For Markov mixtures of normal distributions the compo-
nent parameters are parameterized as in (6.26) with the weights being equal
to the ergodic distribution of the hidden Markov chain St, and the standard
parameterization is kept for the transition matrix. Reparameterization is also
discussed for Markov mixtures of Poisson distributions.

Particle filter methods which were briefly mentioned in Subsection 6.2.7
have been applied to Markov mixture models by Fearnhead and Clifford
(2003).

11.5.8 Bayesian Inference Using Posterior Draws

As discussed in Section 3.7 for finite mixture models, posterior draws may
be used for statistical inference, provided that a sufficiently large number M0
of draws are discarded. Convergence diagnostics for MCMC methods with
applications to hidden Markov models are discussed in Robert et al. (1999).
Because most of the issues and methods discussed in Section 3.7 are adapted
to Markov mixture models in a straightforward manner, we focus only on the
question of how to obtain point estimates for the hidden Markov chain.

Point estimators of the hidden Markov chain S may be obtained by mini-
mizing a loss function in a similar way as was done in Subsection 7.1.7 for finite
mixture models for the purpose of clustering observations. There exists indeed
a close connection between clustering observations into groups and segment-
ing time series observations into states or regimes, and one could effectively
use the same loss functions as in Subsection 7.1.7.

Minimizing the 0/1 loss function requires finding the most likely sequence
S from the joint posterior p(S|y). Such a sequence could be found by applying
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a Viterbi algorithm, which is a special form of dynamic programming, utilizing
the Markovian structure of St. Details are found in MacDonald and Zucchini
(1997, p.64ff), Chib (1996, p.85ff), Bhar and Hamori (2004, Section 1.9), and
Cappé et al. (2005, Section 5.1.2).

Minimizing the loss function based on the misclassification risk leads
to finding that sequence S = (S1, . . . , ST ), where each St maximizes the
smoothed probability distribution Pr(SL

t = l|y) obtained from an identified
Markov mixture model. Finally, state estimation could be based on minimiz-
ing the loss function based on the posterior similarity matrix, as this may lead
to smoother paths of St than individual state estimation.

11.6 Statistical Inference Under Model
Specification Uncertainty

The most commonly occurring model selection problem for finite Markov mix-
ture models is selecting the number of states of the hidden Markov chain,
although a couple of other model selection problems, such as order selection
for Markov switching autoregressive model (see Subsection 12.2.5), and order
selection for switching ARCH models (see Subsection 12.5.4), are also rele-
vant. Another important model selection problem is choosing the appropriate
structure for S; see Subsection 11.6.1.

11.6.1 Diagnosing Markov Switching Models

As discussed in Subsections 4.3.3 and 4.3.4 for finite mixtures, diagnosing the
goodness-of-fit for Markov switching models may be based on studying the
posterior distribution of certain moments implied by the Markov mixture and
studying the predictive posterior distribution of certain statistics (Scott, 2002;
MacKay Altman, 2004). A particularly useful statistic for assessing goodness-
of-fit for a Markov switching model is the predictive posterior distribution of
the implied autocorrelation function ρYt

(h|ϑ) in comparison to the observed
autocorrelation function; see also Subsection 11.7.3.

11.6.2 Likelihood-Based Methods

Testing a Markov switching model against homogeneity through the likeli-
hood ratio statistics has to cope with similar problems as for finite mixture
models; see again Subsection 4.4.1. The limiting distribution of the LR statis-
tic has been approximated using empirical process theory (Hansen, 1992) and
bootstrapping technique (Rydén et al., 1998).

AIC and BIC as defined in Subsection 4.4.2 have been used by several
authors to deal with model selection problems for Markov mixtures (Sclove,
1983; Leroux and Puterman, 1992; Wang and Puterman, 1999):
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AICK = −2 log p(y|ϑ̂K ,MK) + 2dK ,

BICK = −2 log p(y|ϑ̂K ,MK) + log(N)dK ,

where log p(y|ϑ̂K ,MK) is the log of the Markov mixture likelihood function,
evaluated at the ML estimator, and dK is the number of distinct parameters
in ϑK . For a K-state Markov mixture model with state-specific parameters θk

where all elements are different among all states, and unconstrained transition
matrix, dK is equal to K dim(θk) + K(K − 1).

11.6.3 Marginal Likelihoods for Markov Switching Models

The definition of the marginal likelihoods, given for finite mixture models in
Section 5.3, is practically of the same form for Markov switching models:

p(y|MK) =
∫

SK×ΘK

p(y|S,ϑK)p(S|ξ)p(ϑK)d(S, ϑK), (11.28)

because only the prior of S has to be substituted. Also for Markov switching
models the dimensionality of (11.28) can often be reduced by solving the
integration with respect to the hidden Markov chain S analytically, and using
numerical methods only for the remaining parameters:

p(y) =
∫

p(y|θ1, . . . ,θK , ξ)p(θ1, . . . ,θK , ξ)d(θ1, . . . ,θK , ξ).

Marginalizing over S is possible for the Markov switching model, whenever
the memory of yt with respect to St is finite (assumption Y2). This class
encompasses many important Markov switching models such as the Markov
switching autoregressive model (McCulloch and Tsay, 1994b), but also non-
conjugate models such as switching ARCH models (Hamilton and Susmel,
1994; Kaufmann and Frühwirth-Schnatter, 2002).

Chib (1995, 1996) estimates the marginal likelihood for simple Markov
switching models using Chib’s estimator as discussed in Subsection 5.5.2, how-
ever, Frühwirth-Schnatter (2004) showed that this estimator may be biased;
see also Subsection 11.7.3.

The sampling-based estimators of the marginal likelihood, discussed in
Section 5.4 for standard finite mixture models, are easily extended to Markov
switching models (Frühwirth-Schnatter, 2004). Based on a random subse-
quence S(s), s = 1, . . . , S of the MCMC draws S(m), m = 1, . . . , M , an im-
portance density comparable to (5.36) is available through:

q(ϑK) =
1
S

S∑
s=1

p(ξ|S(s))
K∏

k=1

p(θk|S(s),y), (11.29)

with p(ξ|S) and p(θk|y,S) being the complete-data posterior densities under
the assumption that p0 is independent of ξ. Again it is important that the
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states S are sampled from the unconstrained Markov mixture posterior dis-
tribution with balanced label switching using random permutation sampling
as in Algorithm 11.4. Frühwirth-Schnatter (2004) argued that in particular
the bridge sampling technique, discussed in detail in Subsection 5.4.6, is use-
ful for estimating the marginal likelihood of a Markov switching model; see
also Kaufmann and Frühwirth-Schnatter (2002) and Frühwirth-Schnatter and
Kaufmann (2006a, 2006b) for further applications.

11.6.4 Model Space MCMC

Robert et al. (2000) and Cappé et al. (2003) applied model space MCMC
methods for Markov switching models in order to select the number of states.
Birth and death methods are considered by Cappé et al. (2003); reversible
jump MCMC methods and birth and death MCMC methods are explored by
Robert et al. (2000).

11.6.5 Further Issues

A further important issue is the effect of misspecifying the dependence struc-
ture of the hidden Markov chain. Lindgren (1978) argues that the assumption
of first-order Markovian dependence for the hidden Markov chain St is not
crucial, but is merely the simplest structure to transfer information between
successive states and proves robustness of the ML estimator against misspeci-
fying the dependence structure of the hidden Markov chain. From a Bayesian
perspective, the Markovian dependence structure is a prior distribution on S,
which may be overruled by the information contained in the observed time
series. Chen and Liu (1996) used a Bayesian approach based on marginal
likelihoods to test the Markov dependence priors on S against the i.i.d. as-
sumption.

11.7 Modeling Overdispersion and Autocorrelation in
Time Series of Count Data

11.7.1 Motivating Example

We consider the Lamb Data, a time series of count data analyzed origi-
nally in Leroux and Puterman (1992), and reanalyzed by Chib (1996) and
Frühwirth-Schnatter (2004). The data plotted in Figure 11.2 are the number
yt of movements by a fetal lamb in T = 240 consecutive five-second intervals.
Assuming that the counts are i.i.d. realization from a Poisson distribution
implies first, that the mean is equal to the variance and, second, that the real-
izations are independent over time. Both assumptions, however, are violated
for these data. First overdispersion with Var(Yt) > E(Yt) is present, because
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Fig. 11.2. Lamb Data, left: time series plot of yt, right: empirical autocorrelogram

the sample variance s2
y = 0.658 is nearly twice the sample mean y = 0.358.

Second, the empirical autocorrelogram in Figure 11.2 indicates stochastic de-
pendence between Yt−1 and Yt.

To capture overdispersion, a finite Poisson mixture distribution could be
applied as was done in Subsection 9.2.4 for the Eye Tracking Data. A stan-
dard Poisson mixture with K = 3 components is actually able to capture the
overdispersion in the marginal distribution of this time series; see Figure 11.3.
Autocorrelation, however, is not captured by this model, as by the results of
Subsection 10.2.6 the autocorrelation of any standard finite mixture model
is 0. To capture both overdispersion and autocorrelation, a Poisson Markov
mixture model is applied in Subsection 11.7.3.

11.7.2 Capturing Overdispersion and Autocorrelation Using
Poisson Markov Mixture Models

To capture autocorrelation and overdispersion for time series of counts, often
observation-driven models in the sense of Cox (1981) are applied. Models that
introduce autocorrelation for discrete-valued time series by allowing direct
dependence of the predictive distribution p(yt|yt−1, ϑ) on past values, have
been considered by, among others, Zeger and Qaqish (1988) and Chan and
Ledolter (1995).

Parameter-driven models introduce autocorrelation through a hidden struc-
ture. Parameter-driven models for count data, where autocorrelation is intro-
duced through a latent continuous state process were considered by Harvey
and Fernandes (1989) and Mayer (1999). Alternatively, the latent structure
could be modeled as a discrete Markov chain St with transition matrix ξ,
leading to a Markov mixture model. Markov mixture models for count data
are typically based on the Poisson distribution:
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Yt|St ∼

⎧⎪⎨⎪⎩
P (µ1) , St = 1,

...
P (µK) , St = K,

(11.30)

and were considered, among many others, by MacRae Keenan (1982), Leroux
and Puterman (1992), Wang and Puterman (1999), and Wang et al. (1996).
Albert (1991) considered a two-state Markov mixture model for a time series
of epileptic seizure counts.

Capturing Autocorrelation

The presence of autocorrelation in a discrete-valued process Yt generated by
a Markov mixture is evident from the results of Subsection 10.2.4, where the
autocorrelation function is derived in (10.20). Autocorrelation in the observed
counts is introduced through autocorrelation in the hidden Markov chain.

For a Poisson Markov mixture with K = 2 states, for instance, the auto-
correlation function simplifies to

ρYt
(h|ϑ) =

(
η1η2(µ2 − µ1)2

µ + η1η2(µ2 − µ1)2

)
(ξ11 − ξ21)h, (11.31)

with η1, η2 being the ergodic probabilities of the Markov chain St; see also
Subsection 10.2.2. The values of the generated time series are correlated, as
long as St does not degenerate to an i.i.d. process. As discussed in Subsec-
tion 10.2.4, the autocorrelation function (11.31) is the same for an ARMA(1, 1)
model, without requiring that the data be drawn from a normal distribution.

Capturing Overdispersion

An additional important feature of applying Poisson Markov mixture models
to time series of counts is to capture overdispersion in the marginal distribu-
tion. By the results of Subsection 10.2.3, the first two moments of a process
generated by a Poisson Markov mixture are given by

E(Yt|ϑ) =
K∑

k=1

µkηk,

Var(Yt|ϑ) =
K∑

k=1

µk(1 + µk)ηk − E(Yt|ϑ)2 = E(Yt|ϑ) + B(ϑ),

where η1, . . . , ηK is the ergodic probability distribution of the hidden Markov
chain and B(ϑ) is the between-group heterogeneity:

B(ϑ) =
K∑

k=1

(µk − µ(ϑ))2ηk,
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with µ(ϑ) = E(Y |ϑ). As B(ϑ) > 0, if at least two means of the Poisson
mixture are different, the marginal distribution of the process Yt is actually
overdispersed.

Note that the Poisson distribution might be substituted by another dis-
crete distribution. MacDonald and Zucchini (1997, p.68) note that a particu-
larly useful model to capture overdispersion is a negative binomial distribution
based on a hidden Markov chain, because such a model introduces overdis-
persion via the conditional distribution p(yt|St, ϑ) as well as via the hidden
Markov chain St.

11.7.3 Application to the Lamb Data

We return to the Lamb Data, introduced in Subsection 11.7.1. To capture
overdispersion and autocorrelation in this time series, Yt is modeled as a
Poisson process where the intensity changes according to a K-state hidden
Markov process St as in (11.30). The unknown model parameter is ϑK =
(µ1, . . . , µK , ξ).

For several values of K, Bayesian estimation of ϑK is carried out by MCMC
sampling based on data augmentation through Algorithm 11.3. The priors are
chosen as ξk· ∼ D (ek1, . . . , ekK) with ekk = 2 and ekk′ = 1/(K − 1), if k �= k′

and µk ∼ G (1, 0.5). The sampler is run for M = 5000 draws, with a burn-in
of 1000 draws.

Capturing Autocorrelation and Overdispersion
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Fig. 11.3. Lamb Data, posterior distribution of the overdispersion parameter in
comparison to the observed value; left-hand side: finite Poisson mixture with K = 3
components; right-hand side: Poisson Markov mixture with K = 2, K = 3, and
K = 4 states
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Fig. 11.4. Lamb Data, modeled by a Poisson Markov mixture with K = 2, K = 3,
and K = 4 states; posterior confidence bands obtained from the posterior distri-
bution p(ρYt(h|ϑK)|y, K) of the autocorrelation ρYt(h|ϑK) plotted against h, in
comparison to the empirical autocorrelogram

To assess model fit as in Subsection 4.3.4, we consider overdispersion and
autocorrelation. Figure 11.3 shows that any of the Markov Poisson mixture
models is able to produce the observed overdispersion, as did the standard
Poisson mixture model fitted in Subsection 11.7.1.

To assess model fit with respect to autocorrelation, the posterior of the
implied autocorrelation function ρYt(h|ϑK) is compared in Figure 11.4 with
the observed autocorrelation for various values of K. From (10.20) it is evi-
dent that the implied autocorrelation function depends on the unknown model
parameters ϑK . In a classical framework one would compute ρYt(h|ϑ̂K) for
some estimator ϑ̂K . Within the Bayesian framework, however, one could
take full account of the uncertainty associated with estimating ρYt(h|ϑK).
Although ρYt

(h|ϑK) is a nonlinear function of ϑK , posterior draws from
p(ρYt(h|ϑK)|y, K) are available simply by transforming the draws ϑ

(m)
K from

the Markov mixture posterior p(ϑK |y, K). Note that ρYt(h|ϑK) is invariant
to relabeling the states of the Markov chain and may be estimated without
identifying the states.

In Figure 11.4, the posterior mean E(ρYt
(h|ϑK)|y, K) is systematically

different from the empirical autocorrelogram for K = 2 and some of the
empirical autocorrelations lie outside the confidence band derived from the
posterior. For K = 3 and K = 4 the observed autocorrelogram lies within
these bands. Introducing the fourth component hardly changes the implied
autocorrelation function. To sum up, a Markov mixture of three components
seems to be sufficient to capture both autocorrelation and overdispersion.

Selecting the Number of Components Through
Marginal Likelihoods

Leroux and Puterman (1992) when using AIC and BIC found conflicting ev-
idence concerning the number of states, as AIC selects a model with three
states, whereas BIC selects a model with two states. The application of the
Bayesian model selection technique to choose the number of states requires
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Table 11.1. Lamb Data, modeled by a single Poisson distribution (K = 1) and
Poisson Markov mixture with K = 2, K = 3, and K = 4 states; log marginal
likelihood log p(y|K) for K = 1 and various estimates of log p(y|K) for K = 2,
K = 3, and K = 4; relative standard errors are given in parentheses (from Frühwirth-
Schnatter (2004) with permission granted by the Royal Economic Society)

K 1 2 3 4

log p(y|K) –204.25 — — —

log p̂BS(y|K) — –185.08 (.004) –179.14 (.002) –179.17 (.003)
log p̂IS(y|K) — –185.08 (.003) –179.11 (.003) –178.33 (.059)
log p̂RI(y|K) — –185.08 (.005) –179.99 (.013) –184.83 (.040)

log p̂CH(y|K) –204.25 –185.74 (.013) –181.37 (.088) –177.84 (.057)

Fig. 11.5. Lamb Data, modeled by a Poisson Markov mixture with K = 3 (left-

hand side) and K = 4 (right-hand side); scatter plot of the MCMC draws log(µ
(m)
k )

versus ξ
(m)
kk (from Frühwirth-Schnatter (2001b) with permission granted by the

American Statistical Association)

the computation of the marginal likelihood p(y|K) for different number K of
states. For K = 1 the marginal likelihood p(y|K) is known analytically from
(5.62), leading to log p(y|K = 1) = −204.25. For K > 1 we use the various
estimators of p(y|K) discussed in Section 5.4.2. We computed the “optimal”
bridge sampling estimator, the importance sampling estimator, and the recip-
rocal importance sampling estimator based on the unsupervised importance
density (11.29) which is constructed from the MCMC output of a random
permutation sampler with M = L = 5000 and S = 100 · K!. The resulting
marginal likelihoods are summarized in Table 11.1.

Concerning the number of states, there is overwhelming evidence against
the hypothesis that the process is homogeneous. There is clear evidence in
favor of the three-state Markov mixture model compared to the two-state
Markov mixture model. When adding a fourth state, the various estimators
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grow sensitive to the estimation method. The bridge sampling estimator has
the smallest standard error and indicates no increase in the marginal likeli-
hood. The scatter plots in Figure 11.5 indicate that the four-state Markov
mixture seems to be overfitting.

Identifying a Markov Mixture Model with Three States
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Fig. 11.6. Lamb Data, modeled by a Poisson Markov mixture with K = 3 states;
MCMC draws of µ1 (top), µ2 (middle), and µ3 (bottom); unconstrained Gibbs
sampling (left-hand side) and permutation sampling under the constraint µ1 < µ2 <
µ3 (right-hand side) (from Frühwirth-Schnatter (2001b) with permission granted by
the American Statistical Association)

As in Frühwirth-Schnatter (2004), we discuss identification of a three-state
Markov mixture model. Because of the biological background of the example,
we expect that the states differ in the intensity of movement. The direct
connection between the intensity and the state-specific parameter µk suggest
the identifiability constraint

µ1 < µ2 < µ3. (11.32)

To check the constraint we exploit the draws from random permutation sam-
pling for K = 3. Figure 11.5 shows a scatter plot of log(µ(m)

k ) versus ξ
(m)
kk

from the random permutation sampler. The various states actually differ in
the intensity, supporting constraint (11.32). This constraint is included in the
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Table 11.2. Lamb Data, modeled by a Poisson Markov mixture with K = 3 states;
parameter estimates and 95% confidence regions (from Frühwirth-Schnatter (2001b)
with permission granted by the American Statistical Association)

Unrestricted Gibbs Sampling Permutation Sampling

Mean Lower Upper Mean Lower Upper

µ1 0.145 9.43e–005 0.545 0.0648 4.84e–005 0.149
µ2 1.28 0.27 3.85 0.488 0.299 0.69
µ3 2.2 0.000444 4.21 3.08 1.65 4.51
ξ11 0.943 0.871 0.996 0.944 0.875 0.994
ξ12 0.031 2.11e–010 0.093 0.039 1.52e–007 0.105
ξ13 0.026 2.44e–010 0.0743 0.018 4.43e–010 0.049
ξ21 0.076 8.38e–010 0.296 0.043 9.56e–008 0.107
ξ22 0.871 0.543 0.999 0.944 0.873 0.996
ξ23 0.053 6.03e–009 0.279 0.013 4.95e–011 0.0434
ξ31 0.137 4.29e–008 0.427 0.172 9.88e–008 0.449
ξ32 0.087 3.66e–009 0.349 0.129 7.35e–010 0.398
ξ33 0.777 0.463 0.994 0.699 0.41 0.964

permutation sampler to obtain estimates of the state-specific intensities µk

and the transition matrix ξ; see Table 11.2.

Consequences of Undetected Label Switching

The three-state Markov mixture model has been estimated by Chib (1996)
using unconstrained Gibbs sampling based on the nonsymmetric priors µ1 ∼
G (1, 2), µ2 ∼ G (2, 1), and µ3 ∼ G (3, 1). Although the choice of the prior
means obviously reflects the belief that the first state has the lowest and the
last state has the highest intensity, the prior does not prevent label switching,
as is evident from Figure 11.6. Table 11.2 illustrates the effect of undetected
label switching on parameter estimates in comparison to estimation based on
the MCMC output of an identified model using constraint (11.32). For the sake
of comparison unconstrained sampling is based on the vague, symmetric prior
used above, rather than on the prior used by Chib (1996). For unrestricted
Gibbs sampling, label switching pulls the estimates µ̂k of all state-specific
parameters µk toward the mean E(µk|y) = 1.23 of the Markov mixture pos-
terior distribution. Similarly, all estimates of the persistence probabilities ξkk

are pulled toward E(ξkk|y) = 0.8641 and all estimates of the transition prob-
abilities ξkk′ , k �= k′ are pulled toward E(ξkk′ |y) = 0.0680. All means with
respect to the Markov mixture posterior distribution have been estimated
from the output of the random permutation sampler.

Finally, we study the effect of label switching on Chib’s estimator (Chib,
1995) given by (5.63). ϑ�

K = (µ�
1, . . . , µ

�
K , ξ�) is estimated as that MCMC

draw ϑ
(m)
K which maximizes the nonnormalized posterior p(y|ϑ(m)

K )p(ϑ(m)
K ).

p̂(ϑ�
K |y) is estimated from the MCMC output of the unconstrained Gibbs
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sampler by:

p̂(ϑ�
K |y) = M−1

M∑
m=1

p(ξ�|(S)(m))p(µ�
1, . . . , µ

�
K |(S)(m),y). (11.33)

From Table 11.1 we see that Chib’s estimator is biased in comparison to the
other methods. As for K = 2 no label switching occurred, it is possible to cor-
rect for this bias as in Section 4.5.2: log p̂�

CH(y|K) = log p̂CH(y|K)+log(2) =
−185.048. Bias correction is not possible for K = 3. From Figure 11.6 it is
clear that for K = 3 the unconstrained Gibbs sampler shows frequent label
switching causing a switching behavior in the functional values of the condi-
tional densities p(ξ�|(S)(m))p(µ�

1, µ
�
2, µ

�
3|(S)(m),y) in (11.33). This causes an

uncontrollable bias in estimating the functional value of the posterior and
subsequently in estimating the marginal likelihood.
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Nonlinear Time Series Analysis Based on
Markov Switching Models

12.1 Introduction

In practical time series analysis, an important aspect is properties of the
marginal distribution of Yt as well as properties of the one-step ahead predic-
tive density p(yt|yt−1, ϑ), implied by the chosen time series model. Typical
stylized facts of the marginal distribution of practical time series are asym-
metry and nonnormality with rather fat tails, and autocorrelation not only
in the level Yt, but also in the squared process Y 2

t . Properties of the predic-
tive distribution are nonlinear effects of past observation on the mean and
conditional heteroscedasticity.

It is well known that standard ARMA models (Box and Jenkins, 1970)
often are not able to capture stylized facts of practical time series. Some
unrealistic features of ARMA models based on normal errors are normality
of the predictive as well as the marginal density, linearity of the expecta-
tion E(Yt|yt−1, ϑ) in the past observation y1, . . . , yt−1, and homoscedasticity
of Var(Yt|yt−1, ϑ) (Brockwell and Davis, 1991; Hamilton, 1994b). Numerous
nonlinear time series models such as GARCH models, threshold autoregressive
models, and many others have been designed to reproduce empirical features
of practical time series (Tong, 1990; Granger and Teräsvirta, 1993; Franses
and van Dijk, 2000).

This chapter discusses Markov switching models that constitute another
very flexible class of nonlinear time series models and are able to capture
many features of practical time series by appropriate modifications of the ba-
sic Markov switching model introduced in Subsection 10.3.1. Section 12.2 deals
with the Markov switching autoregressive model and Section 12.3 considers
the related Markov switching dynamic regression model. Section 12.4 shows
that Markov switching models give rise to very flexible predictive distribu-
tions. Section 12.5 deals with Markov switching conditional heteroscedastic-
ity and switching ARCH models are introduced. Section 12.6 studies further
extensions, namely hidden Markov chains with time-varying transition proba-
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bilities and hidden Markov models for longitudinal data and multivariate time
series.

12.2 The Markov Switching Autoregressive Model

It has been discussed in Subsection 10.2.4 that a Markov mixture model intro-
duces autocorrelation in the process Yt even for the basic Markov switching
model, where conditionally on knowing the states, the process Yt is uncorre-
lated. In this section the Markov switching autoregressive model is introduced
that deals with autocorrelation in a more flexible way than the basic Markov
switching model.

12.2.1 Motivating Example
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Fig. 12.1. GDP Data, quarterly data 1951.II to 1984.IV, left: time series plot of
yt in comparison to level 0, right: empirical autocorrelogram

A standard time series that has been analyzed in numerous papers is the
percentage growth rate of the U.S. quarterly real GDP series:

Yt = 100(log(GDPt) − log(GDPt−1)), (12.1)

t = 1, . . . , T . Figure 12.1 shows a time series plot of the data for the period
1951.II to 1984.IV, together with empirical autocorrelation. First, we fit vari-
ous AR(p) models to these data to capture autocorrelation in this time series.
Figure 12.2, comparing the unconditional distribution of Yt, implied by each of
the fitted AR(p) models with the empirical histogram of yt, reveals a striking
difference between the empirical histogram which evidently shows bimodality,
and any of the implied marginal distributions which are unimodal and, by the
way, show surprisingly little difference for the different model orders.



12.2 The Markov Switching Autoregressive Model 359

−4 −2 0 2 4 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

GDP(percentage change)

Marginal Stationary Distribution of y

p=0
p=1
p=2
p=3
p=4

Fig. 12.2. GDP Data, modeled by an AR(p) model with p = 0, 1, . . . , 4; implied
unconditional distribution of Yt (full line) in comparison to the empirical marginal
distribution of Yt (histogram)

From where does this bimodality in the empirical time series come? Fig-
ure 12.1 displays the growth rate of the U.S. GDP series in comparison to
the zero line. Evidently periods of positive growth rate, where yt > 0, are
followed by periods of negative growth rate, where yt < 0. What we find here
is known by economists as the business cycle. Macro-economic variables such
as the GDP are influenced by the state of the economy and follow different
processes, depending on whether the economy is in a boom or in a recession.
Figure 12.1 suggests that the marginal distribution of Yt is a mixture distri-
bution with different means and possibly different variances. If we fitted a
standard mixture of two normal distributions, the implied marginal distribu-
tion of Yt would be in fact multimodal, but marginally Yt would be a process
that is uncorrelated over time. To capture both multimodality and autocorre-
lation for such time series, Hamilton (1989) introduced the Markov switching
autoregressive model.
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12.2.2 Model Definition

The standard model to capture autocorrelation is the AR(p) model,

Yt − µ = δ1(Yt−1 − µ) + · · · + δp(Yt−p − µ) + εt, (12.2)

where εt ∼ N
(
0, σ2

ε

)
, which is equivalent to model

Yt = δ1Yt−1 + · · · + δpYt−p + ζ + εt, (12.3)

with ζ = µ(1 − δ1 − · · · − δp).
An important extension of the basic Markov switching model is the Markov

switching autoregressive (MSAR) model, where a hidden Markov chain is in-
troduced into model (12.2). This model was used independently in the work
of Neftçi (1984) and Sclove (1983), and became popular in econometrics for
analyzing economic time series such as the GDP data introduced in Subsec-
tion 12.2.1 through the work of Hamilton (1989) who allowed for a random
shift in the mean level of process (12.2) through a two-state hidden Markov
chain:

Yt − µSt
= δ1(Yt−1 − µSt−1) + · · · + δp(Yt−p − µSt−p

) + εt. (12.4)

An important alternative to model (12.4) was suggested by McCulloch and
Tsay (1994b), who introduced the hidden Markov chain into (12.3) rather than
into (12.2), by assuming that the intercept is driven by the hidden Markov
chain rather than the mean level:

Yt = δ1Yt−1 + · · · + δpYt−p + ζSt + εt. (12.5)

Although the parameterization (12.2) and (12.3) are equivalent for the stan-
dard AR model, a model with a Markov switching intercept turns out to be
different from a model with a Markov switching mean level. In (12.4), after a
one-time change from St−1 to St �= St−1, an immediate mean level shift from
µSt−1 to µSt

occurs. In (12.5), however, the mean level approaches the new
value smoothly over several time periods.

Both models violate assumption Y4 as the one-step ahead predictive den-
sity p(yt|yt−1,St, ϑ) depends on past values yt−1. For a model with switching
mean level it is evident from (12.4) that the predictive density p(yt|yt−1,St, ϑ)
depends not only on St, but also on the past values St−1, . . . , St−p of the hid-
den Markov chain fulfilling only assumption Y2 stated in Subsection 10.3.4.
On the other hand for a model with switching intercept the predictive density
p(yt|yt−1,St, ϑ) depends only on St and such a process fulfills the stronger
condition Y3. As discussed in Subsection 11.2.5, condition Y3 essentially in-
fluences the complexity of econometric inference about the hidden Markov
chain St. As a result, econometric inference for an MSAR model with switch-
ing intercept is not more complicated than for the basic Markov switching



12.2 The Markov Switching Autoregressive Model 361

model, whereas for an MSAR model with switching mean inference on the
hidden Markov chain St is far more involved.

In its most general form the MSAR model allows that the autoregressive
coefficients are also affected by St (Sclove, 1983; Holst et al., 1994; McCulloch
and Tsay, 1994b):

Yt = δSt,1Yt−1 + · · · + δSt,pYt−p + ζSt
+ εt. (12.6)

The assumption that the autoregressive parameters switch between the two
states implies different dynamic patterns in the various states, and introduces
asymmetry over time. Asymmetry over time between the states is introduced
also through the hidden Markov chain as different persistence probabilities
imply different state duration; see (10.13). This combined asymmetry leads to
a rather flexible model that is able to capture asymmetric patterns observed
in economics time series, such as the fast rise and the slow decay in the U.S.
quarterly unemployment rate.

In any of these models the variance may be assumed to be constant, irre-
spective of the state of St, or it is possible to assume a shift in the variance,
εt ∼ N

(
0, σ2

ε,St

)
.

Subsequently the notation MS(K)-AR(p) is used occasionally to denote
a Markov switching autoregressive model with K states and autoregressive
order p. A more subtle notation that also differentiates between homo- and
heteroscedastic variances, switching in the mean level or in the intercept as
well as between invariant and switching autoregressive parameters is intro-
duced in Krolzig (1997).

Related Models

The mixture autoregressive model (Juang and Rabiner, 1985; Wong and Li,
2000) defines the one-step ahead predictive p(yt|yt−1, ϑ) directly as a mixture
of normal distributions with an AR structure in the mean:

p(yt|yt−1, ϑ) =
K∑

k=1

ηkfN (yt; µk,t, σ
2
k), (12.7)

where µk,t = E(Yt|yt−1, θk) = δk,1yt−1 + · · · + δk,pyt−p + ζk. This model re-
sults as that special of an MSAR model, where St is an i.i.d. process, with
each row of the transition matrix ξ being equal to the weight distribution in
(12.7). Because autocorrelation in Yt is introduced only through the observa-
tion equation this model is not able to capture spurious autocorrelation that
disappears once we condition on the state of St.

MSAR models are related to the self-exciting threshold autoregressive (SE-
TAR) models (Jalali and Pemberton, 1995; Clements and Krolzig, 1998) which
are themselves that special case of a threshold autoregressive (TAR) model
(Tong, 1990), where the mean and the autoregressive parameters switch ac-
cording to the level of the threshold variable zt = Yt−d:
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Yt =
{

δ1,1Yt−1 + · · · + δ1,pYt−p + ζ1 + εt, Yt−d ≤ r,
δ2,1Yt−1 + · · · + δ2,pYt−p + ζ2 + εt, Yt−d > r,

with εt ∼ N
(
0, σ2

ε

)
. Consider, for instance, a first-order SETAR model, where

p = 1 and d = 1 and define an indicator St such that

St =
{

1, Yt−1 ≤ r,
2, Yt−1 > r.

Then St follows a first-order Markov process with transition matrix ξ given
by

ξ =
(

Φ(r1) 1 − Φ(r1)
Φ(r2) 1 − Φ(r2)

)
,

with Φ(·) being the standard normal distribution, and rk = (r − µk)/σε.
Therefore the first-order SETAR model with d = 1 corresponds to a two-state
Markov switching autoregressive model with a restricted transition matrix,
which has a single free parameter, once µ1, µ2, and σ2

ε are known.

12.2.3 Features of the MSAR Model

The Markov switching autoregressive model is a special case of a dynamic
stochastic system with stochastic autoregressive parameters for which it is not
straightforward to find conditions under which the process Yt is strictly sta-
tionary and certain moments exist (Tjøstheim, 1986; Karlsen, 1990; Bougerol
and Picard, 1992b). Results on the stationarity of Markov switching autore-
gressive models can be found in Holst et al. (1994), Krolzig (1997), Yao and
Attali (2000), and Francq and Zakoian (2001). Timmermann (2000) illustrates
how the variance and higher-order moments of a process generated by an
MSAR model may be computed explicitly provided the process is stationary.

The Markov switching autoregressive model introduces autocorrelation
both through the hidden Markov chain as well as through the observa-
tion equation, leading to rather flexible autocorrelation structures. The au-
tocorrelation function may be computed explicitly provided that the pro-
cess is second-order stationary (Timmermann, 2000, Proposition 4). For an
MS(2)-AR(1) model with switching mean, fixed variance, and fixed AR coef-
ficients, for instance, the autocorrelation function of Yt reads:

ρYt(h|ϑ) =
1

Var(Yt|ϑ)

(
λh(µ1 − µ2)2η1η2 + δh

1
σ2

ε

1 − δ2
1

)
, (12.8)

with λ = ξ11 − ξ21 being the second eigenvalue of the transition matrix ξ and
the unconditional variance Var(Yt|ϑ) being equal to

Var(Yt|ϑ) = (µ1 − µ2)2η1η2 +
σ2

ε

1 − δ2
1
.
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The autocorrelation function fulfills, for h > 2, the following recursion,

ρYt(h|ϑ) = (δ1 + λ)ρYt(h − 1|ϑ) − δ1λρYt(h − 2|ϑ), (12.9)

and corresponds to the autocorrelation function of an ARMA(2, 1) model, but
has a nonnormal unconditional distribution.

Krolzig (1997) derived general results on the relation between Markov
switching autoregressive models and nonnormal ARMA models. A process
generated by an MS(K)-AR(p) model with switching intercept, but fixed vari-
ances and AR coefficients, for instance, possesses an ARMA(K +p−1, K −1)
representation (Krolzig, 1997, Proposition 3), whereas an ARMA(K + p −
1, K + p − 2) representation results, if a switching mean is considered, rather
than a switching intercept (Krolzig, 1997, Proposition 4).

12.2.4 Markov Switching Models for Nonstationary Time Series

The work of Nelson and Plosser (1982) started a discussion in econometrics, as
to whether macro-economic time series contain a deterministic or a stochastic
trend, the latter typically being a unit root in the autoregressive representation
of the time series. This is tested by applying a unit root test to Yt which often
leads to nonrejection of the unit root null hypothesis. Perron (1989, 1990)
found evidence for spurious unit roots in real interest rates under structural
breaks in the trend level and the growth rate.

Markov switching models are to a certain degree able to deal with spurious
unit roots caused by structural breaks. To illustrate this point consider a
process Yt, generated by a two-state Markov mixture of normal distributions
with µ2 �= µ1 and a highly persistent transition matrix where ξ11 and ξ22
are close to one, pushing the second eigenvalue λ = ξ11 − ξ21 toward 1. It is
evident from the autocorrelation function of Yt, derived in (10.20), that high
autocorrelation in the marginal process Yt is present, although there exists
no autocorrelation within the two regimes. Furthermore the autocorrelation
increases as the size |µ2 −µ1| of the shift in the mean increases. This may lead
to detecting a spurious unit root because a unit root test applied to Yt is biased
toward nonrejection of the unit root hypothesis under a sudden change in the
mean with increasing rate of nonrejection as the size |µ2 − µ1| of the break
increases. Garcia and Perron (1996), by modeling interest rates by a three-
state MSAR model with state-invariant autocorrelation and heteroscedastic
variances, show that the autocorrelation actually nearly disappears in the
various regimes.

This raises the question as to whether a Markov switching model should
be applied to the level or to the growth rate of a nonstationary time series.
Hamilton (1989), following the standard ARIMA modeling approach, which
is based on autoregressive modeling of the growth rate, applied the MSAR
model to the growth rate of a nonstationary time series such as the GDP. In
terms of the (log) level Yt the model reads:
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Yt = µt + Zt, (12.10)
µt = µt−1 + ζSt

,

δ(L)�Zt = δ(L)(1 − L)Zt = εt,

where L is the lag operator, δ(L) = 1−δ1L−· · ·−δpL
p and all roots of δ(L) lie

outside the unit circle. This model is also called the Markov switching trend
model, because the untransformed time series Yt has a stochastic trend with
a drift that is switching according to a hidden Markov chain.

Specification (12.10) assumes that Yt has a unit root, however, as noted by
Lam (1990), the results of Perron (1989, 1990) suggest that the unit root in
Yt disappears once occasional shifts in the deterministic trend are allowed for.
Lam (1990) assumes that Yt is trend stationary around a Markov switching
trend:

Yt = µt + Zt, (12.11)
µt = µt−1 + ζSt

,

δ(L)Zt = εt,

where all roots of δ(L) lie outside the unit circle. In this model the predictive
density p(yt|S,yt−1) depends on the whole history of St (assumption Y1) and
estimation has to be carried within the framework of switching state space
models; see Chapter 13.

As a compromise between these two models, Hall et al. (1999) consider a
model based on the Dickey–Fuller regression (Dickey and Fuller, 1981) and al-
low for regression parameter switching according to a two-state hidden Markov
chain:

�Yt = ζSt + ψStYt−1 +
p∑

j=1

δSt,j�Yt−j + εt. (12.12)

In (12.12), Yt is the (log) level of the observed process, whereas �Yt = Yt−Yt−1
is the growth rate. If ψ1 = ψ2 = 0 in both regimes then a unit root is present
in Yt, and the Markov switching trend model of Hamilton (1989) results. On
the other hand, if ψ1 �= 0 and ψ2 �= 0, then Yt is stationary around a trend
with Markov switching slope, leading to the model of Lam (1990).

Model (12.12) allows that Yt has a unit root in one state (ψ1 = 0), whereas
Yt is stationary in the other state (ψ2 �= 0). This model has been found useful
in applied time series analysis, for instance, in economics for modeling the
GDP (McCulloch and Tsay, 1994a), in finance for modeling interest rates
(Ang and Bekaert, 2002), as well as in geophysics (Karlsen and Tjøstheim,
1990).

Several authors investigate the power of unit root tests when the data arise
from particular Markov switching alternatives (Nelson et al., 2001; Psaradakis,
2001, 2002).



12.2 The Markov Switching Autoregressive Model 365

12.2.5 Parameter Estimation and Model Selection

ML estimation is usually carried out through the EM algorithm (Hamilton,
1990; Holst et al., 1994). Asymptotic properties of the ML estimator for MSAR
models are established in Francq and Roussignol (1998), Krishnamurthy and
Rydén (1998), and Douc et al. (2004).

Bayesian estimation of the MSAR model relies on data augmentation and
MCMC (Albert and Chib, 1993; McCulloch and Tsay, 1994b; Chib, 1996;
Frühwirth-Schnatter, 2001b). For an MSAR model where all coefficients, in-
cluding the intercept and the variance, are switching, MCMC estimation is
carried out along the lines indicated in Algorithm 11.3, with step (a2) being the
only model-specific part. Sampling the model parameters ϑ = (β1, . . . ,βK ,
σ2

ε,1, . . . , σ
2
ε,K), with βk = (δk,1, . . . , δk,p, ζk), in combination with the conju-

gate priors

βk ∼ Np+1 (b0,B0) , σ2
ε,k ∼ G (c0, C0) ,

is closely related to sampling these parameters for a finite mixture regression
model as in steps (a2) and (a3) of Algorithm 8.1. An MSAR model, where
only some parameters are switching, may be considered as a special case of
a Markov switching dynamic regression model, which is introduced in Sec-
tion 12.3, where Bayesian estimation is discussed in Subsection 12.3.2.

The presence of the lagged values yt−1, . . . , yt−p, however, causes certain
technical problems that are avoided if inference is carried out conditional on
the first p values. For an unconditional analysis as in Albert and Chib (1993),
the first p values are considered to be random draws from the stationary dis-
tribution p(y1, . . . , yp|ϑ). An undesirable effect of an unconditional analysis is
that the posterior of ϑ = (β1, . . . ,βK , σ2

ε,1, . . . , σ
2
ε,K) no longer has a standard

form, as the stationary distribution depends on these parameters in a non-
conjugate manner. Albert and Chib (1993) suggest using rejection sampling
to sample from this posterior.

The most commonly occurring model selection problems for MSAR mod-
els is selecting the number of states of the hidden Markov chains well as order
selection. Frühwirth-Schnatter (2004) shows that it is important to consider
these model selection problems jointly in order to avoid underfitting the num-
ber of states while overfitting the AR order; see also Subsection 12.2.6.

12.2.6 Application to Business Cycle Analysis of the U.S.
GDP Data

The motivating example studied in Subsection 12.2.1 demonstrated one of the
key features of the business cycle, namely that periods of expansion and con-
traction are quite different. Whereas in expansion periods the output growth
rate is high and the economy is booming, growth rates are typically negative
in contraction periods, where the economy is in a recession. An important fea-
ture of macro-economic time series such as the GDP or industrial production
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is persistence of the respective states. Once the economy is in a certain state
it tends to remain there for more than one period. Furthermore there is some
asymmetry in this persistency, as longer periods of positive growth rates are
followed by shorter periods of negative growth rates. This asymmetry over the
business cycle has been captured using a basic Markov switching model for
unemployment rates (Neftçi, 1984) and GDP, investment, and productivity
(Falk, 1986).

Markov switching autoregressive models, often also called regime switch-
ing models by economists, became extremely popular in business cycle analy-
sis since Hamilton’s (1989) paper, and further applications include Goodwin
(1993), Sichel (1994), Clements and Krolzig (1998), and Kaufmann (2000),
among many others. For a theoretical justification of why Markov switching
might be sensible models for the economy we refer to Hamilton and Raj (2002)
and Raj (2002) and the references therein.

Model Selection for the GDP Data

We return to modeling the U.S. quarterly GDP series introduced in Sub-
section 12.2.1 within the framework of MSAR models, by comparing differ-
ent Markov switching models. The first model is the K-state MSAR model
with switching intercept, but state-independent AR parameters and state-
independent variances, defined in (12.5), which has been applied by Chib
(1996). The second is the K-state MSAR model with switching intercept,
switching AR parameters, and switching error variance (“totally switching”),
defined in (12.6) which was applied by McCulloch and Tsay (1994b). The
priors are selected to be rather vague and state-independent. We assume no
prior correlation among the regression parameters. The prior on the switching
intercept is N (0, 1); the prior both on switching and state-independent AR
parameters is N (0, 0.25). The prior both on switching and state-independent
variances is G−1 (2, 0.5). The prior on the rows ξk· of the transition matrix is,
for all k, D (ek1, . . . , ekK) with ekk = 2 and ekk′ = 1/(K − 1), if k �= k′.

We compare the Markov switching models (12.5) and (12.6), where K is
equal to 2 or 3, with the classical AR(p) model, which corresponds to K = 1,
using marginal likelihoods. We assume that p varies between 0 and 4, lead-
ing to a total of 25 different models. The marginal likelihoods are estimated
from the MCMC output of a random permutation sampler (M = 6000 after a
burn-in phase of 1000 simulations) using the “optimal” bridge sampling esti-
mator described in Subsection 5.4.6, where the construction of the importance
density q(ϑ) according to (11.29) is based on S = 100 · K! components.

From Table 12.1, reporting the log of the estimated marginal likelihoods,
we find that the two-state totally switching MSAR model of order p = 2 has
the highest marginal likelihood. This result is interesting for various reasons:
first, we were able to produce evidence in favor of Markov switching hetero-
geneity from univariate time series observations of the GDP alone, without
the need to include other time series as in Kim and Nelson (2001). Second, the
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Table 12.1. GDP Data, modeled by an AR(p) model (M1) and different Markov
switching models (M2 . . . switching intercept, M3 . . . totally switching) with dif-
ferent order p and different number of states K; log of marginal likelihoods
log p(y|Mj , K, p) (from Frühwirth-Schnatter (2004) with permission granted by the
Royal Economic Society)

M1 M2 M3

p K = 1 K = 2 K = 3 K = 2 K = 3

0 –199.71 –193.54 –192.25 –194.25 –193.10
1 –194.22 –192.54 –192.75 –193.58 –194.71
2 –196.30 –194.15 –194.38 –191.62 –194.33
3 –197.26 –194.59 –194.74 –193.67 –196.78
4 –199.18 –195.70 –195.72 –195.34 –199.88

evidence in favor of the hypothesis that the dynamic pattern of the economy
is different between contraction and expansion periods confirms the empirical
results of McCulloch and Tsay (1994b).

Testing for Markov switching heterogeneity is highly influenced by select-
ing the appropriate model order. If we compare in Table 12.1 the AR(1)
model, which has highest marginal likelihood among all AR(p) models con-
sidered, with a two-state totally switching model of order four, which is the
model considered by McCulloch and Tsay (1994b), we end up with evidence in
favor of no Markov switching heterogeneity. For a two-state totally switching
MSAR model, however, the optimal model order is p = 2 rather than p = 4.
Only if we compare the AR(1) model with a two-state switching model with
p close to the optimal order, will we end up with evidence in favor of Markov
switching heterogeneity. These results indicate the importance of simultane-
ously testing for Markov switching heterogeneity and selecting the appropriate
model order and might explain why other studies, reviewed in Kim and Nelson
(2001), have produced somewhat conflicting evidence concerning the presence
or absence of Markov switching heterogeneity in this time series.

Exploratory Bayesian Analysis

A number of exploratory cues with regard to model selection are available from
the point process representations of the MCMC output of the various models.
We start with the point process representations of various bivariate marginal
distributions for the three-state totally switching MSAR model of order four.
Although we allowed for three states, the scatter plots in Figure 12.3 indicate
that a model with three states is overfitting. If we compare this figure with
the simulations of a two-state totally switching MSAR model of order four
in Figure 12.4, we obtain a similar picture, with fuzziness being reduced due
to the smaller number of parameters; nevertheless the two states are not
very clearly separated. The bivariate marginal density of the autoregressive
parameters δk,3 and δk,4 clusters around 0 for all states, suggesting reducing
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Fig. 12.3. GDP Data, totally Markov switching model with K = 3 and p = 4;
MCMC simulations from various bivariate marginal densities obtained from random
permutation sampling

the model order p to 2. The point process representations MCMC simulations
for the two-state totally switching MSAR model of order 2 in Figure 12.5 show
a much clearer picture. As δk,2 has two simulation clusters, one of which is
shifted away from 0, there is no exploratory evidence that we should reduce the
model order further. Furthermore the two simulation clusters provide evidence
in favor of a totally switching rather than a switching intercept MSAR model.

On the whole, exploratory Bayesian analysis using projections of the point
process representations of the MCMC draws supports the findings from formal
model selection using marginal likelihood.

Parameter Estimation for the “Best” Model

To identify the two-state totally switching MSAR model of order two, we use
the identifiability constraint ζ1 < ζ2, as the growth rate in the two states is
expected to be different. This choice is supported by point process represen-
tation in Figure 12.5, showing that the simulations of ζk cluster around two
points, one having an intercept bigger, the other having an intercept smaller
than zero.
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Fig. 12.4. GDP Data, totally Markov switching model with K = 2 and p = 4;
MCMC simulations from various bivariate marginal densities obtained from random
permutation sampling

To produce simulations under the identifiability constraint we apply the
permutation sampler by reordering the MCMC output according to the con-
straint ζ1 < ζ2. If the constraint is violated for any MCMC draw, ζ

(m)
1 > ζ

(m)
2 ,

we permute the labels of all state-dependent parameters with ρ(1) = 2 and
ρ(2) = 1. This is the basic idea behind permutation sampling under an iden-
tifiability constraint. It has been proven in Frühwirth-Schnatter (2001b) that
due to the invariance of the posterior distribution to relabeling the states, this
is a valid strategy to produce a sample from the constrained Markov mixture
posterior distribution.

The resulting parameter estimates are summarized in Table 12.2. Positive
growth in expansion is followed by negative growth in contraction. The dy-
namic behavior of the U.S. GDP growth rate is different between contraction
and expansion with reaction to a percentage change of the GDP growth being
faster in expansion than in contraction. The expected duration of expansion
is longer than that of contraction.
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Fig. 12.5. GDP Data, totally Markov switching model with K = 2 and p = 2;
MCMC simulations from various bivariate marginal densities obtained from random
permutation sampling (from Frühwirth-Schnatter (2001b) with permission granted
by the American Statistical Association)

Table 12.2. GDP Data, totally Markov switching model with K = 2 and p = 2,
identified through ζ1 < ζ2; parameters estimated by posterior means; standard errors
given by posterior standard deviations in parentheses

Parameter Contraction (k = 1) Expansion (k = 2)

δk,1 0.249 (0.164) 0.295 (0.116)
δk,2 0.462 (0.164) –0.114 (0.098)
ζk –0.557 (0.322) 1.060 (0.175)

σε,k 0.768 (0.161) 0.692 (0.115)
ξkk′ 0.489 (0.165) 0.337 (0.145)
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12.3 Markov Switching Dynamic Regression Models

An important extension both of Markov switching autoregressive models and
the Markov switching regression model, discussed in Subsection 10.3.2, is the
Markov switching dynamic regression model.

12.3.1 Model Definition

The MSAR model (12.4) has been extended in the following way to deal with
the presence of exogenous variables zt =

(
zt1 · · · ztd

)
(Cosslett and Lee,

1985; Albert and Chib, 1993),

Yt − µSt − ztβ = δ1(Yt−1 − µSt−1 − zt−1β) + · · ·
+ δp(Yt−p − µSt−p − zt−pβ) + εt,

where the regression coefficient β is considered to be unaffected by St. In the
following dynamic regression model all parameters, including the regression
coefficient β, are affected by endogenous regime shifts following a hidden
Markov chain (McCulloch and Tsay, 1994b),

Yt = δSt,1Yt−1 + · · · + δSt,pYt−p + ztβSt
+ ζSt

+ εt.

For estimation it is useful to view this model as a Markov switching regression
model as in Subsection 10.3.2, without distinguishing between endogenous
variables, exogenous variables, and the intercept:

Yt = xtβSt
+ εt, (12.13)

where xt =
(
yt−1 · · · yt−p zt1 · · · ztd 1

)
. In the mixed-effects Markov switch-

ing dynamic regression model only certain elements of the parameter βSt
in

(12.13) actually depend on the state of the hidden Markov chain, and others
are state independent (McCulloch and Tsay, 1994b):

Yt = xf
t α + xr

tβSt
+ εt, (12.14)

where xf
t are those columns of xt that correspond to the state-independent

parameters α whereas the columns of xr
t correspond to the state-dependent

parameters. Any of these models may be combined with homoscedastic vari-
ances, εt ∼ N

(
0, σ2

ε

)
, or heteroscedastic variances, where the error variances

are different in the various states, εt ∼ N
(
0, σ2

ε,St

)
.

12.3.2 Bayesian Estimation

Bayesian estimation of the Markov switching dynamic regression model along
the lines indicated in Algorithm 11.3 is closely related to Bayesian esti-
mation of finite mixtures of regression models. Sampling the parameters
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(α,β1, . . . ,βK , σ2
ε,1, . . . , σ

2
ε,K) conditional on a known trajectory S of the hid-

den Markov chain in step (a2) of Algorithm 11.3 is exactly the same as for a
mixed-effects finite mixture regression model and may be implemented as in
Algorithm 8.2. As the Markov switching dynamic regression model includes
lagged values of Yt, inference is usually carried out conditional on the first p
observations y1, . . . , yp and t runs from t0 = p+1 to T . To adapt the formulae
of Subsection 8.4.4, in particular (8.36) and (8.37), to the slightly different
notation used here, note that i corresponds to t − p, whereas N corresponds
to T − p.

Usually an independence prior is applied where location and scale pa-
rameters are assumed to be independent a priori (Albert and Chib, 1993;
McCulloch and Tsay, 1994b):

p(α,β1, . . . ,βK , σ2
ε,1, . . . , σ

2
ε,K) = p(α)

K∏
k=1

p(βk)p(σ2
ε,k), (12.15)

α ∼ Nr (a0,A0) , βk ∼ Nd (b0,B0) , σ2
ε,k ∼ G (c0, C0) .

Conditionally conjugate priors exist only for two special cases of model (12.14);
first, for a model with homoscedastic variances, namely

p(α,β1, . . . ,βK , σ2
ε) = p(σ2

ε)p(α|σ2
ε)

K∏
k=1

p(βk|σ2
ε), (12.16)

α|σ2
ε ∼ Nr

(
a0, σ

2
εA0

)
, βk|σ2

ε ∼ Nd

(
b0, σ

2
εB0

)
, σ2

ε ∼ G (c0, C0) ,

and, second, for a model with heteroscedastic variances and no common pa-
rameters, where xf

t α vanishes in (12.14), namely

p(β1, . . . ,βK , σ2
ε,1, . . . , σ

2
ε,K) =

K∏
k=1

p(βk|σ2
ε,k)p(σ2

ε,k), (12.17)

βk|σ2
ε,k ∼ Nd

(
b0, σ

2
ε,kB0

)
, σ2

ε,k ∼ G (c0, C0) .

With increasing number K of states joint sampling of all regression parame-
ters (α, β1, . . . ,βK) may be rather time consuming, especially for regression
models with high-dimensional parameter vectors, and further blocking may
be applied (Albert and Chib, 1993; McCulloch and Tsay, 1994b; Kim and
Nelson, 1999).

12.4 Prediction of Time Series Based on Markov
Switching Models

12.4.1 Flexible Predictive Distributions

The predictive distribution of a Markov switching model is much more flexible
than the predictive distribution of more traditional time series models. Con-
sider the one-step ahead predictive density p(yt|yt−1, ϑ) of a Markov switching
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model that reads

p(yt|yt−1, ϑ) =
K∑

k=1

p(yt|yt−1, θk)Pr(St = k|yt−1, ϑ), (12.18)

if at least assumption Y2 holds. Various features of (12.18) are worth men-
tioning.

First, the one-step ahead predictive density p(yt|yt−1, ϑ) is a finite mix-
ture distribution and potentially nonnormal, even if the component densities
p(yt|yt−1, θk) are normal. The weights of this mixture density are given by
the one-step ahead predictive probabilities Pr(St = k|yt−1, ϑ), k = 1, . . . , K,
which are determined recursively by the filter derived in Subsection 11.2.2,
and are dynamic, depending on the past values of yt−1, as long as St does
not reduce to an i.i.d. process. Additional important features of the predictive
density are nonlinearity of E(Yt|yt−1, ϑ) in the past values yt−1, and condi-
tional heteroscedasticity, meaning that Var(Yt|yt−1, ϑ) depends on the past.
Also higher-order moments of p(yt|yt−1, ϑ) are dynamic and depend on the
past.

These features are made more explicit for a two-state Markov switching
model with normal component densities, p(yt|yt−1, θk) = fN (yt; µk,t, σ

2
k,t),

with µk,t = E(Yt|yt−1, θk) and σ2
k,t = Var(Yt|yt−1, θk) being the conditional

mean and the conditional variance. Obviously from (12.18), the predictive
density p(yt|yt−1, ϑ) is a mixture of two normal distributions,

p(yt|yt−1, ϑ) = wt−1(yt−1)fN (yt; µ1,t, σ
2
1,t)

+ (1 − wt−1(yt−1))fN (yt; µ2,t, σ
2
2,t), (12.19)

where wt−1(yt−1) = Pr(St = 1|yt−1, ϑ) is the predictive probability of St = 1
given time series observations up to t − 1. Using the filter equations given
in Subsection 11.2.3, it is possible to show that wt−1(yt−1) is a nonlinear
function of the past values yt−1. From (11.5) follows

wt−1(yt−1) = (1 − λ)η1 + λPr(St−1 = 1|yt−1, ϑ), (12.20)

where the filter equation (11.2) implies that the odds ratio for the filter prob-
ability Pr(St−1 = 1|yt−1, ϑ) is given by

logit Pr(St−1 = 1|yt−1, ϑ) = −.5

×
(

(yt−1 − µ1,t−1)2

σ2
1,t−1

− (yt−1 − µ2,t−1)2

σ2
2,t−1

+ log
σ2

1,t−1

σ2
2,t−1

)
+ logit wt−2(yt−1).

Consequently, the right-hand side of (12.20) is a nonlinear function of yt−1,
and by recursion, of all other previous values yt−2. Hence, the mean of the one-
step ahead predictive distribution p(yt|yt−1, ϑ) of a two-state hidden Markov
model, which is given by
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E(Yt|yt−1, ϑ) = µ1,twt−1(yt−1) + µ2,t(1 − wt−1(yt−1)),

is nonlinear in the past yt−1, even if the conditional means µ1,t and µ2,t are
linear as for the MSAR model.

Furthermore, the dependence of the weights wt−1(yt−1) on past obser-
vations through the nonlinear function (12.20) introduces conditional het-
eroscedasticity, even if the predictive densities are homoscedastic. For a two-
state hidden Markov model the variance of the one-step ahead predictive
distribution p(yt|yt−1, ϑ) is given by

Var(Yt|yt−1, ϑ) = σ2
1,twt−1(yt−1) + σ2

2,t(1 − wt−1(yt−1))
+ 2µ1,tµ2,twt−1(yt−1)(1 − wt−1(yt−1)),

wt−1(yt−1) depends on past observations through the nonlinear function
(12.20). Thus the conditional variance Var(Yt|yt−1, ϑ) of a Markov switch-
ing model is in general a nonlinear function of past squared errors and able
to capture conditional heteroscedasticy observed in financial time series; see
Section 12.5.

12.4.2 Forecasting of Markov Switching Models via
Sampling-Based Methods

Predictors ŷT+1, . . . , ŷT+h of a time series y = (y1, . . . , yT ) which are optimal
with respect to the mean-squared prediction error criterion may be computed
recursively for most Markov switching models (Krolzig, 1997; Clements and
Krolzig, 1998).

Bayesian forecasting of future observations yT+1, . . . , yT+h of a time se-
ries y = (y1, . . . , yT ) is based on the predictive density p(yT+1, . . . , yT+h|y)
which is not available in closed form for most time series models, even for sim-
ple AR(p) models (Schnatter, 1988a). Sampling-based forecasting procedures
that have been applied to AR models (Thompson and Miller, 1986) and to
ARCH models (Geweke, 1992) were extended to deal with Markov switching
autoregressive models (Albert and Chib, 1993).

The following algorithm shows how forecasting by a sampling-based ap-
proach is implemented for arbitrary Markov switching models fulfilling at least
assumption Y3 whereas St only needs to fulfill S1.

Algorithm 12.1: Forecasting of a Markov Switching Time Series Model For
each MCMC draw (ϑ(m), S

(m)
1 , . . . , S

(m)
T ) from the joint posterior p(S, ϑ|y)

carry out the following steps to sample from the posterior predictive density
p(yT+1, . . . , yT+h|y).

(a) Starting with S
(m)
T , sample a future path of the hidden Markov chain by

sampling S
(m)
T+s recursively for s = 1, . . . , h from the discrete distribution

p(ST+s|S(m)
T+s−1, ϑ

(m)). For a homogeneous Markov chain, this distribution
is equal to the kth row of ξ(m), if S

(m)
T+s−1 takes the value k.
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(b) Given ϑ(m) and S
(m)
T+1, . . . , S

(m)
T+h, sample y

(m)
T+1 from the predictive density

p(yT+1|y, ϑ, S
(m)
T+1), and for s = 2, . . . , h, sample y

(m)
T+s recursively from the

predictive density p(yT+s|y(m)
T+s−1, . . . , y

(m)
T+1,y, ϑ, S

(m)
T+s).

To implement step (b) for the MSAR model, for instance, one samples
future paths y

(m)
T+1, . . . , y

(m)
T+h recursively from:

yT+1|S(m)
T+1 = k1,y, ϑ(m) ∼

N
(
ζ
(m)
k1

+ δ
(m)
k1,1yT + · · · + δ

(m)
k1,pyT−p, σ

(2,m)
ε,k1

)
yT+2|S(m)

T+2 = k2, y
(m)
T+1,y, ϑ(m) ∼

N
(
ζ
(m)
k2

+ δ
(m)
k2,1y

(m)
T+1 + δ

(m)
k2,2yT + . . . , σ

(2,m)
ε,k2

)
yT+3|S(m)

T+3 = k3, y
(m)
T+2, y

(m)
T+1,y, ϑ(m) ∼

N
(
ζ
(m)
k3

+ δ
(m)
k3,1y

(m)
T+2 + δ

(m)
k3,2y

(m)
T+1 + δ

(m)
k3,3yT + . . . , σ

(2,m)
ε,k3

)
,

· · ·

where δ
(m)
k,l = 0 for l > p.

12.5 Markov Switching Conditional Heteroscedasticity

12.5.1 Motivating Example
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Fig. 12.6. New York Stock Exchange Data, left: time series plot; right:
smoothed histogram of the marginal distribution
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Fig. 12.7. New York Stock Exchange Data, left: log of the smoothed his-
togram (solid line) in comparison to the log of a normal distribution with same
mean and variance (dashed line); middle: empirical autocorrelogram of the returns;
right: empirical autocorrelogram of the squared returns

Figure 12.6 shows the weekly New York Stock Exchange Data inves-
tigated in Hamilton and Susmel (1994). The series originates from the CRISP
data tapes and consists of a value-weighted portfolio of stocks traded on the
New York Stock Exchange and starts with the week ending Tuesday, July 3,
1962 and ends with the week ending Tuesday, December 29, 1987, making
in total 1330 observations. The smoothed histogram of the marginal distri-
bution indicates asymmetry and fat tails. The empirical skewness coefficient
and excess kurtosis are given by −1.2923 and 17.6394, respectively.

A central topic of econometrics of financial markets is the question of how
to model the distribution of such returns, and how to estimate the variability,
usually termed volatility, of financial time series. The returns are in general
defined as yt = log pt − log pt−1, where pt is the price of a financial asset or
a stock index. Two important stylized facts of financial time series, known as
fat tails and volatility clustering, were discovered in the 1960s. Fama (1965,
p.48), when studying 30 stocks from the Dow Jones industrial average index,
summarized:

In any case the empirical distributions are more peaked than the nor-
mal in the centre and have longer tails than the normal distribution.

Departure from normality also occurs for the returns of the New York
Stock Exchange Data. Nonnormal tail behavior is evident in particular
from the left plot in Figure 12.7, comparing the log of the smoothed his-
togram with the log of a normal distribution with the same mean and the
same variance.

Concerning the second stylized fact, Mandelbrot (1963, p.418) states,

Large changes tends to be followed by large changes — of either sign
— and small changes tend to be followed by small changes.
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This kind of volatility clustering is also evident for the returns of the New
York Stock Exchange Data from the time series plot in Figure 12.6. The
presence of volatility clusters if often tested by analyzing the autocorrelation
in the squared process. Many studies find significant serial correlation in the
squared values of financial time series; see also the right-hand side plot in
Figure 12.7 for the returns of the New York Stock Exchange Data.

Later on researchers realized various asymmetric effects also called leverage
effects. As Engle and Ng (1995, p.173) summarize,

Overall, these results show a greater impact on volatility of negative,
rather than positive return shocks.

12.5.2 Capturing Features of Financial Time Series Through
Markov Switching Models

Markov switching models are often used by researchers to account for specific
features of financial time series such as asymmetries, fat tails, and volatility
clusters.

To deal with skewness and excess kurtosis in the unconditional distribution
of daily stock returns standard finite mixtures of normal distributions have
been applied quite frequently (Fama, 1965; Granger and Orr, 1972; Kon, 1984;
Tucker, 1992). Such a modeling approach, however, is appropriate for time
series data only if the processes Yt and Y 2

t do not exhibit autocorrelation,
as by the results of Subsections 10.2.4 and 10.2.5 a standard finite mixture
model implies zero autocorrelation in Yt and Y 2

t .
Volatility clustering implies persistence of states of high volatility and leads

to the rejection of standard time series models in favor of time series models
that allow the conditional variance Var(Yt|yt−1, ϑ) to depend on the history
yt−1, yt−2, . . . of the observed process such as the autoregressive conditionally
heteroscedastic (ARCH) model (Engle, 1982), where

Var(Yt|yt−1, ϑ) = γt + α1y
2
t−1 + · · · + αmy2

t−m,

and the generalized autoregressive conditionally heteroscedastic (GARCH)
model (Bollerslev, 1986). The popularity of ARCH models, in particular if
they are based on the tν-error distributions (Bollerslev et al., 1992), can cer-
tainly be explained by their ability to generate processes with serial correlation
in Y 2

t , whereas the introduction of tν-error helps to capture the tail behav-
ior appropriately. Tsay (1987) considered random coefficient autoregressive
models which are another example of a conditional heteroscedastic time series
model and showed that the ARCH process is a special case of this model class.
More recently, stochastic volatility models have been increasingly applied to
financial time series (Shephard, 1996; Kim et al., 1998; Chib et al., 2002).

As an alternative to these models, Markov mixture models where the vari-
ance of a location-scale family is driven by a hidden Markov chain have been
applied to financial time series (Engel and Hamilton, 1990; McQueen and
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Thorely, 1991; Rydén et al., 1998). Although these models introduce autocor-
relation in Y 2

t , while preserving nonnormality of the marginal distribution (see
again Subsection 10.2.5), a closer inspection of the autocorrelation function
of Y 2

t reveals that the basic Markov switching model generates only limited
persistence in the squared process. For a two-state model, where µ1 = µ2, for
instance, there exists a strong relationship between the fatness of the tails,
measured by the excess kurtosis, and autocorrelation of the squared process.

Far more general autocorrelation functions of Y 2
t are possible if Yt is gen-

erated by an MSAR model with or without switching AR coefficients; see
Timmermann (2000, Proposition 5). Hence the MSAR model has been ap-
plied to a number of financial time series (Hamilton, 1988; Turner et al.,
1989; Cecchetti et al., 1990; Engel, 1994; Gray, 1996; Ang and Bekaert, 2002).

To obtain even more flexibility in the autocorrelation of Y 2
t , for a given

marginal distribution of Yt, Hamilton and Susmel (1994), Cai (1994), and
Gray (1996) proposed to combine ARCH and Markov switching effects to
formulate the switching ARCH model, which is defined in Subsection 12.5.3
as a highly flexible, nonlinear time series model. Bekaert and Harvey (1995)
introduced a model that combines Markov switching models with multivariate
ARCH models to allow for time-dependence in the integration of emerging
markets. Francq et al. (2001) considered the switching GARCH model; see
Subsection 12.5.5.

Smith (2002) extends Markov switching models further, by incorporating
a regime-dependent variance parameter, when modeling stochastic volatility
in interest rates.

12.5.3 Switching ARCH Models

A simple model to capture volatility clusters in financial time series is the
ARCH model (Engle, 1982) which may be written as

Yt = σtεt, εt ∼ N (0, 1) ,

σ2
t = γt + α1Y

2
t−1 + · · · + αmY 2

t−m (12.21)

with γt ≡ γ. An alternative parameterization of this model reads:

Yt =
√

γthtεt,

h2
t = 1 +

α1

γt−1
Y 2

t−1 + · · · +
αm

γt−m
Y 2

t−m. (12.22)

The two parameterizations are equivalent if γt ≡ γ, however, they generate
different processes if γt is time dependent. The switching ARCH model results
by allowing time dependence of γt through a hidden K-state Markov chain
St: γt = γSt .

Such a switching parameter was introduced by Hamilton and Susmel
(1994) into parameterization (12.22):
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Yt =
√

γSt
htεt,

h2
t = 1 +

α1

γSt−1

Y 2
t−1 + · · · +

αm

γSt−m

Y 2
t−m,

whereas Cai (1994) introduced a two-state and Kaufmann and Frühwirth-
Schnatter (2002) a K-state switching parameter into parameterization (12.21):

Yt = σtεt,

σ2
t = γSt

+ α1Y
2
t−1 + · · · + αmY 2

t−m.

Gray (1996) introduced switching into all coefficients of the ARCH process,
represented by (12.21):

Yt = σtεt,

σ2
t = γSt

+ αSt,1Y
2
t−1 + · · · + αSt,mY 2

t−m. (12.23)

A special case of model (12.23) is the mixture autoregressive conditional het-
eroscedastic model (Wong and Li, 2001), where St is an i.i.d. process rather
than a Markov process. Francq et al. (2001) provide conditions under which
model (12.23) is second-order stationary; see also the discussion in Subsec-
tion 12.5.5.

The switching ARCH model may be combined with a Markov switching
autoregressive model for the mean equation that includes the same hidden
Markov chain (Gray, 1996):

Yt = ζSt + δSt,1Yt−1 + ut,

ut = σtεt, εt ∼ N (0, 1) ,

σ2
t = γSt + αSt,1u

2
t−1 + · · · + αSt,mu2

t−m. (12.24)

The switching ARCH model has been extended by including a leverage effect
into the ARCH specification (Hamilton and Susmel, 1994; Kaufmann and
Frühwirth-Schnatter, 2002) to deal with asymmetries in the marginal distri-
bution:

Yt = σtεt, εt ∼ N (0, 1) ,

σ2
t = γSt

+ α1y
2
t−1 + · · · + αmy2

t−m + �dt−1y
2
t−1, (12.25)

where dt = 1 if yt ≤ 0, dt = 0 if yt > 0 and � > 0.
Further applications of switching ARCH models in financial econometrics

include modeling of stock market returns (Hamilton and Lin, 1996; Fong,
1997), interest rates (Cai, 1994; Gray, 1996; Ang and Bekaert, 2002), and
exchange rate data (Klaasen, 2002).

Spurious Persistency in Squared Returns

A common finding when fitting GARCH models to high-frequency financial
data is the somewhat unexpected persistence of shocks to the variance implied
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by the estimated coefficients which led to the development of the class of in-
tegrated generalized autoregressive conditional heteroscedasticity (IGARCH)
models (Engle and Bollerslev, 1986). Lamoureux and Lastrapes (1990) in-
vestigated the possibility that the appearance of a unit root in the GARCH
model may be due to time-varying GARCH parameters. They show that a
deterministic structural shift in the unconditional variance, caused by exoge-
nous shocks such as changes in the monetary policy, will increase persistency
of squared residuals, however, when the structural break is accounted for,
persistency often decreases dramatically.

Introducing a hidden Markov chain into a variance model helps to explain
spurious persistence in squared returns. Consider, for illustration, a simple
Markov mixture of two normal distributions with µ1 = µ2 and σ2

1 �= σ2
2 driven

by a highly persistent transition matrix ξ with λ = ξ11 − ξ21 being close to 1.
Together with σ2

2 − σ2
1 being large this leads to slowly decaying persistence in

Y 2
t :

ρY 2
t
(h|ϑ) =

η1η2(σ2
1 − σ2

2)2

E(Y 4
t |ϑ) − E(Y 2

t |ϑ)2
λh

(see again (10.24)), although the squared returns are uncorrelated within each
regime. Also for the more general switching ARCH model, Hamilton and Sus-
mel (1994) attribute part of the high marginal persistence in Y 2

t , which is
typically much larger than autocorrelation of Y 2

t in the various regimes, to
this effect.

12.5.4 Statistical Inference for Switching ARCH Models

Parameter estimation for switching ARCH models may be carried out by
ML estimation (Hamilton and Susmel, 1994; Francq et al., 2001). Hamilton
and Susmel (1994) report extreme difficulties with maximizing the likelihood
function for the New York Stock Exchange Data, and only by restricting
seven transition probabilities to 0 were they able to run the optimization
procedure and to report standard errors for their final model.

Bayesian estimation of the switching ARCH model as exemplified in Kauf-
mann and Frühwirth-Schnatter (2002) has the advantage of coping with the
near boundary space problem by imposing a proper prior on the transition
matrix ξ as discussed in Subsection 11.5.1, in which case the posterior density
is proper also for unobserved transitions, and standard errors and confidence
regions are directly available. MCMC sampling may be carried out along the
lines indicated in Algorithm 11.3, however, the Metropolis–Hastings algorithm
is needed to implement step (a2) due to the nonlinear structure of the under-
lying model which does not lead to simple conditional densities.

Consider, as an example, the following special case of the switching AR-
ARCH model,
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yt = ζ + δ1yt−1 + ut, (12.26)
ut = σtεt, εt ∼ N (0, 1) , (12.27)
σ2

t = γSt
+ α1u

2
t−1 + · · · + αmu2

t−m,

where step (a2) in Algorithm 11.3 requires sampling the AR parameters
φ1 = (ζ, δ1) and the ARCH parameters φ2 = (γ1, . . . , γK , α1, . . . , αm) from
the appropriate conditional densities. To this aim, Kaufmann and Frühwirth-
Schnatter (2002) developed the following two-block Metropolis–Hastings step,
building on Nakatsuma (2000).

(a2-1) Sample the AR parameters φ1 = (ζ, δ1) from the conditional pos-
terior p(φ1|S,φ2,y) using a Metropolis–Hastings algorithm with proposal
density q(φnew

1 |φold
1 ).

(a2-2) Sample the ARCH parameters φ2 = (γ1, . . . , γK , α1, . . . , αm) from
the conditional posterior p(φ2|φ1,S,y) using a Metropolis–Hastings algo-
rithm with proposal density q(φnew

2 |φold
2 ).

Due to the presence of ARCH errors in regression model (12.26) no direct
method of sampling the AR parameters φ1 is available even if the ARCH
parameters φ2 are known and a normal prior φ1 ∼ N (b0,B0) is assumed
(Bauwens and Lubrano, 1998; Kim et al., 1998; Nakatsuma, 2000). The crucial
point is that the error variance σ2

t depends on φ1 = (ζ, δ1) through the lagged
residuals ut−1, . . . , ut−m:

σ2
t (φ1, φ2) = γSt + α1(yt−1 − ζ − δ1yt−2)2 + · · ·

+ αm(yt−m − ζ − δ1yt−m−1)2.

Because model (12.26) is a standard regression model with heteroscedastic
errors, if σ2

t (φ1, φ2) is independent of φ1, the following normal proposal
density results when substituting σ2

t (φ1, φ2) by σ2
t (φold

1 , φ2) (Kaufmann and
Frühwirth-Schnatter, 2002),

q(φnew
1 |φold

1 ) = fN (φnew
1 ;bN (φold

1 ),BN (φold
1 )),

bN (φ1) = BN (φ1)

(
T∑

t=m+2

1
σ2

t (φ1, φ2)
x

′
tyt + B−1

0 b0

)
,

BN (φ1) =

(
T∑

t=m+2

1
σ2

t (φ1, φ2)
x

′
txt + B−1

0

)−1

,

where b0 and B0 are the prior parameters and xt =
(
1 yt−1

)
.

Also the conditional posterior of the ARCH parameters φ2 is not of any
closed form. To derive a proposal density q(φnew

2 |φold
2 ), the switching ARCH

model is reformulated in Kaufmann and Frühwirth-Schnatter (2002) as a gen-
eralized linear model. From (12.27), u2

t = σ2
t (φ1, φ2)ε2

t , where ε2
t is a χ2

1
random variable that may be expressed as ε2

t = 1 + ε̃t with E(ε̃t) = 0 and
Var(ε̃t) = 2. Therefore:
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u2
t = γ1D

1
t + · · · + γKDK

t + u2
t−1α1 + · · ·

+ u2
t−mαm + σ2

t (φ1, φ2)ε̃t, (12.28)

where Dk
t = 1 iff St = k. A normal proposal for φ2 has been derived in Kauf-

mann and Frühwirth-Schnatter (2002) from model (12.28) by substituting the
nonnormal errors by normal ones with variance 2(σ2

t (φ1, φ
old
2 ))2.

Note that both the basic Markov switching model with heterogeneous
variances as well as the ARCH model are nested within the switching ARCH
model. Therefore model selection may be used to test for the usefulness of the
combined model as well as the correct model order. Francq et al. (2001) show
that the AIC and Schwarz criteria do not underestimate the correct order of
the switching ARCH model. Kaufmann and Frühwirth-Schnatter (2002) use
marginal likelihoods to select both the number of states as well as the model
order of a switching ARCH model.

Application to the New York Stock Exchange Data

For illustration, we return to the New York Stock Exchange Data. To
account for the autocorrelation found in yt and y2

t , as well as for the fat tails
and the asymmetry observed in the marginal distribution, Kaufmann and
Frühwirth-Schnatter (2002) fitted the following switching AR-ARCH model
to these data, which includes a leverage term,

yt = ζ + δ1yt−1 + ut, (12.29)
ut = σtεt, εt ∼ N (0, 1) ,

σ2
t = γSt

+ α1u
2
t−1 + · · · + αmu2

t−m + �dt−1y
2
t−1. (12.30)

Table 12.3. New York Stock Exchange Data, modeled by a switching AR-
ARCH model with leverage with different numbers of states K and different model
orders m; log of the marginal likelihoods under different priors on the switching
ARCH intercept (from Kaufmann and Frühwirth-Schnatter (2002) with permission
granted by Blackwell Publisher Ltd.)

log p(y|K, m)
K m (prior 1) (prior 2)

3 2 –2858.5 –2858.0
3 3 –2858.2 –2857.7
3 4 –2857.1 –2856.4

4 2 –2861.0 –2859.7
4 3 –2860.7 –2859.4
4 4 –2859.1 –2855.9

Table 12.3 summarizes the marginal likelihoods p(y|K, m) for different
numbers of states K and different model orders m. The marginal likelihoods
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are estimated using bridge sampling as described in Section 5.4.6. Kaufmann
and Frühwirth-Schnatter (2002) noted sensitivity of the model selection proce-
dure with respect to the prior on γk. Selecting the model order m is unaffected
by this prior and yields m = 4. Depending on the prior, the marginal like-
lihood would favor either a model with three or four states; see Table 12.3.
This sensitivity may be explained by the fact that for a four-state model one
of the states corresponds to a single outlier. Thus little information on the
parameters of the fourth state is available from the likelihood and the prior
dominates the posterior distribution.

12.5.5 Switching GARCH Models

Francq et al. (2001) consider the following switching GARCH(m, n) model,
where all coefficients are switching,

Yt = σtεt, εt ∼ N (0, 1) , (12.31)
σ2

t = γSt + αSt,1y
2
t−1 + · · · + αSt,my2

t−m + δSt,1σ
2
t−1 + · · · + δSt,nσ2

t−n.

By recursive substitution it becomes evident that the predictive density
p(yt|yt−1,St, ϑ) depends on the whole history of St. For the switching
GARCH(1, 1) model, for instance, the variance of the predictive density reads:

σ2
t = γSt

+ αSt,1y
2
t−1 + δSt,1(γSt−1 + αSt−1,1y

2
t−2)

+ δSt,1γSt−1(γSt−2 + αSt−2,1y
2
t−3) + · · · .

Thus the model obeys only the weakest assumption Y1 defined in Subsec-
tion 10.3.4. Due to the work of Francq et al. (2001), the theoretical properties
of the switching GARCH models are well understood.

First, Francq et al. (2001) establish necessary and sufficient conditions
ensuring the existence of a strictly stationary solution by rewriting (12.31) as
a stochastic dynamic system and considering the Lyapunov exponent of this
system as in Bougerol and Picard (1992a). For the switching GARCH(1, 1)
model, for instance, this condition reads:

K∑
k=1

ηkE(log
(
αk,1ε

2
t + δk,1

)
) < 0,

which reduces for K = 1 to the result given by Nelson (1990) for the stan-
dard GARCH(1, 1) model. This condition, however, does not guarantee the
existence of the unconditional variance of Yt.

Francq et al. (2001) establish necessary and sufficient conditions for the ex-
istence of second-order stationary solutions, which reduce to the requirement
that the spectral radius of a matrix derived from the stochastic dynamic sys-
tem mentioned above is strictly less than one. For a GARCH(m, n) model
where only the intercept is switching, this condition reduces to:
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m∑
j=1

αj +
n∑

j=1

δj < 1,

which is equal to the condition given by Bollerslev (1986) for a standard
GARCH(m, n) model.

Finally, Francq and Zakoian (1999) establish necessary and sufficient con-
ditions for the existence of higher-order moments of Y 2

t . They show that Y 2
t

admits a linear ARMA representation where the orders depend on m, n, and
the model coefficients, extending the well-known result that a GARCH(m, n)
process has the same autocorrelation as an ARMA(max(m, n), m) process.
Similar ARMA representations are also derived for powers of Y 2

t .
Practical application of switching GARCH models include stock market

returns (Dueker, 1997) and exchange rate data (Klaasen, 2002).

12.6 Some Extensions

12.6.1 Time-Varying Transition Matrices

Whereas the transition matrix ξ of the hidden process St is time invariant
under assumption S3 or S4, the transition probability from St−1 to St may
depend on exogenous variables under assumption S1 or S2, as suggested by
Goldfeld and Quandt (1973).

For a two-state Markov switching model, the transition probabilities
ξSt−1,St

may be reparameterized through a logit model in the following way,

ξSt−1,St =
exp(κSt−1,1)

1 + exp(κSt−1,1)
, St �= St−1.

A univariate exogenous variable zt may then be included as in Subsec-
tion 8.6.2:

ξSt−1,St =
exp(κSt−1,1 + ztκSt−1,2)

1 + exp(κSt−1,1 + ztκSt−1,2)
, St �= St−1, (12.32)

with κj,1 and κj,2, j = 1, 2 being unknown parameters. Note that the transi-
tion probability ξSt−1,St

not only depends on zt, but also on the state of St−1.
The logit transform could be substituted by another increasing function F (·),

ξSt−1,St = F (κSt−1,1 + ztκSt−1,2), St �= St−1, (12.33)

for instance, the standard normal distribution. If zt is equal to a lagged
value of Yt, zt = yt−d for some d > 0, then the so-called endogenous selec-
tion MSAR model (Krolzig, 1997, Subsection 10.3.2) results. If, in addition,
the parameters of model (12.32) or (12.33) are independent of the state of
St−1, κ1,1 = κ2,1, κ1,2 = κ2,2, then the resulting model is closely related to
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the smooth transition autoregressive model (Teräsvirta and Anderson, 1992;
Granger and Teräsvirta, 1993). Extensions to multiple exogenous variables
zt = (zt1, . . . , ztr) and to more than two states are possible.

Models with time-varying transition matrices found applications in hy-
drology (Zucchini and Guttorp, 1991; Pfeiffer and Jeffries, 1999), in financial
econometrics (Diebold et al., 1994; Peria, 2002; Schaller and van Norden, 2002;
Ang and Bekaert, 2002), and in business cycle analysis to capture duration
dependence, meaning that the transition probability between recession and
boom depends on how long the economy remained within the same regime
(Durland and McCurdy, 1994; Filardo, 1994; Filardo and Gordon, 1998).

A model with time-varying transition matrices may be estimated through
the EM algorithm (Diebold et al., 1994) or through MCMC methods (Filardo
and Gordon, 1998).

12.6.2 Markov Switching Models for Longitudinal and Panel Data

Some recent papers combine clustering methods and longitudinal analysis us-
ing hidden Markov models. In a health state model comparing the effective-
ness of two different medications for schizophrenia, Scott et al. (2005) assume
that the observed response yit for patient i at time t follows a multivariate
Student-t distribution,

yit|Sit = k ∼ tνk
(µk,Σk) , (12.34)

depending on a latent health state Sit. The health state is assumed to be a
hidden Markov chain with treatment-dependent transition matrix. Estimation
of this model is carried out using MCMC and BIC was used to select the
number of health states.

Frühwirth-Schnatter and Kaufmann (2006b) combine clustering and Markov
switching models in economic panel data analysis by assuming that K hid-
den groups are present in a panel and that within each group the parameters
may switch according to a hidden Markov chain. Consider, for example, the
mixed-effects model defined in Subsection 8.5.2,

yit = xf
itα + xr

itβ
s
it + εit, εit ∼ N

(
0, σ2

ε

)
. (12.35)

βs
it depends on two latent discrete indicators, first on a group indicator Si.

Second, within each group the regression coefficient corresponding to xr
it may

switch between two states, commonly thought of as the state of the economy,
depending on a group-specific hidden Markov chain It,k with group-specific
transition matrix ξk:

βs
it = βk + (It,k − 1)γk, Si = k.

This model allows pooling all time series within each group and is robust
against structural changes through including the hidden Markov chain. A
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simplified version where the hidden Markov chain is group independent has
been considered by Frühwirth-Schnatter and Kaufmann (2006a). Estimation
is carried out using MCMC methods.

For K = 1, this model reduces to the panel data Markov switching model
that has been applied to analyze the lending behavior of banks over the busi-
ness cycle (Asea and Blomberg, 1998; Kaufmann, 2002):

yit = xf
itα + xr

itβSt
+ εit, εit ∼ N

(
0, σ2

ε

)
, (12.36)

which allows a shift in the regression coefficient corresponding to xr
it between

the two states of St, commonly thought of as the state of the economy. Estima-
tion of model (12.36) may be carried out using the EM algorithm (Asea and
Blomberg, 1998) or MCMC methods (Kaufmann, 2002; Frühwirth-Schnatter
and Kaufmann, 2006a).

12.6.3 Markov Switching Models for Multivariate Time Series

Hidden Markov models have been extended in several ways to deal with multi-
variate time series {Yt, t = 1, . . . , T}, where Yt is random vector of r different
variables, for instance, the GDP from different countries. Common multivari-
ate time series models are the vector autoregressive (VAR) model (Sims, 1980)
and cointegration models (Engle and Granger, 1987); see also Shumway and
Stoffer (2000, Chapter 4) for a review of multivariate time series analysis.

To analyze the growth rate of GDP in a two-country set-up, Phillips (1991)
generalized the univariate MSAR model (Hamilton, 1989) by introducing a
hidden Markov chain into a bivariate VAR(1) model:

Yt − µSt
= Φ(Yt−1 − µSt−1

) + εt, εt ∼ Nr (0,Σ) ,

with Φ and Σ being (2×2) matrices, and µSt
being a vector of length 2. St =

(St,1, St,2) is a bivariate two-state hidden Markov chain, with St,j describing
the state of the economy in country j, which could be coded as a single Markov
chain with four states. The (4 × 4)-transition matrix ξ of St is unrestricted if
the states of the two economies are correlated, a restricted transition matrix
results if St,1 and St,2 are assumed to be independent. Hamilton and Lin
(1996) apply a related model to analyze jointly growth in industrial production
and volatility in stock returns, and discuss restricted transition matrices where
one indicator is leading the other.

Krolzig (1997) considered multivariate MS-VAR models, where a single
hidden Markov chain St may affect the intercept (or the mean level), the
matrix containing the AR coefficients as well as the error covariance matrix:

Yt = ΦStYt−1 + ζSt
+ εt, εt ∼ Nr (0,ΣSt) ,

with ΦSt and ΣSt being (r × r) matrices and ζSt
being a vector of length r.

Krolzig (1997) discusses ML estimation of this model using the EM algorithm
as well as Bayesian estimation using Gibbs sampling.
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A related model is applied in Ang and Bekaert (2002) to model interest
rates from three different countries, however, St = (St,1, St,2, St,3) is a trivari-
ate two-state hidden Markov chain, with St,j describing the hidden state in
country j, coded as a single Markov chain with eight states. Because the states
in different countries are assumed to be independent, a restricted transition
matrix ξ results for St.

Economic theory implies a long-run relationship between certain inte-
grated time series such as consumption and disposable income, implying that
the time series are cointegrated. As with unit root tests, discussed in Subsec-
tion 12.2.4, common cointegration tests are affected by shifts in the growth
rate of the underlying time series (Hall et al., 1997). For this reason several au-
thors considered the introduction of a hidden Markov chain into cointegration
models to account for unexpected shifts.

Paap and van Dyck (2003) introduce a multivariate Markov switching
trend model that accounts for different growth rates in a bivariate time series
Yt, containing the log of per capita consumption and disposable income:

Yt = µt + (St − 1)
(

δ
0

)
+ Zt,

µt = µt−1 + βSt
,

where St is a two-state hidden Markov chain. β1 is a vector containing the
slopes of the trend function of both time series, if St = 1 (expansion) and β2
contains the slopes if St = 2 (recession). δ accounts for possible level shifts
in the first time series during recession. Zt is assumed to follow a standard
VAR(p) process. Cointegration analysis based on the vector error correction
model is then carried out for Zt:

�Zt = ΠZt +
p−1∑
j=1

Φ̃j�Zt−j + εt, εt ∼ N2 (0,Σ) . (12.37)

Depending on the rank of Π three cases arise. If Π has rank zero, then the
bivariate MS-VAR model for the growth rates results; if Π has rank two,
then Zt is stationary and a generalization of the model of Lam (1990) results;
and finally, if Π has rank one, then the two time series are cointegrated.
Bayesian estimation of this model is carried out in Paap and van Dyck (2003)
using MCMC and the Bayes factor is used to test for the cointegration rank
(Kleibergen and Paap, 2002). The empirical results of Paap and van Dyck
(2003) suggest the existence of a cointegration relationship between U.S. per
capita disposable income and consumption.

Related approaches are a single equation cointegration analysis where the
parameters are allowed to undergo changes driven by a hidden Markov chain
(Hall et al., 1997) and an alternative Markov switching vector error correction
(MS-VEC) model (Krolzig and Sensier, 2000; Krolzig, 2001) where a Markov
switching intercept is introduced directly into a vector error correction model
for Yt; see also Krolzig (1997, Chapter 13).
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Further Markov switching models for multivariate time series, in particular
the Markov switching model dynamic factor model (Diebold and Rudebusch,
1996; Kim and Nelson, 1998), are special cases of switching Gaussian state
space models which are studied in Chapter 13.



13

Switching State Space Models

13.1 State Space Modeling

As an introduction into the vast area of state space modeling, we start in
Subsection 13.1.1 with the local level model which is a simple but character-
istic example of the linear Gaussian state space form that is discussed in full
generality in Section 13.1.2.

13.1.1 The Local Level Model with and Without Switching

In a local level model, a random process {Y1, . . . , YT } is generated by the
following stochastic difference equation,

µt = µt−1 + wt, wt ∼ N
(
0, σ2

µ

)
, (13.1)

Yt = µt + εt, εt ∼ N
(
0, σ2

ε

)
, (13.2)

where all error terms wt and εt are mutually independent and independent
of µ0; see, for instance, Durbin and Koopman (2001) for an excellent intro-
duction. The random process {Y1, . . . , YT } is assumed to be observable and
the realizations are denoted by {y1, . . . , yT }. The distribution of Yt is allowed
to depend on an unobservable latent variable, in this case the level µt, which
follows a random walk. Because µt is a hidden Markov process, this model is
related to the hidden Markov chain model considered in Chapter 10; the latent
process, however, does not live on a discrete state space, but on a continuous
one.

The process Yt is nonstationary as long as the variance σ2
µ is positive.

There is a close relationship between the local level model and more classical
time series models; see, for instance, Abraham and Ledolter (1986). By taking
first differences, we obtain:

∆Yt = wt + εt − εt−1.
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The lag 1 autocorrelation is given by

ρ∆Yt(1) = −σ2
ε/(2σ2

ε + σ2
µ),

whereas higher autocorrelations are zero. Because this autocorrelation func-
tion is the same as that of an MA(1) process, the local level model has an
ARIMA(0, 1, 1) representation, where the MA(1) coefficient θ1 is constrained
to the interval [0, 1] and results from equating the lag 1 autocorrelation in
both models:

ρ∆Yt(1) =
θ1

1 + θ2
1

⇒ θ1 =
1 −

√
1 − 4ρ∆Yt(1)2

2ρ∆Yt
(1)

.

The advantage of the state space form (13.1) and (13.2) as compared to
the ARIMA(0, 1, 1) representation is manifold as discussed extensively in the
monograph of West and Harrison (1997). First, one may extract much more
information from the observed time series as it is possible to estimate the
level µt for each t using the Kalman filter; see Section 13.3. Second, further
components capturing seasonal patterns in the time series or trend behavior
are easily added, as discussed in Subsection 13.2.1. Third, it is much easier to
deal with time series irregularities such as outliers or structural breaks in the
state space form.

Consider, for instance, a process generated by a local level model that
is disrupted by occasional observation outliers. Based on the finite mixture
approach to outlier modeling discussed in Section 7.2, the local level model
may be modified in the following way,

µt = µt−1 + wt, wt ∼ N
(
0, σ2

µ

)
,

Yt = µt + εt, εt ∼ η1N
(
0, σ2

ε,1
)

+ η2N
(
0, σ2

ε,2
)
.

After introducing an i.i.d. binary indicator St with Pr(St = 1) = η1 as in ear-
lier chapters, conditional on knowing St, this model is a local linear model as
defined in (13.1) and (13.2), however, the observation variance σ2

ε is switching
between two values:

µt = µt−1 + wt, wt ∼ N
(
0, σ2

µ

)
,

Yt = µt + εt, εt ∼ N
(
0, σ2

ε,St

)
.

This is a first example of a switching state space model, which is commonly
applied to deal with outliers in time series; see Subsection 13.2.3 for a more
detailed discussion. Another useful switching state space model results if St

follows a hidden Markov chain as in Chapter 10, rather than an i.i.d. process,
because this introduces conditional heteroscedasticity in the error term εt; see
also Subsection 13.2.2.

Apart from the observation variance, other model parameters may be
switching in a state space model. Consider, for instance, the variance σ2

µ in
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the local level model, which determines how much µt changes over time. The
smaller σ2

µ, the less flexibility of µt is allowed a priori. To distinguish between
periods of smaller and greater variability of µt it may be assumed that the
variance σ2

µ switches between two values:

µt = µt−1 + wt, wt ∼ N
(
0, σ2

µ,St

)
.

A special case of this model is one where σ2
µ,1 is 0, whereas σ2

µ,2 > 0. Such a
model allows for an occasional level shift:

µt =
{

µt−1, St = 1
µt−1 + wt, wt ∼ N

(
0, σ2

µ

)
, St = 2.

(13.3)

Finally, two independent indicators S1
t and S2

t may be introduced to combine
heteroscedasticity in wt with observation outliers:

µt = µt−1 + wt, wt ∼ N
(
0, σ2

µ,S1
t

)
,

Yt = µt + εt, εt ∼ N
(
0, σ2

ε,S2
t

)
.

13.1.2 The Linear Gaussian State Space Form

The local level model introduced in the previous subsection is a special case
of a linear Gaussian state space model, which is a dynamic stochastic system
defined in the following way,

xt = Ftxt−1 + wt, wt ∼ Nd (0,Qt) , (13.4)
Yt = Htxt + εt, εt ∼ Nr (0,Rt) , (13.5)

where t = 1, . . . , T . The key variables in these formulations are the state
variable xt and the observation variable Yt.

The state variable xt is a latent d-dimensional random vector, which is
observed only indirectly through the effect it has on the distribution of Yt.
The transition equation (13.4), also called the state equation, specifies for
each t ≥ 1 how xt is generated from the previous state variable xt−1. The
linear relationship between xt and xt−1 which depends on the (d × d) ma-
trix Ft is disturbed by a zero-mean error wt following a normal distribution
with variance–covariance matrix Qt. To complete the model formulation, the
distribution of x0 is specified as x0 ∼ Nd

(
x̂0|0,P0|0

)
.

The observation variable Yt is a random vector of dimension r, which is as-
sumed to be observable for all time points t = 1, . . . , T . A single realization of
this process is denoted by {y1, . . . ,yT }. The dimension of Yt may be smaller,
larger or equal to the dimension of xt. For a scalar observation variable with
r = 1 we write Yt and denote the observed time series by {y1, . . . , yT }. The
observation equation (13.5), also called the measurement equation, specifies
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how the distribution of Yt is influenced by the state variable xt. The linear
relationship between Yt and xt which depends on the (r × d) matrix Ht is
disturbed by a zero-mean random observation error εt following a normal
distribution with variance–covariance matrix Rt, which reduces to a scalar
variance for r = 1.

Often the matrices Ft, Ht, Qt, and Rt emerge from putting a specific
time series model into a state space form; see Subsection 13.2.1. The local
level model introduced in Subsection 13.1.1, for instance, results with xt = µt,
Ft = Ht = 1, Qt = σ2

µ, and Rt = σ2
ε . The matrices Ft, Ht, Qt, and Rt need

not depend on time, in which case the notation F, H, Q, and R will be used.
Some elements of the matrices Ft, Ht, Qt, and Rt may depend on unknown

model parameters ϑ, such as for the local level model, where ϑ = (σ2
µ, σ2

ε). The
notations Ft(ϑ), Ht(ϑ), Qt(ϑ), and Rt(ϑ) are used whenever it is necessary
to make this dependence explicit. Identification becomes an important issue
whenever part of the system matrices Ft(ϑ) and Ht(ϑ) are unknown; see
Hannan and Deistler (1988) for an extensive treatment of this issue.

Further assumptions are necessary to complete the model definition. Most
important, wt is uncorrelated with xt−1 for all t:

E
(
wtx

′
t−1

)
= 0, t = 1, . . . , T.

Second, the observation error εt as well as wt is uncorrelated over time:

E
(
εtε

′
s

)
= 0, E

(
wtw

′
s

)
= 0, ∀s, t ∈ {1, . . . , T}, t �= s.

Finally, the two error sequences εt and ws are uncorrelated for all t, s:

E
(
εtw

′
s

)
= 0, ∀s, t ∈ {1, . . . , T}.

On various occasions, it is useful to introduce additional terms that influence
the mean of the transition as well as the observation equation:

xt = Ftxt−1 + Gtut + wt, (13.6)
Yt = Htxt + Atzt + εt. (13.7)

In (13.6), ut is a vector of dimension n, which may be smaller, larger, or equal
to the dimension of xt. In engineering applications ut often is a controllable
input vector (Anderson and Moore, 1979). In econometric problems ut often
is a vector of n exogenous variables being observable at time t. The expected
value of xt given ut and xt−1 is a linear function in ut, depending on the
(d × n) matrix Gt. In (13.7), zt is a vector of m variables being observable at
time t, which could be exogenous variables or past values of Yt. The expected
value of Yt given xt and zt is a linear function in zt, depending on the (r×m)
matrix At. For a further review of various aspects of state space modeling we
refer to the monographs of Aoki (1990), Harvey (1993), West and Harrison
(1997), and Durbin and Koopman (2001).
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Originally, the state space model was developed by Kalman (1960, 1961)
in aerospace research for tracking some target such as an aircraft. In this ap-
plication the transition equation is derived from physical laws describing the
motion of the target, whereas the observation vector measures properties of
this target that are observable through some device such as a radar, subject
to some measurement error; see also related tracking problems in high-energy
physics (Frühwirth, 1987). Due to their flexibility and generality state space
models found applications in many research areas in engineering such as hy-
drology (Schnatter et al., 1987) and speech recognition (Juang and Rabiner,
1985; Rabiner and Juang, 1986), just to mention two; see Anderson and Moore
(1979) for further references.

The application of state space models in the econometric literature started
in the 1970s with the time-varying coefficient model; see the review of Nicholls
and Pagan (1985). In the 1980s, it was recognized that econometric models
that rely on unobservable quantities could be cast into a state space form,
and state space models found wide applications in economics and finance, for
instance, to estimate the ex ante real interest rate (Fama and Gibbons, 1982),
unobserved expected inflation (Burmeister et al., 1986), or the potential real
GDP (Kuttner, 1994); see Granger and Teräsvirta (1993) and Kim and Nelson
(1999) for further applications of state space models in econometrics.

13.1.3 Multiprocess Models

The simplest way of introducing a latent discrete indicator into the linear
Gaussian state space form is multiprocess models. A multiprocess model is a
collection of K state space models, indexed by a hidden random indicator S
taking values in a discrete space {1, . . . , K}. Conditional on knowing the state
of S, the model for Yt is a linear Gaussian state space form:

xt = F[S]
t xt−1 + G[S]

t ut + wt, wt ∼ Nd

(
0,Q[S]

t

)
, (13.8)

Yt = H[S]
t xt + A[S]

t zt + εt, εt ∼ Nr

(
0,R[S]

t

)
. (13.9)

Multiprocess models were well known in the control engineering literature for
many years (see, for instance, Magill, 1965) before they were introduced into
the statistics literature by Harrison and Stevens (1976). Multiprocess models
were applied to forecasting multiple time series (Schnatter et al., 1987), to
deal with unobserved heterogeneity in longitudinal studies (Gamerman and
Smith, 1996), or to cluster time series in panel data (Frühwirth-Schnatter and
Kaufmann, 2006b).

13.1.4 Switching Linear Gaussian State Space Models

The basic idea of a switching state space model is that a priori no single model
is expected to hold for all time points t, rather the possibility that different



394 13 Switching State Space Models

models hold at different times points is explicitly recognized by modeling the
hidden model indicator St as being dynamic over time.

A switching linear Gaussian state space model is based on the state space
form introduced in Subsection 13.1.2, however, some (or all) system matrices
are driven by a hidden model indicator St:

xt = F[St]
t xt−1 + G[St]

t ut + wt, wt ∼ Nd

(
0,Q[St]

t

)
, (13.10)

Yt = H[St]
t xt + A[St]

t zt + εt, εt ∼ Nr

(
0,R[St]

t

)
. (13.11)

{St, t = 1, . . . , T} is a sequence of random variables, allowed to take values in
the discrete space {1, . . . , K}. The degenerate case St ≡ St−1 ≡ S reduces to
the multiprocess model introduced in Subsection 13.1.3.

To complete the model specification, some probabilistic structure has to
be imposed on St. We distinguish two cases of switching state space models,
namely finite mixtures of state space models, if St is an i.i.d. sequence with
probability distribution η = (η1, . . . , ηK), and Markov switching state space
models, if St is a hidden Markov chain with transition matrix ξ as introduced
in Chapter 10. The first structure may be regarded as a special case of the sec-
ond structure with restricted transition matrix; see Subsection 10.2.6. Finite
mixtures of state space models are sometimes called “multi process models”
(Harrison and Stevens, 1976; Smith and West, 1983), whereas Markov switch-
ing state space models are sometimes called “state space models with regime
switching” (Kim and Nelson, 1999).

The engineering literature has seen several pioneering works on switching
state space models since the 1960s. For target tracking problems, for instance,
Nahi (1969) assumes a nonzero probability that any observation consists of
noise only, leading to a state space model where Ht is switching between
a zero and a nonzero value; see Bar-Shalom and Tse (1975) and Shumway
and Stoffer (1991) for a related application. In control engineering research
Ackerson and Fu (1970) consider a linear Gaussian state space model, where
the covariance matrices in the transition and in the observation equation are
allowed to depend on a hidden Markov chain.

Harrison and Stevens (1976) introduced finite mixtures of linear Gaussian
state space models into the statistics literature; further applications are found
in medicine (Smith and West, 1983; Gordon and Smith, 1990), speech recog-
nition (Juang and Rabiner, 1985; Rabiner and Juang, 1986), and hydrology
(Schnatter, 1988b). The Markov switching linear Gaussian state space model
became popular in econometrics through the work of Kim (1993a, 1993b, 1994)
and Shephard (1994); see also the monograph of Kim and Nelson (1999) for
further applications and references.

13.1.5 The General State Space Form

A useful way of thinking of a state space model is in terms of a hierarchical
model, where on a first level the model specifies the conditional distribution
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p(y1, . . . ,yT |x1, . . . ,xT ) of the process Y1, . . . ,YT given the whole state pro-
cess x1, . . . ,xT . On a second level the model characterizes the distribution
p(x1, . . . ,xT ) of the state process. The following structure is characteristic
of a state space model. The random variables Y1, . . . ,YT are independent
of each other given the state process x1, . . . ,xT and Yt is independent of
x1, . . . ,xt−1 given xt:

p(y1, . . . ,yT |x1, . . . ,xT ) =
T∏

t=1

p(yt|xt). (13.12)

The state variable xt is a first-order hidden Markov process, hence indepen-
dent of x1, . . . ,xt−2 given xt−1:

p(x1, . . . ,xT ) =
T∏

t=1

p(xt|xt−1). (13.13)

Thus to define a state space model, one could directly specify for each t =
1, . . . , T the observation density p(yt|xt) and the transition density p(xt|xt−1).
Because these densities are in principle arbitrary, the hierarchical formulation
is very useful, as it allows us to introduce nonlinearities in the relationship
between yt and xt and xt and xt−1 as well as nonnormality by densities that
are intrinsically nonnormal.

For a linear Gaussian state space model the observation and the transition
density evidently are given by

Yt|xt ∼ Nr (Htxt + Atzt,Rt) ,

xt|xt−1 ∼ Nd (Ftxt−1 + Gtut,Qt) .

For a switching state space model the distributions (13.12) and (13.13) are
formulated conditional on knowing the hidden indicators S = (S0, S1, . . . , ST ),
whereas a third level is added by describing the probability law for S:

p(y1, . . . ,yT |x1, . . . ,xT ,S) =
T∏

t=1

p(yt|xt, St),

p(x1, . . . ,xT |S) =
T∏

t=1

p(xt|xt−1, St),

p(S) =
T∏

t=1

p(St|St−1).

As in Chapter 10, the transition density as well as the observation density is
assumed to depend on St only.
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13.2 Nonlinear Time Series Analysis Based on Switching
State Space Models

13.2.1 ARMA Models with and Without Switching

The linear Gaussian state space form introduced in Subsection 13.1.2 sub-
sumes many models that are popular in time series analysis, including regres-
sion models and ARMA models (Harvey, 1989; Shumway and Stoffer, 2000;
Durbin and Koopman, 2001). Consider the ARMA(p, q) process,

δ(L)(Yt − µ) = θ(L)εt, εt ∼ N
(
0, σ2

ε

)
,

where L is the lag operator, δ(L) = 1−δ1L−· · ·−δpL
p, and θ(L) = 1−θ1L−

· · · − θqL
q, with δ1, . . . , δp being the AR coefficients, and θ1, . . . , θq being the

MA coefficients. This model possesses for q = p − 1 the following state space
representation with xt ∈ �p,

Yt = µ + H(θ)xt, (13.14)

xt = F(δ)xt−1 +

⎛⎜⎜⎜⎝
1
0
...
0

⎞⎟⎟⎟⎠ εt, εt ∼ N
(
0, σ2

ε

)
, (13.15)

with

F(δ) =
(

δ1 . . . δp−1 δp

Ip−1 0(p−1)×1

)
, H(θ) =

(
1 −θ1 · · · −θq

)
. (13.16)

The same state space representation could be used if q < p − 1 after adding
(p − 1 − q) MA coefficients equal to 0: θ = (θ1, . . . , θq, 0, . . . , 0). If q ≥ p, a
similar state space representation with xt ∈ �q+1 could be used, with the
matrix F(δ) in (13.15) being defined after adding (q − p + 1) AR coefficients
equal to 0: δ = (δ1, . . . , δp, 0, . . . , 0).

In complex modeling situations it is often easier to work with the state
space representation, in particular when dealing with outliers, missing data,
interventions, mixed-effects, and structural changes (Kohn and Ansley, 1986;
Harvey et al., 1998).

This is, for instance, the case if a hidden Markov chain St is introduced
into an ARMA model, one example being the switching ARMA model (Billio
and Monfort, 1998; Billio et al., 1999), for which the one-step ahead predic-
tive density depends on the whole history of St. This long-range dependence
disappears conditional on the latent variables xt and St, if an ARMA(p, q)
process with switching mean is represented by the following switching state
space model,

Yt = µSt + H(θ)xt,
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with the state equation being the same as in (13.15). This facilitates statistical
inference in Section 13.3 and 13.4.

A similar result holds for the Markov switching autoregressive model of
Lam (1990), defined earlier in (12.11), which has the following state space
form,

Yt =
(
1 1

) (
µt

xt

)
,

(
µt

xt

)
=

(
1 0
0 F(δ)

) (
µt−1
xt−1

)
+

⎛⎜⎜⎜⎝
βSt

0
...
0

⎞⎟⎟⎟⎠ +

⎛⎜⎜⎜⎝
0
1
...
0

⎞⎟⎟⎟⎠ εt,

with xt and F(δ) being the same as in (13.15).

13.2.2 Unobserved Component Time Series Models

The state space approach is also useful for decomposing a time series into
unobserved components such as trend, cycles, seasonal, and irregular com-
ponents (Harvey, 1989). A simple example of such a model is the local level
model discussed in Subsection 13.1.1; a more flexible one is the basic structural
model (Harvey and Todd, 1983):

µt = µt−1 + βt−1 + wt,1, wt,1 ∼ N
(
0, σ2

µ

)
,

βt = βt−1 + wt,2, wt,2 ∼ N
(
0, σ2

β

)
,

γt = −
s−1∑
j=1

γt−j + wt,3, wt,3 ∼ N
(
0, σ2

γ

)
,

Yt = µt + γt + εt, εt ∼ N
(
0, σ2

ε

)
. (13.17)

µt is the slowly varying trend of the time series, γt is a periodic seasonal
component, and εt is a random disturbance term. If no seasonal component
is present in (13.17) then the resulting model is called the local linear trend
model.

Decomposing a time series into a stochastic and stationary component may
lead to identification problems (Nelson, 1988). The local level model discussed
in Subsection 13.1.1, for instance, is not identified if the two noise terms εt

and wt are allowed to be correlated. For this reason, it is assumed in the basic
structural model that all error terms are uncorrelated.

Unobserved component models found numerous applications in economics
and have been extended in several ways by including a hidden indicator. Many
applications of this model typically are based on the assumption that the
error terms in the state and in the observation equation are homoscedastic.
Heteroscedasticity may be caused by outliers as discussed in Subsection 13.2.3.
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In addition, it is reasonable to assume there exists some kind of conditional
heteroscedasticity in that errors with large variances tend to be followed by
errors with large variances and similarly errors with small variances tend to
be followed by errors with small variances.

To capture heteroscedasticity, Harvey et al. (1992) consider unobserved
component models with ARCH disturbances both in the transition as well as
in the observation equation. As an alternative, Kim (1993b) introduced un-
observed component time series models with Markov switching heteroscedas-
ticity, by assuming that the variances depend on a hidden Markov chain:

xt = Fxt−1 + wt, wt ∼ Nd

(
0,Q[St]

t

)
,

Yt = Hxt + εt, εt ∼ N
(
0, σ2

ε,St

)
.

Applications of this model include modeling the link between inflation rates
and inflation uncertainty (Kim, 1993b) and analyzing the U.S. stock market
with focus on the 1987 crash (Kim and Kim, 1996).

Alternatively, hidden indicators have been introduced into the structural
part of unobserved component models. Whittaker and Frühwirth-Schnatter
(1994) define a dynamic change-point model, where in a local level model, a
random walk drift is added after a structural break:

µt = µt−1 + (St − 1)βt−1 + wt,1, wt,1 ∼ N
(
0, σ2

µ

)
,

βt = βt−1 + wt,2, wt,2 ∼ N
(
0, σ2

β

)
,

where St is allowed a one-time change between state 1 and 2 at an unknown
change-point τ .

To capture different growth behavior in boom and recession, Luginbuhl
and de Vos (1999) model the log gross domestic product by a switching local
linear trend model. Two different drift components αt and βt are assumed
to be present, each of which follows a random walk, but only one of them
contributes to the trend:

µt = µt−1 + (1 − St)αt−1 + Stβt−1 + wt,1,

αt = αt−1 + wt,2,

βt = βt−1 + wt,3,

Yt = µt + εt, εt ∼ N
(
0, σ2

ε

)
.

The indicator St, selecting one of the two trend components, is assumed to
follow a hidden Markov chain with state space {0, 1}.

13.2.3 Capturing Sudden Changes in Time Series

Detecting sudden changes, outliers, and level shifts is an important aspect of
practical time series analysis, often called intervention analysis (Tsay, 1988).
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Many authors generalized the linear Gaussian state space model with the
aim of establishing recursive estimation procedures that are robust to outliers
(Masreliez, 1975; Masreliez and Martin, 1975; West, 1981, 1984; Tsai and
Kurz, 1983; Peña and Guttman, 1988; Meinhold and Singpurwalla, 1989).
Peña and Guttman (1988) generalized the scale-contaminated model (Tukey,
1960; Box and Tiao, 1968), already discussed in Subsection 7.2.1, to the frame-
work of robust linear Gaussian state space models with univariate observation
vector Yt, by assuming that the noise εt in the observation equation (13.5)
follows a mixture of two normal distributions with mean zero, but different
variances:

εt ∼ (1 − η2)N
(
0, σ2

ε

)
+ η2N

(
0, kσ2

ε

)
,

where typically η2 is a small fraction of outliers, whereas k >> 1. For esti-
mation, however, it is useful to view such a robust state space model as a
switching Gaussian state space model, where the distribution of the observa-
tion noise is driven by a hidden i.i.d. sequence St:

σ2
ε,St

=
{

σ2
ε , St = 1,

kσ2
ε , St = 2,

with probability Pr(St = 2) = η2.
In Meinhold and Singpurwalla (1989) robustness is achieved by assum-

ing that both wt and εt have a marginal t-distribution of differing degree of
freedom ν1 and ν2, which may be written as

wt ∼ Nd

(
0,Q/ω1

t

)
, ω1

t ∼ G (ν1/2, ν1/2) ,

εt ∼ N
(
0, σ2

ε/ω2
t

)
, ω2

t ∼ G (ν2/2, ν2/2) .

A combination of these two robust state space models appears in Godsill
and Rayner (1998) for the reconstruction of signals that are degraded by an
impulsive noise:

Yt = xt + (St − 1)υt, υt ∼ N
(
0, σ2

υ/ωt

)
, ωt ∼ G (ν/2, ν/2) ,

where St is a hidden Markov chain taking the value 1, if no noise is present,
and 2 otherwise. xt is an AR(p) process modeled through a state space model
as in (13.15).

A more general model, where outliers may be observational as well as
innovational is considered in Godsill (1997) in the context of reconstructing
acoustically recorded signals, such as speech and music. The statistical model
is an ARMA(p, q) process observed with noise, which possesses the following
state space representation with observation equation,

Yt = µ + H(θ)xt + υt,

with xt and H(θ) being the same as in (13.15) and (13.16). Both υt as well
as the error term εt appearing in (13.15) are assumed to follow a mixture of
a normal and a t-distribution:
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υt ∼ N
(
0, σ2

υ,S1
t

)
,

σ2
υ,S1

t
= (2 − S1

t )σ2
υ + (S1

t − 1)σ2
υ/ω1

t , ω1
t ∼ G (ν1/2, ν1/2) ,

εt ∼ N
(
0, σ2

ε,S2
t

)
,

σ2
ε,S2

t
= (2 − S2

t )σ2
ε + (S2

t − 1)σ2
ε/ω2

t , ω2
t ∼ G (ν2/2, ν2/2) .

S1
t and S2

t are two independent two-state hidden Markov chains with unknown
transition matrices ξ1 and ξ2.

Another useful model to deal with structural or innovation outliers is the
random level shift time series model (Chen and Tiao, 1990; McCulloch and
Tsay, 1993):

Yt = µt + Zt,

µt = µt−1 + (St − 1)βt, βt ∼ N
(
0, kσ2

ε

)
,

δ(L)Zt = θ(L)εt, εt ∼ N
(
0, σ2

ε

)
,

where St is a two-state hidden i.i.d. indicator with St = 2 corresponding to
a shift that occurs a priori with probability Pr(St = 2) = η2. If η2 = 1, then
the level changes all the time and the model is related to the local trend
model (13.17). Gerlach and Kohn (2000) show how intervention analysis may
be treated through a switching state space model including both a hidden
Markov indicator as well as a second i.i.d. indicator to deal with outliers.

For any of these models traditional likelihood estimation is rather involved.
The Bayesian framework discussed in Section 13.4 offers the possibility of
locating the position and the size of outlier and shifts simultaneously with
parameter estimation.

13.2.4 Switching Dynamic Factor Models

Dynamic factor models, in which a large number of observed time series are
assumed to be influenced by a common unobserved component, are a special
case of a state space model which found various applications in economics,
for instance, to estimate wage rates (Engle and Watson, 1981) and to analyze
economic indicators that move together (Stock and Watson, 2002).

Diebold and Rudebusch (1996) combine the dynamic factor model with
the Markov switching model, one example being the following model,

�Yt = β + λft + εt, εt ∼ Nr (0,Σ) ,

δ(L)(ft − µSt
) = wt, wt ∼ N (0, 1) ,

where Σ is a diagonal matrix, and wt and εt are pairwise independent. ft is
the latent dynamic factor, β and the factor loadings λ are unknown parame-
ters. Diebold and Rudebusch (1996) extended this model by considering more
general structures for the error process εt such as a VAR model. Kim and
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Nelson (1998) generalize this model by introducing time-varying transition
matrices.

Application appeared mainly in business cycle analysis (Kim and Nelson,
1998, 2001; Kaufmann, 2000).

13.2.5 Switching State Space Models as a Semi-Parametric
Smoothing Device

State space models are a useful device for smoothing and interpolating time
series (Wecker and Ansley, 1983; Kohn and Ansley, 1987) which are closely
related to semiparametric optimal smoothing methods based on the roughness
penalty approach.

Kitagawa (1981), for instance, considers the following smoothness prior
approach for smoothing nonstationary time series,

yt = µt + εt, εt ∼ N
(
0, σ2

ε

)
,

µt − 2µt−1 + µt−2 = wt, wt ∼ N
(
0, σ2

µ

)
, (13.18)

which is closely related to basic structural model (13.17) without a seasonal
component γt and has a very simple state space form. A model that is similar
to (13.17) was introduced by Kitagawa and Gersch (1984) for smoothing time
series with trends and seasonal components.

Posterior mode estimation for model (13.18) under diffuse priors on µ−1
and µ0 corresponds to minimizing the penalized least square criterion

T∑
t=1

(yt − µt)2 + λ

T∑
t=3

(µt − 2µt−1 + µt−2)2, (13.19)

with respect to µ1, . . . , µT , where the smoothness parameter λ is related to the
variances of the error terms through λ = σ2

ε/σ2
µ (Fahrmeir and Knorr-Held,

2000). If in (13.18), the fixed variance σ2
µ is substituted by the switching

variance σ2
µ,St

, then the smoothness parameter itself depends on the hidden
Markov chain St: λt = σ2

ε/σ2
µ,St

. In this respect, switching state space models
with heteroscedastic variances σ2

µ,St
may be seen as a device for smoothing

time series where the smoothness parameter changes over time.

13.3 Filtering for Switching Linear Gaussian State
Space Models

Filtering aims at deriving the posterior density p(xt|yt, ϑ) of xt given ob-
servations yt = (y1, . . . ,yt) up to t in an efficient manner for a fixed model
parameter ϑ. To keep notation simple, dependence on ϑ is not made explicit.
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13.3.1 The Filtering Problem

Regrettably, the posterior density p(xt|yt) is of closed form only for very
restricted state space models with the linear Gaussian state space model being
the most prominent one. For this model class, the posterior density p(xt|yt) is
a normal distribution, where the first two moments are given by the Kalman
filter (Kalman, 1960, 1961); see also Algorithm 13.1 below.

Long before the Bayesian community became aware of the Kalman filter,
the importance of the Bayesian approach for solving the filtering problem
was realized in the engineering literature (Magill, 1965; Alspach and Soren-
son, 1972). As pointed out by Alspach and Sorenson (1972, p.439) regarding
p(xt|yt),

If this posterior density function were known, an estimate of the state
for any performance criterion could be determined.

Also for a nonlinear non-Gaussian state space model the filter problem
is solved by recursions similar in structure, but not in complexity, to the
Kalman filter. Let p(xt−1|yt−1) be the posterior density of the state xt−1 given
information up to t−1. The first part of the filtering step is to propagate this
information into the future, by deriving the density p(xt|yt−1) which may be
obtained from integrating the density p(xt,xt−1|yt−1) with respect to xt−1.
By assumption (13.13), the propagation step reads:

p(xt|yt−1) =
∫

p(xt|xt−1)p(xt−1|yt−1)dxt−1.

Once an observation yt is available, Bayes’ theorem plays a crucial role in
finding a coherent way of combining information propagated from the past
with the information contained in yt. The updated posterior density p(xt|yt)
is obtained from Bayes’ theorem as

p(xt|yt) =
p(yt|xt)p(xt|yt−1)

p(yt|yt−1)
,

with the normalizing constant being identical to the one-step ahead predictive
density p(yt|yt−1):

p(yt|yt−1) =
∫

p(yt|xt)p(xt|yt−1)dxt.

13.3.2 Bayesian Inference for a General Linear Regression Model

It is useful to discuss the filtering problem first for a multivariate regression
model with general error variance–covariance matrix:

Y = Xβ + ε, ε ∼ Nr (0,R) , (13.20)
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where Y is a vector-valued random variable of dimension r, β is an unknown
regression coefficient of dimension d, X is a known (r × d) design matrix, and
R is a known variance–covariance matrix. In this context filtering refers to
inference on β through combining of the information contained in a single ob-
servation y from model (13.20) with prior information on β expressed through
a prior distribution p(β). Bayes’ theorem provides a coherent way of combin-
ing these two sources of information by deriving the posterior distribution
p(β|R,y):

p(β|R,y) ∝ p(y|β,R)p(β), (13.21)

where the likelihood function p(y|β,R) is equal to:

p(y|β,R) = (2π)−r/2|R|−1/2exp
(

−1
2
(y − Xβ)

′
R−1(y − Xβ)

)
.

For a known variance–covariance matrix R, the likelihood function p(y|β,R)
is a quadratic form in β, hence the conjugate prior p(β) for the regression
coefficient β is a normal distribution, β ∼ Nd (b0,B0), as is the resulting
posterior distribution:

β|R,y ∼ Nd (b1,B1) . (13.22)

If R−1 and B−1
0 exist, then the moments of the posterior density are given in

terms of the following information filter,

b1 = B1(B−1
0 b0 + X

′
R−1y), (13.23)

B1 = (B−1
0 + X

′
R−1X)−1.

The information filter expresses the posterior mean b1 as a weighted average
of the prior mean b0 and an estimator that is based entirely on the observation
y, with the weights depending on the information obtained in the prior distri-
bution and the likelihood function. If X

′
R−1X is invertible, the data-based es-

timator is equal to the weighted least square estimator (X
′
R−1X)−1X

′
R−1y,

and the weight matrices are equal to B1B−1
0 and B1X

′
R−1X, respectively.

The information filter involves the inversion of a (d × d) matrix to obtain
the posterior variance–covariance matrix B1. If the dimension of β is larger
than the dimension of the observation y (i.e., r < d), or if R or B0 are not
invertible, it is preferable to work with the following prediction-correction
filter which involves the inversion of an (r × r) matrix, only,

b1 = b0 + K1(y − Xb0), (13.24)
B1 = (Id − K1X)B0,

K1 = B0X
′
C−1,

C = XB0X
′
+ R. (13.25)
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The prediction-correction filter expresses the posterior mean b1 as a correction
of the prior mean b0, which is based on the prediction error y−Xb0, resulting
from using the prior mean b0 as an estimator of β.

It is useful to have an explicit form of the marginal likelihood p(y|R), that
is equal to the normalizing constant of the nonnormalized posterior p(β|R,y),
given by (13.21):

p(y|R) =
∫

p(y|β,R)p(β)dβ.

The marginal likelihood p(y|R) is obtained from evaluating the following ratio
for an arbitrary value of β,

p(y|R) =
p(y|β,R)p(β)

p(β|R,y)
.

Choosing β = b0 yields

p(y|R) = (2π)−r/2|C|−1/2exp
(

−1
2
(y − Xb0)

′
C−1(y − Xb0)

)
, (13.26)

which is the density of a multivariate normal distribution with mean Xb0 and
variance–covariance matrix C, when regarded as a function of y.

13.3.3 Filtering for the Linear Gaussian State Space Model

For the linear Gaussian state space model defined in (13.6) and (13.7) the
posterior density p(xt|yt) is a normal distribution, where the first two mo-
ments are given by the Kalman filter recursions, derived for the first time in
Kalman (1960) and Kalman (1961).

Algorithm 13.1: Kalman Filter Assume that the filter density p(xt−1|yt−1)
is the density of a normal distribution:

xt−1|yt−1 ∼ Nd

(
x̂t−1|t−1,Pt−1|t−1

)
. (13.27)

Then for a linear Gaussian state space model, the filter density p(xt|yt) at
time t is again the density of a normal distribution obtained from p(xt−1|yt−1)
and yt through the following steps.

(a) Propagation — determine the density p(xt|yt−1):

xt|yt−1 ∼ Nd

(
x̂t|t−1,Pt|t−1

)
, (13.28)

x̂t|t−1 = Ftx̂t−1|t−1 + Gtut,

Pt|t−1 = FtPt−1|t−1F
′
t + Qt.
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(b) Prediction — determine the predictive density p(yt|yt−1):

yt|yt−1 ∼ Nr

(
ŷt|t−1,Ct|t−1

)
, (13.29)

ŷt|t−1 = Htx̂t|t−1 + Atzt,

Ct|t−1 = HtPt|t−1H
′
t + Rt.

(c) Correction — determine the filter density p(xt|yt):

xt|yt ∼ Nd

(
x̂t|t,Pt|t

)
, (13.30)

x̂t|t = Htx̂t|t−1 + Kt(yt − ŷt|t−1),

Kt = Pt|t−1H
′
tC

−1
t|t−1,

Pt|t = (I − KtHt)Pt|t−1.

To start the Kalman filter, one has to choose the normal prior Nd

(
x̂0|0,P0|0

)
.

It is often recommended to start with a diffuse prior with P0|0 = κId with
κ being a large value. For state vectors containing both nonstationary and
stationary components, De Jong and Chu-Chun-Lin (1994) suggest combining
a vague prior with a stationary prior. On the whole, the correct initialization
of the Kalman filter is a very subtle issue, and we refer to Koopman (1997)
and Durbin and Koopman (2001, Chapter 5) for a very concise and excellent
discussion of this issue.

Derivation of the Kalman Filter

The Kalman filter is easily derived using filtering for a general linear model
as in Subsection 13.3.2, as exemplified in Harrison and Stevens (1976) and
Meinhold and Singpurwalla (1983).

The density p(xt|yt−1) appearing in the propagation step is the normaliz-
ing constant of the posterior density p(xt−1|xt,yt−1), given by Bayes’ theorem
as

p(xt−1|xt,yt−1) ∝ p(xt|xt−1)p(xt−1|yt−1). (13.31)

In (13.31), the transition density p(xt|xt−1) is the likelihood of a general
linear model with error variance-covariance matrix Qt, where the unknown
regression parameter xt−1 follows the prior p(xt−1|yt−1), being equal to the
filtering density (13.27). The marginal likelihood for this problem is given by
(13.26) and takes the form of a normal density in xt with the moments being
given exactly as in (13.28).

The predictive density p(yt|yt−1) is the normalizing constant of the filter
density p(xt|yt) which is given by Bayes’ theorem:

p(xt|yt) ∝ p(yt|xt)p(xt|yt−1). (13.32)
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In (13.32), the observation density p(yt|xt) is the likelihood of a general linear
model with error variance–covariance matrix Rt, where the unknown regres-
sion parameter xt follows the prior p(xt|yt−1) being equal to the propagated
density (13.28). Again from Subsection 13.3.2, the posterior p(xt|yt) is normal
with the moments given by (13.30), whereas the marginal likelihood p(yt|yt−1)
takes the form of a normal density in yt with the moments given exactly by
(13.29).

For alternative derivations of the Kalman filter based on the concept of
projection and minimum mean-squared estimation, see Jazwinski (1970), An-
derson and Moore (1979), and Harvey (1989).

13.3.4 Filtering for Multiprocess Models

In his pioneering work, Magill (1965) used Bayesian methods to show that for
a multiprocess model an explicit solution for the filtering problem is available.
If the hidden model indicator S takes K values, then the filter density is a
mixture of K normal distributions:

p(xt|yt) =
K∑

k=1

fN (xt; x̂
[k]
t|t ,P

[k]
t|t)Pr(S = k|yt), (13.33)

where the number of components remains fixed for all t = 1, . . . , T . The mo-
ments of the various components are obtained by running K parallel Kalman
filters as in Algorithm 13.1, each conditional on assuming that the state of
S is equal to k, for k = 1, . . . , K. The component weights are dynamically
changing over time and Sims and Lainiotis (1969) showed how they may be
updated recursively using Bayes’ theorem:

Pr(S = k|yt) ∝ fN (yt; ŷ
[k]
t|t−1,C

[k]
t|t−1)Pr(S = k|yt−1),

where the moments of the predictive density p(yt|S = k,yt−1) are obtained
from the Kalman filter corresponding to S = k.

13.3.5 Approximate Filtering for Switching Linear Gaussian State
Space Models

For a switching linear Gaussian state space model the filter density is a mixture
of normal distributions:

p(xt|yt) = (13.34)∑
(k1,...,kt)∈St

fN (xt; x̂
[k1,...,kt]
t|t ,P[k1,...,kt]

t|t )Pr(St = (k1, . . . , kt)|yt),

where St = {1, . . . , K}t is the space of all paths St = (S1, . . . , St) up to t.
This representation holds both for finite mixture as well as Markov switching
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state space models. In contrast to the multiprocess model, the number of
components in the filtering density is increasing exponentially fast. Running
an exact recursive filter requires combining all Kt−1 normal posterior densities
fN (xt−1; x̂

[k1,...,kt−1]
t−1|t−1 ,P[k1,...,kt−1]

t−1|t−1 ) with each of the K states of St, running in
total Kt parallel Kalman filters as in Algorithm 13.1. This is operational
only if the total number T of observations is not too large; see, for instance,
Schervish and Tsay (1988) for an empirical application of this filter.

In most cases some approximate filter has to be applied. Approximate
filters for switching Gaussian state space models were studied rather early
in the engineering literature; we mention here in particular Ackerson and Fu
(1970), Bar-Shalom and Tse (1975), Akashi and Kumamoto (1977), Tugnait
(1982), and Blom and Bar-Shalom (1988). Approximations in the statistical
and econometric literature were suggested by Harrison and Stevens (1976),
Cosslett and Lee (1985), Peña and Guttman (1988), Lam (1990), Gordon and
Smith (1990), Shumway and Stoffer (1991), and Kim (1994). To keep the
filter operational, the number of components of the filtering density has to be
limited, usually by merging components at each filter step. Other techniques
are trimming by removing unlikely components with small probability and
combining similar components into a single component.

A useful starting point for discussing the various approximate filters is
writing the filter density p(xt|yt) as

p(xt|yt) =
K∑

k=1

p(xt|yt, St = k)Pr(St = k|yt). (13.35)

In (13.35) we identify two filtering problems. First, we need to derive the dis-
crete filter probabilities Pr(St = k|yt) for k = 1, . . . , K without conditioning
on the continuous state vector xt; second, we need to derive filter recursion
for the continuous state xt conditional on knowing only the present state of
St.

For a hidden Markov chain St with transition matrix ξ, the discrete filter
is derived through Bayes’ theorem in a similar way as was done for Markov
switching models in Section 11.2:

Pr(St = k|yt) ∝ p(yt|St = k,yt−1)Pr(St = k|yt−1). (13.36)

The propagated probabilities Pr(St = k|yt−1) are essentially the same as in
Section 11.2 and read:

Pr(St = k|yt−1) =
K∑

j=1

ξjkPr(St−1 = j|yt−1).

For a hidden i.i.d. indicator this reduces to Pr(St = k|yt−1) = ηk as ξjk = ηk.
Because the likelihood p(yt|St = k,yt−1) in (13.36) will also appear in the
prediction step of the second filtering problem, both filtering problems are
related.
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To solve the second filtering problem, a recursion between the filter den-
sities p(xt−1|yt−1, St−1 = j) and p(xt|yt, St = k) has to be established. One
could, in principle, proceed as in Subsection 13.3.3, using the propagation step

p(xt|yt−1, St = k) = (13.37)∫
p(xt|xt−1, St = k)p(xt−1|yt−1, St = k)dxt−1,

the prediction step

p(yt|St = k,yt−1) =
∫

p(yt|xt, St = k)p(xt|yt−1, St = k)dxt, (13.38)

and the correction step

p(xt|yt, St = k) ∝ p(yt|xt, St = k)p(xt|yt−1, St = k). (13.39)

Because we are dealing with a finite or Markov mixture of linear Gaussian
state space models, the transition density p(xt|xt−1, St = k) and the obser-
vation density p(yt|xt, St = k) are normal, however, p(xt−1|yt−1, St = k)
does not have the required form of a conjugate normal prior. Nonnormality of
p(xt−1|yt−1, St = k) arises due to possible changes in the states of St−1 and
St between t − 1 and t, which may occur both for finite mixture as well as
Markov switching state space models. p(xt−1|yt−1, St = k) is a finite mixture
of the filtering densities at t − 1:

p(xt−1|yt−1, St = k) =
K∑

j=1

p(xt−1|yt−1, St−1 = j)wjk, (13.40)

where the weights are given by

wjk = Pr(St−1 = j|yt−1, St = k) ∝ ξjkPr(St−1 = j|yt−1).

For a Markov switching state space model, the weights read:

wjk =
ξjkPr(St−1 = j|yt−1)∑K
l=1 ξlkPr(St−1 = l|yt−1)

. (13.41)

For a finite mixture state space model, the weights are identical with the
discrete filter probabilities:

wjk = Pr(St−1 = j|yt−1). (13.42)

In principle, these formulae provide a recursion comparable to the Kalman
filter. However, because the filter density p(xt|yt, St = k) is given by a mixture
of Kt = KKt−1 components, where Kt−1 is the number of components at
t − 1, some method of limiting the number of components must be found to
make this filter operational. As pointed out by Blom and Bar-Shalom (1988),
different algorithms emerge, depending on the precise density and the precise
time point chosen for this simplification.
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Kim’s Algorithm

This algorithm was suggested independently by Tugnait (1982) and Kim
(1994). Assume that the filter density p(xt−1|yt−1, St−1 = j) is a normal
distribution:

p(xt−1|yt−1, St−1 = j) = fN (xt−1; x̂
[j]
t−1|t−1,P

[j]
t−1|t−1). (13.43)

Then the prior p(xt−1|yt−1, St = k) in (13.40) is a mixture of K normal
distributions as is the filter density p(xt|yt, St = k) in (13.39):

p(xt|yt, St = k) = (13.44)
K∑

j=1

fN (xt; x̂
[j,k]
t|t ,P[j,k]

t|t )Pr(St−1 = j|yt, St = k).

The component densities in the filter density are obtained by running in total
K2 Kalman filters, combining each normal density p(xt−1|yt−1, St−1 = j)
with each possible value for St = k. Each Kalman filter delivers the normal
one-step ahead predictive density

p(yt|yt−1, St−1 = j, St = k) = fN (yt; ŷ
[j,k]
t|t−1,C

[j,k]
t|t−1),

which could be used to compute the weights Pr(St−1 = j|yt, St = k) in (13.44)
through Bayes’ theorem:

Pr(St−1 = j|yt, St = k) ∝ (13.45)
p(yt|yt−1, St−1 = j, St = k)wjk,

where wjk were defined in (13.41) and (13.42), respectively. For each value of
k, the normalizing constant of the right-hand side of (13.45) is equal to the
one-step ahead predictive density p(yt|St = k,yt−1),

p(yt|St = k,yt−1) =
K∑

j=1

p(yt|yt−1, St−1 = j, St = k)wjk,

which is necessary for the computation of the discrete filter probabilities
Pr(St = k|yt) through (13.36).

To keep the filter operational, Kim (1994) collapses the mixture (13.44)
to a single normal density after having finished filtering at time t, which it is
then used as a prior density for the next filtering step:

p(xt|yt, St = k) ≈ fN (xt; x̂
[k]
t|t ,P

[k]
t|t),

x̂[k]
t|t =

K∑
j=1

x̂[j,k]
t|t Pr(St−1 = j|yt, St = k),

P[k]
t|t =

K∑
j=1

(x̂[j,k]
t|t (x̂[j,k]

t|t )
′
+ P[j,k]

t|t )Pr(St−1 = j|yt, St = k) − x̂[k]
t|t(x̂

[k]
t|t)

′
.
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A comparison of this approximate filter with exact inference in Kim (1994)
for the model of Lam (1990) indicates that this approximate filter is quite
accurate.

Tugnait (1982) extended this method by updating a whole sequence
(St−h, . . . , St) with h > 1.

Other Approximations

Several other approximations also assume that the prior p(xt−1|yt−1, St−1 =
j) is a normal distribution as in (13.43), reduction of filter complexity, how-
ever, is carried out in a different manner. Blom and Bar-Shalom (1988) suggest
collapsing the mixture density p(xt−1|yt−1, St = k) given by (13.40) to a sin-
gle normal density with the same moments prior to running through the filter
steps (13.37) to (13.38) at time t:

p(xt−1|yt−1, St = k) ≈ fN (xt; x̂
[k]
t−1|t−1,P

[k]
t−1|t−1)

x̂[k]
t−1|t−1 =

K∑
j=1

wjkE(xt−1|yt−1, St−1 = j), (13.46)

with a similar formula for the variance–covariance matrix. Filtering then re-
duces to running K Kalman filters, however, this filter is less precise than
Kim’s algorithm.

For finite mixture of state space models, the weights in (13.46) are inde-
pendent of k, wjk = Pr(St−1 = j|yt−1) (see again (13.42)), and all moments in
(13.46) reduce to the moments x̂t−1|t−1 and Pt−1|t−1 of the marginal posterior
p(xt−1|yt−1),

p(xt−1|yt−1, St = k) ≈ fN (xt; x̂t−1|t−1,Pt−1|t−1).

Such a filter is running through the filter steps (13.37) to (13.38) with the same
prior p(xt−1|yt−1, St = k) for all k and reduces the collapsing procedures
suggested by Harrison and Stevens (1976), Peña and Guttman (1988), and
Shumway and Stoffer (1991) for finite mixtures of state space models.

Ackerson and Fu (1970) and Bar-Shalom and Tse (1975) use the same col-
lapsing technique, where the unconditional posterior p(xt−1|yt−1) is approxi-
mated by a single normal density prior to filtering also for Markov switching
state space models. This procedure, however, is likely to be less optimal than
the collapsing method of Blom and Bar-Shalom (1988), especially for highly
persistent Markov chains, whereas there is little computational gain.

13.4 Parameter Estimation for Switching State
Space Models

Let ϑ summarize all unknown distinct parameters appearing in the definition
of a switching state space model that should be fitted to a univariate or multi-
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variate time series y = (y1, . . . ,yT ). In various applications of switching state
space models, the parameters of the probability law of St and the covariances
Qt and Rt are assumed to be known, often based by choosing somewhat ar-
bitrary values (Harrison and Stevens, 1976; Carter and Kohn, 1994), but in
general these parameters may be estimated from the data as well.

13.4.1 The Likelihood Function of a State Space Model

The likelihood function p(y|ϑ) is defined as the density p(y1, . . . ,yT |ϑ) of the
joint distribution of Y1, . . . ,YT where all latent variables, in particular the
state process x = (x0, . . . ,xT ) and the indicator process S = (S0, . . . , ST ),
are integrated out. In general, the likelihood of a state space model is derived
by using the following decomposition into one-step ahead predictive densities
(Schweppe, 1965; Kashyap, 1970),

p(y|ϑ) = p(y1, . . . ,yT |ϑ) =
T∏

t=1

p(yt|yt−1, ϑ).

For a linear Gaussian state space model the predictive density p(yt|yt−1, ϑ)
appears as part of the Kalman filter (see Algorithm 13.1), and the likelihood
function is obtained from a single run of the Kalman filter conditional on ϑ,
if the initial moments x̂0|0 and P0|0 are known:

−2 log p(y1, . . . ,yT |ϑ)

=
T∑

t=1

(
log |Ct|t−1(ϑ)| + (yt − ŷt|t−1(ϑ))

′
Ct|t−1(ϑ)−1(yt − ŷt|t−1(ϑ))

)
,

where ŷt|t−1(ϑ) and Ct|t−1(ϑ) are given by (13.29). Some care needs to be
exercised if the initial moments x̂0|0 and P0|0 are unknown, and we refer to
Durbin and Koopman (2001, Section 7.2) for further discussion.

For a switching linear Gaussian state space model, the likelihood p(y|ϑ)
where both sets of latent variables are integrated out is not available in closed
form. Like the filter density p(xt|yt, ϑ), the one-step ahead predictive den-
sity p(yt|yt−1, ϑ) is a mixture of normal densities with an increasing number
of components. However, any of the approximate filters discussed in Sub-
section 13.3.5 leads immediately to an approximation to the log likelihood
function. By rewriting the predictive density as

p(yt|yt−1, ϑ) =
K∑

k=1

p(yt|yt−1, St = k,ϑ)Pr(St = k|yt−1, ϑ),

it becomes evident that p(yt|yt−1, ϑ) is the normalizing constant of the right-
hand side of discrete filter distribution Pr(St = k|y, ϑ), given in (13.36).
Approximate ML estimation based on approximate filters has been applied
by Shumway and Stoffer (1991) and Kim (1994), among others.
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It is worth noting that certain partial likelihood functions are available in
closed form. When holding S fixed, one is dealing with a standard state space
model, and the likelihood p(y|ϑ,S) is obtained by running a Kalman filter
conditional on ϑ and S.

13.4.2 Maximum Likelihood Estimation

A straightforward method of obtaining the ML estimator is direct maximiza-
tion of the exact or approximate log likelihood function log p(y1, . . . ,yT |ϑ)
using some numerical technique such as Newton–Raphson methods; see, for
instance, Hamilton (1994b, Section 5.7) for a review of these methods.

It was realized by Shumway and Stoffer (1982) and Watson and Engle
(1983) that the EM algorithm of Dempster et al. (1977) may be applied to
linear Gaussian state space models without switching, because the complete-
data likelihood function p(y|x,ϑ)p(x|ϑ) turns out to be of simple form. Koop-
man (1993) proposed a very simple and efficient EM algorithm for unknown
parameters inside the variance–covariance matrices Qt and Rt of a linear
Gaussian state space form.

For a switching state space model, the presence of two sets of latent vari-
ables hinders a straightforward application of the EM algorithm, because the
required smoothed probabilities Pr(St = k|y) are not available in closed form.
Shumway and Stoffer (1991) substitute these probabilities by Pr(St = k|yt)
which are available from any approximate filter discussed in Subsection 13.3.5
and report that this pseudo EM algorithm works well.

Consistency and asymptotic normality of the ML estimator of the param-
eters of a state space model hold under fairly general conditions; see Shumway
and Stoffer (1982), Schneider (1988), Hamilton (1994b, Section 13.4), Jensen
and Petersen (1999), and Shumway and Stoffer (2000, p.326ff). The observed
time series, however, needs to be fairly long in order to achieve asymptotic
normality. Moreover, problems occur if some of the parameters are close to the
boundary of the parameter space. For this reason it seems sensible to consider
a Bayesian approach.

13.4.3 Bayesian Inference

Bayesian inference for switching state space models is based on deriving the
joint posterior density p(x,S, ϑ|y) of all continuous states x = (x0, . . . ,xT ),
all discrete states S = (S0, . . . , ST ), and unknown model parameters ϑ, in-
cluding unknown parameters in the probability law of S, if any are present.
Due to the hierarchical structure of a switching state space model, this density
is proportional to:

p(x,S, ϑ|y) ∝ p(y|x,S, ϑ)p(x|S,ϑ)p(S|ϑ)p(ϑ),

which simplifies to:
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p(x,S, ϑ|y) ∝ p(x0|ϑ)p(ϑ) (13.47)

×
N∏

t=1

p(yt|St,xt, ϑ)p(xt|St,xt−1, ϑ)p(S|ϑ).

The densities p(yt|St,xt, ϑ) and p(xt|St,xt−1, ϑ) result directly from the def-
inition of the state space model, where p(x0|ϑ) is the prior of x0. p(ϑ) is the
prior density of all model parameters. The density p(S|ϑ) results directly from
the definition of the probability law of St. If St is a hidden Markov chain, then

p(S|ϑ) = p(S0|ϑ)
N∏

t=1

p(St|St−1, ϑ).

If St is a hidden i.i.d. indicator, then

p(S|ϑ) =
N∏

t=1

p(St|ϑ).

Note that the derivation of the posterior density in (13.47) is not limited to
switching linear Gaussian state space models, but is valid for any switching
state space model.

The posterior density p(x,S, ϑ|y), however, is not of any closed form, even
for linear Gaussian state space models without switching and simulation-based
methods are usually applied for Bayesian estimation. Durbin and Koopman
(2000) propagate the application of importance sampling, several other au-
thors explored MCMC methods; see Section 13.5.

Choosing the Priors for Bayesian Estimation

If St is a hidden Markov chain with transition matrix ξ, then the joint prior
reads

p(x0|ϑ, S0)p(S0|ξ)p(ϑ)p(ξ), (13.48)

where each row ξj· of the transition matrix ξ is chosen from a Dirichlet dis-
tribution as in Chapter 11:

ξk· ∼ D (ek1, . . . , ekK) , k = 1, . . . , K. (13.49)

To obtain a prior that is invariant to relabeling, Frühwirth-Schnatter (2001a)
suggested choosing ekk = eP and ekk′ = eT , if k �= k′. By choosing eP > eT ,
a Markov switching state space model is bounded away from a finite mixture
state space model. Choosing the prior p(S0|ξ) of the discrete-valued state
variable S0 is closely related to choosing the same prior for finite Markov
mixture models; see Subsection 10.3.4 for various choices of this distribution.
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If St is a hidden i.i.d. indicator with probability distribution η, then the
joint prior reduces to

p(x0|ϑ)p(ϑ)p(η), (13.50)

where the prior for η is chosen from the Dirichlet distribution as in Chapter 2:

η ∼ D (e0, . . . , e0) . (13.51)

In both cases, p(x0|ϑ, S0) is the prior for the continuous state variable x0 used
for initialization in the Kalman filter, and is allowed to depend on S0 for a
Markov switching state space model.

The prior for the remaining parameters ϑ is usually chosen to be condition-
ally conjugate to the complete-data likelihood p(y|x,S, ϑ)p(x|S,ϑ). To give
an example, consider a local level model where both variances are switching,

µt = µt−1 + wt, wt ∼ N
(
0, σ2

µ,St

)
, (13.52)

Yt = µt + εt, εt ∼ N
(
0, σ2

ε,St

)
.

The complete-data likelihood reads with x = (µ0, . . . , µT ) and ϑ = (σ2
µ,1, . . .,

σ2
µ,K , σ2

ε,1, . . . , σ
2
ε,K):

p(y|x,S, ϑ)p(x|S,ϑ) ∝
K∏

k=1

(
1

σ2
ε,k

)Nk(S)/2

exp

⎧⎪⎪⎨⎪⎪⎩−

∑
t:St=k

(yt − µt)2

2σ2
ε,k

⎫⎪⎪⎬⎪⎪⎭
×

(
1

σ2
µ,k

)Nk(S)/2

exp

⎧⎪⎪⎨⎪⎪⎩−

∑
t:St=k

(µt − µt−1)2

2σ2
µ,k

⎫⎪⎪⎬⎪⎪⎭ ,

where Nk(S) = #{St = k}. Considered as a function of σ2
ε,k, this is an

inverted Gamma density. Therefore the conditionally conjugate prior for σ2
ε,k

is an inverted Gamma density G−1 (cε,0, Cε,0). Similarly, the complete-data
likelihood is an inverted Gamma density, when considered as a function of
σ2

µ,k. Thus the conditionally conjugate prior for σ2
µ,k is again an inverted

Gamma density G−1 (cµ,0, Cµ,0).

Complete-Data Bayesian Estimation

Estimation of the unknown model parameters ϑ conditional on the complete
data S, x, and y is closely related to various Bayesian inference problems
discussed earlier. If parameters appearing in the definition of the probability
law of St are a priori independent of parameters appearing in the definition of
the transition and observation densities, then this independence is preserved
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a posteriori. If St is an i.i.d. indicator with unknown probability distribu-
tion η, then η|S,x,y follows a Dirichlet distribution as discussed for finite
mixture models in Subsection 3.5.3, whereas the posterior of ξ|S,x,y under
a hidden Markov chain St with unknown transition matrix ξ is the same
as in Subsection 11.5.5. For unknown parameters appearing in the definition
of the observation and the transition density, the complete-data likelihood
p(y|x,S, ϑ)p(x|S,ϑ) in combination with a conditionally conjugate prior p(ϑ)
often leads to a posterior density p(ϑ|S,x,y) that is of closed form.

To give an example, consider a local level model where both variances
are switching as in (13.52) and St is a hidden Markov chain. Then ϑ =
(σ2

µ,1, . . . , σ
2
µ,K , σ2

ε,1, . . . , σ
2
ε,K , ξ) and the complete-data posterior p(ϑ|x,S,y)

reads:

p(ϑ|x,S,y) ∝ p(y|x,S, ϑ)p(x|S,ϑ)p(S|ξ)p(ϑ) ∝ p(S0|ϑ)
K∏

j=1

K∏
k=1

ξ
Njk(S)
jk

×
K∏

k=1

(
1

σ2
ε,k

)Nk(S)/2+cε,0+1

exp

⎧⎪⎪⎨⎪⎪⎩−

∑
t:St=k

(yt − µt)2

2σ2
ε,k

− Cε,0

σ2
ε,k

⎫⎪⎪⎬⎪⎪⎭
×

K∏
k=1

(
1

σ2
µ,k

)Nk(S)/2+cµ,0+1

exp

⎧⎪⎪⎨⎪⎪⎩−

∑
t:St=k

(µt − µt−1)2

2σ2
µ,k

− Cµ,0

σ2
µ,k

⎫⎪⎪⎬⎪⎪⎭ ,

where Njk(S) = # {St−1 = j, St = k} counts the numbers of transitions from
j to k and Nk(S) = #{St = k} =

∑K
j=1 Njk(S). The transition matrix ξ, as

well as all variances σ2
µ,k and σ2

ε,k are conditionally independent. The precise
form of the posterior of ξ and the method used for sampling from this density
depend on the assumptions concerning p(S0|ϑ), as has been discussed earlier
in Subsection 11.5.5. The variances σ2

µ,k and σ2
ε,k each follow an inverted

Gamma density G−1 (cµ,k(S), Cµ,k(S)) and G−1 (cε,k(S), Cε,k(S)), where

cε,k(S) = cε,0 + 0.5Nk(S), Cε,k(S) = Cε,0 + 0.5
∑

t:St=k

(yt − µt)2,

cµ,k(S) = cµ,0 + 0.5Nk(S), Cµ,k(S) = Cµ,0 + 0.5
∑

t:St=k

(µt − µt−1)2.

13.5 Practical Bayesian Estimation Using MCMC

Practical Bayesian estimation of switching state space models usually relies
on MCMC estimation and was implemented for specific models discussed in
Section 13.2 such as the state space model with Markov switching conditional
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heteroscedasticity (Carlin et al., 1992; Carter and Kohn, 1994, 1996), the ran-
dom level shift model (McCulloch and Tsay, 1993), partial Gaussian state
space model (Shephard, 1994), robust state space model (Godsill, 1997; God-
sill and Rayner, 1998), dynamic factor model with regime switching (Kim and
Nelson, 1998; Kaufmann, 2000), and various unobserved component models
with Markov switching (Luginbuhl and de Vos, 1999; Engel and Kim, 1999).
Frühwirth-Schnatter (2001a) provides a general discussion of MCMC methods
for switching linear Gaussian state space models.

13.5.1 Various Data Augmentation Schemes

Various MCMC schemes have been suggested to implement data augmen-
tation and Gibbs sampling for switching linear Gaussian state space models.
The following three-block Gibbs sampler has been applied in Shephard (1994),
Carter and Kohn (1994), and Frühwirth-Schnatter (2001a).

Algorithm 13.2: MCMC for a Switching Linear Gaussian State Space Model
— Full Conditional Gibbs Sampling Sampling is carried out in three steps.

(a) Sample a path x = (x0, . . . ,xT ) of the continuous state variable condi-
tional on ϑ and S from the density p(x|ϑ,S,y), preferably using forward-
filtering-backward-sampling; see Algorithm 13.4.

(b) Sample a path S = (S0, . . . , ST ) of the discrete state variable conditional
on ϑ and x from the density p(S|ϑ,x,y).

(c) Sample ϑ conditional on x and S from the complete-data posterior density
p(ϑ|x,S,y).

Sampling a path of the state process x0, . . . ,xT in step (a) is discussed
in full detail in Subsection 13.5.2. Sampling the indicators in step (b) is
straightforward, if St is a hidden i.i.d. sequence with probability distribu-
tion η = (η1, . . . , ηK). In this case, St is independent of all other indicators
S−t given x, and step (b) could be carried out in one sweep by sampling St

for each t = 1, . . . , T from

Pr(St = j|y,x, ϑ) (13.53)
∝ p(yt|St = j,xt, ϑ)p(xt|St = j,xt−1, ϑ)ηk.

If St is a hidden Markov chain, then the results derived earlier for sampling
hidden Markov chains are extended to deal with switching state space models;
see Algorithm 13.5 for more details. Sampling the unknown model parameters
in step (c) conditional on S, x, and y has been discussed earlier in Subsec-
tion 13.4.3.

Carter and Kohn (1996, Lemma 2.2) prove that full conditional Gibbs
sampling may lead to a reducible sampler for certain state space models. This
is the case, for instance, if one of the variances, say Q[k]

t , is assumed to be
exactly 0, if St = k. As a remedy, Carter and Kohn (1996) substitute step
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(b) in Algorithm 13.2 by a step that samples St without conditioning on the
continuous states x.

Algorithm 13.3: MCMC for a Switching Linear Gaussian State Space Model
— Marginal Sampling of the Indicators Whereas sampling of x and ϑ is
the same as in step (a) and (c) in Algorithm 13.2, marginal sampling of the
indicators is carried out in the following way.

(b) For t = 1, . . . , T , sample St from p(St|S−t, ϑ,y) without conditioning on
x.

Generating the indicators St in step (b) of this algorithm in an efficient way
is far from straightforward. Carter and Kohn (1996) and Gerlach and Kohn
(2000) discuss various samplers, that are reviewed in Subsection 13.5.3. The
results of Liu et al. (1994) suggest that Algorithm 13.3 is more efficient than
Algorithm 13.2, because the indicators are conditioned on fewer variables when
they are generated. This is supported by a small simulation study in Gerlach
and Kohn (2000).

Another modification of Algorithm 13.2 is a partially marginalized sampler
(McCulloch and Tsay, 1993; Godsill, 1997; Godsill and Rayner, 1998), where
sampling of the indicators and the states is carried out in a different manner.

13.5.2 Sampling the Continuous State Process from the
Smoother Density

In this section, sampling a path of the state process x0, . . . ,xT from the condi-
tional posterior p(x0, . . . ,xT |y,S, ϑ), also called smoother density, is discussed
in full detail. The transition density p(xt|xt−1) as well as the observation den-
sity p(yt|xt) depends on unknown parameters ϑ and the latent processes S.
This dependence, however, is dropped for the remainder of this subsection for
notational convenience.

Single-Move Sampling of the Continuous State Process

Carlin et al. (1992) used a single-move Gibbs sampler based on sampling the
state xt for each t = 1, . . . , T from the conditional posterior xt ∼ p(xt|x−t ,y),
where x−t is the collection all state vectors x0, . . . ,xT excluding xt. The
posterior p(xt|x−t ,y) is given by

p(xt|x−t ,y) ∝ p(y|x)p(x)

∝
T∏

t=1

p(yt|xt)
T∏

t=1

p(xt|xt−1)p(x0).

Dropping all quantities that are independent of xt yields for t = 1, . . . , T − 1:

p(xt|x−t ,y) ∝ p(yt|xt)p(xt+1|xt)p(xt|xt−1), (13.54)
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with obvious simplifications for t = 0 and t = T :

p(x0|x1, . . . ,xT ,y) ∝ p(x1|x0)p(x0),
p(xT |x0, . . . ,xT−1,y) ∝ p(yT |xT )p(xT |xT−1).

For a linear Gaussian state space model the first two densities in (13.54) may
be considered as the likelihood of a linear model with general, but known,
error covariance matrices and independent observations yt and xt+1,(

yt

xt+1

)
=

(
Ht

Ft+1

)
xt +

(
εt

wt+1

)
,

εt ∼ Nr (0,Rt) , wt+1 ∼ Nd (0,Qt+1) ,

where the unknown regression parameter xt follows the conjugate normal
prior p(xt|xt−1) as in Subsection 13.3.2. Thus for t = 1, . . . , T − 1 the density
p(xt|x−t ,y) is normal with

xt|x−t
,y ∼ Nd

(
x̂t|−t,Pt|−t

)
,

P−1
t|−t = H

′
tR

−1
t Ht + F

′
t+1Q

−1
t+1Ft+1 + Q−1

t ,

x̂t|−t = Pt|−t(H
′
tR

−1
t yt + F

′
t+1Q

−1
t+1xt+1 + Q−1

t Ftxt−1),

a result that allows direct sampling. For more general state space models,
p(xt|x−t

,y) is no longer a normal density, but it is possible to draw from this
density using a Metropolis–Hastings step (Carlin et al., 1992; Jacquier et al.,
1994).

As noted by Carter and Kohn (1994), this sampler converges rather slowly
when Qt approaches singularity and breaks down to a reducible sampler; see
also Pitt and Shephard (1999) for a theoretical investigation of this issue.

Multi-Move Sampling of the Continuous State Process

A more efficient way to sample x0, . . . ,xT for the linear Gaussian state
space model is joint or multi-move sampling of the states (Carter and Kohn,
1994; Frühwirth-Schnatter, 1994; De Jong and Shephard, 1995; Koopman
and Durbin, 2000). In contrast to single-move sampling, multi-move sampling
draws the whole path x = (x0, . . . ,xT ) from the joint posterior of all states:
(x0, . . . ,xT ) ∼ p(x0, . . . ,xT |y). The multi-move sampler starts by represent-
ing the joint density p(x|y) as the product of T + 1 conditional densities:

p(x|y) = p(xT |y)
T−1∏
t=0

p(xt|xt+1, . . . ,xT ,y). (13.55)

The densities p(xt|xt+1, . . . ,xT ,y) are the posterior densities of xt knowing
not only all observations y, but also all future values xt+1, . . . ,xT . This pos-
terior is obtained by Bayes’ theorem as
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p(xt|xt+1, . . . ,xT ,y) ∝ p(yt+1, . . . ,yT ,xt+1, . . . ,xT |xt,yt)p(xt|yt)

∝
T∏

s=t+1

p(ys|xs)
T−1∏
s=t

p(xs+1|xs)p(xt|yt).

Dropping terms that are independent of xt we find that this density is obtained
by combining the filter density p(xt|yt) with the likelihood of xt+1 measured
in terms of the transition density p(xt+1|xt):

p(xt|xt+1, . . . ,xT ,y) ∝ p(xt+1|xt)p(xt|yt). (13.56)

Equations (13.55) and (13.56) motivate was has been called forward-filtering-
backward-sampling (Frühwirth-Schnatter, 1994).

Algorithm 13.4: Forward-Filtering-Backward-Sampling (FFBS)

(a) Determine and store the moments x̂t|t and Pt|t of the filtering density
p(xt|yt) by running a Kalman filter from t = 1, . . . , T as described in
Algorithm 13.1.

(b) Start sampling of the path x0, . . . ,xT by sampling the latest state vector
xT from the most recent filter density p(xT |yT ).

(c) Sample the remaining states xt from p(xt|xt+1, . . . ,xT ,y) backward in
time for t = T − 1, . . . , 0.

There exist various ways to implement step (c). Following Carter and Kohn
(1994), p(xt+1|xt) may be considered as the likelihood of a general linear
model with known error covariance matrices as in Subsection 13.3.2, with
observations xt+1 and regression parameter xt following the conjugate normal
prior p(xt|yt). From Subsection 13.3.2, the density p(xt|xt+1, . . . ,xT ,y) is
normal with

xt|xt+1, . . . ,xT ,y ∼ Nd

(
x̂t|T (xt+1),Pt|T

)
, (13.57)

x̂t|T (xt+1) = (I − Bt+1Ft+1)x̂t|t + Bt+1(xt+1 − Gt+1ut+1),
Pt|T = (I − Bt+1Ft+1)Pt|t,

Bt+1 = Pt|tF
′
t+1

(
Ft+1Pt|tF

′
t+1 + Qt+1

)−1
.

If Qt+1 is positive definite, one could also use the information form of updating
the posterior in a general linear model. If Qt+1 is singular, then the conditional
density p(xt|xt+1, . . . ,xT ,y) is degenerate because part of xt is deterministic
given xt+1. Sampling from (13.57) based on a Cholesky decomposition of Pt|T
will lead to numerical problems. Furthermore the recursions in (13.57) are
inefficient, as they involve the inversion of a (d × d) matrix, with d = dimxt,
whereas xt only has s = rg(Qt) < d random components. Frühwirth-Schnatter
(1994) suggested transforming the state vector xt to a new state variable
with only s random components. Another efficient sampler is to simulate the
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disturbances wt rather than xt using a disturbance smoother (De Jong and
Shephard, 1995; Durbin and Koopman, 2002).

For more general state space models, such a multi-move sampler does
not exist. Shephard and Pitt (1997) designed a blocked sampler, where an
entire subblock xt, . . . ,xt+h is sampled from the appropriate density using a
Metropolis–Hastings step.

13.5.3 Sampling the Discrete States for a Switching State
Space Model

The notation St = (S0, . . . , St) is used to denote a whole path of the hidden
Markov chain St up to t, with S0 being dropped for finite mixtures of state
space models.

Full Conditional Sampling of a Hidden Markov Chain

Full conditional sampling of the states S of a hidden Markov chain is not
restricted to linear Gaussian state space models, but may be applied also to
more general models with nonnormal or nonlinear densities p(yt|St = j,xt, ϑ)
and p(xt|St = j,xt−1, ϑ).

Single-move sampling of p(St|S−t,x,y, ϑ) could be used as in Subsec-
tion 11.5.6, however, it is much more efficient to use a multi-move sam-
pler (Carter and Kohn, 1994; Shephard, 1994) that samples the whole path
S = (S0, . . . , ST ) jointly from p(S|x,y, ϑ). This multi-move sampler is closely
related to the sampler discussed in Algorithm 11.5 for finite Markov mixture
models.

Algorithm 13.5: Multi-Move Sampling of the Discrete States of a Switching
State Space Model

(a) Run a filter conditional on ϑ and x to obtain the filtered probability
distribution Pr(St = j|yt,xt, ϑ) for t = 1, . . . , T . The filter is started at
t = 1 with the initial distribution Pr(S0 = k|ξ). For each t ≥ 1, perform
one-step ahead prediction,

Pr(St = j|yt−1,xt−1, ϑ) =
K∑

k=1

ξkjPr(St−1 = k|yt−1,xt−1, ϑ),

and filtering for each possible value j = 1, . . . , K of St:

Pr(St = j|yt,xt, ϑ) (13.58)
∝ p(yt|St = j,xt, ϑ)p(xt|St = j,xt−1, ϑ)Pr(St = j|yt−1,xt−1, ϑ).

The probabilities in (13.58) need to be normalized to obtain a proper filter
distribution.

(b)Sample ST from the discrete probability distribution Pr(ST = j|yT ,xT , ϑ).
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(c) For t = T − 1, T − 2, . . . , 0 sample St from the conditional distribution
Pr(St = j|St+1,yt,xt, ϑ) given by

Pr(St = j|St+1,yt,xt, ϑ) =
ξj,St+1Pr(St = j|yt,xt, ϑ)

K∑
k=1

ξk,St+1Pr(St = k|yt,xt, ϑ)

.

Here St+1 is the most recent value sampled for the hidden Markov chain
at t + 1.

Marginal Sampling of the Indicators

Both Carter and Kohn (1996) and Gerlach and Kohn (2000) generate St from
the discrete density p(St|S−t,y, ϑ) without conditioning on the continuous
states x. Marginalization over x, however, leads to dependence among all the
values of St, even if the indicators are i.i.d., and generating St in an efficient
way is far from straightforward.

Suppose that St−1 has already been updated and that the first two mo-
ments of the normal density p(xt−1|yt−1,St−1, ϑ) are known. Bayes’ theorem
is used to obtain the density p(St|S−t,y, ϑ):

p(St|S−t,y, ϑ) ∝ p(St|S−t, ϑ)p(yt|yt−1,St, ϑ)p(yt+1, . . . ,yT |yt,S−t, St, ϑ).

For each of the K values of St, the predictive density p(yt|yt−1,St, ϑ) as
well as the filtering density p(xt|yt,St, ϑ), is obtained from a single step of
the Kalman filter. A direct but inefficient method to evaluate the predictive
density p(yt+1, . . . ,yT |yt,S−t, St) for the K different values of St is to use
T − t + 1 forecasting steps of the Kalman filter, which requires O(T ) steps
to generate St, and hence O(T 2) steps to generate the whole path S. Gerlach
and Kohn (2000) show how to obtain the term p(yt+1, . . . ,yT |yt,S−t, St) in
one step after an initial set of backward recursions, requiring O(T ) steps to
generate the whole path S. We refer to Gerlach and Kohn (2000) for more
details.

Finally, Gerlach and Kohn (2000) discuss an efficient way of sampling a bi-
nary indicator St which takes one of two values most of the time, for instance,
an indicator corresponding to an outlier or to an intervention variable.

13.6 Further Issues

13.6.1 Model Specification Uncertainty in Switching State
Space Modeling

The application of the state space approach to socioeconomic or biological
sciences is complicated by the need of model identification, because often
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little a priori information about the dynamics of the system is available. One
approach toward this model specification uncertainty is to fit several state
space models to a given time series and to apply some method of model
selection.

AIC was used in the context of model selection for state space models by,
among others, Kitagawa (1981) and Harvey (1989). AIC and BIC are defined
for state space models in the usual way as

AIC = −2 log p(y|ϑ̂) + 2 dim(ϑ), (13.59)

BIC = −2 log p(y|ϑ̂) + log(T ) dim(ϑ), (13.60)

where p(y|ϑ̂) is the (approximate) likelihood of a (switching) state space
model evaluated at the ML estimator ϑ̂. Durbin and Koopman (2001, p.152)
provide a corrected AIC and BIC for state space models with diffuse initial
conditions. Harvey (1989) and Durbin and Koopman (2001) prefer a definition
where the right-hand side of (13.59) and (13.60) is divided by T .

The marginal likelihood has been applied to model selection problems
involving state space models by, among many others, Frühwirth-Schnatter
(1995), Shively and Kohn (1997), and Koop and van Dijk (2000). Frühwirth-
Schnatter (2001a) discusses model comparison based on marginal likelihoods
for switching linear Gaussian state space models and uses the bridge sampling
techniques discussed in Subsection 5.4.6 to obtain a numerical approximation
of the marginal likelihood.

A Bayesian variable selection approach (Carlin and Chib, 1995) has been
applied to switching dynamic factor models by Kim and Nelson (2001).

13.6.2 Auxiliary Mixture Sampling for Nonlinear and Nonnormal
State Space Models

To deal with non-Gaussian or nonlinear state space models it is useful to ap-
proximate nonnormal densities by a finite mixture of common distributions.
Sorenson and Alspach (1971) and Alspach and Sorenson (1972) are pioneering
works using a Gaussian sum approximation to derive an approximate filter
for nonlinear and non-Gaussian state space models. Meinhold and Singpur-
walla (1989) represent the posterior density p(xt−1|yt−1) by a mixture of
t-distributions and suggest some approximate recursive scheme to obtain a
similar mixture approximation to p(xt|yt).

To facilitate statistical inference, Shephard (1994) introduced the con-
cept of partially Gaussian state space models and suggested approximating
nonnormal densities appearing in the definition of the state space model by
mixtures of normal distributions. This allows MCMC estimation through ef-
ficient multi-move sampling of the state process as in Algorithm 13.4 also for
non-Gaussian state space models, where usually single-move sampling has to
be applied.
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MCMC methods based on a finite mixture approximation have been de-
veloped in particular for stochastic volatility models (Shephard, 1994; Kim
et al., 1998; Chib et al., 2002; Omori et al., 2004). A stochastic volatility
model is a state space model with state vector ht, usually assumed to follow
an AR(1)-process, where the observation equation is nonlinear, because the
variance of the observation error is a nonlinear function of ht:

ht = δht−1 + ζ + wt, wt ∼ N
(
0, σ2

µ

)
,

Yt = eht/2zt, zt ∼ N (0, 1) .

This model may be transformed into a linear state space model with nonnor-
mal errors in the following way,

log Y 2
t = ht + εt,

where εt is equal to the log of a χ2
1 random variable. The density of the

log χ2
1 is approximated in Shephard (1994) by a mixture of univariate normal

distributions,

p(εt) =
K∑

k=1

wkfN (εt; mk, s2
k).

Shephard (1994) derived appropriate parameters (wk, mk, s2
k), k = 1, . . . , K,

for mixtures up to K = 7 components, whereas a more accurate approximation
with K = 10 components appears in Omori et al. (2004). By introducing i.i.d.
hidden indicators St for each t, the following finite mixture of linear Gaussian
state space models results,

ht = δht−1 + ζ + wt, wt ∼ N
(
0, σ2

µ

)
,

log Y 2
t = ht + mSt + εt, εt ∼ N

(
0, s2

St

)
,

with Pr(St = k) = wk. Filtering and parameter estimation as discussed in
Sections 13.3 to 13.5 may be applied.

Recently, Frühwirth-Schnatter and Wagner (2006) developed a similar aux-
iliary mixture sampler for state space modeling of count data, based on a finite
mixture approximation to the type I extreme value distribution. Frühwirth-
Schnatter and Frühwirth (2006) show that this sampler may be extended to
deal with state space modeling of binary and multinomial data.

13.7 Illustrative Application to Modeling Exchange
Rate Data

For illustration we reanalyze the U.S./U.K. real exchange rate from January
1885 to November 1995, originally published in Grilli and Kaminsky (1991)
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Fig. 13.1. U.S./U.K. Real Exchange Rate Data, exploratory Bayesian analysis
for a switching model with K1 = 4, K2 = 2, p = 3; top left-hand side: log(σ2

1,k) versus
ξ1

kk for all possible k; top right-hand side: log(σ2
2,k) versus ξ2

kk for all possible k;
bottom left-hand side: log(σ2

1,k) versus log(σ2
2,k) for all possible k; bottom right-hand

side: posterior of δ3 (from Frühwirth-Schnatter (2001a) with permission granted by
The Institute of Statistical Mathematics)

and reanalyzed by Engel and Kim (1999) and Frühwirth-Schnatter (2001a).
The real exchange rate is defined as the relative price of U.K. to U.S. producer
goods; that is, U.S./U.K. nominal exchange rate times the U.K. producer
price index divided by the U.S. producer price index. Engel and Kim (1999)
suggested decomposing the log of the real exchange rate Yt into a permanent
component µt and a transitory component ct:

log Yt = µt + ct,

where ct is assumed to follow an AR(p) process:

ct = δ1ct−1 + · · · + δpct−p + wt,1,

and µt follows a random walk process:

µt = µt−1 + wt,2.
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The conditional variance of the transitory component ct is assumed to switch
between K1 values according to a Markov chain S1

t with transition matrix ξ1,
whereas the conditional variance of the permanent component µt is assumed
to switch between K2 values according to a Markov chain S2

t with transition
matrix ξ2:

wt,1 ∼ N
(
0, σ2

1,S1
t

)
, wt,2 ∼ N

(
0, σ2

2,S2
t

)
.

The model can be put into state space form with the following state vector
xt and matrix F,

xt =

⎛⎜⎜⎜⎝
µt

ct

...
ct−p+1

⎞⎟⎟⎟⎠ , F =
(

1 01×p

0p×1 F(δ)

)
,

and F(δ) being the same as in (13.15).
This model is a switching linear Gaussian state space model with two hid-

den indicators. The estimation method used by Frühwirth-Schnatter (2001a)
is an extension of Algorithm 13.2 to the case of two hidden switching vari-
ables. Frühwirth-Schnatter (2001a) did not condition on the first values of the
state process as in Engel and Kim (1999), but sample in step (a) the whole
processes c1−p, . . . , c0, . . . , cT and µ0, . . . , µT including the starting values by
applying the multi-move sampler of Frühwirth-Schnatter (1994). The filter is
initialized with the prior x0 ∼ N

(
x̂0|0,P0|0

)
, where

x̂0|0 =

⎛⎜⎜⎜⎝
log y1

0
...
0

⎞⎟⎟⎟⎠ , P0|0 =
(

1000 01×(p−1)
0(p−1)×1 M

)

with

vec(M) = (Ip2 − F(δ) ⊗ F(δ))−1
(

σ2
1,S1

0

0(p−1)×1

)
,

and ⊗ is the Kronecker product of two matrices. This choice is based on the
suggestion of De Jong and Chu-Chun-Lin (1994) for combining a vague prior
with a stationary prior for state vectors containing both nonstationary and
stationary components.

As the Markov processes S1
t and S2

t are independent a posteriori, sam-
pling in step (b) is carried out independently for both indicators using Algo-
rithm 13.5. For S1

t the filter step (13.58) is based on

Pr(S1
t = j|yt,xt, ϑ)

∝ fN (ct; δ1ct−1 + · · · + δpct−p, σ
2
1,j)Pr(S1

t = j|yt−1,xt−1, ϑ),
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whereas for S2
t this step reads:

Pr(S2
t = j|yt,xt, ϑ) ∝ fN (µt; µt−1, σ

2
2,j)Pr(S2

t = j|yt−1,xt−1, ϑ).

Parameter estimation is based on the priors σ2
1,k ∼ G−1 (3, 8), k = 1, . . . , K1,

and σ2
2,k ∼ G−1 (3, 2), k = 1, . . . , K2. The prior for all rows of the transition

matrices ξ1 and ξ2 is chosen to be D (1, . . . , 1).
All variances σ2

1,k, k = 1, . . . , K1 and σ2
2,k, k = 1, . . . , K2 are sampled at

the same time, as they are conditionally independent, inverted Gamma dis-
tributed. This is different from Engel and Kim (1999) who impose a priori
an identifiability constraint on the variances and sample the variances in a
single-move manner from the constrained posterior.

Sampling of the AR(p) parameters δ1, . . . , δp is carried out from the re-
gression model ct = δ1ct−1 + · · · + δpct−p + σ1,S1

t
εt, where εt is i.i.d. standard

normal. As samples of c0, . . . , c1−r are available from step (a), t is running
from 1 to T . Within one iteration, sampling of the AR(p) parameters δ1, . . . , δp

is repeated until the stationarity condition on the AR(p) process is fulfilled.

Table 13.1. U.S./U.K. Real Exchange Rate Data, model selection using
marginal likelihoods (from Frühwirth-Schnatter (2001a) with permission granted
by The Institute of Statistical Mathematics)

Model log p(y|Model)

K1 = 4, K2 = 2, p = 3 –2562.4
K1 = 4, K2 = 1, p = 2 –2515.5
K1 = 4, K2 = 1, p = 1 –2612.5
K1 = 3, K2 = 1, p = 2 –2605.9
K1 = 5, K2 = 1, p = 2 –2880.2
No switching, p = 2 –2914.4

Engel and Kim (1999) selected a model where the variance of the transitory
component is driven by a three-state Markov switching process, the variance
of the permanent component is constant, and the order of the AR process is
equal to two, that is, K1 = 3, K2 = 1, p = 2. They adopt this specification by
exploring the posterior distributions without formal Bayesian model selection.

We proceed with an exploratory Bayesian analysis of a model with K1 = 4,
K2 = 2, and p = 3, using the MCMC output of a random permutation
sampler. Parts (a) and (b) of Figure 13.1 show a point process representation
of (σ2

1,k)(m) versus (ξ1
kk)(m) and (σ2

2,j)
(m) versus (ξ2

jj)
(m) for all possible states

k ∈ {1, . . . , K1} and j ∈ {1, . . . , K2}, respectively. For S1
t we have allowed for

four states and there are actually four simulation clusters; for S2
t , however,

we have allowed for two states, but there is just one simulation cluster. This
provides empirical evidence in favor of a homogeneous rather than a switching
variance of the permanent component. This hypothesis is further supported by
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part (c) of the figure where the point process representation of (σ2
1,k)(m) versus

(σ2
2,k)(m) is plotted. Finally, part (d) of the same figure plots the posterior of

the AR parameter δ3 which may be estimated directly from the output of
the random permutation sampler as δ3 is state independent. The mode of the
posterior is close to 0 providing evidence for the hypothesis that δ3 is equal
to zero. To sum up, the exploratory analysis provides evidence in favor of a
model with K1 = 4, K2 = 1, and p = 2 rather than K1 = 3, K2 = 2, and
p = 2.

In Frühwirth-Schnatter (2001a) the marginal likelihood, based on a bridge
sampling estimator, was used for model selection; see Table 13.1. For the
best model the variance of the transitory component is driven by a four-state
Markov switching process, the variance of permanent component is constant,
and the order of the AR process is equal to two; that is, K1 = 4, K2 = 1,
p = 2.

The marginal likelihoods reported in Table 13.1, however, clearly favor
the model with K1 = 4, K2 = 1, and p = 2, which differs from the one
selected in Engel and Kim (1999) by the number of states of the variance of
the transitory component. Increasing the number of states from four to five,
however, reduces the marginal likelihood drastically. For completeness, the
marginal likelihood for a model without switching is reported, showing that
this model is the most unlikely of all.
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Fig. 13.2. U.S./U.K. Real Exchange Rate Data, four-state model (K1 = 4,
K2 = 1, p = 2); left-hand side: smoothed real exchange rate p̂t|T ; right-hand side:
estimated time-varying variance σ̂2

1,t (K1 = 3, K2 = 1, p = 2) (from Frühwirth-
Schnatter (2001a) with permission granted by The Institute of Statistical Mathe-
matics)

We can draw further interesting inferences from the output of the random
permutation sampler without the need to identify the model. This is espe-
cially true for the smoothed permanent component p̂t|T which is compared
in Figure 13.2 with the observed time series. The resulting estimator of the
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permanent component is much smoother than the rather noisy estimate pub-
lished in Engel and Kim (1999), being nearly constant until the end of the
fifties and increasing afterwards. Another interesting picture is obtained if we
plot the time-varying variance σ2

1,t estimated from:

σ̂2
1,t =

1
M

M∑
m=1

(
σ2

1,s

)(m)
,

where s = (S1
t )(m) over time t as in Figure 13.2.

Table 13.2. U.S./U.K. Real Exchange Rate Data, estimation results for K1 =
4, K2 = 1, p = 2 (from Frühwirth-Schnatter (2001a) with permission granted by The
Institute of Statistical Mathematics)

Parameter Mean Std.Dev. 95%-H.P.D. Regions

σ2
1,1 0.634 0.151 0.371 0.93

σ2
1,2 2.05 0.196 1.67 2.42

σ2
1,3 7.63 1.07 5.9 9.88

σ2
1,4 36.4 9.13 20.7 53.9

σ2
2 0.366 0.132 0.121 0.608

δ1 1.06 0.0474 0.967 1.14
δ2 –0.0729 0.046 –0.158 0.0139

ξ11 0.968 0.0132 0.943 0.991
ξ12 0.0091 0.00861 2.84e–006 0.0256
ξ13 0.00639 0.00586 2.87e–006 0.0189
ξ14 0.0162 0.00987 0.000231 0.0341
ξ21 0.00855 0.00576 0.000165 0.0205
ξ22 0.973 0.00853 0.957 0.988
ξ23 0.00587 0.0057 6.19e–006 0.0155
ξ24 0.0123 0.00697 0.000484 0.0246
ξ31 0.00498 0.00489 1.24e–005 0.0144
ξ32 0.0139 0.0123 9.59e–006 0.0373
ξ33 0.956 0.0222 0.916 0.992
ξ34 0.0248 0.0161 0.00129 0.0562
ξ41 0.039 0.0338 0.000159 0.103
ξ42 0.147 0.0691 0.024 0.288
ξ43 0.123 0.0934 0.00108 0.309
ξ44 0.691 0.116 0.438 0.865

The selected model has to be identified to draw inference on the variances
of the different states as well as to obtain state estimates over the whole ob-
servation period. The identifiability constraint σ2

1,1 < σ2
1,2 < σ2

1,3 < σ2
1,4 is

suggested by the point process representation in Figure 13.1, showing that
the states of S1

t differ in the variance of the transitory component. If this
constraint is included in the permutation sampler, no label switching occurs.
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Table 13.2 reports point estimates as well as 95%-H.P.D.-regions for all model
parameters, including estimates of the state-specific variances as well as esti-
mates of the transition probabilities.

Fig. 13.3. U.S./U.K. Real Exchange Rate Data, smoothed state probabilities
for S1

t for a switching state space model with K1 = 4, K2 = 1, and p = 2 (from
Frühwirth-Schnatter (2001a) with permission granted by The Institute of Statistical
Mathematics)

Figure 13.3 plots the smoothed posterior state probabilities Pr(S1,L
t =

k|y) of being in a certain state k ∈ {1, 2, 3, 4} over time t, for a four-state
switching model, and compares them with the probabilities obtained from
the three-state model. The probabilities Pr(S1,L

t = k|y) are estimated from
the constrained MCMC output by

Pr(S1,L
t = k|y) =

1
M

#{(S1,L
t )(m) = k}.

Engel and Kim (1999) found the following interpretation of these probabili-
ties. The quietest state occurred during the first half of the forties and then
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from about 1952 to the end of the seventies, which are periods in which the
nominal exchange rate was fixed. The two medium-state variances correspond
to periods of floating nominal exchange rates. Periods of high-state variance
are rather singular events and can be identified with specific historical events.
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Appendix

A.1 Summary of Probability Distributions

Here we briefly summarize all probability distributions used in this book. For
an exhaustive review of probability distributions see Johnson et al. (1993,
1994, 1995). The parameterization of the densities closely follows Bernardo
and Smith (1994).

Notation

Y denotes a univariate random variable; y refers to a realization of Y . f(y)
refers to the density of the probability distribution of Y with respect to an
appropriate measure (Lebesgue measure or counting measure, depending on
the context). E(Y ) denotes the expectation of Y , whereas Var(Y ) denotes the
variance of Y . For multivariate random variables Y and y are used, whereas
Yj and yj refer to a certain element of Y and y, respectively. E(Y) denotes
the mean vector; Var(Y ) denotes the variance–covariance matrix of Y.

A.1.1 The Beta Distribution

The Beta distribution Y ∼ B (α, β) with α, β ∈ �+, is a univariate distribution
defined on the unit interval y ∈ [0, 1]. For mixture models the Beta distribution
appears mainly as a posterior distribution of an unknown probability. Density,
mean, and variance are given by

fB(y; α, β) =
1

B(α, β)
yα−1(1 − y)β−1, (A.1)

E(Y ) =
α

α + β
, Var(Y ) =

αβ

(α + β)2(α + β + 1)
,

where B(α, β) is the Beta function:



432 A Appendix

B(α, β) =
Γ (α)Γ (β)
Γ (α + β)

. (A.2)

For a proper density both α and β need to be positive. If 0 < α < 1, the
density is unbounded at 0; if 0 < β < 1, the density is unbounded at 1. If
α = 1 and β = 1, the density is equal to the density of a uniform distribution.
If α = 1 and β > 1, the mode of the density lies at 0; if α > 1 and β = 1, the
mode of the density lies at 1. For α, β > 1 the mode of the density lies in the
interior of [0, 1] at (α − 1)/(α + β − 2).

A.1.2 The Binomial Distribution

The binomial distribution, Y ∼ BiNom (n, p), with n = 1, 2, . . . and p ∈ [0, 1],
is frequently chosen to model the outcome of repeated measurements. The
density is defined for y ∈ {0, 1, 2, . . . , n},

fBN (y; n, p) =
(

n
y

)
py(1 − p)n−y, (A.3)

and mean and variance are given by

E(Y ) = np, Var(Y ) = np(1 − p). (A.4)

A.1.3 The Dirichlet Distribution

The Dirichlet distribution, Y ∼ D (α1, . . . , αK), is a standard choice in
the context of modeling an unknown discrete probability distribution Y =
(Y1, . . . , YK) where

∑K
j=1 Yj = 1 and therefore is of great importance for mix-

ture and switching models. The Dirichlet distribution is a distribution on the
unit simplex EK ⊂ (�+)K , defined by the following constraint,

EK =

⎧⎨⎩y = (y1, . . . , yK) ∈ (�+)K :
K∑

j=1

yj = 1

⎫⎬⎭ .

The density is given by

fD(y; α1, . . . , αK) = yα1−1
1 · · · yαK−1

K c, c =
Γ (Σα)∏K
i=1 Γ (αi)

, (A.5)

where Σα =
∑K

j=1 αj . As each yj is completely determined given the remain-
ing elements of y, one element yj has to be substituted in (A.5) by 1−

∑
k �=j yk

to obtain a proper density. The density is proper if all αj are positive; the
density is bounded if all αj are greater than or equal to 1. The density of a
D (α1, . . . , αK)-distribution is improper whenever any αj is equal to 0.

For α1 = · · · = αK = 1 the uniform distribution over the unit simplex
results. For K = 2 the Dirichlet distribution is equal to Y1 ∼ B (α1, α2).
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The marginal distribution of Yj is a B (αj , Σα − αj)-distribution, therefore
mean and variance of Yj are given by

E(Yj) =
αj

Σα
, Var(Yj) =

αj(Σα − αj)
Σ2

α(Σα + 1)
. (A.6)

The mode of the marginal density of Yj is given by (αj − 1)/(Σα − K).
The easiest way to sample a random variable Y = (Y1, . . . , YK) from the

D (α1, . . . , αK)-distribution is to sample K independent random variables Y �
1 ,

. . . , Y �
K from the following Gamma distributions, Y �

j ∼ G (αj , 1), j = 1, . . . , K,
and to normalize: Yj = Y �

j /
∑K

k=1 Y �
k .

A.1.4 The Exponential Distribution

The exponential distribution, Y ∼ E (β) with β > 0, is a univariate distribu-
tion defined on the positive real line y ≥ 0 and is mainly used as a sampling
distribution in the context of finite mixture models. There exist different ways
to parameterize this distribution and we follow Bernardo and Smith (1994),
by defining the density as

fE(y; β) = βe−βy. (A.7)

Mean and variance are given by

E(Y ) = Var(Y ) = 1/β. (A.8)

In this parameterization, the exponential distribution is equal to the G (1, β)-
distribution.

A.1.5 The F-Distribution

The F-distribution, Y ∼ F (α1, α2), is a univariate distribution defined on the
positive real line y ≥ 0. For finite mixture models based on the normal distri-
bution, it appears as part of modeling the prior of heterogeneous variances.
For α1 > 0, α2 > 0 the density is given by

fF (y; α1, α2) =
Γ ((α1 + α2)/2)α1

Γ (α1/2)Γ (α2/2)α2

(
α1

α2
y

)α1/2−1(
1 +

α1

α2
y

)−(α1+α2)/2

.(A.9)

For y → ∞, the density behaves as y−α2/2−1, whereas for y → 0, the density
behaves as yα1/2−1. The density is an improper density, whenever α1 or α2
are 0. If α1 > 0 and α2 > 0, the density is proper, but unbounded at y = 0
for 0 < α1 < 2.
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Relation to the χ2-Distribution

Assume that Y1 and Y2 are independent random variables, each following a
χ2-distribution: Y1 ∼ χ2

α1
and Y2 ∼ χ2

α2
. Then

Y =
Y1/α1

Y2/α2
∼ F (α1, α2) . (A.10)

A.1.6 The Gamma Distribution

The Gamma distribution, Y ∼ G (α, β), is a univariate distribution defined
on the positive real line y ≥ 0. It is encountered in finite mixture models as
a posterior density within a Bayesian analysis for certain nonnormal models,
in particular for observations from the Poisson and the exponential distribu-
tion. There exist various ways to parameterize this distribution and we follow
Bernardo and Smith (1994), where the density is given by

fG(y; α, β) =
βα

Γ (α)
yα−1e−βy. (A.11)

The density is an improper density whenever β = 0. If β > 0, the density is
proper, but unbounded at y = 0 for 0 < α < 1. For α > 0, β > 0, mean and
variance are given by

E(Y ) =
α

β
, Var(Y ) =

α

β2 . (A.12)

The mode is given by (α − 1)/β. If Y ∼ G (α, β), then ωY ∼ G (α, β/ω).

The χ2-Distribution

The G (ν/2, 1/2)-distribution with ν = 1, 2, . . . is called the χ2
ν-distribution,

which is the distribution of the sum of squares of ν independent standard
normal random variables, Y =

∑ν
j=1 Y 2

j , Yj ∼ N (0, 1). Therefore E(Y ) = ν,
Var(Y ) = 2ν.

Inverted Gamma Distribution

A random variable Y follows an inverted Gamma distribution, Y ∼ G−1 (α, β),
if Y −1 has a Gamma distribution: Y −1 ∼ G (α, β). The inverted Gamma dis-
tribution often appears as a posterior distribution of an unknown variance
within a Bayesian analysis of finite mixture models based on the normal dis-
tribution. The density is given by

fIG(y; α, β) =
βα

Γ (α)

(
1
y

)α+1

e−β/y. (A.13)
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Y has finite expectation, iff α > 1, and finite variance, iff α > 2:

E(Y ) =
β

α − 1
, Var(Y ) =

β2

(α − 1)2(α − 2)
. (A.14)

The mode is given by β/(α + 1). G−1 (0, 0) has an improper density propor-
tional to 1/y. If Y ∼ G−1 (α, β), then ωY ∼ G−1 (α, ωβ).

A.1.7 The Geometric Distribution

The geometric distribution is defined for y ∈ {1, 2, . . .}. Density, mean and
variance are given by

f(y; p) = p(1 − p)y−1, (A.15)

E(Y ) =
1
p
, Var(Y ) =

1 − p

p2 .

A.1.8 The Multinomial Distribution

Let Y be a categorical random variable with D categories coded as 1 to D.
Y ∼ MulNom (n, p1, . . . , pD), iff for all y = (y1, . . . , yD), where

∑D
j=1 yj = n

and yj ≥ 0,

Pr(Y = y) = fMN (y; n, p1, . . . , pD) =
(

n
y1 . . . yD

)
py1
1 . . . pyD

D , (A.16)

with the general binomial coefficient being defined as:(
n

y1 . . . yD

)
=

n!
y1! . . . yD!

The mean and variance of Yj are given by

E(Yj) = npj , Var(Yj) = npj(1 − pj). (A.17)

The binomial distribution is that special case of the multinomial distribution
where D = 2.

A.1.9 The Negative Binomial Distribution

The negative binomial distribution is defined for y ∈ {0, 1, 2, . . .}: Y ∼
NegBin (α, β). For α > 0, β > 0 density, mean, and variance of Y are given by

fNB(y; α, β) =
(

α + y − 1
α − 1

) (
β

β + 1

)α (
1

β + 1

)y

,

E(Y ) =
α

β
, Var(Y ) =

α

β2 (β + 1). (A.18)

The NegBin (α, β)-distribution is an infinite mixture of P (µ)-distributions,
where µ ∼ G (α, β):

fNB(y; α, β) =
∫

fP (y; µ)fG(µ;α, β)dµ.
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A.1.10 The Normal Distribution

The normal distribution is the most important density in finite mixture mod-
eling, both as a common choice as sampling density as well as posterior density
in a Bayesian analysis of such models.

The Univariate Normal Distribution

The univariate normal distribution, Y ∼ N
(
µ, σ2

)
, with µ ∈ � and σ > 0, is

defined on �. Density, mean, and variance of Y are given by

fN (y; µ, σ2) =
1√

2πσ2
e−(y−µ)2/(2σ2),

E(Y ) = µ, Var(Y ) = σ2. (A.19)

1/σ2 is often called precision. A normal distribution with zero mean and zero
precision has an improper density proportional to a constant. Higher-order
moments E((Y − µ)m) are zero for m odd, otherwise:

E((Y − µ)m) = σ2m

m/2∏
n=1

(2n − 1). (A.20)

The Multivariate Normal Distribution

The multivariate normal distribution, Y ∼ Nd (µ,Σ), where µ ∈ �d and
Σ ∈ �d×d is a symmetric, positive definite matrix, is defined for y ∈ �d.
Density, mean, and covariance matrix of Y are given by

fN (y; µ,Σ) = (2π)−d/2|Σ|−1/2exp
(
− 1

2 (y − µ)
′
Σ−1(y − µ)

)
,

E(Y ) = µ, Var(Y) = Σ. (A.21)

Σ−1 is the information matrix. A normal distribution with µ = 0 and Σ−1 =
O has an improper density proportional to a constant.

To sample from a multivariate normal distribution the following result is
useful. Let Z = (Z1 . . . Zd)

′
be d independent copies of an N (0, 1)-distribution

and let Σ = AA
′
be the Cholesky decomposition of Σ. Then Y = µ + AZ ∼

Nd (µ,Σ).

Marginal and Conditional Distributions

The quadratic form (Y−µ)
′
Σ−1(Y−µ) ∼ χ2

d. Assume that Y is divided into
two blocks, Y1 containing the first d1 components of Y, and Y2 containing
the remaining d2 = d − d1 components. Apply a similar partition on µ and
Σ:
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µ =
(

µ1
µ2

)
, Σ =

(
Σ11 Σ12
Σ21 Σ22

)
.

Then, marginally, Y2 ∼ Nd2 (µ2,Σ22) and the conditional distribution of
Y1|Y2 is Nd1

(
µ1|2,Σ11|2

)
, where

µ1|2 = µ1 + Σ12Σ−1
22 (Y2 − µ2),

Σ11|2 = Σ11 − Σ12Σ−1
22 Σ

′
12.

The Normal Gamma Distribution

A pair (Y1, Y2) of random variables Y1 and Y2 with Y1|Y2 ∼ Nd (µ, Y2Σ) and
1/Y2 ∼ G (ν/2, ν/2) follows the so-called normal Gamma distribution. The
marginal distribution of Y1 is the d-variate tν (µ,Σ)-distribution, whereas
the marginal distribution of Y2 is G−1 (ν/2, ν/2).

A.1.11 The Poisson Distribution

The Poisson distribution, Y ∼ P (µ) with µ > 0, is defined for y ∈ {0, 1, 2, . . .}
making it a standard distribution to model a random count variable. Density,
mean, and variance are given by

fP (y; µ) =
µy

y!
e−µ, (A.22)

E(Y ) = Var(Y ) = µ.

A.1.12 The Student-t Distribution

The Student-t distribution is useful as a sampling distribution for robust mod-
eling.

The Univariate Student-t Distribution

The univariate Student-t distribution, Y ∼ tν
(
µ, σ2

)
with µ ∈ �, σ > 0, and

ν > 0, is defined for y ∈ �. The density is given by

ftν
(y; µ, σ2) =

Γ ((ν + 1)/2)
Γ (ν/2)

√
νπσ2

(
1 +

(y − µ)2

νσ2

)−(ν+1)/2

.

If ν > 1, then E(Y ) = µ; if ν > 2, then

Var(Y ) = σ2 ν

ν − 2
.

The univariate tν
(
µ, σ2

)
-distribution is an infinite mixture of N

(
µ, σ2/ω

)
-

distributions, where ω ∼ G (ν/2, ν/2):

ftν (y; µ, σ2) =
∫

fN (y; µ, σ2/ω)fG(ω; ν/2, ν/2)dω.
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The Multivariate Student-t Distribution

The multivariate Student-t distribution, Y ∼ tν (µ,Σ), where µ ∈ �d and
Σ ∈ �d×d is a symmetric, positive definite matrix, is defined for y ∈ �d. The
density is given by

ftν
(y; µ,Σ) = (A.23)

Γ ((ν + d)/2)
Γ (ν/2)

(νπ)−d/2|Σ|−1/2
(

1 +
1
ν

(y − µ)
′
Σ−1(y − µ)

)−(ν+d)/2

.

If ν > 1, then E(Y) = µ; if ν > 2, then

Var(Y) =
ν

ν − 2
Σ.

The multivariate tν (µ,Σ)-distribution is an infinite mixture of Nd (µ,Σ/ω)-
distributions, where ω ∼ G (ν/2, ν/2):

ftν (y; µ,Σ) =
∫

fN (y; µ,Σ/ω)fG(ω; ν/2, ν/2)dω.

A.1.13 The Uniform Distribution

The uniform distribution, Y ∼ U [0, 1], is defined over the unit interval y ∈
[0, 1]. Density, mean, and variance are given by

fU (y) = 1, E(Y ) = 1/2, Var(Y ) = 1/12. (A.24)

A.1.14 The Wishart Distribution

The Wishart distribution, Y ∼ Wd (α,S), with S being a (d × d) symmetric,
nonsingular matrix (|S| > 0), is a standard distribution law used for a random
(d× d) symmetric, positive-definite matrix Y. Many parameterizations are in
use for this density; the following one, introduced by Bernardo and Smith
(1994), is used in this book, because in this parameterization the W1 (α, S)
distribution reduces the G (α, S) distribution.

For α > (d−1)/2 the density of the d(d+1)/2-dimensional random vector
of distinct elements of Y is given by

fW (Y; α,S) =
|S|α

Γd(α)
|Y|α−(d+1)/2 exp{−tr (SY)}, (A.25)

where

Γd(α) = πd(d−1)/4
d∏

j=1

Γ

(
2α + 1 − j

2

)
(A.26)
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is the generalized Gamma function. The mean of Y is given by

E(Y) = αS−1;

the mode reads:

(α − d + 1
2

)S−1.

The variance of the elements Yij of Y is equal to

Var(Yij) = α
(
(S−1

ij )2 + S−1
ii S−1

jj

)
,

where Sij is the (i, j)th element of S. If Y ∼ Wd (α,S) and A is an (m × d)
matrix with m ≤ d, then

AYA
′ ∼ Wm

(
α, (AS−1A

′
)−1

)
,

provided that the scale matrix exists.

Inverted Wishart Distribution

A random (d × d) symmetric, positive-definite matrix Y follows an inverted
Wishart distribution, Y ∼ W−1

d (α,S), if Y−1 ∼ Wd (α,S). In the parame-
terization used for the Wishart density in (A.25), the W−1

1 (α, S) distribution
reduces to the G−1 (α, S) distribution. The density of the inverted Wishart
distribution is given by

fIW (Y; α,S) =
|S|α

Γd(α)
|Y−1|α+(d+1)/2 exp{−tr

(
SY−1)}, (A.27)

with Γd(α) being the same as in (A.26). Y has finite expectation, iff α >
(d + 1)/2:

E(Y) = S/(α − (d + 1)/2);

the mode is given by

S/(α + (d + 1)/2).

A.2 Software

A toolbox of MATLAB version 6 scripts and functions has been written by the
author with the purpose of carrying out practical statistical modeling based
on finite mixture and Markov switching models. The package is available at
http://www.ifas.jku.at/personal/fruehwirth/fruehwirthspringer06.

You will need a valid MATLAB license including the STATISTICS toolbox
to run functions from this package. The MATLAB software is available from
MathWorks, Inc. (http://www.mathworks.com/).
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χ2-distribution, 434

Adaptive radial-based direction
sampling, 188

AIC, 116–117
choosing number of clusters, 218
choosing number of components, 117,

238
Markov switching model, 346
mixture GLM, 294
normal mixtures, 200
Poisson mixtures, 285
state space model, 422
switching ARCH model, 382

Akaike’s criterion, see AIC
AR model, 358, 360, 374, 424

finite mixture, 361
random coefficient, 377
self-exciting threshold, 361
smooth transition, 385
switching, see Markov Switching

autoregressive model
threshold, 357, 361

ARCH model, 374, 377, 378, 398
finite mixture, 379
switching, see Switching ARCH

model
ARIMA model, 390
ARMA model, 311, 363

observed with noise, 399
state space representation, 396–397
switching, see Switching ARMA

model
Auxiliary mixture sampling, 238, 422

Basic Markov switching model, see
Markov switching model

Basic structural model, 397, 401

Bayes p-value, 113

Bayes factor, 119–122, 143, 255, 387

asymptotic behavior, 120–121

sensitivity to prior, 122, 123, 142

Bayes’ classifier, see Classification

Bayes’ rule, 26, 28, 32, 118

Bayes’ theorem, 32

Bayesian clustering, 65, 68, 220–224

loss function

0/1, 220

misclassification, 221

similarity matrix, 223, 224

Bayesian estimation of finite mixtures

choosing the prior, 58–63, 104

overfitting mixtures, 103–105

posterior density, see Mixture
posterior density

simulation study, 54–56

using posterior draws, 87–89

Bayesian estimation of Markov mixture

posterior density, see Markov mixture
posterior density

Bayesian interval estimation, 35

Bayesian model selection, 117, 120–121,
125

choosing priors, 122–123, 141

Bayesian point estimation, 34, 93

Beta distribution, 431, 432

Beta function, 431

Beta-binomial model, 287, 288
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Between-group heterogeneity, 170, 203,
211

BIC, 116–117
choosing number of clusters, 212, 215,

218, 220
choosing number of components, 117,

238
Markov switching model, 346
mixture GLM, 294
normal mixtures, 200
Poisson mixtures, 285
random-effects models, 269
relation to Bayes factor, 120
relation to Schwarz’s criterion, 116
state space model, 422
switching ARCH model, 382

Binary data
auxiliary mixture sampling, 239
finite mixture modeling, 286–288,

294–297
mixture regression model, 292–293
time series, 315

Binomial
distribution, 432, 435
finite mixtures, 286–288, 296

Bayesian estimation, 288
identifiability, 21, 23, 286
MCMC, 288
overdispersion, 288
reversible jump MCMC, 288

Markov mixtures, 315
Birth and death MCMC, 137–139

Markov switching model, 348
mixture regression model, 255
mixtures of GLMs, 294
Student t mixtures, 233

Breakpoint, see Structural break
Bridge sampling, 150–151

MSE, 152
Burn-in, 69
Business cycle analysis, 359, 365–369,

385, 386, 401

Candidate’s formula, 159
Categorical data

auxiliary mixture sampling, 239
finite mixture modeling, 288–289,

293, 297–298
Characteristic function, 22

Chi-squared distribution, see χ2-
distribution

Chib’s estimator, 160–164
finite mixtures, 161–164

Choosing the number of clusters,
210–216

AIC, 220
BIC, 212, 215, 218, 220
Calinski–Harabasz statistic, 211
classification likelihood criterion, 213
classification-based criteria, 213–215
CLC, 213
distortion curve, 212
gap statistic, 211
ICL, 213–215
integrated classification likelihood

criterion, 213–215
Krzanowski–Lai statistic, 211
marginal likelihood, 212, 217, 219
overlapping clusters, 215
well-separated clusters, 215

Classification
Bayes’ rule, 26–29, 236, 237
Bayesian MAP, 210
combining classified and unclassified

data, 236
discriminant analysis, 235–236
näıve Bayes’ classifier, 27
supervised, 235
unsupervised, see Model-based

clustering
within MCMC, 76
without parameter estimation, 68–70

multivariate normal mixtures, 195
normal mixtures, 181
Poisson mixtures, 70

Classification likelihood approach, see
Model-based clustering

CLC, see Choosing the number of
clusters

Clustering, 68, 203
Bayesian, see Bayesian clustering
criteria, 203–204, 207–211
finite mixtures, 6, 204–206
for model identification, 96–97
model-based, see Model-based

clustering
of the point process representation,

97
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Coefficient of determination, 170, 204
Complete-data Bayesian estimation,

31–41, 74
of the weights, 35–41
posterior density, 32

Complete-data ML estimation, 30–31
normal mixtures, 30, 31
Poisson mixtures, 31

Count data
auxiliary mixture sampling, 239
mixture regression model, 290–292
overdispersion, see Overdispersion
time series, 315, 348–356

Covariance selection, see Finite
mixture of multivariate normal
distributions

Credibility interval, 35

Data
Darwin’s Data, 225–227
Eye Tracking Data, 280, 283–285
Fisher’s Iris Data, 195, 218–220,

224
Fishery Data, 1, 2, 5, 109, 188–190,

216–218
GDP Data, 358, 365–369
Lamb Data, 348, 351–356
Marketing Data, 270–273
New York Stock Exchange

Data, 375, 382–383
U.S./U.K. Real Exchange Rate

Data, 423–430
Data augmentation

finite mixture, 76
Density estimation

bandwith selection, 238
kernel methods, 237
using finite mixture, 237

Diagnosing finite mixtures
Bayes p-value, 113
method of moments, 110–112
predictive methods, 112–114
residual diagnostics, 114

Diagnosing Markov switching models,
346

Dickey–Fuller regression, 364
Dirichlet distribution, 432, 433
Dirichlet process prior, 14
Dirichlet-multinomial distribution, 289

Discrete-valued time series, 315
Disease mapping, 291
Distance-based estimation, 54, 94, 112,

117, 123, 229
Bayesian approach, 54, 94, 123, 255
Hellinger distance, 54
Kullback–Leibler, 54, 94, 255

Dynamic factor model
switching, 400, 416
variable selection, 422

Eigenvalue decomposition, 198–199,
234, 236

Elevation plot, 6
EM algorithm

classificaton, 205
finite mixture, 49–53

multivariate normal, 172
normal, 52, 172
overfitting, 172
Poisson, 51

Markov switching model, 333
model-based clustering, 205
standarad errors, 53
stochastic, 205

Empty components
Bayesian estimation, 38–41, 141
ML estimation, 38

Entropy, 28, 29, 213
Excess kurtosis, 377

finite mixtures, 11
Excess zeros, 282, 292
Exponential

distribution, 433
finite mixtures, 4, 6, 277–279

applications, 277
Bayesian estimation, 278–279
definition, 4, 277
EM algorithm, 277
identifiability, 22
MCMC, 278
method of moments, 277
partially proper prior, 278
prior, 278
reparametrization, 278
reversible jump MCMC, 278
unimodality, 6

Exponential family
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finite mixture of, see Finite mixture
distribution

Exposures, 290, 291
Extra-binomial variation, 287, 292

F-distribution, 433, 434
Filtering

general linear regression model,
402–404

Kalman filter, see Linear Gaussian
state space model

Kim’s algorithm, 409
Markov switching model, 320–324

infinite memory, 327
long memory, 326
numerical stabilization, 322

multiprocess model, 406
switching linear Gaussian state space

model, 406–410
Financial time series, 375, 378
Finite Markov mixture distribution, see

Markov mixture distribution
Finite Markov mixture model, see

Markov switching model
Finite mixture distribution, 3–11, 312

definition, 3–5
descriptive features, 5–8
general exponential family, 5, 120
identifiability, 14–23
moments, 10–11
multimodality, 6–8
point process representation, 10, 16,

18, 20, 87, 96, 105, 109
Finite mixture model, 12–13

including covariates, 13, 243
longitudinal data, see Random-effects

models
panel data, see Random-effects

models
random-effects, see Random-effects

models
repeated measurements, see Random-

effects models
Finite mixture of regression models,

241–275, 289–294
allocations known, 250–252, 257–258
Bayesian estimation, 252–255,

258–259
birth and death MCMC, 255

EM algorithm, 250
false convergence of Gibbs sampler,

253
high-dimensional parameters, 258
identifiability, 243–246, 256, 290, 292
label switching, 254
latent class regression model, 246,

263
marginal likelihood, 255
MCMC, 253–254, 258–259
method of moments, 249
mixed effects, 256–259, 263, 264
ML estimation, 249–250
outliers, 249
prior distribution, 252, 256

hierarchical, 252, 253
unbounded likelihood, 250

Fisher information, 30, 31, 35, 52
Forward-filtering-backward-sampling

Markov switching model, 342
state space model, 419

Forward-filtering-backward-smoothing,
324, 325

Frailty, see Unobserved heterogeneity

Gamma distribution, 434, 435
inverted, see Inverted Gamma

distribution
GARCH model, 377, 379

structural break, 380
General linear regression model, 402
Generalized Gamma function, 439
Generalized linear model, 289

finite mixture, 289–294
AIC, 294
application, 290
Bayesian estimation, 294
BIC, 294
birth and death MCMC, 294
EM algorithm, 293
random effects, 299
reversible jump, 294, 299

Geometric distribution, 435
state duration, 308

Gibbs sampling, 69–71, 74
finite mixture models, 76–77, 81–83

hierarchical prior, 77
improper priors, 78, 182–185
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linear Gaussian state space model,
416

Markov switching model, 338–345
mixture regression models, 253–254,

258
multivariate normal mixtures,

193–194
non-Gaussian state space model, 423
normal mixtures, 180–185
Poisson mixture, 75
random-effects model, 267–269
single move marginal sampling of the

allocations, 69–71, 73
Student-t mixtures, 231

Hellinger distance, 54
Heterogeneity

unobserved, see Unobserved
heterogeneity

Heterogeneity model, see Random-
effects model

Hidden indicator, 1, 12
Hidden Markov chain

ergodic, 314
inhomogeneous, 318
initial distribution, 318
nonergodic, 316
nonstationary, 318
reducible, 318
sampling, 1, 342–345

Hidden Markov chain model, 301, 303,
310, 314, 320, 333

Hidden Markov random field model, 14
Hidden multinomial model, 12, 14
Hierarchical Bayes model, see Random-

effects model
Hit-and-run sampling, 188
Homogeneity

testing, 99, 115, 255
Hyperparameter, 61, 92, 185, 192, 193,

280, 335

ICL, see Choosing the number of
clusters

Identifiability
constraint, 19–21, 47–49, 95, 255

formal, 19–21, 47–49, 95
finite mixture distribution, 14–23
generic, 21–23

mixture regression model, 243–246
Identification, 94–98, 222, 255
Importance density, 145, 150
Importance sampling, 146–148, 296

allocations, 84
marginal likelihood, 146
reciprocal, 147–148
sequential, 188
state space models, 413

Individual parameter inference, 91
Information filter, 266, 403
Integrated classification likelihood

Poisson mixtures, 66
Intervention analysis, 396, 398, 400, 421
Invariance

component specific functionals, 64
Markov mixture posterior, 336
mixture posterior density, 63
posterior mean, 65
posterior of the allocations, 65, 67

Inverted Gamma distribution, 434
Inverted Wishart distribution, 439

Kalman filter, 402, 404, 411
derivation, 405

Kiefer–Wolfowitz example, 174–176
MCMC, 183–185

Kim’s algorithm, 409
Kullback–Leibler distance, 9, 54, 112,

117, 123
symmetrized, 9, 94, 255

Label switching, 84, 87, 89, 107, 221
finite mixture models, 78–83
mixture regression models, 254
unbalanced, 81

Labeling, 46–47
unique, 47–49, 80, 92–95, 222

Laplace approximation, 164, 165
Laplace regularity, 120
Laplace–Metropolis estimator, 165, 199,

212
Latent class model, 294–298

Bayesian estimation, 296, 297
identifiability, 296
linear logistic, 298
mixed-mode data, 298–299

Latent class regression model, 246,
263–264, 270



486 Index

Latent structure analysis, see Latent
class model

Level shift, 391, 398, 400, 416
Leverage effect, 377, 379, 382
Likelihood function

complete-data, 29–30
finite mixture model, see Mixture

likelihood function
Markov mixture model, see Markov

mixture likelihood function
penalized, 115

Likelihood ratio statistic, 114–115
modified, 115

Lindley’s paradox, 122
Linear Gaussian state space model,

391–393, 395
application, 393
filtering, 404–406
finite mixture, see Switching linear

Gaussian state space model
identification, 392, 397
local level model, see Local level

model
sampling state process, 418–420
switching, see Switching linear

Gaussian state space model
Local level model, 389–391, 414, 415

outlier, 390
Local linear trend model, see Trend
Logit regression model

finite mixture, 292–294
applications, 293
identifiability, 292

Longitudinal data
mixed-effects, see Random-effects

models
random-effects, see Random-effects

models
Loss function

clustering, 220–223
model selection, 121
parameter estimation, 93–94
state estimation, 345

Mahalanobis distance, 7–9, 232
Marginal likelihood, 118–119

Poisson distribution, 160
Marginal likelihood for finite mixture,

139–141, 165–167

bridge sampling, 150–159, 218
computation, 143
harmonic mean estimator, 148, 150,

154–159
hierarchical priors, 159
importance sampling, 154–159, 218
Laplace approximation, 164, 165
Laplace–Metropolis estimator, 165,

199, 212
Monte Carlo integration, 146
reciprocal importance sampling,

147–148, 154–159, 218
Markov chain, 302, 304–308

aperiodicity, 307
ergodicity, 305, 307
invariance property, 304
invariant distribution, 304–306
irreducibility, 305
nonergodic, 316
periodic, 307
persistence, 307, 308
reducible, 305

Markov chain Monte Carlo, 68, 74, 88
Gibbs sampling, see Gibbs sampling
Metropolis–Hastings algorithm, see

Metropolis–Hastings algorithm
reversible jump, see Reversible jump

MCMC
trans-dimensional, see Trans-

dimensional MCMC
Markov mixture distribution, 301–318

autocorrelation, 310–311
autocorrelation squared process,

311–312
excess kurtosis, 309
identifiability, 313–314
moments, 308–309
multimodality, 309
relation to ARMA, 311
skewness, 309

Markov mixture likelihood function,
330–333

computation, 331, 332
conditional, 332
multimodality, 333
unboundedness, 333
unconditional, 332

Markov mixture posterior density
hidden Markov chain, 336
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invariance, 336
marginal densities, 336
single state, 337

Markov switching autoregressive model,
358–369

application, 365
ARMA representation, 363
asymmetry, 361, 366
autocorrelation, 362
Bayesian estimation, 365
EM algorithm, 365
endogenous selection, 384
identification, 368
marginal likelihood, 366
ML estimation, 365
moments, 362
nonstationary time series, 363
order selection, 365
prior, 366

Markov switching conditional het-
eroscedasticity, 373–384, 398

Markov switching dynamic regression
model, 317, 371–372

Bayesian estimation, 371–372
mixed-effects, 371
prior, 372

Markov switching model, 314–315,
319–348

AIC, 346
Bayesian estimation, 334–346
BIC, 346
birth and death MCMC, 348
Chib’s estimator, 355
classification likelihood approach, 334
complete-data Bayesian estimation,

329
transition matrix, 329–330

complete-data likelihood function,
327–328

conditional heteroscedasticity, see
Markov switching conditional
heteroscedasticity

diagnostics, 346
EM algorithm, 333
forecasting, 374–375
identification, 354
label switching, 355
likelihood function, see Markov

mixture likelihood function

marginal likelihood, 347–348, 352
MCMC, 338–339
method of moments, 334
ML estimation, 333–334
multivariate time series, 386–388
nonstationary series, 363
panel data, 385–386
posterior, see Markov mixture

posterior density
predictive density, 372–374
prior, 335
reparameterization, 345
reversible jump MCMC, 348
state estimation, see State estimation

Markov switching regression model,
315–316

Markov switching trend model, 364
multivariate time series, 387

Method of moments, 42–43
for diagnosing mixtures, 110–112
Poisson mixtures, 43
simulation study, 54–56

Metropolis–Hastings algorithm, 72–73
binomial mixtures, 288
mixture regression models, 253
mixtures of GLMs, 294
sampling allocations, 72–73
sampling parameters in a finite

mixture model, 83–84
stationary hidden Markov chain, 341
Student t mixture, 233
switching ARCH model, 380

Misclassification rate, 27, 221–222, 346
Missing data problem, 54, 73, 236, 253,

294, 334, 337, 396
Mixed-effects model, see Random-effects

models
Mixed-mode data, 298
Mixture density, see Finite mixture

distribution
Mixture likelihood function, 43–49, 74,

333
definition, 43
maximization, 49
multimodality, 44–49
overfitting mixture, 100–103
potential overfitting, 105
relation to complete-data likelihood,

44
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surface plot, 45, 46, 48, 50, 102, 106,
107, 174, 175

Mixture posterior density
improper, 59–60
invariance, 63, 78–83
visualization, 85–87

Mixtures of distributions, see Finite
mixture distribution

Mixtures of factor analyzer models, 234
Mixtures of mixtures, 236
Mixtures of probabilistic component

analyzer, 234
Mixtures-of-experts models, 246, 274
ML estimation

EM algorithm, see EM algorithm
finite mixtures

asymptotic properties, 52, 100–101
gradient method, 49
Newton’s method, 49, 412
practical difficulties, 52–53
simulation study, 54–56
under model uncertainty, 100–103

Markov switching autoregressive
model, 365

Markov switching model, 333–334
mixture regression model, 249–250

Mode hunting
mixture posterior, 108–109
sample histogram, 109–110

Model checking, see Diagnosing
mixtures

Model selection, see Bayesian model
selection

Model-based clustering, 203–224
applications, 205, 234
Bayesian approach, 205–206, 210,

220–223
classification likelihood approach,

207–210
dimension reducing techniques,

233–235
EM algorithm, 205
high-dimensional data, 233–235
large data sets, 206
mixed-mode data, 298
mixtures of Student-t, 229, 230
nagging problems, 205
noise component, 229
outliers, 227

robustness, 227, 230
variable selection, 234

Modes of a mixture density, 6–8
Moment-generating function, 22, 42,

112, 249
Monte Carlo Integration, 143
MSAR model, see Markov switching

autoregressive model
Multimodality

finite mixture distribution, see Finite
mixture distribution

mixture likelihood, see Mixture
likelihood function

Multinomial
distribution, 435
mixtures, 288–289

applications, 289
Bayesian estimation, 289

Multiprocess model, 393, 394, 406
filtering, 406

Multivariate normal
distribution, 436
mixtures

AIC, 200
allocations known, 190
application, 195, 205, 236, 237
Bayesian parameter estimation,

173, 190–195
BIC, 200
classification, 181, 194, 195
conditionally conjugate prior, 192
constrained ML estimation, 173
definition, 4, 169
eigenvalue decomposition, 198, 234,

236
EM algorithm, 172
hierarchical prior, 193, 194, 200
homoscedastic, 197, 208, 236
identifiability, 23
isotropic, 197, 208, 234
marginal likelihoods, 199, 219
MCMC, 193–195, 197
method of moments, 172
ML estimation, 49, 172, 173
multimodality, 6–8
prior, 192–193, 200
reversible jump, 201, 202
spherical, 197, 209
unboundedness of likelihood, 173



Index 489

variance decomposition, 170
Multivariate time series

cointegration model, 387
dynamic factor model, see Dynamic

factor model
Markov switching cointegration

model, 387
Markov switching model, 386–388
Markov switching VAR model, 386
Markov switching VEC model, 387
Markov trend model, 387

Negative binomial
distribution, 435
mixture regression, 292
modeling count data, 281, 283

Newton’s method, 49, 52, 412
Nonidentifiability

invariance to relabeling, 15–16
of a finite mixture distribution, 15–19
potential overfitting, 17–19

Nonidentifiability set, 15–19, 80, 100,
101, 103–105, 107, 109

Nonparametric mixture modeling, 14
Nonregular likelihood, 38, 53
Nonstationary time series

local level model, 389
Markov switching models, 363
smoothing, 401

Normal
distribution, 436, 437
Gamma distribution, 437
Markov mixture, 303
mixtures

AIC, 200
allocations known, 177
application, 176, 188–190, 237
Bayesian parameter estimation,

173, 177–190
BIC, 200
complete-data ML estimation, 30,

31
conditionally conjugate prior, 179
constrained ML estimation, 173
definition, 4, 169
dependence prior, 185–187
EM algorithm, 172
excess kurtosis, 11
hierarchical prior, 185–186, 200

identifiability, 22
independence prior, 179
marginal likelihoods, 199, 217
Markov prior, 187
MCMC, 180–185
method of moments, 42, 172
ML estimation, 49, 172, 173
multimodality, 6–8
multivariate, see Multivariate

normal
prior, 179, 185–187, 200
prior variance ratio, 179
reversible jump, 200
skewness, 5, 11
unboundedness of likelihood, 173,

176
Normalizing constant, 34, 44, 59, 66,

140, 150, 159, 160, 321
Numerical stabilization, 322

Omitted regressors, 1, 3, 248, 261, 287,
292

Outliers, 224–230
Bayesian approach, 225–226

prior, 226
clustering, 227–230
finite mixture, 224–226
local level model, 390
location shift model, 225, 226
regression model, 249
time series, 398–400
variance inflation model, 225

Overdispersion, 280–282
Poisson mixtures, 281
Poisson mixture regression, 290
time series, 348

Overfitting
mixtures, 97, 100
potential, 105–107

Panel data
clustering, 234, 385
Markov switching model, 385–386
random-effects, see Random-effects

models
Particle filtering, 188, 345
Perfect sampling, 85
Permutation sampling

finite mixtures, 81–83
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Markov switching models, 340
Point process, 10, 137
Poisson

distribution, 435, 437
finite mixtures, 279–285

AIC, 285
application, 279, 280, 282–285, 291
Bayesian estimation, 280
BIC, 285
clustering, 70
complete-data Bayesian estimation,

33, 34
complete-data ML estimation, 31
data augmentation, 74–76
definition, 4, 279
excess zeros, 282–283
hierarchical prior, 76
identifiability, 23
inflated zeros, 282
marginal likelihoods, 283
MCMC, 74–76
method of moments, 43
prior distribution, 60, 61, 76, 280
reversible jump MCMC, 135–136,

285
Markov mixture, 315, 328

autocorrelation, 350, 351
marginal likelihoods, 352
MCMC, 337–338
overdispersion, 350, 351

Poisson regression model
excess zeros, 292
finite mixture, 290–292

application, 291
estimation, 294
identifiability, 290
overdispersion, 281, 290

inflated zeros, 292
Poisson–Gamma model, 281, 282
Posterior density ratio, 159–160
Posterior mean, 65, 93
Posterior mode, 94
Posterior predictive density, see

Predictive density
Predictive density

diagnosing mixtures, 112–114
estimation, 89
Markov switching model, 372
posterior, 89, 90

sampling from, 90, 374
Principal component analysis, 235
Prior

conditionally conjugate, 60, 66
hierarchical, 61–62
improper, 58–60
invariant, 62, 63
Jeffrey’s, 36, 62
natural conjugate, 33
objective, 58
partially proper, 61–62
reference prior, 62
subjective, 58

Probability distributions, 431–439
Probit regression model

finite mixture, 292–294
identifiability, 292

Product space MCMC, see Trans-
dimensional MCMC

Pseudo-prior, 127, 128

Random-effects models, 14, 259–275
Bayesian estimation, 265–269
BIC, 269
heterogeneity model, 264–265, 270
hierarchical Bayes, 262–263
marginal likelihood, 269, 271
MCMC, 267–269
misspecification, 260, 263, 299
mixed-effects, 270
nonnormal data, 299
pooling, 260
prior distribution, 265
random coefficient model, 261
reversible jump MCMC, 269
shrinkage, 260, 262
variance heterogeneity, 261, 268

Ratio-of-uniform method, 188
Relabeling, see Labeling
Reparameterization, 186, 278, 337, 345
Repeated measurements

clustering, 234
finite mixture modeling, see

Random-effects models
random-effects, see Random-effects

models
Residual heterogeneity, see Unobserved

heterogeneity
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Reversible jump MCMC, 129–137, 139,
165–167

binomial mixtures, 288
birth moves, 136–137
death moves, 136–137
exponential mixtures, 129, 278
finite mixture models, 129, 131–137
finite mixture of GLMs

with random effects, 299
Markov switching model, 129, 348
merge moves, 133–135
mixtures of GLMs, 294
multivariate normal mixtures, 201,

202
normal mixtures, 200
Poisson mixtures, 129, 135–136, 285
random-effects model, 269
split moves, 133–135

Ridgeline surface, 6

Sampling allocations
Gibbs sampling, see Gibbs sampling
importance sampling, see Importance

sampling
Metropolis–Hastings algorithm, see

Metropolis–Hastings algorithm
Savage–Dickey density ratio, 122
Schwarz criterion, see BIC
SETAR model, see AR model
Similarity matrix, 223, 224, 346
Similarity of mixture components, 9
Skewness, 5, 113, 377

finite mixtures, 11, 113
Smoothing

Markov switching model, 324–326
infinite memory, 327
long memory, 326

Software, 439
Spurious modes, 173, 176, 179, 183
Standard finite mixture model, see

Finite mixture model
State

duration, 361
estimation, 319–327

loss function, 345
without parameter estimation, 344

probabilities
filtered, 320–324, 326–327
predictive, 320

smoothed, 320, 324–327
State space model, 389–393

AIC, 422
auxiliary mixture sampling, 422
BIC, 422
complete-data Bayesian estimation,

414
EM algorithm, 412
filtering, 402
general form, 394
likelihood function, 411
linear Gaussian, see Linear Gaussian

state space model
Metropolis–Hastings algorithm, 418,

420
non-Gaussian

Gibbs sampling, 423
outlier, 398–400
regime switching, see Switching state

space model
robust, 399
Student-t errors, 399

Stochastic volatility model, 377, 423
Structural break, 316, 318, 363, 380,

398
regression model, 246–247

Student-t
distribution, 437

multivariate, 438
mixtures, 229–233

Bayesian parameter estimation,
230–233

EM algorithm, 230
known degrees of freedom, 231
marginal likelihood, 233
MCMC, 231–233
Metropolis–Hastings, 233
prior degrees of freedom, 232
robustness, 231

Switching ARCH model, 326, 378–383
AIC, 382
Bayesian estimation, 380
BIC, 382
leverage, 377, 379, 382
marginal likelihood, 382
MCMC, 380
Metropolis–Hastings algorithm, 380
ML estimation, 380
second-order stationarity, 379
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Switching ARMA model, 327, 396
Switching dynamic factor model, see

Dynamic factor model
Switching GARCH model, 327, 383–384

applications, 384
stationarity, 383

Switching linear Gaussian state space
model, 393–394

application, 423–430
filtering, 406–410
identification, 428
marginal likelihood, 422, 427
random permutation sampler, 427

Switching regression model, 246, 315
Switching state space model, 389–430

Bayesian estimation, 412–421
EM algorithm, 412
likelihood function, 411
linear Gaussian, see Switching linear

Gaussian state space model
MCMC, 415–421
prior, 413
sampling

continuous states, 417–420
discrete states, 420–421

TAR model, see AR model
Testing homogeneity, see Homogeneity
Time-varying transition matrix, see

Transition matrix
Trans-dimensional MCMC, 118,

125–139
birth and death MCMC, see Birth

and Death MCMC
product space MCMC, 126–129

Metropolis-Hasting, 129
reversible jump, see Reversible jump

MCMC
Transition matrix, 302, 394

eigenvalues, 304, 307
irreducible aperiodic chains, 304–308
posterior sampling, 340–341
prior, 335
time-varying, 318, 384–385, 401

Trapping states, 183
Trend

local linear trend model, 397, 398
Markov switching, 364
stochastic, 363

Uniform distribution, 438
finite mixtures

identifiability, 21
Unit root test

structural break, 363–364
Unit simplex, 4, 37, 41, 302, 432
Unobserved component time series

model, 397–398, 416
ARCH disturbances, 398
local level model, see Local level

model
Unobserved heterogeneity, 1–3, 281, 287

distribution of heterogeneity, 260,
262–264

occurrence probabilities, 287–288
omitted regressors, 1, 3, 248, 261,

287, 292
pooling across units, 260
unknown segments in the population,

1, 3, 248, 260

Variable selection, 234, 422
and clustering, 234

Variance decomposition, 170
Viterbi algorithm, 346
Volatility clustering, 377

Weight distribution
finite mixture, 4

choosing prior, 36–41
complete-data Bayesian estimation,

35–41
including covariates, 274–275
mixtures-of-experts, 274

Wishart distribution, 438, 439
inverted, see Inverted Wishart

distribution
Within-group heterogeneity, 170, 177,

203, 211
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