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Preface to the Second Edition

Since the first edition of this book appeared in 1996, white noise theory and
its applications have expanded to several areas. Important examples are

(i) White noise theory for fractional Brownian motion. See, e.g., Biagini
et al. (2008) and the references therein.

(ii) White noise theory as a tool for Hida–Malliavin calculus and anticipative
stochastic calculus, with applications to finance. See, e.g., Di Nunno
et al. (2009) and the references therein.

(iii) White noise theory for Lévy processes and Lévy random fields, with
applications to SPDEs.

The last area (iii) fits well into the scope of this book, and it is natural
to include an account of this interesting development in this second edition.
See the new Chapter 5. Moreover, we have added a remarkable, new result
of Lanconelli and Proske (2004), who use white noise theory to obtain a
striking general solution formula for stochastic differential equations. See the
new Section 3.7. In the new Chapter 5 we provide an introduction to the more
general theory of white noise based on Lévy processes and Lévy random fields,
and we apply this theory to the study SPDEs driven by this type of noise.
This is an active area of current research.

We show that the white noise machinery developed in the previous
chapters is robust enough to be adapted, after some basic modifications,
to the new type of noise. In particular, we obtain the corresponding Wick
product, generalized Skorohod integration and Hermite transform in the
Lévy case, and we get the same general solution procedure for SPDEs. The
method is illustrated by a study of the (stochastic) Poisson equation, the wave
equation and the heat equation involving space or space-time Lévy white
noise.

In this second edition we have also improved the presentation at some
points and corrected misprints. We are grateful to the readers for their posi-
tive responses and constructive remarks. In particular we would like to thank
(in alphabetical order) Atle Gyllensten, Jørgen Haug, Frank Proske, Mikael
Signahl, and Gjermund V̊age for many interesting and useful comments.

Trondheim Helge Holden
Oslo Bernt Øksendal
Bergen Jan Ubøe
Manchester Tusheng Zhang

January 2009
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Preface to the First Edition

This book is based on research that, to a large extent, started around 1990,
when a research project on fluid flow in stochastic reservoirs was initiated
by a group including some of us with the support of VISTA, a research
cooperation between the Norwegian Academy of Science and Letters and
Den norske stats oljeselskap A.S. (Statoil). The purpose of the project was
to use stochastic partial differential equations (SPDEs) to describe the flow
of fluid in a medium where some of the parameters, e.g., the permeability,
were stochastic or “noisy”. We soon realized that the theory of SPDEs at the
time was insufficient to handle such equations. Therefore it became our aim
to develop a new mathematically rigorous theory that satisfied the following
conditions.

1) The theory should be physically meaningful and realistic, and the corre-
sponding solutions should make sense physically and should be useful in
applications.

2) The theory should be general enough to handle many of the interesting
SPDEs that occur in reservoir theory and related areas.

3) The theory should be strong and efficient enough to allow us to solve
these SPDEs explicitly, or at least provide algorithms or approximations
for the solutions.

We gradually discovered that the theory that we had developed in an
effort to satisfy these three conditions also was applicable to a number of
SPDEs other than those related to fluid flow. Moreover, this theory led to a
new and useful way of looking at stochastic ordinary differential equations
as well. We therefore feel that this approach to SPDEs is of general interest
and deserves to be better known. This is our main motivation for writing
this book, which gives a detailed presentation of the theory, as well as its
application to ordinary and partial stochastic differential equations.

We emphasize that our presentation does not make any attempts to give
a comprehensive account of the theory of SPDEs in general. There are a
number of important contributions that we do not mention at all. We also
emphasize that our approach rests on the fundamental work by K. Itô on
stochastic calculus, T. Hida’s work on white noise analysis, and J. Walsh’s
early papers on SPDEs. Moreover, our work would not have been possible
without the inspiration and wisdom of our colleagues, and we are grateful to
them all.

In particular, we would like to thank Fred Espen Benth, Jon Gjerde,
H̊akon Gjessing, Harald Hanche-Olsen, Vagn Lundsgaard Hansen, Takeyuki
Hida, Yaozhong Hu, Yuri Kondratiev, Tom Lindstrøm, Paul-André Meyer,
Suleyman Üstünel and Gjermund V̊age for helpful discussions and comments.
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xii Preface to the First Edition

And, most of all, we want to express our gratitude to Jürgen Potthoff. He
helped us to get started, taught us patiently about the white noise calculus
and kept us going thanks to his continuous encouragement and inspiration.

Finally, we would like to thank Tove Christine Møller and Dina Haraldsson
for their excellent typing. Bernt Øksendal would like to thank the University
of Botswana for its hospitality during parts of this project. Helge Holden
acknowledges partial support from Norges forskningsr̊ad. We are all grateful
to VISTA for their generous support of this project.

April 1996 Helge Holden
Bernt Øksendal

Jan Ubøe
Tusheng Zhang

How to use this book

This book may be used as a source book for researchers in white noise theory
and SPDEs. It can also be used as a textbook for a graduate course or a
research seminar on these topics. Depending on the available time, a course
outline could, for instance, be as follows:

Sections 2.1–2.8, Section 3.1, Section 4.1, and a selection of Sec-
tions 4.2–4.8, Sections 5.1–5.7.
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Chapter 1

Introduction

1.1 Modeling by Stochastic Differential Equations

The modeling of systems by differential equations usually requires that the
parameters involved be completely known. Such models often originate from
problems in physics or economics where we have insufficient information on
parameter values. For example, the values can vary in time or space due to
unknown conditions of the surroundings or of the medium. In some cases
the parameter values may depend in a complicated way on the microscopic
properties of the medium. In addition, the parameter values may fluctuate
due to some external or internal “noise”, which is random – or at least appears
so to us.

A common way of dealing with this situation has been to replace the
true values of these parameters by some kind of average and hope that the
corresponding system will give a good approximation to the original one. This
approach is not always satisfactory, however, for several reasons.

First, even if we assume that we obtain a reasonable model by replacing
the true parameter values by their averages, we might still want to know
what effect the small fluctuations in the parameter values actually have on
the solution. For example, is there a “noise threshold”, such that if the size
of the noise in the system exceeds this value, then the averaged model is
unacceptable?

Second, it may be that the actual fluctuations of the parameter values
effect the solution in such a fundamental way that the averaged model is not
even near to a description of what is actually happening.

The following example may serve as an illustration of this.
Suppose that fluid is injected into a dry, porous (heterogeneous but

isotropic) rock at the injection rate f(t, x) (at time t and at the point
x ∈ R

3). Then the corresponding fluid flow in the rock may be described
mathematically as follows:

Let pt(x) and θ(t, x) denote the pressure and the saturation, respectively,
of the fluid at (t, x). Assume that either the point x is dry at time t, i.e.,

H. Holden et al., Stochastic Partial Differential Equations, 2nd ed., Universitext, 1
DOI 10.1007/978-0-387-89488-1 1, c© Springer Science+Business Media, LLC 2010



2 1 Introduction

θ(t, x) = 0, or we have complete saturation θ0(x) > 0 at time t. Define the
wet region at time t, Dt, by

Dt = {x; θ(t, x) = θ0(x)}. (1.1.1)

Then by combining Darcy’s law and the continuity equation (see
Chapter 4) we end up with the following moving boundary problem for the
unknowns pt(x) and Dt (when viscosity and density are set equal to 1):

div(k(x)∇pt(x)) = −ft(x);x ∈ Dt (1.1.2)
pt(x) = 0;x ∈ ∂Dt (1.1.3)

θ0(x) · d

dt
(∂Dt) = −k(x)NT (x)∇pt;x ∈ ∂Dt, (1.1.4)

where N(x) is the outer unit normal of ∂Dt at x.

(The divergence and gradients are taken with respect to x.)
We assume that the initial wet region D0 is known and that suppft ⊂ Dt

for all t. For the precise meaning of (1.1.4) and a weak interpretation of the
whole system, see Chapter 4. Here k(x) ≥ 0 is the permeability of the rock
at point x. This is defined as the constant of proportionality in Darcy’s law

qt(x) = −k(x)∇pt(x), (1.1.5)

where qt(x) is the (seepage) velocity of the fluid. Hence k(x) may be regarded
as a measure of how freely the fluid is flowing through the rock at point x. In
a typical porous rock, k(x) is fluctuating in an irregular, unpredictable way.
See for example, Figure 1.1, which shows an actual measurement of k(x) for
a cylindrical sample taken from the porous rock underneath the North Sea.

In view of the difficulty of solving (1.1.2)–(1.1.4) for such a permeability
function k(x), one may be tempted to replace k(x) by its x-average k̄
(constant) and solve this system instead. This, however, turns out to give

Fig. 1.1 Measurements of permeability in a porous rock. (A linear interpolation is used
on intervals where the values are missing). Courtesy of Statoil, Norway.



1.1 Modeling by Stochastic Differential Equations 3

a solution that does not describe what actually happens! For example, if we
let ft(x) = δ0(x) be a point source at the origin and choose D0 to be an open
unit ball centered at 0, then it is easy to see (by symmetry) that the system
(1.1.2)–(1.1.4) with k(x) ≡ k̄ will give the solution {Dt}t≥0 consisting of an
increasing family of open balls centered at 0. See Figure 1.2.

Such a solution is far from what actual experiments with fluid flow in
porous rocks show; see, for example, Figure 1.3.

In fact, it has been conjectured that ∂Dt is a fractal with Hausdorff
dimension 2.5 in R

3 and 1.7 for the corresponding 2-dimensional flow. In
the 2-dimensional case this conjecture is supported by physical experiments
(see Oxaal et al. (1987) and the references therein). Moreover, in both two
and three dimensions these conjectures are related to the corresponding con-
jectures for the (apparently) related fractals appearing in DLA processes
(see, e.g., Måløy et al. (1985)).

We conclude from the above that it is necessary to take into account the
fluctuations of k(x) in order to get a good mathematical description of the
flow. But how can we take these fluctuations into account when we do not
know exactly what they are?

We propose the following: The lack of information about k(x) makes it
natural to represent k(x) as a stochastic quantity. From a mathematical point
of view it is irrelevant if the uncertainty about k(x) (or some other parameter)
comes from “real” randomness (whatever that is) or just from our lack of
information about a non-random, but complicated, quantity.

If we accept this, then the right mathematical model for such situations
would be partial differential equations involving stochastic or “noisy” para-
meters – stochastic partial differential equations (SPDEs) for short.

In order to develop a theory – and constructive solution methods – for
SPDEs, it is natural to take as a starting point the well-developed and
highly successful theory and methods from stochastic ordinary differential
equations (SDEs). The extension from the 1-parameter case (SDEs) to the
multiparameter case (SPDEs) is in some respects straightforward, but in
other respects surprisingly difficult. We now explain this in more detail.

Source
Dt

Fig. 1.2 A constant permeability k(x) ≡ k̄ leads to solutions of the moving boundary
problem consisting of expanding balls centered at the injection hole.



4 1 Introduction

Fig. 1.3 A physical experiment showing the fractal nature of the wet region (dark area).
Courtesy of Knut Jørgen Måløy.

In SDE theory the fundamental concepts are the white noise Wt(ω)
(where t denotes time and ω some random element), the Itô integral∫ t

0
φ(s, ω)dBs(ω), or the Stratonovich integral

∫ t

0
f(s, ω) ◦ dBs, where

Bs = Bs(ω) denotes n-dimensional Brownian motion, s ≥ 0. There is a
canonical extension of 1-parameter white noise Wt(ω) to multiparameter
white noise Wx1,x2,...,xn

(ω). Similarly, the 1-parameter Itô and Stratonovich
integrals have canonical extensions to the multiparameter case, involving
multiparameter Brownian motion Bx1,x2,...,xn

(ω) (sometimes called the , see
Chapter 2). From that point of view the extension from SDE to SPDE
appears straightforward, at least in principle.

The following example, however, related to an example discussed by Walsh
(1986), shows that there are unexpected difficulties with such an extension.

Consider the following model for the temperature u(x) at point x in a
bounded domain D in R

d. When the temperature at the boundary ∂D of D
is kept equal to 0, and there is a random heat source in D modeled by white
noise W (x) = W (x1, x2, . . . , xn, ω), then

{
Δu(x) = −W (x); x = (x1, . . . , xn) ∈ D

u(x) = 0; x ∈ ∂D.
(1.1.6)

It is natural to guess that the solution must be

u(x) = u(x, ω) =
∫

D

G(x, y)dB(y), (1.1.7)

where G(x, y) is the classical Green function for D and the integral on the
right is the multiparameter Itô integral (see Chapter 2). The problem is that
for the (multiparameter) Itô integral in (1.1.7) to make sense, it is necessary
that G(x, ·) be square integrable in D with respect to the Lebesque measure.
But this only holds for d ≤ 3.

For d = 1, G(x, ·) has no singularity at all at x = y. For d = 2, the
singularity of G(x, y) at x = y is log 1/|x− y|, which belongs to Lp

loc(R
2) for

all p < ∞. In R
d for d ≥ 3, the singularity is |x − y|−d+2, and using polar
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coordinates we see that G(x, ·) ∈ Lp
loc(R

d) if and only if p < d/d− 2 for d ≥ 3.
It was shown in Walsh (1986) that for any d there exists a unique distribution
valued stochastic process u(x, ω) solving equation (1.1.6). More precisely,
there exists a Sobolev space H−n(Rd) and an H−n(Rd)-valued stochastic
process

u = u(ω) : Ω→ H−n(Rd) (with n ∈ N large enough)

such that (1.1.6) holds, in the sense of distributions, for almost all ω.
Therefore, for SPDEs one can no longer expect to have solutions represented
as ordinary (multiparameter) stochastic processes, unless the dimension is
sufficiently low.

This fact makes it necessary to reconsider the concept of a solution of an
SPDE in terms of some kind of generalized process. The Walsh construction,
albeit elegant, has the disadvantage that it leads to the problem of defining
the multiplication of (Sobolev or Schwartz) distributions when one considers
SPDEs where the noise appears multiplicatively. Also, it does not seem to
allow extension to types of noise other than white noise. To be able to model,
for example, our problem (1.1.2)–(1.1.4) as an SPDE, it will be necessary to
represent the permeability k(x) as a positive noise. Moreover, there the noise
appears multiplicatively.

Because of this difficulty we choose a different approach: Rather than
considering the distribution–valued stochastic processes

ω → u(·, ω) ∈ Hα(Rd); ω ∈ Ω,

we consider functions

x→ u(x, ·) ∈ (S)−1; x ∈ R
d,

where (S)−1 is a suitable space of stochastic distributions (called the
Kondratiev space). See Chapter 2.

This approach has several advantages:

(a) SPDEs can now be interpreted in the usual strong sense with respect
to t and x. There is no need for a weak distribution interpretation with
respect to time or space.

(b) The space (S)−1 is equipped with a multiplication, the Wick product
denoted by a �. This gives a natural interpretation of SPDEs where the
noise or other terms appear multiplicatively.

(c) The Wick product is already implicit in the Itô and the Skorohod-
integrals. The reason for this is the remarkable fact that if Y (t) = Y (t, ω)
is Skorohod-integrable, then

T∫

0

Y (t)δB(t) =

T∫

0

Y (t) �W (t)dt; T ≥ 0, (1.1.8)
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where the integral on the left is the Skorohod-integral and the integral
on the right is the Pettis integral in (S)−1. If Y (t, ω) is adapted, then the
Skorohod-integral coincides with the Itô integral, and (1.1.8) becomes

T∫

0

Y (t)dB(t) =

T∫

0

Y (t) �W (t)dt. (1.1.9)

(See Chapter 2.)
(d) When products are interpreted as Wick products, there is a powerful

solution technique via the Hermite transform (or the related S-transform)
(see Chapter 2).

(e) When applied to ordinary stochastic differential equations (where prod-
ucts are interpreted in the Wick sense), our approach gives the same
result as the classical one, when applicable. In fact, as demonstrated in
Chapter 3, our approach is often easier in this case. This is because of
the useful fact that Wick calculus with ordinary calculus rules, e.g.,

(u � v)′ = u′ � v + u � v′ (1.1.10)

is equivalent to Itô calculus governed by the Itô formula.
(f) It is irrelevant for our approach whether the quantities involved in an

SDE are anticipating or not, the Wick calculus is the same. There-
fore, this approach makes it possible to handle (Skorohod-interpreted)
SDEs where the coefficients or initial conditions are anticipating. See
Chapter 3.

We emphasize that although the Kondratiev space (S)−1 of stochastic
distributions may seem abstract, it does allow a relatively concrete inter-
pretation. Indeed, (S)−1 is analogous to the classical space S ′ of tempered
distributions, the difference being that the test function space for (S)−1 is a
space of “smooth” random variables (denoted by (S)1). Thus, if we interpret
the random element ω as a specific “experiment” or “realization” of our
system, then generic elements F ∈ (S)−1 do not have point values F (ω)
for each ω, but only average values 〈F, η〉 with respect to smooth random
variables η = η(ω). In other words, knowing the solution

x→ u(x, ·) ∈ (S)−1

of an SPDE does not tell us what the outcome of a specific realization ω
would be, but rather what the average over a set of realizations would be.
This seems to be appropriate for most applications, because (in most cases)
each specific singleton {ω} has zero probability anyway.

For example, if u = u(x, ·) ∈ (S)−1 is applied to the constant (random) test
function 1 ∈ (S)1, we get the generalized expectation of u(x, ·), 〈u(x, ·), 1〉 ∈ R.
This number may be regarded as the best ω-constant approximation to u(x, ·).
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This corresponds to the first term (zeroth order term) in the generalized
Wiener–Itô chaos expansion of u(x, ·) (Chapter 2). Similarly, the next term
(the first order term) of this expansion gives in a sense the best
Gaussian approximation to u(x, ·) and so on. This will be discussed in detail in
Chapter 2.

Finally we mention that for several specific applications it may be more
appropriate to consider the smoothed form of noise rather than the idealized,
singular noise usually applied. For example, for the idealized 1-parameter
white noise W (t) = W (t, ω) it is usually required that {W (t, ω)}t∈R is a
(generalized) stochastic process that is stationary, has mean zero, and satisfies
the requirement

t1 �= t2 ⇒W (t1, ·) and W (t2, ·) are independent. (1.1.11)

In most applications the specific form of noise we encounter does not satisfy
(1.1.11), because usually W (t1, ·) and W (t2, ·) are not independent if t1 and
t2 are close enough. In these cases it is natural to modify the noise to the
smoothed white noise

Wφ(t) := Wφ(t, ω) := 〈ω, φt〉 =
∫

φt(s)dBs(ω) (1.1.12)

(the Itô integral of φt with respect to 1-parameter Brownian motion Bt),
where φ is a suitable (deterministic) test function (e.g., φ ∈ S(R)), and φt is
the t-shift of φ defined by

φt(s) = φ(s− t) for s, t ∈ R. (1.1.13)

Then {Wφ(t)}t∈R will be an ordinary (not generalized) stochastic process.
It is stationary as {W (t)}, and the mean value of Wφ(t) is still zero, for all t.
However, we have independence of Wφ(t1) and Wφ(t2) (if and) only if the
condition suppφt1∩ suppφt2 = ∅ is satisfied.

Therefore, in specific applications it is natural to choose φ such that the
size of the support of φ gives the maximal distance within which Wφ(t1) and
Wφ(t2) are correlated. Thus φ will have a physical or modeling significance, in
addition to being a technical convenience, in that it replaces the singular
process {W (t)} by the ordinary process {Wφ(t)}.

In this case the solution u of the corresponding SDE will depend on φ also,
so we may consider the solution as a function

u(φ, t) : S(R)× R→ (S)−1.

Similarly, for the multiparameter equation the solution u of the
corresponding SPDE will be a function

u(φ, x) : S(Rd)× R
d → (S)−1.
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Such processes are called f unctional processes. We stress that from a
modeling point of view these processes are of interest in their own right, not
just as technically convenient “approximations”. In fact, there may be cases
where it is not even physically relevant to ask what happens if φ → δ0 (the
Dirac measure at 0). Nevertheless, such questions may be mathematically
interesting, both from the point of view of approximations and in connection
with numerical methods. We will not deal with these questions in depth in
this book, but give some examples in Chapter 3.

Finally, in Chapter 4 we apply the techniques developed in Chapter 2 to
stochastic partial differential equations. Our general strategy is the following:
Consider a stochastic partial differential equation where the stochastic ele-
ment may be a random variable in the equation or in the initial and boundary
data, or both. In general, the solution will be a (stochastic) distribution, and
we have to interpret possible products that occur in the equation, as one
cannot in general take the product of two distributions. In our approach,
products are considered to be Wick products. Subsequently, we take the
Hermite transform of the resulting equation and obtain an equation that
we try to solve, where the random variables have been replaced by complex–
valued functions of infinitely many complex variables. Finally, we use the
inverse Hermite transform to obtain a solution of the regularized, original
equation.

The equations we solve here are mostly equations where we obtain the
final solution on a closed form expressed as an expectation over a function of
an auxiliary Brownian motion. There are also methods for solving equations
where the solution cannot be obtained in a closed form, see, e.g., Benth (1996)
and V̊age (1995a).

Our first example is the stochastic Poisson equation

ΔU = −W

on a domain D in R
d with vanishing Dirichlet boundary data, where W is

singular white noise. First taking the Hermite transform (no Wick products
are required in this equation), we obtain the equation

ΔŨ = −W̃

on D with the same boundary condition, which leads to the solution
(Theorem 4.2.1)

U(x) =
∫

Rd

G(x, y)W (y)dy

in (S)∗ with G being the corresponding Green function of the deterministic
Poisson equation. If we instead first regularize white noise, i.e., replace
W by the smooth white noise Wψ for some test function ψ ∈ S(Rd), we
find, see equation (4.2.10), correspondingly the solution Uψ(x) =

∫
Rd G(x, y)

Wψ(y)dy ∈ Lp(μ) for all finite p. If ψ approaches Dirac’s delta-function,
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then the solution Uψ will converge to U in (S)∗. The stochastic Poisson
equation has been studied in Walsh (1986) using different techniques, and
his solution differs from ours in the sense that his solution takes x-averages
for almost all realizations ω, while our approach considers ω-averages for each
point x in space.

The next equation that is analyzed is the linear transport equation, Gjerde
(1996b),

∂U

∂t
=

1
2
σ2ΔU + V · ∇U + KU + g

with initial data given by U(x, 0) = f(x). Here all functions V , K, g, and f
are elements in (S)−1, and are assumed to satisfy regularity conditions, see
Theorem 4.3.1. We first insert Wick products, obtaining

∂U

∂t
=

1
2
σ2ΔU + V � ∇U + K � U + g

before we make the Hermite transform to yield (4.3.7). The resulting equation
can be solved, and we find the solution U in (S)−1 given by equation (4.3.5).
If we specialize to V = g = 0, we find the solution of the heat equation with
stochastic potential (Corollary 4.3.2).

Closely related to the previous equation is the stationary Schrödinger
equation with a stochastic potential, Holden et al., (1993b), Gjerde (1996b)

1
2
ΔU + V � U = −f

on a domain D in R
d and with vanishing Dirichlet data on the boundary

of D. We analyze the case where the potential V is the Wick exponential of
white noise, i.e.,

V (x) = ρ exp�[W (x)],

where ρ is a constant. The function f is assumed to be a stochastic distribu-
tion process. Under certain regularity conditions, we obtain the solution in
closed form; see Theorem 4.4.1 and equation (4.4.7). If we replace singular
white noise by regularized smoothed white noise, we obtain a solution that
is in L1(μ). This is the content of Theorem 4.4.2.

Our prime example of a nonlinear stochastic partial differential equation
is the celebrated viscous Burgers equation (Burgers (1940), (1974)), which
has been studied extensively. The key insight in all approaches to this equa-
tion is the Cole–Hopf transformation which effectively linearizes the Burgers
equation. This transformation turns the Burgers equation into the linear heat
equation. If we modify the Burgers equation by an additive (stochastic) source
term, the Cole–Hopf transformation yields the linear heat equation with a
multiplicative potential. We are able to solve this equation by the methods
described above, and what remains is to apply the Cole–Hopf transforma-
tion in our stochastic setting where the Wick product replaces the ordinary
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product. This turns out to be possible, and we obtain a solution in (S)−1 of
Burgers’ equation

∂U

∂t
+ λU � ∂U

∂x
= ν

∂2U

∂2x
+ F,

where we assume that the stochastic source F is a gradient, i.e.,
F = −∂N/∂x. The solution U is unique among solutions of the form
U = −∂Z/∂x. The analysis is easily generalized to a Burgers system of
equations (see Theorem 4.5.4), where the scalar U is replaced by a vector U
in R

d.
An important equation in the modeling of porous media is the stochastic

pressure equation given by

div(K(x) � ∇p(x)) = −f(x)

on a domain D in R
d and with vanishing Dirichlet data on the boundary of D.

An important case is the case where K is has a log-normal distribution.
A natural interpretation is then to consider

K(x) = exp�[W (x)]

or the smoothed version K(x) = exp[Wφ(x)]. For a source term f in (S)−1,
we obtain a solution in closed form; see Theorem 4.6.3 and Theorem 4.6.1
and equations (4.6.37) and (4.6.6), respectively. We also describe a method
for computing the actual solution based on approximations using the chaos
expansion. An alternative method based on finite differences is described
in Holden and Hu (1996). The 1-dimensional case is computed in detail
in Theorem 4.6.2.

One may combine the stochastic heat equation with the pressure equation
to obtain a heat equation in a stochastic, anisotropic medium, namely an
equation of the form

∂U

∂t
= div(K � ∇U) + g(x).

Here K is taken to be a positive noise matrix with components that are
the Wick exponentials of singular white noise. The initial data U(x, 0) is a
given element in (S)−1, and the solution is in the same space.

If we consider the more general class of quasilinear parabolic stochastic
differential equations given by

∂U

∂t
= L(t, x,∇U) + σ(x)U �W (t),

we obtain an equation with a solution in Lp(μ) when we assume a related
deterministic SDE has a unique solution; see Theorem 4.8.1.
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So far analysis has been exclusively with Gaussian white noise, start-
ing with the Bochner–Minlos theorem. One could, however, replace the
right-hand side of (2.1.3) by other positive definite functionals, thereby
obtaining a different measure. An important case is the case of Poisson noise.
Most of the analysis can be carried out in this case. A brief presentation of
this, based on Benth and Gjerde (1998a), is given in Section 4.9, culminating
in a solution of the viscous Burgers equation with the Gaussian noise replaced
by Poisson noise.

In the new Chapter 5 we do this in the more general setting of Lévy white
noise, based on the multiparameter Lévy process (Lévy random field). We
establish a white noise theory in this setting and we use it to solve stochastic
partial differential equations driven by such noise.



Chapter 2

Framework

In this chapter we develop the general framework to be used in this book.
The starting point for the discussion will be the standard white noise struc-
tures and how constructions of this kind can be given a rigorous treatment.
White noise analysis can be addressed in several different ways. The presen-
tation here is to a large extent influenced by ideas and methods used by the
authors. In particular, we emphasize the use of multidimensional structures,
i.e., the white noise we are about to consider will in general take on values
in a multidimensional space and will also be indexed by a multidimensional
parameter set.

2.1 White Noise

2.1.1 The 1-Dimensional, d-Parameter Smoothed
White Noise

Two fundamental concepts in stochastic analysis are white noise and
Brownian motion. The idea of white noise analysis, due to Hida (1980), is to
consider white noise rather than Brownian motion as the fundamental object.
Within this framework, Brownian motion will be expressed in terms of white
noise.

We start by recalling some of the basic definitions and properties of the
1-dimensional white noise probability space. In the following d will denote a
fixed positive integer, interpreted as either the time-, space- or time–space
dimension of the system we consider. More generally, we will call d the
parameter dimension. Let S(Rd) be the Schwartz space of rapidly decreasing
smooth (C∞) real-valued functions on R

d. A general reference for properties
of this space is Rudin (1973). S(Rd) is a Fréchet space under the family of
seminorms

‖f‖k,α := sup
x∈Rd

{(1 + |x|k)|∂αf(x)|}, (2.1.1)

H. Holden et al., Stochastic Partial Differential Equations, 2nd ed., Universitext, 13
DOI 10.1007/978-0-387-89488-1 2, c© Springer Science+Business Media, LLC 2010
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where k is a non-negative integer, α = (α1, . . . , αd) is a multi-index of
non-negative integers α1, . . . , αd and

∂αf =
∂|α|

∂xα1
1 · · · ∂xαd

d

f where |α| := α1 + · · ·+ αd. (2.1.2)

The dual S ′ = S ′(Rd) of S(Rd), equipped with the weak-star topology, is
the space of tempered distributions. This space is the one we will use as our
basic probability space. As events we will use the family B(S ′(Rd)) of Borel
subsets of S ′(Rd), and our probability measure is given by the following
result.

Theorem 2.1.1. (The Bochner–Minlos theorem) There exists a unique
probability measure μ1 on B(S ′(Rd)) with the following property:

E[ei〈·,φ〉] :=
∫

S′

ei〈ω,φ〉dμ1(ω) = e−
1
2‖φ‖2

(2.1.3)

for all φ ∈ S(Rd), where ‖φ‖2 = ‖φ‖2L2(Rd), 〈ω, φ〉 = ω(φ) is the action of
ω ∈ S ′(Rd) on φ ∈ S(Rd) and E = Eμ1 denotes the expectation with respect
to μ1.

See Appendix A for a proof. We will call the triplet (S ′(Rd),B(S ′(Rd)), μ1)
the 1-dimensional white noise probability space, and μ1 is called the white
noise measure.

The measure μ1 is also often called the (normalized) Gaussian measure on
S ′(Rd). The reason for this can be seen from the following result.

Lemma 2.1.2. Let ξ1, . . . , ξn be functions in S(Rd) that are orthonormal
in L2(Rd). Let λn be the normalized Gaussian measure on R

n, i.e.,

dλn(x) = (2π)−
n
2 e−

1
2 |x|

2
dx1 · · · dxn; x = (x1, . . . , xn) ∈ R

n. (2.1.4)

Then the random variable

ω → (〈ω, ξ1〉, 〈ω, ξ2〉, . . . , 〈ω, ξn〉) (2.1.5)

has distribution λn. Equivalently,

E[f(〈·, ξ1〉, . . . , 〈·, ξn〉)] =
∫

Rn

f(x)dλn(x) for all f ∈ L1(λn). (2.1.6)

Proof It suffices to prove this for f ∈ C∞
0 (Rn); the general case then follows

by taking the limit in L1(λn). If f ∈ C∞
0 (Rn), then f is the inverse Fourier

transform of its Fourier transform f̂ :
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f(x) = (2π)−
n
2

∫
f̂(y)ei(x,y)dy

where
f̂(y) = (2π)−

n
2

∫
f(x)e−i(x,y)dx,

where (x, y) denotes the usual inner product in R
d. Then (2.1.3) gives

E[f(〈·, ξ1〉, . . . , 〈·, ξn〉)] = (2π)−
n
2

∫

Rn

f̂(y)E[ei〈·,
∑

j yjξj〉]dy

= (2π)−
n
2

∫

Rn

f̂(y)e−
1
2 |y|

2
dy

= (2π)−n

∫

Rn

⎛

⎝
∫

Rn

f(x)e−i(x,y)dx

⎞

⎠ e−
1
2 |y|

2
dy

= (2π)−n

∫

Rn

f(x)

⎛

⎝
∫

Rn

e−i(x,y)− 1
2 |y|

2
dy

⎞

⎠ dx

= (2π)−
n
2

∫

Rn

f(x)e−
1
2 |x|

2
dx

=
∫

Rn

f(x)dλn(x),

where we have used the well-known formula

∫

R

eiαt−βt2dt =
(

π

β

) 1
2

e−
α2
4β . (2.1.7)

(See Exercise 2.4.) ��

For an alternative proof of Lemma 2.1.2, see Exercise 2.5.

Remark Note that (2.1.6) applies in particular to polynomials

(x1, . . . , xn) =
∑

|α|≤N

cαxα, N = 1, 2, . . . ,

where the sum is taken over all n-dimensional multi-indices α = (α1, . . . , αn)
and xα = xα1

1 xα2
2 · · · xαn

n . Let P denote the family of all functions
p : S ′(Rd)→ R of the form

p(ω) = f(〈ω, ξ1〉, . . . , 〈ω, ξn〉)
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for some polynomial f . We call such functions p stochastic polynomials.
Similarly, we let E denote the family of all linear combinations of functions
f : S ′(Rd)→ R of the form

f(ω) = exp[i〈ω, φ〉] where φ ∈ S(Rd).

Such functions are called stochastic exponentials. The following result is
useful.

Theorem 2.1.3. P and E are dense in Lp(μ1), for all p ∈ [1,∞).

Proof See Theorem 1.9, p. 7, in Hida et al. (1993). ��

Definition 2.1.4. The 1-dimensional (d-parameter) smoothed white noise
is the map

w : S(Rd)× S ′(Rd)→ R

given by
w(φ) = w(φ, ω) = 〈ω, φ〉; ω ∈ S ′(Rd), φ ∈ S(Rd). (2.1.8)

Remark In Section 2.3 we will define the singular white noise W (x, ω).
We may regard w(φ) as obtained by smoothing W (x, ω) by φ.

Using Lemma 2.1.2 it is not difficult to prove that if φ ∈ L2(Rd) and we
choose φn ∈ S(Rd) such that φn → φ in L2(Rd), then

〈ω, φ〉 := lim
n→∞

〈ω, φn〉 exists in L2(μ1) (2.1.9)

and is independent of the choice of {φn} (Exercise 2.6). In particular, if we
define

B̃(x) := B̃(x1, . . . , xd, ω) = 〈ω, χ[0,x1]×···×[0,xd]〉;x = (x1, . . . , xd) ∈ R
d,

(2.1.10)

where [0, xi] is interpreted as [xi, 0] if xi < 0, then B̃(x, ω) has an
x-continuous version B(x, ω), which becomes a d-parameter Brownian
motion.

By a d-parameter Brownian motion we mean a family {X(x, ·)}x∈Rd of
random variables on a probability space (Ω,F , P ) such that

X(0, ·) = 0 almost surely with respect to P, (2.1.11)

{X(x, ω)} is a Gaussian stochastic process (i.e., Y =(X(x(1),·), . . . ,
X(x(n), ·)) has a multinormal distribution with mean zero for all
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x(1), . . . , x(n) ∈ R
d and all n ∈ N) and, further, for all

x = (x1, . . . , xd), y = (y1, . . . , yd) ∈ R
d
+, that X(x, ·)X(y, ·) have

the covariance
∏d

i=1 xi ∧ yi. For general x, y ∈ R
d the covariance is

∏d
i=1

∫
R

θxi
(s)θyi

(s)ds,where θx(t1, . . . , td) = θx1(t1) · · · θxd
(td),with

(2.1.12)

θxj
(s) =

⎧
⎪⎨

⎪⎩

1 if 0 < s ≤ xj

−1 if xj < s ≤ 0
0 otherwise

We also require that

X(x, ω) has continuous paths, i.e., that x→ X(x, ω)
is continuous for almost all ω with respect to P. (2.1.13)

We have to verify that B̃(x, ω) defined by (2.1.10) satisfies (2.1.11) and
(2.1.12) and that B̃ has a continuous version. Property (2.1.11) is evident.
To prove (2.1.12), we choose x(1), . . . , x(n) ∈ R

d
+, c1, . . . , cn ∈ R and put

χ(j)(t) = χ
[0,x

(j)
1 ]×···×[0,x

(j)
d

]
(t) ; t ∈ R

d

where x(j) = (x(j)
1 , . . . , x

(j)
d ), and compute

E

[

exp
(

i

n∑

j =1

cjB̃(x(j))
)]

= E

[

exp
(

i

〈

·,
n∑

j =1

cjχ
(j)

〉)]

= exp
(

− 1
2

∥
∥
∥
∥

n∑

j =1

cjχ
(j)

∥
∥
∥
∥

2)

= exp
(

− 1
2

∫

Rd

( n∑

j =1

cjχ
(j)(t)

)2

dt

)

= exp
(

− 1
2

n∑

i,j =1

cicj

∫

Rd

χ(i)(t)χ(j)(t)dt

)

= exp
(

− 1
2
cT V c

)

,

where c = (c1, . . . , cn) and V = [Vij ] ∈ R
n×n is the symmetric non-negative

definite matrix with entries

Vij =
∫

Rd

χ(i)(y)χ(j)(y)dy = (χ(i), χ(j)).
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This proves that Y = (B̃(x(1), ·), . . . , B̃(x(n), ·)) is Gaussian with mean
zero and covariance matrix V = [Vij ]. For x = (x1, . . . , xd) ∈ R

d let χ
x
(t) =

χ[0,x1]×···×[0,xd](t); t ∈ R
d. Then for y = (y1, . . . , yd) ∈ R

d, we have

D2 := ‖χ
x
− χ

y
‖2 =

d∏

i=1

‖χ[0,xi]
− χ[0,yi]

‖2 =
d∏

i=1

|xi − yi|.

Hence by (2.1.6)

E[|B̃(x)− B̃(y)|2] = E[〈·, χ
x
− χ

y
〉2]

= D2E

[〈

·,
χ

x
− χ

y

D

〉2]

= D2

∫

R

t2dλ1(t) = D2,

which proves that B̃ satisfies (2.1.12).
Finally, using Kolmogorov’s continuity theorem (see, e.g., Stroock and

Varadhan (1979), Theorem 2.1.6) we obtain that B̃(x) has a continuous
version B(x), which then becomes a d-parameter Brownian motion. See
Exercise 2.7.

We remark that for d = 1 we get the classical (1-parameter) Brownian
motion B(t) if we restrict ourselves to t ≥ 0. For d = 2 we get what is often
called the Brownian sheet.

With this definition of Brownian motion it is natural to define the
d-parameter Wiener–Itô integral of φ ∈ L2(Rd) by

∫

Rd

φ(x)dB(x, ω) := 〈ω, φ〉; ω ∈ S ′(Rd). (2.1.14)

We see that by appealing to the Bochner–Minlos theorem we have obtained
not only a simple description of white noise, but also an easy construction of
Brownian motion. The relation between these two fundamental concepts can
also be expressed as follows.

Using integration by parts for Wiener–Itô integrals (Appendix B), we get
∫

Rd

φ(x)dB(x) = (−1)d

∫

Rd

∂dφ

∂x1 · · · ∂xd
(x)B(x)dx. (2.1.15)

Hence

w(φ) =
∫

Rd

φ(x)dB(x) =
(

(−1)d ∂dφ

∂x1 · · · ∂xd
, B

)

=
(

φ,
∂dB

∂x1 · · · ∂xd

)

, (2.1.16)
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where (·, ·) denotes the usual inner product in L2(Rd). In other words, in the
sense of distributions we have, for almost all ω,

w =
∂dB

∂x1 · · · ∂xd
. (2.1.17)

We will give other formulations of this connection between Brownian
motion and white noise in Section 2.5.

Using w(φ, ω) we can construct a stochastic process, called the smoothed
white noise process Wφ(x, ω), as follows: Set

Wφ(x, ω) := w(φx, ω), x ∈ R
d, ω ∈ S ′(Rd), (2.1.18)

where
φx(y) = φ(y − x) (2.1.19)

is the x-shift of φ; x, y ∈ R
d.

Note that {Wφ(x, ·)}x∈Rd has the following three properties:

If supp φx1 ∩ suppφx2 = ∅, then Wφ(x1, ·) and Wφ(x2, ·) are independent.
(2.1.20)

{Wφ(x, ·)}x∈Rd is a stationary process, i.e., for all n ∈ N and for all

x(1), . . . , x(n) and h ∈ R
d, the joint distribution of (2.1.21)

(Wφ(x(1) + h, ·), . . . , Wφ(x(n) + h, ·))

is independent of h.

For each x ∈ R
d, the random variable Wφ(x, ·) is normally distributed

with mean 0 and variance ‖φ‖2. (2.1.22)

So {Wφ(x, ω)}x∈Rd is indeed a mathematical model for what one usually
intuitively thinks of as white noise. In explicit applications the test function
or “window” φ can be chosen such that the diameter of suppφ is the maximal
distance within which Wφ(x1, ·) and Wφ(x2, ·) might be correlated.

Figure 2.1 shows computer simulations of the 2-parameter white noise
process Wφ(x, ω) where φ(y) = χ[0,h]×[0,h](y); y ∈ R

2 for h = 1/50 (left) and
for h = 1/20 (right).
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Fig. 2.1 Two sample paths of white noise (h = 1/50, h = 1/20).
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2.1.2 The (Smoothed) White Noise Vector

We now proceed to define the multidimensional case. If m is a natural number,
we define

S :=
m∏

i=1

S(Rd), S ′ :=
m∏

i=1

S ′(Rd), B :=
m∏

i=1

B(S ′(Rd)) (2.1.23)

and equip S ′ with the product measure

μm = μ1 × μ1 × · · · × μ1, (2.1.24)

where μ1 is the 1-dimensional white noise probability measure. It is then easy
to see that we have the following property:

∫

S′

ei〈ω,φ〉dμm(ω) = e−
1
2‖φ‖2

for all φ ∈ S. (2.1.25)

Here 〈ω, φ〉 = 〈ω1, φ1〉+ · · ·+ 〈ωm, φm〉 is the action of ω = (ω1, . . . , ωm) ∈
S ′ on φ = (φ1, . . . , φm) ∈ S, where 〈ωk, φk〉 is the action of ωk ∈ S ′(Rd) on
φk ∈ S(Rd); k = 1, 2, . . . ,m.

Furthermore,

‖φ‖ = ‖φ‖K =
( m∑

k=1

‖φk‖2
) 1

2

=
( m∑

k=1

∫

Rd

φ2
k(x)dx

) 1
2

(2.1.26)

is the norm of φ in the Hilbert space K defined as the orthogonal sum of m
identical copies of L2(Rd), viz. K =

⊕m
k=1 L2(Rd).

We will call the triplet (S ′,B, μm) the d-parameter multidimensional white
noise probability space. The parameter m is called the white noise dimension.
The m-dimensional smoothed white noise

w : S × S ′ → R
m

is then defined by

w(φ) = w(φ, ω) = (〈ω1, φ1〉, . . . , 〈ωm, φm〉) ∈ R
m (2.1.27)

if ω = (ω1, . . . , ωm) ∈ S ′, φ = (φ1, . . . , φm) ∈ S. If the value of m is clear
from the context, we sometimes write μ for μm.

As in the 1-dimensional case, we now proceed to define m-dimensional
Brownian motion B(x) = B(x, ω) = (B1(x, ω), . . . , Bm(x, ω)); x ∈ R

d,
ω ∈ S ′ as the x-continuous version of the process

B̃(x, ω) = (〈ω1, χ[0,x1]×···×[0,xd]〉, . . . , 〈ωm, χ[0,x1]×···×[0,xd]〉). (2.1.28)
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From this we see that B(x) consists of m independent copies of
1-dimensional Brownian motion. Combining (2.1.27) and (2.1.14) we get

w(φ) =
(∫

φ1(x)dB1(x), . . . ,
∫

φm(x)dBm(x)
)

. (2.1.29)

Using w(φ, ω), we can construct m-dimensional smoothed white noise
process Wφ(x, ω) as follows:

Wφ(x, ω) := w(φx, ω) (2.1.30)

for φ = (φ1, . . . , φm) ∈ S, ω = (ω1, . . . , ωm) ∈ S ′, where

φx(y) = (φ1(y − x), . . . , φm(y − x)); x, y ∈ R
d. (2.1.31)

2.2 The Wiener–Itô Chaos Expansion

There are (at least) two ways of constructing the classical Wiener–Itô chaos
expansion:

(A) by Hermite polynomials,
(B) by multiple Itô integrals.

Both approaches are important, and it is useful to know them both and to
know the relationship between them. For us the first construction will play
the major role. We will therefore introduce this method in detail first, then
sketch the other construction, and finally compare the two.

2.2.1 Chaos Expansion in Terms of Hermite
Polynomials

The Hermite polynomials hn(x) are defined by

hn(x) = (−1)ne
1
2 x2 dn

dxn
(e−

1
2 x2

); n = 0, 1, 2, . . . . (2.2.1)

Thus the first Hermite polynomials are

h0(x) = 1, h1(x) = x, h2(x) = x2 − 1, h3(x) = x3 − 3x,

h4(x) = x4 − 6x2 + 3, h5(x) = x5 − 10x3 + 15x, . . . .

The Hermite functions ξn(x) are defined by

ξn(x) = π− 1
4 ((n− 1)!)−

1
2 e−

1
2 x2

hn−1(
√

2x); n = 1, 2, . . . . (2.2.2)
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The most important properties of hn and ξn are given in Appendix C.
Some properties we will often use follow.

ξn ∈ S(R) for all n. (2.2.3)

The collection {ξn}∞n=1 constitutes an orthonormal basis for L2(R).
(2.2.4)

sup
x∈R

|ξn(x)| = O(n− 1
12 ). (2.2.5)

The statement (2.2.3) follows from the fact that hn is a polynomial of
degree n. Proofs of statements (2.2.4) and (2.2.5) can be found in Hille and
Phillips (1957), Chapter 21.

We will use these functions to define an orthogonal basis for L2(μm), where
μm = μ1×· · ·×μ1 as before. Since the 1-dimensional case is simpler and also
the case we will use most, we first do the construction in this case.

Case 1 (m = 1). In the following, we let δ = (δ1, . . . , δd) denote
d-dimensional multi-indices with δ1, . . . , δd ∈ N. By (2.2.4) it follows that
the family of tensor products

ξδ := ξ(δ1,...,δd) := ξδ1 ⊗ · · · ⊗ ξδd
; δ ∈ N

d (2.2.6)

forms an orthonormal basis for L2(Rd). Let δ(j) = (δ(j)
1 , δ

(j)
2 , . . . , δ

(j)
d ) be the

jth multi-index number in some fixed ordering of all d-dimensional multi-
indices δ = (δ1, . . . , δd) ∈ N

d. We can, and will, assume that this ordering
has the property that

i < j ⇒ δ
(i)
1 + δ

(i)
2 + · · ·+ δ

(i)
d ≤ δ

(j)
1 + δ

(j)
2 + · · ·+ δ

(j)
d , (2.2.7)

i.e., that the {δ(j)}∞j=1 occur in increasing order.
Now define

ηj := ξδ(j) = ξ
δ
(j)
1
⊗ · · · ⊗ ξ

δ
(j)
d

; j = 1, 2, . . . . (2.2.8)

We will need to consider multi-indices of arbitrary length. To simplify
the notation, we regard multi-indices as elements of the space (NN

0 )c of all
sequences α = (α1, α2, . . .) with elements αi ∈ N0 and with compact support,
i.e., with only finitely many αi �= 0. We write

J = (NN

0 )c. (2.2.9)

Definition 2.2.1 (m = 1). Let α = (α1, α2, . . .) ∈ J . Then we define

Hα(ω) = H(1)
α (ω) :=

∞∏

i =1

hαi
(〈ω, ηi〉); ω ∈ S ′(Rd). (2.2.10)
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Case 2 (m > 1). In this case we have to proceed one step further from (2.2.8)
to obtain an orthonormal basis for K =

⊕m
k=1 L2(Rd). Define the following

elements of K:

e(1) = (η1, 0, . . . , 0)

e(2) = (0, η1, . . . , 0)
...

e(m) = (0, 0, . . . , η1).

Then repeat with η1 replaced by η2:

e(m+1) = (η2, 0, . . . , 0)
...

e(2m) = (0, 0, . . . , η2),

and so on.
In short, for every k ∈ N there are unique numbers i ∈ {1, . . . , m} and

j ∈ N such that k = i + (j − 1)m. Then we have

e(k) = e(i+(j−1)m) = (0, 0, . . . , ηj , . . . , 0) = ηjε
(i) ∈ K, (2.2.11)

where ε(i) is the multi-index with 1 on entry number i and 0 otherwise.

Definition 2.2.2 (m > 1). For α ∈ J define

Hα(ω) = H(m)
α (ω) =

∞∏

k=1

hαk
(〈ω, e(k)〉). (2.2.12)

Here ω = (ω1, . . . , ωm) ∈ S ′ and

〈ω, e(k)〉 = 〈ω1, e
(k)
1 〉+ · · ·+ 〈ωm, e(k)

m 〉 = 〈ωi, ηj〉 if k = i+(j−1)m. (2.2.13)

Therefore we can also write

H(m)
α (ω) =

∞∏

k=1
k= i+(j−1)m

hαk
(〈ωi, ηj〉); ω ∈ S ′. (2.2.14)

For example, if α = ε(k) with k = i + (j − 1)m, we get

Hε(k) = 〈ω, e(k)〉 = 〈ωi, ηj〉. (2.2.15)
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There is an alternative description of the family {H(m)
α } that is natural from

a tensor product point of view:
For Γ = (γ(1), . . . , γ(m)) ∈ Jm = J × · · · × J , ω = (ω1, . . . , ωm) ∈ S ′

define

H(m)
Γ (ω) =

m∏

i =1

H
(1)

γ(i)(ωi), (2.2.16)

where each H
(1)

γ(i)(ωi) is as in (2.2.10). Then we see that

H(m)
Γ (ω) =

m∏

i =1

∞∏

j =1

h
γ
(i)
j

(〈ωi, ηj〉) = H(m)
α (ω), (2.2.17)

where α = (α1, α2, . . .) ∈ J is related to Γ = (γ(i)) ∈ Jm by

αk = γ
(i)
j if i + (j − 1)m = k.

Theorem 2.2.3. For any m ≥ 1 the family {Hα}α∈J = {HΓ}Γ∈J m consti-
tutes an orthogonal basis for L2(μm). Moreover, if α = (α1, α2, . . .) ∈ J , we
have the norm expression

‖Hα‖2L2(μm) = α! := α1!α2! · · · . (2.2.18)

Proof First consider the case where we have m = 1. Let α = (α1, . . . , αn)
and β = (β1, . . . , βn) be two multi-indices. Then using Lemma 2.1.2, where
we have E = Eμ1 , we get the expression

E[HαHβ ] = E

[ n∏

i =1

hαi
(〈ω, ηi〉)hβi

(〈ω, ηi〉)
]

=
∫

Rn

n∏

i =1

hαi
(xi)hβi

(xi)dλn(x1, . . . , xn)

=
n∏

i =1

∫

R

hαi
(xi)hβi

(xi)dλ1(xi).

From the well-known orthogonality relations for Hermite polynomials (see,
e.g., (C.10) in Appendix C), we have that

∫

R

hj(x)hk(x)e−
1
2 x2

dx = δj,k

√
2πk!. (2.2.19)

We therefore obtain (2.2.18) and that Hα and Hβ are orthogonal if α �= β.
To prove completeness of the family {Hα}, we note that by Theorem 2.1.3
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any g ∈ L2(μ1) can be approximated in L2(μ1) by stochastic polynomials of
the form

pn(ω) = fn(〈ω, η1〉, . . . , 〈ω, ηn〉).
Now the polynomial fn(x1, . . . , xn) can be written as a linear combina-

tion of products of Hermite polynomials hα1(x1)hα2(x2) · · ·hαn
(xn). Then,

of course, pn(ω) is the corresponding linear combination of functions Hα(ω)
where α = (α1, . . . , αn).

The general case m ≥ 1 follows from the above case using the tensor
product structure. For completeness, we give the details.

With Hα = H
(m)
α defined as in Definition 2.2.2, we get, with μ = μm,

E = Eμ, α = (α1, . . . , αn), β = (β1, . . . , βn):

E[HαHβ ] = E

[ n∏

k=1

hαk
(〈ω, e(k)〉)hβk

(〈ω, e(k)〉)
]

= E

[ n∏

k=1

hαk
(〈ωi(k), ηj(k)〉)hβk

(〈ωi(k), ηj(k)〉)
]

= E

[ n∏

k=1
i(k)=1

hαk
(〈ω1, ηj(k)〉) · hβk

(〈ω1, ηj(k)〉)

· · ·
n∏

k=1
i(k)=m

hαk
(〈ωm, ηj(k)〉)hβk

(〈ωm, ηj(k)〉)
]

=
m∏

u=1

Eμu

[ n∏

k=1
i(k)=u

hαk
(〈ωu, ηj(k)〉)hβk

(〈ωu, ηj(k)〉)
]

=
m∏

u=1

Eμu

[ n∏

v=1

{hαk
(〈ωu, ηv〉) · hβk

(〈ωu, ηv〉)}k=u+(v−1)m

]

=
m∏

u=1

n∏

v=1

∫

R

{hαk
(xu)hβk

(xu)}k=u+(v−1)mdλ1(xu)

=
m∏

u=1

n∏

v=1

{δαk,βk
αk!}k=u+(v−1)m

=
m∏

u=1

n∏

k=1
i(k)=u

δαk,βk
αk!

=
n∏

k=1

δαk,βk
αk! =

{
α! if α = β

0 if α �= β.

We conclude that {Hα}α is an orthogonal family in L2(μ) and that (2.2.18)
holds.
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Finally, since the span of {H(1)
α }α∈J is dense in L2(μ1), it follows by

(2.2.17) that the span of {H(m)
α }α∈J is dense in L2(μm). This completes the

proof. ��

From now on we fix the parameter dimension d ≥ 1, the white noise
dimension m ≥ 1 and we fix a state space dimension N ≥ 1. Let

L2(μm) =
N⊕

k=1

L2(μm). (2.2.20)

Applying Theorem 2.2.3 to each component of L2(μm), we get

Theorem 2.2.4 (Wiener–Itô chaos expansion theorem). Every f ∈
L2(μm) has a unique representation

f(ω) =
∑

α∈J
cαHα(ω) (2.2.21)

where cα ∈ R
N for all α.

Moreover, we have the isometry

‖f‖2L2(μm) =
∑

α∈J
α!c2

α, (2.2.22)

where c2
α = |cα|2 = (cα, cα) denotes the inner product in R

N .

Remark The major part of this book will be based on this construction. It
must be admitted that the definitions behind (2.2.21) are rather complicated.
Nevertheless the expression is notationally simple and quite easy to apply as
long as we can avoid the underlying structure.

Exercise 2.2.5 (N = 1,m = 1)
i) The 1-dimensional smoothed white noise w(φ, ω) defined in (2.1.8) has

the expansion

w(φ, ω) = 〈ω, φ〉 =
〈

ω,

∞∑

j =1

(φ, ηj)ηj

〉

=
∞∑

j =1

(φ, ηj)〈ω, ηj〉 =
∞∑

j =1

(φ, ηj)Hε(j)(ω),

where ε(j) = (0, 0, . . . , 1, . . .) with 1 on entry number j, 0 otherwise. The
convergence is in L2(μ).

In other words,
w(φ, ω) =

∑

α

cαHα(ω)
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with

cα =

{
(φ, ηj) ifα = ε(j)

0 otherwise.
(2.2.23)

ii) The 1-dimensional, d-parameter Brownian motion B(x, ω) is defined by
(2.1.10):

B(x, ω) = 〈ω, ψ〉,

where
ψ(y) = χ[0,x1]×···×[0,xd](y).

Proceeding as above, we write

ψ(y) =
∞∑

j =1

(ψ, ηj)ηj(y)

=
∞∑

j =1

x∫

0

ηj(u)du ηj(y),

where we have used the multi-index notation

x∫

0

ηj(u)du =

xd∫

0

· · ·
x1∫

0

ηj(u1, . . . , ud)du1 · · · dud =
d∏

k=1

xk∫

0

ξ
β

(j)
k

(tk)dtk

when x = (x1, . . . , xd) (see (2.2.8)). Therefore,

B(x, ω) =

〈

ω,
∞∑

j =1

x∫

0

ηj(u)duηj

〉

=
∞∑

j =1

x∫

0

ηj(u)du〈ω, ηj〉,

so B(x, ω) has the expansion

B(x, ω) =
∞∑

j=1

x∫

0

ηj(u)du Hε(j)(ω). (2.2.24)

Example 2.2.6 (N = m > 1).
i) Next consider m-dimensional smoothed white noise defined by (2.1.27):

w(φ, ω) = (〈ω1, φ1〉, . . . , 〈ωm, φm〉),

where ω = (ω1, . . . , ωm) ∈ S ′, φ = (φ1, . . . , φm) ∈ S.
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Using the same procedure as in the previous example, we get

w(φ, ω) =

(〈

ω1,

∞∑

j =1

(φ1, ηj)ηj

〉

, . . . ,

〈

ωm,

∞∑

j=1

(φm, ηj)ηj

〉)

=

( ∞∑

j =1

(φ1, ηj)〈ω1, ηj〉, . . . ,
∞∑

j =1

(φm, ηj)〈ωm, ηj〉
)

.

Since by (2.2.15)
〈ωi, ηj〉 = Hε(i+(j−1)m)(ω),

we conclude that the ith component, 1 ≤ i ≤ m, of w(φ, ω), wi(φ, ω), can be
written

wi(φ, ω) =
∞∑

j =1

(φi, ηj)〈ωi, ηj〉

=
∞∑

j =1

(φi, ηj)Hε(i+(j−1)m)(ω). (2.2.25)

Thus
wi(φ, ω) = (φi, η1)Hε(i) + (φi, η2)Hε(i+m) + · · · .

Note that the expansions of {wi}mi =1 involve disjoint families of {Hε(k)}.

ii) A similar expansion can be found for m-dimensional d-parameter
Brownian motion

B(x) = B(x, ω) = (B1(x, ω), . . . , Bm(x, ω))

defined by (see (2.1.28))

B(x, ω) = (〈ω1, ψ〉, . . . , 〈ωm, ψ〉); (ω1, . . . , ωm) ∈ S ′,

where

ψ(y) = χ[0,x1]×···×[0,xd](y); y ∈ R
d.

So from (2.2.24) and (2.2.25) we get

B(x, ω) =

( ∞∑

j =1

x∫

0

ηj(u)du〈ω1, ηj〉, . . . ,
∞∑

j =1

x∫

0

ηj(u)du〈ωm, ηj〉
)

=

( ∞∑

j =1

x∫

0

ηj(u)duHε(1+(j−1)m)(ω), . . . ,
∞∑

j =1

x∫

0

ηj(u)duHε(jm)(ω)

)

.
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Hence the ith component, Bi(x), has expansion

Bi(x) =
∞∑

j =1

x∫

0

ηj(u)duHε(i+(j−1)m)

=

x∫

0

η1(u)duHε(i) +

x∫

0

η2(u)duHε(i+m) +

x∫

0

η3(u)duHε(i+2m) + · · · .

(2.2.26)
Again we note that the expansions of {Bi(x)}mi=1 involve disjoint families

of {Hε(k)}.
Note that for white noise and Brownian motion it is natural to have

N = m. In general, however, one considers functions of white noise or
Brownian motion, and in this case N and m need not be related. See
Exercise 2.8.

2.2.2 Chaos Expansion in Terms of Multiple Itô
Integrals

The chaos expansion (2.2.21)–(2.2.22) has an alternative formulation in terms
of iterated Itô integrals. Although this formulation will not play a central role
in our presentation, we give a brief review of it here, because it makes it easier
for the reader to relate the material of the previous sections of this chapter
to other literature of related content. Moreover, we will need this version in
Section 2.5.

For convenience of notation we set N = m = d = 1 for the rest of this
section. For the definition and basic properties of (1-parameter) Itô integrals,
the reader is referred to Appendix B. For more information, see, e.g., Chung
and Williams (1990), Karatzas and Shreve (1991), or Øksendal (2003). If
ψ(t1, . . . , tn) is a symmetric function in its n variables t1, . . . , tn, then we
define its n-tuple Itô integral by the formula (n ≥ 1)
∫

Rn

ψdB⊗n := n!

∞∫

−∞

tn∫

−∞

tn−1∫

−∞

· · ·
t2∫

−∞

ψ(t1, t2, . . . , tn)dB(t1)dB(t2) · · · dB(tn),

(2.2.27)

where the integral on the right consists of n iterated Itô integrals (note that
in each step the corresponding integrand is adapted because of the limits of
the preceding integrals). Applying the Itô isometry n times we see that this
iterated integral exists iff ψ ∈ L2(Rn), then we have

E

[( ∫

Rn

ψdB⊗n

)2]

= n!
∫

Rn

ψ(t1, . . . , tn)2dt1 · · · dtn = n!‖ψ‖2. (2.2.28)
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For n = 0 we adopt the convention that
∫

R0 ψdB⊗0 = ψ = ‖ψ‖L2(R0) when
ψ is constant. Let α = (α1, . . . , αk) be a multi-index, let n = |α| and let
ξ1, ξ2, . . . be the Hermite functions defined in (2.2.2). Then by a fundamental
result in Itô (1951), we have

∫

Rn

ξ⊗̂α1
1 ⊗̂ · · · ⊗̂ξ⊗̂αk

k dB⊗n =
k∏

j =1

hαj
(〈ω, ξj〉). (2.2.29)

Here ⊗̂ denotes the symmetrized tensor product. So, for example, if f, g :
R→ R, then

(f ⊗ g)(x1, x2) = f(x1)g(x2); (x1, x2) ∈ R
2

and
(f⊗̂g)(x1, x2) =

1
2
[f ⊗ g + g ⊗ f ](x1, x2); (x1, x2) ∈ R

2,

and similarly for higher dimensions and for symmetric tensor powers.
Therefore, by comparison with Definition 2.2.1 we can reformulate

(2.2.29) as ∫

Rn

ξ⊗̂αdB⊗n = Hα(ω), (2.2.30)

where we have used multi-index notation

ξ⊗̂α = ξ⊗̂α1
1 ⊗̂ · · · ⊗̂ξ⊗̂αk

k . (2.2.31)

Now assume f ∈ L2(μ) has the Wiener–Itô chaos expansion (2.2.21)

f(ω) =
∑

α

cαHα(ω).

We rewrite this as

f(ω) =
∞∑

n=0

∑

|α|=n

cαHα(ω) =
∞∑

n=0

∑

|α|=n

cα

∫

Rn

ξ⊗̂αdB⊗n

=
∞∑

n=0

∫

Rn

∑

|α|=n

cαξ⊗̂αdB⊗n.

Hence

f(ω) =
∞∑

n=0

∫

Rn

fndB⊗n, (2.2.32)

with
fn =

∑

|α|=n

cαξ⊗̂α ∈ L̂2(Rn), (2.2.33)

where L̂2(Rn) denotes the symmetric functions in L2(Rn).
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Moreover, from (2.2.22) and (2.2.28) we have

‖f‖2L2(μ) =
∞∑

n=0

n!‖fn‖2L2(Rn). (2.2.34)

We summarize this as follows.

Theorem 2.2.7 (The Wiener–Itô chaos expansion theorem II). If
f ∈ L2(μ), then there exists a unique sequence of (deterministic) functions
fn ∈ L̂2(Rn) such that

f(ω) =
∞∑

n=0

∫

Rn

fndB⊗n. (2.2.35)

Moreover, we have the isometry

‖f‖2L2(μ) =
∞∑

n=0

n!‖fn‖2L2(Rn). (2.2.36)

This result extends to arbitrary parameter dimension d. See Itô (1951).

2.3 The Hida Stochastic Test Functions and Stochastic
Distributions. The Kondratiev Spaces (S)m;N

ρ , (S)m;N
−ρ

As we saw in the previous section, the growth condition
∑

α

α!c2
α <∞ (2.3.1)

assures that
f(ω) :=

∑

α

cαHα(ω) ∈ L2(μ).

In the following we will replace condition (2.3.1) by various other
conditions. We thus obtain a family of (generalized) function spaces that
relates to L2(μ) in a natural way. At the same time these spaces form
an environment of stochastic test function spaces and stochastic distribu-
tion spaces, in a way that is analogous to the spaces S(Rd) ⊂ L2(Rd) ⊂
S ′(Rd). These spaces provide a favorable setting for the study of stochastic
(ordinary and partial) differential equations. They were originally constructed
on spaces of sequences by Kondratiev (1978), and later extended by him and
others. See Kondratiev et al. (1994) and the references therein.



32 2 Framework

Let us first recall the characterizations of S(Rd) and S ′(Rd) in terms of
Fourier coefficients: As in (2.2.7) we let {δ(j)}∞j =1 = {(δ(j)

1 , . . . , δ
(j)
d )}∞j =1 be

a fixed ordering of all d-dimensional multi-indices δ = (δ1, . . . , δd) ∈ N
d sat-

isfying (2.2.7). In general, if α = (α1, . . . , αj , . . .) ∈ J , β = (β1, . . . , βj , . . .) ∈
(RN)c are two finite sequences, we will use the notation

αβ = αβ1
1 αβ2

2 · · ·α
βj

j · · · where α0
j = 1. (2.3.2)

Theorem 2.3.1 Reed and Simon (1980), Theorem V. 13–14.

a) Let φ ∈ L2(Rd), so that

φ =
∞∑

j =1

ajηj , (2.3.3)

where aj = (φ, ηj); j = 1, 2, . . . , are the Fourier coefficients of φ with respect
to {ηj}∞j =1, with ηj as in (2.2.8). Then φ ∈ S(Rd) if and only if

∞∑

j =1

a2
j (δ

(j))γ <∞ (2.3.4)

for all d-dimensional multi-indices γ = (γ1, . . . , γd).
b) The space S ′(Rd) can be identified with the space of all formal

expansions

T =
∞∑

j =1

bjηj (2.3.5)

such that ∞∑

j =1

b2
j (δ

(j))−θ <∞ (2.3.6)

for some d-dimensional multi-index θ = (θ1, . . . , θd).

If (2.3.6) holds, then the action of T ∈ S ′(Rd) given by (2.3.5) on
φ ∈ S(Rd) given by (2.3.2) reads

〈T, φ〉 =
∞∑

j =1

ajbj . (2.3.7)

We now formulate a stochastic analogue of Theorem 2.3.1. The following
quantity is crucial:

If γ = (γ1, . . . , γj , . . .) ∈ (RN)c (i.e., only finitely many of the real numbers
γj are nonzero), we write

(2N)γ :=
∏

j

(2j)γj . (2.3.8)
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As before, d is the parameter dimension, m is the dimension of the white
noise vector, μm = μ1 × · · · × μ1 as in (2.1.24), and N is the state space
dimension.

Definition 2.3.2. The Kondratiev spaces of stochastic test function
and stochastic distributions.

a) The stochastic test function spaces
Let N be a natural number. For 0 ≤ ρ ≤ 1, let

(S)N
ρ = (S)m;N

ρ

consist of those

f =
∑

α

cαHα ∈ L2(μm) =
N⊕

k=1

L2(μm) with cα ∈ R
N

such that

‖f‖2ρ,k :=
∑

α

c2
α(α!)1+ρ(2N)kα <∞ for all k ∈ N (2.3.9)

where

c2
α = |cα|2 =

N∑

k=1

(c(k)
α )2 if cα = (c(1)

α , . . . , c(N)
α ) ∈ R

N .

b) The stochastic distribution spaces
For 0 ≤ ρ ≤ 1, let

(S)N
−ρ = (S)m;N

−ρ

consist of all formal expansions

F =
∑

α

bαHα with bα ∈ R
N

such that

‖F‖2−ρ,−q :=
∑

α

b2
α(α!)1−ρ(2N)−qα <∞ for some q ∈ N. (2.3.10)

The family of seminorms ‖f‖ρ,k; k ∈ N gives rise to a topology on (S)N
ρ ,

and we can regard (S)N
−ρ as the dual of (S)N

ρ by the action

〈F, f〉 =
∑

α

(bα, cα)α! (2.3.11)

if
F =

∑

α

bαHα ∈ (S)N
−ρ; f =

∑

α

cαHα ∈ (S)N
ρ
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and (bα, cα) is the usual inner product in R
N . Note that this action is well

defined since
∑

α

|(bα, cα)|α! =
∑

α

|(bα, cα)|(α!)
(1−ρ)

2 (α!)
(1+ρ)

2 (2N)−
qα
2 (2N)

qα
2

≤
(
∑

α

b2
α(α!)1−ρ(2N)−qα

) 1
2
(
∑

α

c2
α(α!)1+ρ(2N)qα

) 1
2

<∞

for q large enough. When the value of m is clear from the context we simply
write (S)N

ρ , (S)N
−ρ instead of (S)m;N

ρ , (S)m;N
−ρ , respectively. If N = 1, we

write (S)ρ, (S)−ρ instead of (S)1ρ, (S)−1
−ρ, respectively.

Remarks

a) Note that for general ρ ∈ [0, 1] we have

(S)N
1 ⊂ (S)N

ρ ⊂ (S)N
0 ⊂ L2(μm) ⊂ (S)N

−0 ⊂ (S)N
−ρ ⊂ (S)N

−1. (2.3.12)

From (2.3.11) we see that if F = (F1, . . . , FN ) and G = (G1, . . . , GN )
both belong to L2(μm), then the action of F on G is given by

〈F,G〉 = E

[
N∑

i=1

FiGi

]

. (2.3.13)

b) In some cases it is useful to consider various generalizations of the spaces
(S)m;N

ρ , (S)m;N
−ρ . For example, the coefficients cα, bα may not be constants,

but may depend on some random parameter ω̂ that is independent of our
white noise. In these cases we assume that bα(ω̂), cα(ω̂) ∈ L2(ν), where ν
is the probability measure for ω̂. Then the definitions above apply, with
the modification that in (2.3.9) we replace c2

α by ‖cα‖2L2(ν) and in (2.3.11)
we interpret (bα, cα) as

Eν [bαcα] =
∫

Ω̂

bα(ω̂)cα(ω̂)dν(ω̂) = (bα, cα)L2(ν). (2.3.14)

Another useful generalization (where the cα are elements of Sobolev
spaces) is discussed in V̊age (1996a).

c) The quantity (2N)α in (2.3.8) will be applied frequently, so it is useful to
have some estimates of it.

First note that if α = ε(k), we get

(2N)ε(k)
= 2k. (2.3.15)

Next we state the following result from Zhang (1992).
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Proposition 2.3.3 Zhang (1992). We have that
∑

α∈J
(2N)−qα <∞ (2.3.16)

if and only if q > 1.

Proof First assume q > 1. If α = (α1, α2, . . .) ∈ J , define

Index α = max{j;αj �= 0}.

Consider

an :=
∑

α
Index α=n

(2N)−qα =
∑

α1,...,αn−1≥0
αn ≥1

∏

j =1

(2j)−qαj

=

⎡

⎣
n−1∏

j =1

( ∞∑

αj =0

(2j)−qαj

)
⎤

⎦
( ∞∑

αn=1

(2n)−qαn

)

=
1

((2n)q − 1)

n−1∏

j =1

(2j)q

((2j)q − 1)
=

1
(2n)q

n∏

j =1

(2j)q

((2j)q − 1)
.

This gives

an

an+1
− 1 =

(2n + 2)q − 1
(2n)q

− 1 =
(

1 +
1
n

)q

− (2n)−q − 1. (2.3.17)

In particular,
an

an+1
− 1 ≥ q

n
− (2n)−q.

Hence

lim inf
n→∞

n

(
an

an+1
− 1

)

≥ q > 1

and, therefore, by Abel’s criterion for convergence,

∑

α

(2N)−qα =
∞∑

n=0

an <∞,

as claimed. Conversely, if q = 1, then, by (2.3.17) above,

an

an+1
= 1 +

1
2n

, so

lim
n→∞

n

(
an

an+1
− 1

)

= lim
n→∞

n · 1
2n

=
1
2

< 1.

Hence
∑∞

n=0 an =∞ by Abel’s criterion. ��
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The following useful result relates the sum in (2.3.16) to sums of the type
appearing in Theorem 2.3.1. It was pointed out to us by Y. Hu (private
communication).

Lemma 2.3.4. Let δ(j) = (δ(j)
1 , δ

(j)
2 , . . . , δ

(j)
d ) be as in (2.2.7). For all j ∈ N

and all d ∈ N we have

j
1
d ≤ δ

(j)
1 · δ

(j)
2 · · · δ

(j)
d ≤ jd.

Proof The case d = 1 is trivial, so we fix d ≥ 2. Since δ
(j)
k ≤ j (by (2.2.7)),

the second inequality is immediate. To prove the first inequality, we fix j
and set

M = δ
(j)
1 + δ

(j)
2 + · · ·+ δ

(j)
d .

Note that M ≥ d. Consider the minimization problem

inf

{

f(x1, . . . , xd); xi ∈ [1,∞) for all i;
d∑

i=1

xi = M

}

,

where f(x) = x1x2 · · ·xd. Clearly a minimum exists. Using the Lagrange
multiplier method we see that the only candidate for a minimum point
when xi > 1 for all i is (x1, x2, . . . , xd) = (M/d, . . . , M/d), which gives the
value

f

(
M

d
, . . . ,

M

d

)

=
(

M

d

)d

.

If one or several xi’s have the value 1, then the minimization problem can
be reduced to the case when d and M are replaced by d − 1 and M − 1,
respectively. Since

(
M − 1
d− 1

)d−1

≤
(

M

d

)d

,

we conclude by induction on d that

x1 · · ·xd ≥M − d + 1 for all (x1, . . . , xd) ∈ [1,∞)d with
d∑

i=1

xi = M.

(2.3.18)
To finish the proof of the lemma we now compare M and j:
Since δ

(j)
1 + · · · + δ

(j)
d = M and the sequence {(δ(i)

1 , . . . , δ
(i)
d )}∞i =1 is

increasing (see (2.2.7)), we know that

δ
(i)
1 + · · ·+ δ

(i)
d ≤M for all i < j.

Now (by a known result in combinatorics) the total number of multi-indices
(δ1, . . . , δd) ∈ N

d such that δ1 + δ2 + · · ·+ δd ≤M is equal to

M∑

n=d

(
n− 1
d− 1

)

=
(

M

d

)

.
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Therefore

j ≤
(

M

d

)

=
M(M − 1) · · · (M − d + 1)

d!
≤ (M − d + 1)d

or

M − d + 1 ≥ j
1
d .

Combined with (2.3.18) this gives

δ
(j)
1 δ

(j)
2 · · · δ

(j)
d ≥ j

1
d . ��

As a consequence of this, we obtain the following alternative charac-
terization of the spaces (S)N

ρ , (S)N
−ρ. This characterization has often been

used as a definition of the Kondratiev spaces (see, e.g., Holden et al.
(1995a), and the references therein). As usual we let (δ(j)

1 , . . . , δ
(j)
d ) be as

in (2.2.7).

In this connection the following notation is convenient:

With (δ(j)
1 , . . . , δ

(j)
d ) as in (2.2.7), let Δ = (Δ1, . . . ,Δk, . . .) ∈ N

N be the
sequence defined by

Δj = 2dδ
(j)
1 δ

(j)
2 · · · δ

(j)
d ; j = 1, 2, . . . . (2.3.19)

Then if α = (α1, . . . , αj , . . .) ∈ (RN)c, we define

Δα = Δα1
1 Δα2

2 · · ·Δ
αj

j · · · =
∞∏

j=1

(2dδ
(j)
1 · · · δ

(j)
d )αj , (2.3.20)

in accordance with the general multi-index notation (2.3.2).

Corollary 2.3.5. Let 0 ≤ ρ ≤ 1. Then we have

a) f =
∑

α
cαHα (with cα ∈ R

N for all α) belongs to (S)N
ρ if and only if

∑

α

c2
α(α!)1+ρΔkα <∞ for all k ∈ N. (2.3.21)

b) The formal expansion F =
∑

α
bαHα (with bα ∈ R

N for all α) belongs to

(S)N
−ρ if and only if

∑

α

b2
α(α!)1−ρΔ−qα <∞ for some q ∈ N. (2.3.22)
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Proof By the second inequality of Lemma 2.3.4 we see that

Δkα =
∞∏

j=1

(2dδ
(j)
d · · · δ

(j)
d )kαj ≤

∞∏

j=1

(2djd)kαj =
∞∏

j=1

(2j)dkαj (2.3.23)

for all α ∈ J and all k ∈ N.

From the first inequality of Lemma 2.3.4 we get

∞∏

j=1

(2dδ
(j)
1 · · · δ

(j)
d )kαj ≥

∞∏

j=1

(2j
d−1

d )kαj ≥
∞∏

j=1

(2j)
d−1

d ·kαj (2.3.24)

for all α ∈ J and all k ∈ N. These two inequalities show the equivalence
of the criterion in a) with (2.3.9) and the equivalence of the criterion in b)
with (2.3.10). ��

Example 2.3.6. If φ ∈ S(Rd), then

w(φ, ω) ∈ (S)1.

Indeed, by (2.2.23) we have

w(φ, ω) =
∞∑

j=1

(φ, ηj)Hε(j)(ω) =
∑

α

cαHα,

so
∑

α

c2
α(α!)2Δkα =

∞∑

j=1

(φ, ηj)2(2dδ
(j)
1 · · · δ

(j)
d )k

= 2dk
∞∑

j=1

(φ, ηj)2(δ
(j)
1 · · · δ

(j)
d )k <∞

by Theorem 2.3.1a. Hence w(φ, ω) ∈ (S)1 by Corollary 2.3.5. ��

Note that with our notation (S)0 and (S)−0 are different spaces. In fact,
they coincide with the Hida spaces (S) and (S)∗, respectively, which we
describe below.

Remark The definition of stochastic test function and distribution spaces
used in Kondratiev et al. (1994), and Kondratiev et al. (1995a), does not
coincide with ours. However, the two definitions are equivalent, as we will
now show.

Let us first recall Kondratiev’s definition. Let φ ∈ L2(μ1) be given by

φ =
∑

α

cαHα(ω).
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For p ∈ R define

Kp := {φ ∈ L2(μ1) ; ‖φ‖2p < +∞}

where

‖φ‖2p =
∞∑

n=0

(n!)2
∑

α
|α|=n

c2
α(2N)αp < +∞.

The Kondratiev test function space (K)1 is defined as

(K)1 =
⋂

p

Kp, the projective limit of Kp.

The Kondratiev distribution space (K)−1 is the inductive limit of K−p, the
dual of Kp.

According to our definition,

‖φ‖21,p =
∑

α

c2
α(α!)2(2N)αp =

∞∑

n=0

∑

α
|α|=n

(α!)2c2
α(2N)αp.

Obviously α! ≤ n! if |α| = n. Therefore

‖φ‖1,p ≤ ‖φ‖p.

Hence
(K)1 ⊂ (S)1.

On the other hand, if α1 + α2 + · · ·+ αm = n, αi ≥ 1 we have

n! = α1!(α1 + 1)(α1 + 2) · · · (α1 + α2)(α1 + α2 + 1) · · · (α1 + · · ·+ αm)
≤ α1!α1(α2 + 1)!α2(α3 + 1)! · · ·αm(αm + 1)!

≤
m∏

j=1

(αj(αj + 1))αj ! =
( m∏

j=1

αj !
) m∏

j=1

2α2
j

≤ α!
m∏

0=1

(2j)2αj (since 2α2
j ≤ (2j)2αj ) = α!(2N)2α.

Hence

‖φ‖2p =
∞∑

n=0

(n!)2
∑

|α|=n

c2
α(2N)αp ≤

∞∑

n=0

∑

|α|=n

(α!)2(2N)4αc2
α(2N)αp

=
∑

α

(α!)2c2
α(2N)α(p+4) = ‖φ‖21,p+4.

This shows (S)1 ⊂ (K)1, and hence (S)1 = (K)1.
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2.3.1 The Hida Test Function Space (S) and the Hida
Distribution Space (S)∗

There is an extensive literature on these spaces. See Hida et al. (1993), and
the references therein. According to the characterization in Zhang (1992), we
can describe these spaces, generalized to arbitrary dimension m, as follows:

Proposition 2.3.7 Zhang (1992). a) The Hida test function space (S)N

consists of those

f =
∑

α

cαHα ∈ L2(μm) with cα ∈ R
N

such that
sup

α
{c2

αα!(2N)kα} <∞ for all k <∞. (2.3.25)

b) The Hida distribution space (S)∗,N consists of all formal expansions

F =
∑

α

bαHα with bα ∈ R
N

such that
sup

α
{b2

αα!(2N)−qα} <∞ for some q <∞. (2.3.26)

Hence, after comparison with Definition 2.3.2, we see that

(S)N = (S)m;N
0 and (S)∗,N = (S)m;N

−0 . (2.3.27)

If N = 1, we write

(S)1 = (S) and (S)∗,1 = (S)∗.

Corollary 2.3.8. For N = 1 and p ∈ (1,∞) we have

(S) ⊂ Lp(μm) ⊂ (S)∗. (2.3.28)

Proof We give a proof in the case m = d = 1. Since Lp(μ) ⊃ Lp′
(μ) for

p′ > p and the dual of Lp(μ) is Lq(μ) with 1/p + 1/q = 1 if 1 < p < ∞, it
suffices to prove that

(S) ⊂ Lp(μ) for all p ∈ (1,∞).

To this end choose
f =

∑

α

cαHα ∈ (S).
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Then

‖f‖Lp(μ) ≤
∑

α

|cα|‖Hα‖Lp(μ).

If α = (α1, . . . , αk), we have Hα(ω) = hα1(〈ω, ξ1〉)hα2(〈ω, ξ2〉) · · ·hαk

(〈ω, ξk〉) for ω ∈ S ′(R). Hence, by independence,

‖H‖pLp(μ) = E[|Hα|p]

=
k∏

j=1

E[hp
αj

(〈ω, ξj〉)]. (2.3.29)

Note that by (2.2.29), we have

hαj
(〈ω, ξj〉) =

∫

R
αj

ξ
⊗̂αj

j (x)dB⊗αj (x). (2.3.30)

By the Carlen–Kree estimates in Carlen and Kree (1991), we have, in
general, for p ≥ 1, n ∈ N, φ ∈ L2(R),

∥
∥
∥
∥

∫

Rn

φ⊗̂n(x)dB⊗n(x)
∥
∥
∥
∥

Lp(μ)

≤
√

n!(θp
√

ep)n(2πn)−
1
4 ‖φ‖n, (2.3.31)

where

θp = 1 +
√

1 +
1
p
. (2.3.32)

Applied to (2.3.29)–(2.3.30), this gives

‖H‖Lp(μ) ≤
k∏

j=1

√
αj !(θp

√
ep)αj (2παj)−

1
4

≤
√

α!(θp
√

ep)|α|.

Hence, by (2.3.25),

‖f‖Lp(μ) ≤
∑

α

|cα|
√

α!(θp
√

ep)|α|

≤
∑

α

|cα|
√

α!(2N)kα(θp
√

ep)|α|(2N)−kα

≤ sup
α
{|cα|

√
α!(2N)kα}

∑

α

(θp
√

ep)|α|(2N)−kα

<∞

for k large enough. ��
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2.3.2 Singular White Noise

One of the many useful properties of (S)∗ is that it contains the singular or
pointwise white noise.

Definition 2.3.9. a) The 1-dimensional (d-parameter) singular white noise
process is defined by the formal expansion

W (x) = W (x, ω) =
∞∑

k=1

ηk(x)Hε(k)(ω); x ∈ R
d, (2.3.33)

where {ηk}∞k=1 is the basis of L2(Rd) defined in (2.2.8) while Hα = H
(1)
α is

defined by (2.2.10).

b) The m-dimensional (d-parameter) singular white noise process is
defined by

W(x) = W(x, ω) = (W1(x, ω), . . . , Wm(x, ω)),

where the ith component Wi(x), of W(x), has expansion

Wi(x) =
∞∑

j =1

ηj(x)Hεi+(j−1)m

= η1(x)Hε(i) + η2(x)Hεi+m
+ η3(x)Hεi+2m

+ · · · . (2.3.34)

(Compare with the expansion (2.2.25) we have for smoothed m-dimensional
white noise.)

Proposition 2.3.10.

W(x, ω) ∈ (S)∗,m for each x ∈ R
d.

Proof (i) m = 1. We must show that the expansion (2.3.34) satisfies con-
dition (2.3.10) for ρ = 0, i.e.,

∞∑

k=1

η2
k(x)(2k)−q <∞ (2.3.35)

for some q ∈ N. By (2.2.5) and (2.2.8) we have |η2
k(x)| ≤ C for all k =

1, 2, . . . , x ∈ R
d for a constant C.

Therefore, by Proposition 2.3.3, the series in (2.3.35) converges for all
q > 1.

(ii) m > 1. The proof in this case is similar to the above, replacing ηk

by e(k). ��
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Remark Using (2.2.11) we may rewrite (2.3.34) as

W(x, ω) =
∑

i=1,...,m
j=1,2,...

e(i+(j−1)m)(x)H(m)
εi+(j−1)m

(ω)

=
( ∞∑

j =1

ηj(x)H(1)
ε1+(j−1)m

(ω), . . . ,
∞∑

j =1

ηj(x)H(1)
εm+(j−1)m

(ω)
)

.

(2.3.36)

By comparing the expansion (2.3.33) for singular white noise W (x) with
the expansion (2.2.24) for Brownian motion B(x), we see that

Wi(x) =
∂d

∂x1 · · · ∂xd
Bi(x) in (S)∗; for 1 ≤ i ≤ m = N, d ≥ 1 (2.3.37)

In particular,

W (t) =
d

dt
B(t) in (S)∗ (d = m = N = 1) (2.3.38)

See Exercise 2.30. See also (2.5.27).
Thus we may say that m-dimensional singular white noise W(x, ω)

consists of m independent copies of 1-dimensional singular white noise. Here
“independence” is interpreted in the sense that if we truncate the summa-
tions over j to a finite number of terms, then the components are independent
when they are regarded as random variables in L2(μm) = L2(μ1× · · · ×μ1).

In spite of Proposition 2.3.10 and the fact that also many other important
Brownian functionals belong to (S)∗ (see Hida et al. (1993)), the space (S)∗

turns out to be too small for the purpose of solving stochastic ordinary and
partial differential equations. We will return to this in Chapters 3 and 4,
where we will give examples of such equations with no solution in (S)∗ but
a unique solution in (S)−1.

2.4 The Wick Product

The Wick product was introduced in Wick (1950) as a tool to renormal-
ize certain infinite quantities in quantum field theory. In stochastic analysis
the Wick product was first introduced by Hida and Ikeda (1965). A sys-
tematic, general account of the traditions of both mathematical physics and
probability theory regarding this subject was given in Dobrushin and Minlos
(1977). In Meyer and Yan (1989), this kind of construction was extended
to cover Wick products of Hida distributions. We should point out that this
(stochastic) Wick product does not in general coincide with the Wick product
in physics, as defined, e.g., in Simon (1974). See also the survey in Gjessing
et al. (1993).
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Today the Wick product is also important in the study of stochastic
(ordinary and partial) differential equations. In general, one can say that
the use of this product corresponds to – and extends naturally – the use of
Itô integrals. We now explain this in more detail.

The (stochastic) Wick product can be defined in the following way:

Definition 2.4.1. The Wick product F �G of two elements

F =
∑

α

aαHα, G =
∑

α

bαHα ∈ (S)m;N
−1 with aα, bα ∈ R

N (2.4.1)

is defined by

F �G =
∑

α,β

(aα, bβ)Hα+β . (2.4.2)

With this definition the Wick product can be described in a very simple
manner. What is not obvious from the construction, however, is that F �G in
fact does not depend on our particular choice of base elements for L2(μ). It
is possible to give a direct proof of this, but the details are tedious. A sketch
of a proof is given in Appendix D.

In the L2(μ) case the basis independence of the Wick product can also
be seen from the following formulation of Wick multiplication in terms of
multiple Itô integrals (see Theorem 2.2.7).

Proposition 2.4.2. Let N = m = d = 1. Assume that f, g ∈ L2(μ) have
the following representation in terms of multiple Itô integrals:

f(ω) =
∞∑

i=0

∫

Ri

fidB⊗i, g(ω) =
∞∑

j =0

∫

Rj

gjdB⊗j .

Suppose f � g ∈ L2(μ). Then

(f � g)(ω) =
∞∑

n=0

∫

Rn

∑

i +j =n

fi⊗̂gjdB⊗n. (2.4.3)

Proof By (2.4.2) we have

(f � g)(ω) =
∑

α,β

aαbβHα + β(ω)

and by (2.2.30) we have

Hα + β(ω) =
∫

R|α + β|

ξ⊗̂α
α ⊗̂ξ⊗̂β

β dB⊗|α+β|.
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Combining this with (2.2.33), we get

(f � g)(ω) =
∞∑

n=0

∑

|α + β|= n

aαbβ

( ∫

Rn

ξ⊗̂α
α ⊗̂ξ⊗̂β

β dB⊗n

)

=
∞∑

n=0

∫

Rn

(
∑

i+j= n

∑

|α|=i

aαξ⊗̂α
α ⊗̂

∑

|β|=j

bβξ⊗̂β
β

)

dB⊗n

=
∞∑

n=0

∫

Rn

(
∑

i+j=n

fi⊗̂gj

)

dB⊗n,

as claimed. ��

Example 2.4.3. Let 0 ≤ t0 < t1 < ∞ and assume that h(ω) ∈ L2(μ1) is
Ft0 -measurable. Then

h � (B(t1)−B(t0)) = h · (B(t1)−B(t0)). (2.4.4)

Proof If
h(ω) =

∞∑

i=0

∫

Ri

hi(x)dB⊗i(x),

then each of the functions hi(x) must satisfy

hi(x) = 0 almost surely outside {x;xj ≤ t0 for j = 1, 2, . . . , n}.

Therefore the symmetrized tensor product of χ[t0,t1](s) and hi(x1, . . . , xn)
is given by (with xn+1 = s)

(χ[t0,t1]⊗̂hi)(x1, . . . , xn+1) =
h(y)
n + 1

χ[t0,t1](max
j
{xj}),

where y = (y1, y2, . . . , yn) is an arbitrary permutation of the remaining xi

when ỹ := xĵ := max
1≤i≤n+1

{xi} is removed. (For almost all (x1, . . . , xn+1)

there is a unique such ĵ.)
Since

B(t1)−B(t0) =
∫

R

χ[t0,t1](s)dB(s),

we get, by (2.4.3),

h � (B(t1)−B(t0))

=
∞∑

n=0

∫

Rn+1

(χ[t0,t1]⊗̂hi)(x1, . . . , xn+1)dB⊗(n+1)(x1, . . . , xn+1)
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=
∞∑

n=0

(n + 1)!

t1∫

0

xn−1∫

0

· · ·
x1∫

0

1
n + 1

χ[t0,t1](ỹ)h(y)dB(x1) · · · dB(xn+1)

=
∞∑

n=0

n!

t1∫

t0

⎡

⎣
t0∫

0

x2∫

0

h(x1, . . . , xn)dB(x1)dB(x2) · · ·

⎤

⎦ dB(xn+1)

=
∞∑

n=0

n!

( ∫ ∫

0≤x1≤x2≤···≤xn

h(x1, . . . , xn)dB(x1) · · · dB(xn)

)( t1∫

t0

dB(xn+1)

)

=
∞∑

n=0

∫

Rn

h(x)dB⊗n(x) ·
(
B(t1)−B(t0)

)
= h ·

(
B(t1)−B(t0)

)
.

��

An important property of the spaces (S)−1, (S)1 and (S)∗, (S) is that they
are closed under Wick products.

Lemma 2.4.4.

a) F,G ∈ (S)m;N
−1 ⇒ F �G ∈ (S)m;1

−1 ;
b) f, g ∈ (S)m;N

1 ⇒ f � g ∈ (S)m;1
1 ;

c) F,G ∈ (S)∗,N ⇒ F �G ∈ (S)∗,1;
d) f, g ∈ (S)N ⇒ f � g ∈ (S).

Proof We may assume N = 1.

a) Take F =
∑

α aαHα, G =
∑

β bβHβ ∈ (S)−1. This means that there exist
q1 such that

∑

α

a2
α(2N)−q1α <∞ and

∑

β

b2
β(2N)−q1β <∞. (2.4.5)

We note that F � G =
∑

α,β aαbβHα+β =
∑

γ(
∑

α+β =γ aαbβ)Hγ and then
set cγ =

∑
α+β =γ aαbβ . With q = q1 + k we have

∑

γ

(2N)−qγc2
γ =

∑

γ

(2N)−kγ(2N)−q1γ

( ∑

α + β =γ

aαbβ

)2

≤
∑

γ

(2N)−kγ(2N)−q1γ

( ∑

α+β=γ

a2
α

)( ∑

α + β = γ

b2
β

)

=
∑

γ

(2N)−kγ

( ∑

α+β =γ

a2
α(2N)−q1α

)( ∑

α+β =γ

b2
β(2N)−q1β

)

≤
(∑

γ

(2N)−kγ

)(∑

α

a2
α(2N)−q1α

)(∑

β

b2
β(2N)−q1β

)

<∞

(2.4.6)

for k > 1, by Proposition 2.3.3. The proofs of b), c) and d) are similar. ��
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The following basic algebraic properties of the Wick product follow directly
from the definition.

Lemma 2.4.5.

a) (Commutative law) F,G ∈ (S)m;N
−1 ⇒ F �G = G � F .

b) (Associative law)

F,G,H ∈ (S)m;1
−1 ⇒ F � (G �H) = (F �G) �H.

c) (Distributive law)

F,A,B ∈ (S)m;N
−1 ⇒ F � (A + B) = F �A + F �B.

The Wick powers F �k; k = 0, 1, 2, . . . of F ∈ (S)−1 are defined inductively
as follows:

{
F �0 = 1
F �k = F � F �(k−1) for k = 1, 2, . . . .

(2.4.7)

More generally, if p(x) =
∑N

n=0 anxn; an ∈ R, x ∈ R, is a polynomial,
then we define its Wick version

p� : (S)−1 → (S)−1

by

p�(F ) =
N∑

n=0

anF �n for F ∈ (S)−1. (2.4.8)

Later we will extend this construction to more general functions than
polynomials (see Section 2.6).

2.4.1 Some Examples and Counterexamples

For simplicity, we will assume that we have N = m = d = 1 in this paragraph.
If F,G ∈ Lp(μ) for p > 1, then it also makes sense to consider the ordinary
(pointwise) product

(F ·G)(ω) = F (ω) ·G(ω).

How does this product compare to the Wick product (F �G)(ω)? This is a
difficult question in general. Let us first consider some illustrating examples:

Example 2.4.6. Suppose at least one of F and G is deterministic, e.g.,
that F = a0 ∈ R. Then

F �G = F ·G.
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Hence the Wick product coincides with the ordinary product in the deter-
ministic case. In particular, if F = 0, then F �G = 0.

Example 2.4.7. Suppose F,G ∈ L2(μ) are both Gaussian, i.e.,

F (ω) = a0 +
∞∑

k=1

akHε(k)(ω), G(ω) = b0 +
∞∑

l=1

blHεl
(ω), (2.4.9)

where
∞∑

k=1

a2
k <∞,

∞∑

l=1

b2
l <∞.

Then we have

(F �G)(ω) = a0b0 +
∞∑

k,l=1

akblHε(k)+εl
(ω).

Now

hε(k)+εl
=

{
hε(k)hεl

for k �= l

h2
ε(k) − 1 for k = l.

Hence

(F �G)(ω) = F (ω) ·G(ω)−
∞∑

k=1

akbk. (2.4.10)

This result can be restated in terms of Itô integrals, as follows: We may
write

F (ω) = a0 +
∫

R

f(t)dB(t), (2.4.11)

where f(t) =
∑∞

k=1 akξk(t) ∈ L2(R), and, similarly,

G(ω) = b0 +
∫

R

g(t)dB(t), (2.4.12)

with g(t) =
∑∞

k=1 bkξk(t) ∈ L2(R). Then (2.4.10) states that
(∫

R

f(t)dB(t)

)

�
(∫

R

g(t)dB(t)

)

=

(∫

R

f(t)dB(t)

)

·
(∫

R

g(t)dB(t)

)

−
∫

R

f(t)g(t)dt. (2.4.13)
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In particular, choosing f = g = χ[0,t] we obtain

B(t)�2 = B(t)2 − t. (2.4.14)

Note, in particular, that B(t)�2 is not positive (but see Example 2.6.15).
Similarly, for the smoothed white noise we obtain

w(φ) � w(ψ) = w(φ) · w(ψ)− (φ, ψ) (2.4.15)

for φ, ψ ∈ L2(Rd) with (φ, ψ) =
∫

Rd

φ(x)ψ(x)dx. (See Exercise 2.9.)

Note that if ψ = φ and ‖φ‖ = 1, this can be written

w(φ)�2 = h2(w(φ)); ‖φ‖ = 1. (2.4.16)

This suggests the general formula

w(φ)�n = hn(w(φ)); ‖φ‖ = 1. (2.4.17)

To prove (2.4.17) we use that the Wick product is independent of the
choice of basis elements of L2(Rd). (See Appendix D.) In this case, where
w(φ) and its Wick powers all belong to L2(μ), the basis independence follows
from Proposition 2.4.2. Therefore, we may assume that φ = η1, and then

w(φ)�n = h1(〈ω, η1〉)�n = H�n
ε1 (ω) = Hnε1(ω)

= hn(〈ω, η1〉) = hn(w(φ)).

Example 2.4.8 Gjessing (1993). The Lp(μ) spaces are not closed under
Wick products.

For example, choose φ ∈ S(Rd) with ‖φ‖L2 = 1, put θ(ω) = 〈ω, φ〉 and
define

X(ω) =

{
1 if 〈ω, φ〉 ≥ 0
0 if 〈ω, φ〉 < 0.

Then

X ∈ L∞(μ) but X�2 /∈ L2(μ).

Example 2.4.9 Gjessing (1993). Independence of X and Y is not enough
to ensure that

X � Y = X · Y.

To see this, let X, θ be as in the previous example. Then Y = θ�2 = θ2− 1
is independent of X, but X � Y and X · Y are not equal. In fact, they do not
even have the same second moments. See, however, Propositions 8.2 and 8.3
in Benth and Potthoff (1996).
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Example 2.4.10 Gjessing (1993). The Wick product is not local, i.e.,
the value of (X � Y )(ω0) is not (in general) determined by the values of X
and Y in a neighborhood V of ω0 in S ′(Rd).

2.5 Wick Multiplication and Hitsuda/Skorohod
Integration

In this section we put N = m = d = 1 for simplicity. One of the most striking
features of the Wick product is its relation to Hitsuda/Skorohod integration.
In short, this relation can be expressed as

∫

R

Y (t)δB(t) =
∫

R

Y (t) �W (t)dt. (2.5.1)

Here the left-hand side denotes the Hitsuda/Skorohod integral of the
stochastic process Y (t) = Y (t, ω) (which coincides with the Itô integral if
Y (t) is adapted; see Appendix B), while the right-hand side is to be inter-
preted as an (S)∗-valued (Pettis) integral. Strictly speaking the right-hand
side of (2.5.1) represents a generalization of the Hitsuda/Skorohod integral.
For simplicity we will call this generalization the Skorohod integral.

The relation (2.5.1) explains why the Wick product is so natural and
important in stochastic calculus. It is also the key to the fact that Itô cal-
culus (with Itô’s formula, etc.) with ordinary multiplication is equivalent to
ordinary calculus with Wick multiplication. To illustrate the content of this
statement, consider the example with Y (t) = B(t) · χ[0,T ](t) in (2.5.1): Then
the left hand side becomes, by Itô’s formula,

T∫

0

B(t)dB(t) =
1
2
B2(T )− 1

2
T (assuming B(0) = 0), (2.5.2)

while (formal) Wick calculation makes the right hand side equal to

T∫

0

B(t) �W (t)dt =

T∫

0

B(t) �B′(t)dt =
1
2
B(T )�2, (2.5.3)

which is equal to (2.5.2) by virtue of (2.4.14).
This computation will be made rigorous later (Example 2.5.11), and we

will illustrate applications of this principle in Chapters 3 and 4.
Various versions of (2.5.1) have been proved by several authors. A version

involving the operator ∂∗
t is proved in Hida et al. (1993), see Theorem 8.7 and

subsequent sections. In Lindstrøm et al. (1992), a formula of the type (2.5.1)
is proved, but under stronger conditions than necessary. In Benth (1993), the
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result was extended to be valid under the sole condition that the left hand
side exists. The proof we present here is based on Benth (1993). First we
recall the definition of the Skorohod integral:

Let Y (t) = Y (t, ω) be a stochastic process such that

E[Y (t)2] <∞ for all t. (2.5.4)

Then, by Theorem 2.2.7, Y (t) has a Wiener–Itô chaos expansion

Y (t) =
∞∑

n=0

∫

Rn

fn(s1, . . . , sn, t)dB⊗n(s1, . . . , sn), (2.5.5)

where fn(·, t) ∈ L̂2(Rn) for n = 0, 1, 2, . . . and for each t. Let

f̂n(s1, . . . , sn, sn+1)

be the symmetrization of fn(s1, . . . , sn+1) wrt the n + 1 variables s1, . . . , sn,
sn+1.

Definition 2.5.1. Assume that
∞∑

n=0

(n + 1)!‖f̂n‖2L2(Rn+1) <∞. (2.5.6)

Then we define the Skorohod integral of Y (t), denoted by
∫

R

Y (t)δB(t),

by

∫

R

Y (t)δB(t) =
∞∑

n=0

∫

Rn+1

f̂n(s1, . . . , sn+1)dB⊗(n+1)(s1, . . . , sn+1). (2.5.7)

By (2.5.6) and (2.5.7) the Skorohod integral belongs to L2(μ) and

∥
∥
∥
∥

∫

R

Y (t)δB(t)
∥
∥
∥
∥

2

L2(μ)

=
∞∑

n=0

(n + 1)!‖f̂n‖2L2(Rn+1). (2.5.8)

Note that we do not require that the process be adapted. In fact, the
Skorohod integral may be regarded as an extension of the Itô integral
to non-adapted (anticipating) integrands. This was proved in Nualart and
Zakai (1986). See also Theorem 8.5 in Hida et al. (1993), and the references
there. For completeness we include a proof here.
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First we need a result (of independent interest) about how to characterize
adaptedness of a process in terms of the coefficients of its chaos expansion.

Lemma 2.5.2. Suppose Y (t) is a stochastic process with E[Y 2(t)] <∞ for
all t and with the multiple Itô integral expansion

Y (t) =
∞∑

n=0

∫

Rn

fn(x, t)dB⊗n(x) with fn(·, t) ∈ L̂2(Rn) for all n.

(2.5.9)
Then Y (t) is Ft-adapted if and only if

suppfn(·, t) ⊂ {x ∈ R
n
+; xi ≤ t for i = 1, 2, . . . , n}, (2.5.10)

for all n.
Here support is interpreted as essential support with respect to Lebesgue

measure:

supp fn(·, t) =
⋂
{F ; F closed, fn(x, t) = 0 for a.e. x /∈ F}.

Proof We first observe that for all n and all f ∈ L̂2(Rn), we have

E

[∫

Rn

f(x)dB⊗n(x)
∣
∣Ft

]

= E

[

n!

∞∫

−∞

tn∫

−∞

t2∫

−∞

f(t1, . . . , tn)dB(t1)dB(tn)
∣
∣Ft

]

= n!

t∫

0

tn∫

0

t2∫

0

f(t1, . . . , tn)dB(t1)dB(tn) =
∫

Rn

f(x)χ[0,t]n (x)dB⊗n(x).

Therefore we get

Y (t) is Ft-adapted
⇔ E [Y (t)|Ft] = Yt for all t

⇔
∞∑

n=0

E

⎡

⎣
∫

Rn

fn(x, t)dB⊗n(x)|Ft

⎤

⎦ =
∞∑

n=0

∫

Rn

fn(x, t)dB⊗n(x)

⇔
∞∑

n=0

∫

Rn

fn(x, t)χ[0,t]n (x)dB⊗n(x) =
∞∑

n=0

∫

Rn

fn(x, t)dB⊗n(x)

⇔ fn(x, t)χ[0,t]n (x) = fn(x, t) for all t and almost all x,

by the uniqueness of the expansion. ��
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The corresponding characterization for Hermite chaos expansions is

Lemma 2.5.3. Suppose Y (t) is a stochastic process with E[Y 2(t)] <∞ for
all t and with the Hermite chaos expansion

Y (t) =
∑

α

cα(t)Hα(ω). (2.5.11)

Then Y (t) is Ft-adapted if and only if

supp
{ ∑

|α|=n

cα(t)ξ⊗̂α(x)
}

⊂ {x ∈ R
n; xi ≤ t for i = 1, . . . , n} (2.5.12)

for all n.

Proof This follows from Lemma 2.5.2 and (2.2.33). ��

Proposition 2.5.4. Suppose Y (t) is an Ft-adapted stochastic process such
that

∫

R

E[Y 2(t)]dt <∞.

Then Y (t) is both Skorohod-integrable and Itô integrable, and the two
integrals coincide:

∫

R

Y (t)δB(t) =
∫

R

Y (t)dB(t). (2.5.13)

Proof Suppose Y (t) has the expansion

Y (t) =
∞∑

n=0

∫

Rn

fn(x, t)dB⊗n(x); fn(·, t) ∈ L̂2(Rn) for all n.

Since Y (t) is adapted we know that fn(x1, x2, . . . , xn, t) = 0 if
max1≤i≤n{xi} > t, a.e.

Therefore, the symmetrization f̂n(x1, . . . , xn, t) of fn(x1, . . . , xn, t) satis-
fies (with xn+1 = t)

f̂n(x1, . . . , xn, xn+1) =
1

n + 1
f(y1, . . . , yn, max

1≤i≤n+1
{xi}),

where (y1, . . . , yn) is an arbitrary permutation of the remaining xj when
the maximum value xĵ := max1≤i≤n+1{xi} is removed. This maximum is
obtained for a unique ĵ, for almost all x ∈ R

n+1 with respect to Lebesgue
measure.
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Hence the Itô integral of Y (t) is
∫

R

Y (t)dB(t)

=
∞∑

n=0

∫

R

( ∫

Rn

fn(x1, . . . , xn, t)dB⊗n(x)

)

dB(t)

=
∞∑

n=0

n!
∫

R

( t∫

−∞

xn∫

−∞

· · ·
x2∫

−∞

fn(x1, . . . , xn, t)dB(x1) · · · dB(xn)

)

dB(t)

=
∞∑

n=0

n!(n + 1)

∞∫

−∞

xn+1∫

−∞

xn∫

−∞

·
x2∫

−∞

f̂n(x1, . . . , xn, xn+1)dB(x1) · dB(xn)dB(xn+1)

=
∞∑

n=0

∫

Rn+1

f̂n(x1, . . . , xn, xn+1)dB⊗(n+1)(x1, . . . , xn, xn+1)

=
∫

R

Y (t)δB(t),

as claimed. ��
We now proceed to consider integrals with values in (S)∗.

Definition 2.5.5. A function Z(t) : R → (S)∗ (also called an (S)∗-valued
process) is called (S)∗-integrable if

〈Z(t), f〉 ∈ L1(R, dt) for all f ∈ (S). (2.5.14)

Then the (S)∗-integral of Z(t), denoted by
∫

R
Z(t)dt, is the (unique)

(S)∗-element such that
〈∫

R

Z(t)dt, f〉 =
∫

R

〈Z(t), f
〉

dt; f ∈ (S). (2.5.15)

Remark It is a consequence of Proposition 8.1 in Hida et al. (1993) that
(2.5.15) defines

∫

R

Z(t)dt as an element in (S)∗.

Lemma 2.5.6. Assume that Z(t) ∈ (S)∗ has the chaos expansion

Z(t) =
∑

α

cα(t)Hα, (2.5.16)

where
∑

α

α!‖cα‖2L1(R)(2N)−pα <∞ for some p <∞. (2.5.17)
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Then Z(t) is (S)∗-integrable and
∫

R

Z(t)dt =
∑

α

∫

R

cα(t)dtHα. (2.5.18)

Proof Let f =
∑

α
aαHα ∈ (S). Then by (2.5.17)

∫

R

|〈Z(t), f〉|dt =
∫

R

∣
∣
∣
∣
∑

α

α!aαcα(t)
∣
∣
∣
∣dt ≤

∑

α

α!|aα|‖cα‖L1(R)

=
∑

α

√
α!|aα|(2N)

αp
2
√

α!‖cα‖L1(R)(2N)−
αp
2

≤
(
∑

α

α!a2
α(2N)αp

) 1
2
(
∑

α

α!‖cα‖2L1(R)(2N)−αp

) 1
2

<∞.

Hence Z(t) is (S)∗-integrable and
〈∫

R

Z(t)dt, f

〉

=
∫

R

〈Z(t), f〉dt =
∫

R

∑

α

α!aαcα(t)dt

=
∑

α

α!aα

∫

R

cα(t)dt =
〈∑

α

∫

R

cα(t)dtHα, f

〉

,

which proves (2.5.18). ��

Lemma 2.5.7. Suppose

Y (t) =
∑

α

cα(t)Hα ∈ (S)∗ for all t ∈ R,

and that there exists q <∞ such that

K := sup
α
{α!‖cα‖2L1(R)(2N)−qα} <∞. (2.5.19)

Choose φ ∈ S(R). Then Y (t) �W (t) and Y (t) �Wφ(t) (with Wφ(t) as in
(2.1.15)) are both (S)∗-integrable and

∫

R

Y (t) �W (t)dt =
∑

α,k

∫

R

cα(t)ξk(t)dtHα+ε(k) (2.5.20)

and
∫

R

Y (t) �Wφ(t)dt =
∑

α,k

∫

R

cα(t)(φt(·), ξk)dtHα+ε(k) . (2.5.21)
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Proof We prove (2.5.20), the proof of (2.5.21) being similar. Since

Y (t) �W (t) =
∑

α,k

cα(t)ξk(t)Hα+ε(k) =
∑

β

∑

α,k
α+ε(k)=β

cα(t)ξk(t)Hβ ,

the result follows from Lemma 2.5.6 if we can verify that

M(p) :=
∑

β

β!

∥
∥
∥
∥
∥

∑

α,k
α+ε(k)=β

cα(t)ξk(t)

∥
∥
∥
∥
∥

2

L1(R)

(2N)−pβ <∞

for some p <∞.
By (2.2.5) we have, for some constant C <∞,

∫

R

|cα(t)||ξk(t)|dt ≤ C

∫

R

|cα(t)|dt = C‖cα‖L1(R).

Note that for each β, α there is at most one k such that α + ε(k) = β.
Therefore

∥
∥
∥
∥
∥

∑

α,k
α+ε(k)=β

cα(t)ξk(t)

∥
∥
∥
∥
∥

2

L1(R)

≤
[

∑

α,k
α+ε(k)=β

‖cαξk‖L1(R)

]2

≤ C2

[
∑

α,k
α+ε(k)=β

‖cα‖L1(R)

]2

≤ C2(l(β))2
∑

α
∃k,α+ε(k)=β

‖cα‖2L1(R),

where l(β) is the number of nonzero elements of β, i.e., l(β) is the length of
β. We conclude that

M(2q) ≤ C2
∑

α,k

(α + ε(k))!(l(α + ε(k)))2‖cα‖2L1(R)(2N)−2q(α+ε(k))

≤ C2K
∑

α,k

(α + ε(k))!
α!

(l(α + ε(k)))2(2N)−qα(2N)−2qε(k)

≤ C2K
∑

α,k

(|α|+ 1)32−|α|qk−2q <∞ for q >
1
2
.

��

Corollary 2.5.8. Let Y (t) =
∑

α cα(t)Hα be a stochastic process such
that

∫ b

a
E[Y 2

t ]dt < ∞ for some a, b ∈ R, a < b. Then Y (t) � W (t) is
(S)∗-integrable over [a, b] and
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b∫

a

Y (t) �W (t)dt =
∑

α,k

b∫

a

cα(t)ξk(t)dtHα+ε(k) . (2.5.22)

Proof We have

∑

α

α!

b∫

a

c2
α(t)dt =

b∫

a

E[Y (t)2]dt <∞,

hence (2.5.19) holds, so by Lemma 2.5.7 the corollary follows.
We are now ready to prove the main result of this section. ��

Theorem 2.5.9. Assume that Y (t) =
∑

α cα(t)Hα is a Skorohod-integrable
stochastic process. Let a, b ∈ R, a < b. Then Y (t) �W (t) is (S)∗-integrable
over [a, b] and we have

b∫

a

Y (t)δB(t) =

b∫

a

Y (t) �W (t)dt. (2.5.23)

Proof By the preceding corollary and by replacing cα(t) by cα(t)χ[a,b](t),
we see that it suffices to verify that

∫

R

Y (t)δB(t) =
∑

α,k

(cα, ξk)Hα+ε(k) , (2.5.24)

where (cα, ξk) =
∫

R
cα(t)ξk(t)dt. This will be done by computing the left-

hand side explicitly: Let Y (t) =
∑∞

n=0

∫

Rn

fn(u1, . . . , un, t)dB⊗n(u1, . . . , un).

Then by (2.2.33) we have

Y (t) =
∞∑

n=0

∫

Rn

∑

|α|=n

cα(t)ξ⊗̂α(u1, . . . , un)dB⊗n(u1, . . . , un)

=
∞∑

n=0

∫

Rn

∑

|α|=n

∞∑

k=1

(cα, ξk)ξk(t)ξ⊗̂α(u1, . . . , un)dB⊗n(u1, . . . , un).

Now the symmetrization of

ξk(u0)ξ⊗̂α(u1, . . . , un) = ξk(u0)(ξ⊗α1
1 ⊗̂ · · · ⊗̂ξ

⊗αj

j )(u1, . . . , un),

where α = (α1, . . . , αj), as a function of u0, . . . , un is simply

ξ⊗̂(α+ε(k)) = ξ⊗α1
1 ⊗̂ · · · ⊗̂ξ

⊗(αk+1)
k ⊗̂ · · · ⊗̂ξ

⊗αj

j . (2.5.25)
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Therefore the Skorohod integral of Y (s) becomes, by (2.5.7) and (2.2.30),

∫

R

Y (t)δB(t) =
∞∑

n=0

∫

Rn+1

∑

|α|=n

∞∑

k=1

(cα, ξk)ξ⊗̂(α+ε(k))dB⊗(n+1)

=
∞∑

n=0

∑

|α|=n

∞∑

k=1

(cα, ξk)Hα+ε(k) =
∑

α,k

(cα, ξk)Hα+ε(k) ,

as claimed. ��

To illustrate the contents of these results, we consider some simple examples.

Example 2.5.10. It is immediate from the definition that
t∫

0

1δB(s) = B(t)

(assuming, as before, B(0) = 0), so from Theorem 2.5.9 we have

B(t) =

t∫

0

W (s)ds. (2.5.26)

In other words, we have proved that as elements of (S)∗ we have

dB(t)
dt

= W (t), (2.5.27)

where differentiation is in (S)∗ (compare with (2.1.17)).
More generally, if we choose Y (t) to be deterministic, Y (t, ω) = ψ(t) ∈

L2(R), then by Theorem 2.5.9 and Proposition 2.5.4
∫

R

ψ(t)dB(t) =
∫

R

ψ(t)δB(t) =
∫

R

ψ(t) �W (t)dt. (2.5.28)

Example 2.5.11. Let us apply Theorem 2.5.9 and Corollary 2.5.8 to com-
pute the Skorohod integral

t∫

0

B(s)δB(s) =

t∫

0

B(s) �W (s)ds.

From Example 2.2.5 we know that

B(s) =
∞∑

j=1

s∫

0

ξj(r)drHε(j)(ω),
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which substituted in (2.5.22) gives

t∫

0

B(s)δB(s) =
∑

j,k

t∫

0

s∫

0

ξj(r)drξk(s)dsHε(j)+ε(k) .

Integration by parts gives

t∫

0

s∫

0

ξj(r)drξk(s)ds =

t∫

0

ξj(r)dr

t∫

0

ξk(s)ds−
t∫

0

s∫

0

ξk(s)dsξj(r)dr.

Hence, by the symmetry of j and k,

t∫

0

B(s)δB(s) =
1
2

∑

j,k

t∫

0

ξj(r)dr

t∫

0

ξk(s)dsHε(j)+ε(k) .

By the Wick product definition (2.4.2) this is equal to 1
2B(t)�B(t). Hence

we obtain, using (2.4.14), the familiar formula
t∫

0

B(s)dB(s) =

t∫

0

B(s)δB(s) =
1
2
B(t)�2 =

1
2
B2(t)− 1

2
t.

We can more easily obtain this formula if we use (2.5.27) and work in (S)∗.
Then

t∫

0

B(s)δB(s) =

t∫

0

B(s) �W (s)ds =

t∫

0

B(s) �B′(s)ds

=

t∣
∣
∣
∣
0

1
2
B(s)�2 =

1
2
B(t)�2 =

1
2
B2(t)− 1

2
t.

Corollary 2.5.12. Suppose that Y (t) = Y (t, ω) is Skorohod-integrable, that
h(ω) ∈ (S)∗ does not depend on t and that h � Y (t) is Skorohod-integrable.
Then for a < b we have

b∫

a

h � Y (t)δB(t) = h �
b∫

a

Y (t)δB(t). (2.5.29)

Proof By Theorem 2.5.9 we have
b∫

a

h � Y (t)δB(t) =

b∫

a

h � Y (t) �W (t)dt = h �
b∫

a

Y (t)δB(t).

��
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Example 2.5.13. Choose Y (t) = χ[a,b](t)h(ω), with h ∈ L2(μ1), a < b.
Then the Skorohod integral becomes

b∫

a

h(ω)δBs(ω) =

b∫

a

h(ω) �W (s)ds = h(ω) � (B(b)−B(a)). (2.5.30)

Finally, we state and prove a smoothed version of Theorem 2.5.9.

Theorem 2.5.14. Let Y (t) = Y (t, ω) be a stochastic process such that
∫

R

E[Y 2(t)]dt <∞. (2.5.31)

Choose φ ∈ S(R) and let

(φ ∗ Y )(t, ω) =
∫

R

φ(t− s)Y (s, ω)ds (2.5.32)

be the convolution of φ and Y (·, ω), for almost all ω. Suppose (φ ∗ Y )(t) is
Skorohod-integrable. Then Y (t) �Wφ(t) is (S)∗-integrable, and we have

∫

R

(φ ∗ Y )(t)δB(t) =
∫

R

Y (t) �Wφ(t)dt. (2.5.33)

Proof Suppose Y (s) has the expansion

Y (s) =
∑

α

cα(s)Hα.

Then by (2.5.31) and Lemma 2.5.7 Y (t) �Wφ(t) is (S)∗-integrable. Applying
Theorem 2.5.9 with Y (t) replaced by (φ ∗ Y )(t), we get, by (2.1.18),

∫

R

(φ ∗ Y )(t)δB(t) =
∫

R

(φ ∗ Y )(t) �W (t)dt

=
∫

R

(∫

R

φ(t− s)Y (s)ds

)

�W (t)dt

=
∫

R

Y (s) �
∫

R

φ(t− s)W (t)dtds =
∫

R

Y (s) �Wφ(s)ds.

��
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2.6 The Hermite Transform

Since the Wick product satisfies all the ordinary algebraic rules for multipli-
cation, one can carry out calculations in much the same way as with usual
products. Problems arise, however, when limit operations are involved. To
handle these situations it is convenient to apply a transformation, called the
Hermite transform or the H-transform, which converts Wick products into
ordinary (complex) products and convergence in (S)−1 into bounded, point-
wise convergence in a certain neighborhood of 0 in C

N. This transform, which
first appeared in Lindstrøm et al. (1991), has been applied by the authors
in many different connections. We will see several of these applications later.
We first give the definition and some of its basic properties.

Definition 2.6.1. Let F =
∑

α bαHα ∈ (S)N
−1 with bα ∈ R

N as in
Definition 2.3.2. Then the Hermite transform of F , denoted by HF or F̃ ,
is defined by

HF (z) = F̃ (z) =
∑

α

bαzα ∈ C
N (when convergent), (2.6.1)

where z = (z1, z2, . . .) ∈ C
N (the set of all sequences of complex numbers)

and
zα = zα1

1 zα2
2 · · · zαn

n · · · (2.6.2)

if α = (α1, α2, . . .) ∈ J , where z0
j = 1.

Example 2.6.2 (N = m = 1).

i) The 1-dimensional smoothed white noise w(φ) has chaos expansion
(see (2.2.23))

w(φ, ω) =
n∑

j =1

(φ, ηj)Hε(j)(ω), (2.6.3)

and therefore the Hermite transform w̃(φ) of w(φ) is

w̃(φ)(z) =
∞∑

j =1

(φ, ηj)zj , (2.6.4)

which is convergent for all z = (z1, z2, . . .) ∈ (CN)c.

ii) The 1-dimensional (d-parameter) Brownian motion B(x) has chaos
expansion (see (2.2.24))

B(x, ω) =
∞∑

j =1

x∫

0

ηj(u)duHε(j)(ω), (2.6.5)
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and therefore

B̃(x)(z) =
∞∑

j =1

x∫

0

ηj(u)duzj ; z = (z1, z2, . . .) ∈ (CN)c, (2.6.6)

where (CN)c is the set of all finite sequences in C
N.

iii) The 1-dimensional singular white noise W (x, ω) has the expansion (see
(2.2.23))

W (x, ω) =
∞∑

j =1

ηj(x)Hε(j)(ω), (2.6.7)

and therefore

W̃ (x)(z) =
∞∑

j =1

ηj(x)zj ; z = (z1, z2, . . .) ∈ (CN)c. (2.6.8)

Example 2.6.3 (N = m > 1).

i) The m-dimensional smoothed white noise w(φ) has chaos expansion
(see (2.2.25))

w(φ, ω) = (w1(φ, ω), . . . , wm(φ, ω)),

with

wi(φ, ω) = w(φi, ωi)

=
∞∑

j =1

(φi, ηj)Hεi+(j−1)m
(ω); 1 ≤ i ≤ m. (2.6.9)

Hence the Hermite transform of coordinate wi(φ, ω) of w(φ, ω) is, for
z ∈ (CN)c,

w̃i(φ)(z) =
∞∑

j =1

(φi, ηj)z(j−1)i+m

= (φi, η1)zi + (φi, η2)zi+m + (φi, η3)zi+2m + · · · ; 1 ≤ i ≤ m.
(2.6.10)

Note that different components of w involve disjoint families of
zk-variables when we take the H-transform.

ii) For the m-dimensional d-parameter Brownian motion

B(x, ω) = (B1(x, ω), . . . , Bm(x, ω))
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we have (see (2.2.26))

Bi(x, ω) =
∞∑

j=1

x∫

0

ηj(u)duHεi+(j−1)m
(2.6.11)

and hence

B̃i(x)(z) =
∞∑

j=1

x∫

0

ηj(u)du zi+(j−1)m; 1 ≤ i ≤ m. (2.6.12)

iii) The m-dimensional singular white noise

W(x, ω) = (W1(x, ω), . . . , Wm(x, ω))

has expansion (see (2.3.34))

Wi(x) =
∞∑

j=1

ηj(x)Hεi+(j−1)m
; 1 ≤ i ≤ m, (2.6.13)

and therefore

W̃i(x)(z) =
∞∑

j=1

ηj(x)zi+(j−1)m; 1 ≤ i ≤ m, z ∈ (CN)c. (2.6.14)

Note that if F =
∑

α bαHα ∈ (S)N
−ρ for ρ < 1, then (HF )(z1, z2, . . .)

converges for all finite sequences (z1, z2, . . .) of complex numbers. To see this
we write
∑

α

|bα‖zα| =
∑

α

|bα|(α!)
(1−ρ)

2 (α!)
(ρ−1)

2 |zα|(2N)−
αq
2 (2N)

αq
2

≤
(
∑

α

|bα|2(α!)1−ρ(2N)−αq

) 1
2
(
∑

α

|zα|2(α!)ρ−1(2N)αq

) 1
2

.

(2.6.15)

Now if z = (z1, . . . , zn) with |zj | ≤M , then
∑

α

|zα|2(α!)ρ−1(2N)αq ≤
∑

α

M2|α|(α!)ρ−12q|α|nq|α| <∞ (2.6.16)

for all q <∞. If q is large enough, then by Proposition 2.3.3, the expression
(2.6.15) is finite.

If F ∈ (S)N
−1, however, we can only obtain convergence of HF (z1, z2, . . .)

in a neighborhood of the origin. We have
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∑

α

|bα‖zα| ≤
(
∑

α

b2
α(2N)−αq

) 1
2
(
∑

α

|zα|2(2N)αq

) 1
2

(2.6.17)

where the first factor on the right hand side converges for q large enough. For
such a value of q we have convergence of the second factor if z ∈ C

N with

|zj | < (2j)−q for all j.

Definition 2.6.4. For 0 < R, q < ∞, define the infinite-dimensional
neighborhoods Kq(R) of 0 in C

N by

Kq(R) =

⎧
⎨

⎩
(ζ1, ζ2, . . .) ∈ C

N;
∑

α�=0

|ζα|2(2N)qα < R2

⎫
⎬

⎭
. (2.6.18)

Note that
q ≤ Q, r ≤ R⇒ KQ(r) ⊂ Kq(R). (2.6.19)

For any q <∞, δ > 0 and natural number k, there exists ε > 0 such that

z = (z1, . . . , zk) ∈ C
k and |zi| < ε; 1 ≤ i ≤ k ⇒ z ∈ Kq(δ). (2.6.20)

The conclusions above can be stated as follows:

Proposition 2.6.5. a) If F ∈ (S)N
−ρ for some ρ ∈ [−1, 1), then the Hermite

transform (HF )(z) converges for all z ∈ (CN)c.

b) If F ∈ (S)N
−1, then there exists q < ∞ such that (HF )(z) converges for

all z ∈ Kq(R) for all R <∞.

One of the reasons why the Hermite transform is so useful, is the
following result, which is an immediate consequence of Definition 2.4.1 and
Definition 2.6.1.

Proposition 2.6.6. If F,G ∈ (S)N
−1, then

H(F �G)(z) = HF (z) · HG(z) (2.6.21)

for all z such that HF (z) and HG(z) exist. The product on the right hand
side of (2.6.21) is the complex bilinear product between two elements of C

N

defined by

(ζ1, . . . , ζN ) · (w1, . . . , wN ) =
N∑

i=1

ζiwi; ζi, wi ∈ C.

Note that there is no complex conjugation in this definition.
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Example 2.6.7. Referring to Examples 2.6.2 and 2.6.3, we get the following
Hermite transforms:

(i) H(w�2(φ))(z) =
∞∑

j,k=1

(φ, ηj)(φ, ηk)zjzk

(ii) H(B�2(x))(z) =
∞∑

j,k=1

(
x∫

0

ηj(u)du

)(
x∫

0

ηk(u)du

)

zjzk

(iii) H(W �3(x))(z) =
∞∑

i,j,k=1

ηi(x)ηj(x)ηk(x)zizjzk

(iv) H(W1(x) �W2(x))(z) =
( ∞∑

j =1

ηj(x)z2j−1

)

·
( ∞∑

k=1

ηk(x)z2k

)

=
∞∑

j,k=1

ηj(x)ηk(x)z2j−1z2k; z = (z1, z2, . . .).

The Characterization Theorem for (S)N
−1

Proposition 2.6.5 states that the H-transform of any F ∈ (S)N
−1 is a C

N -
valued analytic function on Kq(R) for all R < ∞, if q < ∞ is large enough.
It is natural to ask if the converse is true: Is every C

N -valued analytic function
g on Kq(R) (for some R < ∞, q < ∞) the H-transform of some element in
(S)N

−1? The answer is yes, if we add the condition that g be bounded on some
Kq(R) (see Theorem 2.6.11).

To prove this, we first establish some auxiliary results. We say that a
formal power series in infinitely many complex variables z1, z2, . . .

g(z) =
∑

α

aαzα; aα ∈ C
N , z = (z1, z2, . . .)

is convergent at z if
∑

α

|aα||zα| <∞. (2.6.22)

If this holds, the series has a well-defined sum that we denote by g(z).

Proposition 2.6.8. Let g(z) =
∑

α aαzα, aα ∈ C
N , z = (z1, z2, . . .)

be a formal power series in infinitely many variables. Suppose there exist
q < ∞,M < ∞ and δ > 0 such that g(z) is convergent for z ∈ Kq(δ) and
|g(z)| ≤M for all z ∈ Kq(δ).
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Then ∑

α

|aαzα| ≤M A(q) for all z ∈ K3q(δ),

where, by Proposition 2.3.3,

A(q) :=
∑

α

(2N)−qα <∞ for q > 1.

To prove this proposition we need the two lemmas below.

Lemma 2.6.9. Suppose f(z) =
∑∞

k=0 akzk is an analytic function in one
complex variable z such that

sup
|z|≤r

|f(z)| ≤M. (2.6.23)

Then |akzk| ≤M for all k and all z with |z| ≤ r.

Proof By the Cauchy formula

f (k)(z) =
k!
2πi

∫

|ζ|=r

f(ζ)
(ζ − z)k+1

dζ, for |z| < r, (2.6.24)

and we have
|f (k)(0)| ≤ k!r−kM. (2.6.25)

Hence

|akzk| =
∣
∣
∣
∣
∣
f (k)(0)

k!
zk

∣
∣
∣
∣
∣
≤M

∣
∣
∣
z

r

∣
∣
∣
k

≤M, for |z| ≤ r. (2.6.26)

��

Lemma 2.6.10. Let g(z) =
∑

α aαzα be an analytic function in n complex
variables such that there exists M <∞ and c1, . . . , cn > 0, δ > 0 such that

|g(z)| ≤M, (2.6.27)

when z ∈ K := {z = (z1, . . . , zn) ∈ C
n; c1|z1|2 + · · · + cn|zn|2 ≤ δ2}. Then

|aαzα| ≤M for z ∈ K, for all α.

Proof Use the previous lemma and induction. For example, for n = 2 the
proof is the following: Write g(z1, z2) =

∑∞
k=0 Ak(z2)zk

1 . Fix z2 such that
c2z

2
2 ≤ δ2, and let

f(z1) =
∞∑

k=0

Ak(z2)zk
1 , for (z1, z2) ∈ K. (2.6.28)



2.6 The Hermite Transform 67

By the previous lemma we have |Ak(z2)zk
1 | ≤M for (z1, z2) ∈ K. Applying

the same lemma to

f(z2) = Ak(z2) =
∞∑

l=0

aklz
l
2, (2.6.29)

we get that |akl z
l
2| ≤ M

|zk
1 |

or |akl z
k
1zl

2| ≤M , as claimed. ��

Proof of Proposition 2.6.8 We may assume N = 1. Without loss of
generality we can assume that q is so large that

∑
α(2N)−qα < ∞, and we

put Q = 3q. Then by Lemma 2.6.10 we have

|aαwα| ≤M for all w ∈ Kq(δ). (2.6.30)

Choose z ∈ K3q(δ). Then if

wj = (2j)qzj , (2.6.31)

we have ∑

α

|wα|2(2N)qα =
∑

α

(2N)3qα|zα|2 < δ, (2.6.32)

so w ∈ Kq(δ). Therefore

∑

α

|aα‖zα| ≤
(
∑

α

|aα|2|zα|2(2N)qα

) 1
2
(
∑

α

(2N)−qα

) 1
2

=

(
∑

α

|aα|2|wα|2(2N)−qα

)(
∑

α

(2N)−qα

) 1
2

≤M
∑

α

(2N)−qα. (2.6.33)

��
Theorem 2.6.11 (Characterization theorem for (S)N−1). a) If F (ω) =∑

α aαHα(ω) ∈ (S)N
−1, where aα ∈ R

n, then there is q < ∞,Mq < ∞ such
that

|F̃ (z)| ≤
∑

α

|aα‖zα| ≤Mq

(
∑

α

(2N)qα|zα|2
) 1

2

for all z ∈ (CN)c.

(2.6.34)

In particular, F̃ is a bounded analytic function on Kq(R) for all R <∞.
b) Conversely, suppose g(z) =

∑
α bαzα is a given power series of z ∈ (CN)c

with bα ∈ R
N such that there exists q < ∞ and δ > 0, such that g(z) is

absolutely convergent when z ∈ Kq(δ) and

sup
z∈Kq(δ)

|g(z)| <∞. (2.6.35)
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Then there exists a unique G ∈ (S)N
−1 such that G̃ = g, namely

G(ω) =
∑

α

bαHα(ω). (2.6.36)

c) Let F =
∑

α cαHα(ω) ∈ (S)−1,−q. Then we have

sup
z∈Kq(R)

|HF (z)| ≤ R||F ||−1,−q for all R > 0

d) Suppose there exist q > 1, δ > 0 such that

Mq(δ) := sup
z∈Kq(δ)

∣
∣
∣
∣
∣

∑

α

cαzα

∣
∣
∣
∣
∣
<∞

Then there exists r ≥ q such that

Sr := sup
α
|cα|(2N)−rα ≤Mq(δ)A(q),

where
A(q) :=

∑

α

(2N)−qα (see Proposition 2.6.8),

and such that F :=
∑

α cαHα satisfies

||F ||−1,−2r ≤ A(q) sup
z∈Kq(δ)

|HF (z)|

e) For all R > 0, q > 1 there exist r ≥ q such that

sup
z∈Kq(R)

|HF (z)| ≤ R||F ||−1,−q ≤ R||F ||−1,−2r ≤ RA(q) sup
z∈Kq(R)

|HF (z)|

Proof a) We have

|F̃ (z)| ≤
∑

α

|aα||zα| ≤
(
∑

α

|aα|2(2N)−qα

) 1
2
(
∑

α

|zα|2(2N)qα

) 1
2

.

(2.6.37)
Since F ∈ (S)N

−1, we see that M2
q :=

∑
α |aα|2(2N)−qα < ∞ if q is large

enough.

b) Conversely, assume that (2.6.35) holds. For r < ∞ and k a natural
number, choose ζ = ζ(r,k) = (ζ1, ζ2, . . . , ζk) with

ζj = (2j)−r; 1 ≤ j ≤ k. (2.6.38)
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Then ∑

α

|ζα|2(2N)rα ≤
∑

α

(2N)−rα < δ2 (2.6.39)

if r is large enough, say r ≥ q1. Hence

ζ ∈ Kr(δ) for r ≥ q1.

By Proposition 2.6.8 we have
∑

α

|bα||zα| ≤M A(q) for z ∈ K3q(δ),

where M = sup{|g(z)|; z ∈ Kq(δ)}. Hence, if r ≥ max(3q, q1), we get
∑

α
Index α≤k

|bα|(2N)−rα =
∑

α
Index α≤k

|bα|ζα

=
∑

α
Index α≤k

|bα||ζα| ≤
∑

α

|bα||zα|

≤M A(q), for z ∈ K3q(δ), (2.6.40)

where Index α is the position of the last nonzero element in the sequence
(α1, α2, . . .).
Now let k →∞ to deduce that

K := sup
α
|bα|(2N)−rα <∞. (2.6.41)

This gives
∑

α

|bα|2(2N)−2rα ≤ K
∑

α

|bα|(2N)−rα <∞, (2.6.42)

and hence G :=
∑

α bαHα ∈ (S)−1 as claimed.

c) If z ∈ Kq(R) we have

|HF (z)| =
∣
∣
∣
∣
∣

∑

α

cαzα

∣
∣
∣
∣
∣

≤
∑

α

|cα|(2N)−
q
2 α|zα|(2N)

q
2 α

≤
(
∑

α

|zα|2(2N)qα

) 1
2
(
∑

α

|cα|2(2N)−qα

) 1
2

≤ R||F ||−1,−q
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d) Suppose Mq(δ) <∞. Then it follows as in (2.6.41) that there exists r ≥ q
such that Sr ≤Mq(δ)A(q) and

∥
∥
∥
∥
∑

α

cαHα

∥
∥
∥
∥

2

−1,−2r

=
∑

α

|cα|2(2N)−2rα

≤ Sr

∑

α

|cα|(2N)−rα

≤ SrMq(δ)A(q) ≤ A2(q)M2
q (δ)

e) This is a synthesis of c) and d).
��

From this we deduce the following useful result:

Theorem 2.6.12. Kondratiev et al. (1994), Theorem 12 (Analytic
functions operate on H-transforms). Suppose g = HX for some
X ∈ (S)N

−1, and let M ∈ N. Let f be a C
M -valued analytic function on a

neighborhood U of ζ0 := g(0) in C
N such that the Taylor expansion of f

around ζ0 has real coefficients. Then there exists a unique Y ∈ (S)M
−1 such

that
HY = f ◦ g. (2.6.43)

Proof Let r > 0 be such that

{ζ ∈ C
N ; |ζ − ζ0| < r} ⊂ U.

Then choose q <∞ such that g(z) is a bounded analytic function on Kq(1)
and such that

|g(z)− ζ0| <
r

2
for z ∈ Kq(1).

(This is possible by the estimate (2.6.37)). Then f ◦g is a bounded analytic
function on Kq(1), so the result follows from Theorem 2.6.11. ��

Definition 2.6.13 (Generalized expectation). Let X =
∑

α cαHα ∈
(S)N

−1. Then the vector c0 = X̃(0) ∈ R
N is called the generalized expectation

of X and is denoted by E[X]. In the case when X = F ∈ Lp(μ) for some p > 1
then the generalized expectation of F coincides with the usual expectation

E[F ] =
∫

S′

F (ω)dμ(ω).

To see this we note that for N = 1 the action of F ∈ Lp(μ) on f ∈
Lp(μ)∗ = Lq(μ) (where 1/p + 1/q = 1) is given by

〈F, f〉 = E[Ff ],
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so that, in particular,

E[F ] = 〈F, 1〉.

On the other hand, if F =
∑

α cαHα, then by (2.3.11)

〈F, 1〉 = c0 = F̃ (0).

So
E[F ] = c0 = F̃ (0) (2.6.44)

for F ∈ Lp(μ), p > 1, as claimed.
In fact, (2.6.43) also holds if F ∈ L1(μ) ∩ (S)−1. (See Exercise 2.10.)
Note that from this definition we have

E[X � Y ] = (E[X], E[Y ]) for all X,Y ∈ (S)N
−1, (2.6.45)

where (·, ·) denotes the inner product in R
N , and, in particular,

E[X � Y ] = E[X]E[Y ]; X,Y ∈ (S)−1. (2.6.46)

Thanks to Theorem 2.6.12 we can construct the Wick versions f� of
analytic functions f as follows:

Definition 2.6.14 (Wick versions of analytic functions). Let X ∈
(S)N

−1 and let f : U → C
M be an analytic function, where U is a neighborhood

of ζ0 := E[X]. Assume that the Taylor series of f around ζ0 has coefficients
in R

M . Then the Wick version f�(X) of f applied to X is defined by

f�(X) = H−1(f ◦ X̃) ∈ (S)M
−1. (2.6.47)

In other words, if f has the power series expansion

f(z) =
∑

aα(z − ζ0)α with aα ∈ R
M ,

then

f�(X) =
∑

aα(X − ζ0)�α ∈ (S)M
−1. (2.6.48)

Example 2.6.15. If the function f : C
N → C

M is entire, i.e., analytic in
the whole space C

N , then f�(X) is defined for all X ∈ (S)N
−1. For example,

i) The Wick exponential of X ∈ (S)−1 is defined by

exp� X =
∞∑

n=0

1
n!

X�n. (2.6.49)
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Using the Hermite transform we see that the Wick exponential has the
same algebraic properties as the usual exponential. For example,

exp�[X + Y ] = exp�[X] � exp�[Y ] ; X,Y ∈ (S)−1. (2.6.50)

ii) The analytic logarithm, f(z) = log z, is well-defined in any simply
connected domain U ⊂ C not containing the origin. If we require that
1 ∈ U , then we can choose the branch of f(z) = log z with f(1) = 0. For
any X ∈ (S)−1 with E[X] �= 0, choose a simply connected U ⊂ C \ {0}
such that {1, E[X]} ⊂ U and define the Wick-logarithm of X, log� X, by

log� X = H−1(log(X̃(z)) ∈ (S)−1). (2.6.51)

If E[X] �= 0, we have
exp�(log�(X)) = X. (2.6.52)

For all X ∈ (S)−1, we have

log�(exp� X) = X. (2.6.53)

Moreover, if E[X] �= 0 and E[Y ] �= 0, then

log�(X � Y ) = log� X + log� Y. (2.6.54)

iii) Similarly, if E[X] �= 0, we can define the Wick inverse X�(−1) ∈ (S)−1,
having the property that

X �X�(−1) = 1.

More generally, if E[X] �= 0, we can define the Wick powers X�r ∈ (S)−1 for
all real numbers r.

Remark Note that, with the generalized expectation E[Y ] defined for
Y ∈ (S)−1 as in Definition 2.6.13, we have

E[exp�[X]] = exp[E[X]]; X ∈ (S)−1, (2.6.55)

simply because

E[exp�[X]] = H(exp�[X])(0) = exp[H(X)(0)] = exp[E[X]].

Positive Noise

An important special case of the Wick exponential is obtained by choosing X
to be smoothed white noise w(φ). Since w(φ, ·) ∈ L2(μ), the usual exponential
function exp can also be applied to w(φ, ω) for almost all ω, and the relation
between these two quantities is given by the following result.



2.6 The Hermite Transform 73

Lemma 2.6.16.

exp�[w(φ, ω)] = exp
[

w(φ, ω)− 1
2
‖φ‖2

]

;φ ∈ L2(Rd) (2.6.56)

where ‖φ‖ = ‖φ‖L2(Rd).

Proof By basis independence, which in this L2(μ)-case follows from
Proposition 2.4.2 (see Appendix D for the general case), we may assume
that φ = cη1, in which case we get

exp�[w(φ)] =
∞∑

n=0

1
n!

w(φ)�n =
∞∑

n=0

1
n!

cn〈ω, η1〉�n

=
∞∑

n=0

cn

n!
H�n

ε1 (ω) =
∞∑

n=0

cn

n!
Hnε1(ω)

=
∞∑

n=0

cn

n!
hn(〈ω, η1〉) = exp

[

c〈ω, η1〉 −
1
2
c2

]

= exp
[

w(φ)− 1
2
‖φ‖2

]

,

where we have used the generating property of the Hermite polynomials
(see Appendix C). ��

In particular, (2.6.55) shows that exp� w(φ) is positive for all φ ∈ L2(μ)
and all ω. Moreover, if

Wφ(x, ω) := w(φx, ω); x ∈ R
d

is the smoothed white noise process defined in (2.1.15), then the process

Kφ(x, ω) := exp�[Wφ(x, ω)] = exp
[

Wφ(x, ω)− 1
2
‖φ‖2

]

(2.6.57)

has the following three properties (compare with (2.1.20)–(2.1.22)):

If supp φx1 ∩ supp φx2 = ∅, then Kφ(x1, ·) and Kφ(x2, ·) are independent.
(2.6.58)

{Kφ(x, ·)}x∈Rd is a stationary process. (2.6.59)

For each x ∈ R
d the random variableKφ(x, ·) > 0 has a lognormal

distribution (i.e., log Kφ(x, ·)has a normal distribution) andE[Kφ(x, ·)] = 1,

Var[Kφ(x, ·)] = exp[‖φ‖2]− 1. (2.6.60)

Properties (2.6.57) and (2.6.58) follow directly from the corresponding
properties (2.1.20) and (2.1.21) for Wφ(x, ·). The first parts of (2.6.59)
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follow from (2.6.56) and the fact that E[Wφ(x, ·)�k] = 0 for all k ≥ 1.
The last part of (2.6.59) is left as an exercise for the reader (Exercise 2.11).
These three properties make Kφ(x, ω) a good mathematical model for many
cases of “positive noise” occurring in various applications. In particular, the
function Kφ(x, ω) is suitable as a model for the stochastic permeability of
a heterogeneous, isotropic rock. See (1.1.5) and Section 4.6. We shall call
Kφ(x, ·) the smoothed positive noise process. Similarly, we call

K(x, ·) = exp�[W (x, ·)] ∈ (S)∗ (2.6.61)

the singular positive noise process. Computer simulations of the 1-parameter
(i.e., d = 1) positive noise process Kφ(x, ω) for a given φ are shown in
Figure 2.2.

Computer simulations of the 2-parameter (i.e., d = 2) positive noise
process Kφ(x, ω) where φ(y) = εχ[0,h]×[0,h](y); y ∈ R

2 are shown on
Figure 2.3.

The Positive Noise Matrix

When the (deterministic) medium is anisotropic, the non-negative permeabil-
ity function k(x) in Darcy’s law (1.1.5) must be replaced by a permeability
matrix K(x) = [Kij(x)] ∈ R

d×d. The interpretation of the (i, j)th element,
Kij , is that

Kij(x) = velocity of fluid at x in direction i induced by a pressure gradient
of unit size in direction j.

Physical arguments lead to the conclusion that K(x) = [Kij(x)] should be
a symmetric, non-negative definite matrix for each x.

For a stochastic anisotropic medium it is natural to represent the stochastic
permeability matrix as follows (Gjerde (1995a), Øksendal (1994b)):

Let W(x) ∈ (S)N ;N
−0 be N -dimensional, d-parameter white noise with the

value N = 1/2d(d + 1). Define

K(x) := exp�[W(x)]; (2.6.62)

where

 x

Wick exponential

x

Wick exponential

Fig. 2.2 Two sample paths of the Wick exponential of the 1-parameter white
noise process.
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Fig. 2.3 Two sample paths of positive noise Kφ(x,ω), (h=1/50, ε=0.05) and (h =1/20, ε=0.1).

W(x) =

⎡

⎢
⎢
⎢
⎣

W1,1(x) W1,2(x) · · · W1,d(x)
W1,2(x) W2,2(x) · · · W2,d(x)

...
. . .

...
W1,d(x) · · · Wd,d(x)

⎤

⎥
⎥
⎥
⎦

(2.6.63)

and Wij(x); 1 ≤ i ≤ j ≤ d are the 1/2d(d + 1) independent components of
W(x), in some (arbitrary) order.

Here the Wick exponential is to be interpreted in the Wick matrix sense,
i.e.,

exp�[M] =
∞∑

n=0

1
n!

M�n (2.6.64)

when M ∈ (S)m;k×k
−1 is a stochastic distribution matrix. It follows from

Theorem 2.6.12 that exp� M exists as an element of (S)m;k×k
−1 .

We call K(x) the (singular) positive noise matrix. It will be used in
Section 4.7.

Similarly, one can define the smoothed positive noise matrix

Kφ(x) = exp�[Wφ(x)], (2.6.65)

where the entries of the matrixWφ(x) are the components of the 1/2d(d+1)-
dimensional smoothed white noise process Wφ(x).

2.7 The (S)N
ρ,r Spaces and the S-Transform

Sometimes the following spaces, which are intermediate spaces to the spaces
(S)N

ρ , (S)N
−ρ, are convenient to work in (see V̊age (1996a)).

Definition 2.7.1. For ρ ∈ [−1, 1] and r ∈ R, let (S)N
ρ,r consist of those

F =
∑

α aαHα ∈ (S)N
ρ (with aα ∈ R

N for all α) such that

‖F‖2ρ,r :=
∑

α

a2
α(α!)1+ρ(2N)rα <∞ . (2.7.1)
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If F =
∑

α aαHα, G =
∑

α bαHα belong to (S)N
ρ,r, then we define the inner

product (F,G)ρ,r of F and G by

(F,G)ρ,r =
∑

α

(aα, bα)(α!)1+ρ(2N)rα, (2.7.2)

where (aα, bα) is the inner product on R
N .

Note that if ρ ∈ [0, 1], then (S)N
ρ is the projective limit (intersection)

of the spaces {(S)N
ρ,r}r≥0, while (S)−ρ is the inductive limit (union) of

{(S)−ρ,−r}r≥0.

Lemma 2.7.2 V̊age (1996a). For every pair (ρ, r) ∈ [−1, 1]×R the space
(S)N

ρ,r equipped with the inner product (2.7.2) is a separable Hilbert space.

Proof We first prove completeness: Fix ρ, r and suppose Fk =
∑

α a
(k)
α Hα

is a Cauchy sequence in (S)N
ρ,r, k = 1, 2, . . . . Then {a(k)

α }∞k=1 is a Cauchy

sequence in R
N (with the usual norm), so a

(k)
α → aα, say, as k →∞. Define

F =
∑

α

aαHα.

We must prove that f ∈ (S)N
ρ,r and that Fk → F in (S)N

ρ,r. To this end let
ε > 0 and n ∈ N. Then there exists M ∈ N such that

∑

α∈Γn

(a(i)
α − a(j)

α )2(α!)1+ρ(2N)rα

≤
∑

α

(a(i)
α − a(j)

α )2(α!)1+ρ(2N)rα < ε2 for i, j ≥M,

where

Γn = {α = (α1, . . . , αn);αj ∈ {0, 1, . . . , n}, j = 1, . . . , n}. (2.7.3)

If we let i→∞, we see that
∑

α∈Γn

(aα − a(j)
α )2(α!)1+ρ(2N)rα < ε2 for j ≥M.

Letting n→∞, we obtain that

F − Fj ∈ (S)N
ρ,r

and that
Fj → F in (S)N

ρ,r.

Finally, the separability follows from the fact that {Hα} is a countable
dense subset of (S)N

ρ,r. ��
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Example 2.7.3. Singular white noise W (x, ω) belongs to (S)−0,−q for all
q > 1. This follows from the proof of Proposition 2.3.10.

The S-Transform

The Hermite transform is closely related to the S-transform. See Hida et al.
(1993), and the references therein. For completeness, we give a short intro-
duction to the S-transform here.

Earlier we saw that if φ ∈ S(Rd), then 〈ω, φ〉�n = w(φ, ω)�n ∈ (S)1, for
all natural numbers n (Example 2.3.4). It is natural to ask if we also have
exp�[w(φ, ω)] ∈ (S)1, at least if ‖φ‖L2(Rd) is small enough. This is not the
case. However, we have the following:

Lemma 2.7.4. a) Let φ ∈ S(Rd) and q <∞. Then there exists ε > 0 such
that for λ ∈ R with |λ| < ε we have

exp�[λw(φ, ·)] ∈ (S)1,q. (2.7.4)

b) For all ρ < 1 we have

exp�[λw(φ, ·)] ∈ (S)ρ (2.7.5)

for all λ ∈ R.

Proof Choose λ1, . . . , λk ∈ R and consider

exp�[〈ω, λ1η1 + · · ·+ λkηk〉]

= exp�

(
k∑

j=1

λj〈ω, ηj〉
)

= exp�

(
k∑

j=1

λjHε(j)(ω)

)

=
∞∑

n=0

1
n!

(
k∑

j=1

λjHε(j)

)�n

=
∞∑

n=0

1
n!

⎛

⎜
⎝

n∑

αi=1
1≤i≤k

n!
α1! · · ·αk!

λα1
1 · · ·λαk

k Hα1ε1+···+αkε(k)

⎞

⎟
⎠

=
∞∑

n=0

n∑

αi =1
1≤i≤k

1
α1! · · ·αk!

λα1
1 · · ·λαk

k Hα1ε1+···+αkε(k)

=
∞∑

n=0

∑

|α|=n
Index α≤k

1
α!

λαHα =
∑

α
Index α≤k

1
α!

λαHα =:
∑

α

a(k)
α Hα,

(2.7.6)
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where λα = λα1
1 λα2

2 · · ·λαk

k . Hence by Lemma 2.3.4
∑

α

(a(k)
α )2(α!)2(2N)qα

=
∞∑

n=0

∑

|α|=n
Index α≤k

(
1
α!

)2

λ2α(α!)2(2N)qα

=
∑

Index α≤k

λ2α(2N)qα

=
∑

Index α≤k

λ2α1
1 · · ·λ2αk

k 2qα14qα2 · · · (2k)qαk

≤
( ∞∑

α1 =0

(
λ2

1(2
dδ

(1)
1 · · · δ

(1)
d · · · δ

(1)
d )q′)α1

)

· · ·
( ∞∑

αk=1

(
λ2

k(2dδ
(k)
1 · · · δ(k)

1 · · · δ(k)
d )q′)αk

)

=
k∏

j=1

1
1− Λj

<∞, (2.7.7)

if
Λj := λ2

j (2
dδ

(j)
1 · · · δ

(j)
d )q′

< 1, (2.7.8)

where q′ = (d/d− 1)q if d ≥ 2, q′ = q if d = 1. Now choose φ ∈ S(Rd). Then
by Theorem 2.3.1 there exists M <∞ such that

(φ, ηj)2 ≤M2(2dδ
(j)
1 · · · δ

(j)
d )−q′

for all j.

Hence, if λ ∈ R with |λ| small enough, we have

λ2(φ, ηj)2 ≤
1
2

(
2dδ

(j)
1 · · · δ

(j)
d

)−q′

for all j. (2.7.9)

Therefore, if we define
λ2

j := λ2(φ, ηj)2,

we see that (2.7.8) holds, and we can apply the above argument.
Then, if we write (φ, η)α = (φ, η1)α1 · · · (δ, ηk)αk when α = (α1, . . . , αk),

we get

exp�[λ〈ω, φ〉] =
∑

α

1
α!

λ|α|(φ, η)αHα

=:
∑

α

c(λ)
α Hα, (2.7.10)



2.7 The (S)N
ρ,r Spaces and the S-Transform 79

and hence, by (2.7.7) and (2.7.9),

∑

α

(c(Λ)
α )2(α!)(2N)kα = lim

k→∞

k∏

j=1

1
1− Λj

≤
∞∏

j=1

(1 + 2Λj)

= exp
[ ∞∑

j=1

log(1 + 2Λj)
]

≤ exp
[ ∞∑

j=1

2Λj

]

<∞,

by (2.3.3). ��

If F ∈ (S)−1, then there exists q < ∞ such that F ∈ (S)−1,−q. Hence we
can make the following definition:

Definition 2.7.5 (The S-transform). (i) Let F ∈ (S)−1 and let φ ∈
S(Rd). Then the S-transform of F at λφ, (SF )(λφ), is defined, for all real
numbers λ with |λ| small enough, by

(SF )(λφ) = 〈F, exp�[w(λφ, ·)]〉, (2.7.11)

where 〈·, ·〉 denotes the action of F ∈ (S)−1,−q on exp�[w(λφ, ·)], which
belongs to ((S)−1,−q)∗ = (S)1,q for |λ| small enough, by Lemma 2.7.4.

(ii) Let F ∈ (S)−ρ for some ρ < 1 and let φ ∈ S(Rd). Then the S-transform
of F at λφ is defined by

(SF )(λφ) = 〈F, exp�[w(λφ, ·)]〉 (2.7.12)

for all λ ∈ R.

In terms of the chaos expansion we can express the S-transform as follows:

Proposition 2.7.6. Suppose F =
∑

α aαHα ∈ (S)−1, and let φ ∈ S(Rd).
Then, if λ ∈ R with |λ| small enough, we have

(SF )(λφ) =
∑

α

λ|α|aα(φ, η)α; φ ∈ S(Rd), (2.7.13)

where (φ, η)α = (φ, η1)α1(φ, η2)α2 · · · .

Proof By (2.7.10) and (2.3.11) we have

(SF )(λφ) = 〈F, exp�[w(λφ, ·)]〉

=
∑

α

aα

(
1
α!

λ|α|(φ, η)α

)

α! =
∑

α

λ|α|aα(φ, η)α.

��
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Corollary 2.7.7. As a function of λ the expression (SF )(λφ) is real analytic
and hence has an analytic extension to all λ ∈ C with |λ| small enough. If
F ∈ (S)−ρ for some ρ < 1, then (SF )(λφ) extends to an entire function of
λ ∈ C.

From now on we will consider the S-transforms (SF )(λφ) to be these
analytic extensions.

Example 2.7.8. i) The S-transform of smoothed white noise F = w(ψ, ·),
where ψ ∈ L2(Rd), is, by (2.2.23) and (2.7.13),

(Sw(ψ, ·))(λφ) =
∞∑

j=1

λ(ψ, ηj)(φ, aj) = (λφ, ψ); φ ∈ S(Rd), λ ∈ C. (2.7.14)

ii) The S-transform of singular white noise F = W (x, ·) is, by (2.3.33) and
(2.7.13),

(SW (x))(λφ) =
∞∑

j=1

ληj(x)(φ, ηj) = λφ(x); φ ∈ S(Rd), λ ∈ C. (2.7.15)

An important property of the S-transform follows: (Compare it with
Proposition 2.6.6.)

Proposition 2.7.9. Suppose F,G ∈ (S)−1 and φ ∈ S(Rd). Then, if |λ| is
small enough,

S(F �G)(λφ) = (SF )(λφ) · (SG)(λφ). (2.7.16)

Proof Suppose F =
∑

α aαHα, G =
∑

β bβHβ . Then by (2.7.13)

(SF )(λφ) · (SG)(λφ) =

(
∑

α

λ|α|aα(φ, η)α

)(
∑

β

λ|β|bβ(φ, η)β

)

=
∑

α,β

λ|α+β|aαbβ(φ, η)α+β

=
∑

γ

λ|γ|

(
∑

α+β=γ

aαbβ

)

(φ, η)γ

= S(F �G)(λφ).

��

The relation between the S-transform and the H-transform is the following:

Theorem 2.7.10. Let F ∈ (S)−1. Then

(HF )(z1, z2, . . . , zk) = (SF )(z1η1 + z2η2 + · · ·+ zkηk) (2.7.17)



2.8 The Topology of (S)N
−1 81

for all (z1, . . . , zk) ∈ C
k with |zj | < (2dδ

(j)
1 · · · δ

(j)
d )−q′

; 1 ≤ j ≤ k, where
q <∞ is so large that

F ∈ (S)−1,−q

with q′ = d/d− 1 if d ≤ 2, q′ = q if d = 1.

Proof By (2.6.18) and (2.7.7), both sides of (2.7.11) are defined for all such
z = (z1, . . . , zk) ∈ C

k. Suppose F has the chaos expansion

F =
∑

α

bαHα.

Then by (2.7.13) we have

(SF )(z1η1 + · · ·+ zkηk) =
∑

α

bα(z1η1 + · · ·+ zkηk, η)α

=
∑

α

bα zα1
1 zα2

2 · · · zαk

k =
∑

α

bαzα = (HF )(z),

as claimed. ��

2.8 The Topology of (S)N
−1

The topologies of (S)N
ρ and (S)N

−ρ ; 0 ≤ ρ ≤ 1 are defined by the correspond-
ing families of seminorms given in (2.3.9) and (2.3.10), respectively. Since
we will often be working with the H-transforms of elements of (S)N

−1, it is
useful to have a description of the topology in terms of the transforms. Such
a description is

Theorem 2.8.1. The following are equivalent:

a) Xn → X in (S)N
−1;

b) there exist δ > 0, q <∞ such that X̃n(z)→ X̃(z) uniformly in Kq(δ);
c) there exist δ > 0, q <∞ such that X̃n(z)→ X̃(z) pointwise boundedly in

Kq(δ).

It suffices to prove this when N = 1. We need the following result (Recall
that a bounded linear operator A : H1 → H2 where Hi are Hilbert spaces
i = 1, 2, is called a Hilbert-Schmidt operator if the series

∑
i,j |(Aei, fj)|2

converges whenever {ei} and {fj} are orthonormal bases for H1 and H2,
respectively.):

Lemma 2.8.2. (S)1 is a nuclear space.

Proof Define

(S)1,r =
{

f =
∑

α

cαHα; ‖f‖21,r <∞
}

(2.8.1)
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where ‖f‖ρ,r is defined by Definition 2.7.1, so that

‖f‖21,r =
∑

α

c2
α(α!)2(2N)rα. (2.8.2)

Then (S)1,r is a Hilbert space with inner product

〈f, g〉1,r =
∑

α

aαbα(α!)2(2N)rα (2.8.3)

when f =
∑

α aαHα ∈ (S)1,r, g =
∑

β bβHβ ∈ (S)1,r.

Therefore the family of functions

Hα,r =
1
α!

(2N)−
rα
2 Hα;α ∈ J

constitutes an orthonormal basis for (S)1,r. By definition, (S)1 is the projec-
tive limit of (S)1,r, i.e.,

(S)1 =
∞⋂

r=1

(S)1,r.

If r2 > r1 + 1, then

∑

α

‖Hα,r2‖21,r1
=
∑

α

1
(α!)2

(2N)−r2α(α!)2(2N)r1α

=
∑

α

(2N)−(r2−r1)α <∞,

by Proposition 2.3.3. This means that the imbedding (S)1,r2 ⊂ (S)1,r1 is
Hilbert–Schmidt if r2 > r1 + 1 and hence (S)1 is a nuclear space. ��

Proof of Theorem 2.8.1. a) ⇒ b). First note that the dual (S)−1,−r of
the space (S)1,r is defined by

(S)−1,−r =

{

F =
∑

α

cαHα; ‖F‖2−1,−r :=
∑

α

c2
α(2N)−rα <∞

}

.

Assume that Xn =
∑

α b
(n)
α Hα → X =

∑
α bαHα in (S)−1. Since (S)1 is

nuclear (Hida (1980)), this implies that there exists r0 such that Xn → X in
(S)−1,−r0 as n→∞. From this we deduce that

M2 := sup
n
{‖Xn‖2−1−r0

}

= sup
n

{∑

α

|b(n)
α |2(2N)−r0α

}

<∞.
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Hence

|X̃n(z)| =
∣
∣
∣
∣
∑

α

b(n)
α zα

∣
∣
∣
∣ =

∣
∣
∣
∣
∑

α

b(n)
α (2N)−

r0α
2 (2N)

r0α
2 zα

∣
∣
∣
∣

≤
(∑

α

|b(n)
α |2(2N)−r0α

) 1
2

·
(∑

α

|zα|2(2N)r0α

) 1
2

≤M(1 + R)

if z ∈ Kr0(R), so {X̃n(z)} is a bounded sequence on Kr0(R) for all R.
Moreover, since Xn → X in (S)−1,r0 , we have, by the same procedure as

above, that

|X̃n(z)− X̃(z)| =
∣
∣
∣
∣
∑

α

(b(n)
α − bα)zα

∣
∣
∣
∣

≤
(∑

α

|b(n)
α − bα|2(2N)−r0α

) 1
2

·
(∑

α

|zα|2(2N)r0α

) 1
2

≤ (1 + R)‖Xn −X‖−1,−r0 → 0 as n→∞,

uniformly for z ∈ Kr0(R), for each R <∞.

b)⇒ a). Suppose there exist δ > 0, q <∞,M <∞ such that X̃n(z)→ X̃(z)
for z ∈ Kq(δ) and |X̃n(z)| ≤M for all n = 1, 2, . . . , z ∈ Kq(δ).

For r <∞ and k a natural number, choose ζ = ζ(r,k) = (ζ1, . . . , ζk) with

ζj = (2j)−r for j = 1, . . . , k.

Then
∑

α

(2N)rα|ζα|2 ≤
∑

α

(2N)−rα < δ2

for r large enough, say r ≥ q1.
Hence ζ ∈ Kr(δ) for r ≥ q1. Write Xn =

∑
α b

(n)
α Hα. Since |X̃n(z)| ≤ M

for z ∈ Kq(δ), we have by Proposition 2.6.8
∑

α

|b(n)
α ||zα| ≤MA(q) for all z ∈ K3q(δ).

Thus if r ≥ max(3q, q1), we get
∑

α
Index α≤k

|b(n)
α |(2N)−rα =

∑

α
Index α≤k

|b(n)
α |ζα

∑

α
Index α≤k

|b(n)
α ||ζα| ≤

∑

α

|b(n)
α ||ζα| ≤MA(q).
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Letting k →∞ we deduce that

K := sup
α
|b(n)

α |(2N)−rα <∞,

which implies
∑

α

|b(n)
α |2(2N)−2rα ≤ K

∑

α

|b(n)
α | (2N)−rα < KMA(q).

So
‖Xn‖−1,−2r ≤ KMA(q) for all n.

A similar argument applied to Xn −X instead of Xn gives the estimate

‖Xn −X‖−1,−2r ≤ KA(q) sup
z∈Kq(δ)

|X̃n(z)− X̃(z)|.

The proof of the equivalence of b) and c) follows the familiar argument
from the finite-dimensional case and is left as an exercise. ��

Stochastic Distribution Processes

As mentioned in the introduction, one advantage of working in the gen-
eral space (S)N

−1 of stochastic distributions is that it contains the solutions
of many stochastic differential equations, both ordinary and partial and in
arbitrary dimension. Moreover, if the objects of such equations are regarded
as (S)N

−1-valued, then differentiation can be interpreted in the usual strong
sense in (S)N

−1. This makes the following definition natural.

Definition 2.8.3. A measurable function

u : R
d → (S)N

−1

is called a stochastic distribution process or an (S)N
−1-process.

The process u is called continuous, differentiable, C1, Ck, etc., if the (S)N
−1-

valued function u has these properties, respectively. For example, the partial
derivative ∂u/∂xk(x) of an (S)−1-process u is defined by

∂u

∂xk
(x1, . . . , xd)

= lim
Δxk→0

u(x1, . . . , xk + Δxk, . . . , xd)− u(x1, . . . , xk, . . . , xd)
Δxk

, (2.8.4)

provided the limit exists in (S)−1.
In terms of the Hermite transform ũ(x)(z) = ũ(x; z), the limit on the right

hand side of (2.8.4) exists if and only if there exists an element Y ∈ (S)−1
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such that

1
Δxk

[ũ(x1, . . . , xk + Δxk, . . . , xd; z)− ũ(x1, . . . , xk, . . . , xd; z)]→ Ỹ (z)

(2.8.5)

pointwise boundedly (or uniformly) in Kq(δ) for some q <∞, δ > 0, according
to Theorem 2.8.1. If this is the case, then Y is denoted by ∂u/∂xk.

When we apply the Hermite transform to solve stochastic differential equa-
tions the following observation is important.

For simplicity of notation, choose N = d = 1 and consider a differentiable
(S)−1-process X(t, ω). The statement that

dX(t, ω)
dt

= F (t, ω) in (S)−1

is then equivalent to saying that

lim
Δt→0

1
Δt

(
X̃(t + Δt; z)− X̃(t; z)

)
= F̃ (t; z)

pointwise boundedly for z ∈ Kq(δ) for some q < ∞, δ > 0. For this it is
clearly necessary that

dX̃(t; z)
dt

= F̃ (t; z) for each z ∈ Kq(δ),

but apparently not sufficient, because we also need that the pointwise
convergence is bounded for z ∈ Kq(δ). The following result is sufficient for
our purposes.

Lemma 2.8.4 (Differentiation of (S)−1-processes). Suppose X(t, ω)
and F (t, ω) are (S)−1-processes such that

dX̃(t; z)
dt

= F̃ (t; z) for each t ∈ (a, b), z ∈ Kq(δ) (2.8.6)

and that

F̃ (t; z) is a bounded function of (t, z) ∈ (a, b)×Kq(δ),
continuous in t ∈ (a, b) for each z ∈ Kq(δ). (2.8.7)

Then X(t, ω) is a differentiable (S)−1 process and

dX(t, ω)
dt

= F (t, ω) for all t ∈ (a, b). (2.8.8)
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Proof By the mean value theorem we have

1
Δt

(
X̃(t + Δt; z)− X̃(t; z)

)
= F̃ (t + θΔt; z)

for some θ ∈ [0, 1], for each z ∈ Kq(δ). So if (2.8.6) and (2.8.7) hold, then

1
Δt

(
X̃(t + Δt; z)− X̃(t; z)

)
→ F̃ (t; z) as Δt→ 0,

pointwise boundedly for z ∈ Kq(δ). ��

Similarly we can relate the integrability of an (S)−1-process to the
integrability of its H-transform as follows:

We say that an (S)−1-process X(t) is (strongly) integrable in (S)−1 over
the interval [a, b] if

b∫

a

X(t, ω)dt := lim
Δtk→0

n−1∑

k=0

X(t∗k, ω)Δtk (2.8.9)

exists in (S)−1, for all partitions a = t0 < t1 < · · · < tn = b of [a, b],
Δtk = tk+1 − tk and t∗k ∈ [tk, tk+1] for k = 1, . . . , n− 1.

Taking H-transforms and using Theorem 2.8.1, we get the following result:

Lemma 2.8.5. Let X(t) be an (S)−1-process. Suppose there exist q < ∞,
δ > 0 such that

sup{X̃(t; z); t ∈ [a, b], z ∈ Kq(δ)} <∞ (2.8.10)

and

X̃(t; z) is a continuous function
of t ∈ [a, b] for each z ∈ Kq(δ). (2.8.11)

Then X(t) is strongly integrable and

H

⎡

⎣
b∫

a

X(t)dt

⎤

⎦ =

b∫

a

X̃(t)dt. (2.8.12)

Example 2.8.6. Choose N = m = d = 1 and let B(t, ω) be Brownian
motion. Then (see Example 2.2.5)

B(t, ω) =
∞∑

j =1

t∫

0

ξj(s)dsHε(j)(ω),
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and so

B̃(t; z) =
∞∑

j =1

t∫

0

ξj(s)dszj ; z ∈ (CN)c.

Hence
dB̃(t; z)

dt
=

∞∑

j =1

ξj(t)zj , for each z ∈ (CN)c.

Moreover,
∣
∣
∣
∣
∣

∞∑

j =1

ξj(t)zj

∣
∣
∣
∣
∣

2

≤
( ∞∑

j =1

ξ2
j (t)(2N)−2ε(j)

)( ∞∑

j =1

|zε(j) |2(2N)2ε(j)

)

≤ sup
j,t
|ξ2

j (t)|
∞∑

j =1

(2j)−2
∑

α

|zα|2(2N)2α ≤ CR2

for some constant C if z ∈ K2(R). We also have that

t→
∞∑

j =1

ξj(t)zj is continuous.

Since
∑∞

j =1 ξj(t)zj is the H-transform of white noise W (t, ω) (see (2.6.8)),
we conclude by Lemma 2.8.4 that

dB(t, ω)
dt

= W (t, ω) in (S)−1. (2.8.13)

(Compare with (2.5.27).)

Example 2.8.7. Let us proceed one step further from the previous example
and try to differentiate white noise W (t, ω). (Again we assume m = d = 1.)
Since

W̃ (t; z) =
∞∑

j =1

ξj(t)zj ; z ∈ (CN)c,

we get
dW̃ (t; z)

dt
=

∞∑

j =1

ξ′j(t)zj ; z ∈ (CN)c.

Here the right hand side is clearly a continuous function of t for each z.
It remains to prove boundedness for z ∈ Kq(δ) for some q <∞, δ > 0. From
the definition (2.2.1) of the Hermite functions ξj together with the estimate
(2.2.5) we conclude that

sup
t∈[a,b]

|ξ′j(t)| ≤ Cj, (2.8.14)
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where C = Ca,b is a constant depending only on a, b. Hence
∣
∣
∣
∣

∞∑

j =1

ξ′j(t)zj

∣
∣
∣
∣

2

≤
( ∞∑

j =1

|ξ′j(t)|2(2N)−4ε(j)

)

·
( ∞∑

j =1

|zj |2(2N)4ε(j)

)

≤ C2
∞∑

j =1

j2(2j)−4 ·
∑

α

|zα|2(2N)4α ≤ C1R
2

if z ∈ K4(R); t ∈ [a, b]. From Lemma 2.8.4 we conclude that

dW (t, ω)
dt

=
∞∑

j =1

ξ′j(t)Hε(j)(ω) in (S)−1. (2.8.15)

2.9 The F-Transform and the Wick Product on L1(μ)

The S-transform is closely related to the Fourier transform or F-transform,
which is defined on L1(μ) as follows:

Definition 2.9.1. Let g ∈ L1(μm), φ ∈ S(Rd). Then the F-transform,
F [g](φ), of g at φ, is defined by

F [g](φ) =
∫

S′(Rd)

ei〈ω,φ〉g(ω)dμ(ω). (2.9.1)

Note that if g ∈ Lp(μm) for some p > 1, then g ∈ (S)∗ (Corollary 2.3.8)
and hence, with i denoting the imaginary unit,

(Sg)(iφ) = 〈g, exp�[w(iφ, ·)]〉 =
∫

S′(Rd)

exp�[w(iφ, ω)]g(ω)dμ(ω)

=
∫

S′(Rd)

exp�[i〈ω, φ〉]g(ω)dμ(ω)

= e
1
2‖φ‖2

∫

S′(Rd)

exp[i〈ω, φ〉]g(ω)dμ(ω)

= e
1
2‖φ‖2F [g](φ).

This gives

Lemma 2.9.2. a) Suppose g ∈ L1(μm) ∩ (S)−ρ for some ρ < 1. Then

F [g](φ) = e−
1
2‖φ‖2

(Sg)(iφ) (2.9.2)

for all φ ∈ S(Rd).



2.9 The F-Transform and the Wick Product on L1(μ) 89

b) Suppose h ∈ L1(μm) ∩ (S)−1. Then for all φ ∈ S(Rd) we have

F [h](λφ) = e−
1
2 λ2‖φ‖2

(Sh)(iλφ) for |λ| small enough. (2.9.3)

Proof a) We have proved that (2.9.2) holds if g ∈ L2(μm). Since L2(μ) is
dense in both (S)−ρ and L1(μm), the result follows.

b) Choose hn ∈ L1(μm) ∩ (S)−ρ (for some fixed ρ < 1) such that hn → h in
L1(μm) and in (S)−1. Then (2.9.2) holds for hn for all n. Taking the limit as
n→∞ we get (2.9.3). ��

This result gives the following connection between F-transforms and Wick
products.

Lemma 2.9.3. a) Suppose X,Y and X � Y ∈ L1(μm) ∩ (S)−ρ for some
ρ < 1.
Then

F [X � Y ](φ) = e
1
2‖φ‖2F [X](φ) · F [Y ](φ); φ ∈ S(Rd). (2.9.4)

b) Suppose X,Y and X � Y all belong to L1(μm) ∩ (S)−1. Then for all
φ ∈ S(Rd) we have

F [X � Y ](λφ) = e
1
2 λ2‖φ‖2F [X](λφ)F [Y ](λφ) (2.9.5)

for |λ| small enough.

Proof a) By Lemma 2.9.2 a) and Proposition 2.7.9 we have, for φ ∈ S(Rd),

F [X � Y ](φ) = e−
1
2‖φ‖2

(S(X � Y ))(iφ)

= e−
1
2‖φ‖2

(SX)(iφ) · (SY )(iφ)

= e−
1
2‖φ‖2

e
1
2‖φ‖2F [X](φ)e

1
2‖φ‖2F [Y ](φ)

= e
1
2‖φ‖2F [X](φ)F [Y ](φ).

b) This follows from Lemma 2.9.2 b) in the same way. ��

Using the F-transform we can now (partially) extend the Wick product
to L1(μm) as follows:

Definition 2.9.4 (The Wick product on L1(μm)). Let X,Y ∈ L1(μm).
Suppose there exist Xn, Yn ∈ L2(μm) such that

Xn → X in L1(μm) and Yn → Y in L1(μm) as n→∞ (2.9.6)

and such that
lim

n→∞
Xn � Yn exists in L1(μm). (2.9.7)
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Then we define the Wick product of X and Y in L1(μm),denoted
X �̂Y , by

X �̂Y = lim
n→∞

Xn � Yn. (2.9.8)

We must show that X �̂Y is well defined, i.e., we must show that
limn→∞ Xn � Yn does not depend on the actual sequences {Xn}, {Yn}. This
is done in the following lemma.

Lemma 2.9.5. Let Xn, Yn be as in Definition 2.9.4 and assume that X ′
n, Y ′

n

also satisfy

X ′
n → X in L1(μm) and Y ′

n → Y in L1(μm) as n→∞ (2.9.9)

and

lim
n→∞

X ′
n � Y ′

n exists in L1(μm). (2.9.10)

Then

lim
n→∞

X ′
n � Y ′

n = lim
n→∞

Xn � Yn = X �̂Y. (2.9.11)

Moreover, we have

F [X �̂Y ](φ) = e
1
2‖φ‖2F [X](φ)F [Y ](φ) (2.9.12)

for all φ ∈ S(Rd).

Proof Set Z = limn→∞ Xn � Yn. Then by Lemma 2.9.3 we have

F [Z](φ) = lim
n→∞

F [Xn � Yn](φ)

= lim
n→∞

e
1
2‖φ‖2F [Xn](φ)F [Yn](φ)

= e
1
2‖φ‖2F [X](φ)F [Y ](φ), φ ∈ S(Rd).

Similarly, we get, with Z ′ = lim
n→∞

X ′
n � Y ′

n,

F [Z ′](φ) = e
1
2‖φ‖2F [X](φ) · F [Y ](φ),

hence F [Z](φ) = F [Z ′](φ) for all φ ∈ S(Rd). Since the algebra E generated by
the stochastic exponentials exp[i〈ω, φ〉]; φ ∈ S(Rd) is dense in L2(μm) (see
Theorem 2.1.3), a function in L1(μm) is uniquely determined by its Fourier
transform. Therefore Z = Z ′. This proves (2.9.11) and also (2.9.12). ��

We can now verify that the two Wick products �̂ and � coincide on the
intersection L1(μm) ∩ (S)−1.
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Theorem 2.9.6. Let X,Y ∈ L1(μm)∩ (S)−1. Assume that X �̂Y exists in
L1(μm) and that X �Y (the Wick product in (S)−1) belongs to L1(μm). Then

X �̂Y = X � Y.

Proof By Lemma 2.9.3 (ii) we have that

F [X � Y ](λφ) = e
1
2 λ2‖φ‖2F [X](λφ) · F [Y ](λφ)

for all φ ∈ S(Rd) if |λ| is small enough. On the other hand, from
Lemma 2.9.5 we have that

F [X �̂Y ](ψ) = e
1
2‖ψ‖2F [X](ψ) · F [Y ](ψ)

for all ψ ∈ S(Rd).
This is sufficient to conclude that X �̂Y = X � Y . ��

Remark In view of Theorem 2.9.6 we can – and will – from now on write
X � Y for the Wick product in L1(μm).

Corollary 2.9.7. Let X,Y ∈ L1(μm), and assume that X � Y ∈ L1(μm)
exists (in the sense of Definition 2.9.4). Then

E[X � Y ] = E[X] · E[Y ]. (2.9.13)

Proof Choose φ = 0 in (2.9.12). ��

Functional Processes

As pointed out in the introduction, it is sometimes useful to smooth the
singular white noise W(x, ω) by a test function φ ∈ S(Rd), thereby obtaining
the smoothed white noise process

Wφ(x, ω) = w(φx, ω), (2.9.14)

where φx(y) = φ(y − x); x, y ∈ R
d (see (2.1.19)).

The reason for doing this could be simply technical: By smoothing the
white noise we get less singular equations to work with and therefore (we
hope) less singular solutions.

But the reason could also come from the model: In some cases the
smoothed process (2.9.14) simply gives a more realistic model for the noise
we consider. In these cases the choice of φ may have a physical significance.
For example, in the modeling of fluid flow in a porous, random medium the
smoothed positive noise

Kφ(x, ω) = exp�[Wφ(x, ω)] (2.9.15)
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will be a natural model for the (stochastic) permeability of the medium, and
then the size of the support of φ will give the distance beyond which the
permeability values at different points are independent. (See Chapter 4.)

In view of this, the following concept is useful:

Definition 2.9.8 (Functional processes). A functional process is a map

X : S(Rd)× R
d → L1(μm).

If there exists p ≥ 1 such that

X(φ, x) ∈ Lp(μm) for all φ ∈ S(Rd), x ∈ R
d,

then X is called an Lp-functional process.

Example 2.9.9. The processes Wφ(x),Kφ(x) given in (2.9.14) and (2.9.15)
are both Lp-functional processes for all p <∞.

In Chapters 3 and 4 we will give examples of smoothed stochastic differ-
ential equations with solutions X(φ, x) that are Lp-functional processes for
p = 1 but not for any p > 1.

2.10 The Wick Product and Translation

There is a striking relation between Wick products, Wick exponentials of
white noise and translation. This relation was first formulated on the Wiener
space in Gjessing (1994), Theorem 2.10, and applied there to solve quasilinear
anticipating stochastic differential equations. Subsequently the relation was
generalized by Benth and Gjessing (2000), and applied to a class of nonlinear
parabolic stochastic partial differential equations. The relation has also been
applied to prove positivity of solutions of stochastic heat transport equations
in Benth (1995).

In this section we will prove an (S)−1-version of this relation (Theorem
2.10.2). Then in Chapter 3 we present a variation of the SDE application in
Gjessing (1994), and in Chapter 4 we will look at some of the above-mentioned
applications to SPDEs.

We first consider the translation on functions in (S)1.

Theorem 2.10.1. For f ∈ (S)1 and ω0 ∈ S ′(Rd), define the function Tω0f :
S ′(Rd)→ R by

Tω0f(ω) = f(ω + ω0);ω ∈ S ′(Rd). (2.10.1)

Then the map f → Tω0f is a continuous linear map from (S)1 into (S)1.
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Proof Suppose f ∈ (S)1 has the expansion

f(ω) =
∑

β

cβHβ(ω) =
∑

β

cβ〈ω, η〉�β ,

where
〈ω, η〉�β = 〈ω, η1〉�β1 � 〈ω, η2〉�β2 � · · ·

(see (2.4.17)). Then

f(ω + ω0) =
∑

β

cβ〈ω + ω0, η〉�β =
∑

β

cβ(〈ω, η〉+ 〈ω0, η〉)�β

=
∑

β

cβ

∞∏

j =1

(〈ω, ηj〉+ 〈ω0, ηj〉)�βj

=
∑

β

cβ

∞∏

j =1

( βj∑

γj = 0

(
βj

γj

)

〈ω, ηj〉�γj 〈ω0, ηj〉(βj−γj)

)

=
∑

β

cβ

∑

0≤ γk ≤ βk

(
β1

γ1

)(
β2

γ2

)

· · · 〈ω, η1〉�γ1 · 〈ω, η2〉�γ2

· · · 〈ω0, η1〉(β1−γ1) · 〈ω0, η2〉(β2−γ2) · · ·

=
∑

β

cβ

∑

0≤ γ ≤ β

(
β

γ

)

〈ω, η〉�γ〈ω0, η〉β−γ ,

where we have used the multi-index notation
(

β

γ

)

=
(

β1

γ1

)(
β2

γ2

)

· · · = β1!
γ1!(β1 − γ1)!

· β2!
γ2!(β2 − γ2)!

· · · = β!
γ!(β − γ)!

.

Hence the expansion of f(ω + ω0) is

f(ω + ω0) =
∑

γ

∑

β≥γ

cβ

(
β

γ

)

〈ω0, η〉β−γ〈ω, η〉�γ .

Introduce

bγ =
∑

β≥γ

cβ

(
β

γ

)

〈ω0, γ〉β−γ .

To show that f(ω + ω0) ∈ (S)1, we must verify that

J(q) :=
∑

γ

b2
γ(γ!)2(2N)qγ <∞ for all q ∈ N. (2.10.2)
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Choose q > 2. Since we have f ∈ (S)1, we know that for all r ∈ N there
exists M(r) ∈ (0,∞) such that

c2
β(β!)2(2N)2rβ ≤M2(r) for all β,

i.e.,
|cβ | ≤M(r)(β!)−1(2N)−rβ for all β.

Therefore, with r to be determined later,

J(q) ≤
∑

γ

(∑

β≥γ

M(r)(β!)−1(2N)−rβ

(
β

γ

)

〈ω0, η〉β−γ

)2

(γ!)2(2N)qγ

≤M(r)2
∑

γ

(∑

β≥γ

〈ω0, η〉β−γ(2N)−rβ

)2

(2N)qγ . (2.10.3)

By Theorem 2.3.1 we can write ω0 =
∑∞

j=1 bjηj , where

∞∑

j =1

b2
j (δ

(j)
1 )−θ1(δ(j)

2 )−θ2 · · · (δ(j)
d )−θd <∞

for some θ = (θ1, . . . , θd). Setting θ0 = max{θj ; 1 ≤ j ≤ d}, we get

∞∑

j =1

b2
j (δ

(j)
j · · · δ

(j)
d )−θ0 <∞.

By Lemma 2.3.4 this implies that

∞∑

j =1

b2
jj

−θ0d <∞.

In particular, there exists K ∈ (1,∞) such that

|〈ω0, ηj〉| = |bj | ≤ K · jθ0d. (2.10.4)

Using this in (2.10.3), we get

J(q) ≤M(r)2
∑

γ

(
∑

β≥γ

(KN)θ0d(β−γ)(2N)−rβ

)2

(2N)qγ .

Now choose
r = θ0d(1 + log2 K) + q + 2. (2.10.5)
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Then we get

J(q) ≤M(r)2
∑

γ

( ∑

β ≥ γ

Kθ0d|β|
N

θ0dβ2−r|β|
N

−rβ

)2

(2N)qγ

≤M(r)2
∑

γ

( ∑

β ≥ γ

N
θ0dβ2−(q+2)|β|

N
−θ0dβ−(q+2)β

)2

(2N)qγ

= M(r)2
∑

γ

( ∑

β ≥ γ

(2N)−qβ−2β

)2

(2N)qγ

≤M(r)2
∑

γ

( ∑

β ≥ γ

(2N)−qγ−2β

)2

(2N)qγ

≤M(r)2
∑

γ

( ∑

β ≥ 0

(2N)−2β

)

(2N)−qγ

= M(r)2
∑

β ≥ 0

(2N)−2β
∑

γ ≥ 0

(2N)−qγ <∞.

This proves (2.10.2), and we conclude that Tω0f ∈ (S)1.

It is clear that the map f → Tω0f is linear. Finally, to prove that f → Tω0f
is continuous from (S)1 into (S)1, note that the argument above actually
shows that Tω0 maps (S)1,r into (S)1,q when r is given by (2.10.5). This
proves the continuity, for if fn is a sequence in (S)1 converging to 0 and

N1,q,R := {f ∈ (S)1,q; ‖f‖1,q < R}

is a neighborhood of 0 in (S)1, then Tω0fn ∈ N1,q,R if n is so large that we
have fn ∈ (S)1,r. ��

Remark It is proved in Hida et al. (1993), Theorem 4.15, that Tω0 is a
continuous linear map from (S)(= (S)0) into (S). In Potthoff and Timpel
(1995), the same is proved for the translation operator on the space (G).

Definition 2.10.2. Fix ω0 ∈ S ′(Rd).
a) The map Tω0 : (S)1 → (S)1 is called the translation operator.
b) The adjoint translation operator is the map

T ∗
ω0

: (S)−1 → (S)−1

defined by

〈T ∗
ω0

X, f〉 = 〈X,Tω0f〉; f ∈ (S)1,X ∈ (S)−1. (2.10.6)
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Remark Note that T ∗
ω0

maps (S)−1 into (S)−1 because of Theorem 2.10.1.

The following result is the (S)−1-version of Lemma 5.3 in Benth and
Gjessing (2000) (see also Prop. 9.4 in Benth (1995)).

Theorem 2.10.3 Benth and Gjessing (2000). Let ω0 ∈ S ′(Rd) and
X ∈ (S)−1. Then

T ∗
ω0

X = X � exp�[w(ω0)], (2.10.7)

where

w(ω0, ω) :=
∞∑

j = 1

〈ω0, ηj〉Hε(j)(ω) ∈ (S)∗. (2.10.8)

is the generalized smoothed white noise.

Proof First note that from (2.10.4) it follows that w(ω0, ·) ∈ (S)∗.
We verify (2.10.7) by proving that S-transforms of the two sides are equal:
For φ ∈ S(Rd) and |λ| small enough we have (see (2.7.11))

(ST ∗
ω0

X)(λφ) = 〈T ∗
ω0

X, exp�[w(λφ, ·)]〉
= 〈X,Tω0(exp�[w(λφ, ·)])〉
= 〈X, exp�[〈ω + ω0, λφ〉]〉
= 〈X, exp�[〈ω, λφ〉]〉 · exp[〈ω0, λφ〉]
= (SX)(λφ) · (Swω0)(λφ)
= S(X � wω0)(λφ).

By Theorem 2.7.10 and the uniqueness of the Hermite transform on (S)−1,
the theorem is proved. ��

Corollary 2.10.4 Benth and Gjessing (2000). a) If X ∈ (S)−1 and
ω0 ∈ S ′(Rd), then

〈exp�[w(ω0)] �X, f〉 = 〈X,Tω0f〉; f ∈ (S)1. (2.10.9)

b) If X ∈ (S)1, f ∈ (S)1 and ω0 = φ ∈ L2(Rd), then
∫

S′

f(ω) · (exp�[w(φ)] �X)(ω)dμ(ω) =
∫

S′

X(ω)f(ω + φ)dμ(ω). (2.10.10)

Proof a) follows directly from (2.10.7). Version b) is an (S)1-version
of a). ��

In particular, as observed in Benth and Gjessing (2000), if we choose
X ≡ 1, we recover a version of the Girsanov formula.
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Corollary 2.10.5. Let f ∈ Lp(μ1) for some p > 2 and let φ ∈ L2(Rd).
Then f(ω + φ) ∈ L2(μ1) and

∫

S′

f(ω) · exp�[w(φ)](ω)dμ1(ω) =
∫

S′

f(ω + φ)dμ1(ω). (2.10.11)

Proof Fix p > 2 and ϕ ∈ L2(Rd). Choose fn ∈ (S)1 such that fn → f in
Lp(μ1). Then by (2.10.10) we get that (2.10.11) holds for each fn and with
φ = 1/2ϕ, i.e.
∫

S′

fn(ω) · exp�
[

w

(
1
2
ϕ

)]

(ω)dμ1(ω) =
∫

S′

fn

(

ω +
1
2
ϕ

)

dμ1(ω); n = 1, 2, . . .

Since exp�[w(1/2ϕ)] = exp[w(1/2ϕ) − 1/8||ϕ||2L2(Rd)] is in Lq(μ1) for all
q < ∞, we have by the Hölder inequality that fn · exp�[w(1/2ϕ)] → f ·
exp�[w(1/2ϕ)] in L2(μ1). Therefore

∫

S′

(fn − fm)2
(

exp�
[

w

(
1
2
ϕ

)])2

dμ1 → 0 as m,n→∞

This is equivalent to
∫

S′

(fn − fm)2 exp�[w(ϕ)]dμ1 → 0 as m,n→∞

By (2.10.10) this implies that
∫

S′

(fn(ω + ϕ)− fm(ω + ϕ))2dμ1(ω)→ 0 as m,n→∞

and hence {fn(· + ϕ)}∞n=1 is convergent in L2(μ1). Since a subsequence of
{fn} converges to f a.e., we conclude that the L2(μ1) limit of fn(·+ϕ) must
be f(·+ ϕ). ��

The following useful result first appeared in Gjessing (1994), Theorem 2.10,
in the Wiener space setting, and subsequently in Benth and Gjessing (2000),
Lemma 5.6, in a white noise setting (for the spaces G,G∗). We will here
present the L2(μ1)-version of their result.

Theorem 2.10.6 (Gjessing’s Lemma). Let φ ∈ L2(Rd) and X ∈ Lp(μ1)
for some p > 1. Then X � exp�[w(φ)] ∈ Lρ(μ1) for all ρ < p, and almost
surely we have

(X � exp�[w(φ)])(ω) = T−φX(ω) · exp�[w(φ)](ω). (2.10.13)
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Proof First assume X ∈ (S)1 and choose f ∈ (S)1. Then, by (2.10.10) and
(2.10.11),

∫

S′

f(ω)·(X � exp�[w(φ)])(ω)dμ1(ω)

=
∫

S′

X(ω)f(ω + φ)dμ1(ω)

=
∫

S′

X(ω − φ)f(ω) exp�[w(φ)](ω)dμ1(ω). (2.10.14)

By Corollary 2.10.5 we know that X(· − φ) ∈ Lρ(μ1) for all ρ < p and
hence the same is true for X(· − φ) · exp�[w(φ)]. Since (2.10.14) holds for all
f ∈ (S)1 and (S)1 is dense in Lq(μ1) for all q <∞, we conclude that

X � exp�[w(φ)] = X(ω − φ) · exp�[w(φ)], almost surely,

as claimed. ��

2.11 Positivity

In many applications the noise that occurs is not white. The following exam-
ple illustrates this.

If we consider fluid flow in a porous rock, we often lack exact information
about the permeability of the rock at each point. The lack of information
makes it natural to model the permeability as a (multiparameter) noise
(see Chapter 1). This noise will, of course, not be white, but positive, since
permeability is always a non-negative quantity. In this section we will discuss
the positivity in the case of distributions and also in the case of functional
processes. Let (S)1 and (S)−1 be the spaces defined in Section 2.3.

Definition 2.11.1. An element Φ ∈ (S)−1 is called positive if for any
positive φ ∈ (S)1 we have 〈Φ, φ〉 ≥ 0. The collection of positive elements in
(S)−1 is denoted by (S)+−1.

Before we state an important characterization of positive distributions, we
must provide some preparatory results. For simplicity we assume d = 1. Let
A be an operator on L2(R) given by

A = −
(

d

dx

)2

+ (x2 + 1). (2.11.1)

Then the Hermite function ξn, n ≥ 1 is an eigenfunction of A with eigenvalue
2n. Let Sp(R) be the completion of S(R) under the norm |·|2,p := ‖Ap ·‖L2(R).
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Denote by S−p(R) the dual space of Sp(R), with the norm | · |2,−p. It is well
known that S(R) is the projective limit of Sp(R), p > 0 and S ′(R) is the
union of S−p(R), p > 0, with inductive topology.

Lemma 2.11.2 Kondratiev et al. (1995a), Corollary 1. Let p > 0
be a constant such that the embedding Sp(R) → L2(R) is Hilbert–Schmidt.
Assume that φ ∈ (S)1. Then for any ε > 0, there exists a constant Cε,p such
that

|φ(x)| ≤ Cε,p‖φ‖1,pe
ε|x|2,−p ; x ∈ S−p(R). (2.11.2)

Proof See Corollary 1 in Kondratiev et al. (1995a). ��

Theorem 2.11.3 Kondratiev et al. (1995a), Theorem 2. Let Φ ∈
(S)+−1. Then there exists a unique positive measure ν on (S ′(R),B(S ′(R)))
such that for all φ ∈ (S)1,

〈Φ, φ〉 =
∫

S′(R)

φ(x)ν(dx). (2.11.3)

Proof We will construct the measure ν by estimating the moments of the
distributions. Since the polynomials P ⊂ (S)1, we can define the moments of
the distribution Φ as

Mn(ζ1, ζ2, . . . , ζn) = 〈Φ,

n∏

j =1

〈·, ζj〉〉; n ∈ N, 1 ≤ j ≤ n, ζj ∈ S(R)

M0 = 〈Φ, 1〉.
(2.11.4)

First assume ζ1 = ζ2 = · · · = ζn = ζ ∈ S(R). Since Φ ∈ (S)−p for some
p > 0, we have

|〈Φ, 〈·, ζ〉n〉| ≤ ‖Φ‖−1,−p‖〈·, ζ〉n‖1,p. (2.11.5)

To obtain a bound of ‖〈·, ζ〉n‖1,p, we use the well-known Hermite decom-
position (see Appendix C)

〈·, ζ〉n =
[ n
2 ]∑

k= 0

n!
k!(n− 2k)!

(

− 1
2
‖ζ‖2L2(R)

)k ∫

Rn−2k

ζ⊗n−2kdB⊗n−2k. (2.11.6)

But for any integer n ≥ 1,
∫

Rn

ζ⊗ndB⊗n =
∑

|α|= n

〈ζ⊗n, ξ⊗α〉
∫

Rn

ξ⊗αdB⊗|α| =
∑

|α|= n

〈ζ⊗n, ξ⊗α〉Hα(ω).

(2.11.7)
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Hence,
∥
∥
∥
∥

∫

Rn

ζ⊗ndB⊗n

∥
∥
∥
∥

2

1,p

=
∑

|α|= n

〈ζ⊗n, ξ⊗α〉2(α!)2(2N)pα

≤
(

∑

|α|= n

〈ζ⊗n, ξ⊗α〉2(2N)pα

)

(n!)2

= (n!)2
(

∑

|α|= n

〈(A
p
2 )⊗nζ⊗n, ξ⊗α〉2

)

= (n!)2|ζ|2n
2, p

2
.

(2.11.8)

Observe that
∫

Rn ζ⊗ndB⊗n, n ≥ 1, are orthogonal in (S)−p. Thus we
obtain from (2.11.6) and (2.11.8) that

‖〈·, ζ〉n‖21,p =
[ n
2 ]∑

k= 0

(
n!

k!(n− 2k)!2k

)2

‖ζ‖4k
L2(R)

∥
∥
∥
∥

∫

Rn

ζ⊗n−2kdB⊗n−2k

∥
∥
∥
∥

2

1,p

≤ (n!)2|ζ|2n
2, p

2

[ n
2 ]∑

k= 0

22n

(k!)2
· 2−2k ≤ (n!)24n|ζ|2n

2, p
2
C, (2.11.9)

where C =
∑∞

k=1 2−2k/(k!)2. By the polarization formula, this implies

∥
∥
∥
∥

n∏

j =1

〈·, ζj〉
∥
∥
∥
∥

1,p

≤
√

C2n(n!)
n∏

j =1

|ζj |2, p
2
. (2.11.10)

Hence we obtain from (2.11.4) that

|Mn(ζ1, . . . , ζn)| ≤ ‖Φ‖−1,−p

√
C2n(n!)

n∏

j =1

|ζj |2, p
2
. (2.11.11)

Due to the kernel theorem – see Gelfand and Vilenkin (1964) – the follow-
ing decomposition holds:

Mn(ζ1, . . . , ζn) = 〈M (n), ζ1 ⊗ ζ2 ⊗ · · · ⊗ ζn〉, (2.11.12)

where M (n) ∈ S ′(R)⊗̂n. The sequence {M (n), n ∈ N} has the following
property of positivity: For any finite sequence of smooth kernels {f (n), n ∈ N},
i.e., that f (n) ∈ S(R)⊗n, f (n) = 0, n ≥ n0

n0∑

k,j

〈M (k+j), f (k) ⊗ f (j)〉 = 〈Φ, |φ|2〉 ≥ 0, (2.11.13)

where φ(x) =
∑n0

n= 0〈x⊗n, f (n)〉, x ∈ S ′(R).
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By the result in Berezansky and Kondratiev (1988), (2.11.11) and (2.11.13)
are sufficient to ensure the existence of a uniquely defined measure ν on the
probability space (S ′(R),B(S ′(R))), such that for any φ ∈ P

〈Φ, φ〉 =
∫

S′(R)

φ(ω)ν(dω). (2.11.14)

By Corollary 2.4 in Zhang (1992), it is known that any element φ ∈ (S)1 is
defined pointwise and continuous. Thus to show (2.11.14) also holds for any
φ ∈ (S)1, by Lemma 2.11.2 it suffices to prove that there exists p′ > 0 and
ε > 0 such that exp[ε|x|2,−p′ ] is integrable with respect to ν. Choose p′ > p/2
such that the embedding ip

′
: Sp′(R) → Sp/2(R) is of the Hilbert–Schmidt

type. Then we let {ek, k ∈ N} ⊂ S(R) be an orthonormal basis in Sp′(R).
This gives

|x|22,−p′ =
∞∑

k=1

〈x, ek〉2, x ∈ S−p′(R) (2.11.15)

and

∫

S′(R)

|ω|2n
2,−p′ν(dω) =

∞∑

k1=1

· · ·
∞∑

kn=1

∫

S′(R)

〈ω, ek1〉2 · · · 〈ω, ekn
〉2ν(dω).

Using the bound (2.11.11), we have

∫

S′(R)

|ω|2n
2,−p′ν(dω) ≤ ‖Φ‖−1,−p

√
C22n(2n)!

∞∑

k1=1

· · ·
∞∑

kn=1

|ek1 |22, p
2
· · · |ekn

|22, p
2

= ‖Φ‖−1,−p

√
C22n(2n)!(‖ip′‖

HS
)2n,

because ∞∑

k =1

|ek|22, p
2

= ‖ip′‖2
HS

.

For an arbitrary integer n ≥ 1,

∫

S′(R)

|ω|n2,−p′ν(dω) ≤
( ∫

S′(R)

|ω|2n
2,−p′ν(dx)

) 1
2

ν(S ′(R))
1
2

≤
√
‖Φ‖−1,−pC

1
4 2n · 2nn!(‖ip′‖

HS
)nM

1
2
0 , (2.11.16)

where we have used that (2n)! ≤ 4n(n!)2 and ν(S ′(R)) = M0 < +∞. Choose
ε < 1/4‖ip′‖−1

HS
. Then
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∫

S′(R)

exp[ε|ω|2,−p′ ]ν(dω) =
∞∑

n=0

εn

n!

∫

S′(R)

|ω|n2,−p′ν(dω)

≤M
1
2
0 C

1
4

√
‖Φ‖−1,−p

∞∑

n=0

(ε4‖ip′‖
HS

)n < +∞.

(2.11.17)

��

Let X =
∑

α cαHα ∈ (S)∗ (the Hida distribution space defined in Section
2.3). As we know, the Hermite transform of X is given by

HX(z) = X̃(z) =
∑

α

cαzα, z = (z1, z2, . . . , zn, . . .) ∈ C
N. (2.11.18)

By Lindstrøm et al. (1991), Lemma 5.3, and Zhang (1992), X̃(z) converges
absolutely for z = (z1, . . . , zn, 0, 0, . . .) for each integer n. Therefore, the
function X̃(n)(z1, . . . , zn) := X̃(z1, z2, . . . , zn, 0 · · · 0) is analytic on C

n for
each n. Following Definition 2.11.1, we can define the positivity in (S)∗. The
following characterization is sometimes useful.

Theorem 2.11.4 Lindstrøm et al. (1991a). Let X ∈ (S)∗. Then X is
positive if and only if

gn(y) := X̃(n)(iy)e−
1
2 |y|

2
; y ∈ R

n (2.11.19)

is positive definite for all n.

Before giving the proof, let us recall the definition of positive definiteness.
A function g(y), y ∈ R

n, is called positive definite if for all positive integers
m and all y(1), . . . , y(m) ∈ R

n, a = (a1, . . . , am) ∈ C
m,

m∑

j,k

aj ākg(y(j) − y(k)) ≥ 0. (2.11.20)

Proof Let dλ(x) be the standard Gaussian measure on R
∞, i.e., the direct

product of infinitely many copies of the normalized Gaussian measure on R.
Set F (z) = X̃(n)(z), for z = (z1, . . . , zn) ∈ C

n. Define

Jn(x) = Jn(x1, . . . , xn) =
∫

X̃(n)(x + iy)dλ(y)

=
∫

F (x + iy)e−
1
2 |y|

2
(2π)−

n
2 dy, (2.11.21)

where y = (y1, . . . , yn), dy = dy1 · · · dyn.
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We write this as

Jn(x) = e−
1
2 |x|

2
∫

F (z)e
1
2 z2 · e−i(x,y)(2π)−

n
2 dy

= e−
1
2 |x|

2
(2π)−

n
2

∫
G(z)e−i(x,y)dy, (2.11.22)

where z = (z1, . . . , zn), zk = xk + iyk, z2 = z2
1 + · · ·+ z2

n, (x, y) =
∑n

k =1 xkyk,

and G(z) := F (z)e
1
2 z2

is analytic. Consider the function

f(x, η) =
∫

G(x + iy)e−i(η,y)dy, x, η ∈ R
n. (2.11.23)

Using the Cauchy–Riemann equations, we have

∂f

∂x1
=
∫

∂G

∂x1
· e−i(η,y)dy =

∫
(−i)

∂G

∂y1
e−i(η,y)dy.

But
+∞∫

−∞

(−i)
∂G

∂y1
e−iη1y1dy1 = i

+∞∫

−∞

G(z)e−iη1,y1(−iη1)dy1.

This gives
∂f(x, η)

∂x1
= η1f(x, η). (2.11.24)

Hence we have f(x1, x2, . . . , xn; η) = f(0, x2, . . . , xn; η)eη1x1 , and so on for
x2, . . . , xn. Therefore,

f(x, η) = f(0, η)eηx = e(η,x)

∫
G(iy)e−i(η,y)dy. (2.11.25)

We conclude from (2.11.21)–(2.11.25) that

Jn(x) = e
1
2 |x|

2
(2π)−

n
2

∫
X̃(n)(iy)e−

1
2 |y|

2
e−i(x,y)dy

= e
1
2 |x|

2
ĝn(x), (2.11.26)

where ĝn(x) = (2π)−n/2
∫

gn(y)e−i(x,y)dy is the Fourier transform of gn.
Note that gn ∈ S(Rn), and hence ĝn ∈ S(Rn). Therefore, we can apply

the Fourier inversion to obtain

gn(y) = (2π)−
n
2

∫
ĝn(−x)ei(x,y)dx = (2π)−

n
2

∫
Jn(−x)e−

1
2 |x|

2
ei(x,y)dx

=
∫

Jn(−x)ei(x,y)dλ(x) =
∫

Jn(x)e−i(x,y)dλ(x), (2.11.27)
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so if y(1), . . . , y(m) ∈ R
n and a = (a1, . . . , am) ∈ C

m, then

m∑

j,k

aj ākgn(y(j) − y(k)) =
∫
|γ(x)|2Jn(x)dλ(x), (2.11.28)

where γ(x) =
∑m

j =1 aje
−ixy(j)

. Since

∫
ηdB =

(∫
η1(t)dB(t),

∫
η2(t)dB(t), . . . ,

∫
ηn(t)dB(t), . . .

)

has distribution dλ(x), we can rewrite (2.11.28) as

m∑

j,k

aj ākgn(y(j) − y(k)) = E

[∣
∣
∣
∣γ

(∫
ηdB

)∣
∣
∣
∣

2

Jn

(∫
ηdB

)]

, (2.11.29)

since (S) is an algebra (see, e.g., Zhang (1992)), we have that
|γ(

∫
ηdB)|2 ∈ (S). Since Jn(

∫
ηdB)→ X in (S)∗,

m∑

j,k

aj ākgn(y(j) − y(k))→< X,

∣
∣
∣
∣γ

(∫
ηdB <

)∣
∣
∣
∣

2

>, as n→ +∞.

(2.11.30)
So if X is positive for almost all ω, we deduce that

lim
n→+∞

m∑

j,k

aj ākgn(y(j) − y(k)) ≥ 0. (2.11.31)

But with y(1), . . . , y(m) ∈ R
n fixed, gn(y(j) − y(k)) eventually becomes

constant as n→ +∞, so (2.11.31) implies that gn(y) is positive definite.
Conversely, if gn is positive definite, then, by (2.11.27), Jn(x) ≥ 0 for

almost all x with respect to dλ, and if this is true for all n ≥ 1, we have that

X(ω) = lim
n

Jn

(∫
ηdB

)

is positive. ��

Remark Let X ∈ L2(μ1) ⊂ (S)∗. Then X is positive in (S)∗ if and only if
X is a non-negative random variable.

Definition 2.11.5. A functional process X(φ, x, ω) is called positive or a
positive noise if

X(φ, x, ω) ≥ 0 for almost all ω (2.11.32)

for all φ ∈ S(Rd), x ∈ R
d.

Example 2.11.6. Let w(φ) be the smoothed white noise defined as in
Section 2.6. Then the Wick exponential exp�[w(φ, ω)] is a positive noise.
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This follows from the identity (see 2.6.55)

exp�[w(φ, ω)] = exp
[

w(φ, ω)− 1
2
‖φ‖2

]

.

Corollary 2.11.7. Let X = X(φ, ω) and Y = Y (φ, ω) be positive
L2-functional processes of the following form:

X(φ, ω) =
∑

α

aα(φ⊗|α|)Hα(ω),

Y (φ, ω) =
∑

α

bα(φ⊗|α|)Hα(ω).
(2.11.33)

where aα, bα ∈ H−s(Rnd) for some s. If X � Y is well defined, then X � Y is
also positive.

Proof For φ ∈ S(Rd), consider X̃(n)(φ, iy)e−1/2|y|2 as before and, similarly,
Ỹ (n)(φ, iy)e−1/2|y|2 . Replacing φ by ρφ where ρ > 0, Theorem 2.11.3 yields
that

g(ρ)
n (y) = X̃(n)(φ, iρy)e−

1
2 |y|

2
is positive definite,

hence

σn(y) := X̃(n)(φ, iy)e−
1
2 |

y
ρ |2 is positive definite, (2.11.34)

and, similarly,

γn(y) = Ỹ (n)(φ, iy)e−
1
2 |

y
ρ |2 is positive definite. (2.11.35)

Therefore the product σnγn(y) = (X̃(n)(φ)Ỹ (n)(φ))(iy)e−| y
ρ |2 is positive

definite. If we choose ρ =
√

2, this gives that

H(X � Y )(n)(φ, iy)e−
1
2 |y|

2
is positive definite.

So from Theorem 2.11.4, we have X � Y ≥ 0. ��

Exercises

2.1 To obtain a formula for E[〈·, φ〉n], replace φ by αφ with α ∈ R in equation
(2.1.3), and compute the nth derivative with respect to α at α = 0. Then
use polarization to show that we have E[〈·, φ〉〈·, ψ〉] = (φ, ψ) for functions
φ, ψ ∈ S(Rd).
2.2 Extend Lemma 2.1.2 to functions that are not necessarily orthogonal in
L2(Rd).
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2.3 Show that E[|B̃(x1)− B̃(x2)|4] = 3|x1 − x2|2.

2.4 Prove formula (2.1.7). (Hint: Set F (α, β) =
∫

R
eiαt−βt2dt for β > 0.

Verify that ∂F/∂β = ∂2F/∂α2 and F (0, β) = (π/β)1/2, and use this to
conclude that F must coincide with the right-hand side of (2.1.7).)

2.5 Give an alternative proof of Lemma 2.1.2. (Hint: Use (2.1.3) to prove that
the characteristic function of the random variable (〈ω, ξ1〉, 〈ω, ξ2〉, . . . , 〈ω, ξn〉)
coincides with that of the Gaussian measure λn on R

n.)

2.6 Prove statement (2.1.9): If φ ∈ L2(Rd) and we choose φn ∈ S(Rd) such
that φn → φ in L2(Rd), then

〈ω, φ〉 := lim
n→∞

〈ω, φn〉 exists in L2(μ1)

and is independent of the choice of {φn}. (Hint: From Lemma 2.1.2 (or from
Exercise 2.1), we get E[〈ω, φ〉2] = ‖φ‖2 for all φ ∈ S(Rd). Hence {〈·, φn〉}∞n = 1

is a Cauchy sequence in L2(μ1) and therefore convergent.)

2.7 Use the Kolmogorov’s continuity theorem (see, e.g., Stroock and
Varadhan (1979), Theorem 2.1.6) to prove that the process B̃(x) :=
〈ω, χ[0,x1]×···×[0,xd]〉 defined in (2.1.10) has a continuous version.

2.8 Find the Wiener–Itô chaos expansion (2.2.21),

f(ω) =
∑

α∈J
cαHα(ω); cα ∈ R

N ,

for the following f ∈ L2(μm) (when nothing else is said, assume N = m = 1):

a) f(ω) = w�2(φ, ω), φ ∈ S(Rd). (Hint: Use (2.2.23) and (2.4.2).)
b) f(ω) = B�2(x, ω); x ∈ R

d. (Hint: Use (2.2.24) and (2.4.2).)
c) f(ω) = B2(x, ω); x ∈ R

d. (Hint: Use b) and (2.4.14).)
d) f(ω) = B3(x, ω); x ∈ R

d. (Hint: Use (2.4.17).)
e) f(ω) = exp�[w(η1, ω)]. (Hint: Use (2.6.48).)
f) f(ω) = exp[w(η1, ω)]. (Hint: Use (2.6.55).)
g) m ≥ 1, f(ω) = B1(x, ω) + · · ·+ Bm(x, ω); x ∈ R

d. (Hint: Use (2.2.26).)
h) m ≥ 1, f(ω) = B2

1(x, ω) + · · · + B2
m(x, ω); x ∈ R

d. (Hint: Use (2.2.26)
and c).)

i) N ≥ 1, f(ω) =
(
2B(x, ω) + 1, B2(x, ω)

)
.

2.9 Prove (2.4.15):

w(φ) � w(ψ) = w(φ) · w(ψ)− (φ, ψ)

for all φ, ψ ∈ L2(Rd). (Hint: Use (2.4.10) and (2.2.23).)
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2.10 Let F ∈ L1(μ) ∩ (S)−1, with chaos expansion

F (ω) =
∑

α

cαHα(ω).

Prove that E[F ] = c0. (Hint: Combine (2.9.1) and (2.9.3) when φ = 0).
2.11 Let Kφ(x, ω) = exp�[Wφ(x, ω)] be as in (2.6.56). Prove that

E[Kφ(x, ·)] = 1 and Var[Kφ(x, ·)] = exp[‖φ‖2]− 1.

(Hint: Use (2.6.54) and (2.6.55).)
2.12 Let φ be normally distributed with mean 0 and variance σ2.
Prove that

E[φ2k] = (2k − 1)(2k − 3) · · · 3 · 1 · σ2k for k ∈ N.

(Hint: We may assume that σ = 1. Use integration by parts and induction:

E[φ2k] =
∫

R

x2kdλ(x) =
∫

−R

x · x2k−1dλ(x)

=

∞∣
∣
∣
∣

−∞

−x2k−1 · e− 1
2 x2 · 1√

2π
+
∫

R

(2k − 1)x2k−2dλ(x),

with dλ(x) = dλ1(x) as in (2.1.4).)
2.13 For X ∈ (S)−1 we define the Wick-cosine of X, cos�[X], and the
Wick-sine of X, sin�[X], by

cos�[X] =
∞∑

n=0

(−1)n

(2n)!
X�(2n)

and

sin�[X] =
∞∑

n=1

(−1)n−1

(2n− 1)!
X�(2n−1),

respectively. Prove that

a) cos�[w(φ)] = exp
[
1
2‖φ‖2

]
· cos[w(φ)]

b) sin�[w(φ)] = exp
[
1
2‖φ‖2

]
· sin[w(φ)].

(Hint: Use Lemma 2.6.16 and the formulas

cos�[w(φ)] =
1
2
(exp�[w(iφ)] + exp�[w(−iφ)])

sin�[w(φ)] =
1
2i

(exp�[w(iφ)]− exp�[w(−iφ)]),

where i =
√
−1 is the imaginary unit.)
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2.14

a) Prove that

exp�[− exp�[w(φ)]] =
∞∑

n=0

(−1)n

n!
exp

[

nw(φ)− n2

2
‖φ‖2

]

,

where the right-hand side converges in L1(μ).
b) Give an example to show that the Wick exponential exp�[X] need not in

general be positive. In fact, it may not even be bounded below.
(Hint: Consider f(x, y) =

∑∞
n=0 (−1)n/n! exp[nx−n2y2]. If we have that

x = 2y2 > 2 ln(3 + M) for M > 0, then f(x, y) < −M .)

2.15

a) Show the following generating formula for the Hermite polynomials:

exp
[

tx− 1
2
t2
]

=
∞∑

n=0

tn

n!
hn(x).

(Hint: Write exp[tx − 1/2t2] = exp[1/2x2] · exp[−1/2(x − t)2] and use
Taylor’s Theorem at t = 0 on the last factor. Then combine with Defini-
tion (C.1).)

b) Show that

exp
[

w(φ)− 1
2
‖φ‖2

]

=
∞∑

n=0

‖φ‖n
n!

hn

(
w(φ)
‖φ‖

)

for all φ ∈ L2(Rd), where ‖φ‖ = ‖φ‖L2(Rd).
c) Deduce that

exp
[

B(t)− 1
2
t

]

=
∞∑

n=0

t
n
2

n!
hn

(
B(t)√

t

)

for all t ≥ 0.

d) Combine b) with Lemma 2.6.16 and (2.6.48) to give an alternative proof
of (2.4.17):

w(φ)�n = ‖φ‖nhn

(
w(φ)
‖φ‖

)

,

for all n ∈ N and all φ ∈ L2(Rd).

2.16 Show that exp�[w(φ)�2] is not positive.
2.17 Show that

‖ exp�[nw(φ)]‖Lp(μ) = exp
[
(p− 1)n2‖φ‖2L2(Rd)

]

for all n ∈ N, φ ∈ L2(Rd), p ≥ 1.
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2.18

a) Show that exp�[exp�[w(φ)]] ∈ (S)−1 ∩ L1(μ).
b) Show that if p > 1, then exp�[exp�(w(φ)]] /∈ Lp(μ).

2.19 Let ψ = χ[0,t]. Use Itô’s formula to show that

a)
∫

R

∫
R

ψ⊗̂2dB⊗2 = B2(t)− t.
b)

∫
R3 ψ⊗̂3dB⊗3 = B3(t)− 3tB(t).

(Compare with (2.2.29).)

2.20 Let φ ∈ (S1). Prove that φ is pointwise defined and continuous on S ′(R).
(Hint: Use Definition 2.3.2 and formula (C.2).)
2.21 Consider the space L2(R, λ) where

dλ(x) =
1√
2π

e−
1
2 x2

dx.

Let hn(x);n = 0, 1, 2, . . . be the Hermite polynomials defined in (2.2.1). In
this 1-dimensional situation we can construct (S) and (S)∗ as follows: For
p ≥ 1, define

(S)p =

{

u(x) =
∞∑

n=0

cnhn(x) ∈ L2(R, λ);
∞∑

n=0

c2
nn!2np <∞

}

;

set (S) =
⋂

p≥1(S)p and (S)∗ = (S)′, the dual of (S). Prove that if f ∈ (S)1,
then

f(x) exp
[

− 1
2
x2

]

∈ S(R).

2.22 Let G be a Borel subset of R. Let FG be the σ-algebra generated by all
random variables of the form

∫

R

χA(t)dB(t) =
∫

A

dB(t); A ⊂ G Borel set.

Thus if G = [0, t], we have, with Ft as in Appendix B, F[0,t] = Ft for t ≥ 0.

a) Let g ∈ L2(R) be deterministic. Show that

E

[ ∫

R

g(t)dB(t)|FG

]

=
∫

R

χG(t)g(t)dB(t).

b) Let v(t, ω) ∈ R be a stochastic process such that v(t, ·) is
Ft ∩ FG-measurable for all t and

E

[ ∫

R

v2(t, ω)dt

]

<∞.
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Show that
∫

G
v(t, ω)dB(t) is FG-measurable. (Hint: We can assume that

v(t, ω) is a step function v(t, ω) =
∑

i vi(ω)χ[ti,ti+1)(t) where vi(ω) is
Fti
∩ FG-measurable. Then

∫

G

v(t, ω)dB(t) =
∑

i

∫

G∩[ti,ti+1)

vi(ω)dB(t)

=
∑

i

vi(ω)
∫

G∩[ti,ti+1)

dB(t).)

c) Let u(t, ω) be an Ft-adapted process such that

E

[ ∫

R

u2(t, ω)dt

]

<∞.

Show that

E

[ ∫

R

u(t, ω)dB(t)|FG

]

=
∫

G

E[u(t, ω)|FG]dB(t).

(Hint: By b) it suffices to verify that

E

[

f(ω) ·
∫

R

u(t, ω)dB(t)
]

= E

[

f(ω) ·
∫

G

E[u(t, ω)|FG]dB(t)
]

for all f(ω) =
∫

A
dB(t), A ⊂ G.)

d) Let fn ∈ L̂2(Rn). Show that

E

⎡

⎣
∫

Rn

fndB⊗n|FG

⎤

⎦ =
∫

Rn

fn(t1, . . . , tn)χG(t1) . . . χG(tn)dB⊗n(t1, . . . , tn).

(Hint: Apply induction to c).)
e) We say that two random variables φ1, φ2 ∈ L2(μ) are strongly independent

if there exist two Borel sets G1, G2 ⊂ R such that φi is FGi
-measurable

for i = 1, 2 and G1 ∩ G2 has Lebesgue measure 0. Suppose φ1, φ2 are
strongly independent. Show that φ1 � φ2 = φ1 · φ2. (See Example 2.4.9.)
(Hint: Use Proposition 2.4.2 and d).)

2.23 Find the Wiener–Itô expansion (2.2.35)

f(ω) =
∞∑

n=0

∫

Rn

fndB⊗n; fn ∈ L̂2(Rn)

of the following random variables f(ω) ∈ L2(μ) (N = m = d = 1):

a) f(ω) = B(t0, ω); t0 > 0
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b) f(ω) = B2(t0, ω); t0 > 0

c) f(ω) = exp[
∫

R
g(s)dB(s, ω)]; g ∈ L2(R) deterministic

d) f(ω) = B(t, ω)(B(T, ω)−B(t, ω)); 0 ≤ t ≤ T .

(Answers:

a) f0 = 0, f1 = χ[0,t0], fn = 0 for n ≥ 2.
b) f0 = t0, f1 = 0, f2(t1, t2) = χ[0,t0](t1) · χ[0,t0](t2), fn = 0 for n ≥ 3.

c) fn = 1
n! exp

[
1
2‖g‖2L2(R)

]
g⊗n for all n ≥ 0.

d) f0 = 0, f1 = 0, f2(t1, t2) = 1
2 (χ{t1<t<t2<T} + χ{t2<t<t1<T}), fn = 0

for n ≥ 3.)

2.24 Find the following Skorohod integrals using Definition 2.5.1:

a)
∫ T

0
B(t0, ω)δB(t); 0 ≤ t0 ≤ T

b)
∫ T

0

∫ T

0
g(s)dB(s)δB(t), where g ∈ L2(R) is deterministic.

c)
∫ T

0
B2(t0, ω)δB(t); 0 ≤ t0 ≤ T .

d)
∫ T

0
exp[B(T, ω)]δB(t).

e)
∫ T

0
B(t, ω)(B(T, ω)−B(t, ω))δB(t).

(Hint: Use the expansions you found in Exercise 2.23.)

(Answers:

a) B(t0)B(T )− t0.

b) B(T ) ·
∫ T

0
g(s)dB(s)−

∫ T

0
g(s)ds.

c) B2(t0)B(T )− 2t0B(t0).

d) exp
[
1
2T

]∑∞
n =0

1
n!T

n+1
2 hn+1

(
B(T )√

T

)

e) 1
6 (B(T )3 − 3T B(T )).)

2.25 Compute the Skorohod integrals in Exercise 2.24 by using the Wick
product representation in Theorem 2.5.9. (Hint: In e) apply Exercise 2.12
e).) Remark: Note how much easier the calculation is with Wick products!
2.26 Let

w(φ, ω) = (〈ω1, φ1〉, 〈ω2, φ2〉)
be the 2-dimensional smoothed white noise vector defined by (2.1.27). Define

wc(φ, ω) = 〈ω1, φ2〉+ i〈ω2, φ2〉,
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where i =
√
−1 is the imaginary unit. We call wc the complex smoothed white

noise.
Prove that

w�2
c (φ, ω) = w2

c(φ, ω).

For generalizations of this curious result, see Benth et al. (1996).

2.27 Let

w(ω1) = w(ω1, ω) =
∞∑

j =1

〈ω1, ηj〉Hεj
(ω) ∈ (S)∗; ω1 ∈ S ′(Rd)

be the generalized smoothed white noise defined in (2.10.8). Prove that

exp�[w(ω1 + ω2)] = exp�[w(ω1)] � exp�[w(ω2)].

(Note that both sides are functions of ω ∈ S ′(Rd).)

2.28 Let ω1, ω2 ∈ S ′(Rd). Prove that

T ∗
ω1 + ω2

= T ∗
ω1

T ∗
ω2

= T ∗
ω2

T ∗
ω1

.

(Hint: See Theorem 2.10.3 and use Exercise 2.24.)

2.29 In this exercise, we let φ denote the Hermite function of order k ∈ N,
i.e., φ(x) = ξk(x) where ξk(x) is given by (2.2.2).

a) Define X(ω) =
∑∞

n=0 anw(φ)�n, where

∞∑

n=0

(n!)2a2
n <∞.

Show that

ψX(x) :=
∞∑

n=0

anhn(x) ∈ L2(R, dλ),

where
dλ(x) =

1√
2π

e−
1
2 x2

dx

and that
X(ω) = ψX(w(φ)).

(Hint: See Exercise 2.15.)
b) Define

δ(w(φ)) :=
∞∑

n=0

(−1)n

2nn!
√

2π
w(φ)�2n =

1√
2π

exp�
(

−1
2
w(φ)�2

)

.
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This is called the Donsker delta function. Note that δ(w(φ)) ∈ (S)∗. Show
that X ∈ (S)1 and that

〈δ(w(φ)),X〉 = ψX(0).

c) Show that no element Z ∈ (S)−1 can satisfy the relation

Z � w(φ) = 1.

d) In spite of the result in c), we can come close to a Wick inverse of w(φ)
proceeding as follows:
With a slight abuse of notation, define

w(φ)−�1 =
∞∑

k=0

(−1)k

(2k + 2)2kk!
w(φ)�(2k+1).

Show that w(φ)−�1 ∈ (S)−1 and that

w(φ)−�1 � w(φ) = 1−
√

2πδ(w(φ)).

w(φ)−�1 is called the Wick inverse of white noise. See Hu et al. (1995) for
more details.

2.30 Prove (2.3.38), i.e., that W (t) = d
dtB(t) in (S)∗.



Chapter 3

Applications to Stochastic Ordinary
Differential Equations

As mentioned in the introduction, the framework that we developed in
Chapter 2 for the main purpose of solving stochastic partial differential equa-
tions, can also be used to obtain new results – as well as new proofs of old
results – for stochastic ordinary differential equations. In this chapter we will
illustrate this by discussing some important examples.

3.1 Linear Equations

3.1.1 Linear 1-Dimensional Equations

In this section we consider the general 1-dimensional linear Wick type
Skorohod stochastic differential equation in X(t) = X(t, ω)
⎧
⎨

⎩

dX(t) = g(t, ω)dt + r(t, ω) �X(t)dt +
m∑

i=1

αi(t, ω) �X(t)δBi(t)

X(0) = X0(ω),
(3.1.1)

where g(t, ω), r(t, ω),X0(ω) and αi(t, ω); 1 ≤ i ≤ m, are random functions,
possibly anticipating. B(t) = (B1(t), . . . , Bm(t)) is m-dimensional Brownian
motion.

In view of the relation given by Theorem 2.5.9 between Skorohod integrals
and Wick products with white noise, we rewrite equation (3.1.1) as

⎧
⎨

⎩

dX(t)
dt = g(t, ω) + r(t, ω) �X(t) +

m∑

i=1

αi(t, ω) �X(t) �Wi(t)

X(0) = X0(ω),
(3.1.2)

H. Holden et al., Stochastic Partial Differential Equations, 2nd ed., Universitext, 115
DOI 10.1007/978-0-387-89488-1 3, c© Springer Science+Business Media, LLC 2010
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where W (t) = (W1(t), . . . , Wm(t)) is m-dimensional white noise. In this
setting it is natural to assume that X0 and the coefficients involved are
(S)−1-valued, as well as X(t).

Theorem 3.1.1. Suppose g(t, ω), r(t, ω) and αi(t, ω); 1 ≤ i ≤ m are
continuous (S)−1-processes and that X0 ∈ (S)−1. Then equation (3.1.2) has
a unique continuously differentiable (S)−1-valued solution given by

X(t, ω) = X0(ω) � exp�

⎡

⎣
t∫

0

(

r(u, ω) +
m∑

i=1

αi(u, ω) �Wi(u)

)

du

⎤

⎦

+

t∫

0

exp�

⎡

⎣
t∫

s

(

r(u, ω) +
m∑

i=1

αi(u, ω) �Wi(u)

)

du

⎤

⎦ � g(s, ω)ds.

(3.1.3)

The generalized expectation of X(t) is

E[X(t)] = E[X0] exp
[ t∫

0

E[r(u)]du

]

+

t∫

0

exp
[ t∫

s

E[r(u)]du

]

E[g(s)]ds. (3.1.4)

Proof Taking H-transforms we get the equation
⎧
⎨

⎩

dX̃(t)
dt = g̃(t) +

[

r̃(t) +
m∑

i=1

α̃i(t)W̃i(t)
]

X̃(t)

X̃(0) = X̃0,

(3.1.5)

where we have suppressed the z in the notation: X̃(t) = X̃(t; z), etc.
For each z ∈ (CN)c we now use ordinary calculus to obtain that

X̃(t) = X̃0 exp

⎡

⎣
t∫

0

(

r̃(u) +
m∑

i=1

α̃i(u)W̃i(u)
)

du

⎤

⎦

+

t∫

0

exp

⎡

⎣
t∫

s

(

r̃(u) +
m∑

i=1

α̃i(u)W̃i(u)
)

du

⎤

⎦ g̃(s)ds (3.1.6)

is the unique solution of (3.1.5). Moreover, X̃(t; z) is clearly a continuous
function of t for each z ∈ (CN)c. Hence by (3.1.5) and our assumptions on
g, r and α the same is true for dX̃/dt(t; z). Moreover, by (3.1.6) and (3.1.5)
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we also have that dX̃/dt(t; z) is a bounded function of (t, z) ∈ [0, T ]×Kq(R)
for any T <∞ and suitable q,R <∞ (depending on g, r and α).

We conclude from Lemma 2.8.4 that

X(t, ω) = X0(ω) � exp�

⎡

⎣
t∫

0

(

r(u, ω) +
m∑

i=1

αi(u, ω) �Wi(u)

)

du

⎤

⎦

+

t∫

0

exp�

⎡

⎣
t∫

s

(

r(u, ω) +
m∑

i=1

αi(u, ω) �Wi(u)

)

du

⎤

⎦ � g(s, ω)ds

solves (3.1.3), as claimed. The last statement of the theorem, (3.1.4), follows
from (2.6.45) and (2.6.54). ��

Note that (3.1.2) is a special case of the general linear 1-dimensional Wick
equation

⎧
⎨

⎩

dX(t)
dt = g(t, ω) + h(t, ω) �X(t)

X(0) = X0(ω),
(3.1.7)

where g(t, ω), h(t, ω) are continuous (S)−1 processes, X0 ∈ (S)−1. In (3.1.2)
we have h(t, ω) = r(t, ω) +

∑m
i=1 αi(t, ω) � Wi(t). By the same method as

above, we obtain

Theorem 3.1.2. The unique solution X(t) ∈ (S)−1 of (3.1.7) is given by

X(t, ω) = X0(ω) � exp�

⎡

⎣
t∫

0

h(u, ω)du

⎤

⎦

+

t∫

0

exp�

⎡

⎣
t∫

s

h(u, ω)du

⎤

⎦ � g(s, ω)ds. (3.1.8)

Corollary 3.1.3. Suppose g(t, ω) is a continuous (S)−1-process, that r(t)
and αi(t); 1 ≤ i ≤ m are real (deterministic) continuous functions and that
X0 ∈ (S)−1. Then the unique solution of (3.1.2) is given by

X(t) = X0 � exp

⎡

⎣
t∫

0

r(u)− 1
2

m∑

i=1

α2
i (u)du +

m∑

i=1

t∫

0

αi(u)dBi(u)

⎤

⎦

+

t∫

0

exp

⎡

⎣
t∫

s

r(u)− 1
2

m∑

i=1

α2
i (u)du +

m∑

i=1

t∫

s

αi(u)dBi(u)

⎤

⎦ � g(s)ds.

(3.1.9)
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Proof This follows from Theorem 3.1.1 combined with the relation (2.6.56)
between Wick exponentials (exp�) and ordinary exponentials (exp) of
smoothed white noise. ��

Corollary 3.1.4. Let r and α be real constants and assume that X0 is
independent of {B(s); s ≥ 0}. Then the unique solution of the Itô equation

{
dX(t) = rX(t)dt + αX(t)dB(t)
X(0) = X0

(3.1.10)

is given by

X(t) = X0 · exp
[(

r − 1
2
α2

)

t + αB(t)
]

. (3.1.11)

If |X0| has a finite expectation, then the expectation of X(t) is

E[X] = E[X0] · exp[rt]. (3.1.12)

Proof This follows from (3.1.9) and (3.1.4). Note that the Wick product
with X0 in (3.1.9) coincides with the ordinary product, since X0 is indepen-
dent of {B(s); s ≥ 0}. ��

Remark The solution (3.1.11), usually called geometric Brownian motion,
is well known from Itô calculus (see, e.g., Øksendal (1995), equation (5.5)).
Note that our method does not involve the use of Itô’s formula, just ordinary
calculus rules (with Wick products).

3.1.2 Some Remarks on Numerical Simulations

Expressions like the one in (3.1.11) are quite easy to handle with respect
to numerical simulations. We have an explicit formula defined in terms of a
function applied to Brownian motion. This can, of course, be done in several
different ways. The construction we have found most useful to exploit is that
Brownian motion has independent increments. We thus have

B

(
k

n

)

= B

(
1
n

)

−B(0) + B

(
2
n

)

−B

(
1
n

)

+ · · ·+ B

(
k

n

)

−B

(
k − 1

n

)

=
k∑

j=0

ΔBj (3.1.13)
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where ΔBj = B(j + 1/n) − B(j/n). Here all the ΔBj , j = 0, 1, . . . are
independent normally distributed N [0, 1/n] random variables. Many
computer programs have ready–made random number generators to sam-
ple pseudo-random numbers of the form N [0, σ2]. We then produce a sample
path of Brownian motion simply by adding these numbers together. The fig-
ure below shows three different sample paths of geometric Brownian motion,
generated from (3.1.11) using the scheme above.

The figure also shows the average value X̄(t) = E[X(t)] = E[X0] · ert (see
(2.6.54)). As parameter values we have used r = 1, α = 0.6 and X0 = 1. Note
that X̄(t) coincides with the solution of the no-noise equation, i.e., the case
when α = 0.

3.1.3 Some Linear Multidimensional Equations

We now consider the multidimensional case. In this section we will assume
that all the coefficients except one are constant with respect to time. We will,
however, allow them to be random, possibly anticipating. The general linear
case will be considered in Section 3.3.

Theorem 3.1.5 (1-dimensional noise). Suppose that G(t, ω) ∈ (S)N
−1

is t-continuous and that X0 ∈ (S)N
−1, R ∈ (S)N×N

−1 and A ∈ (S)N×N
−1 are

constant with respect to t. Assume that R and A commute with respect to
matrix Wick multiplication, i.e., R �A = A �R. Let W (t) be 1-dimensional.
Then the unique (S)N

−1-valued process X(t) = X(t, ω) solving

{
dX(t)

dt = G(t, ω) + R(ω) �X(t) + A(ω) �X(t) �W (t)

X(0) = X0

(3.1.14)
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Fig. 3.1 Three sample paths of geometric Brownian motion.
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is given by

X(t, ω) = X0(ω) � exp�[tR(ω) + A(ω)B(t, ω)]

+

t∫

0

exp�[(t− s)R(ω) + A(ω)(B(t, ω)−B(s, ω))] �G(s, ω)ds,

(3.1.15)

where B(t, ω) is 1-dimensional Brownian motion.

Here the Wick matrix exponential exp�[K(ω)], with K ∈ (S)N×N
−1 , is

defined by

exp�[K(ω)] =
∞∑

n=0

1
n!

K(ω)�n, (3.1.16)

where K�n is the Wick matrix power of order n, i.e., K�n = K �K � · · · �K
(n factors). The convergence of (3.1.16) is easily shown by takingH-transforms,
or by using Theorem 2.6.12.

The proof of Theorem 3.1.5 follows the same lines as the proof of Theorem
3.1.1 and is omitted. Unfortunately this method does not extend to the case
when R and A vary with t.

3.2 A Model for Population Growth in a Crowded,
Stochastic Environment

If the environment of a population has an infinite carrying capacity, then the
equation (3.1.2) with deterministic coefficients, rewritten as

{dX(t,ω)
dt = [r(t) + α(t)W (t, ω)] �X(t, ω)

X(0, ω) = X0(ω),
(3.2.1)

may be regarded as a model for the growth of a population X(t, ω), where
the relative growth rate at time t has the form

r(t) + α(t)W (t, ω). (3.2.2)

This is a mathematical way of describing unpredictable, irregular changes
in the environment. Equation (3.2.1) is a stochastic version of the Malthus
model for population growth.

If the environment is limited, however, with a finite carrying capacity K,
then the equation for the population size X(t, ω) at time t must be modified.
The Verhulst model assumes that the relation growth rate in this case is
proportional to the “free life space” K − X(t, ω). This gives two possible
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models, in which the population sizes are denoted by Y and X, respectively.
The first model is

MODEL A

{dY (t)
dt = Y (t)(K − Y (t))[r(t) + α(t)W (t)]

Y (0) = x0 > 0 (constant),

which can be interpreted in the usual Itô sense
{

dY (t) = r(t)Y (t)[K − Y (t)]dt + α(t)Y (t)[K − Y (t)]dB(t)

Y (0) = x0.
(3.2.3)

The second model is

MODEL B

{dX(t)
dt = X(t) � (K −X(t)) � [r(t) + α(t)W (t)]

X(0) = x0,

or, in Skorohod integral interpretation,

{
dX(t) = r(t)X(t) � (K −X(t))dt + α(t)X(t) � (K −X(t))δB(t)

X(0) = x0.

(3.2.4)

Note that the two models coincide in the deterministic case (α = 0).
It is therefore a relevant question which of the two models gives the best
mathematical model in the stochastic case. We emphasize that there is no
reason to assume a priori that the pointwise product Y (t, ω) · [K − Y (t, ω)]
is better than the Wick product (X(t, ·)� [K−X(t, ·)])(ω). In this section we
will show how to solve (3.2.4) explicitly and compare the stochastic properties
of this solution X(t) with the solution Y (t) of (3.2.3).

Model B was first discussed in Lindstrøm et al. (1992) (as in equation in
L2(μ)) and subsequently in Benth (1996), as an equation in (S)−1. Here we
first present the approach in Benth (1996), and then compare it with the
solution in Lindstrøm et al. (1992). For simplicity, we assume that the units
are chosen such that K = 1.

3.2.1 The General (S)−1 Solution

Theorem 3.2.1 Benth (1996). Suppose X0 ∈ (S)−1 with E[X0] > 0.
Then the stochastic distribution process

X(t, ω) = [1 + θ0 � exp�[−rt− αB(t)]]�(−1), (3.2.5)
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with
θ0 = (X0)�(−1) − 1, (3.2.6)

is the unique continuously differentiable (S)−1-process solving the equation

X(t) = X0 +r

t∫

0

X(s)� (1−X(s))ds+α

t∫

0

X(s)� (1−X(s))�W (s)ds; t ≥ 0.

(3.2.7)

Proof Taking the H-transform of (3.2.7) gives us the equation (where we
have X̃(t) = X̃(t; z))

⎧
⎨

⎩

dX̃(t)
dt = (r + αW̃ (t))X̃(t)(1− X̃(t))

X̃(0) = X̃0; z ∈ (CN)c,
(3.2.8)

which has the solution

X̃(t) =
1

1 + θ̃0 exp[−rt− αB̃(t)]
, (3.2.9)

where

θ̃0 = θ̃0(z) =
1

X̃0(z)
− 1. (3.2.10)

Since X̃0(0) = E[X0] > 0, there exist ε > 0 and a neighborhood Kq(δ)
such that

|X̃0(z)| ≥ ε > 0 for all z ∈ Kq(δ).

Hence θ̃0(z) is a bounded analytic function in Kq(δ). Moreover, since
θ̃0(0) > 0 and B̃(t; 0) = 0, we see that for all t ≥ 0 there exist q(t), δ(t)
such that X̃(t; z) is a bounded analytic function in z, for z ∈ Kq(t)(δ(t)).
Moreover, for given T < ∞, the numbers q1 = q(t), δ1 = δ(t) can be cho-
sen to work for all t ≤ T . Therefore, by (3.2.8) the derivative dX̃(t; z)/dt is
analytic in z and bounded for (t, z) ∈ [0, T ] × Kq1(δ1). From (3.2.8) we also
see that dX̃(t; z)/dt is a continuous function of t when defined. We conclude
from Lemma 2.8.4 that

X(t, ω) = H−1(X̃(t; z)) = [1 + θ0 � exp�[−rt− αB(t)]]�(−1)

with
θ0 = (X0)�(−1) − 1

solves equation (3.2.7). The uniqueness follows from the uniqueness of the
solution of (3.2.8). ��



3.2 A Model for Population Growth in a Crowded, Stochastic Environment 123

3.2.2 A Solution in L1(μ)

For simplicity, let us from now on assume that X0 = x0 > 0 is a constant.
Moreover, assume r > 0. First consider the case

x0 >
1
2
, i.e., θ0 :=

1
x0
− 1 ∈ (−1, 1). (3.2.11)

Then formula (3.2.5) can be written

X(t) = X1(t) =
(
1 + θ0 exp� [−rt− αB(t)

])�(−1)

=
∞∑

m=0

(−1)mθm
0 exp�[−rmt− αmB(t)]

=
∞∑

m=0

(−1)mθm
0 exp

[

−
(

rm +
1
2
α2m2

)

t− αmB(t)
]

.

(3.2.12)

Since E
[
exp�[−αmB(t)]

]
= 1, the sum (3.2.12) converges in L1(μ) for all

t ≥ 0. Moreover, the L1(μ) process X1(t) defined by (3.2.12) satisfies equation
(3.2.7), when the Wick product is interpreted in the L1(μ) sense as described
in Section 2.9. To see this, note that

X1(t) � (1−X1(t)) = lim
N→∞

( N∑

m=0

(−1)mθm
0 exp�[−rmt− αmB(t)]

)

�
(

1−
N∑

n=0

(−1)nθn
0 exp�[−rnt− αnB(t)]

)

= lim
N→∞

N∑

m=0
n=1

(−1)m+n+1θm+n
0 exp�[−r(m + n)t

− α(m + n)B(t)]

= lim
N→∞

2N∑

k=1

(−1)k+1θk
0k exp�[−rkt− αkB(t)]

=
∞∑

k=1

(−1)k+1θk
0k exp�[−rkt− αkB(t)] ∈ L1(μ).

(3.2.13)

Hence X1(t) � (1−X1(t)) exists in L1(μ) and is given by (3.2.13). Let

Yk(t) = exp�[−rkt− αkB(t)]; k = 0, 1, 2, . . . .
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Then by Itô’s formula

dYk(t) = d

(

exp
[

−
(

rk +
1
2
α2k2

)

t− αkB(t)
])

= Yk(t)
(

−
(

rk +
1
2
α2k2

)

dt− αkdB(t) +
1
2
α2k2dt

)

= kYk(t)(−rdt− αdB(t)).

Hence
t∫

0

X1(s) � (1−X1(s))(rds + αdB(s))

=
∞∑

k=1

(−1)kθk
0

t∫

0

kYk(s)(−rds− αdB(s))

=
∞∑

k=1

(−1)kθk
0 (Yk(t)− 1) =

∞∑

k=0

(−1)kθk
0 (Yk(t)− 1)

= X1(t)−
1

1 + θ0
= X1(t)− x0,

as claimed. We conclude that X1(t) satisfies equation (3.2.7).
Next consider the case

0 < x0 <
1
2
, i.e., θ0 =

1
x0
− 1 > 1. (3.2.14)

Then formula (3.2.5) can be written

X(t, ω) = X2(t, ω)

= θ−1
0 exp�[rt + αB(t)] � (1 + θ−1

0 exp[rt + αB(t)])�(−1)

= θ−1
0 exp�[rt + αB(t)] �

( ∞∑

m=0

(−1)mθ−m
0 exp�[rmt + αmB(t)]

)

=
∞∑

m=1

(−1)m+1θ−m
0 exp

[(

rm− 1
2
α2m2

)

t + αmB(t)
]

.

(3.2.15)

This converges in L1(μ) for all t such that exp[rt] < θ0, i.e., for

t < T0 :=
1
r

ln θ0.

A similar calculation as above shows that X2(t) is an L1(μ) solution of
(3.2.7) for t < T0. Note that the series (3.2.15) in fact converges pointwise
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for almost all ω for all values of t, but we can only deduce L1(μ) convergence
when t < T0. In the following we let X2(t) denote the pointwise a.e. limit of
(3.2.15) for all t ≥ 0.

We summarize this as follows:

Theorem 3.2.2 Lindstrøm et al. (1992). Assume that r > 0, α ∈ R are
constants.

a) Suppose x0 > 1/2, i.e., θ0 := 1/x0 − 1 ∈ (−1, 1). Then the process

X(t) = X1(t) =
∞∑

m=0

(−1)mθm
0 exp�[−rmt− αmB(t)] (3.2.16)

is an L1(μ) solution of the equation
⎧
⎪⎨

⎪⎩

X(t) = x0 +
t∫

0

rX(s) � (1−X(s))ds +
t∫

0

αX(s) � (1−X(s))dB(s)

X(0) = x0

(3.2.17)
for all t ≥ 0.

b) Suppose 0 < x0 < 1/2, i.e., θ0 := 1/x0 − 1 > 1.
Then the process

X(t) = X2(t) =
∞∑

m=1

(−1)m+1θ−m
0 exp�[rmt + αmB(t)] (3.2.18)

converges for almost all ω for all t and is an L1(μ) solution of (3.2.17)
for

t < T0 :=
1
r

ln θ0. (3.2.19)

Some interesting properties of these solutions are the following:

Corollary 3.2.3. Let X1(t),X2(t) be as in Theorem 3.2.2.

a) Let x0 > 1/2. Then we have

Ex0 [X1(t)] = x(t), for all t, (3.2.20)

where x(t) is the solution of (3.2.17) in the deterministic case (α = 0),
i.e., {dx(t)

dt = rx(t)(1− x(t))

x(0) = x0.
(3.2.21)

Moreover,
lim

t→∞
X1(t) = 1 a.s., (3.2.22)
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and for all t > 0 we have

P x0 [X1(t) > 1] > 0 and P x0 [X1(t) < 1] > 0. (3.2.23)

b) Let 0 < x0 < 1/2. Then, with T0 as in (3.2.19),

Ex0 [X2(t)] = x(t) for t < T0. (3.2.24)

Moreover, for all t < T0 we have

P x0 [X2(t) > 1] > 0 and P x0 [X2(t) < 1] > 0. (3.2.25)

Proof Properties (3.2.20), (3.2.24) follow immediately from the fact that

E

[

exp�

[∫
φ(t)dB(t)

]]

= E

[

exp

[∫
φ(t)dBt −

1
2
‖φ‖2

]]

= 1 (3.2.26)

for all φ ∈ L2(R). Property (3.2.22) follows from the expression (3.2.16)
combined with the law of iterated logarithm for Brownian motion:

lim sup
t→∞

Bt√
2t ln(ln t)

= 1 almost surely, (3.2.27)

(see, e.g., Lamperti (1966), Section 22). Statements (3.2.23) and (3.2.25)
are consequences of formulas (3.2.16), (3.2.18) for X1(t),X2(t) plus the fact
that for any t > 0 Brownian motion obtains arbitrary large or small values
with positive probability (the density function for B(t) is positive on the
whole of R). ��

Computer simulations of some paths of X1(t),X2(t) are shown on the
figure below.

Remark For x0 = 1/2 the (S)−1 solution X(t) does not seem to allow as
simple a representation as in (3.2.16) or (3.2.18). For this reason the point
x0 = 1/2 is called a stochastic bifurcation point in Lindstrøm et al. (1992).
Note, however, that the (S)−1 solution exists for all initial values x0 > 0
and for all t ≥ 0. But the H-transform X̃(t; z) given by (3.2.9) cannot be
extended to an analytic function of z on C

n for any n ≥ 1 (the function
is meromorphic). Therefore, by Proposition 2.6.5 we see that X(t) does not
belong to (S)−ρ for any ρ < 1. In particular, X(t) is not in (S)∗ for any
t > 0 and any x0 > 0.



3.2 A Model for Population Growth in a Crowded, Stochastic Environment 127

Logistic paths

The same sample with r = 1, α = 1. Starting points: 0.75, 0.6.
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Different sample paths with r = 1/5, α = 1/2. Starting point: 0.6.
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3.2.3 A Comparison of Model A and Model B

It is known (see, e.g., Lungu and Øksendal (1997)) that the Itô stochastic
differential equation (3.2.3) of Model A has a unique continuous, Ft-adapted
solution Y (t, ω) for all t ≥ 0 (still assuming r > 0 and x0 > 0). Moreover,
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the solution is a strong Markov process, and it is easily seen that it has the
following properties:

If x0 > 1, then Y (t, ω) > 1 for all t and almost all ω, (3.2.28)
If 0 < x0 < 1, then 0 < Y (t, ω) < 1 for all t and almost all ω. (3.2.29)

We see that while the process X(t) from Model B allows the population
to cross the carrying capacity (“overshoot”), by (3.2.23), (3.2.25), this is
impossible for the process Y (t) from model A.

By (3.2.23), (3.2.25) we also conclude that X(t) cannot be a strong Markov
process, because if it were, it would necessarily continue to have the constant
value 1 once it hits this value, which is impossible by (3.2.16), (3.2.18). See
also Exercise 3.1.

3.3 A General Existence and Uniqueness Theorem

In this section we first formulate a general result about differential equa-
tions in (S)N

−1 and then we apply it to general linear stochastic differential
equations.

Theorem 3.3.1 V̊age (1996b). Let k be a natural number. Suppose that
F : [0, T ]× (S)N

−1,−k → (S)N
−1,−k satisfies the following two conditions:

‖F (t, Y )− F (t, Z)‖−1,−k ≤ C‖Y − Z‖−1,−k (3.3.1)

for all t ∈ [0, T ]; Y,Z ∈ (S)N
−1,−k, with C independent of t, Y and Z;

‖F (t, Y )‖−1,−k ≤ D(1 + ‖Y ‖−1,−k) (3.3.2)

for all t ∈ [0, T ], Y ∈ (S)N
−1,−k, with D independent of t and Y .

Then the differential equation

dX(t)
dt

= F (t,X(t)); X(0) = X0 ∈ (S)N
−1,−k (3.3.3)

has a unique t-continuous solution X(t) : [0, T ]→ (S)N
−1,−k.

Proof The result follows by standard methods for differential equations of
this type. The details are omitted. See Exercise 3.2. ��

We wish to apply this to the general linear Wick stochastic
differential equation. For this we need the following useful estimate for Wick
products:



3.3 A General Existence and Uniqueness Theorem 129

Proposition 3.3.2 V̊age’s inequality, V̊age (1996a). Suppose

F =
∑

α

aαHα ∈ (S)−1,−l, G =
∑

β

bβHβ ∈ (S)−1,−k,

where l, k ∈ Z with
k > l + 1. (3.3.4)

Then
‖F �G‖−1,−k ≤ A(k − l) · ‖F‖−1,−l · ‖G‖−1,−k, (3.3.5)

where

A(k − l) =
[∑

α

(2N)(l−k)α

] 1
2

<∞ (3.3.6)

by Proposition 2.3.3.

Proof

‖F �G‖2−1,−k = lim
n→∞

∑

γ∈Γn

( ∑

α+β=γ

aαbβ

)2

(2N)−kγ

= lim
n→∞

∑

γ∈Γn

( ∑

α+β=γ

aα(2N)−
k
2 αbβ(2N)−

k
2 β

)2

where

Γn = {γ = (γ1, . . . , γn) ∈ N
n; γi ≤ n for i = 1, . . . , n}.

Define f(α) = aα(2N)−
k
2 α, g(β) = bβ(2N)−

k
2 β and write α ≤ γ if there

exists a multi-index β such that α + β = γ. Then from the above we get

‖F �G‖2−1,−k = lim
n→∞

∑

γ∈Γn

(∑

α≤γ

f(α)g(γ − α)
)2

= lim
n→∞

∑

γ∈Γn

∑

α,α′≤γ

f(α)f(α′)g(γ − α)g(γ − α′)

= lim
n→∞

∑

α,α′∈Γn

f(α)f(α′)
∑

γ≥α,α′,γ∈Γn

g(γ − α)g(γ − α′)

≤ lim sup
n→∞

∑

α,α′∈Γn

f(α)f(α′)
( ∑

β∈Γn

g(β)2
) 1

2
( ∑

β∈Γn

g(β)2
) 1

2

≤ lim sup
n→∞

∑

α,α′∈Γn

|f(α)‖f(α′)|
∑

β

g(β)2

=
(∑

α

|f(α)|
)2 ∑

β

g(β)2
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=
(∑

α

|aα|(2N)−
k
2 α

)2

‖G‖2−1,−k

=
(∑

α

|aα|(2N)−
l
2 α(2N)

l−k
2 α

)2

‖G‖2−1,−k

≤
∑

α

a2
α(2N)−lα

∑

α

(2N)(l−k)α‖G‖2−1,−k

=
∑

α

(2N)(l−k)α‖F‖−1,−l‖G‖2−1,−k. ��

Theorem 3.3.5 (The general linear multi-dimensional Wick
stochastic differential equation). Let T > 0 and l ∈ Z. Suppose X0 ∈
(S)N

−1, G : [0, T ] → (S)N
−1 and H : [0, T ] → (S)N×N

−1 for 1 ≤ i, j ≤ N .
Moreover, suppose there exists M <∞ such that

‖Gi(t)‖−1,−l + ‖Hij(t)‖−1,−l ≤M (3.3.7)

for all t ∈ [0, T ]; 1 ≤ i, j ≤ N .
Then there is a unique solution X : [0, T ] → (S)N

−1 of the general linear
system of equations

dXi(t)
dt

= Gi(t) +
N∑

j=1

Hij(t) �Xj(t); 1 ≤ i ≤ N (3.3.8)

with initial condition
X(0) = X0. (3.3.9)

Proof Define F = (F1, . . . , Fn) : [0, T ]× (S)N
−1 → (S)N

−1 by

Fi(t, Y ) = Gi(t) +
N∑

j=1

Hij(t) � Yj

for Y = (Y1, . . . , YN ) ∈ (S)N
−1.

Choose k > l + 1, Y,Z ∈ (S)N
−1. Then by Proposition 3.3.2 we have

‖Fi(t, Y )− Fi(t, Z)‖−1,−k ≤
∥
∥
∥
∥
∥

N∑

j=1

Hij(t) � (Yj − Zj)

∥
∥
∥
∥
∥
−1,−k

≤
N∑

j=1

A(k − l)‖Hij‖−1,−l‖Yj − Zj‖−1,−k

≤ A(k − l)M
N∑

j=1

‖Yj − Zj‖−1,−k

≤ A(k − l)M ·N‖Y − Z‖−1,−k
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and
‖Fi(t, Y )‖−1,−k ≤ NM(1 + A(k − l))‖Y ‖−1,−k

for 1 ≤ i ≤ N .
Hence the result follows from Theorem 3.3.1. ��

As in Section 3.1 we note that (3.3.8) is a generalization of the linear
stochastic differential equation

dXi(t)
dt

= Gi(t) +
N∑

j=1

Rij �Xj(t)

+
∑

1≤j≤N
1≤k≤m

Wk(t) �A
(k)
ij (t) �Xj(t); 1 ≤ i ≤ N (3.3.10)

with initial condition
X(0) = X0 ∈ (S)N

−1, (3.3.11)

where Gi : [0, T ] → (S)−1, Rij : [0, T ] → (S)−1 and A
(k)
ij : [0, T ] → (S)−1

satisfy

‖Gi(t)‖−1,−l + ‖Rij(t)‖−1,−l + ‖A(k)
ij (t)‖−1,−l ≤M (3.3.12)

for 1 ≤ i, j ≤ N , 1 ≤ k ≤ m.

Corollary 3.3.6. There is a unique solution X(t) ∈ (S)N
−1; 0 ≤ t ≤ T of

the equation (3.3.10).

Proof We apply Theorem 3.3.5 to the case when

Hij(t) = Rij(t) +
m∑

k=1

Wk(t) �A
(k)
ij (t). (3.3.13)

We must verify that (3.3.7) holds: Using the Proposition 2.3.10 we have
that Wk(t) ∈ (S)0,−l ⊂ (S)−1,−l for all l > 1. Therefore, combining (3.3.12)
with Proposition 3.3.2, we obtain (3.3.7). ��

3.4 The Stochastic Volterra Equation

The classical stochastic (linear) Volterra equation has the form

X(t) = θ(t) +

t∫

0

b(t, s)X(s)ds +

t∫

0

σ(t, s)X(s)dB(s); 0 ≤ t ≤ T (3.4.1)
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where θ(s) = θ(s, ω) : R×Ω→ R, b(t, s) = b(t, s, ω) : R
2 ×Ω→ R and where

we have that σ(t, s) = σ(t, s, ω) : R
2×Ω→ R are given Fs-adapted processes,

b(t, s) = σ(t, s) = 0 for s ≥ t, and T > 0 is a constant. The solution X(t) is
then required to be Ft-adapted also, and the integral on the right of (3.4.1)
is an Itô integral.

If θ, b or σ is not adapted, i.e., if some of them are anticipating,
then the integral on the right is interpreted as a Skorohod integral
(see Section 2.5).

Skorohod Volterra equations with anticipating kernel (but adapted initial
condition θ(t)) have been studied in Pardoux and Protter (1990). See also
Berger and Mizel (1982), and the survey in Pardoux (1990). In Ogawa (1986),
the stochastic Volterra equation is studied in the setting of Ogawa integrals.
In Cochran et al. (1995), existence and uniqueness of solution of (3.4.1) is
proved when θ is (possibly) anticipating, b = 0 and σ(t, s) is deterministic,
measurable with a possible singularity at s = t of the type

|σ(t, s)| ≤ A(t− s)α; 0 ≤ s ≤ t

for some constants A ≥ 0 and 1/2 ≤ α ≤ 0.
There are several situations that can be modeled by stochastic Volterra

equations. The following economic example is from Øksendal and Zhang
(1993):

Example 3.4.1. An investment in an economic production, for example,
the purchase of new production equipment, will usually have effects over a
long period of time. Let X(t, u) denote the capital density with respect to u
at time t resulting from investments that were made u units of time ago (i.e.,
have age u). More precisely, let

∫
U

X(t, u)du denote the total capital gained
at time t from all investments with age u ∈ U . Assume that

∂X(t, u)
∂t

+
∂X(t, u)

∂u
= −m(u)X(t, u), (3.4.2)

where m(u) ≥ 0 is the age-dependent relative “death” rate of the equipment
or of the machines involved in the production. Since the left-hand side of
(3.4.2) can be expressed as

lim
Δt→0

X(t + Δt, u + Δt)−X(t, u)
Δt

,

the interpretation of this equation is simply that such a rate of change of
X(t, u) is proportional to X(t, u).

Moreover, assume that the amount of new capital X(t, 0) at time t is
described by the equation
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X(t, 0) =

∞∫

0

X(t, u)p(u)du, (3.4.3)

where p(u) is the production at age u per capital unit. So in this model
we assume that all the produced capital is reinvested into the production
process.

If the initial capital density X(0, u) = φ(u) is known, then the solution
X(t, u) of (3.4.2) is given by

X(t, u) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

φ(u− t) · exp
[

−
t∫

0

m(r + u− t)dr

]

; 0 ≤ t < u

X(t− u, 0) · exp
[

−
u∫

0

m(r)dr

]

; t ≥ u.

(3.4.4)

Substituting this in (3.4.3) we get the Volterra equation

X(t, 0) = Y (t) +

t∫

0

K(t− s)X(s, 0)ds, (3.4.5)

where

Y (t) =

∞∫

0

φ(s) exp

⎡

⎣−
t∫

0

m(s + r)dr

⎤

⎦ p(t + s)ds (3.4.6)

and

K(t) = p(t) exp

⎡

⎣−
t∫

0

m(r)dr

⎤

⎦. (3.4.7)

If the productivity function p(u) is subject to random fluctuations,
we could model p(u) by

p(u, ω) = p0(u) + εW (u, ω), (3.4.8)

where ε > 0, p0(u) = E [p(u, ω)] is deterministic and W (u, ω) is white noise.
This leads to a stochastic Volterra equation of the form

X(t, ω) = a(t, ω) +

t∫

0

b(t, s)X(s, ω)ds

+

t∫

0

σ(t, s)X(s, ω) �W (s, ω)ds, (3.4.9)
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where

a(t, ω) =

∞∫

0

φ(s) exp

⎡

⎣−
t∫

0

m(s + r)dr

⎤

⎦ p0(t + s)ds

+ ε

∞∫

t

φ(v − t) exp

⎡

⎣−
t∫

0

m(r + v − t)dr

⎤

⎦ dBv, (3.4.10)

b(t, s) = p0(t− s) exp

⎡

⎣−
t−s∫

0

m(r)dr

⎤

⎦; 0 ≤ s ≤ t (3.4.11)

and

σ(t, s) = ε exp

⎡

⎣−
t−s∫

0

m(r)dr

⎤

⎦; 0 ≤ s ≤ t. (3.4.12)

Note that a(t, ω) is not adapted in this case. Then there is no reason to
expect that X(t, ω) will be adapted either. An alternative formulation of
(3.4.9) would be in terms of the Skorohod integral

X(t, ω) = a(t, ω) +

t∫

0

b(t, s)X(s, ω)ds +

t∫

0

σ(t, s)X(s, ω)δB(s) (3.4.13)

(see Section 2.5).
We may regard (3.4.9) and (3.4.13) as special cases of the following general

linear stochastic Volterra equation:

X(t) = J(t) +

t∫

0

K(t, s) �X(s)ds, 0 ≤ t ≤ T, (3.4.14)

where T > 0 is a given number and

J : [0, T ]→ (S)−1 and K : [0, T ]× [0, T ]→ (S)−1

are given stochastic distribution processes. Using Wick calculus we can solve
this equation explicitly.

Theorem 3.4.2 Øksendal and Zhang (1993), Øksendal and Zhang
(1996). Let J : [0, T ] → (S)−1,K : [0, T ] × [0, T ] → (S)−1 be continuous
stochastic distribution processes. Suppose there exists l < ∞,M < ∞ such
that

‖K(t, s)‖−1,−l ≤M for 0 ≤ s ≤ t ≤ T. (3.4.15)



3.4 The Stochastic Volterra Equation 135

Then there exists a unique continuous stochastic distribution process X(t)
that solves the stochastic Volterra equation

X(t) = J(t) +

t∫

0

K(t, s) �X(s)ds; 0 ≤ t ≤ T. (3.4.16)

The solution is given by

X(t) = J(t) +

t∫

0

H(t, s) � J(s)ds, (3.4.17)

where

H(t, s) =
∞∑

n=1

Kn(t, s), (3.4.18)

with Kn given inductively by

Kn+1(t, s) =

t∫

s

Kn(t, u) �K(u, s)du; n ≥ 1 (3.4.19)

K1(t, s) = K(t, s). (3.4.20)

Proof With Kn defined as in (3.4.19)–(3.4.20), note that

K2(t, s) =

t∫

s

K(t, u) �K(u, s)du

and

K3(t, s) =

t∫

s

K2(t, u2) �K(u2, s)du2

=

t∫

s

⎛

⎝
t∫

u2

K(t, u1) �K(u1, u2)du1

⎞

⎠ �K(u2, s)du2

=
∫ ∫

s≤u2≤u1≤t

K(t, u1) �K(u1, u2) �K(u2, s)du1du2.

By induction we see that

Kn(t, s) =
∫
· · ·

∫

s≤un−1≤···≤u1≤t

�∏

0≤k≤n−1

K(uk, uk+1)du1 · · · dun−1. (3.4.21)
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Here
∏�

0≤k≤n−1 denotes the Wick product from k = 0 to k = n− 1, and we
set u0 = t, un = s. Choose k > l + 1, and apply Proposition 3.3.2 to (3.4.21):

‖Kn(t, s)‖−1,−k ≤ AnMn

∫
· · ·

∫

s≤un−1≤···≤u1≤t

du1 · · · dun−1

=
AnMn(t− s)n−1

(n− 1)!
, (3.4.22)

where A = A(k − l). This shows that

H(t, s) :=
∞∑

n=1

Kn(t, s)

converges absolutely in (S)−1,−k. So we can define X(t) by (3.4.17), i.e.,

X(t) = J(t) +

t∫

0

H(t, s) � J(s)ds; 0 ≤ t ≤ T.

We verify that this is a solution of (3.4.16):

J(t) +

t∫

0

K(t, r) �X(r)dr

= J(t) +

t∫

0

K(t, r) �

⎛

⎝J(r) +

r∫

0

H(r, u) � J(u)du

⎞

⎠ dr

= J(t) +

t∫

0

K(t, r) � J(r)dr +

t∫

0

r∫

0

K(t, r) �
∞∑

n =1

Kn(r, u) � J(u)dudr

= J(t) +

t∫

0

K(t, r) � J(r)dr +
∞∑

n=1

t∫

0

⎛

⎝
t∫

u

K(t, r) �Kn(r, u)dr

⎞

⎠ � J(u)du

= J(t) +

t∫

0

K(t, u) � J(u)du +
∞∑

n =1

t∫

0

Kn+1(t, u) � J(u)du

= J(t) +

t∫

0

∞∑

m=1

Km(t, u) � J(u)du

= J(t) +

t∫

0

H(t, u) � J(u)du = X(t).
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(Note that (3.4.21) implies that Kn+1(t, u) =
∫ t

u
K(t, r) � Kn(r, u)dr.) This

shows that X(t) is indeed a solution of (3.4.16).
It remains to prove uniqueness. Suppose Y (t) is another continuous solu-

tion of (3.4.16), so that

Y (t) = J(t) +

t∫

0

K(t, s) � Y (s)ds. (3.4.23)

Subtracting (3.4.23) from (3.4.16), we get

Z(t) =

t∫

0

K(t, s) � Z(s)ds; 0 ≤ t ≤ T, (3.4.24)

where Z(t) = X(t)− Y (t). This, together with Proposition 3.3.2, gives that

||Z(t)||−1,−k ≤M

∫ t

0

||Z(s)||−1,−kds

for some constant M < ∞. Applying the Gronwall inequality, we conclude
that Z(t) = 0 for all t. ��

Example 3.4.3. We verify that the conditions of Theorem 3.4.2 are
satisfied for the equation (3.4.9). Here J(t) = a(t, ω) is clearly continuous,
even as a mapping from [0, T ] into L2(μ). In this case we have,

K(t, s) = b(t, s) + σ(t, s) �W (s).

Since b, σ are bounded, deterministic and continuous, it suffices to consider
W (s). By Example 2.7.3 we have W (s) ∈ (S)0,−q for all q > 1. Moreover, for
s, t ∈ [0, T ], we have, by (2.8.14),

‖W (s)−W (t)‖20,−q =
∞∑

k=1

(ηk(s)− ηk(t))2(2k)−q

≤
∞∑

k=1

C0,T k2|s− t|2(2k)−q

≤ C0,T |s− t|2
∞∑

k=1

(2k)2−q <∞,

for q > 3. Hence W (s), and consequently K(t, s), is continuous in (S)0,−3

and therefore in (S)−1,−3.
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Example 3.4.4. In Grue and Øksendal (1997), a stochastic Volterra
equation is deduced from a second–order ordinary (Wick type) stochastic
differential equation modeling the slow-drift motions of offshore structures.
Such constructions are well known from the deterministic case, and the Wick
calculus allows us to perform a similar procedure when the coefficients are
stochastic distribution processes.

Consider a linear second–order stochastic differential equation of the form

Ẍ(t) + α(t) � Ẋ(t) + β(t) �X(t) + γ(t) = 0, (3.4.25)

where the coefficients α(t), β(t) and γ(t) : R → (S)−1 are (possibly antici-
pating) continuous stochastic distribution processes. If we Wick multiply this
equation by

M(t) := exp�

[ t∫

0

α(u)du

]

, (3.4.26)

we get
d

dt
(M(t) � Ẋ(t)) = −M(t) � γ(t)−M(t) � β(t) �X(t).

Hence

M(t) � Ẋ(t) = Ẋ(0)−
t∫

0

M(s) � γ(s)ds−
t∫

0

M(s) � β(s) �X(s)ds

or

Ẋ(t) = Ẋ(0) � exp�

⎡

⎣−
t∫

0

α(u)du

⎤

⎦−
t∫

0

exp�

⎡

⎣−
t∫

s

α(u)du

⎤

⎦ � γ(s)ds

−
t∫

0

exp�

⎡

⎣−
t∫

s

α(u)du

⎤

⎦ � β(s) �X(s)ds.

From this we get

X(t) = X(0) + Ẋ(0) �
t∫

0

exp�

⎡

⎣−
v∫

0

α(u)du

⎤

⎦ dv

−
t∫

0

v∫

0

exp�

⎡

⎣−
v∫

s

α(u)du

⎤

⎦ � γ(s)dsdv

−
t∫

0

v∫

0

exp�

⎡

⎣−
v∫

s

α(u)du

⎤

⎦ � β(s) �X(s)dsdv. (3.4.27)
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Now

t∫

0

v∫

0

exp�

⎡

⎣−
v∫

s

α(u)du

⎤

⎦ � β(s) �X(s)dsdv

=

t∫

0

t∫

s

exp�

⎡

⎣−
v∫

s

α(u)du

⎤

⎦ dv � β(s) �X(s)ds.

Therefore (3.4.27) is a stochastic Volterra equation of the form

X(t) = J(t) +

t∫

0

K(t, s) �X(s)ds; t ≥ 0 (3.4.28)

with

J(t) = X(0) + Ẋ(0) �
t∫

0

exp�

⎡

⎣−
v∫

0

α(u)du

⎤

⎦ dv

−
t∫

0

v∫

0

exp�

⎡

⎣−
v∫

s

α(u)du

⎤

⎦ � γ(s)dsdv (3.4.29)

and

K(t, s) = −
t∫

s

exp�

⎡

⎣−
v∫

s

α(u)du

⎤

⎦ dv � β(s); 0 ≤ s ≤ t. (3.4.30)

Example 3.4.5 (Oscillations in a stochastic medium). Let us consider
the motion of an object attached to an oscillating string with a stochastic
force constant (Hooke’s constant) k. If we represent k by a positive noise
process of the form

k = k(t, ω) = exp�[Wφt
(ω)] (3.4.31)

for a suitable test function φ ∈ S(R), then this motion can be modeled by
the stochastic differential equation

Ẍ(t) + exp�[Wφt
] �X(t) = 0; X(0) = a, Ẋ(0) = 0. (3.4.32)

According to (3.4.28)–(3.4.30) this can be transformed into a stochastic
Volterra equation

X(t) = a +

t∫

0

Kφ(t, s) �X(s)ds, (3.4.33)
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where
Kφ(t, s) = −(t− s) exp�[Wφs

]; 0 ≤ s ≤ t. (3.4.34)

Hence by Theorem 3.4.2 the solution is

X(t) = a

⎛

⎝1 +
∞∑

n=1

t∫

0

Kφ
n(t, s)ds

⎞

⎠, (3.4.35)

where by (3.4.21) Kφ
n is given by

Kφ
n(t, s)

= (−1)n

∫
· · ·

∫

s≤un−1≤···≤u1≤t

n−1∏

k=0

(uk − uk+1) exp�
[ n∑

k=1

Wφuk

]

du1 · · · dun−1,

where u0 = t, un = s. Therefore

‖Kφ
n(t, s)‖L1(μ)

=
∫
· · ·

∫

s≤un−1≤···≤u1≤t

n−1∏

k=0

(uk − uk+1)du1 · · · dun−1 ≤
(t− s)2n−1

(n− 1)!
.

It follows that
∑∞

n=1 Kφ
n(t, s) converges in L1(μ), uniformly on compacts

in (t, s). We conclude that X(t) given by (3.4.35) belongs to L1(μ) (as well
as (S)−1). Moreover, we see that exp�[Wφt

] �X(t) ∈ L1(μ), also. Therefore,
if we define

x(t) = E[X(t)],

then by taking the expectation of (3.4.32) we get

ẍ(t) + x(t) = 0; x(0) = a, ẋ(0) = 0

and hence
E[X(t)] = a cos t; t ≥ 0,

which is the solution when φ = 0, i.e., when there is no noise. It is natural to
ask what can be said about other probabilistic properties of X(t).

3.5 Wick Products Versus Ordinary Products:
a Comparison Experiment

The presentation in this section is based on the discussion in Holden et al.
(1993b). In Chapter 1 and in Section 3.2 we discussed the use of Wick
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products versus ordinary products when modeling stochastic phenomena.
A natural and important question is:

Which type of product gives the best model?

This question is not as easy to answer as one might think. How does one
test a stochastic dynamic model? The problem is that it is usually difficult to
“re-run” a stochastic dynamic system in real life. Here the random parameter
ω can be regarded as one particular realization of the “experiment” or of “the
world”. How do we re-run the price development of a stock? How do we re-run
the population growth in a random environment?

There is, however, an example where it should be possible to test the
model: fluid flow in a random medium. Here each ω can be regarded as a
sample of the medium, so different experiments are obtained by choosing
independent samples of the medium. Here we discuss one aspect of such flow:
The pressure equation, described in the introduction. This equation will be
considered in arbitrary dimension in Chapter 4. We now only look at the
1-dimensional case, modeling the fluid flow in a long, thin (heterogeneous)
cylinder:

d

dx

(

K(x) · d

dx
p(x)

)

= 0 ; x ≥ 0 (3.5.1)

with initial conditions

p(0) = 0, K(0)p′(0) = a. (3.5.2)

Here K(x) ≥ 0 is the permeability of the medium at x, p(x) is the pressure
of the fluid at x, and a > 0 is a constant. Condition (3.5.2) states that at
the left endpoint of the cylinder the pressure of the fluid is 0 and the flux
is a. If the medium is heterogeneous, then the permeability function K(x)
may vary in an irregular and unpredictable way. As argued in the introduction
it is therefore natural to represent this quantity by the positive noise process

K(x) = exp�[Wφ(x)] = exp
[
Wφ(x)− 1

2
‖φ‖22

]
(3.5.3)

(see (2.6.56)), where φ ≥ 0 is a (deterministic) test function with compact
support in [0,∞). The diameter of the support of φ indicates the maximal
distance within which there is a correlation between the permeability values
(depending on the sizes of the pores and other geometrical properties of the
medium). The L1 norm of φ, ‖φ‖1 =

∫
R
|φ(x)|dx, reflects the size of the noise.

The figure below shows some typical sample paths of the Wick exponential
K(x) = K(x, ω). In the figure we have used

φ(x) =
1
h

χ[0,h](x),

with h = 1, 3, 5, 7, 9 and 11.
Let us now consider the solutions of (3.5.1)–(3.5.2) in the two cases.



142 3 Applications to Stochastic Ordinary Differential Equations

0 50 100 150 200 250
 x

2

4

6

8

10

Positive Noise

0 50 100 150 200 250
 x

2

4

6

8

10

Positive Noise

0 50 100 150 200 250
 x

2

4

6

8

10

Positive Noise

0 50 100 150 200 250
 x

2

4

6

8

10

Positive Noise

0 50 100 150 200 250
 x

2

4

6

8

10

Positive Noise

0 50 100 150 200 250
 x

2

4

6

8

10

Positive Noise

a) Ordinary product. In this case the equation is

(K(x, ω) · p′(x, ω))′ = 0; x ≥ 0 (3.5.4)
p(0, ω) = 0, K(0, ω) · p′(0, ω) = a, (3.5.5)

which is solved for each ω to give the solution

p(x, ω) = p1(x, ω) = a

x∫

0

exp
[
−Wφ(t) +

1
2
‖φ‖22

]
dt. (3.5.6)

To find the expected value of p1, we note that

p1(x, ω) = a

x∫

0

exp
[
W−φ(t)− 1

2
‖φ‖22

]
dt · exp[‖φ‖22]

= a · exp[‖φ‖22] ·
x∫

0

exp�[−Wφ(t)]dt.

Hence, by (2.6.59) we conclude that

E[p1(x)] = ax · exp[‖φ‖22]. (3.5.7)

b) Wick product version. In this case the equation is

(K(x, ·) � p′(x, ·))′(ω) = 0; x ≥ 0 (3.5.8)

p(0, ω) = 0, (K(0, ·) � p′(0, ·))(ω) = a. (3.5.9)

Straightforward Wick calculus gives the solution

p(x, ω) = p2(x, ω) = a

x∫

0

exp�[−Wφ(t)]dt. (3.5.10)
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In other words, the relation between the solutions is

p1(x, ω) = p2(x, ω) exp[‖φ‖22], (3.5.11)

and we have
E[p2(x)] = ax. (3.5.12)

Note that E[p2(x)] = ax coincides with the solution p̄(x) of the equation
obtained by taking the average of the coefficients:

(1 · p̄′(x))′ = 0; x ≥ 0, (3.5.13)
p̄(0) = 0, p̄′(0) = a. (3.5.14)

This property will hold for solutions of Wick type stochastic differential
equations in general, basically because of (2.6.44).
If we let φ = φn approach the Dirac delta function δ in the sense that

∫

R

g(x)φn(x)dx→ g(0) as n→∞, g ∈ C0(R), (3.5.15)

then
∫

R
φn(x)dx→ 1 and suppφn → {0} as n→∞.

It follows that ‖φn‖2 → ∞ as n → ∞. Hence we see that there are
substantial differences between the two solutions p1(x, ω) and p2(x, ω)
as φ→ δ:

lim
φ→δ

p1(x, ω) = +∞ (3.5.16)

while

lim
φ→δ

p2(x, ω) =

x∫

0

exp�[−W (t)]dt ∈ (S)∗. (3.5.17)

See also the solution in Potthoff (1992).
Although (3.5.17) only makes sense as a generalized stochastic process, this

means that there are certain stability properties attached to the
solution p2. For a further discussion of this, see Lindstrøm et al. (1995).

3.5.1 Variance Properties

In reservoir simulation one often finds that Monte Carlo simulated solutions
do not behave in the same manner as the solution of the averaged equation.
The simple calculation (with the ordinary product) in the previous section
sheds some light on this point of view. There may, however, be other expla-
nations for this phenomenon. In the renormalized case, i.e., with the Wick
product, it may happen that the typical sample path behaves very differently
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from the average solution. In this case the correlation width controls much of
the behavior. It also suggests that certain scaling ratios are more favorable
than others. To investigate this, we estimate the variance in some special
cases.

To simplify the formulas, we use the function

φ(x) =
ε

h
χ[0,h)(x). (3.5.18)

The parameter h is the correlation width, and ε controls the size of the noise.
With this choice of φ we get (see Lindstrøm et al. (1991a), p. 300, for the

case a = 1 and see Exercise 3.3)

a2 max
{

ε2
(

x +
h

3

)

,
xh

2

(
e

ε2
2h − 1

)}

≤ E[(p2(x, ω)− ax)2] ≤ a2 h(x + h)
2

(
e

2ε2
h − 1

)
. (3.5.19)

From this we can easily deduce the following:
For all x > 0

lim
h→0

Var[ p2(x, ω)] =∞; (3.5.20)

For all x > 0

lim
h→∞

Var[ p2(x, ω)] =∞. (3.5.21)

Hence if the correlation width is very small or very large, we can expect
that typical sample paths differ significantly from the averages value. In these
circumstances there is little point in estimating the average values from Monte
Carlo experiments.

On the other hand it can be seen from the estimates that the variance (as
a function of the correlation width) has a lower point. Around this point a
Monte Carlo approach might be more favorable. For this to be true, the noise
parameter ε must not be too large. More precisely we can see that

If ε2 � h� x, then

Var[p2(x, ω)] ≈ εa
√

x. (3.5.22)

When the parameters can be adjusted to conform with these scaling ratios,
a Monte Carlo approach will give relevant information about the average
value. Below we show some sample paths of the solution according to various
choices of parameters.

In the figures below we used the value a = 1 and

i) h = 10, ε = 1 ii) h = 0.5, ε = 1
iii) h = 0.3, ε = 1 iv) h = 0.2, ε = 1.
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In the first two cases the variance is reasonably small. In the two last cases
we are outside the favorable region, and the typical sample path is very much
different from the average value.

The variance estimates are essentially the same in the case where we
use the usual product. The two solutions differ by the constant factor
e‖φ‖2

L2 = eε2/h. Multiplying both sides of (3.5.19) by e2ε2/h, we get

a2e
2ε2
h max

{

ε2
(

x +
h

3

)

,
xh

2

(
e

ε2
2h − 1

)}

≤ E[(p1(x, ω)− E[p1])2] ≤ a2e
2ε2
h

h(x + h)
2

(
e

2ε2
h − 1

)
.

If we examine the relations above, it is not hard to see that the properties
(3.5.20–3.5.22) also apply in the case of the usual product. The stability
region will, however, be somewhat smaller than in the Wick product case.

3.6 Solution and Wick Approximation
of Quasilinear SDE

Consider an Itô stochastic differential equation of the form

dX(t) = b(t,X(t))dt + σ(t,X(t))dB(t), t > 0; X0 = x ∈ R, (3.6.1)

where b(t, x) : R
2 → R and σ(t, x) : R

2 → R are Lipschitz continuous of at
most linear growth. Then we know that a unique, strong solution Xt exists.
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If we try to approximate this equation and its solution, the following approach
is natural:

Let ρ ≥ 0 be a smooth (C∞) function on the real line R with compact
support and such that

∫

R

ρ(s)ds = 1.

For k = 1, 2, . . . define

φk(s) = kρ(ks) for s ∈ R (3.6.2)

and let

W(k)(t) := Wφk
(t) =

∫

R

φk(s− t)dB(s, ω); t ∈ R, ω ∈ S ′(R)

be the smoothed white noise process. As an approximation to (3.6.1) we can
now solve the equation

dYk(t)
dt

= b(t, Yk(t)) + σ(t, Yk(t)) ·W(k)(t), t > 0; Yk(0) = x (3.6.3)

as an ordinary differential equation in t for each ω. Then, by the Wong–Zakai
theorem, Wong and Zakai (1965), we know that Yk(t) → Y (t) as k → ∞,
uniformly on bounded t-intervals for each ω, where Y (t) is the solution of the
Stratonovich equation

dY (t) = b(t, Y (t))dt + σ(t, Y (t)) ◦ dB(t, ω), t > 0; Y (0) = x. (3.6.4)

So, perhaps surprisingly, we missed the solution X(t) of our original Itô
equation (3.6.1).

However, as conjectured in Hu and Øksendal (1996), we may perhaps
recover X(t) if we replace the ordinary product by the Wick product in the
approximation procedure (3.6.3) above. Such a conjecture is supported by
the relation between Wick products and Itô/Skorohod integration in general
(see Theorem 2.5.9). Thus we consider the equation

dXk(t)
dt

= b(t,Xk(t)) + σ(t,Xk(t)) �W(k)(t), t > 0;Xk(0) = x (3.6.5)

for each k and we ask

Does (3.6.4) have a unique solution for each k? If so, does Xk(t) → X(t)
as k →∞?

The answer to these questions appears in general to be unknown. In this
section we will apply the results from Section 2.10 to give a positive answer
to these questions in the quasilinear case.
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Following Gjessing (1994), we will consider more general (anticipating)
quasilinear equations and first establish existence and uniqueness of solutions
of such equations.

Theorem 3.6.1 Gjessing (1994). Suppose that the function b(t, x, ω) :
R× R× S ′(R)→ R satisfies the following condition:

There exists a constant C such that
|b(t, x, ω)| ≤ C(1 + |x|) for all t, x, ω (3.6.6)

and
|b(t, x, ω)− b(t, y, ω)| ≤ C|x− y| for all t, x, y, ω. (3.6.7)

Moreover, suppose that σ(t) is a deterministic function, bounded
on bounded intervals. Then the quasilinear, anticipating (Skorohod-type)
stochastic differential equation

dX(t)
dt

= b(t,X(t), ω) + σ(t)X(t) �W (t), t > 0; X(0) = x (3.6.8)

has a unique (global) solution X(t) = X(t, ω); t ≥ 0. Moreover, we have

X(t, ·) ∈ Lp(μ) for all p <∞, t ≥ 0. (3.6.9)

Proof Put σ(t)(s) = σ(s)χ[0,t](s) and define

Jσ(t) = exp�

⎡

⎣−
t∫

0

σ(s)dB(s)

⎤

⎦ = exp�

⎡

⎣−
∫

R

σ(t)(s)dB(s)

⎤

⎦. (3.6.10)

Regarding (3.6.8) as an equation in (S)−1, we can Wick-multiply both
sides by Jσ(t) and this gives, after rearranging,

Jσ(t) � dX(t)
dt

− σ(t)Jσ(t) �W (t) �X(t) = Jσ(t) � b(t,X(t), ω)

or
dZ(t)

dt
= Jσ(t) � b(t,X(t), ω), (3.6.11)

where
Z(t) = Jσ(t) �X(t). (3.6.12)

By Theorem 2.10.6 we have, if X(t) ∈ Lp(μ) for some p > 1,

Jσ(t) � b(t,X(t), ω) = Jσ(t) · b(t, Tσ(t)X(t), ω + σ(t)) (3.6.13)
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and
Z(t) = Jσ(t) · Tσ(t)X(t). (3.6.14)

Substituting this into (3.6.11) we get the equation

dZ(t)
dt

= Jσ(t) · b(t, J−1
σ (t)Z(t), ω − σ(t)), t > 0; Z0 = x. (3.6.15)

This equation can be solved for ω as an ordinary differential equation in t.
Because of our assumptions on b we get a unique solution Z(t) = Z(t, ω)

for all ω. Moreover, from (3.6.15) we have

|Z(t)| ≤ |x|+

∣
∣
∣
∣
∣
∣

t∫

0

Jσ(s) · b(s, J−1
σ (s)Z(s), ω − σ(s))ds

∣
∣
∣
∣
∣
∣

≤ |x|+
t∫

0

Jσ(s)C(1 + J−1
σ (s)|Z(s)|)ds

= |x|+ C

t∫

0

Jσ(s)ds + C

t∫

0

|Z(s)|ds.

Hence, by the Gronwall inequality,

|Z(t)| ≤

⎛

⎝|x|+ C

T∫

0

Jσ(s)ds

⎞

⎠ exp[Ct] for t ≤ T. (3.6.16)

Then, for t ≤ T , we have

E[|Z(t)|p] ≤ exp[pCt]

⎛

⎝2p|x|p + 2pCpE

⎡

⎣

⎛

⎝
T∫

0

Jσ(s)ds

⎞

⎠

p⎤

⎦

⎞

⎠

≤ C1 + C2E

⎡

⎢
⎣

⎛

⎝
T∫

0

1ds

⎞

⎠

p
q

·
T∫

0

Jσ(s)pds

⎤

⎥
⎦

≤ C1 + C3

T∫

0

E[|Jσ(s)|p]ds

≤ C1 + C3T exp
[1
2
p2‖σ‖22

]
<∞.

We conclude that Z(t) ∈ Lp(μ) for all t ≥ 0, p <∞. It follows from (3.6.14)
that the same is true for T−σ(t)X(t). From Corollary 2.10.5 we get that this
is also true for X(t). ��
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Next, we consider the approximation question stated earlier in this section.

Theorem 3.6.2 Hu and Øksendal (1996). Let b(t, x, ω) and σ(t) be
as in Theorem 3.6.1, and let W(k)(t) be the φk-smoothed white noise process
as defined in (3.6.2). Moreover, suppose that it is possible to find a map
D(ω, θ) : S ′(R)× S(R)→ (0,∞) such that

|b(t, x, ω + θ)− b(t, x, ω)| ≤ D(ω, θ) for all t, x, ω, θ (3.6.18)

and
Eμ[Dp(·, θ)]→ 0 as θ → 0 in S ′(R) (3.6.19)

for some p > 1. Then for each k ∈ N there is a unique solution Xk(t) ∈ Lp(μ)
for all p <∞ of the equation

dXk(t)
dt

= b(t,Xk(t), ω) + σ(t)Xk(t) �W(k)(t), t > 0; Xk(0) = x. (3.6.20)

Moreover, for all q < p, we have

Eμ[|Zk(t)− Z(t)|q]→ 0 as k →∞ (3.6.21)

uniformly for t in bounded intervals.

Proof Note that

t∫

0

σ(s)W(k)(s)ds =

t∫

0

σ(s)
∫

R

φk(r − s)dB(r)ds =
∫

R

σ
(t)
k (r)dB(r),

where

σ
(t)
k (r) =

t∫

0

σ(s)φk(r − s)ds; t ≥ 0.

Set

Jσk
(t) = exp�

[

−
t∫

0

σ(s)W(k)(s)ds

]

= exp�

[

−
∫

R

σ
(t)
k (r)dB(r)

]

.

From now on we proceed exactly as in the proof of Theorem 3.6.1, except
that σ is replaced by σk. Thus, with

Zk(t) = Jσk
(t) �Xk(t) (3.6.22)

we get that

dZk(t)
dt

= Jσk
(t) · b(t, J−1

σk
(t)Zk(t), ω − σ

(t)
k ), t > 0; Zk(0) = x, (3.6.23)
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which has a solution Zk(t) ∈ Lp(μ) for all p < ∞ just as equation (3.6.15).
Finally, to prove (3.6.21) we use (3.6.18)–(3.6.19) to get

|Zk(t)− Z(t)| ≤
∣
∣
∣
∣
∣

t∫

0

(

Jσk
(s)b(s, J−1

σk
(s)Zk(s), ω − σ

(s)
k )

− Jσ(s)b(s, J−1
σ (s)Z(s), ω − σ(s))

)

ds

∣
∣
∣
∣
∣

≤
t∫

0

(

Jσk
[C|Zk(s)− Z(s)|

+ D(ω, σ
(s)
k − σ(s))] + |Jσk

− Jσ|C(1 + |Z(s)|)
)

ds.

By the Gronwall inequality, this leads to

|Zk(t)− Z(t)| ≤ F · exp

⎡

⎣C

t∫

0

Jσk
(s)ds

⎤

⎦ for t ≤ T,

where

F =

T∫

0

(

Jσk
(s)D(ω, σ

(s)
k − σ(s)) + |Jσk

(s)− Jσ(s)|C(1 + |Zs|)
)

ds.

From this we see that (3.6.21) follows. ��

3.7 Using White Noise Analysis to Solve General
Nonlinear SDEs

From the previous sections one might get the impression that white noise
analysis and the Wick product can only be used to solve linear, and some
quasi-linear, SDEs. However, this is not the case. In a remarkable paper by
Lanconelli and Proske (2004) the authors give an explicit solution formula
for a general SDE. The formula and its proof uses the machinery of white
noise analysis and the Wick calculus. We now present their result in more
detail. For simplicity we only deal with the 1-dimensional case.

Consider an Itô stochastic differential equation of the form

dX(t) = b(t,X(t))dt + σ(t,X(t))dB(t); X(0) = x, 0 ≤ t ≤ T (3.7.1)



3.7 Using White Noise Analysis to Solve General Nonlinear SDEs 151

We assume that the functions b : [0, T ] × R → R and σ : [0, T ] × R → R

are Lipschitz continuous and have at most linear growth. This is sufficient
to guarantee that a unique, strong solution X(t) exists. Moreover, we know
that

E

⎡

⎣
T∫

0

X2(t)dt

⎤

⎦ <∞ (3.7.2)

(See, e.g., Øksendal (2003), Chapter 5.)
For notational convenience we will in the following assume that the

equation (3.7.1) is time-homogeneous, in the sense that b(t, x) = b(x) and
σ(t, x) = σ(x). Moreover, we impose the conditions that

σ(x) > 0 for all x ∈ R and σ ∈ C1(R) (3.7.3)

and
b(x)
σ(x)

is bounded on R (3.7.4)

In the following we need to introduce the stocastic integral of an
(S)∗-valued process φ(t) with respect to a Brownian motion B̂(t) on a filtered
probability space (Ω̂, F̂ , μ̂), {F̂t}t≥0, where F̂t is the filtration generated by
B̂(s); s ≤ t. We only give the construction in the case when

φ(t) = W (t) ∈ (S)∗

is white noise, which is the case we are interested in.
First consider a step function approximation W (n)(t) to W (t), defined as

follows

W (n)(t) =
kn−1∑

i=1

W (t(n)
i )X

[t
(n)
i ,t

(n)
i+1)

(t),

where 0 = t
(n)
1 < · · · < t

(n)
kn

= T is a partition of the interval [0, T ] such that

maxi |t(n)
i − t

(n)
i+1| → 0 as n→∞. Note that there exists a q > 1 such that

||W (n)(t)−W (t)||−0,−q → 0 as n→∞,

uniformly in t ∈ [0, T ]. We define the stochastic integral of W (n)(t) with
respect to B̂(t) by

T∫

0

W (n)(t)dB̂(t) =
kn−1∑

i=1

W (t(n)
i )(B̂(t(n)

i+1)− B̂(t(n)
i ))
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It can be verified that the following Itô isometry holds

Eμ̂

⎡

⎢
⎣

∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣

T∫

0

W (n)(t)dB̂(t)−
T∫

0

W (m)(t)dB̂(t)

∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣

2

−0,−q

⎤

⎥
⎦

=

T∫

0

||W (n)(t)−W (m)(t)||2−0,−qdt (3.7.5)

Hence we can define the stochastic integral
T∫

0

W (t)dB̂(t) ∈ (S)∗

as the limit in L2(μ̂, (S)−0,−q) of the Cauchy sequence {
∫ T

0
W (n)(t)dB̂(t)}∞n=1,

as follows:
T∫

0

W (t)dB̂(t) = lim
n→∞

T∫

0

W (n)(t)dB̂(t) in L2(μ̂, (S)−0,−q). (3.7.6)

It is easy to see that the limit does not depend on the partition chosen.
The following result is needed in the proof of the main theorem:

Lemma 3.7.1. The map Φ : Ω̂→ (S)−1 defined by

ω̂ → exp�

⎡

⎣
T∫

0

W (s, ω)dB̂(s, ω̂)

⎤

⎦; ω ∈ Ω, ω̂ ∈ Ω̂

is Bochner integrable in (S)−1 with respect to the measure μ̂.

Proof By Theorem 2.6.11 for all R > 0 there exist constants C < ∞ and
r ≥ q such that if F ∈ (S)−1,−q, then

sup
z∈Kq(R)

|HF (z)| ≤ R||F ||−1,−q ≤ R||F ||−1,−2r ≤ C sup
z∈Kq(R)

|HF (z)| (3.7.7)

Therefore it suffices to verify that

Eμ̂

[

sup
z∈Kq(R)

|H(Φ(ω̂))(z)|
]

<∞.

By our construction of the stochastic integral we have that if l is large
enough, then

T∫

0

W (s, ω)dB̂(s, ω̂) ∈ (S)−1,−l
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for a.a. ω̂ with respect to μ̂. Combined with Theorem 2.6.11 this gives the
estimate

Eμ̂

[

sup
z∈Kq(R)

|H(Φ(ω̂))(z)|
]

≤ Eμ̂

⎡

⎣exp

⎡

⎣ sup
z∈Kq(R)

∣
∣
∣
∣
∣
∣
H

⎛

⎝
T∫

0

W (s)dB̂(s)

⎞

⎠ (z)

∣
∣
∣
∣
∣
∣

⎤

⎦

⎤

⎦

≤ Eμ̂

⎡

⎢
⎣exp

⎡

⎢
⎣R

∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣

T∫

0

W (s)dB̂(s)

∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣
−1,−l

⎤

⎥
⎦

⎤

⎥
⎦

≤ C1 + Eμ̂

⎡

⎢
⎣exp

⎡

⎢
⎣R

∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣

T∫

0

W (s)dB̂(s)

∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣

2

−1,−l

⎤

⎥
⎦

⎤

⎥
⎦

Since
∫ T

0
W (s)dB̂(s) is a zero mean Gaussian random variable in (S)∗−l, it

follows by Fernique’s theorem (see, e.g., Da Prato and Zabczyk (1992)) that
the last expectation is finite. Hence the conclusion follows from (3.7.7). ��

We are now ready to state and prove the main result in this section:

Theorem 3.7.2 (Lanconelli and Proske (2004), explicit solution
formula for SDEs). Assume that (3.7.3) and (3.7.4) hold. Define

Λ(y) =

y∫

x

1
σ(u)

du (3.7.8)

Let φ : R→ R be measurable and such that

(
φ ◦ Λ−1

) (
B̂(t)

)
∈ L2(μ̂) for all t ∈ [0, T ] (3.7.9)

Let Xx(t) be the strong solution of (3.7.1). Then

φ(Xx(t)) = Eμ̂

[
φ(Λ−1(B̂(t)))M�

T

]
(3.7.10)

where

M�
T = exp�

⎡

⎣
T∫

0

(

W (s) +
b(Λ−1(B̂(s)))
σ(Λ−1(B̂(s)))

− 1
2
σ′(Λ−1(B̂(s)))

)

dB̂(s)

−
T∫

0

(

W (s) +
b(Λ−1(B̂(s)))
σ(Λ−1(B̂(s)))

− 1
2
σ′(Λ−1(B̂(s)))

)�2

ds

⎤

⎦ . (3.7.11)
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Proof Without loss of generality we can assume that the drift term is zero,
i.e., that

dXx(t) = σ(Xx(t))dB(t), Xx(0) = x (3.7.12)

We first find the Hermite transform of φ(Xx(t)): Choose z ∈ (CN)c. Then by
the relation between the S-transform and the Hermite transform (Theorem
2.7.10) we have

H(φ(Xx(t)))(z) = Eμ

⎡

⎣φ(Xx(t)) exp�

⎡

⎣
∫

R

{z1ξ1(s) + · · ·+ zkξk(s)}dB(s)

⎤

⎦

⎤

⎦

= Eμ

⎡

⎣φ(Xx(t)) exp�

⎡

⎣
∫

R

H(Ws)(z)dB(s)

⎤

⎦

⎤

⎦ (3.7.13)

Hence by the Girsanov theorem (see Corollary 2.10.5)

H(φ(Xx(t))) = Eμ[φ(X̃x(t))] (3.7.14)
where

X̃x(t, ω) = Xx(t, ω + ω0), with < ω0, · > = (H(W (s))(z), ·)L2(R) (3.7.15)

Note that X̃x(t) solves the equation

dX̃x(t) = h(t)σ(X̃x(t))dt + σ(X̃x(t))dB(t); X̃x(0) = x (3.7.16)

where h(t) = H(W (t))(z). Moreover, if we define

Zx
t = Λ(X̃x(t))

then by the Itô formula

dZx
t =

(

h(t)− 1
2
(
σ′ ◦ Λ−1

)
(Zx

t )
)

dt + dB(t); Zx
0 = Λ(x) = 0 (3.7.17)

Applying the classical Girsanov formula we obtain

H(φ(Xx(t))(z) = Eμ[φ(X̃x(t))] = Eμ̂[(φ ◦ Λ−1)(Zx
t )]

= Eμ̂[(φ ◦ Λ−1)(B̂(t))MT ] (3.7.18)

where

Mt = exp

⎡

⎣
T∫

0

(

h(s)− 1
2
(σ′ ◦ Λ−1)(B̂(s))

)

dB̂(s)

−
T∫

0

(

h(s)− 1
2
(
σ′ ◦ Λ−1

)
(B̂(s))

)2

ds

⎤

⎦. (3.7.19)
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By Lemma 7.3.1 we can apply the inverse Hermite transform to the last
term in (3.7.18) and get

H(φ(Xx(t))(z) = H(Eμ̂[(φ ◦ Λ−1)(B̂(t))M�
T ])(z) (3.7.20)

for z ∈ Kq(R) for some q,R. Then the conclusion follows by the characteri-
zation theorem for Hermite transforms (Theorem 2.6.11). ��

Remark 3.7.3 In spite of its striking simplicity, the solution formula
(3.7.10) is not easy to use to find standard, non-white-noise solution formulas,
even in cases when the solution is easy to find using the Itô formula.
See Exercise 3.11.

Exercises

3.1 Show that the processes X1(t),X2(t) defined by (3.2.12) and (3.2.15),
respectively, are not Markov processes. This illustrates that in general the
solution of a Wick type stochastic differential equation does not have the
Markov property.

3.2

a) Construct a solution X(t) of equation (3.3.3) by proceeding as follows:
Define X0(t) = X0 and, by induction, using Picard iteration,

Xn(t) = X0 +

t∫

0

F (s,Xn−1(s))ds.

Then Xn(t) converges in (S)N
−1,−k to a solution X(t) as n→∞.

b) Prove that equation (3.3.3) has only one solution by proceeding as follows:
If X1(t),X2(t) are two solutions, define g(t) = ‖X1(t)−X2(t)‖2−1,−k for
t ∈ [0, T ]. Then

g(t) ≤ A

t∫

0

g(s)ds

for some constant A.

3.3 Deduce the inequalities in (3.5.19).

3.4 Use Wick calculus to solve the following Itô stochastic differential
equations:

a) dX(t) = rX(t)dt + αX(t)dB(t), t > 0
X0 = x; x, r, α constants;

b) dX(t) = rX(t)dt + αdB(t), t > 0
X0 = x; x, r, α constants;
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c) dX(t) = rdt + αX(t)dB(t), t > 0
X0 = x; x, r, α constants;

d) dX(t) = r(K −X(t))dt + α(K −X(t))dB(t), t > 0
X0 = x; x, r,K, α constants;

e) dX(t) = (r + ρX(t))dt + (α + βX(t))dB(t), t > 0
X0 = x; x, r, ρ, α, β constants.

f) If X0 = x is not constant, but an F∞-measurable random variable
such that X0(ω) ∈ L2(μ), how does this affect the solutions of a) – e)
above?

3.5 Solve the Skorohod stochastic differential equations

a) dX(t) = rX(t)dt + αX(t)δB(t); 0 < t < T
X(T ) = G(ω) ∈ L2(μ), F∞-measurable;

b) dX(t) = rX(t)dt + αδB(t); 0 < t < T
X(T ) = G(ω) ∈ L2(μ), F∞-measurable;

c) dX(t) = rdt + αX(t)δB(t); 0 < t < T
X(T ) = G(ω) ∈ L2(μ), F∞-measurable;

d) dX(t) = B(T )dt + X(t)δB(t); 0 < t < T
X(0) = G(ω) ∈ L2(μ), F∞-measurable.

3.6 Use Wick calculus to solve the following 2-dimensional system of
stochastic differential equations:

⎧
⎨

⎩

dX1(t)
dt = −X2(t) + αW1(t)

dX2(t)
dt = X1(t) + βW2(t); X1(0),X2(0) given,

where W(t) = (W1(t),W2(t)) is 2-dimensional, 1-parameter white noise.
This is a model for a vibrating string subject to a stochastic force.

3.7 In Grue and Øksendal (1997), the following second–order stochastic dif-
ferential equation is studied as a model for the motion of a moored platform
in the sea exposed to random forces from the wind, waves and currents:

ẍ(t) + [α + βW (t)] � ẋ(t) + γx(t) = θW (t); t > 0
x(0), ẋ(0) given,

where α, β, γ, θ are constants.
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a) Transform this into a stochastic Volterra equation of the form

x(t) = J(t, ω) +

t∫

0

K(t, s, ω) � x(s)ds

for suitable stochastic distribution processes.

b) Verify that the conditions of Theorem 3.4.2 are satisfied in this case
and hence conclude that the equation has a unique stochastic distri-
bution solution x(t) ∈ (S)−1.

3.8 Solve the second–order stochastic differential equation

ẍ(t) + x(t) = W (t); t > 0
x(0), ẋ(0) given,

by transforming it into a stochastic Volterra equation.

3.9 Use the method of Theorem 3.6.1 to solve the quasilinear SDE

dX(t) = f(X(t))dt + X(t)dB(t); t > 0
X(0) = x ∈ (0, 1) (deterministic),

where f(x) = min(x, 1); x ∈ R.

3.10 Use the method of Theorem 3.6.1 to solve the SDE

dX(t) = rX(t) + αX(t)δB(t); t > 0

X(0) ∈ L2(μ), F∞-measurable,

and compare the result with the result in Exercise 3.4 a) and f).

3.11 Use Theorem 3.7.2 to show that the solution of the stochastic differential
equation

dXx(t) = μXx(t)dt + σXx(t)dB(t); Xx(0) = x > 0

(where μ, σ > 0 are constants) is the geometric Brownian motion

Xx(t) = x exp
[(

μ− 1
2
σ2

)

t + σB(t)
]

; t ≥ 0



Chapter 4

Stochastic Partial Differential
Equations Driven by Brownian White
Noise

4.1 General Remarks

In this chapter we will apply the general theory developed in Chapter 2
to solve various stochastic partial differential equations (SPDEs) driven by
Brownian white noise. In fact, as pointed out in Chapter 1, our main moti-
vation for setting up this machinery was to enable us to solve some of the
basic SPDEs that appear frequently in applications.

We can explain our general approach to SPDEs as follows:
Suppose that modeling considerations lead us to consider an SPDE

expressed formally as
A(t, x, ∂t,∇x, U, ω) = 0 (4.1.1)

where A is some given function, U = U(t, x, ω) is the unknown (gen-
eralized) stochastic process, and where the operators ∂t = ∂/∂t,∇x =
(∂/∂x1, . . . , ∂/∂xd) when x = (x1, . . . , xd) ∈ R

d.
First we interpret all products as Wick products and all functions as their

Wick versions, as explained in Definition 2.6.14. We indicate this as

A�(t, x, ∂t,∇x, U, ω) = 0. (4.1.2)

Secondly, we take the Hermite transform of (4.1.2). This turns Wick prod-
ucts into ordinary products (between (possibly) complex numbers) and the
equation takes the form

Ã(t, x, ∂t,∇x, Ũ , z1, z2, . . .) = 0, (4.1.3)

where Ũ = HU is the Hermite transform of U and z1, z2 are complex numbers.
Suppose we can find a solution u = u(t, x, z) of the equation

Ã(t, x, ∂t,∇x, u, z) = 0, (4.1.4)

for each z = (z1, z2, . . .) ∈ Kq(R) for some q,R (see Definition 2.6.4).

H. Holden et al., Stochastic Partial Differential Equations, 2nd ed., Universitext, 159
DOI 10.1007/978-0-387-89488-1 4, c© Springer Science+Business Media, LLC 2010
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Then, under certain conditions, we can take the inverse Hermite
transform U = H−1u ∈ (S)−1 and thereby obtain a solution U of the original
(Wick) equation (4.1.2). See Theorem 4.1.1 below for details. This method
has already been applied in Chapter 3. See, e.g., the proof of Theorem 3.2.1.

The first step of this procedure, to interpret all products as Wick prod-
ucts, reflects a certain choice regarding the exact mathematical model for the
equation. As pointed out in Chapter 1, the solution U of (4.1.1) will in many
cases only exist as a generalized stochastic process, and this makes it difficult
to interpret the products as ordinary, pointwise products. Wick products,
however, have the advantage of being well-defined (and well-behaved) on the
space (S)−1.

Moreover, it coincides with the ordinary product if one of the factors
is deterministic, and it represents the natural extension of the principle of
interpreting differential equations with white noise as Itô/Skorohod stochastic
differential equations. See (1.1.9) and the other related comments in
Chapter 1. However, regardless of all such good theoretical arguments for the
use of the Wick product, the ultimate test for such a model is the comparison
between the mathematical solution and the observed solution of the physical
phenomenon we are modeling. See Section 3.5 for a 1-dimensional example.

The Hermite transform replaces a real–valued function depending on ω (or,
more generally, an element of (S)−1) by a complex–valued function depending
on a complex parameter z = (z1, z2, . . .) ∈ (CN)c. So to solve (4.1.4) we
have to solve a deterministic PDE with complex coefficients depending on
the complex parameters z1, z2, . . . . If we succeed in doing this, we proceed
by taking inverse Hermite transforms to obtain a solution of the original
equation. Sufficient conditions for this procedure to work are given in the
next theorem.

Theorem 4.1.1. Suppose u(t, x, z) is a solution (in the usual strong,
pointwise sense) of the equation

Ã(t, x, ∂t,∇x, u, z) = 0 (4.1.5)

for (t, x) in some bounded open set G ⊂ R × R
d, and for all z ∈ Kq(R), for

some q,R. Moreover, suppose that

u(t, x, z) and all its partial derivatives, which are involved in (4.1.4),
are(uniformly) bounded for (t, x, z) ∈ G × Kq(R), continuous with

respect to (t, x) ∈ Gfor each z ∈ Kq(R) and analytic with respect to

z ∈ Kq(R), for all (t, x) ∈ G. (4.1.6)

Then there exists U(t, x) ∈ (S)−1 such that u(t, x, z) = (HU(t, x))(z) for all
(t, x, z) ∈ G × Kq(R) and U(t, x) solves (in the strong sense in (S)−1) the
equation

A�(t, x, ∂t,∇x, U, ω) = 0 in (S)−1. (4.1.7)
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Proof This result is a direct extension of Lemma 2.8.4 to the case involving
higher order derivatives. It can be proved by applying the argument of
Lemma 2.8.4 repeatedly. We omit the details. See Exercise 4.1. ��

Remark Note that it is enough to check condition (4.1.6) for the highest-
order derivatives of each type, since from this the condition automatically
holds for all lower-order derivatives, by the mean value property.

4.2 The Stochastic Poisson Equation

Let us illustrate the method described above on the following equation, called
the stochastic Poisson equation:

{
ΔU(x) = −W (x); x ∈ D

U(x) = 0; x ∈ ∂D,
(4.2.1)

where Δ =
∑d

k=1 ∂2/∂x2
k is the Laplace operator in R

d,D ⊂ R
d is a

given bounded domain with regular boundary (see, e.g., Øksendal (1995),
Chapter 9) and where W (x) =

∑∞
j=1 ηk(x)Hεk

(ω) is d-parameter white noise.
As mentioned in Chapter 1, this equation models, for example, the tempera-
ture U(x) in D when the boundary temperature is kept equal to 0 and there
is a white noise heat source in D.

Taking the Hermite transform of (4.2.1), we get the equation
{

Δu(x, z) = −W̃ (x, z); x ∈ D

u(x, z) = 0; x ∈ ∂D
(4.2.2)

for our candidate u for Ũ , where the Hermite transform W̃ (x, z) =∑∞
j=1 ηj(x)zj when z = (z1, z2, . . .) ∈ (CN)c (see Example 2.6.2). By con-

sidering the real and imaginary parts of this equation separately, we see that
the usual solution formula holds:

u(x, z) =
∫

Rd

G(x, y)W̃ (y, z)dy, (4.2.3)

where G(x, y) is the classical Green function of D (so G = 0 outside D).
(See, e.g., Port and Stone (1978), or Øksendal (1995), Chapter 9). Note that
u(x, z) exists for all x ∈ (CN)c, x ∈ D, since the integral on the right of (4.2.3)
converges for all such z, x. (For this we only need that G(x, y) ∈ L1(dy) for
each x.) Moreover, for z ∈ (CN)c, we have
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|u(x, z)| =
∣
∣
∣
∣

∫
G(x, y)

∑

j

ηj(y)zjdy

∣
∣
∣
∣ =

∣
∣
∣
∣
∑

j

zj

∫
G(x, y)ηj(y)dy

∣
∣
∣
∣

≤ sup
j,y
|ηj(y)|

∫
G(x, y)dy

∑

j

|zj | ≤ C
∑

j

|zj | = C
∑

j

|zεj |

≤ C

(∑

j

|zεj |2(2N)2εj

) 1
2
(∑

j

(2N)−2εj

) 1
2

≤ C R

(∑

j

(2j)−2

) 1
2

<∞, (4.2.4)

if z ∈ K2(R). Since u(x, z) depends analytically on z, it follows from the
Characterization Theorem (Theorem 2.6.11) that there exists U(x) ∈ (S)−1

such that Ũ(x, z) = u(x, z). Moreover, from the general theory of elliptic
(deterministic) PDEs (see, e.g., Bers et al. (1964)), we know that, for each
open V ⊂⊂ D and z ∈ (CN)c there exists C such that

‖u(·, z)‖C2+α(V ) ≤ C(‖Δu(·, z)‖Cα(D) + ‖u(·, z)‖C(D)). (4.2.5)

In particular, ∂2u/∂x2
i (x, z) is bounded for (x, z) ∈ K2(R) since both

Δu = −W̃ and u are. Therefore, by Theorem 4.1.1, U(x) solves (4.2.1).
We recognize directly from (4.2.3) that u is the Hermite transform of

U(x) =
∫

Rd

G(x, y)W (y)dy =
∞∑

j =1

∫

Rd

G(x, y)ηj(y)dyHεj
(ω),

which converges in (S)∗ because (see (2.3.26))

∞∑

j =1

(∫

Rd

G(x, y)ηj(y)dy

)2

(2j)−q ≤ C2
∞∑

j =1

(2j)−q <∞ for all q > 1.

Theorem 4.2.1. The unique stochastic distribution process U(x) ∈ (S)−1

solving (4.2.1) is given by

U(x) =
∫

Rd

G(x, y)W (y)dy

=
∞∑

j =1

∫

Rd

G(x, y)ηj(y)dyHεj
(ω). (4.2.6)

We have U(x) ∈ (S)∗ for all x ∈ D̄.
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As mentioned in Chapter 1, equation (4.2.1) was studied in Walsh (1986).
He showed that there is a unique distribution valued stochastic process
Y (x, ω) solving (4.2.1). This means that there exists a Sobolev space H−n(D)
such that Y (·, ω) ∈ H−n(D) for almost all ω and

ΔY (·, ω) = −W (·, ω) in H−n(D), a.s.

in the sense that
〈ΔY (·, ω), φ〉 = −〈W (·, ω), φ〉,

i.e.,
〈Y (·, ω),Δφ〉 = −〈W (·, ω), φ〉 a.s., for all φ ∈ Hn(D).

The Walsh solution is given explicitly by

〈Y, φ〉 =
∫

Rd

∫

Rd

G(x, y)φ(x)dxdB(y); φ = φ(x) ∈ Hn(Rd). (4.2.7)

For comparison, our solution U(x) in (4.2.6) can be described by its action
on its test functions f ∈ (S):

〈U(x), f〉 =
∫

Rd

G(x, y)〈W (y), f〉dy; f = f(ω) ∈ (S). (4.2.8)

In short, the Walsh solution Y (x, ω) takes x-averages for almost all ω, while
our solution U(x, ω) takes ω-averages for all x.

4.2.1 The Functional Process Approach

It is instructive to consider this equation from a functional process point of
view (see Section 2.9). So we fix ψ ∈ S(Rd) and consider the equation

{
ΔU(ψ, x) = −Wψ(x); x ∈ D

U(ψ, x) = 0; x ∈ ∂D,
(4.2.9)

where Wψ(x) = w(ψx, ω) =
∫

Rd ψ(ξ − x)dB(ξ) is ψx-smoothed white noise
and ψx(y) = ψ(y − x); x, y ∈ R

d. This equation can be solved for each ω to
give

U(ψ, x) =
∫

Rd

G(x, y)Wψ(y)dy =
∫

Rd

∫

Rd

G(x, y)ψ(ξ − y)dydB(ξ). (4.2.10)

We have U(ψ, x) ∈ Lp(μ) for all p <∞.
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If ψ, or rather ψdy, tends to δ0 in the weak star topology in the space
of measures on R

d, then U(ψ, x) → U(x) (given by (4.2.5)) in (S)∗. This is
because, using the notation of Definition 2.7.1,

‖U(ψ, x)− U(x)‖0,r ≤
∫

Rd

G(x, y)‖Wψ(y)−W (y)‖0,rdy

≤
∫

Rd

G(x, y)
(∑

j

|(ψy, ηj)− ηj(y)|2(2j)r

) 1
2

dy → 0 for r < −1.

See Lindstrøm et al. (1995), for a discussion of similar properties of the
more general stochastic Poisson equation

{
div(a(x)∇U(x)) = −W (x); x ∈ D

U(x) = 0; x ∈ ∂D

where a(x) = [aij(x)] is a d× d symmetric matrix with bounded measurable
components aij(x). The solutions are in this case interpreted in the Walsh
sense.

This type of stability question, as well as the basic idea behind func-
tional processes, are inspired by Colombeau’s theory of distributions (see
Colombeau (1990)), which makes it possible to define the product of certain
distributions.

The Colombeau theory was adapted to stochastic analysis in Albeverio
et al. (1996). There existence and uniqueness are proved for a Colombeau
distribution solution of a certain class of nonlinear stochastic wave equations
of space dimension 2. See also Russo (1994), Oberguggenberger (1992, 1995),
and the references therein.

4.3 The Stochastic Transport Equation

4.3.1 Pollution in a Turbulent Medium

The transport of a substance that is dispersing in a moving medium can be
modeled by an SPDE of the form
{

∂U
∂t = 1

2σ2ΔU + V (t, x) · ∇U + K(t, x) · U + g(t, x); t > 0, x ∈ R
d

U(0, x) = f(x); x ∈ R
d,

(4.3.1)

where U(t, x) is the concentration of the substance at time t and at the point
x ∈ D, 1/2σ2 > 0 (constant) is the dispersion coefficient, V (t, x) ∈ R

d is
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the velocity of the medium, K(t, x) ∈ R is the relative leakage rate and
g(t, x) ∈ R is the source rate of the substance. The initial concentration is a
given real function f(x).

If one or several of these coefficients are assumed to be stochastic, we call
equation (4.3.1) a stochastic transport equation. For example, the case when
we have K = g = 0 and V = W(x) (d-dimensional white noise) models
the transport of a substance in a turbulent medium. This case has been
studied by several authors. When d = 1 and the product W (x) · ∇U(t, x) is
interpreted by means of a Stratonovich integration, the equation has been
studied by Chow (1989), Nualart and Zakai (1989), and Potthoff (1992), and
in the Hitsuda–Skorohod interpretation by Potthoff (1994). See also Deck
and Potthoff (1998), for a more general approach. For arbitrary d and with
V (x) = Wφ(x) = (W (1)

φ (x), . . . , W (d)
φ (x)), d-dimensional φ-smoothed white

noise (φ ∈ S), and the product Wφ(x) · ∇U(t, x) interpreted as a Wick
product Wφ(x) � ∇U(t, x) (and still K = g = 0), an explicit solution was
found in Gjerde et al. (1995). There the initial value f(x) was allowed to be
stochastic and anticipating and it was shown that the solution was actually a
strong solution in (S)∗ for all t, x. Equation (4.3.1), with V,K deterministic,
but g(t, x) random, was studied by Kallianpur and Xiong (1994), as a model
for pollution dispersion. Then Gjerde (1994) combined the two cases studied
by Gjerde et al. (1995), and Kallianpur and Xiong (1994) and solved the
following generalization:
{

∂U
∂t = 1

2σ2ΔU + Wφ(x) � ∇U + K(t, x) � U + g(t, x); t > 0, x ∈ R
d

U(0, x) = f(x); x ∈ R
d,

(4.3.2)

where σ is a constant and K(t, x), g(t, x) and f(x) are given stochastic
distribution processes.

Our presentation here is a synthesis of the methods in Gjessing (1994),
Gjerde et al (1995), Holden et al. (1995a), and Holden et al. (1995b).

Theorem 4.3.1 Gjerde (1994) (The stochastic transport equation).
Assume that K : R

+×R
d → (S)−1, g : R

+×R
d → (S)−1 and f : R

d → (S)−1

satisfy the following conditions:

There exist q and R <∞ such that |K̃(t, x, z)|+ |g̃(t, x, z)| + |f̃(x, z)| is
uniformly bounded for (t, x, z) ∈ R

+ × R
d ×Kq(R). (4.3.3)

There exists Kq(R) such that for each z ∈ Kq(R) we can find γ ∈ (0, 1)

such that K̃(t, x, z)∈C1,γ(R+×R
d), g̃(t, x, z)∈C1,γ(R+×R

d) and f̃(x, z)∈
C2+γ(Rd). (4.3.4)
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Then there exists a unique stochastic distribution process U(t, x) solving
(4.3.2), namely

U(t, x) = Êx

⎡

⎣

⎛

⎝f(σbt) � exp�

⎡

⎣
t∫

0

K(t− r, σbr)dr

⎤

⎦

+

t∫

0

g(t− s, σbs) � exp�

⎡

⎣
s∫

0

K(s− r, σbr)dr

⎤

⎦ds

⎞

⎠ �M�
t

⎤

⎦, (4.3.5)

where

M�
t = exp�

[

−
d∑

k=1

σ−1

t∫

0

W
(k)
φ (σbs)db(k)

s − 1
2

d∑

k=1

σ−2

t∫

0

(W (k)
φ (σbs))�2ds

]

.

(4.3.6)
Here (bt)t≥0 = (b(1)

t , . . . , b
(d)
t )t≥0 is an auxiliary Brownian motion in R

d

(independent of {B(t)}t≥0) with probability law P̂ x when starting at x ∈ R
d

at time t = 0, and Êx denotes the expectation with respect to P̂ x. Thus the
integrals in the Wick exponent are (S)−1-valued Itô integrals and
(S)−1-valued Lebesgue integrals (Bochner integrals), respectively.

Proof Taking the Hermite transform of (4.3.2), we get the equation
{

∂u
∂t = 1

2σ2Δu + W̃φ(x) · ∇u + K̃(t, x) · u + g̃(t, x); t ≥ 0, x ∈ R
d

u(0, x) = f̃(x); x ∈ R
d

(4.3.7)

for the Hermite transform u = u(t, x, z) = (HY (t, x))(z) = Ỹ (t, x, z), where
z = (z1, z2, . . .) ∈ (CN)c.

Let us first assume that z = λ = (λ1, λ2, . . .) ∈ (RN)c and then define the
operator

Aλ =
d∑

k=1

1
2
σ2 ∂2

∂x2
k

+
d∑

k=1

W̃
(k)
φ (x, λ)

∂

∂xk
, (4.3.8)

where W
(k)
φ (x) is component number k of Wφ(x), so that

W̃
(k)
φ (x, λ) =

∞∑

j =1

(φ(k)
x , ηj)λ(j−1)k+α; 1 ≤ k ≤ d (4.3.9)

(see (2.6.10)), where φ
(k)
x is component number k of φx ∈ S. Then equation

(4.3.7) can be written
{
−∂u

∂t + Aλu + K̃u = −g̃; t > 0, x ∈ R
d

u(0, x) = f̃(x); x ∈ R
d.

(4.3.10)
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Let Xλ
t = Xλ,x

t be the unique, strong solution of the Itô stochastic
differential equation

dXλ
t = W̃φ(Xλ

t , λ)dt + σdbt; t ≥ 0, Xλ
0 = x. (4.3.11)

Note that the coefficient W̃φ(x, λ) is Lipschitz continuous in x and has
at most linear growth, so by the general theory (see Appendix B) a unique,
strong, global solution Xλ

t exists. Note also that Xλ
t has generator Aλ. There-

fore, by the Feynman–Kac formula (see, e.g., Karatzas and Shreve (1991),
Friedman (1976)), the unique solution u of (4.3.10) is given by

u(t, x, λ) = Ex
Q

⎡

⎣f̃(Xt, λ) exp

⎡

⎣
t∫

0

K̃(t− r,Xλ
r , λ)dr

⎤

⎦

+

t∫

0

g̃(t− s,Xλ
s , λ) exp

⎡

⎣
s∫

0

K̃(s− r),Xλ
r , λ)dr

⎤

⎦ ds

⎤

⎦, (4.3.12)

where Ex
Q denotes the expectation with respect to the law Qx of {Xλ

t }t≥0

when we have Xλ
0 = x. Using the Girsanov transformation (see Appendix B)

this can be formulated in terms of the expectation Êx as follows:

u(t, x, λ) = Êx

⎡

⎣

⎛

⎝f̃(σbt, λ) exp

⎡

⎣
t∫

0

K̃(t− r, σbr, λ)dr

⎤

⎦

+

t∫

0

g̃(t− s, σbs, λ) exp

⎡

⎣
s∫

0

K̃(s− r, σbr, λ)dr

⎤

⎦ ds

⎞

⎠Mt(λ)

]

,

(4.3.13)

where

Mt(λ) = exp

⎡

⎣
d∑

k=1

σ−1

t∫

0

W̃
(k)
φ (σbs, λ)db(k)

s

−1
2

d∑

k=1

σ−2

t∫

0

(W̃ (k)
φ (σbs, λ))2ds

⎤

⎦. (4.3.14)

Clearly this function λ → u(t, x, λ);λ ∈ (RN)c, extends analytically to
a function z → u(t, x, z); z ∈ (CN)c, obtained by substituting z for λ in
(4.3.13)–(4.3.14). To prove that this analytic function u(t, x, z) is the Hermite
transform of some element U(t, x) ∈ (S)−1, we must verify that u(t, x, z) is
bounded for z ∈ Kq(R) for some q,R. To this end it suffices, because of our
assumptions, to prove that we have

Êx[|Mt(z)|] is bounded for z ∈ Kq(R).
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Choose q = 2 and z = λ + iy = (λ1 + iy1, λ2 + iy2, . . .) ∈ K2(R). Then,
since Mt is an exponential martingale, we get

Êx[|Mt(z)|]

= Êx

[

exp

[
d∑

k=1

σ−1

∫ t

0

Re[W̃ (k)
φ (σbs, z)]db(k)

s

−1
2

d∑

k=1

σ−2

t∫

0

Re[(W̃ (k)
φ (σbs, z))2]ds

⎤

⎦

⎤

⎦

= Êx

⎡

⎣exp

⎡

⎣
d∑

k=1

σ−1

∫ t

0

W̃
(k)
φ (σbs, λ)db(k)

s − 1
2

d∑

k=1

σ−2

t∫

0

(W̃ (k)
φ (σbs, λ))2ds

+
1
2

d∑

k=1

σ−2

t∫

0

(W̃ (k)
φ (σbs, y))2ds

⎤

⎦

⎤

⎦

≤ sup
β∈Rd

exp

⎡

⎣1
2

d∑

k=1

σ−2

t∫

0

(W̃ (k)
φ (β, y))2dy

⎤

⎦

≤ exp

⎡

⎣1
2
dσ−2t‖φ‖

( ∞∑

j=1

|yi|
)2

⎤

⎦ ≤ exp

⎡

⎣C

∞∑

j=1

y2
j (2N)2ε(j) ·

∞∑

j=1

(2N)−2ε(j)

⎤

⎦

≤ exp

⎡

⎣C
∑

α�=0

|yα|2(2N)2α ·
∞∑

j=1

(2j)−2

⎤

⎦ <∞.

Hence there exists U(t, x) ∈ (S)−1 such that Ũ(t, x) = u(t, x). By comparing
the expansions for U(t, x) =

∑
α aα(t, x)Hα and u(t, x) =

∑
α bα(t, x)zα, we

see that U(t, x) can be expressed by (4.3.5)–(4.3.6).
Verifying that U(t, x) solves (4.3.2) remains. Define the partial differential

operator L by

Lu(t, x) =
∂u

∂t
− 1

2
σ2Δu− W̃φ · ∇u− K̃(t, x)u. (4.3.15)

Then from the general theory of (deterministic) parabolic differential
operators we have (see Egorov and Shubin (1992), Theorem 2.78, and the
references therein) that for every open set G = (0, T )×D ⊂⊂ R

+×R
d there

exists C <∞ such that

‖u‖C1,2+γ(G) ≤ C(‖Lu‖C1,γ(G) + ‖f̃‖C2+γ(∂D)). (4.3.16)

Combining this with our estimate for the function u(t, x, z) and our
assumption about Lu(t, x, z) = g̃(t, x, z), we see that the conditions of
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Theorem 4.1.1 are satisfied for u(t, x, z), and we conclude that U(t, x) solves
(4.3.2), as claimed. ��

Theorem 4.3.1 has several important special cases, some of which were
already mentioned at the beginning of this section. We state two more:

4.3.2 The Heat Equation with a Stochastic Potential

If we choose V = g = 0 in (4.3.1), we get the following stochastic heat equation

{
∂U
∂t (t, x) = 1

2σ2ΔU(t, x) + K(t, x) � U(t, x); t ≥ 0, x ∈ R
d

U(0, x) = f(x); x ∈ R
d.

(4.3.17)

This equation was studied in Nualart and Zakai (1989), in the case when
K(t, x) is white noise. They prove the existence of a solution of a type called
generalized Wiener functionals. In Holden et al. (1995b), this equation was
solved in the (S)−1 setting presented here.

Corollary 4.3.2 Holden et al. (1995b). Suppose that K(t, x) and f(x)
are stochastic distribution processes satisfying the conditions of
Theorem 4.3.1. Then the unique (S)−1 solution U(t, x) of (4.3.17) is given by

U(t, x) = Êx

⎡

⎣f(σbt) � exp�

⎡

⎣
t∫

0

K(t− s, σbs)ds

⎤

⎦

⎤

⎦. (4.3.18)

4.4 The Stochastic Schrödinger Equation

An equation closely related to equation (4.3.2) is the stationary Schrödinger
equation with a stochastic potential

{
1
2ΔU(x) + V (x) � U(x) = −f(x); x ∈ D

U(x) = 0; x ∈ ∂D.
(4.4.1)

Here D is a bounded domain in R
d and V (x) and f(x) are given stochastic

distribution processes. This equation was studied in Holden et al. (1993a), in
the case when the potential V (x) is proportional to the Wick exponential of
smoothed white noise; or more precisely

V (x) = ρ exp�[Wφ(x)], φ ∈ S(R), (4.4.2)

where ρ ∈ R is a constant. If ρ > 0, this is called the attractive case.
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Let λ0 be the smallest eigenvalue for the operator −1/2Δ in D, i.e., λ0 > 0
is the smallest λ for which the boundary value problem

{
− 1

2Δu(x) = λu(x); x ∈ D

u(x) = 0; x ∈ ∂RD (the regular boundary of D)
(4.4.3)

has a bounded solution u ∈ C2(D). (As usual, the boundary condition
u(x) = 0 for x ∈ ∂D is a shorthand notation for lim y→x

y∈D
u(y) = 0 for

x ∈ ∂D.) As in the previous section, we let {bt}t≥0, denote an auxiliary
Brownian motion in R

d (independent of {B(t)}t≥0), and Êx denotes the
expectation with respect to the law P̂ x of bt starting at x. Define the first
exit time τD for bt from D by

τD = inf{t > 0; bt /∈ D}.

The following result will be useful: λ0 > 0 is related to τD

λ0 = sup{ρ ∈ R; Êx[exp[ρτD]] <∞}, for all x ∈ D. (4.4.4)

(See, e.g., Durrett (1984), Chapter 8B.)

Theorem 4.4.1. Suppose f(x) is a stochastic distribution process such that

f̃(x, z) is bounded for (x, z) ∈ D ×Kq1(R1), for some q1, R1. (4.4.5)

Let D be a bounded domain in R
d with all its points regular for the classi-

cal Dirichlet problem in D. Let ρ < λ0 be a constant. Then there is a unique
(S)−1 solution U(x) of the stochastic Schrödinger equation

{
1
2ΔU(x) + ρ exp�[W (x)] � U(x) = −f(x); x ∈ D

U(x) = 0; x ∈ ∂D,
(4.4.6)

and it is given by

U(x) = Êx

[ τD∫

0

exp�

[

ρ

t∫

0

exp�(W (bs))ds

]

� f(bt)dt

]

. (4.4.7)

Proof This result can be proved by modifying the proof of Theorem 4.3.1.
For completeness we give the details.

By taking Hermite transforms we get the equation
⎧
⎨

⎩

1
2Δu(x, z) + ρ exp[W̃ (x)(z)] · u(x, z) = −f̃(x, z); x ∈ D

u(x, z) = 0; x ∈ ∂D.
(4.4.8)
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Choose z ∈ (CN)c. Then by a complex version of the Feynman–Kac formula
(see, e.g., Karatzas and Shreve (1991), Friedman (1976), in the real case) we
can express the unique solution u(x, z) of (4.4.8) as

u(x, z) = Êx

[ τD∫

0

f̃(bt, z) exp

[

ρ

t∫

0

exp[W̃ (bs, z)]ds

]

dt

]

, (4.4.9)

provided the expression converges. Note that, by (C.15),

|W̃φ(bs, z)|2 =

∣
∣
∣
∣
∣

∞∑

j=1

ηj(bs)zj

∣
∣
∣
∣
∣

2

≤ sup
j,x
|ηj(x)|2

( ∞∑

j=1

|zj |
)2

≤ sup
j,x
|ηj(x)|2

∞∑

j=1

|zj |2 (2N)qε(j)
∞∑

j=1

(2N)−qε(j)

≤ sup
j,x
|ηj(x)|2R2

∞∑

j=1

(2j)−q =: C(q,R)2 <∞

if z ∈ Kq(R) for q > 1.
Therefore, by our assumption on f̃ , for z ∈ Kq(R) we get,

|u(x, z)| ≤MÊx

[ τD∫

0

exp

[

ρ

t∫

0

exp[C(q,R)]ds

]

dt

]

≤MÊx

[ τD∫

0

exp

[

ρ exp[C(q,R)]t

]

dt

]

≤ M

ρ exp[C(q,R)]
Êx[exp[ρ exp[C(q,R)]τ ]],

where M = sup{|f̃(x, z)|; (x, z) ∈ D ×Kq1(R1)}.
Now choose q2, R2 and ε > 0 such that

ρeC(q2,R2) < (1− ε)λ0.

Then for q ≥ max(q1, q2) and R ≤ min(R1, R2) we have

|u(x, z)| ≤ M

ρ exp[C(q,R)]
Êx

[

exp
[
(1− ε)λ0τ

]
]

<∞

for all (x, z) ∈ D ×Kq(R).
Since u(x, z) is clearly analytic in z ∈ (CN)c ∩ Kq(R), we conclude that

there exists U(x) ∈ (S)−1 such that HU = u. Moreover, since L = 1/2Δ is
uniformly elliptic, it follows by the estimate (4.2.5) that the double derivatives
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∂2u/∂x2
i (x, z); 1 ≤ i ≤ d, are uniformly bounded for (x, z) ∈ V × Kq(R)

for each open set V ⊂⊂ D. Hence by Theorem 4.1.1, U(x) does indeed
solve (4.4.6). Moreover, we verify directly that the Hermite transform of the
expression in (4.4.7) is the expression in (4.4.9). ��

4.4.1 L1(μ)-Properties of the Solution

Working in the space (S)−1 can be technically convenient, because of the
useful properties of the Hermite transform and the characterization theorem.
However, we pay a price: The space (S)−1 is large and relatively abstract.
Therefore it will always be of interest to identify the solutions as members of
smaller or more concrete spaces, such as (S)∗ or, preferably, Lp(μ) for some
p > 1. We have already seen examples of equations whose solutions belong
to (S)−1 but not to (S)∗ and hence not to Lp(μ) for any p > 1. (See, e.g.,
Section 3.2). Nevertheless, it turns out that the solution sometimes is also in
L1(μ) (like in Section 3.2). This useful feature is more often achieved when we
apply the functional process approach, i.e., smoothing the white noise with
a test function φ ∈ S(R) as we did above. We now prove that, under certain
conditions, our solution in Theorem 4.4.1 is actually in L1(μ), provided that
we interpret the equation in the weak (distributional) sense with respect to x.

Theorem 4.4.2 Holden et al. (1993a). Assume as before that D is a
bounded domain in R

d with ∂D = ∂RD. Moreover, assume that

f(x) is deterministic and bounded in D̄ and (4.4.10)
ρ < λ0 (defined by (4 .4 .4 )). (4.4.11)

For x ∈ D̄ and φ ∈ S(Rd), define

U(x) = U(φ, x, ω) = Êx

[ τD∫

0

exp�

[

ρ

t∫

0

exp�[Wφ(bs)]ds

]

f(bt)dt

]

.

Then U(x) ∈ L1(μ), x→ U(x) ∈ L1(μ) is continuous for x ∈ D̄, and U(x)
satisfies the stochastic Schrödinger equation

⎧
⎨

⎩

1
2ΔU(x) + ρ exp�[Wφ(x)] � U(x) = −f(x); x ∈ D

U(x) = 0; x ∈ ∂D
(4.4.12)

in the weak distributional sense with respect to x ∈ D, i.e., that there exists
Ωφ ⊂ S ′(Rd) with μ(Ωφ) = 1 such that

1
2
(U,Δψ) + ρ(exp�[Wφ] � U,ψ) = −(f, ψ) (4.4.13)
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for all ω ∈ Ωφ and for all ψ ∈ C∞
0 (D) (where (·, ·) is the inner product on

L2(Rd)).

Remark The Wick product in (4.4.13) is now interpreted in the L1(μ)
sense. See Definition 2.9.4.

Proof Expanding the first Wick exponential according to its Taylor series,
we find

U(x) = Êx

⎡

⎢
⎢
⎢
⎣

τD∫

0

∞∑

k=0

(

ρ
t∫

0

exp�[Wφ(bs)]
)�k

k!
f(bt)dt

⎤

⎥
⎥
⎥
⎦

=
∞∑

k=0

ρk

k!
Êx

⎡

⎣
τD∫

0

( t∫

0

exp�[Wφ(bs)]ds

)�k

f(bt)dt

⎤

⎦=
∞∑

k=0

ρk

k!
Vk(x)

(4.4.14)

with

Vk(x) = Vk(φ, x, ω) = Êx

⎡

⎣
τD∫

0

( t∫

0

exp�(Wφ(bs))ds

)�k

f(bt)dt

⎤

⎦; (4.4.15)

k = 0, 1, 2, . . . . The key identity we will establish is

1
2
ΔVk(x) =

{
−k exp� Wφ(x) � Vk−1(x); k ∈ N

−f(x); k = 0.
(4.4.16)

for all x ∈ D.
To this end we perform a Hermite transform of Vk(x) to obtain

Ṽk(x) = Ṽk(x, z) = Êx

⎡

⎣
τD∫

0

( t∫

0

G̃(bs)ds

)k

f(bt)dt

⎤

⎦, (4.4.17)

where G̃(y) = exp[W̃φ(y)]. For x ∈ D let Nj = Nj(x); j = 1, 2, . . ., be a
sequence of open sets such that N̄j ⊂ D and

⋂∞
j=1 Nj = {x}. Define

σj = inf{t > 0; bt /∈ Nj}; j = 1, 2, . . . . (4.4.18)

Let A denote Dynkin’s characteristic operator, so that

AṼk(x) = lim
j→∞

1
Êx[σj ]

(Êx[Ṽk(bσj
)]− Ṽk(x)). (4.4.19)
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Write σ = σj and consider

J := Êx[Ṽk(bσ)] = Êx

[

Êbσ

[ τ∫

0

( t∫

0

G̃(bs)ds

)k

f(bt)dt

]]

= Êx

[

Êx

[

θσ

( τ∫

0

( t∫

0

G̃(bs)ds

)k

f(bt)dt

)∣
∣
∣
∣
∣
Fσ

]]

= Êx

[ T (σ)∫

0

( t∫

0

G̃(bs+σ)ds

)k

f(bt+σ)dt

]

, (4.4.20)

where θσ is the shift operator (θσ(bt) = bt+σ), T (σ) = inf{t > 0; bt+σ /∈ D},
and we have used the strong Markov property of {bt}t≥0 (see, e.g., Øksendal
(1995), Chapter 7). Since σ < τ , we have σ + T (σ) = inf{s > σ; bs /∈ D} = τ
and therefore

J = Êx

[ T (σ)∫

0

( t+σ∫

σ

G̃(br)dr

)k

f(bt+σ)dt

]

= Êx

[ τ∫

σ

( s∫

σ

G̃(br)dr

)k

f(bs)ds

]

= Êx

[ τ∫

0

( s∫

σ

G̃(br)dr

)k

f(bs)ds

]

− Êx

[ σ∫

0

( s∫

σ

G̃(br)dr

)k

f(bs)ds

]

.

(4.4.21)

Now

1
Êx[σj ]

·
∣
∣
∣
∣
∣
Êx

[ σj∫

0

( s∫

σj

G̃(br)dr

)k

f(bs)ds

]∣
∣
∣
∣
∣

≤ 1
Êx[σj ]

· Êx

[ σj∫

0

(Ms)kMds

]

→ 0 as j →∞, (4.4.22)

where M = sup{|G̃(y)| + |f(y)|; y ∈ D}. Therefore, writing H̃(s) =∫ s

0
G̃(br)dr and assuming k ≥ 1, we get

AṼk(x)

= lim
j→∞

1
Êx[σj ]

Êx

[ τ∫

0

(( s∫

σ

G̃(br)dr

)k

−
( s∫

0

G̃(br)dr

)k)

f(bs)ds

]
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= lim
j→∞

1
Êx[σj ]

Êx

[ τ∫

0

(

(H̃(s)− H̃(σj))k − H̃(s)k

)

f(bs)ds

]

= lim
j→∞

− 1
Êx[σj ]

Êx

[ τ∫

0

k (Ȟj(s))k−1f(bs)ds H̃(σj)

]

(4.4.23)

by the mean value theorem, where Ȟj(s) lies on the line segment between the
points H̃(s) and H̃(s)− H̃(σj). Since Ȟj(s)→ H̃(s) pointwise boundedly as
j →∞ and (see Exercise 4.2)

Êx[H̃(σj)]
Êx[σj ]

→ G̃(x) as j →∞,

we see from (4.4.23) and (4.4.19) that

AṼk(x) = −kG̃(x)Ṽk−1(x) for k ≥ 1. (4.4.24)

Similarly, but much more easily, we see from (4.4.23) that

AṼ0 = −f(x). (4.4.25)

In general we know that the solution of the generalized boundary value
problem

{
Au(x) = −g(x); x ∈ D

u(x) = 0; x ∈ ∂D
(4.4.26)

(where g is a given bounded, continuous function) is unique and given by
(see, e.g., Dynkin (1965), or Freidlin (1985))

u(x) = Êx

[ τD∫

0

g(bs)ds

]

; x ∈ D̄. (4.4.27)

On the other hand, from the theory of (deterministic) elliptic boundary
value problems, we know that the equation

{
1
2Δv(x) = −g(x); x ∈ D

v(x) = 0; x ∈ ∂D
(4.4.28)

has a unique solution v ∈ C2(D). Since A coincides with 1/2Δ on C2, the two
solutions must be the same, and u must be C2. If we apply this to (4.4.25),
we get that Ṽ0 ∈ C2(D) and then by induction, using (4.4.24), we get that
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Ṽk ∈ C2(D) for all k ∈ N0. Hence we have proved that, in the strong sense,

1
2
ΔṼk(x) =

{
−k exp[W̃φ(x)]Ṽk−1(x); k ∈ N

−f(x); k = 0
(4.4.29)

Moreover, from this we see, again by induction, that ΔṼk(x) is bounded for
(x, z) ∈ D × Kq(R) and continuous with respect to x for each z ∈ Kq(R).
Hence we can take inverse Hermite transforms and conclude (by
Theorem 4.1.1) that (4.4.16) holds in (S)−1.

Define

Un(x) =
n∑

k=0

ρk

k!
Vk(x); n = 0, 1, 2, . . . . (4.4.30)

Then from (4.4.16) we get

1
2
ΔUn(x) =

1
2

n∑

k=1

ρk

k!
ΔVk(x)− f(x)

= −ρ

n∑

k=1

ρk−1

(k − 1)!
Vk−1(x) � exp�(Wφ(x))− f(x)

= −ρUn−1(x) � exp�[Wφ(x)]− f(x). (4.4.31)

We will now prove the following three statements:

Un(x) ∈ L2(μ) for all x ∈ D,n ∈ N; (4.4.32)
sup
x∈D
‖Un(x) � exp� Wφ(x)− Um(x) � exp� Wφ(x)‖L1(μ) → 0 (4.4.33)

as m,n→∞; and

sup
x∈D
‖Un(x)− U(x)‖L1(μ) → 0 as n→∞. (4.4.34)

To prove (4.4.32), consider

V 2
k (x) ≤ C2

(

Êx

[ τD∫

0

( t∫

0

exp�[Wφ(bs)]ds

)�k

dt

])2

= C2

(

Êx

[ τD∫

0

( t∫

0

· · ·
t∫

0

exp�

[
k∑

i=1

Wφ(bsi
)

]

ds1 · · · dsk

)

dt

])2

= C2

(

Êx

[ τD∫

0

( t∫

0

· · ·
t∫

0

exp�

[

w

(
k∑

i=1

φbsi

)]

ds1 · · · dsk

)

dt

])2

≤ C2Êx

[

τD

τD∫

0

( t∫

0

· · ·
t∫

0

exp�

[

w

(
k∑

i=1

φbsi

)]

ds1 · · · dsk

)2

dt

]
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≤ C2Êx

[

τD

τD∫

0

tk
t∫

0

· · ·
t∫

0

(

exp�

[

w

(
k∑

i=1

φbsi

)])2

ds1 · · · dskdt

]

= C2Êx

[

τD

τD∫

0

tk
t∫

0

· · ·
t∫

0

(

exp

[

w

(
k∑

i=1

φbsi

)

− 1
2

∥
∥
∥
∥
∥

k∑

i=1

φbsi

∥
∥
∥
∥
∥

2

2

])2

ds1 · · · dskdt

]

= C2Êx

[

τD

τD∫

0

tk
t∫

0

· · ·
t∫

0

exp

[

w

(

2
k∑

i=1

φbsi

)

−
∥
∥
∥
∥
∥

k∑

i=1

φbsi

∥
∥
∥
∥
∥

2

2

]

ds1 · · · dskdt

]

= C2Êx

[

τD

τD∫

0

tk
t∫

0

· · ·
t∫

0

exp�

[

w

(
k∑

i=1

2φbsi

)

+

∥
∥
∥
∥
∥

k∑

i=1

φbsi

∥
∥
∥
∥
∥

2

2

]

ds1 · · · dskdt

]

.

This gives

Eμ[V 2
k (x)] ≤ C2Êx

[

τD

τD∫

0

tk
t∫

0

· · ·
t∫

0

exp

[∥
∥
∥
∥
∥

k∑

i=1

φbsi

∥
∥
∥
∥
∥

2

2

]

ds1 · · · dskdt

]

≤ C2Êx

[

τD

τD∫

0

tk
t∫

0

· · ·
t∫

0

exp[k2‖φ‖22]ds1 · · · dskdt

]

= C2Êx

[

τD

τD∫

0

t2k exp[k2‖φ‖22]dt

]

= C2 exp
[
k2‖φ‖22

] 1
2k + 1

Êx[τ2k+2
D ] <∞

by (4.4.4). This proves (4.4.32).
Next, to prove (4.4.33) choose m < n and consider

Hn,m(x) := Un(x) � exp� Wφ(x)− Um(x) � exp� Wφ(x)

=
n∑

k=m+1

ρk

k!
Êx

[ τD∫

0

( t∫

0

exp�[Wφ(bs)]ds

)�k

f(bt)dt

]

� exp�[Wφ(x)]

=
n∑

k=m+1

ρk

k!
Vk(x) � exp�[Wφ(x)].

We see that, by an argument similar to the one above,

Eμ[|Hn,m|] ≤
n∑

k=m+1

ρk

k!
Eμ[|Vk(x)|]
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≤
n∑

k=m+1

ρk

k!
CEμ

[

Êx

[ τD∫

0

t∫

0

· · ·
t∫

0

exp�

[
k∑

i=1

Wφ(bsi
)

]

ds1 · · · dskdt

]]

=
n∑

k=m+1

Cρk

k!
Êx

[ τD∫

0

tkdt

]

= C
n∑

k=m+1

ρk

(k + 1)!
Êx[τk+1

D ]

≤ C

ρ
Êx

[ ∞∑

k=m+2

ρk

k!
τk
D

]

→ 0 as m→∞,

uniformly for x ∈ D̄, since ρ < λ0. Finally, we note that (4.4.34) follows by
the same proof as for (4.4.33).

We can now complete the proof of Theorem 4.4.2: Choose ψ ∈ C∞
0 (D).

Then by (4.4.31) we have
(

1
2
Un,Δψ

)

= −ρ(Un−1 � exp� Wφ, ψ)− (f, ψ) for n ∈ N.

Letting n→∞ we use (4.4.32)–(4.4.34) and the definition of Wick product
in L1(μ) to obtain that (4.4.13) holds. Moreover, since x → Un(x) ∈ L2(μ)
is continuous on D̄ for each n we also have that x→ Un(x) is continuous as
a map into L1(μ). Moreover, by (4.4.34), Un(x)→ U(x) uniformly for x ∈ D̄
and hence x → U(x) is continuous as a map from D̄ into L1(μ). Since it is
obvious from the definition of U(x) that U(x) = 0 for x ∈ ∂D = ∂RD, the
proof is complete. ��

4.5 The Viscous Burgers Equation with a Stochastic
Source

The (1-dimensional) viscous Burgers equation with a source f has the form
(λ, ν positive constants)

{
∂u
∂t + λu∂u

∂x = ν ∂2u
∂x2 + f ; t > 0, x ∈ R

u(0, x) = g(x); x ∈ R.
(4.5.1)

This equation has been used as a prototype model of various nonlinear
phenomena. It was introduced in Forsyth (1906), p. 101, where he also pre-
sented what is known as the Cole–Hopf transformation in order to solve
it. The equation was extensively analyzed by Burgers (1940, 1974), who in
fact studied it (heuristically) with white noise initial data and no source,
i.e., f = 0.

Burgers equation is a simplified version of the Navier–Stokes equation
where R = ν−1 corresponds to the Reynolds number. Applications vary from
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the formation and the structure of the universe (see Albeverio et al. (1996)
and Shandarin and Zeldovich (1989)) to the growth of interfaces. For a dis-
cussion of some applications of (4.5.1) we refer to Gurbatov et al. (1991).
For other recent discussions of Burgers equation related to the presenta-
tion here, we refer to Da Prato et al. (1994), Truman and Zhao (1996)
and Bertini et al. (1994). For a different approach to SPDEs of the type
∂u/∂t + ∂f(u)/∂x = g, u(x, 0) = u0(x) with either random noise g or ran-
dom initial data u0, we refer to Holden and Risebro (1991, 1997).

We will, however, mention one application in some detail here, namely
the Kardar–Parisi–Zhang (KPZ) model of growth of interfaces of solids (see
Kardar et al. (1986) and Medina et al. (1989).)

Let h(t, x) denote the location of an interface measured from some given
reference plane. We assume that there are two opposing forces that act on
the interface. One force is a surface tension contribution given by νΔh and
another force is a nonlinear function σ of ∇h that tends to support and
promote higher irregularity of the interface. Thus we may write

∂h

∂t
= νΔh + σ(∇h) + N (KPZ), (4.5.2)

where N is some external source term. Now assume that

σ(x) =
1
2
λx2; x ∈ R

d, (4.5.3)

and introduce
u = −∇h, f = −∇N. (4.5.4)

Taking the gradient of both sides of (4.5.2), we get

− ∂

∂t
∇h +∇(σ(∇h)) = −ν∇(Δh)−∇N

or
∂u

∂t
+

1
2
λ∇(u2) = νΔu + f. (4.5.5)

With u = (u1, . . . , ud), x = (x1, . . . , xd), f = (f1, . . . , fd), this can be
written

∂uk

∂t
+ λ

d∑

j=1

uj
∂uk

∂xj
= νΔuk + fk; 1 ≤ k ≤ d. (4.5.6)

Sometimes this is also written

∂u

∂t
+ λ(u,∇)u = νΔu + f,

where (u,∇) =
∑d

j=1 uj∂/∂xj . The equation (4.5.6) is a multidimensional
system generalization of the classical Burgers equation. We will study a
stochastic version of this equation in this section.
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Formally, the KPZ equation (4.5.2)–(4.5.3) can be linearized by what is
traditionally called the Cole–Hopf transformation.

If we introduce

φ = exp
[ 1
2ν

h
]
, (4.5.7)

then the KPZ equation becomes a heat equation:

∂φ

∂t
= νΔφ +

λ

2ν
Nφ. (4.5.8)

By solving this and transforming back,

h =
2ν

λ
ln φ, (4.5.9)

we get a solution of (4.5.2)–(4.5.3).
If the source components f1, . . . , fd are functionals of white noise, then

it is not clear how to interpret the products uj∂uj/∂xk in (4.5.6), nor is it
clear how to interpret the Cole–Hopf transformation and its inverse. However,
we will show that if the products are interpreted as Wick products uj �
∂uj/∂xk and the equation is regarded as an equation in (S)−1, then a Wick
version of the Cole–Hopf solution method can be carried out and gives us a
unique solution of the stochastic Burgers equation. We now formulate this
rigorously.

Lemma 4.5.1 Holden et al. (1994), Holden et al. (1995b) (The
Wick Cole–Hopf transformation). Let us assume that N = N(t, x)
and G(x) = (G1(x), . . . , Gd(x)) be (S)−1 and (S)d

−1 processes, respectively.
Assume that N(t, x) ∈ C0,1, and define

F = −∇xN. (4.5.10)

Assume that there exists an (S)−1-valued C1,3-process Z(t, x) such that
the process

U = −∇xZ (4.5.11)

solves the multidimensional stochastic Burgers equation
⎧
⎨

⎩

∂Uk

∂t + λ
∑d

j=1 Uj � ∂Uk

∂xj
= νΔUk + Fk; t > 0, x ∈ R

d

Uk(0, x) = Gk(x); 1 ≤ k ≤ d
(4.5.12)

Then the Wick Cole–Hopf transform Y of U defined by

Y := exp�
[

λ

2ν
Z

]

(4.5.13)
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solves the stochastic heat equation
{

∂Y
∂t = νΔY + λ

2ν Y � [N + C]; t > 0, x ∈ R
d

Y (0, x) = exp� [ λ
2ν Z(0, x)

] (4.5.14)

for some t-continuous (S)−1-process C(t) (independent of x).

Proof Substituting (4.5.10) and (4.5.11) in (4.5.12) gives

− ∂

∂xk

(
∂Z

∂t

)

+ λ
∑

j

∂Z

∂xj
� ∂

∂xj

(
∂Z

∂xk

)

= −ν
∑

j

∂2

∂x2
j

(
∂Z

∂xk

)

− ∂N

∂xk

or
∂Z

∂t
=

λ

2

∑

j

(
∂Z

∂xj

)�2
+ νΔZ + N + C, (4.5.15)

where C = C(t) is a t-continuous, x-independent (S)−1-process. Basic Wick
calculus rules give that

∂Y

∂t
=

λ

2ν
Y � ∂Z

∂t
(4.5.16)

and
∂Y

∂xj
=

λ

2ν
Y � ∂Z

∂xj
. (4.5.17)

Hence

ΔY =
∑

j

∂

∂xj

(
∂Y

∂xj

)

=
∑

j

∂

∂xj

(
λ

2ν
Y � ∂Z

∂xj

)

=
∑

j

(
λ

2ν

)2

Y �
(

∂Z

∂xj

)�2
+
∑

j

λ

2ν
Y � ∂2Z

∂x2
j

=
λ

2ν
Y �

(
λ

2ν

∑

j

(
∂Z

∂xj

)�2
+ ΔZ

)

. (4.5.18)

Now apply (4.5.16), (4.5.15) and (4.5.18) to get

∂Y

∂t
=

λ

2ν
Y �

(
λ

2

∑

j

(
∂Z

∂xj

)�2
+ νΔZ + N + C

)

=
λ

2ν
�
(

λ

2

∑

j

(
∂Z

∂xj

)�2
+ νΔZ

)

+
λ

2ν
Y � (N + C)

= νΔY +
λ

2ν
Y � [N + C],

as claimed. ��
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Next we consider the deduced stochastic heat equation (4.5.14). By
Corollary 4.3.2 we have

Lemma 4.5.2. Suppose that K(t, x) and M(x) are (S)−1-processes such
that

there exists Kq(R) such that both K̃(t, x, z) and M̃(x, z) are uniformly

bounded for (t, x, z) ∈ R
+ × R

d ×Kq(R), (4.5.19)

and

K̃(t, x, z) and M̃(x, z) are locally Hölder continuous in x, uniformly

in t, for each z ∈ Kq(R). (4.5.20)

Then there is a unique (S)−1-valued C1,2 solution Y (t, x) of the stochastic
heat equation

{
∂Y
∂t = νΔY + K � Y ; t > 0, x ∈ R

d

Y (0, x) = M(x); x ∈ R
d,

(4.5.21)

namely

Y (t, x) = Êx

[

M(
√

2νbt) � exp�

[ t∫

0

K(t− s,
√

2νbs)ds

]]

, (4.5.22)

where, as before, bt is a standard Brownian motion in R
d, and Êx denotes

expectation with respect to the law P̂ x of bt starting at x.

Finally we show how to get from a solution of the stochastic heat equation
(4.5.21) back to a solution of the stochastic Burgers equation (4.5.12):

Lemma 4.5.3 Holden et al. (1994), Holden et al. (1995b) The inverse
Wick Cole–Hopf transformation. Let Y (t, x) be the (S)−1-process given
by (4.5.22) that solves the stochastic heat equation (4.5.21), where K(t, x)
and M(x) are continuously differentiable (S)−1-processes satisfying (4.5.19)
and (4.5.20). Moreover, assume that

Eμ[M(x)] > 0 for x ∈ R
d, (4.5.23)

where Eμ denotes generalized expectation (Definition 2.6.13). Then

U(t, x) := −2ν

λ
∇x(log� Y (t, x)) (4.5.24)

belongs to (S)d
−1 for all t ≥ 0, x ∈ R

d and U(t, x) = (U1(t, x), . . . , Ud(t, x))
solves the stochastic Burgers equation
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⎧
⎨

⎩

∂Uk

∂t + λ
∑d

j=1 Uj � ∂Uk

∂xj
= νΔUk + Fk; t > 0, x ∈ R

d

Uk(0, x) = Gk(x); x ∈ R
d; 1 ≤ k ≤ n,

(4.5.25)

where

Fk(t, x) = −2ν

λ

∂K

∂xk
(t, x) (4.5.26)

and

Gk(x) = −2ν

λ
M(x)�(−1) � ∂M

∂xk
(x); 1 ≤ k ≤ n. (4.5.27)

Proof From (4.5.22) and (2.6.54) we see that

Eμ[Y (t, x)] = Êx

[

Eμ[M(
√

2νbt)] · exp

[ t∫

0

Eμ[K(t− s,
√

2νbs)]ds

]]

> 0.

Therefore the Wick log of Y (t, x), log� Y (t, x), exists in (S)−1 (see (2.6.51)).
Hence we can reverse the argument in the proof of Lemma 4.5.1.

Set

Z(t, x) :=
2ν

λ
log� Y (t, x) (4.5.28)

and
U(t, x) = −∇xZ(t, x). (4.5.29)

Then

Y (t, x) = exp�
[

λ

2ν
Z(t, x)

]

, (4.5.30)

so by (4.5.16) and (4.5.18) we get

∂Uk

∂t
+ λ

∑

j

Uj �
∂Uk

∂xj
− νΔUk − Fk

= − ∂

∂t

(
∂Z

∂xk

)

+ λ
∑

j

∂Z

∂xj
� ∂

∂xj

(
∂Z

∂xk

)

+ ν
∑

j

∂2

∂x2
j

(
∂Z

∂xk

)

+
2ν

λ

∂K

∂xk

=
∂

∂xk

(

− ∂Z

∂t
+

λ

2

∑

j

(
∂Z

∂xj

)�2
+ νΔZ +

2ν

λ
K

)

=
∂

∂xk

(

Y �(−1) �
(

− 2ν

λ

∂Y

∂t
+

2ν2

λ
ΔY +

2ν

λ
K � Y

))

=
2ν

λ
· ∂

∂xk

(

Y �(−1) �
(

− ∂Y

∂t
+ νΔY + K � Y

))

= 0,

which shows that Uk satisfies the first part of (4.5.25).
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To prove the second part, observe that

Uk(0, x) = − ∂Z

∂xk
(0, x) = −2ν

λ
Y (0, x)�(−1) � ∂Y

∂xk
(0, x)

= −2ν

λ
M(x)�(−1) � ∂M

∂xk
(x); 1 ≤ k ≤ d,

as claimed. ��

To summarize, we have now shown how to get from a solution of the
Burgers equation (4.5.12) to a solution of the heat equation (4.5.14), which
is easily solved. Then we can reverse the process and obtain the solution of
the Burgers equation. This gives us the following existence and uniqueness
result:

Theorem 4.5.4 Holden et al. (1995b) (Solution of the stochas-
tic Burgers equation). Let N(t, x), R(x) be (S)−1-valued C0,1 and C1

processes, respectively, satisfying the following conditions:

There exists Kq(r) such that Ñ(t, x, z) and exp
[

− λ

2ν
R̃(x, z)

]

are

uniformly bounded for (t, x, z) ∈ R× R
d ×Kq(r) and (4.5.31)

Ñ(t, x, z) and exp
[

− λ

2ν
R̃(x)

]

are locally H ölder continuous in x ,

uniformly in t , for each z ∈ Kq(r). (4.5.32)

Then there exists an (S)d
−1-valued C1,2 process U(t, x) = (U1(t, x), ·,

Ud(t, x)) that solves the stochastic Burgers equation
⎧
⎨

⎩

∂Uk

∂t + λ
∑d

j=1 Uj � ∂Uk

∂xj
= νΔUk − ∂N

∂xk
; t > 0, x ∈ R

d

Uk(0, x) = − ∂R
∂xk

(x); x ∈ R
d; 1 ≤ k ≤ d.

(4.5.33)

This solution is given by

U(t, x) := −2ν

λ
∇x(log� Y (t, x)), (4.5.34)

where

Y (t, x) = Êx

[

exp�

[

− λ

2ν
R(
√

2νbt)

]

� exp�

[

− λ

2ν

t∫

0

N(t− s,
√

2νbs)ds

]]

(4.5.35)
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is the unique (S)−1-valued C1,2 solution of the stochastic heat equation
{

∂Y
∂t = νΔY + λ

2ν N � Y ; t > 0, x ∈ R
d

Y (0, x) = exp� [ λ
2ν R(x)

]
; x ∈ R

d.
(4.5.36)

Moreover, the process U given by (4.5.34) is the unique solution of (4.5.33)
of gradient form, i.e., the gradient with respect to x of some (S)−1-valued C1,3

process.

Proof a) Existence: By Lemma 4.5.2 the process Y (t, x) given by (4.5.35)
solves (4.5.36). Hence by Lemma 4.5.3 the process U(t, x) given by (4.5.34)
solves the stochastic Burgers equation (4.5.25) with

Fk = −2ν

λ

∂K

∂xk
= −2ν

λ
· ∂

∂xk

(
λ

2ν
N

)

= − ∂N

∂xk

and

Gk = −2ν

λ
M�(−1) � ∂M

∂xk

= −2ν

λ
exp�

[

− λ

2ν
R

]

� exp�
[

λ

2ν
R

](
λ

2ν

∂R

∂xk

)

= − ∂R

∂xk
.

b) Uniqueness: If U(t, x) = −∇xZ(t, x) solves (4.5.33), then by Lemma 4.5.1
the process

Y := exp�
[

λ

2ν
Z

]

solves the equation
{

∂Y
∂t = νΔY + λ

2ν Y � [N + C]; t > 0, x ∈ R
d

Y (0, x) = exp� [ λ
2ν Z(0, x)

] (4.5.37)

for some t-continuous process C(t) independent of x. Hence by Lemma 4.5.2
we have

Y (t, x) = Êx

[

exp�

[
λ

2ν
Z(0,

√
2νbt)

]

� exp�

[ t∫

0

N(t− s,
√

2νbs)ds +

t∫

0

C(s)ds

]]

= Y (0)(t, x) � exp�

[ t∫

0

C(s)ds

]

,
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where Y (0)(t, x) is the solution of (4.5.37) with C = 0. Hence

Z =
2ν

λ
log� Y =

2ν

λ
log� Y (0) +

2ν

λ

t∫

0

C(s)ds,

so that
U = −∇Z = −2ν

λ
∇(log� Y (0)),

which in turn implies that U is unique. ��

4.6 The Stochastic Pressure Equation

We now return to one of the equations that we discussed in the introduction
(Chapter 1). This equation was introduced as an example of a physical situ-
ation where rapidly fluctuating, apparently stochastic, parameter values lead
naturally to an SPDE model:

{
div(K(x) · ∇p(x)) = −f(x); x ∈ D

p(x) = 0; x ∈ ∂D.
(4.6.1)

Here D is a given bounded domain in R
d, and f(x),K(x) are given func-

tions. This corresponds to equations (1.1.2)–(1.1.3) in Chapter 1 for a fixed
instant of time t (deleted from the notation). With this interpretation p(x)
is the (unknown) pressure of the fluid at the point x, f(x) is the source
rate of the fluid, and K(x) ≥ 0 is the permeability of the rock at the
point x. As argued in Chapter 1, it is natural to represent K(x) by a
stochastic quantity. Moreover, it is commonly assumed that probabilistically
K has — at least approximately — the three properties (2.6.57)–(2.6.59).
These are the properties of the smoothed positive noise process Kφ

in (2.6.56), i.e.,
Kφ(x, ω) := exp� Wφ(x). (4.6.2)

Thus we set K = Kφ for some fixed φ ∈ S(Rd). In view of (2.6.57), one
can say that the diameter of the support of φ is the maximal distance within
which there is correlation in permeability values. So, from a modeling point of
view, this diameter should be on the same order of magnitude as the maximal
size of the pores of the rock.

Alternatively, one could insist on the idealized, singular positive noise
process

K(x, ·) := exp� W (x, ·) ∈ (S)∗, (4.6.3)

corresponding to the limiting case of Kφ(x) when φ→ δ0. Indeed, this is the
usual attitude in stochastic ordinary differential equations, where one prefers
to deal with singular white noise rather than smoothed white noise, even in
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cases where the last alternative could be more natural from a modeling point
of view.

In view of this, we will discuss both cases. However, in either case we
will, as before, interpret the product in (4.6.1) as the Wick product. With
K as in (4.6.3) it is not clear how to make the equation well-defined with
the pointwise product, although both products would make sense (and give
different results) in the smoothed case (see Section 3.5).

Since the proofs in the two cases are so similar, we give the details only in
the smoothed case and merely state the corresponding solution in the singular
case afterwards.

4.6.1 The Smoothed Positive Noise Case

Theorem 4.6.1 Holden et al. (1995). Let D be a bounded C2 domain in
R

d and let f(x) be an (S)−1-valued function satisfying the condition

there exists Kq(R) such that f̃(x, z) is uniformly bounded for (x, z) ∈
D × Kq(R) and for each z ∈ Kq(R) there exists λ ∈ (0, 1) such that

f̃(x, z) is λ−H ölder continuous with respect to x ∈ D. (4.6.4)

Fix φ ∈ S(Rd). Then the smoothed stochastic pressure equation
{

div(Kφ(x) � ∇p(x)) = −f(x); x ∈ D

p(x) = 0; x ∈ ∂D
(4.6.5)

has a unique (S)−1-valued solution p(x) = pφ(x) ∈ C2(D) ∩ C(D̄) given by

pφ(x) =
1
2

exp�

[

− 1
2
Wφ(x)

]

� Êx

[ τD∫

0

f(bt) � exp�

[

− 1
2
Wφ(bt)

− 1
4

t∫

0

[
1
2
(∇Wφ(y))�2 + ΔWφ(y)

]

y=bs

ds

]

dt

]

, (4.6.6)

where (bt(ω̂), P̂ x) is a (1-parameter) standard Brownian motion in R
d (inde-

pendent of Bx(ω)), Êx denotes expectation with respect to P̂ x and

τD = τD(ω̂) = inf{t > 0; bt(ω̂) /∈ D}.

Proof Taking Hermite transforms of (4.6.5) we get the following equation
in the unknown u(x) = u(x, z) = p̃(x, z), for z in some Kq(S),

{
div(K̃φ(x) · ∇u(x)) = −f̃(x); x ∈ D

u(x) = 0; x ∈ ∂D
(4.6.7)
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or
{

L(z)u(x, z) = −F (x, z); x ∈ D

u(x) = 0; x ∈ ∂D,
(4.6.8)

where

L(z)u(x) =
1
2
Δu(x) +

1
2
∇γ(x) · ∇u(x) (4.6.9)

with

γ(x) = γφ(x) = γφ(x, z) = W̃φ(x, z) =
∞∑

j=1

(φx, ηj)zj , (4.6.10)

and

F (x) = F (x, z) =
1
2
f̃(x, z) · exp

[
− γ(x, z)

]
. (4.6.11)

First assume that z = (z1, z2, . . .) = (ξ1, ξ2, . . .) with ξk ∈ R for all k. Since
the operator L(ξ) is uniformly elliptic in D we know by our assumption on
f that the boundary value problem (4.6.8) has a unique C2+λ(D) solution
u(x) = u(x, ξ) for each ξ, where λ = λ(ξ) > 0 may depend on ξ. Moreover,
we can express this solution probabilistically as follows:

Let (xt = x
(ξ)
t (ω̂), P̃ x) be the solution of the (ordinary) Itô stochastic

differential equation

dxt =
1
2
∇γ(xt, ξ)dt + dbt; x0 = x (4.6.12)

where (bt(ω̂), P̂ x) is the d-dimensional Brownian motion we described above.
Then the generator of x

(ξ)
t is L(ξ), so by Dynkin’s formula (see, e.g.,

Theorem 7.12 in Øksendal (1995)), we have that, for x ∈ U ⊂⊂ D,

Ẽx[u(xτ̃U
, ξ)] = u(x, ξ) + Ẽx

[ τ̃U∫

0

L(ξ)u(xt, ξ)dt

]

, (4.6.13)

where Ẽx denotes expectation with respect to P̃ x and

τ̃U = τ̃U (ω̂) = inf{t > 0;xt(ω̂) /∈ U}

is the first exit time from U for xt. By the Girsanov formula (see Appendix B),
this can be expressed in terms of the probability law P̂ x of bt as follows:

Êx[u(bτ , ξ)E(τ, ξ)] = u(x, ξ) + Êx

[ τ∫

0

L(ξ)u(bt, ξ)E(t, ξ)dt

]

, (4.6.14)
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where

E(t, z) = exp

[
1
2

t∫

0

∇γ(bs, z)dbs −
1
8

t∫

0

(∇γ)2(bs, z)ds

]

. (4.6.15)

Êx denotes expectation with respect to P̂ x, and

τ = τU (ω̂) = inf{t > 0; bt(ω̂) /∈ U}.

Letting U ↑ D, we get from (4.6.14) and (4.6.8) that

u(x, ξ) = Êx

[ τ∫

0

F (bt, ξ)E(t, ξ)dt

]

. (4.6.16)

By Itô’s formula we have

γ(bt, ξ) = γ(b0, ξ) +

t∫

0

∇γ(bs, ξ)dbs +
1
2

t∫

0

Δγ(bs, ξ)ds (4.6.17)

or

1
2

t∫

0

∇γ(bs, ξ)dbs =
1
2
γ(bt, ξ)−

1
2
γ(b0, ξ)−

1
4

t∫

0

Δγ(bs, ξ)ds. (4.6.18)

Substituting (4.6.18) and (4.6.11) in (4.6.16) we get, with τ = τD,

u(x, ξ) =
1
2

exp
[

− 1
2
γ(x, ξ)

]

· Êx

[ τ∫

0

f(bt) · exp

[

− 1
2
γ(bt, ξ)

− 1
4

t∫

0

1
2
(∇γ)2(bs, ξ) + Δγ(bs, ξ)ds

]

dt

]

(4.6.19)

for all ξ ∈ Kq(R) ∩ R
N.

Since γ(x, ξ) =
∑

k(φx, ηk)ξk; ξk ∈ R has an obvious analytic extension to
zk ∈ C given by γ(x, z) =

∑
k(φx, ηk)zk, similarly with

∇γ(x, z) =
∑

k

∇x(φx, ηk)zk,

Δγ(x, z) =
∑

k

Δx(φx, ηk)zk,
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we see that ξ → u(x, ξ); ξ ∈ (RN)c given by (4.6.19) has an analytic extension
(also denoted by u) given by

u(x, z) =
1
2

exp

[

− 1
2
γ(x, z)

]

· Êx

[ τ∫

0

f̃(bt) · exp

[

− 1
2
γ(bt, z)

− 1
4

t∫

0

1
2
(∇γ)2(bs, z) + Δγ(bs, z)ds

]

dt,

]

(4.6.20)

provided the expression converges. If z ∈ Kq(δ), then

|γ(x, z)|2 =
∣
∣
∣
∣
∑

k

(φx, ηk)zk

∣
∣
∣
∣

2

≤
(∑

k

(φx, ηk)2
)∑

k

|zk|2

≤ ‖φ‖2
∑

α

|zα|2(2N)qα

≤ δ2‖φ‖2 for all q > 0,

similarly with |∇γ(x, z)| and |Δγ(x, z)|.
This gives

|u(x, z)| ≤C1 exp
[
δ

2
‖φ‖

]

Êx

[ τ∫

0

exp
[
δ

2
‖φ‖

+
1
4

(
δ2

2
‖∇φx(·)‖2 + δ‖Δφx‖

)

t

]

dt

]

where C1 is a constant. Since D is bounded, there exists ρ > 0 such that

Êx[exp[ρτ ]] <∞.

Therefore, if we choose δ > 0 such that

1
4

(
δ2

2
‖∇φx‖2 + δ‖Δφx‖

)

< ρ,

we obtain that u(x, z) is bounded for z ∈ Kq(δ).
We must verify that u(·, z) satisfies equations (4.6.8). We know that this

is the case when z = ξ ∈ Kq(δ) ∩ R
N. Moreover, the solution u(x, ξ) is real

analytic in a neighborhood of ξ = 0, so we can write

u(x, ξ) =
∑

α

cα(x)ξα.
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Note that since u(x, ξ) ∈ C2+λ(D) with respect to x for all ξ, we must
have cα(x) ∈ C2+λ(D) for all α. Moreover, by (4.6.8) we have cα(x) = 0 for
x ∈ ∂D.

Similarly, we may write F (x, z) =
∑

aα(x)zα, and we have

∇γ(x, z) =
∑

k

∇(φx, ηk)zk.

Substituted in (4.6.8), this gives
∑

α

1
2
Δcα(x)ξα +

∑

β,k

∇(φx, ηk) · ∇cβ(x)ξβ+ε(k)
=
∑

α

aα(x)ξα, (4.6.21)

i.e.,

∑

α

⎛

⎜
⎜
⎝

1
2
Δcα(x) +

∑

β,k
β+ε(k)=α

∇(φx, ηk) · ∇cβ(x)

⎞

⎟
⎟
⎠ ξα =

∑

α

aα(x)ξα. (4.6.22)

Since this holds for all ξ small enough, we conclude that

1
2
Δcα(x) +

∑

β,k
β+ε(k)=α

∇(φx, ηk) · ∇cβ(x) = aα(x) (4.6.23)

for all multi-indices α. But then (4.6.22), and hence (4.6.21), also holds when
ξ is replaced by z ∈ Kq(δ). In other words, the analytic extension u(x, z) of
u(x, ξ) does indeed solve the first part of (4.6.8).

Next, since cα(x) = 0 for x ∈ ∂D for all α, it follows that u(x, z) = 0
for x ∈ ∂D for all z ∈ Kq(δ). We conclude that u(x, z) does indeed
satisfy (4.6.8).

Moreover, we saw above that u(x, z) is uniformly bounded for all
(x, z) ∈ D̄ × Kq(δ). Furthermore, for all ξ ∈ Kq(δ) ∩ R

N, we know that
u(x, ξ) ∈ C2+λ(ξ)(D). This implies that cα(x) ∈ C2+λ(ξ)(D) for all α. So all
partial derivatives of cα(x) up to order two are continuous and uniformly
bounded in D. By bounded convergence we conclude that,

Δu(x, z) =
∑

α

Δcα(x)zα,

is continuous and uniformly bounded in D for each z ∈ Kq(δ). So by
Theorem 4.1.1 we conclude that inverse Hermite transform of u(x),

p(x) := H−1u(x)

satisfies equation (4.6.5). Moreover, from (4.6.20) we see that pφ(x) is given
by (4.6.6). ��
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4.6.2 An Inductive Approximation Procedure

We emphasize that although our solution p(x, ·) lies in the abstract space
(S)−1, it does have a physical interpretation. For example, by taking the
generalized expectation Eμ of equation (4.6.5) (see Definition 2.6.13) and using
(2.6.45) we get that the function

p̄(x) = Eμ[p(x, ·)] (4.6.24)

satisfies the classical deterministic Poisson problem
{

Δp̄(x) = −Eμ[f(x)]; x ∈ D

p̄(x) = 0; x ∈ ∂D,
(4.6.25)

i.e., the equation we will obtain if we replace the stochastic permeability
Kφ(x, ω) = exp� Wφ(x, ω) by its expectation

K̄(x) = Eμ[Kφ(x, ω)] = 1,

which corresponds to a completely homogeneous medium.
We may regard p̄(x) as the best ω-constant approximation to p(x, ω). This

ω-constant coincides with the zeroth-order term c0(x) of the expansion for
p(x, ω),

p(x, ω) =
∑

α

cα(x)Hα(ω), (4.6.26)

where cα(x) is given inductively by (4.6.23). Having found p̄(x) = c0(x), we
may proceed to find the best Gaussian approximation p1(x, ω) to p(x, ω). This
coincides with the sum of all first order terms:

p1(x, ω) =
∑

|α|≤1

cα(x)Hα(ω)

= c0(x) +
∞∑

j=1

cε(j)(x)〈ω, ηj〉. (4.6.27)

From (4.6.23) we can find cε(j)(x) when c0(x) is known from the equation
{

1
2Δcε(j)(x) +∇(φx, ηj) · ∇c0(x) = aε(j)(x); x ∈ D

cε(j)(x) = 0; x ∈ ∂D.
(4.6.28)

Similarly, one can proceed by induction to find higher-order approximation
to p(x, ω). This may turn out to be the most efficient way of computing p(x, ·)
numerically. See, however, Holden and Hu (1996), for a different approach
based on finite differences.
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4.6.3 The 1-Dimensional Case

When d = 1, it is possible to solve equation (4.6.5) directly, using Wick
calculus.

Theorem 4.6.2 Holden et al. (1995). Let a, b ∈ R, a < b, and assume
that f ∈ L1[a, b] is a deterministic function. Then for all φ ∈ S(R) the unique
solution p(x, ·) ∈ (S)−1 of the 1-dimensional pressure equation

{
(exp�[Wφ(x)] � p′(x, ·))′ = −f(x); x ∈ (a, b)

p(a, ·) = p(b, ·) = 0
(4.6.29)

is given by

p(x, ·) = A �
x∫

a

exp�[−Wφ(t)]dt−
x∫

a

t∫

a

f(s)ds exp�[−Wφ(t)]dt, (4.6.30)

where

A = A(ω)

=

( b∫

a

exp�[−Wφ(t)]dt

)�(−1)

�
b∫

a

t∫

a

f(s)ds exp�[−Wφ(t)]dt ∈ (S)−1.

(4.6.31)

Proof Integrating (4.6.29) we get

exp�[Wφ(x)] � p′(x, ·) = A−
x∫

a

f(t)dt; x ∈ (a, b),

where A = A(ω) does not depend on x. Since exp�[−X] � exp�[X] = 1 for all
X ∈ (S)−1, we can write this as

p′(x, ·) = A � exp�[−Wφ(x)]−
x∫

a

f(s)ds · exp�[−Wφ(x)]. (4.6.32)

Using the condition p(a, ·) = 0, we deduce from (4.6.32) that p(x, ·) is
given by the expression

p(x, ·) = A �
x∫

a

exp�[−Wφ(t)]dt−
x∫

a

t∫

a

f(s)ds exp�[−Wφ(t)]dt. (4.6.33)
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It remains to determine the random variable A. The condition p(b, ·) = 0
leads to the expression

A �
b∫

a

exp�[−Wφ(t)]dt =

b∫

a

t∫

a

f(s)ds exp[−Wφ(t)]dt. (4.6.34)

Set

Y =

b∫

a

exp�[−Wφ(t)]dt. (4.6.35)

We have Y ∈ (S)−1 and E[Y ] = b− a �= 0. Therefore Y �(−1) ∈ (S)−1 exists
by Example 2.6.15(iii). So

A := Y �(−1) �
b∫

a

t∫

a

f(s)ds exp�[−Wφ(t)]dt ∈ (S)−1,

and with this choice of A in (4.6.33) we see that p(x, ·) given by (4.6.33)
solves (4.6.29). ��

4.6.4 The Singular Positive Noise Case

Theorem 4.6.3. Let D and f be as in Theorem 4.6.1. Then the (singular)
stochastic pressure equation

{
div(exp�[W (x)] � ∇p(x)) = −f(x); x ∈ D

p(x) = 0; x ∈ ∂D,
(4.6.36)

has a unique (S)−1-valued solution p(x) ∈ C2(D) ∩ C(D̄) given by

p(x) =
1
2

exp�
[

−1
2
W (x)

]

� Êx

[ τD∫

0

f(bt) � exp�

[

− 1
2
W (bt)

− 1
4

t∫

0

[
1
2
(∇W (y))�2 + ΔW (y)

]

y=bs

ds

]

dt

]

, (4.6.37)

where bt, Ê
x and τD are as in Theorem 4.6.1 and where, in addition, we

have that W (x) = W (x, ω) =
∑

j ηj(x)Hε(j)(ω) is the singular white noise
process.

Proof The proof follows word for word the proof of Theorem 4.6.1, except
that the smoothed versions are replaced by the singular versions everywhere.
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For example, γ(x) = γφ(x) =
∑

j(φx, ηj)zj in (4.6.10) is replaced by the
function γ(x) = γ̌(x) =

∑
j ηj(x)zj . Because of our choice of ηj (see (2.2.8)),

this will not disturb any of the arguments nor any of the estimates we used
in the smoothed case. ��

Corollary 4.6.4. Let ρ ≥ 0 and φk; k = 1, 2, . . . be as in (3.6.2). Let p(k)(x)
be the solution of the φk-smoothed stochastic pressure equation (4.6.5) (i.e.,
with φ = φk), and let p(x) be the solution of the singular stochastic pressure
equation (4.6.36). Then

p(k)(x)→ p(x) in (S)−1 as k →∞,

uniformly for x ∈ D̄.

Proof This follows by inspecting the solution formulas (4.6.6) and (4.6.37)
or, rather, their Hermite transforms. For example, we see that

γ(k)(x) =
∑

j

∫

Rd

φk(t− x)ηj(t)dtzj →
∑

j

ηj(x)zj as k →∞,

since {φk}∞k=1 constitutes an approximate identity. Moreover, the convergence
is uniform for (x, z) ∈ D × Kq(δ). Similar convergence and estimates are
obtained for the other terms. We omit the details. ��

Remark The approach used above has the advantage of giving (relatively)
specific solution formulas – when it works. But its weakness is that it only
works in some cases. There are other methods that can be applied to obtain
existence and uniqueness more generally, without explicit solution formulas.
One of these methods is outlined in the next section (see also Gjerde (1995a),
(1995b)). Another interesting method is based on fundamental estimates for
the Wick product in the Hilbert spaces (S)−1,−k (see, e.g., Proposition 3.3.2)
combined with the Lax–Milgram theorem. See V̊age (1995), (1996a), (1996b)
for details. In Øksendal and V̊age (1996), this approach is applied to the
study of stochastic variational inequalities, with applications to the mov-
ing boundary problem in a stochastic medium, i.e., a stochastic version of
equations (1.1.2)–(1.1.4) in Chapter 1.

4.7 The Heat Equation in a Stochastic, Anisotropic
Medium

In the previous section the following method was used: When taking the
Hermite transform we got an equation in U(x, z) that could be solved for real
values λk of the parameters zk. Then, from the solution formula for u(x, λ),
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it was apparent that it had an analytic extension to u(x, z) for complex z.
Finally, to prove that u(x, z) was the Hermite transform of an element in
(S)−1, we proved boundedness for z in some Kq(δ).

In other equations the extension from the real case zk = λk ∈ R to the
complex, analytic case zk ∈ C may not be as obvious, and it is natural to ask
if it is sufficient with good enough estimates in the real case alone to obtain
the same conclusion. Of course, examples like

g(z) = cos z =
1
2
(eiz + e−iz); z ∈ C,

remind us that good estimates for z = λ ∈ R do not necessarily imply good
estimates for z ∈ C. Nevertheless, as discovered by Gjerde (1995a), good
estimates for z = λ ∈ Kq(R) ∩ R

N do imply good estimates for complex z in
a smaller neighborhood Kq̂(R̂). Using this he could solve, for example, the
heat equation in a stochastic medium.

We now explain this in more detail. Our presentation is based on Gjerde
(1998).

Definition 4.7.1. A function f : Kq(δ)∩R
N → R is said to be real analytic

if the restriction of f to Kq(δ) ∩ R
k is real analytic for all natural numbers

k, and there exist M <∞, ρ > 0 independent of k such that

|∂αf(0)| ≤M |α|!ρ−|α| (4.7.1)

for all α ∈ N
k
0 .

Lemma 4.7.2 Gjerde (1998). Suppose f is real analytic on Kq(δ) ∩ R
N.

Then there exist q̂ <∞, δ̂ > 0 and a bounded analytic function F : Kq̂(δ̂)→ C

such that
f(λ) = F (λ) for λ ∈ Kq̂(δ̂) ∩ R

N.

In short, f has an extension to a bounded analytic function on Kq̂(δ̂).

Proof From the general theory of real analytic functions (see, e.g., John
(1986), Chapter 3) we know that, with M,ρ as in (4.7.1), for all k ∈ N, the
power series expansion

f(λ) =
∑

α∈N
k
0

∂αf(0)
α!

λα (4.7.2)

is valid for all λ ∈ R
k with |λi| < ρ. Moreover,

|∂αf(0)| ≤M |α|!ρ−|α| for all α ∈ N
k
0 .
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In particular, this expansion holds for

λ ∈ Rk(ρ) =

{

x ∈ R
k;

k∑

j=1

|xj | < ρ

}

.

It is clear that we can extend f |Rk(ρ) analytically to the set

Ck(ρ) =

{

z ∈ C
k;

k∑

j=1

|zj | < ρ

}

by defining

f(z) =
∑

α∈N
k
0

∂αf(0)
α!

zα; z ∈ Ck(ρ).

Now note that if
∑k

j=1 |zj | ≤ ρ1 < ρ, then

|f(z)| ≤
∑

α∈N
k
0

1
α!
|∂αf(0)||zα| ≤

∑

α∈N
k
0

1
α!

M |α|!ρ−|α||zα|

= M

∞∑

j=0

ρ−j
∑

|α|=j

α∈Nk
0

j!
α!
|z1|α1 · · · |zk|αk

= M

∞∑

j=0

ρ−j(|z1|+ · · ·+ |zk|)j ≤M

∞∑

j=0

(ρ1

ρ

)j

=
Mρ

ρ− ρ1
.

From this we see that f(z) is analytic and bounded, uniformly in k, on

{

z ∈ C
k;

k∑

j=1

|zj | ≤ ρ1

}

for all k.

Therefore it suffices to find q̂ <∞, δ̂ > 0 such that

Kq̂(δ̂) ⊂
{

z ∈ C
N;

∞∑

j=1

|zj | < ρ

}

. (4.7.3)

To this end note that

∞∑

j=1

|zj | ≤
∑

α

|zα| ≤
(∑

α

|zα|2(2N)qα

) 1
2

·
(∑

α

(2N)−qα

) 1
2

< δA(q)
1
2 ,
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where by Proposition 2.3.3, A(q) =
∑

α(2N)−qα <∞ for q > 1. Therefore, if
δ̂ ≤ δ and q̂ ≥ q are chosen such that

δ̂A(q̂)
1
2 < ρ,

then (4.7.3) holds and the proof is complete. ��

Theorem 4.7.3. Consider an SPDE of the form (4.1.2), i.e.

A�(t, x, ∂t,∇x, U, ω) = 0 (4.7.4)

for (t, x) ∈ G ⊂ R
d+1. Assume that for some q < ∞, δ > 0 there exists a

solution u(t, x, λ) of the Hermite transformed equation

Ã(t, x, ∂t,∇x, u, λ) = 0; (t, x) ∈ G (4.7.5)

for real λ = (λ1, λ2, . . .) ∈ Kq(δ) ∩ R
N. Moreover, assume the following:

For all (t, x)∈G the function λ→u(t, x, λ) is real analytic on Kq(δ) ∩ R
N

(4.7.6)

and

u(t, x, λ) and all its partial derivatives with respect to t and x which

are involved in (4.7.5) are real analytic with respect to λ ∈ Kq(δ) ∩ R
N.

Moreover , u(t, x , λ) is continuously differentiable in all the variables

(t, x, λ) ∈ G × Kq(δ) ∩ R
N for all orders with respect to λ and all the

above orders with respect to (t, x). (4.7.7)

Then there exists U(t, x) ∈ (S)−1 such that HU(t, x) = u(t, x) and U(t, x)
solves (in the strong sense in (S)−1) equation (4.7.4).

Proof By assumption (4.7.6) and Lemma 4.7.2 we know that λ→ u(t, x, λ)
has an analytic extension to a bounded function z → u(t, x, z) for z ∈ Kq̂(δ̂)
for some q̂, δ̂. In order to apply Theorem 4.1.1 it suffices to prove that all
partial derivatives of u involved in (4.7.5) are bounded and continuous on
G × Kq̂(δ̂). Fix (t, x, z) ∈ G × Kq̂(δ̂), and let ek be the kth unit vector in
R

d, ε > 0. Then by (4.7.2) we have
1
ε
[u(t, x + εek, z)− u(t, x, z)] =

∑

α

1
α!

1
ε
(∂α

λ u(t, x + εek, 0)− ∂α
λ u(t, x, 0))zα

=
∑

α

1
α!
· ∂

∂xk
(∂α

λ u(t, x + θek, 0))zα

→
∑

α

1
α!

∂α
λ

∂u

∂xk
(t, x, 0)zα as ε→ 0,
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by (4.7.7) and the mean value theorem (θ = θ(ε) → 0 as ε → 0).
Here ∂α

λ means that the derivatives of order α are taken with respect to
λ = (λ1, λ2, . . .). This shows that ∂/∂xku(t, x, z) exists and is analytic and
bounded with respect to z for z in some Kq1(δ1). The same argument works
for other derivatives with respect to t or x. By restricting ourselves to
(t, x) ∈ G0 ⊂⊂ G, we obtain boundedness. Hence Theorem 4.1.1 applies
and the proof is complete. ��

As an illustration of Theorem 4.7.3 we give the following important
application:

Theorem 4.7.4 Gjerde (1998). Let K = exp�W(x) be the positive noise
matrix defined in (2.6.61), (2.6.62). Let T > 0 and suppose there exists ρ > 0
such that

(t, x)→ g(t, x) ∈ (S)−1 belongs to C0+ρ
b ([0, T ]× R

d) (4.7.8)

and
x→ f(x) ∈ (S)−1 belongs to C2+ρ

b (Rd). (4.7.9)

Then the heat equation in a stochastic medium
{

∂U
∂t = div(K(x) � ∇U) + g(t, x); (t, x) ∈ (0, T )× R

d

U(0, x) = f(x); x ∈ R
d

(4.7.10)

has a unique (S)−1-valued solution U(t, x) ∈ C1,2([0, T ]× R
d).

Idea of proof Taking Hermite transforms we get the equation
{

∂u
∂t = div(K̃ · ∇u) + g̃(t, x); (t, x) ∈ (0, T )× R

n

u(0, x) = f̃(x)
(4.7.11)

in u = u(t, x, z). We seek a solution for each z in some Kq(R). First choose
z = λ ∈ Kq(R) ∩ R

N, with q,R to be specified later. Note that for y ∈ R
d

with |y| = 1 we have

yT K̃(x, λ)y =
∞∑

n=0

1
n!

yT W̃(x, λ)ny

=
∞∑

n=0

1
n!

(yT W̃(x, λ)y)n

= exp[yT W̃(x, λ)y].

Since the components of W̃(x, λ) are uniformly bounded for (x, λ)
∈ R

d × K2(1), we conclude that K̃(x, λ) is uniformly elliptic for x ∈ R
d

and has λ-uniform ellipticity constants, i.e., there exist C1, C2 such that
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C1 ≤ yT K̃(x, λ)y ≤ C2 (4.7.12)

for all (x, λ) ∈ R
d × (K2(1) ∩ R

N) and all y ∈ R
d with |y| = 1.

Hence from the general theory of deterministic uniformly elliptic Cauchy
problems, we conclude that (4.7.11) has a unique C2+ρ solution u(x, λ) for
each λ.

The next step is to prove that the solution depends real–analytically on λ.
This is achieved by applying known estimates from the theory of deterministic
parabolic differential equations. These estimates also yield (4.7.7) and hence
we can apply Theorem 4.7.3. We refer to Gjerde (1998), for the details and
for applications to other SPDEs. ��

4.8 A Class of Quasilinear Parabolic SPDEs

In Section 3.6 we saw how Gjessing’s lemma (Theorem 2.10.7) could be used
to solve quasilinear SDEs. This method was further developed in Benth and
Gjessing (2000), to apply to a class of quasilinear SPDEs. To illustrate the
main idea of the method, we consider the following general situation:

Let
L(t, x,∇x)

be a partial differential operator operating on x∈R
d. Let W (t) be 1-parameter,

1-dimensional white noise, and consider the following SPDE:
{

∂
∂tU(t, x) = L(t, x,∇U(t, x)) + σ(t)U(t, x) �W (t); t > 0, x ∈ R

d,

U(0, x) = g(x); x ∈ R
d

(4.8.1)

where σ(t), g(x) = g(x, ω) are given functions. Note that, in view of
Theorem 2.5.9, this equation is a (generalized) Skorohod SPDE of the form

dUt = L(t, x,∇Ut)dt + σ(t)UtdBt; U0(x) = g(x).

As in the proof of Theorem 3.6.1, we put

σ(t)(s) = σ(s)χ[0,t](s)

and

Jσ(t) = Jσ(t, ω) = exp�

[

−
t∫

0

σ(s)dB(s)

]

= exp�

[

−
∫

R

σ(t)(s)dB(s)

]

. (4.8.2)
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The following result is a direct consequence of the method in Benth and
Gjessing (1994):

Theorem 4.8.1. Assume the following:

σ(t) is a deterministic function bounded on bounded intervals in

[0,∞). (4.8.3)
For almost all ω (fixed), the deterministic PDE (4.8.4)

{
∂Y
∂t = Jσ(t, ω) · L(t, x, J−1

σ (t, ω)∇Y ); t > 0, x ∈ R
d

Y (0, x) = g(x, ω)
(4.8.5)

has a unique solution Y (t, x) = Y (t, x, ω), and there exists p > 1 such that

Y (t, x, ·) ∈ Lp(μ) for all t, x.

Then the quasilinear SPDE (4.8.1) has a unique solution U(t, x, ω) with

U(t, x, ·) ∈ Lq(μ)

for all q < p. Moreover, the solution is given by

U(t, x, ·) = J�(−1)
σ (t) � Y (t, x, ·) = exp�

[ t∫

0

σ(s)dBs(·)
]

� Y (t, x, ·). (4.8.6)

Proof We proceed along the same lines as in the proof of Theorem 3.6.1.
Regarding equation (4.8.1) as an equation in (S)−1, we can Wick-multiply
both sides of (4.8.1) by Jσ(t). This yields, after rearranging,

Jσ(t) � ∂U

∂t
− σ(t)Jσ(t) � U �W (t) = Jσ(t) � L(t, x,∇U)

or
∂

∂t
(Jσ(t) � U) = Jσ(t) � L(t, x,∇U). (4.8.7)

Now define
Y (t, x) = Jσ(t) � U(t, x). (4.8.8)

By Theorem 2.10.7 we have, if U ∈ Lp(μ) for some p > 1,

Y (t, x) = Jσ(t) · T−σ(t)U(t, x) (4.8.9)

and
Jσ(t) � L(t, x, U) = Jσ(t) · L(t, x, T−σ(t)U). (4.8.10)
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Substituting this into (4.8.7), we get

∂Y

∂t
= Jσ(t) · L(t, x, J−1

σ (t)∇Y ) (4.8.11)

with the initial value
Y (0, x) = U(0, x) = g(x). (4.8.12)

This is an equation of the form (4.8.5) which we, by assumption, can solve
for each ω, thereby obtaining a unique solution

Y (t, x) = Y (t, x, ω)

for each ω ∈ S ′(Rd). Since

Y (t, x, ·) ∈ Lp(μ),

it follows from Theorem 2.10.7 that

U(t, x) = J�(−1)
σ (t) � Y (t, x)

= exp�

[ t∫

0

σ(s)dBs(·)
]

� Y (t, x) ∈ Lq(μ) for all q < p.

��
As an example of an application of this general method, consider the SPDE

⎧
⎪⎪⎨

⎪⎪⎩

∂U
∂t (t, x, ω) +∇x(f(t, x, U(t, x, ω)))

= νΔxU(t, x, ω) + σ(t)U(t, x, ω) �W (t, ω)
U(0, x, ω) = φ0(x, ω),

(4.8.13)

where f : R × R
d × R → R, σ : R → R and φ0 : R

d × S ′(R) → R are given
(measurable) functions and ν is a positive constant.

Corollary 4.8.2 Benth and Gjessing (2000). Assume the following:

f is Lipschitz in u, in the sense there exists C(t, x) > 0 such that

|f(t, x, u) − f(t, x, v)| ≤ C(t, x)|u − v| for all u, v ∈ R
d and that

sup
t,x

C(t, x) <∞. (4.8.14)

f(t, x, 0) = 0 for all t, x. (4.8.15)
σ(t) is bounded on bounded intervals. (4.8.16)
There exists p > 2 and A(ω) ∈ Lp(μ1) such that (4.8.17)

sup
x
|φ0(x, ω)| ≤ A(ω).
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Then for 1 ≤ q < p/2, there exists a unique solution U(t, x, ·) ∈ Lq(μ1) of
(4.8.13) (interpreted in the weak form with respect to t and x).

Idea of proof The assumptions are used to establish that there exists a
solution of the corresponding deterministic equation (see (4.8.5)). Then one
can apply Theorem 4.8.1. We refer to Benth and Gjessing (2000), for details
and other results.

��

4.9 SPDEs Driven by Poissonian Noise

So far we have discussed only SPDEs driven by Gaussian white noise. By
this we mean that the underlying basic probability measure is the Gaussian
measure μ = μ1 defined by (2.1.3). From a modeling point of view one might
feel that this is too special. One can easily envisage situations where the
underlying noise has a different nature. For example, Kallianpur and Xiong
(1994), and Gjerde (1996a), discuss stochastic models for pollution growth
when the rate of increase of the concentration is a Poissonian noise.

It turns out, however, that there is a close mathematical connection
between SPDEs driven by Gaussian and Poissonian noise, at least for Wick-
type equations. More precisely, there is a unitary map between the two spaces,
such that one can obtain the solution of the Poissonian SPDE simply by
applying this map to the solution of the corresponding Gaussian SPDE. This
fact seems to have evaded several researchers. On the other hand, versions of
it have been known to some experts, see, e.g., Itô and Kubo (1988), Albeverio
et al. (1996), Albeverio et al. (1993b), and Kondratiev et al. (1995b).

A nice, concise account of this connection was recently given by Benth and
Gjerde (1995), and we will base our presentation on that paper.

Analogous to Theorem 2.1.1, we have

Theorem 4.9.1 (The Bochner–Minlos theorem II). There exists a
unique probability measure π on B = B(S ′(Rd)) with the property

∫

S′(Rd)

ei〈ω,φ〉dπ(ω) = exp
[ ∫

Rd

(eiφ(x) − 1)dx

]

(4.9.1)

for all φ ∈ S(Rd).

The existence of the measure π follows from Theorem A.3 in Appendix A,
because the function

g(φ) = exp
[ ∫

Rd

(eiφ(x) − 1)dx

]

satisfies the conditions (i), (ii), (iii) of this theorem. (For more information
about positive definite functions, see, e.g., Berg and Forst (1975).)
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Definition 4.9.2. The triple (S,B, π) is called the Poissonian white noise
probability space and π is called the Poissonian white noise probability
measure.

Based on the measure π one can now develop a machinery similar to the one
we constructed in Chapter 2 for μ. We only outline this construction here. For
proofs see Hida et al. (1993), Itô (1988), and Us (1995). For simplicity we only
consider the case with noise dimension m = 1 and state dimension N = 1.

Lemma 4.9.3. Let φ ∈ S(Rd). Then

Eπ[〈·, φ〉] :=
∫

S′(Rd)

〈ω, φ〉dπ(ω) =
∫

Rd

φ(x)dx (4.9.2)

and

Eπ

[(

〈·, φ〉 −
∫

Rd

φ(x)dx

)2]

= ‖φ‖22, (4.9.3)

or

Eπ[〈·, φ〉2] = ‖φ‖22 +
(∫

Rd

φ(x)dx

)2

.

Hence the map

J : φ→ 〈ω, φ〉 −
∫

Rd

φ(x)dx; φ ∈ S(Rd), (4.9.4)

can be extended to an isometry, denoted by Jπ, from L2(Rd) into L2(π), by
the definition

Jπ(φ) = lim
n→∞

J(φn) (4.9.5)

for φ ∈ L2(Rd), the limit being in L2(π), where {φn} is any sequence in
S(Rd) converging to φ in L2(Rd). By (4.9.3) the limit in (4.9.5) exists and
is independent of the sequence {φn}.

In particular, for each x = (x1, . . . , xd) ∈ R
d we can define

P̃ (x, ω) := 〈ω, θx〉 = Jπ(θx) +
d∏

j=1

xj ∈ L2(π), (4.9.6)

where θx(t1, . . . , td) = θx1(t1) · · · θxd
(td), with

θxj
(s) =

⎧
⎪⎨

⎪⎩

1 if 0 < s ≤ xj

−1 if xj < s ≤ 0
0 otherwise.

(4.9.7)
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Then P̃ (x, ω) has a right-continuous integer-valued version P (x, ω) called
(d-parameter) Poisson process. The process

Q(x, ω) = P (x, ω)−
d∏

j=1

xj = Jπ(χ[0,x1] × · · · × χ[0,xd]) ∈ L2(π) (4.9.8)

is called the compensated (d-parameter) Poisson process.
If d = 1 and t ≥ 0, then P (t, ·) has a Poisson distribution with mean t.

Moreover, the process {P (t, ·)}t∈R has independent increments. Define

Q(t) = Q(t, ω) = P (t, ω)− t; t ∈ R.

Then Q is a martingale, so we can define the stochastic integral: in the usual
way ∫

R

f(t, ω)dQ(t)

of (t, ω)-measurable processes f(t, ω), adapted with respect to the filtration
Gt generated by Q(s, ·); s ≤ t, and satisfies

E

[ ∫

R

f2(t, ω)dt

]

<∞

(see Appendix B). Similar to the Brownian motion case (see Section 2.5),
we can define the multiple stochastic integrals

∫

Rnd

g(x)dQ⊗n(x)

with respect to Q, for all g ∈ L̂2(Rnd). Moreover, similar to (2.5.5) we have
(see, e.g., Hida et al. (1993), Itô (1988), or Itô and Kubo (1988))

Theorem 4.9.4 (The Wiener–Itô chaos expansion). Every g ∈ L2(π)
has the (unique) representation

g(ω) =
∞∑

n=0

∫

Rnd

gn(x)dQ⊗n(x) (4.9.9)

where gn ∈ L̂2(Rnd) for all n.
Moreover, we have the isometry

‖g‖2L2(π) =
∞∑

n=0

n!‖gn‖2L2(Rnd). (4.9.10)
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We have seen that for Gaussian white noise analysis the Hermite
polynomial functionals Hα(ω) defined in Section 2.2 play a fundamental
role. In the Poissonian case this role is played by the Charlier polynomial
functionals Cα(ω), defined by

Cα(ω) = C|α|(ω;
α1︷ ︸︸ ︷

η1, . . . , η1, . . . ,

αk︷ ︸︸ ︷
ηk, . . . , ηk) (4.9.11)

for α = (α1, . . . , αk) ∈ N
N

0 (with ηk as before, see (2.2.8)), where

Cn(ω;φ1, . . . , φn) =
∂n

∂u1 · · · ∂un
exp

[〈

ω, log
(

1 +
n∑

j=1

ujφj

)〉

−
n∑

j=1

uj

∫

Rd

φj(y)dy

]∣
∣
∣
∣
u1=···=un=0

(4.9.12)

for n ∈ N, φj ∈ S(Rd).
Thus, with φ̄ =

∫
φ(x)dx,

C1(ω;φ) = 〈ω, φ〉 − φ̄; φ ∈ S(Rd) (4.9.13)

and

C2(ω;φ1, φ2) = 〈ω, φ1〉〈ω, φ2〉 − 〈ω, φ1φ2〉 − 〈ω, φ1〉φ̄2

− 〈ω, φ2〉φ̄1 + φ̄1φ̄2; φi ∈ S(Rd). (4.9.14)

Analogous to (2.2.29) we can express multiple integrals with respect to Q
in terms of the Charlier polynomial functionals as follows:

∫

Rnd

η⊗̂α1
1 ⊗̂ · · · ⊗̂η⊗̂αk

k dQ⊗n = Cα(ω), (4.9.15)

where n = |α|, α = (α1, . . . , αk).
Combined with Theorem 4.9.4 this gives the following (unique) represen-

tation of g ∈ L2(π):

g(ω) =
∑

α

bαCα(ω) (bα ∈ R) (4.9.16)

where
‖g‖2L2(π) =

∑

α

α!b2
α. (4.9.17)

Corollary 4.9.5 Benth and Gjerde (1998a). The map U : L2(μ) →
L2(π) defined by

U
(∑

α

bαHα(ω)
)

=
∑

α

bαCα(ω) (4.9.18)

is isometric and surjective, i.e., unitary.
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Analogous to Definition 2.3.2 we are now able to define the Kondratiev
spaces of Poissonian test functions (S)ρ;π and Poissonian distributions (S)−ρ;ν

respectively, for 0 ≤ ρ ≤ 1 as follows:

Definition 4.9.6 Benth and Gjerde (1998a). Let 0 ≤ ρ ≤ 1.

a) Define (S)ρ;π to be the space of all g(ω) =
∑

α bαCα(ω) ∈ L2(π) such
that

‖g‖2ρ,k;π :=
∑

α

b2
α(α!)1+ρ(2N)kα <∞ (4.9.19)

for all k ∈ N.
b) Define (S)−ρ;π to be the space of all formal expansions

G(ω) =
∑

α

aαCα(ω)

such that
‖G‖2−ρ,−k;π :=

∑

α

a2
α(α!)1−ρ(2N)−kα <∞ (4.9.20)

for some k ∈ N.

As in the Gaussian case, i.e., for the spaces (S)ρ = (S)ρ;μ and (S)−ρ =
(S)−ρ;μ, the space (S)−ρ;π is the dual of (S)ρ;π when the spaces are equipped
with the inductive (projective, respectively) topology given by the seminorms
‖ · ‖ρ,k;π (‖ · ‖−ρ,−k;π, respectively). If

G(ω) =
∑

α

aαCα(ω) ∈ (S)−ρ;π and g(ω) =
∑

α

bαCα(ω) ∈ (S)ρ;π,

then the action of G on g is given by

〈G, g〉 =
∑

α

α!aαbα. (4.9.21)

Corollary 4.9.7 Benth and Gjerde (1998a). We can extend the map U
defined in (4.9.18) to a map from (S)−1;μ to (S)−1;π by putting

U
(∑

α

bαHα(ω)
)

=
∑

α

bαCα(ω) (4.9.22)

when
F :=

∑

α

bαHα(ω) ∈ (S)−1;μ.

Then U is linear and an isometry, in the sense that

‖U(F )‖ρ,k;π = ‖F‖ρ,k;μ (4.9.23)
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for all F ∈ (S)ρ;μ and all k ∈ Z, ρ ∈ [−1, 1]. Hence U maps (S)ρ;μ onto (S)ρ;π

for all ρ ∈ [−1, 1].

Definition 4.9.8. If F (ω) =
∑

α aαCα(ω) and G(ω) =
∑

β bβCβ(ω) are
two elements of (S)−1;π, we define the Poissonian Wick product of F and G,
F

π�G, by

(F
π�G)(ω) =

∑

γ

( ∑

α+β=γ

aαbβ

)

Cγ(ω). (4.9.24)

As in the Gaussian case, one can now prove that the Poissonian Wick
product is a commutative, associative and distributive binary operation on
(S)−1;π and (S)1;π.

From (4.9.24) and (4.9.22) we immediately get that the map U respects
the Wick products.

Lemma 4.9.9. Suppose F,G ∈ (S)−1;μ. Then

U(F �G) = U(F )
π�U(G). (4.9.25)

Definition 4.9.10. The (d-parameter) Poissonian compensated white noise
V (x) = V (x, ω) is defined by

V (x, ω) =
∞∑

k=1

ηk(x)Cεk
(ω). (4.9.26)

Note that
V (x, ω) = U(W (x, ω)) (4.9.27)

and
Q(x, ω) = U(B(x, ω)). (4.9.28)

Using the isometry U we see that the results for the Gaussian case carry
over to the Poissonian case. For example, we have

V (x, ω) ∈ (S)−0;π for all x ∈ R
d (4.9.29)

and

V (x, ω) =
∂d

∂x1 · · · ∂xd
Q(x, ω). (4.9.30)

Definition 4.9.11. The Poissonian Hermite transform Hπ(F ) of an ele-
ment F (ω) =

∑
α aαCα(ω) ∈ (S)−1;π is defined by

Hπ(F ) =
∑

α

aαzα; z = (z1, z2, . . .) ∈ (CN)c. (4.9.31)
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(Compare with Definition 2.6.1.)

By the same proofs as in the Gaussian case (see Section 2.6), we get

Lemma 4.9.12. If F,G ∈ (S)−1;π, then

Hπ(F
π�G) = Hπ(F ) · Hπ(G).

Lemma 4.9.13. Suppose g(z) = g(z1, z2, . . .) =
∑

α aαzα is bounded and
analytic on some Kq(R). Then there exists a unique G(ω) ∈ (S)−1;π such
that

Hπ(G) = g,

namely
G(ω) =

∑

α

aαCα(ω).

(Compare with Theorem 2.6.11b.)

Lemma 4.9.14. Suppose g(z) = Hπ(X)(z) for some X ∈ (S)−1;π. Let
f : D → C be an analytic function on a neighborhood D of g(0) and assume
that the Taylor expansion of f around g(0) has real coefficients. Then there
exists a unique Y ∈ (S)−1;π such that

Hπ(Y ) = f ◦ g.

(Compare with Theorem 2.6.12.)

Thus we see that the machinery that has been constructed for Gaus-
sian SPDE carries over word-for-word to a similar machinery for Poissonian
SPDE.

Moreover, the operator U enables us to transform any Wick-type SPDE
with Poissonian white noise into a Wick-type SPDE with Gaussian white
noise and vice versa.

Theorem 4.9.15 Benth and Gjerde (1998a). Let

A�(t, x, ∂t,∇x, U, ω) = 0

be a (Gaussian) Wick type SPDE with Gaussian white noise. Suppose
U(t, x, ω) ∈ (S)−1;μ is a solution of this equation. Then

Z(t, x, ω) := U(U(t, x, ·)) ∈ (S)−1;π

solves the Poissonian Wick type SPDE

A
π�(t, x, ∂t,∇x, Z, ω) = 0

with Poissonian white noise.



210 4 Stochastic Partial Differential Equations Driven by Brownian White Noise

Example 4.9.16 (The stochastic Poissonian Burgers equation).
Under the conditions of Theorem 4.5.4, where the spaces and the Hermite
transforms are interpreted as Poissonian ((S)−1;π and Hπ), we get that the
unique gradient type solution Z(t, x) ∈ (S)d

−1;π of the Poissonian Burgers
equation

⎧
⎨

⎩

∂Zk

∂t
+ λ

∑d
j=1 Zj

π�∂Zk

∂xj
= πΔZk − ∂N

∂xk
; t > 0, x ∈ R

d

Zk(0, x) = − ∂R
∂xk

(x); x ∈ R
d

(4.9.32)

is given by

Zk = U(Uk); 1 ≤ k ≤ d,

where

U = (U1, . . . , Ud) ∈ (S)d
−1;π

is the solution (4.5.24) of the Gaussian Burgers equation (4.5.23).
We refer to Benth and Gjerde (1998a), for more details and other

applications.

Exercises

4.1 Prove the following special case of Theorem 4.1.1: Suppose there exist
an open interval I, real numbers q,R and a function u(x, z) : I ×Kq(R)→ C

such that
∂2u

∂x2
(x, z) = F̃ (x, z) for (x, z) ∈ I ×Kq(R),

where F (x) ∈ (S)−1 for all x ∈ I.
Suppose ∂2u/∂x2(x, z) is bounded for (x, z) ∈ I × Kq(R) and continuous

with respect to x ∈ I for each z ∈ Kq(R). Then there exists U(x) ∈ (S)−1

such that
∂2U

∂x2
= F (x) in (S)−1, for all x ∈ I.

4.2 Let σj be defined as in (4.4.18) and let H̃(s) =
∫ s

0
G̃(br)dr. Prove that

lim
j→∞

Êx[H̃(σj)]
Ê[σj ]

= G̃(x),

where G̃(x) = exp W̃φ(x).

4.3 Let U(x) =
∫

Rd G(x, y)W (y)dy be the unique solution of the stochastic
Poisson equation (4.2.1) on D ⊂ R

d. Then U(x) ∈ (S)∗ for all d. For what
values of d is U(x) ∈ L2(μ)?
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4.4 Let X(t) be an Itô diffusion in R
d with generator L. Assume that L is uni-

formly elliptic. For fixed deterministic functions φ ∈ L2(Rd),
f ∈ L∞(Rd), consider the SPDE

{
∂U
∂t = LU + Wφ(x) � U ; (t, x) ∈ R× R

d

U(0, x) = f(x); x ∈ D,

where Wφ(x) is smoothed white noise in R
d (noise in the space variables

only).

a) Show that the solution is given by

U = Uφ(t, x) = Êx

[

f(X(t)) exp�
[ t∫

0

Wφ(X(s))ds

]]

,

where Êx denotes the expectation with respect to the law Qx of X(t)
when X(0) = x.

b) Find the limit of Uφ(t, x) in (S)−1 as φ approaches the Dirac measure
δ at 0 (in the weak star topology on the space of measures).

4.5 (Guitar string in a sand storm) In Walsh (1986), the following SDE is
discussed as a model for the motion of a string of a guitar “carelessly left
outdoors” and being exposed to a sand storm:

{
∂2U
∂t2 −

∂2U
∂x2 = W (t, x) for(t, x) ∈ R

+ × R

U(0, x) = ∂U
∂t (0, x) = 0.

a) Show that the unique (S)∗ solution is given by

U(t, x) =
1
2

t∫

0

x+t−s∫

x+s−t

W (s, y)dyds.

b) In particular, if the noise only occurs in the space variable, we get

U(t, x) =
1
2

t∫

0

B(x + t− s)−B(x + s− t)ds.

4.6 Find the general solution of the SPDE

a
∂U

∂t
+ b

∂U

∂x
= cW (t, x); (t, x) ∈ R

2,

where a, b, c are constants.
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4.7 Study the 1-dimensional Schrödinger equation
{

1
2U ′′(t) + V (t) � U(t) = −f(t); t ∈ [0, T ]

U(t) = 0 for t = 0, t = T,

where V (t), f(t) are given stochastic distribution processes, by transforming
the equation into a stochastic Volterra equation, as in Example 3.4.4.

4.8 Consider the 1-dimensional stochastic pressure equation
{

(K(x) � p′(x))′ = −f(x); x ∈ (a, b)
p(a) = p(b) = 0,

where K(x) = exp�[Wφ(x)] and f(x) ≡ 1. Find c0(x) and cεj
(x) in the chaos

expansion

p(x, ω) =
∑

α

cα(x)Hα(ω)

of the solution p(x, ω), by using (4.6.28).

4.9 Consider the heat equation in a 1-dimensional stochastic medium
{

∂U
∂t = ∂

∂x (K(x) � ∂U
∂x ); (t, x) ∈ R

+ × R

U(0, x) = f(x); x ∈ R,

where f is a bounded deterministic function. Show that this equation has a
unique (S)−1 solution proceeding as in the sketch of the proof of Theorem
4.7.3.

4.10 a) Use the method of Theorem 4.8.1 to solve the SPDE

{
∂U
∂t = ΔU + W (t, ω) � U

U(0, x) = f(x),

where f(x) is bounded, deterministic and W (t) = W (t, ω) is
1-parameter white noise.

b) Compare the result with the general solution (4.3.5) of the stochastic
transport equation.



Chapter 5

Stochastic Partial Differential
Equations Driven by Lévy Processes

5.1 Introduction

In the last decades there has been an increased interest in stochastic models
based on other processes than the Brownian motion B(t). In particular, the
following two generalizations of Brownian motions as driving processes have
been (and still are) studied:

(i) Generalization 1: Fractional Brownian motion

By definition a fractional Brownian motion with Hurst parameter
H ∈ (0, 1), denoted by BH(t); t ∈ R, is the continuous Gaussian process
with mean

E[BH(t)] = 0 = BH(0); t ≥ 0,

and covariance

E[BH(s)BH(t)] =
1
2
(
|t|2H + |s|2H − |t− s|2H

)
; s, t ∈ R.

If H = 1/2, we see that BH(t) = B(t), i.e., the classical Brownian motion.
But for all other values of H the process BH(t) does not have independent
increments. In fact, if H > 1/2 the increment BH(n + 1)−BH(n) for n ≥ 1
is always positively correlated to BH(1) − BH(0), (i.e., the process BH(t) is
persistent). On the other hand, if H < 1/2, the increment BH(n+1)−BH(n)
for n ≥ 1 is always negatively correlated to BH(1)−BH(0), (i.e., the process
BH(t) is antipersistent). This makes fractional Brownian motion a useful tool
in many stochastic models, including turbulence (H < 1/2) and weather-
related cases (H > 1/2).

We will not deal with stochastic partial differential equations driven by
(multiparameter) fractional Brownian motion here, but we refer to the forth-
coming book (Biagnini et al. (2006)) and the references therein.

H. Holden et al., Stochastic Partial Differential Equations, 2nd ed., Universitext, 213
DOI 10.1007/978-0-387-89488-1 5, c© Springer Science+Business Media, LLC 2010
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(ii) Generalization 2: Lévy processes

A Lévy process, denoted by η(t); t ≥ 0, has stationary, independent
increments just like Brownian motion B(t), but it differs from B(t) in that
it does not necessarily have continuous paths, (and in general it is not
Gaussian). In fact, if we impose the condition that a Lévy process η(t) is
continuous, then it has the form

η(t) = a t + σB(t); t ≥ 0

where a and σ are constants, so we are basically back in the Brownian motion
case.

The possibility of jumps makes it possible to get more realistic models.
For example, it has been pointed out that certain classes of processes based
on (discontinuous) Lévy processes fit the stock prices data better than the
classical Samuelson-Black-Scholes model based on Brownian motion. We refer
to, e.g., Barndorff-Nielsen (1998), Eberlein (2001), Schoutens (2003), and
Cont and Tankov (2003) for more information. Similarly, stochastic partial
differential equations driven by (multiparameter) Lévy processes allow for
more realistic models than in the classical Brownian motion case. It turns
out that it is possible to develop a white noise theory for Lévy processes,
even in the multiparameter case, and this theory shares many of the features
of the classical white noise theory described in the previous chapters. It is
the purpose of this chapter to explain this in detail and apply the theory
to solve stochastic partial differential equations driven by (multiparameter)
Lévy processes.

According to the Lévy–Itô representation (see (E.12)) any Lévy process
η(t) can be written on the form

η(t) = a t + σB(t) +

t∫

0

∫

|z|<1

zÑ(ds, dz) +

t∫

0

∫

|z|≥1

zN(ds, dz), (5.1.1)

where N(·, ·) is the Poisson random jump measure of η and where Ñ(ds, dz) =
N(ds, dz) − ν(dz)ds is the compensated Poisson random measure of η, ν(dz)
being the Lévy measure of η.

For simplicity we will from now on assume that

E[η2(t)] <∞ for all t ≥ 0. (5.1.2)

This implies that η(t) can be written on the form

η(t) = a1 t + σB(t) +

t∫

0

∫

R

zÑ(ds, dz),
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where

a1 = a +
∫

|z|≥1

zν(dz).

Since the Brownian motion case is covered by the previous chapters, we
are now primarily interested in the so-called “pure jump” case, i.e., when η(t)
has the form

η(t) =

t∫

0

∫

R

zÑ(ds, dz). (5.1.3)

We consider also the multiparameter case

η(x) = η(x1, . . . , xd); x = (x1, . . . , xd) ∈ R
d

of a Lévy process and – more generally – of a compensated Poisson random
measure Ñ(dx, dz).

5.2 The White Noise Probability Space of a Lévy
Process (d = 1)

This presentation is based on [Di Nunno et al.] and [Øksendal et al.]
Recall that by the Lévy–Khintchine formula a pure jump Lévy process
η(t) = η(t, ω); (t, ω) ∈ [0,∞) × Ω, with E[η2(t)] < ∞ for all t, can be
characterized as the (unique) càdlàg process η(·) such that

E[exp(iuη(t))] = exp(tΨ(u)), (5.2.1)

where

Ψ(u) =
∫

R

(
eiuz − 1− iuz

)
ν(dz); u ∈ R (5.2.2)

where ν is the Lévy measure of η(·). This measure ν always satisfies

∫

R

z2ν(dz) <∞. (5.2.3)

(See Theorem E.2.)
We will now prove a converse of the above. More precisely, given a measure

ν on B(R0) such that (5.2.3) holds, we will construct a càdlàg stochastic
process η(t) such that (5.2.1)–(5.2.2) hold. This construction will be similar
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to the construction we did of Brownian motion in Section 2.1 (and of the
Poisson process in Section 4.9).

Accordingly, let ν be a given measure on B(R0) such that

M :=
∫

R

z2ν(dz) <∞. (5.2.4)

We now construct a pure jump Lévy process η(t); t ≥ 0 such that ν is the
Lévy measure of η(·):

Theorem 5.2.1. There exists a measure μ = μ(L) defined on the σ-algebra
B(Ω) of Borel subsets of Ω = S ′(R) such that

∫

Ω

ei〈ω,f〉dμ(ω) = exp

⎛

⎝
∫

R

Ψ(f(y))dy

⎞

⎠; f ∈ S(R) (5.2.5)

where

Ψ(w) =
∫

R

(
eiwz − 1− iwz

)
ν(dz), i =

√
−1 (5.2.6)

and 〈ω, f〉 denotes the action of ω ∈ S ′(R) on f ∈ S(R).

Proof The existence of μ(L) follows from the Bochner–Minlos theorem
(Appendix A). In order to apply this theorem we need to verify that the
function

F : f �→ exp

⎛

⎝
∫

R

Ψ(f(y))dy

⎞

⎠; f ∈ S(R)

is positive definite, i.e., that

n∑

j,k = 1

zjzkF (fj − fk) ≥ 0 (5.2.7)

for all complex numbers zj and all fj ∈ S(R), n = 1, 2, . . . (here zk denotes
the complex conjugate of zk ∈ C). We leave the proof of (5.2.7) to the reader
(Exercise 5.1). ��

Definition 5.2.2. The triple (Ω,B(Ω), μ(L)) is called the (pure jump) Lévy
white noise probability space.

Lemma 5.2.3. Let g ∈ S(R). Then, with μ = μ(L), E = Eμ and M =∫

R

z2ν(dz), we have

E[〈·, g〉] = 0, (5.2.8)
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and

Var[〈·, g〉] := E[〈·, g〉2] = M

∫

R

g2(y)dy. (5.2.9)

Proof If we apply (5.2.5) to the function f(y) = t g(y) for a fixed t ∈ R,
we get

E[exp(i t〈ω, g〉)] = exp

⎛

⎝
∫

R

Ψ(t g(y))dy

⎞

⎠

= exp

⎛

⎝
∫

R

∫

R

(
eitzg(y) − 1− itzg(y)

)
ν(dz)dy

⎞

⎠.

Assume for a moment that ν is supported on [−R,R]\{0} for some R <∞
and that g has compact support. Then the expansion of the above in a Taylor
series gives

∞∑

n=0

1
n!

intn E[〈·, g〉n] =
∞∑

m=0

1
m!

⎛

⎝
∫

R

∫

R

( ∞∑

k=2

1
k!

iktkzkgk(y)

)

ν(dz)dy

⎞

⎠

m

=
∞∑

m=0

1
m!

⎛

⎝
∞∑

k=2

1
k!

iktk
∫

R

zkν(dz)
∫

R

gk(y)dy

⎞

⎠

m

.

Comparing the first order terms of t and then the second order terms
(those containing t2) we get, respectively,

i tE[〈·, g〉] = 0,

and
1
2
(−1)t2E[〈·, g〉2] =

1
2
(−1)t2

∫

R

z2ν(dz) ·
∫

R

g2(y)dy.

The case with general g ∈ S(R) and general ν now follows by an approxi-
mation argument. ��

Using Lemma 5.2.3 we can extend the definition of 〈ω, f〉 for f ∈ S(R) to
any f ∈ L2(R) as follows:

If f ∈ L2(R), choose fn ∈ S(R) such that fn → f in L2(R). Then by
(5.2.9) we see that {〈ω, fn〉}∞n=1 is a Cauchy sequence in L2(μ) and hence
convergent in L2(μ). Moreover, the limit depends only on f and not the
sequence {fn}∞n=1. We denote this limit by 〈ω, f〉.



218 5 Stochastic Partial Differential Equations Driven by Lévy Processes

Now define

η̃(t) := 〈ω, χ[0,t](·)〉; t ∈ R (5.2.10)

where

χ[0,t](s) =

⎧
⎪⎨

⎪⎩

1 if 0 ≤ s ≤ t,

−1 if t ≤ s ≤ 0 except t = s = 0,

0 otherwise.
(5.2.11)

Then we have

Theorem 5.2.4. The stochastic process η̃(t) has a càdlàg version, denoted
by η(t). This process η(t); t ≥ 0 is a pure jump Lévy process with Lévy
measure ν.

Proof We verify that η̃ satisfies (5.2.1), i.e., that

E[exp(i u 〈ω, χ[0,t](·)〉)]

= exp

⎛

⎝t

∫

R

(
eiuz − 1− iuz

)
ν(dz)

⎞

⎠; u ∈ R, t > 0 (5.2.12)

By (5.2.5) we get, with f(y) = uχ[0,t](y), t > 0, u ∈ R, that

E
[
exp

(
i u 〈ω, χ[0,t](·)〉

)]

= exp

⎛

⎝
∫

R

⎛

⎝
∫

R

(
eiuzχ[0,t](y) − 1− iuzχ[0,t](y)

)
ν(dz)

⎞

⎠ dy

⎞

⎠

= exp

⎛

⎝t

∫

R

(
eiuz − 1− iuz

)
ν(dz)

⎞

⎠

which is (5.2.12).

It follows that η̃ has a càdlàg version η (see, e.g., Applebaum (2004),
Theorem 2.1.7), which hence is a Lévy process with Lévy measure ν. By
the Lévy–Khintchine formula (Theorem E.2) it follows that (by our choise of
Ψ(w) in (5.2.6)) that η is a pure jump Lévy martingale, i.e.,

η(t) =

t∫

0

∫

R

zÑ(ds, dz). (5.2.13)

��
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5.3 White Noise Theory for a Lévy Process (d = 1)

5.3.1 Chaos Expansion Theorems

Assume that d = 1 in this section, so that

η(t) =

t∫

0

∫

R

zÑ(ds, dz); t ≥ 0, (5.3.1)

where Ñ(ds, dz) = N(ds, dz) − ν(dz)ds is the compensated Poisson random
measure of η. In the following we recall a chaos expansion for square inte-
grable functionals of η, originally due to Itô (1956). The expansion is similar
to the one for Brownian motion given in Theorem 2.2.7, but note that now
the expansion is in terms of iterated integrals with respect to Ñ(ds, dz),
not with respect to dη(s). (The latter is in fact not possible in general. See
Exercise 5.4).

Let λ denote the Lebesgue measure on R+ and let L2((λ × ν)n) denote
the space of all functions f : (R+ × R)n → R such that

||f ||2(λ×ν)n :=
∫

(R+×R)n

f2(t1, z1, . . . , tn, zn)dt1ν(dz1) · · · dtnν(dzn) <∞.

(5.3.2)
If f is a (measurable) function from (R+ × R)n → R, we define its

symmetrization f̂ by

f̂(t1, z1, . . . , tn, zn) :=
1
n

∑

σ

f(tσ(1), zσ(1), . . . , tσ(n), zσ(n)) (5.3.3)

where the sum is taken over all permutations σ of {1, 2, . . . , n}. We call f

symmetric if f = f̂ and we define L̂2((λ× ν)n) to be the set of all symmetric
functions f ∈ L2((λ× ν)n). Put

Sn = {(t, z) ∈ (R+ × R)n; 0 ≤ t1 ≤ t2 ≤ · · · ≤ tn <∞}.

Then if f ∈ L̂2((λ× ν)n), we have

||f ||2L2((λ×ν)n)

=n!

∞∫

0

∫

R

· · ·
t2∫

0

∫

R

f2(t1, z1, . . . , tn, zn)dt1ν(dz1) · · · dtnν(dzn)

=n! ||f ||2L2(Sn). (5.3.4)
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If g ∈ L2(Sn), we define its n-fold iterated integral with respect to Ñ(·, ·)
over Sn by

Jn(g) :=

∞∫

0

∫

R

· · ·
t2∫

0

∫

R

g(t1, z1, . . . , tn, zn)Ñ(dt1, dz1), . . . , Ñ(dtn, dzn).

(5.3.5)

If f ∈ L̂2((λ × ν)n), we define its n-fold iterated integral with respect to
Ñ(·, ·) over (R+ × R)n by

In(f) = n!Jn(f). (5.3.6)

By applying the Itô isometry (E.11) inductively, we obtain the isometry

E[(In(f))2] = E[(n!)2(Jn(f))2] = (n!)2||fn||2L2(Sn)

= n! ||fn||2L2((λ×ν)n); f ∈ L̂2((λ× ν)n). (5.3.7)

Moreover we have the following orthogonality relation

E[In(f)Im(g)] =

{
0 if n �= m

n!(f, g)L2((λ×ν)n) if n = m
(5.3.8)

for f, g ∈ L̂2((λ× ν)n), where

(f, g)L2((λ×ν)n) =
∫

(R+×R)n

f(t, z)g(t, z)(λ× ν)n(dt, dz) (5.3.9)

is the inner product on L2((λ× ν)n).

Theorem 5.3.1 (Itô (1956)) (Chaos expansion theorem I). Let F ∈
L2(μ) be measurable with respect to the σ-algebra F∞ generated by {η(s);
s ≥ 0}. Then there exists a unique sequence of functions fn ∈ L̂2((λ × ν)n)
such that

F =
∞∑

n=0

In(fn) (with I0(f0) := E[F ]). (5.3.10)

Moreover, we have the isometry

E[F 2] = E[F ]2 +
∞∑

n=1

n!||fn||2L2((λ×ν)n) (5.3.11)
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Proof We have already outlined the proof that (5.3.10) implies (5.3.11). It
remains to prove that the linear span of the family {In(fn); fn ∈ L̂2((λ×ν)n),
n = 0, 1, . . . } is dense in L2(μ). See Itô (1956) for details. For an alternative
proof of this we refer to Løkka (2001). ��

Remark 5.3.2 If F ∈ L2(μ) is measurable with respect to the σ-algebra
FT generated by {η(s); 0 ≤ s ≤ T}, then

suppfn(·, z) ⊆ [0, T ]n for all z ∈ R0 (5.3.12)

The proof of this is similar to the proof of Lemma 2.5.2. Thus in this case
we get the expansion

F = E[F ]

+
∞∑

n=0

n!

T∫

0

∫

R

· ·
t2∫

0

∫

R

fn(t1, z1, . . . , tn, zn)Ñ(dt1, dz1) · ·Ñ(dtn, dzn).

(5.3.13)

Example 5.3.3 Choose F = η2(T ) =

(
T∫

0

∫

R

zÑ(dt, dz)

)2

. Then by the Itô

formula (Theorem E.4)

d(η2(t)) =
∫

R

(
(η(t) + z)2 − η2(t)− 2η(t)z

)
ν(dz)dt

+
∫

R

(
(η(t) + z)2 − η2(t)

)
Ñ(dt, dz)

=
∫

R

z2ν(dz)dt +
∫

R

(2η(t) + z) zÑ(dt, dz)

=
∫

R

z2ν(dz)dt +
∫

R

⎛

⎝2

t∫

0

∫

R

ζÑ(ds, dζ) + z

⎞

⎠ zÑ(dt, dz)

=
∫

R

z2ν(dz)dt +
∫

R

z2Ñ(dt, dz)

+
∫

R

⎛

⎝
t∫

0

∫

R

2ζ zÑ(ds, dζ)

⎞

⎠ Ñ(dt, dz).
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Hence

η2(T ) = T

∫

R

z2ν(dz)dt +

T∫

0

∫

R

z2Ñ(dz, dt)

+

T∫

0

∫

R

⎛

⎝
t∫

0

∫

R

2ζ zÑ(ds, dζ)

⎞

⎠ Ñ(dt, dz). (5.3.14)

This is the chaos expansion of η2(T ), with

I0(f0) = E[η2(T )] = T

∫

R

z2ν(dz),

f1(t, z) = z2, f2(s, ζ, t, z) = 2ζ z.

From now on we assume that the Lévy measure ν satisfies the following
integrability condition:

For all ε > 0 there exists λ > 0 such that

∫

R\(−ε,ε)

exp (λ|z|) ν(dz) <∞ (5.3.15)

This condition implies that η has finite moments of order n for all n ≥ 2. It is
trivially satisfied if ν is supported on [−R,R] for some R > 0. The condition
implies that the polynomials are dense in L2(ρ), where

ρ(dz) = dρ(z) = z2ν(dz) (5.3.16)

(See [Nualart and Schoutens]). Now let {lm}m≥0 = {1, l1, l2, . . . } be the
orthogonalization of {1, z, z2, . . . } with respect to the inner product of L2(ρ).
Define

pj(z) := ||lj−1||−1
L2(ρ) zlj−1(z); j = 1, 2, . . . (5.3.17)

In particular, we have

p1(z) = M− 1
2 z or z = M

1
2 p1(z)

Then {pj(z)}∞j =1 is an orthonormal basis for L2(ν). Define the bijective map
κ : N× N→ N by

κ(i, j) =
j + (i + j − 2)(i + j − 1)

2
(5.3.18)

Let {ξi(t)}∞i=1 be the Hermite functions. Then if k = κ(i, j), we define

δk(t, z) = δκ(i,j)(t, z) = ξi(t)pj(z); (i, j) ∈ N× N (5.3.19)
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Fig. 5.1 The function k

If α ∈ J with Index(α) = j and |α| = m, we define the function δ⊗α by

δ⊗α(t1, z1, . . . , tm, zm) = δ⊗α1
1 ⊗ · · · ⊗ δ

⊗αj

j (t1, z1, . . . , tm, zm)

= δ1(t1, z1) · · · δ1(tα1 , zα1)︸ ︷︷ ︸
α1 factors

· · · δj(tm−αj+1, zm−αj+1) · · · δj(tm, zm)
︸ ︷︷ ︸

αj factors

.

(5.3.20)

(The factors where αi = 0 are set equal to 1, i.e., δ⊗0
i = 1)

Finally we define the symmetrized tensor product of the δk’s, denoted
by δ⊗̂α, by

δ⊗̂α(t1, z1, . . . , tm, zm) = δ̂⊗α(t1, z1, . . . , tm, zm)

= δ⊗α1
1 ⊗̂ · · · ⊗̂δ

⊗αj

j (t1, z1, . . . , tm, zm). (5.3.21)

For α ∈ J define

Kα = Kα(ω) = I|α|

(
δ⊗̂α

)
(ω); ω ∈ Ω, (5.3.22)

where I|α| is the iterated integral of order m = |α| with respect to Ñ(·, ·), as
defined in (5.3.5)–(5.3.6).
For example

Kε(κ(i,j)) = I1(δκ(i,j))
= I1(ξi(t)pj(z))

=

∞∫

0

∫

R

ξi(t)pj(z)Ñ(dt, dz).

To simplify the notation we will from now on sometimes write

ε(i,j) = ε(κ(i,j)) = (0, 0, . . . , 1)with 1 on place number κ(i, j) (5.3.23)
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By our construction of δ⊗̂α we obtain that any f ∈ L̂2((λ × ν)m) has an
orthogonal expansion of the form

f(t1, z1, . . . , tm, zm) =
∑

|α|=m

cαδ⊗̂α(t1, z1, . . . , tm, zm) (5.3.24)

for a (unique) choice of constants cα ∈ R. Combining this with (5.3.21) and
the Chaos expansion theorem (I) (Theorem 5.3.1), we get

Theorem 5.3.4 (Chaos expansion theorem II). Let F ∈ L2(μ) be mea-
surable with respect to the σ-algebra F∞. Then there exists a unique sequence
{cα}α∈J with cα ∈ R such that

F (ω) =
∑

α∈J
cαKα(ω).

Moreover, we have the isometry

||F ||2L2(μ) =
∑

α∈J
α!c2

α. (5.3.25)

Example 5.3.5 Let h ∈ L2(R) be a deterministic function and define

F (ω) =
∫

R

h(s)dη(s) = I1(h(s)z).

Since h has the expansion

h(s) =
∞∑

i=1

(h, ξi)L2(R)ξi(s),

where
(h, ξi)L2(R) =

∫

R

h(u)ξi(u)du,

we get the expansion

F (ω) =
∞∑

i=1

(h, ξi)L2(R)I1(ξi(s)z) = M
1
2

∞∑

i=1

(h, ξi)L2(R)Kε(κ(i,1))(ω). (5.3.26)

In particular, choosing h(s) = X[0,t](s) for t > 0, we get the chaos expan-
sion of η(t):

η(t) = M
1
2

∞∑

i=1

t∫

0

ξi(s)dsKε(κ(i,1))(ω). (5.3.27)
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5.3.2 The Lévy–Hida–Kondratiev Spaces

We now proceed to define the Lévy analogues of the Kondratiev spaces and
the Hida spaces introduced in Section 2.3:

Definition 5.3.6 (The Lévy–Hida–Kondratiev spaces of stochastic
test functions and stochastic distributions) (N = m = 1)

a) The Kondratiev stochastic test function spaces. For 0 ≤ ρ ≤ 1, let
(S)ρ = (S)(L)

ρ consist of those

φ =
∑

α∈J
cαKα(ω) ∈ L2(μ(L)) (cα ∈ R constants)

such that

||φ||2ρ,k :=
∑

α∈J
c2
α(α!)1+ρ(2N)kα <∞ for all k ∈ N. (5.3.28)

b) The Kondratiev stochastic distribution spaces. For 0 ≤ ρ ≤ 1 let (S)−ρ =
(S)(L)

−ρ consist of all formal expansions

F =
∑

α∈J
bαKα(ω)

such that

||F ||2−ρ,−q :=
∑

α∈J
b2
α(α!)1−ρ(2N)−qα <∞ for some q ∈ N. (5.3.29)

c) The space (S) = (S)(L)
0 is called the Hida stochastic test function space

and the space (S)∗ = (S)(L)
−0 is called the Hida distribution space.

As in Section 2.3 we equip (S)ρ with the projective topology (intersection)
defined by the norms || · ||ρ,k; k = 1, 2, . . . and we equip (S)−ρ with the
inductive topology (union) defined by the norms || · ||−ρ,−q; q = 1, 2, . . . .
Then (S)−ρ becomes the dual of (S)ρ and the action of F =

∑
bαKα ∈ (S)−ρ

on φ =
∑

aαKα ∈ (S)ρ is given by

< F, φ >=
∑

α

aαbαa!. (5.3.30)

We can now define the Lévy white noise process:

Definition 5.3.7 The Lévy white noise process η̇(t) is defined by the
expansion

η̇(t) = M
1
2

∞∑

i =1

ξi(t)Kε(κ(i,1))(ω); t ∈ R. (5.3.31)
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Note that in this case η̇(t) =
∑

α∈J cα(t)Kα(ω), with

cα(t) =

{
M

1
2 ξi(t) if α = (0, 0, . . . , 1) = ε(κ(i,1))

0 otherwise

Hence
∑

α∈J
c2
α(t)α!(2N)−qα = M

∞∑

i =1

ξ2
i (t)(κ(i, 1))−q <∞

for all q ≥ 2. Therefore η̇(t) ∈ (S)∗ for all t. Note that by comparing (5.3.27)
and (5.3.31) we have

η̇(t) =
d

dt
η(t) in (S)∗ (5.3.32)

which justifies the notation η̇(t) in (5.3.31). (Compare with (2.3.38).)
We can also define the white noise of the compensated Poisson random

measure:

Definition 5.3.8 The white noise ˙̃N(t, z) of the Poisson random measure
Ñ(dt, dz) is defined by

˙̃N(t, z) =
∑

i,j≥1

ξi(t)pj(z)Kε(κ(i,j)) . (5.3.33)

Note that

Ñ(t, U) = I1

(
X[0,t](s)XU (z)

)

=
∞∑

i,j =1

(X[0,t], ξi)L2(λ)(XU , pj)L2(ν)I1(ξi(s)pj(z))

=
∞∑

i,j =1

⎛

⎝
t∫

0

ξi(s)ds

⎞

⎠

⎛

⎝
∫

U

pj(z)ν(dz)

⎞

⎠Kε(κ(i,j)) . (5.3.34)

Therefore the random measure Ñ(dt, dz) can be given the representation

Ñ(dt, dz) =
∞∑

i,j =1

ξi(t)pj(z)Kε(κ(i,j))ν(dz)dt. (5.3.35)

We can therefore regard ˙̃N(t, z) as the Radon–Nikodym derivative of
Ñ(t, z) with respect to dt× ν(dz), i.e.

˙̃N(t, z) =
Ñ(dt, dz)
dt× ν(dz)

. (5.3.36)
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Note that η̇(t) is related to ˙̃N(t, z) by

η̇(t) =
∫

R

z ˙̃N(t, z)ν(dz) (5.3.37)

where the integral is an (S)∗-valued integral in the sense of Definition 2.5.5
(See Exercise 5.6).

Wick products and Skorohod integrals

Comparing the chaos expansion of Theorem 5.3.4 and Definition 5.3.6 with
the expansions of Theorem 2.2.4 (with m = 1) and definition 2.3.2 (with
m = 1), we see that - at least formally- the white noise theory for Brownian
motion can be carried over to a white noise theory for the Lévy process η(·)
through the correspondence

Hα ↔ Kα; α ∈ J .

We now explain this in more detail. We remark, however, that in spite of
the close relation between the two cases, there are also significant differences.

Definition 5.3.9 (The Wick product) Let F =
∑

α∈J aαKα ∈ (S)(L)
−1

and G =
∑

β∈J bαKβ ∈ (S)(L)
−1 . Then the Wick product F �G of F and G is

defined by the expansion

F �G =
∑

α,β ∈J
aα bβKα+β =

∑

γ ∈J

⎛

⎝
∑

α +β = γ

aαbβ

⎞

⎠Kγ . (5.3.38)

Just as in Chapter 2 we can prove that the Wick product has the following
properties:

F,G ∈ (S)−ρ ⇒ F �G ∈ (S)−ρ; 0 ≤ ρ ≤ 1 (5.3.39)
F,G ∈ (S)ρ ⇒ F �G ∈ (S)ρ; 0 ≤ ρ ≤ 1 (5.3.40)
(commutative law) F �G = G � F (5.3.41)
(associative law) F � (G �H) = (F �G) �H (5.3.42)
(distributive law) F � (G + H) = F �G + F �H, F,G,H ∈ (S)−1

(5.3.43)

Similarly, in terms of the iterated integrals In(·) defined in (5.3.5)–(5.3.6),
we have

In(fn) � Im(gm) = In+m(fn⊗̂gm), (5.3.44)

where fn⊗̂gm is the symmetrized (with respect to the (t, z)-variables) ten-
sor product of fn(t1, z1, . . . , tn, zn) ∈ L̂2((λ× ν)n) and gm(t1, z1, . . . , tm, zm)
∈ L̂2((λ× ν)m) (see (5.3.3)).
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This can be seen as follows: Suppose fn =
∑

|α|=n cαδ⊗̂α ∈ L̂2((λ × ν)n)

and gm =
∑

|β|=m bβδ⊗̂β ∈ L̂2((λ× ν)m). Then

fn⊗̂gm =
∑

|α|=n

∑

|β|=m

cαbβδ⊗̂(α+β) =
∑

|γ|=n +m

⎛

⎝
∑

α+β =γ

cα bβ

⎞

⎠ δ⊗̂γ .

Therefore, by (5.3.22),

In+m(fn⊗̂gm) =
∑

|γ|= n +m

∑

α+β = γ

cα bβKγ

while, again by (5.3.22) and by (5.3.38)

In(fn) � Im(gm) =

⎛

⎝
∑

|α|=n

cαKα

⎞

⎠ �

⎛

⎝
∑

|β|=m

bβKβ

⎞

⎠

=
∑

|γ|=n+m

⎛

⎝
∑

α+β =γ

cα bβ

⎞

⎠Kγ .

This proves (5.3.44).
Example 5.3.10
(i) Choose h ∈ L2(R) and define

F (ω) =
∫

R

h(s)dη(s) = I1(h(s)z).

Then by (5.3.44)

F � F = I2(h(s1)z1h(s2)z2)

= 2

∞∫

0

∫

R

⎛

⎝
s2∫

0

∫

R

h(s1)z1h(s2)z2Ñ(ds1, dz1)

⎞

⎠ Ñ(ds2, dz2)

= 2

∞∫

0

⎛

⎝
s2∫

0

h(s1)dη(s1)

⎞

⎠h(s2)dη(s2)

By the Itô formula (Theorem E.4) with X(t) =
t∫

0

h(s)dη(s)

d(X2(t)) =
∫

R

(
(X(t) + h(t)z)2 −X2(t)− 2X(t)h(t)z

)
ν(dz)dt

+
∫

R

(
(X(t) + h(t)z)2 −X2(t)

)
Ñ(dt, dz)
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=h2(t)
∫

R

z2ν(dz)dt +
∫

R

(
2X(t)h(t)z + h2(t)z2

)
Ñ(dt, dz)

= 2X(t)dX(t) + h2(t)
∫

R

z2N(dt, dz). (5.3.45)

Therefore

F � F = 2

∞∫

0

X(s)dX(s) = F 2 −
∞∫

0

∫

R

h2(s)z2N(ds, dz). (5.3.46)

In particular, choosing h(s) = X[0,t](s), we get

η(t) � η(t) = η2(t)−
t∫

0

∫

R

z2N(ds, dz). (5.3.47)

Compare this to the Brownian motion case, where (see (2.4.14))

B(t) �B(t) = B2(t)− t.

(ii) It follows by the same method as above that

Kε(i,1) �Kε(i,1) = Kε(i,1) ·Kε(i,1) −M−1

∞∫

0

∫

R

ξ2
i (s)z2N(ds, dz)Xi=j , (5.3.48)

where, to simplify the notation, we have put

ε(i,j) := ε(κ(i,j)) = (0, 0, . . . , 1),

with 1 on place number κ(i, j). (see Exercise 5.8).
The following definition of the Skorohod integral with respect to the Lévy

process η(t) is originally due to Kabanov (1975):

Definition 5.3.11 (The Skorohod integral) Let Y (t) be a measurable
stochastic process such that

E[Y 2(t)] <∞ for all t ≥ 0

Then for each t ≥ 0, Y (t) has an expansion of the form

Y (t) =
∞∑

n=0

In(fn(·, t))
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where fn(·, t) ∈ L̂2((λ × ν)n) for n = 1, 2, . . . and I0(f0(·, t)) = E[Y (t)].
Let f̃(t1, z1, . . . , tn+1, zn+1) be the symmetrization of

zn+1fn(t1, z1, . . . , tn, zn, tn+1).

Suppose
∞∑

n=0

(n + 1)!||f̃n||2L2((λ×ν)n+1) <∞ (5.3.49)

Then we say that Y (·) is Skorohod-integrable with respect to η(·) and we
define the Skorohod integral of Y (·) with respect to η(·) by

∞∫

0

Y (t)δη(t) =
∞∑

n = 0

In+1(f̃n). (5.3.50)

Note that by (5.3.11) and (5.3.50) we have

E

⎡

⎢
⎣

⎛

⎝
T∫

0

Y (t)δη(t)

⎞

⎠

2
⎤

⎥
⎦ =

∞∑

n=0

(n + 1)!||f̃n||2L2((λ×ν)n+1) <∞ (5.3.51)

so
T∫

0

Y (t)δη(t) ∈ L2(μ). Moreover,

E

⎡

⎣
T∫

0

Y (t)δη(t)

⎤

⎦ = 0. (5.3.52)

Just as in the Brownian motion case one can now show that the Skorohod
integral is an extension of the Itô integral, in the sense that if Y (t) is
Ft-adapted and Skorohod-integrable, then the two integrals coincide:

Proposition 5.3.12. Suppose Y (t) is an Ft-adapted process such that

E

⎡

⎣
∞∫

0

Y 2(t)dt

⎤

⎦ <∞. (5.3.53)

Then Y (·) is both Skorohod-integrable and Itô integrable with respect to
η(·), and the two integrals coincide.

Proof The proof is similar to the proof of Proposition 2.5.4 and is therefore
omitted. ��
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Similarly, by replacing the basis elements Hα defined in Definition 2.2.1
by the basis elements Kα defined in (5.3.22) and using the chaos expansion
in Definition 5.3.6, we can repeat the proof of Theorem 2.5.9 and obtain the
following:

Theorem 5.3.13. Assume that Y (t) =
∑

α∈J cα(t)Kα is a stochastic pro-
cess which is Skorohod-integrable with respect to η(·). Then the process

Y (t) � η̇(t)

is (S)∗-integrable and
∫

R

Y (t)dη(t) =
∫

R

Y (t) � η̇(t)dt, (5.3.54)

where the integral on the right hand side is an (S)∗-valued integral in the
sense of Definition 2.5.5.

Example 5.3.14 Let us compute the Skorohod integral

T∫

0

η(T )δη(t) =

∞∫

0

η(T )X[0,T ](t)δη(t)

in two ways:

(i) by using the chaos expansion (Definition 5.3.11)
(ii) by using Wick products, i.e., Theorem 5.3.13.

(i) The chaos expansion of η(T ) is

η(T ) =

T∫

0

∫

R

zÑ(dt, dz)

=

∞∫

0

∫

R

X[0,T ](t1)z1Ñ(dt1, dz1) = I1(f1),

where
F1(t1, z1, t) = X[0,T ](t1)z1X[0,T ](t)

Hence f̃1(t1, z1, t2, z2) is the symmetrization of z2X[0,T ](t1)z1X[0,T ](t2) with
respect to (t1, z1), (t2, z2), i.e.

f̃1(t1, z1, t2, z2) = z1z2X[0,T ](t1)X[0,T ](t2)
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Hence

T∫

0

η(T )δη(t)

= I2(f̃1)

= 2

∞∫

0

∫

R

⎛

⎝
t2∫

0

∫

R

z1z2X[0,T ](t1)X[0,T ](t2)Ñ(dt1, dz1)

⎞

⎠ Ñ(dt2, dz2)

= 2

∞∫

0

∫

R

⎛

⎝
t2∧T∫

0

z1Ñ(dt1, dz1)

⎞

⎠X[0,T ](t2)z2Ñ(dt2, dz2)

= 2

∞∫

0

∫

R

η(t2 ∧ T )X[0,T ](t2)z2Ñ(dt2, dz2)

= 2

T∫

0

η(t)dη(t) (5.3.55)

(ii) Using (5.3.55) and (5.3.47) we get

T∫

0

η(T )δη(t) =

T∫

0

η(T ) � η̇(t)dt

= η(T ) �
T∫

0

η̇(t)dt

= η(T ) � η(T ) = η2(T )−
T∫

0

∫

R

z2N(ds, dz) (5.3.56)

This is the same as (5.3.56) by virtue of (5.3.45).

5.4 White Noise Theory for a Lévy Field (d ≥ 1)

5.4.1 Construction of the Lévy Field

In this section we extend the definitions and results of Sections 5.2–5.3 to
the multi-parameter case when time t ∈ [0,∞) is replaced by a point x =
(x1, . . . , xd) ∈ R

d, for a fixed parameter dimension d. In this case the process
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η(x) = η(x, ω); (x, ω) ∈ R
d × Ω is called a d-parameter (pure jump) Lévy

process or a (pure jump) Lévy (random) field.
We first extend the construction in Section 5.2 to arbitrary parameter

dimension d ≥ 1. As in the Brownian motion case, the construction for
arbitrary d ≥ 1 is basically the same as for d = 1. Nevertheless, we found it
useful to go through the details for d = 1 first (Section 5.2), since this case
is more familiar and has special interest. Now we only need to check that
everything carries over to arbitrary d, mostly with only minor modifications.
For completeness we give the details.

Let ν be a given measure on B0(R0) such that

M :=
∫

R

z2ν(dz) <∞. (5.4.1)

We will construct a d-parameter Lévy process η(x); x = (x1, . . . , xd) ∈ R
d,

such that ν is the Lévy measure of η(·), in the sense that

ν(F ) = E[N(1, . . . , 1;F )], (5.4.2)

where N(x;F ) = N(x;F, ω) : R
d × B0(R0)× Ω → R is the jump measure of

η(·), defined by

N(x1, . . . , xd;F ) = the number of jumps Δη(u) = η(u)− η(u−)
of size Δη(u) ∈ F when ui ≤ xi; 1 ≤ i ≤ n,

u = (u1, . . . , ud) ∈ R
d. (5.4.3)

As before let S(Rd) denote the Schwartz space of rapidly decreasing smooth
functions on R

d and let Ω = S ′(Rd) be its dual, the space of tempered
distributions. Then we define

Definition 5.4.1. The d-parameter Lévy white noise probability measure
is the measure μ = μ(L) defined on the Borel σ-algebra B(Ω) of subsets
of Ω by

∫

Ω

ei<ω,f>dμ(ω) = exp

⎡

⎣
∫

Rd

Ψ(f(y))dy

⎤

⎦; f ∈ S(Rd) (5.4.4)

where

Ψ(u) =
∫

R

(
ei u·z − 1− i u · z

)
ν(dz); u ∈ R (5.4.5)

and < ω, f > denotes the action of ω ∈ S ′(Rd) on f ∈ S(Rd). The triple
(Ω,B(Ω), μ(L)) is called the d-parameter Lévy white noise probability space.
For simplicity of notation we will write μ(L) = μ from now on.
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Remark The existence of μ follows from the Bochner–Minlos theorem (see
Appendix A). In order to apply this theorem we need to verify that the map

F : f �→ exp

⎡

⎣
∫

Rd

Ψ(f(y))dy

⎤

⎦; f ∈ S(Rd)

is positive definite on S(Rd), i.e., that

n∑

j,k =1

zjzkF (fj − fk) ≥ 0 (5.4.6)

for all complex numbers zj and all fj ∈ S(Rd), n = 1, 2, . . . . We leave the
proof of (5.4.6) to the reader (Exercise 5.1).

Lemma 5.4.2. Let g ∈ S(Rd) and put M =
∫

R

z2ν(dz) < ∞. Then, with

E = Eμ,
E [< ·, g >] = 0, (5.4.7)

and
Varμ [< ·, g >] := E

[
< ·, g >2

]
= M

∫

Rd

g2(y)dy. (5.4.8)

Proof The proof is similar to the proof of Lemma 5.2.3: If we apply (5.4.4)
to the function f(y) = t g(y) for a fixed t ∈ R and for y ∈ R

d we get

E [exp[i t < ω, g >]] = exp

⎡

⎣
∫

Rd

Ψ(t g(y))dy

⎤

⎦

= exp

⎡

⎣
∫

Rd

∫

R

(
eitzg(y) − 1− itzg(y)

)
ν(dz)dy

⎤

⎦.

Assume for a moment that ν is supported on [−R,R]d \ {0} for some
R <∞ and that g has compact support. Then by expansion of the above in
a Taylor series we get

∞∑

n=0

1
n!

intnE [< ·, g >n]

=
∞∑

m=0

1
m!

⎧
⎨

⎩

∫

Rd

⎛

⎝
∫

R

( ∞∑

k=2

1
k!

iktkzkgk(y)

)

ν(dz)

⎞

⎠ dy

⎫
⎬

⎭

m
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=
∞∑

m=0

1
m!

⎧
⎨

⎩

∞∑

k=2

1
k!

iktk
∫

R

zkν(dz)
∫

Rd

gk(y)dy

⎫
⎬

⎭

m

.

Comparing the terms containing the first order term t and the second order
term t2, we get

i tE [< ·, g >] = 0

and
1
2
(−1)t2E

[
< ·, g >2

]
=

1
2
(−1)t2

∫

R

z2ν(dz)
∫

Rd

g2(y)dy.

The case with general g ∈ S(Rd) and general ν now follows by an approx-
imation argument. ��

Using Lemma 5.4.2 we can extend the definition of < ω, f > from f ∈
S(Rd) to any f ∈ L2(Rd) as follows:

If f ∈ L2(Rd) choose fn ∈ L2(Rd) such that fn → f in L2(Rd). Then by
(5.4.8) we see that {< ω, fn >}∞n=1 is a Cauchy sequence in L2(μ) and hence
convergent in L2(μ). Moreover, the limit depends only on f and not on the
sequence {fn}n≥1. We denote this limit by < ω, f >.

In general, if ζ(x) = ζ(x, ω); x ∈ R
d is a multiparameter stochastic process

we define its increments Δhζ(x) for h = (h1, . . . , hd) ∈ R
d
+ as follows:

Δhζ(x)

= ζ(x + h)−
d∑

i=1

ζ(x1 + h1, . . . , xi + ĥi, . . . , xd + hd)

+
d∑

i,j=1
i�=j

ζ(x1 + h1, . . . , xi + ĥi, . . . , xj + ĥj , . . . , xd + hd)− · · ·+ (−1)dζ(x)

where the notation ˆ means that this term is deleted. In other words, if we
regard ζ(x) as a random set function ζ̌ by defining

ζ̌
(
(−∞, x1]× · · · × (−∞, xd]

)
= ζ(x1, . . . , xd) (5.4.10)

and extending to all rectangles (a1, b1]× · · · × (ad, bd] by additivity, then

Δhζ(x) = ζ̌
(
(x1, x1 + h1]× · · · × (xd, xd + hd]

)
. (5.4.11)

For example, if d = 2 we get

Δhζ(x) = ζ(x1 + h1, x2 + h2)− ζ(x1, x2 + h2)− ζ(x1 + h1, x2) + ζ(x1, x2).
(5.4.12)
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Theorem 5.4.3 (Construction of a multiparameter pure jump Lévy
process).
For x = (x1, . . . , xd) ∈ R

d define

η̃(x) = η̃(x1, . . . , xd) =< ω,X[0,x](·) > (5.4.13)

where

X[0,x](y) = X[0,x1](y1) · · · X[0,xd](yd); y = (y1, . . . , yd) ∈ R
d (5.4.14)

with

X[0,xi](yi) =

{
1 if 0 ≤ yi ≤ xi or xi ≤ yi ≤ 0, except xi = yi = 0
0 otherwise

(5.4.15)

Then η̃(x) has the following properties

η̃(x) = 0 if one of the components of x is 0, (5.4.16)
η̃ has independent increments (see below), (5.4.17)

η̃ has stationary increments, (5.4.18)
η̃ has a càdl àg version, denoted by η. (5.4.19)

Proof The property (5.4.16) follows directly from (5.4.13)–(5.4.15). To
prove (5.4.17) it suffices to prove that if f, g ∈ S(Rd) have disjoint supports,
then

< ω, f > and < ω, g > are independent.

To this end, it suffices to prove that, for all α, β ∈ R,

E
[
eiα<ω,f>eiβ<ω,g>

]
= E

[
eiα<ω,f>

]
E
[
eiβ<ω,g>

]
. (5.4.20)

By (5.4.4) we have

E
[
eiα<ω,f>eiβ<ω,g>

]
= E

[
ei <ω,αf+βg>

]

= exp

⎡

⎣
∫

Rd

⎛

⎝
∫

R

{
ei(αf+βg)z − 1− i(αf + βg)z

}
ν(dz)

⎞

⎠ dy

⎤

⎦

= exp
[ ∫

R

( ∫

supp f

{
eiαf(y)z − 1− iαf(y)z

}
dy

+
∫

supp g

{
eiβg(y)z − 1− iβg(y)z

}
dy

)

ν(dz)
]
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= exp
[ ∫

R

( ∫

supp f

{
eiαf(y)z − 1− iαf(y)z

}
dy

)

ν(dz)
]

· exp
[ ∫

R

( ∫

supp g

{
eiβg(y) z − 1− iβg(y) z

}
dy

)

ν(dz)
]

= E
[
eiα<ω,f>

]
· E

[
eiβ<ω,g>

]
,

which proves (5.4.20).

To prove (5.4.18) it suffices to prove that if f ∈ S(Rd), h ∈ R
d, and we

define fh(x) = f(x+h); x ∈ R
d, then < ω, f > and < ω, fh > have the same

distribution. To this end it suffices to prove that, for all α ∈ R,

E
[
eiα<ω,f>

]
= E

[
eiα<ω,fh>

]
.

By (5.4.4) this is equivalent to the equation

∫

Rd

⎛

⎝
∫

R

{
eiαf(y)z − 1− iαf(y) z

}
ν(dz)

⎞

⎠ dy

=
∫

Rd

⎛

⎝
∫

R

{
eiαf(y+h)z − 1− iαf(y + h)z

}
ν(dz)

⎞

⎠ dy

which follows from the translation invariance of Lebesgue measure dy.

The existence of a càdlàg version η(x) of η̃(x); x ∈ R
d follows from

Theorem 2.1.7 in Applebaum (2004). The proof that (5.4.4) implies that
ν is the Lévy measure of η is left for the reader (Exercise 5.10). ��

In view of Theorem 5.4.4 it is natural to call the process η(x) a multipa-
rameter (pure jump) Lévy process/martingale or a (pure jump) Lévy random
field. If d = 1, then η(x) = η(t) is the classical pure jump Lévy martingale
(see (5.2.13)).

The process η(x); x ∈ R
d is the pure jump Lévy field that we will work

with from now on.
By our choice (5.4.5) of the function Ψ(u), it follows by the (multi-

parameter) Lévy-Khintchine formula (see Theorem E.2 for the d = 1 case)
that η(x) is a pure jump Lévy martingale of the form

η(x) =

x∫

0

∫

R

zÑ(dy, dz); x ∈ R
d (5.4.21)

Note that if {Δk}mk=1 is a disjoint family of disjoint rectangeles (boxes) in
R

d and ck ∈ R are constants, then
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< ω,
∑

k

ckXΔk
(·) > =

∑

k

ck < ω,XΔk
(·) >

=
∑

k

ckη(Δk) =
∫

R

(
∑

k

ckXΔk
(x)

)

dη(x).

Thus by an approximation argument we obtain that

< ω, h > =
∫

Rd

h(x)dη(x)

=
∫

Rd

∫

R

h(x) z Ñ(dx, dz) (5.4.22)

for all (deterministic) h ∈ L2(λ), where λ denotes Lebesgue measure on R
d.

5.4.2 Chaos Expansions and Skorohod Integrals
(d ≥ 1)

If f(x(1), z1, . . . , x
(n), zn) is a function from (Rd × R)n into R, we define its

symmetrization f̂ by

f̂(x(1), z1, . . . , x
(n), zn) =

1
n!

∑

σ

f(x(σ1), zσ1 , . . . , x
(σn), zσn

) (5.4.23)

the sum being taken over all permutations σ of {1, 2, . . . , n}. In other words,
f̂ is the symmetrization of f with respect to the n variables

y1 = (x(1), z1), . . . , yn = (x(n), zn).

We let L̂2 ((λ× ν)n) denote the set of all symmetric functions
f ∈ L2 ((λ× ν)n).

Put

G =
{

(x(1), z1, . . . , x
(n), zn); x

(1)
j ≤ x

(2)
j ≤ · · · ≤ x

(n)
j for all j = 1, 2, . . . , d

}
.

(5.4.24)
For f ∈ L̂2 ((λ× ν)n) define the n times iterated integral of f by

In(f) = n!
∫

Gn

f(x(1), z1, . . . , x
(n), zn)Ñ(dx(1), dz1) · · · Ñ(dx(n), dzn).

(5.4.25)
By proceeding along the same lines as in Section 5.3, we obtain the

following result (compare with Theorem 5.3.1):
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Theorem 5.4.4 (Chaos expansion I for Lévy fields).
(i) Every F ∈ L2(P ) has a unique expansion

F =
∞∑

n=0

In(fn); fn ∈ L̂2 ((λ× ν)n) (5.4.26)

where, by convention I0(f0) = f0 when f0 is a constant.

(ii) Moreover, we have the isometry

||F ||2L2(P ) =
∞∑

n=0

n!||fn||2L2((λ×ν)n). (5.4.27)

Example 5.4.5 Fix x ∈ R
d. Then F := η(x) ∈ L2(P ) has the expansion

η(x) =

x∫

0

∫

R

zÑ(dy, dz) = I1(f1),

with
f1(y, z) = X[0,x](y)z = X[0,x1](y1) · · · X[0,xd](yd),

where x = (x1, . . . , xd), y = (y1, . . . , yd).
We can now proceed to define Skorohod integrals in the same way as in

Section 5.3 (see Definition 5.3.11):

Definition 5.4.6 (Skorohod integrals (d ≥ 1)) Let Y (x); x ∈ R
d be a

stochastic process such that

E
[
Y 2(x)

]
<∞ for all x ∈ R

d. (5.4.28)

Then for each x ∈ R
d Y (x) has an expansion of the form

Y (x) =
∞∑

n=0

In(fn(·, x); (5.4.29)

where fn(·, x) ∈ L̂2 ((λ× ν)n), with x as a parameter. Suppose that

∞∑

n=0

(n + 1)!||f̃n||2L2((λ×ν)n+1) <∞ (5.4.30)

where f̃n(x(1), z1, . . . , x
(n), zn, x, z) is the symmetrization of

zfn(x(1), z1, . . . , x
(n), zn, x)
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with respect to the n + 1 variables

y1 = (x(1), z1), . . . , yn = (x(n), zn), yn+1 = (x, z) := (x(n+1), zn+1).

Then the Skorohod integral of Y with respect to η is defined by
∫

Rd

Y (x)δη(x) =
∞∑

n=0

In+1(f̃n). (5.4.31)

Just as in the case d = 1 we can now prove that if Y (x) is Skorohod-
integrable, then

E

⎡

⎢
⎣

⎛

⎝
∫

Rd

Y (x)δη(x)

⎞

⎠

2
⎤

⎥
⎦ =

∞∑

n=0

(n + 1)!||f̃n||2L2((λ×ν)n+1) <∞ (5.4.32)

and

E

⎡

⎣
∫

Rd

Y (x)δη(x)

⎤

⎦= 0. (5.4.33)

See (5.3.52) and (5.3.53). Moreover, if Y (·) is adapted, in the sense that for
all x the random variable Y (x) is measurable with respect to the σ-algebra
Fx generated by

{η(y); y1 ≤ x1, . . . , yd ≤ xd}

and E

[
∫

Rd

Y 2(x)dx

]

<∞, then Y (x) is Skorohod-integrable and

∫

Rd

Y (x)δη(x) =
∫

Rd

Y (x)dη(x),

where the integral on the right hand side is the Itô integral.
Proceeding as in Section 5.3 we assume from now on that ν satisfies condi-

tion (5.3.15). And we let {lm}m≥0 = {1, l1, l2, . . . } be the orthogonalization
of the polynomials {1, z, z2, . . . } with respect to the inner product of L2(ρ),
where

dρ(z) = z2ν(dz); z ∈ R.

Define, as in (5.3.17),

pj(z) := ||lj−1||−1
L2(ρ)z lj−1(z); j = 1, 2, . . . (5.4.34)

where

M =
∫

R

z2ν(dz) <∞.
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Then {pj(z)}∞j =1 is an orthonormal basis of L2(ν). Note that with this
definition we have

p1(z) = M− 1
2 z or z = M

1
2 p1(z); z ∈ R. (5.4.35)

As before let {ξi(t)}∞i=1 be the Hermite functions on R and for

γ = (γ1, . . . , γd) ∈ N
d

let
ξγ = ξγ1 ⊗ ξγ2 ⊗ · · · ⊗ ξγd

(5.4.36)

i.e.
ξγ(x) = ξγ1(x1)ξγ2(x2) · · · ξγd

(xd); x = (x1, . . . , xd) ∈ R
d

Then {ξγ}γ∈Nd is an orthonormal basis for L2(Rd). As in (2.2.7) we may
assume that N

d is ordered, N
d = {γ(1), γ(2), . . . }, in such a way that

i < j ⇒ γ
(i)
1 + · · ·+ γ

(i)
d ≤ γ

(j)
1 + · · ·+ γ

(j)
d (5.4.37)

and from now on we write (with abuse of notation)

ξi(x) := ξγ(i)(x); i = 1, 2, . . . ; x ∈ R
d (5.4.38)

With κ : N× N→ N as in (5.3.18), we define

δκ(i,j)(x, z) = ξi(x)pj(z); (i, j) ∈ N× N (5.4.39)

for (x, z) ∈ R
d × R.

As before let I be the set of all multi-indices α = (α1, . . . , αm) ∈ I with

αi ∈ N ∪ {0}, for i = 1, . . . ,m, m = 1, 2, . . .

For α = (α1, . . . , αm) ∈ I with Index(α) := max{i; αi �= 0} = j and

|α| := α1 + · · ·+ αj = m

we define the function δ⊗α by

δ⊗α(x(1), z1, . . . , x
(m), zm) = δ⊗α1

1 ⊗ · · · ⊗ δ
⊗αj

j (x(1), z1, . . . , x
(m), zm)

= δ1(x(1), z1) · · · δ1(x(α1), zα1)︸ ︷︷ ︸
α1 factors

· · · δj(x(m−αj+1), zm−αj+1) · · · δj(x(m), zm)
︸ ︷︷ ︸

αj factors

(5.4.40)

As usual we set δ⊗0
i = 1.
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We thus define the symmetrized tensor product of the δ′ks, denoted by
δ⊗̂α, as follows:

δ⊗̂α(x(1), z1, . . . , x
(m), zm) = (̂δ⊗α)(x(1), z1, . . . , x

(m), zm)

= δ⊗̂α1
1 ⊗̂ · · · ⊗̂δ

⊗̂αj

j (x(1), z1, . . . , x
(m), zm),

(5.4.41)

where the symbol ˆ denotes symmetrization.

Definition 5.4.7 For α ∈ I define

Kα = Kα(ω) := I|α|

(
δ⊗̂α

)
. (5.4.42)

As in Section 5.3 we simplify the notation and put

ε(i,j) = ε(κ(i,j)) = (0, 0, . . . , 1), (5.4.43)

with 1 on place number κ(i, j), where κ(i, j) is defined as in (5.3.18).

Example 5.4.8 By (5.4.40) and (5.4.35) we have

Kε(i,j) = Kεκ(i,j) = I1

(
δ⊗̂εκ(i,j)

)

= I1

(
δκ(i,j)

)
= I1 (ξi(x)pj(z))

=
∫

Rd

∫

R

ξi(x)pj(z)Ñ(dx, dz)

= M− 1
2

∫

Rd

∫

R

ξi(x)zÑ(dx, dz). (5.4.44)

Let fn =
∑

|α|=n aαδ⊗̂α ∈ L̂2 ((λ× ν)n) and gm =
∑

|β|=m bβδ⊗̂β ∈
L̂2 ((λ× ν)n). Then

fn⊗̂gm =
∑

|α|=n

∑

|β|=m

aαbβδ⊗̂(α+β)

=
∑

|γ|=n+m

⎛

⎝
∑

α+β =γ

aαbβ

⎞

⎠ δ⊗̂γ .

Hence, by Definition 5.4.7,

In(fn) =
∑

|α|=n

aαIn

(
δ⊗̂α

)
=

∑

|α|=n

aαKα (5.4.45)
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and

In+m

(
fn⊗̂gm

)
=

∑

|γ|=n+m

⎛

⎝
∑

α+β =γ

aαbβ

⎞

⎠Kγ (5.4.46)

The identity (5.4.45) gives the link between Chaos expansion I
(Theorem 5.4.4) and the following expansion:

Theorem 5.4.9 (Chaos expansion II for Lévy fields).

(i) Every F ∈ L2(P ) has a unique representation

F =
∑

α∈I
cαKα; cα ∈ R. (5.4.47)

(ii) Moreover, we have the isometry

||F ||2L2(P ) =
∑

α∈I
α!c2

α. (5.4.48)

Example 5.4.10 Choose F = η(x) =
x∫

0

∫

R

zÑ(dy, dz), where x ∈ R
d is fixed.

Then

F =
∫

Rd

∫

R

∞∑

i=1

(
X[0,x](·), ξi

)
L2(λ)

ξi(y) z Ñ(dy, dz)

=
∞∑

i=1

xd∫

0

· · ·
x1∫

0

ξi(u)du1 · · · dud

⎛

⎝
∫

Rd

∫

R

ξi(y) z Ñ(dy, dz)

⎞

⎠

= M
1
2

∞∑

i=1

xd∫

0

· · ·
x1∫

0

ξi(u)du1 · · · dudKε(κ(i,1))

= M
1
2

∞∑

i=1

x∫

0

ξi(u)duKε(i,1) . (5.4.49)

We can now proceed word by word as in the case d = 1 (Section 5.3) to
define the general d-dimensional Lévy field version of the Hida–Kondratiev
stochastic test function spaces

(S) := (S)0 and (S)ρ; 0 ≤ ρ ≤ 1

and the Hida–Kondratiev stochastic distributions spaces

(S)∗ := (S)−0 and (S)−ρ; 0 ≤ ρ ≤ 1.
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(See Definition 5.3.6). As before we have

(S)1 ⊂ (S)ρ ⊂ (S) ⊂ L2(P ) ⊂ (S)∗ ⊂ (S)−ρ ⊂ (S)−1.

Example 5.4.11 The (d-parameter) Lévy white noise η̇(x) of the Lévy field
η(x) is defined by the expansion

η̇(x) = M
1
2

∞∑

i=1

ξi(x)Kε(κ(i,1)) (5.4.50)

Just as in the case d = 1 (see Definition 5.3.7) we can verify that

η̇(x) ∈ (S)∗ for each x ∈ R
d

and (see (5.4.49))

η̇(x) =
∂d

∂x1 · · · ∂xd
η(x); x = (x1, . . . , xd). (5.4.51)

5.4.3 The Wick Product

Based on the chaos expansion II (Theorem 5.4.9), we can now proceed to
define the Wick product along the same lines as in Chapter 2:

Definition 5.4.12 (The Wick product) Let F =
∑

α∈I aαKα and
G =

∑
β∈I bβKβ be two elements of (S)−1. Then we define their Wick product

F �G by the expression

F �G =
∑

α,β∈I
aαbβKα+β =

∑

γ∈I

(
∑

α+β =γ

aαbβ

)

Kγ . (5.4.52)

As in Chapter 3 we can prove that all the spaces (S)ρ and (S)−ρ; 0 ≤ ρ ≤ 1
are closed under Wick multiplication.

Example 5.4.13 Note that by (5.4.45)–(5.4.46) we have, for fn ∈ L̂2 ((λ× ν)n)
and gm ∈ L̂2 ((λ× ν)m)

In(fn) � Im(gm) =
∑

|α|=n

aαKα �
∑

|β|=m

bβKβ =
∑

α,β∈I
aαbβKα+β

=
∑

|γ|=n+m

⎛

⎝
∑

α+β =γ

aαbβ

⎞

⎠Kγ = In+m(fn⊗̂gm). (5.4.53)
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In particular, by (5.4.44),

Kε(κ(i,1)) �Kε(κ(i,1)) = M−1I1 (ξi(x)z) � I1 (ξi(x)z)

= M−1I2

(
ξi(x(1))ξi(x(2))z1z2

)
. (5.4.54)

Example 5.4.14 Let us compute

η�2(x) := η(x) � η(x)

= I1

(
X[0,x](y(1))z1

)
� I1

(
X[0,x](y(2))z2

)

= I2

(
X[0,x](y(1))X[0,x](y(2))z1z2

)

= 2

x∫

0

∫

R

⎛

⎜
⎝

y(2)∫

0

∫

R

z1z2Ñ(dy(1), dz1)

⎞

⎟
⎠ Ñ(dy(2), dz2)

= 2

x∫

0

∫

R

z2η(y(2))Ñ(dy(2), dz2) = 2

x∫

0

η(y)dη(y). (5.4.55)

This is the Lévy analog (and d-dimensional extension) of the identity

t∫

0

B(s)δB(s) =
1
2
B�2(t)

obtained in Example 2.5.11.

Remark Surprisingly, the relation in d = 1 between the Skorohod integrals
and Wick product in Theorem 5.3.13, namely

∫

R

Y (t)δη(t) =
∫

R

Y (t) � η̇(t)dt,

does not extend to d > 1. To see this, choose d = 2 and Y (x) = η(x).
By Wick calculus we have

∂

∂x1
η�2(x) = 2η(x) � ∂

∂x1
η(x)

and

∂2

∂x1∂x2
η�2(x) = 2η(x) � ∂2

∂x1∂x2
η(x) + 2

∂η

∂x1
� ∂η

∂x2

= 2η(x) � η̇(x) + 2
∂η

∂x1
� ∂η

∂x2
.
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Integrating over the rectangle [0, x1]× [0, x2] we get

η�2(x) =

x2∫

0

x1∫

0

∂2

∂y1∂y2
η�2(y)dy1dy2

= 2

x∫

0

η(y) � η̇(y)dy + 2

x∫

0

(
∂η

∂y1
� ∂η

∂y2

)

(y)dy. (5.4.56)

Comparing this with (5.4.55) we obtain

1
2
η�2(x) =

x∫

0

η(y)dη(y)

=

x∫

0

η(y) � η̇(y)dy +

x∫

0

(
∂η

∂y1
� ∂η

∂y2

)

(y)dy. (5.4.57)

For more information about this, see Løkka and Proske (2006). On the
other hand, if Y : R

d → R is deterministic and
∫

Rd

Y 2(y)dy <∞, we do have

that
∫

Rd

Y (y) � η̇(y)dy =
∫

Rd

Y (y)η̇(y)dy =
∫

Rd

Y (y)dη(y). (5.4.58)

5.4.4 The Hermite Transform

Just as we have seen for the Brownian motion case in Chapter 3, we can
define a correspondence between the elements of the stochastic distribution
space (S)−1 and a space of analytic functions of several complex variables.
The correspondence is given in terms of the Hermite transform, defined as
follows:

Definition 5.4.15 Let F =
∑

α∈I aαKα ∈ (S)−1. Then the (Lévy) Hermite
transform of F , denoted by HF , is the function from the set (CN)c of all finite
sequences of complex numbers into C, defined by

HF (ζ1, ζ2, . . . ) =
∑

α∈I
aαζα ∈ C, (5.4.59)

where ζ = (ζ1, ζ2, . . . ) ∈ C
N and

ζα := ζα1
1 · ζα2

2 · · · ζαm
m if α = (α,α2, . . . , αm) ∈ I.
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Example 5.4.16 Let F = η̇(x) = M
1
2
∑∞

j=1 ξj(x)Kε(κ(j,1)) ∈ (S)∗. Then

(HF )(ζ) = M
1
2

∞∑

j=1

ξj(x)ζε(κ(j,1))

= M
1
2

∞∑

j=1

ξj(x)ζκ(j,1). (5.4.60)

The following useful result is a direct consequence of the definition:

Proposition 5.4.17. If F,G ∈ (S)−1, then

H(F �G)(ζ) = (HF )(ζ) · (HG)(ζ); ζ ∈ (CN )c. (5.4.61)

We end this section with a characterization theorem for Hermite trans-
forms. Again the proof is similar to the Brownian motion case and is therefore
omitted:

Theorem 5.4.19 (Characterization theorem for Hermite transforms).
Define, for 0 < q,R < ∞, the infinite-dimensional neighborhood Nq(R) of 0
in C

N by

Nq(R) =

⎧
⎨

⎩
(ζ1, ζ2, . . . ) ∈ C

N;
∑

α �=0

|ζα|2(2N)qα < R2

⎫
⎬

⎭
(5.4.62)

where ζα = ζα1
1 · · · ζαm

m if α = (α1, . . . , αm) ∈ I.
(i) If F =

∑
α∈I aαKα ∈ (S)−1, then there exist q,Mq <∞ such that

|HF (ζ)| ≤
∑

α∈I
|aα||ζα| ≤Mq

(
∑

α∈I
(2N)qα|ζα|2

) 1
2

(5.4.63)

for all ζ ∈ (CN )c. In particular, HF is a bounded analytic function on
Nq(R) for all R <∞.

(ii) Conversely, assume that g(ζ) :=
∑

α∈I bαζα is a power series in

ζ = (ζ1, ζ2, . . . ) ∈ (CN )c

such that there exist q < ∞, δ > 0 with g(ζ) absolutely convergent and
bounded on Nq(δ). Then there exists a unique G ∈ (S)−1 such that

HG = g,

namely

G =
∑

α∈I
bαKα. (5.4.64)
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We now have the machinery needed to solve stochastic partial differential
equations driven by Lévy white noise. Examples of such will be given in the
next section.

5.5 The Stochastic Poisson Equation

We now use the white noise theory developed in the previous sections of this
chapter to study the stochastic Poisson equation

ΔU(x) = −η̇(x); x ∈ D U(x) = 0; x ∈ ∂D (5.5.1)

driven by Lévy white noise η̇(x). (See Section 4.2 for the Brownian white
noise case.) As before Δ =

∑d
k=1 ∂2/∂x2

k is the Laplace operator on R
d and

D ⊂ R
d is a given bounded domain with regular boundary. This equation is

a natural model for the temperature U(x) at the point x ∈ D if the boundary
temperature is kept equal to 0 and there is a Lévy white noise heat source
in D. As in Chapter 4 we regard (5.5.1) as an equation in (S)−1 and the
derivatives are defined in the topology of (S)−1.

To solve (5.5.1) we proceed as in Chapter 4:

Step 1: We transform the equation into a deterministic partial differen-
tial equation with complex parameters ζ by applying the Hermite transform
defined in the previous section.

Step 2: We solve this deterministic partial differential equation by classical
methods for each parameter value ζ ∈ (CN)c.

Step 3: Finally, we use the characterization theorem for Hermite transforms
(Theorem 5.4.19) to show that the solution found in Step 2 is the transform
of an (S)−1-valued function, which solves the original equation.

Applied to equation (5.5.1) this procedure gives the following:
Re. Step 1: Define

u(x; ζ) = (HU(x))(ζ); ζ = (ζ1, ζ2, . . . ) ∈ (CN)c

Since

H(η̇(x))(ζ) = M
1
2

∞∑

j =1

ξj(x)ζκ(j,1)

where ζκ(j,1) = ζε(κ(j,1))
= ζε(j,1) ∈ C for all j (see (5.4.59), the H-transform

of (5.5.1) is

Δu(x, ζ) = −M
1
2

∞∑

j=1

ξj(x)ζ(j,1); x ∈ D

u(x; ζ) = 0; x ∈ ∂D

(5.5.2)
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Re. Step 2: Let G(x, y) be the classical Green function for the Laplace
operator on D with 0 boundary conditions. Then for a given ζ ∈ (CN)c the
solution of (5.5.2) is

u(x; ζ) =
∫

D

H(η̇(y))(ζ)G(x, y)dy = M
1
2

∞∑

j =1

⎛

⎝
∫

D

ξj(y)G(x, y)dy

⎞

⎠ ζ(j,1).

(5.5.3)

Re. Step 3: Note that for all ζ ∈ (CN)c, x ∈ D we have, using that
ζ(j,1) = ζε(κ(i,j))

|u(x; ζ)| ≤M
1
2

∞∑

j =1

⎛

⎝
∫

D

|ξj(y)|G(x, y)dy

⎞

⎠ |ζ(j,1)| ≤ const
∞∑

j =1

|ζ(j,1)|

≤ const

⎛

⎝
∞∑

j =1

|ζ(j,1)|2(2N)2ε(j,1)

⎞

⎠

1
2
⎛

⎝
∞∑

j =1

(2N)−2ε(j,1)

⎞

⎠

1
2

≤ const ·R

⎛

⎝
∞∑

j =1

(2N)−2ε(j,1)

⎞

⎠

1
2

if ζ ∈ N2(R) (see (5.4.62)). From (5.3.18) we see that

∞∑

j =1

(2N)−2ε(j,1)
=

∞∑

j =1

(2κ(j, 1))−2 ≤
∞∑

j =1

(2j)−2 <∞. (5.5.4)

It follows that the series (5.5.3) converges absolutely for ζ ∈ N2(R), for
all R <∞. Hence u(x; ζ) is an analytic function of ζ ∈ N2(R) for all R <∞
and we can apply part (ii) of Theorem 5.4.19 to conclude that for all x ∈ D
there exist a unique U(x) ∈ (S)−1 such that

HU(x) = u(x), (5.5.5)

namely

U(x) = M
1
2

∞∑

j =1

⎛

⎝
∫

D

ξj(y)G(x, y)dy

⎞

⎠Kε(j,1) . (5.5.6)

It remains to verify that this U satisfies

ΔU(x) = −η̇(x); x ∈ D. (5.5.7)

To this end we proceed as outlined in Theorem 4.1.1: From the general
theory of deterministic elliptic partial differential equations (see, e.g., Bers
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et al. (1964), Theorem 3, p. 232) it is known that for all open and relatively
compact sets V ⊂ D and for all α ∈ (0, 1) there exists a constant C such that

||u(·; ζ)||C2+α ≤ C
(
||Δu(·; ζ)||Cα(V ) + ||u(·; ζ)||C(V )

)

for all ζ ∈ (CN)c. Since both Δu = −Hη̇ and u are bounded on D ×K2(R),
we conclude that Δu(x; ζ) = Δ(HU(x))(ζ) is uniformly bounded for (x, ζ) ∈
D × K2(R), it is x-continuous in D for each ζ ∈ K2(R) and analytic with
respect to ζ ∈ K2(R) for all x ∈ D. Hence (5.5.7) follows, by (the Lévy analog
of) Theorem 4.1.1. We have proved

Theorem 5.5.1 Løkka et al. (2004). There exists a unique stochastic
distribution process U : D → (S)∗ solving (5.5.1). The solution is twice con-
tinuously differentiable in (S)∗ and is given by

U(x) =
∫

D

η̇(y)G(x, y)dy

= M
1
2

∞∑

k=1

∫

D

ξk(y)G(x, y)dyKε(k,1) (5.5.8)

Remark Although we have worked in the stochastic distribution space
(S)−1, it is easy to see that the solution U(x) given by (5.5.8) actually
belongs to (S)∗ for each x. (Exercise 5.14.) As in the Brownian white noise
case, the interpretation of such an (S)∗-valued (resp. (S)−1-valued) solution
U(x) is the following:

For each x ∈ D, U(x) is a stochastic distribution whose action on a
stochastic test function f ∈ (S) (resp. f ∈ (S)1) is

〈U(x), f〉 =
∫

D

G(x, y)〈η̇(y), f〉dy, (5.5.9)

where

〈η̇(y), f〉 =

〈

M
1
2

∞∑

j=1

ξj(y)Kε(κ(j,1)) , f

〉

= M
1
2

∞∑

j=1

ξj(y)E[Kε(κ(j,1))f ]

=
∞∑

j=1

ξj(y)E

⎡

⎣f

∫

Rd

∫

R

ξj(x) z Ñ(dx, dz)

⎤

⎦.

In this sense we may interpret U(x) = U(x, ω) as a solution which takes
ω-averages for each x.
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If the dimension d is low, we can prove that U(x) is actually a classical
L2(P ) process:

Corollary 5.5.2. Løkka et al. (2004) Suppose d ≤ 3. Then U(x) ∈ L2(P )
for all x ∈ D, and x→ U(x) is continuous in L1(P ).

Proof Since the singularity of G(x, y) at y = x has the order of magnitude
|x − y|2−d for d ≥ 3 and log[1/|x − y|] for d = 2 (with no singularity for
d = 1), we see by using polar coordinates that

∫

D

G2(x, y)dy ≤const ·
1∫

0

r2(2−d)rd−1dr = const ·
1∫

0

r3−ddr <∞

for d ≤ 3. Hence, using (5.4.58),

E[U2(x)] = E

⎡

⎢
⎣

⎛

⎝
∫

D

G(x, y)η̇(y)dy

⎞

⎠

2
⎤

⎥
⎦

= E

⎡

⎢
⎣

⎛

⎝
∫

D

G(x, y)dη(y)

⎞

⎠

2
⎤

⎥
⎦

= E

⎡

⎢
⎣

⎛

⎝
∫

D

⎛

⎝
∫

R

G(x, y) z Ñ(dy, dz)

⎞

⎠

⎞

⎠

2
⎤

⎥
⎦

=
∫

D

∫

R

G2(x, y) z2 ν(dz)dy = M

∫

D

G2(x, y)dy <∞

This proves that U(x) ∈ L2(P ) for each x ∈ D. Moreover, since

sup
x∈D

∫

D

G2(x, y)dy <∞,

the family
{
∫

D

G(x, y)dη(y)
}

x∈D

is uniformly P -integrable and hence

E

⎡

⎣

∣
∣
∣
∣
∣
∣

∫

D

G(x(n), y)dη(y)−
∫

D

G(x, y)dη(y)

∣
∣
∣
∣
∣
∣

⎤

⎦→ 0

for all sequences {x(n)}∞n=1 converging to x ∈ D. Hence U(x) is continuous
in L1(P ). ��
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5.6 Waves in a Region with a Lévy White Noise Force

Let D ⊂ R
m be a bounded domain with a C1 boundary. Consider the

stochastic wave equation

∂2U

∂t2
(t, x)−ΔU(t, x) = F (t, x) ∈ C

m+1
2 (R+ × R

m; (S)−1)

U(0, x) = G(x) ∈ C
m+3

2 (Rm; (S)−1)
∂U

∂t
(0, x) = H(x) ∈ C

m+1
2 (Rm; (S)−1)

(5.6.1)

Here

F (·, ·) : R+ × R
m → (S)−1 (corresponding to d = m + 1)

G(·) : R
m → (S)−1 (corresponding to d = m)

and
H(·) : R

m → (S)−1

are given stochastic distribution processes.
By applying the Hermite transform, then solving the corresponding deter-

ministic PDE for each value of the parameter ζ ∈ (CN)c and finally taking
inverse Hermite transform as in the previous example, we get an (S)−1-valued
solution (in any dimension m). To illustrate this we just give the solution in
the case m = 1 and we refer to Øksendal et al. (2006) for a solution in the
general dimension.

Theorem 5.6.1 [Øksendal et al. (2006), m = 1 case]. If m = 1 then
the unique solution U(t, x) of equation (5.6.1) is

U(t, x) =
1
2
(G(x + t)−G(x− t)) +

1
2

x+t∫

x−t

H(s)ds

+
1
2

t∫

0

x+(t−s)∫

x−(t−s)

F (s, y)dy ds.

Here the integrals are (S)∗-valued integrals.

In particular, if F (s, y) = η̇(s, y), then the last term can be written

1
2
η(Dt,x)

where Dt,x = {(s, y);x − t + s ≤ y ≤ x + t − s, 0 ≤ s ≤ t} is the domain of
dependence of the point (t, x).
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5.7 Heat Propagation in a Domain with a Lévy White
Noise Potential

Consider the stochastic heat equation

∂U

∂t
(t, x) =

1
2
ΔU(t, x) + U(t, x) � η̇(t, x); (t, x) ∈ [0, T ]× R

d

U(0, x) = f(x); x ∈ R
d (f deterministic)

(5.7.1)

We take the Hermite transform and get the following deterministic heat
equation in u(t, x; ζ) with ζ ∈ (CN)c as a parameter:

∂

∂t
u(t, x; ζ) =

1
2
Δu(t, x; ζ) + u(t, x; ζ)Hη̇(t, x; ζ)

u(0, x; ζ) = f(x).
(5.7.2)

This equation can be solved by using the Feynman–Kac formula, as follows:
Let B̂(t) be an auxiliary Brownian motion on a filtered probability space
(Ω̂, F̂ , {Ft}t≥0, P̂ ), independent of B(·).

Then the solution of (5.7.1) can be written

u(t, x; ζ) = Êx

[

f(B̂(t)) exp

[ t∫

0

Hη̇(s, B̂(s); ζ)ds

]]

(5.7.3)

where Êx denotes expectation with respect to P̂ when B̂(0) = x. Taking
inverse Hermite transforms we get:

Theorem 5.7.1. The unique (S)−1-solution of (5.7.1) is

U(t, x) = Êx

[

f(B̂(t)) exp�

[ t∫

0

η̇(s, B̂(s))ds

]]

, (5.7.4)

where exp�[·] denotes the Wick exponential, defined in general by

exp�[F ] =
∞∑

n=0

1
n!

F �n; F ∈ (S)−1,

where
F �n = F � F � · · · � F (n times).

Exercises

5.1 Prove (5.2.9) and (5.4.6).
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5.2 (d = 1) Find the chaos expansion F =
∑∞

m=0 Im(fm) (of the form
(5.3.10)) for the random variables

(i) F (ω) = η3(T ) (Hint: See Example 5.3.3)
(ii) F (ω) = exp[η(T )].

5.3 (d = 1) The Itô representation theorem (Itô (1956)) for pure jump Lévy
processes states that if F ∈ L2(μ) is FT -measurable, then there exists a
unique predictable process φ(t, z) such that

E

⎡

⎣
T∫

0

∫

R

φ2(t, z)ν(dz)dt

⎤

⎦ <∞

and

F = E[F ] +

T∫

0

∫

R

φ(t, z)Ñ(dt, dz).

a) Find φ(t, z) when F = η2(T ). (Hint: Use (5.3.14))
b) Prove that there does not exist a predictable process Ψ(t) such that

E

⎡

⎣
T∫

0

Ψ2(t)dt

⎤

⎦ <∞

and

η2(T ) = E[η2(T )] +

T∫

0

Ψ(t)dη(t)

5.4 (d = 1) Prove that a chaos expansion with respect to dη(t), i.e.

F = E[F ] +
∞∑

n=1

n!

∞∫

0

· · ·
t2∫

0

fn(t1, . . . , tn)dη(t1) · · · dη(tn)

(similar to Theorem 2.2.7) with fn ∈ L̂2(λn) is not possible for
F = η2(T ). (Hint: Use (5.5.14))

5.5 (d = 1) Find the chaos expansion F (ω) =
∑

α∈I cαKα(ω) (of the form
(5.3.24)) for the following random variables:

(i) F (ω) = η2(T )
(ii) F (ω) = exp[η(T )].

5.6 (d = 1) Prove (5.3.37) (Hint: Use (5.3.33) and (5.3.35)) to get
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t∫

0

∫

R

z
˙̃
N(s, z)ν(dz)ds = M

1
2

t∫

0

∫

R

∞∑

i,j=1

z ξi(s)pj(z)Kε(κ(i,j))ν(dz)ds

=

t∫

0

∫

R

z Ñ(ds, dz) = η(t)

5.7 (d = 1) Show that

η(t1) � η(t2) = η(t1) · η(t2)−
t1∧t2∫

0

∫

R

z2 N(ds, dz) for t1, t2 ≥ 0.

(Hint: Use bilinearity of the Wick product to extend (5.3.45) to F1 � F2),
where

Fi(ω) =
∫

R

hi(s)dη(s); hi ∈ L2(R); i = 1, 2

5.8 (d = 1) Prove (5.3.48).
(Hint: Use the extension of (5.3.46) in Exercise 5.7 and that Kε(κ(i,1)) =
I1(ξi(t) z).)

5.9 (d = 1) Find the Skorohod integral

T∫

0

η2(T )δη(t)

in two ways:

(i) By using chaos expansion (Definition 5.3.11)
(ii) By using Wick products (Theorem 5.3.13) (Hint: Proceed as in

Example 5.3.14.)

5.10 Let η(x) be the pure jump Lévy field constructed from the measure ν,
as in Theorem 5.4.3. Show that ν is the Lévy measure of η(·), in the sense of
(5.4.2)–(5.4.3).

5.11 Show that for x ∈ R
d we have

x∫

0

η(x)δη(y) = 2

x∫

0

η(y)dη(y)

(Hint: Proceed as in Example 5.3.14.)
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5.12 Show that for x ∈ R
d and for F = F (ω) a random variable not

depending on y we have

x∫

0

Fδη(y) = F �
x∫

0

dη(y) = F � η(x)

5.13 Prove that if Y : R
d → R is deterministic and Y ∈ L2(Rd), then

∫

Rd

Y (x)dη(x) =
∫

Rd

Y (x) � η̇(x)dx =
∫

Rd

Y (x)η̇(x)dx.

5.14 Let U(x) be as in (5.5.8). Prove that U(x) ∈ (S)∗ for all dimensions d
and all x ∈ D.



Appendix A

The Bochner–Minlos Theorem

As our approach to stochastic partial differential equations is completely
based on the existence of the white noise measure μ1 on S ′(Rd), we include
a proof of its existence.

There are by now several extensions of the classical Bochner’s theorem
on R

d. Instead of choosing the elegant and abstract approach as in
Hanche–Olsen (1992), we will present a more analytic proof taken from Simon
(1979), and Reed and Simon (1980). This means that we will first prove the
Bochner–Minlos theorem on a space of sequences. The idea of the proof is
simple. The existence of a measure on finite-dimensional subspaces is just
the classical Bochner’s theorem. Kolmogorov’s theorem is used to obtain the
existence of a measure on the full infinite-dimensional space, and we are left
to prove that our space of sequences has full measure. The result is carried
over to the set of tempered distributions using the Hermite functions as a
basis. We will in fact prove a more general version of the Bochner–Minlos
theorem than needed in Theorem 2.1.1 in that the right hand side of (2.1.3),
e−1/2‖φ‖2

, is replaced by a positive definite functional.
For simplicity of notation we consider only S(Rd) with d = 1. Let s be the

space of sequences

s = {a = {an}n∈N0 ; lim
n→∞

npan = 0 for all p ∈ N}, (A.1)

and let

sm =

{

a = {an}n∈N0 ; ‖a‖2m :=
∞∑

n = 0

(1 + n2)m|an|2 <∞
}

, m ∈ Z. (A.2)

Clearly
s =

⋂

m∈Z

sm, (A.3)
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and s is a Fréchet space. The topological dual space to s, denoted by s′, is
given by

s′ =
⋃

m∈Z

sm, (A.4)

and the natural pairing of elements from s and s′, denoted by 〈·, ·〉, is
given by

〈a′, a〉 =
∞∑

n = 0

a′
nan for a′ ∈ s′, a ∈ s.

We equip s′ with the cylinder topology. We will, whenever convenient,
consider s and s′ as subsets of R

N0 , the set of all sequences.
Assume now that we have a probability measure μ on s′, and consider the

functional g on s defined by

g(a) =
∫

s′

ei〈a′,a〉dμ(a′). (A.5)

Then g has the following three properties:

(i) g(0) = 1;
(ii) g is positive definite, i.e.,

n∑

j,l=1

zj z̄lg(aj − al) ≥ 0 for any zj ∈ C, aj ∈ s, j = 1, . . . , n;

(iii) g is continuous in the Fréchet topology.

The Bochner–Minlos theorem states that conditions (i)–(iii) are not only
necessary but also sufficient for the existence of μ.

Theorem A.1. A necessary and sufficient condition for the existence of a
probability measure μ on s′ and a functional g on s satisfying (A.5) is that g
satisfies conditions (i )–(iii ).

Proof (Simon (1979), p. 11f). We have already observed that conditions
(i)–(iii) are necessary. Taking the classical Bochner’s theorem for granted
(see, e.g., Reed and Simon (1975), p. 13), we know that for any finite index
set N ⊂ N we have a unique measure μN on R

#(N) such that

g(a) =
∫

R#(N)

ei〈a′,a〉dμN (a′), (A.6)

where #(N) denotes the cardinality of N . We now use Kolmogorov’s theorem
(Simon (1979), p. 9) to conclude that there exists a measure μ on cylinder
sets on R

N such that (A.6) holds for all a ∈ s with finite support. Considering
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s as a subset of R
N, it remains to show that μ(s′) = 1. To that end, let ε > 0.

Using the continuity of g, we can find m ∈ N and δ > 0 such that ‖a‖m < δ
implies |g(a)− 1| < ε. We see that

Re g(a) =
∫

s′

cos〈a′, a〉dμ(a′) ≥ −1 for all a.

By considering the cases ‖a‖m < δ and ‖a‖m ≥ δ separately, we obtain
that

Re g(a) ≥ 1− ε− 2δ−2‖a‖2m. (A.7)

Let α = {αn}, αn > 0, be some fixed sequence and define measures on
R

N+1 by

dμN,σ(a) =
N∏

n = 0

(2πσαn)−
1
2 exp

[

− a2
n

2σαn

]

dan, (A.8)

where σ > 0 is a constant. Then μN,σ(RN+1) = 1 and
∫

RN+1

ajaldμN,σ(a) = σαjδj,l,

∫

RN+1

ei〈a′,a〉dμN,σ(a) = exp

[

−σ

2

N∑

n = 0

αna′2
n

]

.

(A.9)

By integrating (A.7) we find that

∫

RN+1

exp

[

−σ

2

N∑

n = 0

αna′2
n

]

dμ(a′)

≥ 1− ε− 2δ−2σ

N∑

n = 0

(1 + n2)mαn.

(A.10)

Let αn = (1 + n2)−m−1. Then
∑∞

n = 1 αn(1 + n2)m = c < ∞. Monotone
convergence implies that

∫

RN

exp

[

−σ

2

∞∑

n = 0

αna′2
n

]

dμ(a′) ≥ 1− ε− 2δ−2σC. (A.11)

Let σ → 0. Then μ(s−m−1) ≥ 1− ε. Hence

μ(s′) ≥ 1− ε,

which finally proves that u(s′) = 1. ��
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Our next result relates the sequence spaces s and s′ with the Schwartz
space, S(R), and the set of tempered distributions, S ′(R), respectively.
For that purpose we use the Hermite functions. Recall from (2.2.2) that the
Hermite functions given by

ξn(x) =
e−

x2
2

√
(n− 1)!π

1
4
hn−1(

√
2x), n = 1, 2, . . . , (A.12)

where hn are the Hermite polynomials, constitute an orthonormal basis in
L2(R). Furthermore, defining the operator

H =
1
2

(

x− d

dx

)(

x +
d

dx

)

: S(R)→ S(R), (A.13)

we find that
Hξn+1 = nξn+1 n = 0, 1, . . . . (A.14)

For f ∈ S(R) we define the norm

‖f‖m := ‖(H2 + 1)mf‖2, (A.15)

where we use the L2(R)-norm on the right hand side.
The relation between s and S(R) is the one induced by the Hermite func-

tions; given a sequence in s we form a function in S(R) by using the elements
as coefficients in an expansion along the basis {ξn}.

Theorem A.2. a) The map K : S(R)→ s given by

f → {(ξn+1, f)}∞n = 0 (A.16)

is a one–to–one map, and ‖f‖m = ‖{(ξn+1, f)}‖m. Here (·, ·) denotes inner
product in L2(R).

b) The map K′ : S ′(R)→ s′ given by

f̃ → {f̃(ξn+1)}∞n = 0 (A.17)

is a one–to–one map.

Proof (Reed and Simon (1975), p. 143f)

a) Let f ∈ S(R). Then Hmf ∈ S(R), which implies that an = (ξn+1, f) sat-
isfies

∑∞
n = 0 annmξn+1 ∈ L2(R); or

∑∞
n = 0 |an|2n2m <∞, which implies that

we have limn→∞ |an|nm = 0. Hence a = {an} ∈ s. By direct computation
we see that ‖f‖m = ‖Kf‖, thereby proving injectivity. If a = {an} ∈ s, we
define fN =

∑N
n = 0 anξn+1. We easily see that {fN} is a Cauchy sequence in

each of the norms ‖ · ‖m, and hence fN → f as N →∞.
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b) Consider now f̃ ∈ S ′(R). Let a′
n = f̃(ξn+1). Then |a′

n| = |f̃(ξn+1)| ≤
C‖ξn+1‖m = C(n2 + 1)m, and hence a′ = {a′

n} ∈ s′. If a′ = {a′
n} ∈ s′, then

|a′
n| ≤ C(1 + n2)m for the same m. Define

f̃

( ∞∑

n = 0

anξn+1

)

=
∞∑

n = 0

ana′
n

for a = {an} ∈ s. Then
∣
∣
∣
∣
∣
f̃

( ∞∑

n = 0

anξn+1

)∣
∣
∣
∣
∣
≤
∑
|an||a′

n|

≤ C

( ∞∑

n = 0

(1 + n2)2m+2|an|2
) 1

2
( ∞∑

n = 0

(1 + n2)−2

) 1
2

≤ C̃‖a‖m+1,

which proves that f̃ ∈ S ′(R). ��

We now obtain the Bochner–Minlos theorem for S ′(R).

Theorem A.3. A necessary and sufficient condition for the existence of a
probability measure μ on S ′(R) and a functional g on S(R) such that

g(φ) =
∫

S′(R)

ei〈ω,φ〉dμ(ω), φ ∈ S(R), (A.18)

is that g satisfies

(i) g(0) = 1,
(ii) g is positive definite,
(iii) g is continuous in the Fréchet topology.

In order to conclude that Theorem 2.1.1 follows from Theorem A.3, it
remains to show that

g(φ) = e−
1
2‖φ‖2

is positive definite. To that end, it suffices to show that the matrix

[e−
1
2 |uj−uk|2 ]nj,k = 1, (A.19)

with elements uj , uk ∈ R
d, is positive definite. Let ξj ∈ C. Then

n∑

j,k = 1

e−
1
2 |uj−uk|2 ξ̄jξk = (2π)−

d
2

∫
e−

1
2 |η|

2

∣
∣
∣
∣
∣

∑

j

ξje
iηuj

∣
∣
∣
∣
∣

2

dη, (A.20)

proving that indeed [e−
1
2 |uj−uk|2 ]nj,k = 1 is positive definite. ��



Appendix B

Stochastic Calculus Based on
Brownian Motion

Here we recall some of the basic concepts and results from Brownian motion
based Itô calculus that are used and implicitly assumed known in the text.
General references for this material are, e.g., Ikeda and Watanabe (1989),
Karatzas and Shreve (1991), and Øksendal (2003).

First we recall the definition of d-dimensional (1-parameter) Brownian
motion (or Wiener process) B(t, ω). We saw in Section 2.1 that such a
stochastic process can be constructed explicitly using the probability space
(S ′(R),B, μ1), and this is indeed a useful way of looking at Brownian motion,
for several reasons. However, the Brownian motion process need not be linked
directly to (S ′(R),B, μ1) but can be linked to a general probability space
(Ω,F , P x), where Ω is a set, F is a σ-algebra of subsets of Ω, and P x is a
probability measure on F for each x ∈ R

d:

Definition B.1. A d-dimensional Brownian motion (Wiener process) is a
family {B(t, ·)}t≥0 of random variables B(t, ·) on Ω with values in R

d such
that the following, (B.1)–(B.4), hold:

P x[B(0, ·) = x] = 1, i.e., B(t) starts at x a.s. P x; (B.1)

{B(t, ·)} has independent increments, i.e., if 0 = t0 < t1 < · · · < tn, then
the increments

{B(t1)−B(t0), B(t2)−B(t1), . . . , B(tn)−B(tn−1)} (B.2)

are independent with respect to P x;
For all 0 ≤ t < s the random variable B(s)−B(t) ∈ R

d has a multinormal
distribution with mean

Ex[B(s)−B(t)] = 0 (B.3)

263
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and covariance matrix

Ex[(Bi(s)−Bi(t))(Bj(s)−Bj(t))] =

{
0 if i �= j

n(s− t) if i = j,

where Ex denotes expectation with respect to P x;
B(t) has continuous paths a.s., i.e., the map

t→ B(t, ω); t ∈ [0,∞) (B.4)

is continuous, for almost all ω ∈ Ω with respect to P x.

There are also other (equivalent) descriptions of Brownian motion. (The
definition given here can easily be seen as equivalent to the one given in
Chapter2.) The first construction of Brownian motion was done by Wiener
in 1923. He also constructed the Wiener integral, which was later generalized
by Itô in 1942 and 1944 to what is now known as the Itô integral. The basic
idea of the construction of this integral is the following:

Assume that B(t, ω) = B(t) is a 1-dimensional starting at 0, and set
P ◦ = P,E◦ = E. For t ≥ 0, let Ft be the σ-algebra generated by the random
variables {B(s)}s≤t. Then for 0 ≤ t < s <∞ we have

{∅,Ω} = F0 ⊆ Ft ⊆ Fs ⊆ F .

We now define the Itô integral

I(f) :=

T∫

S

f(t, ω)dB(t), where 0 ≤ S < T,

for the following class U(S, T ) of integrands f(t, ω) satisfying (B.5)–(B.7):

(t, ω)→ f(t, ω) is B × F-measurable, where B is the Borel
σ-algebra on[0,∞); (B.5)

f is Ft -adapted , i.e., f(t, ·) is Ft-measurable, for all t ∈ [S, T ]; (B.6)

E

⎡

⎣
T∫

S

f2(t, ω)dt

⎤

⎦ <∞. (B.7)

To construct I(f) for f ∈ U(S, T ), we first consider the case when
f ∈ U(S, T ) is elementary, i.e.,

f = φ(t, ω) =
m∑

j = 1

ej(ω)χ[tj ,tj+1)(t),

where tj = j · 2−n ∈ [S, T ]; j, n ∈ N and ej is Ftj
-measurable, E[e2

j ] <∞.
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For such φ we define the Itô integral I(φ) by

I(φ) =

T∫

S

φ(t, ω)dBt(ω) =
m∑

j = 1

ej(ω)(B(tj+1)−B(tj)). (B.8)

For general f ∈ U(S, T ), we define the Itô integral I(f) by

I(f) = lim
k→∞

I(φk) (limit in L2(P )), (B.9)

where {φk} is a sequence of elementary processes such that

E

⎡

⎣
T∫

S

(f − φk)2dt

⎤

⎦→ 0 as k →∞. (B.10)

One can show that such a sequence {φk} satisfying (B.10) exists. Moreover,
(B.10) implies that limk→∞ I(φk) exists in L2(P ). Furthermore, this limit
does not depend on the actual sequence {φk} chosen. The proofs of these
statements follow from the fundamental Itô isometry

E

⎡

⎢
⎣

⎛

⎝
T∫

S

φdB

⎞

⎠

2
⎤

⎥
⎦ = E

⎡

⎣
T∫

S

φ2dt

⎤

⎦, (B.11)

which is first (easily) verified for all elementary φ and hence holds for all
φ ∈ U(S, T ).

This construction can be generalized in several ways. Here we just mention
that the requirement (B.7) can be relaxed to

P

⎡

⎣
T∫

S

f2(t, ω)dt <∞

⎤

⎦ = 1, (B.12)

in which case the convergence in (B.9) will be in measure rather than in
L2(P ). Next, the requirement (B.6) can be relaxed to

There exists an increasing family Ht; t ≥ 0 of σ-algebras such that

a) B(t) is a martingale with respect to Ht and
b) f(t, ω) is Ht-adapted.

This last extension allows us to define the Itô integral

T∫

S

f(t, ω)dBk(t, ω) (B.13)
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with respect to component number k,Bk(t, ω), of d-dimensional Brownian
motion when f(t, ω) satisfies (B.5), (B.12) and is measurable with respect
to

Ht = Fd := the σ-algebra generated by {Bk(s, ·); k = 1, . . . , d, s ≤ t}.
(B.14)

One can show that, as a function of the upper limit t, the Itô integral
process

M(t, ω) :=

t∫

0

f(s, ω)dBk(s, ω)

has a continuous version. As is customary, we will assume from now on that
this continuous version is chosen.

The Itô Formula

Similar to the situation for deterministic integration, definition (B.9) is not
very useful for the actual computation of Itô integrals. There is no fundamen-
tal theorem of stochastic calculus, but the Itô formula is a good substitute.
To describe it, consider an Itô process X(t, ω) ∈ R

d, i.e., a sum X(t, ω) of an
Itô integral and a Lebesgue integral:

X(t, ω) = x +

t∫

0

u(s, ω)ds +

t∫

0

v(s, ω)dB(s, ω); 0 ≤ t ≤ T. (B.15)

Here u, v are processes in R
d, Rd×p respectively, x ∈ R

d is a constant and
B(s, ω) is p-dimensional Brownian motion, and both u and v are Ft-adapted
(with Ft =Fd

t as in (B.14)) and satisfy suitable growth conditions, like (B.12).

A shorthand (differential) notation for (B.15) is

dX(t, ω) = u(t, ω)dt + v(t, ω)dB(t, ω); t ∈ [0, T ], X(0, ω) = x. (B.16)

Here and in (B.15) we use the matrix notation

[v(t, ω)dB(t, ω)]i =
p∑

j = 1

vij(t, ω)dBj(t, ω); 1 ≤ i ≤ d, (B.17)

where, as usual, ai denotes the ith component of the vector a ∈ R
d.

The Itô formula states that if X(t, ω) is an Itô process as in (B.15) and

g(t, x) : R
+ × R

d → R
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is a function in C1,2(R+ × R
d), then the process

Y (t, ω) := g(t,X(t, ω))

is again an Itô process, described explicitly by the formula

dY (t, ω) =
∂g

∂t
(t,X)dt +

d∑

i = 1

∂g

∂xi
(t,X)dXi +

1
2

d∑

i,j = 1

∂2g

∂xi∂xj
(t,X)dXidXj ,

(B.18)
where dXi is component number i of dX given by (B.16) and (B.17) and

dXidXj = [vvT ]ijdt, 1 ≤ i, j ≤ d, (B.19)

where vT is the transposed of the matrix v. In other words, dXidXj is
computed from (B.16), (B.17) by using the distributive law plus the “multi-
plication” rules

{
dtdt = dtdBi = dBidBj = 0 for i �= j; 1 ≤ i, j ≤ d

dB2
i = dt; 1 ≤ i ≤ d.

(B.20)

In particular, if X(t) and Y (t) are two Itô processes, then Itô’s formula
gives that

d(X(t)Y (t)) = X(t)dY (t) + Y (t)dX(t) + dX(t)dY (t), (B.21)

where dX(t)dY (t) is computed from (B.20).

If we apply this to the special case when Y (t) is absolutely continuous,
i.e., Y (t) has the form

dY (t, ω) = w(t, ω)dt,

we get the following integration by parts formula:
T∫

0

Y (t)dX(t) = X(T )Y (T )−X(0)Y (0)−
T∫

0

X(t)w(t)dt, (B.22)

because dX(t)dY (t) = 0.

Stochastic Differential Equations

If b : R × R → R
d and σ : R

×
R

d → R
d×p are given deterministic functions

and Z(ω) ∈ R
d is a given random variable, then the equation

X(t) = Z +

t∫

0

b(s,X(s))ds +

t∫

0

σ(s,Xs)dB(s) (B.23)
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(with B(s) ∈ R
p) is called a stochastic differential equation (SDE) (strictly

speaking, a stochastic integral equation would be a better name). A funda-
mental result from the theory of SDEs is the following:

Theorem B.2. Assume that Z is independent of B(t, ·); t ≥ 0 and
E[Z2] <∞. Moreover, assume that b and σ satisfy the conditions

|b(t, x)|+ |σ(t, x)| ≤ C(1 + |x|) (B.24)

and

|b(t, x)− b(t, y)|+ |σ(t, x)− σ(t, y)| ≤ D|x− y| (B.25)

for all t ∈ [0, T ];x, y ∈ R
d, where C and D do not depend on t, x, y. Then

there exists a unique stochastic process X(t, ω) which is Ft-adapted and
satisfies (B.23). Moreover, we have E[X2(t, ·)] <∞ for all t ∈ [0, T ].

We call X(t, ω) the (strong) solution of the SDE (B.23).

The Girsanov Theorem

This important result relates the probability law of one Itô process Y (t) ∈ R
d

of the form

dY (t) = β(t, ω)dt + θ(t, ω)dB(t); 0 ≤ t ≤ T (constant) (B.26)

to the law of the related process X(t) ∈ R
d of the form

dX(t) = α(t, ω)dt + θ(t, ω)dB(t), 0 ≤ t ≤ T, (B.27)

where α ∈ R
d, β ∈ R

d and θ ∈ R
d×p are Ft-adapted processes, each compo-

nent of which satisfies (B.7): If there exists an Ft-adapted process u(t, ω) ∈ R
p

satisfying

θ(t, ω)u(t, ω) = β(t, ω)− α(t, ω) (B.28)

and such that

E

⎡

⎣exp

⎡

⎣1
2

T∫

0

u2(s, ω)ds

⎤

⎦

⎤

⎦ <∞, (B.29)

then the Girsanov theorem states that the Q-law of {Y (t)}t≤T coincides with
the P -law of {X(t)}t≤T , where the measure Q is defined by

dQ(ω) = MT (ω)dP (ω) on FT , (B.30)
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with

MT (ω) = exp

⎡

⎣−
T∫

0

u(t)dB(t)− 1
2

T∫

0

u2(t)dt

⎤

⎦ . (B.31)

In particular, Q� P and P � Q.

For an important special case, choose θ(t, ω) ≡ Id, α(t, ω) ≡ 0. Then we
get u(t, ω) = β(t, ω), so if (B.29) holds, we conclude that the Q-law of

Y (t) :=

t∫

0

β(s, ω)ds + B(t); 0 ≤ t ≤ T (B.32)

coincides with the P -law of X(t) := B(t); 0 ≤ t ≤ T . In other words,
B̂(t) := Y (t) is a Brownian motion with respect to Q, where

dQ(ω) = exp

⎡

⎣−
T∫

0

βdB(t)− 1
2

T∫

0

β2dt

⎤

⎦ dP (ω) on FT . (B.33)

In particular, for any bounded function g : R
d → R and all t ≤ T we have

EQ[g(Y (t))] = EP [g(B(t))],

or

∫

Ω

g

( t∫

0

βds + B(t)

)

exp

⎡

⎣−
T∫

0

βdB(t)− 1
2

T∫

0

β2dt

⎤

⎦ dP (ω)

=
∫

Ω

g(B(t))dP (ω). (B.34)

If β(t, ω) = β(t) is deterministic, and we define β(t) = 0 for t > T , then
we can write

exp

⎡

⎣−
T∫

0

βdB(t)− 1
2

T∫

0

β2dt

⎤

⎦ = exp�[−w(β)]

(see Lemma 2.6.16), and (B.34) obtains the form

∫

Ω

g

( t∫

0

βds + B(t)

)

exp�[−w(β)]dP (ω) =
∫

Ω

g(B(t))dP (ω). (B.35)
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This can also be written

∫

Ω

g(B(t)) exp�[w(β)]dQ(ω) =
∫

Ω

g

(

B(t) +

t∫

0

βds

)

dQ(ω), (B.36)

and in this form we can see the resemblance to formula (2.10.11) in
Corollary 2.10.5, but note that the settings are different in these two
formulas.
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Properties of Hermite Polynomials

The Hermite polynomials hn(x) are defined by

hn(x) = (−1)ne
1
2 x2 dn

dxn
(e−

1
2 x2

); n = 0, 1, 2, . . . (C.1)

or, alternatively,

hn(x) =
[ n
2 ]∑

k = 0

(

− 1
2

)k
n!

k!(n− 2k)!
xn−2k. (C.2)

Thus the first Hermite polynomials can be calculated very easily, for
example,

h0(x) = 1, h1(x) = x, h2(x) = x2 − 1, h3(x) = x3 − 3x

h4(x) = x4 − 6x2 + 3, h5(x) = x5 − 10x3 + 15x, . . . . (C.3)

In fact, any polynomial can also be expressed in terms of Hermite
polynomials. The formula is

xn =
[ n
2 ]∑

k = 0

(
n

2k

)

(2k − 1)!!hn−2k(x), (C.4)

where (2k − 1)!! = (2k − 1)(2k − 3)(2k − 5) · · · 1.

The generating function of Hermite polynomials is (see Exercise 2.15)

+∞∑

n = 0

tn

n!
hn(x) = exp

[

− t2

2
+ tx

]

. (C.5)
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The following relations may be deduced from (C.5):
(

d2

dx2
− x

d

dx
+ n

)

hn(x) = 0, (C.6)

hn+1(x)− xhn(x) + nhn−1(x) = 0, (C.7)
dhn(x)

dx
= nhn−1(x). (C.8)

Besides, one has the following integral representation and orthogonal
property:

hn(x) =

+∞∫

−∞

(x + iy)n 1√
2π

e−
y2

2 dy (C.9)

∞∫

−∞

hn(x)hm(x) exp
[

− x2

2

]

dx =

{√
2π n! if n = m

0 if n �= m
. (C.10)

Thus {hn(x), n ≥ 1} forms an orthogonal basis for L2(R, μ(dx)) if
μ(dx) = 1/

√
2πe−x2/2dx.

The Hermite functions ξn(x) are defined by

ξn(x) = π− 1
4 ((n− 1)!)−

1
2 e−

1
2 x2

hn+1(
√

2x); n ≥ 1. (C.11)

The most important properties of ξn used in this book are

− d2ξn

dx2
+ x2ξn(x) = 2nξn(x) (C.12)

and

ξn ∈ S(R) for all n ≥ 1. (C.13)

The collection {ξn}∞n = 1 constitutes an orthonormal basis for L2(R).
(C.14)

sup
x
|ξn(x)| = O(n− 1

12 ) (C.15)

ξn(u) = O(n− 1
4 ) for all u ∈ R (C.16)

‖ξn‖L1(R) = O(n
1
4 ). (C.17)

We refer to Hille and Phillips (1957), Hida (1980), and Hida et al. (1993),
and the references therein for more information.
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Independence of Bases in the Wick
Products

It may appear that the definition of the Wick product depends on the choice
of basis elements {e(k)}∞k=1 for ⊕m

k=1L
2(Rd). In this appendix we will prove

directly that this is not the case.
First we establish some properties of Hermite polynomials. Recall that

Hermite polynomials are defined by the relation

hn(x) = (−1)ne
x2
2

dn

dxn

(
e−

x2
2

)
.

We adopt the convention that h−1(x) = 0. Then for n=0, 1, 2 . . . we have

hn+1(x) = h1(x)hn(x)− nhn−1(x). (D.1)

If x=(x1, x2, . . . , xN ) is a vector, and α=(α1, α2, . . . , αM ) is a multi-index,
we define

hα(x) = hα1(x1)hα2(x2) · · ·hαM
(xM ).

Formulated in this language, (D.1) takes the form

hα+β(x) = hα(x)hβ(x)− α!
(α− β)!

hα−β(x) if |β| = 1. (D.2)

Lemma D.1. If a2 + b2 = 1, then for all n = 0, 1, 2 . . . we have

hn(ax + by) =
n∑

k= 0

(
n

k

)

akbn−khk(x)hn−k(y).

Proof By induction. The cases n=0, 1 are trivial. We use (D.1) to get

hn+1(ax + by) = (ax + by)hn(ax + by)− nhn−1(ax + by)
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= (ax + by)
n∑

k=0

(
n

k

)

akbn−khk(x)hn−k(y)

− n

n−1∑

k=0

(
n− 1

k

)

akbn−1−khk(x)hn−1−k(y)

=
n∑

k=0

(
n

k

)

ak+1bn−kxhk(x)hn−k(y)

+
n∑

k=0

(
n

k

)

akbn+1−khk(x)yhn−k(y)

−
n−1∑

k=0

(
n− 1

k

)

nakbn−1−khk(x)hn−1−k(y).

Using the equation (D.1) backwards, we have the following:

hn+1(ax + by) =
n∑

k=0

(
n

k

)

ak+1bn−khk+1(y)

+
n−1∑

k=0

(
n

k

)

akbn+1−khk(x)hn+1−k(y)

+
n∑

k=1

(
n

k

)

ak+1bn−khk−1(x)hn−k(y)

+
n−1∑

k=0

(
n

k

)

akbn+1−khk(x)yhn−1−k(y)

−
n−1∑

k=0

(
n− 1

k

)

nakbn−1−khk(x)hn−1−k(y).

The sum of the two first terms gives the required expression. As for the three
last terms, when we let S denote the sum of these, we have

S =
n−1∑

k=0

[(
n

k + 1

)

(k + 1)a2 +
(

n

k

)

(n− k)b2

−
(

n− 1
k

)

n

]

akbn−1−khk(x)hn−1−k(y).

Here
(

n

k + 1

)

(k +1)a2 +
(

n

k

)

(n−k)b2−
(

n− 1
k

)

n = (a2 + b2− 1)
(

n− 1
k

)

n = 0,

and this proves the lemma. ��
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Proposition D.2. If a = (a1, a2, . . . , aM ) with
∑M

i=1 a2
i = 1, we have

hn

(
M∑

i=1

aixi

)

=
∑

α=(α1,α2,...,αM )
|α|=n

n!
α!

aαhα(x).

Proof Trivial if M = 1. If M ≥ 1, we set

M+1∑

i=1

aixi = a1x1 +

√
√
√
√

M+1∑

i=2

a2
i

M+1∑

i=2

ai√∑M+1
i=2 ai

xi =: a1x1 + by,

i.e.,

b =

√
√
√
√

M+1∑

i=2

a2
i y =

M+1∑

i=2

(ai

b

)
xi.

Then a2
1 + b2 = 1, so by Lemma D.1

hn

(
M+1∑

i=1

aixi

)

=
n∑

k=0

(
n

k

)

ak
1bn−khk(x1)hn−k(y).

The induction hypothesis applies to hn−k(y). Hence

hn

(
M+1∑

i=1

aixi

)

=
n∑

k=0

(
n

k

)

ak
1bn−khk(x1)

×
∑

α=(0,α2,...,αM+1)
|α|=n−k

(n− k)!
α!

aα

b|α|hα(x2, x3, . . . , xM+1)

=
n∑

k=0

∑

α = (0,α2,...,αM+1)
|α|=n−k

n!
k!α!

ak
1aα2

2 · · · a
αM+1
M+1 hk(x1)hα(x2, . . . , xM+1).

��
Proposition D.3. Let a, b1, b2, . . . , bM , x be vectors in R

K . If all the inner
products 〈a, bi〉 = 0 i = 1, 2, . . . ,M , then

∑

|α|=n
|β1|=1,...,|βM |=1

n!
α!

aαbβ1
1 · · · b

βM

M hα+β1+ ···+βM
(x)

=
∑

|α|=n
|β1|=1,...,|βM |=1

n!
α!

aαbβ1
1 · · · b

βM

M hα(x)hβ1+ ···+βM
(x).
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Proof By induction again. This time we use induction on the number of
β-s. We first consider the case with one β. We use (D.2) to get

∑

|α|=n
|β|=1

n!
α!

aαbβhα+β(x)

=
∑

|α|=n
|β|=1

n!
α!

aαbβhα(x)hβ(x)−
∑

|α|=n
|β|=1

n!
(α− β)!

aαbβhα−β(x)

=
∑

|α|=n
|β|=1

n!
α!

aαbβhα(x)hβ(x)−
∑

|β|=1

aβbβ

⎛

⎝
∑

|α|=n−1

n!
α!

aαhα(x)

⎞

⎠.

If 〈a, b〉 = 0, the last term vanishes. This proves the case with one β.
By induction we will assume that the statement is true on all levels up to M .
We use (D.2) again to get

∑

|α|=n
|β1|=1,...,|βM+1|=1

n!
α!

aαbβ1
1 · · · b

βM+1
M+1 hα+β1+ ···+βM+βM+1(x)

=
∑

|α|=n
|β1|=1,...,|βM+1|=1

n!
α!

aαbβ1
1 · · · b

βM+1
M+1 hα+β1+ ···+βM

(x)hβM+1(x)

−
∑

|α|=n
|β1|=1,...,|βM+1|=1

n!
α!

aαbβ1
1 · · · b

βM+1
M+1

(α + β1 + · · ·+ βM )!
(α+β1+· · ·+βM−βM+1)!

× hα+β1+ ···+βM−βM+1(x).

We now use the induction hypothesis on the first term.

=
∑

|α|=n
|β1|=1,...,|βM+1|=1

n!
α!

aαbβ1
1 · · · b

βM+1
M+1 hα(x)hβ1+ ···+βM

(x)hβM+1(x)

−
∑

|α|=n
|β1|=1,...,|βM+1|=1

n!
α!

aαbβ1
1 · · · b

βM+1
M+1

(α + β1 + · · · + βM )!
(α+β1+· · ·+βM−βM+1)!

× hα+β1+ ···+βM−βM+1(x)

Then we use (D.2) backwards in the first expression.

=
∑

|α|=n
|β1|=1,...,|βM+1|=1

n!
α!

aαbβ1
1 · · · b

βM+1
M+1 hα(x)hβ1+ ···+βM

(x)
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+
∑

|α|=n
|β1|=1,...,|βM+1|=1

(
n!
α!

aαbβ1
1 · · · b

βM+1
M+1

(β1 + · · ·+ βM )!
(β1+· · ·+βM−βM+1)!

hα(x)

× hβ1+ ···+βM−βM+1(x)

)

−
∑

|α|=n
|β1|=1,...,|βM+1|=1

(
n!
α!

aαbβ1
1 · · · b

βM+1
M+1

(α + β1 + · · ·+ βM )!
(α+β1+· · ·+βM−βM+1)!

× hα+β1+ ···+βM−βM+1(x)

)

=: I + II − III

Now observe that

(β1 + · · ·+ βM )!
(β1 + · · ·+ βM − βM+1)!

= #{βi = βM+1, i ≤M}

(α + β1 + · · ·+ βM )!
(α + β1 + · · ·+ βM − βM+1)!

=
α!

(α− βM+1)!
+ #{βi = βM+1, i ≤M}

We consider the second term II, and have

II =
∑

|α|=n
|β1|=1,...,|βM+1|=1

(
n!
α!

aαbβ1
1 · · · bβM+1

M+1 hα(x)hβ1+ ···+βM−βM+1(x)

#{β1 = βM+1, i ≤M}
)

=
∑

|βM+1|=1

b
βM+1
M+1 b

βM+1
1

∑

|α|=n
|β2|=1,...,|βM |=1

n!
α!

aαbβ2
2 · · · b

βM

M hα(x)hβ2+ ···+βM
(x)

+
∑

|βM+1|=1

b
βM+1
M+1 b

βM+1
2

∑

|α|=n
|β1|=1,|β3|=1,...,|βM |=1

n!
α!

aαbβ1
1 bβ3

3 · · · b
βM

M hα(x)hβ1+β3+ ···+βM
(x)

+
...

+
∑

|βM+1|=1

b
βM+1
M+1 b

βM+1
M

∑

|α|=n
|β1|=1,...,|βM−1|=1

n!
α!

aαbβ1
1 · · · b

βM−1
M−1 hα(x)hβ1+ ···+βM−1(x).
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The induction hypothesis applies (backwards) to all of these, so we get
that the second term II is equal to the expression

∑

|α|=n
|β1|=1,...,|βM+1|=1

n!
α!

aαbβ1
1 · · · b

βM+1
M+1 hα+β1+···+βM−βM+1(x)#{βi = βM+1, i ≤M}.

Now we can finally subtract the third term III from the second II, to
obtain

II − III = −
∑

|α|=n
|β1|=1,...,|βM+1|=1

n!
α!

aαbβ1
1 · · · b

βM+1
M+1

α!
(α− βM+1)!

hα+β1+ ···+βM−βM+1(x)

=−
∑

|βM+1|=1

aβM+1b
βM+1
M+1

⎧
⎪⎪⎨

⎪⎪⎩

∑

|α|=n
|β1|=1,...,|βM |=1

n!
α!

aαbβ1
1 · · ·b

βM+1
M+1 hα+β1+ ···+βM

(x)

⎫
⎪⎪⎬

⎪⎪⎭
= 0,

and this proves the proposition. ��

We now proceed to show basis-invariance. We consider two bases, {e(k)}∞k=1

and {ê(k)}∞k=1 for ⊕m
k=1L

2(Rd). We let θk =< ω, e(k) > and θ̂k =< ω, ê(k) >
denote the corresponding first–order integrals, and we let � and �̂ denote the
Wick products that arise from the two bases. To prove that �= �̂, we proceed
as follows:

Lemma D.4. For each pair of integers n and k

θ�n
k = θ�̂n

k = hn(θk).

Proof Since ‖θk‖L2(μm) = 1, it can be approximated in L2(μm) by a sum
∑M

i=1aiθ̂i where
∑M

i=1a
2
i =1. Then by definition of the �̂ product,

θ�̂n
k ≈

(
M∑

i=1

aiθ̂i

)̂�n

=
∑

α=(α1,...,αM )
|α|=n

n!
α!

aαhα(θ̂1, θ̂2, . . . , θ̂M )

= hn

(
M∑

i=1

aiθ̂i

)

≈ hn(θk) = θ�̂n
k .

In the third equality we used Proposition D.2. We now let M → ∞, and
this proves the lemma. ��

Corollary D.5. If n,m and k are non-negative integers,

hn(θk) �̂hm(θk) = hn(θk) � hm(θk) = hn+m(θk).
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Proof
hn(θk) �̂hm(θk) = θ�̂n

k �̂ θ�̂m
k = θ�̂n+m

k = hn+m(θk),

by Lemma D.4. ��

Proposition D.6. For all finite length multi-indices α and β,

Hα(ω) �̂Hβ(ω) = Hα(ω) �Hβ(ω) = Hα+β(ω).

Proof Because of Corollary D.5 it suffices to prove that for all n1, n2, . . . , nK ,

hn1(θ1)�̂hn2(θ2)�̂ · �̂hnK
(θK) = hn1(θ1) · hn2(θ2) · hnK

(θK).

As in the proof of Lemma D.4, we may just as well assume that θ1, θ2, . . . , θK

is in some finite dimensional subspace generated by the θ̂k-s, i.e., we may
assume that

θ1 =
M∑

i=1

aiθ̂i θ2 =
M∑

i=1

b
(2)
i θ̂i · · · θK =

M∑

i=1

b
(K)
i θ̂i,

where, in particular, a = (a1, a2, . . . , aM ) is orthogonal to all the b(i)-s. By
Propositions D.2 and D.3, we get

hn1(θ1)�̂hn2(θ2)�̂ · �̂hnK
(θK)

= hn1

(
M∑

i=1

aiθ̂i

)

�̂
(

M∑

i=1

b
(2)
i θ̂i

)

�̂ · �̂
(

M∑

i=1

b
(2)
i θ̂i

)

︸ ︷︷ ︸
n2−times

�̂
(

M∑

i=1

b
(3)
i θ̂i

)

�̂·
︸ ︷︷ ︸

n3−times

. . .

=
∑

|α|=n1
|β1|=1,...,|βn2+·+nK

|=1

n!
α!

aαbβ1
1 bβ2

2 · b
βn2+·+nK
n2+·+nK

hα+β1+·+βn2+·+nK
(θ̂1, . . . , θ̂M )

=
∑

|α|=n1
|β1|=1,...,|βn2+·+nK

|=1

n!
α!

aαbβ1
1 · b

βn2+·+nK
n2+·+nK

hα(θ̂1, . . . , θ̂M )hβ1+·+βn2+·+nK
(θ̂1, . . . , θ̂M )

= hn1(θ1) · {hn2(θ2)�̂ · �̂hnK
(θK)},

and the claim follows by repeated use of this argument. ��

Proposition D.6 says that the alternative Wick product �̂ is equal to the
original Wick product on all elements in a base for L2(μm). The same then
certainly applies to all finite-dimensional linear spans of such elements. This
is the result that we used previously in this book. It is certainly possible to
extend the result to more generalsituations. Roughly speaking, the above
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result says that the definition of the Wick product does not depend on
any particular choice of base elements. The topological structure of (S)−1,
however, strongly depends on the choice of the Hermite functions as basis
elements. If we want to extend the above result to limits of finite-dimensional
linear spans of base elements, a space has to be fixed so that the limit concept
is well–defined. The natural space structure is then certainly (S)−1. As in the
definition of L1 Wick products in Holden, et al. (1993a), a natural definition
of the alternative Wick product �̂ is then just to define

X �̂Y = lim
n→∞

Xn�̂Yn,

where Xn and Yn are finite combinations of base elements converging to
X and Y respectively in (S)−1 and the limit is taken in this space also. By
Proposition D.6, we always have Xn�̂Yn = Xn � Yn. Hence the limit always
exists and is equal to X � Y . With the above definition, we easily get

X �̂Y = X � Y

for all X,Y ∈ (S)−1.



Appendix E

Stochastic Calculus Based on Lévy
Processes

This appendix is somewhat analogous to Appendix B except that here we deal
with a more general class of processes, the Lévy processes. Nevertheless, it is
useful to have seen the special case with Brownian motion first as decribed
in Appendix B, rather than proceeding directly to the more general theory
in this appendix.

We will not give proofs in the following, but we refer to Applebaum (2004),
Bertoin (1996), Jacod and Shiryaev (2003) and Sato (1999) for more details.
The summary here is also based on Chapter 1 in Øksendal and Sulem (2007).

Definition E1. Let (Ω,F , P ) be a probability space. A (1-dimensional)
Lévy process is a stochastic process η(t) = η(t, ω) : [0,∞)×Ω→ R with the
following properties:

η(0) = 0 a.s. (E.1)
η has independent increments (see B.2) (E.2)
η has stationary increments, i.e., for all fixed h > 0 the increment process
I(t) := η(t + h)− η(t); t ≥ 0 is a stationary process. (A) stochastic process
θ(t) is called stationary if θ(t + t0) has the same law as θ(t) for all t0 > 0.

(E.3)

η is stochastically continuous, i.e., for all t > 0, ε > 0 we have (E.4)

lim
s→ t

P (|η(t)− η(s)| > ε) = 0,

and η has càdlàg paths, i.e., the paths of η are continuous from the right
(continue à droite) with left-sided limits (limites à gauche).

Note that if we strengthen the condition (E.4) to requiring that η has
continuous paths, then in fact η is necessarily of the form (see (C.1))

η(t) = a t + σB(t); t ≥ 0

281
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where a, b are constants and B(·) is a Brownian motion. Thus it is the possible
presence of jumps that distinguishes a general Lévy process from a Brownian
motion with a constant drift.

The jump of η at time t is defined by

Δη(t) = η(t)− η(t−)

Put R0 = R \ {0} and let B(R0) be the family of all Borel subsets U ⊂ R

such that U ⊂ R0. If U ∈ B(R0) and t > 0 we define

N(t, U) = the number of jumps of η(·) of size Δη(s) ∈ U ; s ≤ t

Since the paths of η are càdlàg, we see that N(t, U) <∞ for all t > 0, U ∈
B(R0). It can be proved that for all ω ∈ Ω the function (a, b)×U �→ N(b, U)−
N(a, U); 0 ≤ a < b <∞, U ∈ B(R0) defines a measure on B([0,∞))×B(R0),
called the Poisson random measure of η. The differential form of this measure
is denoted by

N(dt, dz)

The Lévy measure ν of η(·) is defined by

ν(U) = E[N(1, U)]; U ∈ B(R0) (E.5)

The Lévy measure need not be finite. In fact, it is even possible that
∫

R

min(1, |z|)ν(dz) =∞ (E.6)

On the other hand, we always have
∫

R

min(1, z2)ν(dz) <∞ (E.7)

The Lévy measure ν determines the law of η(·). In fact, we have

Theorem E.2 (The Lévy–Khintchine formula). Let η be a Lévy
process with Lévy measure ν. Then

∫

R

min(1, z2)ν(dz) <∞

and
E[eiuη(t)] = etΨ(u); u ∈ R (E.8)

where

Ψ(u) = −1
2
σ2u2 + iαu

∫

|z|<1

{eiuz−1− iuz}ν(dz)+
∫

|z|≥1

(eiuz−1)ν(dz) (E.9)
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for some constants α, σ ∈ R. Conversely, given constants α, σ ∈ R and a
measure ν on B(R0) such that

∫

R

min(1, z2)ν(dz) <∞

there exists a Lévy process η(·) (unique in law) such that (E.8)-(E.9) hold.

In general one can prove that if we define the compensated Poisson random
measure Ñ by

Ñ(dt, dz) = N(dt, dz)− ν(dz)dt (E.10)

and θ(t, z) is an Ft-adapted process such that

E
[ T∫

0

∫

R

θ2(t, z)ν(dz)dt

]

<∞

then

M(t) := lim
n→∞

t∫

0

∫

|z|≥ 1
n

θ(t, z)Ñ(dz, dt); 0 ≤ t ≤ T

exists as a limit in L2(P ) and it is a martingale. If we only know that

T∫

0

∫

R

θ2(t, z)ν(dz) <∞ a.s.

then the limit

M(t) := lim
n→∞

t∫

0

∫

|z|≥ 1
n

θ(t, z)Ñ(dz, dt)

exists in probability and it is a local martingale. Moreover, the following Itô
isometry holds:

E

⎡

⎢
⎣

⎛

⎝
T∫

0

∫

R

θ(t, z)Ñ(dt, dz)

⎞

⎠

2
⎤

⎥
⎦ = E

⎡

⎣
T∫

0

∫

R

θ2(t, z)ν(dz)dt

⎤

⎦ (E.11)

A complete description of a Lévy process is given in the following result:

Theorem E.3 (Itô–Lévy decomposition theorem). Let η be a Lévy
process. Then η can be written

η(t) = a1t + σB(t) +
∫

|z|<1

zÑ(t, dz) +
∫

|z|≥1

zN(t, dz) (E.12)

where a1, σ are constants and B(·) is a Brownian motion.
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In general we have that if, for some p ≥ 1,

E[|η(t)|p] <∞ for all t

then
∫

|z|≥1

|z|pν(dz) <∞

In particular, if

E[|η(t)|] <∞ for all t (E.13)

then
∫

|z|≥1

zν(dz) is well defined and the representation (E.12) simplifies to

η(t) = at + σB(t) +
∫

R

zÑ(t, dz) (E.14)

where a = a1 +
∫

|z|≥1

zν(dz). For simplicity we will from now on assume

that (E.13) (and hence (E.14)) holds. In view of (E.14) it is then natural to
consider stochastic processes of the form

X(t) = x +

t∫

0

α(s, ω)ds +

t∫

0

β(s, ω)dB(s) +

t∫

0

∫

R

γ(s, ω)Ñ(ds, dz) (E.15)

where α, β and γ are predictable processes such that

T∫

0

{|α(s)|+ β2(s) +
∫

R

γ2(s, z)ν(dz)}ds <∞ a.s. (E.16)

We call such processes (1-dimensional) Itô–Lévy processes. In analogy with
the Brownian motion case we use the short hand differential notation

dX(t) = α(t)dt + β(t)dB(t) +
∫

R

γ(t, z)Ñ(dt, dz); X(0) = x (E.17)

for (E.14).

Theorem E.4 (The 1-dimensional Itô formula). Let X(t) be the
Itô–Lévy process (E.15). Let f(t, x) : R×R→ R be a function in C1,2(R×R)
and define

Y (t) = f(t,X(t))
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Then Y (t) is also an Itô–Lévy process and it is given in differential form by

dY (t) =
∂f

∂t
(t,X(t))dt +

∂f

∂x
[α(t)dt + β(t)dB(t)] +

1
2

∂2f

∂x2
(t,X(t))β2(t)dt

+
∫

R

{

f(t,X(t) + γ(t, z))− f(t,X(t))− ∂f

∂x
(t,X(t))γ(t, z)

}

ν(dz)dt

+
∫

R

{f(t,X(t) + γ(t, z))− f(t,X(t))}Ñ(dt, dz) (E.18)

In the multidimensional case we are given n Itô–Lévy processes
X1(t), . . . , Xn(t) driven by m independent 1-dimensional Brownian motions
B1(t), . . . , Bm(t) and l independent (1-dimensional) compensated Poisson
random measures Ñ1(dt, dz), . . . , Ñl(dt, dz) as follows

dXi(t) = αi(t)dt +
m∑

j =1

βij(t)dBj(t) +
l∑

k=1

∫

R

γik(t, zk)Ñk(dt, dzk); 1 ≤ i ≤ n

(E.19)
Or, in matrix notation,

dX(t) = α(t)dt + β(t)dB(t) +
∫

R

γ(t, z)Ñ(dt, dz) (E.20)

where

dX(t) =

⎡

⎢
⎣

dX1(t)
...

dXn(t)

⎤

⎥
⎦, α(t) =

⎡

⎢
⎣

α1(t)
...

αn(t)

⎤

⎥
⎦,

β(t) = [βij(t)] 1≤i≤n
1≤j≤m

, γ(t, z) = [γik(t, z)] 1≤i≤n
1≤k≤l

and

Ñ(dt, dz) =

⎡

⎢
⎣

Ñ1(dt, dz1)
...

Ñl(dt, dzl)

⎤

⎥
⎦; z = (z1, . . . , zl) ∈ R

l

Then we have the following:

Theorem E.5 (The multidimensional Itô formula). Let X(t) ∈ R
n be

as in (E.20). Let f(t, x) = f(t, x1, . . . , xn) : R×R
n → R be in C1,2(R×R

n)
and define

Y (t) = f(t,X(t))
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Then

dY (t) =
∂f

∂t
(t,X(t))dt +

n∑

i=1

∂f

∂xi

⎡

⎣αi(t)dt +
m∑

j =1

βij(t)dBj(t)

⎤

⎦

+
1
2

n∑

i,j =1

(ββ�)ij(t)
∂2f

∂xi∂xj
(t,X(t))dt

+
l∑

k=1

∫

R

{f(t,X(t) + γ(k)(t, zk))

− f(t,X(t))−∇xf(t,X(t))�γ(k)(t, zk)}νk(dzk)dt

+
l∑

k=1

∫

R

{f(t,X(t) + γ(k)(t, zk))− f(t,X(t))}Ñk(dt, dzk)dt (E.21)

where γ(k)(t, z) is column number k of the n× l matrix γ(t, z).

One can prove an existence and uniqueness result for stochastic differential
equations driven by Lévy processes, analogous to the result stated in
Appendix B:

Theorem E.6. Let α : R×R
n → R

n, β: R×R
n → R

n×m and θ: R×R
n×

R
l → R

n×l be given functions satisfying the conditions:
There exists a constant C such that

|b(t, x)|2 + ||β(t, x)||2 +
l∑

k=1

∫

R

|θk(t, x, zk)|2νk(dzk) ≤ C(1 + |x|2) (E.22)

for all t ∈ [0, T ];x ∈ R
n.

There exists a constant D such that

|b(t, x)− b(t, y)|2 + ||β(t, x)− β(t, y)||2

+
l∑

k=1

∫

R

|θk(t, x, zk)− θk(t, y, zk)|2νk(dzk) ≤ D|x− y|2 (E.23)

for all t ∈ [0, T ];x, y ∈ R
n. Then the stochastic differential equation

dX(t) = b(t,X(t))dt + β(t,X(t))dB(t) +
∫

R

θ(t,X(t−), z)Ñ(dt, dz)

0 ≤ t ≤ T,X(0) = x(constant) ∈ R
n (E.24)

has a unique Ft-adapted càdlàg solution X(t) such that E[X2(t)] <∞ for all
t ∈ [0, T ].
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Example E.6. Consider the stochastic differential equation

dY (t) = μ(t)Y (t)dt + σ(t)Y (t)dB(t) + Y (t−)
∫

R

γ(t, z)Ñ(dt, dz)

0 ≤ t, Y (0) = y > 0 (E.25)

where μ(t), σ(t) and γ(t, z) are deterministic, γ(t, z) ≥ −1. If μ(t) = μ, σ(t) =
σ and γ(t, z) = z do not depend on t, this may be regarded as a natural jump
extension of the classical geometric Brownian motion. We call this process
the geometric Lévy process. Using the Itô formula we obtain that the solution
of (E.25) is

Y (t) = y exp
[ T∫

0

{

μ(s)− 1
2
σ2(s)

}

ds +

t∫

0

σ(s)dB(s)

+

t∫

0

∫

R

{ln(1 + γ(s, z))− γ(s, z)}ν(dz)ds

+

t∫

0

∫

R

ln(1 + γ(s, z))Ñ(ds, dz)
]

(E.26)

under suitable growth conditions on μ, σ and γ.

The Girsanov theorem The Girsanov theorem for Brownian motion was
presented in Appendix B. We here just concentrate on what happens in the
jump case:

Theorem E.7 (Girsanov theorem for Itô–Lévy processes). Let X(t)
be an Itô–Lévy process in R

n of the form

dX(t) = α(t)dt +
∫

Rl

γ(t, z)Ñ(dt, dz) (E.27)

Assume that there exists a process θ(t, z) = (θ1(t, z), . . . , θl(t, z))� ∈ R
l such

that θj(t, z) ≤ 1 and

l∑

j =1

∫

R

γij(t, zj)θ(t, zj)νj(dzj) = αi(t); 1 ≤ i ≤ n (E.28)

and such that the process

Z(t) := exp
[ l∑

j =1

t∫

0

∫

R

{ln(1− θj(s, zj)) + θj(s, zj)}νj(dzj)ds
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+
l∑

j =1

t∫

0

∫

R

ln(1− θj(s, zj))Ñj(ds, dzj)
]

(E.29)

exists for 0 ≤ t ≤ T and satisfies E[Z(T )] = 1. Define the measure Q on FT

by
dQ(ω) = Z(T )dP (ω) on FT (E.30)

Then X(t) is a local martingale with respect to Q. In other words: Q is an
equivalent local martingale measure for X(t).

Remark E.8 Note that the condition (E.28) corresponds to the condition
(B.28) in the Brownian motion case. However, while equation (B.28) has a
unique solution u(t) if θ(t) is a non-singular quadratic matrix, equation (E.28)
will typically have infinitely many solutions θ(t, z), even if the matrix γ(t, z)
is quadratic and non-singular. We see this even in the case where n = l = 1.
Then (E.29) becomes

∫

R

γ(t, z)θ(t, z)ν(dz) = α(t)

The only case where this has a unique solution is when ν is supported on
one point only, say z0, i.e., when

ν(dz) = λδz0(dz)

for some constant λ > 0. This corresponds to the case when η =
∫

R

zÑ(t, dz)

is a Poisson process with intensity λ and jump size z0.
The second fundamental theorem of asset pricing states that — under

some conditions — a mathematical market is complete if and only if there is
only one equivalent local martingale measure for the normalized price process
of the risky asset. Applied to the Girsanov theorem above, this means that
the market consisting of

(i) a safe investment, with price dS0(t) = ρS0(t)dt; S0(0) = 1
(ii) a risky investment, with price

dS1(t) = μS1(t)dt + βS1(t−)
∫

R

γ(t, z)Ñ(dt, dz); S1(0) > 0

where ρ, μ and β are constants, will typically be an incomplete market, unless
the underlying Lévy process is a Poisson process.
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cesses with Applications to Finance. Springer, New York.

R. L. Dobrushin and R. A. Minlos (1977): Polynomials in linear random functions.
Russian Math. Surveys, 32(2), 71–127.

R. Durrett (1984): Brownian Motion and Martingales in Analysis. Wadsworth,
Belmont, CA.

E. B. Dynkin (1965): Markov Processes, Vols. I, II. Springer, New York.
Yu. V. Egorov and M. A. Shubin (editors) (1991): Partial Differential Equations III.

Encyclopaedia of Mathematical Sciences 32. Springer, New York.



References 291

Yu. V. Egorov and M. A. Shubin (editors) (1992): Partial Differential Equations I.
Encyclopaedia of Mathematical Sciences 30. Springer, New York.

A. R. Forsyth (1906): Theory of Differential Equations, Part IV. Partial
Differential Equations, Vol. VI; Cambridge University Press, Cambridge, MA.

M. Freidlin (1985): Functional Integration and Partial Differential Equations. Princeton
University Press, Princeton, NJ.

A. Friedman (1976): Stochastic Differential Equations and Applications, Vols. I, II.
Academic Press. Reprint, Dover Publications, New York, 2006.

I. M. Gelfand and N. Y. Vilenkin (1964): Generalized Functions, Vol. 4:

Applications of Harmonic Analysis. Academic Press. (English translation.)
J. Gjerde (1996a): Two classes of stochastic Dirichlet equations which admit
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Y. Itô and I. Kubo (1988): Calculus on Gaussian and Poisson white noises. Nagoya

Math. J., 111, 41–84.
J. Jacod and A. Shiryaev (2003): Limit Theorems for Stochastic Processes

(Second Edition). Springer, New York.
F. John (1986): Partial Differential Equations (Fourth Edition). Springer-Verlag,

New York.
Y. Kabanov (1975): On extended stochastic integrals. Theory Probab. Appl., 20,

710–722.
G. Kallianpur and J. Xiong (1994): Stochastic models of environmental pollution. Adv.

Appl. Prob., 266, 377–403.
I. Karatzas and S. E. Shreve (1991): Brownian Motion and Stochastic Calculus (Second

Edition). Springer, New York.
M. Kardar, G. Parini and Y.-C. Zhang (1986): Dynamic scaling of growing

interfaces. Phys. Rev. Lett., 56, 889–892.
Y. Kondratiev (1978): Generalized functions in problems of infinite-dimensional analysis.

Ph.D. thesis, Kiev University.
Y. Kondratiev, P. Leukert and L. Streit (1994): Wick calculus in Gaussian analysis.

Acta Appl. Math., 44 , 3, 269–294.



References 293

Y. Kondratiev, J. L. Da Silva and L. Streit (1997): Generalized Appel systems. Math.
Funct. Anal. Topology, 3, 28–61.

Y. Kondratiev, L. Streit and W. Westerkamp (1995a): A note on positive distribu-
tions in Gaussian analysis. Ukrainian Math. J., 47:5, 649–659.

Y. Kondratiev, L. Streit, W. Westerkamp and J. Yan (1998): Generalized functions
in infinite-dimensional analysis. Hiroshima Math. J., 28, 2, 213–260.
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equation with Lévy noise initial data. Inf. Dim. Anal., Quantum Prob. Rel. Topics,
9, 249–270.

B. Øksendal and F. Proske (2004): White noise of Poisson random measures. Potential
Anal., 21, 375–403.

B. Øksendal and A. Sulem (2007): Applied Stochastic Control of Jump Diffusions
(Second Edition). Springer, New York.
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List of frequently used notation and symbols

N = the natural numbers 1, 2, 3, ...

N0 = N ∪ {0}

Z = the integers

Q = the rational numbers

R = the real numbers

R
+ = [0,∞) the nonnegative real numbers

R0 = R \ {0}

C = the complex numbers

R
n = R× · · · × R (n times)= the n-dimensional Euclidean space

R
n
+ = R+ × · · · × R+ (n times)

R
m×n = the set of all m× n matrices with real entries

In = the n× n identity matrix

C
N = the set of all sequences z = (z1, z2, . . .) with zk ∈ C

(CN)c = the set of all finite sequences in C
N (a finite sequence (z1, . . . , zk) is

identified with the sequence (z1, . . . , zk, 0, 0, . . .) ∈ C
N)

(RN)c = the set of all finite sequences in R
N (a finite sequence (x1, . . . , xk) is

identified with the sequence (x1, . . . , xk, 0, 0, . . .) ∈ R
N)

J = (NN

0 )c the set of all finite sequences (multi-indices) α = (α1, α2, . . . , αk)
where αi ∈ N0, k = 1, 2, . . . (see equation (2.2.9)

Index α = max{j;αj �= 0} if α = (α1, α2, . . .) ∈ J

l(α) = the length of α = the number of nonzero elements of α ∈ J

ε(k) = (0, 0, . . . , 0, 1, 0, . . .) ∈ J , with 1 on entry number k, k = 1, 2, . . .

Γn = {α ∈ J ; Index α ≤ n and αj ∈ {0, 1, . . . , n} for all j}
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298 List of frequently used notation and symbols

zγ = zγ1
1 zγ2

2 · · · if z ∈ C
N and γ ∈ (RN)c (where 00 is interpreted as 1)

(2N)γ =
∏∞

j=1(2j)γj for γ ∈ (RN)c (see equation (2.3.8))

K = {z = (z1, . . . , zn) ∈ C
n ; c1|z1|2 + · · ·+ cn|zn|2 ≤ δ2}

Kq(R) = {ζ = (ζ1, ζ2, . . .) ∈ C
N;
∑

α�=0 |ζα|2(2N)qα < R2} (Definition 2.6.4)

hn(x) = the Hermite polynomials; n = 0, 1, 2, . . . (see equation (2.2.1))

ξn(x) = the Hermite functions; n = 1, 2, . . . (see equation (2.2.2)) (they con-
stitute a basis for L2(R))

ξδ = ξδ1⊗· · ·⊗δd ; δ = (δ1, . . . , δd) ∈ N
d (the tensor product of ξδ1 , . . . , ξδd

, i.e.
ξδ(x1, . . . , xd) = ξδ1(x1) · · · ξδd

(xd) ; (x1, . . . , xd) ∈ R
d) (see equation (2.2.6))

ηj = ξδ(j) , where δ(1), δ(2), . . . is a fixed ordering according to size of all
d-dimensional multiindices δ = (δ1, . . . , δd) ∈ N

d (see equation (2.2.8)). The
family {ηj}∞j=1 constitutes a basis for L2(Rd).

Hα(ω) =
∏∞

i=1 hαi
(〈ω, ηi〉) (see equation (2.2.10))

Kα(ω) = I|α|(δ⊗̂α)(ω) (see equations (5.3.22) and (5.4.42))

e(k) = ηjε
(i) if k = i + (j − 1)m; i ∈ {l, . . . ,m}, j ∈ N. The family {e(k)}∞k=1

constitutes a basis for K =
⊕m

k=1 L2(Rd). (See equation (2.2.11)).

(S)N
ρ = (S)m;N

ρ ;−1 ≤ ρ ≤ 1 = the Kondratiev spaces (Definition 2.3.2 and
Definition 5.3.6)

(m is the dimension of the white noise vector and N is the state space
dimension)

(S), (S)∗ = the Hida test function space and the Hida distribution space,
respectively (see Proposition 2.3.7 and Definition 5.3.6)

(S)m;N
ρ,r = the Kondratiev Hilbert spaces (Definition 2.7.1 and Definition

5.3.6)

� = the Wick product (Section 2.4 and Definition 5.3.9)

H(F )(z) = F̃ (z) = the Hermite transform of F ∈ (S)−1 (Definition 2.6.1 and
Definition 5.4.15)



List of frequently used notation and symbols 299

(SF )(λφ) = the S-transform of F ∈ (S)−1 at λφ (Definition 2.7.5)

S(Rd) = the Schwartz space of rapidly decreasing smooth functions (d is
called the parameter dimension)

S ′(Rd) = the space of tempered distributions on R
d

S =
∏m

i=1 S(Rd),S ′ =
∏m

i=1 S ′(Rd) (see equation (2.1.33))

μ1 = the white noise probability measure on S ′(Rd) (Theorem 2.1.1)

μm = μ1×· · ·×μ1 d-parameter, m-dimensional white noise probability mea-
sure on S ′ (see equation (2.1.24)). If the value of m is clear from the context,
we sometimes write μ for μm

Eμ = the expectation with respect to μ

B(t); t ∈ R = 1-parameter Brownian motion

B(x);x ∈ R
d = d-parameter Brownian motion/field (see equations (2.1.11)–

(2.1.13))

W (x);x ∈ R
d = d-parameter singular white noise (Definition 2.3.9)

W(x) = (W1(x), . . . , Wm(x)) = m-dimensional, d-parameter singular white
noise (Definition 2.3.10) x ∈ R

d

〈ω, φ〉 = the action of ω ∈ S ′(Rd) on φ ∈ S(Rd) (see Theorem 2.1.1)

w(φ);φ ∈ S(Rd) = 1-dimensional, smoothed white noise (Definition 2.1.4)

w(φ);φ ∈ S = m-dimensional, smoothed white noise (see equation (2.1.27))

φx(y) = φ(y − x);x, y ∈ R
d = the x-shift of φ ∈ S (see equation (2.1.31))

Wφ(x) = w(φx),Wφ(x) = w(φx) = the 1-dimensional and the m-dimensional
smoothed white noise process, respectively. (See equation (2.1.30))

η(t); t ∈ R = 1− parameter Lévy process

η(x);x ∈ R
d = d − parameter Lévy process/field (see Definition E1 and

Theorem 5.4.3)

N(dt, dz) = the jump measure of a Lévy process (Definition E1)
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ν(dz) = the Lévy measure of a Lévy process (see equation (E.5))

Ñ(dt, dz) = the compensated jump measure/Poisson random measure (see
equation (E.10))

η̇(t); t ∈ R = 1− parameter Lévy white noise (Definition 5.3.7)

η̇(x);x ∈ R
d = d− parameter Lévy white noise (see equation (5.4.50))

˙̃N(t, z); (t, z) ∈ R×R0 = (1−parameter) white noise of Ñ(dt, dz) (Definition
5.3.8)

supp f = the support of the function f

dx, dy, dt, . . . = Lebesgue measure on R
n

Lp
loc(R

d) = the functions on R
d that are locally in Lp with respect to the

Lebesgue measure

Ck(U) = the real functions on U ⊂ R
n that are k times continuously differ-

entiable (k ∈ N0)

C(U) = C0(U)

Ck
0 (U) = the functions in Ck(U) with compact support in U

C∞(U) =
⋂∞

k=0 Ck(U)

C∞
0 (U) =

⋂∞
k=0 Ck

0 (U)

Ck = Ck(Rn)

C0+λ(U) = the functions g in C(U) that are Hölder continuous of order λ,
i.e., that satisfy

‖g‖C0+λ(U) := sup
x,y∈U

x�=y

|g(x)− g(y)|
|x− y|λ <∞ (0 < λ ≤ 1)

Ck+λ(U) = the functions in Ck(U) with whole partial derivatives up to order
k are Hölder continuous of order λ ∈ (0, 1)

‖g‖Ck+λ(U) =
∑

0≤|α|≤k ‖∂αg‖Cλ(U)
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If g = g(t, x); t ∈ [0, T ], x ∈ D ⊂ R
d, then

‖g‖C(λ) = ‖g‖C(λ)((0,T )×D) = sup
t∈(0,T )

x∈D

|g(t, x)|+ sup
y1,y2

∈(0,T )×D

|g(y1)− g(y2)|
d(y1, y2)λ

where

d(y1, y2) = (|x1 − x2|2 + |t1 − t2|)
1
2 when yi = (ti, xi) ∈ (0, T )×D.

‖g‖C(2+λ) = ‖g‖C(λ) +
∥
∥
∥
∥

∂g

∂t

∥
∥
∥
∥

C(λ)

+
d∑

j=1

∥
∥
∥
∥

∂g

∂xj

∥
∥
∥
∥

C(λ)

+
d∑

i,j=1

∥
∥
∥
∥

∂2g

∂xi∂xj

∥
∥
∥
∥

C(λ)

(·, ·) = the inner product in L2(Rd) or the inner product in R
n (depending

on the context)

Δ =
∑n

k=1
∂2

∂x2
k

(the n-dimensional Laplace operator)

Δj = 2dδ
(j)
1 δ

(j)
2 · · · δ

(j)
d ; j = 1, 2, . . . (see equation (2.3.19))

Δα = Δα1
1 Δα2

2 · · ·Δ
αj

j · · · =
∏∞

j=1(2
dδ

(j)
1 δ

(j)
2 · · · δ

(j)
d )αj (see equation (2.3.20))

∂D = the (topological) boundary of the set D in R
n

∂RD = the regular boundary points of D (with respect to the given process)

D = the closure of D

V ⊂⊂ D means that V ⊂ D and that V is compact

δ0(x) = Dirac measure at 0

δij = 1 if i = j, 0 otherwise

E[X] = Eν [X] = expectation of a random variable X with respect to a mea-
sure ν

Var [X] = E[(X − E[X])2] = the variance of X

:= by definition equal to

C = a constant (its value may change from place to place)

�� = end of proof.
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Abel’s criterion, 35

adapted, 6, 264

analytic function, 65

anisotropic, 74

anisotropic medium, 10

approximation, 145

attractive case, 169

Bochner–Minlos theorem II, 14, 203, 257

boundary problem, 2

Brownian motion, 16, 18, 61, 263, 264

Brownian sheet, 4, 18

Burgers’ equation, 9, 178, 210

càdlàg, 282

chaos expansion, 7, 21, 26, 29

characterization theorem, 65, 67

Cole–Hopf transformation, 180

Colombeau’s theory of distributions, 164

compensated (d-parameter) Poisson
process, 205

complex smoothed white noise, 112

Darcy’s law, 2

DLA processes, 3

Donsker delta function, 113

expectation, 6, 70

fluid flow, 1

Fourier transform, 88

fractional Brownian motion, 213

functional processes, 8, 91

Gaussian approximation, 7, 192

Gaussian white noise, 11

generalized expectation, 70

generalized smoothed white noise, 96

Girsanov formula, 96

Girsanov theorem, 268

Gjessing’s lemma, 97

Green function, 4, 8, 161

Gronwall inequality, 137, 148, 150

Hausdorff dimension, 3

heat equation, 169

Hermite functions, 21

Hermite polynomials, 21

Hermite transform, 6, 61

Hida distribution space, 40

Hida test function space, 40

Hilbert–Schmidt operator, 82

Itô calculus, 219

Itô integral, 4, 29, 264

Itô isometry, 265

Itô–Lévy decomposition theorem, 283

Itô–Lévy process, 284

Itô/Skorohod integration, 50

kernel theorem, 100

Kolmogorov’s continuity theorem, 18, 106

Kolmogorov’s theorem, 257, 258

Kondratiev distribution space, 39

Kondratiev spaces, 5, 31, 33, 37

Kondratiev spaces of Poissonian test
functions, 207

Kondratiev test function space, 39

Lévy process, 281

Lévy measure, 282

Lévy–Khintchine formula, 282

Lévy field (multiparameter), 232–237

linear stochastic differential equations, 128

303



304 Index

Logistic paths, 127
lognormal, 73

noise, 1, 4, 11, 13, 18, 42, 43
nuclear space, 81
numerical simulations, 118

oscillating string, 139

parabolic stochastic partial differential
equations, 10, 92, 200

parameter dimension, 13
Poisson equation, 8, 161
Poisson random measure, 282
Poissonian white noise probability space,

204
population growth, 120
positive definite, 102, 203
positive noise, 10, 72, 139, 186
positivity, 92, 98
pressure, 1
pressure equation, 10, 141
pure jump Lévy martingale, 219, 244

quasilinear, 10, 92, 145

S-transform, 75
saturation, 1
Schrödinger equation, 9, 169

Skorohod integrals, 5

Skorohod integration, 50

smoothed white noise, 13, 19

Sobolev space, 5, 34

stochastic
bifurcation point, 126
Burgers equation, 180
distribution process, 9
distributions, 6

environment, 120
exponentials, 16
medium, 139
permeability, 74
Poisson equation, 9, 161
polynomials, 25
potential, 9
Schrödinger equation, 172
source, 10, 178
test functions, 31
transport equation, 164

Stratonovich equation, 146
Stratonovich integral, 4
strongly independent, 110
symmetric tensor product, 30

tensor product, 24, 25
translation, 92
translation operator, 95
transport equation, 9, 165

V̊age’s inequality, 129
Volterra Equation, 131

wet region, 2
Wick

exponential, 71
inverse, 72
matrix, 75
powers, 47, 72
product, 5, 43
version, 47
versions f� of analytic functions, 71

Wick-cosine, 107
Wick-logarithm, 72
Wick-sine, 107
Wiener process, 263
Wiener–Itô chaos expansion, 21, 30, 205
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some nonsense
as a comprise,

lest fools should fail
to find it wise.

Piet Hein
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